Releasing the power to everyone.

Open-Apple
B I

July 1986
Vol. 2, No. 6

ISSN 0885-4017
newstand price: $2.00
photocopy charge per page: $015

Shift away from superstition

It's easy to get as superstitious as a baseball player around
computers. You may notice, for example, that disks boot better ifyou scratch
your nose with the tip of your elbow before typing PR#6. Some of these
superstitions may have an electrical basis, but here’s one that doesn't—I
read in a user group letter this month that AppleWorks printer setup strings
seem to work better if you enter them by holding the shift key down rather
than by using CAPS LOCK. Let's stamp this out before it gets serious. On an
Apple I there is absolutely no difference between a character entered using
the shift key and the same character entered using CAPS LOCK. From inside
the machine you can't tell the two apart even if you want to. (It IS important,
however, to enter most printer setup strings using capital, rather than lower
case, letters.)

ProDOS directory sorters have become popular in the general
computer press. Byte published one in its June issue (page 117) that
contains the same old bug most ProDOS directory sorters have. Don't use it.
For more information see the March 1986 Open-Apple, page 2.10. Then tell
us why a magazine like Byte, which almost never mentions the Apple II to
begin with, is writing about ProDOS directory sorters when there are so many
more important Apple Il technical loose ends to tie up. Compute/s July
sorter (page 96) doesn't have the usual bug, but only because it doesn't save
the sorted directory back on the disk. It just prints it out to your choice of
screen or printer. This and game reviews were Compute!s total contribution
to the Apple Il literature in July.

Apple’s AppleWorks marketers are looking for interesting stories
about how real people use AppleWorks. Since Open-Apple’s readers are by
and large real, they asked me to ask you to bang out a couple of paragraphs
on how you use AppleWorks and send them to Daniel Paul, Mail Stop 3-P,
Apple Computer Inc, 20525 Mariani Ave, Cupertino, CA 95014 by July 15.

Uncle DOS recently received a letter headlined TOP SECRET and
signed by a character named Sore Throat. The letter divulged that Apple’s
Software Licensing department has a package available called the Apple II
Filecard Tool Kit.

Licensing department documents newly obtained by Open-Appledescribe
the package as “four software modules for the ‘filecard’ (AppleWorks)
interface. The 'User Input Routine’ object module implements recommended
Apple keyboard input for Pascal, Applesoft, and assembly language
programs. The ‘Console Driver' object module offers fast, efficient 80-
column text output and screen control for Pascal, Applesoft, and assembly
language programs. A Pascal object ‘Console Stuff’ unit offers text formatting
aids, as well as utilities for overlaying message boxes and Help screens. A
Pascal source Filecard’ unit provides utilities for implementing the filecard
interface. Demo source files are also included.”

I can find no evidence that Apple has ever mentioned the existence of this
tool kit in any of its developer publications. I wish someone would explain to
me why Apple seems so dedicated to trashing the filecard interface in favor
of the mouse desktop, which is more complicated for both users and
programmers. There are more copies of AppleWorks being used today than
there are copies of the Macintosh itself. The filecard interface is intuitive,
understood by people all over the world (even computer salespeople), and
requires only two hands. Nonetheless, during the last two years I have never
seen or heard Apple encourage anyone to use it, with one exception. The
mouse desktop, on the other hand, is shrilly promoted wherever Apple
gathers developers.

The one exception is in Apple Il Human Interface Guidelines. This manual

includes a 14-page chapter on the filecard interface. The more complicated-
mouse interface requires a 55-page chapter.

Apple’s Software Licensing department collects fees from people who
use Apple-created software in their own software packages. In exchange for
paying the fees you get the right to include Apple’s software in an uniimited
number of copies of your own package. You also get free updates to the
licensed software. With some items you get a copy of the licensed software,
technical documentation not available elsewhere, or both.

To get in touch with these people, call 408-973-4667 or write Software
Licensing, Mail Stop 28-B, Apple Computer Inc, 10101 N DeAnza Blvd,
Cupertino, CA 95014. Here is a complete list of the Apple Il products
currently available for licensing. Items marked with "** will be provided ("*R"
means provided by request only), items marked “U” are unsupported:

DOsS 3.3 $50 R U
FID $50 *R u
FPBASIC/INTBASIC $25 *R U
DOS TOOL KIT $50 U

ProD0S/Basic.system/

FILER/CONVERT $50
Basic.system source code $100 *
ProDOS disk formatter $50 *
ProD0S USERS DISK $50 u

(German) * U

(French) x u

(Italian) * u
ProD0S BACKUP II $35 U
Filecard Tool Kit $56 *
Desktop Tool Kit $50 ¥
Printer Tool Kit $50 *

6502 Std Apple Numerics (SANE) $50 %

A

)

i\ \‘41 il
i

e

\/u//‘ * il |
W il
l%

\!

o
WE'RE VERY PROUD TO OFFER SOFTWARE
INCORPORATING: THE (ATEST ADVAANLE IN
COPY - PROTECTION..”

2.42 Open-Apple

SuperPilot $5@ u
SuperPilot Library $25 * U
Pascal operating system $100

ProDOS access unit $50 %
Volume manager unit $50 ¥
Pascal formatter 1.3 $25 %
Pascal filer 1.3 $50

Attach tools 1.3 $50 ¥
Pascal short graphics unit $25 *
Pascal 1.2 46K runtime pkg $50 ¥
Pascal 1.3 64K or 126K runtime $50 ¥
Pascal 1.3 treesearch, idsearch $58@ *

If you're wondering whether you have to be a "third-party developer” to
license these packages, you'll be glad to hear that Apple seems to define
“developer” as someone who has licensed something from them. If you'd
like a copy of the Filecard Tool Kit, for example, call and ask for copies of
Apple’s Software License Agreement. Be prepared to provide a business
name—these folks know me as Tom Weishaar Productions, for example.
Theyl send you some long legal forms and “Exhibit B, which is a list of the
packages available for licensing. Sign the forms, send them back with a
check, and they'll send you disks and documentation.

The most interesting stuff is the three tool kits, the SANE package, and the
Pascal collection. I'm not sure what's in the Filecard Tool Kit at the moment;
when I ordered it together with the Desktop Tool Kit I got the Printer Tool Kit
instead. (A quick phone call and the right package is on the way.)

Meanwhile, | can tell you the Desktop Tool Kit consists of eight disks —four
assembly language/Applesoft and four Pascal. Two of each set of four disks
includes routines for doing the mouse desktop on the 80-column text
screen, the other two have routines for doing the mouse deskiop on the
double-high resolution graphics screen. In addition to the eight disks, you
get photocopied versions of the following manuals: Apple I Human
Interface Guidelines, Developer’s Handbook for the Apple Il MouseText Tool
Kit, Mouse Graphics Tool Kit: External Reference Specification, and Apple Il
Graphics Primitives Handbook. This is an immense amount of material for
$50, especially from the tightwads at Apple.

The Printer Tool Kit consists of two ProDOS disks that are filled with
assembly-language color-and-monochrome-graphics printer-drivers for the
Apple Scribe, Imagewriter, and Imagewriter II printers. It includes a
photocopied manual called the Developer's Handbook for the Apple Il
Printer Tool Kit. The drivers support control of picture size and aspect ratio;
RGB 8- and 16-color, NTSC 8- and 16-color, and high-resolution and double-
hlgh-resolutlon monochrome graphics; screen pre-view and cropping; and
page positioning and rotation.

The SANE (Standard Apple Numerics Environment) package consists of
three disks—one ProDOS and two Pascal—full of assembly language
routines and a printed copy of the Apple Numerics Manual. SANE is one of
the first widely-available products that conforms to a binary floating-point
arithmetic standard called IEEE 754. It provides for four types of variables
with 7, 15, 18, and 19 significant decimal digits. (Applesoft provides nine
significant digits, Apple Pascal six.)

