Open-Apple

Releasing the power to everyone.

February 1986
Vol. 2, No. 1

ISSN 0885-4017
newstand price: $2.00
per page photocopy charge: $0.25

Apple unveils common sense

In mid-January, Apple held the 1986 Apple World Conference, its first
extravaganza since last summer’s reorganization (July issue, page 49). The
conference brought together third-party hardware and software developers,
dealers, educators, business customers, and user-group representatives to
see Apple’s newest products and to hear where Apple will take us next.

Apple unveiled a new Macintosh and a new LaserWriter, but the most
impressive new item on display was corporate common sense — something
long missing from Apple’s portfolio. The new sensibility was evident in the
plans of John Sculley, Apple’s president, Del Yocam, Apple’s executive vice-
president for product operations, and Jean-Louis Gassee, Apple’s vice-
president for product development.

Sculley, Yocam, and Gassee appear to have abandoned Apple's traditional
disregard for its installed customer base and have instead begun to
recognize their customers as the foundation of Apple. Evidence of this
change came in the form of a new attitude toward user groups, a new
commitment to providing growth paths and upgrade programs for existing
users, and a new policy of accepting trade-ins of older equipment.

In addition, Apple’s years of stifling the Apple II family appear to be over.
While no new Apple 11 products were introduced at the conference, Sculley,
Yocam, and Gassee each made it clear that Apple recognizes the importance
of the Apple 1 to the company's future.

According to Gassee, Apple has no intention of merging the Apple Il and
Macintosh product lines. Each will be developed into a family of systems with
high- and low-end units and a universal line of peripherals. Gassee promised
acontinual flow of enhancements to these machines; he said there would be
no more two- to three-year intervals between new products. He also
promised to maintain the family architectures so that new machines would
be able to do whatever older machines could do. And rather than talking
about how the Apple Il needs to look and feel like a Macintosh, Gassee said
the Macintosh must be opened-up to “reincarnate the spirit of the Apple Il in
the 68000."

According to Yocam, Apple also intends to make a major effort to improve
the speed and quality of the "service part of our product.” Yocam acknowledged
the importance of service to customers and mentioned VLSI designs (which
use fewer chips), improved dealer systems, and maintenance of the quality
of Apple’s documentation as methods Apple will use to improve customer
service.

Yocam also said that Apple sees a trend in personal computers towards
their use as communication devices from their original role as computational
devices. Yocam promised that Apple would make data communications an
integrated part of the user interface. And he promised Apple wouid provide
the ability to read data files on 3.5 inch disks without regard to what
operating system had been used to write the files—watch out MS-DOS.

According to Sculley, enhancements to the Apple II will come in the areas
of graphics, sound, and network possiblities. Sculley promised “real
products that will bring network services to the classroom,” linking students
to teachers and teachers to the rest of the school, before the end of 1986.
Sculley said the Apple Il would “own” Christmas 1986, and that Apple
planned to increase its international business to 35 per cent, up from 22 per
cent of its business currently.

By adding our own common sense to the common sense of Sculley,
Yocam, and Gassee, it's possible to peek under the veil covering the
next Apple Il. Because Gassee says Apple wants to develop product lines,
expect the next Apple Il to be a high-end addition to the Apple 11 family, rather

than a replacement for either of the existing machines. Because he says
Apple won't merge productlines, expect the new machine to be based on the
65816 chip rather than the Macintosh’s 68000.

Because of Apple’s emphasis on communications and its move toward a
unified family of peripherals, expect to see an AppleTalk connection built
into the next Apple Il. Expect that the SCSI (say “skuzzy”) high-speed
interface used for hard drives on the new Macintosh will be available for the
new II, although perhaps not built-in.

Because Apple considers itseif a technological leader and says the Apple i
is its machine in the consumer market, look for graphics and sound
enhancements that put the Il on par with Commodore’s Amiga. Because
Apple generally announces new products in January, May, or September, and
because this new machine will get plenty of time for testing, development of
documentation, and creation of programmer’s tools, look for a September

‘introduction.

In short, the Apple World Conference convinced me that the words “"Apple
11 Forever” will carry a bit more weight nine short months from now. I hope
I'mright.

Apple comes home to users

Apple has claimed for years that it is a “market-driven” company—that it
takes its direction from its customers rather than from technology. In the
very early months of Apple, when Steve Wozniak was designing the Apple II
along the lines of what his user-group friends wanted, Apple was indeed
“market-driven.” Very quickly, however, the company began to follow the
visions of Steve Jobs rather than the needs of its own customers.

R

e

“GATHER AROUND KIDS, YOUR MOTHER'S DOING WINDOWS!*

2.2 Open-Apple

Wozniak's Apple 11, the only Apple system built to fulfill customer visions,
continues to sell well. The machines of Jobs have all been discontinued or
drastically enhanced to meet market reality. This demonstrates why Apple,
or any other company, should strive to be market-driven.

One of the clearest signs that Sculley, Yocam, and Gassee mean it this time
when they say “"market-driven” is Apple’s new attitude toward user groups.
The infant Apple Inc sprang forth from a user group, but quickly became an
uncommunicative adolescent. Now, adolescence past, Apple Inc finally
realizes that mom and dad weren't so stupid after all.

In his opening speech at the Apple World Conference, Sculley embraced
user groups like this:

Among the people who will be carefully watching our development in
both the Apple Il and Macintosh product families will be Apple’s expert
users, representing over 200,000 members of computer clubs, people who
know our products as well as we do ourselves.

We ve always known that these groups of highly sophisticated users are
some of the best evangelists we have. They're very influential in our sales,
through word of mouth and after-sale support. And because we recognize
Jjust how valuable they are to Apple, I'm pleased to announce today the
establishment of a support program between Apple and the nearly 600
Apple User Groups nationwide.

The two-way communication program we Il establish will strengthen the
supportive relationships between user groups, dealers, and Apple. So to all
of you out there who are part of Apple’s user groups, I'm pleased our
relationship will now be stronger.

In late November, Apple appointed Ellen Petry Leanse as User Group
Evangelist and director of the user group program. Leanse quickly put
tegether an excellent program for user groups at the Apple World Conference
—including meetings with and speeches from Sculley, Gassee, Alan Kay, and
Steve Wozniak —and attracted a hundred user group representatives to the
conference. As Leanse continues to produce miracles like this, user groups
can expect a greater exchange with Apple, both in terms of Apple providing
support to user groups, and user groups helping Apple to gauge and
respond to the needs and desires of the marketplace.

If Leanse hasn't contacted your group, | suggest you make yourself known
to her—Ellen Petry Leanse, Apple Computer MS-23G, 20525 Mariani Ave,
Cupertino, CA 95014.

Incidentally, | was one of the press people invited to hear Steve Wozniak's
dinner speech to the user group representatives. Besides being a careful,
creative engineer, Wozniak is also a wonderful speaker. He talked about
Apple’s early days and early connections with user groups in a rambling,
humorous style that enraptured his audience. If you ever get a chance to
hear him speak, don’t miss it

The Magic of Peek and Poke

Among the most magical Applesoft commands are PEEK and POKE.
Cryptic incantations that include these commands can create all sorts of
enchantment. Novice and intermediate Applesoft programmers often cringe
at PEEK and POKE, however, because there seems to be little rhyme or
reason to how they work or what they do.

Even advanced programmers often use these commands by rote and by
recipe. Just as the alchemist doesn't know why there are Smurfs in his broth,
the programmer using a routine from a magazine or book may not know

what POKE 49235,0 does or why. The most widely-available lists of type

interesting addresses to peek and poke — the Beagle Bros Peeks, Pokes and
Pointers chart and William Luebbert's What's Where in the Apple— are often
used like dusty alchemists’ tomes. But knowing how PEEK and POKE make
their magic isn't beyond the understanding of mere mortals.

