A2-Central
B I

A journal and exchange of Apple Il discoveries

formerly
Open-Apple
H
August 1991
Vol.7, No.7
ISSN 0885-4017

newstand price: $2.50
photocopy charge per page: $0.15

Apple’s booth shuns Apple i

Attendees at the National Educational Computing Conference in
Phoenix, Arizona, report that Apple Computer’s exhibit did not sport a
single Apple Il computer. Apple’s Apple 1l team told developers such
as Roger Wagner and Zip Technology that their cohorts in K-12 Educa-
tion Marketing were responsible for the show and that they had been
unable to persuade the education people to include Apple Il systems.

This is one of the negative side effects of the consolidation of
Apple’s Appie II champions into the Apple Il Business Unit. Having all
the Apple I people inside Apple’s new Consumer Products Division
frees the other Apple divisions from having to maintain the pretense
of support. Apparently Apple’s head of education marketing, Bernard
Gifford, who stood side by side with John Sculley last year promising
continued support for the Apple I, has defined “support” in a way
that doesn't include acknowledging that the Apple II continues to
exist.

Refusing to exhibit Apple Il computers at a show where over 60-per
cent of the computers used in other booths were Apple Ils is beyond
inexcusable. It shows that Apple’s education strategy is to force the
Macintosh into America’s schools even at the risk of huge losses in
market share, and more importantly, without regard to what it will
cost the American education system. Apple could be solving the prob-
lems of today’s budget-constrained educators by showing them how
to add to and enhance the computers already in schools. The Apple
ligs does what a Macintosh does, but in color, and it also runs the
software schools already own. But Apple’s solution for education is to
convince administrators that the choice for schools in the 1990s is
MS-DOS or Macintosh. And taxpayers get saddled with new hardware,
be it MS-DOS or Mac; new software, be it MS-DOS or Mac; and retrain-
ing millions of teachers — all because Apple’s vision isn't big enough
to include alternatives based on its own computers that are already in
place in America’s schools.

The good news is that more than 1,100 educators took the
time to attend Roger Wagner's HyperStudio seminar at the con-
ference. Roger told us that NECC also offered all-day workshops with
the ligs and these were well-attended; he expects the word about the
intrinsic value of the ligs as the multimedia machine of the 1990s to
be passed along by these participants, if not by Apple itself,

Apple and IBM are rumored to be discussing a technology
exchange. A copyrighted article in the June 15th Wall Street Journal
asserts Apple and IBM may be considering the exchange of powerful
IBM RISC (Reduced Instruction Set Computer) technology for Apple’s
expertise in designing object-oriented software, possibly representing
an attempt to provide a technology alternative to Microsoft's MS-
DOS/Windows environment. No announcement has been forthcoming
as yet.—~DJD

‘The People vs Programming

There have been stages in our history where the inability to adopt
some skills has caused a type of class stratification; most of these
stages followed a technological revolution where the ability to per-
form certain actions became a new requirement of daily life. Literacy
became an increasingly important skill after the invention of the print-

ing press. The Industrial Revolution altered the structure of society.

Our current society is undergoing such a change dealing with
the mediums of recording, manipulating, and exchanging infor-
mation. There have been two related references to this stratification
in the past month; one a fictionalized accounting, one a real-world
development.

One is a scene from the current movie City Slickers. Two men iso-
lated from “civilization” on a cattle drive finally have the opportunity
to discuss the vagaries of VCR use at length; Billy Crystal’s character
is explaining to Daniel Stern’s alter ego why it isn't necessary to have
the television tuned to channel 3 to record. When he explains the
television doesn’t even have to be present to record, the other man is
aghast. A third character who has been listening to this conversation
finally explodes, pointing out that some of the cattle no doubt have
learned to program the VCR at this point, and that further instruction
is never going to help Stern’s character.

Serendipitously, there was a real-world fallout to this: that very
month, a new device to “automate” VCR programming appeared on
the market. The new device is an intelligent remote control called the
VCR Flus, which can be configured for use with most common cable
converters, televisions, and videocassette recorders using infrared
remote controls. The additional feature of the VCR Plus is that when
you find a program you want to record in the television (or cable) list-
ings, you look for a multi-digit number next to the listing and enter it
into the remote. The remote will store the number and, at the appro-
priate time, start your VCR and record the program. This saves you
having to learn how to program your VCR to record a show.

My reaction to the scene in City Slickers is sympathetic to Crystal’s

ey

"T'M WAITING FOR MY AUTOEXEC FILE TO RUN, SO I'M GONNA GRAB A
CUPOF COFFEE, MAYBE MAKE A SANDWICH, CHECK THE SPORTS
PAGE, REGRIND THE BRAKEDRUMS ON MY TRUCK, BALANCE MY
CHECKBOOK FOR THE PAST 12 YEARS, LEARN SWAHILL, ,.."

7.50 A2-Central

character; certainly it isn’t unreasonable to patiently try to explain the
use of technology to someone if they are willing to learn and if you
have the time and inclination. On a cattle drive, there isn’t much else
to do; of course, most of us have outside pressures that restrict our
ability to offer the kind of instruction that Crystal’s character tried to
rovide.

P My reaction to the VCR Plus is a little more reactionary because I
see it as a step backward. It's easy for me to remember, for example,
that L.A. Law is broadcast from 9 to 10 PM Thursday nights on Chan-
nel 4 in the Kansas City area. Learning to program that into a VCR
takes some effort; you have to learn how to enter the information and
you have to be careful to check that the data is correct lest you
record an hour from a “home shopping” station. It gets worse if you
have multiple VCRs with different programming methods. A single
device that would allow the consistent, logical entry of the informa-
tion would be helpful.

But when you have to look up a number like “7067466,” which
does not correspond to anything in the way of human-interpretable
data, have we actually reduced the complexity of our lives? You can at
least remember the time slot for a program; there is no easily discern-
able rhyme or reason to the VCR Plus numbering system.

Meanwhile, our local Kansas City Star newspaper reduced the
information content of the program listings because adding the 4 to 7
digit VCR Plus numbers after each program entry took up a significant
amount of space in the listings. So the person who has expended the
sweat to learn how to program their VCR is now penalized for the
sake of those who won't. Is this the way technology is going to aid us?

There is even a phone number that you can call to find out the
code for a program that isn't listed. All you have to do is provide the
starting time, ending time, day of the week, and local channel for the
program and an operator can provide you the number to enter for
recording. What's amazing is that the individual is still programming
the VCR; the difference is that the VCR Plus folks get to insert them-
selves profitably into the process by adding a layer that reduces the
number of keystrokes you must enter, but totally obscures the mean-
ing of the information you are entering.

