
d e v e
T h e A p p e T e c h n c a

I 0 p
0 u n a

MAKING THE MOST
OF COLOR ON 1-BIT
DEVICES

THE TEXTBOX YOU'VE
ALWAYS WANTED

MAKING YOUR
MACINTOSH SOUND
LIKE AN ECHO BOX

SIMPLE TEXT
WINDOWS VIA THE
TERMINAL MANAGER

TRACKS: A NEW
TOOL FOR
DEBUGGING DRIVERS

USING THE
PALETTE MANAGER
OFF-SCREEN

BACKGROUND-ONLY
APPLICATIONS IN
·SYSTEM 7

MACINTOSH Q & A

APPLE II Q & A

NEW FEATURE:
KON & BAL'S
PUZZLE PAGE

,

"® Issue 9 W inter 1992

d e v e
T h e A p p e T e c h n c a

I 0 p
0 u n a

MAKING THE MOST
OF COLOR ON 1-BIT
DEVICES

THE TEXTBOX YOU'VE
ALWAYS WANTED

MAKING YOUR
MACINTOSH SOUND
LIKE AN ECHO BOX

SIMPLE TEXT
WINDOWS VIA THE
TERMINAL MANAGER

TRACKS: A NEW
TOOL FOR
DEBUGGING DRIVERS

USING THE
PALETTE MANAGER
OFF-SCREEN

BACKGROUND-ONLY
APPLICATIONS IN
·SYSTEM 7

MACINTOSH Q & A

APPLE II Q & A

NEW FEATURE:
KON & BAL'S
PUZZLE PAGE

,

"® Issue 9 W inter 1992

EDITORIAL STAFF

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Review Board Pete "Luke" Alexander, Chris

Derossi, C. K. Haun, Larry Rosenstein, Andy

Shebanow, Gregg Williams

Managing Editor Monica Meffert

Assistant Managing Editor Ana Wilczynski

Contributing Editors Lorraine Anderson,

Toni Haskell, Judy Helfand, Rebecca Pepper,

Rilla Reynolds, Leslie Steere, Carol Westberg

Indexer Ira Kleinberg

Manager, Developer Support Systems and

Communications David Krathwohl

ART & PRODUCTION

Production Manager Hartley Lesser

Art Director Diane Wilcox

Technical Illustration Geoff McCormack,

John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals, Dennis Hescox,

Kathleen Siemont

Circulation Management David Wilson

To create this cover, Hal Rucker and Cleo

Huggins bought the nicest-looking fruit

they could find, photographed it and

scanned in a slide, manipulated the scan

with Adobe Photoshop, and blended in a

dithered version of it. Delicious!

develop, The Apple Technical Journal, is a

quarterly publication of the Developer

Support Systems and Communications

group.

The Developer CD Series disc for February

1992 or later contains this issue and all

back issues of develop along with the code

that the articles describe. The contents of

this disc, which includes other handy

software and documentation, can also be

found on AppleLink.

EDITORIAL STAFF

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Review Board Pete "Luke" Alexander, Chris

Derossi, C. K. Haun, Larry Rosenstein, Andy

Shebanow, Gregg Williams

Managing Editor Monica Meffert

Assistant Managing Editor Ana Wilczynski

Contributing Editors Lorraine Anderson,

Toni Haskell, Judy Helfand, Rebecca Pepper,

Rilla Reynolds, Leslie Steere, Carol Westberg

Indexer Ira Kleinberg

Manager, Developer Support Systems and

Communications David Krathwohl

ART & PRODUCTION

Production Manager Hartley Lesser

Art Director Diane Wilcox

Technical Illustration Geoff McCormack,

John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals, Dennis Hescox,

Kathleen Siemont

Circulation Management David Wilson

To create this cover, Hal Rucker and Cleo

Huggins bought the nicest-looking fruit

they could find, photographed it and

scanned in a slide, manipulated the scan

with Adobe Photoshop, and blended in a

dithered version of it. Delicious!

develop, The Apple Technical Journal, is a

quarterly publication of the Developer

Support Systems and Communications

group.

The Developer CD Series disc for February

1992 or later contains this issue and all

back issues of develop along with the code

that the articles describe. The contents of

this disc, which includes other handy

software and documentation, can also be

found on AppleLink.

E DI T 0 RI AL We want your two cents! 2

L E T T E R S Your praise and your scorn. 4

A R T I C L E S Making the Most of Color on 1-Bit Devices by Konstantin Othmer and
Daniel Lipton A two-part article: how to create color PICTs on black-and-white
machines, and the theory and practice of dithering. 7

The TextBox You've Always Wanted by Bryan K. ("Beaker") Ressler
Here's a replacement for TextBox, with better performance, more flexibility, and
international compatibility. What more do you want? 31

Making Your Macintosh Sound Like an Echo Box by Rich Collyer
Learn how to use double buffering techniques to simultaneously record and play
sounds. 48 ·

Simple Text Windows via the Terminal Manager by Craig Hotchkiss
The Terminal Manager (in the Communications Toolbox) provides handy text
output capabilities in your application with virtually no effort. 60

Tracks: A New Tool for Debugging Drivers by Brad Lowe Debugging
device drivers is a pain. This tool provides an easy way to log information from your
driver, greatly easing your debugging woes. 68

C 0 L U M N S Graphics Hints From Forrest: Using the Palette Manager Off-Screen
by Forrest Tanaka Can you use the Palette Manager to manage colors in off­
screen ports? Well, yes, but there are some caveats. 29

Be Our Guest: Background-Only Applications in System 7 by C. K.
Haun Faceless background tasks provide a handy way out of some sticky situations.
C. K. shows you the basics. 58

The Veteran Neophyte: Silicon Surprise by Dave Johnson Computers
are not only great for studying complex systems, they are complex systems. Or at
least Dave thinks so. 82

KON & BAL's Puzzle Page: It's Just a Computer by Konstantin Othmer
and Bruce Leak Are there demons in Kon's computer? Or is it just a simple
mistake? A debugging puzzle to tickle your brain. 103

Q & A Answers to your product development questions.
Macintosh Q & A 85
Apple II Q & A 100

INDEX 106

© 1992 Apple Computer, Inc. All rights reserved . Apple, the Apple logo, APDA, Apple llGS, Applelink, AppleShore,
AppleTolk, EtherTalk, GS/OS, lmageWriter, LaserWriter, LocalTalk, MacApp, Macintosh, MPW, MultiFinder, and
Token Talk are trademarks of Apple Computer, Inc., registered in the U.S. and other countries . A/ ROSE, Balloon Help,
develop, Finder, Macintosh Coprocessor Platform, Macintosh Quadra, QuickDraw, Quick Time, SNA•ps, Sound
Manager, Tools Advisor, .and True Type are trademorks of Apple Computer, Inc. HyperCard is a registered trademark
of Apple Computer, Inc. licensed to Claris Corp. Adobe Photoshop and PostScript are registered trademarks of Adobe
Systems Inc. MacWrite is a registered trademork of Cloris Corp. CompuServe is a registered trademark of
CompuServe, Inc. Internet and VAX are trademarks of Digital Equipment Corp. IBM is a registered trademark of
International Business Machines Corp. Linotronic is a trademark, and Helvetica and Times are registered trademarks,
of Linotype Company. Microsoft is a registered trademark of Microsoft Corp. Nisus is a trademork of Poragon
Concepts, Inc. Sony is a registered trademork of Sony Corporation. Nu Bus is a trademark of Texas Instruments. UNIX
is a registered trademark of UNIX System Laboratories, Inc.

CONTENTS Winter 1992

1

E DI T 0 RI AL We want your two cents! 2

L E T T E R S Your praise and your scorn. 4

A R T I C L E S Making the Most of Color on 1-Bit Devices by Konstantin Othmer and
Daniel Lipton A two-part article: how to create color PICTs on black-and-white
machines, and the theory and practice of dithering. 7

The TextBox You've Always Wanted by Bryan K. ("Beaker") Ressler
Here's a replacement for TextBox, with better performance, more flexibility, and
international compatibility. What more do you want? 31

Making Your Macintosh Sound Like an Echo Box by Rich Collyer
Learn how to use double buffering techniques to simultaneously record and play
sounds. 48 ·

Simple Text Windows via the Terminal Manager by Craig Hotchkiss
The Terminal Manager (in the Communications Toolbox) provides handy text
output capabilities in your application with virtually no effort. 60

Tracks: A New Tool for Debugging Drivers by Brad Lowe Debugging
device drivers is a pain. This tool provides an easy way to log information from your
driver, greatly easing your debugging woes. 68

C 0 L U M N S Graphics Hints From Forrest: Using the Palette Manager Off-Screen
by Forrest Tanaka Can you use the Palette Manager to manage colors in off­
screen ports? Well, yes, but there are some caveats. 29

Be Our Guest: Background-Only Applications in System 7 by C. K.
Haun Faceless background tasks provide a handy way out of some sticky situations.
C. K. shows you the basics. 58

The Veteran Neophyte: Silicon Surprise by Dave Johnson Computers
are not only great for studying complex systems, they are complex systems. Or at
least Dave thinks so. 82

KON & BAL's Puzzle Page: It's Just a Computer by Konstantin Othmer
and Bruce Leak Are there demons in Kon's computer? Or is it just a simple
mistake? A debugging puzzle to tickle your brain. 103

Q & A Answers to your product development questions.
Macintosh Q & A 85
Apple II Q & A 100

INDEX 106

© 1992 Apple Computer, Inc. All rights reserved . Apple, the Apple logo, APDA, Apple llGS, Applelink, AppleShore,
AppleTolk, EtherTalk, GS/OS, lmageWriter, LaserWriter, LocalTalk, MacApp, Macintosh, MPW, MultiFinder, and
Token Talk are trademarks of Apple Computer, Inc., registered in the U.S. and other countries . A/ ROSE, Balloon Help,
develop, Finder, Macintosh Coprocessor Platform, Macintosh Quadra, QuickDraw, Quick Time, SNA•ps, Sound
Manager, Tools Advisor, .and True Type are trademorks of Apple Computer, Inc. HyperCard is a registered trademark
of Apple Computer, Inc. licensed to Claris Corp. Adobe Photoshop and PostScript are registered trademarks of Adobe
Systems Inc. MacWrite is a registered trademork of Cloris Corp. CompuServe is a registered trademark of
CompuServe, Inc. Internet and VAX are trademarks of Digital Equipment Corp. IBM is a registered trademark of
International Business Machines Corp. Linotronic is a trademark, and Helvetica and Times are registered trademarks,
of Linotype Company. Microsoft is a registered trademark of Microsoft Corp. Nisus is a trademork of Poragon
Concepts, Inc. Sony is a registered trademork of Sony Corporation. Nu Bus is a trademark of Texas Instruments. UNIX
is a registered trademark of UNIX System Laboratories, Inc.

CONTENTS Winter 1992

1

CAROLINE ROSE

2

de v e Io p W inter 1992

Dear Readers,

Let's talk about develop: what it is, what it might be, what it can do for you, and what
you can do for it. This journal exists to meet your needs, so I hope you'll help us out
by reading on and giving us your two cents (if not your articles).

Originally, develop was thought of as "heavily commented code": along with the
accompanying CD, it was meant as a vehicle for providing well-explained code that
you, the developer, could plug into your application with the confidence that it would
be compatible with future system software. To ensure compatibility, articles and code
were written primarily by Apple engineers and heavily reviewed by other engineers at
Apple.

But other types of articles have been submitted, and some have made it into print.
Most notable was the ground-breaking Threads article in Issue 6, the first article for
which source code was not provided. This lack of source code did not go unnoticed
by our readers, yet the overall response to the Threads package was extremely
favorable. So we've moved from always providing source code to providing it if at all
possible. We still make every effort, however, to give you something that won't break
in future systems.

Recently we've had some requests to publish articles that describe algorithms or
ideas, not code. Our current feeling is that as long as an article can help you create
good Apple products, we'll consider publishing it. Please let us know what you'd like
to see. There are some Apple engineers who are willing to contribute to develop but
would like to know just what developers want to see. We get a lot of input from
Developer Technical Support about what you seem to need the most help with-but
let us at develop know directly, and we can try to make it happen faster.

Regarding who writes the articles: we feel that as long as the code is reviewed by
Apple engineers, there's no need to rely solely on people at Apple for contributions.
We'd like to encourage all of you to think about what you'd like to share with your
fellow developers-something that would help them and also give you a way to
showcase and release your code in a way that wouldn't otherwise be possible. We
offer something those other journals don't: not only review by Apple engineers and
the assurance of future compatibility, but also an editorial process that will make your
prose shine so brilliantly you'll need to wear shades. We'll assign an editor who will

CAROLINE ROSE (Applelink: CROSE) has been

writing computer documentation ever since Steve

Jobs was barely a teen. When his company

moved in down the block from where she worked

as a writer and then a programmer, Caroline took

no notice-until they asked if she wanted to write

what even then was known as Inside Macintosh.
Around the time she completed that three-volume

tome, Steve left Apple to form NeXT, and Caroline

signed on to launch NeXT's Publications group. A

year ago she returned to Apple to take on the fun­

filled job of being deve/op's editor in chief. For

fun outside of work, Caroline dances up a storm,

listens to music, plays with her cat and other

friends, treks through the wilderness (in boots or

on skis), swims like a maniac, reads fiction (not

sci-fi!), studies Italian, does Tai Chi, and never

stops exploring new ways to have fun . •

CAROLINE ROSE

2

de v e Io p W inter 1992

Dear Readers,

Let's talk about develop: what it is, what it might be, what it can do for you, and what
you can do for it. This journal exists to meet your needs, so I hope you'll help us out
by reading on and giving us your two cents (if not your articles).

Originally, develop was thought of as "heavily commented code": along with the
accompanying CD, it was meant as a vehicle for providing well-explained code that
you, the developer, could plug into your application with the confidence that it would
be compatible with future system software. To ensure compatibility, articles and code
were written primarily by Apple engineers and heavily reviewed by other engineers at
Apple.

But other types of articles have been submitted, and some have made it into print.
Most notable was the ground-breaking Threads article in Issue 6, the first article for
which source code was not provided. This lack of source code did not go unnoticed
by our readers, yet the overall response to the Threads package was extremely
favorable. So we've moved from always providing source code to providing it if at all
possible. We still make every effort, however, to give you something that won't break
in future systems.

Recently we've had some requests to publish articles that describe algorithms or
ideas, not code. Our current feeling is that as long as an article can help you create
good Apple products, we'll consider publishing it. Please let us know what you'd like
to see. There are some Apple engineers who are willing to contribute to develop but
would like to know just what developers want to see. We get a lot of input from
Developer Technical Support about what you seem to need the most help with-but
let us at develop know directly, and we can try to make it happen faster.

Regarding who writes the articles: we feel that as long as the code is reviewed by
Apple engineers, there's no need to rely solely on people at Apple for contributions.
We'd like to encourage all of you to think about what you'd like to share with your
fellow developers-something that would help them and also give you a way to
showcase and release your code in a way that wouldn't otherwise be possible. We
offer something those other journals don't: not only review by Apple engineers and
the assurance of future compatibility, but also an editorial process that will make your
prose shine so brilliantly you'll need to wear shades. We'll assign an editor who will

CAROLINE ROSE (Applelink: CROSE) has been

writing computer documentation ever since Steve

Jobs was barely a teen. When his company

moved in down the block from where she worked

as a writer and then a programmer, Caroline took

no notice-until they asked if she wanted to write

what even then was known as Inside Macintosh.
Around the time she completed that three-volume

tome, Steve left Apple to form NeXT, and Caroline

signed on to launch NeXT's Publications group. A

year ago she returned to Apple to take on the fun­

filled job of being deve/op's editor in chief. For

fun outside of work, Caroline dances up a storm,

listens to music, plays with her cat and other

friends, treks through the wilderness (in boots or

on skis), swims like a maniac, reads fiction (not

sci-fi!), studies Italian, does Tai Chi, and never

stops exploring new ways to have fun . •

help turn your raw material into a polished piece-or tread lightly on it if that's all
you need. We'll give your article that professional look and feel without killing the
humor. So, if you're willing, please send me your ideas or outlines, and we'll take it
from there.

Back to the subject of your opinions about develop: Many of you who are Apple
Associates and Partners have by now been formally surveyed on how you rate various
support-related materials, of which develop is only one shining example. We'd also
like to hear from the rest of you, however informally. I can't overemphasize how
important your opinions are and how much they'll affect develop's future. So please,
express yourself! Tell us what's good or bad about this journal's content, format,
delivery, or anything else. We're all ears.

Issue 8 ended with this trivia question: What word was used instead of "click" to
describe the action of pressing a button on that first moU:se? The answer, which none
of you have gotten as of this writing, is "bug." Maybe you'll do better on this next
one: The original hardcover Inside Macintosh Volumes I-III had a running pattern of
Macintosh computers across its endpapers (those heavy sheets at the very beginning
and end of hardcover books). What broke this pattern, and why?

SUBSCRIPTION INFORMATION

Use the order form on the last page of this issue

to subscribe to develop. Please address all

subscription-related inquiries to develop, Apple

Computer, Inc., P.O. Box 531, Mt. Morris, IL

61054 (or Applelink DEV.SUBS) . •

BACK ISSUES

Caroline Rose

Editor

For information about back issues of develop and

how to obtain them, see the reverse of the order

form on the last page of this issue. Back issues

are also on the Developer CD Series disc. •

3

EDITORIAL Winter 1992

help turn your raw material into a polished piece-or tread lightly on it if that's all
you need. We'll give your article that professional look and feel without killing the
humor. So, if you're willing, please send me your ideas or outlines, and we'll take it
from there.

Back to the subject of your opinions about develop: Many of you who are Apple
Associates and Partners have by now been formally surveyed on how you rate various
support-related materials, of which develop is only one shining example. We'd also
like to hear from the rest of you, however informally. I can't overemphasize how
important your opinions are and how much they'll affect develop's future. So please,
express yourself! Tell us what's good or bad about this journal's content, format,
delivery, or anything else. We're all ears.

Issue 8 ended with this trivia question: What word was used instead of "click" to
describe the action of pressing a button on that first moU:se? The answer, which none
of you have gotten as of this writing, is "bug." Maybe you'll do better on this next
one: The original hardcover Inside Macintosh Volumes I-III had a running pattern of
Macintosh computers across its endpapers (those heavy sheets at the very beginning
and end of hardcover books). What broke this pattern, and why?

SUBSCRIPTION INFORMATION

Use the order form on the last page of this issue

to subscribe to develop. Please address all

subscription-related inquiries to develop, Apple

Computer, Inc., P.O. Box 531, Mt. Morris, IL

61054 (or Applelink DEV.SUBS) . •

BACK ISSUES

Caroline Rose

Editor

For information about back issues of develop and

how to obtain them, see the reverse of the order

form on the last page of this issue. Back issues

are also on the Developer CD Series disc. •

3

EDITORIAL Winter 1992

LETIERS

4

de v e Io p Winter 1992

CURLING UP WITH DEVELOP

Regarding your editorial in Issue 8: I
agree with you on liking to have a "hard
copy" to be able to curl up with when
trying to understand something for the
first time. I can always go to the
computer and try examples or ideas. But
to lay back and put up my feet or nestle
under a quilt in bed is more relaxing to
let concepts sink in and develop on their
own, to spring forth with clarity later.

I like the idea of sending the disc
separately in its own case-though I
never had a mangled disc problem. It is
the magazine itself that has a rougher
trip. I received Issue 8 without the disc
and hope that the disc is not far behind.
The mailing label on the back cover was
half off, not torn, but detached.
Flapping in the breeze, so to speak.

Keep up the good work on the
magazine. I look forward to it each
time.

-Robert Redmond

Thanks for your letter. It's not only
heartening to hear from developers who
agree with me on this, but it makes a
difference. Your opinions do count.

The disc is now in a separate case, but it's
not mailed under a separate label. They
should have arrived wrapped cozily together.
We'll send you the disc right away. Sorry
about that.

-Caroline Rose

TEXT FORMATS GALORE

There's a problem with the Macintosh
Technical Notes which I'm finding with
increasing frequency in Apple's
electronic publications. The only word

PLEASE WRITE!
We welcome timely letters to the edl tors,

especially from readers reacting to articles that

we publish in develop. Letters should be

addressed to Caroline Rose (or, if technical

develop-related questions, to Dave Johnson) at

Apple Computer, Inc., 20525 Mariani Avenue,

M/S 75-2B, Cupertino, CA 95014 (AppleLink:

CROSE or JOHNSON.DK). All letters should

processor I use is Nisus, with which I
can read MS Word 3.0 and 4.0 files
without buying a Microsoft product.
This may be an unreasonable prejudice,
but I bet it isn't uncommon.

But Nisus can't decipher fast-saved
Word files. This means, I suspect, that
the entire set of new Macintosh
technical publications is unavailable to
me. Worse, I fear that the next
Developer CD is going to have lots of
files with new, valuable, and (for me)
hidden information.

I know Apple is serious about electronic
distribution of technical documents. I'm
sure fast-saving in Word is a great
convenience to the authors, but surely
using a format not widely readable
defeats the purpose of the exercise. I
don't object to standardizing on Word
3.0 or 4.0, so long as that format-and
not Microsoft's convenience variant-is
actually used.

Could you please ask your authors, when
providing documents for publication, to
use an accessible format?

-Fritz Anderson

Thank you for alerting us to this problem. It
was a snafu on our part. None of the files
should have been fast-saved in Word.

We know that having text documents in
Word and Mac Write® represents a bias
toward these products. Unfortunately our
alternatives are limited and we'll probably
have to continue using these products until
the spring.

The good news is that we're working on a
new text formatting tool. This tool will be
available on the CD and will be able to
open, search, and print text documents
available on the CD. The dilemma of how

include your name and company name as well

as your address and phone number. Letters may

be excerpted or edited for clarity (or to make

them say what we wish they did). •

LETIERS

4

de v e Io p Winter 1992

CURLING UP WITH DEVELOP

Regarding your editorial in Issue 8: I
agree with you on liking to have a "hard
copy" to be able to curl up with when
trying to understand something for the
first time. I can always go to the
computer and try examples or ideas. But
to lay back and put up my feet or nestle
under a quilt in bed is more relaxing to
let concepts sink in and develop on their
own, to spring forth with clarity later.

I like the idea of sending the disc
separately in its own case-though I
never had a mangled disc problem. It is
the magazine itself that has a rougher
trip. I received Issue 8 without the disc
and hope that the disc is not far behind.
The mailing label on the back cover was
half off, not torn, but detached.
Flapping in the breeze, so to speak.

Keep up the good work on the
magazine. I look forward to it each
time.

-Robert Redmond

Thanks for your letter. It's not only
heartening to hear from developers who
agree with me on this, but it makes a
difference. Your opinions do count.

The disc is now in a separate case, but it's
not mailed under a separate label. They
should have arrived wrapped cozily together.
We'll send you the disc right away. Sorry
about that.

-Caroline Rose

TEXT FORMATS GALORE

There's a problem with the Macintosh
Technical Notes which I'm finding with
increasing frequency in Apple's
electronic publications. The only word

PLEASE WRITE!
We welcome timely letters to the edl tors,

especially from readers reacting to articles that

we publish in develop. Letters should be

addressed to Caroline Rose (or, if technical

develop-related questions, to Dave Johnson) at

Apple Computer, Inc., 20525 Mariani Avenue,

M/S 75-2B, Cupertino, CA 95014 (AppleLink:

CROSE or JOHNSON.DK). All letters should

processor I use is Nisus, with which I
can read MS Word 3.0 and 4.0 files
without buying a Microsoft product.
This may be an unreasonable prejudice,
but I bet it isn't uncommon.

But Nisus can't decipher fast-saved
Word files. This means, I suspect, that
the entire set of new Macintosh
technical publications is unavailable to
me. Worse, I fear that the next
Developer CD is going to have lots of
files with new, valuable, and (for me)
hidden information.

I know Apple is serious about electronic
distribution of technical documents. I'm
sure fast-saving in Word is a great
convenience to the authors, but surely
using a format not widely readable
defeats the purpose of the exercise. I
don't object to standardizing on Word
3.0 or 4.0, so long as that format-and
not Microsoft's convenience variant-is
actually used.

Could you please ask your authors, when
providing documents for publication, to
use an accessible format?

-Fritz Anderson

Thank you for alerting us to this problem. It
was a snafu on our part. None of the files
should have been fast-saved in Word.

We know that having text documents in
Word and Mac Write® represents a bias
toward these products. Unfortunately our
alternatives are limited and we'll probably
have to continue using these products until
the spring.

The good news is that we're working on a
new text formatting tool. This tool will be
available on the CD and will be able to
open, search, and print text documents
available on the CD. The dilemma of how

include your name and company name as well

as your address and phone number. Letters may

be excerpted or edited for clarity (or to make

them say what we wish they did). •

to make every document available to every
developer has been a topic of discussion for
some time. We're hoping this will solve the
problem.

Again, thank you for your input. Developer
feedback is the fuel of change around here.
Keep it coming.

-Sharon Flowers

NEW AND IMPROVED CD

I just received Issue 8 of develop, and was
pleased to find that the developer's CD
has improved. Is this new?

-Mike Caputo

Yes, starting with Issue 8 the CD is not just
Developer Essentials, but the entire
Developer CD Series disc (of which
Developer Essentials is just a subset).

-Caroline Rose

SUBMITIING TO DEVELOP

First of all, I'd like to say that I'm a big
fan of develop. The combination of
excellent technical articles (with
required humor) and a CD-ROM of
other developer materials i~ unmatched.
At least the flak surrounding the CD­
ROM has finally calmed down in the
Letters section. I've always liked the
idea from the start even though I
purchased a CD-ROM drive only last
week.

I'm writing to find out if develop accepts
articles from non-Apple employees. I
haven't looked through the back issues
to see if there were any, but none come
to mind. If so, do you have a style guide
for writing articles?

Keep up the great work!

-Paul-Marcel St-Onge

Thank you for your kind words about
develop; it's always a pleasure to receive
mail from a big fan. Yours is the type of
letter that editors in chief dream of

We do indeed accept articles from non-Apple
employees (see this issue's Editorial). We
have a vast array of materials ready for
prospective authors, including an
introductory document, a short submission
form, a set of detailed author's guidelines,
and even a Microsoft Word template for
entering your article in a develop-like
format. We'll start with the intro and then
send the rest as you need it.

On the subject of the CD-ROM controversy,
it may experience a revival as a result of
Apple's dropping printed develop and Tech
Notes from the monthly mailing to
Associates and Partners. We'd like to hear
what developers think about that.

-Caroline Rose

ART ILLEGIBLE ON-LINE

Figure 1 from Michael Gough's article
on Futures (Issue 7) was illegible when
printed under System 7 from a
Macintosh II on a LaserWriterIINTX.
It's just as illegible on the screen. Any
ideas?

The HyperCard® format on the CD is
convenient for flipping to pages and
articles but is terrible for seeing all of a
page at one time, since HyperCard's
windows are not resizable. Further­
more, HyperCard is slow-especially
from a CD. And searching is neither
fast nor intuitive.

-Steve Tyler

5

LETIERS Wnter 1992

to make every document available to every
developer has been a topic of discussion for
some time. We're hoping this will solve the
problem.

Again, thank you for your input. Developer
feedback is the fuel of change around here.
Keep it coming.

-Sharon Flowers

NEW AND IMPROVED CD

I just received Issue 8 of develop, and was
pleased to find that the developer's CD
has improved. Is this new?

-Mike Caputo

Yes, starting with Issue 8 the CD is not just
Developer Essentials, but the entire
Developer CD Series disc (of which
Developer Essentials is just a subset).

-Caroline Rose

SUBMITIING TO DEVELOP

First of all, I'd like to say that I'm a big
fan of develop. The combination of
excellent technical articles (with
required humor) and a CD-ROM of
other developer materials i~ unmatched.
At least the flak surrounding the CD­
ROM has finally calmed down in the
Letters section. I've always liked the
idea from the start even though I
purchased a CD-ROM drive only last
week.

I'm writing to find out if develop accepts
articles from non-Apple employees. I
haven't looked through the back issues
to see if there were any, but none come
to mind. If so, do you have a style guide
for writing articles?

Keep up the great work!

-Paul-Marcel St-Onge

Thank you for your kind words about
develop; it's always a pleasure to receive
mail from a big fan. Yours is the type of
letter that editors in chief dream of

We do indeed accept articles from non-Apple
employees (see this issue's Editorial). We
have a vast array of materials ready for
prospective authors, including an
introductory document, a short submission
form, a set of detailed author's guidelines,
and even a Microsoft Word template for
entering your article in a develop-like
format. We'll start with the intro and then
send the rest as you need it.

On the subject of the CD-ROM controversy,
it may experience a revival as a result of
Apple's dropping printed develop and Tech
Notes from the monthly mailing to
Associates and Partners. We'd like to hear
what developers think about that.

-Caroline Rose

ART ILLEGIBLE ON-LINE

Figure 1 from Michael Gough's article
on Futures (Issue 7) was illegible when
printed under System 7 from a
Macintosh II on a LaserWriterIINTX.
It's just as illegible on the screen. Any
ideas?

The HyperCard® format on the CD is
convenient for flipping to pages and
articles but is terrible for seeing all of a
page at one time, since HyperCard's
windows are not resizable. Further­
more, HyperCard is slow-especially
from a CD. And searching is neither
fast nor intuitive.

-Steve Tyler

5

LETIERS Wnter 1992

6

I looked into the problem and found out that
a mistake was made when the electronic
version of Issue 7 was created: Art that's in
EPS format is normally opened in an
application that interprets PostScript® and
then saved as a PICT. This process wasn't
followed, with the result that the conversion
to PICT was only an approximation, and so
not very legible. This will be fixed in Issue 7
on the CD.

