e

Open-Apple

Releasing the power to everyone.

December 1987
Yol. 3, No. 11

ISSN 0885-4017
newstand price: $2.00
photocopy charge per page: $0.15

Living
Languages

Peviewed

Ifthere is one factor affecting the development of software for the Apple 11,
it's the search for a true high-level (that is, higher than assembly language)
development language for the computer. Applesoft Basic, the high-level
language supplied in ROM with the Apple, lacks certain features that make
writing programs of any appreciable size easy.

Programmers complain about the “sloth” of Applesoft and its lack of
“programming structures,” such as IF/THEN/ELSE and DO/WHILE. Most
programming structures can be simulated by creative programming, though,
and speed is often not as much an issue as being able to write a readable,
bug-free program while minimizing high blood pressure.

To my mind, one of the most serious failings of Applesoft is that it relies on
{ndexing its program logic by line numbers to transfer control. Therefore, you
have to remember what a subroutine at line 1000 does while typing in
"GOSUB 1000 to execute the code, lest you invoke a set of lines defining a
printout routine when you meant to open a disk file. There's nothing
mnemonic about a line number, In small programs, this is an imritation; in
large programs with 20-30 or more subroutines, you have to" use your
memory as an extension to Basic to remember where you put things in the
program.

The use of [ine numbers for indexing also makes SAVEing a generai
purpose subroutine so that it can be used in other programs an exercise in
patience, requiring a "hold and merge” utility that lets you “hide” the main
program in memorty, load the subroutine inte memory, renumber the
subroutine so that its line numbers don't clash with those in the main
program, then “unhide” the main program and merge the renumbered
subroutine into it. If you did happen to know what the line number of the
original subroutine was, it was almost certainly changed during this process.

Also, unless you have total recall, there's a possibility that some variables
in the original {main) program may clash with the newly added subroutine.
Which means you not only have to remember what all the (changing) line
numbers stand for, you also have to remember which variable names are in
use and (when changed) what they stand for. The larger the program, the
mote of a problem this becomes.

One solution is to allow the naming of a subroutine so that it can be
accessed within the program by stating its name. Therefore, "GOTO 1000”
might become "PRINT.STRING". Second, we'd like to be able to name
variables used In the subroutine separately from the main program, so thata
variable "ASTRING" used in the subroutine would not change the value of a
variable of the same name in the main program, unless we wanted it to.

There are a few programming fanguages on the Apple that allow this, but
they may use different methods to achieve the effect.

PROMAL is such a language. Maybe the easiest way to look at the
philosophy of the language is to analyze a small program, where it's easy to

see we're not in Basic anymore (the text following a ;" on a program line is a
comment, similar to a REM in Applesoft):

PROGRAM CALC
; Floating point calculation benchmark For PROMAL
; [baszd on June 1984 Byte, p. 336)

INCLUDE LIBRARY
INCLUDE DJD/PRTIME

1 fo~ some exira PROMAL Functiars
i for “print current lime” routine

DATA REAL A = 2.71828

; define a fsu variables
DATA REAL B = 2.14159 :

REAL C
WORD COUNT : includirg our loop counter
DATA WORD NREPS = 5002 : and number of repetitions
BEGIN ; EALC
QUTPUT ~Starting calculations az - 1 print starking time
PRTIME
PJT CR 7 follow with carriage return
C=1.19 : start with C = 1.2
FOR COUNT = 1 TO NREFS ; then manipuiate 11 3 while
C=Cc*pn
C=C*48
c=c/A
C=Cc/8B
DUTPUT *Caleulaz:ons done at ~ 1 print ceczpletion time
FRTIME
PJT CR
QUTPuT “Error = HE",C-1.0,CR v and amount of error crzazed
END ;3 CALC

First, unlike Basic, we have to describe ("DIMension,” in Applesoft
terminology) all variables before they are used. We can define variables as
being REAL {floating-point), WORD (a two-byte positive integer from 0 to
65535), INT (a two-byte integer from -32768 to 32767), BYTE (a one-byte
value from 0 to 2535) or BOOLEAN, (a two-state value such as TRUE and
FALSE).

Second, and very easy to spof, we have peline numbers. The flow of control
in PROMAL is determined by certain keywords (some disarmingiy familiar) in
conjunction with the indentation of the lines. For example, there are four

“1 JUST HOPE TWS WILL PUT TO AN END ALL THE MOPING AND WHINING ABOUT
NEEDING A MONITOR FOR HIS COMPUTER.”

3.82 -Open-Apple

indented lines containing simple mathematical expressions following the
line "FOR COUNT = 1 to NREPS”. The FOR loop in this case executes in a
manner similar to a loop in Basic, but PROMAL determines which statements
are inside the loop by their indentation. The four indented expressions are
executed over and over while COUNT increments (by 1) from 1to NREPS, then
the FOR "falls through” to the following OUTPUT statement. Notice there’s
nothing in this program similar to Applesoft’s NEXT statement — indentation
takes its place.

Using indentation as part of the control structure takes some adjustment if
you're a die-hard Basic programmer, but it has a good side affect: it strongly
encourages you to write structured code that you (or another programmer)
can read later. In this matter, PROMAL is more adamant about structure than
some other languages; as an example, indentation is normally used in
writing Pascal or C programs but is not forcibly required as in PROMAL Even
other languages | have used on the Apple that are stringent about structure,
such as Forth and LISP, do not do as much to force you to write readable
code.

The third difference from Basic is that the command words are different;
BEGIN, OUTPUT, and PUT are not part of the standard set of Applesoft
statements. BEGIN proclaims the beginning of a grouped set of instructions
that can define a PROGRAM, PROC (procedure; a subroutine that does not
return a value), or FUNC (function; a subroutine that retums a value or
values). END in PROMAL is (unlike END in Applesoft) required to define the
end of a PROGRAM or segment (PROC or FUNC).

Pairing the use of BEGIN and END to define program segments aliows us a
luxury in PROMAL that is not allowed in Basic; the easy definition ofa series of
general purpose routines for inclusion in other programs. What makes
PROMAL better than Basic in this regard is that the routines are accessed
painlessly by name rather than called by aline number. And another problem
solved: unless you explicitly make them otherwise, variables declared and
used within in PROCedures or FUNCtions are manipulated separately from
those in the main program or other procedures, even if the variables have the
same name. That is, we can have a variable named COUNT within a
PROCedure and do all sorts of things to it without affecting the contents of
another variable named COUNT in a separate PROCedure, FUNClion, or our
main PROGRAM. Incidentaliy, variable names can be up to 31 characters long
with all characters significant (not just the first two as with Applesoft).

This modularity feature is a reason for going through the pain of learninga
new programming language; you can speed up Applesoft, and you can
simulate DO/WHILE and other structured loops, but you can't get rid of the
line numbers. Only by going to a new version of Basic or a whole new
language can you escape the dreaded “hold/merge” required to make
Applesoft somewhat modular.

An example of the power of modularity: while the FOR loop and BEGIN/
END are part of PROMAL, some commands such as OUTPUT and PUT are not
part of the basic core of the language. OUTPUT and PUT are, in fact,
subroutines defined in the PROMAL source file “LIBRARY,” which is added to
the source file for the program CALC by the program line “INCLUDE LIBRARY."
This line causes the PROMAL compiler to effectively insert the text of the
source file "LIBRARY" and complile it as if the text were included in the file for
PROGRAM CALC at that point. LIBRARY includes many routines needed for
normal programming tasks and is provided as part of the language package.

