OpenApple
B

Releasing the power to everyone.

March 1987
Yol. 3. No.2

ISSN 0885-4017
newstand price: $2.00
photocopy charge per page: $015

Reading AppleWorks data bases

While a few of you are still hold outs, most folks in the Apple Il kingdom
have become very fond of AppleWorks in general and of the AppleWorks data
base in particular. The great strength of the AppleWorks data base is speed. It
sorts and retrieves data fast enough to make mainframes blush. Data entry
and editing is smooth and quick.

The amount of data that will fit in one record, of course, is limited to 30
different categories and what will fit on a single screen. The number of
records that will fit in a single file depends only on what version of which
compary’s RAMcard expansion software you have.

For getting the data in your file out onto paper, AppleWorks allows you to
define eight report formats. While these formats are sufficient for many types
of reports, they pose significant limits for others.

You can't, for example, dump your AppleWorks data onto a pre-printed
form if more than 15 lines separate the highest and lowest areas you must fill
out Ifyou use the AppleWorks data base to fill out continuous credit card
forms (as we do around here), you have to include your company name and
merchant number in every record; there's no other way to tell AppleWorks to
print the same thing—even so much as a comma between city and state—
" on every form.

There are a few fairly easy solutions to these problems. The mail merge
features of AutoWorks and of the new AppleWorks 2.0 will solve both of the
problems I've just mentioned. Another possibility is to open-apple-P(rint)
your data base into a file, then read that file with your own program and
manipulate the data any way you like. You could even update the data (for
example, deduct today’s sales from your toy store’s inventory) and store the
updated data in a DIF file. The DIF file could be loaded into AppleWorks as a
new data base. The records in that new data base could be copied, using the
dlipboard, into the old data base and the old records deleted. This process is
cumbersome, however, and not without some ill effects, such as the
disappearance of hyphens from phone numbers and the inability to
chronologically sort time and date categories.

Another way to solve all these problems is to figure out how to have your
own program directly read AppleWorks data base files. Those of you who are
programmers probably realize that if you could get into the file itself you
could manipulate and print out the data any way you wanted. You could even
update the data and store a new AppleWorks-format data base file on disk.
The possibilities are so immense that readers have been askmg me to
explain how to do it since I was struggling with volume 1

I've been reluctantto try, however. There’s no straightforward wayto read an
AppleWorks data base file with Applesoft INPUT or GET commands. This
leaves loading the file into memory and reading it with assembly language
subroutines or with Applesoft PEEK loops. The problem with assembly
language routines is that they take a long time to write and test and they are
usually too long to publish, The problem with PEEK loops is that they are
excruciatingly slow. For example, consider this little program:

18 HGR
@FIRC=1T04

3@ POKE 819Z,C*58 :
40 NEXT

50 TEXT

About all the program does is 32,768 POKEs and 32,767 PEEKs, Because it
does them in the memory area devoted to the hi-res screen, with hi-res
graphics turned on, it also displays some really ugly patterns. Undeér
standard Applesoft the program takes more than three minutes to execute

FOR I = B193 TO 16383 : POKE I,PEEK I-1 : NEXT

(190 seconds to be exact). On a Ilgs running in fast mode you get a boost
factor of 2.7 —71 seconds total —still not very fast.

While pondering these problems (after receiving the latest request for
information on how to read an AppleWorks data base file), | remembered
reading in the thin (but excellent) little manual that comes with the Beagle
Compiier that compiled programs should use integer values whenever they
can, because integers execute much faster than fioating point values (the
compiler considers an integer to be any whole number between -32767 and
32767, whether stored in an integer variable, such as I%, or not). | wondered
whether the compiler wouid speed up PEEK and POKE loops, which use such
integer values. | compiled the above program and tested it. Running on a
normal Apple: 11, the program finished in 19 seconds— 10 times faster than
normal. On a llgs running in fast mode, the time was further cuttoless than 8
seconds, which is 24 times faster than what we started with a paragraph ago
and plenty fast enough to read a data base file.

" Sothis month I'm doing it, Here's howto read an AppleWorks data base file.
We'll save writing a new one for a later issue.

File structure. The first thing you need to know is that AppleWorks data
base files have three main parts. The first part is called the header. Among the
goodies you can dig out of the header are the number of records in the file,
the number of categories per record and thelr names, and the number of
report formats that have been defined. There's also a bunch of other stuff
there that's important to AppleWorks but of little use to us, such as the format
of the single-record and multiple-record screens and the current record
selection rules.

" wHY, WHEN T wis m AGE T HAD D TRAVEL FYE
MILES ONER. A NON-COAXIAL CARLE. TO A UTRE RED‘
RNG MACHINE [N A CORNER NEIGHRCRHCOD BAR!

310 Open-Apple

The header itself can be split into two parts. The second part holds the
names of the categories. The first part holds everything else. The first part is
357 bytes long. The second part has 22 bytes for each category that has been
defined. If all of the 30 possible categories have been assigned names, the
second part is 22 * 30 or 660 bytes long, for a total length of 1017 bytes. The
header can never be longer than this.

{The only advantage to having data base files with less than 30 defined
categories is that you save 22 bytes of file and desktop space per category
not defined. The disadvantage, of course, is that should you ever need toadd
a category to a file, your report formats will be deleted. It’s far better, in the
world of today'’s expanded desktops, to always assign 30 categories to new
files. Name the ones you have no current use for something like "+”,and use
open-apple-L{ayout) to move them to a comer of the screen.)

So much for the header. The second section of an AppleWorks data base
file holds the report formats. Each report format uses 600 bytes. Thus, the
length of this section can vary from nothing at all, if no formats have been
defined, to 4,800 bytes if the maximum of eight formats has been defined.

The third section of an AppleWorks data base file holds the actual data
records. Records appear in the order in which you last sorted them. (Except
that the first record always holds the file’s "standard values.”) Within each
record, categories appear in the order in which:they were defined with open-
apple-N(ame), which is also the order in which the category names appear at
the end of the header section.

Reading a category. The record-category data is all scrunched together.
This part of the file is similar to a sequential text file rather than being spread
out in equal-length, mostly-empty segments as are random-access text files.

The first two bytes of each record indicate how long the rest of the record is.
Next comes the data for the first category. The first byte of each categoryis a
"contro} byte.” When this number is less than. 128, it indicates how many
bytes of data follow. Let’s assume we have a variable called PNTR that points
to the current control byte. The following subroutine will dig the data out of
that control byte's category and store it in a string variable called C$(N):

5100 REM read a single category’s data intoc C$(N)

5112 CBYTE = PEEK(PNTR) : PNTR=PNTR+1 : REM Get control byte, .

5162 C$="" : FOR I=PNTR TD PNTR¢CBYTE-1 : C% = C$ + CHRS(PEEK(T)) = MEXT
5190 C$(N)=C$: PNTR=PNTR+CBYTE : REM Rdvance polnter to next category.
5195 RETURN

Line 5162 holds what I mean by a "PEEK loop.” It begins by clearing a
variable called C$, which will temporarily hold the category’s data. Then it
loops the number of times required to dig the data out of memory. The
PEER(I) part of CHR$(PEEK(1}) teils us what value is at byte I, then the CHR$
part immediately converts that value into an ASCII character.

You may find line 51625 “TO PNTR+CBYTE-1" puzzling. We have to
subtract 1 from CBYTE because of the old “indexed from zero” paradox. If
PNTR is at byte 100, and CBYTE says there are ten bytes of data, theywould be
stored in bytes 100 through 109. Looking in bytes 100 through 110 would
return eleven bytes of data. A clearer way to write the statement might be FOR
I=1 TO CBYTE : C$=C$ + CHR$(PEEK(PNTR+I-1)). Writing it like that would
slow down execution, however, because of the additional calculations inside
the PEEK statement that would have to be done on each pass through the
loop.)

Now suppose that the value in CBYTE is greater than 128, IfCBYTE is 129, it
means the next category is blank. If CBYTE is 130, it means the next {fwo
categories are blank. In other words, CBYTE-128 gives you the number of
categories to skip. If CBYTE is 255, it means all remaining categories are
blank and you have reached the end of the record. If there are no blank
categories at the end of the record, there will still be a 255 marker.