Regarding the HyperCard format, a lot of
people agree with you. We're working on an
alternate viewing mechanism-but this
mechanism may not apply to develop for a
while yet. Meanwhile, HyperCard's
windows are in fact resizable. If you 're not
able to resize them, your memory partition
for HyperCard is probably not large enough;
try increasing it.

-Caroline Rose

FEELING LOST? SEE THE MACINTOSH DEVELOPMENT TOOLS ADVISOR

To a Macintosh developer starting a new project, the

range of equipment available can seem daunting . To an

experienced engineer suffering the constant barrage of

catalogs, technical brochures, and advertisements, it can

feel safest to hang on to familiar tools, whatever their

shortcomings. But what's available? What systems or

tools might help you get your project done? Developer

University has released the Macintosh Development

Tools Advisor to help answer these questions.

The Tools Advisor offers a broad array of information . A

hypertext system, it tailors the data it presents to your

particular interests and demands. The Advisor

incorporates comprehensive technical data on over 80

programming tools-compilers and languages,

debuggers and prototypers, CASE tools, and multimedia

packages. It also includes essays on critical topics such

as object-oriented programming, Apple events, and

System 7. In preparing the Tools Advisor, Developer

University collected a considerable body of catalog-style

information on products available.

But a catalog is rarely sufficient. It's not enough to read

lists of capabilities as recorded by manufacturers. You

need to know how the tools get used in actual projects.

So the Tools Advisor provides a collection of stories by

programmers who use the tools it describes. These

stories provide a real feel for the product. They' re

sometimes critical, warning of potential hazards and

shortcomings of particular tools. They're also often

inspiring in explaining how particular achievements

were made. To help you find stories most appropriate to

you, the Advisor lets you match a loose profile of your

needs and wants to stories by developers with similar

backgrounds and tasks.

To augment its profiles of programming tools, critical

essays, and developers' stories, the Tools Advisor

includes a glossary that describes exactly what technical

and trade terms mean and what they imply to a

development effort. Glossary entries and cross­

references let you navigate the intricate terrain of

technical information without losing sight of your

particular interests.

Two versions of the Tools Advisor are available. The disk­

based edition includes screen shots and comprehensive

data on programming tools in a range of categories as

well as technical details on the Macintosh and on

Macintosh programming in general. The CD-ROM

edition of the Tools Advisor adds demonstration versions

of dpzens of tools; for instance, you can take a

multimedia tool for a test drive as you learn about

animations and about other developers' experiences

with that product.

We hope that with the Tools Advisor guiding you, you

won't feel lost any more.

You can obtain a copy of the Tools

Advisor through APDA. The disk-based version

can also be found on the Developer CD Series

disc. To use the Tools Advisor, you'll need a

Macintosh with System 6 .0 .5 or later,

HyperCard 2 .0 or later, and a hard disk. To use

the CD-ROM version , you' ll of course also need

a CD-ROM drive. •

de v e Io p Winter 1992

6

I looked into the problem and found out that
a mistake was made when the electronic
version of Issue 7 was created: Art that's in
EPS format is normally opened in an
application that interprets PostScript® and
then saved as a PICT. This process wasn't
followed, with the result that the conversion
to PICT was only an approximation, and so
not very legible. This will be fixed in Issue 7
on the CD.

Regarding the HyperCard format, a lot of
people agree with you. We're working on an
alternate viewing mechanism-but this
mechanism may not apply to develop for a
while yet. Meanwhile, HyperCard's
windows are in fact resizable. If you 're not
able to resize them, your memory partition
for HyperCard is probably not large enough;
try increasing it.

-Caroline Rose

FEELING LOST? SEE THE MACINTOSH DEVELOPMENT TOOLS ADVISOR

To a Macintosh developer starting a new project, the

range of equipment available can seem daunting . To an

experienced engineer suffering the constant barrage of

catalogs, technical brochures, and advertisements, it can

feel safest to hang on to familiar tools, whatever their

shortcomings. But what's available? What systems or

tools might help you get your project done? Developer

University has released the Macintosh Development

Tools Advisor to help answer these questions.

The Tools Advisor offers a broad array of information . A

hypertext system, it tailors the data it presents to your

particular interests and demands. The Advisor

incorporates comprehensive technical data on over 80

programming tools-compilers and languages,

debuggers and prototypers, CASE tools, and multimedia

packages. It also includes essays on critical topics such

as object-oriented programming, Apple events, and

System 7. In preparing the Tools Advisor, Developer

University collected a considerable body of catalog-style

information on products available.

But a catalog is rarely sufficient. It's not enough to read

lists of capabilities as recorded by manufacturers. You

need to know how the tools get used in actual projects.

So the Tools Advisor provides a collection of stories by

programmers who use the tools it describes. These

stories provide a real feel for the product. They' re

sometimes critical, warning of potential hazards and

shortcomings of particular tools. They're also often

inspiring in explaining how particular achievements

were made. To help you find stories most appropriate to

you, the Advisor lets you match a loose profile of your

needs and wants to stories by developers with similar

backgrounds and tasks.

To augment its profiles of programming tools, critical

essays, and developers' stories, the Tools Advisor

includes a glossary that describes exactly what technical

and trade terms mean and what they imply to a

development effort. Glossary entries and cross­

references let you navigate the intricate terrain of

technical information without losing sight of your

particular interests.

Two versions of the Tools Advisor are available. The disk­

based edition includes screen shots and comprehensive

data on programming tools in a range of categories as

well as technical details on the Macintosh and on

Macintosh programming in general. The CD-ROM

edition of the Tools Advisor adds demonstration versions

of dpzens of tools; for instance, you can take a

multimedia tool for a test drive as you learn about

animations and about other developers' experiences

with that product.

We hope that with the Tools Advisor guiding you, you

won't feel lost any more.

You can obtain a copy of the Tools

Advisor through APDA. The disk-based version

can also be found on the Developer CD Series

disc. To use the Tools Advisor, you'll need a

Macintosh with System 6 .0 .5 or later,

HyperCard 2 .0 or later, and a hard disk. To use

the CD-ROM version , you' ll of course also need

a CD-ROM drive. •

de v e Io p Winter 1992

MAKING THE

MOST OF

COLOR ON

1-BIT DEVICES

KONSTANTIN OTHMER
AND DANIEL LIPTON

Macintosh developers faced with the dilemma of which plaifornz to
develop software for-machines with the original QuickDraw or those
'll!ith Color QuickDraw-can always choose to write code that runs

adequately on the lower-end machines and gives additional functionality
when running on the higher-end machines. While this sounds like a
simple and elegant solution, it generally requires a great deal of
development and testing effort. To make this effort easier and the
outcome more satisfying, we offer techniques to save color images and

process them for display on 1-bit (black-and-white) devices.

Suppose you're writing a program that controls a 24-bit color scanner and you'd like
it to work on all Macintosh computers. The problem you'll run into is that machines
with the original QuickDraw (those based on the 68000 microprocessor) only have
support for bitmaps, thus severely crippling the potential of your scanner. But don't
despair. In our continuing quest to add Color QuickDraw functionality to machines
with original QuickDraw, we've worked out techniques to save color images and
process them for display, albeit in black and white, on the latter machines. We've also
come up with a technique to address the problem of a laser printer's inability to
resolve single pixels, which results in distorted image output. This article and the
accompanying sample code (on the Developer CD Series disc) share these techniques
with you.

SAVING COLOR IMAGES
The key to saving color images is using pictures. Recall that a picture (or PICT) in
QuickDraw is a transcript of calls to routines that draw something-anything. A
PICT created on one Macintosh can be displayed on any other Macintosh (provided
the version of system software on the machine doing the displaying is the same as or
later than the version on the machine that created the picture). For example, on a
Macintosh Plus you can draw a PICT containing an 8-bit image that was created on a

KONSTANTIN OTHMER has wanted his

photograph to appear in Sports Illustrated for as

long as he can remember. Unfortunately, his

college was in the NCAA's Division Il l, which is

often overlooked by Si's editors, pnd somehow

they've missed his virtuosity on the ski slopes at

Tahoe, Vail, and Red Lodge. So Ken's had to

scale down his dream, setting his sights on

making the pages of develop instead. Here he's

gotten to try on various alter egos. To come up

with his latest persona, he spent a few late nights

in a secret Apple lab with skilled pixel surgeon

Jim Batson. •

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

7

MAKING THE

MOST OF

COLOR ON

1-BIT DEVICES

KONSTANTIN OTHMER
AND DANIEL LIPTON

Macintosh developers faced with the dilemma of which plaifornz to
develop software for-machines with the original QuickDraw or those
'll!ith Color QuickDraw-can always choose to write code that runs

adequately on the lower-end machines and gives additional functionality
when running on the higher-end machines. While this sounds like a
simple and elegant solution, it generally requires a great deal of
development and testing effort. To make this effort easier and the
outcome more satisfying, we offer techniques to save color images and

process them for display on 1-bit (black-and-white) devices.

Suppose you're writing a program that controls a 24-bit color scanner and you'd like
it to work on all Macintosh computers. The problem you'll run into is that machines
with the original QuickDraw (those based on the 68000 microprocessor) only have
support for bitmaps, thus severely crippling the potential of your scanner. But don't
despair. In our continuing quest to add Color QuickDraw functionality to machines
with original QuickDraw, we've worked out techniques to save color images and
process them for display, albeit in black and white, on the latter machines. We've also
come up with a technique to address the problem of a laser printer's inability to
resolve single pixels, which results in distorted image output. This article and the
accompanying sample code (on the Developer CD Series disc) share these techniques
with you.

SAVING COLOR IMAGES
The key to saving color images is using pictures. Recall that a picture (or PICT) in
QuickDraw is a transcript of calls to routines that draw something-anything. A
PICT created on one Macintosh can be displayed on any other Macintosh (provided
the version of system software on the machine doing the displaying is the same as or
later than the version on the machine that created the picture). For example, on a
Macintosh Plus you can draw a PICT containing an 8-bit image that was created on a

KONSTANTIN OTHMER has wanted his

photograph to appear in Sports Illustrated for as

long as he can remember. Unfortunately, his

college was in the NCAA's Division Il l, which is

often overlooked by Si's editors, pnd somehow

they've missed his virtuosity on the ski slopes at

Tahoe, Vail, and Red Lodge. So Ken's had to

scale down his dream, setting his sights on

making the pages of develop instead. Here he's

gotten to try on various alter egos. To come up

with his latest persona, he spent a few late nights

in a secret Apple lab with skilled pixel surgeon

Jim Batson. •

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

7

8

d e v e I o p Winter 1992

Macintosh II. With System 7, you can even display PICTs containing 16-bit and 32-
bit pixMaps on machines with original QuickDraw. (Of course, they will only be
displayed as 1-bit images there.)

Creating a picture normally requires three steps:

1. Call OpenPicture to begin picture recording.

2. Perform the drawing commands you want to record.

3. Call ClosePicture to end picture recording.

The catch is that the only drawing commands that can be recorded into a picture are
those available on the Macintosh on which your application is running. Thus, using
this procedure on a machine with original QuickDraw provides no way to save color
pixMaps into a picture, since there's no call to draw a pixMap. In other words, you
can't create an 8-bit PICT on a Macintosh Plus and see it in color on a Macintosh II.
But that's exactly what would make a developer's life easier-the ability to create a
PICT containing deep pixMap information on a machine without Color QuickDraw.
With this ability, you could capture a color image in its full glory for someone with a
Color QuickDraw machine to see, while still being able to display a 1-bit version on a
machine with original QuickDraw.

To get around the limitations of the normal procedure, we came up with a routine
called CreatePICT2 to manually create a PICT containing color information. Your
application can display the picture using DrawPicture. Now, you may be wondering
whether creating your own pictures is advisable. After all, Apple frowns on developers
who directly modify private data structures, and isn't that what's going on here? To
ease your mind, see "But Don't I Need a License to Do This?"

The parameters to CreatePICT2 are similar to those for the QuickDraw bottleneck
procedure stdBits. The difference is that CreatePICT2 returns a PicHandle and does
not use a maskRgn.

The first thing the routine does is calculate a worst-case memory scenario and
allocate that amount of storage. If the memory isn't available, the routine aborts,
returning a NIL PicHandle. You could easily extend this routine to spool the picture
to disk if the memory is not available, but that's left as an exercise for you. (Hint:
Rather than writing out the data inline as is done here, call a function that saves a
specified number of bytes in the picture. Have that routine write the data to disk.
Essentially, you need an equivalent to the putPicData bottleneck.)

At tjiis point the size of the picture is not known (since there's no way to know how
well the pixMap will compress) so we simply skip the picSize field and put out the
picture frame. Next is the picHeader. CreatePICT2 creates version $02FF pictures,
with a header that has version $FFFF. This version of the header tells QuickDraw to
ignore the header data. (OpenCPicture, available originally in 32-Bit QuickDraw

DANIEL LIPTON (a.k.a . "The PostScript Kid") is

a two-and-a-half-year veteran of Apple's System

Software Imaging Group, where he's working on

the next generation of printing software for the

Macintosh. When he's not thinking backward, he

enjoys taking in a good flick, spending time with

his iguana, "Iggy" (who's never quite forgiven

Dan for the time she nearly froze to death in the

cargo compartment of a 7 47), and writing zany

new lyrics to classic tunes (his "Working in the

Print Shop Blues" is well known to his coworkers).

Most of all, Dan enjoys building and flying model

airplanes, and he's recently joined the

competition circuit. In fact, when asked what he'd

really like to do with his life, Dan replies:

sunny { { { { hours 8 {flying } for} rather_be}

dayforall } } if •

8

d e v e I o p Winter 1992

Macintosh II. With System 7, you can even display PICTs containing 16-bit and 32-
bit pixMaps on machines with original QuickDraw. (Of course, they will only be
displayed as 1-bit images there.)

Creating a picture normally requires three steps:

1. Call OpenPicture to begin picture recording.

2. Perform the drawing commands you want to record.

3. Call ClosePicture to end picture recording.

The catch is that the only drawing commands that can be recorded into a picture are
those available on the Macintosh on which your application is running. Thus, using
this procedure on a machine with original QuickDraw provides no way to save color
pixMaps into a picture, since there's no call to draw a pixMap. In other words, you
can't create an 8-bit PICT on a Macintosh Plus and see it in color on a Macintosh II.
But that's exactly what would make a developer's life easier-the ability to create a
PICT containing deep pixMap information on a machine without Color QuickDraw.
With this ability, you could capture a color image in its full glory for someone with a
Color QuickDraw machine to see, while still being able to display a 1-bit version on a
machine with original QuickDraw.

To get around the limitations of the normal procedure, we came up with a routine
called CreatePICT2 to manually create a PICT containing color information. Your
application can display the picture using DrawPicture. Now, you may be wondering
whether creating your own pictures is advisable. After all, Apple frowns on developers
who directly modify private data structures, and isn't that what's going on here? To
ease your mind, see "But Don't I Need a License to Do This?"

The parameters to CreatePICT2 are similar to those for the QuickDraw bottleneck
procedure stdBits. The difference is that CreatePICT2 returns a PicHandle and does
not use a maskRgn.

The first thing the routine does is calculate a worst-case memory scenario and
allocate that amount of storage. If the memory isn't available, the routine aborts,
returning a NIL PicHandle. You could easily extend this routine to spool the picture
to disk if the memory is not available, but that's left as an exercise for you. (Hint:
Rather than writing out the data inline as is done here, call a function that saves a
specified number of bytes in the picture. Have that routine write the data to disk.
Essentially, you need an equivalent to the putPicData bottleneck.)

At tjiis point the size of the picture is not known (since there's no way to know how
well the pixMap will compress) so we simply skip the picSize field and put out the
picture frame. Next is the picHeader. CreatePICT2 creates version $02FF pictures,
with a header that has version $FFFF. This version of the header tells QuickDraw to
ignore the header data. (OpenCPicture, available originally in 32-Bit QuickDraw

DANIEL LIPTON (a.k.a . "The PostScript Kid") is

a two-and-a-half-year veteran of Apple's System

Software Imaging Group, where he's working on

the next generation of printing software for the

Macintosh. When he's not thinking backward, he

enjoys taking in a good flick, spending time with

his iguana, "Iggy" (who's never quite forgiven

Dan for the time she nearly froze to death in the

cargo compartment of a 7 47), and writing zany

new lyrics to classic tunes (his "Working in the

Print Shop Blues" is well known to his coworkers).

Most of all, Dan enjoys building and flying model

airplanes, and he's recently joined the

competition circuit. In fact, when asked what he'd

really like to do with his life, Dan replies:

sunny { { { { hours 8 {flying } for} rather_be}

dayforall } } if •

BUT DON'T I NEED A LICENSE TO DO THIS?

The reason Apple doesn't want developers modifying
data structures is that it makes it hard to change them in

the future. For example, early Macintosh programs locked
handles by manually setting the high bit of the handle
rather than calling Hlock. This caused numerous

compatibility problems when the 32-bit-clean Memory
Manager was introduced. '

So what gives? What if Apple changes OpenPicture so
that it creates a totally different data format-won't the
manually created pictures break?

Calm down, because the answer is no. The difference

between creating your own pictures and directly
modifying other data structures is that Apple can't make
the current picture data format obsolete without
invalidating users' data that exists on disk. Just as you can

still call DrawPicture on version 1 pictures and everything
works, you will always be able to call DrawPicture on
existing version 2 pictures, regardless of the format of
pictures created in the future.

One possible pitfall is that you might create a picture with
subtle compatibility risks that draws on the existing system
software but breaks at some future date. To minimize the

chances of such an occurrence, you should compare the
pictures you generate with those that QuickDraw
generates in identical circumstances. You must be able to
account for any and all differences.

Creating your own pixMaps (as our example code does)

is definitely in the gray area between risky and outright
disastrous behavior, and you shouldn't do it. Then why
would an article written by two upstanding citizens do

such a thing? The answer is that the pixMaps used by this
code are kept private; they're never passed as arguments
to a trap. We could just as easily have called them

something else, but pixMaps work for what we' re doing,
so we used them. If you want to pass a pixMap to a trap,
you can generate it using the NewPixMap call (not
available on machines with original QuickDraw) or let
other parts of Color QuickDraw, like OpenCPort,

generate it.

version 1.2 and in Color QuickDraw in System 7, still creates version $02FF pictures,
but the header version is now $FFFE and contains picture resolution information.)

In addition, the bounds of the clipping region of the current port are put in the
picture. Without this, the default clipping region is wide open, and some versions of
QuickDraw have trouble drawing pictures with wide-open clipping regions.

Next we put out an opcode-either $98 (PackBitsRect) or $9A (DirectBitsRect),
depending on whether the pixMap is indexed or direct. Then the pixMap, srcRect,
dstRect, and mode are put in the picture using the (are you ready for this?)
PutOutPixMapSrcRectDstRectAndMode routine. Finally, either
PutOutPackedDirectPixData or PutOutPackedlndexedPixData is called to put out
the pixel data.

There's an important difference between indexed and direct pixMaps here. The
baseAddr field is skipped when putting out indexed pixMaps and is set to $000000FF
for direct pixMaps. This is done because machines without support for direct
pixMaps (opcode $9A) read a word from the picture, skip that many bytes, and

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter l 992

9

BUT DON'T I NEED A LICENSE TO DO THIS?

The reason Apple doesn't want developers modifying
data structures is that it makes it hard to change them in

the future. For example, early Macintosh programs locked
handles by manually setting the high bit of the handle
rather than calling Hlock. This caused numerous

compatibility problems when the 32-bit-clean Memory
Manager was introduced. '

So what gives? What if Apple changes OpenPicture so
that it creates a totally different data format-won't the
manually created pictures break?

Calm down, because the answer is no. The difference

between creating your own pictures and directly
modifying other data structures is that Apple can't make
the current picture data format obsolete without
invalidating users' data that exists on disk. Just as you can

still call DrawPicture on version 1 pictures and everything
works, you will always be able to call DrawPicture on
existing version 2 pictures, regardless of the format of
pictures created in the future.

One possible pitfall is that you might create a picture with
subtle compatibility risks that draws on the existing system
software but breaks at some future date. To minimize the

chances of such an occurrence, you should compare the
pictures you generate with those that QuickDraw
generates in identical circumstances. You must be able to
account for any and all differences.

Creating your own pixMaps (as our example code does)

is definitely in the gray area between risky and outright
disastrous behavior, and you shouldn't do it. Then why
would an article written by two upstanding citizens do

such a thing? The answer is that the pixMaps used by this
code are kept private; they're never passed as arguments
to a trap. We could just as easily have called them

something else, but pixMaps work for what we' re doing,
so we used them. If you want to pass a pixMap to a trap,
you can generate it using the NewPixMap call (not
available on machines with original QuickDraw) or let
other parts of Color QuickDraw, like OpenCPort,

generate it.

version 1.2 and in Color QuickDraw in System 7, still creates version $02FF pictures,
but the header version is now $FFFE and contains picture resolution information.)

In addition, the bounds of the clipping region of the current port are put in the
picture. Without this, the default clipping region is wide open, and some versions of
QuickDraw have trouble drawing pictures with wide-open clipping regions.

Next we put out an opcode-either $98 (PackBitsRect) or $9A (DirectBitsRect),
depending on whether the pixMap is indexed or direct. Then the pixMap, srcRect,
dstRect, and mode are put in the picture using the (are you ready for this?)
PutOutPixMapSrcRectDstRectAndMode routine. Finally, either
PutOutPackedDirectPixData or PutOutPackedlndexedPixData is called to put out
the pixel data.

There's an important difference between indexed and direct pixMaps here. The
baseAddr field is skipped when putting out indexed pixMaps and is set to $000000FF
for direct pixMaps. This is done because machines without support for direct
pixMaps (opcode $9A) read a word from the picture, skip that many bytes, and

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter l 992

9

10

d e v e I O p Winter 1992

continue picture parsing. When such a machine encounters the $000000FF
baseAddr, the number of bytes skipped is $0000 and the next opcode is $00FF, which
ends the picture playback. A graceful exit from a tough situation.

An interesting fact buried in the PutOutPixMapSrcRectDstRectAndMode routine is
the value of packType. All in-memory pixMaps (that aren't in a picture) are assumed
to be unpacked. Thus, you can set the pack Type field to specify the type of packing
the pixMap should get when put in a picture. "The Low-Down on Image
Compression" (develop Issue 6, page 43) gives details of the different pixMap
compression schemes used by QuickDraw. Note that all of QuickDraw's existing
packing schemes lose no image quality. QuickTime (the new INIT described in detail
in the lead article in develop Issue 7) adds many new packing methods, most of which
sacrifice some image quality to achieve much higher compression.

Anyway, these routines support only the default packing formats: 1 (or unpacked) for
any pixMap with rowBytes less than 8, 0 for all other indexed pixMaps, and 4 for 32-
bit direct pixMaps with rowBytes greater than 8. Note that these routines do not
support 16-bit pixMaps.

Finally, the end-of-picture opcode is put out and the handle is resized to the amount
actually used.

PicHandle CreatePICT2(PixMap *srcBits, Rect *srcRect, Rect *dstRect,
short mode)

PicHandle
short
short
short
long

myPic;
myRowBytes;
*picPtr;
iii;
handleSize;

#define CLIPSIZE 12
#define PIXMAPRECSIZE 50
#define HEADERSIZE 40
#define MAXCOLORTABLESIZE 256*8+8
#define OPCODEMISCSIZE 2+8+8+2 /* opcode+srcRect+dstRect+mode */
#define ENDOFPICTSIZE 2
#define PICSIZE PIXMAPRECSIZE + HEADERSIZE + MAXCOLORTABLESIZE + \

ENDOFPICTSIZE + OPCODEMISCSIZE + CLIPSIZE

myRowBytes = srcBits->rowBytes & Ox3fff;
/* Allocate worst-case memory scenario using PackBits packing . */

myPic = (PicHandle) NewHandle(PICSIZE + (long)
((myRowBytes/127)+2+myRowBytes)*(long)(srcBits->bounds.bottom
- srcBits->bounds.top));

10

d e v e I O p Winter 1992

continue picture parsing. When such a machine encounters the $000000FF
baseAddr, the number of bytes skipped is $0000 and the next opcode is $00FF, which
ends the picture playback. A graceful exit from a tough situation.

An interesting fact buried in the PutOutPixMapSrcRectDstRectAndMode routine is
the value of packType. All in-memory pixMaps (that aren't in a picture) are assumed
to be unpacked. Thus, you can set the pack Type field to specify the type of packing
the pixMap should get when put in a picture. "The Low-Down on Image
Compression" (develop Issue 6, page 43) gives details of the different pixMap
compression schemes used by QuickDraw. Note that all of QuickDraw's existing
packing schemes lose no image quality. QuickTime (the new INIT described in detail
in the lead article in develop Issue 7) adds many new packing methods, most of which
sacrifice some image quality to achieve much higher compression.

Anyway, these routines support only the default packing formats: 1 (or unpacked) for
any pixMap with rowBytes less than 8, 0 for all other indexed pixMaps, and 4 for 32-
bit direct pixMaps with rowBytes greater than 8. Note that these routines do not
support 16-bit pixMaps.

Finally, the end-of-picture opcode is put out and the handle is resized to the amount
actually used.

PicHandle CreatePICT2(PixMap *srcBits, Rect *srcRect, Rect *dstRect,
short mode)

PicHandle
short
short
short
long

myPic;
myRowBytes;
*picPtr;
iii;
handleSize;

#define CLIPSIZE 12
#define PIXMAPRECSIZE 50
#define HEADERSIZE 40
#define MAXCOLORTABLESIZE 256*8+8
#define OPCODEMISCSIZE 2+8+8+2 /* opcode+srcRect+dstRect+mode */
#define ENDOFPICTSIZE 2
#define PICSIZE PIXMAPRECSIZE + HEADERSIZE + MAXCOLORTABLESIZE + \

ENDOFPICTSIZE + OPCODEMISCSIZE + CLIPSIZE

myRowBytes = srcBits->rowBytes & Ox3fff;
/* Allocate worst-case memory scenario using PackBits packing . */

myPic = (PicHandle) NewHandle(PICSIZE + (long)
((myRowBytes/127)+2+myRowBytes)*(long)(srcBits->bounds.bottom
- srcBits->bounds.top));

if (!myPic)
return(0);

/*Skip picSize and put out picFrame (10 bytes). */
picPtr = (short*) (((long)*myPic) + 2);
*picPtr++
*picPtr++
*picPtr++
*picPtr++

dstRect->top;
dstRect->left;
dstRect->bottom;
dstRect->right;

/*Put out header (30 bytes). This could be done from a resource or
taken from an existing picture. */
picPtr++ Oxll; / Version opcode. */
*picPtr++
*picPtr++
*picPtr++

Ox2ff;
OxCOO;
OxFFFF;

*picPtr++ OxFFFF;

/* Version number. */
/* Header opcode. */
/* Put out PICT header version. */

/* The rest of the header is ignored--0 it out. */
for(iii = 10; iii > O; iii--)

picPtr++ = O; / Write out 20 bytes of O. */

/* Put out current port's clipping region. */
picPtr++ OxOl; / Clipping opcode. */
*picPtr++
*picPtr++
*picPtr++
*picPtr++
*picPtr++

OxOA; /* Clipping region only has bounds rectangle. */
(**thePort->clipRgn).rgnBBox . top;
(**thePort->clipRgn).rgnBBox.left;
(**thePort->clipRgn).rgnBBox.bottom;
(**thePort->clipRgn).rgnBBox.right;

HLock(myPic);
if(srcBits->pixelType == RGBDirect)
{ / * Must be 32-bits/pixel */
/* Put out ·opcode $9A, DirectBitsRect. */

*picPtr++ Ox9A;
picPtr++ = O; / BaseAddr for direct pixMaps is OxOOOOOOFF. */
*picPtr++ = OxFF;
PutOutPixMapSrcRectDstRectAndMode(srcBits, &picPtr, srcRect,

dstRect, mode) ;
if(PutOutPackedDirectPixData(srcBits, &picPtr))

goto errorExit; /* Nonzero indicates an error . */

else

/* Put out opcode $98, PackBitsRect. */
*picPtr++ = Ox98;

MAKING THE MOST OF COLOR ON 1-BIT DEVICES W inter 1992

1 1

J

if (!myPic)
return(0);

/*Skip picSize and put out picFrame (10 bytes). */
picPtr = (short*) (((long)*myPic) + 2);
*picPtr++
*picPtr++
*picPtr++
*picPtr++

dstRect->top;
dstRect->left;
dstRect->bottom;
dstRect->right;

/*Put out header (30 bytes). This could be done from a resource or
taken from an existing picture. */
picPtr++ Oxll; / Version opcode. */
*picPtr++
*picPtr++
*picPtr++

Ox2ff;
OxCOO;
OxFFFF;

*picPtr++ OxFFFF;

/* Version number. */
/* Header opcode. */
/* Put out PICT header version. */

/* The rest of the header is ignored--0 it out. */
for(iii = 10; iii > O; iii--)

picPtr++ = O; / Write out 20 bytes of O. */

/* Put out current port's clipping region. */
picPtr++ OxOl; / Clipping opcode. */
*picPtr++
*picPtr++
*picPtr++
*picPtr++
*picPtr++

OxOA; /* Clipping region only has bounds rectangle. */
(**thePort->clipRgn).rgnBBox . top;
(**thePort->clipRgn).rgnBBox.left;
(**thePort->clipRgn).rgnBBox.bottom;
(**thePort->clipRgn).rgnBBox.right;

HLock(myPic);
if(srcBits->pixelType == RGBDirect)
{ / * Must be 32-bits/pixel */
/* Put out ·opcode $9A, DirectBitsRect. */

*picPtr++ Ox9A;
picPtr++ = O; / BaseAddr for direct pixMaps is OxOOOOOOFF. */
*picPtr++ = OxFF;
PutOutPixMapSrcRectDstRectAndMode(srcBits, &picPtr, srcRect,

dstRect, mode) ;
if(PutOutPackedDirectPixData(srcBits, &picPtr))

goto errorExit; /* Nonzero indicates an error . */

else

/* Put out opcode $98, PackBitsRect. */
*picPtr++ = Ox98;

MAKING THE MOST OF COLOR ON 1-BIT DEVICES W inter 1992

1 1

J

12

d e v e I o p Winter 1992

PutOutPixMapSrcRectDstRectAndMode(srcBits, &picPtr, srcRect,
dstRect, mode);

if(PutOutPackedindexedPixData(srcBits , &picPtr))
/* Nonzero indicates an error. */
goto errorExit;

HUnlock(myPic);

/* All done! Put out end-of-picture opcode, $DOFF. */
*picPtr++ = OxOOFF;

/* Size handle down to the amount actually used. */
handleSize = (long) picPtr - (long) *myPic;
SetHandleSize(myPic, handleSize);
/* Write out picture size. */
((short) *myPic) = (short) handleSize;
return(myPic);

errorExit:
DisposHandle(myPic);
return(O);

Just remember that it's not advisable to pass a pixMap you create yourself to a trap.
The reason is that although it's unlikely, the format of a pixMap could change (since
it's not a persistent data structure, as a picture is); this would then break your
application.