The PRTIME statement refers to a routine | wrote to print the time at the
beginning and end of the benchmark code:

PROC PRTIME
: prints time from ProDDS-compatible clock to nearest sacond.
| ® gxpects Thunderclock-compatible format! *

EXT BYTL TARRAY[] AT 5293
EXT ASM PROC JSR AT SeFB4

: start of tise string for HO or TC
3 PROMAL W/L interface

[N WORD TROINTER
DATA BYTE DOBETTIME[) =

1 used for indexing
; M/L for get-time call

$20,500,36F | 3 JSR MLl
862, ; DFB GET_TIME
00,00, ; OW PRRMLIST
550 s RTS
BEGIN : PRTIME
JSR DOGETTIME : get time string lnto buffer

FOR TPDINTER = %22 TD 08 + clear high bits
TARRAY| TPOINTER] = TRRRAY[TPOINTLR] AND $7F
TARRAY([2] = “:
TRRRAY|S) = "¢
TRRRAY|E) = 308

; change commas to colons

: tarminate string with 5@

Vol. 3, No. 11

PUT TRRRRY
END

i «..8nd print It

This code is more obscure than the CALC program, but it shows an

- important feature of PROMAL—the ability to access the Apple through

definition of PROCedures incorporating machine language routines. The
byte array DOGETTIME is defined to contain a series of hexadecimal values
(yes, you can enter hex numbers into PROMAL) that provide the machine
code to execute a ProDOS GET_TIME call. We also declare an EXT ASM PROC
(external assembly procedure) named JSR at memory address location
$0FB4; this routine is actually part of the PROMAL runtime support that
allows us to pass control to an assembly language subroutine. We use the
procedure JSR to call our GET_TIME code, then dig the (Thunderclock
format) time string data out of the Apple’s input buffer. This allows us to print
the time to the current second instead of limiting it to minutes as “peeking”
at the ProDOS TIME and DATE registers would.

This specific PROC also shows a limitation of PROMAL—it isn't set up to
deal with strings as easily as Applesoft Since there is no “string” data type, we
access a string as a set of contiguous bytes, ending with a terminating value
of 0. This limits us to using defined string fields of known maximum size;
writing programs that would use dynamic string-handling in PROMAL would
require defining our own data structures and garbage collection routines for
a "string area” of memory. Still, this is not an unheard-oflimitation; I've had to
do this type of programming in FORTRAN on minicomputers, and the current
version of Kyan Pascal also does not have a siring data type.

PROMAL, though C-like in most of its features, also lacks (as far as I can
determine) a data structure to incorporate several variables into a “record”
similar to C's STRUCT, though programmers can write routines to build their
own associated data structures. PROMAL's library does incude several
functions that allow common manipulations of string data (concatenation,
substring search) so that you don't have to start off writing a string support
package.

Basic real-number calculations (add, subtract, divide, multiply) are directly
supported in PROMAL, but get more difficult with trigonometric and
transcendental functions such as LOG and SIN. These functions are provided
by a set of real number library routines that are slower than Applesoft’s binary
floating point routines, but much faster than Kyan Pascal’s BCD (binary
coded decimal) routines. | came up with the following results on a few simple
benchmarks from Byte (see the December 1986 issue of Open-Apple page
2.88, for information on sources for the benchmarks). All times are in
seconds:

cale sieve urite read

PROMAL 2.1 142
Applesaft 97

1mn 139 B4
245 kg &

Benchmarks are only one factor among many in evaluating a language, so
take the following comments in that light.

PROMAL's calculations were to 11 digits of precision; error for the iteralive
calculations was about 0.0000000036 percent. This was for simple “four
function” math (addition/subtraction/multiplication/division). For the more
rigorous Savage benchmark, which uses trigonometric and exponential
functions, PROMAL took 706 seconds and retumed a relatively high error of
about 0.002 percent over 10,000 iterations (versus 472 seconds with an
error of 0.0000050 percent for Applesoft). Bruce Carbrey at Systems
Management Associates, developers of PROMAL, says he is still looking into
improvements for the math library (they are looking into support using the
SANE math package provided in the ligs).

PROMAL's function library also uses iterative methods that can overflow
the stack on heavy calculations; I had to split the test formula used in the
Savage benchmark into two expressions to avoid a stack problem. PROMAL'S
manual wamed about this possibility.

In simple looping operations (a good portion of any program), PROMAL
blows Applesoft away; Applesoft takes 143 seconds to execute 100,000
iterations of an empty FOR/NEXT loop; PROMAL takes 9 seconds for the
same operation.

We can also go to the Gilbreath Sieve of Eratosthenes benchmark reported
in Byte (“Eratosthenes Revisited”, January 1983) to see some differences —
Applesoft takes 3,764 seconds versus 163 seconds for Kyan Pascal and 154
seconds for PROMAL

What the benchmarks don’t show is the flexibility of PROMAL in data
manipulation. In addition to the math operations and some of the string
support we've come to expect from Applesoft, PROMAL can do bitwise
operations on data. Also, any routine or function we can write can be added

December 1987

to any program with a simple INCLUDE, statement; all we have to do is save
the debugged subroutine in a text file for use the next time. The manual
describes a large number of such routines, which are included with the
PROMAL package.

The substantial PROMAL manual was a bit hard to wade through at first;
partly due to my lack of familiarity with the language, and partly due to the
fact that the manual interleaves descriptions of both the Apple and
Commodore 64 versions of the PROMAL system, which occasionally breaks
the flow of reading about certain features. The manual contains a tutorial but
the reference sections are definitely intended to be read by someone with
programming experience, Still, there is an index and [found all the
information to be there for solving some complicated problems in porting
the Byte benchmarks to PROMAL The reference sections and appendices of
the manual are superb in the fact that they give concise, technically accurate
descriptions of the PROMAL language and do not assume the reader is
simple-minded. Some of the information is hard toread the first time, butitis
the completeness of the explanations of some features ofthe language (such
as program chaining and overlays) that makes it so. If you decide to leam
about such advanced features, all the information is there waiting for you
rather than simple words peinting you to ancther manual.

If the manual is serviceable, the amount of source code that comes with
the PROMAL system is amazing. Included is source code for a simple
terminal driver (for the Apple Super Serial card and compatibles), the
floating point routines, access to the ProDOS ML, and a lot of samples. The
$100 developer's system allows you to distribute compiled programs written

Open-Apple 3.83

in PROMAL, including the use of the source code routines and a provided
stand-alcne runtime package for self-starting disks. A $50 end-user system
is also available, Both PROMAL packages include a very usable full-screen
editor, 2 linker for combining compiled routines, a command-ine executive
with “memory management” and 1/0 redirection, and an extensive library of
additional functions. A high-res graphics support package is available at
extra cost.

Phone suppert during several conversations with SMA was excellent. In
addition, there is a disk library of PROMAL support routines and programs
available to PROMAL users.

For languages other than Basic, it looks to me like today's front runners
under ProDOS 8 are Kyan Pascal and PROMAL Both have speed advantages
and disadvantages compared to Applesoft that depend on the operations
being performed. Pascal has the advantage of wider portability: PROMAL
versions exist for the Apple Ile and llc (ligs also, with eXception of the
terminal driver routines, which need to be updated for the ligs ports),
Commodore 64, and MS-DOS 100 per cent IBM-compatibles. That covers a
large portion of the micro market, but Pascal also nins on most computer
systems with some minor changes. The Apple version of PROMAL also
expects a Ile or Ilc (Ayan Pascal supports any 64K Apple I1). The primary
limitation for both languages is that neither has support of strings that
approaches the simplicity of Applesoft string variables.

PROMAL 2.1, by Syslem Manageme‘m Associates (3325 Executive Drive, Raleigh, NC 27609; 319-
878-3600) development system $99.95; end-user system $49.95; graphics toolhox $29.95.

Ask

(or tell)
Uncle

DOS

it

On fhe other hand

Hey! Every time I write to Open-Apple with a
suggestion, the next issue always contains a letter
from someone saying, “you can't do that” Come on
quys, if Steve Wozniak had that attitude, you'd all be
writing Cobol programs for IBM.

I'm particularly disappointed that Peter Baum
called my “frigid” reboot idea “extremely dangerous”
{"frigid flaw” page 3.80). Baum’s objection, like
earlier objections, is that it might not work with fiture
hardware revisions. He's concerned that the power-up
byte location may change.

First of all, Apple’s documentation states that this
byte is reserved, and won't change. Of course, that
doesn’t mean much. If it does change, so what? We'll
Just change a byte in the frigid reboot routine. Finally,
the frigid reboot routine is designed to keep you from
having to tum off your power switch. God forbid this
routine might crash! You might have to tum off the
power switch.

Unfortunately, the "you can‘t do that” attitude
seems to be taking over at Apple. The most exciting
hardware product at AppleFest was the Zip Chip, a
plug-in replacement for the 65C02 that triples the
CPU speed of the Apple Ilc, 1le, and Il-Plus. The
company says theyll have a llgs version out next year
to replace the 65816, but two of the top Apple ligs
engineers | talked to said, “you can't do that”™ My
money is on the Zipchippers.