For example, a completely blank record takes up three bytes of space, no
matter how many categories there are. The first two bytes indicate the
number of bytes in the rest of the record (1—$01 $00 in hex) and the final
byte is a 255, indicating all remaining categories are blank. A record with 30
categories, all blank but the 1ast, would begin with two length bytes, then have
a control byte of 157 (128 + 29), followed by a control byte indicating the
length of the data in category 30, followed by that data, followed by a record-
ending control byte holding 255. i

Let’s add some lines to our previous subroutine to handle blank
categories. "NB” is a variable that keeps track of the number of blank
categorles that should be skipped:

5100 REM read a singls category’s data into C3(N)

5118 IF NB > @ THEN 5184 : REM 1n the middle of multiple bianis?
5112 CBYTE = PEEK(PNTR) : PNTR=PNTR+l : REM Get control byte.

5114 If CBYTE > 127 THEN 5180 : REM Start nultiple blank categoriss.

5198 CS(N)=CS :

Vol. 3, No. 2

516@ REM Categery contains RSCII-string data.
5162 Cs="" : FOR I=PNTR TO PNTR+CBYTE-1 : CS = C§ + CHRS(PEEX[I)) = NEXT
5164 GOTO 519@

51B@ REM Category is blank.
5182 NB=CAYTE-12B
5184 CS(N)="“ : NB=NB-1 = GOTO 5195

: REM CBY.TE-SBG is # of blank categories.

BNTR=PNTR+CAYTE : REM Advance pointer to next category.

5195 RETURN

One other detail we probably ought to consider comes up with categories
that hold dates or times. AppleWorks uses a special storage format for dates
and times to make them easier to sort. The first byte of a date categoryis 192
{$C0). The first byte of a time category is 212 ($D4). The first byte of any other
kind of category is a low-value ASCII character, which will be less than 128.

Date entries consist of six bytes. The first is the ID byte (192 or $C0). The
next two hold the year in ASCII characters, The next holds the month, where
an ASCIT "A” means January, "B means February, and so on up to “L” for
December. The last two bytes hold an ASCII day-of-month.

Time entries consist of four bytes. The firstin the ID byte (212 or $D4). The
next byte indicates the hour. An ASCIl "A” means 00 (the hour after
midnight), "B” means 01, and 50 on up to "X" or 23 (the hour before
midnight). By adding the following lines to our previous subroutine, we can
add the capability of reading dates.

123B DIM MOS(12) : REM This array is for the names of the months.
1040 MOS (1)="Jan” : MDS (2)="Feb” : MOE (3)="Mar”
1042 MOS (4)="Apr” : MOS (5)="May” : MOS (&)="Jun”
1g44 MOS (7)="Jul” : MDS (B)="Aug” : MDS (S5)="Sep”
1846 MOS(10)="O0ct” : MDS(11)="Nov" : MOS(12)="Dec”

5116 T=PEEK(PNTR) : IF TC12B THEN 5156 : REM Date or time category?
5118 IF T=212 THEN 5130

5120 REM Category contains a date.

5122 YRS = CHR$(PEEK{PNTR+1)) + CHRS(PEEK[PNTR+2)]
5124 MO$ = MOS(PEEK(PNTR+3)-B4)

5126 OY$ = CHRS(PEEK[PNTR+4)) + CHR$(PEEK{PNTR+5))
S12B C$ = MOS + “ ~ + DY§ + ~ “ + YR$: GOTO 5190

5130 REM Category contains a time.

5132 M$ = “AM“ : HR = (PEEK(PNTR+l) - BE)

5134 If HR > 11 THEN M$ = “PM* : If HR > 12 THEN HR = HR-12
5135 HRE = STRE(HR) : IF HR < 10 THEN HRS = “@“ + HR$

5138 MI§ = CHRS(PEEK(PNTR+2)) + CHRS$(PEEK(PNTR+3))

5142 CS = HR$ + "= + MIS + “ “ + M$: GOTO 51%9@

Line 5124 takes advantage of the fact that the ASCII codes for letters are
sequential numbers. It turns the “A” that means January, for example, intoa
*1" by subtracting 64 from the ASCII code for "A” (65 or $41). "B becomes a
*2," and so on. The resulting value (1 to 12) pulls a month abbreviation out of
the previously-defined array MO$(I).

Likewise, in line 5132, the letter codes for the hours are tumed into
numbers between zero and 23 by subtracting 65 from the ASCII leiter code.
As written, these routines convert dates and times to strings that look exactly
like what AppleWorks itself displays. With slight modifications you could
arrange dates or times into any alternative formatyou might prefer.

Reading a record, Now that we have a routine that reads categories, itisa
simple matter to write a routine that reads whole records. The following
subroutine assumes only that PNTR points at the correct byte of the file and
that the number of categories for the file has previously been placed in the
variable NC. It also checks for the presence of the end of record marker and
jumps to an error routine at line 5300 if it is missing, Since any error is quite
likely a program error rather than a file error, the error routine prints some
helpful debugging information {this particular program, of course, has been
tested thoroughly and worked fine, of course, just before | sent it to the
typesetter, of course—1I include these lines, of course, in case your own
program, of course, based on this one, of course, requires some fine-tuning,
of course):

5080 REM read record’s categories into C$(1)...CE(N)

5810 RL = FN PK2(PNTR) : PNTR = PNTR+2 : REM RL is Record’s Length

5038 NB=0 : REM init M of blanks to @

5049 FOR N=@ TO NC-1 : GOSUB 5108 : NEXT : REM get category data

505 GOSUB 5100 : IF CBYTE < > 255 THEN 5308 : REM get $FF at end of record
5060 RETURN)

March 1987

5300 REM Tha File doesn’t look right--probably 2 program, not a file, bug.
5918 HOME : VTAB 10

552@ PRINT "1’ve encountered an error in the file‘s structure”

533@ FRINT “ in record “;R;” and category “3N;”.”

5340 PRINT

595@ PRINT “The file buffer begine at “;BBB;” and ends at “;BEN;”."

5968 PRINT ~ The buffer pointer is at byte ";PNTR;”.”

5398 END

The "FN PK2(PNTR)" in line 5010 is a function that does a two-byte PEEK.
The function is defined earlier in the program but later in this article. For
more information on this trick see page 2.35 in our June 1986 issue.

Memory buffers. Everything we've talked about so far assumes that
somehow we've loaded at least a part of the AppleWorks data base file into
memory and that the variable PNTR points to the proper byte within the file. In
order to do this we have to take care to set aside a block of memory we can
use as a "buffer” and see to it that Applesoft doesn't accidentally try to use
the same memory area. We also want this memory area to lie in an address
range less than 32768 ($8000) so that a compiled version of our program
can PEEK with integers and run at maximum speed. One good place to put
the buffer is between the Applesoft program and its variable fables.

Figure 1is a picture of how Applesoft uses your Apple’s memory. Normally,
Applesoft builds the variable tables adjacent to the end of the program
image. By proper use of the LOMEM: command, however, we can move the
variable tables and create an area of free space between the program image
and the tables. This has to be done at the beginning of the program, however,
before any variables have been used. (And in order to work with the Beagle
Compiler, which doesn't update the PRGEND — program end —pointer at
bytes 175-176 quite right, it has to be done without referring to PRGEND.)
Howabout:

100@ REH Program initialization
1010 LOMEM: 16364 + PEEK({1@5) + PEEK(1@6)*256 : REM Create 18384-byte buffer, -

1830 DEF FN PK2(ADR) = PEEK(ADR) + PEEX[ADR+1)¥256 : REM 2-byta peek Function.
1@32 DIM CN$(38) : REM This array is For catsgory names.
1e34 DIW Cs(30) : REM This array is for the information in categorias,

10850 BBG = FN PKZ2(1@5)-16384 = REM BBG pointa to the beginning of our buffer.
1052 BEN = BBG + 15384/2 = REM BEN points to the end of our buffer.
1054 PNTR = BBG : REM PNTR points to our position in the buffer.
1056 BYTE=0 : REM BYTE points to our position In the File.

