
Apple II Computer Info

 Apple II Family Technical Documents

Apple Assembly Line
Article Archive

——
Written by Bob Sander-Cederlof

from October 1980 through May 1988
——

This archive contains issues
for October 1980 to June 1986

——
Source:

http://salfter.dyndns.org/aal/
salfter@salfter.dyndns.org

15 September 2000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1 of 2550

Apple II Computer Info

Apple Assembly Line Archive
A while back, I downloaded all of the issues of Apple Assembly Line that had
been archived in GEnie's A2Pro file area. At this point, GEnie is either
dead or dying (last time I used it was a few years ago). Delphi's A2Pro
might eventually get them, but it hasn't happened yet.

Until that time, I've put them all here. The only change from the way they
were presented on GEnie is that I renamed the files so that a directory
listing of them could easily be sorted chronologically...instead of
"AAL.JAN.85.BXY," for instance, that file is now "AAL.8501.BXY." The info
about each issue given in this HTML document is, if I remember right, the
description that GEnie had used for the file.

So, without further ado, here's the archive. The whole lot is only about
2.5MB, so you can either just click away at the links or use something like
Go!Zilla (no, Go!Zilla isn't an Apple II program) to "leech" all of 'em in
one swell foop. :-)

The entire collection is also available as a single ZIP archive. It's mainly
of benefit to non-Apple II users who might want to browse the collection.
(There are unzip programs for the II, but ShrinkIt files are better if
you're working with this stuff on a II.)

Also, I received email on 2 Nov 99 from Bob Sander-Cederlof, the author of
most of these files. It turns out that publication ceased sometime in 1988,
which means I'm missing a few files. If you have 'em and can send 'em to me,
I'd be interested...send me mail.

AAL.ZIP
The entire collection as a single (~2MB) file.

AAL.8010.BXY
This issue contains articles on alternate ways to add and subtract one from
a number, a general message printing subroutine, some S-C Macro Assembler
patches and a hardware error in the JMP (addr) instruction in all 6502 chips
(one of the first publications of this bug!).

AAL.8011.BXY
This issue contains articles on bugs and new commands for the S-C Macro
Assembler, a new USR command for that assembler, instructions for turning
S-C files into text source files, a variable cross-reference generator for
Applesoft programs and a simulated numeric keypad for the Apple II+, all in
6502 assembly!

AAL.8012.BXY
This issue contains articles on intelligent disassemblers, a pretty LIST for
Integer BASIC, new commands and directives for the S-C Macro Assembler and
ways to handle 16-bit comparisons on an 8-bit machine.

AAL.8101.BXY
This issue contains articles on how to move memory, a computed GOSUB for
Applesoft and putting a new COPY and EDIT into the S-C Macro Assembler.

AAL.8102.BXY
This issue contains articles on making all kinds of noises with the Apple II
speaker (tones, bells, machine guns, swoops, lasers, inch-worms, touch-tones

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2 of 2550

Apple II Computer Info

and morse code)! It also has stuffing object code in protected places,
multiplying on the 6502 and string swapping in Applesoft.

AAL.8103.BXY
This issue contains articles on a pretty 'dump' command, 'unused' opcodes
and what they do on a 6502, a complet 6502 opcode chart, moving commands to
the language card, a _commented_ listing of the DOS 3.2.1 RWTS and an '&'
command for the S-C Assembler II.

AAL.8104.BXY
This issue contains articles on text file I/O in assembly language,
AppleSoft internal entry points, fast string input for Applesoft, hiding
things in DOS, and the format code for both DOS 3.2.1 and DOS 3.3! PLUS a
substring search for Applesoft and some S-C Assembler II patches.

AAL.8105.BXY
This issue contains articles on a hi-res SCRN function for Applesoft,
conquering paddle jitter, a shift-key modification, the 6502 programming
model and a commented listing of DOS 3.2.1 from $B800 through $BCFF.

AAL.8106.BXY
This issue contains articles on two fancy tone generators, more
multiplication on the 6502, specialized multiplication, a commented listing
of DOS 3.3 from $B800 through $BCFF and a review of 'Beneath Apple DOS' from
when it was _new_.

AAL.8107.BXY
This issue contains articles on lower case in a II+, printing the screen,
restoring clobbered page 3 pointers, corrections to the variable X-ref
program in V1N2 (AAL.8011.BXY) and a step-trace utility!

AAL.8108.BXY
This issue contains articles on finding Applesoft line numbers, binary
keyboard input, two ways to compare a byte, selective catalogs in FID,
random number generation in Integer BASIC, corrections to V1N2
(AAL.8011.BXY) and a commented listing of the DOS 3.3 boot ROM!

AAL.8109.BXY
This issue contains articles on a field input routine for Applesoft, CHRGET
and CHRGOT, exiting the S-C Assembler II, a new .AS directive for that
assembler and a commented listing of DOS 3.3 RWTS (also used in ProDOS)!

AAL.8110.BXY
This issue contains articles on sifting primes faster and faster, a 6809
cross assembler, extending the Apple II monitor, some errata and a
disassembly of DOS 3.3 from $B052-$B0B5 and $B35F-$B7FF.

AAL.8111.BXY
This issue contains articles on using AppleSoft from assembly language, a
formatted print subroutine, a poor man's disassembler and a beginning lesson
on loops.

AAL.8112.BXY
This issue contains articles on a 6809 card with FLEX, AppleSoft hi-res
subroutines, hex constants in AppleSoft, an AppleSoft line editing aid,
improved AppleSoft fast string input, adding ASCII dump to the original
Apple II monitor and an AppleSoft GOTO from assembly language.

AAL.8201.BXY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 3 of 2550

Apple II Computer Info

This issue contains articles on a hi-res SCRN function with color, a 6502
relocator, a note of a problem in DOS 3.3, some handy EXEC files, a one-chip
microcomputer, a couple of reviews and some S-C Assembler goodies.

AAL.8202.BXY
This issue contains articles on DOS error trapping from machine language,
improving the EPSON controller card, even faster primes, a printer FIFO
buffer, patches for Apple Writer to unhook PLE, a great free adventure and
dividing by ten.

AAL.8203.BXY
This issue contains articles on reading 2 paddles at once, EPROM blasters,
reviews, more about the EPSON interface, tricky code that always skips,
using the AE Time II card, some corrections and a note from the publisher.

AAL.8204.BXY
This issue contains articles on adding auto-save to the S-C assembler, a
review of an Applesoft editor, an easy shift-key modifier, using macros and
nested macros and recursive macros, controlling software configuration and
making a funny noise.

AAL.8205.BXY
This issue contains articles on a secret RWTS caller inside DOS 3.3,
benchmarking block MOVEs, another recursive macro, reading a whole track
with RWTS, reading the game buttons unambiguously and a macro branch
library.

AAL.8206.BXY
This issue contains articles on implementing 'new' opcodes using BRK, a new
hi-res function for Applesoft, a bubble sort, macro hints, a yes/no
subroutine, a bell routine, a shift-key modification, searching for
zero-page references, an automatic CATALOG for the S-C Macro Assembler and a
memory examiner.

AAL.8207.BXY
This issue contains articles on run-anywhere subroutines, a giant macro for
messages, sorting out zero-page references, simple hi-res animation, a text
file display command for DOS and some reviews.

AAL.8208.BXY
This issue contains articles on search and perform subroutines, DOS free
space patches, a quick way to write DOS on a disk, corrections to the July
relocatable JSR command, efficient handling of very large assembly source
files, a blinking underscore cursor and lots more goodies!

AAL.8209.BXY
This issue contains articles on new S-C products, a directory of assembler
directives, relocatable ampersand-vector code, eliminating paddle
interaction, some fast screen tricks, a bibliography, a note about the 6800
cross assembler and the underline cursor and some reviews and patches.

AAL.8210.BXY
This issue contains articles on a DOS 3.3 catalog arranger, why you need
macros, converting toolkit source to S-C, S-C assembler goodies and info on
how people could have written for AAL, plus a correction to the fast screen
scrolling by Bob.

AAL.8211.BXY
This issue contains articles on sound patterns, digitized speech on an Apple

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 4 of 2550

Apple II Computer Info

II, more fast primes, moving a symbol table, EXEC without END in Applesoft,
an Applesoft program locator and REPEAT/UNTIL for Applesoft.

AAL.8212.BXY
This issue contains articles on making relocatable JMPs and JSRs, adding
bit-control to the monitor, assembly listings on text files, commented
Applesoft source, 65C02 preview, garbage collection in arrays, splitting
strings to display length, several quickies and more S-C assembler goodies.

AAL.8301.BXY
This issue contains articles on a Super Scroller, branch opcode names, more
on catalog arranger, adding decimal values from ASCII strings, programming
the language card, seed thoughts on extensions, more quickies, ideas and
reviews.

AAL.8302.BXY
This issue contains articles on really useful ASCII string adding, an
endless alarm, Apple IIe notes (introduced just before this issue), an
Applesoft INPUT tuner, star-tling stunts and quickies, S-C goodies and
reviews.

AAL.8303.BXY
This issue contains articles on PTRGET and GETARYPT, a macro-building macro,
Epson MX-80 screen dumps, a division tutorial, a note on prime benchmarks,
garbage-collection indicator for Applesoft, more on the IIe and reviews.

AAL.8304.BXY
This issue contains articles on patching DOS 3.3 for fast LOAD and BLOAD, an
'ORG' macro, date processing modules, a new version of DOS 3.3, a general
purpose patch installer, more reviews and a few notes.

AAL.8305.BXY
This issue contains articles on displaying character generator EPROMs, a
reference of chips in the Apple II+, a PAUSE directive for S-C, some new
cards, a program to find address references, generating parity and garbled
error messages under DOS.

AAL.8306.BXY
This issue contains articles on a spiral screen clear, a burglary (for
real), binary to decimal conversion, why not to replace INIT in DOS 3.3,
reformatting a lot of text, working with track balls and an ampersand
monitor caller.

AAL.8307.BXY
This issue contains articles on a 6502 mini-assembler in Applesoft, speeding
up text file I/O, the 65C02, a revised monitor patch for ASCII display, an
80-column SHOW command, an explanation of the DOS 3.3 APPEND bug, S-C
goodies and the resolution of the burglary.

AAL.8308.BXY
This issue contains articles on using auxiliary memory on the IIe, the
65C02, speeding up spirals, tinkering with variable cross references,
reversing, getting and storing nibbles, some small patches and patch
unification, and some 68000 boards for the Apple II.

AAL.8309.BXY
This issue contains articles on jump vectoring, generating machine code with
Applesoft, Amper-monitor, more DOS 3.3 revisions, calculating base
addresses, saving source files for Apple's mini-assembler, generic screen

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 5 of 2550

Apple II Computer Info

dumps, a CATALOG interrupt and an 80-column ASCII Monitor dump.

AAL.8310.BXY
This issue contains articles on more tinkering with variable
cross-references, faster booting for ScreenWriter II, large assembly
listings to text files, lower case titles, a macro-calculated spiral screen
clear, counting lines and more goodies.

AAL.8311.BXY
This issue contains articles with a commented listing of ProDOS 8's disk
nibblization routines, a look at Aztec C, killing an EXEC file, shapemaker
enhancements, ProDOS clock drivers and more on lower case titles.

AAL.8312.BXY
This issue contains articles with more disassemblies of ProDOS 8, more
assembly listings into text files, more on Aztec C, generalized GOTO and
GOSUB, finding trouble in a RAM card, the TimeMaster II from AE and
converting S-C files to text files.

AAL.8401.BXY
This issue contains articles on a code profiler, more on a Don Lancaster
assembly language book, DOS patches to avoid interrupt problems, more on the
65C02, some reviews, online with Steve Wozniak and a 68000 'color pattern'.

AAL.8402.BXY
This issue contains articles on listing buried messages, peeking at the
catalog, fast scrolling on IIe 80-column screens, a look at the Macintosh,
wrap-around addressing, delays, IIe soft switches, a text area erase
routine, a macro to generate a quotient/remainder table for Hi-Res and even
more good stuff!

AAL.8403.BXY
This issue contains articles on fast garbage collection, changing VERIFY to
DISPLAY, faster table lookups via redundancy, disk drive pressure pads,
ProDOS on a Franklin, the color pattern in 6502 code and a philosophical
article wondering if ProDOS will succeed.

AAL.8404.BXY
This issue contains articles on a CRC subroutine, more clocks, an evening
with Woz, quick DOS updating (no more MASTER CREATE), burning and erasing
EPROMs, and macro source code available.

AAL.8405.BXY
This issue contains articles on random numbers for Applesoft, the Apple IIc,
news from Roger Wagner, the enhanced Apple II ROM, the 65C02 in older Apple
II machines, decimal floating point arithmetic, making a difference map and
a solution to an old puzzle.

AAL.8406.BXY
This issue contains articles on 18-digit arithmetic (part 2), DOS studies,
revisiting $48, more random number generators, booting ProDOS with a
modified ROM, finding the bad bit using CRCs, and lots more too intricate to
list here!

AAL.8407.BXY
This issue contains articles on 18-digit arithmetic (part 3), building label
tables for DISASM, quick memory testing, a 68000 sieve benchmark, an updated
6502 prime sifter, sorting and swapping, 'gotchas' on the Apple IIc, orphans
and widows, and speed vs. space.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 6 of 2550

Apple II Computer Info

AAL.8408.BXY
This issue contains articles on 18-digit arithmetic (part 4), enabling and
disabling IRQ from Applesoft, line number cross references, slow chips, and
a modification to DOS 3.3 for big BSAVEs.

AAL.8409.BXY
This issue contains articles on 18-digit arithmetic (part 5), faster
ampersand routines to zero arrays, turning an index into a mask, putting
messages on the screen, a bibliography on hi-res graphics and some great
'new' books.

AAL.8410.BXY
This issue contains amplifications on past articles on 18-digit arithmetic
(plus part 6 of the series), more on 'index to mask', a review and sample
program for the 65802, an index to volume 4 and reviews of two early
Macintosh 68000 assemblers, of all things.

AAL.8411.BXY
This issue contains part 7 of 18-digit arithmetic (and square roots!),
megabytes for the IIe, the 65816, an improved 80-column monitor dump,
generating cross-reference files with DISASM, macro information by example,
turning bit-masks into indexes and converting two-digit decimal strings to
binary.

AAL.8412.BXY
This issue contains part 8 of 18-digit arithmetic, more details on 65C02's
in older Apple II computers, corrections on V5N2's MVN/MVP, a strange way to
divide by 7, sly hex conversion, remembering early computer prices, tables
for faster hi-res, Blankenship's BASIC and a solution to overlapping DOS 3.3
patches.

AAL.8501.BXY
This issue contains part 9 of 18-digit arithmetic (the printing routine!), a
symbol table source maker and a short single-byte hex-to-decimal printer.
The first two routines are so informative they take up almost all of the
32-page paper issue!

AAL.8502.BXY
This issue contains part 10 of 18-digit arithemetic, questions and answers
on the S-C 2.0 assembler, making DOS-less disks, corrections, reviews, more
S-C assembler stuff and building hi-res pre-shift tables.

AAL.8503.BXY
This issue contains info on shortening the DOS file buffer builder, more on
65C02s in older Apple IIs, improved DOS 3.3 number parsing and lower-case
DOS 3.3 commands, the Oki 6203 multiply/divide chip, a real 65816
diassembler (with source!) and finding memory size from the ProDOS 8 global
page.

AAL.8504.BXY
This issue contains a volume catalog for Corvus and Sider hard disks,
shrinking code inside BASIC.System, fast text windows for Applesoft,
discussion of some 'new' products, reviews and S-C macro assembler stuff.

AAL.8505.BXY
This issue contains a new catalog for DOS 3.3, an 80-column window utility
for the IIe and IIc, adding a DATE command to BASIC.System and lots of S-C
Macro Assembler 2.0 modifications, plus some reviews and modifying the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 7 of 2550

Apple II Computer Info

Rak-Ware DISASM program, for all of us who still use it.

AAL.8506.BXY
This issue contains the Boyer-Morris string search algorithm, a short
integer square-root subroutine, a note on the TXS instruction on the 65802,
interrupt trace, improving the single-byte converter, two ROM sets in one
IIe, a Call utility for Applesoft and some final DP18 subroutines.

AAL.8507.BXY
This issue contains info on how to read DOS 3.3 disks under ProDOS, how to
recursively list files (including contents of subdirectories) on a ProDOS
filesystem, and how to BSAVE to a new non-binary file under BASIC.SYSTEM
1.1. A review of the MCT SpeedDemon accelerator is also included.

AAL.8508.BXY
This issue contains how to make a 576K printer buffer on your IIc with a
Z-RAM card, a discussion of how many bytes each opcode takes, some generic
conversion routines and a wildcard file name search.

AAL.8509.BXY
This issue contains a prime benchmark for the 65802, putting DOS and ProDOS
on the same disk, software sources for 65802 and 65816, problems putting
65802 chips in Apple II+ computers and a short binary-to-decimal conversion
routine in 65802 (good for 65816 as well).

AAL.8510.BXY
This issue contains articles on a ProDOS driver that records what calls are
made to it, a DOS 3.3 RWTS patch to do the same recording, a puzzle in a
program that erases itself and more, more on putting 65C02 chips in older
Apple II machines, a multiple-column disassembler, reviews, news and more.

AAL.8511.BXY
This issue contains articles on a 15K language card-based RAM disk for DOS
3.3, a patch to ProDOS QUIT to allow the right-arrow key, three solutiosn to
the previous month's puzzle, a commented disassembly of the ProDOS QUIT
call, and two ways to merge fields into one byte.

AAL.8512.BXY
This issue contains articles on bugs in last month's RAM disk driver,
tracing the ProDOS MLI, a review of the OKS Kache Card, more puzzle
solutions, pseudo-variables in machine language and computing the day of the
week.

AAL.8601.BXY
This issue contains articles on converting lo-res pictures to hi-res, a
question on returning from BRUN, text file transfer under DOS 3.3, fast 6502
and 65802 multiplication routines, a RAMWorks compatible auxmove routine, a
correction to the dual DOS 3.3/ProDOS disk creator and trivia from Bill
Mensch on the origin of the number '6502'.

AAL.8602.BXY
This issue contains articles on a wildcard-capable CATALOG for DOS 3.3, the
Mitsubishi 50740 series microprocessors (MPW IIgs assembler actually
recognizes these guys), a faster CRC method, corrections to faster garbage
collection and a DOS 3.3 patch to prevent directly-entered commands from
working.

AAL.8603.BXY
This issue contains articles on running ProDOS on non-Apple ROMs, even

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 8 of 2550

Apple II Computer Info

faster 16X16 multiplication for the 65802 (or 65816), making a smarter 65816
disassembler, the fastest 6502 multiplication yet, PAL programming hardware,
reviews, and a routine to determine which 65XXX series processor you're
using!

AAL.8604.BXY
This issue contains articles on tool for restoring lost catalogs, using
primitive text windows, dividing BCD values by four, booting into 80
columns, a faster boot for DOS 3.3 with more disk space and a screen hole
gaffe in the second Apple IIc ROM release.

AAL.8605.BXY
This issue contains articles on modifying DOS 3.3 to use 3.5' disks,
recovering lost programs in the S-C assembler environment and even more
better division by seven.

AAL.8606.BXY
This issue contains articles on the 65816 stack relative addressing mode,
fast 16X16 multiply and divide for the 65802, the real story about DOS and
BRUN, toggling between two values, using SmartPort, generalized MLI error
handling and a practical CRC use.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 9 of 2550

Apple II Computer Info

==
DOCUMENT !READ.ME.txt
==

 _____ ______
 /_____|/______\ APPLE II PROGRAMMERS AND DEVELOPERS
 /__/|__| ___|__| ROUNDTABLE (A2Pro)
 /__/_|__| /_____/
 /________|/__/ __ __ __ Part of GEnie, the General Electric
 /__/ |__|__/______ /_//_// / Network for Information Exchange
 /__/ |__|________// / \/_/

APPLE ASSEMBLY LINE (ANOTHER RELEASE OF THE LOST CLASSICS PROJECT OF THE
APPLE II ROUNDTABLES ON GENIE): IMPORTANT INFORMATION

Welcome to A2Pro's release of Apple Assembly Line, the outstanding assembly-
language programming newsletter written and published by Bob Sander-Cederlof
from October 1980 through May 1988. These programming magazines are now
available to all members of A2Pro on GEnie for only the cost of a download,
including all source code disks and all articles!

If you wish to become a part of the Lost Classics project, visit the Lost
Classics headquarters in the A2 RoundTable (p. 645) on the GEnie Information
Service and check out the Lost Classics Bulletin Board Category (#7). This is
a continuing effort, and we wish to embrace the entire Apple II community.
Your assistance is greatly appreciated, and by helping Lost Classics you help
all Apple II users everywhere!

The author, Bob Sander-Cederlof, retains full copyright and its protection
for the product known as Apple Assembly Line. This product can be neither
bought nor sold, nor may it be modified, converted to other computer
platforms or operating systems without prior permission. User groups may
make it available for a nominal fee, but may derive no special income from
its distribution. In other words, you may charge a few dollars for the disk
and postage, but no charge for the program itself. This is not to discourage
the use of the code and techniques presented here in your own programs, but
is instead intended to protect the author from knock-off clones where the
same programs are distributed as someone else's work with only one or two
things changed, or a different user interface and a feature or two added
to the same code.

Should you have any questions about the distribution restrictions, you may
contact the A2Pro RoundTable (A2PRO.HELP) on GEnie for more detailed
information.

THESE ARTICLES AND PROGRAMS MAY NOT BE UPLOADED TO BULLETIN BOARDS OR ONLINE
SERVICES. THE APPLE II PROGRAMMERS' ROUNDTABLE ON GENIE IS THE EXCLUSIVE
SOURCE FOR ELECTRONIC DISTRIBUTION OF APPLE ASSEMBLY LINES. Violating these
distribution agreements is an infringement of copyright. A2Pro on GEnie has
exclusive license to distribute these articles and programs and they may NOT be
distributed via any other modem-based service without the express written
permission of the A2Pro Head Sysop.

NOTES ON FILES AND ORGANIZATION

Until July 1985, all Apple Assembly Lines source code and articles were created
and delivered exclusively on DOS 3.3 disks. To help alleviate difficulty in
retrieving the information, we have used the DOS 3.3 FST in GS/OS to transfer

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 10 of 2550

Apple II Computer Info

all files to ProDOS disks. We've also renamed the files accordingly so you can
easily unpack, read and enjoy them.

Starting in July 1985, Apple Assembly Lines was delivered (to those
subscribers who also purchased the disks) on "hybrid" DOS 3.3/ProDOS disks.
These disks contain both ProDOS and DOS 3.3 catalogs. The ProDOS side
usually included ProDOS versions of the source code and programs, and would
occasionally include ProDOS-specific code or discussion.

Each issue in A2Pro's release of Apple Assembly Lines contains up to three
folders:

 ARTICLES: Text files with the articles as printed in AAL that month.
 Articles were written using Apple Writer and still have some
 Apple Writer formatting commands in the files.
 DOS3.3: Source and object code files from the DOS 3.3 parts of disks,
 copied to ProDOS disks and archived
 PRODOS: Source and object code files from the ProDOS parts of disks,
 when available.

Some of the information may be duplicated, but we prefer to bring it to you as
it was mailed to subscribers.

ABOUT THE SOURCE CODE

Nearly all source code supplied is for the S-C Macro Assembler (also written by
Bob Sander-Cederlof). The S-C Macro Assembler used a BASIC-like file format to
store source code, including line numbers and simple compression of repeating
characters. It "stole" the Integer BASIC file type (in both DOS 3.3 and
ProDOS) to store its source files, making them not very useful to those without
the S-C Macro Assembler.

To help the code look as it did in the magazine, we've converted all the files
to ASCII text files, including their original line numbers, so you can follow
the descriptions of the code in the articles. The conversion was done through
a custom command for the Davex eight-bit command shell. The command ("sclist")
is available separately in A2Pro's library.

We chose not to increase the archive sizes by including the original files as
well as the text file versions. If you have need for any unmodified files from
an original Apple Assembly Line disk, please let us know in the A2Pro bulletin
board and we'll do what we can to make it available.

A2Pro and Lost Classics are pleased to bring this long-gone programming
information back to Apple II programmers around the world. If you have any
suggestions or comments, please come talk to us in the A2Pro bulletin board
on GEnie (menu option #1 on page 530), or send GEnie mail to A2PRO.HELP (from
internet, A2PRO.HELP@genie.geis.com).

Enjoy the Apple Assembly Line!

To sign up for GEnie, follow these simple steps:

1. Set your communications software to 8N1, half duplex (local echo),
 at 300, 1200 or 2400 baud.
2. Dial toll-free 1-800-638-8369, or in Canada, 1-800-387-8330.
 Upon connection, enter HHH.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 11 of 2550

Apple II Computer Info

3. At the U#= prompt, enter XTX99020,A2PRO and then press <RETURN>.
4. Have a major credit card ready. In the U.S., you may also use
 your checking account number.

For more information, call 1-800-638-9636, mail feedback@genie.geis.com,
or write:

GEnie, c/o GE Information Services, P.O. Box 6403, Rockville, MD 20850

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 12 of 2550

Apple II Computer Info

==
DOCUMENT CATALOG
==

CATALOG

Name Type Crtr Size Flags Last-Mod-Date Creation-Date
-------------------- ---- ---- ------ ---------- ------------------- -------------------
!READ.ME.txt TEXT R*ch 97K lvbspoImad 11/3/99 2:41 AM 1/5/78 12:05 PM
AAL-8010 Fldr Fldr 776K lvbspoIMAd 9/18/00 5:51 PM 9/18/00 5:49 PM
AAL-8011 Fldr Fldr 873K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8012 Fldr Fldr 1261K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8101 Fldr Fldr 970K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8102 Fldr Fldr 1746K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8103 Fldr Fldr 1067K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8104 Fldr Fldr 1261K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8105 Fldr Fldr 970K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8106 Fldr Fldr 970K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8107 Fldr Fldr 1067K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8108 Fldr Fldr 1746K lvbspoIMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8109 Fldr Fldr 1261K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8110 Fldr Fldr 1552K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8111 Fldr Fldr 582K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8112 Fldr Fldr 1940K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8201 Fldr Fldr 1940K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8202 Fldr Fldr 1843K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8203 Fldr Fldr 1455K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8204 Fldr Fldr 1358K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8205 Fldr Fldr 1746K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8206 Fldr Fldr 2134K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8207 Fldr Fldr 1649K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8208 Fldr Fldr 2134K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8209 Fldr Fldr 1843K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8210 Fldr Fldr 873K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8211 Fldr Fldr 2037K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8212 Fldr Fldr 2037K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8301 Fldr Fldr 2231K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8302 Fldr Fldr 2910K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8303 Fldr Fldr 1746K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8304 Fldr Fldr 1455K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8305 Fldr Fldr 2037K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8307 Fldr Fldr 2134K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8308 Fldr Fldr 1649K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8309 Fldr Fldr 2231K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8310 Fldr Fldr 2910K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8311 Fldr Fldr 1455K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8312 Fldr Fldr 1358K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8401 Fldr Fldr 1746K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8402 Fldr Fldr 2134K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8403 Fldr Fldr 1843K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8404 Fldr Fldr 1261K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8405 Fldr Fldr 1746K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8406 Fldr Fldr 1940K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8407 Fldr Fldr 1940K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8408 Fldr Fldr 1067K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8409 Fldr Fldr 1261K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8410 Fldr Fldr 1552K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8411 Fldr Fldr 1940K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8412 Fldr Fldr 2037K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8501 Fldr Fldr 970K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8502 Fldr Fldr 1261K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8503 Fldr Fldr 1649K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8504 Fldr Fldr 2037K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:51 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 13 of 2550

Apple II Computer Info

AAL-8505 Fldr Fldr 1261K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8506 Fldr Fldr 1940K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8507 Fldr Fldr 873K lvbspoIMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8508 Fldr Fldr 1067K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8509 Fldr Fldr 1358K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8510 Fldr Fldr 1843K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8511 Fldr Fldr 1746K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8512 Fldr Fldr 1455K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8601 Fldr Fldr 2328K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8602 Fldr Fldr 1164K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8603 Fldr Fldr 2231K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8604 Fldr Fldr 1358K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8605 Fldr Fldr 970K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM
AAL-8606 Fldr Fldr 2716K lvbspoIMAd 9/18/00 5:55 PM 9/18/00 5:51 PM

:AAL-8010:
Articles Fldr Fldr 582K lvbspoIMAd 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 194K lvbspoIMAd 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8010:Articles:
Add.Sub.One.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Gen.Msg.Printer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
HW.Err.6502.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LC.for.SCAsm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.Products.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8010:DOS3.3:
LowerCase.Adapt.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Msg.Printer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8011:
Articles Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 291K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8011:Articles:
BagsDisks4Sale.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sim.KeyPad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Src.On.TxtFiles.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Use.For.USR.Cmd.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Variable.XRef.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8011:DOS3.3:
S.NumericKeyPad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.TEXT.LIST.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Var.XRef.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8012:
Articles Fldr Fldr 679K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8012:Articles:
BlockMoveCopy.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Compare.16Bits.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
IBas.Prty.List.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Listed.Xprsns.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PrinterOnError.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Smart.Disasms.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8012:DOS3.3:
B.COPY.LINES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MkCopyLinesFile.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.COPY.LINES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 14 of 2550

Apple II Computer Info

S.IB.Ptry.Lstr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PATCH.DA.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Setup.CopyLines.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8101:
Articles Fldr Fldr 485K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8101:Articles:
Computed.Gosub.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Copy.for.SCAsm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Edit.Cmd.SCASM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
How.Move.Mem.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8101:DOS3.3:
S.AmperGosub.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ASoft.BLTU.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.EDIT.COMMAND.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.GENERAL.MOVE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.AmperGosub.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8102:
Articles Fldr Fldr 679K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 1067K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8102:Articles:
AppleNoiseSound.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
AS.Str.Swapper.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.Misc.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
GRAM.Buy.Printr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
GRAM.Ftr.Laumer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
GRAM.Hello.AS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Multiply.6502.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8102:DOS3.3:
Demo.Str.Swap.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.APPLE.BELL.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.INCH.WORM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LASER.BLAST.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LASER.SWOOP.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MACHINE.GUN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MORSE.CODE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MULTIPLY.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SIMPLE.TONE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.STRING.SWAP.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.TOUCH.TONES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8103:
Articles Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8103:Articles:
A.Beaut.Dump.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Amper.Cmd.Int.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS321.RWTS.Lst.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Opcode.Chart.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Unused.Opcodes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8103:DOS3.3:
AsmDisk4.0.Mod.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS321.BD00BE9F.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.AmperIntf.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BernardMemD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 15 of 2550

Apple II Computer Info

Welman.Modifier.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8104:
Articles Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8104:Articles:
AS.Substr.srch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS.Format.List.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hiding.Undr.DOS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Part.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Text.File.IO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8104:DOS3.3:
Demo.Txt.Fl.Rd.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS321BEAO.BFFF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS33.BEAF.BFFF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FastStr.Input.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Substr.search.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.Str.Input.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.Subst.Srch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8105:
Articles Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 388K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8105:Articles:
DontBeShiftless.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS321.B800.Lst.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
GRAM.WPs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hires.Scrn.Func.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
No.Pdl.Jitter.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8105:DOS3.3:
DOS321.B800BCFF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
HIRES.SCRN.TEST.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.HIRES.SCRN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PADDLE.JITTER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8106:
Articles Fldr Fldr 485K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8106:Articles:
DOS33.B800.List.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FancyToneMakers.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Multiplication.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rvw.Beneath.DOS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8106:DOS3.3:
DOS33.B800.BCFF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.AMPERTONES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BASCALC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BY.TEN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MXN.MULTIPLY.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8107:
Articles Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8107:Articles:
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 16 of 2550

Apple II Computer Info

LowerCaseApple.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Miscellaneous.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Screen.Printer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
StepTrace.Util.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Var.XRef.Correx.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8107:DOS3.3:
S.F8EpromLC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RESTORE.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RESTORE.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ScrnPrinter.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.STEP.TRACE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8108:
Articles Fldr Fldr 1067K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8108:Articles:
Bin.Kbd.Input.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Compare.2Ways.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS33BootROMLst.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FID.Select.Cat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FindASLineNums.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Miscellaneous.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rand.Nums.IntBA.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Re.AsmSrc.Text.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rvw.Apple.ML.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Whaduzzit.Do.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8108:DOS3.3:
DOS33.Boot.ROM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hello.FW.Slot4.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.AMPERFIND.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Bin.Keyboard.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.CallIB.Random.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RANDOM.TEST.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Rnd.Function.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8109:
Articles Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8109:Articles:
CHRGET.CHRGOT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS3.3.RWTS.Src.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Fancy.AS.Direct.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FieldInputRtn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LeaveVers4.0.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8109:DOS3.3:
Demo.US.Direct.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.CHRGET.PATCH.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.CHRGET.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.D33.BD00BEAE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FldInputRtn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.US.DIRECTIVE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Tst.Fld.Inp.Rtn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8110:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8110:Articles:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 17 of 2550

Apple II Computer Info

DOS3.3Disasm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Errata.CHRGET.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
GRAM.1lineprint.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Gram.Book.Revws.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
GRAM.Hello.AS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sifting.Primes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
XAsm.6809.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Xtnd.Apples.Mtr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8110:DOS3.3:
IB.Prime.Bench.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ASCII.Dump.P.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.D33.B35F.B7FF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Mtr.Xtns.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Prm.B..Savoie.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Prm.Bnch.Fst.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Prm.Bnch.RBSC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8111:
Articles Fldr Fldr 388K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 194K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8111:Articles:
AS.ROMsFromAsm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Loops4Begs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PoorMansDisasm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8111:DOS3.3:
PoorMans.Dsasm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FrmtPrint.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8112:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 1067K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8112:Articles:
AS.GotoFromAsm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
AS.HiRes.Subs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
AS.LineEditAID.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ASCII.Mon.Dump.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Excel.9.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FstrStringInput.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hex.Const.AS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Price.List.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8112:DOS3.3:
AS.DEMO.HI.RES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ASoft.Inline.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Fast.Read.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.GOTO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.HEX.CONSTANTS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.HI.RES.DEMO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.INTEGER.INPUT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Mossberg.LE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PMD.Subr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEST.FAST.READ.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.GotoFromML.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8201:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 1067K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 18 of 2550

Apple II Computer Info

:AAL-8201:Articles:
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
HandyExecFiles.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
HiresScrnColor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
OneChip6500.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Relocator.6502.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Review.Index.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SCAsm.2.LC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SeriousDOSPro.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
StepTraceCorrex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8201:DOS3.3:
AS.Copy.FW.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
AS.MAKE.LANGASM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ASM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
COPY.FIRMWARE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
INT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LOAD.ASM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MAKE.LANGASM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
READ.EXEC.FILE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.HiresScrnClr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RELOCATE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
WRITE.EXEC.FILE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8202:
Articles Fldr Fldr 1164K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8202:Articles:
BMA.VERSES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS.Error.Trap.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
EvenFstrPrimes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Great.Free.Adv.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ImprvEpsonCard.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
On.DivBy10.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Overseas.Subs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Patch.AW.PLE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PrinterFIFOBuf.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Problem.QD5.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8202:DOS3.3:
AW.Patch4PLE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PutneyPrimeDrvr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DIVIDE.BY.TEN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DOSOnErrXmpl.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.EpsonROMChng.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FIFOPrntHndlr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Putney.Primes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8203:
Articles Fldr Fldr 1067K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 388K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8203:Articles:
Code.Alwys.Skip.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Correx.2.FIFO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
EPROM.Blstr.Def.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
More.Epson.Intf.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.SCAsm.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
OtherEpsonMan.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rvw.6502.Subs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rvw.AmperMagic.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 19 of 2550

Apple II Computer Info

Rvw.TimeII.Card.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SCAsm.Ready.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8203:DOS3.3:
Inst.DOS.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DATE.FILES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DISPLAY.TIME.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PADDLES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8204:
Articles Fldr Fldr 776K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8204:Articles:
Add.AutoSave.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Ashby.Shift.Mod.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Pot.Tymac.Troub.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Recursive.Macro.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Review.AED.II.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sftwr.Cnfg.Ctrl.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Using.Macros.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8204:DOS3.3:
Inst.LA.Taylor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Autosave.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FUNNY.NOISE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LA.Ext.Taylor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Recurs.Macro.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Schumer.Macro.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8205:
Articles Fldr Fldr 1067K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8205:Articles:
Anthr.Recur.Mac.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
BlkMv.Benchmrk.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Branch.MacLIb.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Game.Buttons.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
NewAEDFeatures.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
NewOpcodes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Printers.4Sale.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RWTS.Caller.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SCMacro.patches.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Secret.RWTS.Clr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8205:DOS3.3:
A.BlkMov.Bnch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BlkMovBench.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BRANCH.MACROS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.GAME.BUTTON.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RecurMac.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.TRACK.READ.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WRTDIR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8206:
Articles Fldr Fldr 1164K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 970K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8206:Articles:
Auto.Catalog.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
BRK.Opcodes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
BubbleSort.Demo.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 20 of 2550

Apple II Computer Info

DFX.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Examiner.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hint.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Bell.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Search.ZP.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Shift.Key.Mod.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
XPlot4ASoft.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Yes.No.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8206:DOS3.3:
HXPLOT.DEMO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.AUTO.CATALOG.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BubbleSrtDemo.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.EXAMINER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.HXPLOT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Look4ZP.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MyOwnLtlBell.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.NewBrkOpcodes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ReadKeyCase.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.YES.NO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8207:
Articles Fldr Fldr 1067K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8207:Articles:
Animation.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Axlon.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Flash.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Giant.Macro.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hierographic.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
OtherEpson.Man.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Relocatable.JSR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Showfile.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sorted.ZeroPage.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Who.Are.We.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8207:DOS3.3:
Inst.Show.Cmd.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FILEDUMP.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.GIANT.MACRO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SHOW.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Smpl.Anim.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ZP.InOrder.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8208:
Articles Fldr Fldr 1261K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 873K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8208:Articles:
AGAG.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Auto.Man.Toggle.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Cursor.Routine.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Free.Space.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Large.Src.Files.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Macro.LC.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Quick.DOS.Write.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QuickTrace.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Search.Perform.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Shorts.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Videx.Patches.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 21 of 2550

Apple II Computer Info

:AAL-8208:DOS3.3:
Do.Torens.Videx.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.AutoMan.Tgle.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Free.Sectors.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SearchPerform.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.UL.Cursor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Videx.RtArrow.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Videx.Taylor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Videx.Toren.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Toren.Dox.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8209:
Articles Fldr Fldr 970K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 873K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8209:Articles:
Amper.Vector.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Directives.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hardcore.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.Products.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Read.Paddles.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Screen.Tricks.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Underline.Fix.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
VidexPatchPatch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
VidexRtArrow.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8209:DOS3.3:
S.CatalogArr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PdlWOIntAct.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RelocAmperMac.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RelocAmpersnd.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Screen.Tricks.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Tookit.Conv.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Usr.Week.Fn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEST.USR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Toolkit.Conv.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8210:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8210:Articles:
Autocat.For.LC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CatalogArranger.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SC.LC.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Scroll.Correx.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SQ.Macro.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Toolkit.2.SC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
USR.Week.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Writing.4.AAL.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8211:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 1164K lvbspoimad 9/18/00 5:49 PM 9/18/00 5:49 PM

:AAL-8211:Articles:
Apple.Talker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Changing.Lomem.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Exec.WO.End.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Locator.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
More.Speech.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 22 of 2550

Apple II Computer Info

Repeat.Until.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TonyFasterPrime.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8211:DOS3.3:
S.LOCATOR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.NewAplTalker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Repeat.Until.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.TonyFasterPrm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SOUND.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SOUND.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SOUND.3.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SOUND.4.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SOUND.5.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Talk.A.Test.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TestRepeatUntil.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TONY.S.DRIVER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8212:
Articles Fldr Fldr 1455K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:49 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8212:Articles:
AS.Src.Code.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Bit.Control.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ClearStrngArray.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Enhanced.6502.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Enhancemnt.Rvw.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Es.Cape.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Lancaster.Addtn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ListOnTXTFile.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LoadRAMCard.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Quickies.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RelocJMPsMeyer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Split.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Toggle.Case.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8212:DOS3.3:
Meyers.Reloc.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BITS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SPLIT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.StrArrayClear.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.Split.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.StrArrClr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8301:
Articles Fldr Fldr 1940K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 291K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8301:Articles:
Amper.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Arranger.Addtns.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Cookbook.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CROSS.AD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Filename.Editor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hardcore.Mag.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Last.Minute.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.Hardware.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QD9.COVER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Quickies.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RAM.Cards.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.C.DOCU.MENTOR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 23 of 2550

Apple II Computer Info

Seed.Thought.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
String.Addition.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Super.Scroller.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
The.Book.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
V3N4.6801.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Whats.Where.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8301:DOS3.3:
S.Fname.Editor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.STRING.ADD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SuperScroll.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8302:
Articles Fldr Fldr 1455K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 1455K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8302:Articles:
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Gilder.Note.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
IIe.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MoreVidexPatchs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Patch.TF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Patch.TI.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PtchMacroHex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Quickie.6.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SC.WP.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Scooter.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Skinny.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Stars.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
String.Adder.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Trapper.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8302:DOS3.3:
Divide.16.16.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ARRAYS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Div.32.16.Trc.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Div.8.4.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Divide.32.16.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LinnsVidex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MACRO.MACROS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ScreenPrinter.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ScrnPrntrPlus.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SuperStrAddr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.TRAPPER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEST.ARRAYS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.Str.Adder.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEST.TRAPPER.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEST.TRAPPER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8303:
Articles Fldr Fldr 1746K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8303:Articles:
AAL.INDEX.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CROSS.AD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Division.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Garbage.Indic.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
IIe.Stuff.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Macro.Macros.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Patch.4.68K.Asm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PtrGet.GetAryPt.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QD10.COVER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 24 of 2550

Apple II Computer Info

Screen.Printer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Short.Item.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ShortPrimeNotes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
T.MACRO.MACROS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Version1.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Version11Short.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
VisibleCPU.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8304:
Articles Fldr Fldr 970K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8304:Articles:
Circut.Desc.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Disasm.Patches.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Fast.DOS.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mikes.Stuff.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ORG.Macro.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Patcher.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Prawm.Board.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
V3N7.3.3E.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8304:DOS3.3:
Fast.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DATER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FAST.LOAD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ORG.MACRO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PATCHER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8305:
Articles Fldr Fldr 1552K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8305:Articles:
AAL.CHART.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
APPLE.CHIPS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Apple.Chips.Txt.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Cross.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Display.CharSet.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FADD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mikes80ColCmts.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.Cards.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ORDER.FORM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Parity.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Pause.Direct.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PDP11.XAsm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rogram.2.Large.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SC.Capture.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8305:DOS3.3:
S.DispCharSet.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FADD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PARITY.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PauseDirect.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SC.CAPTURE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8307:
Articles Fldr Fldr 1552K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8307:Articles:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 25 of 2550

Apple II Computer Info

Cross.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FastTextFileIO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Feature.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mini.Assembler.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Miracle.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MonAsciiDisplay.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.DOS3.3.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
OBriens.BGE.BLT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Opcodes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Othello.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Short.Subjects.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Show.Poker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
V3N10.65C02.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
WeishaarIIeDOS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8307:DOS3.3:
MINI.ASSEMBLER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FastTextRBSC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FTSchlyter.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MAD.BOERING.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MAD.FIELD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TxtFileSpeedup.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8308:
Articles Fldr Fldr 1164K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8308:Articles:
Bit.and.Pieces.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FasterSpiral.PT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
IIe.Auxmem.Bugs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Kill.LIST.Cmd.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Macro.Patches.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
More.68K.Boards.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Pitz.VCR.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Reverse.Nybbles.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Wetzels.Patches.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Whisper.VolCtrl.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8308:DOS3.3:
S.NybbleGetPut.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PutneySpiral.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Wetzel11Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WetzelLoader.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SJohnson.AUXMEM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8309:
Articles Fldr Fldr 1455K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 776K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8309:Articles:
Amper.Monitor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
AmperMon.Poker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ASCII.80.Cols.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
BaseAddr.Calc.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Break.Cat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Churchs.Quickie.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Gen.Screen.Dump.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Jump.Vectoring.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 26 of 2550

Apple II Computer Info

New.DOS33.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QuickTrace.Load.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RENEWAL.PLEA.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SAMPLE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Spiral.Compiler.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8309:DOS3.3:
AmperMtr.Poker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
JOHNSONS.MACROS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.AMPER.MONITOR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.CatalogInt.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FastShortHBC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.GenScreenDump.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Mon.ASC.DOBE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Spiral.Scr.Addr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8310:
Articles Fldr Fldr 2425K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8310:Articles:
AAL.AUTHORS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Adv.v1.v3.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Asm.From.400.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Avoid.Extra.Def.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Generic.Correx.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Index.AAAA.GGGG.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Index.HHHH.End.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Index.Page.nums.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Knouse.Mtr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Large.Asm.Text.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LC.Titles.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Line.Counter.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Loves.Spiral.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
More.VCR.Tinker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PDos.Disasm.Xp.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Price.Changes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rates.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Red.Faces.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ScreenWriter.II.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ShapeMaker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Supress.Hex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Where.To.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Writers.Guide.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8310:DOS3.3:
KnouseMtrPatch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LINE.COUNTER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LOVES.SPIRAL.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LoveSpiralFst.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.VCR.REVISED.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8311:
Articles Fldr Fldr 1164K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 291K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8311:Articles:
Aztec.C.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Ideas....txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Killing.Exec.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Lower.Case.Sq.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 27 of 2550

Apple II Computer Info

PDOs.Clk.Drvr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PDos.Disasm.Ex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Qwerty.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Shapemaker.Enh.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Shorts.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
XAsm.6301.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8311:DOS3.3:
PDOS.F142.F1Be.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PDos.F800.FFFF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.KILL.EXEC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8312:
Articles Fldr Fldr 970K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 388K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8312:Articles:
Dataphile.Dgst.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LabelGOTO.Gosub.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ProDOS.Listing.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Shafer.Asm.Text.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Short.Stuff.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
STB.128.Testing.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TimeMaster.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Trans.Src.Files.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8312:DOS3.3:
Conv.SC2Text.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Labelled.GOs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Test.STB.128.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.Lbld.GOs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8401:
Articles Fldr Fldr 1261K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8401:Articles:
Bill.Mensch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Interrupt.Patch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Lancaster.Books.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LocksmithReview.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Profiler.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEXT.TUTORIAL.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ThreeSuitPieces.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Understanding.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Urschels.Color.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
V4N4.6502.NOTES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Woz.Online.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8401:DOS3.3:
Ptch.DOS33.IRQ.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rods.Clr.Pat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PROFILER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Urschel.ClPat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Urschel.table.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8402:
Articles Fldr Fldr 1552K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8402:Articles:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 28 of 2550

Apple II Computer Info

Biblio.68000.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Creamers.Erase.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Delays.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FstScroll.IIe80.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mac.Thoughts.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Message.Search.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QR.Macros.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QuikLoader.Card.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Revisit.48.0.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Short.Subjects.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SoftswitchChart.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SWITCH.TABLES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TimeMaster.II.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
WrapAround.Addr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8402:DOS3.3:
DELAY.TIMES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ERASE.DEMO.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ERASE.DEMO.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Erase.Creamer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Msg.Search.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ScrnTrIIe80.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8403:
Articles Fldr Fldr 1164K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8403:Articles:
BragnerGPLEEtc..txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Customizing68K.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Felt.Pads.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Garbage.Collec.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Lancaster.SCWP.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Putney.ClrPat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Redunancy.Table.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Shorts.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SILLY.SONGS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
VerifyN2Display.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8403:DOS3.3:
GARBAGE.TEST.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PutneyTableMake.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QR.Table.Maker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DISPLAY.FILE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FastGarbage.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PutneysColor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SATHER.3.16.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8404:
Articles Fldr Fldr 970K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 291K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8404:Articles:
BurnErase.EPROM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CRC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Disasm.wExec.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Ideas....txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Intellec.Hex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.Source.Code.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 29 of 2550

Apple II Computer Info

Quick.DOS.Updtr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Woz.Talks.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8404:DOS3.3:
S.ApplyDOSPatch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.CRCHansKnecht.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Intellec.Hex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8405:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 873K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8405:Articles:
Differences.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Part.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.IIe.ROMs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Random.Numbers.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.IIc.65C02.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
That.Code.Did.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Wagner.News.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8405:DOS3.3:
ANOTHER.TEST.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Lic.Plate.Game.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
More.Rnd.Tests.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DIFFERENCES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.ADD.SUB.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RANDOM.KEYIN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RANDOM.KNUTH.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.USRND.S.C.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEST.USRND.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8406:
Articles Fldr Fldr 1358K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8406:Articles:
Andromeda.Board.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Barkovitch.Mntn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CRC.Bad.Bit.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOSology.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Part.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LancastersStuff.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Making65C02Work.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
More.Rnd.Stuff.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Moto.Formatter.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PDos.Mod.Mtr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PRT.Command.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Revisit.48.0.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8406:DOS3.3:
S.CRCBadBidFndr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.MULTIPLY.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.Pack.Un.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.KANER.VOKEY.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MotoSType.Obj.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PRT.COMMAND.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8407:
Articles Fldr Fldr 1067K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 873K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 30 of 2550

Apple II Computer Info

:AAL-8407:Articles:
DisasmNameTable.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Part.3.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
IIc.Notes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Orphans.Widows.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Quick.Mem.Test.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sieve.6502.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sieve.68000.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Speed.Vs.Space.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Swap.Sort.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8407:DOS3.3:
Faster.ShiftRt1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LIST.PRIMES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.DIVIDE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.FIN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.FstrMult.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SFPrimesImp.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SWAP.AND.SORT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sieve.Eratos.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sieve.Eratos.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8408:
Articles Fldr Fldr 776K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 291K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8408:Articles:
Big.BSAVEs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.FOUT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Enbl.Dsbl.IRQ.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LCR.Diagram.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LCR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Slow.Chips.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8408:DOS3.3:
S.DP18.FOUT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.PackUn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LCR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8409:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 388K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8409:Articles:
Clear.Arrays.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Dan.Pote.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Link.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Fast.Scrn.Msgs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Graph.Biblio.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Index.2.Mask.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Reviews..txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8409:DOS3.3:
S.CLEAR.ARRAYS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18AmperLink.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.INDEX.MASK.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TWIRLERS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 31 of 2550

Apple II Computer Info

:AAL-8410:
Articles Fldr Fldr 1261K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 291K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8410:Articles:
Arctec.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Correction.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Graphics.SW.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Index.2.Vol.4.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LCR.Correx.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mac.Assemblers.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Odd.Ways.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Out.Of.Print.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Putneys.Way.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
V5N1.65802.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8410:DOS3.3:
S.DP18.FUNC.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.GENERAL.MOVER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PUTNEYS.WAY.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8411:
Articles Fldr Fldr 1261K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM

:AAL-8411:Articles:
Alliance.CPUs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Annc.2.0.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Disasm.Patches.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Func.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.New.SQRT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Macro.Examples.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mask2Index.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.Dump.Rtn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
News.65816.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Quick.DecHex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RAMWorks.MB.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8411:DOS3.3:
Opcodes.65816.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.FUNC.LOG.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Macro.Ex.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MASK.INDEX.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.New80ColMD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.NewSQR.Rtn.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.QUICK.DEC.HEX.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8412:
Articles Fldr Fldr 1358K lvbspoimad 9/18/00 5:50 PM 9/18/00 5:50 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8412:Articles:
BBasic.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CorrectnMVNMVP.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Trig.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Funny.DivBy7.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hex.To.Dec.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
HiresTableMaker.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
IIe.Auxmem.LC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 32 of 2550

Apple II Computer Info

IIPlus.65C02.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Little.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Overlap.Patches.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RememberingWhen.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
XMas.CloseOuts.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8412:DOS3.3:
S.DP18.TRIG.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Funny.Divby15.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FunnyDivby3.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.FunnyDivby7.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.HEX.TO.DEC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MakeHiresAddr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Time.MVN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8501:
Articles Fldr Fldr 679K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 291K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8501:Articles:
DP18.Print.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Short.on.Mans.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ShortPrint255.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sym.Sourceror.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
XASM.6800.2.0.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8501:DOS3.3:
S.DP18.Print.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PRINT.000.255.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SymSourceror.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8502:
Articles Fldr Fldr 970K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 291K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8502:Articles:
Book.review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOSless.Disks.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Input.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Preshift.Tables.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Q.n.A.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Symbol.Pgm.Crx.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
WriteGuard.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
YostsFreeOffer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8502:DOS3.3:
S.Bld.PreShft.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DOSLESS.INIT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DP18.INPUT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8503:
Articles Fldr Fldr 776K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 873K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8503:Articles:
BAP.Correction.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Disasm.65816.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS.Buffer.Bldr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS.Numin.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 33 of 2550

Apple II Computer Info

My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
OKI.6203.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Sather.on.65C02.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8503:DOS3.3:
PatchDOS4LC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.65816.DISASM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DOS.NUMIN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DOSLCPatch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DOSNuminRBSC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.INIT.BUFFERS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.InitBuf802.XY.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.InitBufs.802.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.InitBufs.SC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8504:
Articles Fldr Fldr 1358K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8504:Articles:
AD.8086.XASM.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Cross.8086.8088.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Fast.Windows.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Hard.Cat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Inside.IIc.Book.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ListMajorLabels.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LovesConversion.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Micro.Magic.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ProDOS.numout.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Q.n.A.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QuikLoader.Euge.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Review.Sider.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8504:DOS3.3:
Asm2.0FastBLOAD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Hard.Cat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.List.Mjr.Lbl.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.PD.NUMOUT.SC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.ProDOS.NUMOUT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WINDOWS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
WINDOW.DEMO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8505:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 388K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8505:Articles:
Auto.Manual.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Disasm.TechNote.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Littles.ProDOS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.Catalog.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Probs32BitValue.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ProDOS.Date.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Windows80Column.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8505:DOS3.3:
S.AUTO.MAN.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.DATE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.NEW.CATALOG.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WINDOWS.80.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 34 of 2550

Apple II Computer Info

:AAL-8506:
Articles Fldr Fldr 1164K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 776K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8506:Articles:
Ads.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Alliance.Note.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
AppleVisions.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
BernardsHexSrch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.Leftovers.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Firmware.27128.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Johnsons.Call.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Note.65802.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Putney.IRQTrace.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SQRT16.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8506:DOS3.3:
DIGITS.3.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DP18.MOVE.SUBS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.CALL.UTIL.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.HEX.SEARCH.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.IRQ.TRAPPER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LovesConvers.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SQRT16.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEST.SQRT16.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8507:
Articles Fldr Fldr 679K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 194K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8507:Articles:
BSave2NewFile.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
New.Cat.Revisit.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ProDOS.DOS.Load.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Recursive.Cat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SpeedDemon.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8507:ProDOS:
S.DOS.LOAD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RECURCAT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8508:
Articles Fldr Fldr 582K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 194K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 291K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8508:Articles:
Conversions.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Davids.IIc.Buff.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
How.Many.Bytes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
WildcardMatcher.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8508:DOS3.3:
S.Byte.Table.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WILDCARD.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8508:ProDOS:
BUF.320K.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
BUF.576K.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 35 of 2550

Apple II Computer Info

BUF.64K.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8509:
Articles Fldr Fldr 776K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8509:Articles:
Convert.65802.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS.PDos.Init.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PrimeSieve65802.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Problems.65802.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RainbowProgInfo.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Software.65802.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8509:DOS3.3:
PrintPrimeTable.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.65802.Convers.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BINDEC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Init.Dos.PDos.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SF802PrmPlus.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.SFast802Prm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8510:
Articles Fldr Fldr 1552K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 194K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 97K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8510:Articles:
Another65C02Fix.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Apple.Manuals.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ErvEdgeExecFile.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ErvEdgeWildcat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ErvEdgeWildcatx.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Gilder.Review.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Index.2.Vol.5.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
JohnLoveArticle.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mcinerney.Sieve.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PolyCol.Disasm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Puzzle.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
QD20.CoverSheet.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Snooper.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Snoopers.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8510:DOS3.3:
S.POLYCOL.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RWTS.SNOOPER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8510:ProDOS:
PRODOS.SNOOPER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8511:
Articles Fldr Fldr 1067K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 582K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 97K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8511:Articles:
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Kablit.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Merging.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Object.Vector.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 36 of 2550

Apple II Computer Info

PDos.Quit.Code.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ProDOS.Quit.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Puzzle.Solves.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RAMDisk.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
SathersComments.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Words.On.MacAsm.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8511:DOS3.3:
DJohnsonsFiller.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
LittleRamDisk.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MergeFieldByte.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RAMFill.Adam.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RAMFILL.RBSC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WROMWRITE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8511:ProDOS:
S.PRODOS.QUIT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8512:
Articles Fldr Fldr 776K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 679K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8512:Articles:
Day.Of.Week.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Kashmarek.Trace.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
More.Pzl.Solves.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PQRS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PseudoVariables.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RAMDisk.Bug.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8512:DOS3.3:
S.DAY.OF.WEEK.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RAMFIll.BLove.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.RAMFILLPutney.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.READ.TIME.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.READTIMEPLUS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.DayWeek.1.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Test.DayWeek.2.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8601:
Articles Fldr Fldr 970K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 776K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 582K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8601:Articles:
Browns.Mover.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Correx.DblInit.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Lawries.Notes.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Lores2Hires.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Monthly.Disks.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Multiplying.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
My.Ad.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Parker.Trivia.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Potts.TxtCopy.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8601:DOS3.3:
BrownMoveProg.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
POTTS.A Fldr Fldr 97K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
PottsTextCopier.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Lores2Hires.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.M1616.802.EF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Mult.16.16.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 37 of 2550

Apple II Computer Info

S.MULTIPLY.8X8.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TextTransferObj.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8601:DOS3.3:POTTS.A:
S.TRANSFER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8601:ProDOS:
BROWNS.MOVE.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
POTTSTEXTCOPIER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.LORESTOHIRES.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MUL16X1665802.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MULTIPLY16X16.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MULTIPLY8X8.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8602:
Articles Fldr Fldr 582K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 97K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8602:Articles:
ErvEdge.Wildcat.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Faster.CRCs.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Garbage.Correx.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mitsubishi.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RichardDOSPatch.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8602:DOS3.3:
Gendron.DOS.Mod.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.CRC.GENERATOR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WILDCAT.EXEC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WILDCAT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
WILDCAT.EXEC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8602:ProDOS:
S.CRC.GENERATOR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8603:
Articles Fldr Fldr 970K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 776K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8603:Articles:
Boughner.Mult.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Disasm65816Plus.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PAL.Programmer.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
PDos.Franklines.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Putney.Mul8x8.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Transwarp.Rvw.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
V6N6.IIX.Rumors.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Weishaars.Book.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Which.Processor.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8603:DOS3.3:
Boughner.Mult.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Creat.SqTbl.Src.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Putney.Fst.8x8.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Putney.Fstr.8x8.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Which.CPU.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8603:ProDOS:
BOUGHNERS.MULT.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CHECKSUMMER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CREATE.SQUARE.T.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 38 of 2550

Apple II Computer Info

PUTNEYS.8X8.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ROBISONS.8X8.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.816.DSM.NEW.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.WHICH.PROC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
TEST.CKSUMMER.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8604:
Articles Fldr Fldr 679K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 194K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8604:Articles:
BCD.Magic.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Boot.80.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
IIc.ROM.Bug.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Msg.Into.Window.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
NewDOSInit.Boot.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rest.Clob.Cata.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8604:DOS3.3:
BCD.MAGIC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DOS33.B700.B7FF.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.BigCatDisp.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Find.TS.Lists.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Msg.Into.Wind.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8604:ProDOS:
BCD.MAGIC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.MSG.INTO.WNDW.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8605:
Articles Fldr Fldr 388K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 485K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 97K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8605:Articles:
Bartletts.Searc.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Division.By7.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
UniDisk.RWTS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8605:DOS3.3:
BETTER.DIV.7.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
FIND.START.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
RWTS.3.5.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Format.UDsk.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.UNIDISK.RWTS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8605:ProDOS:
BETTER.DIV.7.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8606:
Articles Fldr Fldr 873K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
DOS3.3 Fldr Fldr 873K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM
ProDOS Fldr Fldr 970K lvbspoimad 9/18/00 5:51 PM 9/18/00 5:51 PM

:AAL-8606:Articles:
Butterill.Ops.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Call.Sequences.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
CorrexAbtBruns.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Front.Page.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MLI.Error.Hndlr.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Protocol.Conv.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Rindsbergs.CRC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 39 of 2550

Apple II Computer Info

Stack.Relative.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Toggling.Values.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8606:DOS3.3:
Bell.Demo.Src.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Butterill.Demo.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Butterill.Div.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Butterill.Mult.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Div16.Demo.Src.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
Mult16.Demo.Src.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ROM.CRC.Calc.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Test6502Call.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.Test816Call.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

:AAL-8606:ProDOS:
BUTTERILL.DEMO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
BUTTERILLS.DIV.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
BUTTERILLS.MUL.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
DIV16.DEMO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MLI.ERROR.PLUS.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MLI.ERROR.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
MULT16.DEMO.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
ROM.CRC.CALC.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.02.CALL.SEQ.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM
S.816.CALL.SEQ.txt TEXT R*ch 97K lvbspoimad 11/3/99 2:41 AM 1/5/78 12:05 PM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 40 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8010:Articles:Add.Sub.One.txt
==

How to Add and Subtract One

I suppose there are as many ways to do it as there are programmers.
Some are short and fast, some long and slow, some neat, some sloppy.

Adding one to a number is called "incrementing", and subtracting one
is called "decrementing". The 6502 has two instructions for these two
functions: INC and DEC. (For the moment I will overlook the four
instructions for doing the same to the X and Y registers: INX, INY,
DEX, and DEY.) It is easy to see how to use them on single-byte
values; with a little more trouble we can also use them for values of
two or more bytes.

Single-Byte Values:

Here are five different ways to increment a single byte:

Methods 1 and 2: Add 1
 CLC SEC
 LDA VALUE LDA VALUE
 ADC #1 ADC #0
 STA VALUE STA VALUE

Method 3 and 4: Subtract (-1)
 SEC CLC
 LDA VALUE LDA VALUE
 SBC #$FF SBC #$FE
 STA VALUE STA VALUE

Method 5: Use the INC instruction
 INC VALUE

Here are five similar ways to decrement a value:

Method 1 and 2: Subtract 1
 SEC CLC
 LDA VALUE LDA VALUE
 SBC #1 SBC #0
 STA VALUE STA VALUE

Method 3 and 4: Add (-1)
 CLC SEC
 LDA VALUE LDA VALUE
 ADC #$FF ADC #$FE
 STA VALUE STA VALUE

Method 5: Use the DEC instruction
 DEC VALUE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 41 of 2550

Apple II Computer Info

There are times when any of the above may be justified, depending on
the state of the A-register and the Carry Status bit.

Multi-Byte Values:

Incrementing a two-byte value is a very common practice in 6502
programs. Here are two methods:

Method 1: Add 1
 CLC
 LDA VALL LOW BYTE
 ADC #1
 STA VALL
 LDA VALH HIGH BYTE
 ADC #0
 STA VALH

Method 2: Use the INC instruction
 INC VALL INCREMENT LOW BYTE
 BNE .1 IF NOT ZERO, THEN NO CARRY
 INC VALH INCREMENT HIGH BYTE
.1

Of course, there are many variations on these methods. It is easy to
see how to extend these two methods to more than two bytes. Here is a
three-byte version of Method 2:
 INC VALL INCREMENT LOW BYTE
 BNE .1 UNLESS ZERO, NO CARRY
 INC VALM INCREMENT MIDDLE BYTE
 BNE .1 UNLESS ZERO, NO FURTHER CARRY
 INC VALH INCREMENT HIGH BYTE
.1

Believe it or not, there is one disadvantage to using Method 2, in
some circumstances. Sometimes code is required to have a constant
running time; then, Method 1 is the one to use. But most of the time,
Method 2 is the best.

How about subtracting one? Here are two ways to do it to a two-byte
value:

Method 1: Subtract 1
 SEC
 LDA VALL
 SBC #1
 STA VALL
 LDA VALH
 SBC #0
 STA VALH

Method 2: Use the DEC instruction
 LDA VALL SEE IF NEED TO BORROW
 BNE .1 NO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 42 of 2550

Apple II Computer Info

 DEC VALH YES
.1 DEC VALL

Which one do you like better? It is still a matter of taste, unless
the amount of memory used or time consumed is very important. There
are also different side effects, such as the final state of the carry
status. INC and DEC do not change the carry status, while of course
ADC and SBC do. You may wish to preserve carry through the process,
making the INC/DEC code preferable. Or, you may wish to know the
resulting carry status after incrementing or decrementing for some
reasong; then you should use the ADC/SBC code.

Back to subtracting one...how about doing it to a three-byte value?
We just add three more lines:

 LDA VALL SEE IF NEED TO BORROW
 BNE .2 NO
 LDA VALM SEE IF NEED TO BORROW AGAIN
 BNE .1 NO
 DEC VALH BORROW FROM HIGH BYTE
.1 DEC VALM BORROW FROM MIDDLE BYTE
.2 DEC VALL

Easier than you though, right? You would not believe the many strange
ways I have seen this operation coded in commercial software (even
some released by Apple themselves!). Yet it seems to me that this
method is the same way we would do it with pencil and paper in decimal
arithmetic. Think how you would do this:

 123040
 -1

 xxxxxx

If you think of each digit as though it were a byte...isn't the
algorithm the same?

Now it is time for all of us to go back over the programs we wrote
during the past three years for the Apple, and replace a lot of old
code!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 43 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8010:Articles:Front.Page.txt
==

Volume 1 -- Issue 1 October, 1980

Welcome to the premier issue of the Apple Assembly Line!

This new monthly newsletter is dedicated to the many Apple owners
using assembly language, or who would like to learn how. Articles
will include commented disassemblies of Apple ROM routines, DOS, and
other commercial software; how to augment and modify existing
products; beginner's lessons in assembly language; handy subroutines
every programmer needs in his tool kit; and many more.

In this issue you will find a tutorial on efficient ways to increment
and decrement multiple-byte values, a very powerful subroutine for
formatting messages on the screen, and patch code for the S-C
ASSEMBLER II Version 4.0 to "adapt" it to the Paymar Lower-Case
Adapter. There is also an article describing a recently reported
error found in ALL 6502 chips, and a brief announcement of some new
products from S-C SOFTWARE.

Since there will be a lot of source code printed in this and
forthcoming issues of the Apple Assembly Line, I plan to offer
quarterly diskettes containing all published source code (in the
format of the S-C ASSEMBLER II Version 4.0) at a nominal price. How
does $15 per quarter sournd? Of course, you can always type it in....
The articles should be considered copy-righted, but feel free to use
the code in any way you can. It is printed here for your
enlightenment, entertainment, and for your USE. I hope you find it
all helpful.

I do not know all there is to know about the 6502, or the Apple, or
about anything! Nor do I have an infinite amount of time. Therefore,
I will be happy to accept articles and programs from you. I may print
them exactly as you write them, or I may modify them first. In any
case, you will get credit, and the satisfaction of knowing you are
helping many others in their conquest of the computer.

If you know others who should be receiving this newsletter, spread the
word! If you are not subscribing yet, then send your $12 today! If
you have any comments about the content, format, or whatever, write
now! Or, you can call me during reasonable at (214) 324-2050.

 Sincerely,

 <<signature>>

 Bob Sander-Cederlof

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 44 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8010:Articles:Gen.Msg.Printer.txt
==

General Message Printing Subroutine

Formatting a series of nice messages or screens-full of messages is
hard enough to do in Applesoft...but in assembly language it can
really be a difficult job. And it seems to take so much memory to do
the equivalent of VTAB, HTAB, HOME, and PRINT. I was recently
motivated to do something about this for a large, verbose program. I
designed a general subroutine for printing text, which can print all
128 chracters of ASCII, plus do some fancy footwork on the way.

Embedded control codes in the text to be printed perform such handy
functions as HTAB, VTAB, HOME, NORMAL, INVERSE, Clear to End of LIne,
Clear to End of Page, Two-Second Delay, and Repeat. All characters to
be printed directly are entered with the high-order bit set to one;
bytes with the high order bit zero are control codes. Comments in
lines 1250-1350 of the listing show what the codes are.

To simplify the calling sequence, a table of message addresses is
built along with the messages themselves. To print a specific
message, merely load the message index number into the A-register (LDA
#0 for the first message, LDA #1 for the second, etc.), and JSR
MESSAGE.PRINTER. Some sample messages are given in the listing,
starting at line 2240.

There are a lot of unused control codes, which you can use to augment
the subroutine. I am planning to add a code to switch to a HI-RES
TEXT driver, for writing text on either of the two Hi-Res screens.
You can probably think of a lot of useful ones yourself. The point is
that this type of subroutine can simplify programming of an
interactive program, and save memory too.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 45 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8010:Articles:HW.Err.6502.txt
==

Hardware Error in ALL 6502 Chips!

INTERFACE, the newsletter of Rockwell International (P. O. Box 3669,
RC 55, Anaheim, CA 92803), Issue No. 2, is the source for the
following information. It should be noted by all Apple owners working
in assembly language, because it could cause an almost unfindable bug!

There is an error in the JUMP INDIRECT instruction of ALL 6500 family
CPU chips, no matter where they were made. This means the error is
present in ALL APPLES. This fatal error occurs only when the low byte
of the indirect pointer location happens to be $FF, as in JMP ($08FF).
Normally, the processor should fetch the low-order address byte from
location $08FF, increment the program counter to $0900, and then fecth
the high-order address byte from $0900. Instead, the high-order byte
of the program counter never gets incremented! The high-order address
byte gets loaded from $0800 instead of $0900! For this reason, your
program should NEVER include an instruction of the type JMP ($xxFF).

Try this example to satisfy yourself that you understand the problem:
insert the following data from the monitor.

 *800:09
 *810:6C FF 08 (this is JMP ($08FF)
 *8FF:50 0A (pointer
 *A50:00 (BRK instruction we SHOULD reach)
 *950:00 (BRK instruction we DO reach!)

Execute the instruction at $0810 by typing 810G. If the JMP indirect
worked correctly, it would branch to location $0A50 and execute the
BRK instruction there. However, since the JMP indirect instruction
has this serious flaw, it will actually branch to the BRK instruction
at $0950!

Since it is very difficult to predict the final address of all
pointers in a large assembly language program, unless they are all
grouped in a block at the beginning of the program, I suggest that you
take special measures to protect yourself against this hardware
problem. (One measure, of course, was suggested in that sentence.)
My favorite method is to avoid using the JMP indirect instruction. It
takes too long to set it up in most cases anyway. I prefer to push
the branch address (less one) onto the stack, and RTS to effect the
branch. This allows me to create the effect of an indexed JMP. For
example, suppose a command character is being decoded. I process it
into a value in the A-register between 0 and N-1 (for N commands), and
do the following:

 ASL Double to create index
 TAX for address table
 LDA JUMP.TABLE+1,X High order byte

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 46 of 2550

Apple II Computer Info

 PHA of branch address
 LDA JUMP.TABLE,X Low order byte
 PHA of branch address
 RTS

The jump table looks like this:

 JUMP.TABLE
 .DA COMMANDA-1 The "-1" is
 .DA COMMANDB-1 on each line
 .DA COMMANDC-1 because the RTS
 .DA COMMANDD-1 adds one before
 et cetera branching.

This trick was described by Steve Wozniak in an article in BYTE
magazine back in 1977 or 1978. It is also used by him in the Apple
monitor code, and in SWEET-16. In both of these cases, he has
arranged all the command processors to be in the same page, so that
the high order byte of the address can be loaded into the A-register
with a load-A-immediate, and the jump table can be only one-byte-per-
command. See your Apple ROMs at locations $FFBE-FFCB (jump table at
$FFE3-FFF9) and in SWEET-16 at $F69E, F6A0, F684-F6B8 (jump table at
$F6E3-F702).

You can extend this idea of an indexed JMP instruction into a
simulated indexed JSR instruction. All you have to do is first push
onto the stack the return address (less one), and then the branch
address (less one). I use this trick in the Message.Printer program
described elsewhere in this issue.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 47 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8010:Articles:LC.for.SCAsm.txt
==

Using the Paymar Lower-Case Adapter Bob Matzinger
with S-C Assembler II Version 4.0 817-275-2910

Since purchasing the Paymar adapter, I have spent a lot of time
adapting software to effectively use it! The program geven here will
adapt the version 4.0 of Bob Sander-Cederlof's assembler to allow
lower-case comments.

The two patches at lines 1340 and 1390 have to be entered, and the
body of the patch loaded at $300. Once installed, typing a control-A
will toggle the shift-lock; control-S will perform a single-character
upper-case shift; control-K, -L, and -O give access to the characters
normally missing from the Appple keyboard.

Only comments can be entered in lower-case. Further modification to
the assembler would be required to allow commands, labels, and opcodes
to be entered in lowr- or mixed-case.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 48 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8010:Articles:New.Products.txt
==

New Products from S-C SOFTWARE

As many of you know, because you have already bought it, version 4.0
of the S-C Assembler II is now on the market. With this new version,
the price has gone up from $35 to $55. An upgrade kit for owners of
previous versions is only $22.50

Now another new version is available, for those of you without disks!
Tape Version 4.0 requires only 16K RAM and a cassette drive. The
price is $45 for the complete package, or $22.50 for an upgrade kit
from the previous tape version. All of the new features of Disk
Version 3.2 and 4.0 are included, except those which require a disk
drive. For the time being, the manual consists of a copy of the disk
version 4.0 manuals, with a single sheet describing the differences in
the tape version. Purchasers of tape version 4.0 will be able to
upgrade to the disk version when they get a disk drive, for only
$12.50.

And still another version of the assembler! This one is a cross
assembler for the Motorola 6800, 6801, and 6802 microprocessors. It
has all the features of the S-C Assembler II Disk Version 4.0, but the
source language accepted is that of the 6800 family rather than the
6502. The price for this package is only $300, which is less than a
month of time-sharing services for an equivalent capability would
cost! An Apple, a ROM blower from Mountain Hardware, and the S-C
Assembler II-6800 are all you need for a full-blown development
system.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 49 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8010:DOS3.3:LowerCase.Adapt.txt
==

 1000 *---------------------------------
 1010 * Lower case conversion for
 1020 * S-C ASSEMBLER II Version 4.0
 1030 * Copyright 1980 by S-C SOFTWARE
 1040 * Complete with 126 ASCII characters
 1050 *---------------------------------
 1060 * The CTRL-A and CTRL-S keys are used similar to
 1070 * shift and lock keys on a standard typewriter.
 1080 *
 1090 * CTRL-A is the shift-lock key.
 1100 * Each time CTRL-A is pressed the case
 1110 * will toggle to the opposite mode.
 1120 *
 1130 * CTRL-S makes the following character
 1140 * enter in upper-case.
 1150 *---------------------------------
 1160 * REMEMBER!
 1170 * All commands and mnemonic entries
 1180 * must be in UPPER case!
 1190 * Use lower case only for comments!
 1200 *---------------------------------
 1210 CTRLA .EQ $81 SHIFT LOCK
 1220 CTRLK .EQ $8B [or {
 1230 CTRLL .EQ $8C \ or |
 1240 CTRLO .EQ $8F _ or rubout
 1250 CTRLS .EQ $93 SHIFT
 1260 *---------------------------------
 1270 * Remember:
 1280 * shift M yields] or }
 1290 * shift N yields ^ or ~
 1300 * shift P yields @ or `
 1310 RDKEY .EQ $FD0C
 1320 *---------------------------------
 1330 .OR $1380
 1340 .TF LC.PATCH1
 1350 JSR LC
 1360 *---------------------------------
 1370 .OR $139A
 1380 .TF LC.PATCH2
 1390 AND #$FF
 1400 *---------------------------------
 1410 .OR $300
 1420 * CAUTION: Do not assemble your programs into
 1430 * $0300 up. You will destroy this routine!!!
 1440 LC JSR RDKEY
 1450 CMP #CTRLA
 1460 BEQ LOCK
 1470 CMP #CTRLS
 1480 BNE CHECK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 50 of 2550

Apple II Computer Info

 1490 SHIFT LDA #0
 1500 STA LCKFLG
 1510 SHIFT1 LDA #0
 1520 STA CASE
 1530 BEQ LC ...ALWAYS
 1540 LOCK LDA LCKFLG
 1550 EOR #1
 1560 STA LCKFLG
 1570 BNE SHIFT1
 1580 LDA #$20
 1590 STA CASE
 1600 BNE LC ...ALWAYS
 1610 CHECK CMP #CTRLK
 1620 BEQ SPEC
 1630 CMP #CTRLL
 1640 BEQ SPEC
 1650 CMP #CTRLO
 1660 BNE CONV
 1670 SPEC ORA #$50
 1680 CONV CMP #$C0
 1690 BCC RETURN
 1700 ORA CASE
 1710 RETURN PHA
 1720 LDA LCKFLG
 1730 BNE OUT
 1740 LDA #$20
 1750 STA CASE
 1760 OUT PLA
 1770 RTS
 1780 LCKFLG .DA #0
 1790 CASE .DA #$20
 1800 *---------------------------------
 1810 * Written by Bob Matzinger
 1820 * September 6, 1980
 1830 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 51 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8010:DOS3.3:S.Msg.Printer.txt
==

 1000 *---------------------------------
 1010 MON.CH .EQ $24
 1020 MON.CV .EQ $25
 1030 MON.VTAB .EQ $FC22
 1040 MON.CLREOP .EQ $FC42
 1050 MON.HOME .EQ $FC58
 1060 MON.CLREOL .EQ $FC9C
 1070 MON.WAIT .EQ $FCA8
 1080 MON.COUT .EQ $FDED
 1090 MON.NORMAL .EQ $FE84
 1100 MON.INVERSE .EQ $FE80
 1110 *---------------------------------
 1120 MSG.PNTR .EQ $18,19
 1130 MSG.SCANNER .EQ $1A
 1140 *---------------------------------
 1150 * MESSAGE PRINTER
 1160 *
 1170 * CALL:
 1180 * (A) = MESSAGE # (0-N)
 1190 * JSR MESSAGE.PRINTER
 1200 *
 1210 * ACTION:
 1220 * 1. FINDS SPECIFIED MESSAGE
 1230 * 2. PRINTS ON THE SCREEN
 1240 * 3. INTERPRETS CHARACTERS AS FOLLOWS:
 1250 * $00 END OF MESSAGE
 1260 * $01-28 HTAB 1-40
 1270 * $40-57 VTAB 1-24
 1280 * $60 CLEAR SCREEN, HOME CURSOR
 1290 * $61XXYY REPEAT CHARACTER YY, XX TIMES
 1300 * $62 DELAY ABOUT TWO SECONDS
 1310 * $63 NORMAL MODE
 1320 * $64 INVERSE MODE
 1330 * $65 CLEAR TO END OF LINE
 1340 * $66 CLEAR TO END OF SCREEN
 1350 * $80-FF PRINT AS IS
 1360 *
 1370 *---------------------------------
 1380 MESSAGE.PRINTER
 1390 ASL DOUBLE MSG NUMBER TO GET INDEX
 1400 TAY
 1410 LDA MESSAGE.ADDRESS.TABLE,Y
 1420 STA MSG.PNTR
 1430 LDA MESSAGE.ADDRESS.TABLE+1,Y
 1440 STA MSG.PNTR+1
 1450 LDA #0
 1460 STA MSG.SCANNER
 1470 .1 JSR GET.NEXT.CHAR.FROM.MESSAGE
 1480 BNE .3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 52 of 2550

Apple II Computer Info

 1490 RTS $00: EOM
 1500 .3 BPL .5 SPECIAL ACTION
 1510 JSR MON.COUT PRINT THE CHARACTER
 1520 .4 JMP .1
 1530 *---------------------------------
 1540 .5 CMP #$40 CHECK FOR VTAB
 1550 BCS .6 YES
 1560 CMP #$29 IN RANGE FOR HTAB?
 1570 BCS .4 NO, IGNORE
 1580 STA MON.CH
 1590 DEC MON.CH
 1600 BCC .4 ...ALWAYS
 1610 *---------------------------------
 1620 .6 CMP #$58 IN RANGE FOR VTAB?
 1630 BCS .7 NO
 1640 AND #$1F MASK VALUE
 1650 STA MON.CV YES
 1660 JSR MON.VTAB
 1670 JMP .4
 1680 *---------------------------------
 1690 .7 EOR #$60 CHECK FOR TOKENS
 1700 CMP #7 $60 THROUGH $66
 1710 BCS .4 NOT TOKEN, SO IGNORE
 1720 ASL MAKE DUBLE INDEX
 1730 TAX
 1740 LDA /.4-1 PUT RETURN ON STACK
 1750 PHA TO SIMULATE A JSR ADDR,X
 1760 LDA #.4-1
 1770 PHA
 1780 LDA MSGTKNTBL+1,X
 1790 PHA
 1800 LDA MSGTKNTBL,X
 1810 PHA
 1820 RTS
 1830 *---------------------------------
 1840 MSGTKNTBL
 1850 .DA MON.HOME-1
 1860 .DA MSG.REPEAT-1
 1870 .DA LONG.DELAY-1
 1880 .DA MON.NORMAL-1
 1890 .DA MON.INVERSE-1
 1900 .DA MON.CLREOL-1
 1910 .DA MON.CLREOP-1
 1920 *---------------------------------
 1930 MSG.REPEAT
 1940 JSR GET.NEXT.CHAR.FROM.MESSAGE
 1950 TAX NUMBER OF MULTIPLES
 1960 JSR GET.NEXT.CHAR.FROM.MESSAGE
 1970 .1 JSR MON.COUT
 1980 DEX
 1990 BNE .1
 2000 RTS
 2010 *---------------------------------
 2020 LONG.DELAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 53 of 2550

Apple II Computer Info

 2030 LDY #12
 2040 .1 JSR MON.WAIT DELAY 167309 CYCLES
 2050 DEY
 2060 BNE .1
 2070 RTS
 2080 *---------------------------------
 2090 GET.NEXT.CHAR.FROM.MESSAGE
 2100 LDY MSG.SCANNER
 2110 LDA (MSG.PNTR),Y
 2120 INC MSG.SCANNER
 2130 BNE .1
 2140 INC MSG.PNTR+1
 2150 .1 CMP #0
 2160 RTS
 2170 *---------------------------------
 2180 MESSAGE.ADDRESS.TABLE
 2190 .DA MSG0
 2200 .DA MSG1
 2210 .DA MSG2
 2220 .DA MSG3
 2230 *---------------------------------
 2240 MSG0 .HS 60 HOME SCREEN
 2250 * CELL 1 -- VOCABULARY CHECK
 2260 .HS 64 INVERSE MODE
 2270 .HS 6129AD 4A DASHES
 2280 .HS 28ADAD 2 DASHES
 2290 .HS 28ADAD
 2300 .HS 28ADAD 2 DASHES
 2310 .HS 28ADAD 2 DASHES
 2320 .HS 28ADAD 2 DASHES
 2330 .HS 28ADAD 2 DASHES
 2340 .HS 286129AD 41 DASHES
 2350 .HS 63 NORMAL MODE
 2360 .HS 4205 VTAB 3, HTAB 5
 2370 .AS -/DEMONSTRATION OF MESSAGE PRINTER/
 2380 .HS 440F VTAB 5, HTAB 15
 2390 .AS -/S-C SOFTWARE/
 2400 .HS 450E VTAB 6, HTAB 14
 2410 .AS -/P. O. BOX 5537/
 2420 .HS 460B VTAB 7, HTAB 11
 2430 .AS -/RICHARDSON, TX 75080/
 2440 .HS 4A VTAB 11
 2450 .HS 00
 2460 *---------------------------------
 2470 MSG1 .HS 490166 VTAB 10, HTAB 1, CLR EOP
 2480 .AS -/SELECT ONE: /
 2490 .HS 00
 2500 *---------------------------------
 2510 MSG2 .HS 570165 VTAB 24, HTAB 1, CLR EOL
 2520 .HS 64 INVERSE MODE
 2530 .AS -/ <SPACE> FOR MENU, <RETURN> FOR MORE /
 2540 .HS 6300 NORMAL MODE, EOM
 2550 *---------------------------------
 2560 MSG3 .HS 87878D

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 54 of 2550

Apple II Computer Info

 2570 .AS -/***SYNTAX ERROR/
 2580 .HS 8D00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 55 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:Articles:BagsDisks4Sale.txt
==

Bags, Boxes, et cetera

Since I sell software in stores, I buy a lot of zip-lock bags,
cardboard mailing boxes, diskettes, and so on. I thought that maybe
you need some of these, and haven't been able to find a source at good
prices in small quantities. I will sell you some of mine, at the
follwoing prices:

 6"x9" zip-lock bags $8.50/100
 9"x12" zip-lock bags $12/100
 Verbatim diskettes
 without hubrings $30 for box of ten, $265 for 100
 with hubrings $32 for box of ten, $285 for 100

Anything else you need? Let me know, maybe I have it or can get it
for you or tell you where you can get it at a good price.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 56 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:Articles:Front.Page.txt
==

Volume 1 -- Issue 2 November, 1980

Our second issue is 33% larger than the first! And not only so, but
also there is useful information on the back page! I found a source
for 6x9 white envelopes, so your address can be external to the
newsletter, and so your copy will arrive in better condition. In less
than a month since the newsletter was first announced, we already have
over 45 paid subscribers. They are sprinkled all over the map,
including one in Japan!

In This Issue...

A Bug in S-C Assembler II Version 4.0 1
Variable Cross Reference for Applesoft Programs 2
Bags, Boxes, et cetera 8
Assembly Source on Text Files 9
A Use for the USR Command 15
A Simulated Numeric Key-Pad 15

A Bug in S-C Assembler II Disk Version 4.0

One real bug has turned up, and a few of you have had the bad luck to
discover it the hard way. The assembler is free-format, in that
opcodes and directives may start in any column after the blank which
terminates the label field. However, the ".IN" directive will
malfunction unless there are at least six spaces. If you tab over
before typing ".IN" there will be no problem. However, if you type
your line like "1230 .IN FILE1", with only two spaces between the
line number and the period, you are in for a long wait. The processor
goes into a loop printing D's. If you have the MONC mode on, you will
see "LOADDDDDDDDD....." with D's forever appearing on your screen.
Remember to TAB OVER, and it will not malfunction.

One fancied bug has been reported, and I would like to explain it. A
user pointed out that you cannont shorten the SAVE command to three
letters if you wish to save the source program on a disk file. Why?
Because "SAVE" or "SAV" with no file name is not a DOS command. It is
an assembler command to save the source program on cassette tape! On
the other hand, SAVE with a filename is not an assembler command. It
is a DOS command, and the assembler never sees it. The same goes for
"LOAD", "LOA", and LOAD with a filename.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 57 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:Articles:Sim.KeyPad.txt
==

A Simulated Numeric Key-Pad

This little program will turn part of your Apple's keyboard into a
simulated numeric key-pad. A lot cheaper than buying a real one! It
is set up to run in page 3, and assumes you are using DOS. If not,
just change line 1120 to an RTS.

If you BRUN it or CALL it at 768, the input vector is patched to input
all characters through the NKP program. Typing a control-S will
toggle the numeric key-pad translator on and off. When the translator
is off, all keyboard action is normal, except that another control-S
will turn it back on again. When the translator is on, all keys which
are not part of the simulated key-pad will input normally.

The keys translated by the simulator are listed in line 1390. The
slash key duplicates RETURN, because it is easier to hit when yu are
entering a lot of numbers. For the same reason, the L-key duplicates
"-", in case you are in a hurry to enter negative numbers too. The
space bar is used for "0". I set it up to use "NM," for "123", "HJK"
for "456", and "YUI" for "789". You shuld be able to easily change
these translations to any other combination, by changing lines 1390-
1420.

The heart of the translator is the search loop in lines 1240-1280. If
the input character is not found in CHRTBL, the search loop drops out
and the character is not changed. If the character is found, line
1310 picks up the alias for the key, and returns. That's all there is
to it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 58 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:Articles:Src.On.TxtFiles.txt
==

Assembly Source on Text Files

Version 4.0 of the S-C Assembler II allows you to EXEC a source
program, if it is on a DOS text file. This is handy if you have
created it with a different editor, or perhaps with a compiler. But
what if you want to go the other way? What if you want to SAVE a
source program on a text file, so that it can be used in another
editor, or by another assembler?

There is no built-in command to allow it, so I have now written a
separate program to do it. The program loads at $0800 thru $093C, and
does not borrow any code from the assembler. It does use some
routines in the Monitor ROMs, and the DOS I/O rehook routine. If you
BRUN the program, it will assume the pointers at $CA,CB and $4C,4D are
bracketing a valid assembly source program, and try to list it on a
text file.

The main body of the program is in lines 1190 thru 1630. Lines 1200
and 1210 serve to un-hook the S-C Assembler II from the output. They
will also turn off your printer, if you had it on. Lines 1220 and
1230 tell DOS that it should recognize commands printed after a
control-D. Lines 1240 and 1250 change the prompt symblol to a blank,
so that the monitor input subroutine will not print a colon or some
other character as the prompt when reading the file name.

Lines 1290-1360 request you to enter a file name, read it into the
monitor buffer starting at $0200, and move it to a safe place at
$0280. It has to be moved, because when we print DOS commands later
the area starting at $0200 will be written on by DOS.

Once the file name you have typed is safely stored at $0280 and
following, lines 1410 thru 1490 will set up the file for writing.
This is done in five steps. First, close all files. Second, issue an
OPEN-DELETE-OPEN sequence, with the file name (of course); this will
make sure that we are writing on a fresh empty file. Then the WRITE
command is sent, and we are ready to roll.

Line 1530 calls a subroutine which lists your source program. Since
the file is OPEN and in WRITE mode, the listing goes into your text
file. If you have MON O mode set, you will also see the listing on
your screen. Note that it is not really necessary for me to use a
subroutine at this point. ASM.LIST is only called once, and it is not
very long. But I did it anyway, to keep the main body short enough to
fit on a page (of paper), easy to understand, modular, structured,
etc.

After the listing is completed, line 1570 will close the text file.
Lines 1610 and 1620 turn off the DOS run flag, so that DOS will not

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 59 of 2550

Apple II Computer Info

look for control-D commands. And finally, line 1630 re-enters the S-C
Assembler II through its soft entry point.

Lines 1670 thru 1780 are text strings, printed by the subroutine named
PRINT.QUOTE. Each string is written with the sign bit of every byte
zero except for the last byte. The sign bit of the last byte is 1,
telling PRINT.QUOTE that it is finished. For example, the first
message is the word "CLOSE" and a carriage return. The carriage
return is entered in hex with the sign bit 1 as in $8D. The second
message is the word "OPEN", and the letter "N" is preceded by a minus
sign in the .AS directive to indicate that the sign bit should be 1.

The PRINT.QUOTE subroutine is at lines 2140 thru 2200. It expects the
Y-register to contain the offset of the desired message from the
beginning of all the messages at QTS. It calls on PRINT.CHAR to
actually send each character.

PRINT.CHAR, at lines 2020 thru 2100, calls on the monitor print
character routine at $FDED. This branches through DOS, and DOS writes
the character on the text file. PRINT.CHAR saves and restores the Y-
register and A-register contents. It also sets the sign bit on each
character before printing it. Upon exit, the status will reflect the
value of the character printed.

Lines 1820-1980 issue a DOS command. The Y-register points at one of
the message strings in QTS. Control-D is printed, followed by the
command key word, a space, and file name you previously typed. Since
DOS does not allow slot and drive specifications on the WRITE command,
and since it is sufficient to specify them only once, the subroutine
chops them off after printing them once. The logic for this is in
lines 1910-1940: after printing a comma, it is replaced with a
carriage return. The next time the name is printed, the carriage
return will be the end.

The subroutine which really controls the listing is in lines 2330-
2450. The first four instructions set up a zero-page pointer SRCP to
point at the beginning of your source program. Lines 2380-2420
compare the pointer with HIMEM to see if the listing is completed. If
you really had no source program, we would already be finished at this
point. If there is another line (or more), the subroutine named
ASM.LIST.LINE is called to list the next lne. The process is repeated
until the last line has been printed onto your text file.

At this point it might be helpful to explain how source lines are
stored in memory. Each line begins with a single byte which contains
the byte-count of the line. Next are a byte-pair containing the line
number of the line, in the usual backwards 6502 format. The text of
the line follows, and a final byte containing $00 ends the line. No
carriage return is stored. Blanks are treated specially. A single
blank is stored as $81. Two blanks in a row are replaced by one byte
of value $82. Any string of blanks up to 63 blanks is thus replaced
by a single token of value $80 plus the blank count. Longer strings
of blanks will take more than one token.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 60 of 2550

Apple II Computer Info

For example, the source line

 1000 ABC LDA SAM

is stored as: 0F (total of 15 bytes in line image)
 E8 03 (line number 1000)
 41 42 43 84 ("ABC" and 4 blanks)
 4C 44 41 81 ("LDA" and 1 blank)
 53 41 4D ("SAM")
 00 (end of line indicator)

The subroutine ASM.LIST.LINE at lines 2490-2610 prints one source
line. A subroutine named GNB ("get next byte") is called to skip over
the length byte, and to pick up the line number. PRINT.LINNUM is
called to convert the line number to decimal and print it, with
leading zeroes if necessary, as a four digit number. The loop at
lines 2570-2600 is seeded with a blank (because the blank between the
line number and the label field is not actually stored in the source
program), and the text of the line is printed. The loop prints a
character, and then calls NEXT.TOKEN to get the next one. When the
token returned equals $00, the line is finished.

GNB, lines 2630-2690, clears the queued blank count, picks up the
character pointed at by SRCP, and increments SRCP.

NEXT.TOKEN, lines 2710-2820, tests the blank count. If it is non-
zero, the count is decremented and a blank ($20) character is
returned. If the count was zero, the next character is picked up from
the line. If this character is not a blank count token, it is
returned and the pointer in SRCP is incremented. If the character is
a blank count token, it is saved, the SRCP pointer is incremented past
the token, and then the count is decremented and a blank returned.

The PRINT.LINNUM routine, lines 2860-3170, is a revision of a routine
used in the Integer BASIC ROMs. I think it is commented well enough
for you to follow. The general idea is to divide by 1000 and print
the quotient; divide the remainder by 100 and print the quotient; then
by 10; and finally print the remainder.

Since several of you have asked me to provide the capability to list
programs onto text files, you should be pleased with this program. If
you do not need it, then maybe it has shed some light on the internal
structure of part of the assembler, or served as a tutorial in
programming.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 61 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:Articles:Use.For.USR.Cmd.txt
==

A Use for the USR Command

The S-C Assembler II Version 4.0 has one user-programmable command,
called "USR". (The Quick Reference Card spells it erroneously
"USEr".) One good use for it is to re-print the current symbol table.

After an assembly, if the listing was not printed, it is often
desirable to be able to see what the spelling or value of a symbol or
group of symbols is. If the VAL command is not enough for you, then
the following steps will set up the USR command to re-list the symbol
table on the screen. And, if your printer is selected, it will also
print there.

Get into the assembler, by using BRUN ASMDISK 4.0 from either
Applesoft or Integer BASIC. Type "$1E4EL" after the prompt. The
first two lines listed should be "LDY #$02" and "STY $E1". If they
are not, you have a different version. (It may still be version 4.0,
but slightly different.) The "LDY#$02" line is the first instruction
of the symbol table printing subroutine.

Patch the USR vector by typing "$1007:4E 1E", and then BSAVE the
result like this:

 :BSAVE ASMDISK 4.0 (WITH USR),A$1000,L$14FB

This new version, whenever you type "USR", will print out the current
symbol table. It will look exactly the same as the symbol table
pritned out at the end of an assembly.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 62 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:Articles:Variable.XRef.txt
==

Variable Cross Reference for Applesoft Programs

Besides illustrating a lot of programming techniques, the VCR program
is a very useful tool when you are writing large Applesoft programs.
As listed here, it requires a 48K Apple, and assumes that HIMEM is set
to at least $8AA7. You BRUN it, and it sets up the &-vector. When
you are ready to print a cross reference, you merely type "&" and a
carriage return, and out it comes. It is VERY fast: about 15 times
faster than the VCR program included in Apple's DOS Tool Kit. It also
takes less memory than Apple's version, both for the program itself
and for the tables it constructs during execution.

The main body of the program is in lines 1400 thru 1460. After
calling INITIALIZATION, the subroutine PROCESS.LINE is called until
there are no more lines. Then PRINT.REPORT is called, and finally
INITIALIZATION is called again to restore Applesoft's tables to their
original form.

INITIALIZATION sets up PNTR to point to the beginning of the program,
and EOT to point to the end of the table area. It also clears out a
set of 26 two-byte pointers in HSHTBL (hash table). PROCESS.ONE scans
a single line looking for variables by calling SCAN.FOR.VARIABLES,
until the end of the program is reached. PRINT.REPORT merely prints a
nice orderly report from the data which has been stored in the table
by SCAN.FOR.VARIABLES.

The symbol table routines used in VCR are very similar to the ones
used inside S-C Assembler II Version 4.0. There are 26 pointers
starting at HSHTBL ($280), each one representing one letter of the
alphabet. The first letter of a variable name selects one of these
pointers. The pointer points at the first entry in a chain of
variable names. When a new variable name is found, it is inserted in
the appropriate chain at the place where it will be in alphabetical
order. A sub-chain is kept for each variable name of all the line
numbers from which it is referenced. The line number chain is
maintained in numerical order. Thus there is no sorting necessary
when it comes time to print the report.

Since no routines from the Applesoft ROMs are used, VCR will work with
no changes with the RAM version of Aplesoft. Since it loads below
$9000, it will not conflict with Neil Konzen's PLE (Program Line
Editor). Since it is just straight-forward code, with no address
tables or embedded data, you can easily relocate it to a different
running address; only the 3-byte instructions with the third byte
equal to $88, $89, or $8A need to be changed. Or, you can type it in,
and use a different origin (line 1040).

If you like to modify programs, this one needs one improvement. (Only
one?) I forgot to take note of the FN token, so any FN definitions or

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 63 of 2550

Apple II Computer Info

uses will look like references to an array variable. Another kind of
modification, called "major" perhaps, will turn the VCR into LNCR
(Line Number Cross Reference).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 64 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:DOS3.3:S.NumericKeyPad.txt
==

 1000 *---------------------------------
 1010 * NUMERIC KEY PAD FOR APPLE
 1020 *---------------------------------
 1030 .OR $300
 1040 .TF B.NKP
 1050 *---------------------------------
 1060 LDA #1
 1070 STA TOGGLE
 1080 LDA #NKP
 1090 STA $38
 1100 LDA /NKP
 1110 STA $39
 1120 JMP $3EA
 1130 *---------------------------------
 1140 TOGGLE .BS 1
 1150 SAVEY .BS 1
 1160 *---------------------------------
 1170 NKP
 1180 JSR $FD1B
 1190 CMP #$93 CONTROL-S
 1200 BEQ .4
 1210 BIT TOGGLE
 1220 BMI .2 NOT IN NUMERIC MODE
 1230 STY SAVEY
 1240 LDY #TBLSIZ-1
 1250 .1 CMP CHRTBL,Y
 1260 BEQ .3 FOUND IN TABLE
 1270 DEY
 1280 BPL .1
 1290 LDY SAVEY
 1300 .2 RTS
 1310 .3 LDA ALIAS,Y
 1320 LDY SAVEY
 1330 RTS
 1340 .4 LDA TOGGLE
 1350 EOR #$80
 1360 STA TOGGLE
 1370 JMP $FD0C
 1380 *---------------------------------
 1390 CHRTBL .AS -"/L NM,HJKYUI"
 1400 TBLSIZ .EQ *-CHRTBL
 1410 ALIAS .HS 8D
 1420 .AS -"-0123456789"
 1430 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 65 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:DOS3.3:S.TEXT.LIST.txt
==

 1000 .LIST OFF
 1010 *---------------------------------
 1020 * WRITE ASSEMBLY SOURCE ON A TEXT FILE
 1030 *---------------------------------
 1040 .OR $800
 1050 MON.PROMPT .EQ $33
 1060 PP .EQ $CA,CB
 1070 HIMEM .EQ $4C,4D
 1080 DOS.RUNFLAG .EQ $D9
 1090 MON.BUFFER .EQ $200
 1100 DOS.BUFFER .EQ $280
 1110 MON.GETLN .EQ $FD6A
 1120 MON.CROUT .EQ $FD8E
 1130 MON.COUT .EQ $FDED
 1140 MON.SETVID .EQ $FE93
 1150 DOS.REHOOK .EQ $3EA
 1160 BLANK.COUNT .EQ $00
 1170 SRCP .EQ $01,02
 1180 LINNUM .EQ $03,04
 1190 *---------------------------------
 1200 TEXT.LIST
 1210 JSR MON.SETVID
 1220 JSR DOS.REHOOK
 1230 LDA #$FF
 1240 STA DOS.RUNFLAG
 1250 LDA #' +$80 SET PROMPT CHAR = BLANK
 1260 STA MON.PROMPT
 1270 *---------------------------------
 1280 * GET FILE NAME
 1290 *---------------------------------
 1300 LDY #QFILNAM-QTS
 1310 JSR PRINT.QUOTE
 1320 JSR MON.GETLN
 1330 LDY #$7F MOVE FILE NAME TO SEPARATE BUFFER
 1340 .1 LDA MON.BUFFER,Y
 1350 STA DOS.BUFFER,Y
 1360 DEY
 1370 BPL .1
 1380 *---------------------------------
 1390 * SET UP THE TEXT FILE
 1400 * (CLOSE, OPEN, DELETE, OPEN, WRITE)
 1410 *---------------------------------
 1420 JSR CLOSE.FILE
 1430 LDY #QOPEN-QTS
 1440 JSR ISSUE.DOS.COMMAND
 1450 LDY #QDELETE-QTS
 1460 JSR ISSUE.DOS.COMMAND
 1470 LDY #QOPEN-QTS
 1480 JSR ISSUE.DOS.COMMAND

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 66 of 2550

Apple II Computer Info

 1490 LDY #QWRITE-QTS
 1500 JSR ISSUE.DOS.COMMAND
 1510 *---------------------------------
 1520 * LIST THE SOURCE PROGRAM
 1530 *---------------------------------
 1540 JSR ASM.LIST
 1550 *---------------------------------
 1560 * CLOSE THE FILE
 1570 *---------------------------------
 1580 JSR CLOSE.FILE
 1590 *---------------------------------
 1600 * RETURN TO CALLER
 1610 *---------------------------------
 1620 LDA #0
 1630 STA DOS.RUNFLAG
 1640 JMP $1003
 1650 *---------------------------------
 1660 * MESSAGE TEXT
 1670 *---------------------------------
 1680 QTS .EQ *
 1690 QCLOSE .AS /CLOSE/
 1700 .HS 8D
 1710 QOPEN .AS /OPE/
 1720 .AS -/N/
 1730 QDELETE .AS /DELET/
 1740 .AS -/E/
 1750 QWRITE .AS /WRIT/
 1760 .AS -/E/
 1770 QFILNAM .HS 0D
 1780 .AS /TEXT FILE NAME:/
 1790 .AS -/ /
 1800 *---------------------------------
 1810 * ISSUE DOS COMMAND
 1820 *---------------------------------
 1830 ISSUE.DOS.COMMAND
 1840 LDA #$84 CONTROL-D
 1850 JSR PRINT.CHAR
 1860 JSR PRINT.QUOTE
 1870 LDY #0
 1880 LDA #' PRINT A SPACE
 1890 .5 JSR PRINT.CHAR
 1900 CMP #$8D
 1910 BEQ .7
 1920 CMP #$AC COMMA?
 1930 BNE .6
 1940 LDA #$8D
 1950 STA DOS.BUFFER-1,Y
 1960 .6 LDA DOS.BUFFER,Y
 1970 INY
 1980 BNE .5 ...ALWAYS
 1990 .7 RTS
 2000 *---------------------------------
 2010 * PRINT CHARACTER
 2020 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 67 of 2550

Apple II Computer Info

 2030 PRINT.CHAR
 2040 PHA
 2050 STY PC.SAVEY
 2060 ORA #$80
 2070 JSR MON.COUT
 2080 LDY PC.SAVEY
 2090 PLA
 2100 RTS
 2110 PC.SAVEY .BS 1
 2120 *---------------------------------
 2130 * PRINT A QUOTATION
 2140 *---------------------------------
 2150 PRINT.QUOTE.NEXT
 2160 INY
 2170 PRINT.QUOTE
 2180 LDA QTS,Y
 2190 JSR PRINT.CHAR
 2200 BPL PRINT.QUOTE.NEXT
 2210 RTS
 2220 *---------------------------------
 2230 * CLOSE ALL FILES
 2240 *---------------------------------
 2250 CLOSE.FILE
 2260 JSR MON.CROUT
 2270 LDA #$84
 2280 JSR PRINT.CHAR CONTROL-D
 2290 LDY #QCLOSE-QTS
 2300 JMP PRINT.QUOTE
 2310 *---------------------------------
 2320 * LIST SOURCE PROGRAM
 2330 *---------------------------------
 2340 ASM.LIST
 2350 LDA PP
 2360 STA SRCP
 2370 LDA PP+1
 2380 STA SRCP+1
 2390 .1 LDA SRCP
 2400 CMP HIMEM
 2410 LDA SRCP+1
 2420 SBC HIMEM+1
 2430 BCS .2 FINISHED
 2440 JSR ASM.LIST.LINE
 2450 JMP .1
 2460 .2 RTS
 2470 *---------------------------------
 2480 * LIST ONE SOURCE LINE
 2490 *---------------------------------
 2500 ASM.LIST.LINE
 2510 JSR GNB SKIP OVER BYTE COUNT
 2520 JSR GNB GET LINE NUMBER
 2530 STA LINNUM
 2540 JSR GNB
 2550 STA LINNUM+1
 2560 JSR PRINT.LINNUM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 68 of 2550

Apple II Computer Info

 2570 LDA #' BLANK
 2580 .1 JSR PRINT.CHAR
 2590 JSR NEXT.TOKEN
 2600 CMP #0
 2610 BNE .1
 2620 JMP MON.CROUT
 2630 *---------------------------------
 2640 GNB LDY #0
 2650 STY BLANK.COUNT
 2660 LDA (SRCP),Y
 2670 GNBI INC SRCP
 2680 BNE .1
 2690 INC SRCP+1
 2700 .1 RTS
 2710 *---------------------------------
 2720 NEXT.TOKEN
 2730 LDY #0
 2740 LDA BLANK.COUNT
 2750 BNE .1
 2760 LDA (SRCP),Y
 2770 BPL GNBI
 2780 AND #$7F
 2790 STA BLANK.COUNT
 2800 JSR GNBI
 2810 .1 DEC BLANK.COUNT
 2820 LDA #' BLANK
 2830 RTS
 2840 *---------------------------------
 2850 * PRINT LINE NUMBER
 2860 *---------------------------------
 2870 PRINT.LINNUM
 2880 LDX #3 PRINT 4 DIGITS
 2890 .3 LDA #'0 SET DIGIT TO ASCII ZERO
 2900 .1 PHA PUSH DIGIT ON STACK
 2910 SEC SUBTRACT CURRENT DIVISOR
 2920 LDA LINNUM
 2930 SBC PLNTBL,X
 2940 PHA SAVE BYTE ON STACK
 2950 LDA LINNUM+1
 2960 SBC PLNTBH,X
 2970 BCC .2 LESS THAN DIVISOR
 2980 STA LINNUM+1
 2990 PLA GET LOW BYTE OFF STACK
 3000 STA LINNUM
 3010 PLA GET DIGIT FROM STACK
 3020 ADC #0 INCREMENT DIGIT
 3030 BNE .1 ...ALWAYS
 3040 .2 PLA DISCARD BYTE FROM STACK
 3050 PLA GET DIGIT FROM STACK
 3060 JSR PRINT.CHAR
 3070 DEX NEXT DIGIT
 3080 BPL .3
 3090 RTS RETURN
 3100 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 69 of 2550

Apple II Computer Info

 3110 PLNTBL .DA #1
 3120 .DA #10
 3130 .DA #100
 3140 .DA #1000
 3150 PLNTBH .DA /1
 3160 .DA /10
 3170 .DA /100
 3180 .DA /1000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 70 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8011:DOS3.3:S.Var.XRef.txt
==

 1000 *---------------------------------
 1010 * VARIABLE CROSS REFERENCE
 1020 * FOR APPLESOFT PROGRAMS
 1030 *---------------------------------
 1040 ZZ.BEG .EQ $8800
 1050 .OR ZZ.BEG
 1060 .TF B.VCR
 1070 *---------------------------------
 1080 LDA #$4C AMPERSAND VECTOR
 1090 STA $3F5
 1100 LDA #VCR
 1110 STA $3F6
 1120 LDA /VCR
 1130 STA $3F7
 1140 RTS
 1150 *---------------------------------
 1160 PNTR .EQ $18,19 POINTER INTO PROGRAM
 1170 DATA .EQ $1A THRU $1D
 1180 LZFLAG .EQ $1A LEADING ZERO FLAG
 1190 NEXTLN .EQ $1A,1B ADDRESS OF NEXT LINE
 1200 LINNUM .EQ $1C,1D CURRENT LINE NUMBER
 1210 STPNTR .EQ $1E,1F POINTER INTO VARIABLE TABLE
 1220 TPTR .EQ $9B,9C TEMP POINTER
 1230 SYMBOL .EQ $9D THRU $A4 8 BYTES
 1240 VARNAM .EQ SYMBOL+1
 1250 HSHTBL .EQ $280
 1260 ENTRY.SIZE .EQ $A5,A6
 1270 *---------------------------------
 1280 PRGBOT .EQ $67,68 BEGINNING OF PROGRAM
 1290 LOMEM .EQ $69,6A BEGINNING OF VARIABLE SPACE
 1300 EOT .EQ $6B,6C END OF VARIABLE TABLE
 1310 *---------------------------------
 1320 TKN.REM .EQ 178
 1330 TKN.DATA .EQ 131
 1340 *---------------------------------
 1350 MON.CH .EQ $24
 1360 MON.PRBL2 .EQ $F94A
 1370 MON.COUT .EQ $FDED
 1380 MON.CROUT .EQ $FD8E
 1390 *---------------------------------
 1400 VCR
 1410 JSR INITIALIZATION
 1420 .1 JSR PROCESS.LINE
 1430 BNE .1 UNTIL END OF PROGRAM
 1440 JSR PRINT.REPORT
 1450 JSR INITIALIZATION ERASE VARIABLE TABLE
 1452 LDA #0 CLEAR $A4 SO APPLESOFT WILL
 1454 STA $A4 WORK CORRECTLY
 1460 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 71 of 2550

Apple II Computer Info

 1470 *---------------------------------
 1480 INITIALIZATION
 1490 LDA LOMEM
 1500 STA EOT
 1510 LDA LOMEM+1
 1520 STA EOT+1
 1530 LDX #52 # OF BYTES FOR HASH POINTERS
 1540 LDA #0
 1550 .1 STA HSHTBL-1,X
 1560 DEX
 1570 BNE .1
 1580 LDA PRGBOT
 1590 STA PNTR
 1600 LDA PRGBOT+1
 1610 STA PNTR+1
 1620 RTS
 1630 *---------------------------------
 1640 PROCESS.LINE
 1650 LDY #3 CAPTURE POINTER AND LINE #
 1660 .1 LDA (PNTR),Y
 1670 STA DATA,Y
 1680 DEY
 1690 BPL .1
 1692 LDA DATA+1 CHECK IF END
 1694 BEQ .3 YES
 1700 CLC SKIP OVER DATA
 1710 LDA PNTR
 1720 ADC #4
 1730 STA PNTR
 1740 BCC .2
 1750 INC PNTR+1
 1760 .2 JSR SCAN.FOR.VARIABLES
 1770 LDA DATA
 1780 STA PNTR
 1790 LDA DATA+1
 1800 STA PNTR+1
 1810 * BNE .3
 1820 .3 RTS
 1830 *---------------------------------
 1840 SCAN.FOR.VARIABLES
 1850 .1 JSR GET.NEXT.VARIABLE
 1860 BEQ .3 END OF LINE
 1870 JSR PACK.VARIABLE.NAME
 1880 JSR SEARCH.VARIABLE.TABLE
 1890 BCC .2 FOUND SAME VARIABLE
 1900 LDA #0
 1910 STA SYMBOL+4 START OF LINE NUMBER CHAIN
 1920 STA SYMBOL+5
 1930 LDA LINNUM+1 MSB FIRST
 1940 STA SYMBOL+6
 1950 LDA LINNUM
 1960 STA SYMBOL+7
 1970 LDA #8 ADD 8 BYTE ENTRY
 1980 JSR ADD.NEW.ENTRY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 72 of 2550

Apple II Computer Info

 1990 JMP .1
 2000 .2 JSR SEARCH.LINE.CHAIN
 2010 BCC .1 FOUND SAME LINE NUMBER
 2020 LDA #4 ADD 4 BYTE ENTRY
 2030 JSR ADD.NEW.ENTRY
 2040 JMP .1
 2050 .3 RTS
 2060 *---------------------------------
 2070 GET.NEXT.VARIABLE
 2080 .1 JSR NEXT.CHAR.NOT.QUOTE
 2090 BEQ .2 END OF LINE
 2100 CMP #TKN.DATA
 2110 BEQ .3
 2120 CMP #TKN.REM
 2130 BEQ .2 SKIP TO NEXT LINE
 2140 JSR LETTER LETTER?
 2150 BCC .1 NO, KEEP LOOKING
 2160 .2 RTS
 2170 * DATA, SO SKIP TO NEXT STATEMENT
 2180 .3 JSR NEXT.CHAR.NOT.QUOTE
 2190 BEQ .2 EOL, RETURN
 2200 CMP #': COLON?
 2210 BNE .3 NOT END YET
 2220 BEQ .1 ...ALWAYS
 2230 *---------------------------------
 2240 NEXT.CHAR.NOT.QUOTE
 2250 .1 JSR NEXT.CHAR
 2260 BEQ .2 EOL, RETURN
 2270 CMP #'" QUOTE?
 2280 BEQ .3 YES, SCAN OVER QUOTATION
 2290 .2 RTS RETURN
 2300 .3 JSR NEXT.CHAR
 2310 BEQ .2 EOL, RETURN
 2320 CMP #'" TERMINAL QUOTE?
 2330 BNE .3 NOT YET
 2340 BEQ .1 ...ALWAYS
 2350 *---------------------------------
 2360 * NEXT CHARACTER FROM LINE
 2370 * CALL: JSR NEXT.CHAR
 2380 * RETURN: (A)=CHAR FROM LINE
 2390 * IF CHAR .NE. EOL,
 2400 * INCREMENT PNTR AND
 2410 * STATUS Z=0
 2420 * IF CHAR .EQ. EOL,
 2430 * STATUS Z=1
 2440 *---------------------------------
 2450 NEXT.CHAR
 2460 LDY #0
 2470 LDA (PNTR),Y
 2480 BEQ .1 EOL
 2490 INC PNTR BUMP POINTER
 2500 BNE .1
 2510 INC PNTR+1
 2520 .1 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 73 of 2550

Apple II Computer Info

 2530 *---------------------------------
 2540 PACK.VARIABLE.NAME
 2550 STA VARNAM FIRST CHAR OF NAME
 2560 LDA #' BLANKS FOR OTHER TWO CHARS
 2570 STA VARNAM+1
 2580 STA VARNAM+2
 2590 JSR NEXT.CHAR
 2600 BEQ .5 END OF LINE
 2610 JSR LTRDIG
 2620 BCC .2 NOT LETTER OR DIGIT
 2630 STA VARNAM+1
 2640 .1 JSR NEXT.CHAR IGNORE EXCESS NAME
 2650 BEQ .5 END OF LINE
 2660 JSR LTRDIG
 2670 BCS .1 LETTER OR DIGIT
 2680 .2 CMP #'$ DOLLAR SIGN?
 2690 BEQ .3 YES
 2700 CMP #'% PER CENT?
 2710 BNE .4 NO
 2720 .3 STA VARNAM+2
 2730 JSR NEXT.CHAR
 2740 BEQ .5 END OF LINE
 2750 .4 CMP #'(LEFT PAREN?
 2752 BEQ .6 YES
 2754 CMP #'" QUOTE?
 2760 BNE .5 NO
 2762 LDA PNTR YES, BACK UP POINTER
 2763 BNE .7
 2764 DEC PNTR+1
 2765 .7 DEC PNTR
 2766 RTS
 2770 .6 LDA VARNAM+2 SET HIGH BIT
 2780 ORA #$80 TO FLAG ARRAY
 2790 STA VARNAM+2 REFERENCE
 2800 .5 RTS
 2810 *---------------------------------
 2820 SEARCH.VARIABLE.TABLE
 2830 SEC CONVERT 1ST CHAR TO
 2840 LDA VARNAM HASH TABLE INDEX
 2850 SBC #'A
 2860 ASL
 2870 ADC #HSHTBL
 2880 STA STPNTR
 2890 LDA /HSHTBL
 2900 ADC #0
 2910 STA STPNTR+1
 2920 *--- FALL INTO CHAIN SEARCH ROUTINE
 2930 *---------------------------------
 2940 CHAIN.SEARCH
 2950 .1 LDY #0 POINT AT POINTER IN ENTRY
 2960 LDA (STPNTR),Y
 2970 STA TPTR
 2980 INY
 2990 LDA (STPNTR),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 74 of 2550

Apple II Computer Info

 3000 BEQ .4 END OF CHAIN, NOT IN TABLE
 3010 STA TPTR+1
 3020 LDX #2 2 MORE CHARS IN SYMBOL
 3030 LDY #2 POINT AT NAME IN ENTRY
 3040 .2 LDA (TPTR),Y COMPARE NAMES
 3050 CMP SYMBOL,Y
 3060 BCC .3 NOT THIS ONE, BUT KEEP LOOKING
 3070 BNE .4 NOT IN THIS CHAIN
 3080 DEX
 3090 BEQ .5 NAME IS THE SAME
 3100 INY NEXT BYTE PAIR
 3110 BNE .2 ...ALWAYS
 3120 *---------------------------------
 3130 .3 JSR .5 UPDATE POINTER, CLEAR CARRY
 3140 BCC .1 ...ALWAYS
 3150 *---------------------------------
 3160 .4 SEC DID NOT FIND
 3170 RTS
 3180 *---------------------------------
 3190 .5 LDA TPTR
 3200 STA STPNTR
 3210 LDA TPTR+1
 3220 STA STPNTR+1
 3230 CLC
 3240 RTS
 3250 *---------------------------------
 3260 ADD.NEW.ENTRY
 3270 STA ENTRY.SIZE
 3280 CLC SEE IF ROOM
 3290 LDX #1
 3300 LDY #0
 3310 STY ENTRY.SIZE+1
 3320 .1 LDA (STPNTR),Y GET CURRENT POINTER
 3330 STA SYMBOL,Y
 3340 LDA EOT,Y
 3350 STA (STPNTR),Y
 3360 STA TPTR,Y
 3370 ADC ENTRY.SIZE,Y
 3380 STA EOT,Y
 3390 INY
 3400 DEX
 3410 BPL .1
 3420 *--- SEE IF GOING TO BE ENOUGH ROOM
 3430 LDA EOT
 3440 CMP #ZZ.BEG
 3450 LDA EOT+1
 3460 SBC /ZZ.BEG
 3470 BCS .3 MEM FULL ERR
 3480 *--- MOVE ENTRY INTO VARIABLE TABLE
 3490 LDY ENTRY.SIZE
 3500 DEY
 3510 .2 LDA SYMBOL,Y
 3520 STA (TPTR),Y
 3530 DEY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 75 of 2550

Apple II Computer Info

 3540 BPL .2
 3550 LDA TPTR
 3560 STA STPNTR
 3570 LDA TPTR+1
 3580 STA STPNTR+1
 3590 RTS
 3600 .3 JMP MEM.FULL.ERR
 3610 MEM.FULL.ERR
 3620 BRK
 3630 *---------------------------------
 3640 SEARCH.LINE.CHAIN
 3650 CLC ADJUST POINTER TO START
 3660 LDA STPNTR OF LINE # CHAIN
 3670 ADC #4
 3680 STA SYMBOL
 3690 LDA STPNTR+1
 3700 ADC #0
 3710 STA SYMBOL+1
 3720 LDA #SYMBOL
 3730 STA STPNTR
 3740 LDA /SYMBOL
 3750 STA STPNTR+1
 3760 LDA LINNUM PUT LINE NUMBER INTO SYMBOL
 3770 STA SYMBOL+3
 3780 LDA LINNUM+1
 3790 STA SYMBOL+2
 3800 JMP CHAIN.SEARCH
 3810 *---------------------------------
 3820 PRINT.REPORT
 3830 LDA #'A START WITH A'S
 3840 .1 STA VARNAM
 3850 SEC
 3860 SBC #'A CONVERT TO HSHTBL INDEX
 3870 ASL
 3880 TAY
 3890 LDA HSHTBL+1,Y
 3900 BEQ .2 NO ENTRY FOR THIS LETTER
 3910 STA PNTR+1
 3920 LDA HSHTBL,Y
 3930 STA PNTR
 3940 JSR PRINT.LETTER.CHAIN
 3950 .2 INC VARNAM NEXT LETTER
 3960 LDA VARNAM
 3970 CMP #'Z+1
 3980 BCC .1 STILL MORE LETTERS
 3990 RTS FINISHED
 4000 *---------------------------------
 4010 LTRDIG
 4020 CMP #'0 DIGIT?
 4030 BCC LD1 NO
 4040 CMP #'9+1
 4050 BCC LD2 YES
 4060 LETTER
 4070 CMP #'A LETTER?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 76 of 2550

Apple II Computer Info

 4080 BCC LD1 NO
 4090 CMP #'Z+1
 4100 BCC LD2 YES
 4110 CLC NO
 4120 LD1 RTS
 4130 LD2 SEC
 4140 RTS
 4150 *---------------------------------
 4160 PRINT.LETTER.CHAIN
 4170 .1 LDA VARNAM FIRST LETTER
 4180 JSR PRINT.CHAR
 4190 LDY #1
 4200 .2 INY
 4210 LDA (PNTR),Y REST OF NAME
 4220 AND #$7F
 4230 CMP #' BLANK?
 4240 BEQ .3
 4250 JSR PRINT.CHAR
 4260 .3 CPY #3
 4270 BCC .2
 4280 LDA (PNTR),Y CHECK IF ARRAY
 4290 BPL .4
 4300 LDA #'(
 4310 JSR PRINT.CHAR
 4320 .4 CLC POINT AT LINE # CHAIN
 4330 LDA PNTR
 4340 ADC #4
 4350 STA TPTR
 4360 LDA PNTR+1
 4370 ADC #0
 4380 STA TPTR+1
 4390 JSR PRINT.LINNUM.CHAIN
 4400 JSR MON.CROUT
 4410 LDY #1
 4420 LDA (PNTR),Y POINTER TO NEXT VARIABLE
 4430 BEQ .5 NO MORE
 4440 PHA
 4450 DEY
 4460 LDA (PNTR),Y
 4470 STA PNTR
 4480 PLA
 4490 STA PNTR+1
 4500 BNE .1 ...ALWAYS
 4510 .5 RTS
 4520 *---------------------------------
 4530 PRINT.LINNUM.CHAIN
 4540 .1 JSR TAB.NEXT.COLUMN
 4550 LDY #2 POINT AT LINE #
 4560 LDA (TPTR),Y
 4570 STA LINNUM+1
 4580 INY
 4590 LDA (TPTR),Y
 4600 STA LINNUM
 4610 JSR PRINT.LINE.NUMBER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 77 of 2550

Apple II Computer Info

 4620 LDY #1 SET UP NEXT POINTER
 4630 LDA (TPTR),Y
 4640 BEQ .2
 4650 PHA
 4660 DEY
 4670 LDA (TPTR),Y
 4680 STA TPTR
 4690 PLA
 4700 STA TPTR+1
 4710 BNE .1 ...ALWAYS
 4720 .2 RTS
 4730 *---------------------------------
 4740 TAB.NEW.LINE
 4750 JSR MON.CROUT
 4760 TAB.NEXT.COLUMN
 4770 .1 LDA #7 FIRST TAB STOP
 4780 .2 CMP MON.CH CURSOR POSITION
 4790 BCS .3 PERFORM TAB
 4800 ADC #6 NEXT TAB STOP
 4810 CMP #33 END OF LINE?
 4820 BCC .2
 4830 BCS TAB.NEW.LINE ...ALWAYS
 4840 .3 BEQ .4 ALREADY THERE
 4850 SBC MON.CH CALCULATE # OF BLANKS
 4860 TAX
 4870 JSR MON.PRBL2
 4880 .4 RTS
 4890 *---------------------------------
 4900 PRINT.LINE.NUMBER
 4910 LDX #4 PRINT 5 DIGITS
 4920 STX LZFLAG TURN ON LEADING ZERO FLAG
 4930 .1 LDA #'0 DIGIT=0
 4940 .2 PHA
 4950 SEC
 4960 LDA LINNUM
 4970 SBC PLNTBL,X
 4980 PHA
 4990 LDA LINNUM+1
 5000 SBC PLNTBH,X
 5010 BCC .3 LESS THAN DIVISOR
 5020 STA LINNUM+1
 5030 PLA
 5040 STA LINNUM
 5050 PLA
 5060 ADC #0 INCREMENT DIGIT
 5070 BNE .2 ...ALWAYS
 5080 .3 PLA
 5090 PLA
 5100 CMP #'0
 5110 BEQ .5 ZERO, MIGHT BE LEADING
 5120 SEC TURN OFF LZFLAG
 5130 ROR LZFLAG
 5140 .4 JSR PRINT.CHAR
 5150 DEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 78 of 2550

Apple II Computer Info

 5160 BPL .1
 5170 RTS
 5180 .5 BIT LZFLAG LEADING ZERO FLAG
 5190 BMI .4 NO
 5200 LDA #' BLANK
 5210 BNE .4 ...ALWAYS
 5220 PLNTBL .DA #1
 5230 .DA #10
 5240 .DA #100
 5250 .DA #1000
 5260 .DA #10000
 5270 PLNTBH .DA /1
 5280 .DA /10
 5290 .DA /100
 5300 .DA /1000
 5310 .DA /10000
 5320 *---------------------------------
 5330 PRINT.CHAR
 5340 ORA #$80
 5350 JSR MON.COUT
 5360 RTS
 5370 *---------------------------------
 5380 ZZ.END .EQ *
 5390 ZZ.SIZ .EQ ZZ.END-ZZ.BEG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 79 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:Articles:BlockMoveCopy.txt
==

Block MOVE and COPY for Version 4.0

How many times have you wished there was an easy way to move a bunch
of lines of your source program to some other place? I know it
happens to me, and I frequently wish the assembler had this
capability. Now, at last, it is possible. I no longer have to use
DELETE, SAVE, HIDE, MERGE, LOAD in a very complicated sequence just to
move that 20 line subroutine from the middle to the end of my source
program!

The program as written assumes you have set up the USR command vector
to jump to $800. You do this by stuffing a 0 into $1007 and an 8 into
$1008 (type $1007:00 08 as a command). Then if you type, for example,
"USR 1100,1190,1800", a copy of lines 1100 through 1190 will be
inserted before line 1800. A word of caution: the lines in their new
location will still have the old line numbers, until you RENUMBER.
You can LIST, SAVE, and LOAD while the lines are out of sequence like
this, but beware of doing any further editing! First, use the USR
command to make the new copy of the lines; second, RENUMBER the
program; third, DELETE the lines form their old location. Voila! You
have moved them.

I just know someone (maybe everyone) is going to think that I should
have made this program do its own renumbering. The reason I am
confident of this is that I feel the same way. But the program as it
stands is useful, and I will refine it later. My plan is to add one
more parameter which specifies the increment for the line numbers in
their new location. Then let the third parameter be the line number
for the first line of the block being copied. The program will check
whether making the copy will clobber any existing lines, and error out
if so. If not, the copy will be made with its new line numbers. Then
a question will be asked of the form" DO YOU WISH TO DELETE THE OLD
LINES? (Y/N)". But for now, I will live with the more tedious but
still very useful version you see here.

I would suggest that you put the object code of this program on a
binary file, and then create an EXEC text file that contains the patch
line to set up the USR command and a BLOAD command for the COPY
program. The quarterly AAL diskette contains just such a file.

Now let me describe how the COPY program works. Notice that lines
1000-1060 are a summary of the operating syntax. Line 1070, together
with lines 2390 and 2400, make the last three symbols in the symbol
table listing tell me the start, end, and length of the object code.
These are very useful for writing the object code out to a binary
file. (Of course, I could use the .TF directive and write it
automatically.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 80 of 2550

Apple II Computer Info

Lines 1090-1220 define the page-zero locations the program uses. SS,
SE, SL, and NEWPP are peculiar to this program; the rest of them are
used by the monitor and the assembler. PP points to the beginning of
the first source line in memory, and LOMEM is the lowest PP can go.
A0, A1, A2, and A4 are used to pass addresses to the Apple Monitor
Memory Move subroutine.

Linew 1240-1280 define some addresses of routines inside the S-C
ASSEMBLER II Version 4.0. SYNX is the Syntax Error routine. You will
get a syntax error message if you type in less than three parameters
with the USR command, if the first two parameters are backwards or the
same, if the block specified to be copied is empty, or if the target
location is inside the block to be copied. MFER is the routine to
print MEM FULL ERR, and you will get this error message if there is
not room to make a copy; that is, the space between PP and LOMEM is
less than the size of the block you want to copy.

SCND is the assembler routine to scan an input line from the current
position and look for a decimal number. If it finds a decimal number,
it will convert the number to binary and store it in A2L and A2H. As
explained on page 10 of the Upgrade manual for Version 4.0, the first
two parameters will have already been stored in A0 and A1.

SERTXT is the assembler routine to find a line in your source program,
given the line number. It is called with the X-register containing
the address of the first byte in page-zero of the byte-pair containing
the line number you are looking for. When SERTXT is finished, $E4,E5
points at the first byte of the line found, and $E6,E7 points at the
first byte of the next line. (Of course, if your line number could
not be found, both pointers will point at the next larger line.)

MON.MOVE is a program inside the Apple Monitor ROM. It will copy a
block of memory whose first byte address is in A1, last byte address
in A2, to a new place in memory starting at the byte address in A4.
This is the routine used when you use the monitor "M" command. It
works fine as long as the target is not inside the source block.

Now to the COPY program itself. Briefly, the three parameters are
checked for presence and consistency, and pointers are set up defining
the area to be copied. A new value of PP is computed based on the
length of this block, and I check to see if there is room in memory.
Next I search for the target location, and check to make sure it is
not inside the source block. (We don't wat any infinite loops!) If
the target is higher in memory than the source block I adjust the
source block pointers by subtracting the block length from them. Then
I move all source lines below the insertion point down in memory far
enough to make a hole in the text into which the source block can be
copied. Finally, I copy in the source block, and return.

Some final comments... The COPY program is very fast, so play with it
a little on a scratch program to convince yourself it is working. If
you don't want to type in the source, you can just enter the hex codes
from the monitor, and BSAVE it. Or, your can order the Quarterly AAL
diskette, which will have the source, object, and a textfile to EXEC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 81 of 2550

Apple II Computer Info

for BLOADing and patching the USR vector. Or, if you are very
patient, you can wait till next August for Version 5.0 of the S-C
ASSEMBLER II!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 82 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:Articles:Compare.16Bits.txt
==

Handling 16-bit Comparisons

It can be confusing enough in the 6502 to compare two single-byte
values. Trying to remember that BCC means "branch if less than"
(assuming that the values were considered to be unsigned values from
0-255), and that BCS means "branch if greater than or equal to" is
enough to saturate my memory banks. I finally made a note on a card
and tacked it up over my computer. Of course, if the values are
considered to be signed values, in the range of -128 through +127, the
problem is compounded, to say the least.

But what about comparing two values of two-bytes each? Like comparing
two address pointers, for instance? A last resort would be to
subtract one from the other, in two-byte arithmetic, and then compare
the difference to zero. At least that would be understandable! But
let's try to do it a little better than that. There is an example of
this kind of comparison in lines 1310 through 1350 of the PRETTY.LIST
program elsewhere in this issue of the Apple Assembly Line. Here is
the segment:

 1310 .1 LDA SCRP
 1320 CMP HIMEM
 1330 LDA SRCP+1
 1340 SBC HIMEM+1
 1350 BCS .2

The object is to determine whether the value in PP,PP+1 is still less
than the value in HIMEM,HIMEM+1 or not. The low-order byte of each
value is stored in the first byte of each byte-pair, and the high-
order byte is stored in the second byte. If all we needed to compare
was the low-order bytes, we could do it with lines 1310 and 1320
above. Carry would be cleared by the CMP instruction if (SCRP) was
less than (HIMEM). (I have just started using "(" and ")" to mean
"the value stored in".)

Now let's use that carry bit and continue the comparison by actually
subtracting the two high-order bytes. If the result of the
subtraction leaves carry clear, we know that (SCRP) is indeed less tha
(HIMEM), all 16 bits of it.

If you need to extend this to more than two bytes per value, you may.
Just insert a pair of LDA-SBC instructions for each extra byte of
precision, before the BCS instruction.

For another example of this kind of comparison, you might look up the
NXTA1 routine in the Apple Monitor listing, at $FCBA. This routine is
used by the Monitor MOVE command, and several other routines.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 83 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:Articles:Front.Page.txt
==

As I write thes, there are 85 paid subscribers! I sent out about 140
flyers in the last two weeks, so maybe the number will double again
next month! Pass the word to your friends and local Apple clubs ...
and let me know how you like the content, style, et cetera.

In this issue...

Intelligent Disassemblers 2
Integer BASIC Pretty Lister 3
Listed Expressions with .DA Directive 9
Block MOVE and COPY for Version 4.0 11
Handling 16-Bit Comparisons 16

Quarterly Disk #1

If you find there just isn't enough time to type in all the source
programs in the Apple Assembly Line, I will be happy to save you the
trouble. Every three months I will put together a "Disk of the
Quarter" which contains all the source in the format of the S-C
ASSEMBLER II Version 4.0. The price is only $15, and I will pay the
postage.

The first such disk is ready now, covering October, November, and
December of 1980. The disks and the programs are for subscribers
only. Save your fingers, get yours now!

Help for Beginners

I will write some beginner's material from time to time for this
newsletter, but I cannot cover every base at once. Meanwhile, many of
the magazines and club newsletters are beginning to publish articles
for beginners who want to learn assembly language. One of the best
and most accessible is Creative Computing. Chuck Carpenter's "Apple-
Cart", a monthly feature, in the November, 1980 issue, was great! He
actually began the subject of machine language in the October issue,
but in the November one he covered indexing, indirect addressing, and
interrupts. By the way, Chuck is also a subscriber to the Apple
Assembly Line.

There have also been some good beginner articles in recent copies of
Nibble and Softalk. Nibble has been printing a lot of assembly
language programs, which are good to study.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 84 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:Articles:IBas.Prty.List.txt
==

Integer BASIC Pretty Lister

About 2 1/2 years ago, Mike Laumer, of Carrollton, Texas, wrote a
program to make pretty listing of Integer BASIC programs. He gave me
a copy to look at, and then we both forgot about it. A few days ago I
found it again, dusted it off, typed it in, and tried it out. After a
little debugging, here is the result.

Which is neater?

 100 FOR I=1 TO 40: A(I)=I: A(I+41)=I*I: NEXT I

 or? 100 FOR I=1 TO 40
 : A(I)=I
 : A(I+41)=I*I
 : NEXT I

Mike and I happen to like the latter format, especially for printing
in newsletters. It is a lot easier to read. And why print it if no
one is going to read it?

If you are in Integer BASIC, and you have a program in memory ready to
list, here are the steps to get a "pretty listing".

 1. BLOAD B.PRETTY.LISTER
 2. POKE 0,40 (or whatever number of characters
 3. CALL 2048 per line you wish it to use)

If you want it to print on your printer, be sure to turn it on in the
way you usually do before the CALL 2048. For example, if you have a
standard Apple interface in slot 1, type "PR#1" just before the CALL
2048.

If you check it out, you will find a lot of similarity between the
code in this program and what is stored in the Integer BASIC ROMs
around locations $E00C through $E0F9. The routines are not in the
same order, and there are a few significant changes to make the
listing "pretty" and to control the line length. As I was typing in
Mike's program, I took the liberty of "modularizing" it a little more,
so that I could understand it. the PRINT.DECIMAL routine in lines
2500-2810 is almost identical to the one at $E51B in the BASIC ROMs.
The changes are for the purpose of counting the number digits actually
printed; this allows a closer control over line length.

Since one of the promised features of the Apple Assembly Line was
commented disassemblies of some of the Apple's ROM code, I will try to
explain how PRETTY.LIST works in some detail, module by module. You
can then apply my explanation to the code which resides in ROM at
$E00C-$E0F9.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 85 of 2550

Apple II Computer Info

PRETTY.LIST: This module is the overall control for the listing
process. Since PP points to the beginning of the BASIC source
program, lines 1270-1300 transfer this pointer into SRCP. Then SRCP
is compared with HIMEM, to see if we are finished listing. The check
is made before even listing one line, because it is possible that
there is no source program to list! If the value in SRCP is greater
than or equal to the value in HIMEM, then the listing is finished, and
PRETTY.LIST returns to BASIC by JMP to DOS.REENTRY ($3D0). If the
listing is not finished, I call PRINT.ONE.LINE to format and print out
one line of the source program. "One line" may be several statements
separated by colons. Then I jump back to the test to see if we are
through yet, and so on and on and on.

PRINT.ONE.LINE: A source line in Integer BASIC is encoded in token
form, and this routine has to convert it back to the original form to
list it. First, let's look at how a coded line is laid out.

 # line
 bytes number body of source line 01

The first byte of a line is the line length; we will ignore it in this
program, because we do not need it. The last byte of each line is the
hex value $01, which is the token for end-of-line. That is all we
need to signal the end of a line, and the start of another one. The
second and third bytes of each line are the line number, in binary,
with the low byte first. The body of the line is made up of a
combination of tokens and ASCII characters.

For the most part, tokens have a hex value less than $80, while the
ASCII characters have a hex value greater than $80. One important
exception is the token for a decimal constant. These are flagged by a
pseudo-token consisting of the first digit of the constant in ASCII
(hex $B0 through $B9); after the token, two bytes follow which contain
the binary form of the constant with the low byte first. For example,
the decimal constant 1234 would be stored in three bytes as: $B1 D2
04.

The task of PRINT.ONE.LINE is to scan through the coded form of a
line, printing each ASCII character, and converting each token to its
printing form. In addition, the routine must count line position as
it goes, so that a new line can be started when one fills up.
Furthermore, we want it to start a new line whenever the ":" indicates
a new statement has begun within a line. We have to look out for REM
statements and quoted strings, because the ":" might appear in them
without signalling a new statement.

Lines 1400-1460 start the ball rolling. The line position is set to
zero, and the fill flag for the PRINT.DECIMAL routine is set to
produce a right-justified-blank-filled number. Then GET.NEXT.BYTE is
called to advance the SCRP past the byte count in the first byte of
the line. GET.NEXT.BYTE returns the value of the byte in A, and with
Y=0. This time we ignore the value in A, and use the fact that Y=0 to
clear A.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 86 of 2550

Apple II Computer Info

Lines 1470-1510 pick up the two bytes of the line number and call
PRINT.DECIMAL to print it out. These same lines will be used later to
print out any constants which are in the line. These lines are
entered this time with A=0 and with IB.FILL set for the RJBF mode
(right-justified-blank-filled). Later for constants they will be
entered with IB.FILL set for printing with no leading blanks, and with
A <> 0. The value in A is used to set IB.FLAG, which determines
whether a trailing blank will be printed. One will be printed after
the line number, but not after a constant inside a line. (For a
character that uses so little ink, blanks can sure eat up a lot of
code!)

At line 1520 the main body of the PRINT.ONE.LINE routine begins.
CHECK.EOL.GET.NEXT.BYTE decides whether we are getting too close to
the end of the line. This prevents splitting token-words in half,
with a few characters dangling off the end of one line, and the rest
starting a new one. (At least, on the screen it would look like that;
on a printer it might just print out into a margin.) The routine will
start a new line before returning if the end is too near. When it
finally does return, the next byte will be in A, and Y will be zero.
If the next byte is a token (less than $80), control branches to line
1720. If the first bit of the byte is 1, and the second bit is 0, the
code at lines 1550-1580 assumes the pseudo-token for a constant has
appeared. If the second bit is also 1, the byte is an ASCII
character. Before printing the character, lines 1590-1630 may print a
blank. This would be a trailing blank after printing a token or a
line number. The character is then printed at lines 1640-1650, and
another end-of-line check is made. This time "too near the end" is
defined as within 3 spaces. The next byte must either be a token or
yet another ASCII character, so a determination is made in lines 1660-
1700.

Tokens are harder to handle, because we have to test for several
special cases, and if not a special case the token table must be
searched to find the token's name. Lines 1720-1740 test for the end-
of-line token; if this is it, a carriage return is printed and
PRINT.ONE.LINE returns back to its caller.

If the token is the new-statement-token, used for ":", a new line is
started. Then the fun begins: we have to search the token table.
This table is the most recondite portion of the whole Apple computer!
I have only scratched its surface. The table is located between $EC00
and $EDFF, but it is not in that order. It goes like this: first
$ED00, then $EDFF-$ED01 (yes, backwards!), then $EC00, then $ECFF-
$EC01. The names for all the tokens are stored in the table, along
with various bits of information about precedence and syntax. If you
print out the table, you will not see any names... Steve Wozniak
subtracted $20 from each byte before putting it into the table. Well,
there is a lot more to it than that, but I am getting lost, side-
tracked.

After finding the token's name string inside the token table, we have
to print it out. This is done in lines 1840-1940. The name is

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 87 of 2550

Apple II Computer Info

terminated either by the last character having a value greater than
$BF, or by the next character in the table having a value less than
$80. The routine at $E00C decides whether or not to print a trailing
blank, I think.

After printing the token's name, lines 1960-2010 test for REM or a
quoted string. Either of these would be followed by a bunch of ASCII
characters terminated by a token, so control branches to line 1660 to
print them out. If neither, we go back to line 1520, to get the next
token, or whatever.

Somehow I skipped over line 1830. I believe the JSR $EFF8 determines
whether or not to print a space in front of the token name.

FIND.TOKEN: Lines 2040-2110 set up a pointer to the half of the token
table which contains the name string for the token we want. Tokens
$00 through $50 are in the first half, and $51 through $7F are in the
second half.

Lines 2120-2250 scan through the table, counting token names as they
are passed. When the nth one is found, where n is the token value,
the routine returns. It returns with A=0, and Y = offset in the half
of the token table we have been scanning.

CHECK.EOL.GET.NEXT.BYTE: Enter this routine with A containing the
number of bytes short of the end of the line you want to test for, as
a negative number. If too near the end, CR.7.BLANKS will be called to
start a new line. In any case the routine exits by transferring to
GET.NEXT.BYTE to get the next byte from the source line.

CR.7.BLANKS: Prints a carriage return adn 7 blanks to start a new
line.

CHAR.OUT: Simply counts characters and then calls on the Apple
monitor to print out a character. We need to count columns for
CHECK.EOL.GET.NEXT.BYTE.

PRINT.DECIMAL: Lifted out of Integer BAIC from $E51B, and modified to
eliminate the ability to store the converted number in the input
buffer, and to add the ability to count output characters.

Additions to this program: You might like to add some more featrures
to this program. For example, it would be nice to have it request the
line length and printer slot number itself, and turn the printer on
and off. Also, it would be helpful to add indentation for FOR...NEXT
loops and IF...THEN statements. The same program could be merged with
a cross reference program to build and print a variable and line
number cross reference.

If you decide to try any of these, or any other enhancements, why not
write them up and send them to me for publication?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 88 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:Articles:Listed.Xprsns.txt
==

Allow List of Expressions with .DA Directive

Some customers have said they wished the .DA directive in the S-C
ASSEMBLER II allowed more than one expression per line. For example,
".DA 1000,100,10,1" would then produce 8 bytes of code just as though
there were four separate .DA lines. (Once and a while I wish it
worked this way too!)

The following little patch will transform your .DA in just that way.
Because of the .OR and .TF directives, assembling these 42 lines will
produce two binary files that are ready to BLOAD. When you BLOAD
them, the copy of the assembler in memory will be patched. You can
then BSAVE the assembler (use a different name!), and you have the new
capability.

If you do not have Version 4.0 of the assembler, then this patch will
not work. If you have one of the very earliest copies of Version 4.0,
it may have some different addresses. Check it out before you type in
the code: at $20D4 you should find three JMP instructions, as
indicated in the comments here in lines 1210 through 1230. If you
find those JMPs, go right ahead and make the patches. Of course, if
you have already added some code at $24B0, then you will have to put
this patch somewhere else.

If you do not find those JMP instructions at $20D4, but you do find
them at $20B1, then you need to change a few addresses in the patch
code. Change the following lines as indicated:

 1170 PSDA .EQ $2092
 1190 .OR $20B1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 89 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:Articles:PrinterOnError.txt
==

Keeping Printer On After Error Message

One customer wanted this, and maybe you would too. He needed the
printer to stay enabled even if an editor or assembler error message
was generated. S-C ASSEMBLER II Version 4.0 shuts off any printer
after any error occurs, so he couldn't get his printer to stay on long
enough to get a listing.

Here is a patch that will leave a printer "hooked in".

 :$1756:F0 24 (address of patch area)
 :$24F0:A9 FF 85 D9 20 80 1F 4C 26 10

After making the patch, you can BSAVE using A$1000,L$14FB.

The patch is put at $24F0; if you have already put some other patch
there, be sure to put this one somewhere else! Be sure you TEST it
before you clobber or delete the original! Be sure you really WANT it
before you even bother to type it in!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 90 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:Articles:Smart.Disasms.txt
==

Intelligent Disassemblers

Not one, but two! In this issue of AAL you find two ads for
intelligent disassemblers. Dr. Robert F. Zant, of Decision Systems,
and Bob Kovacs, of RAK-WARE, have each written one. After all these
years, two of them pop up in the same week!

Dr. Zant's reads a binary file and writes a text file which can be
EXECed into either the S-C ASSEMBLER II Version 4.0 or the Apple
assembler from the DOS Tool Kit. He writes an intermediate text file
during pass one of the disassembly, and then reads it back in, formats
it for the desired assembler, and writes it back out. His
disassembler is a combination of machine language code and Applesoft
code; you have to have Applesoft in ROM and at least 32K RAM. He
includes a couple of handy utility programs on the diskette.

Bob Kovac's disassembler works from a binary program already in
memory. Both passes are performed in memory, and then the text file
is written. Since everything is done in memory, it is very fast. The
resulting text file is EXECed into the S-C ASSEMBLER II Version 4.0.

Both disassemblers create labels for all branch addresses inside the
block being disassembled. Bob Kovac's version also makes labels for
all external branch addresses, putting .EQ lines at the beginning to
define them. The RAK-WARE version also make symbols for all page-zero
references. They also are set up with .EQ lines at the beginning of
the text file.

Both disassemblers output a control-I at the beginning of each line
rather than a line number. This causes the assembler to generate its
own line number when the file is EXECed, and allows you to set your
own increment and starting line number just before typing the EXEC
command. Set the increment by using the INC command; and set the
starting line number by typing the number you want less the increment,
followed by a space and return.

I forgot to mention, Bob Kovac's disassembler works with eihter
Integer BASIC or Applesoft. He has driver programs written in both
languages on the diskette.

They both are excellent tools, which have long been needed. They both
cost the same, $25. What can I say? Buy them both! Do it before the
end of 1980, and get a tax deduction before Reagan and our new
Congress lower the incode tax rate!

Advertising in AAL

For the first time, there are some ads in your newsletter. I think
you will find them almost as useful as the non-ad material, because so

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 91 of 2550

Apple II Computer Info

many of you have asked me for compatible two-pass disassemblers to go
along with the S-C ASSEMBLER. If you have written some programs that
your want to sell, which you think other readers of the Apple Assembly
Line would be interested in, you can advertise here, too. The cost is
quite low ... $20 for a full page, $10 for 1/2 page.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 92 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:DOS3.3:B.COPY.LINES.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 93 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:DOS3.3:MkCopyLinesFile.txt
==

 ∑MAKE TEXT FILE1∑TO SET UP "COPY.LINES"=-D$»‰(4)\(∑D$"OPEN SETUP COPY
LINES"|2∑D$"WRITE SETUP COPY LINES"£<∑"$1007:00 08"∑F∑"BLOAD
B.COPY.LINES"∑P∑D$"CLOSE"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 94 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:DOS3.3:S.COPY.LINES.txt
==

 1000 *---------------------------------
 1010 * COPY L1,L2,L3
 1020 * L1 = FIRST LINE OF RANGE TO COPY
 1030 * L2 = LAST LINE OF RANGE TO COPY
 1040 * L3 = LINE NUMBER BEFORE WHICH TO INSERT
 1050 * THE COPIED LINES
 1060 *---------------------------------
 1070 ZZ.BGN .EQ *
 1080 *---------------------------------
 1090 SS .EQ $00,01 START OF SOURCE BLOCK
 1100 SE .EQ $02,03 END OF SOURCE BLOCK
 1110 SL .EQ $04,05 LENGTH OF SOURCE BLOCK
 1120 NEWPP .EQ $06,07 NEW PROGRAM POINTER
 1130 A0L .EQ $3A
 1140 A0H .EQ $3B
 1150 A1L .EQ $3C
 1160 A1H .EQ $3D
 1170 A2L .EQ $3E
 1180 A2H .EQ $3F
 1190 A4L .EQ $42
 1200 A4H .EQ $43
 1210 LOMEM .EQ $4A,4B
 1220 PP .EQ $CA,CB
 1230 *---------------------------------
 1240 SYNX .EQ $105E
 1250 MFER .EQ $1128
 1260 SCND .EQ $112D
 1270 SERTXT .EQ $14F6
 1280 MON.MOVE .EQ $FE2C
 1290 *---------------------------------
 1300 JMP COPY
 1310 *---------------------------------
 1320 ERR1 JMP SYNX
 1330 ERR2 .EQ ERR1
 1340 ERR3 JMP MFER
 1350 ERR4 .EQ ERR1
 1360 *---------------------------------
 1370 COPY
 1380 JSR SCND GET THIRD PARAMETER
 1390 CPX #6 BE SURE WE GOT THREE
 1400 BCC ERR1 NOT ENOUGH PARAMETERS
 1410 LDX #A0L FIND BEGINNING OF SOURCE
 1420 JSR SERTXT
 1430 LDA $E4 SAVE POINTER
 1440 STA SS
 1450 LDA $E5
 1460 STA SS+1
 1470 LDX #A1L FIND END OF SOURCE BLOCK
 1480 JSR SERTXT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 95 of 2550

Apple II Computer Info

 1490 SEC SAVE POINTER AND COMPUTE LENGTH
 1500 LDA $E6
 1510 STA SE
 1520 SBC SS
 1530 STA SL SOURCE LENGTH
 1540 LDA $E7
 1550 STA SE+1
 1560 SBC SS+1
 1570 STA SL+1
 1580 BCC ERR2 RANGE BACKWARD
 1590 BNE .4
 1600 LDA SL
 1610 BEQ ERR2 NOTHING TO MOVE
 1620 *---------------------------------
 1630 .4 LDA PP COMPUTE NEW PP POINTER
 1640 SBC SL
 1650 STA NEWPP
 1660 LDA PP+1
 1670 SBC SL+1
 1680 STA NEWPP+1
 1690 *---------------------------------
 1700 LDA NEWPP SEE IF ROOM FOR THIS
 1710 CMP LOMEM
 1720 LDA NEWPP+1
 1730 SBC LOMEM+1
 1740 BCC ERR3 MEM FULL ERR
 1750 *---------------------------------
 1760 LDX #A2L FIND TARGET LOCATION
 1770 JSR SERTXT
 1780 LDA SS BE SURE NOT INSIDE SOURCE BLOCK
 1790 CMP $E4
 1800 LDA SS+1
 1810 SBC $E5
 1820 BCS .1 BELOW SOURCE BLOCK
 1830 LDA $E4
 1840 CMP SE
 1850 LDA $E5
 1860 SBC SE+1
 1870 BCC ERR4 INSIDE SOURCE BLOCK
 1880 * TARGET IS ABOVE SOURCE BLOCK, SO WE HAVE TO
 1890 * ADJUST SOURCE BLOCK POINTERS.
 1900 SEC
 1910 LDA SS
 1920 SBC SL
 1930 STA SS
 1940 LDA SS+1
 1950 SBC SL+1
 1960 STA SS+1
 1970 SEC
 1980 LDA SE
 1990 SBC SL
 2000 STA SE
 2010 LDA SE+1
 2020 SBC SL+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 96 of 2550

Apple II Computer Info

 2030 STA SE+1
 2040 *---------------------------------
 2050 .1 LDA PP SET UP MOVE TO MAKE HOLE
 2060 STA A1L
 2070 LDA PP+1
 2080 STA A1H
 2090 LDA NEWPP
 2100 STA PP
 2110 STA A4L
 2120 LDA NEWPP+1
 2130 STA PP+1
 2140 STA A4H
 2150 LDA $E5
 2160 STA A2H
 2170 LDA $E4
 2180 STA A2L
 2190 BNE .2
 2200 DEC A2H
 2210 .2 DEC A2L
 2220 LDY #0
 2230 JSR MON.MOVE
 2240 *---------------------------------
 2250 LDA SS MOVE IN SOURCE BLOCK
 2260 STA A1L
 2270 LDA SS+1
 2280 STA A1H
 2290 LDA SE+1
 2300 STA A2H
 2310 LDA SE
 2320 STA A2L
 2330 BNE .3
 2340 DEC A2H
 2350 .3 DEC A2L
 2360 JSR MON.MOVE
 2370 RTS
 2380 *---------------------------------
 2390 ZZ.END .EQ *-1
 2400 ZZ.SIZ .EQ ZZ.END-ZZ.BGN+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 97 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:DOS3.3:S.IB.Ptry.Lstr.txt
==

 1000 .TF B.PRETTY.LISTER
 1010 .LIST OFF
 1020 *---------------------------------
 1030 * INTEGER BASIC PRETTY-LIST
 1040 *---------------------------------
 1050 LINE.LENGTH .EQ $00
 1060 LINE.POSITION .EQ $01
 1070 MON.CH .EQ $24
 1080 PP .EQ $CA,CB
 1090 HIMEM .EQ $4C,4D
 1100 SRCP .EQ $E2,E3
 1110 TKNP .EQ $CE,CF
 1120 IB.FLAG .EQ $EA
 1130 IB.FILL .EQ $FA
 1140 *---------------------------------
 1150 DOS.REENTRY .EQ $3D0
 1160 GET.NEXT.BYTE .EQ $E02A
 1170 TOKEN.TABLE .EQ $ED00
 1180 MON.COUT .EQ $FDED
 1190 MON.CROUT .EQ $FD8E
 1200 *---------------------------------
 1210 TOKEN.EOL .EQ $01
 1220 TOKEN.COLON .EQ $03
 1230 TOKEN.REM .EQ $5D
 1240 TOKEN.QUOTE .EQ $28
 1250 *---------------------------------
 1260 PRETTY.LIST
 1270 LDA PP
 1280 STA SRCP
 1290 LDA PP+1
 1300 STA SRCP+1
 1310 .1 LDA SRCP SEE IF AT END
 1320 CMP HIMEM
 1330 LDA SRCP+1
 1340 SBC HIMEM+1
 1350 BCS .2 FINISHED
 1360 JSR PRINT.ONE.LINE
 1370 JMP .1
 1380 .2 JMP DOS.REENTRY
 1390 *---------------------------------
 1400 PRINT.ONE.LINE
 1410 LDA #0
 1420 STA LINE.POSITION
 1430 LDA #$A0 SET UP PRINT.DECIMAL FOR RJBF
 1440 STA IB.FILL
 1450 JSR GET.NEXT.BYTE SKIP OVER BYTE COUNT
 1460 TYA (A)=0
 1470 .1 STA IB.FLAG
 1480 JSR GET.NEXT.BYTE GET LINE NUMBER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 98 of 2550

Apple II Computer Info

 1490 TAX LOW BYTE
 1500 JSR GET.NEXT.BYTE HIGH BYTE
 1510 JSR PRINT.DECIMAL PRINT THE LINE NUMBER RJBF
 1520 .2 LDA #-7 WITHIN 7 OF END OF LINE
 1530 JSR CHECK.EOL.GET.NEXT.BYTE
 1540 STY IB.FILL CLEAR RJBF
 1550 TAX TEST BYTE AND SAVE IN X-REG
 1560 BPL .6 TOKEN
 1570 ASL
 1580 BPL .1 CONSTANT, GO PRINT IT
 1590 LDA IB.FLAG
 1600 BNE .3 DO NOT NEED A BLANK
 1610 LDA #$A0
 1620 STA IB.FLAG
 1630 JSR CHAR.OUT
 1640 .3 TXA RETRIEVE BYTE
 1650 .4 JSR CHAR.OUT AND PRINT IT
 1660 .5 LDA #-3 WITHIN 3 OF EOL
 1670 JSR CHECK.EOL.GET.NEXT.BYTE
 1680 TAX TEST BYTE, SAVE IN X-REG
 1690 BMI .4 NORMAL CHAR
 1700 STA IB.FLAG
 1710 *---------------------------------
 1720 .6 CMP #TOKEN.EOL
 1730 BNE .7 NOT END OF LINE
 1740 JMP MON.CROUT END OF LINE
 1750 .7 CMP #TOKEN.COLON
 1760 BNE .8
 1770 JSR CR.7.BLANKS
 1780 LDA #TOKEN.COLON
 1790 .8 PHA SAVE TOKEN
 1800 JSR FIND.TOKEN
 1810 BIT IB.FLAG
 1820 BMI .9
 1830 JSR $EFF8
 1840 .9 LDA (TKNP),Y GET CHAR OF TOKEN NAME
 1850 BPL .10
 1860 TAX SAVE CHAR IN X
 1870 AND #$3F
 1880 STA IB.FLAG
 1890 CLC
 1900 ADC #$A0
 1910 JSR CHAR.OUT
 1920 DEY
 1930 CPX #$C0
 1940 BCC .9
 1950 .10 JSR $E00C
 1960 PLA GET ORIGINAL UNMOLESTED TOKEN
 1970 CMP #TOKEN.REM
 1980 BEQ .5 REM
 1990 CMP #TOKEN.QUOTE
 2000 BEQ .5 QUOTATION
 2010 BNE .2 NEITHER
 2020 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 99 of 2550

Apple II Computer Info

 2030 FIND.TOKEN
 2040 LDX #TOKEN.TABLE
 2050 STX TKNP
 2060 LDX /TOKEN.TABLE
 2070 CMP #$51 SEE IF NEED OTHER HALF TOKEN.TABLE
 2080 BCC .1 NO
 2090 DEX YES
 2100 SBC #$50
 2110 .1 STX TKNP+1
 2120 .2 PHA SAVE MODIFIED TOKEN ON STACK
 2130 LDA (TKNP),Y Y GOES 0,FF,FE,...
 2140 .3 TAX
 2150 DEY
 2160 LDA (TKNP),Y LOOK FOR NEGATIVE BYTE
 2170 BPL .3
 2180 CPX #$C0 IF BYTE BEFORE NEGATIVE BYTE IS
 2190 BCS .4 BTWN $C0 AND $FF, THEN
 2200 CPX #$00 KEEP LOOKING
 2210 BMI .3
 2220 .4 TAX
 2230 PLA
 2240 SBC #1 DECREMENT TOKEN
 2250 BNE .2 NOT THERE YET
 2260 RTS
 2270 *---------------------------------
 2280 CHECK.EOL.GET.NEXT.BYTE
 2290 CLC
 2300 ADC LINE.LENGTH
 2310 CMP LINE.POSITION
 2320 BCS .1
 2330 JSR CR.7.BLANKS
 2340 .1 JMP GET.NEXT.BYTE
 2350 *---------------------------------
 2360 CR.7.BLANKS
 2370 LDA #$8D
 2380 LDY #7
 2390 STY LINE.POSITION
 2400 .1 JSR CHAR.OUT
 2410 LDA #$A0
 2420 DEY
 2430 BNE .1
 2440 RTS
 2450 *---------------------------------
 2460 CHAR.OUT
 2470 INC LINE.POSITION
 2480 JMP MON.COUT
 2490 *---------------------------------
 2500 PRINT.DECIMAL
 2510 STA $F3
 2520 STX $F2
 2530 LDX #4
 2540 STA $C9 LEADING ZERO FLAG
 2550 .7 LDA #$B0
 2560 STA $F9

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 100 of 2550

Apple II Computer Info

 2570 .1 LDA $F2
 2580 CMP $E563,X
 2590 LDA $F3
 2600 SBC $E568,X
 2610 BCC .2
 2620 STA $F3
 2630 LDA $F2
 2640 SBC $E563,X
 2650 STA $F2
 2660 INC $F9
 2670 BNE .1 ...ALWAYS
 2680 .2 LDA $F9
 2690 CPX #0 SEE IF LAST DIGIT
 2700 BEQ .4 YES
 2710 CMP #$B0 NO, SEE IF LEADING ZERO
 2720 BEQ .3 MAYBE
 2730 STA $C9 NO
 2740 .3 BIT $C9 STILL PLUS IF LEADING ZERO
 2750 BMI .4 NOT LEADING ZERO
 2760 LDA IB.FILL SEE IF BLANK FILL
 2770 BEQ .5 NO
 2780 .4 JSR CHAR.OUT PRINT CHAR
 2790 .5 DEX
 2800 BPL .7
 2810 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 101 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:DOS3.3:S.PATCH.DA.txt
==

 1000 *---------------------------------
 1010 * PATCH FOR .DA WITH COMMA LIST
 1020 *---------------------------------
 1030 *
 1040 * TO INSTALL THIS PATCH:
 1050 *
 1060 * 1. BRUN ASMDISK 4.0
 1070 * 2. BLOAD PATCH.DA.1
 1080 * 3. BLOAD PATCH.DA.2
 1090 * 4. BSAVE ASMDISK 4.1,A$1000,L$14FB
 1100 *
 1110 *---------------------------------
 1120 EXP.VALUE .EQ $DB
 1130 *---------------------------------
 1140 GNC .EQ $128B
 1150 EMIT .EQ $19FA
 1160 CMNT .EQ $188E
 1170 PSDA .EQ $20B5
 1180 *---------------------------------
 1190 .OR $20D4 REPLACES:
 1200 .TF PATCH.DA.1
 1210 JMP BOTH.BYTES (JMP $19B2)
 1220 JMP LOW.BYTE (JMP $194D)
 1230 JMP HIGH.BYTE (JMP $19D7)
 1240 *---------------------------------
 1250 .OR $24B0 PATCH AREA
 1260 .TF PATCH.DA.2
 1270 BOTH.BYTES
 1280 LDA EXP.VALUE
 1290 JSR EMIT
 1300 HIGH.BYTE
 1310 LDA EXP.VALUE+1
 1320 ALL JSR EMIT
 1330 JSR GNC
 1340 CMP #', COMMA?
 1350 BEQ MORE
 1360 JMP CMNT FINISHED
 1370 MORE JMP PSDA
 1380 LOW.BYTE
 1390 LDA EXP.VALUE
 1400 CLC
 1410 BCC ALL ...ALWAYS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 102 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8012:DOS3.3:Setup.CopyLines.txt
==

$1007:00 08
BLOAD B.COPY.LINES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 103 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:Articles:Computed.Gosub.txt
==

A Computed GOSUB for Applesoft

How many times I have wished for one! I guess I am spoiled from
FORTRAN and Apple Integer BASIC. The Computed GOTO is also left out,
but I saw that one written up in a recent newsletter. The author said
he didn't know how to do the Computed GOSUB, so here it is!

<<<<listing>>>>

Lines 1160 and 1170 check the token after the "&" to see if it is
"GOSUB"; if not, you will get a big SYNTAX ERROR. Lines 1180 and 1190
check the stack to see if there is room for another GOSUB entry; if
not, you get an OUT OF MEMORY error. Lines 1200-1290 push the data on
the stack that will be needed to RETURN. Lines 1300 and 1310 compute
the value of whatever expression follows the &GOSUB, and turn it into
an integer that looks just like a line number. Finally, lines 1320
and 1330 simulate a normal GOTO. That's all there is to it!

Here is a sample Appplesoft program using the new &GOSUB statement:

 10 POKE 1013,76: POKE 1014,0: POKE 1015,3
 20 INPUT X
 30 &GOSUB x*100
 40 GOTO 20

100 PRINT 100:RETURN
200 PRINT 200:RETURN
300 PRINT 300:RETURN
400 PRINT 400:RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 104 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:Articles:Copy.for.SCAsm.txt
==

Putting COPY in S-C Assembler II

I just looked at the first AAL Disk of the Quarter. The first item of
business was to incorporate the changes into my copy of the assembler.

The lower-case mod and the .DA mod went just as described in AAL.
However, when it came to the COPY stuff, I found that I wasn't really
happy to load it at $800 and hope it didn't get clobbered. Here's
what I did....

I changed the origin of the COPY program to $25A0 (since I already
have a special printer driver at $2500.259F). The COPY program runs
from $25A0 through $266F, so I changed the symbol table origin by
typing "$1011:27". This sets the bottom of the symbol table at $2700.
I put a ".TF B.SC COPY MODS" line in, to write the object on a binary
file.

After assembling, I BLOADed the file B.SC COPY MODS into memory. Then
I could have plugged in the USR vector like Bob suggested, but I
wanted a real "COPY" command. Therefore I searched around in the
assembler until I found the command table. I put the letters "COP"
and the program address over the top of the tape SAVE command entry,
by typing "1246:43 4F 50 9F 25". I felt the loss of the tape SAVE
command was worth it, to get a real COPY command.

Now the command "COPY 1000,1050,2500" will copy lines 1000 through
1150 into the pplace right before line 2500. The USR command is still
intact and I'm ready for some more changes!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 105 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:Articles:Edit.Cmd.SCASM.txt
==

EDIT Command for S-C Assembler II................Mike Laumer

At last! Owners of the S-C Assembler II Version 4.0 can now have the
power of an EDIT command similar in function to the popular "Program
Line Editor" (PLE) by Neil Knozen. (PLE only works with INteger BASIC
and Applesoft, although some wizards have figured out how to interface
it with the S-C Assembler.) The program presented here will patch
itself into Version 4.0 to turn the "USR" command into an EDIT
command.

Several weeks ago Bob Sander-Cederlof contacted me about some contract
programming, to help out on various projects he had in mind. So I
suggested lunch, and we met to discuss some of his projects. I was
amazed at the list (as long as my arm!) of the the ideas for just one
of his products, the S-C Assembler II. (If you like version 3.2, as I
did; if you are thrilled with version 4.0, as I am; then version 5.0
will) So I picked out a couple that would be fairly
straightforward and would let me pick up the internal structure of the
assembler gradually.

After signing a non-disclosure agreement, I obtained the source files
and made a listing of the assembler. Lucky for me I have a brand new
Epson MX-80 printer! I think it is the greatest!

Thursday, I made the listing. Friday I looked at the listing. Friday
night I began writing code for the EDIT command. Saturday from 9AM
till 1AM I wrote more code, read it through, and rewrote it. Sunday
morning I typed it into my Apple and eliminated the assembly errors
(typos). And by 11AM, with the exception of two trivial bugs, I had
it working! I nearly fell out of my chair! A 377-line program worked
on the first run!

After you type in the program, assemble it, and BRUN it, the USR
command will work as an edit command. If you type the command USR
with no line number, it will do nothing. If you type USR and one line
number, it will list the line on the bottom of the screen and set yo
up to edit it. If you type USR and two line numbers, separated by a
comma, all the lines in the range will be set up to edit, one at a
time.

How to Use EDIT: Twelve editing functions are available, and you may
see fit to add some more. Each function is selected by typing a
control character. If you type a normal character, it will write over
the top of the characters already in the line. The control characters
and their associated functions are:

control-B Move to beginning of line.
control-D Delete character beneath cursor.
control-E Move to end of line.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 106 of 2550

Apple II Computer Info

control-F Find a character; the character searched for
 is typed after the control-F; repeatedly
 typing the same character will keep looking
 successive occurrences.
control-H Backspace (left arrow).
control-I Insert characters before current cursor
 position.
control-M (RETURN) Stop editing the line,
 and submit it to the line input routine
 in the assembler.
control-O Same as control-I, except next character
 may be any control character.
control-Q same as control-M, but line beyond cursor
 is truncated.
control-T Skip to next tab stop.
control-U (Right Arrow) Move cursor forward.
control-X Kill edit, does not submit line.

How EDIT Works: When you BRUN the file B.EDIT (after assembly has
written the object code there!), the code in lines 1360-1530 is
executed. This patches the USR command vector to jump to EDIT (line
1720), and makes some patches inside the assembler. The patches only
work for version 4.0! Their purpose is to make the code which
processes a source line into a subroutine.

Lines 1540-1620 are part of the patch code for the source line
processing subroutine.

Lines 1720-2040 determine the number of line numbers typed, and search
for them in the source program. Then E.LIST is called for each line
to be edited.

Lines 2050-2360 list the source line on the screen and also stuff it
into the line input buffer at $0200. All changes will be made in the
buffer, not in the source program.

Lines 2370-2530 read a key from the keyboard and search the command
table. If the key is found in the table, then DOIT is called to
execute the command. If the key is not found, I assume it is a type-
over character. The command table search is actually performed by a
rather neat subroutine inside the assembler, called SEARCH.

Lines 2540-2690 process a type-over character, in which the key just
typed replaces the character under the cursor. Then the modified line
in the buffer is re-displayed on the screen.

Lines 2700-2750 position the cursor at the beginning of line 19 (on
the screen), where the source line will be listed.

Lines 2760-2900 display the line from the buffer. Display always
starts at line 19 on the screen. Control characters are shown in
inverse video.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 107 of 2550

Apple II Computer Info

Lines 2910-4090 process the various commands. Each processor is
written as a subroutine. The RTS returns to line 2520; at this point
the Carry Status is used to flag whether or not to re-display the
source line from the buffer.

Lines 4100-4260 read a character from the keyboard by calling on the
monitor RDKEY subroutine. The internal line buffer index is also
converted to cursor line and column position on the screen.

Lines 4270 through the end are the command table. The first line
defines the entry size and key size for the SEARCH subroutine; 3
bytes per entry, with a one byte key at the fron of each entry. The
remaining two bytes of each entry are the starting-address-minus-one
of the command processor rotuine. A final $00 byte terminates the
table.

WARNING! I have used the patch for Bob's assembler which allows a
list of .DA items! Lines 4270-4420 require this patch to be
installed. You can read about the patch in Apple Assembly Line for
December, 1980, on page 9. If you have not installed the patch, then
lines 4270-4420 need to be re-written with each .DA item on a separate
source line.

Well, you better get typing on that Apple, I know this is one routine
you can't wait to key in. I know I couldn't wait to create it! Or,
if you CAN wait, you can get the source on the next Disk of the
Quarter from Bob.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 108 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:Articles:Front.Page.txt
==

Volume 1 -- Issue 4 January, 1981

There are, as of Christmas Eve, 179 of you subscribing to the Apple
Assembly Line! Last month I wondered if circulation could double,
from 85, but we did even better! Also, several stores have decided to
carry the AAL for sale like a magazine. We are growing a lot faster
than I predicted, and I like it!

In This Issue...

How to Move Memory 2
Computed GOSUB for Applesoft 8
Putting COPY into S-C Assembler II 9
EDIT Command for S-C Assembler II 10

First "Disk of the Quarter"

Every three months I collect onto one disk all the source programs
published in AAL for the quarter. QD#1 (for October, November, and
December of 1980) is now available, for $15. You can save a lot of
typing.

If you would like to help promote the newsletter, here is a nice
offer: you sign up four new subscribers, and send me their mailing
addresses and money, and I will send you a "Disk of the Quarter" FREE
and POSTPAID!

Those Compatible Disassemblers

Bob Zant and Bob Kovacs both report that their new two-pass
disassemblers are selling well. Well enough to warrant advertising
again! Have you bought a copy yet?

TAB Locations in S-C Assembler II Version 4.0

For some reason, people are always asking me where the tab stops are
kept, because they want to change them. The old version 3.2 manual
gives the patch locations for the three tab stops, but they are
different in version 4.0. You will find them at:

 column location
 1st tab 14 $140D:0B
 2nd tab 18 $1411:0F
 3rd tab 27 $1402:18

Note that the value stored in memory is three less than the column
number.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 109 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:Articles:How.Move.Mem.txt
==

How to Move Memory

One of the most common problems in assembly language programming is
the problem of moving data from one place in memory to another.

Moving Little Blocks: If you only need to move one or two bytes of
data from one place to another in memory, it is easy. You might do it
like this:

 LDA SOURCE
 STA DEST
 LDA SOURCE+1
 STA DEST+1

Or, if the A-register was busy but X and Y were not, you might write:

 LDX SOURCE
 LDY SOURCE+1
 STX DEST
 STY DEST+1

If you know ahead of time exactly how many bytes you want to move, and
exactly where you want it copied from and to, you can write a very
fast loop. For example, suppose I know that I want to copy 20 bytes
from BUFFER1 into BUFFER2, and that there is no overlap. Then I can
write:

 LDX #19
LOOP LDA BUFFER1,X
 STA BUFFER2,X
 DEX
 BPL LOOP
 ...

The loop moves the last byte first, then the next-to-last, and so on
until the first byte in BUFFER1 is moved into BUFFER2. If it is
important to move them in the opposite direction (first byte first,
last byte last), you can change the loop this way:

 LDX #0
LOOP LDA BUFFER1,X
 STA BUFFER2,X
 INX
 CPX #20
 BCC LOOP
 ...

Terminating the loop can be done in various ways. The two examples
above do it with a count in the X-register. Another way is to use a

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 110 of 2550

Apple II Computer Info

data sentinel. For example, the last byte to be moved, and only the
last byte, might contain the value $00, or $FF, or anything you
choose. Then after moving a byte, you can check to see if the
sentinel byte was just moved. If it was, you are finished moving.
Here is an example using a sentinel of $00:

 LDX #-1
LOOP INX
 LDA BUFFER1,X
 STA BUFFER2,X
 BNE LOOP
 ...

Pascal Language promoters often recommend the sentinel technique;
however, in Assembly Language, you msut be very careful if you plan to
use it. The sentinel you choose today may become a valid data value
tomorrow!

Moving Bigger Blocks: All of the examples so far will only work if
the total number of bytes to be moved is less than 256. What if you
need to move a larger block?

When I need to move a large block of data from one place to another, I
frequently use the MOVE subroutine in the Apple Monitor ROM. It
starts at $FE2C, and looks like this:

FE2C- B1 3C MOVE LDA (A1L),Y MOVE (A1...A2)
FE2E- 91 42 STA (A4L),Y TO (A4)
FE30- 20 B4 FC JSR NSTA4
FE33- 90 F7 BCC MOVE
FE35- 60 RTS

The subroutine NXTA4 (at $FCB4) increments A4L,A4H ($42,43), which is
the destination address. Then it compares A1L,A1H ($3C,3D) to A2L,A2H
($3E,3F); the result of the comparison is left in the Carry Status
bit: Carry is set if A1 is greater than or equal to A2. Finally, the
subroutine increments A2L,A2H ($3E,3F).

To use the MOVE subroutine, you have to set the starting address of
the block to be copied into $3C,3D; the last address of the block to
be copied into $3E,3F; and the starting address of the destination
into $42,43. You also need to be sure that the Y-register contains
zero before you start. Here is an example:

 LDY #0 CLEAR Y-REGISTER
 LDA #BUFFER1 START ADDRESS OF SOURCE
 STA $3C
 LDA /BUFFER1
 STA $3D
 LDA #BUFFER1.END END ADDRESS OF SOURCE
 STA $3E
 LDA /BUFFER1.END
 STA $3F
 LDA #BUFFER2 START ADDRESS OF DESTINATION

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 111 of 2550

Apple II Computer Info

 STA $42
 LDA /BUFFER2
 STA $43
 JSR $FE2C
 ...

Because it is there, the Monitor MOVE subroutine is handy. But it is
not a general subroutine. If the source and destination blocks
overlap, you may get funny results. For example, if I try to move the
data between $1000 and $10FF up one byte in memory, so that it runs
from $1001 to $1100, the MOVE subroutine will not work. Instead, it
will copy the contents of $1000 into every location from $1001 through
$1100.

The MOVE subroutine is also not very fast. Anyway, it is not as fast
as it could be. Steve Wozniak evidently wrote with size in mind (to
make it fit in ROM) rather than speed.

The Applesoft ROMs contain several subroutines for moving data around
in memory. Here is one used during execution to move the array table
up to make room for a new simple variable:

<<<<listing of BLTU, $D393...D3D5>>>>

Since this code moves from the end of the block backwards, it will
safely move a block up in memory. However, it would not be save to
use with an overlapping range down in memory; it will do the same
thing as the Monitor MOVE subroutine.

The Applesoft subroutine is faster than the Monitor subroutine,
because the least significant half of the pointer is kept in the Y-
register instead of in page-zero of memory. The INY instruction takes
only two cycles, whereas an INC instruction takes five. The three
cycles saved in moving each byte add up to nearly 25 milliseconds in
moving 8K bytes. The extra overhead of setting up the pointers is
more than paid for.

Additional time is saved in the termination test. Instead of testing
after moving every byte with a LDA, CMP, LDA, SBC sequence, the number
of full 256-byte blocks to be moved is put in the X-register; only a
DEX instruction once out of every 256 bytes is needed. This saves
over 100 millisecondes in moving an 8K block. By putting the
incrementing and testing code in line, rather than in a subroutine
like NXTA4, we save the JSR and RTS time. This amounts to another 100
milliseconds in moving an 8K block.

A General Move Subroutine: Can we write a subroutine which will move
a block of data from one place to anothere regardless of overlap and
direction? Of course! All we have to do is test at the beginning for
direction, and choose which method to use accordingly.

Here is a fast subroutine which will move any block of memory anywhere
you want. You call it by putting the starting address of the source
block in A1L,A1H; the end address of the source in A2L,A2H; and the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 112 of 2550

Apple II Computer Info

start address of the destination in A4L,A4H. (This is the same way
you set up the MOnitor MOVE subroutine.) I wrote it to be used with
the control-Y monitor command.

<<<<listing of general move subroutine>>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 113 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:DOS3.3:S.AmperGosub.txt
==

 1000 *---------------------------------
 1010 * &GOSUB <EXPRESSION>
 1020 *---------------------------------
 1030 TKN.GOSUB .EQ $B0
 1040 *---------------------------------
 1050 AS.SYNCHR .EQ $DEC0
 1060 AS.MEMCHK .EQ $D3D6
 1070 AS.TXTPTR .EQ $B8,B9
 1080 AS.LINNUM .EQ $50,51
 1090 AS.FRMNUM .EQ $DD67
 1100 AS.GOTO1 .EQ $D941
 1110 AS.NEWSTT .EQ $D7D2
 1120 AS.GETADR .EQ $E752
 1130 *---------------------------------
 1140 .OR $300
 1150 VARIABLE.GOSUB
 1160 LDA #TKN.GOSUB CHECK IF &GOSUB
 1170 JSR AS.SYNCHR
 1180 LDA #3 CHECK IF ROOM ON STACK
 1190 JSR AS.MEMCHK
 1200 LDA AS.TXTPTR+1
 1210 PHA STACK TXTPTR
 1220 LDA AS.TXTPTR
 1230 PHA
 1240 LDA AS.LINNUM+1
 1250 PHA STACK CURRENT LINE NO.
 1260 LDA AS.LINNUM
 1270 PHA
 1280 LDA #TKN.GOSUB MARK STACK
 1290 PHA
 1300 JSR AS.FRMNUM EVALUATE FORMULA
 1310 JSR AS.GETADR CONVERT TO INTEGER
 1320 JSR AS.GOTO1 USE GOTO CODE
 1330 JMP AS.NEWSTT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 114 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:DOS3.3:S.ASoft.BLTU.txt
==

 1000 *---------------------------------
 1010 * BLTU -- FROM THE APPLESOFT ROM
 1020 * $D393 THROUGH $D3D5
 1030 *---------------------------------
 1040 * ON ENTRY:
 1050 * Y,A AND HIGHDS CONTAIN DESTINATION END + 1
 1060 * LOWTR CONTAINS LOWEST ADDRESS OF SOURCE
 1070 * HIGHTR CONTAINS HIGHEST SOURCE ADDRESS + 1
 1080 *---------------------------------
 1090 * PAGE-ZERO VARIABLE NAMES FROM "THE APPLE ORCHARD"
 1100 * VOL. 1, NO. 1, PAGES 12-18.
 1110 STREND .EQ $6D,6E TOP OF ARRAY STORAGE
 1120 HIGHDS .EQ $94,95 BLTU'S DESTINATION POINTER
 1130 HIGHTR .EQ $96,97 BLTU'S SOURCE END POINTER
 1140 LOWTR .EQ $9B,9C BLTU'S SOURCE START POINTER
 1150 *---------------------------------
 1160 REASON .EQ $D3E3 CHECK IF ENOUGH MEMORY
 1170 *---------------------------------
 1180 BLTU JSR REASON BE SURE (Y,A) < FRETOP
 1190 STA STREND NEW TOP OF ARRAY STORAGE
 1200 STY STREND+1
 1210 SEC COMPUTE # OF BYTES TO BE MOVED
 1220 LDA HIGHTR
 1230 SBC LOWTR
 1240 STA $5E SAVE PARTIAL PAGE AMOUNT
 1250 TAY ALSO IN Y
 1260 LDA HIGHTR+1
 1270 SBC LOWTR+1
 1280 TAX NUMBER OF WHOLE PAGES IN X
 1290 INX
 1300 TYA # BYTES IN PARTIAL PAGE
 1310 BEQ .4 NO PARTIAL PAGE
 1320 LDA HIGHTR BACK UP HIGHTR BY PARTIAL PAGE #
 1330 SEC
 1340 SBC $5E
 1350 STA HIGHTR
 1360 BCS .1
 1370 DEC HIGHTR+1
 1380 SEC
 1390 .1 LDA HIGHDS BACK UP HIGHDS BY PARTIAL PAGE #
 1400 SBC $5E
 1410 STA HIGHDS
 1420 BCS .3
 1430 DEC HIGHDS+1
 1440 BCC .3 ...ALWAYS
 1450 .2 LDA (HIGHTR),Y
 1460 STA (HIGHDS),Y
 1470 .3 DEY
 1480 BNE .2 LOOP TO END OF THIS 256 BYTES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 115 of 2550

Apple II Computer Info

 1490 LDA (HIGHTR),Y MOVE ONE MORE BYTE
 1500 STA (HIGHDS),Y
 1510 .4 DEC HIGHTR+1 DOWN TO NEXT BLOCK OF 256
 1520 DEC HIGHDS+1
 1530 DEX PAGE COUNT
 1540 BNE .3
 1550 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 116 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:DOS3.3:S.EDIT.COMMAND.txt
==

 1000 *---------------------------------
 1010 * EDIT COMMAND FOR S-C ASSEMBLER II VERSION 4.0
 1020 *
 1030 * WRITTEN BY MIKE LAUMER
 1040 * DECEMBER 6, 1980
 1050 *---------------------------------
 1060 .OR $0800
 1070 .TF B.EDIT2
 1080 *---------------------------------
 1090 * SYSTEM EQUATES
 1100 *---------------------------------
 1110 MON.COUT .EQ $FDED
 1120 MON.BELL .EQ $FF3A
 1130 MON.RDKEY .EQ $FD0C
 1140 MON.CLREOP .EQ $FC42
 1150 MON.VTAB .EQ $FC22
 1160 CH .EQ $24
 1170 CV .EQ $25
 1180 DOS.REENTRY .EQ $03D0
 1190 *---------------------------------
 1200 * ASSEMBLER EQUATES
 1210 *---------------------------------
 1220 GNL .EQ $1026
 1230 NML .EQ $1063
 1240 PLNO .EQ $1779
 1250 GNB .EQ $12C5
 1260 DOIT .EQ $1874
 1270 SEARCH .EQ $164B
 1280 SERTXT .EQ $14F6
 1290 SERNXT .EQ $14FE
 1300 NTKN .EQ $12AF
 1310 A0L .EQ $3A,3B
 1320 A1L .EQ $3C,3D
 1330 SRCP .EQ $DD,DE
 1340 WBUF .EQ $0200
 1350 CURRENT.LINE.NUMBER .EQ $D3,D4
 1360 *---------------------------------
 1370 * ENTRY POINT FOR BRUN. ACTIVATES
 1380 * THE USR ASSEMBLER COMMAND.
 1390 *---------------------------------
 1400 ENTRY LDA #EDIT
 1410 STA $1007 PATCH ASM USR COMMAND
 1420 LDA /EDIT
 1430 STA $1008
 1440 LDA #$60 PATCH NML TO MAKE IT
 1450 STA $1125 A SUBROUTINE
 1460 LDA #$4C
 1470 STA NML
 1480 STA $1078

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 117 of 2550

Apple II Computer Info

 1490 LDA #NEW.NML
 1500 STA NML+1
 1510 LDA /NEW.NML
 1520 STA NML+2
 1530 JMP DOS.REENTRY
 1540 *---------------------------------
 1550 * PATCH ROUTINES FOR ASSEMBLER
 1560 *---------------------------------
 1570 NEW.NML JSR MY.NML
 1580 JMP GNL
 1590 MY.NML LDY #0
 1600 JSR $128D
 1610 JSR $114A
 1620 JMP $1066
 1630 *---------------------------------
 1640 * LOCAL VARIABLES FOR EDIT COMMAND
 1650 *---------------------------------
 1660 NEXT .DA 0
 1670 END .DA 0
 1680 CHAR .DA #0
 1690 EDPTR .DA #0
 1700 FKEY .DA #0
 1710 *---------------------------------
 1720 EDIT DEX
 1730 DEX
 1740 BMI .2 NO ARGUMENTS
 1750 BEQ .4 1 ARGUMENT
 1760 JSR .3 2 ARGUMENTS
 1770 LDX #A1L FIND END PTR
 1780 JSR SERNXT
 1790 LDA $E6
 1800 STA END
 1810 LDA $E7
 1820 STA END+1
 1830 .1 LDA NEXT+1
 1840 STA SRCP+1
 1850 PHA
 1860 LDA NEXT
 1870 STA SRCP
 1880 CMP END
 1890 PLA
 1900 SBC END+1 PAST END LINE?
 1910 BCS .2 YES, EXIT
 1920 JSR E.LIST NO, LIST AND EDIT
 1930 JMP .1 TRY FOR NEXT LINE
 1940 .3 LDX #A0L FIND START PTR
 1950 JSR SERTXT
 1960 LDA $E4
 1970 STA SRCP
 1980 STA NEXT SAVE NEXT LINE ADRS
 1990 LDA $E5
 2000 STA SRCP+1
 2010 STA NEXT+1
 2020 .2 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 118 of 2550

Apple II Computer Info

 2030 .4 JSR .3 SEARCH FOR LINE
 2040 BCC .2 NOT FOUND EXIT
 2050 E.LIST JSR E.POSN POSITION FOR EDIT
 2060 JSR MON.CLREOP PREPARE DISPLAY
 2070 JSR GNB GET LINE SIZE
 2080 CLC
 2090 ADC NEXT COMPUTE NEXT LINE ADRS
 2100 STA NEXT
 2110 TYA
 2120 ADC NEXT+1
 2130 STA NEXT+1
 2140 JSR GNB GET LINE NUMBER FOR DISPLAY
 2150 STA CURRENT.LINE.NUMBER
 2160 JSR GNB
 2170 STA CURRENT.LINE.NUMBER+1
 2180 SEC
 2190 ROR $F8 STUFF WBUF FLAG
 2200 JSR PLNO
 2210 LSR $F8 TURN OFF FLAG
 2220 LDA #$20 SPACE AFTER LINE #
 2230 LDX #0
 2240 .1 STX EDPTR
 2250 ORA #$80 FORCE VIDEO BIT
 2260 STA WBUF+4,X STORE INTO INPUT BUFFER
 2270 CMP #$A0 TEST FOR CONTROL CHAR
 2280 BCS .2 OK, IF NOT
 2290 AND #$7F OUTPUT INVERSE ALPHA
 2300 .2 JSR MON.COUT PRINT CHAR
 2310 JSR NTKN GET NEXT TOKEN
 2320 LDX EDPTR
 2330 INX
 2340 CMP #0 END TOKEN?
 2350 BNE .1 NO, PRINT IT
 2360 STA WBUF+4,X YES, PUT IT IN TOO
 2370 E.LINE LDX #0
 2380 E.0 STX EDPTR
 2390 E.1 JSR E.INPUT GET INPUT CHAR
 2400 E.2 LDA #EDTB
 2410 STA $2
 2420 LDA /EDTB
 2430 STA $3
 2440 LDA #CHAR
 2450 STA $12
 2460 LDA /CHAR
 2470 STA $13
 2480 JSR SEARCH SEARCH EDIT COMMAND TABLE
 2490 BNE .2 NOT IN TABLE
 2500 LDX EDPTR
 2510 JSR DOIT EXECUTE COMMAND ROUTINE
 2520 BCC E.0 NO DISPLAY ON RETURN
 2530 BCS .5 DISPLAY ON RETURN
 2540 .2 LDX EDPTR MUST BE TYPE OVER
 2550 LDA CHAR
 2560 CMP #$A0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 119 of 2550

Apple II Computer Info

 2570 BCS .4
 2580 .3 JSR MON.BELL ERR IF CONTROL KEY
 2590 JMP E.1
 2600 .4 LDA WBUF+5,X SEE IF END OF LINE
 2610 BNE .6 TYPE OVER IF NOT
 2620 STA WBUF+6,X SHIFT OVER END OF LINE
 2630 .6 LDA CHAR STUFF CHAR INTO BUFFER
 2640 STA WBUF+5,X
 2650 CPX #256-5-2 TEST BUFFER SIZE
 2660 BEQ .5 TYPE OVER LAST CHAR IN BUFFER
 2670 INX INSTEAD OF BUFFER END
 2680 .5 JSR E.DISP DISPLAY LINE
 2690 JMP E.0 GET NEXT EDIT COMMAND
 2700 *---------------------------------
 2710 E.POSN LDA #19 POSITION TO LINE 19,
 2720 STA CV
 2730 LDA #0 COLUMN 0
 2740 STA CH
 2750 JMP MON.VTAB
 2760 *---------------------------------
 2770 E.DISP STX EDPTR
 2780 JSR E.POSN POSITION DISPLAY
 2790 LDX #$FF
 2800 .1 INX
 2810 LDA WBUF,X GET BUFFER CHAR
 2820 BEQ .3 END OF BUFFER
 2830 CMP #$A0 CONTROL CHAR?
 2840 BCS .2 NO
 2850 AND #$7F PRINT INVERSE ALPHA
 2860 .2 JSR MON.COUT PRINT CHAR
 2870 JMP .1 NEXT CHAR
 2880 .3 JSR MON.CLREOP CLEAN ANY REMAINING SCREEN
 2890 LDX EDPTR
 2900 RTS
 2910 *---------------------------------
 2920 E.BEG LDX #0 SET CURSOR TO BEGINNING OF LINE
 2930 CLC
 2940 RTS
 2950 *---------------------------------
 2960 E.DEL LDA WBUF+5,X IS THIS THEN END OF
 2970 BEQ .2
 2980 .1 INX
 2990 LDA WBUF+5,X SHIFT TO LOWER MEMORY
 3000 STA WBUF+4,X TO DELETE CHAR
 3010 BNE .1
 3020 LDX EDPTR
 3030 .2 SEC RETURN WITH DISPLAY
 3040 RTS
 3050 *---------------------------------
 3060 E.END LDA WBUF+5,X END OF BUFFER?
 3070 BEQ .1 YES
 3080 INX NO
 3090 BNE E.END TRY END AGAIN
 3100 .1 CLC RETURN NO DISPLAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 120 of 2550

Apple II Computer Info

 3110 RTS
 3120 *---------------------------------
 3130 E.FIND LDA WBUF+5,X END OF BUFFER?
 3140 BNE .2 NO
 3150 .1 STA FKEY YES SO ERR
 3160 JSR MON.BELL RING BELL
 3170 CLC RETURN NO DISPLAY
 3180 RTS
 3190 .2 JSR E.INPUT GET 1 CHAR
 3200 STA FKEY SAVE KEY TO LOCATE
 3210 .3 INX
 3220 LDA WBUF+5,X TEST BUFFER
 3230 BEQ .1 END OF BUFFER
 3240 CMP FKEY NO, SEE IF KEY
 3250 BNE .3 NO, GO FORWARD
 3260 JSR E.INPUT TRY ANOTHER KEY
 3270 CMP FKEY SAME CHAR?
 3280 BEQ .3 YES, SEARCH AGAIN
 3290 PLA
 3300 PLA
 3310 STX EDPTR NO, EXIT POINTING HERE
 3320 JMP E.2
 3330 *---------------------------------
 3340 E.BKSP TXA AT BEGINNING?
 3350 BEQ .1 YES, STAY THERE
 3360 DEX BACKUP
 3370 .1 CLC RETURN NO DISPLAY
 3380 RTS
 3390 *---------------------------------
 3400 E.OVR JSR E.INPUT READ CHAR
 3410 JMP E.INS1 SKIP CONTROL CHECK
 3420 *---------------------------------
 3430 E.INS JSR E.INPUT READ CHAR
 3440 CMP #$A0 CONTROL CHAR POPS USER OUT
 3450 BCC E.INS2 OF INSERT
 3460 E.INS1 CPX #256-5-2 END OF BLOCK
 3470 BEQ .1 YES STAY THERE
 3480 INX
 3490 .1 STX EDPTR
 3500 .2 PHA CHAR TO INSERT
 3510 LDA WBUF+4,X SAVE CHAR TO MOVE
 3520 TAY
 3530 PLA GET CHAR TO INSERT
 3540 STA WBUF+4,X PUT OVER SAVED CHAR
 3550 INX
 3560 TYA INSERT SAVED CHAR
 3570 BNE .2 IF NOT BUFFER END
 3580 STA WBUF+4,X STUFF END CODE
 3590 STA WBUF+256-5-1 INSURE A END CODE
 3600 LDX EDPTR
 3610 JSR E.DISP DISPLAY LINE
 3620 JMP E.INS GET NEXT INSERT CHAR
 3630 E.INS2 PLA SEND CHAR TO
 3640 PLA COMMAND SEARCH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 121 of 2550

Apple II Computer Info

 3650 LDX EDPTR
 3660 *---------------------------------
 3670 JMP E.2
 3680 E.RETQ LDA #0 CLEAR REST OF LINE
 3690 STA WBUF+5,X
 3700 JSR E.DISP DISPLAY LINE
 3710 E.RET LDX #$FF SUBMIT LINE TO ASSEMBLER
 3720 .1 INX COMPUTE LINE SIZE
 3730 LDA WBUF,X
 3740 BNE .1
 3750 DEX
 3760 .2 STX $E1 SAVE SIZE
 3770 PLA
 3780 PLA
 3790 JMP MY.NML SUBMIT THE LINE
 3800 *---------------------------------
 3810 E.TAB CPX #20 < COL 20?
 3820 BCS .1 NO
 3830 LDA WBUF+5,X END OF BUFFER?
 3840 BEQ .1 YES
 3850 INX MOVE FORWARD
 3860 CPX #7 TAB MATCH?
 3870 BEQ .1
 3880 CPX #11 TAB MATCH?
 3890 BNE E.TAB
 3900 .1 CLC RETURN WITHOUT DISPLAY
 3910 RTS
 3920 *---------------------------------
 3930 E.RIT LDA WBUF+5,X END OF BUFFER
 3940 BNE .1 NO
 3950 STA WBUF+6,X
 3960 LDA #$A0 PUT A BLANK
 3970 STA WBUF+5,X TO EXTEND LINE
 3980 CPX #256-5-2
 3990 BEQ .2
 4000 .1 INX MOVE AHEAD
 4010 .2 CLC RETURN NO DISPLAY
 4020 RTS
 4030 *---------------------------------
 4040 E.ABORT LDA #$DC OUTPUT BACKSLASH
 4050 STA WBUF+5
 4060 LDA #0
 4070 STA WBUF+6
 4080 JSR E.DISP SHOW CANCEL
 4090 JMP GNL GET NEXT COMMAND
 4100 *---------------------------------
 4110 E.INPUT LDA #19
 4120 STA CV
 4130 TXA POSITION TO CURSOR
 4140 CLC
 4150 ADC #5
 4160 .1 CMP #40 THIS LINE?
 4170 BCC .2 YES
 4180 SEC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 122 of 2550

Apple II Computer Info

 4190 SBC #40
 4200 INC CV ON NEXT LINE
 4210 BNE .1
 4220 .2 STA CH
 4230 JSR MON.VTAB SET BASL
 4240 JSR MON.RDKEY INPUT A CHAR
 4250 STA CHAR
 4260 RTS
 4270 *---------------------------------
 4280 * COMMAND TABLE
 4290 *---------------------------------
 4300 EDTB .DA #3,#1 ITEM SIZE, KEY SIZE
 4310 .DA #$82,E.BEG-1 ^B
 4320 .DA #$84,E.DEL-1 ^D
 4330 .DA #$85,E.END-1 ^E
 4340 .DA #$86,E.FIND-1 ^F
 4350 .DA #$88,E.BKSP-1 ^H
 4360 .DA #$89,E.INS-1 ^I
 4370 .DA #$8D,E.RET-1 ^M
 4380 .DA #$8F,E.OVR-1 ^O
 4390 .DA #$91,E.RETQ-1 ^Q
 4400 .DA #$94,E.TAB-1 ^T
 4410 .DA #$95,E.RIT-1 ^U
 4420 .DA #$98,E.ABORT-1 ^X
 4430 .DA #0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 123 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:DOS3.3:S.GENERAL.MOVE.txt
==

 1000 *---------------------------------
 1010 * GENERAL MOVE SUBROUTINE
 1020 *---------------------------------
 1030 * BRUN THE PROGRAM TO SET UP AS CONTROL-Y
 1040 * MONITOR ROUTINE
 1050 *---------------------------------
 1060 * USE LIKE MONITOR MOVE SUBROUTINE:
 1070 * A1L,A1H -- SOURCE START ADDRESS
 1080 * A2L,A2H -- SOURCE END ADDRESS
 1090 * A4L,A4H -- DESTINATION START ADDRESS
 1100 *---------------------------------
 1110 BLOCK.SIZE .EQ $00,01
 1120 A1L .EQ $3C
 1130 A1H .EQ $3D
 1140 A2L .EQ $3E
 1150 A2H .EQ $3F
 1160 A4L .EQ $42
 1170 A4H .EQ $43
 1180 CONTROL.Y .EQ $3F8
 1190 *---------------------------------
 1200 CONTROL.Y.SETUP
 1210 LDA #$4C JMP OPCODE
 1220 STA CONTROL.Y
 1230 LDA #GENERAL.MOVE
 1240 STA CONTROL.Y+1
 1250 LDA /GENERAL.MOVE
 1260 STA CONTROL.Y+2
 1270 RTS
 1280 *---------------------------------
 1290 GENERAL.MOVE
 1300 PHA SAVE REGISTERS
 1310 TYA
 1320 PHA
 1330 TXA
 1340 PHA
 1350 INC A2L BUMP END ADDRESS ONCE
 1360 BNE .1
 1370 INC A2H
 1380 .1 SEC COMPUTE SIZE OF BLOCK
 1390 LDA A2L
 1400 SBC A1L
 1410 STA BLOCK.SIZE
 1420 LDA A2H
 1430 SBC A1H
 1440 STA BLOCK.SIZE+1
 1450 TAX
 1460 INX NUMBER OF BLOCKS TO MOVE
 1470 LDA A1L DETERMINE DIRECTION
 1480 CMP A4L

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 124 of 2550

Apple II Computer Info

 1490 LDA A1H
 1500 SBC A4H
 1510 BCC .2 A1 < A4
 1520 JSR MOVE.DOWN
 1530 JMP .3
 1540 .2 JSR MOVE.UP
 1550 .3 PLA RESTORE REGS
 1560 TAX
 1570 PLA
 1580 TAY
 1590 PLA
 1600 RTS
 1610 *---------------------------------
 1620 MOVE.DOWN
 1630 LDY #0
 1640 DEX ANY WHOLE BLOCKS LEFT?
 1650 BEQ .2 NO
 1660 .1 LDA (A1L),Y MOVE 256 BYTES
 1670 STA (A4L),Y
 1680 INY
 1690 BNE .1
 1700 INC A1H POINT AT NEXT BLOCK
 1710 INC A4H
 1720 DEX ANY MORE WHOLE BLOCKS?
 1730 BNE .1 YES
 1740 .2 LDX BLOCK.SIZE ANY EXTRA BYTES IN A SHORT BLOCK?
 1750 BEQ .4 NONE LEFT
 1760 .3 LDA (A1L),Y
 1770 STA (A4L),Y
 1780 INY
 1790 DEX
 1800 BNE .3
 1810 .4 RTS
 1820 *---------------------------------
 1830 MOVE.UP
 1840 CLC COMPUTE DESTINATION END + 1
 1850 LDA A4L
 1860 ADC BLOCK.SIZE
 1870 STA A4L
 1880 LDA A4H
 1890 ADC BLOCK.SIZE+1
 1900 STA A4H
 1910 LDY #0
 1920 BEQ .3 ...ALWAYS
 1930 *---MOVE A WHOLE BLOCK------------
 1940 .1 LDA (A2L),Y MOVE BYTES 255 THRU 1 IN BLOCK
 1950 STA (A4L),Y
 1960 .2 DEY
 1970 BNE .1
 1980 LDA (A2L),Y MOVE LOWEST BYTE IN BLOCK
 1990 STA (A4L),Y
 2000 .3 DEC A2H
 2010 DEC A4H
 2020 DEX ANY MORE BLOCKS?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 125 of 2550

Apple II Computer Info

 2030 BNE .2 YES
 2040 *---MOVE SHORT BLOCK IF ANY-------
 2050 LDX BLOCK.SIZE
 2060 BEQ .5 NONE LEFT
 2070 .4 DEY
 2080 LDA (A2L),Y
 2090 STA (A4L),Y
 2100 DEX
 2110 BNE .4
 2120 .5 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 126 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8101:DOS3.3:Test.AmperGosub.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 127 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:Articles:AppleNoiseSound.txt
==

Making Noise and Other Sounds

The Apple's built-in speaker is one of its most delightful features.
To be sure, it is very limited; but I have used it for everything from
sound effects in games to music in six parts (weird-sounding guitar
chords) and even speech. Too many ways to put all in one AAL article!
I will describe some of the sound effects I have used, and maybe you
can go on from there.