It isn‘t that I think the VCR Plus concept is bad; if the same device
allowed you a sensible, uniform entry of normal information (times,
dates, channels, and so on) I think it would be a boon. My objection
is that it is a use of technology in exactly the wrong direction; using a
more obscure “code” to record makes you a slave to the VCR Plus.
“Human readable” program listings in the newspaper are now trashed
by additional redundant information and in the case of an absent list-
ing you must call to find out the “secret code”.

If you aren’t willing to expend the effort to learn to program your
VCR, you probably aren‘t going to thrive in a technological society.
VCR manufacturers can try to make the task easier, but there is a
point at which the process cannot be simplified without penalizing
those who are willing to adapt.

We run into similar dilemmas as computer users. Many users
today do not want to learn any programming to use their systems, but
they also want the systems to act exactly as they wish. Cost can also
be a factor; generally if you pay enough money, you can have most of
your first two wishes, even if you have to hire someone else to com-
pile your dream system from scratch.

Apple’s philosophy of personal computers is based on a model of
interdependency. As an example, Apple manufacturers computers,
system software, and printers that are relatively tightly bound to each
other so you can have programs like GraphicWriter Il (for the Iigs),
and XPress (for the Macintosh) that allow you to design and print doc-
uments of varying complexity without having to enter tedious details
about your printer.

The drawback is that the printer you want to use has to be support-
ed either by the specific software package (on the Apple II) or the
operating system (for the Mac or native ligs programs, where printer
drivers are part of the system software); if you can't select the printer
you want from the “pre-approved” list or if the implementation of the
driver is not “complete” in your eyes, you're out of luck (unless you
have the time and skill to impiement and install your own driver).

Tom Weishaar dealt with the specific issue of printers in “Special
issue: Solving printer problems” in the November 1985 Open-Apple
(A2-Central's old name). The major quote from that article remains
true:

Vol. 7, No. 7

The bad news is that the only person who is in a position
to solve YOUR printer problems is YOU. You are the one
who selected the particular combination of hardware and
software you have — there may be fewer than a hundred
other systems exactly like yours in the world.

You are ultimately limited by what a system’s hardware and soft-
ware will let you do. Actually, in the real world where finances and
time are involved, you may be limited by what a system’s hardware
and software will let you do cheaply and easily.

There are ways that you can get more control over your sys-
tem. Most involve an education curve and only you can decide
whether any improvement is worth the investment of your time to
implement it. If you don’t have the time or inclination, you may have
to spend money, and if you don’t want to invest the time, effort, or
money then it's time to contemplate whether the computer was actu-
ally a good investment for you. Most of these decisions need to be
made before you invest in a computer and re-evaluated when you add
software or hardware. These days we're usually involved with people
in the re-evaluation stages.

Hardware is easy to change, and sometimes that is the cheapest
solution. Saving $100 on a printer is no bargain if it takes you 20
hours to get it working and your time is worth over $5 an hour. Simi-
larly, it isn't exactly reasonable to buy a lower-cost printer and
assume that someone else will get it working for you. The same goes
for most other hardware items; follow the proverb that says “pay the
money and cry once”. Something isn't cheap if it doesn't work or
requires constant tweaking,

Software is generally harder to change because it is even
more labor-intensive to alter. As the demands upon the hardware
increase the software also gets larger and more complex; most peo-
ple don't sit down and write their own software from scratch these
days (as they might have ten years ago) for that reason. Modifying a
program that has been written by someone else can be even more dif-
ficult; you first have to figure out how the original program works,
then see if it is feasible to add code to modify the program. In many
cases, modification isn't realistic. (Many people who wouldn’'t dream
of asking someone to modify printer hardware seem to think modify-
ing programs is somehow “easier”; in most cases, it isn’t.)

Fortunately, some software is designed to allow user customization
and even control. But we're back to the VCR problem: if you want the
software to do what you want, you have to be able to tell it what you
want. That means learning to program, whether or not you like the
idea.

There seem to be many users interested in learning how to pro-
gram their systems, if the “guru” factor can be removed. We are mov-
ing into an era where the common programming languages are appli-
cation-dependent macros, scripts, or even complete new languages
like HyperCard's HyperTalk. With application-specific languages prolif-
erating, requests for programming assistance are becoming as varied
as printer requests, and it is as difficult for one person to know all the
answers as it is with printers. :

To be “universal”, the focus on learning to program has to be on
the elements of design that are common to all languages. Users have
to adapt a problem-solving mentality and the associated skills. The
job of translating the ideas into a specific language is then reduced to
a more mechanical procedure.

The computer language itself is not the key to the solution. If
you hold distaste for programming, first forget the images of High
Priests spouting computerese gibberish in COBOL or FORTRAN that
are usually associated with the word. A program is only a series of dis-
crete steps applied to produce a specific effect. Those steps can be
described in your spoken language — English, French, German, Ital-
ian, or whatever. As a matter of fact, it's preferential to write the pro-
gram description in your spoken language before you start doing any-
thing else.

If you have trepidation about programming, this realization should
remove it. You do this type of problem-solving every day. To enter
your house, you may need to insert a key, turn it, turn it back,
remove it, grasp the doorknob, turn it, push the door open, and
release it. Your specific program may vary, and you normally don't
stop to analyze the steps, but the point is you can do this. You do it
every day.

Downloaded from www.Apple20Online.com

August 1991

Of course, there is a certain drudgery in breaking everything down
into “baby steps”, and unfortunately computers require you to be very
explicit since they aren’t very intelligent. A computer can execute
instructions very quickly, but it only understands what it is told, and it
has a limited vocabulary. When the computer reaches an instruction it
doesn’t understand, it will either misinterpret it (venturing into some
alternative path until it can no longer proceed) or will simply be
unable to do anything and stop. This is one way “computer errors”
(actually errors from the human writing the instructions) occur.

If you want control over your system, you will have to decide to
deal with the drudgery. Think of the VCR Plus; if you can‘t (or won't)
make the effort to solve the puzzle, you will have to live with what
others hand you.

Programming in your native tounge. The first step in designing a
program, whether it is in a “traditional” computer language or an
application-specific language, is to sit down and analyze how the task
you want to automate is performed. That is, how would you explain
the steps involved in the operation to a person who had never per-
formed the task before?

Imagine the instructions to average three numbers as provided by
someone else. The person doing the averaging has to get each of the
three numbers to average, add them together, then report the aver-
age. But assuming they don't know what “average” means, this may
have to be refined further stepwise:

1) Get and record the first mmber.

2) Get and record the second mmber.

3) Get and record the third number.

4) Add the first and second number and record the result as the first sum.
5) Add the third mumber to the first sum and record it as the second sum.
6) Divide the second sum by three and record as the final answer.

7) Report the final answer.

The tedium starts to show as we move further toward the realm
where we assume nothing about the entity performing the averaging.
Well, actually we still have to assume some things, such as their abili-
ty to add and divide.

