Open-Apple

Releasing the power to everyone.

October 1987
Vol. 3, No.9

ISSN 08854017
newstand price: $2.00
photocopy charge per page: $015

Control-l(nterface) S(tandards)

Computers work best in an environment of standards and compatibility. If
all computers, interface cards, and printers were exactly the same, no one
would ever have a problem with mysterious line-breaks in the middle of a
master’s thesis.

On the other hand, if everyone always adhered to standards, and the
standard for Apple 11 printers was based on the technology available the day
the Apple Il was introduced, we would still be using 72-column, upper-case-
only teletype printers with our Apples. Printing graphics would be a dream,
printing in various character widths or proportional type impossible, and no
one would even consider using a computer to print a master's thesis.

Progress dooms us to incompatibilities and to knowing far more about
how computers talk to printers than we realty want to know. However, if every
computer and every printer spoke a different language, every human at every
keyboard would need to be an expert translator to get them to talk to each
other. To avoid this situation we have standards. The more detailed they are,
the better. The more discussed they are before they are finalized, the better.
The more we follow them, the better.

Better standards are needed in many, many areas of the kingdom.
This month we're going to examine just one tiny little area in detail to see
what's involved. This area is one we've discussed here several times in the
past—serial and paralle] interface “firmware.” This is the stuff your software
talks to when you tell it to print something on your printer or send something
through your modem. It’s built into your serial or parallel interface “cards,” if
you have them, or into your serial "ports” ifyou're using a lic ora ligs.

There are a number of standards already in effect for serial and parallel
interface firmware. Some details of these standards have even been
published clearly and frequently enough for anyone to follow. Other details
become obvious as one works with interfaces. Other details are neither
obvious nor published (or have been published murkily), and it is in the
vicinity of these details that most incompatibilities arise.

At the most elementary level, the standards that must be followed
by all devices in Apple Il slots are these. Each slot (except “slot 0”) has 258
bytes of memory space that can be used for firmware, "Firmware” consists of
machine language instructions for the Apple’s microprocessor that tell it
what to do to get the card to work. It's the same thing as “software,” except
that it's been permanently written into chips that are built into your interface
card or computer.

These 256 bytes, known as the “slot ROM space,” appear in the address
range $Cs00 to $CsFF, where “s” is the slot number of the card. For example,
the 256 bytes for slot 1 are at $C100 to $CIFF. (The dollar sign indicates a
hexadecimal number. Hexadecimal numbers have 16 possible digits that go
from 0 to 9, followed by A through F. $0000 is the lowest possible four-digit
hexadecimal number, $FFFF is the highest. I'm using them here because
they're easier to remember in this context than their decimal equivalents.)

In addition to the 256 exclusive-use bytes devoted to each slot, there are
2,048 additional bytes, in the address range from $C800 to $CFFF, that all the
slots can share. This is known as the “expansion ROM space.” The usage
rules for this area are that whenever address $CFTT is used, all cards are to
tumn off their $C800 memory. Whenever an address within a card's 256-byte
space is used, that card alone is to fumn its $C800 memory on. Thus, a card
that wants to use its own $C800 memory merely needs to tickle $CFFF and
JMP to the $C800 space. The JMP instruction itself, which will be in the 256-
byte space, will turn the card’s $C800 space back on after the $CFFF tumedit,
and everyone elseSs, off.

In addition to space for firmware, each slot also has the exclusive use of 16
bytes for accessing hardware “registers” and "softswitches” and 8 bytes of
RAM memory for remembering things.

The 16 hardware bytes, known as “I/O space,” appear at $C080+s0 to
$C080+sF, where “s,” again, s the slot number, Thus, the 1/0 space for slot 1
is at $CO90-3COIF.

The 8 bytes of RAM, which reside in an area known as the “screenholes”
{(because this'RAM is inside the range of memory used by the Apple display
screen), are at the following addresses— $478+s, $4F8+s, $578+s, $5[8+s,
$678+s, $6F8+s, $778+s, and $7FB+s.

These standards have existed since the first Apple I1. They are documented
in detail in each of Apple’s technical reference manuals. Even so, one detail of
even these elementary standards was broken by Apple’s own Super Serial
Card. It is an unintentional bug, but it demonstrates how difficult it is for
developers to follow standards in every detail, even when they want to. More
on this later.

One of the first interface cards designed for the Apple Il was the
Parallel Printer Interface Card. The firmware for this card, which was written
by Steve Wozniak in 1977, used only the 256-byte slot ROM space.

The card was designed to be used with Integer Basic, from the Monitor, or
with assembly language. To turn the card on from Integer Basic, you entered
the PR#s command (where "s,” again, indicates which slot the card is in). This
command changes a location known as the "output vector” so that when
anything is PRINTed, control of the computer will pass to the firmware on the
card rather than to the built-in “video” firmware.

After a PR#s, the Apple’s microprocessor executes the first byte of firmware
on the card (at $Cs00) the next time something is printed Wozniak called
this the “default entry,” because starting at this address caused the card to
reset itseif to its “default” settings (it “initialized” itself). While setting the
defaults, the card also made an additional change to the output vector so
that succeeding calls to the card would go to byte $Cs02. Wozniak called this
the "normal entry.” Later, this scheme of passing control to firmware became
known as the "BASIC Firmware Protocol.”

Acharacter sent to the card was held until the printer was ready to accept it.
Then it was sent to the printer. After that it was sent to the video firnware. The
card automatically added a "linefeed” (a control character that tells a printer
to advance the paper one line) after each carriage retumn. Unlike typewriters,

R
‘ "J‘.‘II‘; n
11INREY
W~ =
fé : i H = 47
VAL, T

“CARY AD SHME OF HIS FRENDS WANTED T BOB ROR APRES THIS AR,
I GUESS IT BNT HIRT AS LONG AS THEVRE NOT ALGGED I

3.66 OpenApple

many printers then (and now} used “carriage return” as a signal to move to_

the left margin without advancing any paper. Thus, Wozniak's card added
linefeeds so that what was being printed wouldn’t end up all on one line.

However, some printers then (and now) automatically advanced the paper
one line when they saw the carriage return signal. These printers would print
double-spaced with the parallel card {advancing one line because of the
carriage return and another line because of Wozniak's linefeed) unless there
was some way to tell the card not to send linefeeds.

To accomplish this, Wozniak decided to make his card watch for an
“escape character” in the incoming character stream. If the card saw that

character, it would know that what followed was a command it should

execute, rather than letters it was supposed to pass on to the printer. The
escape character-the card was taught to watch for was control-l (interface?).
And a control followed by a K told the card to stop sending (kill?) linefeeds.

Problem. Control-l is used by some printers as a "tab” command. If the
interface card thinks each control-l is meant for it (and consequently refuses
to send it on to the printer), how do you get printer tabs to work? Wozniak
solved this problem by allowingyou to change the control-l to any other ASCII
conirol-character by sending the new escape character right after the old
one. "Control-l conirol-A,” for example, changed the escape character to
controlA. "Control-A control-l,” or reinitializing the card (by using PR#s or
another means to restart at the $Cs00 entry point), changed it back again.

Problem. Lines sent to the printer broke at column 49, just as they did on
the screen, even though printers could handle wider lines. In order to get
longer lines to the printer, it was necessary to turn the video (also known as
“screen echo”) off. The command Wozniak decided to use for this was
“confrol-] nN;" where the small n was a decimal number that told the card
where you wouid like an automatic carriage return, since column 40 isn't it
Another command, “controHl 1, or reinitializing the card with PR#s, put
things back like they were—video on withi line breaks at column 40,

Because it was first, Wozniak’s Parallel Printer Interface Card set a lot of
standards that have never been officially written down anywhere. But most
interface cards for the Apple II have honored the “traditions” of Wozniak.
Examples of these traditions include using control-l as the escape character,
having the BASIC entry point of the-card change the output vector to a
"normal entry point,” and using K, nN;and I as the kil linefeed, turn off video
and set line width, and tum on video and reset line width commands.

