

By Silas Warner

Copyright (C) 1981
.. by Muse Software
All Rights Reserved

Published by

MUSE SOFTWARE, Inc.
347 N. Charles Street
Baltimore, MD 21201

For Apple II or Apple II Plus
Requires 48K and Applesoft ROM

DO NOT UPDATE this disk with other versions of the
disk operating system (DOS). If you do it will destroy
this program disk.

REPLACEMENT - If this disk becomes worn or damaged,
Muse Software will gladly replace it. Send the damaged
disk with proof of purchase and $10.00 to:

Muse Software
347 N. Charles Street
Baltimore, MD 21201

This documentation manual was prepared and printed
using Super-Text - the professional word processor for
the Apple II, from Muse. Always ask for Muse Quality
Software at your local Computer store.

TABLE OF CONTENTS

SUBJECT

SCENARIO

INTRODUCTION
The RobotWar Manual
Starting The Game

ROBOTS AND ROBOT BATTLES
Locomotion
Power Supply
Radar
Guns and Ammunition
The Brain
The Battlefield
Damage
The Scoring System
Battling It Out
Scheduling A Match

CONTROLLING ROBOTS
Memory registers
Input/Ouput registers
The Index/Data registers

THE LANGUAGE OF ROBOTS
The Source Code

Comments
Labels
Instructions

The TO command
The Arithmetic commands
The IF command
The GOTO command
The GOSUB command

PAGE

1

3
4
4

7
7
7
7
8
8
8
9
9
9

13

15
16
16
20

23
23
23
23
24
25
26
27
28
29

SUBJECT

PROGRAMMING A ROBOT
Movement
Monitoring Damage
Scanning
Shooting
Random Number Generation

WRITING AND EDITING SOURCE CODE
Text-Editor Procedure

Cursor Movement
Moving Text
Deleting Text
Block Operations
Find Operations
Printing Source Code Files
Adding Text
Loading Files
Saving Files
Entering The Assembler
Summary of Editor Keys

THE ASSEMBLER
Assembly Errors
Object Code Exercise

THE TEST BENCH
Operating the Test Bench

Controlling the Test Bench
Simulating Radar
Simulating Damage
Tracing Registers
Exiting The Test Bench

STORING ROBOTS ON AUXILIARY DISKS
Initializing The Disk
Storing And Retrieving Source Code
Storing And Retrieving Object Code
Deleting Files

ROBOTWAR KEY SUMMARY

PAGE

33
34
35
35
37
38

41
41
45
46
47
48
so
51
51
52
53
54
55

57
60
61

63
64
65
65
65
66
66

67
67
68
69
70

71

WELCOME TO THE BATTLEFIELD OF THE FUTURE! It is
the year 2002. Wars still rage, but finally, they have
been officially declared hazardous to human health.
Now, the only warriors are robots - built in secret and
programmed to fight each other to the death!

Your country has just developed the most efficient
battle robot to date. It should be unbeatable - but
part of its micro-computer "brain" is still blank.
Only when a strategy is programmed into its memory will
the robot be able to fight.

The task set before you is:

TO PROGRAM A ROBOT,

THAT NO OTHER ROBOT CAN DESTROY!

1

2

IBTl.ODUCTIOll

RobotWar is a fascinating and highly competitive
game where robots battle each other to the death!
RobotWar is not a game using manual dexterity, instead
the robots are controlled by pre-programmed
instructions. This makes RobotWar a game of elegant
strategies and high spectator interest.

As
Robot War
creative
beginner
prove to

well as providing hours of entertainment,
is designed to teach and sharpen the skills of

computer programming. Whether you are a
or an accomplished programmer, RobotWar will

be fun and challenging.

RobotWar players design and write robot programs.
The program is written with the help of a text-editor,
and then translated by an assembler into
robot-understandable instructions. The program can
then be tested on a simulated robot to make sure it is
working properly. Once the player is assured that the
program is running as planned, it is installed in a
battle robot and sent out to do battle with the other
robots.

3

The RobotWar Manual

This manual is intended to teach the player all of
the skills necessary to create and battle robots.
These skills involve the basics of programming and the
operation of text-editors. The skills are easily
learned if each chapter is read in its proper order.

Starting The Game

To begin, boot the RobotWar disk. After the
program loads, the title page will appear on the screen
and prompt you to press

(RETURN)

After pressing RETURN, the main menu will appear

Exhibit 1: The Main Menu

4

The player can access any section of the RobotWar
program from the main menu by selecting one of its
eight options. These options are described below:

Option 1) This will access the
where the player can
execute one robot battle.
AND ROBOT BATTLES".

Battle branch
set up and

See "ROBOTS

Option 2) This will access the RobotWar
Assembler and Testing branch where the
programs are translated and checked
for errors, or tested on a simulated
robot. See "THE ASSEMBLER" and "THE
TEST BENCH".

Option 3) This will access the Text-Editor where
an existing program can be edited or a
new program can be written. See
"WRITING AND EDITING SOURCE CODE".

Option 4) This
the
the
the

is a simple control that turns
battle sounds on or off. Pressing

4 key will change the position of
sound switch.

Option 5) This will access the Disk Storage
branch where a disk can be initialized
for storing robot code. See "STORING
ROBOTS ON AUXILLARY DISKS".

Option 6) This will cause the computer to exit
from the RobotWar program to Applesoft
basic.

Option 7) This will access the Match Scheduling
branch where the player can schedule
and execute a series of battles. See
"ROBOTS AND ROBOT BATTLES".

5

Option 8) This will allow the player to run a
previously scheduled or interrupted
match (a series of battles). If you
resume a previously interrupted match
it will begin with the battle after
the one which was interrupted.

Note: If no option is selected from the main menu,
the program will automatically select option eight.

6

ROBOTS AND ROBOT BATTLES

Locomotion

Each robot is moved by tracks mounted on a 1.5
meter square chassis. The two independent motors,
driving the tracks, enable the robot to move vertically
(north/south) and horizontally (east/west).

Power Supply

The power supply will take the severest damage from
the enemy shells. It is built into the central body of
the robot, along with damage sensors. These sensors
monitor the damage to the power supply and when 100%
damage is attained, the robot will explode!

Radar

On top of the robot is a radar unit that emits a
beam in any desired direction. This beam reflects from
walls and other robots and returns to the robot. The
beam is accurately timed, enabling the robot to find
its position and to spot enemy robots.

7

Guns and Ammunition

Your robot is equipped with one gun that swivels
through 360 degrees and is automatically loaded. It
uses time-fused shells that can be set to explode at
any specified distance. The gun also has a cooling
period between each shot to keep it from overheating.

