

 Apple /// Computer Information -- Page 1 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112


Apple /// Computer Information

III BITS
John Jeppson's Guided Tour of Highway III

Softalk Magazine, May 1983, pages 100-112

SOURCE

http://adtpro.sourceforge.net/archive/AppleIIIBits.html
04 December 2008

Here is a ragtag assortment of odds and ends from Apple III, thrown together almost
untainted by logical sequence. Some have already been published elsewhere; some are
obtainable in the fine print of Apple manuals; and some are the fruit of personal
investigation. Accuracy, particularly in the latter category, may not be uniformly high.
So be warned.

Let's face it. Extracting information from Apple Computer isn't the easiest thing in the
world. In fact, it's usually faster, and more fun, to ask the Apple III itself. There is no
obvious reason for Apple's reticence. The folks at Apple intend, they say, to publish
the SOS Reference Manual and, eventually, the Driver Writer's Guide. The reference
manual exists already, more or less, as a textbook for the Apple III Technical
Workshop. If you're keen on writing assembly language for the III, by all means take
that course. It tells you lots and lots, although not quite everything you might wish to
know. Inquiries, however, seem to drift off into never-never land.

Why so secretive? The effect seems primarily to impede the efforts of would-be Apple
III programmers, which you might suppose would not be in Apple's interest. Maybe
they are protecting something else? The techniques of RAM-based operating systems
may have a more general applicability... perhaps to the Lisa?

No doubt a recognized software development firm, prepared to sign certain
agreements, can obtain source materials and technical assistance. But many bright
ideas must incubate and grow and be played with on the machine before they become
sufficiently clear and explicit to warrant a formal approach to Apple. A lot of maybe-

 Apple /// Computer Information -- Page 2 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

we-coulds must simply have vanished because the programmer had insufficient
information to permit experimentation.

A Memory Map.

At any one time, the 6502 cpu works with 64K addresses arranged as follows:

 0000..1FFF 2000..9FFF A000..FFFF
 lower s-bank user bank 0-6 upper s-bank

The system bank is always on-line. It contains SOS.Kernel and other goodies. The user
banks are switched in and out. Only one user bank is on-line at any given moment.

Table 1 describes the function of pages in the lower system bank.

Table 1. Lower system bank: pages $00..1F

00: "True" zero page. Used early in boot sequence, and as the zero page
 for interrupt handlers.
01: "Normal" 6502 stack. Addressed by PHA, JSR, and so on, whenever
 bit 2 of environment register ($FFDF) is set. Used as stack page
 by interrupt handlers, drivers, and by SOS.Kernel itself.
02..03: I/O buffers for floppy drivers.
04..07: Text page 1. In eighty-column mode holds screen memory for
 even-numbered columns 0,2,..78 (decimal).
08..0B: Text page 2. Memory for odd-numbered columns 1,3,..79 (decimal).
 Note: Corresponding addresses in TextPage1 and TextPage2 are
 interchanged by the relation: (high byte) XOR $0C.
0C..0F: Character set.
10..11: File names, prefix, ? access routes to files.
12..13: Used as I/O buffer for reading directories.
14: Xbyte page when zero page is $18. Used by SOS.Kernel and by drivers.
15: Typeahead buffer.
16: Xbyte page when zero page is $1A. Used by interpreter and by
 assembly modules included in user programs.
17: Keyboard layout.
18: System zero page. Used by SOS.Kernel and by drivers.
19: SOS data and jump tables.
1A: "User" zero page. Used by interpreter.
1B: "Alternate" 6502 stack when zero page is $1A (zero page XOR $01).

 Apple /// Computer Information -- Page 3 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

 Used by interpreter. Alternate stack is addressed by PHA, JSR, and
 so on, whenever bit 2 of environment register ($FFDF) is clear.
1C..1D: Route information for open files.
1E..1F: Available for use by interpreter.

Upper System Bank: $A000..FFFF. SOS.Kernel occupies $BC00..FFFF. In the future
SOS.Kernel may get longer and extend down as far as $B800. SOS.Interp, which is
"absolute" code, is normally loaded below SOS.Kernel. Actually, it is loaded into the
highest user bank (bank 6 in a 256K machine) beginning at some predetermined
location ($7600 for Pascal). It may then extend upward for any length, up to the lower
end of SOS.Kernel (presently $BC00). Thus it usually overlaps from bank 6, a user
bank, into system bank $A000..BBFF. This is important because the overlap gives the
interpreter a sizable area in system bank for code that is always on-line. Bank-
switching must always be done from system bank. If you switch banks while running
in a user bank -- puuff! Suddenly you aren't.

A very short interpreter might lie only in user bank or only in system bank. The
loading site and length are determined by the writer when the interpreter is created. It
is absolute code ".org'd" on the intended loading site.

Usually the upper system bank is all RAM, except for $FFD0..FFDF and $FFE0..FFEF,
which are the onboard D and E VIAs (versatile interface adapters). In particular, if bit
6 of the environment register is clear, then $C000..CFFF is RAM. If that bit is set, then
this area is I/O. There are also $20 bytes of RAM "under" the VIAs at $FFD0..FFEF.
Normally they are off-line. These RAM bytes can be accessed only by "8F" extended
addressing. This small area of RAM is unique in that it is not disturbed by a control-
reset reboot, so that's where they keep the last valid clock value -- less useful, since
you obtained your functioning clock chip.