The speaker hardware is very simple. A flip-flop controls the current
through the speaker coil. Everytime you address $C030, the flip-flop
changes state. This in turn reverses the current through the speaker
coil. If the speaker cone was pulled in, it pops out; if it was out,
it pulls in. If we "toggle" the state at just the right rate, we can
make a square-wave sound. By changing the time between reversals
dynamically, we can make very complex sounds. We have no control over
the amplitude of the speaker motions, only the frequency.

Simple Tone: This program generates a tone burst of 128 cycles (or
256 half-cycles, or 256 pulses), with each half-cycle being 1288 Apple
clocks. Just to make it easy, let's call Apple's clock 1MHz. It is
really a little faster, but that will be close enough. So the tone
will be about 388 Hertz (cycles per second, if you are as old as me!).

How did I figure out those numbers? To get the time for a half-cycle
(which I am going to start calling a pulse), I added up the Apple 6502
cycles for each instruction in the loop. LDA SPEAKER takes 4 cycles.
DEX is 2 cycles, and BNE is 3 cycles when it branches. The DEX-BNE
pair will be executed 256 times for each pulse, but the last time BNE
does not branch; BNE only takes 2 cycles when it does not branch. The
DEY-BNE pair will branch during each pulse, so we use 5 cycles there.
So the total is 4+256*5-1+5=1288 cycles. I got the frequency by the
formula f=1/T; T is the time for a whole cycle, or 2576 microseconds.

Apple "Bell" Subroutine: Inside your monitor ROM there is a
subroutine at $FBE2 which uses the speaker to make a bell-like sound.
Here is a copy of that code. Notice that the pulse width is
controlled by calling another monitor subroutine, WAIT.

Machine-Gun Noise: What if we use a random pulse width? Then we get
something called noise, instead of a tone. We can create a burst of
pulses of random-sounding width by using values from some arbitrary
place in the Apple's memory as loop counts. The program uses the 256
values starting at $BA00 (which is inside DOS). If you make just one
burst like that, it doesn't sound like much. But if you make ten in a
row, you get a pattern of repetitious random noise bursts that in this
case sounds like machine-gun fire. Doesn't it? Well, close
enough....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 128 of 2550

Apple II Computer Info

Laser "SWOOP" Sound: We can change the pulse width by making it go
from wide to narrow in steps of 5 microseconds. It sounds like a low
tone that gradually slides higher and higher until it is beyond the
range of the human ear (or the Apple speaker). I used this program in
a "space war" game to go with the laser fire. Even though the sound
was entirely generated before the laser even appeared on the screen,
it looks and sounds like the light beam and sound are simultaneous.

I have indicated in line 1110 that you should try experimenting with
some other values for the maximum pulse width count. I have included
a separate entry point at SWOOP2 to make ten swoops in a row. Try the
various values for the maximum width and run each one from SWOOP2.
You might also experiment with running the pulse width in the opposite
direction (from narrow to wide) by changing line 1200 to INC
PULSE.WIDTH.

Another Laser Blast: This one sounds very much the same as the swoop
of the previous program, but it uses less memory. You should try
experimenting with the pulse widths of the first and last pulses in
lines 1060 and 1130. You could also try changing the direction by
substituting a DEX in line 1120.

Inch-Worm Sounds: I stumbled onto this one by accident, while looking
for some sound effects for a lo-res graphics demo. The demo shows
what is supposed to be an inch-worm, inching itself across the screen.
By plugging various values (as indicated in lines 1100 and 1130), I
got some sounds that synchronized beautifully with the animation.
Complete with an exhausted sigh at the end!

Touch-Tones Simulator: I used this one with a telephone demo program.
The screen shows a touch tone pad. As you press digits on the
keyboard, the corresponding button on the screen lights up (displays
in inverse mode). Then the demo program CALLs this machine language
code to produce the twin-tone sound that your telephone makes. It
isn't perfect, you can't fool the Bell System. But it makes a good
demo!

I will describe the program from the top down. The four variables in
page zero are kept in a "safe" area, inside Applesoft's floating point
accumulator. Applesoft doesn't use these locations while executing a
CALLed machine language routine.

The Applesoft demo program stores the button number (0-9) in location
$E7. This could be done with "POKE 231,DGT", but I had more fun using
"SCALE=DGT". SCALE= is a hi-res graphics command, but all it really
does is store the value as a one-byte integer in $E7. Since we aren't
using hi-res graphics, the location is perfectly safe to use.

CALL 768 gets us to line 1150, TWO.TONES. This is the main routine.
It uses the button number to select the two tone numbers from
LOW.TONES and HIGH.TONES. ONE.TONE is called to play first the low
tone, then the high tone, back and forth, for ten times each. This is
my attempt to fool the ear, to make it sound like both are being
played at once.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 129 of 2550

Apple II Computer Info

ONE.TONE wiggles the speaker for LENGTH half-cycles. Each half-cycle
is controlled by either the UPTIME or DOWNTIME counts. These three
parameters are selected from three tables, according to the tone
number selected by TWO.TONES. Lines 1270-1340 pick up the values from
the three tables and load the page zero variables. Lines 1360-1500 do
the actual speaker motions and time everything. The purpose of having
two routines, one for uptime and one for downtime, is to be able to
more closely approximate the frequency. For example, if the loop
count we ought to use is 104.5, we could use an uptime of 104 and a
down time of 105; this makes the total time for the full cycle
correct. The redundant BEQ in line 1420 is there to make the loop
times for UPTIME and DOWNTIME exactly the same.

Since you do not have my Applesoft program, which drives this, I wrote
a simulated drive to just "push" the buttons 0-9. Lines 1650-1790 do
this. I separated each button push by a call to the monitor WAIT
subroutine, to make them easier to distinguish.

Morse Code Output: I have always thought that computers really only
need one output line and one input line for communicating with humans.
I could talk to my Apple with a code key, and it could beep back at
me. One of the first programs I attempted in 6502 language was a
routine to echo characters in Morse code. I looked it up about two
hours ago, and shuddered at my sloppy, inefficient, hard to follow
code. So, I wrote a new one.

I broke the problem down into three littler ones: 1) getting the
characters which are to be output; 2) converting the ASCII codes to
the right number of dots and dashes; and 3) making tones and spaces of
the right length.

SETUP.MORSE (lines 1190-1240) links my output routine through the
monitor output vector. Line 1240 JMPs to $3EA to re-hook DOS after
me.

MORSE (lines 1260-1310) are an output filter. If the character code
is less than $B0, I don't know how to send it in Morse code;
therefore, I just go to $FDF0 to finish the output on the screen.
Codes exist for these other characters, but I did not look them up.
If you want a complete routine, you should modify line 1260 to CMP
#$A0 and add the extra codes to the code table (lines 1130-1170).

SEND.CHAR looks up the Morse code for the character in the code table,
and splits it into the number of code elements (low-order three bits)
and the code elements themselves (high-order five bits). If a code
element is zero, a short beep (dot) is sounded. If an element is one,
three calls to the short beep routine make one long beep (dash).
Between elements, a silence equal to the length of a short beep
intervenes. After the last beep of a character, a longer silence,
equal to three short silences, is produced. A 00 code from the code
table makes a silent gap of three times the inter-character gap.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 130 of 2550

Apple II Computer Info

EL.SPACE and EL.DIT are nearly identical. The only difference is that
EL.DIT makes a sound by addressing the speaker, while EL.SPACE does
not. The value of EL.PITCH determines the pulse width, and EL.SPEED
determines the number of pulses for an inter-element-space or a short
beep. If the code stream is too fast for you, you can slow it down by
increasing either or both of these two numbers.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 131 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:Articles:AS.Str.Swapper.txt
==

A String Swapper for Applesoft

Practically every program rearranges data in some way. Many times you
must sort alphanumeric data, and Applesoft makes this relatively easy.
At the heart of most sort algorithms you will have to swap two items.

If the items are numbers, you might do it like this: T=A(I) :
A(I)=A(J) : A(J)=T. If the items are in string variables, you might
use this: T$=A$(I) : A$(I)=A$(J) : A$(J)=T.

Before long, Applesoft's wonderful string processor eats up all
available memory and your program screeches to a halt with no warning.
You think your computer died. Just about the time you reach for the
power switch, it comes to life again (if you aren't too impatient!);
the garbage collection procedure has found enough memory to continue
processing. If only Applesoft had a command to swap the pointers of
two strings, this wouldn't happen.

What are pointers? Look on page 137 of your Applesoft Reference
Manual. The third column shows how string variables are stored in
memory. Each string, whether a simple variable or an element of an
array, is represented by three bytes: the first byte tells how many
bytes are in the string value at this time; the other two bytes are
the address of the first byte of the string value. The actual string
value may be anywhere in memory. I am calling the three bytes which
define a string a "pointer".

All right, how can we add a string swap command? The authors of
Applesoft thoughtfully provided us with the "&" command; it allows us
to add as many new commands to the language as we want. (Last month I
showed you how to add a computed GOSUB command using the &.) We could
make up our own swap command; perhaps something like &SWAP A$(I) WITH
A$(J). However, to keep it a little simpler, I wrote it this way:
&A$(I),A$(J).

The program is in two sections. The first part, called SETUP, simply
sets up the &-vector at $3F5, $3F6, and $3F7. It stores a "JMP SWAP"
instruction there. When Applesoft finds an ampersand (&) during
execution, it will jump to $3F5; our JMP SWAP will start up the second
section.

SWAP calls on two routines inside the Applesoft ROMs: PTRGET ($DFE3)
and SCAN.COMMA ($DEBE). I found the addresses for these routines in
the article "Applesoft Internal Entry Points", by John Crossley, pages
12-18 of the March/April 1980 issue of The Apple Orchard. I also have
disassembled and commented the Applesoft ROMs, so I checked to see if
there were any bad side effects. Both routines assume that Applesoft
is about to read the next character of your program. PTRGET assumes

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 132 of 2550

Apple II Computer Info

you are sitting on the first character of a variable name. SCAN.COMMA
hopes you are sitting on a comma.

SWAP merely calls PTRGET to get the address of the pointer for the
first variable, check for an intervening comma, and then calls PTRGET
again to get the pointer address for the second variable. Then lines
1350-1430 exchange the three bytes for the two pointers.

How about a demonstration? I have a list of 20 names (all are
subscribers to the Apple Assembly Line), and I want to sort them into
alphabetical order. Since I am just writing this to demonstrate using
the swap command, I will use one of the WORST sort algorithms: the
bubble sort.

Line 100 clears the screen and prints a title line. Line 110 loads
the swap program and calls SETUP at 768 ($0300). Line 120 reads in
the 20 names from the DATA statement in line 130, and calls a
subroutine at line 200 to print the names in a column.

Lines 150-170 are the bubble sort algorithm. If two names are out of
order, they are swapped at the end of line 160. Line 180 prints the
sorted list of names in a second column.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 133 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:Articles:Front.Page.Misc.txt
==

Stuffing Object Code in Protected Places

Several users of Version 4.0 have asked for a way to defeat the
protection mechanism, so that they can store object code directly into
the language card. One customer has a EPROM burner which accepts code
at $D000. He wants to let the assembler write it out there directly,
even though he could use the .TA directive and later a monitor move
command. Or, he could use the .TF directive, and a BLOAD into his
EPROM.

For whatever reason, if you really want to do it, all you have to do
is type the following patch just before you assemble: $1A25:EA EA.
In case you want to put it back, or check before you patch, what
should be there is B0 28.

Bug Reports

1. Several readers have reported a problem with the COPY program in
the December issue. As written, if you try to copy a block of lines
to a point before the first line of the program, the block is inserted
between the first and second bytes of the first line. Ouch! To fix
it, insert lines 2221-2225 and change line 2250:

 2221 LDA A2L
 2222 CMP A1L
 2223 LDA A2H
 2224 SBC A1H
 2225 BCC .5

 2250 .5 LDA SS MOVE IN SOURCE BLOCK

2. When I typed up Lee Meador's article for the January issue, I
inadvertently changed one address to a crazy value. The address $2746
in the 4th paragraph on page 9 should be $1246.

3. The Variable Cross Reference program for Applesoft from the
November issue leaves something behind after it has run. If you LIST
the Applesoft program after running VCR, the line number of the first
line will come out garbage. This only happens the first time you use
the LIST command. For some reason, typing CALL 1002 before the LIST
will fix it. I haven't found out the cause or cure yet. If you find
it first, let me know!

In This Issue...

Apple Noises and Other Sounds 2
 Simple Tone . 2
 Apple "Bell" Subroutine 3
 Machine-Gun Noise 3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 134 of 2550

Apple II Computer Info

 Laser "SWOOP" Sound 3
 Another Laser Blast 4
 Inch-Worm Sounds 5
 Touch-Tones Simulator 5
 Morse Code Output 7
Stuffing Object Code in Protected Places 9
Multiplying on the 6502 11
A String Swapper for Applesoft 14

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 135 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:Articles:GRAM.Buy.Printr.txt
==

Buying a Printer for your Apple II...................Mike Laumer

I purchased my first printer in November just before Thanksgiving.
The process of selecting a printer can be confusing, painful, and very
expensive. Here is my tale.

 After writing printer drivers for other people's printers for
several years, I was not convinced that the IDS 225 or the Paper Tiger
were for me. They are fairly bulky, noisy, and the print quality was
not up to the quality I am used to every day at work. The Trendcom
100 was quieter, but only 40 columns wide. The Trendcom 200 and Apple
Silentype are 80 columns, but 40 columns per second is rather slow
when you want to print 60 pages. From my experience thermal paper
yellows and is hard to write on with ball point pens. The only thing
I really liked about these printers was the price. The AXIOM printer
(which prints on aluminum coated paper by blasting off the aluminum
with electrical sparks, exposing a black paper beneath) was faster,
but the weird paper looked expensive and did not come in fan-fold. I
did like the speed and price. Several new manufacturers began
advertising printers that looked good, but I could never watch them
operate at a computer store, and I heard negative comments about them.

Enter the Japanese! I was getting desperate for a printer, ready to
buy almost anything. I begain hearing rumors about the new EPSON MX-
80 printer: $650, reliable, 80 columns per second, bi-directional
printing, a possible graphics ROM add-on.... Sounded good, so I went
shopping.

[Store #1] I asked, "Do you sell the MX-80 printer?" They said,
"It will be in next week, on Wednesday." I came back Wednesday, and
saw the MX-80 working on an Apple II. The print clarity was the best
I had seen on an inexpensive printer. It was comparable to the
Centronix 779, which was huge, very noisy, and twice the price. "How
much does it cost?" It was $130 more than advertised, but it included
interface and cables.

[Store #2] I went to another store, a new one I had never seen
before. They had a bunch of Atari home computers (cute, aren't
they?). "Do you sell anything for the Apple II? I see you don't have
any Apples on the floor." The salesman was busy with a customer and a
take-out lunch. I looked around, and noticed an MX-80 on a table.
After getting his attention (he was quite busy eating his sandwich,
and asking if I didn't mind), I asked the salesman a few questions
about the printer and its price. "Only $499", he said. "How come the
low price?" "We don't have a bunch of other printers to unload that
are clearly beat by the price-performance of the MX-80." The Apple
interface would run about $50, he thought. It looked like a good
deal, so I went home to discuss it with my wife.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 136 of 2550

Apple II Computer Info

[Store #2] HOW NOT TO SELL ANYTHING.... My wife thought it
sounded good, too. I returned to the store a few days later. The
same salesman was there selling an Atari home computer (to me they are
just programmable video games). It was 15-20 minutes before he was
done, but the prospect of the low printer price gave me patience...I
waited. After the sale, he picked up his sandwich and let me ask some
more questions. That's when I found out about the graphics ROM that
Epson plans to offer in the future. "We will be raising the price to
$599 next week, but it is still $499 this week. However, we are out
of stock right now. I can get you one by the middle of next week."
But I really wanted to get one for the holiday weekend, since I could
do a lot of computer work then. "No way. There just won't be any
until next week. And, you will have to pay now to get the price."
This sales pitch was getting just a little suspicious...but the price
still had me hooked. I was trying to justify buying now, paying now,
saving now, picking up later. Then he began saying how he was the
first Epson dealer in Dallas, and that the other stores had complained
to Epson about his price. He had to raise his price or Epson would
not let him sell their printer any more. "I sold 23 printers already
this week", he bragged, as he hauled out a wad of checks from his
pocket to show me. "I can't spend any more time with you now. My
profit margin is too low to justify more than five minutes." (There
were no other customers in the store.) Well, he convinced me, all
right. "Fine!" I walked out the door, driving right over to....

[Store #1] "Do you have the MX-80 in stock?" I asked. "Yes we
do", replied the cashier. "I would like to buy one", I stated. The
sales girl went into a back room, returning with a big box and a small
box. She took my charge card and rang up the sale. I went home and
had a great weekend.

Lesson for the Day:

1. After all the rip-off's from the early days of the microcomputer
market, nobody gets my money in advance unless they have built a
reputation in the community. I never saw this store before, and they
wanted my money in advance after a strange sales push.

2. Anyone who displays customer checks so casually to other customers
gets an immediate black mark with me. I wouldn't like mine to be
treated in such a cavalier manner.

3. I don't like to spend my lunch hour talking to someone stuffing
his face while I am hungry.

4. If it isn't profitable for the salesman to try to sell me his
printer, I really want to know. I'll go to someone who does believe
it to be profitable, and is a lot more courteous about selling it.
If my $600 has no profit for him, I am not going to pay in advance and
lose it when he goes bankrupt the next day, before I get my printer.

5. Don't ever hire a turkey (even in late November!) who does a good
job sending your customers to someone else's store. Especially buying
customers.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 137 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:Articles:GRAM.Ftr.Laumer.txt
==

The Future of Personal Computers...................Mike Laumer

The days of 8-bit microcomputers are numbered. First 16-bit, and now
32-bit chips are creeping out of the laboratories. INTEL, Hewlett-
Packard, TI, and Motorola are shrinking the supercomputers down to
1/4-inch square slivers of silicon.

Motorola's 68000 microprocessor chip uses a 16-bit memory and
input/output bus, but internally it has a 32-bit architecture. Texas
Instruments has just announced the 99000, an upward-compatible
enhancement of the 9900. The 99000 has new instructions and the
fastest clock in the country...18 MHz!

The boys in the labs at Hewlett-Packard are spreading the word about
their new 32-bit design. It multiplies two 16-bit numbers in 1.6
microseconds, and divides a 32-bit number by a 16-bit one in 3.5
microseconds. That's 12 times faster than the TI 9900! They are also
working on a 528K bit ROM (equivalent to 64K bytes on one chip!) and a
128K RAM.

The INTEL 32-bit micro (iAPX 432) was designed together with the
operating system; it supports multiprocessing and multitasking from
the ground up. They claim to be abel to stack them in parallel to
boost system throughput and performance up to the level of an IBM
370/158. It also executes an instruction set which easily supports
ADA (a new programming language which is set to be the standard
language for the Defense Department). INTEL already had to expand the
ADA language to take advantage of the new architecture. The operating
system itself is also coded in the ADA language.

The home computers of the mid and late 1980's will be very nice
indeed! And maybe we won't even have to wait that long. Read this
little clipping from EETimes:

If this is true, it may mean that the Apple IV is less than a year
away!

Now in production are the INTEL 8086, Motorola 68000, and TI 9900;
several more are on the way. The new micro's will be 2 to 5 times
faster than the 8-bit processors, and be able to access up to 1000
times the memory.

The speed advantage of the 16-bit and 32-bit chips is not very large
if floating point numbers must still be processed with software
subroutines. Software floating point routines are about 1000 times
slower than large-scale computer hardware. But now INTEL and others
are bringing out hardware co-processor chips which implement the
floating-point math. They are 100 times faster than software
emulation.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 138 of 2550

Apple II Computer Info

The ability to address significantly more than 64K of memory space
brings on the need for memory management techniques. Some
manufacturers will offer memory mapping, memory protection, virtual
memory, and segmented memory. From the standpoint of an application
program, it is most useful to have directly accesible memory. Virtual
memory is the second choice. Memory protection and memory mapping are
necessary in a multi-tasking environment, or in a timesharing system.

Great new products are foreseen in memories, too. You know that the
Apple II's memory chips are 16K chips; it takes 8 of them to make 16K
bytes, and 32 to make 64K bytes. Well, there are now 64K memory
chips; it would only take 8 of them to get 64K bytes. Of course, the
Apple II would have to modified or redesigned to make use of them.
The Apple III is designed to accept them, I think.

Bubble memories are also available, with 1,000,000 bits per device.
These memories operate like little solid state disk drives, and their
best application would be as the "roll in/roll out" device for a
virtual memory system. They are faster than mechanical disk drives:
in the time it takes a moving arm disk to begin to read or write the
first byte of data, a bubble memory will have already transferred 4K
to 16K bytes of data. Bubble memory technology is still new, so they
have a high price. In 3 or 4 years they will be inexpensive enough to
put into personal computers.

I can hardly wait to get my first Apple Umpteenth, with 32-bit
architecture, a 50 MHz clock, hardware floating point math (25-digit
precision), ten million bytes of bubble memory, one million bytes of
RAM, built-in peripherals including a printer, 4 disk drives, and a
CRT...and it will probably fit in my pocket!

<<<written circa 1980>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 139 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:Articles:GRAM.Hello.AS.txt
==

Two Boots Are Better Than One..............Bob Sander-Cederlof

If you have been trying to write programs for the whole Apple
community, or just for yourself and a few friends, then you have
probably run into the problem. Your friends or customers do not all
have the same kind of Apple! Some of them have the plain old Apple
II, and only have Integer BASIC. Others have the newer Apple II Plus,
and only have Applesoft BASIC in ROM. (Of course, there are some who
have both BASICs, either in ROM or with the Pascal Language System.

The problem is that the boot program, or the so-called HELLO program,
must be in either Integer BASIC or Applesoft. It cannot be both at
once! So if you use an Applesoft version, the friend without
Applesoft gets the "LANGUAGE NOT AVAILABLE" message when he boots up
the disk. Or if you use an Integer BASIC boot program, the person
with an Apple II Plus and no Integer BASIC gets the message.

There is an answer! I discovered it by reading the documentation that
comes with the Apple Writer Text Editing System. The key is to
remember that if the boot program is written in Applesoft, and if
furthermore there is no Applesoft in ROM in your machine, then DOS
tries to load and run an Integer BASIC file with the name APPLESOFT!
So, INIT your disk with an Applesoft boot program named HELLO; then
include on the disk also a similar boot program written in Integer
BASIC and store it on the disk under the file name "APPLESOFT"!

When you boot this disk, DOS will try to boot the program named HELLO.
If you have Applesoft on ROM, this will succeed, and you are up and
running. If you do not have Applesoft, DOS will attempt to load it
from the disk by RUNning the Integer BASIC file named Applesoft (which
is really your other boot program!!). Isn't the Apple wonderful?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 140 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:Articles:Multiply.6502.txt
==

Multiplying on the 6502

Brooke Boering wrote an excellent article, "Multiplying on the 6502",
in MICRO--The 6502 Journal, December, 1980, pages 71-74. If you are
wondering how to do it, or you want a faster routine for a special
application, look up that article.

Brooke begins by explaining and timing the multiply subroutine found
in the old Apple Monitor ROM. The time to multiply two 16-bit values
and get a 32-bit result varies from 935 to 1511 microseconds,
depending on how many "1" bits are in the multiplier. He proceeds to
modify that subroutine to cut the execution time by 40%!

Finally, he presents two limited versions which are still quite useful
in some applications. His 8x16 multiply averages only 383
microseconds, and his 8x8 version averages 192 microseconds.

Here is the code for his 16x16 version, which averages 726
microseconds. It has the same setup as the routine in the Apple ROM.
On entry, the multiplicand should be in AUXL,AUXH ($54,55); the
multiplier should be in ACL,ACH ($50,51); whatever is in XTNDL,XTNDH
($52,53) will be added to the product. Normally, XTNDL and XTNDH
should be cleared to zero before starting to multiply. However, I
have used this routine to convert from decimal to binary; I put the
next digit in XTNDL and clear XTNDH, and then multiply the previous
result by ten. The "next digit" is automatically added to the product
that way. (I have corrected the typographical error in the listing as
published in MICRO.)

 <<<code here>>>

I wrote a test routine for the multiply, so that I could check it out.
After assembling the whole program, I typed "MGO SETUP.Y" to link the
control-Y Monitor Command to my test routine. Control-Y will parse
three 16-bit hexadecimal values this way: val1<val2.val3cY stores
val1 in $42,$43; val2 in $3C,$3D; and val3 in $3E,$3F. ("cY" stands
for control-Y.)

I define val1 to be the initial value for XTNDL,XTNDH; this should
normally be zero. The two values to be multiplied are val2 and val3.
After TESTMPY receives control from the control-Y processor, it moves
the three values into the right locations for the multiply subroutine.
Then JSR RMUL calls the multiply routine. The following lines (1570-
1640) print the 32-bit result by calling a routine in the monitor ROM
which prints a byte in hex from the A-register.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 141 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:Demo.Str.Swap.txt
==

.dâ:ó:∫"DEMO USE OF 'STRING SWAP' ROUTINE"ZnÜA$(20):∫Á(4)"BLOAD
B.STRING.SWAP":å768xxÅI–1¡20:áA$(I):Ç:P–1:∞200

ÇÉAMES,BURKE,PUTNEY,LEE,LEVY,RAMSDELL,BISHOP,RANDALL,LANDSMAN,LEI
PER,OSLISLO,KOVACS,MEADOR,KRIEGSMAN,MERCIER,WHITE,LEVY,BLACK,SCHORNAK,
STITT å≤BUBBLE SORT" ñM–20a †M–M…1:SW–0:ÅI–1¡M:≠A$(I»1)—
A$(I)ƒSW–1:ØA$(I»1),A$(I):≤SWAPo ™Ç:≠SWƒ160� ¥P–20:∞200:Äú

»¢3:ÅI–1¡20:ñP:∫A$(I):Ç:±

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 142 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.APPLE.BELL.txt
==

 1000 *---------------------------------
 1010 * APPLE "BELL" ROUTINE
 1020 *---------------------------------
 1030 .OR $FBE2 IN MONITOR ROM
 1040 .TA $800
 1050 *---------------------------------
 1060 WAIT .EQ $FCA8 MONITOR DELAY ROUTINE
 1070 SPEAKER .EQ $C030
 1080 *---------------------------------
 1090 M.FBE2 LDY #192 # OF HALF-CYCLES
 1100 BELL2 LDA #12 SET UP DELAY OF 500 MICROSECONDS
 1110 JSR WAIT FOR A HALF CYCLE OF 1000 HERTZ
 1120 LDA SPEAKER TOGGLE SPEAKER
 1130 DEY COUNT THE HALF CYCLE
 1140 BNE BELL2 NOT FINISHED
 1150 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 143 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.INCH.WORM.txt
==

 1000 *---------------------------------
 1010 * INCH-WORM SOUNDS
 1020 *---------------------------------
 1030 SPEAKER .EQ $C030
 1040 PULSE.WIDTH .EQ $00
 1050 PULSE.STEP .EQ $01
 1060 PULSE.LIMIT .EQ $02
 1070 *---------------------------------
 1080 INCH.WORM
 1090 LDA #1 SET STEP TO 1
 1100 * (ALSO TRY 77, 129, 179)
 1110 STA PULSE.STEP
 1120 LDA #176 SET PULSE.WIDTH AND LIMIT TO 176
 1130 * (ALSO TRY 88)
 1140 STA PULSE.WIDTH
 1150 STA PULSE.LIMIT
 1160 .1 LDA SPEAKER TOGGLE SPEAKER
 1170 LDX PULSE.WIDTH DELAY LOOP FOR PULSE WIDTH
 1180 .2 PHA LONGER DELAY LOOP
 1190 PLA
 1200 DEX END OF PULSE?
 1210 BNE .2 NO
 1220 CLC CHANGE PULSE WIDTH BY STEP
 1230 LDA PULSE.WIDTH
 1240 ADC PULSE.STEP
 1250 STA PULSE.WIDTH
 1260 CMP PULSE.LIMIT UNTIL IT REACHES THE LIMIT
 1270 BNE .1
 1280 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 144 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.LASER.BLAST.txt
==

 1000 *---------------------------------
 1010 * ANOTHER LASER BLAST
 1020 *---------------------------------
 1030 SPEAKER .EQ $C030
 1040 *---------------------------------
 1050 BLAST LDY #10 NUMBER OF SHOTS
 1060 .1 LDX #64 PULSE WIDTH OF FIRST PULSE
 1070 .2 TXA START A PULSE WITHIN A SHOT
 1090 .3 DEX DELAY FOR ONE PULSE
 1100 BNE .3
 1105 TAX
 1110 LDA SPEAKER TOGGLE SPEAKER
 1120 INX
 1130 CPX #192 PULSE WIDTH OF LAST PULSE
 1140 BNE .2
 1150 DEY FINISHED SHOOTING?
 1160 BNE .1 NO
 1170 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 145 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.LASER.SWOOP.txt
==

 1000 *---------------------------------
 1010 * LASER "SWOOP" SOUND
 1020 *---------------------------------
 1030 SPEAKER .EQ $C030
 1040 PULSE.COUNT .EQ $00
 1050 PULSE.WIDTH .EQ $01
 1060 SWOOP.COUNT .EQ $02
 1070 *---------------------------------
 1080 SWOOP LDA #1 ONE PULSE AT EACH WIDTH
 1090 STA PULSE.COUNT
 1100 LDA #160 START WITH MAXIMUM WIDTH
 1110 * (ALSO TRY VALUES OF 40, 80, 128, AND 160.)
 1120 STA PULSE.WIDTH
 1130 .1 LDY PULSE.COUNT
 1140 .2 LDA SPEAKER TOGGLE SPEAKER
 1150 LDX PULSE.WIDTH
 1160 .3 DEX DELAY LOOP FOR ONE PULSE
 1170 BNE .3
 1180 DEY LOOP FOR NUMBER OF PULSES
 1190 BNE .2 AT EACH PULSE WIDTH
 1200 DEC PULSE.WIDTH SHRINK PULSE WIDTH
 1210 BNE .1 TO LIMIT OF ZERO
 1220 RTS
 1230 *---------------------------------
 1240 * MULTI-SWOOPER
 1250 *---------------------------------
 1260 SWOOP2 LDA #10 NUMBER OF SWOOPS
 1270 STA SWOOP.COUNT
 1280 .1 JSR SWOOP
 1290 DEC SWOOP.COUNT
 1300 BNE .1
 1310 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 146 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.MACHINE.GUN.txt
==

 1000 *---------------------------------
 1010 * MACHINE-GUN NOISE
 1020 *---------------------------------
 1030 SPEAKER .EQ $C030
 1040 CNTR .EQ $00
 1050 *---------------------------------
 1060 NOISE LDX #64 LENGTH OF NOISE BURST
 1070 *---------------------------------
 1080 LDA #10 NUMBER OF NOISE BURSTS
 1090 STA CNTR
 1100 .2 LDA SPEAKER TOGGLE SPEAKER
 1110 LDY $BA00,X GET PULSE WIDTH PSEUDO-RANDOMLY
 1120 .1 DEY DELAY LOOP FOR PULSE WIDTH
 1130 BNE .1
 1140 DEX GET NEXT PULSE OF THIS NOISE BURST
 1150 BNE .2
 1160 DEC CNTR GET NEXT NOISE BURST
 1170 BNE .2
 1180 RTS RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 147 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.MORSE.CODE.txt
==

 1000 *---------------------------------
 1010 * MORSE CODE OUTPUT
 1020 *---------------------------------
 1030 SPEAKER .EQ $C030
 1040 DUMMY .EQ $C000
 1050 *---------------------------------
 1060 SAVEX .BS 1
 1070 SAVEY .BS 1
 1080 EL.COUNT .BS 1
 1090 EL.CODE .BS 1
 1100 EL.SPEED .EQ 120
 1110 EL.PITCH .EQ 80
 1120 *---------------------------------
 1130 CODES .HS FD7D3D1D0D0585C5E5F5 0, 1-9
 1140 .HS 000000000000
 1150 .HS 004284A4830124C3040274A344C2 @, A-M
 1160 .HS 82E364D443038123146394B4C4 N-Z
 1170 .HS 000000000000
 1180 *---------------------------------
 1190 SETUP.MORSE
 1200 LDA #MORSE
 1210 STA $36
 1220 LDA /MORSE
 1230 STA $37
 1240 JMP $3EA
 1250 *---------------------------------
 1260 MORSE CMP #$B0 SEE IF PRINTING CHAR
 1270 BCC .1 NO
 1280 PHA SAVE CHAR ON STACK
 1290 JSR SEND.CHAR
 1300 PLA GET CHAR OFF STACK
 1310 .1 JMP $FDF0
 1320 *---------------------------------
 1330 SEND.CHAR
 1340 STX SAVEX
 1350 STY SAVEY
 1360 SEC
 1370 SBC #$B0
 1380 TAX
 1390 LDA CODES,X
 1400 STA EL.CODE
 1410 AND #7 GET ELEMENT COUNT
 1420 BEQ .4 NO CODE
 1430 STA EL.COUNT
 1440 .1 ASL EL.CODE PUT NEXT ELEMENT INTO CARRY
 1450 BCC .2 MAKE 'DIT'
 1460 JSR EL.DIT MAKE 'DAH' FROM 3 DITS
 1470 JSR EL.DIT
 1480 .2 JSR EL.DIT MAKE 'DIT'

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 148 of 2550

Apple II Computer Info

 1490 JSR EL.SPACE
 1500 DEC EL.COUNT
 1510 BNE .1
 1520 .3 JSR CH.SPACE
 1530 LDX SAVEX
 1540 LDY SAVEY
 1550 RTS
 1560 .4 JSR CH.SPACE
 1570 JSR CH.SPACE
 1580 JMP .3
 1590 *---------------------------------
 1600 CH.SPACE
 1610 JSR EL.SPACE
 1620 JSR EL.SPACE
 1630 EL.SPACE
 1640 LDY #EL.SPEED
 1650 .1 LDX #EL.PITCH
 1660 LDA DUMMY
 1670 .2 DEX
 1680 BNE .2
 1690 DEY
 1700 BNE .1
 1710 RTS
 1720 *---------------------------------
 1730 EL.DIT LDY #EL.SPEED
 1740 .1 LDX #EL.PITCH
 1750 LDA SPEAKER
 1760 .2 DEX
 1770 BNE .2
 1780 DEY
 1790 BNE .1
 1800 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 149 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.MULTIPLY.txt
==

 1000 *---------------------------------
 1010 * FASTER 16X16 MULTIPLY
 1020 * BY BROOKE W. BOERING
 1030 * NEARLY AS PUBLISHED IN MICRO--THE 6502 JOURNAL
 1040 * PAGE 72, DECEMBER, 1980.
 1050 *---------------------------------
 1060 ACL .EQ $50
 1070 ACH .EQ $51
 1080 XTNDL .EQ $52
 1090 XTNDH .EQ $53
 1100 AUXL .EQ $54
 1110 AUXH .EQ $55
 1120 *---------------------------------
 1130 RMUL LDY #16 16-BIT MULTIPLIER
 1140 .1 LDA ACL (AC * AUX) + XTND
 1150 LSR CHECK NEXT BIT OF MULTIPLIER
 1160 BCC .2 IF ZERO, DON'T ADD MULTIPLICAND
 1170 CLC ADD MULTIPLICAND TO PARTIAL PRODUCT
 1180 LDA XTNDL
 1190 ADC AUXL
 1200 STA XTNDL
 1210 LDA XTNDH
 1220 ADC AUXH
 1230 STA XTNDH
 1240 .2 ROR XTNDH SHIFT PARTIAL PRODUCT
 1250 ROR XTNDL
 1260 ROR ACH
 1270 ROR ACL
 1280 DEY NEXT BIT
 1290 BNE .1 UNTIL ALL 16
 1300 RTS
 1310 *---------------------------------
 1320 * TEST ROUTINE FOR MULTIPLY
 1330 *---------------------------------
 1340 SETUP.Y
 1350 LDA #$4C PUT "JMP TESTMPY" IN $358-35A
 1360 STA $3F8
 1370 LDA #TESTMPY
 1380 STA $3F9
 1390 LDA /TESTMPY
 1400 STA $3FA
 1410 RTS
 1420 *---------------------------------
 1430 TESTMPY
 1440 LDA $3C MOVE A1L,A1H TO ACL,ACH
 1450 STA ACL
 1460 LDA $3D
 1470 STA ACH
 1480 LDA $3E MOVE A2L,A2H TO AUXL,AUXH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 150 of 2550

Apple II Computer Info

 1490 STA AUXL
 1500 LDA $3F
 1510 STA AUXH
 1520 LDA $42 MOVE A4L,A4H TO XTNDL,XTNDH
 1530 STA XTNDL
 1540 LDA $43
 1550 STA XTNDH
 1560 JSR RMUL MULTIPLY
 1570 LDA XTNDH PRINT 32-BIT RESULT
 1580 JSR $FDDA
 1590 LDA XTNDL
 1600 JSR $FDDA
 1610 LDA ACH
 1620 JSR $FDDA
 1630 LDA ACL
 1640 JMP $FDDA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 151 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.SIMPLE.TONE.txt
==

 1000 *---------------------------------
 1010 * SIMPLE TONE
 1020 *---------------------------------
 1030 SPEAKER .EQ $C030
 1040 *---------------------------------
 1050 TONE LDY #0 START CYCLE COUNTER
 1060 LDX #0 START DELAY COUNTER
 1070 .1 LDA SPEAKER TOGGLE SPEAKER
 1080 .2 DEX DELAY LOOP
 1090 BNE .2
 1100 DEY QUIT AFTER 128 CYCLES
 1110 BNE .1
 1120 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 152 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.STRING.SWAP.txt
==

 1000 *---------------------------------
 1010 * STRING SWAP FOR APPLESOFT
 1020 * "BRUN B.STRING.SWAP" TO SET IT UP;
 1030 * THEN "&A$,B$" MEANS SWAP A$ AND B$.
 1040 *---------------------------------
 1050 .OR $300
 1060 .TF B.STRING.SWAP
 1070 *---------------------------------
 1080 AMPERSAND.VECTOR .EQ $3F5
 1090 *---------------------------------
 1100 PTRGET .EQ $DFE3 SCAN FOR VARIABLE NAME,
 1110 * SEARCH FOR ITS ADDRESS,
 1120 * LEAVE ADDRESS IN $83,$84
 1130 * AND A,Y
 1140 *---------------------------------
 1150 SCAN.COMMA .EQ $DEBE IF NEXT CHARACTER IS
 1160 * IS A COMMA, SCAN OVER
 1170 * IT; IF NOT, SYNTAX ERROR.
 1180 *---------------------------------
 1190 A.PNTR .EQ $85,86
 1200 B.PNTR .EQ $83,84
 1210 *---------------------------------
 1220 SETUP LDA #SWAP SET UP AMPERSAND VECTOR
 1230 STA AMPERSAND.VECTOR+1
 1240 LDA /SWAP
 1250 STA AMPERSAND.VECTOR+2
 1260 LDA #$4C JMP OPCODE
 1270 STA AMPERSAND.VECTOR
 1280 RTS
 1290 *---------------------------------
 1300 SWAP JSR PTRGET GET POINTER TO FIRST STRING
 1310 STA A.PNTR
 1320 STY A.PNTR+1
 1330 JSR SCAN.COMMA CHECK FOR COMMA
 1340 JSR PTRGET
 1350 LDY #2 PREPARE TO SWAP 3 BYTES
 1360 .1 LDA (A.PNTR),Y
 1370 PHA
 1380 LDA (B.PNTR),Y
 1390 STA (A.PNTR),Y
 1400 PLA
 1410 STA (B.PNTR),Y
 1420 DEY NEXT BYTE
 1430 BPL .1
 1440 RTS RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 153 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8102:DOS3.3:S.TOUCH.TONES.txt
==

 1000 *---------------------------------
 1010 * TOUCH TONES SIMULATOR
 1020 *---------------------------------
 1030 SPEAKER .EQ $C030
 1040 *---------------------------------
 1050 DOWNTIME .EQ $9D
 1060 UPTIME .EQ $9E
 1070 LENGTH .EQ $9F
 1080 CHORD.TIME .EQ $A0
 1090 *---------------------------------
 1100 BUTTON .EQ $E7 SET BY "SCALE= # "
 1110 * USE VALUES FROM 0 THRU 9
 1120 *---------------------------------
 1130 .OR $300
 1140 *---------------------------------
 1150 TWO.TONES
 1160 LDA #10
 1170 STA CHORD.TIME
 1180 .3 LDX BUTTON
 1190 LDA LOW.TONES,X
 1200 JSR ONE.TONE
 1210 LDA HIGH.TONES,X
 1220 JSR ONE.TONE
 1230 DEC CHORD.TIME
 1240 BNE .3
 1250 RTS
 1260 *---------------------------------
 1270 ONE.TONE
 1280 TAY
 1290 LDA DOWNTIME.TABLE,Y
 1300 STA DOWNTIME
 1310 LDA UPTIME.TABLE,Y
 1320 STA UPTIME
 1330 LDA LENGTH.TABLE,Y
 1340 STA LENGTH
 1350 *---------------------------------
 1360 PLAY LDY UPTIME
 1370 LDA SPEAKER
 1380 DEC LENGTH
 1390 BEQ .4 FINISHED
 1400 .1 DEY
 1410 BNE .1
 1420 BEQ .2
 1430 .2 LDY DOWNTIME
 1440 LDA SPEAKER
 1450 DEC LENGTH
 1460 BEQ .4
 1470 .3 DEY
 1480 BNE .3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 154 of 2550

Apple II Computer Info

 1490 BEQ PLAY
 1500 .4 RTS
 1510 *---------------------------------
 1520 DOWNTIME.TABLE
 1530 .HS 8E807468514942
 1540 *---------------------------------
 1550 UPTIME.TABLE
 1560 .HS 8E807469514942
 1570 *---------------------------------
 1580 LENGTH.TABLE
 1590 .HS 1412100F201D1A
 1600 *---------------------------------
 1610 LOW.TONES
 1620 .HS 03000000010101020202
 1630 HIGH.TONES
 1640 .HS 05040506040506040506
 1650 *---------------------------------
 1660 * SIMULATED DRIVER
 1670 *---------------------------------
 1680 MON.WAIT .EQ $FCA8
 1690 PUNCH.ALL
 1700 LDA #0
 1710 STA BUTTON
 1720 .1 JSR TWO.TONES
 1730 LDA #0
 1740 JSR MON.WAIT
 1750 INC BUTTON
 1760 LDA BUTTON
 1770 CMP #10
 1780 BCC .1
 1790 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 155 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:Articles:A.Beaut.Dump.txt
==

A Beautiful Dump Robert H. Bernard

The old saying, "You can't tell the players without a scorecard," is
certainly true for program debugging, and sometimes the only way is to
look into memory and see what is there. The Apple II Monitor has a
memory dump command, but I found it inadequate: it's formatted for a
40-column screen, it doesn't show ASCII codes, and getting output on a
printer is a hassle.

So I sat down and wrote a quick assembly language memory dump modeled
after a System/360 core dump (remember when computer memory was called
"core"?), with both hex and ASCII. My first attempt took up more than
one page of memory and was trapped where I assembled it by absolute
internal references. I massaged it until it fit in less than a page
and made it relocatable ("run anywhere") by making all internal jumps
into relative branches. (A "page" in 6502 jargon is 256 bytes, with
addresses running from xx00 through xxFF.)

Next I decided to add a printer feature; while I was at it I made it
use 80 columns on the printer, 40 on the screen.

Next I made it print the bytes in groups of four, with a space between
every four bytes. Sixteen bytes are printed per line on the screen,
32 on an 80-column printer. Spacing in groups of four makes it easier
to spot certain address locations. If a byte value is a printable
ASCII code, I print the character above the hexadecimal value.
(Values $00-$1F and $80-$9F do not print.)

Then I wanted options to browze one screenful at a time, and backup
when I passed the place I wanted to look at.

You probably think that by now the program is at least two, and maybe
more, pages long. Not so! All the while I was able to keep it in
only one page (which doesn't say much for my original code).

The end result (after 21 versions!) is listed here for your
examination and pleasure.

Operating Instructions: BRUN the program anywhere in memory that you
have a free page (256 bytes). When the "?" prompt appears, enter the
address of the memory you want to dump in any of the following ways.
After the address or address range, type the return key.

S.E To dump memory from S to E on the screen.

S-E To dump memory from S to E on the printer.

S,E To dump memory from S to E on the screen,
 but pauses after each screenful;

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 156 of 2550

Apple II Computer Info

 press space bar to continue,
 or press control-C to stop.

S To dump from S, pausing after each line;
 press space bar to dump next line,
 press letter "B" to back up one line,
 or press control-C to stop.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 157 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:Articles:Amper.Cmd.Int.txt
==

& Command Interface for S-C Assembler II

Here is yet another way to add new commands to Version 4.0. You are
somewhat familiar with the use of the & in Applesoft. This little
program patches the assembler so that you can add as many new commands
as you wish.

I have shown as examples the EDIT, COPY, and SYM commands. You need
to fill in the correct starting address in lines 1250 and 1260.

Use the .TF directive to direct the object code to a file. Then use
BRUN to install the patch. Lines 1100-1120 patch the assembler to
hook in the code at lines 3010-3100. After it is hooked in, make a
new copy of the assembler by using BSAVE ASMDISK 4.0 WITH
&,A$FD7,L$.... (Fill in the appropriate length, depending on what
else you have added to the assembler in the past.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 158 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:Articles:DOS321.RWTS.Lst.txt
==

Commented Listing of DOS 3.2.1 RWTS

I promised in the original AAL flyer that I would print dis-assemblies
of things like DOS. Here is the first installment. RWTS is described
in some detail in the DOS Reference Manual, pages 94-98.

There are not too many differences between the various versions of
RWTS. Each one, from 3.1 to 3.2 to 3.2.1 to 3.3, seems mainly to
clean up errors of the previous ones. I will probably print some DOS
3.3 listings in the future, as well as more of 3.2.1.

There is a bug in the 3.2.1 version (a bad address), at line 2200. It
works anyway, but it is sloppy. Another problem I have discovered the
hard way: the "previous slot #" in the IOB should be a slot that has
a disk controller in it. If not, RWTS may do strange things to
whatever is in that slot. I put in "0", and it turned on my language
card! Zap! No more Applesoft!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 159 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:Articles:Front.Page.txt
==

The Apple Assembly Line is still growing! I now am sending out over
300 copies per month! It is also growing in size, as you can see:
this is the first 20 page issue.

In This Issue...

A Beautiful Dump . 2
So-Called Unused Opcodes 6
Complete 6502 Opcode Chart 10
EDIT and COPY on the Language Card 12
Commented Listing of DOS 3.2.1 RWTS 15
Substring Function for Applesoft 19

Second "Disk of the Quarter"

The second AALDQ is ready! If you would like to have the source code
on disk in S-C Assembler II Version 4.0 format for all the programs
which have appeared in AAL issues 4, 5, and 6, then send me $15. I
will send you the disk, and you already have the documentation. DQ#1,
covering issues 1, 2, and 3, is also still available at the same
price.

Some New Books about the 6502

Apple Machine Language, by Don Inman and Kurt Inman, published by
Reston (a Prentice-Hall Company). Hard cover, 296 pages, $14.95. If
you are an absolute beginner, this is the book for you. You start by
typing in an Applesoft program which helps you POKE in machine
language code, and CALL it. Most of the examples involve lo-res
graphics and sound. One chapter describes the Apple Mini-Assembler
(which resides in the Integer BASIC ROMs). They never get around to a
real assembler.

Practical Microcomputer Programming: the 6502, by W. J. Weller,
published by Northern Technology Books. Hard cover, 459 pages,
$32.95. Over 110 pages of the book are devoted to a listing of an
assembler and a debugging package. A coupon inside the back cover can
be redeemed for a tape copy which will run on the Apple II. By adding
$7.50 to the coupon, you can get a disk version. The package can be
loaded from the disk, but there is no capability for keeping source or
object files on disk.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 160 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:Articles:Opcode.Chart.txt
==

 x0 x1 x2 x3

0x BRK ORA (z,X) hang ASL (z,X)
 ORA (z,X)

1x BPL r ORA (z),Y hang ASL (z),Y
 ORA (z),Y

2x JSR a AND (z,X) hang ROL (z,X)
 AND (z,X)

3x BMI r AND (z),Y hang ROL (z),Y
 AND (z),Y

4x RTI EOR (z,X) hang LSR (z,X)
 EOR (z,X)

5x BVC r EOR (z),Y hang LSR (z),Y
 EOR (z),Y

6x RTS ADC (z,X) hang ROR (z,X)
 ADC (z,X)

7x BVS r ADC (z),Y hang ROR (z),Y
 ADC (z),Y

8x nop2 STA (z,X) nop2 A&X
 --> (z,X)

9x BCC r STA (z),Y hang A&hea
 --> (z),Y

Ax LDY #v LDA (z,X) LDX #v LDX #v
 LDA (z,X)
 LDX (z,X)

Bx BCS r LDA (z),Y hang LDA (z),Y
 LDX (z),Y

Cx CPY #v CMP (z,X) nop2 DEC (z,X)
 CMP (z,X)

Dx BNE r CMP (z),Y hang DEC (z),Y
 CMP (z),Y

Ex CPX #v SBC (z,X) nop2 INC (z,X)
 SBC (z,X)

Fx BEQ r SBC (z),Y hang INC (z),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 161 of 2550

Apple II Computer Info

 SBC (z),Y

x4 x5 x6 x7

nop2 ORA z ASL z ASL z
 ORA z

nop2 ORA z,X ASL z,X ASL z,X
 ORA z,X

BIT z AND z ROL z ROL z
 AND z

nop2 AND z,X ROL z,X ROL z,X
 AND z,X

nop2 EOR z LSR z LSR z
 EOR z

nop2 EOR z,X LSR z,X LSR z,X
 EOR z,X

nop2 ADC z ROR z ROR z
 ADC z

nop2 ADC z,X ROR z,X ROR z,X
 ADC z,X

STY z STA z STX z A&X
 --> z

STY z,X STA z,X STX z,Y A&X
 --> z,Y

LDY z LDA z LDX z LDX z
 LDA z

LDY z,X LDA z,X LDX z,Y LDX z,Y
 LDA z,Y

CPY z CMP z DEC z DEC z
 CMP z

nop2 CMP z,X DEC z,X DEC z,X
 CMP z,X

CPX z SBC z INC z INC z
 SBC z

nop2 SBC z,X INC z,X INC z,X
 SBC z,X

x8 x9 xA xB

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 162 of 2550

Apple II Computer Info

PHP ORA #v ASL AND #v

CLC ORA a,Y nop ASL a,Y
 ORA a,Y

PLP AND #v ROL AND #v

SEC AND a,Y nop ROL a,Y
 AND a,Y

PHA EOR #v LSR AND #v
 LSR

CLI EOR a,Y nop LSR a,Y
 EOR a,Y

PLA ADC #v ROR AND #v
 ROR

SEI ADC a,Y nop ROR a,Y
 ADC a,Y

DEY nop2 TXA #v&X
 --> A

TYA STA a,Y TXS A&X-->S
 S&hea+1
 --> a,Y

TAY LDA #v TAX LDA #v
 TAX

CLV LDA a,Y TSX a,Y & S
 -->AXS

INY CMP #v DEX A&X-#v
 --> X

CLD CMP a,Y nop DEC a,Y
 CMP a,Y

INX SBC #v NOP SBC #v

SED SBC a,Y nop INC a,Y
 SBC a,Y

xC xD xE xF

nop3 ORA a ASL a ASL a
 ORA a

nop3 ORA a,X ASL a,X ASL a,X
 ORA a,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 163 of 2550

Apple II Computer Info

BIT a AND a ROL a ROL a
 AND a

nop3 AND a,X ROL a,X ROL a,X
 AND a,X

JMP a EOR a LSR a LSR a
 EOR a

nop3 EOR a,X LSR a,X LSR a,X
 EOR a,X

JMP (a) ADC a ROR a ROR a
 ADC a

nop3 ADC a,X ROR a,X ROR a,X
 ADC a,X

STY a STA a STX a A&X
 --> a

nop3 STA a,X X&hea+1 A&X
 --> a,Y --> a,X

LDY a LDA a LDX a LDX a
 LDA a

LDY a,X LDA a,X LDX a,Y LDX a,Y
 LDA a,Y

CPY a CMP a DEC a DEC a
 CMP a

nop3 CMP a,X DEC a,X DEC a,X
 CMP a,X

CPX a SBC a INC a INC a
 SBC a

nop3 SBC a,X INC a,X INC a,X
 SBC a,X

A A-register (Accumulator)
S S-register (Stack Pointer)
X X-register
Y Y-register

a 2-byte absolute address
r 1-byte relative address
v 1-byte immediate value
z 1-byte pagezero address

hea high-byte of effective address
 93: the byte at z+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 164 of 2550

Apple II Computer Info

 9B: 3rd byte of instruction
 9E: 3rd byte of instruction

& and-function (logical product)

hang computer hangs up, only way to
 regain control is to hit RESET

nop 1-byte instruction, no operation
nop2 2-byte instruction, no operation
nop3 3-byte instruction, no operation

--> "result is stored in"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 165 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:Articles:Unused.Opcodes.txt
==

So-Called Unused Opcodes

The 6502 has 104 so-called unused opcodes. The various charts and
reference manuals I have checked either leave them blank or call them
"unused", "no-operation", or "future expansion". The 6502 has been
around since 1976; I think we have waited long enough to know there
will be no "expansion". But are they really unused? Do they have any
effect if we try to execute them? Are they really no-ops? If so, how
many bytes does the processor assume for each one?

These questions had never bothered me until I was looking through some
disassembled memory and thought I found evidence of someone USING the
"unused". It turned out they were not, but my curiosity was aroused.
Just for fun, I built a little test routine and tried out the $FF
opcode. Lo and behold! The 6502 thinks it is a 3-byte instruction,
and it changes the A-register and some status bits!

About 45 minutes later I pinned it down: FFxxyy performs exactly the
same as the two instructions FExxyy and FDxxyy. It is just as though
I had executed one and then the other. In other words, anywhere in a
program I find:
 INC VARIABLE,X
 SBC VARIABLE,X
I can substitute:
 .HS FF
 .DA VARIABLE

You might wonder if I will ever find that sequence. I did try writing
a program to demonstrate its use. It has the advantage of saving 3
bytes, and 4 clock cycles. (The SBC instruction is executed DURING
the 7 cycles of the INC instruction!)

 TEST LDX INDEX
 LDA #10 FOR COUNTER(X)=10 TO 39
 STA COUNTER,X
 .1 LDA COUNTER,X GET COUNTER(X)
 JSR $FDDA PRINT IT OUT (OR WHATEVER)
 LDA #39 LIMIT
 .HS FF DO INC AND SBC
 .DA COUNTER ON COUNTER,X
 BCS .1 NEXT
 RTS

Are there any more? Before I could rest my curiosity, I had spent at
least ten more hours, and had figured out what all 104 "unused
opcodes" really do!

The center-fold chart shows the fruit of my detective work. The
shaded opcodes are the "unused" ones. I don't know if every 6502

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 166 of 2550

Apple II Computer Info

behaves the same as mine or not. Mine appears to be made by Synertek,
and has a date code of 7720 (20th week of 1977). It could be that
later versions or chips from other sources (MOS Technology or
Rockwell) are different. If you find yours to be different, please
let me know!

Twelve of the opcodes, all in column "x2", hang up the 6502; the only
way to get out is to hit RESET or turn off the machine.

There are 27 opcodes which appear to have no effect on any registers
or on memory. These could be called "NOP", but some of them are
considered by the 6502 to have 2 or 3 bytes. I have labeled them
"nop", "nop2", and "nop3" to distinguish how many bytes the 6502
thinks it is using. You could call nop2 "always skip one byte" and
nop3 "always skip two bytes".

The action most of the rest perform can be deduced by looking at the
other opcodes in the same row. For example, all of the xF column
(except 8F and 9F) perform two instructions together: first the
corresponding xE opcode, and then the corresponding xD opcode. In the
same way, most of the opcodes in column x7 combine the x6 and x5
opcodes. The x3 column mirrors the x7 and xF columns, but with
different addressing modes. And finally, the xB column mimics the
other three columns, but with more exceptions. Most of the exceptions
are in the 8x and 9x rows.

A few of the opcodes seem especially interesting and potentially
useful. For example, A3xx performs three steps: first it loads xx
into the X-register; then using this new value of X, it moves the byte
addressed by (xx,X) into both the A- and X- registers. Another way of
looking at this one is to say that whatever value xx has is doubled;
then the two pagezero bytes at 2*xx and 2*xx+1 are used as the address
for loading the A- and X-registers. You could use this for something,
couldn't you?

There are five instructions which form the logical product of the A-
and X-registers (without disturbing either register) and store the
result in memory. If we call this new instruction "SAX", for "Store
A&X", we have:

 83 SAX (z,X) 8F SAX a
 87 SAX z 9F SAX a,X
 97 SAX z,Y

We get seven forms of the combination which shift a memory location
using ASL, and then inclusive OR the results into A with an ORA
instruction. If we call this new instruction ALO, we have:

 03 ALO (z,X) 1B ALO a,Y
 13 ALO (z),Y 0F ALO a
 07 ALO z 1F ALO a,X
 17 ALO z,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 167 of 2550

Apple II Computer Info

The same seven forms occur for the combinations ROL-AND, LSR-EOR, and
ROR-ADC. Note that if you don't care what happens to the A-register,
and the status register, these 28 instructions make two extra
addressing modes available to the shift instructions: (z,X) and (z),Y.

Opcodes 4B and 6B might also be useful. You can do an AND-immediate
followed by LSR or ROR on the A-register.

Opcodes 93, 9B, and 9E are really weird! It took a lot of head-
scratching to figure out what they do.

 93 Forms the logical product of the A-register
 and byte the at z+1 (which I call "hea")
 and stores it at (z),Y.

 9B Forms the logical product of the A- and X-
 registers, and stores the result in the S-
 register (stack pointer)! Ouch!
 Then it takes up the third byte of the
 instruction (yy from 9B xx yy) and adds one
 to it (I call it "hea+1"). Then it forms
 the logical product of the new S-register
 and "hea+1" and stores the result at "a,Y".
 Whew!

 9E Forms the logical product of the X-register
 and "hea+1" and stores the result at "a,Y".

We get six forms of the new "LAX" instruction, which loads the same
value into both the A- and X-registers:

 B3 LAX (z),Y AB LAX #v
 A7 LAX z AF LAX a
 B7 LAX z,Y BF LAX a,Y

I skipped over BB, because it is another extremely weird one. It
forms the logical product of the byte at "a,Y" and S-register, and
stores the result in the A-, X-, and S-registers. No wonder they
didn't tell us about it!

Right under that one is the CB instruction. Well, good buddy (please
excuse the CB talk!), it forms the logical product of the A- and X-
registers, subtracts the immediate value (second byte of CB xx), and
puts the result into the X-register.

The Cx and Dx rows provide us with seven forms that do a DEC on a
memory byte, and then CMP the result with the A-register. Likewise,
the Ex and Fx rows give us seven forms that perform INC followed by
SBC.

It is a good thing to be aware that the so-called "unused" opcodes can
be quite dangerous if they are accidentally executed. If your program
goes momentarily wild and executes some data, chances are something
somewhere will get strangely clobbered.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 168 of 2550

Apple II Computer Info

Since all of the above information was deduced by testing and
observation, I cannot be certain that I am 100% correct. I may have
overlooked or mis-interpreted some results, or even made a clerical
error. Furthermore, as I said before, my 6502 may be different from
yours. You can test your own, to see if it works like mine.

And if the whole exercise seems academic to you, you can at least
enjoy the first legible and complete hexadecimal opcode chart for the
6502.

So-Callec Unused Opcodes

The 6502 has 104 so-called unused opcodes. The various charts and
reference manuals I have checkcd either leaue them blank or call them
"unused", "no-operation", or "future expansion". The 6502 has been
around since 1976; I think we have waited long enough to know there
will be no "expansion". But are they really unused? Do they have any
effect if we try to execute them? Are they really no-ops? If so, how
many bytes does the processor assume for each one?

These questions had never bothered me until I was looking through some
disassembled memory and thought I found evidence of someone USING the
"unused". It turned out they were not, but my curiosity was aroused.
Just for fun, I built a little test routine and tried out the $FF
opcode. Lo and behold! The 6502 thinks it is a 3-byte instruction,
and it changes the A-register and some status bits!

About 45 minutes later I pinned it down: FFxxyy performs exactly the
same as the two instructions FExxyy and FDxxyy. It is just as though
I had executed one and then the other. In other words, anywhere in a
program I find:
 INC VARIABLE,X
 SBC VARIABLE,X
I can substitute:
 .HS FF
 .DA VARIABLE

You might wonder if I will ever find that sequence. I did try writing
a program to demonstrate its use. It has the advantage of saving 3
bytes, and 4 clock cycles. (The SBC instruction is executed DURING
the 7 cycles of the INC instruction!)

<show sample program using FF opcode here>

Are there any more? Before I could rest my curiosity, I had spent at
least ten more hours, and had figured out what all 104 "unused
opcodes" really do!

The center-fold chart shows the fruit of my detective work. The
shaded opcodes are the "unused" ones. I don't know if every 6502
behaves the same as mine or not. Mine appears to be made by Synertek,
and has a date code of 7720 (20th week of 1977). It could be that
later versions or chips from other sources (MOS Technology or

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 169 of 2550

Apple II Computer Info

Rockwell) are different. If you find yours to be different, please
let me know!

Twelve of the opcodes, all in column "x2", hang up the 6502; the only
way to get out is to hit RESET or turn off the machine.

There are 27 opcodes which appear to have no effect on any registers
or on memory. These could be called "NOP", but some of them are
considered by the 6502 to have 2 or 3 bytes. I have labeled them
"nop", "nop2", and "nop3" to distinguish how many bytes the 6502
thinks it is using. You could call nop2 "always skip one byte" and
nop3 "always skip two bytes".

The action most of the rest perform can be deduced by looking at the
other opcodes in the same row. For example, all of the xF column
(except 8F and 9F) perform two instructions together: first the
corresponding xE opcode, and then the corresponding xD opcode. In the
same way, most of the opcodes in column x7 combine the x6 and x5
opcodes. The x3 column mirrors the x7 and xF columns, but with
different addressing modes. And finally, the xB column mimics the
other three columns, but with more exceptions. Most of the exceptions
are in the 8x and 9x rows.
A few of the opcodes seem especially interesting and potentially
useful. For example, A3xx performs three steps: first it loads xx
into the X-register; then using this new value of X, it moves the byte
addressed by (xx,X) into both the A- and X- registers. Another way of
looking at this one is to say that whatever value xx has is doubled;
then the two pagezero bytes at 2*xx and 2*xx+1 are used as the address
for loading the A- and X-registers. You could use this for something,
couldn't you?

There are five instructions which form the logical product of the A-
and X-registers (without disturbing either register) and store the
result in memory. If we call this new instruction "SAX", for "Store
A&X", we have:

 83 SAX (z,X)
 87 SAX z
 97 SAX z,Y
 8F SAX a
 9F SAX a,X

We get seven forms of the combination which shift a memory location
using ASL, and then inclusive OR the results into A with an ORA
instruction. If we call this new instruction ALO, we have:

 03 ALO (z,X) 1B ALO a,Y
 13 ALO (z),Y 0F ALO a
 07 ALO z 1F ALO a,X
 17 ALO z,X

The same seven forms occur for the combinations ROL-AND, LSR-EOR, and
ROR-ADC. Note that if you don't care what happens to the A-register,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 170 of 2550

Apple II Computer Info

and the status register, these 28 instructions make two extra
addressing modes available to the shift instructions: (z,X) and (z),Y.

Opcodes 4B and 6B might also be useful. You can do an AND-immediate
followed by LSR or ROR.

Opcodes 93, 9B, and 9E are really weird! It took a lot of head-
scratching to figure out what they do.

 93 Forms the logical product of the A-register
 and byte the at z+1 (which I call "hea")
 and stores it at (z),Y

 9B Forms the logical product of the A- and X-
 registers, and stores the result in the S-
 register (stack pointer)! Ouch!
 Then it takes up the third byte of the
 instruction (yy from 9B xx yy) and adds one
 to it (I call it "hea+1"). Then it forms
 the logical product of the new S-register
 and "hea+1" and stores the result at "a,Y".
 Whew!

 9E Forms the logical product of the X-register
 and "hea+1" and stores the result at "a,Y".

We get six forms of the new "LAX" instruction, which loads the same
value into both the A- and X-registers:

 B3 LAX (z),Y AB LAX #v
 A7 LAX z AF LAX a
 B7 LAX z,Y BF LAX a,Y

I skipped over BB, because it is another extremely weird one. It
forms the logical product of the byte at "a,Y" and S-register, and
stores the result in the A-, X-, and S-registers. No wonder they
didn't tell us about it!

Right under that one is the CB instruction. Well, good buddy (please
excuse the CB talk!), it forms the logical product of the A- and X-
registers, subtracts the immediate value (second byte of CB xx), and
puts the result into the X-register.

The Cx and Dx rows provide us with seven forms that do a DEC on a
memory byte, and then CMP the result with the A-register. Likewise,
the Ex and Fx rows give us seven forms that perform INC followed by
SBC.

Since all of the above information was deduced by testing and
observation, I cannot be certain that I am 100% correct. I may have
overlooked or mis-interpreted some results, or even made a clerical
error. Furthermore, as I said before, my 6502 may be different from
yours. You can test your own, to see if it works like mine. And if

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 171 of 2550

Apple II Computer Info

the whole exercise seems academic to you, you can at least enjoy the
first legible, complete hexadecimal opcode chart for the 6502.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 172 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:DOS3.3:AsmDisk4.0.Mod.txt
==

INT
MON C,I,O
BLOAD ASMDISK 4.0
CALL-151
C089
C089
BLOAD BMC A$D001,A$D001
BLOAD EDITASM A$D13C,A$DI3C
C08A
101C:20 CC 24
24CC:AC 88 C0 20 80 1F 60
24D3:20 D9 24 4C 26 10 A0 00 20 8D 12 20 4A 11
24E1:4C 66 10 00 00 00 00 00 00 00
1063:4C D3 24
1078:4C
1125:60 EA EA
1246:43 4F 50 00 D0
126E:45 44 49 3B D1
20D4:4C B0 24
20D7:4C C7 24
20DA:4C B5 24
24B0:A5 DB 20 FA 19 A5 DC 20 FA 19 20 8B 12 C9 2C
24BF:F0 03 4C 8E 18 4C B5 20 A5 DB 18 90 EB
1009:4C 4E 1E
NOMON C,I,O
1000G

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 173 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:DOS3.3:DOS321.BD00BE9F.txt
==

 1000 * .LIF
 1010 *---------------------------------
 1020 * DOS 3.2.1 DISASSEMBLY $BD00-BE9F
 1030 * BOB SANDER-CEDERLOF 3-3-81
 1040 *---------------------------------
 1050 CURRENT.TRACK .EQ $478
 1060 DRIVE.1.TRACK .EQ $478 THRU 47F (INDEX BY SLOT)
 1070 DRIVE.2.TRACK .EQ $4F8 THRU 4FF (INDEX BY SLOT)
 1080 SEARCH.COUNT .EQ $4F8
 1090 RETRY.COUNT .EQ $578
 1100 SLOT .EQ $5F8
 1110 SEEK.COUNT .EQ $6F8
 1120 *---------------------------------
 1130 PHASE.OFF .EQ $C080
 1140 PHASE.ON .EQ $C081
 1150 MOTOR.OFF .EQ $C088
 1160 MOTOR.ON .EQ $C089
 1170 ENABLE.DRIVE.1 .EQ $C08A
 1180 ENABLE.DRIVE.2 .EQ $C08B
 1190 Q6L .EQ $C08C
 1200 Q6H .EQ $C08D
 1210 Q7L .EQ $C08E
 1220 Q7H .EQ $C08F
 1230 *---------------------------------
 1240 SECTOR .EQ $2D
 1250 TRACK .EQ $2E
 1260 VOLUME .EQ $2F
 1270 DRIVE.NO .EQ $35
 1280 DCT.PNTR .EQ $3C,3D
 1290 BUF.PNTR .EQ $3E,3F
 1300 MOTOR.TIME .EQ $46,47
 1310 IOB.PNTR .EQ $48,49
 1320 *---------------------------------
 1330 PRE.NYBBLE .EQ $B800
 1340 WRITE.SECTOR .EQ $B86A
 1350 READ.SECTOR .EQ $B8FD
 1360 READ.ADDRESS .EQ $B965
 1370 POST.NYBBLE .EQ $B9C1
 1380 SEEK.TRACK.ABSOLUTE .EQ $BA1E
 1390 *---------------------------------
 1400 ERR.WRITE.PROTECT .EQ $10
 1410 ERR.WRONG.VOLUME .EQ $20
 1420 ERR.BAD.DRIVE .EQ $40
 1430 *---------------------------------
 1440 .OR $BD00
 1450 .TA $800
 1460 *---------------------------------
 1470 RWTS STY IOB.PNTR SAVE ADDRESS OF IOB
 1480 STA IOB.PNTR+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 174 of 2550

Apple II Computer Info

 1490 LDY #2
 1500 STY SEEK.COUNT UP TO 2 RE-CALIBRATIONS
 1510 LDY #4
 1520 STY SEARCH.COUNT
 1530 LDY #1 POINT AT SLOT# IN IOB
 1540 LDA (IOB.PNTR),Y SLOT# FOR THIS OPERATION
 1550 TAX
 1560 LDY #15 POINT AT PREVIOUS SLOT#
 1570 CMP (IOB.PNTR),Y SAME SLOT?
 1580 BEQ .3 YES
 1590 TXA SAVE NEW SLOT ON STACK
 1600 PHA
 1610 LDA (IOB.PNTR),Y GET OLD SLOT#
 1620 TAX
 1630 PLA STORE NEW SLOT #
 1640 PHA INTO OLD SLOT# SPOT
 1650 STA (IOB.PNTR),Y
 1660 *---------------------------------
 1670 * SEE IF OLD MOTOR STILL SPINNING
 1680 *---------------------------------
 1690 LDA Q7L,X GO INTO READ MODE
 1700 .1 LDY #8 IF DATA DOES NOT CHANGE
 1710 LDA Q6L,X FOR 96 MICROSECONDS,
 1720 .2 CMP Q6L,X THEN THE DRIVE IS STOPPED
 1730 BNE .1 WOOPS! IT CHANGED!
 1740 DEY TIME UP YET?
 1750 BNE .2 NO, KEEP CHECKING
 1760 PLA GET NEW SLOT # AGAIN
 1770 TAX
 1780 *---------------------------------
 1790 .3 LDA Q7L,X SET UP TO READ
 1800 LDA Q6L,X
 1810 LDA Q6L,X GET CURRENT DATA
 1820 PHA 7 CYCLE DELAY
 1830 PLA
 1840 STX SLOT
 1850 CMP Q6L,X SEE IF DATA CHANGED
 1860 PHP SAVE ANSWER ON STACK
 1870 LDA MOTOR.ON,X TURN ON MOTOR
 1880 LDY #6 COPY POINTERS INTO PAGE ZERO
 1890 .4 LDA (IOB.PNTR),Y
 1900 STA DCT.PNTR-6,Y
 1910 INY DCT.PNTR .EQ $3C,3D
 1920 CPY #10 BUF.PNTR .EQ $3E,3F
 1930 BNE .4
 1940 LDY #3 GET MOTOR ON TIME FROM DCT
 1950 LDA (DCT.PNTR),Y
 1960 STA MOTOR.TIME+1 HIGH BYTE ONLY
 1970 LDY #2 GET DRIVE #
 1980 LDA (IOB.PNTR),Y
 1990 LDY #16 SEE IF SAME AS OLD DRIVE#
 2000 CMP (IOB.PNTR),Y
 2010 BEQ .5 YES
 2020 STA (IOB.PNTR),Y UPDATE OLD DRIVE #

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 175 of 2550

Apple II Computer Info

 2030 PLP SET Z STATUS
 2040 LDY #0 TO FLAG MOTOR OFF
 2050 PHP
 2060 .5 ROR CHECK LSB OF DRIVE #
 2070 BCC .6 DRIVE 2
 2080 LDA ENABLE.DRIVE.1,X
 2090 BCS .7 ...ALWAYS
 2100 .6 LDA ENABLE.DRIVE.2,X
 2110 .7 ROR DRIVE.NO SET SIGN BIT IF DRIVE 1
 2120 PLP WAS MOTOR PROBABLY OFF?
 2130 PHP
 2140 BNE .9 NO, DEFINITELY ON
 2150 *---------------------------------
 2160 * DELAY FROM 150 TO 180 MILLISECONDS,
 2170 * DEPENDING ON WHAT GARBAGE IS IN A-REG
 2180 *---------------------------------
 2190 LDY #7 YES, WAIT A WHILE
 2200 .8 JSR $BA7F ***BUG!!!*** SHOULD BE $BA7B
 2210 DEY BUT IT WORKS ANYWAY....
 2220 BNE .8
 2230 LDX SLOT RESTORE SLOT#
 2240 *---------------------------------
 2250 .9 LDY #4 GET TRACK #
 2260 LDA (IOB.PNTR),Y
 2270 JSR SEEK.TRACK
 2280 PLP WAS MOTOR DEFINITELY ON?
 2290 BNE PROCESS.COMMAND YES, MOTOR ON
 2300 *---------------------------------
 2310 * MOTOR WAS OFF, SO WAIT REST OF MOTOR ON TIME
 2320 * FOR APPLE DISK II, MOTOR ON TIME IS 1 SECOND.
 2330 * PART OF THIS TIME IS COUNTED DOWN WHILE SEEKING
 2340 * FOR THE TRACK.
 2350 *---------------------------------
 2360 .10 LDY #18 ABOUT 100 MICROSECONDS PER TRIP
 2370 .11 DEY
 2380 BNE .11
 2390 INC MOTOR.TIME
 2400 BNE .10
 2410 INC MOTOR.TIME+1
 2420 BNE .10
 2430 *---------------------------------
 2440 * MOTOR ON AND UP TO SPEED, SO LET'S
 2450 * FIND OUT WHAT THE COMMAND IS AND DO IT!
 2460 *---------------------------------
 2470 PROCESS.COMMAND
 2480 LDY #12 GET COMMAND
 2490 LDA (IOB.PNTR),Y
 2500 BEQ .8 NULL COMMAND, LET'S LEAVE
 2510 CMP #4 FORMAT?
 2520 BEQ .9 YES
 2530 ROR SET CARRY=1 IF READ, =0 IF WRITE
 2540 PHP SAVE ON STACK
 2550 BCS .1 READ
 2560 JSR PRE.NYBBLE WRITE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 176 of 2550

Apple II Computer Info

 2570 .1 LDY #48 UP TO 48 RETRIES
 2580 STY RETRY.COUNT
 2590 .2 LDX SLOT GET SLOT NUMBER AGAIN
 2600 JSR READ.ADDRESS
 2610 BCC .5 GOOD ADDRESS READ
 2620 .21 DEC RETRY.COUNT
 2630 BPL .2 KEEP TRYING
 2640 .3 LDA CURRENT.TRACK GET TRACK WE WANTED
 2650 PHA SAVE IT
 2660 LDA #96 PRETEND TO BE ON TRACK 96
 2670 JSR SETUP.TRACK
 2680 DEC SEEK.COUNT
 2690 BEQ .6 NO MORE RE-CALIBRATES
 2700 LDA #4
 2710 STA SEARCH.COUNT
 2720 LDA #0 LOOK FOR TRACK 0
 2730 JSR SEEK.TRACK
 2740 PLA GET TRACK WE REALLY WANT
 2750 .4 JSR SEEK.TRACK
 2760 JMP .1
 2770 *---------------------------------
 2780 .5 LDY $2E TRACK# IN ADDRESS HEADER
 2790 CPY CURRENT.TRACK
 2800 BEQ .10 FOUND RIGHT TRACK
 2810 LDA CURRENT.TRACK
 2820 PHA SAVE TRACK WE REALLY WANT
 2830 TYA SET UP TRACK WE ACTUALLY FOUNG
 2840 JSR SETUP.TRACK
 2850 PLA TRACK WE WANT
 2860 DEC SEARCH.COUNT
 2870 BNE .4 TRY AGAIN
 2880 BEQ .3 TRY TO RE-CALIBRATE AGAIN
 2890 *---------------------------------
 2900 * DRIVE ERROR, CANNOT FIND TRACK
 2910 *---------------------------------
 2920 .6 PLA REMOVE CURRENT.TRACK
 2930 LDA #ERR.BAD.DRIVE
 2940 .7 PLP
 2950 JMP ERROR.HANDLER
 2960 *---------------------------------
 2970 * NULL COMMAND, ON THE WAY OUT....
 2980 *---------------------------------
 2990 .8 BEQ RWTS.EXIT
 3000 *---------------------------------
 3010 * FORMAT COMMAND
 3020 *---------------------------------
 3030 .9 LDY #3 GET VOLUME# WANTED
 3040 LDA (IOB.PNTR),Y
 3050 STA VOLUME SET IN PLACE AND GO FORMAT
 3060 JMP FORMAT
 3070 *---------------------------------
 3080 * READ OR WRITE COMMAND
 3090 *---------------------------------
 3100 .10 LDY #3 GET VOLUME# WANTED

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 177 of 2550

Apple II Computer Info

 3110 LDA (IOB.PNTR),Y
 3120 PHA SAVE DESIRED VOLUME# ON STACK
 3130 LDA VOLUME
 3140 LDY #14 STORE ACTUAL VOLUME NUMBER FOUND
 3150 STA (IOB.PNTR),Y
 3160 PLA GET DESIRED VOLUME# AGAIN
 3170 BEQ .11 IF =0, DON'T CARE
 3180 CMP VOLUME SEE IF RIGHT VOLUME
 3190 BEQ .11 YES
 3200 LDA #ERR.WRONG.VOLUME
 3210 BNE .7 UH OH!
 3220 *---------------------------------
 3230 .11 LDY #5 GET SECTOR# WANTED
 3240 LDA SECTOR AND THE ONE WE FOUND
 3250 CMP (IOB.PNTR),Y AND COMPARE THEM.
 3260 BNE .21 NOT THE RIGHT SECTOR
 3270 PLP GET COMMAND FLAG AGAIN
 3280 BCC WRITE
 3290 JSR READ.SECTOR
 3300 PHP SAVE RESULT; IF BAD, WILL BE COMMAND
 3310 BCS .21 BAD READ
 3320 PLP THROW AWAY
 3330 JSR POST.NYBBLE
 3340 LDX SLOT
 3350 RWTS.EXIT
 3360 CLC
 3370 .HS 24 "BIT" TO SKIP NEXT INSTRUCTION
 3380 *---------------------------------
 3390 ERROR.HANDLER
 3400 SEC INDICATE AN ERROR
 3410 LDY #13 STORE ERROR CODE
 3420 STA (IOB.PNTR),Y
 3430 LDA MOTOR.OFF,X
 3440 RTS
 3450 *---------------------------------
 3460 WRITE JSR WRITE.SECTOR
 3470 BCC RWTS.EXIT
 3480 LDA #ERR.WRITE.PROTECT
 3490 BCS ERROR.HANDLER ...ALWAYS
 3500 *---------------------------------
 3510 * SEEK TRACK SUBROUTINE
 3520 * (A) = TRACK# TO SEEK
 3530 * (DRIVE.NO) IS NEGATIVE IF DRIVE 1
 3540 * AND POSITIVE IF DRIVE 2
 3550 *---------------------------------
 3560 SEEK.TRACK
 3570 PHA SAVE TRACK#
 3580 LDY #1 CHECK DEVICE CHARACTERISTICS TABLE
 3590 LDA (DCT.PNTR),Y FOR TYPE OF DISK
 3600 ROR SET CARRY IF TWO PHASES PER TRACK
 3610 PLA GET TRACK# AGAIN
 3620 BCC .1 ONE PHASE PER TRACK
 3630 ASL TWO PHASES PER TRACK, SO DOUBLE IT
 3640 JSR .1 FIND THE TRACK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 178 of 2550

Apple II Computer Info

 3650 LSR CURRENT.TRACK DIVIDE IT BACK DOWN
 3660 RTS
 3670 *---------------------------------
 3680 .1 STA TRACK
 3690 JSR GET.SLOT.IN.Y
 3700 LDA DRIVE.1.TRACK,Y
 3710 BIT DRIVE.NO WHICH DRIVE?
 3720 BMI .2 DRIVE 1
 3730 LDA DRIVE.2.TRACK,Y
 3740 .2 STA CURRENT.TRACK WHERE WE ARE RIGHT NOW
 3750 LDA TRACK WHERE WE WANT TO BE
 3760 BIT DRIVE.NO WHICH DRIVE?
 3770 BMI .3 DRIVE 1
 3780 STA DRIVE.2.TRACK,Y DRIVE 2
 3790 BPL .4 ...ALWAYS
 3800 .3 STA DRIVE.1.TRACK,Y
 3810 .4 JMP SEEK.TRACK.ABSOLUTE
 3820 *---------------------------------
 3830 * CONVERT SLOT*16 TO SLOT IN Y-REG
 3840 *---------------------------------
 3850 GET.SLOT.IN.Y
 3860 TXA SLOT*16 FROM X-REG
 3870 LSR
 3880 LSR
 3890 LSR
 3900 LSR
 3910 TAY SLOT INTO Y
 3920 RTS
 3930 *---------------------------------
 3940 * SET UP CURRENT TRACK LOCATION
 3950 * IN DRIVE.1.TRACK OR DRIVE.2.TRACK VECTORS,
 3960 * INDEXED BY SLOT NUMBER.
 3970 *
 3980 * (A) = TRACK# TO BE SET UP
 3990 *---------------------------------
 4000 SETUP.TRACK
 4010 PHA SAVE TRACK # WE WANT TO SET UP
 4020 LDY #2 GET DRIVE NUMBER FROM IOB
 4030 LDA (IOB.PNTR),Y
 4040 ROR SET CARRY IF DRIVE 1, CLEAR IF 2
 4050 ROR DRIVE.NO MAKE NEGATIVE IF 1, POSITIVE IF 2
 4060 JSR GET.SLOT.IN.Y
 4070 PLA GET TRACK #
 4080 ASL DOUBLE IT
 4090 BIT DRIVE.NO WHICH DRIVE?
 4100 BMI .1 DRIVE 1
 4110 STA DRIVE.2.TRACK,Y
 4120 BPL .2 ...ALWAYS
 4130 .1 STA DRIVE.1.TRACK,Y
 4140 .2 RTS
 4150 *---------------------------------
 4160 FORMAT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 179 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:DOS3.3:S.AmperIntf.txt
==

 1000 *---------------------------------
 1010 * & COMMAND INTERFACE
 1020 *
 1030 * &<COMMAND STRING>
 1040 *
 1050 *---------------------------------
 1060 *
 1070 * ORIGIN MUST BE SET SO THAT LAST BYTE
 1080 * IS AT $0FFF.
 1085 .OR $FD1
 1090 *---------------------------------
 1100 LDA #AMPERSAND.INTERFACE-$103D
 1110 STA $103C
 1120 RTS
 1130 *---------------------------------
 1140 JMP $1000
 1150 *---------------------------------
 1160 AOPTBL .HS 0503
 1170 .AS /EDI/
 1180 .DA EDIT-1
 1190 .AS /COP/
 1200 .DA COPY-1
 1210 .AS /SYM/
 1220 .DA STPRNT-1
 1230 .HS 00 END OF TABLE
 1240 *---------------------------------
 1250 EDIT .EQ $1010
 1260 COPY .EQ $1010
 1270 STPRNT .EQ $1E4E
 3000 *---------------------------------
 3010 AMPERSAND.INTERFACE
 3020 CMP #'&
 3030 BEQ .1
 3040 JMP $1063
 3050 .1 LDA #AOPTBL
 3060 STA $02
 3070 LDA /AOPTBL
 3080 STA $03
 3090 LDA #1
 3100 JMP $1047

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 180 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:DOS3.3:S.BernardMemD.txt
==

 1000 *---------------------------------
 1010 *
 1020 * APPLE II RELOCATABLE MEMORY DUMP PROGRAM
 1030 * BY ROBERT H. BERNARD
 1040 * 35 DOGWOOD LANE
 1050 * WESTPORT, CT 06880
 1060 *
 1070 * JANUARY 17, 1981
 1080 *
 1090 * COMMERCIAL RIGHTS RESERVED
 1100 *
 1110 *---------------------------------
 1120 * MONITOR ROM ROUTINES
 1130 *---------------------------------
 1140 MON.COUT .EQ $FDED
 1150 MON.RDKEY .EQ $FD0C
 1160 MON.GTLNZ .EQ $FD67
 1170 MON.ZMODE .EQ $FFC7
 1180 MON.GETNUM .EQ $FFA7
 1190 MON.CROUT .EQ $FD8E
 1200 MON.PRNTYX .EQ $F940
 1210 MON.PRBL2 .EQ $F94A
 1220 MON.PRBYTE .EQ $FDDA
 1230 MON.MON .EQ $FF65
 1240 MON.HOME .EQ $FC58
 1250 MON.SETMOD .EQ $FE18
 1260 MON.OUTPOR .EQ $FE95 SET OUTPUT PORT TO SLOT (A)
 1270 MON.SETVID .EQ $FE93 SET VIDEO
 1280 *---------------------------------
 1290 * I/O ADDRESSES
 1300 *---------------------------------
 1310 KBD .EQ $C000 KEYBOARD
 1320 KBSTRB .EQ $C010 KBD RESET STROBE
 1330 *---------------------------------
 1340 * PAGE-ZERO VARIABLES
 1350 *---------------------------------
 1360 PGCNT .EQ $2E LINES LEFT THIS PAGE
 1370 ITEMCT .EQ $30 ITEMS PER LINE
 1380 OPTION .EQ $31 SAME AS MON "MODE"
 1390 PROMPT .EQ $33 LOC OF GETLN PROMPT CHAR
 1400 YSAV .EQ $34 POINTER TO IN BUFFER
 1410 FRADRL .EQ $3C STARTING ADR LO ORDER
 1420 FRADRH .EQ $3D ..HI ORDER
 1430 TOADRL .EQ $3E ENDING ADR LO ORDER
 1440 TOADRH .EQ $3F ..HI ORDER
 1450 *---------------------------------
 1460 * USER-CHANGEABLE PARAMETERS
 1470 *---------------------------------
 1480 SCITMS .EQ 16 BYTES PER LINE SCREEN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 181 of 2550

Apple II Computer Info

 1490 PRITMS .EQ 32 BYTES PER LINE PRINTER
 1500 ITMSPG .EQ 8 ITEMS PER PAGE
 1510 PRSLOT .EQ 1 PRINTER SLOT
 1520 *---------------------------------
 1530 .OR $0800
 1540 *---------------------------------
 1550 MEMDMP JSR MON.SETVID SET PR#0
 1560 LDA #$BF '?' FOR BOUNDS
 1570 STA PROMPT SET PROMPT CHAR
 1580 JSR MON.GTLNZ CR, THEN GET INPUT
 1590 JSR MON.ZMODE SET HEX DECODE MODE
 1600 JSR MON.GETNUM
 1610 STY YSAV REMEMBER SCAN POS.
 1620 CPX #0 ANY ADR SCANNED?
 1630 BNE .3 YES
 1640 RTS NO. TERMINATE
 1650 .DA MON.MON MONITOR ENTRY (IN CASE YOU WANT
 1660 * TO CHANGE RETURN TO "JMP MON.MON")
 1670 *
 1680 .3 LDA #-SCITMS BYTES PER SCREEN LINE
 1690 STA ITEMCT ITEMS PER LINE
 1700 JSR MON.SETMOD SET TO SCAN 2ND ARG
 1710 CMP #$AD IS OPTION = '-' ?
 1720 BNE .2 NO. CHECK OTHERS
 1730 INC OPTION MAKE '.'
 1740 LDA #PRSLOT PRINTER SLOT NO
 1750 JSR MON.OUTPOR SET OUTPUT PORT
 1760 LDA #-PRITMS BYTES PER PRINTER LINE
 1770 STA ITEMCT ITEMS PER LINE
 1780 BNE .1 GO GET 2ND ARG
 1790 *
 1800 .2 CMP #$AE '.' ?
 1810 BEQ .1 YES. 2 ARGS
 1820 CMP #$AC ','?
 1830 BNE SETPGL ONLY ONE ARG
 1840 .1 LDY YSAV PTR TO IN BUFFER
 1850 JSR MON.GETNUM SCAN 2ND ARG
 1860 STY YSAV PTR TO IN BUFFER
 1870 SETPGL LDA #ITMSPG ITEMS PER PAGE
 1880 STA PGCNT
 1890 *
 1900 NEXTLN JSR MON.CROUT SKIP A LINE
 1910 LDA ITEMCT -ITEMS PER LINE
 1920 AND FRADRL STARTING ADR 0 MOD ITEMCT
 1930 STA FRADRL
 1940 TAX
 1950 LDY FRADRH ..TO PRINT
 1960 JSR MON.PRNTYX PRINT IT IN HEX
 1970 LDX ITEMCT NO OF BYTES THIS LINE
 1980 LDY #0 POINTER
 1990 BEQ NOBLNK DON'T SPACE FIRST TIME
 2000 *
 2010 CHKKEY LDA KBD KEY DOWN?
 2020 BPL CKDONE NO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 182 of 2550

Apple II Computer Info

 2030 LDA KBSTRB YES. CLEAR KEYBOARD
 2040 SEC PREPARE FOR
 2050 MDMP2 BCS MEMDMP JMP TO START
 2060 *
 2070 NXTCHR TYA TEST FOR
 2080 AND #$03 0 MOD 4
 2090 BNE NOBLNK
 2100 LDA #$A0
 2110 JSR MON.COUT PRINT A BLANK
 2120 NOBLNK LDA #$A0
 2130 JSR MON.COUT PRINT A BLANK
 2140 LDA (FRADRL),Y GET CHAR TO PRINT
 2150 CMP #$20 CNTRL CHAR?
 2160 BCC .1 YES. SUBSTITUTE BLANK
 2170 CMP #$80 CNTRL CHAR?
 2180 BCC .2 NO. OK TO PRINT
 2190 CMP #$A0 CNTRL CHAR?
 2200 BCS .2 NO. OK TO PRINT
 2210 .1 LDA #$A0 SUBSTITUTE BLANK
 2220 .2 JSR MON.COUT
 2230 INY POINT AT NEXT
 2240 INX DONE ON THIS LINE?
 2250 BNE NXTCHR NO
 2260 JSR MON.CROUT YES. CR
 2270 * PREPARE TO PRINT SAME ITEMS IN HEX
 2280 LDX #3
 2290 JSR MON.PRBL2 OUTPUT (X) BLANKS
 2300 LDX ITEMCT ITEMS PER LINE
 2310 LDY #0 POINTER
 2320 BEQ NXTHEX (JMP)
 2330 *
 2340 SETPL1 BCS SETPGL JUMP TO SET PG LENGTH
 2350 CKOPT CMP #$AC NO. OPTION=',' ?
 2360 NXTLN1 BNE NEXTLN NO. JUMP TO PRINT
 2370 CKDONE LDA FRADRL TEST IF DONE
 2380 CMP TOADRL
 2390 LDA FRADRH
 2400 SBC TOADRH
 2410 BCC NEXTLN FROM < TO
 2420 MDMP1 BCS MDMP2 JMP TO START
 2430 *
 2440 NXTHEX TYA TEST FOR
 2450 AND #$03 0 MOD 4
 2460 BNE .1 IF NOT, SKIP BLANK
 2470 LDA #$A0
 2480 JSR MON.COUT PRINT A BLANK
 2490 .1 LDA (FRADRL),Y BYTE TO OUTPUT
 2500 JSR MON.PRBYTE OUTPUT IN HEX
 2510 INY NEXT
 2520 INX DONE ON THIS LINE?
 2530 BNE NXTHEX NO
 2540 JSR MON.CROUT YES. CR
 2550 * ADVANCE DUMP ADDRESS
 2560 SEC PREPARE FOR SUBTRACT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 183 of 2550

Apple II Computer Info

 2570 LDA FRADRL INCREMENT ADDRESS
 2580 SBC ITEMCT -ITEMS PER LINE
 2590 STA FRADRL
 2600 BCC .2 NO CARRY
 2610 INC FRADRH PAGE BOUNDARY
 2620 BEQ MDMP1 END OF MEMORY
 2630 .2 LDA OPTION
 2640 CMP #$AE '.'? (OPTION 1)
 2650 BEQ CHKKEY NO. CHECK IF KEY DOWN
 2660 CHKPAG DEC PGCNT PAGE END?
 2670 BNE CKOPT NO. CHECK OPTION
 2680 PAUSE JSR MON.RDKEY GET A CHAR
 2690 CMP #$83 CNTRL-C?
 2700 BEQ MDMP1 YES. START OVER
 2710 CMP #$C2 WAS CHAR READ A 'B'?
 2720 BEQ BACKUP YES
 2730 LDA OPTION
 2740 CMP #$AC OPTION=',' ?
 2750 BEQ SETPL1 YES
 2760 ADVNCE INC PGCNT ONE MORE TIME
 2770 BNE NXTLN1 JMP TO NXTLN
 2780 *
 2790 BACKUP LDA FRADRL CARRY IS SET
 2800 SBC #144 BACKUP SCITMS*(ITMSPG+1) BYTES
 2810 STA FRADRL SAVE LO ORDER
 2820 BCS .1 NO CARRY
 2830 DEC FRADRH PROPOGATE CARRY
 2840 .1 JSR MON.HOME CLEAR SCREEN
 2850 SEC SIMULATE JMP
 2860 BCS SETPL1 ..TO SETPGL
 2870 *
 2880 ZZSIZE .EQ *-MEMDMP PROGRAM SIZE
 9999 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 184 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8103:DOS3.3:Welman.Modifier.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 185 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:Articles:AS.Substr.srch.txt
==

Substring Search Function for Applesoft

Lee Reynolds' article in the January 1981 Call A.P.P.L.E. touched off
this project. When you are searching through text arrays for
keywords, or through a mailing list for someone who lives on "XYZ
Street", Applesoft can be vveeerrrrryyy slow. This subroutine, linked
in through the famous ampersand feature, will give you the speed your
Apple is famous for.

Lee's program was quite similar to this one, but it did not allow the
keyword or the string-to-be-searched to be expressions. He left that
extension as "an exercise for the reader". Being one reader badly in
need of exercise, I took up the challenge.

Although it is not really necessary, I used one of the newly
discovered "secret" opcodes (which I wrote about last month) at line
2060. If you like, you can replace that line with:
 2060 GS1 LDA (FACMO),Y
 2065 TAX

Here is a sample Applesoft program which uses the Substring Search
Subroutine. Line 10 loads the subroutine and calls 768 to link in the
ampersand vector. Line 120 reads in your search key. If you just hit
the RETURN key, the program quits.

Line 130 gets the next string to be searched from the DATA list. If
the value is ".", we are at the end of the list, so it loops back to
line 110.

Line 140 calls our substring search subroutine to see if the key
string can be found in the search string. If not, it jumps back to
line 130 to get another search string. Lines 150-180 print the search
string, emphasizing the portion that matched the key string by
printing it in inverse.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 186 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:Articles:DOS.Format.List.txt
==

Commented Listing of DOS 3.2.1 Format

Here is the second installment of DOS disassembly, covering the area
from $BEA0 through $BFFF. If you read the listing in last month's AAL
carefully, you probably noted that it ended with the label definition
"FORMAT", but no code followed. Well, here it is!

FORMAT turns a blank diskette into one with address headers recorded
on every track. Otherwise, the disk is empty. No directory is
written into track $11 yet, nor is any DOS recorded yet in tracks 0,
1, and 2. When you use the INIT command, the first step exectured is
to format the disk; after formatting, a DOS image and empty directory
are written; then your HELLO program is SAVEd.

By the way, there are a lot of differences between DOS 3.2.1 and DOS
3.3 FORMAT routines. Later in this issue of AAL you will find a
commented listing of the DOS 3.3 version. If you compare the two, you
will find at least these major differences:

1. DOS 3.2.1 formats 13 sectors per track, DOS 3.3 formats 16 sectors
per track.
2. DOS 3.2.1 writes an address header followed by a long series of
$FF bytes where the data should be; DOS 3.3 writes an address header
followed by a standard data block (the data is all $00 bytes).
3. DOS 3.2.1 writes an address header starting with $D5AAB5; DOS 3.3
writes an address header starting with $D5AA96.
4. DOS 3.2.1 verifies correct format by trying to read sector 0
immediately after formatting the last sector; no other verification is
made. DOS 3.3 tries to read EVERY sector just formatted; it does a
complete check of the track.
5. DOS 3.2.1 writes the sectors in the order 0, 10, 7, 4, 1, 11, 8,
5, 2, 12, 9, 6, 3; DOS 3.3 writes them in sequential order 0, 1, 2,
... , 15.

The Apple Disk Interface depends on critical software timing to
operate correctly. You will find many strange sequences of code (such
as PHA, PLA, NOP, PHA, PLA between $BF47 and $BF4B) which are for
timing purposes. If you are interested in counting cycles, the timing
for each opcode-address mode combination are listed in the Quick
Reference Card that came with your S-C ASSEMBLER II Version 4.0.

Commented Listing of DOS 3.3 Format

As promised three or four pages ago, here is my rendition of the DOS
3.3 Format routine.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 187 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:Articles:Front.Page.txt
==

Volume 1 -- Issue 7 April, 1981

As of today the total distribution of the Apple Assembly Line is
nearly 350. Let's shoot for 1000 by the end of 1981! I will have a
full page ad in the next eight issues of NIBBLE, so I think 1000 is a
reasonable goal. Thank you for your support!

In This Issue...

Text File I/O in Assembly Language Programs 2
Applesoft Internal Entry Points 4
Patch S-C Assembler II for More Errors 6
Fast String Input Routine for Applesoft 6
Hiding Things Under DOS 10
Commented Listing of DOS 3.2.1 Format 11
Commented Listing of DOS 3.3 Format 14
Substring Search for Applesoft 18

Cross Reference (XREF) for S-C ASSEMBLER II

Bob Kovacs has a new product, one which many of you have asked me for.
It enables you to produce a complete cross reference listing of all
symbols used in an assembly language program. See his ad on page 7
for a description and ordering information.

I am honored to have three companies (Rak-Ware, Decision Systems, and
Flatland Software) producing software to complement my assembler!

80 Columns on Your Printer

For some reason unknown to me Apple's Parallel Interface Card comes
with at least three different ROM's. There seems to me no indication
on the package which one you are getting, and no listing in the manual
of the exact ROM on the board. This leads to confusion, because some
ROM versions will print 80-column assembly listings at the drop of a
hat (Just type PR#1 and ASM, and you have it!); but others require you
special treatment.

If you have the latter type, I have found that this works:

 :PR#1 (assuming slot # 1)
 :$579:50 ($578 + slot#)
 :ASM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 188 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:Articles:Hiding.Undr.DOS.txt
==

Hiding Things Under DOS..........................Rick Hatcher

In issue number 5/1980 of NIBBLE, a small article by William Reynolds
III tells how to do something I have wondered about for a long time.
That is how to move the HIMEM pointer down so that machine language
code or something else can be put out of the way and protected. For
example: I have a lower-case routine I like to use on key input; I
also like to use the character display routine from Lawrence Hall of
Science which is hooked into the control-Y pointer. This is one way
to dump memory in both hex and ASCII. I have looked for protected
areas but until now the only place seemed to be from $300 to $3CF.
This is a little over 200 bytes, and I needed about 400.

Neil Konzen's Program Line Editor (from Call A.P.P.L.E.) moves the
file buffers down and leaves space between the buffers and DOS...but
the manual which I sneaked a look at does not tell how to do it. The
article in NIBBLE on page 40 finally revealed the secret. The file
buffers are located by a pointer at locations $9D00 and $9D01 (least
significant byte first, as usual). A DOS routine at $A7D4 builds the
buffers using this pointer and the value of MAXFILES (at $AA57).
[note: all addresses assume a 48K system]

All you have to do is change the address at $9D00.9D01 and call the
routine at $A7D4. I wanted to create a space of $200 bytes (512
decimal). The normal value at $9D00.9D01 is $9CD3. I changed it to
$9AD3, and then typed A7D4G in the monitor. The value of HIMEM was
automatically changed to $9400 from the usual $9600. The protected
area is from $9B00 to $9CFF. The buffers are located from $9400 to
$9AFF and DOS is located from $9D00 to BFFF. If a MAXFILES command is
used it changes HIMEM but the buffer top at $9AFF stays unchanged.

To make space like this from an Applesoft program, here is all you
need:

 100 POKE 40193,154
 110 POKE 40192,211
 120 CALL 42964

It isn't so easy in Integer BASIC, because the routine moves HIMEM
without moving the program down in memory. (Remember Integer BASIC
programs are at the top of memory up against HIMEM; Applesoft programs
are at the low end of memory.) The NIBBLE article gives a method for
Integer BASIC, but I haven't tried it.

I use an Applesoft HELLO program which first does the three lines
above, and then BRUNs or BLOADs the code I want to hide. The BRUN
portion sets up the I/O hooks at $36.39 and sets up the control-Y
vector at $3F8. I use the BLOAD if I want the code resident but not
hooked in.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 189 of 2550

Apple II Computer Info

Once the space is made, it stays there. If you INIT a slave disk, the
slave has the same change.

The NIBBLE article reveals a few more details about the buffers in
which you may be interested.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 190 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:Articles:Part.1.txt
==

Patch S-C Assembler II for More Errors

Some of you have asked for a way to see all your errors at once. If
you patch Version 4.0 in this simple way, you will see all error
messages during one ASM, instead of aborting the assembly after the
first error.

Look at $1752 to $1754; you should see 20 81 1A. If you do, then make
this patch:

 :$1752:4C 8E 18

Now try an assembly of some source code with several errors in it.
You will see all the errors on your screen. Or if your printer is on,
they will all print.

Personally, I liked it better the other way. But if you never make
more than one error per program, you won't be able to tell the
difference!

Fast String Input Routine for Applesoft

Yet another use for the imperious ampersand! This program will read a
line from the keyboard or a text file into a string variable. It will
accept commas and colons without complaint, too. No more "EXTRA
IGNORED" messages, and much less chance of garbage collection tying
things up.

The program is shown here with the origin set to $0300, the most
popular place in your Apple. If that taxi is already full, you can
change the origin to whatever you like. In fact, the subroutine
itself is completely relocatable. You can put it anywhere in memory
you like, just so you set $3F6 and 3F7 to point to it.

Lines 1160-1220 are executed if you BRUN a file with this program on
it. They put a JMP GET into $3F5, so that the "&" will call my
subroutine. Once this code is executed, you can execute statements
like "&GET A$" to read a line into a string.

Lines 1240-1500 are the input subroutine. At line 1240 the token
following the ampersand is tested; it should be $BE, which is the
token for "GET". If not, JMP $DEC9 makes your screen say "SYNTAX
ERROR"!

Lines 1270 and 1280 set up the address of the string variable in
locations $83 and $84. We will use this later to tell Applesoft where
the input line is.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 191 of 2550

Apple II Computer Info

Lines 1290-1360 change the prompt symbol to a bell (in case you
backspace too much) and call on the monitor input routine to read a
line. After the line is read, the prompt is restored to whatever it
was before. The length of the input line is in the X-register, and
the line itself is in the buffer starting at $0200.

Lines 1370 and 1380 call on Applesoft to set aside space for the input
line in the string area. This may force garbage collection if you are
about out of memory at the time. GETSPA leaves the address of the
start of the slot set aside for our input line in locations $71 and
$72.

Lines 1390-1460 store the length and address of the input line into
the string variable. The address is of the slot GETSPA just reserved.

Lines 1470-1500 call on MOVSTR to copy the input line from the
monitor's input buffer (at $0200) into the slot reserved by GETSPA.

Now if you want to read some data off the disk which might have commas
and colons in it, you can do it like this:

100 PRINT CHR$(4) "OPEN MY.FILE"
110 PRINT CHR$(4) "READ MY.FILE"
120 FOR I = 1 TO 10
130 & GET A$(I)
140 NEXT I

Applesoft Internal Entry Points

An excellent article appeared just over a year ago (by the same title)
in The Apple Orchard, Volume 1, Number 1, March/April 1980. John
Crossley of Apple Computer, Inc. wrote it. He revealed most of the
usable entry points within the Applesoft ROM, and many details on how
they work and how to use them. If you don't have that magazine, go
get one right away. They are available at some stores, through some
local Apple clubs, and directly from the publisher (the Internatioal
Apple Corps). There are a few typographical errors, but you should be
able to figure them out by comparing with a disassembly.

To get you started, I have made up a list of my own which includes the
starting addresses for all the keyword routines.
 I got these from the ROM itself. The keyword list starts at $D0D0,
and a parallel list of addresses starts at $D000. The addresses in
the list are all low-byte-first, and are all pointing to one byte
before the actual start. That is because Applesoft branches to the
appropriate routine by placing the address from this list on the stack
and then using RTS (see AAL issue #1, page 11, for an explanation of
this technique).

This chart shows all the token values for Applesoft, and the address
where the token is processed.

 token keyword addr

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 192 of 2550

Apple II Computer Info

80 128 END D870
81 129 FOR D766
82 130 NEXT DCF9
83 131 DATA D995
84 132 INPUT DBB2
85 133 DEL F331
86 134 DIM DFD9
87 135 READ DBE2
88 136 GR F390
89 137 TEXT F399
8A 138 PR# F1E5
8B 139 IN# F1DE
8C 140 CALL F1D5
8D 141 PLOT F225
8E 142 HLIN F232
8F 143 VLIN F241
90 144 HGR2 F3D8
91 145 HGR F3E2
92 146 HCOLOR= F6E9
93 147 HPLOT F6FD
94 148 DRAW F769
95 149 XDRAW F76F
96 150 HTAB F7E7
97 151 HOME FC58
98 152 ROT= F721
99 153 SCALE= F727
9A 154 SHLOAD F775
9B 155 TRACE F26D
9C 156 NOTRACE F26F
9D 157 NORMAL F273
9E 158 INVERSE F277
9F 159 FLASH F280
A0 160 COLOR= F24F
A1 161 POP D96B
A2 162 VTAB F256
A3 163 HIMEM: F286
A4 164 LOMEM: F2A6
A5 165 ONERR F2CB
A6 166 RESUME F318
A7 167 RECALL F3BC
A8 168 STORE F39F
A9 169 SPEED= F262
AA 170 LET DA46
AB 171 GOTO D93E
AC 172 RUN D912
AD 173 IF D9C9
AE 174 RESTORE D849
AF 175 & 03F5
B0 176 GOSUB D921
B1 177 RETURN D96B
B2 178 REM D9DC
B3 179 STOP D86E
B4 180 ON D9EC
B5 181 WAIT E784

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 193 of 2550

Apple II Computer Info

 token keyword addr

B6 182 LOAD D8C9
B7 183 SAVE D8B0
B8 184 DEF E313
B9 185 POKE E77B
BA 186 PRINT DAD5
BB 187 CONT D896
BC 188 LIST D6A5
BD 189 CLEAR D66A
BE 190 GET DBA0
BF 191 NEW D649
C0 192 TAB(
C1 193 TO
C2 194 FN
C3 195 SPC(
C4 196 THEN
C5 197 AT
C6 198 NOT
C7 199 STEP
C8 200 +
C9 201 -
CA 202 *
CB 203 /
CC 204 ^
CD 205 AND
CE 206 OR
CF 207 >
D0 208 =
D1 209 <
D2 210 SGN EB91
D3 211 INT EC24
D4 212 ABS EBB0
D5 213 USR 000A
D6 214 FRE E2DF
D7 215 SCRN(D413
D8 216 PDL DFCE
D9 217 POS E300
DA 218 SQR EE8E
DB 219 RND EFAF
DC 220 LOG E942
DD 221 EXP EF0A
DE 222 COS EFEB
DF 223 SIN EFF2
E0 224 TAN F03B
E1 225 ATN F09F
E2 226 PEEK E765
E3 227 LEN E6D7
E4 228 STR$ E3C6
E5 229 VAL E708
E6 230 ASC E6E6
E7 231 CHR$ E647
E8 232 LEFT$ E65B

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 194 of 2550

Apple II Computer Info

E9 233 RIGHT$ E687
EA 234 MID$ E691

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 195 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:Articles:Text.File.IO.txt
==

Text File I/O in Assembly Language Programs

A surprisingly large number of people have written or called to ask
the same question:

"How can I read or write a text file from my program? I know I can
issue OPEN, READ, WRITE, and CLOSE commands just like in Applesoft --
by outputting a control-D and the command string. But after that,
where is the data?"

It is really very simple, and after I tell you, you may be just as
embarrassed as they were!

Remember that in Applesoft, after opening a file and setting it up to
read with the OPEN and READ commands, you actually read it with normal
INPUT statements. In assembly language you do the same thing. You
can either input a line by calling the monitor routine at $FD6F, or
you can read character-by-character by calling the character input
routine at $FD0C. After a JSR $FD0C, the input character will be in
the A-register. After a JSR $FD6F, the input line will be in the
monitors buffer starting at $0200, and the X-register will contain the
number of characters in the line (not counting the carriage return).

Also remember that after using the OPEN and WRITE commands, all you do
in Applesoft to write on a text file is use the normal PRINT
statement. In the same way, from assembly language, you just call the
monitor print character routine at $FDED. The character to be written
should be in the A-register, and then use JSR $FDED.

Here is a little program which opens a text file and reads it into a
buffer at $4000. It demonstrates a few more tricks you might need to
know, as well.

Lines 1180-1270 patch DOS so that it thinks you are executing an
Applesoft program. (If you really are calling this from a RUNning
Applesoft program, you can skip lines 1190 and 1200.) We want to be
able to issue DOS commands by printing control-D and the command
string, so we have to be RUNning. We want to be able to tell when the
end-of-file comes without getting an "OUT OF DATA" error, so we turn
on the Applesoft ON ERR flag and set it up to branch to our own
END.OF.DATA routine.

Lines 1310-1350 print the DOS OPEN and READ commands. The message
printer is a very simple loop at lines 1630-1690.

Lines 1380-1500 read the characters from the file and store them in a
buffer at $4000. I save the stack pointer before the loop so I can
restore it after the end-of-file occurs. Lines 1530-1570 restore the
stack pointer, close the file, and return to DOS.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 196 of 2550

Apple II Computer Info

I really should clean up the mess I created with lines 1180-1270, but
I will leave that as an exercise for the reader.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 197 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:DOS3.3:Demo.Txt.Fl.Rd.txt
==

 1000 *---------------------------------
 1010 * DEMONSTRATION OF READING A TEXT FILE
 1020 *---------------------------------
 1030 PROMPT.CHAR .EQ $33
 1040 CURRENT.LINE.NO .EQ $75,76
 1050 BUF.PNTR .EQ $9D,9E
 1060 DOS.LANGUAGE.FLAG .EQ $AAB6
 1070 ONERR.FLAG .EQ $D8
 1080 DOS.ONERR.PNTR .EQ $9D5A,9D5B
 1090 DOS.REENTRY .EQ $3D0
 1100 MON.RDKEY .EQ $FD0C
 1110 MON.COUT .EQ $FDED
 1120 *---------------------------------
 1130 TEXT.READER
 1140 *---------------------------------
 1150 * PATCH DOS SO END OF FILE WILL
 1160 * BRANCH TO MY "END.OF.DATA"
 1170 *---------------------------------
 1180 LDA #1 TELL DOS WE ARE IN APPLESOFT
 1190 STA DOS.LANGUAGE.FLAG
 1200 STA CURRENT.LINE.NO+1 NOT IN DIRECT MODE
 1210 STA PROMPT.CHAR NOT DIRECT MODE
 1220 LDA #$FF TURN ON "ON ERR"
 1230 STA ONERR.FLAG
 1240 LDA #END.OF.DATA
 1250 STA DOS.ONERR.PNTR
 1260 LDA /END.OF.DATA
 1270 STA DOS.ONERR.PNTR+1
 1280 *---------------------------------
 1290 * OPEN THE FILE
 1300 *---------------------------------
 1310 LDY #QOPEN-QTS
 1320 JSR QUOTE.PRINT
 1330 LDY #QREAD-QTS
 1340 JSR QUOTE.PRINT
 1350 *---------------------------------
 1360 * READ THE FILE
 1370 *---------------------------------
 1380 TSX
 1390 STX OLD.STACK.PNTR
 1400 LDA #BUFFER
 1410 STA BUF.PNTR
 1420 LDA /BUFFER
 1430 STA BUF.PNTR+1
 1440 .1 JSR MON.RDKEY READ CHARACTER
 1450 LDY #0
 1460 STA (BUF.PNTR),Y
 1470 INC BUF.PNTR
 1480 BNE .1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 198 of 2550

Apple II Computer Info

 1490 INC BUF.PNTR+1
 1500 BNE .1 ...ALWAYS
 1510 *---------------------------------
 1520 END.OF.DATA
 1530 LDX OLD.STACK.PNTR
 1540 TXS
 1550 LDY #QCLOSE-QTS
 1560 JSR QUOTE.PRINT
 1570 JMP DOS.REENTRY
 1580 *---------------------------------
 1590 * PRINT A MESSAGE
 1600 * MESSAGE STARTS AT QTS,Y
 1610 * MESSAGE ENDS WITH 00 BYTE
 1620 *---------------------------------
 1630 QUOTE.PRINT
 1640 .1 LDA QTS,Y
 1650 BEQ .2
 1660 JSR MON.COUT
 1670 INY
 1680 BNE .1 ...ALWAYS
 1690 .2 RTS
 1700 *---------------------------------
 1710 QTS .EQ *
 1720 QOPEN .HS 84 CONTROL-D
 1730 .AS -/OPEN TESTFILE/
 1740 .HS 8D00
 1750 QREAD .HS 84 CONTROL-D
 1760 .AS -/READ TESTFILE/
 1770 .HS 8D00
 1780 QCLOSE .HS 84 CONTROL-D
 1790 .AS -/CLOSE/
 1800 .HS 8D00
 1810 *---------------------------------
 1820 OLD.STACK.PNTR .BS 1
 1830 *---------------------------------
 1840 BUFFER .EQ $4000
 1850 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 199 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:DOS3.3:DOS321BEAO.BFFF.txt
==

 1000 * .LIST OFF
 1010 *---------------------------------
 1020 * DOS 3.2.1 DISASSEMBLY $BEA0-BFFF
 1030 * BOB SANDER-CEDERLOF 3-26-81
 1040 *---------------------------------
 1050 CURRENT.TRACK .EQ $478
 1060 *---------------------------------
 1070 PHASE.OFF .EQ $C080
 1080 PHASE.ON .EQ $C081
 1090 MOTOR.OFF .EQ $C088
 1100 MOTOR.ON .EQ $C089
 1110 ENABLE.DRIVE.1 .EQ $C08A
 1120 ENABLE.DRIVE.2 .EQ $C08B
 1130 Q6L .EQ $C08C
 1140 Q6H .EQ $C08D
 1150 Q7L .EQ $C08E
 1160 Q7H .EQ $C08F
 1170 *---------------------------------
 1180 SECTOR .EQ $2D
 1190 VOLUME .EQ $2F
 1200 TRACK.CNTR .EQ $41
 1210 DATA.CNTR .EQ $46
 1220 SYNC.CNT .EQ $47
 1230 CONST.AA .EQ $4A
 1240 FILL.CNTR .EQ $4B
 1250 FMT.SECTOR .EQ $4B
 1260 *---------------------------------
 1270 READ.ADDRESS .EQ $B965
 1280 SEEK.TRACK.ABSOLUTE .EQ $BA1E
 1290 RWTS.EXIT .EQ $BE37
 1300 ERROR.HANDLER .EQ $BE39
 1310 *---------------------------------
 1320 ERR.BAD.DRIVE .EQ $40
 1330 *---------------------------------
 1340 .OR $BEA0
 1350 .TA $800
 1360 *---------------------------------
 1370 FORMAT LDA #128 SET CURRENT TRACK REAL HIGH
 1380 STA CURRENT.TRACK SO DRIVE WILL HOME
 1390 LDA #0 TO TRACK 0
 1400 STA TRACK.CNTR INIT COUNTER FOR INIT ROUTINE
 1410 JSR SEEK.TRACK.ABSOLUTE
 1420 *---------------------------------
 1430 LDA #$AA SAVE $AA IN PAGE ZERO FOR TIMING
 1440 STA CONST.AA
 1450 *---------------------------------
 1460 * FILL ENTIRE TRACK WITH SYNC BYTES
 1470 *---------------------------------
 1480 LDY #80 START WITH 80 SYNC-BYTES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 200 of 2550

Apple II Computer Info

 1490 FILL.TRACK.WITH.SYNC
 1500 STY SYNC.CNT # OF SYNC BYTES BETWEEN SECTORS
 1510 LDA #39 WRITE SYNC'S OVER ENTIRE TRACK
 1520 STA FILL.CNTR
 1530 LDA Q6H,X GET READY TO WRITE
 1540 LDA Q7L,X
 1550 LDA #$FF WRITE $FF EVERYWHERE
 1560 STA Q7H,X ALL SET TO WRITE....
 1570 CMP Q6L,X
 1580 BIT $00 DELAY 3 CYCLES
 1590 .1 DEY
 1600 BEQ .3
 1610 PHA
 1620 PLA THESE ARE JUST FOR TIMING
 1630 NOP NEED 27 CYCLES BTWN WRITES
 1640 .2 PHA
 1650 PLA
 1660 NOP
 1670 NOP
 1680 STA Q6H,X WRITE SYNC BYTE
 1690 CMP Q6L,X
 1700 BCS .1 ...ALWAYS
 1710 .3 DEC FILL.CNTR TRACK FULL YET?
 1720 BNE .2 NO
 1730 *---------------------------------
 1740 * WRITE 13-SECTOR HEADERS ON TRACK
 1750 *
 1760 * EACH SECTOR CONSISTS OF AN ADDRESS BLOCK
 1770 * AND A DATA BLOCK.
 1780 * ADDRESS: D5 AA B5 V1 V2 T1 T2
 1790 * S1 S2 C1 C2 DE AA EB
 1800 * DATA: FORMATTED TO ALL SYNC BYTES
 1810 *---------------------------------
 1820 FORMAT.TRACK
 1830 LDY SYNC.CNT # SYNC BYTES BTWN SECTORS
 1840 NOP
 1850 NOP
 1860 .1 BNE .4 ...ALWAYS
 1870 *---------------------------------
 1880 .2 PHA WRITE SYNC BYTES BEFORE SECTOR
 1890 PLA
 1900 PHA
 1910 PLA
 1920 CMP ($00,X) DELAY 6 CYCLES
 1930 .4 NOP
 1940 .5 STA Q6H,X WRITE NEXT SYNC BYTE
 1950 CMP Q6L,X
 1960 DEY
 1970 BNE .2
 1980 *---------------------------------
 1990 LDA #$D5 WRITE D5 AA B5
 2000 JSR WRITE.BYTE.2
 2010 LDA #$AA
 2020 JSR WRITE.BYTE.3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 201 of 2550

Apple II Computer Info

 2030 LDA #$B5
 2040 JSR WRITE.BYTE.3
 2050 LDA VOLUME WRITE VOLUME, TRACK, AND SECTOR
 2060 JSR WRITE.BYTE.1
 2070 LDA TRACK.CNTR
 2080 JSR WRITE.BYTE.1
 2090 LDA FMT.SECTOR
 2100 JSR WRITE.BYTE.1
 2110 LDA VOLUME COMPUTE CHECKSUM
 2120 EOR TRACK.CNTR
 2130 EOR FMT.SECTOR
 2140 PHA WRITE CHECKSUM
 2150 LSR
 2160 ORA CONST.AA #$AA, FOR TIMING
 2170 STA Q6H,X
 2180 CMP Q6L,X
 2190 PLA
 2200 ORA #$AA
 2210 JSR WRITE.BYTE.2
 2220 LDA #$DE WRITE DE AA EB
 2230 JSR WRITE.BYTE.3
 2240 LDA #$AA
 2250 JSR WRITE.BYTE.3
 2260 LDA #$EB
 2270 JSR WRITE.BYTE.3
 2280 LDA #$FF WRITE MORE SYNC BYTES
 2290 JSR WRITE.BYTE.3
 2300 LDY #2 FILL WHOLE DATA BLOCK WITH $FF
 2310 STY DATA.CNTR
 2320 LDY #173
 2330 BNE .7 ...ALWAYS
 2340 .6 DEY FINISHED?
 2350 BEQ .8 YES, AT LEAST THIS GROUP
 2360 PHA 23 CYCLES PER BYTE
 2370 PLA
 2380 NOP
 2390 .7 PHA
 2400 PLA
 2410 STA Q6H,X
 2420 CMP Q6L,X
 2430 BCS .6 ...ALWAYS
 2440 .8 DEC DATA.CNTR FINISHED?
 2450 BNE .7 NOT YET, DO SECOND GROUP
 2460 *---------------------------------
 2470 LDY SYNC.CNT
 2480 CLC
 2490 BIT $00 DELAY
 2500 STA Q6H,X
 2510 LDA Q6L,X
 2520 LDA FMT.SECTOR COMPUTE NEXT SECTOR #
 2530 ADC #10 SKEW FACTOR = 10
 2540 STA FMT.SECTOR
 2550 SBC #12
 2560 BEQ CHECK.TRACK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 202 of 2550

Apple II Computer Info

 2570 BCS .9 STORE VALUE MODULO 13
 2580 .HS 2C 'BIT' OPCODE TO SKIP NEXT TWO BYTES
 2590 .9 STA FMT.SECTOR
 2600 LDA #$FF
 2610 JMP .5 DO NEXT SECTOR
 2620 *---------------------------------
 2630 * CHECK WHETHER TRACK OVERLAPPED
 2640 *---------------------------------
 2650 CHECK.TRACK
 2660 PHA TIME DELAY
 2670 PLA
 2680 LDY SYNC.CNT
 2690 LDA Q6H,X SET UP TO READ
 2700 LDA Q7L,X SENSE WRITE PROTECT
 2710 BMI .4 DRIVE ERROR
 2720 DEY
 2730 .1 PHA DELAY LOOP
 2740 PLA
 2750 PHA
 2760 PLA
 2770 PHA
 2780 PLA
 2790 DEY FINISHED WITH DELAY YET?
 2800 BNE .1 NO
 2810 JSR READ.ADDRESS
 2820 BCS .2 BAD READ
 2830 LDA SECTOR SHOULD BE SECTOR 0
 2840 BEQ .3 YES!
 2850 .2 LDY SYNC.CNT DIMINISH SYNC COUNT
 2860 DEY AND TRY AGAIN
 2870 CPY #16 UNLESS NOT ENOUGH LEFT
 2880 BCC .4 DRIVE ERROR
 2890 JMP FILL.TRACK.WITH.SYNC
 2900 *---------------------------------
 2910 .3 INC TRACK.CNTR NEXT TRACK
 2920 LDA TRACK.CNTR
 2930 CMP #35 FINISHED?
 2940 BCS .5 YES
 2950 ASL DOUBLE FOR TRACK SEEK ROUTINE
 2960 JSR SEEK.TRACK.ABSOLUTE
 2970 LDY SYNC.CNT BUMP SYNC.CNT BEFORE TRYING
 2980 INY NEXT TRACK
 2990 INY
 3000 STY SYNC.CNT
 3010 JMP FILL.TRACK.WITH.SYNC
 3020 *---------------------------------
 3030 .4 LDA #ERR.BAD.DRIVE
 3040 JMP ERROR.HANDLER
 3050 *---------------------------------
 3060 .5 JMP RWTS.EXIT
 3070 *---------------------------------
 3080 * SUBROUTINES TO WRITE BYTE ON DISK
 3090 *---------------------------------
 3100 WRITE.BYTE.1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 203 of 2550

Apple II Computer Info

 3110 PHA ADDRESS BLOCK FORMAT
 3120 LSR
 3130 ORA CONST.AA
 3140 STA Q6H,X
 3150 CMP Q6L,X
 3160 PLA
 3170 CMP ($00,X) DELAY 6 CYCLES
 3180 ORA #$AA
 3190 WRITE.BYTE.2
 3200 NOP
 3210 WRITE.BYTE.3
 3220 PHA
 3230 PLA
 3240 NOP
 3250 STA Q6H,X
 3260 CMP Q6L,X
 3270 RTS
 3280 *---------------------------------
 3290 * VARIOUS ODDS AND ENDS
 3300 *---------------------------------
 3310 .HS 0160 LEFT OVER
 3320 PATCH1 JMP $A5DD
 3330 PATCH2 STA $AA63
 3340 STA $AA70
 3350 STA $AA71
 3360 RTS
 3370 PATCH3 JSR $A75B
 3380 STY $AAB7
 3390 RTS
 3400 PATCH4 JSR $AE7E FROM $B377
 3410 LDX $B39B
 3420 TXS
 3430 JSR $A316
 3440 TSX
 3450 STX $B39B
 3460 LDA #9 "DISK FULL" ERROR
 3470 JMP $B385

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 204 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:DOS3.3:DOS33.BEAF.BFFF.txt
==

 1000 * .LIST OFF
 1010 *---------------------------------
 1020 * DOS 3.3 DISASSEMBLY $BEAF-BFFF
 1030 * BOB SANDER-CEDERLOF 3-26-81
 1040 *---------------------------------
 1050 RETRY.COUNT .EQ $578
 1060 *---------------------------------
 1070 PHASE.OFF .EQ $C080
 1080 PHASE.ON .EQ $C081
 1090 MOTOR.OFF .EQ $C088
 1100 MOTOR.ON .EQ $C089
 1110 ENABLE.DRIVE.1 .EQ $C08A
 1120 ENABLE.DRIVE.2 .EQ $C08B
 1130 Q6L .EQ $C08C
 1140 Q6H .EQ $C08D
 1150 Q7L .EQ $C08E
 1160 Q7H .EQ $C08F
 1170 *---------------------------------
 1180 SECTOR .EQ $2D
 1190 CONST.AA .EQ $3E
 1200 FMT.SECTOR .EQ $3F
 1210 VOLUME .EQ $41
 1220 TRACK.CNTR .EQ $44
 1230 SYNC.CNT .EQ $45
 1240 IOB.PNTR .EQ $48,49
 1250 *---------------------------------
 1260 WRITE.SECTOR .EQ $B82A
 1270 READ.SECTOR .EQ $B8DC
 1280 READ.ADDRESS .EQ $B944
 1290 RWTS.BUFFER .EQ $BB00
 1300 WRITE.ADDRESS .EQ $BC56
 1310 SEEK.TRACK .EQ $BE5A
 1320 SETUP.TRACK .EQ $BE95
 1330 *---------------------------------
 1340 ERR.CANT.FORMAT .EQ $08
 1350 *---------------------------------
 1360 .OR $BEAF
 1370 .TA $800
 1380 *---------------------------------
 1390 FORMAT LDY #3 POINT AT VOLUME NUMBER
 1400 LDA (IOB.PNTR),Y
 1410 STA VOLUME
 1420 LDA #$AA SET UP CONSTANT IN PAGE ZERO
 1430 STA CONST.AA FOR TIMING
 1440 LDY #86 CLEAR BUFFER TO ALL 00'S
 1450 LDA #0
 1460 STA TRACK.CNTR
 1470 .1 STA RWTS.BUFFER+255,Y
 1480 DEY UPPER PORTION

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 205 of 2550

Apple II Computer Info

 1490 BNE .1
 1500 .2 STA RWTS.BUFFER,Y
 1510 DEY LOWER PORTION
 1520 BNE .2
 1530 LDA #80 SET UP AS THOUGH IN TRACK 80
 1540 JSR SETUP.TRACK
 1550 LDA #40 START WITH 40 SYNC'S BTWN SECTORS
 1560 STA SYNC.CNT
 1570 *---------------------------------
 1580 .3 LDA TRACK.CNTR
 1590 JSR SEEK.TRACK
 1600 JSR FORMAT.TRACK
 1610 LDA #ERR.CANT.FORMAT
 1620 BCS .5 ERROR
 1630 LDA #48 TRY UP TO 48 TIMES
 1640 STA RETRY.COUNT
 1650 .4 SEC
 1660 DEC RETRY.COUNT
 1670 BEQ .5 OUT OF RETRIES, ERRCODE=$30
 1680 JSR READ.ADDRESS
 1690 BCS .4 ERROR, TRY AGAIN
 1700 LDA SECTOR
 1710 BNE .4 MUST BE SECOTR 0
 1720 JSR READ.SECTOR
 1730 BCS .4 ERROR, TRY AGAIN
 1740 INC TRACK.CNTR NEXT TRACK
 1750 LDA TRACK.CNTR
 1760 CMP #35 FINISHED?
 1770 BCC .3 NOT YET
 1780 CLC INDICATE NO ERROR
 1790 BCC .6 ...ALWAYS
 1800 *---------------------------------
 1810 .5 LDY #13 POINT AT ERROR SLOT IN IOB
 1820 STA (IOB.PNTR),Y
 1830 SEC FLAG ERROR
 1840 .6 LDA MOTOR.OFF,X STOP DRIVE
 1850 RTS
 1860 *---------------------------------
 1870 * FORMAT A TRACK
 1880 *---------------------------------
 1890 FORMAT.TRACK
 1900 LDA #0 START WITH SECTOR 0
 1910 STA FMT.SECTOR
 1920 LDY #128 EXTRA SYNC'S BEFORE FIRST SECTOR
 1930 BNE .2 ...ALWAYS
 1940 .1 LDY SYNC.CNT
 1950 .2 JSR WRITE.ADDRESS
 1960 BCS .10 ERROR, EXIT NOW
 1970 JSR WRITE.SECTOR
 1980 BCS .10 ERROR, EXIT NOW
 1990 INC FMT.SECTOR NEXT SECTOR
 2000 LDA FMT.SECTOR
 2010 CMP #16 FINISHED WITH THIS TRACK?
 2020 BCC .1 NOT YET

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 206 of 2550

Apple II Computer Info

 2030 *---------------------------------
 2040 * VERIFY THE TRACK
 2050 *---------------------------------
 2060 LDY #15 START WITH SECOTR 15
 2070 STY FMT.SECTOR
 2080 LDA #48 RETRY UP TO 48 TIMES
 2090 STA RETRY.COUNT
 2100 .3 STA SECTOR.FLAGS,Y CLEAR ALL THE SECTOR FLAGS
 2110 DEY
 2120 BPL .3
 2130 LDY SYNC.CNT DELAY A WHILE
 2140 .4 JSR .10 12 CYCLES
 2150 JSR .10 12 CYCLES
 2160 JSR .10 12 CYCLES
 2170 PHA PHA+PLA=7 CYCLES
 2180 PLA
 2190 NOP NOP+DEY+BNE=7 CYCLES
 2200 DEY
 2210 BNE .4 WHOLE LOOP = 50 CYCLES
 2220 JSR READ.ADDRESS
 2230 BCS .8 ERROR, TRY AGAIN
 2240 LDA SECTOR BETTER BE SECTOR 0
 2250 BEQ .6 IT IS, HURRAY!
 2260 LDA #16 REDUCE # SYNC'S BY TWO
 2270 CMP SYNC.CNT UNLESS ALREADY < 16
 2280 LDA SYNC.CNT
 2290 SBC #1
 2300 STA SYNC.CNT
 2310 CMP #5 IF SYNC.CNT < 5, THERE IS NO HOPE
 2320 BCS .8 >=5, TRY AGAIN
 2330 SEC FLAG COULDN'T DO IT
 2340 RTS
 2350 .5 JSR READ.ADDRESS
 2360 BCS .7 ERROR, TRY AGAIN
 2370 .6 JSR READ.SECTOR
 2380 BCC .11 GOOD!
 2390 .7 DEC RETRY.COUNT
 2400 BNE .5 TRY AGAIN
 2410 .8 JSR READ.ADDRESS
 2420 BCS .9
 2430 LDA SECTOR
 2440 CMP #15 SECTOR = 15?
 2450 BNE .9 NO
 2460 JSR READ.SECTOR
 2470 BCC FORMAT.TRACK
 2480 .9 DEC RETRY.COUNT
 2490 BNE .8 TRY AGAIN
 2500 SEC FLAG WE COULDN'T DO IT
 2510 .10 RTS RETURN
 2520 *---------------------------------
 2530 .11 LDY SECTOR
 2540 LDA SECTOR.FLAGS,Y
 2550 BMI .7 ALREADY READ THIS ONE!
 2560 LDA #$FF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 207 of 2550

Apple II Computer Info

 2570 STA SECTOR.FLAGS,Y
 2580 DEC FMT.SECTOR
 2590 BPL .5
 2600 LDA TRACK.CNTR
 2610 BNE .12
 2620 LDA SYNC.CNT
 2630 CMP #16
 2640 BCC .10
 2650 DEC SYNC.CNT
 2660 DEC SYNC.CNT
 2670 .12 CLC
 2680 RTS
 2690 *---------------------------------
 2700 SECTOR.FLAGS
 2710 .HS FFFFFFFFFFFFFFFF
 2720 .HS FFFFFFFFFFFFFFFF
 2730 *---------------------------------
 2740 PHYSICAL.SECTOR.VECTOR
 2750 .HS 000D0B0907050301
 2760 .HS 0E0C0A080604020F
 2770 *---------------------------------
 2780 * CLOBBER WHATEVER IS IN RAM CARD
 2790 *---------------------------------
 2800 PATCH1 JSR $FE93 WHAT PATCH REPLACED
 2810 LDA $C081 WRITE-ENABLE RAM CARD
 2820 LDA $C081
 2830 LDA #0 PUT ZERO IN BYTE WE LATER
 2840 STA $E000 TEST TO SEE WHICH LANGUAGE
 2850 JMP $B744 RETURN
 2860 *---------------------------------
 2870 *---------------------------------
 2880 * VARIOUS ODDS AND ENDS
 2890 *---------------------------------
 2900 .HS 000000
 2910 PATCH2 STA $AA63
 2920 STA $AA70
 2930 STA $AA71
 2940 RTS
 2950 PATCH3 JSR $A75B
 2960 STY $AAB7
 2970 RTS
 2980 PATCH4 JSR $AE7E FROM $B377
 2990 LDX $B39B
 3000 TXS
 3010 JSR $A316
 3020 TSX
 3030 STX $B39B
 3040 LDA #9 "DISK FULL" ERROR
 3050 JMP $B385

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 208 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:DOS3.3:FastStr.Input.txt
==

 1000 *---------------------------------
 1010 * FAST INPUT STRING ROUTINE
 1020 * &GET <STRING VARIABLE>
 1030 * ACCEPTS ANY CHARACTER, UNLIKE NORMAL INPUT
 1040 *---------------------------------
 1050 AMPERSAND.VECTOR .EQ $3F5
 1060 LENGTH .EQ $9D
 1070 SYNTAX.ERROR .EQ $DEC9
 1080 PTRGET .EQ $DFE3
 1090 GETSPA .EQ $E452
 1100 MOVSTR .EQ $E5E2
 1110 *---------------------------------
 1120 MON.PROMPT .EQ $33
 1130 MON.RDLINE .EQ $FD6F
 1140 *---------------------------------
 1150 .OR $300
 1160 LDA #$4C JUMP INSTRUCTION
 1170 STA AMPERSAND.VECTOR
 1180 LDA #GET
 1190 STA AMPERSAND.VECTOR+1
 1200 LDA /GET
 1210 STA AMPERSAND.VECTOR+2
 1220 RTS
 1230 *---------------------------------
 1240 GET CMP #$BE GET TOKEN
 1250 BEQ .1 YES
 1260 JMP SYNTAX.ERROR
 1270 .1 JSR $B1
 1280 JSR PTRGET GET STRING DESCRIPTOR
 1290 LDA MON.PROMPT
 1300 PHA
 1310 LDA #$87 BELL FOR PROMPT
 1320 STA MON.PROMPT
 1330 JSR MON.RDLINE INPUT A LINE
 1340 PLA
 1350 STA MON.PROMPT
 1360 STX LENGTH SAVE LENGTH
 1370 TXA
 1380 JSR GETSPA GET SPACE IN STRING AREA
 1390 LDY #0 MOVE DATA INTO VARIABLE
 1400 STA ($83),Y LENGTH
 1410 LDA $71
 1420 INY
 1430 STA ($83),Y LO-BYTE OF ADDRESS
 1440 LDA $72
 1450 INY
 1460 STA ($83),Y HI-BYTE OF ADDRESS
 1470 LDY /$200 SET UP TO COPY STRING DATA
 1480 LDX #$200 INTO STRING AREA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 209 of 2550

Apple II Computer Info

 1490 LDA LENGTH
 1500 JMP MOVSTR COPY IT NOW

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 210 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:DOS3.3:Substr.search.txt
==

 1010 *---------------------------------
 1020 *
 1030 * SUBSTRING SEARCH FUNCTION FOR APPLESOFT
 1040 * ---------------------------------------
 1050 *
 1060 * & SUB$(A$, B$, I)
 1070 *
 1080 * SEARCHES FOR FIRST OCCURRENCE OF
 1090 * B$ IN A$; PUTS RESULT IN I
 1100 *
 1110 * RETURNS I=0 IF B$ IS NOT IN A$
 1120 *
 1130 * (REFERENCE: CALL A.P.P.L.E. ARTICLE
 1140 * IN JANUARY 1981 ISSUE BY LEE REYNOLDS,
 1150 * PAGES 26-30.)
 1160 *
 1170 *---------------------------------
 1180 FACMO .EQ $A0
 1190 TEMPPT .EQ $52
 1200 MAIN.LENGTH .EQ $18
 1210 MAIN .EQ $19,1A
 1220 KEY.LENGTH .EQ $1B
 1230 KEY .EQ $1C,1D
 1240 *---------------------------------
 1250 ASSIGN .EQ $DA5C STORE VALUE IN VARIABLE
 1260 SYNCHR .EQ $DEC0 REQUIRE (A) AS NEXT CHAR
 1270 FRMEVL .EQ $DD7B EVALUATE FORMULA
 1280 SYNCOM .EQ $DEBE REQUIRE COMMA
 1290 SYNRPN .EQ $DEB8 REQUIRE ")"
 1300 CHKSTR .EQ $DD6C REQUIRE STRING
 1310 PTRGET .EQ $DFE3 GET POINTER
 1320 FRETMP .EQ $E604 FREE TEMPORARY STRING
 1330 SNGFLT .EQ $E301 FLOAT (Y)
 1340 *---------------------------------
 1350 .OR $300
 1360 .TF B.SUBSTRING SEARCH
 1370 *---------------------------------
 1380 SETUP.AMPERSAND
 1390 LDA #$4C JMP OPCODE
 1400 STA $3F5
 1410 LDA #SUB
 1420 STA $3F6
 1430 LDA /SUB
 1440 STA $3F7
 1450 RTS
 1460 *---------------------------------
 1470 SUBQT .AS "($BUS" SUB$(BACKWARDS
 1480 *---------------------------------
 1490 SUB

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 211 of 2550

Apple II Computer Info

 1500 LDX #4 COMPARE FOR "SUB$("
 1510 .1 LDA SUBQT,X
 1520 JSR SYNCHR COMPARE WITH INPUT
 1530 DEX
 1540 BPL .1
 1550 *---------------------------------
 1560 LDY #MAIN.LENGTH
 1570 JSR GET.STRING
 1580 LDY #KEY.LENGTH
 1590 JSR GET.STRING
 1600 JSR PTRGET GET VARIABLE FOR RESULT
 1610 STA $85
 1620 STY $86
 1630 JSR SYNRPN REQUIRE RIGHT PAREN
 1640 *---------------------------------
 1650 JSR FREE.STRINGS
 1660 *---------------------------------
 1670 LDX #0 ANSWER OFFSET
 1680 .2 LDA MAIN.LENGTH SEE IF IT CAN STILL FIT
 1690 CMP KEY.LENGTH
 1700 BCC .8 WILL NOT FIT
 1710 LDY #0
 1720 .3 LDA (KEY),Y
 1730 CMP (MAIN),Y
 1740 BNE .6
 1750 INY
 1760 CPY KEY.LENGTH
 1770 BCC .3
 1780 INX X IS RESULT
 1790 TXA
 1800 TAY
 1810 .4 JSR SNGFLT FLOAT THE BYTE IN Y
 1820 LDA $12
 1830 PHA
 1840 LDA $11
 1850 JMP ASSIGN STORE VALUE IN VARIABLE
 1860 .6 INC MAIN
 1870 BNE .7
 1880 INC MAIN+1
 1890 .7 INX
 1900 DEC MAIN.LENGTH
 1910 BNE .2
 1920 .8 LDY #0 RESULT IS 0
 1930 BEQ .4 ...ALWAYS
 1940 *---------------------------------
 1950 * GET STRING EXPRESSION
 1960 *---------------------------------
 1970 GET.STRING
 1980 STY GS2 PLUG OUTPUT VECTOR
 1990 JSR FRMEVL EVALUATE FORMULA
 2000 JSR SYNCOM REQUIRE TRAILING COMMA
 2010 JSR CHKSTR REQUIRE STRING
 2020 LDY #2 GET STRING DATA
 2030 * THE NEXT LINE IS A "SECRET" 6502 OPCODE,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 212 of 2550

Apple II Computer Info

 2040 * WHICH DOES BOTH LDA (FACMO),Y AND LDX (FACMO),Y
 2050 * AT THE SAME TIME.
 2060 GS1 .DA #$B3,#FACMO
 2070 STX *-*,Y PLUGGED IN FROM ABOVE
 2080 GS2 .EQ *-1
 2090 DEY
 2100 BPL GS1
 2110 RTS
 2120 *---------------------------------
 2130 * FREE UP ANY TEMPORARY STRINGS
 2140 *---------------------------------
 2150 FREE.ONE.STRING
 2160 LDA TEMPPT+1
 2170 LDY #0
 2180 JSR FRETMP
 2190 FREE.STRINGS
 2200 LDA TEMPPT
 2210 CMP #$56 EMPTY?
 2220 BCS FREE.ONE.STRING
 2230 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 213 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:DOS3.3:Test.Str.Input.txt
==

å768A$–"ABC" -ØæA$((∫A$

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 214 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8104:DOS3.3:Test.Subst.Srch.txt
==

*
∫Á(4)"BLOAD B.SUBSTRING
SEARCH":å768údÉASM,DELETE,FAST,FIND,HIDE,INCREMENT,LIST,LOAD,MEMORY,ME
RGE,MGO,NEW,PRT,RENUMBER,RESTORE,SAVE,SLOW,USER,VAL,.¢nÆ¬xÑ"KEY
STRING: ";K$:≠K$–""ƒÄŸÇáA$:≠A$–"."ƒ∫:´110ıåØSUB$(A$,K$,I):≠I–0ƒ130

ñ≠Iœ1ƒ∫Ë(A$,I…1); †û:∫K$;:ù< ™L–
„(A$)…I»1…„(K$):≠Lœ0ƒ∫È(A$,L);G ¥∫:´130

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 215 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:Articles:DontBeShiftless.txt
==

Don't Be Shiftless

Now for another article aimed at that half of you who are really new
to 6502 assembly language!

Sliding the bits in a byte back and forth, to the left or the right,
is one of the traditional things computers like to do. Big computers
have fancy instructions for doing it in many different ways, with
special effects along the way. The 6502 only has four "shift"
opcodes, so we have to work harder to get all the types of shifting
our programs need.

Why shift anything? For various reasons, to suit your fancy. Since
data in a byte is normally construed as a binary number, a shift left
one bit-position will double the value and a shift right one bit-
position will halve the value. If it is important to isolate a
particular bit field out of a byte, and then to left or right justify
the value which was stored in that field so that testing or arithmetic
can be performed, you need shifting instructions. In order to
implement multiply and divide on the 6502 you need shifting
instructions. To position data for insertion into a bit field within
a byte you need to shift. And more.

Show me a picture of a shift. Well, the 6502 makes that easy, because
it is limited to shifting a byte to the left or the right, one bit-
position at a time.

First let's look at the LSR instruction, which shifts right one bit-
position. "LSR" stands for "Logical Shift Right". LSR will shift the
contents of a byte one bit-position to the right, like this:

 Old value: 1 0 0 1 1 1 0 1

 <Do LSR>

 New value: 0 1 0 0 1 1 1 0

LSR shifts in a zero-bit on the left end; the bit that is shifted out
the right end goes into the CARRY status bit.

In the sample above the binary value of the old byte is $9D in hex, or
157 decimal. After shifting, the value is $4E hex or 78 decimal
(157/2 = 78.5).

The fact the the bit shifted "out" goes into the CARRY status bit
makes it possible to test what that bit was. For example, if you need
to test a byte to see if it is even or odd, you can LSR it once and
then do BCC or BCS to test the carry bit. If carry is set, the number

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 216 of 2550

Apple II Computer Info

was odd; if clear, it was even. The bit stored in CARRY can have
other uses we will discover later.

Now let's see the ASL ("Arithmetic Shift Left") do its thing. It will
shift a byte one bit-position to the left, with a zero coming in the
right end. The bit shifted out the left end goes into the CARRY
status bit. See the similarity to the LSR instruction?

 Old value: 0 0 0 1 1 1 0 1

 <Do ASL>

 New value: 0 0 1 1 1 0 1 0

Note that the value is doubled; $1D (29) became $3A (58). This will
not always be true; if the bit shifted out was a 1-bit, it will be
doubled modulo 256. Integer BASIC users will know what that means,
because they have the MOD function. For Applesoft-only people, it
will mean here that the result is 256 less than the doubled value
should be. Let's see an example: shifting 10011101 with ASL produces
00111010; $9D (157) becomes $3A (58), which is 256 less than 2*157.

More about the carry bit. Suppose I want to see if the third bit in a
byte is 1 or 0. If the bit positions are numbered left to right from
7 down to 0 (like this: 7 6 5 4 3 2 1 0), I want to test bit 5. If I
do three ASL's in a row, bit 5 will be in the CARRY status bit, and I
can test it. Or, I could do two ASL's in a row, and look at the MINUS
status bit. After a shift, the MINUS status bit is set if the new bit
7 is a 1-bit, or cleared if bit 7 is a 0-bit. The BPL and BMI
instructions test the MINUS status bit.

There are two more shift instructions to look at: ROL and ROR. "ROL"
is pronounced like a type of bread you eat at dinner, and "ROR" like
the noise those giant cats at the zoo make. "ROL" stands for "Rotate
One Left"; "ROR" means "Rotate One Right". They work just like LSR
and ASL, except for what is shifted in to the byte. LSR shifts a
zero-bit in the left end, and ASL shifts a zero-bit in the right end.
ROL and ROR shift the old CARRY status bit in, just before the
shifted-out bit comes into the CARRY bit.

 Byte Carry
 Old value: 1 0 0 1 1 1 0 1 1

 <Do ROL>

 New value: 0 0 1 1 1 0 1 1 1

 <Do ROL>

 New value: 0 1 1 1 0 1 1 1 0

 <Do ROL>

 New value: 1 1 1 0 1 1 1 0 0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 217 of 2550

Apple II Computer Info

 <Do ROR>

 New value: 0 1 1 1 0 1 1 1 0

 <Do ROR>

 New value: 0 0 1 1 1 0 1 1 1

 <Do ROR>

 New value: 1 0 0 1 1 1 0 1 1

 <Do ROR>

 New value: 1 1 0 0 1 1 1 0 1

What about shifting values which take two bytes? We can do it using
combinations of the four opcodes. Suppose you want to shift a 16-bit
value stored at $1234 and $1235 left one bit-position. You want a
zero to enter the least significant bit position, which is bit 0 of
$1234. You want the most significant bit, bit 7 of $1235, to be in
CARRY when you are through. Here is the program:

 ASL $1234 0 --> bit 0, bit 7 --> CARRY
 ROL $1235 CARRY --> bit 0, then bit 7 into CARRY

Simple, isn't it!

Addressing Modes. The four shift instructions all have the same five
addressing modes. There is a one-byte form which shifts the A-
register. Some assemblers write this as "ASL A", and don't allow "A"
to be used as a label elsewhere. The S-C ASSEMBLER II writes it as
just "ASL", so you can use "A" as a label elsewhere if you wish. The
other addressing modes are: zero page direct; zero page,X; absolute;
and absolute,X. No indirect modes, or indexing by Y modes are
available.

[If you remember the article a few months ago about the "secret"
opcodes, you will also remember that the two indirect-indexed modes
and the absolute,Y mode are available if you don't mind what happens
to the A-register after the shift. Or, if what does happen is
something you also wanted. You might look up the article.]

Some real examples. The Apple Monitor ROM has some good examples in
it. Disassemble (or look in the Monitor listing in the Reference
Manual) at $FBC1 (the BASCALC subroutine. If you have the old Monitor
ROMs, the multiply and divide subroutines at $FB60 and $FB81 are good
examples. The PRBYTE subroutine at $FDDA uses four LSR's to get at
the first hex digit. The subroutine DIG at $FF8A is used to convert
ascii hex numbers to binary. Let's look at that one here:

FF8A: A2 03 DIG LDX #$03 LOOP 4 TIMES
FF8C: 0A ASL LEFT JUSTIFY DIGIT VALUE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 218 of 2550

Apple II Computer Info

FF8D: 0A ASL
FF8E: 0A ASL
FF8F: 0A ASL
FF90: 0A NXTBIT ASL SHIFT DIGIT INTO A2L,A2H
FF91: 26 3E ROL A2L
FF93: 26 3F ROL A2H
FF95: CA DEX
FF96: 10 F8 BPL NXTBIT

The ASCII value of the hex digit has already been modified so that the
digit's value is in bits 3-0. The first four ASL's shift those 4 bits
up to bits 7-4. The next ASL shifts the top bit into CARRY, and then
the two ROL's shift that bit into the 16-bit value at A2L and A2H.
The ASL-ROL-ROL loop is done four times, so all four bits are shifted
into A2L,A2H.

In the Applesoft ROMs there is a subroutine which shifts a 32-bit
value right any number of bit-positions. The subroutine is used in
the floating point arithmetic package to adjust mantissas. It has the
interesting feature (for speed's sake) of shifting 8 bits at a time
until the shift count is less than 8. This is done by moving bytes
with LDY-STY pairs. The code is at $E8DC thru $E912. The normal
entry point is at $E8F0, with the number of bit-positions to be
shifted in the A-register as a negative number, and with CARRY clear.
The code above $E8F0 shifts right by bytes, and the code after $E8F0
shifts right by bits. The data to be shifted is in page zero, offset
by the value in the X-register.

A somewhat similar subroutine is used to normalize the mantissa after
a calculation. "Normalize" means to shift the mantissa left until the
most significant bit is a one-bit. This code is at $E82E-E854 and
$E874-E880. The first portion shifts left by bytes until the leading
byte is non-zero (or until it has been determined that the whole value
is zero). Once the leading byte is found to be non-zero, the second
portion of code shifts left by bits until the leading bit is 1. The
number of bit-positions shifted is counted as the subroutine moves
along, and that value is subtracted from the exponent value of the
floating point number ($E882-E88B).

Disassemble the routines I have pointed out in the various ROMs, and
study them a while. Then try writing some of your own examples. Here
is an assignment: write a subroutine that will shift a 16-bit value
left or right from 0-15 bit positions. The value to be shifted is in
page zero at $9D and $9E. The shift count is in the A-register. If
the value in A is zero, return without doing anything. If A is
negative, it indicates a shift right. If A is positive, it means to
shift left. Okay? Give it a try!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 219 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:Articles:DOS321.B800.Lst.txt
==

Commented Listing of DOS 3.2.1 $B800-BCFF

Here is the third installment of DOS disassembly, covering the
routines called by RWTS.

There are six major subroutines between $B800 and BCFF. PRE.NYBBLE
and POST.NYBBLE convert between memory format and disk format.
READ.ADDRESS reads the next address header. READ.SECTOR reads a
sector, and WRITE.SECTOR writes one. SEEK.TRACK.ABSOLUTE moves the
head in or out to the desired track. With the sole exception of
initializing a disk, all actual disk I/O is done by these six
subroutines.

The bits that are written on the disk are considerably different from
those in memory. Some computer systems make the transformation with
expensive hardware controllers, but Wozniak's unique system does most
of the work in software. The 13-sector controller cannot read
accurately data which has two or more consecutive zero-bits. Of
course, almost every byte you want to write has two or more zero-bits
in a row! Therefore the software must encode the bytes you want to
write.

One way to encode the bytes is to take four bits at a time, and
interleave them with "clock" bits. In fact, the data in the address
headers is recorded this way. For example, to record the byte
"xyxyxyxy" in an address header, the two bytes "1x1x1x1x" and
"1y1y1y1y" will be written. This means a 256-byte sector will take
512 bytes on the disk surface (plus header and trailer).

DOS 3.2.1 (and previous versions) use a more elaborate scheme. Each
256-byte sector is recorded as 410 bytes on the disk surface. The
subroutine PRE.NYBBLE converts the 256-byte buffer to 410 bytes of 5-
bits each. then the 5-bit values are converted to 8-bit values from
NYBBLE.TABLE. These 8-bit values are chosen carefully; they have the
following properties: 1) the first bit is "1"; 2) no consecutive
zero-bits; and 3) the values $AA and $D5 are not used. As a sector is
read back into memory, BYTE.TABLE is used to convert the 8-bit codes
back to 5-bit values. POST.NYBBLE converts the 410 5-bit values back
to 256 8-bit bytes.

In case you are curious, PRE.NYBBLE moves the bits from 256-bytes to
410 bytes like this:

1. The first 5 bytes are rearranged into 8 bytes:

 5 input bytes 8 output bytes
 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

 A A A A A B B B 0 0 0 A A A A A

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 220 of 2550

Apple II Computer Info

 C C C C C D D D 0 0 0 C C C C C
 E E E E E F F F 0 0 0 E E E E E
 G G G G G H I J 0 0 0 G G G G G
 K K K K K L M N 0 0 0 K K K K K
 0 0 0 B B B H L
 0 0 0 D D D I M
 0 0 0 F F F J N

2. The 8 bytes are stored at the end of the 8 sections (at BB32,
BB65, BB98, BBCB, BC32, BC65, AND BC98).

3. The second group of 5 bytes is rearranged into 8 bytes, and stored
right before the first 8 (at BB31, BB64, ..., BC97).

4. The next 49 groups of 5 bytes are treated in the same way, with
the last group being stored at BB00, BB33, BB66, BB99, BBCC, BC00,
BC33, AND BC66.

5. The top 5 bits of the last byte are stored at BBFF, and the bottom
3 bits of the last byte are stored at BC99.

DOS 3.3 uses an even better scheme, but it requires a change in the
controller ROMs. The change to one ROM gives you a different boot
program; the other ROM makes the controller able to read two
consecutive zero-bits accurately. (Note that SOME controller-drive
combinations may be able to read two zero-bits in a row accurately
WITHOUT the new ROM. Anyway, mine works!) DOS 3.3 converts the 256
bytes to 342 6-bit values; since each sector is shorter, more sectors
can be written in each track. I may publish the disassembly of these
same subroutines in the DOS 3.3 version next month.

Remember that DOS 3.2.1 puts 13-sectors on each track, with each
sector having this format: sync bytes, address header, sync bytes,
data block. Sync bytes are written to automatically synchronize the
reading process, so that we can be sure we are not splitting bytes.
Each sync byte is 8 one-bits followed by 1 zero-bit. The address
header is 14-bytes long on the disk surface, and looks like this (in
hex): D5 AA B5 vv vv ss ss tt tt cc cc DE AA EB. "vv vv" stands for
the two bytes used to record the volume number; "ss ss" is the sector
number; "tt tt" is the track number; and "cc cc" is the checksum of
the volume, track, and sector. The data block is like this: D5 AA AD
<410 bytes of data> <checksum> DE AA EB.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 221 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:Articles:Front.Page.txt
==

In This Issue...

Hi-Res SCRN Funtion for Applesoft 2
Conquering Paddle Jitter 4
Don't Be Shiftless 6
6502 Programming Model 10
Commented Listing of DOS 3.2.1 $B800-BCFF 12

Save Your Fingers, Save Your Eyes

Remember that all the source programs which appear in the Apple
Assembly Line are available on disk, ready to assembly with the S-C
Assembler II Version 4.0. Every three months I collect it all on a
Quarterly Disk, and you can get it for only $15. QD#1 covers AAL
issues 1-3 (October thru December 1980), and QD#2 covers AAL issues 4-
6 (January thru March 1981). QD#3 will be out at the end of May,
covering issues 7-9. Some AAL subscribers have chosen to set up a
standing order for the Quarterly Disks, so they get them as soon as
they are ready.

Not only does it save you a lot of typing time. You also are saved
the hours you might spend looking for the inadvertant changes you made
while you typed!

Another Utility from RAK-WARE

Bob Kovacs is sure keeping busy! Last month he announced the Cross
Reference Utility which works with your S-C ASSEMBLER II source
programs. This month he has a Global Search & Replace Utility ready
(see his ad on page 4). It is a nice companion to his disassembler,
because it gives you a fast way to change all the labels made up by
the disassembler into meaningful names.

If You Need Disks...

For a limited time, I am able to offer you a good price on Verbatim
DataLife disks. These are bulk packaged, 20 to a pack, with no labels
and with white sleeves. They are the same ones I use myself. I will
send you a package of 20 for only $50.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 222 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:Articles:GRAM.WPs.txt
==

Word Processors...................................Lee Meador

[The following is a summary of the talk given by Lee Meador at our
Dallas Apple Corps general session on April 11th (1981). The summary
was written by Bob Sander-Cederlof, from notes taken at the meeting.]

What is a Word Processor? I like to think of it as consisting of both
a text editing system and a text formatting system. You will see
advertisements for so-called word processors which do not include both
of these elements, but by my definition they are incomplete.

The text editing system should make it easy for you to enter a large
body of text, make corrections and changes, rearrange words and
paragraphs, and so on. The text formatter is on the output side; it
justifies the text within selected margins, paginates and adds page
headings and numbers, and so on.

What is a Word Processor used for? Writing letters, reports, manuals,
and even full-length books. Creating forms. Generating personalized
form letters. Creating data bases, such as mailing lists. Writing
and modifying the source code for computer programs. And whatever
your imagination can suggest!

How much does a WP for the Apple cost? Anywhere from $75 to $1000,
depending on the features you want. AppleWriter, the one sold by
Apple Computer, costs only $75. [I am using AppleWriter now, to write
this article. (Bob S-C)] At the other extreme, Word Star costs
about $450 for the software, plus another $550 for the required
Microsoft Z-80 Card and an 80-column card.

You may find some cheaper than AppleWriter, but I don't have any
experience with them.

What features should I look for in a WP? I will break down the
features into four categories: screen format, lower case
entry/display, commands, and file structure.

Screen Format: Your Apple, straight from the factory, will only
display 40 characters per line. You can buy a card to plug into one
of the empty slots which will display 80 characters per line. Some
word processors require the 80-column card to operate, such as the new
Easy-Writer Professional Version and Word Star. Having 80 columns of
display is a real advantage, because it lets you see the text the way
it will look on your paper. The Pascal Language system editor works a
lot easier with an 80-column card, too.

Other WP's get around the 40-column limitation in various ways.
AppleWriter merely wraps the lines around at the edge of the screen.
Words are split arbitrarily, unless you specifically type a carriage

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 223 of 2550

Apple II Computer Info

return. Normally you only use the carriage return at the end of a
paragraph. This approach seems very crude, but some people like it.
The text is re-formatted when you print it out so that lines fit
between the margins you select and are broken between words.

Apple-PIE, Super Text II, Scribe, Manuscripter, and others break the
lines between words. Most of these allow some sort of preview which
allows you to re-format the text exactly as it will be printed by the
text formatter, and then to scan around left-right-up-down to see it
through the 40-by-24 Apple "window".

Magic Window keeps the text in an 80-column format all the time, and
the screen acts as a floating window as you type. Some people like
this, but it can be distracting.

Lower-Case Entry/Display: As you know, without some modification or
special software, the Apple is UPPER-CASE ONLY. Dan Paymar has made a
lot of money because of this oversight by Apple Computer! His $50-60
adapter plugs into your Apple mother board, and gives you lower-case
display on the screen. You still have all the other display modes.
For two years or more, the Paymar adapter was the only one on the
market. Now there are several others, some with additional features.

Another approach to lower-case display is to draw the text on the
screen using hi-res graphics. This is the approach used by my word
processor (Alphonse II), which works in Hebrew and Greek as well as
English. The disadvantages to using hi-res graphics is the extra
memory for the hi-res image, and the extra time to draw and scroll.

Most WP's will work without any adapter. They display lower-case
characters in normal video, and display upper-case in inverse video.
Many WP's are set up to work this way unless you specify that the
Paymar Adapter is present. AppleWriter requires a small patch to
operate with the Paymar adapter (the patch code is available by
writing to Dan Paymar.)

The Apple keyboard is wired up so that the shift key does not
distinguish upper/lower case letters. You always get upper case
letters, and all the shift key does is allow you to get the
punctuation symbols. Some WP's get around this by using control keys
or the escape key to swith between upper and lower case modes. These
usually have both a shift-lock mode and a captilize-next-character
mode. AppleWriter is like this.

Super Text II will work with control-codes for signalling upper case,
or with a very simple modification to your Apple you get TRUE shift
key operation. You have to solder a wire (provided in the Super Text
II package!) on the bottom of the keyboard to one terminal of the
shift key. The other end of the wire goes into the game paddle
connector, so it can be monitored by software. (Your paddles still
work normally.)

If you buy the Videx keyboard expander, you get normal typewriter-like
shift key operation. Most 80-column boards probide some means for

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 224 of 2550

Apple II Computer Info

entering lower-case letters. Yet another option is to replace the
entire keyboard in your Apple with a more expensive one having all the
features built-in. $$$$!!!!

Commands: There are generally three types of commands you are
interested in. Editing commands allow you to move text around, insert
new text, add new text, delete text (all or some), correct spelling,
replace one word or phrase with another throughout your text, and so
on. Most WP's use control-characters for the editing commands. Some
use ESCAPE followed by a letter, and others use a menu-driven
approach. Naturally, some use a combination of all three.

Formatting commands are usually embedded in the text. Super Text II
uses embedded control characters. AppleWriter uses separate lines
like "!lm10" (which sets the left margin at 10). Some WP's use a
format form which you "fill out" just before printing. The format
commands are used to define the left, right, top, and bottom margins,
single or double spacing, whether you want lines to be centered or
justified, whether you want blanks to be inserted to make all lines
the same length, and so on.

Printer commands are usually control-character sequences you want sent
to your printer to enable special fonts, underlining, and so on. Some
WP's, like AppleWriter, make no provision for these at all. Super
Text II does allow you to enter these, although it is a little
difficult to set up the first time.

File Structure: The issue here is whether a standard DOS text file is
used, or some other format. Apple-PIE is one of the few that uses
standard DOS text files. AppleWriter uses binary files, with a
strange non-ASCII code and a special beginning-of-text and end-of-text
code. Super Text II uses a modified DOS, so that the files are not
accessible at all from your own programs. EasyWriter is coded in
FORTH, and has its own way of formatting disks which is completely
incompatible with DOS. Some WP's "lock" the data disks, so that they
cannot be read or written from a normal DOS.

Some utility programs were on the February DOM to convert a standard
text file to an AppleWriter file, and vice versa. There are also ways
to get at the Super Text II files, but the technique has not been
published.
Which Word Processor should I buy? It is entirely up to you. Weigh
the various factors such as cost, ease of use, capability,
documentation, and so on. Read reviews, such as the excellent one s
published in Peelings II, Volume 1, No. 4 Nov-Dec 1980). Talk to
owners. (Our club is full of them.) But above all, try several of
them out before you buy!

[After this talk, several Apples were set up with a multitude of Word
Processors on hand. For two hours Lee and others demonstrated and
explained the features, advantages, and disadvantages of these to
whoever was interested.]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 225 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:Articles:Hires.Scrn.Func.txt
==

Hi-Res SCRN Function for Applesoft

Apple's Lo-Res graphics capability includes a SCRN(X,Y) function, to
determine the color currently on the screen at the given X,Y point.
For some reason they did not provide the corresponding HSCRN(X,Y)
function for Hi-Res graphics.

The following program implements the HSCRN function using the "&"
character. If you write the statement "& HSCRN (A=X,Y)", this program
will store either a 1 or a 0 into the variable A. The value 0 will be
stored in A if there is not a spot plotted at X,Y; the value 1 will be
stored if there is a spot.

Note that HPLOT(X,Y) may not result in a spot being plotted at X,Y; it
depends on the HCOLOR you have set. If the HCOLOR is white, a spot
will always be plotted; if it is black, a spot will always be erased;
the other four colors may or may not plot a spot, depending on
position and color.

The &HSCRN statement does not return the actual color, because that is
MUCH more difficult to determine. The actual color depends on:
whether the adjacent spots are on or off; whether X,Y is in an even or
odd byte; whether X,Y is in an even or odd bit; and whether the sign
bit of the byte is on or off. If you decide to add the capability to
return a color value (0-7), send me a copy for this newsletter!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 226 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:Articles:No.Pdl.Jitter.txt
==

Conquering Paddle Jitter...........................Brooke Boering

A well-known problem with the paddles supplied with the Apple (at
least they USED to be supplied!) concerns their tendency to rock back
and forth between two adjacent values. "Jittering" like this can
cause problems unless accuracy is unimportant, or unless the effect is
somehow pleasing.

One solution to the jitter problem is to force the new paddle reading
to move at least two increments from the prior reading. This words,
but at the price of lower resolution. Also, it can have subtle side-
effects.

A better solution is to keep track of the previous direction of
movement, and enforcing the "rule of two" only if the direction is
reversed.

The following program demonstrates my solution. It is set up to work
with Applesoft, but it would be rather simple to make it directly
callable from your own assembly language routines. To use from
Applesoft, POKE the paddle number (0-3) at 768, CALL 770, and read the
paddle value with PEEK(769).

I set up the following Applesoft program to test the routine, and to
compare it with normal paddle readings:

 10 POKE 768,0:CALL 770:PRINT PEEK(769):GOTO10
 20 PRINT PDL(0):GOTO20

I typed RUN 20 and set the paddle to a jittery position. Then I typed
control-C and RUN 10 to test the smoothing subroutine. The program
really works!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 227 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:DOS3.3:DOS321.B800BCFF.txt
==

 1000 * .LIF
 1010 *---------------------------------
 1020 * DOS 3.2.1 $B800 - $BCFF
 1030 *---------------------------------
 1040 .OR $B800
 1050 .TA $0800
 1060 *---------------------------------
 1070 BUF.PNTR .EQ $3E,3F
 1080 CURRENT.TRACK .EQ $0478
 1090 *---------------------------------
 1100 * DISK CONTROLLER ADDRESSES
 1110 *---------------------------------
 1120 PHOFF .EQ $C080 PHASE-OFF
 1130 PHON .EQ $C081 PHASE-ON
 1140 MTROFF .EQ $C088 MOTOR OFF
 1150 MTRON .EQ $C089 MOTOR ON
 1160 DRV0EN .EQ $C08A DRIVE 0 ENABLE
 1170 DRV1EN .EQ $C08B DRIVE 1 ENABLE
 1180 Q6L .EQ $C08C SET Q6 LOW
 1190 Q6H .EQ $C08D SET Q6 HIGH
 1200 Q7L .EQ $C08E SET Q7 LOW
 1210 Q7H .EQ $C08F SET Q7 HIGH
 1220 *
 1230 * Q6 Q7 USE OF Q6 AND Q7 LINES
 1240 * ---- ---- ----------------------
 1250 * LOW LOW READ (DISK TO SHIFT REGISTER)
 1260 * LOW HIGH WRITE (SHIFT REGISTER TO DISK)
 1270 * HIGH LOW SENSE WRITE PROTECT
 1280 * HIGH HIGH LOAD SHIFT REGISTER FROM DATA BUS
 1290 .PG
 1300 *---------------------------------
 1310 * CONVERT 256 BYTES TO 410 5-BIT NYBBLES
 1320 *---------------------------------
 1330 PRE.NYBBLE
 1340 LDX #50 51 BYTES PER SECTION
 1350 LDY #0 INDEX INTO 256-BYTE BUFFER
 1360 *---BUFFER PART 1, SECTION 1-----
 1370 .1 LDA (BUF.PNTR),Y GET BYTE FROM BUFFER
 1380 STA $26 SAVE HERE FOR LOWER 3 BITS
 1390 LSR USE TOP 5 BITS
 1400 LSR
 1410 LSR
 1420 STA RWTS.BUFFER.1.1,X
 1430 *---BUFFER PART 1, SECTION 2-----
 1440 INY NEXT REAL BYTE
 1450 LDA (BUF.PNTR),Y GET BYTE FROM BUFFER
 1460 STA $27 SAVE HERE FOR LOWER 3 BITS
 1470 LSR USE TOP 5 BITS
 1480 LSR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 228 of 2550

Apple II Computer Info

 1490 LSR
 1500 STA RWTS.BUFFER.1.2,X
 1510 *---BUFFER PART 1, SECTION 3-----
 1520 INY NEXT REAL BYTE
 1530 LDA (BUF.PNTR),Y GET BYTE FROM BUFFER
 1540 STA $2A SAVE FOR LOWER 3 BITS
 1550 LSR
 1560 LSR USE TOP 5 BITS
 1570 LSR
 1580 STA RWTS.BUFFER.1.3,X
 1590 *---BUFFER PART 1, SECTION 4-----
 1600 INY NEXT REAL BYTE
 1610 LDA (BUF.PNTR),Y GET BYTE FROM BUFFER
 1620 LSR USE TOP 5 BITS
 1630 ROL $2A BIT 0 INTO $2A
 1640 LSR
 1650 ROL $27 BIT 1 INTO $27
 1660 LSR
 1670 ROL $26 BIT 2 INTO $26
 1680 STA RWTS.BUFFER.1.4,X
 1690 *---BUFFER PART 1, SECTION 5-----
 1700 INY NEXT REAL BYTE
 1710 LDA (BUF.PNTR),Y GET BYTE FROM BUFFER
 1720 LSR USE TOP 5 BITS
 1730 ROL $2A BIT 0 INTO $2A
 1740 LSR
 1750 ROL $27 BIT 1 INTO $27
 1760 LSR HOLD BIT 2 IN CARRY-BIT
 1770 STA RWTS.BUFFER.1.5,X
 1780 *---BUFFER PART 2, SECTION 0-----
 1790 LDA $26 APPEND BIT 2 TO $26
 1800 ROL
 1810 AND #$1F 5-BIT MASK
 1820 STA RWTS.BUFFER.2.1,X
 1830 *---BUFFER PART 2, SECTION 1-----
 1840 LDA $27
 1850 AND #$1F
 1860 STA RWTS.BUFFER.2.2,X
 1870 *---BUFFER PART 2, SECTION 2-----
 1880 LDA $2A
 1890 AND #$1F
 1900 STA RWTS.BUFFER.2.3,X
 1910 *---------------------------------
 1920 INY NEXT REAL BYTE
 1930 DEX NEXT BYTE IN EACH SECTION
 1940 BPL .1 LOOP UNTIL EACH SECTION FULL
 1950 *---------------------------------
 1960 LDA (BUF.PNTR),Y GET LAST REAL BYTE
 1970 TAX
 1980 AND #7 USE LOWER 3 BITS
 1990 STA RWTS.BUFFER.2.4
 2000 TXA NOW GET 5 UPPER BITS
 2010 LSR
 2020 LSR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 229 of 2550

Apple II Computer Info

 2030 LSR
 2040 STA RWTS.BUFFER.1.6
 2050 RTS
 2060 .PG
 2070 *---------------------------------
 2080 * WRITE A SECTOR ON THE DISK FROM RWTS.BUFFER
 2090 *---------------------------------
 2100 WRITE.SECTOR
 2110 SEC SET IN CASE OF ERROR RETURN
 2120 LDA Q6H,X Q6 HIGH, Q7 LOW,
 2130 LDA Q7L,X TO READ WRITE PROTECT STATUS
 2140 BMI .5 DISK IS WRITE PROTECTED
 2150 STX $27 SAVE SLOT #
 2160 STX $0678 HERE, TOO
 2170 LDA RWTS.BUFFER.2.1 FIRST NYBBLE OF DATA
 2180 STA $26 SAVE IT
 2190 LDA #$FF SYNC BYTE
 2200 STA Q7H,X Q6H,Q7H: (A) TO SHIFT REGISTER
 2210 ORA Q6L,X Q6L,Q7H: WRITE ON DISK
 2220 PHA TIME DELAYS
 2230 PLA
 2240 NOP
 2250 LDY #10 WRITE TEN MORE SYNC BYTES
 2260 .1 ORA $26 WASTE TIME
 2270 JSR WRT2 WRITE (A) ON DISK
 2280 DEY
 2290 BNE .1 UNTIL 10 OF THEM
 2300 LDA #$D5 WRITE DATA HEADER
 2310 JSR WRT1
 2320 LDA #$AA
 2330 JSR WRT1
 2340 LDA #$AD
 2350 JSR WRT1
 2360 TYA A=0
 2370 LDY #154 WRITE 154 NYBBLES
 2380 BNE .3 ...ALWAYS
 2390 .2 LDA RWTS.BUFFER.2.1,Y GET CURRENT NYBBLE AND
 2400 .3 EOR RWTS.BUFFER.2.1-1,Y EOR WITH PREVIOUS NYBBLE
 2410 TAX USE AS OFFSET INTO TABLE
 2420 LDA NYBBLE.TABLE,X MAP 5-BITS TO 8-BITS
 2430 LDX $27 GET SLOT AGAIN
 2440 STA Q6H,X Q6H,Q7H: (A) TO SHIFT REGISTER
 2450 LDA Q6L,X Q6L,Q7H: WRITE ON DISK
 2460 DEY
 2470 BNE .2 UNTIL ALL BYTES FROM THIS BLOCK DONE
 2480 LDA $26 GET FIRST NYBBLE
 2490 NOP
 2500 .4 EOR RWTS.BUFFER.1.1,Y EOR WITH CURRENT NYBBLE
 2510 TAX INDEX INTO TABLE
 2520 LDA NYBBLE.TABLE,X MAP TO 8-BIT VALUE
 2530 LDX $0678 SLOT # AGAIN
 2540 STA Q6H,X Q6H,Q7L: (A) TO SHIFT REGISTER
 2550 LDA Q6L,X Q6L,Q7H: WRITE ON DISK
 2560 LDA RWTS.BUFFER.1.1,Y GET NYBBLE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 230 of 2550

Apple II Computer Info

 2570 INY
 2580 BNE .4 MORE TO DO
 2590 TAX LAST NYBBLE
 2600 LDA NYBBLE.TABLE,X MAP TO 8 BITS
 2610 LDX $27 SLOT # AGAIN
 2620 JSR WRT3 WRITE CHECK SUM ON DISK
 2630 LDA #$DE WRITE TRAILER
 2640 JSR WRT1
 2650 LDA #$AA
 2660 JSR WRT1
 2670 LDA #$EB
 2680 JSR WRT1
 2690 LDA Q7L,X Q7L
 2700 .5 LDA Q6L,X Q6L
 2710 RTS
 2720 *---------------------------------
 2730 WRT1 CLC WAIT 2 CYCLES
 2740 WRT2 PHA WAIT 3 CYCLES
 2750 PLA WAIT 4 CYCLES
 2760 WRT3 STA Q6H,X Q6H,Q7H: (A) TO SHIFT REGISTER
 2770 ORA Q6L,X Q6L,Q7H: WRITE ON DISK
 2780 RTS
 2790 .PG
 2800 *---------------------------------
 2810 * READ SECTOR INTO RWTS.BUFFER
 2820 *---------------------------------
 2830 READ.SECTOR
 2840 LDY #32 MUST FIND $D5 WITHIN 32 BYTES
 2850 .1 DEY
 2860 BEQ ERROR.RETURN
 2870 .2 LDA Q6L,X READ SHIFT REGISTER
 2880 BPL .2 WAIT FOR FULL BYTE
 2890 .3 EOR #$D5 SEE IF FOUND $D5
 2900 BNE .1 NOT YET
 2910 NOP DELAY BEFORE NEXT READ
 2920 .4 LDA Q6L,X READ SHIFT REGISTER
 2930 BPL .4 WAIT FOR FULL BYTE
 2940 CMP #$AA SEE IF $AA
 2950 BNE .3 NO
 2960 LDY #154 BYTE COUNT FOR LATER
 2970 .5 LDA Q6L,X READ SHIFT REGISTER
 2980 BPL .5 WAIT FOR FULL BYTE
 2990 CMP #$AD IS IT $AD?
 3000 BNE .3 NO
 3010 *---------------------------------
 3020 LDA #0 BEGIN CHECKSUM
 3030 .6 DEY
 3040 STY $26
 3050 .7 LDY Q6L,X READ SHIFT REGISTER
 3060 BPL .7 WAIT FOR FULL BYTE
 3070 EOR BYTE.TABLE,Y CONVERT TO NYBBLE
 3080 LDY $26 BUFFER INDEX
 3090 STA RWTS.BUFFER.2.1,Y
 3100 BNE .6

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 231 of 2550

Apple II Computer Info

 3110 .8 STY $26
 3120 .9 LDY Q6L,X READ SHIFT REGISTER
 3130 BPL .9 WAIT FOR FULL BYTE
 3140 EOR BYTE.TABLE,Y CONVERT TO NYBBLE
 3150 LDY $26
 3160 STA RWTS.BUFFER.1.1,Y
 3170 INY
 3180 BNE .8
 3190 .10 LDY Q6L,X READ CHECKSUM
 3200 BPL .10
 3210 CMP BYTE.TABLE,Y
 3220 BNE ERROR.RETURN
 3230 .11 LDA Q6L,X READ TRAILER
 3240 BPL .11
 3250 CMP #$DE
 3260 BNE ERROR.RETURN
 3270 NOP
 3280 .12 LDA Q6L,X
 3290 BPL .12
 3300 CMP #$AA
 3310 BEQ GOOD.RETURN
 3320 ERROR.RETURN
 3330 SEC
 3340 RTS
 3350 .PG
 3360 *---------------------------------
 3370 * READ ADDRESS
 3380 *---------------------------------
 3390 READ.ADDRESS
 3400 LDY #$F8 TRY 1800 TIMES (FROM $F8F8 TO $10000)
 3410 STY $26
 3420 .1 INY
 3430 BNE .2
 3440 INC $26
 3450 BEQ ERROR.RETURN
 3460 .2 LDA Q6L,X READ SHIFT REGISTER
 3470 BPL .2 WAIT FOR FULL BYTE
 3480 .3 CMP #$D5 SEE IF $D5
 3490 BNE .1 NO
 3500 NOP DELAY
 3510 .4 LDA Q6L,X READ SHIFT REGISTER
 3520 BPL .4 WAIT FOR FULL BYTE
 3530 CMP #$AA SEE IF $AA
 3540 BNE .3 NO
 3550 LDY #3 READ 3 BYTES LATER
 3560 .5 LDA Q6L,X READ SHIFT REGISTER
 3570 BPL .5
 3580 CMP #$B5 SEE IF $B5
 3590 BNE .3 NO
 3600 LDA #0 START CHECK SUM
 3610 .6 STA $27
 3620 .7 LDA Q6L,X READ REGISTER
 3630 BPL .7
 3640 ROL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 232 of 2550

Apple II Computer Info

 3650 STA $26
 3660 .8 LDA Q6L,X READ REGISTER
 3670 BPL .8 WAIT FOR FULL BYTE
 3680 AND $26 MERGE THE NYBBLES
 3690 STA $2C,Y $2C -- CHECK SUM
 3700 EOR $27 $2D -- SECTOR
 3710 DEY $2E -- TRACK
 3720 BPL .6 $2F -- VOLUME
 3730 TAY TEST CHECK SUM
 3740 BNE ERROR.RETURN
 3750 .9 LDA Q6L,X READ REGISTER
 3760 BPL .9 WAIT FOR FULL BYTE
 3770 CMP #$DE TEST FOR VALID TRAILER
 3780 BNE ERROR.RETURN
 3790 NOP
 3800 .10 LDA Q6L,X READ REGISTER
 3810 BPL .10
 3820 CMP #$AA
 3830 BNE ERROR.RETURN
 3840 GOOD.RETURN
 3850 CLC
 3860 RTS
 3870 .PG
 3880 *---------------------------------
 3890 * CONVERT 410 5-BIT NYBBLES TO 256 BYTES
 3900 * (THEY ARE NOW LEFT-JUSTIFIED IN RWTS.BUFFER)
 3910 *---------------------------------
 3920 POST.NYBBLE
 3930 LDX #50 51 BYTES PER SECTION
 3940 LDY #0
 3950 *---BUFFER PART 1, SECTION 1-----
 3960 .1 LDA RWTS.BUFFER.2.1,X
 3970 LSR
 3980 LSR RIGHT-JUSTIFY THE NYBBLE
 3990 LSR
 4000 STA $27 SAVE BIT 0
 4010 LSR
 4020 STA $26 SAVE BIT 1
 4030 LSR BITS 2-4
 4040 ORA RWTS.BUFFER.1.1,X
 4050 STA (BUF.PNTR),Y STORE IN BUFFER
 4060 *---BUFFER PART 1, SECTION 2-----
 4070 INY NEXT BYTE
 4080 LDA RWTS.BUFFER.2.2,X
 4090 LSR RIGHT-JUSTIFY THE NYBBLE
 4100 LSR
 4110 LSR
 4120 LSR BIT 0 INTO CARRY
 4130 ROL $27 AND SAVE HERE
 4140 LSR BIT 1 INTO CARRY
 4150 ROL $26 AND SAVE HERE
 4160 ORA RWTS.BUFFER.1.2,X
 4170 STA (BUF.PNTR),Y STORE THE BYTE
 4180 *---BUFFER PART 1, SECTION 3-----

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 233 of 2550

Apple II Computer Info

 4190 INY NEXT BYTE
 4200 LDA RWTS.BUFFER.2.3,X
 4210 LSR RIGHT-JUSTIFY THE NYBBLE
 4220 LSR
 4230 LSR
 4240 LSR BIT 0 INTO CARRY
 4250 ROL $27 AND SAVE HERE
 4260 LSR BIT 1 INTO CARRY
 4270 ROL $26 AND SAVE HERE
 4280 ORA RWTS.BUFFER.1.3,X
 4290 STA (BUF.PNTR),Y STORE THE BYTE
 4300 *---BUFFER PART1, SECTION 4-----
 4310 INY NEXT BYTE
 4320 LDA $26 USE THE 3 BITS SAVED HERE
 4330 AND #7 MAKE SURE ONLY 3 BITS
 4340 ORA RWTS.BUFFER.1.4,X
 4350 STA (BUF.PNTR),Y STORE THE BYTE
 4360 *---BUFFER PART1, SECTION 5-----
 4370 INY NEXT BYTE
 4380 LDA $27 USE THE 3 BITS SAVED HERE
 4390 AND #7 MAKE SURE ONLY 3 BITS
 4400 ORA RWTS.BUFFER.1.5,X
 4410 STA (BUF.PNTR),Y STORE THE BYTE
 4420 *---------------------------------
 4430 INY NEXT BYTE
 4440 DEX
 4450 BPL .1
 4460 *---------------------------------
 4470 LDA RWTS.BUFFER.2.4 GET THE LAST BYTE
 4480 LSR RIGHT JUSTIFY
 4490 LSR
 4500 LSR
 4510 ORA RWTS.BUFFER.1.6
 4520 STA (BUF.PNTR),Y STORE THE LAST BYTE
 4530 RTS
 4540 .PG
 4550 *---------------------------------
 4560 * TRACK SEEK
 4570 *---------------------------------
 4580 SEEK.TRACK.ABSOLUTE
 4590 STX $2B CURRENT SLOT*16
 4600 STA $2A SAVE TRACK #
 4610 CMP CURRENT.TRACK COMPARE TO CURRENT TRACK
 4620 BEQ .9 ALREADY THERE
 4630 LDA #0
 4640 STA $26 # OF STEPS SO FAR
 4650 .1 LDA CURRENT.TRACK CURRENT TRACK NUMBER
 4660 STA $27
 4670 SEC
 4680 SBC $2A DESIRED TRACK
 4690 BEQ .6 WE HAVE ARRIVED
 4700 BCS .2 CURRENT > DESIRED
 4710 EOR #$FF CURRENT < DESIRED
 4720 INC CURRENT.TRACK INCREMENT CURRENT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 234 of 2550

Apple II Computer Info

 4730 BCC .3 ...ALWAYS
 4740 .2 ADC #$FE CARRY SET, SO A=A-1
 4750 DEC CURRENT.TRACK DECREMENT CURRENT TRACK
 4760 .3 CMP $26 GET MINIMUM OF:
 4770 BCC .4 1. # OF TRACKS TO MOVE LESS 1
 4780 LDA $26 2. # OF ITERATIONS SO FAR
 4790 .4 CMP #12 3. ELEVEN
 4800 BCS .5
 4810 TAY
 4820 .5 SEC TURN PHASE ON
 4830 JSR .7
 4840 LDA ONTBL,Y GET DELAY TIME
 4850 JSR DLY100 DELAY 100*A MICROSECONDS
 4860 LDA $27 TRACK NUMBER
 4870 CLC TURN PHASE OFF
 4880 JSR .8
 4890 LDA OFFTBL,Y
 4900 JSR DLY100
 4910 INC $26 # OF STEPS SO FAR
 4920 BNE .1 ...ALWAYS
 4930 *---------------------------------
 4940 .6 JSR DLY100
 4950 CLC TURN PHASE OFF
 4960 .7 LDA CURRENT.TRACK
 4970 .8 AND #3 ONLY KEEP LOW-ORDER 2 BITS
 4980 ROL (0000 0XX0)
 4990 ORA $2B (0SSS 0XX0) MERGE SLOT
 5000 TAX USE AS INDEX FOR PHASE-OFF
 5010 LDA PHOFF,X PHASE-OFF
 5020 LDX $2B
 5030 .9 RTS
 5040 *---------------------------------
 5050 * SHORT DELAY SUBROUTINE
 5060 *---------------------------------
 5070 DLY100 LDX #17 100*A MICROSECONDS
 5080 .1 DEX
 5090 BNE .1
 5100 INC $46
 5110 BNE .2
 5120 INC $47
 5130 .2 SEC
 5140 SBC #1
 5150 BNE DLY100
 5160 RTS
 5170 *---------------------------------
 5180 * DELAY TIMES FOR STEPPING MOTOR
 5190 *---------------------------------
 5200 ONTBL .HS 01302824201E1D1C1C1C1C1C
 5210 OFFTBL .HS 702C26221F1E1D1C1C1C1C1C
 5220 .HS 1C1C1C1C
 5230 .PG
 5240 *---------------------------------
 5250 * BYTE TABLE
 5260 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 235 of 2550

Apple II Computer Info

 5270 BYTE.TABLE .EQ *-$A8
 5280 .HS 00000000010810180203040506202830
 5290 .HS 070938400A4850580B0C0D0E0F111213
 5300 .HS 14151617191A1B1C1D1E212223246068
 5310 .HS 2526707827808890292A2B2C2D2E2F31
 5320 .HS 323398A034A8B0B8353637393AC0C8D0
 5330 .HS 3B3CD8E03EE8F0F8
 5340 *---------------------------------
 5350 * 410-BYTE BUFFER FOR NYBBLES
 5360 *---------------------------------
 5370 RWTS.BUFFER.1.1 .BS 51 $BB00 - BB32
 5380 RWTS.BUFFER.1.2 .BS 51 $BB33 - BB65
 5390 RWTS.BUFFER.1.3 .BS 51 $BB66 - BB98
 5400 RWTS.BUFFER.1.4 .BS 51 $BB99 - BBCB
 5410 RWTS.BUFFER.1.5 .BS 51 $BBCC - BBFE
 5420 RWTS.BUFFER.1.6 .BS 1 $BBFF
 5430 RWTS.BUFFER.2.1 .BS 51 $BC00 - BC32
 5440 RWTS.BUFFER.2.2 .BS 51 $BC33 - BC65
 5450 RWTS.BUFFER.2.3 .BS 51 $BC66 -BC98
 5460 RWTS.BUFFER.2.4 .BS 1 $BC99
 5470 *---------------------------------
 5480 * NYBBLE TABLE
 5490 *---------------------------------
 5500 NYBBLE.TABLE
 5510 .HS ABADAEAFB5B6B7BABBBDBEBF
 5520 .HS D6D7DADBDDDEDFEAEBEDEEEF
 5530 .HS F5F6F7FAFBFDFEFF
 5540 *---------------------------------
 5550 * $BCBA THRU $BCFF IS NOT USED BY DOS 3.2.1
 5560 *---------------------------------
 5570 .PG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 236 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:DOS3.3:HIRES.SCRN.TEST.txt
==

$∫Á(4)"BLOAD B.HIRES SCRN":å7682
ë:í3:ì0,0>ÅI–1¡10V-X–¤(1) 40:Y–¤(1) 40b(ì¡X,Y:Çv<ÅX–0¡39:ÅY–
0¡39äFØH◊A–X,Y):†15 AóPçX,Y:Ç:Ç•Zπ…16298,0ødæA$:π…16297,0:æA$:´90

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 237 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:DOS3.3:S.HIRES.SCRN.txt
==

 1000 *---------------------------------
 1010 * HI-RES SCRN FUNCTION
 1020 *
 1030 * & HSCRN(A=X,Y)
 1040 * X,Y DEFINES THE SPOT
 1050 * A RECEIVES 0 OR 1
 1060 *---------------------------------
 1070 .OR $300
 1080 .TF B.HIRES SCRN
 1090 *---------------------------------
 1100 AMPERSAND.VECTOR .EQ $3F5
 1110 *---------------------------------
 1120 CHRGET .EQ $00B1
 1130 CHRGOT .EQ $00B7
 1140 SYNCHR .EQ $DEC0
 1150 SYNTAX.ERROR .EQ $DEC9
 1160 PTRGET .EQ $DFE3
 1170 SNGFLT .EQ $E301
 1180 HPOSN .EQ $F411
 1190 HFNS .EQ $F6B9
 1200 *---------------------------------
 1210 VALUE.TYPE .EQ $11
 1220 HPNTR .EQ $26
 1230 HMASK .EQ $30
 1240 FORMULA.PNTR .EQ $85
 1250 *---------------------------------
 1260 TOKEN.EQUALS .EQ $D0
 1270 TOKEN.SCRN .EQ $D7
 1280 *---------------------------------
 1290 * SETUP AMPERSAND VECTOR
 1300 *---------------------------------
 1310 SETUP LDA #$4C JMP OPCODE
 1320 STA AMPERSAND.VECTOR
 1330 LDA #HSCRN
 1340 STA AMPERSAND.VECTOR+1
 1350 LDA /HSCRN
 1360 STA AMPERSAND.VECTOR+2
 1370 RTS
 1380 *---------------------------------
 1390 * HSCRN FUNCTION
 1400 *---------------------------------
 1410 HSCRN LDA #'H TEST FOR "HSCRN("
 1420 JSR SYNCHR FIRST LETTER "H"
 1430 LDA #TOKEN.SCRN AND THEN TOKEN "SCRN("
 1440 JSR SYNCHR
 1450 JSR PTRGET SCAN THE VARIABLE NAME
 1460 STA FORMULA.PNTR SAVE ITS POINTER ADDRESS
 1470 STY FORMULA.PNTR+1
 1480 LDA #TOKEN.EQUALS CHECK FOR "="

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 238 of 2550

Apple II Computer Info

 1490 JSR SYNCHR
 1500 LDA VALUE.TYPE+1 SAVE VARIABLE TYPE ON STACK
 1510 PHA
 1520 LDA VALUE.TYPE
 1530 PHA
 1540 JSR HFNS SCAN "X,Y" EXPRESSIONS
 1550 JSR HPOSN SET UP BASE, Y-REG, AND MASK
 1560 JSR CHRGOT CHECK FOR FINAL ")"
 1570 CMP #')
 1580 BNE .2 SYNTAX ERROR IF NOT THERE!
 1590 JSR CHRGET POSITION FOR NEXT STATEMENT
 1600 LDA HMASK ISOLATE SPOT AT X,Y
 1610 AND (HPNTR),Y
 1620 BEQ .1 SPOT IS OFF, RETURN ZERO
 1630 LDA #1 SPOT IS ON, RETURN 1
 1640 .1 TAY
 1650 JSR SNGFLT CONVERT BYTE TO REAL VALUE
 1660 JMP $DA5B STORE IN VARIABLE, AND KEEP GOING!
 1665 *---------------------------------
 1670 .2 JMP SYNTAX.ERROR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 239 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8105:DOS3.3:S.PADDLE.JITTER.txt
==

 1000 *---------------------------------
 1010 * PADDLE JITTER SMOOTHER
 1020 *
 1030 * POKE 768,<PADDLE NUMBER> 0, 1, 2, OR 3
 1040 * CALL 770
 1050 * P=PEEK(769) PADDLE VALUE 0-255
 1060 *---------------------------------
 1070 MON.PREAD .EQ $FB1E SUBROUTINE TO READ PADDLE
 1080 *---------------------------------
 1090 .OR $300
 1100 *---------------------------------
 1110 PADDLE.NUMBER .BS 1
 1120 PADDLE.VALUE .BS 1
 1130 *---------------------------------
 1140 PADDLE.JITTER.SMOOTHER
 1150 LDA PADDLE.NUMBER
 1160 AND #3 BE CERTAIN 0>=PDL#>=3
 1170 TAX
 1180 JSR MON.PREAD READ PADDLE VALUE
 1190 TYA SAVE IN A-REG TOO
 1200 CPY PADDLE.VALUE.1
 1210 BEQ .8 SAME, RETURN THIS VALUE
 1220 LDX PADDLE.VALUE.1 DETERMINE PREVIOUS DIRECTION
 1230 CPX PADDLE.VALUE.2
 1240 BCS .2 IT WAS INCREASING
 1250 *---------------------------------
 1260 * IT WAS DECREASING...
 1270 *---------------------------------
 1280 CPY PADDLE.VALUE.1 WHAT IS CURRENT DIRECTION?
 1290 BCC .6 STILL DECREASING, SO ACCEPT IT
 1300 DEY SEE IF ONLY 1 STEP
 1310 BCS .5 ...ALWAYS
 1320 *---------------------------------
 1330 * IT WAS INCREASING...
 1340 .2 CPY PADDLE.VALUE.1 DETERMINE CURRENT DIRECTION
 1350 BCS .6 STILL INCREASING, SO ACCEPT IT
 1360 INY SEE IF ONLY 1 STEP
 1370 *---------------------------------
 1380 * REVERSED DIRECTION
 1390 *---------------------------------
 1400 .5 CPY PADDLE.VALUE.1 IF SAME NOW, IGNORE IT
 1410 BNE .6 USE NEW VALUE
 1420 TXA USE PREVIOUS VALUE
 1430 BCS .8 ...ALWAYS
 1440 *---------------------------------
 1450 * ACCEPT NEW READING
 1460 *---------------------------------
 1470 .6 STX PADDLE.VALUE.2 OLDEST READING
 1480 STA PADDLE.VALUE.1 PREVIOUS READING

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 240 of 2550

Apple II Computer Info

 1490 *---------------------------------
 1500 .8 STA PADDLE.VALUE CURRENT READING
 1510 RTS
 1520 *---------------------------------
 1530 PADDLE.VALUE.1 .DA #0
 1540 PADDLE.VALUE.2 .DA #0
 1550 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 241 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:Articles:DOS33.B800.List.txt
==

Commented Listing of DOS 3.3 $B800-BCFF

As I promised last month, here are the innermost routines of DOS 3.3.
These are the ones which actually read and write the hardware, and
are the most significantly different routines between DOS 3.2.1 and
DOS 3.3.

