Releasing the power to everyone.

Open-Apple
I

September 1985
Vol. 1, No. 8

Input absolutely anything

Two major problems Applesoft programmers have when trying to write
polished software are the unpredictable delays caused by garbage collection
and the inability of the INPUT command to accept commas or colons. Apple
fixed the garbage collection problem with ProDOS and Open-Apple has
shown you how to control it under DOS 3.3 (January, pages 4-5; March, pages
17-19).

Apple also wanted ProDOS to fix the INPUT command. Appendix B of Basic
Programming with ProDOS says (page 207), “The Applesoft INPUT command
has been made more useful....When you use ProDOS, the last variable in the
INPUT list is assigned all the remaining characters in the line, including
commas and colons. This means that you can now use a single INPUT
statement to read in any arbitrary string of characters.” Many people have
been very excited about this feature. Unfortunately, it's only in the manual —
ProDOS and Basic.system handle INPUT exactly as Applesoft and DOS 3.3
do.

Abetter keypunch machine. The reason INPUT won't accept commas or
colons is that Applesoft was designed so that several variables could be
input at one time. Consider this little Applesoft program:

100 PRINT “ENTER YOUR NAME, AGE, AND EYE COLOR.”
110 INPUT N$,A,ES
120 PRINT “THANKS” : END

When you run this program, you can enter all three data elements at one
time, separated by commas. Or you can enter them one at a time. If the data
is entered correctly (a big assumption), here’s what appears on the screen in
each situation:

ENTER YOUR NAME, AGE, AND EYE COLOR.
?molly,B,bluish-brown
THANKS

ENTER YOUR NAME, AGE, AND EYE COLOR.
?joe

274

?7brownish-blue

THANKS

Basic was developed in the 1970s, when trained operators entered most
computer data on keypunch machines. This kind of INPUT flexiblity seemed
on the cutting edge of technology in those days. Now, however, after
programs like GPLE, VisiCalc, and Apple Writer, INPUT seems absolutely
decrepit.

There is no way you can write an Applesoft program that has data-entry
and editing facilities as good as those in, say, AppleWorks. So why not use
AppleWorks or a similar program for data entry instead of even bothering
trying to write your own data-entry routines? If your data is mostly numbers,
use a spreadsheet. If it is mostly words, use a word processor. If it is a mix of
different types of information that have a consistent format, use a data base.
Last month Open-Apple showed you how to get these kinds of data out of
AppleWorks and into files you can manipulate with Applesoft programs. For
tabular, numeric information, use DIF files. For other types, use standard
ASClII text files.

The venerable GET loop. So we agree that in 1985 Applesoft's INPUT
command shouldn’t be used for much besides reading data off of disks. But
unfortunately, because of the way its developers fancyfied it back in the

1970s, it doesn't even work very well for that. Consider what happens when
you try to read these lines of data from a disk file with INPUT:

Route 4, Box 92
Pascagoula, Missiséippl
Apple Computer, Inc.
9/15/85 88:30

In each case, an EXTRA IGNORED error message will appear on your
screen (although program execution will continue uninterrupted) and you
will lose all information after the first comma or colon in a line.

An easy way to solve the problem is to use a GET-loop instead of INPUT:

108 GET A$: IF A$COCHR$(13) THEN B$=B$+R$: GOTO 100

In a GET-loop like this one, A$ is a temporary variable. The completed
string ends up in B.

There are three problems with this technique. First, it is extremely siow.
Second, it creates tons of garbage. Third, if you attempt to input a line with
more than 255 characters before a carriage return, you will get a STRING
TOO LONG error.

(Applesoft strings have a maximum length of 255 characters. The
Applesoft INPUT command, however, will accept only 239 characters. This
appears to be because INPUT and the section of Applesoft that reads
program lines you type on the keyboard share some important subroutines.
Program lines are limited to 239 characters; because of the shared
subroutines INPUT is too, but it doesn’t have to be. Interestingly, Applesoft
will allow you to enter 255 characters of both program lines and INPUT, but
everything after character 239 is ignored without warning,)

In the March Open-Apple (page 22), subscriber Jim Parr gave us a nine
line Applesoft subroutine that avoids the garbage-creation and string-too-

8=
k=1

= 2

N Ao

o

1
o

1A

“ FOR OBVIOUS REASONS THEY DECIDED NOT
7O USE AN ACRONYM. !

66 Open-Apple

long problems. It is suitable for any program that can access files casually. If
you want to do some heavy-duty data input, however (like reading a couple
thousand subscriber records of 30 fields each from a disk file), a GET-loop
quickly adds minutes to program execution time.

An historic look at input-anything routines. Because of the problems
INPUT and GET-loops have, Applesoft programmers have been looking for a
better solution for a long time. The earliest input-anything subroutine [have
heard of was published in Contact, a programming newsletter Apple itself
published in 1978 and 1979. The routine appeared in the October 1979
issue; in the early days of Applesoft. To use it, the first variable you define ina
program has to be X$. Then you have to poke in a short machine language
program that starts at byte 768. Then, instead of INPUT "ENTER YOUR
ANSWER HERE:"A$, you say:

500 PRINT “ENTER YOUR ANSWER HERE:“;
510 CALL 768 : A$=MID$(X$,1)

The assembly language routine at 768 calls the Monitor's NXTCHAR
routine, which gets characters from the keyboard or other input device,
prints them on the screen as they are typed, stores them in the keyboard
input buffer at $200, and stops (returning the length of the string in the X
register) when a return character is typed. NXTCHAR supports the standard
(and minimal) Monitor editing functions, such as back space and forward
space.

After using NXTCHAR to input the string, the routine puts the string's
length and the address of the keyboard input buffer into the variable
descriptor for X$. Applesoft uses variable descriptors to keep track of the
currentvalue of each variable. The variable descriptors are kept in a variable
table Applesoft builds as a program executes. Each descriptor indicates to
Applesoft what Kind of variable it describes (integer, real, string, function,
integer array, real array, string array); what the variable’s two-character name
is; and, for numeric variables, what the variable’s value is.

For string variables, the actual characters in the string are stored
elsewhere. The January Open-Apple (page 4) has picture of this. The
variable descriptor for a string, however, does tell Applesoft the string's
length and where in memory it is stored.

Because X$ is the first simple variable we define in our program, its
descriptor is at the very beginning of the variable tables. A zero-page location
known as VARTAB ($69-$70) always points to the beginning of the variable
tables, consequently the descriptor for X$ is easy to find. The first of the
input-anything routines relied on this.

After calling on NXTCHAR to collect the string and put it in the keyboard
buffer, the routine puts the string’s length and the address of the buffer into
the variable descriptor for X$, as described earlier. When control returns to
the Applesoft program, the A$=MID$(X$,1) command is executed. This tells
Applesoft to make A$ equal to X$ from its first character onward. The
command makes Applesoft dig X$ out of the buffer and move it, as A$, up to
the normal string storage location. A$=X$+"" works just as well; A$=X$ does
not, however. Pretty tricky, isn't it?

The code this technique needs at 768 looks like this:

0300: A2 00 LDX %500 initialize string length to zero

0302: 20 75 FD JSR NXTCHAR call Monitor‘s INPUT subroutine

0305: RO 02 LDY n$02

9307: BR XA move string length to A

9308: 91 69 STA (VARTAB},Y store it in byte two of descriptor

030A: CB INY for X$

930B: A3 00 LDA #$00 put address of keyboard input buffer ($203)
9300: 91 69 STA (VARTAB),Y in bytes three and four of descriptor
930F: CB INY

0310: A9 02 LDA 502 note that this only works if X$ is the
9312: 91 69 STAR (VARTAB),Y first variable in the variable table
0314: 60 RTS

This routine was written by John Crossley, who went on to become famous
in the Apple world as the person who named all the subroutines inside
Applesoft. Apple itself has never released the source code to Applesoft, but
in an early issue of Apple Orchard Crossley named and documented its

- major useful subroutines. A copy of Crossley’s article, "Applesoft Internal
Entry Points,” was republished in Call -APFLE. in Depth #1: All About
Applesoft, page 51 Crossley's names are now widely used in the Apple II
world. At the time Crossiey wrote his article most assemblers allowed a
maximum of six characters for labels. That's why Applesoft's routines and
locations are known today by such concise names as VARTAB.

