Releasing the power to everyone.

pen-Apple
H

December 1986
Vol. 2, No. 11

ISSN 0885-4017
newstand price: $2.00
photocopy charge per page: $0.15

A concise look at Apple Il RAM

Caution: The following article, like many Open-Apple atticles, starts off in
an engaging non-technical style designed to lure novice Apple Il users into
reading it. If you get into it a ways and suddenly realize you don't have half
an idea what it's talking about, go back to the February 1986 Open-Apple,
page 2.2, and read or reread “The Magic of Peek and Poke” for this month’s
assignment.

The first Apple 1 came with 4K of readable-writeable RAM memory (the
kind that gets erased when the lights go out). The latest model, the ligs, can
easily support more than 2,000 times that much (8,192K). This month I'i tell
you the story of how the II's memory grew. By telling it | hope we can answer a
few of the questions Uncle DOS has been getting about the wide variety of
RAM cards available today for the Ii-Plus, Ile, Iic, and Iigs.

The story of Apple Il RAM parallels the story of RAM chips themselves. Every
few years the companies that make RAM chips have been able to quadruple
the number of memory bits on a single chip. At the same time, as they have
gained manufacturing experience and as the size of the market for chips has
grown, they have been able to lower prices. Today, the cheapest chips
available, on a per-kilobit basis, are 256K chips. They cost from 1 to 2 cents
per kilobit. (Or 8 to 16 cents per kilobyte—the 256K RAM chips typically
used in Apple Hs hold 262,144 memory bits; it takes eight such chips to
make 256K bytes of memory.)

Older 64K chips currently cost 2 to 3 cents per kilobit; 16K chips cost 3to 6
cents. Newer 1,024K (1 megabit) chips currently start at about 7 cents per
kilobit. Ifthe standard chip-price cycle holds, however, these newer chips will
be cheaper (on a per-kilobit basis) than today’s 256K chips within a couple of
years. Next will come 4 megabit chips; by the early 1990s you should be able
buy your Iigs 8 megabytes of RAM (16 4-megabit chips) for less than $200.

Meanwhile, back in 1976 when Steve Wozniak was designing the original
Apple 11, $200 could get you eight 4K RAM chips. Larger 16K chips were only
on the horizon, Wozniak designed the Apple Il so that it could accommodate
three eight-chip groups of 4K chips —a total of 12K of RAM memory. However,
with an eye toward the upcoming 16K chips, Wozniak put "memory
configuration blocks” on the Apple I motherboard that allowed the 4K chips
to be replaced with 16K chips, one eight-chip group at a time. Before long,
Apple Iis had been configured into nine different memory sizes ranging from
4K to a massive 48K.

No other widely-available personal computer of the day could accommodate
such a massive amount of memory. This is the primary reason VisiCalcwas
originally written for the Apple II. This same kind of RAM foresight was
missing from the Ile and llc—they were built to use only the cheapest
memory chips of their day. Foresight is back in style at Apple now, however —
look at the Iigs. Almost no other personal computer of the day can
accommodate such a massive amount of memory—I can't wait to see what
comes of that. -

The language card. Massive though it seemed in 1979, 48K soon wasn't
enough. Apple wanted to make Pascal available for the I, but just couldn’t fit
it into 48K. So the Apple Language Card—which extended system RAM by
another 16K, to a full 64K bytes of memory— soon appeared on authorized
Apple dealers’ shelves.

We've talked about language-card memory frequently in the past (going
into the most detail, including how to turn the card on and off, in July 1986,
page 2.46-47). The significant thing about the language card was its use of
“bank switching.” The 6502 microprocessor can directly address only 64K of

memory. Even in an Apple Il with only 4K of RAM, a 12K portion of this 64K
space is dedicated to builtin ROM memory and another 4K portion is
dedicated to hardware control and to devices in slots. After you add 48K of
RAM, all of the 6502's Post Office boxes have been rented.

When you turn a language card on, it magically appears in the ROM's
address space, from hex addresses $D000 to $FFFF. The ROM disappears.
This is what bank switching is all about—elecironically replacing one
“bank” of memory (the Apple II's built-in ROM, in this case) with another
(here, RAM on the language card).

The language card even took bank switching one step further by putting
banks within a bank. The ROM address space is only big enough for 12K of
RAM. To squeeze in another 4K (for a total of 16K) the language card uses the
addresses from $D000 to $DFFF twice. One set of off/on switches turns the
card on with the first of the two 4K banks appearing at $D000-$DFFF (and the
other bank inaccessible), another set of switches turns the card on with the
second 4K bank appearing at $D000-$DFFF.

After Apple lit the way with the language card, a number of third-party 16K
cards appeared. (They were quite successful because Apple originally sold
its card only in combination with Pascal and the combo made for an
expensive package.) Then the third party manufacturers one-uped Apple by
bringing out 32K, 64K, and 128K cards. Most of these cards worked by
adding multiple “language cards” to the Apple.

Cards that worked like this selected the active “language card” by writing a
card number (32K, 0 or 1; 64K, 0 through 3; 128K, 0 though 7) into $C084.
With at least some of the cards you could also determine which “card” was
active by reading $C084. Unlike Apple’s 16K card, which was designed to
work only in slot 0, many of the third-party cards would also work in any slot.
(Add slot*16 to $C084 and to the locations given in July to manipulate cards
in slots other than zero.)

An interesting variation on the theme appeared on a 256K card called the
App-l-cache. Instead of being organized as multiple “language cards,” App-
cache put a "window” where everyone else put the second $D000-$DFFF
bank. Any of the card's 64 4K-banks could be accessed through this window.
Three of these banks also appeared at $D000-$FFFF as was normal for a

WORRY WELL HAE BN T RR. D
CHRISTMAS 1 ToLD THEM,WE WERE: HRARD LNVERSITY,

2.82 Open-Apple

language card. The bank that was to appear in the window was selected by
writing its number (0 through 63) to $CO8F. By reading $CO8F you could
determine which bank was active. Of all the memory configuration schemes
devised in the heyday of the Apple II-Plus, this one was the most elegant.
Before it could take the kingdom by storm, however, it was overshadowed by
the auxiliary memory scheme of the Apple Ile, which is probably the least
elegant configuration ever devised.

Apple lle auxiliary memory. For years I've been thinking that there must
be a good reason for the crazy way auxiliary memory is configured on the Ile
and Ilc. I've been waiting for months for some software wizard to pierce the
auxmem barrier and show us something of great value that can be done only
because of the flipflop, subdivided, and cross-folded format of Apple II
auxiliary memory. But absolutely nothing has happened. Here, I think, is why.

The first 64K of memory on an Apple Ile or lc is configured to look like an
earlier Apple with a language card in slot 0. The second 64K of memory is
configured to look just like the first—it extends from byte $0000 to $BFFF,
has two banks at $D000-$DFFF, then continues in a single bank to $FFFF.
This second 64K is split into two very distinct pieces—47.5K of “auxiliary”
memory, and an “alternate” language card and zero page/stack. The 47.5K
auxiliary memory extends from byte $200 to $BFFF. The 16.5K alternate
memory extends from $0000 to $01FF and from $D000 to $FFFF.

Tools for using the second 64K of memory were built into the Ile, Iic, and
later Apples. These fall into three classes—software, bank-switching
softswitches, and display-switching softswitches.

The software tools include a routine called AUXMOVE that will move
blocks of data between the main and auxiliary banks of the 47.5K section of
memory. AUXMOVE can't access any part of the 16.5K section. To use
AUXMOVE, you store the source starting address at $3C-$3D, the source
ending address at $3E-$3F, and the destination address at $42-$43. You
must also set or clear the microprocessor’s carry bit to indicate whether you
want to move from auxiliary memory to main (carry=0) or from main to
auxiliary (carry=1).

Aslight problem with AUXMOVE is that the routine lives in slot 3's firmware
space at $C311. Thisis no problem on the lic, but if someone puts a card with
ROM into slot 3 on a Ile, AUXMOVE will disappear on you. (By the way, the
1985 version of the Apple Ile Technical Reference Manual says on page 88
that AUXMOVE lives at $C312, but don't you believe it.)

