Open-Apple

Releasing the power to everyone.

September 1986

Vol. 2, No. 8’

*Last month’s issue was really No. 7

ISSN 0885-4017

newstand price: $2.00

photocopy charge per page: $015

Technical tools liberated

Aftershocks from Apple’s corporate reorganization more than a year ago
were felt again during August when Apple and APP.L.E. Co-op (the world-wide
users group based in Seattle that publishes Call -A.P.P.L.E. magazine),
jointly announced the formation of the Apple Programmers and Developers
Association, or APDA.

This new association, which is open to anyone who's interested, will be a
central source for Apple development tools, including Apple’s own technical
notes, manuals, and development software, as well materials from a variety
of third-party companies.

Association members will receive a quarterly catalog and newsletter,
regular update bulletins, and ordering privileges. The association will
support both Apple 1l and Macintosh programmers.

To join, send $20 for first year dues to the Apple Programmers and
Developers Association, 290 SW 43rd St, Renton, WA 98055. For more
information you can call 206-251-6548.

If this association fulfills its promise, it will be a major factor in the
continued success of the Apple I1. To quote from the seventeen-month-old
May 1985 issue of Open-Apple (page 34):

Apple appears to have enough money to break through the hardware
limitations of the Apple Il and appears...headed in that direction. But the
major question at this juncture is whether Apple has enough sense to
actively and purposefully “expose the inner flesh” of these machines to
interested members of the general public. That is the factor that has been
shown to determine the ultimate success of any personal computer, and
that includes present and future models of the venerable Apple I1.

It certainly impresses me to see an institution as large as Apple develop so
much sense so quickly. Now that the developer's association is here, look for
anew Apple Il any minute.

Another result of Apple’s reorganization
is that it's keeping its promise of better
support for user groups. A new logo (left) has
been created that groups can use on their news-
letters, memberships cards, letterheads, and
promotional materials. An 800 number (800
538-9696, ext 500) has been established that
U.S. residents can call to find their nearest group.
Apple is sending groups a regular monthly mailing
and participates in a special user-group Forum
that is part of MAUG (the Micronetworked Apple
Users Group) on the CompuServe Information
Service.

Apple’s head of developer technical support is swapping subscriptions to
the Apple Il or Macintosh technical notes for subscriptions to user group
newsletters. Apple’s mailing list people are taking steps to ensure that all
members of user groups are included in future mailings from Apple. Apple’s
office of special education is polling user groups to determine whether it can
facilitate the exchange of information on the computer-related needs of
disabled children and adults.

Call Apple’s 800-number today to make sure your group has made
connections with Apple. If you don't belong to a user group, now is a good
time to make the connection.

Yet another positive aftershock of Apple’s reorganization was the
recent promotion of Del Yocam to Apple’s Chief Operating Officer. Yocam

Missing No. 7 found

Bugs in software are forgivable, but the idiot who numbers
our issues (me) may never be forgiven. Last month's issue was
really number 7, not number 8. We have a greater appreciation now
for how many of you save our back issues—we've been buried by
requests for issue 7. Please help me recover from this mistake by
marking it as Vol. 2, No. 7 right now.

will manage not only Apple’s product development, manufacturing, and
distribution operations, as before, but also sales and marketing. Yocam's
promotion is expected to allow John Sculley, Apple’s chairman and
president, to focus on future directions, strategic issues, and business
development opportunities. “My time will be focused on building Apple and
Del's on running Apple,” Sculley told Business Week.

Previously, Yocam was head of the Apple II group, which developed,
engineered, manufactured, and marketed all Apple II products. Yocam,
whose wife taught elementary school for eleven years and who himself
taught night classes for seven, is known for his strong support of Apple’s
efforts in the education market. Yocam is interviewed in the August/
September issue of Hf Computing ($1197/yr—6 issues, PO. Box 1922,
Marion, OH 43306 614-383-3141).

All is not perfect in the Apple world, however. Many Open-Apple
subscribers in rural areas have found themselves without a local supplier in
the wake of Apple’s recent reduction of authorized dealers. In this case
Apple’s purpose seems to be in the right place — it wants to develop dealers
who will concentrate on specific markets, learn them inside out, and support
them with all their hearts.

Rather than keeping the dealers whose salespeople knew AppleWorks
from Apple Writer, however, Apple seems to have kept the ones who had the
highest sales volumes. A dealer who knows the Apple product line and who

r/“' N

AP ™
G 4

“T DONT THINK. OUR NEWEST NETWORK, (ONFIGURATON
1S GOING TO WORK.. ALL OUR TRANSMISSIONS FROM
CleveELAND ARE COMING (N O¥ER. ERNIE'S WALKMAN. “

2,58 Open-Apple

can demonstrate a half-dozen software packages is a precious and valuable
thing, Apple knows that and says it wants all of its dealers to be like that, yet
every couple of years we see a bloody dealer purge based on other
standards.

Apple painted itself into a cormner several years ago when it cancelled its
agreements with all dealers who were selling by mail order. The real reason it
did this was to appease dealers who were mad about some big mail order
houses that were selling high volumes of machines at low prices. However, to
appease end-users mad about losing a low-cost source of machines, Apple
said it was cutting off mail order dealers because they didn't provide high-
quality technical support.

This is ludicrous. The level of technical support you get from a dealership
has nothing to do with whether you contact it in person, by phone, or by mail.

For example, the best dealer you'll find for portable Apple lics is
Roger Coats (P.O. Box 171466, San Diego, CA 92117 619-274-1253). Roger
specializes in and stocks for immediate shipment C-Vue LCD displays,
carrying cases, battery power systems, cigarette lighter adapters, and Iic
modems, clocks, and memory boards. There is no one at Apple itself or at
any other dealership in the country with as much information on the
products that are available for making a lic truly portable.

This kind of support for specialized markets is only possible from dealers
who consider their marketplace to be country- or world-wide and who, as a
consequence, deal with customers by phone and mail.

Likewise, so few store-front dealerships have been able to provide decent
support for people interested in programming that, as mentioned earlier,
Apple has had to form a “strategic alliance” with a user group to provide this
support by ...shhhh...mail order.

More, not fewer, specialized mail order dealers are badly needed. Many
Open-Applesubscribers, for example, would appreciate a dealer specializing
in statistical analysis software. Imagine being able to make one call to find
out the cheapest way to outfit a 16-computer lab with software for a class, or
to find out if a specific package works with unequal N and what it does about
missing data. Could such a dealer possibly operate any other way than by
phone and mail?

The rural areas of the world already have enough problems without having
to worry about where they're going to buy their next Apple I1. Apple has every
right to insist that its dealers support its products—but when is it going to
wake up and select its dealers on that basis, rather than on easy-to-measure
but mindless criteria such as method or volume of sales?

Apple Assembly Line ($18/yr, P.O. Box 280300, Dallas TX 75228
214-324-2050) has come up with a great example of using sound to
analyze data, atopicdiscussed here brieflyin March (page 2.9). In AAL's July
issue, Bob Sander-Cederlof uses short tone-through-the-speaker subroutines
to determine how many "machine cycles” certain 65816 machine language
instructions take to execute. Of course, this kind of information is in the
standard reference manuals for the chip, but it tums out that for some of the
instructions some of the standard references are wrong,

Determining how many cycles an instruction takes can be tedious work.
The typical method is to write a loop that will run millions of times. Then you
use a stopwatch to figure out how long the loop takes both with and without
the opcode under examination. Subtract the shorter time from the longer
and divide by the number of loops. Multiply by a conversion factor that
changes millionths of a second into machine cycles and you've got it.

Instead of this rigamarole Bob simply created a continuous tone-loop that
included an opcode whose number of execution cycles he was certain of.
When he pressed a key, control passed to a duplicate loop that included the
opcode under examination instead. If the pitch of the tone changed, the
number of cycles used by the new opcode was different (higher pitch meant
fewer cycles). .

Using this simple program, Bob figured out that the branch-long (BRL)
instruction takes four cycles, rather than the three cycles claimed on the
manufacturers’ data sheets; and that the branch-always (BRA) instruction
takes three or four cycles (depending on mode and page crossings), rather
than the two claimed by the manufacturers. Don't overlook the power of
sound in your own programs.