Vol. 2, No. 1

Let's begin in a small Kansas town called Nortonville, where, many
years ago, my grandfather ran a hardware store. His kind of hardware was
nuts and bolts, lead pipe, brooms, and chicken wire. Nowadays, my
grandfather would be surprised to leamn, hardware is what computers are
made of.

In 1959, eleven years after my grandfather died, Jack Kilby at Texas
Instruments and Robert Noyce at Fairchild Semiconductor independently
came up with the idea of an integrated circuit—a small square of silicon
etched with thousands of electronic gizmos. During the 27 years since then,
these silicon squares, mounted inside black plastic rectangles with metal
legs that resemble insects, have radically changed the world.

Computers pre-date the silicon squares or chips of Kilby and Noyce by
more than a decade. The 30-ton ENIAC, the world's first electronic digjtal
computer, was dedicated in 1946, during my grandfather's lifetime. Real
computers, however —the kind people like my daughter can use to search
for The Most Amazing Thing— didn't appear until 1977; 31 years after ENIAC
and 18 years after the first chips.

The two main “hardware” elements of any computer are a processor and
memory. The development of real computers like the Apple Il wasn't
possible until these two elements were available on inexpensive chips. In the
Apple II, the processor is tucked away on a single chip and, because of its
relatively small size compared to ENIAC, is called a microprocessor. The
memory of an Apple I1, while also small compared to ENIAC, requires several
chips of two different types.

IfanApple II's chips were bees, the queen would be the microprocessor.
It's one of the biggest chips in the computer and is the chip that does all the
computing. The microprocessor in the original Apple Il is known world-wide
by its part number; it's called the "6502" (say sixty-five-oh-two). Nowadays
Apples are built with a slightly enhanced version of this chip known as the
"65C02" (say sixty-five-sea-oh-two). Herein we'll refer to both chips as
"6502s."

If the Apple’s microprocessor is a queen bee, then the Apple’s memory
chips make up her hive. There are thousands of honeycomb cells in Queen
6502's hive. Her power centers on her ability to use the honeycomb to store
an unusual kind of honey— information.

Each cell in the honeycomb has an address. The addresses are more like
Post Office box numbers than street addresses, since they just consist of a
number, such as cell 99 or cell 14,945. The queen can communicate with
each cell individually and directly. She doesn't have to call or walk past one
cell to get to another. Because of this, the cells are said to be “randomly
accessible.”

Random access is a new concept to many people. Its opposite is serial
access. A tape recorder, for example, is a serial-access device. The songs on a
tape are lined up in a row—in a series. To hear any particular song you have
to pass by other songs. There is always one song that is closest and one that
is farthest away.

A real-life example of a random-access device is the telephone. You can
call any other phone in the city directly. Your call never passes through or bya
third phone. All phones appear equidistant. Likewise, Queen 6502 can
access all the cells in her honeycomb independently and in equal, exceeding
small (less than a millionth of a second) amounts of time.

What | have said about Queen 6502 so far is true no matter what brand of
computer she reigns in (she’s been used in several others besides the Apple
II). Computers differ significantly, however, when we look at what the
individual manufacturers have put in the cells of the honeycomb. This varies
from computer to computer, and can even vary from instant to instant on the
same computer, as we shall see later.

The memory honeycomb. Some cells can be used for temporary
memory. The queen can store data in this type of cell and retrieve it later — as
long as the cell is kept supplied with power. Tumn the power off and the
queen’s data is lost forever. In the original Apple II, about 75 per cent of the
cells were alloted to temporary memory.

Other cells are used for permanent memory. Data is placed in this type of
cell when the computer is manufactured. It's as if the data was inserted and
the cell was sealed with wax. Matthew Monitor and Dr. Basic live in cells like
these. About a quarter of the original Apple II's cells contain memory of this

A few cells in the Apple I hold electronic switches for controlling devices
connected to the computer. These cells are usually called “softswitches,’
because they contain switches that can be controlled with software. A few
more cells are used as "ports” through which data can pass in and out of the

Downloaded from www.Apple2Online.com

February 1986

computer. Far less than one per cent of the cells in an Apple Il are used for
switches and ports.

Finally, some cells can contain nothing at all. This is unusual nowadays,
but when the Apple Il was first introduced, many were sold without a fuil
complement of memory chips. Some of the chip sockets were simply empty
because enough chips for 16,000 memory cells cost more in 1977 than
chips for a million cells cost today.

If you counted the cells in Queen 6502's honeycomb, you would find
exactly 65,536 of them. The very first cell has the address zero. The
addresses go up sequentially to 65,535. The size of this honeycomb is fixed
in the design of the 6502, as we shall see in a moment.

The cells that contain permanent data are called ROM or read-only-
memory Cells that are used for temporary data storage are called RAM, even
though that doesn't make any sense. RAM stands for random-access
memory. This doesn't distinguish it from ROM, since both types are
accessed with random methods. RAM should have been called WRM, for
write/read memory, but wasn't—probably because the engineers felt that
giving a computer worms for brains was a disgusting idea.

The important thing to remember is that whenever the power company’s
transformer blows or you tum your computer off, data stored in RAM
disappears forever. Data stored in ROM, on the other hand, can't be changed.
Queen 6502 has the ability to write data into every cell in the honeycomb, but
ifshe writes in a cell that contains ROM, the data won't stick. It's like writing on
wax paper. Because of this limitation, programs stored in ROM are often
called “firmware” rather than “software.”

Each of the 65,536 memory cells holds a byte of memory. A byte is big
enough to hold any number between zero and 255. If you have to explain to
novices what a byte is, tell them that it's a unit of memory approximately
equivalent to a single letter.

Also remember that novices feel they are drowning in alphabet soup when
you talk about RAM and ROM. Especially since the size of RAMs and ROMs is
measured in Ks. "K”, of course, is widely used as an abbreviation for kilo or
thousand. It doesn't help much, however, that as a measure of computer
memory a K is 1,024 bytes rather than an even thousand.

Queen 6502's memory honeycomb of 65,536 bytes is exactly equal to 64K
bytes of memory. In the standard Apple configuration, 48K of these are
allocated for RAM and 16K for ROM. The ROM memoty area includes 256
cells that are set aside for softswitches and data ports rather than memory
cells.

Abit more magic. For all their enchanting properties, memory chips are
really pretty simple. They consist of nothing but thousands of tiny little
switches that can be either on or off. Each switch is known as a bit of
computer memory. Each tiny switch can represent two numbers —zero and
one. By combining these switches into groups, larger numbers can be
represented.

For example, a group of eight switches can be set in 256 different on-off
combinations. Technically speaking, a byte of memory is a group of eight
switches. It takes eight 64K RAM chips, which are measured in bits, to make
64K of memory, which is measured in bytes. A "64K” memory chip houses
65,536 bits —a “64K" Apple has more than half a million of them.

When the microprocessor “reads” a byte of memory, what actually
happens is that a combination of eight on-offs is copied from the designated
switches in memory to a special set of switches inside the microprocessor.
To accomplish this, eight "wires” or conductive paths running between the
microprocessor and the memory byte are used. Switches that are “on” put
one kind of signal on the data path. Switches that are “off* have a different
signal. When reading, the microprocessor simply sets its internal switches to
match the signals on the eight wires. For all this to work, each tiny switch in
the memory honeycomb must be connected to one of the eight data paths.