In addition to providing the ability to move data between banks, Apple
built in the ability to transfer control between banks. The routine you use to
do this is called XFER and lives at $C314. To use XFER, you put the address
youwant to jump to at $3ED-E in the bank you are in, set the microprocessor’s
carry bit to indicate which 47.5K bank you want switched in (O=main, 1=aux),
and set the microprocessor’s overflow bit to indicate which 16.5K bank you
want switched in (0=main, 1=aux). Unfortunately, XFER doesn't really do all
the things it needs to do if you switch 16.5K banks, but let's talk about that
later.

You can always use the bank-switching softswitches, if you want, and
skip the built-in software. There are four switches associated with the 47.5K
section of memory. These allow you to independently select either main or
aux memory for either reading or writing. If you want, you can read from one
bank and simultaneously write to the other by setting these switches. They
are:

RDMAINRAM
RDCARDRAM
WRMATNRAM
WRCARDRAM

$C002
$C003
$C004
$C005

read main RAM
read aux RAM

write main RAM
write aux RAM

To flip these switches, you must WRITE to them, not READ
There are only two switches associated with the 16.5K section of memory.

Flipping them tums on the associated bank for both reading and writing,
They are:

SETSTDZP
SETALTZP

$C008
$C009

set standard zero page/stack/language card
set alternate zero page/stack/language card

To flip these switches, you must WRITE to them, not READ

It's important to realize that the old language card softswitches have
priority over these switches. If you tum on the altemate 16.5K while built-in
Apple ROM appears in the language card area, all that will appear to happen
will be that the zero page/stack changes. If you then turn on the language
card, however, the alternate language card, not the main one, will appear in
the ROM's address range.

Vol. 2, No. 11

There are also three status registers that can tell you the current memory
configuration. The high bit of these registers tells you how memory s flipped
(0=main, 1=aux):

RDRAMRD
RDRAMKRT
RDALTZP

$Co13
$C014
$Co16

You must READ these status registers

You can also get at selected portions of auxiliary memory with the
display-page softswitches. As we've discussed in the past (April 1985,
pages 27-28), the 80-column screen you see on your Ile or lic resides
partially in main memory and partially in auxiliary memory (assuming the
first column is “zero”, the odd columns are in main memory and even
columns are in auxiliary memory). In order to make it easier to access the
portion of the display page that is in auxiliary memory, Apple added a
softswitch that changes the function of the old PAGE1 and PAGE2 softswitches,
which have been around since day one.

Normally the PAGE1 and PAGE2 softswitches flip the display between high-
resolution graphics pages 1 and 2 or between text pages 1 and 2. (If you've
never heard of “text page 2, don't worry, hardly anything has ever used it
because it's not supported by Applesoft or the Monitor.) On the Apple lle and
later Hs, however, writing to a softswitch known as STORE80 causes the
function of the PAGE1 and PAGE2 softswitches to change. After you poke
STOREB0, PAGE1 activates the portion of the display page that's in main
memory for reading and writing, PAGE2 activates the portion in auxiliary
memory.

What's more, if the computer’s low-resolution/high-resolution softswitches
are set for high-resolution, then PAGE1 and PAGE2, in combination with
STORES8O, also have an effect on the portion of memory that holds high-
resolution graphics page 1—$2000-$3FFF. Thus you can actually read and
write in a fairly large portion of auxiliary memory without banking in the
whole thing. This effect is in addition to the PAGE effect on $400-$7FF area;
that is, when the HIRES and STORE8O switches are on, PAGE1 and PAGE2 flip
between main and auxiliary memory at both $400-7FF and $2000-3FFF.

Here's a summary of all this:

PAGEL ($C@S54 R/W) effects display
STORE4® ($C000 u)(only, no effect
PAGE2 ($C8S55 R/W) on memory
LORES ($C0S6 R/MW)
PAGEL ($C054 R/W) main $400-7FF
STOREB® ($COQL W)
PRGE2 ($COSS5 R/W) aux $400-7FF

PABEL ($COS4 R/W) effects display
STORE4® ($Ce00 N]< only, no effect
PAGE2 ($C@S5 R/W) on memory
HIRES ($C057 R/W)
PAGEL ($C@54 R/W) main $2000-3FFF+
STOREBO ($C001 W)
PAGE2 ($CO55 R/W) aux $2000-3FFF+

+ indicates that this combination also effects $408-7FF
R/M indicates whether the switch should be accessed with READ or WRITE

Interestingly, none of these switches actually do anything to the current
display that appears on your monitor. There's a switch at $C050 that tells the
Apple to switch to a graphics display; $C051 flips the computer back to text.
There's a switch at $CO0D that tells the Apple to switch to an 80-column
display; $C00C flips the computer back to 40 columns. Consequently, a
program can access the auxiliary memory area from $2000 to $3FFF without
even affecting the screen display.

There are also status registers that can be used to determine the current
status of any of these other softswitches. The high bit of these registers tells
whether the feature is turned on or not (1=on, 0=off):

RDSTORES®
ROTEXT
RDPAGE2
RDHIRES $C01D
RDBOCOL $CO1F
Auxmenm difficulties. Even with this selection of software tools, bank
softswitches, and display softswitches, auxiliary memory is difficult to use.
The 16.5K alternate zero page/stack/language card memory in particular is
extremely difficult to work with, The nut of the difficulty is that whenever you
switch in the alternate language card you also get the altemate zero-page

$Co18
sCO1A
$CO1C

1=PAGE1/PAGE2 switches flip in main and aux memory
l=computer is displaying text, not graphics
1=PAGE?2 selected, not PAGEL

1=display is high-resolution, not low-resolution
1=display is B@ columns, not 4@ columns

Downloaded from www.Apple2Online.com

December 1986

and stack. Things would be so much easier if these could be switched in
separately.

Since they are connected you cannot, for example, use the two most
common methods for passing data or parameters to a subroutine (putting
the data in the stack or pointing to it with a zero-page pointer) if the
subroutine you want to use is stored in or even turns on the alternate
ianguage card.

Because of this very difficulty the software tool AUXMOVE, which moves
data between banks (and which uses zero page for parameter passing), can't
get at either language card. XFER, which transfers control between banks,
does work with the language cards (to an extent) but, as mentioned earlier, it
doesn't do all it needs to do.

Remember that when you flip in the alternate 16.5K bank you get a new
stack and zero page. Inside the microprocessor, however, there is a register
called the stack pointer that is always aimed at the current stack position.
Thus, when you flip in a new stack you also need to change the stack pointer
— XFER neglects to do this. Apple’s manuals put this monkey on the back of
programmers. Two bytes in the auxiliary stack are to be used as storage for
inactive stack pointers; $100 for the main stack pointer when the auxiliary
stack is active, and $101 for the auxiliary stack pointer when the main stack is
active.

Consequently, it's usually more straightforward to flip the 16.5K portion of
memory with softswitches than with XFER, and to make sure the code that
does the flip goes something like this:

ALTZP STR SETALTZP
TSX

STX $100
LDX $101
XS

etc

1000:8D 09 Co
1003:BA
1004:8€ 00 91
1007:AE 01 01
100A:9A

MAINZP TSX

STX $101
LDX $100
TXS

STR SETSTDZP

etc

1180:BA
1101:8E 01 @1
1104:AE 00 01
1107:9A8
1108:80 08 Ce

Of course, such code must be in the 47.5K portion of memory. If it's
somewhere in the language card area, flipping the switch makes the
program itself disappear. It would also be wise to turn interrupts off while
making the switch, and don't forget to initialize $101 in the auxiliary stack
with a suitable value.

Likewise, a significant problem with using the 47.5K of auxiliary memory is
that the program that flips the softswitches has to either be in both banks or
it has to be in neither. When you flip the softswitch that controls which bank of
memory appears in the 47.5K window while using a program that itself lies
within that window, your computer crashes because the program disappears
—unless, of course, the second bank holds a clone of the program in the first
bank. One way around this s to use the firmware discussed earlier. The other
is to move your program that flips the softswitches out of the 47.5K window—
either up into the language card or down into zero page or the stack.