The Brain

Inside the robot is a micro-computer "brain" that
executes the instructions exactly as they have been
programmed. The brain has several parts: an
accumulator where a robot performs all arithmetic
operations, a program storage area where the
instructions are stored in memory, and registers where
numbers are stored. The brain links to input sensors
monitoring damage and position as well as to the drive
motors, radar, and gun. While the robot is on the
battlefield the brain is in complete control!

The Battlefield

Robot battles take place on a square battlefield
inside four strong walls. Each wall is 260 meters long
and strong enough that a robot cannot crash or shoot
through it. As many as five robots can fight at once,
but only one will emerge as the winner.

There is an observation station, directly above the
battlefield, enclosed in blast-proof glass to protect
you and the other observers.

8

Damage

Robots are eliminated from battle by incurring over
100% damage. When a shell hits a robot or explodes
nearby, the robot is damaged. The extent of that
damage depends on the proximity of the shell to the
robot. A shell exploding directly on top of a robot
can do 30% damage.

A robot can also be damaged through collisions with
walls or other robots. The extent of damage would
depend on the angle of collision. A head-on collision
between two robots can do 25% damage to both robots.

The Scoring System

Each robot has a score associated with it. As each
battle is fought the robots earn points which are added
t .o its cumulative score. Every time a robot's program
is changed, its score is reset to O.

Robots earn points in the following manner.. During
a battle, every time a robot is destroyed, 1 point is
earned by all of the survivors. Thus in a five-robot
battle, the first to be destroyed receives 0 points.
For outlasting that first robot, all other robots on
the battlefield earn 1 point. For outlasting 4 other
robots, the winner of a 5-robot battle earns 4 points!

Battling It Out

To start a robot battle, select option one from the
main menu by pressing

A
screen.
robots.
added to

catalog of available robots will appear on the
RobotWar comes with of five pre-programmed

As you create more robots, their names will be
the list (see Exhibit 2).

9

Exhibit 2 Selecting Robots From The Catalog

To select a robot: move the cursor, by pressing the
space bar, until it is next to the robot of your
choice. Then press

(RETURN)

to select the robot at the cursor.

Note: this selection process is utilized throughout
the RobotWar program whenever it is neccessary to
choose a robot from a catalog.

10

After you select a robot, its name is entered under
the "robots loaded" column. Repeat the selection
procedure until you have loaded all the desired robots.

A maximum of five robots can be loaded, after
which, the program will automatically enter the battle.

If you are selecting less than five robots, press

@
to enter the battlefield.

The screen will now display the battlefield. On
the right side of the screen each robot's assigned
symbol, its percent of damage and cumulative score are
displayed.

Exhibit 3 View From The Observation Station

11

To start the battle, press

(RETURN)

If you wait, the battle will start automatically.

The robots are designed to fight to the death.
However, the RobotWar program will automatically stop
any battle where the robots fail to damage each other.
Of course, as referee you may stop the battle anytime
you wish by pressing the ESC key and returning to the
main menu.

You may also wish to turn the sound system on or
off, while the battle is in progress. Press the Q key
to turn the sound off and the S key to turn it back on.

The scores of the robots will change as the robots
are eliminated from the field. When the victorious
robot emerges, the screen will display its name. Press

(RETURN)

to exit to the main menu.

Note: If you wait, the computer will automatically
return to the main menu.

12

Scheduling A Match

Robots can fi_ght a series of battles against each
other by scheduling a match. The match will execute
all of the battles automatically, one right after the
other. To schedule a match, access the main menu and
press

At this point, the screen will display the
catalog of robots available for battle. Selett the
robots for the match by using the catalog selection
process described earlier. When all of the desired
robots are loaded, press

@D
The following message will appear on the screen.

HOW MANY BATTLES DO
YOU WANT TO RUN?

Type in the number of battles you would like to
run and press

(RETURN)

to begin the match!

After the last battle, the screen will display the
total results of all the scheduled battles. To exit to
the main menu press

13

14

CONTROLLING ROBOTS

A robot computer contains 34 registers. The 34
registers are divided into three categories:

1. Memory registers which are used to contain numbers
for later recall.

2. Input/Output (I/O) registers which are used to
monitor and control specific robot functions.

3. The Index/Data pair of registers which are used to
access the other registers by their numbers instead
of their names.

15

1. Memory Registers

There are 24 memory registers used
numbers. The memory registers are named A
and Z (X and Y are not included - they
registers as described below).

2. Input/Output Registers

to store
through W
are input

There
computer to
or monitors
below:

are nine I/O registers that allow the
control the robot's actions. Each controls

a specific robot function as described

a) The X register:

The X register is used to monitor the
horizontal position of the robot. It always
contains the current horizontal position of the
robot on the battlefield, as a number from 0 to
256. 0 is at the extreme left of the
battlefield and 256 is at the extreme right
(see Exhibit 4).

b) The Y register:

The Y register is µsed
postion of the robot.
battlefield and 256
Exhibit 4).

c) The AIM register:

to monitor the vertical
0 is at the top of the

is at the bottom (see

The AIM register is used to monitor and control
the angle at which the gun is aimed. When a
number from 0 to 359 is stored in the Aim
register, the robot's gun will turn to that
angle. 0 aims the gun due north, 90 aims it
due east, etc. (see Exhibit 4). The AIM
register always contains the current angular
position of the gun.

16

Exhibit 4: Diagram Of The Battlefield

(X Position, Y Position)

(0,0) (256,0)

315°

225°

180°

(0,256) (256,256)

In the diagram above:

Robot A has an X position of 200 and a Y position
of 50 (200 ,50).

Robot B has an X position of 10 and a Y position
of 185 (l0,185).

Robot C has an X position of 128 and a Y position
of 210 (128,210).

17

d) The RADAR register:

The RADAR register is used to control the radar
unit on top of the robot and monitor the results
of the radar beam. Storing a number from 0 to
359 in the RADAR register, sends a beam out in
that direction (see Exhibit 4).

When the beam returns to the robot, the RADAR
register will contain the results as a number.
This number can range from 0 to 400 and be either
positive or negative. If the number is positive,
there is a wall, that many meters away, in the
direction the radar was aimed. If the number is
negative, there is an enemy robot in that
direction. The distance to the enemy robot is
equal to the negative of the radar result.

For example: If you store a 90 in the RADAR
register, a beam will be emitted in the
90-degree direction. The beam will then
bounce off, either another robot or a wall,
and return. If the RADAR register then
contains a +150, it means that a wall lies 150
meters away in the 90-degree direction. If
the RADAR register contains a -68, it means
another robot is presently 68 meters away in
the 90-degree direction.