When I keep mentioning the same software package over and over
here in Open-Apple, it's because it's good. Glen Bredon, author of the Merlin
assembler, (521 State Road, Princeton, NJ 08540) just keeps adding features
to his $40 PROSEL package. If you have a hard disk, or if you are usinga 3.5
inch disk in conjunction with a RAMdisk, this package is invaluable.

As mentioned before, the basic package is a program selector that runs
automatically whenever you quit a ProDOS program. Leave AppleWorks, for

Yol. 2, No. 8*

*Last month's issue was really No. 7
example, and your own menu of available software instantly appears on the
screen— no prefix or pathname required.

The program selector has become only a small part of the software on this
disk, however. In addition there’s a program for backing up and restoring
ProDOS devices (including the ability to backup the contents of a RAMdisk
into a file that can be automatically reloaded into the RAMdisk on startup); a
RAMdisk driver for auxiliary slot cards; a program for copying, deleting, and
otherwise maintaining files (including a directory sorter that works); a fast
disk copy program; a disk zap program; a simple password protection
program; a program for putting DOS 3.3 into a ProDOS file; UNO.DOS, which
aliows 3.5 inch UniDisks to be used as 140K DOS 3.3 disks (with the rest of
the disk left for ProDOS); a patch for Pinpoint that allows it to be used with the
program selector; BEACH.COMBER, a program that rearranges a hard disk
so all directories and files lie in contiguous areas, which speeds up file
access; MRFIXIT, a program that checks out all the directories on a ProDOS
volume, looking for more than a dozen kinds of errors, and fixing those it
finds; and, as they say, more.

If you've been neglecting to enhance your Ile, or if you sometimes
wish you hadn't, you may be interested in a device called Switchback ($59.95
+ 2.50 shipping, Computer Accents, P.O. Box 5905, Kingwood, TX 77325).
This is a small board with six sockets, four for the old and new Monitor ROMs
and two for the old and newvideo ROMs, which plugs into your motherboard.
It has a built-in switch that determines whether your computer normally
starts up with the old or new ROMs and it has an exteral switch you can
press while power is applied to start up the alternate set.

I suspect the device will be of particular interest to software developers
who want to test their work on both original and enhanced Iles, but who
would like to avoid having an extra machine around. That's why I bought one,
anyhow. It works as advertised.

Afew notes: you do have to turn the computer off to switch from one ROM
set to the other. You do need both sets of chips—they are not supplied with
Switchback (you kept your old ROMs as recommended in Open-Apple May
1985, page 38, right?). Switchback isnt compatible with European-type
motherboards that have the auxiliary slot in line with slot 3, nor with any of
the motherboard-based 65816 or Z-80 cards we've tried. There is also a
potential conflict with any long card in slot 5, 6, or 7 that has a “support foot"
or that otherwise protrudes below the normal height of a card.

A little over a year ago Uncle DOS got a question about how to
transfer Apple I graphics to T-shirts. Not knowing the answer, and being
pretty sure he never would, he filed the letter in the circular file. Now, oh
gentle questioner, we sure hope you renewed your subscription because we
have an answer.

What you need is an Underware Ribbon from Diversions (505 W Olive Ave,
Suite 520, Sunnyvale, CA 94086 408-245-7575). These ribbons are available
for most dot matrix printers. You print your graphic on a piece of erasable
bond paper using the Underware Ribbon, then you transfer the graphic from
the paper to cloth (50-50 cotton-polyester fabric recommended) with an
iron. The instructions recommend using an image no larger than twice the
size of your iron.

Prices vary by what kind of printer you have, but for the Imagewriter, for
example, black ribbons are $14.95, single color ribbons are $16.95, a multi-
color ribbon for the Imagewriter Il is $24.95, and a black ribbon with 5 pens
of various colors (to be used with manual color-fill subroutines) is $24.95. A
single ribbon is good for 30 to 100 images, depending on how much ink is
used by each image.

The Academic Courseware Exchange (4141 State St., Santa Barbara, CA
95110 800-235-6919, 800-292-6640 in CA) has just published a free catalog
of programs for use in college and university courses. The purpose of the
Academic Courseware Exchange is to provide a means whereby students
can obtain course software just as they now do textbooks.

Faculty members who decide they d like to use a program in their class are
supposed to make arrangments with a local Kinko's photocopy center to
order the software. Students then go to Kinko's to purchase the software,
which is priced between $7 and $30 per package. If there’s no Kinko's store
near a particular school, Kinko's headquarters will arrange to deliver the
software through a local bookstore.

Faculty members who have developed courseware they d like to see listed
in the catalog should write or call the courseware exchange and ask for afree
developer’s handbook. Kinko's handles production, distribution, and
marketing of the software and pays a royalty based on sales. Any subscribers
who develop for or buy from the exchange are encouraged to let Uncle DOS
know what they think of it

Downloaded from www.Apple20nline.com

Dual custom printers

There’s more than one way to set up more than one
custom printer in AppleWorks. What I did was make a
duplicate of the 9-block SEG.PRfile on the AppleWorks
disk. 1 named the two files SEG.PRINTER1 and
SEG.PRINTER2. Then [wrote an Applesoft startup
program that asks which printer [want to use. The
appropriate file is renamed SEG.PR and AppleWorks
is loaded. To switch printers you have to exit Apple-
Works, but that doesn't bother me. Here’s my startup

program:
3000 REM Multi-Custom Printer Startup Program
4000 TEXT : HOME : NORMAL : D$=CHR$(4)

4100 REM If present, rename SEG.PR

4110 ONERR GOTO 4130 : REM duplicate filename trap
4120 PRINT D$; “RENAME SEG.PR, SEG.PRINTER.1”

4130 ONERR GOTO 4150

4140 PRINT D$; “RENAME SEG.PR, SEG.PRINTER.2”

4150 POKE 216,08 : REM cancel ONERR

4200 PRINT “PRINTER #1 OR #2? *; :

GET A$: PRINT A$
4210 IF A$ <> "1 AND R$ < > “2* THEN END
4220 IF A$="1" THEN

PRINT D$; “RENAME SEG.PRINTERL, SEG.PR”
4230 IF R$="2" THEN

PRINT D$;"RENAME SEG.PRINTER2, SEG.PR”

4240 ONERR GOTO 4260
4250 PRINT D$;“-APLWORKS.SYSTEM” : END
4260 PRINT D$;“-MACRO.SYSTEM” : REM for MacroWarks

Bert Kersey
Beagle Bros
San Diego, Calif.

Mail label musings

[haven't been able to find a software program to
use with my computer that will work with pressure
sensitive mailing labels. The programs I have seenall
print out in a single column of labels (only one label
wide). Using such a program will require the purchase
of a special tractor modification for my printer. Please
advise me on how to proceed with this problem.

T.A Dumetz
Los Angeles, Calif.

You bring up an interesting problem. Standard
one-wide pressure sensitive labels cant be used
with several of the printers commonly found hooked
to Apple Iis. On the Apple Imageuwriter, for example,
the tractor wheels can't be moved close enough
together to accommodate standard labels.

Imagewriter owners can easily solve their problem,
however, with extra-wide one-up labels. For example,
Moore Business Products (P.O. Box 20, Wheeling, Ill.
60090 800-323-6230) stocks one-up pressure sensi-
tive labels in seven different widths from 2.5 inches

to 7.75 inches. The narrowest ones that will work on
anImageuwriter are 4 inches wide. We ve used literally
thousands of them here at Open-Apple.

Some other printers, including many Epsons,
have tractors that are only barely (or not at all)
adjustable. Apossibility in this situation is a program
called Muse Address Book, which will print labels
from 1 to 6 across. Muse software entered bankruptcy
in September 1985, but its assets were eventually
purchased by another company, which is now
selling and supporting Muse’s products. The retail
price of the Muse Address Book is $49.95, but a
hefty discount is available if you call or write Muse
Software, Damascus Centre, Damascus, Md. 20872
301-253-3553. (Thanks to subscriber Doug Brower
in Oshkosh, Wisc. for Muse's new address.)

One important thing we have leamed about pres-
sure sensitive labels here at Open-Apple, incidentally,
is to never roll them backwards through your printer.
When you finish using them, tear off the unused
labels behind the printer and roll the remaining ones
forward through the printer. This wastes a few labels
but is far better than having a label get stuck
underneath your printer’s platen. This often happens
when rolling the labels backward and usually requires
taking the printer apart to get the wayward label
unstuck.