The major difference between the two versions of DOS is the way in
which data bytes are coded on the disk. DOS 3.2.1 maps 256 8-bit
bytes into 410 5-bit "nybbles". DOS 3.3 maps 256 8-bit bytes into 342
6-bit "nybbles". (The term "nybble" usually means 4 bits, but Apple
uses nybble to mean 5- and 6-bits also.)

The two routines PRE.NYBBLE and POST.NYBBLE convert between memory
format and disk format. The DOS 3.3 versions are much shorter and
simpler than those of DOS 3.2.1, but they are still hard to visualize
and explain.

To write a sector on the disk, RWTS calls PRE.NYBBLE and WRITE.SECTOR.
Here is what happens:

1. The most significant 6 bits of each byte in the buffer are copied
into $BB00-BBFF and right-justified with two zero-bits on the left.

2. The least significant 2 bits of each buffer byte are mapped into
$BC00-BC55.

3. Each 6-bit nybble is used as an index into the NYBBLE.TABLE to
pick up a corresponding 8-bit disk code. (The codes in NYBBLE.TABLE
always have the first bit = 1, and never have more than two zero-bits
in a row.)

To read a sector from the disk, RWTS calls READ.SECTOR and
POST.NYBBLE. Here is what happens:

1. Each disk byte is converted to a 6-bit nybble and copied into the
buffer from $BB00 through $BC55.

2. The nybbles in $BB00-BBFF become the most significant 6-bits of
the buffer bytes.

3. The nybbles in $BC00-BC55 supply the least significant 2-bits for
each buffer byte. This is the reverse of the process above.

WRITE.ADDRESS is called from FORMAT, when you are initializing a 16-
sector disk. This subroutine was embedded inside FORMAT in DOS 3.2.1.
READ.ADDRESS, READ.SECTOR, and WRITE.SECTOR are almost identical to
the DOS 3.2.1 versions.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 242 of 2550

Apple II Computer Info

Short as they are, I noticed that both PRE. and POST.NYBBLE can be
written more efficiently. Can you see how to save three bytes in
PRE.NYBBLE, and two bytes in POST.NYBBLE?

 SECTOR BUFFER RWTS.BUFFER.1
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 00 BB00
 A B

 G G

 55
 56
 C D

 AB
 AC
 E F

 FF BBFF

 RWTS.BUFFER.2
7 6 5 4 3 2 1 0
 BC00

 F E D C B A
 BC55

Another Way to Get 80-Columns

Those unpredictable Apple Parallel Interface ROMs! I wonder if even
Apple knows how many different versions they have made, and why!

Anyway, as you know if you have one, some of them make it very
difficult to get 80-column printout when you are using the S-C
Assembler II. You should be able to type control-I and "80N", but the
assembler sees control-I and does a tab. Plus you get a syntax error,
and the printer is un-hooked.

You can type "$I80N" (where "I" means control-I). Or you can type
"$579:50" (assuming slot 1).

Or, you can make the first line of your program do it. Type in this
line so it will be the first line in your program:
 0000 *I80N
Then type the "MEM" command. It will tell you the memory address
where your source program starts. Using monitor commands, display
about 8 bytes at the beginning of the source program. Look for the
pattern "49 38 30 4E". Change the "49" to "09", which is ASCII for
control-I. When your program is LISTed or ASMed, the control-I will
be caught by Apple's interface and put you into 80-column mode.

So, now you have at least three ways to make it work. Don't you wish
you had the ROM version which is in my Apple Parallel card? It works

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 243 of 2550

Apple II Computer Info

right without ANY of the above! Now if I could only make it work with
my screen printing program....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 244 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:Articles:FancyToneMakers.txt
==

Two Fancy Tone Generators....................Mark Kriegsman

I was not quite satisfied with the sound from Bob Sander-Cederlof's
"Touch-Tone Simulator" (AAL February 1981, page 5,6). His method for
making two simulataneous tones was to play one tone for a while and
then the other one for a while, letting your ear put it all together.
I have written the following DUAL.TONES program which mixes the two
tones together in a more realistic way. I also wrote SINGLE.TONE
which plays a given tone at 16 different volume levels. All out of
the standard Apple speaker! Really!

The programs are accessed from Applesoft with the "&". (See lines
1510 and 1830.) SINGLE.TONE is called with &T followed by three
expressions separated by commas. The three expressions are for the
tone, duration, and volume, respectively. Tone is a value from 0 to
255, duration a value from 0 to 65535, and volume a value from 0 to
15. Experiment with different settings and you will see how it works.
By making loops which change both pitch and volume, you can simulate
the sound of a falling bomb or a passing car.

DUAL.TONES also needs three parameters: tone#1, duration, and tone#2,
respectively. The two tone values must be between 0 and 255; duration
is again a value from 0 to 65535. It is interesting to try two tone
values very close together, to hear the beating effect, and two tones
at harmonic intervals to hear the chords. I think &D 254,28000,255
sounds a little like a light saber. Again, a loop which varies both
tone values can make some exciting sound effects!

Lines 1340-1400 are executed when you BRUN B.AMPERTONE; they set up
the ampersand vector for Applesoft. Once this is done, an ampersand
in your program or typed in as a direct command will start executing
the AMPERTONE subroutine.

Lines 1440-1490 determine which & routine you are calling. The
character following the "&" is in the A-register. If it is "T",
SINGLE.TONE is called; if "D", DUAL.TONE is called; if neither, you
get SYNTAX ERR.

Subroutines in the Applesoft ROMs are used to read the parameter
expressions (lines 2190-2230). GTBYTC advances to the next character,
and then evaluates the expression that starts there. If the value is
between 0 and 255 it is returned in the X-register. (If not, you get
RANGE ERR.) CHKCOM makes sure the next character is a comma; if it
isn't, you get SYNTAX ERR. GETNUM is used in executing the POKE
statement. It looks for an expression giving a value between 0 and
65535, then a comma, and then another expression giving a value
between 0 and 255. The first value is stored at $50 and $51, and the
second is returned in the X-register.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 245 of 2550

Apple II Computer Info

[Mark Kriegsman is a 15-year-old Apple expert living in Summit, New
Jersey. I wrote the article above based on two letters and a program
he sent. (Bob Sander-Cederlof)]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 246 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:Articles:Front.Page.txt
==

Volume 1 -- Issue 9 June, 1981

In This Issue...

Two Fancy Tone Generators 2
More About Multiplying on the 6502 5
Specialized Multiplications 7
Commented Listing of DOS 3.3 $B800-BCFF 10
Beneath Apple DOS -- A Review 19

New Quarterly Disk Ready

Remember that all the source programs which appear in the Apple
Assembly Line are available on disk, ready to assembly with the S-C
Assembler II Version 4.0. Every three months I collect it all on a
Quarterly Disk, and you can get it for only $15.

QD#1 covers AAL issues 1-3 (October thru December 1980), QD#2 covers
AAL issues 4-6 (January thru March 1981), QD#3 covers issues 7-9
(April thru June 1981). Copies of all back issues of the AAL
newsletter are available for $1.20 each.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 247 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:Articles:Multiplication.txt
==

Correction

When I typed Rick Hatcher's code for "Hiding Things Under DOS", AAL
April, 1981, page 10, I goofed. Change line 110 of the little
Applesoft code from "110 POKE 40194,211" to "110 POKE 40192,211".
Better yet, to reserve NP pages between the current bottom of DOS and
DOS's buffers, use this code before any files are opened:

 100 POKE 40192,PEEK(40192)-NP
 110 CALL 42964

More About Multiplying on the 6502

You will remember Brooke Boering's article on this subject in MICRO
last December; I mentioned it in AAL#5, and printed his 16x16 multiply
subroutine. Now Leo J. Scanlon, author of 6502 Software Design,
published an eight-page article "Multiplying by 1's and 0's" in
Kilobaud Microcomputing, June 1981, pages 110-120.

If you are serious and really want to learn, this article gets down to
the nuts and bolts level. Work your way through it, and you will have
learned not only how to multiply, but also a lot about machine
language in general. Subroutines are listed for 8x8, 16x16, and NxM
multiplication, for both signed and unsigned operands.

Not to be outdone, I have written my own subroutine to multiply an M-
byte multiplicand by a N-byte multiplier (both unsigned), producing a
product of M+N bytes. It is written for clarity, not for size or
speed (nevertheless, it is two bytes shorter than Scanlon's
subroutine!).

The basic idea is to examine the bits of the multiplier one-by-one,
starting on the right. If the multiplier bit = 1, the multiplicand is
added in to the product, at the left end of the product register. In
either case, the product register is then shifted right one bit
position. The process is repeated until the multiplier is used up.

I wrote subroutines to shift the product register right one bit
position, to shift the multiplier right one bit position returning the
bit shifted out in the CARRY status bit, and to add the multiplicand
to the product register. There is no reason these have to be
subroutines; they could be coded in line, because they are only called
from one place. I did it to make the overall program easier for you
to follow.

The multiplication loop is coded as two loops: an outer loop for the
number of bytes in the multiplier, and an inner loop for the number of
bits in a byte. This allows me to have up to 255 bytes in the
multiplier, just so the product (M+N bytes) is not more than 256

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 248 of 2550

Apple II Computer Info

bytes. (Of course, if you want variables that long, you will have to
move them out of page zero.)

There is one little trick you might not notice. After
ACCUMULATE.PARTIAL.PRODUCT, carry will be set if the sum overflows.
Then SHIFT.PRODUCT.RIGHT shifts the carry bit back into the product
register, maintaining the right answer.

Specialized Multiplications

Sometimes you need a multiplication routine that is not general at
all. For example, when you are converting from decimal to binary, you
need a routine that will multiply be ten. When you are computing the
memory address of a character at a particular position on a particular
line on the Apple Screen, you need to be able to multiply by 40 and
128. Other cases may come to your mind.

The subroutine BASCALC in the Apple Monitor computes the address in
screen memory. Here is what it is really doing, written in Integer
BASIC:

100 ADDR = 1024 + (LINE MOD 8)*128 + (LINE/8)*40

To do all that using a generalized multiply routine would take
hundreds of microseconds; BASCALC takes only 40 microseconds. Here is
Woz's code, with a few extra comments:

<bascalc subroutine here>

A subroutine to multiply by ten usually takes advantage of the fact
that ten in binary is "1010". That is, 10*X is the same as 8*X + 2*X,
or 2*(4*X+X). In fact, even in machines that have hardware multiply
instructions, it is usually faster to multiply by ten using "shift-
twice-and-add" than using the built in MPY opcode!

Here is a short piece of code which multiplies a two-byte value by
ten, storing the result back in the same bytes.

<example here>

Another way, much less sophisticated, to multiply by ten is to simply
add the number to itself nine times. If you have the S-C ASSEMBLER II
Version 4.0, disassemble from $114A through $117A. You will find my
subroutine for converting line numbers to binary. It is not elegant,
but it does the job reasonably fast in a small amount of memory. A
counter is initialized to 10; the next digit is read from the input
line and converted from ASCII to binary; the number accumulator is
added to the digit ten times, and the sum placed back into the number
accumulator. The counter is in $52, and the number accumulator is in
$50,51.

When you are converting from binary to decimal, you need to divide by
ten. Or multiply by one-tenth. One-tenth written as a binary
fraction is ".0001100110011001100....". Does the repetitive pattern

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 249 of 2550

Apple II Computer Info

here suggest to you a short-cut way to multiply by one-tenth? Maybe
it would become even easier if we write one-tenth as 4/30 - 1/30. In
decimal, to 8 places, that looks like .13333333 - .03333333 =
.10000000. In binary, to 18 bits, it looks like .001000100010001000 -
.000010001000100010 = .000110011001100110. See what you can come up
with for a fast way to multiply a 16-bit number by one-tenth. I'll
print the best version in AAL!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 250 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:Articles:Rvw.Beneath.DOS.txt
==

Beneath Apple DOS -- A Review

If you have any interest whatsoever in DOS, be sure to buy this book!
It costs $19.95 (plus shipping), from Quality Software, 6660 Reseda
Blvd., Suite 105, Reseda, CA 91335. Call them up at (213) 344-6599
and give them your Master Charge or VISA number. Do it now!

Or better yet, send your check for $18 to S-C SOFTWARE, P. O. Box
5537, Richardson, TX 75080. I'll mail you a copy postpaid right away!
Saves you both time and money!

The authors of Beneath Apple DOS are Don Worth and Pieter Lechner.
You may know Don from his adventure-like program, "Beneath Apple
Manor", or from his LINKER program (both available from Quality
Software).

The book is published with a plastic comb binding, and is about the
same dimensions as the "Apple Assembly Line". There are 156 pages,
organized into 8 chapters and 3 appendices. A comprehensive Quick
Reference Card for DOS 3.3 is included. There are cartoon sketches
throughout which both amuse and aid comprehension, as well as more
traditional diagrams and charts and tables. A four page index helps
you find whatever you need to know.

Though the book focuses on DOS 3.3, it covers all the major
differences found in earlier versions. Chapter 2 is called "The
Evolution of DOS", and traces features and differences from Versions
3, 3.1, 3.2, 3.2.1, and 3.3. At other points throughout the book,
wherever the various versions differ, the details for each version are
explained.

Chapter 3 covers diskette formatting, in much more detail than the
Apple DOS manual: how bits are recorded, how 256 bytes are converted
to 410 or 342 shorter bytes, how those shorter bytes are converted to
encoded bytes ready to be written, how the checksum is computed and
tested, how the sectors are identified around a track, all about self-
sync bytes, and how sectors are interleaved.

Chapter 4 covers diskette organization: the DOS image, the Volume
Table of Contents, the catalog, track/sector lists, and the format of
each type of file. Some guidelines for repairing damaged diskettes
are given.

Chapter 5 outlines the overall structure of DOS. The booting process
is explained in a fair amount of detail. If you need more information
on DOS internals, chapter 8 is for you.

Chapter 6 gives clear instructions for using RWTS from machine
language programs. You may already be quite familiar with this,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 251 of 2550

Apple II Computer Info

because: 1) it is fairly well explained in the DOS manual; 2) many
articles have been published in magazines and newsletters telling you
how; and 3) you have gone ahead and tried it yourself. But there is
another way to get into DOS which treats files as files, but without
the normal DOS overhead. Apple's FID utility uses this way in,
through the so-called File Manager. Chapter 6 goes into great detail
describing the File Manager, and some examples showing how to use it
are given. This information has never been published before, and is
well worth the price of the entire book. Chapter 6 also shows you how
to talk to the disk drive directly, without any DOS at all.

Chapter 7 explains how to customize DOS, and gives the patches for
four nice custom features: avoiding the language card reload, making
space between DOS and its buffers, removing the pause during a long
CATALOG, and changing the HELLO file start-up from RUN to BRUN or
EXEC.

Chapter 8, 42 pages long, describes EVERY routine in DOS. It starts
with the disk controller ROM (at C600 of your controller is in slot
6), and goes from 9D00 through BFFF subroutine by subroutine. The
descriptions are in text form: no disassembled code, and no
flowcharts. If you put the book beside a disassembled section of DOS,
it is easily understood. Data sections are outlined also, so that you
can tell what every byte is there for. The last page of chapter 8
lists all the zero-page variables used by DOS, and explains each use.

Appendix A contains five sample programs which can be used to examine
and repair diskettes. They also illustrate the use of RWTS and the
File Manager.

Appendix B briefly explains the philosophy of disk protection schemes.
Someday someone will write a whole book on this subject. This
Appendix is only four pages, so you won't find out how to create the
uncrackable disk, or even how to crack it if you did.

Appendix C is an excellent glossary of terms used in the book. I
estimate that about 160 words are defined.

The authors list five good reasons why they wrote Beneath Apple DOS;
no, six:

1. To show direct assembly language access to DOS.
2. To help you fix clobbered diskettes.
3. To correct errors and ommissions in the Apple manuals.
4. To provide complete infomation on diskette formatting and DOS
internal operation.
5. To allow you to customize DOS to fit your needs.
6. To make the authors a lot of money.

They have done an excellent job with the first five objectives, and I
think number 6 will be met as well.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 252 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:DOS3.3:DOS33.B800.BCFF.txt
==

 1000 * .LIF
 1010 *---------------------------------
 1020 * DOS 3.3 DISASSEMBLY $B800 - $BCFF
 1030 * COMMENTS BY BOB SANDER-CEDERLOF 5-25-81
 1040 *---------------------------------
 1050 .OR $B800
 1060 .TA $0800
 1070 *---------------------------------
 1080 BUF.PNTR .EQ $3E,3F
 1090 CONST.AA .EQ $3E
 1100 FMT.SECTOR .EQ $3F
 1110 VOLUME .EQ $41
 1120 TRACK.CNTR .EQ $44
 1130 CURRENT.TRACK .EQ $0478
 1140 *---------------------------------
 1150 * DISK CONTROLLER ADDRESSES
 1160 *---------------------------------
 1170 PHOFF .EQ $C080 PHASE-OFF
 1180 PHON .EQ $C081 PHASE-ON
 1190 MTROFF .EQ $C088 MOTOR OFF
 1200 MTRON .EQ $C089 MOTOR ON
 1210 DRV0EN .EQ $C08A DRIVE 0 ENABLE
 1220 DRV1EN .EQ $C08B DRIVE 1 ENABLE
 1230 Q6L .EQ $C08C SET Q6 LOW
 1240 Q6H .EQ $C08D SET Q6 HIGH
 1250 Q7L .EQ $C08E SET Q7 LOW
 1260 Q7H .EQ $C08F SET Q7 HIGH
 1270 *
 1280 * Q6 Q7 USE OF Q6 AND Q7 LINES
 1290 * ---- ---- ----------------------
 1300 * LOW LOW READ (DISK TO SHIFT REGISTER)
 1310 * LOW HIGH WRITE (SHIFT REGISTER TO DISK)
 1320 * HIGH LOW SENSE WRITE PROTECT
 1330 * HIGH HIGH LOAD SHIFT REGISTER FROM DATA BUS
 1340 *---------------------------------
 1350 *
 1360 *---------------------------------
 1370 * CONVERT 256 BYTES TO 342 6-BIT NYBBLES
 1380 *---------------------------------
 1390 PRE.NYBBLE
 1400 LDX #0
 1410 LDY #2
 1420 .1 DEY
 1430 LDA (BUF.PNTR),Y NEXT REAL BYTE FROM BUFFER
 1440 LSR
 1450 ROL RWTS.BUFFER.2,X
 1460 LSR
 1470 ROL RWTS.BUFFER.2,X
 1480 STA RWTS.BUFFER.1,Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 253 of 2550

Apple II Computer Info

 1490 INX
 1500 CPX #86
 1510 BCC .1
 1520 LDX #0
 1530 TYA
 1540 BNE .1
 1550 LDX #85 CLEAR TOP BITS OUT OF BUFFER
 1560 .2 LDA RWTS.BUFFER.2,X
 1570 AND #$3F
 1580 STA RWTS.BUFFER.2,X
 1590 DEX
 1600 BPL .2
 1610 RTS
 1620 .PG
 1630 *---------------------------------
 1640 * WRITE A SECTOR ON THE DISK FROM RWTS.BUFFER
 1650 *---------------------------------
 1660 WRITE.SECTOR
 1670 SEC SET IN CASE OF ERROR RETURN
 1680 STX $27 SAVE SLOT #
 1690 STX $0678 HERE, TOO
 1700 LDA Q6H,X Q6 HIGH, Q7 LOW,
 1710 LDA Q7L,X TO READ WRITE PROTECT STATUS
 1720 BMI .5 DISK IS WRITE PROTECTED
 1730 LDA RWTS.BUFFER.2 FIRST NYBBLE OF DATA
 1740 STA $26 SAVE IT
 1750 LDA #$FF SYNC BYTE
 1760 STA Q7H,X Q6H,Q7H: (A) TO SHIFT REGISTER
 1770 ORA Q6L,X Q6L,Q7H: WRITE ON DISK
 1780 PHA TIME DELAYS
 1790 PLA
 1800 NOP
 1810 LDY #4 WRITE FOUR MORE SYNC BYTES
 1820 .1 PHA WASTE TIME
 1830 PLA
 1840 JSR WRT2 WRITE (A) ON DISK
 1850 DEY
 1860 BNE .1 UNTIL 4 OF THEM
 1870 LDA #$D5 WRITE DATA HEADER
 1880 JSR WRT1
 1890 LDA #$AA
 1900 JSR WRT1
 1910 LDA #$AD
 1920 JSR WRT1
 1930 TYA A=0
 1940 LDY #86 WRITE 86 NYBBLES
 1950 BNE .3 ...ALWAYS
 1960 .2 LDA RWTS.BUFFER.2,Y GET CURRENT NYBBLE AND
 1970 .3 EOR RWTS.BUFFER.2-1,Y EOR WITH PREVIOUS NYBBLE
 1980 TAX USE AS OFFSET INTO TABLE
 1990 LDA NYBBLE.TABLE,X MAP 6-BITS TO 8-BITS
 2000 LDX $27 GET SLOT AGAIN
 2010 STA Q6H,X Q6H,Q7H: (A) TO SHIFT REGISTER
 2020 LDA Q6L,X Q6L,Q7H: WRITE ON DISK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 254 of 2550

Apple II Computer Info

 2030 DEY
 2040 BNE .2 UNTIL ALL BYTES FROM THIS BLOCK DONE
 2050 LDA $26 GET FIRST NYBBLE
 2060 NOP
 2070 .4 EOR RWTS.BUFFER.1,Y EOR WITH CURRENT NYBBLE
 2080 TAX INDEX INTO TABLE
 2090 LDA NYBBLE.TABLE,X MAP TO 8-BIT VALUE
 2100 LDX $0678 SLOT # AGAIN
 2110 STA Q6H,X Q6H,Q7L: (A) TO SHIFT REGISTER
 2120 LDA Q6L,X Q6L,Q7H: WRITE ON DISK
 2130 LDA RWTS.BUFFER.1,Y GET NYBBLE
 2140 INY
 2150 BNE .4 MORE TO DO
 2160 TAX LAST NYBBLE
 2170 LDA NYBBLE.TABLE,X MAP TO 8 BITS
 2180 LDX $27 SLOT # AGAIN
 2190 JSR WRT3 WRITE CHECK SUM ON DISK
 2200 LDA #$DE WRITE TRAILER
 2210 JSR WRT1
 2220 LDA #$AA
 2230 JSR WRT1
 2240 LDA #$EB
 2250 JSR WRT1
 2260 LDA #$FF
 2270 JSR WRT1
 2280 LDA Q7L,X Q7L
 2290 .5 LDA Q6L,X Q6L
 2300 RTS
 2310 *---------------------------------
 2320 WRT1 CLC WAIT 2 CYCLES
 2330 WRT2 PHA WAIT 3 CYCLES
 2340 PLA WAIT 4 CYCLES
 2350 WRT3 STA Q6H,X Q6H,Q7H: (A) TO SHIFT REGISTER
 2360 ORA Q6L,X Q6L,Q7H: WRITE ON DISK
 2370 RTS
 2380 .PG
 2390 *---------------------------------
 2400 * CONVERT 342 6-BIT NYBBLES TO 256 BYTES
 2410 * (THEY ARE NOW RIGHT-JUSTIFIED IN RWTS.BUFFER)
 2420 *---------------------------------
 2430 POST.NYBBLE
 2440 LDY #0
 2450 .1 LDX #86
 2460 .2 DEX
 2470 BMI .1
 2480 LDA RWTS.BUFFER.1,Y
 2490 LSR RWTS.BUFFER.2,X
 2500 ROL
 2510 LSR RWTS.BUFFER.2,X
 2520 ROL
 2530 STA (BUF.PNTR),Y
 2540 INY
 2550 CPY $26 (RWTS PUT 0 IN $26)
 2560 BNE .2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 255 of 2550

Apple II Computer Info

 2570 RTS
 2580 *---------------------------------
 2590 * READ SECTOR INTO RWTS.BUFFER
 2600 *---------------------------------
 2610 READ.SECTOR
 2620 LDY #32 MUST FIND $D5 WITHIN 32 BYTES
 2630 .1 DEY
 2640 BEQ ERROR.RETURN
 2650 .2 LDA Q6L,X READ SHIFT REGISTER
 2660 BPL .2 WAIT FOR FULL BYTE
 2670 .3 EOR #$D5 SEE IF FOUND $D5
 2680 BNE .1 NOT YET
 2690 NOP DELAY BEFORE NEXT READ
 2700 .4 LDA Q6L,X READ SHIFT REGISTER
 2710 BPL .4 WAIT FOR FULL BYTE
 2720 CMP #$AA SEE IF $AA
 2730 BNE .3 NO
 2740 LDY #86 BYTE COUNT FOR LATER
 2750 .5 LDA Q6L,X READ SHIFT REGISTER
 2760 BPL .5 WAIT FOR FULL BYTE
 2770 CMP #$AD IS IT $AD?
 2780 BNE .3 NO
 2790 *---------------------------------
 2800 LDA #0 BEGIN CHECKSUM
 2810 .6 DEY
 2820 STY $26
 2830 .7 LDY Q6L,X READ SHIFT REGISTER
 2840 BPL .7 WAIT FOR FULL BYTE
 2850 EOR BYTE.TABLE,Y CONVERT TO NYBBLE
 2860 LDY $26 BUFFER INDEX
 2870 STA RWTS.BUFFER.2,Y
 2880 BNE .6
 2890 .8 STY $26
 2900 .9 LDY Q6L,X READ SHIFT REGISTER
 2910 BPL .9 WAIT FOR FULL BYTE
 2920 EOR BYTE.TABLE,Y CONVERT TO NYBBLE
 2930 LDY $26
 2940 STA RWTS.BUFFER.1,Y
 2950 INY
 2960 BNE .8
 2970 .10 LDY Q6L,X READ CHECKSUM
 2980 BPL .10
 2990 CMP BYTE.TABLE,Y
 3000 BNE ERROR.RETURN
 3010 .11 LDA Q6L,X READ TRAILER
 3020 BPL .11
 3030 CMP #$DE
 3040 BNE ERROR.RETURN
 3050 NOP
 3060 .12 LDA Q6L,X
 3070 BPL .12
 3080 CMP #$AA
 3090 BEQ GOOD.RETURN
 3100 ERROR.RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 256 of 2550

Apple II Computer Info

 3110 SEC
 3120 RTS
 3130 .PG
 3140 *---------------------------------
 3150 * READ ADDRESS
 3160 *---------------------------------
 3170 READ.ADDRESS
 3180 LDY #$FC TRY 772 TIMES (FROM $FCFC TO $10000)
 3190 STY $26
 3200 .1 INY
 3210 BNE .2
 3220 INC $26
 3230 BEQ ERROR.RETURN
 3240 .2 LDA Q6L,X READ SHIFT REGISTER
 3250 BPL .2 WAIT FOR FULL BYTE
 3260 .3 CMP #$D5 SEE IF $D5
 3270 BNE .1 NO
 3280 NOP DELAY
 3290 .4 LDA Q6L,X READ SHIFT REGISTER
 3300 BPL .4 WAIT FOR FULL BYTE
 3310 CMP #$AA SEE IF $AA
 3320 BNE .3 NO
 3330 LDY #3 READ 3 BYTES LATER
 3340 .5 LDA Q6L,X READ SHIFT REGISTER
 3350 BPL .5
 3360 CMP #$96 SEE IF $96
 3370 BNE .3 NO
 3380 LDA #0 START CHECK SUM
 3390 .6 STA $27
 3400 .7 LDA Q6L,X READ REGISTER
 3410 BPL .7
 3420 ROL
 3430 STA $26
 3440 .8 LDA Q6L,X READ REGISTER
 3450 BPL .8 WAIT FOR FULL BYTE
 3460 AND $26 MERGE THE NYBBLES
 3470 STA $2C,Y $2C -- CHECK SUM
 3480 EOR $27 $2D -- SECTOR
 3490 DEY $2E -- TRACK
 3500 BPL .6 $2F -- VOLUME
 3510 TAY TEST CHECK SUM
 3520 BNE ERROR.RETURN
 3530 .9 LDA Q6L,X READ REGISTER
 3540 BPL .9 WAIT FOR FULL BYTE
 3550 CMP #$DE TEST FOR VALID TRAILER
 3560 BNE ERROR.RETURN
 3570 NOP
 3580 .10 LDA Q6L,X READ REGISTER
 3590 BPL .10
 3600 CMP #$AA
 3610 BNE ERROR.RETURN
 3620 GOOD.RETURN
 3630 CLC
 3640 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 257 of 2550

Apple II Computer Info

 3650 .PG
 3660 *---------------------------------
 3670 * TRACK SEEK
 3680 *---------------------------------
 3690 SEEK.TRACK.ABSOLUTE
 3700 STX $2B CURRENT SLOT*16
 3710 STA $2A SAVE TRACK #
 3720 CMP CURRENT.TRACK COMPARE TO CURRENT TRACK
 3730 BEQ .9 ALREADY THERE
 3740 LDA #0
 3750 STA $26 # OF STEPS SO FAR
 3760 .1 LDA CURRENT.TRACK CURRENT TRACK NUMBER
 3770 STA $27
 3780 SEC
 3790 SBC $2A DESIRED TRACK
 3800 BEQ .6 WE HAVE ARRIVED
 3810 BCS .2 CURRENT > DESIRED
 3820 EOR #$FF CURRENT < DESIRED
 3830 INC CURRENT.TRACK INCREMENT CURRENT
 3840 BCC .3 ...ALWAYS
 3850 .2 ADC #$FE CARRY SET, SO A=A-1
 3860 DEC CURRENT.TRACK DECREMENT CURRENT TRACK
 3870 .3 CMP $26 GET MINIMUM OF:
 3880 BCC .4 1. # OF TRACKS TO MOVE LESS 1
 3890 LDA $26 2. # OF ITERATIONS SO FAR
 3900 .4 CMP #12 3. ELEVEN
 3910 BCS .5
 3920 TAY
 3930 .5 SEC TURN PHASE ON
 3940 JSR .7
 3950 LDA ONTBL,Y GET DELAY TIME
 3960 JSR DLY100 DELAY 100*A MICROSECONDS
 3970 LDA $27 TRACK NUMBER
 3980 CLC TURN PHASE OFF
 3990 JSR .8
 4000 LDA OFFTBL,Y
 4010 JSR DLY100
 4020 INC $26 # OF STEPS SO FAR
 4030 BNE .1 ...ALWAYS
 4040 *---------------------------------
 4050 .6 JSR DLY100
 4060 CLC TURN PHASE OFF
 4070 .7 LDA CURRENT.TRACK
 4080 .8 AND #3 ONLY KEEP LOW-ORDER 2 BITS
 4090 ROL (0000 0XX0)
 4100 ORA $2B (0SSS 0XX0) MERGE SLOT
 4110 TAX USE AS INDEX FOR PHASE-OFF
 4120 LDA PHOFF,X PHASE-OFF
 4130 LDX $2B
 4140 .9 RTS
 4150 *---------------------------------
 4160 .HS AAA0A0 FILLER: NOT USED IN DOS 3.3
 4170 *---------------------------------
 4180 * SHORT DELAY SUBROUTINE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 258 of 2550

Apple II Computer Info

 4190 *---------------------------------
 4200 DLY100 LDX #17 100*A MICROSECONDS
 4210 .1 DEX
 4220 BNE .1
 4230 INC $46
 4240 BNE .2
 4250 INC $47
 4260 .2 SEC
 4270 SBC #1
 4280 BNE DLY100
 4290 RTS
 4300 *---------------------------------
 4310 * DELAY TIMES FOR STEPPING MOTOR
 4320 *---------------------------------
 4330 ONTBL .HS 01302824201E1D1C1C1C1C1C
 4340 OFFTBL .HS 702C26221F1E1D1C1C1C1C1C
 4350 .PG
 4360 *---------------------------------
 4370 * NYBBLE TABLE
 4380 *---------------------------------
 4390 NYBBLE.TABLE
 4400 .HS 96979A9B9D9E9FA6A7ABACADAEAF
 4410 .HS B2B3B4B5B6B7B9BABBBCBDBEBFCB
 4420 .HS CDCECFD3D6D7D9DADBDCDDDEDFE5
 4430 .HS E6E7E9EAEBECEDEEEFF2F3F4F5F6
 4440 .HS F7F9FAFBFCFDFEFF
 4450 *---------------------------------
 4460 * FILLER: $BA69 THRU $BA95 NOT USED BY DOS 3.3
 4470 *---------------------------------
 4480 .BS 45
 4490 *---------------------------------
 4500 * BYTE TABLE
 4510 *---------------------------------
 4520 BYTE.TABLE .EQ *-$96
 4530 .HS 0001989902039C040506A0A1A2A3
 4540 .HS A4A50708A8A9AA090A0B0C0DB0B1
 4550 .HS 0E0F10111213B81415161718191A
 4560 .HS C0C1C2C3C4C5C6C7C8C9CA1BCC1C
 4570 .HS 1D1ED0D1D21FD4D52021D8222324
 4580 .HS 25262728E0E1E2E3E4292A2BE82C
 4590 .HS 2D2E2F303132F0F1333435363738F8393A3B3C3D3E3F
 4600 *---------------------------------
 4610 * 342-BYTE BUFFER FOR NYBBLES
 4620 *---------------------------------
 4630 RWTS.BUFFER.1 .BS 256 $BB00 - BBFF
 4640 RWTS.BUFFER.2 .BS 86 $BC00 - BC55
 4650 *---------------------------------
 4660 .PG
 4670 *---------------------------------
 4680 * WRITE ADDRESS HEADER (CALLED BY FORMAT)
 4690 *---------------------------------
 4700 WRITE.ADDRESS
 4710 SEC SET IN CASE OF ERROR RETURN
 4720 LDA Q6H,X Q6 HIGH, Q7 LOW,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 259 of 2550

Apple II Computer Info

 4730 LDA Q7L,X TO READ WRITE PROTECT STATUS
 4740 BMI .2 DISK IS WRITE PROTECTED
 4750 LDA #$FF SYNC BYTE
 4760 STA Q7H,X Q6H,Q7H: (A) TO SHIFT REGISTER
 4770 CMP Q6L,X Q6L,Q7H: WRITE ON DISK
 4780 PHA TIME DELAYS
 4790 PLA
 4800 .1 JSR .3 12 CYCLE DELAY
 4810 JSR .3 12 CYCLE DELAY
 4820 STA Q6H,X WRITE ON DISK
 4830 CMP Q6L,X
 4840 NOP
 4850 DEY
 4860 BNE .1
 4870 LDA #$D5 WRITE D5 AA 96
 4880 JSR WRITE.BYTE.3
 4890 LDA #$AA
 4900 JSR WRITE.BYTE.3
 4910 LDA #$96
 4920 JSR WRITE.BYTE.3
 4930 LDA VOLUME WRITE VOLUME, TRACK, AND SECTOR
 4940 JSR WRITE.BYTE.1
 4950 LDA TRACK.CNTR
 4960 JSR WRITE.BYTE.1
 4970 LDA FMT.SECTOR
 4980 JSR WRITE.BYTE.1
 4990 LDA VOLUME COMPUTE CHECKSUM
 5000 EOR TRACK.CNTR
 5010 EOR FMT.SECTOR
 5020 PHA WRITE CHECKSUM
 5030 LSR
 5040 ORA CONST.AA #$AA, FOR TIMING
 5050 STA Q6H,X
 5060 LDA Q6L,X
 5070 PLA
 5080 ORA #$AA
 5090 JSR WRITE.BYTE.2
 5100 LDA #$DE WRITE DE AA EB
 5110 JSR WRITE.BYTE.3
 5120 LDA #$AA
 5130 JSR WRITE.BYTE.3
 5140 LDA #$EB
 5150 JSR WRITE.BYTE.3
 5160 CLC
 5170 .2 LDA Q7L,X
 5180 LDA Q6L,X
 5190 .3 RTS
 5200 *---------------------------------
 5210 * SUBROUTINES TO WRITE BYTE ON DISK
 5220 *---------------------------------
 5230 WRITE.BYTE.1
 5240 PHA ADDRESS BLOCK FORMAT
 5250 LSR
 5260 ORA CONST.AA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 260 of 2550

Apple II Computer Info

 5270 STA Q6H,X
 5280 CMP Q6L,X
 5290 PLA
 5300 NOP
 5310 NOP
 5320 NOP
 5330 ORA #$AA
 5340 WRITE.BYTE.2
 5350 NOP
 5360 WRITE.BYTE.3
 5370 NOP
 5380 PHA
 5390 PLA
 5400 STA Q6H,X
 5410 CMP Q6L,X
 5420 RTS
 5430 *---------------------------------
 5440 * $BCDF THRU $BCFF IS NOT USED BY DOS 3.3
 5450 *---------------------------------
 5460 .PG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 261 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:DOS3.3:S.AMPERTONES.txt
==

 1000 *---------------------------------
 1010 * DUAL TONE, AND TONE WITH VOLUME CONTROL
 1020 *---------------------------------
 1030 * WRITTEN BY MARK KRIEGSMAN.......5-22-81
 1040 * REVISED BY BOB SANDER-CEDERLOF..5-29-81
 1050 *---------------------------------
 1060 .OR $300
 1070 .TF B.AMPERTONES
 1080 *---------------------------------
 1090 * ROM SUBROUTINES USED
 1100 *---------------------------------
 1110 CHKCOM .EQ $DEBE MUST SEE COMMA
 1120 SYNERR .EQ $DEC9 SYNTAX ERROR
 1130 GTBYTC .EQ $E6F5 EAT CHAR, GET BYTE IN X
 1140 GETNUM .EQ $E746 GET TWO-BYTE VALUE IN $50,51
 1150 * THEN COMMA AND ONE-BYTE VALUE IN X
 1160 *---------------------------------
 1170 * PAGE-ZERO VARIABLES
 1180 *---------------------------------
 1190 DURATION .EQ $50 AND $51
 1200 TONE1.CNT .EQ $FB
 1210 TONE2.CNT .EQ $FC
 1220 TONE1 .EQ $FD
 1230 TONE2 .EQ $FE
 1240 VOLUME .EQ $FF
 1250 *---------------------------------
 1260 * I/O ADDRESSES
 1270 *---------------------------------
 1280 SPKR .EQ $C030
 1290 *---------------------------------
 1300 AMPERSAND.VECTOR .EQ $3F5 THRU $3F7
 1310 *---------------------------------
 1320 * INITIALIZE AMPERSAND VECTOR
 1330 *---------------------------------
 1340 INIT LDA #$4C JMP OPCODE
 1350 STA AMPERSAND.VECTOR
 1360 LDA #AMPERTONE
 1370 STA AMPERSAND.VECTOR+1
 1380 LDA /AMPERTONE
 1390 STA AMPERSAND.VECTOR+2
 1400 RTS
 1410 *---------------------------------
 1420 * AMPERSAND ENTRY POINT
 1430 *---------------------------------
 1440 AMPERTONE
 1450 CMP #'T IS IT TONE?
 1460 BEQ SINGLE.TONE
 1470 CMP #'D IS IT DUAL?
 1480 BEQ DUAL.TONES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 262 of 2550

Apple II Computer Info

 1490 JMP SYNERR NEITHER, SO SYNTAX ERROR
 1500 *---------------------------------
 1510 * &T <TONE>,<DURATION>,<VOLUME>
 1520 *---------------------------------
 1530 SINGLE.TONE
 1540 JSR GET.PARAMS
 1550 TXA LIMIT VOLUME
 1560 AND #15 TO 0-15
 1570 STA VOLUME
 1580 LDA TONE1
 1590 STA TONE1.CNT
 1600 .1 DEC TONE1.CNT
 1610 BNE .5
 1620 LDA SPKR TOGGLE SPEAKER
 1630 LDA TONE1 RESET COUNTER
 1640 STA TONE1.CNT
 1650 LDY VOLUME
 1660 .3 NOP
 1670 NOP
 1680 DEY
 1690 BPL .3
 1700 LDA SPKR TOGGLE SPEAKER AGAIN
 1710 LDY VOLUME EQUALIZE VOLUME DELAY
 1720 .4 NOP
 1730 INY
 1740 CPY #16
 1750 BCC .4
 1760 .5 LDY #10 SHORT ADDITIONAL DELAY
 1770 .6 DEY
 1780 BNE .6
 1790 JSR DECREMENT.DURATION
 1800 BCC .1
 1810 RTS
 1820 *---------------------------------
 1830 * &D <TONE1>,<DURATION>,<TONE2>
 1840 *---------------------------------
 1850 DUAL.TONES
 1860 JSR GET.PARAMS
 1870 STX TONE2
 1880 LDA TONE1
 1890 STA TONE1.CNT
 1900 LDA TONE2
 1910 STA TONE2.CNT
 1920 .1 DEC TONE1.CNT
 1930 BEQ .2 TIME TO TOGGLE
 1940 LSR VOLUME TO EQUALIZE TIME
 1950 LDA VOLUME TO EQUALIZE TIME
 1960 BPL .3 ...ALWAYS
 1970 .2 LDA SPKR TOGGLE SPEAKER
 1980 LDA TONE1 RESET COUNTER
 1990 STA TONE1.CNT
 2000 .3 DEC TONE2.CNT
 2010 BEQ .4
 2020 LSR VOLUME TO EQUALIZE TIME

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 263 of 2550

Apple II Computer Info

 2030 LDA VOLUME TO EQUALIZE TIME
 2040 BPL .5 ...ALWAYS
 2050 .4 LDA SPKR TOGGLE SPEAKER
 2060 LDA TONE2 RESET COUNTER
 2070 STA TONE2.CNT
 2080 .5 JSR DECREMENT.DURATION
 2090 BCC .1
 2100 RTS
 2110 *---------------------------------
 2120 * GET THREE PARAMETERS AFTER &T OR &D
 2130 * 1. 8-BIT VALUE, STORE IN TONE1
 2140 * 2. COMMA
 2150 * 3. 16-BIT VALUE, STORE IN DURATION
 2160 * 4. COMMA
 2170 * 5. 8-BIT VALUE, RETURN IN X-REGISTER
 2180 *---------------------------------
 2190 GET.PARAMS
 2200 JSR GTBYTC GET TONE
 2210 STX TONE1
 2220 JSR CHKCOM
 2230 JMP GETNUM GET DURATION AND VOLUME
 2240 *---------------------------------
 2250 * DECREMENT DURATION
 2260 * RETURN CARRY CLEAR IF NOT FINISHED
 2270 *---------------------------------
 2280 DECREMENT.DURATION
 2290 LDA DURATION FINISHED YET?
 2300 BNE .2
 2310 LDA DURATION+1
 2320 BNE .1
 2330 SEC
 2340 RTS FINISHED
 2350 .1 DEC DURATION+1
 2360 .2 DEC DURATION
 2370 CLC
 2380 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 264 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:DOS3.3:S.BASCALC.txt
==

 1000 *---------------------------------
 1010 * BASCALC FROM APPLE MONITOR
 1020 *---------------------------------
 1030 BASL .EQ $28
 1040 BASH .EQ $29
 1050 *---------------------------------
 1060 BASCALC
 1070 PHA ARG = 000ABCDE
 1080 LSR (A) = 0000ABCD, E IN CARRY
 1090 AND #3 (A) = 000000CD
 1100 ORA #4 (A) = 000001CD
 1110 STA BASH HI-BYTE OF ADDRESS
 1120 PLA (A) = 000ABCDE
 1130 AND #$18 (A) = 000AB000
 1140 BCC .1 MERGE IN E FROM CARRY
 1150 ADC #$7F (A) = E00AB000
 1160 .1 STA BASL BASL = E00AB000
 1170 ASL (A) = 00AB0000, E IN CARRY AGAIN
 1180 ASL (A) = 0AB00000, CARRY CLEAR
 1190 ORA BASL (A) = EABAB000
 1200 STA BASL LO-BYTE OF ADDRESS
 1210 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 265 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:DOS3.3:S.BY.TEN.txt
==

 1000 *---------------------------------
 1010 * MULTIPLY TWO BYTES BY TEN
 1020 *---------------------------------
 1030 B0 .EQ $00
 1040 B1 .EQ $01
 1050 BY.TEN LDA B1 SAVE HI-BYTE ON STACK
 1060 PHA
 1070 LDA B0 GET LO-BYTE IN A
 1080 ASL B0 DOUBLE THE TWO-BYTE VALUE
 1090 ROL B1
 1100 ASL B0 DOUBLE IT AGAIN
 1110 ROL B1
 1120 CLC ADD IN THE ORIGINAL VALUE
 1130 ADC B0
 1140 STA B0 LO-BYTE
 1150 PLA HI-BYTE
 1160 ADC B1
 1170 STA B1
 1180 ASL B0 DOUBLE 5*B TO GET 10*B
 1190 ROL B1
 1200 RTS RETURN TO CALLER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 266 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8106:DOS3.3:S.MXN.MULTIPLY.txt
==

 1000 *---------------------------------
 1010 * M-BYTE BY N-BYTE MULTIPLY
 1020 *---------------------------------
 1030 M .EQ $00 # BYTES IN MULTIPLICAND
 1040 N .EQ $01 # BYTES IN MULTIPLIER
 1050 PSIZE .EQ $02 # BYTES IN PRODUCT
 1060 I .EQ $03 LOOP COUNTER
 1070 J .EQ $04 LOOP COUNTER
 1080 MULTIPLICAND .EQ $90 THRU ...
 1090 MULTIPLIER .EQ $A0 THRU ...
 1100 PRODUCT .EQ $B0 THRU ...
 1110 *---------------------------------
 1120 MXN.MPY
 1130 *---------------------------------
 1140 * CLEAR THE PRODUCT REGISTER
 1150 *---------------------------------
 1160 LDY M # BYTES IN MULTIPLICAND
 1170 STY PSIZE
 1180 LDA #0
 1190 .1 STA PRODUCT,Y
 1200 DEY
 1210 BPL .1
 1220 *---------------------------------
 1230 * FOR I=M TO 1 STEP -1
 1240 * PSIZE = PSIZE + 1
 1250 * FOR J=8 TO 1 STEP -1
 1260 *---------------------------------
 1270 LDA N # BYTES IN MULTIPLIER
 1280 STA I
 1290 .2 INC PSIZE
 1300 LDA #8
 1310 STA J
 1320 *---------------------------------
 1330 * ACCUMULATE PARTIAL PRODUCT FOR NEXT BIT
 1340 *---------------------------------
 1350 .3 JSR SHIFT.MULTIPLIER.RIGHT
 1360 BCC .4 ZERO-BIT
 1370 JSR ACCUMULATE.PARTIAL.PRODUCT
 1380 .4 JSR SHIFT.PRODUCT.RIGHT
 1390 *---------------------------------
 1400 * NEXT J : NEXT I
 1410 *---------------------------------
 1420 DEC J
 1430 BNE .3
 1440 DEC I
 1450 BNE .2
 1460 RTS
 1470 *---------------------------------
 1480 * SHIFT MULTIPLIER RIGHT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 267 of 2550

Apple II Computer Info

 1490 *---------------------------------
 1500 SHIFT.MULTIPLIER.RIGHT
 1510 LDY N # BYTES IN MULTIPLIER
 1520 LDX #0
 1530 .1 ROR MULTIPLIER,X
 1540 INX
 1550 DEY
 1560 BNE .1
 1570 RTS
 1580 *---------------------------------
 1590 * SHIFT PRODUCT RIGHT
 1600 *---------------------------------
 1610 SHIFT.PRODUCT.RIGHT
 1620 LDY PSIZE # BYTES IN PRODUCT
 1630 LDX #0
 1640 .1 ROR PRODUCT,X
 1650 INX
 1660 DEY
 1670 BPL .1
 1680 RTS
 1690 *---------------------------------
 1700 * ACCUMULATE PARTIAL PRODUCT
 1710 *---------------------------------
 1720 ACCUMULATE.PARTIAL.PRODUCT
 1730 LDY M
 1740 DEY
 1750 CLC
 1760 .1 LDA MULTIPLICAND,Y
 1770 ADC PRODUCT,Y
 1780 STA PRODUCT,Y
 1790 DEY
 1800 BPL .1
 1810 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 268 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:Articles:Front.Page.txt
==

Volume 1 -- Issue 10 July, 1981

In This Issue...

The Lower Case Apple 2
Screen Printer . 5
Restoring Clobbered Page 3 Pointers 9
Corrections to Variable Cross Reference Program 10
Step-Trace Utility . 11

Using Firmware Card in Slot 4

Are you tired of getting "LANGUAGE NOT AVAILABLE" errors? Do you have
a 16K RAM card, and also an old Firmware Card with one of the Basics
on it? You can patch DOS to allow the Firmware Card to be put in slot
4, and still keep your RAM card in slot 0 for Pascal or whatever.
With DOS loaded, type CALL -151 to get to the monitor; then patch:
 *A5B8:C0
 *A5C0:C1
Get back into Basic (3D0G), and INIT a disk with the modified DOS. If
you have a disk utility program, you can patch the DOS image on an
existing disk the same way. (From Michael W. Sanders, Decatur, GA)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 269 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:Articles:LowerCaseApple.txt
==

The Lower Case Apple..........................Bob Matzinger

It occured to me that, since I have installed a Dan Paymar Lower Case
Adapter, there ought to be a better way to generate lower case
characters than by RAM-resident software.

The major problem is the F8 ROM. The CAPTST routine at $FD7E will not
allow lower case characters to pass; if they get this far, they will
be converted to upper case here. I cannot figure a reason for this
routine, since the Apple will not generate lower case codes in the
first place!

Anyway, there are only two ways I know of to avoid CAPTST: write my
own line input subroutine (I want to avoid that!), or burn a new F8
ROM. All I would have to change is one lousy byte, at $FD83, from $DF
to $FF. Seems like a waste of time...or is it? Maybe, since I am
going to the trouble of burning the ROM, I can add some routines to
extend the capabilities of my keyboard to access ALL of the ASCII
characters.

That is what I decided to do. But! How do I make it transparent? It
should not interfere with or be interfered by any program or language.

Within the monitor routines there are two that are not used; in fact,
they were removed when the Autostart ROM came about. These are the
16-bit multiply and divide routines from $FB60 through $FBC0. I can
insert my new code there.

I also need two RAM locations for shift lock and case flags. I must
find two locations that would probably NOT be used by any other
program. There are a number of location in zero page that are not
normally used; the bottom of the stack and the top of the input buffer
might not be used. Checking that out, however, I have found that most
other people have thought of these locations already. Where can I go?

I found two bytes not used by anyone, inside the screen buffer area.
They are reserved for the board plugged into slot 6, which in my case
is the disk controller. The disk controller does not use locations
$077E and $07FE ($0778+slot# and $07F8+slot#). More than likely,
nobody would use these locations (at least that is what I am gambling
on).

Now that I have room for flags, the next step is to write the routines
to fit between $FB60 and $FBC0, and set up calls to them. I have to
be careful not to change any other routines. Here is what I want:

1. Upon RESET, initialize to upper case.
2. Have a shift and shift-lock routine.
3. Be able to enter all ASCII characters.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 270 of 2550

Apple II Computer Info

When RESET is pressed, or when the Apple is turned on, the 6502
microprocessor executes a JMP indirect using the address at $FFFC and
$FFFD. This effectively jumps to $FF59 in the monitor which is the
reset routine. The reset routine calls INIT at $FB2F, which in turn
ends with a JMP VTAB at $FB5D. If I change that last instruction, it
can fall into the area formerly occupied by the multiply routine. How
convenient! I'll put the code there to set upper case mode.

Most programs written for use with the Paymar Adapter have their own
input routines. The monitor routines are not used. Therefore my
changes should have no adverse effect on these programs.

The next thing I had to decide was which control-keys to use for
shift, shift-lock, and the three characters not available from the
standard Apple keyboard. I didn't want to use the escape key, since
it is used by so many other programs. I finally chose these:

control-Z: Shift and Shift-lock
control-K: Left bracket and Left Brace
control-L: Backslash and Vertical Bar
control-O: Underline and Rubout

One final problem to overcome is passing the cursor over a lower case
character. The cursor, in the normal monitor, makes the character
under the cursor flash. A lower case character will flash in upper
case, so you cannot tell whether it was lower or upper case without
moving the cursor. I decided to make lower case characters under the
cursor display as inverse upper case, rather than flashing. That way
there is no doubt.

Now how do we get the patches into the ROM? First we need to get a
copy of the standard ROM code into RAM. Then assemble the patches,
and save the patched copy on disk. From inside the S-C Assembler II,
type:

 :$6800<F800.FFFFM (copy monitor into RAM)
 :ASM (assemble the patches)
 :BSAVE F8 EPROM,A$6800,L$800 (save patched monitor)

After the patches had been made, I used ROMWRITER, by Mountain
Hardware, to burn a 2716 EPROM. This EPROM was then inserted, with
appropriate adaptation, in the F8 socket on my Apple mother board.

[NOTE: A 2716 EPROM WILL NOT DIRECTLY REPLACE THE F8 ROM. EITHER THE
MOTHER BOARD CIRCUITRY MUST BE MODIFIED OR AN APPROPRIATE SOCKET
ADAPTER MUST BE USED.]

If you have a 16K RAM card, you can try the patched monitor without
burning a ROM. After the patches have been assembled into the
standard copy at $6800, type the following:

 :$C081 C081 (write enable RAM card)
 :$F800<6800.6FFFM (copy new monitor up)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 271 of 2550

Apple II Computer Info

 :$C080 (turn on RAM version)

After putting the patched monitor into the RAM card, you have to patch
the assembler to turn off its own CAPTST, if you want to see the lower
case stuff work inside the assembler. Type:

 :$139B:FF

This will make the assembler allow lower case characters to be typed
in, but they are only legal in comments.

Some more words of caution. These patches are for the "old" monitor
ROM. They will not work in the Autostart ROM. My choice of control-K
and control-L may upset some users. Control-K is used as a monitor
command equivalent for IN#slot, and control-L is used to generate a
form-feed on some printers. I can always go to BASIC for the IN#slot,
and my printer has a button for form-feed. I feel that the full
upper-lower case ability is much more desirable.

WHEN ALL ELSE FAILS, READ THE INSTRUCTIONS AGAIN!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 272 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:Articles:Miscellaneous.txt
==

Renewing Subscriptions

The 4-digit number in the upper right corner of your mailing label is
the expiration date of your subscription. The first two digits are
the year, and the last two digits are the month of the last issue you
have paid for.

If your label says "8109", now is the time to renew to be sure of
uninterrupted service.

Beneath Apple DOS

In the few weeks since I sent out last month's AAL, with the review of
this book, I have sold 85 copies! My apologies if your shipment was
delayed a little. Last Friday at 3:30 a shipment of 100 copies
arrived; at 5:45 I took about 50 packages to the UPS station. Another
10 went out by mail this morning. A lot of work, but a lot of fun
too.

I expect another shipment of 100 copies about the time you get this
newsletter, so go ahead and order your copy if you have been waiting.

Restoring Clobbered Page 3 Pointers........Preston R. Black, M.D.

Here's a very short (14 byte) program which you might find useful. As
you know, DOS writes the page 3 vectors (between $3D0 and $3FF) as the
last step in the bootstrap process. This is done by copying a portion
of DOS onto this area. The image remains in memory and can be used to
rewrite the vectors if they are clobbered.

If you have a 48K Apple, the routine which copies the vector data
starts at $9E25. My program temporarily patches DOS to isolate the
vector-copier, by storing an RTS opcode at the end of the loop
($9E30). After calling the loop, the original value of $9E30 is
restored.

I put the subroutine at $BCD0 inside DOS, abecause this area is not
used by DOS. It can be placed on all slave diskettes you INIT after
patching DOS. With this subroutine installed, you can use all of page
3 for your assembly language program. Once your program is finished,
you can JMP $BCD0 to restore $3D0-$3FF to its normal state.

Here is the program, written to assemble into $0CD0-0CDD. After
assembly is complete, you can move it into DOS with the monitor
command

 :$BCD0<CD0.CDDM (if issued from inside S-C Assembler II
 or
 *BCD0<CD0.CDD (if you do it from the monitor.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 273 of 2550

Apple II Computer Info

<program.1>

On second thought, 12 bytes is enough. Rather than patching the DOS
code to make a subroutine, I can just put a program up at $BCD0 which
looks like the code at $9E25. Here is the shorter version:

<program.2>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 274 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:Articles:Screen.Printer.txt
==

Screen Printer

Last month I alluded to my trouble in getting a screen printing
subroutine to work with the Apple Parallel Interface. I finally got
it going, and now it doesn7t look hard at all.

The program is set up to be loaded and started with a BRUN command.
This doesn't start any printing, however. The initial code just puts
a hook address into location $38 and $39, and passes them to DOS.
Henceforth, all character-input calls will have to go through my
routine at lines 1260-1320.

The SCRN.PRNT subroutine looks at each input character to see if it is
a control-P (ascii code = $90). If not, the character is passed on to
whatever program tried to read a character. If it is a control-P, the
current contents of the screen are printed.

(My printer is in slot 1; if you are using a different slot, change
lines 1110 and 1120.)

The actual printing subroutine is really straightforward. It consists
of four parts: 1) save current registers and cursor position; 2)
initialize Apple Parallel Interface temporaries; 3) print each line of
the screen on the printer; and 4) restore the cursor position and
registers.

Lines 1350-1410 save the A-, X-, and Y-registers on the stack,
followed by the cursor horizontal position. I pushed them on the
stack rather than allocate temporaries, but either way will work.
Using the stack saves a few bytes of code and 4 bytes of temporary
memory, but it takes a few more cycles if you are worried about speed.

Lines 1420-1490 initialize the temporaries used by the code in Apple's
Parallel Interface ROM. These temporaries are actually inside the
screen buffer memory (between $0400 and $07FF), but they are in bytes
that do not get displayed. (There are 64 bytes in the screen buffer
that do not get displayed, and which are used by interface cards for
temporary memory. These are $478-47F, $4F8-4FF, $578-57F, $5F8-5FF,
$678-67F, $6F8-6FF, $778-77F, and $7F8-7FF.) For more information on
how the Parallel Interface uses these temporaries, see your manual.

Lines 1500-1670 actually print the screen contents. The X-register is
used as a line counter, and runs from 0 to 23. See lines 1500, 1510,
and 1650-1670. This is quite analogous to a BASIC statement like FOR
I=0 TO 23.

Inside the X-loop, line 1520 computes a new base address for the
current line. Then the Y-register is used as a column counter. Lines
1530 and 1600-1620 control the Y-loop. Inside the Y-loop, each

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 275 of 2550

Apple II Computer Info

character of the line is picked up in turn. Lines 1550-1580 convert
inverse or flashing characters to normal ASCII codes for printing.
Line 1590 calls on the Parallel Interface program to print one
character. (The entry at $Cx02 assumes all temporaries are already
set up.) At the end of each line, lines 1630 and 1640 send a carriage
return to the printer.

Lines 1680-1700 restore the cursor position and base address pointer,
and lines 1710-1750 restore the 6502 registers.

I wrote this program, lines 1340-1760, as a subroutine even though it
could have been in-line. I did it so that you can call it directly
from your Applesoft or Integer BASIC program, with a "CALL 793". This
feature makes the very-valuable screen printer even more useful.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 276 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:Articles:StepTrace.Util.txt
==

Step-Trace Utility

The Motive:

"Not that it was that good, mind you! But we needed something, and
they should not have yanked it out without providing some other way to
debug machine language programs."

When Apple converted over to the Autostart ROM, they not only removed
the hardly-ever-used 16-bit multiply and divide subroutines. They
also stripped the S and T commands, which left assembly language
programmers naked. How can you possibly debug complicated 6502 code
without at least a single step capability?

Several programs are now on the market, in the $50 price range, which
give you step, trace, breakpoints, stack display, et cetera. "John's
Debugger", from John Broderick & Associates, 8635 Shagrock, Dallas, TX
75238 is one. Someone called me from Augusta, GA, yesterday to tell
me about a similar package he has written and wants to market (I'll be
reviewing this one; it may become an S-C SOFTWARE product). I saw
another ad this month somewhere, but I cannot find it now.

But I wanted to do something special this month for the Assembly Line,
so here is a limited STEP-TRACE program...free!

The Manner:

It is set up as a BRUNnable file, to load at $0800. If you want to
load it somewhere else, you can put in an origin directive (.OR). The
code executed when you BRUN the file (lines 1390-1460) merely installs
the "control-Y vector". This enables the control-Y monitor command,
which is a user-definable command.

Once the control-Y vector is loaded, you have two new commands. If
you type a memory address and a control-Y (and a carriage return), the
instruction at that memory address will be disassembled and displayed
on line 23. The flashing cursor will be positioned at the end of the
disassembled instruction. Just above the cursor, on line 22, you will
see the current register contents. Line 24 is an inverse mode line
which labels the registers, and reminds you of the options you have.

At this point you can type one of the five register names (A, X, Y, S,
or P), or a space, or a carriage return. If you type a carriage
return, the trace is aborted and you are returned to the assembler.
If you type a space, the disassembled instruction will be exectuted.
The new register contents will be displayed, the screen will scroll
up, and the next instruction will be disassembled on line 23. If you
type a register name, the cursor will be moved under that register.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 277 of 2550

Apple II Computer Info

You can type in a new value for the register, and then hit a space for
the next register or a return to get ready to execute again.

If you want to step through a little faster, hold down the space bar
and the repeat key.

Once you have terminated the trace (by typing a carriage return), you
can restart where you stopped by typing a control-Y and a carriage
return. Since there is no address given, STEP-TRACE will begin where
you stopped the last time. You can stop the trace, do some monitor
commands, and then start tracing again.

Two warnings: I wrote STEP-TRACE to be used from inside the S-C
ASSEMBLER II. That means all monitor commands, including the control-
Y, need to be preceded by a dollar sign ($). If you want to use STEP-
TRACE directly from the monitor, and not return inside the assembler
after stopping, you need to change line 3500. It now says JMP $3D0,
which restarts DOS and the assembler. Change it to JMP $FF69, which
restarts the monitor. Line 3470 requires the .DA modification
published in the December 1980 issue of AAL. If you haven't installed
that yet, then rewrite line 3470 as five separate lines; if you don't,
it will assemble without error but it will be WRONG!

The Method:

Now let's look through the listing, and see how it works. When the
monitor decodes the control-Y command, the address you typed (if any)
is loaded into $3C,3D in page zero. Then the monitor branches to
$3F8, where we have already loaded a JMP STEP.TRACE instruction. We
step into the action at line 1510.

Lines 1520-1570: the X-register is zero if no address was typed. In
this case, we skip around the code to copy the address into MON.PC.
If there was an address, copy it into MON.PC.

Lines 1580-1630: Set the stack pointer to $FF, giving the whole stack
to the program under test. Move the cursor to the bottom of the
screen and print a carriage return.

Lines 1650-1680: Call on subroutines to display the current register
values (from the SAVE.AREA at line 4350-4400), disassemble the
instruction pointed to by MON.PC, and wait on you to type something on
the keyboard. This last subroutine does not return unless you type a
space, indicating you want to execute the disassembled instruction.

Lines 1690-1860: Clear the XQT.AREA to NOP instructions. Get the
stack pointer from the SAVE.AREA. Pick up the opcode byte, and see if
it is one we have to interpret rather than execute (BRK, JSR, RTI,
JMP, RTS, or JMP indirect). If so, jump to the appropriate code for
each opcode.

Lines 1870-2010: Get the instruction length (less one) in Y, so we
can copy the instruction into XQT.AREA. See if the opcode is one of
the relative branches; if so, change the displacement to $04, so that

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 278 of 2550

Apple II Computer Info

we can execute it inside XQT.AREA. Copy the instruction bytes into
XQT.AREA. Restore the registers from the SAVE.AREA, restoring status
(P-register last of all.

Lines 2030-2160: Execute the instruction. Unless it is a relative
branch instruction which branches, jump to did.not.branch. Relative
branches which branch go to line 2100, where the effective address is
computed and stored in MON.PC.

Lines 2180-2190: A BRK instruction displays the registers and returns
to the assembler (aborts STEP-TRACE).

Lines 2210-2250: The RTI instruction checks the stack pointer; if
there are not three bytes left on the stack, STEP-TRACE is aborted.
If there are three left, the next byte is pulled off the stack and
stored in the SAVE.AREA for the P-register. The rest of the RTI
instruction is the same as an RTS istruction.

Lines 2260-2350: The RTS instruction checks the stack pointer; if
there are not two bytes left on the stacke, STEP-TRACE is aborted. If
there are two left, they are pulled off and stored in MON.PC.

Lines 2370-2470: The JSR instruction picks up the current MON.PC,
adds two, and pushes the result on the stack. The new stack ponter
value is saved in SAVE.AREA. Then a JMP instruction is simulated.

Lines 2480-2490: Simulate a JMP instruction by copying the address
into MON.PC.

Lines 2500-2530: Simulate a JMP indirect instruction. Copy the
address contained in the two bytes pointed to by the instruction
address into MON.PC.

Lines 2550-2640: After a normal executed instruction, save all the
registers in SAVE.AREA. Be sure the processor is in binary mode (not
decimal).

Lines 2650-2690: Add the instruction length to MON.PC, and go back to
get the next instruction.

Lines 2710-2800: Using the current MON.PC as a pointer, pick up the
two bytes pointed to and put them into MON.PC. This is used by the
JSR, JMP, and JMP indirect processors.

Lines 2820-2930: Set cursor position to line 23, column 27, and wait
for you to type a key. If you type a carriage return, abort STEP-
TRACE. If you type a space, return to whoever called
WAIT.ON.KEYBOARD.

Lines 2940-2990: See if you typed a register name (letter A, X, Y, S,
or P). If not, go back and wait till you type something else. If so,
go on to line 3000.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 279 of 2550

Apple II Computer Info

Lines 3000-3100: Set inverse mode, position the cursor to the
selected register column, and display the current contents of that
register in inverse mode. Switch back to normal mode.

Lines 3110-3340: Wait again for you type a character on the keyboard.
If you type a hexadecimal digit, shift the current register contents
one digit position to the left, and add in the digit you just typed.
(You can type as many digits as you want to; the last two you type
will be the new contents.) If you type a space or a carriage return,
branch to line 3350 or 3400.

Lines 3350-3390: You typed a space, so move over to the next
register. If you just modified the S-register, move back to the A-
register.

Lines 3400-3440: You typed a carriage return, so scroll up the screen
and go back to the top of WAIT.ON.KEYBOARD.

Lines 3450-3470: REG.NAMES defines the register names. REG.INDEX is
an index into REG.NAMES and REG.CH. REG.CH is a list of column
positions for each of the registers. (If you have not installed the
.DA modification from AAL Volume 1, Issue 3, you need to spread the
data values out on five separate lines.)

Lines 3490-3500: Clear from the cursor to the end of screen, and
return through DOS to the assembler. Change line 3500 if you want to
go somewhere else after leaving the STEP-TRACE.

Lines 3540-3590: Adds the contents of the A-register to MON.PC.

Lines 3630-3740: Displays the register contents from SAVE.AREA.

Lines 3810-3840: Prints MON.PC and a dash. This is called by the
disassembly subroutine.

Lines 3880-4330: Disassembles the instruction starting at MON.PC.
This code is very similar to code in the Apple monitor ROM at $F882.
It is modified slightly to change the spacing, so that there will be
room for the register display on the same line.

Lines 4440-4480: A test program for you to try STEPping through.
Another neat program to trace is at $FCA8 in the monitor (a delay
loop).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 280 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:Articles:Var.XRef.Correx.txt
==

Corrections to Variable Cross Reference Program

The Variable Cross Reference program I printed in issue #2 (November,
1980) had at least three bugs. One of them was reported a long time
ago, but I had no idea what the cause was until today. The other two
were never reported by anyone, but I discovered their presence and
cause today. Eventful day!

Bug #1: After using the VCR program, the first line number LISTed by
a subsequent LIST command printed out with all sorts of extra
fractional digits. Strange! I finally tracked it down to a page zero
location which VCR used. Location $A4 is left with a non-zero value,
but Applesoft expects and requires it to be zero. If it is not zero,
the floating point multiply subroutine gives wrong answers. The
multiplication failure ruins the first number printed after running
VCR.

Solution to Bug #1: Add the following two lines to the VCR program.

1452 LDA #0 CLEAR $A4 FOR APPLESOFT
1454 STA $A4

Bug #2: The logic for terminating the main program loop (lines 1400-
1460) was wrong, and resulted in sometimes adding a phony variable.

Solution to Bug #2: Delete line 1810, and change or add the following
lines.

1650 LDY #3 CAPTURE POINTER AND LINE #
1692 LDA DATA+1 TEST FOR END
1694 BEQ .3 YES
1820 .3 RTS

Bug #3: If your program contained a PRINT statement with a quoted
string not separated from a variable by a semi-colon or comma, the
GET.NEXT.VARIABLE subroutine would invent new variable names from
inside the quoted string! For example, the line PRINT D$"OPEN FILE"
would add variables OP (for OPEN) and FI (for FILE).

Solution to Bug #3: Change or add the following lines.

2752 BEQ .6 YES
2754 CMP #'" QUOTATION MARK?
2762 LDA PNTR BACK UP PNTR OVER QUOTE MARK
2763 BNE .7
2764 DEC PNTR+1
2765 .7 DEC PNTR
2766 RTS
2770 .6 LDA VARNAM+2 SET HIGH BIT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 281 of 2550

Apple II Computer Info

If you have typed in the VCR program, or bought the Quarterly Disk #1
which contained the source, you should now go back and fix these three
bugs. (All the line numbers above fit in with the program as printed
last November.) Copies of the Quarterly Disk #1 with a serial number
of 44 or higher already have been fixed.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 282 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:DOS3.3:S.F8EpromLC.txt
==

 1000 * LOWER CASE F8 ROM.1
 1010 *---------------------------------
 1020 * THESE PATCHES ARE FOR THE "OLD" F8 ROM. THEY
 1030 * WILL NOT WORK INTO THE AUTOSTART ROM MONITOR
 1040 * ROUTINES.
 1050 *
 1060 * OPERATION: $6800<F800.FFFFM
 1070 * ASM (ASSEMBLE THIS CODE)
 1080 * BSAVE F8 EPROM,A$6800,L$0800
 1090 *---------------------------------
 1100 CTRLK .EQ $8B LEFT BRACKET OR BRACE
 1110 CTRLL .EQ $8C BACKSLASH OR VERTICAL BAR
 1120 CTRLO .EQ $8F UNDERLINE OR RUBOUT
 1130 CTRLZ .EQ $9A SHIFT OR SHIFT LOCK
 1140 CASE .EQ $77E FOR DOS IN SLOT 6
 1150 LCKFLG .EQ $7FE FOR DOS IN SLOT 6
 1160 KYSTRB .EQ $C010
 1170 VTAB .EQ $FC22
 1180 RDKEY .EQ $FD0C
 1190 *---------------------------------
 1200 PATCH1 .OR $FB5D
 1210 .TA $6B5D
 1220 *
 1230 SETCAS LDY #0 PART OF RESET ROUTINE TO INIT
 1240 STY CASE UPPER CASE MODE
 1250 INY
 1260 STY LCKFLG
 1270 JMP VTAB
 1280 *---------------------------------
 1290 PATCH2 .OR $FD2B
 1300 .TA $6D2B
 1310 *
 1320 JMP LCADAP FROM KEYIN ROUTINE TO LOWER
 1330 NOP CASE "ADAPTER"
 1340 *---------------------------------
 1350 PATCH3 .OR $FD82
 1360 .TA $6D82
 1370 *
 1380 AND #$FF ALLOW LOWER CASE TO PASS
 1390 *---------------------------------
 1400 PATCH4 .OR $FD11
 1410 .TA $6D11
 1420 *
 1430 JSR FORM DISPLAY CHARACTERS UNDER THE
 1440 NOP CURSOR CORRECTLY
 1450 *---------------------------------
 1460 * THE CTRL-Z KEY IS USED LIKE THE SHIFT KEY ON A
 1470 * TYPEWRITER: ONE CTRL-Z WILL ENTER ONE UPPER
 1480 * CASE CHARACTER AND THEN RETURN TO LOWER CASE.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 283 of 2550

Apple II Computer Info

 1490 *
 1500 * TWO CTRL-Z'S IN SUCCESSION WILL PERFORM A
 1510 * "SHIFT-LOCK". IF THE MODE WAS LOWER CASE,
 1520 * TWO CTRL-Z'S WILL LOCK IN UPPER CASE; IF THE
 1530 * MODE WAS UPPER CASE, TWO CTRL-Z'S WILL LOCK
 1540 * IN LOWER CASE.
 1550 *---------------------------------
 1560 PATCH5 .OR $FB69
 1570 .TA $6B69
 1580 *
 1590 LCADAP BIT KYSTRB CLEAR KEYBOARD
 1600 CMP #CTRLZ SEE IF "SHIFT"
 1610 BNE .4 NO, TRY OTHER TESTS
 1620 LDA LCKFLG
 1630 EOR #$80 FLIP BIT 7 (CTRLZ FLAG)
 1640 BMI .1 NEGATIVE IF FIRST CTRL-Z
 1650 EOR #$01 FLIP BIT 0 (LOCK FLAG)
 1660 .1 STA LCKFLG
 1670 BEQ .2 ...IF LOCK FLAG IS CLEAR
 1680 LDA #0 SET UPPER CASE
 1690 BEQ .3 ...ALWAYS
 1700 .2 LDA #$20 SET LOWER CASE
 1710 .3 STA CASE
 1720 JMP RDKEY
 1730 .4 CMP #CTRLK
 1740 BEQ .5
 1750 CMP #CTRLL
 1760 BEQ .5
 1770 CMP #CTRLO
 1780 BNE .6
 1790 .5 ORA #$50 CONVERT TO SPECIAL CHARS
 1800 .6 CMP #$C0 MERGE CASE IF ALPHA
 1810 BCC .7 NOT ALPHA
 1820 ORA CASE
 1830 .7 PHA SAVE MODIFIED CHAR
 1840 LDA LCKFLG
 1850 BPL .8 ...IF Z-FLAG CLEAR
 1860 LDA #0 CLEAR Z AND LOCK FLAGS
 1870 STA LCKFLG
 1880 .8 BNE .9 ...IF LOCK FLAG IS SET
 1890 LDA #$20 SET LOWER CASE
 1900 STA CASE
 1910 .9 PLA RETRIEVE MODIFIED CHAR
 1920 RTS
 1930 BRK
 1940 BRK
 1950 *---------------------------------
 1960 * CURSOR DISPLAY FOR EDITING
 1970 *
 1980 FORM CMP #$E0 IS IT LOWER CASE?
 1990 BCS .1 YES, SO BRANCH
 2000 AND #$3F ALL CHARACTERS (EXCEPT LOWER
 2010 ORA #$40 CASE) ARE FLASHED
 2020 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 284 of 2550

Apple II Computer Info

 2030 .1 EOR #$E0 MAKE LOWER CASE INTO
 2040 RTS INVERSE UPPER CASE
 2050 *---------------------------------
 2055 * WRITTEN: NOVEMBER 1, 1980
 2060 * REVISED: JUNE 25, 1981
 2070 * AUTHOR: BOB MATZINGER
 2080 * P. O. BOX 13446
 2090 * ARLINGTON, TX 76013
 2100 * (817) 265-8122
 2110 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 285 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:DOS3.3:S.RESTORE.1.txt
==

 1000 *---------------------------------
 1010 * RESTORE PAGE 3 VECTORS
 1020 * ----------------------
 1030 *
 1040 * PRESTON R. BLACK, M.D.
 1050 * 12 JUNE 1981
 1060 *---------------------------------
 1070 .OR $BCD0
 1080 .TA $0CD0
 1090 *---------------------------------
 1100 RESTORE.PAGE.3.VECTORS
 1110 LDA #$60 RTS OPCODE
 1120 STA $9E30
 1130 JSR $9E25
 1140 LDA #$AD ORIGINAL DATA
 1150 STA $9E30
 1160 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 286 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:DOS3.3:S.RESTORE.2.txt
==

 1000 *---------------------------------
 1010 * RESTORE PAGE 3 VECTORS
 1020 * ----------------------
 1030 *
 1040 * PRESTON R. BLACK, M.D.
 1050 * 29 JUNE 1981
 1060 *---------------------------------
 1070 .OR $BCD0
 1080 .TA $0CD0
 1090 *---------------------------------
 1100 RESTORE.PAGE.3.VECTORS
 1110 LDX #$3FF-$3D0 # BYTES TO BE COPIED
 1120 .1 LDA $9E51,X ADDRESS OF VECTORS INSIDE DOS
 1130 STA $3D0,X VECTOR AREA
 1140 DEX
 1150 BPL .1
 1160 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 287 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:DOS3.3:S.ScrnPrinter.txt
==

 1000 *---------------------------------
 1010 * SCREEN PRINTER
 1020 *---------------------------------
 1030 MON.CH .EQ $24
 1040 MON.BASL .EQ $28,29
 1050 MON.BASCAL .EQ $FBC1
 1060 MON.VTAB .EQ $FC22
 1070 MON.RDKEY .EQ $FD0C
 1080 MON.KEYIN .EQ $FD1B
 1090 DOS.REHOOK .EQ $3EA
 1100 *---------------------------------
 1110 SLOT .EQ 1
 1120 PRINT .EQ $C102 $C002+SLOT*256
 1130 MSTRT .EQ $5F8+SLOT
 1140 MODE .EQ $678+SLOT
 1150 ESCHAR .EQ $6F8+SLOT
 1160 FLAGS .EQ $778+SLOT
 1170 *---------------------------------
 1180 .OR $300
 1190 *---------------------------------
 1200 LDA #SCRN.PRNT
 1210 STA $38
 1220 LDA /SCRN.PRNT
 1230 STA $39
 1240 JMP DOS.REHOOK
 1250 *---------------------------------
 1260 SCRN.PRNT
 1270 JSR MON.KEYIN GET CHAR
 1280 CMP #$90 CONTROL-P?
 1290 BNE .1
 1300 JSR SCREEN.PRINTER
 1310 JMP MON.RDKEY
 1320 .1 RTS
 1330 *---------------------------------
 1340 SCREEN.PRINTER
 1350 PHA SAVE REGS
 1360 TXA
 1370 PHA
 1380 TYA
 1390 PHA
 1400 LDA MON.CH SAVE CH
 1410 PHA
 1420 LDA #40 SET UP APPLE CONTROLLER ROM
 1430 STA MSTRT TEMPORARIES
 1440 LDA #0
 1450 STA MODE
 1460 LDA #$89
 1470 STA ESCHAR
 1480 LDA #1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 288 of 2550

Apple II Computer Info

 1490 STA FLAGS
 1500 LDX #0 START AT LINE 0
 1510 .1 TXA
 1520 JSR MON.BASCAL COMPUTE BASE POINTER FOR LINE
 1530 LDY #0 START AT CHAR 0
 1540 .2 LDA (MON.BASL),Y
 1550 .3 CMP #$A0 MAP FLASH AND INVERSE TO NORMAL
 1560 BCS .4
 1570 ADC #$40
 1580 BNE .3 ...ALWAYS
 1590 .4 JSR PRINT
 1600 INY NEXT CHARACTER
 1610 CPY #40 END OF LINE?
 1620 BCC .2 NO
 1630 LDA #$8D YES, PRINT CARRIAGE RETURN
 1640 JSR PRINT
 1650 INX NEXT LINE
 1660 CPX #24 END OF SCREEN
 1670 BCC .1 NO
 1680 PLA YES, RESTORE CH
 1690 STA MON.CH
 1700 JSR MON.VTAB RESTORE BASE POINTER
 1710 PLA RESTORE REGS
 1720 TAY
 1730 PLA
 1740 TAX
 1750 PLA
 1760 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 289 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8107:DOS3.3:S.STEP.TRACE.txt
==

 1000 *---------------------------------
 1010 * STEP-TRACE UTILITY
 1020 *---------------------------------
 1030 MON.WNDBTM .EQ $23
 1040 MON.CH .EQ $24
 1050 MON.CV .EQ $25
 1060 LMNEM .EQ $2C
 1070 RMNEM .EQ $2D
 1080 MON.FORMAT .EQ $2E
 1090 MON.LENGTH .EQ $2F
 1100 MON.PC .EQ $3A,3B
 1110 MON.A1 .EQ $3C,3D
 1120 MON.A2 .EQ $3E,3F
 1130 *---------------------------------
 1140 DOS.REENTRY .EQ $3D0
 1150 Y.VECTOR .EQ $3F8
 1160 BASE.LINE24 .EQ $7D0
 1170 MON.INSDS2 .EQ $F88E
 1180 MON.INSTDSP .EQ $F8D0
 1190 MON.PRADDR .EQ $F90C
 1200 MON.PRBLNK .EQ $F948
 1210 MON.PRBL2 .EQ $F94A
 1220 MNEML .EQ $F9C0
 1230 MNEMH .EQ $FA00
 1240 MON.VTAB .EQ $FC22
 1250 MON.CLREOP .EQ $FC42
 1260 MON.SCROLL .EQ $FC70
 1270 MON.CLREOL .EQ $FC9C
 1280 MON.RDKEY .EQ $FD0C
 1290 MON.CROUT .EQ $FD8E
 1300 MON.PRYX3 .EQ $FD99
 1310 MON.PRBYTE .EQ $FDDA
 1320 MON.COUT .EQ $FDED
 1330 MON.SETINV .EQ $FE80
 1340 MON.SETNORM .EQ $FE84
 1350 *---------------------------------
 1360 KEYBOARD .EQ $C000
 1370 STROBE .EQ $C010
 1380 *---------------------------------
 1390 STEP.TRACE.SETUP
 1400 LDA #$4C 'JMP' OPCODE
 1410 STA Y.VECTOR
 1420 LDA #STEP.TRACE
 1430 STA Y.VECTOR+1
 1440 LDA /STEP.TRACE
 1450 STA Y.VECTOR+2
 1451 LDA #0 CLEAR USER STATUS REGISTER
 1452 STA SAVE.P
 1460 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 290 of 2550

Apple II Computer Info

 1470 *---------------------------------
 1480 * (Y) SINGLE STEP AT CURRENT PC
 1490 * ADR(Y) SINGLE STEP AT ADR
 1500 *---------------------------------
 1510 STEP.TRACE
 1520 TXA X=0 IF NO ADDRESSES
 1530 BEQ .1 NO ADDRESSES
 1540 LDA MON.A1 ONE OR TWO ADDRESSES
 1550 STA MON.PC
 1560 LDA MON.A1+1
 1570 STA MON.PC+1
 1580 .1 LDX #$FF USER GETS WHOLE STACK
 1590 TXS
 1600 STX SAVE.S
 1610 LDA #23
 1620 STA MON.CV
 1630 JSR MON.CROUT
 1640 *---------------------------------
 1650 TRACE.LOOP
 1660 JSR DISPLAY.REGISTERS
 1670 JSR DISASSEMBLE ONE INSTRUCTION
 1680 JSR WAIT.ON.KEYBOARD
 1690 LDA #$EA 'NOP' OPCODE
 1700 STA XQT.AREA+1
 1710 STA XQT.AREA+2
 1720 LDX SAVE.S
 1730 TXS
 1740 LDY #0
 1750 LDA (MON.PC),Y GET USER OPCODE
 1760 BEQ X.BRK 'BRK' OPCODE
 1770 CMP #$20 'JSR' OPCODE
 1780 BEQ X.JSR
 1790 CMP #$40 'RTI' OPCODE
 1800 BEQ X.RTI
 1810 CMP #$4C 'JMP' OPCODE
 1820 BEQ X.JMP
 1830 CMP #$60 'RTS' OPCODE
 1840 BEQ X.RTS
 1850 CMP #$6C 'JMP ()' OPCODE
 1860 BEQ X.JMPI
 1870 LDY MON.LENGTH # BYTES IN INSTRUCTION
 1880 AND #$1F IF RELATIVE BRANCH, CHANGE
 1890 EOR #$14 DISPLACEMENT TO $04
 1900 CMP #$04 FOR XQT AREA
 1910 BEQ .2
 1920 .1 LDA (MON.PC),Y COPY INSTRUCTION INTO XQT AREA
 1930 .2 STA XQT.AREA,Y
 1940 DEY
 1950 BPL .1
 1960 LDA SAVE.P RESTORE ALL REGISTERS
 1970 PHA
 1980 LDA SAVE.A
 1990 LDX SAVE.X
 2000 LDY SAVE.Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 291 of 2550

Apple II Computer Info

 2010 PLP
 2020 *---------------------------------
 2030 XQT.AREA
 2040 NOP USER'S OPCODE GOES HERE
 2050 NOP
 2060 NOP
 2070 JMP DID.NOT.BRANCH
 2080 *---------------------------------
 2090 * RELATIVE BRANCHES THAT DO BRANCH COME HERE
 2091 CLD
 2100 CLC
 2110 LDY #1 GET ORIGINAL DISPLACEMENT
 2120 LDA (MON.PC),Y
 2130 BPL .1 POSITIVE DISPLACEMENT
 2140 DEC MON.PC+1 DECREMENT HI-BYTE IF NEGATIVE
 2150 .1 JSR ADD.A.TO.PC
 2160 JMP UPDATE.PC
 2170 *---------------------------------
 2180 X.BRK JSR DISPLAY.REGISTERS
 2190 RTRN.JMP JMP RETURN
 2200 *---------------------------------
 2210 X.RTI TSX
 2220 CPX #$FD
 2230 BCS RTRN.JMP
 2240 PLA SIMULATE RTI BY GETTING
 2250 STA SAVE.P STATUS FROM STACK
 2260 X.RTS TSX
 2270 CPX #$FE
 2280 BCS RTRN.JMP
 2290 PLA SIMULATE RTS BY GETTING
 2300 STA MON.PC PC FROM STACK
 2310 PLA
 2320 STA MON.PC+1
 2330 TSX
 2340 STX SAVE.S
 2350 JMP UPDATE.PC
 2360 *---------------------------------
 2370 X.JSR CLC UPDATE PC AND PUSH ON STACK
 2380 LDA MON.PC
 2390 ADC #2
 2400 TAY SAVE LO-BYTE FOR NOW
 2410 LDA MON.PC+1
 2420 ADC #0
 2430 PHA PUSH HI-BYTE
 2440 TYA
 2450 PHA PUSH LO-BYTE
 2460 TSX
 2470 STX SAVE.S
 2480 X.JMP JSR GET.NEW.PC
 2490 JMP TRACE.LOOP
 2500 X.JMPI JSR GET.NEW.PC
 2510 LDY #0
 2520 JSR GET.NEW.PC.0
 2530 JMP TRACE.LOOP

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 292 of 2550

Apple II Computer Info

 2540 *---------------------------------
 2550 DID.NOT.BRANCH
 2560 STA SAVE.A SAVE ALL REGISTERS
 2570 STX SAVE.X
 2580 STY SAVE.Y
 2590 PHP
 2600 PLA
 2610 STA SAVE.P
 2620 TSX
 2630 STX SAVE.S
 2640 CLD
 2650 UPDATE.PC
 2660 SEC 0=1, 1=2, 2=3
 2670 LDA MON.LENGTH
 2680 JSR ADD.A.TO.PC
 2690 JMP TRACE.LOOP
 2700 *---------------------------------
 2710 GET.NEW.PC
 2720 LDY #1 GET NEW PC FROM INSTRUCTION
 2730 GET.NEW.PC.0
 2740 LDA (MON.PC),Y
 2750 TAX SAVE LO-BYTE FOR NOW
 2760 INY
 2770 LDA (MON.PC),Y
 2780 STA MON.PC+1 NEW HI-BYTE
 2790 STX MON.PC NEW LO-BYTE
 2800 RTS
 2810 *---------------------------------
 2820 WAIT.ON.KEYBOARD
 2830 LDA #22 LINE 23
 2840 STA MON.CV
 2850 LDA #26 COLUMN 27
 2860 STA MON.CH
 2870 JSR MON.VTAB
 2880 JSR MON.RDKEY
 2890 CMP #$8D
 2900 BEQ RETURN
 2910 CMP #$A0
 2920 BNE .1 REGISTER NAME
 2930 RTS
 2940 .1 LDY #4
 2950 .2 CMP REG.NAMES,Y
 2960 BEQ .3
 2970 DEY
 2980 BPL .2
 2990 BMI WAIT.ON.KEYBOARD
 3000 .3 STY REG.INDEX
 3010 .4 JSR MON.SETINV
 3020 LDA #22
 3030 STA MON.CV
 3040 JSR MON.VTAB
 3050 LDY REG.INDEX
 3060 LDA REG.CH,Y
 3070 STA MON.CH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 293 of 2550

Apple II Computer Info

 3080 LDA SAVE.AREA,Y
 3090 JSR MON.PRBYTE
 3100 JSR MON.SETNORM
 3110 .5 LDA KEYBOARD
 3120 BPL .5
 3130 STA STROBE
 3140 CMP #$A0 BLANK?
 3150 BEQ .8 YES
 3160 CMP #$8D RETURN?
 3170 BEQ .9 YES
 3180 EOR #$B0
 3190 CMP #10
 3200 BCC .6 DIGIT
 3210 ADC #$88
 3220 CMP #$FA
 3230 BCC .5 NOT DIGIT, SO IGNORE
 3240 .6 LDY #3
 3250 ASL
 3260 ASL
 3270 ASL
 3280 ASL
 3290 LDX REG.INDEX
 3300 .7 ASL
 3310 ROL SAVE.AREA,X
 3320 DEY
 3330 BPL .7
 3340 BMI .4 ...ALWAYS
 3350 .8 LDY REG.INDEX
 3360 DEY
 3370 BPL .3
 3380 LDY #4
 3390 BNE .3 ...ALWAYS
 3400 .9 LDA #23
 3410 STA MON.WNDBTM
 3420 JSR MON.SCROLL
 3430 INC MON.WNDBTM
 3440 JMP WAIT.ON.KEYBOARD
 3450 REG.NAMES .AS -/SPYXA/
 3460 REG.INDEX .BS 1
 3470 REG.CH .DA #38,#35,#32,#29,#26
 3480 *---------------------------------
 3490 RETURN JSR MON.CLREOP
 3500 JMP DOS.REENTRY
 3510 *---------------------------------
 3520 * ADD (A) TO MON.PC
 3530 *---------------------------------
 3540 ADD.A.TO.PC
 3550 ADC MON.PC
 3560 STA MON.PC
 3570 BCC .1
 3580 INC MON.PC+1
 3590 .1 RTS
 3600 *---------------------------------
 3610 * DISPLAY REGISTERS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 294 of 2550

Apple II Computer Info

 3620 *---------------------------------
 3630 DISPLAY.REGISTERS
 3640 LDA #26
 3650 STA MON.CH
 3660 LDX #4
 3670 BNE .2
 3680 .1 LDA #$A0
 3690 JSR MON.COUT
 3700 .2 LDA SAVE.AREA,X
 3710 JSR MON.PRBYTE
 3720 DEX
 3730 BPL .1
 3740 RTS
 3750 *---------------------------------
 3760 BOTTOM.LINE .AS / <SPC>=NEXT <RET>=QUIT A X Y P S /
 3770 .HS 00
 3780 *---------------------------------
 3790 * PRINT PC AND DASH
 3800 *---------------------------------
 3810 PRINT.PC
 3820 LDX MON.PC
 3830 LDY MON.PC+1
 3840 JMP MON.PRYX3
 3850 *---------------------------------
 3860 * DISASSEMBLE NEXT OPCODE
 3870 *---------------------------------
 3880 DISASSEMBLE
 3890 JSR PRINT.PC
 3900 LDY #0
 3910 LDA (MON.PC),Y GET OPCODE
 3920 JSR MON.INSDS2
 3930 PHA SAVE MNEMONIC TABLE INDEX
 3940 .1 LDA (MON.PC),Y
 3950 JSR MON.PRBYTE
 3960 LDX #1 PRINT ONE BLANK
 3970 .2 JSR MON.PRBL2
 3980 CPY MON.LENGTH
 3990 INY
 4000 BCC .1
 4010 LDX #3
 4020 CPY #3
 4030 BCC .2
 4040 PLA GET MNEMONIC TABLE INDEX
 4050 TAY
 4060 LDA MNEML,Y
 4070 STA LMNEM
 4080 LDA MNEMH,Y
 4090 STA RMNEM
 4100 .3 LDA #0
 4110 LDY #5
 4120 .4 ASL RMNEM SHIFT 5 BITS OF CHARACTER INTO A
 4130 ROL LMNEM
 4140 ROL
 4150 DEY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 295 of 2550

Apple II Computer Info

 4160 BNE .4
 4170 ADC #$BF
 4180 JSR MON.COUT
 4190 DEX
 4200 BNE .3
 4210 LDA #$A0 PRINT BLANK
 4220 JSR MON.COUT
 4230 JSR MON.PRADDR
 4240 JSR MON.CLREOL
 4250 JSR MON.CROUT
 4260 LDY #39
 4270 .5 LDA BOTTOM.LINE,Y
 4280 AND #$3F
 4290 STA BASE.LINE24,Y
 4300 DEY
 4310 BPL .5
 4320 DEC MON.CV
 4330 RTS
 4340 *---------------------------------
 4350 SAVE.AREA
 4360 SAVE.S .BS 1
 4370 SAVE.P .BS 1
 4380 SAVE.Y .BS 1
 4390 SAVE.X .BS 1
 4400 SAVE.A .BS 1
 4410 *---------------------------------
 4420 * TEST PROGRAM
 4430 *---------------------------------
 4440 TEST JSR TEST1
 4450 BRK
 4460 TEST1 JSR TEST2
 4470 TEST2 JSR TEST3
 4480 TEST3 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 296 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:Bin.Kbd.Input.txt
==

Binary Keyboard Input

David Holladay, from Madison, Wisconsin, wrote a recent article for
the Adam & Eve Apple II Users Group about a technique he uses for
turning the Apple keyboard into a Braille input device. He chose 6
keys which can be "simultaneously" depressed to give a composite code.
The keys form a 2-by-3 rectangle, like the dots of Braille characters.

Because the Apple keyboard has N-key rollover, simultaneous depression
of several keys results in each keycode being sent to the program one
at a time. The order that the codes are produced appears random to
the program. Some quirks in the way the Apple keyboard is wired up
prevent the N-key rollover from working with every combination of
keys. Some of them OR together to create a ghost code, different from
the actual depressed keys. Apple has used many different keyboards,
so the keys which can be used for David's program vary considerably
from one Apple to another.

After playing around with his program for a while, I got interested in
making a Binary Input Keyboard, rather than a Braille one. My
keyboard, which is almost 4 years old (Apple serial # 219!), allows me
to press any combination of the keys J, K, L, 1, 2, 3, and 4. I set
up these keys with binary weights of hex 40, 20, 10, 08, 04, 02, and
01 respectively.

When you type a combination of these seven keys all at once, the time
interval between keys is much shorter than the normal spacing between
keystrokes. The program waits for one keyboard strobe, and then
initiates a timeout loop. All keycodes received within the timeout
window will be considered to have been struck "simultaneously". Each
keycode is compared with the list of seven keys (JKL1234), and the
appropriate binary weight ORed into the character. If a keycode is
received which is not in the legal character list, the bell rings.

I made a test loop which calls the input routine, and displays the hex
code on the screen.

The choice of keys (JKL1234) works fine on my Apple, but it may not
work on yours. Experiment with various choices until you find seven
keys which will work together on your keyboard. Then modify line 1420
with your list of keys, and it will be ready to go.

Possible applications? Maybe fast input of hexadecimal machine
language programs. You would have to add one more key so that all
eight bits could be specified. And you would have to train your mind
and fingers to instantaneously translate from hex to binary finger-
patterns. Or, maybe some sort of a game. The basic idea of reading
simultaneous keystrokes could effectively create new keys. Or, maybe

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 297 of 2550

Apple II Computer Info

the basic idea of simultaneous keystrokes could be used for entering
secret passwords.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 298 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:Compare.2Ways.txt
==

Two Ways to Compare a Byte.........................Lee Meador

I have noticed two ways to compare a byte used inside DOS and other
Apple software. In the cases I am thinking of, the following code
required the Y-register to be zero. The first way I have seen is
straightforward:
LDA ... BYTE TO BE TESTED
CMP #$19 VALUE WE WANT TO TEST FOR
BNE .1 ALSO AFFECTS CARRY STATUS
LDY #0 IF =, CARRY SET
...

The other way is a little trickier, but it saves one byte:

LDA ... BYTE TO BE TESTED
EOR #$19 VALUE WE WANT TO TEST FOR
BNE .1 DOESN'T AFFECT CARRY STATUS
TAY A AND Y BOTH ZERO
...

This may help you understand some of those disassemblies you are
making, or help you save a byte here and there.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 299 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:DOS33BootROMLst.txt
==

Commented Listing of DOS 3.3 Boot ROM

The P5A ROM on your Apple Disk II Controller has a 256-byte program in
it which reads track 0 sector 0 into memory and starts executing it.

The data in track 0 sector 0 is read into memory from $0800-08FF.
Location $0800 contains a value indicating how many sectors to boot
in. This is usually zero, meaning to read only sector zero. However,
it could be as high as $0F, meaning to read all 16 sectors of track 0
into memory from $0800-17FF. (The BASICS diskette uses this feature.)
Once the selected number of sectors has been read, the boot ROM jumps
to $0801 to start execution. At this point (in a normal DOS boot) the
rest of DOS is loaded.

My listing starts at $C600, which is where it will be if your
controller is in slot 6. The code is all independent of position, so
that it can be plugged into any slot. In fact, you can move the code
into RAM if you like, just so the second digit of the address is the
same as the controller card slot number. I do this some times when I
am trying to crack locked disks. I go to the monitor, type
8600<C600.C6FFM, and then patch a BRK opcode on top of the JMP $0801
at $86F8. Then 8600G will read in track 0 sector 0 and BRK back to
the monitor, and I can analyze the code to see how the rest is read
in.

Enough of that, let's get into the code! Lines 1510-1690 are an
esoteric loop which generate the nybble conversion table. The table
is built in page 3, from $36C through $3D5. I tried out the loop
after storing FF bytes throughout page 3, and got this:

0368- FF FF FF FF 00 01 FF FF 03A0- FF 1B FF 1C 1D 1E FF FF
0370- 02 03 FF 04 05 06 FF FF 03A8- FF 1F FF FF 20 21 FF 22
0378- FF FF FF FF 07 08 FF FF 03B0- 23 24 25 26 27 28 FF FF
0380- FF 09 0A 0B 0C 0D FF FF 03B8- FF FF FF 29 2A 2B FF 2C
0388- 0E 0F 10 11 12 13 FF 14 03C0- 2D 2E 2F 30 31 32 FF FF
0390- 15 16 17 18 19 1A FF FF 03C8- 33 34 35 36 37 38 FF 39
0398- FF FF FF FF FF FF FF FF 03D0- 3A 3B 3C 3D 3E 3F FF FF

These bytes are referred to at lines 2670 and 2740, indexed from a
base of $02D6. This makes a disk code of $96 give a $00 value, and a
code of $FF give a value of $3F.

Lines 1710-1790 determine the slot number and multiply it by 16. The
JSR MON.RTS is to an RTS instruction in the monitor ROM. The only
purpose of this JSR is to put its own address on the stack. Then
lines 1720 and 1730 lift up the high byte of the address from the
stack. The second digit of this address is the slot number, and 4
ASL's will isolate it and multiply it by 16. Lines 1800-1830 select
drive 0 and turn on the motor. (If you want to boot from drive 2, you

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 300 of 2550

Apple II Computer Info

can copy this code into RAM at $8600 and change the byte at $8636 from
$8A to $8B.)

Lines 1880-1990 move the head to track 0 from wherever it was. If you
were already at track 0, it just sits there making a racket as it
bangs against the stop. Lines 2030-2070 initialize the track and
sector numbers and the memory address to read into.

Lines 2090-2480 read a sector into the input area. Lines 2110-2290
are used two different ways, depending on the CARRY status upon entry.
The first time CARRY is clear, and we look for an address header (D5
AA 96). After finding an address header the sector and track are
check in lines 2300-2480; if they are the ones we want, CARRY is set
and we do lines 2110-2290 over again. This time they look for a data
header. If one is found, it's time to read the data.

Lines 2530-2880 read in the sector. First 86 bytes are read into a
little buffer at the bottom of page 3 ($0300-0355). Then 256 bytes
are read into the target memory area (normally $0800-08FF). A
checksum is computed and checked; if it doesn't match, we start all
over. Lines 2770-2880 put the bits from $0300-0355 together with
those in the main buffer, in the same way discussed two months ago in
the listing of DOS 3.3 B800-BCFF.

Lines 2900-2950 check whether we have read all the sectors specified
by the first byte of track 0 sector 0. If not, loop back to read the
next sector one page higher in memory. When they have all been read,
control branches to $0801. The normal DOS boot only reads one sector
before branching to $0801.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 301 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:FID.Select.Cat.txt
==

A Selective Catalog from FID.........................Lee Meador

If you have DOS 3.3, you have no doubt enjoyed using the FID program
to copy files from one disk to another. The wildcard feature in
filenames is especially nice, because it lets you set up a semi-
automatic copy of a whole set of files, or even the whole disk.

Sometimes I am reluctant to let the wildcard name go through without
prompting, because there might be a file or two I don't want copied
which matches the specified name. However, there are so many files
involved that I really don't want to sit there and type "Y" for every
one of them. What we need is a "selective catalog" command -- a FID
command to list all files names which match the wildcarded-name.

Here are some easy patches which you can apply to FID which will
convert the VERIFY command to just what we want.

]BLOAD FID load FID
]CALL -151 get to Apple's monitor
*DBE:60 return before verifying
*C10:EA EA EA no double spacing
*3D0G return to BASIC
]BSAVE FID/CATALOG,A$803,L$124E save the new version

Now if you BRUN FID/CATALOG you will see the normal FID menu. Select
option 8 (VERIFY), specify a slot and drive, and type a file name
(preferably with the "=" wildcard in it). Specify NO prompting. When
you "PRESS ANY OTHER KEY TO BEGIN" you will see a list of all files
whose names match the filename you typed.

Someone else will have to figure out how to get the file type and size
to print.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 302 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:FindASLineNums.txt
==

Finding Applesoft Line Numbers........................Bob Potts

Sometimes I have needed to know where in memory a certain Applesoft
line is located. Maybe I want to patch in a code which cannot be
typed from the keyboard. Or maybe the program has been "compressed
and optimized", so that the lines are too long to edit. Or maybe I am
just curious.

It is simple enough, because the line number is stored in binary at
the beginning of each line. I would looke at locations $67,68 to get
the address of the first line. Then look at that location to get the
address of the next line, and so on. Each line is stored in memory
with the first two bytes telling where to find the next line. and the
third and fourth bytes giving the line number. Of course, the line
number is in binary, and the bytes are backward, and the whole screen
is full of hex numbers making it very hard to keep everything
straight....

There has to be an easier way! Working with Bob Sander-Cederlof last
week, I came up with this simple little program which will print the
address of any line in hex. It uses the ampersand (&) statement of
Applesoft. You simply BRUN this program, which I call AMPERFIND, and
then type an ampersand and the line number. BRUNning sets up the
ampersand vector at $3F5-3F7 and returns.

Here is the program. Note that it takes more code to set up the
ampersand vector than it takes to do the line number search! Lines
1210-1260 could be put anywhere in memory, just so $3F6 and $3F7 are
made to point to that place.

[Bob Potts is an Assistant Vice President at the Bank of Louisville in
Kentucky. this bank has 115 Apple IIs in use doing a variety of
banking functions.]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 303 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:Front.Page.txt
==

$1.20

Volume 1 -- Issue 10 August, 1981

In This Issue...

Finding Applesoft Line Numbers 2
Binary Keyboard Input 3
Apple Machine Language -- A Review 6
Two Ways to Compare a Byte 9
A Selective Catalog from FID 10
Random Number Generator from Integer BASIC 11
What Does This Code Do? 15
Correction to "Assembly Source on Text Files" 16
Commented Listing of DOS 3.3 Boot ROM 17

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 304 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:Miscellaneous.txt
==

Renewing Subscriptions

The 4-digit number in the upper right corner of your mailing label is
the expiration date of your subscription. The first two digits are
the year, and the last two digits are the month of the last issue you
have paid for. If your label says "8109" or "8110", now is the time
to renew to be sure of uninterrupted service.

We now have about 500 subscribers, and are shooting for 1000 by the
end of the year. (Look for my full page ad in the next NIBBLE.) I am
printing 1000 copies of each issue so there will be plenty of back
issues for latecomers.

Notice that I have a new address. The old one will still work for a
while, but you should start using the new one: Bob Sander-Cederlof,
S-C Software, P. O. Box 280300, Dallas, TX 75228.

About Advertising

Do you have a new product you want to test market, which would appeal
to the Apple Assembly Line readers? You ought to try an ad in these
pages. The current price is $20 for a full page, $10 for a half page.
Send it to me just as you want it printed (I can do the reduction to
make it fit on the page).

Things For Sale

Here is an up-to-date list of some of the things which I have that you
might need:

Quarterly Disk #1 (source code from Oct 80 - Dec 80)...$15.00
Quarterly Disk #2 (source code from Jan 81 - Mar 81)...$15.00
Quarterly Disk #3 (source code from Apr 81 - Jun 81)...$15.00
S-C ASSEMBLER II Version 4.0...........................$55.00
Beneath Apple DOS (book)...............................$18.00
Apple Machine Language (book)..........................$11.65
Blank Diskettes (Verbatim, with hub rings, no labels,
 plain white jackets, in cellophane
 wrapper).................20 disks for $50.00
Zip-Lock Bags (2-mil, 6"x9")...............100 bags for $8.50

If you are interested in getting a regular monthly shipment of 100 or
more disks, we can work out an even lower price.

If you are in Texas, remember to send 5% sales tax on books, disks, or
bags.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 305 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:Rand.Nums.IntBA.txt
==

Random Number Generator from Integer BASIC

When you are writing games or other simulation exercises, you
frequently need a source of random numbers. In Basic it's easy, but
how about assembly language?

The WozPak from Call A.P.P.L.E. has directions for calling the RND(X)
function in the Integer BASIC ROMs. Remember that this function
returns a random integer between 0 and X-1 for an argument X. Linda
Egan, from Maywood, California, wrote that she had trouble making the
WozPak method work. I don't know what that method was, but I looked
up the code in the ROM and came up with some working code.

<random code here>

Lines 1190-1260 are all you need. They set up a call to the ROM code,
and pick up the returned value.

Line 1190 sets the X-register to $20. The ROM code uses X for a stack
index, and $20 means an empty stack. This is not the hardware stack
($100-1FF), but a software-implemented stack. The stack is in three
parts. The part I call IB.LOSTACK runs from $50 thru $6F. IB.HISTACK
runs from $A0 thru $BF. A third part runs from $78 thru $97. The ROM
code pushes our argument on these stacks like this: the low byte goes
on LOSTACK, the high byte on HISTACK, and a zero (from the Y-register)
on the FLAGSTACK. (If the value pushed on FLAGSTACK was not zero, it
would be used as the high-byte of an address along with the low-byte
from LOSTACK to indirectly address the data value.)

Lines 1200 and 1210 store our argument where the ROM code expects it
to be, in $CE and $CF. Lines 1240 and 1250 retrieve the resulting
random number from the stack.

Lines 1280 through 1420 are a test loop to demonstrate the random
function. Twenty lines of eight random numbers each are printed on
the screen in hexadecimal. I used an argument of 1000, so all the
numbers are between 0 and 999.

What if you don't have the Integer BASIC ROMs in your Apple? Since
the code is not very long, you could make your own copy of Woz's
routines. I did that, and came up with the following program. I used
the same test loop, but this time it is in lines 1760 thru 1900.

Lines 1160 and 1170 save the argument for later use. Lines 1180-1260
get the current random seed from the Apple Monitor and store it in
VALUE. However, if the seed was 0000 it is converted to 0100. This
is because a seed of 0000 replicates itself forever. Furthermore, the
sign bit is stripped off; in other words, VALUE is set to the seed

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 306 of 2550

Apple II Computer Info

value modulo 32768. This is supposed to force the VALUE to be between
1 and 7FFF.

The random seed is also modified by the monitor whenever you are in
KEYIN waiting for an input from the keyboard. This code is at $FD1B
thru $FD24 in the monitor ROM. This means the seed might have any
(truly random) value between 0000 and FFFF. If by chance it is $8000
when the RND function is called, VALUE will be set to 0000.

Lines 1270-1290 clear two more bytes of VALUE, which will be used
later, in the division loop.

Lines 1300-1400 are Woz's algorithm for generating a sequence of
random integers. It is a binary polynomial technique, but there seems
to be a bug in it. If you run it 32768 times, you should generate
each and every value between 0 and $7FFF exactly one time, but in
random order. I tested it, and it really generates the values between
$6000 and $60FF twice, and never generates $2000-20FF at all! You can
play with it and see if there are some seed values which will produce
numbers between $2000 and $20FF.

Lines 1420-1440 check the argument. If it is zero, I return the value
zero for the function. Integer BASIC would give you "*** >32767 ERR"
with a zero argument.

Lines 1490-1650 are a division program, to divide the random VALUE by
the LIMIT. After it is finished, the quotient is in VALUE and
VALUE+1, and the remainder is in VALUE+2 and VALUE+3. We don't need
the quotient; the remainder is the random value we want.

Lines 1690-1710 pick up the result in registers A and Y, and return to
the calling program.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 307 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:Re.AsmSrc.Text.txt
==

Correction to "Assembly Source on Text Files"

Volume 1, Issue 2 of Apple Assembly Line contained a program for
writing assembly source programs for the S-C Assembler II Version 4.0
on DOS text files. Peter Bartlett of Chicago was trying to use it
with a Corvus Hard Disk, and found a problem with the program.

The Corvus system will not accept a CLOSE command unless there is a
file name on it (unlike regular DOS). One solution is to delete the
two calls to CLOSE.FILE at lines 1410 and 1570.

While talking with Peter I discovered a bug in my program, in the
subroutine named ISSUE.DOS.COMMAND. It is supposed to allow slot and
drive parameters on the file name. This was described in the write-up
on page 11. Two errors made it not work.

First, line 1910 says:
 1910 CMP #', COMMA?
but the character in the A-register has the high bit set to one.
Cvhange line 1910 to:
 1910 CMP #$AC COMMA?

Second, line 1940 says:
 1940 STA DOS.BUFFER,Y
Change it to:
 1940 STA DOS.BUFFER-1,Y

The line numbers above correspond to the printed listing in the AAL
article. They may not be exactly the same as the source code on
Quarterly Disk #1. If you have Quarterly Disk #1 with a serial number
of 45 or higher, your copy is already fixed.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 308 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:Rvw.Apple.ML.txt
==

Apple Machine Language -- A Review

Many of you have asked me, "What book will help me, an absolute
beginner, learn 6502 machine language? I don't know what these other
books are talking about!"

If these are your words, then the book "Apple Machine Language", by
Don and Kurt Inman, is for you. It is published by Reston Publishing
Company, in both hardback ($17.95) and paperback ($12.95). The book
has 296 pages, is set in clear, easy-to-read type, and has lots of
good diagrams and illustrations.

The authors assume that you are at least familiar with Applesoft
Basic. Chapter 1 gives a brief review of Applesoft, with special
emphasis on the PEEK, POKE, and CALL statements. (These are the
statements you will be using to communicate between Basic and machine
language programs.) The authors also assume that you have your own
Apple, and that you will not just READ the book. They expect you to
follow along every example with your own Apple, so you can EXPERIENCE
the material. You will not only learn a lot faster, but it will stick
with you and you will UNDERSTAND what is going on.

Chapter 2 takes you across the bridge from Basic to machine language,
very gently. You develop, with the authors, a little Applesoft
program which helps you enter and test machine language programs.

Chapter 3 finally introduces the ideas of binary numbers, hexadecimal,
the A-register in the 6502, and a few instruction codes. You will
learn how to load a value into the A-register, modify that value, and
store the result back into memory.

There are exercises at the end of each chapter which review the
material covered. Don't let that worry you, though...they also
printed the answers!

Chapter 4 starts to get interesting and useful. You learn how to use
machine language to put some simple color graphics on the Apple
screen. You can plot individual points, draw rectangles, and color
them in. All the while, you are learning more machine instructions,
more registers, more about memory addressing, and so forth.

Chapter 5 introduces you to writing text on the screen. You learn how
to call some of the monitor subroutines for text output, how to print
characters at particular screen locations, and how to write messages
of your choice. Some new instructions are covered, and you learn some
new address modes. In particular, you learn all about relative
branching.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 309 of 2550

Apple II Computer Info

Chapter 6 is one of my favorites. I have always enjoyed twiddling
Apple's little built-in speaker, and this chapter shows you how. You
build and play with a tone generator program, even to the point of
tuning it up to make a simulated piano keyboard.

Chapter 7 takes you deeper into sound and graphics, helping you code a
routine to display the notes as you play them from the keyboard. By
the time you finish this chapter you will understand how to use 28 of
the 6502's 56 instructions, and 8 of its 13 addressing modes. You
will also have used 9 of the subroutines found inside the Apple
Monitor ROM.

Chapter 8 takes you inside Apple's Monitor...just a little. Until
now, you have been using the Applesoft program developed in chapter 2
to enter and test all your machine language programs. In chapter 8
you learn how to do it from the monitor. You will also learn how to
do addition and subtraction.

Chapter 9 show you how to add numbers too big to fit in one byte.
Since one byte will only hold numbers between 0 and 255, or between
-128 and +127, you can see that most numbers ARE too big to fit in one
byte. You will also learn all about the way negative numbers are
handled in the 6502.

Chapter 10 delves deeper into the Apple Monitor, and explores 6502
decimal mode arithmetic.

Chapter 11 is only for those fortunate readers who have Integer BASIC
in their Apples. It doesn't matter whether Integer BASIC is on the
Apple Monitor board, on a firmware card in ROM, or in a 16K RAM
card...just so you have it. Why? Because there is another program in
there you might not even be aware of: the Apple Mini-Assembler. If
you are lucky enough to have it, chapter 11 will tell you how to use
it. If not, skipover this chapter and use your S-C ASSEMBLER II
instead! On second thought, don't skip chapter 11 entirely. It is
here that indirect addressing is covered, and you need to know this
material.

Chapter 12, "Putting It All Together", puts it all together. The
programming experience you work through is a multiplication
subroutine.

There are four appendices which summarize the information about the
Apple hardware found throughout the book. Several of the charts in
Appendix-A list page number references. (Early editions of the book
had blank columns where the page numbers were supposed to be, but that
has been corrected.) And finally, there is a regular alphabetic
index.

By the time you finish this book, you have a solid foundation for
learning to use an assembler like the S-C ASSEMBLER II. I would like
to think that my assembler is easy enough to learn that books like
this one would not be needed, but there are a lot of concepts that are
completely foreign to new computer owners.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 310 of 2550

Apple II Computer Info

I want to do all I can to help every one of you become proficient in
assembly language, so I am making "Apple Machine Language" available
to you at a discount. You can buy the $12.95 paperback edition from
me for $11.65 (plus 58 cents tax if you are in Texas). Include a
dollar for shipping, so I don't go broke.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 311 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:Articles:Whaduzzit.Do.txt
==

What Does This Code Do?..........................John Broderick

What does it do? Why would you want to use it? Those who send in
correct answers will get their names published here in a few months
with the solution.

SUBROUTINE: BRK
 PLA
 PLA
 PLA
 RTS

OK, I'll give you a little hint. One of the five instructions is not
used by the 6502 processor. Can you tell which one?

As far as I know, this routine has never before been published;
however, I use it in almost every program I write. It's a jewel of a
routine, worth many times its weight in gold!

Send your answers to John Broderick, 8635 Shagrock, Dallas, TX 75238.
If you have any similar neat code segments, send them with
explanation. I'll try to make this a regular column in the AAL.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 312 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:DOS3.3:DOS33.Boot.ROM.txt
==

 1000 *---------------------------------
 1010 * DOS 3.3 BOOT ROM $C600.C6FF
 1020 *
 1030 * COMMENTS BY BOB SANDER-CEDERLOF
 1040 * JULY, 4, 1981
 1050 *---------------------------------
 1060 * DISK CONTROLLER ADDRESSES
 1070 *---------------------------------
 1080 PHOFF .EQ $C080 PHASE-OFF
 1090 PHON .EQ $C081 PHASE-ON
 1100 MTROFF .EQ $C088 MOTOR OFF
 1110 MTRON .EQ $C089 MOTOR ON
 1120 DRV0EN .EQ $C08A DRIVE 0 ENABLE
 1130 DRV1EN .EQ $C08B DRIVE 1 ENABLE
 1140 Q6L .EQ $C08C SET Q6 LOW
 1150 Q6H .EQ $C08D SET Q6 HIGH
 1160 Q7L .EQ $C08E SET Q7 LOW
 1170 Q7H .EQ $C08F SET Q7 HIGH
 1180 *
 1190 * Q6 Q7 USE OF Q6 AND Q7 LINES
 1200 * ---- ---- ----------------------
 1210 * LOW LOW READ (DISK TO SHIFT REGISTER)
 1220 * LOW HIGH WRITE (SHIFT REGISTER TO DISK)
 1230 * HIGH LOW SENSE WRITE PROTECT
 1240 * HIGH HIGH LOAD SHIFT REGISTER FROM DATA BUS
 1250 *---------------------------------
 1260 BUFFER.PNTR .EQ $26,27
 1270 SLOT16 .EQ $2B SLOT NUMBER TIMES 16
 1280 SECTOR .EQ $3D
 1290 TRACK .EQ $41
 1300 STACK .EQ $0100
 1310 POST.NYBBLE.CODES .EQ $02D6
 1320 LITTLE.BUFFER .EQ $0300
 1330 MON.RTS .EQ $FF58
 1340 MON.WAIT .EQ $FCA8
 1350 *---------------------------------
 1360 .OR $C600
 1370 .TA $0800
 1380 *---------------------------------
 1390 BOOT.3.3
 1400 LDX #$20 REDUNDANT INSTRUCTION, USED
 1410 * TO IDENTIFY CONTROLLER CARD
 1420 *---------------------------------
 1430 * GENERATE POST-NYBBLE CONVERSION TABLE
 1440 * FILLS IN THOSE SLOTS WHOSE INDEX
 1450 * RELATIVE TO POST.NYBBLE.CODES IS
 1460 * A VALID NYBBLE CODE. (VALID CODES
 1470 * HAVE AT MOST ONE PAIR OF ADJACENT
 1480 * 0-BITS, AND AT LEAST ONE PAIR OF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 313 of 2550

Apple II Computer Info

 1490 * ADJACENT 1-BITS IN BITS 0-6.)
 1500 *---------------------------------
 1510 LDY #0
 1520 LDX #3 COULD BE ANY VALUE FROM 0 TO $16
 1530 * 3 USED FOR CONTROLLER ID
 1540 .1 STX $3C CHECK CODE FOR VALID NYBBLE
 1550 TXA
 1560 ASL
 1570 BIT $3C TEST (X .AND. 2*X)
 1580 BEQ .3 NO ADJACENT 1-BITS, NO GOOD
 1590 ORA $3C TEST ADJACENT 0-BITS
 1600 EOR #$FF CHANGE TO 1'S FOR TEST
 1610 AND #$7E DON'T CARE ABOUT BIT 7
 1620 .2 BCS .3 NOT VALID NYBBLE CODE
 1630 LSR
 1640 BNE .2
 1650 TYA
 1660 STA POST.NYBBLE.CODES+$80,X
 1670 INY
 1680 .3 INX
 1690 BPL .1
 1700 *---------------------------------
 1710 JSR MON.RTS GET THIS LOCATION ON STACK
 1720 TSX FIND THE PAGE BYTE ON STACK
 1730 LDA STACK,X
 1740 ASL ISOLATE SLOT NUMBER
 1750 ASL AND MULTIPLY BY 16
 1760 ASL
 1770 ASL
 1780 STA SLOT16 SLOT NUMBER TIMES 16
 1790 TAX
 1800 LDA Q7L,X SET UP TO READ DRIVE
 1810 LDA Q6L,X
 1820 LDA DRV0EN,X ENABLE DRIVE 0
 1830 LDA MTRON,X TURN ON MOTOR
 1840 *---------------------------------
 1850 * MOVE TO TRACK 0 (ASSUME WORST CASE
 1860 * INITIAL POSITION OF TRACK 40).
 1870 *---------------------------------
 1880 LDY #80 80 HALF-TRACKS
 1890 .4 LDA PHOFF,X STEPPER MOTOR PHASE OFF
 1900 TYA COMPUTE NEXT PHASE
 1910 AND #3 YIELDS 3,2,1,0
 1920 ASL YIELDS 6,4,2,0
 1930 ORA SLOT16 MERGE WITH SLOT*16
 1940 TAX
 1950 LDA PHON,X STEPPER MOTOR PHASE ON
 1960 LDA #86 WAIT 19.2 MILLISECONDS
 1970 JSR MON.WAIT NO CHANGE TO X OR Y, A=0
 1980 DEY NEXT HALF-TRACK
 1990 BPL .4
 2000 *---------------------------------
 2010 * A=0, X=SLOT*16
 2020 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 314 of 2550

Apple II Computer Info

 2030 STA BUFFER.PNTR ($00 --> LOW BYTE OF PNTR)
 2040 STA SECTOR 0
 2050 STA TRACK 0
 2060 LDA #8 BUFFER AT $0800
 2070 STA BUFFER.PNTR+1 ($08 --> HI-BYTE OF PNTR)
 2080 *---------------------------------
 2090 READ.SECTOR
 2100 .1 CLC FLAG CLEAR, LOOK FOR $D5 AA 96
 2110 .2 PHP SAVE FLAG ON STACK
 2120 .3 LDA Q6L,X READ DISK
 2130 BPL .3
 2140 .4 EOR #$D5
 2150 BNE .3 NO
 2160 .5 LDA Q6L,X READ DISK
 2170 BPL .5
 2180 CMP #$AA
 2190 BNE .4
 2200 NOP
 2210 .6 LDA Q6L,X READ DISK
 2220 BPL .6
 2230 CMP #$96
 2240 BEQ .7 FOUND ADDRESS MARK: $D5 AA 96
 2250 PLP RETRIEVE FLAG
 2260 BCC .1 LOOKING FOR ADDRESS HEADER
 2270 EOR #$AD LOOKING FOR DATA HEADER
 2280 BEQ FILL.BUFFER
 2290 BNE .1 START ALL OVER
 2300 *---------------------------------
 2310 .7 LDY #3 READ VOLUME, TRACK, SECTOR
 2320 .8 STA $40
 2330 .9 LDA Q6L,X READ DISK
 2340 BPL .9
 2350 ROL SAVE UPPER SLICE
 2360 STA $3C
 2370 .10 LDA Q6L,X READ DISK
 2380 BPL .10
 2390 AND $3C MERGE SLICES
 2400 DEY 3RD BYTE YET?
 2410 BNE .8 NO, GET ANOTHER
 2420 PLP THROW AWAY FLAG
 2430 CMP SECTOR CORRECT SECTOR?
 2440 BNE .1 NO
 2450 LDA $40 CORRECT TRACK?
 2460 CMP TRACK
 2470 BNE .1 NO
 2480 BCS .2 YES, SET FLAG FOR DATA HEADER
 2490 * AND BRANCH BACK ALWAYS
 2500 *---------------------------------
 2510 * A=0 ON ENTRY
 2520 *---------------------------------
 2530 FILL.BUFFER
 2540 LDY #86 READ 86 BYTES
 2550 .1 STY $3C
 2560 .2 LDY Q6L,X READ BYTE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 315 of 2550

Apple II Computer Info

 2570 BPL .2
 2580 EOR POST.NYBBLE.CODES,Y DECODE BYTE
 2590 LDY $3C
 2600 DEY
 2610 STA LITTLE.BUFFER,Y
 2620 BNE .1
 2630 *---------------------------------
 2640 .3 STY $3C Y=0
 2650 .4 LDY Q6L,X READ BYTE
 2660 BPL .4
 2670 EOR POST.NYBBLE.CODES,Y DECODE BYTE
 2680 LDY $3C
 2690 STA (BUFFER.PNTR),Y
 2700 INY
 2710 BNE .3
 2720 .5 LDY Q6L,X READ CHECKSUM BYTE
 2730 BPL .5
 2740 EOR POST.NYBBLE.CODES,Y
 2750 .6 BNE READ.SECTOR BAD CHECKSUM, START OVER
 2760 *---------------------------------
 2770 LDY #0
 2780 .7 LDX #86 PATCH THE 6+2 BACK TOGETHER
 2790 .8 DEX
 2800 BMI .7 FINISHED A TRIP
 2810 LDA (BUFFER.PNTR),Y
 2820 LSR LITTLE.BUFFER,X
 2830 ROL
 2840 LSR LITTLE.BUFFER,X
 2850 ROL
 2860 STA (BUFFER.PNTR),Y
 2870 INY
 2880 BNE .8
 2890 *---------------------------------
 2900 INC BUFFER.PNTR+1 POINT AT NEXT PAGE
 2910 INC SECTOR POINT AT NEXT SECOTR
 2920 LDA SECTOR
 2930 CMP $0800 SEE IF HAVE READ ENUF SECTORS
 2940 LDX SLOT16
 2950 BCC .6 NOT ENUF SECTORS YET
 2960 JMP $0801 GO TO REST OF BOOT
 2970 *---------------------------------
 2980 .HS 0000000000 UNUSED BYTES IN ROM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 316 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:DOS3.3:Hello.FW.Slot4.txt
==

 ∑I»768∑817:∑A:∑I,A:∑:†768Ã∑173,192,192,162,2,189,0,224,221,44,3,208,1

6,202,16,245,162,192,142,184,165,232,142,192,165,173,193,192,96,162,2,
189,0,224,221,47,3,208,242,202,16,245,48,228,32,0,240,76,40,241Ë-∑:®:∑
‰(4)"CATALOG"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 317 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:DOS3.3:S.AMPERFIND.txt
==

 1000 *---------------------------------
 1010 * FIND AN APPLESOFT LINE NUMBER
 1020 * AND PRINT ADDRESS IN HEX
 1030 *---------------------------------
 1040 .OR $300
 1050 .TF AMPERFIND
 1060 *---------------------------------
 1070 MON.PRNTAX .EQ $F941 PRINT TWO BYTES IN HEX
 1080 AS.LINGET .EQ $DA0C CONVERT LINE NUMBER TO BINARY
 1090 AS.FNDLIN .EQ $D61A FIND LINE IN APPLESOFT PROGRAM
 1100 *---------------------------------
 1110 * SET UP AMPERSAND VECTOR
 1120 *---------------------------------
 1130 LDA #$4C "JMP" OPCODE
 1140 STA $3F5
 1150 LDA #AMPERFIND
 1160 STA $3F6
 1170 LDA /AMPERFIND
 1180 STA $3F7
 1190 RTS
 1200 *---------------------------------
 1210 AMPERFIND
 1220 JSR AS.LINGET CONVERT LINE NUMBER TO BINARY
 1230 JSR AS.FNDLIN FIND THE LINE
 1240 LDX $9B
 1250 LDA $9C GET THE LINE'S ADDRESS
 1260 JMP MON.PRNTAX PRINT THE ADDRESS IN HEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 318 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:DOS3.3:S.Bin.Keyboard.txt
==

 1000 *---------------------------------
 1010 * BINARY KEYBOARD
 1020 *---------------------------------
 1030 MON.CH .EQ $24
 1040 MON.CV .EQ $25
 1050 KEYBOARD .EQ $C000
 1060 STROBE .EQ $C010
 1070 MON.VTAB .EQ $FC24
 1080 MON.HOME .EQ $FC58
 1090 MON.BELL .EQ $FBE2
 1100 MON.PRBYTE .EQ $FDDA
 1110 *---------------------------------
 1120 GETCHR LDA #0
 1130 .1 STA CHARCODE
 1140 LDA #-16
 1150 STA CNTR
 1160 STA CNTR+1
 1170 .2 LDA KEYBOARD
 1180 BMI .4 SOMETHING TYPED
 1190 INC CNTR
 1200 BNE .2
 1210 INC CNTR+1
 1220 BNE .2
 1230 LDA CHARCODE GET COMPOSITE CODE
 1240 BEQ GETCHR NO KEYS HIT YET
 1250 .3 RTS
 1260 *---------------------------------
 1270 .4 STA STROBE CLEAR KEYBOARD STROBE
 1280 AND #$7F
 1290 CMP #$20 HANDLE BLANK SEPARATELY
 1300 BEQ .3
 1310 LDY #6 SEARCH LIST OF LEGAL KEYS
 1320 .5 CMP LEGAL.KEYS,Y
 1330 BEQ .6
 1340 DEY
 1350 BPL .5
 1360 JSR MON.BELL
 1370 JMP GETCHR
 1380 .6 LDA KEY.BITS,Y
 1390 ORA CHARCODE
 1400 BNE .1 ...ALWAYS
 1410 *---------------------------------
 1420 LEGAL.KEYS .AS /JKL1234/
 1430 KEY.BITS .HS 40201008040201
 1440 *---------------------------------
 1450 CHARCODE .BS 1
 1460 CNTR .BS 2
 1470 *---------------------------------
 1480 * TEST BINARY KEYBOARD

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 319 of 2550

Apple II Computer Info

 1490 *---------------------------------
 1500 TEST JSR MON.HOME
 1510 .1 JSR GETCHR
 1520 STA $403 LINE 1, COLUMN 4 OF SCREEN
 1530 LDA #0
 1540 STA MON.CH
 1550 STA MON.CV
 1560 JSR MON.VTAB
 1570 LDA $403
 1580 JSR MON.PRBYTE
 1590 JMP .1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 320 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:DOS3.3:S.CallIB.Random.txt
==

 1000 *---------------------------------
 1010 * RANDOM FUNCTION
 1020 * ---------------
 1030 * CALLS SUBROUTINE IN INTEGER BASIC ROM TO GET
 1040 * A RANDOM NUMBER BETWEEN 0 ANT X-1
 1050 *
 1060 * CALL: VALUE X IN Y- AND A-REGISTERS
 1070 * JSR RANDOM
 1080 * RETURN: RANDOM NUMBER IN Y- AND A-REGISTERS
 1090 * LO-BYTE IN Y, HI-BYTE IN A
 1100 *---------------------------------
 1110 IB.ARG .EQ $CE,CF
 1120 IB.LOSTACK .EQ $50 THRU $6F
 1130 IB.HISTACK .EQ $A0 THRU $BF
 1140 *---------------------------------
 1150 IB.RANDOM .EQ $EF51
 1160 MON.PRBYTE .EQ $FDDA
 1170 MON.COUT .EQ $FDED
 1180 *---------------------------------
 1190 RANDOM LDX #$20 I/B NOUN-STACK POINTER
 1200 STA IB.ARG+1
 1210 STY IB.ARG
 1220 LDY #0 FLAG VALUE ON STACK
 1230 JSR IB.RANDOM
 1240 LDA IB.HISTACK,X
 1250 LDY IB.LOSTACK,X
 1260 RTS
 1270 *---------------------------------
 1280 TEST.RANDOM
 1290 LDA #160
 1300 STA COUNT
 1310 .1 LDY #1000
 1320 LDA /1000
 1330 JSR RANDOM RND(1000)
 1340 JSR MON.PRBYTE
 1350 TYA
 1360 JSR MON.PRBYTE
 1370 LDA #$A0 PRINT BLANK
 1380 JSR MON.COUT
 1390 DEC COUNT
 1400 BNE .1
 1410 RTS
 1420 COUNT .BS 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 321 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:DOS3.3:S.RANDOM.TEST.txt
==

 1000 *---------------------------------
 1010 * STAND-ALONE RANDOM FUNCTION
 1020 * ---------------------------
 1030 *
 1040 * GET A RANDOM NUMBER BETWEEN 0 AND X-1
 1050 *
 1060 * CALL: VALUE X IN Y- AND A-REGISTERS
 1070 * JSR RANDOM
 1080 * RETURN: RANDOM NUMBER IN Y- AND A-REGISTERS
 1090 * LO-BYTE IN Y, HI-BYTE IN A
 1100 *---------------------------------
 1110 MON.RNDL .EQ $4E
 1120 MON.RNDH .EQ $4F
 1130 MON.PRBYTE .EQ $FDDA
 1140 MON.COUT .EQ $FDED
 1150 *---------------------------------
 1160 RANDOM LDA MON.RNDH GET SEED HI-BYTE
 1170 BNE .1 BE SURE SEED BTWN 1 AND 7FFF
 1180 CMP MON.RNDL SET CARRY IF BOTH BYTES ZERO
 1190 ADC #0 CHANGE 0000 TO 0100
 1200 .1 AND #$7F MAKE SURE NOT LARGER THAN 7FFF
 1210 STA MON.RNDH
 1220 STA VALUE+1
 1230 LDA MON.RNDL
 1240 STA VALUE
 1250 *---------------------------------
 1260 LDY #17 LOOP TO MAKE NEXT RANDOM VALUE
 1270 .2 LDA MON.RNDH (WOZNIAK'S ALGORITHM)
 1280 ASL
 1290 CLC
 1300 ADC #$40
 1310 ASL
 1320 ROL MON.RNDL
 1330 ROL MON.RNDH
 1340 DEY
 1350 BNE .2
 1360 *---------------------------------
 1370 RTS
 1380 *---------------------------------
 1390 LIMIT .BS 2
 1400 VALUE .BS 2
 1410 *---------------------------------
 1420 TEST.RANDOM
 1430 LDA #0
 1440 STA COUNT
 1450 STA COUNT+1
 1460 STA MON.RNDL
 1465 INC MON.RNDL
 1470 STA MON.RNDH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 322 of 2550

Apple II Computer Info

 1480 TSTLP JSR RANDOM
 1490 LDA VALUE
 1500 STA LOBYAD
 1510 LDA VALUE+1
 1520 ADC #$10
 1530 STA HIBYAD
 1550 INC $FFFF
 1551 LOBYAD .EQ *-2
 1552 HIBYAD .EQ *-1
 1560 INC COUNT
 1570 BNE TSTLP
 1580 INC COUNT+1
 1590 BPL TSTLP
 1600 RTS
 1610 *---------------------------------
 1620 COUNT .BS 2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 323 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8108:DOS3.3:S.Rnd.Function.txt
==

 1000 *---------------------------------
 1010 * STAND-ALONE RANDOM FUNCTION
 1020 * ---------------------------
 1030 *
 1040 * GET A RANDOM NUMBER BETWEEN 0 AND X-1
 1050 *
 1060 * CALL: VALUE X IN Y- AND A-REGISTERS
 1070 * JSR RANDOM
 1080 * RETURN: RANDOM NUMBER IN Y- AND A-REGISTERS
 1090 * LO-BYTE IN Y, HI-BYTE IN A
 1100 *---------------------------------
 1110 MON.RNDL .EQ $4E
 1120 MON.RNDH .EQ $4F
 1130 MON.PRBYTE .EQ $FDDA
 1140 MON.COUT .EQ $FDED
 1150 *---------------------------------
 1160 RANDOM STY LIMIT SAVE LIMIT VALUE
 1170 STA LIMIT+1
 1180 LDA MON.RNDH GET SEED HI-BYTE
 1190 BNE .1 BE SURE SEED BTWN 1 AND 7FFF
 1200 CMP MON.RNDL SET CARRY IF BOTH BYTES ZERO
 1210 ADC #0 CHANGE 0000 TO 0100
 1220 .1 AND #$7F MAKE SURE NOT LARGER THAN 7FFF
 1230 STA MON.RNDH
 1240 STA VALUE+1
 1250 LDA MON.RNDL
 1260 STA VALUE
 1270 LDA #0
 1280 STA VALUE+2
 1290 STA VALUE+3
 1300 *---------------------------------
 1310 LDY #17 LOOP TO MAKE NEXT RANDOM VALUE
 1320 .2 LDA MON.RNDH (WOZNIAK'S ALGORITHM)
 1330 ASL
 1340 CLC
 1350 ADC #$40
 1360 ASL
 1370 ROL MON.RNDL
 1380 ROL MON.RNDH
 1390 DEY
 1400 BNE .2
 1410 *---------------------------------
 1420 LDA LIMIT
 1430 ORA LIMIT+1
 1440 BEQ .5 RETURN ZERO
 1450 *---------------------------------
 1460 * DIVIDE RANDOM VALUE (1-7FFF) BY LIMIT
 1470 * AND USE REMAINDER (0<=REMAINDER<LIMIT)
 1480 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 324 of 2550

Apple II Computer Info

 1490 LDY #16 LOOP FOR 16-BITS
 1500 .3 ASL VALUE DOUBLE DIVIDEND
 1510 ROL VALUE+1
 1520 ROL VALUE+2
 1530 ROL VALUE+3
 1540 LDA VALUE+2
 1550 CMP LIMIT
 1560 LDA VALUE+3
 1570 SBC LIMIT+1
 1580 BCC .4 PARTIAL DIVIDEND < LIMIT
 1590 STA VALUE+3
 1600 LDA VALUE+2 CARRY IS SET, SUBTRACT
 1610 SBC LIMIT LO-BYTE OF LIMIT
 1620 STA VALUE+2
 1630 INC VALUE SET BIT IN QUOTIENT
 1640 .4 DEY
 1650 BNE .3
 1660 *---------------------------------
 1670 * RETURN RANDOM VALUE MOD LIMIT
 1680 *---------------------------------
 1690 .5 LDA VALUE+3 PICK UP REMAINDER FROM DIVISION
 1700 LDY VALUE+2
 1710 RTS
 1720 *---------------------------------
 1730 LIMIT .BS 2
 1740 VALUE .BS 4
 1750 *---------------------------------
 1760 TEST.RANDOM
 1770 LDA #160
 1780 STA COUNT
 1790 .1 LDY #1000
 1800 LDA /1000
 1810 JSR RANDOM RND(1000)
 1820 JSR MON.PRBYTE
 1830 TYA
 1840 JSR MON.PRBYTE
 1850 LDA #$A0 PRINT BLANK
 1860 JSR MON.COUT
 1870 DEC COUNT
 1880 BNE .1
 1890 RTS
 1900 COUNT .BS 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 325 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:Articles:CHRGET.CHRGOT.txt
==

CHRGET and CHRGOT in Applesoft

On pages 13 and 14 of the September 1981 Kilobaud Microcomputing
(Robert Baker's Pet-Pourri column) there is a good description of the
CHRGET/CHRGOT duo. These two subroutines (really two entry points
into one routine) seem to be common to the Microsoft Basics, at least
the 6502 versions.

What are they? When Applesoft initializes itself one of the tasks is
to copy a short subroutine into page zero, from $00B1 through $00C8.
There is no difference between the PET and the Apple versions, except
that the PET version is copied into $0070-0087. Here is the code:

<chrget/chrgot routines here>

Almost every time Applesoft wants to look at a character from your
program or even from the input buffer, it does so by calling this
subroutine. The CHRGET entry increments the address used to pick up
the next character, and then falls into CHRGOT. In either case, the
character is picked up and several tests are performed. Blanks are
passed over, ignored. Colon (end of statement) and $00 (end of line)
set the Z status bit. Digits clear CARRY, non-digits set CARRY. The
calling program can use these status bits. For example:

JSR CHRGET
BEQ END BRANCH IF COLON OR END-OF-LINE
BCC DIGIT BRANCH IF CHAR IS DIGIT (0-9)

The article in Kilobaud suggests patching this routine at $00BA to
jump to your own code. Your program can trap certain characters for
special functions, in much the same way as the "&" is now handled by
Applesoft. You just have to be sure that you execute the instructions
your JMP overlayed before returning to the remainder of CHRGET. It
appears that many of the enhancement packages available for PET Basic
use this scheme.

Why use this patching scheme instead of the "&" for special functions?
Because your special functions can be made to appear an integral part
of the language, without the telltale ampersand. Because even special
codes inside expressions or other statements can be trapped. Because
you want to encode or otherwise obfuscate your program for security.
Because you just want to be different. Of course, the disadvantage is
that the entire operation of Applesoft is slowed down by the amount of
time your extra testing takes, since every character retrieved by the
interpreter will go through your routine as well as the standard
CHRGET.

Here is a sample patch program, just show how it is done. Any time
the patch discovers a "#" character, it will ring the Apple's bell.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 326 of 2550

Apple II Computer Info

The sample Applesoft lines show what I mean. If you want to try out
the patch, assemble it and then call Applesoft. Then get to the
monitor and patch CHRGET like this:

]CALL -151
*BA:4C 00 03
*3D0G

Then enter some Applesoft lines with embedded "#" characters, and RUN.

If you think of some really practical ways to use patches like this,
let me know about them.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 327 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:Articles:DOS3.3.RWTS.Src.txt
==

Commented Listing of DOS 3.3 RWTS

Last March I started out this series of DOS listings with the RWTS
portion of DOS 3.2.1. Since then I have printed all of DOS 3.2.1 and
DOS 3.3 from $B800 thru $BFFF, except for DOS 3.3 RWTS. Somehow it
almost was overlooked, but here it is now.

There are minor differences between the two versions of RWTS, which
you can find by comparing the listing from the March 1981 issue of AAL
and this one. The differences start at line 1810. I suppose the
changes are meant to be improvements, but most of them seem to make
very little difference.

One critical major difference: DOS 3.2.1 and previous versions use
sector numbers which are actually written in the headers. DOS 3.3
uses two different sets of sector numbers: physical and logical. The
physical sector numbers are recorded in the sector header blocks;
logical sector numbers are used in RWTS calls and File Manager calls.
The translation is performed using the table at line 4280, which I
have called the PHYSICAL.SECTOR.VECTOR. This table is accessed at
line 3310: the logical sector number is in the Y-register, and indexes
into the physical sector vector to pick up a physical sector number.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 328 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:Articles:Fancy.AS.Direct.txt
==

A New, Fancier .AS Directive

Many times I write text printing loops that depend on the sign bit of
each byte to indicate the end of text. I might set up the text this
way:

 .AS /THIS IS THE TEXT I WANT TO PRIN
 .AS -/T/

This assembles with the sign bits off (0) on all the characters of the
text except the last one. I can terminate my printing loop by testing
that bit. A little later, I will show you an example of just such a
loop.

But when there are many messages, I get tired of using separate lines
for the last character of each message! Why not have an assembler
directive which automatically sets the sign bit of the last character
the opposite of the sign bits of the rest of the message? Since
Version 4.0 of the S-C Assembler II has a .US directive for me, the
user, to program....

The only problem is that how to program for the .US directive has
never been revealed. Until now.

The following little program will implement just the directive I want,
and install it as the .US directive. It uses five programs inside the
assembler (see lines 1100-1140). The code is patterned directly after
the code for the .AS directive, which starts at $203C in most copies
of Version 4.0.

NOTE: You should check your assembler to make sure that the four
bytes starting at $203C are "A0 00 84 04"; if they are, you can use
the same addresses for the five routines as I have shown here. (If
not, send me your original Version 4.0 disk for a free update. Be
sure to adequately protect the disk for shipping, because your new
copy will come back on the same disk.)

Line 1000 sets the origin of the code to $0F00. You could use some
other origin, like $0300, if you wish. Just be sure it is an area of
memory that you will not be using for some other purpose wile you are
assembling. Line 1010 directs the object code to a BRUNnable file
named B.US.DIRECTIVE.

The code from 1160 to 1210 is executed when you BRUN B.US.DIRECTIVE.
It stores the address of DIR.US in the .US vector at the beginning of
the assembler. You can read a little about this on page 15 of the
Version 4.0 update manual.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 329 of 2550

Apple II Computer Info

Lines 1030-1050 define a few variables. WBUF is the line buffer the
assembler uses, starting at $0200. The assembler unpacks a line from
the source code into this buffer, and then proceeds to analyze it.
DLIM and HIBIT are temporary locations in page zero where I will save
the delimiter character and the high-bit setting.

The meat of the directive is in lines 1230-1510. If you disassemble
the code at $203C in the S-C Assembler II, you will see a marked
similarity here. You might also try disassembling the code for the
GNNB and GNC subroutines.

GNC retrieves the next character from WBUF and increments the pointer.
The character is tested. Carry status is set if the end-of-line token
was picked up. Equal status is set if a blank or end-of-line token
was picked up. GNNB calls on GNC until a non-blank character is
found. GNC returns with the character in the A-register, and the
pointer to the next character in the Y-register.

Lines 1240-1310 scan from the end of the opcode field to try to find
the delimiter. If no non-blank character is found after the opcode
field, you will get the "BAD ADDRESS ERROR". If a minus sign is
found, $80 is stored in HIBIT instead of $00. This value will be
merged with every character between the delimiters, to set or clear
the high-bit of each byte. When the delimiter is found, it is stored
in DLIM.

Lines 1320-1350 check to make sure that there are some characters
after the delimiter before the next occurrence of the delimiter. For
example, if you write ".US //", I want to assemble no bytes and go on.
If I find the end-of-line token, you will get the error message.

Lines 1360-1430 are a loop to output the bytes one by one. I have to
look ahead to see if the next character is the delimiter again. If
not, then I will output the current character (by now accessed with
"LDA WBUF-2,Y", because Y has been advanced). If the next one is the
delimiter, then the current one is the last character of the string; I
will have to go to ".3", to handle the last character.

Lines 1450-1490 handle the last character of the string between the
delimiters. The high-bit is first set just like all the rest of the
bytes at line 1460, and then reversed with the EOR #$80 at line 1470.

There is no end to the detail we could get into by describing how
EMIT, CMNT, and ERBA work. I will leave them for you to puzzle over
at your leisure. (Can't give away the whole plot in chapter 1!)

<code for dir.us>

The following program shows how I might use the new .US directive I
have just built. It prints the line of text from line 1230 ten times
on the screen. The .US directive assures that I can tell when I am at
the end of the text string by looking at the sign bit. That is just
what the BMI opcode at line 1110 is doing. Lines 1070, 1080, 1190,
and 1200 are the looping code to make ten copies of the line. Lines

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 330 of 2550

Apple II Computer Info

1090-1150 print the message except for the last character; lines 1170-
1180 print that last character and a carriage return.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 331 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:Articles:FieldInputRtn.txt
==

Field Input Routine for Applesoft....................Bob Potts

Inputting strings to an Applesoft program is normally a simple task.
What could be easier than "INPUT A$"? But, that method will not allow
commas or colons.

Another easy way is to use GET C$ for each character, and append them
to a string using A$=A$+C$. But, by the time you add the testing for
each input character to find the end of input and other possible
control characters, the routine can be terribly slow. Furthermore, it
eats up string space like crazy; eventually Applesoft garbage
collection starts, and the program dies for a while. Here is the kind
of loop I am talking about:

10 A$=""
20 GET C$
30 <perform various tests on C$>
40 A$=A$+C$:PRINT C$;
50 GO TO 20

As the string increases in length, the speed decreases dramatically.
In fact, some characters may be lost if you are a fast typist.

One way to correct this is to use a machine language routine to input
each keystroke, test it, and build a string for the Applesoft program.
Such a routine was printed in "Apple Assembly Line" issue #7 (April,
1981), pages 6-8. But that routine used the monitor's RDLINE
subroutine to input the string. I needed a routine more adapted to
inputting a series of fields, using the screen in a "fill-in-the-
blanks" mode.

The following program was designed for use in the various branches of
the Bank of Louisville. The Apple is used to calculate loans, print
the installment notes, and to enter loan applications. A loan
application involves filling in the blanks on several screens full of
prompts.

To use the input routine, you first position the cursor to the start
of field using VTAB and HTAB; then set a field length using the SCALE=
statement, and a field code using the ROT= statement. The actual call
to the input routine is done with "&INPUT" and the name of your
string. Here is an example for inputting a 5-character field starting
in column 10 of line 7:

10 VTAB 7 : HTAB 10 : SCALE=5 : ROT = 0 : &INPUT A$

The input routine allows skipping from field to field, either forward
or backward through a form. Backspace and copy (right arrow) are
supported. Filling up a field, or hitting RETURN within a field,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 332 of 2550

Apple II Computer Info

finish that field and return the value to Applesoft. An EXIT CODE
tells the Applesoft program whether a value was returned in the string
or some other exit was chosen. You access the exit code with a
PEEK(224). Here are the four exit codes and their meanings:

EXIT CODE = 0 Field was filled or RETURN typed.
 = 1 ESCAPE was typed at beginning of field.
 = 2 CTRL-F was typed at beginning of field.
 = 3 Left Arrow (backspace) was typed
 at beginning of field.

If the exit code is zero, then the field data you typed is in your
string. Otherwise, the string's value is not changed. Finishing a
field by either filling it up or hitting RETURN puts the field data
into your string, and I then advance to the next field on the form. I
use an exit code of 3 (backspace at beginning of field) to mean that
the Applesoft program should go back to the previous field on the
current form.

How you use the exit codes of 1 and 2 is up to you. You might use an
ESCAPE (exit code = 1) to abort the form-filling and return to a main
menu. The ESCAPE is now only recognized if you are at the beginning
of the field and the field code is non-zero. Of course, you could
change that. You might use the control-F to mean you are finished
with the current form.

How Does It Work?

Line 1110 sets the origin to $0300. If you already have something
else in page 3, you can change the origin to whatever suits your
fancy. Just remember to set the correct values for HIMEM and LOMEM to
protect it from Applesoft, and vice versa.

Lines 1380-1440 install the ampersand vector. If you BRUN the
program, this code is executed. If you BLOAD it, then CALL 768 will
execute it. You only have to execute this once in your program. Once
done, any occurrence of an ampersand statement in your program will
branch to INPUT.FIELD, at line 1460.

Lines 1460-1500 check for the keyword "INPUT", and a string variable
name. The three routines (and others used in this program) starting
with "AS." are in the Applesoft ROMs. AS.SYNCHR compares the current
character with what is in the A-register; if different you get SYNTAX
ERROR, and if the same the character pointer is advanced. AS.PTRGET
scans a variable name and finds its descriptor in memory. AS.CHKSTR
makes sure that the variable is a string (if not you get TYPE
MISMATCH). At this point the address of the string descriptor is in
$83,84. The address in $83,84 points to 3 bytes which tell the length
and address of the string's contents.

Lines 1520-1690 test the input character and branch accordingly. I
use MON.RDKEY to read the character, which means that the data could
come from any I/O slot as well as the normal Apple Keyboard. You
could add more tests here, or remove some. If it is a printing

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 333 of 2550

Apple II Computer Info

character, we fall into lines 1730-1810 to store the character in the
input buffer and on the screen. If the filed is now full, line 1810
jumps to the routine which passes the data to Applesoft. Note that
characters stored in the input buffer have the high-bit equal to zero
(Applesoft likes them that way). Characters written on the screen
have the high-bit set to one, so that they print in NORMAL video.

Lines 1920-1990 handle the backspace character. If you are at the
beginning of a field, the routine will return with an exit code of 3.
Otherwise, the current character will be replace on the screen with an
underline character, and the cursor will be backed up.

Lines 2030-2050 handle the right arrow. Normally this just copies
over a character on the screen. Characters are picked up from the
screen image, and the treated just as though they came from the
keyboard. Note that the right arrow will not advance over an
underline character.

Lines 2090-2140 handle ESCAPE. As I mentioned earlier, ESCAPE is
ignored unless it is typed when the cursor is at the beginning of the
field, and the field code is non-zero. This is the only use for the
field code in the input routine presented here, but you might think of
many more uses and make your own modifications.

Lines 2180-2190 make Applesoft allocate some space for the string in
the normal string data space. Then lines 2200-2270 set up the string
variable's descriptor to point to this space. Lines 2280-2310 move
the string data from the input buffer up to the new place. This code
was copied from the "Fast String Input Routine" in AAL #7.

The input routine is presented here in a very simple form; I leave it
up to you to modify it to suit your most demanding applications.

Here is a brief sample showing how you might use the input routine to
fill in five fields:

<sample program>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 334 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:Articles:Front.Page.txt
==

$1.20

Volume 1 -- Issue 12 September, 1981

In This Issue...

Field Input Routine for Applesoft 2
CHRGET and CHRGOT in Applesoft 8
Leaving the S-C Assembler II 11
A New, Fancier .AS Directive 12
Commented Listing of DOS 3.3 RWTS 16

Quarterly Disk #4

The fourth Quarterly Disk is now ready, containing all the source code
from issues 10 through 12. The cost is only $15, and it will save you
a lot of typing and possible searching for typos. All previous
Quarterly Disks are still available, at the same price.

Renewing subscriptions

The 4-digit number in the upper right corner of your mailing label is
the expiration date of your subscription. The first two digits are
the year, and the last two digits are the month of the last issue you
have paid for. If it says "8109", this is your last issue. Unless,
of course, I receive your renewal check for $12. If your label says
8111 or less, now is the time to renew!

More about the Firmware Card in Slot 4

Michael Sanders' DOS patch for using the Firmware card in slot 4 is
really nice. A lot of you have written or called about it, and I use
it myself now. In fact, I have changed my HELLO programs to do the
patch. All it takes is two POKEs:

 10 POKE 42424,192 : POKE 42432,193

I like doing it this way a lot better than INITting a disk with a
modified DOS. If you want to test for the presence of a card before
patching, you can do it like this:

<<<Applesoft listing>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 335 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:Articles:LeaveVers4.0.txt
==

Leaving the S-C Assembler II

How do you get out of the assembler? I suppose I could have made a
QUIT or EXIT command, but I didn't. If you want to go to Applesoft or
Integer BASIC, type FP or INT. You will then be instantly in the
version of Basic you wanted. However, you will still be hooked into
the Assembler's output subroutine. If you load a small program and
LIST it, you will find that tapping the space bar will stop the
listing and restart it, just as inside the assembler. Notice I said a
"small" program; a large program might over-write part of the
assembler, causing the computer to hang up.

What you must do is type FP or INT, and then PR#0. The PR#0 unhooks
the assembler output routine, and you are free.

Now, if you are sure that you have not over-written the assembler with
your Applesoft or Integer BASIC program, and you want to return to the
assembler, you can do so by typing CALL 4096. I use this for going
back and forth rapidly when I am testing &-routines and the like.

What if you want to leave the assembler to go to the monitor? First
of all, remember that you can use all of the monitor commands without
ever leaving the assembler, by typing a dollar sign and then the
monitor command. But if you really want out, how do you get there?
If you have an old monitor ROM (not AUTOSTART), hitting RESET will get
you to the monitor. With the Autostart ROM, you can type $FF59G or
$FF69G. The first will unhook DOS, while the second will leave DOS
hooked in. (The second is the same as the Basic command CALL-151.)
Still another way is to patch the Autostart ROM RESET vector at $3F2
(type "$3F2:69 FF 5A"), so that RESET enters the monitor.

And how do you get back to the assembler from the monitor, without
disturbing or losing your source code? Simply type "1003G" and you
will be there. If you type "1000G" you will also get to the
assembler, but all your source code will be gone, just as though you
had typed the "NEW" command.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 336 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:DOS3.3:Demo.US.Direct.txt
==

 1000 *---------------------------------
 1010 * DEMONSTRATE USE OF .US DIRECTIVE
 1020 *---------------------------------
 1030 MON.COUT .EQ $FDED
 1040 MON.CROUT .EQ $FD8E
 1050 *---------------------------------
 1060 DEMO.US
 1070 LDA #10 DO 10 LINES
 1080 STA LINE.COUNT
 1090 .3 LDY #0
 1100 .1 LDA TEXT,Y GET CHAR FROM TEXT STRING
 1110 BMI .2
 1120 ORA #$80 MAKE NORMAL VIDEO
 1130 JSR MON.COUT
 1140 INY NEXT CHARACTER
 1150 BNE .1 ...ALWAYS
 1160 *---------------------------------
 1170 .2 JSR MON.COUT
 1180 JSR MON.CROUT
 1190 DEC LINE.COUNT
 1200 BNE .3
 1210 RTS
 1220 *---------------------------------
 1230 TEXT .US /THIS IS MY MESSAGE/
 1240 LINE.COUNT .BS 1
 1250 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 337 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:DOS3.3:S.CHRGET.PATCH.txt
==

 1000 *---------------------------------
 1010 * SAMPLE APPLESOFT FILTER PROGRAM
 1020 *---------------------------------
 1030 .OR $BA
 1040 JMP FILTER
 1050 *---------------------------------
 1060 .OR $300
 1070 FILTER CMP #'# CHECK FOR "#" CHARACTER
 1080 BNE .1 NO, PASS UNMOLESTED
 1090 JSR WHATEVER.YOU.WANT
 1100 JMP $B1
 1110 .1 CMP #$3A CHECK FOR COLON
 1120 BCS .2 YES, RETURN JUST CHRGET WOULD
 1130 JMP $BE NO, RECONNECT WITH CHRGET
 1140 .2 RTS
 1150 *---------------------------------
 1160 WHATEVER.YOU.WANT
 1170 JSR $FBE2 RING BELL
 1180 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 338 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:DOS3.3:S.CHRGET.txt
==

 1000 *---------------------------------
 1010 * APPLESOFT CHRGET/CHRGOT SUBROUTINES
 1020 *---------------------------------
 1030 .OR $00B1
 1040 *---------------------------------
 1050 TXTPTR .EQ $B8 INSIDE 'LDA' INSTRUCTION
 1060 *---------------------------------
 1070 CHRGET INC TXTPTR INCREMENT ADDRESS OF NEXT CHARACTER
 1080 BNE CHRGOT
 1090 INC TXTPTR+1
 1095 *---------------------------------
 1100 CHRGOT LDA $8888 PICK UP THE NEXT CHARACTER
 1110 CMP #$3A TEST IF COLON
 1120 BCS .1 YES, Z AND C SET, RETURN
 1130 CMP #$20 TEST IF BLANK
 1140 BEQ CHRGET YES, IGNORE IT
 1150 SEC DO DIGIT TEST
 1160 SBC #$30
 1170 SEC SET Z IF VALUE WAS $00 (EOL TOKEN)
 1180 SBC #$D0 AND CLEAR CARRY IF DIGIT ($30-39)
 1190 .1 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 339 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:DOS3.3:S.D33.BD00BEAE.txt
==

 1000 *---------------------------------
 1010 * DOS 3.3 DISASSEMBLY $BD00-BEAE
 1020 * BOB SANDER-CEDERLOF 3-3-81
 1030 *---------------------------------
 1040 CURRENT.TRACK .EQ $478
 1050 DRIVE.1.TRACK .EQ $478 THRU 47F (INDEX BY SLOT)
 1060 DRIVE.2.TRACK .EQ $4F8 THRU 4FF (INDEX BY SLOT)
 1070 SEARCH.COUNT .EQ $4F8
 1080 RETRY.COUNT .EQ $578
 1090 SLOT .EQ $5F8
 1100 SEEK.COUNT .EQ $6F8
 1110 *---------------------------------
 1120 PHASE.OFF .EQ $C080
 1130 PHASE.ON .EQ $C081
 1140 MOTOR.OFF .EQ $C088
 1150 MOTOR.ON .EQ $C089
 1160 ENABLE.DRIVE.1 .EQ $C08A
 1170 ENABLE.DRIVE.2 .EQ $C08B
 1180 Q6L .EQ $C08C
 1190 Q6H .EQ $C08D
 1200 Q7L .EQ $C08E
 1210 Q7H .EQ $C08F
 1220 *---------------------------------
 1230 SECTOR .EQ $2D
 1240 TRACK .EQ $2A
 1250 VOLUME .EQ $2F
 1260 DRIVE.NO .EQ $35
 1270 DCT.PNTR .EQ $3C,3D
 1280 BUF.PNTR .EQ $3E,3F
 1290 MOTOR.TIME .EQ $46,47
 1300 IOB.PNTR .EQ $48,49
 1310 *---------------------------------
 1320 PRE.NYBBLE .EQ $B800
 1330 WRITE.SECTOR .EQ $B82A
 1340 READ.SECTOR .EQ $B8DC
 1350 READ.ADDRESS .EQ $B944
 1360 POST.NYBBLE .EQ $B8C2
 1370 SEEK.TRACK.ABSOLUTE .EQ $B9A0
 1380 DELAY.LOOP .EQ $BA00
 1390 *---------------------------------
 1400 ERR.WRITE.PROTECT .EQ $10
 1410 ERR.WRONG.VOLUME .EQ $20
 1420 ERR.BAD.DRIVE .EQ $40
 1430 *---------------------------------
 1440 .OR $BD00
 1450 .TA $800
 1460 *---------------------------------
 1470 RWTS STY IOB.PNTR SAVE ADDRESS OF IOB
 1480 STA IOB.PNTR+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 340 of 2550

Apple II Computer Info

 1490 LDY #2
 1500 STY SEEK.COUNT UP TO 2 RE-CALIBRATIONS
 1510 LDY #4
 1520 STY SEARCH.COUNT
 1530 LDY #1 POINT AT SLOT# IN IOB
 1540 LDA (IOB.PNTR),Y SLOT# FOR THIS OPERATION
 1550 TAX
 1560 LDY #15 POINT AT PREVIOUS SLOT#
 1570 CMP (IOB.PNTR),Y SAME SLOT?
 1580 BEQ .3 YES
 1590 TXA SAVE NEW SLOT ON STACK
 1600 PHA
 1610 LDA (IOB.PNTR),Y GET OLD SLOT#
 1620 TAX
 1630 PLA STORE NEW SLOT #
 1640 PHA INTO OLD SLOT# SPOT
 1650 STA (IOB.PNTR),Y
 1660 *---------------------------------
 1670 * SEE IF OLD MOTOR STILL SPINNING
 1680 *---------------------------------
 1690 LDA Q7L,X GO INTO READ MODE
 1700 .1 LDY #8 IF DATA DOES NOT CHANGE
 1710 LDA Q6L,X FOR 96 MICROSECONDS,
 1720 .2 CMP Q6L,X THEN THE DRIVE IS STOPPED
 1730 BNE .1 WOOPS! IT CHANGED!
 1740 DEY TIME UP YET?
 1750 BNE .2 NO, KEEP CHECKING
 1760 PLA GET NEW SLOT # AGAIN
 1770 TAX
 1780 *---------------------------------
 1790 .3 LDA Q7L,X SET UP TO READ
 1800 LDA Q6L,X
 1810 LDY #8
 1820 .31 LDA Q6L,X GET CURRENT DATA
 1830 PHA 7 CYCLE DELAY
 1840 PLA
 1850 PHA 7 CYCLE DELAY
 1860 PLA
 1870 STX SLOT
 1880 CMP Q6L,X SEE IF DATA CHANGED
 1890 BNE .32 YES, IT CHANGED
 1900 DEY
 1910 BNE .31 KEEP WAITING
 1920 .32 PHP SAVE ANSWER ON STACK
 1930 LDA MOTOR.ON,X TURN ON MOTOR
 1940 LDY #6 COPY POINTERS INTO PAGE ZERO
 1950 .4 LDA (IOB.PNTR),Y
 1960 STA DCT.PNTR-6,Y
 1970 INY DCT.PNTR .EQ $3C,3D
 1980 CPY #10 BUF.PNTR .EQ $3E,3F
 1990 BNE .4
 2000 LDY #3 GET MOTOR ON TIME FROM DCT
 2010 LDA (DCT.PNTR),Y
 2020 STA MOTOR.TIME+1 HIGH BYTE ONLY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 341 of 2550

Apple II Computer Info

 2030 LDY #2 GET DRIVE #
 2040 LDA (IOB.PNTR),Y
 2050 LDY #16 SEE IF SAME AS OLD DRIVE#
 2060 CMP (IOB.PNTR),Y
 2070 BEQ .5 YES
 2080 STA (IOB.PNTR),Y UPDATE OLD DRIVE #
 2090 PLP SET Z STATUS
 2100 LDY #0 TO FLAG MOTOR OFF
 2110 PHP
 2120 .5 ROR CHECK LSB OF DRIVE #
 2130 BCC .6 DRIVE 2
 2140 LDA ENABLE.DRIVE.1,X
 2150 BCS .7 ...ALWAYS
 2160 .6 LDA ENABLE.DRIVE.2,X
 2170 .7 ROR DRIVE.NO SET SIGN BIT IF DRIVE 1
 2180 PLP WAS MOTOR PROBABLY OFF?
 2190 PHP
 2200 BNE .9 NO, DEFINITELY ON
 2210 *---------------------------------
 2220 * DELAY FROM 150 TO 180 MILLISECONDS,
 2230 * DEPENDING ON WHAT GARBAGE IS IN A-REG
 2240 *---------------------------------
 2250 LDY #7 YES, WAIT A WHILE
 2260 .8 JSR DELAY.LOOP
 2270 DEY BUT IT WORKS ANYWAY....
 2280 BNE .8
 2290 LDX SLOT RESTORE SLOT#
 2300 *---------------------------------
 2310 .9 LDY #4 GET TRACK #
 2320 LDA (IOB.PNTR),Y
 2330 JSR SEEK.TRACK
 2340 PLP WAS MOTOR DEFINITELY ON?
 2350 BNE PROCESS.COMMAND YES, MOTOR ON
 2360 LDY MOTOR.TIME+1 SEE IF NEED TO WAIT
 2370 BPL PROCESS.COMMAND NO
 2380 *---------------------------------
 2390 * MOTOR WAS OFF, SO WAIT REST OF MOTOR ON TIME
 2400 * FOR APPLE DISK II, MOTOR ON TIME IS 1 SECOND.
 2410 * PART OF THIS TIME IS COUNTED DOWN WHILE SEEKING
 2420 * FOR THE TRACK.
 2430 *---------------------------------
 2440 .10 LDY #18 ABOUT 100 MICROSECONDS PER TRIP
 2450 .11 DEY
 2460 BNE .11
 2470 INC MOTOR.TIME
 2480 BNE .10
 2490 INC MOTOR.TIME+1
 2500 BNE .10
 2510 *---------------------------------
 2520 * MOTOR ON AND UP TO SPEED, SO LET'S
 2530 * FIND OUT WHAT THE COMMAND IS AND DO IT!
 2540 *---------------------------------
 2550 PROCESS.COMMAND
 2560 LDY #12 GET COMMAND

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 342 of 2550

Apple II Computer Info

 2570 LDA (IOB.PNTR),Y
 2580 BEQ .8 NULL COMMAND, LET'S LEAVE
 2590 CMP #4 FORMAT?
 2600 BEQ .9 YES
 2610 ROR SET CARRY=1 IF READ, =0 IF WRITE
 2620 PHP SAVE ON STACK
 2630 BCS .1 READ
 2640 JSR PRE.NYBBLE WRITE
 2650 .1 LDY #48 UP TO 48 RETRIES
 2660 STY RETRY.COUNT
 2670 .2 LDX SLOT GET SLOT NUMBER AGAIN
 2680 JSR READ.ADDRESS
 2690 BCC .5 GOOD ADDRESS READ
 2700 .21 DEC RETRY.COUNT
 2710 BPL .2 KEEP TRYING
 2720 .3 LDA CURRENT.TRACK GET TRACK WE WANTED
 2730 PHA SAVE IT
 2740 LDA #96 PRETEND TO BE ON TRACK 96
 2750 JSR SETUP.TRACK
 2760 DEC SEEK.COUNT
 2770 BEQ .6 NO MORE RE-CALIBRATES
 2780 LDA #4
 2790 STA SEARCH.COUNT
 2800 LDA #0 LOOK FOR TRACK 0
 2810 JSR SEEK.TRACK
 2820 PLA GET TRACK WE REALLY WANT
 2830 .4 JSR SEEK.TRACK
 2840 JMP .1
 2850 *---------------------------------
 2860 .5 LDY $2E TRACK# IN ADDRESS HEADER
 2870 CPY CURRENT.TRACK
 2880 BEQ .10 FOUND RIGHT TRACK
 2890 LDA CURRENT.TRACK
 2900 PHA SAVE TRACK WE REALLY WANT
 2910 TYA SET UP TRACK WE ACTUALLY FOUNG
 2920 JSR SETUP.TRACK
 2930 PLA TRACK WE WANT
 2940 DEC SEARCH.COUNT
 2950 BNE .4 TRY AGAIN
 2960 BEQ .3 TRY TO RE-CALIBRATE AGAIN
 2970 *---------------------------------
 2980 * DRIVE ERROR, CANNOT FIND TRACK
 2990 *---------------------------------
 3000 .6 PLA REMOVE CURRENT.TRACK
 3010 LDA #ERR.BAD.DRIVE
 3020 .7 PLP
 3030 JMP ERROR.HANDLER
 3040 *---------------------------------
 3050 * NULL COMMAND, ON THE WAY OUT....
 3060 *---------------------------------
 3070 .8 BEQ RWTS.EXIT
 3080 *---------------------------------
 3090 * FORMAT COMMAND
 3100 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 343 of 2550

Apple II Computer Info

 3110 .9 JMP FORMAT
 3120 *---------------------------------
 3130 * READ OR WRITE COMMAND
 3140 *---------------------------------
 3150 .10 LDY #3 GET VOLUME# WANTED
 3160 LDA (IOB.PNTR),Y
 3170 PHA SAVE DESIRED VOLUME# ON STACK
 3180 LDA VOLUME
 3190 LDY #14 STORE ACTUAL VOLUME NUMBER FOUND
 3200 STA (IOB.PNTR),Y
 3210 PLA GET DESIRED VOLUME# AGAIN
 3220 BEQ .11 IF =0, DON'T CARE
 3230 CMP VOLUME SEE IF RIGHT VOLUME
 3240 BEQ .11 YES
 3250 LDA #ERR.WRONG.VOLUME
 3260 BNE .7 UH OH!
 3270 *---------------------------------
 3280 .11 LDY #5 GET SECTOR# WANTED
 3290 LDA (IOB.PNTR),Y (LOGICAL SECTOR NUMBER)
 3300 TAY INDEX INTO PHYSICAL SECTOR VECTOR
 3310 LDA PHYSICAL.SECTOR.VECTOR,Y
 3320 CMP SECTOR
 3330 BNE .21 NOT THE RIGHT SECTOR
 3340 PLP GET COMMAND FLAG AGAIN
 3350 BCC WRITE
 3360 JSR READ.SECTOR
 3370 PHP SAVE RESULT; IF BAD, WILL BE COMMAND
 3380 BCS .21 BAD READ
 3390 PLP THROW AWAY
 3400 LDX #0
 3410 STX $26
 3420 JSR POST.NYBBLE
 3430 LDX SLOT
 3440 RWTS.EXIT
 3450 CLC
 3460 .HS 24 "BIT" TO SKIP NEXT INSTRUCTION
 3470 *---------------------------------
 3480 ERROR.HANDLER
 3490 SEC INDICATE AN ERROR
 3500 LDY #13 STORE ERROR CODE
 3510 STA (IOB.PNTR),Y
 3520 LDA MOTOR.OFF,X
 3530 RTS
 3540 *---------------------------------
 3550 WRITE JSR WRITE.SECTOR
 3560 BCC RWTS.EXIT
 3570 LDA #ERR.WRITE.PROTECT
 3580 BCS ERROR.HANDLER ...ALWAYS
 3590 *---------------------------------
 3600 * SEEK TRACK SUBROUTINE
 3610 * (A) = TRACK# TO SEEK
 3620 * (DRIVE.NO) IS NEGATIVE IF DRIVE 1
 3630 * AND POSITIVE IF DRIVE 2
 3640 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 344 of 2550

Apple II Computer Info

 3650 SEEK.TRACK
 3660 PHA SAVE TRACK#
 3670 LDY #1 CHECK DEVICE CHARACTERISTICS TABLE
 3680 LDA (DCT.PNTR),Y FOR TYPE OF DISK
 3690 ROR SET CARRY IF TWO PHASES PER TRACK
 3700 PLA GET TRACK# AGAIN
 3710 BCC .1 ONE PHASE PER TRACK
 3720 ASL TWO PHASES PER TRACK, SO DOUBLE IT
 3730 JSR .1 FIND THE TRACK
 3740 LSR CURRENT.TRACK DIVIDE IT BACK DOWN
 3750 RTS
 3760 *---------------------------------
 3770 .1 STA TRACK
 3780 JSR GET.SLOT.IN.Y
 3790 LDA DRIVE.1.TRACK,Y
 3800 BIT DRIVE.NO WHICH DRIVE?
 3810 BMI .2 DRIVE 1
 3820 LDA DRIVE.2.TRACK,Y
 3830 .2 STA CURRENT.TRACK WHERE WE ARE RIGHT NOW
 3840 LDA TRACK WHERE WE WANT TO BE
 3850 BIT DRIVE.NO WHICH DRIVE?
 3860 BMI .3 DRIVE 1
 3870 STA DRIVE.2.TRACK,Y DRIVE 2
 3880 BPL .4 ...ALWAYS
 3890 .3 STA DRIVE.1.TRACK,Y
 3900 .4 JMP SEEK.TRACK.ABSOLUTE
 3910 *---------------------------------
 3920 * CONVERT SLOT*16 TO SLOT IN Y-REG
 3930 *---------------------------------
 3940 GET.SLOT.IN.Y
 3950 TXA SLOT*16 FROM X-REG
 3960 LSR
 3970 LSR
 3980 LSR
 3990 LSR
 4000 TAY SLOT INTO Y
 4010 RTS
 4020 *---------------------------------
 4030 * SET UP CURRENT TRACK LOCATION
 4040 * IN DRIVE.1.TRACK OR DRIVE.2.TRACK VECTORS,
 4050 * INDEXED BY SLOT NUMBER.
 4060 *
 4070 * (A) = TRACK# TO BE SET UP
 4080 *---------------------------------
 4090 SETUP.TRACK
 4100 PHA SAVE TRACK # WE WANT TO SET UP
 4110 LDY #2 GET DRIVE NUMBER FROM IOB
 4120 LDA (IOB.PNTR),Y
 4130 ROR SET CARRY IF DRIVE 1, CLEAR IF 2
 4140 ROR DRIVE.NO MAKE NEGATIVE IF 1, POSITIVE IF 2
 4150 JSR GET.SLOT.IN.Y
 4160 PLA GET TRACK #
 4170 ASL DOUBLE IT
 4180 BIT DRIVE.NO WHICH DRIVE?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 345 of 2550

Apple II Computer Info

 4190 BMI .1 DRIVE 1
 4200 STA DRIVE.2.TRACK,Y
 4210 BPL .2 ...ALWAYS
 4220 .1 STA DRIVE.1.TRACK,Y
 4230 .2 RTS
 4240 *---------------------------------
 4250 FORMAT
 4260 *---------------------------------
 4270 .BS $BFB8-*
 4280 PHYSICAL.SECTOR.VECTOR
 4290 .HS 000D0B09070503010E0C0A080604020F

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 346 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:DOS3.3:S.FldInputRtn.txt
==

 1000 *--------------------------------
 1010 * FIELD INPUT SUBROUTINE
 1020 * ----------------------
 1030 * BY ROBERT W. POTTS
 1040 * BANK OF LOUISVILLE
 1050 * P. O. BOX 1101
 1060 * LOUISVILLE, KY 40201
 1070 *
 1080 * MODIFIED BY BOB SANDER-CEDERLOF
 1090 * FOR THE "APPLE ASSEMBLY LINE"
 1100 *---------------------------------
 1110 .OR $300
 1120 *--------------------------------
 1130 MON.CH .EQ $24 MONITOR HORIZONTAL
 1140 MON.BASL .EQ $28
 1150 SPC.PNTR .EQ $71,72
 1160 STR.PNTR .EQ $83,84
 1170 *---------------------------------
 1180 CT .EQ $E1 CHARACTER COUNT
 1190 FL .EQ $E7 FIELD LENGTH (SET BY "SCALE=FL")
 1200 FLDCOD .EQ $F9 FIELD CODE (SET BY "ROT=FC")
 1210 EXITCODE .EQ $E0 PEEK (224) TO SEE EXIT CODE
 1220 *---------------------------------
 1230 INPUT.BUFFER .EQ $0200
 1240 AMPER.VECTOR .EQ $03F5
 1250 *---------------------------------
 1260 MON.RDKEY .EQ $FD0C MONITOR CHAR INPUT
 1270 MON.COUT .EQ $FDED
 1280 MON.BS .EQ $FC10 MONITOR BACKSPACE
 1290 *---------------------------------
 1300 AS.CHKSTR .EQ $DD6C
 1310 AS.SYNCHR .EQ $DEC0
 1320 AS.PTRGET .EQ $DFE3
 1330 AS.GETSPA .EQ $E452
 1340 AS.MOVSTR .EQ $E5E2
 1350 *---------------------------------
 1360 * SET UP AMPERSAND VECTOR
 1370 *--------------------------------
 1380 SETUP LDA #$4C JMP OPCODE
 1390 STA AMPER.VECTOR
 1400 LDA #INPUT.FIELD
 1410 STA AMPER.VECTOR+1
 1420 LDA /INPUT.FIELD
 1430 STA AMPER.VECTOR+2
 1440 RTS
 1450 *---------------------------------
 1460 INPUT.FIELD
 1470 LDA #$84 "INPUT" TOKEN
 1480 JSR AS.SYNCHR REQUIRE "INPUT" OR SYNTAX ERROR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 347 of 2550

Apple II Computer Info

 1490 JSR AS.PTRGET GET STRING VARIABLE
 1500 JSR AS.CHKSTR REQUIRE STRING OR MISMATCH
 1510 *---------------------------------
 1520 LDA #0 ZERO OUT CHARACTER COUNT
 1530 STA CT
 1540 .1 JSR MON.RDKEY GET CHARACTER
 1550 .2 AND #$7F APPLESOFT STYLE
 1560 CMP #$06 CONTROL-F?
 1570 BEQ .3 YES
 1580 CMP #$08 BACKSPACE?
 1590 BEQ .4 YES
 1600 CMP #$0D RETURN?
 1610 BEQ .7 YES, END OF FIELD
 1620 CMP #$15 RIGHT ARROW?
 1630 BEQ .5 YES
 1640 CMP #$1B ESCAPE?
 1650 BEQ .6 YES
 1660 CMP #$20 SOME OTHER CONTROL CHARACTER?
 1670 BCC .1 YES, IGNORE IT
 1680 CMP #$5B ACCEPTABLE PRINTING CHARACTER?
 1690 BCS .1 NO, IGNORE IT
 1700 *--------------------------------
 1710 * GOT PRINTING CHARACTER - STORE IT
 1720 *--------------------------------
 1730 LDY CT CHARACTER COUNTER
 1740 STA INPUT.BUFFER,Y STORE IN STRING
 1750 ORA #$80 TURN ON HIGH BIT
 1760 JSR MON.COUT PRINT CHARACTER
 1770 INC CT INCREMENT CHARACTER COUNT
 1780 LDA CT
 1790 CMP FL IS FIELD FILLED UP?
 1800 BNE .1 NO, GET ANOTHER CHARACTER
 1810 BEQ .7 ...ALWAYS
 1820 *---------------------------------
 1830 * HANDLE CONTROL-F
 1840 *---------------------------------
 1850 .3 LDA CT ON FIRST CHARACTER?
 1860 BNE .1 NO, GET ANOTHER CHARACTER
 1870 LDA #2 EXIT CODE = 2
 1880 BNE .8 ...ALWAYS
 1890 *---------------------------------
 1900 * HANDLE BACKSPACE
 1910 *---------------------------------
 1920 .4 LDA #3 EXIT CODE = 3 IF IN 1ST CHAR
 1930 DEC CT DECREMENT CHARACTER COUNTER
 1940 BMI .8 ON FIRST POSITION
 1950 JSR MON.BS BACKSPACE
 1960 LDA #$DF UNDERLINE
 1970 JSR MON.COUT PRINT IT
 1980 JSR MON.BS BACKSPACE AGAIN
 1990 JMP .1 DO AGAIN
 2000 *---------------------------------
 2010 * HANDLE RIGHT ARROW
 2020 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 348 of 2550

Apple II Computer Info

 2030 .5 LDY MON.CH YES, GET NEXT CHARACTER FROM SCREEN
 2040 LDA (MON.BASL),Y
 2050 JMP .2
 2060 *---------------------------------
 2070 * HANDLE ESCAPE
 2080 *---------------------------------
 2090 .6 LDA FLDCOD FIELD CODE = 0?
 2100 BEQ .1 YES, GET ANOTHER CHARACTER
 2110 LDA CT
 2120 BNE .1 NO, GET ANOTHER CHARACTER
 2130 LDA #1 EXIT CODE = 1
 2140 BNE .8 ...ALWAYS
 2150 *--------------------------------
 2160 * STORE THE INPUT DATA IN THE STRING
 2170 *--------------------------------
 2180 .7 LDA CT STRING LENGTH
 2190 JSR AS.GETSPA GET SPACE IN STRING AREA
 2200 LDY #0 MOVE DATA INTO VARIABLE
 2210 STA (STR.PNTR),Y LENGTH
 2220 LDA SPC.PNTR
 2230 INY
 2240 STA (STR.PNTR),Y LO-BYTE OF ADDRESS
 2250 LDA SPC.PNTR+1
 2260 INY
 2270 STA (STR.PNTR),Y HI-BYTE OF ADDRESS
 2280 LDX #INPUT.BUFFER
 2290 LDY /INPUT.BUFFER
 2300 LDA CT LENGTH
 2310 JSR AS.MOVSTR
 2320 LDA #0 EXIT CODE = 0
 2330 .8 STA EXITCODE
 2340 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 349 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:DOS3.3:S.US.DIRECTIVE.txt
==

 1000 .OR $F00
 1010 .TF B.US.DIRECTIVE
 1020 *---------------------------------
 1030 WBUF .EQ $0200
 1040 DLIM .EQ $DA
 1050 HIBIT .EQ $04
 1060 *---------------------------------
 1070 * THE FOLLOWING VALUES ARE FOR VERSION 4.0
 1080 * OF S-C ASSEMBLER II (DISK)
 1090 *---------------------------------
 1100 GNNB .EQ $1283 GET NEXT NON-BLANK CHAR
 1110 GNC .EQ $128B GET NEXT CHAR
 1120 CMNT .EQ $188E FINISH THE LINE
 1130 ERBA .EQ $1932 ERROR: BAD ADDRESS
 1140 EMIT .EQ $19FA EMIT A BYTE OF OBJECT CODE
 1150 *---------------------------------
 1160 ACTIVATE.US
 1170 LDA #DIR.US STORE ADDRESS IN .US VECTOR
 1180 STA $100D INSIDE S-C ASSEMBLER II VER
 1190 LDA /DIR.US DISK VERSION 4.0
 1200 STA $100E
 1210 RTS
 1220 *---------------------------------
 1230 DIR.US
 1240 LDY #0 START WITH HI-BIT EQUAL TO ZERO
 1250 .1 STY HIBIT SET HI-BIT ZERO OR ONE
 1260 JSR GNNB GET NEXT NON-BLANK AFTER OPCODE
 1270 BCS ERBA2 END OF LINE IS BAD NEWS
 1280 LDY #$80 IN CASE WE NEED HI-BIT OF ONE
 1290 CMP #$2D CHECK FOR MINUS SIGN
 1300 BEQ .1 YES, WE NEED HI-BIT OF ONE
 1310 STA DLIM NOT MINUS, MUST BE DELIMITER
 1320 JSR GNC GET NEXT CHARACTER
 1330 BCS ERBA2 END OF LINE IS BAD NEWS
 1340 CMP DLIM SEE IF DELIMITER ALREADY
 1350 BEQ .4 YES, NO STRING IN BETWEEN
 1360 .2 JSR GNC GET NEXT CHARACTER
 1370 BCS ERBA2 END OF LINE IS BAD NEWS
 1380 CMP DLIM SEE IF DELIMITER YET
 1390 BEQ .3 YES, FINISH UP AND RETURN
 1400 LDA WBUF-2,Y NO, GET PREVIOUS CHAR
 1410 ORA HIBIT MERGE WITH SELECTED HI-BIT
 1420 JSR EMIT EMIT THE OBJECT CODE BYTE
 1430 JMP .2 GO FOR ANOTHER ONE
 1440 *---------------------------------
 1450 .3 LDA WBUF-2,Y GET PREVIOUS CHAR
 1460 ORA HIBIT MERGE WITH SELECTED HI-BIT
 1470 EOR #$80 TOGGLE HI-BIT SINCE LAST CHAR
 1480 JSR EMIT EMIT THE OBJECT CODE BYTE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 350 of 2550

Apple II Computer Info

 1490 .4 JMP CMNT FINISH PROCESSING THE LINE
 1500 *---------------------------------
 1510 ERBA2 JMP ERBA BAD ADDRESS ERROR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 351 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8109:DOS3.3:Tst.Fld.Inp.Rtn.txt
==

(4)"BRUN B.INPUT ROUTINE"AÜV(5),H(5),L(5),T$(5),A$(5)d-ÅI–
1¡5:áV(I),H(I),L(I),T$(I):Çu(É5,7,30,NAMEÑ2É7,7,3,AGEó<É7,27,3,WEIGHT©
FÉ9,7,12,STATEπPÉ9,27,5,ZIPÌZâ:ó:¢23:û:∫" TYPE CTRL-F WHEN FORM
FINISHED ":ù0 dÅI–1¡5:¢V(I):ñH(I)…„(T$(I))…1:∫T$(I)" ";:ÅJ –
1¡L(I):∫Á(95);:Ç:Ç8 nI–1Q x¢V(I):ñH(I):ôL(I):ò0g ÇØÑA$(I):XC–
‚(224)Å å¥XC»1´200,300,400,500î »I–I»1:≠Iœ5ƒ110ù “´120´

,Ä:≤ESCAPE∫ ê≤CONTROL-F“ öó:ÅI–1¡5:∫A$(I):Ç:Ä·
Ù≤BACKSPACEÙ ˛I–I…1:≠I–0ƒI–5˝ ´120

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 352 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:DOS3.3Disasm.txt
==

DOS Disassembly: $B052-B0B5 AND $B35F-B7FF

Everything from $B800 through $BFFF has now been covered in previous
issues of AAL. Also, the 3.3 boot ROM was covered in the August
issue. In this issue I present the rest of the boot code and part of
the File Manager (FM).

Lines 1000-1570 are a subroutine inside FM which calls RWTS. The main
entry at line 1170 assumes (A)=opcode, (X)=track, and (Y)=sector. A
subsidiary entry at line 1200 assumes (A)=opcode, and track and sector
were already set up. The valid opcodes are SEEK=0, READ=1, WRITE=2,
and FORMAT=4.

Lines 1580-1970 are the various exits from FM. Upon exit, (A)=error
code and CARRY status is set if there was an error, clear if not.

Lines 1980-2560 are various buffers, constants, and variables for FM.
Notice there are some apparently unused bytes in this area.

Lines 2570-3690 are what is written on track 0 sector 0. It loads and
executes BOOT.STAGE1 at $0800 (execution starts at $0801). This code
reads in RWTS and BOOT.STAGE2. Since most of this area was unused,
patches to solve the APPEND problem are here (lines 3020-3640).

Lines 3700-4080 are BOOT.STAGE2, which read in the rest of DOS and
jump to $9D84.

Routines to write the DOS image on tracks 0-2, to enter RWTS with
interrupts disabled, and to clear a 256-byte buffer are in lines 4090-
4990.

Lines 5100-5300 are the IOB and DCT used by FM for all calls to RWTS.
The contents of these are described in the DOS Reference Manual pages
95-98.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 353 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:Errata.CHRGET.txt
==

Errata

Volume 1, Issue 12 (Sep 1981) page 8: Line 1120 in the CHRGET/CHRGOT
subroutine should be BCS instead of BEQ.

