Open-Apple
B

October 1985
Vol. 1. No. 9

Apple releases new peripherals

Apple, Inc. announced several new peripherals for the Apple II family on
September 17 —just in time for the Christmas season. The new products
include two composite color monitors that can display 80-column text, an
upgraded Imagewriter I printer, and an 800K double-sided 3-1/2 inch disk
drive. Not included in the announcement, though widely expected, was the
AppleTalk Network card. Also announced, but without a price or availability
date, was a 256K memory card, which is expandable to 1 megabyte.

At the same time, Apple announced that its sales during July and August
(in the wake of this summer’s Atari and Commodore product introductions)
were stronger than it had expected. Apple said it was reinstating plans for a
big Christmas advertising campaign, which had been cancelled earlier this
year after Apple reported its first quarterly loss (see our July issue, page 49).

In my opinion, the most significant of the new Apple products are the color
monitors—assuming they do what Apple’s press releases say they will.
These monitors, which will sell for about $400, display both color and 80-
column text, yet hook up to the standard Apple video connector. Previously,
the only way to get both color and 80-column text on the same screen was
with RGB (red-green-blue) equipment. This was significantly more expensive.
Apple announced that its new monitors —one matches the lle styling, the
other Ilc styling—would replace its $600 RGB monitor. [hear bells tolling for
RGB.

Next in significance was the lack of an AppleTalk announcement. Earlier in
September Apple sent letters to peopie who had purchased the AppleTalk
Developer's Notes for the Apple II, refunding their money and saying that the
notes should be disregarded. Apparently early developers had complained
about the card's performance and Apple decided to redesign it. “This
redesign will allow developers to shorten and ease their design cycle,” the
letter said.

The new $600 Imagewriter II printer has four significant enhancements. A
fast 250 character-per-second draft mode and a slow 45 character-per-
second near-letter-quality mode were added to the Imagewriter’s standard
180 character-per-second operation. With a special $14 ribbon, the Imagewriter
11 will print in color. It inciudes an expansion slot and Apple is producing a
$100 32K memory board for the siot. Aiso available is a $225 single-sheet
feeder. It also has one significant de-enhancement; the cable that used to
come with the printer is now $30 extra.

The most insignificant products are the new "UniDisk 3.5” and the “Apple
Il Memory Expansion Card.” The only bright things that can be said about
these products is that they work on all models of the Apple II. The price and
availability of the memory expansion card had not even been set at the time
of Apple’s announcement.

The expansion card fits in a standard Apple Ii slot and appears to be useful
primarily as a RAM disk. Almost all of the software developers who say they
are supporting the card are using it this way. Its addressing scheme is totally
different from any other Apple Il memory card on the market. It reportedly
does not use bank switching. To read to or write from the card you repeatedly
peek or poke at the same memory address in the softswitch area for the slot
the card is in. The card provides a serial stream of data in response. You can
move the “position in card” pointer elsewhere by poking a couple of other
softswitches on the card.

Meanwhile, Applied Engineering has dropped the price of its I-megabyte
auxiliary-slot RAM card to $519 and announced that it can be expanded to
2.5 megabytes. Checkmate Technology has announced a 768K board for the

Apple lle and a 512K board the Apple lic that include 65816 microprocessors.
And Apple made no announcements about supporting AppleWorks with its
memory card; something both Applied Engineering and Checkmate have
accomplished. What's the big deal?

Apple’s memory card almost looks significant, however, when compared
to the new 3-1/2 inch disk drive. The UniDisk 3.5 costs $500 and requires a
separate $69 controller card when used on a II-Plus or Ile. This controller is
incompatible with 5-1/2 inch drives. The new drive does plug directly into a
lic, but the [lc requires a modification to its internal disk control firmware
before the new drive will work. Apple dealers will make this modification,
apparently without charge, when a [lc owner purchases the new drive.

The new drive does not support DOS 3.3 or CP/M. Programs written in
Pascal must be revised to use it.

Compare the 800K UniDisk 3.5 at $568 to a 10,000K Sider hard drive at
$700 and tell me how Apple expects to sell these things. Throw in the cost of
abox of the special double-sided 3-1/2 inch disks the new drive requires and
you are within $100 of the Sider.

The Sider supports ProDOS, DOS 3.3, Pascal, and CP/M; the UniDisk 3.5
supports only ProDOS. The Sider is three times faster than a standard floppy;
the UniDisk only two times faster.

Perhaps realizing its problems, Apple notes in its press release on the
UniDisk 3.5 that the drive’s "mass storage capability also makes it a cost-
effective backup solution for hard disk drive users.”

You want a cost-effective backup solution for a Sider? Buy another one. It's
cheaper and easier than anything else you can do. In addition, not only do
you have your data backed up; you have your equipment backed up as well.

The UniDisk 3.5 may find a niche market as a ProDOS-only add-on drive for
the Apple lic. I can think of no other cost-effective use for it.

“HE'S LoST INTEREST IN COMRURR'S SINCE A LARGE (oRRIRATIOV
BROKE INTD HIS SYSTEM AND ERASED ALL HIS Book REFERTS. "

74 Open-Apple

Butterflies tum to wonné |

What | like best about Logo and the Logo philosophy is that bugs are
considered opportunities rather than disasters. A bug encounter to a Logo
programmer is a learning experience.

I've had a lot of these learning experiences this month. Several of the
public domain butterflies Open-Apple set loose upon the world earlier this
year have turned to worms during the last 30 days. In this month’s issue we'll
investigate what happened and all come out better people for it.

Input anything bugs. Last month’s Input Absolutely Anything program
and article had both dumb mistakes and exotic ones. Turn, if you will, to page
67 and look at the second program on that page, Install IAA.OBJ. Look at the
amazing sequence of line numbers given. We have scientifically determined
that the program will work a lot better if you renumber the third through the
seventh lines. Make the third line 115 and increment the line numbers by 5
until you get to line 130. The new line 125 and the old line 160 should also
have the word REM after their colons (and stop that tittering).

Moving beyond pure stupidity, a much more interesting discovery about
Input Absolutely Anything is that, under DOS 3.3, strings don't evaluate
correctly with the VAL function, just as they didn't with Crossley’s original
input-anything routine, as mentioned on page 66. The problem is the same
as Crossley's—the string characters are being stored with the high-bit set
(high-value ASCII format) rather than with the high-bit clear as Applesoft
expects. In addition to problems with the VAL function, string comparisions
don't work reliably when some strings are in high-value ASCII and some in
low-value.

(On page 66, 1 said this problem was originally solved in the June 1980 Call
-A.PPL.E. by Eric Goez. This statement was an interpolated estimate that
also tumed out wrong, The Goez article, now that | have actually found it, was
an Applesoft input-anything routine based on the GET command. The first
input-anything routine I can find that solved the VAL problem was, appropriately
enough, Val Golding's. It appeared in the July 1980 Call -A.P.P.L.E.)

The difference between Crossley and me, of course, is that I knew about
the potential high-bit problem. My routine takes pains to clear a character’s
high bit before storing it in the input buffer. I realized [was in big trouble,
however, when I got the following letter from Jack James of Winfield, Ill.:

I recently wrote my own “Input Everything” routine for the same reasons
you gave for writing yours. My immediate problem was comparing two text
files holding LISTed versions of an Applesoft program. The program was a
commercial product that packed lots of commands into single statements.
The LISTed version of these statements was often longer than 255
characters. The program also included embedded backspaces and other
control characters, some of which were intercepted by NXTCHAR and
treated as editing commands.

My program, like yours, is based on Peter Meyer's “Ultimate Input-Nearly-
Anything Routine”. I replaced the NXTCHAR call with Applesoft's INCHR
routine ($D553) rather than the Monitor's RDKEY. INCHR calls RDKEY and
then clears the high bit of the returned character. I used COUT, as you do, to
echo the character and, for disk reads, to satisfy DOS's eat-the-character
mechanism.