Zero Pooa
Text Scramn

$2000
tort of program
Hi-fes Poge 1 $3000 103104, $07-620
$4000 R “-rﬁ-\-n SRS oot
Y g g 175176, F-$80
Hi-Ras Poge 2 ¢ s start of waricbles
. UARTRB, (LOMEN:)
$5000 Simple variable 103106, $09-40A
tabla -
$7000 _ start of arrays
firray varicble 0108, $88-$6C
$8000 table
and of varicbles
STREMD
$0000 109~ 110, $CO-$&F
Somewhol fres area ! .
{sirings evant-
$R000 wally overerite
this area.)
End of strings
pos ﬁm\ FRETOP
. 111-112, $&F-$20
String storope area
o o
$0000 Stort of strings
MENS |12 CHIMEN:)
15-116, $73-47¢
Basic
Starl of DOS
$F000 Ho sl.c'l|poil\w= ;
usually $9600,
— Applesoft Program It con wary
$FEFF Area widely. >
$0000 TO $FFFF

Figure 1

Open-Apple 311

‘The PEEKs in line 1010 look up the current location of the variable tables;
LOMEM: and the addition of 16384 move them $4000 bytes away from the
end of the program. Lines 1030-1036 set up the two-byte PEEK function and
dimension some arrays we'll need later. Lines 1050 to 1056 set up some
pointers to the beginning and end of our buffer and to our position in the
buffer and in the file on disk. In line 1052 we actually divide the $4000 bytes
we have set aside into two buffers—only one will actually be used in this
program, but we'll need the other in a couple of months when we give this
program the ability to write AppleWorks files, too.

One of the beauties of ProDOS is the ease with which any type offile can be
loaded into memory, even in small pieces, The upcoming subroutine for
loading sections of AppleWorks data base files uses the BLOAD command,
the A(ddress) and L{ength) parameters that DOS 3.3 programmers are
familiar with, and the T(ype) and B(yte) parameters that can only be used with
ProDOS.

The T(ype} parameter allows any type of file to be BLOADed, BLOAD is not
restricted to binary files, as with DOS 3.3. Here, the file type we want to load is
"ADB."

The Blyte) parameter allows you to begin loading a file into memory at
some position other than the beginning of the file. Setting B to 1000, for
example, will cause the BLOAD to skip the first 1000 bytes of the file. This
capability is absolutely necessary—without it you can't access files that are
larger than the buffer. With it, on the other hand, you can load the file into the
buffer in pieces. Here’s our subroutine:

55@@ REM load section of file into buffer

5510 BYTE=BYTE+(PNTR-BBG) : PNTR=BBG ;

5520 PRINT CHR$(4);"BLORD”;F%;~, TADB, LB1S2, A";B8G;”, B”;BYTE
5530 RETURN

Line 5510 calculates a value for the Biyte) parameter by determining the
distance between our pointer, PNTR, and the beginning of the buffer. Then it
adds that difference to the previous Biyte) value. When we initially load the
first section of the file, these variables will cancel each other out and equal
zero, so we'll begin BLOADIng at byte zero. Later BLOADs will essentially
move the byte that PTR is pointing at from the end of the buffer to the
beginning of the buffer.

Somewhere we need to check to see if PNTRis nearing the end of the buffer.
Agood place to do this is right after line 5010, where we find out the length of
the record we are about to read. We need only add the record length to the
PNTR and see if the result is beyond the end of the buffer, If so, we should
reload the file. This line will take care of all that:

5020 IF PNTR+RL => BEN THEN GOSUB 5502 : REM Does record extend beyond buffer?

The header. After we have the beginning of the AppleWorks data base file
BLOADed into our memory buffer and before we start reading the actual data
embedded in the records, it's necessary to dig a few important pieces of
information out of the header. The header length is stored in the first two
bytes of the file. This length does not include the two length bytes
themselves, however, so we need to add two to the resuit to arrive at the full
header length.

The number of records in the file is a two-byte number and can be found at
bytes 36 and 37 (where the first byte of the file is byte 0). The number of
categories in the file is stored at byte 35. The number of report formats is
stored at byte 38. And the category names are stored in 22-byte segments
beginning at byte 357. Each name begins with a length byte and is followed by
up to 21 ASCIl characters. Here's thé instructions for digging all this
information out of the header:

1102 REM Load First section of file and dig stuff out of the header.
1110 GOSUS 5520 : REM load Fils

1120 HL = FN PK2(PNTR)+2 : 1F HL > 1017 THEN 5380 : REM hsader length

1122 NR = FN PK2(PNTR+35) : REM B of records in File
1124 NC = PEEK(PNTR+35) THEN 5500 : REM H of cateqgories
1126 NF = PEEK(PNTR+38) THEN 592@ : REM # of report formats

: IF NC > 38.
: IF NF OB

114D PNTR=PNTR+357
1142 FOR N = 8 to KC-1
1144 C$="* : FOR I=1 TO PEEK(PNTR) : CS = C3 + CHRS(PEEK(PNTR+I)) : NEXT
1146 CN$(N) = CS : PNTR = PNTR+22 :

1145 NEXT

If you modify or amplify this program and you are pressed for space, you
can make the buffer smaller. Don't make it smaller than 1K (1024 bytes),
however, or you might not be able to read the whole header in one chunk. It's
also possible, though unlikely, that a single record could hold slightly more

: REM get category names

312 Open-Apple

than 1K of data, so a 125K buffer is probably a safer minimum size. To make
the buffer smaller, change “16384" in lines 1010, 1050, and 1052 and “8192"
in line 5520.

After you've finished reading the header, PNTR will point to the first byte
after the header. The next section of the file holds report formats, which we
want to skip over completely. The following lines will do that:

1150 PNTR = PNTR + NF¥E02 : REM Skip over 60@-byte-each report -fnrmats.
1152 IF PNTR => BEN THEN GOSUB 5580 : REM Oo formats extend beuond buffer?

That pretty much takes care of reading AppleWorks data base files. You
now have everything you need to read such a file from an Applesoft program.
Here are some additional program lines, however, that dress-up this demoa
litle so that you can easily read any AppleWorks data base file without
actually running AppleWorks.

CAUTION: THIS PORTION OF THE PROGRAM DOESNT INCLUDE 1HE PROGRAM LINES
EMEEODED IN THE ACCOMPANYING ARTICLE, WHICH ALSO MUST BE TYPED IN
TO MAKE THE PROGRAM RUN. THE DROER IN WHICH YOU TYPE THE LINES
MAKES ND DIFFERENCE, JUST DONT SKIP ANY. DON’T ENTER LIMES 10 THROUGH 58.

190 REM ¥*¥ Dpen-Apple’s ROB Reader ¥¥%¥
191 REM by Tom Weishaar, Feb 1987

1028 CLEAR : REM Restart point for reading another Fils. ;
1238 O1IM TB{30,2) : REM This array is for category TAB positions on ecreen.

1368 PRINT CHR$(4);“PRH3“ : PRINT : REM B9-column screen reguired.

1062 VTAB 1@

1864 PRINT “What ie the name of the Applekorks database file you want to ese?”
1066 PRINT : '

1868 INPUT F$: HOME

1870 1F F="" THEN END

Yol. 3. No. 2

1130 FOR N = @ TD NC-1 : REM Get screen positions.

1132 TB(N,9) = PEEK(PNTR+1B6+N) : REM screen sequence left-top to right-bot
1134 TB(N,1) = PEEK(PNTR+114+N) : REM horizontal screen poaltlon

1136 TB(N,2) = PEEK(PNTR+15@+N) : REM wvertical screen position

1138 NEXT

116@ REM Just for fun, draw an Appleborks-like screen for display.

1162 PRIN1 “Fiie: “;RIGHTH(F%,20) : PRINT : PRINT “Selection: Rll records”
1164 VTAB 1 : POKE 1403,28 : PRINT “Open-Apple’s AODB.REAOER”

1166 VTAB 7 : FOR 1=1 TO & : ;¢ NEXT

1168 YTAB 23 z FOR I=1 TO B : PRINT “--nnueene- “3 ¢ NEXT

117@ FRINT “Press spaceber Lo ses next recard.”;

1200 REM Get records and display them on screen.

121@ FOR R=@ TO NR

1220 GOSUB 50@@ : REM this loads C$(N) with record’s data
1230 REM The rest of thie just displays the data on the screen.