Volume 1, Issue 7 (Apr 1981) page 8: Insert the following lines:

1331 TXA LINE LENGTH
1332 TAY IN Y-REG FOR LOOP COUNT
1333 .2 LDA $200,Y STRIP SIGN-BITS FROM EACH BYTE
1334 AND #$7F
1335 STA $200,Y
1336 DEY
1337 BPL .2

This patch is necessary because characters Applesoft strings are
supposed to have the sign-bit clear. Everything is fine unless you
try compare input strings with constant strings.

Another Way Out of the Assembler

James Church, from Trumbull, CT, writes that he has found a way to get
from the assembler into Applesoft, without wiping out an Applesoft
program.

The normal way to leave is by typing FP, and then PR#0. This of
course clears any Applesoft program from memory. But by typing
$AAB6:40, $E003G, and PR#0 you can enter Applesoft softly.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 354 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:Front.Page.txt
==

$1.20

Volume 2 -- Issue 1 October, 1981

In This Issue...

Sifting Primes Faster and Faster 2
6809 Cross Assembler 12
Extending the Apple Monitor 14
Errata . 18
DOS 3.3 Disassembly: $B052-B0B5 and $B35F-B7FF 18

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 355 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:GRAM.1lineprint.txt
==

Screen Printers in One Line....................Bob Sander-Cederlof

When you are writing a fancy program to help you in your business, you
spend a lot of time formatting the screen output. You want it to look
perfect!

But how do you get it from the screen to your printer? You might end
up re-writing the whole output routine, or incorporating a machine
language screen dump. You don't have to go to such extremes, because
you can copy the contents of the screen to your printer with as little
as one line of Applesoft code!

Here is one such line, printed with one statement per physical line
for easy reading by humans. (But it is still only one line to
Applesoft.)

100 PR# 1
 : FOR V = 1 TO 24
 : FOR H = 1 TO 40
 : VTAB V
 : HTAB H
 : VH = PEEK(40)+PEEK(41)*256+H-1
 : CH = PEEK (CH)
 : PRINT CHR$(CH+32*(CH<32));
 : NEXT
 : PRINT
 : NEXT
 : PR# 0
 : CALL 1002
 : RETURN

Note that the RETURN on the end means I am expecting you to call this
with a GOSUB 100. If you want to, you can put this line right where
you need it as in-line code, and leave off the RETURN.

How does it work? First, PR#1 turns on your printer. It also unhooks
DOS, but we don't need DOS right now anyway. We will rehook it at the
end. Look to the last few lines now: PR#0 turns off your printer,
and CALL 1002 re-hooks DOS.

The first FOR loop covers the 24 lines of the screen. The second FOR
loop covers the 40 characters of each line. VTAB V and HTAB H
position the cursor over the next character on the screen to be copied
to your printer. VTAB V also sets up locations 40 and 41 with the
actual memory address of the first character on line V. The "VH ="
statement computes the memory address of character H on line V.

CH=PEEK(VH) will retrieve the character under the cursor. PRINT
CHR$(CH+32*(CH<32)) prints that character on your printer. It also

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 356 of 2550

Apple II Computer Info

prints it on the screen, but so what? Since we are printing the same
character on top of itself, nothing changes. That is, unless the
character was INVERSE mode. Inverse mode characters are converted to
FLASH mode on the screen, and both of those modes are printed as
NORMAL mode on the printer. (Note that the expression 32*(CH<32)
equals 0 if CH is greater than 31, and equals 32 if CH is less than
32.)

NEXT : PRINT : NEXT moves us to the next character until the end of
line, then prints a carriage return on the printer, and then moves us
to the next line on the screen. After all the lines have been
printed, the printer is unhooked, DOS rehooked, and the subroutine
returns.

Here is another version, which computes its own screen addresses in a
series of three nested FOR loops:

100 PR# 1
 : PRINT CHR$ (9)"80N"
 : FOR I = 0 TO 80 STEP 40
 : FOR J = I+1024 TO I+1920 STEP 128
 : FOR K = J TO J+39
 : CH = PEEK(K)
 : PRINT CHR$(CH+32*(CH<32));
 : NEXT
 : PRINT
 : NEXT
 : NEXT
 : PR# 0
 : CALL 1002
 : RETURN

Notice I had to print a control-I and "80N" to the printer interface
to turn off the screen echo in this version.

It seemed to me that this second version ran a little faster than the
first one, although I didn't use a stopwatch. Both versions keep
ahead of the printer anyway.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 357 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:Gram.Book.Revws.txt
==

Mini-Review: "Real Time Programming"........Bob Sander-Cederlof

The other night at B. Dalton's (the book store you find in almost
every shopping mall in America), I came across a new book you might
like: "Real Time Programming--Neglected Topics", by Caxton C. Foster,
Addison-Wesley Publishing Company, 1981, 190 pages, $8.95.

Are you serious about learning to program in assembly language? Even
to the point of learning how to interface your Apple to other devices?
Foster introduces such topics as interrupt processing, switch
debouncing, timers, synchronizing processes, digital filtering,
adaptive control loops, and network communication.

If you are still here, after all those frightening buzzwords, good!
Fear not! The book was written for ordinary mortals like you and me,
not mathematical wizards. Each topic is amply illustrated with
working programs, and actual hardware experiments you can set up with
your own computer. I found that I could actually read the book,
without stumbling and going over and over the same passage to
understand it. Foster has made some very complex techniques
comprehensible. There are lots of interesting analogies and drawings
to aid in understanding.

The examples are written in the assembly language of a mythical
machine called FOSSOL. A simple chart on page 3 shows the
correspondence between these opcodes and those of the 6502 in your
Apple. Most of them are identical to the 6502 opcodes. The same
chart shows how to translate FOSSOL into Z-80 assembly language. (Why
in the world would anyone want to do that?!!)

If you are not quite ready to sink your teeth into this one, you might
look over his previous book, "Programming a Microcomputer: 6502". It
was published about 3 1/2 years ago, by the same publishers, and is
still available.

More New Publications........................Bob Sander-Cederlof

MICRO Magazine has collected together another series of their best
Apple-related articles, called "MICRO-Apple 2". If you missed "MICRO-
Apple 1", it is still available too. Each book comes complete with a
disk containing all the programs printed inside, is 224 pages long,
and costs $24.95 (plus $2.00 shipping charges).

MICRO has also recently published an atlas to all the interesting
locations inside your Apple, called "What's Where in the APPLE?". It
is 128 pages long, 8 1/2 by 11 inches, wire-circle bound to lie flat
on your desk without fighting. It retails for $14.95, plus $2.00
shipping charges. Call 1-800-227-1617, extension 564, if you can't

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 358 of 2550

Apple II Computer Info

wait. I will have some at the next Apple Corps meeting at a slightly
lower price.

If you have been reading your SOFTALK magazine each month, you
probably have noticed Roger Wagner's very helpful column. "Assembly
Lines" guides you each month through the a-MAZE-ing and mystifying
world of assembly language programming. The articles have been so
popular that SOFTALK has collected the first 12 into a book called
"Everyone's Guide to Assembly Language". They have added some new
material not yet printed in the magazine. It costs $19.95 plus $1.50
for shipping charges. Write to Softalk Book, 11021 Magnolia Blvd,
North Hollywood, CA 91601.

"Graphics Software for Microcomputers", by B.J. Korites, will show you
how to write your own graphics software. Not just simple lines and
shapes, but 3-dimensional drawing with interactive input, rotations,
translations, perspective transformations, scaling, clipping, shading,
and more. Program listings written in Applesoft Basic are presented
side-by-side the theoretical explanations. The book costs $19.95 and
the 61 programs are available on disk for an additional $18.95. Once
again, add $2.00 per item for shipping charges! Write to Kern
Publications, 190 Duck Hill Road, P. O. Box 1029, Duxbury, MA 02332.
Or call (617) 934-0445. I am trying to get a dozen of these for the
next meeting, but I can't promise anything yet.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 359 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:GRAM.Hello.AS.txt
==

HELLO vs. LANGUAGE NOT AVAILABLE

When you are trying to send out a disk full of software to many Apple
owners, you face a lot of problems trying to be compatible with every
configuration. One of those problems is the HELLO program.

If you write it in Applesoft, and the customer only has Integer BASIC
(or vice versa), the message "LANGUAGE NOT AVAILABLE" will print out
when he boots your disk. There are several ways around this problem.
If you get a license from Apple, you can include RAM Applesoft on your
disk. Or, you could require that he boot another disk first; you
could warn him to ignore the error message. You could tell customers
to delete the HELLO program which is in the language he doesn't have,
and rename the other one to correspond to your boot file name.

Or, you could do this: write the primary boot program in Applesoft,
and include an Integer BASIC version named "APPLESOFT". I have done
this on the S-C Assembler II Version 4.0 disks. However, just
yesterday, I discovered a problem with my Integer BASIC version. It
just hangs up! It seems that DOS really isn't completely satisfied to
just run my program named APPLESOFT. It also wants to configure some
internal addresses for RAM Applesoft and then try to RUN the Applesoft
boot program. By inserting two POKEs in my program named APPLESOFT, I
can fool DOS completely. Here they are:

 POKE -21935,0 : POKE -21918,0

These POKEs change the mode inside DOS so that the boot process is cut
short. The first one is $AA51; it had $C0 (or 192) in it before the
POKE. $C0 means a coldstart is in progress, and RAM Applesoft is in
control. We turn both of those off by POKEing 0. The second POKE is
at $AA62, the index of a pending command. This was a 6 before the
POKE, indicating that a RUN was pending (for the original HELLO file).
We turn that off also.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 360 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:Sifting.Primes.txt
==

Sifting Primes Faster and Faster

Benchmark programs are sometimes useful for selecting between various
processors. Quite a few articles have been published which compare
and rank the various Z-80, 8080, 6800, and 6502 systems based on the
speed with which they execute a given BASIC program. Some of us
cannot resist the impulse to show them up by recoding the benchmark in
our favorite language on our favorite processor, using our favorite
secret tricks for trimming microseconds.

"A High-Level Language Benchmark" (by Jim Gilbreath, BYTE, September,
1981, pages 180-198) is just such an article. Jim compared execution
time in Assembly, Forth, Basic, Fortran, COBOL, PL/I, C, and other
languages; he used all sorts of computers, including the above four,
the Motorola 68000, the DEC PDP 11/70, and more. He used a short
program which finds the 1899 primes between 3 and 16384 by means of a
sifting algorithm (Sieve of Eratosthenes).

His article includes table after table of comparisons. Some of the
key items of interest to me were:

Language and Machine Seconds

Assembly Language 68000 (8 MHz) 1.12
Assembly Language Z80 6.80
Digital Research PL/I (Z80) 14.0
Microsoft BASIC Compiler (Z80) 18.6
FORTH 6502 265.
Apple UCSD Pascal 516.
Apple Integer BASIC 2320.
Applesoft BASIC 2806.
Microsoft COBOL Version 2.2 (Z80) 5115.

There is a HUGE error in the data above; I don't know if it is the
only one or not. The time I measured for the Apple Integer BASIC
version was only 188 seconds, not 2320 seconds! How could he be so
far off? His data is obviously wrong, because Integer BASIC in his
data is too close to the same speed as Applesoft.

I also don't know why they neglected to show what the 6502 could do
with an assembly language version. Or maybe I do....were they
ashamed?

William Robert Savoie, an Apple owner from Tennessee, sent me a copy
of the article along with his program. He "hand-compiled" the BASIC
version of the benchmark program, with no special tricks at all. His
program runs in only 1.39 seconds! That is almost as fast as the 8
MHz Motorola 68000 system! The letter that accompanied his program
challenged anyone to try to speed up his program.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 361 of 2550

Apple II Computer Info

How could I pass up a challenge like that? I wrote my own version of
the program, and cut the time to .93 seconds! Then I made one small
change to the algorithm, and produced exactly the same results in only
.74 seconds!

Looking back at Jim Gilbreath's article, he concludes that efficient,
powerful high-level languages are THE way to go. He eschews the use
of assembly language for any except the most drastic requirements,
because he could not see a clear speed advantage. He points out the
moral that a better algorithm is superior to a faster CPU. (Note that
his algorithm is by no means the fastest one, by the way.)

Here is Gilbreath's algorithm, in Integer BASIC:

<program#1>

The REM tagged onto the end of line 70, if changed to a real PRINT
statement, will print the list of prime numbers as they are generated.
Of course printing them was not included in any of the time
measurements. According to my timing, printing adds 12 seconds to the
program.

I modified the algorithm to take advantage of some more prior
knowledge about sifting: There is no need to go through the loop in
lines 50 and 60 if P is greater than 127 (the largest prime no bigger
than the square root of 16384). This means changing line 40 to read:

 40 P=I+I+3 : IF P>130 THEN 70 : K=I+P

This change cut the time for the program from 188 seconds to 156
seconds. My assembly language version of the original algorithm ran
in .93 seconds, or 202 times faster; the better algorithm ran in .74
seconds, or almost 211 times faster.

William Savoie has done a magnificent job in hand-compiling the first
program. He ran the program 100 times in a loop, so that he could get
an accurate time using his Timex watch. Here is the listing of his
program.

<Bill Savoie's program>

Here is a listing of my fastest version. If you delete lines
through, you get my code for the original algorithm.

<my program>

Michael R. Laumer, of Carrollton, Texas, has been working for about a
year on a full-scale compiler for the Integer BASIC language. He has
it nearly finished now, so just for fun he used it to compile the
algorithm from Gilbreath's article. Mike used a slightly different
form of the Integer BASIC program than I did, which took 238 seconds
to execute. But the compiled version ran in only 20 seconds! If you

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 362 of 2550

Apple II Computer Info

are interested in compiling Integer BASIC programs, you can write to
Mike at Laumer Research, 1832 School Road, Carrollton, TX 75006.

If you want to, you can easily cut the time of my program from .74 to
about .69 seconds. Lines 1600-1650 in my program set each byte in
ARRAY to $01. If I don't mind the extra program length, I can rewrite
this loop to run in about 42 milliseconds instead of the over 90 it
now takes. Here is how I would do it:

.1 STA ARRAY,Y
 STA ARRAY+$100,Y
 STA ARRAY+$200,Y
 STA ARRAY+$300,Y TOTAL OF 32
 . LINES LIKE THESE
 .
 .
 STA ARRAY+$1E00,Y
 STA ARRAY+$1F00,Y
 INY
 BNE .1

If you can find a way to implement the same program in less than .69
seconds, you are hereby challenged to do so!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 363 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:XAsm.6809.txt
==

6809 Cross Assembler

Chris Wiggs, of Rockford, IL, has developed a cross assembler for the
6809 which runs in the Apple. In fact, it is really a set of patches
to the S-C Assembler II Version 4.0. If you BLOAD your copy of the
assembler, and then BRUN his patch file, and BSAVE the result, you
have a brand new assembler for 6809 code.

It is set up to work with "The Mill". Typing MGO turns on the mill
and starts 6809 code executing, while the Apple's 6502 is left in a
waiting loop.

Chris has authorized me to distribute these patches. For only $20 you
will get a disk which includes all of the source code for the patches
(in S-C Assembler II Version 4.0 format), the already-assembled patch
file, a sample 6809 program, and some instructions (in the form of an
assembly source file of comments).

I have not put this program through any rigorous test, but Chris is
using it himself and is satisfied that it is working correctly.
Anyway, you will actually have the SOURCE code, so you can make any
further changes you wish with ease.

You might also study how he did it, and then write a cross assembler
for some other chip, such as Z-80, 68000, 1802, TMS7000, or whatever.

Here is a sample 6809 assembly:

 <<<code here>>>

Source Code for S-C Assembler II Version 4.0

At long last, I have decided to start selling the source code for my
assembler. So many of you have asked for it! I am sure you
understand my reluctance; after all, with a wife and five kids to
support, and most of our income coming from this one product....

If I have your registration card for Version 4.0 on file, or some
other proof-of-purchase, I will send you a disk with all of the
commented source code on it. You can study it, assemble it, modify
it, et cetera; just don't start selling it! With your check for $95,
you will need to include the following signed declaration:

"I am purchasing the source code of S-C Assembler II Version 4.0 with
the understanding that it is proprietary information belonging to S-C
SOFTWARE. The disk, and any copies or listings I may make of it, are
only for my own personal use."

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 364 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:Articles:Xtnd.Apples.Mtr.txt
==

Extending the Apple Monitor

Just as the creators of Applesoft included the wonderful "&" statement
to allow language extensions, so also Steve Wozniak included a means
for adding new monitor commands. The "control-Y" command branches to
a user-defined maching language routine, which can supplement the
existing commands in the Monitor ROM.

The control-Y command executes your subroutine starting at $3F8. All
there is room for at $3F8 is a JMP to where your subroutine is REALLY
stored. When you boot DOS, a JMP $FF65 instruction is inserted at
$3F8, setting the control-Y command to merely re-enter the monitor.
By changing the address of that JMP instruction, you can have it jump
to your own code. If you look ahead at the listing of MONITOR
EXTENSIONS, lines 1170-1210 store the address of my CTRLY subroutine
into the JMP instruction.

I have thought of at least three features that I miss all the time in
the monitor. (I just now thought of several more, but they will have
to wait for another article.)

1. The monitor already includes the ability to add and subtract
single-byte values, and print the single-byte result. I would like to
be able to do this with 16-bit values.

2. The monitor can already dump memory in hexadecimal, but I want to
see it as ASCII characters also. There is room on the screen for both
at once.

3. The monitor can already disassemble code to the screen, 20 lines
at a time. If I want more than 20 lines, I can type "LLLLLL", one L
for each 20 lines. But I would like to be able to just specify the
beginning and ending addresses for the disassembly, like I do for the
hexadecimal printout.

If you enter the MONITOR EXTENSIONS program, these three functions
will be added to the monitor. To add or subtract two values, type the
two values separated by "+" or "-"; then type control-Y, and carriage
return. To dump in combined hex and ASCII, type the beginning and
ending addresses separated by a period, then control-Y and carriage
return. To disassemble a range of memory, type the beginning and
ending addresses separated by a period, then control-Y, "L", and a
carriage return.

Looking again at the listing, lines 1230-1340 figure out which of the
above command options you have typed in. When the monitor branches to
$3F8, the following conditions have been set up:

(A) = 0 if only one address was typed;

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 365 of 2550

Apple II Computer Info

 = code for separator character if two addresses
 were typed.

(X) = 0 if no hex digit typed immediately before the
 control-Y;
 = 1 if any hex digits immediately before the
 control-Y.

(Y) = 0

($34) = index into input buffer of next character after
 the control-Y.

Up to five 16-bit variables (called A1, A2, A3, A4, and A5) are filled
from the hexadecimal values in the command. If you type a "<" after
the first value, then that value will be stored in A4 and A5 (A4 is at
$42,43; A5 at $44,45). If you type a ".", "+", "-", or ":" after a
hexadecimal value, then that value will be stored in A1 and A3 (A1 is
at $3C,3D; A3 at $40,41). If you type a hexadecimal value immediately
before the control-Y, then that value will be stored in A2 (which is
at $3E,3F).

Looking again at lines 1230-1340, I branch to SUB if the separator is
"-", or ADD if it is "+". If the separator is a colon, I just return;
I don't have any control-Y command which accepts a colon separator.
If the separator is not any of the above, then either there was no
separator, or it was a period. In both of these cases, I want to dump
memory. If the character after the control-Y is not "L", then I want
a combined hex-ASCII dump; if it is "L", I want disassembly. Line
1340 increments the buffer pointer so that the "L" command will not be
re-executed by the regular monitor routine after my control-Y routine
is finished.

Lines 1360-1450 control the disassembly option. I used a monitor
subroutine to copy the beginning address from A1 into PC. Then I
wrote a loop that calles the monitor routine to disassemble one line,
and then checks to see if we have reached the ending address. Compare
this to the code in the monitor ROM at $FE5E through $FE74. There is
one trick in this code. I wanted to compare PC to END.ADDR, and
continue if PC was less than or equal to END.ADDR. The normal
comparison technique would either SET carry at line 1390, but I
CLEARed it. This has the same affect as using one less than the value
in PC as the first comparand. I needed this, because BCC at line 1440
only branches if the first comparand is LESS THAN the second one. In
other words, since it is difficult to implement IF PC <= END.ADDR THEN
..., I implemented IF PC-1 < END.ADDR THEN

Lines 1470-1780 perform the combined hex-ASCII dump. I must give
credit to Hugh McKinney, of Dunwoody, GA, for some of the ideas in
this code. Just for fun, I set it up to always print complete rows of
eight bytes; the starting address is rounded down to the nearest
multiple of 8, and the ending address is rounded up. This means that
typing just one address will get you eight, also.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 366 of 2550

Apple II Computer Info

I had to make a judgment about what characters to display for the
ASCII portion of the dump. There are 256 possible values, and only 96
printing characters. In fact, if you don't have a lower case adapter,
your screen only shows 64 printing characters (unless you count
inverse and flashing characters as different; in that case you have
192). I decided to display control characters (codes 00-1F and 80-9F)
as flashing characters (codes 40-5F). Codes 60-7F and E0-FF display
as lower case characters if you have a lower case adapter. Codes 20-
5F and A0-DF display as normal video characters (the standard upper
case set). If you want a different mapping, change lines 1660-1690 to
do it your way.

Lines 1800-1930 perform the 16-bit addition and subtraction in the
normal way. Lines 1940-1980 print out an equal sign, and the value.

If you get really ambitious, you might try programming for your Apple
II Plus the S and T commands that Apple removed from the Autostart
ROM. You can just about copy the code right out of the reference
manual. You might also like to add a memory move command that will
work correctly even when the target area overlaps the source area.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 367 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:DOS3.3:IB.Prime.Bench.txt
==

 10
00
0000000000000000
 20
U000
00000000000000000
 30
U000
00000000000000000
 40
II
III333333333333333333
 50 `SSSSSSSSSSSSSSSSSSSSSSSSS$
F
 60 KKKrq
 70
NN
NNN

 80 Y
 90 Q

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 368 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:DOS3.3:S.ASCII.Dump.P.txt
==

 1000 *---------------------------------
 1010 * PATCHES TO ADD ASCII DUMP
 1020 * TO THE APPLE MONITOR
 1030 *---------------------------------
 1040 A1L .EQ $3C
 1050 COUT .EQ $FDED
 1060 *---------------------------------
 1070 .OR $FDB8
 1080 .TA $0DB8
 1090 JSR PATCH CALL MY PATCH CODE
 1100 *---------------------------------
 1110 .OR $FCC9
 1120 .TA $0CC9
 1130 PATCH
 1140 JSR COUT PRINT A SPACE
 1150 LDA (A1L),Y GET BYTE TO BE DISPLAYED
 1160 PHA SAVE IT ON STACK
 1170 LDA A1L LOW BYTE OF DUMP ADDRESS
 1180 AND #7 MASK LINE POSITION
 1190 CLC
 1200 ADC #31 COMPUTE HORIZONTAL OFFSET
 1210 TAY
 1220 PLA GET BYTE FROM STACK
 1230 STA ($28),Y STORE IT ON THE SCREEN
 1240 LDY #0 RESTORE Y
 1250 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 369 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:DOS3.3:S.D33.B35F.B7FF.txt
==

 1000 *---------------------------------
 1010 * DOS 3.2.1/3.3 FILE MANAGER $B052-B0B5
 1020 *---------------------------------
 1030 .OR $B052
 1040 .TA $0852
 1050 *---------------------------------
 1060 MON.STATUS .EQ $48
 1070 IOB.ADDR .EQ $AAC1
 1080 SAVE.FMW .EQ $AE7E
 1090 RWTS .EQ $BD00
 1100 MON.INIT .EQ $FB2F
 1110 MON.HOME .EQ $FC58
 1120 MON.PRBYTE .EQ $FDDA
 1130 MON.COUT .EQ $FDED
 1140 MON.SETKBD .EQ $FE89
 1150 MON.SETVID .EQ $FE93
 1160 *---------------------------------
 1170 CALL.RWTS
 1180 STX IOB.TRACK
 1190 STY IOB.SECTOR
 1200 CALL.RWTS.1
 1210 STA IOB.OPCODE (SEEK=0, READ=1, WRITE=2, FORMAT=4)
 1220 CMP #2 OPCODE="WRITE"?
 1230 BNE .1
 1240 ORA FMW.FLAGS SET "LAST OP WAS WRITE" FLAG
 1250 STA FMW.FLAGS
 1260 .1 LDA FMW.VOLUME
 1270 EOR #$FF UN-COMPLEMENT THE VOLUME #
 1280 STA IOB.VOLUME
 1290 LDA FMW.SLOT16 SLOT # TIMES 16
 1300 STA IOB.SLOT16
 1310 LDA FMW.DRIVE DRIVE #
 1320 STA IOB.DRIVE
 1330 LDA FMW.SECTSZ SECTOR LENGTH IN BYTES
 1340 STA IOB.SECTSZ
 1350 LDA FMW.SECTSZ+1
 1360 STA IOB.SECTSZ+1
 1370 LDA #1 SET TABLE TYPE
 1380 STA IOB.TYPE
 1390 LDY IOB.ADDR GET ADDRESS OF IOB
 1400 LDA IOB.ADDR+1
 1410 JSR ENTER.RWTS PERFORM THE OPERATION
 1420 LDA IOB.ACTVOL VOUME # FOUND
 1430 STA FMP.DATA+2
 1440 LDA #$FF RESET VOLUME EXPECTED IN IOB
 1450 STA IOB.VOLUME
 1460 BCS .2 CARRY SET IF RWTS ERROR
 1470 RTS RETURN TO CALLER
 1480 .2 LDA IOB.ERROR GET ERROR CODE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 370 of 2550

Apple II Computer Info

 1490 LDY #7 ERR=7 IF VOLUME MISMATCH
 1500 CMP #$20 VOLUME MISMATCH?
 1510 BEQ .3 YES
 1520 LDY #4 ERR=4 IF WRITE PROTECTED
 1530 CMP #$10 WRITE PROTECTED?
 1540 BEQ .3 YES
 1550 LDY #8 ERR=8 (I/O ERROR) FOR ALL OTHERS
 1560 .3 TYA ERR IN A-REG
 1570 JMP FM.EXIT.ERROR
 1580 *---------------------------------
 1590 * DOS 3.3 FILE MANAGER $B35F-B5FF
 1600 *---------------------------------
 1610 .OR $B35F
 1620 .TA $0B5F
 1630 FM.EXIT.ERR1 LDA #1 "LANGUAGE NOT AVAILABLE"
 1640 BNE FM.EXIT.ERROR
 1650 FM.EXIT.ERR2 LDA #2 "RANGE ERROR" (OPCODE)
 1660 BNE FM.EXIT.ERROR
 1670 FM.EXIT.ERR3 LDA #3 "RANGE ERROR" (SUBCODE)
 1680 BNE FM.EXIT.ERROR
 1690 FM.EXIT.ERR4 LDA #4 "WRITE PROTECTED"
 1700 BNE FM.EXIT.ERROR
 1710 FM.EXIT.ERR5 LDA #5 "END OF DATA"
 1720 BNE FM.EXIT.ERROR
 1730 FM.EXIT.ERR6 LDA #6 "FILE NOT FOUND"
 1740 BNE FM.EXIT.ERROR
 1750 FM.EXIT.ERR9 JMP $BFED "DISK FULL"
 1760 NOP
 1770 FM.EXIT.ERR10 LDA #10 "FILE LOCKED"
 1780 BNE FM.EXIT.ERROR
 1790 *---------------------------------
 1800 FM.EXIT.GOOD
 1810 LDA FMP.RETURN GET RETURN CODE (ZERO)
 1820 CLC SIGNAL NO ERROR
 1830 BCC FM.EXIT ...ALWAYS
 1840 *---------------------------------
 1850 FM.EXIT.ERROR
 1860 SEC
 1870 *---------------------------------
 1880 FM.EXIT
 1890 PHP SAVE STATUS ON STACK
 1900 STA FMP.RETURN RETURN CODE
 1910 LDA #0 CLEAR MONITOR STATUS (JUST IN CASE)
 1920 STA MON.STATUS
 1930 JSR SAVE.FMW SAVE FM WORKAREA IN FILE BUFFER
 1940 PLP RETRIEVE STATUS FROM STACK
 1950 LDX FMS.STACK RESTORE STACK POINTER
 1960 TXS
 1970 RTS RETURN TO WHOEVER CALLED FM
 1980 *---------------------------------
 1990 * SCRATCH AREA
 2000 *---------------------------------
 2010 FMS.TS.CD .BS 2 T/S OF CURRENT DIRECTORY SECTOR
 2020 .BS 2 ?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 371 of 2550

Apple II Computer Info

 2030 FMS.STACK .BS 1 S-REG WHEN FM CALLED
 2040 FMS.DIRNDX .BS 1 VARIOUS USES
 2050 .BS 1 " "
 2060 .BS 2 ?
 2070 .HS 0000FFFF USED BY INIT TO CLEAR VTOC ENTRY
 2080 *---------------------------------
 2090 .DA #1,#10,#100 DECIMAL CONVERSION TABLE
 2100 .AS -/TIABSRAB/ FILE TYPE CODES
 2110 .AS -/ EMULOV KSID/ MSG SPELLED BACKWARDS
 2120 *---------------------------------
 2130 * VTOC SECTOR BUFFER
 2140 *---------------------------------
 2150 .BS 256
 2160 *---------------------------------
 2170 * DIRECTORY SECTOR BUFFER
 2180 *---------------------------------
 2190 .BS 256
 2200 *---------------------------------
 2210 * FILE MANAGER PARAMETERS
 2220 *---------------------------------
 2230 FMP.OPCODE .BS 1
 2240 FMP.SUBCOD .BS 1
 2250 FMP.DATA .BS 8 USE DEPENDS ON OPCODE
 2260 FMP.RETURN .BS 1 ERROR CODE
 2270 .BS 1 ?
 2280 FMP.PNTR.WORK .BS 2 ADDR OF WORKAREA IN FILE BUFFER
 2290 FMP.PNTR.TS .BS 2 ADDR OF T/S LIST IN FILE BUFFER
 2300 FMP.PNTR.DATA .BS 2 ADDR OF DATA IN FILE BUFFER
 2310 .BS 4 ?
 2320 *---------------------------------
 2330 * FILE MANAGER WORKAREA
 2340 *---------------------------------
 2350 FMW.TS.TS1 .BS 2 T/S OF FIRST T/S LIST SECTOR
 2360 FMW.TS.TSC .BS 2 T/S OF CURRENT T/S LIST SECTOR
 2370 FMW.FLAGS .BS 1 CHECKPOINT FLAGS
 2380 FMW.TS.DATA .BS 2 T/S OF CURRENT DATA SECTOR
 2390 .BS 2 DIRECTORY SECTOR INDEX
 2400 .BS 2 # SECTORS PER TS LIST
 2410 .BS 2 1ST SECTOR
 2420 .BS 2 LAST SECTOR+1
 2430 .BS 2 CURRENT SECTOR
 2440 FMW.SECTSZ .BS 2 SECTOR SIZE IN BYTES
 2450 .BS 4 FILE POSITION
 2460 .BS 2 RECORD LENGTH FROM OPEN
 2470 .BS 2 RECORD NUMBER
 2480 .BS 2 BYTE OFFSET INTO RECORD
 2490 .BS 2 # SECTORS IN FILE
 2500 .BS 6 SECTOR ALLOCATION AREA
 2510 FMW.FILTYP .BS 1
 2520 FMW.SLOT16 .BS 1
 2530 FMW.DRIVE .BS 1
 2540 FMW.VOLUME .BS 1 (COMPLEMENT FORM)
 2550 FMW.TRACK .BS 1
 2560 .BS 5 <NOT USED>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 372 of 2550

Apple II Computer Info

 2570 *---------------------------------
 2580 * STAGE 1 OF BOOT (EXECUTES AT $0800)
 2590 *---------------------------------
 2600 .OR $800
 2610 .TA $E00
 2620 BOOT.STAGE1
 2630 .HS 01
 2640 * COMES HERE AFTER EACH SECTOR IS READ
 2650 LDA $27 NEXT PAGE TO READ INTO
 2660 CMP #9 FIRST TIME HERE?
 2670 BNE .1 NO, SKIP OVER INITIALIZATION
 2680 LDA $2B SLOT*16
 2690 LSR GET SLOT #
 2700 LSR
 2710 LSR
 2720 LSR
 2730 ORA #$C0 BUILD ADDRESS INTO ROM
 2740 STA $3F FOR READING A SECTOR
 2750 LDA #$5C
 2760 STA $3E
 2770 CLC
 2780 LDA BT1.ADDR+1 COMPUTE ADDRESS OF LAST PAGE
 2790 ADC BT1.N TO BE READ
 2800 STA BT1.ADDR+1
 2810 .1 LDX BT1.N # PAGES LEFT TO READ - 1
 2820 BMI .2 FINISHED
 2830 LDA SECTOR.NUMBER,X CONVERT TO PHYSICAL SECTOR #
 2840 STA $3D
 2850 DEC BT1.N
 2860 LDA BT1.ADDR+1
 2870 STA $27
 2880 DEC BT1.ADDR+1
 2890 LDX $2B SLOT*16
 2900 JMP ($3E) READ NEXT SECTOR
 2910 .2 INC BT1.ADDR+1 POINT AT STAGE 2 LOADER
 2920 INC BT1.ADDR+1
 2930 JSR MON.SETKBD
 2940 JSR MON.SETVID
 2950 JSR MON.INIT
 2960 LDX $2B SLOT*16
 2970 JMP (BT1.ADDR)
 2980 *---------------------------------
 2990 SECTOR.NUMBER
 3000 .HS 000D0B0907050301
 3010 .HS 0E0C0A080604020F
 3020 *---------------------------------
 3030 * DOS 3.3 PATCHES FOR APPEND AND VERIFY
 3040 *---------------------------------
 3050 .OR $B65D
 3060 .TA $0E5D
 3070 APPEND.FLAG .BS 1
 3080 PATCH.DOS33.1
 3090 JSR $A764 LOCATE AND FREE FILE BUFFER
 3100 BCS .1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 373 of 2550

Apple II Computer Info

 3110 LDA #0 CLEAR APPEND FLAG
 3120 TAY
 3130 STA APPEND.FLAG
 3140 STA ($40),Y
 3150 .1 LDA FMP.RETURN
 3160 JMP $A6D2
 3170 *---------------------------------
 3180 PATCH.DOS33.2
 3190 LDA APPEND.FLAG
 3200 BEQ .1
 3210 INC FMP.DATA
 3220 BNE .1
 3230 INC FMP.DATA+1
 3240 .1 LDA #0 CLEAR APPEND FLAG
 3250 STA APPEND.FLAG
 3260 JMP $A546
 3270 *---------------------------------
 3280 PATCH.DOS33.3
 3290 STA FMP.SUBCOD
 3300 JSR $A6A8
 3310 JSR $A2EA
 3320 JMP $A27D
 3330 *---------------------------------
 3340 PATCH.DOS33.4
 3350 LDY #19 LOOK AT FILE POSITION
 3360 .1 LDA ($42),Y
 3370 BNE .4 NOT AT 0000
 3380 INY
 3390 CPY #23
 3400 BNE .1 TEST 4 BYTES
 3410 LDY #25
 3420 .2 LDA ($42),Y
 3430 STA FMP.DATA-25,Y
 3440 INY
 3450 CPY #29 MOVE 4 BYTES
 3460 BNE .2
 3470 .3 JMP $A6BC
 3480 .4 LDX #$FF
 3490 STX APPEND.FLAG
 3500 BNE .3 ...ALWAYS
 3510 .BS 29 <NOT USED>
 3520 *---------------------------------
 3530 * STRANGE CODE IN THE MIDDLE OF NOWHERE
 3540 *---------------------------------
 3550 JSR MON.HOME CLEAR SCREEN
 3560 LDA #$C2 PRINT "B01-00"
 3570 JSR MON.COUT
 3580 LDA #1
 3590 JSR MON.PRBYTE
 3600 LDA #$AD
 3610 JSR MON.COUT
 3620 LDA #0
 3630 JSR MON.PRBYTE
 3640 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 374 of 2550

Apple II Computer Info

 3650 .BS 21 <NOT USED>
 3660 .OR $08FD
 3670 .TA $0EFD
 3680 BT1.ADDR .DA $3600
 3690 BT1.N .DA #9
 3700 *---------------------------------
 3710 * SECOND STAGE OF BOOT
 3720 *---------------------------------
 3730 .OR $B700
 3740 .TA $0F00
 3750 BOOT.STAGE2
 3760 STX IOB.SLOT16
 3770 STX IOB.PRVSLT
 3780 LDA #1
 3790 STA IOB.PRVDRV
 3800 STA IOB.DRIVE
 3810 LDA BT.N
 3820 STA BT.CNT
 3830 LDA #2
 3840 STA IOB.TRACK
 3850 LDA #4
 3860 STA IOB.SECTOR
 3870 LDY BT.BT1+1
 3880 DEY
 3890 STY IOB.BUFFER+1
 3900 LDA #1
 3910 STA IOB.OPCODE
 3920 TXA SLOT*16
 3930 LSR GET SLOT #
 3940 LSR
 3950 LSR
 3960 LSR
 3970 TAX
 3980 LDA #0
 3990 STA $4F8,X
 4000 STA $478,X
 4010 JSR RW.PAGES
 4020 LDX #$FF
 4030 TXS EMPTY STACK
 4040 STX IOB.VOLUME
 4050 JMP $BFC8 PATCH TO SETVID AND CLOBBER
 4060 * THE LANGUAGE CARD, IF IN SLOT 0
 4070 JSR MON.SETKBD
 4080 JMP $9D84 DOS HARD ENTRY
 4090 *---------------------------------
 4100 * WRITE DOS IMAGE ON TRACKS 0-2
 4110 *---------------------------------
 4120 WRITE.DOS.IMAGE
 4130 LDA BT.BT1+1 COMPUTE # OF PAGES
 4140 SEC
 4150 SBC IOB.BUFFER+1
 4160 STA BT.CNT
 4170 LDA BT.BT1+1 START AT END, WORK BACKWARD
 4180 STA IOB.BUFFER+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 375 of 2550

Apple II Computer Info

 4190 DEC IOB.BUFFER+1
 4200 LDA #2 START ON TRACK 2
 4210 STA IOB.TRACK
 4220 LDA #4 SECTOR 4
 4230 STA IOB.SECTOR
 4240 LDA #2
 4250 STA IOB.OPCODE
 4260 JSR RW.PAGES WRITE STAGE2 PART OF DOS
 4270 LDA BT.BT1+1 SET UP BOOT SECTOR IMAGE
 4280 STA BT1.ADDR+1+$B600-$0800
 4290 CLC COMPUTE STARTING ADDRESS OF WRITE
 4300 ADC #9
 4310 STA IOB.BUFFER+1
 4320 LDA #10 WRITE 10 PAGES
 4330 STA BT.CNT
 4340 SEC
 4350 SBC #1
 4360 STA BT1.N+$B600-$0800
 4370 STA IOB.SECTOR
 4380 JSR RW.PAGES WRITE SECTORS 9-0 ON TRACK 0
 4390 RTS
 4400 *---------------------------------
 4410 .HS 000000000000 <NOT USED>
 4420 *---------------------------------
 4430 * READ/WRITE A GROUP OF PAGES
 4440 *
 4450 * BT.CNT # OF SECTORS TO READ/WRITE
 4460 * IOB SET UP FOR FIRST TS TO R/W
 4470 *---------------------------------
 4480 RW.PAGES
 4490 LDA BT.IOB+1 GET IOB ADDRESS
 4500 LDY BT.IOB
 4510 JSR ENTER.RWTS READ/WRITE ONE SECTOR
 4520 LDY IOB.SECTOR IGNORE ERRORS IF ANY
 4530 DEY BACK UP SECTOR #
 4540 BPL .1 STILL IN SAME TRACK
 4550 LDY #15 START WITH SECTOR 15 IN NEXT TRACK
 4560 NOP
 4570 NOP
 4580 DEC IOB.TRACK BACKWARD THROUGH THE TRACKS
 4590 .1 STY IOB.SECTOR
 4600 DEC IOB.BUFFER+1 DOWN ONE PAGE IN MEMORY
 4610 DEC BT.CNT ANY MORE PAGES TO DO?
 4620 BNE RW.PAGES YES
 4630 RTS NO, RETURN
 4640 *---------------------------------
 4650 * ENTER RWTS
 4660 *---------------------------------
 4670 ENTER.RWTS
 4680 PHP SAVE STATUS ON STACK
 4690 SEI DISABLE INTERRUPTS
 4700 JSR RWTS CALL RWTS
 4710 BCS .1 ERROR RETURN
 4720 PLP RESTORE STATUS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 376 of 2550

Apple II Computer Info

 4730 CLC SIGNAL NO RWTS ERROR
 4740 RTS RETURN TO CALLER
 4750 .1 PLP RESTORE STATUS
 4760 SEC SIGNAL RWTS ERROR
 4770 RTS RETURN TO CALLER
 4780 *---------------------------------
 4790 * SET UP RWTS TO WRITE DOS
 4800 *---------------------------------
 4810 SETUP.WRITE.DOS
 4820 LDA FMP.SUBCOD IMAGE ADDRESS
 4830 STA IOB.BUFFER+1
 4840 LDA #0
 4850 STA IOB.BUFFER
 4860 LDA FMW.VOLUME VOLUME #
 4870 EOR #$FF UNCOMPLEMENT IT
 4880 STA IOB.VOLUME
 4890 RTS
 4900 *---------------------------------
 4910 * CLEAR 256 BYTES STARTING AT ($42,43)
 4920 *---------------------------------
 4930 ZERO.CURRENT.BUFFER
 4940 LDA #0
 4950 TAY
 4960 .1 STA ($42),Y
 4970 INY
 4980 BNE .1
 4990 RTS
 5000 *---------------------------------
 5010 * PARAMETERS FOR SECOND STAGE OF BOOT PROCESS
 5020 *---------------------------------
 5030 .BS 1 <NOT USED>
 5040 BT.N .DA #27 # OF PAGES TO R/W (PARAMETER)
 5050 BT.CNT .BS 1 # OF PAGES TO R/W (VARIABLE)
 5060 BT.1S .DA #10 1ST SECTOR # IN THIS STAGE
 5070 .BS 1
 5080 BT.IOB .DA IOB ADDRESS OF IOB
 5090 BT.BT1 .DA BOOT.STAGE1+$B600-$0800 ADDR OF 1ST STAGE BOOT
 5100 *---------------------------------
 5110 * IOB FOR RWTS CALLS
 5120 *---------------------------------
 5130 IOB
 5140 IOB.TYPE .BS 1 0--MUST BE $01
 5150 IOB.SLOT16 .BS 1 1--SLOT # TIMES 16
 5160 IOB.DRIVE .BS 1 2--DRIVE # (1 OR 2)
 5170 IOB.VOLUME .BS 1 3--DESIRED VOL # (0 MATCHES ANY)
 5180 IOB.TRACK .BS 1 4--TRACK # (0 TO 34)
 5190 IOB.SECTOR .BS 1 5--SECTOR # (0 TO 15)
 5200 IOB.PNTDCT .DA DCT 6--ADDRESS OF DCT
 5210 IOB.BUFFER .BS 2 8--ADDRESS OF DATA
 5220 IOB.SECTSZ .BS 2 10--# BYTES IN A SECTOR
 5230 IOB.OPCODE .BS 1 12--0=SEEK, 1=READ, 2=WRITE, OR 4=FORMAT
 5240 IOB.ERROR .BS 1 13--ERROR CODE: 0, 8, 10, 20, 40, 80
 5250 IOB.ACTVOL .BS 1 14--ACTUAL VOLUME # FOUND
 5260 IOB.PRVSLT .BS 1 15--PREVIOUS SLOT #

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 377 of 2550

Apple II Computer Info

 5270 IOB.PRVDRV .BS 1 16--PREVIOUS DRIVE #
 5280 .BS 2
 5290 DCT .HS 0001EFD8
 5300 .BS 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 378 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:DOS3.3:S.Mtr.Xtns.txt
==

 1000 *---------------------------------
 1010 * MONITOR EXTENSIONS
 1020 *---------------------------------
 1030 MON.YSAV .EQ $34
 1040 PC .EQ $3A,3B
 1050 BGN.ADDR .EQ $3C,3D
 1060 END.ADDR .EQ $3E,3F
 1070 WBUF .EQ $200
 1080 MON.PRNTYX .EQ $F940
 1090 MON.NXTA1 .EQ $FCBA
 1100 MON.XAM8 .EQ $FDA3
 1110 MON.COUT .EQ $FDED
 1120 MON.LIST .EQ $FE63
 1130 MON.A1PC .EQ $FE75
 1140 *---------------------------------
 1150 .OR $300
 1160 *---------------------------------
 1170 SETUP LDA #CTRLY
 1180 STA $3F9
 1190 LDA /CTRLY
 1200 STA $3FA
 1210 RTS
 1220 *---------------------------------
 1230 CTRLY CMP #$AD MINUS?
 1240 BEQ SUB
 1250 CMP #$AB PLUS?
 1260 BEQ ADD
 1270 CMP #$BA COLON?
 1280 BEQ RETURN
 1290 LDY MON.YSAV LOOK BEYOND CONTROL-Y
 1300 LDA WBUF,Y
 1310 LDY #0
 1320 CMP #'L+$80
 1330 BNE DUMP
 1340 INC MON.YSAV
 1350 *---------------------------------
 1360 DISASM JSR MON.A1PC
 1370 .1 LDA #1 DISASSEMBLE ONE LINE
 1380 JSR MON.LIST
 1390 CLC
 1400 LDA PC
 1410 SBC END.ADDR
 1420 LDA PC+1
 1430 SBC END.ADDR+1
 1440 BCC .1
 1450 RETURN RTS
 1460 *---------------------------------
 1470 DUMP LDA END.ADDR
 1480 ORA #7 FINISH LAST ROW OF 8

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 379 of 2550

Apple II Computer Info

 1490 STA PC
 1500 LDA END.ADDR+1
 1510 STA PC+1
 1520 LDA BGN.ADDR START WITH FULL ROW OF 8
 1530 AND #$F8
 1540 STA BGN.ADDR
 1550 .1 JSR MON.XAM8
 1560 SEC BACK UP POINTER FOR ROW
 1570 LDA BGN.ADDR
 1580 SBC #8
 1590 STA BGN.ADDR
 1600 BCS .2 NO BORROW
 1610 DEC BGN.ADDR+1
 1620 .2 LDA #$A0 PRINT BLANK
 1630 JSR MON.COUT
 1640 .3 LDY #0
 1650 LDA (BGN.ADDR),Y
 1660 ORA #$80 MAKE NORMAL VIDEO
 1670 CMP #$A0 SEE IF PRINTABLE
 1680 BCS .4 YES
 1690 EOR #$C0 MAKE CONTROLS INTO FLASHING ALPHA
 1700 .4 JSR MON.COUT PRINT IT
 1710 JSR MON.NXTA1 ADVANCE POINTER
 1720 BCC .3 MORE ON THIS ROW
 1730 LDA BGN.ADDR
 1740 CMP PC SEE IF FINISHED WITH DUMP
 1750 LDA BGN.ADDR+1
 1760 SBC PC+1
 1770 BCC .1 NO
 1780 RTS YES
 1790 *---------------------------------
 1800 SUB SEC
 1810 LDA BGN.ADDR
 1820 SBC END.ADDR
 1830 TAX
 1840 LDA BGN.ADDR+1
 1850 SBC END.ADDR+1
 1860 JMP AS1
 1870 *---------------------------------
 1880 ADD CLC
 1890 LDA BGN.ADDR
 1900 ADC END.ADDR
 1910 TAX
 1920 LDA BGN.ADDR+1
 1930 ADC END.ADDR+1
 1940 AS1 TAY
 1950
 1960 LDA #$BD EQUAL SIGN
 1970 JSR MON.COUT
 1980 JMP MON.PRNTYX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 380 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:DOS3.3:S.Prm.B..Savoie.txt
==

 1000 .LIF
 1010 *---------------------------------
 1020 * SIEVE PROGRAM:
 1030 * CALCULATES FIRST 1899 PRIMES IN 1.39 SECONDS!
 1040 *
 1050 * INSPIRED BY JIM GILBREATH, BYTE, 9/81
 1060 *
 1070 * WRITTEN BY WILLIAM ROBERT SAVOIE
 1080 * 4405 DELASHMITT RD. APT 15
 1090 * HIXSON, TENN 37343
 1100 *---------------------------------
 1110 BUFF .EQ $3500 START OF BUFFER (#BUFF=0)
 1120 SIZE .EQ 8189 SIZE OF FLAG ARRAY
 1130 *---------------------------------
 1140 * PAGE-ZERO VARIABLES
 1150 *---------------------------------
 1160 INDEX .EQ $06 PAGE ZERO INDEX (LOCATION FOR I)
 1170 PRIME .EQ $08 PRIME LOCATION
 1180 KVAR .EQ $19 K VARIABLE
 1190 CVAR .EQ $1B COUNT OF PRIME
 1200 ARRAY .EQ $1D ARRAY POINTER
 1210 SAVE .EQ $1F COUNT LOOP
 1220 *---------------------------------
 1230 * ROM ROUTINES
 1240 *---------------------------------
 1250 HOME .EQ $FC58 CLEAR VIDEO
 1260 CR .EQ $FD8E CARRIAGE RETURN
 1270 LINE .EQ $FD9E PRINT "-"
 1280 PRINTN .EQ $F940 PRINT 2 BYTE NUMBER IN HEX
 1290 BELL .EQ $FBE2 SOUND BELL WHEN DONE
 1300 *---------------------------------
 1310 * RUN PROGRAM 100 TIMES FOR ACCURATE TIME MEASUREMENTS!
 1320 *---------------------------------
 1330 START JSR HOME CLEAR SCREEN
 1340 JSR CR CARRIAGE RETURN
 1350 LDA #100 LOOP 100 TIMES
 1360 STA SAVE SET COUNTER
 1370 .01 JSR GO RUN PRIME
 1380 DEC SAVE DECREASE SAVE
 1390 BNE .01 LOOP
 1400 JSR PRINT PRINT COUNT
 1410 JSR BELL READ WATCH!
 1420 RTS
 1430 *---------------------------------
 1440 * RESET VARIABLES
 1450 *---------------------------------
 1460 GO LDY #00 CLEAR INDEX
 1470 STY CVAR CLEAR COUNT VARIABLE
 1480 STY CVAR+1 HI BYTE TOO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 381 of 2550

Apple II Computer Info

 1490 STY INDEX CLEAR INDEX
 1500 STY INDEX+1 HI BYTE TOO
 1510 STY ARRAY LOW BYTE OF ARRAY
 1520 LDA /BUFF GET BUFFER LOCATION
 1530 STA ARRAY+1 SET ARRAY POINTER
 1540 LDA #$01 LOAD WITH ONE
 1550 LDX /SIZE LOAD STOP BYTE
 1560 INX MAKE PAGE LARGER
 1570 *---------------------------------
 1580 * SET EACH ELEMENT IN ARRAY TO ONE
 1590 *---------------------------------
 1600 SET STA (ARRAY),Y SET MEMORY
 1610 DEY NEXT LOCATION
 1620 BNE SET GO 256 TIMES
 1630 INC ARRAY+1 MOVE ARRAY INDEX
 1640 DEX TEST END
 1650 BNE SET GO TELL END
 1660
 1670 * SET ARRAY INDEX AT START OF BUFFER
 1680 LDA #BUFF SET BUFFER LOCATION
 1690 STA ARRAY IN ARRAY POINTER LOW
 1700 LDA /BUFF SET BUFFER LOCATION
 1710 STA ARRAY+1 IN ARRAY POINTER
 1720 JMP FORIN ENTER SIEVE ALGORITHM
 1730
 1740 * SCAN ENTIRE ARRAY AND PROBAGATE LAST PRIME
 1750 FORNXT INC INDEX INCREASE LOW BYTE
 1760 BNE FORIN GO IF < 256
 1770 INC INDEX+1 INCREASE HI BYTE
 1780 FORIN LDA INDEX GET INDEX TO ARRAY
 1790 CLC READY ADD
 1800 STA ARRAY SAVE LOW BYTE
 1810 LDA INDEX+1 GET HI BYTE
 1820 ADC /BUFF ADD BUFFER LOCATION
 1830 STA ARRAY+1 SET POINTER
 1840 LDY #00 CLEAR Y REGISTER
 1850 LDA (ARRAY),Y GET ARRAY VALUE
 1860 BEQ FORNXT GO IF FLAG=0 SINCE NOT PRIME
 1870 * CALCULATE NEXT PRIME NUMBER WITH P=I+I+3
 1880 LDA INDEX MAKE P=I+3
 1890 ADC #03 ADD THREE
 1900 STA PRIME
 1910 LDA INDEX+1
 1920 ADC #00 ADD CARRY
 1930 STA PRIME+1
 1940 * NOW P=I+3
 1950 LDA PRIME
 1960 ADC INDEX MAKE P=P+I
 1970 STA PRIME
 1980 LDA PRIME+1
 1990 ADC INDEX+1 ADD HI BYTE
 2000 STA PRIME+1 SAVE P
 2010
 2020 * NOW CALCULATE K=I+PRIME (CLEAR BEYOND PRIME)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 382 of 2550

Apple II Computer Info

 2030 LDA INDEX ADD I TO P
 2040 ADC PRIME
 2050 STA KVAR SAVE IN K
 2060 LDA INDEX+1
 2070 ADC PRIME+1 ADD HI BYTE TOO
 2080 STA KVAR+1 SAVE K VALUE
 2090
 2100 * SEE IF K > SIZE AND MODIFY ARRAY IF NOT
 2110 .02 LDA KVAR GET K VAR
 2120 SEC SET CARRY FOR SUB
 2130 SBC #SIZE SUBTRACT SIZE
 2140 LDA KVAR+1 GET HI BYTE
 2150 SBC /SIZE SUBTRACT TOO
 2160 BCS .03 GO IF K < SIZE
 2170 * ASSIGN ARRAY(K)=0 SINCE PRIME CAN BE ADDED TO MAKE NUMBER
 2180 * THEREFORE THIS CANNOT BE PRIME! (PROBAGATE THROUGH ARRAY)
 2190 LDA KVAR GET INDEX TO ARRAY
 2200 STA ARRAY SAVE LOW BYTE
 2210 LDA KVAR+1 GET HI BYTE
 2220 ADC /BUFF ADD BUFFER OFFSET
 2230 STA ARRAY+1 SAVE ARRAY INDEX
 2240 LDA #00 CLEAR A
 2250 TAY AND Y REGISTER
 2260 STA (ARRAY),Y CLEAR ARRAY LOCATION
 2270 * CREATE NEW K FROM K=K+PRIME (MOVE THROUGH ARRAY)
 2280 LDA KVAR GET K LOW
 2290 ADC PRIME ADD PRIME
 2300 STA KVAR SAVE K
 2310 LDA KVAR+1 NOW ADD HI BYTES
 2320 ADC PRIME+1
 2330 STA KVAR+1
 2340 JMP .02 LOOP TELL ARRAY DONE
 2350 * NOW COUNT PRIMES FOUND (C=C+1)
 2360 .03
 2370 * --NOTE-- DELETE NEXT LINE TO TIME PROGRAM (JSR PRINTP)
 2380 JSR PRINTP PRINT PRIME
 2390 INC CVAR ADD ONE
 2400 BNE .04 GO IF NO OVERFLOW
 2410 INC CVAR+1 HI BYTE COUNTER
 2420 .04 LDA INDEX GET INDEX
 2430 * TEST TO SEE IF WE HAVE INDEXED THROUGH ENTIRE ARRAY
 2440 SBC #SIZE SUBTRACT SIZE
 2450 LDA INDEX+1 GET HI BYTE TOO
 2460 SBC /SIZE SUBTRACT HI BYTE
 2470 BCC FORNXT CONTINUE?
 2480 RTS
 2490 *---------------------------------
 2500 * PRINT THE NUMBER OF PRIMES FOUND
 2510 *---------------------------------
 2520 PRINT LDY CVAR+1 GET HI BYTE OF COUNT
 2530 LDX CVAR
 2540 JSR PRINTN PRINT PRIMES FOUND
 2550 RTS JOB DONE, RETURN
 2560 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 383 of 2550

Apple II Computer Info

 2570 * PRINT THE PRIME NUMBER (OPTIONAL)
 2580 *---------------------------------
 2590 PRINTP LDY PRIME+1 HI BYTE
 2600 LDX PRIME
 2610 JSR PRINTN
 2620 JSR LINE VIDEO "-" OUT
 2630 SEC
 2640 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 384 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:DOS3.3:S.Prm.Bnch.Fst.txt
==

 1000 *---------------------------------
 1010 * SIEVE PROGRAM:
 1020 * CALCULATES FIRST 1899 PRIMES IN .74 SECONDS!
 1030 *
 1040 * INSPIRED BY JIM GILBREATH
 1050 * (SEE BYTE MAGAZINE, 9/81, PAGES 180-198.)
 1060 * AND BY WILLIAM ROBERT SAVOIE
 1070 * 4405 DELASHMITT RD. APT 15
 1080 * HIXSON, TENN 37343
 1090 *---------------------------------
 1100 ARRAY .EQ $3500 FLAG BYTE ARRAY
 1110 SIZE .EQ 8192 SIZE OF FLAG ARRAY
 1120 *---------------------------------
 1130 * PAGE-ZERO VARIABLES
 1140 *---------------------------------
 1150 A.PNTR .EQ $06,07 POINTER TO FLAG ARRAY FOR OUTER LOOP
 1160 B.PNTR .EQ $08,09 POINTER TO FLAG ARRAY FOR INNER LOOP
 1170 PRIME .EQ $1B,1C LATEST PRIME NUMBER
 1180 COUNT .EQ $1D,1E # OF PRIMES SO FAR
 1190 TIMES .EQ $1F COUNT LOOP
 1200 *---------------------------------
 1210 * APPLE ROM ROUTINES USED
 1220 *---------------------------------
 1230 PRINTN .EQ $F940 PRINT 2 BYTE NUMBER FROM MONITOR
 1240 HOME .EQ $FC58 CLEAR VIDEO
 1250 CR .EQ $FD8E CARRIAGE RETURN
 1260 LINE .EQ $FD9E PRINT "-"
 1270 BELL .EQ $FBE2 SOUND BELL WHEN DONE
 1280 *---------------------------------
 1290 * RUN PROGRAM 100 TIMES FOR ACCURATE TIME MEASUREMENTS!
 1300 *---------------------------------
 1310 START JSR HOME CLEAR SCREEN
 1320 LDA #100 LOOP 100 TIMES
 1330 STA TIMES SET COUNTER
 1340 .1 JSR GENERATE.PRIMES
 1350 LDA $400 TOGGLE SCREEN FOR VISIBLE INDICATOR
 1360 EOR #$80 OF ACTION
 1370 STA $400
 1380 DEC TIMES
 1390 BNE .1 LOOP
 1400 JSR BELL READ WATCH!
 1410 LDY COUNT+1 GET HI BYTE OF COUNT
 1420 LDX COUNT
 1430 JSR PRINTN PRINT PRIMES FOUND
 1440 RTS
 1450 *---------------------------------
 1460 * GENERATE THE PRIMES
 1470 *---------------------------------
 1480 GENERATE.PRIMES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 385 of 2550

Apple II Computer Info

 1490 LDY #0 CLEAR INDEX
 1500 STY COUNT CLEAR COUNT VARIABLE
 1510 STY COUNT+1
 1520 STY A.PNTR SET UP POINTER FOR OUTER LOOP
 1530 LDA /ARRAY
 1540 STA A.PNTR+1
 1550 LDA #1 LOAD WITH ONE
 1560 LDX /SIZE NUMBER OF PAGES TO STORE IN
 1570 *---------------------------------
 1580 * SET EACH ELEMENT IN ARRAY TO ONE
 1590 *---------------------------------
 1600 .1 STA (A.PNTR),Y SET FLAG TO 1
 1610 INY NEXT LOCATION
 1620 BNE .1 GO 256 TIMES
 1630 INC A.PNTR+1 POINT AT NEXT PAGE
 1640 DEX NEXT PAGE
 1650 BNE .1 MORE PAGES
 1660 *---------------------------------
 1670 * SCAN ENTIRE ARRAY, LOOKING FOR A PRIME
 1680 *---------------------------------
 1690 LDA /ARRAY SET A.PNTR TO BEGINNING AGAIN
 1700 STA A.PNTR+1
 1710 .2 LDY #0 CLEAR INDEX
 1720 LDA (A.PNTR),Y LOOK AT NEXT FLAG
 1730 BEQ .6 NOT PRIME, ADVANCE POINTER
 1740 *---------------------------------
 1750 * CALCULATE CURRENT INDEX INTO FLAG ARRAY
 1760 *---------------------------------
 1770 SEC
 1780 LDA A.PNTR+1
 1790 SBC /ARRAY
 1800 TAX SAVE HI-BYTE OF INDEX
 1810 LDA A.PNTR LO-BYTE OF INDEX
 1820 *---------------------------------
 1830 * CALCULATE NEXT PRIME NUMBER WITH P=I+I+3
 1840 *---------------------------------
 1850 ASL DOUBLE THE INDEX
 1860 TAY
 1870 TXA HI-BYTE OF INDEX
 1880 ROL
 1890 TAX
 1900 TYA NOW ADD 3
 1910 ADC #3
 1920 STA PRIME
 1930 BCC .3
 1940 INX
 1950 .3 STX PRIME+1
 1960 *---------------------------------
 1970 * FOLLOWING 4 LINES CHANGE ALGORITHM SLIGHTLY
 1980 * TO SPEED IT UP FROM .93 TO .74 SECONDS
 1990 *---------------------------------
 2000 TXA TEST HIGH BYTE
 2010 BNE .5 PRIME > SQRT(16384)
 2020 CPY #127

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 386 of 2550

Apple II Computer Info

 2030 BCS .5 PRIME > SQRT(16384)
 2040 *---------------------------------
 2050 * NOW CLEAR EVERY P-TH ENTRY AFTER P
 2060 *---------------------------------
 2070 LDY #0
 2080 LDA A.PNTR USE CURRENT OUTER POINTER FOR INNER POINTER
 2090 STA B.PNTR
 2100 LDA A.PNTR+1
 2110 STA B.PNTR+1
 2120 CLC BUMP ARRAY POINTER BY P
 2130 .4 LDA B.PNTR BUMP TO NEXT SLOT
 2140 ADC PRIME
 2150 STA B.PNTR
 2160 LDA B.PNTR+1
 2170 ADC PRIME+1
 2180 STA B.PNTR+1
 2190 CMP /ARRAY+SIZE SEE IF BEYOND END OF ARRAY
 2200 BCS .5 YES, FINISHED CLEARING
 2210 TYA NO, CLEAR ENTRY IN ARRAY
 2220 STA (B.PNTR),Y
 2230 BEQ .4 ...ALWAYS
 2240 *---------------------------------
 2250 * NOW COUNT PRIMES FOUND (C=C+1)
 2260 *---------------------------------
 2270 .5
 2280 * JSR PRINTP PRINT PRIME
 2290 INC COUNT
 2300 BNE .6
 2310 INC COUNT+1
 2320 *---------------------------------
 2330 * ADVANCE OUTER POINTER AND TEST IF FINISHED
 2340 *---------------------------------
 2350 .6 INC A.PNTR
 2360 BNE .7
 2370 INC A.PNTR+1
 2380 .7 LDA A.PNTR+1
 2390 CMP /ARRAY+SIZE
 2400 BCC .2
 2410 RTS
 2420 *---------------------------------
 2430 * OPTIONAL PRINT PRIME SUBROUTINE
 2440 *---------------------------------
 2450 PRINTP LDY PRIME+1 HI BYTE
 2460 LDX PRIME
 2470 JSR PRINTN PRINT DECIMAL VAL
 2480 JSR LINE VIDEO "-" OUT
 2490 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 387 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8110:DOS3.3:S.Prm.Bnch.RBSC.txt
==

 1000 *---------------------------------
 1010 * SIEVE PROGRAM:
 1020 * CALCULATES FIRST 1899 PRIMES IN 1.03 SECONDS!
 1030 *
 1040 * INSPIRED BY JIM GILBREATH
 1050 * SEE BYTE MAGAZINE, 9/81, PAGES 180-198.
 1060 *
 1070 * WRITTEN 9-3-81 BY:
 1080 * WILLIAM ROBERT SAVOIE
 1090 * 4405 DELASHMITT RD. APT 15
 1100 * HIXSON, TENN 37343
 1110 *
 1120 * EXTENSIVELY REVISED BY BOB SANDER-CEDERLOF
 1130 * TO SHAVE TIME FROM 1.39 SECONDS TO 1.03 SECONDS
 1140 *---------------------------------
 1150 * SIEVE PARAMETERS
 1160 *---------------------------------
 1170 BUFF .EQ $3500 START OF BUFFER (#BUFF=0)
 1180 SIZE .EQ 8192 SIZE OF FLAG ARRAY
 1190 *---------------------------------
 1200 * PAGE-ZERO VARIABLES
 1210 *---------------------------------
 1220 INDEX .EQ $06,07 PAGE ZERO INDEX (LOCATION FOR I)
 1230 PRIME .EQ $08,09 PRIME LOCATION
 1240 CVAR .EQ $1B,1C COUNT OF PRIME
 1250 ARRAY .EQ $1D,1E ARRAY POINTER
 1260 TIMES .EQ $1F COUNT LOOP
 1270 *---------------------------------
 1280 * APPLE ROM ROUTINES USED
 1290 *---------------------------------
 1300 PRINTN .EQ $F940 PRINT 2 BYTE NUMBER FROM MONITOR
 1310 HOME .EQ $FC58 CLEAR VIDEO
 1320 CR .EQ $FD8E CARRIAGE RETURN
 1330 LINE .EQ $FD9E PRINT "-"
 1340 BELL .EQ $FBE2 SOUND BELL WHEN DONE
 1350 *---------------------------------
 1360 * RUN PROGRAM 100 TIMES FOR ACCURATE TIME MEASUREMENTS!
 1370 *---------------------------------
 1380 START JSR HOME CLEAR SCREEN
 1390 LDA #100 LOOP 100 TIMES
 1400 STA TIMES SET COUNTER
 1410 .1 JSR GO RUN PRIME
 1420 LDA $400 TOGGLE SCREEN FO VISIBLE INDICATOR
 1430 EOR #$80 OF ACTION
 1440 STA $400
 1450 DEC TIMES
 1460 BNE .1 LOOP
 1470 JSR BELL READ WATCH!
 1480 LDY CVAR+1 GET HI BYTE OF COUNT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 388 of 2550

Apple II Computer Info

 1490 LDX CVAR
 1500 JSR PRINTN PRINT PRIMES FOUND
 1510 RTS
 1520 *---------------------------------
 1530 * RESET VARIABLES
 1540 *---------------------------------
 1550 GO LDY #00 CLEAR INDEX
 1560 STY CVAR CLEAR COUNT VARIABLE
 1570 STY CVAR+1 HI BYTE TOO
 1580 STY INDEX CLEAR INDEX
 1590 STY INDEX+1 HI BYTE TOO
 1600 STY ARRAY LOW BYTE OF ARRAY
 1610 LDA /BUFF GET BUFFER LOCATION
 1620 STA ARRAY+1 SET ARRAY POINTER
 1630 LDA #$01 LOAD WITH ONE
 1640 LDX /SIZE NUMBER OF PAGES TO STORE IN
 1650 *---------------------------------
 1660 * SET EACH ELEMENT IN ARRAY TO ONE,
 1670 *---------------------------------
 1680 SET STA (ARRAY),Y SET MEMORY
 1690 INY NEXT LOCATION
 1700 BNE SET GO 256 TIMES
 1710 INC ARRAY+1 MOVE ARRAY INDEX
 1720 DEX TEST END
 1730 BNE SET GO TELL END
 1740 *---------------------------------
 1750 * SCAN ENTIRE ARRAY, LOOKING FOR A PRIME
 1760 *---------------------------------
 1770 FORIN LDA INDEX GET INDEX TO ARRAY
 1780 CLC READY ADD
 1790 STA ARRAY SAVE LOW BYTE
 1800 LDA INDEX+1 GET HI BYTE
 1810 ADC /BUFF ADD BUFFER LOCATION
 1820 STA ARRAY+1 SET POINTER
 1830 LDY #00 CLEAR Y REGISTER
 1840 LDA (ARRAY),Y GET ARRAY VALUE
 1850 BEQ .4 NOT PRIME, TRY NEXT ONE
 1860 *---------------------------------
 1870 * CALCULATE NEXT PRIME NUMBER WITH P=I+I+3
 1880 *---------------------------------
 1890 LDA INDEX MAKE I+I IN X,Y
 1900 ASL
 1910 TAY
 1920 LDA INDEX+1
 1930 ROL
 1940 TAX
 1950 TYA NOW ADD 3
 1960 ADC #3
 1970 STA PRIME
 1980 BCC .1
 1990 INX
 2000 .1 STX PRIME+1
 2010 *---------------------------------
 2020 * NOW CLEAR EVERY P-TH ENTRY AFTER P

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 389 of 2550

Apple II Computer Info

 2030 *---------------------------------
 2040 LDY #0
 2050 CLC BUMP ARRAY POINTER BY P
 2060 .2 LDA ARRAY
 2070 ADC PRIME
 2080 STA ARRAY
 2090 LDA ARRAY+1
 2100 ADC PRIME+1
 2110 STA ARRAY+1
 2120 CMP /BUFF+SIZE SEE IF BEYOND END OF ARRAY
 2130 BCS .3 YES, FINISHED CLEARING
 2140 TYA NO, CLEAR ENTRY IN ARRAY
 2150 STA (ARRAY),Y
 2160 BEQ .2 ...ALWAYS
 2170 *---------------------------------
 2180 * NOW COUNT PRIMES FOUND (C=C+1)
 2190 *---------------------------------
 2200 .3
 2210 * --NOTE-- DELETE NEXT LINE TO TIME PROGRAM (JSR PRINTP)
 2220 JSR PRINTP PRINT PRIME
 2230 INC CVAR ADD ONE
 2240 BNE .04 GO IF NO OVERFLOW
 2250 INC CVAR+1 HI BYTE COUNTER
 2260 *---------------------------------
 2270 * INCREMENT INDEX AND TEST IF FINISHED
 2280 *---------------------------------
 2290 .4 INC INDEX
 2300 BNE .5
 2310 INC INDEX+1
 2320 .5 LDA INDEX+1
 2330 CMP /SIZE
 2340 BCC FORIN
 2350 RTS
 2360 *---------------------------------
 2370 * OPTIONAL PRINT PRIME SUBROUTINE
 2380 *---------------------------------
 2390 PRINTP LDY PRIME+1 HI BYTE
 2400 LDX PRIME
 2410 JSR PRINTN PRINT DECIMAL VAL
 2420 JSR LINE VIDEO "-" OUT
 2430 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 390 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8111:Articles:AS.ROMsFromAsm.txt
==

Using Applesoft ROM's from Assembly Language

There are many useful entry points in the Applesoft ROM's. The
problem is figuring out how to use them. John Crossley's article
"Applesoft Internal Entry Points" (originally published in Apple
Orchard Volume 1 Number 1 March 1980) gives a brief description of
most of the usable subroutines. If you missed the article, you can
still get it from the International Apple Corps. It has also recently
been reprinted in "Call A.P.P.L.E. in Depth--All About Applesoft".

Now I want to show you how to use the floating point math subroutines.
I won't cover every one of them, but enough to do most of the things
you would ever need to do. This includes load, store, add, subtract,
complement, compare, multiply, divide, print, and formatted-print.

Internal Floating Point Number Format

Applesoft stores floating point numbers in five bytes. The first byte
is the binary exponent; the other four bytes are the mantissa: ee mm
mm mm mm.

The exponent (ee) is a signed number in excess-$80 form. That is, $80
is added to the signed value. An exponent of +3 will be stored as
$83; of -3, as $7D. If ee = $00, the entire number is considered to
be zero, regardless of what the mantissa bytes are.

The mantissa is considered to be a fraction between $.80000000 and
$.FFFFFFFF. Since the value is always normalized, the first bit of
the mantissa is always "1". Therefore, there is no need to actually
use that bit position for a mantissa bit. Instead, the sign of the
number is stored in that position (0 for +, 1 for -). Here are some
examples:

-10.0 84 A0 00 00 00
+10.0 84 20 00 00 00
+1.0 81 00 00 00 00
+1.75 81 60 00 00 00
-1.75 81 E0 00 00 00
+.1 7D 4C CC CC CD

The Applesoft math subroutines use a slightly different format for
faster processing, called "unpacked format". In this format the
leading mantissa bit is explicitly stored, and the sign value is
stored separately. Several groups of page-zero locations are used to
store operands and results. The most frequently used are called "FAC"
and "ARG". FAC occupies locations $9D thru $A2; ARG, $A5 thru $AA.

Loading and Storing Floating Point Values

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 391 of 2550

Apple II Computer Info

There are a handful of subroutines in ROM for moving numbers into and
out of FAC and ARG. Here are the five you need to know about.

AS.MOVFM $EAF9 unpack (Y,A) into FAC
AS.MOVMF $EB2B pack FAC into (Y,X)
AS.MOVFA $EB53 copy ARG into FAC
AS.MOVAF $EB63 copy FAC into ARG
AS.CONUPK $E9E3 unpack (Y,A) into ARG

All of the above subroutines return with the exponent from FAC in the
A-register, and with the Z-status bit set if (A)<0.

Here is an example which loads a value into FAC, and then stores it at
a different location.

LDA #VAR1
LDY /VAR1 ADDRESS IN (Y,A)
JSR AS.MOVFM
LDX #VAR2
LDY /VAR2 ADDRESS IN (Y,X)
JSR AS.MOVMF

Arithmetic Subroutines

Once a number is unpacked in FAC, there are many subroutines which can
operate on it.

AS.NEGOP $EED0 FAC = -FAC

AS.FOUT $ED34 convert FAC to decimal ASCII string
 starting at $0100

AS.FCOMP $EBB2 compare FAC to packed number at (Y,A)
 return (A) = 1 if (Y,A) < FAC
 (A) = 0 if (Y,A) = FAC
 (A) =FF if (Y,A) > FAC

AS.FADD $E7BE load (Y,A) into ARG, and fall into...
AS.FADDT $E7C1 FAC = ARG + FAC

AS.FSUB $E7A7 load (Y,A) into ARG, and fall into...
AS.FSUBT $E7AA FAC = ARG - FAC

AS.FMUL $E97F load (Y,A) into ARG, and fall into...
AS.FMULT $E982 FAC = ARG * FAC

AR.FDIV $EA66 load (Y,A) into ARG, and fall into...
AS.FDIVT $EA69 FAC = ARG / FAC

Here is an example which calculates VAR1 = (VAR2 + VAR3) / (VAR2 -
VAR3).
LDA #VAR2 VAR2+VAR3
LDY /VAR2
JSR AS.MOVFM VAR2 INTO FAC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 392 of 2550

Apple II Computer Info

LDA #VAR3
LDY /VAR3
JSR AS.FADD + VAR3
LDX #VAR1
LDY /VAR1
JSR AS.MOVMF STORE SUM TEMPORARILY IN VAR1
LDA #VAR3 VAR2-VAR3
LDY /VAR3
JSR AS.MOVFM VAR3 INTO FAC
LDA #VAR2
LDY /VAR2
JSR AS.FSUB VAR2-VAR3
LDA #VAR1
LDY /VAR1
JSR AS.FDIV DIVIDE DIFFERENCE BY SUM
LDX #VAR1
LDY /VAR1
JSR AS.MOVMF STORE THE QUOTIENT

As you can see, it is easy to get confused when writing this kind of
code. It is so repetitive, there are so many setups of (Y,A) and
(Y,X) addresses, that I make a lot of typing mistakes. It would be
nice if there was an interface program between my assembly language
coding and the Applesoft ROMs. I would rather write the above program
like this:

JSR FP.LOAD VAR2 INTO FAC
.DA VAR2
JSR FP.SUB -VAR3
.DA VAR3
JSR FP.STORE SAVE AT VAR1
.DA VAR0
JSR FP.LOAD VAR2 INTO FAC
.DA VAR2
JSR FP.ADD +VAR3
.DA VAR3
JSR FP.DIV /(VAR2-VAR3)
.DA VAR1
JSR FP.STORE STORE IN VAR1
.DA VAR1

Easy Interface to Applesoft ROMs

The first step in constructing the "easy interface" is to figure out a
way to get the argument address from the calling sequence. That is,
when I execute:
 JSR FP.LOAD
 .DA VAR1
how does FP.LOAD get the address VAR1?

I wrote a subroutine called GET.ADDR which does the job. Every one of
my FP. subroutines starts by calling GET.ADDR to save the A-, X-, and
Y-registers, and to return with the address which followed the JSR
FP... in the Y- and A-registers. In fact, I return the low-byte of

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 393 of 2550

Apple II Computer Info

the address in both the A- and X-registers. That way the address is
ready in both (Y,A) and (Y,X) form.

GET.ADDR is at lines 4260-4480. I save A, X, and Y in three local
variables, and then pull off the return address from the stack and
save it also. (This is the return to whoever called GET.ADDR). Then
I save the current TXTPTR value. This is the pointer Applesoft uses
when picking up bytes from your program to interpret them. I am going
to borrow the CHRGET subroutine, so I need to save the current TXTPTR
and restore it when I am finished. Then I pull the next address off
the stack and stuff it into TXTPTR. This address is the return
address to whoever called the FP... subroutine. It currently points
to the third byte of that JSR, one byte before the .DA address we want
to pick up.

I next call GET.ADDR2, which uses CHRGET twice to pick up the next two
bytes after the JSR and returns them in X and Y. Then I push the
return address I saved at the beginning of GET.ADDR, and RTS back.
Note that TXTPTR now points at the second byte of the .DA address. It
is just right for picking up another argument, or for returning. If
there is another argument, I get it by calling GET.ADDR2 again. When
I am ready for the final return, I do it by JMPing to FP.EXIT.

FP.EXIT, at lines 4670-4790, pushes the value in TXTPTR on the stack.
It is the correct return address for the JSR FP.... Then I restore
the old value of TXTPTR, along with the A-, X-, and Y-registers. And
the RTS finishes the job.

The Interface Subroutines

I have alluded above to the "FP..." subroutines. In the listing I
have shown eight of them, and you might add a dozen more after you get
the hang of it.

FP.LOAD load a value into FAC
FP.STORE store FAC at address
FP.ADD FAC = FAC + value
FP.SUB FAC = FAC - value
FP.MUL FAC = FAC * value
FP.DIV FAC = FAC / value
FP.PRINT print value the way Applesoft would
FP.PRINT.WD print value with D digits after decimal
 in a W-character field

FP.LOAD, FP.STORE, FP.ADD, and FP.MUL are quite straightforward. All
they do is call GET.ADDR to get the argument address, JSR into the
Applesoft ROM subroutine, and JMP to FP.EXIT.

FP.SUB and FP.DIV are a little more interesting. I didn't like the
way the Applesoft ROM subroutines ordered the operands. It looks to
me like they want me to think in complements and reciprocals.
Remember that AS.FDIV performs FAC = (Y,A) / FAC. It is more natural
for me to think left-to-right, so my FP.DIV permorms FAC = FAC /
value. Likewise for FP.SUB.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 394 of 2550

Apple II Computer Info

I reversed the sense of the subtraction after-the-fact, by just
calling AS.NEGOP to complement the value in FAC. Reversing the
division has to be done before calling AS.FDIV. I saved the argument
address on the stack, called AS.MOVAF to copy FAC into ARG, called
AS.MOVFM to get the argument into FAC, and then called AS.FDIVT.

FP.PRINT, at lines 1830-1930, is also quite simple. I call GET.ADDR
to set up the argument address, and AS.MOVFM to load it into FAC.
Then AS.FOUT converts it to an ASCII string starting at $0100. It
terminates with a $00 byte. A short loop picks up the characters of
this string and prints them by calling AS.COUT. I called AS.COUT,
rather than $FDED in the monitor, so that Applesoft FLASH, INVERSE,
and NORMAL would operate on the characters.

And now for the really interesting one....

Formatted Print Subroutine

FP.PRINT.WD expects three arguments: the address of the value to be
printed, the field width to print it in, and the number of digits to
print after the decimal point. Leading blanks and trailing zeroes
will be printed if necessary. The Applesoft E-format will be caught
and converted to the more civilized form. Fields up to 40 characters
wide may be printed, which will accommodate up to 39 digits and a
decimal point. If you try to print a number that is too wide for the
field, it will try to fit it in by shifting off fractional digits. If
it is still too wide, it will print a field of ">>>>" indicating
overflow.

For example, look at how values 123.4567and 12345.67 would be printed
for corresponding W and D:

 W D 123.4567 12345.67

10 1 bbbbb123.4 bbb12345.6
10 3 bbb123.456 b12345.670
10 5 b123.45670 12345.6700
10 7 123.456700 12345.6700
 7 1 bb123.4 12345.6
 4 1 123. >>>>

Sound pretty useful? I can hardly wait to start using it! Now let's
walk through the code.

Lines 2380-2410 pick up the arguments. The value is loaded into FAC,
and converted to a string at $0100 by AS.FOUT. Then I get the W and D
values into X and Y.

Lines 2420-2510 check W and D. W must not be more than 40; if it is,
use 40. (I arbitrarily chose 40 as the limit. If you want a
different limit, you can use any value less than 128.) I also make
sure that D is less than W. I save W in WD.GT in case I later need to
print a field full of ">". Lines 2520-2560 compute W-D-1, which is

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 395 of 2550

Apple II Computer Info

the number of characters in the field to the left of the decimal
point. I save the result back in W.

Lines 2570-2590 check whether AS.FOUT converted to the Applesoft E-
format or not. The decimal exponent printed after E is still in $9A
as a binary value. Numbers formatted the civilized way are handled by
lines 2600-3160. E-format numbers are restructured by lines 3200-
3930.

Lines 2600-2750 scan the string at $0100 up to the decimal point (or
to the end if no decimal point). In other words, I am counting the
number of characters AS.FOUT put before the decimal point. If W is
bigger than that, the difference is the number of leading blanks I
need to print. Since W is decremented inside the loop, the leading
blank count is all that is left in W. But what if W goes negative,
meaning that the number is too big for the field? Then I reduce D and
try again. If I run out of "D" also, then the field is entirely too
small, so I go to PRINT.GT to indicate overflow. If there was no
decimal point on the end, the code at lines 2790-2820 appends one to
the string.

Lines 2870-2980 scan over the fractional digits. If there are more
than D of them, I store the end-of-string code ($00) after D digits.
I also decrement D inside this loop, so that when the loop is finished
D represents the number of trailing zeroes that I must add to fill out
the field. (If the string runs out before D does, I need to print
trailing zeroes.)

At line 3020, the leading blanks are printed (if any; remember that W
had the leading blank count). Then lines 3060-3110 print the string
at $0100. And finally, line 3150 prints out D trailing zeroes (D
might be zero).

E-formatted numbers are a little tougher; we have to move the decimal
point left or right depending on the exponent. We also might have to
add zeroes before the decimal point, as well as after the fraction.
Lines 3200-3330 scan through the converted string at $0100; the
decimal point (if any) is removed, and an end-of-string byte ($00) is
put where the "E" character is. Now all we have at $0100 is the sign
and a string of significant digits, without decimal point or E-field.

Lines 3350-3600 test the range of the decimal exponent. Negative
exponents are handled at lines 3370-3660, and positive ones at lines
3700-3930.

Negative exponents mean that the decimal point must be printed first,
then possibly some leading zeroes, and then some significant digits.
Lines 3370-3410 compute how many leading zeroes are needed. For
example, the value .00123 would be converted by AS.COUT as "1.23E-03".
The decimal exponent is -3, and we need two leading zeroes. The
number of leading zeroes is -(dec.exp+1).

There is a little coding trick at line 3370. I want to compute
-(dec.exp+1), and dec.exp is negative. By executing the EOR #$FF, the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 396 of 2550

Apple II Computer Info

value is complemented and one is added at the same time! Why?
Because the 6502 uses 2's complement arithmetic. Negative numbers are
in the form 256-value. EOR #$FF is the same as doing 255-value, which
is the same as 256-(value+1). Got it?

Line 3430 prints the leading blanks; lines 3450-3460 print the decimal
point. Lines 3480-3520 print the leading zeroes, decrementing D along
the way. When all the leading zeroes are out, D will indicate how
many significant digits need to be printed.

Lines 3540-3620 print as many significant digits as will fit in the
remaining part of the field (maybe none). Of course, the field might
be large enough that we also need trailing zeroes. If so, line 3650
prints them.

What if the exponent was positive? Then lines 3700-3710 see if the
number will fit in the field. If not, PRINT.GT will fill the field
with ">". If it will fit, then the exponent is the number of digits
to be printed. The number of leading blanks will be W-dec.exp-1 (the
-1 is for the decimal point). Note that line 3740 complements and
adds one at the same time, to get -(exp+1).

Line 3770 prints the leading blanks, if any. Lines 3780-3830 print
the significant digits from the string at $0100. Lines 3840-3890
print any zeroes needed between the significant digits and the decimal
point. Lines 3900-3910 print the decimal point, and line 3920 prints
the trailing zeroes.

Possible Modifications

You might like to add a dozen or so more FP... subroutines, and hand-
compile your favorite Applesoft programs into machine language. You
might want to revise the FP.PRINT.WD subroutine to work from Applesoft
using the & statement, or using a CALL. This would give you a very
effective way of formatting values. You also might want to make it
put the result in an Applesoft string variable, rather than directly
printing it. You might want to add a floating dollar sign capability,
or comma insertion between every three digits. If you implement any
of these, let me know. I would like to print them in future issues of
AAL.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 397 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8111:Articles:Front.Page.txt
==

$1.20

Volume 2 -- Issue 2 November, 1981

In This Issue...

Using Applesoft ROMs from Assembly Language 2
Formatted Print Subroutine 6
Poor Man's Disassembler 14
Loops -- A Beginner's Lesson 19

Apple Assembly Line is published monthly by S-C SOFTWARE, P. O. Box
280300, Dallas, Texas 75228. Phone (214) 324-2050. Subscription rate
is $12 per year in the U.S.A., Canada, and Mexico. Other countries
add $12/year for extra postage. Back issues are available for $1.20
each (other countries add $1 per back issue for postage). All
material herein is copyrighted by S-C SOFTWARE, all rights reserved.
Unless otherwise indicated, all material herein is authored by Bob
Sander-Cederlof. (Apple is a registered trademark of Apple Computer,
Inc.)

Things For Sale

Here is an up-to-date list of some of the things which I have that you
might need: Notice that the prices on books, diskettes, and bags are
below retail.

S-C ASSEMBLER II Version 4.0...........................$55.00
Source code on Disk for above assembler................$95.00
Cross Assembler Patches for 6809 (for 4.0 owners.......$20.00
Cross Assembler for 6800/6801/6802 (for 4.0 owners)....$22.50
Quarterly Disk #1 (source code from Oct 80 - Dec 80)...$15.00
Quarterly Disk #2 (source code from Jan 81 - Mar 81)...$15.00
Quarterly Disk #3 (source code from Apr 81 - Jun 81)...$15.00
Quarterly Disk #4 (source code from Jul 81 - Sep 81)...$15.00
Blank Diskettes (Verbatim, with hub rings, no labels,
 plain white jackets, in cellophane
 wrapper).................20 disks for $50.00
Zip-lock Bags (2-mil, 6"x9")...............100 bags for $8.50
Zip-lock Bags (2-mil, 9"x12").............100 bags for $13.00
Back Issues of "Apple Assembly Line"...............each $1.20
"Beneath Apple DOS", Don Worth & Peter Lechner.........$18.00
"What's Where in the Apple", William Luebbert..........$14.00
"6502 Assembly Language Programming", Lance Leventhal..$16.00

I add shipping charges to orders for books and bags. If you are in
Texas, remember to add 5% sales tax on books, disks, and bags.
Software isn't taxable in Texas.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 398 of 2550

Apple II Computer Info

Advertising Info

If you have a software or hardware product that you want to sell, you
can reach over 500 serious Apple owners by advertising in AAL. A full
page is only $20, and a half page $10. I print 1000 copies, because
many orders for back issues come in.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 399 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8111:Articles:Loops4Begs.txt
==

Loops

When you want to program repetitive code in, you write a FOR-NEXT loop
or an IF loop. For example, you might write:

 10 FOR I = 1 TO 10 or: 10 I=0
 20 ... 20 I=1+1 : IF I > 10 THEN 100
 30 NEXT I 30 ...
 90 GO TO 20
 100

How do you do it in assembly language?

Loop Variable in X or Y

One of the simplest kind of loops holds the loop variable in the Y- or
X-register, and decrements it once each trip.

 LOOP LDY #10 Loop for Y = 10 to 1
 .1 ...
 DEY
 BNE .1

Note that the loop variable is in the Y-reigster, and that it counts
from 10 to 1, backwards. When the DEY opcode changes Y from 1 to 0,
the loop terminates.

If you want the loop to execute one more time, with Y=0, change it to
this:

 LOOP LDY #10 Loop for Y = 10 to 0
 .1 ...
 DEY
 BPL .1

Of course, a loop count of 129 or more would not work with this last
example, because Y would look negative after each DEY until the value
was less than 128.

If you want the loop variable to run up instead of down, like from 0
to 9, you need to add a comparison at the end of loop:

 LOOP LDY #0 Loop for Y = 0 to 9
 .1 ...
 INY
 CPY #10
 BCC .1 Carry clear if Y < 10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 400 of 2550

Apple II Computer Info

All the examples above use the Y-register, but you can do the same
thing with the X-register. In fact, using the X-register, you can
nest one loop inside another:

 LOOPS LDY #0 FOR Y = 0 TO 9
 .1 LDX #10 FOR X = 10 TO 1 STEP 1
 .2 ...
 DEX
 BNE .2 NEXT X
 ...
 INY
 CPY #10 NEXT Y
 BCC .1

Loop Variable on Stack

Sometimes X and Y are needed for other purposes, and so I use the
stack to save my loop variable. Also, the step size can be larger
than 1.

LOOP LDA #0 FOR VAR=5 TO 15 STEP 3
.1 PHA SAVE VAR ON STACK
 ...
 PLA GET VAR FROM STACK
 CLC
 ADC #3 ADD STEP SIZE
 CMP #16
 BCC .1 VAR <= 15

In the Apple Monitor ROM there is a double loop using the stack to
hold one of the variables. It is used just for a delay loop, with the
length of delay depending on the contents of A when you call it. It
is at $FCA8.

WAIT SEC
.1 PHA outer loop
.2 SBC #1 ...inner loop
 BNE .2 ...next
 PLA
 SBC #1
 BNE .1 next
 RTS

The outer loop runs from A down to 1, and the inner loop runs from
whatever the current value of the outer loop variable is down to 1.
The delay time, by the way, is 5*A*A/2 + 27*A/2 + 13 cycles. (A cycle
in the Apple II is a little less than one microsecond.)

16-bit Loop Variables

What if you need to run a loop from $1234 to $2345? That is a little
trickier, but not too hard:

LOOP LDA #$1234 START AT $1234

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 401 of 2550

Apple II Computer Info

 STA VARL
 LDA /$1234
 STA VARH
.1
 INC VARL NEXT: ADD 1
 BNE .2
 INC VARH
.2 LDA VARL
 CMP #$2346 COMPARE TO LIMIT
 LDA VARH
 SBC /$2346
 BCC .1 NOT FINISHED

A good example of this kind of loop is in the monitor ROMs also. The
code for the end of loop incrementing and testing is at $FCB4-$FCC8.
The memory move command ("M") at $FE2C-$FE35 uses this.

Conclusion

There are as many variations on the above themes as there are problems
and programmers. Look around in the ROMs, and in programs published
in AAL and other magazines; try to understand how the loops you find
are working, and adapt them to your own needs.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 402 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8111:Articles:PoorMansDisasm.txt
==

Poor Man's Disassembler.....................James O. Church

I wanted a quick and cheap way to get machine language code into the
S-C Assembler II Version 4.0, via a text file. I didn't need labels
or other automatic features like those $25-$30 Two-Pass Disassemblers
have. Or at least not badly enough to pay the price and wait for
delivery.

There is a fundamental disassembler in the Apple Monitor ROM, which
the "L" command invokes. The problems with it are that it only writes
on the screen (not on a text file), and it is not in the correct
format for the assembler to use. It has too many spaces between the
opcode and operand fields, and there is and address rather than a line
number at the beginning of each line.

I wrote a program in Applesoft that gets the starting address of the
memory you want to disassemble, and then calls on the monitor "L"
command as long as you like. The opcode and operand of each
disassembled line are packed into a string array until you want to
quit. Then you have the option to write the string array on a text
file. The program squeezes out the two extra spaces mentioned above,
and omits the hex address from each line. In place of the address and
blanks which precede the opcode, this program inserts two control-I
characters.

Later, when you use EXEC to get the text file into the S-C Assembler
II, the first control-I will generate a line number, and the second
one will tab over to the opcode column.

To speed it up a little, I wrote a machine language routine to move
the second screen line into the string array. I used the last 15 lines
of the Field Input Routine from the September, 1981, issue of AAL as a
guide. (Thank you, Bob Potts!)

I chose to not use the already overworked "&" way to call my
subroutine. Instead I just used CALL 768, followed by the string
reference. It works just as well, as far as I'm concerned.

Also, rather than BLOADing such a short little program, I included it
as a hexadecimal string inside the Applesoft program. I used an old
technique from B. Lam (Call A.P.P.L.E., many moons ago) for passing
the hex code to the monitor and thence into memory. (It's all in line
50.)

Line 100 sets up my array for 1280 lines. That's enough for about 2K
of code at a time. Plenty. Make it bigger if you like.

Lines 110-120 ask for and process the starting memory address you
want. If you type a negative value, I add 65536 to it to make it

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 403 of 2550

Apple II Computer Info

positive (from 0 thru 65535, rather than -32768 thru 32767). Then I
test the range to make sure you ARE in that range.

Line 130 puts the address where the monitor "L" command wants to find
it.

The CALL -418 on line 140 disassembles 20 lines. Line 150 shuffles
the operand field two spaces left. Then CALL 768A$(X) puts the 11-
byte string starting with the first character of the opcode on the
second screen line, into A$(X). CALL -912 on line 180 scrolls the
screen up one line, so the next line of disassembly is now on the
second screen line. The process repeats until 20 lines have been
processed.

Then you have the choice to continue or not. If not, you have the
option to write A$() on a text file. If you choose to write it on a
file, the file is OPENed, DELETEd, OPENed again, and primed for WRITE.
Why the DELETE and extra OPEN? So that if the file was already there,
it will be replaced with a new one. If a pre-existing file was longer
than my new disassembly, the extra old lines would remain in the file.

You know, once the program is in the string array in text form, you
could go ahead and scan it for particular addresses in the operand
column. Then you could replace them with meaningful symbols. And you
could add meaningful labels on lines that are branched to....

[James Church is a special agent for the Northwestern Mutual Life
Insurance Agency; he lives in Trumbull, CT. Article ghost-written and
program slightly modified by Bob Sander-Cederlof]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 404 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8111:DOS3.3:PoorMans.Dsasm.txt
==

s(ó:¢10:ñ9:∫"POOR MAN'S DISASSEMBLER":ñ9:∫"---------------------- -
":ñ13:∫"JAMES O. CHURCH":ñ14:∫"SPECIAL AGENT" 2HEX$–"300:20 E3 DF A9
0B 20 52 E4 A0 00 91 83 A5 71 C8 91 83 A5 72 C8 91 83 A2 94 A0 04 A9
0B 20 E2 E5 60 N D823G":ÅI–
1¡„(HEX$):π511»I,Ê(Í(HEX$,I,1))»128:Ç:π72,0:å…1441 dÜA$(1280):X–0t

nó:¢10:Ñ"START LOCATION IN DECIMAL: ";L$:L–Â(L$):≠L—0ƒL–L»65536â
x≠L—0ŒLœ65535ƒ110≥ ÇLH–”(LÀ256):LL–L…LH 256:π58,LL:π59,LH√ åJ–

0:ó:å…418‚ ñÅI–0¡6:π1176»I,‚(1178»I):Ç †å768A$(X)
™X–X»1:≠Xœ1280ƒ∫"ARRAY FULL":´210/
¥å…912:J–J»1:≠J—20ƒ150Z
æ∫:∫"CONTINUE? (Y/N) ";:æA$:≠A$–"Y"ƒ140d
»ó:¢10•
“∫"DO YOU WANT TO PUT IT IN A FILE? (Y/N) ";:æA$:≠A$—œ"Y"ƒó:Ä¿
‹∫:Ñ"NAME OF FILE: ";F$ÿ
ÊD$–Á(4):∫D$"OPEN"F$

∫D$"DELETE"F$:∫D$"OPEN"F$:∫D$"WRITE"F$#
˙ÅJ–0¡X…1:∫Á(9);Á(9);A$(J):Ç4
∫D$"CLOSE":Ä

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 405 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8111:DOS3.3:S.FrmtPrint.txt
==

 1000 *---------------------------------
 1010 * TEST
 1020 *---------------------------------
 1030 TEST LDY #10 LOOP 10 TIMES
 1040 JSR FP.LOAD VAR1 = 1.0
 1050 .DA AS.ONE
 1060 JSR FP.STORE
 1070 .DA VAR1
 1080 JSR FP.LOAD VAR2 = 10.0
 1090 .DA AS.TEN
 1100 JSR FP.STORE
 1110 .DA VAR2
 1120 .1 JSR FP.LOAD VAR1=(VAR1+1)/VAR2
 1130 .DA VAR1
 1140 JSR FP.ADD
 1150 JSR AS.ONE
 1160 JSR FP.DIV
 1170 .DA VAR2
 1180 JSR FP.STORE
 1190 .DA VAR1
 1200 JSR FP.LOAD VAR2=VAR2-1
 1210 .DA VAR2
 1220 JSR FP.SUB
 1230 .DA AS.ONE
 1240 JSR FP.STORE
 1250 .DA VAR2
 1260 JSR FP.PRINT.WD
 1270 .DA VAR1,#8,#3
 1280 JSR FP.PRINT.WD
 1290 .DA VAR1,#19,#4
 1300 JSR MON.BLANKS 3 SPACES
 1310 JSR FP.PRINT
 1320 .DA VAR1
 1330 JSR MON.CROUT PRINT CARRIAGE RETURN
 1340 DEY NEXT TRIP AROUND THE LOOP
 1350 BNE .1
 1360 RTS FINISHED
 1370 VAR1 .BS 5 MY VARIABLES
 1380 VAR2 .BS 5
 1390 *---------------------------------
 1400 * ARITHMETIC PACKAGE
 1410 *---------------------------------
 1420 AS.FOUT.E .EQ $9A
 1430 AS.TEMP1 .EQ $93 THRU $97
 1440 AS.TXTPTR .EQ $B8,B9
 1450 *---------------------------------
 1460 AS.CHRGET .EQ $00B1
 1470 AS.COUT .EQ $DB5C
 1480 AS.FSUB .EQ $E7A7 FAC=ARG-FAC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 406 of 2550

Apple II Computer Info

 1490 AS.FADD .EQ $E7BE
 1500 AS.ONE .EQ $E913 CONSTANT 1.0
 1510 AS.FMUL .EQ $E97F
 1520 AS.TEN .EQ $EA50 CONSTANT 10.0
 1530 AS.FDIVT .EQ $EA69 DIVIDE ARG BY FAC
 1540 AS.MOVFM .EQ $EAF9
 1550 AS.MOV1F .EQ $EB21
 1560 AS.MOVMF .EQ $EB2B
 1570 AS.MOVAF .EQ $EB63 MOVE FAC TO ARG
 1580 AS.FOUT .EQ $ED34
 1590 AS.NEGOP .EQ $EED0 FAC = -FAC
 1600 *---------------------------------
 1610 MON.BLANKS .EQ $F948 PRINT 3 BLANKS
 1620 MON.CROUT .EQ $FD8E PRINT CRLF
 1630 *---------------------------------
 1640 * JSR FP.LOAD LOAD VALUE INTO FAC
 1650 * .DA <ADDR OF VALUE>
 1660 *---------------------------------
 1670 FP.LOAD
 1680 JSR GET.ADDR IN Y,X AND Y,A
 1690 JSR AS.MOVFM
 1700 JMP FP.EXIT
 1710 *---------------------------------
 1720 * JSR FP.STORE STORE FAC
 1730 * .DA <ADDR TO STORE IN>
 1740 *---------------------------------
 1750 FP.STORE
 1760 JSR GET.ADDR IN Y,X AND Y,A
 1770 JSR AS.MOVMF
 1780 JMP FP.EXIT
 1790 *---------------------------------
 1800 * JSR FP.PRINT PRINT VALUE IN FREE FORMAT
 1810 * .DA <ADDR OF VALUE TO BE PRINTED>
 1820 *---------------------------------
 1830 FP.PRINT
 1840 JSR GET.ADDR
 1850 JSR AS.MOVFM
 1860 JSR AS.FOUT
 1870 LDY #0
 1880 .1 LDA $100,Y
 1890 BEQ .2
 1900 JSR AS.COUT
 1910 INY
 1920 BNE .1 ...ALWAYS
 1930 .2 JMP FP.EXIT
 1940 *---------------------------------
 1950 * JSR FP.ADD FAC = FAC + VALUE
 1960 * .DA <ADDR OF VALUE>
 1970 *---------------------------------
 1980 FP.ADD JSR GET.ADDR IN Y,X AND Y,A
 1990 JSR AS.FADD FAC=ARG+FAC
 2000 JMP FP.EXIT
 2010 *---------------------------------
 2020 * JSR FP.SUB FAC = FAC - VALUE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 407 of 2550

Apple II Computer Info

 2030 * .DA <ADDR OF VALUE>
 2040 *---------------------------------
 2050 FP.SUB JSR GET.ADDR
 2060 JSR AS.FSUB FAC=ARG-FAC
 2070 JSR AS.NEGOP FAC=-FAC
 2080 JMP FP.EXIT
 2090 *---------------------------------
 2100 * JSR FP.MUL FAC = FAC + VALUE
 2110 * .DA <ADDR OF VALUE>
 2120 *---------------------------------
 2130 FP.MUL JSR GET.ADDR IN Y,X AND Y,A
 2140 JSR AS.FMUL FAC=ARG*FAC
 2150 JMP FP.EXIT
 2160 *---------------------------------
 2170 * JSR FP.DIV FAC = FAC / VALUE
 2180 * .DA <ADDR OF VALUE>
 2190 *---------------------------------
 2200 FP.DIV JSR GET.ADDR
 2210 PHA
 2220 TYA
 2230 PHA
 2240 JSR AS.MOVAF MOVE FAC TO ARG
 2250 PLA
 2260 TAY
 2270 PLA
 2280 JSR AS.MOVFM
 2290 JSR AS.FDIVT
 2300 JMP FP.EXIT
 2310 *---------------------------------
 2320 * JSR FP.PRINT.WD PRINT VALUE WITH W.D FORMAT
 2330 * .DA <ADDR OF VALUE>,#<W>,#<D>
 2340 * D = # OF DIGITS AFTER DECIMAL POINT
 2350 * W = # OF CHARACTERS IN WHOLE FIELD
 2360 *---------------------------------
 2370 FP.PRINT.WD
 2380 JSR GET.ADDR ADDRESS OF VALUE
 2390 JSR AS.MOVFM VALUE INTO FAC
 2400 JSR AS.FOUT CONVERT TO STRING AT $100
 2410 JSR GET.ADDR2 (X)=W, (Y)=D
 2420 CPX #41 LIMIT FIELD WIDTH TO 40 CHARS
 2430 BCC .14
 2440 LDX #40
 2450 .14 STX W # CHARACTERS IN WHOLE FIELD
 2460 STX WD.GT
 2470 CPY W FORCE D<W
 2480 BCC .13
 2490 LDY W
 2500 DEY
 2510 .13 STY D
 2520 DEX COMPUTE W-D-1
 2530 TXA
 2540 SEC
 2550 SBC D
 2560 STA W

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 408 of 2550

Apple II Computer Info

 2570 LDA AS.FOUT.E SEE IF E-FORMAT
 2580 BEQ .12 NO
 2590 JMP E.FORMAT
 2600 .12 LDY #0
 2610 *---------------------------------
 2620 * SCAN TO "." OR END, DECREMENTING W
 2630 *---------------------------------
 2640 .1 LDA $100,Y SCAN TO END OR DECIMAL POINT
 2650 BEQ .2 FOUND END, NO DECIMAL POINT
 2660 CMP #'.
 2670 BEQ .3 FOUND DECIMAL POINT
 2680 INY COUNT STRING LENGTH
 2690 DEC W
 2700 BPL .1 ...UNLESS TOO MANY DIGITS FOR FIELD
 2710 LDA #0
 2720 STA W NEED NO LEADING BLANKS
 2730 DEC D BACK UP D IF POSSIBLE
 2740 BPL .1 TRY AGAIN
 2750 JMP PRINT.GT OVERFLOW
 2760 *---------------------------------
 2770 * APPEND DECIMAL POINT SINCE NONE PRESENT
 2780 *---------------------------------
 2790 .2 LDA #'. PUT DECIMAL POINT BACK ON END
 2800 STA $100,Y
 2810 LDA #0 END OF STRING CHAR
 2820 STA $101,Y
 2830 *---------------------------------
 2840 * SCAN TO END, DECREMENTING D
 2850 * (PUT EOS AFTER D DIGITS)
 2860 *---------------------------------
 2870 .3 INY NEXT CHAR
 2880 LDA D
 2890 BEQ .5 NO FRACTIONAL DIGITS
 2900 .4 LDA $100,Y COUNT FRACTIONAL DIGITS TO END
 2910 BEQ .6 END OF STRING
 2920 INY
 2930 DEC D
 2940 BNE .4 STILL NEED MORE DIGITS
 2950 *---------------------------------
 2960 .5 LDA #0 MAKE EOS
 2970 STA $100,Y
 2980 STA D NEED NO TRAILING ZEROES
 2990 *---------------------------------
 3000 * PRINT LEADING BLANKS AS NEEDED
 3010 *---------------------------------
 3020 .6 JSR LEADING.BLANKS
 3030 *---------------------------------
 3040 * PRINT CONVERTED STRING
 3050 *---------------------------------
 3060 * COMES HERE WITH (Y)=0
 3070 .8 LDA $100,Y
 3080 BEQ .9
 3090 JSR AS.COUT
 3100 INY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 409 of 2550

Apple II Computer Info

 3110 BNE .8 ...ALWAYS
 3120 *---------------------------------
 3130 * PRINT TRAILING ZEROES AS NEEDED
 3140 *---------------------------------
 3150 .9 JSR TRAILING.ZEROES
 3160 JMP FP.EXIT
 3170 *---------------------------------
 3180 * HANDLE NUMBERS WHICH COME IN E-FORMAT
 3190 *---------------------------------
 3200 E.FORMAT
 3210 LDX #0
 3220 LDY #0
 3230 .1 LDA $100,Y SCAN TO "E", CHANGE TO EOS
 3240 CMP #'E
 3250 BEQ .3
 3260 CMP #'. SHUFFLE DIGITS AFTER "."
 3270 BEQ .2 LEFT ONE POSITION
 3280 STA $100,X
 3290 INX
 3300 .2 INY
 3310 BNE .1 ...ALWAYS
 3320 .3 LDA #0 EOS
 3330 STA $100,X
 3340 *---------------------------------
 3350 LDA AS.FOUT.E EXP AGAIN
 3360 BPL .12 EXP>0
 3370 EOR #$FF -(EXP+1) IS # ZEROES
 3380 CMP D SEE IF MORE THAN WE NEED
 3390 BCC .4 NO
 3400 LDA D YES, JUST USE D
 3410 .4 TAX
 3420 *---------------------------------
 3430 JSR LEADING.BLANKS
 3440 *---------------------------------
 3450 LDA #'. DECIMAL POINT
 3460 JSR AS.COUT
 3470 *---------------------------------
 3480 .7 LDA #'0 ZEROES
 3490 JSR AS.COUT
 3500 DEC D REDUCE DIGIT COUNT
 3510 DEX
 3520 BNE .7 MORE ZEROES
 3530 *---------------------------------
 3540 LDY #0
 3550 LDA D HOW MANY DIGITS?
 3560 BEQ .9 NONE
 3570 .8 LDA $100,Y GET A DIGIT
 3580 BEQ .10 OUT OF DIGITS
 3590 JSR AS.COUT
 3600 INY
 3610 DEC D
 3620 BNE .8 MORE
 3630 .9 JMP FP.EXIT
 3640 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 410 of 2550

Apple II Computer Info

 3650 .10 JSR TRAILING.ZEROES
 3660 JMP FP.EXIT
 3670 *---------------------------------
 3680 * E-FORMAT WITH EXP>0
 3690 *---------------------------------
 3700 .12 CMP W SEE IF ENOUGH ROOM
 3710 BCS PRINT.GT FILL FIELD WITH ">"
 3720 TAX
 3730 INX # DIGITS AND TRAILING ZEROES
 3740 EOR #$FF -(EXP+1)
 3750 ADC W COMPUT # LEADING BLANKS
 3760 STA W
 3770 JSR LEADING.BLANKS
 3780 .13 LDA $100,Y PRINT SIGNIFICANT DIGITS
 3790 BEQ .14
 3800 JSR AS.COUT
 3810 DEX
 3820 INY
 3830 BNE .13 ...ALWAYS
 3840 .14 LDA D SAVE TRAILING ZERO CNT
 3850 PHA
 3860 STX D SET UP ZEROES BEFORE "."
 3870 JSR TRAILING.ZEROES
 3880 PLA RESTORE REAL TRAILING ZERO CNT
 3890 STA D
 3900 LDA #'. PRINT DECIMAL POINT
 3910 JSR AS.COUT
 3920 JSR TRAILING.ZEROES
 3930 JMP FP.EXIT
 3940 *---------------------------------
 3950 * PRINT (WD.GT) GREATER THAN SIGNS (">")
 3960 *---------------------------------
 3970 PRINT.GT
 3980 LDA #'> OVERFLOW
 3990 LDY WD.GT
 4000 JSR PRINT.ACHAR.YTIMES
 4010 JMP FP.EXIT
 4020 *---------------------------------
 4030 * OUTPUT (W) LEADING BLANKS
 4040 *---------------------------------
 4050 LEADING.BLANKS
 4060 LDA #$20 BLANK
 4070 LDY W # TO PRINT
 4080 JMP PRINT.ACHAR.YTIMES
 4090 *---------------------------------
 4100 * OUTPUT (D) TRAILING ZEROES
 4110 *---------------------------------
 4120 TRAILING.ZEROES
 4130 LDA #'0
 4140 LDY D
 4150 * FALL INTO PRINT.ACHAR.YTIMES
 4160 *---------------------------------
 4170 * PRINT (Y) REPETITIONS OF (A)
 4180 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 411 of 2550

Apple II Computer Info

 4190 PRINT.ACHAR.YTIMES
 4200 BEQ .2 (Y) IS 0, DON'T PRINT ANY
 4210 .1 JSR AS.COUT
 4220 DEY
 4230 BNE .1
 4240 .2 RTS
 4250 *---------------------------------
 4260 GET.ADDR
 4270 STA SAVE.A SAVE A,X,Y REGISTERS
 4280 STX SAVE.X
 4290 STY SAVE.Y
 4300 PLA SAVE GET.ADDR RETURN ADDRESS
 4310 STA RETLO
 4320 PLA
 4330 STA RETHI
 4340 LDA AS.TXTPTR SAVE APPLESOFT TEXT POINTER
 4350 STA SAVE.T
 4360 LDA AS.TXTPTR+1
 4370 STA SAVE.T+1
 4380 PLA POINT AT BYTES AFTER JSR FP.<WHATEVER>
 4390 STA AS.TXTPTR
 4400 PLA
 4410 STA AS.TXTPTR+1
 4420 JSR GET.ADDR2 GET FIRST TWO BYTES AFTER
 4430 LDA RETHI RETURN
 4440 PHA
 4450 LDA RETLO
 4460 PHA
 4470 TXA ADDR ALSO IN Y,A
 4480 RTS
 4490 *---------------------------------
 4500 GET.ADDR2
 4510 JSR AS.CHRGET GET NEXT BYTE IN CALLING SEQUENCE
 4520 TAX
 4530 JSR AS.CHRGET GET NEXT BYTE IN CALLING SEQUENCE
 4540 TAY
 4550 RTS
 4560 *---------------------------------
 4570 W .BS 1
 4580 D .BS 1
 4590 RETHI .BS 1
 4600 RETLO .BS 1
 4610 SAVE.A .BS 1
 4620 SAVE.X .BS 1
 4630 SAVE.Y .BS 1
 4640 SAVE.T .BS 2 TXTPTR
 4650 WD.GT .BS 1
 4660 *---------------------------------
 4670 FP.EXIT
 4680 LDA AS.TXTPTR+1 GET HIGH BYTE
 4690 PHA
 4700 LDA AS.TXTPTR GET LOW BYTE
 4710 PHA
 4720 LDA SAVE.T

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 412 of 2550

Apple II Computer Info

 4730 STA AS.TXTPTR
 4740 LDA SAVE.T+1
 4750 STA AS.TXTPTR+1
 4760 LDA SAVE.A
 4770 LDX SAVE.X
 4780 LDY SAVE.Y
 4790 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 413 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:AS.GotoFromAsm.txt
==

Applesoft GOTO from Assembly Language.........Bob Sander-Cederlof

Bob Potts called the other day with an interesting question. Suppose
you want to jump to a particular line (by line number) of an Applesoft
program, rather than simply returning from an assembly language
program.

For example, I might call an assembly language subroutine at $300 with
"CALL 768". After it does its job, the subroutine may decide either
to return to the following Applesoft statement by an "RTS"
instruction, or to GOTO a particular line number in the program.
(Perhaps an error processing subroutine in the Applesoft code.) Can
it be done?

Yes, and it is fairly simple. First we need to put the binary value
of the line number into locations $50 and $51. Then we must jump to
$D944 in the Applesoft ROMs to finish the GOTO operation. Here is the
code to jump to line number 1350, for example:

GOTO1350 LDA #1350 LOW BYTE OF "1350"
 STA $50
 LDA /1350 HIGH BYTE OF "1350"
 STA $51
 JMP $D955 APPLESOFT GOTO PROCESSOR

That's all there is to it!

I wrote a tiny little subroutine to demonstrate that this works. It
expects to find the line number in $2FE and $2FF. You can POKE it
there before CALLing 768. Here is my subroutine:

 <code here>

Now here is a test program in Applesoft. Can you tell what it will do
before you try it? The first two lines poke in the GOTO subroutine.
The next five lines call the subroutine for successive values 1000,
2000, 3000 etc. up to 9000. The code in line 10000 jumps back to line
140 to continue the loop. Try it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 414 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:AS.HiRes.Subs.txt
==

Applesoft Hi-Res Subroutines.................Bob Sander-Cederlof

One of the questions I hear the most is "How can I call the Hi-Res
subroutines in the Applesoft ROMs?" The basic information about those
subroutines has been published (in Apple Orchard, Vol. 1 No. 1), but
with an error in the subroutine addresses.

First, some important locations in page zero:

$1A,1B Shape pointer used by DRAW and XDRAW
$1C Last used color byte
$26,27 Address of byte containing X,Y point
$30 Bit mask for bit in that byte
$E0,E1 X-coordinate (0-279)
$E2 Y-coordinate (0-191)
$E4 Color
$E6 Page ($20 if HGR, $40 if HGR2)
$E7 SCALE= value
$E8,E9 Address of beginning of shape table
$EA Collision counter
$F9 ROT= value

The software uses some other page zero variables, but I am not too
clear yet on their purpose.

Now here are the major entry points:

HGR2 $F3D8 Initialize and clear hi-res page 2.

HGR $F3E2 Initialize and clear hi-res page 1.

HCLR $F3F2 Clear the current hi-res screen to black.

BKGND $F3F6 Clear the current hi-res screen to the
 last plotted color (from ($1C).

HPOSN $F411 Positions the hi-res cursor without
 plotting a point.
 Enter with (A) = Y-coordinate, and
 (Y,X) = X-coordinate.

HPLOT $F457 Calls HPOSN and tries to plot a dot at
 the cursor's position. If you are
 trying to plot a non-white color at
 a complementary color position, no
 dot will be plotted.

HLIN $F53A Draws a line from the last plotted
 point or line destination to:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 415 of 2550

Apple II Computer Info

 (X,A) = X-coordinate, and
 (Y) = Y-coordinate.

HFIND $F5CB Converts the hi-res coursor's position
 back to X- and Y-coordinates; stores
 X-coordinate at $E0,E1 and Y-coordinate
 at $E2.

DRAW $F601 Draws a shape. Enter with (Y,X) = the
 address of the shape table, and (A) =
 the rotation factor. Uses the current
 color.

XDRAW $F65D Draws a shape by inverting the existing
 color of the dots the shape draws over.
 Same entry parameters as DRAW.

SETHCOL $F6EC Set the hi-res color to (X), where (X)
 must be between 0 and 7.

I wrote a sample demonstration program of the hi-res subroutines.
First, here is an Applesoft version. Note that it first sets the
whole screen to a particular color, and then draws a series of nested
squares in a complementary color. Since it is nice and short, why
don't you type it in and try it?

 <code here for applesoft version>

Now here is the assembly language program for the same task. It
seemed to run about twice as fast as the Applesoft version, but I
didn't use the stopwatch on it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 416 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:AS.LineEditAID.txt
==

Applesoft Line Editing Aid..................Sandy Mossberg

[Sandy is an M.D. in Port Chester, New York. You have probably seen
his excellent articles and programs in NIBBLE.]

The following program is a developmental tool for line-editing
Applesoft programs. It places the line you specify at the top of the
screen, ready to be cursor edited. The line is displayed without
added blanks at the end of each screen line, which can mess up editing
of PRINT statements. Obviously, adding Konzen-like PLE features would
make it much nicer, but that's a story for another day.

The program loads at the ever-popular $300. If you BRUN it, or BLOAD
and CALL768, it installs itself. To use it, type a slash and a line
number. For example, to edit line 150, type "/150" and a carriage
return. The screen will be cleared and line 150 displayed on the top.
The cursor will be placed over the first character, and you will be
ready to edit it with standard cursor-editing techniques. (If there
is no line 150 in memory, the bell will ring instead.)

Several aspects of the code should be of interest to assembly language
programmers:

(1) As noted in AAL of 9/81, the CHRGET/CHRGOT routine screens for the
command character (a slash). This technique permits concurrent use of
an amper-utility. The KSW hook could be employed as yet another
filter, making a trio of vectors operative.

(2) To allow "illegal" line numbers (64000-65535) to be accessed, the
LINGET routine is replaced by calls to FRMEVL and GETADR (see Lines
1800-1810).

(3) The de-parsing secton (see Lines 2030-2500) is an offspring of
Applesoft's LIST routine, modified to pring a single program line
rather than an entire listing. I also eliminated the code which adds
those extra blanks in the middle of quoted strings which take more
than one screen line to LIST. To me it seems pretty neat!

Since I did not make any test to determine whether or not the program
is RUNning at the time the slash is trapped in my filter, you have to
be careful about using the slash character in REM statements. For
example, "REM /150" will clear the screen and list line 150 at the top
before proceeding. Other combinations of "/" in REM's may blow up.
Also, typing "/" when Applesoft is executing an INPUT statement is now
dangerous. Anyone know how to fix this?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 417 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:ASCII.Mon.Dump.txt
==

Adding ASCII to Apple Monitor Dump....Bob Sander-Cederlof

Peter Bartlett (subscriber in Chicago, IL) sent me some source code
for patches to the Apple Monitor ROM. Of course, patching a ROM may
be a little too much hardware work, but if you have a 16K RAM card you
can put the revised monitor up there. The space needed for the patch
is stolen from the cassette I/O command, so if you install this patch
you will lose cassette I/O.

Peter's patches add the ASCII dump to the Apple Monitor's hex dump.
That is, when I type a command like "800.87F" in the monitor, it will
not only print out the hex values, but also the ASCII values of each
byte. I modified his patches a little, to shorten the code to the
following:

 <code here>

These patches will work with either the old monitor ROM, or the
Autostart ROM. The JSR PATCH line goes right into the hex dump
program, over the top of a JSR COUT that printed a space. That space
is normally printed right before the next byte value is printed in
hex. The address of the next byte is kept in A1L,A1H ($3C,3D). The
Y-register has 0 in it.

The main patch subroutine is stored on top of part of the cassette
tape I/O, at $FC99; it begins with the JSR COUT that was covered up at
$FDB8. Lines 1150,1160 pick up the byte to be displayed and save it
on the stack. Lines 1170-1210 compute the horizontal postition for
poking the byte on the screen. The low-order three bits of the memory
address determine which column will be used, from column 31 through
38. Lines 1220,1230 retrieve the byte from the stack and store it
into the screen buffer. Lines 1240,1250 restore Y=0 and return to the
hex dump subroutine.

Note that this patch does not "print" the ASCII codes on the screen;
it "pokes" them. Therefore if your printer is on, the printed copy
will only contain the hex dump. The ASCII codes will only appear on
the screen.

How do you patch the RAM card version of the monitor? Here's how I
did it:

1) Load the language card using your DOS 3.3 Master Disk, or whatever
technique you like to use.

2) Turn on the language that is in the card (using FP or INT).

3) BSAVE MONITOR,A$F800,L$800.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 418 of 2550

Apple II Computer Info

4) BRUN ASMDISK 4.0

5) BLOAD MONITOR,A$800

6) Enter the source code for the patches and assemble them with the
ASM command. This will patch the monitor copy which you loaded at
A$800 in step 5.

7) Type "$C081 C081" to write enable the language card.

8) Type "$F800<800.FFFM" to move the patched monitor into the real
monitor space.

9) Type "BSAVE <your file name>,A$D000,L$3000" to save the combined
language and monitor for later loading into the language card.

If you really do want to burn a new monitor ROM, follow the
instructions with your ROM Burner.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 419 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:Excel.9.Review.txt
==

EXCEL-9: A 6809 Card with FLEX..............Bob Sander-Cederlof

For the last month and a half I have been working with a fantastic new
device: the EXCEL-9 from Seikou Electronics in Japan. The EXCEL-9
contains a 6809E CPU, 8K bytes of ROM, and an interval timer. The 8K
ROM contains a monitor with 35 commands (including mini-assembler
anddis-assembler commands). The introductory price of $399.95
includes the FLEX Operating System from Technical Systems Consultants
(TSC), with utilities, text editor, and macro assembler.

The board will soon be appearing in your local computer stores,
courtesy of ESD Laboratories. I worked with them to translate the
excellent reference manual into English. (That explains how I
obtained one of the boards so early.)

EXCEL-9 has a lot of unique features that should make it a very
popular board:

* An on-board interval timer (with 24 intervals from 2 microseconds
to 16 seconds) can be used from both the 6809 and 6502.

* Built-in linkage routines for calling 6809 subroutines from
Applesoft, Integer BASIC, or 6502 machine language. You can also call
6502 routines and even DOS 3.3 commands from 6809 programs.

* Option of using standard Apple intelligent interfaces with 6502
firmware, or of using new cards with 6809 firmware.

* Memory Mapping that supports the FLEX operating system. Future
option to add external memory to EXCEL-9, allowing full-speed
multiprocessing.

I intend to handle these boards. You can order them from me now, but
please allow a while for delivery. The documentation is ready for the
printer, but not yet printed.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 420 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:Front.Page.txt
==

$1.20

Volume 2 -- Issue 3 December, 1981

In This Issue...

EXCEL-9: A 6809 Card with FLEX 1
Applesoft Hi-Res Subroutines 2
Hex Constants in Applesoft 6
Applesoft Line Editing Aid 11
Improved Applesoft Fast String Input 16
Adding ASCII to Apple Monitor Dump 20
Applesoft GOTO from Assembly Language 23

Apple Assembly Line is published monthly by S-C SOFTWARE, P. O. Box
280300, Dallas, Texas 75228. Phone (214) 324-2050. Subscription rate
is $12 per year in the U.S.A., Canada, and Mexico. Other countries
add $12/year for extra postage. Back issues are available for $1.20
each (other countries add $1 per back issue for postage). All
material herein is copyrighted by S-C SOFTWARE, all rights reserved.
Unless otherwise indicated, all material herein is authored by Bob
Sander-Cederlof. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 421 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:FstrStringInput.txt
==

Improved Applesoft Fast String Input....Bob Sander-Cederlof

In the April 1981 issue of AAL I printed a subroutine to read a line
from the keyboard or a text file into an Applesoft string. The
original version had a minor flaw (or major, if you happened to run
into it): it left the high-order bit on in each byte, so that
Applesoft could not compare them properly with strings from other
sources. I printed a correction in a later issue, which stripped off
the leading bit from each byte before putting it in the string.

Now Sherm Ostrowsky (from Goleta, California) has pointed out a more
elegant solution. He uses a subroutine inside Applesoft that reads a
line, terminates it with hex 00, and strips off the leading bit from
each byte. The subroutine starts at $D52C. The only thing it doesn't
do that we need is give us the length of the input line. Here is a
commented listing of it.

 <D52E listing here>

Since $D52C stores $80 (null) in the prompt character, you might want
to load the X-register with $87 (bell) and enter at $D52E instead.

Since the subroutine returns with $FF in the X-register, and we need
the length of the input line instead, we can use the following code to
get the line length in X:

 JSR $D52C
.1 INX
 LDA $200,X
 BNE .1

Here is a new version, then, of my fast string input subroutine:

 <subroutine here>

Here is how you might use it from an Applesoft program, to read a
series of lines from a file:

100 D$ = CHR$ (4)
110 PRINT D$"BLOAD B.FAST READ"
120 POKE 1013,76 : POKE 1014,0 : POKE 1015,3
210 PRINT D$"OPEN MY.FILE"
220 PRINT D$"READ MY.FILE"
230 FOR I = 1 TO 10
240 & GET A$(I)
250 NEXT I

Note that the subroutine is fully relocatable. Since there are no
internal JMP's or JSR's, and no internal variables, you can load the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 422 of 2550

Apple II Computer Info

program anywhere it will fit and run it without any modifications.
Just be sure to change line 120 above to POKE the correct address in
1014 and 1015.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 423 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:Hex.Const.AS.txt
==

Hex Constants in Applesoft....................David Bartley

Coding in BASIC has several frustrations for the assembly language
programmer. One small but constant irritant for me has been the
inability to directly specify hexadecimal values in Applesoft
statements or in response to an INPUT command. I finally decided to
do something about it when I read Bob Sander-Cederlof's article on the
CHRGET routine in the September Apple Assembly Line. The result is
the short program shown here.

My goal was to be able to enter a hex constant, defined as a "$"
followed by one or more hex digits, anywhere Applesoft would allow an
integer constant to appear. I nearly succeeded -- I'll discuss the
exceptions a little later. I now can write statements like:

 100 FOR I = $0 TO $FF
 110 INPUT X,Y
 120 Z(I) = $100*X + Y - $3DEF

The responses to the INPUT statement may also be hex constants.
Values may range from -$FFFF (-65535) to $FFFF (65535); the left-most
bit is not considered a sign bit.

My program is set up by BRUN-ning the object file XB.A/S HEX CONSTANTS
(see line 1010). Initialization consists of modifying the Applesoft
CHRGET subroutine to branch into new code starting at line 1400. As
you may recall, CHRGET is used by the BASIC interpreter to fetch
characters and tokens from the program text of keyboard when a program
is executing. The new CHRGET code watches for a "$" character; when
one is found, it scans forward until it hits a character which is not
a hex digit, converting to a binary value (in VAL) on the fly.

Variable IDX serves two purposes. It is normally negative, signifying
that characters are to be fetched without special action until a "$"
is encountered. After a hex constant is found and converted to a
binary value, IDX becomes a positive index into a power-of-ten table
to facilitate converting VAL to a decimal value. Each subsequent call
to CHRGET then returns a successive character of the decimal integer
representation of VAL until IDX becomes -1, the entire value has been
transformed from hex to decimal, and the normal mode is restored.

There are, of course, several complications. One is the BASIC "DEF"
command, which happens to consist of a string of hex digits.
Applesoft therefore parses a constant like "$3DEF" as the ASCII
characters "$" and "3" followed by the DEF token (hex 88). Lines 1760
to 1840 take care of that.

A more serious complication is the existence of a frequently used
alternate entry point to CHRGET callled CHRGOT. CHRGOT is called to

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 424 of 2550

Apple II Computer Info

fetch the previous item from the text rather than the next one. It
seems that numeric constants are parsed from several places within the
Applesoft interpreter, with some using CHRGOT and others not. When I
fixed things up so CHRGOT would work for inline constants and the
INPUT command, it no longer worked for values in DATA statements (or
for hex line numbers, for that matter!)

The trick that makes CHRGOT work (most of the time) is to back up
TXTPTR and then return a leading zero to start off the converted
decimal value. The zero causes no consternation for the parts of the
interpreter that see it and is not missed by those that don't. If
CHRGOT is not called, however, TXTPTR should not be backed up. You
can't win!

I hope others will be able to make use of this routine -- better, that
someone will overcome the problem with DATA statement values. It has
been quite valuable to me as it is, as well as quite an education in
understanding the inner workings of the Applesoft interpreter.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 425 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:Articles:Price.List.txt
==

S-C ASSEMBLER II Version 4.0...................................$55.00
 Includes Manual, Diskette with Assembler and sample
 source programs, and Quick Reference Card.

Source code of Version 4.0 on disk.............................$95.00
 Fully commented, easy to understand and modify to
 your own tastes.

Cross Assembler Patches for 6809...............................$20.00
 Requires possession of Version 4.0. Enables you to
 develop programs for the Motorola 6809 CPU. (The
 MILL from Stellation, EXCEL-9 from ESD Laboratories,
 or the Radio Shack Color Computer.)

Cross Assembler for 6800.......................................$22.50
 Requires possession of Version 4.0. Enables you to
 develop programs for the Motorola 6800, 6801, and
 6802 CPUs.

AAL Quarterly Disks.......................................each $15.00
 Each disk contains all the source code from three
 issues of "Apple Assembly Line", to save you lots
 of typing and testing time.
 QD#1: Oct - Dec 1980 QD#4: Jul - Sep 1981
 QD#2: Jan - Mar 1981 QD#5: Oct - Dec 1981
 QD#3: Apr - Jun 1981

Double Precision Floating Point for Applesoft..................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes subroutines for standard math functions.

Some Simple Integer BASIC Games................................$10.00
 Includes 4x4x4 tic-tac-toe, lo-res space war, lo-res
 jig-saw puzzle, and mastermind.

Blank Diskettes..............................package of 20 for $50.00
 Verbatim Datalife, with hub rings, no labels, in plain
 white jackets, in cellophane wrapper.

Lower-Case Display Encoder ROM.................................$25.00
 Works only Revision level 7 Apples. Replaces the
 encoder ROM. Comes with instructions.

Diskette Mailing Protectors.....................10-99: 40 cents each
 100 or more: 25 cents each
 Corrugated folder specially designed for mailing
 mini-floppy diskettes. Fits in standard 6x9-inch
 envelope. (Envelopes 5-cents each, if you need them.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 426 of 2550

Apple II Computer Info

Zip-Lock Bags (2-mil, 6"x9")............................100 for $8.50
 (2-mil, 9"x12")..........................100 for $13.00

Books, Books, Books......................compare our discount prices!
 "Beneath Apple DOS", Worth & Lechner.............($19.95) $18.00
 "What's Where in the Apple", William Leubert.....($14.95) $14.00
 "6502 Assembly Language Programming", Leventhal..($16.99) $16.00
 "Apple Assembly Language", Don & Kurt Inman......($12.95) $12.00

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 We take Master Charge and VISA ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 427 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:AS.DEMO.HI.RES.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 428 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:S.ASoft.Inline.txt
==

 1000 *---------------------------------
 1010 * APPLESOFT LINE INPUT SUBROUTINE
 1020 *---------------------------------
 1030 .OR $D52C
 1040 .TA $82C
 1050 *---------------------------------
 1060 MON.PROMPT .EQ $33
 1070 MON.RDLINE .EQ $FD6A
 1080 BUFFER .EQ $200
 1090 *---------------------------------
 1100 AS.INLINE
 1110 LDX #$80 NULL CHARACTER
 1120 INLIN2 STX MON.PROMPT FOR THE PROMPT CHARACTER
 1130 JSR MON.RDLINE READ A LINE INTO BUFFER
 1140 CPX #239 TRUNCATE TO 239 CHARACTERS
 1150 BCC .1
 1160 LDX #239
 1170 .1 LDA #0 MARK END OF LINE WITH $00
 1180 STA BUFFER,X
 1190 TXA # REAL CHARS IN LINE
 1200 BEQ .3 EMPTY LINE
 1210 .2 LDA BUFFER-1,X STRIP OFF ALL SIGN BITS
 1220 AND #$7F
 1230 STA BUFFER-1,X
 1240 DEX
 1250 BNE .2
 1260 .3 LDA #0
 1270 LDX #BUFFER-1
 1280 LDY /BUFFER-1
 1290 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 429 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:S.Fast.Read.txt
==

 1000 *---------------------------------
 1010 * FAST STRING INPUT ROUTINE
 1020 * &GET <STRING VARIABLE>
 1030 * ACCEPTS ANY CHARACTER, UNLIKE NORMAL INPUT
 1040 *---------------------------------
 1050 .OR $300
 1060 .TF B.FAST READ
 1070 *---------------------------------
 1080 AS.CHRGET .EQ $00B1
 1090 AS.SYNERR .EQ $DEC9
 1100 AS.INLINE .EQ $D52C
 1110 AS.PTRGET .EQ $DFE3
 1120 AS.GETSPA .EQ $E452
 1130 AS.MOVSTR .EQ $E5E2
 1140 *---------------------------------
 1150 ADDR .EQ $71 AND 72
 1160 PNTR .EQ $83 AND 84
 1170 LENGTH .EQ $9D
 1180 BUFFER .EQ $200
 1190 *---------------------------------
 1200 GET CMP #$BE "GET" TOKEN
 1210 BEQ .1 YES
 1220 JMP AS.SYNERR SORRY...
 1230 .1 JSR AS.CHRGET SET UP THE FOLLOWING CHARACTER
 1240 JSR AS.PTRGET FIND THE STRING VARIABLE POINTER
 1250 JSR AS.INLINE READ A LINE INTO BUFFER
 1260 .2 INX COMPUTE THE LENGTH OF THE LINE
 1270 LDA BUFFER,X
 1280 BNE .2 NOT AT END OF LINE YET
 1290 STX LENGTH SAVE LINE LENGTH
 1300 TXA
 1310 JSR AS.GETSPA GET SPACE IN STRING AREA
 1320 LDY #0 SET UP STRING VARIABLE POINTER
 1330 STA (PNTR),Y LENGTH
 1340 INY
 1350 LDA ADDR
 1360 STA (PNTR),Y ADDRESS (LO-BYTE)
 1370 INY
 1380 LDA ADDR+1
 1390 STA (PNTR),Y ADDRESS (HI-BYTE)
 1400 LDY /BUFFER SET UP TO COPY STRING DATA
 1410 LDX #BUFFER INTO STRING AREA
 1420 LDA LENGTH
 1430 JMP AS.MOVSTR COPY IT NOW, AND RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 430 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:S.GOTO.txt
==

 1000 *---------------------------------
 1010 * GO TO <LINE #>
 1020 * POKE THE LINE # INTO 766,767
 1030 * AND CALL768 TO GO TO IT
 1040 *---------------------------------
 1050 .OR $300
 1060 GOTO LDA $2FE
 1070 STA $50
 1080 LDA $2FF
 1090 STA $51
 1100 JMP $D944

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 431 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:S.HEX.CONSTANTS.txt
==

 1000 .OR $300
 1010 .TF XB.A/S HEX CONSTANTS
 1020 *---------------------------------
 1030 *
 1040 * APPLESOFT HEX CONSTANTS
 1050 *
 1060 * WRITTEN BY DAVID H. BARTLEY
 1070 * AUSTIN, TEXAS -- AUGUST 1981
 1080 *
 1090 * TO INITIALIZE:
 1100 * BRUN THIS PROGRAM (XB.A/S HEX CONSTANTS)
 1110 *
 1120 * TO USE:
 1130 * PRECEDE HEX CONSTANTS
 1140 * WITH A "$" CHARACTER
 1150 *
 1160 *---------------------------------
 1170 BASIC .EQ $E003 SOFT RE-ENTRY
 1180 CHRGET .EQ $00B1 A/S CHRGET RTN
 1190 CHRGOT .EQ $00B7 A/S CHRGOT RTN
 1200 CHRCHK .EQ CHRGOT+3
 1210 TXTPTR .EQ $B8 A/S TEXT PTR
 1220 OVERR .EQ $E8D5 OVERFLOW ERROR
 1230 TEMP .EQ $FC 16-BIT TEMPORARY
 1240 VAL .EQ $FE 16-BIT VALUE
 1250 *---------------------------------
 1260 INIT
 1270 LDA #$4C MODIFY CHRGET
 1280 STA CHRGET TO CALL HERE
 1290 LDA #NEW.CHRGET
 1300 STA CHRGET+1
 1310 LDA /NEW.CHRGET
 1320 STA CHRGET+2
 1330 JMP BASIC RETURN TO A/S
 1340 NEXTCH
 1350 INC TXTPTR DUPLICATE THE
 1360 BNE .10 OLD CHRGET
 1370 INC TXTPTR+1
 1380 .10 JMP CHRGOT
 1390 *---------------------------------
 1400 NEW.CHRGET
 1410 BIT IDX NORMAL MODE?
 1420 BPL .60 -NO
 1430 *
 1440 * CHECK FOR "$" AS NEXT CHARACTER
 1450 *
 1460 JSR NEXTCH GET CHAR
 1470 CMP #$24 "$"?
 1480 BNE .50 -NO, RETURN IT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 432 of 2550

Apple II Computer Info

 1490 .10
 1500 * PARSE A HEX NUMBER AND CONVERT
 1510 * IT TO A BINARY VALUE
 1520 *
 1530 LDA #0
 1540 STA VAL VAL = 0
 1550 STA VAL+1
 1560 LDA #4 INDEX TO POWER
 1570 STA IDX
 1580 .20
 1590 JSR NEXTCH GET HEX DIGIT
 1600 BEQ .40 -EOL OR ":"
 1610 SEC
 1620 SBC #$30 CHECK FOR DIGIT
 1630 BMI .35 -NOT A DIGIT
 1640 CMP #10
 1650 BCC .30 -OK (0-9)
 1660 SBC #17
 1670 BMI .40 -NOT A DIGIT
 1680 CMP #6
 1690 BCS .40 -NOT A DIGIT
 1700 ADC #10
 1710 .30 JSR ASL4 MULT VAL BY 16
 1720 ORA VAL ADD NEW DIGIT
 1730 STA VAL
 1740 JMP .20
 1750 .35
 1760 CMP #$88 "DEF" TOKEN?
 1770 BNE .40 -NO
 1780 JSR ASL4 -YES
 1790 LDA VAL
 1800 ORA #$0D ASL BY 12 AND
 1810 STA VAL+1 ADD $0DEF
 1820 LDA #$EF
 1830 STA VAL
 1840 BNE .20 (ALWAYS)
 1850 .40
 1860 LDA TXTPTR BACK UP THE
 1870 BNE .41
 1880 DEC TXTPTR+1
 1890 .41 DEC TXTPTR
 1900 LDA TXTPTR SAVE TXTPTR
 1910 STA TEMP IN CASE IS IS
 1920 LDA TXTPTR+1 DECREMENTED
 1930 STA TEMP+1 BY THE CALLER
 1940 *
 1950 LDA #$30 ASCII "0"
 1960 .50 JMP CHRCHK -EXIT
 1970 .60
 1980 * CONVERT BINARY VALUE TO DECIMAL
 1990 * AND RETURN THE NEXT ASCII DIGIT
 2000 *
 2010 LDA TEMP FIX ANY ATTEMPT
 2020 STA TXTPTR TO DECREMENT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 433 of 2550

Apple II Computer Info

 2030 LDA TEMP+1 TXTPTR
 2040 STA TXTPTR+1
 2050 STX SAVE.X
 2060 LDX IDX POWER OF TEN
 2070 DEC IDX
 2080 LDA #$30 ASCII "0"
 2090 .70
 2100 PHA ASCII DIGIT
 2110 LDA VAL
 2120 CMP LO.TENS,X SET CARRY
 2130 LDA VAL+1
 2140 SBC HI.TENS,X
 2150 BCC .80 -EXIT LOOP
 2160 STA VAL+1
 2170 LDA VAL
 2180 SBC LO.TENS,X
 2190 STA VAL
 2200 PLA ASCII DIGIT
 2210 CLC
 2220 ADC #1 INCREMENT IT
 2230 BNE .70 -LOOP
 2240 .80
 2250 PLA ASCII DIGIT
 2260 LDX SAVE.X
 2270 .90
 2280 JMP CHRCHK PROCESS IT
 2290 *---------------------------------
 2300 ASL4 JSR ASL2 ASL VAL BY 4
 2310 ASL2 JSR ASL1 ASL VAL BY 2
 2320 ASL1 ASL VAL ASL VAL BY 1
 2330 ROL VAL+1
 2340 BCS OVFLOW -OVERFLOW ERROR
 2350 RTS -EXIT
 2360 OVFLOW
 2370 JMP OVERR REPORT OVERFLOW
 2380 *---------------------------------
 2390 LO.TENS .DA #1
 2400 .DA #10
 2410 .DA #100
 2420 .DA #1000
 2430 .DA #10000
 2440 HI.TENS .DA /1
 2450 .DA /10
 2460 .DA /100
 2470 .DA /1000
 2480 .DA /10000
 2490 IDX .DA #$FF TABLE INDEX
 2500 SAVE.X .DA #0 SAVE X-REG
 2510 *---------------------------------
 2520 ZZZZZZ .EN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 434 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:S.HI.RES.DEMO.txt
==

 1000 *---------------------------------
 1010 * SAMPLE PLOTTING PROGRAM
 1020 *---------------------------------
 1030 AS.LASTCLR .EQ $1C
 1040 *---------------------------------
 1050 AS.HGR2 .EQ $F3D8 SET UP HI-RES PAGE 2
 1060 AS.HCLR .EQ $F3F2 CLEAR HI-RES SCREEN
 1070 AS.BKGND .EQ $F3F6 CLEAR HI-RES SCREEN TO LAST COLOR
 1080 AS.HPOSN .EQ $F411 MOVE CURSOR TO (Y,X),(A)
 1090 AS.HPLOT .EQ $F457 PLOT A DOT AT (Y,X),(A)
 1100 AS.HLIN .EQ $F53A DRAW A LINE FROM LAST POINT TO (X,A),(Y)
 1110 AS.SETHCOL .EQ $F6EC SET HI-RES COLOR
 1120 MON.TEXT .EQ $FB2F
 1130 *---------------------------------
 1140 HI.RES.DEMO
 1150 JSR AS.HGR2
 1160 LDX #0 FOR COLOR = 0 TO 7
 1170 .1 STX COLOR
 1180 JSR AS.SETHCOL
 1190 STA AS.LASTCLR
 1200 JSR AS.BKGND CLEAR SCREEN TO SOLID COLOR
 1210 LDA COLOR
 1220 EOR #7 COMPLEMENTARY COLOR
 1230 TAX
 1240 JSR AS.SETHCOL
 1250 JSR DRAW.SQUARE
 1260 LDX COLOR NEXT COLOR
 1270 INX
 1280 CPX #8
 1290 BCC .1
 1300 JSR MON.TEXT
 1310 RTS
 1320 *---------------------------------
 1330 DRAW.SQUARE
 1340 LDA #10 FOR SIZE=10 TO 190 STEP 10
 1350 .1 STA SIZE
 1360 LSR SIZE/2
 1370 STA SIZE2
 1380 LDA #0
 1390 STA XSTART+1
 1400 STA XSTOP+1
 1410 SEC XSTART=140-SIZE/2
 1420 LDA #140
 1430 SBC SIZE2
 1440 STA XSTART
 1450 CLC XSTOP=XSTART+SIZE
 1460 ADC SIZE
 1470 STA XSTOP
 1480 SEC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 435 of 2550

Apple II Computer Info

 1490 LDA #95 YSTART=95-SIZE/2
 1500 SBC SIZE2
 1510 STA YSTART
 1520 CLC YSTOP=YSTART+SIZE
 1530 ADC SIZE
 1540 STA YSTOP
 1550 LDY XSTART+1 HPLOT XSTART,YSTART
 1560 LDX XSTART
 1570 LDA YSTART
 1580 JSR AS.HPLOT
 1590 LDX XSTOP+1 TO XSTOP,YSTART
 1600 LDA XSTOP
 1610 LDY YSTART
 1620 JSR AS.HLIN
 1630 LDX XSTOP+1 TO XSTOP,YSTOP
 1640 LDA XSTOP
 1650 LDY YSTOP
 1660 JSR AS.HLIN
 1670 LDX XSTART+1 TO XSTART,YSTOP
 1680 LDA XSTART
 1690 LDY YSTOP
 1700 JSR AS.HLIN
 1710 LDX XSTART+1 TO XSTART,YSTART
 1720 LDA XSTART
 1730 LDY YSTART
 1740 JSR AS.HLIN
 1750 CLC
 1760 LDA SIZE NEXT SIZE
 1770 ADC #10
 1780 CMP #191
 1790 BCC .1
 1800 DELAY.LOOP
 1810 LDY #0 DELAY LOOP SO WE CAN SEE IT
 1820 .1 LDX #0
 1830 .2 DEX
 1840 BNE .2
 1850 LDA $C030 AND HEAR IT
 1860 DEY
 1870 BNE .1
 1880 RTS
 1890 *---------------------------------
 1900 COLOR .BS 1
 1910 SIZE .BS 1
 1920 SIZE2 .BS 1
 1930 XSTART .BS 2
 1940 YSTART .BS 1
 1950 XSTOP .BS 2
 1960 YSTOP .BS 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 436 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:S.INTEGER.INPUT.txt
==

 1000 *---------------------------------
 1010 * PROGRAM TO INPUT AN INTEGER FROM
 1020 * 0-65535, AND PUT IT IN $50,51
 1030 *
 1040 * BY PETER MEYER, 10/24/81
 1050 * MAY BE FREELY USED WITH ACKNOWLEDGEMENT
 1060 *---------------------------------
 1070 * CALL: JSR GET.INTEGER.INTO.LINNUM
 1080 * RETURN: INTEGER VALUE IN LINNUM ($50,51)
 1090 * AND CARRY CLEAR,
 1100 * OR CARRY SET IF VALUE NEGATIVE
 1110 * OR TOO LARGE, OR HAS A
 1120 * LETTER IN IT.
 1130 *---------------------------------
 1140 LINNUM .EQ $50,51
 1150 FACEXP .EQ $9D
 1160 FACMO .EQ $A0
 1170 FACLO .EQ $A1
 1180 FACSGN .EQ $A2
 1190 TXTPTR .EQ $B8,B9
 1200 BUFFER .EQ $200
 1210 *---------------------------------
 1220 CHRGOT .EQ $B7
 1230 GDBUFS .EQ $D539
 1240 QINT .EQ $EBF2
 1250 FIN .EQ $EC4A
 1260 NXTCHR .EQ $FD75
 1270 *---------------------------------
 1280 .OR $300 (BUT MAY BE LOADED ANYWHERE)
 1290 *---------------------------------
 1300 GET.INTEGER.INTO.LINNUM
 1310 LDX #0
 1320 JSR NXTCHR
 1330 TXA CHECK FOR NULL ENTRY
 1340 BEQ .2 NULL
 1350 *---------------------------------
 1360 * CHECK FOR ALPHA INPUT
 1370 * AND ALSO WEED OUT ENTRIES SUCH AS
 1380 * "1E99" AND "99999...." WHICH WOULD
 1390 * CAUSE OVERFLOW.
 1400 *---------------------------------
 1410 PHA SAVE LENGTH
 1420 JSR GDBUFS
 1430 PLA RETRIEVE LENGTH
 1440 CMP #36
 1450 BCS .2
 1460 TAX
 1470 DEX
 1480 .1 LDA BUFFER,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 437 of 2550

Apple II Computer Info

 1490 CMP #'A
 1500 BCS .2
 1510 DEX
 1520 BPL .1
 1530 * GET NUMBER INTO FAC
 1540 LDA #BUFFER
 1550 LDY /BUFFER
 1560 STA TXTPTR
 1570 STY TXTPTR+1
 1580 JSR CHRGOT
 1590 JSR FIN
 1595 .PG
 1600 *---------------------------------
 1610 * CHECK IF NUMBER IS NEGATIVE
 1620 *---------------------------------
 1630 LDA FACSGN
 1640 BPL .3
 1650 .2 SEC NUMBER IS TOO LARGE, NEGATIVE
 1660 RTS OR HAS A LETTER IN IT.
 1670 *---------------------------------
 1680 * CHECK IF NUMBER IS TOO LARGE
 1690 *---------------------------------
 1700 .3 LDA FACEXP
 1710 CMP #$91
 1720 BCS .4 TOO LARGE
 1730 *---------------------------------
 1740 * PLACE IN LINNUM
 1750 *---------------------------------
 1760 JSR QINT CONVERT TO INTEGER
 1770 LDA FACLO
 1780 LDY FACMO
 1790 STA LINNUM
 1800 STY LINNUM+1
 1810 CLC SIGNAL GOOD VALUE
 1820 .4 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 438 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:S.Mossberg.LE.txt
==

 1000 *---------------------------------
 1010 * LINE.EDIT
 1020 *
 1030 * BY SANDY MOSSBERG
 1040 *
 1050 * COMMERCIAL RIGHTS RESERVED
 1060 *
 1070 *---------------------------------
 1080 * 1.PACKS PROGRAM LINE FOR EASY EDITING.
 1090 *
 1100 * 2.USES CHRGET/CHRGOT FILTER ROUTINE NOTED IN AAL 9/81.
 1110 *
 1120 * 3.CHARACTER OUTPUT ROUTINE MODIFIED FROM APSOFT ROM
 1130 * CODE (LIST, $D6A5-$D765).
 1140 *
 1150 * 4.INSTALLATION AND USE:
 1160 * (A) BRUN LINE.EDIT.
 1170 * (B) COMMAND "/LINENUMBER" PRODUCES PACKED LINE AT
 1180 * TOP OF SCREEN.
 1190 * (C) IF CHRGET/CHRGOT VECTOR DESTROYED BY APSOFT
 1200 * COLDSTART (]FP, *E000G, *CTL-B), RESET LINE.EDIT
 1210 * VECTOR BY CALL 768.
 1220 *---------------------------------
 1230 .OR $300
 1240 *---------------------------------
 1250 * APPLESOFT POINTERS
 1260 *---------------------------------
 1270 AS.FORPNT .EQ $85 ;HOLD Y-REGISTER
 1280 AS.LOWTR .EQ $9B,$9C ;LOCATION OF CHARACTER OR TOKEN IN PGM
 1290 AS.DSCTMP .EQ $9D,$9E ;LOCATION IN KEYWORD TABLE
 1300 *---------------------------------
 1310 * APPLESOFT CHRGET/CHRGOT
 1320 *---------------------------------
 1330 AS.CHRGET .EQ $B1 ;GETS CHARACTER AT TEXT POINTER
 1340 AS.TXTPTR .EQ $B8,$B9 ;TEXT POINTER
 1350 AS.CHREXT .EQ $BA ;CHRGET/CHRGOT VECTOR TO LINE.EDIT
 1360 AS.CHRENT .EQ $BE ;RE-ENTRY TO CHRGET/CHRGOT
 1370 *---------------------------------
 1380 * APPLESOFT ROM
 1390 *---------------------------------
 1400 AS.FNDLIN .EQ $D61A ;ADDR NMBR IN LINNUM ($50,$51) TO LOWTR
 1410 AS.CRDO .EQ $DAFB ;LINEFEED
 1420 AS.OUTSP .EQ $DB57 ;OUTPUT SPACE
 1430 AS.OUTDO .EQ $DB5C ;OUTPUT CHARACTER
 1440 AS.FRMEVL .EQ $DD7B ;FORMULA AT TEXT POINTER TO FAC ($9D-
$A2)
 1450 AS.GETADR .EQ $E752 ;FAC TO INTEGER IN LINNUM ($50,$51)
 1460 AS.LINPRT .EQ $ED24 ;PRINT DECIMAL OF (A,X)
 1470 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 439 of 2550

Apple II Computer Info

 1480 * MONITOR ROM
 1490 *---------------------------------
 1500 MON.TABV .EQ $FB5B ;VTAB TO VALUE IN (A)
 1510 MON.HOME .EQ $FC58 ;HOME CURSOR, CLEAR SCREEN
 1520 MON.BELL .EQ $FF3A ;BEEP!
 1530 .PG
 1540 *---------------------------------
 1550 * PUT LINE.EDIT VECTOR INTO CHRGET/CHRGOT
 1560 *---------------------------------
 1570 START LDA #$4C ;JMP 'LINE.EDIT'
 1580 STA AS.CHREXT
 1590 LDA #EDIT
 1600 STA AS.CHREXT+1
 1610 LDA /EDIT
 1620 STA AS.CHREXT+2
 1630 RTS1 RTS
 1640 *---------------------------------
 1650 * CHECK FOR VALID COMMAND
 1660 *---------------------------------
 1670 EDIT CMP #$2F ;IS IT A SLASH (/)?
 1680 BNE .1 ;NO. RETURN
 1690 INC AS.TXTPTR ;YES. BUMP TEXT POINTER
 1700 BNE .2 ;BRANCH ALWAYS
 1710 *---------------------------------
 1720 * RETURN TO CHRGET/CHRGOT OR CALLER
 1730 *---------------------------------
 1740 .1 CMP #$3A ;IF COLON (EOS), SET Z AND C
 1750 BCS RTS1 ; FLAGS AND RETURN TO CALLER
 1760 JMP AS.CHRENT ;IF NOT EOS, RE-ENTER CHRGET/CHRGOT
 1770 *---------------------------------
 1780 * FIND LOCATION OF LINE NUMBER
 1790 *---------------------------------
 1800 .2 JSR AS.FRMEVL ;PUT LINE NUMBER INTO FAC ($9D-$A2)
 1810 JSR AS.GETADR ;PUT FAC INTO LINNUM ($50,$51)
 1820 JSR AS.FNDLIN ;PUT ADDR OF LINE INTO LOWTR
 1830 BCC .5 ;CARRY CLEAR IF LINE NMBR NOT FOUND
 1840 *---------------------------------
 1850 * CLEAR SCREEN AND SET TO ROW 2, COLUMN 2
 1860 *---------------------------------
 1870 JSR MON.HOME
 1880 JSR AS.CRDO
 1890 JSR AS.OUTSP
 1900 *---------------------------------
 1910 * PRINT LINE NUMBER
 1920 *---------------------------------
 1930 LDY #02 ;SET INDEX TO LINE NUMBER BYTES
 1940 LDA (AS.LOWTR),Y ;PUT LINE NUMBER LO
 1950 TAX ; INTO (X)
 1960 INY
 1970 LDA (AS.LOWTR),Y ;PUT LINE NUMBER HI INTO (A)
 1980 STY AS.FORPNT ;HOLD (Y)
 1990 JSR AS.LINPRT ;PRINT DECIMAL OF (A,X)
 2000 *---------------------------------
 2010 * GET CHARACTER OR TOKEN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 440 of 2550

Apple II Computer Info

 2020 *---------------------------------
 2030 LDA #$20 ;SPACE
 2040 .3 LDY AS.FORPNT ;RESTORE (Y)
 2050 .4 JSR AS.OUTDO ;PRINT CHARACTER IN (A)
 2060 INY
 2070 LDA (AS.LOWTR),Y ;GET CHARACTER OR TOKEN
 2080 BNE .8 ;IF NOT EOS (0), GET MORE
 2090 .PG
 2100 *---------------------------------
 2110 * TWO ENDINGS -- ONE HAPPY, ONE SAD
 2120 *---------------------------------
 2130 LDA #00 ;LINE WAS FOUND. END WITH
 2140 JMP MON.TABV ; CURSOR AT ROW 2, COLUMN 2
 2150 .5 JSR MON.BELL ;LINE WAS NOT FOUND. END WITH
 2160 JMP AS.CRDO ; CURSOR BELOW COMMAND INPUT
 2170 *---------------------------------
 2180 * GET CHARACTER IN KEYWORD TABLE
 2190 *---------------------------------
 2200 .6 INY
 2210 BNE .7
 2220 INC AS.DSCTMP+1
 2230 .7 LDA (AS.DSCTMP),Y
 2240 RTS
 2250 *---------------------------------
 2260 * PRINT CHARACTER OR KEYWORD
 2270 *---------------------------------
 2280 .8 BPL .4 ;NON-TOKEN IS POS ASCII
 2290 SEC ;TOKEN MINUS $7F EQUALS INDEX TO
 2300 SBC #$7F ; LOCATION OF KEYWORD IN TABLE
 2310 TAX ;PUT INDEX IN (X)
 2320 STY AS.FORPNT ;HOLD (Y)
 2330 LDY #$D0 ;KEYWORD TABLE STARTS AT $D0D0
 2340 STY AS.DSCTMP
 2350 LDY #$CF
 2360 STY AS.DSCTMP+1
 2370 LDY #$FF ;WHEN BUMPED, (Y) WILL BE ZERO
 2380 .9 DEX ;DEC INDEX TO KEYWORD LOCATION
 2390 BEQ .11 ;WHEN (X) IS ZERO, KEYWORD LOCATED
 2400 .10 JSR .6 ;GET CHARACTER IN KEYWORD TABLE
 2410 BPL .10 ;IF POS ASCII, GET ANOTHER
 2420 BMI .9 ;IF NEG ASCII, DEC LOCATION INDEX
 2430 .11 JSR AS.OUTSP ;PRINT SPACE
 2440 .12 JSR .6 ;GET CHARACTER IN KEYWORD TABLE
 2450 BMI .13 ;IT'S THE FINAL CHAR IN KEYWORD
 2460 JSR AS.OUTDO ;PRINT NON-FINAL CHAR (POS ASCII)
 2470 BNE .12 ;BRANCH ALWAYS
 2480 .13 JSR AS.OUTDO ;PRINT FINAL CHAR (NEG ASCII)
 2490 LDA #$20 ;SPACE
 2500 BNE .3 ;BRANCH ALWAYS
 2510 *---------------------------------
 2520 SIZE .EQ *-START
 2530 .PG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 441 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:S.PMD.Subr.txt
==

 1000 *---------------------------------
 1010 * BUILD STRING FROM SECOND LINE ON SCREEN
 1020 *---------------------------------
 1030 .OR $300
 1040 *---------------------------------
 1050 PTRGET .EQ $DFE3 PUTS STRING POINTER ADDRESS IN $83,84
 1060 GETSPA .EQ $E452 PUTS ADDRESS OF STRING SPACE IN $71,72
 1070 MOVSTR .EQ $E5E2 MOVES DATA FROM (Y,X) TO STRING SPACE
 1080 *---------------------------------
 1090 SPCPTR .EQ $71,72 PNTR TO STRING SPACE RESERVED BY GETSPA
 1100 STRPTR .EQ $83,84 PNTR TO STRING VARIABLE PTRGET GOT
 1110 *---------------------------------
 1120 * TO USE:
 1130 * CALL 768A$(X)
 1140 *---------------------------------
 1150 GO JSR PTRGET GET ADDRESS OF STRING INTO $83,84
 1160 LDA #11 MOVE 11 BYTES
 1170 JSR GETSPA GET SPACE FOR 11-BYTE STRING
 1180 LDY #0
 1190 STA (STRPTR),Y PUT LENGTH IN STRING DESCRIPTOR
 1200 LDA SPCPTR LOW BYTE OF STRING ADDRESS
 1210 INY
 1220 STA (STRPTR),Y
 1230 LDA SPCPTR+1 HIGH BYTE OF STRING ADDRESS
 1240 INY
 1250 STA (STRPTR),Y
 1260 LDX #$0494 START OF OPCODE ON SECOND SCREEN LINE
 1270 LDY /$0494 ADDRESS IN (Y,X)
 1280 LDA #11 11 BYTES LONG
 1290 JSR MOVSTR MOVE IT IN
 1300 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 442 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:TEST.FAST.READ.txt
==

dD$–Á(4)(n∫D$"BLOAD B.FAST READ"Exπ1013,76:π1014,0:π1015,3[Ç∫D$"OPEN
MY.FILE"kåÅI–1¡10:ÑA$àñ∫D$"WRITE MY.FILE":∫A$:Çó†∫D$"CLOSE"≠“∫D$"OPEN
MY.FILE"√‹∫D$"READ MY.FILE"œÊÅI–1¡10¤ ØæA$(I)‚˙ÇIÒ∫D$"CLOSE"

,ÅI–1¡10:∫I" "A$(I):Ç

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 443 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8112:DOS3.3:Test.GotoFromML.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 444 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:Front.Page.txt
==

$1.20

Volume 2 -- Issue 4 January, 1982

In This Issue...

Hi-Res SCRN Funtion with Color 2
A Correction to "Step-Trace Untility" 6
6502 Relocator . 8
A Review of THE INDEX 12
Serious Problem in Apple DOS 13
Putting S-C Assembler II on the Language Card 15
Handy EXEC Files . 20
6500/1 One-Chip Microcomputer 21
A Review of FLASH!, an Integer BASIC Compiler 22

Renew Now, the Price is Going Up

If you renew your subscription before March 1, 1982, you can renew at
the current rate of $12/year. Starting March 1st, the price will go
up to $15/year (2nd class mail in the USA). Subscriptions sent First
Class Mail to USA, Canada, and Mexico will be $18/year. Air Mail
subscriptions to all other countries will be $28/year. The price for
back issues will be $1.50 each (plus $1.00 postage outside of USA,
Canada, and Mexico).

S-C MACRO Assembler II is almost here!

I am committed to having a finished product by February 15th. This is
what I have been calling Version 5.0, but I have decided to call it S-
C MACRO Assembler II instead. Version 4.0 will still be sold at $55.
The MACRO version will be $80. Owners of Version 4.0 can upgrade for
only $27.50. There will be an all new manual, rather than the current
2-part manual.

The MACRO Assembler includes macros (of course!), conditional
assembly, EDIT, COPY, global string replacement, and many more new
features. And it assembles even faster than version 4.0!

Apple Assembly Line is published monthly by S-C SOFTWARE, P. O. Box
280300, Dallas, Texas 75228. Phone (214) 324-2050. Subscription rate
is $12 per year in the U.S.A., Canada, and Mexico. Other countries
add $12/year for extra postage. Back issues are available for $1.20
each (other countries add $1 per back issue for postage). All
material herein is copyrighted by S-C SOFTWARE, all rights reserved.
Unless otherwise indicated, all material herein is authored by Bob
Sander-Cederlof. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 445 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:HandyExecFiles.txt
==

Handy EXEC Files........................Bob Sander-Cederlof

Now that I have my Firmware card with Integer BASIC on it plugged into
slot 4, I am all too frequently needing to fix those two bytes in DOS.
For some reason I don't get around to putting the patched DOS onto
every disk. But with a few EXEC files I can make the patches very
easily now.

The first EXEC file, which I call INT, is like this:

CALL -151 (get into the monitor)
C081 (turn off the language card, if on)
C0C1 (turn off the firmware card, if on)
A5B8:C0 (patch DOS to use firmware card)
A5C0:C1
3D3G (return to DOS and Applesoft)
INT (enter Integer BASIC)

The second file I use to load LANGASM into the Language Card (see Paul
Schlyter's article elsewhere in this issue of AAL). Here is what it
looks like:

CALL-151 (get into the monitor)
C0C1 (turn off the firmware card, if on)
C081 C081 (write enable the language card)
BLOAD LANGASM (load LANGASM into the language card)
A5B8:80 (patch DOS to use the language card)
A5C0:81
3D3G (return to DOS and Applesoft)
INT (enter the assembler)

The third EXEC file I use to patch DOS back to its normal mode of
using the language card in slot 0. If I have already loaded the S-C
Assembler II (LANGASM) into that card, but was using Integer BASIC,
EXEC ASM will get me back to the assembler.

CALL-151 (get into the monitor)
C081 (turn off the language card, if on)
C0C1 (turn off the firmware card, if on)
A5B8:80 (patch DOS to use the language card)
A5C0:81
3D3G (return to DOS and Applesoft)
INT (enter the assembler)

Just for fun, here is one more EXEC file. This one copies the
contents of the firmware card in slot 4 into the language card in slot
0. A much faster way of loading it with Integer BASIC than running
HELLO on the DOS 3.3 System Master!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 446 of 2550

Apple II Computer Info

CALL-151 (get into the monitor)
C0C0 (turn on the firmware card)
1000<D000.FFFFM (copy firmware card into mother RAM)
C0C1 (turn off the firmware card)
C081 C081 (write enable language card)
D000<1000.3FFFM (copy stuff into the language card)
3D0G (return to DOS)

If you don't have an editor that will help you build EXEC files like
these, here is a short Applesoft program which will do it. I have
also included a short program to display the file, in case you need to
do that.

Both of these programs CALL 64874, which is the Apple Monitor
subroutine to read a line into the system buffer starting at $200.
The CALL -3288 in READ EXEC FILE is to fix the ONERR stack pointer.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 447 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:HiresScrnColor.txt
==

Hi-Res SCRN Function with Color...............David Doudna

I am a 15-year-old living in St. Louis, Missouri. While looking
through the back issues of Apple Assembly Line, I found "Hi-Res SCRN
Function for Applesoft" (May, 1981 issue). I noticed the routine only
returned a 0 or 1, and you challenged readers to write one to return a
color value 0-7. Well, I did it. My version is not interfaced to
Applesoft; that is an exercise for the reader! (I use the
Programmer's Aid ROM with FORTH.)

I am not going to explain how hi-res colors work, beyond the facts
that two adjacent dots are white; the upper bit in each byte of the
hi-res screen adds 4 to the color value; an isolated bit is color 1 or
2 (or 5 or 6) depending on the X-position. If you want to understand
my program, you should study more about hi-res plotting first.

A word about the color value.... In Applesoft you specify color value
with a number from 0 to 7. The Programmer's Aid ROM uses color values
of 0, 42, 85, 127, 128, 170, 213, and 255. My program returns both
numbers for the color: the 0-7 index in HCOLOR, and the P.A.ROM color
value in COLOR.BYTE.

Lines 1060-1140 define the variables used; these are in the same
locations as those used by the Programmer's Aid ROM. If you want to
modify the program to work with Applesoft, be sure to put these
variables in the correct locations. Two more variables are defined at
lines 2120,2130.

Lines 1160-1180 pick up the X- and Y-coordinates. I assume you have
stored the coordinates here before calling HSCRN. Lines 1190-1390
calculate the base address for the particular horizontal line your
point is on. This code is just copied out of P.A.ROM. Lines 1410-
1530 divide the X-coordinate by 7 to get the byte offset on the line.
The quotient is left in the Y-register. The remainder is used to pick
up a bit mask to select the particular bit within the byte.

Lines 1540-1650 make the first color check. The high-order bit of
the byte (half-dot shift control). If the bit specified = zero, the
color is black. If it = one, the color depends on whether either
neighbor of this dot = one. If neither neighbor = one, the color
depends on whether this dot is in an even or odd column. If the color
is not black, I put 1 or 2 in the X-register to indicate the color it
will be if it is not white.

Lines 1660-1790 check the neighbor bit on the left to see if it = one.
Notice that there are several special cases. First, the left-neighbor
might be in the same byte. Second, it might be in the byte to the
left of this one. Third, there might not be a byte to the left of
this one.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 448 of 2550

Apple II Computer Info

Lines 1800-1920 check the neighbor bit on the right. The same kind of
special cases exist here, and they are handled the same way.

Line 1940 sets X = 3 for white color. Line 1960 gets the color value
in the A-register. All paths merge at line 1980, with the color index
0-3 in the A-register. All that remains is to add 4 if the half-dot
shift control = 1 (Lines 1980-2010.

Lines 2020-2060 convert the color index to a color byte (by simple
table-lookup), and return. Line 2100 is the table of color values.

Here is a table of colors (their names, index numbers, and P.A.ROM
numbers):

 Color Byte Value
Color Index Hex Dec Binary

BLACK 0 00 0 00000000
GREEN 1 2A 42 00101010
VIOLET 2 55 85 01010101
WHITE 3 7F 127 01111111
BLACK2 4 80 128 10000000
ORANGE 5 AA 170 10101010
BLUE 6 D5 213 11010101
WHITE2 7 FF 255 11111111

The program works with either page 1 or page 2 of Hi-Res. Set HPAGE
to $20 for page 1, or $40 for page 2.

To call this program from Integer BASIC, you would first POKE the X-
and Y-coordinates, then CALL the program, and then PEEK the color
value. From assembly language, set up the coordinates and JSR HSCRN.
The color index is returned in the X-register, and the color byte
value in the A-register.

[Program and article modified somewhat by the editor]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 449 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:OneChip6500.1.txt
==

6500/1 One-Chip Computer...........................Dan Pote

Commodore Semiconductor Group has announced a new one-chip
microcomputer, called the 6500/1. (I believe the same chip is
available from Synertek and Rockwell.) The 6500/1 has a 6502 CPU and
is compatible with existing 6502 programs. There are also four I/O
ports (32 bi-directional lines, the equivalent of two 6522 devices), a
counter, 2048 bytes of ROM, and 64 bytes of static RAM. Your choice
of 1- or 2-MHz internal clock. It can be ordered as masked-ROM, PROM,
or piggy-back EPROM. For more information call Commodore at (214)
387-0006.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 450 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:Relocator.6502.txt
==

6502 Relocator..........................Bob Sander-Cederlof

Programs that are already assembled usually must be loaded at a
specific memory address to execute properly. If you want to run it
somewhere else, you have a problem. All the data references, JMP's,
and JSR's will have to be examined to see if they need to be modified
for the new location. If you don't have the source code, you can't
re-assemble it. The other way, patching, can be quite a tedious
operation!

Fortunately, way back in 1977, the WOZ (Steve Wozniak to you
newcomers) wrote a program to do the work automatically. If you have
the Programmer's Aid ROM then you have his RELOCATE program. You who
have Apple II Plusses with the Language Card (also called 16K RAM
card) can also use his program, because it is in the INTBASIC file
along with Integer BASIC. (The latter group of people probably don't
have the manual, though, because they didn't buy the ROM.)

I would like to see the RELOCATE program made more widely available,
but it cannot be used as is unless you have Integer BASIC. Why?
Because it uses SWEET-16 opcodes. RELOCATE also is itself tied to
running at whatever location it is assembled for, so it can be a
little trouble to find a place for it sometimes. By now you have
probably guessed that I have recoded RELOCATE to solve both of these
problems!

Paul Schlyter's article elsewhere in this issue of AAL shows RELOCATE
put to good use. You can examine his instructions and learn most of
what you need to know to use RELOCATE on your own programs.
Basically, there are four steps:

1. Initialize. This sets up the control-Y monitor command. If
RELOCATE is on a file, you do this with "BRUN RELOCATE".

2. Specify the program start and end addresses (where it now is in
memory), and the new starting address (where you want it to be
relocated to). This is done with the monitor command:

 target<start.end^Y*

where "target" is the new starting address, and "start" and "end" are
the addresses of the program where it is now. "^Y" means "control-Y".
The "*" after the control-Y signals RELOCATE that you are in step 2
rather than step 3 or 4.

3. Specify the FIRST block to be copied "as-is" or to be "relocated"
to the destination area. This is done with the monitor command:

 target<start.end^Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 451 of 2550

Apple II Computer Info

or target<start.endM

where "target" is the starting address in the new area for this block,
and "start" and "end" define the block itself. Note that there is no
trailing asterisk this time. Use control-Y if you want this block
relocated, or M if you want it copied as-is.

4. Specify the NEXT block to be copied as-is or relocated. You do
this with the monitor command:

 .end^Y
or .endM

where the target and start addresses are assumed to immediately follow
the previously handled block, and "end" specifies the end of this new
block. Use control-Y to relocate the block, or M to copy it as-is.

Obviously, step 4 above is repeated until the whole program has been
copied/relocated. For each block of your program that is to be copied
as-is, with no modification at all, you use the "M" command; for each
block to be relocated you use the "control-Y" command.

If you need more detailed instructions and explanation, I must refer
you to the manual. The Programmer's Aid #1 Manual is sold at most
computer stores separately from the ROM package. Pages 11-28 explain
why and how to use RELOCATE, and pages 80 and 81 contain the assembly
listing.

Now here is my new version, which can be BRUN anywhere you have 134
($86) bytes available. I have eliminated the SWEET-16 usage; this
made the program slightly bigger, and a lot faster.

Lines 1260-1380 are the initialization code. They build the control-Y
vector at $3F8-3FA. A JMP opcode is stored at $3F8; if you have DOS
up this is redundant, but it won't hurt. Next I have to try to find
myself. That is, where in memory am I (the program RELOCATE) located?
JSR MON.RETURN (which is only an RTS instruction, so it comes right
back without doing anything) puts the address of the third byte of the
JSR instruction on the stack. Lines 1290-1370 use that address to
compute the address of RELOC, and store it in $3F9 and $3FA.

When you type in a control-Y command, the monitor will now branch to
RELOC at line 1400. Lines 1400-1430 look at the character after the
control-Y in the command input buffer; if it is an asterisk, then you
are trying to do step 2 above. If not, then you are on step 3 or 4.
Lines 1440-1500 handle step 2, and lines 1510-1990 handle steps 3 and
4.

The part which used to be coded in SWEET-16 was lines 1690-1880. The
SWEET-16 version took only 14 bytes, while the 6502 code takes 34
bytes. The 6502 version may take about 100 microseconds to execute,
and the SWEET-16 version on the order of 1000 microseconds (for each
instruction relocated).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 452 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:Review.Index.txt
==

A Review of THE INDEX...................Bob Sander-Cederlof

THE INDEX is a new book that you can use. No doubt you subscribe to
three or more magazines and newsletters, out of the 100 or so that are
being published with information Apple owners want and need. Wouldn't
you like a composite index that covered the best ones?

Bill Wallace an attorney in St. Louis, Missouri, has put together just
such an index. His book compiles over 12000 articles, editorials, and
columns from over 900 issues of personal computer magazines published
during the last six years. Over 40 different magazines and
newsletters are covered. I am honored that Bill has chosen to include
both of my newsletters: Apple Assembly Line, and AppleGram.

Organized as a Key-Word in Context (KWIC) index, there are over 30000
entries. There are 92 pages of Apple-related articles, 160 pages
covering other computers (Apple owners will be interested in the CP/M
and 6502 sections), and over 200 pages of general articles. All the
information necessary for obtaining copies and/or subscriptions of the
various magazines and newsletters is also included.

Bill plans to publish a second edition later this year to include the
issues published since the cutoff date of the first edition, as well
as lots of additional publications that were not previously covered.

THE INDEX costs $14.95, and is available from Missouri Indexing, Inc.,
P. O. Box 301, St. Ann, MO 63074. Bill is responsive to requests for
group rates, if you can interest your local Apple club; call him at
(314) 997-6470.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 453 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:SCAsm.2.LC.txt
==

Putting S-C Assembler II on the Language Card . . Paul Schlyter

[Paul is a subscriber in Stockholm, Sweden.]

Introduction

I have owned the S-C Assembler II for only a little more than three
weeks, and already I have stopped using the two other assemblers I
used to use before ("Apple Text Processing System" and "DOS Tool Kit
Assembler"). Although the others have some powerful features, the S-C
Assembler is so much easier to use it now takes me only about half the
time to finish an assembly language program as it did before.

The many similarities between the S-C Assembler and Integer BASIC made
me curious, so I disassembled the Assembler. Earlier I have done the
same thing with Integer BASIC, Applesoft, and DOS. It wasn't too long
(about a week) that I had a fair understanding of the first third of
the assembler. Then the idea turned up in my head: "Why not try to
relocate it into the language card?" Another week of sleepless nights
and it was up and running!

There were several traps on the way. It took a long time for me to
discover the address stack put into DOS at $1333-133C. Sometimes I
just entered the regular assembler at $1000-24FF and didn't notice
anything, sometimes the machine crashed when a DOS error occurred.
But that was a week ago, and the last week nothing like that has
happened...now I feel fairly confident that I have found all bytes
that need to be relocated. If anything does turn up, I will let you
know.

Why and How

Have you ever thought about how very similar to Integer BASIC the S-C
Assembler II is? It stores its source files as DOS type-I files, and
numbers the lines the same way as Integer BASIC. Just like in Integer
BASIC, you have access to all DOS commands. Well, the similarities
don't stop there. Integer BASIC starts at address $E000 and ends a
little bit above $F400; the S-C Assembler starts at $1000 and ends a
little bit above $2400. The byte at $E000 is $20 in Integer BASIC
(JSR opcode) while it is $4C in Applesoft (JMP opcode); it is by
looking at this byte that DOS decides whether Integer BASIC or
Applesoft is the current language. Well, guess what the byte at $1000
in the S-C Assembler is: it's $20!

When putting all these facts together, I started to wonder if it
wasn't possible to relocate the S-C Assembler up into the Language
card, making DOS believe it is in Integer BASIC. This of course
requires that you have Applesoft on the motherboard ROMs, so that DOS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 454 of 2550

Apple II Computer Info

will be able to distinguish between the ROM and Language card
languages.

Sure enough, it is possible. I did move it up there, and it works,
and it turned out to be really convenient. The DOS command FP puts me
in Applesoft, while INT puts me into the S-C Assembler! Also, if I am
currently in Applesoft and LOAD an S-C Assembler source file (type-I,
of course), DOS will automatically start up the assembler! Can you
really ask for more?

To relocate the S-C Assembler into the language card, you need of
course a language card (any of the several RAM cards no available will
do). You also need to have Applesoft in ROM on the motherboard (not
Integer BASIC). You also need a relocation program; I used the one in
the Programmer's Aid #1 software, which is in the INTBASIC file on the
DOS 3.3 System Master. You could use the one in Bob Sander-Cederlof's
article elsewhere in this AAL just as well.

Step-by-step Procedure

1. Boot the DOS 3.3 System Master. This will load Integer BASIC into
the Language Card.

2. Type INT to enter Integer BASIC.

3. Put in the S-C Assembler II disk, and BLOAD ASMDISK 4.0 (do not
BRUN it).

4. Enter the Apple monitor by typing CALL -151. (Throughout the
following steps, be sure you do NOT hit RESET!)

5. Now that you are in the monitor, type the following commands:

C083 C083 (write-enable the language card)

D4D5G (initialize the relocation program)

E000<1000.24FF^Y* (specify source and destination
 blocks for the relocation program.
 Note that "^Y" means "control-Y".
 The asterisk at the end IS necessary.)

E000<1000.100E^Y (relocate the first segment)

.100FM .121E^Y .1282M .1330^Y .133CM .1436^Y

.1438M .147C^Y .14A9M .14DB^Y .141EM .14F3^Y

.14F5M .15D0^Y .15D6M .17A6^Y .17AEM .1A8C^Y

.1A91M .1BB7^Y .1CAEM .2149^Y .2150M .221C^Y .24FFM

(The monitor commands on the above four lines relocate the program
segments and move the data segments. They can be typed as shown, or

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 455 of 2550

Apple II Computer Info

one per line, or even all on one line. Just be sure to type them
correctly -- check and double check -- before pressing RETURN.)

6. The machine code relocator automatically updates any direct
address references in the program being relocated. This saves us a
lot of work, but it does not finish the work. We also have to fix all
the address tables and all immediate address references. Enter the
following monitor commands to fix all of these (only one command per
line):

E042:E2 E254:E2 E334:E0 F234:F1
E227:E7 E259:EB E336:E0 F239:F0
E22C:E5 E25E:E3 E338:E0 F23E:F0
E231:E0 E263:E0 E33A:E3 F243:F0
E236:E5 E268:E5 E33C:E0 F248:F2
E23B:E1 E26D:F1 E4A3:E4 F24D:F0
E240:E4 E272:E6 E83E:F2 F252:F1
E245:E1 E277:E1 F225:F0 F257:F0
E24A:E6 E27C:E0 F22A:F1 F25C:EE
E24F:E3 E281:EB F22F:F0 F261:E0

7. The cold start routine in the Assembler must be patched:

 E030:ED E2

 E2E0:AD 83 C0 AD 83 C0 A9 00 85 D9 4C 08 E3 AD 83 C0

 E2F0:AD 83 C0 4C 75 E3

8. If you wish, you may change the starting address of the Assembler
Symbol Table to make more space:

 E011:10

 E2D6:10

9. If you enter Applesoft from the S-C Assembler, the output hook
from DOS will still be connected to the S-C Assembler output routine.
But the assembler will be banked away since now the motherboard ROMs
are enabled! The result is that the Apple will hang. To cure this
problem, you will have to sacrifice the SLOW and FAST commands, and
the ability to suspend/abort listings using the space bar and RETURN
keys. This is not such a big sacrifice anyway, since all language
card owners have the Autostart Monitor: you can use control-S to
suspend a listing. You can also use RESET to abort one (provided your
language card has a switch and it is in the UP position). [If you
can't bear to part with SLOW and FAST, you can type FP and then hit
RESET to get out of the Assembler.]

Here are the patches to eliminate SLOW and FAST:

 E1E9:EA EA EA EA

 E22D:4D 4E 54 68 FF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 456 of 2550

Apple II Computer Info

 E273:FF FF FF

These patches also change FAST to MNT, a command that gracefully
enters the monitor. From the monitor, a control-C will re-enter the
S-C Assembler with the current source program intact; a control-B will
cold start the S-C Assembler.

10. Save the completed package on disk with:

 BSAVE LANGASM,A$E000,L$2000.

11. Modify a copy of the HELLO program from the DOS 3.3 System Master
Disk to BLOAD LANGASM instead of INTBASIC, and use this as your HELLO
program. When you boot it will automatically load the S-C Assembler
II into your language card.

Parting Shots

Maybe you think that I must have a thorough knowledge of how the S-C
Assembler II works internally to be able to do this relocation, but
this is not actually the case. I made a disassembly and also hex and
ASCII dumps of the whole assembler, and I also started to untangle the
code, but I only really know about a third of the code fairly well. I
still have not the faintest idea of how the actual assembly is
performed, although looking at the ASCII dump immediately revealed
where the opcode and command tables were located, and the error
messages. I also did find out the places where the error messages are
produced...this helps a lot in figuring out what is happening in the
code. And with this not-too-well understanding of the inner workings,
and with a lot of trial-and-error, I was able to find all the places
where changes needed to be made.

My S-C Assembler has been running from my language card for over a
week, and I have used it a lot during this time; all has gone very
well. And believe me, it is SO CONVENIENT to have it there! I really
benefit from the language card, not only when using Pascal or CP/M,
but also when I am running DOS. And I use the S-C Assembler II much
more than Integer BASIC, so having the assembler in the language card
is really the right thing for me. Maybe it is for you too!

So, Bob, although you have made an excellent and very easy to use
assembler, it is not quite true anymore that the S-C Assembler II is
the easiest assembler to use...LANGASM is. And as you have guessed,
LANGASM is nothing but the S-C Assembler II relocated into the
language card!

[If the instructions for making LANGASM leave you breathless, you can
order Quarterly Disk #6 ($15.00). It will include all the source code
from this issue and the next two of AAL, and also an EXEC file which
will create LANGASM from ASMDISK 4.0. It will be ready in early
March, 1982. Another shortcut is to order the source code of the S-C
Assembler II ($95.00). Then simply change the origin, modify the SLOW
and FAST commands, and re-assemble it. Voila! LANGASM!]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 457 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:SeriousDOSPro.txt
==

Serious Problem in Apple DOS..............Bob Sander-Cederlof

If you are trying to use the IRQ interrupt line for any purpose, and
also DOS, you may have run across this problem before. Apparently at
random, for no good reason, you may get the NO BUFFERS AVAILABLE
message.

The reason is that both DOS and the IRQ interrupt code are trying to
use the same page zero location: $0045. DOS uses this location as
part of a pointer address when looking for the next available buffer.
(See the code at $A2CB-A2CF and $A764-A780.) DOS also uses $0045 when
printing the catalog (see $ADB9, $AE09, and $AE53).

The IRQ interrupt code in the Apple Monitor ROM (at $FA86) uses $0045
to save the contents of the A-register. If an interrupt occurs while
DOS is in the process of looking for a buffer, POW!

One solution is to turn off interrupts whenever DOS may be active,
using the SEI opcode. A better solution would be quite difficult:
look through all of DOS and modify every reference to $0045 (or to
$0044 and $0045 as a pair) to use some other location in page zero. A
third possible solution for those who can do it is to modify the Apple
Monitor ROM to use some other location to save the A-register.

In case you ARE using interrupts and DOS together, you should also
know that RWTS does inhibit interrupts while it is active. After a
call to RWTS is complete, the interrupt-inhibit status is restored to
whatever it was before the call. Interrupts cannot be allowed during
RWTS, because of the critical software timing code involved in reading
and writing the disk.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 458 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:Articles:StepTraceCorrex.txt
==

A Correction to "Step-Trace Utility"....Bob Sander-Cederlof

"Step-Trace Utility", published in the July 1981 issue of AAL (pages
17-20), has a bug. Three or four of you ran into the problem and
called me about it, but I was never able to duplicate the problem.
Finally Bob Leedom managed to pinpoint the bug, and I found out how to
fix it.