The next major standard-setting card to appear was Apple’s Super
Serial Card, The firmware for this card was finished in January 1981 There
were some other serial cards from Apple before the Super Serial Card and
some short-lived interface-card standards (Pascal 1.0), but nothing memorable.

What made the Super Serial Card a big deal was that it was the first card to
use what Apple calls the "Pascal 11 Firmware Protocol.” The name is
unfortunate. ['ve gotten on my soapbox before about how important it is for
engineers to work as hard on the names they give things as on other aspects
of a device's design (August 1987, page 2.49-50). The only link between
Pascal and this interface is that Pascal was the first software to use it
However, because of the name, most programmers think of it as something
that’s useful only in a Pascal environment.

Although the two firmware interfaces used on the Apple 1l are known as
“the BASIC interface” and “the Pascal interface,” and although Applesoft
uses the BASIC interface and Apple Pascal uses the Pascal interface,
programs written in assembly language can use either one. With the addition
of a small assembly language “driver,” an Applesoft program can use the
Pascal interface quite easily, and vice-versa. There is no unbreakable bond
between the two interfaces and the two languages. (I've heard rumors that
some Pascal firnware uses some of the same “zero-page” locations as
Applesoft, which would make the firmware incompatible with Applesoft
programs. | haven't yet found any, however, so Il appeal to readers who have
encountered this to let me know the details.)

In order to make it as clear as possible that any softtware can use either
interface, here in Open-Apple | will refer to the "BASIC Interface” as the
"Basic Interface” and the "Pascal 11 Interface” as the "Advanced Interface”

The manual that came with the Super Serial Card documented the
Advanced Firmware Protocol in great detail. (The Super Serial Card is still in
production but its manual has been sanitized and no longer contains any of
this information. Nowadays you can find most of the advanced interface
documentation in the lle and Ilc technical reference manuals and the ligs
firmware manual, but none of these includes all of the details found in the
1981 Super Serial Card manual.)

The Advanced Finmware Protocol provides a set of alternate “entry points”
to the interface card firmware. These entry points provide finer control over

Vol. 3, No.9

the card than the basic ($Cs00) entry point. There are three separate entry
points for initializing the firmware, for writing to the device, and for reading
what the device has sent to the Apple. In addition, a fourth entry point for
determining the “status” of the device (has it sent us a character? is it ready
for us to send it another character?), a fifth entry point for controlling the
firmware, and a sixth entry point for determining whether the firmware’s card
was the source of an 1nterrupt were provided by the standard. We'll see how to
use these entry points in amoment.

The advanced standard also provides for “device identification,”
Four bytes areused to identify whata card is used for and whether it supports
the advanced standard. These bytes are:

Advanced Firmware Device Identification Protocol

hexadecimal decimal
address value address valug
$Cs05 438 43157 + (slot®256) 56
3Cs07 %18 43153 + (slot*256) 24
$Cs08 $01 49163 + (slot¥256) i !
$Csec $ci 49164 + (slot¥256) (device signature byte)

The fourth of these locations is called the “device signature byte.” While I've
purposefully limited this article to serial and parallel I/O firmware, the
Advanced Firnware Protocol is available for most Apple Il character-oriented
devices. These include the 80-column screen firmware, the keyboard, and the
AppleTalk network, as well as serial and paraliel cards. Some third-party
clocks, speech and sound cards, and slot-resident modems may also
support this protocol. (The Apple Ilgs clock and its sound chip, however, are
accessed through ligs Toolbox routines rather than through slot-based
firmware protocols. This is because there just aren't enough slots available —
each device requires a separate slot under the basic and advanced firmware
protocols.)

Incidentally, the other kind of device you'll find on an Apple Il is called a
block-oriented device. An example is a disk drive. On the Apple II, block-
oriented devices use a different firmware protocol, known as “Smartport,”
which was described in Open-Apple in January 1987, pages 2.89-93.

The first hex digit of the Advanced Firmware Protocol's device signature
byte identifies a device's class. Defined signatures are:

$00 reserved 560 clock
$16 printer $70 mass storaga
$260 nmouse or joystick $B8@ B@-column card

$30
540
$50

$9@ netwark or bus interface
$A@ othsr (none of the above)
$60-35F@ reserved

serial or parallel 1/0
modem
sound/speech

The second hex digit is a “unique identifier for the card, assigned by Apple
Technical Support,” according to the original Super Serial Card manual
(page 51). According to the technical reference manual for the lle, it is a
“unique identifier for the card, used by some manufacturers for their cards”
(page 144), According to the lic technical manual, it is “an identifier (not
necessarily unique)” (page 67).

The Super Serial Card's definition for this byte was a nice try, but obviousily
the standard didn't allow for enough possible combinations—there have
been far more than 16 manufacturers of “serial or parallel /0" cards during
the history of the Apple II. The [Ilc manual’s comment reflects the truth of the
situation today.

According to the Super Serial Card manual, byte $CsFF s to hold the
“firmware revision-level” {page 57). On the Super Serial Card, this byte holds
an $08, Apple has never revised the Super Serial Card firmware, so this is the
onlyvalue you'll find here on a true Super Serial Card.

However, Apple has produced several Super Serial Card clones. One was
built into the original Ilc, one into the 3.5 Ilc {the [Ic that supports 3.5 inch
disk drives), and one into the IIgs. (Actually, there are two Super Serial Card
clones built into-each IIc and IIgs, one connected to port 1 and one
connected to port 2.)

According to the Advanced Firmware Device 1dentification Protocol, each
ofthese is a Super Serial Card, although, as we shall see later, there are many
subtle (and not so subtle} differences between the four versions. One of the
subtle differences is that Apple’s Ilc programmers forgot about the firnware
revision-level byte at $CsFF— both versions of the [Ic have a $00 in that byte.
On the [lgs, on the other hand, a new 1lgs protocol makes version numbers
two bytes long (but there’s a hit of confusion among Apple’s engineers about
how to implement them—see "Machine code version numbers” in this
month’s letters section). The original ligs ROMs have $00 $10 at $C1FE-FF

October 1987

and at $C2FE-FF. This should be taken to mean version 10. The new ligs
ROMs have $10 %10 (version 1.1) at both locations. (A few bugs were fixed in
the serial firmware in the newer ligs ROMs. The bugs had to do with status
calls, Applesoft tabbing, and buffering problems when baud, data format, or
parity were changed with buffering enabled.)

To my knowledge, Apple has never defined a way to tell its four (five if you
count both Iigs versions) “Super Serial Cards” apart. For most programmers
this is only part of the problem, as many other companies have developed
serial and parallel /O devices that are subtly (or grossly) different from the
Super Serial Card “standard.” Until | hear of something better, I suggest you
use the following “signatures” for identifying serial and parallel /O cards that
follow the advanced protocol:

Signatures for identifying specific serial/parallal firmuware

A) $Cs@5=538; sCs07=518; $Cs05=$01; $CsOC=%3x {x can be anything)

B) $0g00-50s13 $CsFE-FF
Super Serial Card BE 94 97 3R 85 27 B6 C5 o8
IIc [original, port 1) E4 EE F6 FB 0A RZ Cl 00 80
IIc [original, port 2) 11 13 15 17 8@ D1 Be 00 00
[Ic [3.5 ROMs, port 1) SE RB B4 BB DA A2 C1 00 00
e { ~ . port 2) 11 13 15 17 Bo B8 8¢ 00 62
Ilgs (1.0 ROM, ports 1&2) 45 46 47 46 @@ 14 @@ ee 1@
IIge (1.1 AOM, ports 1&2) 45 46 47 40 0@ 14 00 12 19

Obviously, it doesn't take all eight bytes to tell Apple’s versions of the Super
Serial Card apart, but using all eight should allow us to tell any serial or
parallel 1/0 card from any other. (Send us the values you find in these bytes
on your own third-party I/O cards and we'll document them in a future issue.
To avoid transcription errors, turm on your printer, enter the Monitor (CALL -
151), and type Cs00.Cs13—replacing the “s” with the slot number of your
card —and then CsFE.CsFF. Then type in everything you know about the type
of card, manufacturer, and version number and send us the piece of paper.)