Vol. 1, No. 8

Crossley’s input-anything routine had a bug in it, however, (its strings
wouldn't evaluate correctly with the VAL command) and Apple Il hackers
were soon improving it.

The June 1980 Call -A.PP.L.E. carried an improved “Input Anything
Subroutine” by Eric Goez on page 184; PEEKing at Call -A.P.PL.E., 1980 had
the “"Applesoft Input Nearly Anything Subroutine” by Val Golding on page
153; the March-April 1981 Call -A.P.P.L.E. had “Input Almost Anything” on
page 54; Peter Meyer wrote “The Ultimate Input-Nearly-Anything Routine,”
which was published in Call -APPLE:s book All About Applesoft (released
October 1981), page 94; then came Bob Nacon'’s “The Penultimate Input-
Anything Routine” in the January 1983 Call -A.P.PL.E., page 43.

All of these routines were improvements of Crossley’s original. Goez
solved the problem with the VAL function; Golding showed how to tack the
assembly language portion onto the end of an Applesoft program rather
than using the space at byte 768; Meyer, after paying tribute to Crossley’s
article on Applesoft entry points, showed how to get rid of X$ and how to use
the Ampersand command as well as CALL; Nacon showed how to store new
strings in the same place previous strings had been stored if the new ones
were the same length or shorter—a trick that caused garbage collection to
occur less frequently.

Even Uncle Louie tried to get in on the action. Bert Kersey's June 1982
DOStalk in Softalk, page 195, included an Applesoft routine that called
NXTCHAR and then dug the resulting string out of the keyboard input buffer
with PEEKs. Unfortunately, it created as much garbage as a GET-loop, only
slower. However, it didn't require an extra assembly language routine, nor
was it called “Input” anything. For historical reasons, this routine, “Extra
Embraced”, appears in the DOStalk Scrapbook on pages 20 and 21

Yet another input-anything routine. As the Open-Apple subscription
list grew over the last few months, it became clear that [would have to
replace the GET-loop in my mailing label program with something faster if
we were going to finish up before the bars closed. First I tried Meyer's
"Ultimate” routine and found that, under ProDOS, it issues a carriage return
every time NXTCHAR is called. Remember that the Open-Apple mailing
program reads 30 fields per subscriber; that's a lot of carriage retums. Since
my program read the file while the printer was on, I soon had a little model of
Victoria Falls splashing continuous paper all over the room.

It tured out this problem is very easy to solve if you know the right person
to ask about it (Cecil Fretwell, who will be doing a question and answer
column for Nibble starting later this year —you read it here first), but by nowI
was mad.

Another problem with any input method that relies on the Monitor's
NXTCHAR routine is that any escapes, control-Hs, control-Us, or control-Xs in
the file don't make it into the final string. In fact, a control-X in the file will
erase everything back to the last return, just as it does when you type it on the
keyboard. In addition, if a string is longer than 255 characters, as is often the
case with word processor files, the first 255 characters are deleted. Even a
GET-loop can bypass this problem.

This was the genesis of this month’s “Input Absolutely Anything” routine. It
loves commas, colons, escapes, and anything else you want to throw at it. As
written, it uses the Ampersand hook, although you could easily change this
to a CALL using the information given in Meyer's article. (Don't try to make a
Basic.system added-command out of it, however, as PRINT D$;"INPUT A$" will
turn your READ off, as all DOS commands do.) As written, the assembly
language portion of the routine is loaded at $300, but you could relocate it
anywhere.

This input routine isn’t meant to be used for keyboard input, although I
recommend you try using it that way for demonstration purposes. Because it
captures ALL control codes, you can’t do ANY on-screen editing. Pressing the
back space key will just put a back space character on your screen (a
flashing, inverse, or MouseText "H", depending on whatvideo mode and what
model of Apple Il you are using).

The following program will give you some idea how to use the routine for
keyboard input:

1000 & A%
1010 PRINT A$
1020 IF LEN(RS) THEN 1000

Watch what happens when you press the forward arrow, which creates a
control-U. Line 1000 will put this on the screen as a flashing (or inverse or
MouseText) U. When line 1010 prints it, however, it will be sent to the screen
as a true control-U. If you have 80-column mode on, control-U always turns it
off. This creates some interesting effects. To avoid them, try changing line
1010 to:

Downloaded from www.Apple2Online.com

September 1985

1010 FOR I=1 TO LEN(R%) : PRINT ASC(MID$(R$,I,1));” “; : NEXT : PRINT

This will print your string out as a series of ASCII codes and prove that our
new routine loves characters of all types. ’

Toread a file with Input Anything, substitute & A$" (or B$ or whatever$) for
“INPUT A$".

For the Basic-only programmers among us, here’s a program that will
create a machine code file, called IAA.OBJ, that holds the guts of Input
Anything. Type it in, run it once, and throw it away (enter B where you see b;
enter 8 where you see B or 8):

10 REM **¥ Create IAA.DBJ *¥x

20 PRINT “One moment please...”

100 C$="0300: AS B4 BS 33 20 E3 OF A2 0@ 20 OC FD AB 29 7F” : GOSUB 500
101 C$="030F: C3 @D @8 48 F@ 07 C9 20 bd ©3 69 48 AB 98 20“ : GOSUB 500
102 C$="031E: ED FD 68 28 F@ @D 9D 0@ 02 E8 E@ FF D@ DD A9~ : GOSUB 500
103 C$="0320: @D 20 ED FD Bs FD BA AG 00 D1 B3 FO @2 bd 1F” : GOSUB 500
104 C$="033C: 91 B3 C8 bl B3 85 71 48 CB bl B3 85 72 C5 70" : GOSUB 500
105 C$="034b: 68 90 0D C5 6F 9@ 09 BA A2 @0 AB @2 20 E2 ES” : GOSUB 500
106 C$="035A: 60 BA 20 52 E4 A2 00 AG 02 20 E2 ES5 A 00 AS” : GOSUB 500
107 C$="0369: FD 91 83 CB AS 6F 91 B3 CB AS 78 91 83 60~ : GOSUB 500

110 FOR I=768 TO 886 : X=X+PEEK(I) : NEXT

120 IF X=15279 THEN 200

130 PRINT “TRANSCRIPTION ERROR. CHECK C$ STRINGS.” : END
208 PRINT CHR$(4);“BSAVE IAA.0BJ,A$300,L$77"

210 PRINT “IAA.0BJ IS OK AND HAS BEEN SAVED.”

220 END

500 C$=C$+” N DIC6G” : REM S.H. LAM ROUTINE
505 FOR I=1 TO LEN (C$) : POKE 511+, ASC(MIDS(C$,I,1))+12B : NEXT
510 POKE 72,4 : CALL -144 : RETURN

Here's an Applesoft routine that will install your new IAA.OBJ file in
memory and link it to the Ampersand hook under either DOS 3.3 or ProDOS.
Note that it checks the status of the Ampersand hook and will refuse to
continue if another program is already using it. Really good Ampersand
routines are able to save the contents of the Ampersand hook and daisy-
chain to previously-installed routines if necessary. There was neither space
nor time for that this month. Run this to install our new input routine:

10 REM *** INSTALL IAR.DBJ *x**

180 REM get contents of & hook

110 AMP=PEEK(1014)+PEEK(1915)*256

100 REM determine whether DBOS 3.3 or ProD0S is active
120 IF PEEK (PEEK(977) + PEEK(978) * 256) = 76 THEN 150
110 REM ---D0S 3.3---

120
130
140

IF AMP < > 65368 THEN 300 : & hook in use if not $FF58 (RTS)
X=191 : REM a $BF to stuff at $301 for prompt
G070 200

Open-Apple 67
REM ---ProD0S---

IF AMP < > 48643 THEN 30@ : & hook in use if not $BE@3 (syntax err)

X=132 : REM a $B4 to stuff at $301 for prompt

150
160

170

200
210
215
229

POKE 1014,0: POKE 1015,3 : REM connect to & hook
PRINT CHR$ (4);”BLORD IRA.0BJ,A$300”

POKE 769,X: PRINT : REM fix $3081 for DOS in use
PRINT “INPUT.ANYTHING INSTALLED AND READY.”: END

300
310

PRINT “AMPERSAND VECTOR IN USE.”
PRINT “INPUT.ANYTHING NOT INSTALLED.”: END

After you have these programs working, test things with the keyboard
input program given above. Then try it out for reading disk files.

The advantages this routine offers over Applesoft's standard INPUT
command are that it can get ANY character; it creates less garbage by storing
shorter strings where longer ones had been; and it automatically divides
disk strings longer than 255 characters into shorter segments for Applesoft.
It does this without any loss in speed. Its disadvantages are that its
supporting machine language routine is rather long and that it doesn't allow
ANY editing of keyboard input.

Machine language secrets. The complete source code for InputAbso-
lutelyAnything appears at the end of this article. I present it as meat for the
assembly language tigers among our subscribers.

As | indicated earlier, this routine relies heavily on previous work, most of
which appeared in Call -A.PP.L.E.. The most significant contribution, the use
of the Applesoft routine PTRGET, first appeared in Meyer's article in All About
Applesoft. Our routine calls PTRGET (pointer get) at byte $304.

PTRGET tells Applesoft that the next item that will appear in the program
being executed will be a variable. In our case, this is whatever comes after the
ampersand that calls our routine —the A$ in “& A$”. If that next item isn’t in
fact a variable name, program execution will stop with a SYNTAX ERROR.

If it is a variable, PTRGET finds its descriptor in the variable tables and
points to the data area of the descriptor with VARPNT —variable pointer—
(not to be confused with VARTAB —variable table —which Crossley’s routine
used). If the variable has never been used before, PTRGET won't find a
descriptor and it will make a new one. This is an extremely powerful call.

The tip I picked up from Cecil Fretwell appears at the very beginning of our
routine. Both DOS 3.3 and ProDOS look at the PROMPT character to try to
determine what is going on. If DOS 3.3 finds a question mark — $BF —being
used as the prompt, it figures Applesoft is executing an INPUT command.
ProDOS sets the prompt to $84 when an INPUT is executed. To keep Uncle
DOS from getting confused about what's going on we must follow this
protocol too.

After setting PROMPT and VARPNT, our next task is read a line of text. Since
it is NXTCHAR itself that traps control characters, we can't use it. Instead our
routine uses the Monitor's equivalent of the GET command, RDKEY. RDKEY
puts a cursor up on the screen and jumps to the address stored in the
Apple’s "input register” or “input link”. This always points to an input routine
inside DOS.

DOS looks to see ifa disk read is in progress. If so, itimmediately removes
the cursor from the screen. Have you ever noticed a phantom underline
appearing on your screen during disk reads? This is RDKEY's cursor (used by
NXTCHAR, INPUT, and GET). During disk reads it is on the screen for such a
short time that the Apple’s video display circuitry usually catches just one
line of it.

If a disk read is NOT in progress, DOS will pass the read call on to the
current input device. In any event, when the call retumns to our own routine,
the character read will be in the A register.

We need to determine if the character is a carriage return, which would
indicate the end of the line. Since a return can appear as either $0D or $8D,
depending on whether it is in the low-value or highvalue ASCII format, we
save the returned character temporarily in the Y register, then clear its high
bit, then test for a return. We'll need the low-value ASCII representation of this
character again later, as that's what Applesoft expects to find stored in
strings. High-value ASCII characters are not correctly evaluated by Applesoft's
VAL command.

Any time DOS sees a call to RDKEY it expects a call to COUT to follow
immediately. COUT is the Monitor routine that displays characters on the
screen— RDKEY doesn't do this. To satisfy DOS's expectations (and to have
what you type appear on the screen), it’'s necessary to send what RDKEY gives
us to COUT.

However, a problem occurs. Some control characters do strange and
wonderful things to the screen when sent to COUT. Control-U (the forward
arrow), for example, turns off 80-column mode. Since we don’t want this to

68 Open-Apple

happen, our routine traps all control-characters other than return and adds
$40 to them. This makes them capital letters instead. Depending on what
mode your screen is in, they appear as flashing (40-column mode), inverse
(80-column mode without MouseText), or MouseText.

After we've sent the character to COUT we recover the low-value ASCII
version and check again to see if it is a retumn. If not, we store it in the
keyboard input buffer at $200; add one to the X register, which we use as a
string length counter; and go back to RDKEY for another character.

Right in here we also have to check to see if the string is 255 characters
long yet. If it reaches that length before we get a return, we pretend we saw
one anyhow. This happens in the $328-$330 area of our program. If you
would like your longest strings to be less than 255 characters (so you have a
little room to add stuff to the end of them), you can POKE a lower value into
byte 809 ($329).

Once we get a return, or all the characters we want to handle at one time,
we store the string length for later use. Notice that this length includes the
carriage return at the end of the line, but the carriage return won't actually be
apart of the string. This length value will be stored in the variable descriptor
but the true length of the string is actually one less than what the descriptor
indicates. This is what Applesoft expects.

At byte $336 we compare the length of our new stringwith the length of the
string this variable had before. It the new string is shorter, we might want to
overwrite the old one. Where we store shorter strings depends on whether
the old string was actually stored in the normal string storage area or inside
the program itself. Consider this line:

1000 A$="A BEARUTIFUL HEADING”

When a string is defined inside a program like this, it is not moved to the
normal string storage area. In order to save space the variable descriptor
points right where the string appears in the program. If we didn’t check for
this and stored new shorter strings here, we would change the program
listing. Not a good idea. For example, say we did & A$ and input "UGLINESS
IS”. The program line would now be:

1000 A$="UGLINESS IS HERDING”

If you resaved the program at this point you'd have a nice mess on your
hands. In order to avoid this problem we check to see at bytes $343-$351
whether the old string is in the normal string storage area. If not, we'll skip
down to byte $35B and move the new version up there. If so, we're ready to
call an Applesoft routine known as MOVSTR (move string). MOVSTR expects
the length of the string to be in the A register, the string’s current location in
the Xand Y registers, and the string's new location in FRESPC. We managed to
filt in FRESPC while we were checking to see if the string was inside the
program. We take care of everything else in bytes $352-$359 and, if the new
string is to overwrite an old one, we are done.

On the other hand, if the new string is longer, or replaces one defined
inside the program, another magical Applesoft routine must be called.
Again, Meyer's was the first of the works I've mentioned to use it. It's called
GETSPA (get space). Our call to it starts at byte $35B. GETSPA expects the
length of the string to be in the A register. It makes room in the string storage
area for a new string. If no room is available, it will force garbage collection. It
automatically sets up the FRESPC pointer MOVSTR needs and returns with
the string length still in A.