The RAM of SOS.Kernel area $C000..FFFF can be write-protected by setting bit 3 of
the environment register. Normally this RAM is protected while the interpreter is
running. This is the user environment, and Apple doesn't trust you. It is unprotected
in the driver, SOS.Kemel, and interrupt handler environments. Write-protection
doesn't affect I/O $C000..CFFF when that is enabled, nor the VIA registers
$FFD0..FFEF.

Highest User Bank: Bank 6 in a 256K Machine. At boot time SOS.Interp is loaded here,
at whatever site the writer has designated, assuming, as is usually the case, that the
interpreter is not confined entirely to $A000..BBFF in system bank. Next the drivers
are loaded below SOS.Interp, one after another, in whatever order they are

 Apple /// Computer Information -- Page 4 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

encountered in SOS.Driver, which is just the reverse of the order listed by the System
Configuration Program. For this purpose a modular driver is just one driver, no
matter how many modular units it may contain. The drivers extend, if necessary,
down to the bottom of bank 6. If more space is needed, they continue from the top of
the next lower user bank ($9FFF with bank 5 switched in). Each driver, however, must
be completely contained within its bank, so if there is insufficient room for the
complete driver in bank 6 it will be placed entirely in bank 5. Any space left over
below the drivers is free and available for requisition by the interpreter.

Interpreter Strategy. Interpreters should never assume they are resident in the highest
bank, even though that is where they are normally loaded. Interpreters will run
perfectly well in other banks. All you need to do is copy the user bank portion of the
interpreter into the corresponding bytes in another (free and available) bank. Then
switch in that bank (being careful not to self-destruct) and perform a jump to the first
byte of interpreter code. The interpreter still overlaps into system bank ($A000..BBFF)
just the way it always did. Bank-switching affects only the user bank. Interpreters,
therefore, should always find out where they are by checking the bank register
($FFEF), never by making assumptions or by using location $1901, which does contain
the highest bank number.

This relocation trick can be used for interpreter-switching schemes. A small switching
interpreter is loaded from disk as the original SOS.Interp. It is placed entirely in the
upper part of the highest user bank, with the drivers immediately below. The
switching interpreter, in turn, loads in another interpreter (perhaps Pascal) but places
the user-bank portion in a lower bank, where it runs very happily. The switching
interpreter remains in the highest bank, taking up very little room, just waiting for
you to call it back by pressing a special key combination (for which you will need a
small modification of the console driver). Then the switching interpreter can load in,
and run, some other interpreter, such as Basic.

User Bank 0: "8F" Addressing. The "zero-page anomaly" in Apple III means that every
time the 6502 executes a zero-page instruction it actually operates on the designated
zero page, found as the value of the zero-page register ($FFD0). The same thing
happens when the (sixteen-bit) operand of an instruction has $00 in the high byte,
since that also refers to zero page. Similarly, in extended addressing, if the place you
are headed has $00 in the high byte of its address, then that is also interpreted as a
zero-page location and you are given whatever is the current zero page. But that may
not be what you want.

 Apple /// Computer Information -- Page 5 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

Extended addressing looks at a 64K stretch of memory comprising two consecutive
user banks. In extended addressing, $0000 is the bottom of one user bank and $FFFF is
the top of the next higher user bank. Whichever pair of user banks is active depends
on the Xbyte of the extended address. This works fine except for the lowest page of
the lower of the two user banks in the pair. That would have to be addressed as
$00xx/8b. But the high byte of that address is $00, so you are given zero page instead.

Normally you get around the zero-page anomaly by decrementing the Xbyte. Then
you are looking at a different pair of user banks, with your target bank as the higher
member of the pair. The lowest page of that bank can then be addressed as $80xx/8b-
1. But what about the lowest page of bank 0? There is no lower user bank to put
underneath it in a pair. Hence 8F addressing.

8F is an Xbyte which, when present, causes the extended addressing mechanism to
look at 64K of memory constructed as follows:

 0000..1FFF 2000..9FFF A000..FFFF
 lower s-bank bank 0 upper s-bank

It is aimost exactly like system addressing (Xbyte $00), with bank 0 switched in.
(There is one other interesting feature. It is all RAM, including the RAM beneath the
VIA registers $FFD0..FFEF.)

Thus if you are doing a lot of talking to user bank 0, you should use 8F as the Xbyte
and address the bank as $2000..9FFF, corresponding to $0000..7FFF in the bank. Then
you can get to the lowest page without worrying about the zero-page anomaly.

User Bank 0: Graphics. Which, of course, is why you'll want to be talking to bank 0.
That's where graphics are, when graphics are allocated. Pascal and Basic each provide
for allocations of $00, $40, or $80 pages of graphics, depending on the graphics mode.
Pascal also allows $20 pages, which is enough for one lo-res black-and-white buffer.
Hi-res mode appears to interleave two lo-res modes in alternate columns or groups of
pixels, much as eighty-column text interleaves two forty-column screens.

The number of pages allocated for graphics is stored in location $1907 in the SOS data
area. Presumably this byte is used by the video generator apparatus, as are
surrounding bytes in that area.