The zero-page/stack area is pretty precious territory to be using for a bank
switching program, however, and under ProDOS the language card is where
the ProDOS kemel is. However, the ProDOS development team left the rest of
us a small space at $D000-DOFF in the secondary bank of both language
cards to use for our own auxmem bank-switching routines.

The 64K RAMdisk. The three methods for accessing the second 64K that
we've looked at so far are all built into the computer itself. ProDOS provides a
fourth method of getting at this memory—it automatically sets up a
RAMdisk there. Programs that do the same thing for DOS 3.3 are also
available.

By far the easiest way to use the extra 64K is with the RAMdisk. The April
1986 Open-Apple discussed the possibilities, in terms of Applesoft
programs, extensively.

There are several advantages to using the extra 64K as a RAMdisk (in
addition to the obvious one of not having to write your own assembly
language bank-switching programs). The main one is that—in addition to
flipping the softswitches and moving things from bank to bank for you
automatically—ProDOS manages the extra 64K. It keeps track of what's
where. It keeps track of how much space is left. It won't accidentally overwrite
something important.

The main disadvantage of using the extra memory as a RAMdisk is that to
actually execute a program, you have to load it into the main bank of

OpenApple 2.83

memoty. If you write your own assembly language bank-switching stuff, on
the other hand, you can execute programs where they are stored, without
moving them from the auxiliary bank.

My opinion is that having to move routines to main memory for execution
is avery small price to pay for memory management. You may disagree with
me, of course —if you do, remember to disconnect the RAMdisk before you
use auxiliary memory for other purposes. There is a specific protocol for this
outlined in the Addison-Wesley edition of Apple’s ProDOS Technical
Reference Manual (and in Apple’s "ProDOS Technical Note #8”), which wish
more software developers would follow. Software that doesn't follow this
protocol (Apple Writer, for example), disconnects any storage device that
appears to be in slot 3, not just ones that are using the auxiliary 64K memory
bank.

Multiple auxiliary memory cards. The next chapter in the history of
Apple Il RAM is most interesting. An Apple engineer by the name of Peter
Baum designed a memory card for the Apple I auxiliary slot that created
multiple 64K banks of auxiliary memory. This card works exactly like the
usual auxiliary memory scheme with one slight difference —by writing a
“"bank number” to a new softswitch at $C073, you can flip in an entirely new
64K of auxiliary memory.

Apple wasn't interested in the card, however, and the design ended up ata
little-known Texas company called Applied Engineering. AE wrote a program
that allowed AppleWorks to use the memory on the card, named the card
RamWorks, and the rest is pretty much history. Other companies, nota
Checkmate Technologies and Legend Industries, have since introduce
similar cards and similar software, but Applied Engineering became known
world-wide by dominating the market for auxslot RAM cards.

The best part of these cards has always been their support of AppleWorks.
From a programmer’s standpoint, they have all the bad features of standard
auxiliary memory multiplied by the number of banks on the card.

In addition to the usual problems, programmers have to devise some way
to keep track of which auxiliary bank is active. There is no status register on
the card itself that can tell you this; you have to store the bank number in
memory. Applied Engineering recommends using bytes $FFFO in the 16.5K
piece and $47B in the 47.5K piece for this. Reset doesn't automatically switch
the card back to bank zero—programmers must take care to intercept
Reset and do it themselves. In addition, Reset and interrupts always use
some addresses they expect to find in the last few bytes of memory after
$FFFO; these addresses must be written into every available bank on the
card. Programs that want to support interrupts also need a special interrupt
handler in each bank. Bank numbers, by the way, aren’t necessarily
sequential. Some cards have memory in banks 0 and 3 but not in banks 1 or
2. Itdepends on what kind of RAM chips (64K or 256K) were used in the card.
Oh, and writing a bank number to $C073 also trips the paddle strobe, for
those of you who know what that is. To ensure that the paddles are read
properly, a 3 millisecond delay is required between switching banks and
reading the paddles.

Since | don't recommend trying to use regular auxiliary memory for
anything other than a RAMdisk, you can be sure | don't recommend using
additional auxmem banks for anything else, either. Nonetheless, we've
gotten several questions about how to figure out from inside a program
whether an auxslot RAM card has been installed in a computer and how to
figure out how much memory it has. Here's a simple Applesoft program that
uses the display-page softswitches to accomplish this:

108 REM * Test for multiple auxiliary memory banks *

110 TEXT : HOME : VTAB 10
126 PRINT “Just a minute here....” : PRINT
130 DIM B(127) : REM array to remember which banks have memory

140 POKE 49239,0 : REM turn on HIRES ($C@57)
150 POKE 49153,0 : REM turn on STORES® ($C201)
160 POKE 49237,0 : REM turn on PAGE2 ($C0SS5)

208 FOR BANK=127 TO @ STEP-1

210 POKE 49267,BANK : REM $C073

220 B(BANK)=PEEK(8192) : REM save value now at $2000
230 POKE 8192,BANK : REM put bank number at $2000
240 NEXT

300 FOR BANK=0 1O 127

310 POKE 49267,BANK : REM $C@73

320 IF PEEK(B192) < > BANK THEN 368 : REM If < > then no RAM bank here
330 POKE 8192,8 : IF PEEK(8192) < > @ THEN 360 : REM double-check

340 POKE B8192,255 : IF PEEK(B192) < > 255 THEN 36@ : REM triple-check
350 POKE B192,B{BANK) : B(BANK)=1 : B=B+1 : GOTO 370

2.84 Open-Apple

Some corrections and amplifications

Grab a pencil and your binder of Open-Apple back
issues and let’s fix a few things subscribers have
pointed out to us this month.

November 1986. The page between 2.74 and
2.76 is 2.75, of course, not 2.78. The page between
2.77 and 2.79 is really 2.78, not 2.75. Our index will
use the correct, rather than the printed, page numbers,
so change them now.

We've gotten several requests for an AppleWorks
2.0 update to Alan Bird's “don’t pass go” program for
AppleWorks. The program appears on page 2.75
(you've changed the page number already, right?). It
patches AppleWorks so that it doesn't stop twice and
wait for keypresses on the way to the desktop. So we
called Alan and found out that with version 2.0, the
correct value for Al is 14468 and for A2 is 14148.

In the software-we-forgot-about department, Alan
reports (in response to a question on page 2.80) that

»
- there is a machine language sort program called

SQSORT, that works with Extra K on newer
- versions of Beagle Bros Pro-Byter disk.

David Szetela at Nibble reports (in response to the
question about sorting long DOS 3.3 catalogs on
page 2.78) that the program DISK MASTER on Nibble's
Disk Customizer disk has been doing that for four
years already ($29.95 from Nibble, 45 Winthrop St,
Concord, MA 01742 617-371-1660). Nibble has an
extensive collection of programs —take a look at the
listing in the back of any issue.

And George Tylutki reports (in response to the
question about sorting long ProDOS catalogs on
page 2.80) that his program on the Nite Owl Devel-
oper Disk #2 ($39.95 from Nite Owl Productions,
5734 Lamar Ave, Mission, KS 66202 913-362-9898)
can alphabetize up to 623 files in a single ProDOS
subdirectory (if there are more, it just leaves them
alone).

Finally, last month’s article about the bug in the
ProDOS floppy disk driver clearly stated that it
referred to ProDOS 111 No sooner had it gone out
than we got a call asking “which version of ProDOS
111?" It was news to us, but it seems there are
several versions, which can be identified by the
“modification date” when the file is cataloged.
Apple’s official ProDOS 111 release has a modification
date of “09/18/84." This is the version the article
refers to. If you have a version with an earlier
modification date, get rid of it. If you have one witha
later modification date, someone, probably you, has
already done some kind of modification to the file.