Once you have the problem explained in natural language,
you come to the book work: learning enough about a programming
language to translate the actions. You must understand how the
actions are phrased in the computer language. And you must also
know what won't translate directly and therefore must be further sim-
plified or redefined.

In terms of computers, the programming environment you write for
will have varying degrees of knowledge. At the lowest level, a comput-
er only understands a very limited number of instructions that per-
form very limited actions. For example, the 6502 microprocessor in
the Apple II works primarily with 8-bit values (numerical values
between 0 and 255) and is limited to moving these values around in
the computer's memory, addition, subtraction, comparisons, and a
few other operations. Everything else, even multiplication and divi-
sion, must be derived by programs constructed from these basic
operations.

The level also affects how many details we must know about how
the computer itself works. The lower the level of the computer lan-
guage, the more the programmer must know about the computer
itself. That’s why machine language (the “native” language of the com-
puter) is the most tedious of all. Most of us strive to use something
with more powerful commands.

As we move up the programming language scale and isolate our-
selves further from the “quts” of the computer, our environment
becomes more sophisticated in terms of its command vocabulary but
may become more restrictive in what can be accomplished. For exam-
ple, writing a disk operating system (which has to communicate
directly with the disk hardware) in Applesoft is not feasible. Having
the problem carefully defined in a language we understand helps us
determine which computer language we should use to solve it.

Users seem to have different levels of intimidation. Asking a user
to write a BASIC program to solve a problem may result in frustration.
Yet we've run into very few users who feel intimidated by writing a for-
mula for a spreadsheet. It is key to recognize that the act of
programming is generally the same and the differences lie mainly in
the syntax and relative power of the target “language”.

What we’d like to do is look at the progression from a “classic” lan-

A2-Central 7.51

guage like Applesoft to application-specific languages. This is not
meant to teach any of these languages in a few paragraphs; normally
you would learn the language from books or possibly in a classroom.
What we want to get across is that programming should not be intimi-
dating and that languages are progressing toward a form that we
believe will encourage their use.

The translation to a “real” programming language. Assuming
we're content to take the shortest route to a working solution for our
averaging problem, the conversion to Applesoft is straightforward
from our stepwise description. The overall problem is still the same:
allow the user to enter three numbers, calculate the average, and dis-
play it. One way of solving this in Applesoft is a near-iteral translation:

10 TEXT

15 BOE

20 INPUT “First: “;N1

30 INPOT “Second: “;N2

40 INPOT “Third: ;N3

5081 =N + N

6052=51+M\3

70 Al = 82/3

80 PRINT “The average is “;Al;".”

There are some differences from our English program. In Applesoft,
we have to have a distinct identifying number for each instruction
line; lines in the program are executed in the order of these numbers
unless we use an Applesoft instruction (not among those used above)
that causes a line to be executed “out of order”. Also, although the
words TEXT, HOME, INPUT, and PRINT have meaning to us, they have
narrower, specific meanings to Applesoft. As in English, these lan-
guage protocols are referred to as syntax, and the syntax of a program
has to be correct for a computer to run it. Absolutely correct, because
the computer is very bad at reading between the lines.

If you are unfamiliar with Applesoft, why and how the above pro-
gram works may be a mystery. But even if you're intimidated by pro-
gramming, it should also be apparent that we haven't moved very far
away from our original description. What we have is a problem in
translation, not some mysterious black magic. If you have the logical
problems ironed out in your native-language outline and make the
translation accurately, the program should run and produce the cor-
rect results.

The first line (TEXT) puts the screen in text mode, the second
(HOME) clears the screen and puts the cursor in the upper left-hand
corner; you might think of the combination as getting a blank sheet of
paper to work on. INPUT allows us to print a prompt (the text within
quote marks) and receive an answer typed from the keyboard into a
variable (the item after the semicolon in each line). The equations in
lines 50-70 perform the math, and line 80 displays the answer on the
screen.

To execute the program, we use the command word RUN. Issued
while our program is in memory, RUN causes Applesoft to clear the
values of any variables and start executing our program at the first
line. When prompted, we enter our three numbers, and Applesoft
prints the answer.

Because Applesoft is sufficiently sophisticated to handle the math
in a single equation (humans usually add only two numbers at a
time), we are able to combine the calculations in a single step:

10 TEXT : HOME

20 INPUT “First: “;Nl

30 INPUT “Second: ;N2

40 DT “Third: ;N3

50 PRINT “The average is “; (NL+N24N3)/3;".”

If we wanted to try to duplicate the appearance and function of an
AppleWorks spreadsheet the program would obviously be much more
complex, but it is possible to write Applesoft programs that aspire to
such imitative sophistication. (For an example of an Applesoft pro-
gram that duplicates the “look and feel” of the AppleWorks database
display, see “Reading AppleWorks data bases”, March 1987)

Redefining the solution in an AppleWorks environment. Unlike
Applesoft, AppleWorks's spreadsheet module provides the screen for-
matting and entry routines for us; PRINT and INPUT statements disap-
pear. The penalty is that we have to start AppleWorks (a rather large
program compared to Applesoft) in order to use the program.

7.52 A2-Central

Assuming that we don’t want the three numbers to be part of a per-
manent formula, if we were to suggest a method of solution it would
probably be to “enter each of the three numbers into a cell, then cre-
ate a fourth cell who's value is the average of those three numbers”.

Laid out in a spreadsheet (with column and row labels), the solu-
tion might look like this:

A B
1 First 1.2
2 Second 2.4
3 Third 48
4 ==
5 2.8

The formula for the “Averages” cell (B5) could be done in a few dif-
ferent ways, but we'll choose to use the @AVG function:

RAVS(B1. . .B3)

If there were a programming language for the AppleWorks spread-
sheet, the program to create this spreadsheet from the main menu
might look like this:
tm \\1"
type return
tm \\5/1
type retum
typ \\lll
type return
type “Sanple. S§”
type return
type “First”
type down arzow
tm \\mll
type down arrow
tm \\mrdll
type down arrow
type right arrow
type quote
tm \\=l/
type down arrow
type “GAVG(EL...B3)"
type return

All of these instructions involve entering data at the keyboard. We
use “type” followed by the name of the character (“return”, “quote”,
“down arrow”) or text in quote marks to indicate what needs to be
typed. It's tedious; doing it is a lot easier than saying it. But it fulfills
the basic requirements of a program: it is a finite set of stepwise
instructions you can follow to create the spreadsheet. You could even
read it to someone over the phone.

You might not think of this as a “program” since it requires a
human to execute each step; the sequence is not processed automat-
ically by the computer. However, now having defined the spreadsheet
solution in English, we're only a step away from converting it into an
“AppleWorks program”.