1 talked to a number of ProDOS 16 developers at

AppleFest, who compiained of performance problems
caused by strictlyfollowing Apple’s tocl calling protocol,
particularly for keyboard input and screen output. [
say that ifyou sacrifice current program performance
for compatibility with future hardware, you'll be out of
business before that future hardware appears.

For the people who disagree with me and want to
write a rebuttal letter to Open-Apple, you can't do

that! Bill Basham
Diversified Software Research
Farmington, Mich.

Ah, come on Bill, sure they can. One of the best
parts of AppleFest for some of us was eavesdropping
on the parleys you were having with people who
designed various parts of the !lgs.

Compatibility is very important to the long-term
mental health of the Apple II user community, But
youand !, as authors of Diversi-DOS and ProntoDOS,
know quite well thal users will pay for speed. We
got our start making Apples faster. It can be done. If
Apple had done if our way to begin with, where
would we be now?

F.S. I was impressed by the Zip Chip too, buf weve
decided to reserve judgment until we actualty get
our hands on one. They're still not shipping.

Some feedback on reality

While [am an avid reader of Open-Apple. [am
seldom as gaivanized by an article as [was by your
lead piece for the November 1987 issue, "Reality and
Apple’s Vision.” You have articulated and made
explicit in this essay the uneasy feeling that has been
slowly and quietly creeping up on many of us in the
Apple [1 world, Thank you for sounding the alarm,

As one who bought a ligs early on, [am most
distressed by the absence of any indication that a 16-
bit AppleWorks will emerge from Apple or from
anyone else. I'm not talking about a ported-over
version of Microsoft Works. I'm talking about an
extension of the current AppleWorks, filecard interface
and all, to the 16-bit [Igs. The potential for building on
this solid foundation of success is enormous.

If Apple absolutely, positively must have a Maclike
appearance then let's use the mouse with MouseText
in conjuntction with cursor controlas many of Pinpoint

Publishing’s products do. We'll see what gets the best
reviews, The use of MouseText is infinitely faster than
the Mac-clone stuff I've seen so far.

When it takes an eternity for a 16-bit program
launcher to load and position itself for duty in

" comparison to 8-bit deskiop managers like Pinpoint’s

Run-Rur or Gien Bredon’s ProSEL, then someone has
really goofed. Consumers are not that stupid. If you
don't believe that, just try selling full-size cars with
lawn mower engines in them.

I have a Iigs. | have several of the latest and most
popular 16-bit software packages, When [want to get
something done, | use my 8-bit software, most
notably AppleWorks. Why? Because I don't want fo
wait longer to use a computer than it takes @o
assemble pencil and paper. Because | don’tlike to be
patronized by aweak and slowversion of the Macintosh
usef interface. [f] had wanted or needed a Mac, I'd
have bought a Mac.

You suggest that Apple execs are pursuing a rational,
though misguided, course of action in order to mollify
disaffected third-party software developers. Specifically,
you suggest that Apple is trying not to compete with
sofiware developers.

If that's their aim then how in the world did
HyperCard get out? HyperCard on the Mac will, !
predict, devastate the Mac software industry, especially
the big-boys. With HyperCard, anyone can be a
sophisticated software developer. My belief is that
they don’t know what they're doing.

We probably can't cure Apple of its death-wish,

that's too deeply ingrained. What we can do is make

the choice so plain that even a demnented fool would
recognize the hand that feeds him; so plain that basic
survival instincts override the afore-mentioned death-
wish. .

Here's what | propose. We begin a realistic public
discussion of what a 16-bit AppleWorks could and
should do. This will accomplish at least two things.
First, it will provide Apple with a free market-analysis,
one they wouldn't commission on their own because
of the fear that they might find out that their "Apple Il
as mini-Mac” theory is bankrupt. Second, it will place
the initiative for what such a software item might be in
the hands of those who will ultimately use it. Power to

_the people,

3.84 OpenApple

Let's hear what the Apple Il folks out there in
keyboard-land really think.

Frank Lowney

Milledgeville, Ga.

Your editorial “Reality and Apple’s Vision™ was right
on the money. | believe your statement that we are
“on the edge of a disaster” was not hyperbole. Itis an
accurate statement when applied to the Apple II's
true situation, and Apple should notice.

It probably won't notice, however. Why worry, when
Iis are still selling strong? Why find-tune marketing
and software evangelism, when you've made a massive
investment in pigeonholing the Apple |l as an “enter-
tainment and education” computer rather than
recognizing how 1s are actually used by many people?
The roaring success of AppleWorks provides excellent
feedback on how IIs are applied by adults in the real
world, but as you correctly noted, Apple itself has
almost gone out of its way to ignore this feedback,
other than to deposit the proceeds.

I am 31 years old, an account executive with an
advanced degree. | do not use a Macintosh; 1 use an
Apple lic because | like it and the publications and
the people. | am frustrated, however, by what I
perceive to be an undersupply of good productivity
software for my computer. The advent of the Ilgs had
me excited until | read from Jean-Louis Gassee that
“in no way, shape or form will we be in the office with
this computer.” (Editor’s note: I am not familiar with
this quote, and it doesn't ring true with what | have
heard Gassee say. I will attempt to find out more for
a future issue— sorry for the inferruption.)

What kind of message does that send developers?
John Sculley was on TV last night, singing the praises
of the “Madintosh in the office, the Apple I1in education”
What about the Apple 11 in the office, Mr. Sculley, or in
the home office?

[use Apple Writer, Point-to-Poin(, and software from
Glen Bredon and Bill Basham. These are better than
almost every MS-DOS application | have used, and |
have used a lot. Problem is, software for adults as
useful as these programs is rare. Apple perpetuates
this condition through its "positioning,’ which discounts
the possibility of non-school markets for the I1. And
through its training of computer store salesmen, who
can't help you if it doesn't go on or in a Macintosh.
(Hint: Bypass the suits and talk to the technicians.)

At the same time, Apple will not develop any more
qgood, crash-proof applications for the 1 because it is
afraid of criticism from developers. I really do feel that
developers have had their chance. Most of them are
too busy with MS-DOS to create new I stuff that
doesn't draw a greeting card or animate a bear.
Nobody criticized GRID when it came out with inte-
grated packages for its computers. Borland and
Ashton-Tate don't bellyache when Atari releases
software, or rake IBM over the coals for manufacturing
software. Why shouid Apple be so concemed about
static from outside developers when those developers
have had years to make more productivity software for
the 1, butdidn’t do much, except for AppleWorks add-
ons and programs in spedific vertical markets. When,
with a good product, it's easier to be a big fishin the 11
pool than in the MS-DOS ocean?

Clone prices are, of course, plummeting and MS-
DOS software is getting better and easier to use—
witness Microsoft Works for the PC. I'm thrilled that
Apple is using supercomputers and geniuses to
develop better system software. But what difference
does it make when they promote the Il essentiallyas a
gadget to display flash cards? Through too-narrowly-

focused advertising, ambivalent developer programs,
and a lack of desire to support the wider world of Woz'
invention, Apple will widen the gap between what
people need the computer to do and what Apple
wants them to do with the computer. That puts Apple
IIs in closets. It also puts clone makers, who haven'ta
fraction of the genius and resources Apple has at its
disposal. in the winners circle. '
Benn Kobb
Washington, D.C.

I like the concept of AppleWorks as an operating
system. Although I'm a true Macintosh zealot today,
my roots are in the Apple [1. Whenever | use an Apple li
today, my work generally involves AppleWorks' power
and flexibility. In fact, we are about to release an
interface to AppleWorks for our library circulation
system, Circulation Plus. It will provide a path for our
users to import and export data in both directions,
giving them the power of AppleWorks to massage
their data.

Don Rose
Follett Software Company
Crystal Lake, lI.

1 just finished reading your opening article in the
November issue and feel thal it requires a response. If
not for myself then in defense of Apple. 1 have been
using Apple computers since early 1982 and consider
myself an intermediate to expert user. | do not own,
nor have I used AppleWorks (except once when I got
so confused that | gave up).