Disk resurrection

Is there a way to bring back an AppleWorks data
disk that has crashed? I did not update my backup
disk and the information that is on this disk is
extremely important to me. | would appreciate any
assistance you could offer.

Melvin Katz
Davie, Fla.

Ah, yes, the old disk-crash problem.

First, examine the troublesome disk for physical
damage. Will the magnetic media rotate freely inside
the cover? Is the cover crimped or heat damaged?
Was something spilled on the disk? Problems such
as these can sometimes be solved by cutting open
the disk cover on both the damaged disk and on a
good disk. Carefully remove the magnetic media
from both disks. Clean the damaged media (if
necessary) and place it in the undamaged cover. It
may now be readable. If so, make a couple of copies
of it and throw the damaged material away.

If the disk’s problem isn't physical damage, a
likely problem is bad centering inside the disk drive.
Start up AppleWorks and tell it you want to add a file
to the desktop. Before telling it where the file is, open
the door on the disk drive that holds the damaged
disk. Then tell AppleWorks which disk the file is on.
The disk drive light will come on. At that point close
the drive door. Closing the drive door while the disk
is spinning is the best way to get the disk properly
centered.

If your lost file still won't load, try putting the disk
in a different drive and repeat the procedure. When
disk drives start to get out of alignment, the primary
symptom is that disks written on one disk drive can't
be read on another. Make sure you try to read the
troublesome disk using all of your various disk
drives.

If you have still have had no luck reading the disk,
you should at least know by now whether the
damage lies in the disk’s directory or in the file itself.
If AppleWorks will show you a list of the files on the
disk but coughs while loading the one file you really
want, the file is bad. If AppleWorks won't even show

Open-Apple 2.59

you the list of the files on the disk, the directory is
bad.

In either case, the next step is to put a write-
protect tab on the bad disk and try to make a copy
of it. Start with the COPYA program from the DOS 3.3
System Master disk if you have it. Boot DOS 3.3 and
hand-enter POKE 47426,24. This defeats some DOS
3.3 error-checking. Then RUN COPYA and attempt to
copy the bad disk. If the copy succeeds, startup
Applelorks and try to load your files from the copy.
This trick will sometimes recover disks that have
been through a drive that was slightly off-speed.

If you've gotten this far without success, it's time
to buy yourself a copy of Bag of Tricks 2 ($49.95
plus shipping from Quality Software, 21610 Lassen,
#7, Chatsworth, CA 91311, 818-709-1721). Bag of
Tricks 2 is a set of four programs designed specifically
to help you recover damaged disks. First concentrate
on the program INIT—use it to make a copy of your
damaged disk.

If your problem is a damaged file (rather than a
damaged directory), try loading the file off of the
new disk that INIT creates. If the problem is a
damaged directory, on the other hand, use the
program FIXCAT to massage INIT's copy. FIXCAT will
scan the disk and attempt, often successfully, to
rebuild the bad directory.

Ifyou get this far and still have had no luck, you're
in pretty deep.

Dennis and | have tossed around the idea of
offering a data-disk recovery service (NOT to include
copy-protected program disks) for a fee—say maybe
$30. We have the needed hardware, software, and
expertise—all we need is the time. Is such a service
needed? How much is it worth? Is there already
somebody out there doing this that we don't know
about?

DiFiculties revisited

I read with much interest and empathy Douglas
Sietsema’s August letter (page 2.56) about the difficuity
of moving a VisiFile data base to AppleWorks with DIF
files. Having spent many long hours trying to do
almost exactly the same and a few other things, |
really felt sorry for him.

Not only did [finally accomplish a VisiFile to
AppleWorks transfer —about ayear later | transferred
the data from AppleWorks to a Macintosh program
called Overview In each case | eventually determined
that at least part of the problem was that the DIF file
had to be converted from column format to row
format.

Having some experience with Advanced VisiCalc, |
knew that it allows a choice of saving DIF files in either
arow or column format. That was the key. I read the
VisiFileDIF file into Advanced VisiCalcusinga column
format. Then I resaved it using a row format. Then |
converted the file to ProDOS and AppleWorks read
the file correctly. Going from AppleWorks to the
Macintosh again required a side trip through DOS 3.3
and Advanced VisiCalc. .

David G. Story

Sault Ste. Marie, Ontario

1 suspect your side trips through Advanced Vis-
iCalc did more than simply convert your DIF file
from column format to row format. It also got rid of
the additional header items I mentioned last month.
1 also suspect you could use just about any spread-
sheet that supports DIF files (with the exception of
AppleWorks) to clean up and reformat your DIF files.

As you point out, the AppleWorks database gives
you no opportunity to specify row or column format

2.60 Open-Apple

when loading or saving DIF files. However, the
AppleWorks spreadsheet does present you with a
choice when printing (saving) DIF files.

If the only problem with a DIF file was that its row-
column format had to be reversed, you could do it by
passing the file through the AppleWorks spreadsheet
as well as through Advanced VisiCalc.

Incidentally, to get a file to appear on the multi-
record database screen in the same order that it
appears on the spreadsheet (records in rows, cate-
gories in columns), you must use thecolumn format
when printing (saving) the DIF file. This is kind of
odd, since the default is the row format. Limited
testing here indicates that if you have more than 50
categories in a DIF file the AppleWorks database
simply lops off the extra ones— it doesn't refuse to
load the file.

Cartoon reprints

How can | obtain the rights to reprint a cartoon that
appeared in your newsletter?

L.J.Lynch

Fort Worth, Texas

All of the Open-Apple cartoons published to date
have come from the same artist. Contact him directly
for full information— he charges by circulation size
and has very reasonable rates for small publications.
He is Rich Tennant, 93 Forest Hills, Apt I, Jamaica
Plain, Mass. 02130 617-522-0821

Open-Apple welcomes submissions of Apple II-
related material from any cartoonist.

DOS 3.3 text file length

1 had the problem recently of having to combine
about a hundred different sequential text files into
one compact file. Each small file consisted of a
combination of numbers and strings. | ended up with
the inelegant solution of converting each small file to
all strings, adding up the LEN of the strings, throwing
ina dummy string, and saving all that to the main file.
Then I'd save the next file using the location of the
dummy string (i.e. WRITE FILE, Bxxx; where xxx is the
byte number of the last dummy string).

With a few fits and starts it eventually worked, but
the question I want to ask eluded me in anyresearch [
tried to do. Namely, operating under DOS 3.3, how
can you ascertain the number of bytes in a text file?
Isn’t there some nice convenient PEEK just waiting for
me to learn its address?

Jim Menick
Peekskill, N.Y.

There is no magic PEEK to determine a text file’s
length under DOS 3.3. DOS simply doesn't know
how many bytes are in a text file. If you must know,
the only way to find out is built a GET loop and count
the characters until you hit an END OF DATA error.

In your case, it might have been easier to use the
DOS 3.3 APPEND command to tack succeeding small
files onto the end of your main file. APPEND works

Jjustlike the OPEN command, but it puts the position-

in-file pointer at the first byte beyond the end of the
file rather than at the beginning of the file. The DOS
3.3 APPEND command has some bugs, however (all
solved in the March 1985 Open-Apple, page 24). In
addition, using APPEND in an application like this
would become quite slow as your main file got
larger, because each time you execute APPEND it
determines where the end of the file is by reading the
file byte-by-byte until the end pops up.

ProDOS, on the other hand, remembers the number

of bytes in text files. The information is in the
directory and can be seen by using the 80-column
CATALOG command. The Basic.system APPEND com-
mand uses this information to go directly to the end
of the file and is consequently much faster than DOS
3.3'sversion.

