
For a full description of the way
the Apple lie handles its display
memory, refer to the section
"Display Memory Addressing· in
Chapter 7.

Any time you read a soft switch, you get a byte of data. However, the
only information the byte contains is the state of the switch, and this
occupies only one bit-bit 7, the high-order bit. The other bits in
the byte are unpredictable. If you are programming in machine
language, the switch setting is the sign bit; as soon as you read the
byte, you can do a Branch Plus if the switch is off, or Branch Minus
if the switch if on.

If you read a soft switch from a BASIC program, you get a value
between 0 and 255. Bit 7 has a value of 128, so if the switch is on, the
value will be equal to or greater than 128; if the switch is off, the
value will be less than 128.

Addressing display pages directly

Before you decide to use the display pages directly, consider the
alternatives. Most high-level languages enable you to write
statements that control the text and graphics displays. Similarly, if
you are programming in assembly language, you may be able to use
the display features of the built-in I/0 firmware. You should store
directly into display memory only if the existing programs can't
meet your requirements.

The display memory maps are shown in Figures 2-6, 2-7, 2-8, 2-9,
and 2-10. All the different display modes use the same basic
addressing scheme: characters or graphics bytes are stored as rows
of 40 contiguous bytes, but the rows themselves are not stored at
locations corresponding to their locations on the display. Instead,
the display address is transformed so that three rows that are eight
rows apart on the display are grouped together and stored in the
first 120 locations of each block of 128 bytes ($80 hexadecimal). By
folding the display data into memory this way, the Apple Ile, like
the Apple II, stores all 960 characters of displayed text within lK
bytes of memory.

The high-resolution graphics display is stored in much the same
way as text, but there are eight times as many bytes to store, because
eight rows of dots occupy the same space on the display as one row
of characters. The subset consisting of all the first rows from the
groups of eight is stored in the first 1024 bytes of the high-resolution
display page. The subset consisting of all the second rows from the
groups of eight is stored in the second 1024 bytes, and so on for a
total of 8 times 1024, or 8192 bytes. In other words, each block of
1024 bytes in the high-resolution display page contains one row of
dots out of every group of eight rows. The individual rows are stored
in sets of three 40-byte rows, the same way as the text display.

The video display generator 31