The subroutines the CreatePICT2 routine calls as well as some sample code that uses
CreatePICT2 are on the Developer CD Series disc.

PROCESSING COLOR IMAGES FOR DISPLAY
The remainder of this article focuses on processing color images for display on 1-bit
(black-and-white) devices, both monitors and laser printers.

There are many techniques for representing a full-color image on a monitor when
color resources are limited. The Picture Utilities Package (new in System 7) offers
routines for determining optimal colors to use when displaying a pixMap in a limited
color space. For example, if you want to display a 32-bit image on an 8-bit monitor,
Picture Utilities can tell you the 256 best colors to use to display the image. The
CreatePICT2 routine just described creates a picture that you can legally analyze
using the Picture Utilities.

12

d e v e I o p Winter 1992

PutOutPixMapSrcRectDstRectAndMode(srcBits, &picPtr, srcRect,
dstRect, mode);

if(PutOutPackedindexedPixData(srcBits , &picPtr))
/* Nonzero indicates an error. */
goto errorExit;

HUnlock(myPic);

/* All done! Put out end-of-picture opcode, $DOFF. */
*picPtr++ = OxOOFF;

/* Size handle down to the amount actually used. */
handleSize = (long) picPtr - (long) *myPic;
SetHandleSize(myPic, handleSize);
/* Write out picture size. */
((short) *myPic) = (short) handleSize;
return(myPic);

errorExit:
DisposHandle(myPic);
return(O);

Just remember that it's not advisable to pass a pixMap you create yourself to a trap.
The reason is that although it's unlikely, the format of a pixMap could change (since
it's not a persistent data structure, as a picture is); this would then break your
application.

The subroutines the CreatePICT2 routine calls as well as some sample code that uses
CreatePICT2 are on the Developer CD Series disc.

PROCESSING COLOR IMAGES FOR DISPLAY
The remainder of this article focuses on processing color images for display on 1-bit
(black-and-white) devices, both monitors and laser printers.

There are many techniques for representing a full-color image on a monitor when
color resources are limited. The Picture Utilities Package (new in System 7) offers
routines for determining optimal colors to use when displaying a pixMap in a limited
color space. For example, if you want to display a 32-bit image on an 8-bit monitor,
Picture Utilities can tell you the 256 best colors to use to display the image. The
CreatePICT2 routine just described creates a picture that you can legally analyze
using the Picture Utilities.

You can also use the techniques of thresholding and of dithering, of which there are
three varieties: error diffusion, ordered, and random. Ordered dithering, also known
as halftoning, is particularly useful for producing images to be printed on a laser
printer. We'll examine each of these techniques in turn.

USING A 50% THRESHOLD
The first technique that leaps to mind when one is faced with displaying a color
picture on a 1-bit screen is to convert each color to a luminance and then use a
threshold value to determine whether or not to set the corresponding pixel. It turns
out that green contributes the most to the luminance and blue contributes the least.
Red, green, and blue contribute approximately 30%, 59%, and 11 %, respectively, to
the luminance. Thus, our formula to convert an RGB value to a luminance becomes

Luminance= (30*RED + 59*GREEN + ll*BLUE)/100

If the resulting luminance is 128 (50% of 256) or greater, the pixel is set to white;
otherwise it's set to black. This technique produces the results shown in Figure 1 for
gray gradations and a lovely picture of one of the authors. Note that thresholding
occurs at the source pixel resolution. Thus, even though the output device used to
produce Konenna is 300 dpi, the thresholded picture appears to be 72 dpi. In
contrast, the techniques of error-diffusion dithering and halftoning discussed on the
following pages occur at the destination device resolution.

The results shown in Figure 1 are far from ideal. The gray gradations end up as a
black rectangle beside a white rectangle, and the picture ofKonenna, while still cute,
is completely devoid of detail.

USING ERROR-DIFFUSION DITHERING
The major problem with the threshold algorithm is that a great deal of information is
thrown away. The luminance is calculated as a value between 0 and 255, but the only
information we use is whether it's 128 or greater.

An easy fix is to preserve the overall image lightness by maintaining an error term
and then passing the error onto neighboring pixels. Both original and Color
QuickDraw have dithering algorithms built in for precisely this purpose. (Yes, it's
true-while a dither flag cannot be passed explicitly to any original QuickDraw trap,
a picture containing a color bit image created using dither mode on a Color
QuickDraw machine will dither when drawn with original QuickDraw.) The error is
calculated as

Error = Requested Intensity - Closest Available Intensity

For a black-and-white destination, the closest available intensity is either 0 (black) or
255 (white). The requested intensity is the luminance of the current pixel plus some

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

13

You can also use the techniques of thresholding and of dithering, of which there are
three varieties: error diffusion, ordered, and random. Ordered dithering, also known
as halftoning, is particularly useful for producing images to be printed on a laser
printer. We'll examine each of these techniques in turn.

USING A 50% THRESHOLD
The first technique that leaps to mind when one is faced with displaying a color
picture on a 1-bit screen is to convert each color to a luminance and then use a
threshold value to determine whether or not to set the corresponding pixel. It turns
out that green contributes the most to the luminance and blue contributes the least.
Red, green, and blue contribute approximately 30%, 59%, and 11 %, respectively, to
the luminance. Thus, our formula to convert an RGB value to a luminance becomes

Luminance= (30*RED + 59*GREEN + ll*BLUE)/100

If the resulting luminance is 128 (50% of 256) or greater, the pixel is set to white;
otherwise it's set to black. This technique produces the results shown in Figure 1 for
gray gradations and a lovely picture of one of the authors. Note that thresholding
occurs at the source pixel resolution. Thus, even though the output device used to
produce Konenna is 300 dpi, the thresholded picture appears to be 72 dpi. In
contrast, the techniques of error-diffusion dithering and halftoning discussed on the
following pages occur at the destination device resolution.

The results shown in Figure 1 are far from ideal. The gray gradations end up as a
black rectangle beside a white rectangle, and the picture ofKonenna, while still cute,
is completely devoid of detail.

USING ERROR-DIFFUSION DITHERING
The major problem with the threshold algorithm is that a great deal of information is
thrown away. The luminance is calculated as a value between 0 and 255, but the only
information we use is whether it's 128 or greater.

An easy fix is to preserve the overall image lightness by maintaining an error term
and then passing the error onto neighboring pixels. Both original and Color
QuickDraw have dithering algorithms built in for precisely this purpose. (Yes, it's
true-while a dither flag cannot be passed explicitly to any original QuickDraw trap,
a picture containing a color bit image created using dither mode on a Color
QuickDraw machine will dither when drawn with original QuickDraw.) The error is
calculated as

Error = Requested Intensity - Closest Available Intensity

For a black-and-white destination, the closest available intensity is either 0 (black) or
255 (white). The requested intensity is the luminance of the current pixel plus some

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

13

14

d e v e I o p Winter 1992

Figure 1
Gray Gradations and Konenna Pictured Using 50% Threshold

part of the error term of surrounding pixels. Ideally, the error term is spread evenly
among all surrounding pixels. But to maintain acceptable performance, QuickDraw
uses a shortcut. In original QuickDraw, the error term is pushed to the right on even
scan lines and to the left on odd scan lines. Color QuickDraw uses the same
technique, except it pushes only half the error to the left or right, and the other half
to the pixel immediately below. The result of using this technique in Color
QuickDraw at monitor resolution for the two test images is shown in Figure 2.

This form of dithering is normally referred to as error diffusion. That is to say that
each pixel is thresholded at 50%, but the error incurred in that process is distributed
across the image in some manner, thus minimizing information loss. Error diffusion
produces very pleasing results when the device being drawn onto is capable of
accurately rendering a single dot at the image resolution. Monitors are quite good at
this; laser printers are not. If you want your application's output to look good on a
laser printer, a different technique is called for.

USING ORDERED DITHERING (HALFTONING)
There are two kinds of laser printers: write-white and write-black. A write-white
printer (such as some of the high-end Linotronic printers that use a photographic
process) starts the image out black and uses the laser to turn off pixels. A write-black

14

d e v e I o p Winter 1992

Figure 1
Gray Gradations and Konenna Pictured Using 50% Threshold

part of the error term of surrounding pixels. Ideally, the error term is spread evenly
among all surrounding pixels. But to maintain acceptable performance, QuickDraw
uses a shortcut. In original QuickDraw, the error term is pushed to the right on even
scan lines and to the left on odd scan lines. Color QuickDraw uses the same
technique, except it pushes only half the error to the left or right, and the other half
to the pixel immediately below. The result of using this technique in Color
QuickDraw at monitor resolution for the two test images is shown in Figure 2.

This form of dithering is normally referred to as error diffusion. That is to say that
each pixel is thresholded at 50%, but the error incurred in that process is distributed
across the image in some manner, thus minimizing information loss. Error diffusion
produces very pleasing results when the device being drawn onto is capable of
accurately rendering a single dot at the image resolution. Monitors are quite good at
this; laser printers are not. If you want your application's output to look good on a
laser printer, a different technique is called for.

USING ORDERED DITHERING (HALFTONING)
There are two kinds of laser printers: write-white and write-black. A write-white
printer (such as some of the high-end Linotronic printers that use a photographic
process) starts the image out black and uses the laser to turn off pixels. A write-black

Figure 2
Gray Gradations and Konenna Dithered at Monitor Resolution

printer (such as Apple's Laser Writer) starts the image out white and turns on pixels
with the laser. Since the pixels are thought of as being square and the laser beam is
round, neither proc~ss can accurately turn on or off single pixels.

Generally, the circle generated by the laser beam is slightly bigger than the pixel as
the computer "sees" it, to guarantee that all space is covered (see Figure 3). The
effect of this with a write-black printer is that the black dots tend to be bigger than
the individual pixels, causing any 1-bit image drawn at device resolution to appear too
dark. The effect with a write-white printer is that the black dots tend to be smaller
than the individual pixels, causing any 1-bit image drawn at device resolution to
appear too light. If the area of the circle is 20% greater than the individual pixel, the
percentage of unwanted toner, or error, for a single pixel is 20%.

Figure 3
A Laser's Idea of a Square Pixel

MAKING THE MOST OF COLOR ON 1 ·BIT DEVICES Winter 1992

15

Figure 2
Gray Gradations and Konenna Dithered at Monitor Resolution

printer (such as Apple's Laser Writer) starts the image out white and turns on pixels
with the laser. Since the pixels are thought of as being square and the laser beam is
round, neither proc~ss can accurately turn on or off single pixels.

Generally, the circle generated by the laser beam is slightly bigger than the pixel as
the computer "sees" it, to guarantee that all space is covered (see Figure 3). The
effect of this with a write-black printer is that the black dots tend to be bigger than
the individual pixels, causing any 1-bit image drawn at device resolution to appear too
dark. The effect with a write-white printer is that the black dots tend to be smaller
than the individual pixels, causing any 1-bit image drawn at device resolution to
appear too light. If the area of the circle is 20% greater than the individual pixel, the
percentage of unwanted toner, or error, for a single pixel is 20%.

Figure 3
A Laser's Idea of a Square Pixel

MAKING THE MOST OF COLOR ON 1 ·BIT DEVICES Winter 1992

15

I .

16

de v e Io p Winter 1992

Because the error is introduced only at the black/white boundaries, it's reduced when
two or more pixels are drawn next to each other. Then the percentage of error is
reduced to the perimeter of the pixel group. So in the case where the error for a
single pixel is 20%, two pixels drawn next to each other would have only a 15.5%
error, and four pixels in a square would have only a 10.25% error in the area covered.

Ordered dithering, or halftoning, minimizes the dot-to-pixel error just described by
clumping pixels. Pixels are turned on and off in a specific order in relation to each
other and the luminance of the source image. The order can be specified in such a
way that clumps of pixels next to each other are turned on as the luminance decreases.
This allows us to minimize the effects of the laser printer's dot-to-pixel error. The
order is determined by what's known as a dither matrix. (Warning: From here on out,
things get deep, so put on your waders. You don't really need to understand all the
following to use the sample code we provide.)

About the dither matrix. With a dither matrix, to render intermediate shades of
gray or primary colors, we sacrifice spatial resolution for shading-that is, we
effectively lower the device's dots-per-inch rating while increasing the number of
shades that we can print. For example, if we use a 2x2 cell of 300-dpi dots for every
pixel on the page, we've lowered the spatial resolution of the device to 150 dpi but we
now have 24 or 16 different patterns to choose from for each one of the pixels. Each
pattern has anywhere from 0 to 4 of the 300-dpi dots blackened, or a density between
0 ahd 100%. In fact, for the 16 possible patterns there are only five possible densities:
0%, 25%, 50%, 75%, and 100%, corresponding to 0, 1, 2, 3, and 4 dots blackened in
the cell. The dither matrix determines which five of the possible patterns to use to
represent the five possible densities. It's left to you as an exercise to generate these
matrixes using the algorithm we provide below. (The sample code on the Developer
CD Series disc has a commonly useful example.)

If we construct a matrix with the same dimensions as the dot cell that we're going to
use (2x2 for the described case) so that the matrix contains the values 25, 50, 75, and
100, we can use this matrix to determine each of the five possible patterns. Each dot
in the pattern corresponds to a position in the matrix. To generate a pattern for 50%
gray, we turn on all the dots in the pattern with corresponding matrix values less than
or equal to 50. The. position of the values in the matrix determines the shape of the
pattern, as shown in Figure 4.

The dither matrix is used to render an image in much the same way as the 50%
threshold described earlier. In fact, that process uses a lxl dither matrix whose single
element has a value of 50%. The dither matrix is sampled with (x mod m, y mod n),
where (x, y) is the device pixel location and (m, n) is the width and height of the dither
matrix.

It turns out that the spatial resolution of the device isn't really reduced by the size of
the dither matrix. For regions that are all black, for example, the resolution remains

I .

16

de v e Io p Winter 1992

Because the error is introduced only at the black/white boundaries, it's reduced when
two or more pixels are drawn next to each other. Then the percentage of error is
reduced to the perimeter of the pixel group. So in the case where the error for a
single pixel is 20%, two pixels drawn next to each other would have only a 15.5%
error, and four pixels in a square would have only a 10.25% error in the area covered.

Ordered dithering, or halftoning, minimizes the dot-to-pixel error just described by
clumping pixels. Pixels are turned on and off in a specific order in relation to each
other and the luminance of the source image. The order can be specified in such a
way that clumps of pixels next to each other are turned on as the luminance decreases.
This allows us to minimize the effects of the laser printer's dot-to-pixel error. The
order is determined by what's known as a dither matrix. (Warning: From here on out,
things get deep, so put on your waders. You don't really need to understand all the
following to use the sample code we provide.)

About the dither matrix. With a dither matrix, to render intermediate shades of
gray or primary colors, we sacrifice spatial resolution for shading-that is, we
effectively lower the device's dots-per-inch rating while increasing the number of
shades that we can print. For example, if we use a 2x2 cell of 300-dpi dots for every
pixel on the page, we've lowered the spatial resolution of the device to 150 dpi but we
now have 24 or 16 different patterns to choose from for each one of the pixels. Each
pattern has anywhere from 0 to 4 of the 300-dpi dots blackened, or a density between
0 ahd 100%. In fact, for the 16 possible patterns there are only five possible densities:
0%, 25%, 50%, 75%, and 100%, corresponding to 0, 1, 2, 3, and 4 dots blackened in
the cell. The dither matrix determines which five of the possible patterns to use to
represent the five possible densities. It's left to you as an exercise to generate these
matrixes using the algorithm we provide below. (The sample code on the Developer
CD Series disc has a commonly useful example.)

If we construct a matrix with the same dimensions as the dot cell that we're going to
use (2x2 for the described case) so that the matrix contains the values 25, 50, 75, and
100, we can use this matrix to determine each of the five possible patterns. Each dot
in the pattern corresponds to a position in the matrix. To generate a pattern for 50%
gray, we turn on all the dots in the pattern with corresponding matrix values less than
or equal to 50. The. position of the values in the matrix determines the shape of the
pattern, as shown in Figure 4.

The dither matrix is used to render an image in much the same way as the 50%
threshold described earlier. In fact, that process uses a lxl dither matrix whose single
element has a value of 50%. The dither matrix is sampled with (x mod m, y mod n),
where (x, y) is the device pixel location and (m, n) is the width and height of the dither
matrix.

It turns out that the spatial resolution of the device isn't really reduced by the size of
the dither matrix. For regions that are all black, for example, the resolution remains

25 50

75 100

Dither matrix 50% gray pattern

Figure 4
A 2x2 Dither Matrix

the device resolution. Each pixel in the device is still sampled back to a pixel in the
source image.

The basic algorithm for doing an ordered dither of an image onto a page becomes the
following:

For all device pixels x, y:

• sx, sy = transform(x, y) where transform maps device pixel
coordinates to source pixel coordinates

• If sourceLuminance(sx, sy) > ditherMatrix[x mod m, y mod n],
device-dot(x, y) =black

The code on the Developer CD Series disc is an elaboration on this basic algorithm.

As stated before, the position of the various values in the dither matrix determines the
patterns that various luminances generate. A general way to specify this order is to
use a spot function, as the PostScript interpreter does. If the rectangle of the dither
matrix is thought to be a continuous space whose domain is 0- 1 in the x and y
directions, spot-function(x, y) will return some value that ultimately can be converted
into a luminance threshold in the matrix. If the desired pattern is a dot that grows
from the center as the luminance decreases (known as a clustered-dot halftone), spot­
function(x, y) is simply the distance from (x, y) to the center of the cell (0.5, 0.5). The
dither matrix would be generated from the spot function as follows:

for i = 1 tom
X= i/m
forj = 1 ton

y =Jin
matrix[i, .. 71 = spot-function(x, y)

The result of this process is that the matrix contains the spot function's results. What
we really want in the matrix are threshold values for the luminance. The spot

MAKING THE MOST OF COLOR ON I ·BIT DEVICES Winter 1992

17

25 50

75 100

Dither matrix 50% gray pattern

Figure 4
A 2x2 Dither Matrix

the device resolution. Each pixel in the device is still sampled back to a pixel in the
source image.

The basic algorithm for doing an ordered dither of an image onto a page becomes the
following:

For all device pixels x, y:

• sx, sy = transform(x, y) where transform maps device pixel
coordinates to source pixel coordinates

• If sourceLuminance(sx, sy) > ditherMatrix[x mod m, y mod n],
device-dot(x, y) =black

The code on the Developer CD Series disc is an elaboration on this basic algorithm.

As stated before, the position of the various values in the dither matrix determines the
patterns that various luminances generate. A general way to specify this order is to
use a spot function, as the PostScript interpreter does. If the rectangle of the dither
matrix is thought to be a continuous space whose domain is 0- 1 in the x and y
directions, spot-function(x, y) will return some value that ultimately can be converted
into a luminance threshold in the matrix. If the desired pattern is a dot that grows
from the center as the luminance decreases (known as a clustered-dot halftone), spot­
function(x, y) is simply the distance from (x, y) to the center of the cell (0.5, 0.5). The
dither matrix would be generated from the spot function as follows:

for i = 1 tom
X= i/m
forj = 1 ton

y =Jin
matrix[i, .. 71 = spot-function(x, y)

The result of this process is that the matrix contains the spot function's results. What
we really want in the matrix are threshold values for the luminance. The spot

MAKING THE MOST OF COLOR ON I ·BIT DEVICES Winter 1992

17

18

cl eve Io p Winter 1992

function result is converted as follows: Treating the dither matrix as a one­
dimensional array A, generate a sort vector V such that A[V{i]] is sorted as i goes
from 1 to m*n. Then, replacing all of the values in A with V{z] * 100/(m*n) will yield
the desired threshold matrix, with each value being a percentage of luminance. (The
code uses numbers that are more computer-friendly than percentages.) These
percentages assume that the device is capable of accurately rendering a single pixel.
The values can be modified by a gamma function to more accurately produce a linear
relationship between image luminance and pixel density.

Ordered dithering is generally done at a specific angle and frequency. The frequency
is the number of cells (or dither matrixes) per inch and the angle refers to how the
produced patterns are oriented with respect to the device grid. In the preceding
example, the frequency (if printing on a 300-dpi device) is 150 cells per inch and the
angle is 0°.

Because of the way our brains work (our eyes tend to pick up patterns at 90° angles
but not at 45° angles), it's desirable to orient these patterns at arbitrary angles. Since
the dither matrix itself is never rotated with respect to the device, we must generate
the dither matrix in such a way that it contains enough repetitions of the rotated cell
to achieve the effect of being rotated itself. In other words, because a square device
requires us to "tile" an area with 0° rectangles, we need to find a 0° rectangle
enclosing a part of the rotated pattern that forms a repeatable tile. For some angles of
rotation, this rectangle may be much larger than the pattern itself.

Suppose we want to halftone to a 300-dpi device at a frequency of 60 cells per inch
and an angle of 45°. At 0°, the dither matrix would be 5x5 (300/60), yielding 26
possible shades of gray. However, as Figure 5 illustrates, we need an 8x8 matrix to
approximate the desired angle. These dimensions are found by rotating the vectors
(0, 5) and (5, 0) by 45° and pinning them to integers, yielding the vectors (4, 4) and
(-4, 4). Since the magnitude of the vector (4, 4) is 4*sqrt(2), the actual halftone
frequency achieved will be 300/(4*sqrt(2)), around 53 . The error in frequency and
angle is due to the need to pin the vectors to integer space.

Here's the basic algorithm for computing the dither matrix:

1. The halftone cell is specified by the parallelogram composed of
the vectors (xi> y 1) and (x2' y2) and based at (0, 0).

2. A, the area of the modified halftone cell, is (x1*y2) - (x2".)'1) . For the
required dither matrix, the horizontal dimension is AIP and the
vertical dimension is AIQ, where P = GCD(y2,y1) and
Q = GCD(x2, x1) .

3. For every point in the matrix, which is in (x, y) orthogonal space,
we want to find its relative position in the space of one of the
repeated halftone cells, defined by the vectors (x1, y1) and (x2' y2).

(See Figure 6.) Call this point (u, v). The transformation is

Th~ source of step 2 in the above algorithm is

"An Optimum Algorithm for Halftone Generation

for Displays and Hard Copies" by Thomas M.

Holladay, from the Proceedings of the Society for

Information Display, Vol. 21, No. 2, 1980. •

18

cl eve Io p Winter 1992

function result is converted as follows: Treating the dither matrix as a one­
dimensional array A, generate a sort vector V such that A[V{i]] is sorted as i goes
from 1 to m*n. Then, replacing all of the values in A with V{z] * 100/(m*n) will yield
the desired threshold matrix, with each value being a percentage of luminance. (The
code uses numbers that are more computer-friendly than percentages.) These
percentages assume that the device is capable of accurately rendering a single pixel.
The values can be modified by a gamma function to more accurately produce a linear
relationship between image luminance and pixel density.

Ordered dithering is generally done at a specific angle and frequency. The frequency
is the number of cells (or dither matrixes) per inch and the angle refers to how the
produced patterns are oriented with respect to the device grid. In the preceding
example, the frequency (if printing on a 300-dpi device) is 150 cells per inch and the
angle is 0°.

Because of the way our brains work (our eyes tend to pick up patterns at 90° angles
but not at 45° angles), it's desirable to orient these patterns at arbitrary angles. Since
the dither matrix itself is never rotated with respect to the device, we must generate
the dither matrix in such a way that it contains enough repetitions of the rotated cell
to achieve the effect of being rotated itself. In other words, because a square device
requires us to "tile" an area with 0° rectangles, we need to find a 0° rectangle
enclosing a part of the rotated pattern that forms a repeatable tile. For some angles of
rotation, this rectangle may be much larger than the pattern itself.

Suppose we want to halftone to a 300-dpi device at a frequency of 60 cells per inch
and an angle of 45°. At 0°, the dither matrix would be 5x5 (300/60), yielding 26
possible shades of gray. However, as Figure 5 illustrates, we need an 8x8 matrix to
approximate the desired angle. These dimensions are found by rotating the vectors
(0, 5) and (5, 0) by 45° and pinning them to integers, yielding the vectors (4, 4) and
(-4, 4). Since the magnitude of the vector (4, 4) is 4*sqrt(2), the actual halftone
frequency achieved will be 300/(4*sqrt(2)), around 53 . The error in frequency and
angle is due to the need to pin the vectors to integer space.

Here's the basic algorithm for computing the dither matrix:

1. The halftone cell is specified by the parallelogram composed of
the vectors (xi> y 1) and (x2' y2) and based at (0, 0).

2. A, the area of the modified halftone cell, is (x1*y2) - (x2".)'1) . For the
required dither matrix, the horizontal dimension is AIP and the
vertical dimension is AIQ, where P = GCD(y2,y1) and
Q = GCD(x2, x1) .

3. For every point in the matrix, which is in (x, y) orthogonal space,
we want to find its relative position in the space of one of the
repeated halftone cells, defined by the vectors (x1, y1) and (x2' y2).

(See Figure 6.) Call this point (u, v). The transformation is

Th~ source of step 2 in the above algorithm is

"An Optimum Algorithm for Halftone Generation

for Displays and Hard Copies" by Thomas M.

Holladay, from the Proceedings of the Society for

Information Display, Vol. 21, No. 2, 1980. •

Desired matrix shape

Actual larger matrix repeated four times

Figure 5
Approximating the Desired Angle

u = A*x + B*y, v = C*x + D*y. Since the point (x2' y2) in (x, y) space
is the point (1, 0) in halftone cell space and the point (x1'y1) is the
point (0, 1) in halftone cell space, the coefficients A, B, C, and D
are found by solving the following simultaneous linear equations:

A*x1 + B*y1 0
C*x1 + D*y1 1
A*x2 + B*y2 1
C*x2 + D*y2 0

We compute the dither matrix in the rotated case as follows:

For each position in the matrix (i,;):

• Get (x, y) the center of the matrix point (i,;)

x = i + 0.5
y = j + 0.5

• Transform (x, y) to a point in halftone cell space (u, v)

u =A*x + B*y
v = C*x + D*J

MAKING THE MOST OF COLOR ON I ·BIT DEVICES Winter 1992

19

Desired matrix shape

Actual larger matrix repeated four times

Figure 5
Approximating the Desired Angle

u = A*x + B*y, v = C*x + D*y. Since the point (x2' y2) in (x, y) space
is the point (1, 0) in halftone cell space and the point (x1'y1) is the
point (0, 1) in halftone cell space, the coefficients A, B, C, and D
are found by solving the following simultaneous linear equations:

A*x1 + B*y1 0
C*x1 + D*y1 1
A*x2 + B*y2 1
C*x2 + D*y2 0

We compute the dither matrix in the rotated case as follows:

For each position in the matrix (i,;):

• Get (x, y) the center of the matrix point (i,;)

x = i + 0.5
y = j + 0.5

• Transform (x, y) to a point in halftone cell space (u, v)

u =A*x + B*y
v = C*x + D*J

MAKING THE MOST OF COLOR ON I ·BIT DEVICES Winter 1992

19

20

d e v e I O p Winter 1992

A * x 1 + B * y1 = 0

C * x 1 + D * y1 = 1

A * x2 + B * y2 = 1

C * x2 + D * y2 = 0

A= Y1

x2 * Yi - xl * Y2

B=
xl

- x2 * Yi + xl * Y2

C= Y2

(x1 , Y1l~/ ~ ~LJ -x2 * Yi + xl * Y2

~I/~ ~ 0 D=
x2

7- ~z ~z x2 * Yi - xl * Y2

~£ 7~ 7~
(x2, Y2)

Figure 6
Transforming a Halftone Cell

u and v now express the point (x, y) as multiples of the two cell
vectors. Therefore~ the fractional parts of u and v represent the
position as if the particular halftone cell at the point (x, y) were the
(0, 0) cell.

• Z =spot-function (u - floor(u), v - floor(v))

• Find the index of the record (containing fields x, y, and Z) such
that u = x, v = y. If the record doesn't exist, enter u, v, Z into the
table. (Note that the equality between [u, v] and [x, y] requires an
allowable epsilon difference to account for fixed-point round-off
error.)

• matrix[i,;J =index

Find the order of records sorted by values of Z; store order in sort vector
(described earlier in connection with converting the spot function result).
Reassign values of matrix based upon sort vector.

