
Interrupt-handler Installation Is
described in the ProDOS
Technical Reference Manual and
the Device and lnte"upt support
Tools Manual, which Is part of
the Apple II Device Support Tools
package (A2W0014).

The microprocessor saves the current program counter and status
byte on the stack when an interrupt occurs and then jumps to the
routine whose address is stored in $FFFE and $FFFF. The sequence
of operations performed by the microprocessor is as follows:

1. It finishes executing the current instruction if an IRQ is
encountered. (If a BRK instruction is encountered, the current
instruction is already finished.)

2. It pushes the high byte of the program counter onto the stack.

3. It pushes the low byte of the program counter onto the stack.

4. It pushes the processor status byte onto the stack.

5. It executes a JMP ($FFFE) instruction.

The interrupt vector at $FFFE

Three separate regions of memory contain address $FFFE in an
Apple Ile with an Extended 80-Column Text Card: the built-in
ROM, the bank-switched memory in main RAM, and the bank­
switched memory in auxiliary RAM. The vector at $FFFE in the ROM
points to the built-in interrupt handling routine. You must copy the
ROM's interrupt vector to the other banks yourself if you plan to use
interrupts with the bank-switched memory switched in.

The built-in interrupt handler

The enhanced Apple Ile's built-in interrupt handler records the
computer's current memory configuration, then sets the
computer's memory configuration to a standard state so that your
program's interrupt handler always begins running in the same
memory configuration.

Next the built-in interrupt handler checks to see if the interrupt was
caused by a break instruction, and handles it as just described under
"Interrupt Handling on the 65C02 and 6502." If it was not a break, it
passes control to the interrupt-handling routine whose address is
stored at $3FE and $3FF of main memory. Normally, that would be
the operating system's interrupt handler, unless you have installed
one of your own.

After your program's interrupt handler returns (with an RTI), the
built-in interrupt handler restores the memory configuration, and
then does another RTI to return to where it was when the interrupt
occurred. Table 6-8 illustrates this entire process. Each of these
steps is explained later in this chapter.

Interrupts on the enhanced Apple lie 151

