Releasing the power to everyone.

Open-Apple
B

March 1985
Vol. 1, No. 2

: FLASH:

Steve Wozniak, designer of the Apple I1, is no longer involved in any Apple
projects, although he remains an employee on a consulting basis, according to
Linda Merrill, Apple Il specialist in Apple’s corporate relations department. Steve
is starting a home video products company, which will develop products that will
allow consumers to use video cassette recorders in new ways. Wendell Sander,
head hardware designer for the Apple Il1, has reportedly joined Steve, but that is
unconfirmed.

According to the Wall Street Journal (Feb 7, p. 42), Wozniak told reporters that
his departure was prompted in part by bitter disagreement with Apple’s manage-
ment over the company’s direction and by frustration with the rigidity of a big
corporate bureaucracy. Wozniak said the Apple Il "has been ignored in the hope
that it will die and go away.”

Steve’s new products have “nothing to do with home computers,” according to
Menill. Steve has always been a vocal spokesperson for Apple Il users inside
Apple itself, Although he i still “officially a part of Apple”, his absence on a full-
time basis is a blow to those of us already concerned about the relatively
minuscule development investment Apple makes in its Apple 11 family.

Apple’s annual stockholder’s meeting, held on January 23 this year, was a
Macintosh circus. Not one of the new products announced works with the Apple I1.

Apple did announce, however, that by fall it would have a peripheral card for the
1BM PC that will allow connection to AppleTalk—its new low-cost system for
hooking (non-Apple II) personal computers, printers, large memory devices, and
other peripherals together.

Apple spokesperson Merrill tells us Apple is aware that many Apple 11 users,
particularly in educational institutions, are interested in this capability and she
assures us that Apple is working on it.

Meanwhile, AppleWorks was December’s sales leader in retail stores,
according to Infocorp, a market research firm in Cupertino. The program walked
away with 17 per cent of all software sales. The much ballyhooed Lotus 1-2-3 was
in second place with just 10 per cent of the market.

Quote of the month:

[would argue that the ultimate deciding factor in computer obsolescence is
software availability. The sure sign of a computer growing into obsolescence is
that no new software is being developed for it. And if software is available to do
what you want done with your computer, it will not be obsolete for quite some
time. (By this measure, the Apple Il may never be obsolete.)

The quote is from Mark Wilsdorf, editor of AgriComp (103 Outdoors Bldg,
Columbia, MO 65201, $24/yr), a well-done magazine that covers the area where
agriculture and personal computers overlap. Much of the magazine’s material is
based on spreadsheet templates that work with any kind of computer. If you are
one of the world's unfortunate souls involved in agriculture, you should get this
one, depression or not.

New enhanced ROMs for the Apple lie have been mentioned in various press
reports the last few weeks. The new ROMs reportedly make the Ile and lic more
compatible. When Apple officially introduces these new ROMs we'll have a com-
plete report (and if it's not by March 15, the April Open-Apple may be mostly
blank).

Basham fires up the Incinerator

I got a letter and disk from Bill Basham, developer of Diversi-DOS (arch-
competitor of my own ProntoDOS) this month:

Your discussion of garbage collectors in the January issue inspired me to
finally write one. I've enclosed the latest Diversi-DOS update, which includes a
48K and a 64K garbageman on it.

I hereby donate the 48K garbageman to the public domain. Since the 64K
version works only with Diversi-DOS, I will retain the rights to it. There’s also a
source listing for the 48K garbageman for you to publish if you wish. Of course,
I used the Pascal assembler (ed note: expletive deleted), so you may have to do
some retyping and possibly add some improved comments. Feel free to make
up a catchy name for it.

My garbageman may be a little slower, but I'm confident that it is the world’s
smallest. That should make it ideal for publication, and I hope will make that
issue a hot one.

Bill apparently wants me firmly entrenched in the newsletter business and out
of the DOS-enhancement business. After looking over his program I am inclined
to give up trying to compete with him — this is a masterpiece.

Readers of our January issue will remember a two-page spread on how to avoid
garbage collection —the malady that strikes string-intensive Applesoft programs
at the most inopportune times. ProDOS solves the problem by including its own
high-speed garbage collector. Now DOS 3.3 users also have a high-speed garbage
collector that fits entirely within DOS. As with ProDOS, however, you have to give
up the ability to initialize disks.

Basham’s program, hereby christened the Incinerator, works by making a
temporary copy of the standard Applesoft garbage collection routine and mod-
ifying it. The copy is placed in the DOS “nibble buffers”, a rather large memory
area that gets overwritten whenever a disk is accessed. Since the disk is inaccess-
ible while the routine is running, however, it's a nice safe place to go to burn the
garbage.

The modifications cause the old garbage collector to use two new routines at
critical places. These routines, as well as the code that moves and patches the
old garbage collector, resides in the DOS area normally used by the init com-
mand. The program begins with a third section that installs the main body inside
DOS.

Here's the speed comparison from our January article with Incineratortimings
added:

Garbage collection time

in seconds
number of 00s 3.3 Incinerator ProDOS
strings
250 S 0.7 0.1
500 19 1.5 0.2
1000 114 4.0 0.5

For those of you interested in such stuff, the complete source code for
Basham's Incinerator follows. You can study it with the help of the comments I've
written. If all you want to do is use it, you can type it in by hand. However, if you
have a modem, software that allows you to capture files, and access to Compu-
Serve, you can also download it from the Micronetworked Apple User Group
library (GO PCS-51). It's filed in the "Apple [l Hacking” section. Select brouse from
the menu that appears and enter INCINERATORwhen you are asked for a “/key".
(All of the other programs in the first three issues of Open-Apple are also now
available in the MAUG library.)

Basham'’s original version—the one that now comes with Diversi-DOS—is
connected to the Applesoft ampersand hook. I have modified the version pub-

18 Open-Apple - Vol. 1. No. 2

lished here so that it is called automatically by DOS every time a carriage return -2 ADC INITADR,Y together the first two bytes
is printed. On each call, the amount of unused memory left is checked. If there — , o U ONGIL gy 1 b it
is more than about 1K, control quickly returns to DOS. If theré is less, collection Inx and cosparing the result uiry
occursautomaﬁcally. 3 g :H.INIT.Y the standard DOS 3.3 result.
To force collection, use the following command: INX If DOS has been moved to the
POKE 48816,0 : PRINT : POKE 48816,4 .4 ADC RWTS.INIT,Y language card area, or if
BCC.5 program is run under ProDO0S,
INX inclusion of page-3 warmstart
.5 DEY vector (see $4807) will cause
BPL .1 check to fail.
CMP HS$F1
BNE .6
CPX #$03
BEQ INSTALL 00S ok, begin installation below.
.6 LDX $RAS9 Can’t execute; DOS modified.
g2 I Save D0S stack pointer while
LDA .9,Y printing error message.
BEQ .8
JSR COUT Print message.
¥ : INCINERATOR JMP .7
* Fast garbage collector for 48K DOS 3.3 .B STX $AASS Restore stack pointer and
* H RTS quit.
* : By Bill Basham, Diversified Software Research
* $ January 1985 S97HS5 80
& i .AS -“CAN’T EXECUTE.”
* : Comments and DOS hooks by Tom Weishaar -H5 €0.87
" .AS -“ACTIVE DOS MODIFIED OR MOVED.”
% .HS 8D.00