In the world of electronics, conductive paths that have related functions
and that are distributed together throughout a device are called a bus. In the
Apple 11, the eight lines the microprocessor uses to read the memory cells
are called the data bus. The microprocessor also uses these same lines
when writing to a memory cell—in this case, however, the signals flow the
other way.

Before the IBM-PC was released, the power of a microprocessor was
expressed in terms of the number of data lines the microprocessor used.
The 6502, for example, has always been considered an "8-bit” microprocessor
because it uses eight data lines.

Even though the 8088 microprocessor inside the IBM-PC also has just
eight data lines, IBM's inventive sales engineers decided to proclaim ita “16-
bit” chip. Their excuse was that— unlike the 6502 —inside the 8088 itself 16

Open-Apple 2.3

switches could be used at the same time for manipulating data. However,
since the 8088 has to read and write those 16 bits eight bits at a time, a
naked IBM is just slightly more powerful than a naked Apple Il. The "16-bit”
propaganda created other impressions, however, and worked well for IBM.
(Apple retaliated much less successfully with the "32-bit” 68000 in the
Macintosh, which is a true 16-bit chip as measured by the width of the data
path.)

In addition to the data bus, 16 pins on the 6502 connect to a group of wires
known as the address bus. This group of wires is used to designate which set
of eight switches (i.e., which memory byte) the 6502 wants to read from or
write to. A seventeenth wire is used to tell the memory chips whether the
microprocessor wants to read or write.

The eight data lines, the 16 address lines, and the read/write line together
make up most of the signals found on the 6502's motherboard socket. The
remaining pins on the 6502 are for power, timing signals, and reset and
interrupt signals.

As mentioned before, eight switches can be combined 256 possible ways.
This is why the number 256 keeps showing up around computers. Note that
the 1,024 bytes that make up 1K of memory is equal to 256 times 4. Queen
6502's memory honeycomb has 65,536 cells (256 times 256) because
exactly this many different signal combinations are available using the 16
lines of the address bus.

How bank switching works. While Queen 6502's 16-line address bus
can accomodate only 64K bytes of memory cells, extra chips that add much
more than that are often used in Apples. An Apple lic with the 3.5 UniDisk
upgrade has 128K of RAM and 32K of ROM. Connecting all these bytes to the
address bus requires some special electronic magic. The magical technique
is known as bank switching.

Here’s an historical example. The original 1977 model of Apple Il had
Steve Wozniak's Integer Basic sealed in its ROM chips. When the Apple [I-Plus
was released in 1980, the “plus” was that Applesoft Basic became the built-in
language. Compatibility was an important issue in those days, so Apple
provided several different ways Applesoft programs could be run on the
older Integer Basic machines. One was to remove the older computer’s ROM
chips and replace them with ROMs containing Applesoft. Obviously, however,
this particular technique could be a lot of trouble for users who didn't want to
give up Integer Basic entirely.

So Apple came up with a device known as the Applesoft ROM card. The
card included a set of Applesoft ROMs and was supposed to be plugged into
slot zero. When the card was tumed on, its Applesoft ROMs electronically
replaced the Integer ROMs on the motherboard.

This can be likened to now-you-see-it, now-you-don't magic. It's as if a
section ofthe memory honeycomb was suddenly removed and replaced with
honeycomb from another hive. Queen 6502 doesn't see it happen and
doesn't know the difference. Some of the things you can do with a little
electricity are really amazing.

When an Applesoft ROM card is turned on, Applesoft appears in the
memory cells where Integer Basic usually lives. When the card is turned off,
Integer Basic suddenly reappears.

ROM cards were wonderful, but then ‘Apple came up with a card that
replaced the ROM chips with RAM. A RAM card allowed the 48K Apple’s built-
in ROM to be magically replaced with anything. Apple called its first RAM card
a language card, because it allowed any Apple II to run either Applesoft or
Integer Basic, as well as languages such as Pascal, Logo, and Fortran.

The bank switching technique adds one step to the method Queen 6502
uses with random-access memory. To use additional memory, a softswitch
must be flipped that makes the alternate section of memory appear. To
make the standard memory reappear, another switch must thrown. Since
the 6502 itself doesn’t know anything about these switches, only software
can control which bank of memory is being used. Some software, such as
Applesoft itself, doesn't know about bank switching and never uses it. Other
software, such as RAMdisks and AppleWorks expansion programs, make
extensive use of bank switching techniques.

Bank switching is a neat and useful feature of the Apple that allows
tremendous flexibility and an unlimited amount of memory to be used by
the 6502's “limited” 16-line address bus.

Memory Organization. As mentioned earlier, Queen 6502's 16-line
address bus allows direct access to 65,536 memory cells. This is exactly
equal to 256 times 256. It is common to consider this as 256 memory
“pages” of 256 bytes each. These pages are numbered, as are most things in
the computer world, starting with zero.

2.4 Open-Apple

Novices often wonder why engineers didn't pick a “round” number to base
computers on instead of the very square (16 times 16) 256. The answer, of
course, is that we are forced to use unround numbers in computers by the
nature of the switches—switches have just two fingers where we have ten.
The roughness of computer numbers can be smoothed a bit, however, by
grouping a byte's eight switches into two four-bit “nibbles.”

Four switches can be combined in 16 possible ways. If we use 0 through 9
to designate the first ten combinations, and A through F to designate the last
six, we can express any value that appears within a byte as a two-digit
number. Zero becomes $00 (the dollar sign indicates we are using a 16-
character, or “hexadecimal” numbering system) ten becomes $0A, 15 is $OF,
16 is $10, and 255 is $FF. This system is used all the time by assembly
language programmers, because it makes the Apple’s addresses “round.”
Poor old Applesoft doesn't know anything about it, however, and recognizes
only decimal numbers.

By design, the 6502 uses several of its 256 memory pages in special ways.
Machine language programs can access data on page zero in a sort of
shorthand that is very quick. Page one is used by the 6502 as a “stack,” which
is special-purpose data storage area. Consequently, things work best when
manufacturers put RAM in the memory cells for these two pages.

Likewise, when Queen 6502 sees a low voltage on her “reset” pin, she
always stops what she is doing, grabs the address stored in bytes 252 ($FC)
and 253 ($FD) of page 255 ($FF), and restarts execution at that address.
Consequently, things work best when manufacturers put ROM in the memory
cells for this page —which is the final one.

Itis also helpful for computers to have all their RAM together in one place
and all their ROM in another. Thus most computers that use the 6502,
including the Apple 11, have RAM in memory cells with low addresses and
RQM in memory cells with high addresses.

When you turn an Apple II on, you'll find RAM in pages zero ($00) through
191 ($BF), softswitches in page 192 ($C0), and ROM in pages 193 ($C1)
through 255 ($FF).

What light through yonder window breaks? When Steve Wozniak
designed the Apple I1, he also gave some other pages special qualities. Most
importantly, his design causes the data stored in pages four through seven
($04-$07)to appear on your display screen. When you type a character and it
appears on your screen, what has actually happened is that a number
corresponding to your character was placed in a byte somewhere in this
area; the Apple’s video display hardware then takes notice and the character
appears on your screen,

Wozniak also gave the Apple a second “text screen”, on pages eight though
eleven ($08-$0B). These pages are rarely used as a text display area, however.
Instead, they are usually considered to be the first few pages of “free” RAM.

You tell the Apple’s video hardware which of these pages you want
displayed by throwing softswitches. Other softswitches tell the video
hardware whether to interpret the data on these pages as text or as low-
resolution graphics. Another softswitch commands the video hardware to
display high-resolution graphics. In that case, the Apple uses the data on
pages 32 ($20) through 63 ($3F\—high-res page 1—or pages 64 ($40)
through 95 ($5F) — high-res page 2 — as the source of the screen image.