You didn’t point out that our routines will read all 128 ASCII characters,
including controle (ASCII 0), which GET will not handle. (This character
must have the high-bit set when it is data on the disk. This sets it apart from
the text file terminator, which is a true zero—high bit clear,)

You were also rather cryptic about dealing with strings longer than 255
characters. These routines blindly retumn the first 255 characters of long
strings without knowing whether the 256th is a carriage return. This means
that an application program that wants to handle long strings must check
the retuned string length. If it is 255, there is always more and a
subsequent read must be done. If the string is, in fact, exactly 255
characterslong, that read will yield a lone carriage return, and, hence, anull
string. Otherwise, of course, you'll get more.

In the process of developing my routine, I found (with the help of Lee
Meador, Call -A.PPL.E’s DOS consultant in Dallas) an unusual characteristic
of DOS 3.3. Although I was clearing the high bit of each character before
putting it into the input buffer at $200, the high bit was set on all but the last
character of my returned strings. It turns out that DOS 3.3 expects page 2 to
be used for the input buffer and goes through the trouble to make sure any
characters it places there have the high bit set. Each time I asked DOS to

Vol. 1, No.9

read another character from the file, it would set the high bit on the
previous character in the page-2 input buffer.

I ended up using Applesoft's GDBUFS ($D539), as Meyer had done, to
clear the high bits. The high-bit clear by DOS not only undid what I had
already done, but it carries the potential of clobbering page 2 if you are
using it for something else.

So it's Uncle DOS himself who's spoiling Open-Apple’s input-anything
routine. (And I thought we were friends.) The offending code inside DOS 3.3
(this isn't a problem under ProDOS) lives at $A64A-$A65D and is executed
every time READ gets a character from the disk.

Here's acomplete Applesoft fix for this problem. Use these lines in place of
the originals given in September’s Create IAA.OBJ (page 67 —enter B
where you see b; enter 8 where you see B or 8):

1006 C$="0300: A9 B4 B5 33 20 E3 DF 20 6C 0D A2 @@ 20 OC FD” : GOSUB 500
101 C$="030F: AB 29 7F CS @D @8 48 FG 87 C9 20 b® 03 69 40~ : GOSUB 500
162 C$="031E: AB S8 20 ED FO 68 28 F@ @D 9D 0@ @2 EB E@ FF” : GOSUB 500
103 C$="0320: D@ DC A9 @D 20 ED FD B6 FD 20 39 DS A6 FD BA” : GOSUB 500
104 C$="033C: AG 00 D1 B3 F@ 02 b0 1F 91 B3 CB bl B3 B85 71" : GOSUB 500
105 C$="034b: 48 CB bl B3 8572 C5 70 6B 90 @0 C5 6F 90 @3~ : GOSUB 500
106 C$="035A8: 6R A2 00 A0 02 20 E2 E5 6@ BA 20 52 E4 A2 00" : GOSUB 500
107 C$="0369: AB 02 20 E2 ES A® @0 AS FD 91 83 C8 A5 6F 917 : GOSUB 500
108 C$="0378: B3 CB AS 70 91 B3 60” : GOSUB 500

110 FOR I=768 TO 894 : X=X+PEEK(I) : NEXT

120 IF X=16361 THEN 200

Assembly language programmers might want to make a note in the
source code on page 68 of last month’s letter. Just before the TXA command
at byte $333 enter this:

JSR $D539 Applesoft GOBUFS clears high bits that DOS 3.3 messed up
LDX LENINS recover string length

Leave the TXA instruction intact; it may seem quicker to just LDA LENINS,
but both X and A must have the string length for the program to work
correctly later on.

The routine James sent me is executed with a CALL command rather than
with the ampersand my routine used. His Applesoft syntax is to put a comma
after the CALL, followed by the string variable, like this:

CALL 768,R$

He executes this with three calls to Applesoft machine language routines:

JSR CHKCOM ($DEBE) looks for and eats comma after CALL command
JSR PTRGET ($DFE3) digs user’s variable out of program
JSR CHKSTR ($0D6EC) makes sure variable is a string variable

Ifyou would prefer to use the CALL syntax, all you have to do is add the JSR
COMCHK instruction before the JSR PTRGET in my program. The program
assembles to run at $300 (CALL 768), but can be loaded anywhere that is
convenient without reassembly.

I didn't know about CHKSTR. As presented last month, Input Absolutely
Anything will choke if you give it a numeric variable instead of a string
variable. For example, "& A” instead of “& A$” will cause problems. James
avoids these problems by the call to CHKSTR, which will return a TYPE
MISMATCH error if the variable isn't a string variable.

The new program lines for Create [AA.OBJinclude the string-checking call
to CHKSTR and the fix-the-high-bits call to GDBUFS. The byte that controls
the maximum length of strings (originally mentioned on page 68, second
paragraph) is now at byte 812 ($32C). Sorry for the confusion. But chin-up, it
gets worse.

Basic Basic copy program can't copy Basic programs. Geeesh, can
you believe this one? Doesn't anyone test stuff before publishing it? July's
basic Basic copy program (page 51) copies Applesoft programs just fine (I
tested that thoroughly), it's just that these copies won't RUN and won't LIST
correctly (as several subscribers have pointed out).

The problem here is that Open-Apple's basic Basic copy program does
nothing to correct the AUX_TYPE entry in the copied file's directory.
AUX_TYPE holds various kinds of information, depending on the file's type.
Applesoft program files use AUX_TYPE to store the address the program was
atwhen it was saved.

For more details about AUX_TYPE, see my comments after the letter
BSAVE, T and CREATE in the August issue, page 63.

July's Basic copy program always leaves AUX_TYPE set to zero. To
understand the problems this causes, you have to know what an Applesoft
program line looks like in memory. Enter the following program and follow
along:

Downloaded from www.Applez2Online.com

October 1985
W

22 INPUT RS

23 PRINT RS

22 END

ZALL-181
300.818

2800- 00 05 08 OR 02 B84 41 24
2608- 00 11 08 14 00 BR 41 24
2810- 00 17 08 1E 00 B0 00 00
2618- 00

As stored in memory, Applesoft program lines are separated by zeros. All
programs must also begin with a zero. Enter POKE 20481 : RUN and notice
the crazy error messages you get. This is because byte 2048 ($800) is the
first byte of our Applesoft program (and most others). POKE 2048,0 is quite
effective therapy for this mindlessness.

The two bytes after the zero in every program line give the address of the
next program line. Thus, the 09 08 in bytes $801-802 indicate the second
program line is at $0809. The 11 08 there shows the third line starts at $811,
and so on.

The next two bytes of a program line indicate the line number. The 0A 00 at
bytes $803-804 is hexadecmial for 10, the 14 00 at $80A-80B is hex for 20,
and so on. This is followed by a series of tokens and ASCII characters. The
token for INPUT is $84, as you can see at byte $805. At byte $80D you can see
PRINT's $BA token, and at byte $815 END's $80. The Applesoft manuals have
lists of the tokens for all Applesoft commands.

Note that the third line of the program points to a non-existant fourth line
at $817. Bytes $817-818 both hold zeros. This pair of zeros, along with the
zero separator, marks the end of the program.

When a program is saved while residing at one location and then rerun ata
new location, all of the next-line pointers have to be recalculated or the
program won't execute. DOS 3.3 calls a routine in Applesoft at $D4F2 that
handles this. This Applesoft routine ends, however, by warmstarting
Applesoft rather than by returning to its caller; DOS 3.3 has to pull some
severe brute force tricks to get control back after calling the routine.

Unlike DOS 3.3, Basic.system simply resets the pointers itself. It calculates
the difference between the program’s current address and the address it was
saved at and adds that difference to all the pointers. Obviously, if AUX_TYPE
says a program lived at $0000 when it was saved, thiswill mess up the loaded
version. Programs subjected to such treatment neither RUN nor LIST
properly.