Once you've confirmed that a card follows the advanced protocol,
it's easy to use the advanced interface from assembly]a.nguage The
area at $Cs0D-$Cs13 that we just used for a firmware “signature” is actually a
table of entry point addresses. For example, the value at $CsOD tells you the
enfry point for the initialization routine. Looking at our table of signatures,
you'll see that the value in $CsOD on the Super Serial Card is $8E.
Consequently, the place to go to inifialize that card, using its advanced
firmware, is $Cs8E. On the ligs, on the other hand, the initialization routine
starts at $Cs45, as can be seen in the signature (entry point table) for that
machine.

When calling the advanced firnware, you pass information to it (such as a
character you want sent Lo your printer) in the microprocessor’s registers. It
passes information back (such as a character that came in over your
modem) the same way. The following table shows which offset to use in the
table of entry point addresses and what is passed in the registers for each
advanced fimnware function:

Advanced Firmuare Entry Polint Protocol

cad offset A reg X reg Y reg carry
Init $Cs@D
on entry - iCs S50 -—-
on exit === error code --- e
Read $Cs0E
on entry - $Cs 350
on exit char read error code ---
Write $Cs@F
on entry char to write $Cs $s0
on exit error code ---
Status 3Csl0
rsady for output?
on entry 500 $Cs $s0 e
on exit e error code -=- @=N 1=Y
has a character been rsceived?
on entry 81 3Cs $e0
on exit = error code B=N 1=Y

Open-Apple 3.67

sCsil
if value at 3Cs11=9, then Folloulng commands are also supported:

Mora?

Contragl $Cs12
Mouss

on entry

on exit

mods cmd $Cs $s0
error code
Tlgs ““extended tnterface’’
cmd list adr low byte ki byte bank ---
on exit - --- === eES

l=error

Intrupt $Csl3
Mouse
on entry --- --- == -
on exit Lo 8=y 1=N

Ifyou are writing firmware that includes the advanced interface, you should
attempt to bring the A and Y registers back unchanged. If you are writing
software that uses the advanced interface, you should assume that those
registers come back looking ransacked. This maximizes the compatibility of
your firmware with other people’s programs and vice-versa.

Ifyou are writing firmware that includes the advanced interface, you should
be very conservative in your use of zero-page memory. The advanced
interface on the Super Serial Card uses only byte $26 (for remembering $s0),
byte $27 (for remembering the input/output character), and bytes $2A, $2B,
and $35 (for temporary manipulations). None of these locations conflict with
Applesoft per se, although $26 and $27 are also used by Monitor routines
that display low-resolution graphics, The basic interface on the Super Serial
Card uses several additional zero-page locations to exchange information
with the Monitor—byte $24 (CH), $28-$29 (BASL), $36-$37 (output hook),
$38-$39 {input hook), and $4E-$4F (random number seed).

Earlier in this article | mentioned that the Super Serial Card fails to
follow one of the details of the protocol for slot-based devices. That
detail is that the advanced interface does not tickle $CFFT before jumping to
routines in the expansion ROM space at $C800. This went unnoticed foryears
because the Super Serial Card was able to overpower other cards that still
had their expansion ROMs turned on. With the appearance of the 3.5 disk
controller, however, the bug was revealed. Because of this, it is necessary to
tickle $CFFF yourselfjust before you use the advanced firmware on the Super
Serial Card (and it doesn't hurt to tickle it before using other cards as well).

Another subtle problem arises because the original protocol for slot-based
devices has been slightly enhanced in the last few years, but news of this
enhancement never made it into the manuals or into the firnware that had
already been written. This enhancement is that any card that tums on its
expansion ROM space should store its slot number (in the form $Cs) in the
screenhole byte at $7F8 (known as MSLOT) before turning on the expansion
ROM. This is so that the operating system can knowwho owns the expansion
ROM space when an interrupt occurs. (As a result of an interrupt, the
operating system may have to use another card's expansion ROM; it must
then tum the executing program’s ROM back on before returning from the
interrupt er the system will have a stroke and die.)

The Super Serial Card does use MSLOT, but not until after it is executing in
the expansion ROM, so there is always a brief interval when an interrupt could
cause a fatal hemorrhage.

As a result, programmers should be careful to take the following steps:

softuare authors:
just bsfore calling the advanced interface, do something like this:

LDR 2222 character out or status request numbsr
LDX slot.number in the form $Cs
LDY siot.number in ths form $s@
STX ©F8 MSLOT)
STX $CFFF
JMP (entry.point)

firmuare authors:
1f you use the expansion ROM, execute the following instructions
in the elot ROM space before jumping to $CB8® or beypnd:
S5TX $7F8 (M5LOT)
STX SCFFF

I'l include a longer assembly language example of how to use the
advanced firmware interface next month (or so).

In addition to problems with $CFFF and MSLOT, several details of the
Advanced Firmware Protocol were neglected in the Super Serial Card
manual. As a consequence, those details are not handled consistently by
Apple II firmware and their value has been lost.

3.68 GQpenApple

One missing detail was a list of possible error codes that could be
returned in the X register. 1 scanned pages and pages of Apple documen-
tation and found only one reference to this value, That was in the description
of the Apple video firmware in the Ilc technical reference manual (page 110).
It says that if the value in the A register is not $00 or $01 for a Status call, the
interface “returns with a 3 in the X register (IOResult=1LLEGAL OPERATION);
otherwise it returns with a 0 in the X register (IOResult=GOOD).”

The term IOResult smelled of Pascal, so | asked Dennis to see if he could
find arything pertinent to the X register in Apple’s Pascal documentation. He
succeeded. "All drivers must pass back a completion code in the X register
corresponding to the table on page 280 of the 11 Apple If Apple Pascal
Operating System Reference Manual,” according to a little ditty called the
“ATTACH-BIOS document for Apple [l Pascal 11" dated January 12, 1980. The
table of completion results lists 18 codes, all of which are disk errors except
for $00, no error; $03, illegal operation; and $40, device error,

However, after studying the actual source code of the Super Serial Card
fimmware (its in the original manual), I discovered that it can retum 16
additional X register error codes (between $20 and $2F) not mentioned in
either the Pascal or Super Serial Card manuals. The Read call and the has-a-
character-been-received Status call come back with a byte that looks like
this:

Keaning of Super Serial Card X Resgister Errors, by bit
0@ebcofp

e is an overall error indicator; if e=1 at least one other kit also = 1
1f c=1 the carrier was lost during the last receive oparation
if o=l (overrun) the fipple 1sn’t collecting data fast enough
if f=1 (framing) not enough stop bits were recelved
if p=1 a parity error occurred

On the Super Serial Card, the Init call, the Write call, and the are-you-ready-
to-send Status call, on the other hand, always come back with a zero, or “no
error,” in the X register. The ILLEGAL OPERATION error talked about in the [Ic
manual isn't supported (if you give the Super Serial Card an odd number in
the A register on a Status call, it assumes you sent a one; if you give it an even
number, it assumes you sent a zero),

Because of poor initial documentation of this aspect of the advanced
firmware protocol, all of its value has been lost. | doubt there are half-a-dozen
commercial programs that even look at the X register after making an
advanced interface call. Even Apple’s own Super Serial Card clones on the lic
and the Iigs don't follow the X register aspect of the original Super Serial
Card. They support only the error on Status calls. All other functions retum a
zero in the X register. Interestingly, on bad status calls the Ilc and [igs serial
ports return the $40 DEVICE ERROR code, rather than the $03 ILLEGAL
OPERATION code that the video firmware returns for this mistake:

Apple’s mouse card, which appears to support the advanced firmware
interface, returns the $03 ILLEGAL OPERATION code in the X register for any
Init, Read, Write, or Status call. These calls do nothing to the mouse, which is
actually controiled by a number of other firmware entry points.