As mentioned earlier, page 192 ($C0) is reserved for these softswitches.
Pages 193 ($C1) through 255 ($FF) are reserved for ROM. The first 15 ROM
pages, however, are the most interestingin the entire machine. What appears
in this area of the memory honeycomb is ROM on the cards you insert into
the Apple’s slots. Page 193 ($C1) is reserved for ROM on the card in slot 1,
page 194 ($C2) for ROM on the card in slot 2, and so on up to slot 7's page
199 ($C7). Pages 200 ($C8) through 207 ($CF) are shared, by means of bank
switching, byall the slots. Since this scheme was used in the original Apple I,
bank switching is primordal stuff in the Apple universe. Wozniak credits his
friend Alan Baum with devising this section of the memory honeycomb.

On the original Apple 11, pages 208 ($D0) through 223 ($DF) were
connected to empty sockets on the motherboard. Integer Basic appeared in
pages 224 ($EO) through 247 ($F7). The Apple II's operating system—
Wozniak's Monitor — appeared in pages 248 ($F8) through 255 ($FF). When
Applesoft appeared it used all the ROM area of Integer Basic plus the empty
sockets — pages 208 ($D0) through 247 ($F7).

Peeking and poking at PEEK and POKE. Speaking of Applesoft, let's
climb out of the Apple’s hardware for a moment and look at the software at
our disposal for probing the memory honeycomb. PEEK can be used to read
the contents of any memory cell. Give the number of the cell you are

Vol. 2. No. 1

interested in, in parentheses, after PEEK. To see what's in cell 32768 ($8000
— page $80, byte $00), for example, do this:

PRINT PEEK (32768)

A statement like this will always return a decimal number between zero
and 255, inclusive, since that is the entire range of what can fit in a single
memory cell.

POKE can be used to deposit any value from zero through 255 in a
memory cell. However, remember that POKE will have no effect if the cell you
are poking at contains ROM. To poke 100 into cell 32768, for example, do
this:

POKE 32768,100

Ifyou try to PEEK or POKE at an address greater than 65,535, you will getan
ILLEGAL QUANTITY ERROR, because you've fallen off the edge of the memory
honeycomb.

Interestingly, however, PEEKS and POKES at addresses less than zero
actuallywork. This is a heritage of Integer Basic. Although even preschoolers
are taught that "numbers never stop”, Integer Basic didn't know this. In the
world according to Integer Basic, the final numberwas 32,767, In order to get
at higher bytes, the Integer Basic PEEK and POKE commands accepted
negative numbers. The scheme made byte zero equivalent to 65,536.
Negative numbers caused PEEK and POKE to wrap around backwards from
there. For example, PEEK(-1) accessed byte 65,535. PEEK(-32767) accessed
byte 32,769. Interestingly, good old byte number 32,768 couldn’t be probed
with this system.

There are a number of interesting memory cells that came to be known by
their negative number duing the days of Integer Basic. The three- and four-
digit negative numbers of these cells are often easier to remember than the
five-digit positive numbers that can be used with Applesoft (compare -151 to
65385, for example). Applesoft was designed to accept the negative
numbers —all the way down to -65535, which will get you byte 1

Note that both PEEK and POKE will accept variables:

ADR=32768 : VAL=100
PRINT PEEK(RDR) : POKE ADR,VAL

Both PEEK and POKE can also be used for flipping the softswitches on
page 191 ($C0). However, some softswitches respond only to POKEs, some
only to PEEKs, and some respond differently depending on whether they are
peeked or poked. For some realife examples, lets dip back into the
hardware waters.

A closer look at Apple video. An elementary but easily overlooked
characteristic of the Apple II is that all information that comes into the
computer and all information that goes out passes through the cells in the
memory honeycomb. Queen 6502 has no other connections to the outside
world. The only things she can manipulate are the address and data buses.
This scheme is known as memory-mapped I/O.

To get a feel for memory-mapped 1/0, let's play with your Apple’s 40-
column text screen. In decimal, the very first byte on page four ($400) is
number 1024. First try this program:

10 HOME

30 FOR CHR=0 TO 127
40 POKE 1024,CHR

60 NEXT

RUN the program and it will quickly POKE the values from 0 through 127
into byte 1024. As it does so, the character that each of these values
represents to the video hardware will appear, very briefly, on your Apple’s
display.

The program is meant to convince you that what appears on your screen is
aresult of the values present in memory pages four through seven. Since our
program puts all the values in same byte, however, you can't see much.
Change line 40 and add lines 20 and 50 so that the program reads:

10 HOME

20 ADR=1024

30 FOR CHR=0 TO 127
40 POKE ADR,CHR

5@ ADR=RDR+1

6@ NEXT

RUN this version and you'll see three bars of characters appear on your
screen. The bars will split your screen into upper, middle, and lower sections.

February 1986

The characters actually displayed show you how the values from 0 through
127 appear on the screen.

Or do they? The screen is 40 characters wide and three lines are displayed.
Three times 40 is 120. Characters 120 through 127 are missing! Change line
30 as shown and run the program again:

30 FOR CHR=@ TO 255

This time six lines or 240 characters are displayed. As the program runs,
watch the order in which the six lines appear on your screen. Since we are
poking values into sequential bytes, something very strange is happening.

Your display screen has 24 lines. Consider the top line number zero and
the bottom line number 23. The first 40 bytes on page 4 appear as the top
line on your display screen, the next 40 bytes as line 8, the next 40 bytes as
line 16, and the next 8 bytes don't appear anywhere. The next 40 bytes
appear on the screen’s second line (line one), the next 40 on line 9, the next
40 on line 17, and the next eight nowhere.

The structure is Byzantine. The four memory pages are splitinto eight 128-
byte segments, each of which holds a line in the top section of the screen, a
line in the middle section, a line in the bottom section, and eight extra bytes.
Novices find this organization confusing. Experts find this organization a
beautiful example of Steve Wozniak's creativity and genius. The design
allows a minimum amount of video hardware, 2 minimum amount of RAM,
and the maximum number of characters that can be reliably displayed on a
television set. Even the extra, undisplayed bytes, which are called the
screenholes, end up being used by other parts of the Apple system.

Peek, poke, and tickle. To see a softswitch in action, type the following;:
POKE 49232,0

Tickling byte 49232 with a PEEK or a POKE tells the Apple’s video hardware
to switch from a display of text to a display of low-resolution graphics. To
switch back, tickle byte 49233. With this particular softswitch, it doesn't
matter whether you use a PEEK or a POKE, or, if you POKE, what value you
POKE into that byte. The switch just wants to be tickled. You'll find switching
from low resolution to text can be tricky, because what you type will appear
on the screen in low-resolution blocks rather than as text, but it can be done.

RUN our earlier program again—if you've been following along it should
still be in memory—so that six lines of characters appear on your screen.
Now tap return a few times so that the top line scrolls off the screen. What's
happening here is that the software (or “firmware”) built into the Apple
Monitor is taking the values you placed in memory page 4 and moving them
around so that the screen appears to scroll.

Our final group of values, which had been in line 17, are moved to line 16.
Line 16 is moved to line 15, which is in memory page 7. It's all very
complicated — but software makes it as simple as pressing the Return key.

While it's possible to manipulate the screen by poking values into pages 4
through 7, it's no way to run arailroad. I've shown you this to teach you about
the power of PEEK and POKE and to showyou how the Apple hardware works.
Direct manipulation of the screen usually isn't a good idea. It's much better
to use PRINT and let the Apple itself figure out where everything goes.