As noted in July (page 52) the incorrect AUX_TYPE also causes problems
with text and binary files. | squirmed out of all this then with the line, “These
problems are fixable, but not this month.” But, alas, now my bugs have come
home to roost.

The difficulty here—the reason I weasled around last time —is that there
is no way to directly reset a file's AUX_TYPE bytes with Basic.system
commands. We have to use the ProDOS Machine Language Interface for this.

The ProDOS machine language interface. The MLI, as its name
implies, expects to be called from machine or assembly language. In
general, you get ready for a call by setting up a parameter table somewhere
in memory that holds the information ProDOS will need to execute the
command. Then you jump to a subroutine at the location known as
MLIENTRY, which is at the beginning of the ProDOS global page ($BF00). (The
ProDOS global page is a 256-byte area the ProDOS kernel uses for storing
various pieces of information that application programs sometimes need
access to.)

Each ProDOS command has a specific parameter-table format. These vary
from one command to another. You tell the ProDOS kernel which command
you want to execute and where in memory you've stored its parameter table
by embedding this information in your machine language program. The
command byte and two bytes that point to the parameter table follow the JSR
to $BF0O, like this:

JSR MLIENTRY
.DR usC4
.DA $BEB4
BCS ERROR

($BF00)
command
address of parameter table
your error-handling routine

The ProDOS kernel will dig the command and parameter table address
out of your program and return back to your next instruction, which should
always check for an error.

Open-Apple 75

Trying to use the machine language interface from inside an Applesoft
program can get very complex, but I finally found a way we can avoid most of
the complications (this time). Basic.system has its own global page (at
$BE00), which includes a routine called GOSYSTEM. Basic.system always
uses GOSYSTEM to call the machine language interface. In addition, the
Basic.system global page contains all of the parameter tables that Basic.system
itself uses when cailing the kernel.

Unlike the MLI, which expects an embedded command, GOSYSTEM
expects the command number to be in the Aregister. It embeds it where the
kernel will find it later. Then, using this same command number as an index,
GOSYSTEM figures out where in the global page the parameter table for that
command is. It embeds that address also, then does its JSR to the MLI. On
return, GOSYSTEM checks to see if an error occurred; if so, it converts the
error number returned by the kerel into a Basic.system equivalent before
passing control back to the caller. It does no other error handling, however.

Basic.system doesn't care if we use its parameter tables for our own MLI
calls. By poking a short machine language routine into some borrowed
space in the Basic.system global page, in fact, we can use GOSYSTEM to
make MLI calls for us from Applesoft. This is what keeps the number of
required pokes to a minimum.

Inside the Basic.system global page is a 19 byte area ($BES8-BE6B) that is
used only when a DOS command is being executed. The numeric values of
the command parameters (the $2000 in BLOAD RED.LEAVES,A$2000, for
example) are stored here when a command is parsed or translated into DOS
talk. As long as a command isn't being executed, we can temporarily borrow
some space in this area for a small machine language routine. Here's the
one we'll use:

BESB:A3 00 LDA #$command numoer

BESA:20 70 BE JSR GOSYSTEM ($BE78)

BESD:B@ AR BCS ERROUT ($BE@I--entry to Basic.system’s error handler)
BESF:60 RTS

The two MLI commands that are used to diddle with AUX_TYPE (or other
information stored in a file’s directory entry) are GET_FILE_INFO ($C4), and
SET_FILE_INFO ($C3). Since the two parameter tables used by these
commands are nearly identical, Basic.system uses the global page area from
byte 48820 ($BEB4) to byte 48837 ($BECS) for both of them. Here’s what the
tables look like:

Basic system names GET_FILE_INFO SET_FILE_INFO
($BEB4) 48820 SSGINFO +0 fparam_count param._count.
" & pointer to file'
48623 FIACESS +3 | access permitted
48824 FIFILID +4 | file_type
486825 FIAUXID +5 | awc_type
48827 FIFKIND +7 | storage_type
48628 F1BLOKS +8 | blocks_used
48830 F IMDATE +10 | mod_date
+12 |mod_time
+14 | create_date
Dato sust be
416 |create_tine provided by

ProDOS parameter tables

GET_FILE_INFO tells you what is currently stored in a file’s directory entry.
The GET_FILE_INFO parameter table holds ten items. Because some of this
information can't be changed, the SET_FILE_INFO parameter table holds
just seven of these ten. The first item in each table, the parameter count,
indicates how many parameters are in the table. The ProDOS kemel uses
this count to make sure the command and parameter table combination it
has been given are compatible.

Al the kernel needs to execute GET_FILE_INFO is a parameter count often
and a pointer to the pathname of the file being examined. The kernel itself
fills out the rest of the table. For SET_FILE_INFO, on the other hand, the
kemel wants the parameter count to be seven and expects the rest of the
table to hold the values to be stored in the file’s directory entry.

76 Open-Apple

Poking all this into the parameter table could be quite tedious; particularly
the pathname-related pokes. Fortunately, however, from inside the basic
Basic copy program we can make a few assumptions about what Basic.system
has left in this particular table. For example, after either a BLOAD or BSAVE
command, the pathname pointer will, in fact, point to the pathname of the
file that was just accessed. This will not be true for long, however—
Basic.system uses the pathname buffer for lots of stuff—but it will be true
long enough to solve our problems.

To fix the copy program, we'll call GET_FILE_INFO immediately after
BLOADing the file to recover the original file’s true AUX_TYPE; after BSAVEing
the copy of the file we'll poke the original file’s AUX_TYPE into the parameter
table and call SET_FILE_INFO to fix the duplicate’s directory entry. The
additional lines you need to add to July's program (page 51) are:

405 X1=0 : X2=0 : CMD=0

455 CMD=196 : GOSUB 600 : X1=PEEK(4BB25) : X2=PEEK(48826)
475 CMD=195 : POKE 48820,7 : POKE 4B825,X1 : POKE 48826,X2 : GOSUB 600

. 600 REM *x* MLI caller for use with Basic.system *¥¥
601 POKE 48728,169 : POKE 48729,CMD : POKE 48730,32
602 POKE 48731,112 : POKE 48732,190 : POKE 48733,176
603 POKE 48734,170 : POKE 48735,96 : CALL 48728 : RETURN

Line 405 allocates memory for the three new variables we have to use (X1,
X2, CMD). Line 455, which is executed immediately after the original file is
BLOADed, does a GET_FILE_INFO on the file and saves the AUX_TYPE bytes
as X1 and X2.

Line 475 pokes these values back into the parameter table after the new
file is BSAVEd, and does a SET_FILE_INFO to update the new file’s AUX_TYPE
field.

Lines 600 to 603 make a subroutine that pokes our little MLI caller into
the Basic.system global page and executes it. Note that CMD must be given
the value of a ProDOS command before using this subroutine.

Incinerator burns up page zero. I've taken a lot of grief about
subscribers not being able to tell the Bs from the 8s in March's Incinerator
program (pages 17-19) but otherwise it seemed bullet-proof. The Incinerator

Vol. 1. No.®

is a high-speed garbage collector for DOS 3.3 written by Bill Basham of
DiversiDOS fame. However, this month a subscriber discovered that his DOS
commands wouldn't execute and his program wouldn't LIST when the
Incineratorwas in use and memory was almost full.

I traced the problem to the modifications I made to the Incinerator. Those
modifications made the program automatically check the garbage cans
every time a return was printed and empty them if necessary. Basham's
original was called manually with an ampersand command.

His technique works better. The Incinerator uses a large number of zero-
page locations whenever garbage is actually collected. If collection occurs
while something else (such as a LIST or PRINT command) is using those
locations, problems will occur.

Our subscriber’s program was using the common trick of defining D$ as
CHR$(13) + CHR$(4). This technique, which works only with DOS 3.3, assures
everyone that there is always a carriage return before control-Ds. However, in
this case the CHR$(13)s also forced garbage collection even as Dr Basic was
in the midst of printing DOS commands. This messed up enough zero-page
locations that the DOS commands weren't executed.