: A public domain program

-0R $4000
.TF INCINERATOR

0046: COUNTER .EQ 45 INS{ALL
005E: INDEX LEQ $5E DEC INITRDR Point INIT entry in DOS command table to an
2060: STREND .EQ $6D the lower edge of string space LDA #1356) RTS--D0S lt‘IT cc""':'a"d now does nathing.
006F : FRETOP .EQ $6F new strings are stored from here doun STR seeet Disable RWTS “foreat’ cdmmand,
00873: MEMSIZ .EQ $73 the upper edge of string space, HIMEM LDY #$00
008A: FNCNAM -EQ s8R .1 LDA TEST.GARB,Y Move INCINERATOR routines to area normally
08F : DSCLEN -EQ s6F STA RWTS.INIT,Y used by the RWTS init command.
099B: : LOKTR .EQ $9B INY

¥ BNE .1
0308: P3.00SKARM .EQ $30@ page 3 vector
SD1E: INITADR .EQ $SD1E INIT’s entry in DOS cmd jump table LDY H$02
RAEBE: FMLINIT -EQ SAESE File Manager’s INIT instruction area .2 LDA .6,Y Install hook in DOS. Putting hook at $3F2C
BEAF: RUTS.INIT .EQ SBERF RWTS’s INIT instruction area STA $9F2C,Y means INCINERATOR will be called whenever
FDED: cout .EQ SFDED Monitor‘s print-character subroutine DEY a {return) is printed.
BB08: MOD. GARB .£Q $BBOO ($E484) Addresses of FP.GARB oL .2
B8B08: MOD.CONTINUE .EQ $BBOB (SE4BC) entry points after LDX $AASI Save DOS stack pointer while printing msg.
BBCE: MOD.CHECK.BUMP .EQ $BBCE ($ESS52) relocation in DOS .3 INY
BBE4: MOD.MOVEUP .EQ $BBE4 ($E568) nibble buffer. LDA .5,Y Print successful-installation-message.
BB21: MOD.RELO L£Q $BB21 (SE4AS) Points where MOD.GARB BEQ .4
BBS2: MOD.PTCH.2 .EQ $EBS2 (SE4DE) nust be changed due to JSR cout
BBBE : MOD.PTCH.1 .EQ $BBBE ($£542) relocation. e .3

.4 STX $AAS9 Restore stack pointer and
E484: FP.GARB .EQ $E4B4 Address of original garbageman RTS return to caller; installation done.
REsievanp R RanE el SRR SR RPN SRR SRy .5 .HS 80
% INCINERATOR’s string address buffers .AS -“THE INCINERATOR IS NOW INSTALLED.”

.HS 80.90

0022: NSTR .EQ 34 % of strings collected on each pass (34 max)
AEBE : DSC.ADR.LO .EQ FM.INIT FM.INIT area (REBE-RF@7)
AEBO: DSC.ADR.HI .EQ DSC.ADR.LO+NSTR is used to save string
AED2: DSC.LEN .EQ DSC.ADR.HI+NSTR variable table pointers. .6 JMP RWTS.INIT Hook to our routines; moved to $9F2C
BC11: STR.ADR.LO .EQ $BC11 Left-over part of nibble buf B ot R S e B S B SR S S M
: STR.ADR.HI . TR.ADR.LO+NSTR is used for string pointers;
g * e L ends at $BCS6, thzsp3: max ¥ INCINERATOR main body :
* These routines are moved into the RWTS INIT space and
e e L R T A e * are called by DOS every time something is printed.
% INCINERATORs installation routines LS L R s S e
Yoo TEST.GARB
CHECK.DOS LDA #$04 Main entry point. First check to see if
CLC First, check to make sure DOS BEQ INCINERATE garbage needs to be collected. If
LDA 1300 hasn’t already been modified. CLC lots of space is left, don’t proceed.
LDX #$00 Installing the INCINERATOR ADC STREND+1 The $04 at $40C6 means collection
LOY #s01 over an existing DOS patch CMP FRETOP+1 - occurs only if there is less than
.1 ADC P3.DOSWARM+1,Y could damage disks. BCS INCINERATE 1K free. Change it if necessary.
8CC.2 DONE
INX Check is made by simply adding JMP $9FA4 Return to DOS to continue output.

Downloaded from www.Applez2Online.com

* INCINERRTE

* These routines move a copy of Applesoft’s original

* garbage collector into the DOS nibble baff'e}s. patch it
¥ go that it calls new routines at two critical places,
* and then jumps to the new version.

INCINERATE
LDY #$13 FP.GARD is Applesoft’s original garbage
.1 LDA FP.GARB+$FF,Y collector. First we move it into the
STA MOD.GARB+SFF Y DOS “nibble buffers” at $BBO@-BCSS.
DEY These are overwritten on all DOS
BNE .1 calls, but we can use them for a
.2 LDA FP.GARB,Y moment here.
STA MOD.GARB,Y MOD.GARB is what we call the new
INY location, since the new copy will be
BNE .2 patched by the routines below.
TYA
LDY HNSTR-1
STY COUNTER Initialize COUNTER with the number of
.3 STA STR.ADR.HI,Y strings {minus 1) and fill the string
DEY address buffer with zeros.
BPL .3
LDY H$03
.4 LDX RELOCATION.TABLE,Y Adjust four adrs within MOD.GARB
LDA RELOCATION.TABLE+4,Y that must change because it’s
STA MOD.RELOD,X been moved.
LDR 1$8B ($8B is the correct high byte
STA MOD.RELO+1,X for all relocated adrs.)
DEY
BPL .4
LDY u$02
.SILDH PARTCH.HOOK, Y Modify GARB in two places so that it
STA MOD.PTCH.1,Y jumps to our new patch routines
LDA PATCH.HOOK+3,Y rather than doing things the old
STA MOD.PTCH.2,Y FP way.
DEY
BPL .5
JMP- MOD.GARB Jump to the newly modified garbage
o collector.
BF@3: RELOCATION.TABLE .EQ *-TEST.GARB+RWTS.INIT

.HS 00.19.70.EF .9F.95.9F Data needed for relocation.

RTS Patch for original move-string routine.

PATCH.HOOK ~ .EQ *-TEST.GARB+RWTS.INIT
JMP SAVE.ADRS
JMP MOVE.STRINGS

% MOVE.STRINGS is called by our modified garbageman
* after a complete scan of the string variable
* tables has been completed.