In this case, we call MOVSTR at bytes $35F-$365. After the string is moved
we must correct the variable descriptor for the string’s new length and
location ourselves. This occurs at bytes $366-$375. Then we're done. So’s
this article. Here's the source code:

: INPUT ABSOLUTELY ANYTHING

: by Tom Weishaar
September 1985

Ko K M M K

: a public domain subroutine

NOTE: Bees in bytes 301, 317, 33R, 33F, 345; all others insects are eights.

9033: PROMPT .EQ $33 current prompt is used as a flag by DDSes
006F : FRETOP .EQ $6F new strings are stored here

0071: FRESPC .EQ $71 MOVINS’ move-to pointer

8083: VARPNT .EQ $83 pointer to current variable descriptor
00FD: LENINS .EQ $FD length of current string

0200: INBUF .EQ $20@ keyboard input buffer

DFE3:
£452:
ESE2:
FDecC:
FOED:

0300:
0302:

0304:

0307:
0309:
03eC:
930D:
030F :
0311:
0312:
0313:

0315:
0317:
0319:
031B:

031C:
0310:
0320:
0321:
0322:
0324:
0327:
0328:
032A:
032C:
932E:

0331:
0333:
0334:
0336:
0338:
033R:

033C:
033€:
033F:
0341:
0343:
0344:
0345:
0347:
0343:
0348:
034C:
034E:
0350:

0352:
0353:
0355:
0357:
035A:

0358:
035C:
@35F:
0361:
0363:
0366:
0368:
036A:
936C:
036D:
036F :
0371:
0372:
0374:
0376:

A3 BF
85 33

20 £3 DF

A2
20
A8
29
c9

48
Fo

cs
Bo
63
A8

98
20
68
28
Fo
30
£8
EO
De
A3
20

86
8A
A
D1
Fo
Be

91
[of:}
B1
85
48
c8
Bl
85
cs

90
cs
90

BA
A2
20
60

B8A
20

20
oc

v
oD

07

20
03
40

ED

oD
00

FF
0D
o0
ED

FO

00
83
02
1F

83
83
71

83
72
70

6F
09

E2

S2

E2

FD

FD

ES

E4

ES

PTRGET
GETSPA
MOVSTR
ROKEY
cout

.O0R

.EQ
-EQ
-EQ
-EQ
.EQ

$300

$OFE3
$E£452
SESE2
$Fpec
$FDED

Yol. 1. No. 8

finds selected variable and adjusts VARPNT
makes space for string storage

moves string from one place to another
Monitor read key routine

Monitor character out routine

.TF INPUT.ANYTHING

INPUT .ANYTHING

LDA

1$BF

STA PROMPT

JSR PTRGET

LOX

.1 ISR

TAY
AND
cmp
PHP
PHA

BEQ .

cHP

BCS .

ADC
TRY

.2 TYA

JSR

.3 PLA

PLP

BEQ .

STA
INX
CPX
BNE
LDA
JSR

TXA
Loy

"o
RDKEY

nsoF
12D

ns20

1340

cout

INBUF

#2585
.1

1$00
cout

1$0

WX

.4 STX LENINS

CHP_ (VARPNT) Y

BEQ
BCS

INY

.5
.6

.5 STA (VARPNT),Y

LDA (VARPNT),Y
STR FRESPC

PHA
INY

LDA (VARPNT),Y
STA FRESPC+1
CMP FRETOP+1

PLA
BCC

.6

CMP FRETOP

BCC
TXA

.6

LDX HINBUF
LDY /INBUF
JSR MOVSTR

RTS

.6 TXA

JSR GETSPA
LDX HINBUF
LDY /INBUF
JSR MOVSTR

Loy

s0

LDA LENINS
STA (VARPNT),Y

INY

LDR FRETOP
STR (VARPNT),Y

INY

LDA FRETOP+1
STA (VARPNT),Y

RTS

for ProD0S use $84; for DOS 3.3 use $6F
DOS uses current prompt as a flag

Dig user’s variable out of progranm,
and aim VARPNT at its descriptor
(if first use, make a descriptor)

initialize string length to zero
get a character
save it in Y
clear high bit
check for a carriage return
save result of check
save character in A (high bit clear)
branch if it was a carriage return

is it any other control character?
branch if not

yes--add $40 to make it flashing, inverse,
or MouseText and slyly slip it into Y

recover original character ROKEY returned
and print it
recover version with high bit clear
remember if it’s a carriage return
branch if it is, we’re done
otherwise, put it in the keyboard buffer
and add 1 to the string’s length
is the string 255 characters long yet?
no, go get another character
yes, slip COUT a carriage return even
though one wasn’t really in the file

end of string; save its length
move length to A
compare length to the length currently
in the descriptor for this variable
same length or shorter goes to .5
if new string is longer goto .6

save neuw length in variable’s descriptor

get current string location from descriptor
and store at FRESPC for MOVSTR
save low byte of location

same for high byte

is string stored in string area?
(recover low byte)

branch to .6 if not, i.e., if string
is stored in a program statement,
don’t overurite it

move string length to A

put current address of string in
X and Y for MOVSTR

move it to where FRESPC points

done

move string length to A for GETSPAR, which
makes room in string area, collecting
garbage if necessary, and sets up FRESPC

put string adr in X and Y for MOVSTR

move it

get new length and store it in variable
descriptor

get new address and store it in variable
descriptor

done

Ask

(ortell)
Uncle

DOS

Quick, more pie

Here's some footnotes to AppleWorks Pie (August,
page 57). You can effectively empty the clipboard by
copying an empty space to it. Even if you've already
defined a custom printer, you can still print formatted
text to disk by “adding” one of the listed printers and
then choosing “print onto disk” when you're asked
for a slot number. The Silentype is a good choice for
this.

Debra Hara, whose address you gave on page 61 as
the source of free documentation on the internal
structure of AppleWorks files, has moved to Mail Stop-
3P at Apple. My own Notes for AppleWorks will be
replaced by a much-enlarged SYBEX book to be
released in October. Applied Engineering and Check-
mate Technology have expanded the data-base-
records limit to 5114 and 5,100 respectively.

Robert Ericson
Rumford, Rl

Competition is a wonderful thing; particularly the
price and features competition we've seen in 1985
among the makers of big RAM cards for the Ile. Prices
have fallen almost as quickly as the AppleWorks
desktop and data base have grown.

AppleWorks users will be interested to know that
competition now appears to be heating up among
the manufacturers of cards that add a high-speed
version of the 65C02 microprocessor to the Apple.
Obviously, it takes longer to sort one of these
whopping 5,000-record AppleWorks data bases than
one of the smaller 500-record files that barely fits on
the standard 55K desktop. Card manufacturers think
many people who have gotten addicted to AppleWorks’
fast response on small files are willing to pay for fast
response on large files as well.

The SpeedDemon is such a card; Micro Computer
Technologies sells it for $249 (1745 21st St, Santa
Moncia, Calif. 90404 213-829-3641). I've had one on
loan from M-C-T for about a month. Here's the results
of some tests I did with the AppleWorks data base:

Comparison timings in seconds

Applelorks data base file with 2,350 records.
(Apple Ile, Sider hard drive, AE RAMworks card)

function SpeedDemon standard faster-factor
load file 28 50 1.8
OA-Find 9 26 2.9
alpha sort 22 54 2.4
numeric sort 25 69 2.8

(Note: AppleWorks sort times depend on the degree
to which a file is unsorted. Sorting a file that is
already in nearly the specified order is much quicker
than the same sort on a file arranged randomly. For
these tests, files were shuffled with identical tech-
niques before the timing tests. Also note that the file-

loading tests used a hard drive; floppies are much
slower on files this large.)