There are two possible solutions. One is to leave the Incinerator
connected to DOS as it is now. However, test the potential negative effects
garbage collection could have on your program by poking a zero at byte
43816 ($BEBO). When there's a zero at this location, complete garbage
collection will occur every time a retum is printed. If the program executes
properly, it is compatible with the Incinerator as written. Change byte 48816
back to a four and go. Don't expect the LIST command or the D$ = CHR$(13)
+ CHR$(4) trick to work, however.

The other solution is to BLOAD the Incineratorat $4000 and change bytes
16517-18-19 to 234. This will prevent the high-speed garbage collection
routines from being connected to DOS. To run them, you can either connect
them to the ampersand hook or execute them directly with a CALL 48815
($BEAF). This last technique is very dangerous, however. That particular call
will initialize and erase the disk in the active drive if the Incinerator has not
been installed. Perhaps a better syntax would be IF PEEK(48815)=169 THEN
CALL 48815. That makes sure the Incinerator is what's at 48815 rather than
the usual RWTS INIT routine.

Miscellanea

Apple 11 hacker profile. Apple’s marketing experts say that hackers—
the kind of people who read Open-Apple— are mostly young, underfunded,
and not responsible for a significant portion of Apple Il sales. Surprise,
they're wrong, Call -A.PP.L.E. recently did a survey (I suspect Open-Apple
readers are very similar) and discovered that their readers’ median age is 42;
three-fourths are college graduates (45 per cent have master’s degrees or
higher); nearly two-thirds have incomes above $40,000 (44 per cent have
incomes above $50,000); more than two-thirds own or use two or more
computers (35 per cent own or use 3 or more; 20 per cent, 4 or more); and
two-ifths of them authorize the purchase of computer equipment for their
employer or organization. Ninety-one per cent are males; 48 per cent have
spouses who use their computer.

More than three-fourths of Cail -A.PPL.E's readers are programmers.
About 72 per cent consider themselves intermediate or expert in Basic; 24
per cent in assembly language; 19 per cent in Pascal; and 3 per cent in Logo.
Of course, 100 per cent of them use Apples. This is a group Apple should
want to keep happy, but when was the last time you saw Apple’s marketing
wizards place an ad in this magazine?

RAM prices are droppingrapidly. You can save big money by buying RAM
cards with a minimum amount of memory and installing your own chips.
This month you could get a whole megabyte of 256K chips from Micropro-
cessors Unlimited (24000 S Peoria Ave, Beggs, Okla. 74421, 918-267-4961)
for only $86.08. These were NEC 150-nanosecond 256K chips at $2.69 each.
(It takes eight of them to make 256K bytes of memory). These NEC chips are
what Applied Engineering put in the last RamWorks card I got from them.
Apple’s new memory card had Hitachi 200-nanosecond chips in the photo
they sent me. Hitachi chips are a little more expensive, but they supposedly
run cooler. (The nanosecond rating refers to the chip’s response time. It's
appended to the chip’s part number. For example, *-15” indicates a 150-
nanosecond chip.) Microprocessors Unlimited includes with each order very

specific instructions for installing the chips without zapping them with static
electricity.

A Value Added Reseller or VAR is someone who buys computer
equipment directly from the manufacturer, adds software or special
hardware to create a system dedicated to a specific use, and resells it to end
users. In the July issue (page 50) | suggested Apple should expend more
effort cultivating these kind of people. Before that issue even hit the mail got
an unsolicited brochure from Apple describing their VAR program. All Apple
VAR sales are handled by a sales agent, Professional Computer Marketing
Associates. For more information, contact PCMAS's Dirk Eastman at 800-
821-1779 (800-824-6277 in California) or Tom Babecky, Apple’s VAR
manager in Cupertino.

Franklin Computer seems to have resuscitated itself. It has announced a
new Apple lle/lic-compatible ACE 2000 that will retail for $699. The machine
reportedly has a steel case, 90-key detachable keyboard with numeric
keypad, 67-watt power supply, internal fan, and the Franklin equivalent of
Apple’'s MouseText characters. The machine is made in Taiwan; Franklin says
it only has to sell a couple of thousand a month to make money. Schools are
the targeted buyers.

Steve Jobs has taken his Macintosh development team and gone
home. The Apple I would never have become world-famous without him,
but his contributions to the Apple Il family ended years ago. The only Apple
computer that has ever been acommercial success is the one Steve Wozniak
designed. The mark of Jobs—a closed system and lots of publicity—just
doesn't sell. Typically, Jobs turned his letter of resignation in to several
newspapers before delivering it to Apple vice-chairman A.C. Markkula,
according to the Wall Street Journal.

Jobs’ biggest contribution to Apple was its classy image. I had hoped
Sculley would retain that. However, late word is that the women trading gold
futures, playing basketball, and carrying sledgehammers are slated to
disappear from Apple’s ads in favor of copy like, "Your suit is a vice-
presidential shade of blue. Impeccably tailored: jacket sleeve five inches off
the tip of your thumb. Your tie discreetly suggests the position you want, as
opposed to the position you've got” (Please excuse me while I lose my
lunch.) | suspect this campaign will lessen Apple’s sales to traditional
customers more than it will increase sales to clotheshorses. The world goes
on. Even Sculley's former foe Coca-Cola abandoned the real thing,

Ask

(or tell)
Uncle

DOS

Apple Assembly Line

You've mentioned the publication Apple Assembly
Line several times but I've been unable to find its
address. Would you please mention it?

Tony Alley
APONY.

Apple Assembly Line is a monthly newsletter
published by S-C Software; P.O. Box 280300; Dallas,
TX 75228; 214-324-2050. It has been covering
assembly language programming for the Apple Il
since October, 1980. The current prices are $18 per
year for bulk mail, $21 for first class mail, and $32 for
international airmail. (It's heavy stuff.)

S-C Software also produces an assembler for the
Apple Il and sells various books and software helpful
to assembly language programmers and learners. If
you need assistance with assembly language on the
Apple, these folks have products and experience that
can help. I have done business with them for several
years and find them completely reliable.

A few weeks ago I ordered the ProDOS update to
S-C's assembler and got a copy of the June 1984
Assembly Line, which had been missing from my
collection. It disclosed the rather amazing news that
the POKE 72,0 ($48:0) trick for avoiding trouble with
the Monitor's G(o) command doesn't always work.
When you issue a G(o) command from within the
Monitor, the contents of byte 72 are placed in the
6502's status register. This was discussed in greater
detail here in March (page 20) and April (pages
30-31).

If byte 72 contains garbage when the G(o) command
is executed, your computer can begin to do very
strange things. For years experts have recommended
putting a zero in 72 before exiting the Monitor with
the G(o) command. But now it turns out that a zero in
72 will enable interrupts. Interrupts have been
available on the Apple since 1977, but were rarely
used until the last couple of years. Consequently, no
one noticed this interaction before.

Nowadays, however, it would be important on
many systems. Apple Assembly Line recommends
poking a 4 in 72 rather than a zero. The most
frequent use of POKE 72,0 in Open-Apple has been
as part of the S.H. Lam technique. It might be worth
your time to correct line 520 (to POKE 72,4) in the
programs on pages 13, 24, 43, and 55 if you save our
back issues.

Apple Il phone machine

| wrote a program that answers my phone...big
hairy deal...anyone with a modem can do that. But
this isn't any ordinary modem, it's a Novation Apple
Cat. Why anyone buys a Hayes I do not know for this

thing does what a Hayes can do for about the same
price plus oodles more. In the Novation manual

- there’s a demo program that shows how to have the

modem answer the phone with speech using a Votrax
system wired to the auxiliary connector on the card
(you won't find that on a Hayes). Once connected, the
program would get the modem to answer the phone
and have the Votrax speak to the person on the other
end.