May 1986. For example, you might have made the
quit code modification that causes BYE to reboot,

Yol. 2, No. 11

which was published in the May 1986 Open-Apple
at the beginning of page 2.31. Obviously you didn't,
however, or you would have called months ago to
tell us it doesn't work, as two subscribers did this
month. First, there are no fewer than three mistakes
in the third line of the instructions. That line should
read:

572D:CE F4 @3 6C FC FF

In addition, the BSAVE command has the wrong
number after the L parameter. To correct this, just
scratch the L parameter out of the instructions. The
paragraph that follows the instructions should say
that the machine code translates as DEC $3F4
followed by JMP ($FFFC).

October 1986. In the chart of Apple Il Family
Identification Bytes (page 2.66), the Apple Ile/
original entry under $FBBF should be $C1, not $00.

Control-D(efeated)

[am experiencing a problem with loading custom
characters into my Imagewriter using my Apple lic
and hoped you could help. There are two methods I
have used to load custom characters. The first
involves the use of the PRINT statement with the
CHR$(n) function to send data bytes. For example,
the following produces a lower case italics "n":

100 PRINT “nk”; CHRS(®); CHR$(100); CHRS(28);
CHRS(4); CHR$(100); CHRS(24); CHR$(0);
CHRS (@)

While this works fine it is a time consuming method
and subject to many typing errors.
Another method uses a FOR-NEXT loop and READ-

366 B(BANK)=0
370 NEXT
380 POKE 49267,0 : REM return $C673 to bank @

409 PRINT “This machine has “;B;” banks of auxiliary memory, “;
419 PRINT “for a total of “;B¥64+64;°K.”

420 PRINT

436 PRINT “This memory appears as banks:”;

440 FOR BANK=0 TO 127: IF B(BANK)=1 THEN PRINT SPC(3); BANK;
450 NEXT

460 PRINT : PRINT : END

The Apple memory standard. In September 1985 Apple itselfintroduced
a standard-slot-based extended memory card for the Apple II-Plus and lle. In
September of this year Apple introduced a new revision of the Apple Iic that
can also accommodate a special version of this type of card. The card for the
Apple [I-Plus/lle also works in the new Iigs. In addition, memory added to a
1igs by means of its special memory expansion slot can be configured so that
software running in a IIgs sees the memory as an Apple memory card in a
standard slot.

Unlike the Apple memory card, auxslot RAM cards dont work on the II-Plus
or the Iigs, which don't have an auxiliary slot. Special cards that work like
auxslot cards are available for the Ilc, but, nowadays, so is the Apple card.
Because the auxslot RAM cards can't be used with a IIgs as anything other
than a cheap source of memory chips, | recommend that you think long and
hard before buying one. If you upgrade your lle to a Iigs during the next 18
months (won't everyone?) the auxslot RAM card will be useless.

There are several significant differences between the Apple memory
standard and the auxslot RAM cards. The Apple memory card was designed
from the beginning to be used as a RAMdisk. The card has machine language
programs built into it that automatically activate the RAMdisk feature for
both DOS 3.3 and ProDOS. All the auxsiot RAM cards we've seen come with
software that will tur them into RAMdisks, but this software is packaged on
disk and has to be run separately to activate the RAMdisk feature.

It isn't possible to execute programs stored on an Apple memory card.
The memory simply isn't connected to the microprocessor. To execute a
program stored on the card, the program must be loaded into main memory.
As we have seen, however, for all practical purposes this is no different from
what must be done with an auxslot RAM card.

Cards that use the Apple memory expansion standard are available from
several suppliers other than Apple itself. Applied Engineering’s version,
called RamFactor, includes AE's AppleWorks expansion software, as well as
the ability to partition the card into several “disks” and to boot from it. A
battery-back up option is available that essentially turns the card into a small
but speedy “hard drive.” Cirtech’s Flipper (known as Flipster in the US.),
comes with most everything the RamFactor has except the battery backup
and supports more operating systems (including all versions of Apple
Pascal).

As mentioned earlier, the 1Igs has a new type of memory expansion slot
that can hold up to 8 megabytes of RAM and 1 megabyte of ROM. When the
ligs is operating in "Ile mode;” the only reasonable way to use the extended
RAM is as a RAMdisk. The RAM appears to be part of a standard Apple
memory card. When in "IIgs” mode, on the other hand, the memory on this
card is "linear” (not “"bank switched” as with lle auxiliary and language card
memory) and is directly addressable by the microprocessor. This means the
memory bytes appear in sequential memory addresses starting with byte
$000000 and going up to the number of bytes of memory you have. (Eight
megabytes of RAM would take you to byte $7FFFFF) The ligs includes a
memory management tool that allocates the available RAM among programs
—the built-in RAM disk is one of the programs that's likely to ask for memory.

Rules for living together in /RAM. Since the easiest way to use extended
memory on a lle or Iic is as a RAMdisk, and since programs that use Ile/llc
auxiliary memory also work on the 1I-Plus and ligs RAMdisks, it seems
reasonable that programmers should write software that takes advantage of
RAMdisks rather than directly addressing additional memory.

Because the operating system will handle RAMdisk memory contention, it
should be possible for different programs to coexist peacefully. One big
probiem with the auxslot RAM cards has been programs that go out to see
how much RAM is available on the card and then take all of it, ignoring any
RAMdisk that might pre-exist on the card. Instead, software authors should
make their programs configurable as to how much RAM the user wants them
to access. The software should then obtain that much by creatingafile on the
RAMdisk. If that much space isn't available, the user should be asked to
delete some files from the RAMdisk. Additional RAM on the disk should be
left free for other programs. In addition, programs should remember to
delete their RAMdisk file as part of their quit routine.

December 1986

DATA statements. For example, the same “n” can be
produced by:

100 Z = 10

110 FOR X = 1 T0 Z : READ BYTE

120 PRINT CHRS$(BYTE); : NEXT

130 DATA 110,72,0,100,28,4,100,24,0,0

Both methods work using DOS 3.3. But using
ProDOS and the second example, the Imagewriter
reads the data byte “4" as control-D and interprets it
asthe signal to end the loading sequence. My solution
has been to use the READ-DATA method for all
characters that do not contain a "4” and use the
PRINT statement for those characters that do.

Why does this happen? Why only with ProDOS and
why only with the READ-DATA method? Any guidance
would be helpful and much appreciated.

Roger H. Brown
Chesterfield, Mo.

Your supposition that the Imagewriter is interpreting
the control-D as an end-of-transmission signal is
incorrect. It's Basic.system that is interpreting the
control-D as a signal. It thinks you want to send a
DOS command. It swallows the control-D and the
characters dragging their tails behind it and usually
even has the nerve to call its nasty behavior your
SYNTAX ERROR (since it can’t make sense of the
“command”),

DOS 3.3 will do the same thing under slightly
different circumstances. In both situations the specific
problem is a result of awidespread, poorly understood
flaw that is characteristic of using control-codes and
Escape sequences to send commands to devices
such as disk drives, interface cards, modems, and
printers.

Control-codes and Escape sequences are here to
stay, however, 50 it's probably best that we investigate
this problem in some detail as we answer your
specific question.

First, let's make clear what's meant by “using
control-codes and Escape sequences to control
devices.” Take a printer. Usually you send it ASCII-
encoded letters, numbers, and punctuation marks. It
prints them. You also send it control-characters that
aren't printed, but that tell the printer to do such
things as retuming to the left margin, underlining,
and tabbing. These characters are embedded in the
data stream you send to the printer along with all the
letters, numbers, and punctuation marks.

Sometimes it's necessary to send non-ASCII data
to your printer. This might include the bytes that
make up a custom character set, as in your example,
orthe bytes that tell the printer how to print a copy of
the Neanderthal on your high-resolution graphics
screen. The ASCII meanings of this non-ASCII data
will invariably include control codes, letters, numbers,
and punctuation marks. Your printer doesn't print or
respond to any of this, however. It knows you are
sending non-ASCII data because you've told it so
with ASCII codes that say “here come some custom
characters” or “here comes a graphic.”

However, there are at least two other creatures
inspecting and sometimes manipulating the charac-
ters you are trying to get to your printer from PRINT
CHRS. These idiots don't know you are sending non-
ASCII data. They continue to search for, and respond
to, what they think are ASCIl command-codes
embedded in your data stream. These folks are your
printer interface card and DOS 3.3 or Basic.system.