The program uses commands that, though many
people are familiar with them and add-on programs
use them, are completely different from any other
program | know of. Also the program (and it is a
program and not an operaling system) uses a file
structure that is different from all other programs. |
know you can use text and DIF files but you yourself
have said that it's a pain. No DOS 3.3 program and
very few ProDOS (note: these are operating systems)
programs use the same file structure. All BBSs and
information services use standard text files, as do
many good ProDOS programs.

Before you think that 'm completely against Apple-
Works let me say that the program is of good quality
and very easy to leamn if you don't have to unlearn
another program in the mean time, It's proven itselfin
sales and testing. That's an excellent track record for
such a complex program.

As for Apple not having ads for AppleWorks, 1 don't
think they need them. Think about it. If you had a
product that sold as well as AppleWorks and also had
some other products that weren't selling, which ones
would you use your advertising budget for?

Martin Wallgren
Prophetstown, I1l.

| would like to disagree with you on a couple of
points regarding “Reality and Apple’s Vision.” Your
suggestion of acknowledging Robert Lissner’s contri-
bution to the Apple Il is a good one. However,
including AppleWorks as system software has some
serious flaws.

First some background. | was an avid Apple I user
for several years until just this last summer when I
acquired a Mac and sold my Apple [1. Until about 18
months ago, Apple bundled MacWrite and MacPaint
with every new Mac sold. For the flrst three years of the
Mac's life, there was only one word processor the Mac,
MacWrite. Because everyone received MacWrite free,
there was little room in the market for other word

Vol. 3, No. 11

processors. The market stagnated for three long
years in word processors and paint programs. Apple
finally decided to unbundle MacWite and MacPaint
for the Mac, and the market is now booming with word
processor and paint programs. And during the three
years that MacWrite and MacPaint came in the box
with the computer, did Apple grow and improve the
programs? Nol They merely updated each program
enough to keep it up-to-date with the evolving Macin-
tosh Operating System.

So you see, Apple really is a computer hardware
company. Not only do they ignore AppleWorks, the
program that has sold so many Apple lIs, but also
MacWrite and MacPaint Including AppleWorks as
system software for the Apple Il will not solve the
stagnation of AppleWorks, it will only stagnate the
competition also.

I also have problems with AppleWorks being the
standard platform for ProDOS. Before | continue, I
must admit I like the idea of an improved AppleWorks
that has many hooks developers could use to attach
their software. This would alleviate the problem of
one add-on patch to AppleWorks not getting along
with other add-ons. But ProDOS should be kept
separate from AppleWorks. One shouldn't have torun
AppleWorks just to delete or copy a file. The beauty of
ProDOS is that it is just an operating system. The
SYSTEM file defines the actual user interface. This is
one of the most common misunderstandings of
ProDOS. | have seen many articles where a command
like "BSAVE LOADER.SYSTEM, TSYS, L16284, AB192”
is attributed to ProDOS. This is absolutely incorrect!
Thatis a Basic.system command. ProDOS only under-
stands Machine Language Interface calls. The beauty
of ProDOS is that it leaves the user interface to the
SYSTEM file, and SYSTEM files can be developed to
make ProDOS look like any operating system (Kyan
Pascal’s KIX.SYSTEM, for example, has a Unix look).

So for some constructive ideas, | agree that Apple
has to create a vision with the Apple 1l as they have
with the Madntosh. This vision might settle on a
standard Interface for the Apple Il under ProDOS; |
believe that Basic.system is the de facto standard
right now. Apple should decide on supporting the
Apple Il and stop worrying that it will undercut their
Mac sales. Whether Apple sells an Apple Il or a Mac,
they still have a customer.

Craig Miller
Honolulu, Hawaii

1 complelely agree with your point that PFroDOS
and AppleWorks should be separate. As you point
oul, significantly different user interfaces can be
embedded In SYSTEM programs; that is one of the
beauties of the Apple ll. The point at which we
disagree is that you think Basic.system is still the de
facto standard interface on the Apple Il and I think
Aplworks.system became the de facto standard
months ago.

As the de facto standard, | see no reason a 16-bit
version of AppleWorks needs to change the user
interface at all. For once why couldn’t we have a 16-
bit version of a program that aciually recalculates
spreadsheets and sorts databases faster than the 8
bit version, instead of wasting all the extra power on
bells and whistles. Why not a 16-bit version that uses
today's larger memories for data space rather than
for program space? The major enhancements I look
forina 16-bit AppleWorks are speed, larger data files,
system hooks, developer’s documentation, and
memory management thal would allow third-party
developers o do the real enhancing.

December 1987

The Hypercard precedent gives Apple the liberty
to begin putting AppleWorks in the bax with atl Apple
IIs. This can hardly stifle a software market that has
already been choked to death by an AppleWorks that
has a suggested retail price of $250. Itwould, in fact,
give software developers a new base (in Apple’s
words, 2 “platform”) to develop from.

Ifwe can't convince Apple to put AppleWorks in the
box with the Apple I within the next couple of
months, the program that defines our machines will
fall into the hands of Claris. Perhaps that’s no worse
than having it at Apple, but stil, the idea makes me
Sweat,

All ProDOS Sider update

Please warn your readers that the popular all-
ProDOS ROM developed by Steve Park, which has
been used by many people on all models of the 10
meg Sider and the 20 meg Sider 11, is not compatible
with our new 20 meg model, called the Sider D2. We
are using a different drive and controller in the 20 now
and we are hearing that not only does Park’s ROM not
work, but it will screw up the format on the drive to the
point that our own software and ROM will no longer be
able to install the drive.

We have been shipping the D2 for about 6 weeks.
You can easily identify it because it has a black label
on the front that simply says “The Sider.” The old 10s
and 20s had blue labels that said “The Sider” and
“The Sider [I” respectively, The 10 meg siders are no
longer being built. The suggested retail price of the
Sider D2 was just lowered to $395. Despite the use of
a third-party product with the Sider, we have not
voided anyone’s warranty and have replaced all D2's
that have run into this problem. I am told that a
factory format can get the drive back up and running
fine.

Lance Jacobs, Technical Support
First Class Peripherals

Those of you with older 10 and 20 meg Siders
whose ears perked up at the words “all-ProDOS
ROM” can contact Steve Park al Advanced Tech
Services, PO Box 920413, Norcross, GA 30092 404
441-3322. The ROM sells for $49.95.

Zero-page: No Vacancy

Ihave seen lists of zero-page locations compiled by
Beagle Bros and others, but none of them list ali the
locations. What about the rest? Are they simply not
used by Appiesoft or DOS?

Nick Doulas
Chicago, I1L.

On page 142 of the roDOS Technical Reference
Manual is a list of zero-page locations, who uses
them, and which are free, This map lists location $D6
asunused. In writing an ampersand routine for use by
an Applesoft program, I discovered, after much
frustration over an intermittent and elusive bug, that
$D6isused. Justa caveat for your readerswho maybe
using the ProDOS manual as an exclusive reference.

Chuck Bilow
Oregon, Wisc.

In general, assembly language programmers
should assume that every byte on zero-page is
used. In fact, Applesoft, DOS, and the Monifor do use
almost every last byte; assume that otherampersand
routines use the few bytes that are left. If you need
some zero-page bytes for indirect addressing, save

what’s already in a couple of bytes, use them, then
replace the previous contents, Don'l attempt to use
zero-page as a storage area— build your own data
storage area inside your program.

The book What's Where in the Apple, by William
Luebbert, is probably the best single source on zero-
page usage. Two of the major companies that publish
Apple Il assembiers, Roger Wagner Software and 5-C
Software, have programs available that disassemble
Applesoft and give you complete details on its zero-
page usage.

AppleWorks on the II-Plus

My soccer club already had a II-Plus but wanted to
use AppleWorks. After a bit of checking around to
compare prices and the market for 1I-Pluses without
drives or monitor, just the box, we decided to upgrade
the 11-Plus instead of buying a Ile. Not necessarily the
best way, bul the cheapest.

Before starting, we determined that the "minimum”
requirement was a 64K I1-Plus with the famous "one-
wire” shift key modification. We had both, so we were
On our way.

We had to have an 80-column card to run Apple-
Works. | found a “clone” card for a very reasonable
price from WG Technologies. Look in the back pages
of Computer Shoppermagazine for their address and
a current price quote.