Since I don't have a Votrax | looked around for
some other way and found one. The synthesizer is
called Software Automatic Mouth (S.A.M). It consists
of a card and a software routine. Just by accident
(honestly!) I set the slot number for speech output to
my modem slot. Low-and-behold voice over my
phone WITHOUT wires and no need for the SAM card!
1 was estatic...my fingers went wild at the keyboard. |
wrote a program | call the Answering Machine, then
the Originate Machine (a phone number dial-out
database). When | put the two together I had Phone
Functions, which won first place at the computer fair
here in Whitby.

Andrew Reeves-Hall
19 Glenmount Ct
Whitby, ONT L1N 5M7 Canada

I find this kind of software very exciting. I've
included your address so that people who want
more information can contact you directly. I'm
convinced that the Apple Il can be tumed into a
telephone that would give AT&T and other telephone
manufacturers the heebie-jeebies. (Here's something
interesting to do with an Apple II-Plus.)

For several years now the major Savings and Loan
in Kansas, Capitol Federal, has offered a telephone
bill payment service. It consists of a synthetic voice
that answers the phone and tells you what to enter.
You respond by pushing buttons on a touch-tone
phone. Systems like this can now be built out of
Applelis.

They could be used to take orders, to quote prices,
to leave messages, and to retrieve messages. And all
this could be done at a price the big manufacturers
couldn't touch. I think I hear opportunity knocking.

Another single-drive CONVERT

I find the Ilc /UTILITIES disk unsatisfactory for
converting files between ProDOS and DOS 3.3 on my
single-drive Apple lic. Since the program will only
convert an entire disk, a lot of disk switching is
involved just to convert a single file.

1 couldn't get CONVERT from the /USERS.DISK to
work either. You presented one solution for this
problem in the September issue (page 72). My
solution involves an extra step, but it still seems to
save time: use the ProDOS /RAM disk. To convert DOS
3.3 to ProDOS, use /RAM as the destination prefix.
When finished with CONVERT, run FILER to copy the
file from /RAM to your ProDOS disk. To convert the
other way, run FILER first to transfer the ProDOS files
to /RAM and then convert them onto a DOS 3.3 disk.

Another /RAM disk tip: When starting work on a new
program I transfer the utility programs | am likely to
need to a new disk (GPLE and APA for Applesoft
programs, for example). This often involves several
source disks, and could mean some serious disk
switching with a single drive. An easier way is to use
the /RAM disk as a staging area: use FILER to copy all
the individual files or programs from their respective
disks to /RAM and then copy them from /RAM to a
fresh disk with the "=" wildcard.

Andrew K. Messersmith
Ft. Lauderdale, Fla.

Open-Apple 77

Auxiliary memory fix

At the junior college where my job is to keep the
Apples running, we've had several lles develop prob-
lems with auxiliary memory. Symptoms included
machines locking up, unusual characters showing up
in Apple Witer files, and programs failing to detect
the second 64K bank of memory.

The manual that came with Applied Engineering's
Z-80 card tipped me off to check the chip at position
B-2 on the [le motherboard. This chip is a 74 LS-245.
Apparently the quality of this chip varies greatly from
manufacturer to manufacturer. Applied Engineering
suggests replacing this chip with one made by Texas
Instruments. | have found that this simple change
fixes auxiliary memory problems at least half the
time.

As it happens, there is usually a Texas [nstruments
74 LS-245 at position B-4 on Apple auxiliary memory
cards. I've had good results by just switching these
two chips, though it would probably be better to buya
new Texas Instruments chip for the motherboard.

When these problems started, | also called the Call
-A.PP.L.E. hotline and was told a few Apple lles were
manufactured with a 74 LS-109 at motherboard
position C-1 This chip is supposed to be a 74 5109
or 74 F-109; the LS-109 won't work here. | haven't
actually found any lles with this problem, however.

Jim Luther
Kansas City, Mo.

Bulletin board follow-up

Thanks very much for including my questions and
comments in the July issue of Open-Apple (page
53). We ordered a Sider hard drive for my department’s
lab and it arrived a few weeks ago in a very well-
packed box. It almost seemed as though they were
expecting it to be handled by the gorilla in the
Samsonite luggage commercial, though thankfully
this wasn't the case. We now have a ProDOS version of
the GBBS bulletin board you mentioned purring
along (after a few minor adjustments) on the Sider
with a Hayes Smartmodem 1200.

The people at Micro Data were very helpful in
getting their bulletin board on line. I also had to call
technical support at First Class Peripherals and
found them helpful, too.

I obtained a lle enhancement kit and greedily
popped in the new ROMs, expecting nothing less than
a fanfare and fireworks upon boot-up. That didn't
happen (and I'm glad), but I got the equivalent bang
for the buck in terms of new features and enhance-
ments. The direct entry of ASCII comes in handy, and
many bugs were fixed. I like the new self-test routine
very much. According to the source listing on page 66
of the Enhanced Ile Programmer’s Guide, the new
self-test covers both main and auxiliary memory and
the MMU and 10U chips as well.

Afriend mentioned that the screen-clear time when
using a terminal-emulation program seemed much
improved with the enhanced chips, so I set up a little
test and found the new routines are over 3.5 times
faster.

I read somewhere that rerunning Basic.system is
the ProDOS equivalent of DOS 3.3's FP. Does doing
this also reset all the MLI links and the global page? |
ask this because I often edit my bulletin obard with
the ProDOS version of GPLE, then execute Basic.system
again so GPLE won't cause hiccups with GBBS. Is the
proper way, or should I just power down and restart?

Peter Chin
Brooklyn, N.Y.

78 Open-Apple
The ProDOS equivalent of FP is “-BASIC.SYSTEM".

This will reload Basic.system and set up a new copy _

of the Basic.system global page. It will also reset the
memory-protection bitmap in the ProDOS global
page, however, it doesn't fix any other changes that
might have been made there (none should be, but
who knows?) If this might be a problem, you can do
a "-PRODOS” to restart completely anew without
actually powering down.

Thanks for pointing out the source-code-embedded
description of the enhanced lle self-test, which I
hadn't noticed before. It says the test will run
continuously as long as the open- and closed-apple
keys are both depressed or the keyboard is discon-
nected. At the end of a successful test a “System OK”
message will appear. You can execute another test
cycle by pressing both apple keys again or you can
exit the diagnostic routines by pressing control-
reset.

Releasing the power

When | read my first issue of Open-Apple, | was
pleased enough to order all the back issues. I said
more "Amens” reading them than [usually say at my
(Baptist) church. The folks at Apple, Inc. should not
read Open-Apple, they should memorize it. There's
more sense in your columns in the April and July
issues than in all the collected wisdom of Apple’s
management, if their blunders are any indication.
One hopes that the reorganization will help. But why
don't they save the money and simply implement
your columns?)

At the university where | teach, our department
(sociology—not computer science, of course) has
finally persuaded the powers-that-be to begin a
microcomputer lab with a dozen Apple lles. And, at
last, our computer center director (who is wedded to
Hewlett-Packard) has agreed to help us interface the
Apples with the HP mainframe. Naturally, it turned out
there was already software to do just that. Therefore,
we will have full access to all the computing power of
the mainframe as needed (and at relatively low cost
compared to buying HP equipment).

To me, this is the future: good “old” Apple IIs
serving as the base of ever-expanding computer
capability through enhancements and interfaces to
larger computers when necessary. Most of the time,
the Apples can do the job offline. Today the HP
mainframe was “down.” As my colleagues sighed and
fumed, | happily worked away with myword processor
and data files on my Apple.

Long ago, | realized that computing was as much
political as technical. | realized that the computer
professionals often had a vested interest in the user’s
ignorance and dependence on the “experts.” And
thatis the great thing about the Apple-led, microcom-
puter revolution—it is “releasing the power to
everyone.”

Alan G. Hilt
Greenville, S.C.

Amen.