The SpeedDemon fits in any standard slot of an
Applell, II-Plus, or lle (even in slot 3 on the lle). When
you turn aSpeedDemoned Apple on, the card takes
control and turns the computer’s built-in 6502 off.

The SpeedDemon is then off and running. Unfor-
tunately, however, it can't run at full speed all the
time. Lots of routines inside the Apple were specifically
designed to execute at the speed of the standard
6502. For example, DOS 3.3 and ProDOS read from
and write to floppy disks using routines that contain
critical timing loops. If the microprocessor isn't
pulsing to the beat of its standard, slower clock,
these routines simply don't work.

To compensate for this, the SpeedDemon carefully
watches the softswitches for slot 6. Whenever the
address of one of these disk-drive controlling locations
appears on the address bus, the SpeedDemon
slows down to normal speed for 50 microseconds.
Usually, another reference to slot 6 will appear
within that length of time and the timer will be
restarted. Consequently, the SpeedDemon slows
down as long as is necessary to read from or write to
the disk.

Optionally, you can also make the card slow down
after references to the softswitches for slots 4 and 5.
You would do this if you had a second disk drive
controller in slot 5. I had to move my ancient pulse-

. dial Hayes Micromodem to slot 4 to slow down the

speed at which it dials the phone. (Even then I had to
put an asterisk between all the digits of the phone
numbers to keep my modem software from auto-
dialing faster than Ma Bell could keep up.)

The SpeedDemon works fine with the Sider hard
drive and with revision D and higher of Applied
Engineering's RAMworks card (some earlier RAMworks
are also supported, ask Applied Engineering for
more details). The SpeedDemon doesn't work with
SCRG's quikLoader because both cards try to take
control when the computer is turned on.

The people at M-C-T tell me they are about to
release a new version of the SpeedDemon. With this
card you will be able to control speed-up for each
slot individually. The newer version will also work
with Saturn, Legend, and Prometheus memory
cards, which the current version can't do, and will be
able to read joysticks and game paddles accurately.
Unless you are really good, most games play better
with the SpeedDemon tumed off.

You can disengage the SpeedDemon by turning
the computer off, back on, pressing escape within
two seconds, then pressing control-reset. Or POKE
49243,0 followed by pressing control-reset turns
the SpeedDemon off from inside a program.

You can tellwhen the SpeedDemon is on because
the standard Apple beep becomes a chirp You'll also
notice that cursors blink and move faster, that
screens appear on the screen with more snap, and
that microprocessor-intensive tasks take only about
half as long or less.

My biggest reservation about the card is its price.
You have to spend lots of seconds sitting in front of a
“working” Apple to make $245 seem inexpensive.
Let’s hope the kind of competition we see in the RAM
card arena spreads to manufacturers of speed-up
cards. That will bring out more new features and
lower prices.

And consider this. Once your computer is operated
by a microprocessor on a card, why does it have to
be a 65C02? Why not a hi-speed 658027 Does the
Apple Il have any limits at all?

Open-Apple 69
Enlarging the llc

lam interested in finding out more about the 256K
modification to expand Apple Works on the lic. |
would like to know where it goes, if it can be self-
installed, ifyou've tried it, and if you think it's worth it.
This is certainly a superior option to me, compared to
getting a hard disk drive, since Apple Works is the
main entity [would need the expanded memory for.
Tom Hays
Wichita, Kans.

Applied Engineering’s Z-RAM card for the IIc comes
with complete installation instructions. As I understand
it—I don't have one (yet)—you must open up the
Iic, remove the microprocessor, plug the Z-RAM card
into that socket, plug the microprocessor into a
socket on the card, and attach one wire for the card
to another Iic pin with a clip of some kind.

In addition to your choice of an additional 256K or
512K RAM, you would then have a CP/M computer as
well. Z-RAM comes with RAM disk software for
ProDOS, DOS 3.3, Pascal, and CP/M; a CP/M-like
operating system and CP/M manual; and Applied
Engineering’s Apple Works Expand software.

Among other things, this software allows almost
all of AppleWorks to load into memory, which greatly
reduces response time—more than a hard disk
would. The only problem I see with Applied Engi-
neering’s card is that rumors abound that Apple is
coming out with its own system for adding RAM to
lles and lics and Apple’s system probably won't be
compatible. (However, it wouldn't surprise me if
Apple’s scheme was ignored by buyers and software
developers in favor of the scheme used by Applied
Engineering and other third-party vendors. Apple’s
scheme will probably prevail, as usual, but it's not a
sure thing in this case.)

There’s also a rumor that Applied Engineering has
allc RAM card in the works that will have a clock on it
instead of CP/M hardware. Either way, however, if
you're happy with the Z-RAM/AppleWorks combination,
what might follow tomorrow shouldn't be a major
consideration.

ll-Plus and extra RAM

How can the II-Plus be expanded to 128K or greater
by bank-switching, like the Ile or lic?

James Landmark

Omaha, Neb.

Memory expansion cards for the II-Plus are available

from several different companies. The major problem

with these cards is that they all use different bank-

switching schemes, none of which is the same as the

scheme used on the lle and lic. Thus, very little

software is available that is capable of using the extra

memory, even if you have it.

Should have been selected

We use (and are a dealer for) the PRINT-IT! card
manufactured by Texprint that you mentioned in the
Julyissue (page 53-54). It works like the other printer
interface card you talked about, but also solves your
major reservation — PRINT-IT does beep and display
“NOT SELECTED" on your monitor ifyour printer isn't
turned on. Just tumn the printer on and the PRINT-IT!
card continues immediately.

Texprint now also has Save-It This software, in
conjunction with the PRINT-IT! card, will allow you to
save any screen into a disk file.

George A Calder
Livonia, Mich.

70 Open-Apple

The control-P conspiracy

1 am intrigued by the following behavior of my
Apple lle. When | turn the power on and press control-
reset before DOS is loaded, I can enter the Monitor,
type "1 control-P”, and get the contents of any range
of memory sent to my printer by typing
addressladdress2.

But if I enter the Monitor after DOS is loaded, this
technique doesn't work.

The DOS Programmer’s Manual lists the values
that are supposed to appear in the “Output Register”
at $36-$37 when "1 control-P” is entered (page 125).
But if DOS is loaded the values at $36-$37 are not
what the manual says. Willyou kindly enlighten me on
this?

Vedula N. Murty
Middletown, Penn.

When DOS is active, the Output Register and its
companion Input Register ($38-$39) always point to
routines within DOS itself. This is so that every time
youtype something on the keyboard or printit to the
screen DOS will get to see it first. DOS scans all input
and output looking for DOS commands.

If you want to route output to your printer when
DOS is active, use the PR#1 command, even from
inside the Monitor. DOS will see this message as it
passes by and execute it. However, even then the
actual contents of the Output Register won't change;
they'll still point at DOS. DOS 3.3 keeps the true
Output/Input Registers at $AA53-$AA56. ProDOS
keeps them at $BE30-BE33.

If you use the "1 control-P” command instead of
PR#1, DOS will not recognize it as a command. The
Output Register will be momentarily changed as
described in the manual, but you won't see it
because DOS will erase the new value as it hooks
itself back up to the Output Register when the next
character (the retun at the end of the command)
passes by.

This process is very complex. For a complete
description, see The DOStalk Scrapbook, Chapter
12, "How the System Operates,”pages 81-91 If you
have a stack of old Softalks, this chapter originally
appeared in May 1983, pages 205-210.

ProDOS and compliers

1 have written a rather large programme, running
under DOS 3.3, to keep records and a mailing list of
several hundred club members. I've done this by
reading each member’s details into a two-dimensional
array, which resides continuously in memory. Although
this method uses a lot of space, retrieving details
from the array is much quicker than accessing the
disk each time a record is required.