1232 VTAB & : POKE 1403,0

1234 IF R=@ THEN PRINT "Standard Values for thie File:” : GOTO 1238

1236 PRINT “Record ";R;* of “;NR;“:*; CHR$(29) : REM chr$(29) clears line
1238 FOR N = @ TO NC-1

1240 VTAB TB(N,2)+1 : PDKE 1403,TB(N,1)-1

1242 PRINT CNS(TE(N,8)-1);*: “;C$(TB(N,8)-1)s CHRS[29)

1250 NEX1

1260 YTAB 24 : POKE 1483,37 : GET RS : PRINT AS; : REM wait for key

1270 NEXT .

1308 REM End game.

1310 HOME : VTRB 12

1328 PRINT “That‘s all the records in “;F$

1338 PRINT

1348 PRINT “Would you like to see annther? <¥/N> “; : BET AS : PRINT A% : HOME
1358 IF AsS="Y" DR As$="y” THEN 1020

1360 END

Miscellanea

ProDOS 8. version 1.3, released to in mid-January and
mentioned here last month, mistakenly includes a BRA (branch always)
machine language instruction in a critical piece of code, This is a significant
problem, because BRA isn't supported by the original 6502 microprocessor.
Consequently, this version of ProDOS causes bad things to happen when run
on Apple [[-Pluses and unenhanced Iles. If you BLOAD PRODOS, TSYS,
A$2000, then the bad instruction appears at $4CCD. A BEQ (branch on
equal) would work just as well here, so you can fix things with a POKE
19661,240 and a BSAVE PRODOS, TSYS, A$2000.

Another significant problem ['ve encountered while running the newer
versions of ProDOS on earlier machines has to do with interrupts. ProDOS
111 and earlier versions disabled interrupts. An alien static- or bad-luck-
caused interrupt signal caused no problem with these versions of ProDOS
unless some software that used interrupts had enabled them. Newer
versions of ProDOS, on the other hand, leave interrupts enabled at all times
in order to support some new features of the l1gs, Ifyou use these versions on
an earlier computer, an alien interrupt will lock it up with the message
“INSERT SYSTEM DISK AND RESTART” at the bottom of the screen. At least
that's my diagnosis of why 've seen that maddening message more in the
last month than in all my previous incarnations. I've reverted to using
ProDOS 111, patched as described in our November issue, on everything
around here except the I1gs. 1 suggest you do so aswell until further notice,

The problems that Apple’s SCSI card had with the Iigs have been
solved. There is a revision B EPROM now available for the card (part # 341-
0112-B); contact your dealer for details.

You might be surprised at the kind of things you can get on
continuous forms. The advantage of continuous forms, of course, is that
they are easy to process through any printer that has a tractor feed, which is
Just about any printer nowadays. Besides the continuous credit card forms
mentioned in this month's main article, you can also get such things as

malling labels, envelopes, invoices, purchase orders, statements, letterhead
stationery, checks, and even Rolodex cards on continuous forms. Spend a
few minutes wandering around your local office supply store to see what they
have that you could use. Wouldn't life be easier if you designed a “labels
style” report format for AppleWorks that could print your address-phone
number data base on Rolodex cards?

Ifyou live in the U.S., read this and act quickly. U.S. federal tax forms
for 1986 are available on AppleWorks spreadsheet templates for $23.95 from
Personal Financial Services, P.O. Box 1401, Melville, NY 11747 516-261-8652;
for $42.45 from Sky Computer Resources, P.O. Box 204, Portland OR 97207
503-234-7291; or for $50 from Island Computer Services, 3501 E Yacht Dr,
Long Beach, NC 28461 800-826-7146. All three packages include the main
1040 form, as well as the forms for Employee Expenses, Depreciation,
Itemized Deductions, Interest and Dividend Income, Profit from a Business
or Profession, Capital Gains, Supplemental Income, Self-Employment Tax,
and the Married Couple Deduction. All three packages produce IRS
acceptable print-outs for all forms except those that are colorcoded (the IRS
does want you to use green-bar or lined paper, however).

Personal’s package, called 1040Works, also includes forms for Farm
Income, Income Averaging, Credit for the Elderly, Sale of Residence, Child
Care Expenses, Moving Expenses, 10-Year Income Averaging, and Alternative
Minimum Tax. [fyou have enough memory for a 256K AppleWorks desktop,
pay $3 more and ask for 1040Works-X; you'll get all this stuff in one large
spreadsheet.

Sky's disk also includes form 10404 and the schedule for Farm Income.
Sky can provide any other form or schedule printed by the IES for an
additional $5 each,

[sland’s disk also includes the forms for Child Care, Moving Expenses,
Income Averaging, and Credit for the Elderly, as well as tax planning
templates for 1987. Island is the only company of the three that accepts
credit cards.

If you don't live in the U.S., (or Canada, Mexico, Ausiralia, or New
Zealand) read this. Because of a bad scale at our mailer’s, our December
issue, mailed near the end of November, went out with only enough aimnail
postage for 1/2 ounce. Since the newsletter actually weighed slightly more
than that, the [.S. Postal Service seems to have kindly forwarded that issue to
you by surface mail. Except for that issue, we have paid for 1 ounce of airmail
on each of your newsletters each month. If you have received any other
issues by surface mail, or ifyou receive an issue by surface mail in the future,
please send the empty envelope back to Sally Dwyer at our Overland Park
address so she can figure out where our intentions have gone astray.

-

Man talks, Apple listens

[was sick of reading how wonderful your newsletter
is in all the computer magazines.

| was sick of gefting little notices in all my new
Beagle Brothers software telling me you were still
alive.

I was sick of gefting postcards in the mail asking
me for a good reason not to subscribe to Open-
Appie.

So I took you up on your offer of a free issue. And
now, damn it, I'm a member of the insidious "Gee,
one suggestion alone was worth the entire cost of the
subscription” club.

Ok, enough of that. Let me tell you what I'm doing
with my Apple lle. At the very least, I'd like to leam
what others might be doing in a similar vein,

I'm the statistician for a group of baseball fanatics
inwhat we call the Duckball League. {About the name,
well, it's a long story,) Anyway, we draft major league
players onto our teams and compete with each other
in a number of statistical categories. And since I'm
the one with the computer, I'm the statistician. Funny
how things work out that way.

[use AppleWorks and about a 74K spreadsheet to
keep track of everything, Normally, it takes me about
two hours aweek to enter the data on the almost 300
players in the league. The most difficult part is
looking back and forth from the tiny type in USA
TODAY (our bible), to the keyboard, te the screen, and
back again. | figured I could speed things up by
eliminating one of those three elements. Enter voice
recognition.

After checking the few manufacturers of Apple
voice recognition systems 1 could find, [decided on
Intravoice 11 from the Voice Cennection in lrvine,
California. It consists of a main plug-in circuit board,
a microphone, and a couple of smaller boards into
which you plug several of the Apple lie's ICs. All in all
it's pretty easy to install.

The voice input module itself is quite easy to use
and can be frained to recognize just about any word.
That word can then be used to as a substifute for any
keystroke or siring. It supports open- and solid-apple
commands as well, so it’s ideal for my use in entering
Duckball stats into the AppleWorks spreadsheet.

[have encountered one and only one problem in
my entire use of Intravoice II to date. When using a
phrase ("PinPoint") to substitute for a solid-apple-P
keystroke to invoke the PinPoint Desktop Accessories,
AppleWorks crashes into the monitor. I'm talking
dead. Once I'm in PinPoint, voiced solid-apple com-
mands work fine. But somehow when AppleWorks is

active it doesn't work. Rex Creekmur

Grand Rapids, Mich,

Your letter leaves me speechless. The address of
The Voice Connection is 17835 Sky Park Circle, Suite
C. Irvine, CA 92714, (714) 261-2366.

The elusiveness of relative power

In Compule!’s Apple Applications Vol. 4 (Fall/
Winter 1986), William Mensch, the one-man 65816
progenitor, states that the 65816 (and presumably
the 6502) runs in such a manner that one of its bus
gycles is equal to four of anybody else’s (page 18). He
states that a 65816 running at 6 megahertz is
“equivalent to the [BM PC running at 24 megahertz”
and “a 2- to 3- megahertz Apple has the same kind of
performance as an 8 megahertz Macintosh.”