None of the manuals listed here was included in Open-Apple’s March list
of technical documentation available from Apple (page 211).

More technical support for anyone who wants it (and can afford it) is
available from Apple in the form of subscriptions to the Apple Il Technical
Notes. Open-Apple published a list of the current tech notes in March (page
211) and updated it last month (page 2.34). Apple is now selling subscriptions
to the notes to anyone who's interested. A complete set of 1985's notes is
$45 (all active notes were revised in 1985, so this is the equivalent of a
complete set of back 1ssues) a subscnptlon to this year’s notes, which are
issued every other month, is $25. Subscriptions are available from the Apple
Computer Mailing Facility, 467 Saratoga Ave, Suite 621, San Jose, CA 95129
(408-988-6009). Also available, for a mere $75 each, are Inside Apple Talk
and Inside LaserWriter.

Apple’s lawyers were stung by their first big defeat in May, when
Australia’s High Court ruled that, prior to the amendment of the Australian
Copyright Act in 1984, software in ROM was not eligible for copyright under
Australian law. The court, which is the highest in Australia, overturned a
decision of the full Federal Court, which had upheld Apple’s claim of
copyright infringement against Computer Edge Pty Ltd, importer of the
Taiwanese-made Wombat Apple Il-compatible into Australia.

The earlier decision of the full Federal Court, which put Computer Edge
out of business, had itself overturned an original Federal Court decision in

Vol. 2, No. 6

this long legal battle, which Apple lost in December 1983. That decision led
the Australian government to rewrite its Copyright Act in 1984. The new act
gives all software, even that written before 1984, full copyright protection.

Thus Apple’s loss is largely academic in Australia. It could be more
significant in other Commonwealth countries, such as Canada and Hong
Kong, however, that have not yet rewritten their copyright laws to specifically
include software. Cases such as Australia’s can be cited in courts throughout
the Commonwealth when the underlying laws are similar.

Meanwhile, in other legal action in May, Apple won a lower court copyright
decision against Canadian importers of Apple Il-compatibles. In that case
the importers conceded that source code can be copyrighted, but argued
that ROM was not a suitable material for a literary work. The court decided
that the wording of the copyright act was broad enough to include silicon
chips. It isn't yet known what effect this case may have on an ongoing update
to Canada’s copyright law.

Question: why do all these suits focus on whether software in general is
copynghtable rather than on whether the Apple Il Monitor in particuiar was
placed in the public domain by Steve Wozniak prior to bemg copyrighted by

Apple Inc?

Picking Up
Applesoft

Exercises in self-modification

Back in March Uncle DOS got a question about how to capture a user’s
formula interactively on the keyboard and enter it into a running program
(page 216). Uncle didn't know how, but referred to four articles in Call -
APPL.E. and inCider that explained how it could be done.

In April Open-Apple carried a long article on breaking the 48K memory
limit of Applesoft using a RAMdisk (page 217-2.21). This article went into
great detail on the structure of Applesoft programs as they appear in
memory. Among other things, it showed how to split Applesoft programs to
avoid the graphic screens and how to overlay program segments.

Then, in June, Open-Apple built upon the April article by showing how to
examine the value of all currently defined variables. The program presented
in that article, using April's information on the structure of an Applesoft
program in memory, modified itself. It introduced a routine that could
identify the memorylocation of any program line. Once that is accomplished,
itis a fairly simple matter to POKE changes into the line.

This month, we'll build upon the June article and answer March’s question
about getting a user’s formula into a program. We'll also show how to hide
short assembly language routines inside the body of an Applesoft program.

Self-modifying Applesoft. Let me begin by reminding you that data
processing professionals abhor self-modifying code. Don't discuss what you
learn here in polite company or during any job interviews.

In last month’s article, [showed you a program that could make fixed-
length changes to itself. For example, we had the line:

37824 : PRINT N$;“ = “;XX$

Our goal was to change the "XX$” to the actual name of the variable we
wanted to print—maybe “0Z%", for example, or "OZ " (with a space after the
Z to denote a floating-point variable). This was easy because we always knew
ahead of time exactly how many characters were involved. When you start
letting people enter command strings on the keyboard, however, you don't
know ahead of time how long the string will be.

Somehow, we have to write a program line that can be modified later and
that reserves the maximum amount of space we'll ever need. How about this
one:

370 :REM

Last time I counted there were 60 asterisks in that line, which gives us a 60-
byte command line to work with. If the user enters a 30-byte command,
however, we also need a way to tell Applesoft to ignore the extra asterisks at
the end of the line. We can do this by adding a colon and a REM to the end of
the user's command. For example, if the user wants to insert the formula FOR

Downloaded from www.Apple2Online.com

July 1986
X=0TO 30 : Y=1000 * 1.08"X, then line 370, after modification, should look
something like this:
370 FOR X=0 TO 3@ : Y=1000 * l.OBAX T REMEEXREEXRERRIRERIHHNAERRAS

Now all we have to do is find the location of line 370 in memory. Here's the
routine we used last month to do this. You call this routine after putting the
number of the line you want to find in L. It returns the address of that line in

ACL. Line 100 was numbered 37700 last month; I had to move it to the
beginning of the program to get everything to work:

108 DEF FN PK(ARDR)=PEEK(ADR)+PEEK(ADR+1)}¥256

37996 REM * Find line number L *
37991 REM ¥ ACL=address of current line
37992 REM * ANL=address of next line *

37993 REM set ACL to start of program (TXTTAB)
37994 ACL=FN PK2(103) : REM address of current line
37995 ANL=FN PK2(RCL) : REM address of next line

37996 REM find line number L

37997 IF L=FN PK2(ACL+2) THEN RETURN

37998 V=FN PK2(ANL) : IF VD@ THEN ACL=ANL : ANL=V : GOTO 37997
37999 PRINT “There’s no line “;L;” in this program.” : STOP

Unfortunately, simply collectinga command stringwith an INPUT statement
and POKEing it into line 370 doesn't work. The reason it doesn't work is that
Applesoft expects command words such as PRINT and IF to appear as
tokens, as discussed in April (page 218).

When I found this out, I read the four articles Uncle DOS recommended in
March to see how those authors had solved the token problem. The most
helpful article, as is often the case, was the one by Comelius Bongers.
Bongers identifies the routine inside Applesoft that converts program lines
typed on the keyboard into tokens. After reading the four articles, I decided
the best way to proceed was to use a smidgen of assembly language.

The Applesoft tokenization routine is at $D56C. Under normal conditions,
it converts the ASCII contents of the keyboard input buffer ($200-2FF) into a
tokenized program line. The converted line is never longer than the original,
so the converted line is stored right over the top of the original in the buffer.
The routine expects the address of the keyboard buffer to be stored at byte
$B8-$B9 (184-185) and requires a couple of other bytes to be initialized. The
following routine, which we’ll call PARSE, saves and restores the contents of
$B8-$B9, does the other required initialization, and executes $D56C:

8E4: AS BB LDA $B8

8E6: 48 PHA save bee-eight and -nine on stack

BE?: A5 B9 LDA $B9

BES: 4B PHA

BER: A2 01 LDX #1 avoid having a zero in the program

BEC: CR DEX make a zero

8ED: 86 BB STX $B8 store at bee-eight

BEF: CR DEX make it $FF for PARSE

8FO: A0 02 LDY #2

8F2: 84 B9 STy $B9 $B8 now points at keyboard buffer at $8200
8F4: 84 13 STY $13 initialize data flag

BF6: RO 04 LDY 84 initialize Y

8F8: 20 6C DS JSR $DSAC execute PARSE

6FB: 68 PLA

8FC: 8589 STR $B3 restore adr at bee-eight to previous value
BFE: 68 PLA

BFF: 85 B8 STR $B8

901: 60 RTS

Assume we have this routine in memory and have told the variable PARSE
its address. We can now have the user enter a desired formula using INPUT
and convert it to tokens like this:

300 L=370 : GOSUB 37990 : ADR=ACL+4 : REM find line that will be modified
310 INPUT “ENTER APPLESOFT CMD: “; CMD$
320 CALL PARSE

ADR points to the colon in line 370. The colon is four bytes beyond the
beginning of the program line (two bytes for the next-line pointer, two bytes
for the line number), thus the ADR=ACL+4 in line 300. Now let's move the
tokenized line from the keyboard input buffer into line 370:

325 ROOM=6@ : REM this is the number of asterisks in line 370
330 FOR I8 TO ROOM-1

335 : V=PEEK(512+1) : Il=I

340 : IF V=0 THEN I=RDOM : GOTO 350

345 : POKE ADR+I,V

350 NEXT

Open-Apple 2.43

PARSE will leave a zero at the end of the tokenized line. Line 340 looks for
this zero and gets us out of the loop when it finds it. If a user enters a
command that takes up more than 60 bytes, we need to print an error
message:

355 IF v< >0 THEN PRINT “FORMULA TOD LONG” : PRINT : GOTO 310

And don't forget that we always need to add “:REM” at the end of the user’s
command:

360 POKE ADR+I1,58 : POKE ADR+I1+1,178 : REM “:REM”

A hidden beauty of this trick is that the user can include commas and
colons in the formula, even though INPUT won't accept them and will print an
EXTRA IGNORED message. The reason for this is that everything the user
types goes into the keyboard buffer, whether Applesoft ignores it or not.
Notice that we never actually do anything with the CMD$ that we collect with
INPUT in line 310. Instead, we let PARSE work directly on the contents of the
keyboard buffer,

Whatifthe user types acommand line that has a SYNTAXERROR? Let's trap
itand let the user re-enter the line:

365 ONERR GOTO 480 : REM syntax error trap
370 :REMXXXXXXRXXXAN EXAHR
380 POKE 216,0 : PRINT : GOTO 31@ : REM clear onerr, restart

400 IF PEEK(222) < > 16 THEN PRINT “ERROR #*;PEEK(222);
“ IN LINE “;PEEK(21B) + PEEK(219)*256 : END
410 PRINT “THIS CMD HAS A SYNTAX ERROR.”
420 CALL -3288 : GOTD 380 : REM clear stack--see Jan 85, page 2

Line 380 sends us back to line 310 for another command. Let's use CMD$
after all to give the user the option to quit by entering an empty line. And
when the user quits, let’s have our littte demo program list the formula we've
placed in line 370, as well as some other stuff we're going to put in line 230:

315 IF LEN(CMD$)=0 THEN LIST 230: LIST 370 : END

Embedding machine code in Applesoft REMs. To finish our little
program, we have to figure out some way to get our PARSE routine into
memory. In the past, Open-Apple has always tucked such routines into the
free memory in page three. Because this area is used for so many different
purposes, however, you virtually have to reload code there every time you
want to use it. You can’t depend on a piece of code still being there from the
last time you used it.

This is no good. One way around the problem is to actually store your
machine language code in REM statements. If you do this, you definitely
don’t want Applesoft to attempt to execute the program line, so leave a REM
at the beginning to make Applesoft ignore it. Use exactly as many asterisks
as there are bytes in your assembly language routine:

200 L=230 : GOSUB 37990 : PARSE=ACL+E : REM find line that will be modified
230 :REM¥x* RAXAKXX

This time we want line 200 to point at the first asterisk in line 230, rather
than at the colon as we did with line 370. Thus the PARSE=ACL+6 in line 200.
The colon and REM are already tokenized and thus fill one byte each.

There are a number of techniques for inserting assembly language code
into memory from Applesoft, such as READ-DATA loops and so on. Here we'll
use my favorite, the Lam technique, which has been discussed in Open-
Appleanumber of times (pages 12, 23, 77, 216).

One problem, however, is that we don't know ahead of time the exact
address where the routine is to be placed. Normally with the Lam routine,
youwould put an RTS at $300, for example, with the Monitor command string
“300:60". Rather than messing around converting Applesoft's decimal
number to hexadecimal and inserting it at the beginning of the command
string, let's POKE the address in bytes $40 and $41 (64-65), which is where
the Monitor stores the “next changeable location.” Then, rather than
beginning the command string with an address, we simply start with a colon,
like this:

210 POKE 65,PARSE/256 : POKE 64,PARSE- (PEEK(65)*256)

220 C$=":A5 BB 48 AS B9 48 A2 @1 CA B6 B8 CA RO 02 B4
B9 B4 13 RO 04 20 EC D5 58 B85 BS 68 B85 B8 60~ : BOSUB 500

The rest of the Lam technique can be found in the listing at the end of this
article at lines 500 through 530.

There are two tricks to writing assembly language routines that are to be
stored inside Applesoft programs. First, of course, the routine must be
relocatable. It can't refer to any locations within itself except with relative

2.44

Open-Apple

Ask

(or tell)
Uncle

DOS

The system works

1 took a copy of your answer to my April letter (page
2.23) to the technician at the local Computerland.
The letter was about the trouble I've been having
getting disks to boot since buying an Apple color
monitor.

When the technician checked my machine, he
discovered that you were right; a shield was missing
from my disk drive, and he replaced it. All of the
programs that would not boot properly before work
well now. As an added bonus, the shield also solved
some difficulties I have experienced in making
copies of some disks.

Thank you for your help. Even though most of the
discussion in your pages is way over my head, I will
remain a loyal subscriber.

Bemice Eaton
Northridge, Calif.

My subscription is up and six months ago I thought
| wouldn't renew. Your paper is for the computer

sophisticate. Your paper is too far above the layman.
Then little by little I started getting a glimmer of what
was geing on. ['ve been going over all the back issues,
and 'm UNDERSTANDING them. Gee, what next? I can
learn what has heretofore seemed esoteric jargon.
Thanks.
Harry Charles
Nederland, Texas

Understanding the Apple I requires neither superior
intelligence nor a chip-like personality. Open-Apple
really is dedicated to “releasing the power to eve-
ryone.” It does take awhile to absorb enough of the
language and of the concepts to get started, but
thousands of perfectly normal people have leamed
enough to make their Apple Ils jump through hoops
of fire. Remember—the more you read, the more
youunderstand; the more you understand, the more
youunderstand.

Roots

What is the nature of the mysterious appendix that
appears when you LIST the Integer Basic APPLEVISION
program found on old DOS 3.3 system master disks?

Where is the machine code with the dancing man
and the little tune?

Len Lipschutz
Jersey City, NJ.

In the Olden Dayes, when I myself was just an
Apple II beginner, APPLEVISION was a maddening
program. [wanted to write programs like that one,
but Apple’s manuals had no clues whatsoever about
how to proceed.

Now I know enough at least to tell you that you
spoiled the fun by answering your own question; the
“mysterious appendix” IS the machine code. My
understanding is that it is fairly easy in Integer Basic

Yol. 2, No. 6

to attach machine code routines to the end of
programs, although I still don't know how to do it.
Back in the days of cranky cassette tape, attaching
the machine code to the program made loading and
saving a great deal easier.

If you're really curious, the January 1984 issue of
Apple User has an article that shows how to capture
the hi-res character generator buried in APPLEVISION
for your own use. Apple User is published by
Database Publications Ltd., Europa House, 68 Chester
Road, Hazel Grove, Stockport, SK7 5NY, U.K. (061-
480-0171). Annual subscription rates are 15 pounds
in the UK., 23 pounds in Europe, and 38 pounds
elsewhere (airmail).