In black-and-white lo-res mode (BW280), buffer 1 runs from $2000/208F..3FFF/3F8F
(which is $0000..1FFF in bank 0). Buffer 2 is found in $4000/408F..5FFF/5F8F. In

 Apple /// Computer Information -- Page 6 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

buffer 1 the lowest byte ($2000/208F) represents the upper-left corner of the screen.
Each bit represents one pixel. Successive bytes (and their contained bits) are in order
from the left edge of the screen. One accesses individual bytes by indirect Y-indexed
addressing (extended addressing) off the base address, which is the leftmost byte in
that horizontal row. The following algorithm (for BW280, buffer 1) relates
corresponding bytes in successive rows. It was discovered empirically and is
doubtless pathetically slow:

 next line up: subtract $0400
 if < $2000 then add $2000 and subtract $80
 if < $3C00 then add $0400 and subtract $28

 next line down: add $0400
 if >= $4000 then subtract $2000 and add $80
 if >= $2400 then subtract $0400 and add $28

In hi-res mode (BW560) altemate bytes (groups of eight pixels) come from
corresponding bytes of the two lo-res buffers just discussed. Thus the sequence is
$2000, $4000, $2001, $4001....Hi-res buffer 2 is the corresponding structure beginning
at $6000/608F. In color mode (CP280) the "upper lo-res buffer" presumably contains
color information. We are not sure about COL140 mode. And we are not sure if the
base address algorithm holds for these modes.

When you are ready for the video generator to display your graphics, it is necessary to
fiddle with the soft switches (see table 8). Graphics information is always taken from
bank 0, regardless of which user bank is switched in. Presumably this is hard-wired,
although it is just conceivable that the source bank is software-selected. If so, we don't
know how.

The Text Pages: $0400..07FF and $0800..0BFF. Apple III text memory is very similar to
Apple II; possibly identical for forty-column mode. In eighty-column mode the two
"text pages" are interleaved: even columns from $0400..07FF, odd columns from
$0800..0BFF. The reason for this peculiar arrangement is found in the direct memory
access (DMA) apparatus of the video generator. When Apple III was designed for an
eighty-column display, the video generator had to call up twice the amount of
information as it did for the forty-column display of Apple II. But it did not have
twice the time in which to do it. So the memory-fetch path in Apple III was made
sixteen bits wide. Every data fetch actually gets two bytes. The video generator uses
both. The 6502 chip uses one and ignores the other (except in the case of the Xbyte,
which is that extra byte used in extended addressing). The memory fetch does not get

 Apple /// Computer Information -- Page 7 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

two adjacent bytes. It gets the byte at address and the byte at address: high byte XOR
$0C. Thus a fetch to $0400 also gets the byte from $0800, which the video generator
puts in the odd column. And this is also the reason why the Xbyte page is related to
its zero page by the same relation, high byte XOR $0C.

The Apple II "screen holes" are there, but you aren't supposed to use them for
peripheral card scratchpad space. In the Apple III these locations are used as transfer
ports when downloading character sets to the video generator. But downloading
occurs only at boot time or when programs deliberately change character sets. It is
relatively rare. The rest of the time these locations seem to be idle. It may be that a
peripheral card could use them for a while. But it's illegal according to the definition
of Apple III.

It is possible to write directly to the screen from assembly, bypassing the console
driver. Just put ASCII codes in the appropriate memory locations. The high bit should
be clear for inverse and set for normal, assuming you are using a standard (not
inverted) character set.

The bytes in each horizontal line are accessed by X-indexed addressing off the base
address, which is the leftmost byte of that line (see table 2).

If column is odd, add $0400 to the address. Use X index := column DIV 2;

Table 2. Text screen line numbers versus base addresses.

00 0400 08 0428 10 0450
00 0400 08 0428 10 0450
01 0480 09 04A8 11 04D0
02 0500 0A 0528 12 0550
03 0580 0B 05A8 13 05D0
04 0600 0C 0628 14 0650
05 0680 0D 06A8 15 06D0
06 0700 0E 0728 16 0750
07 0780 0F 07A8 17 07D0

In eighty-column mode use X := column DIV 2. If the column number is odd, you
must also add $0400 to the base address given in the table. Alternatively, the base
address and index may be computed with a modification of the Apple II subroutine
Bascalc (table 3).

 Apple /// Computer Information -- Page 8 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

 Entry: Line, column
 Exit : Base address (addrL,H), X-index

bascalc lda line asl A
 pha ora addrL
 lsr A sta addrL
 and #03 which lda column
 ora #04 lsr A
 sta addrH tax
 pla bcc $2
 and #18 lda addrH
 bcc $1 eor #0C
 adc #7F sta addrH
$1 sta addrL $2 rts
 asl A

Table 3. Subroutine Bascalc.

The Character Set: $0C00..OFFF. At boot time the system character set is loaded from
SOS.Driver and stored in these pages. Similarly, if you download another character
set from a program by issuing a DControl call #16 or #17 to the console driver, the
new set is also placed here. But these pages are not the active character set in current
use by the video generator. This is merely a staging area. From these four pages the
character set is further transferred to the video generator's storage area, wherever that
is. It is not in addressable memory. Presumably the machine contains a 1K RAM chip
dedicated for this purpose, analogous to the ROM chip beneath the Apple II keyboard
that contains the character set for that machine. In any event, you can change the copy
in $0C00..0FFF all you wish, but nothing happens.