For example, switch to an 80-column display with a PR#3 and RUN our six-
line SIXLINE program again. If each screen character uses up one byte, then
an 80-column by 24-line screen will require 1,920 bytes of space. Our normal
display area in pages 4 through 7, however, contains only 1024 bytes, of
which 960 are displayed and 64 are screenholes.

By tuming on the 80-column screen and running our program, you'll
demonstrate that, in 80-column mode, memory pages 4 through 7 are used
for holding the characters in odd columns (assuming the first column is
number zero). The characters for the even columns are stored elsewhere.
Software that successfully POKEs messages directly on the screen in 40-
column mode doesn't work too well in 80-column mode. Witness the NOT
SELECTED message older Grappler-Plus printer interface cards sometimes
poke onto the screen.

On the other hand, advanced software often finds it necessary to bypass
the Apple’s built-in firmware and use its own. Apple Writer has always done
this for speed reasons. Programs that need to read information that's on the
screen— perhaps a telephone number you want to dial, must also read the
screen directly. The problem with such programs is that they must have

Open-Apple 2.5
special versions for each type of 80-column display device —and third-party
hardware developers came up with several.

Peek, poke, and machine language. We've looked at how PEEK and
POKE can be used to tickle softswitches and to change the memory area that
is displayed on your screen. The other fundamental use of PEEK and POKE is
to interact with machine language programs.

Amachine language program tells Queen 6502 what todo. The instructions
are stored in a series of memory bytes, either RAM or ROM. Typically the
instructions tell her to read a byte, write a byte, compare two bytes, and so on
—and they designate what byte to do it to. Reading, writing, comparing,
adding, subtracting, and branching to other program segments pretty well
sum up everything Queen 6502 can do. She can do them so quickly, however,
that the wonderful result can be events like AppleWorks.

If a machine language program is in ROM, POKE can be used to modify it.
This is what most of the POKEs given in Open-Apple are all about. By
tweaking a RAM-based machine-language program such as DOS 3.3 here
and there, you can make it do all kinds of enchanting stuff.

Another use for PEEK and POKE is to look at and change bytes that
machine language programs are using for the storage of data. For example,
the machine language program in the Monitor that automatically takes care
of scrolling the display screen uses four bytes on page zero to change the
size of the screen "window.” You can make the data on the top four lines of
the screen “permanent”, for example, with a POKE 34,4. Byte 34 ($22) is a
zero page location that the Monitor uses to remember the top edge of the
textwindow (the top line is considered number zero}. Byte 35 ($23) holds the
bottom edge (but now the top line is considered number one), byte 32 ($20)
holds the left edge, and byte 33 ($21) holds the window width. “The
Wonderful World of Windows” in our June ‘85 issue (page 48), discusses
these POKESs in detail.

Two-byte peeks and pokes. When the number a machine language
program wants to remember is smaller than 256, as with our window
dimensions, a single byte of storage will do. Often, however, it is necessary to
remember larger numbers. Different programs use different formats for
such numbers, depending on how many significant digits they must have
and whether they must include a decimal point. One common kind of
number stored by machine language programs, however, is a memory
address. This is a two-byte (16-bit) number, and for reasons known only to
microprocessor designers, the number is stored backwards from the way
you would expect.

We know from earlier in this articie that any address in the Apple Il can be
expressed as a two-byte number—one byte describes the memory “page”
and the other the byte’s position on that page. The machine-language
Applesoft interpreter keeps the address of the lowest memory cell available
to Applesoft programs in memory bytes 103 and 104 ($67-$68). Byte 103
holds the “byte” number and byte 104 holds the “page” number. The typical
way to dig this address out of memory is like this:

PRINT PEEK(103) + PEEK(104)%256
2049

By multiplying the “"page” byte by 256 and adding on the "byte” byte, we
can translate the address stored in those two bytes. The answer is 2049
($801), which is where the Applesoft programs you type in can generally be
found.

By poking a different address into bytes 103 and 104, you can get
Applesoft to put your program elsewhere. You might do this, for example, if
you wanted to use “text page 2", which also uses byte 2049 and the 1,022
bytes that follow it.

To move the start of an Applesoft program to byte 3073 ($C01), just
beyond the area needed by “text page 2", you need to POKE the value 3073
into bytes 103 and 104. There are several ways to do this. My favorite is to
calculate the “page” first, then use the answer from that calculation to figure
the byte, like this:

ADR=3073
POKE 104, ADR / 256 : POKE 103, ADR - (PEEK(184)*258)

(For this trick to work, you must also POKE a zero at ADR-1—otherwise
Applesoft gets very confused. After making these POKES, reLOAD your program,
and it will load at the new position.)

To use PEEK and POKE effectively, of course, you need a magician’s tome, such
as those mentioned earlier, to know exactly what bytes control what. Now that you
know why PEEK and POKE do what they do, however, you should be able to make
your Apple Il perform more enchanting magic.

DuoDisk numbers not serial

In your January ‘86 issue (page 98) you printed a
warning to DuoDisk users about possible damage to
disks that use certain copy protection schemes.

The number you published, however, is the part
number of the DuoDisk printed circuit board located
inside the drive, not the serial number of the affected
units. The potential exists for problems to occur with
units of almost any serial number.

Apple users who think they have a unit in need of
upgrading should take the DuoDisk unit to an autho-
rized Apple servicing dealer for a check. If the circuit
board has not been upgraded, the dealer will do so at
no cost to the user.

As with all software, the only way to positively avoid
a catastrophic loss is to always keep backups of your
disks.

Service Engineering
Apple Computer, Inc.

More track 0 crashes

| read with interest J. Emest Cooper’s letter on
track O crashes in the January issue (page 103). 1am
a tech man in a school district that has in excess of
225 Apple Il computers. Thisyear we purchased over
70 of the new enhanced Iie machines.

In prior years we had some problems with losing
data. We do have a program known state wide as
being exceptional in quality of training for our staff
and students. However, when you have 2,500 students
K through 12 using computers, you have some
human error involved. This year, however, with the
addition of two word processing labs, and a phenom-
enal increase in the use of AppleWorks and PFS:Write
by student and staff members, we have had a major
increase in the number of data disk crashes, much
more than the increased usage shouid warrant. Both
AppleWorks and PFS use Track O for directories. The
majority of the crashes occur during READ or WRITE
activity.

[s our problem a problem with the enhanced lle? |
don't know. But Cooper’s letter seems to point at a
possible answer for the problem we have been having
all this year. Does anyone else out there have similar
problems croppingup?

Asanaddenda, your readers who have this problem
might invest in Bag of Tricks 2,from Quality Software.
1t makes rebuilding damaged ProDOS directories a
breeze.

Jim Aufderheide
New Ulm, Minn.

Do all these new lles also have new 5-1/4 inch
UniDisks? Or do they have the faulty DuoDisk
drives? Open-Apple correspondent Ken Kashmarek
suggests the problem isn't the enhanced Ile but the

enhanced disk drives. ['ve gotten a couple of other
reports of track 0 crashes since publishing Cooper’s
letter. There's definitely something odd going on
here. Keep those track 0 crash reports coming in.

Other views on mouse/3.5

Ho-hum...two more super issues of Open-Apple.
So what else is new?

Well, the UniDisk 3.5 ROM for one. It certainly is
quite a collection of routines. Buried in the code is
the option to read or write blocks of either 512 bytes
(1 family) or 524 bytes (Macintosh). Does that suggest
any interesting avenues?