Even in the face of all these differences, | recommend that programmers
using the advanced interface check the X register for errors, particularly on
Init calls. If a non-zero value is returned by an Init call you should treat the
interface as unusable.

Other missing details in the Super Serial Card documentation had
to do with the Control and Interrupt functions of the advanced
interface. The original Super Serial Card Manual only said that if byte $Cs11
was zero, two optional entry points followed — the first for a “control routine”
and the second for an “interrupt handling routine.” Because of the lack of

Vol. 3, No. 9

documentation, there is no uniformity whatsoever in how devices use these
entry points.

There are three devices | know of that use at least one of these functions.
One is the Appletalk firmware built into the Apple Ilgs. It has an offset for the
Control function, but it has a zero in the offset for the interrupt function
(which has to mean there’s nothing there —ifyou called that address you'd go
to $Cs00, the basic entry point). Apple’s ligs firmware documentation
doesn't even smile in Appletalk’s direction, so I have have no idea what the
Appletalk Control function does or how it works.

The second device that uses the control entry point is Apple’s mouse. The
mouse {s controlled by nine routines that can be found by looking in an offset
table just like the one that the advanced firmware interface has. The first two
bytes of this table purposefully overlap the Control and Interrupt offsets of
the advanced firmware interface. The Control offset points to a routine called
Setmouse, which turns the mouse hardware on and off and tells itwhatkinds
of interrupts it should generate. (This offset is not to be confused with
Initmouse, which sets defaults and synchronizes mouse interrupts with the
video's vertical blanking interval, and which, for reasons unknown, does not
use the Init entry point.)

The Interrupt offset points to a routine called Servemouse, which puts a
zero in the microprocessor's “carry” bit if the mouse has generated an
interrupt signal. An interrupt signal is kind of like a scream in the night. It tells
the microprocessor to immediately stop what it's doing and go to the aid of a
device. But the onlyway the operating system can figure out where the scream
came from is to knock on the door of every device connected to the computer
until it finds one whimpering for attention, The Servemouse routine provides
an easy way for interrupt firmware to figure out if it's the mouse thats
squeaking,

The third device that uses the control entry point is the serial firmware on
the Apple Tigs. Like Appletalk, this firmware has $00 in the interrupt entry
point.

The control entry point in the [Igs serial firmware uses a completely new
scheme for passing data. Rather than using the registers for data, as in all
other advanced firmware calls, the ligs serial firmware uses the registers to
pass a pointer to the data. The low byte ofthis pointer goes in the A register,
the “high” byte in the X register, and the bank number in the Y register.
(Although the data for the command can be placed anywhere in Iigs memory,
the microprocessor should be in 6502 mode when you actually pass control
to the entry point This is always the case when using either the basic or the
advanced firmware interface.) .

Your pointer is aimed at a "command list” The shortest command list
currently in use has four bytes, the longest ten. Each command list begins
with a one-byte parameter count, a one-byte command, and a two-byte space
for an error code to be retumed, Bytes after those four are used by the
firmware to pass information to you, or by you to pass information to the
firmware.

Two of the supported commands are for "mode” control, nine are for buffer
control (the Ilgs serial ports can buffer both incoming and outgoing data and
can do printer buffering), and seven are for hardware control. It's best toavoid
the hardware control commands unless absolutely necessary, since they will
change on any future Apple I that uses a serial interface chip different from
theoneinthellgs.

One of the mode control commands, called GetModeBits, is for inquiring
about how a port is currently set up and the other, called SetModeBits, is for
making changes. Both have a parameter count of 3. The command code for
GetModeBits is 0 and for SetModeBits 1. Each uses an additional four bytes
for the "mode bit image.” Thus, the command tables for these commands
look like this:

GetModsBits
$03
500
300 500
500 500 $00 300

SetModeBits
503
501
500
500 300 500 TOO

parameter count
command

result code
mode bit image

The possible result codes currently supported, which you'll find in the first
of the result code bytes, are $00, no error; $01, bad call; and $02, bad
parameter count.

The mode bit image controls such firmware functions as whether toadd a
linefeed after carriage returns, whether to echo characters to the screen, and
other functions that can also be controlled with escape-character commands.

Next month we'll look at the Iigs mode-bit image, and at the subtle
differences between escape-character commands on Apple’s various Super
Serial Cards, in detail.

Ask

(or tell)
Uncle
DOS

Apple’s John Sculley is interviewed in the September
Playboy (page 51). Sculley’s comments are exdremely
interesting, particularly his remarks about Apple asa
“third-wave” company. He says he regards himself
as the company’s "Chief Listener.” Apple s uniike the
typlcal American company, where declsions are
imposed from the fop, Sculley says, and uniike the
traditional Japanese company, where ideas must
move up a hierarchy in a consensus-building process.
At Apple, according to Sculley, “ideas can occur
anywhere in the organization....top management is
not predetermining company strategies.” Add this
interview to your reading list.

It's pencil time, again. According to a letter Apple
sent to educators, 1igs units that have serial numbers
beginning with the three digits 705 through 724
need new ROMs, but not new video chips (Seplember,
front page, second paragraph). In addition, we have
now heard reports of some copy-protected software
not working with the new Igs ROMs because of
illegal monkeying around by the copy protection
scheme. When buying software for the Iigs, insist on
un-protected products.

The lady who owns the phone number we gave at
the end of last month's Prinfrix review "is prefty
upset and claims she is receiving hundreds of calls,”
according fo the people at Data Transforms, whose
phone number ends with 1501, not 2502 (page 3.61).

The first letter published below points out an error
in the next o the last paragraph of my answer to
“[lgs programming subtleties,” in last month’s issue,
page 3.61-62.

Back in our August issue, af the very bottom of the
very last page, we printed a patch to increase the size
of the AppleWorks catalog buffer (page 2.56). It reaily
does allow you to catalog subdirectories with more
than 85 files in them. However, one of our testing
laboralories has discovered that i also prevents you
from loading any of them (ouch!). Put a big X over
that patch and write "doesn’t work” next to it. Fora
Dpatch that does work, send us three good reasons to
have more than 85 files ina single subdirectory (also
include the box top from our September issue and a
stamped, self-addressed shipping pallet).

Finally, go way back to our November 1985
Special Printer Issue and turn to page 183. Replace
the second through the last paragraphs of the
section called “The data format,” with the following
{youll have to write real smali):

When characters are sent serially, the signal on the
wire is kept ON (or 1, or MARK) when no characters
are being sent, A sudden transition to OFF (or 0, or
SPACF) is called a start bit and indicates to the
receiving device that a character is coming, After the
start bit come flve to eight data bits, represented by
MARK or SPACE voltage levels,

After the data bits, sometimes, is a parity bit. The
parity bit Is an optional, extrabit. Parity bits, if used,
can be odd, even, MARK, or SPACE. MARK parity
means the parity bit is always 1. SPACE parity means
it Is always 0. Odd and even parity mean the trans-
mitting device sets the parity bit to 1 or 0 in such a
way that the tolal number of 1 bils in the data,
including the parity bit itself, will be either odd or
even. Parity can be used for error checking, bul
rarely is, Inmost Apple [T applications, parity isset to
“none,” which means no parity bit is sent,

After the parity bit, the signal on the wire goes
back to ON in preparation for the start of the next
character. This part of the signal is said to conslst of
one or more stop bits.