The console driver uses a complex mechanism to transfer the.character set into the
video generator. It sets up an interrupt-driven background program (spooler) by
allocating system internal resources (SIR) numbers $05, $06, and $10. The video-
generator mechanism then interacts with the SIR#06 interrupt handler (embedded in
the console driver) to transfer the character definitions at its leisure. The computer's
attention is returned to the user's programs, and the video generator interrupts when
it feels ready for another swallow. There may be simpler ways if you are willing to let
the main program wait. For an entire character set the download procedure takes
about a second to complete.

 Apple /// Computer Information -- Page 9 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

The actual transfer involves the E-VIA's peripheral control register ($FFEC), interrupt
enable register ($FFEE), a couple of sites in $C000 I/O space ($C0DA and $C0DB) that
are probably soft switches, and the notorious screen holes. Apparently the interrupt
handler moves the character descriptions piecemeal from the $0C00 area to the screen
holes and then alerts the video generator to move them on from there into its own
dedicated RAM.

This transfer could probably proceed just as easily from any memory buffer to the
screen holes; the $0C00 staging area is merely a convenience. But if you are operating
from a background program, and if that program is the interrupt handler itself, then
the buffer must be in system bank. If the buffer were in a user bank it would surely go
off-line due to bank-switching. Extended addressing is not available for interrupt
handlers; it doesn't work on the true zero page. Hence the $0C00 buffer.

Typehead Buffer: $l500..15FF. Page $15 is set aside for use by the console driver as a
typeahead buffer. It is nothing more than a first-in-first-out queue. Actually two
queues. The first queue ($1500..157F) contains KBD values, which are the ASCII codes
generated by the keyboard. For each KBD there is also a KBDFLG byte, the second
keyboard byte, which flags the various modifier keys. KBDFLG is stored in the
corresponding byte in the second queue ($1580..15FF). The console driver maintains a
count of the current number of characters in the queue and keeps index pointers to the
current front and rear of the queue.

When a key is pressed, KBD appears at $C000 just as it does in Apple II. At this time
KBDFLG also becomes available at $C008. The keyboard interrupt is cleared with the
keyboard strobe, $C010, just as it is in Apple II.

KBD and KBDFLG are picked up by the keyboard (SIR#02) interrupt handler, which
is embedded in the console driver. If they represent one of the five console control
keys, that function is executed immediately. Otherwise, if a standard key was pressed,
KBD would be used as an index into the keyboard layout look-up table (page $17).
KBDFLG and the modified value of KBD are then stored in the typeahead buffer. The
console driver will retrieve them when it feels so inclined.

Before exiting, the keyboard interrupt handler also checks to see if the "any-key" event
is armed or if this is the "attention" event character. If so, the handler queues up the
appropriate "event." Later, before retuming to the user program, SOS checks the event
queue and transfers control to the event handler as a subroutine.

 Apple /// Computer Information -- Page 10 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

SOS Data and Jump Tables: $1900..19FF. The first few bytes on page $19 contain
important status information (table 4). During ordinary business, some (or all) of these
bytes control the video generator and/or similar accessory apparatus. But when the
monitor is running, they have no perceptible effect. So there must be more than one
way to control the video generator.

1900: 10 ??
1901: 06 Highest user memory bank.
1902: 00 Console control #7 and #9. Setting bit 7 suspends
 screen output; bit 6 will "flush" screen output. Low nibble: ??
1903: 00 High bit set indicates NMI pending.
1904: 8F ??
1905: 19 ??
1906: 82 Console control #5. Clearing bit 7 turns off video. Bit 6
 may be involved in graphics. Low nibble contains text
 mode [0..2].
1907: 00 Number of pages allocated for graphics.

Table 4. SOS status info. Some bytes control video generator.

Page $19 also contains a jump table beginning at $1910. The jumps take the form
"1913: 4C CA E2 JMP E2CA". The table provides fixed entry addresses for certain
subroutines that apparently will be supported in future versions of SOS. The list is in
table 5. Those marked with an asterisk are documented by Apple and are legal to use.
The others... well, they do appear in the jump table.

Access SOS address * = Legal to use
1910 198F Probably debug.
1913 E2CA * AllocSlR: Allocate internal resource.
1916 E352 * DealcSlR: Deallocate internal resource.
1919 E3C2 Disable reset key (unless NMI pending).
191C E3F3 Enable reset key (just sets FFDF bit 4).
191F E41D * Queevent: Queue an event.
1922 E3A9 * SelC800: Grab $C800 expansion space.
1925 EE2A Writes "system failure," the value of A, and hangs.
1928 EE17 * SysErr: reports errors from drivers to caller.
192B F5C5 ? error number look-up for internal buffer allocation.
192E F686 ? error number look-up for internal buffer allocation.
1931 F710 ? error number look-up for internal buffer allocation.
1934 19D3 Probably debug (AND #20, STA 19D2, RTS).

 Apple /// Computer Information -- Page 11 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

1985 1910 Probably debug.