You ask why anyone would pay $560 for a UniDisk
when they can get a 10MB hard drive for just a littie
more. One reason is portability. When a Mac/UniDisk
conversion program becomes available (and I hear
rumors now), you can stick a Mac disk in your shirt
pocket and take it home to use on your Ile.

I disagree entirely with your comments on the
mouse. I think there is a place for mouse technology
and, as a good typist, I enjoy using the mouse when
I'm word processing with Roger Wagner Publishing’s
Mouse Write. | suppose having the mouse present
does slow execution somewhat, but if the program is
written well, it should be transparent, or nearly so, to
the user. Sure, [don't use the mouse for everything,
there are cases where the alternative control com-
mands work better for me. But on the other hand,
when you spot an error a dozen lines up, a mouse
sure beats entering a long string of keystrokes to get
there and another to get back. I like it well enough
that I even use it to create documents that have to be
converted back to DOS 3.3 with Apple’s e#(*%++&
utilities. Try it, you'll like it!

Frank Andrews offered a neat trick to open a binary
(or other) file in the January issue (page 99), but I'd
like to be able to BLOAD a text file, as under ProDOS.
In the same issue Paul Pagel mentioned my program
“In the Dumps.” An improved version of that routine,
modified for ProDOS, appears on APF.LE's ProZap by
Gary Charpentier.

Thanks for mentioning On Three. We have a UniDisk
driver for the Apple Il as well as great plans for 1986.
There’s a lot of life in the old gal yet, including the
65C802.

Val Golding
Tarzana, Calif.

Andrew’s trick is neat, but Weishaar messed it up
pretty bad by giving the wrong address to poke.
Those pokes at the top of the third column on page
99should be to 42954 ($A7CA). The nine and the two
were transposed in the original, bothinline 10and in
line 40.

Apple Pascal praised...

I'm sorry to hear that Apple Pascal reminds Uncle
DOS of "a poke in the eye.” Personally, ProDOS
reminds me of a poke somewhere else, but that's
another story.

I've been using Apple Pascal exclusively since it was
released. For writing large commercial programs, it
just can't be beat. The disk 1/0 is twice as fast as
ProDOS, and the assembler is terrific.

inthe January ‘86 Open-Apple (page 102), Stanley
Cauthers asked about two bugs he found in Apple
Pascal, both of which he was able to work around. |
hardly think these bugs justify abandoning Apple
Pascal, as you suggest.

The minor editor problem Cauthers mentioned
happens to me about once a month. It's easy to

Vol. 2, No. 1

recover from and I hardly notice it now. I've never run
into the problem Cauthers describes with gradually
running out of memory. 1 haven't used the 128K
version of Pascal 12, so it may be a bug in that
version.

Dynamic memory management with Pascal is a
little tricky. I've discovered through painful trial and
error that you shouldn’t RESET or CLOSE any files in
between a MARK and RELEASE, especially with Pascal
12.

The fact that Cauthers uses recursion in his program
may be part of the problem. Basham’s law of debugging
recursive programs states that it is always harder to
debug a recursive program than you expect, even
after taking Basham's law into account.

Asfor getting support from Apple, I suggest Cauthers
call Apple Developer Relations at 408-973-4897 to
see about becoming a certified developer. Apple now
has support service through MCI Mail, which should
work a lot better than trying to call someone on the
phone.

And if Uncle DOS expects anyone besides his
mother to love him, he should watch who he pokes in

the eye! .
Bill Basham

Diversified Software Research
Farmington, Mich.

Okay, okay, sometimes I get alittle carried away. |
would be the first to admit that neither Applesoft nor
assembly language, my personal favorites, are
totally suitable for large commercial programs. But
you have to admit that becoming a certified developer
Jjust to get support for an Apple product also seems a
bit unsuitable.

Apple doesn't provide support for Applesoft either,
but answers to Applesoft questions are much easier
to obtain because so many more people understand
the language and its operating systems. Few people,
on the other hand, have attained a working knowledge
of Apple Pascal and its operating system. | have
recently jumped to the conclusion that this is not so
much a problem with the Pascal language, which
seems to be quite popular on other computers, but
with the Apple Pascal operating system, which has
so far prevented my own interest in Pascal from
budding. Why do you think so few people have
attained aworking knowledge of Apple Pascal? How
did you get past the prompt line?

...and damned

“A uniquely obstructive operating system...” This
has to be the most elegant and incisive comment on
Apple Pascal (January ‘86, page 102) ever to surface
in any discussion of top-down, structured computer
languages with their complex pseudo-opcodes, extrav-
agant use of memory, and devious multiple boots
versus good, old, clumsy, straightforward Basic with
its prosaic line numbers, logical algorithms, user-
friendly applications, and half a chance of retuming
control to the operator should it become necessary
to swap horses in mid-stream for whatever valid
reason.

One of the nasty surprises in store for novice Pascal
users is the discovery that the operating system
doesn't support direct operation of peripherals, such
as a printer. All systematic configuration procedures
to the contrary notwithstanding, the command
TRANSFER APPLE3:ANYFILE.TEXT, #6:ANYFILE TEXT
doesn't even get a shrug from my printer, which
functions perfectly from binary, Applesoft, integer, or
text with PR#L And that (*$L PRINTER:*) directive
doesn’t work either.

February 1986

With Apple Pascal it appears that one must devise a
machine language “driver” subroutine that gets

installed somehow in SYSTEM.LIBRARY as a segment -

that is subsequently accessed and manipulated by
SYSTEM.ATTACH with its own devious protocol and
fussy syntax (whew!...all this just to get PR#1???
They're kidding!)

However, this particular cloud has a silver lining. In
a copy of Apple In Depth #2: All About Pascal from
APPL.E. Co-op there is a Pascal to DOS 3.3 conversion
program called HUFFIN. It enables placement of a
Pascal text file directly into memory from disk and
printing it out by NORMAL and RATIONAL means that
any reasonable apparatus can comprehend. Even my
copy of Randy Hyde's P-SOURCE is so much excess
baggage in this respect, along with a half-dozen other
Pascal manuals in my collection that regularly collect
dust.

In all faimess, an exception must be made for
Introduction to the UCSD P-System by Charles Grant
and Jon Butah (well written, no surprises, everything
fits—except the printer thing), as well as the Pascal
Primer by Fox and Waite, and Apple Pascal, A Pro-
gramming Guide by Allen B. Tucker, Jr.

Even the Devil should have his day in court, if only
to answer to charges of contending systems and
general lack of cohesion and standardization of the
Pascal hierarchy. But consider howlongit took for the
U.S. railroads to get together and agree on a standard
rail gauge of 4 feet, 8-1/2 inches. THAT squabble took
up most of the nineteenth century. Now, what's this
about a Pascal standard, or any computer norm, for
that matter?

Donald Ruch
Burbank, Calif.

MagiCalc to AppleWorks

1 am a professional bookkeeper and I do word
processing for the public. When | saw AppleWorks it
sold me on buying a lic. I have a lot of spreadsheets
that [have built with MagiCalc and Ultraplan on my II-
Plus. | now use AppleWorks constantly for word
processing and databases, and would like to transfer
my spreadsheets, using DIF files, to AppleWorks, too.
I've tried to make the transfer unsuccessfully for
hours. Could you print a step-by-step procedure for
doing this?

My lI-Plus is seeing less and less use these days
because the Iic has more memory for my spreadsheets
and because | use AppleWorks all the time. However, |
still don't quite trust the Iic to hold up for years
structurally (I get a lot of error messages with the
built-in disk drive and my lic monitor lasted for only
four months before it stopped working) and I'm not
fond of its closed design. If you had the choice, which
machine would you invest in to buy more memory to
run AppleWorks and create larger spreadsheets?