BLOADing DOS 3.3 text files

Val Golding asked in your February 1986 issue
(page 2.6) for a way to BLOAD a DOS 3.3 text file, as
under ProDOS. Here's one solution:

Before calling the routine below, ADR should equal
the load address, and FILE$ should equal the name
of the file loaded:

100
101
102

REM *%% Routine to “BLOAD’ a text file ¥¥*
REM ¥
REM * gset ADR and FILES before entry

110
120
130
140
145

PRINT : PRINT CHR$(4);"OPEN “;FILES;”,L256"
DB=PEEK (46535) + PEEK(46536)%256 + 79
P1=PEEK(DB) : P2=PEEK(DB+1)

POKE DB+1,RDR/256

POKE DB,ADR - (PEEK(DB+1) * 256)

150
160
170
180
150

FOR REC=0 TO PEEK(46574)-2

PRINT CHRS(4);“READ”;FILES;” ,R”;REC;“,B0”
GET A$: PRINT

POKE DB+1, PEEK(DB+1) + 1

NEXT REC

200
210
220

The routine works by fooling DOS into thinking its
data buffer is at ADR, rather than above HIMEM as it
usually is. Lines 150 to 190 load the file into memory,
one sector at a time, while moving the apparent
location of the DOS buffer higher for each sector. An
important element of this trick is setting the record
length to 256 (the length of a sector) and using GET
to force DOS to read the next sector into the buffer.

Drawbacks? Sure, only sequential text files can be
loaded since the GET command will cause an END OF
FILE error if it finds empty bytes in a random access
file. The routine loads whole sectors at once so any
unused bytes at the end of the last sector will
overwrite as many as 254 bytes in memory. DOS text
files are stored and, with this routine, loaded with the
high bit set, which may not be compatible with your
routines. Still, it has its uses, and doesn't require any
machine language.

PRINT CHRS (4);“CLOSE~
POKE DB,P1: POKE DB + 1,P2: REM restore pointer
RETURN

Frank G. Andrews
Kalamazoo, Mich.

found group FORTH

Reference your mention of FORTH, (page 211),
March 1986, Open-Apple, fast it is! But the notation,
Polish, never for me has been a problem! More
natural, what could be? For years, using it have been.
The FORTH Interest Group, P.O. Box 8231, San Jose,
Calif 95155, interested readers should write.

Anthony D. Alley
Eldorado, Texas

Applesoft compilers

It seems to me the reasons listed in your June
issue (page 2.39) for not developing a ProDOS-based
Applesoft compiler are really arguments against
production of an inadequate compiler.

Speed is addictive, and | have yet to hear anyone
complain that a given combination of hardware and
software runs too fast. So the existence of other
improvements that make programs speedier hardly
renders compilers obsolete.

Yol 2, No. 8*

*Last month’s issue was really No. 7

Since most of my own computing consists of
various calculations I need for my physics research, [
don't need to look far for program bottle-necks—
floating-point arithmetic is inevitably what slows my
programs down. ['ve already found out that Microsofts
DOS 3.3-based TASC compiler doesn't speed these
calculations up at ail. What's more, ZBasic does them
more slowly, even with precision configured to fewer
decimal digits than Applesoft. I'm unaware of really
fast floating-point routines that one can insertinto an
Applesoft program. The floating-point boards from
California Computer and Applied Informatics provide
speed at the expense of precision and theyre not
cheap. So far, Applied Engineering’s Transwarp board
offers the easiest way to make my caiculations go
faster (ten minutes to do certain integrals instead of
halfan hour).

The one thing | envy IBM (and IBM clone) users is
their option of simply plugging an 8087 chip into a
socket to obtain dramatic improvements in floating-
point performance. To be sure, an 8087 is not cheap
as chips go, but it still costs less than accelerator
boards and much less than floating-point boards.
Still, my Apple does so much else well that I'm willing
to walk away and let it chum out calculations in its
own good time.

What the Apple Il needs more desperately than a
good compiler is an improved Basic. For all the
wonders that clever Apple users have managed to
bringus, from named subroutines with local variables
to neat screen management commands, Applesoft is
not up to snuff anymore. Reliable and fast floating-
point arithmetic, multi-line functions, nice long
variable names (with all characters significant, of
course)—these and other features ought to be
brought into standard Applesoft. The language that
was great on 48K or smaller-capacity machines in
1980 is too confining now. Even Microsoft's GW BASIC
for MS-DOS machines is better.

Harvey S. Picker
Hartford, CT

1agree, Applesoft is a limited language compared
to almost everything else in use today. On the other
hand, it has two strong points—it is readily available
on almost every Apple Il ever manufactured and it’s
easy enough to leam that almost everyone who is
interested in Apple Ils and programming understands
it.

This universality, unfortunately, makes it impossible
for Apple to update the language. An updated Apple-
soft would simply not be Applesoft. The incompati-
bility problems that would inevitably arise would be
worse than the limitations of today’s Applesoft.

I expect Applesoft to be our universal language as
long as there are Apple IIs, but I also expect to see an
explosion of more advanced languages for the Apple
I during the next 18 months. Already we have Kyan
Pascal, ZBasic (which you mentioned), and Micol
Basic (which comes up in the following letters).
More languages are on the drawing boards.

Besides being universal, Applesoft continues to be
an excellent language for beginning programmers.
It is a good, productive environment for leaming
about computers in general. I don't buy the widely-
promulgated opinion that Applesoft gives beginners
“bad habits.” What is the best way to learn the
importance of good program structure—by being
forced to use structure without explanation or by
writing programs with poor structure and then being
forced to enhance them? Letting students crash into
Applesoft's limits is the best way to teach them the
advantages of more advanced languages.

September 1986

And, as I said, advanced languages for the Apple Il
are suddenly budding out all over. Meanwhile, here's
a bud for you. -

According to a reliable source, our friends at
Beagle Bros have a ProDOS-based Applesoft compiler
under development. The source, Uncle Louie, says it
will compile any reasonable Applesoft program,
although some ampersand commands will have to
be changed. It works by simply adding a COMPILE
command to your programming environment. You
type COMPILE FILENAME, and your Applesoft program
will be compiled and executed on the spot. You can
also type COMPILE FILENAME, NEW.FILENAME and a
compiled version of the program will be stored in a
file with a special file type. Uncle Louie says the
compiled file is usually shorter than the original
Applesoft file.

Compiled files will be able to be distributed as
commercial sofaware. They will require the compiler’s
“run time” package, however, which will be licensable
from the program’s author, Alan Bird. Uncle Louie
says he thinks the program will sell for $74.95 and
will be available just before Christmas.

LIST protection

I've enclosed anad from Call-A PPL.Econceminga
compiled Basic for the ProDOS environment called
Micol Basic. The ad is a bit enthusiastic, but not too
far from the truth.

Now, about your statement in the June issue
concemningwhat half the world thinks about compilers
and LIST protection...

1 develop custom software for vertical markets like
TV studios and audio-~visual producers. Compilers,
such as Micol Basic, are some of my most important
tools. | compile because it reduces program develop-
ment time (compared to using machine language)
and the code runs faster that any interpreted Basic.
Since most compilers offer chaining, I've never had to
be too concemed with code expansion. I'd rather
develop and debug modules anyway.

And managing dozens of utilities that all compete
for the ampersand vector stopped being fun a long
time ago. Besides, most of these utilities are copy-
righted and give me no legal right to use them in
software I develop for sale.

(By the way, I debug the Applesoft before compiling.
There's no reason to have to compile over and over
again.)

But the main reason I compile is for my own
protection. This means including a front page in the
program that states my copyright, the name and
address of the licensee, and the terms of the license.
Ifthe program is copied, this information goes along
with it. I've discovered that folks are very protective of
software that can be traced back to them.

As a developer, 1 owe my clients workable object
code that they can back-up for their own safety. 1 don't
feel that | owe them the right to get into my source
code and remove what little protection | have.

Frank Jaubert
Houston, Texas

Embedding a purchaser’s name within a copy of a
program is an unobtrusive copy-protection technique
that is ideal in situations where you know who your
customers are. I like it. If I were concemed about
illegitimate copies, however, I would encrypt the
purchaser's name so that it couldn't simply be
changed to blanks with a disk zap program. Compi-
lation isn't strictly necessary—an ampersand routine
or even some obscure lines of Basic would protect
the embedded code nearly as well.

Micol Basic

- In the June issue of Open-Apple Robert Heldreth
asked about ProDOS compilers. | am not aware of an
Applesoft compiler for ProDOS but there is a program
that I recently purchased that just about fills the bill.
The program is Micol Basic.