If you have used Step-Trace, you might have noticed that it sometimes
will hang-up or go crazy after a relative branch instruction. The
problem is that if the 6502 was in decimal mode, the calculations are
all incorrect. This affects the branch target, and also messes up
screen output. To fix it, insert the following line:

 2095 CLD SELECT bINARY MODE

But how did the 6502 get into decimal mode, when I wasn't ever setting
it? The contents of SAVE.P were random on initial start-up.
Sometimes the contents managed to switch on decimal mode! Perhaps you
should also insert the following two lines, to be certain of the
initial status of the program you are tracing:

 1455 LDA #0 CLEAR INITIAL STATUS
 1456 STA SAVE.P

Future copies of Quarterly Disk #4 already have these two patches
installed.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 459 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:AS.Copy.FW.txt
==

d∑WRITE EXEC FILE8n∑TO COPY SLOT 4 FIRMWARE CARD[x∑CONTENTS INTO SLOT
0 RAM CARDz∑D$»‰(4):F$»"COPY
FIRMWARE"©†∑D$"OPEN"F$:∑D$"DELETE"F$∑®∑D$"OPEN"F$:∑D$"WRITE"F$∫∞∑"CALL
-151"Ï∑∑"C0C0":∑TURN ON SLOT 4 FIRMWARE CARD

∑∑"1000<D000.FFFFM":∑COPY CONTENTS TO RAM@ ∑∑"C0C1":∑TURN OFF
FIRMWARE CARDh ∑∑"C081 C081":∑WRITE ENABLE RAM CARD¢

¿∑"D000<1000.3FFFM":∑LOAD RAM CARDµ ∑"3D0G":∑BACK TO DOS∑
’∑D$"CLOSE"d

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 460 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:AS.MAKE.LANGASM.txt
==

´100)
≤ PRINT BY AS 2 HEX DIGITSSD1–”(BYÀ16):D2–BY…D1 16:≠D1œ9ƒD1–
D1»7e-≠D2œ9ƒD2–D2»7}(∫Á(D1»48);Á(D2»48);É2±ùd≤MAKE EXEC FILE
WHICH√n≤CREATES LANGASM FROM ASMDISK 4.0·xD$–Á(4):F$–"MAKE LANGASM")

}∫D$"MONCIO":∫D$"BLOAD ASMDISK 4.0,A$4000":∫D$"BLOAD
LANGASM,A$6000"`

Ç∫D$"OPEN"F$:∫D$"DELETE"F$:∫D$"OPEN"F$:∫D$"WRITE"F$Å
å∫"INT":∫"MONCIO":∫"CALL-151"í ñ∫"C083 C083"≤ †∫"BLOAD ASMDISK

4.0,A$E000"‘ ™A–8192:B–40960:ÅI–16384¡21755Ë ¥C–‚(I):D–‚(I»A)ı
æ≠C–Dƒ300

»E–I»B:≤PRINT EEEE:DD2
“BY–”(EÀ256):∞10:BY–E…BY 256:∞10<
‹∫":";K
ÊBY–D:∞10:∫Q
,Çt
6∫"BSAVE LANGASM,A$E000,L$2000"Å
;∫"E000G"ê
@∫D$"CLOSE"ñ
JÄ

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 461 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:ASM.txt
==

CALL-151
C081
C0C1
A5B8:80
A5C0:81
3D3G

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 462 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:COPY.FIRMWARE.txt
==

CALL-151
C0C0
1000<D000.FFFFM
C0C1
C081 C081
D000<1000.3FFFM
3D0G

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 463 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:INT.txt
==

CALL-151
C081
C0C1
A5B8:C0
A5C0:C1
3D3G

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 464 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:LOAD.ASM.txt
==

CALL-151
C081 C081
BLOAD LANGASM
A5B8:80
A5C0:81
3D0G

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 465 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:MAKE.LANGASM.txt
==

INT
MONCIO
CALL-151
C083 C083
BLOAD ASMDISK 4.0,A$E000
E002:E2
E005:E0
E008:E0
E00B:E0
E00E:E8
E011:10
E01E:EF
E025:E1
E030:ED
E031:E2
E036:E2
E042:E2
E04F:E6
E054:E1
E057:E1
E05A:E8
E05D:E0
E062:E7
E065:E1
E07A:E5
E07D:E0
E087:E2
E0B0:E4
E0B8:E4
E0C0:E4
E0D2:E5
E127:E0
E12C:E7
E131:E2
E13C:E1
E14C:E2
E15D:E2
E183:E1
E188:E4
E195:E1
E1AF:E4
E1BC:E7
E1BF:E7
E1C2:EB
E1C7:E7
E1CA:E2
E1CD:E2
E1D2:E2
E1D7:E7

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 466 of 2550

Apple II Computer Info

E1DC:E7
E1DF:E2
E1E9:60
E1F4:E2
E1F9:E2
E1FE:EB
E20A:EB
E213:EB
E216:E2
E21B:E2
E227:E7
E22C:E5
E22D:4D
E22E:4E
E22F:54
E230:68
E231:FF
E236:E5
E23B:E1
E240:E4
E245:E1
E24A:E6
E24F:E3
E254:E2
E259:EB
E25E:E3
E263:E0
E268:E5
E26D:F1
E272:E6
E273:FF
E274:FF
E275:FF
E277:E1
E27C:E0
E281:EB
E285:E2
E2BF:E2
E2D6:10
E2DF:EC
E2E1:83
E2E2:C0
E2E3:AD
E2E4:83
E2E5:C0
E2E6:A9
E2E7:00
E2E8:85
E2E9:D9
E2EA:4C
E2EB:08
E2EC:E3
E2ED:AD
E2EE:83

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 467 of 2550

Apple II Computer Info

E2EF:C0
E2F0:AD
E2F1:83
E2F2:C0
E2F3:4C
E2F4:75
E2F5:E3
E323:E3
E32D:EB
E332:E7
E334:E0
E336:E0
E338:E0
E33A:E3
E33C:E0
E33F:F1
E342:E2
E345:E0
E34A:E7
E360:E7
E374:E7
E379:E7
E38D:E0
E3BB:E3
E3F1:E4
E3FA:E3
E41B:E4
E41E:E4
E423:E4
E426:E4
E42D:E7
E436:E3
E437:99
E438:07
E44D:E3
E462:E3
E46F:E4
E474:E4
E478:E4
E4A3:E4
E4C6:E4
E4EA:E4
E4EF:E4
E4F3:E0
E54B:E4
E558:E4
E586:E0
E589:E1
E590:E5
E59A:E4
E5D0:E7
E5DB:E2
E5F6:E2
E5F9:E2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 468 of 2550

Apple II Computer Info

E5FC:E2
E601:E2
E624:E2
E646:E1
E649:E5
E64F:E6
E654:E6
E685:E6
E694:E6
E69C:E6
E6EC:E7
E6EF:E1
E6FF:E6
E707:E6
E733:E0
E740:E7
E745:E7
E74A:E7
E751:E7
E754:EA
E757:E0
E75E:E7
E761:E7
E770:E7
E774:EB
E783:E7
E789:E7
E7B1:F1
E7BA:EC
E7BD:F1
E7CA:F2
E7E9:E2
E7EC:E2
E7F1:E2
E7FA:F2
E7FF:E7
E806:E2
E81A:E2
E825:EA
E828:E2
E831:E2
E836:E2
E83E:F2
E84B:E6
E850:E6
E855:E6
E85A:E6
E85F:E6
E864:E6
E869:E6
E870:E7
E873:E8
E882:E2
E887:E2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 469 of 2550

Apple II Computer Info

E88D:E9
E890:EA
E893:E7
E89C:E2
E8A5:E9
E8A8:EA
E8BE:E9
E8C3:E8
E8C6:E9
E8C9:E8
E8CC:E2
E8D0:E2
E8D7:EA
E8DD:E9
E8E0:E8
E8E3:E9
E8E6:E2
E8ED:EA
E8F0:E9
E8F3:E2
E8FA:E2
E90F:EA
E920:E2
E929:E2
E936:E8
E93F:E8
E94C:E9
E951:E8
E956:E9
E961:E9
E96C:E9
E975:E2
E980:E2
E987:E2
E990:E9
E997:E2
E9A0:E2
E9B1:E9
E9B6:E9
E9BB:E8
E9BE:E9
E9D0:E2
E9DA:E2
E9DD:EA
EA01:F2
EA10:E7
EA13:EA
EA16:E7
EA3C:F2
EA53:E8
EA57:EF
EA5A:EA
EA65:F2
EA72:F2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 470 of 2550

Apple II Computer Info

EA7D:EA
EA8B:E1
EA94:EC
EA99:ED
EA9E:ED
EAB5:E8
EAB8:E9
EABF:E2
EAC4:E2
EAD5:E2
EAF2:E2
EAFA:E2
EB11:EC
EB16:ED
EB21:F0
EB24:EB
EB3C:EA
EB4C:EA
EB53:E1
EB56:E2
EB5D:E2
EB6A:E9
EB73:EB
EB78:EB
EB7E:E2
EB8D:E2
EBA4:EA
EBAA:EA
EBB7:E7
ECCF:E2
ECDA:E1
ECF7:E2
ED10:E2
ED5C:ED
EDC1:E8
EE0E:E1
EE4D:E8
EE6D:EA
EE70:E7
EE7E:E7
EE8B:E7
EEBD:E7
EEC0:E7
EEC3:EE
EEC6:E7
EECF:E7
EEDD:E7
EEE2:E7
EEFC:EF
EF0F:E7
EF14:EF
EF17:ED
EF2B:EF
EF36:EF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 471 of 2550

Apple II Computer Info

EF41:EF
EF46:EF
EF4B:EF
EF59:EF
EF5E:EF
EF63:EF
EF68:EF
EF6B:E8
EFB1:EF
EFB4:ED
EFB7:ED
EFCA:EF
EFCD:EF
F001:E7
F006:E7
F012:E2
F01A:E7
F01D:EA
F02A:F0
F02D:EA
F030:EF
F03B:E8
F042:E2
F04F:E2
F05A:E9
F05D:F0
F060:E2
F065:E2
F068:EB
F06D:EB
F074:E9
F077:F0
F07A:E2
F07F:E9
F084:E8
F096:EA
F0A3:EA
F0A6:E8
F0B4:E8
F0B7:E2
F0C6:E2
F0C9:EA
F0D6:E9
F0D9:E9
F0DC:E9
F0DF:F1
F0E4:F1
F0E9:F1
F0EE:F1
F0F3:E1
F0F8:F1
F0FD:F1
F102:F1
F107:F1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 472 of 2550

Apple II Computer Info

F11F:EF
F122:F1
F127:F1
F132:EA
F135:F1
F144:E7
F149:E7
F161:EA
F164:F1
F169:EF
F172:E7
F175:F2
F17C:E7
F17F:EE
F183:F1
F186:E7
F189:F1
F190:EB
F19B:F1
F1A0:F1
F1A5:F1
F1AA:F1
F1AF:F1
F1B7:F2
F1BE:E7
F1C1:E7
F1C4:EA
F1C9:EA
F1FC:EF
F1FF:F1
F202:E8
F205:F0
F208:E2
F216:F2
F219:E7
F21C:E8
F21D:80
F225:F0
F22A:F1
F22F:F0
F234:F1
F239:F0
F23E:F0
F243:F0
F248:F2
F24D:F0
F252:F1
F257:F0
F25C:EE
F261:E0
F4FB:9D
BSAVE LANGASM,A$E000,L$2000
E000G

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 473 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:READ.EXEC.FILE.txt
==

d≤READ EXEC FILE3ÇD$–Á(4):Ñ"FILE NAME:
";F$]å∫D$"NOMONCIO":∫D$"OPEN"F$:∫D$"READ"F$gñ•´220r†å64874|™I–511†¥I –
I»1:C–‚(I):∫Á(C);:≠C—œ141ƒ180©æ´160ø‹å…3288:∫D$"CLOSE"d

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 474 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:S.HiresScrnClr.txt
==

 1000 *--------------------------------
 1010 * HI-RES SCRN FUNCTION WITH COLOR
 1020 *
 1030 * BY DAVID DOUDNA, FERGUSON, MISSOURI
 1040 * NOVEMBER 30, 1981
 1050 *--------------------------------
 1060 HBASL .EQ $26 BASE ADDRESS
 1070 HBASH .EQ $27
 1080 HMASK .EQ $30 BIT MASK
 1090 *--------------------------------
 1100 X0L .EQ $320 X-COORDINATE
 1110 X0H .EQ $321
 1120 Y0 .EQ $322 Y-COORDINATE
 1130 HCOLOR.BYTE .EQ $324
 1140 HPAGE .EQ $326 HI-RES PAGE ($20 OR $40)
 1150 *--------------------------------
 1160 HSCRN LDA Y0 GET (A)=Y-COORDINATE
 1170 LDX X0L GET (Y,X)=X-COORD.
 1180 LDY X0H
 1190 PHA Y-COORD BITS LABELED ABCDEFGH
 1200 AND #$C0 CALCULATE BASE ADDRESS FOR Y-COORD
 1210 STA HBASL IN HBASL,HBASH FOR
 1220 LSR ACCESSING SCREEN MEMORY
 1230 LSR VIA (HBASL),Y
 1240 ORA HBASL HBASH = PPPFGHCD
 1250 STA HBASL HBASL = EABAB000
 1260 PLA WHERE PPP=001 FOR $2000-3FFF
 1270 STA HBASH AND PPP=010 FOR $4000-5FFF
 1280 ASL
 1290 ASL
 1300 ASL
 1310 ROL HBASH
 1320 ASL
 1330 ROL HBASH
 1340 ASL
 1350 ROR HBASL
 1360 LDA HBASH
 1370 AND #$1F
 1380 ORA HPAGE
 1390 STA HBASH
 1400 *--------------------------------
 1410 TXA DIVIDE X-COORD BY 7 (7 DOTS PER BYTE)
 1420 CPY #0 IS X-COORD > 255?
 1430 BEQ .2 NO, ENTER SUBTRACTION LOOP
 1440 LDY #35 YES: 256 = 7*36 + 4
 1450 ADC #4 CARRY WAS SET, SO ADDS 5
 1460 * ALSO CLEARS CARRY, SO SBC #7 BELOW
 1470 * ACTUALLY SUBTRACTS 8
 1480 .1 INY INCREASE QUOTIENT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 475 of 2550

Apple II Computer Info

 1490 .2 SBC #7 SUBTRACT 7 (OR 8 IF CARRY CLEAR)
 1500 BCS .1 STILL MORE 7'S
 1510 TAX REMAINDER IS BIT POSITION
 1520 LDA MSKTBL-249,X
 1530 STA HMASK
 1540 *--------------------------------
 1550 LDA (HBASL),Y GET BYTE WHICH HAS OUR SPOT
 1560 AND #$80 ISOLATE HALF-DOT SHIFT BIT
 1570 STA HIBIT
 1580 LDA (HBASL),Y GET BYTE AGAIN
 1590 AND HMASK ISOLATE OUR SPOT
 1600 BEQ .9 COLOR IS BLACK (0 OR 4)
 1610 LDA X0L NOT BLACK
 1620 LDX #1
 1630 LSR ODD OR EVEN X-COORD.?
 1640 BCS .3 ODD, COLOR=1 OR 5
 1650 INX EVEN, COLOR=2 OR 6
 1660 *--------------------------------
 1670 .3 LDA HMASK LOOK AT NEIGHBOR BIT ON LEFT
 1680 LSR BITS ARE IN BYTE BACKWARDS
 1690 BCC .4 NEIGHBOR IN SAME BYTE
 1700 TYA NEIGHBOR IN DIFFERENT BYTE
 1710 BEQ .5 NO BYTE LEFT OF THIS ONE
 1720 DEY
 1730 LDA (HBASL),Y
 1740 AND #$40
 1750 BNE .7 WHITE
 1760 INY RESTORE Y
 1770 BNE .5 ...ALWAYS
 1780 .4 AND (HBASL),Y
 1790 BNE .7 WHITE
 1800 *--------------------------------
 1810 .5 LDA HMASK LOOK AT NEIGHBOR BIT ON RIGHT
 1820 ASL
 1830 BPL .6 NEIGHBOR IS IN SAME BYTE
 1840 CPY #39 ALREADY AT RIGHT END?
 1850 BCS .8 YES, NOT WHITE THEN
 1860 INY
 1870 LDA (HBASL),Y
 1880 AND #1
 1890 BNE .7 WHITE
 1900 BEQ .8 ...ALWAYS (NOT WHITE)
 1910 .6 AND (HBASL),Y
 1920 BEQ .8 NOT WHITE
 1930 *--------------------------------
 1940 .7 LDX #3 COLOR IS WHITE (3 OR 7)
 1950 *--------------------------------
 1960 .8 TXA COLOR TO A-REG
 1970 *--------------------------------
 1980 .9 BIT HIBIT SEE IF HALF DOT SHIFT
 1990 BPL .10 NO
 2000 CLC
 2010 ADC #4 YES
 2020 .10 STA HCOLOR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 476 of 2550

Apple II Computer Info

 2030 TAX USE COLOR # (0-7) TO GET COLOR BYTE
 2040 LDA COLOR.TABLE,X
 2050 STA HCOLOR.BYTE
 2060 RTS
 2070 *--------------------------------
 2080 MSKTBL .HS 01020408102040
 2090 *--------------------------------
 2100 COLOR.TABLE .HS 002A557F80AAD5FF
 2110 *--------------------------------
 2120 HIBIT .BS 1 MSB
 2130 HCOLOR .BS 1 COLOR INDEX 0-7

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 477 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:S.RELOCATE.txt
==

 1000 *--------------------------------
 1010 * 6502 RELOCATION SUBROUTINE
 1020 *--------------------------------
 1030 * MAY BE LOADED ANYWHERE, AS IT IS SELF-RELOCATABLE
 1040 *--------------------------------
 1050 * ADAPTED FROM SIMILAR PROGRAM IN PROGRAMMERS AID #1
 1060 * ORIGINAL PROGRAM BY WOZ, 11-10-77
 1070 * ADAPTED BY BOB SANDER-CEDERLOF, 12-30-81
 1080 * (ELIMINATED USAGE OF SWEET-16)
 1090 *--------------------------------
 1100 MON.YSAV .EQ $34 COMMAND BUFFER POINTER
 1110 MON.LENGTH .EQ $2F # BYTES IN INSTRUCTION - 1
 1120 MON.INSDS2 .EQ $F88E DISASSEMBLE (FIND LENGTH OF OPCODE)
 1130 MON.NXTA4 .EQ $FCB4 UPDATE POINTERS, TEST FOR END
 1140 MON.RETURN .EQ $FF58
 1150 STACK .EQ $0100 SYSTEM STACK
 1160 INBUF .EQ $0200 COMMAND INPUT BUFFER
 1170 *--------------------------------
 1180 A1 .EQ $3C,3D
 1190 A2 .EQ $3E,3F
 1200 A4 .EQ $42,43
 1210 R1 .EQ $02,03
 1220 R2 .EQ $04,05
 1230 R4 .EQ $08,09
 1240 INST .EQ $0A,0B,0C
 1250 *--------------------------------
 1260 START LDA #$4C JMP OPCODE
 1270 STA $3F8 BUILD CONTROL-Y VECTOR
 1280 JSR MON.RETURN FIND OUT WHERE I AM FIRST
 1290 START1 TSX
 1300 DEX POINT AT LOW BYTE
 1310 SEC +1
 1320 LDA STACK,X LOW BYTE OF START1-1
 1330 ADC #RELOC-START1
 1340 STA $3F9
 1350 LDA STACK+1,X HIGH BYTE OF START1-1
 1360 ADC /RELOC-START1
 1370 STA $3FA
 1380 RTS
 1390 *--------------------------------
 1400 RELOC LDY MON.YSAV COMMAND BUFFER POINTER
 1410 LDA INBUF,Y GET CHAR AFTER CONTROL-Y
 1420 CMP #$AA IS IT "*"?
 1430 BNE RELOC2 NO, RELOCATE A BLOCK
 1440 INC MON.YSAV YES, GET BLOCK DEFINITION
 1450 LDX #7 COPY A1, A2, AND A4
 1460 .1 LDA A1,X
 1470 STA R1,X
 1480 DEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 478 of 2550

Apple II Computer Info

 1490 BPL .1
 1500 RTS
 1510 *--------------------------------
 1520 RELOC2 LDY #2 COPY NEXT 3 BYTES FOR MY USE
 1530 .1 LDA (A1),Y
 1540 STA INST,Y
 1550 DEY
 1560 BPL .1
 1570 JSR MON.INSDS2 GET LENGTH OF INSTRUCTION
 1580 LDX MON.LENGTH 0=1 BYTE, 1=2 BYTES, 2=3 BYTES
 1590 BEQ .3 1-BYTE OPCODE
 1600 DEX
 1610 BNE .2 3-BYTE OPCODE
 1620 LDA INST 2-BYTE OPCODE
 1630 AND #$0D SEE IF ZERO-PAGE MODE
 1640 BEQ .3 NO (X0 OR X2 OPCODE)
 1650 AND #$08
 1660 BNE .3 NO (80-FF OPCODE)
 1670 STA INST+2 CLEAR HIGH BYTE OF ADDRESS FIELD
 1680 *--------------------------------
 1690 .2 LDA R2 COMPARE ADDR TO END OF SOURCE BLOCK
 1700 CMP INST+1
 1710 LDA R2+1
 1720 SBC INST+2
 1730 BCC .3 ADDR > SRCEND
 1740 SEC COMPARE ADDR TO BEGINNING OF SRC
 1750 LDA INST+1
 1760 SBC R1
 1770 TAY
 1780 LDA INST+2
 1790 SBC R1+1
 1800 BCC .3 ADDR < SRCBEG
 1810 TAX
 1820 TYA ADDR = ADDR-SRCBEG+DESTBEG
 1830 CLC
 1840 ADC R4
 1850 STA INST+1
 1860 TXA
 1870 ADC R4+1
 1880 STA INST+2
 1890 *--------------------------------
 1900 .3 LDX #0 COPY MODIFIED INSTRUCTION TO DESTINATION
 1910 LDY #0
 1920 .4 LDA INST,X NEXT BYTE OF THIS INSTRUCTION
 1930 STA (A4),Y
 1940 INX
 1950 JSR MON.NXTA4 ADVANCE A1 AND A4, TEST FOR END
 1960 DEC MON.LENGTH TEST FOR END OF THIS INSTRUCTION
 1970 BPL .4 MORE IN THIS INSTRUCTION
 1980 BCC RELOC2 END OF SOURCE BLOCK
 1990 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 479 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8201:DOS3.3:WRITE.EXEC.FILE.txt
==

d≤WRITE EXEC FILE4ÇD$–Á(4):Ñ"FILE NAME:
";F$Rå∫D$"OPEN"F$:∫D$"DELETE"F$oñ∫D$"OPEN"F$:∫D$"WRITE"F$û†∞500:≠‚(512
)–175Õ‚(513)–170Õ‚(514)–141ƒ220®™I–511Ã¥I–I»1:C–‚(I):∫Á(C);:≠C —
œ141ƒ180’æ´160‰‹∫D$"CLOSE"ÍÊÄ Ù≤INPUT A LINE WITHOUT DOS KNOWING)

˘ã0:ä0:å64874:å1002:±d

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 480 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:BMA.VERSES.txt
==

Wisdom for Daily Living

Assignment 3

The Search for Wisdom -- The Responsibility of Man

--

Proverbs 4:5-9

Get wisdom, get understanding: forget it not;
neither decline from the words of my mouth.

Forsake her not, and she shall preserve thee;
Love her, and she shall keep thee.

Wisdom is the principal thing; therefore get wisdom:
and with all thy getting, get understanding.

Exalt her, and she shall promote thee:
she shall bring thee to honor, when thou dost embrace her.

She shall give to thine head an ornament of grace:
a crown of glory shall she deliver to thee.

Proverbs 4:5-9

--

Proverbs 16:16

How much better is it to get wisdom than gold!
and to get understanding rather to be chosen than silver!

Proverbs 16:16

--

James 1:5

If any of you lack wisdom, let him ask of God,
that giveth to all men liberally, and upbraideth not;
and it shall be given him.

James 1:5

--

The Search for Wisdom -- The Responsibility of Man

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 481 of 2550

Apple II Computer Info

Assignment 3

Wisdom for Daily Living

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 482 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:DOS.Error.Trap.txt
==

DOS Error Trapping from Machine Language........Lee Meador

I have been working on a text editor program for about three years now
at the World Bible Translation Center. It allows us to edit in any
two of the following languages: English, Russian, Greek, Hebrew, and
Arabic. Hebrew and Arabic move from right to left across the screen,
as they should.

Recently we have been making some enhancements to this multi-lingual
text editor (called ALPHONSE) which include support of two disk
drives (a program disk in drive 1 and a data disk in drive 2). But we
didn't want to require the use of two drives. That means a routine
must look on the various disks to see if the data is there. We can do
this very handily by RENAMEing a certain file -- call it FILE -- and
assuming that a DOS error means that the data isn't on that disk.
Then we can look on other drives and finally, if it isn't found
anywhere, we can prompt the user to put in the data disk. Then we
look again -- and so on.

A problem with this is that I need to trap from assembly language any
DOS errorswhich occur, but I want to return to the program if the user
accidentally types the RESET key (with ALPHONSE it will always be
accidentally). A second use for DOS error trapping came up because
I/O errors in a disk file print the error message but do not change
from the HIRES page to the text page. That makes it rather difficult
to see what the error is -- especially for the less advanced user, who
has no idea what is happening.

Here is a program listing of ALPHONSE with all the insides removed.
Where the real program would have large sections of code, I have
instead comments that look like this:

*->->->->->->->->->->->->->->->->->->->
* DO SOME ACTION WHICH IS NOT SHOWN
*->->->->->->->->->->->->->->->->->->->

(Of course, ALPHONSE is about 8K long and the listing is nearly 1/2-
inch thick, so this isn't the whole listing.)

MAIN PROGRAM OUTLINE

Here is an outline of the main program:

MACH: GLOBAL INITIALIZATION;
REENT: LOCAL INITIALIZATION;
 REPEAT
 READ EDITOR COMMAND;
 PROCESS EDITOR COMMAND;
 UNTIL EDITOR COMMAND = QUIT;

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 483 of 2550

Apple II Computer Info

END.

In the global initialization we have to do four things related to
error-trapping:

 1. Call SETUP.DOS.TABLE to copy my addresses into the table at
$9D56 of DOS. This makes DOS come back to my program when any soft
entry of a funny DOS command occurs. Just calling SETUP.DOS.TABLE
will not really trap any errors, but it will keep DOS from terminating
your program if a DOS error does occur (that usually means SYNTAX
ERROR, I/O ERROR, or FILE NOT FOUND).

 2. Call CLEAR.ERROR to initialize the ONERR trapping mechanism in
my program.

 3. Call ON.ERROR with the address of the error-handling routine in
the A and Y registers (LO, HI). This sets up the DOS error-handling
capabilities as if Applesoft were running and ONERR were set.

 4. After doing all the global initialization of files and such, we
need to call OFF.ERROR to turn off the error handling that ON.ERROR
set up. After calling OFF.ERROR any DOS error will beep and go to the
soft entry point. (We have already set the soft entry point in step
one to be MY.RESET.)

In the local initialization we take care of a few more things that
have to be done every time the program is run -- not just the first
time. The call to OFF.ERROR cleared any error trapping so we can call
SETUP.DOS.TABLE and CLEAR.ERROR again without causing any problems.

Note that the call to LOOK.FOR.FILE changes the error address so we
have to call ON.ERROR with MY.ERROR again to make sure that an error
doesn't throw us off into never-never land. LOOK.FOR.FILE returns the
carry clear if FILE is found. Carry set signals that the file isn't
on any available drives; in that case, ALPHONSE would print a message
like "INSERT DATA DISK AND HIT ANY KEY," then wait for a key to be
pushed and call LOOK.FOR.FILE another time.

The main program loop is not really of interest here, but it is shown
in the listing in skeleton form.

SUB-PROGRAMS

Now, how do the subroutines work? First, the one that you wouldn't
use in your program: LOOK.FOR.FILE has to save the stack pointer.
This is because we expect DOS errors to occur inside the routine. A
DOS error will mess up the stack. Saving the stack lets us remember
where we were. (By the way, DOS just adds things to the stack and
never removes them when there is an error. The LOOK.FOR.FILE return
addresses will not be messed up.)

LOOK.FOR.FILE sets its own DOS error trap address. Then the program
looks through trying to find FILE on the various slots and drives. It
does this by printing the DOS commands <CTRL-D>, RENAME FILE, FILE,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 484 of 2550

Apple II Computer Info

Sx, Dy with x and y filled in. Appropriate values for x are six,
five, and seven; y would be one or two. The order in which you try
the slot/drive combinations will determine which of two disks are
chosen if you put two data disks in at the same time. I used a table
of six slot/drive combinations to choose the order and positions to
try. Notice that before printing the DOS RENAME command, I had to
check to see if there was a disk card in the slot. Choosing a slot
without a disk card in it for a DOS command will cause DOS to hang
when you try the next DOS command with a different slot. DOS is
waiting for the last drive to quit running. Little does DOS know that
an empty slot always seems to be running (to DOS at least).

If the DOS RENAME command fails or there is no disk card in the slot,
LOOK.FOR.FILE will jump to LOOK.ERR to loop and try the next
slot/drive. If it runs out of slot/drives the program returns with
carry set to indicate FILE was not found. Carry clear indicates that
the last-used drive has FILE on it.

There are several routines you might want to copy as is to your
program. Calling them takes care of error trapping and reset
trapping.

SETUP.DOS.TABLE: copies MY.TABLE into DOS to jump to my program on
any DOS error or RESET. Unfortunately, at this point you can't tell
them apart.

ON.ERROR: sets the error address to the value in the A, Y (LO, HI)
registers. When a DOS error occurs after ON.ERROR has been called,
DOS will jump to this address with the error number in the X register.
All other registers will have been changed.

OFF.ERROR: turns off the error trapping and resets DOS to the state
it was in before ON.ERROR was first called. SAVE.AAB6 is used to keep
track of which BASIC language DOS thinks was active. Restoring AAB6
before exiting your program will help DOS keep things sorted out.
Calling OFF.ERROR restores AAB6. (By the way, while ON.ERROR is
active, DOS thinks that Applesoft is currently running a program and
that there has been an ONERR statement. Zero page locations $D8, $76,
and $33 are used for this.)

CLEAR.ERROR: call this the first thing in your program to set up the
flags used by ON.ERROR and OFF.ERROR.

Note: MY.RESET just reenters the program loop if someone types the
RESET key. That makes it a null key. MY.ERROR should be looked at to
see how the DOS error message comes back to you. You can use the
message to print various messages depending upon what is wrong. Or,
you can take various actions depending upon the error message. Pages
114-115 of the DOS manual show what the various error numbers are that
come back in the X register.

The program listing should show how most of these things are handled.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 485 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:EvenFstrPrimes.txt
==

Even Faster Primes.............................Charles Putney
[Charlie is a long-time friend and subscriber in Ireland]

Bob, I wanted to answer your challenge in the Ocotber 1981 AAL for
some time, but this is the first chance I had. You sifted out the
primes in 690 milliseconds, and challenged readers to beat your time.
I did it!

I increased the speed by using a faster algorithm, and by using some
self-modifying code in the loops. I know self-modifying code is
dangerous, and a NO-NO, but it amounts to about 50 milliseconds
improvement.

The algorithm changes are an even greater factor. The main ideas for
the sieve are:

1. Only check odd numbers
2. Get next increment from the prime array.
 This means you only knock out primes.
3. Start knocking out at P^2. That is,
 if prime found is 3, start at 9.
4. Increment the knock-out index by 2*P.
 This avoids knocking out even numbers.
5. Stop at the square-root of the maximum number.

Your algorithm did all the above except 3 and 4.

With these routines, a generation takes 330 milliseconds. This is
over twice as fast as yours!

You could still shave a little time off by optimizing the square
routine, and even including it inline since it is only called from one
place.

I'll grant you that this is not the same algorithm, but the goal is to
find primes fast. I know throw down the glove for the next
challenger!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 486 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:Front.Page.txt
==

$1.50

Volume 2 -- Issue 5 February, 1982

In This Issue...

DOS Error Trapping from Machine Language 2
Improving the EPSON Controller Card 11
Even Faster Primes . 15
Printer Handler with FIFO Buffer 18
Patches for Applewriter to Unhook PLE 21
A Great Free Adventure 23
On Dividing by Ten . 24

Renew Now, the Price is Going Up

If you renew your subscription before March 1, 1982, you can renew at
the current rate of $12/year. Starting March 1st, the price will go
up to $15/year (2nd class mail in the USA). Subscriptions sent First
Class Mail to USA, Canada, and Mexico will be $18/year. Air Mail
subscriptions to all other countries will be $28/year. The price for
back issues will be $1.50 each (plus $1.00 postage outside of USA,
Canada, and Mexico).

S-C MACRO Assembler II is almost here!

By the time you read this, I expect to be filling orders for the new
MACRO version. This is what I have been calling Version 5.0, but I
have decided to call it S-C MACRO Assembler II instead. Version 4.0
will still be sold at $55. The MACRO version will be $80. Owners of
Version 4.0 can upgrade for only $27.50. There will be an all new
manual, rather than the current 2-part manual.

The MACRO Assembler includes macros (of course!), conditional
assembly, EDIT, COPY, global string replacement, and many more new
features. And it assembles even faster than version 4.0!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 487 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:Great.Free.Adv.txt
==

Great Adventure................................Jeff Jacobsen

Have you ever played the ORIGINAL game? Adventure game, that is?
Adventure was originally developed by Willie Crowther and Don Woods in
FORTRAN on a DEC PDP-10 computer. It is the grandfather, or maybe
great-grandfather by now, of the hundreds of Adventure games you see
in the advertisements (you might even have bought some!).

I used the S-C Assembler II to write an Apple version of the original
Adventure game. By using text compression techniques, I was able to
squeeze the entire game into 48K RAM. The interaction is lightning
fast, and nothing ever has to be found on the disk. The whole game is
in there: over 130 rooms, 15 treasures, 40 useful objects, and 12
obstacles or opponents.

I will send you a copy FREE! Just send me a blank diskette and
postage. Or send $5.00 and I will send the disk and pay the postage.
Write to me, Jeff Jacobsen, at Frontier Computing Inc., P. O. Box 402,
Logan, Utah 84321.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 488 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:ImprvEpsonCard.txt
==

Improving the Epson Controller.........Peter G. Bartlett, Jr.

[I recently bought an NEC PC-8023 dot matrix printer, which has
fabulous features. The store sold me an Epson controller to run it,
assuring me it was all I needed. Naturally, they were wrong. To get
all features, just as with the Epson printer, you need to be able to
send 8-bit characters. I figured out how, and was just about to write
an article about it, when the following one came from Peter Bartlett
of Chicago, Illinois. (Bob Sander-Cederlof)]

As you may know, the Epson MX-80 printer is somewhat hamstrung by the
Epson Controller. Certain features, such as the "TRS-80" graphics
character set, are not available. You can buy the Graftrax kit to
enable dot graphics, but these built-in character graphics are still
inaccessible.

The problem is in the card Epson makes to interface its line of
printers with the Apple. (The problem is not present if you use a
non-Epson card.) Hardware on the Epson controller card masks out the
high-order bit, eliminating the ability to access the standard
graphics characters and some of the dot graphics capabilities.

Epson's reasoning is that the Apple only sends characters with the
high-bit set, so Epson has hardware on the card to mask out that bit.
That way the normal characters print as they should.

If Epson had masked out the high bit in their printer driver routine
instead, then machine language programmers like us could have accessed
all the features of the printer. We could bypass the printer driver
and work directly with the printer I/O port.

Fortunately, the card has jumpers that can be changed and the printer
driver is on an EPROM that can be changed.

So you will need a soldering iron, an EPROM blaster, and an erased
2708 EPROM. [The EPROM Blaster from Apparat can blow 2708's. I
don't believe the Mountain Hardware ROMWRITER can.]

On the Epson interface card, the jumper marked "P4" should be removed
and installed on "M4" instead. This jumper are directly underneath
the EPROM and are labelled. [Ignore the three jumpers on the right
side of the EPROM.] This fix is not documented, although you can see
it in the Schematic Drawing of the card. I called Epson on the phone,
and they told me about it. With the jumper moved to M4, the high-bit
is transmitted correctly.

BUT!!! Now normal characters do not print normally! Instead, you get
the graphics characters! Okay, we need to modify the program inside
the EPROM. At location $C120 (assuming the card is in slot 1) you

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 489 of 2550

Apple II Computer Info

will find an instruction "AND #$7F". This clears the high-bit for
processing control codes only. We need to move this instruction to
$C112, so that the hihg-bit is cleared for transmitted codes also.
Here is a listing of the BEFORE and AFTER programs, with the moved
instruction starred. (Note that the hex values for the BCC and BPL
instructions changes too.)

<program here>

That fix in the program will clear the high-bit off every character
sent via the printer driver to the printer. We are back where we
started. Except that now the clever programmer can send characters
directly to the printer, bypassing the EPROM resident driver. Here is
how to send one character directly to the printer:
OUTPUT STA $C090 Assuming slot 1
.1 BIT #C1C1 Character picked up by printer?
 BMI .1 No, keep testing
I have tried everything above, and it all works perfectly. I hope it
proves useful to lots of you AAL readers.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 490 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:My.Ad.txt
==

S-C MACRO ASSEMBLER II...$80.00
S-C ASSEMBLER II Version 4.0.......................................$55.00
Upgrade from Version 4.0 to MACRO..................................$27.50
 Includes Manual, Diskette with Assembler and sample programs,
 and Quick Reference Card. Call for more information.

Source code of Version 4.0 on disk.................................$95.00
 Fully commented, easy to understand and modify to your own tastes.

Cross Assembler Patches for 6809...................................$22.50
 Requires possession of Version 4.0. Enables you to develop
 programs for the Motorola 6809 CPU. (The MILL from Stellation,
 EXCEL-9 from ESD Laboratories, or the Radio Shack Color Computer.)

Cross Assembler for 6800...$22.50
 Requires possession of Version 4.0. Enables you to develop
 programs for the Motorola 6800, 6801, and 6802 CPUs.

AAL Quarterly Disks..each $15.00
 Each disk contains all the source code from three
 issues of "Apple Assembly Line", to save you lots
 of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)....................$65.00
Source Code for FLASH! Runtime Package.............................$20.00

Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00

Program Line Editor (Neil Konzen, Synergistic Software)............$40.00
 (Comes on DOS 3.2 disk. I have added a second disk
 in DOS 3.3 format with a superior set of ESCAPE macros.)

S-C Games Disk (requires Integer BASIC)............................$15.00
S-C Games Disk (compiled by FLASH!, no need for Integer BASIC).....$25.00
 Includes 4x4x4 tic-tac-toe, lo-res space war, lo-res jig-saw
 puzzle, musical memory, pentominoes, and mastermind.

Blank Diskettes..................................package of 20 for $50.00
 With hub rings, bulk packaged, in plain white jackets.

Lower-Case Display Encoder ROM.....................................$25.00
 Works only Revision level 7 Apples. Replaces the encoder ROM.
 Comes with instructions.

Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
 Corrugated folder specially designed for mailing mini-floppy
 diskettes. Fits in standard 6x9-inch envelope. (Envelopes

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 491 of 2550

Apple II Computer Info

 5-cents each, if you need them.)

Zip-Lock Bags (2-mil, 6"x9")................................100 for $8.50
 (2-mil, 9"x12")..............................100 for $13.00

Books, Books, Books..........................compare our discount prices!
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "What's Where in the Apple", William Leubert.........($14.95) $14.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00
 "Apple Assembly Language", Don & Kurt Inman..........($12.95) $12.00

***We take Master Charge and VISA ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 492 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:On.DivBy10.txt
==

On Dividing by Ten...............................Jim Church

Some time ago you asked readers to come up with subroutines to divide
by ten (or multiply by one-tenth). I may have come up with the
smallest one, although it is certainly not the fastest.

By using SWEET-16 to merely subtract 10 over and over, until the
remainder is less than 10, and counting the number of subtractions, I
can divide a 16-bit value by ten in a 10-byte subroutine!

In fact, you can divide by any 16-bit value. My program assumes the
divisor is in $02,03 and the dividend is in $04,05. These are the
Sweet-16 registers 1 and 2. The quotient will be left in $04,05; the
remainder will be in $00,01.

I used a copy of Sweet-16 in RAM, from the source code on the S-C
Assembler II disk. If you use the copy in the Integer BASIC ROM's, or
in the RAM card Integer BASIC, change line 1130 to "SW16 .EQ $F689".

Here is the program listing:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 493 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:Overseas.Subs.txt
==

We are now sending AAL to over 800 subscribers. Of course most of
these are in the U.S.A., but an increasing number are subscribing from
other countries. We now have:

15 -- Canada 2 -- Hong Kong
5 -- Sweden 2 -- Ireland
5 -- New Zealand 1 -- Israel
4 -- France 1 -- Italy
4 -- Japan 1 -- Netherlands
3 -- Australia 1 -- Qatar
3 -- England 1 -- Saudi Arabia
3 -- West Germany 1 -- Spain
3 -- South Africa 1 -- Thailand
2 -- Argentina 1 -- Turkey
2 -- Belgium

And there are also at least a half dozen subscribers with APO
addresses, who are stationed in strange exotic lands.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 494 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:Patch.AW.PLE.txt
==

Patches for Applewriter to Unhook PLE......Bob Sander-Cederlof

If you use Applewriter a lot, like I do.... And if you use Neil
Konzen's Program Line Editor (PLE) a lot, like I do.... Then you
probably have at least once tried to BRUN TEDITOR while PLE was still
installed, like I have....

The result is maddening, to say the least. Everything seems fine.
You can load a file into Applewriter, or enter a new one. You can
edit to your hearts content. Then you try to SAVE it on disk. POW!
What happened?!! Since PLE is still hooked into DOS, it needs to
remain unmolested in memory. But Applewriter ignores its presence,
and puts the text right over the top of it.

I thought I had finally learned my lesson, but then I did it again!

Finally, I decided to make Applewriter unhook everything that PLE
might have hooked in, during initialization. It turned out to be
surprisingly easy. Here are the patches. I haved moved them up high
enough so that if you have the lower case patches installed there is
no conflict. Now I do not need to reboot to get rid of PLE.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 495 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:PrinterFIFOBuf.txt
==

Printer Handler with FIFO Buffer................Jim Kassel
[Jim Kassel is a subscriber from St. Paul, Minnesota.]

Before I get on with technical discussions, first let me say that I
have had a ball using S-C Assembler II Version 4.0. It definitely has
earned a place on the list of "The Greatest Things Since Sliced
Bread." My current version incorporates the block move and copy
feature described in the December '80 and January '81 issues of AAL
which have been a welcome enhancement.

Now...on with the article, about a super simple programming technique
that I have used extensively. I am a hardware logic designer by trade
and before the introduction of First In-First Out (FIFO) memory chips,
designers had to implement that function using an input address up-
counter, an output address up-counter, and an up/down counter to
determine character count. Now that the FIFO chips are available,
they are still a bit expensive for home computer use. By using the
old counter method implemented in software, not only is the FIFO free
but also extrememly expandable in size (within the bounds of the
computer memory, of course).

I am going to give a little background into the necessity, in my case,
for using this technique. I feel that the problem I experienced may
be interesting reading to others who may have had similar occurrences.

I was writing an assembly language program that would allow my Apple
II to become a terminal, using the Hayes Micromodem II and Epson MX-80
printer/Orange Micro Grappler interface card.

For the sake of versatility I would have preferred to perform
operations like JSR $Cx00 (x = slot number) when transferring data
with these devices. However, it became apparent that I would have to
bypass the firmware on the other interface cards. This was especially
true with the printer interface card. Because the printer takes 1-2
seconds to print out a line of characters, the interface becomes
unavailable for storage. Since the modem wants to supply characters
at a rate of up to 30 cps, at least that many characters were being
"dropped on the floor" while the printer interface card kept program
control.

I finally had to get the schematics and/or firmware disassemblies of
the other interface cards. From them I figured out the addresses of,
and the methods of communications for, the various control, data, and
(most important) status registers. This allowed me to check for
printer busy, modem transmit register not yet empty and modem receive
register not yet full. Now I could do other things when no data could
be transferred. No longer would I have to be a slave to the equipment
that is used for support!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 496 of 2550

Apple II Computer Info

The only other problem, then, was to be able to save the print
characters in a FIFO print buffer so they would not be forgotten while
the printer was busy printing the previous line of characters. In my
version I allow a whole page of memory ($94) to be used for the buffer
space. As long as there is not a horribly long burst of received
carriage returns (the slowest printer operation), 256 locations is
more than adequate because the MX-80 prints at least twice as fast as
the modem data rate. Plus non-control characters are transferred into
the printer line buffer much faster than incoming modem characters and
the FIFO almost always stays empty because of this.

As characters arrive from the modem they are placed into the FIFO (by
executing a JSR PRINT.FIFO.INPUT), then the input index (PBII) and the
character counter (PBCC) are incremented. Whenever the program is in
a wait loop (keyboard entries, modem data transfers, etc.) there are
no less than 33 milliseconds (300 baud/30 cps) to do non-critical
operations. This is more than enough time to execute a JSR
PRINT.FIFO.OUTPUT.1 instruction during each "round trip" of the wait
loops. If the printer is busy, the program is returned to with no
data transferred; if the printer is not busy, the program is returned
to after the next FIFO output character is sent, the output index
(PBOI) is incremented, and the character counter (PBCC) is
decremented. In any case, the program does not depend on the outcome
of the subroutine results. The subroutines maintain their
independence by correctly updating and monitoring the character
counter (PBCC).

In my version, I must append a line feed (<LF>) character to every
carriage return (<CR>) that is sent. I check every FIFO input
character to see if it is a <CR>. If so, I store a <LF> into the next
FIFO input location. Note that if I had decided to send the <LF>
directly to the printer by monitoring for the <CR> in the FIFO output
subroutine, I would again have been a slave to the printer while
waiting for it to become unbusy with the <CR> operation.

By making PRINT.FIFO.OUTPUT.2 a separate subroutine, I could write it
for any printer interface card with data and status registers and
still not require any changes to subroutines PRINT.FIFO.INPUT and
PRINT.FIFO.OUTPUT.1. This provided some versatility for converting
the program for some friends with different interfaces.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 497 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:Articles:Problem.QD5.txt
==

Problem with QD#5

The first 14 copies that I sent out of Quarterly Disk #5 were
incomplete. I forgot to include PMD and FPSUBS. If you have one of
those with serial #1 thru #14, send it back; I will add the programs
and return it. I'm sorry!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 498 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:DOS3.3:AW.Patch4PLE.txt
==

 1000 *--------------------------------
 1010 * APPLEWRITER PATCH TO UNHOOK PLE
 1020 *--------------------------------
 1030 .OR $803
 1040 .TF AW.1
 1050 JSR PATCH REPLACES "JSR $10F8"
 1060 *--------------------------------
 1070 .OR $1873 SAFE PATCH AREA
 1080 .TF AW.2
 1090 PATCH JSR $FE89 SET INPUT TO KEYBOARD
 1100 JSR $FE93 SET OUTPUT TO SCREEN
 1110 LDA #$9C
 1120 STA $9D01 RESTORE NORMAL DOS BUFFERS
 1130 LDA #3
 1140 STA $AA57 MAXFILES=3
 1150 JSR $A7D4
 1160 LDX #$2F
 1170 .1 LDA $9E51,X RESTORE PAGE 3 POINTERS
 1180 STA $3D0,X
 1190 DEX
 1200 BPL .1
 1210 JSR $3EA RE-HOOK DOS
 1220 JMP $10F8 DO WHAT THE "JSR PATCH" COVERED

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 499 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:DOS3.3:PutneyPrimeDrvr.txt
==

\
â:ó:∫"CHARLES PUTNEY'S FASTER PRIME GENERATOR ---------------------- -
----------------"y¢10:ñ15:∫"LOADING . . ."Å -ë:â™(D$–Á(4):∫D$"BLOAD
B.PUTNEY'S PRIMES"–2ó:¢10:ñ10:∫"HIT ANY KEY TO
START"Í<π49168,0:æA$:π49168,0 Pπ49232,0:π49239,0

Zå327686 _â:ÅA–8195¡24576«2:≠‚(A)–0ƒ∫A…8192;" ";< bÇP d≤ PRIME
TESTERi n≤ CHARLES H. PUTNEY� x≤ 18 QUINNS ROADè Ç≤ SHANKILL°

å≤ CO. DUBLIN∞ ñ≤ IRELAND÷ †≤ TIME FOR 100 RUNS = 42
SECONDS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 500 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:DOS3.3:S.DIVIDE.BY.TEN.txt
==

 1000 *--------------------------------
 1010 * DIVIDE ANY NUMBER BY 10 OR BY *
 1020 * ANYTHING ELSE FOR THAT MATTER *
 1030 * *
 1040 * DIVIDEND - REGISTER 0 $00.01 *
 1050 * DIVISOR - REGISTER 1 $02.03 *
 1060 * QUOTIENT - REGISTER 2 $04.05 *
 1070 * *
 1080 * EXAMPLE - DIVIDE 65534 BY 10 *
 1090 * 00:FE FF 0A 00 00 00 N 300G *
 1100 * *
 1110 * JIM CHURCH *
 1120 *--------------------------------
 1130 .OR $300
 1140 SW16 .EQ $9B89 (SWEET-16 ADDRESS IN RAM)
 1150 *--------------------------------
 1160 GO JSR SW16
 1170 STILL.GREATER
 1180 SUB 1 DEDUCT DIVISOR FROM DIVIDEND
 1190 INR 2 ADD 1 TO QUOTIENT
 1200 CPR 1 DIVIDEND > DIVISOR?
 1210 BC STILL.GREATER
 1220 RTN LEAVE SWEET-16
 1230 RTS
 1240 LENGTH .EQ *-GO
 1250 *--------------------------------
 1260 * LOOK IN $00.01 FOR REMAINDER *
 1270 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 501 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:DOS3.3:S.DOSOnErrXmpl.txt
==

 1000 .OR $803
 1010 *--------------------------------
 1020 *
 1030 * ALPHONSE - MULTI-LINGUAL TEXT EDITOR
 1040 *
 1050 * Chopped up to show ERROR trapping
 1060 * ala Applesoft ONERR command.
 1070 * NOTE: There is no RESUME but
 1080 * you are able to easily pick
 1090 * up DOS errors and handle them
 1100 * while disabling the RESET
 1110 * (on AutoStart ROM).
 1120 *
 1130 * by Lee Meador
 1140 *
 1150 * MACH - Main program entry
 1160 * REENT- Program re-entry
 1170 * ULOOP- Main program loop
 1180 * MY.RESET- handle RESET key pushed
 1190 * MY.ERROR- default error handler
 1200 * END - Exit to BASIC
 1210 * SETUP.DOS.TABLE- hook in RESET trapping
 1220 * ON.ERROR - set error trap
 1230 * OFF.ERROR- kill error trap
 1240 * CLEAR.ERROR- init error flags
 1250 * LOOK.FOR.FILE- find S,D of FILE
 1260 * MY.TABLE - copied into DOS table
 1270 *
 1280 *--------------------------------
 1290 DOS.TABLE .EQ $9D56
 1300 HOME.TEXT .EQ $FC58
 1310 TMP1 .EQ 0 PAGE 0
 1320 *--------------------------------
 1330 *
 1340 * THIS IS THE MAIN ENTRY POINT
 1350 * FOR ALPHONSE.
 1360 *
 1370 *--------------------------------
 1380 MACH JSR SETUP.DOS.TABLE
 1390 JSR CLEAR.ERROR NO ONERR
 1400 LDA #MY.ERROR THEN SET IT
 1410 LDY /MY.ERROR .. TO MY.ERROR
 1420 JSR ON.ERROR
 1430 JSR HOME.TEXT CLR TXT SCR
 1440 *->->->->->->->->->->->->->->->->
 1450 * DO INITIALIZE PROCESSING
 1460 *->->->->->->->->->->->->->->->->
 1470 JSR OFF.ERROR ON ERR TURNED OFF
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 502 of 2550

Apple II Computer Info

 1490 * RE-ENTRY POINT. NORMAL ENTRY COMES HERE TOO
 1500 *--------------------------------
 1510 REENT JSR SETUP.DOS.TABLE
 1520 JSR CLEAR.ERROR NO ON ERR
 1530 .10 JSR LOOK.FOR.FILE
 1540 BCC LOAD.FILE
 1550 LDA #MY.ERROR SET ERROR
 1560 LDY /MY.ERROR .. TO MY.ERROR
 1570 JSR ON.ERROR
 1580 JSR HOME.TEXT CLEAR SCRN
 1590 *->->->->->->->->->->->->->->->->
 1600 * PRINT "INSERT CORRECT DISK"
 1610 *->->->->->->->->->->->->->->->->
 1620 JMP .10 TRY AGAIN TO FIND TEXT.DIR
 1630 *--------------------------------
 1640 LOAD.FILE
 1650 LDA #MY.ERROR FIX ERROR HANDLER
 1660 LDY /MY.ERROR
 1670 JSR ON.ERROR
 1680 *->->->->->->->->->->->->->->->->
 1690 * THE REST OF INITIALIZING
 1700 *->->->->->->->->->->->->->->->->
 1710
 1720 ULOOP
 1730 *->->->->->->->->->->->->->->->->
 1740 * MAIN PROGRAM LOOP DOES EACH
 1750 * COMMAND TYPED
 1760 * EXIT COMMAND JUMPS TO "END"
 1770 *->->->->->->->->->->->->->->->->
 1780 JMP ULOOP .. LOOP IF UNDEF
 1790 *--------------------------------
 1800 *
 1810 * ROUTINE TO HANDLE USER HITTING
 1820 * RESET. (HANDLED IN DOS--DOS
 1830 * FIXES IT ON $3D3 EXIT.)
 1840 * NO HOOKS TO CHANGE AND FIX BACK
 1850 *
 1860 *--------------------------------
 1870
 1880 MY.RESET
 1890 *->->->->->->->->->->->->->->->->
 1900 * RESET POINTERS AND HIRES PAGE2
 1910 *->->->->->->->->->->->->->->->->
 1920 JMP ULOOP
 1930
 1940 *--------------------------------
 1950 *
 1960 * MY GENERAL ERROR HANDLER JUST
 1970 * PRINTS "ERROR NUMBER " AND
 1980 * THE NUMBER FOR THE ERROR THEN
 1990 * EXITS TO WHATEVER BASIC WAS
 2000 * RUNNING BEFORE.
 2010 *
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 503 of 2550

Apple II Computer Info

 2030 MY.ERROR
 2040 TXA SAVE ERR NUM
 2050 PHA
 2060 *->->->->->->->->->->->->->->->->
 2070 * HOME SCREEN AND PRINT THE
 2080 * MESSAGE "ERROR NUMBER "
 2090 *->->->->->->->->->->->->->->->->
 2100 PLA ERR NUMBER
 2110 *->->->->->->->->->->->->->->->->
 2120 * PRINT ACC AS DECIMAL NUMBER
 2130 * FOLLOWED BY A <RETURN>
 2140 *->->->->->->->->->->->->->->->->
 2150 END JSR OFF.ERROR FIX UP $AAB6
 2160 JMP $3D3 HARD EXIT RESTORS DOS.TABLE
 2170 *--------------------------------
 2180 *
 2190 * COPY MY ADDRESSES INTO THE DOS
 2200 * TABLE OF JUMPS (AT $9D56).
 2210 *
 2220 *--------------------------------
 2230 SETUP.DOS.TABLE
 2240 LDX #12 12 BYTES
 2250 .10 LDA MY.TABLE-1,X
 2260 STA DOS.TABLE-1,X
 2270 DEX
 2280 BNE .10
 2290 RTS
 2300 *--------------------------------
 2310 *
 2320 * DOS ERROR SETUP/RESET
 2330 *
 2340 * CALL CLEAR.ERROR AT START OF
 2350 * PROGRAM TO SET UP FLAG
 2360 * (ITS ALSO OK AFTER OFF.ERROR)
 2370 * CALL ON.ERROR WITH A,Y HOLDING
 2380 * THE ADDRESS YOU WANT TO JUMP
 2390 * TO IF A DOS ERROR OCCURS.
 2400 * CALL OFF.ERROR TO CANCEL ERROR
 2410 * TRAPPING AND REVERT TO NORMAL
 2420 * ERROR MSG AND JUMP TO BASIC
 2430 *
 2440 * WHEN THE ERROR ROUTINE IS
 2450 * CALLED (ON AN ERROR) THE X
 2460 * REGISTER HOLDS THE ERROR
 2470 * NUMBER AS LISTED P 114-115 OF
 2480 * THE DOS MANUAL.
 2490 *
 2500 * AN ERROR WILL CAUSE THE STACK
 2510 * TO BE MESSED UP. SO, SAVE IT
 2520 * WHEN YOU EXPECT ERRORS.
 2530 *
 2540 *--------------------------------
 2550 ON.ERROR
 2560 STA DOS.TABLE+4

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 504 of 2550

Apple II Computer Info

 2570 STY DOS.TABLE+5
 2580 LDA SAVE.AAB6 48K ONLY
 2590 BNE .10
 2600 LDX $AAB6 48K ONLY !!!!!
 2610 DEX
 2620 STX SAVE.AAB6 48K ONLY
 2630 .10 LDA #$40 PRETEND AS(])
 2640 STA $AAB6 48K ONLY
 2650 ASL $80
 2660 STA $D8 ONERR ACTIVE
 2670 ASL $00
 2680 STA $76 AS(]) RUNNING
 2690 STA $33 (REALLY)
 2700 RTS
 2710 OFF.ERROR
 2720 LDX SAVE.AAB6
 2730 BEQ CLEAR.ERROR ZERO->NEVER SET
 2740 INX
 2750 STX $AAB6 48K ONLY
 2760 CLEAR.ERROR
 2770 LDA #0 CLEAR FLAGS
 2780 STA SAVE.AAB6
 2790 STA $D8 CLEAR ONERR FLAG
 2800 RTS
 2810 *--------------------------------
 2820 SAVE.AAB6 .HS 00 FLAG
 2830 *--------------------------------
 2840 *
 2850 * LOOK FOR FILE ON VARIOUS DRIVES
 2860 *
 2870 * RETURNS CARRY CLEAR IF FOUND
 2880 * AND SET IF NOT. USES RENAME
 2890 * FILE,FILE TO SEE IF FILE EXISTS
 2900 *
 2910 *--------------------------------
 2920 LOOK.FOR.FILE
 2930 TSX SAVE STACK
 2940 STX LOOK.STACK
 2950 LDA #LOOK.ERR
 2960 LDY /LOOK.ERR
 2970 JSR ON.ERROR
 2980 LDA #0 TABLE OFFSET
 2990 STA LOOK.CNT
 3000 *--------------------------------
 3010 LOOK.LOOP
 3020 LDX LOOK.CNT
 3030 CPX LOOK.MAX (# OF TRYS)
 3040 BCS .99 FAIL EXIT
 3050 *->->->->->->->->->->->->->->->->
 3060 * CHECK FOR DISK CARD IN SLOT
 3070 * SO THINGS WON'T HANG. FIRST,
 3080 * LOAD THE ACC WITH THE SLOT
 3090 * THEN ...
 3100 *->->->->->->->->->->->->->->->->

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 505 of 2550

Apple II Computer Info

 3110
 3120 AND #$07 SLOT #
 3130 ORA #$C0
 3140 STA TMP1+1
 3150 LDA #0
 3160 STA TMP1 TMP1=CS00
 3170 * TMP1 IS SLOT ADDRESS
 3180 * CHECK BYTES 7,5,3,1 FOR MATCH
 3190 * AS AUTO MONITOR DOES
 3200 LDY #$07 SAME AS MONITOR ($FABA AUTO)
 3210 .10 LDA (TMP1),Y FETCH SLOT BYTE
 3220 CMP DISKID-1,Y IS IT DISK?
 3230 BNE LOOK.ERR NOPE...
 3240 DEY DOWN TWO
 3250 DEY
 3260 BPL .10 AND LOOP
 3270 * THERE IS A DISK CARD THERE
 3280 *--------------------------------
 3290 *->->->->->->->->->->->->->->->->
 3300 * PRINT OUT CTRL-D THEN "RENAME
 3310 * FILE,FILE,SX,DX" FILLING IN
 3320 * X ACCORDING TO THE VALUE OF
 3330 * LOOK.CNT
 3340 *->->->->->->->->->->->->->->->->
 3350 CLC FOUND IT
 3360 .99 LDX LOOK.STACK
 3370 TXS RESTORE STACK
 3380 RTS
 3390 *--------------------------------
 3400 * COME HERE IF DOS COMMAND FAILS
 3410 *--------------------------------
 3420 LOOK.ERR
 3430 INC LOOK.CNT
 3440 JMP LOOK.LOOP
 3450 *--------------------------------
 3460 LOOK.MAX .DA #6
 3470 LOOK.CNT .BS 1
 3480 LOOK.STACK .BS 1
 3490 *--------------------------------
 3500 DISKID .HS 20FF00FF03FF3C MATCHES DISK CARD+1 TO 7
 3510 *--------------------------------
 3520 *
 3530 * TABLE OF ERR/RESET ADDRESSES
 3540 *
 3550 *--------------------------------
 3560 MY.TABLE .DA MY.RESET
 3570 .DA MY.RESET
 3580 .DA MY.ERROR
 3590 .DA $E000
 3600 .DA MY.RESET
 3610 .DA MY.RESET
 3620 .EN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 506 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:DOS3.3:S.EpsonROMChng.txt
==

 1000 *--------------------------------
 1010 * CHANGES TO EPSON CONTROLLER 2708 ROM
 1020 *--------------------------------
 1030 *---AS IT NOW IS-----------------
 1040 .OR $C111
 1050 .TA $811
 1060 PLA
 1070 TAY
 1080 DEX
 1090 TXS
 1100 PLA
 1110 PLP
 1120 TAX
 1130 BCC $C152
 1140 LDA $5B8,X
 1150 BPL $C138
 1160 TYA
 1170 AND #$7F STRIP OFF SIGN
 1180 EOR #$30
 1190 *---AS IT NEEDS TO BE------------
 1200 .OR $C111
 1210 .TA $811
 1220 PLA
 1230 AND #$7F STRIP OFF SIGN BIT
 1240 TAY
 1250 DEX
 1260 TXS
 1270 PLA
 1280 PLP
 1290 TAX
 1300 BCC $C152
 1310 LDA $5B8,X
 1320 BPL $C138
 1330 TYA
 1340 EOR #$30
 1350 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 507 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:DOS3.3:S.FIFOPrntHndlr.txt
==

 1000 *---------------------------------
 1010 * PRINTER HANDLER
 1020 * USED SO THAT PROGRAM DOESN'T HANG
 1030 * WHEN PRINTER IS BUSY
 1040 *
 1050 * JIM KASSEL
 1060 * 1161 GOODRICH AVE.
 1070 * ST. PAUL, MN 55105
 1080 *---------------------------------
 1090 PRINT.SLOT.SHIFTED .EQ $10
 1100 * PRINTER SLOT # SHIFTED LEFT BY 4
 1110 PBII .EQ $CE PRINT BUFF INPUT INDEX
 1120 PBOI .EQ $CF PRINT BUFF OUTPUT INDEX
 1130 PBCC .EQ $1F PRINT BUFF CHAR COUNT
 1140 PBUFF .EQ $9400 PRINT BUFF BASE ADDRESS
 1150 CR .EQ $D CARRIAGE RETURN WITH MSB CLR
 1160 LF .EQ $A LINE FEED WITH MSB CLR
 1170 *---------------------------------
 1180 START .EQ $800
 1190 .OR START
 1200 *---------------------------------
 1210 * PRINT BUFF INPUT SUBROUTINE
 1220 *---------------------------------
 1230 PRINT.FIFO.INPUT
 1240 PHA
 1250 AND #$7F CLEAR BIT 7
 1260
 1270 .1 LDY PBII
 1280 STA PBUFF,Y STORE CHAR IN PRINT BUFF
 1290 INC PBII INCREMENT INPUT INDEX
 1300 INC PBCC INCREMENT CHAR COUNT
 1310
 1320 CMP #CR CARRIAGE RETURN?
 1330 BNE .2 NO
 1340 LDA #LF YES
 1350 BNE .1 SEND <LF>
 1360
 1370 .2 PLA RESTORE CHAR
 1380 RTS
 1390 *---------------------------------
 1400 * PRINTER OUTPUT SUBROUTINE
 1410 *---------------------------------
 1420 PRINT.FIFO.OUTPUT.1
 1430 LDA PBCC PRINT BUFF EMPTY?
 1440 BEQ .1 YES
 1450
 1460 LDY PBOI NO
 1470 LDA PBUFF,Y GET PRINT CHAR
 1480 JSR PRINT.FIFO.OUTPUT.2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 508 of 2550

Apple II Computer Info

 1490 * HANDLER OF SPECIFIC INTERFACE
 1500 BCS .1 DON'T UPDATE IF PRINTER WAS BUSY
 1510
 1520 INC PBOI ELSE, INCREMENT OUTPUT INDEX
 1530 DEC PBCC AND DECREMENT CHAR COUNT
 1540
 1550 .1 RTS
 1560 *---------------------------------
 1570 * HANDLER FOR THE GRAPPLER (+)
 1580 * INTERFACE CARD
 1590 * AND MX-80 PRINTER(++)
 1600
 1610 * PRINT CHAR MUST BE IN THE A-REG
 1620 * CARRY SET IF CHAR NOT SENT
 1630 * CARRY CLEARED IF CHAR SENT
 1640
 1650 PSTAT .EQ $C081 PRINTER STATUS REG
 1660 PREG .EQ $C081 PRINTER DATA REG
 1670 PSTRBL .EQ $C082 PRINTER STROBE LOW
 1680 PSTRBH .EQ $C084 PRINTER STROBE HIGH
 1690 *---------------------------------
 1700 PRINT.FIFO.OUTPUT.2
 1710 TAX SAVE PRINT CHAR
 1720 LDY #PRINT.SLOT.SHIFTED
 1730 LDA PSTAT,Y GET PRINTER STATUS
 1740 AND #$A MASK
 1750 EOR #$2 PRINTER SELECTED AND NOT BUSY?
 1760 BNE .1 NO, EXIT
 1770
 1780 TXA YES, RESTORE PRINT CHAR
 1790 STA PREG,Y LOAD PRINTER OUTPUT REG
 1800 STA PSTRBL,Y SET STROBE
 1810 STA PSTRBH,Y CLR STROBE
 1820 CLC CLEAR CARRY
 1830 BCC .2 EXIT
 1850 .1 SEC SET CARRY
 1860
 1870 .2 RTS
 1880 *---------------------------------
 1890 END
 1900 SIZE .EQ END-START
 1910 *---------------------------------
 1920 * NOTE:
 1930 * (+) : TRADEMARK OF ORANGE MICRO, INC.
 1940 * (++): TRADEMARK OF EPSON AMERICA, INC.
 1950 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 509 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8202:DOS3.3:S.Putney.Primes.txt
==

 1000 .OR $8000 SAFELY OUT OF WAY
 1010 .TF B.PUTNEY'S PRIMES
 1020 *---------------------------------
 1030 BASE .EQ $2000 BASE OF PRIME ARRAY
 1040 BEEP .EQ $FF3A BEEP THE SPEAKER
 1050 *---------------------------------
 1060 * MAIN CALLING ROUTINE
 1070 *
 1080 MAIN LDA #100 DO 100 TIMES SO WE CAN MEASURE
 1090 STA COUNT THE TIME IT TAKES
 1100 JSR BEEP ANNOUNCE START
 1110 .1 JSR ZERO CLEAR ARRAY
 1120 LDA #$03
 1130 STA START SET STARTING VALUE
 1140 JSR PRIME
 1150 DEC COUNT CHECK COUNT
 1160 BNE .1 DONE ?
 1170 JSR BEEP SAY WE'RE DONE
 1180 RTS
 1190 *---------------------------------
 1200 * ROUTINE TO ZERO MEMORY
 1210 * FROM $2000 TO $6000
 1220 *
 1230 ZERO LDA #BASE+1 START AT $2001
 1240 STA .1+1 MODIFY OUR STORE
 1250 LDA /BASE+1
 1260 STA .1+2
 1270 LDA #$00 GET A ZERO
 1280 TAX SET INDEX
 1290 LDY #$40 NUMBER OF PAGES
 1300 .1 STA $FFFF,X MODIFIED AS WE GO
 1310 INX EVERY ODD LOCATION
 1320 INX
 1330 BNE .1 NOT DONE
 1340 INC .1+2 NEXT PAGE
 1350 DEY
 1360 BNE .1 NOT YET
 1370 RTS
 1380 *---------------------------------
 1390 * PRIME ROUTINE
 1400 * SETS ARRAY STARTING AT BASE
 1410 * TO $FF IF NUMBER IS NOT PRIME
 1420 * CHECKS ONLY ODD NUMBERS > 3
 1430 * INC = INCREMENT OF KNOCKOUT
 1440 * N = KNOCKOUT VARIABLE
 1450 *
 1460 PRIME LDA START
 1470 ASL INC = START * 2
 1480 STA INC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 510 of 2550

Apple II Computer Info

 1490 JSR SQUARE SET N = N * N
 1500 CLC ADD BASE TO N
 1510 LDA N+1
 1520 ADC #BASE
 1530 TAX KEEP LOW ORDER PART IN X
 1540 LDA #0 N+1 TO ZERO
 1550 STA N+1
 1560 LDA N+2
 1570 ADC /BASE
 1580 STA N+2
 1590 TAY
 1600 LOOP LDA #$FF FLAG AS NOT PRIME
 1610 N STA $FFFF,X REMEMBER THAT N IS REALLY AT N+1
 1620 CLC N = N + INC
 1630 TXA N=N+INC
 1640 ADC INC
 1650 TAX
 1660 BCC LOOP DONT'T BOTHER TO ADD, NO CARRY
 1670 INY INC HIGH ORDER
 1680 STY N+2
 1690 CPY /BASE+$4000 IF IS GREATER THAN $6000
 1700 BCC LOOP NO, REPEAT
 1710 LDX START GET OUR NEXT KNOCKOUT
 1720 .1 INX
 1730 INX START = START + 2
 1740 BMI .2 WE'RE DONE IF X>$7F
 1750 LDA BASE,X GET A POSSIBLE PRIME
 1760 BNE .1 THIS ONE HAS BEEN KNOCKED OUT
 1770 STX START
 1780 BEQ PRIME ...ALWAYS
 1790 .2 RTS
 1800 *---------------------------------
 1810 * SQUARE ROUTINE
 1820 * TAKES SQUARE OF NUMBER
 1830 * IN START (ONE BYTE) AND
 1840 * PUTS RESULT IN N+1 (LOW)
 1850 * AND N+2 (HIGH)
 1860 *
 1870 SQUARE LDA #$00
 1880 STA N+1 CLEAR N
 1890 STA N+2
 1900 STA MULT+1 AND MULTIPLIER HIGH
 1910 LDA START
 1920 STA MULT MULT LOW = START
 1930 STA SHCNT SHIFT COUNTER
 1940 LDX #$08 EIGHT SHIFTS
 1950 .1 ROR SHCNT GET LS BIT IN CARRY
 1960 BCC .2 DON'T ADD THIS TIME
 1970 CLC N = N + MULT
 1980 LDA N+1
 1990 ADC MULT
 2000 STA N+1
 2010 LDA N+2
 2020 ADC MULT+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 511 of 2550

Apple II Computer Info

 2030 STA N+2
 2040 .2 CLC SHIFT MULT (BOTH BYTES)
 2050 ROL MULT
 2060 ROL MULT+1
 2070 DEX
 2080 BNE .1 MORE BITS ?
 2090 RTS
 2100 START .DA #*-* STARTING KNOCKOUT
 2110 INC .DA #*-* INCREMENT FOR KNOCKOUT
 2120 COUNT .DA #*-* COUNT FOR 100 TIMES LOOP
 2130 MULT .DA *-* MULTIPIER
 2140 SHCNT .DA #*-* SHIFT COUNT MULTIPLIER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 512 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:Code.Alwys.Skip.txt
==

Tricky Code that Always Skips..............Bob Sander-Cederlof

All microprocessors have an instruction which does nothing, usually
called "NOP". The 6502 is no exception.

In spite of appearances, an instruction which does nothing can be
quite useful. However, this article is about another kind of
instruction, which does ALMOST nothing.

Some microprocessors have this kind, which do nothing except skip over
one or more bytes. That is, they act like a very short forward jump.
The advantage over using an actual jump or branch instruction is in
memory saved. Relative branches on the 6502 take two bytes of memory;
jumps take three. A skip-one or skip-two instruction would take only
one byte, IF the 6502 had such.

IF? Well, you certainly do not see an instruction like this among the
56 in any of the books, do you?

However, if you disassemble things like DOS, Applesoft ROMs, and
printer interface ROMs, you will find tricky ways to skip with only
one byte. For example, in many Apple printer interfaces, the first
three bytes look like this:

C100- 18 CLC
C101- B0 38 BCS $C13B

Now isn't that silly: to clear carry, and then to use BCS to branch
if it is not clear!? No, the BCS is just being used to skip over the
$38 stored in $C102. If you enter the code at $C102, that $38 is a
SEC instruction. Thus, depending on whether you entered at $C100 or
$C102, carry is clear or set respectively. The BCS opcode byte is
being used as a skip-one opcode.

Another kind of skip is found in various places inside your Apple.
You might find the BIT instruction used this way. In fact, it seems
to me that I run across BIT being used as a skip-one or skip-two
instruction more often than I see it used to test bits! Here is an
example from Applesoft ROMs:

E196- A2 78 LDX #$6B "BAD SUBSCRIPT" MSG
E198- 2C A2 35 BIT $35A2 TRICK: BIT SKIPS OVER 2
E19B- 4C 12 D4 JMP $D412 PRINT ERROR MESSAGE

The code should really look like this:

E196- A2 78 LDX #$6B "BAD SUBSCRIPT" MSG
E198- 2C .HS 2C SKIP NEXT TWO BYTES
E199- A2 35 LDX #$35 "ILLEGAL QUANTITY" MSG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 513 of 2550

Apple II Computer Info

E19B- 4C 12 D4 JMP $D412 PRINT ERROR MESSAGE

You have to be a little careful about what you skip over. The BIT
instruction is actually executed, and so status flags Z, N, and V are
possibly changed. Also, the two bytes skipped over represent a memory
address to the BIT opcode; that memory location will be accessed. No
problem, unless it just happens to be an address in the range of the
I/O addresses (from $C000 to $CFFF). If it does, something strange
might occur, like turning on a disk drive....

If you remember my article about the "So-Called Unused Opcodes", from
about a year ago, there are some REAL skip-one and skip-two
instructions. They do not modify any status bits, and they do not
reference any memory addresses. I would recommend using ".HS 3C"
rather than ".HS 2C" for this reason. "3C" is not a defined or
supported opcode, but it apparently is built-in to all existing
6502's. (No guarantee here...test your own before you make a big
commitment.)

If you want to skip only one byte, you can use the other BIT form
($24); it works on a zero page address, which will not bother any I/O
addresses. If you don't want to modify any status bits, try ".HS 34".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 514 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:Correx.2.FIFO.txt
==

Correction to Kassel's FIFO Handler..............Bill Morgan

Ever the experimenter, I started playing with Jim Kassel's FIFO
Buffered Printer Handler as soon as I read about it. I learned a lot,
but maybe I can spare you some difficulty with the following
information.

1. Be aware that the three indices PBII, PBOI, and PBCC must be all
cleared to zero before the first time you activate the handler.

2. Line 1720 was printed in AAL with a missing character. Change
from

 1720 LDY PRINT.SLOT.SHIFTED

to 1720 LDY #PRINT.SLOT.SHIFTED

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 515 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:EPROM.Blstr.Def.txt
==

EPROM Blaster Defined......................Bob Sander-Cederlof

Several readers have asked what an EPROM blaster is. This is a
device, more commonly called an EPROM programmer or writer or burner,
which writes data into an EPROM. The EPSON interface has an EPROM
device on it, called a "2708", which can hold 1024 bytes of data or
program. (Only the first 256 bytes are actually used by EPSON.) A
company called Apparat advertises a card for the Apple II which will
write (burn, program, blast,...) stuff into a 2708. They call their
board the "Blaster".

Mountain Computer makes the ROMWRITER board for the Apple. This board
can only burn single-voltage 2716 EPROMs, the Apparat board can burn
2708s, 2716s, and 2732s, whether single or multiple voltages. And
ROMWRITER costs almost twice as much.

Maybe you are asking, "What on earth is an EPROM, anyway?" EPROM
stands for "Erasable Programmable Read Only Memory". The "memory"
part is easy: each EPROM can hold a large number of bytes of data or
program. A 2708 holds 1024 bytes, 2716 holds 2048 bytes, and a 2732
holds 4096 bytes.

"Read Only" means that once the bytes are recorded, they cannot be
changed. They are permanent, even if power is removed.
"Programmable" means that you and I can, with a burner or blaster",
record the bytes; the chip comes un-recorded from the factory. Non-
programmable ROMs are recorded during manufacturing.

"Erasable" means that you can erase what you have recorded and re-use
the chip. An ultraviolet lamp is used to erase the contents; I bought
a $75 EPROM Eraser from Logical Devices in Florida for the job.
Maintaining the level of confusion, still other letters can be added
to the acronym: EEPROMs are "Electrically" erasable; EAROMs are too
(I don't know the difference between the two, if any).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 516 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:Front.Page.txt
==

$1.50

Volume 2 -- Issue 6 March, 1982

In This Issue...

Reading Two Paddles at the Same Time 1
Circulation and Advertising Rates 1
S-C Macro Assembler 3
EPROM Blaster Defined 9
Correction to Kassel's FIFO Handler 9
A Review of Amper-Magic 10
More About the EPSON Interface 14
The Other EPSON Manual (A Review) 15
Tricky Code that Always Skips 17
Using the Applied Engineering 19
Leventhal's 6502 Subroutines (A Review) 23
Reading Two Paddles (program) 24

Reading Two Paddles at the Same Time.......Bob Sander-Cederlof

You may have discovered by now that if you try to read both game
paddles from BASIC, there is some interaction at certain ranges. The
problem is that there is only one trigger for both (really, all four)
analog ports. If one of them times out long enough before the other
one, you will read the tail end of the count on the second timer.

I wrote a little subroutine (see back page) which reads both paddles
at once, eliminating all interaction. It also stretches the range,
meaning you need a higher resistance than the standard paddles to get
a full 0-255 counting range. Programs which use both paddles will run
faster using this subroutine, because you get two readings in the time
of one.

Circulation and Advertising Rates

Now that circulation is over 1000 copies per month, it seems
appropriate to charge more per page for advertising than I did when
there were only 100 to 200 subscribers. The new rate, effective
immediately, is $30 for a full page, $15 for a half page.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 517 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:More.Epson.Intf.txt
==

More About the EPSON Interface................Peter Bartlett

Whoops! I left out something in my instructions for modifying the
EPSON interface card!

The software driver on the interface card is $100 bytes long, and
resides in the first 256 bytes of the 1024-byte EPROM. However, the
folks at EPSON got a couple of the address lines mixed up. Burning a
new EPROM is not as straightforward as it should be.

The problem is that chunks of the program are shuffled. To
understand, consider the $100 bytes to be divided into 4 parts of $40
bytes each. Part 0 is $0 to $3F, part 1 is $40 to $7F, part 2 is $80
to $BF, and part 3 is $C0 to $FF. When blasting the EPROM, the
sequence of these parts must be changed. Instead of 0,1,2,3, the
sequence must be 1,0,3,2.

When you list the contents of the EPROM while it is in the EPSON card,
the contents appear normal. But if you remove the EPROM from the card
and read it with another device, it will be in its juggled format.

Another point worth emphasizing is that this fix does not allow
characters with the high-bit set to pass through the normal software
driver. This driver is only compatible with the Apple's normal ASCII
output. However, both Applesoft and machine language programmers can
send 8-bit characters by bypassing the card as described last month in
my article.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 518 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:New.SCAsm.Ad.txt
==

S-C Software Corporation is pleased to introduce the S-C Macro
Assembler, the latest version of our most popular product. The S-C
Assembler II Version 4.0 already has the reputation of being the
easiest editor/assembler to learn, to remember, and to use...now the
S-C Macro Assembler provides a new level of power and performance for
the beginner and professional programmer alike.

29 Commands, including a convenient EDIT command with 15 subcommands.
COPY and REPLACE commands further simplify entry and modification of
even the most complex programs.

20 Assembler Directives (Pseudo-Ops) provide all features necessary
for professional software development, including conditional assembly
and macro generation.

Operates in any Apple II or Apple II Plus with at least 32K RAM and
one disk drive. Any additional memory or disk drives will be used as
required. A Language Card version is also included.

A memory size of 48K allows source programs of over 24,000 bytes to be
handled entirely within RAM. The Language Card version allows source
programs of over 32,000 bytes. Much larger programs can be edited and
assembled using the "INCLUDE" and "TARGET FILE" capabilities, up to
the limit of on-line disk storage.

Programs can be edited, assembled, and tested entirely within the
framework of the S-C Macro Assembler. The editor and assembler are
co-resident, allowing rapid cycles of modification, re-assembly, and
check-out. All DOS and Apple Monitor commands are active as well,
providing a familiar interface to the standard Apple features.

Uses its own high-speed technique to store source files, but also can
read or write standard TEXT files. You can EXEC in files from another
assembler, use some other text editor to prepare files, keep a library
of routines on disk to EXEC into any program, or use S-C Macro
Assembler to prepare EXEC files for any purpose.

Price is only $80! Includes diskette with Macro Assembler and sample
programs, a 100-page Reference Manual, and a Programmer Reference
Card. (Registered Owners of S-C Assembler II Version 4.0 may purchase
the upgrade package for only $27.50)

Already well-known for excellent support, S-C Software Corporation
pledges to continue development of new features, and to help owners
gain the maximum benefit from the S-C Macro Assembler. In addition to
telephone consultation for registered owners, a monthly newsletter is
available by subscription (currently $15/year). The "Apple Assembly
Line" covers items of interest to assembly language programmers at all
levels, and has helped many to advance their programming skills.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 519 of 2550

Apple II Computer Info

Commands

 Source: NEW, LOAD, SAVE,
 TEXT, HIDE, MERGE

 Editing: LIST, FIND, EDIT,
 DELETE, REPLACE,
 COPY, RENUMBER

 List Control: FAST, SLOW, PRT, "

 Object: ASM, MGO, VAL,
 SYMBOLS

Miscellaneous: AUTO, MANUAL,
 INCREMENT, MEMORY,
 MNTR, RST, USR

All Apple Monitor Commands

All Apple DOS Commands

Assembler Directives

.OR Origin

.TA Target Address

.TF Target File

.IN Include File

.EN End of Program

.EQ Equate

.DA 1- or 2-byte Data

.HS Hex String

.AS ASCII String

.AT ASCII Terminated

.BS Block Storage

.TI Title

.LIST Listing Options

.PG Page Eject

.DO Conditional

.ELSE Assembly

.FIN

.MA Macro Definition

.EM End of Macro

.US User Directive

Apple is a trademark of Apple Computer

We take Master Card and Visa

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 520 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:OtherEpsonMan.txt
==

The Other EPSON Manual -- A Review.........Bob Sander-Cederlof

If you have an EPSON MX-80 printer tied to your Apple (who doesn't),
you probably share the frustration of trying to learn how to use it
with a manual aimed at Radio Shack TRS-80 owners. Bill Parker decided
to do something about it.

Bill studied, analyzed, experimented, and perspired; then he wrote the
key facts down in Apple-oriented English. With description and sample
program listings he shows you how to:

1. Use all 12 print modes (emphasized, double width, etc.).
2. Underline.
3. Use subscripts and superscripts.
4. Set half-spacing, double-spacing, etc.
5. Do formfeeds, vertical tabs, etc.
6. Use horizontal tabs.
7. Use the printer commands inside a word processor.
8. Do some special tricks through the parallel interface
 card (true underlining, single-word emphasis, etc.).

The book(let) is 8-1/2 by 11, 17 pages, bound with a plastic comb.
Not elegant, but sufficient; and anyway, it is the information he is
selling. The price is $4.98, postpaid, from Bill Parker, Cut The Bull
Software, P. O. Box 82761, San Diego, CA 92138.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 521 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:Rvw.6502.Subs.txt
==

Leventhal's 6502 Subroutines

6502 Assembly Language Subroutines, by Lance Leventhal and Winthrop
Saville, is a book all of you will want. Specs: 550 pages, 7-1/2 by
9-1/4 inches, paperback, $12.99 from Osborne/McGraw-Hill. I'll send
you a copy for $12 plus $2 shipping (it weighs two pounds!).
Naturally, shipping will be more if you live outside the USA.

Quoting from the back cover:

"If you want to use a specific assembly language routine, learn
assembly language quickly, or improve your programming skills, 6502
Assembly Language Programming is for you. It provides code for more
than 40 common 6502 subroutines, including code conversion, array
manipulation, arithmetic, bit manipulation, string processing,
input/output, and interrupts. It describes general 6502 programming
methods (including a quick summary for experienced programmers), and
tells how to add instructions and addressing modes [using several
instructions in sequence, subroutines, or macros]. It even discusses
common 6502 assembly language programming errors."

All of the subroutines are thoroughly documented, making it easy to
understand how they work, and how to use them. The subroutines are
useful in the Apple with no changes, other than those required to
interface to your own programs. Some of the subroutines even
reference the Apple monitor ROMs!

The first five copies I bought were gone within three hours of their
arrival, so I ordered 20 more. Want one?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 522 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:Rvw.AmperMagic.txt
==

A Review of AMPER-MAGIC....................Bob Sander-Cederlof

AMPER-MAGIC is a utility program which makes it easy to add machine
language subroutines to Applesoft programs and thereby extend the
capabilities of Applesoft BASIC. It was written by Bob Nacon, one of
our subscribers from New Jersey. For $75, you get a 51-page reference
manual; an administrative program; and a collection of 23 subroutines,
to be added to your programs.

Why We Need It

Here are some common problems that we have all had in developing
machine language routines for Applesoft:

* Where do you put it? You don't want to clobber
 Applesoft or DOS, and you don't want either of
 them to clobber your routines.
* How do you get to it? CALL? Ampersand? USR?
* What do you do when you want to add a second routine?
* How do you pass data to the subroutine, and get answers
 back?

Most of the time we have put all of our routines at location $300-$3CF
because that is a free area. It works great until you need the same
space for a second or third routine. We also have been using the POKE
technique of placing the machine language routine at location $300 and
then calling it with CALL 768 or using the Ampersand command. This is
fine for 1 or 2 routines, but you lose the full advantage of the speed
of these routines waiting for them to be POKEd into memory. AMPER-
MAGIC solves all of the above problems nicely.

AMPER-MAGIC hides your subroutines "underneath" your Applesoft program
so that they are loaded automatically along with the Applesoft
program. AMPER-MAGIC can handle 255 different subroutines of varying
lengths. You can use as much space as necessary, up to the limit of
memory. That solves the problem finding space for your routines.

The Ampersand ("&") command of Applesoft followed by the name of your
routine is used to gain access to your subroutines. More about
subroutine names later. By pointing the Ampersand vector at $3F5-$3F7
to the proper place, AMPER-MAGIC decodes the name of the routine
desired and then transfers control to it. That solves the problem of
linkage to more than one subroutine, and in a way that is human
readable!

There is one limitation to the subroutines which can be used within
AMPER-MAGIC: they must be fully relocatable subroutines. Without any
change or reassembly they must be able to work at a new address.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 523 of 2550

Apple II Computer Info

Why? Because they are located at the end of your Applesoft program.
As you edit your program, even just a little, the subroutines will
probably move to a different address.

A fully relocatable subroutine is one which does not make any direct
references to any address WITHIN the subroutine. There can not be any
JMP, JSR, LDA, STA, etc. to an address within the subroutine. Only
relative addressing branch commands may be used within subroutines.

Many of the subroutines published within AAL this past year were not
fully relocatable but they could be made so easily. Maybe I will
spend some time in a future issue discussing techniques on how to make
subroutines fully relocatable. Roger Wagner, in his "Assembly Lines"
column in Softalk Magazine, explained many of the motives and methods
involved.

AMPER-MAGIC lets you select any name you wish for your subroutines,
even for the subroutines in the AMPER-MAGIC library.

Names may be up to 4 bytes long. That is bytes, not necessarily
characters. Applesoft tokenizes every command name or function name
into a one byte token. Thus you can call your subroutines PRINT,
INPUT, GET, etc. which only take up one byte each. A name like
CLEAREOL is a legal AMPER-MAGIC name and only takes up 4 bytes (one
for CLEAR, three for EOL). This allows you to name your own
subroutines very descriptively for future reference.

To call a subroutine from within your program you simply use the &
(Ampersand) followed by your subroutine name, followed by a "," and
then your variables. The comma is not needed if there are no
variables. For example: &GOTO,A*5 or &CLEAREOL:.

The AMPER-MAGIC administrative program is a smooth operating menu
driven program which prompts you all along the way. Here is how you
use it:

1. Load your Applesoft program.
2. Put the AMPER-MAGIC diskette in a drive and type
 EXEC AMPER-MAGIC. (Specify slot and drive if not
 the same as the last accessed one.)
3. Fill in information after the prompts, as required.

By following the menu and the well-written documentation, you can add,
change, delete, and rename any subroutine in your program. You may
add or delete any number of subroutines in one session.

You can load a subroutine directly from the keyboard in either decimal
or hex. Thus many of the routines published in AAL can just be typed
directly into AMPER-MAGIC.

If you have subroutines already assembled on disk, you simply tell
AMPER-MAGIC the file names watch it work. AMPER-MAGIC makes room in
the subroutine table at the end of your program, and loads the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 524 of 2550

Apple II Computer Info

subroutine into your program. Really neat! Everything is handled
automatically except for the subroutine name, which you must supply.

There isn't enough room here to describe all the other functions
available, but suffice to say that AMPER-MAGIC gives you all the
administrative functions you need to selectively add or delete any
subroutines from your program easily and quickly.

Once you have finished with AMPER-MAGIC you simply EXIT via the menu.
AMPER-MAGIC returns all your program pointers to their previous state,
and clears itself out. Your program has now been modified and you can
run it to check out the new subroutine. If you need to make further
changes, just EXEC AMPER-MAGIC again.

The AMPER-MAGIC program alone is probably enough to justify its
purchase, but you also get 23 ready to use subroutines. Some of these
were originally published right here in AAL. Bob Nacon modified them
wherever necessary to make them fully relocatable.

Here is a list of some of the subroutines on the disk:

&FIND,v$,v$,v Find a substring in a string.
&DARY,v Delete an array.
&GET,v,v PEEK a two-byte value.
&GOSUB,v GOSUB to a variable line.
&GOTO,v GOTO to a variable line.
&INPUT,v$ Input a line containing even commas,
 quotation marks, or colons.

The ones listed above only give you the flavor. Remember, there are
23!

One of the best features of all of these subroutines is that all
information is passed to and from the subroutines via variables, just
like regular commands. No peeking or poking to set up parameters.
This is a very professional touch, and makes the subroutines truly
useful.

Each subroutine is described in detail, with all the information and
examples you need to use them effectively.

As you can probably tell, I like this program. It provides all of us
an easy way to add all those neat routines we have been working on, or
wanting to work on, and never had a good way of accessing them.

AMPER-MAGIC is available from your local dealer or from AURORA Systems
Inc., Madison, WI 53704.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 525 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:Rvw.TimeII.Card.txt
==

Using the Applied Engineering Time II......Bob Sander-Cederlof

You have probably noticed Dan Pote's ad in this and previous issues of
AAL. I finally got one of his clock-calendar cards, and learned how
to program it.

A disk full of sample programs comes with the board, but none of them
were exactly what I wanted. I wanted a simple short program to read
the time and date and display it on the screen; and I wanted some
patches to DOS 3.3 which would append the date in MM/DD/YY format to
any files SAVEd or BSAVEd.

The clock already had the correct time and date set when it arrived in
the mail. The onboard rechargeable battery keeps the circuit running
even when you remove the card from your computer! A couple of times I
stopped the clock when I was working on my programs, so I just used
one of the time-setting programs on the disk to correct the time.

How do you read the time and date? There are 13 registers on the
board. Each register holds one digit of the time and date
information. To read a particular register, you store the register
number into the clock input port, and then read the clock output port.

In order to avoid reading the time or date while it is being changed,
you momentarily stop the clock before reading, and restart it when you
are finished. You don't want to keep the clock stopped for more than
one second, or it will lose time. After stopping the clock, you have
to wait at least 150 microseconds before reading it. If the clock was
updating when you stopped it, the delay allows the update in progress
to complete.

The following program reads the time and date and writes it on the
bottom line of the screen.

<program here>

My Time II card is in slot 5. It will work in any slot from 1 to 7.
Change line 1040 if you use a different slot. There are two addresses
used to talk to the Time II card: $C081+slot*16, and $C082+slot*16.
For slot 5, these are $C0D1 and $C0D2. Line 1070 loads "slot*16" into
the X-register, so that loads and stores into the Time II registers
will be directed to the proper slot.

Lines 1080,1090 stop the clock. Storing any value at $C0D1 of the
form xxx1xxxx will stop the clock. If bit 4 is a zero the clock will
be started again, as in lines 1270,1280.

Lines 1100-1260 read the date and time and store them on the screen.
The reading is under the control of a format map, line 1340. The

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 526 of 2550

Apple II Computer Info

format map contains three kinds of bytes: 00, meaning the end of the
map; 2x, register addresses; and ASCII characters with the high bit
set. The Y-register indexes access to the map, and also the
corresponding position on the screen line.

Lines 1110-1130 get the next map byte, and analyze it. If it is 00,
the time and date have been read; then lines 1270-1320 restart the
clock and test if you want to keep reading or not. If the byte is
negative, then it is an ASCII character; Line 1240 stores the
character on the screen line, and reading continues. If neither zero
nor negative, the byte is a register address. Line 1140 selects the
register by storing its address at $C0D2.

Lines 1150-1230 read the selected register. If the register was the
tens-digit of the hour, then the flag bits are removed. These flag
bits indicate whether you are using 12-hour or 24-hour format in the
Time II, and AM/PM status. I didn't care, so I just mask them out. I
also replaced a leading zero digit with blank here. Line 1230
converts the digit to an ASCII character.

Lines 1290-1320 test whether you have pressed any key on the keyboard.
If not, reading continues. If you did, the storbe is cleared and the
program terminates after printing a carriage return.

Here is a summary of the clock register addresses:

 tens units
Seconds 21 20
Minutes 23 22
Hours 25 24 with 12/24 and AM/PM flags
Day of Week 26
Day of Month 28 27
Month 2A 29
Year 2C 2B

The second program I wrote only reads the date. The actual reading is
very similar to the first program, but the purpose is different.
Instead of displaying it on the screen, I store in in the last 8
positions of the primary file name buffer inside DOS 3.3. The patches
in lines 1040-1140 set up SAVE and BSAVE to call my program before
opening the file. My program then modifies the file name to include
the current date as the last 8 characters.

I located the program inside a hole in DOS 3.3 ($B6B3-$B6FD). If you
are already using a modified DOS, this hole may already have some code
in it, so be careful. For example, the DOS on Applied Engineering's
disk IS modified, and the modification uses this same space.

When you assemble this program, the four .TF directives write four
short little binary files (B.1, B.2, B.3, and B.4). I wrote a four
line EXEC file to BLOAD these four binary files, installing the
patches.

<program here>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 527 of 2550

Apple II Computer Info

The program saves the contents of the A-register at line 1220, and
restores A at line 1390. Lines 1230,1240 stop the clock so we can
read it. Lines 1250-1270 delay for about 150 microseconds in case the
clock was updating when I stopped it.

Lines 1280-1360 read the date under control of a format map in line
1420, almost the same way the first program did. This time I used the
known length of 8 bytes to terminate the loop, rather than a final 00
byte. Line 1340 stores inside the DOS primary file name buffer
($AA75-$AA92).

Lines 1370-1380 turn the clock back on. Line 1390 restores the A-
register, and line 1400 continues with the normal DOS 3.3 code.

Before arriving at the above technique, I tried several others. I had
one working which patched the DOS File Manager instead of the SAVE and
BSAVE commands. This version appended the date to the name of any and
all new files created. It worked exactly as it should, but it would
have caused many problems with existing programs. Many Applesoft and
Integer BASIC programs using TEXT files use an OPEN-DELETE-OPEN-WRITE
sequence to make sure that a new file is used for output. If my patch
to the file manager was installed, this sequence would not work
correctly anymore. Therefore I elected to go the more direct route,
only dating SAVE and BSAVE files.

If you want to use the date on TEXT file names, you could append it to
the file name using normal string concatenation techniques.

I have not used any other of the clock/calendar cards available for
the Apple, but I am convinced the Time II from Applied Engineering is
a good one. (It may also be the least expensive.) The circuit card
is professionally done; the components are highest quality; it works
when you plug it in. There are other features, such as interrupt
capability, which I have not yet explored. If you have any use for a
clock/calendar, I recommend this one.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 528 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:Articles:SCAsm.Ready.txt
==

S-C Macro Assembler........................Bob Sander-Cederlof

The printer has delivered the manuals (five days early!), the bugs are
exterminated, the UPS driver went back to the depot and got a bigger
truck, and we are now shipping S-C Macro Assembler.

Here is a brief summary of the new features the S-C Macro Assembler
has that S-C Assembler II Version 4.0 did not. The highlights are of
course macros, conditional assembly and the new commands EDIT, COPY
and REPLACE. But they are not all!

Commands

There are 10 new commands:

EDIT Select a line, a range of lines, or a range
 of lines that contain a particular string.
 Edit the lines using some of the 15
 convenient sub-commands.

TEXT Write source program to disk, as a TEXT
 file, with or without line numbers.

REPLACE Global search and replace. Your search
 string can include wildcards; you can limit
 the search to a line, a range of lines,
 or search the entire program. The search
 can be made sensitive or insensitive to
 upper/lower case distinctions. And you can
 select Auto or Verify mode for replacement.

COPY Copy one or more lines from one place to
 another in the source code. Rearrange your
 code as you please!

AUTO Generate automatic line numbers after
 every carriage return. Allows ordinary
 TEXT files to be EXECed into S-C Macro
 Assembler! You still can use the Version
 4.0 form of automatic line numbers.
 Now you have a choice!

MANUAL Turn off automatic line numbering.

SYMBOLS Print out the symbol table, in case you
 missed it the first time.

MNTR Enter the system monitor (just like CALL
 -151 in BASIC). Of course all the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 529 of 2550

Apple II Computer Info

 Monitor commands can be executed within
 S-C Macro Assembler, but if you really
 WANT to leave....

RST Change the Autostart Monitor RESET vector
 to the specified address.

" Send setup control strings to your printer.

There are also improvements in some of the older commands.

The spelling of commands is now checked. In older versions, only the
first three characters were tested. The first three are still all
that are necessary, but any additional letters you type must be
correct. For example, LIS will list your program, and so will LIST.
But, LISX will give a syntax error.

LIST and FIND now have the same syntax (in fact, they are processed by
the same routine.) They may now specify either a line range, a search
string, or both. The search string now requires a delimiter.

Line ranges in the LIST, FIND, COPY, EDIT, and DELETE commands may be
written with a leading or trailing comma (as in Applesoft):

 LIST ,2500 List from beginning through 2500.
 LIST 2500, List from 2500 through end.

The NEW command now restarts the automatic line numbering at 1000,
rather than continuing from the last line number you entered.

The SLOW and FAST commands no longer use the Monitor output hooks at
$36 and $37.

To leave the Macro Assembler, type FP or INT. You no longer have to
also type PR#0.

After using the PR#slot command to run your printer, use PR#0 to turn
it off. FAST won't do it anymore.

Directives

There are 7 new directives:

.MA and .EM For macro definition.

.DO expr Start conditional block.

.ELSE Toggle condition flag.

.FIN End conditional block.

.TI num,title Title and number each page of the
 assembly listing.

.AT string Like .AS, but the last character has the
 high-bit set opposite from the rest.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 530 of 2550

Apple II Computer Info

The .DA directive may now have a list of expressions.

The .EQ directive may now be used with local labels.

The .LIST directive has new options to control listing of macro
expansions.

Source Entry

Control-O (Override) will allow any control character to be typed into
a source line in the normal input mode or in edit mode. The control
character will appear in inverse video.

The editor no longer double spaces after each line is entered.

The escape-L comment line produces one less dash, so that the line
lists on the screen without a blank line after it.

Operand expressions can now include * and / as operators, as well as +
and -. The relational operators (<, =, and >) may also be used.

The tab routine has been changed to include up to five tab stops. The
stop values are kept in a user-modifiable list starting at $1010.
These are the actual column numbers (not 3 less, as in version 4.0).
You may use any values up to column 248.

The tab character (control-I, $89) is kept at $100F now, so you can
change it if you like some other character better.

Any sequence of the same character repeated 4 or more times in the
source code is replaced by a token $C0, the character code, and the
repeat count. (multiple blanks are still replaced by a single byte
between $80 and $BF.) This reduces both the memory requirements and
disk file size for your source programs.

If you want to shrink your source file a little, and if you have been
using the Escape-L to generate comment lines that have all those
dashes in them, type "EDIT" and hold down the RETURN and REPEAT keys
until the entire program has been scanned. Type MEM before you do it,
and after it is finished; you will probably notice a significant
saving!

A parameter at location $1017 allows the extra compression to be
turned on or off. If the contents of $1017 is $04, compression is on.
If it is $FF, compression is off. You can experiment with this
parameter to see what effect it has on program size.

Reference Manual

The S-C Macro Assembler comes with an all-new, 100-page manual. (At
last! All the information in one place!) The manual includes
chapters on source program format, commands, directives, operand

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 531 of 2550

Apple II Computer Info

expressions, macros, 6502 programming, SWEET-16, and a tutorial on
using the Macro Assembler.

Assembly

Older versions of the assembler terminated assembly after finding one
error. The S-C Macro Assembler keeps going, but rings the bell and
prints an error message, so you know about it. If any errors are
found during pass one, assembly terminates before doing pass two. At
the end of assembly, the number of errors found is printed.

Typing the RETURN key during assembly will abort the assembly (even if
the listing has been turned off with .LIST OFF directive).

Believe it or not, the new version assembles slightly faster than
version 4.0! I measured about a 10% improvement on a large program.

All previous versions had difficulty handling forward references to
variables which turned out to be in page zero. (Described on page 22
of the old blue manual.) That problem has been solved, so with S-C
Macro Assembler it does not matter where you put your page-zero
definitions.

Memory Usage

All page zero variables used by the assembler have been concentrated,
so $00 through $1F are completely free for the user.

The standard version of the S-C Macro Assembler now occupies $1000
through $31FF. The symbol table starts at $3200 and grows upward; the
source code still starts at $9600 and grows downward.

Included on the disk with the Macro Assembler is a Language Card
version and a short EXEC file to load the card. This version fills
the 16K RAM card from $D000 through about $F300. The symbol table
begins at $1000 rather than $3200. The EXEC file configures things so
that the language card contents appear to DOS as the opposite language
to the one on the mother board. For example, if Applesoft is on the
mother board, you type INT to get into the S-C Macro Assembler.

There are no variables within the body of the assembler. The Language
Card version could be burned into ROM and placed on a firmware card,
if you so desire.

Ordering

You can order the S-C Macro Assembler by phone or mail. We accept
cash, checks, money orders, Visa, Mastercard, or COD. The price of
the Macro Assembler is $80.00. Registered owners of S-C Assembler II
Version 4.0 may upgrade to the S-C Macro Assembler for only $27.50.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 532 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:DOS3.3:Inst.DOS.Patch.txt
==

BLOAD B.1
BLOAD B.2
BLOAD B.3
BLOAD B.4

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 533 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:DOS3.3:S.DATE.FILES.txt
==

 1000 *SAVE S.DATE.FILES
 1010 *--------------------------------
 1020 * PUT DATE ON ALL NEW FILES
 1030 *--------------------------------
 1040 .OR $A33F IN BSAVE COMMAND
 1050 .TF B.1
 1060 JSR PATCH
 1070 *--------------------------------
 1080 .OR $A3A5 IN SAVE COMMAND
 1090 .TF B.2
 1100 JSR PATCH
 1110 *--------------------------------
 1120 .OR $A3BE IN SAVE COMMAND
 1130 .TF B.3
 1140 JSR PATCH
 1150 *--------------------------------
 1160 SLOT .EQ 5
 1170 CLOCK .EQ SLOT*16+$C080
 1180 *--------------------------------
 1190 .OR $B6B3
 1200 .TF B.4
 1210 PATCH
 1220 PHA
 1230 LDA #$10 HOLD CLOCK
 1240 STA CLOCK+1
 1250 LDY #32 DELAY 150 MICROSECONDS
 1260 .1 DEY WHILE HOLD TAKES EFFECT
 1270 BNE .1
 1280 LDY #7 MOVE 8 CHARS
 1290 .2 LDA MAP,Y NEXT BYTE FROM MAP
 1300 BMI .3 COPY CHARACTER
 1310 STA CLOCK+2 SELECT REGISTER
 1320 LDA CLOCK+2 READ REGISTER
 1330 ORA #$B0 CONVERT TO ASCII
 1340 .3 STA $AA8B,Y IN LAST 8 CHARS OF PRIMARY FNB
 1350 DEY
 1360 BPL .2 LOOP UNTIL ALL 8 CHARS MOVED
 1370 LDA #0 RELEASE CLOCK
 1380 STA CLOCK+1
 1390 PLA
 1400 JMP $A3D5 CONTINUE AFTER PATCH
 1410 *--------------------------------
 1420 MAP .HS 2A29AF2827AF2C2B
 1430 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 534 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:DOS3.3:S.DISPLAY.TIME.txt
==

 1000 *SAVE S.DISPLAY TIME
 1010 *--------------------------------
 1020 * READ DATE FROM CLOCK II
 1030 *--------------------------------
 1040 SLOT .EQ $50 SLOT# * 16
 1050 CLOCK .EQ $C080
 1060 *--------------------------------
 1070 READ LDX #SLOT
 1080 LDA #$10 HOLD CLOCK
 1090 STA CLOCK+1,X
 1100 LDY #0 BEGINNING OF MAP
 1110 .1 LDA MAP,Y NEXT BYTE FROM MAP
 1120 BEQ .3 END OF MAP
 1130 BMI .2 COPY CHARACTER
 1140 STA CLOCK+2,X SELECT REGISTER
 1150 CMP #$25 IS IT HOUR:TENS?
 1160 BNE .4 NO
 1170 LDA CLOCK+2,X YES
 1180 AND #3 STRIP OFF FLAGS
 1190 BNE .5
 1200 LDA #$A0
 1210 BNE .2 ...ALWAYS
 1220 .4 LDA CLOCK+2,X READ REGISTER
 1230 .5 ORA #$B0 CONVERT TO ASCII
 1240 .2 STA BUFFER,Y
 1250 INY
 1260 BNE .1 ...ALWAYS
 1270 .3 LDA #0 RELEASE CLOCK
 1280 STA CLOCK+1,X
 1290 LDA $C000 SEE IF KEY PRESSED
 1300 BPL READ NO, KEEP READING
 1310 STA $C010 YES, CLEAR STROBE
 1320 JMP $FD8E LINEFEED AND RETURN
 1330 *--------------------------------
 1340 MAP .HS 2A29AF2827AF2C2BA0A02524BA2322BA212000
 1350 *--------------------------------
 1360 BUFFER .EQ $7D0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 535 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8203:DOS3.3:S.PADDLES.txt
==

 1000 *--------------------------------
 1010 * READ BOTH GAME PADDLES AT THE SAME TIME
 1020 *--------------------------------
 1030 MON.CH .EQ $24
 1040 PDL0 .EQ $C064
 1050 PDL1 .EQ $C065
 1060 PDL.S .EQ $C070
 1070 KEYBOARD .EQ $C000
 1080 *--------------------------------
 1090 TEST JSR READ.BOTH.PADDLES
 1100 TYA (Y) = PDL 1 SETTING
 1110 JSR $FDDA PRINT IN HEX ON SCREEN
 1120 INC MON.CH SPACE BETWEEN VALUES
 1130 TXA (X) = PDL 0 SETTING
 1140 JSR $FDDA PRINT IN HEX ON SCREEN
 1150 LDA #0 HTAB 1
 1160 STA MON.CH
 1170 LDA KEYBOARD SEE IF ANY KEY PRESSED
 1180 BPL TEST NO KEYPRESS, KEEP READING PADDLES
 1190 STA KEYBOARD+16 CLEAR KEYBOARD STROBE
 1200 RTS RETURN
 1210 *--------------------------------
 1220 READ.BOTH.PADDLES
 1230 LDX #0 PADDLE 0 COUNT
 1240 LDY #0 PADDLE 1 COUNT
 1250 LDA PDL.S START THE PADDLE TIMERS
 1260 .1 LDA PDL0 CHECK PADDLE 0 TIMER
 1270 BPL .2 TIMED OUT
 1280 INX COUNT PDL0
 1290 LDA PDL1 CHECK PADDLE 1
 1300 BPL .4 TIMED OUT
 1310 INY COUNT PDL1
 1320 BNE .1 AGAIN
 1330 LDX #255 MAX TIME FOR BOTH PADDLES
 1340 BNE .3 ...ALWAYS
 1350 *---PADDLE 0 TIMED OUT, KEEP LOOKING AT PADDLE 1
 1360 .2 LDA PDL1 CHECK PADDLE 1
 1370 BPL .5 TIMED OUT
 1380 INY COUNT PDL1
 1390 NOP EQUALIZE TIMING
 1400 NOP
 1410 NOP
 1420 NOP
 1430 BNE .2
 1440 .3 LDY #255 MAX TIME FOR PDL1
 1450 BNE .5 ...ALWAYS
 1460 *---PADDLE 1 TIMED OUT, KEEP LOOKING AT PADDLE 0
 1470 .4 LDA PDL0 CHECK PADDLE 0
 1480 BPL .5 TIMED OUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 536 of 2550

Apple II Computer Info

 1490 INX COUNT PDL0
 1500 NOP EQUALIZE TIMING
 1510 NOP
 1520 NOP
 1530 NOP
 1540 BNE .4 KEEP CHECKING
 1550 LDX #255 MAX TIME FOR PDL0
 1560 .5 RTS RETURN TO CALLER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 537 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:Articles:Add.AutoSave.txt
==

Adding Auto-SAVE to S-C Macro Assembler........Greg H. Anders

[Greg is a subscriber from Albuquerque, New Mexico.]

One of the nice features of the new S-C Macro Assembler is the title
directive (.TI). This directive causes a title and page number to be
printed at the top of each page of an assembly listing. The title
directive gave me the idea for the Automatic Save command program
which follows.

I felt the need for an Auto Save command because of my own
carelessness. After extensive editing of a rather lengthy program, I
decided it was a good time to save the program before I proceeded.
The file names I use are usually descriptive and forgettable, so to
save a file, I list the Catalog, then use the cursor controls to copy
the file name. After the file name appeared on the screen, I zipped
the cursor next to the name I wanted to save the file under and,
succumbing to temporary insanity, typed an "L". The word "LOAD"
flashed on the screen and my mouth dropped open in disbelief. The
only sounds that could be heard were the whirr of the disk drive and
the screams of my new code byting the dust cover!

I decided to try to simplify the task of saving a program, giving
myself less chance of making an error. From this came the Auto Save
command. With this command, typing SAVE does not save your program on
cassette. Instead, the SAVE command searches your source program for
a title. If a title is found and it is a valid DOS name, the source
program is automatically saved, using the title as the file name. In
addition, if you end your title with a version number in the form N.N,
Auto Save automatically increments the version number in the source
program and saves the program using the new version number. The
version number option does not erase your old file, which means your
old file is a back-up. Be careful, though. A few saves and your disk
is full of back-up files. You'll need to go back and delete a file or
two every once in a while.

The version number goes up to a maximum of 9.9, after which it starts
back at 0.0. If the version number option is not desired, don't put a
number in the form N.N at the end of your title.

Leading and trailing blanks are ignored by Auto Save. If there is
more than one consecutive blank in a title, the blanks are compressed
to one. Thus, the title ".TI 56,TI TLE" generates a SAVE to the
file named "TI TLE". Also, any commas in your title are changed to
dashes so as not to confuse DOS.

To use the Auto Save command, the vector address of the SAVE command
must be changed. The address must be one less than the actual start
of the Auto Save command. For example, if Auto Save is assembled at

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 538 of 2550

Apple II Computer Info

$800, the address would be changed in the table inside the S-C Macro
Assembler to $07FF.

For the version of the S-C Macro Assembler which loads at $1000,
change the contents of address $1679 to $07 and $1678 to $FF. Shown
as a monitor command, this would be:

 :$1678:FF 07

For the Language Card version of the S-C Macro Assembler, change the
content of address $D679 to $07 and $D678 to $FF. You have to write-
enable the card first:

 :$C083 C083 D678:FF 07

I like to keep Auto Save behind the Language Card version of the Macro
Assembler. I put the program at $F320 and the changes are:

 :$C083 C083 D678:1F F3

One thing you'll have to look out for. If you type an illegal DOS
SAVE command such as "SAVE 1 4 THE ROAD", DOS ignores this command and
the Auto Save goes into effect; the "1 4 THE ROAD" is ignored. Also
note that the save is performed on the drive that is active. Since
commas are changed to dashes, there is currently no way to specify
which drive you want the save to be performed on. Perhaps you would
like to try to implement this enhancement yourself.

After you've installed the Auto Save program, type in this program:

 1000 * A TEST OF AUTO SAVE
 1010 .TI 54, TITLE TEST VER. 0.9

Then type SAVE, and CATALOG. See how the file was saved? List the
file and notice the change in line 1010. Voila!

For those of you who haven't updated to the Macro Assembler yet, Auto
Save can be implemented with S-C Version 4.0 by using the .US command
for the title. The changes which are necessary are outlined below.

1. The following lines must be deleted: 1490-1540, 2090-2150, 2460-
2470, 2560-2930.

2. The following lines must be added:

1210 .US S-C VER. 4.0 AUTO SAVE 1.0
1600 BNE .2 ...ALWAYS
1920 * CHECK THE OP CODE FOR .US
2170 BCS TITLE
2480 .1 CMP #$80
3480 OPS .AS /.US/
3510 NO.TTL .AS /*** NO TITLE ERRO/
3515 .AS -/R/
3520 .AS /*** ILLEGAL TITLE FIRST CHARACTE/

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 539 of 2550

Apple II Computer Info

3525 .AS -/R/

3. Change the SAVE vector address. For an origin of $800, that would
be

 :$1271:FF 07

4. To use the command, put the title you want to use for the file
name like so:
 .US MY TITLE VER. 1.0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 540 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:Articles:Ashby.Shift.Mod.txt
==

Ashby's Easy Shift-Key Modifier...........Bob Sander-Cederlof

How many times have you read or heard about a way to modify your Apple
so that the shift-key would function like a normal typewriter? It is
a relatively safe and easy thing to do, but the directions can really
be frightening.

Words like "solder", "wire", "take the bottom off your Apple", and so
on.

If you have an Apple with the piggy-back board hanging down under your
keyboard (Revision 7 or newer), take heart! There is a little device
you can pick up for only $15 postpaid, called Ashby's Shift-Key
Modifier, which hooks up the modification without any tools or
trouble. And it only takes a minute or so! (In fact, only a few
seconds if you have done it a few times like I have.)

The Modifier consists of a piece of wire fitted with a plug for the
game connector on one end, and with a clip on the other end. The plug
is devised so that you still have an empty game socket on top, for
attaching paddles or whatever.

To install the Modifier, all you have to do is insert the plug into
the game socket, and clip the other end onto the connector from the
keyboard to the piggy-back board at the second wire from the right
(the RESET key side).

I have installed them on all my Apples, except for my oldest one.
(That one is serial #219, bought in August of 1977, and is so old it
doesn't even have ventilation slots on the case! Yes, I installed the
open-case-and-solder-a-wire modification in the old one.)

Now I can use the shift-key the way I was taught in typing class when
I am using Data Capture 4.0, SuperText II, Apple Pie 2.0, the S-C
Macro Assembler, or the Word Handler. And more and more programs are
being created to take advantage of a REAL shift key on an Apple.

The normal retail price of the Ashby Shift-Key Modifier is $18. I
have bought a bunch of them, and you can have them for only $15 each.
They come complete with directions for installation.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 541 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:Articles:Front.Page.txt
==

$1.50

Volume 2 -- Issue 7 April, 1982

In This Issue...

Adding Auto-SAVE to S-C Macro Assembler 2
Review of AED][(A new Applesoft Editor) 10
Ashby's Easy Shift-Key Modifier 13
Potential Trouble in TYMAC 15
Using Macros and Nested Macros 17
Recursive Macros . 22
Controlling Software Configuration 24
Funny Noise . 27

Another New Book: Bag of Tricks

The authors of Beneath Apple DOS (Don Worth and Pieter Lechner) have
done it again! This time you get a diskette with four powerful disk
utilities on it, and a book expaining their use. The retail price is
$39.95, but I will have them for only $36.

The utilities are TRAX, INIT, ZAP, and FIXCAT. TRAX examines any
track on a disk, reading it in as pure nibbles and displaying in a
partially analyzed form. INIT reformats any track or tracks,
optionally retaining existing data in whatever readable sectors are in
the track. You can reorder the sectors, change the volume number, and
more. ZAP is a general purpose disk utility: sectors may be read,
written, displayed, modified with a powerful assortment of over 50
commands. It works with 13- and 16-sector DOS, as well as Pascal and
CP/M diskettes. You can even "program" in ZAP, with labels, loops,
and macro-commands. FIXCAT can automatically repair or reconstruct a
catalog track by analyzing the rest of the disk.

Beyond the utilities themselves, there is about 40 pages of advanced
tutorial material which starts where "Beneath Apple DOS" ends.

Unless you are fully satisfied with your present collection of disk
utilities, you ought to get this set.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 542 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:Articles:Pot.Tymac.Troub.txt
==

Potential Trouble in TYMAC...................Robert H. Bernard

[Bob is a subscriber in Westport, Connecticut.]

The article by Peter Bartlett on improving the Epson Controller Card
(which appeared in the February 1982 issue of AAL) has prompted me to
write to bring to the attention of fellow AAL readers that the TYMAC
controller card, which is a lower-cost alternative to the official
Epson card, has a potentially serious problem.

To achieve slot independence, controller card ROM programs JSR to an
RTS instruction in the Monitor. Then they extract the slot from the
return address the JSR put on the stack. The Apple II Reference
Manual details the process on page 81-82.

Most controller cards use the Apple technique verbatim, JSR'ing to
$FF58, which is an RTS instruction in the Monitor ROM. However, the
TYMAC card JSR's to $FDFF. That location also contains an RTS, so
there is no problem using the TYMAC card as long as the Monitor ROM is
enabled.

The problem occurs when the TYMAC card is used with Pascal. While
Apple Computer has specifically guaranteed an RTS instruction at $FF58
in the Pascal Basic Input/Output System (BIOS), no RTS exists at
$FDFF. Therefore TYMAC loses control and causes a Pascal crash as
soon as it is called.

If any of you have TYMAC cards, and plan to make the Peter Bartlett
modification (or perhaps even if you don't plan to), you should also
change the JSR instruction at $0A relative to the beginning of the ROM
from 20FFFD to 2058FF.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 543 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:Articles:Recursive.Macro.txt
==

Recursive Macro Example............................Lee Meador

[Lee is a subscriber from Arlington, Texas. He wrote the original
code for the .TF directive and REPLACE command in the S-C Assemblers.
]

Here is short example of a useful macro that uses a recursive
definition. By recursive I mean that the definition calls itself.

Most large computers have a shift instruction which can shift any
number of bits; the 6502 shifts only shift one bit at a time. The LSR
macro shown here accepts a shift count as the first parameter, and
generates one LSR opcode for each bit shift you want.

The second parameter is optional. If there is no second parameter,
the A-register will be shifted. If you specify a variable for the
second parameter, that memory location will be shifted. Both cases
are shown in the example below.

How does it work? The definiton says to test the first parameter; if
it is greater than zero, generate the LSR with the optional second
parameter as the address field, and call on the LSR macro with the
first parameter decremented by one. If the first parameter is zero
(and it eventually will be), no code is generated. Read the listing
carefully, noting the indentation, and you should be able to follow
it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 544 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:Articles:Review.AED.II.txt
==

AED -- A New Applesoft Program Editor.............Reviewed by
 Bob Sander-Cederlof

One of the joys of putting the Apple Assembly Line out each month has
been the knowledge that a lot of readers are putting making good use
out of what I print. A case in point: William Linn, of Lithonia,
Georgia, was inspired by a combination of several articles to produce
a new software product we all can use!

He calls it AED, which stands for Applesoft EDitor. AED combines in
one easy-to-use package:

Line Editing as in PLE and the S-C Macro Assembler
Automatic Line Numbering
Global Search and Replace (with wildcard matching)
Controlled LISTing (Page- or Line-at-a-time, and Slow Scroll)
Display of Variables after execution
Quick entry of DOS commands from a mini-menu
And a lot more.

I said it is easy to use. Why? Here are a few reasons:

The screen is split, with the line being entered at the bottom 6 lines
and two possiblities for the top 18 lines. The top 18 lines are used
for listing or for display of the most frequently used commands and
edit controls.

The commands and edit controls are single letters or control-letters,
with mnemonic value.

An inverse letter appears before the prompt character indicating which
of six special modes you are in, so you don't get lost.

Clicks and tones provide pleasant feedback at appropriate times.

One very unusual feature, which I have grown to love in a very short
time, is a new kind of cursor. Rather than the flashing cursor of the
standard Apple input routines, AED alternates the underline character
with the character already on the screen. This alternation is done at
the same rate as the Apple's flashing mode, but doesn't tire the eyes.

AED loads into memory from $8500 through $95FF, and uses a 256-byte
buffer from $8400 to $84FF. HIMEM is set to $83FF.

AED is normally in charge of all input, until the Control-Q command
(QUIT) is typed. If you type a letter A, C, E, F, L, M, R, S, or V
the rest of the AED command starting with that letter will be
displayed. If the command requires no additional information, it is
immediately executed. Otherwise, it waits for you to finish the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 545 of 2550

Apple II Computer Info

command and type a carriage return. The period is also a command:
call it "dot", and think of "DOS", because its purpose is to call up
the DOS Command Mini-Menu. If you type a line beginning with a non-
command character, it is passed on to Applesoft. Thus you can enter
numbered lines, or type immediate mode commands such as NEW or PRINT
X(3) or PR#1.If you do leave AED control, typing "&" will enter AED
again. If you have the Autostart Monitor, hitting RESET will re-enter
AED.

It is important to realize that you are always in an editing mode.
Even commands can be edited using the edit control keys.

Here is a list of the commands:

Letter Commands

A AUTO line #,increment
C CHANGE /string1/string2/A
E EDIT line #
F FILE = filename to use in
 DOS commands
L LIST [line #,line #]
M MANUAL line numbering
R Repeat last LIST command
S SEARCH /string/
V Variable display
. DOS Mini-Menu

Control Commands

^A Assistance
^C Clear Scroll Area
^Q Quit
^X Clear Edit Area
ESC Edit Next Line

Editing Commands

^B Cursor to beginning
^D Delete a character
^E Cursor to end of line
^Fx Cursor to next "x"
^I Begin Insert mode
^M (RETURN) Submit line
^N Cursor to end of line
^R Recall last line edited
^Tx Delete through next "x"
^T^T Delete to end of line
^V Next character verbatim
^W Enter word cursor mode

AED does not have user-defined keyboard macros. The keyboard macros
in PLE are a big selling point; however, the ones you actually end up
using in PLE are built-in to AED as actual commands or as part of the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 546 of 2550

Apple II Computer Info

DOS Mini-Menu. Of course, PLE words with both Integer BASIC and
Applesoft; AED is only for Applesoft.

If you use Applesoft, are not already firmly addicted to PLE, and if
you do not use Integer BASIC, then you should consider picking up a
copy of AED. It is only $40 (same price as PLE), and packs a lot of
usefulness for the dollars.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 547 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:Articles:Sftwr.Cnfg.Ctrl.txt
==

Controlling Software Configuration................Don Taylor

Paul Schlyter's article on moving the S-C Assembler into the language
card (AAL January 1982) couldn't have come at a better time for me. I
was working on a project that had just outgrown the available memory
space, and LANGASM came to the rescue. Long live LANGASM!

LANGASM and the extensions to the S-C Assembler that have appeared in
the AAL bring to the fore an important subject: controlling the
configuration of your copy of someone else's software.

How do I know that a particular "patched" copy I have of the assembler
is compatible with another extension that will appear in next month's
AAL? What kind of documentation must I keep somewhere to keep track
of patched object code for which I have no source code? And how many
different patched source code versions (to which I have given
different names) of the S-C Assembler am I willing to keep track of?

For my use, I've chosen to keep track of only two modified copies of
the assembler; I call them ASM II.1 and LANGASM.1. These two versions
are simply the "standard issue" S-C Assembler Version 4.0 and LANGASM,
each augmented with the listed .DA directive patch described by Bob in
the December, 1980 issue of AAL. (I chose this configuration because
the extension was written by Bob himself, and because other AAL
articles have used the listed .DA directive. The feature is upward
compatible, and listed .DAs presented to unmodified copies of the
assembler will cause invisible errors by seemingly accepting those
directives, while generating no code for items betond the comma.)

To add the extensions I want, I first load in ASM II.1 or LANGASM.1,
and then modify the copy in memory with a configuration file before
using it.

The source listing of LANGASM.1 EXT.SRC shows the method I use to add
HOME, COPY and EDIT commands to my copy of LANGASM.1. This particular
routine is .OR'd at the beginning of one of the 4K language card
memory blocks located at $D000, which permits several extensions to be
loaded in one contiguous area of memory, while leaving the main memory
area free for the source file and symbol table.

Lines 1160-1570 install the patches in the memory-resident copy of
LANGASM.1 and then return to a calling routine. Lines 1320-1400 patch
the FAST command (disabled by the LANGASM patches) to render it a HOME
command that works like Applesoft's does.

Lines 1260-1430 make similar modifications to LANGASM's command table
entries, replacing LOAD with COPY and SAVE with EDIT, along with their
assembled addresses (less one).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 548 of 2550

Apple II Computer Info

Lines 1440-1520 are the patches that were contained in Mike Laumer's
source code for the EDIT command, found in the January, 1981 issue of
AAL.

The source files for EDIT and COPY used within LANGASM.1 EXT.SRC in
lines 1590 to the end of the file are identical to those written by
Mike Laumer and Bob Sander-Cederlof, with a couple of exceptions. As
stated above, the patch code for NML was moved to the modification
area in lines 1440-1520. Second, all .OR and .TF directives were
removed from both files. Third, a few redundant .EQ directives
(internal assembler reference addresses) had to be removed to avoid
any EXTRA DEFINITION errors. Finally, $D000 was added to all internal
assembler references to make them compatible with LANGASM's $E000
origin.

To install these patches to LANGASM.1, I EXEC the following text file,
which I call LANGASM:

CALL -151 (get into the monitor)
C0C1 (turn off any firmware card)
C081 C081 (write enable the language card)
BLOAD LANGASM.1 (load LANGASM into the language card)
BLOAD MONITOR EXTENSIONS (load in page 3 extensions
 from 10/81 issue of AAL)
BLOAD LANGASM.1 EXTENSIONS (load in the mods)
A5B8:80 (patch DOS to use the language card)
A5C0:81
300G (install monitor extensions)
C083 (switch in Bank 2)
D000G (install LANGASM mods)
3D3G (return to DOS and Applesoft)
INT (enter the assembler)

To use this method of in-memory configuration with ASM II.1 (where
patches can't always be added in contiguous memory), I use a separate
file for each command patch, each .OR'd at the proper address, and
then install all patch routines within a single text file that is
EXEC'd. Since I'm not dealing with the language card, and each of the
commands added above are indepedent of one another, I can skip the
EXEC and just BLOAD and install each command (or group of commands) I
want to add with the monitor. The result is an easy configuration of
the assembler, done at run time.

The use of configuration files to modify the assembler takes a few
extra seconds (and a couple of extra files on my utility disk), but it
is no more work thanks to the EXEC file. It permits me to keep only a
single copy of the assembler (in a known configuration), while
enabling me to fully document any modifications I make to the
assembler with configuration files for which I have the source code.
By creating different EXEC files, I can quickly and easily intermix
configuration files to create (and document!) any version of the
assembler I wish.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 549 of 2550

Apple II Computer Info

Even though I suppressed the listing of the EDIT and COPY commands to
save newsletter space, the source code is on the Quarterly Disk (#7)
which will include this program.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 550 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:Articles:Using.Macros.txt
==

Using Macros and Nested Macros.....................Art Schumer

[Art is a subscriber in Manvel, North Dakota; he is the programming
side of S&H Software. Art wrote the Universal Boot Initializer, The
DOS Enhancer, and the AmperCat Utility.]

The new S-C Macro Assembler is truly the best assembler around. With
the addition of Macros, easier programming is limited only by your
imagination. All you have to do is dream up some uses for Macros.
Are Macros and Nested Macros really worth using? You bet! One of my
source files was 104 sectors long, but after going back through it and
implementing macros, the file shortened to only 96 sectors; it was
also easier to read.

As Bob pointed out in the manual, nested macros are allowed in this
new version, but he frowned on their use. I beg to differ with him,
as I believe that nested macros can make your source files easier to
read, as well as easier to write. They may seem complex at first, but
after setting them up they become very easy to use.

In my example program, I've defined a macro called GOTO.XY that will
take two variables and use them to position the cursor. Another
defined macro called CLEAR.XY is a singly nested macro that uses
GOTO.XY to position the cursor, and then clears from there to the end
of screen. CLEAR.PRINT.XY positions the cursor (using GOTO.XY inside
CLEAR.PRINT.XY), clears the rest of the screen, and prints a message.
It may sound confusing, but after examining the source listing and th
macro definitions, it should be easy to understand how this all works.

In all the macros, the first variable is the horizontal cursor
position and the second variable is the vertical cursor position.
CLEAR.PRINT.XY calls on a subroutine (JSR PRNT), which expects the
message to follow the JSR instruction. The message is terminated by a
00 byte, and execution proceeds at the instruction which follows the
message in memory.

The PRNT subroutine came from a Call A.P.P.L.E. article by Andy
Hertzfeld.

Have fun with your new S-C Macro Assembler!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 551 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:DOS3.3:Inst.LA.Taylor.txt
==

CALL-151
C0C1 C081 C081
A5B8:80
A5C0:81
BLOAD LANGASM.1
BLOAD LANGASM.1 EXTENSIONS
BLOAD MONITOR EXTENSIONS
300G
C083
D000G
3D3G
INT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 552 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:DOS3.3:S.Autosave.txt
==

 1000 *--------------------------------
 1010 * AUTOMATIC SAVE PROGRAM
 1020 * THIS PROGRAM CHECK'S FOR A TITLE
 1030 * AND IF ONE IS FOUND, THE CURRENT PROGRAM
 1040 * IS SAVED UNDER THE TITLE
 1050 * ALSO, IF THE VERSION NUMBER IS APPENDED
 1060 * IT IS UPDATED BEFORE EACH SAVE
 1070 *--------------------------------
 1080 * SYSTEM EQUATES
 1090 *--------------------------------
 1100 MON.COUT .EQ $FDED
 1110 MON.CROUT .EQ $FD8E
 1120 MON.BELL1 .EQ $FBDD
 1130 IN.BUF .EQ $200
 1140 SRC.END .EQ $4C,4D
 1150 SRC.START .EQ $CA,CB
 1160 NEXT .EQ $1D
 1170 SEARCH .EQ $1E,1F
 1180 *--------------------------------
 1190 .OR $800
 1200 .TF AUTO.SAVE.OBJECT A$800
 1210 *--------------------------------
 1220 * INITIALIZE SEARCH REGISTERS AND
 1230 * DETERMINE IF AT END OF SOURCE PROGRAM
 1240 *--------------------------------
 1250 AUTO.SAVE
 1260 LDA SRC.START GET START OF SOURCE PROGRAM ADDRESS
 1270 STA SEARCH AND MOVE TO THE SEARCH ADDRESS
REGISTER
 1280 LDA SRC.START+1
 1290 STA SEARCH+1
 1300 CLD
 1310 ADDRESS.END.CMP
 1320 LDA SEARCH
 1330 CMP SRC.END SEE IF AT END OF SOURCE PROGRAM
 1340 BNE .1
 1350 LDA SEARCH+1
 1360 CMP SRC.END+1
 1370 BEQ ERROR1 DIDN'T FIND TITLE
 1380 *--------------------------------
 1390 * SEARCH LINE FOR OP CODE
 1400 *--------------------------------
 1410 .1 LDY #0 Y OFFSET FOR LINE EXAMINATION
 1420 LDA (SEARCH),Y NEXT LINE OFFSET
 1430 STA NEXT
 1440 LDY #3 POINT TO CHARACTER AFTER LINE NUMBER
 1450 LDA (SEARCH),Y
 1460 CMP #'* COMMENT LINE?
 1470 BEQ NEW.LINE YEP

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 553 of 2550

Apple II Computer Info

 1480 .5 CMP #$C0 COMPRESSED CODE?
 1490 BNE .2 NOPE
 1500 .4 INY MOVE OFFSET PAST COMPRESSED INFO
 1510 INY
 1520 CLV
 1530 BVC .3 ...ALWAYS
 1540 .2 CMP #$80 SPACE(S)?
 1550 BCS OPCHK YES, CHECK THE OP-CODE
 1560 .3 INY
 1570 LDA (SEARCH),Y
 1580 BEQ NEW.LINE END OF LINE (EOL) IS 0
 1590 BNE .5 ...ALWAYS
 1600 *--------------------------------
 1610 * CALCULATE ADDRESS OF NEXT LINE
 1620 *--------------------------------
 1630 NEW.LINE
 1640 CLC
 1650 LDA SEARCH MOVE SEARCH ADDRESS TO NEXT LINE
 1660 ADC NEXT
 1670 STA SEARCH
 1680 BCC ADDRESS.END.CMP
 1690 INC SEARCH+1
 1700 BNE ADDRESS.END.CMP ...ALWAYS
 1710 *--------------------------------
 1720 * ERROR ROUTINES
 1730 *--------------------------------
 1740 ERROR1
 1750 LDY #0 POINT TO NO TITLE ERROR
 1760 PRTERR LDA NO.TTL,Y
 1770 BMI ERREND
 1780 ORA #$80
 1790 JSR MON.COUT
 1800 INY
 1810 BNE PRTERR
 1820 ERREND JSR MON.COUT
 1830 JSR MON.BELL1
 1840 JSR MON.BELL1
 1850 JSR MON.CROUT
 1860 RTS
 1870 ERROR2
 1880 LDY #18 POINT TO ILLEGAL CHAR. ERROR
 1890 BNE PRTERR ...ALWAYS
 1900 *--------------------------------
 1910 * CHECK THE OP CODE FOR .TI
 1920 *--------------------------------
 1930 OPCHK LDX #0
 1940 .1 INY
 1950 LDA (SEARCH),Y
 1960 BEQ NEW.LINE EOL
 1970 CMP OPS,X COMPARE OP CODE
 1980 BNE NEW.LINE THAT'S NOT IT
 1990 INX
 2000 CPX #3 IF ALL 3 COMPARE, FOUND OP CODE
 2010 BNE .1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 554 of 2550

Apple II Computer Info

 2020 *--------------------------------
 2030 * NOW LOOK FOR TITLE
 2040 *--------------------------------
 2050 TITLE INY
 2060 LDA (SEARCH),Y
 2070 BEQ ERROR1 NO TITLE?
 2080 CMP #', LOOKING FOR COMMA (TITLE FOLLOWS)
 2090 BNE TITLE
 2100 .1 INY
 2110 LDA (SEARCH),Y
 2120 BEQ ERROR1 NO TITLE?
 2130 CMP #$C0 COMPRESSED?
 2140 BEQ COMP.CODE1
 2150 CMP #$80 SPACE?
 2160 BCS .1 YEP--SKIP
 2170 CMP #'A MAKE SURE 1ST CHAR. IS LETTER
 2180 BCC ERROR2 NOT LETTER
 2190 CMP #$5B 1 MORE THAN "Z"
 2200 BCS ERROR2
 2210 *--------------------------------
 2220 * TITLE FOUND
 2230 * OUTPUT CTRL-D, "SAVE" AND TITLE
 2240 *--------------------------------
 2250 PHA
 2260 LDX #0
 2270 .2 LDA SAVE,X
 2280 JSR MON.COUT
 2290 INX
 2300 CPX #5
 2310 BNE .2
 2320 PLA
 2330 NEXT.CHAR1
 2340 ORA #$80
 2350 JSR MON.COUT
 2360 INX X KEEPS TRACK OF INPUT BUFFER OFFSET
 2370 NEXT.CHAR2
 2380 INY
 2390 LDA (SEARCH),Y
 2400 BEQ GOT.TTL2 EOL--GOT THE TITLE
 2410 CMP #', NO COMMAS ALLOWED
 2420 BNE .1
 2430 LDA #'- REPLACE COMMA WITH DASH
 2440 BNE NEXT.CHAR1 ...ALWAYS
 2450 .1 CMP #$C0
 2460 BEQ COMP.CODE2
 2470 CMP #$80
 2480 BCC NEXT.CHAR1
 2490 INY CHECK FOR CHARACTER AFTER SPACE
 2500 LDA (SEARCH),Y
 2510 BEQ GOT.TTL1 DROP TRAILING SPACES
 2520 DEY MOVE POINTER BACK TO CORRECT POSITION
 2530 LDA #$20 SPACE--SPACES IN TITLE COMPRESSED TO 1
 2540 BNE NEXT.CHAR1 ...ALWAYS
 2550 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 555 of 2550

Apple II Computer Info

 2560 * COMPRESSED CHARACTER ROUTINES
 2570 *--------------------------------
 2580 COMP.CODE1
 2590 INY
 2600 LDA (SEARCH),Y THIS IS NUMBER OF CHARACTERS
COMPRESSED
 2610 STA NEXT
 2620 INY
 2630 LDA (SEARCH),Y ACTUAL CHARACTER
 2640 CMP #'A MAKE SURE IT'S A LETTER
 2650 BCC ERROR2
 2660 CMP #$5B
 2670 BCS ERROR2
 2680 PHA
 2690 LDX #0
 2700 .1 LDA SAVE,X
 2710 JSR MON.COUT
 2720 INX
 2730 CPX #5
 2740 BNE .1
 2750 PLA
 2760 BNE STORE ...ALWAYS
 2770 COMP.CODE2
 2780 INY
 2790 LDA (SEARCH),Y
 2800 STA NEXT
 2810 INY
 2820 LDA (SEARCH),Y
 2830 CMP #',
 2840 BNE STORE
 2850 LDA #'-
 2860 STORE
 2870 ORA #$80
 2880 JSR MON.COUT
 2890 INX
 2900 DEC NEXT
 2910 BNE STORE
 2920 BEQ NEXT.CHAR2
 2930 *--------------------------------
 2940 * SEARCH FOR VERSION NUMBER AND CHANGE IF FOUND
 2950 *--------------------------------
 2960 GOT.TTL1
 2970 DEY
 2980 GOT.TTL2
 2990 DEY MOVE Y POINTER TO THIRD NON-BLANK
 3000 DEY CHARACTER FROM THE END OF LINE
 3010 DEY
 3020 DEX
 3030 LDA (SEARCH),Y THIRD CHAR. FROM END
 3040 CMP #'0
 3050 BCC DOS.OP
 3060 CMP #': ASCII ":" IS 1 MORE THAN ASCII 9
 3070 BCS DOS.OP
 3080 INY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 556 of 2550

Apple II Computer Info

 3090 LDA (SEARCH),Y 2ND CHAR. FROM END
 3100 CMP #'. SHOULD BE PERIOD
 3110 BNE DOS.OP
 3120 INY
 3130 LDA (SEARCH),Y LAST CHARACTER
 3140 CMP #'0
 3150 BCC DOS.OP
 3160 CMP #':
 3170 BCS DOS.OP
 3180 ADC #1
 3190 CMP #':
 3200 BNE STORIT
 3210 LDA #'0
 3220 STA (SEARCH),Y CHANGE DIGIT IN SOURCE CODE
 3230 ORA #$80
 3240 STA IN.BUF,X CHANGE DIGIT IN DOS COMMAND
 3250 DEX
 3260 DEX
 3270 DEY
 3280 DEY
 3290 LDA (SEARCH),Y
 3300 CLC
 3310 ADC #1
 3320 CMP #':
 3330 BNE STORIT
 3340 LDA #'0
 3350 STORIT STA (SEARCH),Y
 3360 ORA #$80
 3370 STA IN.BUF,X
 3380 *--------------------------------
 3390 * CR OUTPUT CAUSES DOS TO PERFORM SAVE
 3400 * AFTERWARDS, RETURN TO ASSEMBLER
 3410 *--------------------------------
 3420 DOS.OP JSR MON.CROUT
 3430 END RTS
 3440 *--------------------------------
 3450 * MESSAGES
 3460 *--------------------------------
 3470 OPS .AS /.TI/
 3480 SAVE .HS 84 CTRL-D
 3490 .AS -/SAVE/
 3500 NO.TTL .AT /*** NO TITLE ERROR/
 3510 .AT /*** ILLEGAL TITLE FIRST CHARACTER/
 3520 ZZZEND .EQ *
 3530 ZZZLEN .EQ ZZZEND-AUTO.SAVE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 557 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:DOS3.3:S.FUNNY.NOISE.txt
==

 1000 *--------------------------------
 1010 * FUNNY NOISE
 1020 *--------------------------------
 1030 SPKR .EQ $C030 SPEAKER TOGGLE ADDRESS
 1040 KYBD .EQ $C000 KEYBOARD INPUT
 1050 STROBE .EQ $C010 KEYBOARD STROBE
 1060 *--------------------------------
 1070 PNTR .EQ 0 ADDRESS OF CURRENT RANDOM VALUE
 1080 *--------------------------------
 1090 NOISE JSR $FC58 CLEAR SCREEN, HOME CURSOR
 1100 N0 LDY #0 POINT TO FIRST BYTE IN PAGE
 1110 LDA #$D000 START AT $D000
 1120 STA PNTR
 1130 LDA /$D000
 1140 STA PNTR+1
 1150 JSR $FDDA PRINT PAGE NUMBER
 1160 N1 LDA SPKR TOGGLE SPEAKER
 1170 LDA (PNTR),Y GET HALF-CYCLE TIMER
 1180 TAX
 1190 N2 DEX DELAY LOOP FOR HALF-CYCLE
 1200 BNE N2
 1210 INY NEXT BYTE IN PAGE
 1220 BNE N1
 1230 INC PNTR+1 NEXT PAGE
 1240 LDA PNTR+1 BYPASS I/O AREA
 1250 CMP /$C000
 1260 BEQ N0
 1270 JSR $FDDA PRINT PAGE NUMBER
 1280 LDA KYBD SEE IF ANY KEY PRESSED
 1290 BPL N1 NO, KEEP MAKING NOISE
 1300 STA STROBE YES, CLEAR STROBE
 1310 RTS THAT'S ALL, FOLKS!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 558 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:DOS3.3:S.LA.Ext.Taylor.txt
==

 1000 *---------------------------------
 1010 * INSTALL EXTENSIONS TO LANGASM
 1020 *
 1030 * AUTHOR: DON TAYLOR
 1040 * DATE: 2/6/82, 4:00 PM
 1050 *
 1060 *---------------------------------
 1070 .OR $D000
 1080 .TF LANGASM.1 EXTENSIONS
 1090 *---------------------------------
 1100 DOS.REENTRY .EQ $03D0
 1110 MON.HOME .EQ $FC58
 1120 SCA.LOAD.CMD .EQ $E246
 1130 SCA.SAVE.CMD .EQ $E26E
 1140 SCA.SLOW.CMD .EQ $E273
 1150 *---------------------------------
 1160 INSTALL.MODIFICATIONS
 1170 LDY #2 MODIFY ASSEMBLER
 1180 .1 LDA HOME.TABLE,Y COMMAND JUMP
 1190 STA SCA.SLOW.CMD,Y
 1200 DEY
 1210 BPL .1
 1220 LDA #MON.HOME-1
 1230 STA SCA.SLOW.CMD+3
 1240 LDA /MON.HOME-1
 1250 STA SCA.SLOW.CMD+4
 1260 LDY #2
 1270 .2 LDA COPY.TABLE,Y
 1280 STA SCA.LOAD.CMD,Y
 1290 DEY
 1300 BPL .2
 1310 LDA #COPY-1
 1320 STA SCA.LOAD.CMD+3
 1330 LDA /COPY-1
 1340 STA SCA.LOAD.CMD+4
 1350 LDY #2
 1360 .3 LDA EDIT.TABLE,Y
 1370 STA SCA.SAVE.CMD,Y
 1380 DEY
 1390 BPL .3
 1400 LDA #EDIT-1
 1410 STA SCA.SAVE.CMD+3
 1420 LDA /EDIT-1
 1430 STA SCA.SAVE.CMD+4
 1440 LDA #$60 PATCH NML TO
 1450 STA $E125 MAKE IT A
 1460 LDA #$4C SUBROUTINE
 1470 STA NML
 1480 STA $E078

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 559 of 2550

Apple II Computer Info

 1490 LDA #NEW.NML
 1500 STA NML+1
 1510 LDA /NEW.NML
 1520 STA NML+2
 1530 RTS
 1540 *---------------------------------
 1550 HOME.TABLE .AS ^HOM^
 1560 COPY.TABLE .AS ^COP^
 1570 EDIT.TABLE .AS ^EDI^
 1580 *---------------------------------
 1590 * COPY COMMAND FOR S-C ASSEMBLER
 1600 * VERSION 4.0
 1610 *
 1620 * SOURCE: BOB SANDER-CEDERLOF 12/80
 1630 *
 1640 *---------------------------------
 1650 *
 1660 *
 1670 * NOTE: COPY FUNCTION SOURCE IS
 1680 * ASSEMBLED HERE...
 1690 .LIST OFF
 1700 *
 1710 * COPY FUNCTION <COPY L1,L2,L3>
 1720 * L1= FIRST LINE OF RANGE TO COPY
 1730 * L2= LAST LINE OF RANGE TO COPY
 1740 * L3= LINE BEFORE WHICH TO INSERT COPY
 1750 *
 1760 * ROUTINE BY BOB SANDER-CEDERLOF
 1770 * APPLE ASSEMBLY LINE 12/80
 1780 *
 1790 *---------------------------------
 1800 SS .EQ $00,01 START OF SOURCE BLOCK
 1810 SE .EQ $02,03 END OF SOURCE BLOCK
 1820 SL .EQ $04,05 LENGTH OF SOURCE BLOCK
 1830 NEWPP .EQ $06,07 NEW PROGRAM POINTER
 1840 A0L .EQ $3A,3B
 1850 A0H .EQ $3B
 1860 A1L .EQ $3C,3D
 1870 A1H .EQ $3D
 1880 A2L .EQ $3E
 1890 A2H .EQ $3F
 1900 A4L .EQ $42
 1910 A4H .EQ $43
 1920 LOMEM .EQ $4A,4B
 1930 PP .EQ $CA,CB
 1940 *---------------------------------
 1950 SYNX .EQ $E05E
 1960 MFER .EQ $E128
 1970 SCND .EQ $E12D
 1980 SERTXT .EQ $E4F6
 1990 MON.MOVE .EQ $FE2C
 2000 *---------------------------------
 2010 ERR1 JMP SYNX
 2020 ERR2 .EQ ERR1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 560 of 2550

Apple II Computer Info

 2030 ERR3 JMP MFER
 2040 ERR4 .EQ ERR1
 2050 *---------------------------------
 2060 COPY
 2070 JSR SCND GET THIRD PARAMETER
 2080 CPX #6 BE SURE WE GOT THREE
 2090 BCC ERR1 NOT ENOUGH PARAMS
 2100 LDX #A0L FIND BEGINNING OF SOURCE
 2110 JSR SERTXT
 2120 LDA $E4 SAVE POINTER
 2130 STA SS
 2140 LDA $E5
 2150 STA SS+1
 2160 LDX #A1L FIND END OF SOURCE BLOCK
 2170 JSR SERTXT
 2180 SEC SAVE POINTER AND COMPUTE
 2190 LDA $E6 LENGTH
 2200 STA SE
 2210 SBC SS
 2220 STA SL SOURCE LENGTH
 2230 LDA $E7
 2240 STA SE+1
 2250 SBC SS+1
 2260 STA SL+1
 2270 BCC ERR2 RANGE BACKWARD
 2280 BNE .4
 2290 LDA SL
 2300 BEQ ERR2 NOTHING TO MOVE
 2310 *---------------------------------
 2320 .4 LDA PP COMPUTE NEW PP POINTER
 2330 SBC SL
 2340 STA NEWPP
 2350 LDA PP+1
 2360 SBC SL+1
 2370 STA NEWPP+1
 2380 *---------------------------------
 2390 LDA NEWPP SEE IF ROOM FOR THIS
 2400 CMP LOMEM
 2410 LDA NEWPP+1
 2420 SBC LOMEM+1
 2430 BCC ERR3 MEM FULL ERROR
 2440 *---------------------------------
 2450 LDX #A2L FIND TARGET LOCATION
 2460 JSR SERTXT
 2470 LDA SS BE SURE NOT INSIDE SOURCE
 2480 CMP $E4
 2490 LDA SS+1
 2500 SBC $E5
 2510 BCS .1 BELOW SOURCE BLOCK
 2520 LDA $E4
 2530 CMP SE
 2540 LDA $E5
 2550 SBC SE+1
 2560 BCC ERR4 INSIDE SOURCE BLOCK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 561 of 2550

Apple II Computer Info

 2570 * TARGET IS ABOVE SOURCE BLOCK, SO WE HAVE TO
 2580 * ADJUST SOURCE BLOCK POINTERS.
 2590 SEC
 2600 LDA SS
 2610 SBC SL SS=SS-SL
 2620 STA SS
 2630 LDA SS+1
 2640 SBC SL+1
 2650 STA SS+1
 2660 SEC
 2670 LDA SE
 2680 SBC SL SE=SE-SL
 2690 STA SE
 2700 LDA SE+1
 2710 SBC SL+1
 2720 STA SE+1
 2730 *---------------------------------
 2740 .1 LDA PP SET UP MOVE TO MAKE HOLE
 2750 STA A1L
 2760 LDA PP+1
 2770 STA A1H
 2780 LDA NEWPP
 2790 STA PP
 2800 STA A4L
 2810 LDA NEWPP+1
 2820 STA PP+1
 2830 STA A4H
 2840 LDA $E5
 2850 STA A2H
 2860 LDA $E4
 2870 STA A2L
 2880 BNE .2
 2890 DEC A2H
 2900 .2 DEC A2L A2=A2-1
 2910 LDY #0
 2920 LDA A2L
 2930 CMP A1L
 2940 LDA A2H
 2950 SBC A1H
 2960 BCC .5
 2970 JSR MON.MOVE A4<A1.A2M
 2980 *---------------------------------
 2990 .5 LDA SS MOVE IN SOURCE BLOCK
 3000 STA A1L (MON.MOVE LEFT
 3010 LDA SS+1 A4 POINTING AT FIRST
 3020 STA A1H BYTE OF THE HOLE)
 3030 LDA SE+1
 3040 STA A2H
 3050 LDA SE
 3060 STA A2L
 3070 BNE .3
 3080 DEC A2H A2=A2-1
 3090 .3 DEC A2L
 3100 JSR MON.MOVE A4<A1.A2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 562 of 2550

Apple II Computer Info

 3110 RTS
 3120 .LIST ON
 3130 *
 3140 *
 3150 * NOTE: EDIT FUNCTION SOURCE IS
 3160 * ASSEMBLED HERE...
 3170 .LIST OFF
 3180 *
 3190 *
 3200 *---------------------------------
 3210 * EDIT COMMAND FOR S-C ASSEMBLER
 3220 * VERSION 4.0
 3230 *
 3240 * SOURCE: MIKE LAUMER 12/6/80
 3250 *
 3260 *---------------------------------
 3270 *
 3280 * SYSTEM EQUATES
 3290 *---------------------------------
 3300 MON.COUT .EQ $FDED
 3310 MON.BELL .EQ $FF3A
 3320 MON.RDKEY .EQ $FD0C
 3330 MON.CLREOP .EQ $FC42
 3340 MON.VTAB .EQ $FC22
 3350 CH .EQ $0024
 3360 CV .EQ $0025
 3370 *---------------------------------
 3380 * ASSEMBLER EQUATES
 3390 *---------------------------------
 3400 GNL .EQ $E026
 3410 NML .EQ $E063
 3420 PLNO .EQ $E779
 3430 GNB .EQ $E2C5
 3440 DOIT .EQ $E874
 3450 SEARCH .EQ $E64B
 3460 SERNXT .EQ $E4FE
 3470 NTKN .EQ $E2AF
 3480 SRCP .EQ $DD,DE
 3490 WBUF .EQ $0200
 3500 CURRENT.LINE.NUMBER .EQ $D3,D4
 3510 *---------------------------------
 3520 * PATCH ROUTINES FOR ASSEMBLER
 3530 *---------------------------------
 3540 NEW.NML JSR MY.NML
 3550 JMP GNL
 3560 MY.NML LDY #0
 3570 JSR $E28D
 3580 JSR $E14A
 3590 JMP $E066
 3600 *---------------------------------
 3610 * LOCAL VARIABLES FOR EDIT COMMAND
 3620 *---------------------------------
 3630 NEXT .DA 0
 3640 END .DA 0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 563 of 2550

Apple II Computer Info

 3650 CHAR .DA #0
 3660 EDPTR .DA #0
 3670 FKEY .DA #0
 3680 *---------------------------------
 3690 EDIT DEX
 3700 DEX
 3710 BMI .2 NO ARGUMENTS
 3720 BEQ .4 1 ARGUMENT
 3730 JSR .3 2 ARGUMENTS
 3740 LDX #A1L FIND END PTR
 3750 JSR SERNXT
 3760 LDA $E6
 3770 STA END
 3780 LDA $E7
 3790 STA END+1
 3800 .1 LDA NEXT+1
 3810 STA SRCP+1
 3820 PHA
 3830 LDA NEXT
 3840 STA SRCP
 3850 CMP END
 3860 PLA
 3870 SBC END+1 PAST END LINE?
 3880 BCS .2 YES, EXIT
 3890 JSR E.LIST NO, LIST AND EDIT
 3900 JMP .1 TRY FOR NEXT LINE
 3910 .3 LDX #A0L FIND START PTR
 3920 JSR SERTXT
 3930 LDA $E4
 3940 STA SRCP
 3950 STA NEXT SAVE NEXT LINE ADRS
 3960 LDA $E5
 3970 STA SRCP+1
 3980 STA NEXT+1
 3990 .2 RTS
 4000 .4 JSR .3 SEARCH FOR LINE
 4010 BCC .2 NOT FOUND EXIT
 4020 E.LIST JSR E.POSN POSITION FOR EDIT
 4030 JSR MON.CLREOP PREPARE DISPLAY
 4040 JSR GNB GET LINE SIZE
 4050 CLC
 4060 ADC NEXT COMPUTE NEXT LINE ADRS
 4070 STA NEXT
 4080 TYA
 4090 ADC NEXT+1
 4100 STA NEXT+1
 4110 JSR GNB GET LINE # FOR DISPLAY
 4120 STA CURRENT.LINE.NUMBER
 4130 JSR GNB
 4140 STA CURRENT.LINE.NUMBER+1
 4150 SEC
 4160 ROR $F8 STUFF WBUF FLAG
 4170 JSR PLNO
 4180 LSR $F8 TURN OFF FLAG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 564 of 2550

Apple II Computer Info

 4190 LDA #$20 SPACE AFTER LINE #
 4200 LDX #0
 4210 .1 STX EDPTR
 4220 ORA #$80 FORCE VIDEO BIT
 4230 STA WBUF+4,X STORE INTO INPUT BUFFER
 4240 CMP #$A0 TEST FOR CONTROL CHAR
 4250 BCS .2 OK, IF NOT
 4260 AND #$7F OUTPUT INVERSE ALPHA
 4270 .2 JSR MON.COUT PRINT CHAR
 4280 JSR NTKN GET NEXT TOKEN
 4290 LDX EDPTR
 4300 INX
 4310 CMP #0 END TOKEN?
 4320 BNE .1 NO,PRINT IT
 4330 STA WBUF+4,X YES,PUT IT IN TOO
 4340 E.LINE LDX #0
 4350 E.0 STX EDPTR
 4360 E.1 JSR E.INPUT GET INPUT CHAR
 4370 E.2 LDA #EDTB
 4380 STA $2
 4390 LDA /EDTB
 4400 STA $3
 4410 LDA #CHAR
 4420 STA $12
 4430 LDA /CHAR
 4440 STA $13
 4450 JSR SEARCH SEARCH EDIT COMMAND TABLE
 4460 BNE .2 NOT IN TABLE
 4470 LDX EDPTR
 4480 JSR DOIT EXECUTE COMMAND ROUTINE
 4490 BCC E.0 NO DISPLAY ON RETURN
 4500 BCS .5 DISPLAY ON RETURN
 4510 .2 LDX EDPTR MUST BE TYPE OVER
 4520 LDA CHAR
 4530 CMP #$A0
 4540 BCS .4
 4550 .3 JSR MON.BELL ERR IF CONTROL KEY
 4560 JMP E.1
 4570 .4 LDA WBUF+5,X SEE IT END OF LINE
 4580 BNE .6 TYPE OVER IF NOT
 4590 STA WBUF+6,X SHIFT OVER END OF LINE
 4600 .6 LDA CHAR STUFF CHAR INTO BUFFER
 4610 STA WBUF+5,X
 4620 CPX #256-5-2 TEST BUFFER SIZE
 4630 BEQ .5 TYPE OVER LAST CHAR IN BUFFER
 4640 INX INSTEAD OF BUFFER END
 4650 .5 JSR E.DISP DISPLAY LINE
 4660 JMP E.0 GET NEXT EDIT COMMAND
 4670 *---------------------------------
 4680 E.POSN LDA #19 POSITION TO LINE 19,
 4690 STA CV
 4700 LDA #0 COLUMN 0
 4710 STA CH
 4720 JMP MON.VTAB

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 565 of 2550

Apple II Computer Info

 4730 *---------------------------------
 4740 E.DISP STX EDPTR
 4750 JSR E.POSN POSITION DISPLAY
 4760 LDX #$FF
 4770 .1 INX
 4780 LDA WBUF,X GET BUFFER CHAR
 4790 BEQ .3 END OF BUFFER
 4800 CMP #$A0 CONTROL CHAR?
 4810 BCS .2 NO
 4820 AND #$7F PRINT INVERSE ALPHA
 4830 .2 JSR MON.COUT PRINT CHAR
 4840 JMP .1 NEXT CHAR
 4850 .3 JSR MON.CLREOP CLEAN ANY REMAINING SCREEN
 4860 LDX EDPTR
 4870 RTS
 4880 *---------------------------------
 4890 E.BEG LDX #0 SET CURSOR TO BEGINNING OF LINE
 4900 CLC
 4910 RTS
 4920 *---------------------------------
 4930 E.DEL LDA WBUF+5,X IS THIS END
 4940 BEQ .2
 4950 .1 INX
 4960 LDA WBUF+5,X SHIFT TO LOWER MEMORY
 4970 STA WBUF+4,X TO DELETE CHAR
 4980 BNE .1
 4990 LDX EDPTR
 5000 .2 SEC RETURN WITH DISPLAY
 5010 RTS
 5020 *---------------------------------
 5030 E.END LDA WBUF+5,X END OF BUFFER?
 5040 BEQ .1 YES
 5050 INX NO
 5060 BNE E.END TRY END AGAIN
 5070 .1 CLC RETURN NO DISPLAY
 5080 RTS
 5090 *---------------------------------
 5100 E.FIND LDA WBUF+5,X END OF BUFFER?
 5110 BNE .2 NO
 5120 .1 STA FKEY YES SO ERR
 5130 JSR MON.BELL RING BELL
 5140 CLC RETURN NO DISPLAY
 5150 RTS
 5160 .2 JSR E.INPUT GET 1 CHAR
 5170 STA FKEY SAVE KEY TO LOCATE
 5180 .3 INX
 5190 LDA WBUF+5,X TEST BUFFER
 5200 BEQ .1 END OF BUFFER
 5210 CMP FKEY NO, SEE IF KEY
 5220 BNE .3 NO, GO FORWARD
 5230 JSR E.INPUT TRY ANOTHER KEY
 5240 CMP FKEY SAME CHAR?
 5250 BEQ .3 YES, SEARCH AGAIN
 5260 PLA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 566 of 2550

Apple II Computer Info

 5270 PLA
 5280 STX EDPTR NO, EXIT POINTING HERE
 5290 JMP E.2
 5300 *---------------------------------
 5310 E.BKSP TXA AT BEGINNING?
 5320 BEQ .1 YES, STAY THERE
 5330 DEX BACKUP
 5340 .1 CLC RETURN NO DISPLAY
 5350 RTS
 5360 *---------------------------------
 5370 E.OVR JSR E.INPUT READ CHAR
 5380 JMP E.INS1 SKIP CONTROL CHECK
 5390 *---------------------------------
 5400 E.INS JSR E.INPUT READ CHAR
 5410 CMP #$A0 CONTROL CHAR POPS USER OUT
 5420 BCC E.INS2 OF INSERT
 5430 E.INS1 CPX #256-5-2 END OF BLOCK
 5440 BEQ .1 YES STAY THERE
 5450 INX
 5460 .1 STX EDPTR
 5470 .2 PHA CHAR TO INSERT
 5480 LDA WBUF+4,X SAVE CHAR TO MOVE
 5490 TAY
 5500 PLA GET CHAR TO INSERT
 5510 STA WBUF+4,X PUT OVER SAVED CHAR
 5520 INX
 5530 TYA INSERT SAVED CHAR
 5540 BNE .2 IF NOT BUFFER END
 5550 STA WBUF+4,X STUFF END CODE
 5560 STA WBUF+256-5-1 INSURE AN END CODE
 5570 LDX EDPTR
 5580 JSR E.DISP DISPLAY LINE
 5590 JMP E.INS GET NEXT INSERT CHAR
 5600 E.INS2 PLA SEND CHAR TO
 5610 PLA COMMAND SEARCH
 5620 LDX EDPTR
 5630 *---------------------------------
 5640 JMP E.2
 5650 E.RETQ LDA #0 CLEAR REST OF LINE
 5660 STA WBUF+5,X
 5670 JSR E.DISP DISPLAY LINE
 5680 E.RET LDX #$FF SUBMIT LINE TO ASSEMBLER
 5690 .1 INX COMPUTE LINE SIZE
 5700 LDA WBUF,X
 5710 BNE .1
 5720 DEX
 5730 .2 STX $E1 SAVE SIZE
 5740 PLA
 5750 PLA
 5760 JMP MY.NML SUBMIT THE LINE
 5770 *---------------------------------
 5780 E.TAB CPX #20 <COL 20?
 5790 BCS .1 NO
 5800 LDA WBUF+5,X END OF BUFFER?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 567 of 2550

Apple II Computer Info

 5810 BEQ .1 YES
 5820 INX MOVE FORWARD
 5830 CPX #7 TAB MATCH?
 5840 BEQ .1
 5850 CPX #11 TAB MATCH?
 5860 BNE E.TAB
 5870 .1 CLC RETURN WITHOUT DISPLAY
 5880 RTS
 5890 *---------------------------------
 5900 E.RIT LDA WBUF+5,X END OF BUFFER?
 5910 BNE .1 NO
 5920 STA WBUF+6,X
 5930 LDA #$A0 PUT A BLANK
 5940 STA WBUF+5,X TO EXTEND LINE
 5950 CPX #256-5-2
 5960 BEQ .2
 5970 .1 INX MOVE AHEAD
 5980 .2 CLC RETURN NO DISPLAY
 5990 RTS
 6000 *---------------------------------
 6010 E.ABORT LDA #$DC OUTPUT BACKSLASH
 6020 STA WBUF+5
 6030 LDA #0
 6040 STA WBUF+6
 6050 JSR E.DISP SHOW CANCEL
 6060 JMP GNL GET NEXT COMMAND
 6070 *---------------------------------
 6080 E.INPUT LDA #19
 6090 STA CV
 6100 TXA POSITION TO CURSOR
 6110 CLC
 6120 ADC #5
 6130 .1 CMP #40 THIS LINE?
 6140 BCC .2 YES
 6150 SEC
 6160 SBC #40
 6170 INC CV ON NEXT LINE
 6180 BNE .1
 6190 .2 STA CH
 6200 JSR MON.VTAB SET BASL
 6210 JSR MON.RDKEY INPUT A CHAR
 6220 STA CHAR
 6230 RTS
 6240 *---------------------------------
 6250 * COMMAND TABLE
 6260 *---------------------------------
 6270 EDTB .DA #3,#1 ITEM SIZE, KEY SIZE
 6280 .DA #$82,E.BEG-1 ^B
 6290 .DA #$84,E.DEL-1 ^D
 6300 .DA #$8E,E.END-1 ^N
 6310 .DA #$86,E.FIND-1 ^F
 6320 .DA #$88,E.BKSP-1 ^H
 6330 .DA #$89,E.INS-1 ^I
 6340 .DA #$8D,E.RET-1 ^M

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 568 of 2550

Apple II Computer Info

 6350 .DA #$8F,E.OVR-1 ^O
 6360 .DA #$91,E.RETQ-1 ^Q
 6370 .DA #$94,E.TAB-1 ^T
 6380 .DA #$95,E.RIT-1 ^U
 6390 .DA #$98,E.ABORT-1 ^X
 6400 .DA #0
 6410 .EN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 569 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:DOS3.3:S.Recurs.Macro.txt
==

 1000 .MA LSR
 1010 .DO]1>0
 1020 LSR]2
 1030 >LSR]1-1,]2
 1040 .FIN
 1050 .EM
 1060 *--------------------------------
 1070 >LSR 3,$12
 1100 >LSR 2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 570 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8204:DOS3.3:S.Schumer.Macro.txt
==

 1000 *--------------------------------
 1010 * USE OF MACROS & NESTED MACROS
 1020 * BY ART SCHUMER - 3/25/82
 1030 *--------------------------------
 1040 VTAB .EQ $FB5B
 1050 CLREOP .EQ $FC42
 1060 HOME .EQ $FC58
 1070 RDKEY .EQ $FD0C
 1080 COUT .EQ $FDED
 1090 *--------------------------------
 1100 PTR .EQ $6
 1110 CH .EQ $24
 1120 CV .EQ $25
 1130 *--------------------------------
 1140 * MACRO DEFINITIONS
 1150 *
 1160 * CLR.PRNT.XY AND GOTO.PRNT.XY
 1170 * ARE EXAMPLES OF NESTED MACROS
 1180 *--------------------------------
 1190 .MA GOTO.XY
 1200 LDA #]1
 1210 STA CH
 1220 LDA #]2
 1230 JSR VTAB
 1240 .EM
 1250 *--------------------------------
 1260 .MA CLEAR.XY
 1270 >GOTO.XY]1,]2
 1280 JSR CLREOP
 1290 .EM
 1300 *--------------------------------
 1310 .MA CLEAR.PRNT.XY
 1320 >CLEAR.XY]1,]2
 1330 JSR PRNT
 1340 .EM
 1350 *--------------------------------
 1360 .MA GOTO.PRNT.XY
 1370 >GOTO.XY]1,]2
 1380 JSR PRNT
 1390 .EM
 1400 *--------------------------------
 1410 .MA READ.XY
 1420 >GOTO.XY]1,]2
 1430 JSR RDKEY
 1440 .EM
 1450 *--------------------------------
 1460 * THE PROGRAM
 1470 *--------------------------------
 1480 START JSR HOME

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 571 of 2550

Apple II Computer Info

 1490 >GOTO.PRNT.XY 4,12
 1500 .AS -/THIS EXAMPLE USES NESTED MACROS/
 1510 .HS 00
 1520 >READ.XY 36,12
 1530 >CLEAR.PRNT.XY 4,12
 1540 .AS -/AND THIS ONE ALSO!/
 1550 .HS 00
 1560 >READ.XY 22,12
 1570 RTS
 1580 *--------------------------------
 1590 * ANDY HERTZFELD'S PRINT ROUTINE
 1600 *--------------------------------
 1610 PRNT PLA
 1620 STA PTR
 1630 PLA
 1640 STA PTR+1
 1650 LDY #0
 1660 .1 INC PTR
 1670 BNE .2
 1680 INC PTR+1
 1690 .2 LDA (PTR),Y
 1700 BEQ .3
 1710 JSR COUT
 1720 JMP .1
 1730 .3 LDA PTR+1
 1740 PHA
 1750 LDA PTR
 1760 PHA
 1770 RTS
 1780 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 572 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:Anthr.Recur.Mac.txt
==

Another Recursive Macro...........................Lee Meador

Last month I sent Bob a recursive macro definition that he put in the
AAL for everyone to see. In case you have forgotten what recursive
means, let me explain it somewhat. If you have a macro thatcalls
itself under certain conditions, that macro is called 'recursive'.
It's kind of like the plastic cup I had when I was little. There was
a picture on the cup of a little bear sitting in a high-chair. The
bear was holding a plastic cup and on the cup was a picture of a
little bear in a high-chair holding a plastic cup with a picture of a
bear in a high-chair holding a cup with a picture of a bear......

I always used to wonder how many bears there were and how big the
littlest one was. Now, when we are using recursion in our macros we
want to be sure we know that there is a last little bear -- a last
call -- a way of leaving the lowest level of recursion. Otherwise
(since each recursive call uses up some memory/stack space) we will
soon run out of room to store the return information and BOOM goes the
assembly.

My macro uses the principle of 'divide and conquer' to allocate a
chosen number of bytes all of which hold the value we want them to
have. We might use this macro with a table of 128 bytes. All non-
alphabetic characters (codes $0 to $40, plus assorted others) will
have the value $FF in their corresponding bytes in the table. All
alphabetics will have a number indicating their relative frequency in
English text. We could set up the table with lines and lines of hex
strings for all the non-alphabetics. Or we could let the program
filter out the alphabetics and use a shorter table. But for the sake
of the example let us assume we need the program to be as fast as
possible and memory space is no object.
Here is the macro definition I came up with:

.MA DB Macro name is "DB"

.DO]1<2 If only one left,

.DA]2 generate a data byte

.ELSE If more than one left,
>DB]1/2,]2 call DB for half of them,
>DB]1+1/2,]2 and call DB again for the other half
.FIN
.EM

Here is the table I talked about:

>DB $41,#$FF 65 bytes filled with $FF
.HS 00000000 upper case (fill in your own frequencies)
......
>DB 5,#$FF 5 bytes filled with $FF
.HS 00000000 lower case

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 573 of 2550

Apple II Computer Info

......
>DB 5,#$FF 5 bytes filled with $FF

Here is a sample program to use such a table:

LDA CHARACTER.BYTE get character
TAY
LDA TABLE,Y get frequency
...... and then you have to use it

The macro calls itself to set up half of the area desired and then
calls itself again to set up the other half. The adding of one to the
second call makes sure that both odd and even values for the first
parameter will work. If the call only needs one byte to be set up
then a .DA is used to take care of it. That provides the end of the
little bears -- when the first parameter is one.

When I needed a macro like this my first idea was to have each
recursive call take care of one byte and then call itself to take care
of the rest. If the macro was called with zero repetitions then
nothing would be done except end the macro. The problem with that
method is the amount of stack space used as the recursion goes to very
deep levels. The method used in the example will only recurse, for
example, 8 levels to generate 127 bytes of data.

By the way, notice that you must put the pound sign (#) on the second
parameter if you want to generate single bytes. Leaving it off will
generate two-byte values of data. I chose that method to make the
macro more flexible. You might want to put the pound sign (#) inside
the macro to make it safer in case you always want to generate single
bytes of data. Also, you can use calculated values like #'F+$80 to
generate tables of some character value.

The assembly of recursive macros produces quite a few extra lines in
the listing, so after checking it out you will probably want to turn
off the listing of the macro expansion with ".LIST MOFF". Here is a
sample listing with the macro expansion listing on:

<listing here>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 574 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:BlkMv.Benchmrk.txt
==

Benchmarking Block MOVES..................William R. Savoie

While working on my new soon-to-be-released data file system, I came
to see the importance of a speedy 6502 block move routine. I have
resisted "moves" like the coming of winter. I have a super two pass
sort routine that is very fast. Providing a person has less than 2000
files there is no need to do much file moving, since only pointers
need move. (My system has a 64K card, giving me a 112K system.)

Unfortunately, the real world needs some 10,000 or more files, and
these of course must be sorted too. By physically moving the files as
directed by the sorted pointers, and then moving all this to disk, it
is possible to use a merge sort to get the whole job done in the least
amount of time. With this preamble behind us, let's get on the move!

I have benchmarked three approaches to moving blocks: the monitor
move down (located at $FE2C) which I'm sure you all have used, and its
variation, a similar move up routine. Next is the Applesoft block
move, and third is a self modifying move which I call "Quick Move".

To ease such a tedious undertaking, I have included a BASIC connection
to pass variables and determine the benchmark precision. To help
further, I have added a hex converter, a memory dump routine, and an
automatic 3D0G vector using the ctrl-Y command from the monitor. To
help with the problem of what block of memory was moved where, I wrote
a memory fill routine. This acts to place the memory address back
into memory, on two-byte boundaries. You can easily read memory to
see where it came from.

My first benchmark was a block move of 10,000 bytes made 100 times.
The next was a move of 10,240 bytes, again made 100 times. Here are
the conditions and resulting times:

 mon up mon dn AS QM
Case I Lo=18674=$48F0 47 53 17.2 15.3 seconds
Case II Lo=18432=$4800 48.7 54.7 16.7 14.7

Note: 0.5 seconds of these values due to BASIC overhead.

As you can see, the old monitor move is not made for high speed moves.
For one thing, a two-byte subtraction is carried out for each byte
that is moved. It is much more efficient to do the subtraction only
once, before you start. A closer look shows that it is faster to move
more data, providing you move a whole number of memory pages! The
time needed to move the "extra" 240 bytes was negative 0.5 seconds for
the Applesoft block move and negative 0.6 seconds for the "Quick
Move". There was no sensitivity to start and destination boundaries.
"Quick Move" was 3.7 times faster than the monitor move!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 575 of 2550

Apple II Computer Info

I tried putting the first half of Quick Move on page zero at $A0, but
the speed improvement was only 0.7 seconds (about 5%) over the time it
took when located at $3000.

As a further note, each move routine requires its own parameter
organization. If files are to be moved and not lost, attention must
be paid to exact specification of end points and lengths.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 576 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:Branch.MacLIb.txt
==

Macro Branch Library...R. F.
O'Brien

When I received my copy of the S-C Macro Assembler, my first task was
to make up a set of branch macro definitions to use in all my
programs. This set will finally eliminate the need to check usage of
BCC, BCS, etc., and generally make the programs more readable.

There are six branch-on-tests: >BLT, >BLE, >BGE, >BGT, >BEQ, AND
>BNE. All of these would normally be used with two parameters, e.g.
>BGT P1,P2...reads: if contents of accumulator is greater than P1 then
branch to P2. The first four of these can be gainfully used with only
one parameter, after a comparison. Sample program:

LDA #$8D
CMP #$8E
>BLT THERE ... results in a branch to THERE

While >BEQ and >BNE are defined so as to work with only one parameter,
there is no reason to so use them - it is easier to just use BEQ and
BNE.

The macro >BRA (BRanch Always) is used with one parameter - any others
are ignored. >BRA LABEL causes a jump to LABEL, up to +- 127 bytes
away. To overcome this limitation I decided to put the macro facility
to good use to provide for easy branching to any part of a program -
this is necessary for writing relocatable code. I settled for a two-
paramter code >JMP:

>JMP P1,P2 ... where P1 is the intermediate or final label you wish to
branch to and P2 is the label for this instruction.

Instructions such as the foregoing are inserted anywhere you wish in
the program (within 127 bytes of each other) to allow for unlimited
branching whilst retaining relocatable code. The following is an
example of how you might use the >JMP code:

1000 A etc.
 (more code....)
2000 >JMP A,B
 (more code....)
3000 >BRA B

When a program designed as the above is run it will simulate an
absolute jump to A. The >BRA B will branch to label B, which contains
a >BRA A. This sequence of instructions is transparent to the rest of
the program, as the first instruction in the >JMP is to skip around
the the >BRA within the definition.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 577 of 2550

Apple II Computer Info

This use of macro definitions can easily be extended to the X and Y
registers; simply substitute CPX's or CPY's for the CMP's.

Following are some examples of these macros at work:

>BLT #3,THERE....if (A) is less than 3 then go THERE
>BGT $40,THIS....if (A) is greater than ($40) then go THIS
>BEQ #'A,THAT....if (A) is equal to $41 then go THAT

To use these macros in all your programs, place the command .IN
MACRO.BRANCH.LIBRARY at the beginning of your source program.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 578 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:Front.Page.txt
==

$1.50

Volume 2 -- Issue 8 May, 1982

In This Issue...

Secret RWTS Caller Inside DOS 2
Some Patches to the S-C Macro Assembler 3
Benchmarking Block MOVES 7
New AED Features . 15
Another Recursive Macro 17
RWTS Caller (Reading a Whole Track) 20
Reading the Game Buttons Unambiguously 26
Macro Branch Library 29

Macro Assembler in EPROM

A number of you have asked about the possiblility of getting the S-C
Macro Assembler in EPROM to put on an Apple Firmware card, or a CCS
12K Eprom card. If you want to do it, and know how to modify the
firmware card to accept EPROMs, I will send a set of 5 EPROMs
containing the assembler for $64. If you also need the monitor in
EPROM, add another $16. The assumption will be that you have
Applesoft on the mother board, and that you already own the S-C Macro
Assembler on disk.

Advertising in AAL

Due to the increased costs of printing more than 1600 copies per
month, and with the desire to limit the percentage of advertising
pages to less than 30% each month, I have decided to raise the page
rate again.

For the June 1982 issue, the price will be $50 for a full page, $30
for a half page. So-called "classified" ads, of up to forty words,
will be $5.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 579 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:Game.Buttons.txt
==

Reading the Game Buttons...........................Jim Kassel

Recently I was asked to come up with a maching language subroutine
that involved using the Apple game buttons. Fortunately for me at the
time, I forgot that my paddles were not plugged in. I was in for a
rude awakening because when I tested the program, it said that all of
the buttons were constantly being pushed!

I needed some additional programming to check whether the buttons were
even plugged in. The problem occurs because the Apple button logic
returns the same value for a pushed button as for a missing button.
To get technical: in TTL logic, when an input pin of an IC chip is
left unconnected, the chip thinks the pin is at a logic "1". The
Apple buttons supply a logic "1" when they are plugged in and pushed.
Hence, the hardware cannot tell the difference between a plugged-in-
pushed-down button and a missing button.

What the hardware does know for sure is when a button is plugged in
and not pushed. This is the only case in which a logic "0" is
developed. I had to use this knowledge to write a program which could
tell what a logic "1" really means. Since an installed unpushed
button does unambiguously announce its presence by a "0" in bit 7 of
the input byte, I could make a mask indicating which buttons appear to
be installed.

I started by writing the GET.BUTTON.STATUS subroutine. It reads each
of the three buttons, and packs the three bit-7's into one byte. The
way I wrote it, bit 7 of the returned byte represents button 1, bit 6
is button 2, and bit 5 is button 3. If a button is installed and not
pushed, the corresponding bit will be "1"; otherwise it will be "0".

Look at the listing, lines 1250-1350, and I'll describe how
GET.BUTTON.STATUS works. I used an indexed loop, where X goes from 2
to 0, step -1, addressing all three of the buttons. Only bit 7 of a
button byte is significant. I invert this bit (line 1280), and shift
it into the carry status bit (line 1290). Then line 1300 rolls the
bit into GB.PUSH. After all three have been read and rolled, I pick
up GB.PUSH and zero out the lower five bits at line 1340.

Now lets look at the other three subroutines. GAME.BUTTON.INITIALIZE
simply clears out GB.STAT. We have to start with GB.STAT = 0, so that
as we discover each installed button we can set its bit. Call this
subroutine once at the beginning of your overall run.

GAME.BUTTON.INSTALLED reads the current button status; remember that a
"1" here indicates an installed but unpushed button. So line 1140
merges all "1" bits into GB.STAT. You need to call this subroutine
several times, at time intervals of several seconds at least, to be
sure that every installed button is noticed at least once. (The first

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 580 of 2550

Apple II Computer Info

few times you call it, you might be pushing down an installed button;
then finally you let go, so this subroutine sees the button.)

GAME.BUTTON.PUSHED reads the current button status, and with a little
boolean logic comes out with the final result: a "1" indicating an
installed and pushed button, and a "0" meaning either a missing button
or an unpushed button. The result is in the A-register, and also in
GB.PUSH.

Here is a truth table of the logic involved:

GB.STAT CURRENT READING EOR AND
 STAT STAT
0 (no button) 0 (none or pushed) 0 0
0 (no button) 1 (unpushed) 1 0
1 (button) 0 (none or pushed) 1 1
1 (button) 1 (unpushed) 0 0

There are other possible complications in reading buttons, which I
have not handled here. You might want to "debounce" the buttons, so
that you don't get false indications of multiple pushes when the
button begins to make or break contact. And, you might want to
guarantee that any action which happens from a pushed button only
happens once per push.

Lines 1400-1910 demonstrate the usage of the subroutines. After
clearing the screen, the buttons are continuously monitored until you
press any key on the keyboard. The status of each button will be
displayed on the screen: button 1 on the to line, button 2 on the
second line, and button 3 on the third line. If you hold a button
pushed and then start the program, it will say "not installed" until
you release the button; from then on it will track the button
properly.

If you have the shift key mod installed in button 3, it will say "not
installed" until you press the shift key; from then on it will say
"pushed" when you are not pushing, and "not pushed" when you are.
This is because the sense of the shift key is the opposite of the
normal game paddle buttons.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 581 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:NewAEDFeatures.txt
==

New AED Features...........................Bob Sander-Cederlof

Bill Linn, author of AED, stopped by the other day. Bill is a Vice
President at Cullinane Corporation, and was in Dallas for a user
convention. Since it was Sunday, and we are both earnest Christians,
he spent the morning with Becky and me and the kids at church. Later
we all went out for an excellent lunch at the local Harvey House.

He brought the latest version of AED along, and showed me all the new
features. AED now has keyboard macros! They are user definable, but
he has predefined quite a few for you. If you type two escapes in a
row, the top 18 lines of the screen are used to display a menu of all
the currently defined escape macros. Escape followed by some other
character inserts the corresponding text string at the current cursor
position.

There is a utility program on the disk for use in defining your own
macro strings, and it is very easy to use. In fact, you use AED
editing to modify simple DATA statements within the utility itself.
When you are through with your changes, the utility modifies the macro
table within AED and on the disk.

Again I say, if you are not fully satisfied with your current stable
of Applesoft programming aids, you owe it to yourself to buy AED. It
will save you countless hours of frustrating retyping as you create
and edit and restructure and debug and modify Applesoft programs.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 582 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:NewOpcodes.txt
==

Implementing New Opcodes Using 'BRK'.......Bob Sander-Cederlof

If you have the Autostart ROM, you can control what happens when a BRK
instruction is executed. If you do nothing, a BRK will cause entry
into the Apple Monitor, and the register contents will be displayed.
But (if you have the Autostart Monitor) by a small amount of
programming you can make the BRK do marvelous things.

Like simulate neat instructions from the 6809, which are not in the
6502. I am thinking particularly of the LEAX instruction, which loads
the effective address into a 16-bit register; of the BSR, which enters
a subroutine like JSR, but with a relative address; and BRA, which is
a relatively addressed JMP. With these three instructions you can
write position-independent programs (programs that execute properly
without any modification regardless of where they are loaded in
memory).

I am thinking of these because of an article by A. Sato in "Lab
Letters" (a publication of ESD Laboratories in Tokyo, JAPAN) Volume 6
No. 1, pages 91-93. It is all written in Japanese (see example
below), but I think I deciphered what he is saying.

When a BRK instruction is executed, the program is interrupted as
though a Non-Maskable Interrupt (NMI) occurred. The B bit in the
status register is set, so the Apple can tell that the interrupt was
caused by BRK rather than some external event. After making this
determination, the Autostart Monitor performs a "JMP ($3F0)"
instruction. This means that you can get control by placing the
address of your own program into $3F0 and $3F1. The monitor
initialization process puts the address $FA59 there.

By the time the monitor branches to the BRK processor (its own or
yours) all the registers have been saved. The address of the BRK
instruction plus 2 (PC) has been saved at $3A and $3B; the registers
A, X, Y, P (status), and S (stack pointer) have been saved in $45
through $49, respectively.

In the program below, lines 1180-1230 will set up the BRK-vector at
$3F0 and $3F1 to point to your own BRK processor. Lines 1250-1320
back up the PC value by one, to point at the byte immediately
following the BRK instruction. At this point I can decide what to do
about the BRK.

Since I want to simulate the operation of LEAX, BSR, and BRA, I will
use the BRK instruction to introduce a pseudo instruction of three
bytes. I decided to copy A. Sato on this. LEAX is a BRK instruction
followed by LDX from an absolute address. This is $AE in hexadecimal,
followed by a 16-bit value representing a relative address. BSR is

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 583 of 2550

Apple II Computer Info

BRK followed by a JSR instruction ($20) and a relative address; BRA is
BRK followed by a JMP instruction ($4C) and a relative address.

Looking back at the program, lines 1310 and 1320 store the address of
the secondary opcode byte into PNTR and PNTR+1. These two bytes are
inside an instruction at line 1760. I didn't want to use any page-
zero space, so I had to resort to this kind of self-modifying code.
While we are here, lines 1750-1780 pick up the byte whose address is
in PNTR. Lines 1710-1740 increment PNTR. If we call GET.THIS.BYTE,
it just picks up the byte currently pointed at. If we call
GET.NEXT.BYTE, it increments the pointer and gets the next byte.

Lines 1330-1370 pick up the three bytes which follow the BRK. The
opcode byte is saved in the Y-register. Lines 1380-1450 compute the
effective address, by adding the actual address of the instruction to
the relative address inside the instruction.

Lines 1470-1540 classify the opcode; if it is one of the three we have
implemented, it branches to the appropriate code. If not, it jumps
back into the monitor and processes the BRK in the normal monitor way.

Lines 1560-1690 implement the three opcodes BSR, BRA, and LEAX.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 584 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:Printers.4Sale.txt
==

Good Price on the NEC printers

I can ship you an NEC PC-8023A-C dot matrix printer for only $595. I
believe the normal list price is $795, but mail order prices are
generally less. I also have the Grappler interface card and cable,
configured for the NEC printer, for only $150 (normally $175, I
think). And if you want both printer and interface at the same time,
the combined price is only $695.

I have two of these printers, and like them better than my Epson MX-
80. Why? Faster: 100cps instead of 80cps. Fully equipped:
standard features include graphics, tractor feed, and friction feed.
Handier: the friction feed is just like a typewriter, platen and all;
and option switches, should you wish to change them, are accessible
without removing any screws. I run one of them with an Epson parallel
interface, and the other with the Grappler.

If you would rather have a Spinwriter (that is what this newsletter is
printed on), call me for prices.

Vinyl Diskette Pages for your S-C Assembler Binder

I am having 1000 special pages manufactured. They will fit the binder
that comes with the Macro Assembler, and will hold one diskette each
and a 3x5 index card. For $6 I'll send you ten of them. For $12 I'll
send them in a binder. For $36 you can have a binder with ten blank
diskettes in vinyl pages. The binder is also just right for storing
back issues of AAL.

The Best Book So Far for Beginners

Roger Wagner's book for beginners wanting to learn assembly language
programming is now out, at $19.95. (My price is only $18.) Called
"Assembly Lines: The Book", it began as simply a reprint of the series
Roger writes for Softalk Magazine. But there is a lot more material
in the book, and 100 pages of Appendices. Appendix B, 70 pages, is a
very lucid description of every 6502 opcode. If you rank yourself as
a beginning assembly language programmer, this book will be a
tremendous help.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 585 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:RWTS.Caller.txt
==

RWTS CALLERby Bill Morgan

Here is a routine to directly call RWTS (Read/Write Track/Sector), the
subroutine in DOS that actually reads fro or writes to the disk. Many
programs use a routine like this to handle disk I/O, without all the
time-consuming overhead of the DOS file manager.

All you need to do to use RWTS directly is to place certain
information into an Input/Output control Block (IOB), and tell RWTS
where the IOB is. Following is an explanation of the IOB (the
addresses are those of DOS's own IOB; you can use it yourself, or
build your own wherever is convenient):

Address Description

$B7E8 Table type, always $01
$B7E9 Slot number times 16, usually $60
$B7EA Drive number, $01 or $02
$B7EB Volume number expected, $00 matches anything
$B7EC Track number, $00 through $22
$B7ED Sector number, $00 through $0F
$B7EE-F Address of Device Characteristics Table,
 $B7FB for DOS's own DCT
$B7F0-1 Address of buffer, wherever you want
$B7F2 Not used
$B7F3 Byte count if partial sector, $00 normally
$B7F4 Command $00 = SEEK
 $01 = READ
 $02 = WRITE
 $04 = FORMAT
$B7F5 Error Code $00 = No errors
 $08 = Error in initialization
 $10 = Write protect error
 $20 = Volume mismatch
 $40 = Drive error
$B7F6 Last volume number
$B7F7 Last slot number
$B7F8 Last drive number

The Device Characteristics Table (whose address is at $B7EE,EF) is a
four-byte block containing information about the disk drive. For a
standard Apple Disk II this block always contains $00 01 EF D8.

For our purposes, the most important items in the IOB are track,
sector, buffer address, and command. By manipulating these, you can
read any sector of the disk into any area of memory. All you need to
do is set up the IOB, load the A- and Y-registers with the address of
the IOB, and JSR $3D9. And if you decide to use the file manager's
IOB, you can even set up the A- and Y-registers by a simple JSR $3E3.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 586 of 2550

Apple II Computer Info

RWTS will read the track and sector you choose into your 256-byte
buffer. If there was a disk error, RWTS will return with the carry
bit set and an error code stored in the IOB. It is then up to the
user's program to decide what to do about the error. If there was no
error, carry will be clear.

This month we'll set up a short program using the RWTS Caller to read
an entire track of the disk into 16 consecutive pages of memory. DOS
stores information on a track starting at sector $0F and working back
to sector $00, so we must read a sector into the buffer, decrement the
sector in the IOB, and increment the buffer pointer.

RWTS.CALLER:

Lines 1680-1850 set up the IOB, transferring values from the program
variables.

Lines 1870-1890 load the address of the IOB and call RWTS.

Lines 1900-1910 are necessary to avoid confusing the system monitor.
(RWTS and the monitor both use location $48.)

Lines 1960-2030 ring a warning if a disk error occurred, and display
the error code.

TRACK READ:

Lines 1260-1350 initialize the variables and call input routines.

Lines 1370-1440 read the sectors from $0f through $00 into the buffer.
Line 1410 will end the program if an error occurred.

Line 1460 will become a display routine. (Or, whatever processing you
want to do on the buffer.)

Lines 1500-1650 will become input routines; right now they just set
the track, buffer and command variables.

CAUTIONS:

1) These routines have very little error-checking. It is very easy to
make a trivial error and lose information from a diskette. Always
test an RWTS-calling program on a diskette yhou don't care about.

2) If you store information on a blank area of a diskette using these
techniques, DOS doesn't know you have taken some space. Unless you
modify the VTOC to show that sectors are used, DOS can overwrite your
data. (What's a VTOC?, you say. Volume Table of Contents. We'll go
into that another time.)

There is more about RWTS on pages 94-98 of Apple DOS Manual, and a
goldmine of information in Beneath Apple DOS, by Don Worth and Pieter
Lechner. (Quality Software, 1981.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 587 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:SCMacro.patches.txt
==

Some Patches for the S-C Macro Assembler....Bob Sander-Cederlof

1. Loading the Language Card version: When you type "EXEC LOAD
LCASM", the language card is loaded with a copy of the monitor from
the Apple mother board, and with the file S-C.ASM.MACRO.LC. The EXEC
file also makes a small modification to the memory image depending on
which language you have on the mother board.

If you have serial number M-5275 or earlier, the EXEC file does not do
the final step of turning on the Assembler. I expected you to type
the DOS command "INT" (if Applesoft is on the mother board) or "FP"
(if Integer BASIC is on the mother board) to enter the Assembler.

You can make a minor change to the EXEC file to make it automatically
turn on the assembler after loading. The next to the last line of the
EXEC file is now "C082"; change it to "C080" for automatic turn-on.

Here is a step-by-step procedure for the change. Try it on a COPY of
the master disk, in case you make a mistake.

1. Get into the S-C Macro Assembler, either regular of language card
version, it doesn't matter which).

2. Type "AUTO". The Assembler will print ":1000 " and wait for
input.

3. Type five (5) backspaces (left arrow) to position the cursor right
after the prompt.

4. Type "EXEC LOAD LCASM", and the Assembler will load the EXEC file
into memory. You will see a list of line numbers on the screen.

5. Type five backspaces and the word "MANUAL" to turn off the auto-
line-number mode.

6. LIST the lines (type "LIST").

7. See line 1090? It should be "C082". Type "1090 C080" to change
it.

8. Type "TEXT LOAD LCASM" to save the modified version.

9. That's all there is to it!

By the way, Bob Potts (from the Bank Of Louisville) was here last
week. He brought along a Corvus 5-meg drive, so we put the Language
Card version of the Assembler on it. For some reason which we can't
explain, the EXEC file hangs up after the BLOAD (but only if the
language card has not been loaded since power up). We changed the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 588 of 2550

Apple II Computer Info

EXEC file slightly, and it always worked. Instead of doing the BLOAD
while in the monitor, we did it from Applesoft. Here is the new
version of the file:

REM LOAD S-C MACRO ASSEMBLER
REM INTO THE LANGUAGE CARD
CALL-151
C081 C081
F800<F800.FFFFM
BLOAD S-C.ASM.MACRO.LC
300:A9 4C CD 00 E0 F0 12 8D 00 E0 A9 00 8D 01 E0 A9 D0 8D 02 E0 A9 CB
8D D1 03 60
300G
C080
3D3G

You may also want to change the HELLO file to include an option to
EXEC LOAD LCASM automatically.

2. If you have a Language Card, and your Assembler has a serial
number of about M-5030 or earlier, the memory limits are not set up
properly in all cases.

Check your copy of S-C.ASM.MACRO.LC by loading it into the language
card and typing "$D2C6" from inside the assembler. If you don't have
$A0 there, then you need to install this patch:

1. Type in these monitor commands:

 :$D2C6:A0 0C
 :$D2C8:20 1E D3 A9 00 91 58 85
 :$D2D0:D9 AD 00 E0 C9 4C F0 08

2. Type "BSAVE S-C.ASM.MACRO.LC,A$D000,L$231F".

3. If you have serial number M-5287 or earlier, a more difficult to
apply patch is needed to correct a problem in printing the symbol
table. If you are using the .TI directive, and if you have several
lines of local labels in the symbol table listing, and if the page
break comes between two such lines, the listing is messed up in a
disastrous way.

To fix the S-C.ASM.MACRO, do the following (very carefully):

1. Get into the assembler by typing "BRUN S-C.ASM.MACRO".

2. Type the following monitor commands:
 :$2AF<26AF.26D5M
 :$26B1<2AF.2D5M
 :$26AF:84 2F
 :$26C1:CA

3. Type "BSAVE S-C.ASM.MACRO,A$1000,L$21D3"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 589 of 2550

Apple II Computer Info

To repair the language card version, do the following:

1. EXEC LOAD LCASM, and get into the assembler by typing INT (unless
you already made the change to the EXEC file noted above).

2. Type the following monitor commands:
 :$C083 C083
 :$2AF<E7FB.E821M
 :$E7FD<2AF.2D5M
 :$E7FB:84 2F
 :$E80D:16

3. Type "BSAVE S-C.ASM.MACRO.LC,A$D000,L$231F"

If these patches and my instructions seem too difficult, you can send
me $2.50 and your S-C Macro Assembler diskette; I will update it with
the new HELLO program, the new LOAD LCASM file, and the patched copies
of the assembler.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 590 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:Articles:Secret.RWTS.Clr.txt
==

Secret RWTS Caller Inside DOS....................Bill Parker

I found a portion of code tucked away in DOS that will perform a RWTS
for you, doing away with the necessity of finding a place to put a
controlling subroutine, an IOB, etc.

As you know, RWTS (Read/Write Track and Sector) gives the programmer
the ability to read a sector from any specified track and put it in a
buffer in RAM. It also allows the programmer to manipulate the buffer
and write it back out to any specified track and sector on the disk.

In this 48K DOS routine, which happens to be the same for 3.3 as well
as 3.2, all the programmer has to do is to plug in the track and
sector desired and whether he wants to read it from disk to the
buffer, or write it from the buffer to the disk. (The buffer is a
fixed 256-byte location beginning at $B4BB (46267).) A simple CALL
45111 or a JSR $B037 will then perform the transfer. (You must
remember to restore the original Read/Write code back to "2" when you
are finished, so that the system can write to the directory when it
needs to).

Here is a disassembled and commented version of the routine, which
(for lack of a better term) I have named "WRTDIR". This should aid in
the development of programs that need to examine or alter the contents
of a disk.