Marilyn Dresbach
Sonora, Calif.

First of all, forget about DIF files. DIF files are very
handy for taking data out of a spreadsheet so that it
can be used by an Applesoft program or a data base
manager, however, they are useless for moving stuff
from one spreadsheet to another because they won't
transfer formulas —just values.

AppleWorks can directly load files that are in the
VisiCalc storage format. All DOS 3.3-based spread-
sheets that I know of use this format, however, |
don't have any direct experience with MagiCalc or
Ultraplan. But I'd bet that all you really have to do is
convert your existing spreadsheet files from DOS 3.3
to ProDOS and load them into AppleWorks.

Here’s the step-by-step: start up the System Utilities
disk that came with your Iic. Use it to format a blank
disk into the ProDOS format. Give this disk a simple
name, “/a” would do fine. Now copy your existing
spreadsheet files onto this disk, using the “copy
files” option of the system utilities. The program will
notice that you are copying from a DOS 3.3 disk to a
ProDOS disk and make all necessary adjustments.
Once the files are copied, start up AppleWorks and
tell it you want to add some files to the desktop.
Here's the tricky part—don' tell it the files are on a
disk, tell it you want to make a new spreadsheet file.
It will then ask you if you want to make the new file
from scratch, from a DIF file, or from a VisiCalc file.
Choose from a VisiCalc file. It will then ask you to
type in the file's complete pathname. Type in the
name of your ProDOS disk (/2" if you've followed
instructions), a second slash, and the name of your
old file, e.g. “/afledger” (if the old filename had
spaces in it, use periods in those positions, e.g. “/a/
Jjan.ledger” for “jan ledger”)

Your spreadsheet will then load into AppleWorks.
You may still encounter a few problems if your
original spreadsheets use functions that AppleWorks
doesn't support, such as LOG. AppleWorks handles
most spreadsheets very nicely, however, and gives
you a lot of expansion room. Make sure you like it
before you start modifying your spreadsheets,
however, because there is no way to move an
AppleWorks spreadsheet back to your older programs.

If 1 owned a II-Plus and a lic, had a business like
yours, and didn't need any of the portability of the
Iic, I'd attempt to work a trade of the pair of them for
a used lle. It makes a much stronger foundation to
grow from.

A used Ile would give you the expandability and
reliability you want and have the additional benefit
of abetter keyboard than either of the two computers
you now have. The II-Plus keyboard, of course,
suffers from a lack of keys. The lic keyboard tends to
stick a little. (If you prefer a heavier keyboard touch,
incidentally, look for an early lle—the kind where
the keyboard letters are in the middle of the keys
rather than in the upper-left comer as on the current
models. I have one of those, and it's my favorite of
the seven computer and two typewriter keyboards
I've owned over the years.)

Ifyou can afford to get a used Ile without giving up
your Iic, it would provide you the benefit of a back-
up computer in case something went wrong with
your primary system.

There are also a few of us who find it efficient to
use two computers at once. This is known as the one-
person, two-computers philosophy. People who use
more expensive computers can't afford this and
instead have to resort to exceedingly complex
“multi-tasking” software that allows two programs
to run on the same machine at the same time—a
much less preferable altemative.

Neat programs

In the January Open-Apple there were a couple of
letters about changing various types of disk files into
text format. There is a program on CompuServe in
MAUG (DL3 library) calied THE.EXECUTIVE (Copyright
1985, Living Legends Software) that claims to be able
to change any type of file into a text file that can then
be EXECed to restore it. I have tried this program and
it works well and quickly, too.

Another program in MAUG DL3 is UNICOPY (Copy-
right 1985, Morgan Davis, Living Legends Software). It
will copy an 800K UniDisk on a single drive with 8 disk

Open-Apple 2.7

swaps. Contrast this with the “duplicate a disk”
option in the Apple 11 System Utilites version 2.1 that
comes with the UniDisk 3.5. It takes a lot of disk
swaps (forty, | think, but I got so frustrated 1 lost
count).

Another neat “feature” of the new System Utilities
occurs if you write protect the 3.5 inch disk it comes
on. Booting the write protected disk causes the error
WRITE PROTECTED, BREAK IN 406, and FILE(S) STILL
OPEN to appear. This appears to be the ROM bug you
mentioned on page 98. The STARTUP file on the
System Utilities disk asks which language you want to
work in (English, French, ltalian, or German) when
booted the first time. It creates a file with one
character in it indicating the language selected. On
following boots is uses this language but for some
reason rewrites the file every time. This exposes the
bug exactly as you described it.

Hugh McKay
Montreal, Quebec

Living Legends Software is agroup of authors who
distribute their programs as “freeware.” You can get
copies of their programs from CompuServe, try
them out, and if you find something you want to add
to your collection you send the author a check.
Programs you don’t want you can throw out.

AppleWorks page numbers

The is a response to Gary Morrison’s AppleWorks
page-numbering problems. | have had no problems
printing page numbers, including a 159-page evalua-
tion report. The AppleWorks word processor provides
page numbering commands in the Printer Options
Menu. To print page numbers:

1. Enter the Printer Options menu (OR-0)

2. Select Page Header (HE) or Page Footer (F0)

3. Select Page Number (PN} and enter the starting
page number--you can skip this step if the
document starts with page 1.

4. Select Print Page Number (PP)

5. Exit Printer Options Menu (ESC)

When printing a document, each page will have at
the top (or bottom) a page number starting with the
number entered in step 3.

Nicholas Cofsky Sky

Portland, Ore.

Here are some additional notes—when you do
step 2, the message "-- - --Page Header” or "-- - --

Page Footer” will appear on your screen. Whatever
appears in the following line (you can type in-
anything you like) will print at the top (or bottom) of
each following page of your document.

Step 4 puts a caret at the position the cursor was in
when you pressed OA-O. Your page number will
appear at this right-left position. You can also embed
page numbers at any point within the text of a
document with PP—even several times on the same
page. The advantage of using a header or footer is
that the page number will then appear automatically
on every page. Ifyou embed the page number in text
(that is, anywhere but in the line immediately
following a page header or page footer mark), you
have to put it on every page manually. On page 79 of
Robert Ericson’s AppleWorks: Tips and Techniques,
there’s an example of using the page number feature
to create sequentially-numbered invoices.

The PN command you mention in step 3 changes
the number of the page the command appears in.
For everything to work correctly, obviously, the PN
command must appear before the PP command on
that page.

2.8 Open-Apple

Page numbering can also get messed up if you OA-
P(rint) from “this page” or from the “cursor” rather
than from the “beginning.”

Incidentally, if you can’t remember what a certain
caret on your screen represents, place the cursor on
it and look at the bottom of the screen. The line-
column numbers are replaced with the function of
the caret.

PFS to AppleWorks

Do you know of any way of converting PFS:File data
bases into AppleWorks data bases? | have several
billion bytes to transfer and it seems a waste of effort
to re-type the information. Is there any way my Apple
can do the work for me?

James Rusk
Garland, Texas

Open-Apple subscriber Jim Luther (5716 Forest,
Kansas City, MO 64110) has written two programs
for converting PFS:File and PFS:Write files into
ProDOS text files that can be read by AppleWorks.
The programs are limited— the PFS:File converter
can take data only from the first page of a database
record. If there are more than 30 fields on that page,
or if any field has more than 78 characters, the
excess is truncated, since AppleWorks would do that
itself anyhow. PFS:Write files end up with a carriage
return at the end of each line. Most of these carriage
returns have to be deleted, since AppleWorks likes
carriage returns only at the end of paragraphs. This
program will also split long PFS:Write files into
shorter segments.