BF11: MOVE.STRINGS .EQ *-TEST.GRRB+RWTS.INIT
2 e e e T R R R L A R L L RS L L L e
* First find the highest address in our buffer.
e L L L Lo T R LR LR R L
LDA HNSTR Initialize counter with the number of
STA COUNTER strings our buffers will hold.
FIND.HIGH
LDX BNSTR-1 X is first adr; becomes the highest found.
LDY BNSTR-2 Y points to the adr under study.
HI.CHECK

LDA STR.ADR.HI,Y Compare current to highest found so far.
CMP STR.ADR.HI,X

BCC NXT.HI Current is less.
BNE NEW.HI Current is greater.
LDA STR.ADR.LO,Y Can’t tell, test low byte.
CMP STR.ADR.LD,X
BCC NXT.HI Current is less, next please.
NEW.HI TYR Current is greater, move current
TAX pointer to X.
NXT.HI DEY Continue until entire buffer has been
BPL HI.CHECK scanned; X then points to highest
X string in buffer.

* Pass this address to a section of the
* priginal garbage collector for moving.

LDR STR.ADR.HI,X Get highest adr

BEQ DONE If zero, we’ve moved them all.
* Collection complete, return to DOS
STA LOWTR+1 Pass it to MOD.GARB
LOA STR.ADR.LO,X
STR LOWTR
LDA 1$00 Remove this address from buffer

STA STR.ADR.HI,X

LDA DSC.ADR.HI,X Pass the descriptor address and length

STA FNCNAM+1 to MOD.GARB
LDA DSC.ADR.LO,X

STA FNCNAM

LDA DSC.LEN,X

JSR MOD.MDVEUP Tell MOD.GARB to move it.

STX FRETOP Adjust FRETOP

STA FRETOP+1

DEC CDUNTER Continue until all adrs

BNE FIND.HIGH in buffer have been moved.
LDY HNSTR-1 Reset counter for SAVE.ADRS

STY COUNTER
JMP MOD.CONTINUE And continue search.

SAVE.ADR is called when MOD.GARB has found a string higher
than the lowest string found so far. SAVE.ADR saves
the address of the string and its variable-table
descriptor address and length in our special buffers.
The new string’s addresses overurite those of the lowest

Afterwards, a scan is made of the buffers to redetermine
the address of the lowest string found so far.’
The address of that string is passed to MOD.GARB
and the pointer to it is saved so that any higher

¥
*
*
*
*
L string found up till now.
*
*
*
*
* string found will overurite it.

SAVE.ADRS .EQ *-TEST.GARB+RWTS.INIT

LDY COUNTER Get current index to adr-save buffers.
STA STR.ADR.HI,Y High byte of string adr in A; store it.
TXA Low byte of string adr in X; store it.
STA STR.ADR.LO,Y
LDR INDEX+1 High byte of descriptor address was in
STR DSC.ADR.HI,Y INDEX+1; store it.
LDR INDEX Low byte of descriptor address was ‘in
STA DSC.ADR.LO,Y INDEX; store it.
LDR DSCLEN Descriptor length;
STA DSC.LEN,Y store it.
LDX #NSTR-1 X starts as ptr to first adr in buf;
* becomes ptr to lowest adr in buf.
LOY HNSTR-2 Y is pointer to adr now under study.
LOW.CHK
LDA STR.ADR.HI,X Compare current low to adr under study.
BEQ LDONE If current low is zero, exit.
CMP STR.ADR.HI,Y
BCC NXT.LOW Current low is lower, next please
BNE NEW.LOW New adr is lower, point to it with X

LDA STR.ADR.LD,X Can‘t tell--test low byte.
CMP STR.ADR.LO,Y

BCC NXT.LOW next please
NEW.LOW
TvA Move pointer aimed at current adr to
TAX pointer for lowest adr
NXT.LOW
OEY Check next adr in buffer till
BPL LOW.CHK there aren’t any more...

LDA STR.ADR.LO,X Then take the lowest address we have in

STA LOWTR the buffer so far and put it in LOWTR,
LDAR STR.ADR.HI,X so MOD.GARB will call us if it finds
STR LOWTR+L any higher strings.

LDONE
STX COUNTER Save ptr to lowest string as new index.

JMP MDD.CHECK.BUMP Return to MOD.GARB to continue search.

20 OpenApple

A Song Continued

We descended into the murky depths of the Apple Monitor last month,
examined memory as a dump of hexadecimal values, as machine language code,
and as ASCII characters. | explained how to change the contents of any memory
byte from one hex value to another. While these are the most common uses of
the Monitor, it can also do other useful and interesting things.

The Monitor was actually designed as an assembly-language-program debug-
ging aid. Nowadays—nearly a decade after Wozniak designed it—much better
debuggers are available. Nonetheless, the fact that this one has been built into
every Apple ever manufacturered makes its features worth further investigation.

Itis difficult to stamp out all the bugs in assembly language programs without
some way to stop the program at trouble spots and see what's happening. The
standard method for doing this is to use the break instruction. The machine
language code for a break is $00. To see what happens when this instruction gets
executed, let’s put one at address $300 and jump to it. Here's how:

*300:0
* (press return to check)

0300- 00 02 00 00 20 00 00 00
*3006
(beep)

0302-
*

A=00 X=00 Y=00 P=30 S=FO

When you enter 300G, your Apple executes the break instruction we just put at
that address. This causes a "crash” back into the Monitor. You will heara beep and
see a one line display that begins with an address. The address is always two bytes
beyond the location of the crash-inducing break instruction. The rest of the line
shows you the status of your microprocessor when the break occurred. The 6502
microprocessor found in Apples has five special memory locations, called regis-
ters, that do all the work. These are called the A, X, Y, F, and S registers. The display
shows what values were in these registers when the break occurred.

After a break, you can List your program or examine memory. Ifyou need to refer
back to what the contents of the registers were when the break occurred, you can
do so with the control-E(xamine) command, like this:

¥ (press control-E, return)

A=00 X=00 V=00 P=30 S=FO
¥

You can also load the registers with any desired values before executingaroutine
by using control-E, entering a colon and the desired memory values, and Going to
the desired routine. In the following example, we put newnumbers in the A, X,and Y
registers and jump to our break instruction to see if they're really there:

* (press control-E, return)

A=00 X=00 Y=00 P=30 S5=F0
*:11 22 33

*3006
302-
¥

A=11 X=22 Y=33 P=30 S5=F0

Note: unless you knowwhat you're doing, don't try to change the contents of the P
or Sregisters. The effect can be dramatic.

Meet Mini. The Monitor program built into the original Integer Basic Apple II
also had commands for stepping through and tracing machine language pro-
grams, as well as a Mini-Assembler. The Mini-Assembler allows you to enter a
program in assembly language. It still exists in the Integer Basicimage on DOS 3.3
System Master disks, but the S(tep) and T(race) commands are unavailable to all
but a few old-timers.