Itis possible to use an Apple-style memory card for
desktop expansion, if you have AppleWorks 1.3 (we
did). we bought Applied Engineering's RamFactor.
The RamFactor comes with AE's patch software that
makes AppleWorks run on the [1-Plus. The version of
the patch we received was 1.21 — I know from another
project that this is the same software that AE sells with
their ViewMaster 80-column card. '

After installing the 80-column card and the Ram-
Factor the rest was easy. (You may need to adjust your
monitor after installing the 80-column card.) Make a
copy of AppleWorks. Again, it must be version 1.2 or
1.3, not 2.0, The AE program is menu driven and | am
not going to describe how to use it. Just follow the on-
screen instructions,

If you have AppleWorks 1.2, you will not get much.
Even after patching, it will only use 64K for programs
and data. This means you have just a 10K desktop
and the program must go back to the disk to “overlay”
program segments every time you switch operations.
Get 1.3 if you can.

With AppleWorks 1.3 and the RamFactor, data space
is limited only by the amount of memory installed on
the Ramfactor. The real plus, however, is that 1.3 will
load itself into the memory card for fast operation.
The only program segment that must be loaded from
the disk is the one for printing. A small price to pay for
the speed of using the memory card for all the rest of
the AppleWorks’ program functions,

Since the [I-Plus does not have an open-apple key.
the patched program has you press the ESC key once,
and then the desired key. Such as ESC-P to print or
ESC-S to save. You press ESC ESC to get the actual
ESCape key.

Due to the lack of a solid-apple key, and the MMU
chip of the lle, add-on programs such as Appleforks
or PinPoint will not work on a lI-Plus system.

Tom Smith
Fort Vancouver, WA

Iwas unable to find an ad from WG Technologies in
the latest issue of Computer Shopper. However, we
recently received a flyer from one of our subscribers
who works for a company called Nexo Distribution

Open-Apple 3.85

(914 E 8th St, #109, National City, CA92050 619-474-
3328). They sell ail the pleces needed fo get Apple-
Works to run on a 64K Apple Il or lI-Plus for under
$100:

Pluskorks 11 software, Norwich Data $35.80
Videx-compatible B@-column board 45.00
Shift-Key Modification kit E.S5

PlusWorks has several advantages over Applied
Engineering’s software—it's compatible with all
Appleworks versions from 11 through 2.0 and it's
compatible with all memory boards— even older
128K Satum- and Legend-type boards.

If you are starting with a 48K Apple II, Nexo has a
16K card for $35, but the money might be better
spent onan accelerator card for slot 0— these all add
the missing 16K as well as speed things up (see "RAM
found in accelerators,” in our December 1986 issue,
page 2.88).

Mutftiplan update

In "Spreadsheet $tring variables,” a reader asks for
a spreadsheet that lets you use the IF statement with
text. He says "neither AppleWorks nor Multiplan
allows text as a clause or argument in formulas.”
AppleWorks, true, but my version 107 of Multiptan
allows more than adequate string manipulation. For
example, IF{ RIC1>R1C2, "MORE THAN', "LESS THAN")
yields the text "MORE THAN" if R1C1 is greater than
R1C2 and the text "LESS THAN" in all other cases.

Multiplan 107 also allows the concatenation of
strings using an ampersand ("Open-" & “Apple”
yields "Open-Apple”); the separation of strings using
the MID({"TEXT" start,num) formula; the translation of
strings to values using the VALUE("text”) formula; and
the translation of values to strings using the FIXED-
{value,num) formula. In short, there isn't much which
Muitiptan can't do with strings (or any type of data).

Interestingly enough, though, I'm in the process of
changing alt of my Muitiplan spreadsheets to Apple-
works for two reasons: 1 the ease with which | can
move from application to application and 2. the
speed with which AppleWorks calculates. True,
Multiptan overpowers AppleWorks in some areas, but
since AppleWorks is probably doing less (or are there
other reasons for Multiplan’s sluggishness?}, I've
found speed improvements of up to 40 seconds on
similar 12 column by 60 row spreadsheets.

Onanother spreadsheet topic: on page 3.39 of your
June 1987 issue, you stated: "4 simple way to get
blanks instead of zeroes in calculated cells is to set
up an &IF statement that displays 'NA'if a cell’s value
is zero. Then start up your favorite disk zap program,
find the NA...and change it to blanks.” Thank you, it
works...but not enough.

If the calculated “double-blank” cell is the last
calculation in the chain, fine. But, for example, if you
add a column of numbers that includes even one
double-blank cell, the answer will also be a double-
blank. The whole idea was to clean up the looks of a
spreadsheet with lots of zero cells, but your solution
cleans up all the result cells, too. So, does anyone out
there have a patch to allow somethinglike @[F(A130,
AY'B1 " “)? Multipfan allows this and it's one of the
features | miss with AppleWorks.

Robert Cerchio
Carbondale, 11l

We thought Multiplan for the Apple Il was dead, but
a call to MicroSoft's sales department al 800-426-
9400 (206-882-8088) revealed they still sell it.
Version 1.07 is the latest. Updates from older versions

3.86 Open-Apple

cost $25. Suggested retail on a new copy is $95. It's
still "Apple” DOS 3.3 based and still copy-protected.
Microsoft hasn't tested it on the Iigs (and doesn't
intend to), but says it's compatible with all earlier
Apples.

You've identified a significant limitation to the NA-
method for displaying cells with zeros as blanks.
Does anyjone have a better idea for this one?

AppleWorks ligs defeater

Maybe [am too old to switch (70 years) but 1 still
want to use AppleWorks version 1.3 on my ligs. But
even though | have a RamFactor card in slot 7 and a
15 meg GSRAM card, | can only get a 55K desktop.
Surely, someone can come up with a patch to make
AppleWorks recognize the RamFactor,

Elmer Meissner
Bedford, Ind.

Incredible as it may seem, AppleWorks 1.3, which
was released months before the ligs, includes a test
fo see if it Is running on a ligs. If it is, it refuses to
expand into an Apple-standard memory card, such
as RamFactor. AppleWorks 2.0 also refuses to use
this type of memory card when run on a figs.

Dennis contacted our AppleWorks guru Alan Bird,
who had a patch handy. He came up with it while
debugging the Time Out manager so he could fool
AppleWorks 2.0 into thinking it was running ona Ile
when it was actually running on his Iligs.

Alan's one-byte patch simply changes a JSR $FE1F
instruction (20 1F FE) to BIT $FELF (2C 1F FE). As a
JSR, this instruction jumps to the Iigs identification
routine. As BIT, it makes the ligs appearto be alfe. To
make the palch, use a disk zap utility to search
through APLWORKS.SYSTEM for the byte to change,
or get info Applesoft, insert an unmodified copy of
your AppleWorks disk In the drive, and enter:

POKE 768,44
BSAVE APLWORKS.SYSTEM,TSYS,A768,01,813223 (V 1.3)
BSAVE APLWORKS.SYSTEM,TSYS,A768.01,B138@5 (V 2.8)

Because of the paich technique being used, there
is no need to BLOAD the file first (see “Patch instruc-
tions patchy,” page 3.79, for more).

AppleWorks 2.0gs bugs

After running AppleWorks 2.0 on your IIgs, try
running a program that uses the high-resolution
graphics screen. You'll just see garbage. AppieWorks
2.0 tums off ligs “shadowing” for everything but the
text screen and neglects to fum it back on. The
following short program will fix this:

16 REM fix IIgs shadow register

20 FOR 1=0 to 10 : READ X : POKE 768+1, X : NEXT

3@ DATR 173, 53, 192, 41, 16e, 9, 8, 141, 53, 192, 56
4@ CALL 768

Jim Luther
Kansas City, Mo.

For the full scoop on what “shadowing” s, see
“iigs altemate display mode” in our December 1986
issue, page 2.86.

Asimilar bug in AppleWorks 2.0 is that it gets an ID
from the ligs ID manager, but doesn't delete it before
quitting. If you run AppleWorks 2.0 on a ligs 256
times without turning the machine off (not impossible
If you leave your machine on 24 hours a day), the ID
manager will run out of 1Ds. We haven't had time to
actually test to see what kind of disaster happens
then, however.