When no characters are being transmitted, the
serial line is kept ON, or full of stop bits. Under the RS-
232 standard, there is no requirement that characters
must appear at equal intervals, While the start, data,
and parity bils all are represented by a certain
voltage level for a certain time period (the faster the
baud rate, the shorter the time period), stop “bits”
consistof a certain vollage level for an uncertaln time
period. For example, if your computer Is sending out
characters at a rate slightly slower than the baud
capacity of the interface. extra stop “bits”"—even
fractional “blts”—can appear between characters.
This ability to support a variable time interval befween
characters eams the RS-232 interface the adjective
asynchronous. ‘

The term data format defines how many data bits
each character will have, whether the character will
include a parity bit (and if so, what kind of parity),
and the minimum number of stop bits between each
character. This minimum number is typically either
1, 1-1/2, or 2. For signalling purposes, one stop bit is
enough—when extra stop bits (or parts of stop bits)
are inserted it's either to give the receiving device
nore time to process each character coming in orit’s
an attempt to solve timing problems in the sending
device. :

For example, the default format of the Apple Iic’s
printer port is 8 data bits, no parity bits, and 2 stop
bits (or "8N2"). Every other Apple serial device
defaults to 8N1. A printer expecting just one stop bit
can receive dalta from a device sending two stop bits
with no difficutty —it just thinks the engine in the
sending device isn't operating on all eight cylinders.
The additional stop bit from the sender siows things
down slightly. This is apparently exactly what was
expected from the 2 stop bits on the Iic’s port,
because the serial ports on early models of the Ic
marched to the beat of a hasty drummer (see June
1985, page 1.47).

There are some nasty remarks about printer
documentation in the original that you might like to
keep, but the rest is a reflection of my confusion. Boy
it feels good to finally understand how serial com-
munication works! My thanks go to chapter 11, “The
Serial Interface Ports,” of Gary Little’s Inside the
Apple lic.

TLShutDown does too

On page 3.62 of your September 1987 [ssue you
say that the Ilgs toolbox command TLShutDown
does nothing at present. Not true! Under ProDOS 16,
TLShutDown calls the Bootlnit functions of all installed
tools and unloads RAM-based tools (disconnects
them from the tool table and leaves their memory
purgable).

Incidentally, regarding the $400-byte stack/direct

Open-Apple 3.69
page block you mentioned in your response to the
same letter, there is no reason that a direct “page”
must be limited to 256 bytes on the ligs. While some
addressing modes allow access to only the first 256
bytes of a direct page, indexing from the direct page
with a 16-bit X or Y register allows you to access all of
bank 0. The actual allocation of the $400 bytes is up
to the application; if no direct page is needed, the
whole $400 can be used for a stack; if a different stack
area is being used, the whole $400 can be used for
direct-page storage. 4
David A Lyons
North Liberty, lowa

Machine code version numbers

Are you sure that Line 500 of your Smartport reader
program in the January 1987 issue is correct (page
2.92)? The line reads 500 : : VERS = PEEK(807) +
PEEK(808)*256.

When I run the program, | get version 4096 for my
UniDisk 3.5. This seems high for the version number
of a year-old device. Even if the PEEKs are reversed, a
result of 16 would still be a little high.

RobertJ. Schack
New York, N.Y.

I noticed the welrd version number results when I
wrote the Smartport article, but didn't know what to
do about them. Apple’s Smartport documentation
said only that those two bytes were the version
number, but gave no information about how to
interpret them.

Recently I ran across the following paragraph on
page 28 of Michael Fischer's Apple IIgs Technical
Reference from Osbom McGraw-Hill. I refers fo
toolbax version numbers, not firmware versions
numbers, but is stiil enlightening:

“Version numbers for each tool consist of a word
value, Bits 0-7 of the word contain the minor revision
number, beginning with zero. Bits 8-14 contain the
major revision number, beginning with one. Bit 151s
set if the version is a prototype and Is clear if the
version is a released version. Thus $90 is version 10
prototype, $12 is version 1.2 official release, and so
on”

Notice that Fischer's description and his examples,
which he no doubt got from some Apple documenta-
tion somewhere, don't- match. According to his
description, “version 1.0 prototype” should be $8100.
“Version 1.2 official release” shoutd be $0102.

If we throw away the low byte of the Smartport
version number and decipher the high byfe as in
Fischer’s examples, we get the results we expect,
version 1.0. Thus, to gef January’s Smartport program
toreport the UniDisk version number “correctly,” we
should change lines 500 and 600 to:

580 : : VERSS = STRE[INT(PEEK(BOB)/16) + “.” +

STRS(PECK (G0A) - VAL (VERSS)*15)

600 change VERS to VERSS

_ But I suspect Fischer's description is really the
way version numbers are supposed fo be used on
the Higs (othenwise, why use two bytes and then
throw one away?). in which case the “correct”

corrections to the Smartport program would be:
500 : : VERSS = STRS(PEEK{B0A)] + “.~ +
STRS(PEEK(627))

600 changs VERS to VERSS
This, of course, retums a version number of 16.0

for the UniDisk, which reflects a certain amount of
confusion at Apple about version number protocol.

3.70 Open-Apple
What PR# and IN# do

Please explain why PR#3 and I¥#3 tum on my 80-
column card at different times when | replace one
with the other in my STARTUP program. In immediate
mode both PR#3 and IN#3 tum on the 80-column
card immediately.

Dave Uherka
Grand Forks, KD

While common knowledge is that PR#3 “tums on
80-columns,” in fact, things are more complex than
that. What PR#3 and IN#3 really do is “redirect”
output or input to stot 3. The “80-column firmware”
lives in slot 3. However, you won't see an 80-column
display until you either PRINT something (after PR#)
or ask for some INPUT (after IN#). In immediate
mode, Applesoft immediately prints something (a)
and thereafter asks you to input another command,
right after you type in either PR#3 or IN#3. Thus,
either PR#3 or IN#3 appears to take effect immedi-
ately. To get the same effect in your programs, you
must put a PRINT statement right after your PRINT
CHR$(4);"PR#3" or an INPUT statement right after
your PRINT CHR$(4);"IN#3".

For a much more detailed description of how this
works, see Chapter 12 of the DOStalk Scrapbook,
"How the System Operates,” pages 81-91,

Disassembly lines

Does your remarkable ability (to me) to crack
object code without any available source code stem
from long experience or could you fllustrate how you
doit?

Are the colons you sometimes use after a fine
number in Applesoft program listings for indentation
purposes?

1'm not sure [understand the equivalence of port 1
on the ligs and the Super Serial Card. Can a "Super
Serial Card” choice be used for configuring older
programs? If it can, | presume Slot 1 should not be
used. Similarly, if slot 3 is the eighty-column patiway,
can it be used for a MIDI card?

Herbert M. Olnick
Mineral Bluff, Ga.

It takes some experience to get good at disassem-
bling machine ianguage instructions, but thereare a
few tricks of the trade I can describe here. First, you
need a disassembler. This a piece of software that
scans the values in a series of bytes and tells you
what they mean in assembly language. There is a
rudimentary disassembler built into every Apple Il —
the Monitor’s L(ist) command. More advanced disas-
semblers, which are available from most of the
companies that sell assemblers, will send the disas-
sembly toa file (rather than simply to the screenora
printer), will create lists of the addresses referenced,
and will even plug in the names of built-in Apple Il
subroutines, softswitches, and zero-page locations
where it appears they are being used.

In most disassemblies you aren't concerned about
how the whole program works but just want to find a
specific area that's troubling you to fix it. You find the
area by scanning through the program looking for
embedded text messages, for accesses to certain
softswitches, zero-page locations, or Monitor sub-
routines. You can also figure out a lot by looking for
ProDOS MLI calls {JSR $BF00) and, on the Iigs,
toolbox calls (JSL $E10000).

If this doesn't work, or if you really want to
disassemble the whole program, your next step is to
load the disassembly into a good word processor

and start chinking away. Whenever you find something
Yyou can identify—be it a zero-page location, a
subroutine, amessage, or whatever — use the search
and replace capabllities of the word processor to
change all references to that address to a name that
makes sense. As youproceed, the search and replace
procedure keeps adding clues to parts of the program
that originally made no sense at all. Gradually you
figure everything out (usually finding lots of litile
bugs and undocumented features of the program
along the way). The experience is very much lke
working on a giant figsaw puzzle.