Double page 2

Oh yes there IS page 2 double-high res! When
80STORE is on, the PAGE2 softswitch flips between
main and auxiliary memory, justas you demonstrated
last month (page 2.40). However, when 80STORE is
off (POKE 49152,0), the PAGE2 switch flips between
double-high res pages 1 and 2. I got this from Roland
Gustafasson, who's motto is "Don‘t believe everything
you see in the manuals.’

David Eisler
Littleton, Colo.

Well, to quote what I said last month, “there is no
more obscure arena in the Apple II world than
double-resolution.” My apologies to the author of
Apple’s RGB manual, who got it right after all.

MacroWorks’ mouse

I've been using MacroWorks for several weeks. My
Iic mouse works fine when I am in the MacroWorks
program; however, it does nothing when 1 am in
AppleWorks. The MacroWorks manual says nothing

branch instructions. Second, things work best if you avoid having any zero
bytes embedded within the code. For example, LDA #0 becomes A9 00 in
actual machine code. Ifyou embed this in a REM statement and then edit the
program, the Applesoft editing genie will see that zero, assume it marks the
end of a program line, change some next-line pointers around, and create
the conditions for a certain SYNTAX ERROR the next time the program is run.

Notice the trick used in the fifth and sixth lines of our PARSE routine to

avoid a zero.

Ifyou can't avoid zero, all is not lost. The limitation is that you must take
great care to edit your program only when there are asterisks in the REM
statement. Don't attempt to edit or save the program after RUNning it.

If you can avoid zeros, on the other hand, you can actually SAVE the
program with the assembly code embedded in the REM statement. Before
saving you can delete lines such as 210, 220 and 500 through 530. You can
leave them out of your program from that point on. Note that you will will still
need a line like 200, however, to figure out where the routine has ended up.

Here’s a complete listing of this month’s tricks:

+ SELF.MODS DEMO

: by Tom Weishaar
July 1986

EE O

: a public domain program

100 DEF FN PK(ADR)=PEEK(RDR)+PEEK(ADR+1)*256

200 L=230 : GOSUB 37930 : PARSE=ACL+E : REM find line that will be modified

210 POKE 65,PARSE/256 = POKE 64,PARSE- (PEEK(65)*256)

220 C$=":A5 B8 48 AS B9 48 A2 @1 CA B6 BB CA RO 02 84
B9 84 13 AG 04 20 6C D5 68 B85 B9 68 B5 BB 60~ : GOSUB 500

230 REMX*XxXxX ARK RER

320 CALL PARSE
325 ROOM=E0
336 FOR I=0 TO ROOM-1

345 : POKE ADR+I,V
350 NEXT

335 : V=PEEK(512+1) : I1=I
340 : IF V=0 THEN I=ROOM :

300 L=370 : GOSUB 37990 : ADR=ACL+4 : REM find line that will be modified
310 INPUT “ENTER APPLESOFT CMD: “; CMD$
315 IF LEN(CMD$)=@ THEN LIST 230: LIST 378 : END

6070 350

355 IF ¥< D@ THEN PRINT “FORMULA TOD LONG* : PRINT : GOTO 310
360 POKE ADR+I1,58 : POKE ADR+I1+1,178 : REM “:REM”
365 ONERR GOTO 400 : REM syntax error trap

370 :REM RAXEAAAR

380 POKE 216,0 : PRINT : GOTO 310 : REM clear onerr, restart

400 IF PEEK(222) < > 16 THEN PRINT “ERROR #~;PEEK(222);
“ IN LINE “;PEEK(218) + PEEK(219)%*256 : END
410 PRINT “THIS CMD HAS A SYNTAX ERROR.”

420 CALL -3268 : GOTO 380 : REM see Jan 85, page 2

508 C$=C$ + “ N DSCEG” : REM space required before and after N

510 FOR I=1 TO LEN(CS)

512 : POKE S11+I, ASC{MID$(C$,I,1))+128

514 NEXT

520 POKE 72,4 : CALL -144

530 RETURN

37990 REM * Find line number L *
37931 REM * ACL=address of current line *
375992 REM * ANL=address of next line *

37993 REM set ACL to start of program (TXTTAB)
37994 ACL=FN PK2(103) : REM address of current line

37995 ANL=FN PK2(ACL) : REM address of next line

37996 REM find line number L

37997 IF L=FN PK2(ACL+2) THEN RETURN
37998 V=FN PK2(ANL) : IF VD@ THEN ACL=ANL : ANL=V : GOTO 37937

37939 PRINT “There’s no line “;L;” in this program.” : STOP

July 1986

about the mouse support you described (June issue,
page 2.33). How do I get it to work?

Robert C. Moore

Laurel, Md.

Beagle Bros has a free upgrade for you. Send them
the proof of purchase tab from the back cover of your
manual and they’ll send you a new disk and
documentation.

Randy Brandt, MacroWorks author, tells me the
most creative use of macros he’s heard of so far was
from a user who wrote macros to change his custom
printer settings. These macros allowed him to work
around the AppleWorks limit of a single custom
printer. The macros take 18 seconds to completely
redefine the custom printer.

SuperCalc 3a defended

I'm curious to know the reasons behind your
personal vendetta with SuperCalc 3a. You've panned
the program twice now (January 86, page 98; May
1986, page 2.28).

1 can't believe we're talking about the same program.
SuperCalc 3auses slash commands familiar to every
user of VisiCalc or its clones. It includes all the
numeric functions AppleWorks left out, on-line context-
sensitive help screens, a superb graphing function,
and built-in sideways printing. Plus it's unprotected,
automatically recognizes the extra memory on my
RamWorks and Apple memory cards, and runs from
floppies, UniDisk 3.5, hard disk, or RAMdisk.

1 suggest you take another look.

Marc S. Renner
St. Paul, Minn.

Ithinkit's important to realize I'm cynical, grumpy,
hot, and tired when I test new products. Consequently,
even | don't consider my opinion the last word on a
product’s quality or importance. I appreciate it when
those of you who disagree with my impressions say
0.

My problems with the SuperCalc interface center
onthe unusual use of the escape key when "pointing”
to cells while building formulas and the way the
arrow and retum keys work. Other than having
reservations about the interface, however, I agree
with you—as I said in May, the program is the most
powerful Apple Il spreadsheet I've used. Il take
another look at it next time I have some real number
crunching to do.

LDA (83,Y)???

In the SU2.0BJ letter in your May issue (page 2.32),
shouldn't the LDA (83Y) instructions be LDA (83),Y?

Dick Ellicott

Baltimore, MD

Yes. And that's how they appeared in Ruth’s original
letter, too. We're now investigating how those closing
parentheses managed to move themselves to where
they didn't belong.

Whence come these pauses?

One of my programs uses three nested FORNEXT
loops to deal with a sequential text file. The loops
cause the disk drive to start and stop several times
when transferring data between the disk and memory.
In some cases pauses last as long as five seconds.

As I had not seen this happen before, | undertook a
scientific investigation to determine the cause. Of
course | realized that with my first loop 1 to 12, the
second loop 1 to 9, and the third loop 1 to 10 that

there were alot of loose strings runningaround in the
system. Isn'tit 12* 9 * 10 (or something like that)?

Rather than play around with that complicated
program, [wrote a simple one to determine what the
break pointwas for the disk drive to run continuously
or to play stop and go. I created a file that consisted
only of a list of numbers from 1 to 5000. I discovered
that when X <= 88 the drive ran only once, but that
when X=89 the drive would run, stop, then run again.
Beginning at X=156 the drive would stop twice. At
X=220 the drive stopped three times. The first
imtremental stop happened at 88, the second incre-
mental stop 67 numbers later, and the third incre-
mental stop 64 numbers after that.

At this point it was obvious there was no rhyme or
reason to the progression of stoppings, so [gave up.
Why is my lazy Ile telling the disk drive to take a rest
every now and then while it chews on the data? Is my
faultless programming at fault?