Your printer interface card watches the data you
are sending to the printer very carefully. It's searching
for a control-I character, which is supposed to mean

that what follows is an interface-card command.
When it sees a control-], it eats it and at least one
additional character. Then the card tries to make
sense of its supper. If it can, it will take some action. If
it cant, your characters are simply digested and
never reach the printer.

Likewise, DOS 3.3 watches all the characters you
print and pounces when it sees the two-character
sequence control-M control-D (a control-M is a carriage
return). In your examples, if you change the 28s to
13s you'll find neither program will work with DOS
3.3.

Because of all the problems programmers had
with the DOS 3.3 command scheme, Apple’s pro-
grammers changed things slightly under
Basic.system. Instead of watching for a Return,
Basic.system secretly turns on Applesoft's TRACE
mode and uses it to track the execution of Applesoft
programs, statement by statement. Each time a new
statement is executed, Basic.system looks to see if
it's PRINT, If it is, Basic.system further examines the
statement to see if the first character that is to be
printed will be a control-D. If it is, Basic.system
assumes that what follows, up to the next Return
character, is a DOS command. Note that in your first
example the control-D is not the first character after
the PRINT statement—that program works fine
under Basic.system. In your troublesome second
example, however, all the characters end up being
“the first character after a PRINT” including our friend
CHR$(4).

So we've identified your problem — but wait, there's
more. Applesoft itself always “sets the high bit” on
characters it prints. Thus, aithough you think you've
sent 0, 100, 28, 4 and so on, what your printer
actually has been recelving is bytes equal to those
values plus 128— 128, 228, 156, 132 and so on. You
didn't notice a problem, however, because the
Imageuwriter automatically ignores the high bit
unless you tell it not to (either by sending acommand
or setting a dip switch). Other people have encoun-
tered this problem, however (see “A bit too many”in
the April 1986 Open-Apple, page 2.24).

To solve this general category of problems once
and for all, we need to figure out some way to either
bypass Applesoft, DOS, and interface cards, or to tell
them we are sending non-ASClI data.

In the April article just mentioned I included a
short machine language routine for bypassing Apple-
soft. It went like this:

0300: A9 00 LDA #5060 load character
0302: 20 ED FD JSR $FDED send it to COUT
03065: 60 RTS back to Applesoft

The article shows how to poke this routine into
memory. To use the routine, using your second
example, for example, youwould change line 120 to:

120 POKE 769,BYTE : CALL 768

$FDED is the address of a routine in the Apple
Monitor, known as COUT (say “see-out”), that sends
the character you want to print directly to the
“current output device.” You may be surprised to
leamn, however, that both DOS 3.3 and Basic.system
grab control of the critical current input- and output-
device hooks and always appear to be the “current
device.” They do this so they can spy on all the
characters you print or type. By changing the JSR
$FDED into a JSR directly to the interface card,
however, you can bypass DOS as well as Applesoft.
That will solve your control-D problem.

Then the only problem left is deciding where to
jump to on the interface card. All Apple I-compatible

Open-Apple 2.85
printer interface cards have machine language pro-
grams built into them that show up in the computer’'s
memory at byte $Cs00, where “s” is the number of
the slot the card is in. Byte $Cs00 itself on all cards is
known as the Basic entry point. After you do a PR# or
IN# command, this is where control passes to print
or get the next character.

However, most cards use $Cs00 only as an initial-
ization entry point. Only the first call to the card is
supposed to use this address (although apparently
evensome commercial software sends all characters
here). Sending subsequent characters to $Cs00
causes the card to be reinitialized with each character.
According to the IIgs documentation, “This will
currently work (to a degree) on the ligs, but applica-
tions that do this are living on borrowed time, since it
is almost certain that future firmware will not permit
this practice.”

As part of their initialization sequence, all interface
cards I know of tell the Monitor where further
characters should be sent (or where further characters
can be input from) by changing the current-device
hooks. Consequently, there are no standard locations
for these calls. Actually monitoring the current-
device hooks from inside an Applesoft program is
difficult to impossible—DOS replaces the card’s
addresses with its own in a matter of microseconds.

The only easy way to proceed from here is to dig
the addresses we need out of DOS itself— both DOS
3.3 and Basic.system squirrel the card's addresses
away where they can be used when needed. DOS
3.3, when at it's standard 48K location, stores the
values we need at bytes 43603-4 ($AA53-4) for
output (43605-6 or $AA55-6 for input). Basic.system
stores them at 48688-9 ($BE30-1) for output (43607-
8 or $BE32-33 for input). We'll show how to retrieve
these values ina moment.

Incidentally, many firmware cards also support a
protocol known as “Pascal 11" that does have
identifiable locations for initialization, read, write,
status, and, on the IIgs, control calls. You can use
these entry points from any language— they were
originally developed for Pascal but are now the entry
points of choice for most languages. They are,
however, more difficult to use from Applesoft than
the Basic entry points, because the microprocessor’'s
registers have to be initialized to specific values
before a call and because of some other important
considerations—see Open-Apple June 1986, pages
2.34-35 for alittle more on this.

While it is relatively easy to bypass Applesoft and
DOS, it is much more difficult to bypass an interface
card. Jt can be done, however, by directly manipulating
the interface card's soft switches and status registers
—the card’s “hardware.” This approach has the built-
in advantage of also automatically bypassing Apple-
soft and DOS. It is commonly used by commercial
graphic printing programs, custom font downloaders,
and software that works with modems.

What makes this approach difficult is that there is
no uniformity among interface cards at the soft-
switch and status register level. | can give you ashort
subroutine that will solve the high bit and control-D
problems of Applesoft and DOS on any Apple Il, but
giving you subroutines to directly access the hardware
on a multitude of interface cards is much more
complicated.

Nonetheless, that's what I've been Intending to do
(as you know, we've had your letter for several
months, already). But | wanted to wait until the Iigs
came out so that we could include subroutines to
directly access its hardware, since that aspect of the

2.86 Open-Apple

Iigs is very different from earlier Apple Iis.

Now that I've seen the serial port firmware, soft-
switches, and status registers on the ligs, however,
I've decided this is the wrong approach. The ligs
itself has serial port firnware that should permanently
obuiate any programmer’s need to directly touch the
hardware. In addition, using the firmware enhances
your program’s compatibility in the long run, since
the firmware trick that gets non-ASCII data through
the serial ports on the Iigs will work on any future
Apple II. In fact, the trick works on the lic and on II-
Pluses and lles equipped with Apple’s Super Serial
Card and with many other (but not all) interface
cards as well.

The trick is to simply include the interface card
command “control-I Z” in the output stream. The
Super Serial Card, the Ilc, and the Iigs all recognize
this as a “zap” command. After the zap command,
interface card command characters aren't acted
upon, but instead are sent down the data stream
with everything else. This continues until the card is
reinitialized with a PR# command or the equivalent.
(Note that you have to resend the control- Z(ap)
every time you do a PR#1)

So we've distilled the solution to the "embedded
command character” problem to:

100 REM * Initialize and “zap” serial port or card ¥
181 REM * You must give SLOT the proper value *
102 REM ¥ before calling this subroutine. ¥

110 PRINT CHR$(4); "PRH”;SLOT

120 REM last chance to print any other control-I
commands you need

138 PRINT CHR$(9):°2”

149 POKE 768,169 : REM “LDA #”

150 POKE 770,32 : REM “JSR”

160 A=43603 : REM DOS 3.3
or
160 A=4B6B6 : REM Basic.system

165 POKE 771,PEEK(R)
170 POKE 772,PEEK(R+1)

180 POKE 773,96 : REM “RTS”

198 RETURN

200 REM * Send data byte, avoiding Applesoft/DOS ¥
201 REM ¥ Data byte must be placed in D *
202 REM * before calling. *

210 POKE 769,0 : CALL 768 : RETURN

There is one other device we should mention that
responds to embedded ASCI commands. That is the
stand-alone modem. When on-line, Apple’s Personal
Modem and other “"Hayes-compatible” products
look for the character string “+++" and respond to it.
What Apple’s modem manual doesnt make at all
clear is that it also looks for a one-second delay
before and after the three plus signs. Without those
delays the plus signs are not recognized as the
beginning of acommand code. If you've had trouble
getting macros to work with your modem, this is
probably why. Simply add one-second delays before
and after the plus signs in your macros and they
should begin to work.