However, the programs definitely save a lot wear
on your fingertips if you can live with these limitations,
Luther will send you a disk with both programs on it
for $20.

Open-Apple
N E—

is written, edited, published, and

© Copyright 1986 by
Tom Weishaar

Most rights reserved. All software published in Open-Apple is
hereby placed in the public domain and may be copied and
distributed without charge (most is available in the MAUG library on
CompuServe).

Open-Appleis sold in anunp| matfor your 1
You are encourgaged to make back-up archival copies or easy-to-
read enlarged copies for your own use without charge. You may
also photocopy Open-Apple for distribution to others. The
distribution fee is 25 cents-per-page per-copy distributed. Please
pay fees monthly. Send fee payments and all other correspondence
to

Open-Apple
P.0. Box 7651
Overland Park, Kans. 66207 U.S.A.

ISSN 0885-4017. Published monthly since January 1985. World-
wide prices (in U.S. dollars; airmail delivery included at no
additional charge): $24 for 1 year; $44 for 2 years; $60 for 3 years.
Alt back issues are currently available for $2 each; seven or more
from any single volume $14 (postpaid). Index mailed with the
February issue. Open-Apple is available on disk for speech
synthesizer users from Speech Enterprises, P.O. Box 7986, Houston,
Texas 77270 (713-461-1666).

WARRANTY AND LIMITATION OF LIABILITY. | warrant that most of
the information in Open-Apple is useful and correct, although
drive! and mistakes are included from time to time, usually
unintentionally. Unsatisified subscribers may return issues within
90 days of delivery for a full refund. Please include a note from your
parents or children confirming that all archival copies have been
destroyed. The unfullilled portion of any paid subscription will be
refunded on request. MY LIABILTY FORERRORS AND OMISSIONS
IS LIMITED TO THIS PUBLICATION'S PURCHASE PRICE..In no
case shall | or my contributors be liable for any-incidental or

piot o

q ges, nor for any in excess of the fees
paid by a subscriber.
Open- is neither affiliated with nor responsible for the debts
of Apple Inc.; “tinaja q 9" is a trad of Don

Lancaster.
Source Mail: TCF238 CompuServe: 70120,202 Tele.: off hook

lic color monitor interference

Recently I came across a problem with my Apple
lic that might be worth noting. I had the logic board
upgraded for the UniDisk 3.5. About a month before [
had bought a Color Monitor Iic, and everything had
been working fine. After the upgrade | booted Infocom'’s
Enchanter and the following message appeared,
"INTERNAL ERROR 14. END OF STORY." I rebooted the
disk and the drive whitred incessantly, making a
horrid clattering noise intermittently. I tried other
games, all of which I guess use DOS 3.3, and got
pretty much the same result; with a few, the drive just
tumed without even recognizing there was a disk in
the drive.

Two exceptions were Flight Simulator Il and Lode
Runner, which worked perfectly. When | took the
computer to the dealer it worked flawlessly. He
suggested I look for sources of “interference.” I tried
using my old monochrome monitor, and had no
problem.

Hence, 1 guess there is something in the new logic
board that is susceptible to interference by RF
emissions by the color monitor, or the monitor
produces unusual amounts of interference. Further-
more, this “interference” apparently affects programs
depending on how they are copy-proteted, which
might account for some of the programs working
correctly.

[have tried booting the disks with the computer
further away from the color monitor with only slightly
better results. Pascal is also affected. Non-copy-
protected DOS 3.3 disk and ProDOS disks are not
affected.

Is there something | can do with the monitor to get
the problem fixed? I have asked people who are
knowledgeable, and so far the best idea I have heard
is to get a thicker monitor cable. Also, what is
INTERNAL ERROR 14?

Carl J. Schmidt
Morristown, NJ.

I recently purchased an Apple Iic color monitor
and a UniDisk 3.5 disk drive. When | switched to the
color monitor, I started to experience trouble booting
and reading disks from the internal drive because of
the RF interference coming through the front panel of
the color monitor. | then tried to boot from the
external floppy drive with a PR#7. To my surprise and
delight an error message popped on the screen
"AppleTalk Offline.”

Investigating further, I have discovered that the new
Apple lIc Technical Reference Manual, which includes
the UniDisk 3.5 ROM listings, also contains full ROM
listings for AppleTalk routines that are also built into
the UniDisk 3.5 ROM upgrade. Apparently stot #7 will
be used to access AppleTalk. Do you have any further
information about this development?

Henry Landry
Andover, NJ.

Many people have had interference problems even
with the Apple Iic monochrome monitor because the
HIc’s built-in disk drive and the monitor usually end
up positioned very close to each other. I'm pretty

Vol. 2, No. 1

sure the interference isn't RF (radio frequency)
emissions, but magnetic emissions that confuse the
disk drive head. The standard solution is to move the
disk drive farther away from the monitor. Placing
metal objects between the monitor and the drive
could also divert enough magnetic energy to help.

Two interference reports in one month about the
particular combination of the Iic color monitor and
the 3.5 ROM upgrade may be meaningful, but I don't
know how.

INTERNAL ERROR 14 must be an Infocom error
message. It's not built-into the Iic anywhere, like
AppleTalk is. The AppleTalk upgrade was apparently
included in the 3.5 ROM upgrade so that yet another
ROM upgrade wouldn't be required later. However,
AppleTalk for the Il family hasn't been released yet. |
don't even know which connector on the Iic would
use it.

ProDOS system file conversions

How can I save a ProDOS system file as a binary
file? When I try to BLOAD a system file, I get a FILE
TYPE MISMATCH error. If I use the dash command to
get a system file into memory (which also causes it to
execute, something | don't want to happen) and try to
save it as a binary file by use of the syntax "BSAVE
NEWFILE, A$2000", some disk activity occurs on the
active drive and a PATH NOT FOUND error occurs.
(Note that I am also trying to make use of the fact that
itis allegedly unnecessary to specify the L parameter
when BSAVING under ProDOS.)

Dan Strassberg
Arlington, Mass.

My copy of the Sider utility disk contains ProDOS
101 The Sider keeps the ProDOS kernelin a DOS 3.3
file so that it can be started up directly from DOS 3.3.
I'd like to upgrade to ProDOS 111, but after all the
horror stories I've read about the problems with
CONVERT, | am more than a bit afraid to try converting
it myself. Ifthe CONVERT program will, in fact, convert
the PRODOS file over to DOS 3.3 in a usable fastion,
please tell us howto doit.

Tom Smith
Fort Vancouver, Wash.

To change the PRODOS kemel, or any other ProDOS
system file, into a binary file, first BLOAD it using the
T(ype) parameter like this:

BLOARD PRODOS, TSYS, A$2000

Next, BSAVE it using both the loading address and
the length. You can get the length by looking at an
80-column CATALOG. It's the last number given for
the file, and it’s in decimal. Thus, for ProDOS 111:

BSAVE PRODOS. IMAGE, R$2000, L14848

You do have to use the L(ength) parameter when
saving a binary file, but only the first time. If the file
already exists and you leave off the L parameter,
Basic.system will use the length of the existing file.
Notice that you get a PATH NOT FOUND error when
you leave off the L with a new file rather than a
SYNTAX ERROR, since Basic.system assumes your
mistake was a bad path to the existing file rather
than mistakenly leaving off the L.

Once you have the ProDOS image in a binary file,
you can use CONVERT or one of Apple’s system
utilities programs to convert it to DOS 3.3. I don't
know of any problems with converting binary files.
Nonetheless, 1 suggest you rename the original
ProDOS image on your Sider and keep it around just
in case.