Barney Woodruff
Camp Springs, MD

When you PRINT a number to a text file, the text file
actually gets one character for each digit in the
number, plus a carriage return at the end. So, for 1
through 9, you print two characters (a digit and a
carriage retum) per number. For 10 through 99, you
print three characters (two digits and a carriage
retum).

There were 88 numbers written before the first
drive access occurred. That's 1 through 9 (2 characters
each), plus 10 through 88 (3 characters each), or a
total of 255 characters.

Then you printed 89 through 155. This is 11*3 (for
89-99) plus 56*4 (for 100-155)— 257 characters.

Then you printed 156 through 219. This is 64*4 or
256 characters.

When you print characters to a file, DOS takes the
characters and stores them in an area called a DOS
buffer, which holds the same number of bytes as one
storage unit on the disk (256 for DOS 3.3, 512 for
ProDOS). Only when the DOS buffer is full does DOS
actually turn on the disk drive and store your
numbers on your disk.

When you are reading from the disk, the opposite
occurs. DOS gets a bufferfull of digits from the disk,
then feeds them one number at a time to your INPUT
statements.

The pauses occur because Applesoft can't process
the bufferfull of digits as fast as DOS can fill the
buffer. So DOS has to stop and wait while Applesoft
works. This usually happens only with text files,
because binary and Applesoft files are loaded into
memory in mass.

You'll find that some Applesoft programs and most
assembly language programs can process a buffer
full of bytes fast enough to keep the drive from
turning off. With Applesoft, this would happen with
programs that use longer strings and require fewer
PRINT or INPUT statements to process a whole buffer.

The reason the first two numbers you came up
with don’t match (255 characters versus 257) is that
the three characters of 89 (two digits plus the
carriage retum) were split between the first two
sectors written. After your loop has PRINTed the
numbers 1 though 88, 255 bytes of the DOS 3.3
buffer have been filled. The 8 digit of 89 fills the
256th and final byte, so Uncle DOS writes the buffer
to the disk. Applesoft then starts filling the now-
empty buffer with new data, starting with the 9 digit
and the carriage retum remaining from 89. This
takes so long that Uncle DOS gets tired of waiting
and tumns the drive off.

Open-Apple 2.45

The bytes in the final DOS buffer don't get saved on
your disk until you issue a CLOSE command (under
ProDOS, a FLUSH command also does this). This is
why it is very important to always CLOSE files.

Because your pauses occurred where they did,
incidentally, we can tell you were using DOS 3.3. If
you had been using ProDOS to run this test you
would have encountered pauses only half as often,
because a ProDOS buffer is twice the size of a DOS
3.3 buffer.

The slow DOS 3.3 garbage collector may also be
involved in the length of the pauses you experienced
with your original program. For possible fixes, see
the Open-Apples for January 1985, pages 4-5;
March 1985, pages 17-19; October 1985, page 76;
and May 1986, page 2.31-32.

Basic.system tricks

I knew you were tired of the same old ProDOS boot
filename STARTUP, so I wrote this little routine to
enable you to change it to any legal ProDOS filename
of seven characters or less:

10 D$=CHR$(4) : INPUT “NEW BOOT FILENAME: “; F$
15 IF LEN(F$) > ? THEN PRINT “T0OO LONG” : GOTO 10

20 PRINT D$;“BLOAD BASIC.SYSTEM,TSYS,A$2000

25 V=PEEK(8192)

30 IF V=169 THEN A=8677 : REM version 1.8

35 IF V=76 THEN A=B8198 : REM version 1.1

48 IF A=0 THEN PRINT “Version unrecognized” : END

50 POKE A, LEN(FS)

55 FOR X=1 TO LEN(F$)

60 : POKE A+X,ASC(MIDS(F$,X,1))

65 NEXT

70 PRINT D$;“BSAVE BASIC.SYSTEM,TSYS,R$2008"
80 END

Apple neglects to mention it in the manuals, but
the T(ype) parameter can also be used with CAT and
CATALOG to limit the display to files of a single type.
For example, CAT, TBAS lists only the Applesoft
programs found in the active directory. Other file
types are not listed. This is helpful when looking for a
particular file on a crowded disk.

Joseph Kline
. APO New York

CATALOG, Tpublic.domain

I am working on a descriptive catalog of some
public domain software [obtained at the North
Carolina Educational Computing Conference. [am
wondering if any of your readers have ever compiled
or would be interested in such a catalog. 1 am hoping
for some advice about format and detail as well as
some input as to possible interest. I find it very
frustrating to pick over this software to find the good
and throw out the bad and duplicate. Is some moral
support or feedback possible?

Janice Kay O Donovan
Oak Ridge, N.C.

The task of writing descriptive catalogs for public
domain software has nearly killed many a good
person. While there are a few real jewels in the public
domain, you have to sift through tons of semi-
precious and not-so-precious rocks to find them. It's
the sifting that tends to kill people.

I myself would find a list of the “best of the public
domain” interesting. I think lots of people would.

Here are two descriptive catalogs you might want
to look at to see how other people do it. These two
list both jewels and mundane stones, but seem to
have washed away at least some of the mud.

2.46 Open-Apple

Apple Software for Pennies, by Bertram Gader
and Manuel V. Nodar, costs $9.95 plus $1 shipping
from Wamer Books, PO Box 690, New York, Y 10019.
It lists hundreds of public domain programs for the
Apple II in the following categories: games, demon-
strations and art, music and sound, utilities, education,
business and home, and communications. It also
has a long list of Apple User Groups and complete
details on how to order public domain software from
about a dozen of these groups. A highlight of the
book is an 11-page instruction manual for the public
domain EAMON adventure games.

The second descriptive catalog of public domain
software that I've heard of is available from the Big
Red Apple Club, 1105 S 13th, #103, Norfolk, NE
68701 Big Red was started for people who don't
have ready access to a local user’s group. Dues are
$12 a year, for which you get a monthly newsletter
that describes new software added to the library.
Public domain disks are sold to members for $2.50.

Compiling your own public domain catalog should
be treated just like a major programming project —
begin by dividing the task into small pieces and
attack the pieces one at a time. Othenwise the work
will swallow you whole and you'll never be heard
from again. It's awful to lose subscribers that way.

Mouse trace

I have recently confirmed that a mouse cannot be
used successfully as a tracing device. Let’s get the
word out on this before others waste energy trying. In
my first attempt, | clamped the mouse to a drafting
board, glued toothpicks to it, and meticulously
traced over a street map of Boston.

My primitive tracing device has lately shown up in
various forms, including the $50 "M.A.C.: Make Another
Copy” advertised in various Apple magazines by
Innovative Products of Oakbrook, IL. The MA.C.
promises a bonus; the ability to enlarge or shrink the
traced artwork via a pantograph mechanism that
clamps onto the mouse.

Using the MA.C. requires practice, patience, and a
desk the size of pool table. I spent three days creating
this trace of a photograph of you from an old Softalk.
Please let me know when the Thunderscan is available
for the Apple 1.

Brad Walters
Boston, Mass.

P.S. Iwould have returned the MA.C. within 10 days for
my money-back guarantee, but it took me three
weeks just to assemble the dam thing.

came up with an idea for a program to be called
Paperwork (no, not “works”). The core of my idea
was that word processors had made the typewriter
obsolete in all areas but one— filling out forms. It is
nearly impossible to fill out a form with a word
processor—something that was quite easy to do
with a typewriter. I was convinced (and still am) that
the world needed a good solution to the filling-out-
forms with a computer problem. One of the really

odd consequences of the computer revolution is that
more forms are filled out by hand now than ten years
ago.

My plan was to have people identify the upper-left
comer of a form and the relative positions of its cells
by moving the mouse around the form. A few mouse
movements would, in theory, recreate an image of
the form on the screen and in the computer's memory.
The idea crashed when I found, as you have, that the
mouse is totally incompetent as a measuring device.