Another fix for both of these problems is to simply
make AppleWorks think it's running on a lle, as
demonstrated in the previous letter.

lle aux-slot advantages

FPolential users of the Beagle Compilershould note
that compiled programs may use either aux-slot or
standard-slot RAM cards to hold variables. However, it
is only the aux-slot-type card that can be partitioned
to hold both variables and a RAMdisk. | have been
able to have both AppleWorks and my own compiled
programs in a RAMdisk while using the rest of the card
for variable storage (my programs) or desktop
(AppleWorks),

Anyone developing or using programs that read
AppleWorks files should find this type of arrangement
very convenient. Using ProSel it is possible to jump
from AppleWorks to your program and back in less
than 10 seconds. This feature, in my opinion, tips the
balance in favor of auxiliary cards for the time being.

Paul McMullin
Campinas, S.P. BRAZIL

Gutenberg lives

After reading September’s “"Reviewer's Corner”
(pages 3.59-3,61), one might think that Printrixis the
first text processor to deliver the type of performance
you describe. (1 know you didn't say that) However,
the majority of the features you describe have been
available to 48K Apple owners since 1981, when the
firstversion of Gutenbergwas introduced.

The current ProDOS-based version 3.0 allows four
fonts to be in memory at once and allows still more
fonts to be used on a given job. These fonts may be
downloaded fonts or special graphics fonts that allow
the use of huge characters. They may be stored on a
RAMdisk for quick access. Vertical spacing, letter-
spacing, and minimum and maximum word-spacing
can be changed in tiny increments, as with Printrix, at
any place in the text.

Spedial formats, such as fractions, definite integrals,
etc, can be automated so that inputting such things
is a simple matter. The program supports multi-
column setups, automatic formatting of simple and
complex ruled and unruled tables, customizing of
automatically printed headers and footers (changeable
atany point in the text), footnotes and endnotes, mail
merge, several types of automatic numbering for
enumerated paragraphs, imbedding of graphics
material, and much more.

Its appeal to foreign language specialists is obvious,
since it comes ready to print in Greek, Hebrew {yes,
left to right), Arabic, Russian, Ukranian, Syriac, and
Cree (an Indian tribe of Western Canada). Just in case
you want to change your dip switch settings to use
one of the European fonts supplied with the Image-
Writer, Gutenberg supplies you with the matching
screen fonts.

Itisn't perfect though. Not nearly enough fonts are
supplied to printa newsletter such as yours, although
there is a hint in the manual that more are on the way.
It is not cheap, but technical support is fast and
excellent. It supports only the Apple DMF, ImageWriter,
and ImageWriter 11. It formats at the printer, not on the
screen, but on the other hand offers unlimited
formatting capabilities and superb precision.

For any Apple owner with a special job (eg. linguist,
scientist, mathematician) it may be the answer to a
prayer. A few months ago a certain magazine carried
a rather thick center-fold ad for a new IBM-based
technical word processor from a very wellknown

Vol. 3, No. 11

company. [t asked the question, "Was your word

processor designed to do this?” Asa Gutenberguser,

| could answer “yes” and be about 95 per cent
truthful.

OlofMonson

Kingston, Ontario

Gutenberg Sr. 3.0 requires 128K and an 800K
disk device, It sells for US$360 (C$460) from Gutenberg
Software, 47 Lewiston Road, Scarborough, Ontario,
CANADA M1P 1X8, 416-757-3320. The company also
offers a liS$91 (C$118) version called Gutenberg Jr.
it comes with a manual on disk and specific defined
printing formats. The junior version is printer-specific,
however, it is available for a wider selection of
printers than the sentor version. For more information,
write or call Gutenberg Software and ask for a copy
of their 16-page sample brochure (printed with
Guienberg, of course).

Help wanted

Is there anyone you can pay to create an AppleWorks
custom printer definition for a non-Apple printer?

Todd Shelton

Chico, Calif.

Or how about a disk full of SEG.PR files for non-
Apple printers? We don't know of any, yet.

Multiple custom printers

In its April 1987 issue, the National AppleWorks
Users Group’s AppleWorks Forum published the
addresses of the pre-defined printer codes held in
SEG.PR The article is by Garth Shultz, who attributes
the information to an article by David Walker that can
be found in the DL-4 library on CompuServe's MAUG.

With this information it is a relatively simple task to
replace a set pre-defined codes (for example the
Imagewriter codes) with a set of custom codes you've
entered using the AppleWorks Add a Printer menu.
You can also change the printer names thatappear in
the in the Add a Printer menu by editing SEG.M1 (at
$0E9 of block $0117 on the AppleWorks program
disk).

{'ve created a single SEQ.PR file that includes an
Okidata driver with draft mode codes, an Okidata
driver with near letter quality codes, and an Okidata
driver with boldface begin defined as ESCAPE. Works
fine.

Bruce Ristow
Rochester, NY.

Shultz’s idea is to define a custom printer from
within AppleWorks, BSAVE that section of the SEG.PR
file, then overlay one of the pre-defined printer’s
codes with It, Then you go back to AppleWorks and
add thal pre-defined printer. Now, when you use that
printer, youll get your custom printer’s codes. This
allows you to put three custom printers in SEG.PR
rather than just one.

The only difficulty with this technique is that the
length of a set of SEG.PR printer codes varies. The
length depends on exactly whal codes a printer uses.
For example, a printer that uses a code such as
“ESCAFE R ESCAPE 44 LF” for super-script begin
needs more space than a printer that uses a code
such as "ESCAPE S” for this.

SEG.PR has a 500-byte space for the custom
printer. If you BLOAD SEG.PR, A$2000, this space is
af $2B42. You can overlay a complete 500-byte
section of codes info SEG.PR at the start of the Scribe
section ($24BA) and at the start of the Epson FX
section {$2845) withoul overwriting either the Imagew

December 1987

riter/Apple Dol Matrix printer codes or the custom
printer codes (you will ovenwrite most if not all of the
other pre-defined printer codes however, so don't
attempt [o use them). Proceed like this:

enter Appledorks, define custom printer H1
exit RAppledorks, enter Applesoft

BLOARD SEG.PR, TSYS, AS2000
BSAVE CUSTOM.1, AL1674, L5808

snter Applelorks, define custom printer H2
exlt AppleWorks, enter Applesoft

BLOAD SEG.PR, TSYS, A5Z0R0
BSAVE CUSTOM.2, RL1074, LS00
BLOAD CUSTOM.2, Al0363
BLOAD CUSTOM.1, A9402

BSAVE SEG.PR, TSYS, R%2000

enter AppleWorks, removs all printers

add a Scrihe; this is custom.l

add an Epson FX; this le custom.2

add a custom printer; this would be cuetom.3

The proportional problem

Why isn't it possible to set up a custom printer for
AppleWorks and the ImageWriter 11 that will print

proportionally?
Michael Leddy
Charleston, Ill.

Proportional fonts are hard on word processors.
The concept of “characters-per-inch” simply doesn't
apply to proportional fonts—the characters, by
definition, are all different widths. Consequently, to
get printed lines to be approximately the same
width, the word processor has to know the exact
width of each character and do line calculations
based on those widths. Many more “I"s fit in a line
than "M's. To do full justification, which most people
with access to a proportional font immediately want
fo do, the word processor also needs fo calculate
how much space should go befween each word.
Then it needs to know the commands for printing
blank spaces of various widths.

AppieWorks' author correctly, in my estimation,
judged that entering all this information into custom
printer definitions would be beyond the abilily of
most users, and so he didn't include proportional
capability for custom printer setups. He did, however,
gotothe trouble to support proportional fonts on the
Apple DMF/ImageWriter, the Apple Daisy Wheel, and
the EpsonFX_. . & 5 s B

It sounds like what you want to do is add some
custom features to the Imagewriter without losing
those proportional fonts, This can be done by
manually editing the Imageuwriter definition in the
SEG.FR file. See "Zapping Imagewriter codes” in our
February 1987 issue, page 3.4. The Applelorks BBS
{see "AppleWorks + Multiscribe” in August 1987,
page 3.54-55) includes an assembly source file for
SEG.PR that you can follow like a roadmap. Using
this information, it's possible for a knowledgeable
individual with lots of spare time to create a “custom”
driver for any printer. But be aware that the number
of capabilities defined in SEG.PR is limited; to add a
feature will mean losing existing capabilities.