The programme works fine. To speed up the
various searching and sorting routines it contains, |
complied the entire programme using the TASC
complier. The compiled programme also works well
and of course much, much quicker.

However, both the Basic and complied versions still
suffer in speed because of the dreaded Applesoft
garbage collector. Thus ProDOS, with its much
improved garbage collection, appeared to be the
answer.

The uncompiled Basic programme was successfully
transfered from DOS 3.3. to ProDOS using CONVERT
and garbage collection no longer appears to be a
problem. The crunch is, though, that the compiled
version, although transferable to ProDOS, does NOT
work. It appears that the non-disk routines in the

programme all still work, e.g, screen layouts, searching,
sorting, etc. However, as soon as disk access is
required, the programme stops with text like the
following on the screen:

OPEN TEST,L170
READ TEST,R1
?

This is the type of message one would get if PRINT
CHR$(4) had been omitted. I have tested this obser-
vation with other shorter programmes that [have
written under DOS 3.3, compiled, then transferred to
ProDOS. All appear to suffer the same problem—
Basic programs transfer ok, TASC-compiled pro-
grammes that have no disk reading/writing routines
are also ok, but TASC-compiled programmes con-
taining disk routines seem to ignore the PRINT
CHR$(4) and come to a grinding halt.

Help (if there is any). If the problem can't be
overcome, ProDOS goes to the back of my disk
drawer.

WF. Carey
Athelstone, South Australia

To my knowledge, no Applesoft compilers have
been written that work with ProDOS. Under DOS 3.3,
assembly language programs could “print” DOS
commands just like Applesoft did and DOS would
recognize them. Basic.system doesn't support this.
This makes a ProDOS-based Applesoft compiler
more difficult to write.

Cecil Fretwell has an article in the August Call -
A.P.P.LE. (page 19-25) that discusses this problem
and offers some possible solutions. He has told me,
however, that there is another significant problem
with getting a compiler to work with Basic.system.
This one has to do with the way Basic.system moves
things around in memory when a file is opened and
with keeping the ProDOS garbage collector from
messing with non-string compiled variables.

I'm sure someone will solve these problems
someday, but it doesn't appear to have happened
yet.

The Sider and software

I have seen several references to the Sider hard
drive in Open-Apple, but not much about software
that will work with it. | have a Sider and a [l-Plus and
have never felt a need to “step-up” to ProDOS. |
decided to order a Sider after using IBM-XTs at work
and getting spoiled by the speed and ease of operation
of a hard disk. My unit arrived 12 days after my
telephone order, far ahead of the 30 days I was told to
expect. The packing, as you have mentioned, is
formidable.

The documentation, alas, is less than the packing,
One particular problem, clarified by the friendly
people at their 800 number, is the matter of compati-
bility with other peripherals. The documentation
casually mentions that removing all non-essential
boards during setup may be necessary. DO IT. My II-
Plus and the Sider would NOT work at all during
format if | had more than a 16K card in slot 0, floppy
card in slot 6, and the Sider card in slot 7.

After formatting (65 DOS 3.3 volumes), I found that
my two printer cards (connected to dot matrix and
daisy wheel printers) would not work in their usual
slots 1 and 2. Something to do with bus timing, or the
way [was holding my mouth that day, according to the
800 advisor. After moving my printer cards to slots 4
and 5, I was back in operation.

The next step—what software to use? I use my
system primarily for writing so a word processor was

Vol. 1, No. 8

my first order of business. 1 had used the DOS 3.3
version of Apple Writer for more than two years
without problems. Now, however, | ran smack into the
wall of copy protection.

Ifinaily found a word processor that will do most of
what | want—totally within the bounds of the Sider
environment. This is the S-C Word Processorfrom S-C
Software (P.O. Box 28033, Dallas, TX 75228). The cost
is $50 and includes WELL commented assembly
source code. This word processor is unprotected,
transfers readily to the Sider, uses standard DOS 3.3
commands (including volume number to load and
save within the Sider) and has all the usual word
processing features.

I have patched my version to cause the QUIT
command to retum to the Sider menu instead of
Applesoft, and to list only text files when the file -
search option is invoked instead of including binary
files such as those created with the old Apple Writer
10. I'll pass these patches on to anyone who sends
me a self-addressed stamped envelope. Now the only
feature I need to print myfirst novel (when I finishit) is
a document-chaining facility to print segments as a
seamless whole. Some day, about a year and nine
days from now at my present rate, | will figure out the
source code well enough to add that feature.

The next program I needed was a spreadsheet to
figure how much money 1 have lost this year by
investing in equipment to become a rich and famous
author. Once again, copy protection meant that the
program 1 had used for years, VisiCalc, would not
work.

The Spreadsheet from APPLE. CO-OP, 290 SW
43rd St, Renton WA 98055 fills the bill. The cost is $65
(no source code) and the program uses DOS slot,
drive, and volume parameters for loading and saving.
You can ftransfer it to the Sider using the FID-like
utility that comes with the drive. It will load my old
VisiCalc files and even has features my old VisiCalc
lacks. My tax calculations are back in operation.

As well as writing and figuring where all my money
has gone, | have done some data base work for a
writer’s group. | have been using DB Master #3 but,
you guessed it, copy protection struck again. Fortu-
nately, Stoneware has come up with a version that will
work with the Sider. The mail order houses should
have this one by now for about $200.

| have DB Master's Sider version 16 (they have
already promised an update) and have not found it to
be really ready for full use. The major drawback is that
the program will not actually transfer to the Sider and
boot —you must put the program disk in your trusty
old floppy drive. It does work, however. It has all the
features of regular DB Master, has only one tiny bug
that I can find (in the file restructure utility), and is
almost worth the price. At least my data files are
totally on the Sider, eliminating disk swapping for my
large files. | would recommend waiting for the next
version, however, in the hope that it will run without
using a floppy.

There you have it. Three programs that work under
DOS 3.3 on a ll-Plus with a Sider hard drive. Two of the
three are even priced right. Now if I can just find a

decent checkbook program.
Tom Smith
1416 NE 98th Ave
Fort Vancouver, WA 98664

I've never used either the S-C Word Processor or
DB Master, but I can highly agree with your recom-
mendation of The Spreadsheet. It recognizes and
uses the extra memory in most RAM cards, works
with many 80-column cards, and is easy for former

September 1985

VisiCalc users to get used to. The same program is
also sold under the namelACcalc by the Intemational
Apple Core and many Apple user groups.

Itrust that anyone who has figured out how to add
a chain routine to the S-C Word Processor will
contact you.

Time is Money (Turning Point Software, 11A Main
Street, Watertown, MA 02172, 617-923-4441) won't
work with a hard drive, saves your data in absolutely
unaccessible files, and costs too much. Nonetheless,
its speed, flexibility, and capacity more than make
up for those things. It's the checkbook/accounting
program I use around here and it never ceases to
impress me.

IBM compatible Apple

Lots of people told me it couldn’t be done, but I'm
running MS-DOS programs on my Apple II with a
Rana 8086/2 and storing MS-DOS files on one of the
ProDOS partitions of a Sider hard drive. This makes
for afascinating and flexible system. It runs Lotus 1-2-
3 and Rbase, as well as a considerable amount of
other MS-DOS software (but not Flight Simulator or
Sidekick).

I've found that X-Basic, written for the ITT personal
computer, works fine with the Rana 8086/2 if programs
turn the cursor on with a LOCATE 111 command. 1
am interested in corresponding with other Rana
8086/2 users.