Many “programs” these days actually refer to a capability for
the use of macros or scripts. We'd normally think of macros as
recorded sequences of keyboard actions. To our notion, scripts are
series of commands that are entered into a program from a text file,
but the distinction between macros and scripts sometimes gets hazy.
For example, TimeOut UltraMacros allows you to record a series of
operations within AppleWorks as you type (a macro), or to define sim-
ilar actions by entering command words into a word processing docu-
ment and then “compiling” those commands into a form UltraMacros
can work from.

Using the UltraMacros program, we can take our “spreadsheet gen-
eration” instructions above and look in the UltraMacros manual for its
syntax to duplicate them. As with Applesoft, part of the operation is
adding any other structural components the program requires.

The UltraMacros compiler requires the word “start” at the beginning
of the macro definitions. Following that, there is the macro key to be
defined: we used “<ba-S>" (“both apple ess”) to indicate the macro
will be triggered by pressing the open-apple and closed-apple keys
and the “S” key simultaneously. Following that is a colon, then the

Yol. 7, No. 7

AppleWorks module that the macro will work within (we used “<all>"
meaning our macro can be called up from any module). The rest is all
instructions the macro is to carry out, ended with a *I* to mark the
end of the macro for the compiler.

UltraMacros has other syntax requirements. Certain command
words used by UltraMacros must appear within angle brackets (“<”
and “>"). There are special command abbreviations like “0a-Q” (open-
apple-Q) to indicate the typing of an AppleWorks command key
(open-apple-Q brings up the “quick switch” menu that allows chang-
ing to a different file on the desktop). Some keys that aren‘t repre-
sented by printable characters have special names (like “rtn” for the
Return key, or “right” for the forward arrow). Where there are several
command words (also called “tokens”) in succession, they can be
placed within a single pair of angle brackets with a colon placed
between commands; that is, “<all><oa-Q><esc>” and “<all:0a-Q:esc>”
would be treated the same.

“White space” (non-printing characters used to format the file,
including spaces, tab characters, and return characters) within brack-
ets is ignored. Characters within curly brackets (“{“ and “}”) within “<”
and “>" are also ignored; this allows us to enter “comments” to
explain the macro without the comments interfering with interpreta-
tion of the macro. Return characters at the end of lines are also
ignored (you need to use the “<rtn>” token to generate a return char-
acter as if it were typed from the macro).

Characters typed outside of the brackets are sent to AppleWorks as
if they were typed at the keyboard. That is, “1 <rtn>" would be treated
as if you typed the 1 key, the space bar, and the Return key in suc-
cession.

start

<a-$>:<all {use from any module}>
<0ag {put wp quick-switch)>
<esc {escape to main mem}>
Krtn {"Add"}>

Xrtn {new file for SS}>
Krtn {from scratch}>
Sample. SS<ztn {file name}>
First<don {text for cells)>
Second<down>

Third<down>

<right {next column}>
S {1abel}>

<down>

QAVG(BL. . .B3)Krtn>

! {end of macro}

OKay, it's a little intense trying to boil down a programming lesson
into a few paragraphs. But the point is that if you can understand the
English version above, with a little work and our few hints above you
should be able to understand the UltraMacros “program”. (When we
surveyed users last year, UltraMacros was the leading “programming
language” in use by our customers.)

Other macro and scripting environments (from Roger Wagner Pub-
lishing's MacroMate to the script languages of communications pro-
grams such as Talk is Cheap, Proterm, and Point to Point) have differ-
ent syntax, and the responsibility of learning the syntax falls upon the
user wanting to customize the program. If you start with a clear idea
of the problem in your own words, you should be able to work out a
translation into the target language by expending some effort. And as
you learn the syntax, the chore will become easier and more auto-
matic, to the point that experienced programmers often sit down and
start writing in the target language.

Hypermedia: the next frontier? Even discounting the addition of
sound and video to hypermedia programs, just the incorporation of
the non-linear linkages and graphical elements usually employed in a
hypermedia “program” makes it more complicated to describe in
purely textual terms. Since we have to think in textual terms first to
write our native-language description of what we’d like to incorporate
into a program, descriptions of hypermedia programs can become
very complicated even if the individual elements are simple to
describe.

For a hypermedia program without explicit scripting capabilities
(Tutor-Tech and HyperScreen on the Apple 1I, and Nexus on the ligs)

August 1991

the data file itself can still be seen as the program. Program design
consists of determining how the various elements of cards, fields,
and buttons (files and links for Nexus) will combine to control the
ways the user can navigate and experience the data.

Both HyperStudio and HyperCard ligs have scripting capabilities.
But HyperCard's use of scripts is integral to the operation of the pro-
gram while HyperStudio’s mostly allows control over external com-
mands. The things that this scripting allows you to do make the flavor
of the programs different, though there is some overlap.

HyperStudio’s out-of-box functionality is so completely encom-
passed by its visual interface and environment that it is not necessary
to use scripting to operate it. With the addition of the Master XCMD
from the HyperStudio XCMD Library Disk, Volume 1, operations
involving XCMDs can be scripted. But since much of HyperStudio’s
internal operation (such as painting, adding buttons, and so on) does
not require scripting, it's harder to describe HyperStudio’s stacks only
in terms of “scripts”, at least in our “programming” sense.

HyperCard'’s scripting language, on the other hand, can control all
aspects of the program and gives us a way to completely describe the
implementation of a stack textually. For example, going back to our
“averaging” problem, if we create three fields for input and one for
the answer, the code for displaying the average can be placed in the
script of a “result” field:

on mouseEnter
put false into mullField
repeat with i =4 to 6
if card field i is empty then put true into mullField
end repeat
if not mllField then put average(card field 4, card field 5, card field 6)-
into card field 7
else put "NA” into card field 7
end mouseEnter

If we enter valid data into fields 46 and move the mouse into the
result field 7 (triggering the “mouseEnter” handler above), the aver-
age of fields 4-6 will be placed in field 7. (If any of fields 4-6 contains
something other than a number, an error dialog will be displayed; we
haven't implemented error trapping.)