The Mini-Assembler is useful for entering short and quick assembly language
programs. It doesn'thave many of the features of a full-blown assembler, however
(such as labels, equates, and assembler directives), so its usefulness is limited.
To get it running, boota DOS 3.3 System Master disk and enter the int command
to get into Integer Basic. Then call -2458 (or drop into the Monitor and enter
F666G).

The }‘ﬁnl-Assembler prompt is the exclamation point. All Monitor commands
work within the Mini-Assembler if you start a line with a dollar sign. To begin an
assembly, enter the address at which you want the machine langage to go.acolon,
and amnemonic:

Vol. 1. No. 2

CALL -2458
15300. 30

(beep)

($ means this ts a Monitor command)

0300- 00 02 00 00 0@ 20 00 00
0308- 00 00 00 00 00 20 00 09

1300:LDA HCF (start adr, colon, instruction)
0300- A9 CF LDA usCF

! JSR FDED (note space before JSR)

0303- 20 ED FD JSR $FDED

To get out of the Mini-Assembler, press reset.

Enhanced ROM enhancements. The Mini-Assembler can also be found in the
new enhanced ROMs for the Apple Ile. You can start up this version of the Mini-
Assembler directly from the Monitor by entering an exclamation point.

The enhanced Ile ROMs also have a new search command that finds all
occurrences of a one- or two- byte value in a specified memory range. The
command for finding two sequential bytes with the values $ED and $FD in the
range from $F800 to $FFFF is FDED<F800.FFFFS. Note that the value to be
searched for is entered backward (which makes forward if you're looking for an
address pointer that's stored backward) and that the line ends with an "S". You
can also search for a single byte (ED<F800.FFFFS), but you can't search for a two-
byte pair if the first byte is a zero.

The Iic's Monitor, although otherwise similar to the Monitor in the enhanced
lle ROMS, doesn't have these features. On the other hand, the lic Monitor’s list
command (examined last month) correctly disassembles the additional com-
mands in the 65C02 microprocessor’s instruction set; this is something neither
Ile Monitor can do.

March 1985

More Commands. There are several fairly useless commands available from
within the Monitor. W(rite) and R(ead) are used to save and recall ranges of memory
to and from cassette tape. The licis missing these commands since it doesn'thave
a cassette interface.

Still around in all versions of the Monitor, but of little value since the introduction
of DOS, are the control-B(asic), control-C(ontinue Basic), control-P(rinter), and
control-K(eyboard) commands. Control-B will coldstart Basic, jumping out of the
Monitor and erasing any Basic program in memory. Control-C also jumps from the
Monitor to Basic, but does a warmstart and leaves any Basic program intact. To
keep DOS active, 3D3G (DOS/Basic coldstart) and 3D0G (DOS/Basic warmstart)
should be used instead.

Control-P and Control-K are the equivalent to the DOS pr# and in# commands.
Avoid trouble and use the DOS versions.

Two more infrequently used Monitor commands are I(nverse) and N(ormal),
These commands affect the way characters are printed. They work just like their
Applesoft brethren. N(ormal) is also often used to separate several commandsona
single command line, much like the colon is used in Applesoft. We used it that
way ourselves last month in line 500 of the Lam Technique demonstration
program (page 13). And we use it that way again momentarily.

Monitor magic, with bells. Hexadecimal arithmethic is easywith the Monitor —
if you are willing to limit your questions to two digits and can put up with two-digit
answers. Watch this:

127480
=OF
#30-2F
=51
+50-90
=Fp
¥30+30
=10

Onlyaddition and subtraction work. Multiplication and division are not supported.

The Monitor includes commands that allow you to move a range of memorytoa
new location or to compare two ranges of memory with each other and print the
differences. The format for these commands is {destination} < {start}.{end} fol-
lowed by either a M{ove) or V(erify) command character. Note how the less-than sign
forms a little arrow that graphically displays which way the bytes will be moved.
Here’s how you use them:

¥800<300.3FFM {moves the $300-$3fF range to $800-$62f.)

(verify that the move took place--no response
means that it did.)

*800<3D0. IFFV

¥9£514300. 3FFV (compare the $3D@-$3fF range to $9E51-$9E6@.)

93F2-BF (4C) (discrepancies:
83F3-30 (65) number after dash is value at address shoun
@3F4-38 (FF) number is parantheses is value at corresponding

address in comparison range.}

*

The first line above demonstrates the M(ove) command. This command copies
animage of the $3D0-$3FF memory range at $800-($82F). The image at $3D0 is left
unchanged, although this is not always the case, as we'll see shortly.

The second line demonstrates the V(erify) command. Here we ask the Monitor to
compare the $3D0-$3FF memory range with what's at $800. It does so and reports
all discrepancies. Since our move command just made these ranges match, there
are no discrepancies to report.

The third line compares the $3D0-$3FF range with a range of memory inside
DOS 3.3 at $9E51-$9EB0. The two areas should be similiar, since Uncle DOS moves
what's at $9E51 to $3D0whenever a disk is booted. As you can see, three bytes are
different. The number after the hypen shows the value at the address displayed
on the screen; the number in the parentheses shows the corresponding value in
the range being verified.

Now, consider what happens when the range of memory we are moving
overlaps the range of memory we are moving to. If we are movinga memory image
lower, the move will take place normally. In the process, however, the overlapped
part of the original image will be destroyed.

When we move a memory image higher, on the other hand, an interesting thing
happens. The portion of the image that does not overlap is repeated throughout
the new range. You can quickly fill arange of memory with a specificvalue or pattern
of values, for example, like this:

%2000:FF N 2001<2000.200EM (Put FF at 2000, use N(ormal) as a command

separator, M(ove) contents of 2000-200E to 2001.)

Open-Apple 21

¥2000.200F (Displaynew contents of 2000-200F.)
2000- FF FF FF FF FF FFFFFF

2008- FF FF FF FF FF FFFF FF

&

The 2000:FF initializes the first byte of the range. The Ntells the Monitor we are
done with the memory change command and now want to enter another com-
mand. The 2001<2000.200EM moves the value now at byte 2000 into bytes 2001
through 200F.

The generalized format for the M(ove) command used in this way —when length
indicates the length of the pattem to be repeated —is:

{start+length} < {start} . {end-length} L

The machine language command 20 DD FB will beep your Apple’s speaker. Want
to hear a thousand beeps? Try this:

2000:20 DD FB N 2003<2000.2684M N 2BBB:60 N 20005

That command line only takes about 114 seconds to execute. The 2BB8:60 puts
amachine language command at the end that returns us smoothly to the Monitor.
Try 2000L. Then try LLLLLLLL. Amazing stuff.