Let me preface my impressions of the program
with the caveat that I am not an expert. | bought my
first Apple in 1980 (I was 45) and taught myself to
program with The Applesoft Tutorial. With the help of
magazines such as Nibble, Softalkand others I have
been able to write spectacularly unsophisticated
programs for my own amusement and amazement. |
gave up on assembly language. Here’s what I think of
Micol Basic.

I found the manual very well done but a few more
examples would have been helpful. Especially IF/
THEN BEGIN/ELSE BEGIN.

I like the added commands, such as FOR/UNTIL,
PERFORM/UNTIL, REPEAT/UNTIL, WHILE/WEND, IF/
THEN/ELSE, and the ability to GOSUB/ROUTINE
NAME rather than GOSUB/LINE NUMBER. | think that
the Micol disk commands, which don't use controi-D,
are superior to Applesoft.

Compiling your programs to /RAM is very fast. It
took me awhile to figure out how to do it but with the
help of PROSEL, a terrific program you've mentioned
before (March 1986, page 210) from Glen Bredon
($40, 521 State Road, Princeton, NJ 08540), it's a
piece of cake. | don't have a hard disk but Glen’s
program works great with the extended 80-column
card on my Ile. Since I write programs by the old "trial
and error” method, compiling to /RAM has saved me
alot of time. Compiling to disk for every one-character
change you make to your program can put you over
the edge very quickly.

The disk is not copy-protected. This is a big plus in
my book.

Support for the program has been excelient. Call
Micol Systems and you get the author.

The only weakness for me is the editor. Because of
my "“brute-force” method of programming, it would
be nice if the editor contained a renumber facility. A
Micol Basic renumber program is included in the
Appendix of the manual but I find it too time-
consuming to leave the editor, renumber, and then
retum to the editor.

[believe strongly in supporting programs that give
you your money's worth. My experience shows that
few programs live up to the claims of their authors or
marketing people. Micol Basicis an excellent program
at a very fair price and delivers as promised.

Jack Cowly
Temple City, Calif.

As you mention, Micol Basic is not strictly an
Applesoft compiler. It is an enhanced version of
Basic with an Applesoft-like syntax. It is priced right
at $49.95 plus $5 shipping and handling (Micol
Systems, 9 Lynch Rd, Toronto, ONT, Canada M2J 2V6
416-495-6864). Our technical wizard Dennis Doms
has taken an extensive look at Micol Basic and
here’s what he thinks:

Micol Systems claims in its advertising that “Micol
Basic is capable of compiling your existing Applesoft
programs....” Aslong as you take “capable”to mean
something less than fully compatible, you will not
be fooled by the ad. Most non-trivial Applesoft
programs have to be modified somewhat before
they can be compiled with Micol Basic. The modifica-
tions center on differences in disk I/O commands.
There are also a few syntax differences and the

Open-Apple 2.61

compiler requires a few commands of its own. In
addition, Applesoft files have to be converted to text
files before compilation can begin.

Micol Basic supports significant enhancements to
Basicsuch as the structured programming commands
WHILE-WEND, REPEAT-UNTIL, BEGIN-ENDIF, and so
on. Micol Basic also supports “typing” of variables
(you can define all variables whose names begin
with the letters I-N to be integer variables, for
example). A new variable type allowed by Micol is
boolean. In addition, Micol Basic supports long
variable names such as BLOODY_LONG NAME (this
feature can be disabled), and CHAINing of programs.

Some of the syntax changes are cosmetic, probably
to ease the job of the compiler program. One of the
more prominent of these is that the arguments of
VTAB and HTAB have to be in parentheses or you will
get an error during compilation. Also, DATA must be
declared prior to its reference by READ, immediately
after any compiler options (so you wanted structure
in your programs?...).

While browsing through the manual and reading
about these features, I started getting enthused. The
“loss” of Applesoft compatibility may be compensated
by the extra features: speed and structure.

The development cycle is the usual compiler
shuffle—EDIT the text file that holds the program
source code, save the source file, COMPILE the
source file to an object file, LINK the object file to the
compilers library to form an executable object file,
load the run-time support package and EXECUTE the
executable object file. In case of an error at any
stage, go to the beginning and start over. Nonetheless,
I found the Micol environment easy to work in.

To bring up Micol from a subdirectory you must
call it by the complete pathname leading to it. For
example, on my disk | had to use “-/PROG/
MICOL.BASIC/MICOL.SYSTEM.” Doing the normal
ProDOS move of setting the prefix to “/PROG/
MICOL.BASIC” and then issuing “-MICOL.SYSTEM”
exiled me to the ProDOS quit prompt. This and a 32-
character limit on filenames used within programs
gives the impression that Micol's author, Steve
Brunier, isn't yet sold on subdirectories.

Itransferred a copy of LITTLE BRICK OUT (a classic
Applesoft game supplied on the old DOS 3.3 System
Master) over to my work disk and saved it as a text
file (if you don't know how to do this, the Micol
manual explains how). LITTLE BRICK OUT was
chosen as a guinea pig for conversion since it was
mentioned in the Micol Basic manual and in a
Softalk (Sept. 1981, pages 95-102) article evaluating
Applesoft compilers. It is also a moderate-sized
program; after converting it to ProDOS it used 15
blocks. Converting it to text gave a file size of 22
blocks. Editing it to facilitate compilation added one
more block. I did the minimum amount of editing
needed to allow the file to compile and run. This
primarily entailed changing VIAB and HTAB state-
ments, re-defining logical IF statements of the type
“IF var THEN" to comparisons of the type “IF var<> 0
THEN”, and keeping LITTLE BRICK OUT's POKE
statements from tromping on Micol's use of 768-815
($300-$32F).

The Micol editor is a limited but usable line-
oriented text editor. I used the editor’s Flind and
R)eplace commands to find most syntax problems.
Neither command includes a wildcard option so
trying to find and replace all occurrences of VIAB
<numbep> for all possibilities of <number> got a bit
tedious. It's easler to do conversions from Applesoft
by using Apple Writer to do the searching and
replacing. (In fact, a good WPL program could turn

2.62 Open-Apple

Apple Writer into a stand-alone preprocessor.) An
immediately needed change in is the ability to

renumber lines from within the editor (yes, Micol _

Basic still requires line numbers for all lines).

When I got tired, I let the compiler try to find the
remaining offenses. During four compiles I noticed
that compile errors for certain lines were not always
reproducible. One example: during the 3rd compila-
tion I got an error in line 970 (for an improper “IF”
syntax) that was not caught in the second compilation.
Line 2947 had a missing “;" between strings in a
print statement. Line 3010 gave an error over some-
thing about a “print statement” (there is no PRINT
statement in line 3010 of LITTLE BRICK OUT). I
corrected lines 970 and 2947 and fed it to the
compiler afourth time, hoping for a recurrence of the
message given for line 3010. This time it compiled
with no errors to an output code file of 20 blocks.

In addition to that 20 blocks, we have to have a 21
block run-time program called LIBRARY installed.
This replaces the ProDOS command interpreter,
Basic.system. Replacing Basic.system with the library
is good in the sense that it saves memory space, but
it'’s bad in the sense that you can't enter ProDOS
commands on the keyboard when you exit a Micol
Basic program. And if you enter a ProDOS command
by mistake at that point Micol Basic sometimes
crashes.

Forwhat it's worth, Softalk reported that Microsoft's
DOS 3.3 TASC compiler produced a 39 sector file
(about 20 blocks) when compiling LITTLE BRICK
OUT, and required a 17 sector (9 blocks) run-time
package (in addition to all of DOS 3.3).

The .edit/link/compile/execute procedures went
very quickly. The program linked fine and ran fast.
Once execution has finished, you use the "&" com-
mand to return to Micol Basic.

Thus encouraged, I decided to run a benchmark to
check the speed. I chose Jim Gilbreath’s “sieve”
benchmark from Byte (“Eratosthenes Revisited”,
Jan. 1983, pp. 283-326). The IBM Basic version
seemed suited to Micol Basic’s extra constructs.
typed it in, adding a line for the program name and
changing “10 DEFINT A-Z" to Micol's “10 INT (A-Z)." 1
called the compiler. It told me I was out of simple
array space in line 10.