If we'd like to specify all stages in creating the fields on a blank
card in a new stack, our “averaging” program can be expressed com-
pletely in HyperTalk. In general terms, we save the current tool and
pattern, then paint the background. We draw and position seven card
fields: three to hold labels, three more to accept our data, and one to
hold the result. Then we create a variable holding the same script we
used above, add it to the seventh field, and finally restore our original
tool and paint settings. Even without a line-by-line analysis of the
program it should make sense:

on averageCard

put the tool into ourfool

put the pattern into ourPattern

choose bucket tool

set the pattern to 4

click at 160,100

choose field tool

dodenu “New Field”

set the rect of card field 1 to 50,50,150,62
put “First” into card field 1

doMenu “New Field”

set the rect of card field 2 to 50,70,150,82
put “Second” into card field 2

doMenu “New Field”

set the rect of card field 3 to 50,90, 150,102
put “Third” into card field 3

repeat with i =1 to 3

set. the style of card field i to opaque
set the lockText of card field i to true
set the showlines of card field i to false
end repeat

doMenm "New Field")

set the rect of card field 4 to 160,50,310,62
dodeny “New Field”

A2-Central 17.53

set the rect of card field 5 to 160,70,310,82
doMenu “New Field”
set the rect of card field 6 to 160,90,310,102
doMenu “New Field"
set the rect of card field 7 to 160,110,310,122
set the lockText of card field 7 to true
put “NA” into card field 7
repeat with i =4 to 7

set the style of card field i to opaque

set the showlines of card field i to false
end repeat
put “on mousefnter” & return &-
"put false into nullField” & return -
“repeat with i = 4 to 6” & return é-
“if card field i is empty then put true into mullField” & return &~
“end repeat” & retumn &
“if not mullField then put average(card field 4," &~
“card field 5, card field 6) into card field 7" & return &~
“else put” & quote & "NA” & quote &6 “into card field 7"
& return &~
“end mouseBnter” & return into newScript
set the script of card field i to newScript
choose ourTool
set pattern to ourPattern

end averageCard

We added this handler to the stack script, brought up the message
box and typed “averageCard”. All that was left to do was to sit back
as HyperCard paints the card, creates and positions the fields, sets
their properties, and places our script into card field 7. Notice that
the syntax here is noticeably like a natural language; eventually,
maybe you'll be able to describe what you want to the computer in
everyday language and have it created. (Or maybe our “everyday lan-
guage” will adopt computer jargon by that time.)

The core of hypermedia design will probably redefine how we
think of programmers in the future. The 1970’s microcomputer
programmer dealt largely in paper and cassette tape, machine lan-
guage, and text-only terminals. In the 1980's, use of graphics became
wider and even expected, culminating in the more extensive incorpo-
ration of graphics into the user interface on most surviving microcom-
puters.

In the 1990’s, a programmer has to be not only a linguist and
rational thinker, but also an artist, poet, motion picture director,
screenwriter, and so on. We learned this as our first issue of Script-
Central was assembled; we've added individuals with art experience
(Steve “Bo” Monroe) and knowledge of sound (Bruce “HangTime”
Caplin) to our stressed-out editorial staff. We still think the “English
first, program second” method of development is the right way to go,
but the form of the English description is going to start reading less
like a checklist and more like a motion picture screenplay, complete
with visual and musical direction. And computer programs are going
to start looking more like interactive videotapes than blank paper
forms reproduced on a computer screen. At some point in the future,
a person programming a computer may resemble a director for a
stage or motion picture production.

But at every stage, what should be apparent is that program
design is not really a function of the computer. It is the definition
of the problem in specific instructions that someone else can follow.
The implementation of the instructions is where the knowledge of the
computer is needed; you may have to revise some of your original
instructions to fit them into actions the computer can perform (and
the computer language can express), but there’s no reason the
descriptions of the process can’t remain in English.

There is no shame in having no desire to learn how computers
work. But if you want to understand books you have to learn to read,
and if you want to drive a car you have to get a license. If you want
control over your computer system you'll have to learn how to apply
logic in terms it can understand or hire a consultant to apply it for
you. But please, don't ask for VCR Plus solutions; the idea is to
release the power of computing to everyone, not to lock it in a box
that requires a call to a 1-900-number every time you want to do
something interesting.—DJD

7.54 A2-Central

Ask

(or tell)
Uncle

DOS

RGB switch

1 have an Apple lle with Applied Engineer-
ing's RamWorks Il and the ColorLink option. |
also have a Magnavox RGB monitor. | have had
a problem similar to Mr. Mastel’s (“Apple RGB
connections”, p. 7.21, April 1991) with pro-
grams showing up in grey scale. For me it has
been ones from Brgderbund such as The New
Print Shop, Dazzle Draw, and The Playroom.
These programs also created so much screen
flicker under RGB that they could not be used.
Fortunately I can also connect the composite
ports and the RGB ones at the same time and
switch back and forth between the two as need-
ed via the front panel on the Magnavox monitor.
Even my three-year-old has mastered the tech-
nique.

Gary Sonnenburg
Omaha, Neb.

Sider/ RamFast support

C.V. Technologies announced the release of
ROM 2 for the RamFast SCSI card which sup-
ports tape drives. Being an owner of a Sider
C96 and RamFast, | was anxious to purchase
ROM 2. About a year ago, [elected to give up
my tape backup capabilities for the RamFast's
unbelievable speed. At that time C.V. Technolo-
gies was planning tape drive support with ROM
2. Usually anything that is worth a darn takes a
fair amount of time to perfect. In this case it
was no exception. When I received ROM 2 it
consistently locked up the tape drive...ack!

C.V. Technologies and I probably sent more
missiles back and forth than the U.S. and Iraq.
Finally, [listened to Andrew Vogan and sent him
my C96. Andrew spent the better part of two
days tracking down the problem. It turns out
that the microcontroller on the tape drive was
not fast enough to handle the RamFast's warp
speed. He called the manufacturer and found
that they had a new model that would work.
Andrew returned the drive and told me to con-
tact Larry Beyer of B & D Computer Repair in
Chicago.

Larry installed a new microcontroller and
thoroughly tested my C96. The tape drive is
now incredibly fast thanks to C. V. Technologies
and B & D Computer repair.

If you want great products and service for the
Apple Il make sure that you use these compa-
nies!

Q. Scott May
Buffalo Grove, III.

B & D Computer Repair’s address is 6115 S.
Massaholt, Chicago, Hll. 60638, 312-735-9010.
Larry has been handling Sider repairs for sev-
eral years.—DJD

Beagle Compiler and “&”

There’s a way for assembly language pro-
grams {o tell whether theyve been called from

‘pure Applesoft or from the Beagle Compiler,

because I've done it. Just use two “&” charac-
ters to start each of your ampersand calls, as is
suggested on page 20 of the Beagle Compiler
manual. Regular Applesoft will gobble only the
first “&* character as it joins your assembly lan-
guage routine. Compiled “Beaglesoft” will gob-
ble both of them. The first thing you do in your
routine is JSR CHRGOT (JSR $00B7) to get the
current character pointed at by TXTPTR ($B7-
B8). If it's an “&”, then you're running under
Applesoft. If it’s not, you're running under the
compiler.

Actually, you need to check CURLIN+1 ($76)
first to see if you are working in the immediate
mode. If it is $FF, then the entry in your “&”
code is occurring during immediate mode and
not during program execution; you would want
to use routines compatible with Applesoft under
that circumstance.

You should make extensive use of Apple-
soft’s builtin syntax checking to gather your
variables and send back your results, and ail
will be well.

Craig Peterson
Santa Monica, Calif.

This technique doesn’t seem to work with
the more recent editions of the Beagle Com-
piler, but Craig’s basic advice is sound: check
to see if the compiler or Applesoft is interpret-
ing the program code, then jump to the appro-
priate “&” handler.