Figure 7 shows our example matrix with values from 0 through 255, representing
luminances, filled in. A luminance from an image with this range could be sampled

20

d e v e I O p Winter 1992

A * x 1 + B * y1 = 0

C * x 1 + D * y1 = 1

A * x2 + B * y2 = 1

C * x2 + D * y2 = 0

A= Y1

x2 * Yi - xl * Y2

B=
xl

- x2 * Yi + xl * Y2

C= Y2

(x1 , Y1l~/ ~ ~LJ -x2 * Yi + xl * Y2

~I/~ ~ 0 D=
x2

7- ~z ~z x2 * Yi - xl * Y2

~£ 7~ 7~
(x2, Y2)

Figure 6
Transforming a Halftone Cell

u and v now express the point (x, y) as multiples of the two cell
vectors. Therefore~ the fractional parts of u and v represent the
position as if the particular halftone cell at the point (x, y) were the
(0, 0) cell.

• Z =spot-function (u - floor(u), v - floor(v))

• Find the index of the record (containing fields x, y, and Z) such
that u = x, v = y. If the record doesn't exist, enter u, v, Z into the
table. (Note that the equality between [u, v] and [x, y] requires an
allowable epsilon difference to account for fixed-point round-off
error.)

• matrix[i,;J =index

Find the order of records sorted by values of Z; store order in sort vector
(described earlier in connection with converting the spot function result).
Reassign values of matrix based upon sort vector.

Figure 7 shows our example matrix with values from 0 through 255, representing
luminances, filled in. A luminance from an image with this range could be sampled

directly against the matrix. The values in this matrix are those that would actually be
used for a 300-dpi, 60-line-per-inch, 45° halftone. As in Figure 5, the matrix is
repeated four times for the sake of clarity, with the 45° halftone cells overlaid. The
position of any particular number in the matrix relative to the 45° cell it falls in
corresponds exactly to the relative position of that same number in any of the other
45° cells. Thus, the effect of having a rotated halftone cell is created with an
unrotated dither matrix.

---7-- 11~ -,-8-3 ;-3-9 ;-;-;--;-9;- -;i---~;-,-~- -;-83 -;;-; ;-3~- ;~-7-1 --;-5--

87 47 135 175 199 159~ 121 81 I§:. 135 175 199 159 55 121

215 143 39 79 119~ 151 207 215 143~ 79 119 63 151 207

247 223 103 31 12?1 95 167 255 247 223 103 ~ 23 95 167 255

231 191 71 lfill 111 183 239 231 191 11 lfill 111183239

199 15912{' 127 87 ~ 135 175 199 159~ 127 87 fS. 135 175

119~ 151 207 215 143 [_§J 79 119~ 151 207 215 143 L§.: 79

~ 95 167 255 247 223 103~ }?1 95 167 255 247 223 103~
[~111183239 231 191 71 ~"sj 111 183 239 231 191 71 ~

87 ~ 135 175 199 159~ 127 87 ~ 135 175 199 159~ 127

215 143~ 79 119~ 151 207 215 143 L§: 79 119!Z 151 207

247 223 103~ 95 167 255 247 223 103~ 95 167 255

231 191 71 15 ISJ 111 183 239 231 191 71 17 7 111 183 239

199 159 55 121 81]3] 135 175 199 159~ 121 87 47 135 175

119 63 151207215143~ 79 119~ 151 207215143 39 79

23 95 167 255 247 223 103 ~IA 95 167 255 247 223 1 03 31

Figure 7
Our Example Matrix With Luminance Values Filled In

This particular example leads us to some other interesting possibilities. It turns out
that QuickDraw patterns are 8x8 matrixes, just like our example. This means that we
can halftone other QuickDraw primitives besides pixMaps when drawing to a 300-dpi
non-PostScript device (provided that pattern stretching is disabled, by setting the
bPatScale field in the print record to 0) and achieve a look similar to what a
PostScript device would give us.

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter l 992

21

directly against the matrix. The values in this matrix are those that would actually be
used for a 300-dpi, 60-line-per-inch, 45° halftone. As in Figure 5, the matrix is
repeated four times for the sake of clarity, with the 45° halftone cells overlaid. The
position of any particular number in the matrix relative to the 45° cell it falls in
corresponds exactly to the relative position of that same number in any of the other
45° cells. Thus, the effect of having a rotated halftone cell is created with an
unrotated dither matrix.

---7-- 11~ -,-8-3 ;-3-9 ;-;-;--;-9;- -;i---~;-,-~- -;-83 -;;-; ;-3~- ;~-7-1 --;-5--

87 47 135 175 199 159~ 121 81 I§:. 135 175 199 159 55 121

215 143 39 79 119~ 151 207 215 143~ 79 119 63 151 207

247 223 103 31 12?1 95 167 255 247 223 103 ~ 23 95 167 255

231 191 71 lfill 111 183 239 231 191 11 lfill 111183239

199 15912{' 127 87 ~ 135 175 199 159~ 127 87 fS. 135 175

119~ 151 207 215 143 [_§J 79 119~ 151 207 215 143 L§.: 79

~ 95 167 255 247 223 103~ }?1 95 167 255 247 223 103~
[~111183239 231 191 71 ~"sj 111 183 239 231 191 71 ~

87 ~ 135 175 199 159~ 127 87 ~ 135 175 199 159~ 127

215 143~ 79 119~ 151 207 215 143 L§: 79 119!Z 151 207

247 223 103~ 95 167 255 247 223 103~ 95 167 255

231 191 71 15 ISJ 111 183 239 231 191 71 17 7 111 183 239

199 159 55 121 81]3] 135 175 199 159~ 121 87 47 135 175

119 63 151207215143~ 79 119~ 151 207215143 39 79

23 95 167 255 247 223 103 ~IA 95 167 255 247 223 1 03 31

Figure 7
Our Example Matrix With Luminance Values Filled In

This particular example leads us to some other interesting possibilities. It turns out
that QuickDraw patterns are 8x8 matrixes, just like our example. This means that we
can halftone other QuickDraw primitives besides pixMaps when drawing to a 300-dpi
non-PostScript device (provided that pattern stretching is disabled, by setting the
bPatScale field in the print record to 0) and achieve a look similar to what a
PostScript device would give us.

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter l 992

21

8x8 pattern

22

d e v e I o p Winter l 992

Here's how. Suppose we want to paint a region with a luminance of 150 on the scale
from 0 to 2 5 5. We simply create a Quick:Draw pattern in which all of the 1 bits
correspond to the cells in the 8x8 matrix that are greater than or equal to 150. This
pattern (shown in Figure 8) can then be used to paint any region or other Quick:Draw
primitive to get the halftone effect. Furthermore, because Quick:Draw patterns are
aligned to the origin of the gra£Port, separate objects drawn touching one another
will not generate undesirable seams, even when drawn with different shades. The
nature of the clustered dot pattern is such that gradations appear continuous to the
extent possible at the resolution of the device.

Figure 8

7 111 183 239 231 191 71 ~t.:J 111 183 239 231 191 71 15

87 47 135 175 199 1591Z 127 87 B 135 175 199 159 55 127

215 143 39 79 119~ 151 207 215 143~ 79 119 63 151 207

247 223 103 31 [Ji1 95 167 255 247 223 103 ~1 23 95 167 255

231 191 11 l&J 111183239 231 191 11 l&J 111 183 239

199 1591.z{ 127 87 IS. 135 175 199 1591Z 127 87 IS. 135 175

119]~ 151 207 215 1431:§: 79 119~ 151 207 215 143~~
~ 95 167 255 247 223 103~)11 95 167 255 247 223 103~
~ 111 183 239 231 191 11 I~,~ 111 183 239 231 191 11 ~

87 IS. 135 175 199 1591.z{ 127 87 IS. 135 175 199 1591.z{ 1271

215 143~ 79 119~ 151 207 215 1431:§: 79 119~ 151 207

247 223 10313\1;?1 95 167 255 247 223 103 r;\1;?1 95 167 255

231 191 71 15 ISJ 111 183 239 231 191 71 IZ 7 111183239

199 159 55 127 87 B 135 175 199 1591.z{ 127 87 47 135 175

119 63 151 207 215 143~ 79 119~ 151 207 215 143 39 79

23 95 167 255 247 223 10313\ IJ1195 167 255 247 223 103 31

Halftone dots created by repetition of 8x8 pattern

Pattern for an Image With a Luminance of 150

Figure 9 shows the gray gradations and Konenna printed on a laser printer using
error-diffusion dithering compared with halftoning using the 8x8 matrix. The
difference in print quality is radical. For more commentary on this difference, see
"Printing: Ideal Versus Real."

8x8 pattern

22

d e v e I o p Winter l 992

Here's how. Suppose we want to paint a region with a luminance of 150 on the scale
from 0 to 2 5 5. We simply create a Quick:Draw pattern in which all of the 1 bits
correspond to the cells in the 8x8 matrix that are greater than or equal to 150. This
pattern (shown in Figure 8) can then be used to paint any region or other Quick:Draw
primitive to get the halftone effect. Furthermore, because Quick:Draw patterns are
aligned to the origin of the gra£Port, separate objects drawn touching one another
will not generate undesirable seams, even when drawn with different shades. The
nature of the clustered dot pattern is such that gradations appear continuous to the
extent possible at the resolution of the device.

Figure 8

7 111 183 239 231 191 71 ~t.:J 111 183 239 231 191 71 15

87 47 135 175 199 1591Z 127 87 B 135 175 199 159 55 127

215 143 39 79 119~ 151 207 215 143~ 79 119 63 151 207

247 223 103 31 [Ji1 95 167 255 247 223 103 ~1 23 95 167 255

231 191 11 l&J 111183239 231 191 11 l&J 111 183 239

199 1591.z{ 127 87 IS. 135 175 199 1591Z 127 87 IS. 135 175

119]~ 151 207 215 1431:§: 79 119~ 151 207 215 143~~
~ 95 167 255 247 223 103~)11 95 167 255 247 223 103~
~ 111 183 239 231 191 11 I~,~ 111 183 239 231 191 11 ~

87 IS. 135 175 199 1591.z{ 127 87 IS. 135 175 199 1591.z{ 1271

215 143~ 79 119~ 151 207 215 1431:§: 79 119~ 151 207

247 223 10313\1;?1 95 167 255 247 223 103 r;\1;?1 95 167 255

231 191 71 15 ISJ 111 183 239 231 191 71 IZ 7 111183239

199 159 55 127 87 B 135 175 199 1591.z{ 127 87 47 135 175

119 63 151 207 215 143~ 79 119~ 151 207 215 143 39 79

23 95 167 255 247 223 10313\ IJ1195 167 255 247 223 103 31

Halftone dots created by repetition of 8x8 pattern

Pattern for an Image With a Luminance of 150

Figure 9 shows the gray gradations and Konenna printed on a laser printer using
error-diffusion dithering compared with halftoning using the 8x8 matrix. The
difference in print quality is radical. For more commentary on this difference, see
"Printing: Ideal Versus Real."

Gray gradations dither Gray gradations halftone

Konenna dither Konenna halftone

Figure 9
Gray Gradations and Konenna Dithered and Halftoned at Laser Printer Resolution

23

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

Gray gradations dither Gray gradations halftone

Konenna dither Konenna halftone

Figure 9
Gray Gradations and Konenna Dithered and Halftoned at Laser Printer Resolution

23

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

24

PRINTING: IDEAL VERSUS REAL

We've already talked about the error introduced in

printing by the fact that the laser beam is round while the
pixel is square. Many other factors also can make the
transfer of toner to paper deviate from the ideal. Sources
of error include differences in inks, papers, printer drums,
and even humidity. Additionally, a printer's behavior

changes over time as the drum wears. Compensating for
all these factors to achieve ideal images would require
constant calibration and recalibration of the printer.

· An error appears most pronounced in the final print when

imaging directly at device resolution, as Figure 9 shows.
Halftoning hides much of this error and produces

reasonably uniform results among printers with varying
degrees of error.

The tonal reproduction curves (known as TRC or gamma
curves) shown in Figure 10 indicate the gray levels
produced by the Apple LaserWriter when dithering and
halftoning. Note that with dithering, the measured

luminance of an image remains dark much longer than

with halftoning as requested luminance increases, due to
the error when each pixel is printed. Of particular interest
is the point on the dither curve right at 50% luminance.
The measured luminance is actually darker than when
44% luminance is requested . The .~eason is that with a

50% dither, every other pixel is drawn, maximizing the
effect of the laser error.

While the TRC curve for the halftone print doesn't match
the ideal curve, it's much closer to the ideal than is the
dither curve. To get the halftone even closer to ideal, you
could adjust the luminance calculation by the amount

indicated by the halftone TRC to compensate. Indeed,
most image-processing applications perform this TRC
adjustment to compensate for the nonlinearities of the
output device. See Designing Cards and Drivers for the
Macintosh Family, Second Edition (Addison-Wesley,
1990) for more information about how gamma correction
works on the Macintosh II family for monitors.

About the code. And now, about the code. To illustrate the principle of dithering,
our sample code is pixel-based~that is, the calculations are done on a pixel basis.
Thus, the perfomance is sluggish. A real-world commercial application would use an
optimized version of this code. One way to do this is to make the routines work on a
scan-line rather than a pixel basis. Also note that the routine that does the halftoning
only supports input pixMaps of 8 or 32 bits. It would be easy to extend the routine to
accept pixMaps of other depths.

d e v e I o p Winter 1992

The first routine we need is one that calculates the luminance given a pointer to the
current pixel. The LUMVAL routine returns a long luminance in the range of 0 to
255 using the 30%-59%-11 % formula described previously.

long LUMVAL(Ptr pPixel, PixMapPtr pMap)
{

long red, green, blue;

if (pMap->pixelSize == 32) {
red= (long)(unsigned char)*(++pPixel);

green= (long)(unsigned char)*(++pPixel);

/* Skip alpha,
get red. */

/* Get. green. */

24

PRINTING: IDEAL VERSUS REAL

We've already talked about the error introduced in

printing by the fact that the laser beam is round while the
pixel is square. Many other factors also can make the
transfer of toner to paper deviate from the ideal. Sources
of error include differences in inks, papers, printer drums,
and even humidity. Additionally, a printer's behavior

changes over time as the drum wears. Compensating for
all these factors to achieve ideal images would require
constant calibration and recalibration of the printer.

· An error appears most pronounced in the final print when

imaging directly at device resolution, as Figure 9 shows.
Halftoning hides much of this error and produces

reasonably uniform results among printers with varying
degrees of error.

The tonal reproduction curves (known as TRC or gamma
curves) shown in Figure 10 indicate the gray levels
produced by the Apple LaserWriter when dithering and
halftoning. Note that with dithering, the measured

luminance of an image remains dark much longer than

with halftoning as requested luminance increases, due to
the error when each pixel is printed. Of particular interest
is the point on the dither curve right at 50% luminance.
The measured luminance is actually darker than when
44% luminance is requested . The .~eason is that with a

50% dither, every other pixel is drawn, maximizing the
effect of the laser error.

While the TRC curve for the halftone print doesn't match
the ideal curve, it's much closer to the ideal than is the
dither curve. To get the halftone even closer to ideal, you
could adjust the luminance calculation by the amount

indicated by the halftone TRC to compensate. Indeed,
most image-processing applications perform this TRC
adjustment to compensate for the nonlinearities of the
output device. See Designing Cards and Drivers for the
Macintosh Family, Second Edition (Addison-Wesley,
1990) for more information about how gamma correction
works on the Macintosh II family for monitors.

About the code. And now, about the code. To illustrate the principle of dithering,
our sample code is pixel-based~that is, the calculations are done on a pixel basis.
Thus, the perfomance is sluggish. A real-world commercial application would use an
optimized version of this code. One way to do this is to make the routines work on a
scan-line rather than a pixel basis. Also note that the routine that does the halftoning
only supports input pixMaps of 8 or 32 bits. It would be easy to extend the routine to
accept pixMaps of other depths.

d e v e I o p Winter 1992

The first routine we need is one that calculates the luminance given a pointer to the
current pixel. The LUMVAL routine returns a long luminance in the range of 0 to
255 using the 30%-59%-11 % formula described previously.

long LUMVAL(Ptr pPixel, PixMapPtr pMap)
{

long red, green, blue;

if (pMap->pixelSize == 32) {
red= (long)(unsigned char)*(++pPixel);

green= (long)(unsigned char)*(++pPixel);

/* Skip alpha,
get red. */

/* Get. green. */

-

<ll
u
c
0
c .E
::0
-'
--0
~
::0

"' 0
<ll

:!:

100

90

80

70

60

50

40

0

BLACK

Figure 10

10 20 30

TRC Curves for the LaserWriter

40 50 60

Requested Luminance

70 80 90 100

WHITE

blue= (long)(unsigned char)*(++pPixel); /*Get blue. */
return((30 *red+ 59 *green+ 11 * blue)/100);

else if (pMap->pixelSize == 8) {
RGBColor* theColor;
theColor = &((*(pMap->pmTable))->ctTable[(unsigned

char)*pPixel].rgb);
return((30 * (theColor->red >> 8) + 59 * (theColor->green >>

8) + 11 * (theColor->blue >> 8))/100);
/* End if */

/* LUMVAL */

!:::.. Ideal

0 Halftone

D Dither

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

25

-

<ll
u
c
0
c .E
::0
-'
--0
~
::0

"' 0
<ll

:!:

100

90

80

70

60

50

40

0

BLACK

Figure 10

10 20 30

TRC Curves for the LaserWriter

40 50 60

Requested Luminance

70 80 90 100

WHITE

blue= (long)(unsigned char)*(++pPixel); /*Get blue. */
return((30 *red+ 59 *green+ 11 * blue)/100);

else if (pMap->pixelSize == 8) {
RGBColor* theColor;
theColor = &((*(pMap->pmTable))->ctTable[(unsigned

char)*pPixel].rgb);
return((30 * (theColor->red >> 8) + 59 * (theColor->green >>

8) + 11 * (theColor->blue >> 8))/100);
/* End if */

/* LUMVAL */

!:::.. Ideal

0 Halftone

D Dither

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

25

26

l d eve Io p Winter 1992

The routine that actually does the halftoning is the HalftonePixMap routine. Rather
than taking a PixMapPtr as the CreatePICT2 routine did, this routine takes a
PixMapHandle. This enables us to pass in either a pixMap we create manually (as we
did when we called CreatePICT2) or a PixMapHandle that QuickDraw creates (for
example, from a GWorld). We must distinguish which one we pass in so that the
routine knows whether it can access the fields of the pixMap directly (which it can if
we created it) or if it must use QuickDraw to access the fields. This is relevant only
for the LockPixels and GetPixBaseAddr routines.

Furthermore, the HalftonePixMap routine assumes the resolution of the source
pixMap is 72 dpi (screen resolution) and only supports devices with square pixels
(same hRes and vRes). You can pass in the resolution of the destination device in the
Resolution parameter, but it must be greater than or equal to 72 dpi.

Like the CreatePICT2 routine, HalftonePixMap returns a PicHandle. In this case,
the picture contains a 1-bit/pixel pixMap. You can display it using DrawPicture.

The prototype for the HalftonePixMap routine is '

PicHandle HalftonePixMap(PixMapHandle hSource, Boolean qdPixMap,
short Resolution);

The source code for the complete routine can be found on the Developer CD Series
disc.

USING RANDOM DITHERING
Random dithering is yet another kind of dither useful for drawing images. It's
discussed last, however, because of its inherent limitations.

The method is simple. It's much the same as the 50% threshold method described
earlier. The only difference is that instead of being compared to 50%, the luminance
values are compared to a random number between 0 and 100%. The effect of this is
that the probability of any dot in the device image being turned on is directly
proportional to the luminance of the pixel in the source image at the corresponding
point.

This method has three limitations. First, calculating a random number is an
expensive operation that we would not want to do for every device pixel. Second,
except at very high resolutions, images dithered in this manner appear very noisy, like
bad reception on a black-and-white TY. And third, this method requires a random
number generator that's very good at producing a uniform distribution.

Ironically, this least frequently used method of dithering most accurately models the
physical process of photography. Photographic film is like laser printing in that it's
composed of pixels. However, the pixels are grains of silver rather than toner.

26

l d eve Io p Winter 1992

The routine that actually does the halftoning is the HalftonePixMap routine. Rather
than taking a PixMapPtr as the CreatePICT2 routine did, this routine takes a
PixMapHandle. This enables us to pass in either a pixMap we create manually (as we
did when we called CreatePICT2) or a PixMapHandle that QuickDraw creates (for
example, from a GWorld). We must distinguish which one we pass in so that the
routine knows whether it can access the fields of the pixMap directly (which it can if
we created it) or if it must use QuickDraw to access the fields. This is relevant only
for the LockPixels and GetPixBaseAddr routines.

Furthermore, the HalftonePixMap routine assumes the resolution of the source
pixMap is 72 dpi (screen resolution) and only supports devices with square pixels
(same hRes and vRes). You can pass in the resolution of the destination device in the
Resolution parameter, but it must be greater than or equal to 72 dpi.

Like the CreatePICT2 routine, HalftonePixMap returns a PicHandle. In this case,
the picture contains a 1-bit/pixel pixMap. You can display it using DrawPicture.

The prototype for the HalftonePixMap routine is '

PicHandle HalftonePixMap(PixMapHandle hSource, Boolean qdPixMap,
short Resolution);

The source code for the complete routine can be found on the Developer CD Series
disc.

USING RANDOM DITHERING
Random dithering is yet another kind of dither useful for drawing images. It's
discussed last, however, because of its inherent limitations.

The method is simple. It's much the same as the 50% threshold method described
earlier. The only difference is that instead of being compared to 50%, the luminance
values are compared to a random number between 0 and 100%. The effect of this is
that the probability of any dot in the device image being turned on is directly
proportional to the luminance of the pixel in the source image at the corresponding
point.

This method has three limitations. First, calculating a random number is an
expensive operation that we would not want to do for every device pixel. Second,
except at very high resolutions, images dithered in this manner appear very noisy, like
bad reception on a black-and-white TY. And third, this method requires a random
number generator that's very good at producing a uniform distribution.

Ironically, this least frequently used method of dithering most accurately models the
physical process of photography. Photographic film is like laser printing in that it's
composed of pixels. However, the pixels are grains of silver rather than toner.

Additionally, there are tens of thousands of grains per inch rather than the 300 dots
per inch we're used to with laser printers. The lower the ASA rating of the film, the
higher the grain density.

The place on a film where a photon strikes one of these silver grains turns black when
the film is developed (which is why you get negatives). Since photons are really, really,
really small, the likelihood of a single photon striking one of the grains of silver is
very low. However, the brighter the light, the more photons there are; so the
probability of striking one of those silver grains increases in proportion to the
luminance. Thus, we see how random dithering simulates photography.

Figure 11 shows the image of a frog's head produced using halftoning with an 8x8
matrix as compared with using a 72-dpi random dither. You can see that the randomly
dithered image looks like a really grainy photograph.

Halftoned with 8x8 at 72 dpi Randomly dithered at 72 dpi

Figure 11
Frog's Head, Halftoned and Randomly Dithered

HASTA LA VISTA, BABY
This article has addressed several issues. First, the problem of saving deep pixMaps
'on machines with original QuickDraw was overcome by showing you how to
manually create a PICT, which can then be rendered by calling DrawPicture. Such a

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

27

Additionally, there are tens of thousands of grains per inch rather than the 300 dots
per inch we're used to with laser printers. The lower the ASA rating of the film, the
higher the grain density.

The place on a film where a photon strikes one of these silver grains turns black when
the film is developed (which is why you get negatives). Since photons are really, really,
really small, the likelihood of a single photon striking one of the grains of silver is
very low. However, the brighter the light, the more photons there are; so the
probability of striking one of those silver grains increases in proportion to the
luminance. Thus, we see how random dithering simulates photography.

Figure 11 shows the image of a frog's head produced using halftoning with an 8x8
matrix as compared with using a 72-dpi random dither. You can see that the randomly
dithered image looks like a really grainy photograph.

Halftoned with 8x8 at 72 dpi Randomly dithered at 72 dpi

Figure 11
Frog's Head, Halftoned and Randomly Dithered

HASTA LA VISTA, BABY
This article has addressed several issues. First, the problem of saving deep pixMaps
'on machines with original QuickDraw was overcome by showing you how to
manually create a PICT, which can then be rendered by calling DrawPicture. Such a

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

27

28

develop Winter 1992

PICT can be exported by an application so that it can be viewed in color on a Color
Quick.Draw machine.

Second, several solutions to the problem of displaying and printing color images on
black-and-white devices were discussed. Images can be displayed on screen using a
50% threshold or error-diffusion dithering. Ordered dithering (halftoning) provides a
way to get around the problem of the laser printer's inability to resolve single pixels.
Random dithering has practical limitations but represents yet another alternative for
producing color images on black-and-white devices.

Thanks to these techniques, the market for applications that deal with color images
need not be limited to Color Quick.Draw machines and PostScript printers. The
necessary code is small (and already written for you) and the gain in functionality is
very high. Now get to work on those applications!

WANT TO READ MORE?

If you'd like to delve more deeply into the mysteries of processing color images for
display, check out the following:

• "An Optimum Algorithm for Halftone Generation for Displays and Hard Copies"
by Thomas M . Holladay, in the Proceedings of the Society for Information Display,
Vol. 21, No. 2, 1980.

• Digital Halftoning by Robert Ulichney (MIT Press, 1987). Th is book, based on a
Ph.D. thesis done at MIT, is devoted entirely to discussing halftoning algorithms; it's
extremely thorough and includes many example images halftoned in d ifferent

ways.

• Fundamentals of Interactive Computer Graphics by J. D. Foley and A. Van· Dam
(Addison-Wesley, 1982). The standard text on computer graphics. Not nearly as
thorough as Ulichney, but has a solid discussion of the basics.

And then, of course, the two books all Macintosh programmers should own:

• Programming with QuickDraw by Dave Surovell, Frederick Hall, and Konstantin
Othmer (Addison-Wesley, 1992). Everything you need to know about graphics on
the Macintosh.

• Debugging Macintosh Softw~re with MacsBug by Konstantin Othmer and Jim
Straus (Addison-Wesley, 1991). Everything you need for debugging Macintosh
software, including in-depth d iscussions of a number of the Macintosh managers.

THANKS TO OUR TECHNICAL REVIEWERS

Sean Parent, Forrest Tanaka, Dave Williams•

28

develop Winter 1992

PICT can be exported by an application so that it can be viewed in color on a Color
Quick.Draw machine.

Second, several solutions to the problem of displaying and printing color images on
black-and-white devices were discussed. Images can be displayed on screen using a
50% threshold or error-diffusion dithering. Ordered dithering (halftoning) provides a
way to get around the problem of the laser printer's inability to resolve single pixels.
Random dithering has practical limitations but represents yet another alternative for
producing color images on black-and-white devices.

Thanks to these techniques, the market for applications that deal with color images
need not be limited to Color Quick.Draw machines and PostScript printers. The
necessary code is small (and already written for you) and the gain in functionality is
very high. Now get to work on those applications!

WANT TO READ MORE?

If you'd like to delve more deeply into the mysteries of processing color images for
display, check out the following:

• "An Optimum Algorithm for Halftone Generation for Displays and Hard Copies"
by Thomas M . Holladay, in the Proceedings of the Society for Information Display,
Vol. 21, No. 2, 1980.

• Digital Halftoning by Robert Ulichney (MIT Press, 1987). Th is book, based on a
Ph.D. thesis done at MIT, is devoted entirely to discussing halftoning algorithms; it's
extremely thorough and includes many example images halftoned in d ifferent

ways.

• Fundamentals of Interactive Computer Graphics by J. D. Foley and A. Van· Dam
(Addison-Wesley, 1982). The standard text on computer graphics. Not nearly as
thorough as Ulichney, but has a solid discussion of the basics.

And then, of course, the two books all Macintosh programmers should own:

• Programming with QuickDraw by Dave Surovell, Frederick Hall, and Konstantin
Othmer (Addison-Wesley, 1992). Everything you need to know about graphics on
the Macintosh.

• Debugging Macintosh Softw~re with MacsBug by Konstantin Othmer and Jim
Straus (Addison-Wesley, 1991). Everything you need for debugging Macintosh
software, including in-depth d iscussions of a number of the Macintosh managers.

THANKS TO OUR TECHNICAL REVIEWERS

Sean Parent, Forrest Tanaka, Dave Williams•

FORREST TANAKA

GRAPHICS
HINTS FROM
FORREST

USING THE
PALETTE MANAGER
OFF-SCREEN

Most people who've done any graphics programming
on the Macintosh are aware of the Palette Manager,
because it's the documented way to control the on­
screen color environment, and perhaps because my
cohorts and I in Developer Technical Support keep
going on about how right the world would be if
everyone used it. In an effort to follow the rules as best
they can, some people have taken the Palette Manager
so much to heart that they use it not only with
windows, but with off-screen cGrafPorts as
well-something that isn't heard about very much.
Some of these people have concluded that all the
features of the Palette Manager apply just as well to
off-screen cGrafPorts as they do to windows. Logical
enough, right?

Well, that's the kick; whether this is logical or not, the
truth is that only a small part of the Palette Manager
works with off-screen cGrafPorts. Specifically, the
pm Courteous usage mode and the pm White and
pmBlack usage-mode modifiers work fine when they're
used in a palette that's attached to an off-screen
cGrafPort, but the pm Tolerant, pm.Animated, and
pmExplicit usage modes do not. In this column, I'll
describe how you can take advantage of the Palette
Manager features that work off-screen and how you can
simulate the features that don't work.

The pmCourteous usage mode seems pretty useless to
a lot of people because it has no effect on the current

FORREST TANAKA has been playing Developer Technical

Support as one of the graphics support people for slightly more

than two years. "It amazes me still," he says, "that the more you

learn about the Macintosh graphics tools, the farther off total

understanding seems to be." Outside of DTS, he likes to ride his

bike, and uses it to commute the three blocks to his office ("Hey, it's

faster than driving the three blocks!"), and he likes to try getting his

radio-controlled car to act as if it's actually controlled. •

color environment. But in general, making a palette full
of pmCourteous colors is a lot better than hard-coding
RGBColors into your code. Instead of hard-coding
colors, make a palette of courteous colors-as many
entries as you need colors-and save it as a 'pltt'
resource. When your application runs, call SetPalette
to attach this palette to your off-screen cGrafPort.
When you need to use a color while drawing into this
cGrafPort, pass the desired color's palette index to
PmForeColor or PmBackColor, and then draw. This is
better than hard-coding colors because you or a
software localizer can easily change the colors by
changing the 'pltt' resource-no code changes are
necessary.