18

e) The SHOT register:

The SHOT register is used to fire the robot's gun
and monitor the state of readiness of the gun.
Storing a new number in the SHOT register: sets
the timer on the shell so that it will travel
that number of meters before exploding, and then
fires it. After a shot is fired the SHOT
register will contain the state of the gun's
cooling process. When the SHOT register contains
a zero the gun is ready to be fired again.

f) The DAMAGE register:

The DAMAGE register is used to monitor the amount
of damage detected by the damage sensors. The
DAMAGE register starts at 100 at the beginning of
each battle and decreases towards 0 as damage is
incurred. When the register reaches 0, the robot
is completely destroyed and will disappear from
the battlefield. The DAMAGE register always
contains the current extent of damage.

g) The SPEEDX register:

This register is used to control and monitor the
horizontal speed of the robot. The number stored
in the SPEEDX register can range from -255 to 255
and controls the direction and speed of the
robot. A negative number moves the robot to the
left at that many decimeters/second, and a
positive number moves the robot to the right at
that many decimeters/second. If a zero is stored
in this register the robot will stop moving in
the horizontal direction. The SPEEDX register
always contains the horizontal speed of the
robot.

19

h) The SPEEDY register:

Acts the same as the SPEEDX register, only in the
vertical direction. A positive number is in a
downward direction and a negative number is in an
upward direction.

i) The RANDOM register:

This register is used to control the random
number generator. Storing a number in the RANDOM
register sets the limit for the generator. Then,
each time the RANDOM register is accessed, it
will contain a different integer (whole number)
between 0 and the random number limit which was
previously set.

3. The Index/Data Registers

The robot registers are usually referenced by their
names. The Index/Data pair allows registers to be
accessed by number instead of name.

Storing a number from 0 to 34 in the INDEX register
causes the corresponding .register to be used whenever
the DATA register is referenced.

For example, assume the INDEX register contains
27. When the DATA register is referenced in an
instruction, register #27 (AIM) will be
substituted for DATA.

20

ROBOT REGISTERS

Number Name ~
1 A Storage
2 B Storage
3 c Storage
4 D Storage
5 E Storage
6 F Storage
7 G Storage
8 H Storage
9 I Storage

10 J Storage
11 K Storage
12 L Storage
13 M Storage
14 N Storage
15 0 Storage
16 p Storage
17 Q Storage
18 R Storage
19 s Storage
20 T Storage
21 u Storage
22 v Storage
23 w Storage
24 x Current x position
25 y Current y position
26 z Storage
27 AIM Control gun aim
28 SHOT Fires the gun
29 RADAR Pulse radar
30 DAMAGE Monitor damage
31 SPEEDX Control horizontal speed
32 SPEEDY Control vertical speed
33 RANDOM Random number generator
34 INDEX Index to other registers

21

22

THE LANGUAGE OF ROBOTS

The Source Code

Robot programs are written in source code and then
translated by the assembler into robot-understandable
object code. Source code is composed of comments,
labels, and instructions.

1. Comments:

Comments are used for documenting the source code.
Comments can appear anywhere in the program as long as
they are preceded by a semi-colon.

A TO B ;THIS STORES A IN B

This is an example of a comment on the same line as
an instruction.

2. Labels:

A label is
sections within
instructions to
program.

a reference point used to identify
a program. Labels are used in

change the order of execution of the

A label is composed of a group of 2 or more
alpha-numeric characters itmnediately following a RETURN
(]). A label must start with an alpha character (A to
Z) and must be less than 32 characters long. A label
can not be the same as any of the register names or
command words.

23

3. Instructions:

Ins true tions
micro-computer
register names,
+1024)

used to control the robot's are
brain.

command
Instructions may contain

words and numbers (-1024 to

Commands

TO

+

*
I

IF

GOTO

GO SUB

ENDSUB

Stores a value in a register.

Adds two values.

Subtracts two values.

Multiplies two values.

Divides one value by another.

Compares two values and alters program
sequence.

Goes to a label in the program.

Executes a subroutine.

Returns from a subroutine.

24

The TO command

The TO command is used to store a value in a
register.

] 240 TO A

This example line of source code causes the
computer to load the accumulator with a value of 240
and then store it in the A register.

B TO A

This example causes the computer to load the
accumulator with the contents of the B register and
then store it in the A register.

0 TO SPEEDX TO SPEEDY

This example causes the computer to load the
accumulator with 0 and store it first in the SPEEDX
register and then in the SPEEDY register. In a real
robot this instruction could be used to stop horizontal
and vertical movement.

Note: Negative numbers can be stored as in the
following example:

] -240 TO SPEEDX

But, you CANNOT store the negative of a register
in that manner. For example:

] -B TO A

will NOT store the negative of B in A. To store a
negative of a register subtract the register from zero.
For example:

0-BTOA

25

Arithmetic commands (+ - * /)

Arithmetic operations can be performed on a value
stored in the accumulator. Whenever the program
encounters one of the arithmetic signs it performs the
calculation using the contents of the accumulator and
the value that follows. It then stores the results of
the calculation in the accumulator.

] 240 + 100 TO A

This example
100 to it, and
register.

A * 2 TO B

loads 240 into the accumulator, adds
stores the result (340) in the A

This example loads the accumulator with the
contents of the A register, multiplies it by 2 and
stores the result in the B register.

26

The IF command

The IF command is used to compare a value with the
contents of a register. It can test to see if a
register is less than(<), greater than(>), equal to
(=), or not equal to (if) a value. If the comparison is
true the computer executes the next TO, GOTO, GOSUB or
ENDSUB command. If the comparison is false the
computer skips the next TO, GOTO, GOSUB or ENDSUB
command.

]SCAN
] AIM + 5 TO AIM ;MOVE GUN
] AIM TO RADAR ;SEND RADAR PULSE
]LOOP

*] IF RADAR < 0 GOSUB FIRE ;TEST RADAR
] GOTO SCAN
]FIRE
] 0 - RADAR TO SHOT ;FIRE THE GUN
] ENDSUB

In the above example the IF command (marked with *)
tests the results of a radar scan. If the radar
register contains a value less than zero (indicating an
enemy robot) the computer will execute the 'GOSUB FIRE'
command. If the radar is not less than zero the
computer will skip the 'GOSUB FIRE' command.

27

The GOTO command

A GOTO command causes the program to change its
sequence of execution by going to a designated label
and continuing its execution from there. A GOTO
instruction must always be followed by a label.

*

]SCAN
) AIM + 5 TO AIM
] AIM TO RADAR
)LOOP
] IF RADAR < 0 GOSUB FIRE
] GOTO SCAN
)FIRE
) 0 - RADAR TO SHOT
] ENDSUB

;MOVE GUN
;SEND RADAR PULSE

;TEST RADAR

;FIRE THE GUN

In this example the 'GOTO SCAN' command causes the
program to go to the label 'SCAN' and continue scanning
for an enemy robot.