Which revision A?
The manual that came with my lle says | must have
a revision B or later motherboard in order to use
double high-res graphics. Buta knowledgeable friend
says if an “enhanced” sticker was on my lle, I can use
double high-res. What's the straight dope? Also, is
there any software for the [F2 that uses double high-

res?

David A. Bixler
St. Louis, MO

Apple’s inability to count past “B” on its Ile
motherboard designations has confused lots of
people. There are actually two vintages of Ille moth-
erboards that have an “A” following their serial
number.

The original revision A motherboard, which was
not able to handle double high-res graphics, was
confined to Apple lles built in early 1983; any lle you
buy now should be capable of double high-res
unless you buy a very old used one that was never
upgraded. The new revision A board, which can
handle double high-res just fine, can be easily
identified—most of the chips are soldered directly
to the board rather than being placed in sockets.

The presence of an “enhanced” sticker doesn't
necessarily mean you can do double high-res—a
1983-vintage revision A motherboard can be
“enhanced” and the Apple Ile Enhancement Kit
includes the sticker. Enhanced lles that cant do
double high-res are probably very rare, however.

Double high-res graphics software s indeed avail-
able; popular examples are Beagle Graphics from
you-know-who and Dazzle Draw from Broderbund
Software.

ligs altemate display mode

1 went down to my local computer store with a
couple of my own disks and used the new Apple Iigs.
Guess what? It runs APPLEVISION without a hitch!
(See Open-Apple, July 1985, page 50.) Granted, it
worked better in the “normal” mode (in “fast” the
song sounded like a 33 record played at 45 rpm), but
it still ran. One thing puzzles me, though: what is the
“alternate display mode” that shows up on the ligs
control panel? | asked the salespeople at two stores,
and no one seems to know.

Eric Patterson
Medford, OR

"Altemate Display Mode” is one of two ROM-based
“desk accessory” programs on the Iigs; the other is
the control panel itself. Selecting the alternate
display mode allows the Iigs to display data from
text page 2, which is unsupported by the Apple Iigs
hardware.

So you can understand why, I'l have to explain a
little about how the Iigs works. We've talked several
times in the past about the Apple lI's “memory-
mapped I/0.” This means that all the data that moves
into or out of the computer passes through what
appears to the microprocessor to be standard memory
cells. For example, in the standard Apple II, what
appears on your monitor’s text display is a reflection
of data held in the memory area from $400 to $7FF.
When you move the cursor across the AppleWorks
screen, what is really happening inside your computer
is that the applications software and operating
system software are working together to change the
values in this memory area so that what appears to
be a cursor will appear to move.

The Apple Il video generation hardware accesses
memory in lock step with the microprocessor. Each
gets its turn once every millionth of a second.
Consequently, the timing of the video generation
hardware and of the microprocessor are tied together.

When the ligs was designed, the engineers wanted
to let the microprocessor run faster while allowing
the video generation hardware to continue to run at
the old speed. To accomplish this, they split up the
256K of RAM that's built into the ligs into “fast RAM”
and “slow RAM.” The slow RAM is the built-in RAM in
banks $EO and $E1 The fast RAM is in banks $00
through $7F (only $00 and $01 are built-in).

Vol.2, No. 11

Before anything can appear on the ligs screen, it
must be stored in the proper place somewhere in
bank $EO or $E1. However, programs written before
the ligs appeared don't know anything about banks
$E0 and $EL They are loaded into and run in banks
$00and $0L In order to get the data that APPLEVISION
and AppleWorks store in banks $00 and $01 to
appear on the screen, Apple’s engineers gave the
Iigs the power to “shadow” anything written into the
display-page areas of banks $00 and $01 into the
equivalent position in banks $E0 and $E1.

So, programs run in fast RAM while the video
circuitry works like it always did in slow RAM. The
ligs hardware automatically takes care of moving
stuff from fast RAM to slow RAM for older non-ligs
software, while software written specifically for the
Iigs will tum shadowing off, use bank $00 as prime
real estate rather than as graphics pages, and use
banks $EO and $E1 for all 1/0. However, when
accessing banks $E0 and $E1, the ligs microprocessor
has to slow down to match the pace of the video
circuitry.

The only hitch with all this is that the engineers
didn'tinclude “text page 2" in the shadowing scheme
because they didn't think it had been used enough to
become a compatibility issue. Text page 2 is the
memory area from $800 to $BFF. It has always been
available in terms of the Apple hardware, but Apple Il
operating systems have never supported it. After the
hardware design of the ligs display modes had been
locked in, however, several significant Integer Basic
Apple Il programs that used the page 2 display were
found to be incompatible with the ligs.

To make them compatible, Apple’s software engi-
neers added “alternate display mode” as a desk
accessory. When you turn on alternate display
mode, it hooks itself into the ligs “heartbeat interrupt.”
At each heartbeat, alternate display mode quickly
copies everything in the text page 2 area in bank $00
to bank $EQ. This solution allowed Apple to transpar-
ently support text page 2 without having to re-design
the Iigs hardware. For an comparison of the two
modes, run the old Integer Basic program THE
INFINITE NUMBER OF MONKEYS with and without
alternate display mode enabled.

RamFactor as hard disk

You've mentioned Applied Engineering’s RamFactor
card several times but never in much detail. The
possibilities this card offered were too great to pass
up. I got one with 1 megabyte of RAM and the battery
backup to preserve the card’s memory when the
computer is off. The battery backup, by the way, was
back ordered for the better part of 2 months. 1
thought you and your readers might like some first-
hand impressions of this device. In a word—it's
fantastic!

The reviews of it in magazines have mostly emphas-
ized it as a memory card for use with AppleWorks on
an Apple II-Plus. But RamFactor is more than that—
in fact, I have a [le that already had a RamWorks card
installed. By putting RamFactor in slot 7 it became
the device that boots when I tum my computer on. |
have configured it as a RAMdisk containing ProDOS,
Apple Writer, SuperCalc, Filing System, and various
utilities. It boots instantly, then one keypress gets me
into any application within one or two seconds—no
waiting, no searching for the right disk. Changing
applications is just as fast (open-apple/control/reset
plus one keypress): from SuperCalc to Apple Writer
takes three seconds total.

The battery backup normally provides power to the

December 1986

card from house current but switches to battery
should house current fail. This feature works, by the
way; we lost power for a few minutes a week ago and -
the battery preserved every bit on the card. Should
the card be erased for some reason, it can be
reformatted and loaded in less than half an hour with
help from a good file copier (I use both FILEMOVER
from Beagle Bros Big Uand Copy Il Plus). | don't use
the card to store valuable data but this isn't a
drawback for someone who has lots of little files on
floppies rather than a few big ones. In fact, the only
drawback to this great convenience is the price tag—
$440 for the whole setup, cheaper than a hard disk
but not cheap.
Robert H. Holdsworth
Wilbraham, Mass.

I've been using one of Apple’s memory cards just
as you describe for several weeks. I'd rather have a
RampFactor—Apple’s card won't boot, doesn't have a
battery backup option (1 just leave that computer on
all the time —it's connected to a $250 uninterruptable
power supply), and can't be partitioned for various
operating systems. I used the BACKUP program on
Glen Bredon's ProSel package to save the contents
of the RAMdisk onto 3.5 inch disks after loaded it the
first time. When I have to tum the computer off for
some reason I can reload the RAMdisk with Bredon’s
RESTORE in less than 3 minutes.

A buffer in headache

Here is one that has had me climbing the walls for
days. Enclosed is a program was intended to show
how to direct output to the printer and return to the
screen. Imagine my dismay when it didn't work!

As shown, the program will only activate the printer
when the stars are aligned correctly or some other
esoteric criteria are met. When hard-copy is requested,
you probably won't get it.