Al Grimes
6613 McLean Ct
McLean, Va. 22101

Apple Writer and Applesoft

While browsing through my back issues of Open-
Apple, | came upon your recommendation, in the
May issue (page 36), to use a word processor to edit
Basic programs. | had intended to write you earlier to
tell you that I had always thought | was the one who
invented that idea; but never mind—I'm grateful to
you for spreading the word.

Despite the advantages you mentioned, | had used
that technique very little until recently. I have a [I-Plus
and Videx Videoterm 80-column board, so | needed
to boot the Videx pre-boot disk as well as Apple Writer.
Then, after writing my Basic code, [had to re-boot
DOS and EXEC my text file. After checking out the
program, | had to reboot the pre-boot and Apple
Writer to make changes. This was quite a nuisance.

To the rescue came a program with the felicitous
name of OpenAppleWriter. It aliows you to switch
back and forth instantly between Apple Writer and
Applesoft, using only three keystrokes. OpenApple-
Writer is a product of CondiCom, 436 Berry Dr,
Naperville, IL 60540. Their version for DOS 3.3 costs
$39, their ProDOS version costs $29, both are $49.

There are other ways in which I use Apple Writerin
conjunction with Applesoft and DOS. One is to
examine and repair sequential text files that were
created by a Basic program and that have been
messed up. For this purpose, random access files
can be converted to sequential files by a Basic
program such as the one described by Val Golding in
Call -A.PPL.E. in Depth #3: All About DOS, page 178.
To enable the program to continue after a bad record
is encountered, | added an ONERR GOTO routine. If
the file is really messed up, the program will crash
just as you described in January (page 2). Next time |
use this program | plan to add your CALL -3288 trick.

Another thing 1 do with Apple Writer (in 80-column
mode) is to lay out titles, column headings, and row

headings for reports that are to be created with Basic
programs, It's easier to visualize how the report will

* look and to get the spacing and indentation right the

first time. | have my Applesoft program READ the
heading file as an array of strings and PRINT each
string on the appropriate line followed by the computed
numbers. To preserve leading blanks and embedded
commas and colons, [start each line in the Apple
Writer file with a quotation mark.

I've also reversed the procedure and used Applesoft
to create files to be printed by Apple Writer. Once,
when I had nothing better to do, I sketched my club’s
logo on the hi-res screen, then wrote a Basic program
to convert hi-res memory to an array of bytes that
could be understood by the graphics mode of my
printer. With a bit of fiddling, 1 was able to store this
array as a text file that can be loaded into Apple Writer
and printed as part of other documents, thus adorning
club correspondence.

I'm sure you will be pleased to know that I file my
copies of Open-Apple in a three-ring binder of
unknown provenance that is imprinted IBM Data
Processing. Whatever its original contents may have
been, its present contents are surely of much greater
value.

Paul Nix
Summit, NJ.

Thanks for your tips. According to other information
I've seen about OpenAppleWriter, it also does away
with the Videx pre-boot disk and allows Apple
Writer to work with hard disk systems under DOS
3.3.

Another efficient way to edit Applesoft (or assembly
language) programs with Apple Writer is to use two
computers. This gives you all the benefits of an
$8,000 multi-tasking machine, but you have two 80
X 24 windows for your work instead of just one. |
boot up Apple Writer on the Ile in front of me and
GPLE or the S-C Assembler on the II-Plus to the right
of me. I link the two computers together with an
amazing networking device called the floppy disk.

The program by Val Golding that you mention
crunches all the empty space out of arandom-access
file; the resulting file is not random-access. You can
get true random files to load into Apple Writer by
filling all the records with blanks before you start
saving real data. That way your file will still be
random-access but Apple Writer won't know it and
will load it normally.

Two-column format

Is there a way to achieve a two-column newsletter-
type format using AppleWorks and an Imagewriter?

Steve Greve

Augusta, Maine

InNotes for AppleWorks (see August issue, page
61) Robert Ericson suggests the following. Write and
edit your text using margin settings that give you the
correct width for one column. Clear all tabs, then
reset a single tab at the right margin. Use the tab and
return keys to put a return at the end of each line. Use
open-apple-Z to see what you are doing. Print the
resuiting document to an ASCl file on disk.

Make a new, one-category, data base file from
scratchwith this ASCI file. Create a table-style report
and accept the defaults offered. Print this report to a
DIF file.

Make a new spreadsheet file from scratch using
this DIF file. Widen the spreadsheet’s first two
columns and use the spreadsheet’s copy function to
move text from column to column as needed. The

Open-Apple 71
spreadsheet becomes a layout surface for your
whole newsletter.

I haven't tried this trick, but Ina Levinson wrote it
up for the Houston user group newsletter and
swears by it. 1 suspect that codes for bold, underlining,
and altemate character widths will disappear, however,
which could cause problems.

Away that avoids loss of bold and underlining is to
print one column and then roll the paper back
manually to print the second column. Start this
technique by making your top and bottom margins
zero and your page length the actual length you
want for your columns. Try the Imagewriter's
Proportional-1 type and full JUstification. Write and
edit your letter with margin settings that are correct
for the first or left-hand column of your newsletter
(tryanLMof.5 RMof 4.2).

When you are finished editing, use open-apple- K
to find page breaks. Change the margin settings for
the second page so they are appropriate for the
second or right-hand column (try an LM of 4.2, RM of
.5) and put an open-apple-O “PH" (Pause Here) code
between the new margin settings and the copy. For
the third page copy the settings for the first column
and add a pause; for the fourth, copy the settings for
the second column; and so on.

Print the document. When the printer pauses the
first time, manually roll the paper back to the top of
the first column. When it pauses the second time,
manually roll the paper to the beginning of the
second page. It's hard to get the columns exactly
lined-up with this technique, but all word processor
features are supported and the results are surprisingly
good. Sometimes the columns won't come out
exactly even because AppleWorks won't put a single
line from a multiline paragraph on a page by itself.

Athird technique is to simply print the whole thing
in a long single column and use scissors and tape/
glue/wax to put things exactly where you want
them. That's how Open-Apple and most other
typeset materials are put together and is probably,
in the end, the easiest way to get professional-
looking resuits.

40-column lle interrupts

We have a system that we have used for some time
that uses interrupts. When we first tried to operate
this system on an enhanced Ile, however, it wouldn’t
work. It turns out that on the enhanced Ile, interrupts
are routed through Apple’s slot-3 80-column firmware,
Our problem was that our system runs in 40 columns
and we don't normally add an 80-column card. If no
80-column card is found, the enhanced Ile leaves the
slot-3 ROM space reading the empty slot and interrupts
fail to work.

We solved the problem by pointing the slot-3 ROM
space at the 80-column firmware with a poke to
49162 ($CO0A).

Larry Swift
Clearwater, Fla.

Correspondence quality phones

1 understand you made me world famous recently
by putting my phone number in a paragraph about
our user group’s use of GBBS II and the Sider for a
bulletin board system (July, page 53). You neglected
to notice our newsletter's OBVIOUS several mentions
of the numbers for BOTH our bulletin board (24 hr
modem 300/1200, 602-264-3800; name ADAM'S
APPLE) and our infoline (24 hr voice 602-277-8511). 1
don’t mind the calls but we have lots of members in
ADAM Il who can give good advice.

72 Open-Apple

[use a lle with a Dumpling 64 printer card and an
Okidata u92. 1 use AppleWorks as a data base but find
the AppleWorks word processor limited compared to
Apple Writer. Among other things, it will not stay in
correspondence quality. It changes everytime you hit
return. Is there a fix for this problem? AppleWorks
works beautifully with the Checkmate MultiRam 756K
card. They just released the 5,100 record version,
WOWL...it will sort that many records in about a

minute and a half. Jerry Cline, President

Arizona Desert Apple Menagerie 11, Inc.
Phoenix, Az.