This information, if correct, is of ritical importance
to a typical hobbyist, such as myself, ready for his next
generation computer. The marketing power of this
alleged fact is exponential. Many times in the last
three years have pondered to myself something like,
"My ile is a wonderful machine but I wish | had the
speed and power of the 8088",

It seems to me that the 6502's longevity and the
allegiance it commands may be due as much to its
unsung power and speed as to marketing forces over
the pastten years. Maybe it's not ancient and obsolete
but instead was ahead of its time when created and is
still incredibly capable in its present form. If this
conjecture has some credibility, then it follows that
ever! though the 65816 is panned by blue loyalists as
a 16-bit introduction at the dawn of a 32-bit era, the
brute-force power and sophisticated characteristics
may well approximate, parallel, or even outshine the
favored sons of Mac and Charlie. Regardless, the
technology for building a San Francisco skyscraper is
quite different than that for building the Golden Gate
Bridge. Both are mdlspensabla

Steve Cranney
Fallon, NY.

Microprocessors are complex devices. Just as you
can controi the superiority of quarter-horses over
Thoroughbreds by shortening the race, microcom-
puter loyalists can devise benchmarks that show
their favorite microprocessor is the “most powerful.”
That's why the benchmarks we published here
(December 1986, page 2.88) were the standard
benchmarks Byte has been using for years—we
didn’twant to be accused of favoritism. Yet that's not
to say we would have been so eager to publish the
results if the 6502 and Its progeny hadn’t come out
looking so good.

Dennis tells me Mensch’s comments (great lntenuew,
by the way, congratulations to Computel) are based
onthe fact that the 65c0c series uses ascheme called
“pipelining” that allows it to grab the next piece of
data it will need while it’s still working on the last
piece and on the fact that all instruction codes in the
6500c series are just one byte long. This places some
limits on the number of different instructions but
allows faster execution.

The general philosophy of the 65x0x series (s that
the processor spends less time finding ouf what it is
supposed to do and more time actually doing it. This
translates into faster execution of common tasks at
the expense of the inclusion of more powerful
commands, such as multiply or divide instructions.
This same philosophy has been used to develop a
new breed of “reduced instruction set” computers
that actually execute only a few instructions but do
so very quickly. The IBM PC-RT is an example of this
kind of machine.

Open-Apple 313

In a practical example, the 65816 is faster than a
68000 (at the same. clock rate) for simple load
accumulator and save accurnulator operations, which
would favor the 65816 in a benchmark based on that
abllity. The 68000 should kill the 65816 in a math
benchmark, however, because the 68000 has math
instructions that the simpler 65816 Instruction set
does not Nonetheless, ifa benchmark doesn't use
the 88000's math operations and instead does math
“manually,” as the 65816 does, then the comparison
would favor the 65816. I suspect this is essentially
what happened with the Byte benchmarks we
reported.

Dennis recommends you take a look at the series
of books Adam Osborne has written on microcompu-
ters for further information,

In the final analysis, the most important thing toa
hobbyist shouldn be a microprocessor’s power,
anyhow. You should be looking for acomputer witha
good, reliable, overall design, with good software
that does the kinds of things you want to do, and
with good documentation (very important, but often
overlooked). An example of the importance of docu-
mentation is the first commercially available 16-bit
microcomputer, the Texas Instruments 99/4. Tl
wanted to develop all the sofavare for the machine
itself and locked hackers out, Yo documentation, no
hacking; no hacking, no programs; no programs, no
customers. What was the advantage of owning the
most “powerful” microcomputer of its day if you
couldn't figure ouf how to do anything interesting
with i£?

RGB and TV too

I have a Sony KV-1511CR monitor hooked to my
Apple Iigs. It's a L3-inch, cable-ready, remote-control
TV, with analog and digital RGB inputs and video
inputs and outputs. It has a dandy picture, both in
normal TV use, and when used with the GS analog
output. KV-1131s can be had mail order for less than
the Apple monitor (the latest price 've séen is $399).1
alsolike it because | can hook up the GS to the analog
input, a II-Plus to the video input, and cable TV to that
input, and have them all there for use in one neat little
package..

The pinouts in the Sony book are as if you are
looking at the mating cable connector, not at the jack
on the TV. On the monitor, pin 1 is at the bottom,
towards the back On the ligs, pin 1 is on the top,
towards the on-off switch. Incidentally, the numbers
don’t match the pin numbers molded on DB-15s, or
at least not on the one I used. Here's how to run the
wires:

Sony G35
Pin Pin

Function

B
25
26
1o
27
12
30

Red Ground
'Red Signal
Green Signal
Green Grourd
Blue Signal
Blue Ground
Composite Sync

You can also enable the lgs audio output, but this
is less straightforward. The Sony requires +2.5 to 5
volts on pin 34 to enable the audio input. Otherwise,
you'llget TV audio all the time. Apple neglected to put
+5 volts on its jJack. However, there is +12 volts. You
can have a téchnician build you a voltage divider out
of a couple of resistors to cut back the +12 volts,
which comies out of pin 8 on the IIgs. The audio signal

wrjl.aﬂ'\mmn-

314 Open-Apple
comes out of pin 11 on the [Igs and goes into pin 24
on the Sony.

An alternate option is to use the.voltage divider to
automatically switch on the video RGB when you tum
onyour computer. To do this, hook the +5 volts to pin

33 on the Sony. Chris Amdt

So, you can get a “free TV by carefully selectinga
figs monitor. The March 1987 issue of Consumer
Reports compares 175 colortelevision sets from 21
different companies; nine of these sets reportedly
have RGB inputs. The nine are J.C. Pennely model
2220, Magnavox models RF4254WA and RG4378BK,
Quasar models TT6290XE and TT6298YW, Sanyo
models AVYM210 and 12C700, Sears model 42701,
and Sony model KV-20XBR. There are, no doubt,
others—the set you have, for example, isn't among
the 175 sets listed.

Slashed zeros and 8 bits

I have spent many hours trying to get my Imagewriter
11 to print slashed zeros. |'ve tried using the control
codes given in the manual; it works fine except that |
geta double-spaced printout

As 1 read the printer manual, the printer codes
required for slashed zeros are:

Slash on: ESC D Control-E Control-R
Slash off: ESC Z Control-E Control-A

What am I doing wrong?

Richard E. Breininger
FPO Miami, Fla.

ESC D and ESC Z allow you to change the Image-
whiter dipswitch settings under software control. ESC
D is used to turn switches on. ESC Z is used to tum
switches off. There are two eight-switch groups of
switches, called A and B, for a total of 16 switches.

After the ESC D or ESCZ the Imageuwriter expectsto
see 16 bits of data that tell it which switches to tun
on or tum off. Apple’s sequence for tuming on the
dipswitch for slashed zeros is (hex values} “1B 44 00
01", This causes switch 1 on dipswitch B to be tumed
on. This tells the Imagewriter to use slashed zeros
and slashed zeros we have.

Unfortunately, however, Applesoft takes the liberty
of setting the high bit of each byte printed (for a
complete discussion of this problem see “Conirol-
Dfefeated)” in our December 1986 issue, pages 2.84-
86 and “A bit too many” in April 1986, page 2.24).
Thus, the actual values sent are “9B C4 80 81"
Consequently, we actually tum on two additional
switches—switch B-8, which is not used by the
printer (no problem) and switch A-8, which adds a
linefeed after carriage return if it is on (Presto! Instant
double-spacing).

One answer s not to send the command sequence
through Applesoft—see our December issue for the
details. In this case, however, we don't have to gel so
elaborate. We can Just tumn the linefeed option back
off after tumning slashed zeros on. In other words,
after sending the codes ESC D conlrol control-A,
also send ESC Z control-# control-. Your printer will
see “9B C4 8081 95 DA 80 80" and will begin giving
youslashed zeros without extra linefeeds.