Call for Apple Writer calling help

[have a couple of questions about Apple Writer 2.0.
One of the reasons | upgraded to the ProDOS version
was for the communications capability, but [haven't
been able to figure out how to get it to work with my
modem (this is embarrassing because | consider
myself a knowledgable Apple user). The Apple Writer
manual provided no help at all {"Call your receiving
party using the instructions that came with your

modem...” Does that mean I have to exit to Basic to
use my modem with Apple Writer? 1 have a Hayes
Micromodem Ile and would simply like to dial the
number ofalocal BBS and use Apple Writerinstead of
Smartcom 1.

1 would also like to know if there is any way to get
Apple Writer 2.0to date files without a clock card, the
way AppleWorks and SuperCalc 3A do.

My last comment is on SuperCalc 3A. It is a super
program. [recommend it to anybody that needs a
powerful spreadsheet for the lle or the Ilc.

James P. Cooney, Jr.
Billings, Mont.

I consider myself a knowledgeable Apple user,
too. Maybe that's our problem. | haven't been able to
figure out the Apple Writer communications option
either. Has anyone out there gotten it to work? How
did you do it?

1 suspect the problem may be that you and I both
have slot-resident modems. Apple’s own Access Il
communications software works only with modems
connected to a serial card, according to a February
1985 review by Waiter Mossberg that appeared in the
Washington Apple Pi newsletter. Mossberg calls
Access Il “one of the worst products Apple has ever
offered”, in large part because its inability to work
with slot-resident modems, by far the leading type of
modem used with Apple Ils, isn't revealed on the
outside of the package or in the tutorial program. "It
is first mentioned more than 20 pages into the
manual, and must come as a bitter surprise to
many,” Mossberg says.

You can use the STARTUP program on the ProDOS
/JUSERS.DISK to tell ProDOS the date and time. Exit
the program and set the prefix to the directory your
Apple Writer files are in and enter “-AW.SYSTEM",
The date and time you set will appear on all files
saved that session. You could also modify the
/USERS.DISK startup program to create a special
Apple Writer startup program.

SuperCalc 3A is the most powerful spreadsheet-
plus-graphics program for the Apple Il that I have
found. Its obvious CP/M heritage bothers me, however,
Its developers either didn't bother to leamn the
standard Apple Il user interfaces or ignored them.
For example, you can't initialize new disks from
inside the program. This is standard operating
procedure on CP/M systems but quite unusual for
commercial Apple Il software. Being forced to press
the escape key before pointing at cells (while building
aformula) is something I find particularly bothersome,
but that's probably my own problem. Although the
SuperCalc developers are to be congratulated for
including the ability to use command or exec files,
they left out a true macro capacity like Lotus 1-2-3
has. How much longer do we have to wait for that in
the Apple Il world?

Okidata 92 meets AppleWorks

Jerry Cline asked how to put an Okidata 92 printer
into correspondence quality when using AppleWorks
(September, page 71-72).

On the Okidata 92/93 and 192/193 printers,
correspondence quality and boldface (emphasized/
enhanced)are not the same. Correspondence quality
is obtained by sending the printer ESC 1. Emphasized
or enhanced is obtained by sending ESC H or ESCT.

The way to get correspondence-quality printing is
to incorporate the ESC 1 control codes into the
command that govern the characters-per-inch to be
printed. The command for 10 characters-per-inch is
control-". Correspondence quality at 10 characters-

Vol. 1, No. 9

per-inch can be had by using ESC 1 control-" as the
control code.

Data-processing-quality printing is selected withan
ESCO0.1code 12 characters-per-inch as ESC 0 control-
\ to give me rough draft copy at high print speeds. [
use the slower correspondence quality for finished
work. .

This allows the boldface command to be used for
boldface or another purpose. The other purpose I
use is to select an alternate character set. The
Okidata 92 has a RAM memory area that can accepta
second set of characters. There are software packages
(Personal Touch by Okidata, for example) that allow
you to load italics, script, greek, math, and other
special characters sets. This needs to be done before
you startup AppleWorks.

The Okidata prints the alternate set when it gets an
ESC 2. I define boldface begin as ESC 2 and use the
boldface begin command (or control-B from the
keyboard) to get the alternate characters. Boldface
endis then either ESC10r ESCO.

Bruce W.Ristow
540 Antlers Dr.
Rochester, IV.Y. 14618

I've included your complete address so that further
Okidata 92— AppleWorks questions can find their
way directly to you. The print samples you sent
(which included a two-page demonstration of using
an alternate character set to print the equations
needed in mathematics and physics texts) were
beautiful.

Many printers have the ability to use alternate
character sets, including Apple’s Dot Matrix Printer
and Imagewriter. Apple’s documentation barely
mentions this, however, and certainly doesn't show
you how to do it. Programs that provide alternate
character sets for various printers are available from
Third Wave Technology, 16309 Elsienna Ave, Cleve-
land, Ohio, 44135 (216-671-8991) and from Vilberg
Brothers Computing, P.O. Box 4576, Madison, Wisc.
53711 Both companies have a reputation for reliable
products at reasonable prices, but | don't have their
current product listings handy.

Apple lIs in real estate

After seeing you recommend Time Is Money (Sep-
tember, page 71), | wonder if you could help me.

I have purchased two programs for property man-
agement and neither one serves the purpose. They
are The Landlordand Continental Software’s Property
Management. When | asked Contintental for help
they recommended I take the program back to my
dealer and get my money back. The situation with the
other is similar. Let's say 'm somewhat ticked-off.

Are there any other property management programs
that you know of? Neither of the above provide “user-
friendly” operation. You aimost need another program
to identify the entities in the programs.

Currently [am using Time Is Money for transaction
entries and the AppleWorks data base for tenant,
owner, address, rent, and other informational entries.
AppleWorks generates my reports. It sure would be
nice to have all this wrapped in one program, however.

Al Smith
Fresno, Calif,

Il open this one up to our subscribers. But I doubt
you will find anything much better than the Time Is
Money/AppleWorks combination. Acompany named
Intuit (540 University Ave, Palo Alto, Calif. 94301 415-
322-0573) recently announced a checkbook program
named Quicken ($79— 128K required) that has two

important features that | wish Time Is Money had —
an AppleWorks-like user interface and the ability to

transfer data directly into AppleWorks spreadsheets.
As I understand this second feature (it was disabled
in the demo disk they sent me), you set up an
AppleWorks spreadsheet with special labels for the
data you want, then you start up Quicken, tell it
about the spreadsheet file, and it will find it and fill in
the data. You return to AppleWorks to see the finished
spreadsheet.

Intuit’s program reminds me of the PFS series. Like
Software Publishing’s stuff it sacrifices features for
ease-of-use and it’s written in Pascal. It is stricken
with the lethargic response typical of Pascal-based
Apple 1l software. Quicken was not the name that
came to mind when I tried the program. Time Is
Money is infinitely better and faster; I sure wish it
could pass data to a spreadsheet somehow, however.

The hard disk life, continued

Thanks for the comment (August, page 63) on the
problem I had with the Sider (actually a Datamac, but
apparently identical to a Sider). The bad-blocking of
the files I experienced by pressing reset while printing
an Apple Writer file only happened once (that was
enough!). This has been the only anomalous behavior
I have experienced with this hard disk in several
hundred hours of operation. Guess I was lulled into
complacency, so | hadn't bothered to back up my
files.

When the bad-blocking problem occurred, the disk
was on line but not active. | was printing a long Apple
Writerfile, noticed somethingwas wrong, and reflexively
hit control-reset to stop the printout. The file in RAM
was uncorrupted and | finished my printout, then
attempted to pull up another file to find that [was
fenced out permanently. | was four levels down in the
pathname and lost everything in that subdirectory.
Nothing outside that subdirectory was touched, and
the drive continued to work as it should have except
for the reduced effective size of the drive. When |
reformatted, the media certified just as it had the first
time I set it up.

I have noticed a problem with the AppleWorks
spreadsheet that [have never seen documented.
When | rearrange an alphabetized spreadsheet with a
sort on acolumn of numerical scores it always purges
isolated but continguous blocks of cells of their
formulas so that I must rebuild a large part of the
template. Deleting rows or columns will occasionally
corrupt other parts of the structure that are in
independent regions. Apple is of no help, they only
tell me to contact my dealer. Is a new revision
upcoming on AppleWorks?