This routine, which normally writes a directory sector to the disk
from the buffer at $B4BB.B5BA (46267-46522), can be used as a general
RWTS utility by plugging in:

 Value Name $Loc Loc
Read/Write (1/2) RW $B041 45121
Track No. ($0-$22) TK $B397 45975
Sector No. ($0-$F) SC $B398 45976

Then call 45111 or JSR $B037 and set RW to 2 when done.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 591 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:DOS3.3:A.BlkMov.Bnch.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 592 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:DOS3.3:S.BlkMovBench.txt
==

 1000 *******************************
 1010 * *
 1020 * BENCHMARKING BLOCK MOVES *
 1030 * *
 1040 * BY WILLIAM R. SAVOIE 3/82 *
 1050 * LIMERICK TRAINING CENTER *
 1060 * C/O GENERAL PHYSICS CORP. *
 1070 * 341 LONGVIEW RD., LINFIELD *
 1080 * PENNSYLVANIA ZIP 19468 *
 1090 *******************************
 1100
 1110
 1120 *-------------------------------*
 1130 * APPLE II PAGE ZERO MEMORY USE *
 1140 *-------------------------------*
 1150
 1160 A1L .EQ $3C MONITOR
 1170 A1H .EQ $3D USE
 1180 A2L .EQ $3E FOR
 1190 A2H .EQ $3F BLOCK
 1200 A3L .EQ $40 MOVE
 1210 A3H .EQ $41
 1220 A4L .EQ $42
 1230 A4H .EQ $43
 1240 FACMO .EQ $A0 FP REGISTER
 1250 FACLO .EQ $A1 FP REGISTER
 1260
 1270 *-------------------------------*
 1280 * OTHER APPLE II MEMORY MAPPING *
 1290 *-------------------------------*
 1300
 1310 BLTU .EQ $D39B BLOCK TRANSFER
 1320 FRMNUM .EQ $DD67 FORMULA=>NUM
 1330 COMA .EQ $DEBE CHECK COMA
 1340 AYINT .EQ $E10C MAKE INTEGER
 1350 PRNTX .EQ $F944 PRINT X
 1360 NXTA1 .EQ $FCBA INCR POINTER
 1370 PRBYTE .EQ $FDDA PRINT A
 1380 MOVE .EQ $FE2C MONITOR MOVE
 1390
 1400
 1410 *-------------------------------*
 1430 .OR $3000
 1440 .TF B.BLOCK MOVE BENCHMARKS
 1450 *-------------------------------*
 1460
 1470 * THIS CODE ALLOWS SIMPLE ENTRY WITHOUT THE & COMMAND
 1480 BEGIN JMP MONITOR.MOVE
 1490 JMP APPLESOFT.MOVE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 593 of 2550

Apple II Computer Info

 1500 JMP QUICK.MOVE
 1510 JMP DUMP HEX OUTPUT
 1520 JMP FILL LABLE MEMORY
 1530
 1540 * TO HELP A HEX CONVERTER
 1550 CONVERT
 1560 JSR GETVAR GET VARIABLE
 1570 JSR PRNTX HI BYTE OUT
 1580 LDA FACLO GET LOW BYTE
 1590 JMP PRBYTE HEX OUTPUT
 1600 .PG
 1610 * THIS CODE FILLS MEMORY WITH IT'S OWN ADDRESS
 1620 * WHICH IS VERY USEFULL FOR CHECKING BLOCK MOVES
 1630 FILL JSR GM GET VARIABLES
 1640 .01 LDY #$01 TWO BYTE OFFSET
 1650 LDA A1L GET LOW BYTE
 1660 STA (A1L),Y WRITE ADDRESS LO
 1670 DEY MOVE LEFT
 1680 LDA A1H GET HI ADDRES
 1690 STA (A1L),Y WRITE TO MEMORY
 1700 JSR NXTA1 INCREMENT PTR
 1710 JSR NXTA1 TWICE
 1720 BCC .01 GO TELL DONE
 1730 RTS
 1740
 1750 * A UTILITY DUMP T0 SEE MEMORY FROM BASIC
 1760 DUMP JSR GM GET VARS
 1770 LDA $C010 CLEAR STROBE
 1780 .01 LDA $C000 GET KEY IF ONE
 1790 BPL .03 GO DUMP HEX
 1800 LDA $C010 CLEAR STROBE
 1810 .02 LDA $C000 READ KEY AGAIN
 1820 BPL .02 WAIT FOR KEY
 1830 CMP #$8D 'RETURN' KEY?
 1840 BEQ .04 EXIT
 1850 LDA $C010 CLEAR STROBE
 1860 .03 JSR $FDA3 8 HEX OUT
 1870 LDA A2L END LOW
 1880 CMP $A1 DESIRED LOW
 1890 LDA A2H HI TOO
 1900 SBC $A0 ENOUGH?
 1910 BCC .01 GO TELL DONE
 1920 .04 RTS
 1930
 1940 * GET VARIABLE FROM BASIC
 1950 * MUST BE <65357 OR SYNTAX ERR
 1960 * PLACE IN REGISTERS X AND A
 1970
 1980 GETVAR JSR COMA MUST SEE COMA
 1990 JSR FRMNUM GET NUMBER
 2000 JSR AYINT MAKE INTEGER
 2010 LDX FACMO HI BYTE
 2020 LDA FACLO LOW BYTE
 2030 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 594 of 2550

Apple II Computer Info

 2040
 2050
 2060 * GET BASIC VARIABLES INTO THE
 2070 * MONITORS WORK REGISTERS USED BY
 2080 * COMMANDS M,V,G,L,S,T,-,+,..ETC
 2090
 2100 GM JSR GETVAR BLOCK START
 2110 STA A1L LOW BYTE
 2120 STX A1H HI BYTE
 2130 JSR GETVAR BLOCK END
 2140 STA A2L LOW
 2150 STX A2H HI BYTE
 2160 JSR GETVAR DEST. START
 2170 STA A4L LOW
 2180 STX A4H HI
 2190 RTS
 2200 .PG
 2210 *-------------------------------*
 2220 * THE OLD MONITOR MOVE *
 2230 * MOVE BLOCK OF MEMORY UP/DOWN *
 2240 *-------------------------------*
 2250
 2260 MONITOR.MOVE
 2270 JSR GM SET UP MOVE
 2280 LDA A1L START LOW
 2290 CMP A4L END LOW
 2300 LDA A1H START HI
 2310 SBC A4H WHICH BIGGER?
 2320 BCS MOVEDN GO DOWN IN MEM
 2330
 2340 MOVEUP LDY #$00 CLEAR INDEX
 2350 .01 LDA (A2L),Y GET DATA
 2360 STA (A4L),Y PUT DATA
 2370 LDA A4L GET INDEX
 2380 BNE .02 PAGE CROSS?
 2390 DEC A4H HI BYTE
 2400 .02 DEC A4L LOW BYTE
 2410 LDA A2L
 2420 CMP A1L END YET?
 2430 LDA A2H
 2440 SBC A1H
 2450 LDA A2L
 2460 BNE .03 PAGE CROSS?
 2470 DEC A2H HI BYTE
 2480 .03 DEC A2L LOW BYTE
 2490 BCS .01 GO TELL DONE
 2500 RTS
 2510
 2520 MOVEDN LDY #$00 CLEAR INDEX
 2530 JMP MOVE MONITOR MOVE
 2540
 2550
 2560 *------------------------------*
 2570 * AND ALONG CAME THE PEOPLE AT *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 595 of 2550

Apple II Computer Info

 2580 * MICROSOFT WITH THEIR MOVE *
 2590 *------------------------------*
 2600
 2610 APPLESOFT.MOVE
 2620 JSR GETVAR HI ADDRESS OF BLOCK TO MOVE
 2630 STA $96 LOW
 2640 STX $97 HI BYTE
 2650 JSR GETVAR BLOCK END
 2660 PHA SAVE TELL LAST
 2670 TXA NEED 9B,9C
 2680 PHA TO GETVARS
 2690 JSR GETVAR HI ADDRESS OF DISTINATION
 2700 STA $94 LO&HI BYTES
 2710 STX $95
 2720
 2730 * WE USED $9B,9C TO GET THE TWO BYTE FP VALUE
 2740 PLA END OF BLOCK
 2750 STA $9C HI BYTE
 2760 PLA
 2770 STA $9B LOW BYTE TOO
 2780 SEC SUBTRACT COMMING
 2790 JMP BLTU A.MOVE
 2800 .PG
 2810 *-------------------*
 2820 * MOVING IN RAM CAN *
 2830 * BE EVEN FASTER *
 2840 *-------------------*
 2850
 2860 QUICK.MOVE
 2870 JSR GETVAR GET START
 2880 STA .01+1 LOW BYTE
 2890 STA .06+1 COPY HERE TOO
 2900 STX .01+2 HI
 2910 JSR GETVAR DESTINATION
 2920 STA .02+1 LO
 2930 STA .07+1 COPY HERE TOO
 2940 STX .02+2 HI BYTE
 2950 JSR GETVAR END ADDRESS
 2960 TXA SET TEST FOR
 2970 BEQ .05 MOVE<256?
 2980
 2990 * X=PAGE NUMBERS TO MOVE
 3000 LDY #$00 INDEX=0
 3010 .01 LDA $4800,Y SOURCE
 3020 .02 STA $4000,Y DESTINATION
 3030 INY NEXT BYTE
 3040 BNE .01 SMALL MOVE
 3050 .03 INC .01+2 HI SOURCE
 3060 .04 INC .02+2 HI DESTINATION
 3070 DEX DONE?
 3080 BNE .01 Y=0 SO MOVE PAGE
 3090
 3100 * SET UP REMAINING MOVE
 3110 .05 LDY $A1 LOW BYTE LENGTH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 596 of 2550

Apple II Computer Info

 3120 BEQ .08 GO IF NONE
 3130 LDA .01+2 COPY HI BYTE
 3140 STA .06+2 FOR SOURCE
 3150 LDA .02+2 AND
 3160 STA .07+2 DESTINATION
 3170
 3180 * NOW WITH X=0 START MOVING LOW BYTE OF LENGTH
 3185 * (Y) = REMAINING BYTES TO MOVE
 3190 .06 LDA $4800,X SOURCE
 3200 .07 STA $4000,X DESTINATION
 3210 INX NEXT
 3220 DEY MOVE ENOUGH?
 3230 BNE .06 GO TELL DONE
 3240 .08 RTS
 3250 .LIST OFF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 597 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:DOS3.3:S.BRANCH.MACROS.txt
==

 1000 * MACRO BRANCH LIBRARY
 1010 * BY R.F. 0'BRIEN
 1020 *--------------------------------
 1030 * >BLT P1 (,P2) BRANCH IF (A) < P1...TO P2
 1040 .MA BLT
 1050 .DO]#>1
 1060 CMP]1
 1070 BCC]2
 1080 .ELSE
 1090 BCC]1
 1100 .FIN
 1110 .EM
 1120 *--------------------------------
 1130 * >BLE P1 (,P2) BRANCH IF (A)<=P1...TO P2
 1140 .MA BLE
 1150 .DO]#>1
 1160 CMP]1
 1170 BEQ]2
 1180 BCC]2
 1190 .ELSE
 1200 BEQ]1
 1210 BCC]1
 1220 .FIN
 1230 .EM
 1240 *--------------------------------
 1250 * >BGE P1 (,P2) BRANCH IF (A)>=P1...TO P2
 1260 .MA BGE
 1270 .DO]#>1
 1280 CMP]1
 1290 BCS]2
 1300 .ELSE
 1310 BCS]1
 1320 .FIN
 1330 .EM
 1340 *--------------------------------
 1350 * >BGT P1 (,P2) BRANCH IF (A)>P1...TO P2
 1360 .MA BGT
 1370 .DO]#>1
 1380 CMP]1
 1390 BEQ :1
 1400 BCS]2
 1410 :1
 1420 .ELSE
 1430 BEQ :1
 1440 BCS]1
 1450 :1
 1460 .FIN
 1470 .EM
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 598 of 2550

Apple II Computer Info

 1490 * >BRA P1 BRANCH ALWAYS...TO P1
 1500 .MA BRA
 1510 CLV
 1520 BVC]1
 1530 .EM
 1540 *--------------------------------
 1550 * >BEQ P1 (,P2) BRANCH IF (A)=P1...TO P2
 1560 .MA BEQ
 1570 .DO]#>1
 1580 CMP]1
 1590 BEQ]2
 1600 .ELSE
 1610 BEQ]1
 1620 .FIN
 1630 .EM
 1640 *--------------------------------
 1650 * >BNE P1 (,P2) BRANCH IF (A)<>P1...TO P2
 1660 .MA BNE
 1670 .DO]#>1
 1680 CMP]1
 1690 BNE]2
 1700 .ELSE
 1710 BNE]1
 1720 .FIN
 1730 .EM
 1740 *--------------------------------
 1750 * >JMP P1,P2 BRANCH ALWAYS TO P1 BY
 1760 * BRANCHING TO P2 (SEE ARTICLE)
 1770 .MA JMP
 1780 CLV
 1790 BVC :1
 1800]2 CLV
 1810 BVC]1
 1820 :1
 1830 .EM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 599 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:DOS3.3:S.GAME.BUTTON.txt
==

 1000 *--------------------------------
 1010 * GAME BUTTON SUBROUTINES
 1020 *--------------------------------
 1030 GAME.BUTTON .EQ $C061 BASE ADDRESS
 1040 *--------------------------------
 1050 .OR $800
 1060 *--------------------------------
 1070 GAME.BUTTON.INITIALIZE
 1080 LDA #0
 1090 STA GB.STAT
 1100 RTS
 1110 *--------------------------------
 1120 GAME.BUTTON.INSTALLED
 1130 JSR GET.BUTTON.STATUS
 1140 ORA GB.STAT SET BITS OF ANY BUTTONS
 1150 STA GB.STAT PLUGGED IN AND NOT PUSHED
 1160 RTS
 1170 *--------------------------------
 1180 GAME.BUTTON.PUSHED
 1190 JSR GET.BUTTON.STATUS
 1200 EOR GB.STAT MASK OUT BUTTONS WHICH
 1210 AND GB.STAT ARE NOT PLUGGED IN
 1220 STA GB.PUSH
 1230 RTS
 1240 *--------------------------------
 1250 GET.BUTTON.STATUS
 1260 LDX #2
 1270 .1 LDA GAME.BUTTON,X
 1280 EOR #$80 INVERT SENSE
 1290 ASL INTO CARRY BIT
 1300 .2 ROR GB.PUSH
 1310 DEX NEXT BUTTON
 1320 BPL .1
 1330 LDA GB.PUSH
 1340 AND #$E0 CLEAR EXTRANEOUS BITS
 1350 RTS
 1360 *--------------------------------
 1370 GB.STAT .BS 1
 1380 GB.PUSH .BS 1
 1390 *--------------------------------
 1400 MON.CV .EQ $25
 1410 MON.HOME .EQ $FC58
 1420 MON.VTAB .EQ $FC22
 1430 MON.CLREOL .EQ $FC9C
 1440 MON.COUT .EQ $FDED
 1450 TEST.MASK .EQ $00
 1460 *--------------------------------
 1470 TEST JSR MON.HOME
 1480 JSR GAME.BUTTON.INITIALIZE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 600 of 2550

Apple II Computer Info

 1490 .1 LDA #0
 1500 STA MON.CV
 1510 JSR MON.VTAB
 1520 JSR GAME.BUTTON.INSTALLED
 1530 JSR GAME.BUTTON.PUSHED
 1540 LDA #$84
 1550 STA TEST.MASK
 1560 .2 LDA TEST.MASK
 1570 AND GB.PUSH
 1580 BNE .3 PUSHED
 1590 LDA TEST.MASK
 1600 AND GB.STAT
 1610 BNE .4 NOT PUSHED
 1620 LDY #QTGONE-QTS NOT INSTALLED
 1630 .HS 2C
 1640 .3 LDY #QTPUSHED-QTS
 1650 .HS 2C
 1660 .4 LDY #QTNOTPSH-QTS
 1670 JSR MSGOUT
 1680 LSR TEST.MASK
 1690 BCC .2
 1700 LDA $C000
 1710 BPL .1
 1720 STA $C010
 1730 RTS
 1740 BCS .1 ...ALWAYS
 1750 *--------------------------------
 1760 MSGOUT LDA QTS,Y
 1770 PHA
 1780 ORA #$80
 1790 JSR MON.COUT
 1800 INY
 1810 PLA
 1820 BPL MSGOUT
 1830 JSR MON.CLREOL
 1840 LDA #$8D
 1850 JMP MON.COUT
 1860 *--------------------------------
 1870 QTS
 1880 QTPUSHED .AT /PUSHED/
 1890 QTNOTPSH .AT /NOT PUSHED/
 1900 QTGONE .AT /NOT INSTALLED/
 1910 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 601 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:DOS3.3:S.RecurMac.2.txt
==

 1000 *--------------------------------
 1010 * LEE MEADOR'S SECOND RECURSIVE MACRO
 1020 *--------------------------------
 1030 .MA DB
 1040 .DO]1<2
 1050 .DA]2
 1060 .ELSE
 1070 >DB]1/2,]2
 1080 >DB]1+1/2,]2
 1090 .FIN
 1100 .EM
 1110 *--------------------------------
 1120 >DB 3,#0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 602 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:DOS3.3:S.TRACK.READ.txt
==

 1000 *SAVE TRACK READ
 1010 *--------------------------------
 1020 SLOT .EQ $00 $60 OR $70
 1030 DRIVE .EQ $01 1 OR 2
 1040 VOLUME .EQ $02 0 = DON'T CARE
 1050 TRACK .EQ $03 $00 TO $22
 1060 SECTOR .EQ $04 $00 TO $0F
 1070 BUFFER .EQ $05,06
 1080 COMMAND .EQ $07 1 = READ, 2 = WRITE
 1090 PREG .EQ $48
 1100 *
 1110 RWTS .EQ $3D9
 1120 *
 1130 IOB .EQ $B7E8 DOS'S OWN IOB
 1140 IOB.SLOT .EQ $B7E9
 1150 IOB.DRIVE .EQ $B7EA
 1160 IOB.VOLUME .EQ $B7EB
 1170 IOB.TRACK .EQ $B7EC
 1180 IOB.SECTOR .EQ $B7ED
 1190 IOB.BUFFER .EQ $B7F0,F1
 1200 IOB.COMMAND .EQ $B7F4
 1210 IOB.ERROR .EQ $B7F5
 1220 *
 1230 PRBYTE .EQ $FDDA
 1240 COUT .EQ $FDED
 1250 *--------------------------------
 1260 SETUP
 1270 LDA #$60
 1280 STA SLOT SLOT 6
 1290 LDA #$01
 1300 STA DRIVE DRIVE 1
 1310 LDA #$00
 1320 STA VOLUME ANY VOLUME
 1330 JSR GET.TRACK
 1340 JSR GET.BUFFER
 1350 JSR GET.COMMAND
 1360 *--------------------------------
 1370 READ.TRACK
 1380 LDA #$0F START AT SECTOR $0F
 1390 STA SECTOR
 1400 .1 JSR RWTS.CALLER READ ONE SECTOR
 1410 BCS EXIT EXIT IF ERROR
 1420 INC BUFFER+1 NEXT BUFFER PAGE
 1430 DEC SECTOR NEXT SECTOR
 1440 BPL .1 NOT DONE, READ NEXT SECTOR
 1450 *--------------------------------
 1460 DISPLAY
 1470 *--------------------------------
 1480 EXIT RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 603 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 GET.TRACK
 1510 LDA #$11
 1520 STA TRACK TRACK $11 (DIRECTORY)
 1530 RTS
 1540 *--------------------------------
 1550 GET.BUFFER
 1560 LDA #0
 1570 STA BUFFER BUFFER AT $4000
 1580 LDA #$40
 1590 STA BUFFER+1
 1600 RTS
 1605 .PG
 1610 *--------------------------------
 1620 GET.COMMAND
 1630 LDA #1
 1640 STA COMMAND READ
 1650 RTS
 1660 *--------------------------------
 1670 RWTS.CALLER
 1680 LDA SLOT TRANSFER
 1690 STA IOB.SLOT VALUES
 1700 LDA DRIVE INTO
 1710 STA IOB.DRIVE IOB
 1720 LDA VOLUME
 1730 STA IOB.VOLUME
 1740 LDA TRACK
 1750 STA IOB.TRACK
 1760 LDA SECTOR
 1770 STA IOB.SECTOR
 1780 LDA COMMAND
 1790 STA IOB.COMMAND
 1800 LDA BUFFER
 1810 STA IOB.BUFFER
 1820 LDA BUFFER+1
 1830 STA IOB.BUFFER+1
 1840 LDA #$00
 1850 STA IOB.ERROR
 1860 *--------------------------------
 1870 LDY #IOB LOAD IOB
 1880 LDA /IOB ADDRESS
 1890 JSR RWTS CALL RWTS
 1900 LDA #$00
 1910 STA PREG SOOTHE MONITOR
 1920 BCS ERROR.HANDLER
 1930 RTS
 1940 *--------------------------------
 1950 ERROR.HANDLER
 1960 LDA #$87 BELL
 1970 JSR COUT RING
 1980 JSR COUT ING
 1990 JSR COUT ING
 2000 LDA IOB.ERROR
 2010 JSR PRBYTE DISPLAY ERROR CODE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 604 of 2550

Apple II Computer Info

 2020 SEC EXIT WITH CARRY SET
 2030 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 605 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8205:DOS3.3:S.WRTDIR.txt
==

 1000 .OR $B037
 1010 .TF B.WRTDIR
 1020 *--------------------------------
 1030 BUFSTHI .EQ $AAC6
 1040 BUFSTLO .EQ $AAC5
 1050 CALLRWTS .EQ $B052
 1060 IOBBUF .EQ $B7F0
 1070 RW .EQ 2
 1080 SC .EQ $B398
 1090 TK .EQ $B397
 1100 *--------------------------------
 1110 WRTDIR JSR SETBUFAD
 1120 LDX TK
 1130 LDY SC
 1140 LDA #RW
 1150 JMP CALLRWTS
 1160 *--------------------------------
 1170 SETBUFAD LDA BUFSTLO PUT BUFFER'S
 1180 STA IOBBUF STARTING ADDRESS IN
 1190 LDA BUFSTHI INPUT OUTPUT BLOCK
 1200 STA IOBBUF+1
 1210 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 606 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:Auto.Catalog.txt
==

Automatic CATALOG for S-C Macro Assembler..........Bill Morgan

Being a thoroughly lazy (and fumblefingered) typist, I have been
itching for an automatic CATALOG command to go with the automatic LOAD
in the S-C Macro Assembler. Well I finally have it; now loading a
file is just esc-C, esc-I...IL. I chose esc-C for CATALOG because I
never use the esc-ABCD cursor moves. If you do like those, esc-G and
-H are available; right now they are like NOP's.

The Macro Assembler takes the character following an escape (@, A,
B,..., L, M) and makes it an index into a jump table located from
$1467-1482. Esc-C is at $146D in the table, esc-G is $1475, and esc-H
is $1477.

The patch is only $28 bytes long, short enough to easily fit in page
3, but I decided to go ahead and create a spare page for patches by
moving the symbol table up one page. This technique is mentioned on
page 5-3 of the Macro Assembler manual.

To install the patch, first move the symbol table base up by changing
location $101D from $32 to $33. Now insert the address of the patch
into the jump table by changing locations $146D-6E from $65 FC to $FF
31 (or your location-1). Type "BLOAD PATCH", then "BSAVE ASM
MACRO.MOD,A$1000,L$22FF", and there you have it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 607 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:BRK.Opcodes.txt
==

Implementing New Opcodes Using 'BRK'.......Bob Sander-Cederlof

If you have the Autostart ROM, you can control what happens when a BRK
instruction is executed. If you do nothing, a BRK will cause entry
into the Apple Monitor, and the register contents will be displayed.
But (if you have the Autostart Monitor) by a small amount of
programming you can make the BRK do marvelous things.

Like simulate neat instructions from the 6809, which are not in the
6502, for example. I am thinking particularly of the LEAX
instruction, which loads the effective address into a 16-bit register;
of BSR, which enters a subroutine like JSR, but with a relative
address; and of BRA, which is a relatively addressed JMP. With these
three instructions you can write position-independent programs
(programs that execute properly without any modification regardless of
where they are loaded in memory).

I am thinking of these because of an article by A. Sato in "Lab
Letters" (a publication of ESD Laboratories in Tokyo, JAPAN) Volume 6
No. 1, pages 91-93. It is all written in Japanese (see example
below), but I think I deciphered what he is saying.

When a BRK instruction is executed, the program is interrupted as
though a Non-Maskable Interrupt (NMI) occurred. The B bit in the
status register is set, so the Apple can tell that the interrupt was
caused by BRK rather than some external event. After making this
determination, the Autostart Monitor performs a "JMP ($3F0)"
instruction. This means that you can get control by placing the
address of your own program into $3F0 and $3F1. The monitor
initialization process puts the address $FA59 there.

By the time the monitor branches to the BRK processor (its own or
yours) all the registers have been saved. The address of the BRK
instruction plus 2 (PC) has been saved at $3A and $3B; the registers
A, X, Y, P (status), and S (stack pointer) have been saved in $45
through $49, respectively.

BRK Interceptor/Interpreter

In the program below, lines 1180-1230 will set up the BRK-vector at
$3F0 and $3F1 to point to your own BRK processor. Lines 1250-1320
back up the PC value by one, to point at the byte immediately
following the BRK instruction. At this point I can decide what to do
about the BRK.

Since I want to simulate the operation of LEAX, BSR, and BRA, I will
use the BRK instruction to introduce a pseudo instruction of three
bytes. I decided to copy A. Sato on this. LEAX is a BRK instruction
followed by LDX from an absolute address. This is $AE in hexadecimal,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 608 of 2550

Apple II Computer Info

followed by a 16-bit value representing a relative address. BSR is
BRK followed by a JSR instruction ($20) and a relative address; BRA is
BRK followed by a JMP instruction ($4C) and a relative address.

Looking back at the program, lines 1310 and 1320 store the address of
the secondary opcode byte into PNTR and PNTR+1. These two bytes are
inside an instruction at line 1760. I didn't want to use any page-
zero space, so I had to resort to this kind of self-modifying code.
While we are here, lines 1750-1780 pick up the byte whose address is
in PNTR. Lines 1710-1740 increment PNTR. If we call GET.THIS.BYTE,
it just picks up the byte currently pointed at. If we call
GET.NEXT.BYTE, it increments the pointer and gets the next byte.

Lines 1330-1370 pick up the three bytes which follow the BRK. The
opcode byte is saved in the Y-register. Lines 1380-1450 compute the
effective address, by adding the actual address of the instruction to
the relative address inside the instruction.

Lines 1470-1540 classify the opcode; if it is one of the three we have
implemented, it branches to the appropriate code. If not, it jumps
back into the monitor and processes the BRK in the normal monitor way.

Opcode Implementation

Lines 1560-1780 implement the three opcodes BSR, BRA, and LEAX. BRA
(Branch Always) is the easiest one. We have already computed the
effective address and stored it in the address field of the JMP
instruction at line 1620. All BRA does is restore the registers (line
1610), and JMP to the effective address.

BSR (Branch to Subroutine) is only slightly harder. We first have to
push the return address on the stack, and then do a BRA. Lines 1560-
1590 do the pushing.

LEA (Load Effective Address) is the hardest. Lines 1650-1690 do the
work. First GET.NEXT.BYTE moves the address in PNTR,PNTR+1 to point
at the first byte of the next instruction. That is so we can continue
exectution. Then MON.RESTORE gets back the original contents of all
the registers. THEN LDY and LDX pick up the effective address in the
Y- and X-registers. The high byte of the effective address is in the
X-register, and the Z- and N-bits in the status register reflect the
value of this byte. If you wish, you could modify this to not change
the status by inserting a PHP opcode after line 1660, and PLP after
line 1680; then the status register would remain unchanged by the
entire LEA process. Or you could reverse lines 1670 and 1680, so that
the status reflected the low-order byte of the effective address.

Demonstration Using the New Opcodes

Lines 1800 and beyond are a demonstration of the use of the new
opcodes. First I defined some macros for the new opcodes. I didn't
have to do this, but it is convenient if you have a macro assembler.
If you don't, you can use the BRK instruction on one line, followed by

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 609 of 2550

Apple II Computer Info

a LDX, JSR, or JMP instruction with a relative address on the next
line.

My macros are defined in a nested fashion. The BRK macro generates
two lines: BRK on the first line, and a second line consisting of the
specified opcode and operand. The LEA, BSR, and BRA macros call BRK
to generate LDX, JSR, and JMP instructions after the BRK. The operand
field is a relative address, computed within the BRK macro.

The demonstration program will run anywhere in memory, as long as the
BRK interpreter has been loaded and initialized. You can test this by
moving $871-89F to other places and running it. What it does is print
out the message in line 2090.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 610 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:BubbleSort.Demo.txt
==

Bubble Sort Demonstration Program.......Bob Sander-Cederlof

The following program implements one of the most inefficient methods
of sorting a list of items ever invented. It is also a very specific
implementation, not general at all. But it should be valuable to
study if you are not already well-versed in sorting techniques. After
execution, the bytes from $00 to $0F will be in ascending order.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 611 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:DFX.Review.txt
==

DOS File Exchange: A Review.....................Bill Morgan

I've just been playing with a new program called DOS File Exchange
(DFX), and it is wonderful. Author Graeme Scott has provided a very
useful tool for transferring any type of files through a modem, with
full error-checking. You can even chat at the keyboards while the
transfer is going on!

The DFX program must be running on both computers, and one of them
must be using an original (primary) disk of the program. The program
can be copied to produce a secondary disk; DFX will even send a copy
of itself to a remote Apple, but the copy will be a secondary.

To transfer files, one user selects a "master" mode, so he will
control both Apples. He then chooses whether he will send or receive;
the program then transmits the sending Apple's disk catalog to the
receiver. The master user selects the files wanted from the catalog
and starts the transfer. Both users are then free to chat, supervise
the transfer in one of three display modes, or even leave the room.

At almost any time, you can switch back and forth between Function and
Chat modes. Function is used to select all control and menu choices;
Chat sends all characters entered to the other Apple.

There are three display modes, called M(enu), U(tility), and
G(raphic). Menu shows choices, including the disk catalog when files
are being chosen. Utility displays the transmitted and received data
streams, and allows more space for chatting. Graphic displays the
data being transferred on the Hi-res screen, so if you are receiving a
picture you can watch it take shape.

The only drawbacks I've found are that DFX will only operate with a
Hayes Micromodem II in slot 2 and the disk in slot 6, drive 1.

DFX is available from Arrow Micro Software, 11 Kingsford, Kanata Ont.,
K2K 1T5 Canada.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 612 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:Examiner.txt
==

Examiner...Bill Morgan

Here is the program I like to use to examine memory; it displays an
entire page on the screen in both hex and ASCII formats. This makes
the screen kind of crowded, but I particularly wanted a full page at a
time. A program like this is useful for inspecting the results of
last month's TRACK READ program, studying the internal format of an
Applesoft program, or just exploring inside your Apple.

Examiner uses the left and right arrow keys to decrement or increment
the page being displayed. You can also type "P" to allow entry of a
page number in hex. Notice that the number entered is rolled into the
page number from the right. Escape exits the program.

Lines 1180-1260 set things up to start with page zero.

Lines 1280-1390 display the index, then twelve bytes in hex format.

Lines 1410-1460 reset the indices to display the same twelve bytes in
ASCII.

Lines 1480-1630 do the ASCII display, changing any inverse or flashing
values to normal and substituting periods for control characters.

Lines 1700-1870 process the commands to change the page being
displayed.

Lines 1890-2160 accept characters "0" through "F" and convert them
into hex values, rolling the values into the page number to be
displayed.

Lines 2180-2260 display the header "page=".

This is threatening to turn into a monthly column; what do you readers
think of that idea? Are these routines too trivial? Too complicated?
Do you have any questions about them? About anything fairly basic?
Drop me a line here at AAL and let me know what you think. I'll look
forward to hearing from you.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 613 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:Front.Page.txt
==

$1.50

Volume 2 -- Issue 9 June, 1982

In This Issue...

Implementing New Opcodes Using 'BRK' 2
A New Hi-Res Function for Applesoft (HXPLOT) 7
Bubble Sort Demonstration 11
DOS File Exchange: A Review 12
Macro Hint . 12
Yes/No Subroutine . 13
My Own Little Bell . 14
Using the Shift-Key Mod 16
Search for Page-Zero References 19
Automatic CATALOG for S-C Macro Assembler 23
Examiner . 25

Advertising in AAL

Due to the increased costs of printing more than 1600 copies per
month, and with the desire to limit the percentage of advertising
pages to less than 30% each month, I have decided to raise the page
rate again.

For the July 1982 issue the price will be $50 for a full page, $30 for
a half page. So-called "classified" ads, of up to forty words, will
be $5.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 614 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:Hint.txt
==

Macro Hint...Bob and Bill

For an easy semi-automatic SAVE, we use the following line in every
program:

 1000 *HHHHHHSAVE filename

The six H's are control H's (backspaces), entered by holding the CTRL
key down and typing OHOHOHOHOHOH. (Control-O allows a following
control character to be entered into a line.) To save the source
file, just type LIST 1000, esc-I, and copy over the line. Make it a
point to always have the SAVE in line 1000; it's much easier to
remember.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 615 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:My.Bell.txt
==

My Own Little Bell......................Bob Sander-Cederlof

The other day I was working on my Apple at home, and the kids were
trying to sleep in the same room. The program I was working on needed
to indicate erroneous input by a bell, and I had to test it. Suddenly
I realized how loud and sharp the Apple bell is!

With all that motivation, I threw together this little routine which
makes a soft and pleasant tone to use for my own little bell. It
generates fifty repetitions of a triple-toggle pattern, with time
intervals selected for their harmonious character.

Lines 1070, 1170, and 1180 establish a loop equivalent to the
Applesoft code:

 FOR X = 50 TO 1 STEP -1: . . . : NEXT

In assembly language it frequently occurs that backwards running loop
counts are easier to use than forward ones, and this is just such a
case.

Examine lines 1080-1160, and you will see a pattern repeated three
times. In each case I load A with a value, call MON.DELAY, and toggle
the speaker. The value passed to MON.DELAY is first 14, then 10, and
then 6. MON.DELAY is a subroutine in the Apple Monitor ROM which
delays an amount of time depending on what value you pass in the A-
register, according to the following formula:

 # cycles delay = 2.5*N*N + 13.5*N +13

This includes the six cycles of the JSR used to call the subroutine.
Each cycle is...well, the Apple clock is roughly 1.023 MHz...so a
cycle is about .9775 microseconds long. The counts of 14, 10, and 6
give intervals between toggles of 630.5, 204, and 195 (including the
overhead instructions in SC.BELL).

You can play with the values, and try creating your own variations.
You might try adding a fourth toggle per loop, changing the number of
loops, changing the delay counts, and so on. Have fun!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 616 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:Search.ZP.txt
==

Search for Page-Zero References.........Bob Sander-Cederlof

Many times I have wanted a utility which would list out all references
to page-zero locations withing a program. For example, when I am
trying to avoid conflicts with DOS or Applesoft, I need to know which
ones they use and where.

The following little program hooks into the Apple Monitor through the
control-Y user command. You type in the address range you want to
search through, control-Y, and a carriage return. The Apple will
disassemble only those instructions within the address range which
reference page-zero locations.

Lines 1220-1280 set up the control-Y vector. When the monitor detects
a control-Y command, it branches to $3F8. The JMP instruction there
in turn branches to CTRL.Y at line 1320.

Line 1330 loads the first address of the range into PCL and PCH. If
you did not type any range before the control-Y, the previous value
will be used.

Lines 1340-1540 decide whether the instruction starting at the address
in PCL,PCH references page-zero or not. All instructions which
reference page-zero have opcodes of the form x1, x4, x5, or x6. All
of the x1, x5, and x6 possiblities are valid; only 24, 84-C4, and E4
in the x4 column are valid.

Lines 1580 and 1590 call on a piece of the monitor L-command to
disassemble the one instruction. This also updates PCL,PCH to point
to the next opcode byte.

Lines 1600-1700 allow you to stop/start the listing by typing any key,
to single-step the listing by pressing any two keys simultaneously,
and to abort by typing RETURN.

Lines 1740-1780 are executed if the instruction does not reference
page-zero. The call on pieces of the L-command to figure out the
number of bytes in the instruction and update PCL,PCH accordingly.

Lines 1820-1870 check to see if the range you specified has been
covered yet. If not, keep searching; if so, stop.

This kind of program should be in your tool-kit when you are
debugging. Just don't lose it under all those other tools!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 617 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:Shift.Key.Mod.txt
==

Using the Shift-Key Mod.................Bob Sander-Cederlof

Have you heard of the "Shift-Key Mod"? By running a wire from the
game connector to the right spot on the keyboard circuit, you can use
software to tell whether or not the shift key is pressed. You can
make your Apple keyboard almost normal!

Some word processors come with a convenient device which has a clip on
one end of a wire, and a DIP socket-plug on the other. (I sell such a
device for $15 without any software.) Apples with the piggy-back
board below the keyboard can use the clip. If you don't have that
kind of Apple, you need to solder a small wire to the bottom of either
shift key, and clip onto that wire. Of course, you can run the wire
all the way to the game connector and avoid the extra expense...I did
it that way on my first Apple.

But what about software? All the mod does is bring the shift key into
the game connector as PB2. You can read it with LDA $C063. If the
value read is $00-7F, the shift key is being pressed; if $80-FF, the
shift key is not pressed. You have to write a special keyboard input
subroutine to convert letters to lower case ASCII codes if the shift
key is not down.

Here is just such a subroutine! It is the one I use in my word
processor (a product still being developed). Another routine sets up
a cursor on the screen, and then calls READ.KEY.WITH.CASE to get the
next keypress.

Lines 1140-1160 read the keyboard, and keep reading until you press a
key other than the shift key. Once you press a key, the value at
KEYBRD will be a code between $80 and $DF; the value is considered
negative by the 6502, so execution continues at line 1170.

Lines 1170-1200 are an optional keyclick routine. In my word
processor, a control-P turns the keyclicking on and off. I discovered
that a very short "bell" sounds like a clicking keyboard, so that is
what I use. The monitor bell subroutine toggles the speaker 192 times
at about a 1000 Hertz rate to make a beep; I do it 10 times to make a
click.

Lines 1210-1220 pick up the keypress code again and clear the keyboard
strobe. This sets up the keyboard electronics so that you can read
the next keypress next time around.

Lines 1230-1240 test the shift key. If it is down, the BPL will
branch to the upper case section at line 1320. If the shift key is
not down, lines 1270-1280 test whether the character is a letter. If
so, line 1290 makes it into a lower-case code.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 618 of 2550

Apple II Computer Info

I am using the codes from $E0 through $FF for lower-case. This is
standard ASCII, and is also compatible with the various lower-case
display adapters available on the Apple. $E1 through $FA are the
letters a-z; $E0 is a tick-mark; $FB-FF are special punctuation marks.
If you don't have a lower-case display adapter, these codes display as
punctuation and numbers.

Lines 1320-1420 handle characters typed with the shift key down. If
the code is less than $C0, the keyboard input code is correct already.
Above $C0, the code is correct unless you have typed M, N, or P. The
Apple translates these shifted letters into @,], and ^, respectively.
My logic translates them back into capital letters.

I use a special control sequence to enter the punctuation characters
with codes above $C0, which is not shown here. You type control-O,
which stands for "override", and then one of the letters klmnop or
KLMNOP. The letter translates into the corresponding punctuation
code. For example, control-O, shift-M is a right bracket (]);
control-O, shift-P is an at-sign (@).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 619 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:XPlot4ASoft.txt
==

A New Hi-Res Function for Applesoft............. Mike Laumer

Most people use the language card as nothing more than a ROM simulator
for the other version of BASIC that is not on the motherboard. But it
can do much more since the memory is actually RAM. Indeed Bob S-C's
Macro Assembler has a version which runs in a Language Card. The
FLASH! Integer BASIC compiler which I wrote uses the language card in
place of a disk file providing higher speed compilations for those
people who have a language card.

One nice aspect of having the language card is the ability to move
Apple software from ROM to RAM in the card and make changes to add a
new capability. Some people have done this already with the Apple
monitor to add an extra feature or two at the expense of another (who
needs the tape I/O routines).

The program assciated with this article will allow you to patch a RAM
card version of Applesoft to modify the 'HPLOT' command to function as
an 'HXPLOT' command. What is 'HXPLOT' you say. Remember the DRAW and
XDRAW commands in Applesoft. The 'DRAW' command will place a shape on
the screen; 'XDRAW' does the same thing, but 'XDRAW' has the unique
ability to redraw the shape and erase it from the screen leaving
whatever was on the screen initially still intact. The 'HXPLOT'
function in the listing functions the same way for the 'HPLOT' command
as 'XDRAW' does for the 'DRAW' command.

I have been developing a Hi-Res graphics editor as my next product.
During the development cycle I was working with a line draw game
paddle routine. You move a cursor to a position and anchor one end of
the line to a point. Then you can move to another position and while
you move a line stretches out from the point like a rubber band to the
current cursor position. This gives you a preview of what the line
looks like before you plot the line. The 'HXPLOT' function does have
one sleight problem: it plots independent of the current color.

What the function actually does as it draws a line is to invert each
dot of the line path instead of plotting a color. When the same line
is drawn with the same coordinates the bits on the line path are
inverted again back to their original value, restoring the screen to
what it was before you started HXPLOTting.

You may be wondering why not just use the 'HPLOT' as it is to do this.
You could just draw the line once with a color of 3 then change the
color to 0 and erase the line with another 'HPLOT'. This only works
if you have a black screen with no other images on it. If their are
other images on the screen then when you erase the line you will draw
a black line through those other images causing them to change. Only
a function like 'XDRAW' or the 'HXPLOT' will be non-destructive of the
background data on the screen.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 620 of 2550

Apple II Computer Info

How It Works

The 'HPLOT' command in Applesoft is actually two commands in one.

 HPLOT x, y plots 1 point
 HPLOT x1,y1 TO x2,y2 plots a line

Each of the routines have one common place where they plot a bit onto
the hi-res screen. The point plotting routine is at $F457 in the ROM
and the line routine is at $F53A in the ROM. By putting Applesoft
into the RAM card we can patch into these routines and modify their
operation.

The two areas that are patched are at $F457 and $F58D. After you run
the patch program you should see the Applesoft prompt character and
there will be no program in memory. So type in the small demo program
listed here and run it.

 <<<<program here>>>>

If you have an Integer BASIC motherboard you should boot up your
system master disk and have Applesoft loaded into your RAM card before
using the routine.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 621 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:Articles:Yes.No.txt
==

Yes/No Subroutine.......................Bob Sander-Cederlof

It happens all the time! I am continually needing to ask Yes/No
questions in my programs. I do it now with the following subroutine,
which has been somewhat stripped down for publication.

Assume you have just printed the question itself on the screen,
preferably with " (Y/N)?" on the end. Then call my subroutine with
"JSR YES.NO". The subroutine will clear the keyboard strobe, so that
it is sure it is getting the answer to this question, and not just a
stray character you accidentally typed. Then as soon as you hit any
key, it will put it on the screen where the question ended and return
to you.

At the point you should use BNE to branch where you want to if the
user has typed something other than "Y" or "N". Once that is out of
the way, use BCC or BCS to branch on whether it was "Y" or "N". The
subroutine sets carry for "N" and clears carry for "Y".

In my actual programs, I have one more line between 1120 and 1130. It
is JSR MESSAGE.PRINTER, which expects a message number in the Y-
register. You can use it either way. You might also like to insert
two more lines to call the message printer to print " (Y/N)? " for
every question; that way the common string does not have to be
repeatedly stored in memory with every question.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 622 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:HXPLOT.DEMO.txt
==

ê:π769,1!π28,127:å62454=ÅI–0¡279«10:ÅJ–0¡192«10Mì140,96¡I,J[-ÅZ–
1¡1:ÇZk(ì140,96¡I,Ju2ÇJ:ÇI}d´10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 623 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.AUTO.CATALOG.txt
==

 1000 *--------------------------------
 1010 .OR $3200
 1020 .TF PATCH
 1030 *--------------------------------
 1040 CH .EQ $24
 1050 BASL .EQ $28
 1060 XSAVE .EQ $40
 1070 WBUF .EQ $200
 1080 *--------------------------------
 1090 ESCAPE.C
 1100 CPX #0 BEGINNING OF LINE?
 1110 BNE .2 NO, RETURN
 1120 LDY #1
 1130 .1 LDA MSG-1,Y GET CHARACTER
 1140 STA (BASL),Y PUT ON SCREEN
 1150 STA WBUF,X PUT IN BUFFER
 1160 INY
 1170 INX
 1180 CPY #8 DONE?
 1190 BNE .1 NO
 1200 STY CH
 1210 STX XSAVE TELL THE ASSEMBLER
 1220 TSX THAT THIS WAS AN
 1230 LDA #$CC ESCAPE-L, SO IT WILL
 1240 STA $103,X GO AHEAD AND EXECUTE
 1250 LDX XSAVE THE COMMAND
 1260 .2 RTS
 1270 *--------------------------------
 1280 MSG .AS -/CATALOG/

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 624 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.BubbleSrtDemo.txt
==

 1000 *--------------------------------
 1010 * BUBBLE-SORT DEMO
 1020 *--------------------------------
 1030 LIST .EQ $00 THRU $0F
 1040 N .EQ 16
 1050 FLAG .EQ $10
 1060 *--------------------------------
 1070 BUBBLE LDY #0 INITIAL INDEX
 1080 STY FLAG INTERCHANGE FLAG
 1090 .1 LDA LIST+1,Y COMPARE TWO ADJACENT ITEMS
 1100 CMP LIST,Y
 1110 BCS .2 ALREADY IN CORRECT ORDER
 1120 PHA INTERCHANGE THEM
 1130 LDA LIST,Y
 1140 STA LIST+1,Y
 1150 PLA
 1160 STA LIST,Y
 1170 LDA #$FF SET INTERCHANGE FLAG
 1180 STA FLAG
 1190 .2 INY NEXT OVERLAPPING PAIR
 1200 CPY #N-1
 1210 BCC .1 STILL A PAIR LEFT
 1220 LDA FLAG WAS AN INTERCHANGE PERFORMED?
 1230 BNE BUBBLE YES, MAKE ANOTHER PASS
 1240 RTS NO, ALL SORTED

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 625 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.EXAMINER.txt
==

 1000 *--------------------------------
 1010 .OR $300
 1020 .TF EXAMINER
 1030 *--------------------------------
 1040 POINT .EQ $00,01
 1050 PAGE .EQ $01
 1060 CH .EQ $24
 1070 *
 1080 KEYBOARD .EQ $C000
 1090 STROBE .EQ $C010
 1100 *
 1110 PRBL2 .EQ $F94A
 1120 HOME .EQ $FC58
 1130 RDKEY .EQ $FD0C
 1140 CROUT .EQ $FD8E
 1150 PRBYTE .EQ $FDDA
 1160 COUT .EQ $FDED
 1170 *--------------------------------
 1180 START LDA #$00
 1190 STA POINT START WITH
 1200 STA PAGE PAGE ZERO
 1210 *--------------------------------
 1220 DISPLAY.NEW.PAGE
 1230 JSR HOME
 1240 JSR PRINT.HEADER
 1250 JSR CROUT
 1260 LDY #$00
 1270 *
 1280 NEW.LINE
 1290 LDX #$0C TWELVE BYTES AT A TIME
 1300 TYA
 1310 JSR PRBYTE PRINT INDEX
 1320 LDA #$A0
 1330 JSR COUT SPACE
 1340 .1 LDA (POINT),Y
 1350 JSR PRBYTE PRINT HEX
 1360 INY
 1370 BEQ FILLIN PAGE DONE?
 1380 DEX
 1390 BNE .1 TWELVE YET?
 1400 *
 1410 ADJUST TYA
 1420 SBC #$0C RESET Y
 1430 TAY
 1440 LDA #$A0
 1450 JSR COUT SPACE
 1460 LDX #$0C TWELVE AGAIN
 1470 *
 1480 ASCII LDA (POINT),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 626 of 2550

Apple II Computer Info

 1490 CMP #$40 INVERSE?
 1500 BCS .1 NO
 1510 ORA #$C0 NORMALIZE
 1520 .1 CMP #$80 FLASHING?
 1530 BCS .2 NO
 1540 ORA #$80 NORMALIZE
 1550 .2 CMP #$A0 CONTROL?
 1560 BCS .3 NO
 1570 LDA #$AE PUT PERIOD
 1580 .3 JSR COUT SEND IT
 1590 INY
 1600 BEQ GET.COMMAND PAGE DONE?
 1610 DEX
 1620 BNE ASCII LINE DONE?
 1630 BEQ NEW.LINE
 1640 *
 1650 FILLIN LDX #$10 FILL LAST PARTIAL
 1660 JSR PRBL2 LINE WITH SPACES
 1670 LDY #$08 ADJUST Y
 1680 BNE ADJUST
 1690 *--------------------------------
 1700 GET.COMMAND
 1710 JSR CROUT
 1720 .1 JSR RDKEY
 1730 CMP #$9B ESCAPE?
 1740 BEQ .2
 1750 CMP #$95 RIGHT ARROW?
 1760 BEQ .3
 1770 CMP #$88 LEFT ARROW?
 1780 BEQ .4
 1790 CMP #$D0 "P"?
 1800 BEQ GET.PAGE.NUMBER
 1810 BNE .1 NONE OF THE ABOVE
 1820 .2 RTS
 1830 *
 1840 .3 INC PAGE
 1850 JMP DISPLAY.NEW.PAGE
 1860 .4 DEC PAGE
 1870 JMP DISPLAY.NEW.PAGE
 1880 *--------------------------------
 1890 GET.PAGE.NUMBER
 1900 JSR PRINT.HEADER
 1910 .1 DEC CH SO PRBYTE WILL ALWAYS
 1920 DEC CH DISPLAY IN SAME PLACE
 1930 .2 LDA KEYBOARD
 1940 BPL .2
 1950 STA STROBE
 1960 CMP #$8D RETURN?
 1970 BEQ .5 YES, EXIT
 1980 EOR #$B0
 1990 CMP #$A 0-9?
 2000 BCC .3 YES
 2010 ADC #$88
 2020 CMP #$FA A-F?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 627 of 2550

Apple II Computer Info

 2030 BCC .2 NO
 2040 *
 2050 .3 LDY #$3 LOOP 4 TIMES
 2060 ASL THROW AWAY HIGH NYBBLE
 2070 ASL
 2080 ASL
 2090 ASL
 2100 .4 ASL SHIFT INTO
 2110 ROL PAGE PAGE NUMBER
 2120 DEY
 2130 BPL .4
 2140 LDA PAGE
 2150 JSR PRBYTE DISPLAY PAGE NUMBER
 2160 JMP .1 GET NEXT KEYPRESS
 2170 .5 JMP DISPLAY.NEW.PAGE
 2180 *--------------------------------
 2190 PRINT.HEADER
 2200 LDY #$00
 2210 .1 LDA QPAGE,Y
 2220 JSR COUT
 2230 INY
 2240 CPY #$05
 2250 BNE .1
 2260 LDA PAGE
 2270 JMP PRBYTE
 2280 *
 2290 QPAGE .AS -/PAGE=/

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 628 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.HXPLOT.txt
==

 1000 *--------------------------------
 1010 * THIS ROUTINE ADDS AN XPLOT CAPABILITY
 1020 * TO APPLESOFT. THE FLAG AT $301 (769)
 1030 * CONTROLS WHETHER HPLOT OR XPLOT IS
 1040 * FUNCTIONING.
 1050 *
 1060 * POKE 769,0 ENABLES HPLOT
 1070 * POKE 769,1 ENABLES XPLOT
 1080 *--------------------------------
 1090 .OR $300
 1100 .TF B.HXPLOT
 1110 NEW.HLIN LDA #0 TEST 'XPLOT' FLAG
 1120 BNE .2 YES 'XPLOT' MODE
 1130 LDA ($26),Y PLOT NORMAL LINE
 1140 EOR $1C
 1150 AND $30
 1160 .1 JMP $F593 BACK INTO APPLESOFT LINE ROUTINE
 1170 .2 LDA #$7F MASK COLOR SHIFT BIT
 1180 AND $30 OFF OF BIT MASK
 1190 AND ($26),Y TEST SCREEN BIT
 1200 BNE .1 BIT IS SET!... SO CLEAR IT
 1210 LDA #$7F BIT IS CLEAR!...SO SET IT
 1220 AND $30 BIT MASK WITHOUT COLOR SHIFT BIT
 1230 BPL .1 BRANCH ALWAYS
 1240 *--------------------------------
 1250 NEW.PLOT JSR $F411 CALL HPOSN ROUTINE
 1260 LDA $301 TEST 'XPLOT' FLAG
 1270 BNE .1 YES 'XPLOT' MODE
 1280 JMP $F45A PLOT NORMAL
 1290 .1 LDA #$7F XPLOT
 1300 AND $30 MASK COLOR SHIFT BIT OFF
 1310 AND ($26),Y TEST SCREEN BIT
 1320 BNE .2 SCREEN BIT IS SET
 1330 LDA #$7F ...CLEAR SO PREPARE TO
 1340 AND $30 SET SCREEN BIT
 1350 .2 JMP $F460 BACK INTO APPLESOFT XPLOT ROUTINE
 1360 *--------------------------------
 1370 *
 1380 * TO USE THE ABOVE FUNCTION YOU MUST HAVE A RAM CARD.
 1390 * APPLESOFT MUST BE IN THE RAM CARD.
 1400 * THEN YOU MUST DO THE FOLLOWING:
 1410 *
 1420 * 0. BLOAD B.XPLOT.FOR.FP LOAD THE XPLOT ROUTINE
 1430 * 1. CALL-151 TO ENTER THE MONITOR
 1440 * 2. C081 C081 TO WRITE ENABLE THE CARD
 1450 * 3. GO TO STEP 5 IF YOU HAVE AN INTEGER BASIC MOTHER BOARD
 1460 * 4. D000<D000.FFFFM PUT APPLESOFT INTO RAM CARD
 1470 * 5. F58D:4C 00 03 PATCH FOR LINE ROUTINE
 1480 * 6. F457:4C 1B 03 PATCH FOR POINT PLOT ROUTINE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 629 of 2550

Apple II Computer Info

 1490 * 7. C080 WRITE PROTECT THE RAM CARD
 1500 * 8. 3D3G START APPLESOFT UP
 1510 *--------------------------------
 1520 * FOR LAZY SOULS HERE IS AN AUTOMATIC PATCH ROUTINE.
 1530 *--------------------------------
 1540 MON.COUT .EQ $FDED MONITOR CHARACTER OUT ROUTINE
 1550 .OR $4000
 1560 .TF B.PATCH.XPLOT
 1570 START LDY #0
 1580 .1 LDA MESG,Y
 1590 BEQ L.100
 1600 JSR MON.COUT PRINT MESSAGE
 1610 INY
 1620 BNE .1 BRANCH ALWAYS
 1630 MESG .HS 8D84
 1640 .AS -/BLOAD B.XPLOT.FOR.FP/
 1650 .HS 8D00
 1660 L.100 LDA $C081 ROM READ
 1670 LDA $C081 RAM CARD WRITE
 1680 LDA $E000 CHECK MOTHERBOARD ROM
 1690 CMP #$20 IS IT INTEGER BASIC
 1700 BEQ L.200 YES SO MUST HAVE FP FROM SYSTEM MASTER
 1710 LDA #$D0 NO SO COPY FP FROM ROM TO RAM CARD
 1720 STA $1
 1730 LDA #0
 1740 STA $0
 1750 .1 LDY #0
 1760 .2 LDA ($0),Y
 1770 STA ($0),Y
 1780 INY
 1790 BNE .2
 1800 INC $1
 1810 BNE .1
 1820 L.200 LDA #$4C SET PATCHES INTO RAM CARD APPLESOFT
 1830 STA $F58D
 1840 STA $F457
 1850 LDA #NEW.HLIN
 1860 STA $F58E
 1870 LDA /NEW.HLIN
 1880 STA $F58F
 1890 LDA #NEW.PLOT
 1900 STA $F458
 1910 LDA /NEW.PLOT
 1920 STA $F459
 1930 LDA $C080
 1940 JMP $3D3 START UP RAM CARD APPLESOFT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 630 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.Look4ZP.txt
==

 1000 *SAVE S.LOOK FOR PAGE ZERO
 1010 *--------------------------------
 1020 * SEARCH FOR PAGE ZERO REFERENCES
 1030 *--------------------------------
 1040 MON.A1L .EQ $3C
 1050 MON.A1H .EQ $3D
 1060 MON.A2L .EQ $3E
 1070 MON.A2H .EQ $3F
 1080 MON.PCL .EQ $3A
 1090 MON.PCH .EQ $3B
 1100 *--------------------------------
 1110 KEYBOARD .EQ $C000
 1120 STROBE .EQ $C010
 1130 *--------------------------------
 1140 MON.LIST2 .EQ $FE63
 1150 MON.INSDS .EQ $F88C
 1160 MON.A1PC .EQ $FE75
 1170 MON.PCADJ .EQ $F953
 1180 MON.NXTA1 .EQ $FCBA
 1190 *--------------------------------
 1200 * SET UP CONTROL-Y VECTOR
 1210 *--------------------------------
 1220 SETUPY LDA #$4C 'JMP' OPCODE
 1230 STA $3F8
 1240 LDA #CTRL.Y
 1250 STA $3F9
 1260 LDA /CTRL.Y
 1270 STA $3FA
 1280 RTS
 1290 *--------------------------------
 1300 * CONTROL-Y COMES HERE
 1310 *--------------------------------
 1320 CTRL.Y
 1330 JSR MON.A1PC IF ADDRESS SPECIFIED, PUT IN PC
 1340 .1 LDY #0
 1350 LDA (MON.PCL),Y
 1360 AND #$0F
 1370 CMP #1
 1380 BEQ .3
 1390 CMP #4
 1400 BCC .6
 1410 BNE .2
 1420 LDA (MON.PCL),Y
 1430 AND #$F0
 1440 CMP #$20 BIT Z
 1450 BEQ .3
 1460 CMP #$80
 1470 BCC .6 NO
 1480 CMP #$D0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 631 of 2550

Apple II Computer Info

 1490 BEQ .6 NO
 1500 CMP #$F0
 1510 BEQ .6 NO
 1520 BNE .3 YES
 1530 .2 CMP #7
 1540 BCS .6
 1550 *--------------------------------
 1560 * INSTRUCTION REFERENCES PAGE-ZERO
 1570 *--------------------------------
 1580 .3 LDA #1 DISASSEMBLE THIS ONE INSTRUCTION
 1590 JSR MON.LIST2 DISASSEMBLE
 1600 LDA KEYBOARD SEE IF KEYPRESS
 1610 BPL .7 NO
 1620 STA STROBE YES, CLEAR IT
 1630 CMP #$8D
 1640 BEQ .5
 1650 .4 LDA KEYBOARD
 1660 BPL .4
 1670 STA STROBE
 1680 CMP #$8D
 1690 BNE .7
 1700 .5 RTS
 1710 *--------------------------------
 1720 * DOES NOT REFERENCE PAGE-ZERO
 1730 *--------------------------------
 1740 .6 LDX #0
 1750 JSR MON.INSDS GET LENGTH OF INSTRUCTION
 1760 JSR MON.PCADJ
 1770 STA MON.PCL
 1780 STY MON.PCH
 1790 *--------------------------------
 1800 * TEST IF FINISHED
 1810 *--------------------------------
 1820 .7 LDA MON.PCL
 1830 CMP MON.A2L
 1840 LDA MON.PCH
 1850 SBC MON.A2H
 1860 BCC .1
 1870 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 632 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.MyOwnLtlBell.txt
==

 1000 *---------------------------------
 1010 * MY OWN LITTLE BELL
 1020 *--------------------------------
 1030 MON.DELAY .EQ $FCA8
 1040 SPEAKER .EQ $C030
 1050 *--------------------------------
 1060 SC.BELL
 1070 LDX #50
 1080 .1 LDA #14
 1090 JSR MON.DELAY
 1100 LDA SPEAKER
 1110 LDA #10
 1120 JSR MON.DELAY
 1130 LDA SPEAKER
 1140 LDA #6
 1150 JSR MON.DELAY
 1160 LDA SPEAKER
 1170 DEX
 1180 BNE .1
 1190 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 633 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.NewBrkOpcodes.txt
==

 1010 *--------------------------------
 1020 * IMPLEMENTING BSR, BRA, AND LEA OPCODES
 1030 * USING THE 'BRK' VECTOR WITH THE
 1040 * AUTOSTART ROM
 1050 *
 1060 * ADAPTED FROM AN ARTICLE IN "LAB LETTERS"
 1070 * BY A. SATO
 1080 *--------------------------------
 1090 MON.PC .EQ $3A,3B
 1100 MON.XREG .EQ $46
 1110 MON.YREG .EQ $47
 1120 *--------------------------------
 1130 BRK.VECTOR .EQ $3F0,3F1
 1140 *--------------------------------
 1150 MON.BRK .EQ $FA59
 1160 MON.RESTORE .EQ $FF3F
 1170 *--------------------------------
 1180 SETUP
 1190 LDA #BREAK.INTERPRETER
 1200 STA BRK.VECTOR
 1210 LDA /BREAK.INTERPRETER
 1220 STA BRK.VECTOR+1
 1230 RTS
 1240 *--------------------------------
 1250 BREAK.INTERPRETER
 1260 LDY MON.PC+1 PICK UP ADDRESS OF THIRD BYTE
 1270 LDX MON.PC
 1280 BNE .1 BACK UP TO SECOND BYTE
 1290 DEY
 1300 .1 DEX
 1310 STX PNTR MODIFY ADDRESS IN GET.THIS.BYTE SUBROUTINE
 1320 STY PNTR+1
 1330 JSR GET.THIS.BYTE
 1340 TAY OPCODE BYTE
 1350 JSR GET.NEXT.BYTE
 1360 PHA ADDR-LOW BYTE
 1370 JSR GET.NEXT.BYTE
 1380 TAX
 1390 PLA
 1400 SEC ADDR-HIGH BYTE
 1410 ADC PNTR COMPUTE EFFECTIVE ADDRESS
 1420 STA EFF.ADDR
 1430 TXA
 1440 ADC PNTR+1
 1450 STA EFF.ADDR+1
 1460 *--------------------------------
 1470 CPY #$20 CLASSIFY OPCODE
 1480 BEQ BSR
 1490 CPY #$4C

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 634 of 2550

Apple II Computer Info

 1500 BEQ BRA
 1510 CPY #$AE
 1520 BEQ LEA
 1530 STY MON.YREG
 1540 JMP MON.BRK
 1550 *--------------------------------
 1560 BSR LDA PNTR+1 PUSH RETURN ADDRESS ON STACK
 1570 PHA
 1580 LDA PNTR
 1590 PHA AND DO BRA
 1600 *--------------------------------
 1610 BRA JSR MON.RESTORE
 1620 JMP *-*
 1630 EFF.ADDR .EQ *-2
 1640 *--------------------------------
 1650 LEA JSR GET.NEXT.BYTE POINT AT NEXT INSTRUCTION
 1660 JSR MON.RESTORE RESTORE A-REG AND STATUS
 1670 LDY EFF.ADDR ADDR-LO IN Y
 1680 LDX EFF.ADDR+1 ADDR-HI IN X
 1690 JMP (PNTR)
 1700 *--------------------------------
 1710 GET.NEXT.BYTE
 1720 INC PNTR
 1730 BNE GET.THIS.BYTE
 1740 INC PNTR+1
 1750 GET.THIS.BYTE
 1760 LDA $FFFF (FILLED IN)
 1770 PNTR .EQ *-2
 1780 RTS
 1790 *--------------------------------
 1800 MSG .EQ 0,1
 1810 JMP.COUT JMP $FDED
 1820 .MA LEA
 1830 >BRK LDX,]1
 1840 .EM
 1850 .MA BSR
 1860 >BRK JSR,]1
 1870 .EM
 1880 .MA BRA
 1890 >BRK JMP,]1
 1900 .EM
 1910 .MA BRK
 1920 BRK
 1930]1]2-:1
 1940 :1
 1950 .EM
 1960 TEST >LEA MESSAGE
 1970 STX MSG+1
 1980 STY MSG
 1990 LDY #0
 2000 .1 LDA (MSG),Y
 2010 PHA
 2020 ORA #$80
 2030 >BSR JMP.COUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 635 of 2550

Apple II Computer Info

 2040 INY
 2050 PLA
 2060 BPL .1
 2070 LDA #$8D CARRIAGE RETURN
 2080 >BRA JMP.COUT
 2090 MESSAGE .AT /THIS IS MY MESSAGE/

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 636 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.ReadKeyCase.txt
==

 1000 *--------------------------------
 1010 * READ KEY WITH CASE CONTROL
 1020 *--------------------------------
 1030 KEYBRD .EQ $C000
 1040 KYSTRB .EQ $C010
 1050 SPKR .EQ $C030
 1060 SHIFT.KEY .EQ $C063
 1070 *--------------------------------
 1080 MON.BELL2 .EQ $FBE4
 1090 *--------------------------------
 1100 KEY.CLICK.FLAG .EQ $00
 1110 CASE.INPUT.FLAG .EQ $01
 1120 CURRENT.CHAR .EQ $02
 1130 *--------------------------------
 1140 READ.KEY.WITH.CASE
 1150 LDA KEYBRD GET CHAR FROM KEYBOARD
 1160 BPL READ.KEY.WITH.CASE
 1170 LDA KEY.CLICK.FLAG CLICKING?
 1180 BEQ .1 NO
 1190 LDY #10 YES, 10 HALF-CYCLES WILL
 1200 JSR MON.BELL2 SOUND LIKE A CLICK
 1210 .1 LDA KEYBRD CHAR AGAIN
 1220 STA KYSTRB
 1230 BIT SHIFT.KEY SHIFT KEY DOWN?
 1240 BPL .2 YES
 1250 BIT CASE.INPUT.FLAG
 1260 BMI .2 IN SHIFT LOCK UPPER CASE
 1270 CMP #$C0 NO, LOWER CASE IF LETTER
 1280 BCC .5 NOT A LETTER
 1290 ORA #$20 LETTER, MAKE LOWER CASE
 1300 BNE .5 ...ALWAYS
 1310 *---SHIFT KEY PRESSED------------
 1320 .2 CMP #$C0 SEE IF LETTER
 1330 BCC .5 NOT A LETTER KEY
 1340 BEQ .4 SHIFT-P
 1350 CMP #$DD SHIFT-M
 1360 BEQ .3 YES
 1370 CMP #$DE SHIFT-N
 1380 BNE .5 NO
 1390 .3 AND #$EF MAKE CAPITAL-M OR -N
 1400 BNE .5 ...ALWAYS
 1410 *--------------------------------
 1420 .4 LDA #$D0 MAKE CAPITAL-P
 1430 .5 STA CURRENT.CHAR
 1440 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 637 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8206:DOS3.3:S.YES.NO.txt
==

 1000 *--------------------------------
 1010 * YES/NO SUBROUTINE
 1020 *
 1030 * RETURN .NE. IF NEITHER "Y" NOR "N"
 1040 * .EQ. AND .CC. IF "Y"
 1050 * .EQ. AND .CS. IF "N"
 1060 *--------------------------------
 1070 STROBE .EQ $C010
 1080 MON.RDKEY .EQ $FD0C
 1090 MON.CH .EQ $24
 1100 MON.BASE .EQ $28 AND $29
 1110 *--------------------------------
 1120 YES.NO
 1130 STA STROBE
 1140 JSR MON.RDKEY
 1150 LDY MON.CH
 1160 CMP #'N+$80
 1170 BEQ .1
 1180 CMP #'Y+$80
 1190 BNE .2
 1200 CLC
 1210 .1 STA (MON.BASE),Y
 1220 .2 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 638 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Animation.txt
==

Simple Hires Animation...........................Mike Laumer

One thing that I have been working with in my next product (MIKE'S
MAGIC MATRIX) is animation using hires graphics. I have been
developing a hires graphics editor using the FLASH! Integer BASIC
Compiler. I may not be the first one to bring a commercial product to
market using the FLASH! compiler since there are at least six other
programmers who are striving to beat me.

There are several methods used to achieve animation in the popular
game programs. The one presented in this program is possibly the
simplest. This program will animate an image in one place on the
screen (in-place animation) from a series of frames of data.

The technique used to display the frame data on the screen is simply
moving the data with 'LDA' and 'STA' instructions. A more powerful
method of animation is to use the 'EOR' instruction to merge one frame
of animation into the next. This is accomplished by using the frame
data obtained by 'EOR'ing two successive frames of data. Then using
that new data to 'EOR' to the image data. The 'EOR' istruction is
very useful since it can add and delete data to and from the screen
without disturbing any background that may be on the screen already.

A frame of data for the animation is written to the screen and then a
delay loop entered to delay before the next data frame is written to
the screen. If the delay is smaller the animation will speed up. If
the delay is larger the animation will slow down. The delay could be
read from the game paddle.

The method I used in the routine to compute the hires graphics screen
addresses is to use two tables (one for lo-byte, one for hi-byte) with
192 entries to convert the Y-coordinate into a hires address.
Otherwise, the Y-addresses would have to be computed by using a
complicated formula:

 A = Y MOD 8
 B = (Y / 8) MOD 8
 C = Y / 64
 YADRS = 8192 + A*1024 + B*128 + C*40
 (add another 8192 if hires page2 adress needed)

So you see that even with an efficiently coded machine language
routine to compute a screen address it will take a bit of time to
perform. It is much more effecient to simply look up the address of
the first byte of the Y-row in a table. Since the Y-coordinate never
exceeds 191 (which is less than 256) the Y-register can be used easily
to index the table. The table in the program only provides the offset
from the beginning of a hires page. The program uses an 'ORA'

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 639 of 2550

Apple II Computer Info

instruction to put $20 or $40 into the hi-byte to specify hires page 1
or 2.

The data for the animations were built with MIKE'S MAGIC MATRIX and
the first frame looks like this:

 (a printer dump goes here)

The data was written to a text file from within the editor and run
through an Applesoft program to create an EXEC file for the S-C Macro
Assembler to insert the data tables into the program.

You can make your own frames of animation by a hand process of drawing
the animation dots on graph paper and reducing the data into
hexadecimal data. To do this you must take each row of dots (on or
off) on the graph paper and take them 7 dots at a time. The 7 dots
must then be flipped into reverse order before converting into hex.
Here is an example of 14 pixels width:

 0 1 2 3 4 5 6 0 1 2 3 4 5 6

 . * . * * * . . * * * . * *

 . . * * * . * . . * * . * * * .
 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0
 --------------- ---------------
 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

 $3A $6E

As you can see the process is a pain in the neck. If the animation
has a flaw in it you have to repeat the process for every frame of
data that is wrong. That is where a hires graphics editor and
animation design tool like MIKE'S MAGIC MATRIX really shines, because
you can perfect your animation and test it in the editor without ever
leaving. MIKE'S MAGIC MATRIX is not yet ready for sale lacking a
manual and a little more work. I expect to have the first version
ready in about two more months. Preliminary showings to the Dallas
Apple Corps indicated an enormous popularity.

Since hexadecimal strings take up a lot of listing space when they are
assembled, I decided to print the tables here using just the LIST
command, without the assembled object code listing. The program part
is shown in the normal assembled format.

Here is what you will see if you get it all typed correctly:

 <9 little men here>

Of course, they will all appear one after the other in the same screen
position, not side-by-side.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 640 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Axlon.Review.txt
==

AXLON RAMDISK 320: A Review.........................Bill Morgan

AXLON's RAMDISK 320 is a system designed to add 320K of memory to an
Apple, configured to look to the Apple like two very fast disk drives.
The speed improvement ranges from half the time for a large assembly
to one-twelfth the time for directly dumping 192 pages of memory.

Hardware

The RAMDISK is a cabinet just the size of an Apple disk drive,
containing the memory, its own power supply, and a backup battery.
There is also a large interface card, which includes 2K of static RAM
for the operating system.

The backup battery is said to provide up to three hours of protection
against power outage. It did maintain power when we moved the system
into another room (about 5 minutes), but you should certainly make
floppy disk backups of the RAMDISK data before leaving the system
unplugged overnight. As long as it is plugged into the wall, the
battery is kept charged and the memory is maintained.

Software

There are several programs supplied with the RAMDISK. These fall into
the general categories of system software, utilities, and
demonstrations.

RAMDSK1 is the operating system, which is stored in static RAM on the
interface card, addressed in the $C800-CFFF space. BRUNning this
program hooks it into DOS and copies one or two mechanical drives into
the RAMDISK.

RDCOPY copies between the mechanical and RAM disks, to load or back up
the RAMDISK. SELECT creates modified versions of RAMDSK1 for
different slot/drive configurations.

The EXTRA40K utility allows you to access "tracks" 36-40 on the
RAMDISK, but only on a level comparable to using RWTS directly. That
is, you must work in terms of addresses and track/sectors rather than
variables and filenames. The manual has a complete assembler source
listing of this program.

SECTOR CHECKER and BYTE-BY-BYTE are self-test utilities to verify
correct operation of the RAMDISK.

The demonstrations are The Directory and the Mini-Base Phone Book. The
Directory is a large, disk-based, data-base program, in machine
language, which uses the speed of the RAMDISK to its full advantage.
The problem with this program is that it is strictly fixed-format,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 641 of 2550

Apple II Computer Info

with no provision for modifying the record structure. The fields
built into a record are last name, first name, dept #, mail stop,
phone, special interest 1, special interest 2, and comments. If you
are a large company needing an on-line, internal phone directory, then
The Directory is outstanding. Otherwise, it's just an interesting
demonstration of the system's capabilities.

The Mini-Base Phone Book is a memory-based data base, somewhat similar
to File Cabinet. The Mini-Base is also set up as an internal phone
directory, but since it is written in Applesoft, it can be modified to
suit your needs. The documentation includes instructions for changing
the record structure. The manual also contains instructions for
calling special machine-language routines for keyboard input, fast
loading of text files (in a specified format), and fast sorting of a
string array.

Documentation

The manual is in three sections: 63 pages on the system, 34 pages on
The Directory program, and 43 pages on the Mini-Base Phone Book
program. It all comes in a large (8 1/2 by 11) 3-ring binder. The
system section has chapters on setting up the RAMDISK, using the
included software, calling it from DOS 3.3, attaching and using it in
Pascal, technical information, and accessing the system from assembly
language.

The setup and software chapters are quite good; the DOS chapter just
says that everything is standard. I don't have Pascal, so I can't
evaluate that section. The technical and assembly language chapters
have all the information about memory usage, addressing, and
programming techniques needed to use the RAMDISK without all of DOS's
overhead.

Using the RAMDISK

To use the RAMDISK with your programs, you need to copy the RAMDSK1
program onto your disk and set up the HELLO program to BRUN RAMDSK1.
This will load the operating system into the interface card, then
fast-copy your disk into drive one of the RAMDISK. Once your
information is loaded into the RAMDISK, you can use all the normal DOS
techniques to read and write files; the only difference is speed.

You can avoid the DOS overhead either by calling RWTS in the usual
manner, or by directly using the RAMDISK registers and memory window.
To do that, you just store track, sector, and drive information into
two bytes, then read the data from $C800-C8FF. This approach is
fastest, but you must then take on all memory management chores.
Appendices to the manual list assembler source code for routines using
both techniques.

The Negative Side

We discovered one apparent bug in the RAMDISK's operating system. The
program does not properly update the slot and drive found parameters

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 642 of 2550

Apple II Computer Info

in the I/O Control Block used by RWTS. If a program tries to use
those locations to determine which drive it was run from, it will get
the wrong data.

Mechanical disk drives are known to be error-prone, so DOS has some
built-in protection against errors. Each sector is recorded with a
checksum; when a sector is read the checksum should match. This is
very poor protection, but it does catch most errors. The RAMDISK has
no such protection. The RAMDISK is much less likely to have any
errors than the mechanical drives, yet it still would be nice to have
at least a sector checksum. Parity on each byte would be even better,
but it would be expensive.

Timing Comparisons

 Operation Disk II time RAMDISK time

Assemble 102 sectors 89 sec. 41 sec.
 of source code.
BLOAD Hi-res screen. 11 sec. 3 sec.
LOAD Applesoft program. 14 sec. 4 sec.
Dump RAM (192 sectors) 9 sec. .8 sec.
 calling RWTS.
Dump 192 sectors direct n/a .7 sec.

Summary

The RAMDISK is a well-made and well-documented unit; it performs as
advertised. The RAMDISK gives a terrific speed improvement over
mechanical disk drives, especially if you do your own reading and
writing and avoid DOS.

Two standard Apple drives with controller at normal retail prices
would cost $1180; RAMDISK goes for $1395, and you get the equivalent
of 10 extra tracks thrown in. (On the other hand, several non-Apple
drives are available with 40 to 80 tracks, at competitive prices. And
the 5- and 10-megabyte Winchesters are rapidly falling in price.)
 I have seen RAMDISK advertised for as low as $1170 in Byte Magazine.

The RAMDISK 320 is available from AXLON, Inc., 170 N. Wolfe Rd.,
Sunnyvale, CA 94086, (408) 730-0216. RAMDISK 320, The Directory, and
Mini-Base Phone Book are trademarks of AXLON INC.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 643 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Flash.Ad.txt
==

Christmas in July?.........................Bob Sander-Cederlof

Mike Laumer has decided to offer a special price to readers of Apple
Assembly Line on his FLASH! Integer BASIC Compiler. For a limited
time, AAL readers can buy FLASH! for only $49, a savings of almost 40%
from the normal $79 price. The offer expires September 1, 1982, and
is limited to one per customer. To qualify you must mention that you
read about it in AAL, and call or write directly to Laumer Research.
Mike's phone is (214) 245-3927; write to 1832 School Road, Carrollton,
TX 75006.

What a bargain! The FLASH! compiler is an incredible software design
tool which can translate Integer BASIC programs into extremely fast
machine language programs. It is the only full feature compiler on
the market that can provide assembly language listings and source
files compatible with my S-C Assemblers.

Synergistic Software is now selling the Galfo Integer BASIC Compiler
for $149; it is copy protected, has no assembly language output, fewer
extensions to the language, an undocumented run-time package, and no
option to buy the run-time package source code. I have heard that it
is a good compiler, but I think the price is too high.

FLASH!, on the other hand, is NOT copy protected. You can make as
many copies for your own use as you need. FLASH! adds features for
hi-res graphics and system programming to the Integer BASIC language.
The FLASH! run-time package is fully documented, and owners of FLASH!
can get the source code of the run-time package on disk for only $39.
FLASH! allows easy relocation of the object code for any requirements.
Used in combination with the S-C Assembler, you can further optimize
the object code for even greater memory and time savings. And at this
special price, it truly is a bargain. Christmas in July!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 644 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Front.Page.txt
==

 !pr2
$1.50

Volume 2 -- Issue 10 July, 1982

In This Issue...

Run-Anywhere Subroutine Calls 2
Cut the Bull Software 3
Who Are We and What Are We Doing 4
Giant Macro for Writing Messages 6
Sorting Out Zero-Page References 10
Axlon RAMDISK 320: A Review 11
Simple Hi-Res Animation 15
A Text File Display Command for DOS 23
Hierographic Transport: A Review 28
Christmas in July? . 32

A New Software Tool: ES-CAPE

ES-CAPE stands for Extended S-C Applesoft Program Editor. You are
somewhat familiar with it already as AED II from Linn Software. Bill
has added more features, and I am in the process this month of re-
doing the reference manual. I am shooting for it to be all packaged
by the middle of July. The price will hold at $40 at least until
September 1st.

If you are using Applesoft and feel the need for advanced editing
tools to use on your programs-under-development, ES-CAPE ought to be
in your tool-box. Like any tool, it doesn't do everything and it
won't replace all your other tools. (You wouldn't try to tighten a
screw with a hammer, or assemble a Heathkit with a SkilSaw....) But
neither does it use all your money or memory!

Current Advertising Rates

For the August 1982 issue the price will be $60 for a full page, $35
for a half page. To be included, I must receive your camera-ready
copy by July 20th.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 645 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Giant.Macro.txt
==

Giant Macro for Writing Messages..............Robert B. Steiner

Every time I turn around I seem to need a quick and dirty routine to
print out a message. I must have written them a dozen different ways,
to fill various requirements. Sometimes they are only different
because of a silly mistake...a difference usually called a bug. I
could keep a handful of them on a subroutine library, but then I might
get mixed up as to which one was which.

S-C Macro Assembler to the rescue! By writing one of largest macros I
have ever seen, I can get all the message-printer-variants into one
neat little package. Then by choosing the correct parameters, the
kind of printing routine I want is generated on the spot.

I call the macro CRT, and you call it with up to five parameters. The
call line will look like one of these:

>CRT L,N,"your message"
>CRT L,I,"your message"
>CRT A,N,address of your message
>CRT A,I,address of your message

The first parameter, which may be "L" or "A", indicates whether you
will give an actual message in quotation marks, or the address of the
message.

The second parameter, which may be "N" or "I", stands for Normal or
Inverse video display.

The third parameter is either the message itself in quotes, or the
address of the message (a label, of course).

An optional fourth parameter may be "I", "Y", or "R". "I" will
generate code to read an immediate one byte reply, which is returned
in the A-register. "Y" will generate the one byte reply code,
followed by additional code to check for a yes/no response. It will
loop until you type "Y" or "N"; then it will echo the letter, print a
RETURN, and return with the character in the A-register.

If the fourth parameter is "R",an entire line of reply is expected.
If there is no fifth parameter, the line will be at $200 for your
program to analyze. If a fifth parameter is used, it is the name of a
buffer for the reply message.

If I counted correctly, there are twenty different possible ways the
macro can be generated!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 646 of 2550

Apple II Computer Info

Here is the macro definition, and some sample call lines. Try it out;
you'll find it fun and educational, whether its useful to you or not.
Then you can apply some of the techniques in your own work.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 647 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Hierographic.txt
==

Hierographic Transport (review)...................Mike Laumer

Hierographic Tranport is a Hi-Res printer dump program for the Epson
series of printers (MX-70, MX-80 and MX-100). The program is a very
easy to use, menu driven system. The user manual is only 12 pages
long, but most functions are self-apparent. I used the program for
over an hour before I felt the need to refer to the manual. The
program allows very complete control over the dot graphics mode of the
Epson printers.

From the menus you can load a Hi-Res picture into either page 1 or
page 2. Selections are provided for normal/inverse picture,
normal/rotated pictures, normal/compressed print mode and a setable
left margin to allow centering a picture on the page.

You can control magnifying or scaling the picture from 1 to 99 times
normal size in the X or Y directions. This magnification is performed
by repeatedly printing each screen dot, in the X and Y directions.
The magnification only affects the printed image and not the screen
image.

There is also the ability to select a "window" from the Hi-Res Screen
that will be printed on the printer. That way you can print the
rectangular section of the screen that you are interested in.

The "window" is controlled with two sets of cursor control keys. The
"WASZ" keys control the top and left sides of the cursor. While the
familiar "IJKM" keys control the right and bottom sides of the cursor.
This is adequate for controlling the "window" but I would have
prefered one set to control inward movement of the cursor sides and
the other set to control outward movement of the cursor sides.

The cursor is presented as a set of blinking lines overlayed on the
picture image. This technique uses the HXPLOT function described in
the June issue of AAL. This function allows non-destructive lines to
be drawn and erased over the top of an image on the Hi-Res screen.

The cursor lines are automatically stepped by an amount from 1-9,
selectable by the number keys. The space bar or any other valid
command key will stop the cursor from advancing. If "0" is selected
for the step distance, the cursor lines will step by 1 whenever a
cursor control key is pressed. This allows a fine positioning
mechanism.

Once a "window" is selected the user can have it printed on his
printer. When this is selected, the program automatically checks up
on the parameters you have selected and computes the size of the image
as it should be on the printer. If you have scaled the image too big,
an error message will result.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 648 of 2550

Apple II Computer Info

The overall design of the program is good. There are however, a few
minor problems in operation of the program. When the "window" is very
large the automatic steps in advancing the "window" occur slowly. As
the size of the "window" gets smaller, the speed of the automatic
advance gets very fast making it hard to stop on the exact point you
want. The cursor routine needs a delay which varies by the size of
the "window" to help even out the speed of the automatic cursor
advance.

There is a record of data kept at the bottom of the screen when you
are selecting a "window". This data provides you with the cursor
locations and a unique display of the computed size of the picture to
be printed. As the cursor is moved, the data is updated to the new
recomputed picture size. The size display often flickers because
blanks are written to the screen and then the data is written. If the
data were written then the line cleared to the end of line, the
flicker would be less noticeable.

The size display had the only bug in the whole program that I could
find. The bug is rather trivial and does not affect the quality of
the program. A bug, however, is a bug! [I am sure they will fix it,
once they read this review.] When a very large scale factor (99 x
99) is used, the routine to print out the size goes bananas and
displays some garbage characters on the screen. When compressed
printing is selected (where the dot spacing on the Epson goes from
1/60 of an inch to 1/120 of an inch on the horizontal direction), the
size display goes one character too far and scrolls the data up the
screen. As the cursor window is moved arround the scrolling
eventually scrolls the title lines off the main menu.

Unless you plan to print a wall mural for the side of your barn, you
should never encounter the problem. A 99 x 99 scaling factor will
give a pixel size of 1.5 inches square! A full screen print would be
38 feet by 21 feet in size!!! That's way beyond the carriage width of
even the MX-100. The program could handle it though as long as you
print it in narrow window strips. (A nice future enhancement would be
for the program to automatically print an oversize picture in strips
sized for your particular printer.)

The program has a built in configuration routine and can easily be
configured for the following interfaces:

Epson APL
CPS Multi-function
Grappler
Micro Buffer II
Prometheus
Apple parallel
Epson APL (modified for 8 bit Transmission)

The Epson printers are very popular, but many more brands of printers
are now on the market which have comparable capabilities. For
example, the NEC PC-8023, the MPI-88G, and the Okidata series. I hope

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 649 of 2550

Apple II Computer Info

that the GSR folks come out with equivalent "Transports" for these
other printers. All of them on the same disk would be especially
nice!

Conclusion: A fine program for graphics printer dumping. I rate this
program a "B+". A little attention to its few problems would raise
the grade to "A".

This program is sold for $39.00 and is available from GSR Associates,
P.O. Box 401462, Garland, Texas 75040. (Don't be afraid of the P. O.
Box, they are real people.)
==
DOCUMENT :AAL-8207:Articles:OtherEpson.Man.txt
==

Still More About "The Other Epson Reference Manual"

No sooner did I print my cutting comments about Cut The Bull Software
last month, than I received a copy of the new edition of "The Other
Epson Manual" in the mail. Bill Parker, author and publisher, has
done an excellent job. By now all of you who ordered the booklet
should have received your copy.

Bill has now quit his previous job to devote full time to the software
company. The nature of that previous job prevented him from
publishing his telephone number. Now you can reach him at (714) 223-
3576. He says that in the future should a back order situation
develop he will hold customer checks until ready to ship.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 650 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Relocatable.JSR.txt
==

Run-Anywhere Subroutine Calls...........Bob Sander-Cederlof

Bob Nacon (author of Amper-Magic) called yesterday and told me about
his new way to call subroutines in programs that will be loaded
anywhere in memory without relocation or reassembly. He does this a
lot inside Amper-Magic, and you might want to do it yourself sometime.

Instead of JSR <subroutine name>, put the following three lines
whenever you call a subroutine:

CLV
JSR $FF58
BVC <subroutine name>

The byte at $FF58 in the monitor ROM is always $60, an RTS
instruction. Since this is used by most Apple interface boards, Apple
has guaranteed that it will always be $60. The JSR to a guaranteed
RTS instruction seems silly, doesn't it? Not quite, because it does
put two bytes on the stack, and then pop them off again. But we can
get them back later, inside the called subroutine, like this:

TSX GET STACK POINTER
DEX
DEX
TXS REVISED STACK POINTER

Now the subroutine we called has a return address to go to, just as
though we had used JSR <subroutine name>! The only problem is that if
we execute an RTS, we will re-execute the BVC <subroutine name> and be
in a loop. Unless....

Unless we set overflow, so the BVC falls through. But there is no SEV
opcode in the 6502, so what do we do? $FF58 to the rescue again!
Here is how we end the subroutine:

BIT $FF58 SET OVERFLOW
RTS

The BIT instruction copies bit 7 of $FF58 into the Carry Status bit,
and bit 6 into the Overflow Status bit. This, in other words, (since
$FF58 has $60 in it) clears carry and sets overflow. If you want
carry to be set as a return flag, you can insert SEC between the BIT
and RTS lines.

I thank Bob Nacon for this technique, and he thanks Roger Wagner for
putting him on the trail to its discovery. Roger writes the monthly
column in Softalk Magazine called "Assembly Lines"; the December,
1981, issue covered writing run-anywhere programs. If you haven't got
Roger's book yet, called "Assembly Lines: The Book", it is currently

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 651 of 2550

Apple II Computer Info

the best book for beginners that I know of. The regular price is
$19.95+$2 shipping, but I sell them for $18+$2 shipping.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 652 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Showfile.txt
==

A Text File Display Command for DOS........Bob Sander-Cederlof

How many times have you wished that you could see what was in a TEXT
file? You end up loading a word processor (if you are lucky enough to
have one that can read normal DOS TEXT files), or EXECing it into the
S-C Macro Assembler, or writing a special Applesoft program.... Why
not a DOS command for this very common need?

The June 1982 issue of Call A.P.P.L.E. has an article by Lee Reynolds
describing the addition of a FILEDUMP command to DOS. Lee gives a 20-
byte program which fits nicely in an unused space in DOS. He replaced
the MAXFILES command with "FILEDUMP". In case you want to try it,
here are the patches for Lee's method.

]CALL -151
*BCDF:20
*BCE0:8E FD 20 A3 A2 20 8C A6 F0 05 20 F0 FD D0 F6 20
*BCF0:FC A2 60
*A8E7:46 49 4C 45 44 55 4D D0
*9D48:DE BC
*A933:20 30
*3D0G
]

$BCDF-BCF2 is the FILEDUMP command processor. $A8E7-$A8EE is the
string "FILEDUMP", the command name. The two bytes at $9D48,9D49 are
the address (minus 1) of the command processor. The two bytes at
$A933,A934 are flags indicating that the FILEDUMP command requires a
filename, and can optionally have S and D parameters.

My first reaction to the program, being a programmer, was to try to
modify it. The first change I made saved one byte. The last two
instructions are a JSR and an RTS. By ending with a JMP to the final
subroutine, the RTS at BCF2 is not needed. Then I tried modifying the
order of the loop, and saved another three bytes. Here is my revised
listing:

<listing here>

After playing with the new command a little, I thought of several more
changes. I wanted to be able to stop the file listing, to restart it,
and to abort it. The first article I ever wrote about Apples
described just such an addition, at that time for Integer BASIC. (See
MICRO, June/July, 1978.) With this addition, the program would not
fit in the unused space at $BCDF, so I decided to put it in the place
of the INIT command instead. I changed the name to "SHOW".

Not all of the code would fit in the spot where the INIT command
processor is, at $A54F. Therefore I broke out the routine to check

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 653 of 2550

Apple II Computer Info

for the pause/abort keys as a separate subroutine, and placed in over
the top of some of the INIT code inside the File Manager of DOS. If
you install this patch, you could call on the PAUSE.CHECK subroutine
from your own programs.

<listing here>

After assembling the program above, the various pieces are in memory
in page 8 and 9, instead of inside DOS. I did it this way because DOS
is protected during assembly. You can install the patches by hex
input commands, or by some memory moves. I did it this way:

:$A54F<84F.863M
:$AE8E<88E.8A4M
:$A884:53 48 4F D7
:$A909:20 30

Then try typing "SHOW filename", where "filename" is a text file, and
see the action.

You may want to put some POKEs in your HELLO file on some disks to
install the SHOW command. If so, this is what they might look like:

100 DATA 21,42319,32,163,162,169,141,32,240,253,32,142,
 174,240,5,32,140,166,208,243,76,252,162
110 DATA 23,44686,173,0,192,16,17,141,16,192,201,141,
 240,10,173,0,192,16,251,141,16,192,201,141,96
120 DATA 4,43140,83,72,79,215
130 DATA 2,43273,32,48
140 DATA 0
150 READ N : IF N THEN READ A : FOR I = 1 TO N : READ D
 : POKE A+I-1,D : NEXT : GO TO 150

I tried several other versions, with features like clearing the
screen, filling it up, and waiting; a stand-alone program, rather than
a DOS command; and so on. You will probably want to try your own
experiments.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 654 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Sorted.ZeroPage.txt
==

Sorting Out Zero-Page References.............Tracy L. Shafer

The search for page-zero references program in last month's AAL turned
out to be (almost) the very thing I've been needing.

I have a clock card capable of generating NMI and IRQ interrupts. Up
to now, I haven't been able to do any deep research on the IRQ due to
the DOS and monitor conflict mentioned in the January issue of AAL.
(They both use location $48.) I can't modify the monitor because I
don't have access to a PROM burner, and the thought of searching
through DOS really put a damper on the IRQ project until now.

Since I didn't need to know every page-zero reference used by DOS, I
modified the program to search for a specific page-zero reference.
That worked fine, but I didn't want to have to type in a separate
search value for every group of references I might need later, so I
further changed the program to print out all the references in
numerical order of page-zero location.

To make the changes to the program as published last month, just
remove the ".3" from line 1580 and add the following lines:

1285 PAGE.REF .HS 00 VARIABLE TO HOLD THE
 CURRENT ZERO-PAGE
 LOCATION

1571 .3 INY NEW PLACE FOR ".3" LABEL
1572 LDA (MON.PCL),Y GET PAGE REFERENCE
1573 DEY RESTORE VALUE OF Y
1574 CMP PAGE.REF ONE WE ARE SEARCHING FOR?
1575 BNE .6 NO, IGNORE THIS ONE

1861 LDX #1 RESTORE X-VALUE FOR
 MON.A1PC ABOVE
1862 INC PAGE.REF NEXT ZERO-PAGE ADDRESS
1863 BNE CTRL.Y NOT FINISHED

The program now searches through the memory range 256 times instead of
just once, so it doesn't run nearly as fast, but it's easier to find
all the references to specific locations.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 655 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:Articles:Who.Are.We.txt
==

Who are "we" and what are "we" doing?............Mike Laumer

Some of you may wonder about the people whose articles you see in the
AAL on a fairly regular basis and who you may have talked to on the
phone at one time or another.

Bob Sander-Cederlof is the president of the S-C Software Corporation
and the author of the S-C Assemblers and Double Precision Floating
Point package. Bob has been working with computers since 1957, at
such places as Control Data Corporation and Texas Instruments. He is
developing a new text editor somewhat compatible with Apple Writer.
Believe it or not the editor is half the size of Apple Writer. Both
the editor and printer sections are in memory at once and it has more
capabilities than Apple Writer. He also edits this newsletter every
month, with the aid of Bill Morgan.

Bill Morgan is Bob's first full-time employee and helps in all areas:
programming, shipping, accounting, phone sales, and writing articles
for the AAL. He helps author the reference manuals as well, and tries
to make our products fail before we start shipping them (so we can fix
'em before you see 'em!).

Bobby Deen is a part-time employee still in high school. He is
currently helping Bob S-C develop a line of compatible Macro Cross
Assemblers for 6800, 6809 and Z-80 processors to round out Bob's
assembler product line. (The 6800 and 6809 versions are ready now.)
He has helped develop an 18-digit decimal math package compatible with
Applesoft soon to be a new product. He has also assisted in the CPR
project with Mike Laumer.

Mike Laumer (that's me!) is owner of Laumer Research and author of
FLASH! the Integer BASIC compiler, and of the upcoming MIKE'S MAGIC
MATRIX hires graphics editor and animation design tool. As a sub-
contractor to S-C Software for the last year, I have been working on
an incredible application using Apples and video disks. You can read
all about it in the June 1982 issue of BYTE magazine, pages 108-138.
The American Heart Association sponsors the project, which will teach
Cardiopulmonary Resuscitation (CPR). The Apple is supported by a
video disk player, light pen, two CPR manikins, a random-access audio
unit, and two monitors.

If you have called, you may have talked with Bob's daughter Patricia
(oldest of five children). She is a Junior in High School, and works
part-time at shipping, phone sales, mailing list maintenance, word
processing, Visicalc-ing, program entry, paste-up and folding, and
whatever comes up. She is assisted by Lisa MacCorkle, another high
school friend.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 656 of 2550

Apple II Computer Info

We enjoy talking with all of you, so if you have a problem, need a
book, or whatever, give us a call!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 657 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:DOS3.3:Inst.Show.Cmd.txt
==

\dÉ21,42319,32,163,162,169,141,32,240,253,32,142,174,240,5,32,140,166,
208,243,76,252,162ªnÉ23,44686,173,0,192,16,17,141,16,192,201,141,240,1
0,173,0,192,16,251,141,16,192,201,141,96’xÉ4,43140,83,72,79,215ËÇÉ2,43
273,32,48ÔåÉ0 ñáN:≠NƒáA:ÅI–1¡N:áD:πA»I…1,D:Ç:´150

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 658 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:DOS3.3:S.FILEDUMP.txt
==

 1000 *--------------------------------
 1010 * "FILEDUMP" COMMAND
 1020 *--------------------------------
 1030 DOS.OPEN.TEXT.FILE .EQ $A2A3
 1040 DOS.CLOSE.FILE .EQ $A2FC
 1050 DOS.READ.ONE.BYTE .EQ $A68C
 1060 MON.COUT1 .EQ $FDF0
 1070 *--------------------------------
 1080 .OR $BCDF
 1090 .TA $8DF
 1100 FILEDUMP
 1110 JSR DOS.OPEN.TEXT.FILE
 1120 LDA #$8D
 1130 .1 JSR MON.COUT1
 1140 JSR DOS.READ.ONE.BYTE
 1150 BNE .1 PRINT IT
 1160 JMP DOS.CLOSE.FILE
 1170 *--------------------------------
 1180 .OR $A8E7
 1190 .TA $8E7
 1200 .AT /FILEDUMP/ NAME OF FILEDUMP COMMAND
 1210 *--------------------------------
 1220 .OR $9D48
 1230 .TA $848
 1240 .DA FILEDUMP-1 BRANCH FOR FILEDUMP COMMAND
 1250 *--------------------------------
 1260 .OR $A933
 1270 .TA $833
 1280 .HS 2030 FILENAME REQUIRED, SLOT & DRIVE
 1290 * ARE OPTIONAL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 659 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:DOS3.3:S.GIANT.MACRO.txt
==

 1000 *--------------------------------
 1010 * MACRO: >CRT SRC,DSPMODE,MSG
 1020 * >CRT SRC,DSPMODE,MSG,REPMODE
 1030 * MACRO: >CRT SRC,DSPMODE,MSG,REPMODE,REPADDR
 1040 *--------------------------------
 1050 .MA CRT
 1060 LDY #0 INITIALIZE INDEX
 1070 .DO ']1='L *** LITERAL MESSAGE ***
 1080 :1 LDA :9,Y GET MESSAGE CHARACTER
 1090 .ELSE *** ADDRESSED MESSAGE ***
 1100 :1 LDA]3,Y GET MESSAGE CHARACTER
 1110 .FIN
 1120 PHA SAVE CHARACTER ON STACK
 1130 *--------------------------------
 1140 .DO ']2='N *** NORMAL DISPLAY ***
 1150 ORA #$80 SET TOP BIT OF CHARACTER
 1160 .ELSE *** INVERSE DISPLAY ***
 1170 AND #$3F
 1180 .FIN
 1190 *--------------------------------
 1200 JSR $FDF0 DISPLAY CHARACTER
 1210 INY POINT TO NEXT CHARACTER
 1220 PLA GET ORIGINAL CHARACTER
 1230 BMI :1 MORE IF TOP BIT = 1
 1240 *--------------------------------
 1250 .DO ']1='L *** LITERAL ***
 1260 BPL :2 ...ALWAYS
 1270 :9 .AT -']3' MESSAGE ITSELF
 1280 :2
 1290 .FIN
 1300 *--------------------------------
 1310 .DO]#=3 *** DISPLAY ONLY ***
 1320 LDA #$8D CARRIAGE RETURN
 1330 JSR $FDF0
 1340 .ELSE
 1350 .DO ']4='R *** STRING REPLY EXPECTED ***
 1360 LDA #$8D CARRIAGE RETURN
 1370 JSR $FDF0
 1380 JSR $FD6F READ REPLY
 1390 .DO]#=5 *** SPECIFY REPLY LOCATION ***
 1400 LDY #0
 1410 :3 LDA $200,Y MOVE REPLY TO CALLER'S BUFFER
 1420 STA]5,Y
 1430 INY
 1440 CMP #$8D WAS IT END OF LINE?
 1450 BNE :3 MORE TO MOVE
 1460 .FIN
 1470 .ELSE
 1480 LDA #$A0 ADD ONE BLANK TO MESSAGE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 660 of 2550

Apple II Computer Info

 1490 JSR $FDF0
 1500 :5 JSR $FD0C GET REPLY CHARACTER
 1510 .DO ']4='Y *** Y/N REPLY ***
 1520 CMP #'Y+$80
 1530 BEQ :6
 1540 CMP #'N+$80
 1550 BNE :5 NEITHER Y NOR N
 1560 :6
 1570 .FIN
 1580 PHA SAVE REPLY
 1590 JSR $FDF0 DISPLAY THE CHARACTER
 1600 LDA #$8D
 1610 JSR $FDF0 CARRIAGE RETURN
 1620 PLA GET REPLY CHARACTER
 1630 .DO ']4='Y *** Y/N REPLY ***
 1640 CMP #'Y+$80 .EQ. IF "Y", .NE. IF "N"
 1650 .FIN
 1660 .FIN
 1670 .FIN
 1680 .EM
 1690 *--------------------------------
 1700 >CRT L,N,"ABCDEFG"
 1710 >CRT L,I,"ABCDEFG"
 1720 >CRT A,N,MSG
 1730 >CRT A,I,MSG
 1740 *--------------------------------
 1750 >CRT L,N,"ABCDEFG",Y
 1760 >CRT L,I,"ABCDEFG",I
 1770 >CRT A,N,MSG,R
 1780 >CRT A,I,MSG,R,BUFFER
 1790 RTS
 1800 MSG .AT -/MESSAGE/
 1810 BUFFER .BS 256

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 661 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:DOS3.3:S.SHOW.txt
==

 1000 *--------------------------------
 1010 * "SHOW" COMMAND
 1020 *--------------------------------
 1030 DOS.OPEN.TEXT.FILE .EQ $A2A3
 1040 DOS.CLOSE.FILE .EQ $A2FC
 1050 DOS.READ.ONE.BYTE .EQ $A68C
 1060 KEYBOARD .EQ $C000
 1070 STROBE .EQ $C010
 1080 MON.COUT1 .EQ $FDF0
 1090 *--------------------------------
 1100 .OR $A54F
 1110 .TA $84F
 1120 SHOW
 1130 JSR DOS.OPEN.TEXT.FILE
 1140 LDA #$8D
 1150 .1 JSR MON.COUT1
 1160 JSR PAUSE.CHECK
 1170 BEQ .2
 1180 JSR DOS.READ.ONE.BYTE
 1190 BNE .1 PRINT IT
 1200 .2 JMP DOS.CLOSE.FILE
 1210 *--------------------------------
 1220 * RETURN .EQ. IF ABORT
 1230 * .NE. IF CONTINUE
 1240 *--------------------------------
 1250 .OR $AE8E OVER "INIT" CODE
 1260 .TA $88E
 1270 PAUSE.CHECK
 1280 LDA KEYBOARD ANY KEY PRESSED?
 1290 BPL .2 NO, CONTINUE
 1300 STA STROBE YES, CLEAR STROBE
 1310 CMP #$8D ABORT?
 1320 BEQ .2 YES, RETURN .EQ. STATUS
 1330 .1 LDA KEYBOARD NO, PAUSE TILL KEYPRESS
 1340 BPL .1 NONE PRESSED YET
 1350 STA STROBE CLEAR STROBE
 1360 CMP #$8D ABORT?
 1370 .2 RTS .EQ. IF ABORT
 1380 *--------------------------------
 1390 .OR $A884
 1400 .TA $884
 1410 .AT /SHOW/ SHOW COMMAND NAME
 1420 *--------------------------------
 1430 .OR $A909
 1440 .TA $809
 1450 .HS 2030 FLAGS FOR SHOW COMMAND
 1460 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 662 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:DOS3.3:S.Smpl.Anim.txt
==

 1000 *SAVE S.SIMPLE ANIMATION
 1010 *--------------------------------
 1020 * SIMPLE ANIMATION
 1030 *--------------------------------
 1040 MON.WAIT .EQ $FCA8 MONITOR DELAY ROUTINE
 1050 *--------------------------------
 1060 T1 .EQ $0,1
 1070 T2 .EQ $2,3
 1080 T3 .EQ $4,5
 1090 Y.INDEX .EQ $6,7
 1100 *--------------------------------
 1110 * ANIMATION PLAYBACK LOCATIONS
 1120 *--------------------------------
 1130 HIRES.PAGE .EQ $20 $20 = PAGE 1, $40 = PAGE 2
 1140 Y.COORD .EQ 100 WHERE TO PUT ANIMATION
 1150 X.COORD .EQ 20 WHERE TO PUT ANIMATION
 1160 *--------------------------------
 1170 .OR $803
 1180 .TF B.ANIMATE
 1190 *--------------------------------
 1200 START JSR HIRES.INIT INITIALIZE HIRES SCREEN
 1210 .1 JSR PLAY.FRAMES PLAY 1 SET OF FRAMES
 1220 JMP .1 GO DO IT AGAIN
 1230 *--------------------------------
 1240 PLAY.FRAMES LDA #0 INIT FRAME INDEX
 1250 STA FRAME.INDEX
 1260 .1 LDA FRAME.INDEX GET FRAME INDEX POINTER
 1270 CMP #NUM.FRAMES HAVE ALL FRMES BEEN DONE
 1280 BEQ .3 YES, SO RETURN
 1290 LDY $C000 HAS A KEY BEEN PRESSED
 1300 BPL .2 NO, SO KEY PLAYING THE FRAMES
 1310 LDA $C051 RESTORE TEXT SCREEN
 1320 LDA $C054 PRIMARY PAGE
 1330 JMP $3D0 EXIT ON ANY KEY
 1340 .2 ASL DOUBLE INDEX
 1350 TAY
 1360 LDA FRAME.TABLE,Y GET TABLE ADDRESS
 1370 STA T1 SAVE ADRS IN T1
 1380 INY NEXT BYTE OF ADRS
 1390 LDA FRAME.TABLE,Y
 1400 STA T1+1
 1410 JSR ANIMATE MOVE FRAME DATA TO SCREEN
 1420 INC FRAME.INDEX NEXT FRAME
 1430 BNE .1 ...ALWAYS
 1440 .3 RTS
 1450 *--------------------------------
 1460 HIRES.INIT LDA #HIRES.PAGE
 1470 STA T1+1
 1480 LDY #0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 663 of 2550

Apple II Computer Info

 1490 STY T1
 1500 .0 TYA ZERO A REG
 1510 .1 STA (T1),Y CLEAR SCREEN PAGE
 1520 INY
 1530 BNE .1
 1540 INC T1+1 NEXT PAGE
 1550 LDA T1+1 CHECK FOR
 1560 AND #$1F END OF HIRES PAGE
 1570 BNE .0 NO, CLEAR MORE
 1580 LDA $C050 ENABLE GRAPHICS
 1590 LDA $C057 ENABLE HIRES
 1600 LDA $C054 ENABLE PAGE 1 (C055 IS PAGE 2)
 1610 LDA $C052 NOMIX
 1620 RTS
 1630 *--------------------------------
 1640 INTER.FRAME.DELAY .DA #20
 1650 XSIZE .DA #4 X FRAME SIZE IN BYTES
 1660 YSIZE .DA #24 Y FRAME SIZE IN BYTES
 1670 FRAME.TABLE
 1680 .DA FRAME1
 1690 .DA FRAME2
 1700 .DA FRAME3
 1710 .DA FRAME4
 1720 .DA FRAME5
 1730 .DA FRAME6
 1740 .DA FRAME7
 1750 .DA FRAME8
 1760 .DA FRAME9
 1770 NUM.FRAMES .EQ 9
 1780 FRAME.INDEX .DA #0
 1790 *--------------------------------
 1800 ANIMATE LDA #Y.COORD THIS IS THE STARTING ROW
 1810 STA Y.INDEX FOR THE ANIMATION
 1820 LDY YSIZE NUMBER OF ROWS TO PUT ON SCREEN
 1830 STY T2
 1840 .1 LDY Y.INDEX
 1850 LDA YTBL.LO,Y COMPUTE THE ROW ADRS
 1860 CLC
 1870 ADC #X.COORD ADD THE X OFFSET
 1880 STA T3
 1890 LDA YTBL.HI,Y
 1900 ADC #HIRES.PAGE ADD THE HIRES PAGE BITS
 1910 STA T3+1 T3 POINTS TO ROW POSITION
 1920 LDY XSIZE NUMBER OF BYTES TO PUT INTO ROW
 1930 DEY INDEX BEGINS AT ZERO TO XSIZE-1
 1940 .3 LDA (T1),Y GET FRAME DATA
 1950 STA (T3),Y PUT ONTO SCREEN
 1960 DEY FOR ALL BYTES IN THE ROW
 1970 BPL .3
 1980 .4 INC Y.INDEX NEXT ROW INDEX
 1990 LDA T1
 2000 CLC
 2010 ADC XSIZE STEP FRAME ADRS AHEAD
 2020 STA T1 TO NEXT ROW OF DATA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 664 of 2550

Apple II Computer Info

 2030 LDA T1+1
 2040 ADC #0
 2050 STA T1+1
 2060 DEC T2 COUNT DOW THE ROWS
 2070 BNE .1 GO MOVE REST OF FRAME ROWS
 2080 LDY INTER.FRAME.DELAY
 2090 BEQ .6 NO DELAY BETWEEN FRAMES
 2100 STY T2 SAVE DELAY
 2110 .5 LDA #30 REPEAT THIS SMALL DELAY
 2120 JSR MON.WAIT
 2130 DEC T2 FOR COUNT IN 'T2'
 2140 BNE .5 MORE DELAY
 2150 .6 RTS FRAME IS ALL DONE
 2160 *--------------------------------
 2170 * HIRES Y OFFSET TABLES
 2180 * OFFSET FROM $2000 OR $4000
 2190 * HIRES PAGE DISPLAYS
 2200 * USING THESE TABLES SPEEDS UP
 2210 * HIRES SCREEN ADRS COMPUTATION
 2220 * A GREAT DEAL!
 2230 *
 2240 * FOR EVERY Y VALUE FROM 0-191
 2250 * THERE IS AN ENTRY IN THIS TABLE
 2260 * TO COMPUTE THE ADRS OF FIRST
 2270 * BYTE IN THE ROW.
 2280 *--------------------------------
 2290 YTBL.LO .EQ *
 2300 .HS 00000000000000008080808080808080
 2310 .HS 00000000000000008080808080808080
 2320 .HS 00000000000000008080808080808080
 2330 .HS 00000000000000008080808080808080
 2340 .HS 2828282828282828A8A8A8A8A8A8A8A8
 2350 .HS 2828282828282828A8A8A8A8A8A8A8A8
 2360 .HS 2828282828282828A8A8A8A8A8A8A8A8
 2370 .HS 2828282828282828A8A8A8A8A8A8A8A8
 2380 .HS 5050505050505050D0D0D0D0D0D0D0D0
 2390 .HS 5050505050505050D0D0D0D0D0D0D0D0
 2400 .HS 5050505050505050D0D0D0D0D0D0D0D0
 2410 .HS 5050505050505050D0D0D0D0D0D0D0D0
 2420 YTBL.HI .EQ *
 2430 .HS 0004080C1014181C0004080C1014181C
 2440 .HS 0105090D1115191D0105090D1115191D
 2450 .HS 02060A0E12161A1E02060A0E12161A1E
 2460 .HS 03070B0F13171B1F03070B0F13171B1F
 2470 .HS 0004080C1014181C0004080C1014181C
 2480 .HS 0105090D1115191D0105090D1115191D
 2490 .HS 02060A0E12161A1E02060A0E12161A1E
 2500 .HS 03070B0F13171B1F03070B0F13171B1F
 2510 .HS 0004080C1014181C0004080C1014181C
 2520 .HS 0105090D1115191D0105090D1115191D
 2530 .HS 02060A0E12161A1E02060A0E12161A1E
 2540 .HS 03070B0F13171B1F03070B0F13171B1F
 2550 *--------------------------------
 2560 * ANIMATION DATA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 665 of 2550

Apple II Computer Info

 2570 *--------------------------------
 2580 FRAME1
 2590 .HS 000000000000000000600300
 2600 .HS 0070070000580D0000780F00
 2610 .HS 00380E000070070000600300
 2620 .HS 004001000040010000780F00
 2630 .HS 007C1F000066330000436100
 2640 .HS 006363000073670040714701
 2650 .HS 40394E0100180C0000180C00
 2660 .HS 00180C0000180C0000180C00
 2670 FRAME2
 2680 .HS 000000000060030000700700
 2690 .HS 00580D0000780F0000380E00
 2700 .HS 007007000060030000400100
 2710 .HS 0040010000780F00007C1F00
 2720 .HS 00663300404141016C60031B
 2730 .HS 3C70071E0070070000380E00
 2740 .HS 00180C00000C1800000C1800
 2750 .HS 000C1800000C180000000000
 2760 FRAME3
 2770 .HS 006003000070070000580D00
 2780 .HS 00780F0000380E0000700700
 2790 .HS 06600330064001300C400118
 2800 .HS 78780F0E607F7F0740677301
 2810 .HS 004001000060030000700700
 2820 .HS 00700700001C1C00000C1800
 2830 .HS 000C1800000C180000063000
 2840 .HS 000630000000000000000000
 2850 FRAME4
 2860 .HS 000000004061430140714701
 2870 .HS 60580D0320780F0220380E02
 2880 .HS 607007034061430100414100
 2890 .HS 00463100007E3F0000780F00
 2900 .HS 006003000040010000600300
 2910 .HS 0070070000700700001C1C00
 2920 .HS 000630000003600000036000
 2930 .HS 400140014001400100000000
 2940 FRAME5
 2950 .HS 000000000000000040610303
 2960 .HS 4071070320580D0220780F02
 2970 .HS 60380E036070070340614301
 2980 .HS 0043610000463100007E3F00
 2990 .HS 00780F000060030000400100
 3000 .HS 006003000070070000700700
 3010 .HS 001C1C000006300000036000
 3020 .HS 000360004001400140014001
 3030 FRAME6
 3040 .HS 000000004061430140714701
 3050 .HS 60580D0320780F0260380E03
 3060 .HS 607007034061430100436100
 3070 .HS 00463100007E3F0000780F00
 3080 .HS 006003000040010000600300
 3090 .HS 0070070000700700001C1C00
 3100 .HS 000630000003600000036000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 666 of 2550

Apple II Computer Info

 3110 .HS 400140014001400100000000
 3120 FRAME7
 3130 .HS 406143014071470160580D03
 3140 .HS 20780F0220380E0260700703
 3150 .HS 406143010043610000463100
 3160 .HS 007E3F0000780F0000600300
 3170 .HS 004001000060030000700700
 3180 .HS 00700700001C1C0000063000
 3190 .HS 000360000003600040014001
 3200 .HS 400140010000000000000000
 3210 FRAME8
 3220 .HS 006003000070070000580D00
 3230 .HS 00780F0000380E0000700700
 3240 .HS 06600330064001300C400118
 3250 .HS 78780F0E607F7F0740677301
 3260 .HS 004001000060030000700700
 3270 .HS 00700700001C1C00000C1800
 3280 .HS 000C1800000C180000063000
 3290 .HS 000630000000000000000000
 3300 FRAME9
 3310 .HS 000000000060030000700700
 3320 .HS 00580D0000780F0000380E00
 3330 .HS 007007000060030000400100
 3340 .HS 0040010000780F00007C1F00
 3350 .HS 00663300404141016C60031B
 3360 .HS 3C70071E0070070000380E00
 3370 .HS 00180C00000C1800000C1800
 3380 .HS 000C1800000C180000000000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 667 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8207:DOS3.3:S.ZP.InOrder.txt
==

 1000 *SAVE S.PAGE-ZERO IN ORDER
 1010 *--------------------------------
 1020 * SEARCH FOR PAGE ZERO REFERENCES
 1030 * (MODIFIED BY TRACY SHAFER)
 1040 *--------------------------------
 1050 MON.A1L .EQ $3C
 1060 MON.A1H .EQ $3D
 1070 MON.A2L .EQ $3E
 1080 MON.A2H .EQ $3F
 1090 MON.PCL .EQ $3A
 1100 MON.PCH .EQ $3B
 1110 *--------------------------------
 1120 KEYBOARD .EQ $C000
 1130 STROBE .EQ $C010
 1140 *--------------------------------
 1150 MON.LIST2 .EQ $FE63
 1160 MON.INSDS .EQ $F88C
 1170 MON.A1PC .EQ $FE75
 1180 MON.PCADJ .EQ $F953
 1190 MON.NXTA1 .EQ $FCBA
 1200 *--------------------------------
 1210 * SET UP CONTROL-Y VECTOR
 1220 *--------------------------------
 1230 SETUPY LDA #$4C 'JMP' OPCODE
 1240 STA $3F8
 1250 LDA #CTRL.Y
 1260 STA $3F9
 1270 LDA /CTRL.Y
 1280 STA $3FA
 1290 RTS
 1300 *--------------------------------
 1310 PAGE.REF .HS 00 VARIABLE TO HOLD THE CURRENT
 1320 * PAGE-ZERO LOCATION
 1330 *--------------------------------
 1340 * CONTROL-Y COMES HERE
 1350 *--------------------------------
 1360 CTRL.Y
 1370 JSR MON.A1PC IF ADDRESS SPECIFIED, PUT IN PC
 1380 .1 LDY #0
 1390 LDA (MON.PCL),Y
 1400 AND #$0F
 1410 CMP #1
 1420 BEQ .3
 1430 CMP #4
 1440 BCC .6
 1450 BNE .2
 1460 LDA (MON.PCL),Y
 1470 AND #$F0
 1480 CMP #$20 BIT Z

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 668 of 2550

Apple II Computer Info

 1490 BEQ .3
 1500 CMP #$80
 1510 BCC .6 NO
 1520 CMP #$D0
 1530 BEQ .6 NO
 1540 CMP #$F0
 1550 BEQ .6 NO
 1560 BNE .3 YES
 1570 .2 CMP #7
 1580 BCS .6
 1590 *--------------------------------
 1600 * INSTRUCTION REFERENCES PAGE-ZERO
 1610 *--------------------------------
 1620 .3 INY
 1630 LDA (MON.PCL),Y GET PAGE REFERENCE
 1640 DEY RESTORE VALUE OF Y
 1650 CMP PAGE.REF ONE WE ARE SEARCHING FOR?
 1660 BNE .6 NO, IGNORE THIS TIME
 1670 LDA #1 DISASSEMBLE THIS ONE INSTRUCTION
 1680 JSR MON.LIST2 DISASSEMBLE
 1690 LDA KEYBOARD SEE IF KEYPRESS
 1700 BPL .7 NO
 1710 STA STROBE YES, CLEAR IT
 1720 CMP #$8D
 1730 BEQ .5
 1740 .4 LDA KEYBOARD
 1750 BPL .4
 1760 STA STROBE
 1770 CMP #$8D
 1780 BNE .7
 1790 .5 RTS
 1800 *--------------------------------
 1810 * DOES NOT REFERENCE PAGE-ZERO
 1820 *--------------------------------
 1830 .6 LDX #0
 1840 JSR MON.INSDS GET LENGTH OF INSTRUCTION
 1850 JSR MON.PCADJ
 1860 STA MON.PCL
 1870 STY MON.PCH
 1880 *--------------------------------
 1890 * TEST IF FINISHED
 1900 *--------------------------------
 1910 .7 LDA MON.PCL
 1920 CMP MON.A2L
 1930 LDA MON.PCH
 1940 SBC MON.A2H
 1950 BCC .1
 1960 LDX #1 RESTORE X-VALUE FOR MON.A1PC ABOVE
 1970 INC PAGE.REF NEXT PAGE
 1980 BNE CTRL.Y NOT FINISHED
 1990 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 669 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:AGAG.Review.txt
==

Review of "Apple Graphics & Arcade Game Design"

If you are at all interested in Apple graphics, or writing animated
hi-res games, this book is for you. Jeffrey Stanton, the author, may
already be known to you. He is the editor of "The Book of Apple
Software, and also has several Apple arcade games on the market.
"Apple Graphics & Arcade Game Design" (AGAG) is 288 pages long, and
retails for $19.95. (I am selling it for $18 plus shipping.) A
coupon in the back enables you to purchase all of the source code
shown in the book on diskette for only $15.

There are two parts to the book: first, a thorough explanation of
Apple graphics, with numerous examples in both Applesoft and assembly
language; second, design and programming of all the parts of a working
arcade game.

AGAG is written for the advanced Applesoft or beginning assembly
language programmer. You learn about both lo-res and hi-res graphics
at the assembly language level. You learn the fundamentals, and then
proceed to program scene scrolling, page flipping, laser fire, bomb
drops, explosions, scoring, and paddle control routines. Sorry,
nothing much about sound generation.

AGAG's pages are divided into 8 chapters as follows:

1. (25 pages) Applesoft Hi-Res
2. (34 pages) Lo-Res Graphics
3. (17 pages) Machine Language Access to Applesoft
 Hi-Res Routines
4. (23 pages) Hi-Res Screen Architecture
5. (36 pages) Bit-Mapped Graphics
6. (90 pages) Arcade Graphics
7. (44 pages) Games that Scroll
8. (5 pages) What Makes a Good Game

I noticed a few errors in the book: on page 149, flow chart lines are
incorrectly drawn; on page 284, there is a large block of repeated
text, and therefore possibly a missing block which should have been in
the space. The word "initialize" is always incorrectly spelled
"initilize". The index is very brief, only about 70 lines long; I
believe it should be about 3 or 4 times longer to really help in
locating items of interest.

Jeff does not seem to know about the existence of the S-C Macro
Assembler. He repeatedly mentions the TED, Big-Mac, Merlin
Assemblers, and occasionally refers to Lisa and DOS ToolKit. All the
listings are in the Big-Mac format. You should have no trouble
adapting them to the S-C format.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 670 of 2550

Apple II Computer Info

AGAG is an excellent tutorial, and includes many useful programs and
ideas for anyone interested in Apple graphics. I heartily recommend
the book, ranking it just under "Beneath Apple DOS" in importance and
utility.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 671 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Auto.Man.Toggle.txt
==

AUTO-MANUAL Toggle for S-C Macro Assembler........R. F. O'Brien

Here is a small program to accompany Bill Morgan's Automatic Catalog
in the June '82 issue of AAL. This routine adds an AUTO/MANUAL
command toggle to the S-C Macro Assembler. Using CTRL-A when the
cursor is at the beginning of a line enters the AUTO line numbering
mode and waits for input of a line number and/or RETURN. Entering
another CTRL-A while in AUTO mode and at the start of a line executes
a MANUAL command.

In addition, I have added some code to provide slow and fast listings
at a single keypress. CTRL-S does a SLOW LIST command, which is
cancelled by a 'RETURN' during listing. CTRL-L will provide a listing
at normal speed (assuming the slow list has been cancelled.)

The patch is implemented as follows:

1. Enter the S-C Macro Assembler
2. :$101D:33 N 1000G
3. :BLOAD AUTO/MANUAL PATCH
4. :$138D: 4C 28 32 (JMP PATCH instead of JSR BELL)
5. :BSAVE AUTO/MAN S-C MACRO ASM,A$1000,L$2300

Note: You may omit step 2 if you have already installed Bill's
automatic CATALOG.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 672 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Cursor.Routine.txt
==

Blinking Underline Cursor Routine..................Bill Linn

Early users of the ES-CAPE Applesoft Editing system (formerly known as
AED II) have really come to appreciate the blinking underline cursor
-- it simply doesn't tire the eyes as much as the standard flashing
blank does. With the following subroutine, you can add this special
touch to your own assembly language or BASIC programs!

The subroutine hooks into the monitor keyboard input vector at $38 and
$39. Each time the monitor RDKEY subroutine is called, my KEYIN
subroutine gets control. If the character on the screen at the cursor
position is not an underline, I alternate the display of an underline
and the original character every 1/4 second. If the original
character was an underline, I alternate it with a blank. (If I
alternate an underline with an underline, it is difficult to see
anything happen!)

Lines 1210-1250 store the KEYIN subroutine's address in the keyboard
input vector. When a request for a key press is made by an Applesoft
INPUT command, for example, we get control at line 1270. The A-
register has the current screen character. I save the A- and X-
registers, because KEYIN must exit with the original values unchanged.

Lines 1290-1320 test the current screen character to see whether it is
already an underline or not. If it is, I use a blank for the
alternating character. Otherwise, I use the original screen contents
for an alternating character. I push the alternating character onto
the stack.

Lines 1330-1500 do the alternating. I look at the character on the
screen: if it is an underline, I substitute the alternating
character; if not, I store an underline. The lines 1430-1500 delay
for about 1/4 second before the next alternation. If a keypress
occurs, the loop ends by branching to ".5" at line 1540. You may wish
to vary the blink rate by changing the value loaded into the Y-
register at line 1430.

When a key is pressed we end up at line 1540, where I pop the
alternating character off the stack. The I call the monitor bell
subroutine for a short (10 half-cycles) bell. This makes an audible
"click" for user feedback. (If you don't appreciate clicking
keyboards, just delete lines 1550 and 1560.) Then I restore the Y-,
X-, and A-registers to their orignal values, and jump into the
monitor's KEYIN subroutine at $FD26. The monitor restores the
original character to the screen, and returns with the keypress value
in the accumulator.

I have set the subroutine origin to $300, but you can assemble it
anywhere you like. In fact, it will run anywhere you put without

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 673 of 2550

Apple II Computer Info

reassembly, just so you load the correct address into $38 and $39 in
the HOOK routine.

After assembly, assuming it is origined at $300, you can BSAVE it with
"BSAVE B.UNDERLINE,A$300,L$3C. Then to activate this routine from
Applesoft, just BRUN the file B.UNDERLINE. All keyboard input through
the standard monitor RDKEY subroutine ($FDOC) or Applesoft GET and
INPUT statements will be prompted by the underline cursor. An "IN#0"
will restore the familiar flashing blank. Have fun!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 674 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Free.Space.txt
==

Free Space Patch For the S-C Assembler...........Mike Sanders

Volume 5, Number 6 of Call A.P.P.L.E. has an article giving a DOS
patch to replace the volume number printed during catalog with number
of free sectors remaining on the disk.

The routine as published works for both Applesoft and Integer BASIC,
but does not work with the language card version of the S-C Assembler.
Only a few changes were needed to make it work with all three.

A call to Bob gave me the location of the decimal print routine in the
S-C Macro Assembler, Language Card Version.

The original code as published in CAll A.P.P.L.E. checked location
$E006 to see what language is in use. My code looks at $E001, which
has a different value in each of the three:

 Language $E001

 Applesoft: $28
 Integer BASIC: $00
S-C Macro Assembler: $94

The code in lines 1320-1370 checks which language is in use and jumps
to the right routine. I also changed the zero page locations used to
count the number of free sectors because the S-C Assembler print
routine expects the two-byte value to be in $D3 and $D4.

The rest of the code works as explained in the Call A.P.P.L.E.
article. I refer you to it for more details and as an excellent
lesson on reducing the size of code.

Install the two patches to DOS by BLOADing the two binary files
FREE.SECTORS.1 and FREE.SECTORS.2. The type CATALOG to see the how
many free sectors you have.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 675 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Front.Page.txt
==

$1.50

Volume 2 -- Issue 11 August, 1982

In This Issue...

Search and Perform Subroutine 2
Auto-Manual Toggle Patch for S-C Macro Assembler 6
Improved DOS Free Space Patch 9
Videx 80-Column Patches for S-C Macro Assembler 11
Review of "Apple Graphics & Arcade Game Design" 23
Quick Way to Write DOS on a Disk 24
Correction to Relocatable JSR Article (July 1982) 24
Efficient Handling of Very Large Assembly Source Files . . 25
Lower Case in .AS and Literal Constants 28
Blinking Underscore Cursor 29
Review of QUICKTRACE 32

Current Advertising Rates

For the September 1982 issue the price will be $60 for a full page,
$35 for a half page. To be included, I must receive your camera-ready
copy by August 20th.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 676 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Large.Src.Files.txt
==

Large Source Files and the S-C Macro Assembler......Bill Morgan

One of the more common questions we get is: "How do I best use the
.IN and .TF directives to handle very large programs?"

The main technique we use is the Assembly Control File (ACF), a short
source file which is mostly made up of .IN statements to call the
other modules. Here is an example, called SAMPLE.ACF:

1000 .IN SAMPLE.EQUATES
1010 .PG
1020 .IN SAMPLE.CODE.1
1030 .PG
1040 .IN SAMPLE.CODE.2
1050 .PG
1060 .IN SAMPLE.DATA
1070 .PG

SAMPLE.EQUATES is all the definitions for the program, SAMPLE.CODE.1
and SAMPLE.CODE.2 are the main body of the program, and SAMPLE.DATA
contains all the variables and ASCII text. When you want to assemble
the program, just LOAD SAMPLE.ACF and type MON C then ASM. The Macro
Assembler will load each file and assemble it, in the order they are
listed in the ACF. The "MON C" shows you the "LOAD file name" for
each file, helping you to tell what's where.

Using this technique, a program can conveniently be broken into as
many modules as you want, and can be as large as you want. The Macro
Assembler itself is 26 source files on two disks! To spread the files
across more than one disk, just add drive (and/or slot) specifiers to
all the file names.

You can also use the ACF to do global search-and-replace operations on
the entire program. Here are the commands to search SAMPLE for all
occurences of the label MON.COUT:

:LOAD SAMPLE.ACF
:REP / .IN/LOAD/A
:REP / .PG/FIND "MON.COUT"/A
:TEXT COUT.SEARCH
:MON I
:EXEC COUT.SEARCH

This converts SAMPLE.ACF into an EXEC file that will list each
occurence of "MON.COUT" in every module of the program. Here's what
the file looks like now:

1000 LOAD SAMPLE.EQUATES
1010 FIND "MON.COUT"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 677 of 2550

Apple II Computer Info

1020 LOAD SAMPLE.CODE.1
1030 FIND "MON.COUT"
1040 LOAD SAMPLE.CODE.2
1050 FIND "MON.COUT"
1060 LOAD SAMPLE.DATA
1070 FIND "MON.COUT"

The ACF is also a good place for the .OR and .TF statements, comments
about the assembly process, and any condition flags. Here is a more
complicated version of SAMPLE.ACF:

1000 *--------------------------------
1010 * SAMPLE FILE TO DEMONSTRATE ACF
1020 *--------------------------------
1030 LC.FLAG .EQ 0 =0 IF UPPER CASE ONLY
1040 * =1 IF LOWER CASE VERSION
1050 *--------------------------------
1060 .OR $803
1070 .DO LC.FLAG
1080 .TF B.SAMPLE.LC
1090 .ELSE
1100 .TF B.SAMPLE.UC
1110 .FIN
1120 *--------------------------------
1130 .IN SAMPLE.EQUATES
1140 .PG
1150 .IN SAMPLE.CODE
1160 .PG
1170 .DO LC.FLAG
1180 .IN SAMPLE.LOWER.CASE.ROUTINES
1190 .PG
1200 .ELSE
1210 .IN SAMPLE.NORMAL.ROUTINES
1220 .PG
1230 .FIN
1240 .IN SAMPLE.DATA
1250 .PG

To use this ACF, just LOAD it, EDIT line 1030 to set LC.FLAG to 0 or
1, set MON C, and ASM. The Macro Assembler will load the appropriate
source files for the version you want and direct the object code to
the correct target file. To turn this ACF into an EXEC file for
searching, you must delete lines 1000-1120, 1170, 1200, and 1230
before doing the REP commands.

For more information on the .IN and .TF directives, see pages 4-6 and
5-3/4 in the Macro Assembler manual. Conditional assembly is
discussed on pages 5-9/10 and in chapter 7.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 678 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Macro.LC.Patch.txt
==

Patch for S-C Macro Assembler...........Bob Sander-Cederlof

When I added the lower-case options to the S-C Macro Assembler, I
overlooked the fact that within .AS and .AT strings, and in ASCII
literal constants, you would want lower case codes to be assembled.
The assembler as it now is converts all lower case codes to upper case
during assembly. For example, ".AS /Example/" would assemble all
upper case ASCII, just as though you had written ".AS /EXAMPLE/"

The following patches will correct this problem, allowing you to
specify lower case strings and constants when you wish.

$2961:EA EA EA EA EA EA

$31B8<1235.124BM

$1074:B8 31
$118C:B8 31
$11B2:B8 31
$187F:B8 31
$23FA:B8 31

$31CF:C8 84 7B C9 60 90 04 29 5F 85 61 60

$1240:20 CF 31

BSAVE ASM.WITH.LC.IN.AS,A$1000,L$21DB
(or whatever file name you wish)

The patches above are for the version which runs in mother-board RAM.
The Language card version has different addresses, and you must first
write-enable the language card. Assuming you are currently running
the language card version, perform the patch as follows:

$C083 C083
$EAAD:EA EA EA EA EA EA

$F304<D235.D24BM

$D074:04 F3
$D18C:04 F3
$D1B2:04 F3
$D87F:04 F3
$E546:04 F3

$F31B:C8 84 7B C9 60 90 04 29 5F 85 61 60

$D240:20 1B F3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 679 of 2550

Apple II Computer Info

BSAVE LC.ASM.WITH.LC.IN.AS,A$D000,L$2327
(or whatever file name you wish)

Be aware that the above patches may conflict with other patches you
may already have applied to your copy of the assembler. If you have
already used the area from $31B8 through $31DB, or $F304 through
$F326, you will need to use a different area and change the references
accordingly.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 680 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:My.Ad.txt
==

S-C Macro Assembler..$80.00
S-C Macro Cross Assembler Modules
 6800/6801/6802 Version...$32.50
 6809 Version...$32.50
 Z-80 Version...$32.50
 Requires ownership of S-C Macro Assembler.
 Each disk includes regular and language card versions.

S-C ASSEMBLER II Version 4.0.......................................$55.00
Upgrade from Version 4.0 to MACRO..................................$27.50
Source code of Version 4.0 on disk.................................$95.00
 Fully commented, easy to understand and modify to your own tastes.

AAL Quarterly Disks..each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)......(regular $79) $49.00
 Special price to AAL readers only, until 9/1/82!
Source Code for FLASH! Runtime Package.............................$39.00

Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00

ES-CAPE: Extended S-C Applesoft Program Editor....................$40.00

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00

Ashby Shift-Key Mod..$15.00
Paymar Lower-Case Adapter..$37.50
 For Apples before Revision 7 only
Lower-Case Display Encoder ROM.....................................$25.00
 Works only Revision level 7 Apples. Replaces the encoder ROM.

Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
 Corrugated folder specially designed for mailing mini-floppy
 diskettes. Fits in standard 6x9-inch envelope. (Envelopes
 5-cents each, if you need them.)

Books, Books, Books..........................compare our discount prices!
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", William Leubert.........($14.95) $14.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 681 of 2550

Apple II Computer Info

 "6502 Subroutines", Leventhal........................($12.99) $12.00
 "MICRO on the Apple--1", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--2", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--3", includes diskette...........($24.95) $23.00

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 We take Master Charge and VISA ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 682 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Quick.DOS.Write.txt
==

Quick Way to Write DOS on a Disk..............Bob Perkins
 Tussy, OK 73088

I just received the July AAL and liked the little article on the
"FILEDUMP" command. I had already done just about the same thing.

In fact, I make a lot of changes to DOS. Too many to POKE in every
time I boot up. So I started looking around for a simple way to
replace the DOS image on a disk without disturbing the programs
already on it, and without using MASTER.CREATE. The July Call
A.P.P.L.E. had a program to do it, only it seems much more complicated
than my solution.

I used the S-C Macro Assembler to create a text file like this:

:1000 LOAD HELLO
:1010 POKE -21921,0:POKE -18448,0:POKE
-18447,157:POKE-18453,0:CALL-18614
:TEXT WRITE.DOS

Note the leading blank before the LOAD and the first POKE. It is
there to leave room for Applesoft's "]" prompt.

Whenever I want to write the DOS image on a disk, I use the SHOW
command to list out WRITE.DOS, and then trace over the two command
lines from Applesoft. Presto-Changeo, a new copy of DOS goes out to
the disk. I suppose you could even EXEC it, though I prefer to trace
over it and haven't tried EXECing.

The LOAD HELLO is there to get the boot file name into DOS's filename
buffer. You can use whatever filename you want, of course. POKE-
21921 tell DOS that the last command was an INIT for its startup
procedure (i.e. AA5F:00). POKE-18448 and -18447 start the write at
9D00 (B7F0:00 9D). POKR -18453 sets the expected volume number to
zero, so a match to any volume will occur (B7EB:00). The CALL is to
the "write DOS image" code inside DOS.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 683 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:QuickTrace.txt
==

Review of QUICKTRACE............................Mike Sanders

I had already started writing my own debugger when I discovered
QUICKTRACE; it was just what I needed and saved me all that work.

It has a good display that does not interfere with the normal Apple
text screen. You can even trace code that sets the KSWL and CSWL
switches and outputs to the screen. The tracing display takes the
bottom four lines, but pressing the "P" key causes the normal bottom
four lines to be displayed.

Tracing can be in one of three modes: single-step, trace, and
background. Single-step and trace are what you would expect,
analogous to the commands in the old Apple monitor ROM. Background
turns off the display of executed instructions until a breakpoint
occurs or the "ESC" key is pressed. This makes background the fastest
mode.

Breakpoints can be set to stop when:

1. Any register or a memory location takes on a specified value.
2. An address or a range of addresses is referenced.
3. A specified opcode occurs.

QUICKTRACE can be BRUN at any point in memory and then called from
your code by a JSR, or you can preset the QUICKTRACE
program counter and start tracing at any location.

Subroutines can be executed at full 6502 speed (not traced). If you
already know what the subroutine does there is no need to trace
through it. Normally DOS calls are automatically done this way to
prevent timing problems.

Overall I feel that QUICKTRACE is one of the five or so best programs
I have ever purchased and no machine code programmer should be without
it.

One feature not to be overlooked: QUICKTRACE is not copy protected.

QUICKTRACE was programmed by John Rogers and it is distributed by
Anthro-Digital Software (formerly called Aurora Systems). It only
costs $50.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 684 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Search.Perform.txt
==

Search and Perform Subroutine..............Bob Sander-Cederlof

When writing an editor or other single-keystroke command system, a
very common need is a subroutine which branches according to the value
of a character. In Pascal and some other languages there is even a
special statement for this programming need: CASE. You might do it
like this in Applesoft:

1000 GET A$
1010 IF A$ = "A" THEN 2000
1020 IF A$ = "C" THEN 3000
1030 et cetera

You will often find the equivalent code in assembly language programs:

1000 LDA CHARACTER
1010 CMP #'A
1020 BEQ CHAR.WAS.A
1030 CMP #'C
1040 BEQ CHAR.WAS.C
1050 et cetera

Of course, it frequently happens that the number of different values
is small, and the code sequence above with several CMP-BEQ pairs is
the most efficient. It loses a little of its appeal, though, when you
have to do it for more than about ten different values. And what if
the branch points are too far away for BEQ relative branches? Then
you have to write:

1000 LDA CHARACTER
1010 CMP #'A
1020 BNE .1
1030 JMP CHAR.WAS.A
1040 .1 CMP #'C
1050 BNE .2
1060 JMP CHAR.WAS.C
1070 .2 et cetera

That takes seven bytes of program for each value of the character.

Personally, I like to put the possible values and the corresponding
branch addresses in a table, and search that table whenever necessary.
Each table entry takes only three bytes. If the subroutine is used
with several tables, and if there are a lot of possible values, then
the tabular method saves a lot of memory.

I used the tabular method in my still-in-development word-processor.
To speed and simplify the coding of the table entries, I wrote a macro
definition JTBL as follows:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 685 of 2550

Apple II Computer Info

1020 .MA JTBL
1030 .DA #$]1,]2-1
1040 .EM

This defines a macro JTBL with two parameters. The first one will be
the hexadecimal value to compare the test-character with, and the
second one will be the branch address for that value. For example, if
I write the macro call:

1400 >JTBL 86,FLIP.CHARS

the S-C Macro Assembler will generate:

 .DA #$86,FLIP.CHARS-1

The "-1" is appended to each branch address in the table, because I
use the PHA-PHA-RTS method to perform the branch. Before I go any
farther, here is the search and branch subroutine:

1220 SEARCH.AND.PERFORM.NEXT
1230 INY POINT TO NEXT ENTRY
1240 INY
1250 INY
1260 SEARCH.AND.PERFORM
1270 LDA T.BASE,Y GET VALUE FROM TABLE
1280 BEQ .1 NOT IN THE TABLE
1290 CMP CURRENT.CHAR
1300 BNE SEARCH.AND.PERFORM.NEXT
1310 .1 LDA T.BASE+2,Y LOW-BYTE OF BRANCH
1320 PHA
1330 LDA T.BASE+1,Y HIGH-BYTE OF BRANCH
1340 PHA
1350 LDY #0 (SINCE MOST BRANCHES WANT Y=0)
1360 RTS DO THE BRANCH!

There are so far four different value-branch tables in my word
processor. Here is an abbreviated listing:

1380 T.BASE
1390 T.ESC0 >JTBL 81,AUXILIARY.MENU
1400 >JTBL 82,SCAN.BEGIN
1410 >JTBL 83,TOGGLE.CASE.LOCK

1540 >JTBL 9B,ESC0.ESC
1550 >JTBL 00,SC.BELL
1560 *--------------------------------
1570 T.ESC2 >JTBL 81,AUXILIARY.MENU

1690 >JTBL EB,SCAN.RIGHT
1700 >JTBL ED,SCAN.DOWN
1710 >JTBL 00,ESC2.END
1720 *--------------------------------
1730 T.MAIN >JTBL C4,MAIN.DOS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 686 of 2550

Apple II Computer Info

1740 >JTBL C5,MAIN.EDIT

1800 >JTBL D3,MAIN.SAVE
1810 >JTBL 00,MON.BELL
1820 *--------------------------------
1830 T.AUX >JTBL C3,COPY.BLOCK
1840 >JTBL C4,DELETE.BLOCK

1890 >JTBL D3,SAVE.SEGMENT
1900 >JTBL 00,SC.BELL

Notice that each of the four tables ends with a 00 value. The branch
address after the 00 value tells where to branch if the current
character does not match any values in the table.

When I want to compare the current character with entries in the
T.MAIN table, here is how I do it:

2000 LDY #T.MAIN-T.BASE
2010 JSR SEARCH.AND.PERFORM

The LDY instruction sets Y to the offset of the table from T.BASE, and
the search subroutine references the table relative to T.BASE. I use
JSR to call the search subroutine. The search subroutine uses PHA-PHA-
RTS to effectively JMP to the chosen branch address. And then the
value processor ends with RTS to return to the next line after the JSR
SEARCH.AND.PERFORM.

Counting all four tables, I have 45 branches, occupying 3*45 = 135
bytes. If I had used the CMP-BEQ method, which occupy four bytes per
value, it would have taken 4*45 = 180 bytes. The subroutine is only
23 bytes long, so I saved 22 bytes. But if I needed the longer CMP-
BNE-JMP sequences throughout, I would have had 7*45 = 315 bytes! Wow!
Long live tables!

Tables have even more advantages. For one, they are a lot easier to
modify when you want to add or delete a value. For another, the
program is easier to read when there is no rat's nest of branches to
try to unravel. For me, it almost makes the assembly listing as easy
to read as the reference manual!

Notice that it would be possible to overlap tables using my
subroutine. I might need at some times to search for 13 different
values, and at others to search for only 7 of those same values, with
the same branches. If so, the seven entries in common would be
grouped at the end of the 13-entry table. The table has two labels,
like this:

3000 T.13 >JTBL C1,DO.A
3010 >JTBL C4,DO.D

3050 >JTBL CF,DO.O
3060 T.7 >JTBL C2,DO.B
3070 >JTBL C5,DO.E

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 687 of 2550

Apple II Computer Info

3120 >JTBL D7,DO.W
3130 >JTBL 00,DO.NOTHING

What about speed? Well, it is pretty fast too. The CMP-BNE-JMP takes
five cycles for each value that does not compare equal, and finally
seven cycles for the one which compares equal. If the tenth
comparison bingos, that is 9*5+7 = 52 cycles. The subroutine takes
171 cycles for the same search. Over three times longer, but still
less that 120 microseconds longer. You would have to perform the
search over 8000 times in one day to add a whole second of computer
time!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 688 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Shorts.txt
==

Correction

Last month I described the BIT instruction incorrectly. The next to
the last paragraph on page 2 (in "Run-Anywhere Subroutine Calls")
should read:

The BIT instruction copies bit 7 of $FF58 into the N-status bit, and
bit 6 into the Overflow status bit. This, in other words (since $FF58
has $60 in it) clears N and sets Overflow.

BIT does not affect Carry Status in any way. BIT also sets or clears
the Z-status bit, according to the value of the logical product of the
A-register and the addressed byte. If you want Z and/or N to be flags
to the calling program, you will have to modify them after the BIT
instruction.

Another Customizing Patch for the S-C Macro Assembler

Version 4.0 of the S-C Assembler stopped after any assembly error.
Many users requested that I modify it to continue to the end of
assembly, and display the error count at the end. So I did.

Now some users are requesting that I change it back. They walk away
during assembly, and the error messages scroll off the screen. (But
you can put .LIST OFF at the beginning, and then only the error lines
will list.)

There is a very simple patch for this. The byte at $1D6F ($DD6F in
the language card version) is now $18. Change it $38 and assembly
will stop after the first error message.

Subscription Renewals

If your address label shows a number 8209 or smaller in the upper
right corner, it is time to renew. That is $15 bulk mail in the USA;
$18 First Class in USA, Canada, and Mexico; $28 to other countries.

New Macro Cross Assemblers Available

The high cost of dedicated microprocessor development systems has
forced many technical people to look for alternate methods to develop
programs for the various microprocessors. Combining your very
versatile Apple II with the S-C Macro Assembler provides a cost
effective and powerful development system.

There are now three cross-assembler modules ready for the S-C Macro
Assembler, and more to come. Each cross-assembler disk costs $32.50
to registered owners of the S-C Macro Assembler. You get both regular

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 689 of 2550

Apple II Computer Info

and language card versions, with documentation of the special features
and differences.

The 6809 cross-assembler is designed to work with the Stellation Mill.
The MGO command starts the 6809 processor executing your assembled
object code. Likewise, the Z-80 version is designed to work with the
Microsoft Softcard.

We have begun working on a Motorola 68000 version....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 690 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:Articles:Videx.Patches.txt
==

The Macro-Videx Connection........................Don Taylor

It seems that whenever I purchase a new hardware product for my Apple,
I spend countless hours honing my most precious software tools to make
them compatible with it. I purchased my Videx Videoterm card for use
with Pascal, and had no intention of using it with the S-C Assembler.
Then one fateful day I made a temporary patch to Version 4.0 -- just
to see what it would look like -- and I was immediately hooked....

You won't believe what it's like to assemble with 80 columns of
display! You can actually write source files that are legible on the
screen, with no wraparound on comments -- even during assembly. What
you see on the display is what you would see on a printer, only
cleaner.

When I upgraded to the S-C Macro Assembler, I was compelled to produce
a configuration file that would modify the new assembler to work with
the Videoterm board. The resulting source file is included with this
article.

The assembled SCM80 file will reconfigure a copy of the S-C Macro
Assembler Version 1.0 that is currently resident in memory (for more
about this concept, see "Controlling Software Configuration", AAL
April '82).

Once the mods are installed you will be able to use your Videx for
everything except: (1) Using the Escape-L sequence to LOAD a disk
file whose name appears on the display, and (2) Using the copy key
(right arrow). You will still be able to use Escape-L to generate the
normal dashed comment line, and you can use the other escape functions
to move the cursor and clear portions of the screen.

SCM80 will display control characters (and other selected strings
intended to be so) in inverse on your screen, provided you have the
standard (inverse) alternate character generator ROM installed in your
Videoterm. If you have some other ROM installed, these characters and
strings may be printed in Chinese. In this case you may want to
modify the new character output routine!

SCM80 will also permit painless switching of case while using the
assembler. A control-A keypress will always be recognized as a "shift
lock" signal, while a control-Z will be treated as a "shift unlock".
This feature makes it easy to write easy-to-read source files.

The assembled SCM80 code is moved into memory immediately following
the assembler, and is located at one of two places, depending on which
flavor (vanilla or language card) of the assembler you're using. The
flavor of the configuration file is made to match that of the
assembler through the use of a conditional flag (LCVERSION) and

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 691 of 2550

Apple II Computer Info

several conditional assembly statements. Another equate variable,
SLOTNUM, allows you to specify the slot in which your Videx board
resides.

How It All Works

There are two primary steps involved in installing the modified code
in the assembler: (1) Moving the new code into the area of memory
immediately following the assembler, and (2) Patching the existing
assembler code to point to the new routines and then returning or
cold-starting the system.

The SCM80 code contains both the new Videoterm support routines and
the routines used to install those support routines. It loads in at
$4000, stuffs the Videoterm routines just beyond the assembler code,
and then performs the return or cold start. Depending on the flavor,
a few other small tasks are performed in the process; let's take a
closer look.

Lines 1280-1310 contain the two constants used to tailor SCM80 to
assembler flavor and Videoterm slot number. The last two lines are
the starting addresses where the new code will be relocated, depending
on the flavor. The LCVERSION flag is used to determine the base
address of the assembler in lines 1340-1380; this base address is used
throughout the rest of the listing to determine absolute patch
addresses within the assembler.

The Videoterm support routines are contained in lines 3240-3770.
Lines 3400-3700 contain replacement routines for two of the routines
in the line editor portion of the assembler. The NEW.WARM.ENTRY
routine in lines 3240-3260 is intended to keep the Videoterm in the
saddle during a RESET or system warm start.

The code in lines 3820-4740 are replacements for some of the standard
monitor routines. Several of these routines have no other purpose
than to support the escape cursor movements. In the case of the
language card flavored RDKEY, an extra subroutine is provided to
unprotect the RAM during case-shift sequences (more about that in a
minute).

Lines 1770-2040 use the monitor's MOVE routine to slip the support
routines into their designated origin at $3200 or $F400. The vanilla
version patches the assembler's symbol table address to make room for
the move; the language card version unprotects RAM prior to the move.

The patching of the assembler is done in lines 2050-2920. unused code
is NOP-ed out here, and jumps are strategically poked in to point to
the new routines. A replacement escape jump table created in lines
2950-3090 gets installed in the assembler, so the new escape routines
can be accessed in the standard manner. The assembler's cold start
routines are patched to point to the resilient NEW.WARM.ENTRY routine
(more about that in a monent, too).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 692 of 2550

Apple II Computer Info

Lines 2870-2920 complete the installation and patching process. For
the vanilla version, a simple RTS returns control to the calling
program. The language card version first write protects RAM and then
performs a DOS cold start. Once the assembled code has been installed
and the patches made, the installation portion of SCM80 is of no use,
so a cold start should be performed to reset the assembler's file
pointers, leaving only the SCM80 code that is now supporting your
Videoterm.

Assembly and Installation

You'll note the absence of any .TF directive in the listing, meaning
you'll have to manually save this file when you're done. This is
because although the resulting object code will be located in
continuous memory, it has origins (.OR directives) at two locations.
The actual length of the file is calculated by a variable called
LENGTH. The instructions for assembly are contained in the source
file's title block. I call my vanilla patch file SCM80, and the
language card version SCM80.LC.

With the assembler code resident in memory, there are several ways of
installing the patches. Perhaps the most straightforward is to BRUN
the assembled patch file, or BLOAD it and type 4000G as a monitor
command. If you're using the vanilla assembler, you'll need to force
a cold start of the assembler by typing "NEW" or 1000G as a monitor
command; this action will ensure all the internal patches have been
installed into DOS as well. The language card version cold starts
itself, and requires no intervention.

A cleaner way is to use an EXEC file. The following file will bring
up the vanilla version of the assembler:

REM LOAD ASM
CALL -151 Enter the monitor
BLOAD S-C.ASM.MACRO Load the Assembler
BLOAD SCM80 Load the patches
4000G Install them, and
1000G Start the assembler!

To load the language card patches with an EXEC file, refer to Bob's
EXEC file on the top of Page 4 of the May '82 AAL, and replace "3D3G"
with the following two lines:

BLOAD SCM80.LC Load the LC patches
4000G Install them and cold start!

The character I/O is being vectored through routines at the end of the
assembler; for the language card version, these routines are somewhere
in $F4XX. If you decide to issue an "FP" command from that version,
you'll find yourself in "Never-Never Land". It's good practice to
issue a "PR#n" first (where "n" is the Videoterm's slot number). When
you type "INT" to restart the assembler, the special I/O routines will
automatically be hooked in.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 693 of 2550

Apple II Computer Info

A Funny Thing Happened on the Way...

Bob thought it would be enlightening to touch on some some of the
crazy things that went on during the development of these routines. I
always marvel at people like Bob, Mike, Bill, and Lee, who have a gift
for writing machine language, and can sit down and bang out a line
editor in a few hours.

The rest of us aren't quite so fortunate. SCM80 took my three days to
write, even though I had done some quick patches on Version 4.0. A
couple of good ones popped up during that time, and I'll pass them
along.

I was determined to interface the Videoterm using only its terminal
functions, avoiding any internal Videoterm ROM routines that would
make the interface version-dependent (my card matches neither the
descriptions nor the ROM source listings contained in my manual!).

The Videoterm will not move its flashing cursor to a GOTOXY Location
unless the cursor is first placed there and then a character is
output; under BASIC, you can't just HTAB and VTAB to a position and
GET a character -- you have to print a character first (even a null
character will do it), in order to move the cursor!

After spending several hours fighting with the Videoterm over who was
controlling the input and output cursor locations, I finally decided
to designate my own locations for CH and CV (normally at $24 and $25)
for use by the editing routines.

The other frustration I incurred was doing the case-switching in the
replacement RDKEY routine. I was using the language card version, and
had carefully checked my code, but the assembler just wouldn't switch
case for me. True confession: it took almost fifteen minutes before
it dawned on me that the assembler's case flag (at $D016) was write
protected! Hence, the special unprotect subroutine called by the new
RDKEY.

One final note concerns the contortions in the replacement COUT and
WARM.ENTRY routines (at least I saw these coming!). We need to keep
our new RDKEY routine in the DOS input hook to keep things working
predictably. The Videoterm, when installed by placing it in the
output hook and calling it to output a character, takes over the input
hook as well. In addition, we have a replacement COUT routine that is
designed to detect and modify control characters for display prior to
their output.

In order to avoid arm-wrestling with the Videoterm over who controls
the input hook, I used a strange but effective technique. During the
installation and patch portion, I install the Videoterm in the
designated slot, hook it in, and send a bogus character to make sure
it has installed its warm entry I/O locations in DOS ($AA52-$AA56 for
48K machines). The code immediately following uses an internal
assembler routine to calculate the address of the DOS output hook,
regardless of memory size. The contents of the DOS output hook are

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 694 of 2550

Apple II Computer Info

then moved into the new COUT routine, immediately following a JMP, and
the same COUT routine is forced into the DOS hook, along with the new
RDKEY routine. Whenever a character is output, it will first be given
to COUT; when COUT has done its work, the character is then passed to
the Videoterm's warm entry.

During the installation and patch, the warm start vector within the
assembler was modified to point to the NEW.WARM.START routine, which
re-installs COUT and RDKEY, keeping everything in sync. A RESET will
always restore this condition, no matter what the Videoterm may have
in mind!

The S-C Macro Assembler is a wonderful piece of software, and the
upgrade is a steal at $27.50. The only thing that can top it is being
able to use it with 80 columns of display!

If you find any errors in my patches, or come up with some new
features, contact me at (206) 779-9508.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 695 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:Do.Torens.Videx.txt
==

0100 ALL COMMENTS REFER TO FOLLOWING
0110 COMMANDS
0111 This file contains the new code
BLOAD AUTOSAVE&VIDEX
0112 This is a new addr table for the input translation
BLOAD JMP.OBJ
0130 Change 'ESC' to CTL P for cursor movement
$136A:90
0132 Lengthen the comment line from an 'esc'L to printer width from
ASM
$1494:4C
0134 Kill the 'auto load' from the ESC mode, it won't work
$1486:10
0140 Addr of AUTO SAVE in command table
$1678:FF 31
0150 move symbol table up to make room for new code
$101D:34
0160 Replace VTAB with GOTOXY in the EDIT command
$1B3B:31 33
$1CB5:31 33
0170 Check for 79 char/line rather than 39
$1B52:4F
0175 New line display length of 80 rather than 40
$1CA8:50
$1CAC:50
0180 New CLREOP function
$1B64:63 33
0205 Since it is not knowN if inverse exists on the target VIDEOTERM
0206 I will display a '?' for control characters in EDIT
$1B4D:A9 BF
0207 Displayed spaces from EDIT will be $A0 rather than $20.
0208 this will be set to $20 in READLINE, and $A0 in EDIT.
$1AF6:CD 33
$134B:D7 33
0210 Patch in AUTO SHIFT on second tab
$14D9:A9 33
$1521:A9 33
0220 New tabs (2nd will trigger SHIFT in col 32
$1010:0E 20 00 00 00
0222 Patch ^O overrride because of $2C trick
$1393:4C E1 33
0224 Right arrow (->) will read from buffer rather than screen
$1397:BD 00 02 EA
0230 Add warm start to setup and clear VIDEX.
$1004:8C 33
0240
0250 *** You may now BSAVE filename,A$1000,L$2400
0260 *
$1003G

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 696 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:S.AutoMan.Tgle.txt
==

 1000 *--------------------------------
 1010 * AUTO/MANUAL TOGGLE
 1020 *
 1030 * BY ROBERT F. O'BRIEN
 1040 * 14, CLONSHAUGH LAWN, DUBLIN 5.
 1050 *--------------------------------
 1060 .OR $3228
 1070 .TF AUTO/MANUAL PATCH
 1080 *--------------------------------
 1090 CH .EQ $24
 1100 SC.SLOW .EQ $11D2
 1110 SC.REENTER .EQ $135E
 1120 SC.RETURN .EQ $13C3
 1130 SC.INSTALL .EQ $152A
 1140 SC.LIST .EQ $183F
 1150 MON.BELL .EQ $FF3A
 1160 *--------------------------------
 1170 AUTO.MANUAL.COMMAND
 1180 CMP #$81 CTRL-A?
 1190 BEQ AUTO.TOGGLE
 1200 CMP #$8C CTRL-L?
 1210 BEQ LIST
 1220 CMP #$93 CTRL-S?
 1230 BEQ SLOW.LIST
 1240 *
 1250 BACK JSR MON.BELL
 1260 JMP SC.REENTER BACK TO ASSEMBLER
 1270 *--------------------------------
 1280 AUTO.TOGGLE
 1290 LDA CH
 1300 CMP #1 BEGINNING OF LINE?
 1310 BEQ AUTO.CMD
 1320 CMP #6 AFTER LINE NUMBER?
 1330 BEQ MANUAL.CMD
 1340 BNE BACK
 1350 *--------------------------------
 1360 AUTO.CMD
 1370 LDX #0
 1380 .1 LDA AUTO.TEXT,X GET CHARACTER
 1390 JSR SC.INSTALL PROCESS CHAR
 1400 CPX #5
 1410 BCC .1
 1420 JMP SC.REENTER
 1430 AUTO.TEXT .AS -/AUTO /
 1440 *--------------------------------
 1450 MANUAL.CMD
 1460 LDX #0
 1470 STX CH GO TO START OF LINE
 1480 .1 LDA MANUAL.TEXT,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 697 of 2550

Apple II Computer Info

 1490 JSR SC.INSTALL
 1500 CPX #6
 1510 BCC .1
 1520 JMP SC.RETURN
 1530 MANUAL.TEXT .AS -/MANUAL/
 1540 *--------------------------------
 1550 LIST LDA CH
 1560 CMP #1 BEGINNING OF LINE?
 1570 BNE BACK
 1580 JSR SC.LIST
 1590 JMP SC.RETURN
 1600 *--------------------------------
 1610 SLOW.LIST
 1620 LDA CH
 1630 CMP #1
 1640 BNE BACK
 1650 JSR SC.SLOW SET SLOW MODE
 1660 JSR SC.LIST
 1670 JMP SC.RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 698 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:S.Free.Sectors.txt
==

 1000 *SAVE S.FREE SECTORS
 1010 *--------------------------------
 1020 * FREE SECTORS PATCH FOR DOS 3.3
 1030 *--------------------------------
 1040 LOBYTE .EQ $D3
 1050 HIBYTE .EQ $D4
 1060 *--------------------------------
 1070 SECTOR.MAP .EQ $B3F2
 1080 LANG.ID .EQ $E001 LANGUAGE ID
 1090 PRT.INT .EQ $E51B INTEGER BASIC PRINT ROUTINE
 1100 PRT.FP .EQ $ED24 APPLESOFT PRINT ROUTINE
 1110 PRT.SC .EQ $DE00 S-C ASSEMBLER PRINT ROUTINE
 1120 *--------------------------------
 1130 .OR $BA69
 1140 .TF FREE.SECTORS.1
 1150 *--------------------------------
 1160 FREE.SECTOR.PATCH
 1170 LDY #$C8
 1180 .1 LDA SECTOR.MAP,Y
 1190 BEQ .4 NO FREE SECTORS IN THIS BYTE
 1200 .2 ASL SHIFT INTO CARRY
 1210 BCC .2 SECTOR IN USE
 1220 PHA SECTOR FREE
 1230 INC LOBYTE COUNT IT
 1240 BNE .3
 1250 INC HIBYTE
 1260 .3 PLA SECTOR MAP BYTE AGAIN
 1270 BNE .2 IF ANY LEFT
 1280 .4 DEY NEXT BYTE OF SECTOR MAP
 1290 BNE .1
 1300 LDX LOBYTE VALUE IN X AND A
 1310 LDA HIBYTE
 1320 LDY LANG.ID CHECK WHICH LANGUAGE
 1330 BMI SCASM $94: S-C ASSEMBLER
 1340 BEQ INTEGR $00: INTEGER BASIC
 1350 JMP PRT.FP $28: APPLESOFT
 1360 INTEGR JMP PRT.INT
 1370 SCASM JMP PRT.SC
 1380 *--------------------------------
 1390 .OR $ADB9
 1400 .TF FREE.SECTORS.2
 1410 *--------------------------------
 1420 NOP FILLER
 1430 LDA #0 ZERO THE COUNT
 1440 STA LOBYTE
 1450 STA HIBYTE
 1460 JSR FREE.SECTOR.PATCH
 1470 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 699 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:S.SearchPerform.txt
==

 1000 *SAVE S.SEARCH AND PERFORM
 1010 *--------------------------------
 1020 .MA JTBL
 1030 .DA #$]1,]2-1
 1040 .EM
 1050 *--------------------------------
 1060 SEARCH.AND.PERFORM.NEXT
 1070 INY POINT TO NEXT ENTRY
 1080 INY
 1090 INY
 1100 SEARCH.AND.PERFORM
 1110 LDA T.BASE,Y GET VALUE FROM TABLE
 1120 BEQ .1 NOT IN THE TABLE
 1130 CMP CURRENT.CHAR
 1140 BNE SEARCH.AND.PERFORM.NEXT
 1150 .1 LDA T.BASE+2,Y LOW-BYTE OF BRANCH
 1160 PHA
 1170 LDA T.BASE+1,Y HIGH-BYTE OF BRANCH
 1180 PHA
 1190 LDY #0 (SINCE MOST BRANCHES WANT Y=0)
 1200 RTS DO THE BRANCH!
 1210 *--------------------------------
 1220 T.BASE
 1230 T.ESC0
 1240 >JTBL 83,TOGGLE.CASE.LOCK
 1250 >JTBL 89,TAB.INSERT
 1260 >JTBL 8D,INSERT.CHAR.INTO.TEXT
 1270 >JTBL 8F,OVERRIDE
 1280 >JTBL 94,TAB.REPLACE
 1290 >JTBL 9B,ESC0.ESC
 1300 >JTBL 00,SC.BELL
 1310 *--------------------------------
 1320 T.ESC2
 1330 >JTBL 83,SET.CASE.TOGGLE
 1340 >JTBL 89,TAB.SKIP
 1350 >JTBL 94,TAB.SKIP
 1360 >JTBL 9B,ESC2.ESC
 1370 >JTBL C9,SCAN.UP.12
 1380 >JTBL CA,SCAN.LEFT.6
 1390 >JTBL CB,SCAN.RIGHT.6
 1400 >JTBL CD,SCAN.DOWN.12
 1410 >JTBL E9,SCAN.UP
 1420 >JTBL EA,SCAN.LEFT
 1430 >JTBL EB,SCAN.RIGHT
 1440 >JTBL ED,SCAN.DOWN
 1450 >JTBL 00,ESC2.END
 1460 *--------------------------------
 1470 T.BOTH
 1480 >JTBL 81,AUXILIARY.MENU

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 700 of 2550

Apple II Computer Info

 1490 >JTBL 82,SCAN.BEGIN
 1500 >JTBL 84,DELETE.FORWARD.TO.X
 1510 >JTBL 85,SCAN.END
 1520 >JTBL 86,FLIP.CHARS
 1530 >JTBL 88,PUSH.CHAR.ON.KEYSTACK
 1540 >JTBL 90,TOGGLE.CLICKER
 1550 >JTBL 91,MAIN.MENU
 1560 >JTBL 93,SEARCH.AND.REPLACE
 1570 >JTBL 95,PULL.CHAR.OFF.KEYSTACK
 1580 >JTBL 97,DELETE.WORD
 1590 >JTBL 98,DELETE.LINE
 1600 >JTBL 9D,TOGGLE.CR.SEE
 1610 >JTBL 00,PROCESS.CHAR.1
 1620 *--------------------------------
 1630 T.MAIN
 1640 >JTBL C4,MAIN.DOS
 1650 >JTBL C5,MAIN.EDIT
 1660 >JTBL CC,MAIN.LOAD
 1670 >JTBL CE,MAIN.NEW
 1680 >JTBL D0,MAIN.PRINT
 1690 >JTBL D1,MAIN.QUIT
 1700 >JTBL D3,MAIN.SAVE
 1710 >JTBL 00,MON.BELL
 1720 *--------------------------------
 1730 T.AUX
 1740 >JTBL C3,COPY.BLOCK
 1750 >JTBL C4,DELETE.BLOCK
 1760 >JTBL C6,DISPLAY.FREE
 1770 >JTBL C9,INSERT.FILE
 1780 >JTBL CD,MOVE.BLOCK
 1790 >JTBL D3,SAVE.SEGMENT
 1800 >JTBL D4,TAB.SET
 1810 >JTBL 00,SC.BELL
 1820 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 701 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:S.UL.Cursor.txt
==

 1000 *SAVE S.UNDERLINE CURSOR
 1010 *--------------------------------
 1020 * BLINKING UNDERLINE CURSOR
 1030 * WRITTEN BY BILL LINN
 1040 *--------------------------------
 1050 .OR $300
 1060 *--------------------------------
 1070 MON.CH .EQ $24
 1080 MON.BASL .EQ $28
 1090 MON.KSWL .EQ $38
 1100 MON.RNDL .EQ $4E
 1110 *--------------------------------
 1120 DOS.REHOOK .EQ $3EA
 1130 *--------------------------------
 1140 MON.BELL2 .EQ $FBE4
 1150 MON.WAIT .EQ $FCA8
 1160 MON.KEYIN3 .EQ $FD26
 1170 *--------------------------------
 1180 BLANK .EQ $A0
 1190 UNDERLINE .EQ $DF
 1200 *--------------------------------
 1210 KEYBOARD .EQ $C000
 1220 *--------------------------------
 1230 HOOK LDA #KEYIN SET INPUT HOOK
 1240 STA MON.KSWL
 1250 LDA /KEYIN
 1260 STA MON.KSWL+1
 1270 JMP DOS.REHOOK
 1280 *--------------------------------
 1290 KEYIN PHA SAVE SCREEN CHAR
 1300 STX MON.RNDL SAVE X-REG
 1310 CMP #UNDERLINE IF CHAR ON SCREEN IS
 1320 BNE .1 AN UNDERLINE
 1330 LDA #BLANK THEN ALTERNATE WITH BLANK
 1340 .1 PHA SAVE CHAR TO ALTERNATE
 1350 *--------------------------------
 1360 * ALTERNATE UNTIL KEY IS PRESSED
 1370 *--------------------------------
 1380 .2 LDA #UNDERLINE
 1390 LDY MON.CH
 1400 CMP (MON.BASL),Y
 1410 BNE .3
 1420 PLA GET ALTERNATE CHAR
 1430 PHA MAINTAIN ON STACK ALSO
 1440 .3 STA (MON.BASL),Y
 1450 LDY #80 80*256 BETWEEN BLINKS
 1460 .4 LDA KEYBOARD KEY PRESSED?
 1470 BMI .5 YES, CLICK AND RETURN
 1480 DEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 702 of 2550

Apple II Computer Info

 1490 BNE .4
 1500 DEY
 1510 BNE .4
 1520 BEQ .2 ...ALWAYS
 1530 *--------------------------------
 1540 * A KEY HAS BEEN PRESSED
 1550 *--------------------------------
 1560 .5 PLA POP STACK ONCE
 1570 LDY #10 MAKE A "CLICK"
 1580 JSR MON.BELL2
 1590 LDY MON.CH
 1600 LDX MON.RNDL RESTORE X-REG
 1610 PLA RESTORE ORIGINAL SCREEN CHAR
 1620 JMP MON.KEYIN3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 703 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:S.Videx.RtArrow.txt
==

 1000 *--------------------------------
 1010 * MODIFIED BY MIKE LAUMER
 1020 * TO INCLUDE RIGHT ARROW
 1030 *--------------------------------
 1040 * Patches for S-C Macro Assembler V1.0
 1050 * for Videx Videoterm Card
 1060 *
 1070 * Date: 7/10/82
 1080 *
 1090 * Don Taylor
 1100 * infoTool corporation
 1110 * Drawer 809, Poulsbo, WA 98370
 1120 *
 1130 * To assemble this file:
 1140 *
 1150 * 1. Set SLOTNUM to slot number of videx card
 1160 *
 1170 * 2. Set LCVERSION flag for
 1180 * .EQ 1 for Language card version ($D000)
 1190 * .EQ 0 for Standard version ($1000)
 1200 *
 1210 * 3. Assemble as usual
 1220 *
 1230 * 4. Use VAL LENGTH to get length in hex
 1240 *
 1250 * 5. BSAVE SCM80, A$4000, L$LENGTH
 1260 *
 1270 *--------------------------------
 1280 *
 1290 SLOTNUM .EQ 3 VIDEX slot
 1300 LCVERSION .EQ 1 SCM80 version
 1310 PATCH.AREA .EQ $3200
 1320 LC.PATCH.AREA .EQ $F400
 1330 *
 1340 *--------------------------------
 1350 .DO LCVERSION
 1360 SCM.BASE .EQ $D000
 1370 .ELSE
 1380 SCM.BASE .EQ $1000
 1390 .FIN
 1400 *--------------------------------
 1410 * Program Constants
 1420 *--------------------------------
 1430 MON.CSW .EQ $36
 1440 MON.KSW .EQ $38
 1450 MON.A1L .EQ $3C
 1460 MON.A2L .EQ $3E
 1470 MON.A4L .EQ $42
 1480 SCM.POINTER .EQ $58

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 704 of 2550

Apple II Computer Info

 1490 SCM.CURR.CHAR .EQ $61
 1500 SCM.ED.BEGLIN .EQ $80
 1510 NEW.CH .EQ $98
 1520 NEW.CV .EQ $99
 1530 SCM.WBUF .EQ $200
 1540 DOS.COLD.ENTRY .EQ $3D3
 1550 DOS.IOHOOK .EQ $3EA
 1560 FLAGS .EQ $7F8 VIDEX Flag Byte
 1570 KEYBOARD .EQ $C000
 1580 KEYSTROBE .EQ $C010
 1590 SCM.WARM.ENTRY .EQ SCM.BASE+$003
 1600 SCM.SHIFT.FLAG .EQ SCM.BASE+$016
 1610 SCM.SYM.TABLE .EQ SCM.BASE+$01D
 1620 SCM.TEST.DOS .EQ SCM.BASE+$31E
 1630 SCM.RDL.EOL .EQ SCM.BASE+$35E
 1640 SCM.RDL3 .EQ SCM.BASE+$3C3
 1650 SCM.ESC.TABLE .EQ SCM.BASE+$467
 1660 SCM.ESC.L .EQ SCM.BASE+$483
 1670 SCM.RDKEY.NO.CASE .EQ SCM.BASE+$520
 1680 SCM.RDKEY.WITH.CASE .EQ SCM.BASE+$4CA
 1690 SCM.SPC .EQ SCM.BASE+$D92
 1700 MON.MOVE .EQ $FE2C
 1710 MON.OUTPORT .EQ $FE95
 1720 MON.COUT .EQ $FDED
 1730 MON.RTS .EQ $FF58
 1740 *--------------------------------
 1750 .OR $4000
 1760 START1 .EQ *
 1770 *--------------------------------
 1780 MOVE.CODE
 1790 LDA #HERE
 1800 STA MON.A1L
 1810 LDA /HERE
 1820 STA MON.A1L+1
 1830 LDA #THERE
 1840 STA MON.A2L
 1850 LDA /THERE
 1860 STA MON.A2L+1
 1870 *--------------------------------
 1880 .DO LCVERSION
 1890 BIT $C083 Unprotect language card RAM
 1900 BIT $C083
 1910 LDA #LC.PATCH.AREA
 1920 STA MON.A4L
 1930 LDA /LC.PATCH.AREA
 1940 STA MON.A4L+1
 1950 .ELSE
 1960 LDA #$33 Modify symbol table address
 1970 STA SCM.SYM.TABLE
 1980 LDA #PATCH.AREA
 1990 STA MON.A4L
 2000 LDA /PATCH.AREA
 2010 STA MON.A4L+1
 2020 .FIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 705 of 2550

Apple II Computer Info

 2030 *--------------------------------
 2040 LDY #0
 2050 JSR MON.MOVE
 2060 INSTALL.PATCHES
 2070 LDA #$EA "NOP-OUT" unused code:
 2080 STA SCM.BASE+$343
 2090 STA SCM.BASE+$344
 2100 STA SCM.BASE+$028
 2110 STA SCM.BASE+$029
 2120 STA SCM.BASE+$02A
 2130 LDX #9
 2140 .1 STA SCM.BASE+$298,X
 2150 DEX
 2160 BPL .1
 2170 LDX #14
 2180 .2 STA SCM.BASE+$4DE,X
 2190 DEX
 2200 BPL .2
 2210 LDX #48
 2220 .3 STA SCM.BASE+$B35,X
 2230 DEX
 2240 BPL .3
 2250 LDA #$20 Install Videx during a
 2260 STA SCM.BASE+$295 cold start
 2270 LDA #INSTALL.VECTORS
 2280 STA SCM.BASE+$296
 2290 LDA /INSTALL.VECTORS
 2300 STA SCM.BASE+$297
 2310 LDA #HOME Patch clear screen routine
 2320 STA SCM.BASE+$2A6
 2330 LDA /HOME
 2340 STA SCM.BASE+$2A7
 2350 LDA #NEW.WARM.ENTRY Set up warm start so
 2360 STA SCM.BASE+$309 VIDEX card stays in..
 2370 LDA /NEW.WARM.ENTRY
 2380 STA SCM.BASE+$30A
 2390 LDA #$10 Patch Escape Routine
 2400 STA SCM.BASE+$486
 2410 LDY #27
 2420 .4 LDA NEW.ESC.TABLE,Y
 2430 STA SCM.ESC.TABLE,Y
 2440 DEY
 2450 BPL .4
 2460 LDA #$18 Modify MON.RDKEY jump addr
 2470 STA SCM.BASE+$4D9
 2480 LDA #$4C Patch jump to new DISP LINE
 2490 STA SCM.BASE+$B32
 2500 LDA #NEW.E.DISP.LINE
 2510 STA SCM.BASE+$B33
 2520 LDA /NEW.E.DISP.LINE
 2530 STA SCM.BASE+$B34
 2540 LDA #80 Patch E.INPUT Routine
 2550 STA SCM.BASE+$CA8
 2560 STA SCM.BASE+$CAC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 706 of 2550

Apple II Computer Info

 2570 LDA #NEW.CH
 2580 STA SCM.BASE+$CB1
 2590 LDA #NEW.CV
 2600 STA SCM.BASE+$CB3
 2610 LDA #VTAB
 2620 STA SCM.BASE+$CB5
 2630 LDA /VTAB
 2640 STA SCM.BASE+$CB6
 2650 LDA #SLOTNUM Install VIDEX in hook
 2660 JSR MON.OUTPORT
 2670 JSR DOS.IOHOOK
 2680 LDA #$8D Send CR to get VIDEX warm
 2690 JSR MON.COUT entry point in DOS hook,
 2700 LDY #8 then find warm entry address
 2710 JSR SCM.TEST.DOS
 2720 LDY #1
 2730 LDA (SCM.POINTER),Y
 2740 STA FAKE.COUT+1 Save warm entry as normal
 2750 INY VIDEX COUT entry
 2760 LDA (SCM.POINTER),Y
 2770 STA FAKE.COUT+2
 2780 LDA #COUT Hook in new I/O routines
 2790 STA MON.CSW
 2800 LDA /COUT
 2810 STA MON.CSW+1
 2820 LDA #RDKEY
 2830 STA MON.KSW
 2840 LDA /RDKEY
 2850 STA MON.KSW+1
 2860 JSR DOS.IOHOOK
 2870 *--------------------------------
 2880 .DO LCVERSION
 2890 BIT $C080 Write protect RAM
 2900 JMP DOS.COLD.ENTRY
 2910 .ELSE
 2920 RTS
 2930 .FIN
 2940 *--------------------------------
 2950 *
 2960 NEW.ESC.TABLE
 2970 .DA HOME-1
 2980 .DA ADVNCE-1
 2990 .DA BS-1
 3000 .DA LF-1
 3010 .DA UP-1
 3020 .DA CLREOL-1
 3030 .DA CLREOP-1
 3040 .DA MON.RTS-1
 3050 .DA MON.RTS-1
 3060 .DA UP-1
 3070 .DA BS-1
 3080 .DA ADVNCE-1
 3090 .DA SCM.ESC.L-1
 3100 .DA LF-1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 707 of 2550

Apple II Computer Info

 3110 *--------------------------------
 3120 * New routines to bind into the
 3130 * S-C Macro assembler
 3140 *--------------------------------
 3150 LENGTH1 .EQ *-START1
 3160 HERE .EQ *
 3170 .DO LCVERSION
 3180 .OR $F400
 3190 .ELSE
 3200 .OR $3200
 3210 .FIN
 3220 .TA HERE
 3230 START2 .EQ *
 3240 *--------------------------------
 3250 NEW.WARM.ENTRY
 3260 JSR INSTALL.VECTORS
 3270 JMP SCM.WARM.ENTRY
 3280 *
 3290 INSTALL.VECTORS
 3300 LDA #COUT
 3310 STA MON.CSW
 3320 LDA /COUT
 3330 STA MON.CSW+1
 3340 LDA #RDKEY
 3350 STA MON.KSW
 3360 LDA /RDKEY
 3370 STA MON.KSW+1
 3380 JSR DOS.IOHOOK
 3390 RTS
 3400 *
 3410 NEW.E.DISP.LINE
 3420 LDA SCM.ED.BEGLIN
 3430 STA NEW.CV
 3440 LDA #0
 3450 STA NEW.CH
 3460 JSR VTAB
 3470 JSR SCM.SPC
 3480 INC NEW.CH
 3490 INC NEW.CH
 3500 LDX #0
 3510 .1 LDA SCM.WBUF,X
 3520 BEQ .5
 3530 ORA #$80
 3540 CMP #$A0 Control char?
 3550 BCS .2 No..
 3560 AND #$7F Flag it as inverse
 3570 .2 LDY NEW.CH
 3580 CPY #80 End of screen line?
 3590 BCC .4 No..
 3600 LDY #0 Set CH to beg of line
 3610 STY NEW.CH
 3620 LDY NEW.CV
 3630 CPY #23
 3640 BCS .3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 708 of 2550

Apple II Computer Info

 3650 INC NEW.CV No..
 3660 BNE .4 ..Always
 3670 .3 DEC SCM.ED.BEGLIN
 3680 .4 JSR MON.COUT
 3690 INC NEW.CH
 3700 INX
 3710 BNE .1 ..Always
 3720 .5 JMP CLREOP
 3730 *
 3740 NEW.E.ZAP
 3750 LDA #0 EOL mark
 3760 STA SCM.WBUF,X
 3770 JSR CLREOL
 3780 RTS
 3790 *--------------------------------
 3800 * Monitor Replacement Routines
 3810 *--------------------------------
 3820 *
 3830 HOME LDA #$8C Send Form Feed Char
 3840 JMP MON.COUT
 3850 *
 3860 CLREOL LDA #$9D Send CLEAREOL char
 3870 JMP MON.COUT
 3880 *
 3890 CLREOP LDA #$8B Send CLEAREOS char
 3900 JMP MON.COUT
 3910 *
 3920 ADVNCE LDA #$9C Non-destructive space
 3930 JMP MON.COUT
 3940 *
 3950 BS LDA #$88 Backspace
 3960 JMP MON.COUT
 3970 *
 3980 LF LDA #$8A Linefeed
 3990 JMP MON.COUT
 4000 *
 4010 UP LDA #$9F Reverse Linefeed
 4020 JMP MON.COUT
 4030 *--------------------------------
 4040 V.BASEL .EQ $478+SLOTNUM
 4050 V.BASEH .EQ $4F8+SLOTNUM
 4060 V.CHORZ .EQ $578+SLOTNUM
 4070 V.XSAV1 .EQ $402
 4080 V.OLDCHAR .EQ $678
 4090 *
 4100 V.DEV0 .EQ SLOTNUM*16+$C080
 4110 V.DISP0 .EQ $CC00
 4120 V.DISP1 .EQ $CD00
 4130 *--------------------------------
 4140 *
 4150 RDKEY LDA KEYBOARD
 4160 BPL RDKEY
 4170 STA KEYSTROBE
 4180 ORA #$80

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 709 of 2550

Apple II Computer Info

 4190 CMP #$81 Shift lock?
 4200 BNE .1
 4210 .DO LCVERSION
 4220 JSR UNPROTECT.LC.RAM
 4230 .FIN
 4240 LSR SCM.SHIFT.FLAG
 4250 BPL .2 Return with errant key
 4260 .1 CMP #$9A Shift unlock?
 4270 BNE CTRLU No, return with key
 4280 .DO LCVERSION
 4290 JSR UNPROTECT.LC.RAM
 4300 .FIN
 4310 SEC
 4320 ROR SCM.SHIFT.FLAG
 4330 .2 LDA #$96 Return with errant key
 4340 .DO LCVERSION
 4350 BIT $C080 Reprotect LC RAM
 4360 RTS
 4370 *
 4380 UNPROTECT.LC.RAM
 4390 BIT $C083 Enable Bank 2
 4400 BIT $C083
 4410 .FIN
 4420 RTS
 4430 *
 4440 CTRLU CMP #$95 CTRL-U COPY KEY
 4450 BNE .3
 4460 STX $400
 4470 STY $401
 4480 LDA V.CHORZ
 4490 JSR PSNCALC
 4500 BCS .1
 4510 LDA V.DISP0,X
 4520 BCC .2
 4530 .1 LDA V.DISP1,X
 4540 .2 ORA #$80
 4550 STA V.OLDCHAR
 4560 LDX $400
 4570 LDY $401
 4580 .3 RTS
 4590 *
 4600 PSNCALC CLC
 4610 ADC V.BASEL
 4620 STA V.XSAV1
 4630 LDA #0
 4640 ADC V.BASEH
 4650 LSR
 4660 PHP
 4670 AND #3
 4680 ASL
 4690 ASL
 4700 TAY
 4710 LDA V.DEV0,Y
 4720 PLP

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 710 of 2550

Apple II Computer Info

 4730 LDX V.XSAV1
 4740 RTS
 4750 *--------------------------------
 4760 *
 4770 VTAB LDA #$9E Send GOTOXY char
 4780 JSR MON.COUT
 4790 CLC Create ASCII x-posn
 4800 LDA NEW.CH
 4810 ADC #160
 4820 JSR MON.COUT
 4830 CLC Create ASCII y-posn
 4840 LDA NEW.CV
 4850 ADC #160
 4860 JMP MON.COUT
 4870 *
 4880 COUT
 4890 PHA Test for inverse
 4900 PLA
 4910 BMI FAKE.COUT Not inverse: Take as is
 4920 ORA #$80 Restore to "Normal" Apple ASCII
 4930 CMP #$A0 Control char?
 4940 BCS .1 No..
 4950 ORA #$40 Yes: Make it printable
 4960 .1 TAY Save char
 4970 LDA FLAGS+SLOTNUM
 4980 PHA Save flag byte
 4990 ORA #1 Switch in alt char set
 5000 STA FLAGS+SLOTNUM
 5010 TYA Get char back
 5020 JSR FAKE.COUT
 5030 PLA Restore flag byte
 5040 STA FLAGS+SLOTNUM
 5050 RTS
 5060 FAKE.COUT
 5070 JMP $FFFF Address will be fixed later..
 5080 *--------------------------------
 5090 LENGTH2 .EQ *-START2
 5100 THERE .EQ HERE+LENGTH2-1
 5110 LENGTH .EQ LENGTH1+LENGTH2
 5120 *--------------------------------
 5130 .EN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 711 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:S.Videx.Taylor.txt
==

 1000 .LIST OFF
 1010 *--------------------------------
 1020 * SCM80
 1030 * Patches for S-C Macro Assembler V1.0
 1040 * for Videx Videoterm Card
 1050 *
 1060 * Date: 7/10/82
 1070 *
 1080 * Don Taylor
 1090 * infoTool corporation
 1100 * Drawer 809, Poulsbo, WA 98370
 1110 *
 1120 * To assemble this file:
 1130 *
 1140 * 1. Set SLOTNUM to slot number of videx card
 1150 *
 1160 * 2. Set LCVERSION flag for
 1170 * .EQ 1 for Language card version ($D000)
 1180 * .EQ 0 for Standard version ($1000)
 1190 *
 1200 * 3. Assemble as usual
 1210 *
 1220 * 4. Use VAL LENGTH to get length in hex
 1230 *
 1240 * 5. BSAVE SCM80, A$4000, L$LENGTH
 1250 *
 1260 *--------------------------------
 1270 *
 1280 SLOTNUM .EQ 3 VIDEX slot
 1290 LCVERSION .EQ 1 SCM80 version
 1300 PATCH.AREA .EQ $3200
 1310 LC.PATCH.AREA .EQ $F400
 1320 *
 1330 *--------------------------------
 1340 .DO LCVERSION
 1350 SCM.BASE .EQ $D000
 1360 .ELSE
 1370 SCM.BASE .EQ $1000
 1380 .FIN
 1390 *--------------------------------
 1400 * Program Constants
 1410 *--------------------------------
 1420 MON.CSW .EQ $36
 1430 MON.KSW .EQ $38
 1440 MON.A1L .EQ $3C
 1450 MON.A2L .EQ $3E
 1460 MON.A4L .EQ $42
 1470 SCM.POINTER .EQ $58
 1480 SCM.CURR.CHAR .EQ $61

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 712 of 2550

Apple II Computer Info

 1490 SCM.ED.BEGLIN .EQ $80
 1500 NEW.CH .EQ $98
 1510 NEW.CV .EQ $99
 1520 SCM.WBUF .EQ $200
 1530 DOS.COLD.ENTRY .EQ $3D3
 1540 DOS.IOHOOK .EQ $3EA
 1550 FLAGS .EQ $7F8 VIDEX Flag Byte
 1560 KEYBOARD .EQ $C000
 1570 KEYSTROBE .EQ $C010
 1580 SCM.WARM.ENTRY .EQ SCM.BASE+$003
 1590 SCM.SHIFT.FLAG .EQ SCM.BASE+$016
 1600 SCM.SYM.TABLE .EQ SCM.BASE+$01D
 1610 SCM.TEST.DOS .EQ SCM.BASE+$31E
 1620 SCM.RDL.EOL .EQ SCM.BASE+$35E
 1630 SCM.RDL3 .EQ SCM.BASE+$3C3
 1640 SCM.ESC.TABLE .EQ SCM.BASE+$467
 1650 SCM.ESC.L .EQ SCM.BASE+$483
 1660 SCM.RDKEY.NO.CASE .EQ SCM.BASE+$520
 1670 SCM.RDKEY.WITH.CASE .EQ SCM.BASE+$4CA
 1680 SCM.SPC .EQ SCM.BASE+$D92
 1690 MON.MOVE .EQ $FE2C
 1700 MON.OUTPORT .EQ $FE95
 1710 MON.COUT .EQ $FDED
 1720 MON.RTS .EQ $FF58
 1730 *--------------------------------
 1740 .OR $4000
 1750 START1 .EQ *
 1760 *--------------------------------
 1770 MOVE.CODE
 1780 LDA #HERE
 1790 STA MON.A1L
 1800 LDA /HERE
 1810 STA MON.A1L+1
 1820 LDA #THERE
 1830 STA MON.A2L
 1840 LDA /THERE
 1850 STA MON.A2L+1
 1860 *--------------------------------
 1870 .DO LCVERSION
 1880 BIT $C083 Unprotect language card RAM
 1890 BIT $C083
 1900 LDA #LC.PATCH.AREA
 1910 STA MON.A4L
 1920 LDA /LC.PATCH.AREA
 1930 STA MON.A4L+1
 1940 .ELSE
 1950 LDA #$33 Modify symbol table address
 1960 STA SCM.SYM.TABLE
 1970 LDA #PATCH.AREA
 1980 STA MON.A4L
 1990 LDA /PATCH.AREA
 2000 STA MON.A4L+1
 2010 .FIN
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 713 of 2550

Apple II Computer Info

 2030 LDY #0
 2040 JSR MON.MOVE
 2050 INSTALL.PATCHES
 2060 LDA #$EA "NOP-OUT" unused code:
 2070 STA SCM.BASE+$343
 2080 STA SCM.BASE+$344
 2090 STA SCM.BASE+$028
 2100 STA SCM.BASE+$029
 2110 STA SCM.BASE+$02A
 2120 LDX #9
 2130 .1 STA SCM.BASE+$298,X
 2140 DEX
 2150 BPL .1
 2160 LDX #14
 2170 .2 STA SCM.BASE+$4DE,X
 2180 DEX
 2190 BPL .2
 2200 LDX #48
 2210 .3 STA SCM.BASE+$B35,X
 2220 DEX
 2230 BPL .3
 2240 LDA #$20 Install Videx during a
 2250 STA SCM.BASE+$295 cold start
 2260 LDA #INSTALL.VECTORS
 2270 STA SCM.BASE+$296
 2280 LDA /INSTALL.VECTORS
 2290 STA SCM.BASE+$297
 2300 LDA #HOME Patch clear screen routine
 2310 STA SCM.BASE+$2A6
 2320 LDA /HOME
 2330 STA SCM.BASE+$2A7
 2340 LDA #NEW.WARM.ENTRY Set up warm start so
 2350 STA SCM.BASE+$309 VIDEX card stays in..
 2360 LDA /NEW.WARM.ENTRY
 2370 STA SCM.BASE+$30A
 2380 LDA #$10 Patch Escape Routine
 2390 STA SCM.BASE+$486
 2400 LDY #27
 2410 .4 LDA NEW.ESC.TABLE,Y
 2420 STA SCM.ESC.TABLE,Y
 2430 DEY
 2440 BPL .4
 2450 LDA #$18 Modify MON.RDKEY jump addr
 2460 STA SCM.BASE+$4D9
 2470 LDA #$4C Patch jump to new DISP LINE
 2480 STA SCM.BASE+$B32
 2490 LDA #NEW.E.DISP.LINE
 2500 STA SCM.BASE+$B33
 2510 LDA /NEW.E.DISP.LINE
 2520 STA SCM.BASE+$B34
 2530 LDA #80 Patch E.INPUT Routine
 2540 STA SCM.BASE+$CA8
 2550 STA SCM.BASE+$CAC
 2560 LDA #NEW.CH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 714 of 2550

Apple II Computer Info

 2570 STA SCM.BASE+$CB1
 2580 LDA #NEW.CV
 2590 STA SCM.BASE+$CB3
 2600 LDA #VTAB
 2610 STA SCM.BASE+$CB5
 2620 LDA /VTAB
 2630 STA SCM.BASE+$CB6
 2640 LDA #SLOTNUM Install VIDEX in hook
 2650 JSR MON.OUTPORT
 2660 JSR DOS.IOHOOK
 2670 LDA #$8D Send CR to get VIDEX warm
 2680 JSR MON.COUT entry point in DOS hook,
 2690 LDY #8 then find warm entry address
 2700 JSR SCM.TEST.DOS
 2710 LDY #1
 2720 LDA (SCM.POINTER),Y
 2730 STA FAKE.COUT+1 Save warm entry as normal
 2740 INY VIDEX COUT entry
 2750 LDA (SCM.POINTER),Y
 2760 STA FAKE.COUT+2
 2770 LDA #COUT Hook in new I/O routines
 2780 STA MON.CSW
 2790 LDA /COUT
 2800 STA MON.CSW+1
 2810 LDA #RDKEY
 2820 STA MON.KSW
 2830 LDA /RDKEY
 2840 STA MON.KSW+1
 2850 JSR DOS.IOHOOK
 2860 *--------------------------------
 2870 .DO LCVERSION
 2880 BIT $C080 Write protect RAM
 2890 JMP DOS.COLD.ENTRY
 2900 .ELSE
 2910 RTS
 2920 .FIN
 2930 *--------------------------------
 2940 *
 2950 NEW.ESC.TABLE
 2960 .DA HOME-1
 2970 .DA ADVNCE-1
 2980 .DA BS-1
 2990 .DA LF-1
 3000 .DA UP-1
 3010 .DA CLREOL-1
 3020 .DA CLREOP-1
 3030 .DA MON.RTS-1
 3040 .DA MON.RTS-1
 3050 .DA UP-1
 3060 .DA BS-1
 3070 .DA ADVNCE-1
 3080 .DA SCM.ESC.L-1
 3090 .DA LF-1
 3100 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 715 of 2550

Apple II Computer Info

 3110 * New routines to bind into the
 3120 * S-C Macro assembler
 3130 *--------------------------------
 3140 LENGTH1 .EQ *-START1
 3150 HERE .EQ *
 3160 .DO LCVERSION
 3170 .OR $F400
 3180 .ELSE
 3190 .OR $3200
 3200 .FIN
 3210 .TA HERE
 3220 START2 .EQ *
 3230 *--------------------------------
 3240 NEW.WARM.ENTRY
 3250 JSR INSTALL.VECTORS
 3260 JMP SCM.WARM.ENTRY
 3270 *
 3280 INSTALL.VECTORS
 3290 LDA #COUT
 3300 STA MON.CSW
 3310 LDA /COUT
 3320 STA MON.CSW+1
 3330 LDA #RDKEY
 3340 STA MON.KSW
 3350 LDA /RDKEY
 3360 STA MON.KSW+1
 3370 JSR DOS.IOHOOK
 3380 RTS
 3390 *
 3400 NEW.E.DISP.LINE
 3410 LDA SCM.ED.BEGLIN
 3420 STA NEW.CV
 3430 LDA #0
 3440 STA NEW.CH
 3450 JSR VTAB
 3460 JSR SCM.SPC
 3470 INC NEW.CH
 3480 INC NEW.CH
 3490 LDX #0
 3500 .1 LDA SCM.WBUF,X
 3510 BEQ .5
 3520 ORA #$80
 3530 CMP #$A0 Control char?
 3540 BCS .2 No..
 3550 AND #$7F Flag it as inverse
 3560 .2 LDY NEW.CH
 3570 CPY #80 End of screen line?
 3580 BCC .4 No..
 3590 LDY #0 Set CH to beg of line
 3600 STY NEW.CH
 3610 LDY NEW.CV
 3620 CPY #23
 3630 BCS .3
 3640 INC NEW.CV No..