Here's agood tip for those of you having problems
similar to this one— it comes from a tetter in our May
1985 issue, page 39. Tum your Imagewriter off,
press and hold down on the linefeed bution, and tum
it back on. It will now print the hexadecimal code for
each character it receives instead of doing normal
printing. This feahure can be quite useful for diagnosing
printer command-code problems.

PRINT TAB alternatives

Tell me how to get a PRINT TAB statement to look
like it does on your Apple lic screen when you're
printing to an Imagewriter I1. Help—1'm a desperate
woman! 2

Robin Boscia
Pittsburg, Penn.

1 have a problem with an Imagewriter I, Super
Serial Card, and enhanced Ile: my Applesoft program
has tabs and the printer will not go to the correct
columns. Tabs range from column 1 to column 103.
Can you help?

David E. Brewer
Cincinnati, Ohio

Amazing. I've spent all moming playing with
PRINT TAB on an enhanced lle with a Super Serial
Card and it hardly does anything right. After trying
all kinds of combinations, including printing with the
screen display in 40 and 80 columns and printing
with video echo onand off (control- 1}, I finally found
a combination that worked: before tuming on yowr
printer, PRINT CHR$(21) to the screen to tum the
Apple 80-column firmware off. Then, after turning
the printer on, PRINT CHR$(9);"T E” (space required
between T and E) to enable the Super Serial Card's
“Basic Tab" command, which.I don’t remember ever
hearing of before this moming’s search through
instruction manuals. That, anyhou; made this program
work (using ProDOS):

1@ HOME & PRINT CHRS(21) : REM Turn oFf E@-columns
20 PRINT CHR$(4);"PRHL™

25 PRINT CHR${9);"T E* : REM Turn on ““Basic Tabs"’
30 FOR [=1 T0 B : PRINT SPC(9);T; = NEXT : PRINT

49 FOR T=1 70 B : PRINT “12345678987; : NEXT : FRINT
50 FOR I=1 TD 4

60 PRINT TAB(39):“ROM”:TAB(4@): “0MR": TAE(50) s "URO"
70 NEXT

B@ PRINT CHR$(d); “PRu3"

B2 END

A significant problem with this trick Is that the
Apple Ilc serial port command sel doesn't include
the “control-I TE” command.

Using PRINT TAB while both the 80-column firmware
and the printer are tumed on doesn'twork at all This
is because something, probably the firmware but
I'm not sure what, forces the values tn CH (byte 36 or
$24) and OURCH (byte 1403 or $57B) to zero. CH
holds the horizontal cursor position for 40-column
firmware and OURCH the position under 80-columns.

But Applesoft expects these locations to also
refiect the horizontal position of the prinler. Yet ihen
both the printer and 80-column mode are on, both
bytes always hold zeros (that's why an initial PRINT
TAB works fine but later ones work just like PRINT
SPC). Any readers who can provide more information
on what the bug s or how to make TAB work right are
encouraged to write.

Meanwhile, here are two ways to do tabbing
without using PRINT TAB. Let's say you want to print
a table in three columns. Assume the widths of the
columns are stored in the variable array CW{c). The
stuff you want to print in the columns is stored in the
variable array T$(r.c). In this case, try the following:

18 FOR R=1 TO N® : REM For rouw 1 through H of rous
20 FOR C=1 TO NC : REM For col 1 through H of cols
39 Cs=LEFTH(T$(R,C),CH(C)) : REM truncate

49 PRINT C%; SPC{CW(C)-LEN(CS));

58 NEXT : PRINT

B2 NEXT

Yol. 5, No. 2

Inline 40 we print the data, then use the PRINT SPC
function to fill out the column with spaces. We
determine how many spaces to print by subtracting
the length of the string just printed from the column’s
width. To use this trick we have to make sure the data
isneverwider than the column. If it is, the subtraction
will produce a negative number and the program
will stop with an ILLEGAL QUANTITY ERROR in the
SPC functlon, That's why line 30 truncates everything
tothe width of the column. The biggest disadvaniage
of this method Is that all these string maniputations
will slow your program down—you may find your
printer is waiting on the computer rather than the
otherway around.

The second altemative is to use your printer’s {abs.
This presents oo problems, First, you have to figure
out how lo set the tab stops. Then you have (o figure
out how to get the control-l character, which most
printers use for a TAB command, through your
interface card and out to the printer.

Forthe Imageuwriter, the command sequence "ESC
(“ tells the printer you are sending alist of tab stops.
This list comes immediately after the command and
Is a sequence of three-digit numbers, separaed by
commas and terminated with a period. The numbers
will be sent as ASCII characiers, so we don't have the
high bit problem mentioned in the last letter. To set
tabs at columns 30, 40 and 50, for example, use
PRINT CHR%(27);"(030,040,050." (If you're having
trouble with the converslons of things such as ESC
into things such as CHR$(27), just memorize the
"ASCI Control Code Rosetta Stone” on page 85 of
the November 1985 Open-Apple.)

The Imagewriter also allows you fo clear a list of
tab stops—just use “ESC)" instead of “ESC (". You
can clear all tab stops with "ESC 0°. When setting
tabs, the left-most print position is tab stop 1 The
maximum permitted setting depends on the widthof
the character set you are using. Once you have set a
tab stop, however, it remains in the same absolute
position on the page, (at least with the Imagewriter)
even if you change character widths or the position
of the left margin.

There are two ways to sneak a control-l through an
Interface card. You have to sneak them through
because most cards use control-l as a “wake-up,
here comes an interface card command” code.
Consequently the cards eat any control-Is they see
rather than passing them on to the printer. Some
cards, Including the Super Serial Card, will pass a
single control- on to your printer if you print wo of
them in succession. Otherwise, you have to change
the card’s command code to something other than
control-l. Do this by sending a control-f followed by
any other control-character. If you do this, however,
change the command code back lo control-f before
you tumn the printer off.

Try this program to see how an Imagewriter
handles tabs with your interface card:

10 PRINT CHRS(4):*PRUL”

15 PRINT CHR$(27):"0"; : REM clear all tab stops

20 PRINT CHRS(27);"(030,040,050.°;

30 FOR I=1 TO B : PRTNT SPC(9);1: = NEXT : PRINT

4@ FOR T=1 TO B = PRINT "12345678907; : NEXT : PRINT

S@ TBS=CHR$(S) : 73-CHRS(26)

52 PRTNT TB$;2% : REM change cmd code to ctrl-Z
54 GOSUE 90

58 PRINT CHR$(27):"L@20";:"Laft margin at col 20.”
58 GOSUB 30

6@ PRINT CHR$(27)3;“1000"; Left margin at col @.
62 PRINT CHRS(27);"FP";“Proportional typs”

64 GOSUB 90

March 1987

86 PRINT CHR$(27);°Q":”17 chars per inch.”
66 BOSUB 58
78 PRINT 2%:TBS : PRINT “TRE with tuo ctrl-1s.”

72 TB$=TP3+TB%
74 GOSUB 90

B0 PRINT CHRS(4);“PRE3"
B2 END

99 FOR =1 70 4
S2 PRINT TBS;"Nice”;TB%; “columns,”:TBS; “right?”
94 NEXT : PRINT : RETURN

GET out of text files

1 have been working on a program that creates
downloadable characters for my Imagewriter printer.
I had it save the characters in a text file. When 1 tried to
read the data back I discovered something unusual.
My read routine was similar to this:

18 GET A$
20 A = ASC (AS)
38 GOTO 10

Ifyou type this in and run it, it works fine most of the
time. The problem arises when you try to read a $00
{or $80 as it is stored in the file). f you try contral-e in
the above program you get an ILLEGAL QUANTITY
ERROR in line 20. Any idea why? Can | make it quit

doing that?
Steve Carder
Liberty, Mo.

GET will not read an ASCII $00 or $80 (conirol-#)
character; it inferprets it as a null string. The GET
does retum to your program, however, so here’s
how to detect an ASCI $00:

10 BET 83
15 IF LEN(RS) = @ THEN A = @ : GOTD 30
20 A = ASC (A3)

30 GOTD 19

HNonetheless, a text file is probably not the best
choice for saving data like this —text files always set
the high bit. Try POKEing your characters into a
buffer and BSAVEing them. O, if you insist on a text
fite, convert the characters to ASCIl numbers while
saying them with PRINT STR$(A) and read them back
with INPUT A$: A=VAL{AS$), This will probably quadru-
ple the size of your file, however.