The AppleWorks word processor automatically
turns off bold and underlining at the end of every
paragraph and superscripts and subscripts at the
end of every line. Thus if “correspondence quality”
and “bold” are the same thing, correspondence
quality will get turned off everytime a return appears
in your file, just as you have experienced.

What you have to do is dive down through Apple-
Work’s printer definition menus until you get to the
place where AppleWorks asks for the BOLD END code
for your custom printer. Change this code to nothing.
After that correspondence quality will stay on.

You may still need a way to turn correspondence
quality off, however. To do this, find a character
“pitch” or width between 4-per-inch and 24-per-inch
that your printer doesn't use. Hardly any printers
support that many. You can define unneeded ones to
turn special features of your printer on and off.

For example, give AppleWorks the code for tuming
bold off as the 4-characters-per-inch code. When you
want to turn correspondence quality off, tum on 4
characters-per-inch, print a return, then switch back
to whatever character size you really want to use. At
that point in your document AppleWorks will send
the bold-off code and a return to your printer. A slight
problem with this trick is that character pitch can
only be changed at the beginning of a paragraph, not
within one.

The only custom-printer definable codes that can
appear within a paragraph are bold, underlining,
superscript, and subscript. You can, of course, trick
AppleWorks by giving these the codes for something
else, but use care or AppleWorks will trick you right
back.

lic serial port noise

We have been reading serial data through a Super
Serial Card on a Ile and [I-Plus, but when we use the
same program on a lic through serial port 2 we only
see garbage. It acts like the parity or data format is

VT L.

Open-Apple
© Copyright 1985
b

y
Tom Weishaar
Published monthly.
World-wide price:
US$24/year
Send all
correspondence to:
Open-Apple
10026 Roe Ave.
Overland Park, Kans.
66207
US.

Source Mail: A

Open-Apple is a trademark of Open-Apple newsletter. Apple
Computer and Open-Apple are two different, unrelated, inde-
pendent companies that wish everyone in the world had an
Apple Il.

incorrect, but using all of the configurations described

_in the Iic literature the port won't configure to read

the data correctly. We took the lic back to the store
where we purchased it. We were told that the configu-
ration had to be set using the llc utility disk and
would only work in ProDOS. We are in the process of
rewriting our programs in ProDOS, but it hardly
seems reasonable that the ports can't be configured
under DOS 3.3.

Jeff Kurtz

Conyngham, Pa.

The information your dealer gave you is wrong.
You can reconfigure either of the lic’'s ports from
inside a program under either DOS 3.3 or ProDOS. To
reconfigure port 2, first issue a PRINT D$; “IN#2”, You
can then PRINT any of several port configuration
commands. All of these begin with a control-A and
end with a non-control letter. Some have numbers
between the control-A and the letter.

A complete list of these commands is in chapter 8
of the Apple Ilc reference manual. Many of them —
including baud rate, data format, and parity—are
the same as the commands for the Super Serial Card,
so if you don't have a Iic reference manual use your
Super Serial Card manual. (The lic doesn't support
all of the Super Serial Card commands, however.)

When you turn an Apple Iic on, port 2 is automati-
cally configured like this: 300 baud, 8 data bits, 1
stop bit, no parity. If you change this configuration

_ with ‘eftper the lic utility disk i

dArimads; the new configuration will last until you
turn the computer off. Pressing reset or rebooting—
even booting a DOS 3.3 disk after configuring with
the ProDOS lic utility disk —won't change the config-
uration (unless you reboot by turning the computer
off and back on).

As mentioned by one of our readers here in June
(page 47), early Apple lics (serial numbers below
D51000) have a hardware bug that can cause the
kind of problem you are experiencing. I suspect this
isat the root of your trouble. Your dealer is supposed
to replace the motherboard in your lic without
charge if you experience this problem —although it
sounds like your salesman may be unaware of this.
Insist on talking to a technician.

FP.SYSTEM

How do you get rid of Basic.system and still have
?
your ROM Applesoft at hand? Lambert VanBeers

Tokyo, Japan

I assume you want to get rid of Basic.system but
keep the ProDOS kemnel. If you don't want the
ProDOS kernel either, just turn your computer on
without a disk in the disk drive, then press control-
reset.

To get rid of Basic.system but keep the ProDOS
kernel, use CREATE FP.SYSTEM,TSYS to create a new
system file. Enter the Monitor and type 2000:4C 00
EO, then BSAVE FP.SYSTEM, TSYS,A$2000,L3. Rename
any other files on this disk that end with *.SYSTEM":
FP.SYSTEM must be the first file in the directory with
this suffix.

Now boot this disk and the ProDOS kernel will load
and run FP.SYSTEM. FP.SYSTEM simply coldstarts
Applesoft, nothing more. Basic.system (and D$ and
CATALOG and fast garbarge collection and the page-
Svectors and lots of other stuff) is gone. It's just you,
ROM Applesoft, and the ProDOS Machine Language
Interface. The first thing you should do when you
see the Applesoft prompt is enter HIMEM:48896 to
protect the ProDOS global page.

Yol. 1, No. 8

FP.SYSTEM does what you've asked for, but don't
take it very seriously. It doesn't adhere to the
conventions of a well-written SYSTEM program. The
best description of these have seen isin Gary Little's
Apple ProDOS: Advanced Features for Pro-
grammers, published by Brady Communications,
pages 159-144. I just got this book and haven't gone
through it thoroughly, but this section does a terrific
Jjob of bringing together in one place snippets of
information that Apple scattered through several
manuals and tech notes. There may be something
missing from the book that | haven't noticed yet, but
so far it looks to me like an improved (and cheaper)
version of the ProDOS Technical Reference Manual.

Since you've decided to live without Basic.system,
a guide to the Machine Langauge Interface is some-
thing you'll require anyhow, so take a look at Little's’
book.

Single-drive CONVERT

How do you convert DOS 3.3 files to ProDOS files
with one drive?

James B Bukowski

St. Paul, Minn.

The lic system utilities will do it if you have a Iic.
On other Apples use the ProDOS CONVERT program,
CONVERT, which has probably done more damage
to the reputation of ProDOS than anything except the
FILER, was designed to work with one drive.

However, an undocumented feature was added to
the program to discourage single-drive users. |
assume this was because Apple realized DOS 3.3
was the preferable operating system for single-drive
systems.

In order to use CONVERT with a single drive, you
must first attempt to transfer a file in the opposite
direction from the transfer you actually want to do.
This initializes some stuff so that transfers in the
opposite direction will begin to work. Can you
believe it?

Nice letters

I miss the pretty stamps, although I understand
why you stopped. I hope this is an indication of a
growing subscription list—you deserve success.

TR. Bainbridge
Kingsport, Tenn.

For such a small publication, Open-Apple sure
packs a lotof punch! The twoissues I have read so far
have had solutions (July's RGB/double-high-res stuff)
and hints (August’s specify the disk drive as an
AppleWorks printer) as well asfixes (August MouseText/
CONVERT fix) that will more than pay for the cost of a
year’s subscription.

Colin Mansfield
Minneapotis, Minn,

We get lots of complimentary cards and letters that
we appreciate. Thank you, everybody. I meant to tell
you a couple of months ago, but forgot, that this
operation started breaking-even in June. Open-
Apple now has more than 2,000 paid subscribers
and is adding a couple hundred or more new sub-
scribers each month. (When the kids refused to lick
that many stamps I was forced to start using a postal
permit imprint instead.)

My intention is to continue packing as much
useful, relevant, Apple Il-related information into 8
pages as possible. I'm grateful that so many of you
appreciate Open-Apple’s awesome useful-
information-per-ounce-of-paper ratio.