28

The GOSUB command

Another way to change the execution sequence is to
use a GOSUB command. A GOSUB instruction is similar to
a GOTO instruction. GOSUB must always be followed by a
label. GOSUB will cause the program to go to the
designated label and continue the execution until it
reaches an ENDSUB. When it encounters the ENDSUB, the
program will then return to the next instruction after
the GOSUB.

*

]SCAN
] AIM + 5 TO AIM
] AIM TO RADAR
]LOOP
] IF RADAR < 0 GOSUB FIRE
] GOTO SCAN
]FIRE
] 0 - RADAR TO SHOT
] ENDSUB

;MOVE GUN
;SEND RADAR PULSE

;TEST RADAR

;FIRE THE GUN

In this example the 'GOSUB FIRE' command will cause
the computer to execute the subroutine that starts with
the label 'FIRE' and ends with the 'ENDSUB' command.
After executing the subroutine the computer will
continue with the line that contains the 'GOTO SCAN'
command.

29

LEGAL INSTRUCTIONS

A TO B

lOO+B-C*D/ E TO F

AIM TO A TO C

LABEL TO A

GOTO LABEL

GOTO 3

GOTO A

IF A+3>B GOTO LABEL

IF A=B C*4 TO C

IF A=B GOSUB LABEL

IF A=B ENDSUB

the simplest assignment, stores
the value of A in B

arithmetic operations can be
done

you can store a value in more
than one place

labels can be stored because
they translate as numbers

goes to a label and continues
execution

goes to instruction 3

goes to instruction whose
number is in register A

arithmetic operations are
allowed before the comparison
sign

conditional assignment

conditional GOSUB

conditional ENDSUB

30

ILLEGAL INSTRUCTIONS

A*(B+C) TO D no parentheses allowed

20 .35 TO E only integer numbers allowed

-A TO B use 0 - A TO B instead

IF A GOTO LABEL there must be a condition sign

IF A+B=C*3 GOTO LABEL no arithmetic after the
condition sign

Some of these illegal statements will be translated
by the assembler, but then will do odd things when
executed.

31

32

I
] . ROBOT 'MO 'E;;
]
]
] ; IHITH~LIZE F'AtWO t1 tWtff EF'
]
~ 250 TO RH NDOM

]
]; SAUE CU F·RE tH DHMHGE
]
lSTART
l DAMAGE TO [I

~
]; CHECK DAMAGE - GO MOUE IF DAMAGED

1
; IF HOT, HICF:EMEtH AIM

SCAH
IF DAMAGE I D GOTO MOUE
Al1'1 + 17 TO AIM

+ USEO 9829 FREE • 9152 FI LE • MOVER

PROGRAMMING A ROBOT

In order to make a robot perform, you must
construct a program using the RobotWar language and
your own strategy~ This chapter gives examples of how
instructions can be constructed, using registers,
numbers, and commands, and how those instructions can
be labeled and sequenced to create program routines.

33

Movement

Moving about the battlefield is an action a robot
performs. To start a robot moving, store a value in
the SPEEDX or SPEEDY register.

For example:

30 TO SPEEDX
250 TO SPEEDY

would start the robot moving down and to the
right. However, the robot would continue to move in
those directions, and would eventually hit a wall.
Therefore, you must stop it at some point, by storing a
zero in the SPEEDX and SPEEDY registers.

For example:

] 0 TO SPEEDX
] 0 TO SPEEDY

A robot can only accelerate or brake at 40
decimeters/second. Even though 120 is entered into the
SPEEDX register, it takes 3 seconds of acceleration to
obtain that speed. Conversely, if your robot is
travelling at 120 decimeters/sec it takes 3 seconds to
stop the robot, after storing 0 in the SPEEDX register.

A movement routine can be established, by
incorporating the starting and stopping procedures into
a test loop.

] 256 TO SPEEDX
]MOVER!
] IF X > 230 GOTO STOP
] GOTO MOVER!
]STOP
] 0 TO SPEEDX

moves the robot to the right until its X position
is tested to be greater than 230 and then stops it.

34

Monitoring Damage

Monitoring damage is vital to a robot's survival.
When a robot detects a hit, it usually moves to avoid
being repeatedly hit by the enemy. By using the DAMAGE
register, a damage detection routine can be
established. This routine is usually nested inside
another routine's loop so that the robot can be
checking for damage while it is performing some other
action.

For example:

DAMAGE TO D

saves the current damage in register D.

]DAM!
] IF DAMAGE # D GOTO MOVE

When any damage is incurred, the DAMAGE register
will change, but register D will not. Therefore, any
difference between the two registers will indicate that
the robot has been hit. In this example any difference
will cause the program to go to the label MOVE.

Scanning

Another important action a robot performs is
scanning. When a robot scans it is using its radar
beams to detect the location of other robots and walls.
To emit a radar beam, store a number, between 0 and
359, in the RADAR register.

90 TO RADAR

will send a radar beam in the 90-degree
direction, and when the beam returns, its value will be
stored in the RADAR register. A routine to determine
if the robot has spotted another robot is:

35

]LOOK
] AIM + 5 TO AIM
] AIM TO RADAR
] IF RADAR < 0 GOTO SHOOT
] GOTO LOOK

When the program executes this routine, it first
encounters the label LOOK and goes on to the next
instruction. This instruction (AIM + 5 TO AIM)
increments the angle in which the gun is aimed, five
degrees. The next instruction (AIM TO RADAR) aligns
the angle of the radar to the angle of the gun, emits a
radar beam in that direction, and then stores the
results of that beam in the RADAR register.

The next instruction (IF RADAR < 0 GOTO SHOOT)
a~alyzes the results of the radar's findings. If the
RAD~ register contains a positive number, there are no
robots in that direction and the comparison will be
false. Since the comparison is false, the next command
will be ignored and the program will go on to the next
command (GOTO LOOK). This command will cause the
program to go to the label LOOK. This completes the
loop and the scan routine will continue until a robot
is found.

If the RADAR register contains a negative number,
after the beam returns," the comparison (IF RADAR < 0)
will be true. Therefore, the next command (GOTO SHOOT)
will be executed. In this case the program sequence
would branch to the instruction following the label
SHOOT.

36

Shooting

It is usual procedure to execute a shooting routine
when an enemy is spotted.