Table 5. Supported SOS subroutines.

Page $19 also contains a copyright notice at $1990, a few other data bytes of
mysterious function, and a lot of zeros. The subroutine SysErr stores the error number
at $1980 and the return address at $19FD and $19FE. The "system-failure" routine uses
the end of this page to store the program counter and all register values for use in
debugging. Other SOS routines store various temporaries on this page.

The copyright notice at $1990 is a good spot if you want to store things that can be
found from the Monitor. If you want to store a lot of stuff you can also use the
character set area.

Those Registers: the Onboard 6522 VIAs. The two VIAs are referred to as D-VIA
($FFD0..FFDF) and E-VIA ($FFE0..FFEF) respectively. They are fully occupied with
Apple III hardware manipulations. You cannot, for example, use the VIA timers for
your own purposes. The VIAs manage bank-switching, zero-page selection, and much
of the other machinery that permits Apple III to accommodate the 64K address space
of the 6502 cpu chip.

$FFEF: Bank register (E-VIA IORA). The low nibble selects the currently switched-in
bank. The high nibble is generally $F. Attempts to change the high nibble have no
effect. Those four bits are flags for interrupt requests from the slots.

$FFDF: Environment register (D-VIA IORA). Table 6 lists the significance of its bits.
Apple would be happier if you confined your attention to bit 7 and didn't mess with
the others. Table 7 contains a variety of information about the various standard
environments.

Value Bit Function Bit=0 Bit=1

01 0 F000..FFFF RAM ROM
02 1 ROM# ROM#2 ROM#1
04 2 stack alternate normal (true 0100)
08 3 C000..FFFF read/write read only
10 4 reset key disabled enabled
20 5 video disabled enabled
40 6 C000..CFFF RAM I/O
80 7 clockspeed 2MHz 1 MHz

 Apple /// Computer Information -- Page 12 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

 Note: ROM#2 doesn't exist.

Table 6. Environment register ($FFDF).

 (Data mostly from unpublished SOS Reference Manual)

 User Kernel Driver IRQ Monitor

Environment register $38 $34 $74 $74 $77
 Clock speed 2 MHz 2 MHz 2 MHz 2 MHz 2 MHz
 I/O space disabled disabled enabled enabled enabled
 Screen on unchanged unchanged unchanged on
 Reset key unlocked unchanged unchanged unchanged unlocked
 Write protect read only r/w r/w r/w r/w
 Stack alternate normal normal normal normal
 ROM disabled disabled disabled disabled enabled
Zero page $1A $18 $18 $00 $03
Xbyte page $16 $14 $14 none none
Bank register unchanged unchanged unchanged handler's $F0
6502 interrupts enabled enabled enabled disabled ??

Functions allowed:

 Issue SOS call yes no no no no
 Be interrupted yes yes with care with care n/a
 Handle interrupt no no no yes n/a
 Queue event yes no yes yes n/a
 Handle event yes no no no n/a
 Allocate SIR yes yes yes yes ??
 Call SelC800 see text yes yes yes n/a
 Call SysErr no yes yes no n/a

Note: Upon entry to an interrupt handler X points to a $20 byte
 scratchpad area on zero page. These bytes should be addressed
 $00,X and so on. It the interrupt source is the onboard ACIA then Y
 contains the ACIA status register.

Table 7. The standard environments.

$FFD0: Zero-page register. Selects the current zero page, which can be assigned to any
page in memory. If alternate stack is enabled (bit 2 of $FFDF is clear) then all stack-

 Apple /// Computer Information -- Page 13 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

using opcodes use the current zero page XOR $01. Extended addressing, on the other
hand, functions only for zero pages in the range $18..1F. The user zero page is $1A.
That's you and/or the interpreter. Drivers and SOS.Kernel use $18. Interrupt handlers
use $00. SOS is supposed to decide these things; you are not. The SOS call handling
routine even checks to see if the caller's zero page is $1A. If not, it crashes the system.
Somewhere in darkest Cupertino, Apple maintains a coven of witch doctors who will
cheerfully do unspeakable things to your image, should you violate this trust.

$FFDD: "Any-slot" interrupt flag. When a peripheral card in one of the slots pulls
down the interrupt line, the interrupt handler is entered with 6502 interrupts disabled.
The interrupt handler is, of course, responsible for clearing the interrupt condition on
the card. If the interrupt handler wishes to enable 6502 interrupts (as it should if it will
run longer than 500 microseconds) then it must also clear the "any-slot" interrupt flag
by storing $02 in $FFDD. Otherwise the interrupt manager will do it for you when the
handler exits.

I/O Space: $C000..CFFF. I/O space is on-line when bit 6 of the environment register
($FFDF) is set. It is actually $C000..C4FF and $C800..CFFF. The intervening bytes
$C500..C7FF are always RAM. Table 8 lists those registers of which we have some
clue, There are many mysterious others. When in doubt, there is a good chance that a
register's function is similar or identical to its role in Apple II.

C000: KBD. ASCII value of the most recent keypress.
C008: KBDFLG. Bits are flags for modifier keys.
C010: Clear keyboard strobe.
C020: Deselect all peripheral slots (CFFF more commonly used).
C030: Clicks speaker (Apple II type).
C040: Beeps speaker (Apple III type).