It works just fine, however, if you change line 190
from:

190 PRINT X(Q):" “3
to
130 PRINT X(Q)

Using the Applesoft TRACE command even shows
the line is being executed, but it doesn't activate the
printer. (Well, usually doesn't activate the printer.)

Obviously, this isn't how I intended it to work. There
is no major problem with the program printing the
values on new lines rather than the same one, but I
justdon'tunderstand whyitdoes (or doesn’t) dowhat

it does or doesn’t do.
Dwayne C. Smith
Noadron, Let.

This one stumped me, but Dennis finally figured it
out. The problem sequence is:

180 PRINT D$; “PREL”
185FORQ=1to A
190 PRINT X(Q):* “;
200 NEXT O

205 PRINT DS; "PRO”

As you know, the semicolon at the end of line 190
suppresses a carriage retum each time through the
loop. As it tums out, however, you never send a
carriage return to the printer within your loop; then
you terminate the printout with PR#0.

Most of today’s printers contain at least a small
internal RAM buffer that receives characters and
stores them. This is so that the printer can receive
characters at a constant rate but print them in spurts

\

(one line at a time, followed by a delay while the
print head repositions itself). We suspect your printer
is set up so that the contents of the buffer aren’t
printed until a carriage return is recelved; this is a
common configuration.

If you send less than a buffer-full of data to a
printer without using a carriage return, nothing will
appear to happen. But the data will be in there,
ready to spoil the page of the next person who sits
down at the computer and tries to print something —
or to really fool you by printing out if you run the
program asecond time (the return at the end of PR#1
will trigger it). With some printers, including Apple’s,
pressing the select switch will also cause the contents
of the buffer to be printed.

Add the following line to your program:

203 PRINT

This will terminate the print out with a hard
carriage retum. If that doesn't solve your problem,
let us know and wel give you Nibble’s phone
number.

Kudos
of the
month

I write to you on behalf of CondiCom and your
many readers who use Apple Writerand are not aware
of CondiCom’s gem of a utility called OpenAppleWiter,
which was mentioned in a letter in Open-Apple last
September (page 71). Instant Apple Writer on the
Sider is a joy to behold. The gentieman at CondiCom
had the uncommon courtesy to find my telephone
number and call long distance to verify my particular
hardware before shipping my order. Within haif an
hour of it's arrival, Apple Writer was enhanced and
tucked away deep inside my Sider. The documentation
is like Open-Apple, sparse but potent.

Peter Walmsley
Fort Lauderdale, Fla.

OpenAppleWriter is $39 for the DOS 3.3 version,
$29 for the ProDOS version, $49 for both from
CondiCom, 436 Berry Drive, Naperville, IL 60540
312-357-0274.

RAM Van Lines

How can I load large (>128K) programs into RAM
disk automatically upon start-up?

Marc Odin

Minneapolis, Minn.

It depends on which operating system you are
using.
For ProDOS, a BASIC.COPY program was published
in Open-Apple in July 1985 (pages 50-52), with an
important addition and correction in the October
1985 issue (pages 74-76). Its whole reason-for-being
was to demonstrate how to easily copy very large
files. Most RAM cards come with a similar program —
look on the utility disk that came with your card—
however, some of these may not handle large files.

Another ProDOS alternative—the one we use
around here—is to use the disk backup and restore
utilities in Glen Bredon's ProSel package ($40, 521
State Road, Princeton, NJ 08540). They allow you to
backup the contents of a RAMdisk into a file, which
can then be kept on one of your disks. The RAMdisk
can be automatically restored from that file at

Open-Apple 2.87
startup, or you can make restoration a manual
procedure,

For DOS 3.3 the easiest way to proceed is to use an
EXEC file with FID. The following EXEC file, for
example, will copy all the files on the boot disk in slot
6 to a RAM disk in slot 4, drive 1:

BRUN FID

T N

%<
>
o

Your boot disk must include both the EXEC file and
FID itself. If you name the EXEC file COPY TO RAM and
you have room for a short HELLO program, the
following will get all this to work automatically:

10 REM you may need to BRUN a program to turn
20 REM your memory card into a RAMdisk here
30 PRINT CHR$(4);“EXEC COPY TO RAM~

49 END

The EXEC file BRUNs FID, enters a “1” when FID's
function menu appears (the “COPY FILES” option),
enters slot 6, drive 1 for the source drive and slot 4,
drive 1 for the target. The next prompt is for the
filename; we enter an equals sign to indicate we
want all files, followed by a "N to indicate we do not
want prompting after each filename. The two “X"s in
"XX9" start and end the copy (each “X” responding to
FID’s request for a keypress to continue). The “9”
takes us out of FID via menu option 9.

For either DOS or ProDOS you might want to add
commands to check for the RAM card and see if it
already contains the files before you copy them. This
would happen, for example, if you had to reboot
your computer but hadn’t turned it off.

Dennis says that for CP/M there are SUBMIT and
XSUB commands that can be used to issue commands
similar to the EXEC command. SUBMIT allows you to
enter CP/M system commands, while XSUB extends
the ability to allow input into programs themselves.
You can use these in conjunction with PIP to copy
files. For example, a SUBMIT file containing the
command PIP C:=A:*.* would copy all files from drive
A: to C, using the “*.*" wildcard to represent all
filenames. Some CP/Mversions allow you to install a
file to AUTORUN after CP/M boots; if your system has
this feature and you can install the SUBMIT file you
can automate the whole procedure.

If there’s an easy way to load large files into a
RAMdisk automatically from Apple Pascal, we don't
know what it is.

NTSC and PAL Apples

1 would like to know what are the differences
between an American (NTSC) Apple Ile and a European
(PAL) Apple. Couldyou please list out the differences?

Tai Fan Li
Kuala Lumpur, Malaysia

Jim Sather has described the circuitry differences
between the two Apples in his book Understanding
the Apple Ile, published by Brady Communications
of Bowie, MD. On pages 8-16 through 8-19 ne
describes them — they primarily involve video scan-
ning and video signal generation— in great detall.

According to Sather, “If not for television system
incompatibility, the Apple lle could be made to
operate in any country by installing a power supply
that would operate from the line voltage of that

2.88 Open-Apple

country. Supporting the special text requirements of
the various languages is no problem because you
can simply plug in a keyboard ROM and video ROM

for any language....The PAL circuitry is nearly

identical to the circuitry of the Apple Il Eurocolor
card, so basically an Apple Ile PAL motherboard is an
American motherboard with a 14.25 MHz oscillator
(14.31818 MHz is standard on NTSC Apple Ils), a 50
Hz IOU (60 Hz on NTSC), foreign language video and
keyboard ROMS, and a built-in Eurocolor card.”

One factor Sather doesn't explain in detail is the
difference in the component and slot layouts between
the two motherboards. The two are not the same.
Devices that plug into the motherboard of one flavor
of lle or that use jumpers to motherboard components
are unlikely to work with the other flavor. One
problem frequently mentioned in Apple User (the
only European Apple magazine published in a lan-
guage I can read) is that slot 3 and the auxiliary slot
lie end-to-end on the PAL motherboard, consequently
they can't both be used at the same time.

RAM found in accelerators

EJ. Martin’s letter in your November issue (page
2.76) brings up an interesting point about accelerator
cards.

These cards use fast-access RAM (150ns or faster)
chips that can be accessed at 3 MHz plus, rather than
at the standard 1023 MHz that the motherboard RAM

Open-Apple
N EEE—

is written, edited, published, and

© Copyright 1986 by

Tom Weishaar
Business Consultant Richard Barger
Technical Consuitant Dennis Doms
Circulation Manager Sally Tally

Most rights reserved. All programs published in Open-Apple are
public domain and may be copied and distributed without charge
{most are available in the MAUG fibrary on CompuServe). Apple user
roups and significant others may obtain permission to reprint articles
?rom time to time by specific written request. Requests and other
editoriat material, including letters to Uncle DOS, should be sent to:

Open-Apple
P.O. Box 7651
Overland Park, Kansas 66207 U.S.A.