Or perhaps you'd prefer:

*N FBDDG 34:0 (put a space after the zero, before you press return)

This trick creates a repeating command. Start the line with a single letter
command, end it with 34:0(space). This pokes a zero into byte $34, which causes
the Monitor to start executing the line over again at the beginning. If you want to
start beyond the beginning, replace the zero with the number of the character you
want to start with, minus one.

Enough tricks. The point is that a familiarity with the Monitor, which is available
in every Apple Il ever built {(and few other kinds of computers), gives you the
power to control your machine at a very elementary level. The box on the previous
page summarizes the Monitor's commands.

Help for the absent-minded

Absent-mindedness is a common fault, especially around here. Conse-
quently, we have a great deal of sympathy for those who manage to destroy
important files by mistake.

Word processing and spreadsheet files are particularly vuinerable. The prob-
lem is that most programs’ save and load commands are easily mixed up. A
frequent cause of file loss is that a user absent-mindedly saves a blank screen
over the top of a valuable file. Listen carefully on any clear evening and you will
hear crys of file-loss anguish emanating from chimneys in most major cities.

However, if the word processor or spreadsheet program uses DOS 3.3 text files,
the lost data is easily recoverable. This is because DOS 3.3 doesn't remove the
old file from the disk. Instead the new contents are written over the top of the old
contents and an end-of-file mark (control-e, hex $00) is placed at the end of the
new stuff. If the new contents consist of nothing (a blank screen), only one
character of the original file is destroyed (the one under the new end-of-file mark).
To recover the file, all you have to do is replace that file-ending zero with
something else.

Typically this is done using a disk-edit utility. | once used this technique to
recover a large section of a friend’s Masters Thesis and prevented a potential
suicide. The technique requires some expertise, however.

A better way, once you get DOS 3.3's append command working (see the back
page of this letter) is to let append find the end-of-file mark, then overwrite it with
a carriage return. When the file is reloaded into the word processor or spread
sheet, it will burst forth virtually unscathed (damage to word processor files will
be at the beginning; damage to spreadsheet files will be at the end). Here's a
program that uses this trick. Go out and save a few lives with it.

10 REM ¥%% Phoenix *¥¥

100 HOME : VTAB 12 : D$=CHRS(4)
110 PRINT “PLEASE INSERT DISK WITH LOST FILE.”
120 PRINT “ WHAT IS THE NAME OF THE FILE?”
130 PRINT

140 INPUT ““3F$

150 PRINT D$;
160 PRINT D$;
170 PRINT D%,
175 PRINT

180 PRINT D$;”l

“UNLDCK”;F$: REM Create error if file-not-found.
“APPEND”;F$: REM Move file pointer to end-of-file marker,
“WRITE”;F$: REM overurite marker with a <{return>.

CLOSE~;F$: REM Rest of file magically reappears.

190 PRINT “FILE FIXED!” : END

Ask

(or tell)
Uncle

DOS

Loose Ends

Last month 1 left some questions unanswered, and
a couple of them still have me puzzled. But readers
have helped with answers to some.

Regarding AppleWorks and non-Apple printers
and interface cards: Apple has released an updated
version of AppleWorks to dealers that solves this
problem. Dealers are supposed to update your orig-
inal disks for free. Call ahead to make sure your
dealer has the update. My source on this one highly
recommends you insist on talking to the dealer’s
technicians, rather than salespeople, for this and all
similar problems with Apple programs and equip-
ment. It's the technicians that Apple notifies about
such bugs and how to fix them. My source adds that
the ProDOS version of AppleWriter has the same
problem—dealers have also been issued a fix for
this.

One of last month’s letters asked how to do an 80-
column screen dump. In the response to that letter,
I mentioned that my printer garbled when I printed
while the 80-column screen’s even columns, which
are stored in auxiliary memory, were turned on. But
I didn’t know why. The reason occurred to me as
soon as the letters were printed. Printer interface
cards, like most Apple Il peripherals, use a small
amount of memory inside the text screen. This area
is usually called the scratchpad area, or the screen
holes. When the even columns are on, the scratchpad
area the interface card is using disappears; thus the
problems.

If you need a faster 80-column screen dump,
delete line 305 from last month's program (page 15),
remove the "L$+" in line 340, change line 360 to
“PRINT L$+CHR$(PEEK(ADR));", and remove the "L$"
from line 380.

Remittance bug revealed
Tom, try this program:

10 Y1=24 : REM 1 year subscription price

20 Y2=44 : REM 2 year subscription price

30 PRINT (Y1¥2)-Y2

RUN
4

Why do your bills say a two-year subscription is an

$8 savings? Philip Straus
Philadelphia, Pa.

My error. Abby, Open-Apple’s spokeswoman,
nearly resigned when she saw your letter. She
agreed to continue with Open-Apple only if I tacked
a couple of extra months onto the subscriptions of
those of you who actually paid $44, and I've done so.

Input comma no garbage

I have an addition to the Selective String Preserva-
tion technique for avoiding garbage collection that
you wrote about in the January issue (pages 4-5).
Here’s a routine that replaces Applesoft's input com-
mand so that commas are allowed. Normally rou-
tines that use get like this cause garbage collection
to occur frequently, but this one doesn't create any
more garbage than input itself does. As written, the
routine also filters out control characters.

50 SL=PEEK(111): SH=PEEX(112) ¥
51 1$=""
52 FOR C=1 TO 255
53 : GET A$: PRINT A$;
54 : IF ASC(AS) = 13 THEN C=255 : GOTO S6
55 : IF ASC(AS) > 31 THEN I$=I$+A%
56 NEXT
57 PRINT
S8 POKE 111,5L : POKE 112,5H
59 I$=MIDS$(IS,1) &

1$ is made permanent by line 59, which makes a
new copy of it after the pointers at 111 and 112 have
been changed to erase the temporary copies of A$
and 1$. They will be overwritten and won't cause
garbage collection.

Jim Parr
Bloomington, Iil.

Fast garbage bugs

[tried the fast garbage collector published in the
January 1981 Call -A.P.PL.E. and mentioned in your
January issue. | had some trouble getting it to work.
After studying the code, I discovered some bugs. The
subroutine NZTAB, which zeros out the address table,
ends with a JMP to FNDVAR2, not an RTS. Conse-
quently, the initial call to NZTAB should be a JMP, not
a JSR, and should occur just before FNDVAR2,
between lines 63 and 64, not at line 59.

In addition, the Y register should be cleared when
a new address is placed in INDEX. Add a LDY #0 just
before lines 69 and 79.

Steve Hunt
Cambridge, Mass.

There was one more bug: Val Golding, editor of
Call -A.PPLE. when the original program was pub-
lished, tells me he misspelled the author’s name and
I reprinted his mistake. The author’s name is Randy
Wigginton. It's an important name to spell right, as
Randy has been involved with Apple since, as a 16-
year-old in 1976, he hitched rides to Homebrew
Computer Club meetings with Steve Wozniak. He's
been one of Apple’s most prolific wizards ever since.