The pm White and pmBlack usage-mode modifiers are
new with System 7; they let you specify whether you
want a particular palette entry to map to white or black
in a black-and-white graphics environment. By default,
colors whose average color-component value is larger
than 32767 are mapped to white and other colors are
mapped to black. (If you use RGBForeColor, Color
QuickDraw also checks to see whether your specified
color is different from your background color but maps
to your background color; if so, Color QuickDraw uses
the complement of the color you specified so that your
drawing is visible over the background.) By specifying
that a palette entry is pmCourteous ~ pmBlack or
pm Courteous + pm White, you can control which
colors map to black and to white when there aren't
enough colors available. This applies to palettes
attached to off-screen cGrafForts as well as to palettes
attached to windows.

Those are the Palette Manager features that do work
off-screen. Now I'll talk about the features that don't
and what you can do to get the same effect.

The pmExplicit usage mode is handy when you want to
draw using a pixel value without knowing or caring
what color that pixel value represents. \Vith this mode
you can easily show the colors in a screen's color table,
and you can also draw into a pixel image with a specific
value even though you specify the color for that value
elsewhere.

PRINT HINTS FROM LUKE & ZZ is in hibernation. •

GRAPHICS HINTS FROM FORREST: USING THE PALETTE MANAGER OFF-SCREEN Winter 1992

29

FORREST TANAKA

GRAPHICS
HINTS FROM
FORREST

USING THE
PALETTE MANAGER
OFF-SCREEN

Most people who've done any graphics programming
on the Macintosh are aware of the Palette Manager,
because it's the documented way to control the on­
screen color environment, and perhaps because my
cohorts and I in Developer Technical Support keep
going on about how right the world would be if
everyone used it. In an effort to follow the rules as best
they can, some people have taken the Palette Manager
so much to heart that they use it not only with
windows, but with off-screen cGrafPorts as
well-something that isn't heard about very much.
Some of these people have concluded that all the
features of the Palette Manager apply just as well to
off-screen cGrafPorts as they do to windows. Logical
enough, right?

Well, that's the kick; whether this is logical or not, the
truth is that only a small part of the Palette Manager
works with off-screen cGrafPorts. Specifically, the
pm Courteous usage mode and the pm White and
pmBlack usage-mode modifiers work fine when they're
used in a palette that's attached to an off-screen
cGrafPort, but the pm Tolerant, pm.Animated, and
pmExplicit usage modes do not. In this column, I'll
describe how you can take advantage of the Palette
Manager features that work off-screen and how you can
simulate the features that don't work.

The pmCourteous usage mode seems pretty useless to
a lot of people because it has no effect on the current

FORREST TANAKA has been playing Developer Technical

Support as one of the graphics support people for slightly more

than two years. "It amazes me still," he says, "that the more you

learn about the Macintosh graphics tools, the farther off total

understanding seems to be." Outside of DTS, he likes to ride his

bike, and uses it to commute the three blocks to his office ("Hey, it's

faster than driving the three blocks!"), and he likes to try getting his

radio-controlled car to act as if it's actually controlled. •

color environment. But in general, making a palette full
of pmCourteous colors is a lot better than hard-coding
RGBColors into your code. Instead of hard-coding
colors, make a palette of courteous colors-as many
entries as you need colors-and save it as a 'pltt'
resource. When your application runs, call SetPalette
to attach this palette to your off-screen cGrafPort.
When you need to use a color while drawing into this
cGrafPort, pass the desired color's palette index to
PmForeColor or PmBackColor, and then draw. This is
better than hard-coding colors because you or a
software localizer can easily change the colors by
changing the 'pltt' resource-no code changes are
necessary.

The pm White and pmBlack usage-mode modifiers are
new with System 7; they let you specify whether you
want a particular palette entry to map to white or black
in a black-and-white graphics environment. By default,
colors whose average color-component value is larger
than 32767 are mapped to white and other colors are
mapped to black. (If you use RGBForeColor, Color
QuickDraw also checks to see whether your specified
color is different from your background color but maps
to your background color; if so, Color QuickDraw uses
the complement of the color you specified so that your
drawing is visible over the background.) By specifying
that a palette entry is pmCourteous ~ pmBlack or
pm Courteous + pm White, you can control which
colors map to black and to white when there aren't
enough colors available. This applies to palettes
attached to off-screen cGrafForts as well as to palettes
attached to windows.

Those are the Palette Manager features that do work
off-screen. Now I'll talk about the features that don't
and what you can do to get the same effect.

The pmExplicit usage mode is handy when you want to
draw using a pixel value without knowing or caring
what color that pixel value represents. \Vith this mode
you can easily show the colors in a screen's color table,
and you can also draw into a pixel image with a specific
value even though you specify the color for that value
elsewhere.

PRINT HINTS FROM LUKE & ZZ is in hibernation. •

GRAPHICS HINTS FROM FORREST: USING THE PALETTE MANAGER OFF-SCREEN Winter 1992

29

30

When you have a palette that's attached to an off­
screen cGrafPort, pmExplicit colors are interpreted as
pmCourteous colors. Instead of using a palette, you
should convert your pixel value to an RGBColor and
use this as the foreground or background color. Set the
current GDevice to your off-screen GDevice so that
the color environment is set; then pass your pixel value
to Index2Color, which is documented on page 141 of
Inside Macintosh Volume V. Index2Color converts your
pixel value to the corresponding RGBColor, which you
can pass to RGBForeColor or RGBBackColor, and
then you can draw. The result is that your pixel value is
drawn into the destination pixel image.

Both the pmAnimated and pm Tolerant usage modes
are used to modify the color environment, and both are
interpreted as pmCourteous when they're in a palette
that's attached to an off-screen cGrafPort. The most
important difference between the two usage modes is in
the style of color-table arbitration that they do­
pmTolerant gives the front window the colors it needs,
while pmAnimated additionally makes sure that
nothing outside the front window is drawn in its colors.
Color-table arbitration doesn't apply off screen, so the
pmAnimated and pm Tolerant usage modes can be
unified into "I want to change my off-screen colors."

Changing the colors in an off-screen color
environment means changing its color table; the most
straightforward way to do this is to modify the contents
of the color table directly. That is, get your off-screen
color table's handle and then directly assign new values
to the rgb fields in its CSpecArray. You could also
assign a whole new color table to the off-screen
environment by assigning the new one to the pm Table
field of the off-screen pixMap. Either way, you have to

For more details about changing or replacing off-screen color

tables, see the October 1991 version of Macintosh Technical Note

#120, "Principia Off-Screen Graphics Environments.'' •

d e v e I o p W inter 1992

--- - --- -~

tell Color QuickDraw what you've done by updating
the changed color table's ctSeed field. The next time
you draw into your off-screen graphics environment,
Color QuickDraw detects your change by comparing
the ctSeed of your changed color table against the
iTabSeed of the current GDevice's inverse table, and it
rebuilds the inverse table according to the changed
color table. You can update the ctSeed field by
assigning to it the return value of GetCTSeed, which is
documented on page 14 3 of Inside Macintosh Volume V.
If the 32-Bit QuickDraw extensions are available, you
can update a color table's ctSeed simply by passing the
color table to CTabChanged, documented on page 17-
26 of Inside Macintosh Volume VI.

If you have a GWorld and you want to replace its color
table, you should call UpdateGWorld, passing it a new
color table. UpdateGWorld makes sure that all the
cached parts of a GWorld are properly updated, which
is tough to do any other way. If you don't pass any flags
to UpdateGWorld, it's within its rights to destroy your
existing GWorld's image. But if you pass the clipPix or
stretchPix flag, UpdateGWorld is obligated to keep
your existing image, and it tries to reproduce the
existing image in the new colors as best it can.

To wrap up, you can use the Palette Manager with off­
screen graphics environments, but you'll only be able
to use the pm Courteous usage mode and the pm White
and pmBlack usage-mode modifiers. But that's not to
cast aspersions on these features, because they can be
very handy for both on-screen and off-screen drawing.
The pmExplicit, pmTolerant, and pmAnimated usage
modes don't work for off-screen drawing, but there are
easy ways to simulate those features without the Palette
Manager and without risking future compatibility.

30

When you have a palette that's attached to an off­
screen cGrafPort, pmExplicit colors are interpreted as
pmCourteous colors. Instead of using a palette, you
should convert your pixel value to an RGBColor and
use this as the foreground or background color. Set the
current GDevice to your off-screen GDevice so that
the color environment is set; then pass your pixel value
to Index2Color, which is documented on page 141 of
Inside Macintosh Volume V. Index2Color converts your
pixel value to the corresponding RGBColor, which you
can pass to RGBForeColor or RGBBackColor, and
then you can draw. The result is that your pixel value is
drawn into the destination pixel image.

Both the pmAnimated and pm Tolerant usage modes
are used to modify the color environment, and both are
interpreted as pmCourteous when they're in a palette
that's attached to an off-screen cGrafPort. The most
important difference between the two usage modes is in
the style of color-table arbitration that they do­
pmTolerant gives the front window the colors it needs,
while pmAnimated additionally makes sure that
nothing outside the front window is drawn in its colors.
Color-table arbitration doesn't apply off screen, so the
pmAnimated and pm Tolerant usage modes can be
unified into "I want to change my off-screen colors."

Changing the colors in an off-screen color
environment means changing its color table; the most
straightforward way to do this is to modify the contents
of the color table directly. That is, get your off-screen
color table's handle and then directly assign new values
to the rgb fields in its CSpecArray. You could also
assign a whole new color table to the off-screen
environment by assigning the new one to the pm Table
field of the off-screen pixMap. Either way, you have to

For more details about changing or replacing off-screen color

tables, see the October 1991 version of Macintosh Technical Note

#120, "Principia Off-Screen Graphics Environments.'' •

d e v e I o p W inter 1992

--- - --- -~

tell Color QuickDraw what you've done by updating
the changed color table's ctSeed field. The next time
you draw into your off-screen graphics environment,
Color QuickDraw detects your change by comparing
the ctSeed of your changed color table against the
iTabSeed of the current GDevice's inverse table, and it
rebuilds the inverse table according to the changed
color table. You can update the ctSeed field by
assigning to it the return value of GetCTSeed, which is
documented on page 14 3 of Inside Macintosh Volume V.
If the 32-Bit QuickDraw extensions are available, you
can update a color table's ctSeed simply by passing the
color table to CTabChanged, documented on page 17-
26 of Inside Macintosh Volume VI.

If you have a GWorld and you want to replace its color
table, you should call UpdateGWorld, passing it a new
color table. UpdateGWorld makes sure that all the
cached parts of a GWorld are properly updated, which
is tough to do any other way. If you don't pass any flags
to UpdateGWorld, it's within its rights to destroy your
existing GWorld's image. But if you pass the clipPix or
stretchPix flag, UpdateGWorld is obligated to keep
your existing image, and it tries to reproduce the
existing image in the new colors as best it can.

To wrap up, you can use the Palette Manager with off­
screen graphics environments, but you'll only be able
to use the pm Courteous usage mode and the pm White
and pmBlack usage-mode modifiers. But that's not to
cast aspersions on these features, because they can be
very handy for both on-screen and off-screen drawing.
The pmExplicit, pmTolerant, and pmAnimated usage
modes don't work for off-screen drawing, but there are
easy ways to simulate those features without the Palette
Manager and without risking future compatibility.

THE TEXTBOX

YOU'VE

ALWAYS

WANTED

BRYAN K. ("BEAKER")
RESSLER

Neo TextBox is an alternative to the TextEdit utility routine TextBox.

Neo TextBox provides full-justification capability and the option to use

True Type features while retaining all the advantages ofTextBox. The
three routines that comprise Neo TextBox compile to fewer than 900
bytes yet offer a 40% peiformance increase over TextBox in common

cases.

In the deepest, darkest corner of the TextEdit chapter in Inside Macintosh Volume I,
there's an extremely useful routine called TextBox.

pascal void TextBox(void *text, long length, Rect *box, short just)

Given a rectangle and some text, TextBox word wraps the text inside the rectangle,
drawing in the font, style, and size specified in the current grafl>ort.

Anyone who's tried to word wrap text knows that it's not as easy as it first appears.
Perhaps that's why TextBox takes the approach it does: to perform its task, TextBox
creates a new TERec with TENew, sets up the rectangles in the record, and calls
T£SetText to create a temporary handle to a copy of the text you provided to
TextBox. TextBox then calls TEUpdate to wrap and draw the text, and finally
TEDispose to dispose of the TERec. By calling TextEdit to do the text wrapping and
drawing, TextBox avoids doing any hard work. Unfortunately, it also incurs quite a bit
of overhead.

Despite its pass-the-buck implementation, TextBox's use ofTextEdit has several
advantages. Perhaps most important, TextBox works correctly with non-Roman script
systems like Japanese and Arabic without the need for any extra programming.
Another handy side effect is that updates in TextEdit degenerate into calls to
Draw Text, and can therefore be recorded into QuickDraw pictures. TextBox was
designed specifically for drawing static text items in dialog boxes and performs this
function well.

BRYAN K. RESSLER, or "Beaker" as he's

known at Apple, is one of our twisted software

engineers who seems to be convinced that

anything is possible on a Macintosh, and if it's

already been done, it can be done better. He got

his BSCS from the University of California, Irvine,

and wrote commercial MIDI applications before

coming to Apple. Beaker wrote many of the

programs used for testing True Type fonts. When

he's not on a coding frenzy, he writes

noncommercial MIDI applications, tries to have a

life, and keeps a consistent blood-caffeine level so

high you need scientific notation to express it.•

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

31

THE TEXTBOX

YOU'VE

ALWAYS

WANTED

BRYAN K. ("BEAKER")
RESSLER

Neo TextBox is an alternative to the TextEdit utility routine TextBox.

Neo TextBox provides full-justification capability and the option to use

True Type features while retaining all the advantages ofTextBox. The
three routines that comprise Neo TextBox compile to fewer than 900
bytes yet offer a 40% peiformance increase over TextBox in common

cases.

In the deepest, darkest corner of the TextEdit chapter in Inside Macintosh Volume I,
there's an extremely useful routine called TextBox.

pascal void TextBox(void *text, long length, Rect *box, short just)

Given a rectangle and some text, TextBox word wraps the text inside the rectangle,
drawing in the font, style, and size specified in the current grafl>ort.

Anyone who's tried to word wrap text knows that it's not as easy as it first appears.
Perhaps that's why TextBox takes the approach it does: to perform its task, TextBox
creates a new TERec with TENew, sets up the rectangles in the record, and calls
T£SetText to create a temporary handle to a copy of the text you provided to
TextBox. TextBox then calls TEUpdate to wrap and draw the text, and finally
TEDispose to dispose of the TERec. By calling TextEdit to do the text wrapping and
drawing, TextBox avoids doing any hard work. Unfortunately, it also incurs quite a bit
of overhead.

Despite its pass-the-buck implementation, TextBox's use ofTextEdit has several
advantages. Perhaps most important, TextBox works correctly with non-Roman script
systems like Japanese and Arabic without the need for any extra programming.
Another handy side effect is that updates in TextEdit degenerate into calls to
Draw Text, and can therefore be recorded into QuickDraw pictures. TextBox was
designed specifically for drawing static text items in dialog boxes and performs this
function well.

BRYAN K. RESSLER, or "Beaker" as he's

known at Apple, is one of our twisted software

engineers who seems to be convinced that

anything is possible on a Macintosh, and if it's

already been done, it can be done better. He got

his BSCS from the University of California, Irvine,

and wrote commercial MIDI applications before

coming to Apple. Beaker wrote many of the

programs used for testing True Type fonts. When

he's not on a coding frenzy, he writes

noncommercial MIDI applications, tries to have a

life, and keeps a consistent blood-caffeine level so

high you need scientific notation to express it.•

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

31

32

d e v e I o p Winter 1992

So TextBox is great-if you're drawing dialog boxes. But you want more. You want
better performance. You want more flexibility. You want to control line height. You
want full justification (instead of only left, center, and right alignment). You want to
use whizzy True Type calls when they're available. You want to control the text
drawing mode. You can't stand the way TextBox always erases (and therefore isn't too
useful when you're drawing to printers-it slows printing way down). Yeah, and you
don't like that 32K text limitation either. You want to word wrap War and Peace in a
single call to TextBox. And you'd like some useful information back, too, like the line
height it used, and where the last line of text was drawn, so that you can draw
something below the text. And, of course, you want to retain the advantages of
TextBox.

Well, this is your lucky day.

ENTER NEOTEXTBOX
NeoTextBox is the TextBox you've always wanted (and didn't even have to ask for).
NeoTextBox is on the average 33 % faster than an equivalent call to TextBox. Plus, it's
considerably more flexible:

• NeoTextBox allows a line height specification. You can ask for the
default (same behavior as TextBox); use variable line height, which
adjusts for characters that extend beyond the font's standard ascent
or descent line; or specify a line height in points.

• NeoTextBox provides left, center, and right alignment and full
justification.

• NeoTextBox never erases the rectangle it's drawing into. It lets you
erase or, if you wish, draw a colored background.

• NeoTextBox returns the total number of lines in the wrapped text.

• NeoTextBox can return, via VAR parameters, the vertical pen
position of the last line of text and the line height that was used to
draw the text.

NeoTextBox gives you all this extra functionality, yet retains the advantages of
TextBox. It is completely language independent and uses the Script Manager heavily
Gust like TextEdit). It's easy to call, and if you don't want all the spiffy new features,
it's easy to get TextBox-like behavior with a free performance increase.

Let's take a look at the parameters for NeoTextBox.

short NeoTextBox(unsigned char *theText, unsigned long textLen,
Rect *wrapBox, short align, short lhCode, short *endY,
short *lhUsed)

32

d e v e I o p Winter 1992

So TextBox is great-if you're drawing dialog boxes. But you want more. You want
better performance. You want more flexibility. You want to control line height. You
want full justification (instead of only left, center, and right alignment). You want to
use whizzy True Type calls when they're available. You want to control the text
drawing mode. You can't stand the way TextBox always erases (and therefore isn't too
useful when you're drawing to printers-it slows printing way down). Yeah, and you
don't like that 32K text limitation either. You want to word wrap War and Peace in a
single call to TextBox. And you'd like some useful information back, too, like the line
height it used, and where the last line of text was drawn, so that you can draw
something below the text. And, of course, you want to retain the advantages of
TextBox.

Well, this is your lucky day.

ENTER NEOTEXTBOX
NeoTextBox is the TextBox you've always wanted (and didn't even have to ask for).
NeoTextBox is on the average 33 % faster than an equivalent call to TextBox. Plus, it's
considerably more flexible:

• NeoTextBox allows a line height specification. You can ask for the
default (same behavior as TextBox); use variable line height, which
adjusts for characters that extend beyond the font's standard ascent
or descent line; or specify a line height in points.

• NeoTextBox provides left, center, and right alignment and full
justification.

• NeoTextBox never erases the rectangle it's drawing into. It lets you
erase or, if you wish, draw a colored background.

• NeoTextBox returns the total number of lines in the wrapped text.

• NeoTextBox can return, via VAR parameters, the vertical pen
position of the last line of text and the line height that was used to
draw the text.

NeoTextBox gives you all this extra functionality, yet retains the advantages of
TextBox. It is completely language independent and uses the Script Manager heavily
Gust like TextEdit). It's easy to call, and if you don't want all the spiffy new features,
it's easy to get TextBox-like behavior with a free performance increase.

Let's take a look at the parameters for NeoTextBox.

short NeoTextBox(unsigned char *theText, unsigned long textLen,
Rect *wrapBox, short align, short lhCode, short *endY,
short *lhUsed)

The first two parameters, theText and textLen, are analogous to TextBox's text and
length parameters: they specify the text to be wrapped. Note that the Text isn't a
Pascal string-it's a pointer to the first printable character.

The third and fourth parameters, wrapBox (box in TextBox) and align, also hearken
back to NeoTextBox's ancestor. Just as in TextBox, wrapBox specifies the rectangle
within which you're wrapping text, and the align parameter specifies the alignment.
In addition to the standard TextEdit alignments teFlushLeft, teCenter, and
teFlushRight (see "Text Alignment Constants for System 7"), a new alignment is
defined-ntbJustFull. It performs full justification in whatever manner is appropriate
for the current script.

The fifth parameter, lhCode, specifies how the line height is derived. If lhCode is 0,
the default line height is derived via a call to GetFontlnfo. This gives the same
behavior as TextBox. If lhCode is less than 0, the line height is derived by
determining which characters in the text that's being drawn extend the most above
and below the baseline (see "SetPreserveGlyph With True Type Fonts"). Finally, if
lhCode is greater than 0, the value of lhCode itself specifies the line height. For
instance, you can draw 12-point text in 16-point lines.

The last two parameters, endY and lhUsed, are reference parameters that allow you
to retrieve the vertical position of the last line of text and the line height that was
used to draw the text, respectively. The endY parameter can be very useful if you

TEXT ALIGNMENT CONSTANTS FOR SYSTEM 7
Before System 7, there was a conflict between the names of the text alignment

constants and their actual behavior. To help make applications compatible with non­

Roman scripts, teJustleft was interpreted as the default text alignment appropriate for

the current script rather than forcing text to be aligned on the left as specified. For
example, on a Hebrew system, a TextBox call with a just parameter of teJustleft would

actually use the default justification for Hebrew, which is teJustRight.

To overcome this conflict, new constants were introduced in System 7, as shown in
Table 1.

Table 1
Text Alignment Constants

New Constant Old Constant Value Meaning

teFlushleft teForceleft -2 Align text on the left for all scripts
teFlushRight teJustRight -1 Align text on the right for all scripts
teFlushDefault teJustleft 0 Use conventional alignment for script
teCenter teJustCenter l Center text for all scripts

THE TEXTBOX YOU'VE ALWAYS WANTED W inter 1992

33

The first two parameters, theText and textLen, are analogous to TextBox's text and
length parameters: they specify the text to be wrapped. Note that the Text isn't a
Pascal string-it's a pointer to the first printable character.

The third and fourth parameters, wrapBox (box in TextBox) and align, also hearken
back to NeoTextBox's ancestor. Just as in TextBox, wrapBox specifies the rectangle
within which you're wrapping text, and the align parameter specifies the alignment.
In addition to the standard TextEdit alignments teFlushLeft, teCenter, and
teFlushRight (see "Text Alignment Constants for System 7"), a new alignment is
defined-ntbJustFull. It performs full justification in whatever manner is appropriate
for the current script.

The fifth parameter, lhCode, specifies how the line height is derived. If lhCode is 0,
the default line height is derived via a call to GetFontlnfo. This gives the same
behavior as TextBox. If lhCode is less than 0, the line height is derived by
determining which characters in the text that's being drawn extend the most above
and below the baseline (see "SetPreserveGlyph With True Type Fonts"). Finally, if
lhCode is greater than 0, the value of lhCode itself specifies the line height. For
instance, you can draw 12-point text in 16-point lines.

The last two parameters, endY and lhUsed, are reference parameters that allow you
to retrieve the vertical position of the last line of text and the line height that was
used to draw the text, respectively. The endY parameter can be very useful if you

TEXT ALIGNMENT CONSTANTS FOR SYSTEM 7
Before System 7, there was a conflict between the names of the text alignment

constants and their actual behavior. To help make applications compatible with non­

Roman scripts, teJustleft was interpreted as the default text alignment appropriate for

the current script rather than forcing text to be aligned on the left as specified. For
example, on a Hebrew system, a TextBox call with a just parameter of teJustleft would

actually use the default justification for Hebrew, which is teJustRight.

To overcome this conflict, new constants were introduced in System 7, as shown in
Table 1.

Table 1
Text Alignment Constants

New Constant Old Constant Value Meaning

teFlushleft teForceleft -2 Align text on the left for all scripts
teFlushRight teJustRight -1 Align text on the right for all scripts
teFlushDefault teJustleft 0 Use conventional alignment for script
teCenter teJustCenter l Center text for all scripts

THE TEXTBOX YOU'VE ALWAYS WANTED W inter 1992

33

34

SETPRESERVEGLYPH WITH TRUETYPE FONTS

Before True Type, all characters in all fonts fit beneath the
font's ascent line and above the descent line, like the

default characters shown in Figure 1. Bitmapped fonts
were drawn so that diacriticals, like the angstrom over the
A in Angstrom, would fit beneath the ascent line. To do
this, the letterform had to be distorted. With the advent of
Tn.ie Type, this "feature" can be controlled, because
True Type fonts carry outline data that's true to the original

design (hence the name True Type).

Q Q \vMax AAA Ascent

/,
Baseline

_-_____ -_____ -_____ /Descent

Unaccented Default I
SetPreserveGlyph(TRUE)

Since most applications expect characters to fit beneath
the ascent line and above the descent line, QuickDraw
transforms characters in True Type fonts to force them
within those bounds. To override this transformation and
preserve the original glyph shape, use the Font Manager
call SetPreserveGlyph(TRUE) . After this call, True Type fonts
will be drawn as shown to the right in Figure 1 .

Preserving the glyph shape makes it possible to take
advantage of NeoTextBox's variable line height feature.

Default I
SetPreserveGlyph(TRUE)

Example shown: 72-point Times Example shown: 72-point Symbol

Figure 1
How SetPreserveGlyph Affects Line Height

de v e Io p Winter 1992

intend to draw anything below the text, since it tells you exactly where the last line of
text was drawn. To find out what the actual derived line height was if you used a
negative lhCode, use the lhUsed parameter. Pass nil for either or both of these last
two parameters if you don't want this extra information.

N eo TextBox returns the total number of lines in the text. That includes lines clipped .
off because they were below the bottom of wrapBox. You can tell whether the text
overflowed wrapBox by whether the value returned in endY is greater than
wrapBox.bottom. If you want to know how many lines fit in wrapBox, simply divide
the height of wrapBox by the value returned in lhUsed.

34

SETPRESERVEGLYPH WITH TRUETYPE FONTS

Before True Type, all characters in all fonts fit beneath the
font's ascent line and above the descent line, like the

default characters shown in Figure 1. Bitmapped fonts
were drawn so that diacriticals, like the angstrom over the
A in Angstrom, would fit beneath the ascent line. To do
this, the letterform had to be distorted. With the advent of
Tn.ie Type, this "feature" can be controlled, because
True Type fonts carry outline data that's true to the original

design (hence the name True Type).

Q Q \vMax AAA Ascent

/,
Baseline

_-_____ -_____ -_____ /Descent

Unaccented Default I
SetPreserveGlyph(TRUE)

Since most applications expect characters to fit beneath
the ascent line and above the descent line, QuickDraw
transforms characters in True Type fonts to force them
within those bounds. To override this transformation and
preserve the original glyph shape, use the Font Manager
call SetPreserveGlyph(TRUE) . After this call, True Type fonts
will be drawn as shown to the right in Figure 1 .

Preserving the glyph shape makes it possible to take
advantage of NeoTextBox's variable line height feature.

Default I
SetPreserveGlyph(TRUE)

Example shown: 72-point Times Example shown: 72-point Symbol

Figure 1
How SetPreserveGlyph Affects Line Height

de v e Io p Winter 1992

intend to draw anything below the text, since it tells you exactly where the last line of
text was drawn. To find out what the actual derived line height was if you used a
negative lhCode, use the lhUsed parameter. Pass nil for either or both of these last
two parameters if you don't want this extra information.

N eo TextBox returns the total number of lines in the text. That includes lines clipped .
off because they were below the bottom of wrapBox. You can tell whether the text
overflowed wrapBox by whether the value returned in endY is greater than
wrapBox.bottom. If you want to know how many lines fit in wrapBox, simply divide
the height of wrapBox by the value returned in lhUsed.

REQUIREMENTS
N eo TextBox uses some advanced Script Manager routines that are available only in
System 6 or later. NeoTextBox assumes they're available, so make sure your main
program checks that it's running on System 6 or later Via a Gestalt or SysEnvirons
call.

NeoTextBox requires one global variable, a Boolean named gHasTrueType. It should
be set to TRUE if the TrueType trap ($A854) is available, or FALSE if not. If your
development environment provides glue for Gestalt, you can use the following lines
to set up gHasTrueType:

#define kTrueTypeTrap Ox54 /* The TrueType trap number */
#define kUnimplTrap Ox9f /* The "unimplemented" trap number * I
long gResponse;

if (Gestalt(gestaltFontMgrAttr,&gResponse) == noErr)
gHasTrueType BitTst(&gResponse,31-gestaltOutlineFonts);

else {
gHasTrueType (NGetTrapAddress(kTrueTypeTrap,ToolTrap) !=

NGetTrapAddress(kUnimplTrap,ToolTrap));

THE BASIC ALGORITHM
NeoTextBox does a lot. But, in order to appease the programmer's natural desire to
avoid work, we allow the Script Manager to do the hard parts. (Do you know how to
do full justification in Arabic?) In short, here's how NeoTextBox gets its job done:

1. It saves the current grafPort's clipping region and clips to the box
we're drawing into.

2. It calculates the appropriate line height with the function
NTBLineHeight.

3. It calls the Script Manager routine StyledLineBreak to find each
line-break point in the input text.

4. It draws each line with the function NTBDraw.

5. It advances the pen down one line.

6. When there's no more text, it restores the clipping region and
returns the appropriate values.

It sounds simple, doesn't it? That's because StyledLineBreak does all the work. It
knows how to find word breaks in whatever script we're using. StyledLineBreak is
smart, too. For instance, in English, it knows that it's OK to break a hyphenated word
if necessary. It uses rules that are provided by the installed script systems, so it always
takes the appropriate actions. Let's take a closer look at the code.