]SHOOT
] 0 - RADAR TO SHOT
] GOTO LOOK

is an example of a simple shoot routine. Since a
robot has been spotted by radar, a negative number is
presently stored in the RADAR register. The enemy
Tobot is that number (ignoring the negative sign) of
meters away. In order to obtain a positive number of
the distance, the program subtracts RADAR from O. This
new positive number is then stored in the SHOT
register. Storing the number in the SHOT register
causes the gun to fire a shell that has been set to
explode at that distance, in the direction indicated by
the contents of the AIM register.

37

Random Number Generation

The RANDOM register is used to generate random
numbers. A few examples of random number routines are:

] 100 TO RANDOM
] RANDOM TO A

This routine stores 100 in the RANDOM register,
which sets the limit for the generator. The generator
then returns a random number from 0 to 99 and stores it
in the RANDOM register. That value is then stored in
A by the TO command. From then on each time the
contents of the RANDOM register is stored in a
register, the generator will return a different number.
The limit of the generator will only change when a new
value is stored in the RANDOM register by using the TO
command.

] 513 TO RANDOM
] RANDOM - 256 TO B

This code stores a random number between -256 and
256 into the B register.

] B + 1 - A TO RANDOM
] RANDOM + A TO C

This routine stores a random number between A and
B into the C register.

38

A SAMPLE ROBOT IN SOURCE CODE

] 250 TO RANDOM
]
]START
] DAMAGE TO D .
]
]SCAN
] IF DAMAGE I D GOTO MOVE
] AIM + 17 TO AIM
]
]SPOT
] AIM TO RADAR
] IF RADAR > 0 GOTO SCAN
] 0 - RADAR TO SHOT
] GOTO SPOT
l
)MOVE
] RANDOM TO H
) RANDOM TO V
]
]MOVEX

; INITIALIZE RANDOM NUMBER

SAVE CURRENT DAMAGE

TEST : MOVE IF DAMAGED
IF NOT, INCREMENT AIM

ALIGN RADAR TO AIM
SCAN IF NO ENEMY FOUND
OR SHOOT SPOTTED ENEMY
IS ENEMY STILL THERE

;PICK A RANDOM PLACE TO GO

) H - X * 100 TO SPEEDX TRAVEL TO NEW X LOCATION
] IF H - X > 10 GOTO MOVEX TEST X POSITION
) IF H - X < -10 GOTO MOVEX; TEST X POSITION
] 0 TO SPEEDX STOP HORIZONTAL MOVEMENT
1
]MOVEY
] V - Y * 100 TO SPEEDY
] IF V - Y > 10 GOTO MOVEY
] IF V - Y < -10 GOTO MOVEY;
) 0 TO SPEEDY
] GOTO START

39

TRAVEL TO NEW Y LOCATION
TEST Y POSITION
TEST Y POSITION
STOP VERTICAL MOVEMENT
START SCANNING AGAIN

40

WRITING AND EDITING SOURCE CODE

Robot programs are entered into the computer using
a text editor.

The text editor may be entered by selecting option
3 from the Main Menu, or by selecting option 6 from the
Assembler Menu.

Text-Editor Procedure

When you first enter the text editor, you will see
a blank screen with some numbers at the bottom and a
flashing square at the top. The numbers at the bottom
show the length of the text, and the file name under
which it is stored. The flashing square is called the
cursor, and is the computer equivalent of a pen for
writing characters. As you use the text-editor you
will be operating in two modes; the add mode and the
cursor mode. The add mode is used simply to add text
at the cursor. The cursor mode is used to delete text
at the cursor, move the cursor around in the text,
adjust the position of the text on the screen, load
source code files from the catalog, and save source
code files to the catalog.

The blank screen indicates that the current
text-editor file is empty. At this point there are two
available options. One option is to begin writing a
new source code, and the other option is to edit a
robot that has already been stored.

41

To begin writing a new robot program, follow these
steps:

1. Press

(CTRL·A)

to enter the add mode. The letter 'A' will
appear in the lower RIGHT corner of the
screen. You can now create a new source code
file.

2. Press

(RETURN)

several times and then type in the sample
robot program below. As you type, the
characters will appear on the screen. The
RETURN key is used to start a new line, and
marks the new line with a']' in the left
margin. You may also use the left arrow key
to backspace and correct mistakes.

]; SAMPLE ROBOT
1
]SCAN
] AIM + 5 TO AIM
] AIM TO RADAR
]
]LOOP
] IF RADAR < 0 GOSUB FIRE
] GOTO SCAN
]
]FIRE
] 0 - RADAR TO SHOT
] ENDSUB

42

;MOVE GUN
;SEND RADAR PULSE

;TEST RADAR

;FIRE THE GUN

3. After typing the source code for the sample
robot, press

@~
to exit from the add mode.

You have just created a new source code file, but
the only place it exists is in the memory of the Apple.
To save this new file on disk follow these steps:

1. Press

(CTRL·S)

The Source Code Catalog will now appear and
the word 'SAVE' will appear on the left side
of the screen.

2. To save the new robot program you just
created you must give it a name. The name
can be no longer than 7 characters and must
not be the same as other robots on the disk.
Let's call your robot 'SAMPLE'.

3. Type in the name 'SAMPLE' and press

(RETURN)

4. Before saving the robot, the program will
prompt you to confirm the command by pressing

The program file will now be written on the disk
and you will be returned to the copy of the file which
is still in the memory of the Apple.

43

To clear the memory and load a file into it which
was previously saved on disk, follow these steps:

1. Press

(CTRL-L)

This will display the Source Code Catalog and
the word 'LOAD' will appear on the left side
of the screen.

2. Use the space bar to position the cursor next
to the name of the desired robot and press

(RETURN)

3. The file will now be loaded into the memory
of the Apple, and the first portion of it
will appear on the screen.

If you have followed the instructions to this
point, you should have:

1. Created a new source code file in the memory
of the text-editor.

2. Saved the file to disk~

3. Loaded a new file into memory.

44

The Cursor Mode

You are now ready to perform the second available
option when the text-editor has been loaded, which is
editing the source code file. When editing source code
you will use the cursor mode to delete text at the
cursor, move the cursor around in the text, adjust the
position of the text on the screen, load source code
files, and save source code files. These functions are
described below:

1. Cursor Movement

The cursor can be moved to any location in the file
by using the . five keys on the right side of the
keyboard.

A) The RETURN key moves the cursor up one
line

B) The left and right arrow keys move the
cursor left and right one character

C) The slash (/) key
down one line

moves the cursor

To move the cursor all the way in any
direction on the screen, push the ESC key and
then the direction key.

Once you have positioned the cursor where you want
it, there are several options. Either exit to the add
mode and write some text or stay in the cursor mode and
use a cursor function.

45

2. Moving Text

There are also methods of moving the text itself,
when in the cursor mode. The direction, in which the
text moves, is set by pressing the 1 + 1 key (a forward
direction) or the '-' key (a backward direction) prior
to pressing the L, P, or A keys.