Rana, A.P.P.L.E, Abacus

Your February editorial about DOS 3.3 was on the
mark, and raises an interesting question. How do
people who make double-sided drives (e.g. RanaElite
II) make them compatible with DOS 3.3? Do they
define a logical track to be two physical tracks—
presumably one on each side of the disk? This would
create, in effect, tracks with 32 sectors, which you say
DOS 3.3 can handle. [imagine this scheme would not
require any repositioning of the head to read all data
from any logical track.

Speaking of Rana, while I still see their products
being advertised by a number of mail order houses,
they appear to have completely discontinued their
own advertising. 1 was greatly interested in their
8086/2 unit since it provides MS-DOS compatibility
for the Apple as well as high capacity drives usable
under all four operating systems that run on the

Vol. 1. No. 2

Apple (DOS 3.3, Apple Pascal, CP/M-80, and ProDOS).
1 obtained a pre-publication copy of the 8086/2 man-
ual, and actually saw a unit once at a dealer, though
like most dealers he couldn't answer a single ques-
tion. A friend of a friend has one, and while the level
of compatibility with the IBM PC is not as high as one
would like, he reportedly is satisfied with it. | wrote a
lengthy letter to Rana asking a number of questions
about six months ago and never got an answer. I'm
still interested. | still have all those unanswered ques-
tions and one more besides: How come you don't
hear anything about a product that once seemed
destined to sell several hundred thousand copies at
over $1,500 each?

Iwould like to call attention to a situation that I feel
is deplorable, especially since it involves a group in
which I had placed considerable trust and which | had
enthusiastically recommended to many friends. The
billing policy of A.PP.L.E. (the user group in the Seattle
area that publishes Call -A.P.P.L.E. magazine) doesn't
conform to the standard practices of ethical mail
order merchandising, On December 1, | ordered sev-
eral software packages from them by mail. They
billed my credit card on December 11, and as of late
January they had not yet shipped me anything and
refused to make a commitment on when they would
ship. Standard practice is to bill only at the time
shipment occurs. I like to think of APPL.E. as a group
of the Apple community’s most upstanding citizens,
so this incident comes as a grave disappointment.

On a more pleasant note, | would like to recom-
mend the 128K RAM card manufactured by Abacus
Enterprises, P.O. Box 1836, Detroit, MI 48231 (313
524-2444 voice, 313-524-0238 300 baud). I think it
is a super product and the service provided by Aba-
cus is outstanding. The hardware is unique in that an
external switch allows the card to emulate either the
Saturn or Legend bank switching protocols. The card
can be write protected, also by means of an external
switch. Abacus has released a software package
called Back-to-Back that allows swapping images of
the lower 48K of RAM into and out of the 128K card
at the press of a button. This makes it possible to
suspend operaton of one program, toggle to a
second and, at the press of a button, resume opera-
tion of the first right where you left off. Abacus also
provides avery easy-to-use RAM disk emulator for use
with DOS 3.3.

Dan Strassberg
Arlington, MA

Rana provides a highly modified version of DOS
3.3 with its high capacity drives. It actually has two
Volume Table Of Contents sectors on each disk and
is consequently incompatible with lots of stuff,
including ProntoDOS. | picture Rana as a company
that tries just a little bit too hard. Their products do
wonderful things nobody else can do, but at the
price of compatiblity problems that keep them out of
the fast lane.

Like you, I've bought tons of stuff from A.P.P.L.E.
over the years and have recommended them in this
letter and other places. Like you, I recently had an
order delayed. The folks in Seattle say they ran into
unexpected problems with a cross-town move they
made in late December, and that is why customers
are experiencing delays.

As a certified mail order junkie, | commend you for
having the good sense to pay by credit card, and I
recommend that everyone buy mail order goods
that way when possible. If A.PPLE. still hasn't
shipped, complain to your credit card company and
let them handle it. That will get A.P.P.L.Es attention.

March 1985
A charming difference

You say the S.H. Lam technique for entering Mon-
itor commands from inside Basic programs (Feb
pages 12-13) works from within a subroutine. But the
same routine appears on the Beagle Bros Peeks,
Pokes and Pointers chart and the chart says it
won'twork within a subroutine. Who's right?

Uncle Louie
San Diego, Calif.

Both of us. In the version shown on the Beagle
Bros chart, D823G is tacked onto the end of the
Monitor command string. In the Open-Apple ver-
sion, D9C6G is tacked on. Both formulae cause the
Monitor to jump to charmed spots within Applesoft,
however, one spot is more charmed than the other
and works from within subroutines.

Who needs OPEN

In January's Digging Into DOS (page 2), the
straightforward way you give to read a text file con-
tains an extra step. For reading text files, open is a
redundant command. If you want to open abc and
read from it, just print d$; “read abc”.

Looking at the code for read, it's easy to see why
openis notrequired. The first thing DOS does in read
is to check whether the file is open. If not, it opens it.
I no longer use the open command for reading text
files. An added advantage is that a file is not created
if it doesn't already exist—you'll get a file not found
error instead.

The write command works in a simliar manner.

Charles H. Putney
Shankill, Co. Dublin, Ireland

You are absolutely right. The only problem with
this trick is that Apple never documented it; conse-
quently the ProDOS developers apparently didn't
know about it; consequently it doesn’t work with
ProDOS.

Disk free space

In the March 1984 issue of Softalk, you wrote about
the DOS 3.3 Volume Table of Contents and you
printed a Basic program to calculate the number of
free sectors on a disk. I have used that program as a
subroutine in a larger program, which is now running
under your ProntoDOS. I am getting very limited by
having DOS at 48K, and the program is causing
Applesoft's garbage collection to occur very fre-
quently. | would like to use your DOS-UP program on
the ProntoDOS disk to move DOS up to the top 16K.
Can you tell me where DOS's VTOC buffer is located
after DOS has been moved? Robert Myberg

Tucson, Ariz.

It's 16,384 ($4000) bytes higher than before, but
that information won't help you much. If you look at
that address range from within a Basic program,
what you'll see is the machine language code of
Applesoft itself, not DOS. If you turn the upper 16K
of memory on so you can see DOS, your Basic
program will crash because Applesoft will disappear.

You have to peer at the high reaches of memory
with an assembly language routine. A better
approach to solving your problems may be to use
the garbage collection tips published in this issue
and inJanuarys.

Although I've written a program for moving DOS to
the upper 16K of memory and although many, many

people use it, my experience has been that moving
DOS often causes as many problems as it solves. If
you are writing pure Basic with no assembly lan-
guage routines and no fancy tricks, a relocated DOS
works great. But as soon as you try to fine tune
things, problems begin to occur.