I recently ran across another solution to the blank
form problem on AppleWorks User Group disk #28
(see page 2.33), however, Robert Merrill of Carpinteria,
CA created a grid with the AppleWorks word processor
that can be printed on a spare copy of the form you
want to fill out. The grid shows you the line and
column numbers of the cells on the form. Using the
line and column information that AppleWorks displays
at the bottom of the word processor screen, you can
easily move the cursor to a cell's exact page position.
Another possibility is to print the grid on a sheet of
clear plastic and lay it over the form —this technique
works even if you have only one copy of the form,
Merrill suggests that you print out your file on a
blank sheet of paper to make sure everything is
going where you expected before you actually print
on your form.

Hex calculators

Open-Apple readers may be interested in a new
Casio calculator (Model CM-100). It features binary,
octal, hexadecimal, and decimal conversions, arith-
metic and logical shifting, left and right rotation, NOT,
AND, OR, EOR, and handles numbers up to 32 bits. I
got one for under $20, which I believe is around list
price.

Michael Gruenthal
Durham, N.C.

Thanks for this tip. I've been using a hexadecimal
calculator for several years—I can't imagine doing
much in assembly language without one.

Examining high memory

April's discussion of RAM cards has renewed my.

interest in how to use the 16K RAM card in my Apple
[I-Plus.

The card was purchased some time ago and I know
that the hardware is okay because Integer Basic
loads and runs, and programs such as VisiCalc find
and use the extra memory.

Thanks to your discussion, [now understand why
Applesoft will never use the additional space, but I
don't understand why I can't seem to get at this
memory with the Monitor. When I try to set a value at
anyaddress in the upper 16K space, then list it back, I
find that | have accomplished nothing.

I also have your ProntoDOS and have tried using
the subroutine at $BEAF to turn the card on after
running DOS-UP. The result is that the card still won't
accept inputs.

] assume that | am not turning the card on properly.
Can you tell me how to turn the card on from DOS
3.3? I would like to store binary data and also small
assembly language programs there. If these assembly
language programs cannot be called directly from
Applesoft, they should be able to be linked by a
routine within the 48K range which would, in turn, call
the program on the language card.

Any help or hints you can provide would be much

appreciated. Ferd Q. Fender
Glenview, IlL.

Vol.2,No. 6

Begin by remembering that the Apple can only
"see” 64K of memory at any one instant and that
your Apple II-Plus had that much before you bought
the 16K RAM card. The memory in your 16K card
shares the same address range ($D000-$FFFF) as the
ROMs that hold Applesoft and the Monitor.

Here is a chart of the softswitches used for tuming
on and off this memory area, which Apple likes to
call “bank-switched memory” and old-timers like to
call “language-card memory :

Softswitches for Apple II language card memory

---$000@ to $OFFF---

BANK 2 BANK 1

Write-protect card

read motherboard R s$Ce82 R $C08A

read card R sCoge R $Co88
Write-enable card

read motherboard RR $COB1 RR $C089

read card RR $C083 RR $C0BB
Status (IIe/IIc only)

high bit of $CO11 1=bank 2 0=bank 1

high bit of $C@12 l=read card @=read mbd

R=Read once RR=read tuice

The bank 1-bank 2 stuff refers to the fact that the
addresses from $D000 to $FFFF are really only big
enough for 12K of RAM. To fit inawhole 16K, the area
from $D000 to $DFFF is used twice. Bank 2, by
tradition, is the primary bank. The bank 1-bank 2
setting doesn't affect what you see in the area from
$E000 to S$FFFE neither does it have an effect on
what you see when the motherboard is turned on (ie,
the switches at $C080 and $C088 do the same
thing).

The R and RR stuff refers to the fact that the
switches should be read, not written to, and that
write-enabling the RAM card requires two reads of
the respective switch, not just one.

The status stuff refers to two bytes you can read to
determine the current setting of the “card” on lles
and Ilcs. Your II-Plus doesn't have these switches.

Rather than try to remember all the numbersin the
chart, concentrate on the two in the middle of the left
column. Peeking at $C081 twice in a row lets you
write to the 16K card while reading the motherboard,
$C083 is the same but lets you read the card as well
aswrite to it.

The difficult part of using the memory on the 16K
card is that whenever you tun it on, Applesoft and
the Monitor disappear. Consequently, you cannot
examine the memory in the 16K card with the
Monitor unless you move an extra copy of the
Monitor onto the card.

This, however, isn't hard. Loading Integer Basic is
one easy way to get a copy of the Monitor in the card.
Another is with the following series of Monitor
commands:

COB1 N Ce81 N FB@e<F8ed.FFFFM Co83 N Co83

The $C081s fix it so you are reading from the
motherboard but writing to the card. The
F800KF800.FFFFM moves a copy of the Monitor from
$F800 to $F800, thus giving us a Monitor to use while
the RAM card is tumed on. Finally, the $C083s turn
the card on completely.

Nouwy, to prove to yourself that this worked, poke a
bunch of 55s at $£000 and then examine memory to
see if they stuck:

£000.£007

EQ08- 00 FF FF FF 20 00 08 00
E@00:55 S5 55 55 55 55 55 55

July 1986
£008.E007

E@0B- 55 55 55 55 55 55 55 55

They did, so this must be RAM.

To use this RAM effectively, you must approach it
from assembly language. Again, you absolutely
cannot get at the card from Applesoft, because when
you turn the card on, Applesoft disappears and your
program crashes. Your idea of linking the routines on
the card to Applesoft by means of other routines in
the lower 48K shows you have a basic understanding
of this.

Assembly language programs will run just fine on
the card, but they can't call Applesoft routines. They
can’t use Monitor routines, either, unless you move a
copy of the Monitor over to the card.

The DOS-UP hook at $BEAF does in fact turn on the
card (bank 2) for both reading and writing. You can't
use this hook from the Monitor, however. Every time
youtype acharacter, DOS-UP has to tum the language
card on twice—once 50 DOS can examine the char-
acter as you type it and once so DOS can examine
the character as the Monitor prints it to the screen.
Just typing BEAFG and return causes $BEAF to be
called (and the card to go on and off) twelve times.
The routine at $BEAF will dutifully tumn it on a
thirteenth time for you, causing the Monitor to
disappear. The RTS at the end of $BEAF that should
return you to the Monitor sends you scurrying
through DOS instead. Usually youll hit a break
before your disk drive goes up in flames, but that
isn't guaranteed. $BEAF is sold as-is; it is useful only
from assembly language.

PR#3 and ProDOS

In plain, easy to read assembly code, how does one
properly activate the 80-column card when using
ProDOS on a lle (i.e., without using a form of PRINT
CHR$(4);"PR#3", but by direct manipulation).

William M. Reed
New Orleans, La.

It all depends. Are you writing an assembly lan-
guage program that will be in a binary file and co-
exist with Basic.system, or are you writing one that
will be in a system file and will manipulate the
ProDOS kernel's machine language interface?

It's a critical difference. If you're writing a system
program, you have to handle and keep track of all
peripheral connections—screen, printer, and so on
—yourself. All the ProDOS kernel was designed to
help you with is mass storage (disk) devices.

In this case, in pure, unadulterated machine
language, the answer is to do just a touch more than
the obvious:

A9 99 LDA #$99
26 00 C3 JSR $C300

get a harmiess ASCII chr
cold start the card

This assumes that you have checked to make sure
there’s a card to jump to first—use the ProDOS
MACHID byte at $BF98; bit 1 (7654 3210) will be “1”if
ProDOS recognized an 80-column card during the
boot process. It's also very important that you put
something harmless in the A register before calling
$C300—$99 is a control-Y, the code for homing the
cursor without clearing the screen. Dennis spent a
whole afternoon once just figuring out that he was
trying to initialize the card with a leftover $15 in the A
register. This is control-U, the code for deactivating
the 80-column firmware; you definitely can’t tumon
30-columns by printing that character.