A) The L key will move the text up or down
one line

B) The P key will move the text up or down
one fu11 page

C) The A key will set the text in
continous scrolling motion.

You can move to the beginning or end of the
text by pressing the ESC key first and then
the '-' key or the '+' key respectively.

46

3. Deleting Text

This function deletes text from the screen and the
memory of the Apple, but not from the disk. There are
three methods of deleting text:

A) CTRL-D Any character may be deleted
by positioning the cursor over the
character and pressing CTRL-D.

B) CTRL-G Any line, or portion of a
line, may be deleted by positioning the
cursor over a character and pressing
CTRL-G. This will delete the character
and the rest of the line that follows
it.

C) ESC CTRL-Z All of the text,
presently in the text-editor, may be
deleted by pressing ESC and then
pressing CTRL-Z. You will have to
confirm the command by pressing the #
(Shift-3) key. This protects against
accidental erasures.

47

4. Block Operations

This function allows you to 'mark' a portion of the
current source code, and then manipulate that 'block'
to another place in the file. You must designate the
beginning and the end of a block by placing block
markers at those two points. To insert a block marker
immediately after the cursor, press

(CTRL-V)

and it will be represented on the screen by a
flashing ')' sign. Only one block can exist in a file
at any one time and any attempt to insert a block mark
when a block has already been defined will result in
this error message

BLOCK ALREADY MARKED

When a block is marked press

and the three block options will be displayed
on the bottom of the screen :

(C)OPY

This is
locations in
cursor to the
insert the copy

used to copy the marked block to other
the file. To copy a block, move the

location in the file where you want to
of the block. Press

and a copy of the original block will be
inserted where the cursor is. This will not destroy
the original block. The same block can be copied as
many times as you wish.

48

(D)ELETE

This is used to delete the marked block. To
delete a block press

and the block and its markers will be erased
from the file.

(U)NMARK

This is used to remove the block markers from the
text. To unmark a block press

and the markers 'will be erased and the text
will not be affected. You may also remove markers with
normal delete commands. Remember, these changes only
exist in the memory and not on the disk.

49

5. Find Operations

To find all occurrences of a word or a phrase in a
file, use the 'FIND' operation. Press

(CTRL-F)

and the screen will prompt you with the
following message

FIND:>

At this point, type in the word or phrase you
wish to locate and press

(RETURN)

The
occurrence of
center of

program will
that word and

the screen. To
occurrences press

(CTRL-F)

and

(RETURN)

now locate the first
will display it in the

find all subsequent

You need not enter the word each time. The
search will always begin at the current cursor location
and search in the direction that the indicator in the
lower left corner of the screen shows.

50

6. Printing Source Code Files

To print the source code on a printer, press

(CTRL-P)

The screen will prompt you to type in the
printer slot number. Once this has been done and the
RETURN key has been pressed the text will print out.

7. Adding Text

Position the cursor to where you want to begin
adding text and enter the add mode by pressing

(CTRL-A)

You will now be able to add text as desrcibed
earlier. To exit back to the cursor mode, press

51

8. Loading Files

To load a file into memory which was previously
saved on disk, follow these steps:

1. Press

(CTRL-L .)

This will display the Source Code Catalog and
the word 'LOAD' will appear on the left side
of the screen.

2. Use the space bar to position the cursor next
to the name of the desired robot and press

(RETURN)

3. The robot program will now be loaded into the
memory of the Apple, and the first portion of
it will appear on the screen.

52

9. Saving Files

To save files on disk, follow these steps:

1. Press

(CTRL-S)

The Source Code Catalog will now appear on
the screen and the word 'SAVE' will appear on
the left side of the screen.

2. To save the new text of the source code press
the space bar until the cursor is next to the
file name you wish to save the new source
code in. If the file has no name, type one
in. Press

3.

(RETURN)

The source
under the
return to
file which
Apple.

code will now be saved on disk
desired file name and you will
the text-editor and a copy of the
is still in the memory of the

53

10. Entering the Assembler

To save the current robot program and enter the
assembler, press

This will save the text as it appears in the
memory on to the disk and then exit the text-editor to
the assembler. Before a robot can be assembled, it
must have been given a name by being saved to disk.

54

SUMMARY OF EDITOR KEYS
Cursor Mode:

Moving keys

+ Set forward direction
Set backward direction

ESC + Move to end of text
ESC Move to start of text

A Sets text in continuous scrolling
motion

RETURN Move cursor one line up
ESC RETURN Move cursor to top of page

I Move cursor one line down
ESC I Move cursor to bottom of page

<- Move cursor one space left
ESC <- Move cursor to left end of line

-> Move cursor one space right
ESC -> Move cursor to right end of line

p Move text up or down one full page
L Move text up or down one line

Text deleting keys

CTRL-D Delete the character at the cursor
CTRL-G Delete the line at the cursor

ESC CTRL-Z Delete the whole file

File handling keys

CTRL-L Clear memory and load a source file
CTRL-S Save text as a source file
CTRL-R Saves current file and enters

assembler

55

Control keys

ESC CTRL-Q
CTRL-F
CTRL-P
CTRL-V
ESC-V

Add Mode:

Text adding keys

CTRL-A
ESC ESC
<-
->
RETURN

Exits to main menu
Executes FIND operation
Prints file in memory
Places block marker at cursor
Displays Block options:
C copies marked block
D deletes marked block
U removes block markers

Start adding text
Stop adding text
Backspace, erases as it goes
Moves text to the right
Acts as a carriage return

56

TRE ASSEHBLEI.

The assembler translates
robot-understandable object
errors in the source code and
is found.

source code programs into
code. It also checks for
displays a message if one

The assembler can be entered from the Main Menu by
selecting option 2, or from the editor by pressing
CTRL-R. If the assembler is entered from the editor, a
robot source program is loaded and ready to assemble.

57

If the assembler is entered from the Main Menu, the
following choice will be displayed:

DO YOU WANT TO:

1. ASSEMBLE FROM SOURCE CODE OR
2. LOAD AN ASSEMBLED ROBOT?

(PRESS 1 OR 2)

Press

to access the catalog of robots. Select a robot
by using the space bar and RETURN key as described
earlier (see Exhibit 2 on page 10). When a robot has
been selected, the following question will appear on
the screen:

DO YOU WANT TO PRINT THE ASSEMBLY
(Y ORN) ?

If you have a printer and want to print the
assembly, press

and then enter the printer address. If you do
not want the assembly printed out, press

The source code will be assembled and the
corresponding object code will be displayed on the
screen. Press RETURN to display the Assembler Menu.