Soft switches
C050: Black and white on.
C051: Color on.
C052: Forty-column mode, low-res mode.
C053: Eighty-column mode, hi-res mode.
C054: Display buffer 1.
C055: Display buffer 2.
C056: Text on.
C057: Graphics on.

Peripheral card I/O (each slot has $10 bytes)

 Apple /// Computer Information -- Page 14 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

C090: Slot 1.
C0A0: Slot 2. Normally addressed as C080,X
C0B0: Slot 3. where X = s0 (slot number in high nibble).
C0C0: Slot 4. Note: there is no slot 0.

Onboard 6551 ACIA
C0F0: ACIADR Data register.
C0F1: ACIASR Status register.
C0F2: ACIAMR Command mode register.
C0F3: ACIACR Control register.

Peripheral card PROM space (one page for each slot)
C100: Slot 1.
C200: Slot 2.
C300: Slot 3.
C400: Slot 4.

Table 8. I/O space: $C000..CFFF.

Notice that the $10 bytes beginning $C080, $C0D0, $C0E0, and $C0F0 are not used for
slots in the III. In Apple II they would be slots 0, 5, 6, and 7 respectively. There may or
may not be a clue to their function in the assignment of various connecting plugs to
imaginary slots in emulation mode. For example, $C0F0+ is the ACIA (asynchronous
communication interface adapter), as indicated in table 9. The ACIA runs the serial
port, which in emulation mode is assigned to an ethereal slot 7. Similarly, emulation
mode assigns the floppies to slot 6, and the floppy drivers (buried in SOS.Kernel at
$E899) probably access bytes in $C0E0..C0EF, and in $C0D0..C0DF as well. But this
may only be speculation.

 Entry: A = slot number ($00 deselects all slots)
 Entry point: (via JMP table) at $1922

E3A9: C9 05 * CMP #05 ; range check
E3AB: B0 14 * BCS ->E3C1 ; error returns carry set
E3AD: 08 * PHP
E3AE: 78 * SEI ; disable 6502 interrupts
E3AF: 8D C0 DF * STA DFC0 ; save slot number
E3B2: 09 C0 * ORA #C0
E3B4: 8D BF E3 * STA E3BF ; build instruction at E3BD
E3B7: 2C 20 00 * BIT C020 ; deselect strobe

 Apple /// Computer Information -- Page 15 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

E3BA: 2C FF CF * BIT CFFF ; same
E3BD: 2C FF C0 * BIT C0FF <--- ; becomes CsFF
E300: 28 * PLP ; restore 6502 interrupts
E3C1: 60 * RTS

Table 9. SelC800 disassembler listing.

$C800..CFFF is a 2K peripheral card expansion space used "in common" by all the
slots. As in Apple II it can be selected by referencing one of the peripheral card I/O
locations assigned to that slot. $CFFF does deselect all slots, but $C020 (formerly the
cassette output toggle) is the preferred Apple III deselection strobe.

There are some new rules for using $C800 space that are intended to mesh with Apple
III's interrupt-driven operating system. You are supposed to allocate the space prior to
use by calling the SOS subroutine SelC800. The slot number is passed in the [A]
register on a JSR to the entry point at $1922. (See the subroutine listing in table 9.) A
value of $00 deselects all slots. Note that SelC800 saves the slot number in $DFC0; this
allows the interrupt manager to restore the proper card allocation should an interrupt
occur. The interrupt manager routinely deselects all slots on entry and reselects the
proper slot on the way out.

The documentation states that SelC800 may be called from any environment including
interpreters (except an NMI handler). This turns out not to be entirely true. The
subroutine builds an instruction on-the-fly by storing the slot number ORA #C0 as
high byte of the operand in bit $C0FF. The bit instruction then physically enables
$C800 space for that slot. But this area of SOS is write-protected while running in the
user environment, so the STA instruction doesn't work and the subroutine fails
without notifying you. If you want to call SelC800 from the user environment you
must enable write by clearing bit 3 of the environment register ($FFDF).

There must be another soft switch somewhere. When you enter the Monitor (with
control-open-apple-reset), it comes up in forty-column mode. You can change to
eighty-column mode with escape-8, and back again with escape-4. From eighty-
column mode you might suppose you could also change back to forty columns by
fiddling with the soft switches, perhaps by reading $C052 and maybe $C054. Things
change, and you can tell it's really trying hard. But no combination quite makes it. We
don't know why.

System Internal Resources: SIRs. When an interrupt occurs, the interrupt manager
must know which interrupt handler goes with which interrupting device and where

 Apple /// Computer Information -- Page 16 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

the handler address is located in memory. The SIR allocation scheme provides a look-
up table. It also establishes "ownership" of a resource in order to prevent squabbles.
Resources should therefore be allocated whether there will be interrupts or not.
Somewhere in your code, place the following data table:

SIRADDR .equ SIRTABLE
SIRTABLE .byte 00 ;SIR#
 .byte 00 ;ID code (will be assigned by SOS)
 .word handler ;interrupt handler address (or $0000)
 .byte bank ;interrupt handler bank

Allocation is performed by JSR AllocSIR ($1913) and deallocation by JSR DealcSIR
($1916). The 6502 registers must contain: X = SIRADDR; Y = SIRADDR+ 1; A = total
number of bytes in SIRTABLE. This will be $05, or some multiple of $05 in the event
that several resources are allocated at the same time. AllocSIR returns with carry clear
if the resource is successfully allocated.