We found that the CHRGOT routine is differ-
ent with the compiled code running: you can
verify this by checking location $B7. The con-
tents under Applesoft are $AD (LDA $Xxxx),
under the compiler the location contains “$AC”
(LDY $xxxx). Checking that location will if the
compiler is running with the current version;
this method is neither sanctioned nor guaran-
teed by Beagle, but the manual gives no “ID
bytes” for determining if the compiler is exe-
cuting the program. (Beagle is looking into a
“guaranteed” way for us.)

The next trick is catching the “&”. Applesoft
actually converts its keywords into one-byte
representations (“tokens”) to make the pro-
grams more compact. Token values are always
in the range $80 to $FF (text embedded in the
Applesoft program is represented in the ASCIi
range $00 to $7F), and the token for the “&~
command is $AF. So you need to check for
t!;at value rather than the ASCH value for “&”
($26).

When we put the above changes in with
Craig’s design, our dummy subroutine to test
parsing a double ampersand Iooks like this:

CURLINE GEQU $0075 current line mmber
CHRGOT GEQU $00B7 get current character
TXIPTR GEQU $00BS
CouT GEQU $FDED
0BG $0300
Ettry START
lda CURLINE+1
ap 5FF inmediate?
beg Imed
jsr CHRGOT
ap . §aF AS token for “§”
beq Interp
bne Compiler
Imed lx §

Yol. 7, No. 7

nsgl,x
Interp
cour

Tmedl
B'8D',C’ Imediate mode... *,B'8D00’
#
jor Bubtr
lda (TXIPTR,x)
ora 580
jsr COOT
lda 'I 1
jsr COOT
Interpl 1da msg2,x
Exit

jsr OOUT

bne Interpl
H'8D',C’Applesoft interpreter’ B’ 8000
Compiler 1da §$87 beep twice
jsr 0OOT
jsr COOT
x #
lda (TXTPMR,x)
ora #580
jsr COUT
lda '! 1
jsr COUT
msg3, x
beq Exit
jsr COOT

bne Compilrl
msg3 IC E'8D',C’'Beagle Compiler’,H’8DOO’
Exit jsr BumpPtr move past "X
cle make A/S happy
return

BunpPtr ine
bne Ptk
inc THTRTRH

Pk RIS

Line 30 in the following BASIC program
installs and calls the routine (the X in line 30 is
not used as a command, just echoed by the
subroutine):

10 PRINT CHR§ (4);"BLOAD AMPER”: REM at $0300
20 PORE 1013,76: POKE 1014,0: POKE 1015,3
066X

There are still problems the programmer will
need to resolve. First, safe memory has to be
found for the routine (safe with Applesoft or
the Beagle Compiler environment). Second,
support routines are different in the two envi-
ronments; Applesoft's routines are in ROM, of
course, and the Beagle Compiler's routines
are part of the COMPILER.SYSTEM file loaded
to run compiled programs. If your ampersand
routines need to call these support routines,
the addresses for Applesoft and the Beagle
Compiler will be different.

The support routine addresses and func-
tions for the Beagle Compiler are located in
the compiler’s manual. Apple’s Applesoft docu-
mentation doesn't list Applesoft intemal rou-
tines, but one source is Assembly Language
for the Applesoft Programmer by C. W, Fin-
ley, Jr., and Roy E. Myers. (Addison Wesley,
ISBN #0-201-05209-1).—DJD

August 1991

Boo, hiss
My Ilgs system includes a ROM 01 CPU, a

TransWarp GS with 32K cache, an Apple High- -

Speed SCSI interface, and an Applied Engineer-
ing GS-Ram Plus with 3 megabytes installed.

I recently received version 0.95 of Sound-
Smith from Huibert Aalbers. Since my onboard
speaker doesnt do justice to the music this
software produces, I plugged a portable stereo
speaker into the computer’'s headphone jack.
This works fine when the music is playing, but
there is a very audible hiss when the music is
off. 1 realize the ligs’s internal speaker makes
the same hiss, but it is pretty much drowned
out by my System Saver’s fan.

Is there a practical way to reduce or elimi-
nate the noise the computer produces? In the
September 1989 newsletter (“Apple upgrades
ligs hardware”) you wrote that the ROM 03 ligs's
have “cleaner sound®. Does this mean newer
ligs's have less hiss?

Is there a better way to connect a single
speaker to the ligs than using the headphone
jack? I don't want to invest in a sound card and
stereo speakers, but a single amplified speaker
is worthy of consideration.

Stephen Gant
Manteca, Calif.

Part of the hiss problem on ROMOI
machines has to do with the circuitry layout on
the motherboard. Any circuit carrying electron-
ic signals tends to act as a broadcast antenna
for those signals; if another circuit lies within
the “broadcast region” some of the signal can
“cross over” to the second circuit (this type of
interference is referred to as “crosstalk®). The
audio circuits on the ROM 01 machines are
close enough fto certain other circuits to pick
up interference from them. This can't be
changed without altering the motherboard; it
was alleviated on the ROM 03 motherboard by
changing the circuit layout to better isolate the
audio circuits from possible interference
sources.

1 have a ROM 01 at home and haven't found
the hiss to be that objectionable. The easiest
way to reduce it is to lower the treble response
on your speaker system; I've found this
doesn’t seem to affect the sound quality too
extensively.

A stereo card may help; I do notice less hiss
on my Sonic Blaster's output.—DJD

More GS/OS versions

In the latest APDALog (April 1991), there is
no mention of Apple ligs System 5.0.3. Is this
an unreleased version which is basically the
same as System 5.0.4? This would also mean
that 5.0.3 only works for a ligs with one
megabyte of memory and above, | presume.

A. Hadiwidjaja
Ashfield, N.S.W.

System 5.0.3 was only “semireleased”; it
never made it to Apple dealers, for example. A
few obscure problems in 5.0.3 forced a revi-
sion to version 5.0.4, which was released a few
months later.

A convenient way to break down the ligs
System Software versions is by system require-
ments. System 3.2 was the last version that
would run on a basic 256K machine, but its
use can’t be encouraged since the Iigs toolsets
have been revised drastically since it was intro-
duced.

System 5.0.2 will operate on most 512K

machines; the use of AppleShare or the addi-
tion of the newer SCSI drivers provided with
the High-Speed SCSI Card support disk may
push the memory requirements slightly over
that.