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 716 of 2550

Apple II Computer Info

 3650 BNE .4 ..Always
 3660 .3 DEC SCM.ED.BEGLIN
 3670 .4 JSR MON.COUT
 3680 INC NEW.CH
 3690 INX
 3700 BNE .1 ..Always
 3710 .5 JMP CLREOP
 3720 *
 3730 NEW.E.ZAP
 3740 LDA #0 EOL mark
 3750 STA SCM.WBUF,X
 3760 JSR CLREOL
 3770 RTS
 3780 *--------------------------------
 3790 * Monitor Replacement Routines
 3800 *--------------------------------
 3810 *
 3820 HOME LDA #$8C Send Form Feed Char
 3830 JMP MON.COUT
 3840 *
 3850 CLREOL LDA #$9D Send CLEAREOL char
 3860 JMP MON.COUT
 3870 *
 3880 CLREOP LDA #$8B Send CLEAREOS char
 3890 JMP MON.COUT
 3900 *
 3910 ADVNCE LDA #$9C Non-destructive space
 3920 JMP MON.COUT
 3930 *
 3940 BS LDA #$88 Backspace
 3950 JMP MON.COUT
 3960 *
 3970 LF LDA #$8A Linefeed
 3980 JMP MON.COUT
 3990 *
 4000 UP LDA #$9F Reverse Linefeed
 4010 JMP MON.COUT
 4020 *--------------------------------
 4030 .DO LCVERSION
 4040 RDKEY LDA KEYBOARD
 4050 BPL RDKEY
 4060 STA KEYSTROBE
 4070 ORA #$80
 4080 CMP #$81 Shift lock?
 4090 BNE .1
 4100 JSR UNPROTECT.LC.RAM
 4110 LSR SCM.SHIFT.FLAG
 4120 BPL .2 Return with errant key
 4130 .1 CMP #$9A Shift unlock?
 4140 BNE .3 No, return with key
 4150 JSR UNPROTECT.LC.RAM
 4160 SEC
 4170 ROR SCM.SHIFT.FLAG
 4180 .2 BIT $C080 Reprotect LC RAM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 717 of 2550

Apple II Computer Info

 4190 LDA #$96 Return with errant key
 4200 .3 RTS
 4210 *
 4220 UNPROTECT.LC.RAM
 4230 BIT $C083 Enable Bank 2
 4240 BIT $C083
 4250 RTS
 4260 .ELSE
 4270 RDKEY LDA KEYBOARD
 4280 BPL RDKEY
 4290 STA KEYSTROBE
 4300 ORA #$80
 4310 CMP #$81 Shift lock?
 4320 BNE .1
 4330 LSR SCM.SHIFT.FLAG
 4340 BPL .2 Return with errant key
 4350 .1 CMP #$9A Shift unlock?
 4360 BNE .3 No, return with key
 4370 SEC
 4380 ROR SCM.SHIFT.FLAG
 4390 .2 LDA #$96 Return with errant key
 4400 .3 RTS
 4410 .FIN
 4420 *--------------------------------
 4430 *
 4440 VTAB LDA #$9E Send GOTOXY char
 4450 JSR MON.COUT
 4460 CLC Create ASCII x-posn
 4470 LDA NEW.CH
 4480 ADC #160
 4490 JSR MON.COUT
 4500 CLC Create ASCII y-posn
 4510 LDA NEW.CV
 4520 ADC #160
 4530 JMP MON.COUT
 4540 *
 4550 COUT
 4560 PHA Test for inverse
 4570 PLA
 4580 BMI FAKE.COUT Not inverse: Take as is
 4590 ORA #$80 Restore to "Normal" Apple ASCII
 4600 CMP #$A0 Control char?
 4610 BCS .1 No..
 4620 ORA #$40 Yes: Make it printable
 4630 .1 TAY Save char
 4640 LDA FLAGS+SLOTNUM
 4650 PHA Save flag byte
 4660 ORA #1 Switch in alt char set
 4670 STA FLAGS+SLOTNUM
 4680 TYA Get char back
 4690 JSR FAKE.COUT
 4700 PLA Restore flag byte
 4710 STA FLAGS+SLOTNUM
 4720 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 718 of 2550

Apple II Computer Info

 4730 FAKE.COUT
 4740 JMP $FFFF Address will be fixed later..
 4750 *--------------------------------
 4760 LENGTH2 .EQ *-START2
 4770 THERE .EQ HERE+LENGTH2-1
 4780 LENGTH .EQ LENGTH1+LENGTH2
 4790 *--------------------------------
 4800 .EN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 719 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:S.Videx.Toren.txt
==

 1000 .TI 60,VIDEX mods TO S-C Macro Assembler by Rip Toren
 1010 *==
 1020 * Modifications to the S-C Macro Assembler to interface *
 1030 * with the VIDEX 80 col. display board. *
 1040 * *
 1050 * BY *
 1060 * Richard P. Toren *
 1070 * July 1982 *
 1080 * *
 1090 *==
 1095
 1096
 1100 * .FN "ASAVE&VIDEX
 1101
 1102
 1110 *==
 1120 * AUTO-SAVE
 1125 *
 1130 * from AAL Apr 1982
 1140 * The mod to the version number was not implemented.
 1150 *
 1160 * I have included this since this is one of the best mods
 1165 * for the assembler
 1166 *
 1170 * My file name is in a comment:
 1180 *
 1190 * .FN "filename
 1200 *
 1210 * LENGTH OF $141
 1220 * A$3200,-$3341
 1225 *==
 1230 MON.COUT .EQ $FDED
 1240 MON.CROUT .EQ $FD8E
 1250 MON.BELL1 .EQ $FBDD
 1260 IN.BUF .EQ $200
 1270 SCR.END .EQ $4C,4D
 1280 SCR.START .EQ $CA,CB
 1290 NEXT .EQ $1D
 1300 SEARCH .EQ $1E,1F
 1310
 1320 .OR $3200
 1330 .TF AUTOSAVE&VIDEX
 1340
 1350 AUTO.SAVE
 1360 LDA SCR.START
 1370 STA SEARCH
 1380 LDA SCR.START+1
 1390 STA SEARCH+1
 1400 CLD

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 720 of 2550

Apple II Computer Info

 1410 ADDRESS.END.CMP
 1420 LDA SEARCH
 1430 CMP SCR.END
 1440 BNE .1
 1450 LDA SEARCH+1
 1460 CMP SCR.END+1
 1470 BEQ ERROR1
 1480
 1490 .1 LDY #0
 1500 LDA (SEARCH),Y
 1510 STA NEXT
 1520 LDY #3
 1530 LDA (SEARCH),Y
 1540 CMP #'*
 1550 BNE NEW.LINE MINE IN COM
 1560 .5 CMP #$C0
 1570 BNE .2
 1580 .4 INY
 1590 INY
 1600 CLV
 1610 BVC .3
 1620 .2 CMP #$80
 1630 BCS OPCHK
 1640 .3 INY
 1650 LDA (SEARCH),Y
 1660 BEQ NEW.LINE
 1670 BNE .5
 1700
 1710 NEW.LINE
 1720 CLC
 1730 LDA SEARCH
 1740 ADC NEXT
 1750 STA SEARCH
 1760 BCC ADDRESS.END.CMP
 1770 INC SEARCH+1
 1780 BNE ADDRESS.END.CMP
 1810
 1820 ERROR1
 1830 LDY #0
 1840 PRTERR LDA NO.TTL,Y
 1850 BMI ERREND
 1860 ORA #$80
 1870 JSR MON.COUT
 1880 INY
 1890 BNE PRTERR
 1900 ERREND JSR MON.COUT
 1910 JSR MON.BELL1
 1920 JSR MON.BELL1
 1930 JSR MON.CROUT
 1940 RTS
 1950 ERROR2
 1960 LDY #18
 1970 BNE PRTERR
 1980

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 721 of 2550

Apple II Computer Info

 2000
 2010 OPCHK LDX #0
 2020 .1 INY
 2030 LDA (SEARCH),Y
 2040 BEQ NEW.LINE
 2050 CMP OPS,X
 2060 BNE NEW.LINE
 2070 INX
 2080 CPX #3
 2090 BNE .1
 2120
 2130 TITLE INY
 2140 LDA (SEARCH),Y
 2150 BEQ ERROR1
 2160 CMP#'" "FILE NAME"
 2170 BNE TITLE
 2180 .1 INY
 2190 LDA (SEARCH),Y
 2200 BEQ ERROR1
 2210 CMP #$C0
 2220 BEQ COMP.CODE1
 2230 CMP #$80
 2240 BCS .1
 2250 CMP #'A
 2260 BCC ERROR2
 2270 CMP $58
 2280 BCS ERROR2
 2320
 2330 PHA
 2340 LDX #0
 2350 .2 LDA SAVE,X
 2360 JSR MON.COUT
 2370 INX
 2380 CPX #5
 2390 BNE .2
 2400 PLA
 2410 NEXT.CHAR1
 2420 ORA #$80
 2430 JSR MON.COUT
 2440 INX
 2450 NEXT.CHAR2
 2460 INY
 2470 LDA (SEARCH),Y
 2480 BEQ DOS.OP
 2490 CMP #',
 2500 BNE .1
 2510 LDA #'/
 2520 BNE NEXT.CHAR1
 2530 .1 CMP #$C0
 2540 BEQ COMP.CODE2
 2550 CMP #$80
 2560 BCC NEXT.CHAR1
 2570 INY
 2580 LDA (SEARCH),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 722 of 2550

Apple II Computer Info

 2590 BEQ DOS.OP
 2600 DEY
 2610 LDA #$20
 2620 BNE NEXT.CHAR1
 2650
 2660 COMP.CODE1
 2670 INY
 2680 LDA (SEARCH),Y
 2690 STA NEXT
 2700 INY
 2710 LDA (SEARCH),Y
 2720 CMP #'A
 2730 BCC ERROR2
 2740 CMP #$5B
 2750 BCS ERROR2
 2760 PHA
 2770 LDX #0
 2780 .1 LDA SAVE,X
 2790 JSR MON.COUT
 2800 INX
 2810 CPX #5
 2820 BNE .1
 2830 PLA
 2840 BNE STORE
 2850 COMP.CODE2
 2860 INY
 2870 LDA (SEARCH),Y
 2880 STA NEXT
 2890 INY
 2900 LDA (SEARCH),Y
 2910 CMP #',
 2920 BNE STORE
 2930 LDA #'/
 2940 STORE
 2950 ORA #$80
 2960 JSR MON.COUT
 2970 INX
 2980 DEC NEXT
 2990 BNE STORE
 3000 BEQ NEXT.CHAR2
 3005
 3010 *
 3020 * Skip the version update for the moment
 3030 *
 3040 DOS.OP
 3050 JSR MON.CROUT
 3060 END RTS
 3090
 3100 OPS .AS /.FN/
 3110 SAVE .HS 84 ctl D
 3120 .AS -/SAVE/
 3130 NO.TTL .AT /!! NO TITLE ERROR /
 3140 .AT /!! ILLEGAL TITLE /
 3150

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 723 of 2550

Apple II Computer Info

 3160
 3170
 3180 *==
 3190 * The following are the commands that are issued to the
 3200 * VIDEX to perform the given function.
 3210 *==
 3220
 3260 COUT .EQ $FDED
 3270
 3280 * This routine will position cursor at CH,CV
 3290 GOTOXY JSR SAVEREG
 3300 LDA $25 save CV
 3310 PHA
 3320 LDA $24 save CH
 3330 PHA
 3340 LDA #30
 3350 JSR COUT goto leadin
 3360 PLA get CH
 3370 CLC
 3380 ADC #$20
 3390 JSR COUT
 3400 PLA get CV
 3410 ADC #$20
 3420 JSR COUT
 3430 JMP RESTREG
 3440 ADVANCE
 3450 LDA #28
 3460 JMP SAFEOUT
 3470 BS
 3480 LDA #8
 3490 JMP SAFEOUT
 3500 UP
 3510 LDA #31
 3520 JMP SAFEOUT
 3530 DOWN
 3540 LDA #10
 3550 JMP SAFEOUT
 3560 CLREOP
 3570 LDA #11
 3580 JMP SAFEOUT
 3590 CLEAR
 3600 LDA #12
 3610 JMP SAFEOUT
 3620 CLREOL
 3630 LDA #29
 3640 JMP SAFEOUT
 3650 *
 3660 SAFEOUT
 3670 JSR SAVEREG
 3680 JSR COUT
 3690 JSR RESTREG
 3700 RTS
 3710 *
 3720 SAVEREG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 724 of 2550

Apple II Computer Info

 3730 STX SX don't distrurb the regs
 3740 STY SY
 3750 RTS
 3760 RESTREG
 3770 LDX SX get them back
 3780 LDY SY
 3790 RTS
 3800 SX .DA #0
 3810 SY .DA #0
 3820
 3830 ***
 3840 * The following is the warm start patch that will initialize
the
 3850 * the VIDEX board, and set the cursor to an underline. This
routine
 3860 * is also used by "NEW".
 3870 ***
 3880
 3890
 3900 * !!!!!!!!!!!!
 3910 * SET THE SLOT VALUE FOR YOUR VIDEX BOARD
 3920
 3930 SLOT .EQ $3 slot#
 3940 SLOT16 .EQ SLOT*16
 3950 V.DEV0 .EQ $C080 addresses the CRTC internal regs
 3960 V.DEV1 .EQ $C081 content of specified reg
 3970 *==
 3980 VID.ON LDA #SLOT
 3990 JSR $FE95 simulate PR#3
 4000 V.CRSON
 4010 LDA #$0A CRTC reg 10
 4020 STA V.DEV0+SLOT16
 4030 LDA #$88 non-flashing underline
 4040 STA V.DEV1+SLOT16
 4050 * self modification for automatic shift to lower case.
 4060 LDA $1011 second tab
 4070 SBC #1 offset for initial blank
 4080 STA VT1+1 target of self-modification
 4090 JSR CLEAR clear screen
 4100 JMP $101C SCM warm-start
 4110 *
 4120 *==
 4130 * This routine will shift you from upper to lower case at
 4140 * the second TAB stop. I use this for the comments.
 4145 *==
 4150 RDKEY .EQ $FD0C
 4160 AUTOSHIFT
 4170 VT1 CPX #0 will be modified with 2nd tab value
 4180 BNE .1 no action
 4190 LDA $205
 4200 CMP #$AA "*" this is a comment
 4210 BEQ .1 no conversion on comments
 4220 LDA #$40 force lower case
 4230 STA $7F8+SLOT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 725 of 2550

Apple II Computer Info

 4240 .1 JSR RDKEY now get the input key
 4250 CMP #$8D on carriage return, flip back
 4260 BEQ VT2
 4270 CMP #$98 ^X same here
 4280 BEQ VT2
 4290 RTS stay in current case
 4300 VT2 PHA
 4310 LDA #$00 force upper case
 4320 STA $7F8+SLOT
 4330 PLA
 4340 RTS
 4350
 4360 *==
 4370 * The following are needed since my EDIT wants $A0 for space,
 4380 * while everyone else is looking for a $20.
 4390 *==
 4400 ZAP.A0 PHA
 4410 LDA #$A0
 4420 STA $127A
 4430 PLA
 4440 JMP $185D GET.KEY.STRING
 4450 ZAP.20 PHA
 4460 LDA #$20
 4470 STA $127A
 4480 PLA
 4490 JMP $1D94 CHO
 4500
 4510 *==
 4520 * RDL.OVERRIDE is needed because of the $2C trick and I
 4530 * must read '->' characters from buffer.
 4535 *==
 4540 RDL.OVERRIDE
 4550 JSR $14CA read.key.with.case
 4560 ORA #$80 assure sign bit on
 4570 JMP $139B rdl.add.char
 4580
 4590 ZZZEND .EQ *
 4600 ZZZLEN .EQ ZZZEND-AUTO.SAVE
 4610 *==
 4620 * Replace the jump addres in the ESC handler routine.
 4630 *==
 4635
 4640 .OR $1467
 4650 .TF JMP.OBJ
 4660 .DA CLEAR-1 videx routinee
 4670 .DA ADVANCE-1 videx routine
 4680 .DA BS-1 videx routine
 4690 .DA DOWN-1 videx routine
 4700 .DA UP-1 videx routine
 4710 .DA CLREOL-1 videx routine
 4720 .DA CLREOP-1 videx routine
 4730 .DA $FC2A no change
 4740 .DA $FC2A no change
 4750 .DA UP-1 videx routine

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 726 of 2550

Apple II Computer Info

 4760 .DA BS-1 videx routine
 4770 .DA ADVANCE-1 videx routine
 4780 .DA $1482 no change
 4790 .DA DOWN-1 videx routine

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 727 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8208:DOS3.3:Toren.Dox.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 728 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:Amper.Vector.txt
==

Relocatable Ampersand-Vector........................Steve Mann

In recent issues of AAL there have been a variety of routines to
produce relocatable code. The BSR, BRA and LEAX opcodes in the June
issue and the run-anywhere subroutine calls in the July issue are two
examples.

However, in making some of my code relocatable, I encountered a new
problem with routines that interface with Applesoft programs through
the & command. The problem is that the routine doesn't know what
address to place in the & jump vector because that address may change
with each run.

A rather inelegant solution is to derive the address from Applesoft's
pointers, then POKE it into the & vector before calling it. What I
wanted was a method to determine the correct address from within the
code itself, in much the same way that a non-relocatable program sets
up the vector:

1000 LDA #$4C
1010 STA AMPER.VECTOR
1020 LDA #START
1030 STA AMPER.VECTOR+1
1040 LDA /START
1050 STA AMPER.VECTOR+2
1060 *
1070 START ...

I have written a short routine which will handle the initialization at
the beginning of relocatable programs, as long as the program's entry
point immediately follows, as in the sample program listed below.

The routine works by first jumping to the subroutine at $FF58, which
is simply an RTS instruction. As Bob explained in the July AAL, this
places the return address on the stack and then pops it back off
again. The return address can then be found by reading the first two
open bytes below the stack. The TSX instruction in line 1100 loads
the offset to those two bytes into the X-register. Lines 1110-1130
load the bytes into the A- and Y-registers.

Now we have the address of the third byte of the JSR RETURN
instruction - the MSB in Y and the LSB in A. What we need is the
address of the program's entry point, which corresponds to the label
START. To get that address, we must add in the length of the rest of
the SETUP routine, that is, the difference between the address at
START and the address in the Y- and A-registers.

This is handled in lines 1140-1170. Line 1150 adds the offset ($1B
for this particular routine) to the low byte of the base address. The

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 729 of 2550

Apple II Computer Info

extra 1 in the ADC intruction is necessary because the address in Y
and A is one less than the actual return address (corresponding to
.1). Lines 1160-1170 check for a carry and adjust the high byte if
necessary. The entry point address is then saved in the ampersand
vector at $3F5-$3F7.

The same principle can be used to set up the monitor's control-Y
vector at $3F8-$3FA. As a matter of fact, I usually use a macro with
conditional assembly to set up whichever vector I need. Here's the
macro:

1000 .MA VECTOR
1010 JSR $FF58
1020 :1 TSX
1030 LDY $100,X
1040 DEX
1050 LDA $100,X
1060 CLC
1070 ADC #:3-:1+1
1080 BCC :2
1090 INY
1100 :2 .DO ']1='Y CTRL-Y?
1110 STA $3F9
1120 STY $3FA
1130 LDA #$4C
1140 STA $3F8
1150 .ELSE OR &?
1160 STA $3F6
1170 STY $3F7
1180 LDA #$4C
1190 STA $3F5
1200 .FIN
1210 RTS
1220 :3
1230 .EM

Just include this definition at the beginning of your program. Then
macro can then be called like this:

2000 >VECTOR,Y
2010 START ...

to set the control-Y vector, or like this:

2000 >VECTOR,&
2010 START ...

to set the ampersand vector. (Actually any character other than Y
will result in setting the & vector.)

(Note: When I showed this macro to Bob I asked him if the .DO in line
1100 would really work. He looked at it for a minute and said, "yes,
it sure will. The assembler's macros are even more powerful than I
thought!"...Bill)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 730 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:Directives.txt
==

Assembler Directives.......................Bob Sander-Cederlof

Of all the Apple assemblers on the market, it seems that no two have
exactly the same list of assembler directives. Directives, also
called "pseudo-ops", are used to control the assembly process and to
define data in your programs. When you see a listing of an assembly
language program in a magazine, or in this newsletter, or in a book on
6502 programming, you may have to translate the directives to fit the
assembler you own.

All directives in the S-C Macro Assembler begin with a period. This
helps to distinguish them visually from 6502 and SWEET-16 opcodes.
This same convention is used by Carl Moser's (Eastern House Software)
MAE assembler, by the MOS Technology and Rockwell assemblers, and some
others. Most other assemblers use 3- or 4-character mnemonics
beginning with a letter. Which combination of letters cause the
assembler to perform a particular function is not standardized at all,
but there are enough similarities to make programs readable once you
learn the general techniques.

What follows is an alphabetical listing of all the directives I have
encountered in various manuals and magazine-published programs. The
assemblers represented are coded like this:

B = Big Mac SC= S-C Macro Assembler
K = DOS Tool Kit T = TED II
L = Lisa W = Weller's Assembler
M = Merlin

In each case I have given a brief description of the directive, and
tried to show how to do the same thing in the S-C Macro Assembler. I
suggest looking up the S-C directives in the reference manual if you
are not sure exactly how to use them.

ADR ADdRess L
Stores the expression as an address, low-order byte first.
SC: Use .DA directive

ASC ASCii string definition L K T B M
SC: Use .AS or .AT directives.

AST ASTerisks T B M
Prints the number of asterisks specified on the listing. Used to save
space in the source file.
SC: Not needed, because SC compresses repeated characters
automatically.

BLK BLinKing characters L
Generates a string of characters in Apple's FLASH code.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 731 of 2550

Apple II Computer Info

SC: Not available, but a combination of .AS and .HS directives will
do the job.

BYT BYTe data L
Define data value, storing low-order byte only.
SC: Use .DA with "#" before value.

CHK CHecKsum B M
SC: Not available

CHN CHaiN to next source K
SC: Use .IN directive.

CHR Set CHaR for REP directive K
Used to create fancy comments with repeated strings; saves space in
source file.
SC: Not necessary, because SC compresses repeated characters
automatically.

.DA DAta definition L SC
Apparently Randy borrowed this one from me. (See the reviews he wrote
in Call APPLE some time ago.)

DA Define Address T B M
Defines a 16-bit value with low-byte first.
SC: Use .DA directive.

DATA DATA definition W
Defines numeric and ASCII data bytes
SC: Use .DA directive, preceding each value with "#".

DB Data Byte T
Defines a data value, only using the low byte of the expression.
SC: Use .DA directive with "#" before the expression.

DBL DouBLe precision data W
Defines 16-bit data values.
SC: Use .DA directive.

DBY Double BYte data L
Generates a 16-bit value and stores it high-byte first.
SC: Not directly available, but use .DA as follows:
 .DA /expression,#expression

DCI Define Characters Immed L K T B M
Stores string with sign bit of last byte opposite that of the rest of
the bytes.
SC: Use .AT directive.

DCM DOS CoMmand L
Issue a DOS command during assembly. Usually used to BSAVE a section
of the generated object code.
SC: Use .TF directive

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 732 of 2550

Apple II Computer Info

DDB Define Double Byte K B M
Defines a 16-bit value which is stored with the high-byte first.
SC: Not directly available, but use .DA as follows:
 .DA /expression,#expression

DEND Dummy END K
Marks end of a dummy section (see DSECT).
SC: Not available

DFB DeFine Byte K B M
Defines one or more bytes.
SC: Use .DA, preceding each expression with "#".

DFC DeFine Character L (old version)
Data definition, byte expression list
SC: Use .DA directive, preceding each expression with "#".

DFS DeFine Storage L
Reserve a block of bytes. An optional second operand will cause the
reserved bytes to be set to the specified value.
SC: Use .BS directive. No option to set the reserved bytes to a
specified value.

DO DO K B M
Start a conditional assembly block.
SC: Use .DO directive.

DPH DePHase L
Terminates a PHS directive.
SC: Not available.

DS Data Storage T K B M
Reserve a block of bytes.
SC: Use .BS directive.

DSC Data SeCtion L (old version)
Not sure what this was for.

DSECT Dummy SECTion K
Starts a block in which the object code bytes are not written on the
output file.
SC: Not available.

DW Define Word K T
Defines a 16-bit value, with the low-byte stored first.
SC: Use .DA directive.

.EL ELse L SC
For conditional assembly.

ELSE ELSE K B M
For conditional assembly, toggles the truth value from the DO
directive.
SC: Use .ELSE directive.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 733 of 2550

Apple II Computer Info

END END of program L T B M W
Most assemblers REQUIRE an "END" directive at the end of the source
code. S-C allows it but does not require it.
SC: Use .EN directive.

ENTRY ENTRY K
Indicates a symbol is to be made reference-able from other separately-
assembled modules. To be used by a linking loader program, which
Apple does not provide.
SC: Not available.

EOM End Of Macro B M
Marks end of a macro definition.
SC: Use .EM directive.

EPZ Equate Page Zero L
label EPZ expression
Defines the label to have the value of the expression, which must be
from $00 to $FF. When EPZ-defined labels are used in address fields,
zero-page addressing mode will be used whenever possible.
SC: Use .EQ directive. SC automatically uses page-zero mode whenever
possible.

EQU EQUate L T K B M W
label EQU expression
Defines the label to have the value of the expression during the
assembly process.
SC: Use .EQ directive.

ESP End ScratchPad W
Works with SPD to bracket a data section.
SC: Not needed.

EXP EXPansion of macros B M
Controls whether macro expansion code is printed or not on the output
listing.
SC: Use .LIST directive.

EXTRN EXTeRNal K
Indicates that a label is externally defined. To be used with a
linking loader program, which Apple does not provide.
SC: Not available.

.FI end of conditional L SC

FIN end of conditional K B M
SC: Use .FIN directive.

FLS FLaSH B M
Define a string in flashing mode.
SC: Not available, but a combination of .AS and .HS directives will
do the job.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 734 of 2550

Apple II Computer Info

GEN GENerate code listing L
Turns on listing of all object code bytes.
SC: Not available, object code listing is always on.

HBY High BYte L
Define one-byte data value, storing only the high-byte of an
expressions value.
SC: Use .DA directive, writing "/" before the value.

HEX HEXadecimal data L T B M
label HEX hexstring
SC: Use .HS directive.

ICL InCLude L
Really is a CHAIN to next source file.
SC: Use .IN directive.

.IF conditional assembly L
SC: Use .DO directive.

INV INVerted characters L B M
Generates a string of characters in Apple's INVERSE screen code.
SC: Not available, but you can convert to hexadecimal and use .HS
directive.

LET label reassignment L
Same as EQU, except label can be redefined during assembly.
SC: Not available.

LST LiST option L T K B M
Turn assembly listing on or off.
SC: Use .LIST directive.

MAC MACro definition B M
Start a macro definition.
SC: Use .MA directive.

MSB Most Signficant Bit K
Controls whether the ASC directive generates bytes with the first bit
set or clear.
SC: Use .AS or .AT directives with or without the "-" before the
first delimiter to indicate the MSB value.

NLS No List option L
Turn assembly listing off.
SC: Use .LIST OFF directive.

NOG NO Generate L
Turns off listing of all but first three bytes of any particular
source line.
SC: Not available.

OBJ OBJect address L T B M
Set actual memory address for assembled object code to be stored in.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 735 of 2550

Apple II Computer Info

SC: Use .TA directive.

ORG ORiGin L T K B M
Set memory address program will execute at.
SC: Use .OR directive.

PAG PAGe eject on listing L T B M
Sends control-L to listing device.
SC: Use .PG directive.

PAGE PAGE eject on listing K
Sends control-L to listing device.
SC: Use .PG directive.

PAU PAUse and force error L B M
SC: Not available.

PHS PHaSe L
Allows setting ORG without changing OBJ. Terminated with DPH.
SC: Not available.

PMC Present MaCro B M
Opcode to call a macro.
SC: Not needed, macros are called by their own names.

PR# Select printer slot T
SC: Select before assembly begins using DOS "PR#slot" command, or SC
"PRT" command.

REL RELocatable object K
Causes assembler to generate a relocation dictionary at the end of the
object file, for use by Apple's relocating loader.
SC: Not available.

REM REMark W
Used to indicate a comment line.
SC: Use "*" in first column of label field.

REP REPeated character K
Generates a string of repetitions of the current CHR value on the
output listing. Used to save space in the source file.
SC: Not needed, because SC automatically compresses repeated
characters.

SAV SAVe object code B M
SC: Use .TF directive.

SBTL SuBTitLe K
Provides a title line for the top of each page of the output listing.
SC: Use .TI directive.

SKP SKiP lines K B M
Leaves a specified number of blank lines in the output listing.
SC: Not available.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 736 of 2550

Apple II Computer Info

SPD ScratchPaD W
Works with ESP to bracket a data section.
SC: Not needed.

STR STRing L
Similar to Lisa's ASC except the first byte output is the length of
the string.
SC: labela .DA #labelb
 .AS /string/
 labelb .EQ *-labela-1

SYM SYMbols T
Produces a symbol cross-reference table at end of assembly.
SC: Not available, but can use Rak-Ware's XREF utility program.

TITL TITLe
TTL TiTLe L
Generates title line at top of each page of listing.
SC: Use .TI directive.

TR TRuncate object listing B M
Limit listing of object code to 3 bytes per source line.
SC: Not available.

USR USeR directive L
An extra entry in the directive table for the user to use as he sees
fit.
SC: Use .US directive.

; comment indicator L
SC: If ";" was in first column, use "*" instead. If in later column,
no special character is needed.

= equate B M others
If written with label on left, this is the same as EQU and .EQ
directives. If written with "*" on the left, it is the same as ORG
and .OR directives.

<<< B M
Alternate syntax for EOM.
SC: Use .EM directive.

>>> B M
Alternate syntax for PMC.
SC: Not needed, because macros are called by their own names.

Directives in Roger Wagner's Book

If you have been trying to learn using the S-C Assembler with Roger's
book "Assembly Lines: The Book", you may have been frustrated by his
use of several assembler directives. He discusses directives on pages
16-18, and 55.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 737 of 2550

Apple II Computer Info

On page 16, the first example of the use of directives has two errors.
Lines 6 and 7 are written:

6 OBJ EQU $300
7 ORG EQU $300

But they should be: 6 OBJ $300
 7 ORG $300

That is, OBJ and ORG are directives, not labels. The top two lines on
page 21 are also incorrect, in that the ORG and OBJ directives were
typeset to look like labels; they should be moved over to the opcode
column, and the "$300" values to the operand column.

In all, Roger uses only five directives in his book: OBJ, ORG, EQU,
ASC, and HEX. To use his programs in the S-C assembler, change:

 From To
---------------- ----------------
label EQU value label .EQ value
label HEX hexdigits label .HS hexdigits
 HEX hexdigits .HS hexdigits
label ASC "characters" label .AS -"characters"
 ASC "characters" .AS -"characters"
 OBJ $300 or $302 omit this line
 ORG $300 or $302 .OR $300 or $302

Note that the normal translation of "OBJ" is ".TA"; however, when the
address is the same as the ORG/.OR address, it is not necessary to use
OBJ/.TA. Furthermore, in the S-C Assemblers you must put the ".OR"
line BEFORE the ".TA" line. In Roger's examples these two lines are
reversed.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 738 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:Front.Page.txt
==

$1.50

Volume 2 -- Issue 12 September, 1982

In This Issue...

New Products (ES-CAPE, 68000 Cross Asm, SynAssembler) . . 2
Directory of Assembler Directives 3
Relocatable Ampersand-Vector 15
About Hardcore Magazine 19
No More Paddle Interaction 21
An Apple Bibliography 23
Some Fast Screen Tricks 25
Right Arrow for the VIDEX Patches 29
Special Note about 6800 Cross Assembler 30
A Note on the Underline Cursor 32

Current Advertising Rates

Sorry, it is going up again. For the October 1982 issue the price
will be $75 for a full page, $40 for a half page. To be included, I
must receive your camera-ready copy by September 20th.

What if you move?

We mail the Apple Assembly Line by bulk mail, unless you have paid for
First Class or Overseas postage. If you move, the post office will
NOT forward AAL to your new address. Please let us know your new
address as soon as you find out what it will be, so you will not miss
a single issue!

Quarterly Disks

As you no doubt know, every three months we gather all the source code
printed during the quarter on one disk. You can save countless hours
of typing and proofreading for only $15 per quarter. Some have
elected to establish a standing order with their credit card, or even
to prepay for a year at a time.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 739 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:Hardcore.txt
==

About Hardcore Magazine....................Bob Sander-Cederlof

I have received several calls by subscribers who wonder about the ad
from Hardcore magazine. The ad prices a subscription at $20, but does
not say clearly what $20 buys.

To my knowledge, HARDCORE has published two issues so far: the first
one about a year ago, and the second about six months ago.

Inside the front cover of the first issue you will find the following
message:

"Attention Subscribers: Although presently only a quarterly magazine,
HARDCORE Computing will go bimonthly and then monthly as soon as
possible. Meanwhile, your one-year subscription is for the 4
quarterly issues plus 8 UPDATEs (printed on the other 8 months) and
all ALERT Bulletins sent out whenever we feel information is too
important to wait. The UPDATEs will be reprinted in part or in whole
in the next magazine. The magazines, UPDATEs, and ALERT Bulletins
comprise the subscription package."

I have talked with the publisher, Chuck Haight, several times on the
phone. I believe he intends to fulfill every subscription, but he is
having trouble getting the magazine out on a regular schedule. I
asked him how often the magazine is published, and he answered "Very
infrequently". He did re-assure me that a subscription buys four
issues.

Note that Softkey Publishing is another company with the same people.
Two callers indicated they are quite satisfied with the software they
bought from Softkey.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 740 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:New.Products.txt
==

New Products

ES-CAPE: For really painless Applesoft programming, you need a
complete line editor, global search and replace, automatic line
numbers, and keyboard macros. At least. ES-CAPE gives you all these
and more!

The retail price is $60, but AAL subscribers can get it for only $40
until the end of September. Hurry!

We wrote a nice little reference manual of about 22 pages, but ES-CAPE
is so easy to use and remember that you won't need the book very long!

If you already purchased AED II (the earlier version of this editor),
Bill Linn has an upgrade offer: Send him your disk plus $10, and you
will get the new versions (both regular and language card), the
manual, and the reference card.

68000 Macro Cross Assembler: Not content with producing only three
cross assemblers based on the S-C Macro Assembler, Bobby Deen has now
completed the biggest one of all! This one costs $50, and allows you
to assemble Motorola 68000 source programs in your Apple, with all the
friendly features of the S-C package.

SYNASSEMBLER: Synapse Software has just started marketing a
conversion of the S-C Assembler II Version 4.0 for the Atari 800 or
400. You need 48K RAM and at least one disk drive. The conversion
was done by Steve Hales, of Livermore, California. He added global
replace and copy commands, so this version falls somewhere between the
Apple version 4.0 and the new Macro version. It assembles at about
6500 lines per minute, which is from 50 to over 100 times faster than
the Atari ASM/ED program.

Since the Atari does not have nice monitor commands built-in, like the
Apple does, Steve added a complete set of monitor commands to
SYNASSEMBLER. They look exactly like the Apple monitor commands,
except that he added some new ones to allow reading and writing a
range of disk sectors, delete the tape I/O commands, and included the
old Step and Trace commands which were in Apples before the Autostart
ROM.

The price is only $49.95 on disk. A ROM version is available by
special order for $89.95. I will carry these, if you want to order
from me.

An Apple Bibliography

Bob Broedel has been keeping track of all the books, magazines, etc.
that are of interest to Apple owners. The last time I saw the list

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 741 of 2550

Apple II Computer Info

(May 1982), it was ten pages, two columns. Each entry includes all
the bibliographic data Bob knows, so that you can find the items you
want.

This is the most complete list I have ever seen. If you want a copy,
he will send you one for $2. Write to Bob Broedel, P. O. Box 20049,
Tallahassee, FL 32304.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 742 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:Read.Paddles.txt
==

No More Paddle Interaction..........................Mike Laumer

While working on the FLASH! Integer BASIC Compiler I ran into a nasty
little problem because the compiled code ran too fast! That's right,
too fast. The old problem with reading the game paddles too soon
after one another rose to byte (punny huh!) me once again.

Basically the game paddle problem is that they are read with a
variable time delay loop. Because one paddle may read significantly
faster than another, and the paddles have only one trigger to fire all
four of the paddles, you might process the data fast enough to be
ready to read the next paddle before it has finished its previous time
delay. This problem is real and occurs in many of the game programs
to be found on the Apple. Even Raster Blaster has the problem in its
jittery ball release thrust adjuster.

In the example below paddle 0 and 1 are triggered by the $C070 paddle
I/O trigger address. But because paddle 0 has a smaller value, it
finishes before paddle 1. If you read one paddle after another with
little other processing then one paddle seems to affect the value of
the other one. Many programmers have shown this problem to their
dealer thinking that they have found a new bug in the Apple but the
only problem (if one exists) is the lack of independent paddle
triggers for each of the four paddles.

The problem appears if you use the following BASIC program and play
with the paddle adjustments. Turn paddle 1 to the middle of its scale
and paddle 0 to the low end of its scale and you will see changing
paddle 0 affects the value read for paddle 1. You will find that
paddle 1 will vary by 20-40 counts without even touching it.

 10 PRINT PDL(0),PDL(1) : GOTO 10

 +-------+
 -| |----------------- paddle 0

 +---------------+
 -| |---------- paddle 1
 ^ ^
 : : paddle expires
 :
 paddles are triggered at this time

So what can be done about the problem? What I did is design a routine
that reads the paddle without triggering it and waits for the paddle
to shut off. This is easily done by calling the monitor paddle read
routine at $FB21, skipping the trigger instruction at $FB1E. This
takes care of much of the problem, but I still found it necessary to
add a tiny delay loop before triggering the paddle. The extra delay

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 743 of 2550

Apple II Computer Info

is probably due to the remaining charge in the internal capacitor in
the timer chip.

The assembly language routine which follows is basically what I added
to the FLASH! compiler runtime package to take care of its being too
fast for its own good! This explains 14 of the 36,000 bytes of object
code in the FLASH! Compiler system. There is also a DEMO program
which reads both paddles and displays the values in hexadecimal so you
can test the routine.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 744 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:Screen.Tricks.txt
==

Some Fast Screen Tricks....................Bob Sander-Cederlof

Sometimes the standard Apple Monitor screen functions are too slow.
No reflection on Steve Wozniak, because he wrote them to be general
and compact rather than quick.

I am thinking particular of the screen clear (HOME to Applesoft users)
and the screen scroll subroutines. They were both written to operate
on a text window, not necessarily the whole screen. But most of the
time you do want to clear or scroll the whole screen.

The primary text screen memory is mapped into the addresses from $400
through $7FF, but not in an obvious or straightforward way. This
table shows the actual memory addresses for each screen line:

Line Addresses Line Addresses Line Addresses
 0 $400-$427 8 $428-$44F 16 $450-$477
 1 $480-$4A7 9 $4A8-$4CF 17 $4D0-$4F7
 2 $500-$527 10 $528-$54F 18 $550-$577
 3 $580-$5A7 11 $5A8-$5CF 19 $5D0-$5F7
 4 $600-$627 12 $628-$64F 20 $650-$677
 5 $680-$6A7 13 $6A8-$6CF 21 $6D0-$6F7
 6 $700-$727 14 $728-$74F 22 $750-$777
 7 $780-$6A7 15 $7A8-$7CF 23 $7D0-$7F7

Note that 120 consecutive bytes are used for three text lines spaced
at an 8-line interval. Then 8 bytes are not used. Then the next 120,
and so on. Those 8 sets of 8 bytes that are not used by the screen
mapping are used by peripheral cards and DOS for temporary storage.
In the standard Apple Monitor subroutines, a subroutine named BASCALC
at $FBC1 calculates the starting address for a specified line. Then
the various screen functions use that address, which is kept up-to-
date in BASL,BASH ($28,29).

In the listing that follows, I have included fast subroutines to clear
the entire text screen (CLEAR); to set the entire text screen to
whatever character is in the A-register (SET); to clear the entire Lo-
Res Graphics screen (GCLEAR); and to scroll the entire text screen up
one line. For demonstration purposes, I also wrote routines to set
the entire screen to each value from $00 through $FF; to alternate the
screen between solid black and solid white until a key is pressed; to
scroll end-around, placing the old top line on the bottom of the
screen while moving the rest of the lines up; and to continuously
scroll end-around until a key is pressed.

For comparison, I counted that the Wozniak's screen clear takes 15537
microseconds; mine takes only 5410 microseconds. The fastest possible
would be one LDA #$A0 followed by 960 "STA $xxx" and an RTS; that

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 745 of 2550

Apple II Computer Info

would take 3848 microseconds. (All these times round off the Apple's
cycle time to one microsecond; actually it is a little faster.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 746 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:Underline.Fix.txt
==

A Note on the Underline Cursor.............Bob Sander-Cederlof

Bill Linn's "Blinking Underline Cursor" program generated a lot of
interest. However, Allan Blackburn from Fort Worth had a problem with
it:

"It works just fine, until you hit RESET or re-boot...then it must be
BRUN again to get it back. You can't enter monitor and type 300G, or
use CALL 768 from Applesoft. Why doesn't calling the routine reset
KSWL and KSWH? It should, but I always end up with $9E81 there. Even
though lines 1210-1250 store $09 in $38 and $03 in $39, it seems they
never get there. Can you explain this? Please?

Sure, Allan. Line 1250 needs to be changed from RTS to JMP $3EA.

This is a common problem. I had it myself back when DOS first came
out. For the first year or so we only had a tiny preliminary manual,
and the subject wasn't covered. Now the DOS manual is so large we
forget to read it or where to find the information. Look on pages
100-105 of the DOS manual and you will find a full explanation.

Briefly, here is what happens. Lines 1210-1250 DO store the address
$309 into #38 and $39. But the next time you print a character, DOS
gets control and stores its own input address right on top of yours.
DOS's input address is $9E81.

The same thing happens in Applesoft programs if you use IN#1 (for
example) instead of PRINT CHR$(4)"IN#1", and then print a character.
Note 7b on page 105 tells about CALL 1002, which is $3EA.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 747 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:VidexPatchPatch.txt
==

4020 *--------------------------------
4025 V.BASEL .EQ $478+SLOTNUM
4030 V.BASEH .EQ $4F8+SLOTNUM
4035 V.CHORZ .EQ $578+SLOTNUM
4040 V.XSAV1 .EQ $402
4045 V.OLDCHAR .EQ $678
4050 *
4055 V.DEV0 .EQ SLOTNUM*16+$C080
4060 V.DISP0 .EQ $CC00
4065 V.DISP1 .EQ $CD00
4070 *--------------------------------
4075 *
4080 RDKEY LDA KEYBOARD
4085 BPL RDKEY
4090 STA KEYSTROBE
4095 ORA #$80
4100 CMP #$81 Shift lock?
4105 BNE .1
4110 .DO LCVERSION
4115 JSR UNPROTECT.LC.RAM
4120 .FIN
4125 LSR SCM.SHIFT.FLAG
4130 BPL .2 Return with errant key
4135 .1 CMP #$9A Shift unlock?
4140 BNE CTRLU No, return with key
4145 .DO LCVERSION
4150 JSR UNPROTECT.LC.RAM
4155 .FIN
4160 SEC
4165 ROR SCM.SHIFT.FLAG
4170 .2 LDA #$96 Return with errant key
4175 .DO LCVERSION
4180 BIT $C080 Reprotect LC RAM
4185 RTS
4190 *
4195 UNPROTECT.LC.RAM
4200 BIT $C083 Enable Bank 2
4205 BIT $C083
4210 .FIN
4215 RTS
4220 *
4225 CTRLU CMP #$95 CTRL-U COPY KEY
4230 BNE .3
4235 STX $400
4240 STY $401
4245 LDA V.CHORZ
4250 JSR PSNCALC
4255 BCS .1
4260 LDA V.DISP0,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 748 of 2550

Apple II Computer Info

4265 BCC .2
4270 .1 LDA V.DISP1,X
4275 .2 ORA #$80
4280 STA V.OLDCHAR
4285 LDX $400
4290 LDY $401
4295 .3 RTS
4300 *
4305 PSNCALC CLC
4310 ADC V.BASEL
4315 STA V.XSAV1
4320 LDA #0
4325 ADC V.BASEH
4330 LSR
4335 PHP
4340 AND #3
4345 ASL
4350 ASL
4355 TAY
4360 LDA V.DEV0,Y
4365 PLP
4370 LDX V.XSAV1
4375 RTS
4380 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 749 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:Articles:VidexRtArrow.txt
==

Right arrow for the VIDEX patches................Mike Laumer

The VIDEX 80 column board patches for the S-C Macro Assembler in last
months Apple Assembly Line was a welcome article for me. You see I
bought a VIDEX board last November but have no software to run it.
I've been planning to write a program development editor similar to
the one I used at Texas Instruments, but so far I haven't had the time
between the FLASH! compiler, MIKE'S MAGIC MATRIX and the American
Heart association CPR Training system.

The patches were very usable, but a major problem still existed to
prevent my use on a regular basis. The right arrow key would not copy
characters from the VIDEX screen. Try to copy a file name from your
catalog with that limitation!

I knew it could be done, because the VIDEX software in ROM has to do
that function. Don Taylor mentioned last month that he didnt know the
right routine to call and his ROM differed from the listing in the
VIDEX manual. My listing was a little off also from my ROM, but I
didn't care becase I wasn't going to call the ROM routines.

I used the VIDEX manual's listings to locate the section that
performed the copy-character-from-screen function and used similar
code in the RDKEY routine of last month's VIDEX patches for the Macro
assembler. The 'BNE' to '.3' was changed to go to 'CTRLU' and the
copy function coded to process the right arrow key for the VIDEX 80
column board.

I needed two temporary variables to save the X- and Y- registers, so I
used the first two bytes of the normal Apple text screen at $400 and
$401. Another temporary variable is at $402. Since the normal Apple
text display is not operative while the VIDEX is enabled you can use
it for temporary variable space without it affecting the screen
display. If you try a trick like this some time, you must be careful
because some of the monitor routines like HOME and SCROLL can easily
zap your storage when you least expect it.

With this new capability of the right arrow key functioning as
expected, I am able to use the VIDEX patches often in my software
development work. But there are a few problems left yet to solve that
I didn't get to look into before writing this article. They are:

1. A RETURN key should clear to the end of line on line input, but
not EDIT input.

2. The control character display features are not handled very well
by the VIDEX patches.

3. The patches blow up on Reset. (I think.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 750 of 2550

Apple II Computer Info

4. The patches blow up on INT or FP commands.

5. The patches don't work very well when you use MNTR command.

6. All calls to $FC9C (the Monitor clear to end of line routine)
should send $9D to the VIDEX board.

7. Right arrow, left arrow, and any printing key cause the entire
EDIT line to be redisplayed. The flicker is somewhat annoying.

The listing that follows should replace lines 4020 through 4420 of the
listing on pages 21 and 22 of the August 1982 issue.

The source code on the AAL Quarterly Disk #8 will have these lines
already merged with Don Taylor's patches.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 751 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:S.CatalogArr.txt
==

 1000 *SAVE S.CATALOG ARRANGER
 1010 *--------------------------------
 1020 .OR $803
 1030 .TF CATALOG ARRANGER
 1040 *--------------------------------
 1050 POINTER .EQ 0
 1060 *
 1070 MON.CV .EQ $25
 1080 PREG .EQ $48
 1090 *
 1100 DOS.RESTART .EQ $3D0
 1110 DOS.RWTS .EQ $3D9
 1120 *
 1130 CORNER .EQ $7D0
 1140 *
 1150 KEYBOARD .EQ $C000
 1160 KEYSTROBE .EQ $C010
 1170 *
 1180 DOS.SIZEOUT .EQ $AE42
 1190 DOS.PRNTERR .EQ $A702
 1200 DOS.TYPTABL .EQ $B3A7
 1210 IOB .EQ $B7E8
 1220 IOB.SLOT .EQ $B7E9
 1230 IOB.DRIVE .EQ $B7EA
 1240 IOB.VOLUME .EQ $B7EB
 1250 IOB.TRACK .EQ $B7EC
 1260 IOB.SECTOR .EQ $B7ED
 1270 IOB.BUFFER .EQ $B7F0,F1
 1280 IOB.COMMAND .EQ $B7F4
 1290 IOB.ERROR .EQ $B7F5
 1300 IOB.OSLOT .EQ $B7F7
 1310 IOB.ODRIVE .EQ $B7F8
 1320 *
 1330 * MONITOR CALLS
 1340 *
 1350 MON.VTAB .EQ $FC22
 1360 MON.CLREOP .EQ $FC42
 1370 MON.HOME .EQ $FC58
 1380 MON.PRBYTE .EQ $FDDA
 1390 MON.COUT1 .EQ $FDF0
 1400 MON.SETINV .EQ $FE80
 1410 MON.SETNORM .EQ $FE84
 1420 *
 1430 * SYMBOLIC CONSTANTS
 1440 *
 1450 ZERO .EQ 0
 1460 READ .EQ 1
 1470 WRITE .EQ 2
 1480 LINE.COUNT .EQ 22

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 752 of 2550

Apple II Computer Info

 1490 ENTRY.LENGTH .EQ 35
 1500 RETURN .EQ $8D
 1510 SPACE .EQ $A0
 1520 *--------------------------------
 1530 SETUP
 1540 LDA IOB.OSLOT SET SLOT AND
 1550 STA SLOT DRIVE TO WHERE
 1560 LDA IOB.ODRIVE WE CAME FROM
 1570 STA DRIVE
 1580
 1590 LDA #ZERO INITIALIZE
 1600 STA VOLUME VARIABLES
 1610 STA NUMBER.OF.ELEMENTS
 1620 STA MOVING.FLAG
 1630 LDA #$FF
 1640 STA ACTIVE.ELEMENT
 1650
 1660 JSR BUILD.ARRAY.TABLE
 1670 JSR READ.CATALOG
 1680 JSR MON.HOME
 1690 *--------------------------------
 1700 DISPLAY.AND.READ.KEY
 1710 JSR DISPLAY.ARRAY
 1720
 1730 .1 LDA KEYBOARD
 1740 BPL .1
 1750 STA KEYSTROBE
 1760 CMP #$95 -->
 1770 BEQ HANDLE.RIGHT.ARROW
 1780 CMP #$88 <--
 1790 BEQ HANDLE.LEFT.ARROW
 1800 CMP #$9B ESC
 1810 BEQ HANDLE.ESC
 1820 CMP #RETURN
 1830 BEQ HANDLE.RETURN
 1840 CMP #$C2 B
 1850 BEQ HANDLE.B BEGINNING
 1860 CMP #$C5 E
 1870 BEQ HANDLE.E END
 1880 CMP #$D2 R
 1890 BEQ HANDLE.R READ CATALOG
 1900 CMP #$D7 W
 1910 BEQ HANDLE.W WRITE CATALOG
 1920 JMP .1 NONE OF THE ABOVE
 1930 *--------------------------------
 1940 HANDLE.RIGHT.ARROW
 1950 * MOVE UP ONE ELEMENT
 1960 JSR CHECK.FOR.END.OF.ARRAY
 1970 BCS .2 DO NOTHING IF ALREADY AT END
 1980 BIT MOVING.FLAG SKIP SWAP IF
 1990 BPL .1 NOT MOVING
 2000 JSR MOVE.ELEMENT.UP
 2010 .1 INC ACTIVE.ELEMENT FOLLOW IT UP
 2020 .2 JMP DISPLAY.AND.READ.KEY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 753 of 2550

Apple II Computer Info

 2030 *--------------------------------
 2040 HANDLE.LEFT.ARROW
 2050 * MOVE DOWN ONE ELEMENT
 2060 JSR CHECK.FOR.BEGINNING.OF.ARRAY
 2070 BCS .2 IF AT BEGINNING, DO NOTHING
 2080 BIT MOVING.FLAG IF NOT MOVING,
 2090 BPL .1 SKIP SWAP
 2100 JSR MOVE.ELEMENT.DOWN
 2110 .1 DEC ACTIVE.ELEMENT
 2120 .2 JMP DISPLAY.AND.READ.KEY
 2130 *--------------------------------
 2140 HANDLE.B
 2150 * MOVE CURSOR TO BEGINNING OF ARRAY
 2160 .1 JSR CHECK.FOR.BEGINNING.OF.ARRAY
 2170 BCS .3 DO NOTHING IF AT BEGINNING
 2180 BIT MOVING.FLAG
 2190 BPL .2
 2200 JSR MOVE.ELEMENT.DOWN
 2210 .2 DEC ACTIVE.ELEMENT
 2220 BPL .1
 2230 .3 JMP DISPLAY.AND.READ.KEY
 2240 *--------------------------------
 2250 HANDLE.E
 2260 * MOVE CURSOR TO END OF ARRAY
 2270 .1 JSR CHECK.FOR.END.OF.ARRAY
 2280 BCS .3
 2290 BIT MOVING.FLAG
 2300 BPL .2
 2310 JSR MOVE.ELEMENT.UP
 2320 .2 INC ACTIVE.ELEMENT
 2330 BPL .1 ...ALWAYS
 2340 .3 JMP DISPLAY.AND.READ.KEY
 2350 *--------------------------------
 2360 HANDLE.W
 2370 * WRITE CATALOG TO DISK
 2380 JSR WRITE.CATALOG
 2390 JMP DISPLAY.AND.READ.KEY
 2400 *--------------------------------
 2410 HANDLE.RETURN
 2420 * TOGGLE MOVING FLAG
 2430 * =FF IF MOVING
 2440 * =0 IF NOT
 2450 LDA MOVING.FLAG
 2460 EOR #$FF
 2470 STA MOVING.FLAG
 2480 JMP DISPLAY.AND.READ.KEY
 2490 *--------------------------------
 2500 HANDLE.ESC
 2510 * EXIT PROGRAM
 2520 JMP DOS.RESTART
 2530 *--------------------------------
 2540 HANDLE.R
 2550 * READ NEW CATALOG
 2560 JMP SETUP RESTART PROGRAM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 754 of 2550

Apple II Computer Info

 2570 *--------------------------------
 2580 READ.CATALOG
 2590 JSR READ.VTOC
 2600 JSR POINT.TO.FIRST.CATALOG.SECTOR
 2610 .1 JSR READ.CATALOG.SECTOR
 2620 BCS .4 .CS. IF END OF CHAIN
 2630
 2640 * MOVE CATALOG SECTOR INTO ARRAY
 2650 * X STEPS THROUGH BUFFER, $B-$FF
 2660 * Y STEPS THROUGH ENTRY, 0-$23
 2670 LDX #$B
 2680 .2 LDA CATALOG.BUFFER,X
 2690 BEQ .4 END OF CATALOG?
 2700 INC ACTIVE.ELEMENT NO, WE HAVE
 2710 INC NUMBER.OF.ELEMENTS A NEW ENTRY
 2720 LDA ACTIVE.ELEMENT
 2730 JSR POINT.TO.A SET POINTER
 2740 LDY #ZERO
 2750 .3 LDA CATALOG.BUFFER,X
 2760 STA (POINTER),Y
 2770 INX
 2780 BEQ .1 END OF BUFFER?
 2790 * IF SO, READ NEW SECTOR
 2800 INY
 2810 CPY #ENTRY.LENGTH END OF ENTRY?
 2820 BCC .3 NO, KEEP GOING
 2830 BCS .2 YES, GET NEXT ONE
 2840
 2850 .4 LDA ACTIVE.ELEMENT
 2860 CLC GO ONE PAST
 2870 ADC #1 LAST ELEMENT
 2880 ASL AND STORE
 2890 TAY TWO ZEROES
 2900 LDA #ZERO
 2910 STA ARRAY.TABLE,Y
 2920 STA ARRAY.TABLE+1,Y
 2930 STA ACTIVE.ELEMENT
 2940 RTS
 2950 *--------------------------------
 2960 READ.VTOC
 2970 LDA #ZERO
 2980 STA SECTOR
 2990 LDA #$11
 3000 STA TRACK
 3010 LDA #VTOC.BUFFER
 3020 STA BUFFER
 3030 LDA /VTOC.BUFFER
 3040 STA BUFFER+1
 3050 LDA #READ
 3060 STA COMMAND
 3070 JMP RWTS.CALLER
 3080 *--------------------------------
 3090 READ.CATALOG.SECTOR
 3100 LDA CATALOG.BUFFER+1 GET NEXT TRACK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 755 of 2550

Apple II Computer Info

 3110 BEQ .1 END OF CATALOG CHAIN?
 3120 STA TRACK
 3130 LDA CATALOG.BUFFER+2 GET NEXT SECTOR
 3140 STA SECTOR
 3150 LDA #CATALOG.BUFFER
 3160 STA BUFFER
 3170 LDA /CATALOG.BUFFER
 3180 STA BUFFER+1
 3190 LDA #READ
 3200 STA COMMAND
 3210 JSR RWTS.CALLER
 3220 CLC
 3230 RTS
 3240
 3250 * SET CARRY TO SHOW END-OF-CHAIN
 3260 .1 SEC
 3270 RTS
 3280 *--------------------------------
 3290 WRITE.CATALOG
 3300 LDA #$FF
 3310 STA ACTIVE.ELEMENT
 3320 JSR POINT.TO.FIRST.CATALOG.SECTOR
 3330 .1 JSR READ.CATALOG.SECTOR
 3340 LDX #$B
 3350 .2 INC ACTIVE.ELEMENT
 3360 LDA ACTIVE.ELEMENT
 3370 JSR POINT.TO.A
 3380 BCS .5 .CS. IF AT END OF TABLE
 3390 LDY #ZERO
 3400 .3 LDA (POINTER),Y
 3410 STA CATALOG.BUFFER,X
 3420 INX
 3430 BEQ .4 END OF BUFFER?
 3440 INY
 3450 CPY #ENTRY.LENGTH END OF ENTRY?
 3460 BCC .3 NO, KEEP GOING
 3470 BCS .2 YES, GET NEXT ONE
 3480
 3490 .4 JSR WRITE.CATALOG.SECTOR
 3500 JMP .1 AND READ THE NEXT SECTOR
 3510
 3520 * FILL THE REST OF THE BUFFER WITH ZEROES
 3530 .5 LDA #ZERO
 3540 .6 STA CATALOG.BUFFER,X
 3550 INX
 3560 BNE .6
 3570
 3580 JSR WRITE.CATALOG.SECTOR
 3590 LDA #ZERO
 3600 STA ACTIVE.ELEMENT
 3610 JMP DISPLAY.AND.READ.KEY
 3620 *--------------------------------
 3630 WRITE.CATALOG.SECTOR
 3640 LDA #WRITE WRITE THE SECTOR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 756 of 2550

Apple II Computer Info

 3650 STA COMMAND BACK JUST WHERE
 3660 JMP RWTS.CALLER IT CAME FROM
 3670 *--------------------------------
 3680 POINT.TO.FIRST.CATALOG.SECTOR
 3690 * GET THE FIRST TRACK AND SECTOR FROM THE VTOC
 3700 LDA VTOC.BUFFER+1
 3710 STA CATALOG.BUFFER+1
 3720 LDA VTOC.BUFFER+2
 3730 STA CATALOG.BUFFER+2
 3740 RTS
 3750 *--------------------------------
 3760 DISPLAY.ARRAY
 3770 LDA #ZERO START AT
 3780 STA MON.CV TOP OF
 3790 JSR MON.VTAB SCREEN
 3800 LDA ACTIVE.ELEMENT
 3810 SEC
 3820 SBC #LINE.COUNT/2
 3830 BPL .1 IF RESULT IS +, USE IT
 3840 LDA #ZERO OTHERWISE, USE ZERO
 3850 .1 TAX X KEEPS TRACK OF
 3860 .2 TXA WHERE WE ARE
 3870 CMP ACTIVE.ELEMENT
 3880 BNE .3
 3890 PHA
 3900 JSR MON.SETINV INVERT ACTIVE ELEMENT
 3910 PLA
 3920 .3 JSR POINT.TO.A SET POINTER
 3930 BCS .5 .CS. IF AT END OF TABLE
 3940 JSR INTERPRET.ENTRY WRITE A LINE
 3950 LDA #RETURN
 3960 JSR MON.COUT1
 3970 JSR MON.SETNORM RESTORE NORMAL
 3980 INX
 3990 LDA MON.CV
 4000 CMP #LINE.COUNT END OF SCREEN?
 4010 BCC .2 IF NOT, DO ANOTHER LINE
 4020 .5 JSR MON.CLREOP CLEAR TO END OF PAGE
 4030 JSR MON.SETNORM JUST IN CASE
 4040 BIT MOVING.FLAG
 4050 BPL .6
 4060 JSR SHOW.MOVING.FLAG IF MOVING
 4070 .6 RTS
 4080 *--------------------------------
 4090 INTERPRET.ENTRY
 4100 LDY #ZERO
 4110 LDA (POINTER),Y DELETED?
 4120 BPL .1 MINUS IF YES
 4130 LDA #$AD -
 4140 BMI .3 ...ALWAYS
 4150 .1 LDY #2
 4160 LDA (POINTER),Y LOCKED?
 4170 BPL .2 MINUS IF YES
 4180 LDA #$AA *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 757 of 2550

Apple II Computer Info

 4190 BMI .3 ...ALWAYS
 4200 .2 LDA #SPACE NEITHER DELETED NOR LOCKED
 4210 .3 JSR MON.COUT1
 4220 LDY #2
 4230 LDA (POINTER),Y GET FILE TYPE
 4240 AND #$7F MAKE POINTER
 4250 LDY #7 INTO DOS'S
 4260 ASL TYPE TABLE
 4270 .4 ASL (ROUTINE BORROWED
 4280 BCS .5 FROM DOS, $ADE8-ADF9)
 4290 DEY
 4300 BNE .4
 4310 .5 LDA DOS.TYPTABL,Y
 4320 JSR MON.COUT1 DISPLAY TYPE
 4330 LDA #SPACE
 4340 JSR MON.COUT1
 4350 LDY #$21
 4360 LDA (POINTER),Y SET UP FOR
 4370 STA $44 ROUTINE TO
 4380 INY DISPLAY FILE
 4390 LDA (POINTER),Y SIZE
 4400 STA $45
 4410 JSR DOS.SIZEOUT DO IT
 4420 LDA #SPACE
 4430 JSR MON.COUT1
 4440 LDY #3
 4450 .6 LDA (POINTER),Y GET A CHARACTER
 4451 CMP #SPACE CONTROL?
 4452 BCS .7 NO, GO ON
 4453 AND #$7F YES, MAKE IT INVERSE
 4460 .7 JSR MON.COUT1 DISPLAY IT
 4470 INY
 4480 CPY #33 DONE WITH FILE NAME?
 4490 BCC .6
 4500 RTS
 4510 *--------------------------------
 4520 SHOW.MOVING.FLAG
 4530 LDY #5 PUT INVERSE
 4540 .1 LDA QMOVING,Y "MOVING" AT
 4550 STA CORNER,Y BOTTOM OF
 4560 DEY SCREEN
 4570 BPL .1
 4580 RTS
 4590 *--------------------------------
 4600 RWTS.CALLER
 4610 LDA SLOT TRANSFER
 4620 STA IOB.SLOT VALUES
 4630 LDA DRIVE INTO
 4640 STA IOB.DRIVE IOB
 4650 LDA VOLUME
 4660 STA IOB.VOLUME
 4670 LDA TRACK
 4680 STA IOB.TRACK
 4690 LDA SECTOR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 758 of 2550

Apple II Computer Info

 4700 STA IOB.SECTOR
 4710 LDA COMMAND
 4720 STA IOB.COMMAND
 4730 LDA BUFFER
 4740 STA IOB.BUFFER
 4750 LDA BUFFER+1
 4760 STA IOB.BUFFER+1
 4770 LDA #$00
 4780 STA IOB.ERROR
 4790 *
 4800 LDY #IOB LOAD IOB
 4810 LDA /IOB ADDRESS
 4820 JSR DOS.RWTS CALL RWTS
 4830 LDA #$00
 4840 STA PREG SOOTHE MONITOR
 4850 BCS ERROR.HANDLER
 4860 RTS
 4870 *--------------------------------
 4880 ERROR.HANDLER
 4890 LDA #$87 BELL
 4900 JSR MON.COUT1 RING
 4910 JSR MON.COUT1 ING
 4920 JSR MON.COUT1 ING
 4930 LDA #23
 4940 STA MON.CV USE LINE BELOW DISPLAY
 4950 JSR MON.VTAB
 4960 LDX #8
 4970 JSR DOS.PRNTERR DISPLAY "I/O ERROR"
 4980 JMP DOS.RESTART EXIT PROGRAM
 4990 *--------------------------------
 5000 BUILD.ARRAY.TABLE
 5010 LDA #CATALOG.ARRAY SET FIRST ENTRY
 5020 STA ARRAY.TABLE TO POINT TO
 5030 LDA /CATALOG.ARRAY START OF
 5040 STA ARRAY.TABLE+1 ARRAY
 5050 LDX #2
 5060 .1 LDA ARRAY.TABLE-2,X MAKE EACH
 5070 CLC SUCCESSIVE
 5080 ADC #ENTRY.LENGTH ENTRY $23
 5090 STA ARRAY.TABLE,X LARGER THAN
 5100 LDA ARRAY.TABLE-1,X THE LAST
 5110 ADC #ZERO
 5120 STA ARRAY.TABLE+1,X
 5130 INX
 5140 INX
 5150 CPX #$FE 127 ENTRIES YET?
 5160 BNE .1
 5170 LDA #ZERO END TABLE
 5180 STA ARRAY.TABLE,X WITH TWO
 5190 STA ARRAY.TABLE+1,X ZEROES
 5200 RTS
 5210 *--------------------------------
 5220 POINT.TO.A
 5230 ASL MAKE (A) INTO INDEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 759 of 2550

Apple II Computer Info

 5240 TAY
 5250 LDA ARRAY.TABLE,Y CHECK FOR TWO
 5260 ORA ARRAY.TABLE+1,Y CONSECUTIVE
 5270 BEQ .1 ZERO BYTES
 5280 LDA ARRAY.TABLE,Y
 5290 STA POINTER PUT TABLE ENTRY
 5300 LDA ARRAY.TABLE+1,Y INTO POINTER
 5310 STA POINTER+1
 5320 CLC
 5330 RTS
 5340
 5350 .1 SEC END OF TABLE
 5360 RTS
 5370 *--------------------------------
 5380 CHECK.FOR.END.OF.ARRAY
 5390 * RETURNS CARRY SET IF AT END
 5400 * " " CLEAR IF NOT
 5410 LDA ACTIVE.ELEMENT
 5420 CLC
 5430 ADC #1
 5440 CMP NUMBER.OF.ELEMENTS
 5450 RTS
 5460 *--------------------------------
 5470 CHECK.FOR.BEGINNING.OF.ARRAY
 5480 LDA ACTIVE.ELEMENT
 5490 BNE .1
 5500 SEC ACTIVE = 0, WE ARE AT BEGINNING
 5510 RTS
 5520
 5530 .1 CLC NONZERO, WE'RE OKAY
 5540 RTS
 5550 *--------------------------------
 5560 MOVE.ELEMENT.UP
 5570 LDA ACTIVE.ELEMENT
 5580 ASL MAKE INDEX INTO TABLE
 5590 TAX
 5600 LDY #2 DO THIS TWICE, FIRST LO, THEN HI
 5610 .1 LDA ARRAY.TABLE,X
 5620 PHA
 5630 LDA ARRAY.TABLE+2,X
 5640 STA ARRAY.TABLE,X
 5650 PLA
 5660 STA ARRAY.TABLE+2,X
 5670 INX NOW DO HIGH BYTES
 5680 DEY
 5690 BNE .1 DONE?
 5700 RTS
 5710 *--------------------------------
 5720 MOVE.ELEMENT.DOWN
 5730 LDA ACTIVE.ELEMENT
 5740 ASL
 5750 TAX
 5760 LDY #2
 5770 .1 LDA ARRAY.TABLE,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 760 of 2550

Apple II Computer Info

 5780 PHA
 5790 LDA ARRAY.TABLE-2,X
 5800 STA ARRAY.TABLE,X
 5810 PLA
 5820 STA ARRAY.TABLE-2,X
 5830 INX
 5840 DEY
 5850 BNE .1
 5860 RTS
 5870 *--------------------------------
 5880 QMOVING
 5890 * INVERSE "MOVING"
 5900 .HS 0D0F16090E07
 5910 *--------------------------------
 5920 SLOT .BS 1 (USUALLY 6)
 5930 DRIVE .BS 1 (USUALLY 1)
 5940 VOLUME .BS 1 (0 = ANY)
 5950 TRACK .BS 1 (USUALLY $11)
 5960 SECTOR .BS 1 (0 TO F)
 5970 BUFFER .BS 2 (VARIES)
 5980 COMMAND .BS 1 (1 OR 2)
 5990
 6000 NUMBER.OF.ELEMENTS .BS 1 (1 TO N)
 6010 ACTIVE.ELEMENT .BS 1 (0 TO N-1)
 6020 MOVING.FLAG .BS 1 (0 OR FF)
 6030 *--------------------------------
 6040 END.OF.PROGRAM
 6050
 6060 VTOC.BUFFER .EQ END.OF.PROGRAM
 6070 CATALOG.BUFFER .EQ END.OF.PROGRAM+$100
 6080 ARRAY.TABLE .EQ END.OF.PROGRAM+$200
 6090 CATALOG.ARRAY .EQ END.OF.PROGRAM+$300

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 761 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:S.PdlWOIntAct.txt
==

 1000 *--------------------------------
 1010 * READ PADDLES
 1020 * PADDLE NUMBER IN A REGISTER
 1030 * USES A,X,Y REGISTERS
 1040 * RETURNS PADDLE VALUE IN Y REGISTER
 1050 *--------------------------------
 1060 * THIS PADDLE READ ROUTINE
 1070 * WILL PREVENT ALMOST ALL PADDLE
 1080 * INTERACTION PROBLEMS DUE TO
 1090 * ONLY 1 PADDLE TRIGGER FOR
 1100 * ALL PADDLES.
 1110 *--------------------------------
 1120 MON.PREAD .EQ $FB1E
 1130 *--------------------------------
 1140 READP AND #3 PDL 0 - 3
 1150 TAX
 1160 JSR MON.PREAD+3 MAKE SURE PADDLE IS READY
 1170 LDY #0
 1180 .1 DEY KLUDGE DELAY FOR
 1190 BNE .1 CIRCUIT READY
 1200 JMP MON.PREAD TRIGGER AND READ
 1210 * PADDLE RESULT IN Y REGISTER
 1220 *--------------------------------
 1230 DEMO LDA #0 READ PADDLE 0
 1240 STA $24 HTAB COLUMN 1
 1250 JSR READP
 1255 TYA VALUE TO A
 1260 JSR $FDDA PRINT VALUE IN HEX
 1270 INC $24 LEAVE SPACE ON SCREEN
 1280 LDA #1 READ PADDLE 1
 1290 JSR READP
 1295 TYA VALUE TO A
 1300 JSR $FDDA PRINT VALUE IN HEX
 1310 JMP DEMO AGAIN AND AGAIN...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 762 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:S.RelocAmperMac.txt
==

 1000 .MA VECTOR
 1010 JSR $FF58
 1020 :1 TSX
 1030 LDY $100,X
 1040 DEX
 1050 LDA $100,X
 1060 CLC
 1070 ADC #:3-:1+1
 1080 BCC :2
 1090 INY
 1100 :2 .DO ']1='Y CTRL-Y?
 1110 STA $3F9
 1120 STY $3FA
 1130 LDA #$4C
 1140 STA $3F8
 1150 .ELSE OR &?
 1160 STA $3F6
 1170 STY $3F7
 1180 LDA #$4C
 1190 STA $3F5
 1200 .FIN
 1210 RTS
 1220 :3
 1230 .EM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 763 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:S.RelocAmpersnd.txt
==

 1000 *--------------------------------
 1010 STACK .EQ $100
 1020 AMPER.VECTOR .EQ $3F5
 1030 RETURN .EQ $FF58
 1040 HOME .EQ $FC58
 1050 *--------------------------------
 1060 .OR $300
 1070 .TF B.AMPEXAMPLE
 1080 *--------------------------------
 1090 SETUP JSR RETURN PUT CURRENT ADDR ON STACK
 1100 .1 TSX GET STACK POINTER FOR OFFSET
 1110 LDY STACK,X MSB OF ADDR ON STACK
 1120 DEX
 1130 LDA STACK,X LSB
 1140 CLC
 1150 ADC #START-.1+1 OFFSET TO ENTRY POINT
 1160 BCC .2
 1170 INY (Y) IS HI BYTE
 1180 .2 STA AMPER.VECTOR+1 LSB OF ENTRY ADDRESS
 1190 STY AMPER.VECTOR+2 MSB
 1200 LDA #$4C JMP OPCODE
 1210 STA AMPER.VECTOR
 1220 RTS
 1230 *--------------------------------
 1240 START JSR HOME CLEAR SCREEN
 1250 NOP DO WHATEVER
 1260 NOP YOU LIKE
 1270 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 764 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:S.Screen.Tricks.txt
==

 1000 * S.SCREEN TRICKS
 1010 *--------------------------------
 1020 * FAST SCREEN CLEAR SUBROUTINE
 1030 *--------------------------------
 1040 GCLEAR LDA #0
 1050 .HS 2C SKIP OVER NEXT TWO BYTES
 1060 CLEAR LDA #$A0
 1070 SET LDY #119
 1080 .1 STA $400,Y LINES: 0 8 16
 1090 STA $500,Y 2 10 18
 1100 STA $600,Y 4 12 20
 1110 STA $700,Y 6 14 22
 1120 STA $480,Y 1 9 17
 1130 STA $580,Y 3 11 19
 1140 STA $680,Y 5 13 21
 1150 STA $780,Y 7 15 23
 1160 DEY
 1170 BPL .1
 1180 RTS
 1190 *--------------------------------
 1200 * SET SCREEN TO ALL VALUES
 1210 *--------------------------------
 1220 SETALL LDX #0
 1230 .1 TXA
 1240 JSR SET
 1250 INX
 1260 BNE .1
 1270 RTS
 1280 *--------------------------------
 1290 * ALTERNATE SCREEN UNTIL KEY PRESSED
 1300 *--------------------------------
 1310 ALTER LDA #$20 INVERSE BLANK
 1320 JSR SET
 1330 JSR CLEAR
 1340 LDA $C000
 1350 BPL ALTER
 1360 STA $C010
 1370 RTS
 1380 *--------------------------------
 1390 * FAST SCROLL UP SUBROUTINE
 1400 *--------------------------------
 1410 SCROLL LDY #119
 1420 .1 LDA $400,Y SAVE LINES: 0 8 16
 1430 PHA
 1440 LDA $480,Y MOVE 1>0, 9>8, 17>16
 1450 STA $400,Y
 1460 LDA $500,Y MOVE 2>1, 10>9, 18>17
 1470 STA $480,Y
 1480 LDA $580,Y MOVE 3>2, 11>10, 19>18

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 765 of 2550

Apple II Computer Info

 1490 STA $500,Y
 1500 LDA $600,Y MOVE 4>3, 12>11, 20>19
 1510 STA $580,Y
 1520 LDA $680,Y ET CETERA
 1530 STA $600,Y
 1540 LDA $700,Y
 1550 STA $680,Y
 1560 LDA $780,Y
 1570 STA $700,Y
 1580 PLA MOVE 8>7, 16>15
 1590 CPY #40
 1600 BCC .2 DISCARD OLD LINE 0
 1610 STA $780-40,Y
 1620 .2 DEY
 1630 BPL .1
 1640 RTS
 1650 *--------------------------------
 1660 * SCROLL AROUND, MOVING TOP LINE TO BOTTOM
 1670 *--------------------------------
 1680 SCR LDY #39 SAVE TOP LINE ON STACK
 1690 .1 LDA $400,Y
 1700 PHA
 1710 DEY
 1720 BPL .1
 1730 JSR SCROLL SCROLL SCREEN UP ONE LINE
 1740 LDY #0 STORE OLD TOP LINE
 1750 .2 PLA ON BOTTOM OF SCREEN
 1760 STA $7D0,Y
 1770 INY
 1780 CPY #40
 1790 BCC .2
 1800 RTS
 1810 *--------------------------------
 1820 * ROTATE SCREEN UNTIL KEY PRESSED
 1830 *--------------------------------
 1840 S JSR SCR SCROLL AROUND ONCE
 1850 LDA $C000 ANY KEY PRESSED?
 1860 BPL S NO, SCROLL AGAIN
 1870 STA $C010 YES, CLEAR STROBE
 1880 RTS ...AND RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 766 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:S.Tookit.Conv.txt
==

 1000 "TOOLKIT CONVERTER
 1010 "
 1020 "
 1030 "COMMENTS
 1040 REP/ SKP 1/*/A
 1050 REP/ SKP 2/L/A
 1060 REP/ ;/ /A
 1070 REP/;/*/A
 1080 "DIRECTIVES
 1090 REP/ EQU / .EQ /A
 1100 REP/ DW / .DA /A
 1110 REP/ ORG / .OR /A
 1120 REP/ DS / .BS /A
 1130 REP/ DCI / .AT /A
 1140 REP/ ASC / .AS /A
 1150 REP/ DFB / .DA #/A
 1160 REP/ CHN /*** CHN /A
 1170 "OPCODE TABS
 1180 REP/ ADC / ADC /A
 1190 REP/ AND / AND /A
 1200 REP/ ASL/ ASL/A
 1210 REP/ BIT / BIT /A
 1220 REP/ CMP / CMP /A
 1230 REP/ CPX / CPX /A
 1240 REP/ CPY / CPY /A
 1250 REP/ DEC / DEC /A
 1260 REP/ EOR / EOR /A
 1270 REP/ INC / INC /A
 1280 REP/ LDA / LDA /A
 1290 REP/ LDX / LDX /A
 1300 REP/ LDY / LDY /A
 1310 REP/ LSR/ LSR/A
 1320 REP/ ORA / ORA /A
 1330 REP/ ROL/ ROL/A
 1340 REP/ ROR/ ROR/A
 1350 REP/ SBC / SBC /A
 1360 REP/ STA / STA /A
 1370 REP/ STX / STX /A
 1380 REP/ STY / STY /A
 1390 REP/ BPL / BPL /A
 1400 REP/ BMI / BMI /A
 1410 REP/ BEQ / BEQ /A
 1420 REP/ BNE / BNE /A
 1430 REP/ BVS / BVS /A
 1440 REP/ BVC / BVC /A
 1450 REP/ BCC / BCC /A
 1460 REP/ BCS / BCS /A
 1470 REP/ JMP / JMP /A
 1480 REP/ JSR / JSR /A

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 767 of 2550

Apple II Computer Info

 1490 REP/ BRK/ BRK/A
 1500 REP/ CLC/ CLC/A
 1510 REP/ CLD/ CLD/A
 1520 REP/ CLV/ CLV/A
 1530 REP/ DEX/ DEX/A
 1540 REP/ DEY/ DEY/A
 1550 REP/ INX/ INX/A
 1560 REP/ INY/ INY/A
 1570 REP/ NOP/ NOP/A
 1580 REP/ PHA/ PHA/A
 1590 REP/ PLA/ PLA/A
 1600 REP/ PLP/ PLP/A
 1610 REP/ RTS/ RTS/A
 1620 REP/ SEC/ SEC/A
 1630 REP/ TAX/ TAX/A
 1640 REP/ TAY/ TAY/A
 1650 REP/ TSX/ TSX/A
 1660 REP/ TXA/ TXA/A
 1670 REP/ TXS/ TXS/A
 1680 REP/ TYA/ TYA/A
 1690 "ADDRESS MODES
 1700 REP" #>" #"A
 1710 REP" #<" /"A
 1720 "WRITE ON TEMP FILE
 1730 TEXT#F

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 768 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:S.Usr.Week.Fn.txt
==

 1000 *SAVE S.USR WEEK FUNCTION
 1010 *--------------------------------
 1020 * USR (X) = PEEK(X)+256*PEEK(X+1)
 1030 *--------------------------------
 1040 .OR $300 OR WHEREVER YOU WISH
 1050 *--------------------------------
 1060 USR LDA $9D CHECK RANGE
 1070 CMP #$91
 1080 BCS .1 ERROR
 1090 JSR $EBF2 CONVERT TO INTEGER IN $A0,A1
 1100 LDA $A0 PUT HIGH BYTE AFTER LOW BYTE
 1110 STA $A2
 1120 LDY #1
 1130 LDA ($A1),Y HIGH-ORDER BYTE
 1140 STA $9E HIGH BYTE OF MANTISSA
 1150 DEY
 1160 LDA ($A1),Y LOW-ORDER BYTE
 1170 STA $9F NEXT BYTE OF MANTISSA
 1180 SEC SIGN IS POSITIVE
 1190 LDX #$90 EXPONENT 2^16
 1200 JMP $EBA0 FINISH CONVERSION
 1210 .1 JMP $E199 "ILLEGAL QUANTITY" MESSAGE
 1220 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 769 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:TEST.USR.txt
==

dπ11,0:π12,3(iÑX:¢‚(37):∫X": ";Fn∫’(X)" = "‚(X)»256 ‚(X»1)Ox´105

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 770 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8209:DOS3.3:Toolkit.Conv.txt
==

"TOOLKIT CONVERTER
"
"
"COMMENTS
REP/ SKP 1/*/A
REP/ SKP 2/L/A
REP/ ;/ /A
REP/;/*/A
"DIRECTIVES
REP/ EQU / .EQ /A
REP/ DW / .DA /A
REP/ ORG / .OR /A
REP/ DS / .BS /A
REP/ DCI / .AT /A
REP/ ASC / .AS /A
REP/ DFB / .DA #/A
REP/ CHN /*** CHN /A
"OPCODE TABS
REP/ ADC / ADC /A
REP/ AND / AND /A
REP/ ASL/ ASL/A
REP/ BIT / BIT /A
REP/ CMP / CMP /A
REP/ CPX / CPX /A
REP/ CPY / CPY /A
REP/ DEC / DEC /A
REP/ EOR / EOR /A
REP/ INC / INC /A
REP/ LDA / LDA /A
REP/ LDX / LDX /A
REP/ LDY / LDY /A
REP/ LSR/ LSR/A
REP/ ORA / ORA /A
REP/ ROL/ ROL/A
REP/ ROR/ ROR/A
REP/ SBC / SBC /A
REP/ STA / STA /A
REP/ STX / STX /A
REP/ STY / STY /A
REP/ BPL / BPL /A
REP/ BMI / BMI /A
REP/ BEQ / BEQ /A
REP/ BNE / BNE /A
REP/ BVS / BVS /A
REP/ BVC / BVC /A
REP/ BCC / BCC /A
REP/ BCS / BCS /A
REP/ JMP / JMP /A
REP/ JSR / JSR /A

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 771 of 2550

Apple II Computer Info

REP/ BRK/ BRK/A
REP/ CLC/ CLC/A
REP/ CLD/ CLD/A
REP/ CLV/ CLV/A
REP/ DEX/ DEX/A
REP/ DEY/ DEY/A
REP/ INX/ INX/A
REP/ INY/ INY/A
REP/ NOP/ NOP/A
REP/ PHA/ PHA/A
REP/ PLA/ PLA/A
REP/ PLP/ PLP/A
REP/ RTS/ RTS/A
REP/ SEC/ SEC/A
REP/ TAX/ TAX/A
REP/ TAY/ TAY/A
REP/ TSX/ TSX/A
REP/ TXA/ TXA/A
REP/ TXS/ TXS/A
REP/ TYA/ TYA/A
"ADDRESS MODES
REP" #>" #"A
REP" #<" /"A
"WRITE ON TEMP FILE
TEXT#F

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 772 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:Autocat.For.LC.txt
==

Automatic CATALOG in the Language CardBill Morgan

It has been pointed out to me (loudly!) that I failed to mention the
Language Card version of the Macro Assembler in my Automatic CATALOG
routine last June. Well, here's what you need to do:

Assemble the patch with an origin of $DF00. This is a blank page
inside the assembler.

BLOAD PATCH.

$D46D:FF DE In the Language Card version, the Escape code jump table
is at $D467-D482.

BSAVE S-C.ASM.MACRO.LC.MOD,A$D000,L$231F

That should take care of it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 773 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:CatalogArranger.txt
==

Catalog ArrangerBill Morgan

We all have the problem: a disk starts getting full, we delete some
files to make space, and our new files (from our latest project) end
up scattered all through the catalog. A disk that has been used for a
few months ends up with a thoroughly shuffled catalog.

There are programs available to alphabetize a catalog, but that's not
always what I want to do. I want HELLO at the beginning, utilities
next (assembler, text editor, ES-CAPE, disk zap, etc.), then various
projects. The files for each project should all be grouped together,
with the current job at the end of the catalog.

I decided that what I want to be able to do is to "pick up" one entry
in the catalog, move it to exactly where I want it, put it down, then
go get another one and put that one in its place, and so on. Here's
my program to do just that.

Using Catalog Arranger

First BLOAD CATALOG ARRANGER, then insert the disk you want to modify.
When you type CALL 2051 (or 803G from the monitor) the disk will spin
for a little while as the catalog is read into a sort of string array.
The first 22 entries in the catalog will then be displayed, with the
first entry shown in inverse. You may notice that deleted files are
also displayed, with a minus sign before the file type and a stray
inverse character out at the end of the file name. Control characters
are also displayed in inverse.

The inverted entry is a cursor showing the "active entry". If you
press the arrow keys, this cursor will move up and down the display.
When the cursor reaches the center of the screen, it will stop moving
and the display will scroll up and down around it.

When you have the cursor on an item you wish to move, press RETURN.
The word "MOVING" will appear in inverse in the lower left corner of
the screen. When this "moving flag" is on, the entry in the cursor
will be carried wherever the cursor goes. When it reaches the place
where you want to put it, press RETURN again. The moving flag will
disappear and that entry will stay where you just put it.

There are a couple of other commands as well. Pressing the "B" key
moves the cursor to the beginning of the catalog, and the "E" key
moves it to the end. If the moving flag is on, the item in the cursor
will be carried right along. There is also an "R" command, to read in
a new catalog. This is useful if you want to reread the current
catalog and start all over again, or to move on to another disk.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 774 of 2550

Apple II Computer Info

When you have the catalog arranged just the way you want it, press the
"W" key to write the revised catalog onto the disk. Press ESC when
you want to exit the program.
Catalog Organization

If you are familiar with the internal structure of an Apple DOS
catalog, you can skip ahead to the section labelled "How Catalog
Arranger Works".

The first step in reading a disk catalog is to read the VTOC (Volume
Table of Contents), which is always located at track $11, sector 0.
The second and third bytes in the VTOC (offsets 1 and 2) contain the
track and sector of the start of the catalog. On a standard DOS 3.3
disk these always point to track $11, sector $0F, and the rest of the
catalog is always on track $11. These locations can be changed,
however. For example, some programs to convert DOS 3.2 disks to DOS
3.3 leave the first catalog sector at track $11, sector $0C.
Therefore, it is safest to follow the pointers rather than assuming
that the catalog will always be in its usual place.

In a catalog sector, the first byte is not used. The second and third
bytes point to the next track and sector of the catalog. If the track
byte is zero, it means that there is no next sector, this is the end
of the catalog. The fourth through the eleventh bytes are not used.
The actual catalog information starts at the twelfth byte of the
sector (offset $B) and fills the rest of the sector. Each catalog
entry takes 35 bytes, so there are 7 entries in each sector.

The first two bytes of an entry contain the track and sector of the
file's track/sector list. If the first byte is $FF, the file has been
deleted. In that case, the track number has been moved to the end of
the file name. If the first byte is zero, this entry has never been
used, and we are past the end of the catalog.

The third byte tells the file type and whether the file is locked.
Here are the type codes:

00 -- TEXT file
01 -- INTEGER BASIC program
02 -- APPLESOFT BASIC program
04 -- BINARY file
08 -- S file -- not used
10 -- R file -- DOS Toolkit relocatable object file
20 -- A file -- Lazer Pascal source file
40 -- B file -- Lisa assembler source file

If the file is locked, $80 is added to the type code.

The next 30 bytes are the file name. If the name is less than 30
characters long, it is filled out with spaces (ASCII $A0).

The last two bytes are the length of the file, in sectors. This is
expressed as first low byte, then high byte.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 775 of 2550

Apple II Computer Info

Here's a diagram:

 0 1 2 3 32 33 34
 --------------------------------- --------------------------
| Track | Sector | Type | Name | Len - Lo | Len - Hi |
 --------------------------------- --------------------------

You can find more information on the structure of the catalog in the
DOS Manual on pages 129-134 or in the book Beneath Apple DOS on pages
4-4 through 4-7. It is impossible to recommend Beneath Apple DOS too
highly; if you have any interest in the internals of DOS, get that
book.

How Catalog Arranger Works

After initialization, the program builds a table of pointers into the
storage area. We can build this table in advance because we know that
all entries will be the same length. The catalog is then read into
the array, each entry being placed according to the next pointer in
the table. The end of the table is then marked with two zero bytes
after the last element used.

The next step is to display the entries in the array. The display
routine starts by checking ACTIVE.ELEMENT to see whether to start the
display with the first element, or somewhere in the middle. It then
scans up the table, displaying each catalog entry and inverting the
one corresponding to ACTIVE.ELEMENT. The routine that actually
displays each line borrows a couple of subroutines in DOS to decode
the file type and display the file size.

When MOVING.FLAG is off, the arrow, B, and E commands simply change
the value of ACTIVE.ELEMENT. When MOVING.FLAG is on, the arrows swap
entries in the table up or down, and B and E repeatedly swap entries
to move ACTIVE.ELEMENT to the beginning or end.

When writing the catalog back onto the disk we have to be careful to
put the catalog sectors back in the same place they came from, since
we can't assume that the catalog came from track $11. We do this by
reading the first catalog sector into the buffer, scanning up the
pointer table and moving the indicated entries into the catalog
buffer, and then writing the buffer to the same disk sector it came
from. We then get the track and sector pointers (which haven't been
changed) from the buffer and use them to read the next sector. This
whole process ends when we run out of entries in the pointer table.

Limitations and Additional Features

There are a few points that need more work:

Disk error handling. The program just prints "I/O ERROR" and stops.
It needs a real error handler.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 776 of 2550

Apple II Computer Info

This program will handle catalogs with up to 127 entries. A standard
disk has no more than 105, but some catalogs are modified to have
more.

I plan to add several more commands to Catalog Arranger:

Alphabetic sort. This would be useful too, maybe just from the cursor
to the end of the catalog. That would keep the utilities in place at
the beginning.

Sort by file type.

Delete and undelete files.

Move deleted files to the end.

Rename files by editing the file name in the cursor. That would be a
lot easier than typing entire file names twice, as RENAME requires.

Display and allow changing the values of SLOT and DRIVE.

Display the value of ACTIVE.ELEMENT and NUMBER.OF.ENTRIES, and maybe
free sectors on the bottom line.

Write the catalog out to the disk as a text file.

Adding many of these features would also require reworking the command
structure (which wouldn't hurt anyway!)

Here is a summary of the commands:

 B -- Move the cursor to the beginning of the catalog.
 E -- Move the cursor to the end of the catalog.
 R -- Read the catalog from the disk.
 W -- Write the catalog to the disk.
 --> -- Move the cursor down one item.
 <-- -- Move the cursor up one item.
RETURN -- Toggle the moving flag on or off.
 ESC -- Exit the program.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 777 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 1 October, 1982

In This Issue...

Catalog Arranger . 2
So You Never Need Macros!. 17
Converting ToolKit Source to S-C 21
Correction to Bob's Fast Screen Scroll 28
 30-31
Another Lower Case Patch for S-C Macro 32
Writing for AAL . 32

This issue of AAL is late. No sooner do I warn you of one magazine
that is behind in their publication schedule, than I get behind
myself! We plan to catch up with the next issue.

I just returned from 8 days in California. Some of you know that I am
on the board of directors of the International Apple Core. After the
board meeting I contacted a few long-time customers. I also attended
the San Francisco Apple Corps Swap Meet.

I looked up Peter Meyer, author of SDS's "Routine Machine"; together
we had dinner at the home of Pat Caffrey, co-author of "Doubletime
Printer". Peter is now working on the fourth volume of additional
Applesoft-extenders for his Routine Machine. I also spent two half-
days with Henry Spragens, well known for his early contributions to
Apple graphics lore. He bought his (first) Apple long ago in
Kentucky, where he was one of the original members of LAUGHS
(Louisville Apple User's Group for Hardware and Software!). Now he
works at Beck-Tech in Berkeley, doing exotic things in the world of
synthesized video graphics with the Apple and other machines.

A few weeks earlier I spent the afternoon with DeWayne Van Hoozer in
Houston, at the HAAUG meeting (you're right, it is pronounced "hog"!).
DeWayne's Genasys project is nearing the publication stage, so you'll
probably be hearing more about it soon. I am looking forward to some
more time in Houston around Halloween, at the AppleFest there. Look
me up if you are there, in or near the International Apple Core booth.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 778 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:SC.LC.Patch.txt
==

Another Lower Case Patch for S-C Macro.....Bob Sander-Cederlof

Graeme Scott pointed out another oversight of mine. All lower case
characters inside macro definitions are currently converted to upper
case, whether or not you want it that way. The following patches will
fix it, assuming you have already installed the patches from AAL
August 1982 page 28.

Motherboard version: $275E:BA 31

Language Card version: $E8AA:06 F3

I found another problem: ".EM" and ".eM" work, but ".em" and ".Em" do
not. The following patches make them work too.

Motherboard version:

$31DB:B9 00 02 C9 60 90 02 29 5F 60
$2979:20 DB 31

Language Card version:

$F327:B9 00 02 C9 60 90 02 29 5F 60
$EAC5:20 27 F3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 779 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:Scroll.Correx.txt
==

Correction to Bob's Fast Screen Scroll............Jim Church

If you tried the fast scroll from Bob Sander-Cederlof's article "Some
Fast Screen Tricks" from the September issue, you might have been
surprised. Bob goofed!

He copied characters from line 16 into line 15 before moving line 15
to 14; ditto with lines 8, 7, and 6. This in spite of his special
attempt to save lines on the stack. The problem is that he ran the
loop backwards from 119 to 0. If you change it to run from 0 up to
119, the scroll works correctly.

Change lines 1410, 1620, and 1630, and add line 1625:

1410 SCROLL LDY #0

1620 .2 INY
1625 CMP #120
1630 BCC .1

Bob, you are going to get a lot of mail (unless they are asleep)!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 780 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:SQ.Macro.txt
==

So You Never Need Macros!..................Bob Sander-Cederlof

I have said it many times myself, "I don't need macros!" But now that
I have them, I seem to find more and more uses for them. Not the
traditional uses, to generate common sequences of opcodes. I am using
them to build tables of data, rather than typing in line after line of
very similar stuff.

I have been working some more on the Prime Number Generator program.
You may remember the series: first the articles in BYTE Magazine,
then my faster version in an early Apple Assembly Line, then Charles
Putney's version at double my speed. Now Tony Brightwell has cut
Charlie's time nearly in half. (His program will probably appear next
month.) Anyway, I have done some more investigation.

One approach required a precomputed table of the squares of the odd
numbers from 1 to 127. An easy way to enter this table might be:

.DA 1*1,3*3,5*5,7*7,9*9

.DA 11*11,13*13,15*15,17*17
et cetera

I had type about that much when I said, "There has to be an easier
way." I made up the following macro definition:

 .MA SQ
:0 .EQ]1
:1 .EQ]1+2
:2 .EQ]1+4
:3 .EQ]1+6
:4 .EQ]1+8
:5 .EQ]1+10
:6 .EQ]1+12
:7 .EQ]1+14
 .DA :0*:0,:1*:1,:2*:2,:3*:3
 .DA :4*:4,:5*:5,:6*:6,:7*:7
 .DO]2<8
 >SQ]1+16,]2+1
 .FIN
 .EM

Then the single line of code

 2200 >SQ 1,1

generated all 64 squares for me.

How does it work? Good question.... The eight .EQ lines create 8
private labels with the values of 8 consecutive odd numbers starting

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 781 of 2550

Apple II Computer Info

with whatever the first parameter from the call line happens to be.
Line 2200 has the first parameter "1", so the private labels will have
values of 1, 3, 5, 7, 9, 11, 13, and 15 respectively. The two .DA
lines generate the squares of these 8 values.

The next three lines are the tricky part. If the second parameter has
a value less than 8 then the line between .DO and .FIN is assembled.
It is a nested call on the SQ macro. Only this time the first
parameter is 16 greater than it was, and the second parameter is one
greater. After going through this nesting process 7 times, we will
have generated 8 sets of 8 values each. When the second parameter has
worked its way up to 8, the nested calls will exit in turn, and the
table is finished.

If you have the macro expansion listing option on during assembly, the
expanded form takes 2 1/2 pages

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 782 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:Toolkit.2.SC.txt
==

Converting ToolKit Source to S-C...........Bob Sander-Cederlof

I had the source code for FIG-FORTH on the Apple, entered by some
members of the Dallas Apple Corps. For some reason they decided to
use the DOS ToolKit Assembler when they typed in all those lines.
Naturally, I had a strong desire to convert the source files to the
format of my S-C Macro Assembler.

The first step, and one of the easiest in this case, is to figure out
how to read the ToolKit source files into S-C. ToolKit source files
are standard DOS text files (type "T"). There are no line numbers.
S-C allows such files to be read in by typing the following commands:

NEW
AUTO
<<<<<EXEC filename (where "<" stands for backspace)
<<<<<MANUAL

"NEW" makes sure there are no lingering program lines from a previous
load. "AUTO" starts generating automatic line numbers. The first
line number generated will be 1000. Five backspaces will back up the
cursor to the beginning of the input line, so the EXEC command can be
typed. As the file is EXECing, each line will be read in with a
prefixed line number. After the whole file has been read, five
backspaces allow you to type the "MANUAL" command, thereby turning off
the AUTO mode.

At this point you can LIST the program in memory and see what a
ToolKit file looks like when you are using the S-C editor. You could
use the EDIT and REPLACE commands to make all the necessary changes,
and SAVE the converted program on a new file.

I was able to automate much of the conversion process, using an EXEC
file of REPLACE commands. Several of you readers, including Graeme
Scott of DFX fame, have sent me similar EXEC files for converting LISA
source code.

Before I lay out the whole file, lets look at a simple case. The
people who typed in the ToolKit source decided to separate individual
sections of code with "SKP 1" lines. This causes a blank line on the
assembly listing. S-C does not have an equivalent directive, but then
again I personally don't like blank lines on my listings. (They
always make me think my printer is broken!) Anyway, the command REP /
SKP 1/*/A replaces all of the skips with empty comment lines. If you
don't even want to see the asterisk on the line, use REP / SKP 1/ /A.

Notice that there is one space before "SKP" in the command above.
ToolKit uses space as a tab character, and so the source file does not
have nice neat columns for each field. If you list it with a regular

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 783 of 2550

Apple II Computer Info

text editor, the opcode field winds around like a snake; it always
starting one space after the label, or in column 2 if there is no
label. S-C uses control-I for a tab character, because control-I is
the ASCII tab character. More on this later.

There were also a number of " SKP 2" lines. I decided to turn these
into "*--------" lines, to indicated a greater separation than a mere
empty comment line would.

ToolKit uses the semi-colon in column 1 to indicate a comment line; S-
C uses an asterisk. ToolKit also uses a semi-colon to begin a comment
field on a source line; S-C does not require any such character. The
following two replace commands will make the necessary changes:

REP / ;/ /A
REP /;/*/A

The commands have to be in that order, or else you end up with an
asterisk starting comment fields when they aren't necessary. Two
lines had ";" in as ASCII literal constant. I had to hand-re-correct
them later.

The most important changes are the directives. The files I was
converting needed the following changes:

REP / EQU / .EQ /A
REP / DW / .DA /A
REP / ORG / .OR /A
REP / DS / .BS /A
REP / DCI / .AT /A
REP / DFB / .DA #/
REP / ASC / .AS /

Immediate address mode also presented a problem. ToolKit uses the
form "LDA #<SSS" to indicate the high byte, and "LDA #>SSS" to
indicate the low byte. S-C uses "LDA /SSS" for the high byte, and
"LDA #SSS" for the low byte. I fixed them with:

REP " <#" /"A
REP " >#" #"A

Now about those snaky columns.... I wanted to somehow put a tab
before each opcode field, and before each comment field. I thought,
"Why not just use the replace command to put in a control-I?":

REP / EQU /^I.EQ /A (where ^I means I typed control-I)
et cetera

My first problem was that typing controll-I when entering the REPLACE
command made a tab. I overcame that by typing the sequence "control-O
control-I". Control-O makes the next character become part of the
input line regardless of its normal meaning. That worked, but....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 784 of 2550

Apple II Computer Info

My second problem was that getting a control-I into the source program
did not make it a tab. Somehow the control-I had to be "executed".
So I wrote the converted program on a text file, this time with line
numbers, and then EXECed it back in.

TEXT# filename
EXEC filename

That "executed" the control-I's, and I had tabs. But....

My third problem was that I wanted to save all the REPLACE commands as
an EXEC file, so that I did not have to manually retype them for every
file to be converted. When I EXECed the REPLACE command file, the
control-I's were executed immediately! I had to change my replace
commands to include both a control-O and a control-I, so that the
control-I in the REPLACE command would be read in from the EXEC file
but not executed until it was later EXECed from the temporary source
text file.

Still with me? If not, keep reading anyway, because I will show you
what I mean.

Using S-C, I entered the following "program":

In the listing above, I have used "^O" to mean "control-O"; "^I" to
mean "control-I"; and "^[" to mean "ESCAPE key". In order to get
"control-O control-I" in a line, I had to type "control-O control-O
control-O control-I".

Lines 1000-1030, 1080,1130, 1170,1690, and 1720 begin with a quotation
mark. These are comment lines to the S-C input routine; they print on
the screen when they are read from the EXEC file, but are otherwise
ignored.

I saved the file as is using "SAVE TOOLKIT CONVERTER", in case I might
want to modify it again. And I did, again and again and again. Then
I wrote it on a text file without line numbers using "TEXT TKC".

Here is the sequence of steps I went through for each source file:

NEW
AUTO
1000 * filename
<<<<<EXEC filename,D2 (where "<" means "backspace")
<<<<<MAN
EXEC TKC,D1
EXEC F
LIST 1000 (to see what filename to use)
SAVE filename

There are three EXEC commands above; the first reads on the ToolKit
source file; the second executes all the REPLACE commands, and writes
the resulting source on a temporary text file named "F"; the third

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 785 of 2550

Apple II Computer Info

reads in that temporary text file to "execute" the control-I tabs and
the "ESC-L" lines.

After all the files were converted, I built a little assembly control
file like this:

1000 .IN FILE1
1010 .IN FILE2
 et cetera

I also added a ".TF" directive after the ".OR" line, to put the
assembled code on a DOS binary file.

The first assembly did not go smoothly, because of lines containing
"ROR A". In the four shift instructions, ToolKit requires the symbol
"A" to signify Accumulator mode. S-C uses a blank operand field to
signify Accumulator mode, and thinks "ROR A" means to shift the memory
location labeled "A".

Once I was able to assemble with no errors, I compared the object code
produced with that produced by ToolKit. They did not match! There
were two lines in the ToolKit source causing the problem:

 DW LIT,$FFFF
 L1495 DFB $C1,$DB

The "DW" directive in ToolKit does not recognize multiple items
separated by commas; therefore the ",$FFFF" was ignored. The
following line in the source was "DW $FFFF". The S-C form ".DA
LIT,$FFFF" does assemble both items, so the $FFFF constant was
duplicated.

The "DFB" directive in ToolKit recognizes multiple items. The
conversion I did rendered the line into "L1495 .DA #$C1,$DB", so the
$DB item became a 16-bit value. I changed the line to "L1495 .DA
#$C1,#$DB" and all was well.

If you have a large Toolkit source to convert, chances are that you
will find one or two more things to change that are not included
above. Let me know what you come up with.

As I mentioned earlier, the same general techniques work when you have
a LISA file to convert. If you can get the source code on a text
file, with all tokens expanded, then you can read it into S-C and
begin converting. If you want a challenging assignment, how about
writing a program which will read LISA type-B source files and convert
them to S-C type-I source files, all automatically!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 786 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:USR.Week.txt
==

Using USR for a WEEK.......................Bob Sander-Cederlof

The "&" and CALL statements are not the only ways to use machine
language to enhance the Applesoft Language. USR is a third way, and
provides an easy way to return a single value.

How many times have you seen the Applesoft code "PEEK(X) +
256*PEEK(X+1)"? It is used over and over again. What it does is look
in memory at X and X+1 for a 16-bit value (stored low-byte first as
are most 16-bit values in the 6502 environment). The high byte is
multiplied by 256, and the low byte added in. Wouldn't it be nice to
have a USR function which would convert a two-byte value directly?
This function is sometimes called "WEEK", meaning "Word pEEK" (hence
the awful pun in the title above).

When I was in California last week someone categorically and
unequivocally assured me that it is impossible to use the USR function
with a value of 32768. I tried it with the WEEK function, and it
works fine. So much for the assurances! I think his problem was that
he followed the instructions in the Applesoft manual, which are
somewhat incomplete.

Here is the USR code, set up to run at $300. However, it is "run-
anywhere" code, because there are no internal references. You do have
to tell Applesoft where it starts, though. Line 100 in the example
shows how to do that. Location 11 and 12 must be set to the low- and
high-bytes of the address of the USR code.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 787 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8210:Articles:Writing.4.AAL.txt
==

Writing for AAL............................Bob Sander-Cederlof

More and more of you are expressing interest in contributing articles
to this newsletter. Fine with me!

I accept them in almost any form. It is by far the best if any source
programs are on disk in S-C format, so I don't have to type them in.
Other formats are OK, but more trouble.

I use my own word processor, which accepts standard DOS text files or
Applewriter files. If you have a large article, a copy on disk saves
a lot of time here.

I receive more articles than I can use, but if yours is as good as you
think it is, I will probably print it. I usually spend a lot of time
checking the programs and editing the articles before I print them.

Of course, I will return any disks you send.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 788 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:Apple.Talker.txt
==

A Sight of Sound.............Herbert A. & Herbert L. McKinstry

The Apple-Talker program that came on our disk for the S-C Assembler
II Version 3.2 does some interesting things that go beyond what it was
designed to do. When we tried it out we played a recorded message
from our cassette recorder into the Apple memory and were amazed at
the computer rendering of the original words.

The actual quality of reproduction leaves something to be desired, so
when someone said "Let's see what it sounds like," and another said
"Let's hear what it looks like," we snooped around the program listing
and found that what we were hearing was stored on Hi-Res graphics page
one. We looked at it by typing in $C050:0 and $C057:0. The sight of
the sound was not too loud, nor was it even obvious that what we were
looking at was the sound that we had heard.

If there were a pitch there, we should see some kind of pattern. We
recorded a pitch, and saw that the sound was noisy. So then we
entered some sense into memory by creating a repeating pattern, and
listened to the patterns. We tried some like this:

*2000:FF FF 00 00 N 2004<2000.27FFM
*2800:FF 00 N 2802<2800.2FFFM
*3000:F0 N 3001<3000.37FFM
*3800:CC N 3801<3800.3FFEM

 and

*2000:FC 0F C0 00 N 2004<2000.27FFM
*2800:F8 3F 03 E0 N 2804<2800.2FFFM
*3000:AA N 3001<3000.37FFM
*3800:CC N 3801<3800.3FFEM

We liked what we saw and we saw what we heard, so our thanks to Bob
Sander-Cederlof and to Victor Borge for his recognition of the sight
of sound.

Your Apple Can Talk........................Bob Sander-Cederlof

Back in the summer of 1978, I spent two weeks in California with my
kids. I visited a couple of computer stores with my brother, to show
him what my Apple looked like. In one of them, I think the Byte Shop
in Westminster on Beach Blvd., the proprietor mentioned in passing an
astonishing event. He told me, "A high schooler was in here a few
weeks ago with a program that produced speech out of the Apple
speaker!" "Impossible," I mumbled.

A few weeks later I heard rumors of a program by Bob Bishop which did
indeed make the Apple talk. I think it was in the September meeting

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 789 of 2550

Apple II Computer Info

of the Dallas Apple Corps that I overheard his program running. From
amazement to insight took only a few seconds...I almost RAN home to
write a program to do the same thing!

A month or two later I handed out copies of the program and gave a
talk on the subject of speech synthesis and recognition. When Version
3.2 of the S-C Assembler was released, I included the same program as
an example. Then again on version 4.0

Meanwhile, Bob Bishop released several neat tapes through Softape,
including a talking calculator, "Apple Talker", and "Apple Listener".
The latter program did some limited speech recognition through the
cassette port, with no additional hardware. I bought the last two,
and I still have the tape somewhere, but I have never loaded it.

About two years later Muse Software started marketing a program on
disk to evoke speech from the Apple. I believe they included some
sort of "editor" to allow you to make your own programs talk. I never
saw or heard it, so I don't know.

As far as I know, the basic idea behind all of these programs is the
same: approximate the waveform of spoken words by toggling the Apple
speaker. You can hook a microphone up to the cassette input port and
toggle the output speaker whenever the input port changes. Or you can
record a message on tape, and "play" in into the Apple.

My program samples the cassette input port about 6000 times per
second. If the input byte is $80 or larger, I store a "1"; if less
than $80, I store a "0". I pack eight bits in a byte, and store the
bytes in a buffer from $4000 through $5FFF. The buffer is 8192 bytes
long, so that is 65536 samples or about 10 seconds of stored sound.
You could store more samples or less samples, according to your own
needs.

The playback loop looks at the stored bits at the same rate, and
toggles the speaker whenever there is a change from 1 to 0 or 0 to 1.
The result is actually understandable, though somewhat scratchy.

As the McKinstry's pointed out, my choice of buffer coincides with the
Hi-Res Graphics page. In the copy of the program they have, I used
$2000-3FFF, which is Hi-Res page one. Now I use $4000-5FFF, Hi-Res
page two, so it will not erase the last half of the S-C Assembler when
I test the program. Taking their suggestions to heart, I added the
code to turn on the Hi-Res display during recording and playback, and
to turn it off when finished.

When looking at the display you need to bear in mind the complex way
the bytes are arranged on the Hi-Res screen. For starters, the bits
are backwards in each byte. And remember that only seven bits of each
byte show up on the screen -- the 8th bit shifts the other seven one
half dot position. And the big confuser is the way the lines are
arranged. (See Mike Laumer's article in the July ,1982 issue of AAL,
page 15ff, for a discussion of the line arrangement.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 790 of 2550

Apple II Computer Info

I prepared some EXEC files which initialize the buffer to various
patterns, including the ones the two Herberts suggested. (It is
amazing how handy it is to be able to create/modify little text files
like these using the editor in the S-C Macro Assembler!)

Sound #1

$4000:FF FF 00 00 N 4004<4000.47FFM
$4800:FF 00 N 4802<4800.4FFFM
$5000:F0 N 5001<5000.57FFM
$5800:CC N 5801<5800.5FFEM

Sound #2

$5800:CC N 5801<5800.5FFEM
$5000:AA N 5001<5000.57FEM
$4800:F8 3F 03 E0 N 4804<4800.4FFCM
$4000:FC 0F C0 00 N 4004<4000.47FCM

Sound #3

$4000:00 01 03 07 0F 1F 3F 7F FF FE FC F8 F0 E0 C0 80
$4010<4000.5FEFM

Sound #4

$4000:00 FF 00 00 FF FF 00 00 00 00 FF FF FF FF
$400E<4000.5FFFM

Sound #5

$4000:00 88 00 00 88 88 00 00 00 00 88 88 88 88
$400E<4000.5FFFM

To play back one of the sound above, simple EXEC or type in the
monitor commands, and then "MGO TALK".

Looking at the program which follows, you find three main routines.
ECHO (lines 1180-1300) samples the cassette port about 6000 times per
second; if it has changed, the speaker is toggled. After each toggle
the keyboard strobe is examined, so that typing any key can stop the
program and return to the caller.

RECORD (lines 1560-1710) stores 65536 samples in the buffer. TALK
(lines 1750-1950) play back the buffer contents. You can play with
the sample rate and playback rate by modifying the constant 30 in
lines 1590 and 1790. It is amusing to play back a message faster or
slower than it was recorded.

Both RECORD and TALK use a monitor subroutine called NXTA to control
the loop. This is the same subroutine used by the monitor memory
display and memory move commands. NXTA tests the current value of
A1L,A1H ($3C,$3D) against A2L,A2H ($3E,$3F), and sets carry if A1 is
greater than or equal to A2. Then it increments A1.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 791 of 2550

Apple II Computer Info

I tried various schemes for packing the bits in the buffer, to save
space for more speech. None of them were effective enough to bother
with, but you might run on to one that is. I also experimented with
isolating words and individual phonemes, and with trying to filter out
the scratchiness. I was not satisfied with any of my results. If you
are successful, I would like to hear about it.

[A later note: I just received Dec-82 Creative Computing, and there
are reviews of several speech synthesis systems. One, called
"Software Automatic Mouth (SAM)", is claimed to be a "high quality
speech synthesizer created entirely in software." SAM costs $125 ($99
from Huntington Computing from now until the end of the year). In
spite of the claim, it is not entirely software. There is also a
small board containing a digital-to-analog converter (DAC), an audio
amplifier, and a volume control. You can hook it up to the speaker in
the Apple, or supply an external speaker. The ad claims it enables
you to add speech to your programs with ease, but bear in mind that
the software takes 9K of RAM, and 6K more if you want to automatically
translate straight English text to speech.]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 792 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:Changing.Lomem.txt
==

Moving the Symbol TableBill Morgan

Do you use the language card version of the S-C Macro Assembler? Have
you ever tried to create more space for your object code by patching
$D01D to move the symbol table up from $1000? Got a MEM PROTECT
ERROR, didn't you? Here's what went wrong, and how to fix it.

The problem is the private label table for macros. This table is also
protected during assembly, and starts at $FFF and grows downward. The
base of the table is defined by a LDA #$10 instruction at $E564. When
the table is searched during assembly, the check for the end of the
table is a CMP #$10 at $E6A0. Both of these must also be patched to
allow the $D01D patch to work. Here are the commands to correct the
assembler:

:$C083 C083 N E564:A5 4B N E6A0:C5 4B N C080
:BSAVE S-C.ASM.MACRO.LC,A$D000,L$231F

This changes the LDA #$10 to a LDA LOMEM+1 and the CMP #$10 to a CMP
LOMEM+1. Now, whenever you want to move the symbol table, just type
the following (where XX is the page you want the tables to start
with):

:$C083 C083 D01D:XX N C080
:NEW

The NEW command is necessary to reset the page-zero pointers.

If you are using a target file and don't care about object code space,
you can move the symbol table down. This creates more source code and
symbol table space. You can move the table base all the way down to
$800, if you are not using private labels. If you are using them,
remember that each private label occurence uses 5 bytes of table
space, so be sure to leave enough room under the table base.

Here's a map that shows how things got this way:

| Symbol |
| Table |
 ----------- LOMEM
| | ----------
| Assembler | | Symbol |
| | | Table |
 ----------- $1000 ---------- LOMEM
| Private | | Private |
| Labels | | Labels |
 ----------- ----------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 793 of 2550

Apple II Computer Info

 Normal Language Card
 Version Version

The normal version of the assembler has to start at $1000, so the
private label table also has to be there. The language card version
didn't get changed to reflect the fact that the private labels could
now be moved.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 794 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:Exec.WO.End.txt
==

EXEC without END from Applesoft............Bob Sander-Cederlof

I have been working on a project with Lee Meador which requires a
binary file to be loaded into the second $D000 bank of a 16K RAM card.
It is just a little tricky to do this!

You cannot just use a simple BLOAD, because you have to be sure the
RAM card is selected and write-enabled. You cannot do it from a
running Applesoft program, or even as a direct command after the
Applesoft prompt, because if the RAM card is enabled the Applesoft
ROMs are not. We wanted to do it from within the running Applesoft
program.

The typical answer is to create an EXEC file with the commands to call
the monitor, select the RAM card, BLOAD the file, reselect the
motherboard ROMs, and bounce back to Applesoft. For example:

CALL-151 call Apple monitor
C089 C089 write-enable RAM with 2nd bank
F800<F800.FFFFM copy of monitor in RAM card
BLOAD B.BOBANDLEE load the file
C081 back to Applesoft ROMs
3D0G back to Applesoft, softly

You can nicely EXEC this file from the direct mode, or from a running
Applesoft program. However, in order to use it from a running
program, the program must END or STOP. Do it like this:

100 PRINT CHR$(4)"EXEC LOAD 2ND BANK":END

If you don't END the program, the EXEC file will probably just become
part of the input to your Applesoft program, rather than being
executed.

HOWEVER.... You can beat the system. Change the EXEC file to this
form:

C089 C089
F800<F800.FFFFM
BLOAD B.BOBANDLEE
C081
D7D2G

And the Applesoft code to this:
100 PRINT CHR$(4)"EXEC LOAD 2ND BANK":CALL-151

Note the two changes in the EXEC file: the CALL-151 is not there, and
3D0G has become D7D2G. And in the Applesoft code instead of END we
have CALL-151.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 795 of 2550

Apple II Computer Info

The CALL-151 starts up the Apple monitor, which reads the commands
from the EXEC file. The last command jumps to $D7D2, the running
entry into Applesoft. This continues execution of the Applesoft
program from the next statement after the CALL-151.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 796 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 2 November, 1982

In This Issue...

A Sight of Sound . 2
Your Apple Can Talk. 2
Speaking of Speech . 9
Even Faster Primes . 11
Moving the Symbol Table 16
EXEC Without END from Applesoft 17
Applesoft Program Locator 19
REPEAT and UNTIL for Applesoft 24

Apple/Fest in Houston

Although only about one-third the size of the Boston original (last
May), it was still worth the trip. I met an orthopedic surgeon from
Lille, France, who flew down Saturday from New York just for the show.
Also a professor from Des Moines. There was not a lot to see that
could be called NEW, but it was valuable to meet and get to know the
people. I brought along my son David, almost ten now; he loved
playing all the new games, and was a big help in the IAC booth.

If you are in an area where there is no club of Apple owners, you
might like to contact the International Apple Core at 908 George St,
Santa Clara, CA 95050. They have a start-up kit for new clubs that
will help you organize your own club.

Bill Morgan also came on Saturday. We have kidded Bill in the past
that he looked a lot like Paul Lutus...well, three people were almost
positive on Saturday!

Another Christmas Special

And this one is in December! Subscribers have until the end of 1982
to get Laumer Research's FLASH Integer Basic Compiler at only $49.
That is a savings of nearly 38%!

Advertising in AAL

Once again, the price per page of advertising in Apple Assembly Line
is going up. The December issue will run $90 for a full page, $50 for
a half page.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 797 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:Locator.txt
==

Applesoft Program Locator...........................Bill Morgan

Have you ever wanted to know exactly where your Applesoft program and
variables are in memory? How much space is code and how much is
variables? How close you're getting to the Hi-Res display space?
FRE(0) will tell you how much space you have, but not where it is.
You can PEEK the Applesoft pointers, or go into the monitor to check
them, but that means you have to remember where all the pointers are.

In the October, 1982 issue of Big Apple Users Digest I saw a program
by Frank Weinberg to build an EXEC file called FPSTAT, which displays
the Applesoft pointers to program and variable locations. (That
program was credited as being reprinted from The Grapevine, August,
1982.) Now that was pretty neat, but EXEC is so slow, and the
adresses were printed in decimal. I'm more comfortable thinking of
addresses in hex notation. Bob suggested writing a BRUNnable program
which would execute in page 2 (the input buffer), thus avoiding
conflict with any page 3 routines that might be present. Here's what
I came up with.

Using LOCATOR

Whenever you want to know the memory situation, just BRUN LOCATOR. It
will display something like this:

PROGRAM: $0801 TO $0923
 SIMPLE: $0923 TO $0A35
 ARRAYS: $0A35 TO $1B3C
STRINGS: $9435 TO $9600

PROGRAM shows the location of the actual text of your program. SIMPLE
is the simple variables, both numeric and string pointers. ARRAYS is
the array variables, both numeric and string. STRINGS is the area
used by the actual text of the strings.

Notice that the upper addresses are all one too large. Applesoft's
end-of-program and end-of-variables pointers actually point to the
next available location, rather than the last location used.
Similarly, the end-of-strings pointer is HIMEM, which is one past the
last location available. I wrote another version of LOCATOR which
automatically decremented the second address in each line, but that
got cumbersome, and returned silly values if the Applesoft program had
not yet been RUN. (For example, SIMPLE: $0923 TO $0922.)

If you want to CALL LOCATOR from within an Applesoft program, change
line 1320 from JMP $3D0 to RTS, and change the origin to $294. Then
you can CALL 660, if you're not using very long input lines. Or, you
can put LOCATOR in page 3, if you're not already using that area.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 798 of 2550

Apple II Computer Info

It is also interesting to RUN a program, BRUN LOCATOR, then type
FRE(0) and call LOCATOR again. This lets you see just how much wasted
string space you have had, and gives you some idea how long the
garbage collector takes to clear how much space.

I'm looking forward to using LOCATOR together with EXAMINER (from AAL
June, 1982) to study Applesoft's variable structure. You can find
more information on Applesoft variables and their pointers on pages
126-127 and 137 of the Applesoft manual.

How LOCATOR Works

Since we are printing eight addresses, the X-register is used to count
from 0-7. In lines 1140-1190 that count is converted into a value of
$0, $8, $10, or $18, to determine which title line to print. If the
titles hadn't been a convenient 8 bytes long, we could have inserted a
title offset at the beginning of each of the .DA statements in lines
1570-1600, and loaded Y from there.

The heart of the program is the table of Applesoft pointers at lines
1570-1600. In lines 1420-1440 the Y-register is loaded with a value
from the table, then used to load the A- and X-registers with the
address pointed to. The program then calls MON.PRNTAX, which displays
first the A- and then the X-register.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 799 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:More.Speech.txt
==

Speaking of Speech..................................Bill Morgan

Just thought I'd tell you a little about the way I played around with
a speech program like Bob's. I couldn't find the disk with the exact
code, but here's what I remember about it. I wanted a brief Applesoft
program which would say the numbers 0 through 9 when a number key was
pressed.

To do this, first record your voice on tape, reciting the ten numbers.
Then play the tape into your Apple, using the RECORD routine in Bob's
program. Now, by using the system monitor to examine memory, it's
easy to scan through the buffer and see where each word begins and
ends. The gaps between words will be long stretches of "00 ... 00",
with a few stray bytes of noise along the way. Words will be
stretches of random-looking values. It's interesting to see the
difference between a word like "two", which starts abruptly and trails
off, and one like "eight", which starts more slowly and ends suddenly.

Now you can use the monitor move command to remove the gaps between
words. Move the data for "one" to the very beginning of the buffer,
and note its start and end addresses. Then move "two" down to the
space just after "one", and note the addresses. Carrying on like
this, you can compress the number data into about half the space of
the original recording.

Assemble the playback portion of Bob's program at $300. All you
should need is lines 1760-1950 (plus the needed .EQ's), with an RTS
substituted for the JMP FINISH at line 1920. To say a number, all
your Applesoft program has to do is get the starting and ending
addresses of a word from an array, POKE the addresses into locations
60-63, and CALL 768.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 800 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
S-C Macro Cross Assembler Modules
 6800/6801/6802 Version...$32.50
 6809 Version...$32.50
 Z-80 Version...$32.50
 68000 Version..$50.00
 Requires ownership of S-C Macro Assembler.
 Each disk includes regular and language card versions.
Upgrade from Version 4.0 to MACRO..................................$27.50
Source code of Version 4.0 on disk.................................$95.00
 Fully commented, easy to understand and modify to your own tastes.

ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)......(regular $79) $49.00
 Special price to AAL readers only, until 12/31/82!
Source Code for FLASH! Runtime Package.............................$39.00

Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
Cross-Reference and Dis-Assembler (Rak-Ware).......................$45.00
Apple White Line Trace (Lone Star Industrial Computing)............$50.00
 (A unique learning tool)

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $4.50
Reload your own NEC PC-8023 ribbon cartridges...........each ribbon $5.00
 (Messy, but effective!)
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
 Corrugated folder specially designed for mailing mini-floppy
 diskettes. Fits in standard 6x9-inch envelope. (Envelopes
 5-cents each, if you need them.)

Ashby Shift-Key Mod..$15.00
Paymar Lower-Case Adapter..$37.50
 For Apples before Revision 7 only
Lower-Case Display Encoder ROM.....................................$25.00
 Works only Revision level 7 Apples. Replaces the encoder ROM.

Books, Books, Books..........................compare our discount prices!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 801 of 2550

Apple II Computer Info

 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00
 "6502 Subroutines", Leventhal........................($12.99) $12.00
 "MICRO on the Apple--1", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--2", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--3", includes diskette...........($24.95) $23.00

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 802 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:Repeat.Until.txt
==

REPEAT and UNTIL for Applesoft.....................Bobby Deen

The following program adds three statements to Applesoft: &REPEAT,
&UNTIL, and &POPR. With these you can write Pascal-like loops in your
Basic programs.

You start the loop with &REPEAT, and end it with &UNTIL <exp>. The
loop will be repeated until the <exp> evaluates to non-zero (true).
As long as the value of <exp> is zero (false), the loop will keep
going.

I use the system stack for saving the line number and the program
pointer, just like Applesoft does with FOR-NEXT loops. A special code
is used to identify the stuff on the stack, so you can have FOR-NEXT
loops inside REPEAT-UNTIL loops and vice versa.

The statement &POPR removes one REPEAT block from the stack, in case
you want to jump out of a loop rather than completing it. (This is
not generally a good practice, even with FOR-NEXT loops, but you can
do it if you feel you must.) The statement "&UNTIL 1" will do the
same thing as &POPR, but &POPR takes less space and time.

If &POPR or &UNTIL is executed when there is not an UNTIL block on the
top of the stack, you will get "NEXT WITHOUT FOR" error.

Applesoft parses the word "REPEAT" as four letters "REPE" and the
token "AT". This makes the listings look weird, but never mind.
Likewise, "UNTIL" looks like a variable name during tokenization, so
the expression runs into the letter "L"; but at execution time all is
understood.

Here is a sample program which shows a pair of REPEAT loops:

100 REM TEST REPEAT/UNTIL
110 D$ = CHR$ (4): PRINT D$"BLOAD B.REPEAT/UNTIL": CALL 768
120 I = 0: & REPE AT
130 I = I + 1: PRINT I": ";
135 J = 0: & REPE AT :J = J + 1: PRINT J" ";: & UNTILJ > 14:
 PRINT
140 & UNTILI = 10

Lines 1200-1250 install the ampersand vector. I assumed the JMP
opcode is already stored at $3F5, since DOS does that. After BLOADing
the file, CALL 768 will executed these lines.

When the "&" is executed, the 6502 jumps to AMPER.PARSE at line 1270.
Lines 1270-1420 search through a table of keywords, matching one if
possible with the characters after the "&" in your Applesoft program.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 803 of 2550

Apple II Computer Info

This is a general routine, which you can use for any keywords, just by
making the appropriate entries in the table (lines 1500-1590).

The table contains a string and an address for each keyword. The
string is shown as a hex string, and includes the exact hexadecimal
values expected. For example, for "REPEAT" I have entered the ASCII
codes for "REPE" and the token value or "AT". After the keyword there
is a 00 byte to flag the end, and a two byte address. The address
will be pushed onto the stack so that an RTS instruction will branch
to the processing program for that keyword. Since RTS adds one, the
address in the table have "-1" after them.

The last entry in the table has a null keyword, so it will match
anything and everything. If the search goes this far, we have a
syntax error; therefore the branch address is to the Applesoft syntax
error code.

When a keyword is matched, the Y-register contents need to be added to
TXTPTR. A subroutine in the Applesoft ROMs does this, called
AS.ADDON. Since both REPEAT and POPR require the next character to be
end-of-line or a colon, a JMP to AS.CHRGOT gets the next character and
tests it. The RTS at the end of AS.CHRGOT actually branches to the
processing code for the keyword.

Lines 1600-1840 process the REPEAT command. A five-byte block is
pushed onto the stack, consisting of the current line number, the
TXTPTR, and a code value $B8.

Lines 1850-2070 process the UNTIL command. First the expression is
evaluated. If the value turns out to be zero, the byte at FAC.EXP
will be zero. If it is zero, we need to keep looping; if non-zero,
the loop is finished. Looping involves copying the line number and
text pointer from the stack back into CURLIN and TXTPTR, and then
going to AS.NEWSTT. The REPEAT block is left on the stack, and
execution resumes just after the &REPEAT that started this loop.

If the expression is true (non-zero), the loop is terminated.
Termination is trivial: just pop off the REPEAT block, and go to
AS.NEWSTT to continue execution after the UNTIL statement. I could
pop the block off with seven PLA's, but I used the technique of adding
7 to the stack pointer instead.

Naturally, this package was assembled to sit in page 3, along with 99
other machine language things you use. You can easily move it to
another location, just by changing the origin (line 1180). Or you can
use the routines with Amper-Magic or the Routine Machine. Note that
the routines themselves are relocatable run-anywhere code (no data
references, JSR's, or JMP's to points within the routines). You will
have to shorten the routine names to four or less characters to use
them with Amper-Magic.

Pascal has some other looping constructs which you might like to see
in Applesoft. Now that you see how I did this one, why not try your
hand at coding REPEAT WHILE?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 804 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:Articles:TonyFasterPrime.txt
==

Even Faster Primes..........................Anthony Brightwell

Is this the last word on prime number generation?

I modified Charles Putney's program from the February issue, and cut
the time from 330 milliseconds down to 183 milliseconds! Here is what
I did:

* I sped up the zero-memory loop by putting more STA's within the
loop.

* I removed the CLC from the main loop. After all, why CLC withing
the loop if you're looping on a BCC condition?

* I removed the LDA #$FF from the main loop. It was there to be sure
a non-zero value gets stored in non-prime slots, but why LDA #$FF if
the accumulator never contains $00 within the loop?

* I changed the way squares of primes are computed. Charlie did it
using a quick 8-bit by 8-bit multiply. I took advantage of a little
number theory, and shaved off some time.

The method I use for squaring may appear very round-about, but it
actually is faster in this case. Look at the following table:

 Odd #'s square neat formula
 1 1 0 * 8 + 1
 3 9 1 * 8 + 1
 5 25 3 * 8 + 1
 7 49 6 * 8 + 1
 9 81 10 * 8 + 1

The high byte of the changing factor in the "neat formula" is stored
in the LDA instruction at line 1550, and the low byte in the ADC
instruction at line 1900. The factor is the sum of the numbers from 1
to n: 1+2=3, 1+2+3=6, 1+2+3+4=10, etc. In all, 31 primes are
squared, and the total time for all the squaring is less than 3
milliseconds.

Here is a driver in Applesoft to load the program and then print out
primes from the data array.

10 REM DRIVER FOR TONY'S FAST PRIME FINDER
20 PRINT CHR$ (4)"BLOAD B.TONY'S SUPER-FAST PRIMES"
30 HOME : PRINT "HIT ANY KEY TO START"
40 GET A$: PRINT " GENERATING PRIMES . . ."
50 CALL 32768
60 FOR A = 8195 TO 24576 STEP 2
70 IF PEEK (A) = 0 THEN PRINT A - 8192;" ";

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 805 of 2550

Apple II Computer Info

80 NEXT

A few more cycles can probably still be shaved.... Any takers?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 806 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:S.LOCATOR.txt
==

 1000 *SAVE S.LOCATOR
 1010 *--------------------------------
 1020 .OR $292 HIGH END OF INPUT BUFFER
 1030 * .TF LOCATOR
 1040 *--------------------------------
 1050 ZERO .EQ 0
 1060
 1070 MON.PRNTAX .EQ $F941
 1080 MON.COUT .EQ $FDED
 1090 MON.CROUT .EQ $FD8E
 1100 *--------------------------------
 1110 START LDX #0
 1120
 1130 LOOP JSR MON.CROUT NEW LINE
 1140 TXA
 1150 LSR MAKE (X)
 1160 ASL INTO
 1170 ASL TITLE
 1180 ASL INDEX
 1190 TAY
 1200 .1 LDA TITLES,Y SHOW TITLE
 1210 JSR MON.COUT
 1220 INY
 1230 CMP #':+$80 ":" ?
 1240 BNE .1
 1250
 1260 LDY #1 FILL WITH " $"
 1270 JSR PRINT.ADDRESS
 1280 LDY #4 FILL WITH " TO $"
 1290 JSR PRINT.ADDRESS
 1300 CPX #7 DONE YET?
 1310 BCC LOOP NO, GO ON
 1320 JMP $3D0 YES, EXIT TO DOS
 1330 *--------------------------------
 1340 PRINT.ADDRESS
 1350 .1 LDA FILLER,Y Y TELLS HOW
 1360 JSR MON.COUT MUCH FILLER
 1370 DEY TO PRINT
 1380 BPL .1
 1390
 1400 TXA
 1410 PHA SAVE X
 1420 LDY TABLE,X GET POINTER
 1430 LDA ZERO+1,Y GET HIGH BYTE
 1440 LDX ZERO,Y GET LOW BYTE
 1450 JSR MON.PRNTAX DISPLAY ADDRESS
 1460 PLA
 1470 TAX RESTORE X
 1480 INX AND GET READY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 807 of 2550

Apple II Computer Info

 1490 RTS FOR NEXT PASS
 1500 *--------------------------------
 1510 TITLES
 1520 .AS -/PROGRAM:/
 1530 .AS -/ SIMPLE:/
 1540 .AS -/ ARRAYS:/
 1550 .AS -/STRINGS:/
 1560 *--------------------------------
 1570 TABLE .DA #$67,#$AF START OF PROGRAM, END OF PROGRAM
 1580 .DA #$69,#$6B START OF VARIABLES, START OF ARRAYS
 1590 .DA #$6B,#$6D START OF ARRAYS, END OF NUMERICS
 1600 .DA #$6F,#$73 START OF STRINGS, HIMEM
 1610 *--------------------------------
 1620 FILLER .AS -/$ OT /

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 808 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:S.NewAplTalker.txt
==

 1000 *--------------------------------
 1010 * APPLE-TALKER FROM S-C SOFTWARE CORP.
 1020 *--------------------------------
 1030 MON.NXTA .EQ $FCBA BUMP AND TEST A1
 1040 *--------------------------------
 1050 CASSETTE .EQ $C060 CASSETTE INPUT LEVEL
 1060 SPEAKER .EQ $C030 SPEAKER OUTPUT
 1070 STROBE .EQ $C010
 1080 KEYBOARD .EQ $C000
 1090 *--------------------------------
 1100 LAST .EQ $2F LAST CASSETTE INPUT LEVEL
 1110 A1L .EQ $3C MONITOR A1L, A1H, A2L, A2H
 1120 *--------------------------------
 1130 BUFFER .DA $4000 FWA OF BUFFER
 1140 .DA $5FFF LWA OF BUFFER
 1150 *--------------------------------
 1160 * ECHO CASSETTE THRU SPEAKER
 1170 *--------------------------------
 1180 ECHO LDY #30 150 USEC DELAY
 1190 .1 DEY
 1200 BNE .1
 1210 LDA CASSETTE
 1220 EOR LAST SEE IF TOGGLED
 1230 BPL ECHO NO
 1240 EOR LAST YES
 1250 STA LAST
 1260 LDA SPEAKER TOGGLE SPEAKER
 1270 LDA KEYBOARD
 1280 BPL ECHO
 1290 STA STROBE
 1300 RTS
 1310 *--------------------------------
 1320 * SET UP BUFFER ADDRESSES
 1330 *--------------------------------
 1340 SETUP LDX #3
 1350 .1 LDA BUFFER,X
 1360 STA A1L,X
 1370 DEX
 1380 BPL .1
 1390 STX LAST
 1400 LDA $C050 SELECT HGR2 FOR VIEWING
 1410 LDA $C052
 1420 LDA $C055
 1430 LDA $C057
 1440 RTS
 1450 *--------------------------------
 1460 * RESTORE NORMAL SCREEN AND EXIT
 1470 *--------------------------------
 1480 FINISH LDA $C051

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 809 of 2550

Apple II Computer Info

 1490 LDA $C053
 1500 LDA $C054
 1510 LDA $C056
 1520 RTS
 1530 *--------------------------------
 1540 * STORE SPEECH IN BUFFER
 1550 *--------------------------------
 1560 RECORD JSR SETUP SET UP BUFFER ADDRESSES
 1570 .1 LDX #8 EIGHT BITS
 1580 .2 PHA PUSH BYTE WE ARE FILLING
 1590 LDY #30
 1600 .3 DEY 150 USEC DELAY
 1610 BNE .3
 1620 LDA CASSETTE READ CASSETTE LEVEL
 1630 ASL LEVEL INTO CARRY BIT
 1640 PLA
 1650 ROL MERGE LEVEL INTO BYTE
 1660 DEX
 1670 BNE .2 BYTE NOT FULL YET
 1680 STA (A1L,X) STORE NEXT WORD IN BUFFER
 1690 JSR MON.NXTA BUMP & TEST POINTER
 1700 BCC .1 NOT THRU
 1710 JMP FINISH
 1720 *--------------------------------
 1730 * PLAYBACK SPEECH FROM BUFFER
 1740 *--------------------------------
 1750 TALK JSR SETUP SET UP BUFFER ADDRESSES
 1760 .1 LDX #0
 1770 LDA (A1L,X) GET NEXT WORD FROM BUFFER
 1780 LDX #8 EIGHT BITS
 1790 .2 LDY #30
 1800 .3 DEY 150 USEC DELAY
 1810 BNE .3
 1820 EOR LAST TEST IF LEVEL CHANGED
 1830 BPL .5 NO
 1840 EOR LAST YES, RESTORE (A)
 1850 STA LAST UPDATE LEVEL
 1860 LDY SPEAKER TOGGLE SPEAKER
 1870 .4 ASL
 1880 DEX
 1890 BNE .2
 1900 JSR MON.NXTA BUMP & TEST POINTER
 1910 BCC .1 NOT THRU
 1920 JMP FINISH
 1930 .5 EOR LAST RESTORE (A)
 1940 JMP .6 EVEN OUT TIMING
 1950 .6 JMP .4

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 810 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:S.Repeat.Until.txt
==

 1000 *SAVE S.REPEAT/UNTIL
 1010 *--------------------------------
 1020 * BY BOBBY DEEN
 1030 * 629 WINCHESTER DR
 1040 * RICHARDSON,TX. 75080
 1050 * (214) 235-4391
 1060 *--------------------------------
 1070 AMPERSAND.VECTOR .EQ $3F5
 1080 AS.FRMEVL .EQ $DD7B EVALUATE A FORMULA
 1090 AS.CHRGOT .EQ $00B7 GET CHAR AT TXTPTR
 1100 AS.TXTPTR .EQ $00B8 POINT TO PROGRAM TEXT
 1110 AS.SYNERR .EQ $DEC9 SYNTAX ERROR
 1120 AS.ADDON .EQ $D998 ADDS (Y) TO TXTPTR
 1130 AS.CURLIN .EQ $75 CURRENT LINE NUMBER
 1140 FAC.EXP .EQ $9D EXPONENT OF FAC
 1150 AS.BADFOR .EQ $DD0B NEXT WITHOUT FOR ERROR
 1160 AS.NEWSTT .EQ $D7D2 EXECUTE NEW STATEMENT
 1170 *--------------------------------
 1180 .OR $300
 1190 .TF B.REPEAT/UNTIL
 1200 *--------------------------------
 1210 START LDA #AMPER.PARSE
 1220 STA AMPERSAND.VECTOR+1
 1230 LDA /AMPER.PARSE
 1240 STA AMPERSAND.VECTOR+2
 1250 RTS
 1260 *--------------------------------
 1270 AMPER.PARSE
 1280 LDX #-1 START OF TABLE
 1290 .1 LDY #-1 START OF AMPER-CALL
 1300 .2 INX
 1310 INY
 1320 LDA TABLE,X NEXT CHAR FROM TABLE
 1330 BEQ .4 END OF KEYWORD, MATCHED
 1340 CMP (AS.TXTPTR),Y COMPARE WITH AMPER-CALL
 1350 BEQ .2 MATCHES SO FAR
 1360 *---SKIP TO NEXT TABLE ENTRY-----
 1370 .3 INX ...TO END OF KEYWORD
 1380 LDA TABLE,X
 1390 BNE .3
 1400 INX ...OVER THE ADDRESS
 1410 INX
 1420 BNE .1 ...ALWAYS
 1430 *---MATCHED A KEYWORD------------
 1440 .4 JSR AS.ADDON ADJUST TXTPTR PAST KEYWORD
 1450 LDA TABLE+2,X GET ADDRESS AND BRANCH
 1460 PHA
 1470 LDA TABLE+1,X
 1480 PHA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 811 of 2550

Apple II Computer Info

 1490 JMP AS.CHRGOT GET CHAR AT TXTPTR
 1500 *--------------------------------
 1510 TABLE
 1520 .HS 52455045C500 "REPEAT"
 1530 .DA REPEAT-1
 1540 .HS 554E54494C00 "UNTIL"
 1550 .DA UNTIL-1
 1560 .HS A15200 "POPR"
 1570 .DA POPR-1
 1580 .HS 00 ANYTHING
 1590 .DA AS.SYNERR-1
 1600 *--------------------------------
 1610 * REPEAT COMMAND
 1620 *--------------------------------
 1630 REPEAT
 1640 BNE SYNERR NOT THERE
 1650 PLA SAVE RETURN ADDRESS
 1660 TAX
 1670 PLA
 1680 TAY
 1690 LDA AS.CURLIN+1 PUSH CURRENT LINE NUMBER
 1700 PHA
 1710 LDA AS.CURLIN
 1720 PHA
 1730 LDA AS.TXTPTR+1 PUSH TEXT POINTER
 1740 PHA
 1750 LDA AS.TXTPTR
 1760 PHA
 1770 LDA #$B8 IDENTIFIER FOR REPEAT LOOP
 1780 PHA SO THIS ISN'T MISTAKEN FOR FOR/NEXT
 1790 * OR GOSUB/RETURN
 1800 TYA PUT RETURN ADDRESS ON STACK
 1810 PHA
 1820 TXA
 1830 PHA
 1840 RTS AND GO BACK
 1850 *--------------------------------
 1860 * PROCESS UNTIL COMMAND
 1870 *--------------------------------
 1880 UNTIL
 1890 JSR AS.FRMEVL GET EXPRESSION
 1900 LDA FAC.EXP GET EXPONENT
 1910 BNE POP.IT TRUE,END LOOP
 1920 TSX KEEP LOOPING
 1930 LDA $103,X
 1940 CMP #$B8 IS IT A REPEAT?
 1950 BNE BADFOR NO,ERROR
 1960 LDA $104,X GET THE DATA
 1970 STA AS.TXTPTR AND TELL APPLESOFT
 1980 LDA $105,X
 1990 STA AS.TXTPTR+1
 2000 LDA $106,X
 2010 STA AS.CURLIN
 2020 LDA $107,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 812 of 2550

Apple II Computer Info

 2030 STA AS.CURLIN+1
 2040 INX WE DON'T NEED THE RETURN ADDRESS
 2050 INX
 2060 TXS KILL SUB CALL
 2070 JMP AS.NEWSTT NEW STATEMENT
 2080 *--------------------------------
 2090 * POP A REPEAT LOOP OFF STACK
 2100 *--------------------------------
 2110 POPR
 2120 BNE SYNERR
 2130 POP.IT TSX EXP TRUE,SO END LOOP
 2140 LDA $103,X MAKE SURE IT IS A REPEAT
 2150 CMP #$B8
 2160 BNE BADFOR
 2170 TXA
 2180 CLC
 2190 ADC #7 PULL 7 THINGS
 2200 TAX
 2210 TXS
 2220 JMP AS.NEWSTT
 2230 *--------------------------------
 2240 BADFOR JMP AS.BADFOR
 2250 SYNERR JMP AS.SYNERR
 2260 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 813 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:S.TonyFasterPrm.txt
==

 1000 *SAVE S.TONY'S SUPER-FAST PRIMES
 1010 .OR $8000 SAFELY OUT OF WAY
 1020 .TF B.TONY'S SUPER-FAST PRIMES
 1030 *---------------------------------
 1040 BASE .EQ $2000 BASE OF PRIME ARRAY
 1050 BEEP .EQ $FF3A BEEP THE SPEAKER
 1060 *--------------------------------
 1070 .MA ZERO
 1080 STA]1+$001,X
 1090 STA]1+$101,X
 1100 STA]1+$201,X
 1110 STA]1+$301,X
 1120 STA]1+$401,X
 1130 STA]1+$501,X
 1140 STA]1+$601,X
 1150 STA]1+$701,X
 1160 .DO]1<$5800
 1170 >ZERO]1+$800
 1180 .FIN
 1190 .EM
 1200 *---------------------------------
 1210 * MAIN CALLING ROUTINE
 1220 *
 1230 MAIN LDA #100 DO 100 TIMES SO WE CAN MEASURE
 1240 STA COUNT THE TIME IT TAKES
 1250 JSR BEEP ANNOUNCE START
 1260 .1 JSR PRIME
 1270 DEC COUNT CHECK COUNT
 1280 BNE .1 DONE ?
 1290 JMP BEEP SAY WE'RE DONE
 1300 *---------------------------------
 1310 * PRIME ROUTINE
 1320 * SETS ARRAY STARTING AT BASE
 1330 * TO $FF IF NUMBER IS NOT PRIME
 1340 * CHECKS ONLY ODD NUMBERS > 3
 1350 * INC = INCREMENT OF KNOCKOUT
 1360 * N = KNOCKOUT VARIABLE
 1370 *--------------------------------
 1380 PRIME
 1390 LDX #1
 1400 STX SHCNT+1 STARTING MULTIPLIER FOR SQUARE
 1410 STX MULT+1
 1420 DEX
 1430 STX SQUARE+1
 1440 TXA CLEAR WORKING ARRAY
 1450 .1 >ZERO BASE
 1460 INX EVERY ODD LOCATION
 1470 INX
 1480 BEQ .2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 814 of 2550

Apple II Computer Info

 1490 JMP .1 NOT FINISHED CLEARING
 1500 *--------------------------------
 1510 .2 LDA #3
 1520 STA START+1
 1530 MAINLP ASL INC = START * 2
 1540 STA INC+1
 1550 SQUARE LDA #*-* MOVE MULT TO N
 1560 STA N+2
 1570 LDA MULT+1
 1580 ASL MULTIPLY BY 8
 1590 ROL N+2
 1600 ASL
 1610 ROL N+2
 1620 ASL
 1630 ROL N+2
 1640 TAX
 1650 INX AND ADD 1
 1660 BNE .1
 1670 INC N+2
 1680 .1 CLC ADD BASE TO N
 1690 LDA N+2
 1700 ADC /BASE
 1710 STA N+2
 1720 TAY
 1730 TXA
 1740 LOOP
 1750 N STA $FF00,X REMEMBER THAT N IS REALLY AT N+2
 1760 INC ADC #*-* N = N + INC
 1770 TAX
 1780 BCC LOOP DONT'T BOTHER TO ADD, NO CARRY
 1790 INY INC HIGH ORDER
 1800 STY N+2
 1810 CPY /BASE+$4000 IF IS GREATER THAN $6000
 1820 BCC LOOP NO, REPEAT
 1830 START LDX #*-* GET OUR NEXT KNOCKOUT
 1840 NEXT INX
 1850 INX START = START + 2
 1860 BMI END WE'RE DONE IF X>$7F
 1870 INC SHCNT+1 INCREMENT SQUARE MULTIPLIER
 1880 SHCNT LDA #*-* AND ADD TO MULTIPLIER
 1890 CLC
 1900 MULT ADC #*-*
 1910 STA MULT+1
 1920 BCC .1
 1930 INC SQUARE+1
 1940 .1 LDA BASE,X GET A POSSIBLE PRIME
 1950 BNE NEXT THIS ONE HAS BEEN KNOCKED OUT
 1960 STX START+1
 1970 TXA
 1980 BNE MAINLP ...ALWAYS
 1990 END RTS
 2000 *--------------------------------
 2010 COUNT .DA #*-* COUNT FOR 100 TIMES LOOP

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 815 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:SOUND.1.txt
==

$4000:FF FF 00 00 N 4004<4000.47FFM
$4800:FF 00 N 4802<4800.4FFFM
$5000:F0 N 5001<5000.57FFM
$5800:CC N 5801<5800.5FFEM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 816 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:SOUND.2.txt
==

$5800:CC N 5801<5800.5FFEM
$5000:AA N 5001<5000.57FEM
$4800:F8 3F 03 E0 N 4804<4800.4FFCM
$4000:FC 0F C0 00 N 4004<4000.47FCM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 817 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:SOUND.3.txt
==

$4000:00 01 03 07 0F 1F 3F 7F FF FE FC F8 F0 E0 C0 80 N
4010<4000.5FEFM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 818 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:SOUND.4.txt
==

$4000:00 FF 00 00 FF FF 00 00 00 00 FF FF FF FF N 400E<4000.5FFFM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 819 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:SOUND.5.txt
==

$4000:00 88 00 00 88 88 00 00 00 00 88 88 88 88 N 400E<4000.5FFFM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 820 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:Talk.A.Test.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 821 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:TestRepeatUntil.txt
==

d≤TEST REPEAT/UNTILCnD$–Á(4):∫D$"BLOAD B.REPEAT/UNTIL":å768RxI –
0:ØREPE≈eÇI–I»1:∫I": ";éáJ–0:ØREPE≈:J–J»1:∫J"
";:ØUNTILJœ14:∫ùåØUNTILI–10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 822 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8211:DOS3.3:TONY.S.DRIVER.txt
==

*
≤DRIVER FOR TONY'S FAST PRIME FINDER\(D$–Á(4):∫D$"BLOAD B.TONY'S
SUPER-FAST PRIMES"Ç2ó:¢10:ñ10:∫"HIT ANY KEY TO
START"ú<π49168,0:æA$:π49168,0ßZå32768“_â:ÅA–8195¡24576«2:≠‚(A) –
0ƒ∫A…8192;" ";ÿbÇ

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 823 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:AS.Src.Code.txt
==

Applesoft Source, Completely Commented.....Bob Sander-Cederlof

For several years I have been working on this. I even bought an
assembler from another company just to get the promised source code of
Applesoft that came in the package, but I was very disappointed. (No
complaints, it was intended as a "freebie" with their assembler.) I
wanted LOTS of comments, MEANINGFUL labels, and I wanted it in the
format of the S-C Macro Assembler.

Now I have it. And you can have a copy, on two diskettes, for only
$50. It comes in an encrypted form, with a driving program which
creates the source code files on your machine with the aid of the
Applesoft image in ROM or RAM. The encryption is meant to protect the
interests of Apple and Microsoft.

You need two disk drives to assemble Applesoft, a printer to get a
permanent listing, and of course you need the S-C Macro Assembler.
The source code is split into more than a dozen source files,
assembled together using a control file full of .IN directives. After
assembling and printing, you will have well over 100 pages of the best
documentation of Applesoft internals available anywhere.

In the process of writing the comments, I discovered some very
interesting bugs. Some have been published before, and others I have
never heard of. Just for fun, try this:

]A%=-32768 (you get an error message, correctly)
]A%=-32768.00049 (No error message!)
]PRINT A% (You get 32767!)

Or open your disk drive doors, just in case, and type:

]LIST 440311

That last one can be disastrous! Any use of a six-digit line number
(illegal, but not caught by Applesoft) between 437760 and 440319 will
cause a branch to a totally incorrect place. For example, GOTO 440311
branches to $22D9!

The causes of these and other interesting phenomena, as well as some
suggested improvements resulting in smaller/faster code, are
documented in my comments.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 824 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Bit.Control.txt
==

Add Bit-Control to Apple Monitor...........Bob Sander-Cederlof

The other day someone sent me a disk with an article for AAL on it as
a binary file. The codes in the file were all ASCII characters, but
they were nevertheless not compatible with any word processors I had
around.

All blanks were coded as $A0 (hi-bit on), and all other characters
were coded in the range $00-$7F (hi-bit off). Otherwise, everything
was compatible with my favorite word processor (the one I am still in
the process of finishing).

I need to have all the hi-bits set to one in the file, or in the
memory image after BLOADing the file. That's the motivation for the
following neat enhancement to the Apple monitor.

The enhancement hooks in through the control-Y user command vector.
By merely typing:

 *80FF<2000.3FFF^Y (^Y means control-Y)

I set all the hi-bits between $2000 and $3FFF.

The "80FF" in the command line above is the magic part of this
enhancement. The last two digits are ANDed with every byte in the
specified range, clearing every bit which is zero in those two digits.
By using $FF, no bits are cleared. Other values for these two digits
will clear whatever bits you wish.

The first two digits are ORed into every byte in the specified range,
setting every bit which is one in the two digits. $80 in my example
sets the top bit in every byte.

The code is designed to be BRUN from a binary file, and it is
completely relocatable. You can BRUN it anywhere in memory that you
have room for 36 bytes. That is why the SETUP code is longer than the
actual control-Y code!

The SETUP routine first discovers where in memory it is running, and
then sets up the control-Y vector in page 3 to point at the BITS code.
The discovery is done in the usual way, by JSRing to a guaranteed RTS
in the monitor ROM, at $FF58. This leaves a return address just below
the stack pointer. I pick up that address and add the difference
between that and BITS to get the appropriate control-Y vector pointer.

Line 1200 needs a little explanation. My assembler automatically
switches to page zero addressing mode if the address is less than
$100. STACK-1 is less than $100, so "ADC STACK-1,X" would assemble as
though I wrote "ADC $FF,X". Indexed addressing in page zero mode

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 825 of 2550

Apple II Computer Info

stays in page zero, wrapping around. If X=3, "ADC $FF,X" would
reference location $02 in page zero rather than $102. Therefore I had
to use the ".DA #$7D" to force the assembler to use a full 16-bit
address mode. (Some assemblers have a special way of forcing 16-bit
addressing in cases like this; others require special marks to get
zero-page modes.)

BITS itself is very straightforward code. The monitor leaves the
starting address of the specified range in A1 ($3C,3D), the ending
address in A2 ($3E,3F), and the mask in A4 ($42,43). The subroutine
at $FCBA increments A1 and compares it to A2, leaving carry clear if
the range is not yet complete.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 826 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:ClearStrngArray.txt
==

Save Garbage by Emptying Arrays............Bob Sander-Cederlof

As we all know, Applesoft programs which use a significant number of
strings can appear to die for long periods of time while "garbage
collection" is performed. Many techniques have been published to
reduce the frequency of garbage collection, or reduce the amount of
garbage to be collected, or to speed up the collector.

Randy Wiggington published a much faster garbage collector in "Call-
A.P.P.L.E.", January, 1981, pages 40-45. The source code is available
in S-C format on the Dallas Apple Corps disk of the month for March,
1981. (Copies available for $10 from me.) Randy's speed improvement
is gained by searching for the highest 16 strings in memory at once,
rather than just the highest one string. It is much faster, but not
the fastest. The time for collection still varies quadratically with
the number of strings in use.

Cornelius Bongers wrote the fastest collector I have seen. It was
published in "MICRO -- The 6502/6809 Journal", August, 1982, pages 90-
97. Corny's method is very straightforward, and has the advantage
that execution time varies linearly with the number of strings in use.
His method also has the disadvantage that it does not work if any
strings contain any characters with the high bit on. (Applesoft
normally does not generate any strings with high-bit-set-characters,
but you can do it with oddball code.) I typed in the program from
MICRO, made a few changes here and there, and found it to be lightning
fast.

I installed the linear method in a client's program, and his garbage
collection time went from 100 seconds after printing every four lines,
to only 1/4 second. Other changes, such as the one described below,
cut the interval of collection to once every 12 lines.

It so happens that strings which are empty do not increase the garbage
collection time. Many times in Applesoft programs a string array is
filled with data from a disk file, processed, and then filled with
fresh data, and so on. By emptying the array before each pass at
reading the disk file, the number of active strings can be greatly
reduced.

One of my programs was like this: the one that prints your mailing
label so that the AAL gets to you every month. Before reading each
file (the list is divided into about 12 different files, based on zip
code and other factors), I wrote a loop that set each string in the
array to a null string, and then forced garbage collection:

 FOR I = 1 TO NH : A$(I)="" : NEXT : F = FRE(0)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 827 of 2550

Apple II Computer Info

The only problem with this was that the loop takes so long! About ten
seconds, anyway, enought to try my patience.

All the above motivated me to write the following little subroutine,
which nulls out (or empties) a string array. Bongers included an
array eraser in his article, which completely released an array;
however, that requires re-DIMming the array each time. My program is
faster in my case, and it was fun to write.

The program is listed below with the origin set at $300, so "CALL
768,arrayname" will activate it. It happens to be fully relocatable,
so you can load it anywhere in memory you wish. You could easily add
it to your Applesoft program with Amper-Magic or Amperware or The
Routine Machine.

I used three subroutines inside the Applesoft ROMs. CHKCOM gives
SYNTAX ERROR unless the next character is a comma. I use it to check
for the comma that separates the call address from the array name.
CHKSTR checks to make sure that the last-parsed variable is a string
variable, and gives TYPE MISMATCH if not. GETARYPT scans an array
name and returns the address of the start of the array in variable
space.

If you look at page 137 of your Applesoft reference manual, you will
see in the third column a picture of a string array. (Notice first
the error: the signs of the first and second bytes of the string name
are just the reverse of what the book says.) My program looks at the
number of dimensions to determine the size of the preamble (the number
of bytes before you get to the actual string pointers).

I use the preamble size to compute the starting address of the string
pointers, and the number of bytes of string pointers that there are.
Then a tight little loop stores zeros on top of all the descriptors.

The Applesoft program below illustrates the CLEAR subroutine in
action.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 828 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Enhanced.6502.txt
==

New Enhanced 6502 Nearly Here!.............Bob Sander-Cederlof

Nigel Nathan from Micro-Mixedware in Stow, MA, sent me some copies of
reference material for the new 65C02 chip. This is the enhanced CMOS
version, soon to be available from GTE and Rockwell.

Nigel's interest was that I might produced an enhanced S-C Macro
Assembler to accommodate the new opcodes and addressing modes. I not
only might...I did it right away! It is ready now, although you may
have some difficulty getting the chips for a few more months.

Rockwell is sampling the 65C02 now, and scheduled for production in
February. Rockwell is also readying an entire family of CMOS products
to go with the 65C02, including 2Kx8 CMOS static RAM and multi-byte
parallel interfaces.

The 65C02 is expected to be plug-compatible with the 6502 in your
Apple II. In fact, Cliff Whitaker of Rockwell told me that the first
chips they made were tested by plugging them into Apples. Hopefully
you will be able to simply plug them in and start using the new
opcodes. If true, then I will probably become a source for these
chips.

What enhancements did they make? According to the GTE document, some
"bugs" in the 6502 design were corrected:

* Indexed addressing across a page boundary no longer causes a false
read at an invalid address.

* Invalid opcodes are now all NOPs, rather than doing exotic things
such as I described in the March 1981 AAL.

* JMP indirect at a page boundary now operates correctly, at a cost
of one additional cycle.

* Read/modify/write opcodes (like INC, DEC, and the shifts) now
perform two reads and one write cycle rather than one read and two
writes.

* The D-status bit is now set to binary mode (D=0) by reset; it used
to be indeterminate.

* The N-, V-, and Z-status bits are now valid after ADC or SBC in
decimal mode (D=1); they used to be invalid, requiring special tests.
The cost is one additional cycle for all ADCs and SBCs in decimal
mode.

* An interrupt after fetch of a BRK opcode defers to the BRK. It
used to cause the BRK to be ignored.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 829 of 2550

Apple II Computer Info

The Rockwell literature makes reference to the following new opcodes,
or new addressing modes for old opcodes:

80 BRA rel Branch Always

12 ORA (zp))
32 AND (zp))
52 EOR (zp)) new addressing mode:
72 ADC (zp))
92 STA (zp)) zero-page indirect
B2 LDA (zp))
D2 CMP (zp)) without indexing
F2 SBC (zp))

04 TSB zp Test and set bits
14 TRB zp Test and reset bits
34 BIT zp,X new addressing mode for BIT
64 STZ zp Store Zero
74 STZ zp,X " "

07-77 RMB b,zp Reset bit b in zp
87-F7 SMB b,zp Set bit b in zp

89 BIT imm new addressing mode for BIT

1A INC Increment A-register
3A DEC Decrement A-register
5A PHY Push Y
7A PLY Pull Y
DA PHX Push X
FA PLX Pull X

0C TSB abs Test and set bits
1C TRB abs Test and reset bits
3C BIT abs,X new addressing mode for BIT
7C JMP (abs),X new addressing mode for JMP
9C STZ abs Store zero

9E STZ abs,X Store zero

0F-7F BBR b,zp,rel Branch if bit b in zp is zero
8F-FF BBS b,zp,rel Branch if bit b in zp is one

Let your imagination run wild with all the great ways to use these new
opcodes! If you feel the need for the ability to assemble them now,
the Cross Assembler upgrade for the 65C02 is available for $20 to
subscribers of the Apple Assembly Line who already own the S-C Macro
Assembler.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 830 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Enhancemnt.Rvw.txt
==

Enhancing Your Apple II (A Review)..................Bill Morgan

Don Lancaster, the well-known author of electronics books for the
hobbyist (and a subscriber to AAL), has now entered the Apple arena in
a big way. His latest book, "Enhancing Your Apple II, Vol. 1",
promises to be the start of a long series of easy-to-use guides to the
important internal workings of the Apple.

The main enhancements he offers in this volume are simple
modifications to the Apple's video circuitry, to allow EXACT software
access to the video timing. This permits your program to play all
sorts of tricks with the display modes. There is also a wealth of
information on the Apple's techniques of video storage and output.

The basic hardware modification is a single wire from an IC in the
video circuitry to either the cassette or the game input. With this
wire and a little bit of code, it is easy to switch display modes
between screen scans, avoiding a lot of messy glitches on the screen.
With more code, and careful timing, you can lock the processor to the
display timing and switch between text and graphic modes (hi-res or
lo-res) in mid-line.

There is also a very good 60-page chapter on disassembling and
understanding other people's programs. Don presents a novel technique
of color-coding a printout of a monitor disassembly, to bring out the
structure of a program and the function of each routine. The example
program is Apple's High-Res Character Generator, from the DOS Toolkit.
He later uses the information discovered about the character generator
and the Hi-Res display to develop a slower and smoother scrolling
routine for Hi-Res text.

He shows us other enhancements, as well. There are two different ways
to attach a modulator's output line to your TV set, avoiding that
clumsy little switch box that the manufacture gives us. How about a
programmable color-killer circuit? With this one you can have
software control of color vs. black-and-white display. There are
sections about generating extra colors, in both Hi-Res and Lo-Res
graphics.

In the back of the book are postcards for sending feedback and
ordering other materials. All the code in the book (26 programs) can
be ordered on diskette, for $14.95. He uses the DOS Toolkit
Assembler, but we plan to talk to him about providing the programs in
S-C format. You can also order a kit of the parts for all of the
hardware modifications he describes. That kit costs only $11.95 +
shipping, from a dealer in Oklahoma. Future plans include more
volumes of enhancements and a possible bulletin board system for
updates to the books.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 831 of 2550

Apple II Computer Info

All in all, "Enhancing Your Apple II" looks to be an important and
useful book. Like all of Lancaster's books, it is published by Howard
W. Sams. It is 232 pages long, size 8 1/2 X 11 inches, and sells for
$15.95. We have ordered a stock here at S-C, and will sell them for
$15.00 + postage.

For Volume 2 of the "Enhancing" series, he has promised us more video
techniques, a keyboard enhancer, something called an "Adventure
Emergency Toolkit", graphics software for daisy-wheel printers, a two-
dollar interface for the BSR controller, and much more. I'm looking
forward to it!

This is a good time to mention another of Don's books, which has
received too little attention. I am speaking of "The Incredible
Secret Money Machine". Despite the title, it is not a get-rich-quick
pamphlet, but rather a very, very useful guide to starting and
operating a free-lance technical or craft business. "Money Machine"
is 160 pages of tightly packed information on strategy and tactics,
getting started, and dealing with customers, suppliers, and the
government.

There is enough practical advice on communication, both verbal and
graphic, to make up several courses in advertising and technical
writing. Bob and I refer to this book regularly, and have long felt
that it is one of the best books around for the budding entrepeneur.
We have also ordered "Money Machine", and will sell it for $7.50 +
postage.

Last minute addition: We just received a review copy of another new
book from Don Lancaster, Micro Cookbook Vol. 1 - Fundamentals. This
one is a very basic introduction to microcomputer principles. He
talks about how to learn and what to learn, and introduces some
hardware fundamentals. He also promises Vol. 2, about Machine-
Language Programming. It looks very good; I'll have more details next
month. We especially like this sentence at the end of the Preface:
This book is dedicated to the 6502.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 832 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Es.Cape.Patch.txt
==

Add a New Feature to ES-CAPE.......................Bill Linn

Since most of the owners of ES-CAPE also subscribe to the Apple
Assembly Line, I thought I would pass on some neat patches here.

The automatic line numbering feature in ES-CAPE can be enhanced by the
following patches, which make the numbers track whatever you type.
With these patches, each time an Applesoft line is changed via hitting
return or via a CHANGE command, that line number plus the current
increment becomes the next automatic line number to be generated when
the space bar is pressed. (Now ES-CAPE works more like the S-C Macro
Assembler.)

Here are the patches for the mother-board version:

LOAD ES-CAPE
CALL -151
E44:69 00 EA
102E:4C 51 9B
1C51:A5 51 8D 34 9B 18 A5 50 6D 35 9B 8D 33 9B
:90 03 EE 34 9B A5 25 F0 02 C6 25 4C 34 8F
3D0G
SAVE ES-CAPE REVISED

Here are the patches for the RAM-card version:

LOAD ES-CAPE LC
CALL -151
E41:69 00 EA
102B:4C 60 E1
1B60:A5 51 8D 51 E1 18 A5 50 6D 52 E1 8D 50 E1
:90 03 EE 51 E1 A5 25 F0 02 C6 25 4C 31 D6
3D0G
SAVE ES-CAPE LC REVISED

I believe these patches make ES-CAPE even easier to use. If any of
you still have not upgraded your AED II copies to ES-CAPE, send me $10
and your old disk and I'll return a new version and the great new
manual.

I am continuing to work on ES-CAPE, hoping for a new version around
the middle of next year. What new features would you like? The main
ones we have in mind are 80-column support, renumber, and merge. If
you have some good ideas, drop me a line at 3199 Hammock Creek,
Lithonia, GA 30058.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 833 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 3 December, 1982

In This Issue...

Making Internal JMPs and JSRs Relocatable. 2
Add Bit-Control to Apple Monitor 10
Assembly Listings on TEXT Files. 13
Add a New Feature to ES-CAPE 14
Applesoft Source, Completely Commented 15
New Enhanced 6502 Nearly Here! 16
Toggling Upper/Lower Case in the S-C Macro Assembler . . . 19
Save Garbage by Emptying Arrays. 22
Splitting Strings to Fit Your Display. 26
Enhancing Your Apple II (A Review) 29
Clarification on Loading the RAM Card. 32
Quickies 13, 14, 15, & 30

Cross Assemblers continue to appear. We now have ready a version for
the Intel 8048, and one for the yet unreleased Rockwell 65C02. More
on the latter inside.

Don Lancaster, famous author of many books published by Howard Sams,
says the Apple II is probably going to have a greater impact on
history than the automobile or television! Perhaps verging on
Applolatry, but you will surely enjoy his new book. See Bill's
reviews inside.

If I am trying to learn how to program in assembly language, or to
increase my skill at it, what (besides AAL) should I read? I strongly
recommend Softalk, Nibble, Micro, and Call APPLE. Every month they
publish excellent examples of assembly language programs which you can
study, modify, and use. As for books, Roger Wagner's, Lance
Leventhal's, and Don Lancaster's are my favorites at this time.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 834 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Lancaster.Addtn.txt
==

Last last-minute addition: Don sent me a copy of the program disk,
and I am now converting the source files to S-C format. By the time
you read this, he will have the S-C code. When you order the diskette
from Synergetics (Lancaster's company), just mention that you want the
version with the S-C files.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 835 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:ListOnTXTFile.txt
==

Assembly Listings on TEXT Files............Bob Sander-Cederlof

Today Jules Gilder called, asking for patches to allow sending the
assembly listing to a TEXT file. He is in the process of writing a
book, and wanted the listings on TEXT files so they could be
automatically typeset.

My first response was a familiar one: "It is a very difficult
problem, because of the interaction of .IN and .TF files."

"But I don't need .TF or .IN files!", he swiftly parried.

Suddenly in a flash of insight I saw that it could be EASILY done.
All that is needed is to patch the .TF directive so that it opens a
TEXT file, but does not set the TF-flag. Then all listing output will
go to the text file, and the object code will go to the current origin
or target address.

Here are the patches for the motherboard version:

 :$2998:A5 60 D0 03 20 6A 2A 4C 04 1F

And the language card version:

 :$C083 C083 EAE4:A5 60 D0 03 20 B6 EB 4C 50 E0

Note that the two "C083's" above write-enable the language card so the
patches will be effective.

After the patches are installed, a .TF directive will direct the
listing to your text file. Here is an example:

 .TF T.LISTING
SAMPLE LDA #3
 STA $06
 RTS

Just remember that the normal use of .TF is not available when this
patch is in place; also that .IN should not be used. Using .IN would
turn off the listing output, directing it back to the screen.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 836 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:LoadRAMCard.txt
==

Clarification on Loading the RAM Card...........Paul Schlyter

Last month Bob S-C told how to use an EXEC command file without ENDing
an Applesoft program. His example may have obfuscated the process of
loading a file into a RAM card, because it really is not necessary to
use an EXEC file for this purpose.

You can BLOAD into the RAM card without leaving Applesoft, contrary to
Bob's information, by merely write-enabling it. The soft-switches
$C081 and $C089 write-enable the RAM card (with bank 2 or bank 1 at
$D000, respectively), leaving the motherboard ROMs read-enabled. This
means everything you write goes into the RAM card, and everything you
read comes from the motherboard ROMs. Thus you can simply BLOAD into
the RAM card, and BLOAD will write to those addresses.

Here is a short program that loads the whole 16K RAM card, all from
within a running Applesoft program, without EXEC files.

100 D$ = CHR$ (4)
110 B2 = 49281 : REM $C081 -- SELECT BANK TWO
120 B1 = 49289 : REM $C089 -- SELECT BANK ONE
130 P = PEEK(B2) + PEEK(B2) : REM WRITE ENABLE BANK TWO
140 PRINT D$"BLOAD LC.BANK 2"
150 P = PEEK(B1) + PEEK(B1) : REM WRITE ENABLE BANK ONE
160 PRINT D$"BLOAD LC.BANK 1"

[Note from Bob S-C: My face is red! Paul will note that I modified
his program above in lines 130 and 150. He wrote "130 POKE B2,
PEEK(B2)" and similarly for line 150. However, some RAM cards, such
as my Andromeda board, will disable write-enable if the soft-switches
are addressed during a write-cycle. The POKE does just that;
therefore, I changed 130 and 150 to do two PEEKs in a row. Further, I
recall when working with a Corvus drive last year that BLOADing from a
Corvus into the RAM card did not work unless a monitor had already
been copied into the space from $F800-$FFFF.]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 837 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
S-C Macro Cross Assembler Modules
 65C02 Version..$20.00
 6800/6801/6802 Version...$32.50
 6809 Version...$32.50
 Z-80 Version...$32.50
 68000 Version..$50.00
 Requires ownership of S-C Macro Assembler.
 Each disk includes regular and language card versions.
Upgrade from Version 4.0 to MACRO..................................$27.50
Source code of Version 4.0 on disk.................................$95.00
 Fully commented, easy to understand and modify to your own tastes.

Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.

ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)......(regular $79) $49.00
 Special price to AAL readers only, until 12/31/82!
Source Code for FLASH! Runtime Package.............................$39.00

Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
Cross-Reference and Dis-Assembler (Rak-Ware).......................$45.00
Apple White Line Trace (Lone Star Industrial Computing)............$50.00
 (A unique learning tool)

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $4.50
Reload your own NEC PC-8023 ribbon cartridges...........each ribbon $5.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each

Ashby Shift-Key Mod..$15.00
Paymar Lower-Case Adapter..$37.50
 For Apples before Revision 7 only
Lower-Case Display Encoder ROM.....................................$25.00
 Works only Revision level 7 Apples. Replaces the encoder ROM.

Books, Books, Books..........................compare our discount prices!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 838 of 2550

Apple II Computer Info

 "Enhancing Your Apple II, vol. 1", Lancaster.........($15.95) $15.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00
 "6502 Subroutines", Leventhal........................($12.99) $12.00
 "MICRO on the Apple--1", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--2", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--3", includes diskette...........($24.95) $23.00

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 839 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Quickies.txt
==

Quickie No. 1..............................Bob Sander-Cederlof

To merge selected bits from one byte with the rest of the bits of
another byte:

 Code Example
LDA MASK 00011111
EOR #$FF 11100000
ORA BYTE1 111xxxxx
STA TEMP
LDA BYTE2 yyyzzzzz
ORA MASK yyy11111
AND TEMP yyyxxxxx

Quickie No. 2..............................Bob Sander-Cederlof

To test a byte in memory without disturbing any registers:

INC BYTE
DEC BYTE Restore value, and test against zero
BEQ

Quickie No. 3..............................Bob Sander-Cederlof

To shift a two-byte value right one bit with sign extension:

LDA HI.BYTE
ASL SIGN BIT INTO CARRY
ROR HI.BYTE HI BYTE RIGHT ONE, CARRY (SIGN) INTO BIT 7
ROR LO.BYTE

Quickie No. 4..............................Bob Sander-Cederlof

To print a two byte value in hexadecimal:

LDA HI.BYTE
LDX LO.BYTE
JSR $F941

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 840 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:RelocJMPsMeyer.txt
==

Making Internal JMPs and JSRs Relocatable.........Peter Meyer

A machine language routine is said to be relocatable if it can
function properly regardless of its absolute location in memory. If a
routine contains a JMP or a JSR to an INTERNAL address then it is not
relocatable; if it is run in another part of memory then the internal
JSR or JMP will still reference the former region of memory. JMPs and
JSRs to subroutines at absolute locations (e.g. in the Monitor) do not
impair the relocatability of a routine.

I will explain here a technique whereby you can, in effect, perform
internal JSRs and JMPs without impairing the relocatability of your
routine. There is a small price to pay for this: namely, an increase
in the length of your routine. Your routine must be preceded by a 2-
part Header Routine which is 43 bytes long. In addition, each
internal JSR requires 8 bytes of code, and each internal JMP requires
11 bytes of code.

No tables or other data storage are required, except that three bytes
must be reserved for a JMP instruction. These three bytes can be
anywhere in memory, but must be at an absolute location. There are
three bytes that normally are used only by Applesoft, namely, the
ampersand JMP vector at $3F5 to $3F7. Since we are here concerned
only with machine language routines in their own right, we can use the
locations $3F5 to $3F7 for our own purposes. However, other locations
would do just as well.

The technique is fully illustrated in the accompanying assembly
language program. This routine consists of three parts:

(1) Header Part 1 (SETUP), which sets up a JMP instruction at VECTOR
(at $3F5-$3F7, but could be different, as explained above) to point to
Header Part 2.

(2) Header Part 2 (HANDLER), which is a 15-byte section of code whose
task is to handle requests to perform internal JSRs and JMPs (more on
this below).

(3) The main part of the routine, in which internal JSRs and JMPs (in
effect) are performed using macro instructions.

When your routine (including the Header) is executed, the first thing
that happens is that Header Part 1 locates itself (using the well-
known JSR $FF58 technique), then places a JMP HANDLER at VECTOR.
Thereafter a JMP VECTOR is equivalent to JMP HANDLER, and a JSR VECTOR
is equivalent to a JSR HANDLER. The HANDLER routine handles requests
from your routine for internal JSRs and JMPs. To perform a JSR to an
internal subroutine labelled SUBR simply include the following code:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 841 of 2550

Apple II Computer Info

HERE LDA #SUBR-HERE-7 low byte of offset
 LDY /SUBR-HERE-7 high byte of offset
 TSX
 JSR VECTOR

As explained above, the JSR VECTOR is in effect a JSR HANDLER. The
Header Part 2 code takes the values in the A and Y registers and adds
them to an address which it obtains from the stack to obtain the
address of SUBR. It then places this address in INDEX ($5E,5F) and
executes "JMP (INDEX)".

An internal JMP, from one part of your routine to another, is
performed in a similar manner. Suppose you wish to JMP from HERE to
THERE. It is done as follows:

HERE LDA #THERE-HERE-7 low byte of offset
 LDY /THERE-HERE-7 high byte of offset
 TSX
 JSR $FF58
 JMP VECTOR

Since we are (in effect) performing a JMP, rather than a JSR, we do a
JMP VECTOR rather than a JSR VECTOR. The other difference is that we
have a JSR $FF58 following the TSX.

Clearly the sequence of instructions which allows you to perform a JMP
or a JSR could be coded as a macro. The macros to use are shown in
the accompanying program listing. By using macros an internal JMP or
JSR can be performed with a single macro instruction bearing a very
close resemblance to a real JSR or JMP instruction.

The following program, which consists of the Header Routine plus a
demonstration routine, can be assembled to disk using the .TF
directive. It can then be BRUN at any address and it will function
properly. Thus it is relocatable, despite the fact that there are (in
effect) an internal JMP and two internal JSRs performed.

When performing an internal JSR or JMP using my techniques, it is not
possible to pass values in the registers, since these are required to
pass information to the HANDLER routine. Nor is it advisable to try
to pass parameters on the stack, even though the HANDLER routine does
not change the value of the stack pointer. Better is to deposit
values in memory and retrieve them after the transition has been made.

The HANDLER routine passes control to the requested part of your
routine using a JMP indirect. (INDEX at $5E,5F, has been used in the
accompanying program, but any other address would do as well, provided
that it does not cross a page boundary.) This means that the section
of your routine to which control is passed (whether or not it is a
subroutine) may find its own location by inspecting the contents of
the location used for the JMP indirect. This feature of this
technique is also illustrated in the accompanying program, in the
PRINT.MESSAGE subroutine.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 842 of 2550

Apple II Computer Info

The use of internal data blocks is something not normally possible in
a relocatable routine, but it can be done if the techniques shown here
are used.

This method of performing internal JSRs and JMPs in a relocatable
routine may be simplified if the routine is intended to function as a
subroutine appended to an Applesoft program. If the subroutine is
appended using my utility the Routine Machine (available from
Southwestern Data Systems), then it is not necessary to include the
47-byte Header Routine. Internal JMPs and JSRs can still be performed
exactly as described above, except that the address of VECTOR must be
$3F5-$3F7. This technique is not described in the documentation to
the Routine Machine. A full explanation may be found in the Appendix
to the documentation accompanying Ampersoft Program Library, Volume 4
(also available from Southwestern Data Systems).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 843 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Split.txt
==

Splitting Strings to Fit Your Display......Bob Sander-Cederlof

Printing text on the screen, or even on a printer, is not as easy at
it ought to be. The problem is splitting words at the right margin.
Word processors handle it nicely, but what do you do in an Applesoft
program?

You might write a subroutine, in Applesoft, which looks for the first
space between words before a specified column position. The
subroutine could split a string at the space into two substrings: one
containing the next display line, the other the remainder of the
original string.

You might. But believe me, it builds up a lot of garbage strings and
takes a long time to execute. If you like the general approach, you
might try coding the subroutine in assembly language. You can avoid
garbage build-up and save lots of running time, so it is probably
worth the effort. Especially since I already wrote the program for
you!

The program is written to be called from an ampersand parser like the
one in last month's article on REPEAT/UNTIL. Or, you can use it with
Amper-Magic, Amperware, The Routine Machine, etc. It is fully
relocatable, having no internal data or JMP/JSR addresses. I set the
origin to $300, but it can be loaded and used anywhere without re-
assembly.

Here is an Applesoft program to show how to call SPLIT:

100 POKE 1014,0: POKE 1015,3
120 FOR N = 5 TO 40 STEP 3: GOSUB 1000: NEXT : END
1000 A$ = "NOW IS THE TIME FOR ALL GOOD MEN TO COME
 TO THE AID OF THEIR PARTY."
1005 & ,A$,B$,N
1010 PRINT B$
1020 IF A$ < > "" THEN 1005
1025 PRINT
1030 RETURN

Call SPLIT with three parameters. The first (A$ above) is the source
string, which will be split. After SPLITting, the remainder string
will be left in A$.

The second parameter, B$ above, will receive the left part, including
the last complete word, up to N (the 3rd parameter) characters. If
there is no space in the left N characters, exactly N characters will
be split.

Here are some of the printouts from the test program:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 844 of 2550

Apple II Computer Info

N=5 N=11 N=20
----- ----------- --------------------
NOW NOW IS THE NOW IS THE TIME FOR
IS TIME FOR ALL GOOD MEN TO COME
THE ALL GOOD TO THE AID OF THEIR
TIME MEN TO COME PARTY.
...etc. ...etc.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 845 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:Articles:Toggle.Case.txt
==

Toggling Upper/Lower Case in the S-C Macro Assembler.........

Steven Mann
Psychology Dept.
Univ. of So. Dakota
P. O. Box 7187
Grand Forks, ND 58202

I have made the necessary modifications to the assembler (and to my
Apple) that allow me to enter lower case characters in my source
programs, but have found that I like to have all upper case in certain
sections (the labels and opcodes) and mixed (mostly lower) case only
in the comment field. In order to do accommodate this most
effectively, I wanted to be able to toggle back and forth from upper
to lower case while I was entering my source code.

The simplest solution for me was to patch the assembler to accept one
of the escape key sequences as an upper/lower case toggle. From back
issues of AAL I was able to determine that a table of address vectors
for the escape keys A-L is maintained from $1467 thru $1482 ($D467
thru $D482 in the language card version). Each two-byte entry is the
address-1 (low byte first) of the routine that will handle that
particular escape sequence.

Certain of the sequences are already taken (e.g. ESC L loads a disk
file; ESC I,J,K, and M move the cursor, etc.) Since I don't use the
ESC A,B,C,D cursor moves, I selected the ESC A sequence as the code
for the case toggle. I also used ESC C for "CATALOG", as suggested by
Bill Morgan some months back in these pages.

Implementation of the toggle is accomplished with the following
patches to the HELLO program (for the RAM version of the assembler.)
First, line 50 should be changed to:

50 PRINT A: IF A=1 THEN PRINT CHR$(4)"BLOAD S-C.ASM.MACRO"
 :GOSUB 200: CALL 4096

The subroutine at 200 is as follows:

197 REM
198 REM ESC A TOGGLES UP/LOW CASE
199 REM
200 POKE 5229,109:POKE 5230,165
210 FOR I=1 TO 9:READ J:POKE 48350+I,J:NEXT
220 DATA 173,22,16,73,255,141,22,16,96
230 RETURN
240 REM
250 REM ROUTINE RESIDES AT $BCDF
260 REM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 846 of 2550

Apple II Computer Info

270 REM CODE IS AS FOLLOWS:
280 REM
290 REM LDA $1016
300 REM EOR #FF
310 REM STA $1016
320 REM RTS
330 REM

Note that I put the patch code at $BCDF, which is in an unused area
inside DOS 3.3. If you have already used this area for other
purposes, you can tack the patch on to the end of the assembler image
instead.

The actual code is very simple. The upper/lower case flag is stored
at $1016 and is either a $00 or a $FF (in binary all zeros or all
ones.) Toggling the flag involves loading the current flag and EORing
it with #$FF. This will cause all set bits to be cleared and all
clear bits to be set, so the zeros become ones and the ones become
zeros. Thus, an #$FF byte becomes a #$00 or a #$00 becomes an #$FF.
The new flag value is then stored back in $1016.

For the language card version the program is basically the same, but
slightly longer due to the need to first write enable the language
card. The code looks like this:

PATCH LDA $C083 Two of these in succession
 LDA $C083 write-enable the card
 LDA $D016 Get the flag
 EOR #$FF Complement it
 STA $D016 Save the new flag
 LDA $C080 Write protect the card
 RTS

I put the code in the same place as in the RAM version ($BCDF) and put
it into memory from the LOAD LCASM exec file which loads the assembler
onto the card. Two lines need to be added to the file. Between lines
1070 and 1080 (assuming your version has not been modified) you need
to place these two lines:

1072 D469:DE BC
1074 BCDF:AD 83 C0 AD 83 C0 AD 16 D0 49 FF 8D 16 D0 AD 80 C0 60

The first line places the address of the case toggle handler in the
escape vector table and the second line contains the assembled source
code listed above. If you are not sure how to modify the LOAD LCASM
file see the step by step description given in the May 1982 AAL (page
3).

After you have made the patch, experiment with the toggle. One
particularly valuable feature is that you can toggle the case within a
single line as you enter the line. This means that you can enter the
label and opcode in upper case, tab over to the comment field, toggle
the case flag, and then enter your comment in lower case.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 847 of 2550

Apple II Computer Info

I have found using the case toggle to be easy while improving the
appearance and readability of my source listings. The only problem I
have encountered so far is that the flag can not be toggled from
within the edit mode (either case can be used in the edit mode, but
you can't change the case in the middle of editing.) If any of you
find a way to add this to the assembler be sure to let me know.

[P.S. If you haven't put in the automatic catalog yet, here is an
easy way. Add the following line to your LOAD LCASM file:

 1076 D46D:6D A5

and then ESC C will do a catalog as long as you don't mind having to
hit return at the end of the catalog. For the motherboard version,
add:

 205 POKE 5225,222: POKE 5226,188

in the subroutine I've added to the HELLO program.]

{Ouch! Why didn't I think of that? One caution: With this method
ESC C will do a CATALOG even if you are in the middle of typing a
line. . . . Bill Morgan}

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 848 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:DOS3.3:Meyers.Reloc.txt
==

 1010 .TF B.MEYER.1
 1020 *SAVE S.MEYER.1
 1030 *--------------------------------
 1040 * SETUP AND HANDLER ROUTINES
 1050 * TO ALLOW INTERNAL JSRS AND
 1060 * JMPS IN A RELOCATABLE MACHINE
 1070 * LANGUAGE ROUTINE
 1080
 1090 * BY PETER MEYER, 11/3/82
 1100 *--------------------------------
 1110 * LOCATIONS
 1120
 1130 INDEX .EQ $5E,5F
 1140 STACK .EQ $100 - $1FF
 1150 VECTOR .EQ $3F5 - $3F7
 1160 *--------------------------------
 1170 * MACRO DEFINITIONS
 1180
 1190 .MA JSR
 1200 :1 LDA #]1-:1-7
 1210 LDY /]1-:1-7
 1220 TSX
 1230 JSR VECTOR
 1240 .EM
 1250
 1260 .MA JMP
 1270 :1 LDA #]1-:1-7
 1280 LDY /]1-:1-7
 1290 TSX
 1300 JSR $FF58
 1310 JMP VECTOR
 1320 .EM
 1330 *--------------------------------
 1340 * HEADER PART 1
 1350
 1360 SETUP JSR $FF58 FIND OURSELVES
 1370 TSX
 1380 CLC
 1390 LDA #HANDLER-SETUP-2
 1400 .DA #$7D,STACK-1 FORCE ABS,X MODE
 1410 STA VECTOR+1
 1420
 1430 LDA /HANDLER-SETUP-2
 1440 ADC STACK,X
 1450 STA VECTOR+2
 1460
 1470 LDA #$4C "JMP"
 1480 STA VECTOR
 1490 BNE MAIN.ROUTINE ALWAYS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 849 of 2550

Apple II Computer Info

 1500 *--------------------------------
 1510 * HEADER PART 2
 1520
 1530 HANDLER
 1540
 1550 * ON ENTRY A,Y HOLD OFFSET
 1560 * FOR JMP OR JSR FROM ROUTINE
 1570 * X IS STACK POINTER FROM BEFORE LAST JSR
 1580
 1590 CLC
 1600 .DA #$7D,STACK-1 FORCE ABS,X MODE
 1610 STA INDEX
 1620 TYA
 1630 ADC STACK,X
 1640 STA INDEX+1
 1650 JMP (INDEX)
 1660 *--------------------------------
 1670 * MAIN ROUTINE, FOR EXAMPLE
 1680 *--------------------------------
 1690 MSG .EQ $06 AND $07
 1700 CH .EQ $24
 1710 CV .EQ $25
 1720 INVFLG .EQ $32
 1730 COUNT .EQ $3C
 1740 SETTXT .EQ $FB39
 1750 VTABZ .EQ $FC24
 1760 HOME .EQ $FC58
 1770 COUT .EQ $FDED
 1780 *--------------------------------
 1790 MAIN.ROUTINE
 1800 JSR SETTXT
 1810 JSR HOME
 1820 MAIN.LOOP
 1830 LDA #190
 1840 STA COUNT
 1850 .1 LDA #AALQT-PRINT.MESSAGE
 1860 STA MSG
 1870 LDA /AALQT-PRINT.MESSAGE
 1880 STA MSG+1
 1890 >JSR PRINT.MESSAGE
 1900 DEC COUNT
 1910 BNE .1
 1920 LDA #LONGQT-PRINT.MESSAGE
 1930 STA MSG
 1940 LDA /LONGQT-PRINT.MESSAGE
 1950 STA MSG+1
 1960 >JSR PRINT.MESSAGE
 1970 >JMP FORWRD
 1980
 1990 *--------------------------------
 2000 PRINT.MESSAGE
 2010 CLC
 2020 LDA MSG CHANGE RELATIVE ADDRESS TO
 2030 ADC INDEX AN ABSOLUTE ADDRESS, BY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 850 of 2550

Apple II Computer Info

 2040 STA MSG ADDING THE OFFSET
 2050 LDA MSG+1
 2060 ADC INDEX+1
 2070 STA MSG+1
 2080 LDY #0 POINT AT FIRST CHAR OF MSG
 2090 .1 LDA (MSG),Y GET NEXT CHAR OF MSG
 2100 BMI .2 IT IS LAST CHAR
 2110 ORA #$80 MAKE APPLE VIDEO FORM
 2120 JSR COUT PRINT IT
 2130 INY ADVANCE POINTER
 2140 BNE .1 ...ALWAYS
 2150 .2 JMP COUT PRINT AND RETURN
 2160 *--------------------------------
 2170 * 256 BYTES TO JUMP OVER, JUST FOR ILLUSTRATION
 2180
 2190 .BS $100
 2200 *--------------------------------
 2210 * TOGGLE INVERSE FLAG, AND HOME CURSOR
 2220
 2230 FORWRD LDA INVFLG
 2240 EOR #$C0
 2250 STA INVFLG
 2260 LDA #0
 2270 STA CH
 2280 STA CV
 2290 JSR VTABZ
 2300 >JMP MAIN.LOOP
 2310 *--------------------------------
 2320 AALQT .AT /AAL /
 2330 LONGQT .HS 0D0D
 2340 .AS / A P P L E A S S E M B L Y L I N E /
 2350 .HS 0D02
 2360 .AT / S - C S O F T W A R E C O R P . /

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 851 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:DOS3.3:S.BITS.txt
==

 1000 *--------------------------------
 1010 * MONITOR CTRL-Y COMMAND
 1020 *
 1030 * TO SET AND CLEAR ANY COMBINATION
 1040 * OF BITS IN A RANGE OF MEMORY
 1050 *
 1060 * *MASK<ADR1.ADR2Y (WHERE Y MEANS CTRL-Y)
 1070 *
 1080 * MASK = XXYY BITS = 0 IN YY WILL BE CLEARED
 1090 * BITS = 1 IN XX WILL BE SET
 1100 *--------------------------------
 1110 A1 .EQ $3C
 1120 A4L .EQ $42
 1130 A4H .EQ $43
 1140 STACK .EQ $100
 1150 *--------------------------------
 1160 SETUP JSR $FF58 FIND SELF FIRST
 1170 TSX
 1180 CLC
 1190 LDA #BITS-SETUP-2
 1200 .DA #$7D,STACK-1 FORCE ABS,X MODE
 1210 STA $3F9 MONITOR CTRL-Y VECTOR
 1220 LDA /BITS-SETUP-2
 1230 ADC STACK,X
 1240 STA $3FA
 1250 RTS
 1260 *--------------------------------
 1270 BITS LDA (A1),Y GET NEXT BYTE IN SPECIFIED RANGE
 1280 AND A4L CLEAR BITS USING LO-BYTE OF MASK
 1290 ORA A4H SET BITS FROM HI-BYTE OF MASK
 1300 STA (A1),Y STORE MODIFIED BYTE
 1310 JSR $FCBA ADVANCE POINTER
 1320 BCC BITS MORE IN RANGE
 1330 RTS FINISHED
 1340 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 852 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:DOS3.3:S.SPLIT.txt
==

 1000 *SAVE S.SPLIT
 1010 *--------------------------------
 1020 * & SPLIT,A$,B$,W
 1030 *
 1040 * A$ -- SOURCE STRING
 1050 * W -- MAXIMUM WIDTH OF SPLIT
 1060 *
 1070 * B$ -- LEFT W CHARS OF A$
 1080 * A$ -- REST OF A$
 1090 *
 1100 *--------------------------------
 1110 .OR $300
 1120 .TF B.SPLIT
 1130 *--------------------------------
 1140 LINNUM .EQ $50,51
 1150 DPTRA .EQ $06,07
 1160 DPTRB .EQ $08,09
 1170 SPTRA .EQ $FE,FF
 1180 *--------------------------------
 1190 AS.CHKCOM .EQ $DEBE
 1200 AS.PTRGET .EQ $DFE3
 1210 AS.GETADR .EQ $E752
 1220 AS.FRMNUM .EQ $DD67
 1230 *--------------------------------
 1240 SPLIT JSR AS.CHKCOM GET COMMA
 1250 JSR AS.PTRGET GET SOURCE STRING
 1260 STA DPTRA
 1270 STY DPTRA+1
 1280 JSR AS.CHKCOM ANOTHER COMMA
 1290 JSR AS.PTRGET GET TARGET STRING
 1300 STA DPTRB
 1310 STY DPTRB+1
 1320 JSR AS.CHKCOM ANOTHER COMMA
 1330 JSR AS.FRMNUM
 1340 JSR AS.GETADR GET MAXIMUM WIDTH
 1350 LDY #2
 1360 LDA (DPTRA),Y
 1370 STA SPTRA+1
 1380 STA (DPTRB),Y
 1390 DEY
 1400 LDA (DPTRA),Y
 1410 STA SPTRA
 1420 STA (DPTRB),Y
 1430 DEY
 1440 LDA LINNUM
 1450 CMP (DPTRA),Y
 1460 BCC .1
 1470 LDA (DPTRA),Y A$ SHORTER THAN OR SAME AS W
 1480 STA (DPTRB),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 853 of 2550

Apple II Computer Info

 1490 LDA #0
 1500 STA (DPTRA),Y
 1510 RTS
 1520 *--------------------------------
 1530 .1 TAY
 1540 .2 LDA (SPTRA),Y LOOK AT SPLIT BOUNDARY
 1550 CMP #$20 FOR A BLANK
 1560 BEQ .3 FOUND ONE
 1570 DEY
 1580 BNE .2 BACK UP THE SPLIT
 1590 *---NO BLANK IN W CHARS----------
 1600 LDA LINNUM
 1610 BNE .4 ...ALWAYS
 1620 *--------------------------------
 1630 .3 TYA
 1640 INY SKIP OVER BLANK
 1650 STY LINNUM
 1660 .4 LDY #0 LENGTH OF B$
 1670 STA (DPTRB),Y
 1680 SEC
 1690 LDA (DPTRA),Y LENGTH OF A$
 1700 SBC LINNUM
 1710 STA (DPTRA),Y
 1720 INY
 1730 CLC
 1740 LDA (DPTRA),Y
 1750 ADC LINNUM
 1760 STA (DPTRA),Y
 1770 INY
 1780 LDA (DPTRA),Y
 1790 ADC #0
 1800 STA (DPTRA),Y
 1810 RTS
 1820 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 854 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:DOS3.3:S.StrArrayClear.txt
==

 1000 *SAVE S.STRING ARRAY CLEAR
 1010 *--------------------------------
 1020 * CLEAR STRING ARRAY
 1030 *--------------------------------
 1040 GETARYPT .EQ $F7D9
 1050 CHKSTR .EQ $DD6C
 1060 CHKCOM .EQ $DEBE
 1070 *--------------------------------
 1080 FAC .EQ $9D
 1090 LOWTR .EQ $9B,9C
 1100 .OR $300
 1110 *--------------------------------
 1120 CLEAR
 1130 JSR CHKCOM
 1140 JSR GETARYPT
 1150 JSR CHKSTR
 1160 LDY #4 COMPUTE SIZE OF PREAMBLE
 1170 LDA (LOWTR),Y # OF DIMS
 1180 ASL *2, CLEAR CARRY
 1190 ADC #5 +5
 1200 STA FAC SAVE PREAMBLE SIZE
 1210 LDY #2 POINT AT OFFSET
 1220 SEC COMPUTE ARRAY LENGTH
 1230 LDA (LOWTR),Y
 1240 SBC FAC
 1250 PHA # BYTES IN PARTIAL PAGE
 1260 INY
 1270 LDA (LOWTR),Y
 1280 SBC #0
 1290 TAX # WHOLE PAGES
 1300 CLC POINT AT BEGINNING OF DATA
 1310 LDA LOWTR
 1320 ADC FAC
 1330 STA LOWTR
 1340 BNE .2
 1350 INC LOWTR+1
 1360 .2 LDY #0
 1370 TXA # WHOLE PAGES
 1380 BEQ .4
 1390 TYA SET A=0
 1400 .3 STA (LOWTR),Y
 1410 DEY
 1420 BNE .3
 1430 INC LOWTR+1
 1440 DEX COUNT WHOLE PAGES
 1450 BNE .3
 1460 .4 PLA
 1470 BEQ .6 FINISHED
 1480 TAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 855 of 2550

Apple II Computer Info

 1490 LDA #0
 1500 .5 DEY
 1510 STA (LOWTR),Y
 1520 BNE .5
 1530 .6 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 856 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:DOS3.3:Test.Split.txt
==

d∑1014,0:∑1015,3-x∑N»5∑40ø3:∑1000:∑:∑ÊÂA$»"NOW IS THE TIME FOR ALL
GOOD MEN TO COME TO THE AID OF THEIR PARTY. WE HOPE THAT ALL OUR
CUSTOMERS ARE DISAPPOINTED ... THAT THEY WAITED SO LONG BEFORE THEY
BOUGHT S-C SOFTWARE."ıÍ∑,A$,B$,NˇÔ∑B$ ˙∑A$…«""∏1005 ∑ \∑

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 857 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8212:DOS3.3:Test.StrArrClr.txt
==

dÜA$(25),B$(5)-iÅI–0¡5:B$(I)–"ABCD":ÇGnÅI–0¡25:N–”(¤(1) 5)»1ÅxÅJ–
1¡N:A$(I)–
A$(I)»Á(¤(1) 26»65):Ç:∫„(A$(I))":"A$(I),ãÇÇ:∫:∫óåå768,A$∏ñÅI –
0¡25:∫„(A$(I))":"A$(I),:Ç¿õ∫:∫’†ÅI–0¡5:∫B$(I),:Çfi™´110

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 858 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Amper.Review.txt
==

Amper-Magic, The Routine Machine, and Amperware

A Comparative Review.......................Bob Sander-Cederlof

I have put off doing this for a long time. The authors and publishers
of all three of these programs are friends of mine, and I don't like
to go around comparing friends. On the other hand, all of you are my
friends, and you have asked for my honest evaluations.

About two years ago, Bob Nacon visited me with an early version of
Amper-Magic. He wanted me to consider marketing it for him. I wasn't
ready at the time to market anything new, so I suggested he try Roger
Wagner (Southwestern Data Systems) and Michael Heckman (then Aurora,
now Anthro-Digital Software). Bob went to Roger, and within the same
week Peter Meyer came to Roger with his package called "The Routine
Machine". Roger opted for Peter's, and Mike took Bob's. Amper-Magic
has been available in stores now for about a year. The Routine
Machine took longer; I just got a review copy of the final release a
few weeks ago.

About three months ago Amper-Ware appeared, and I received a pre-
release copy for review. Since then about half a dozen more similar
programs have been advertised, and some of them are actually
available. Some of them sound very attractive, and I look forward to
trying them out. The advertising copy for ELF IV from Sierra On-Line
is particularly seductive.
 I would like to hear from you readers any comments you have on any of
these Applesoft extension systems.

Both Amper-Magic (&-M) and The Routine Machine (TRM) serve the same
function, which is to provide a convenient method for using machine
language subroutines with Applesoft programs. Both use the same
techniques, and both require the same "run-anywhere" subroutines.
Very few if any changes must be made to a subroutine from one package
to make it work with the other package.