The biggest disassembly] ever did was the portion
of DOS 3.3 from $9D00 to $BB00 (the command
interpreter and the fite manager). This is about 7,000
bytes of code. I had a copy of Beneath Apple DOS at
my side that I used as a hint book. It took six weeks of
daily work. When I was finished I knew enough about
DOS, its features, and its bugs to write ProntoDOS,
Softalk’s "DOStalk” column, and the DOStatk

I think you'll find that many of the best assembly
language programmers spend a lot of time disas-
sembling other people’s work, just as the best
writers spend a lot of fime reading other people’s
work. Of course, youdonreally need to disassemble
anything to “read” other people’s work. Lots of
assembly language source code is around, particulary
inApple’s technical manuals. Apple has a tradition of
Ppublishing the source code to at least the Monitor in
all of its computer-specific technical references.

As you do more and more of this, you'll find that
different programmers have very different styles.
Some are ullra-organized. They have a place for
everything, everything in its place, and don't give a
beep how long it takes to execute. The DOS 3.3 file
manager is a good example of this kind of program-
ming. Others write code that Is extremely fast,
efficient, sensible, and elegant. Look at anything by
Steve Wozniak (the original Apple Il Monitor, DOS
3.3's RWTS routines) or Paul Lutus (Apple Writer) for
examples. Others write code that is impossibly
complicated, confused, crude, and full of bugs (the
unknown author of DOS 3.3's APPEND patch, for
example).

If any of this interests you, I suggest you get a
copy of Don Lancaster’s Enhancing Your Apple I,
Vol 1 ($15.50, Synergetics, Box 809, Thatcher AZ
85552 602-428-4073). Chapter 3 of that book is
called “Tearing into Machine-Language Code” and is
worth the price of admission. Lancaster demonstrates
what he calls the “tearing method” of disassembly.
This method is paper-based and gives you a better
view of a program’s “big picture” than my word-
processor method. On the other hand, I end up with
completely commented source code in a file that |
can modify and run through an assembler without
any additional typing.

I use extra colons in Applesoft listings simply to
make it clear what lines are inside loops. I'm surprised
thal none of our readers has ever complained that
Open-Apple’s program listings don't look like the
ones Applesoft itself puts on your screen. Back in the
early days of the Apple [I this was a big issue in the
letters-to-the-editor pages of Apple Il magazines. |
guess it means youve all figured out that the
program listings in Open-Apple are designed more
for easy reading and understanding than for easy
{yping or speedy execution.

The “firmware” in port 1 of the ligs is functionaliy
equivalent to a Super Serial Card but the “hardware”
is not. Thus, whether a "Super Serial Card” configu-

Yol. 3, No. 9

ration will work for any particular program depends
on whether the program accesses only the firmware
or whether it also tries to access the hardware.
Unfortunately, few programs document this kind of
stuff: your only recourse is to try it and see what
happens, If a program wont work through the built-
in port, You can have a Super Serial Card in slot 1,
change the slot 1 configuration via the control panel
from “printer port” fo “your card,” press open-apple/
control/reset, and use the Super Serial Card: Using
this technique, you can switch back and forth as
often as like without turning the computer off (tumn it
offtoinsert the card in the first place, however, and to
change cable connections).

Slot 3 can be used in this same way, however,
whenever You set slot 3 to “your card” you lose the
ability to use Apple’s B0-column firmware, which will
prevent many programs from working correctly.
But, for example, if your music software doesn't use
Apple’s 80-column firmware, a MIDI card might be a
good choice for that slot. You would have to enter the
control panel, change the slot 3 assignment, and
reboot before and after running your music software,
but you wouldn't have to give up some other slot.

Apple makes family grumpy

We just moved into a new house that has the TV
antenna directly above myIle, When the Apple is on, it
causes video interference on channels 4 and 5.

Everything is grounded...] checked that on the
suggestion of our local dealer's service person. No
one locally can come up with a solution. As a result,
my family gets grumpy if [use the computer when
they're watching NBC or CBS. Telling them PBS is
good for them hasn't helped. Do you have any hints?

Fred Olin
San Antonio, Texas

I haven't any hints. Somebody somewhere has
probably figured this out, however. Let’s hope they
write us.

Logoligs

In response to “Go, Logo, Go,” in your September
issue, there is one version of Logo for the Apple that
has already been altered to take advantage of the Ilgs
environment. That is Logo II, an upgrade of Apple
Logo I, available from Logo Computer Systems Inc,
121 Mount Vernon St, Boston, MA 02108 800-321-
5646 617-742-2990. Several purchase options are
available, including single copies, lab packs, and site
licenses.

Your readers who are interested in Logo might like
to join the Logo Exchange, We're a group of educators
Interested in the use of Logo. Membership includes a
subscription to our magazine. Queries can be sentto
the Logo Exchange, ICCE, University of Oregon, 1787
Agate St, Eugene OR 97403 503-686-4414. A year's
subscription is $24.95 for US. ICCE members, $5
additional for non-members, and $5 additional for
intemnational subscriptions.

Tom Lough
Charlottesville, Va.

Hard feelings

The ligs chip upgrade you mention in your Septem-
ber issue is interesting. Apple Canada prides itself on
being a separate entity from its mother company and
seems also to pride itself on always being a month or
two behind new developments “south of the border.”
In this age of lightningfast communications, this
attitude causes a great deal of hard feelings. As of

October 1987

September 1, Apple Canada had no chip upgrade
policy. I'd be curious to know if a similar situation
exists in other countries.
Lorne Walton
Maple Ridge, BC
LaserWriter possibilities

1just purchased a LaserWriter Plus to go along with
my lIgs. Despite what Apple says, you can get Appie
Writer 2.1 to print to the LaserWriter just fine. You need
Don Lancaster’s patch to Apple Writer that allows the
program to use the new serial ports (see "The great
Tinaja Quest” in May 1987, page 3.31). Then connect
your llgs to the LaserWriter via port 1 with a Ilgs
Adapter Cable (¥AOM0333, $29.95 retail) and a
DB25-male to DB25-male straight-through cable
(approximately $20 retail).

You need the second cable because the adapter
cable is less than a foot long. Don't use a null-modem
cable; a straight-through cable works just fine. Make
sure the LaserWriter is off and set the back panel
switch to "SPECIAL. This tells the LaserWriter to
emulate a Diablo 630 printer. Tumn your LaserWriter
on, let it warm up, and run Apple Writer as usual. The
Control Panel slot assignment for slot 1 should be
directed to the printer port. With this setup I've been
able to print anything Apple Writer can do, including
this letter.

Under this configuration, your LaserWriter is a very
expensive Diablo printer; you can't reach the many
special fonts, etc. To do PostScript processing, you
can use the same cable and set the LaserWriter back
panel switch to “9600". Then you need software to
send the necessary PostScript commands. You can
also connect the I1gs (or a lle) to the LaserWriter viaa
Super Serial Card and the appropriate cable, Or you
can connect the llgs via AppleTalk. '

1 can't get Apple Writer to work with the LaserWriter
via AppleTalk; why, [don't know. [s there any source
that disassembles and describes the AppleTalk
interface in the [igs? AppleWorks does work with a
LaserWriter via AppleTalk as advertised, in which case
your LaserWriter [s a very expensive ImageWriter.

Other programs will print to a LaserWriter connected
to port 1 (or 2) as long as they can print to a Diablo-
compatible printer and access the seriaf port or card.
Some old DOS 3.3 programs, like MultiPlan, work just
fine—1 suspect MuitiPlan accesses the printer slot or
port without calling on any special firmware tricks.