Ifthis sounds too difficult, Open-Apple subscriber
Eugene Whitehouse has developed a program called
ExtraWorks Printer Utility that rewrites AppleWorks’
Imagewniter or Epson printer setups so that you can
get things like color printing, mousetext, half-height
sub- and super-scripts, and slashed zeros without
giving up proportional type ($20, 25 Kensington
Ave., #503, Jersey City, NJ 07304).

Database crash lead

I'm pretty sure I've found a weird problem with
AppleWorks that occurs to people who upgrade from
version 1.3 to 2.0. I've seen it about a dozen times
now, and have examples. All of a sudden, AppleWorks
2.0 will not load old database files created with 1.3
anymore. In every case, the byte in the header that
shows the number of report formats defined was
incorrect. I haven't found the code that causes this
yet, and it obviously doesn't happen a lot, or we'd
have heard of it already, but I've seen it enough to be
convinced that somewhere there is a problem. If you
hear from anyone who has this problem, have them
send me a copy of the disk and I'l at least fry to fix it; it
may help me find the cause.

Eugene Whitehouse
25 Kensington Avenue, #3503
Jersey City, NJ 07304

AppleWorks page nos. (cont)

I use the AppleWorks word processor to areate long
documents, some over 300-400 pages. According to
the manual, [should be able to get up to 511
consecutively numbered pages. But with both Apple-
Works 1.3 and 2.0 I get interrupted pagination following
page 256, Making corrections on the misnumbered
pages is a chore, so if there’s any way of getting
AppleWorks to deliver its 511 consecutive numbers,
I'd be delighted to know it

David Alman
Highland Park, N.J.

We've been following this bug since Aprit 1986
(page 2.23) and once had a report the bug would be
fixed in AppleWorks 2.0 (page 2.31). Apparently it is
more complicated than at first thought —tests I've
run using a page length of half an inch, a header with
the page number, and one line of lext. print page
numbers correctly well into the 300s. (This kind of
lesting takes a long time and uses lots of paper—
printing to a formatted text file (August 1985, page
2.60) helps some.)

At any rate, you might want to look at the program
WriteWorks from W*A*R (Working Apples Relentlessly)
Software ($29.95 plus $2 shipping; 4974 N Fresno
St, #282, Fresno, CA 93726). WriteWorks is a “post-
processor” for AppleWorks word processor files. To
use it you leave AppleWorks, run WriteWorks, and
telt it which file to print. It picks up internal AppleWorks
formatting codes, reacts to additional “double-dot”
commands (lines that begin with two periods) that
you embed in your file to send special codes to your
printer, automalically formats footnotes, and correctly
prints page numbers.

CHAIN bugs and overlays

I am developing a ProDOS-based Applesoft program
that would benefit greatly from using binary program
overlays as described in your April 1986 issue, page
2.20 and 2.21. I want to use three program segments
that share lengthy menu and character input
subroutines.

So, following your directions, | slavishly prepared a
file containing those shared subroutines and named
it "OVERLAY." After many unsuccessful attempts at
doing arun and much tinkeringand the fourth re-read
of the article I came to the conclusion that therewas a
problem with LOMEM. And, lo and behold, on page
2.20 [find "Neither the DOS 3.3 nor BASIC.5YSTEM
versions of CHAIN pay attention to whether you have
reset LOMEM". And this is a fact.

Open-Apple 3.87

But the instructions you give for a STARTUP program
at the bottom of page 221 say to move LOMEM
beyond the end of your longest overlay and then
CHAIN to your main program. Have | missed
something?

Theodore F. Smolen
Danvers, Mass.

What we're dealing with here is your bugs, my
bugs, and Apple’s bugs. Your bug is the simplest to
explain, so let’s start with IL.

Your shared menu and character-input routines
should be in your main program and your three
program segments in three separate overiays. Instead,
you have designed your program with a single,
permanent “overlay” and three “programs” that you
want to CHAIN in under the overlay. This won't work.
The overlay technique is intended to replace CHAIN.
it's based on the idea of a main program holding all
shared routines and of overlays holding independent
program segments. You have to think of CHAIN and
overlays as two different techniques. The difference
between them is that CHAIN changes the whole
program in memory, while the overlay technique
changes only part of the program in memory.

My bugs come in two parts. You havent missed
anything, my comments at the bottom of page 2.21
are just stupid. Take a pencil and change the next to
last paragraph so that it says, "If you attempt these
tricks, your main program should begin with the
following steps.” Then cross out the last fwo steps,
which relate to the CHAIN command. We could have
aseparate STARTUF program, like the one described,
that simply coples all program segments from
floppy disk to RAMdisk. But it should end by RUNning
the main program. And the main program itself, not
STARTUF, should change LOMEM and should RESTORE
its own variables.

The second bug | made was higher on page 2.21,
where | showed how tojump from the main program
to the overlay. The way I did it works only when the
line numbers used are “righl.” For a complete
description of this bug and how to get the overlay
technigue to work with any line numbers, see the
letter "Problems with splits,” from Paul Nix, in our
September 1986 issue, page 2.64.

Apple’s bugs have to do with Basic.system’s CHAIN,
STORE, and FRE commands. These three commands
share a set of routines that move Applesoft variables
around in memory. Unfortunately, the routines need
to work stightly differently for CHAIN and STORE
than for FRE and for automatic garbage collection,
bul they don't. As installed at the factory, Basic.system
works fine for FRE and garbage collection, but
messes up CHAIN and STORE when the Appiesoft
variable tables happen to be an exact mulfiple of 256
bytes long.

In the same [ssue of Open-Apple, on page 2.20. I
mentioned acouple of articles in Call -A.P.P.L.E. that
first demonstrated, then fixed, the CHAIN/STORE
bug. What | didn't know at the lime was that the fix
has the side effect of messing up FRE and garbage
collection. Complete details are available in the July
1987 issue of Byte's “Best of BIX: Apple” column, on
pages 305-310. Assuming I now understand the
whole problem, which is debatable, the complete fix
is:

Immediately before CHRIN or STORE:
IF PEEK(49149)=1 THEN POKE 41B53,3

Immediately after CHRIN or STORE:
IF PEEK(49143)=1 THEN POKE 41859,7

.00

upen-appne

Basic.system L1 is unusually bug free, so I'd hate
to see it modifled much, but I do think Apple should
give us a version 1.2 to fix this particular bug.

Basic choices
Is there a different Basic for the Apple lle?
Daniel Mason
San Jose, Calif.

Quickly skipping by all the CP/M Basics available
to you if you have a CP/M card, and all the MS-DOS
Basics available if you have a PC Transporter, and all
the upcoming Basics that are llgs-specific, the
ansuwer is yes.

But first sit back and decide what exactly it is you
don't like about Applesoft. Is it lack of speed? Is it
limited memory space for varlables? Is it lack of
structured loop commands? Is it a flaccid command
set? Is it difficulty with adding machine language
modules? Is it line numbers? Is it bwo-character
variable names? Is it lack of portability to other
computers? Go make a list of what's important to
you and meet me back here in five minutes.

Nouw, if lack of speed and memory space are your
only major complaints, what you need is the Beagle
Compiler (current version is 2.5). We don't want to
be redundant, so see our February and March 1987
issues, pages 3.1-3.2 and 3.9, and "Expanding Apple-
soft” in last month’s issue, page 3.80, for more
information. The Beagle Compiler will run on any
64K orlarger Apple Il, supports aux-mem and Apple-

Open-pple

is wrillen, edited, published, and

® Copyright 1987 by
Tom Weishaar

Business Consultant Richard Barger
Technical Consultant Dennis Doms
Circulation Manager Sally Tally
Business Manager Sally Dwyer

Mosl rights reserved. All programs published in Open-Apple are
public domain and may be copied and distributed withoul chargs.
Apple user groups and significant others Illtr;epfiﬂl articies lrom
time (0 lime by specific wniten reguest. Requesls and olher
editorial material including letiers 1o Uncle DOS. should be sentto:

Open-Apple
P.0. Box 7651
Overland Park, Kansas 66207 U.S.A.