Another approach to consider is to switch to Pro-
DOS. This won't increase the amount of memory
avatlable, but it gives you fast garbage collection and
a chain command that’s quick and easy to use. On
128K machines you'll have the ProDOS /RAM disk;
You can use it to keep the chained parts of your
program available for quick access. Finding the
number of free blocks on ProDOS disks is pretty
easy. Fish it out of the catalog, which you can open
andread like any other file.

80-columns & machine language

How do you activate or deactivate Apple’s 80-
column card from within a machine language pro-
gram? After the card is activated, what routine is used
to write a character to the screen?

Tom Carlin
Cleveland, Ohio

First, the easy stuff. Once you have the card turned
on, you send characters to it from machine language
by loading the character into the A register and
doing a JSR to COUT ($FDED)— exactly the same
procedure as used in 40 columns. To deactivate the
card, simply use this procedure to print a Control-U.

Other fancy things you can do by sending control
characters to COUT with 80-column mode activated
are:

ASCIT action

val

control name

chr

cursor moving codes/none clear any part of the screen

H $08 backspace left one character

\ $1C fud. space right one character

J $0A line feed down one line

M $00 return left edge and down one
Y $19 home upper left corner

text moving codes/neither moves the cursor
W $17 text moves up
v $16

scroll up
scroll down text moves down

screen clearing codes

5 $0C clear whole screen

K $08 clear EOS cursor to end of screen

] $10 clear EOL cursor to end of line

2 $1A clear line clear line cursor ison
other codes

0 $0F inverse begin inverse display

N $0E normal begin normal display

Q $11 4@-column begin 40-column display

R $12 B@-column begin BO@-column display

u $15 quit turn 80-column card of f

Turning the card on varies depending on whether
you want DOS to remain connected or not. If you are
using DOS 3.3 and you leave it connected, Uncle
DOS will respond to commands that are preceeded
by a return and a control-D, just as he does from
Basic. Simply send the command to COUT one letter
atatime. In this situation, you turn on the 80-column
card by sending DOS the command PR#3.

ProDOS does not respond to commands sent to
COUT from assembly language programs. You must
use the ProDOS machine language interface, or, if
your machine language program is CALLed from a

Open-Apple 23

Basic program, you can poke the command string
into the keyboard input buffer at $200 (don't forget
to put a return at the end), and do a JSR DOSCMD
($BEO3) to execute it. Once again, use PR#3 to tum
on the 80-column card. (CAUTION: several com-
mands, including read, write, and append, don't
work correctly when initiated with DOSCMD.)
Ifyou don’t need DOS, turn on the card like this:

A9 03
20 95/ FE
AS 8D
20 ED FD

LDA %03
JSR QUTPORT
LDA u$80
JSR Cout

80-column slot number
do a pr#t with $FE9S
return

print it with $FODED

Big Boy Data Managers

Is there a good database manager for the Apple lic
that will accomodate 15-20 thousand names and
cross reference them with about 25 categories?

Lowell Levinger
Inverness, CA

I haven't tried all of the database programs avail-
able for the Apple, but of the ones I have used, the
database manager in AppleWorks is my run-away
favorite. I think it's the strongest of the three pro-
grams that comes with AppleWorks. It won't do
what you want, but keep reading.

After trying for a couple of weeks to set up Open-
Apple’s subscriber records with a “high-powered”
Apple Il database manager (and getting nowhere), |
turned to AppleWorks and had the whole thing set
up, complete with several kinds of status reports, in
a single aftemoon.

Since then I've written some Basic programs that
read AppleWorks-generated text files and do spe-
cial manipulations (such as, while printing monthly
mailing labels, also printing an invoice label for the
remittance envelope if an account is unpaid). Apple-
Works' ability to generate standard text files holding
data it has sorted, selected, and formatted is a very
strong feature of the program.

If you have a lic, you should have AppleWorks
anyhouw, so if I were you I'd start with it. It's quite
easy to use and is a good place to organize and
practice using a database. It won't be your final
solution, however— the great limitation is that you
won't be able to get anywhere near 15,000 records
inasingle file. Using a llc you'd probably need about
30 separate files to hold that much data. There Is a
possibility this wouldn't be a problem for you, but
that's unlikely.)

By starting with AppleWorks, however, you'll
have a clearer idea of what you want to do and how
to do it. Its great advantages are speed, ease of use,
and clarity. Sorting a 500 record file takes less than
10 seconds. You can move from record to record
instantaneously. You can display a whole screenful
of records at the same time and scroll through them.

Once you see what AppleWorks can do with a
sample of your data, you'll be in a better position to
Jjudge other database managers by their instruction
manuals. Given ProDOS, there is no theoretical rea-
son why a lic shouldn't be able to handle a database
as large as yours. [would recommend a hard disk or
other high-capacity storage device to avoid finger
blisters caused by constantly opening and closing
disk drive doors, however.

It's also necessary to consider how often the
records in your file are to be updated. If the records
consist of something like daily meal requests for
15,000 people, the Apple Iic will be woefully inade-
quate simply because one person working at one
computer can't update that many records in one

24 Open-Apple

day. If the records are updated yearly, on the other
hand, a single person using good software and a lic
will be able to manage the data and do lots of other
stuff, too. Always keep in mind the limits of what one
person using one computer can do when organizing
this much data. Sometimes you just can't handle it
without going to some kind of multi-user system.

Another big boy

A company here in Texas called Applied Engineer-
ing has a card for the Apple Ile that can expand
memory to as much as 1 megabyte (1024K bytes).
The company also offers a patch for AppleWorks
that will allow the user to have an 800K desktop. That
" should quell some of the blithering about how
limited AppleWorks is due to memory restraints.

For the price of an IBM PC and Lotus XYZ a smart
user could have a lle with 1 meg of RAM, Apple-
Works, and the Sider hard disk drive. There might
even be enough left over to buy a joystick. This would
turn the [le into a real mother-hummer. It might also
make a few of the PC parrots choke on their crackers.

Gary Maddox
Weatherford, Texas

You think just like I do. I have one of Applied
Engineering’s cards on order—look for a complete
report here in a month or two.

The DOS 3.3 append challange

Could you discuss the bug in the append com-
mand of DOS 3.3? When the file being appended to
ends at the end of a sector, it doesn't work. | have
discussed this with Apple, but they had no help to
offer. Is there a way to fix this?

Ferd G. Fender
Glenview, lll.

DOS 3.3's append command graphically demon-
strates the difficulty of getting all the little bugs out
of complex software. Apple has officially modified
append three times and still doesn't have it right. I
have officially modified it once and didn't get it right
either. So it's with some fear and trembling that |
enter this discussion.