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

35

REQUIREMENTS
N eo TextBox uses some advanced Script Manager routines that are available only in
System 6 or later. NeoTextBox assumes they're available, so make sure your main
program checks that it's running on System 6 or later Via a Gestalt or SysEnvirons
call.

NeoTextBox requires one global variable, a Boolean named gHasTrueType. It should
be set to TRUE if the TrueType trap ($A854) is available, or FALSE if not. If your
development environment provides glue for Gestalt, you can use the following lines
to set up gHasTrueType:

#define kTrueTypeTrap Ox54 /* The TrueType trap number */
#define kUnimplTrap Ox9f /* The "unimplemented" trap number * I
long gResponse;

if (Gestalt(gestaltFontMgrAttr,&gResponse) == noErr)
gHasTrueType BitTst(&gResponse,31-gestaltOutlineFonts);

else {
gHasTrueType (NGetTrapAddress(kTrueTypeTrap,ToolTrap) !=

NGetTrapAddress(kUnimplTrap,ToolTrap));

THE BASIC ALGORITHM
NeoTextBox does a lot. But, in order to appease the programmer's natural desire to
avoid work, we allow the Script Manager to do the hard parts. (Do you know how to
do full justification in Arabic?) In short, here's how NeoTextBox gets its job done:

1. It saves the current grafPort's clipping region and clips to the box
we're drawing into.

2. It calculates the appropriate line height with the function
NTBLineHeight.

3. It calls the Script Manager routine StyledLineBreak to find each
line-break point in the input text.

4. It draws each line with the function NTBDraw.

5. It advances the pen down one line.

6. When there's no more text, it restores the clipping region and
returns the appropriate values.

It sounds simple, doesn't it? That's because StyledLineBreak does all the work. It
knows how to find word breaks in whatever script we're using. StyledLineBreak is
smart, too. For instance, in English, it knows that it's OK to break a hyphenated word
if necessary. It uses rules that are provided by the installed script systems, so it always
takes the appropriate actions. Let's take a closer look at the code.

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

35

36

d e v e I o p Winter 1992

THE NEOTEXTBOX FUNCTION
The source code for NeoTextBox that's shown here is written in MPW C 3.2. We'll
start in the NeoTextBox function and break out to a couple of utility functions when
we come upon them.

Here's the NeoTextBox declaration and local variables:

short NeoTextBox(unsigned char *theText, unsigned long textLen,
Rect *wrapBox, short align, short lhCode, short *endY,
short *lhUsed)

RgnHandle oldClip;
StyledLineBreakCode breakCode;
Fixed
Fixed
short
long
unsigned short
short
unsigned short
long
unsigned char
unsigned char

fixedMax;
wrapWid;
boxWidth;
lineBytes;
lineHeight;
curY;
lineCount;
textRemaining;
*lineStart;
*textEnd;

/* Saved clipping region */
/* From StyledLineBreak */
/* boxWidth in fixed point */
/* Width to wrap within */
/* Width of box */
/* Number of bytes in one line */
/* Calculated line height */
/* Current vert pen location */
/* Number of lines we've drawn */
/* Number of bytes of text left */
/* Pointer to start of a line */
/* Pointer to end of input text */

Many of these variables are used in the call to StyledLineBreak, which is explained in
detail later. The most important variables to know about here are breakCode, which
contains the line break code returned by each call to StyledLineBreak; lineStart and
lineBytes, which are returned by StyledLineBreak to specify a single line; and curY,
the current vertical pen location.

GET READY
NeoTextBox, like TextBox, clips to wrapBox. Since this is a general-purpose routine,
it's safest to save the clipping region, then restore it at the end. We calculate the
width of wrapBox, because it's used a lot, and convert it to fixed point as fixedMax,
which is used in calls to StyledLineBreak as a VAR parameter. Also, we retrieve the
appropriate text alignment if the user has requested default alignment.

GetClip((oldClip = NewRgn()));
ClipRect(wrapBox);
boxWidth = wrapBox->right - wrapBox->left;
fixedMax = Long2Fix((long)boxWidth);
if (align == teFlushDefault)

align= GetSysJust();

36

d e v e I o p Winter 1992

THE NEOTEXTBOX FUNCTION
The source code for NeoTextBox that's shown here is written in MPW C 3.2. We'll
start in the NeoTextBox function and break out to a couple of utility functions when
we come upon them.

Here's the NeoTextBox declaration and local variables:

short NeoTextBox(unsigned char *theText, unsigned long textLen,
Rect *wrapBox, short align, short lhCode, short *endY,
short *lhUsed)

RgnHandle oldClip;
StyledLineBreakCode breakCode;
Fixed
Fixed
short
long
unsigned short
short
unsigned short
long
unsigned char
unsigned char

fixedMax;
wrapWid;
boxWidth;
lineBytes;
lineHeight;
curY;
lineCount;
textRemaining;
*lineStart;
*textEnd;

/* Saved clipping region */
/* From StyledLineBreak */
/* boxWidth in fixed point */
/* Width to wrap within */
/* Width of box */
/* Number of bytes in one line */
/* Calculated line height */
/* Current vert pen location */
/* Number of lines we've drawn */
/* Number of bytes of text left */
/* Pointer to start of a line */
/* Pointer to end of input text */

Many of these variables are used in the call to StyledLineBreak, which is explained in
detail later. The most important variables to know about here are breakCode, which
contains the line break code returned by each call to StyledLineBreak; lineStart and
lineBytes, which are returned by StyledLineBreak to specify a single line; and curY,
the current vertical pen location.

GET READY
NeoTextBox, like TextBox, clips to wrapBox. Since this is a general-purpose routine,
it's safest to save the clipping region, then restore it at the end. We calculate the
width of wrapBox, because it's used a lot, and convert it to fixed point as fixedMax,
which is used in calls to StyledLineBreak as a VAR parameter. Also, we retrieve the
appropriate text alignment if the user has requested default alignment.

GetClip((oldClip = NewRgn()));
ClipRect(wrapBox);
boxWidth = wrapBox->right - wrapBox->left;
fixedMax = Long2Fix((long)boxWidth);
if (align == teFlushDefault)

align= GetSysJust();

DETERMINE THE LINE HEIGHT
Now we need to determine the appropriate line height. NeoTextBox calls
NTBLineHeight to perform this function, passing the text pointer, the text length,
the wrap rectangle, the caller-specified line height code, and the address of curY, the
current vertical pen location. NTBLineHeight calculates and returns the line height
and calculates the correct starting pen location. Here's the NTBLineHeight function:

unsigned short NTBLineHeight(unsigned char *theText,
unsigned long textLen, Rect *wrapBox, short lhCode, short *startY)

short
Fontinfo
Point
unsigned short

asc, desc;
finfo;
frac;
lineHeight;

GetFontinfo(&finfo);
if (lhCode < 0) {

/* lhCode < 0 means "variable line height", so if it's a*/
/* TrueType font use OutlineMetrics, otherwise use default. */
frac.h = frac.v = 1;
if (gHasTrueType && IsOutline(frac, frac))

OutlineMetrics((short)textLen, theText, frac, frac, &asc,
&desc, nil, nil, nil);

lineHeight = MAXOF(finfo.ascent, asc)
+ MAXOF(finfo.descent, -desc) + £Info.leading;

*startY = wrapBox->top + MAXOF(finfo.ascent, asc)
+ finfo. leading;

else {
/* Punt to "default" if we can't use TrueType. */
lineHeight = £Info.ascent + £Info.descent + £Info.leading;
*startY = wrapBox->top + £Info.ascent + £Info.leading;

else if (lhCode == 0) {
/* lhCode == 0 means "default line height." */
lineHeight = £Info.ascent + £Info.descent + £Info.leading;
*startY = wrapBox->top + £Info.ascent + £Info.leading;

else {
/* lhCode > 0 means "use this line height" so we trust 'em. */
lineHeight = lhCode;
*startY = wrapBox->top + lhCode + finfo.leading;

return(lineHeight);

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

·I

37

DETERMINE THE LINE HEIGHT
Now we need to determine the appropriate line height. NeoTextBox calls
NTBLineHeight to perform this function, passing the text pointer, the text length,
the wrap rectangle, the caller-specified line height code, and the address of curY, the
current vertical pen location. NTBLineHeight calculates and returns the line height
and calculates the correct starting pen location. Here's the NTBLineHeight function:

unsigned short NTBLineHeight(unsigned char *theText,
unsigned long textLen, Rect *wrapBox, short lhCode, short *startY)

short
Fontinfo
Point
unsigned short

asc, desc;
finfo;
frac;
lineHeight;

GetFontinfo(&finfo);
if (lhCode < 0) {

/* lhCode < 0 means "variable line height", so if it's a*/
/* TrueType font use OutlineMetrics, otherwise use default. */
frac.h = frac.v = 1;
if (gHasTrueType && IsOutline(frac, frac))

OutlineMetrics((short)textLen, theText, frac, frac, &asc,
&desc, nil, nil, nil);

lineHeight = MAXOF(finfo.ascent, asc)
+ MAXOF(finfo.descent, -desc) + £Info.leading;

*startY = wrapBox->top + MAXOF(finfo.ascent, asc)
+ finfo. leading;

else {
/* Punt to "default" if we can't use TrueType. */
lineHeight = £Info.ascent + £Info.descent + £Info.leading;
*startY = wrapBox->top + £Info.ascent + £Info.leading;

else if (lhCode == 0) {
/* lhCode == 0 means "default line height." */
lineHeight = £Info.ascent + £Info.descent + £Info.leading;
*startY = wrapBox->top + £Info.ascent + £Info.leading;

else {
/* lhCode > 0 means "use this line height" so we trust 'em. */
lineHeight = lhCode;
*startY = wrapBox->top + lhCode + finfo.leading;

return(lineHeight);

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

·I

37

38

de v e Io p Winter 1992

Remember, there are three possible line height codes:

• Variable line height (specified by an lhCode less than 0) is handled
first. If the TrueType trap is available and this particular font is a
TrueType font, OutlineMetrics is called to determine the line
height (see "Descent Into Hell"). OutlineMetrics can return a
variety of information, but we really only want the highest ascent
~nd the lowest descent, which are returned in the local variables
asc and desc. Then we choose whichever is higher, the default
ascent or asc, and whichever is lower, the default descent or desc. If
True Type isn't available or the particular font isn't a True Type
font, we punt to the default line height.

• If lhCode is 0, the default line height is used. This is defined as the
sum of the ascent, descent, and line gap (leading) derived by a
GetFontlnfo call.

• Finally, if lhCode is greater than 0, the caller is providing a specific
line height. In this case, NTBLineHeight returns lhCode as the
line height.

Each of the three line height calculation methods also figures the correct startY based
on the line height and wrapBox->top.

Back in NeoTextBox, we call NTBLineHeight to set up our local variables
lineHeight and curY:

lineHeight = NTBLineHeight(theText, textLen, wrapBox, lhCode, &curY);
lineCount = O;
lineStart = theText;
textEnd = theText + textLen;
textRemaining = textLen;

DESCENT INTO HELL

Descent is the amount of space that should be allocated for a font below the text

baseline. When you call GetFontlnfo, the value returned for descent is a positive

number of points below the baseline. Although this is convenient, in the typographic

industry it's more common to represent descent values as negative numbers.

In an attempt to be more typographically useful, True Type's OutlineMetrics call returns

its descent values as negative numbers. So, to avoid a descent into hell, remember to

note the sign of descent values when mixing calls to GetFontlnfo and OutlineMetrics.

38

de v e Io p Winter 1992

Remember, there are three possible line height codes:

• Variable line height (specified by an lhCode less than 0) is handled
first. If the TrueType trap is available and this particular font is a
TrueType font, OutlineMetrics is called to determine the line
height (see "Descent Into Hell"). OutlineMetrics can return a
variety of information, but we really only want the highest ascent
~nd the lowest descent, which are returned in the local variables
asc and desc. Then we choose whichever is higher, the default
ascent or asc, and whichever is lower, the default descent or desc. If
True Type isn't available or the particular font isn't a True Type
font, we punt to the default line height.

• If lhCode is 0, the default line height is used. This is defined as the
sum of the ascent, descent, and line gap (leading) derived by a
GetFontlnfo call.

• Finally, if lhCode is greater than 0, the caller is providing a specific
line height. In this case, NTBLineHeight returns lhCode as the
line height.

Each of the three line height calculation methods also figures the correct startY based
on the line height and wrapBox->top.

Back in NeoTextBox, we call NTBLineHeight to set up our local variables
lineHeight and curY:

lineHeight = NTBLineHeight(theText, textLen, wrapBox, lhCode, &curY);
lineCount = O;
lineStart = theText;
textEnd = theText + textLen;
textRemaining = textLen;

DESCENT INTO HELL

Descent is the amount of space that should be allocated for a font below the text

baseline. When you call GetFontlnfo, the value returned for descent is a positive

number of points below the baseline. Although this is convenient, in the typographic

industry it's more common to represent descent values as negative numbers.

In an attempt to be more typographically useful, True Type's OutlineMetrics call returns

its descent values as negative numbers. So, to avoid a descent into hell, remember to

note the sign of descent values when mixing calls to GetFontlnfo and OutlineMetrics.

Here we also set up some other local variables. The variable lineCount records the
number of lines we've drawn. The pointer lineStart points to the beginning of the
current line, which initially is the beginning of the text. The variable textEnd is a
pointer to just beyond the end of the input text and is used for testing when the text is
all used up. Finally, the variable textRemaining keeps track of how many bytes of
input text remain to be processed.

THE BREAK-DRAW LOOP
Now NeoTextBox is ready to break lines and draw the text. This task is performed by
the following do-while loop:

do
lineBytes = l;
wrapWid = fixedMax;

breakCode = StyledLineBreak(lineStart, textRemaining, O,
textRemaining, O, &wrapWid, &lineBytes);

NTBDraw(breakCode, lineStart, lineBytes, wrapBox, align, curY,
boxWidth);

curY += lineHeight;
lineStart += lineBytes;
textRemaining -= lineBytes;
lineCount++;

while (lineStart < textEnd);

If this looks simple, that's because it is. Anyone who's tried to write code to wrap text
knows that it's a difficult task. Making the algorithm compatible with different script
systems complicates the matter even more. Fortunately, we have the Script Manager,
which in this case makes our lives a lot easier.

The workhorse: StyledlineBreak. First we set lineBytes to 1, signaling to
StyledLineBreak that this is the first "script run" on. this line. Since we have only one
script run, we always reset lineBytes at the top of the loop. Also, we reset wrap Wid to
be fixedMax (which was previously initialized to the fixed-point width of the wrap
rectangle). WrapWid tells StyledLineBreak the width within which to wrap the text
and returns how much of the line is left (if any) after wrapping (that's why we have to
reset it at the top of the loop each time).

Now we call StyledLineBreak. We provide a pointer to the beginning of the text for
this line, the number of bytes of text remaining, the wrap width, and the address
of a variable where StyledLineBreak puts the number of bytes in this line.
StyledLineBreak does the hard work of finding word boundaries, adding up character
widths, and handling special cases, all in an internationally compatible way.

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

39

Here we also set up some other local variables. The variable lineCount records the
number of lines we've drawn. The pointer lineStart points to the beginning of the
current line, which initially is the beginning of the text. The variable textEnd is a
pointer to just beyond the end of the input text and is used for testing when the text is
all used up. Finally, the variable textRemaining keeps track of how many bytes of
input text remain to be processed.

THE BREAK-DRAW LOOP
Now NeoTextBox is ready to break lines and draw the text. This task is performed by
the following do-while loop:

do
lineBytes = l;
wrapWid = fixedMax;

breakCode = StyledLineBreak(lineStart, textRemaining, O,
textRemaining, O, &wrapWid, &lineBytes);

NTBDraw(breakCode, lineStart, lineBytes, wrapBox, align, curY,
boxWidth);

curY += lineHeight;
lineStart += lineBytes;
textRemaining -= lineBytes;
lineCount++;

while (lineStart < textEnd);

If this looks simple, that's because it is. Anyone who's tried to write code to wrap text
knows that it's a difficult task. Making the algorithm compatible with different script
systems complicates the matter even more. Fortunately, we have the Script Manager,
which in this case makes our lives a lot easier.

The workhorse: StyledlineBreak. First we set lineBytes to 1, signaling to
StyledLineBreak that this is the first "script run" on. this line. Since we have only one
script run, we always reset lineBytes at the top of the loop. Also, we reset wrap Wid to
be fixedMax (which was previously initialized to the fixed-point width of the wrap
rectangle). WrapWid tells StyledLineBreak the width within which to wrap the text
and returns how much of the line is left (if any) after wrapping (that's why we have to
reset it at the top of the loop each time).

Now we call StyledLineBreak. We provide a pointer to the beginning of the text for
this line, the number of bytes of text remaining, the wrap width, and the address
of a variable where StyledLineBreak puts the number of bytes in this line.
StyledLineBreak does the hard work of finding word boundaries, adding up character
widths, and handling special cases, all in an internationally compatible way.

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

39

40

d e v e I o p Winter 1992

After StyledLineBreak returns, lineBytes tells us the length of the current line
beginning at lineStart, and breakCode has a line break code that tells us the
circumstances of the line break, as shown in Figure 2.

The head and in frontal attack on an
English writer that the character of this
point is therefore another method for the
letters in a time when whom ever told
the problem to an unexpected. +-1

The Shannon Text is a strange,
wayultramegasupercalafragilisticexpiala
docious sentence.

Figure 2
Line Break Codes

Break Code

smBreakWord

smBreakWord
smBreakWord

smBreakWord

smBreakWord

smBreakWord

smBreakChar
smBreakOverflow

Usually, StyledLineBreak returns smBreakWord, indicating that it broke the line on a
word boundary. The break code smBreakChar says that it encountered a word that
was too long to fit on a single line and was forced to break in the middle of a word.
StyledLineBreak returns smBreakOverflow if you run out of text before filling the
given width. These line break codes help determine how to draw the text.

Draw the text with NTBDraw. After StyledLineBreak figures the length of the
line, NeoTextBox calls NTBDraw to draw the line. NeoTextBox passes a pointer to
the line of text, the length of the line in bytes, the wrap rectangle, the alignment, the
current vertical pen location, and the width of the wrap rectangle. Let's take a look at
NTBDraw:

#define kReturnChar OxOd

void NTBDraw(StyledLineBreakCode breakCode, unsigned char *lineStart,
long lineBytes, Rect *wrapBox, short align, short curY,
short boxWidth)

unsigned long blackLen;
short slop;

/* Length of non-white characters */
/* Number of pixels of slop for */
/* full justification */

blackLen = VisibleLength(lineStart, lineBytes);

40

d e v e I o p Winter 1992

After StyledLineBreak returns, lineBytes tells us the length of the current line
beginning at lineStart, and breakCode has a line break code that tells us the
circumstances of the line break, as shown in Figure 2.

The head and in frontal attack on an
English writer that the character of this
point is therefore another method for the
letters in a time when whom ever told
the problem to an unexpected. +-1

The Shannon Text is a strange,
wayultramegasupercalafragilisticexpiala
docious sentence.

Figure 2
Line Break Codes

Break Code

smBreakWord

smBreakWord
smBreakWord

smBreakWord

smBreakWord

smBreakWord

smBreakChar
smBreakOverflow

Usually, StyledLineBreak returns smBreakWord, indicating that it broke the line on a
word boundary. The break code smBreakChar says that it encountered a word that
was too long to fit on a single line and was forced to break in the middle of a word.
StyledLineBreak returns smBreakOverflow if you run out of text before filling the
given width. These line break codes help determine how to draw the text.

Draw the text with NTBDraw. After StyledLineBreak figures the length of the
line, NeoTextBox calls NTBDraw to draw the line. NeoTextBox passes a pointer to
the line of text, the length of the line in bytes, the wrap rectangle, the alignment, the
current vertical pen location, and the width of the wrap rectangle. Let's take a look at
NTBDraw:

#define kReturnChar OxOd

void NTBDraw(StyledLineBreakCode breakCode, unsigned char *lineStart,
long lineBytes, Rect *wrapBox, short align, short curY,
short boxWidth)

unsigned long blackLen;
short slop;

/* Length of non-white characters */
/* Number of pixels of slop for */
/* full justification */

blackLen = VisibleLength(lineStart, lineBytes);

if (align == ntbJustFull) {
slop= boxWidth - TextWidth(lineStart, 0, blackLen);
MoveTo(wrapBox->left, curY);
if (breakCode == smBreakOverflow I I

*(lineStart + (lineBytes - 1)) == kReturnChar)
align= GetSysJust() ;

else DrawJust(lineStart, blackLen, slop);

switch(align) {
case teFlushLeft:
case teFlushDefault:

MoveTo(wrapBox->left, curY);
break;

case teFlushRight:
MoveTo(wrapBox->right - TextWidth(lineStart, O,

blackLen), curY);
break;

case teCenter:
MoveTo(wrapBox->left + (boxWidth - TextWidth(lineStart, 0,

blackLen)) I 2, curY);
break;

if (align != ntbJustFull)
DrawText(lineStart, 0, lineBytes);

NTBDraw's job is to move the pen and draw the text as indicated by the alignment
parameter, align, and the line break code, breakCode. NTBDraw first calculates the
visible length of the line with a call to the Script Manager routine VisibleLength.
This excludes white-space characters at the end of the line. What exactly are white­
space characters? Well, that depends on the script. VisibleLength knows which
characters are visible and which are not for the current script, and returns an
appropriate length in bytes, which is stored in the local variable blackLen.

When align is ntbJustFull, we need to determine whether the current line has a
carriage return character ($OD) at the end, because a line with a carriage return (for
example, the last line in a paragraph) should always be drawn with the default system
alignment, rather than fully justified.

Looking back at the break codes for different types of lines shown in Figure 2, notice
that the line that ends with the carriage return (denoted graphically in the
illustration) returns a line break code of smBreakWord, where you might expect it to
return smBreakOverflow. As you can see, StyledLineBreak expects the caller to know
when a line is the last line of a paragraph. Therefore, every line whose break code is
smBreakWord must be checked for a carriage return.

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

41

if (align == ntbJustFull) {
slop= boxWidth - TextWidth(lineStart, 0, blackLen);
MoveTo(wrapBox->left, curY);
if (breakCode == smBreakOverflow I I

*(lineStart + (lineBytes - 1)) == kReturnChar)
align= GetSysJust() ;

else DrawJust(lineStart, blackLen, slop);

switch(align) {
case teFlushLeft:
case teFlushDefault:

MoveTo(wrapBox->left, curY);
break;

case teFlushRight:
MoveTo(wrapBox->right - TextWidth(lineStart, O,

blackLen), curY);
break;

case teCenter:
MoveTo(wrapBox->left + (boxWidth - TextWidth(lineStart, 0,

blackLen)) I 2, curY);
break;

if (align != ntbJustFull)
DrawText(lineStart, 0, lineBytes);

NTBDraw's job is to move the pen and draw the text as indicated by the alignment
parameter, align, and the line break code, breakCode. NTBDraw first calculates the
visible length of the line with a call to the Script Manager routine VisibleLength.
This excludes white-space characters at the end of the line. What exactly are white­
space characters? Well, that depends on the script. VisibleLength knows which
characters are visible and which are not for the current script, and returns an
appropriate length in bytes, which is stored in the local variable blackLen.

When align is ntbJustFull, we need to determine whether the current line has a
carriage return character ($OD) at the end, because a line with a carriage return (for
example, the last line in a paragraph) should always be drawn with the default system
alignment, rather than fully justified.

Looking back at the break codes for different types of lines shown in Figure 2, notice
that the line that ends with the carriage return (denoted graphically in the
illustration) returns a line break code of smBreakWord, where you might expect it to
return smBreakOverflow. As you can see, StyledLineBreak expects the caller to know
when a line is the last line of a paragraph. Therefore, every line whose break code is
smBreakWord must be checked for a carriage return.

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

41

42

d e v e I o p W inter 1992

NTBDraw looks at the last byte in the line it's drawing to see if it's a carriage return.
Since the carriage return character ($OD) falls into the control-code range, it's
guaranteed never to occur as the low byte of a two-byte character. This frees us from
having to test whether the last character in the line is two-byte and allows us to
proceed directly to the last byte.

We now know whether the current line has a carriage return or not. If not, we
calculate the amount of white-space slop remaining in the line, then call the Script
Manager routine DrawJust to draw the text fully justified-whatever that means for
this script. (In Arabic, for instance, full justification is performed completely
differently than for Roman text.) If the current line does end in a carriage return, we
override the align parameter with the default system alignment and fall through.

For the left, right, and center alignments, the switch statement moves the pen
appropriately, and a DrawText call is made to draw the text. The visible length (in
blackLen) helps correctly calculate the pen position for right and center alignment
and full justification.

Update the variables. After NTBDraw returns, we need to update a bunch of local
variables and loop around again.

curY += lineHeight;
lineStart += lineBytes;
textRemaining -= lineBytes;
lineCount++;

} while (lineStart < textEnd);

First, we add lineHeight to curY, setting us up for the next line. LineStart, the
pointer to the beginning of a line, gets updated to the character after the end of the
current line. TextRemaining gets reduced by the number of bytes consumed by the
current line, and lineCount gets incremented. If lineStart still hasn't run off the end
of the text, the whole break-draw process is repeated.

RETURN SOME VALUES
Now that NeoTextBox has done such a fine job wrapping the text, it's time to return
some useful values to the caller.

if (endY)
*endY = curY - lineHeight;

if (lhUsed)
*lhUsed = lineHeight;

NeoTextBox returns these values only if the caller wants them. This makes it easy to
get TextBox-like behavior from NeoTextBox without having to do any work: if you
don't want a return value, just pass nil instead of providing the address of a variable.

42

d e v e I o p W inter 1992

NTBDraw looks at the last byte in the line it's drawing to see if it's a carriage return.
Since the carriage return character ($OD) falls into the control-code range, it's
guaranteed never to occur as the low byte of a two-byte character. This frees us from
having to test whether the last character in the line is two-byte and allows us to
proceed directly to the last byte.

We now know whether the current line has a carriage return or not. If not, we
calculate the amount of white-space slop remaining in the line, then call the Script
Manager routine DrawJust to draw the text fully justified-whatever that means for
this script. (In Arabic, for instance, full justification is performed completely
differently than for Roman text.) If the current line does end in a carriage return, we
override the align parameter with the default system alignment and fall through.

For the left, right, and center alignments, the switch statement moves the pen
appropriately, and a DrawText call is made to draw the text. The visible length (in
blackLen) helps correctly calculate the pen position for right and center alignment
and full justification.

Update the variables. After NTBDraw returns, we need to update a bunch of local
variables and loop around again.

curY += lineHeight;
lineStart += lineBytes;
textRemaining -= lineBytes;
lineCount++;

} while (lineStart < textEnd);

First, we add lineHeight to curY, setting us up for the next line. LineStart, the
pointer to the beginning of a line, gets updated to the character after the end of the
current line. TextRemaining gets reduced by the number of bytes consumed by the
current line, and lineCount gets incremented. If lineStart still hasn't run off the end
of the text, the whole break-draw process is repeated.

RETURN SOME VALUES
Now that NeoTextBox has done such a fine job wrapping the text, it's time to return
some useful values to the caller.

if (endY)
*endY = curY - lineHeight;

if (lhUsed)
*lhUsed = lineHeight;

NeoTextBox returns these values only if the caller wants them. This makes it easy to
get TextBox-like behavior from NeoTextBox without having to do any work: if you
don't want a return value, just pass nil instead of providing the address of a variable.

CLEAN UP AND WE'RE DONE
The only thing left to do is a little cleanup, and we're outa here.

SetClip(oldClip);
DisposeRgn(oldClip);

return(lineCount);

We restore the clipping region, dispose of our saved region, and return lineCount.

CALLS TO NEOTEXTBOX
One of the best features ofNeoTextBox is that you can easily substitute it for calls
you're currently making to TextBox. If that's all you want to do, replace every
occurrence that looks like this

TextBox(textPtr, textLen, &wrapBox, justify);

with this

EraseRect(&wrapBox);
NeoTextBox(textPtr, textLen, &wrapBox, justify, O, nil, nil);

To use NeoTextBox in place of TextBox, you pass 0 for lhCode (default line height)
and nil for endY and lhUsed, and ignore the return value. If you add NeoTextBox to
your program and just do the substitution above, every NeoTextBox call will be on
the average 3 3 % faster than the old TextBox call. If you use TextBox a lot, that can
mean a real performance increase.

You can use NeoTextBox in more ways than just as direct substitution to improve
performance. It does, after all, have whizzy new features that TextBox never had. Let's
take a look at a more sophisticated call to NeoTextBox that uses some of its unique
features:

short UseNTB(void)
{

Re ct
RGBColor
Handle
long
short
short

wrapBox;
ltBlue;
textHdl;
textLen;
numLines = O;
endY, lineHt;

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

43

CLEAN UP AND WE'RE DONE
The only thing left to do is a little cleanup, and we're outa here.

SetClip(oldClip);
DisposeRgn(oldClip);

return(lineCount);

We restore the clipping region, dispose of our saved region, and return lineCount.

CALLS TO NEOTEXTBOX
One of the best features ofNeoTextBox is that you can easily substitute it for calls
you're currently making to TextBox. If that's all you want to do, replace every
occurrence that looks like this

TextBox(textPtr, textLen, &wrapBox, justify);

with this

EraseRect(&wrapBox);
NeoTextBox(textPtr, textLen, &wrapBox, justify, O, nil, nil);

To use NeoTextBox in place of TextBox, you pass 0 for lhCode (default line height)
and nil for endY and lhUsed, and ignore the return value. If you add NeoTextBox to
your program and just do the substitution above, every NeoTextBox call will be on
the average 3 3 % faster than the old TextBox call. If you use TextBox a lot, that can
mean a real performance increase.