Published monthly since January 1985 World-wide prices (in U.S.
dollars, awrmail delivery included at no additional charge) $24 for 1
year; §44 for 2 years; S60 lor 3 years. All single back 1ssues are
currenlly available for $2 esch, bound, indexed editions of Volume 1
and Volume 2 are §$14 85 each. Volumes end with the January issue;
an index for the priof volume ig included with (he February issue.
Please send all subscriplion-relaled correspondence to:

Open-Apple
P.0. Box 6331
Syracuse, N.Y. 13217 U.S.A.

Open-Apple s available on disk {rom Speech Enlerprises, PO.
Box 7986, Houston, Texas 77270(713-461-1566)

Unlike most commercial software, Open-Appie is sold n an
unprolected lormat lor your convenience. You are encouraged lo
make back-up archival copies or easy-10-read enlarged copies for
your own use withoul charge You may also copy Open- e ior
distnbution (o others. The distrbution fee is 15 cents per page per
copy distribuled
WARRANTY AND LIMITATION OF LIABILITY. | wairani ihat most of
the information i Opem-Apple is uselul and correct, although
orivel and mislakes are included from lime to lime, usually
unmtentionally Unsatislied subscribers may return issues wilhin
180 cays of delivery for a full refund Please include a note from your
parents of children confirming that all archival copies have besn
destroyed The unfulifilied portion of an gaid subscription will be
refunded on request. MY LIABILITY FOR; RORS AND OMISSIONS
IS LIMITED TO THIS PUBLICATION'S PURCHASE PAICE In no
case shall | or my contributors be liable for any incidental or
consequential damages, nor for any damages 'n excess of the fees
paid by a subscriber,

ISSN 0885-a017
Printed in the U.S.A,

Source Mail: TCF238
CompuServe: 70120,202

standard memory cards, is ProDOS-based, and is
unprotected. Distribution of self-ninning disks requires
a royalty payment of $50 a year ($74.95, Beagle
Bros, 3990 Old Town Ave, #102C, San Diego, CA
92110 619-296-6400).

If lack of structure and a weak command set are
your major problems. {ake a look at Blankenship
Basic (current version is 2.7). Like the Beagle
Compiler, it Is highly compatible with Applesoft
itself—the only Applesoft command Blankenship
Basic doesn't support is HGR2. On the other hand, it
adds a number of new commands that allow structure,
such as REPEAT/UNTIL, WHILE/ENDWHILE, WHEN/
ELSE/ENDWHEN, and LOOP/EXITWHEN/ENDLOOP. It
adds commands that allow routines to be called by
name rather than by line number. It can print text and
it can draw and fill boxes on the graphics screen; it
has SORT, SEARCH, and PRINTUSING commands;
and it has facilities that allow you to save often-used
subroutines in individual files and easily merge
them into programs you are writing. It includes its
own line editor. For more, see our answer to “Toward
a perfect Basic” in March 1986, page 2.14. Blanken-
ship Basic comes inboth DOS 3.3 (any 48K Apple Ii}
and ProDOS (any 64K Apple 11} versions, is unpro-
tected, and can be distributed on self-running disks
as shareware with no royalty payment. ($25D05 3.3
or ProDOS, $39.95 for both, from Blankenship and
Associates, PO Box 47934, Atlanta, GA 30362 404-
491-3151).

In between the Beagle and
Basic is an ever-growing collectlon of ampersand
Ppackages that add various abilities to Applesoft. This
collection is much too large to tick off here; if we tried
we'd be sure to unintentionally insult at least one of

_ the dozen or more subscribers who has sent us an

ampersand package to review, to say nothing of
overlooking stuff we havent seen. So how about this
~we'll throw out all the ampersand packages we've
recelved and start over with bwo new rules. To get a
Dplug in Open-Apple, an ampersand package must
1) be compatible with Roger Wagner Software’s
Toolbox Series and 2.) be compatible with the
Beagle Compiler. These rules mean that all amper-
sand packages we talk about from here on will be
state-of-the-art and will be compatible with each
other. Those of you who aren't familiar with Roger
Wagner's Toolbox Series should look al “The amper-
sand solution” in our September 1986 issue, page
2.63.

Pushing just past Applesoft and ampersands, we
next come to ProBasic (current version is 10),
developed by the same Alan Bird who wrote the
Beagle Compiler. ProBasic is an Applesoft-based
language you can extend by writing “modules,”
using elther assembly language or ProBasic itself,
that become ProBasic commands. The modules
support local variables (le, using FORi=1to 10 ina
module will not change the value of I in the main
program}, parameter passing (ie, in POKE 768.0,
“768" and "0” are “paramelers” that are passed to
the command POKE), and recursion (a module can
call itself). ProBasic includes a VIRTUAL module that
allows you to put arrays on any ProDOS-compatible
disk device, including RAMdisks (array size s limited
only by the size of the device), and modules can be
easily switched in and out of memory. ProBasic
also comes with a full-screen editor (well, ... actually,
... you buy the full-screen editor, Program Writer,
and you gel ProBasic frce on the back of the disk).
ProBasic Is ProDOS-based, works on any 64K or
larger Apple Il, supports any memory card that can

Yol. 3. No. 11

be configured as a RAMdisk, [s unprotected, and can
be distributed on self-running disks by leaving in the
copyright notice. For additional information see
“'ProBasic, Logo” in our September 1986 issue,
page 2.62.($49.95 from Beagle Bros, address above.)

While Blankenship Basic and ProBasic solve
many of the problems people have with Applesoft,
neither Is compatible with the Beagle Compiler. To
get speed and structure without throwing everything
You know abowt Applesoft away, the best compromise
is Micol Basic (current version is 2.1). It's fast like the
Beagle Compiler, it provides structure like Blan-
kenship Basic, it allows multi-character variable
names (the first package mentioned so far that
does), has local and global variables, named proce-
dures with parameler passing, and Includes an
editor. It is not fotally Applesoft compatible, but it is
close. We carried a rather extensive review in Sep-
lember 1986, page 2.61. Micol Basic is ProDOS-
based, will work on any 64K Apple Il, is unprotected,
and can be distributed on seif-running disks by
leaving in the copyright notice. A 90 to 95 per cent
source-code compatible ligs version of Micol Basic
is under development. (US$69.95, Micol Systems, 9
Lynch Rd, Toronto, ONT, Canada M2J 2V6 416495
6864).

A step farther away from Applesoft is ZBasic,
which is avaitable for DOS 3.3 (current version 3.20),
ProDOS (current version 4.00), CP/M, the Macintosh,
and MS-DOS. The big strength of ZBasic is the
portability of its programs. In theory, You write just
one program, then, using different compilers, you
can make the program run on any of the supported
computers. The advantage of being able to move a
program from one computer (o another so easily Is
obuious. Even graphics transfer —Dennis devised a
program that rotates a pyramid on the screen; when
run under CP/M, which doesn't support graphics, the
pyramid’s lines are drawn on the text screen with
text characters. Bul the disadvantage of this univer-
sality is that you have to move away from familiar
Applesoft commands into a kind of Basic “Esperanto”
that has a closer resembiance to the CP/Mor MS-DOS
versions of MicroSoft Basic than to Applesoft.
ZBasic includes a full screen editor; is the only Basic
mentioned here that allows you to completely do
away with line numbers; provides for long, case-
sensitive variables; and Includes a feature called
“long functions” you could use o emulate the
modularity of Blankenship Basic, ProBasic, or
Micol Basic. A Hgs-specific version-is reportediy
under development. Although capable of 2- to 54
digit preclsion, ZBasic's major weakness is the
speed of floating-point calculations, which are noti-
ceably slower than standard Applesoft at similar
precision. The DOS 3.3 version of ZBasic runs on
any 64K Apple, the ProDOS version requires 128K
and won't work on a II-Plus. ZBasic is not copy-
protected and can be distributed on self-running
disks by leaving in the copyright notice. ($49.95 for
first package, $39.95 for others—all use the same
manual — Zedcor, 4500 E Speedway, #22, Tucson,
AZ 85712 602-881-8101). An Applesoft to ZBasic
source-code translator program is available for
$29.95 from Bringardner Data Products, 1736 E
North Broadway, Cotumbus, OH 43224

Finally, out on the edge of the Basic universe is
Promal (see this month's front page), which is more
Basic-like than most other computer languages.
Beyond the edge of the Basic universe, don't forget
that Apple Il versions of Pascal, C, Forth, and Logo
are aso easily available.