It hadn't registered with me that the assignment of
variable space was not fully dynamic; one of the
compiler options allows (nay, requires for this
program) the programmer to assign pointers that
determine how much memory space is to be reserved
for simple variables, simple strings, variable arrays,
and string arrays. I adjusted these to give simple
arrays the lion’s share of memory. The program
compiled, and executed in 476 seconds. For compar-
ison, I timed the same program under standard
Applesoft at 3764 seconds. That, folks, is a good
improvement, even considering the fact that bench-
marks sometimes don't tell the whole story.

Micol Basic also has a QUICK compiler option,
which produces code somewhat optimized for speed
at the expense of some memory efficiency. The sieve
program, compiled using this option, ran in 444
seconds and was 429 bytes in size (before linking)
compared with 476 seconds and 393 bytes for the
standard mode.

1 did a simple FOR-NEXT loop from 1 to 10000 in
Micol Basic and Applesoft. With a floating-point
counter, Micol took 10.5 seconds (versus Applesoft’s
19.9); with an integer counter it took only 4.1
seconds (Applesoft does not allow integer counters
in FOR-NEXT loops). The Micol manual suggests

using integer variables when possible for maximum
speed.

Finally, I did a test with the Savage benchmark
from the Byte Special IBM Issue, Fall 1985 (page
70). This benchmark is supposed to test the efficiency
of floating-point math routines. Under standard
Applesoft the test took 472 seconds; Micol took 463
seconds. As you can see, Micol does not greatly
speed up floating-point operations.

The Applesoft/Micol Basic syntax incompatibilities
that exist and the necessity of switching system
interpreters to go from Micol Basic to Applesoft
makes Micol less than ideal for what I perceive most
people want an Applesoft compiler for—to quickly
compile an interactively debugged Applesoft
program.

However, looked upon as a separate language
from Applesoft, Micol becomes a lot more attractive,
especially at the price. Even the licensing fees for
using Micol's run-time package in commercial software
are low—free with screen credit to Micol. Micol's
nearest competition in Appledom at present is Kyan
Pascal, which is more sophisticated but also has
been around longer. Micol is still Basic, line numbers
and all, which may be a plus in finding an audience.
For someone who wants to stay with a dialect of
Basic, who wants speed, and who wants the ability
to write structured programs, Micol is definitely a
noteworthy and inexpensive solution.

ProBasic, Logo

| have not yet seen in your pages (nor hardly
anywhere else) mention of the fine programs coming
out of The Software Touch, by the talented authors
Mark Simonsen and Alan Bird. In particular, Alan’s
ProBasic (distributed as a “freebie” on the back of
Program Writer) bids fair to totally transform the
experience of programming in Applesoft.

ProBasic allows you to add new commands and
functions called modules to your programs. Each
module has its own set of local variables, so variable
conflicts are easier to avoid. Parameters can be
passed to the modules byvalue or by reference (even
by reference to another module). The modules can
be written in either Applesoft or assembly language
—thus adding a natural, consistent interface for
machine language routines (look Ma, no &).

That's power, and it's prettyl Best yet, there is
nothing to unlearn—nearly every bit of the special
Apple Il lore | have accumulated over the years is still
relevant. Programming in ProBasic is the next best
thing to programming in APL (another story, for some
other time), or atleast it promises to be if Alan can get
the bugs out.

I have one question to ask, concerning sources of
information on Apple Logo I, which you mentioned
once or twice in Open-Apple. Two years ago [wrote a
review of this product for (alas) the now-defunct
Microcomputing, and in the process acquired a
review copy. | have never since, however, seen a
whisper of published evidence that anyone is devel-
oping applications in Logo II. 1 dig out my copy now
and then and play with it a bit, and admire it all over
again. The main problem I have is that my computer
is an Apple Ile and my printer an Epson MX-80 and I
have not been able to find any way to generate hard
copy directly and conveniently (the name of the
game!). | would greatly appreciate your pointing me
to a printer driver I could patch in, or even a few clues
as to how [could approach developing such myself. |
am not a technical whiz, but could it be that this is
another case of a project that would not be impossibly

Vol. 2, No. 8*

*Last month's issue was really No. 7

complicated if just a little open information were
available?

R. W. W. Taylor

Rochester, N.Y.

It's interesting that you mention ProBasic and
Logo in the same letter. The way ProBasic allows
you to write modules and call them by name with
parameters is very Logo-like.

To tell you the truth, I hadn't noticed ProBasic
(hidden away as it is on the back of Program Writer)
till 1 got your letter and 1 still haven't had a chance to
use it, but the documentation is absolutely startling.

Not only does ProBasic provide modules, it has a
command called VIRTUAL that allows arrays (both
numeric and string) to reside in disk files. This
means the size of an array is limited only by the
amount of room on your “disk.” You wouldn't want to
use a floppy for a VIRTUAL array, but this is one good
way to use large /RAM disks from Basic. A hard disk is
also a possibility for really large arrays—and you
don't have to mess around saving the data in the
array in a separate file.

Bird and Simonsen started The Software Touch
about a year ago. They are well known as the
authors of such Beagle Bros classics as Beagle
Graphics, Extra K, Double-Take, and D Code.

They currently have four major products. Font-
Works ($49.95) reads and prints standard text and
AppleWorks files in a variety of fonts, type styles, and
sizes. It can print spreadsheets sideways. It has an
AppleWorks-like interface and comes in both ProDOS
and DOS 3.3 versions. It runs on any Apple Il.

Graphics Pro ($29.95) is a single high-resolution
graphics program like MousePaint, only better. It
allows you to work with the entire screen, supports
graphic tablets and joysticks as well as mice, and,
unlike MousePaint, can show you a disk catalog.

AutoWorks ($39.95) adds macros to AppleWorks.
The macros can be updated from within AppleWorks,
can use conditionals, can contain lists (where each
time you use the macro it takes the next item from
the list), and support date and time stamping. The
program includes a built-in mail merge capability,
adds mouse control for cursor positioning and menu
selection, and has a file organizer that reads the
filenames from all the directories and subdirectories
on a ProDOS disk into an AppleWorks data base file.
Alan is working on, but has not yet accomplished,
Pinpoint compatibility.

Program Writer ($49.95), besides including Pro-
Basic for free on the back, is an AppleWorks-like full-
screen editor for Applesoft. Using Program Whiter is
a lot like writing a program using the AppleWorks
word processor, except that it has additional features
such as the ability to renumber lines, the ability to
list all the variables in the program you are editing,
and the ability to instantly disappear, leaving your
program in memory ready to run. After running your
program, entering && returns you to the editor with
your program intact.

In addition to these four main products, The
Software Touch also has two disks of additional
modules for ProBasic at $20 each. Their stuff is
available at about 200 dealers around the country,
or by mail order (9842 Hibert St., #192, San Diego,
Calif. 92151 619-549-3091).

1 asked Alan what kind of bugs you were talking
about in ProBasic. He said an early version had
some bugs in the VIRTUAL command and in the code
that saves modules on disk. These have been fixed —
ifyou send him your original disk and $5 with a note
that you want ProBasic updated, he will take care of

September 1986

it for you.

I'm not sure what your printer problem is with the
Epson/Apple Logo Il combination. The Logo II-
command for turning on a printer is OPEN 1 SETWRITE
1 If your printer isn't attached to slot one use the
correct slot number instead. Any PRINT, TYPE, or
SHOW statement will now go to your printer. Return
to the screen with CLOSE 1 SETWRITE ().

If what you want to do is print a listing of your
program, however, OPEN 1 SETWRITE 1 doesn't
work. Instead, use DRIBBLE 1 POALL NODRIBBLE.
The Apple Logo Il documentation gets a negative 5
stars for its explanation of this one (I had to call tech
support at Logo Computer Systems, developers of
Apple Logo 11, in Quebec—>514-631-7081—to find
the solution, which is hidden on page 210 of the
reference manual under the discussion of DRIBBLE).

Some Logo users have had problems with line
length when listing programs. These problems can
sometimes be fixed by changing the interface card
setting for line length with a control-l command. Use
a Logo command line such as (TYPE CHAR 9 "XX
CHAR 13), with XX equal to the command you want
to send. See your interface card manual for the
command you need. For the Apple Super Serial Card
try "C.” Unfortunately, you can't send commands to
some interface cards, such as the Grappler, because
Logo H prints CHAR 9 (control-I) with the high bit
clear and the Grappler expects the high bit to be set.
The November 1985 issue of Open-Apple has more
information on this problem.