58

Exhibit 5: The Assembler Hen•

Option 1 - Exit to the battlefield with the assembled
robot loaded and ready to challenge
competitors.

Option 2 - Exit to the Robot Test Bench.

Option 3 - Save the object code to disk.

Option 4 - Load another robot source or object file.

Option 5 - Exit to the RobotWar Main Menu.

Option 6 - Exit to the text editor with the assembl e
robot's source code alrea41y loaded.

59

Asaembly Errors

There are eight errors that the RobotWar assembler
can detect. When the ass.etnbler detects an error it
will display a message such as:

NO DATA FIELD IN LINE 27
10 + TO C

The error message indicates the type of error,
the program line number and the position in the line
("') where it occurred. Following are the possible
error messages:

1. NO DATA FIELD There is no register or
number after a command.

2. UNKNOWN ITEM You have tried to use a
register or a lab~l that is not defined.

3. LARGE NUMBER You have tried to store a
number greater than 1,024 or less than -1,024
into a register.

4. PROGRAM TOO LONG Program is too big for
the allotted program storage area. Programs
have a maximum length of 256 object code
instructions.

5. FATAL JUNK You have included something
that the computer cannot understand, like an
illegal statement.

6. STORE IN NUMBER - You have tried to store a
value in a number instead of a register.

7. RESERVED LABEL You have tried to use a
register name as a label.

8. NO PROGRAM CODE - There are no instructions
in the program.

60

Object Code Exercise

The following pages list the object code's commands
and registers and the translation of the sample robot's
source code. Using the list and the two codes for the
sample robot. compare and identify the source code and
its object code translation. It will be very useful to
understand the object code when learning to use the
test bench in the next chapter.

LIST OF OBJECT CODE INSTRUCTIONS

INSTRUCTION ACTION

,
IF
+

*
I
""

>

<

TO
GOTO
GO SUB
END SUB

Load accumulator with next data item
Load accumulator with next data item
Add next data item to accumulator
Subtract next data item from accumulator
Multiply accumulator by next data item
Divide accumulator by next data item
Skips the next command unless the
accumulator is equal to next data item
Skips the next command unless · the
accumulator is greater than next data
item
Skips the next command
accumulator is less than next
Skips the next command if the
is equal to next data item
Store accumulator in next data
Branch to the address given
Gosub to the address given
Return from a subroutine

61

unless the
data item
accumulator

item

ASSEMBLY OF ROBOT SAMPLE

CODE BUILDING ---- a•a:sss:=s:=

SCAN
0 , AIM
1 + 5
2 TO AIM
3 , AIM
4 TO RADAR
LOOP
5 IF RADAR
6 < 0
7 GOSUB FIRE
8 GOTO SCAN
FIRE
9 • 0
10 RADAR
11 TO SHOT
12 END SUB

CODE STATISTICS -=-- ••s•====a=

140 LETTERS
13 INSTRUCTIONS
3 LABELS
2 REFERENCES

62

THE TEST BENCH

The test bench is a micro-computer simulator of a
robot. With the test bench, you can monitor a robot's
performance without actually putting it on the
battlefield. This simulator will prove an important
device, as you learn to .debug robots, because it allows
you to monitor the object code and the contents of the
registers.

Load a robot into the test bench by selecting
option 2 from the Assembler Menu or from the Main Menu.

63

Operating The Test Bench

As the test bench runs the program, each
instruction (in object code) will appear on the left
side of the screen as it is executed. On the right
side of the screen are displayed the robot's position
and register contents. Also shown are the instruction
number being executed (program counter) and the
accumulator.

Exhibit 6: The Test Bench

64

Controlling The Test Bench

The test bench can be interrupted by pressing the
space bar. Press the space bar again to execute one
more instruction. This can be useful when analyzing a
program to see if it is acting as you bad planned.
Pressing RETURN will start the test bench running
again. To change the speed of the test bench, press a
number from 0 to 9.

Simulating Radar

Pressing the R key will cause the radar display to
light up and the RADAR register will display a negative
number to simulate an enemy robot in view. This will
allow your program the opportunity to go into its
"enemy spotted" routine.

Simulating Damage

Each time the G key is pressed, a random amount, up
to 10%, will be subtract.ed from t~.e DAMAGE regj.ster.
This allows the program the oppc•rtunity to use its
damage detection routine. The D't.MAGE register will
also indicate damage if the simulated robot ·crashes
into a wall. The test bench will automatically stop
when the DAMAGE register reaches O.

65

Tracing Registers

The trace is used to check the contents of
registers not normally displayed on the test bench.
Press the T key to access the tracer. The test bench
will stop, and the following question will be
displayed:

NAME REGISTER TO TRACE?

Enter the name of the register you want to trace
and press

(RETURN)

The test bench will continue, with the contents
of the traced register displayed on the line above 'X
POSITION'.

Exiting The Test Bench

To exit from the test bench, press

and you will return to the assembler menu.

66

STORING ROBOTS

There is a limited amount of space on the RobotWar
disk to store robot files. However, robot files can be
transferred to and from auxiliary storage disks.

Auxiliary storage disks are used only to store
robot files. Robot files on auxiliary disks must be
transferred back to the RobotWar program disk befor
they can be tested, assembled, edited, or battled.

Initializing The Disk

Robot files can be saved only on auxiliary disks
which have been initialized by the RobotWar program.
To initialize a disk, select option 5 from the main
menu. Insert a fresh disk when prompted and press
RETURN. The initialization process will take about two
minutes. When the process is complete, the disk will
be initialized and the program will prompt you to
remove the storage disk and re-enter the RobotWar disk.

67

Storing And Retrieving Source Code

To store a robot's source code file on an auxiliary
storage disk, access the text-editor and load the
desired file into the Apple's memory. Insert the
initialized storage disk and press

CTRL-S

Type the name of the file you want to save and
press

(RETURN)

When the disk drive stops operating the file will
be stored on the disk. Remove the storage disk and
insert the RobotWar disk.

To transfer a source code file from an auxiliary
disk back to the RobotWar disk: access the text-editor,
insert the auxiliary disk and press

(CTRL-L)

When the catalog is displayed use the standard
selection process to load the desired file into memory.
Then insert the RobotWar disk and save the file using a
CTRL-S.

68

Storing And Retrieving Object Code

An object co4e file can be stored onto a storage
disk only from the assembler menu. Insert the storage
disk and press

When the menu re-appears on the screen, the
object code will have been stored. Remove the storage
disk and insert the RobotWar disk.