Multiplan to DIF

In regard to the question in your November 1986
issue (page 2.79) about converting Multiplan files to
SuperCalcfiles, a recent issue of Computistincludes
a program by D.W. Walkey that converts Muitiplan’s
SYLK files to DIF flles (issue #37, page 20). I've used
the program to move several spreadsheets to

Applcins, J.D. Holdeman
N. Ridgeville, Chio

Computist's address is F.O, Box 110846, Tacoma,
WA 98411 DIF files, of course, will move only the
values from one spreadsheet to another, not the
underlying formulas.

Editing data files

Inyour November 1986 issue(page 2.77), Lawrence
Pratt mentions that he edits programs and data files,
even random access files, with Apple Writer. Can you
give more information about how this is done? Is this
abetter method than using GPLE or simply a different
way of doing the same thing?

Thomas E. Militello
Rancho Palos Verdes, Calif.

Everyone has his or her favorite method of writing
programs. GPLE and similar programs are “line-
oriented” editors —you edit one line at a time. Many
of us who are addicted to “screen-oriented” word
processors, however, keep what we know about line-
oriented editors and ox-drawn vehicles on the same
indexcard.

To use aword processor towrite programs, simply
make sure you enter a return at the end of each line.
Save the program in a text file (from AppleWorks,
open-apple-P(rint) the program to “A text (ASCHI) fite
on disk.”) Exit your word processor, enter Applesoft,
and EXEC the text file you have written. Uncle DOS
will type your program in for you. For more on this,
including how to get programs you have already
written tnto text fifes you can edil, see the May 1985
Open-Apple, page 36.

If you happen to use Apple Writer for program
editing, CondiCom’s program OpenAppleWriter is
very handy (December, page 2.87). Another possibillty
is Program Writer from the Software Touch (Sep-
tember, page 2.62¢), which is afull-powered, screen-
oriented program editor.

Using a word processor to edit data files Is similar
to editing program files. In order to edif random-
access files, however, the file should be completely
filled with blanks or other characters before being
used the first time. For much more information on
this subject, see my column in the May 1984 Softalk,
page 164.

Only exit FOR-NEXT at NEXT

The insertion sorts printed in your November 1986
issue (page 2.80) had a common erroneous method
of exiting a FOR—NEXT loop.

It should read:

first routine:
940 IF A(E) <= T THEN E=E1 : GOTO 960

second reutine:
950 IF A(K,DX(E)) <= R(K,T) THEN E=E1 : GOTD 985

Before you exit a FOR—NEXT loop, you need to
close out Applesoft’s handling of that loop to free up
the stack. The amended lines will set the loops’index
variables to their maximum vaiues and GOTO the
loops’ NEXT statements, so that Applesoft will close
out the stack handling for the FOR—NEXT before

comtn e Craig Willford
Whittier, Calif.

You are correct. I talked about this problem in the
April 1984 Softalk, page 52. Using GOTO from
inside a FOR—NEXT loop to a line outside the loop
leaves Applesoft expecting a NEXT that never comes.
Exit like this from eleven loops with different index
variables in a row and youll get an OUT OF MEMORY
error. Applesoft won'l say so, but it means it’s out of
stack memory.

As a practical matter, many programmers use the
same index variable for all loops, so they rarely see
the bug. Applesoft fixes the stack automatically
when a loop, or any other loop that uses the same
index variable (E in this case), is re-executed. None-
theless, there is a limited amount of stack memory in
the Apple I (256 bytes), consequently programmers
should try to keep it free of muck such as unresolved
FOR—NEXT loops.

More TransWarp experiences

I read with interest the letter from Pat Mamnett in
your January issue, page 2.96, with reference to

Open-Apple 315

problemswith a TransWarp board. [used an Ace 1000
with a TransWarp and Peachtree’s Back to Basics
accounting package with no problems. Recently, |
upgraded(?) to the Ace 2100. Upgrading my Back to
Basics program to the Tle configuration and using the
TransWarp, | lose all data on the second drive.
Removing the TransWarp, everything is perfect. Thank
the Lord I copy data regularly! I've called AE before
about the TransWarp and came away feeling like a
stupid ass from the condescending attitude, 1 don't
think the ProDOS patch would work because Back to
Basics is a DOS 3.3 program, so my TransWarp is
sitting on the shelf,

Frank Drew

Seminole, Fla.

I have been reading your letters about ProDOS
zapping disks. Although | never experienced that, |
have experienced three zaps of some significance to
me and | wonder whether you have heard of similar
complaints. .

Briefly, | have zapped three disks when | tried to
disable my TransWarp, using the escape key, after
power-up. The three disks were all copy-protected
and non-ProDOS —the reading program Smart Eyes,
a Moebius scenario disk, and a program called
MicroTest from Harper and Row that 1 use in my

sociology dass.
My computer has PinPoints lle upgrade kit and a
Checkmate 768K memory board.
. Latry Davis
Bedford, Texas

We've received a couple of other letters reporting
problems with TransWarps since publishing Marnelt's
lefter. My own fle even started acting flakey last
week (spreadsheet cells in columns to the right of
my work area having nonsense formulas in them,
characters [hadn't entered appearing in unusual
places on the screen, computer locking up) and all
the problems went away when I replaced my Trans-
Warp with an older SpeedDemon.

The big problem, of course, is that orce you're
used to working with a TransWarp, it is very difficult
to go back to something that's slower. Another
difficulty is that the problems come and go— Dennis
put my TransWarp in his Ile and hasn't had a bit of
trouble.

I suspect the root problem is that the TransWarp
pushes the Ile hardware to its limits. My guess is that
weak chips or noise in the computer, rather than in
the TransWarp, are causing most of these problems.
Another polential culprit is dirty conlacts on the
TransWarp’s edge connector. These are just guesses,
however.

RAM, compiler comparisons

I recently called Applied Engineering and ordered
the latest version of their desktop expander software
sol could compare itwith the software that came with
my Checkmate MultiRAM CX card (for the Apple lic).
As far as I can tell there does not seem to be any
problem running Applied Engineering’s $10 software
with Checkmate’s card, except for the AppleWorks
Desktop Expander itself, which doesn't work

Other comparisons between the two disks have left
me favoring Checkmate’s $5 software. Checkmate’s
RAMdisk, called /MRAM, is configured for stot 3 drive 1
and leaves /RAM in slot 3 drive 2 intact. AE's RAMdisk,
on the other hand, expands the the size of /RAM in
slot 3 drive 2.1 prefer Checkmate's way of creating the
RAMdisk with a SYS file rather than afile that must be
run from an Applesoft program as with AE's software.

3.16 Open-Apple

AE's disk did have a nice program that uses auxiliary
memory for a a one-pass disk copy (5.25 disks onty). I
don't see any advantage to using it, though— since it
must first format the disk it is going to use it isn't any
faster than Copy II Plus. Both disks have very similar
auto-load programs for moving files to the RAMdisk. 1
did not compare the two except to notice that both
seem very easy to customize, | always use MouseDesk's
auto-load feature so I don't need another auto-load
program, '

1 have two compiler bugs to report. Interestingly
enough, they were both discovered while using two
different compilers on the same program and both
problems were similar enough to affect the same
program line.

The first one is in the Beagle Compiler (version 1.0}
and Is illustrated in the following example:

12 © = 23: D = STRS(D}z DX = VAL(D$): PRINT DX

The above statement will print 23 with Applesoft
and print { when compiled. The other bug is in Micol
BASIC {version 2.2) and can be demonstrated as
follows:
106 DS = “ S*: DI = VAL(DS): PRINT DX

This statement will print 9 with Applesoft and print
1024 with Micol BASIC.

I've sent letters to each company and [would
expect they will implement fixes shortly. The Micol

Open-Apple

is written, edited, publisned, and

© Copyright 1987 by
Tom Weishaar

Business Consultant Richard Barger
Technical Consultant Dennis Doms
Circulation Manager Sally Tally
Business Manager Sally Dwyer

Most righis reserved. All programs published in Open-Apple are
public domain and may be copied and dislribuled withoul charge.
Apple user groups and significanl others may reprint articles from
lime {0 time by specilic written requesl. Requests and other
editoriel material, including letters 1o Uncle DOS, should be senl to:

Open-Apple
P.0. Box 7651
Overland Park, Kansas 66207 U.S.A.