You can use NeoTextBox in more ways than just as direct substitution to improve
performance. It does, after all, have whizzy new features that TextBox never had. Let's
take a look at a more sophisticated call to NeoTextBox that uses some of its unique
features:

short UseNTB(void)
{

Re ct
RGBColor
Handle
long
short
short

wrapBox;
ltBlue;
textHdl;
textLen;
numLines = O;
endY, lineHt;

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

43

44

d e v e I o p Winter 1992

/* Set up our RGBColor and wrapBox. */
SetRect(&wrapBox, 10, 10, 110, 110);
ltBlue.red = 39321;
ltBlue.green = 52428;
ltBlue.blue = 65535;

/* Paint the background, then set up the port text parameters. */
Pei:iNormal();
RGBForeColor(<Blue);
PaintRect(&wrapBox);
ForeColor(blackColor);
TextFont(helvetica); TextSize(l2);
TextFace(O); TextMode(srcOr);

/* Retrieve some text for us to draw. */
textHdl = GetResource('TEXT', 128);
if (textHdl) {

textLen = GetHandleSize(textHdl);
/* Be sure to lock the handle . NeoTextBox can move memory! */
HLock(textHdl);

/* Wrap text and set numLines, endY, and lineHt. */
numLines = NeoTextBox(*textHdl , textLen, &wrapBox, ntbJustFull,

18, &endY, &lineHt);
HUnlock(textHdl);

/* Beep if text overflows wrapBox. */
if (endY > wrapBox.bottom)

SysBeep(l);

/* Prove we know where the text ended by drawing a line. */
MoveTo(wrapBox.left, endY + lineHt);
Line (2 0 , 0) ;

return(numLines);

This sample function draws a 100-by-100-pixel box in light blue, then wraps text
from a TEXT resource into the rectangle, ORing the text over the blue background.
The text is fully justified 12-point Helvetica®, with 18-point line spacing. If the text
overflows the box, a beep sounds. A small line is drawn at the baseline where
subsequent text might be drawn.

Here's an example using NeoTextBox with variable line height and TrueType fonts:

44

d e v e I o p Winter 1992

/* Set up our RGBColor and wrapBox. */
SetRect(&wrapBox, 10, 10, 110, 110);
ltBlue.red = 39321;
ltBlue.green = 52428;
ltBlue.blue = 65535;

/* Paint the background, then set up the port text parameters. */
Pei:iNormal();
RGBForeColor(<Blue);
PaintRect(&wrapBox);
ForeColor(blackColor);
TextFont(helvetica); TextSize(l2);
TextFace(O); TextMode(srcOr);

/* Retrieve some text for us to draw. */
textHdl = GetResource('TEXT', 128);
if (textHdl) {

textLen = GetHandleSize(textHdl);
/* Be sure to lock the handle . NeoTextBox can move memory! */
HLock(textHdl);

/* Wrap text and set numLines, endY, and lineHt. */
numLines = NeoTextBox(*textHdl , textLen, &wrapBox, ntbJustFull,

18, &endY, &lineHt);
HUnlock(textHdl);

/* Beep if text overflows wrapBox. */
if (endY > wrapBox.bottom)

SysBeep(l);

/* Prove we know where the text ended by drawing a line. */
MoveTo(wrapBox.left, endY + lineHt);
Line (2 0 , 0) ;

return(numLines);

This sample function draws a 100-by-100-pixel box in light blue, then wraps text
from a TEXT resource into the rectangle, ORing the text over the blue background.
The text is fully justified 12-point Helvetica®, with 18-point line spacing. If the text
overflows the box, a beep sounds. A small line is drawn at the baseline where
subsequent text might be drawn.

Here's an example using NeoTextBox with variable line height and TrueType fonts:

void UseVariableLineHeight(Rect *wrapBox, short align)
{

Boolean
Handle
long

oldPreferred, oldPreserve;
textHdl;
textLen;

if (gHasTrueType) {
oldPreferred = GetOutlinePreferred();
oldPreserve = GetPreserveGlyph();
SetOutlinePreferred(TRUE);
SetPreserveGlyph(TRUE);

textHdl = GetResource('TEXT', 128);
textLen = GetHandleSize(textHdl);
HLock(textHdl);
NeoTextBox(*textHdl, textLen, wrapBox, align, -1, nil, nil);
HUnlock(textHdl);

if (gHasTrueType)
SetOutlinePreferred(oldPreferred);
SetPreserveGlyph(oldPreserve);

Notice that we save the current settings of the Font Manager's OutlinePreferred and
PreserveGlyph flags. This allows us to be transparent to the caller. By setting
OutlinePreferred to TRUE, we are ensured of using TrueType fonts, even if
bitinapped fonts are available. By setting PreserveGlyph to TRUE, we get the
accurate glyph shapes and measurements (see "SetPreserveGlyph With TrueType
Fonts" on page 34). Calling NeoTextBox with -1 as its lhCode parameter causes it to
use variable line height, which results in the difference shown in Figure 3.

lhCode = 0

The Head And In Frontal Att
Therefore Another Method F
Problem to ,An Onexpected.

Default line height

Figure 3
Using Variable Line Height

lhCode = -1

The Head And In Frontal Att
Therefore Another Method F
Problem to An Unexpected.

Variable line height

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

45

void UseVariableLineHeight(Rect *wrapBox, short align)
{

Boolean
Handle
long

oldPreferred, oldPreserve;
textHdl;
textLen;

if (gHasTrueType) {
oldPreferred = GetOutlinePreferred();
oldPreserve = GetPreserveGlyph();
SetOutlinePreferred(TRUE);
SetPreserveGlyph(TRUE);

textHdl = GetResource('TEXT', 128);
textLen = GetHandleSize(textHdl);
HLock(textHdl);
NeoTextBox(*textHdl, textLen, wrapBox, align, -1, nil, nil);
HUnlock(textHdl);

if (gHasTrueType)
SetOutlinePreferred(oldPreferred);
SetPreserveGlyph(oldPreserve);

Notice that we save the current settings of the Font Manager's OutlinePreferred and
PreserveGlyph flags. This allows us to be transparent to the caller. By setting
OutlinePreferred to TRUE, we are ensured of using TrueType fonts, even if
bitinapped fonts are available. By setting PreserveGlyph to TRUE, we get the
accurate glyph shapes and measurements (see "SetPreserveGlyph With TrueType
Fonts" on page 34). Calling NeoTextBox with -1 as its lhCode parameter causes it to
use variable line height, which results in the difference shown in Figure 3.

lhCode = 0

The Head And In Frontal Att
Therefore Another Method F
Problem to ,An Onexpected.

Default line height

Figure 3
Using Variable Line Height

lhCode = -1

The Head And In Frontal Att
Therefore Another Method F
Problem to An Unexpected.

Variable line height

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

45

46

d e v e I o p Winter 1992

LIMITATIONS AND POSSIBLE ENHANCEMENTS
NeoTextBox is a nice alternative to TextBox, but it has its limitations and areas that
could benefit from improvement. Following are some suggestions for overcoming the
limitations and adding useful features .

32K TEXT SIZE LIMIT
All you War and Peace fans out there need to do a little work. NeoTextBox shares the
32K text limitation that TextBox has, but not for the same reason. TextBox can wrap
only 32K of text in one call because it uses TextEdit. In NeoTextBox, the limitation
arises from the OutlineMetrics call, which is used in deriving variable line height and
can only handle 32K of text. Heavy-duty Tolstoy types could remove the code that
implements variable line height and subsequently word wrap most novels in a single
NeoTextBox call (knock yourselves out).

DON'T FORGET TO ERASE
Perhaps this isn't really a limitation, but you cari't simply replace a TextBox call with a
N eo TextBox call. You need to call EraseRect explicitly if you want TextBox behavior,
as shown earlier in the section "Calls to NeoTextBox."

SCREEN-ONLY OPTIMIZATIONS
If you know you'll be using NeoTextBox only for screen applications (that is, you
won't be using it to draw into a printer port), you can make a few optimizations. If
you don't care about the return values, you can use RectlnRgn to check whether the
wrap rectangle intersects with the current port's visRgn; if it doesn't, you can simply
return.

If you don't need the return value giving the number of total lines, you can make the
break-draw loop terminate when curY exceeds wrapBox->bottom + lineHeight.

SPECIAL ONE-LINE CASE
In Macintosh computers with 256K ROMs, TextBox has a feature that might be a
worthwhile addition to NeoTextBox. If the TextWidth of the input text is less than
boxWidth, simply use Draw Text to draw the text and don't bother with any of the
wrapping code. TextBox has this feature because it's used for dialog box stat Text
items, which are often one line.

DON'T DRAW OFF THE END OF WRAPBOX
It might make NeoTextBox faster ifNTBDraw isn't called when curY is greater than
wrapBox->bottom + lineHeight. You'd still have to wrap all the text (to determine the
total number of lines), but you wouldn't be drawing text that you know will be
clipped.

46

d e v e I o p Winter 1992

LIMITATIONS AND POSSIBLE ENHANCEMENTS
NeoTextBox is a nice alternative to TextBox, but it has its limitations and areas that
could benefit from improvement. Following are some suggestions for overcoming the
limitations and adding useful features .

32K TEXT SIZE LIMIT
All you War and Peace fans out there need to do a little work. NeoTextBox shares the
32K text limitation that TextBox has, but not for the same reason. TextBox can wrap
only 32K of text in one call because it uses TextEdit. In NeoTextBox, the limitation
arises from the OutlineMetrics call, which is used in deriving variable line height and
can only handle 32K of text. Heavy-duty Tolstoy types could remove the code that
implements variable line height and subsequently word wrap most novels in a single
NeoTextBox call (knock yourselves out).

DON'T FORGET TO ERASE
Perhaps this isn't really a limitation, but you cari't simply replace a TextBox call with a
N eo TextBox call. You need to call EraseRect explicitly if you want TextBox behavior,
as shown earlier in the section "Calls to NeoTextBox."

SCREEN-ONLY OPTIMIZATIONS
If you know you'll be using NeoTextBox only for screen applications (that is, you
won't be using it to draw into a printer port), you can make a few optimizations. If
you don't care about the return values, you can use RectlnRgn to check whether the
wrap rectangle intersects with the current port's visRgn; if it doesn't, you can simply
return.

If you don't need the return value giving the number of total lines, you can make the
break-draw loop terminate when curY exceeds wrapBox->bottom + lineHeight.

SPECIAL ONE-LINE CASE
In Macintosh computers with 256K ROMs, TextBox has a feature that might be a
worthwhile addition to NeoTextBox. If the TextWidth of the input text is less than
boxWidth, simply use Draw Text to draw the text and don't bother with any of the
wrapping code. TextBox has this feature because it's used for dialog box stat Text
items, which are often one line.

DON'T DRAW OFF THE END OF WRAPBOX
It might make NeoTextBox faster ifNTBDraw isn't called when curY is greater than
wrapBox->bottom + lineHeight. You'd still have to wrap all the text (to determine the
total number of lines), but you wouldn't be drawing text that you know will be
clipped.

MAKE SAVING/RESTORING THE CLIPPING REGION OPTIONAL
It might be useful to be able to set up some complex clipping region and j:iave
NeoTextBox wrap as usual but clip its text to whatever the clipping region is set to at
invocation. You could add a Boolean swapClip parameter to control this.

STYLED NEOTEXTBOX
With considerable effort, NeoTextBox could be extended to handle styled and
multiscript text. Since StyledLineBreak, the workhorse of NeoTextBox, is designed to
be used with styled text, such an enhancement is possible.

CONCLUSION
Once you start using NeoTextBox, you'll find it ending up in all your applications. In
tests on a Macintosh Ilfx running System 7, NeoTextBox was between 25% and 50%
faster than TextBox, 3 3 % faster on the average. Performance varies depending on
font, screen depth, and the ratio of wrapping to drawing. For left-aligned Geneva text
on an 8-bit screen, NeoTextBox is 40% faster than TextBox. That alone is a good
reason to use it. Plus, it has features you can't get out:ofTextBox at all.

Perhaps the moral of this article is if you don't like some feature of the Toolbox or
OS go ahead and write your own. But you'll be doing yourself a favor-and you'll be
a lot more compatible in the future-if you can find lower-level system, Toolbox, or
OS facilities to aid you in your task, rather than recoding the entire feature yourself.

So go ahead and whip NeoTextBox into your application. Enjoy the improved
performance and new features. And if there's something you don't like, go right in
there and change it. Make NeoTextBox the TextBoxyou've always wanted!

THANKS TO OUR TECHNICAL REVIEWERS

Sue Bartolo, John Harvey, Joe Ternasky•

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

47

MAKE SAVING/RESTORING THE CLIPPING REGION OPTIONAL
It might be useful to be able to set up some complex clipping region and j:iave
NeoTextBox wrap as usual but clip its text to whatever the clipping region is set to at
invocation. You could add a Boolean swapClip parameter to control this.

STYLED NEOTEXTBOX
With considerable effort, NeoTextBox could be extended to handle styled and
multiscript text. Since StyledLineBreak, the workhorse of NeoTextBox, is designed to
be used with styled text, such an enhancement is possible.

CONCLUSION
Once you start using NeoTextBox, you'll find it ending up in all your applications. In
tests on a Macintosh Ilfx running System 7, NeoTextBox was between 25% and 50%
faster than TextBox, 3 3 % faster on the average. Performance varies depending on
font, screen depth, and the ratio of wrapping to drawing. For left-aligned Geneva text
on an 8-bit screen, NeoTextBox is 40% faster than TextBox. That alone is a good
reason to use it. Plus, it has features you can't get out:ofTextBox at all.

Perhaps the moral of this article is if you don't like some feature of the Toolbox or
OS go ahead and write your own. But you'll be doing yourself a favor-and you'll be
a lot more compatible in the future-if you can find lower-level system, Toolbox, or
OS facilities to aid you in your task, rather than recoding the entire feature yourself.

So go ahead and whip NeoTextBox into your application. Enjoy the improved
performance and new features. And if there's something you don't like, go right in
there and change it. Make NeoTextBox the TextBoxyou've always wanted!

THANKS TO OUR TECHNICAL REVIEWERS

Sue Bartolo, John Harvey, Joe Ternasky•

THE TEXTBOX YOU'VE ALWAYS WANTED Winter 1992

47

MAKING

YOUR

MACINTOSH

SOUND LIKE

AN ECHO BOX

RICH COLLYER

48

de v e Io p Winter 1992

Happy notes for sound buffs: As you'll see from the sample code provided

on the Developer CD Series disc, you can make your Macintosh play
and record sounds at the same time, simply by using double buffering to
record into one buffer while playing a second buffer, and then flipping

between the buffers. If you want to take things a few steps further, pull
out elements of this code and tailor them to suit your own acoustic needs.

We all know that the Macintosh is a sound machine, so to speak, but with a little
clever programming you can turn it into an echo box as well. The sample
2BufRecordToBufCmd included on the Developer CD Series disc is just a small
application (sans interface) that demonstrates one way to record sounds at the same
time that you're playing them. There are other ways to achieve the same goal, but my
purpose is to educate you about the Sound Manager, not to lead you down the
definitive road to becoming your own recording studio.

In addition to the main routine, 2BufRecordToBufCmd includes various setup
routines and a completion routine. For easy reading, I've left out any unnecessary
code out of this article.

CONSTANT COMMENTS
Before. I get into the sample code itself, here are a few of the constants you'll run into
in the application.

GETTING A HANDLE ON IT
The kMilliSecondsOfSound constant is used to declare how many milliseconds of
sound the application should record before it starts to play back. The smaller the
number of milliseconds, the more quickly the sound is played back. This constant is
used to calculate the size of the 'snd ' buffer handles Gust the data). Depending on the
sound effect you're after, kMilliSecondsOfSound can range from 50 milliseconds to
400,000 or so. If you set it below 50, you risk problems: there may not be enough
time for the completion routine to finish executing before it's called again. On the
high end of the range, only the application's available memory limits the size. The

RICH COLLYER is just your run-of-the-mill three­

year Developer Technical Support veteran: He's

often heard screaming at his computer to the

soothing accompaniment of Blazy and Bob on

KOME radio, he's honed his archery skills to a

fine point dodging (and casting) the slings and

arrows at Apple, and he actually admits to a

degree from Cal Poly w ith a specialty in

computational fluid dynamics. We let you in on

his outdoor adventures last time he wrote for us

and he claims most of his indoor adventures

aren't appropriate develop material, but we have

it on good authority that he lives w ith carn ivorous

animals, if that's any clue. He's also a confirmed

laserdisc and CD addict; he keeps promising to

start a recovery program for those of us with the

same affliction just as soon as he finishes writing

that next sample ... •

MAKING

YOUR

MACINTOSH

SOUND LIKE

AN ECHO BOX

RICH COLLYER

48

de v e Io p Winter 1992

Happy notes for sound buffs: As you'll see from the sample code provided

on the Developer CD Series disc, you can make your Macintosh play
and record sounds at the same time, simply by using double buffering to
record into one buffer while playing a second buffer, and then flipping

between the buffers. If you want to take things a few steps further, pull
out elements of this code and tailor them to suit your own acoustic needs.

We all know that the Macintosh is a sound machine, so to speak, but with a little
clever programming you can turn it into an echo box as well. The sample
2BufRecordToBufCmd included on the Developer CD Series disc is just a small
application (sans interface) that demonstrates one way to record sounds at the same
time that you're playing them. There are other ways to achieve the same goal, but my
purpose is to educate you about the Sound Manager, not to lead you down the
definitive road to becoming your own recording studio.

In addition to the main routine, 2BufRecordToBufCmd includes various setup
routines and a completion routine. For easy reading, I've left out any unnecessary
code out of this article.

CONSTANT COMMENTS
Before. I get into the sample code itself, here are a few of the constants you'll run into
in the application.

GETTING A HANDLE ON IT
The kMilliSecondsOfSound constant is used to declare how many milliseconds of
sound the application should record before it starts to play back. The smaller the
number of milliseconds, the more quickly the sound is played back. This constant is
used to calculate the size of the 'snd ' buffer handles Gust the data). Depending on the
sound effect you're after, kMilliSecondsOfSound can range from 50 milliseconds to
400,000 or so. If you set it below 50, you risk problems: there may not be enough
time for the completion routine to finish executing before it's called again. On the
high end of the range, only the application's available memory limits the size. The

RICH COLLYER is just your run-of-the-mill three­

year Developer Technical Support veteran: He's

often heard screaming at his computer to the

soothing accompaniment of Blazy and Bob on

KOME radio, he's honed his archery skills to a

fine point dodging (and casting) the slings and

arrows at Apple, and he actually admits to a

degree from Cal Poly w ith a specialty in

computational fluid dynamics. We let you in on

his outdoor adventures last time he wrote for us

and he claims most of his indoor adventures

aren't appropriate develop material, but we have

it on good authority that he lives w ith carn ivorous

animals, if that's any clue. He's also a confirmed

laserdisc and CD addict; he keeps promising to

start a recovery program for those of us with the

same affliction just as soon as he finishes writing

that next sample ... •

smaller the value, of course, the faster the buffers fill up and play back, and the faster
an echo effect you'll get. A millisecond value of 1000 provides a one-second delay
between record and echo, which I've found is good for general use. You'll want to
experiment to find the effect you like. (Beware of feedback, both from your machine
and from anyone who's in close enough proximity to "enjoy" the experimentation
secondhand.)

YOUR HEAD SIZE, AND OTHER #DEFINES
The next three constants (kBaseHeaderSize, kSynthSize, and kCmdSize) are used to
parse the sound header buffers in the routine FindHeaderSize. kBaseHeaderSize is
the number of bytes at the top of all 'snd' headers that aren't needed in the
application itself. While the number of bytes isn't really of interest here, you need to
parse the header in order to find the part of the sound header that you'll pass to the
bufferCmd. How much you parse off the top is determined by the format of the
header and the type of file; for the purposes of this code, however, all you need to be
concerned with are the 'snd' resources. The second constant, kSynthSize, is the size
of one 'snth'. In the calculations of the header, I find out how many 'snth's there are,
and multiply that number by kSynthSize. The last constant, kCmdSize, is the size of
one command, which is used in the same way as kSynthSize. (These equations are
derived from Inside Macintosh Volume VI, page 22-20.)

ERROR CHECKING W ITH EXITWITHMESSAGE
2BufRecordToBufCmd includes error checking, but only as a placeholder for future
commercialization of the product. If the present code detects an error, it calls the
ExitWithMessage routine, which displays a dialog box that tells you more or less
where the error occurred and what the error was. Closing this dialog box quits the
application, at which point you have to start over again. Note that calling
ExitWithMessage at interrupt time could be fatal, since it uses routines that might
move memory. For errors that could occur at interrupt time, DebugStr is used
instead.

USING THE SOUND INPUT DRIVER
Use of the sound input driver is fairly well documented in Inside Macintosh Volume
VI, Chapter 22 (pages 22-58 through 22-68 and 22-92 through 22-99), but here's a
little overview of what 2BufRecordToBufCmd does at this point in the routine, and
why. When you use sound input calls at the low level (not using SndRecord or
SndRecordToFile), you need to open the sound input driver. This section of the code
just opens the driver, which the user selects via the sound cdev.

gError = SPBOpenDevice (kDefaultDriver, siWritePermission, &gSoundRefNum);

To open the driver, you call SPBOpenDevice and pass in a couple of simple
parameters. The first parameter is a driver name. It doesn't really matter what the
name of the driver is; it simply needs to be the user-selected driver, so the code passes

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

49

smaller the value, of course, the faster the buffers fill up and play back, and the faster
an echo effect you'll get. A millisecond value of 1000 provides a one-second delay
between record and echo, which I've found is good for general use. You'll want to
experiment to find the effect you like. (Beware of feedback, both from your machine
and from anyone who's in close enough proximity to "enjoy" the experimentation
secondhand.)

YOUR HEAD SIZE, AND OTHER #DEFINES
The next three constants (kBaseHeaderSize, kSynthSize, and kCmdSize) are used to
parse the sound header buffers in the routine FindHeaderSize. kBaseHeaderSize is
the number of bytes at the top of all 'snd' headers that aren't needed in the
application itself. While the number of bytes isn't really of interest here, you need to
parse the header in order to find the part of the sound header that you'll pass to the
bufferCmd. How much you parse off the top is determined by the format of the
header and the type of file; for the purposes of this code, however, all you need to be
concerned with are the 'snd' resources. The second constant, kSynthSize, is the size
of one 'snth'. In the calculations of the header, I find out how many 'snth's there are,
and multiply that number by kSynthSize. The last constant, kCmdSize, is the size of
one command, which is used in the same way as kSynthSize. (These equations are
derived from Inside Macintosh Volume VI, page 22-20.)

ERROR CHECKING W ITH EXITWITHMESSAGE
2BufRecordToBufCmd includes error checking, but only as a placeholder for future
commercialization of the product. If the present code detects an error, it calls the
ExitWithMessage routine, which displays a dialog box that tells you more or less
where the error occurred and what the error was. Closing this dialog box quits the
application, at which point you have to start over again. Note that calling
ExitWithMessage at interrupt time could be fatal, since it uses routines that might
move memory. For errors that could occur at interrupt time, DebugStr is used
instead.

USING THE SOUND INPUT DRIVER
Use of the sound input driver is fairly well documented in Inside Macintosh Volume
VI, Chapter 22 (pages 22-58 through 22-68 and 22-92 through 22-99), but here's a
little overview of what 2BufRecordToBufCmd does at this point in the routine, and
why. When you use sound input calls at the low level (not using SndRecord or
SndRecordToFile), you need to open the sound input driver. This section of the code
just opens the driver, which the user selects via the sound cdev.

gError = SPBOpenDevice (kDefaultDriver, siWritePermission, &gSoundRefNum);

To open the driver, you call SPBOpenDevice and pass in a couple of simple
parameters. The first parameter is a driver name. It doesn't really matter what the
name of the driver is; it simply needs to be the user-selected driver, so the code passes

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

49

50

d e v e I o p Winter 1992

GESTALT YOUR MACHINE

You do need to check two rather critical sound attributes for 2BufRecordToBufCmd.
First of all, your machine must have a sound input driver. There's very little point in
trying to record sounds if the sample is being run on a machine that doesn't have

sound input capabilities. Checking bit 5 of the returned feature variable with the
Gestalt Manager will give you this handy bit of information .

Second, your hardware needs to support stereo sound, since you need one channel
for sound input and one for sound output. Check for this attribute by checking bit 0 of
the returned feature variable.

The following code shows how you can test all of the bits returned in the feature
variable. (I didn't use this code in my sample.)

err= Gestalt (gestaltSoundAttr, &feature);
if (!err) {

if (feature & (1 << gestaltStereoCapability))
//This Macintosh Supports Stereo (test bit 0)

if (feature & (1 << gestaltStereoMixing))
//This Macintosh Supports Stereo Mixing (test bit 1)

if (feature & (1 << gestaltSoundIOMgrPresent))
//This Macintosh Has the New Sound Manager (test bit 3)

if (feature & (1 << gestaltBuiltinSoundinput))
//This Macintosh Has Built-in Sound Input (test bit 4)

if (feature & (1 << gestaltHasSoundinputDevice))
//This Macintosh Supports Sound Input (test bit 5)

in nil (which is what kDefaultDriver translates into). The constant siWritePermission
tells the driver you'd like read/write permission to the sound input driver. This will
enable the application to actually use the recording calls. The last parameter is the
gSoundRefNum. This parameter is needed later in the sample so that you can ask
specific questions about the driver that's open. The error checking is just to make
sure that nothing went wrong; if something did go wrong, the code goes to
ExitWithMessage, and then the sample quits.

gError = SPBSetDeviceinfo (gSoundRefNum, siContinuous, (Ptr) &contOnOff);

Continuous recording is activated here to avoid a "feature" of the new Macintosh
Quadra 700 and 900 that gives you a slowly increasing ramp of the sound
input levels to their normal levels each time you call SPBRecord. The result in

50

d e v e I o p Winter 1992

GESTALT YOUR MACHINE

You do need to check two rather critical sound attributes for 2BufRecordToBufCmd.
First of all, your machine must have a sound input driver. There's very little point in
trying to record sounds if the sample is being run on a machine that doesn't have

sound input capabilities. Checking bit 5 of the returned feature variable with the
Gestalt Manager will give you this handy bit of information .

Second, your hardware needs to support stereo sound, since you need one channel
for sound input and one for sound output. Check for this attribute by checking bit 0 of
the returned feature variable.

The following code shows how you can test all of the bits returned in the feature
variable. (I didn't use this code in my sample.)

err= Gestalt (gestaltSoundAttr, &feature);
if (!err) {

if (feature & (1 << gestaltStereoCapability))
//This Macintosh Supports Stereo (test bit 0)

if (feature & (1 << gestaltStereoMixing))
//This Macintosh Supports Stereo Mixing (test bit 1)

if (feature & (1 << gestaltSoundIOMgrPresent))
//This Macintosh Has the New Sound Manager (test bit 3)

if (feature & (1 << gestaltBuiltinSoundinput))
//This Macintosh Has Built-in Sound Input (test bit 4)

if (feature & (1 << gestaltHasSoundinputDevice))
//This Macintosh Supports Sound Input (test bit 5)

in nil (which is what kDefaultDriver translates into). The constant siWritePermission
tells the driver you'd like read/write permission to the sound input driver. This will
enable the application to actually use the recording calls. The last parameter is the
gSoundRefNum. This parameter is needed later in the sample so that you can ask
specific questions about the driver that's open. The error checking is just to make
sure that nothing went wrong; if something did go wrong, the code goes to
ExitWithMessage, and then the sample quits.

gError = SPBSetDeviceinfo (gSoundRefNum, siContinuous, (Ptr) &contOnOff);

Continuous recording is activated here to avoid a "feature" of the new Macintosh
Quadra 700 and 900 that gives you a slowly increasing ramp of the sound
input levels to their normal levels each time you call SPBRecord. The result in

2BufRecordToBufCmd is a pause and gradual increase in the sound volume between
buffers as the buffers are being played. Continuous recording gives you this ramp
only on the first buffer, where it's almost unnoticeable.

BUILDING 'SND I BUFFERS
Now that the sound input driver is open, the code can get the information it needs to
build the 'snd' buffers. As its name implies, 2BufRecordToBufCmd uses two buffers.
The reason is sound (no pun intended): The code basically uses a double-buffer
method to record and play the buffers. The code doesn't tell the machine to start to
play the sound until the recording completion routine has been called, so you don't
have to worry about playing a buffer before it has been filled with recorded data. The
code also does not restart the recording until the previous buffer has started to play.

INFORMATION, PLEASE
To build the sound headers, you need to get some information from the sound input
driver about how the sound data will be recorded and stored. That's the function of
the GetSoundDevicelnfo routine, which looks for information about the SampleRate
(the number of samples per second at which the sound is recorded), the SampleSize
(the sample size of the sound being recorded-8 bits per sample is normal), the
Compression Type (see "Putting on the Squeeze"), the NumberChannels (the number
of sound input channels, normally 1), and the DeviceBufferlnfo (the size of the
internal buffers).

This code (minus the error checking) extracts these values from the sound input
driver.

gError SPBGetDeviceinfo (gSoundRefNum, siSampleRate,
(Ptr) &gSampleRate);

gError = SPBGetDeviceinfo (gSoundRefNum, siSampleSize,
(Ptr) &gSampleSize);

gError = SPBGetDeviceinfo (gSoundRefNum, siCompressionType,
(Ptr) &gCompression);

gError = SPBGetDeviceinfo (gSoundRefNum, siNumberChannels,
(Ptr) &gNumberOfChannels);

gError = SPBGetDeviceinfo (gSoundRefNum, siDeviceBufferinfo,
(Ptr) &ginternalBuffer);

value = kMilliSecondsOfSound;
gError = SPBMillisecondsToBytes (gSoundRefNum, &value);
gSampleAreaSize = (value I ginternalBuffer) * ginternalBuffer;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

51

2BufRecordToBufCmd is a pause and gradual increase in the sound volume between
buffers as the buffers are being played. Continuous recording gives you this ramp
only on the first buffer, where it's almost unnoticeable.