To transfer an object code file from a storage disk
to the RobotWar disk: select option 2 from the main
menu or option 4 from the assembler menu to display the
following question:

DO YOU WANT TO:

1. ASSEMBLE FROM SOURCE CODE OR
2. LOAD AN ASSEMBLED ROBOT?

(PRESS 1 OR 2)

Then insert the storage disk and press

Use the standard selection process. When the
assembler menu appears on the screen insert the
RobotWar disk ~nd select option 3 to save the file.

69

DELETING FILES

Any file can be deleted from a disk by using
Applesoft Basic. Access the main menu and select
option 6. Then insert the disk and type

CATALOG

and press

(RETURN)

This will display the names of the files stored
on that disk. Source code files are identified by an
'S:' preceding the file name.

To delete a source code file, type

DELETE S:(file name)

Or, to delete an object code file, type

DELETE (file name)

and press

(RETURN)

The file will be
return to the RobotWar
disk, type

PR#6

and press

(RETURN)

deleted from the disk. To
program insert the RobotWar

70

R.OBOTWAB. KEY SUMMARY

The following pages describe the keys and their
functions in the different sections of RobotWar.

From the Main' Menu

1 Exit to the battlefield

2 Exit to the assembler

3 Exit to the text-editor

4 Turn battlefield sound on or off

5 Initiali_ze an auxiliary storage disk

6 Exit .to Applesoft Basic

7 Schedule a match

8 Run a scheduled match

71

From the Battlefield

RETURN Start the battle

ESC Stop the battle and return to main menu

Q Turn the sound off

s Turn the sound on

From the Assembler Menu

1 Exit to the battlefield

2 Exit to the test bench

3 Store the assembled robot on a disk

4 Exit to the assembler

5 Exit to the main menu

6 Exit to the text-editor

Prom the Assembler

Space Bar Stop the assembler or move it one step

RETURN Start the assembler operating again

0 - 9 Adjust the speed at which the assembler
is scrolling

72

Prom the Test Bench

Space Bar Stop the test bench or move it one step

RETURN Start the test bench operating again

0 - 9 Adjust the speed at which the test bench
is scrolling

R Simulate radar

G Simulate a shell hit

T Trace a register

ESC Exit to the assembler menu

From the Text-Editor

CTRL-A Enter the add mode

ESC ESC Enter the cursor mode

In the Add Mode

RETURN Star·t a new line

<- Backspace and erase one character

-> Add a space

Character Add that character at the cursor

ESC ESC Exit to the cursor mode

73

Cursor Moving:

RETURN

ESC RETURN

<-

ESC <-

->

ESC ->

I

ESC I

ESC +

ESC -

Text moving:

+

A

p

L

In the Cursor Mode

Move up one line

Move to top of page

Move left one character

Move to the left end of the line

Move right one character

Move to the right end of the line

Move down one line

Move to the bottom of the page

Move to end of text

Move to beginning of text

Set a forward direction

Set a backward direction

Start continuous scrolling motion in set
direction

Move text one full page in the set
direction

Move text one line in the set direction

74

Deleting text:

CTRL-D Delete the character at the cursor

CTRL-G Delete from cursor to the end of the line

ESC CTRL-Z Delete entire file in memory

Control keys:

ESC CTRL-Q Exit to main menu

CTRL-P Print text in memory

CTRL-A Exit to the Add Mode

CTRL-S Save the file in memory to disk

CTRL-L

CTRL-R

CTRL-F

CTRL-V

ESC-V

Load a file from disk (clears current
file from memory)

Save the file in memory to disk and exit
to the assembler

Start FIND operation

Insert block markers

Display block functions:
C -copies the marked block at the cursor
D -delete the marked block
U -remove the block markers

75

MORE FINE MUSE SOFTWARE
FOR YOUR APPLE COMPUTER

WORD PROCESSING
Super-Text 40/80: The ultimate
deluxe word processor for the
Apple Computer featuring 80
column screen, Math Mode, and
Split Screen. $175.00
Super-Text 40/56/70: The best
features and best value in word
processing, no extra hardware
required! $125.00

BUSINESS
Form Letter Module: Send a per­
sonalized letter to everyone on
your mailing list with Form Letter
Module! Use with Super-Text for
super efficiency. $59.95
Addre88 Book: Store 700 names
met addresses, then print
envelopes and mailing labels! Use
wilh Form Letter or alone. $49.95
Dtli Plol: Create and include
·c:1m1s met graphs right in your
iipDl1ll Four different kinds of
.....

7 hie. $59.95

flAmSIEDUCA TION
- II: You"I be amazed at what
,_an cir-' Have hours of fun
........ lg. $39.95
11a11a1ww - Tiie Best Selling
Gmne 1bal Teaches Programming!
Program your own robot and let him
loose on the battlefield! Learn to pro­
gram and have hours of fun. $39.95
The Voice - The #1 Talking Disk
for The Apple! Learning is fun when
your Apple talks back and it can with
The Voice! Easy to use and a
favorite for kids of all ages. $39.95
Three Mlle Island: Take charge of a
nuclear reactor in Three Mile Island!
$39.95

EDUCATIONAL
Elementary Math Edu-Disk: Math is
easy when you learn with color pie~

tures and demonstrations! Keep
score and test your skills with
Elementary Math. $39.95
Appllot II Edu-Disk: What could be
more fun than lessons that talk,
move, and interact with the student!
Appilot II makes a game out of
learning. $99.95

GAMES
ABM: Enjoy missile madness with
ABM! Can you save the East Coast
from enemy attack? $24.95
Castle Wolfensteln - The #1 Best
Selllng Game In America! There's
nothing else like Castle Wolfenstein,
the all time favorite arcade/adven­
ture game! Can you escape with the
Secret War Plans? $29.95
Firefly: Fire up your Apple with
Firefly, the challenging maze game!
Can you find your way through the
flytrap? $24.95
Frazzle: The exciting outer space
game! Alien beasties surround and
attack your Frazzle ship: save your­
self from total destruction! $24.95
International Gran Prix: The most
popular racing game for the Apple!
Race your car through all the
courses at the International Gran
Prix! $29.95
The Cube Solution: Master the
cube with The Cube Solution, the
enjoyable way to deal with the com­
mon cube headache. $24.95
The Best of Muse: A fantastic value
- 10 great MUSE games on 1 disk!
$39.95

ONE OF A KIND
Know Your Apple: Learn about your
amazing Apple® computer with
animated screen graphics, music,
and voice. Know Your Apple is a
must for every Apple owner! $34.95

MUSE Software• 347 N. Charles St. •Baltimore, MD• 21201
301-659-7212

Apple is a registered trademark of Apple Computer, Inc.

~-so_RW ___ ~_RE.™
34 7 N. CHARLES STREET
BALTIMORE, MD 21201

-----------------(301) 659-7212

PRINTED IN U.S.A.