Append is very similar to the DOS open command.
You use it to get a specific text file ready for reading
from or writing to. When you use open, DOS aims its
position-infile pointer at the first byte of the file.
When you use append, on the other hand, DOS aims
its pointer at the byte just beyond the last byte in the
file. If your next action is to write to the file, what you

N
Open-Apple
© Oopyggﬂ 1985

Y
Tom Weishaar
Published monthly.
World-wide price:
US$24/year
Send all

correspondence to:
Open-Apple

10026 Roe Ave.
Overland Park, Kans.
’ 66207 g
Source Mail:
JCF 238

CompuServe:
70120,202

Open-Apple is a trademark of Tom Weishaar. Apple Computer and
Open-Apple are two different, unrelated, independent companies
that wish everyone in the world had an Apple Il.

write will start at the end of the file, rather than the
beginning, and thus will be appended, or added to,

-the original file. (If your next action is to read from

the file, you'll get anend of data error.)

Unlike ProDOS, DOS 3.3 doesn't keep a record of
how long text files actually are. When you issue an
append, DOS 3.3 simply starts reading the file and
continues until it comes across a byte holding a zero.
By definition, the first zero byte encountered marks
the end of the flle. However, by the time DOS
retrieves the zero, the position-inile pointer is
aimed at the next byte— the byte beyond the zero.
So DOS next executes an internal position command
to back up the position-in-file pointer by one byte.

So far this all seems pretty simple, right? What I've
Just described is exactly how the DOS 3.2.1 append
command worked. But there’s a bug here. While a
zero byte in a file is themain method for marking the
end of the file, it's also possible for a file to simply
have no more sectors. This happens whenever a
file’s length is a multiple of exactly 256 bytes. The
final sector in the file will be completely filled with
data, there will be no more sectors assigned to the
file, and there won't be a zero anywhere in sight. In
this situation, the position-in-file pointer doesn't get
bumped up an extra notch, yet append insists on
bumping it back a notch as usual. The effect is that
the final byte of the original file is overwritten by the
appended material whenever a file ends exactly on
a sector boundry.

When the original version of DOS 3.3 was released
(around here I call it DOS 3.3.0), a patch was added
to take care of the problem. Unfortunately, what
should have been a simple test in theappend routine
to determine whether the position-in-file pointer
should be reset or not became a 74 byte patch of
amazing complexity. However, it fixed the bug.Yet,
like many patches, it added a new bug of its own.
This bug is quite obscure—let's just say that when
the stars are right, the DOS 3.3.0 append command
will still fail to work.

It was about this time that yours truly wrote
ProntoDOS for Beagle Bros. Much of the room for
the ProntoDOS routines came from removing
Apple’s 74-byte patch. | solved the major append
bug and got rid of the exotic one with just a few bytes
of code. I bragged that I had solved the DOS 3.3
append problem. Such fat-headedness is always
inappropriate for assembly language programmers.

For there was yet another bug. The position rou-
tine that DOS calls to notch back the position-in-file
pointer doesnt work correctly if the file being
appended to is longer than 32,767 bytes. Art
Schumer described the bug in an article that
appeared in the August 1982 Call -APPLE., page 57.
(it's also in Call -A.PPL.E. In Depth #3: All About DOS,
page 191) Unfortunately, I didn’t come across the
article until several months after | had finished
ProntoDOS.

The folks at Apple saw the article, however, and
when they released a new version of DOS 3.3 for the
Ile in January 1983 (I call this version DOS 3.3¢),
they fixed this bug. Rather than using position to
notch back the pointer, the lle version modifies the
pointer by hand. Apple also added 13 additonal
bytes of code to fix the more exotic bug in their
original 74-byte patch.

Was everybody happy? Does this story have a
pleasant ending? Not yet, gentlepeople; Apple’s new
patch made things even worse.

The position-in-file pointer within DOS is three
bytes long. One byte is aimed at the byte offset

vol. 1, No. 2

within a sector. The next byte is aimed at the sector
number—until it hits 256 anyhow. Then the third
byte comes into play and the second byte starts over
again at zero.

Apple’s DOS 3.3e patch only adjusts the lowest of
these three bytes. When a file-ending zero appears in
the final byte of a sector, the middle byte of the
pointer will have been advanced to point at the next
sector. But since the patch doesn't decrement the
middle byte, the position-infile pointer ends up
aimed 256 bytes beyond where it should be, DOS
3.3¢’s append fails completely once every 256
times.

In September 1983 Apple released a third version
of DOS 3.3. Apple’s people sald this would be the
final update to DOS 3.3, since ProDOS would be
introduced within a few months. (I call this final
fairly-fixed version DOS 3.3f). This version expands
the 3.3e patch to decrement the middle byte of the
position-in-file pointer correctly. However, it still ne-
glects to decrement the high byte of the pointer
when necessary; consequently even this version has
an append that will fail if you try to add something
to a file that's exactly 65,535 bytes long.

The program that follows fixes all the append bugs
I know about in all three versions of DOS 3.3. Enter
and run the program and test the results on a few
files. If everything works, you can initialize a new
disk and the changes will become a permanent part
of the DOS on your new disk. With standard DOS 3.3,
the patch overlays a portion of Apple’s useless 74
byte append patch and thus requires no additional
space.

ProntoDOS, however, already uses that area for
something else. If you are a Pronto user, start with
an unmodified copy fresh from the original Beagle
Bros disk. Then enter, run, and test this program.
After the append patch has been added, you can use
Pronto Update to add most, but not all, of the other
ProntoDOS enhancements and to update your
disks. Don't run this program after making other
enhancements to ProntoDOS or trouble could
result.

(If you are a DiversiDOS user, incidentally, your
append command already works correctly.)

10 IF PEEK(978)O157

THEN PRINT “48K 00S 3.3 NOT ACTIVE.” : END
15 PRINT “Installing APPEND patch...”
20 REM jdentify DOS type
21 1D=PEEK(46725)
22 IF 1D=165 THEN DT$="D0OS 3.3.0” : GOTOD 3@
23 IF 1D=1B6 THEN DT$="DOS 3.3e” : GOTO 30
24 IF ID=1B2 THEN 0T$="D0S 3.3f~ : GOTO 30
25 IF ID=206 THEN DT$="ProntoD0S” : GOTO 40

26 PRINT “ACTIVE DOS NOT RECOGNIZED.” : END

30 C$="A2R1:92 B6~ : GOSUB 500
32 C$="AEB3:0R" : GOSUB see
34 A$="B6S2" : GOTO Se

49 C$="A6CO:B3 BE” : GOSUB 500

44 A$="B6B3”

50 C$=A%$+~:B0 18 AC E6 BS DO 10 AC E4 BS
D@ @8 AC ES BS F@ OC CE ES BS
CE E£4 BS CE E6 BS 20 7E AE 60~
52 PRINT DT$;” currently active.”
54 PRINT “APPEND now works with any size file.”
56 END
500 C$=C$+” N DIC6G~
510 FOR I=1 TO LEN (C$) :
POKE 511+I, ASC(MID$(C$,I,1))+128 :
520 POKE 72,0 : CALL -144
530 RETURN

: GOSUB 500

NEXT