For systems with one megabyte of memory
or more, System 5.0.4 is the “current” recom-
mended system software. Iigs users who have
less than one megabyte of memory should
strongly consider upgrading: memory prices
are very reasonable now, and use of the cur-
rent system software version is necessary to
have access to software that uses features
found only in the newer versions. We generally
recommend Iigs owners aim for at least two
megabytes of memory to give themselves
some “breathing room”.—DJD

900 number gotcha

After reading the letter from Mike Sample in
the June 1991 issue, 1 would like to point out a
problem with 1-900 lines that many people do
not know exists. Due to a change in Texas law
to prevent abuse of 900 and 976 numbers, tele-
phone companies that cannot block service to
these numbers on a customer by customer
basis must completely block service to these
numbers. Being served by such a telephone
company, I am therefore legally blocked from
calling Applied Engineering’s or any other 1-900
number. This affects many users who live in
rural areas where there is already no convenient
dealer or user group.

As a professional systems analyst/program-
mer who has used Apple computers since
1980, I fortunately have had little need to use
telephone support lines. However, 1would
encourage companies to rethink their use of 1-
900 numbers so that others served by tele-
phone companies affected by this law will not
lose one of the few resources available to them.

Charles W. Hall
Comfort, Texas

The use of 900 numbers is generating con-
troversy for all types of computer products.
William F. Zachmann's editorial in the July
1991 (Vol. 10, No. 13) issue of PC Magazine
is “For a Good Time, Call 1-900-SUPPORT". He
looks at the issue critically, but misses your
predicament.

One of the other bizarre developments is a
mail-order house that uses a 900 number for
product orders. The company claims that this
allows them to sell products at a lower price by
offsetting sales support costs. Those who ask
the most questions pay the most in telephone
charges.—DJD

Disk fading

I'm thinking about taking the plunge and buy-
ing a hard drive. I went back through a couple
of years of A2-Central and couldn't find the
answer to this question.

All of the information on the disk is magneti-
cally imprinted, including the low-level format-
ting. Some of this information will not be called
up and renewed for long periods of time,
maybe years. Will this information gradually
fade and cause disk errors? If this is a problem,
could a layman save everything he had on the
disk including the high-level formatting, renew
all the original formatting and put Humpty
Dumpty back together again? Maybe there is no
problem with magnetic fading?

I could stand to renew the formatting every
other year better than introducing, say, a 0.005

A2-Central 7.55

per cent error factor. With the millions of opera-
tions that go on in the computer every boot and
run, I have visions of my software slowly devel-
oping bugs and glitches after a few years. I have
had a few programs on floppies go bad slowly.
You can recover from one floppy; I shudder to
think about the same thing happening to a hard
drive.

Rollin Ratchen

Salem, Oregon

We'd like to reduce your paranoia some.
Just some, not entirely; you can’t see what's
happening to your data, so it's better to be
very safe rather than very sory.

Technicians have told us that computer data
on disk media may be good for ten years or
more, so disks should be re-written (all data
backed up, the disk re-formatted, and the
backup restored) at least that often.

We were also told magnetic tape should be
rewritten at least every five years. Since mag-
netic tape is stored as “layers” wound on a
spool, tape has the additional problem of
“print-though”, where the magnetic image on
one layer can try to imprint itself on the adja-
cent layer, disturbing the original information.
(This happens on audio and video tapes, too,
but audio and video tape recorders don’t come
to a crashing halt if their data is slightly distort-
ed.)

There are other things in our environment
that cause magnetic fields that can corrupt
data on magnetic media. Hard disks are resis-
tant to most minor disturbances (otherwise
you'd have trouble using them close to your
computer and monitor), but if you have the
hard disk setting on the floor and start an elec-
tric motor next to it (say, a vacuum cleaner)
the magnetic field exerted by the motor may
trash your data.

Also, you have to remember that the hard
disk itself is a mechanical device with moving
parts that may wear out long before the data
deteriorates. A hard disk with a “MTBF” (mean
time between failures, or the average time that
can be expected to pass before the drive fails)
of 50,000 hours should have an average life-
time of between five and six years. If you wait
ten years to “reconstitute”it, you're taking
chances.

Finally, you have to assume that nothing
else damages the drive. It's always possible
that a power surge, rampaging program, or
physical damage could take out the drive at
any time.

So the rule is simple: back up your data
regularly. In case of a failure at any time, you
won't lose any more work than was completed
since your last backup.—DJD

A flash of SuperView

I found a bug in SuperView, the graphic view-
er you put on your May 1991 disk. With
AppleTalk enabled, the pictures are interrupted
with flashes. Disable AppleTalk and everything
works fine again.

Jack van Soest
Vlaardingen, Netherlands

SuperView is a utility that allows viewing
ligs pictures using up to 3200 colors. The Iigs
is normally limited to displaying 16 palettes of
16 colors (up to 256 colors) when the screen
is set to use the 320 by 200 resolution mode.

7.56 A2-Central

In order to get 3200 colors, the Iigs palettes
are altered “on the fly” as the various lines are
displayed so that a different 16 colors can be
displayed for each of the 200 scan lines (16
times 200 is 3200 colors). As you can imagine,
continuously altering the palettes as the pic-
ture is displayed takes a lot of work; the pro-
cessor is kept pretty continuously busy.

AppleTalk also insists on having access to
the processor occasionally so that it can check
on the network status. The “flash” is caused by
the handling of an AppleTalk interrupt causing
the 3200-color display code to get “out of
sync” in updating the palettes for the displayed
image. This could be prevented by disabling
interrupts, but this could cause the network to
assume your Iigs had been disconnected and
quit looking for it; not a good thing, especially
if you're using an AppleShare volume as a pni-
mary disk drive.

So it really isn't a “bug”, it was a design
decision. Chris McKinsey (SuperView’s author)
decided that leaving you connected to the net-
work was more important than giving you flick-
erfree pictures. This only affects AppleTalk
users, and is a limitation of the resources of
the ligs.—DJD

MD-BASICand C

For those few (like myself) who have the
need to convert 16-bit C programs to run on 8-
bit Apples—try MD-BASIC! The latest version
supports whiles, repeats, ifthen-else, etc., and
it is fairly easy to use macros to convert
printf(“\nHello") to PRINT “Hello”. I now have a

A2~Centml

© Copyright 1991 by
Kesource~Central Inc.

groups
and significant others may obtain permission to reprint articies from time to time
by specific written request.

Publisher: Edilor:

Tom Weishaar Dennis Doms

with help from:
Sally Dwyer Dean Esmay Joyce Hammond
Jay Jennings Jeff Neuer Ellen Rosenberg
Denise Shaffer Tom Vanderpool Jean Weishaar

A2-Central,—iited Open-Appie through January, 1989—has been pub-
lished monthly since January 1985. World-wide prices (in U.S. dollars; aimall
delivery included at no additional charge): $28 for 1 year, $54 for 2 years; $78 for
3 years. Al back issues are curently available for $2 each; bound, indexed ed
tions of our first six volumes are $14.95 each. Volumes end with the January
issue; an index for the prior volume is included with the February issue.

The full text of each issue of A2-Central is available on 3.5 disks, along
with a selection of the best new public domain and shareware files and pro-
grams, for $84 a year (newsletter and disk combined). Single disks are $10.