Now, on the other hand, ifyour assembly language
program runs under Basic.system, there are two

- ways to go. One is to simply poke $C300 into

VECTOUT (vector out) in the Basic.sytem global page
at $BE30 and then print something, like this:

A9 00 LDA #0

8D 30 BE STA VECTOUT poke $BE3@,$C300
A9 C3 LDA #s$C3

8D 31 BE STA VECTOUT+1

A9 93 LDA #$93 get a control-Y
20 ED FD JSR COUT print it via $FDED

The other way to go is to poke the ASCII string
PR#3, followed by a retum, into the keyboard input
buffer at $200, and then call DOSCMD in the
Basic.system global page at $BEO3. According to
Apple’s ProDOS Technical Note #2, this trick works
for all Basic.system commands except dash, RUN,
LOAD, CHAIN, READ, WRITE, APPEND, and EXEC (the
main ones you wanted to use, right?).

The common technique under DOS 3.3 of printing
command strings such as “control-D PR#3" directly
from assembly language doesnt work under
Basic.system.

If you use the keyboard input buffer-DOSCMD
technique, you should check the carry for an error
when Basic.system retums to you. If an error has
occurred, you can do one of three things. A JSR
ERROUT ($BE09) will send control to your Applesoft
ONERR routine. A JSR PRINTERR ($BEOC) will print a
suitable error-message on the screen and retum to
you. The third possibility is to handle the error
yourself completely. In this case, make sure you
clear the carry before RTSing back to Applesoft.

Echo overwrites program

Iam usingalle with Extended 80-Column Card and
Epson MX-80 printer. The printer is connected through
aDumpling GXin slot L

Occasionally, when using conditional branching
(mainly IF...THEN), 1 get an UNDEF'D STATEMENT
ERROR and my program listing is garbled.

After trial and error [have found the program will
run normally when [change the printer interface card
to a Prometheus PRT-1. All switches on the Dumpling
GX are set as recommended for my printer. Can you
suggest a solution so that I can use the Dumpling
ax?

Gene Watson
Sulphur Springs, TX

Here's a wild guess. I suspect the Dumpling
firmware that echos printer characters on your
display screen expects you to use 40-column mode.
If you print with the echo in 80-column mode, subtle
bugs may cause the echoed characters to miss the
screen and overwrite the beginning of your program
instead.

There are two solutions. One is to tum off 80-
column mode before you try to print. This is Apple’s
recommended solution to the problem (see “Errata
to the Apple 11 80-Column Text Card Manual,” page 4).
Obviously programs such as AppleWorks and Apple
Writer don't follow Apple's advice in this matter,
however, so why should you?

The other solution is to use the proper control
codes to tell the Dumpling not to echo printed
characters to the screen. [don't have the Dumpling
control codes handy, but for most cards the command
sequence is something like “control-l 80N". The
eighty tells the card how often to add carriage
returns— if your card has a code for “never” (zero on
many cards), it's usually your best choice. For more,

Open-Apple 247

see our November issue, pages 84 through 86.

A final possiblity is that the manufacturer of the
Dumpling can provide you with updated ROMs for
the card that will solve the problem. Giving the
company a call can't hurt.

Hard drives and Apple Writer

Do you know how to put Applelriter lle on the
Sider hard disk system?

Louis A. Marinaccio

Bel Air, Md.

Good old DOS 3.3-based AppleWriter lle uses a
customized version of DOS and is copy-protected.
Consequently, it is difficult to use from a Sider or
RAMdisk.

Howeuver, there is a secret provision within Apple
Writer lle that allows it to work with a Corvus hard
drive, but only if the hard drive is in slot 6 and the
floppy in slot 7 (backwards from most Sider installa-
tions). Press "C” while the Apple Writer He disk is
booting and a prompt will appear asking if you want
to enable the Corvus. Paul Lutus, Apple Writer's
author, revealed this tidbit in a letter to Byte (August
1983, page 32). Lutus seems to like this sort of
undocumented feature; a serial interface driver for
the game connector was secreted within the original
version of Apple Writer.

The newer ProDOS version of Apple Writer is
unprotected and can simply be copied to a ProDOS
volume on any RAM or hard disk. To get it up and
running, you must first set the prefix to the subdirec-
tory the program is in, then execute AW.SYSTEM. If
you are using a RAMdisk that appears to be in slot
three, however, Apple Writer will disconnect it. The
simpliest way to avoid this is to move the RAMdisk
slot assignment somewhere else. If you are using an
auxiliary-slot RAMdisk, you'll also need to make sure
the RAMdisk driver doesn't try to use the auxiliary
64K memory bank, because Apple Writer also uses
it.

ProntoDOS on the Sider

How can I get ProntoDOS onto the Sider? In
particular, | would like to speed up floppy disk access,
get the free sector list at the top of the catalog, and
make sure that a disk initialization doesn't leave a
copy of DOS or a HELLO program on a floppy.

David Holladay
Madison, Wisc.

There are two primary ways to go about using
ProntoDOS and the Sider. One is to actually put
ProntoDOS on the Siders boot track, so that it
comes up when you turn on the system. The other is
to leave DOS 3.3 on the boot track, but modify it into
ProntoDOS after the system is started.

To get ProntoDOS on the Sider's boot track, begin
by booting the ProntoDOS disk, then use the
program PRONTO UPDATE to make the DOS enhance-
ments you want (such as the free-sector and initiali-
zation items you mention). You should now have an
image of DOS in memory that is the one you want to
come up when the Sider boots.

Now insert the Sider DOS 3.3 utilities disk and RUN
MAKE BOOT TRACK. The manual says the MAKE
BOOT TRACK program is to be used when you move
the Sider controller card from one slot to another,
however, it can also be used to simply place an
image of the DOS in memory onto the Sider. Don't be
surprised, however, when it asks you which slot you
intend to move the controller card to; just answer
with the slot number it is already in.

2.48 Open-Apple

You can skip MAKE BOOT TRACK if you have not yet
initialized your Sider. Insert the Sider installation

disk and RUN HELLO (do not boot the disk) after

booting and enhancing ProntoDOS. During the
initialization process the image of ProntoDOS in
memory will be placed on the disk.

If you have some DOS 3.3 programs that don't
work with ProntoDOS and would prefer to have
virgin DOS 3.5 on the Sider, another alternative is to
move the program HELLO PRONTO-DOS from the
ProntoDOS disk onto the Sider and run it, after
booting the Sider, whenever you want the DOS in
memory changed into ProntoDOS.

The two disadvantages of this technique are that
there’s no way to install the enhancements you want
and sometimes it doesn't seem to work. The DOS 3.3
image on one version of the Sider installation
utilities (distributed between about October 1985
and March 1986) accidentally had three mixed-up
bytes in one of the areas HELLO PRONTO-DOS uses
to identify DOS. If your Sider boots with this DOS
image, HELLO PRONTO-DOS will tell you it doesn't
recognize the DOS in memory and will refuse to
execute. The solution is to use MAKE BOOT TRACK to
put a clean copy of DOS 3.3 onto your Sider.

Incidentally, ProntoDOS speeds up not only
floppy disks, but hard disks and RAMdisks as well.
See February 1985, page 10, for the incredible
details.

Open-Apple

is written, edited, published, and

© Copy ‘ﬂht 1986 by
Tom Weishaar

Business Consultant Richard Barger
Technical Consultant Dennis Doms
Circulation Manager Sally Tally

Most rights reserved. All programs published in Open-Apple are
public domain and may be copied and distributed without charge
{most are available in the MAUG library on CompuServe). Apple user
roups and significant others may obtain permission to reprint articles
om time to time by specific written request. Requests and other
editorial material, including letters to Uncle DOS, should be sent to:

n-Apple
P.O. Box 7651
Overland Park, Kansas 66207 U.S.A.