ISSN 0885-4017. Published monthly since January 1985. World-wide
prices (in U.S. dollars; airmail delivergoincluded at no additional
charge): $24 for 1 year; $44 for 2 years; $60 for 3 years. Al back issues
are currently available for $2 each; a bound, indexed edition of Volume
1 is $14.95. Index mailed with the February issue. Please send all
subscription-related correspondence to:

Open-Apple
P. .Bo':%gilh
Syracuse, N.Y. 13217 US.A.

Subscribers in Australia and New Zealand should send subscription
correspondence to Open-Apple, c/o Cybernetic Research Ltd, 576
Malvern Road, Prahran, Vic. 3181, AUSTRALIA.

Open-Appleis available on disk for speech synthesizer users from
Speech Enterprises, P.0. Box 7986, Houston, Texas 77270 (713-461-
1666).

Unlike most commerical software, Open-Apple is sold in an
unprotected format for your convenience. You are encourgaged to
make back-up archival copies or easy-to-read enlarged coptes for
your own use without charge. You may also copy Open-Apple for
distribution to others. The distribution fee is 15 cents per page per
co“dismbmed.

WARRANTY AND LIMITATION OF LIABILITY. | warrant that most of
the information in Opcn-ﬁpplc is useful and correct, although drivel
and mistakes are included from time to time, usually unintentionally.
Unsatisified subscribers may return issues within 180 days of delivery
for a full refund. Please include a note from your parents or children
conhrmm? that all archival copies have been destroyed. The unfullilied
portion of any paid subscription will be refunded on request. MY
LIABILTY FOR ERRORS AND OMISSIONS IS LIMITED TO THIS
PUBLICATION'S PURCHASE PRICE. In no case shall | or my
contributors be liable for any incid or quential damag
nor for any damages in excess of the fees paid by a subscriber.
Open-Apple s neither affiliated with nor responsible for the debts of

Apple Computer, Inc.; “tinaja questing” is a trademark of Don
Lancaster.

Source Mail: TCF238

CompuServe: 70120,202

can handle. The 80K accelerator Martin mentions
has 48K toreplace the motherboard memory, 16K for
the language card, and 12K for a copy of what's in the
motherboard ROMs. 4K is wasted simply because it's
easier and less expensive to put 80K of RAM on the
board than 76K.

However, Applied Engineering’s TransWarp acceler-
ator takes a different approach. It has 256K of RAM
split between the 76K mentioned above and 64K
used to accelerate Apple Ile auxiliary memory. This
allows programs running in auxiliary memory to be
accelerated. What isn't documented is that some of
the extra memory can be accessed as a RAM card.

On an old Apple ii or on a IIPlus the 64K of
auxiliary memory can be used! There are a couple of
limitations—neither 80-columns nor double high-
res are added, since that circuitry doesn’t exist on
these machines. In addition, most programs, including
ProDOS, do not realize that the memory is there,
since the signature bytes indicate that the machine is
not an Apple Ile. Nevertheless, with programs that
check to see if the memory is available, or with
programs that can be fooled into thinking they are
runningon aApple Ile, that memory can be accessed.
For example, try a DOS 3.3 RAMdrive program that is
designed to work with an extended 80-column card.
Many will work on a [I-Plus with a TransWarp.

From the other point of view, if you plug a TransWarp
into an Apple Ile, then it will still have the 16K RAM
card normally used for the II-Plus mode. Many pro-
grams will access extra 16K RAM cards. Ifyou tell such
programs that you have a 16K card installed in the
TransWarp slot it will find and use it.

Philip Chien
Earth News
Titusville, Fla.

Some benchmarks

1 am considering upgrading to a Iigs, but I have
some questions that I hope you can answer. First of
all, Iwas originally considering a Macintosh, but since
the ligs has arrived [can't make up my mind because
of compatibility issues. Compatibility with the Ile and
licis no problem, but I'm interested in Mac compati-
bitity. I know that the Macintosh and the ligs are not
software compatible, only hardware compatible.
However, how identical is the Ilgs 128K ROM with the
128K Mac ROM? Specifically, are the QuickDraw, math
and other routines 100 per cent compatible on a
functional level? As an example, can a Macintosh
MicroSoft Basic program that calls QuickDraw routines
be simply downloaded from a BBS and run on a ligs?

By the way, have you run any benchmarks comparing
the Iigs to the Ile or Mac Plus? Speed was one of the
reasons why I considered dumping my Ile system for
aMacintosh Plus, or even (gasp!) an IBM PC.

J. M. Maing
Honolulu, Hawaii

Although the user interface shown in most ligs
demos is similar to the Macintosh, there is almost no
other area of compatibility. The peripheral interface
ports (disk ports, serial ports, desktop bus for the
keyboard) are similar to what the Macintosh has (or
is about to get) but only because Apple wants the
two computers to use acommon family of peripherals.
Internally, the Iigs and Mac are nowhere near the
same.

This includes "ROM compatibility”. The design
Pphilosophy of the 1Igs ROMs is similar to the Mac's,
but the actual routines are not the same. After all, the
computers use different processors (68000 series
for the Mac, 65816 for the ligs) and the hardware that

Vol. 2, No. 11

must be manipulated by the ROM-based firmware is
different.

The ROM routines are accessed as “tools” through
a single entry point in each machine’s ROM. Many of
the tools have the same names and functions, but
the exact nature of each call isn't necessarily the

same because of the differences between the
machines. The ligs version of QuickDraw (QuickDraw
1I), for example, is scaled for the pixel dimensions of
the ligs display and must support color.

Apple’s engineers are working on some utilities to
allow translating things such as graphics, fonts, and
files between the two machines, but I will be surprised
if we ever see any kind of compatibility at a program
level.

The folks who developed Apple’s SANE packages
say that, based on asieve of Eratosthenes benchmark
involving SANE on the ligs and Mac, the IIgs runs at
about half the speed of the Mac, Since the 65816 has
no multiply/divide instructions like the 68000, the
SANE benchmark may be a worst-case (for the Iigs)
comparison between the two machines.

The Apple Il family shines, on the other hand, in
the standard benchmark tests used by Byte magazine
(see the June 1984 issue, page 327, and the October
1984 issue, page 33). Dennis and I ran Byte's
benchmarks onalle, aligs, and a lle with a TransWarp
accelerator and found the latter two to be comparable
to an IBM-PC/AT or to a Macintosh-Plus. As with all
benchmarks, use care in forming opinions based on
these numbers—in particular, they may say more
about the Basics used than about the machines
themselves (Applesoft on the II family, BASICA on
the IBM, Microsoft Basic 1.0 on the Macintosh). On
the Apple IIs, the disk read and write tests didn’t
change with computer speed, but the type of disk
drive used did make a big difference, so we’ve
reported those numbers that way. ProDOS was used
for the disk tests.

The comparison data for the IBM PC and PC/AT
were taken from Byte, May 1985, page 274; for the
Macintosh and Macintosh Plus from November 1986,
page 248. The benchmark programs use single-
precision arithmetic— this means 5-byte precision
for Applesoft versus 4-byte precision for the MicroSoft
interpreters on the other machines.

Byte magazine benchmarks, in seconds

cale sieve write read
Ile 97 245 o -
IIgs 35 96 -- i
Ile+Transharp 30 ;4 - --
IT + 5.25 drive -- - 37 36
II + Uni 3.5 =5 25 36 22
II + RAMdisk -- -- 9 S
18M-PC 69 191 56 46
18M-PC AT 27 60 26 24
Macintosh 79 125 15 10
Macintosh-Plus 79 96 25 23

As you can see, with these benchmarks the ligs
and the accelerated Ile compare very favorably with
the 6 MHz IBM PC/AT (for a lot less money) and blow
away the others, though the Macintosh appears to
have faster drives. The tests don't take into account
the use of a math coprocessor for the IBM computers,
which would give them a decided advantage if the
language the benchmark was written in used the
coprocessor (the standard interpreted Microsoft
Basic used for these tests does not). On the other
hand, a Basic written to take full advantage of 65816
chip on the ligs (there isn't one at the moment)
should execute faster than Applesoft.