Aquick note concerning the VIPspreadsheet for the
Igs. I'm a spreadsheet junkie (1 own VisiCaic, Multiplan,
Practicalc, Supercalc 3a, AppleWorks and now VIP—
my favorite is still, believe it or not, Muitiplan, although
SuperCalc has the best business-type graph-
ics I've ever seen on an Apple). VIP is extensive and
could give Supercalcand AppteWorks arun except for
two problems: first, the output to printers is extremely
limited. You can only choose to print to an ImageWriter
or Epson printer, and then only through slots 1 or 2
(no LaserWriter, AppleTalk, pen-plotter or other printer
support—not even the trusty Apple DMP1). Second, if
you try to print to a non-recognized device, orifyou iry
something else the program doesn't recognize, the
whole system crashes, with total loss of data. Talk
about being careful!

In November 1986 (page 2.79) you had a letter
asking how to convert files from Muifiplan into
something that could be used by SuperCalc 1 have
written a program that will convert a Microsoft SYLK
file into the more common DIF file, which SuperCalc
can read. SYLK files and DIF files can only be used to
transfer data, not formulas. I'd be happy to let anyone

who sends me a disk and return postage have a copy
of the program,

Finally, how do you getan AppleSaft program to run
under ProDOS 167 How much memory can [access —
am | still limited to 48K minus ProDOS?

Steven R White, M.D.
411 N. Kensington Ave.
Lagrange Park, IL 60525

Anyone using a LaserWriter, and especially those
using one with an Apple II, should read Don Lancas-
ter's column in Computer Shopper religiously
($21/yr, PO. Box F, Titusville, FL 32781). Don has
reprints of past columns for sale, as well as all kinds
of Apple Writer goodies for making the Laseririter
do things that Macintosh programs find impossible.
And he gives out free samples. (Don Lancaster,
Synergetics, Box 809, Thatcher, AZ 85552 602-426-
4073). You might also like to look into the National
Postscript Bulletin Board at 409-244-4704 (300/
1200 8N1).

Documentation on AppleTalk as it exists on the ligs
is non-existent as far as we know. The beia draft of
the Apple Iigs Firmware Reference Manual docu-
mentsall the other stuff that appears to be connected
to Iigs slots, but doesn't breathe a word about

AppleTalk.

Applesoft runs under ProDOS 8 (with- BASIC
.SYSTEM), never ProDOS 16. AppleSoft is structurally
limited to, and ideally suited for. a 48K program/
variable space. Apple has no plans to modify it for
the larger-memory available on the ligs or for
ProDOS 16. I think theyve made the right decision.
By refusing to make any modification to Applesoft,
Apple retains complete compatibility bebween older
programs and new machines. Applesoft remains a
uhiversal language. Why can't we agree that-any
language that takes advantage of the eight-megabyte
memory space available on the Iigs should be
written from scratch and not be based on a 10-year-
old language that uses line numbers and fwo-

character variable names?
ImageWriter Il cleaning
How do | remove and clean my ImageWriter 11
printhead? T
Hudson, Fla.

Hmmm...the ImageWriter If Owner’s Manual
dafsn't say in its section on maintenance (pages 63-
66).

Page 28 of the Imagewriter User’s Manual (for
the original Imagewriter) has the essentlal procedure,
except that the mechanism that locks down the print
head is different on the ImageWriter I1.

First, make sure the printer is tuned off. Remove
the ribbon. As you look at the II's print mechanism
from the front, you'll see a white plastic latch along
the right side of the printhead that clamps it down.
Gently push this latch toward the power-button side
of the printer to clear the printhead and jiggle the
printhead straight upward. If you are right-handed,
you may find it easier to do this while standing
behind the machine. Be careful not to let the head hit
anything as it comes loose. The only cleaning
procedure mentioned is to "wipe” the type head
gently with a soft brush to clean away loose debris
left by the ribbon or paper. Then carefully replace the
head, reversing the above procedure.

Print heads are delicate and are not cheap; if you
have any doubts about safely removing and cleaning
yours let a technician do it for you.

Open-Apple 3.71

Super hi-res converter

I do alot of work in graphics. Traditionatly this has
involved a lot of hi-res and double hi-res files on my
llc. [used Dazzle Draw and was happy. But not any
more. Now I'm the proud owner of an Apple Ilgs, and I
find myself with bushels full of Dazzle Draw format
double-high and MouseFPaint format standard-high
files that I'd like to convert to Super-320 mode, so
that I can modify and resave them as Deluxe Paint
pictures, Doyou know of any utility that can do this, or
of a simple machine code modification I could make
to my old files to update them? It seems a waste to
abandon all that oid work, and redrawing it would
take years,

James Waschuk
Saskatoon, SK

According to the July 1987 issue of Call -A.F.F.L.E.
(page 57), such a program is available in DL4 (Data
Library 4) of the download section of MAUG on
Compuserve. The program’s name is SHRConvert,
and if converts a number of types of graphics
formats to Super Hires format, including Apple I
single and double hi-res graphics, and Macintosh
and Atari ST graphics.

AppleWorks as copy machine

How about a patch for AppleWorks that would allow
more than nine copies of something to be printed?

David L. Smith

Middlesboro, Ky.

Beagle Bros/Software Touch AppleWorks guru
Alan Bird provided us with the following:

Patch to change the maximum number of copies to 255
(Applekorks 2.0 only)

POKE 768,255

BSAVE SEG.M1,Ts0@,L1,A788,836074 ; For WP
BSAVE SEG.Mi,T$@0,L1,R?76E,B91B5 ; for OB
BSAVE SEG.M1,T$08,L1,R7EE,BE5E35 ; for S5

For other versions of AppleWorks, Alan suggested
searching the SEG.M1 file for the byte sequence "A9
09 20 35 DO and replacing the 09 with a larger
value. Dennis looked at AppleWorks 1.2 and 13 and
discovered the actual sequence you have to look for
in SEG.M1 is "A9 09 20 32 DO". This sequence occurs
fourtimes; change the first three (as Alan did for 2.0):
Equivalent B parameters for fippleorks 1.2 and 1.3:

v V13

8534249
B9151
B67055

B34253
B9151
Be?332

After the patch, you can enter any value from 1 to
255 copies directly.

Wire loose inside FILER

I've run into the same problem so many times [
don't understand why ['ve never seen it commented
in Open-Apple. | usually cannot copy a disk onto a
new unused disk with FILER Until something is
written on the new disk | geta NO DEVICE CONNECTED
error. [f the disk s first formatted with FILER there is
no problem, but then time is wasted re-formatting at
the start of the copy.

Even a DOS 3.34ormatted disk is acceptable as a
copy target, but nota clean one, Why s this? A related
problem is that quite often AppleWorks 1.2 and 1.3

3.72 OpenApple

will refuse to format a clean disk, with the same error
message. Are they too polite to defile a virgin, or

what?
Phil Abro
Cary, NC.

I have a dim recollection from the early days of
ProDOS of this problem. The reason no one talks
about it is that no one uses FILER anymore. Copy I
Plus ($30.95, Central Point Software, 9700 SW
Capitol Highway, Suite 100, Portland, OR 97219,
503/244-5782) is areasonable alternative that does
most of what FILER and CONVERT together can do,
and more, and better.

Another altemnative is Glen Bredon's ProSEL pack-
age, which has been recommended here many
times in the past ($40 from Bredon at 521 State Road,
Princeton, NJ 08540). It can’t convert DOS 3.3 files to
ProDOS, but it includes all other disk utilifies most
people can Imagine, plus a few more you'd never
think of. {(Such as a scheduler that will nun programs
for you, unattended, at the times you select. Early
purchasers of ProSEL may be missing the scheduler
and a few other updates to the package. The latest
ProSEL version is always $5 for previous purchasers,
directly from Bredon.)

For AppleWorks, try changing to a different disk
drive for formatting. That seems to work sometimes.
Otherwise, it's wise to keep a few pre-formatted
disks around for emergencies.