ISSN 0885-4017. Published monthly since January 1985, World-wide
prices (in U.S. dollars; airmail delivery included at no additional
charge): $24 for 1 year: $44 for 2 years; $60 for 3 years. All back issues
are currently available for $2 each; a bound, indexed edition of Volume
1 is $14.95. Index mailed with the February issue. Please send all
subscription-related correspondence to:

0
8e Box 31
Syracuse, N.Y. 13217 U.S.A.

Subscribers in Australia and New Zealand should send subscription
correspondence 1o Open- e, c/0 Cybernetic Research Lid, 576
Malvern Road, Prahran, Vic. 3181, AUST! LIA

Open-Appleis avail disk for lor speec h
Spesefh Enterprises, P.O. Box 7986, Hous'on, Texas 77270 (713 A61

Unlike most commerical software, q;en Apple is sold m an
unprotected format for your
make back-up archival copies or easy-| 10- read enlavged copces for
your own use without charge. You may also copy Open-Apple for
dustnt:’tmm:) to others. The distribution fee is 15 cents per page per

istributed.

E RANTY AND LIMITATION OF LIABILITY. | warrant that most of
the information in Open- ,?[ple is useful and cocrect although drivel
and mistakes are included from time to time, usually unintentionally.
Unsatisified subscribers may return issues within 183 days of delivery
for a full refund. Please include a note from your parents or children
confwm o? that all archival copies have been destroyed. The unfullilled

any paid subscription will be refunded on request. MY
LIABILTV FOR ERRORS AND OMISSIONS IS LIMITED TO THIS
PUBLICATION'S PURCHASE PRICE. ln no case shall | or my
contributors be liable for any g
nor for any damages in excess of the lees pald by a subscriber.

Open-Appleis neither alfmated with nor responsnble for the debts of
Apple Computer, Inc.; "tinaja questing” is a trademark of Don
Lancaster.

Source Mail: TCF238 CompuServe: 70120,202

More Sider secrets

After several more Sider crashes similar to the
disaster discussed in August (page 63) and October
1985 (page 79), I finally have an answer to the “hard
disk life” I've been experiencing.

After each new crash I would be fenced out of
additional areas of the hard disk, losing files each
time. | would have to reinitialize the Sider to put
things right. The crashes occurred during disk accesses
and it appears that my original association of the
crash with pushing reset while Apple Writer was
printingwas just coincidental. Each time I reinitialized
the Sider there was no indication of a problem.

The breakthrough came when I began to work with
anew 20 meg Sider that | daisy-chained to the first as
/HARD3 and /HARD4. The new utilities package that
came with the 20 meg unit included Apple’s ProDOS
BACKUP program. BACKUP would crash when creating
the /HARD1 catalog for the backup disks. After each
crash [would have to cold start to regain control of
the Apple. The crashes weren't BACKUP's fault, but
resulted from the program attempting to access
every file on /HARD1 When BACKUP began to do
business with a poisoned section of the disk, the
Sider would enter hyperspace and BACKUP would be
left hanging.

The next time I reinitialized the Sider I got a "non-
media error 95" during final verification. This was the
first time I had seen this message. The Sider would
apparently function normally after reinitialization
until a file happened to hit on the track with the
problem. Once this track was accessed the whole
process of gradual bad-blocking of more and more of
the Sider would begin anew.

I called the Sider hotline to find out what a "non-
media error 95" was. The very-helpful technician I
talked with was not sure of the significance of this
message, but suggested that it probably indicated a
marginal track. He suggested that | use some undoc-
umented features of INSTALL PT#4 (on the DOS 3.3
utilities disk) to run a system check.

To access these utilities, BRUN INSTALL PT#4, then
hit the Rkeywithin one or two seconds. This results in
a menu-driven package of marvelous machinery. |
don't know why they keep these utilities a secret—
there are some really useful tools in this program—
perhaps because there is plenty of potential to wreak
havoc on your disk if these tools are misused. Among
other processes, you can run a non-destructive check
ofall tracks —apparently this is the same routine that
writes dots to the screen as it verifies the disk after
initialization.

This check gave me a “non-media error 95” again.
An option during this check is to reassign one of a
couple of dozen spare tracks to replace any marginal
track. This option carries the obvious caveat that
reassignment may destroy data on the disk. | was
able to reassign the offending track, 03313, without a
loss of data. Apparently | had not written to this track
since last reinitializing the disk. My old Sider has
performed flawlessly since the replacement. I suspect
that this track had been marginal since I first began
to use the disk.

It looks as if any time the Sider is not able to
complete a disk function because of a flaky track it
can lose all sense of responsibility and viciously tear
away at previously uncorrupted files—at least that
was my experience.

Some of the utilities hidden on INSTALL PT#4
include provision for reformatting just the DOS 3.3
portion of the disk without touching areas allotted to

Vol. 2, No. 6

other operating systems. Also included is a provision
for zeroing the catalogs for just the ProDOS portion,
leaving the other sections alone.

Apple’s BACKUP program is great. it works so well
that backing up the entire disk is a piece of cake.
According the tech I spoke with a new backup utility
for the Siders DOS 3.3 section, which will work
similarly, will be available soon. Theiy present DOS
3.3 utility is a loser because it prompts you for each
file. You have to stay alert during the entire backup
procedure and it's painfully slow. The ProDOS BACKUP
program does almost everything for you but put the
floppies in the drive and it won't let you make a
mistake.

The new utilities supplied with the Sider seem to
place more emphasis on parking the heads before
turning the unit off. | asked the tech about this, since
they had told me earlier that parking the heads was
only important before moving the unit around. His
response was that there had been some kind of
problem related to the Apple writing to the hard disk
when itwasn't up to speed if the heads were positioned
over prime real estate on the disk. It seems that
parking the heads is more of a precaution against
this eventuality than against a head crash.

Do you have any more information on the upgrade
for Apple Writer 2.0 you wrote about in January (page
97)? The dealer where 1 bought my original doesn’t
now anything about an upgrade and if there are any
improvements I'd sure like to have them even if they
aren't significant.

Donald Beaty
San Mateo, Calif.

Thanks for all the Sider secrets. As of the end of
March, when Dennis last talked a list of available
updates out of Apple’s district sales office here in KC,
“customers having printing problems with Apple
Writer 2.0 and third-party interface cards may take
the disk to the seller, who will correct the fault
through an update utility.” This is what you're
looking for, but Apple has never clarified what you
are supposed to do when the dealer doesn't know
what he’s supposed to have.

Other Apple Il updates on the list are:

Apple IIe enhancement
$78 from dealer (installed). Self-installation
recommended so you can keep your old chips.
Applelorks 1.3
$20, get mailer from dealer
PraD0S 1.1.1
Free update from dealer
SuperPilot Log
free update from Apple Customer Relations MS 27-F
Pascal Version 1.3
$125 + original APPLE] disk (no personal checks)
Apple Computer Pascal 1.3 Upgrade
P.0. Box 306
Half Moon Bay, CA 94015
Logo 64K
Disks that don’t work on IIc because of spiral
protection scheme can be replaced through
Apple’s Media Exchange Program. Upgrade to
Logo IT (126K) not available.
ProD0S Users Disk
If MouseText characters appear, disk can be
replaced through Apple’s Media Exchange
Program.

Apple’s Media Exchange Program, incidentally,
works like this. If you have a damaged Apple disk or
manual, you get an “Exchange Program Card” from
your dealer. Fill it out and send it to Apple along with
the damaged disk or manual. Apple will send you a
replacement at no cost within 3 to 4 weeks.