Please send all cormespondence to:

A2-Central
P.O. Box 11250
Overland Park, Kansas 66207 U.S.A.

A2-Central is sokd in an unprotected format for your convenience. You
are encouraged to make back-up archival copies or easy-to-read enlarged
copies for your own use without charge. You may also copy A2-Central for

ibution to others. The distribution fee is 15 cents per page per copy dis-

tributed.
WARHAN'I’YANDLIHTATIONOFUABILITY We warrant that most of
the information in A2-Central is useful and correct, although drivel and
mistakes are included from time to time, usually unintentionally. Unsatisfied
subscribers may cancel their subscription at any time and receive a full
refund of their last subscription payment. The unfilled portion of any paid
subscription will be refunded even to satisfied subscribers upon request.
OUR LIABILITY FOR ERRORS AND OMISSIONS IS LIMITED TO THIS
PUBLICATION'S PURCHASE PRICE. In no case shall our company or our
contributors be liable for any incidental or ges, nor for
ANY damages in excess of the fees paid by a subscriber.

ISSN 08854017 GEnie mail: A2-CENTRAL
Voice: 913-469-6502
Printed in the U.S.A. Fax: 913-469-6507

fairly large program running under GS/OS and

nearly the same program running under Apple-

soft!

; Richard Phares
Annapolis, Md.

Apple’s Mac LC “solution”

1 just received the July issue of A2-Central
and would like to comment on a couple of
points. On page 7.44 you say, “...But given the
limitations of the LC as a host, the erratic com-
mittment of the parent company to support its
installed base of users...” Great paragraph!

In my opinion the Mac LC (and the Classic)
are the biggest pieces of “junk” ever placed on
the market. The LC, I believe, will be Apple’s
“Edsel.” My church bought one over my severe
objections and are already sorry for the pur-
chase and looking for a way out. It's terrible to
have to tell your minister that “I told you so.”

On page 7.45 in Ask Uncle DOS, Robert Halls
letter title “Revenge” hit the nail somewhat on
the head. I don't agree completely with some of
his comments nor your response. I am no
longer an Apple’er after 10 years of Apple lie's,
lic’s and ligs’s. 1 have sold almost all of the
hardware and a large portion of my extensive
software and reference libraries. (Thank good-
ness there is still a fairly good resale market for
this “stuff.) I am working from an IBM compati-
ble 386SX clone which sports 4 meg of memo-
ry, a math coprocessor, a 3.5 drive, a 5.25
drive, an 80 meg internal hard drive, a 2400
baud internal modem and a Hewlett Packard
DeskJet 500. By the way this system cost me a
“heck of a lot less” than a comparably equipped
Macintosh LC would have. I run with MS DOS
5.0 and Windows 3.0. I have been running this
system for over a month using WordPerfect 5.1
(just waiting for Windows version), Excel 3 for
Windows (WOW!), dBase IV and PageMaker 4.0
for Windows. Although I have suffered some
“discomfort” with the learning curve, I must
admit that at this point 1 DO NOT MISS APPLE,
including AppleWorks which 1 did not think I
could ever do without.

Revenge—I have had mine. I am no longer an
Apple customer nor will 1 ever be again. Not
only that I am sharing my conversion experi-
ence with many other formerto-be Apple II
owners. | really think it is too late for Apple to
do anything about the alienation of the signifi-
cantly large Apple Il customer base. I think the
40% per cent drop in their stock value should
say something.

I know that Apple is A2-Central's bread and
butter and this type of letter does not bode well
for the future, but I dare you to print it. I will be
watching A2-Cenfral until my subscription
expires next May. 1 hope to see it in print...

Raymond W. Crowley
Manchester, Mo.

Well, I'm not too fearful of printing it since
obviously we have a great many Apple II peo-
ple who don't feel the same way. I too have my
MS-DOS systems, starting with a laptop to do
what Apple couldn’t seem to achieve; I still
think the Apple II's problem is unrealized
potential rather than lack of potential.

Apple’s stock has been playing ping-pong for
the last three years, usually boosting after new
product introductions and then slowly fading
toward the Christmas buying season when the
Apple IF(which has been poorly marketed of
late) was formerly the traditional seller. The
intro of the new Macs last fall sent the stock

Vol. 7, No. 7

zooming and now it has moderated; let’s hope
the new Consumer Products group will have
something to say about the Apple II's role this
season.—DJD

Good reasons

I enjoy reading your newsletter, even though
Iown a lle and find the number of germane
articles diminishing.

Give me three reasons Ican present to my
wife for upgrading to a Iigs. If she buys at least
two of them, 1will be both grateful and less
inclined to fire off letters with snide italic pas-
sages.

Robert W. Hughes
Reynoldsburg, Ohio

We've covered several of the issues in the
past, with software being a weak link, so let
me give you three software reasons to
upgrade: hypermedia, programming languages,
and networking. Your decision to actually
change systems will probably depend on your
interest in these areas.

The ligs has the basic hardware to support
powerful hypermedia programs like Nexus,

, and Hgs, giving it
perhaps the most potential in this area. The
ligs’s individual capacities for sound, color
graphics, megabytes of memory, and so on
may not be the most intimidating on the mar-
ket, but it is an affordable way to get the com-
bination of these capabilities in a ready-to-use
package. If you're curious about the Iigs, these
programs are worth investigating (we've spo-
ken about them often ourselves).

The Iigs provides a richer environment for
classic programming languages such as Pascal
and C, where Apple Il implementations have
stuttered. Your choice of languages for the ligs
is broader, and 8-bit languages are also avail-
able, of course. In addition, if you like the idea
of writing using a graphical user interface,
Apple has already made many of the routines
available as part of the ligs system software’s
tools.

Finally, although Apple also brought net-
working capability to the Ile via the Apple Il
WorkStation Card, the ligs handles networking
more naturally. The Iigs Finder supports net-
work volumes automatically (as should all
good Ilgs programs) and has the extra
resources to allow the use of network printer
drivers as part of the operatmg system. And,
although not ‘strictly networking, the ligs also
has more flexible support for non-ﬁoﬁ(lgsm
systems through GS/0S, already evidenced by
the support of AppleShare and High Sierra file
systems.

It isn't difficult to point to other computers
and find chinks in the Iigs armor, but taking all
things into account at once the ligs fares bet-
ter. HyperCard on the Mac isn’t in color, MS-
DOS systems have to kludge the use of extend-
ed memory . Neither system has the built-in
sound capability of the Iigs.

We don't know whether any of the above
three areas interests you but it’s our belief that
hypermedia and networking capabilities are
becoming desirable features of computers, and
that although not everyone wants to be a sys-
tem programmer, the availability of better lan-
guages will attract the better programmers
(most programmers who write GS/OS-based
software are not anxious to retumn to the 8-bit
programming environment).—DJD