Open-Apple
H

is writlen, edited, published, and

© Copyright 1987 by
Tom Weishaar

Business Consultant Richard Barger
Technical Consultant Dennis Doms
Circulation Manager Sally Tally
Business Manager Sally Dwyer

Mosl rights reserved. All programs published in Open-Apple are
public domain and may be copied and dislributed withoul charge,
Apple user groups and signilicanl cthers may reprint articles from
lime to lime by specilic written request. Requesis and other
editorial malerial, including letters to Uncle 008, should be sentto:

Open-Apple
P.0. Box 7651
Overland Park, Kansas 66207 U.S.A.

Published monthly since January 1985 World-wide prices (in U.S.
dollars; airmail delivery included al no additional charge): $24 for 1
year, §44 for 2 years; $60 for 3 years. Al single back issues are
currently available for $2 each; bound, indexed editions of Valume 1
and Volume 2 are $14 95 each. Volumes end with the January issue,
an index for the pricr volume is included with the February issue.
Please send all subscrigtion-related correspandence to:

Open-Apple
P.0. Box 6331
Syracuse, N.Y. 13217 U.S.A.

Open-Apple is available on disk from Speech Enterprises, P.O.
Box 7986, Houston, Texas 77270 (713-461-1666).

Unlike most commercial software, Open-Apple is sold in an

unprotected format for your convenience. You are encouraged to
make back-up archival copies or easy-to-read enlarged copies for
your own use without charge. You may also copy Open-Apple lor
distribution to others. The distribution fee is 15 cenis per page per
copy dislributed.
WARRANTY AND LIMITATION OF LIABILITY. ! warranithat most of
the information in Open-Apple is useful and correct, although
drivel and mistakes are included trom lime to time, usually
unintentionally Unsatistied subscribers may return issues within
180days of deliveryfor a full refund. Please include a note from your
parents or children confirming that all archival copies have been
destroyed. The unfullfilled portion of any paid subscription will be
refunded on request. MY LIABILITY FOR ERRORS AND OMISSIONS
IS LIMITED TO THIS PUBLICATION'S PURCHASE PRICE. In no
case shall | or my contributors be liable for any ncidental or
consequential damages, nor for any damages in excess of the fees
paid by a subscriber.

1SSN 0885-4017
Printed in the U,5.A,

Source Mail: TCF238
CompuServe: 70120,202

Free help

Concerning August's letter about loading non-TXT
files into the AppleWorks word processor module
(“Another use for AppleWorks,” page 3.55)—in a
perverse twist back in July | used this capability to
load free Writer, Paul Lutus’ public domain word
processor, into AppleWorks. | used the OA-Delete
function to wipe out everything but the help screens
50 I could print a hardcopy.

Clark Stiles
Grand Rapids, Mich.

Just don'tuse this technique to cheat on adventure
games.

More on OctoRAM

{ reviewed the MDIdeas OctoRAM board mentioned
by Doug McClure (August, page 3.51). Look for my
review in the fall issue of Apple I Buyers Guide. There
are eight SIMM sockets on the board. You can put in
either 256K or 1 megabyte SIMMs, but you can’t mix
them. Consequently, if you purchase a 1 meg board
with four 256K SIMMs (the way MDIdeas shipsit), you
can upgrade the board to two megabytes. If you want
to go higher, you have to get 1 meg SIMMs, and sell
your old SIMMs or let them gather dust in your junk
box. At the present the SIMMs are more expensive
than an equivalent number of standard memory
chips, making the OctoRAM somewhat more expensive
to expand and operate. Nevertheless, it's the only ligs
memory board which can be expanded to 8 Mbytes
on its main board.

The ESP ROM board is an exira cost option, but it
really isn’t ROM. 1t is a piggyback board with 64K of
static RAM. The board includes a rechargeable battery
that powers the RAM while the power is off. Extra RAM
packs are available which expand the ESP board up
from its standard 128K capacity up to 512K You can
set the [Igs’s control panel to boot the ESP board on
start up or you can access it like any other ProDOS
drive. Under normal circumstances, the static RAM
takes very little power and with the rechargeable
battery pack will last several years before losing data.
The ROMdisk is a good idea, and the static RAM with
battery backup makes it fairly easy to use. The
disadvantage to static RAM is that it's extremely
expensive and sensitive to static electricity. There's
one major feature on the ESP that | don't Iike—it
attaches to the front of the OctoRAM board and
blocks slots 6 and 7 in your IIgs, the most important
slots.

Philip Chien
Earth News
Titusville, Fla.

A tip from subscriber Peter Baum—If you buy an
OctoRAM and have friends with Macintoshes, pay
attention to see if they upgrade their Macs to 1 meg
SIMMs (which they must do to get more than 1
megabyte of RAM). If they do, you'll have found a
cheap source of 256K SIMMs, eight of which (2
megabytes worth) witl fif In the OctoRAM.

The Universal Apple

I'have lived in Germany for over ten yearsand was a
manager of a local computer store for several years.
We sold Apple, IBM, Osbome, Tandy, Wang, Nixdorf,
and a few other brands. In regard to the letter
"Intemational Answers” In your August issue (page
3.53), let me assure you that there is no problem
using any Apple hardware in Europe and there is

Vol. 3, No. 9

seldom a problem even with combinations of US.
and European Apple hardware.

I'have two Apple lle computers, a German version |
purchased less than one month after Apple introduced
computers in Germany, and a standard American
version. The German machine was purchased with
German-version monitor, B0-column card, and Apple
DMP printer. The U.S. version was purchased with a
U.8. monitor, text card, and ImageWriter, The US.
version has worked perfectly in Germany for over two
years on a step-down transformer.

Ihave added numerous items to each computer as
the years have gone by, including mice, new drives, an
RGB monitor, numeric keypad, graphics tablet, daisy-
wheel printers, and a long list of other items. They all
work just fine no matter which version they are
hooked into, with the single exception of the U.S,
numeric keypad — it's cord is tooshort for the European
Apple I, which has the keypad connector located a
little further toward the front of the motherboard. And
I am happy to say that | have not experienced any of
the screen flicker or weaving, caused by using a 60
Hertz Apple in a 50 Hertz country, that you mentioned.
I also know several other people using this type of
setup and have heard no complaints,

I don't recommend this for IBM users though. The
U.5. version IBM monitor, when used on 50 Hz with a
transformer, would wave and weave so much that my
customers would get seasick and tumn green. That
made it real easy to sell Apples—one look at those
IBM monitors and anything else would look great.

Here are a few other necessary details: travellers will
need a 300 watt transformer to correct the voltage to
what Is needed for their system (U.S. systems need
110-120 volts, European systems need 220 volts). A
transformer of this size will power the computer, a
monitor, and two printers with room to spare, Remem-
ber to bring a multi-outiet dropcord from your native
country since most transformers only have one or
two outlets and this makes it very difficult to plug in
four or five items.

Cards that pluginto slot 3 will not work in European
Apples since the auxiliary slot is located in front of
this slot and therefore any cards plugged into the
auxiliary slot will cover slot 3. 1 have yet to find any
software that will not run on either version computer.
(raphics programs, utility programs, word processors,
games, and even copy-protected stuff seem to run
just fine (who cares).

Leave the war games at home though. West Germany
and several other European countries have banned
many of these games. Some of the programs include
F-15 Strike Eagle and a few other air simulators (not
SubLogic), several submarine simulators, Rambo
programs, karate programs, and some other programs
that in their view glorify war or violence. Theoretically,
this applies to anyone bringing these games into the
country also. I say theoretically since nobody has
been arrested doing so yet

And finally, getting your computer repaired is not a
problem. The service I have gotten in Europe has
been excellent. However, the U.S. warranty is not valid

outside the U.S.)
Dwight Stewart
Leimen, West Germany

One item you don't mention that can't be mixed
and matched is the normal composite monitor.
Composite signals use different standards in different
countries, so computers and monitors should move
around the world as matched sets. We have a letter
from a subscriber in Kuwalt who mixed the two and
“smelled money buming.”