I wonder why Apple doesn't provide an easier way
to modify only the tail end of a long path name —the
way you can in Sensible Speller's ProDOS version, for
example. It's a nuisance to have to type in an entire
pathname when you only want to jump to another
twig on the same branch. Maybe I've missed something,

Donald Beaty
San Mateo, Calif.

Apple Il wizard Ken Kashmarek wrote to say he
suspects your hard disk problem was caused by a
runaway print-to-disk operation. If the reason you
pressed reset was that nothing was coming out on
your printer (because you had selected 8 (print-to-
disk) as Apple Writer’s “print destination”), reset
could easily have caused the directory entry to be
mangled. | haven't come up with any explanation for
what happened to you that's nearly as plausable.

I've never experienced or heard of the formula-
damage problems you mention with AppléWorks.
The current AppleWorks version is 12; Idon't know if
Apple has revisions in the wings but I suspect they

-do. They certainly make enough money off the

program to provide customer support; most
marketing-oriented companies would love to have
the customer feedback you tried to provide them.
You haven't missed anything that I know about
regarding ProDOS pathnames. | agree that the
ProDOS kemel should support some kind of command
for deleting or replacing the final filename in a prefix.

Another graphic grabber

In the July issue ("Printing Graphics”, page 53) you
discussed a couple of cards that can interrupt a
program at any time and print the graphic display. I'd
like to put in a plug for Dark Star Systems’ products
(78 Robin Hood Way, Greenford, Middlesex UB6 7QW
England, Source Mail BCJ456). | have one of their
SnapShot copy cards and their Printerrupt and
Shuttle software. At the time of purchase (about a
year ago), | was a bit hesitantabout dealing with a firm
based in Europe that had no local representative.

Any fears I had proved absolutely groundless. Dark
Star Systems personnel have proved to be helpful
and responsive beyond the call of duty. With their card
and its associated software packages there seems to
be virtually nothing (digital, that is) that you can't get
out of your Apple onto onto the screen, disk, or
printer.

The copy card itself has 8K of RAM memory into
which you load programs such as Printerrupt. This
program does the same kinds of things as Thirdware’s
FingerPrint card and Texprint’s Print-it!, but it uses
the printer interface card you already have. The
Shuttle software lets you run programs under different
operating systems simultaneously—you do need,
however, 64K of RAM for each such program you wish
to have loaded at the same time.

Dark Star now has a representative here in the U.S.:
Greengate Productions, 2041 Pioneer Ct, Suite 15,
San Mateo, CA 94403, 415-345-3064, Source Mail
BCH101 Paul Pagel

Enfield, Conn.

Any company that makes a copy card on Robin
Hood Way deserves success. A comparison of the
FingerPrint and Dark Star cards in the July 1985
issue of Apple User, an English Apple magazine,
also came down in favor of Dark Star, though the
FingerPrint card reviewed was obviously an earlier
version than the one we use around here.

Next program, please

I'm running a lle with a Sider hard drive. I modified
the startup program Apple provides with ProDOS to
allow selection of AppleWorks, Apple Writer, or Sensible
Speller in addition to the standard FILER, CONVERT,
etc.

Can you— can anyone— give me a way to quit each
of those three programs and get directly back to my
menu? Open-apple/control/reset does it with detours;
I'm looking for the directroute. ponald A. House

Naugatuck, Conn.

Isolved this problem by renaming the first volume

on my Sider “/H1” (it's simple—use the ProDOS

RENAME command) and putting a second copy of

Basic.system, named GO, on that volume. (FPwould
be another suitable name.)

Commercial-quality ProDOS-compatible software

is supposed to issue a “quit” call to the ProDOS

kemnel at exit. The programs you mention, with the
exception of FILER and CONVERT (which few peopie
would say are commercial-quality anyhow), do this.
The quit routine inside ProDOS, which Apple calls a
“dispatcher” asks you to enter a prefix and a path-
name. It's pretty easy to enter /H1 and GO; on my
system this brings up my own menu program.

A more advanced technique would be to rewrite
the ProDOS dispatcher. The ProDOS developers
expected people to do this and have made it pretty
easy. The dispatcher code is embedded within the
ProDOS kernel at bytes $D100-$D3FF in the second
4K bank of main memory. When ProDOS executes a
quit call, it moves a copy of the dispatcher to $1000
and jumpsto it.

A better assembly language dispatcher could be
written that would automatically run Basic.system
and your Applesoft menu program. This would make
a nice project for someone. I'd do it myself if I could
find a time warp to hide in till it was done. Anyone
who wants to try should read Apple’s ProDOS Techni-
cal Notes #7 and #14 before starting. There's a slight
chance your dealers technicians would have these.
They are also available in most user group software
libraries on disk /IAC.43.

You can say that again
Joabs or Jahbs? B. Walters
Boston, Mass.

According to the press relations department at
Apple, it's jahbs, as in “jobs for the poor” spoken by
someone from Kansas City. But who knows how you
Bostonians might pronounce it?

Time short for ProDOS

The ProDOS feature that enables a Thunderclock
to date-stamp files expires on December 31, 1987.0n
January 1, 1988, ProDOS will stamp your files 1 JAN
82. This results from the way that ProDOS derives the
year.

The clock that the ProDOS designers decided to
support, the Thunderclock, doesn’t keep track of
whatyear itis. So ProDOS has to perform a calculation
based on the current date to figure out what day of the
week it would be if it were 1984. It then subtracts the
value found in Thunderclock’s day of week register
from this value, and uses the resulting offset as an
index into a 7-byte lookup table that contains the
corresponding years.

In all ProDOS versions to date this table contains
the sequence $54, $54, $53, $52, $57, $56, $55.
These are the equivalent of decimal 84, 84, 83,82, 87,
86 and 85 respectively, which are the years in which
these versions of ProDOS function properly. To
breathe new life into either of these versions of
ProDOS, you can change the first four bytes of this
table to $5A, $59, $58, $58. This will extend its
usefulness to the end of 1990. Keep this trick tucked
away in your reference file, in case you are still using
the same ProDOS five years from now. Notice that a
leap year must be repeated in two successive bytes,
and that the table wraps around from the last byte
back to the first (years in descending order).

To make a patch, BLOAD PRODOS, A$2000, TSYS.
Now you can find the offending bytes in main RAM, fix
them up, then BSAVE PRODOS, A$2000, TSYS. Notice
that you don't have to give the L parameter when
saving—ProDOS will use the one stored in the
directory.

When you BLOAD ProDOS at $2000 the table of
years is at $5076 in ProDOS 101 and 10.2 and at

80 Open-Apple

$4F76 in versions 11 and 111. After testing the patch
to make sure everything works OK, you can copy this
updated PRODOS file to all of your bootable ProDOS
disks.

Asecond approach to the problem is to change the
year-lookup routine and track the year separately in
your STARTUP program. The command that picks the
year out of the table is B9 B8 F1 {LDA ($F1B8),Y} in
versions 10.1 and 10.2 and appears at $5050. in
versions 11 and 111 the command is B9 B8 D7 {LDA
(D7B8),Y} and is at $4F50. In either case, change it to
AD EF 03 {LDA $03EF}.

Now you can keep the month and year in a text file,
and have your STARTUP program compare the month
currently shown on the clock to that last written to the
file. Ifthe current month is less than the month found
in the file, you add 1 to the year. In any event, you
rewrite the file so it contains only the current month
and year. Then you POKE the year into a new “date
stamp buffer” we have just areated at location 1007
($3EF). As long as this disk gets booted a couple of
times a year it will never get out of date. A word
processor can easily make any correction required
as aresult of extended dormancy.