To discover why no one is developing applications
in Logo, load and run the sample programs that
come with Apple Logo II. 6502 versions of the
language simply can't execute fast enough for
typical computer applications. Note that the disk is
copy protected and that Apple has made no provisions
for licensing a Logo H “run-time” package. This

means anyone who purchased a Logo Il application
would also need to buy Logo H itself. The primary
use of Logo is in education, where most people
consider it not so much a computer language as a
language or model for learning.

Ifyou're interested in further information on Logo,
check out The National Logo Exchange: The Logo
Newsletter for Teachers ($25 for nine monthly
issues, Sept through May, P.O. Box 5341, Charlottes-
ville, Va. 22905). It has been published since Septem-
ber 1982 and is the most comprehensive Logo
publication I know of. Its long suit is educational
theory but it also includes solutions to programming
and technical problems.

The ampersand solution

Anyone who does any programming at all shouldn't
miss Roger Wagner Publishing’s offer of a free copy of
the The Trial Size Toolbox made in the April Open-
Apple, page 2.22.

I had a very interesting talk with Roger the other
day, and | thought many of Open-Apples readers
would be interested. I had noticed that not all of the
original Routine Machine series was upgraded into
Toolbox packages, so I called to find out why.

Apparently the return rate on registration cards
from the old Routine Machine programs was rather
low. Many original owners may not realize it, but
Roger Wagner Publishing does have an upgrade offer
for original purchasers. Even if you haven't mailed in
the registration card, you can mail in the title page
from the manual as proof of purchase along with $20
(plus $3 shipping) and benefit from the upgrade. The
Toolbox series is not protected, as was the original

Routine Machine, and several newroutines have been
added and others upgraded.

- The Toolbox series is designed for programmers!
Roger says that large ads in computer magazines do
not provide the same return for this series as they do
for application programs (i.e. MouseWrite). The result
of all this is that a limited number of people have
purchased the Toolbox packages, either new or
through updates, and Roger has no plans to release
further disks in the Toolbox series, even though they
have over 150 additional routines that could be
released.

So fellow programmers, order those disks, and tell
Roger that there is an audience out there that is
interested in more routines. Maybe we can convince
him to release another disk. I for one want to be first
on the mailing list, as | have been using many of these
routines for some time now, and wonder how I could
program without them. The routines give a professional
appearance to your programs while simplifying the
coding.

Open-Apple is directed at the same audience as
the Toolbox series. So if you are reading this and you
don't presently use the Toolbox, you would probably
be interested in these programs. There are routines
for all those items you would like to have in your
program: IF-THEN-ELSE, PRINT USING, CATALOG
READ ROUTINES, INPUT ROUTINES, OUTPUT ROU-
TINES, SCREEN FORMATTING, SORTING ROUTINES

and more. Don Druce
Longueuil, Quebec

Roger's offer of a free Trial Size Toolbox to any
Open-Apple reader who writes in and asks for one is
still open. (Roger Wagner Publishing, P.O. Box 582,
Santee, Calif. 92071) The four toolbox packages
currently available are The Wizard's Toolbox, The
Database Toolbox, The Video Toolbox, and The
Chart ‘n Graph Toolbox. Each sells for $39.95.

The routines can be used in commercial software
without a licensing fee. You do have to write in for a
formal license agreement, however, and include a
credit line in your finished software. The Toolbox
packages are shipped on DOS 3.3 disks, but all
readily CONVERT to ProDOS with the exception of the
Chart'n Graph Toolbox, which is available by
request in a ProDOS version.

Routines from the various Toolbox packages are
all compatible with each other. They share the
ampersand hook. The beauty of the Toolbox series
is the way the ampersand hook and memory require-
ments are automatically handled by the package.
The necessary machine language code is attached to
the end of Applesoft programs where it stays per-
manently. No BLOADS, buffer moving, or GETBUFFER
calls are required.

Another place for code

In the July issue (pages 2.43-44) you “released the
power to everyone” by showing how to embed machine
language in a REM statement as an altemative to
using memory page three. You also mentioned that
method was ONE way to do it. I think it's a little too
restrictive— the machine code cannot contain a zero,
it cannot exceed 239 bytes, and it LISTs as garbage
on the screen. 1 have always hidden my machine
language code at the end of a program, between the
last line and the variables.

I can't take credit for inventing this method, but I
will do my part in “releasing the power” and share it.

The only restriction that | know of with this method
is that the machine code must be relocatable (no

OpendApple 2.63

reference to locations inside itself). It will work with
either ProDOS or DOS 3.3.

1. Clear the machine:
NEW (or FP under DOS 3.3)

2. LOAD your BASIC program:
LOAD MY.PROG (you can skip this step if
your program isn’t written yet)

3. Get the current program end:
PE = PEEK{176)%*256 + PEEK(175) : PRINT PE

4. Load the machine language code onto the end:
BLOAD ML.CODE,AXXXX
(use the value from step 3 for XXXX)

S. Calculate the new program end:
PE = PE + length of ML.CODE

6. Change the pointer to the new program end:
POKE 176, PE/256 :
POKE 175, PE - PEEK(176)%256

7. Save it:
SAVE MY.NEW.PROG

You may add, delete, or edit your Applesoft lines as
you wish. You should be able to use your favorite line
editor as usual. You can use EXEC to add program
lines or even to add whole programs to a machine
code skeleton file.

As you edit the Applesoft program, the machine
language segment is moved up and down in memory
automatically when the program gets longer or
shorter. To find its address during program execution,
add this line when you set up your variables:

MLADR = PEEK(176)*256 + PEEK(175) -
length of ML.COOE

Then, when you need to CALL the routine, simply

CALL MLADR Steve Stephenson

Checkmate Technology, Inc.
Tempe, Ariz.

For those of you who have been following my
series on tricks with Applesoft in the April, June, and
July issues, here’s a little more detail on how this
method works.

Look at one of the memory maps from those
issues—on April's page 2.19 or June’s page 2.35. In
this technique, the machine language code is added
to the end of the “program image” —the second area
from the top in the memory maps.

Inbetween the Applesoft program and the machine
language code there are three zeros. This method
works because some parts of Applesoft consider the
three zeros to mark the end of the program while
other parts use the PRGEND pointer at 175-176 ($AF-
BO) to mark the end of the program.

The genie that executes programs uses the three
zeros. Thus, that genie never tries to execute the
machine code as if it were Applesoft tokens. The
genie that corrects the “next-line pointers” also uses
the three zeros. Thus, that genie doesn't go searching
through the machine code looking for the zero bytes
that mark the end of Applesoft lines. If she did, she
would try to “fix” the next-line pointers and, as a
consequence, trash the machine code.

On the other hand, the genie that moves Applesoft
programs up and down in memory as lines are
added or deleted uses PRGEND. Because of this, the
machine code segment essentially becomes “stuck”
to the end of the Applesoft program image. The SAVE
and LOAD commands also use PRGEND, so the
machine code segment automatically follows the
program in and out of disk files.

The only difficulty with this technique is that if you
have more than one piece of machine code, you have

2.64 Open-Apple

to keep track of the exact length of each and do some
calculations to figure out where in memory they end

up. Roger Wagner's Toolbox series automates this ~

difficulty and makes it easier for routines written by
different people to share this memory resource.

The Integer version

Since I'm probably one of the few people around
that even remembers there was such a thing as
Integer Basic, I thought | would add to your reply to
the letter from Len Lipshultz (July, page 2.44) about
the mysterious appendix at the end of APPLEVISION.

An Integer BASIC program is stored downward in
memory from the highest available location, less one,
as defined by HIMEM: (76-77, $4C-4D), while the
variable table builds upward from $0800. In Integer,
when the HIMEM: command is used, a memory move
is executed and the program is relocated with its last
byte at the new location of HIMEM:-1,

To attach a machine language program, just calculate
the amount of space required for the code to be
added and lower HIMEM: appropriately using the
HIMEM: command. Then type in or BLOAD the binary
data. Remember where it starts as this becomes the
permanent starting address for the routine. Finally
restore the HIMEM: pointer to its original setting—
this time using POKE rather than the HIMEM: command
—and save the program. When you list the modified

Open-Apple

is written, edited, published, and

© Copyright 1986 by
Tom Weishaar

Business Consultant Richard Barger
Technical Consuitant Dennis Doms
Circulation Manager Sally Tally

Most rights reserved. All programs published in Open-Apple are
public domain and may be copied and distributed without charge
{most are available in the MAUG library on CompuServe). Apple user
roups and significant others may obtain permission to reprint articles
?rom time to time by specific written request. Requests and other
editorial material, including letters to Uncle DOS, should be sent to:

Open-Apple
P.O. Box 7651

Overland Park, Kansas 66207 U.S.A.