BUILDING 'SND I BUFFERS
Now that the sound input driver is open, the code can get the information it needs to
build the 'snd' buffers. As its name implies, 2BufRecordToBufCmd uses two buffers.
The reason is sound (no pun intended): The code basically uses a double-buffer
method to record and play the buffers. The code doesn't tell the machine to start to
play the sound until the recording completion routine has been called, so you don't
have to worry about playing a buffer before it has been filled with recorded data. The
code also does not restart the recording until the previous buffer has started to play.

INFORMATION, PLEASE
To build the sound headers, you need to get some information from the sound input
driver about how the sound data will be recorded and stored. That's the function of
the GetSoundDevicelnfo routine, which looks for information about the SampleRate
(the number of samples per second at which the sound is recorded), the SampleSize
(the sample size of the sound being recorded-8 bits per sample is normal), the
Compression Type (see "Putting on the Squeeze"), the NumberChannels (the number
of sound input channels, normally 1), and the DeviceBufferlnfo (the size of the
internal buffers).

This code (minus the error checking) extracts these values from the sound input
driver.

gError SPBGetDeviceinfo (gSoundRefNum, siSampleRate,
(Ptr) &gSampleRate);

gError = SPBGetDeviceinfo (gSoundRefNum, siSampleSize,
(Ptr) &gSampleSize);

gError = SPBGetDeviceinfo (gSoundRefNum, siCompressionType,
(Ptr) &gCompression);

gError = SPBGetDeviceinfo (gSoundRefNum, siNumberChannels,
(Ptr) &gNumberOfChannels);

gError = SPBGetDeviceinfo (gSoundRefNum, siDeviceBufferinfo,
(Ptr) &ginternalBuffer);

value = kMilliSecondsOfSound;
gError = SPBMillisecondsToBytes (gSoundRefNum, &value);
gSampleAreaSize = (value I ginternalBuffer) * ginternalBuffer;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

51

52

PUTIING ON THE SQUEEZE

If you want to use compression for 2BufRecordToBufCmd,

keep in mind that the Sound Manager basically supports

three types of sound compression: none at all, which is

what I'm using, and MAC3 and MAC6, which are Mace

compression types for 3: l and 6: 1 compression,

respectively.

before the Sound Manager internal buffers are moved to

the application's sound buffers.

You have a couple of options for playing back a

compressed sound. Either the bufferCmd or SndPlay will

decompress the sounds on the fly. If you need to

decompress a sound yourself, you'll want to call the

Sound Manager routine Exp 1 to3 or Exp 1 to6 (depending

on the compression you were using).

If you set the compression, the sound data is compressed

after the interrupt routine is called (if you have one) and

d e v e I o p Winter 1992

Opening the sound input driver gives you the gSoundRefNum. The values
siSampleRate, siSampleSize, siCompressionType, siNumberChannels, and
siDeviceBufferlnfo are constants defined in the Soundlnput.h file; these constants tell
the SPBGetDevicelnfo call what information you want. The last parameter is a
pointer to a global variable. The SPBGetDeviceinfo call uses this parameter to return
the requested information.

The last bit of work the code needs to do before it's ready to start building the 'snd '
headers is to convert the constant kMilliSecondsOfSound to the sample size of the
buffer. To do this, the routine needs to call SPBMillisecondsToBytes and then round
down the resulting value to a multiple of the size of the internal sound buffer. This is
to bypass a bug connected with the continuous recording feature of Apple's built-in
sound input device, which will collect garbage rather than audio data if the recording
buffer is not a multiple of the device's internal buffer. Creating a buffer of the right
size not only avoids this problem, but also enables the input device to more efficiently
record data into your buffer.

Now the code has the information it needs to build the sound buffers. To save code
space, I've made a short routine that builds the buffers and their headers. All the code
has to do is call this routine for each of the buffers it needs and pass in the
appropriate data.

IT'S A SETUP
The first line of code in the SetupSounds routine is fairly obvious. It simply calls the
Memory Manager to allocate the requested handles, based on the known size of the
data buffer and an estimated maximum size for the header, and does some error
checking (see the code itself). Then, if the handle is good, the routine builds the 'snd '
header. Setting up the sound buffer requires building the header by making a simple
call, SetupSndHeader, to the Sound Manager. There's a small problem with calling
SetupSndHeader only once, however: When you call it, you don't know how big the

52

PUTIING ON THE SQUEEZE

If you want to use compression for 2BufRecordToBufCmd,

keep in mind that the Sound Manager basically supports

three types of sound compression: none at all, which is

what I'm using, and MAC3 and MAC6, which are Mace

compression types for 3: l and 6: 1 compression,

respectively.

before the Sound Manager internal buffers are moved to

the application's sound buffers.

You have a couple of options for playing back a

compressed sound. Either the bufferCmd or SndPlay will

decompress the sounds on the fly. If you need to

decompress a sound yourself, you'll want to call the

Sound Manager routine Exp 1 to3 or Exp 1 to6 (depending

on the compression you were using).

If you set the compression, the sound data is compressed

after the interrupt routine is called (if you have one) and

d e v e I o p Winter 1992

Opening the sound input driver gives you the gSoundRefNum. The values
siSampleRate, siSampleSize, siCompressionType, siNumberChannels, and
siDeviceBufferlnfo are constants defined in the Soundlnput.h file; these constants tell
the SPBGetDevicelnfo call what information you want. The last parameter is a
pointer to a global variable. The SPBGetDeviceinfo call uses this parameter to return
the requested information.

The last bit of work the code needs to do before it's ready to start building the 'snd '
headers is to convert the constant kMilliSecondsOfSound to the sample size of the
buffer. To do this, the routine needs to call SPBMillisecondsToBytes and then round
down the resulting value to a multiple of the size of the internal sound buffer. This is
to bypass a bug connected with the continuous recording feature of Apple's built-in
sound input device, which will collect garbage rather than audio data if the recording
buffer is not a multiple of the device's internal buffer. Creating a buffer of the right
size not only avoids this problem, but also enables the input device to more efficiently
record data into your buffer.

Now the code has the information it needs to build the sound buffers. To save code
space, I've made a short routine that builds the buffers and their headers. All the code
has to do is call this routine for each of the buffers it needs and pass in the
appropriate data.

IT'S A SETUP
The first line of code in the SetupSounds routine is fairly obvious. It simply calls the
Memory Manager to allocate the requested handles, based on the known size of the
data buffer and an estimated maximum size for the header, and does some error
checking (see the code itself). Then, if the handle is good, the routine builds the 'snd '
header. Setting up the sound buffer requires building the header by making a simple
call, SetupSndHeader, to the Sound Manager. There's a small problem with calling
SetupSndHeader only once, however: When you call it, you don't know how big the

sound header is, so you just give the call the buffer, along with a 0 value for the buffer
size. ~Then the call returns with the header built, one of the values in the header-the
one that's the number of bytes in the sample-will be wrong. (The header size will be
correct, but the data in the header will not be.) To correct this, you simply wait until
your recording is complete and then put the correct number of bytes directly into the
header, at which time you'll know how much data there is to play back. The
misinformation in the header won't affect your recording, only the playback.

Once the header's built, the code resets the size of the handle, moves the handle high
(to avoid fragmentation of the heap), and locks it down. It's important to lock down
the handles in this way; otherwise the Sound Manager will move the sound buffers it's
working with out from under itself.

*bufferHandle = NewHandle (gSarnpleAreaSize + kEstirnatedHeaderSize);

gError = SetupSndHeader (*bufferHandle, gNurnberOfChannels, gSarnpleRate,
gSarnpleSize, gCornpression, kMiddleC, O, headerSize);

SetHandleSize (*bufferHandle, (Size) *headerSize + gSarnpleAreaSize);
MoveHHi (*bufferHandle) ;
HLock (*bufferHandle);

TELLING IT WHERE TO GO
T he next part of the program allocates and initializes a sound input parameter block,
gRecordStruct. This structure tells the sound input call how to do what the code
wants it to do.

The first instruction is obvious: it simply creates a new pointer into which tl1e
structure can be stored.

gRecordStruct = (SPBPtr) NewPtr (sizeof (SPB));

The recording call will need to know where it can find the open sound input driver,
so next it needs the reference number to the driver (gSoundRetNum). The
subsequent three lines of code inform the recording call how much buffer space it has
to record into. Here, you could either give the call a count value, tell it how many
milliseconds are available for recording, or give it the size of the sound buffer. For
this code, it's easiest to just make the buffer Length the same as the count and ignore
the milliseconds value. The code then tells the recording call where to put the sound
data as it's recorded.

gRecordStruct->inRefNurn = gSoundRefNurn;
gRecordStruct->count = gSarnpleAreaSize;
gRecordStruct->rnilliseconds = O;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

53

sound header is, so you just give the call the buffer, along with a 0 value for the buffer
size. ~Then the call returns with the header built, one of the values in the header-the
one that's the number of bytes in the sample-will be wrong. (The header size will be
correct, but the data in the header will not be.) To correct this, you simply wait until
your recording is complete and then put the correct number of bytes directly into the
header, at which time you'll know how much data there is to play back. The
misinformation in the header won't affect your recording, only the playback.

Once the header's built, the code resets the size of the handle, moves the handle high
(to avoid fragmentation of the heap), and locks it down. It's important to lock down
the handles in this way; otherwise the Sound Manager will move the sound buffers it's
working with out from under itself.

*bufferHandle = NewHandle (gSarnpleAreaSize + kEstirnatedHeaderSize);

gError = SetupSndHeader (*bufferHandle, gNurnberOfChannels, gSarnpleRate,
gSarnpleSize, gCornpression, kMiddleC, O, headerSize);

SetHandleSize (*bufferHandle, (Size) *headerSize + gSarnpleAreaSize);
MoveHHi (*bufferHandle) ;
HLock (*bufferHandle);

TELLING IT WHERE TO GO
T he next part of the program allocates and initializes a sound input parameter block,
gRecordStruct. This structure tells the sound input call how to do what the code
wants it to do.

The first instruction is obvious: it simply creates a new pointer into which tl1e
structure can be stored.

gRecordStruct = (SPBPtr) NewPtr (sizeof (SPB));

The recording call will need to know where it can find the open sound input driver,
so next it needs the reference number to the driver (gSoundRetNum). The
subsequent three lines of code inform the recording call how much buffer space it has
to record into. Here, you could either give the call a count value, tell it how many
milliseconds are available for recording, or give it the size of the sound buffer. For
this code, it's easiest to just make the buffer Length the same as the count and ignore
the milliseconds value. The code then tells the recording call where to put the sound
data as it's recorded.

gRecordStruct->inRefNurn = gSoundRefNurn;
gRecordStruct->count = gSarnpleAreaSize;
gRecordStruct->rnilliseconds = O;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

53

54

gRecordStruct->bufferLength = gSampleAreaSizer
gRecordStruct->bufferPtr = (Ptr) ((*bufferHandle) + gHeaderLength);
gRecordStruct->completionRoutine = (ProcPtr) MyRecComp;
gRecordStruct->interruptRoutine = nil;
gRecordStruct->userLong = SetCurrentAS();
gRecordStruct->error = O;
gRecordStruct->unusedl = O;

The recording call also needs to know what to do when it's finished recording. Since
the call is done asynchronously, it needs a completion routine. (I'll talk more about
this routine later on.) You could leave out the completion routine and just poll the
driver periodically to see if it's finished recording. To do that, you'd repeatedly call
the routine SPBGetRecordStatus, and when the status routine informed you that
recording was finished, you'd restart the recording and play the buffer that had just
been filled. For this code, however, it's better to know as soon as possible when the
recording is done because the more quickly you can restart the recording, the more
likely you are to prevent pauses between recordings.

· The userLong field is a good place to store 2BufRecordToBufCmd's AS value, which
you'll need in order to have access to the application's global variables from the
completion routine. As you can see, the rest of the fields are set to 0. The code
doesn't need an interrupt routine. There's also no point in passing an error back or
using the unusedl field.

You'd need to use an interrupt routine if you wanted to change the recorded sound
before compression, or before the completion routine was called (see "Routine
Interruptions").

TIME TO CHANNEL
Just before the code jumps into the main loop, it needs to open a sound channel. This
generally is not a big deal, but for 2BufRecordToBufCmd, I initialized the channel to
use no interpolation.

ROUTINE INTERRUPTIONS

The interrupt routine gives you a chance to manipulate the

sound data before any sound compression is done. For

some of the operations that you may want to carry out

inside the interrupt routine, you'll need access to the A5

world of the application, which is why I stored

2BufRecordToBufCmd's A5 value in the userlong field of

gRecordStruct.

de v e Io p Winter 1992

For rT)ore information about sound interrupt routines, take

a look at Inside Macintosh Volume VI, page 22-63 .

Warning: Don't try to accomplish too much in an interrupt

routine. In general, you'll want interrupts to be minimal,

and possibly written in assembly language, to avoid

unnecessary compiler-generated code.

54

gRecordStruct->bufferLength = gSampleAreaSizer
gRecordStruct->bufferPtr = (Ptr) ((*bufferHandle) + gHeaderLength);
gRecordStruct->completionRoutine = (ProcPtr) MyRecComp;
gRecordStruct->interruptRoutine = nil;
gRecordStruct->userLong = SetCurrentAS();
gRecordStruct->error = O;
gRecordStruct->unusedl = O;

The recording call also needs to know what to do when it's finished recording. Since
the call is done asynchronously, it needs a completion routine. (I'll talk more about
this routine later on.) You could leave out the completion routine and just poll the
driver periodically to see if it's finished recording. To do that, you'd repeatedly call
the routine SPBGetRecordStatus, and when the status routine informed you that
recording was finished, you'd restart the recording and play the buffer that had just
been filled. For this code, however, it's better to know as soon as possible when the
recording is done because the more quickly you can restart the recording, the more
likely you are to prevent pauses between recordings.

· The userLong field is a good place to store 2BufRecordToBufCmd's AS value, which
you'll need in order to have access to the application's global variables from the
completion routine. As you can see, the rest of the fields are set to 0. The code
doesn't need an interrupt routine. There's also no point in passing an error back or
using the unusedl field.

You'd need to use an interrupt routine if you wanted to change the recorded sound
before compression, or before the completion routine was called (see "Routine
Interruptions").

TIME TO CHANNEL
Just before the code jumps into the main loop, it needs to open a sound channel. This
generally is not a big deal, but for 2BufRecordToBufCmd, I initialized the channel to
use no interpolation.

ROUTINE INTERRUPTIONS

The interrupt routine gives you a chance to manipulate the

sound data before any sound compression is done. For

some of the operations that you may want to carry out

inside the interrupt routine, you'll need access to the A5

world of the application, which is why I stored

2BufRecordToBufCmd's A5 value in the userlong field of

gRecordStruct.

de v e Io p Winter 1992

For rT)ore information about sound interrupt routines, take

a look at Inside Macintosh Volume VI, page 22-63 .

Warning: Don't try to accomplish too much in an interrupt

routine. In general, you'll want interrupts to be minimal,

and possibly written in assembly language, to avoid

unnecessary compiler-generated code.

gError = SndNewChannel (&gChannel, sampledSynth, initNointerp, nil);

Interpolation causes clicks between the sound buffers when they're played back to
back, which can be a rather annoying addition to your recording (unless, of course,
you're going for that samba beat).

JUST FOR THE RECORD
To start recording, all the code needs to do now is call the low,-level recording
routine, pass in gRecordStruct, and tell it that it wants the recording to occur
asynchronously.

gError = SPBRecord (gRecordStruct, true);

LOOP THE LOOP
The main loop of this code is a simple while loop that waits until the mouse button is
pressed or an error occurs in the recording, at which time the application quits .

/* main loop of the app */
while (!Button() I I (gRecordStruct->error < noErr));

ROUTINE COMPLETION
You don't want a completion routine to do much, generally, since it's run at interrupt
time and keeps your system locked up while it's running. There are three parts to this
completion routine, one of which has four parts to itself.

The first part of the completion routine sets its AS value to be the same as the AS
value of the application. This gives you access to the application's global variables
from the completion routine.

storeA5 = SetA5 (inParamPtr->userLong);

If the completion routine weren't broken into two parts here, the MPW C compiler
optimization scheme would cause a problem at this point: access to global arrays
would be pointed to in an address register as an offset of AS before you had a chanc~
to set AS to your application's AS value, and you'd get garbage information.
Therefore, it's necessary to restore your AS value (part 1 of the completion routine)
and then call the secondary completion routine to actually do all the work.

Before the routine does any work, it needs to make sure that there have not been any" ·
problems with the recording. If there were errors, the code drops out of the
completion routine without doing anything.

if (gRecordStruct->error < 0)
return;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

55

gError = SndNewChannel (&gChannel, sampledSynth, initNointerp, nil);

Interpolation causes clicks between the sound buffers when they're played back to
back, which can be a rather annoying addition to your recording (unless, of course,
you're going for that samba beat).

JUST FOR THE RECORD
To start recording, all the code needs to do now is call the low,-level recording
routine, pass in gRecordStruct, and tell it that it wants the recording to occur
asynchronously.

gError = SPBRecord (gRecordStruct, true);

LOOP THE LOOP
The main loop of this code is a simple while loop that waits until the mouse button is
pressed or an error occurs in the recording, at which time the application quits .

/* main loop of the app */
while (!Button() I I (gRecordStruct->error < noErr));

ROUTINE COMPLETION
You don't want a completion routine to do much, generally, since it's run at interrupt
time and keeps your system locked up while it's running. There are three parts to this
completion routine, one of which has four parts to itself.

The first part of the completion routine sets its AS value to be the same as the AS
value of the application. This gives you access to the application's global variables
from the completion routine.

storeA5 = SetA5 (inParamPtr->userLong);

If the completion routine weren't broken into two parts here, the MPW C compiler
optimization scheme would cause a problem at this point: access to global arrays
would be pointed to in an address register as an offset of AS before you had a chanc~
to set AS to your application's AS value, and you'd get garbage information.
Therefore, it's necessary to restore your AS value (part 1 of the completion routine)
and then call the secondary completion routine to actually do all the work.

Before the routine does any work, it needs to make sure that there have not been any" ·
problems with the recording. If there were errors, the code drops out of the
completion routine without doing anything.

if (gRecordStruct->error < 0)
return;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

55

56

de v e Io p Winter 1992

Next the routine prepares the header of the buffer, which has just been filled, by
correcting the header's length field . This field needs to be set to the count field of
gRecordStruct, which now contains the actual number of bytes recorded.

header= (SoundHeaderPtr) (*(gBufferHandle[gWhichRecordBuffer]) +
gHeaderSize) ;

header->length = gRecordStruct->count;

Once the header's been fixed, the code just sends the buffer handle off to the play
routine to play the sound. (See "Play T ime" for a full explanation of the play routine.)

I

PlayBuffer (gBufferHandle[gWhichRecordBuffer]);

The last part of the real completion routine prepares gRecordStruct to start the next
recording. To do this, the code needs to select the correct buffer to record to and
rebuild gRecordStruct to reflect any changes. The macro NextBuffer performs an
XOR on the variable gWhichRecordBuffer to make it either 1 or 0. The changes
include setting the correct buffer to record to and checking to see that the
buffer Length is correct. Once the structure is reset, the code makes the next call to
SPBRecord to restart the recording.

#define NextBuffer(x) (x A= 1)

gWhichRecordBuffer = NextBuffer (gWhichRecordBuffer);
gRecordStruct->bufferPtr = (*(gBufferHandle[gWhichRecordBuffer]) +

gDataStart);
gRecordStruct->milliseconds = O;
gRecordStruct->count = gSampleAreaSize;
gRecordStruct->bufferLength = gSampl eAreaSize;

err= SPBRecord (gRecordStruct, true);

The last piece of the completion routine resets AS to what its value was when the
routine started.

storeAS = SetAS (storeAS);

PLAYTIME
The code in the PlayBuffer routine is very simple Sound Manager code. All it does is
set up the command parameters and call SndDoCommand. T he routine needs to
know what channel to play into and what buffer to play, so the code sets up the local
sound structure by telling it which buffer to play, and sends that local structure to
SndDoCommand along with the necessary channel information (gChannel).
SndDoCommand then plays the sound. T he last parameter in the SndDoCommand
call, false, basically tells the Sound Manager to always insert the command in the

56

de v e Io p Winter 1992

Next the routine prepares the header of the buffer, which has just been filled, by
correcting the header's length field . This field needs to be set to the count field of
gRecordStruct, which now contains the actual number of bytes recorded.

header= (SoundHeaderPtr) (*(gBufferHandle[gWhichRecordBuffer]) +
gHeaderSize) ;

header->length = gRecordStruct->count;

Once the header's been fixed, the code just sends the buffer handle off to the play
routine to play the sound. (See "Play T ime" for a full explanation of the play routine.)

I

PlayBuffer (gBufferHandle[gWhichRecordBuffer]);

The last part of the real completion routine prepares gRecordStruct to start the next
recording. To do this, the code needs to select the correct buffer to record to and
rebuild gRecordStruct to reflect any changes. The macro NextBuffer performs an
XOR on the variable gWhichRecordBuffer to make it either 1 or 0. The changes
include setting the correct buffer to record to and checking to see that the
buffer Length is correct. Once the structure is reset, the code makes the next call to
SPBRecord to restart the recording.

#define NextBuffer(x) (x A= 1)

gWhichRecordBuffer = NextBuffer (gWhichRecordBuffer);
gRecordStruct->bufferPtr = (*(gBufferHandle[gWhichRecordBuffer]) +

gDataStart);
gRecordStruct->milliseconds = O;
gRecordStruct->count = gSampleAreaSize;
gRecordStruct->bufferLength = gSampl eAreaSize;

err= SPBRecord (gRecordStruct, true);

The last piece of the completion routine resets AS to what its value was when the
routine started.

storeAS = SetAS (storeAS);

PLAYTIME
The code in the PlayBuffer routine is very simple Sound Manager code. All it does is
set up the command parameters and call SndDoCommand. T he routine needs to
know what channel to play into and what buffer to play, so the code sets up the local
sound structure by telling it which buffer to play, and sends that local structure to
SndDoCommand along with the necessary channel information (gChannel).
SndDoCommand then plays the sound. T he last parameter in the SndDoCommand
call, false, basically tells the Sound Manager to always insert the command in the

channel's queue: if the queue is full, SndDoCommand will wait until there's space to
insert the command before returning.

localSndCmd.cmd = bufferCmd;
localSndCmd.paraml = O;
localSndCmd.param2 =(long) ((*bufferHandle) + gHeaderSize);
gError = SndDoCommand (gChannel, &localSndCmd, false);

If you wanted to send the sounds to a different machine to be played, you could
simply replace the code in the the PlayBuffer routine with IPC or Communications
Toolbox calls telling a second machine to play the buffers.

CLEANING UP AFTER THE SHOW
Once the code finds the mouse button down or discovers that an error occurred in
the recording and exits the main loop, there's only one last thing to do: clean up. The
first part of cleaning up is to close the sound input driver. Before you can close the
driver, you need to make sure it's not in use; the routine SPBStopRecording stops the
recording.

gError = SPBStopRecording (gSoundRefNum);
SPBCloseDevice (gSoundRefNum);

Next you need to dispose of the handles and pointers you've been using. Before
sending them on their way, however, you have to make sure that they have been
allocated, so the code checks to see whether or not the handles and pointer are nil.

for (index = O; index < kNumberOfBuffers; ++index)
DisposeHandle (gBufferHandle[index]);

DisposePtr ((Ptr) gRecordStruct);

Last but not least, the code disposes of the sound channel for you. Setting the
quitNow flag clears the sound queue before the channel is closed.

gError = SndDisposeChannel (gChannel, true);

COMPOSE YOURSELF
So now you know a little bit more about doing basic sound input at a low level. I've
fielded many questions about clicks, pauses between buffers, and so on, which I've
resolved and built into 2ButRecordToBufCmd. The specific techniques I've outlined
here may not apply to what you're interested in doing right now, but if you're using
the sound input driver or are interested in continuous recording, parts of this sample
may be useful to you in some other application. You've heard the saying "take what
you like and leave the rest"? Sound advice (so to speak).

THANKS TO OUR TECHNICAL REVIEWERS .

Neil Day, Kip Olson, and Jim Reekes, who

burned the midnight oil ripping this code to

shreds and putting it back together again. •

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

57

channel's queue: if the queue is full, SndDoCommand will wait until there's space to
insert the command before returning.

localSndCmd.cmd = bufferCmd;
localSndCmd.paraml = O;
localSndCmd.param2 =(long) ((*bufferHandle) + gHeaderSize);
gError = SndDoCommand (gChannel, &localSndCmd, false);

If you wanted to send the sounds to a different machine to be played, you could
simply replace the code in the the PlayBuffer routine with IPC or Communications
Toolbox calls telling a second machine to play the buffers.

CLEANING UP AFTER THE SHOW
Once the code finds the mouse button down or discovers that an error occurred in
the recording and exits the main loop, there's only one last thing to do: clean up. The
first part of cleaning up is to close the sound input driver. Before you can close the
driver, you need to make sure it's not in use; the routine SPBStopRecording stops the
recording.

gError = SPBStopRecording (gSoundRefNum);
SPBCloseDevice (gSoundRefNum);

Next you need to dispose of the handles and pointers you've been using. Before
sending them on their way, however, you have to make sure that they have been
allocated, so the code checks to see whether or not the handles and pointer are nil.

for (index = O; index < kNumberOfBuffers; ++index)
DisposeHandle (gBufferHandle[index]);

DisposePtr ((Ptr) gRecordStruct);

Last but not least, the code disposes of the sound channel for you. Setting the
quitNow flag clears the sound queue before the channel is closed.

gError = SndDisposeChannel (gChannel, true);

COMPOSE YOURSELF
So now you know a little bit more about doing basic sound input at a low level. I've
fielded many questions about clicks, pauses between buffers, and so on, which I've
resolved and built into 2ButRecordToBufCmd. The specific techniques I've outlined
here may not apply to what you're interested in doing right now, but if you're using
the sound input driver or are interested in continuous recording, parts of this sample
may be useful to you in some other application. You've heard the saying "take what
you like and leave the rest"? Sound advice (so to speak).

THANKS TO OUR TECHNICAL REVIEWERS .

Neil Day, Kip Olson, and Jim Reekes, who

burned the midnight oil ripping this code to

shreds and putting it back together again. •

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

57

58

C.K.HAUN

BE OUR GUEST

BACKGROUND-ONLY
APPLICATIONS IN
SYSTEM 7

One of the least heralded new features of System 7, but
nonetheless a very important one, is full support for
faceless background applications (FBAs). An FBA is a
full-fledged application that's invisible to the user. It
has its own event loop, and it receives time and
some events like any other application, but it doesn't
have a menu bar, windows, dialogs, or other graphic
components. An FBA is a normal file of type 'APPL'.

FBAs are, by a stretch of the imagination, similar to
UNIX® daemons. Tlie purpose of an FBA is to provide
services to other applications or to monitor the system.
For instance, an application that periodically checks
your hard drive for files that haven't been backed up
lately is a perfect candidate for FBA status. Thus, an
FBA can be a silent partner to your application, INIT,
cdev, desk accessory, or driver.

An FBA is the best way to provide certain services. For
example, an FBA paired with a desk accessory can
enable the DA to send Apple events, something a DA
cannot usually do. (See the AECDEV/ AEDAEMON
sample in the snippets provided with the DTS Sample
Code on the Developer CD Series disc.) An FBA can
replace an INIT that patches traps to get time and
provides services, or it can replace a driver that
depended on periodic run messages to operate.
Converting to an FBA not only frees you from having
to patch to get the time you need, but also gives you a
fully supported and documented interface and design.

C. K. HAUN has been programming Apple computers since

1979, writing commercial education, utility, and game

applications for the Apple II, llGS, and Macintosh, with some

occasional dark forays into the Big Blue world. (It paid the rent.)

He currently works in Developer Technical Support and focuses

mainly on Apple events and the Edition Manager. Besides working

to provide the best possible support to developers, he's been trying

to organize the Silicon Valley chapter of Heck's Moofers, a

motorcycle club devoted to the precept that computer nerds on

de v .e Io p Winter 1992

You get all the advantages of a full application, without
the overhead of a user interface.

An FBA can also be an application manager for a suite
of applications. With an FBA, you can control the
launching of and communication between applications,
using LaunchApplication and Apple events.

Writing an FBA is simple. An FBA is a subset of a
standard Macintosh application, consisting of a
minimal event loop and the code to handle two types of
events, null events and high-level events. No other
events are sent to an FBA. This makes a great 'deal of
sense, since every other event (keystroke, mouse click,
and such) is designed for foreground applications.

The SmallDaemon backgrounder shell included on the
Developer CD Series disc shows just how simple the
basics of an FBA are:

Boolean
EventRecord
unsigned long

gQuit = false;
gERecord;
gMySleep = 50000; /* A long, long

time */
main()
{

/* Routine for installing my Apple event
handlers. Need to install the four required
handlers, plus handlers for any other events
I want to accept. */
InitAEStuff () ;
while (gQuit == false)
/* A normal call to WaitNextEvent. I want

only highLevelEvents, since all other
events relate to interface actions, and I
have no interface. */
if (WaitNextEvent(highLevelEventMask,

&gERecord, gMySleep, 0)) {
/* I'll get only null and high-level

events. */
switch (gERecord .what) {

case nullEvent:
/* No null processing in this

sample. */
break;

bikes can raise heck too, darn it. And yes, that really is his

mustache. •