Published monthly since January 1985. World- wide prices {in U.S.
doltars; airmail delivery included at no additional charge): $24 for 1
year; $44 for 2 years; $60 for 3 years. All single back issues are
currently avaifable for $2 each; bound, indexed editions of Volume 1
and Volume 2 are $14.95 each. Volumes end with the January issue;
an index for the prior volume is included with the February issue.
Please send all subscription-related correspondence to:

Open-Apple
~ P.0.Box8331
Syracuse, NY. 13217 U.S.A,

Subscribers in Australia and New Zealand should send
subscription correspondence to O mﬁﬁplc. c/o Cybernetic
Research Ltd, 576 Malvern Road, Praﬂran, C 3181, AUSTRALIA.

Open-Apple is available on disk from Speech Enterprises, P.O.
Box 7986, Houston, Texas 77270 (713-461-1666).

Unlike most commercial software, Open-Apple is sold in an
unprotected format for your convenience. You are encouraged to
make back-up archival copies or easy-to-read enlarged copies for
your own use without charge. You may also copy Open-Apple for
distribution to others. The distribution fee s 15 cents per page per
copy distributed. :
WARRANTY AND LIMITATION OF LIABILITY.| warrant that most of
the information in Open-Apple is useful and correct, allhau?h
drivel and mistakes are inciuded from lime to time, usually
unintentionally, Unsatisfied subscribers may return issues within
180 days of delivery for a full refund. Pleaseinclude a note from your
parents or children confirming thal all archival copies have been
destroyed. The unfuilfilled portion of any paid subscription will be
refunded on request. MY LIABILITY FOR ERRCAS AND OMISSIONS
iS LIMITED TO THIS PUBLICATION'S PURCHASE PRICE. In no
cese shall [or my contributers be llable for any incidental er
consequential damages, nor for any damages in excess of the fees
paid by a subscriber.

1SSN 0885-4017 Source Mail: TCF238

CompuServe: 70120,202

Printed in the U.S.A.

BASICbug can be worked around as follows:
10 D8 = * 9”: D = VAL(DS): D% = D: PRINT D%

Anyone who uses the PinPolnt Desktop Accessories
maywant to remove some accessories from the list or
rearrange them. This can be done by loading the text
file PINPOINTPROFILE from the install disk; then
arrange the file the way you want it; then save the file
back to the disk and run the install program. You may
even be able to install your own favorite binary
programs (perhaps agame) as accessories by adding
it to the list along with its length and highest memory

address. David Stevens
Eden Prairie, Minn.

Our experience and a growing pile of letters from
our subscribers indicate Checkmate also has much
better technical support. :

The Beagle Compiler is up to version 2.0. In
addition to a fix for the STR$ bug, the lafest version
lets you automatically store strings and arrays
outside of main memory. This gives you more room
for programs and much more room for data The
extra memory supported includes the second 64K
bank of a2 128K Ile, a lic, or a llgs; auxiliary slot RAM
cards from Applied Engineering and Checkmate; and
slot 1-7 memory cards from Apple, Applied Engineer-
ing, and Cirtech.

Memory, Apple Writer gotchas

In your discussion of the various kinds of RAM in
the December 1986 issue, you said “Interestingly,
none of these switches (HIRES/LORES, STOREA0/
STOREBOQ, PAGE1/PAGE2) actually do anything to the
current display that appears on your monitor.” Well,
that's almost true. [text or graphics page 1 is already
being displayed, then tuming on STORE80 will not
change the display. But if page 2 is being displayed,
tuming on STORESO will change the display to page 1
as the PAGE1/PAGE2 switch takes on its new meaning,

On the older unenhanced Apple lle, this little
interaction can cause a minor display annoyance in
certain programs — specifically programs that display
text on hi-res graphics page 2 and rely on monitor
routines to help with the text bookkeeping. This is
because a few monitor routines in the unenhanced
[le, including the scroll routine, turm on STOREBO for
a brief moment even with 40-column operations.
While STORE80 is on, the display changes to graphics
page 1, causing a brief “flicker” on the screen. The
enhanced Ile and Ilc do not access STOREBO during
40-column screen operations and so do not have this
problem.

You suggest that the "best” use of the auxiliary
bank 64K of memory or an auxiliary slot memory
board is as a RAMdisk. Do you mean from an applica-
tion programmer’s point of view or a user's? As a user,
1 find both the built-in ProDOS RAMdisk and the third-
party auxiliary-slof memory board RAMdisks less
than convenient to use. Sometimes the most conve-
nient way, or in some cases the only way, to get from
one applications program to another is to press
control/open-apple/reset toreboot. But the contents
ofthese auxiliary memory RAMdisks are lost whenever
you reboot. You have to be careful to use any Quit
options provided when moving from program to
program.

In addition, for the auxiliary-siot memory boards,
youhave to run aspecial program every time you start
up in order to “install” the RAMdisk driver code into
memory. ['ve talked to too many customers who
believe that they should be able to cold-boot any

YOl. 3, NO. £

ProDOS program and have that program automatically
recognize their auxiliary slot memory board as a
RAMdisk. Since their memory board works so well
with AppleWorks, they belleve there’s a bug in any
program that can't do that

You mention in the article that Apple Writer doesn't
follow the documented protocol for disconnecting
the auxiliary memory RAMdisk. Here's another inter-
esting and obscure little tidbit— Apple Writer also
diddles in silly ways with the Super Serial Card.

The printing set-up file that comes with Apple
Writer includes the setting "CR1”, which means
Apple Writer will supply its own linefeed character
after each carriage retum. But the printer cards on
most Apples are already set to supply their own
linefeed after carriage retum. They need to be set that
way for printing from Applesoft to work.

S0 how does Apple Writer avoid double spacing? It
first checks if the printer interface is either a Super
Serial Card or a Ilc printer port If it is, Apple Writer
pokes newvalues directly into the screenholes reserved
for the printer interface to tum off the interface card’s
linefeed. Now Apple Writer can add its own linefeeds,
and every SSC or Ilc owner is happy.

Well, almost...Apple Writer doesn't repoke the old
values back into the screenholes and the Super Serial
Card doesn't forget previous pokes unless reset is
pressed. The other day I printed a document using
Apple Writer, then used “control-QJ" to exit “gracefully.”
I switched to another ProDOS program (never needing
to press reset), then tried printing something out to
the printer from this program. The printer did not
advance the paper. Line after line was printed one on
top of another, since the Super Serial Card would not
issue linefeed characters after carriage retums. The
change that Apple Writerhad made was still in effect.
Remembering these problems, I pressed control-
reset to force the Super Serial Card to reinitialize
itself, then printed again. This time it worked fine.

Phil Thompson
Portland, Ore.

So that's why my spelling checker prints differently
every time [use it. Apple Is always harping at
developers to put everything back just like they
found it (no problem here, [agree with them), but
Apple’s own software is as bad as any at not following
the rules.

The ProDOS quit feature, combined with program
selection software, has created a trend toward not
rebooting machines between applications. Thus, if is
becoming more and more important that each
application program undo any changes it makestoa
computler or its aftached devices.

My comments about it being "best” to use large
memory cards as RAMdisks were aimed at both
programmers and users. It's true, however, thal a
significant problem with the awdliary-slot cards is
that the software that makes them work must be
“installed” every time the user reboots, However,
neither Applied Engineering’s nor Checkmate’s aux-
slot RAMdisks will lose their contents during areboot
as long as bank 0 is locked out. I'm still looking for a
universal, licensable RAM disk driver that would
recognize any type of RAM and convert it all into a
large RAMdisk if no other driver was already instalied.
Commercial developers could include such a driver
within their software fo make memory management
totally transparent to users. The advantage to devel-
opers, of course, is that all RAM cards (fo say nothing
of hard disks and whatever storage devices the
future holds) look and act alike, even though they are
in reality quite different.