Table 10 lists the numbers assigned to various resources. Examination of AllocSIR
suggests that the range is $00..17. There are a lot of question marks. One wonders
about the digital/analog audio converter, the paddle ports, and other mysteries, such
as whether the interrupt line of the MM58167A clock chip is wired up.

SIR# Resource

00 (?)
01 ACIA
02 keyboard
03 (?) clock chip
04 (?)
05 used by console screen code 22. "SYNC"
06 character set downloader interrupts
07..0F (?)
10 (?) character set downloader
11 slot 1
12 slot 2
13 slot 3
14 slot 4
15..17 (?) pseudo slots 5-7

Table 10. Internal system resource numbers (SIRs).

 Apple /// Computer Information -- Page 17 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

Boot Sequence: On power-up, or after control-reset, the boot process begins in ROM#1
(ROM#2 doesn't yet exist). Low-level diagnostics are performed. Then block 0 is read
from the disk in the built-in drive. This is the SOS boot code and is present on every
disk that has been formatted by the System Utilities program. It must be present for a
successful boot. It consists of one block of "absolute" code and is loaded into the
computer at $A000, where it begins to run.

The boot code begins by locating and switching in the highest bank of RAM. Then it
goes back to the disk and loads in five more blocks (blocks 1..5). These are placed in
$A200..ABFF. Block 1 currently contains all zeros; blocks 2..5 are the disk directory.
The boot code then scans the directory and locates SOS.Kernel, which it loads into
memory at $1E00..73FF.

When SOS.Kernel begins running, it promptly relocates bytes $3000..73FF into the
area $BC00..FFFF. This is the functional SOS.Kernel. The loader portion is eventually
overwritten and discarded. First, however, it locates and loads SOS.Interp and loads
the drivers from SOS.Driver. It then initializes SOS.Kernel and each of the drivers.
Finally, control is transferred to the first instruction in the interpreter and you are in
business.

Data Disks: Your Own Boot Code. If you want to end up in Apple III native mode, the
boot process had better find the SOS boot code in block 0 on the disk in the built-in
drive. Any disks you ever expect to use as SOS boot disks must have that code. On the
other hand, you may wish to create data disks that have the SOS directory structure
but cannot be booted. Or you may want the disk to boot, but to end up with some
entirely different operating system in the machine, such as an emulator, for example.
For either of these alternatives you will want to put your own code in block 0 on your
disk.

You start with a single block: the 512 bytes contained in block 0. It will be loaded and
begin to run at $A000. You may then use the ROM subroutines to load in more blocks,
so you can actually requisition as much space as you require. At the time your code
begins to run, you will be in the Monitor or something very similar. The environment
register reads $77, zero page is $03, and bank 0 is switched in. You have available all
the hardware, including the VIA registers, extended addressing (with proper zero
page), and all the internal resources. You do not, of course, have any of the SOS
subroutines and facilities.

 Apple /// Computer Information -- Page 18 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

Your code should be assembled as "absolute" code by the Pascal 6502 assembler and
should be ".org'd" on $A000. For data disks it should end in an infinite loop. Word
Juggler, for example, creates data disks that, when you try to boot them, print "Can't
boot Word Juggler data disk" in the middle of the screen and politely hang the
computer.

Formatting Data Disks. After you've assembled your own boot code, it is a relatively
simple matter to format data disks from application programs. It can be done entirely
from Pascal and almost entirely from Basic. From Basic you will also need an
invokable module that will write to a floppy disk by block number, just as Unitwrite
will do in Pascal. The assembly source text for such a module is appended at the end
of this article.

The floppy format driver (FMTDX) is activated by issuing a DControl call, code
number 254 ($FE), to the appropriate driver (.FMTD1 for the built-in drive). In Pascal
this is done with Unitstatus procedure. In Basic you use the Request.Inv invokable
module that comes on the Apple III Basic boot disk. If you're working in assembly
you just issue SOS call $83. When the DControl call is issued, the format process
begins immediately. All error checking and confirmation requests must be done by
your program before you issue the call.

The DControl call must specify a control list buffer. FMTDX.Driver expects a one-page
(256-byte) buffer that will be reproduced on each page of the new disk. Normally this
buffer should contain all zeros. The formatter places address code on each track and
sector and fills the data fields with zeros, or whatever you put in your buffer. Then it
quits.

You now have a formatted disk. It is not yet a SOS disk. It contains neither a directory
nor the block 0 boot code. You must store those yourself from program buffers using
Unitwrite (if you are working in Pascal). If you ever want to use the disk as a SOS
boot disk, just copy block 0 from some other boot disk. Otherwise transfer your own
code. Remember to chop off the header block, which the assembler will have placed in
front of your code. Start the transfer at block 1 of the codefile.

Next you must install a directory. The minimum requirements for a usable SOS
directory are listed in table 11. You must store the indicated byte values on the disk.
Just put them in the proper place in the 512-byte buffer and write the whole block
onto the disk.