[used this second method because [had to rewrite
the ProDOS clock driver to work with my Mountain
Computer AppleClock, which has neither year nor
day of week. Ifyou use the Thunderclock, it's easier to
just patch up the year table once every five or six
years.

Clay Ruth
Dyer, Ind.

Gotcha, Sider, ProDOS

Irecently tracked down a bug in a program that was
trying to PEEK at the expansion area ($C800-CFFF)
firmware on an interface card. Something was myste-
riously turning the expansion area off just as I tried to
PEEK at it. All interface cards are supposed to turn off
their expansion area ROM when the value $CFFF
appears on the address bus; some cards do it for any
value in the $CFOO-CFFF range.

In tracking down the problem I learned that the
6502 has a bug in it that causes the wrong address to
momentarily appear on the address bus when an
indexed instruction crosses a page boundary. For
example, the instruction LDA$CFDC,Y (which appears
within Applesoft at $DF3F), with Y holding $C4 (as it
does when PEEK is executed), is supposed toload the
A register with the value at $DOAO, and it does.
However, it also momentarily puts the address $CFAQ

Open-Apple
© Copyright 1985
by

Tom Weishaar
Published monthly.
World-wide price:

US$24/year
Send all
correspondence to:
Open-Apple
10026 Roe Ave.
Overland Park, Kans.
' 6207 ygsa
Source Mail:
JCF 238

CompuServe:
70120,202

Open-Apple is a trademark of Open-Appie newsletter. Apple
Computer and Open-Apple are two different, unrelated, inde-
pendent companies that wish everyone in the world had an
Apple !

($100 less than the correct value) on the address bus.

_This makes some peripheral cards, including the one

I was trying to PEEK at, turn off their expansion ROM.
Gotcha.

The version of DOS 3.3 that comes with the Sider
hard drive is only four bytes different from standard
DOS 3.3. You can boot off a floppy and enable the
Sider with the following patch:

10 REM *** Sider enable patch ***

20 REM Assumes 48K DOS 3.3

30 BD@® = 48384 : SLOT = 7
49 POKE BD@O,32

50 POKE BD@®@+1,17

60 POKE BDO@+2,192+SLOT
70 POKE BD@@+3,0

By the way, the Sider doesn't seem to follow the
MSLOT protocol for the expansion area ROM. This
lightly documented protocol says that peripheral
cards should store their $Cslotvalue at $7F8 (MSLOT).
MSLOT can then be used at the end of an interrupt
routine to reset the expansion area if the interrupt
has used the expansion ROM on other peripheral
cards.

I have aiso recently spent some time figuring out
what ProDOS checks during booting; this may be of
interest to others. After checking the $F8 ROM
identity bytes to see what machine it’s in, testing for
the amount of RAM present, and preparing the results
for saving later in the machine ID byte ($BF98) in the
global page, ProDOS scans the slots for disk devices
and other cards.

The scan starts at slot 7 and works downwards.
First ProDOS looks for a disk interface card. I'll
describe this in more detail later. If a disk interface
isn't found, ProDOS next looks for the Thunderclock
signature ($08 at Cs00, $28 at $Cs02, $58 at $Cs04,
$70 at Cs06). If a clock is found, the appropriate bit is
set in the machine ID byte and the clock routine
vector is enabled in the global page.

Failing that, the slot is tested for the Pascal 11
interface card identification bytes ($38 at Cs05, $18 at
Cs07,$01 at CsOB). If this much is found, byte $Cs0C,
the Pascal 11 device signature byte, is checked for an
80-column card. Before ProDOS version 11 this byte
had to equal $88, which is the ID for Apple’s own 80-
column “card”. In version 11 and later, only the high
nibble has to equal 8, the low nibble can be anything.
Since the low nibble is supposed to identify the
manufacturer, the newer versions of ProDOS will
accept anyone’s 80-column card.

If the three tests for a disk controller card, a clock
card, and an 80-column card all fail, the slot is simply
checked to see if a ROM is present. If so, the appropriate
bitis setto 1in the global page’s SLTBYT ($BF99) flag.
After all slots have been checked, a routine is called
that does a checksum on the ROM to confirm that a
genuine Apple 1 is in use. If the routine fails it hangs
the system.

Now for the interesting part. If the disk interface
card search finds the correct signature ($20 at $Cs01,
$00 at $Cs03, $03 at $Cs05) in a slot, it then checks
the last byte in that card’'s ROM space, $CsFF. If that
byte is zero, the card is assumed to be a standard
Apple Il floppy controller. If the value is $FF the card is
assumed to be an older DOS 3.2 13-sector controller
and is rejected. Otherwise the value is saved for later
placement in the global page, along with $Cs, as the
entry point for access to the device.

Next the byte at $CsFE is checked. This is supposed
to be a status byte that defines the characteristics of
the device hooked to the disk controller. If the device

Vol. 1. No. 9

doesn't support read and status calls (bits 0 and 1
equal 1), the card is rejected. Bit 4 of this byte is used
to determine whether the device has two volumes (0
means 1 volume, 1 means 2 volumes). Both are
assumed to be there if it's a floppy drive. Bit 5 is not
tested. The ProDOS Technical Reference Manual says
on page 110 that bits 5 and 4 of the $CsFE status byte
indicate the number of volumes available on the
device. Two bits indicates the possibility of four
volumes, but the Apple manual says the possible
range is zero to two—how many files does it take to
fill zero volumes?

The top nibble of the status byte is shifted down
and saved, in the global page’s device list at $BF32-
3F, as the low nibble of the device ID. The meaning of
the device ID then becomes DSSSRIVV, where D is the
drive number, SSS the slot number, R whether the
device’s storage medium is removable (1=yes), |
whether the device is interruptable (1=yes), and W
the number of volumes on the device. ProDOS zeros
out this lower nibble when using the device IDto calla
disk driver.

Drives are added to the global page’s device list as
they are found and the device count (DEVCNT, $BF31)
is incremented. If bit 4 of the controller card's status
byte indicates two volumes are available, both are
added to the device list. After the scan of all slots has
been completed, this list is shuffled so that the boot
drive is placed first, followed by the others with the
highest slot first. This becomes the order in which
drives are searched when a volume isn't found in the
default drive.

Tom Vier
Reston, Va.

I've run into that bad-address-on-the-bus-with-
indexed-instuctions problem before. ProntoDOS
goes crazy if you try to save the firmware on the card
in slot 1 with a BSAVE FIRMWARE,A$C100,L$100
command. ProntoDOS uses an indexed instruction
with the base back in page $CO for this and all the
Apple’s softswitches get hit as the file is saved. What
amess. The newer 65C02 doesn't have this problem.
Nonetheless, people writing firmware for cards that
might end up in slot 1 should be careful not to use an
indexed instruction with a base in page $C0.

The information you've developed on the ProDOS
initialization routines is very interesting, especially
the part about the meaning of the lower nibble of the
device ID. Note, however, that while the 4 that the
ProFile and the 5 that the Sider put in this nibble
make sense, floppies place a 0 there instead of the 9
you would expect, and /RAM shows up as $F instead
of a more meaningful 4. The purpose of having two
bits in the $CSsFE status byte to indicate the number
of volumes available rather than one escapes me
completely. Since only one of the two bits is actually
tested it would appear ProDOS expects only one or
two volumes per device. Once a device is called, of
course, it could place additional volumes into the
device list using phantom slot assignments; but
nothing limits this trick to four volumes. Bit 5 looks
meaningless to me.

The hang-if-checksum-is-incorrect feature makes
ProDOS inoperable on machines with custom Monitor
ROMs. You can override this useless, arrogant feature
by BLOADing ProDOS at $2000 and changing two
bytes to $EA. The bytes to change are: versions 1.0.1
and 1.0.2, $265B-5C; version 11, $264D-4E; version
111 $269E9F. (In general terms, search for the
sequence 69 0B DO 03 and change DO 03 to EA EA.
The enhanced Ile Monitor’s search command (March,
page 20: 0B6%2000.5A008) works great for this.)