ISSN 0885-4017. Published monthly since January 1985. World-wide
prices (in U.S. dollars; airmail delivery included at no additional
charge): $24 for 1 year; $44 for 2 years; $60 for 3 years. All back issues
are currently available for $2 each; a bound, indexed edition of Volume
1 is $14.95. Index mailed with the February issue. Please send all
subscription-related correspondence to:

Open-Apple
P.O. Box 6331
Syracuse, N.Y. 13217 US.A.

Subscribers in Australia and New Zealand should send subscription
correspondence to Open-Apple, ¢/o Cybernetic Research Lid, 576
Malvern Road, Prahran, Vic. 3181, AUSTRALIA.

Open-Appleis avail on disk for speech sy izer users from
Speech Enterprises, P.O. Box 7986, Houston, Texas 77270 (713-461-
1666

Unlike most commerical software, Open-Apple is sold in an
unprotected format for your cor . You are ged fo
make back-up archival copies or easy-to-read enlarged copies for
your own use without charge. You may also copy Open-Apple for
distribution to others. The distribution fee is 15 cents per page per
copy distributed.
wR‘RANTV AND LIMITATION OF LIABILITY. | warrant that most of
the information in Open;.:ppleis useful and correct, although drivel
and mistakes are included from time to time, usually unintentionally.
Unsatisified subscribers may return issues within 180 days of delivery
for a full refund. Please include a note from your parents or children
conlirmm? thatall archival copies have been destroyed. The unfullilled
portion of any paid subscription will be refunded on request. MY
LIABILTY FOR ERRORS AND OMISSIONS IS LIMITED TO THIS
PUBLICATION'S PURCHASE PRICE. In no case shall | or my
contributors be liable for any i or ial damag
nor for any damages in excess of the fees paid by a subscriber.
Open-Apple s neither affiliated with nor responsible for the debits of

Apple Computer, inc.; “tinaja questing” is a trademark of Don
Lancaster.

Source Mail: TCF238

CompuServe: 70120,202

programyouwill, of course, see abunch of garbage at
the end.
Val J. Golding
Tarzana, Calif.

Problems with splits

Your article on splitting Applesoft programs in the
April issue was great (pages 217-2.21). It's hard to
imagine that there could be any more to say on the
subject, but here are some solutions to problems I've
encountered with split programs.

In All About Applesoft (page 118), David Lingwood
points out that Applesoft does a limited check of its
current position in a program when a GOTO or
GOSUB is executed. If the high byte of the destination
line number is greater than that of the current line
number, Applesoft begins searching for the new line
from the present line, rather than going all the way
back to the beginning of the program.

In your example, line 9999 changes its own next-
line pointer and then says GOTO 10000, Change this
to GOTO 10240 or more and the program will crash
with an UNDEF'D STATEMENT error. You can be sure
that a split will work with any combination of line
numbers (as well as get a bit faster operation) by
ending the first segment with a dummy line. The only
function of this dummy line is to hold a modified
next-line pointer that's aimed at the second program
segment. Try these modifications to your example at
the top of page 2.21:

9980 ADR = 16384 : REM adr of overlay
9981 HI = INT((ADR+1) / 256) :
L0 = (ADR+1) - (HI*256)

9982 HERE = PEEK(121) + PEEK(122)*256 :
NXT= PEEK{HERE+1) + PEEK(HERE+2)¥*256 :
POKE NXT,LO : POKE NXT+1,HI :

GOTO any line number in second segment

9993 REM dummy line

Another problem is that the DATA pointer at bytes
125-126 ($7D-7E) won't jump the gap between the
two parts of a split program. You have to help it across
—otherwise trying to read a DATA statement that's in
an overlay will return an OUT OF DATA error. You can
reset the DATA pointer when you load an overlay by
changing line 9980 (your line 9997) to:

9980 ADR = 16384 : POKE 126, ADR/256 :
POKE 125, ADR - PEEK(126)*256

This method works fine when both the READ and
DATA statements are in the second segment of a
program. If, however, you were simply splitting a
single big program to straddle the graphics page, the
split might occur such that a READ in one segment
refers to DATA in the other segment. In that case, a
better trick would be to adjust the DATA pointer in an
error-handling routine:

9000 IF PEEK(222) = 42 THEN
DP = PEEK(125) + PEEK(126)%256 :
IF DP < ADR THEN POKE 126, ADR/256 :
POKE 125, ADR-PEEK(126)¥256 : RESUME

Afinal note—there is a very handy Monitor routine
at -327 ($FEB9). It allows you to call assembly
language routines from Applesoft with the 6502's
registers loaded with whatever values you wish. POKE
the value you want in A into byte 69 ($45), X into 70, Y
into 71, and P into 72. Put the address of the routine
you want to execute into bytes 58 and 59 ($3A-3B).
Then just CALL -327. This entry point is part of the
Monitor’s GO command.

Paul Nix
Summit, NJ

Vol. 2, No. 8*

*Last month's issue was really No. 7

A new format

How can I format a ProDOS disk from within an
assembly language program?

Robert C. Moore

Laurel, Md.

There are two ways to go. Apple will license you its
ProDOS FORMATTER routine for $50 a year per
application—see our July issue, pages 2.41-42 for
more information.

Much more interesting is a public domain program
called Hyper.FORMAT by Jerry Hewett. It comes
with source code so you can modify it to your needs
orinclude it in your own programs.

Hyper.FORMAT is a product of Living Legends
Software, which is a loose association of “user
supported” Apple programmers who have pooled
their resources and enthusiasm to establish market
recognition. “User supported” software, also known
as “freeware,” can be copied and distributed by
anyone without charge. Anyone who decides to
keep and use a freeware package, however, is
expected to pay the program’s author. Bill Basham,
author of Diversi-DOS, has used this method of
distribution for years.

Hyper.FORMAT, however, isn't freeware, but is
one of several public domain programs the Living
Legends authors have put together on a disk they
call Misk Disk #1 ($10 from Living Legends Software,
1915 Froude St., San Diego, Calif. 92107 619-222-
3722). Two other programs on this disk,
THE.EXECUTIVE and UNICOPY, were mentioned in a
letter to Open-Apple in February (page 2.7). Living
Legends Software’s programs can be downloaded
from the Apple Il libraries on CompuServe, Delphi,
and BIX, as well as many local bulletin boards. Or
you can write them and ask for their catalog of
interesting, reasonably-priced commercial programs.

Basis 108 & Amiga

You have mentioned both the Franklin and the
Lazer 128 in recent issues—there is another legal
Apple-compatible on the market, although it is
relatively hard to find in the USS,, the West German
Basis 108.

Although Basis has no formal distributor in the
U.S., our company acts as an importer and dealer to
the many Basis user groups scattered about. We also
actas a source and clearing house of both Apple and
CP/M software and hardware that can use the full
capabilities of the Basis.

You've also mentioned the Amiga, and I certainly
won't argue with your assessment of Commodore’s
business health. As an old-time hardware engineer
however, | must say that the Amiga first struck me as
the machine Woz would have designed if he had done
the first Apple from scratch in 1985. It's certainly the
first machine since the original Il that shows the sort
of engineering elegance, cleverness, and versatility
that made our beloved Apples (and my Basis— grin)
so near and dear to our collective hearts. If Apple had
managed to get rid of Jobs earlier, maybe they,
instead of Commodore, would have bought the
Amiga from Intermedics. The thought of the Amiga
with Apple’s name, further developed by Woz and
some of the others who were chased away in the
yuppification of Apple brings tears to my eyes.

Bob Stout

Symbionic Systems, Inc.
P.0.Box 428

Alief, Texas 77411
713-465-9090