The boot code -- blocks 0..1 (bytes 0000..03FF on the disk)

 Apple /// Computer Information -- Page 19 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

 Your code, or the SOS code from another boot disk
The directory -- blocks 2..5 (bytes 0400..0BFF)
 0400: 00 00 03 00
 0404: Fx -- where x is the length of the desired volume name in the
 low nibble. The high nibble should contain F, for root directory
 0405: The volume name in ASCII capitals (do not prefix with "/")
 0414: 75
 0422: C3 27 OC 00 00 06 00 18 01
 (These last two words are 0600 = the block number of
 the bit map
 0118 = 280 dec. = blocks
 on volume)
 0600: 02 00 04 00
 0800: 03 00 05 00
 0A00: 04 00 00 00

The bit map-block 6 (bytes 0C00..0CFF)
 0C00: 01 FF FF FE FE...through byte 0C22

Table 11. Minimum requirements for a SOS disk.

Word Juggler manages to write all this information onto the disk by a short segment
of elegant and compact code. The utilities program uses the brute-force approach. It
simply includes fourteen pages of a standard SOS structure (mostly zeros) and
transfers the whole thing to disk in one piece. No wonder the utilities program is 123
blocks long.

Unitread and Unitwrite for Basic: an Invokable Module. The Device.IO.Inv invokable
module contains two procedures. In Basic they are external procedures and require
the perform statement (see page 162, Apple Business Basic Manual).

The procedures are

 unitread (% devnum%, @ buf% (0), % length%, % block%)
 unitwrite (% devnum%, @ buf% (0), % length%, % block%)

These procedures read from or write to a specified block number (block%) on the disk
in a specified device number (devnum%). They transfer (length%) bytes to or from the
buffer in memory. The buffer must contain enough bytes or Unitread will spill data
over onto surrounding memory with disastrous results. Normally the buffer should

 Apple /// Computer Information -- Page 20 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

be dimensioned as an integer array; for example, DIM buf%(512). This buffer will
contain more than enough room for two blocks (1,024 bytes).

Unitwrite is a dangerous procedure. There is absolutely no protection from errors. It is
easy to write all over a disk directory, destroying it and rendering the entire disk
unusable.

The device numbers of the floppy disks are .D1 = 1, .D2 = 2, and so on.

After typing in the text, save it to any pathname, perhaps Devio.Text. Then assemble
it to the corresponding codefile, Devio.Code. Finally, change the name to
Device.IO.Inv. If the assembler is not allowed to append the suffix .code, the file-type
designation will get all screwed up and it won't invoke.

 .macro pop
 pla
 sta %1
 pla
 sta %1+1
 .endm
;
 .macro push
 lda %1+1
 pha
 lda %1
 pha
 .endm
;
 .macro SOS
 brk
 .byte %1
 .if "%2"<>""
 .word %2
 .else
 .word param0
 .endc
 .endm
;
DRead .equ 80
DWrite .equ 81
;
buffer .equ 0E8
;
 .proc unitread,4

 Apple /// Computer Information -- Page 21 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

 .def return,devnum,param0,param1
 .def param2,length,block
;
 jmp start
;
return .word 0000
devnum .word 0000
;
param0 .byte 00 ;number of parameters
param1 .byte 00 ;device number
param2 .word buffer ;pointer to buffer
length .word 0000 ;bytes to read/write
block .word 0000 ;block number to begin read/write
param8 .word 0000 ;bytes read -- result
;
start .equ *
 pop return
 pop block ;pop procedure parameters
 pop length
 pop buffer
 pop devnum
 lda #05 ;number of parameters for DRead
 sta param0
 lda devnum ;transfer one byte
 sta param1
 SOS DRead ;issue DRead SOS call
 push return
 rts
;
 .proc unitwrite,4
 ref return,devnum,param0,param1
 .ref param2,length,block
;
 pop return
 pop block ;pop procedure parameters
 pop length
 pop buffer
 pop devnum
 lda #04 ;number of parameters for DWrite
 sta param0
 lda devnum ;transfer one byte
 sta param1
 SOS DWrite ;issue DWrite SOS call
 push return
 rts
;

 Apple /// Computer Information -- Page 22 of 22

III BITS: John Jeppson's Guided Tour of Highway III -- Softalk Magazine, May 1983, pages 100-112

 .end

XFR.Block is a short Basic program intended to illustrate use of these procedures. It
transfers whole blocks (512 bytes each) between specified block numbers on (separate)
floppy disk drives.

10 INVOKE "device.io.inv"
20 DIM buf% (512)
30 HOME: PRINT "Transfer disk blocks utility"
40 PRINT
50 INPUT "Source device number: "; source%
60 INPUT "Destination device number: "; dest%
70 INPUT "Number of blocks to transfer (0..2): "; blks
80 length% = CONV% (blks * 512)
90 INPUT "Block number to begin reading: "; readblk%
100 INPUT "Block number to begin writing: "; writeblk%
110 PRINT: PRINT "Press any key to begin transfer": GET g$
120 PERFORM unitread (% source%, @ buf% (0), % length%, % readblk%)
130 PERFORM unitwrite (% dest%, @ buf% (0), % length%, % writeblk%)
140 PRINT: PRINT "DONE"

Return to Apple /// Library page