Amperware (AMW) is a different breed. It is a fixed set of powerful
&-subroutines which can be either loaded above the DOS buffers or
below the Applesoft program.

TRM uses more memory, provides more features, has a better manual; &-M
is more memory-efficient, includes the essential features, and costs
$10 more. AMW, least expensive of the three, has some powerful
abilities missing from the others.

The Package:
 &-M 8.5" x 11" Report Cover
 51 page manual
 Card summarizing operating procedures

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 859 of 2550

Apple II Computer Info

 Diskette not copy-protected
 $75

 TRM 6" x 9" Padded 3-ring binder
 162 page manual
 Summary of Subroutine Calls
 Diskette copy-protected, but will self-copy
 up to three times. Locksmith with
 default parameters makes good copies.
 Each individual file is copyable to
 any other diskette.
 $64.95

 AMW 5.5" x 8.5" booklet, plastic-comb binding
 68 page manual
 Reference folder
 Diskette not copy protected
 $49.95

The Subroutine Management System: This is the main program for TRM
and &-M, which does the work of appending your selection of machine
language subroutines to an Applesoft program. AMW has no such
program, being a fixed set of subroutines which are not relocatable.

Menu Function &-M TRM

Add a subroutine yes yes
Remove a subroutine yes yes
Remove all subroutines no yes
Remove other code N/A yes
Save appended code yes yes
Load saved code yes yes
Report current subrs yes yes
Search for CALLs no yes
Search for &s no yes
Inspect A/S line no yes
Inspect subroutine yes no
Display memory map yes yes
Exit yes yes

Restart after Exit no yes

Subroutines Included in Package:

 Number of Bytes
Function &-M TRM AMW

Binary File Info 253 443 no
Delete Array 47 no yes
Disassemble 39 no no
Dump Variables 80 no no
Find Substring 120 140 yes
Find Substr in Array 285 456 yes
GOTO expr 43 17 yes

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 860 of 2550

Apple II Computer Info

GOSUB expr 35 32 yes
Hex Memory Dump 26 no no
Input Anything 92 41 yes
Input Form Editor no no yes
Screen Control no no yes
Move Memory 147 248 no
Poke a List 25 no no
Poke hex list 70 no no
Print Hex 26 no no
Formatted String Print 380 no no
Formatted Number Print no 261 yes
Print w/o word break 118 197 no
Prune String 121 no no
Restore DATA line 23 49 no
Speed up Applesoft:
 &SPEED=SAVE 28 no no
 &SPEED=RESTORE 15 no no
POKE two bytes 29 150 no
PEEK two bytes no 156 no
Swap two variables 58 58 no
Sort string array no 250 yes
Sort any array no no yes
Sort array with index no no yes
Tone (pitch, duration) no 56 no
Sound effects no 28 no
Fix Link Fields no 66 no
ONERR Correction no 63 no
Print Error Message no 150 no
Restore DATA element no 129 no
Convert hex/dec values no 214 no
Restore Ampersand no 18 no
Hires ASCII shapes no 1190 no
Turtle Graphics no 612 no
Turtle Graphics Plus no 988 no
Super Fast BLOAD no 597 no
Fast general disk I/O no no yes
RESET vector = normal no 16 no
RESET vector = ONERR no 42 no
RESET vector = RUN no 24 no
RESET vector = re-boot no 6 no
Free Sector Count no 116 yes

Separate utilities on disk:

 Amper-Magic

 The Routine Machine
 Shape Table Gobbler
 Shape Table Viewer
 Binary File Copier
 Back-up Disk Copier

If you have a serious need for Amper-Magic or The Routine Machine, you
might actually find it worthwile to buy both. The price is about

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 861 of 2550

Apple II Computer Info

equivalent to an hour or two of your own time, but your are getting
hundreds of hours of Peter's and Bob's time in return. Study the code
in the machine language subroutines provided with &-M and TRM, until
you understand how they work.

Once you have mastered the technique of writing "run-anywhere"
subroutines that interact properly with Applesoft, both &-M and TRM
are equally valuable tools for managing an ever-growing library of
pre-coded modules. Your own subroutines, together with Peter's and
Bob's, and all the ones you find in AAL, Nibble, Call APPLE, etc.,
become the "IC's" of the programmer's world.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 862 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Arranger.Addtns.txt
==

An Addition to CATALOG ARRANGER.................Dave Barkovitch

I really like Bill Morgan's CATALOG ARRANGER, from the October issue
of AAL. There is something I want to change, though.

When you move the cursor to the end of a long catalog, the cursor
stays in the middle of the screen and the catalog scrolls up, until
only the top half of the screen is filled. Here are some patches to
make the cursor move down to the end, and keep 22 files on the screen:

2931 LDA NUMBER.OF.ELEMENTS
2932 SEC
2933 SBC #LINE.COUNT
2934 BPL .5
2935 LDA #ZERO
2936 .5 STA LAST.ELEMENT

3830 BPL .7

3841 BEQ .1
3842 .7 CMP LAST.ELEMENT
3843 BCC .1
3844 LDA LAST.ELEMENT

5991 LAST.ELEMENT .BS 1

And Another Change.................................Bill Collins

CATALOG ARRANGER is a great utility. Here are a couple of things you
might like to know:

1. Version 4.0 of the S-C Assembler will not accept division in the
operand. If you have that version then change line 3820 to SBC #11.

2. If you have DOS relocated into a RAM card you need to add the
following lines for bank switching purposes:

1165 MONREAD .EQ $C082
1167 DOSREAD .EQ $C083

Then add BIT MONREAD at these positions: Lines 1675, 3785, 3855,
3895, 4015 (".5" moved to this line), 4205 (".3" moved to this line),
4315, 4425, 4455 (".7" moved to this line).

And add BIT DOSREAD at these spots: Lines 1535-36, 1685-86, 3795-96,
3905-06, 3975-76, 4035-36, 4215-16, 4345-46, 4465-66, 4955-56.

Also, all DOS addresses must be moved up 16K (lines 1180-1310.) $Axxx
addresses become $Exxx and $Bxxx become $Fxxx.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 863 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Cookbook.Review.txt
==

Micro Cookbook, vol. 1 (Review).....................Bill Morgan

Here are some more details about Don Lancaster's other new book,
"Micro Cookbook, vol. 1 -- Fundamentals." As I said last month, the
focus of the book is what to learn and how to learn it. He emphasizes
"what actually gets used", rather than an exhaustive coverage of all
possibilities.

The best quick description of the book is an excerpt from the Preface:

Our aim is to show you how micros work, and how you can profit from
and enjoy the micro revolution.

We start with the power and the underlying idea behind all micros.
From there we build up the framework for all the important micro
concepts and terms. The micro-
processor families are broken down into three simple and easily
understood schools.

Chapter Two starts with a set of rules for winning the micro game.
These rules have been thoroughly tested in the real world and are not
at all what you might expect. After that, we check into many of the
resources that are available to you as a micro user. A survey of
micro trainers is included.

The Funny Numbers section (Chapter 3) shows you ways to use and
understand the number systems involved in micros, particularly binary
and hexadecimal. From there, we look at logic, both as hardware gates
and as software commands.

The fourth chapter is all about codes. The important codes that are
covered include straight binary, 2's complement binary, ASCII, BCD,
instruction codes, user port codes, and various serial data-
transmission codes and standards. The 2's complement codings are
presented in a new and understandable way.

Chapter 5 tells us many things about memory. We go into electronic
memory -- beginning with simple latches and progressing to clocked
flip-flops. Mainstream microcomputer memory is attacked next -- from
static RAMs up through dynamic RAM, ROM, PROM, EPROM, and EEPROM
memories.

"Micro Cookbook -- Fundamentals" is just that: Fundamental. I am a
complete novice on hardware. After reading Lancaster's book, I still
can't design custom interfaces for my Apple, but I can now read the
more technical books without getting totally lost. I have a better
understanding of address decoding and of what the memory chips are
really doing. The book is informative, enlightening, and
entertaining. I recommend it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 864 of 2550

Apple II Computer Info

This Cookbook is about 360 pages of text, plus appendices and index.
There are many drawings and charts. List price is $15.95. We will be
selling it for $15.00 + postage.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 865 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:CROSS.AD.txt
==

S-C Macro Cross Assemblers
The high cost of dedicated microprocessor development systems has
forced many technical people to look for alternate methods to develop
programs for the various popular microprocessors. Combining the
versatile Apple II with the S-C Macro Assembler provides a cost
effective and powerful development system. Hobbyists and engineers
alike will find the friendly combination the easiest and best way to
extend their skills to other microprocessors.

The S-C Macro Cross Assemblers are all identical in operation to the
S-C Macro Assembler; only the language assembled is different. They
are sold as upgrade packages to the S-C Macro Assembler. The S-C
Macro Assembler, complete with 100-page reference manual, costs $80;
once you have it, you may add as many Cross Assemblers as you wish at
a nominal price. The following S-C Macro Cross Assembler versions are
now available, or soon will be:

Motorola: 6800/6801/6802 now $32.50
 6805 now $32.50
 6809 now $32.50
 68000 now $50

Intel: 8048 now $32.50
 8051 soon $32.50
 8085 soon $32.50

Zilog: Z-80 now $32.50

RCA: 1802/1805 soon $32.50

Rockwell: 65C02 now $20

The S-C Macro Assembler family is well known for its ease-of-use and
powerful features. Thousands of users in over 30 countries and in
every type of industry attest to its speed, dependablility, and user-
friendliness. There are 20 assembler directives to provide powerful
macros, conditional assembly, and flexible data generation. INCLUDE
and TARGET FILE capabilities allow source programs to be as large as
your disk space. The integrated, co-resident source program editor
provides global search and replace, move, and edit. The EDIT command
has 15 sub-commands combined with global selection.

Each S-C Assembler diskette contains two complete ready-to-run
assemblers: one is for execution in the mother-board RAM; the other
executes in a 16K RAM Card. The HELLO program offers menu selection
to load the version you desire. The disks may be copied using any
standard Apple disk copy program, and copies of the assembler may be
BSAVEd on your working disks.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 866 of 2550

Apple II Computer Info

S-C Software Corporation has frequently been commended for outstanding
support: competent telephone help, a monthly (by subscription)
newsletter, continuing enhancements, and excellent upgrade policies.

S-C Software Corporation (214) 324-2050
P.O. Box 280300, Dallas, Texas, 75228

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 867 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Filename.Editor.txt
==

A Filename Editor for CATALOG ARRANGER..............Bill Morgan

Many thanks to all of you who have called and written to say how much
you like the CATALOG ARRANGER. I'm glad to hear that others find it
as useful as I do. Here's my favorite addition to the program, the
ability to edit the filename in the cursor. Now you can change a name
by inserting or deleting characters, insert control characters, and
place display titles in the catalog, using normal, inverse, flashing,
or lower case text.

There are a couple of unique features in this editor. The cursor
clearly indicates Insert, Overtype, or Override mode, and also shows
whether the input will be Normal, Inverse, Flashing, or Lower Case.
The display unambiguously shows all these types, plus Control. The
price of all this clarity is three display lines for one text line,
but that's no problem in this program. These concepts can easily be
adapted to edit any line of forty or fewer characters. The principles
also apply to longer lines, but the screen display would have to be
handled carefully.

Installation

To add FILENAME EDITOR to CATALOG ARRANGER just type in
S.FILENAME.EDITOR from this listing, and save it on the same disk with
S.CATALOG.ARRANGER. Then LOAD S.CATALOG.ARRANGER and make the
following changes and additions:

1030 .TF CATALOG.ARRANGER.NEW

1480 LINE.COUNT .EQ 21

1915 CMP #$85 ^E
1920 BNE .1
1922 JSR RENAME.FILE
1924 JMP DISPLAY.AND.READ.KEY

5865 .IN S.FILENAME.EDITOR

Then SAVE the new S.CATALOG.ARRANGER and assemble it.

Operation

To rename a file, just use the arrow keys to move the cursor to the
file you want, and type "CTRL-E" (for Edit). The name you selected
will appear near the bottom of the screen, between square brackets.
Any control characters in the name will have a bar above them. The
caret below the first character of the name is the cursor. Any non-
control characters you type will replace the characters on the screen.
Control characters will have the effects shown in the command list

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 868 of 2550

Apple II Computer Info

below. Especially note that RETURN will enter the name in the lower
buffer into the filename array, ESC will return you to the Arranger
without altering the filename, and CTRL-R will restore the original
filename.

One way to have fun with this program is to put dummy files in the
catalog, for titles or just for decoration. In Applesoft, SAVE as
many dummy programs (10 REM, for example) as you need. Then BRUN
CATALOG ARRANGER, move the dummy programs to where you want them, and
edit the names. If you start the new file name with six CTRL-H's, it
will blank out the "A 002 " before the name. You can use inverse,
flashing or lower case text in titles. If you insert CTRL-M's
(RETURNS) after a name there will be blank lines in the catalog. Play
with it for a while, and let me know if you come up with any
especially neat tricks.

Here are the commands:

 <-- -- Left Arrow. Move the cursor left one position.
 --> -- Right Arrow. Move the cursor right one position.
RETURN -- Enter. Enter the changed name into the upper display.
 ESC -- Escape. Return to arranging, without entering the changed
name.
 ^B -- Beginning. Move the cursor to the beginning of the line.
 ^D -- Delete. Delete one character at the cursor.
 ^E -- End. Move the cursor to the end of the name.
 ^F -- Find. Move the cursor to a particular character. Type
"^FA" to move the cursor to the next "A" in the name. Type another
"A" to move to the following "A", and so on. Any character other than
the search key will be entered or executed.
 ^I -- Insert. Turn on Insert Mode. Following characters will be
inserted to the left of the backslash cursor. Any control character
turns Insert off.
 ^O -- Override. Insert the next character typed "as is". This
allows you to insert control characters into a name.
 ^R -- Restore. Restore the name to its original condition, as it
appears in the upper display.
 ^S -- Shift Mode. Cycle between Normal, Inverse, Flashing, and
Lower Case entry. The cursor changes to show the current mode.
 ^Z -- Zap. Remove all characters from the cursor to the end of
the name.

How it All Works

When you type CTRL-E to enter the editor, line 1090 transfers the
filename into an edit buffer located in the screen memory at $757-
$774. The main loop of the editor is lines 1190-1320. All through
the editor the Y-register is the cursor position in the line. The
routine DISPLAY.EDIT.BUFFER shows the brackets before and after the
name, puts bars over any control characters, displays the cursor, and
gets the next keystroke. The main loop then checks whether that key
was a control.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 869 of 2550

Apple II Computer Info

If it was not a control character, it is passed to the input section
(lines 1340-1570), where the character is masked according to the
current MASK.MODE (Normal, Inverse, Flashing, or Lower-case) and
either inserted or just placed in the line. The program then jumps
back to E.START to redisplay the buffer and get the next key.

If you enter a control character, the program JSR's to the
SEARCH.AND.PERFORM routine at lines 3250-3390 (taken straight from
Bob's article in the August '82 AAL.) Here we look up the command key
in the table at lines 3420-3550 and do a PHA, PHA, RTS type branch to
the appropriate command handler, or to the monitor's BELL, if the
command didn't match anything in the table.

Almost all of the command handlers end with an RTS that returns
control to line 1320. The exceptions are OVERRIDE (lines 1590-1650)
and RESTORE (lines 2150-2180), since they exit through internal JMP's,
and RETURN/ESC (lines 2660-2720), since those return to the main
program. Another oddity is the FIND routine (lines 2420-2640), since
it has two exits. Line 2640 returns to line 1320 through the BELL
routine. Lines 2590-2620 are needed to process a keystroke that is
not a repetition of the search key.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 870 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 4 January, 1983

In This Issue...

Super Scroller . 2
Micro Cookbook, vol. 1 (Review). 8
Branch Opcode Names. 9
Catalog Arranger Additions 10
Filename Editor for Catalog Aranger. 11
Quickie No. 5 . 20
Adding Decimal Values from ASCII Strings 21
Still More on Hardcore Magazine. 23
New "What's Where" . 23
Programming a Language Card. 25
The Book (of Apple Software) 26
Seed Thoughts on Extensions. 27
Plug for Some Neat New Products. 28

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 871 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Hardcore.Mag.txt
==

Still More on Hardcore Magazine............Bob Sander-Cederlof

I bought the latest, Vol. 1 No. 3, off the newsstand a few days ago.
It is 72 pages, $3.50. I believe those 72 pages far surpass in
usefulness the 600-odd pages of some familiar monthlies. A highlight
for me was a complete assembly listing (in S-C format!) of HyperDOS,
by John Bridges.

HyperDOS modifies the LOAD and BLOAD commands so that loading runs up
to five times faster. This is the same improvement factor offered by
a half dozen DOS-mods on the market, such as DOS Enhancer from S&H
Software. (Of course, DOS Enhancer also speeds up SAVE and BSAVE, and
include many other useful utilities with the package.)

If you are a nibble copier, you will be pleased with the listing of
parameters for Locksmith and Nibbles Away II. As usual, there are a
lot of hints on "how to unlock" those copy-protected disks: see
"Controlling the I.O.B.", and "Boot Code Tracing".

Bev Haight (author of "Night Falls", among others) gives some
excellent information on graphics, games, and even secrets to
publishing. Bev describes, explains, and lists a new game called
"Zyphyr Wars" for your pleasure and edification.

There is a lot more. Even an interview with Mike Markulla regarding
Apple's position on software protection!

Issue number 4 promises to focus on graphics: novice-to-expert how-
to's, complete graphic aid programs, tables, charts, reviews, etc.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 872 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Last.Minute.txt
==

Many of you have expressed an interest in the new Rockwell R65C02
microprocessor. Well, we still haven't heard any more than I
mentioned last month. We're as eager as you are to get a sample.
We'll have a detailed report as soon as we know more.

Peter Bartlett just called from Chicago to report an unpublished
ceiling on the number of Target Files that can be generated by one
assembly. There can be only 32. If you need more files than that you
should be able to patch $29EA from $1F to $3F. We haven't had time to
test this thoroughly yet, so we'll tell you more next month.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 873 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
Upgrade from Version 4.0 to MACRO..................................$27.50
Source code of Version 4.0 on disk.................................$95.00
 Fully commented, easy to understand and modify to your own tastes.
S-C Macro Assembler /// (coming soon!)............................$???.00

Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.

ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)................... $79.00
Source Code for FLASH! Runtime Package.............................$39.00

Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
Cross-Reference and Dis-Assembler (Rak-Ware).......................$45.00
Apple White Line Trace (Lone Star Industrial Computing)............$50.00
 (A unique learning tool)

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $4.50
Reload your own NEC PC-8023 ribbon cartridges...........each ribbon $5.00
Reload your own NEC Spinwriter Multi-Strike Film cartridges....each $2.50
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each

Ashby Shift-Key Mod..$15.00
Lower-Case Display Encoder ROM.....................................$25.00
 Only Revision level 7 or later Apples.

Books, Books, Books..........................compare our discount prices!
 "Enhancing Your Apple II, vol. 1", Lancaster.........($15.95) $15.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 874 of 2550

Apple II Computer Info

 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00
 "6502 Subroutines", Leventhal........................($12.99) $12.00
 "MICRO on the Apple--1", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--2", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--3", includes diskette...........($24.95) $23.00

 Add $1 per book for US postage. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 875 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:New.Hardware.txt
==

A Plug for some Neat New Products..............Richard Fabbri
 Ridgefield, CT

Take a peek at BYTE Magazine, August 1982, Steve Ciarcia's article on
the TMS9918-based Color graphics for Apple II. It has proved to be
fantastic! You get 15 colors plus transparent, 32 sprite planes to
overlay a 15-color hi-res of 256 dots by 192 lines. It works as
advertised! Digital Dimensions (see BYTE, Nov 1982, page 352)
advertises this as "E-Z Color" board, for $230. I have had one now
for a month.

Two other neat new board for the Apple from Number Nine Computer
Engineering Inc:

* a graphics board with 1024x1024 resolution; 256 colors from a
palette of 4096; HARDWARE drawing of circles, arcs, rectangles and
vectors; characters; area fill; light pen interface; $750 to $1090,
depending on options.

* a processor card with 3.6 MHz 6502, 64K on-board high-speed RAM,
transparent execution of all Apple II software, software-controlled
speed for timed I/O operations; $745.

If you are interested: contact Number Nine at (203) 233-8134, or
P.O.Box 1802, Hartford, CT 06144.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 876 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:QD9.COVER.txt
==

QUARTERLY DISK #9 contains all the source code from Volume 3, Issues
1-3 of the Apple Assembly Line newsletter. The files are formatted
for either the S-C Assembler II Version 4.0 or the S-C Macro
Assembler, on a 16-sector DOS 3.3 disk.

S.CATALOG ARRANGER -- This program allows you to arrange a disk
catalog in whatever order you like.

S.USR WEEK FUNCTION, TEST USR -- Applesoft USR function for a two-byte
PEEK.

S.TOOLKIT CONVERTER, TOOLKIT CONVERTER -- EXEC file to help convert
DOS TOOLKIT source files to S-C format.

S.NEW APPLE TALKER -- Your Apple speaks! A program to record and play
back sounds with no additional hardware.

TALK -- THIS IS A TEST, SOUND#1 through SOUND#5 -- Speech and
sound/sight samples for the above program.

S.TONY'S SUPER-FAST PRIMES, TONY'S DRIVER -- The fastest prime number
generator yet.

S.LOCATOR -- Program to display addresses of an Applesoft program and
its data areas.

S.REPEAT/UNTIL, TEST REPEAT/UNTIL -- Ampersand routines to add a
Pascal-like REPEAT/UNTIL structure to Applesoft.

S.MEYER'S RELOCATABILITY -- Routines to use internal JMPs, JSRs, and
data areas in relocatable programs.

S.BITS -- A Monitor CTRL-Y routine to set or clear selected bits in a
range of memory.

S.STRING ARRAY CLEAR, TEST STRING.ARRAY.CLEAR -- Routine to clear an
Applesoft string array. Combine this with a fast garbage-collector
and watch your program fly.

S.SPLIT, TEST SPLIT -- Splits an Applesoft string to a specified
display width, without generating garbage.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 877 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Quickies.txt
==

Quickie No. 5..................................Horst Schneider

To print a dashed line on the screen:

 JSR $FD9C Print one dash
 JSR $FCA3 same character across screen

To print any character across screen:

 LDY #0
 LDA #$xx xx = ASCII screen code for char
 JSR $FCA3

To print any character across most of screen:

 LDY #xx xx = starting column
 LDA #$yy yy = ASCII screen code for char
 JSR $FCA3

A Legible Phone Number for Computer Micro Works

Their ad last month was a little fuzzy around the area where the phone
number was. The correct number is (305) 777-0268. George Beasley or
his wife will take your order. This number is in Florida, where
George is stationed with the Air Force.

I ordered one of their "Promette's". It is different than I thought,
and better. Most such adapters will not work when a language card is
in slot 0, because EPROM's are missing one of the enable lines the
Apple uses. But the Promette has an active device inside which adds
the extra enable line, so it works like you want it to. Another nice
difference is that George's price is about 1/4 the normal price for
these items.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 878 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:RAM.Cards.txt
==

Programming a Language Card.........................Bill Morgan

Recently we've received a couple of questions about the exact meaning
of all those $C08x addresses used to access a language (or RAM) card
in slot 0. Here's a rundown of what memory cards are and how to use
them.

A RAM card is a plug-in board containing an extra 16K (or more) of
memory, which can be used instead of the language ROMs on your Apple
motherboard. The $C08x addresses are switches that determine which
memory will be used whenever you read or write an address from $D000-
$FFFF. With the proper use of the switches on a 16K card, your Apple
becomes a machine with 76K of memory! (That includes motherboard RAM,
motherboard ROM, and the full RAM card.)

Here's a summary of the addresses and their functions:

 Address Read Write Bank
 ------- ---- ----- ----
 $C080 Card Mother 2
 $C081* Mother Card 2
 $C082 Mother Mother 2
 $C083* Card Card 2

 $C088 Card Mother 1
 $C089* Mother Card 1
 $C08A Mother Mother 1
 $C08B* Card Card 1

The stars indicate addresses which must be accessed twice to have
effect (these are the ones that write-enable the card.)

These addresses are "soft switches", much like those for switching the
screen display modes. To throw a switch, just use a LDA or any
instruction that reads the location. From BASIC you can use a PEEK.
STA or POKE also work with most RAM cards, but not all of them.
Experiment with yours to see how it behaves. If you're writing a
program for use on other people's Apples it's safest to stay with
instructions that read the location.

The Bank column refers to the fact that a language card actually has
16K of memory, but the range from $D000 to $FFFF is only 12K. The
other 4K ought to be $C000-$CFFF, but that's the area that Apple uses
for special Input/Output functions. Therefore, there is an extra 4K
"bank" which can be addressed at $D000-DFFF. Normally, only Bank 2 is
used. If a program gets bigger than 12K it becomes necessary to use
Bank 1, but that starts getting complicated. The best approach is to
put routines or data in bank 1 that don't have to refer to anything in

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 879 of 2550

Apple II Computer Info

bank 2. You can then have the main code above $E000 decide which bank
to use.

Some programs seem to use the motherboard and RAM card memories at the
same time. Examples of this are ES-CAPE.LC and the programs that
relocate DOS into the RAM card. Generally, these have a short
"bridge" or "switcher" routine somewhere in the motherboard RAM. When
the program in the RAM card needs to call a routine in the motherboard
ROM, it actually calls the bridge. The bridge routine then throws the
appropriate $C08x switches and calls the necessary ROM routine. When
that routine finishes, the bridge then switches back to the RAM card
and continues the program there.

Another thing to consider is whether the program in the RAM card needs
the system monitor. If so, you need to make sure there is a copy of
the monitor on the RAM card. Here's how to use the monitor to copy
itself into a RAM card:

]CALL-151
 *C081 C081
 *F800<F800.FFFFM

That monitor move instruction looks like nonsense, but remember that
the $C081 switch sets the computer to read from the motherboard and
write to the RAM card.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 880 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:S.C.DOCU.MENTOR.txt
==

S-C Docu-Mentor: Applesoft

The S-C Docu-Mentor for Applesoft provides the most complete
documentation of Applesoft internals available anywhere. You will
find the information educational, entertaining, and extremely helpful.

The completely commented and ready-to-assemble source code is created
with the aid of the Applesoft image in ROM (or on a RAM card). The
source creation process modifies existing data on two diskettes to
produce over two dozen linked source files ready to assemble with the
S-C Macro Assembler.

The information contained in the comments and labels has been gleaned
from many sources over the years since 1978. (There has been no
direct involvement of Apple Computer, Inc., in this project.) I have
tried my best to provide meaningful, helpful comments and labels
throughout. Nevertheless, there may be some mis-interpretations. If
you find any errors or have suggestions for improvements, please send
them to me.

Many of the label names are deliberately made the same as those
published in "Applesoft Internals", by John Crossley. This article
first appeared in Volume 1, No. 1, of the Apple Orchard (magazine of
the International Apple Corps). It has been re-printed by various
clubs, including Call A.P.P.L.E. in their book "All About Applesoft".

I have flagged about a half dozen bugs in the listing, and several
areas of very "improve-able" code. These are marked with "<<<" and
">>>" at each end of the comment lines.

Apple II, Apple II Plus, and Applesoft are registered trademarks of
Apple Computer, Inc.

Procedure for creating the documented source files:

1. You will need an Apple II or Apple II Plus, with Applesoft either
in ROM on the mother-board, in ROM on a firmware card, or in RAM on a
RAM card.

2. Use any standard disk copier to copy the two original diskettes.
Label the copies, and be sure to mark the labels "Drive 1" and "Drive
2". Store the originals, and proceed with the following steps using
your copies.

3. Insert either disk and type "RUN HELLO". If Applesoft is
available in ROM or RAM, the source-creation process will begin. You
will see the phrase "S-C DOCU-MENTOR: APPLESOFT" on the screen, and
it will slowly be changed to inverse display. You will hear various
speaker noises, which are just there to let you know things are

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 881 of 2550

Apple II Computer Info

working. When the process is finished, the disk CATALOG will be
displayed.

4. Insert the other disk and type "RUN HELLO". Once again, you will
see the same display and hear the same speaker noises. Upon
completion, the CATALOG will be displayed.

Procedure for assembling the source files:

1. You will need two disk drives. The source file "S.ACF" assumes
these are D1 and D2 on the same controller, but you may change these
according to your configuration. Of course, you will also need a
printer if you wish a permanent copy of the assembly listing.

2. Load the S-C Macro Assembler, either regular or language card
version.

3. Insert disk # 1 in drive 1, and disk # 2 in drive 2.

4. Load file "S.ACF" from drive 1.

5. Make any adjustment to the title line you wish. I have set it up
for printing 76 lines per page, because I set my printer to print 8
lines per inch. If you are using 6 lines per inch, change the title
line to ".TI 55,et cetera".

6. Turn on your printer, and type "PR#slot" to start printing. You
will probably want to set "elite" or "condensed" printing mode,
because some of the lines in the assembly listing will be more than 80
columns long. I set my printer to "elite" mode (12 chars/inch) and
set a left margin of 10 spaces.

7. Type the "ASM" command, and stand back! The listing is 114 pages
long (including symbol table) when printed at 76 lines per page.
==
DOCUMENT :AAL-8301:Articles:Seed.Thought.txt
==

Seed Thoughts on Extensions.................Sanford Greenfarb

I am currently between computers. My 4 1/2 year old Apple died and I
have ordered a Basis 108 to replace it. While waiting, I have been
doing some thinking; I came to the conclusion that I can extend, by
appropriate coding, either the monitor or Applesoft (or both) into the
unused 4K bank of my 16K RAM card. That second 4K bank at $D000-DFFF
is just sitting there, with nothing to do. In all the Apple mags I
have seen no one approaches thi idea. Maybe they know something I
don't, but as soon as my computer comes I am going to try it.

I suspect that I could insert code at $FF7A in the monitor to switch
4K banks and jump to $D000 for a modified character search subroutine.
This way I could add more control characters and routines to the
monitor. This would add features while keeping all the standard entry
point address unchanged.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 882 of 2550

Apple II Computer Info

I don't know why no one has used this concept, or at least not
publicly. I am offering this idea to you readers of Apple Assembly
Line. I can't work on it until my new computer comes anyway, and you
will probably think of a lot of good uses.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 883 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:String.Addition.txt
==

Adding Decimal Values from ASCII Strings...Bob Sander-Cederlof

The program below shows a nifty way to add two decimal values together
and get the result as an ASCII string, without ever converting decimal
to binary or binary to decimal.

The example shows two six-character values being added, but any length
would work the same. For simplicity's sake I used a leading zero
format, and allow no signs or decimal points. Fancier features can
wait for more cerebral times.

The beautiful part is the way the 6502's carry flag works. On
entering the add loop, I clear carry. Then I add a pair of digits,
preserving the ASCII code. If the sum is more than "9" ($39), the CMP
will leave carry set, prepared for subtracting 10 at line 1160. After
subtracting 10, carry will be set (because the SBC caused no borrow).
This carry then propagates to the next digit.

Strictly speaking, I should allow the sum to be one digit longer than
the addend and augend strings, and store the final carry value there.
Any reasonably useful version would also allow leading blanks and
decimal points, be callable as an &-routine with string parameters,
automatically handle non-aligned decimal points, and allow negative
numbers. I'll try all these for next month.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 884 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Super.Scroller.txt
==

Super Scroller.................................Jeffrey Scott
 East Norwalk, CT

I am a manager of a software department in a company that makes
computerized money counting equipment (6502 based). We have two
programming departments: one which is called "applications" (Pascal
and BASIC only) and another called "software engineering" where we use
assembly language.

We use the S-C Macro Assembler after having sampled all others. And
in fact, with my Apple II, 5 Mbyte hard drive, and 3.6 MHz "Number
Nine 6502" plug-in board, I can assemble a 300-page source program in
about 2.5 minutes!

I love the Apple II, but I don't like being tied to an operating
system that I didn't write myself. I use RWTS, but for the rest I use
my own code.

I remember one day trying to output to the screen while receiving at
2400 baud. The Apple monitor's scroll was so slow that I lost the
first few characters from the front of every line. While writing my
own substitute scroll routine, the idea was born that the absolute
fastest scroll would be straight in-line code: one "LDA $xxxx...STA
$xxxx" pair for each byte on the screen.

Just for fun, I wrote the following program, which generates the 960
LDA-STA pairs to scroll the whole screen! The generator program is
only 145 bytes long, but it "writes" a program 5521 bytes long!

This "Super Scroller" is not for everyone...it requires a spare 5521
bytes ($1591) of memory somewhere. If you do, you need only equate
"PGM.START.IN.RAM" to your available area, call
"PGM.TO.WRITE.SCROLLING.PGM", and then you can call the Super Scroller
at "PGM.START.IN.RAM whenever you need it.

Since the scroller can be generated whenever it is needed, it can be
part of an overlay environment. You only need a 5.5K buffer available
at the right times. At other times the same memory can be used other
ways.

To illustrate the speediness of Super Scroller, I wrote a memory dump
whose output is the same as the Apple monitor memory dump. It is set
up to display from $0000 through $BFFF. With Super Scroller, it takes
only about 51 seconds; without, it takes 2 minutes 57 seconds (over
three times longer!).

Someone might object that I did not clear the bottom line after
scrolling up. I elected to just write a fresh bottom line, and clear
to the end of line after the last new character is written.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 885 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:The.Book.txt
==

The Book of Apple Software 1983

It's huge! Nearly 500 pages of insightful reviews and comparison
charts, covering business, education, utilities, and games. The
review of seven assemblers includes Merlin, Lisa 2.5, Tool Kit, LJK
Edit 6502, MAE, S-C Assembler II (4.0) and S-C Macro Assembler. S-C
Macro tied for first place with Merlin in the overall ratings, but
surged ahead in the detail. Consider: not copy protected, typeset
programmer reference card, cassette support, monitor and DOS commands
without leaving assembler, FANTASTIC upgrade policy, RAM card
optional, compressed source code, 32 character labels, and more.

Anyway, back to The Book....you owe it to yourself to consult therein
before buying software. Even if the one you want to buy isn't in the
book, you will get a broader perspective. I recommend it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 886 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:V3N4.6801.txt
==

Funny Opcode Names in the 6801 Manual......Bob Sander-Cederlof

Paul Lundgren (of Microcomp, Inc. in Newtown, CT) brought some
interesting facts to my attention today. When I implemented my 6801
Cross Assemblers, I used what was at the time the latest documentatin
available. Paul had some printed two years later, and there were some
differences.

For some reason, the Motorola 6801 Reference Manual changes the name
of the ASL and ASLD opcodes to LSL and LSLD. There is no difference
in operation, just a difference in spelling. The S-C Cross Assembler
only recognizes the ASL and ASLD spellings. The opcode tables are
near the end of the assembler, so you can easily find these entries to
change them if you feel strongly about it.

The Motorola book also lists alias names for the BCC and BCS opcodes.
In the 6801 (or other 68xx chips), carry clear means the last test was
greater or equal, so the alias name is BHS (Branch if High or Same).
Carry set means the test was smaller, so the alias is BLO. Note that
the meaning of carry after a comparison in the 68xx chips is exactly
the opposite of carry in the 6502!

Here are some macros to use for BHS and BLO:

 .MA BHS
 BCC]1
 .EM

 .MA BLO
 BCS]1
 .EM

Some assemblers for the 6502 have two alias opcodes for BCC and BCS.
For example, LISA has BLT for BCC (Branch if Less Than), and BGE for
BCS (Branch if Greater than or Equal). [I didn't do this in the S-C
Assemblers because the meaning depends on whether the values tested
are considered to be signed or unsigned.]

Here are two macros to implement BLT and BGE in the 6502 version of
the S-C Macro Assembler:

 .MA BLT
 BCC]1
 .EM

 .MA BGE
 BCS]1
 .EM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 887 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:Articles:Whats.Where.txt
==

The New "What's Where".....................Bob Sander-Cederlof

Micro has doubled the size and tripled the value of their "What's
Where in the Apple" book. There is now a 152-page double-column type-
set 20-chapter text together with the previously published atlas and
gazetteer. The new edition retails at $24.95 (our price $23).

If you already have the older edition, you only need the update,
called "The Guide to What's Where", for $9.95 retail (our price ($9
even).

If you order books from us, remember to include enough for shipping.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 888 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:DOS3.3:S.Fname.Editor.txt
==

 1000 *SAVE S.FILENAME.EDITOR
 1010 *--------------------------------
 1020 MON.YSAVE .EQ $34
 1030 CONTROL.LINE .EQ $6D7
 1040 EDIT.BUFFER .EQ $757
 1050 CURSOR.LINE .EQ $7D7
 1060 MON.BELL .EQ $FF3A
 1070 *--------------------------------
 1080 RENAME.FILE
 1090 JSR MOVE.FILE.INTO.BUFFER
 1100 LDY #$FF
 1110 STY MASK.ONE INITIALIZE
 1120 INY
 1130 STY INPUT.MODE VARIABLES
 1140 STY MASK.TWO
 1150 STY MASK.MODE
 1160 LDA #$DE ^
 1170 STA CURSOR
 1180 *--------------------------------
 1190 E.START
 1200 JSR DISPLAY.EDIT.BUFFER UPDATE DISPLAY
 1210 * AND GET KEYSTROKE
 1220
 1230 REENTRY
 1240 CMP #$A0 CONTROL?
 1250 BCS E.INPUT NO, INPUT IT
 1260 LDA #ZERO YES,
 1270 STA INPUT.MODE TURN OFF INSERT
 1280 LDA #$DE ^
 1290 STA CURSOR
 1300 LDX #ZERO
 1310 JSR SEARCH.AND.PERFORM GO DO SOMETHING
 1320 JMP E.START
 1330 *--------------------------------
 1340 E.INPUT
 1350 AND MASK.ONE CONDITION
 1360 ORA MASK.TWO CHARACTER
 1370 STA CURRENT.CHAR
 1380 BIT INPUT.MODE INSERT OR OVERTYPE?
 1390 BPL PLACE.CHARACTER
 1400
 1410 INSERT.CHARACTER
 1420 STY MON.YSAVE SAVE CURSOR
 1430 LDX #29 START AT END OF BUFFER
 1440 .1 CPX MON.YSAVE TO CURSOR YET?
 1450 BEQ PLACE.CHARACTER YES
 1460 LDA EDIT.BUFFER-1,X NO, MOVE CHAR UP
 1470 STA EDIT.BUFFER,X TO MAKE HOLE
 1480 DEX NEXT CHAR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 889 of 2550

Apple II Computer Info

 1490 BPL .1 ...ALWAYS
 1500
 1510 PLACE.CHARACTER
 1520 LDA CURRENT.CHAR
 1530 STA EDIT.BUFFER,Y
 1540 CPY #29 END OF BUFFER?
 1550 BCS .1 YES, RETURN
 1560 INY NO, MOVE CURSOR
 1570 .1 JMP E.START
 1580 *--------------------------------
 1590 E.OVERRIDE
 1600 PLA
 1610 PLA
 1620 LDA #$A2 SET CURSOR
 1630 STA CURSOR.LINE,Y TO "
 1640 JSR GETKEY
 1650 JMP INSERT.CHARACTER
 1660 *--------------------------------
 1670 E.LEFT.ARROW
 1680 DEY MOVE CURSOR LEFT
 1690 BPL .1 IF IT WENT NEGATIVE
 1700 INY RESTORE IT TO 0
 1710 .1 RTS
 1720 *--------------------------------
 1730 E.RIGHT.ARROW
 1740 CPY #29 AT END YET?
 1750 BCS .1 YES, IGNORE
 1760 INY NO, MOVE CURSOR RIGHT
 1770 .1 RTS
 1780 *--------------------------------
 1790 E.INSERT
 1800 LDA #$FF TURN INSERT ON
 1810 STA INPUT.MODE
 1820 LDA #$DC \
 1830 STA CURSOR
 1840 RTS
 1850 *--------------------------------
 1860 E.DELETE
 1870 TYA SET X TO
 1880 TAX CURSOR
 1890 .1 CPX #29 AT END?
 1900 BEQ .2 BRANCH IF SO
 1910 LDA EDIT.BUFFER+1,X
 1920 STA EDIT.BUFFER,X MOVE ONE CHAR
 1930 INX NEXT
 1940 BCC .1 ...ALWAYS
 1950 .2 LDA #SPACE PUT SPACE
 1960 STA EDIT.BUFFER,X ON END
 1970 RTS
 1980 *--------------------------------
 1990 E.BEGINNING
 2000 LDY #ZERO ZERO CURSOR
 2010 RTS
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 890 of 2550

Apple II Computer Info

 2030 E.END
 2040 LDY #29 START AT END OF BUFFER
 2050 .1 LDA EDIT.BUFFER,Y
 2060 CMP #SPACE SPACE?
 2070 BNE .2 NO, WE'RE AT END OF NAME
 2080 DEY YES, MOVE LEFT
 2090 BPL .1 AND TRY AGAIN
 2100 .2 CPY #29 STILL AT END OF BUFFER?
 2110 BEQ .3 YES, STAY THERE
 2120 INY NO, RIGHT ONE SPACE
 2130 .3 RTS
 2140 *--------------------------------
 2150 E.RESTORE
 2160 PLA POP A RETURN
 2170 PLA ADDRESS AND
 2180 JMP RENAME.FILE START OVER
 2190 *--------------------------------
 2200 E.SET.MODE
 2210 INC MASK.MODE NEXT MODE
 2220 LDA MASK.MODE IF MODE = 4
 2230 AND #3 MAKE IT ZERO
 2240 STA MASK.MODE
 2250 TAX USE MODE FOR INDEX
 2260 LDA MASK.ONE.TABLE,X AND SET
 2270 STA MASK.ONE MASKS
 2280 LDA MASK.TWO.TABLE,X
 2290 STA MASK.TWO
 2300 RTS
 2310 *--------------------------------
 2320 E.ZAP
 2330 TYA START AT
 2340 TAX CURSOR
 2350 LDA #SPACE
 2360 .1 STA EDIT.BUFFER,X
 2370 INX
 2380 CPX #30 DONE?
 2390 BCC .1
 2400 RTS
 2410 *--------------------------------
 2420 E.FIND
 2430 JSR GETKEY GET SEARCH KEY
 2440 STA SEARCH.KEY
 2450 .1 TYA
 2460 TAX
 2470 .2 INX START AT CURSOR+1
 2480 CPX #30 END?
 2490 BCS .3 YES, NOT FOUND
 2500 LDA EDIT.BUFFER,X
 2510 CMP SEARCH.KEY MATCH?
 2520 BNE .2 NO, NEXT X
 2530 TXA YES, MOVE CURSOR
 2540 TAY
 2550 JSR DISPLAY.EDIT.BUFFER
 2560 * NEXT KEYPRESS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 891 of 2550

Apple II Computer Info

 2570 CMP SEARCH.KEY SAME CHARACTER?
 2580 BEQ .1 YES, FIND IT AGAIN
 2590 PLA NO, PULL A RETURN
 2600 PLA ADDRESS AND GO
 2610 LDA CURRENT.CHAR
 2620 JMP REENTRY PROCESS THIS KEY
 2630
 2640 .3 JMP MON.BELL RETURN THROUGH BELL
 2650 *--------------------------------
 2660 E.RETURN
 2670 JSR MOVE.BUFFER.INTO.ARRAY
 2680
 2690 E.ESCAPE
 2700 PLA POP ONE RETURN
 2710 PLA ADDRESS AND RETURN
 2720 RTS TO ARRANGING
 2730 *--------------------------------
 2740 MOVE.FILE.INTO.BUFFER
 2750 LDA ACTIVE.ELEMENT SET
 2760 JSR POINT.TO.A POINTER
 2770 LDY #3
 2780 .1 LDA (POINTER),Y MOVE
 2790 STA EDIT.BUFFER-3,Y NAME
 2800 INY
 2810 CPY #$21
 2820 BCC .1
 2830 RTS
 2840 *--------------------------------
 2850 MOVE.BUFFER.INTO.ARRAY
 2860 LDA ACTIVE.ELEMENT MAKE
 2870 JSR POINT.TO.A POINTER
 2880 LDY #3
 2890 .1 LDA EDIT.BUFFER-3,Y MOVE
 2900 STA (POINTER),Y NAME
 2910 INY
 2920 CPY #$21
 2930 BCC .1
 2940 RTS
 2950 *--------------------------------
 2960 DISPLAY.EDIT.BUFFER
 2970 LDA #$DD]
 2980 STA EDIT.BUFFER-1 LEFT END
 2990 LDA #$DB [
 3000 STA EDIT.BUFFER+30 RIGHT END
 3010 LDX #29
 3020 .1 LDA #SPACE
 3030 STA CONTROL.LINE,X REMOVE OLD CONTROL
 3040 STA CURSOR.LINE,X BAR AND CURSOR
 3050 LDA EDIT.BUFFER,X
 3060 CMP #$A0
 3070 BCS .2 CONTROL?
 3080 CMP #$80
 3090 BCC .2
 3100 LDA #$DF _ YES, PUT BAR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 892 of 2550

Apple II Computer Info

 3110 STA CONTROL.LINE,X
 3120 .2 DEX
 3130 BPL .1
 3140 LDA CURSOR GET CURSOR,
 3150 AND MASK.ONE CONDITION IT,
 3160 ORA MASK.TWO
 3170 STA CURSOR.LINE,Y AND SHOW IT
 3180 *--------------------------------
 3190 GETKEY LDA KEYBOARD
 3200 BPL GETKEY
 3210 STA KEYSTROBE
 3220 STA CURRENT.CHAR
 3230 RTS
 3240 *--------------------------------
 3250 SEARCH.AND.PERFORM.NEXT
 3260 INX NEXT ENTRY
 3270 INX
 3280 INX
 3290
 3300 SEARCH.AND.PERFORM
 3310 LDA EDIT.TABLE,X GET VALUE FROM TABLE
 3320 BEQ .1 NOT IN TABLE
 3330 CMP CURRENT.CHAR
 3340 BNE SEARCH.AND.PERFORM.NEXT
 3350 .1 LDA EDIT.TABLE+2,X LOW BYTE OF ADDRESS
 3360 PHA
 3370 LDA EDIT.TABLE+1,X HIGH BYTE
 3380 PHA
 3390 RTS GO DO IT!
 3400 *--------------------------------
 3410 EDIT.TABLE
 3420 .DA #$82,E.BEGINNING-1 ^B
 3430 .DA #$84,E.DELETE-1 ^D
 3440 .DA #$85,E.END-1 ^E
 3450 .DA #$86,E.FIND-1 ^F
 3460 .DA #$88,E.LEFT.ARROW-1 <--
 3470 .DA #$89,E.INSERT-1 ^I
 3480 .DA #$8D,E.RETURN-1 RETURN
 3490 .DA #$8F,E.OVERRIDE-1 ^O
 3500 .DA #$92,E.RESTORE-1 ^R
 3510 .DA #$93,E.SET.MODE-1 ^S
 3520 .DA #$95,E.RIGHT.ARROW-1 -->
 3530 .DA #$9A,E.ZAP-1 ^Z
 3540 .DA #$9B,E.ESCAPE-1 ESC
 3550 .DA #$00,MON.BELL-1 OTHERS
 3560 *--------------------------------
 3570 MASK.ONE.TABLE
 3580 .DA #$FF,#$3F,#$7F,#$FF
 3590
 3600 MASK.TWO.TABLE
 3610 .DA #$00,#$00,#$40,#$20
 3620 *--------------------------------
 3630 CURRENT.CHAR .BS 1
 3640 SEARCH.KEY .BS 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 893 of 2550

Apple II Computer Info

 3650 INPUT.MODE .BS 1 (0 OR $FF)
 3660 MASK.MODE .BS 1 (0 TO 3)
 3670 MASK.ONE .BS 1 (FROM TABLE ABOVE
 3680 MASK.TWO .BS 1 (" " ")
 3690 CURSOR .BS 1 ($DE, $DC, OR $A2)
 3700 * (^ , \ , OR ")
 3710 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 894 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:DOS3.3:S.STRING.ADD.txt
==

 1000 *SAVE S.STRING.ADD
 1010 *--------------------------------
 1020 * STRING ADDITION
 1030 *--------------------------------
 1040 S1 .AS /000189/
 1050 S2 .AS /007030/
 1060 *--------------------------------
 1070 S3 .AS / /
 1080 *--------------------------------
 1090 ADD LDX #5 6 DIGITS
 1100 CLC START WITH NO CARRY
 1110 .1 LDA S1,X NEXT DIGIT PAIR
 1120 AND #$0F CHANGE ASCII TO BINARY CODE
 1130 ADC S2,X RESULT IS IN ASCII AGAIN
 1140 CMP #$3A UNLESS MORE THAN 9
 1150 BCC .2 OKAY
 1160 SBC #10 NEED TO PROPAGATE CARRY
 1170 .2 STA S3,X SUM DIGIT IN ASCII
 1180 DEX MORE DIGITS?
 1190 BPL .1 YES
 1200 RTS NO, RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 895 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8301:DOS3.3:S.SuperScroll.txt
==

 1000 *SAVE SUPER SCROLL GENERATOR
 1010 *--------------------------------
 1020 *
 1030 * APPLE SUPER SCROLLER
 1040 *
 1050 *--------------------------------
 1060 * PROGRAM TO CREATE A FAST SCROLLER
 1070 *
 1080 * CREATES AN ALL "IN-LINE" SCROLL ROUTINE
 1090 * WHICH MAY BE CALLED AS A SUBROUTINE.
 1100 *
 1110 * WILL SCROLL LINES 2-24 UP TO LINES 1-23
 1120 * IN ONLY 7.6 MILLISECONDS.
 1130 *
 1140 * BOTTOM LINE IS LEFT UNCHANGED; YOU MAY
 1150 * WISH TO ADD MORE CODE TO BLANK BOTTOM LINE.
 1160 *--------------------------------
 1170
 1180 PGM.START.IN.RAM .EQ $4000
 1190 PROGRAM .EQ $02 - $03
 1200 UPPER.LINE .EQ $04 - $05
 1210 LOWER.LINE .EQ $06 - $07
 1220 *--------------------------------
 1230 .MA SCRN
 1240 .DA]1,]1+$80,]1+$100,]1+$180
 1250 .DA]1+$200,]1+$280,]1+$300,]1+$380
 1260 .EM
 1270 *--------------------------------
 1280 APPLE.SCREEN.ADDRESSES
 1290 >SCRN $400 LINES 1-8
 1300 >SCRN $428 LINES 9-16
 1310 >SCRN $450 LINES 17-24
 1320 *--------------------------------
 1330 PGM.TO.WRITE.SCROLLING.PGM
 1340
 1350 LDA #PGM.START.IN.RAM
 1360 STA PROGRAM
 1370 LDA /PGM.START.IN.RAM
 1380 STA PROGRAM+1
 1390 *--------------------------------
 1400 LDX #0 FOR LINE = 1 TO 23
 1410 .1 LDA APPLE.SCREEN.ADDRESSES,X
 1420 STA UPPER.LINE
 1430 LDA APPLE.SCREEN.ADDRESSES+1,X
 1440 STA UPPER.LINE+1
 1450
 1460 LDA APPLE.SCREEN.ADDRESSES+2,X
 1470 STA LOWER.LINE
 1480 LDA APPLE.SCREEN.ADDRESSES+3,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 896 of 2550

Apple II Computer Info

 1490 STA LOWER.LINE+1
 1500
 1510 TXA SAVE LINE #
 1520 PHA
 1530 *--------------------------------
 1540 LDX #40 FOR CHAR = 1 TO 40
 1550 .2 LDY #0
 1560 LDA #$AD "LDA ABSOLUTE"
 1570 STA (PROGRAM),Y
 1580 INY
 1590 LDA LOWER.LINE
 1600 STA (PROGRAM),Y
 1610 INY
 1620 LDA LOWER.LINE+1
 1630 STA (PROGRAM),Y
 1640 INY
 1650 LDA #$8D "STA ABSOLUTE"
 1660 STA (PROGRAM),Y
 1670 INY
 1680 LDA UPPER.LINE
 1690 STA (PROGRAM),Y
 1700 INY
 1710 LDA UPPER.LINE+1
 1720 STA (PROGRAM),Y
 1730 *--------------------------------
 1740 TYA UPDATE PROGRAM POINTER
 1750 SEC
 1760 ADC PROGRAM
 1770 STA PROGRAM
 1780 BCC .3
 1790 INC PROGRAM+1
 1800 .3 INC UPPER.LINE NEXT CHAR POSITION
 1810 INC LOWER.LINE
 1820 DEX
 1830 BNE .2
 1840 *--------------------------------
 1850 PLA
 1860 TAX
 1870 INX NEXT LINE
 1880 INX
 1890 CPX #2*23
 1900 BNE .1
 1910 *--------------------------------
 1920 LDY #0
 1930 LDA #$60 "RTS"
 1940 STA (PROGRAM),Y
 1950 RTS
 1960 *--------------------------------
 1970 * A FAST MEMORY DUMP!!
 1980 *--------------------------------
 1990 MEML .EQ $8
 2000 MEMH .EQ $9
 2010 SCREEN.WRITE.LINE .EQ $7D0
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 897 of 2550

Apple II Computer Info

 2030 START.DEMO
 2040 JSR PGM.TO.WRITE.SCROLLING.PGM
 2050 MEMDUMP
 2060 LDA #0 DISPLAY FROM $0000 THRU $BFFF
 2070 STA MEML
 2080 STA MEMH
 2090 .1 LDX #0 X = CHAR PNTR IN OUTPUT LINE
 2100 LDA MEMH DISPLAY ADDRESS
 2110 JSR DISPLAY.BYTE
 2120 LDA MEML
 2130 JSR DISPLAY.BYTE
 2140 LDA #$AD "- "
 2150 STA SCREEN.WRITE.LINE,X
 2160 INX
 2170 LDA #$A0
 2180 STA SCREEN.WRITE.LINE,X
 2190 INX
 2200 LDY #0
 2210 .2 LDA (MEML),Y DISPLAY 8 BYTES
 2220 JSR DISPLAY.BYTE
 2230 LDA #$A0
 2240 STA SCREEN.WRITE.LINE,X
 2250 INX
 2260 INY
 2270 CPY #8
 2280 BNE .2
 2290 .3 STA SCREEN.WRITE.LINE,X
 2300 INX
 2310 CPX #40 CLEAR TO END OF LINE
 2320 BCC .3
 2330 *--------------------------------
 2340 JSR PGM.START.IN.RAM
 2350 *--------------------------------
 2360 LDA #8
 2370 CLC
 2380 ADC MEML
 2390 STA MEML
 2400 LDA MEMH
 2410 ADC #0
 2420 STA MEMH
 2430 .4 CMP #$C0 STOP AT $BFFF
 2440 BNE .1
 2450 RTS
 2460 *--------------------------------
 2470 DISPLAY.BYTE
 2480 PHA
 2490 LSR
 2500 LSR
 2510 LSR
 2520 LSR
 2530 JSR DISPLAY.NYBBLE
 2540 PLA
 2550 AND #$0F
 2560 DISPLAY.NYBBLE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 898 of 2550

Apple II Computer Info

 2570 ORA #$B0 MAKE HEX DIGIT
 2580 CMP #$BA
 2590 BCC .1
 2600 ADC #6
 2610 .1 STA SCREEN.WRITE.LINE,X
 2620 INX
 2630 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 899 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 5 February, 1983

In This Issue...

Really Adding ASCII Strings 2
More on the Macro-Videx Connection 12
On CATALOG ARRANGER and RAM Card DOS 14
Quickie No. 6 -- Endless Alarm 14
Patch to Fix .TI Problem 15
Apple //e Notes . 16
TRAPPER: An Applesoft INPUT Tuner 18
Star-tling Stunts . 25
A Sometimes Useful Patch 27
Source Code for a Word Processor 28

S-C Macro Assembler ///

The Apple /// version of the S-C Macro Assembler is coming right
along! I am now selling a preliminary "as is" version for $100. That
buys you the assembler, a few pages of documentation about the
differences from the Apple][version, and free updates until the
finished product appears. This is a working assembler for producing
free-running programs; it assembles itself just fine. The biggest gap
is the ability to produce relocatable modules for Pascal or BASIC.
That will be added next. Call or write if you are interested in being
among the first to have this new enhancement to the Apple ///.

Zero-Insertion-Force Game Socket Extender

One of the first things I did to my Apple back in 1977 was to plug a
ZIF socket into the game connector. Not too easy, because it first
has to be soldered to a header, but I did it.

Now I have discovered a source for a ready-made device that does the
same thing, plus brings the socket outside the Apple (if you so
desire). There's a picture of the device on page 14. For only $20
I'll send you one!

65C02

Many of you have expressed an interest in the new Rockwell R65C02
microprocessor. Well, I still haven't heard any more than I mentioned
a couple of months ago. We're as eager as you are to get a sample.
We'll have a detailed report as soon as we know more.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 900 of 2550

Apple II Computer Info

Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)
==
DOCUMENT :AAL-8302:Articles:Gilder.Note.txt
==

Promising New Book

I just received an advance copy of a forthcoming book by Jules Gilder
(a long-time AAL subscriber), titled "Now That You Know Apple Assembly
Language, What Can You Do With It?" As the title implies, this will
be an intermediate level look at really using assembly language in
your Apple. It looks good. As soon as I have details about price and
publication date, I'll let you know.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 901 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:IIe.txt
==

Apple //e Notes.............................Bob Sander-Cederlof

We don't have one yet, but we did play with one for about an hour last
week. All our software works fine, as long as you stay in the 40-
column caps-lock mode. We will be making new versions available in
the near future which take full advantage of the extended memory,
lower-case, and 80-column display.

The best write-up I have seen yet on the //e is in the February 1983
Apple Orchard (published by the International Apple Core, 908 George
St., Santa Clara, CA 95050).

Here are some of the things that caught my attention:

* Real shift key, and a caps-lock key.

* Open-Apple and Closed-Apple keys, which duplicate the first two
paddle buttons.

* Recessed RESET key. CTRL-RESET required (no longer a switchable
option). CTRL-Closed-Apple-RESET starts a memory test program.

* Two 8K ROMs, instead of six 2K ROMs. The extra 2K of ROM space is
used by the modified Monitor program. Fancy soft-switches map the
extra 2K into the $C000-C7FF space. These sockets are supposedly
compatible with 2764 EPROMs.

* Apparently the Monitor now uses (clobbers) zero-page locations $08
and $1F.

* Up- and down-arrows on the keyboard. Down is CTRL-J, or linefeed.
Up is CTRL-K.

* The keyboard includes all the ASCII set, even $7F (DELETE, or
RUBOUT).

* 64K RAM on the motherboard. This simulates an Apple II Plus with a
16K RAM card in slot 0.

* New slot instead of slot 0, with 60-pin connector (other slots
still have 50-pin connectors). Apple's 80-column card plugs in here.
The extra pins carry other signals not normally available at the
slots. Look for some amazing new combined function cards from the
peripheral-card makers for this slot! I wouldn't be surprised to find
ads real soon for 256K RAM cards including 80-column support, clock-
calendar, serial/parallel interfaces, and all on one card.

* 80-column card with or without extra 64K RAM. But this 64K RAM is
soft-switched in a totally different manner. It maps over the same

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 902 of 2550

Apple II Computer Info

space as the motherboard 64K, with switches to map portions such as
page-zero, text screen, hi-res screen, and so on.

* Now you can READ the state of most of the soft-switches. Bit 7
(high bit) tells the state, as follows:

 $C013 -- RAMREAD
 $C014 -- RAMWRT
 $C015 -- SLOTCXROM/CX00ROM
 $C016 -- ALTZP/MAIN
 $C017 -- SLOTC3ROM/SLOTROM
 $C018 -- 80 COL STORE
 $C019 -- VERTICAL BLANKING
 $C01A -- TEXT
 $C01B -- MIXED MODE
 $C01C -- PAGE2
 $C01D -- HIRES
 $C01E -- ALTCHAR
 $C01F -- 80 COL DISP

* Yes, you saw right...the vertical blanking signal is now readable!
So lovers of Lancaster's Enhancements can continue to tinker!

* Inverse lower-case display is selectable, at the expense of the
flashing mode.

* The cursor display is different. A small checkerboard alternates
with the character under the cursor in 40-column mode. In 80-column
mode an inverse blank is the normal cursor, and an inverse "+" is used
when in escape-mode.

Whether we view the changes as improvements or not, the //e will very
soon be the standard we all have to deal with. The same situation
arose when Apple switched from II to II Plus. A year from now, when
300,000 have been sold, we will wonder how we ever lived without it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 903 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:MoreVidexPatchs.txt
==

More on the Macro-Videx Connection.................Bill Linn

Don Taylor's original article in the August (1982) issue of AAL and
Mike Laumer's follow-up the next month gave us the patches for running
the S-C Macro Assembler in conjunction with the Videx 80-column board.
I recently purchased a Videx card in order to implement the 80-column
version of ES-CAPE, so I installed the patches.

I have really enjoyed using the Macro assembler in 80-column mode.
Naturally, though, I couldn't resist adding a few enhancements to
Don's and Mike's work.

Mike added the right arrow code, which copies characters off the Videx
screen, but he stopped short of implementing the Escape-L LOAD
sequence. To install the following code, you will need to change line
3080 in Don's article to point to my routine. Change it to "3080
.DA MY.ESC.L-1". Also, the STX instruction at line 4235 in Mike's
article must be labelled GETCH.

*--------------------------------------
SCM.INSTALL .EQ SCM.BASE+$52A
*
MY.ESC.L
 CPX #0 CURSOR AT BEGINNING?
 BEQ .1 YES, CONTINUE
 JMP SCM.ESC.L NO, LET S-C HANDLE IT
.1 LDA #0 CONNECT DOS
 STA $AA52 BY SETTING INTERCEPT STATE = 0
 LDA #$84 SEND A CTRL-D
 JSR MON.COUT
.2 LDA LOADCMD,X
 JSR SCM.INSTALL
 JSR FAKE.COUT
 CPX #6
 BCC .2
.3 STX $406 SAVE CHAR POS'N
 JSR GETCH GET SCREEN CHAR
 LDX $406 RESTORE POS'N
 JSR SCM.INSTALL
 JSR FAKE.COUT
 CPX #40 40 CHARS SENT YET?
 BNE .3 NO, LOOP BACK
 JMP CLREOP CLEAR TO END OF PAGE
* AND EXIT
*
LOADCMD .AS -/LOAD /
*--------------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 904 of 2550

Apple II Computer Info

Secondly, I wanted a longer "*---" line on my screen, so I changed it
to 68 characters instead of 38. This uses more of the 80-column
screen, without wrapping around during assembly. To make this
modification insert the following two lines after the label
"INSTALL.PATCHES" in Don's original listing:

 LDA #68
 STA SCM.BASE+$494

Finally, I changed the dimensions of the Videx cursor so that it looks
like a blinking underline instead of a blinking block. (Users of my
ES-CAPE are already familiar with my love for the blinking underline!)
Insert the following lines immediately after the "INSTALL.VECTORS"
label:

LDA #$0A VIDEX REGISTER 10
STA V.DEV0
LDA #$68
STA V.DEV0+1
LDA #$0B VIDEX REGISTER 11
STA V.DEV0
LDA #$08
STA V.DEV0+1

Speaking of ES-CAPE, I am making progress on Version 2 and have
included suggestions from many of you. If you have others, please
drop me a line soon at 3199 Hammock Creek, Lithonia, GA 30058, or call
evenings at (404) 483-7637.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 905 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
Upgrade from Version 4.0 to MACRO..................................$27.50
Source code of Version 4.0 on disk.................................$95.00
 Fully commented, easy to understand and modify to your own tastes.
S-C Macro Assembler /// ..$100.00
 Preliminary version. Call or write for details.

Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.

ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)................... $79.00
Source Code for FLASH! Runtime Package.............................$39.00

Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
Cross-Reference and Dis-Assembler (Rak-Ware).......................$45.00
The Incredible JACK!...$79.00

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Reload your own NEC PC-8023 ribbon cartridges...........each ribbon $5.00
Reload your own NEC Spinwriter Multi-Strike Film cartridges....each $2.50
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each

Ashby Shift-Key Mod..$15.00
Lower-Case Display Encoder ROM.....................................$25.00
 Only Revision level 7 or later Apples.

Books, Books, Books..........................compare our discount prices!
 "Enhancing Your Apple II, vol. 1", Lancaster.........($15.95) $15.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 906 of 2550

Apple II Computer Info

 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00
 "6502 Subroutines", Leventhal........................($12.99) $12.00
 "MICRO on the Apple--1", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--2", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--3", includes diskette...........($24.95) $23.00

 Add $1 per book for US postage. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 907 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:Patch.TF.txt
==

Macro Assembler Patch

Peter Bartlett, of Chicago, has reported an unpublished limit on the
number of Target Files that can be generated by one assembly. Right
now there can only be 31; above that number the load address and
length bytes go astray. If you need more than 31 files from one
assembly, you can make the following patches:

Regular version

:$29EA:3F

Language Card version

:$C083 C083 EB36:3F N C080

These patches will allow you to have up to 63 target files. That
should be plenty!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 908 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:Patch.TI.txt
==

Patch to Fix .TI Problem.........................Mike Laumer

You may have noticed the annoying problem with the .TI directive, in
which there is sometimes a blank line after the title line and
sometimes not. The blank line is there when the page break is forced
with a .PG directive, but not when it is caused by merely filling a
page.

The following little patch will fix it. I haven't put a definite
address on the patch, because I don't know what other patches you may
already have appended to the assembler. Just find an empty place and
plop it in!

Motherboard version: :$21F0:4C xx yy (was 20 CF 2C)
 :$yyxx:20 CF 2C 4C E3 21

RAM Card version: :$E33C:4C xx yy (was 20 1B EE)
 :$yyxx:20 1B EE 4C 2F E3

Another .TI problem of which I am aware is that the line count is
messed up on the first page of the symbol table listing. This is
caused by the fact that the extra carriage returns in the "SYMBOL
TABLE" message are not counted. You can clean up the appearance by
making the last line of your source program be ".PG"; this forces the
symbol table to start on a fresh page.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 909 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:PtchMacroHex.txt
==

A Sometimes Useful Patch...................Bob Sander-Cederlof

Sometimes you would like to see all the hex bytes a macro produces,
but not the expanded lines of source code. The >LIST MOFF directive
turns off both, but with the following three byte patch you can see
the hex bytes for each macro call.

Motherboard version: :$218B:0 (was 03)
 :$21B3:0 (was 05)
 :$21E2:0 (was 10)

RAM Card version: :$C083 C083 (enable writing)
 :$E2D7:0 (was 03)
 :$E2FF:0 (was 05)
 :$E32E:0 (was 10)

Don't make these into permanent patches, because there will be times
when you want to use the .LIST directives normally. If you feel like
making the changes often, you might make two separate versions of the
assembler, or make some EXEC files to do the patching on demand.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 910 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:Quickie.6.txt
==

Quickie No. 6.....An Eleven-Byte Alarm.....Bob Sander-Cederlof

Here is a little run-anywhere program sure to wake up the neighborhood
dogs. Put it in your program as a last resort to get attention,
because the only escape is by RESET or power-off.

1000 ALARM INY INCREMENT DELAY TIME
1010 TYA
1020 TAX DELAY COUNT TO X
1030 LDA $C030 TOGGLE SPEAKER
1040 .1 DEX DELAY LOOP
1050 BNE .1
1060 BEQ ALARM MORE NOISE, FOREVER....

That's it, only eleven bytes! For a slightly different effect, change
the "DEX" instruction in line 1030 to "INX".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 911 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:SC.WP.txt
==

Source Code for a Word Processor...........Bob Sander-Cederlof

I finally have had to face it. I am never going to have time to
finish the S-C word processor. It is certainly usable, because we
have been using it here for months now. And we use it a lot, writing
the newsletter, manuals, letters, etc. My father-in-law uses it, and
so does my best friend, Fred. Fred's 11-year-old daughter is also
using it, and loves it. She is currently typing a research paper
using it.

I know it is easy to use, because I didn't even give Fred a list of
commands, let alone a reference manual. Of course, I did sit down
with them for a few hours at the first, because they had never even
seen a word processor before.

In power, it is somewhere between Applewriter 1.1 and Applewriter II.
It is similar in operation to Applewriter 1.1, and works in 40-column
mode only. It requires a lower-case display and shift-key mod.

It can read Applewriter 1.1 files, and instantly convert them to
standard ASCII form. Normally it uses standard Apple text files (type
T in the catalog). Of course, with Bobby Deen's help, I built in FAST
read and write of those text files. Faster than binary files,
actually. Something like 100 sectors in 7 seconds, if I remember
correctly.

I want to make a deal with you. I'll send you the complete commented
source code on disk, together with a few sample text files. The text
files will describe the command repertoire. If you are already
familiar with Applewriter 1.1, you won't have any trouble at all. The
assembled word processor will also be there, in case you don't have
the S-C Macro Assembler.

But if you do have my assembler, you can proceed to modify, improve,
augment, enhance, and so on, to your heart's content.

I'll send you the disk, if you'll send me $50. Or your charge card
numbers, of course. I also want your commitment to keep this in the
family. You know, don't go out and write a manual and wrap it in a
fancy cover and call it YOUR product!

If you do enhance it, send in your additions and we'll make this a
joint effort. With all of us working on it, we may soon have the
world's best word machine!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 912 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:Scooter.txt
==

Many of you have expressed an interest in the new Rockwell R65C02
microprocessor. Well, we still haven't heard any more than I
mentioned a couple of months ago. We're as eager as you are to get a
sample. We'll have a detailed report as soon as we know more.

Zero-Insertion-Force Game Socket Extender

One of the first things I did to my Apple back in 1977 was to plug a
ZIF socket into the game connector. Not too easy, because it first
has to be soldered to a header, but I did it.

Now I have discovered a source for a ready-made device that does the
same thing, plus brings the socket outside the Apple (if you so
desire). For only $20 I'll send you one!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 913 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:Skinny.Page.txt
==

On CATALOG ARRANGER and RAM Card DOS

Chuck Welman just called to report some errors in the January piece on
using CATALOG ARRANGER with a relocated DOS. He says that the
sentence about where to put the BIT MONREAD statements had problems.
Here's his corrected version:

"Then add BIT MONREAD at these positions: Lines 1675, 3775, 3895,
3955, 4015 (".5" moved to this line), 4205 (".3" moved to this line,
4315, 4425, 4455 (".7" moved to this line), and 4895."

Chuck also passed along instructions for using FILENAME EDITOR with a
RAM Card DOS. Here are his additions:

2635 .3 BIT MONREAD
2640 JSR MON.BELL
2642 BIT DOSREAD
2644 BIT DOSREAD
2646 RTS

Thanks to all of you for showing your appreciation for these programs.

Quickie No. 6.....Bob Sander-Cederlof

Here is a little run-anywhere program sure to wake up the neighborhood
dogs. Put it in your program as a last resort to get attention,
because the only escape is by RESET or power-off.

1000 ALARM INY INCREMENT DELAY TIME
1010 TYA
1020 TAX DELAY COUNT TO X
1030 LDA $C030 TOGGLE SPEAKER
1040 .1 DEX DELAY LOOP
1050 BNE .1
1060 BEQ ALARMFOREVER....

That's it, only eleven bytes! For a slightly different effect, change
the "DEX" in line 1030 to "INX".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 914 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:Stars.txt
==

Star-tling Stunts.....................Bill Morgan & Mike Laumer

In most assemblers, including the S-C Macro Assembler, you can use the
character "*" in the operand of an instruction to mean the current
value of the location counter. (The location counter is a variable
used by the assembler to keep track of where the next byte of object
code goes.) Here are a couple of simple examples of using the *, from
page 6-2 of the Macro Assembler manual:

0800- 03 1000 QT .DA #QTSZ
0801- 41 42 43 1010 .AS /ABC/
0003- 1020 QTSZ .EQ *-QT-1
 1030
0804- 00 00 1040 VAR .DA *-*
 1050
0806- 1060 FILLER .BS $900-*
0900- 1070 END .EQ *

The QT, QTSZ example uses the * to help calculate the length of a
string of characters. The VAR line uses "*-*" to define a variable as
having a value of zero.

The expression labelled FILLER causes the assembler to skip ahead to
$900. This has much the same effect as .OR $900, but it won't cause
the assembler to close a target file, the way .OR would.

One thing Bill wanted was an expression to have the assembly skip up
to the beginning of the next page, no matter what that page might be.
Here's what we came up with:

0800- 34 12 1000 START .DA $1234
0802- 1010 FILL .BS *+255/256*256-*
0900- 45 23 1020 END .DA $2345

If you change the origin to $C00, END will move to $D00. With this
coding, END will always be $100 above START. Note that there is no
precedence when the assembler is evaluating an expression. Terms are
taken strictly left-to-right. But notice how smart the expression
cracker in the assembler is! It knows that a "*" between numbers or
labels means "multiply", and a "*" between arithmetic operators means
"location counter".

In the American Heart Association CPR project Mike uses lots of
overlays, and has to make sure that modules don't grow above a certain
address. He does it by putting lines like these at the end of a
module:

1000 .DO *>LIMIT
1010 !!! PROGRAM TOO BIG !!!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 915 of 2550

Apple II Computer Info

1020 .FIN

Here's an example, to keep a program below the Hi-res pages:

1000 .OR $1FFE
1010 .DA $4321
1020 .DO *>$2000
1030 !!! PROGRAM TOO BIG !!!
1040 .FIN

That will assemble just fine:

 1000 .OR $1FFE
1FFE- 21 43 1010 .DA $4321
 1020 .DO *>$2000
 1040 .FIN

0000 ERRORS IN ASSEMBLY

But, try inserting another line:

1015 .DA $1234

Here's what happens:

*** BAD OPCODE ERROR
 1030 !!! PROGRAM TOO BIG !!!

0001 ERRORS IN ASSEMBLY

The key to this technique is putting a couple of blanks at the
beginning of line 1030. That way, the assembler tries to parse "!!!"
as an opcode, and reports an error during pass one, before any code
has been generated.

You should be very careful about using "*", and experiment on a test
disk when trying something new. For example, take another look at
line 1060 in the first listing. If you put "*-$900" for the operand,
that would be negative. The result would be $FF07, which would try to
write 65,287 zero bytes onto your target file. The next thing you see
is probably DISK FULL!

That's about all the tricky things we have room for right now. We
hope these hints will help you to navigate "by the stars" in your
programming. Just remember to experiment carefully with the * operand
before using it in vital programs. There are also many pitfalls on
this road!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 916 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:String.Adder.txt
==

Really Adding ASCII Strings................Bob Sander-Cederlof

Last month I promised a "reasonably useful" program to add two numbers
together from ASCII strings. I promised:

* Callable from Applesoft, using &.

* Automatic passing of string parameters.

* Allow operands of unequal length.

* Automatic alignment of decimal points.

* Allow negative numbers.

* Handle sums longer than operands.

* Allow leading blanks on operands.

* Allow operands and results up to 253 bytes long!

Okay! It took me three days, but I did it! Of course, the program
has grown from 12 lines and 26 bytes of code to over 290 lines and
over 450 bytes, too.

The program is now assembled to load at $9000, but you can choose
other positions by changing line 1130. I set HIMEM:36864 before doing
anything else in the Applesoft program, and then BRUN B.STRING ADDER.

When B.STRING ADDER is BRUN, only the setup code in lines 1160-1220 is
executed. What this does is link in the ampersand (&) to the body of
my program. Once the "&" is linked, my program responds to a call
like "& +$,A$,B$,C$" by adding the numeric values represented in ASCII
in A$ and B$ and storing the sum as a string in C$.

When an &-line occurs, Applesoft branches to my line 1520. Lines
1520-1600 check for the characters "+$," after the ampersand. If you
don't like those characters, change them to something else. Anyway,
if the characters do not match, you get SYNTAX ERROR. If they do
match, it is time to collect the three strings variables.

Lines 1620-1690 collect the three string variables. The first two are
the operands, the third is the result string. I save the address and
length of the actual data of the operand strings. All I save at this
point for the result string is the address of the variable descriptor.
I call the subroutine PARSE.STRING.NAME to check for a leading comma,
search for the variable name, and store the length and address of the
referenced string data.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 917 of 2550

Apple II Computer Info

Lines 1730-1860 scan each operand string in turn to find the decimal
point position. The routine SCAN divides a string at the decimal
point (or where the decimal point would be if there was one), and
returns in Y the number of characters to the left of the decimal
point. SCAN returns in X the count of the

number of characters on the right end, including the decimal point. I
save the "digits.after" parts of both strings, and also the maxima of
the two parts. The maxima describe the result string (almost).

Lines 1900-2000 finish the description of the result string, by
lengthening the integral (left) side by two characters. These two
characters allow for extension of the result by carry, and for
representation of the sign of the result using ten's complement
notation. At this point I also clear the necessary bytes of the
result to zero, so the buffer can be used as an accumulator.

Now comes the EASY part. Lines 2040-2100 add each operand in turn to
the buffer contents. EASY. Just call the subroutine ADD.TO.BUFFER,
and it's done! Don't worry, I'll amplify later.

In ten's complement notation, if the first digit is 0-4 the number is
positive; if the first digit is 5-9, the number is negative. For
example, 1234 looks like 001234; -1234 becomes 998766. Ten's
complement means in decimal the same thing two's complement means in
binary. I can form the ten's complement by subtracting the number
from a power of ten equal to the number of digits in the result. In
that example, 1000000-1234=998766. Note that the ten's complement is
equal to the nine's complement plus one. (Since 10=9+1.)

Lines 2140-2410 convert the buffer contents from the ten's complement
numeric notation back to ASCII. Lines 2140-2180 set or clear the
CARRY and TENS.FLAG sign bits according to the first digit in the
buffer. A negative number, with a first digit of 5-9, causes both of
these variables to get a value of the form 1xxxxxxx.

Lines 2190-2360 scan through the number from right to left, making the
ten's complement if the number was negative, and converting each digit
to ASCII. Lines 2370-2400 store a minus sign in the first digit
position if the result is negative.

Line 2410 calls a subroutine to chop off leading zeros, and move the
minus sign if there is one. You may justifiably ask, "Why did you
call a subroutine rather than use in-line code?" Because when I wrote
it in-line, the local labels stretched out too far from the major
label STRADD and caused an assembly error. Also, sometimes I use
subroutines for clarity, even when the subroutine is only called once.

The final step is to pack the resulting string up and ship it to the
result string variable. Lines 2450-2590 do just that. AS.GETSPA
makes room at the bottom of string pool space, and AS.MOVSTR copies
the string data. C'est finis!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 918 of 2550

Apple II Computer Info

Lines 2640-3100 do the actual addition. On entry, X is either 0 or 4,
selecting either the first or second operand. SETUP.OPERAND copies
the string address into VARPNT, and retrieves the length of the
string. Lines 2690-2760 set or clear the TENS.FLAG and CARRY
variables according to the sign of the operand.

Lines 2780-2810 compute the position in the buffer at which the
operand will be aligned properly. We saved the size of the integral
(left) side of the buffer in MAX.DIGITS.BEFORE. That plus the lenght
of the fractional side of the operand tells us where this operand
aligns. Since we are using ten's complement for negative numbers,
rather than nine's complement, we don't have to worry about extending
the fractional parts to the same length. We can just start adding at
the end of the current operand. (In ten's complement form fractional
extensions are zeros; in nine's complement form, the extension digits
would all be nines.)

Lines 2830-3100 do the addition. X points into the buffer, and Y
points into the operand string. To start with, both X and Y point
just past the end; therefore the loop BEGINS with a test-and-decrement
sequence. I first t-a-d the buffer pointer; if it is zero, all is
finished. If not, on to t-a-d the string pointer. If it is zero,
there are still digits left in the buffer, so I use an assumed leading
zero digit for the operand. We still may have carries to propagate
across the rest of the sum.

Assuming neither pointer is zero, line 2900 gets the next digit from
the operand string. If it is a decimal point, I just store the
decimal point ASCII value into the buffer. If you want to be able to
ignore leading blanks, insert the following two lines between line
2920 and 2930:

2924 CMP #' BLANK?
2925 BEQ .3 YES, USE ZERO.

I left them out in my version, because I forgot I promised it to you.

If the character is not a decimal point (or blank), it may be a minus
sign or digit. I did not put any error checking in my program for
other extraneous characters; if you try them, you will get extraneous
results! I treat a sign as a leading zero in the arithmetic loop.

If the character is a digit, or an assumed leading zero, we can add it
to the buffer's value. Lines 2960-3010 will complement the digit if
the operand had a minus sign. Lines 3020-3070 add the current operand
digit (or its complement) to the current buffer digit, plus any carry
hung over from the preceding digit, and save the resulting carry in
CARRY.

That's it! Now here is a short little Applesoft program to test the
code.

100 REM TEST&+$,A$,B$
110 HIMEM: 36864: PRINT CHR$ (4)"BLOAD B.STRING ADDER":

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 919 of 2550

Apple II Computer Info

 CALL 36864
120 INPUT A$: INPUT B$
130 & + $,A$,B$,C$
140 PRINT C$: GOTO 120

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 920 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:Articles:Trapper.txt
==

TRAPPER: An Applesoft Input Tuner...............Allen Marsalis

How would you like a radio which played every available station at one
time? Well that's how I sometimes feel about using Applesoft's INPUT
statement. I want to be able to "tune in" on the character(s) of the
input stream, in much the same way as a radio tunes into a station.
Applesoft's INPUT statement, however, accepts all characters typed
into the keyboard and allows up to 255 of them. This means that I
have to do a lot of checking and monitoring of string lengths and
characters to avoid input errors.

For example, when answering a Y or N question, what happens when the
user inputs "WXYZ"? Provisions are needed within the program to guard
against such errors. This can be very inconvenient and space-
consuming, yet it is essential for good programming.

A better example occurs when you are creating a disk file. Field
lengths and data types are often restricted, such as in a name,
address, or social security number. A SSN, for instance, has a fixed
length and must be constructed of numbers only. Checking a field such
as this can be very time consuming and lengthy. In fact, it seems
that a quarter of the contents of my Applesoft programs does nothing
but check on field lengths, option boundaries, and other input checks.

So, I set out to create an input routine which would allow Applesoft
to "tune" into the characters specified and also monitor the field
length. I've seen several input routines such as this on larger
systems, but all had one disadvantage: Only a fixed number of options
were available, such as alpha only, numeric only, and (Y or N) input.
More options available meant more parameters were necessary, making
the systems more cumbersome to work with. After much thought I
decided on a totally new approach which would allow almost limitless
control of input. I christened this routine TRAPPER for "Tuning and
Regulating APPlesoft Entries by Restriction."

TRAPPER employs a coded restriction string (not unlike Applesoft's IF
expression) to tune out the characters I don't want to accept.
TRAPPER is then, in essence, a tiny interactive interpreter that
provides a short, convenient method of filtering out any unwanted
characters in the input. Here's how it works.

TRAPPER uses three parameters as follows:

Syntax: & INPUT (A, B$, C$)
 A: Input field length (real expression)
 B$: Coded restriction string (string expression)
 includes: > < = ' AND OR NOT <sp> <single char>
 C$: Input string (string variable)
 variable to receive input

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 921 of 2550

Apple II Computer Info

As I have said, the restriction string is a simple relational
expression as is used by Applesoft's IF statement. It is constructed
of the following special characters and rules:

1) < > = are its relational operators
2) AND OR NOT are its logical operators
3) Blanks are allowed anywhere within the expression, but lengthy
expressions increase the delay between keystrokes.
4) One and only one character is allowed within single quotes.
5) <cr> and <-- have special functions and cannot be trapped.
6) Parentheses are not yet implemented.

EXAMPLES:

YN$ = " ='Y' OR ='N' " :REM (Y OR N) ONLY
NOSP$ = " NOT =' ' " :REM NO SPACES ALLOWED
MENU$ = " NOT <'1' AND NOT >'4' " :REM ALLOWS 1 THRU 4
WAITCR$ = "" :REM WAIT FOR A <CR>

After using Trapper awhile, I noticed a significant reduction in the
size of my Applesoft programs, with even better error trapping than
ever before possible. And it doesn't print that leading question mark
which I never did like (not all input prompts are questions.)

For a 48K Apple, DOS sets HIMEM at $9600. Trapper resides just below
this at $9300 and moves HIMEM down to that point.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 922 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:Divide.16.16.txt
==

 1000 *SAVE S.DIV.16/16
 1010 *--------------------------------
 1020 * DIVIDE 16 BY 16
 1030 *--------------------------------
 1040 ACL .EQ $50
 1050 ACH .EQ $51
 1060 XTNDL .EQ $52
 1070 XTNDH .EQ $53
 1080 AUXL .EQ $54
 1090 AUXH .EQ $55
 1100 *--------------------------------
 1110 DIVMON LDY #16 INDEX FOR 16 BITS
 1120 .1 ASL ACL DIVIDEND/2, CLEAR QUOTIENT BIT
 1130 ROL ACH
 1140 ROL XTNDL
 1150 ROL XTNDH
 1160 SEC
 1170 LDA XTNDL TRY SUBTRACTING DIVISOR
 1180 SBC AUXL
 1190 TAX
 1200 LDA XTNDH
 1210 SBC AUXH
 1220 BCC .2 TOO SMALL, QBIT=0
 1230 STX XTNDL OKAY, STORE REMAINDER
 1240 STA XTNDH
 1250 INC ACL SET QUOTIENT BIT = 1
 1260 .2 DEY NEXT STEP
 1270 BNE .1
 1280 RTS
 1290 *--------------------------------
 1300 * SIGNED DIVISION 32/16
 1310 *--------------------------------
 1320 SIGN .EQ $2F
 1330 *--------------------------------
 1340 SIGNED.DIV.MON
 1350 LDY #0
 1360 STY XTNDL CLEAR ACC EXTENSION
 1370 STY XTNDH
 1380 STY SIGN
 1390 LDX #ACL
 1400 JSR ABS
 1410 LDX #AUXL
 1420 JSR ABS
 1430 JSR DIVMON
 1440 LDA SIGN
 1450 BPL .1 RESULT POSITIVE
 1455 LDX #ACL
 1460 JSR COMPLEMENT
 1470 .1 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 923 of 2550

Apple II Computer Info

 1480 *--------------------------------
 1490 ABS LDA 1,X LOOK AT SIGN
 1500 BPL ABSRET POSITIVE
 1510 EOR SIGN COMPLEMENT RESULT SIGN
 1520 STA SIGN
 1530 COMPLEMENT
 1540 SEC
 1550 TYA =0
 1560 SBC 0,X
 1570 STA 0,X
 1580 TYA =0
 1590 SBC 1,X
 1600 STA 1,X
 1610 ABSRET RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 924 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.ARRAYS.txt
==

 1000 * S.ARRAYS
 1010 *--------------------------------
 1020 CHRGET .EQ $B1
 1030 CHKCOM .EQ $DEBE
 1040 SYNCHR .EQ $DEC0
 1050 PTRGET .EQ $DFE3
 1060 GETARYPT .EQ $F7D9
 1070 PRNTAX .EQ $F941
 1080 CROUT .EQ $FD8E
 1090 PRHEX .EQ $FDDA
 1100 COUT .EQ $FDED
 1110 *--------------------------------
 1120 LENGTH .EQ 0
 1130 STRING.ADDR .EQ 1,2
 1140 ELEMENT.PNTR .EQ 3,4
 1150 ARRAY.END .EQ 5,6
 1160 *--------------------------------
 1170 .OR $300
 1180
 1190 START LDA #X
 1200 STA $3F6
 1210 LDA /X
 1220 STA $3F7
 1230 RTS
 1240 *--------------------------------
 1250 * GET ONE ARRAY ELEMENT
 1260 *--------------------------------
 1270 X CMP #'X
 1280 BNE Y
 1290 JSR CHRGET
 1300 JSR CHKCOM BE SURE COMMA IS NEXT
 1310 JSR PTRGET
 1320 *--------------------------------
 1330 * NOW $83,84 POINTS AT A$(3,5)
 1340 *--------------------------------
 1350 LDY #0 FIRST BYTE IS STRING LENGTH
 1360 LDA ($83),Y GET LENGTH
 1370 STA LENGTH
 1380 INY NEXT TWO BYTES POINT
 1390 LDA ($83),Y AT STRING VALUE
 1400 STA STRING.ADDR
 1410 INY
 1420 LDA ($83),Y
 1430 STA STRING.ADDR+1
 1440 *--------------------------------
 1450 * NOW LET'S PRINT THE STRING, JUST FOR FUN
 1460 *--------------------------------
 1470 LDY #0
 1480 .1 CPY LENGTH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 925 of 2550

Apple II Computer Info

 1490 BCS .2 FINISHED
 1500 LDA (STRING.ADDR),Y
 1510 ORA #$80
 1520 JSR COUT
 1530 INY
 1540 BNE .1 ...ALWAYS
 1550 .2 JMP CROUT
 1560 *--------------------------------
 1570 * GET ENTIRE ARRAY
 1580 *--------------------------------
 1590 Y LDA #'Y
 1600 JSR SYNCHR
 1610 JSR CHKCOM
 1620 JSR GETARYPT
 1630 *--------------------------------
 1640 * NOW $9B,9C HAVE ADDRESS OF START OF ARRAY
 1650 * NEED TO MOVE POINTER UP TO FIRST ELEMENT
 1660 *--------------------------------
 1670 LDY #4 POINT AT LSB OF # DIMENSIONS
 1680 LDA ($9B),Y
 1690 ASL DOUBLE IT (IGNORE MSB, #<120)
 1700 ADC #5 POINT AT FIRST ELEMENT
 1710 STA $9D
 1720 LDY #2 POINT AT LSB OF OFFSET
 1730 CLC COMPUTE ADDRESS JUST PAST END OF ARRAY
 1740 LDA $9B
 1750 ADC ($9B),Y
 1760 STA ARRAY.END
 1770 LDA $9C MSB
 1780 INY
 1790 ADC ($9B),Y
 1800 STA ARRAY.END+1
 1810 *--------------------------------
 1820 * NOW COMPUTE FULL ADDRESS OF FIRST ELEMENT
 1830 *--------------------------------
 1840 CLC
 1850 LDA $9D
 1860 ADC $9B
 1870 STA ELEMENT.PNTR
 1880 LDA $9C
 1890 ADC #0
 1900 STA ELEMENT.PNTR+1
 1910 *--------------------------------
 1920 * NOW WALK THROUGH STRINGS
 1930 *--------------------------------
 1940 .1 LDY #0 POINT AT FIRST ELEMENT
 1950 LDA (ELEMENT.PNTR),Y GET LENGTH
 1960 STA LENGTH
 1970 INY
 1980 LDA (ELEMENT.PNTR),Y GET ADDRESS
 1990 TAX
 2000 INY
 2010 LDA (ELEMENT.PNTR),Y
 2020 JSR PRNTAX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 926 of 2550

Apple II Computer Info

 2030 LDA #':+$80
 2040 JSR $FDED
 2050 LDA #' +$80
 2060 JSR $FDED
 2070 JSR $FDED
 2080 LDA LENGTH
 2090 JSR PRHEX
 2100 JSR CROUT
 2110 *--------------------------------
 2120 CLC
 2130 LDA #3
 2140 ADC ELEMENT.PNTR
 2150 STA ELEMENT.PNTR
 2160 LDA ELEMENT.PNTR+1
 2170 ADC #0
 2180 STA ELEMENT.PNTR+1
 2190 *--------------------------------
 2200 LDA ELEMENT.PNTR
 2210 CMP ARRAY.END
 2220 LDA ELEMENT.PNTR+1
 2230 SBC ARRAY.END+1
 2240 BCC .1
 2250 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 927 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.Div.32.16.Trc.txt
==

 1000 *SAVE S.DIVIDE 32/16 WITH TRACE
 1010 *--------------------------------
 1020 OVERFLOW .EQ $00
 1030 DIVIDEND .EQ $01 THRU $04
 1040 REMAINDER .EQ DIVIDEND
 1050 QUOTIENT .EQ DIVIDEND+2
 1060 DIVISOR .EQ $05 AND $06
 1070 *--------------------------------
 1080 MON.CROUT .EQ $FD8E
 1090 MON.PRHEX .EQ $FDDA
 1100 MON.COUT .EQ $FDED
 1110 *--------------------------------
 1120 DIVIDE LDX #17 16-BIT DIVISOR
 1130 CLC START WITH NO OVERFLOW
 1140 .1 ROR OVERFLOW
 1150 JSR TRACE
 1160 SEC
 1170 LDA DIVIDEND+1 NEXT-TO-HIGHEST BYTE
 1180 SBC DIVISOR+1 LEAST SIGNIFICANT BYTE
 1190 TAY SAVE RESULT
 1200 LDA DIVIDEND HIGHEST BYTE
 1210 SBC DIVISOR
 1220 BCS .2 QUOTIENT BIT = 1
 1230 ASL OVERFLOW TRUE QUOTIENT BIT
 1240 BCC .3
 1250 .2 STY DIVIDEND+1 QUOTIENT BIT = 1
 1260 STA DIVIDEND
 1270 .3 ROL DIVIDEND+3 SHIFT QUOTIENT BIT INTO END
 1280 ROL DIVIDEND+2 AND MOVE TO NEXT POSITION
 1290 ROL DIVIDEND+1
 1300 ROL DIVIDEND
 1310 DEX
 1320 BNE .1
 1330 ROR DIVIDEND SHIFT REMAINDER BACK IN PLACE
 1340 ROR DIVIDEND+1
 1350 ROR OVERFLOW SET SIGN BIT IF OVERFLOW
 1360 *--------------------------------
 1370 TRACE LDA #$B0
 1380 BIT OVERFLOW
 1390 BPL .1
 1400 LDA #$B1
 1410 .1 JSR MON.COUT
 1420 LDY #0
 1430 .2 LDA #$A0
 1440 JSR MON.COUT
 1450 LDA DIVIDEND,Y
 1460 JSR MON.PRHEX
 1470 INY
 1480 CPY #4

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 928 of 2550

Apple II Computer Info

 1490 BCC .2
 1500 JSR MON.CROUT
 1510 RTS
 1520 *--------------------------------
 1530 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 929 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.Div.8.4.txt
==

 1000 *SAVE S.DIV.8.BY.4
 1010 *--------------------------------
 1020 * DIVIDE 8-BIT VALUE
 1030 * BY 4-BIT VALUE
 1040 *--------------------------------
 1050 DIVIDEND .EQ 0
 1060 DIVISOR .EQ 1
 1070 QUOTIENT .EQ 2
 1080 *--------------------------------
 1090 S.DIV.8.BY.4
 1100 LDY #5 COUNT OFF 5 STEPS
 1110 LDA #0
 1120 STA QUOTIENT
 1130 LDA DIVISOR SEE IF DIVISOR IN RANGE
 1140 BEQ .3 DIVIDE BY ZERO IS ILLEGAL
 1150 ASL SHIFT DIVISOR TO LEFT NYBBLE
 1160 ASL
 1170 ASL
 1180 ASL
 1190 STA DIVISOR
 1200 .1 LDA DIVIDEND COMPARE DIVIDEND TO DIVISOR
 1210 SEC
 1220 SBC DIVISOR
 1230 BCC .2 DIVIDEND IS SMALLER
 1240 CMP DIVISOR SEE IF STILL LARGER
 1250 BCS .3 YES, OVERFLOW
 1260 SEC SET QUOTIENT BIT = 1
 1270 STA DIVIDEND
 1280 .2 ROL QUOTIENT SHIFT QUOTIENT BIT IN
 1290 LSR DIVISOR SHIFT DIVISOR OVER
 1300 DEY
 1310 BNE .1 DO NEXT STEP
 1320 ROL DIVISOR RESTORE DIVISOR
 1330 RTS
 1340 .3 BRK DIVIDE FAULT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 930 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.Divide.32.16.txt
==

 1000 *SAVE S.DIVIDE 32/16
 1010 *--------------------------------
 1020 DIVIDE LDX #17 16-BIT DIVISOR
 1040 CLC START WITH NO OVERFLOW
 1050 .1 ROR OVERFLOW
 1060 SEC
 1070 LDA DIVIDEND+1 NEXT-TO-HIGHEST BYTE
 1080 SBC DIVISOR+1 LEAST SIGNIFICANT BYTE
 1090 TAY SAVE RESULT
 1100 LDA DIVIDEND HIGHEST BYTE
 1110 SBC DIVISOR
 1120 BCS .2 QUOTIENT BIT = 1
 1130 ASL OVERFLOW TRUE QUOTIENT BIT
 1140 BCC .3
 1150 .2 STY DIVIDEND+1 QUOTIENT BIT = 1
 1160 STA DIVIDEND
 1170 .3 ROL DIVIDEND+3 SHIFT QUOTIENT BIT INTO END
 1180 ROL DIVIDEND+2 AND MOVE TO NEXT POSITION
 1190 ROL DIVIDEND+1
 1200 ROL DIVIDEND
 1210 DEX
 1220 BNE .1
 1230 ROR DIVIDEND SHIFT REMAINDER BACK IN PLACE
 1240 ROR DIVIDEND+1
 1250 ROR OVERFLOW SET SIGN BIT IF OVERFLOW
 1260 RTS
 1270 *--------------------------------
 1280 DIVIDEND .BS 4
 1290 REMAINDER .EQ DIVIDEND
 1300 QUOTIENT .EQ DIVIDEND+2
 1310 DIVISOR .BS 2
 1320 OVERFLOW .BS 1
 1330 *--------------------------------
 1340 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 931 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.LinnsVidex.txt
==

 1000 *--------------------------------------
 1010 SCM.INSTALL .EQ SCM.BASE+$52A
 1020 *
 1030 MY.ESC.L
 1040 CPX #0 CURSOR AT BEGINNING?
 1050 BEQ .1 YES, CONTINUE
 1060 JMP SCM.ESC.L NO, LET S-C HANDLE IT
 1070 .1 LDA #0 CONNECT DOS
 1080 STA $AA52 BY SETTING INTERCEPT STATE = 0
 1090 LDA #$84 SEND A CTRL-D
 1100 JSR MON.COUT
 1110 .2 LDA LOADCMD,X
 1120 JSR SCM.INSTALL
 1130 JSR FAKE.COUT
 1140 CPX #6
 1150 BCC .2
 1160 .3 STX $406 SAVE CHAR POS'N
 1170 JSR GETCH GET SCREEN CHAR
 1180 LDX $406 RESTORE POS'N
 1190 JSR SCM.INSTALL
 1200 JSR FAKE.COUT
 1210 CPX #40 40 CHARS SENT YET?
 1220 BNE .3 NO, LOOP BACK
 1230 JMP CLREOP CLEAR TO END OF PAGE
 1240 * AND EXIT
 1250 *
 1260 LOADCMD .AS -/LOAD /
 1270 *--------------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 932 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.MACRO.MACROS.txt
==

 1000 *SAVE S.MACRO.MACROS
 1010 .MA BLD
 1020]1
 1030]2
 1040]3
 1050]4
 1060 .EM
 1070 >BLD ".MA ATOB","LDA A","STA B",".EM"
 1080 >BLD ".MA BTOA","LDA B","STA A",".EM"
 1090 *--------------------------------
 1100 A .BS 1
 1110 B .BS 1
 1120 *--------------------------------
 1130 >ATOB
 1140 >BTOA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 933 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.ScreenPrinter.txt
==

 1000 *SAVE S.SCREEN PRINTER
 1010 *--------------------------------
 1020 * INSTANT HARDCOPY PROGRAM
 1030 * BY ULF SCHLICHTMANN
 1040 *--------------------------------
 1050 SLOT .EQ 1
 1060 BASL .EQ $28
 1070 BASH .EQ $29
 1080 *--------------------------------
 1090 COLUMNS .EQ $678
 1100 DOS.REHOOK .EQ $03EA
 1110 AS.VTAB .EQ $F25A
 1120 MON.PR .EQ $FE95
 1130 MON.CROUT .EQ $FD8E
 1140 MON.COUT .EQ $FDED
 1150 MON.SETVID .EQ $FE93
 1160 *--------------------------------
 1170 .OR $300
 1180 HCOPY LDA #SLOT SET UP OUTPUT VECTOR
 1190 JSR MON.PR TO POINT AT PRINTER
 1200 JSR MON.CROUT START A NEW LINE
 1210 STA COLUMNS+SLOT DISABLE SCREEN
 1220 LDX #0 START AT TOP OF SCREEN
 1230 .1 JSR AS.VTAB COMPUTE BASE ADDRESS
 1240 LDY #0 START IN COLUMN 1
 1250 .2 LDA (BASL),Y NEXT CHARACTER FROM THIS LINE
 1260 JSR MON.COUT
 1270 INY
 1280 CPY #40 END OF LINE YET?
 1290 BNE .2 NO
 1300 JSR MON.CROUT
 1310 INX NEXT LINE
 1320 CPX #24 END OF SCREEN YET?
 1330 BNE .1 NO
 1340 JSR MON.SETVID
 1350 JMP DOS.REHOOK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 934 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.ScrnPrntrPlus.txt
==

 1000 *SAVE S.SCREEN PRINTER.PLUS
 1010 *--------------------------------
 1020 * INSTANT HARDCOPY PROGRAM
 1030 * BY ULF SCHLICHTMANN
 1040 *--------------------------------
 1050 SLOT .EQ 1
 1060 BASL .EQ $28
 1070 VLINE .EQ $FC
 1080 *--------------------------------
 1090 FLAGS .EQ $7F8
 1100 DOS.REHOOK .EQ $03EA
 1110 MON.VTAB .EQ $FC22
 1120 MON.VTABZ .EQ $FC24
 1130 MON.PR .EQ $FE95
 1140 MON.CROUT .EQ $FD8E
 1150 MON.COUT .EQ $FDED
 1160 MON.SETVID .EQ $FE93
 1170 MON.DASH .EQ $FD9E
 1180 *--------------------------------
 1190 .OR $300
 1200 HCOPY LDA #SLOT SET UP OUTPUT VECTOR
 1210 JSR MON.PR TO POINT AT PRINTER
 1220 JSR MON.CROUT START A NEW LINE
 1230 LDA FLAGS+SLOT
 1240 AND #$BF
 1250 STA FLAGS+SLOT
 1260 JSR DASH.LINE
 1270 LDX #0 START AT TOP OF SCREEN
 1280 .1 TXA
 1290 JSR MON.VTABZ COMPUTE BASE ADDRESS
 1300 LDA #VLINE
 1310 JSR MON.COUT
 1320 LDY #0 START IN COLUMN 1
 1330 .2 LDA (BASL),Y NEXT CHARACTER FROM THIS LINE
 1340 ORA #$80 BE SURE IN RANGE FOR PRINTING
 1350 CMP #$A0
 1360 BCS .3
 1370 LDA #$A0 PRINT SPACE IN PLACE OF ILLEGALS
 1380 .3 JSR MON.COUT
 1390 INY
 1400 CPY #40 END OF LINE YET?
 1410 BNE .2 NO
 1420 LDA #VLINE
 1430 JSR MON.COUT
 1440 JSR MON.CROUT
 1450 INX NEXT LINE
 1460 CPX #24 END OF SCREEN YET?
 1470 BNE .1 NO
 1480 JSR DASH.LINE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 935 of 2550

Apple II Computer Info

 1490 JSR MON.VTAB RE-ESTABLISH CURSOR POSITION
 1500 JSR MON.SETVID
 1510 JMP DOS.REHOOK
 1520 *--------------------------------
 1530 DASH.LINE
 1540 LDY #42
 1550 .1 JSR MON.DASH
 1560 DEY
 1570 BNE .1
 1580 JMP MON.CROUT
 1590 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 936 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.SuperStrAddr.txt
==

 1000 *SAVE S.SUPER STRING ADDER
 1010 *--------------------------------
 1020 * STRING ADDITION: & +$,A$,B$,C$
 1030 *--------------------------------
 1040 BUFFER .EQ $200 - $2FF
 1050 AMPERSAND.VECTOR .EQ $3F5 - $3F7
 1060 AS.CHRGET .EQ $00B1
 1070 AS.SYNERR .EQ $DEC9
 1080 AS.PTRGET .EQ $DFE3
 1090 AS.CHKCOM .EQ $DEBE
 1100 AS.GETSPA .EQ $E452
 1110 AS.MOVSTR .EQ $E5E2
 1120 *--------------------------------
 1130 .OR $9000
 1140 .TF B.STRING ADDER
 1150 *--------------------------------
 1160 SETUP LDA #$4C JMP OPCODE
 1170 STA AMPERSAND.VECTOR
 1180 LDA #STRADD
 1190 STA AMPERSAND.VECTOR+1
 1200 LDA /STRADD
 1210 STA AMPERSAND.VECTOR+2
 1220 RTS
 1230 *--------------------------------
 1240 FRESPC .EQ $71,72
 1250 VARPNT .EQ $83,84
 1260 *--------------------------------
 1270 * TWO SIMILAR BLOCKS, FOR A$ AND B$
 1280 * REFERENCED WITH X=0 OR X=4
 1290 *--------------------------------
 1300 A.LENGTH .BS 1
 1310 A.ADDR .BS 2
 1320 A.DIGITS.AFTER .BS 1
 1330 *
 1340 B.LENGTH .BS 1
 1350 B.ADDR .BS 2
 1360 B.DIGITS.AFTER .BS 1
 1370 *--------------------------------
 1380 * A THIRD BLOCK, NEARLY THE SAME AS ABOVE,
 1390 * FOR C$: REFERENCED WITH X=8
 1400 *--------------------------------
 1410 C.LENGTH .BS 1
 1420 C.STRING .BS 2
 1430 *--------------------------------
 1440 CARRY .BS 1
 1450 TENS.FLAG .BS 1
 1460 C.ADDR .BS 2
 1470 MAX.DIGITS.BEFORE .BS 1
 1480 MAX.DIGITS.AFTER .BS 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 937 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 * & BRANCHES HERE
 1510 *--------------------------------
 1520 STRADD CMP #$C8 CHECK FOR "+$,"
 1530 BNE .1
 1540 JSR AS.CHRGET
 1550 CMP #'$
 1560 BNE .1
 1570 JSR AS.CHRGET
 1580 CMP #',
 1590 BEQ .2
 1600 .1 JMP AS.SYNERR
 1610 *--------------------------------
 1620 .2 LDX #0 POINT AT A$ DATA
 1630 JSR PARSE.STRING.NAME FIRST OPERAND
 1640 LDX #4 POINT AT B$ DATA
 1650 JSR PARSE.STRING.NAME SECOND OPERAND
 1660 JSR AS.CHKCOM RESULT STRING
 1670 JSR AS.PTRGET
 1680 STY C.STRING+1 ADDRESS OF VARIABLE
 1690 STA C.STRING
 1700 *--------------------------------
 1710 * SCAN BOTH STRINGS TO DETERMINE BUFFER PARAMETERS
 1720 *--------------------------------
 1730 LDX #0 POINT AT A$ DATA
 1740 JSR SCAN GET Y=LEFT LENGTH, X=RIGHT LENGTH
 1750 STX A.DIGITS.AFTER
 1760 STX MAX.DIGITS.AFTER
 1770 STY MAX.DIGITS.BEFORE
 1780 LDX #4 POINT AT B$ DATA
 1790 JSR SCAN GET Y=LEFT LENGTH, X=RIGHT LENGTH
 1800 STX B.DIGITS.AFTER
 1810 CPX MAX.DIGITS.AFTER
 1820 BCC .3
 1830 STX MAX.DIGITS.AFTER
 1840 .3 CPY MAX.DIGITS.BEFORE
 1850 BCC .4
 1860 STY MAX.DIGITS.BEFORE
 1870 *--------------------------------
 1880 * CLEAR THAT MUCH OF THE BUFFER
 1890 *--------------------------------
 1900 .4 INC MAX.DIGITS.BEFORE TWO MORE CHARS FOR
 1910 INC MAX.DIGITS.BEFORE SIGN AND CARRY
 1920 CLC
 1930 LDA MAX.DIGITS.BEFORE TOTAL LENGTH OF RESULT
 1940 ADC MAX.DIGITS.AFTER
 1950 STA C.LENGTH
 1960 TAY
 1970 LDA #0 ZERO THE BUFFER FOR USE AS AN
 1980 .5 STA BUFFER-1,Y ACCUMULATOR
 1990 DEY
 2000 BNE .5
 2010 *--------------------------------
 2020 * ADD A$ TO BUFFER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 938 of 2550

Apple II Computer Info

 2030 *--------------------------------
 2040 LDX #0 POINT AT A$ DATA
 2050 JSR ADD.TO.BUFFER
 2060 *--------------------------------
 2070 * ADD B$ TO BUFFER
 2080 *--------------------------------
 2090 LDX #4 POINT AT B$ DATA
 2100 JSR ADD.TO.BUFFER
 2110 *--------------------------------
 2120 * CONVERT BUFFER TO ASCII AGAIN
 2130 *--------------------------------
 2140 LDA BUFFER SEE IF NUMBER IS NEGATIVE
 2150 CMP #5 SET CARRY IF NEGATIVE, ELSE CLEAR
 2160 ROR MAKE A=0XXXXXXX OR 1XXXXXXX
 2170 STA CARRY TO SET OR CLEAR THESE FLAGS
 2180 STA TENS.FLAG APPROPRIATELY
 2190 LDX C.LENGTH
 2200 BEQ .10 FINISHED
 2210 .6 LDA BUFFER-1,X
 2220 CMP #'.
 2230 BEQ .9
 2240 BIT TENS.FLAG
 2250 BPL .8
 2260 ASL CARRY
 2270 LDA #10
 2280 SBC BUFFER-1,X
 2290 CMP #10
 2300 BCC .7
 2310 SBC #10
 2320 .7 ROR CARRY
 2330 .8 ORA #'0
 2340 .9 STA BUFFER-1,X
 2350 DEX
 2360 BNE .6
 2370 .10 BIT TENS.FLAG SEE ABOUT FINAL SIGN
 2380 BPL .11 VALUE IS POSITIVE
 2390 LDA #'- NEGATIVE, SO STUFF "-"
 2400 STA BUFFER IN FRONT OF BUFFER
 2410 .11 JSR CHOP.OFF.LEADING.ZEROES
 2420 *--------------------------------
 2430 * PUT (BUFFER) IN OUTPUT STRING
 2440 *--------------------------------
 2450 LDX #8 POINT AT C$ DATA
 2460 JSR SETUP.OPERAND
 2470 JSR AS.GETSPA
 2480 LDY #0
 2490 STA (VARPNT),Y
 2500 INY
 2510 LDA FRESPC
 2520 STA (VARPNT),Y
 2530 INY
 2540 LDA FRESPC+1
 2550 STA (VARPNT),Y
 2560 LDY C.ADDR+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 939 of 2550

Apple II Computer Info

 2570 LDX C.ADDR
 2580 LDA C.LENGTH
 2590 JMP AS.MOVSTR
 2600 *--------------------------------
 2610 * ADD STRING TO BUFFER
 2620 * ENTER WITH X=0 FOR A$, X=4 FOR B$
 2630 *--------------------------------
 2640 ADD.TO.BUFFER
 2650 JSR SETUP.OPERAND
 2660 TAY STRING LENGTH
 2670 LDA A.DIGITS.AFTER,X
 2680 PHA
 2690 LDX #0
 2700 LDA (VARPNT,X) CHECK FOR MINUS SIGN
 2710 CMP #'-
 2720 BEQ .1 YES, CARRY SET
 2730 CLC ELSE CLEAR CARRY
 2740 .1 ROR MAKE A=0XXXXXXX OR 1XXXXXXX
 2750 STA TENS.FLAG MAKE FLAGS<0 IF MINUS
 2760 STA CARRY
 2770 *--------------------------------
 2780 CLC POINT INTO BUFFER WHERE OPERAND
 2790 PLA ALIGNS
 2800 ADC MAX.DIGITS.BEFORE
 2810 TAX
 2820 *--------------------------------
 2830 .2 TXA TEST X FOR BEGINNING OF BUFFER
 2840 BEQ .8 YES, FINISHED!
 2850 DEX NO, BACK ANOTHER ONE
 2860 TYA CHECK OPERAND POINTER
 2870 BEQ .3 END OF OPERAND, BUT WE
 2880 * STILL NEED TO FINISH CARRIES
 2890 DEY BACK UP IN OPERAND
 2900 LDA (VARPNT),Y NEXT CHAR FROM OPERAND
 2910 CMP #'. DECIMAL POINT?
 2920 BEQ .7 YES, SKIP OVER IT
 2930 CMP #'- MINUS SIGN?
 2940 BNE .4 NO, MUST BE DIGIT
 2950 .3 LDA #'0 ASCII ZERO THEN
 2960 .4 AND #$0F CONVERT ASCII TO BINARY
 2970 BIT TENS.FLAG
 2980 BPL .5 NOT 9'S COMPLEMENTING
 2990 EOR #$FF
 3000 CLC
 3010 ADC #10 FORM 9'S COMPLEMENT
 3020 .5 ASL CARRY GET PREVIOUS CARRY INTO C-BIT
 3030 ADC BUFFER,X
 3040 CMP #10 SEE IF CARRY
 3050 BCC .6 NO
 3060 SBC #10 YES, BACK THIS DIGIT DOWN
 3070 .6 ROR CARRY SAVE CARRY FOR NEXT LOOP
 3080 .7 STA BUFFER,X
 3090 JMP .2
 3100 .8 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 940 of 2550

Apple II Computer Info

 3110 *--------------------------------
 3120 * SCAN STRING
 3130 * ENTER WITH X=0 FOR A$, X=4 FOR B$
 3140 * RETURN WITH X = # DIGITS AFTER DECIMAL POINT
 3150 * (COUNTING THE DECIMAL POINT)
 3160 * Y = # DIGITS BEFORE DECIMAL POINT
 3170 * (COUNTING SIGN IF ANY)
 3180 *--------------------------------
 3190 SCAN
 3200 JSR SETUP.OPERAND
 3210 LDY #0
 3220 TAX
 3230 BEQ .2 NULL STRING
 3240 .1 LDA (VARPNT),Y
 3250 CMP #'. LOOKING FOR DECIMAL POINT
 3260 BEQ .2
 3270 INY
 3280 DEX
 3290 BNE .1
 3300 .2 RTS
 3310 *--------------------------------
 3320 * CHOP OFF LEADING ZEROES
 3330 *--------------------------------
 3340 CHOP.OFF.LEADING.ZEROES
 3350 LDY #1 FIND FIRST NON-ZERO POSITION
 3360 .1 LDA BUFFER,Y
 3370 CMP #'0
 3380 BNE .2
 3390 INY
 3400 CPY MAX.DIGITS.BEFORE
 3410 BCC .1
 3420 DEY
 3430 .2 LDA BUFFER SIGN, MAYBE
 3440 CMP #'-
 3450 BNE .3
 3460 DEY
 3470 STA BUFFER,Y
 3480 .3 CLC
 3490 TYA
 3500 ADC #BUFFER
 3510 STA C.ADDR
 3520 LDA #0
 3530 ADC /BUFFER
 3540 STA C.ADDR+1
 3550 SEC
 3560 TYA
 3570 EOR #$FF
 3580 ADC C.LENGTH
 3590 STA C.LENGTH
 3600 RTS
 3610 *--------------------------------
 3620 * PARSE STRING NAME, SET UP POINTER
 3630 *--------------------------------
 3640 PARSE.STRING.NAME

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 941 of 2550

Apple II Computer Info

 3650 TXA
 3660 PHA
 3670 JSR AS.CHKCOM
 3680 JSR AS.PTRGET GET SECOND STRING PNTR
 3690 PLA
 3700 TAX
 3710 LDY #0
 3720 LDA (VARPNT),Y GET LENGTH
 3730 STA A.LENGTH,X
 3740 INY
 3750 LDA (VARPNT),Y GET ADDRESS OF DATA
 3760 STA A.ADDR,X
 3770 INY
 3780 LDA (VARPNT),Y
 3790 STA A.ADDR+1,X
 3800 RTS
 3810 *--------------------------------
 3820 * LOAD ADDRESS INTO VARPNT
 3830 * X=0 FOR A$, X=4 FOR B$
 3840 *--------------------------------
 3850 SETUP.OPERAND
 3860 LDA A.ADDR,X
 3870 STA VARPNT
 3880 LDA A.ADDR+1,X
 3890 STA VARPNT+1
 3900 LDA A.LENGTH,X
 3910 RTS
 3920 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 942 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:S.TRAPPER.txt
==

 1000 *SAVE S.TRAPPER
 1010 *--------------------------------
 1020 * TRAPPER, BY ALLEN MARSALIS
 1030 *--------------------------------
 1040 .OR $9300
 1050 .TF B.TRAPPER
 1060 *--------------------------------
 1070 RLEN .EQ $1A RESTRICTION STRING
 1080 RSTR .EQ $1B DESCRIPTOR
 1090 TEMPPT .EQ $52
 1100 LASTPT .EQ $53
 1110 FRESPC .EQ $71,72
 1120 HIMEM .EQ $73,74
 1130 VARPNT .EQ $83,84
 1140 FACMO .EQ $A0
 1150 *--------------------------------
 1160 BUF .EQ $200 INPUT BUFFER
 1170 AMPVEC .EQ $3F5 AMPERSAND VECTOR
 1180 STROBE .EQ $C010 KEYBOARD STROBE
 1190 *--------------------------------
 1200 AS.FRMNUM .EQ $DD67 EVALUATE NUMERIC FORMULA
 1210 AS.CHKSTR .EQ $DD6C REQUIRE STRING
 1220 AS.FRMEVL .EQ $DD7B EVALUATE GENERAL FORMULA
 1230 AS.CHKCLS .EQ $DEB8 REQUIRE ")"
 1240 AS.CHKCOM .EQ $DEBE REQUIRE ","
 1250 AS.CHKOPN .EQ $DEBB REQUIRE "("
 1260 AS.SYNCHR .EQ $DEC0 REQUIRE (A-REG)
 1270 AS.SYNERR .EQ $DEC9 SYNTAX ERROR
 1280 AS.PTRGET .EQ $DFE3 GET VARIABLE PNTR
 1290 AS.GETSPA .EQ $E452 GET SPACE IN STRING AREA
 1300 AS.MOVSTR .EQ $E5E2 COPY STRING DATA
 1310 AS.FRETMP .EQ $E604 FREE TEMPORARY STRING
 1320 AS.CONINT .EQ $E6FB CONVERT FAC TO 8-BITS
 1330 *--------------------------------
 1340 MON.CLREOL .EQ $FC9C CLEAR TO END-OF-LINE
 1350 MON.RDKEY .EQ $FD0C READ A KEY
 1360 MON.COUT .EQ $FDED DISPLAY A CHARACTER
 1370 *--------------------------------
 1380 SETUP LDA #$4C "JMP" OPCODE
 1390 STA AMPVEC
 1400 LDA #TRAPPER
 1410 STA AMPVEC+1
 1420 LDA /TRAPPER
 1430 STA AMPVEC+2
 1440 LDA #SETUP SET HIMEM UNDER TRAPPER
 1450 STA HIMEM
 1460 LDA /SETUP
 1470 STA HIMEM+1
 1480 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 943 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 * AMPERSAND COMES HERE
 1510 *--------------------------------
 1520 TRAPPER
 1530 LDA #$84 "INPUT" TOKEN
 1540 JSR AS.SYNCHR
 1550 JSR AS.CHKOPN "& INPUT ("
 1560 JSR AS.FRMNUM READ FIELD LENGTH PARAMETER
 1570 JSR AS.CONINT CONVERT TO 8-BIT VALUE
 1580 STX FL SAVE FIELD LENGTH
 1590 JSR AS.CHKCOM ","
 1600 JSR AS.FRMEVL GET RESTRICTION STRING
 1610 JSR AS.CHKSTR
 1620 JSR AS.CHKCOM ANOTHER ","
 1630 LDY #2 SAVE DESCRIPTOR
 1640 .1 LDA (FACMO),Y
 1650 STA RLEN,Y
 1660 DEY
 1670 BPL .1
 1680 LDA TEMPPT DID FRMEVL MAKE A TEMP STRING?
 1690 CMP #$56
 1700 BCC .2 NO
 1710 LDA LASTPT YES, SO FREE THE TEMP
 1720 LDY #0
 1730 JSR AS.FRETMP
 1740 .2 LDA #0 INIT BUFFER INDEX
 1750 STA BINDEX
 1760 *---UNDERSCORE INPUT FIELD-------
 1770 LDA #$DF UNDERLINE CHAR
 1780 JSR PRINT.FIELD
 1790 LDA #$88 BACKSPACE TO BEGINNING AGAIN
 1800 JSR PRINT.FIELD
 1810 *---READ A KEY-------------------
 1820 BIT STROBE DON'T ALLOW TYPE AHEAD
 1830 .3 JSR MON.RDKEY READ NEXT KEY
 1840 AND #$7F INTERNAL FORM
 1850 STA KEY SAVE IT
 1860 *---BACKSPACE--------------------
 1870 CMP #$08 BACKSPACE?
 1880 BNE .22 NO
 1890 LDA BINDEX IGNORE AT BEGINNING OF LINE
 1900 BEQ .21
 1910 LDA #$88 YES, ECHO IT
 1920 JSR MON.COUT
 1930 LDA #$DF REPLACE UNDERLINE
 1940 JSR MON.COUT
 1950 LDA #$88 BACKSPACE AGAIN
 1960 JSR MON.COUT
 1970 DEC BINDEX BACK UP BUFFER TOO
 1980 .21 JMP .3
 1990 *---CARRIAGE RETURN--------------
 2000 .22 CMP #$0D RETURN?
 2010 BNE .23 NO
 2020 JSR MON.CLREOL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 944 of 2550

Apple II Computer Info

 2030 JSR AS.PTRGET GET DESTINATION STRING
 2040 JSR AS.CHKCLS MUST HAVE ")" AT END
 2050 LDA BINDEX LENGTH OF INPUT LINE
 2060 JSR AS.GETSPA FIND ROOM FOR IT
 2070 LDY #0 MOVE IN DESCRIPTOR
 2080 STA (VARPNT),Y
 2090 INY
 2100 LDA FRESPC
 2110 STA (VARPNT),Y
 2120 INY
 2130 LDA FRESPC+1
 2140 STA (VARPNT),Y
 2150 LDY /BUF COPY DATA INTO STRING
 2160 LDX #BUF
 2170 LDA BINDEX
 2180 JMP AS.MOVSTR ...AND RETURN
 2190 *---CHECK IF VALID KEY-----------
 2200 .23 JSR CHECK.RESTRICTIONS
 2210 *---CHECK VALIDITY AND ECHO------
 2220 LDA KEY GET KEY AGAIN
 2230 LDA BINDEX
 2240 CMP FL
 2250 BCS .27 TOO FAR, ABORT KEY
 2260 LDA NEW IF NEW = FAIL, ABORT KEY
 2270 BEQ .27 YES, ABORT KEY
 2280 LDA KEY
 2290 LDY BINDEX
 2300 STA BUF,Y PUT KEY INTO BUFFER
 2310 INC BINDEX
 2320 CMP #$20 IF KEY WAS CONTROL-KEY,
 2330 BCS .26 THEN PRINT SPACE
 2340 LDA #$20
 2350 .26 ORA #$80
 2360 JSR MON.COUT ECHO
 2370 JMP .3 NEXT KEY
 2380 .27 LDA #$07 RING BELL
 2390 BNE .26
 2400 *--------------------------------
 2410 CHECK.RESTRICTIONS
 2420 LDA #0
 2430 STA RINDEX RINDEX = 0
 2440 STA NEW NEW = FAIL
 2450 STA ANDOR ANDOR = OR
 2460 STA NOT NOT = FALSE
 2470 *---FETCH OPERATOR---------------
 2480 .4 LDY RINDEX IF RINDEX >= RLEN,
 2490 CPY RLEN THEN QUIT SCAN
 2500 BCC .5 NOT YET
 2510 RTS
 2520 .5 LDA (RSTR),Y FETCH OPERATOR
 2530 INC RINDEX
 2540 *---DETERMINE OPERATION----------
 2550 CMP #' IGNORE BLANKS
 2560 BEQ .4

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 945 of 2550

Apple II Computer Info

 2570 CMP #'< < = >, THEN FETCH OPERAND
 2580 BEQ .10
 2590 CMP #'>
 2600 BEQ .10
 2610 CMP #'=
 2620 BEQ .10
 2630 CMP #'A "AND"
 2640 BEQ .7
 2650 CMP #'O
 2660 BEQ .8
 2670 CMP #'N "NOT"
 2680 BEQ .9
 2690 JMP AS.SYNERR
 2700 *---AND OPERATOR-----------------
 2710 .7 LDA #'N
 2720 JSR SYNSTR
 2730 LDA #'D
 2740 JSR SYNSTR
 2750 LDA #1 SET AND OPERATOR
 2760 STA ANDOR
 2770 BNE .4 ...ALWAYS
 2780 *---OR OPERATOR------------------
 2790 .8 LDA #'R
 2800 JSR SYNSTR
 2810 LDA #0 SET OR OPERATOR
 2820 STA ANDOR
 2830 BEQ .4 ...ALWAYS
 2840 *---NOT OPERATOR-----------------
 2850 .9 LDA #'O
 2860 JSR SYNSTR
 2870 LDA #'T
 2880 JSR SYNSTR
 2890 LDA #1 SET NOT OPERATOR "TRUE"
 2900 STA NOT
 2910 BNE .4 ...ALWAYS
 2920 *---FETCH OPERAND----------------
 2930 .10 STA ROPR
 2940 LDA #$27 CHECK FOR APOSTROPHE
 2950 JSR SYNSTR
 2960 LDY RINDEX
 2970 LDA (RSTR),Y GET OPERAND
 2980 STA ROPD
 2990 INC RINDEX
 3000 LDA #$27 ANOTHER APOSTROPHE
 3010 JSR SYNSTR
 3020 *---EVALUATE RELATIONAL OPERATION
 3030 LDA NEW
 3040 STA LAST LAST = NEW
 3050 LDA #0 NEW = FAIL
 3060 STA NEW
 3070 LDY ROPR OPERATOR
 3080 LDA KEY LATEST KEY
 3090 CMP ROPD COMPARE TO OPERAND
 3100 BEQ .11 THEY ARE EQUAL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 946 of 2550

Apple II Computer Info

 3110 BCC .12 KEY < OPERAND
 3120 CPY #'> KEY > OPERAND
 3130 BEQ .13 SUCCESS!
 3140 BNE .14 FAIL.
 3150 .11 CPY #'=
 3160 BEQ .13 SUCCESS
 3170 BNE .14 FAIL
 3180 .12 CPY #'<
 3190 BNE .14 FAIL
 3200 .13 LDA #1 FLAG SUCCESS
 3210 STA NEW
 3220 *---PERFORM NOT OPERATION--------
 3230 .14 LDA NOT IF NOT, TOGGLE NEW
 3240 BEQ .17 NOT NOT
 3250 LDA NEW
 3260 EOR #1
 3270 STA NEW
 3280 LDA #0 CLEAR NOT
 3290 STA NOT
 3300 *---PERFORM AND/OR OPERATION-----
 3310 .17 LDA LAST
 3320 LDY ANDOR
 3330 BEQ .18 OR
 3340 AND NEW AND
 3350 STA NEW
 3360 JMP .4
 3370 .18 ORA NEW
 3380 STA NEW
 3390 JMP .4
 3400 *--------------------------------
 3410 SYNSTR STA HOLD SAVE CHAR
 3420 .1 LDY RINDEX
 3430 LDA (RSTR),Y
 3440 INC RINDEX
 3450 CMP #' IGNORE BLANKS
 3460 BEQ .1
 3470 CMP HOLD
 3480 BEQ .2
 3490 JMP AS.SYNERR
 3500 .2 RTS
 3510 *--------------------------------
 3520 PRINT.FIELD
 3530 LDY FL
 3540 .1 JSR MON.COUT
 3550 DEY
 3560 BNE .1
 3570 RTS
 3580 *--------------------------------
 3590 HOLD .BS 1
 3600 NOT .BS 1
 3610 ANDOR .BS 1
 3620 FL .BS 1
 3630 NEW .BS 1
 3640 LAST .BS 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 947 of 2550

Apple II Computer Info

 3650 KEY .BS 1
 3660 BINDEX .BS 1
 3670 RINDEX .BS 1
 3680 ROPR .BS 1
 3690 ROPD .BS 1
 3700 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 948 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:TEST.ARRAYS.txt
==

dÜA$(7,9)7nA$(3,5)–"ABCDEFG":A$(2,3)–
"MNOPQRST"FxØX,A$(3,5)UåØX,A$(2,3)[»≤m“ÅJ–0¡7:ÅK–0¡9w◊A$–""â‹ÅI –
1¡¤(1) 5»5°ÊA$–A$»Á(¤(1) 26»65)® ÇI∫ı∫J" "K" "A$œ˙A$(J,K) –
A$:ÇK:ÇJŸØY,A$d

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 949 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:Test.Str.Adder.txt
==

d≤TEST &+$, A$, B$En£36864:∫Á(4)"BLOAD B.STRING
ADDER":å36864QxÑA$:ÑB$bÇØ»$,A$,B$,C$oå∫C$:´120d

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 950 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:TEST.TRAPPER.2.txt
==

#d∫Á(4)"BLOAD B.TRAPPER":å37632)nóIxÑ"NUMBER OF CHARACTERS:
";NhÇÑ"RESTRICTION STRING: ";A$nå∫îÊØÑ(N,A$,B$):∫:∫"STRING:
'";B$;"'"úÎ∫:∫• ´120

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 951 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8302:DOS3.3:TEST.TRAPPER.txt
==

#d∫Á(4)"BLOAD B.TRAPPER":å37632=nó:∫"TRAPPER EXAMPLES"hxÉ "NOT<'A' AND
NOT>'Z'" , "ALPHA ONLY"èÇÉ " ='Y' OR ='N' " , "Y OR N ONLY"ºåÉ "
NOT<'0' AND NOT>'9'" , "DIGITS ONLY"ˆñÉ " NOT<'0' AND NOT>'9' OR ='-'
" , "DIGITS OR DASH" †É "." »áA$:≠A$–"."ƒÄ “áP$(

‹∫P$": ";@ ÊØÑ(8,A$,B$):ñ30:∫B$I ´200

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 952 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:AAL.INDEX.txt
==

E

Index to Apple Assembly Line

AAAA
Advertising
 Decision Systems v1 n3p10,n4p7,n5p10
 Meador, Lee v1 n5p16
 RAK-WARE v1 n3p15,n4p9
 Welman, C. J. v1 n5p13
Applesoft
 Compute GOSUB...
1/81/8
 String SWAP Subroutine..
2/81/14-15
 Variable Cross Reference
Program................................11/80/2-8
BBBB
Beginner's Tutorials
 How to Add and Subtract
One.....................................10/80/2
 How to Move Memory..
1/81/2-6
 Multiplying on the 6502...
2/81/11-12
Book Reviews
Bugs in S-C Assembler II Version 4.0
 Problem with .IN
Directive.......................................11/80/1
 Typing LOAD with no filename loads
cassette......................11/80/1

CCCC
DDDD
EEEE
Enhancements and Patches to S-C Assembler II Version 4.0
 Assembly Source on Text
Files...................................11/80/9-14
 A Use for the USR
Command.......................................11/80/15
 Allow List of Expressions with .DA
Directive....................12/80/9
 Block MOVE and COPY for Version
4.0.............................12/80/11-14
 Bug Corrections...
2/81/1,12
 Installing COPY in the Assembler..............................
1/81/9

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 953 of 2550

Apple II Computer Info

 EDIT Command for S-C Assembler II...............................
1/81/10-16
 Stuffing Code in Protected Places...............................
2/81/9
 Using Lower
Case...10/80/4,9-10
FFFF
GGGG
HHHH
Hardware Reviews
IIII
Integer BASIC
 Pretty Lister for Integer BASIC
Programs........................12/80/3-8
JJJJ
KKKK
LLLL
Lower Case
MMMM
NNNN
New Products
 S-C Assembler II Version 4.0............................10/80/4-8
Noises and Other Sounds....................................... 2/81/2-
9
 (Includes simple tone, bell, machine-gun, laser-swoop,
 laser-blast, inch-worm, touch-tones, and Morse code.)
Numeric Key Pad,
Simulated....................................11/80/15-16
OOOO
PPPP
Patches and Modifications
 TAB Locations in S-C Assembler Version 4.0..................1/81/1
Programs
 General Message Printing Subroutine........................10/80/2-8
 A Simulated Numeric Key-Pad................................11/80/15-
16
QQQQ
Quarterly Disks
RRRR
Reviews
SSSS
Software Reviews
 Intelligent Disassemblers..................................12/80/2
 A Third Disassembler (ad).................................. 2/81/16
TTTT
Techniques
 Handling Jump Tables on the Stack.......................10/80/11
Tips and Hints
Tutorials
UUUU
VVVV
WWWW
YYYY
ZZZZ

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 954 of 2550

Apple II Computer Info

6502
 Hardware Error in ALL 6502
Chips!.........................10/80/10,11
65C02
6809
68000
80 Columns

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 955 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:CROSS.AD.txt
==

S-C Macro Cross Assemblers

The high cost of dedicated microprocessor development systems has
forced many technical people to look for alternate methods to develop
programs for the various popular microprocessors. Combining the
versatile Apple II with the S-C Macro Assembler provides a cost
effective and powerful development system. Hobbyists and engineers
alike will find the friendly combination the easiest and best way to
extend their skills to other microprocessors.

The S-C Macro Cross Assemblers are all identical in operation to the
S-C Macro Assembler; only the language assembled is different. They
are sold as upgrade packages to the S-C Macro Assembler. The S-C
Macro Assembler, complete with 100-page reference manual, costs $80;
once you have it, you may add as many Cross Assemblers as you wish at
a nominal price. The following S-C Macro Cross Assembler versions are
now available, or soon will be:

Motorola: 6800/6801/6802 now $32.50
 6805 now $32.50
 6809 now $32.50
 68000 now $50

Intel: 8048 now $32.50
 8051 now $32.50
 8085 soon $32.50

Zilog: Z-80 now $32.50

RCA: 1802/1805 soon $32.50

Rockwell: 65C02 now $20

The S-C Macro Assembler family is well known for its ease-of-use and
powerful features. Thousands of users in over 30 countries and in
every type of industry attest to its speed, dependablility, and user-
friendliness. There are 20 assembler directives to provide powerful
macros, conditional assembly, and flexible data generation. INCLUDE
and TARGET FILE capabilities allow source programs to be as large as
your disk space. The integrated, co-resident source program editor
provides global search and replace, move, and edit. The EDIT command
has 15 sub-commands combined with global selection.

Each S-C Assembler diskette contains two complete ready-to-run
assemblers: one is for execution in the mother-board RAM; the other
executes in a 16K RAM Card. The HELLO program offers menu selection
to load the version you desire. The disks may be copied using any
standard Apple disk copy program, and copies of the assembler may be
BSAVEd on your working disks.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 956 of 2550

Apple II Computer Info

S-C Software Corporation has frequently been commended for outstanding
support: competent telephone help, a monthly (by subscription)
newsletter, continuing enhancements, and excellent upgrade policies.

==
DOCUMENT :AAL-8303:Articles:Division.txt
==

Division...................................Bob Sander-Cederlof

Remembering long division in decimal can be hard enough, but
visualizing it in binary and implementing it in 6502 assembly language
is awesome! Study the following example, in which I divide an 8-bit
value by a 4-bit value:

 00110 6
 ---------- ---
 1101) 01010101 13) 85
 step A: -0000 -78
 ---- --
 1010 7
 step B: -0000

 10101
 step C: - 1101

 10000
 step D: - 1101

 0111
 step E: -0000

 0111 Remainder

In the binary version, I have not made any leaps ahead like we do in
decimal. That is, I wrote out the steps even when the quotient digit
= 0. Now let's see a program which divides an 8-bit value by a 4-bit
value, just like the example above.

If you think this is a clumsy program, you may be right. Note that
the loop runs five times, not four. This is because there are five
steps, as you can see in the sample division above.

The first thing the program does is to clear the quotient value. In a
4-bit machine performing 8-bit by 4-bit division would yield a 4-bit
quotient, so the top bits must be cleared. The rest of the bits will
be shifted in as the division progresses.

Next the divisor is shifted up to the high nybble position, to align
with the left nybble of the dividend. This is equivalent to step A in
the example above. The loop running from line 1200 through line 1310
performs the five partial divisions.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 957 of 2550

Apple II Computer Info

If the divisor is zero, or if the first partial division proves that
the quotient will not fit in four bits, the program branches to ".3".
I put a BRK opcode there, but you would put an error message printer,
or whatever.

To run the program above, I typed:

 :$0:55 0D N 800G 0.2

and Apple responded with: 0000- 07 0D 06

which means the remainder is 7, and the quotient is 6.

Dividing Bigger Values:

The following program will divide one two-byte value by another. The
program assumes that both the dividend and the divisor are positive
values between 0 and 65535. This program was in the original Apple II
monitor ROM at $FB84, but is not present in the Apple II Plus and
Apple //e ROMs.

As written, this program expects the XTNDL and XTNDH bytes to be zero
initially. If they are not, a 32-bit by 16-bit division is performed;
however, there is no error checking for overflow or divide fault
conditions.

This program builds the quotient in the same memory locations used for
the dividend. As the dividend is shifted left to align with the
divisor (opposite but equivalent to the shifting done in the previous
program), empty bits appear on the right end of the dividend register.
These bit positions can be filled with the quotient as it develops.

Signed Division

With a few steps of preparation, we can divide signed values using an
unsigned division subroutine. All we need to remember is the rule
learned in high school: If numerator and denominator have the same
sign, the quotient is positive; if not, the quotient is negative.

Double Precision, Almost:

What if I want to divide a full 32-bit value by a full 16-bit value?
Both values are unsigned. The 32-bit dividend may have a value from 0
to 4294967295, and the divisor from 0 to 65535. All of the published
programs I could find assume the leading bit of the dividend is zero,
limiting the range to half of the above.

If the leading bit of the dividend is significant, a one bit extension
is needed in the division loop. The following program implements a
full 32/16 division.

Line 1020 sets up a 17-step loop, because the 16-bit divisor can be
shifted to 17 different positions under the 32-bit dividend. To make
it easier to understand the layout of bytes in memory, I departed from

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 958 of 2550

Apple II Computer Info

the usual low-byte-first-format in this program. I assume this time
that the most significant bytes are first:

 Dividend: $83A $83B $83C $83D
 msb lsb

 Divisor: $83E $83F
 msb...lsb

I also have written this program to feed the quotient bits into the
least significant end of the dividend register, as the dividend shifts
left. The remainder will be found in the left two bytes of the
dividend register, and the quotient in the right two bytes.

Watching It All Work:

Not being quite clairvoyant, I wanted to see what was really happening
inside the 32/16 division program. So I added some trace printouts by
inserting "JSR TRACE" right after lines 1050 and 1250. I also moved
the variables into page zero, to show how much memory that can save.
(All memory references are changed from 3-byte instructions to 2-byte
instructions.)

The trace program prints first the overflow extension bit. If this is
"1" on the last line, the quotient is too large to fit in 16-bits.
TRACE next prints the four hex-digits of the quotient, and lastly the
remainder. A line is printed before each step, and at the end to show
the final results.

Now here are the printouts for a few values of dividend and divisor.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 959 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 6 March, 1983

In This Issue...

All About PTRGET and GETARYPT 3
Macro can Build Macros 10
Epson MX-80 Text Screen Dump 12
Division: A Tutorial 15
Short Note about Prime Benchmarks 21
Garbage-Collection Indicator for Applesoft 22
S-C Macro Assembler Version 1.1 24
More on the //e . 26
The Visible Computer: A Review 27

S-C Macro Assembler Version 1.1

That's right, Version 1.1! I've added all the most-requested new
features, corrected those few lingering problems, and it's almost
ready. Look inside for more details.

A New Screen-Oriented Editor

Several people have asked about a screen-oriented editor for the S-C
Macro Assembler. Well, Mike Laumer has come up with one for you. It
runs with the Language Card version of the Macro Assembler, in the
unused bank. I still prefer a line editor, but Bill is rapidly
falling in love with the new screen editor. Now everyone has a
choice! See Mike's ad inside.

65C02

Many of you have expressed an interest in the new Rockwell R65C02
microprocessor. Well, I still haven't heard any more than I mentioned
a couple of months ago. We're as eager as you are to get a sample.
We'll have a detailed report as soon as we know more.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 960 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:Garbage.Indic.txt
==

Patching Applesoft for Garbage-Collection Indicator
 Lee Meador

I wanted to know when (how often and how long) Applesoft was doing
garbage collection. The following patch will cause an inverse "!" to
placed in the lower right hand corner of the screen whenever garbage
collection takes place.

It is a little tricky to patch Applesoft, since it is in ROM! The
first step is to copy the ROMs into the language card RAM space (any
slot 0 RAM card will do). If you have an old Apple II with Integer
BASIC on the mother board, you can do this by booting the DOS 3.3
Master. Otherwise, here are the steps:

]CALL-151
*C081 C081
*D000<D000.FFFFM

Next you need to place some code inside the Applesoft image in the RAM
card. I chose to place the new code on top of the HFIND subroutine at
$F5CB. (The code from $F5CB through $F5FF is never used by
Applesoft.) Here is the routine I put there:

PATCH PHA
 LDA #$21 INVERSE "!"
 STA $7F7 BOTTOM RIGHT CORNER
 PLA
 JSR GARBAG
 PHA
 LDA #$A0 BLANK BACK ON SCREEN CORNER
 STA $7F7
 PLA
 RTS

You also need to patch the existing "JSR GARBAG" inside Applesoft to
jump to this new code. Here are the patches in hex:

*C083 C083 write enable RAM card
*E47B:CB F5
*F5CB:48 A9 21 8D F7
*F5D0:07 68 20 84 E4 48 A9 A0
*F5E0:8D F7 07 68 60
*C080 write protect RAM card
*control-C
]run your program

Here is a little Applesoft program which generates a lot of garbage
strings so you can see the patch in action:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 961 of 2550

Apple II Computer Info

100 DIM A$(100)
110 FOR I = 1 TO 100
120 FOR J = 1 TO 200 : A$(I) = A$(I) + "B" : NEXT
130 PRINT I, : NEXT

Try running the program with different HIMEM values, to see the
different effects.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 962 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:IIe.Stuff.txt
==

More on the //e............................Bob Sander-Cederlof

1. Page Zero Usage:

Last month I erroneously reported that the new //e monitor used
location $08 in page zero. It does not.

However, I was correct when I said the monitor now uses location $1F.
It is possible that your programs conflict with this, and it is
possible that some commercial programs conflict with this. For
example, standard SWEET-16 uses $1F for half of its register 15, which
is its PC-register.

If you disassemble the //e monitor at $FC9C (CLREOL, Clear to end of
line), you will find a STY $1F a few lines down. This is the only
visible place where $1F is used. However, there are some invisible
ones lurking in the shadows of ROM.

2. The Shadow ROM:

By shadows, I mean the alternate ROM space which overlays the I/O slot
ROMs. By switching the SLOTCX soft switch, the monitor turns on this
shadow ROM; the rest of the code necessary in the new monitor is then
accessible starting at $C100. At $FBB4 the new monitor saves the
current status, disables interrupts and saves the status of the SLOTCX
softswitch, and switches to the shadow ROM. Then it JMP's to $C100
with the Y-register indexing one of 9 or 10 functions.

The "shadow ROM" (my terminology, not Apple's) covers the address
space from $C100-C2FF and $C400-C7FF. The space from $C300-$C3FF is
also there, but it is always turned on in my //e. It holds the
startup code for the 80-column card, and some memory management
subroutines.

The space from $C100-C2FF contains the extra code for handling monitor
functions in the //e. $C400-C7FF holds the self-test program that you
initiate by pressing control-solid-apple-reset or control-both-apples-
reset. (With both Apples, you get sound with the self-test.)

There is more ROM you switch in and out with another soft switch at
$C800-CFFE. This holds the 80-column firmware.

3. Version ID Byte:

Location $FBB3 in the monitor identifies which type of Apple you have:

FBB3- 38 ... old Apple II
FBB3- EA ... Apple II Plus (Autostart Monitor)
FBB3- 06 ... Apple //e

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 963 of 2550

Apple II Computer Info

This byte is now a permanent feature; Apple will continue to use it as
an ID byte in the future. Art Schumer and Clif Howard published an
extensive Version ID program in the February 1983 issue of Call APPLE.
They listed two versions, one for use from DOS and one for use from
Pascal.

4.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 964 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:Macro.Macros.txt
==

Macro Can Build Macros............................Mike Laumer

The S-C Macro Assembler can do a lot of things even its designer never
dreamed of. The macro capability may be limited compared to mainframe
systems, but it still has a lot of power.

A few days ago I got a bright idea that maybe you could even define
macros inside macros, or write a macro that builds new macros. Lo and
behold, it works! Here is what I tried:

1000 .MA BLD
1010]1
1020]2
1030]3
1040]4
1050 .EM

Notice that every line from the opcode field on is defined by a macro
parameter. I called it with lines like this:

1060 >BLD ".MA ATOB","LDA A","STA B",".EM"
1070 >BLD ".MA BTOA","LDA B","STA A",".EM"

Here is how it all looks when you type ASM:

 1010 .MA BLD
 1020]1
 1030]2
 1040]3
 1050]4
 1060 .EM
0800- 1070 >BLD ".MA ATOB","LDA A","STA B",".EM"
 0000> .MA ATOB
 0000> LDA A
 0000> STA B
 0000> .EM
0800- 1080 >BLD ".MA BTOA","LDA B","STA A",".EM"
 0000> .MA BTOA
 0000> LDA B
 0000> STA A
 0000> .EM
 1090 *--------------------------------
0800- 1100 A .BS 1
0801- 1110 B .BS 1
 1120 *--------------------------------
0802- 1130 >ATOB
0802- AD 00 08 0000> LDA A
0805- 8D 01 08 0000> STA B
0808- 1140 >BTOA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 965 of 2550

Apple II Computer Info

0808- AD 01 08 0000> LDA B
080B- 8D 00 08 0000> STA A

I don't know whether this is really useful or not.... If you think of
a way to use it that is significant, I'd like to hear from you!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 966 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
Upgrade from Version 4.0 to MACRO..................................$27.50
Source code of Version 4.0 on disk.................................$95.00
 Fully commented, easy to understand and modify to your own tastes.
S-C Macro Assembler /// ..$100.00
 Preliminary version. Call or write for details.

S-C Word Processor...$50.00
 As is, with fully commented source code. Needs S-C Macro Assembler.

Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.

ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)................... $79.00
Source Code for FLASH! Runtime Package.............................$39.00

Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
Cross-Reference and Dis-Assembler (Rak-Ware).......................$45.00
The Incredible JACK!...............................(reg. $129.00) $99.00

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Reload your own NEC PC-8023 ribbon cartridges...........each ribbon $5.00
Reload your own NEC Spinwriter Multi-Strike Film cartridges....each $2.50
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each

ZIF Game Socket Extender...$20.00
Ashby Shift-Key Mod..$15.00
Lower-Case Display Encoder ROM.....................................$25.00
 Only Revision level 7 or later Apples.

Books, Books, Books..........................compare our discount prices!
 "Enhancing Your Apple II, vol. 1", Lancaster.........($15.95) $15.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 967 of 2550

Apple II Computer Info

 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00
 "6502 Subroutines", Leventhal........................($12.99) $12.00
 "MICRO on the Apple--1", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--2", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--3", includes diskette...........($24.95) $23.00

 Add $1 per book for US postage. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 968 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:Patch.4.68K.Asm.txt
==

Required patch in 68000 Cross Assembler

John Wallace, of Two Rivers, Wisconsin, has reported a bug in the
68000 Macro Cross Assembler. If you have serial number 1-46, or 52 or
53, you need this patch. I recommend that you do the patching on a
COPY of the original disk, just in case....

In a MOVEM.L instruction the last pair of bytes is garbled.

Patches for motherboard version:

1. Boot the Cross Assembler disk, and select option 1
 from the menu to load the motherboard version.

2. Type in the following patch:

 :$3B31:98 (it was 99)

3. Save the patched version:

 :BSAVE S-C.ASM.MACRO.68000,A$1000,L$2D7F

Patches for RAM Card version:

1. Boot the Cross Assembler disk, and select option 2
 from the menu to load the RAM card version.

2. Patch the correct byte as follows:

 :MNTR
 *C08B C08B D7AF:98 (it was 99)

3. Save the patched result:

 *BSAVE S-C.ASM.MACRO.68000.LC2,A$D01C,L$0838
 *C080
 *3D0G

(The second patch is trickier, because the patch goes into the second
bank.)

Sincerely,

Bob Sander-Cederlof

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 969 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:PtrGet.GetAryPt.txt
==

All About PTRGET & GETARYPT................Bob Sander-Cederlof

Both Leo Reich and E. Melioli have asked for some clarification on how
to pass array variables between Applesoft programs and assembly
language programs. I hope this little article will be of some help to
them.

The Variable Tables:

We need to start with a look at the structure of the Applesoft
variable tables. There are two variable tables: one for simple
variables, and the other for arrays. (You might turn to page 137 of
the Applesoft Reference Manual now.) Entries in these tables include
the variable names; some codes to distinguish real, integer, and
string variables; and the value if numeric. String variables include
the length of the string and the address of the string, but not the
string itself.

The address of the start of the simple variable table is kept in
$69,$6A. The next pair, $6B and $6C, hold the address of the end of
the simple variable table plus one. This happens to also be the
address of the beginning of the array variable table. The address of
the end of the arrays plus one is kept in $6D,$6E. The actual string
values may be inside the program itself, in the case of "string"
values; or in the space between the top of the array variable table
and HIMEM.

Here is a picture, with a few more pointers thrown in for good
measure:

(73.74) --> HIMEM

 <string values>

(6F.70) --> String Bottom

 <free space>

(6D.6E) --> Free Memory Bottom

 <arrays>

(6B.6C) --> Array Variable Bottom

 <variables>

(69.6A) --> Simple Variable Bottom

 <program>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 970 of 2550

Apple II Computer Info

(67.68) --> Program Bottom

Inside an Array:

Let's look a little closer at the array variable space. Each array in
there consists of a header part and a data part. The header part
contains the name, flags to indicate real-integer- string, the offset
to the next array, the number of dimensions, and each dimension. The
data part contains all the numeric values for real or integer arrays,
and all the string length-address pairs for string arrays.

Here is a picture of the header part:

Bytes Contents

0,1 Name of Array
2,3 Offset
4 # of dimensions
5,6 last dimension
...
x,y first dimension

The sign bits in each byte of the name combine to tell what type of
array variable this is. If both bytes are positive, it is a real
array; if both are negative, it is integer. Contrary to what it says
on page 137 of the Applesoft manual, if the 1st byte is positive and
the 2nd byte negative it is a string array. The manual has it
backwards.

The value in the offset can be added to the address of the first byte
of the header to give the address of the first byte of the header of
the next array (or the end of arrays if there are no more).

The number of dimensions is one byte, which obviously means no more
than 255 dimensions per array. Oh well! In my sample below I assume
that no more than 120 dimensions have been declared. If you try to
declare more than that, you will see how hard it is.

The dimensions are stored in backward order, last dimension first.
Why? Why not? It has to do with the order they are used in
calculating position for an individual element. Each dimension is
also one larger than you declare in the DIM statement, because
subscripts start at 0.

The data part of an array consists of the elements ordered so that the
first subscript changes fastest. That is, element X(2,10) directly
follows element X(1,10) in memory. Integer array elements are two
bytes each, with the high byte first. Note: this is just about the
only place in all the 6502 kingdom where you will find highbytes first
on 16-bit values!

Real array elements take five bytes each: one byte for exponent, and
four for mantissa. String array elements take three bytes each: one

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 971 of 2550

Apple II Computer Info

for length of the string, and two for the address of the string.
Note: the string array elements DO NOT hold the string data, but only
the address and length of that data!

Getting to the Point:

There is a powerful and much-used subroutine in the Applesoft ROMs
which will find a particular variable in the tables. It is called
PTRGET, and starts at $DFE3. It is too complicated to fully explain
here, but here is what it does:

1. Reads the variable name from the program text.
2. Determines whether the variable is a simple one or an array.
3. Searches the appropriate table for the name.
4. If the name is not found, create a variable of the approriate type
(simple or array; integer, real, or string).
5. Return with the address of the variable in Y,A (high-byte in the
Y-register, low-byte in the A-register) and also in $83,84.

That is usually what happens. Actually there are several different
entry points and two control bytes which modify PTRGET's behavior
depending on the caller's whims. DIMFLG ($XX) is set non-zero when
called by the DIM-statement processor, and is otherwise cleared to
zero. SUBFLG ($YY) has four different states:

$00 -- normal value
$40 -- when called by GTARYPT
$80 -- when called to process "DEF FN"
$C1-$DA -- when called to process "FN"

We are concerned with the two cases SUBFLG = 0 and SUBFLG = $40, with
DIMFLG = 0. Since the point of this whole article is to clarify
access to array variables, I will concentrate on the main entry at
$DFE3 and the GETARYPT subroutine at $F7D9. $DFE3 sets SUBFLG = 0,
while GETARYPT sets SUBFLG = $40.

When we want to find an individual element inside an array, we call
PTRGET at $DFE3. When we want to find the whole array, we call
GETARYPT at $F7D9. GETARYPT is used by the STORE and RECALL Applesoft
statements (which you might not realize even exist, since their
function is only of interest to cassette tape users!)

The "& X" calls in the following program use PTRGET to find an array
element.

On the other hand, if we want to sort the array, or if we want to save
it all on disk, or some other feat which requires seeing the whole
thing at once, we need to call GETARYPT. Then we can even find out
how many subscripts were used in the DIM statement, and what the value
of each dimension is. GETARYPT returns with the starting address of
the whole array in $9B and $9C (called LOWTR).

The "& Y" call in the program prints out the starting address and
length of each string of a string array.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 972 of 2550

Apple II Computer Info

I hope that as you work through the descriptions and examples above
they are of some help.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 973 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:QD10.COVER.txt
==

QUARTERLY DISK #10 contains all the source code from Volume 3, Issues
4-6 of the Apple Assembly Line newsletter. The files are formatted
for either the S-C Assembler II Version 4.0 or the S-C Macro
Assembler, on a 16-sector DOS 3.3 disk.

S.SUPER SCROLL GENERATOR -- Program to generate the fastest possible
screen-scroll program. This program occupies 145 bytes and creates
5521 bytes of code.

S.FILENAME EDITOR -- Add this unique line editor to the popular
CATALOG ARRANGER, or adapt it to your own programs.

S.STRING ADD -- A simple demonstration of adding numeric values as
ASCII strings.

S.SUPER STRING ADDER, TEST STRING ADDER -- A complete string adder for
Applesoft string variables. Here are the basics of 240-digit-
precision arithmetic.

S.LINNS VIDEX PATCH -- Another new feature for the Videx 80-column
version of the S-C Macro Assembler.

S.TRAPPER, TEST TRAPPER, & TEST TRAPPER 2 -- An Applesoft input tuner.
Allows you to easily specify permissible input values, using
relational and logical operators similar to IF ... THEN.

S.ARRAYS, TEST ARRAYS -- Here's how you can use the Applesoft routines
PTRGET and GETARYPT to process Applesoft arrays from your assembly
language program.

S.MACRO.MACROS -- A macro which generates macros! Can you think of a
use for it?

S.SCREEN PRINTER & S.SCREEN PRINTER PLUS -- Routines to dump a text
screen to an Epson MX-80 printer.

S.DIVIDE 8/4, S.DIVIDE 16/16, S.DIVIDE 32/16, & S.DIVIDE 32/16 WITH
TRACE -- Demonstration routines to show binary division. There are
different routines to handle several sizes of signed and unsigned
values.

xxx 1983

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 974 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:Screen.Printer.txt
==

Epson MX-80 Text Screen Dump.................Ulf Schlichtmann
 West Germany

Here is a short machine language program I wrote some time ago when I
was working on a data-base program. It permits you to make a hard
copy of the Apple text screen. It was written for an Epson MX-80 with
Epson's Apple II Interface kit type 2, but with just one slight
modification it should work with any other printer or interface as
well.

I thought readers of AAL might have a use for this, especially after
seeing a similar program in NIBBLE (Vol. 3 No. 3 pages 147-148) that
was over three times longer to produce exactly the same result! The
authors of that program required 149 bytes, and even used self-
modifying code. My routine is only 40 bytes long.

There is one difference: in the NIBBLE program KSWL,H is changed so
that the routine will be invoked every time control-P is pressed; also
the ampersand vector is set up to re-install the KSWL,H vector
whenever needed. I don't need these features, but even when they are
added my program is still only about 78 bytes long (and WITHOUT any
self-modifying code!).

Lines 1180-1200 direct all following output to the printer, and is
equivalent to the Applesoft statements:

 PR#1 : PRINT

Next I store $8D (left over from MON.CROUT) as the number of columns
for the printer, since any number greater than 40 will disable output
to the screen. If you have a different printer interface card, you
may need to use a different location than $678+SLOT. It should be
stated somewhere in the printer interface manual. This is the slight
modification I mentioned earlier.

Then I use the Applesoft VTAB routine to calculate the base address
for each line. The entry point I chose requires the X-register to be
loaded with the number of the desired line (starting with zero for the
top-most line). The base address will then be stored in BASL,H. [
Note that using AS.VTAB means that this program will only work if
Applesoft is switched on. If you call this when the other memory bank
is on, no telling what might happen!]

Next I let Y run from 0 to 39 to pick up all the characters in that
particular line via indirect addressing. Each character is
immediately fed to the printer. Upon completing a line, I call
MON.CROUT to cause the printer to print the line. When I have sent
all 24 lines, I then redirect output to the CRT and rehook DOS (lines
1340-1350).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 975 of 2550

Apple II Computer Info

Of course, there are a lot of possibilities for adding features to my
basic screen dumper. The next version below does not rely on the
Applesoft version of VTAB, so it can be called even when the Applesoft
image is switched out. I also draw a border around the screen image:
a line of dashes above and below, and vertical lines up down both
sides.

Instead of using $8D as a line length to turn off the screen output, I
masked out the flag bit in $7F8+SLOT. This works in the Grappler and
Grappler Plus interfaces, whereas the former method did not. (It is
equivalent to printing control-I and letter-N.)

Further, I now restore the value of BASL,H at line 1490. Otherwise
the value in CV ($25) and the address in BASL,H do not agree after
printing the screen.

The last enhancement is at lines 1340-1370. Here I now convert
characters from flashing and inverse modes to normal mode, or to
blanks in some cases. You might want to arrange for a different
mapping here, according to your own taste.

Even with all these enhancements, the program is still only 86 bytes
long. The first version could be loaded anywhere without reassembly,
because there are no internal references. The second version does
have an internal JSR, so it would have to be reassembled to run at
other locations, or modified to be made run-anywhere.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 976 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:Short.Item.txt
==

Optional Patch for TEXT/ Command...........Bob Sander-Cederlof

Several have asked how to patch the character output at the beginning
of each line by the TEXT/ command. TEXT/ normally writes your source
code as a text file with control-I in place of each line number.

At $1AAD in the mother-board version, or $DAAD in the language card
version, you will find $88. This is control-I minus one. Put what
every character you wish there, less one. For example, if you want a
leading space on each line, put $1F in $1AAD and/or $DAAD.

Short Note About Prime Benchmarks.................Frank Hirai
 West Lebanon, NH

About your faster primes articles (Vol 2 #1, Vol 2 #5, and Vol 3
#2).... If you go back to Jim Gilbreath's original BYTE article you
will find that the times he lists are for TEN iterations. As such
they are not unreasonable for Integer BASIC and Applesoft. When
comparing times for your 6502 assembly language versions, remember to
multiply by ten!

Even so, 1.83 seconds for 10 iterations using Anthony Brightwell's
program in the Apple compares quite well against 1.12 seconds for 10
iterations in an 8 MHz Motorola 68000.

[...and wait till we try it on a Number Nine 6502 card at 3.6 MHz!
Or with a 65C02!]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 977 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:ShortPrimeNotes.txt
==

Short Note About Prime Benchmarks.................Frank Hirai
 West Lebanon, NH

About your faster primes articles (Vol 2 #1, Vol 2 #5, and Vol 3
#2).... If you go back to Jim Gilbreath's original BYTE article you
will find that the times he lists are for TEN iterations. As such
they are not unreasonable for Integer BASIC and Applesoft. When
comparing times for your 6502 assembly language versions, remember to
multiply by ten!

Even so, 1.83 seconds for 10 iterations using Anthony Brightwell's
program in the Apple compares quite well against 1.12 seconds for 10
iterations in an 8 MHz Motorola 68000.

[...and wait till we try it on a Number Nine 6502 card at 3.6 MHz!
Or with a 65C02!]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 978 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:T.MACRO.MACROS.txt
==

 1010 .MA BLD
 1020]1
 1030]2
 1040]3
 1050]4
 1060 .EM
0800- 1070 >BLD ".MA ATOB","LDA A","STA B",".EM"
 0000> .MA ATOB
 0000> LDA A
 0000> STA B
 0000> .EM
0800- 1080 >BLD ".MA BTOA","LDA B","STA A",".EM"
 0000> .MA BTOA
 0000> LDA B
 0000> STA A
 0000> .EM
 1090 *--------------------------------
0800- 1100 A .BS 1
0801- 1110 B .BS 1
 1120 *--------------------------------
0802- 1130 >ATOB
0802- AD 00 08 0000> LDA A
0805- 8D 01 08 0000> STA B
0808- 1140 >BTOA
0808- AD 01 08 0000> LDA B
080B- 8D 00 08 0000> STA A

SYMBOL TABLE

0800- A
0801- B

0000 ERRORS IN ASSEMBLY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 979 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:Version1.1.txt
==

S-C Macro Assembler Version 1.1

A new version of the S-C Macro Assembler is just about ready, and it's
going to be great!

I have added many new features, corrected a few problems, and created
a special version to take advantage of the extra features of the new
Apple //e computer. Here's a summary of the new items, so far:

New or Extended Features:

1. The .HS directive now allows optional "." characters before and
after each pair of hex digits. (e.g., .HS ..12..34..AB) This makes
for easier counting of bytes, and allows you to put meaningful
comments above or below the .HS lines.

2. .DO--.FIN can now be nested to 63 levels, rather than just 8
levels.

3. In EDIT command, the insert mode is now invoked by ^A (ADD),
rather than ^I. The TAB or ^I keys now perform a clear-to-tab
function. Skip-to-tab is still invoked by ^T.

4. Comment lines may now begin with either "*" or ";".

5. Added .SE directive, which allows re-definable symbols.

6. Binary constants are now supported. The syntax is "%11000011101"
(up to 16 bits).

7. ASCII literals with the high-bit set are now allowed, and are
signified with the quotation mark: LDA #"X generates A9 D8. Note
that a trailing "-mark is optional, just as is a trailing apostrophe
with previous ASCII literals.

8. Blanks are now compressed inside macro skeletons when they are
added to the symbol table. This saves about 30% of the space used by
the skeletons.

9. The TEXT/ <filename> command now outputs the current TAB character
(default ctrl-I). It used to put out control-I no matter what the
current TAB character was.

10. During assembly, the assembler now protect $001F-$02FF and $03D0-
$07FF, as well as MACLBL thru EOT and MACSTK thru $FFFF.

11. Now allow USER parameters to override memory protection. $101C-
101D contains lower bound, and $101E-101F contains the upper bound of
an area the user wants to UN-PROTECT. (The parameter for the starting

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 980 of 2550

Apple II Computer Info

page of the symbol table has moved from $101D to $1021, or $D01D to
$D021.)

12. Added .PH and .EP directives, to start and end a phase. With
these directives you can assemble a section of code that is intended
to be moved and run somewhere else, without having to create a
separate Target File.

13. Added .DUMMY and .ED to start and end a dummy section.

14. The TAB character may now be set to any character, including non-
control characters, if you so desire.

Fixes to Known Problems:

1. Eliminated endless loop which occurred when a character > "Z" was
typed in column 1 as a command.

2. .TI now properly spaces at top of each page, and at beginning of
symbol table.

3. .AS and .AT now assemble lower case properly.

4. Changed the way the relative branches are assembled, so that "*"
is equal to the location of the opcode byte. It used to be the
location offset byte, which was non-standard.

5. Now pass two errors emit the proper number of object bytes, so
that false range errors are not indicated.

6. HIDE now performs MERGE prior to HIDE, in case you forgot to do
so.

Features added in support of Apple //e:

1. The Apple //e version allows you to change between 80- and 40-
column screens at will, using PR#3 to go to 80-columns, or ESC-^Q to
go to 40-columns.

2. In both normal input and edit modes, the DELETE key acts like a
backspace key. It is interpreted the same as a left arrow (^H).

And there's more! The release disk will now include 80-column
versions of the assembler for the Videx, STB, and ... 80-column cards.

I haven't made up my mind yet about a new price, how we'll handle the
upgrades, or how much the charge will be. We'll have the final
details in AAL next month.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 981 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:Version11Short.txt
==

S-C Macro Assembler Version 1.1

A new version of the S-C Macro Assembler is just about ready, and it's
going to be great!

I have added many new features, corrected a few problems, and created
a special version to take advantage of the extra features of the new
Apple //e computer. Here's a summary of the new items, so far:

New or Extended Features:

1. 80-column support! The release disk will now include versions for
the Videx, STB, and maybe other 80-column cards.

2. The .HS directive now allows optional "." characters before and
after each pair of hex digits. (e.g., .HS ..12..34..AB) This makes
for easier counting of bytes, and allows you to put meaningful
comments above or below the .HS lines.

3. .DO--.FIN can now be nested to 63 levels, rather than just 8
levels.

4. Comment lines may now begin with either "*" or ";".

5. Added .SE directive, which allows re-definable symbols. Now a
macro can tell how many times it has been called.

6. Binary constants are now supported. The syntax is "%11000011101"
(up to 16 bits).

7. ASCII literals with the high-bit set are now allowed, and are
signified with the quotation mark: LDA #"X generates A9 D8. Note
that a trailing "-mark is optional, just as is a trailing apostrophe
with previous ASCII literals.

8. The TEXT/ <filename> command now outputs the current TAB character
(default ctrl-I). It used to put out control-I no matter what the
current TAB character was.

9. Now allow USER parameters to override memory protection. $101C-
101D contains lower bound, and $101E-101F contains the upper bound of
an area the user wants to UN-PROTECT. (The parameter for the starting
page of the symbol table has moved from $101D to $1021, or $D01D to
$D021.)

10. Added .PH and .EP directives, to start and end a phase. With
these directives you can assemble a section of code that is intended
to be moved and run somewhere else, without having to create a
separate Target File.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 982 of 2550

Apple II Computer Info

11. Added .DUMMY and .ED to start and end a dummy section.

12. The TAB character may now be set to any character, including non-
control characters, if you so desire.

Fixes to Known Problems:

1. .TI now properly spaces at top of each page, and at beginning of
symbol table.

2. .AS and .AT now assemble lower case properly.

3. Changed the way the relative branches are assembled, so that "*"
is equal to the location of the opcode byte. It used to be the
location offset byte, which was non-standard.

4. Now pass two errors emit the proper number of object bytes, so
that false range errors are not indicated.

Features added in support of Apple //e:

1. The Apple //e version allows you to change between 80- and 40-
column screens at will, using PR#3 to go to 80-columns, or ESC-^Q to
go to 40-columns.

2. In both normal input and edit modes, the DELETE key acts like a
backspace key. It is interpreted the same as a left arrow (^H).

I haven't made up my mind yet about a new price, how we'll handle the
upgrades, or how much the charge will be. We'll have the final
details in next month's AAL.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 983 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8303:Articles:VisibleCPU.txt
==

Review: "The Visible Computer: 6502".....Bob Sander-Cederlof

For five years I have talked about it. "Someone should write a
program that illustrates 6502 code being executed, using hi-res
animation."

Software Masters never heard me, but they did it anyway! "The Visible
Computer: 6502" is an animated simulation of our favorite
microprocessor. You see inside the chip and watch the registers
change, micro-step by micro-step. You even see the "hidden"
registers: DL (data latch), DB (data buffer), IR (instruction
register), and AD (address). You see HOW the instructions are
executed.

I was amazed at the quality of the documentation. You get 140 pages
of easy-to-follow, fun-to-read tutorial and reference text. The
manual assumes only that you have an Apple, and are moderately
familiar with Applesoft. It doesn't try to teach everything there is
to know about machine language, but it does deliver the fundamental
concepts.

Thirty demonstration programs are included on the disk, which
progressively lead you through the instruction set. You begin with a
two-byte register load, and work up to hi-res graphics and tone
generation. All of the example programs are explained in detail in
the manual. Of course, you can also trace your own programs or
programs inside the Apple ROMs.

You can also use the simulator as a debugging tool, if your program
will fit in the user memory area. The simulator provides a 1024-byte
user memory, plus a simulated page zero and page one. You can also
use $300-$3CF, if you wish. One unusual tool for debugging purposes
is a full 4-function calculator mode, which works in binary, decimal,
or hexadecimal.

Here is a list of the commands available at the normal level:

BASE select binary, decimal, or hexadecimal
BLOAD load a program to be simulated
BOOT boot disk in slot 6, drive 1
CALC turn on 4-function calculator
EDIT short-cut entry of hex code into memory
ERASE clear screen (so graphics can be seen)
L disassemble five lines of code
LC select memory for displayed in left column
PRINTER turn on/off printer in slot one
RC select memory for display in right column
RESTORE restore normal screen display
STEP select one of four simulation modes:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 984 of 2550

Apple II Computer Info

 0 -- fastest, no display update until BRK
 1 -- Full display, simulate until BRK
 2 -- Full display, simulate one instruction
 with no pause between steps
 3 -- Full display, simulate one instruction,
 pausing before each step

WINDOW select one of three display options:
 MEM: window shows 16 memory cells
 OPEN: window is blank
 CLOSE: window shows "hidden" 6502 registers
<addr><value> store value at memory address
<reg><value> store value in register

A "MASTER" mode can be turned on, which enables more features and
commands for experienced users. In the master mode you can use the
REAL zero page, you can modify any location in memory (even the ones
that are dangerous!), you can BLOAD and BSAVE on standard DOS 3.3
disks, and run previously checked subroutines at full 6502 speed.

I know that a lot of you are looking for some help in understanding
assembly language; "The Visible Computer" may be just the help you
need. Let your own Apple teach you! Some of you are teaching 6502
classes; "The Visible Computer" is the most helpful teaching tools I
have ever seen.

I was gratified to learn that the author is an old customer! He used
an older version of the S-C Assembler for coding the longer examples,
and the assembly language portions of the simulator. We even got a
free plug on page 108!

The normal retail price of "The Visible Computer" is $49.95, our price
will be an even $45 to readers of Apple Assembly Line.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 985 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:Circut.Desc.txt
==

The Apple][Circuit Description: A Review.........Bill Morgan

"Have you ever wanted to know the detailed circuit operation of your
Apple][computer? Perhaps you were designing a peripheral or making
a modification. Maybe you were repairing an Apple. You may have just
been curious about how it works."

That's the first paragraph of a new book called The Apple][Circuit
Description, by Winston D. Gayler. If the answer to that question is
"yes", you need to look at this book. Circuit Description contains
about 160 pages of text describing the operation of every component on
the Apple's motherboard and keyboard. There are also 44 large fold-
out pages of easy-to- read block diagrams, schematics, timing
diagrams, and waveform drawings. The enlarged, readable schematics
alone will be worth the price of the book to some users!

One of the first things Mr. Gayler handles is identifying the various
revisions of the Apple][, from the original Rev. 0 through last
year's RFI treated motherboard, Rev. D. The body of the book covers
that last version, while an appendix goes into the differences in all
earlier revisions, and the diagrams show all revisions. The very
latest thing, the Apple //e, is not mentioned, since that's a radical
departure from all others.

The book is intended for engineers, technicians, students, and serious
hobbyists. The descriptions, schematics, timing diagrams, and
waveform drawings can be an invaluable help in designing peripherals
and modifications, troubleshooting, studying practical circuit design,
and just understanding how your Apple works.

Each chapter has two sections, Overview, and Detailed Circuit
Description. You can cruise the Overview sections to get an idea of
what's going on in each piece of your Apple, or you can sit down with
the Detailed Circuit Description, the schematics, your Apple, and your
TTL Data Book, and figure out each and every signal in the computer.

Here is a chapter-by-chapter summary:

1. Introduction and overview of the book.

2. Block-diagram discussion of the whole computer's structure,
introducing concepts like "address multiplexer" and "video address
generator". Apple's unique patented power supply is also covered
here.

3. Clocks: the master oscillator, clock generator, and the horizontal
portion of the video address generator. Clocks are especially
important in the Apple due to their interplay with the video
circuitry.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 986 of 2550

Apple II Computer Info

4. The vertical portion of the video address generator and the sync,
blanking, and color burst signals.

5. RAM memory, the 4116's and their addressing, as well as the shared
access scheme for the video memory.

6. The 6502 processor and its internal cycles, including read cycles,
write cycles, RAM and ROM cycles, I/O and keyboard cycles, interrupts,
and DMA (direct memory access).

7. On-board I/O devices, including cassette I/O, the game port, the
speaker, and the current two-piece keyboard.

8. Video generator hardware, how it creates TEXT, LORES, and HIRES
displays under software control.

Appendices:

A. Introduction to standard video signal techniques, for those of us
who know even less about video than about digital.

B. Various revisions of the Apple motherboard. The main text of the
book describes the RFI, Rev. D board. This appendix covers the
differences in all earlier boards, as well as the old one-piece
keyboard.

C. Schematics. Pages and pages of enlarged diagrams of all versions
of the motherboard and keyboards.

In the Introduction, Gayler says that the reader should be familiar
with TTL (gates, flip-flops, shift registers, and multiplexers) and
should have a basic knowledge of micro- processor and microcomputer
architecture. Well, I have a very basic knowledge of architectures,
and almost no familiarity with TTL details. This book looks like it
will be a great tool for learning about TTL, because I will be able to
relate what the data books say about a chip to a knowledge of what
that chip is doing in my very own Apple.

One thing I would like to see is a sort of cross-reference by
motherboard coordinate. It would be nice to be able to ask the book
"What is the function of that 74LS20 at location D2?" As it is, I had
to look through several foldouts for a chip symbol labelled "D2". It
is a NAND gate in "Fig. C-2. Clock Generator (all revisions)" Since
it's part of a clock circuit, it must be covered in chapter 3.
Several minutes of poking around in chapter 3 tells me that chip is
part of one of the Apple's most unique features! Every 65th CPU cycle
is slightly stretched (1117 us vs. 978 us) to maintain sync with the
color signals, and D2 is responsible for triggering that stretch.

That last paragraph started out to describe a shortcoming of the book,
and turned into yet another example of the kind of great information
contained in The Apple][Circuit Description. If you're doing any

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 987 of 2550

Apple II Computer Info

hardware work with the Apple, or if you want to learn more about
what's going on in there, you need this book.

The Apple][Circuit Description, by Winston D. Gayler. Published by
Howard W. Sams. 8 1/2 by 11 comb binding. 172 pp. text, 44 fold-out
diagrams. Shipping weight 3 lbs. List price is $22.95, our price
will be $21 + shipping ($2 domestic, $12 overseas).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 988 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:Disasm.Patches.txt
==

DISASM and the //e..................................Bill Morgan

Yesterday afternoon I received two phone call in less than 30 minutes,
both reporting that RAK-Ware's disassembler, DISASM, does not work on
the Apple //e. The problem occurs when DISASM calls a non-standard
entry into the monitor HOME routine. At several places in the
routines to enter address information Bob Kovacs used $FC5A for a sort
of combination VTAB and Clear-to- End-of-Page. Well, that won't work
on a //e. The following patches change all the calls to $FC5A into
$FC58, or the standard HOME routine. This will change the behavior of
the program a little, making the screen clear between entries, rather
than just tab down, but the program should now work.

84C:58 94D:58 A79:58
AD8:58 BBA:58 BFB:58

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 989 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:Fast.DOS.Patch.txt
==

Patch DOS 3.3 for Fast LOAD and BLOAD......Bob Sander-Cederlof

There must be at least a dozen products on the market now to speed up
DOS 3.3: Diversi-DOS, David-DOS, The DOS Enhancer, QuickDOS, FastDOS,
Hyper-DOS, et cetera. Some of these are unfortunately not compatible
with the everyday programs we like to use, such as the S-C Assembler,
ES-CAPE, or our favorite word processor. And it can be quite
difficult sometimes to determine the degree of compatibity.

For the record, S&H Software's DOS Enhancer is completely compatible
with the S-C Macro Assembler. David-DOS works well until you try to
use the .TF directive.

Most of the speed-up systems only improve the speed of LOAD, BLOAD,
RUN, BRUN, SAVE, and BSAVE. Some also speed up booting into the
language card. And two (Diversi-DOS and David-DOS) speed up READing
and WRITE-ing TEXT files, as well as offering a lot of minor
enhancements in pursuit of more "user- friendliness".

It seems that the more the speed-up system does, the more
compatibility problems you can expect. After all, to add a feature
you do have to change some code. And many programs on the market
expect the DOS image to be un-modified so they can jump into DOS
subroutines in strange unexpected places and make their own custom
patches to the DOS image.

Paul Schlyter (a subscriber in Sweden) sent me a small patch for DOS
3.3 early in April, 1982. Paul's patch speeds up only RUN, BRUN, LOAD
and BLOAD, but it such a small patch that it will almost fit into the
interstices (unused bytes) inside DOS. In fact, after I removed one
bug and reorganized the code a little, I was able to fit it entirely
within two unused areas: $BA69-BA95 and $BCDF-BCFF. I believe the
result is completely compatible with all the programs I use around
here, except for the ones that use their own modified and protected
DOS.

Paul's patch turns out to be functionally equivalent to the much
longer patch proposed in HardCore Magazine's HyperDOS, but it leaves
the INIT command intact.

I ran some timing tests:

 LOAD 40 sectors standard 10 sec
 patched 3.5 sec

 BLOAD 37 sectors standard 11 sec
 patched 4 sec

 LOAD 132 sectors standard 32 seconds

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 990 of 2550

Apple II Computer Info

 patched 7.5 seconds

I didn't try measuring times, but I suspect that SAVE and BSAVE may be
just a little faster with this patch installed (during the read-after-
write phase).

Since the S-C Assemblers use the LOAD command to process .IN
directives, large assemblies with large included files will assemble
about three times faster when you install this speed-up patch.

The patch is really rather simple. But before examining the patch,
let's review the normal flow inside DOS for LOADing and BLOADing.

DOS is constructed in three layers: the outer layer accepts your
commands from the keyboard or from your program. The inner layer,
called RWTS, handles the intimate details of reading or writing a
specified sector on a specified track. RWTS also does the raw disk
initialization when you use the INIT command. The layer between
commands and RWTS is called the File Manager (FM).

The command layer calls FM to open, close, rename, lock, unlock,
verify, or delete a file; to print a catalog; to initialize a disk; or
to position within a file. There are also four kinds of calls for
reading and writing files, to read or write one byte or a range of
bytes.

When you use the RUN or LOAD command, the command layer calls FM to
read the first two bytes. These bytes contain the length of your
program. For Integer BASIC or S-C Assembler source files, the length
is subtracted from HIMEM to get a loading address. The loading
address for Applesoft programs is found in $67,68. Then FM is called
to read a range of bytes of that length, to be stored starting at the
loading address just determined.

When you use the BRUN or BLOAD command, the first four bytes are read
off the front of the file. The first two bytes are the loading
address, and the next two are the length. (Of course, you can
override the loading address with the "A" parameter after the file
name.)

After winding our way through the front end of FM, we finally get to
this subroutine (where the range is read):

 1000 READ.RANGE
AC96- 20 B5 B1 1010 JSR DECR.TEST.LENGTH
AC99- 20 A8 AC 1020 JSR READ.BYTE
AC9C- 48 1030 PHA SAVE THE BYTE
AC9D- 20 A2 B1 1040 JSR GET.ADDRESS.INC
ACA0- A0 00 1050 LDY #0
ACA2- 68 1060 PLA GET THE BYTE
ACA3- 91 42 1070 STA ($42),Y STORE IN BUFFER
ACA5- 4C 96 AC 1080 JMP READ.RANGE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 991 of 2550

Apple II Computer Info

The subroutine DECR.TEST.LENGTH breaks out of this loop when the range
has been completely read. The READ.BYTE subroutine picks bytes out of
the DOS buffer, and reads a sector into that buffer when the buffer is
empty.

To understand the speed-up patch, break the reading process into three
parts: the first sector, the last sector, and all the in-between
sectors. We will let the loop shown above handle the first sector and
possibly the last sector, and read the in-between sectors using a
faster method. Short files with only one or two data sectors will not
have any in-between sectors, and so there will be no improvement in
speed.

First we need to read the rest of the first sector of the file. The
first two or four bytes were already read to get address and length
information. We can let the loop shown above do that job. But we
need a way to break into the loop when it is our turn. Let's patch
the JMP on the last line to jump to our patch.

Our patch will get control after the loop above has read and stored a
byte of data. At that time our patch can look at the current file
position in $B5E6; if $B5E6 is non-zero, then there are still bytes in
the DOS buffer. As long as there are bytes in the DOS buffer, we will
branch back to $AC96 and let FM handle the bytes in its normal way.

Once the first sector has been read and stored, a byte at a time,
$B5E6 will have a zero value. Then our patch can look at the
remaining length. If the remainging length is at least one whole
sector, we can read it faster. If not, FM can read the last partial
sector in its normal fashion.

To read a sector faster, we bypass the DOS buffer. We can temporarily
patch the actual destination address where the sector must go into the
RWTS call block. RWTS can put the entire sector directly into its
final destination, rather than into the DOS buffer to be later moved
by the rather slow loop above.

The extra time saved by eliminating the middle man will save an entire
revolution of the drive to get the next sector (if it is in the same
track, and they usually are). A 40 sector file laid out sequentially
on three tracks will save 38 revolutions of the disk. The disk spins
at 5 revolutions per second, so we will save a hair over 7 seconds.
(If the file is not laid out sequentially, the savings will be less.)

The bigger the file, the bigger the percentage improvement. We can
save 3 seconds per track. It normally takes FM about 18 revolutions
to read a track; with our patch, a track can be read in about 3
revolutions. We save 15 revolutions or 3 seconds on each full track.
That is, a full track can be read in .6 seconds instead of 3.6
seconds. The rest of the time required to read the file is spent
moving the head from track to track, and reading the catalog and VTOC
sectors.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 992 of 2550

Apple II Computer Info

If all 16 sectors of a track are to be read, and if the sectors were
allocated the normal DOS 3.3 way, I think this is the way it happens
with my patch installed:

F E D C B A 9 8 7 6 5 4 3 2 1 0
F 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F 0

The bottom line of numbers shows the physical sector numbers. As you
move across the page from left to right, you simulate the disk read
head. It may take up to a full revolution of the disk before sector F
appears, but once it does we proceed to pick off approximately every
other sector as they come by. The top line of numbers shows the DOS
3.3 logical sector numbers. Logical sector E is actually physical
sector 2, and so on. So it takes two full revolutions, plus two more
sectors, to read all 16.

If you are trying to figure out where the rest of the time is used,
keep in mind that DOS first reads the VTOC (track 17, sector 0); then
the first catalog sector (track 17, sector 15); if the file specified
is not in the first catalog sector, it reads another; and so on. If
the file is far down in the catalog, it might have to read all 15
catalog sectors to find the file. Then the track/sector list is read;
it is usually in sector 15 of the same track containing the first 15
sectors of data. On the other hand, as the disk fills up the sectors
get splattered all over the disk.

Here is the patch code, arranged so that it squeezes into those two
interstices I mentioned earlier:

To install the patches, you need to BLOAD PATCH1 and BLOAD PATCH2.
Then patch locations $ACA6-7 to 69 BA, to change the JMP READ.RANGE
instruction to a JMP PATCH1. Note that you must BLOAD the patches
before changing $ACA6-7. If you change $ACA6-7 first, the system will
crash as soon as you try to execute a BLOAD.

Here is an Applesoft program (which you could append to your HELLO
program) to poke the patches into DOS.

20000 REM INSTALL FAST DOS LOAD AND BLOAD PATCHES
20010 READ N: IF N = 0 THEN END
20020 READ A
20030 FOR I = 1 TO N: READ P: POKE A,P:A = A + 1: NEXT
20040 GOTO 20010
20100 DATA 44,47721,173,230,181,208,36,173,194,181,
 240,31,173,203,181,72,173,204,181,72,173,195,
 181,141,203,181,173,196,181,141,204,181,32,
 182,176,176,3,76,223,188,76,111,179,76,150,172
20110 DATA 33,48351,238,228,181,208,3,238,229,181,
 238,196,181,238,204,181,206,194,181,208,11,
 104,141,204,181,104,141,203,181,76,150,172,
 76,135,186
20120 DATA 2,44198,105,186
20130 DATA 0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 993 of 2550

Apple II Computer Info

Paul mentioned he was working on an equally simple patch to speed up
SAVE and BSAVE, but I haven't heard any more from him on that subject.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 994 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 7 April, 1983

In This Issue...

Patch DOS 3.3 for Fast LOAD and BLOAD. 2
An "ORG" Macro for Self-Aligning Code. 10
New S-C Cross Reference Utility. 12
Date Processing Modules. 13
The Apple][Circuit Description (Review). 20
New Version of DOS -- Patchers Beware. 23
PATCHER: A General-Purpose Patch Installer 24
More About the PRAWM Board 28

New Goodies

We have several new products available this month. There are
descriptions inside this issue of the new Cross Reference program for
the S-C Macro Assembler, and the new book "Apple][Circuit
Description". Also, the long-awaited RCA 1802 Cross Assembler is now
ready, at $32.50.

Version 1.1 of the Macro Assembler is now ready to go! The upgrade
from the current Version 1.0 will only cost you $12.50. That gets you
//e, Videx, and STB 80-column support, 5 new directives and all the
other new features described last month.

DISASM and the //e

Yesterday afternoon I received two phone call in less than 30 minutes,
both reporting that RAK-Ware's disassembler, DISASM, does not work on
the Apple //e. The problem occurs when DISASM calls an odd entry into
the monitor HOME routine. At several places in the routines to enter
address information Bob Kovacs used $FC5A for a sort of combination
VTAB and Clear-to-End-of- Page. Well, that won't work on a //e. The
following patches change all the calls to $FC5A into $FC58, or the
standard HOME routine. This will change the behavior of the program a
little, making the screen clear between entries, rather than just tab
down, but the program should now work.

84C:58 94D:58 A79:58
AD8:58 BBA:58 BFB:58

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 995 of 2550

Apple II Computer Info

for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 996 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:Mikes.Stuff.txt
==

New S-C Cross Reference Utility.....................Mike Laumer

At last a Cross Reference Utility is available for the S-C Assembler
that is fully compatible with the latest releases of the S-C Macro
Assembler. It handles all the new directives, shows macro calls, and
can even give an optional cross reference on the opcodes! It only
takes a few seconds to cross reference even a huge file and begin the
listing! It is even faster than the Macro Assembler in processing the
source lines.

The Cross Reference Utility also can optionally print a paginated
source file listing before printing the cross reference. That way you
can be certain that you have a program listing with the same line
numbers shown in the cross reference listing.

The price is reasonable: only $20.00 for the object code version and
$50.00 for both source and object code. What other company sells
source code to their utilities!

FLASH! Compiler note:

The FLASH! Integer Basic Compiler was recently reviewed by PEELINGS
magazine and received an A+. It is currently the highest rated
Integer compiler (the competition is rated only A). The price? Just
$79.00 ($70 less than the competition)!

S-C Word Processor note.............................Mike Laumer

We recently had one customer give us a great compliment on the S-C
Word Processor. He has given up on WORDSTAR! He found that the S-C
Word Processor can read and write large text files 20 times faster
than WORDSTAR and that scrolling was much quicker. He can be in and
out of the S-C Word Processor before WORDSTAR even lets him type a
single key. The S-C Word Processor is also much less expensive than
WORDSTAR and you don't have to buy a Z-80 card!

His only desire was to have an 80 column version of the Word
Processor. However, that wouldn't be nearly so fast since SCWP re-
writes the screen on every keystroke. I have noticed also that the 40
column display never causes me eye strain, but all the 80 column
displays do.

Full Screen Editor for S-C Macro Assembler..........Bill Morgan

Laumer Research has recently introduced a new utility for the S-C
Macro Assembler. This month seems to be the time for new utilities.

The Full Screen Editor is used with a language card and a 48K Apple.
It runs in the spare 4K memory bank of a language card and is entered

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 997 of 2550

Apple II Computer Info

from the S-C Macro Assembler by typing "/" optionally followed by a
line number. The neat thing is that all of the assembler regular
editing commands COPY, REPlace, EDIt, FINd etc. are also availiable at
the same time. It is almost a Macro Assembler Upgrade by itself.

It functions similar to the EDIt command in the macro assembler except
that you can move forward and backward though the lines with cursor
moves or move with paging keys a whole screen at a time. One
intresting new edit command is control-C which can copy characters
from the line above the cursor to the next tab stop of the current
line. What a handy feature! How many times have you had to comment a
routine that had no comments in it? With a control-W key a new left
margin can be set at the comment area so every time you type the
RETURN key you are all set to type the next comment line. This makes
commenting a routine is as easy as eating apple pie!

The Screen Editor really cleans up a display because long lines are
not wrapped arround on the display. Instead they are shown in a
"window" on the display and the window can be moved up and down though
a file and left or right to view long lines. As you type over the
right side of the screen the "window" tracks over to always keep the
cursor in the "window" of the screen.

It is very fast! Flipping though the pages of a source file to the
routine you want to look at is just a few taps of a key. I hardly
ever use the LISt command any more because the full screen editor is
so easy to use: "/2400" for example will enter the editor and move to
line 2400 at the top of the display.

For my own use I have made a Macro Assembler diskette that I boot on
when I need the assembler. It loads up the Assembler and Screen
Editor at the same time and applies several of the more useful patches
published in the Apple Assembly Line for the Macro Assembler. An EXEC
file is provided on the program diskette which can load the screen
editor in to the langauge card from the assembler.

One of the most unusual features of the Screen Editor is that it comes
with a SYSGEN program to help you create different customized versions
of the screen editor for STB80 or VIDEX 80 column cards or the regular
40 column Apple II display. This keeps a user from performing a
complicated series of BLOADs, POKEs and BSAVEs to modify the tab
tables, screen width, margin settings and scroll values.

Some of the parameter settings are settable within the editor while
you are editing like tab stops and the left margin. Others however
are not accessable without re-running the Applesoft SYSGEN program and
thats somewhat of a problem. I can't complain too much though because
the source code comes with it and I can make it do anything extra that
I want it to.

The Screen Editor can be used with the S-C Macro Cross Assemblers
except for the 68000 version. Only the Z-80 cross assembler requires
a slight adjustment to the small 20 byte patch for the "/" command.
Provided with the program diskette is a tidy 9 page manual that

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 998 of 2550

Apple II Computer Info

describes the Screen Editor features and the patches to the assembler
required.

We only have one machine here at S-C Software with an 80 column board
but we use the Screen Editor mostly with the regular Apple II driver
module. Bob S-C is still holding out on using it but the rest of us
counted how many times we typed the LISt command and decided to screen
edit instead. The Full Screen editor does for S-C Macro Assembler
programmers what ES-CAPE does for Applesoft programmers. They both
make my job a lot easier!

The price for this little jem is $49.00 for both source and object
code.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 999 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
Source code of S-C Assembler II, Version 4.0, on disk..............$95.00
 Fully commented, easy to understand and modify to your own tastes.
S-C Macro Assembler /// ..$100.00
 Preliminary version. Call or write for details.

S-C Cross Reference Utility$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00

S-C Word Processor...$50.00
 As is, with fully commented source code. Needs S-C Macro Assembler.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)................... $79.00
Source Code for FLASH! Runtime Package.............................$39.00
Full Screen Editor for S-C Macro Assembler (Laumer Research).......$49.00

The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $45.00
Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
DISASM Dis-Assembler (Rak-Ware)....................................$30.00

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Reload your own NEC PC-8023 ribbon cartridges...........each ribbon $5.00
Reload your own NEC Spinwriter Multi-Strike Film cartridges....each $2.50
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
ZIF Game Socket Extender...$20.00
Ashby Shift-Key Mod..$15.00
Lower-Case Display Encoder ROM.....................................$25.00
 Only Revision level 7 or later Apples.

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($15.95) $15.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1000 of 2550

Apple II Computer Info

 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00
 "6502 Subroutines", Leventhal........................($12.99) $12.00
 "MICRO on the Apple--1", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--2", includes diskette...........($24.95) $23.00
 "MICRO on the Apple--3", includes diskette...........($24.95) $23.00

 Add $1 per book for US postage. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1001 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:ORG.Macro.txt
==

An "ORG" Macro for Self-Aligning Code......Bob Sander-Cederlof

Roger Johnson (Minnesota) called a week or so ago with a plea for an
easy way to make program segments align themselves automatically on
page boundaries. He was writing a system to be burned into EPROM and
run on another computer; it would be easier to debug in the target
machine if subroutines and data blocks began on even page boundaries.
There was ample room, so the wasted bytes between routines didn't
bother him.

Of course, the .OR directive in the S-C Macro Assembler can easily
change the origin whenever you wish, but it also changes the target
address (.TA directive) or closes any open target file (.TF
directive). Therefore a different approach is required.

Bill Morgan and Mike Laumer described how to do this in these pages a
few months back, using the .BS directive to reserve enough bytes to
reach the next page boundary. But with the help of a simple macro, we
can not only make it easier to make self-aligning code: we can also
make it generate error messages if the origin we try to set involves
backing up over a longer-than-expected predecessor.

Here is the macro definition, and a few lines demonstrating how to
call the macro:

1000 .MA ORG
1010 .DO *>]1
1020 !!! ERROR: ORG]1 RANGE CROSSED !!!
1030 .ELSE
1040 .BS]1-*
1050 .FIN
1060 .EM
1070 *--------------------------------
1080 .OR $800
1090 SAMPLE LDA $1234
1100 RTS
1110 >ORG $900
1120 STA $1234
1130 RTS
1140 >ORG $980
1150 DATA .DA #1,#2,#3

Line 1110 calls the ORG macro with a parameter of "$900". This means
that everywhere you find "]1" in the macro definition, the assembler
will see "$900". The conditional (.DO) on line 1010 will read ".DO
*>$900". Since * equals $804 at this point, it is not greater than
$900. Therefore the condition is false, and the lines following line
1010 will be skipped up to line 1030 where there is an ".ELSE". The
lines after 1030 through the ".FIN" on line 1050 will be assembled.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1002 of 2550

Apple II Computer Info

Line 1040 will be assembled as ".BS $900-*", which will bump the
location up to $900.

Here's how the above example assembles:

 1000 .MA ORG
 1010 .DO *>]1
 1020 !!! ERROR: ORG]1 RANGE CROSSED !!!
 1030 .ELSE
 1040 .BS]1-*
 1050 .FIN
 1060 .EM
 1070 *--------------------------------
 1080 .OR $800
0800- AD 34 12 1090 SAMPLE LDA $1234
0803- 60 1100 RTS
0804- 1110 >ORG $900
 0000> .DO *>$900
 0000> .ELSE
0804- 0000> .BS $900-*
 0000> .FIN
0900- 8D 34 12 1120 STA $1234
0903- 60 1130 RTS
0904- 1140 >ORG $980
 0000> .DO *>$980
 0000> .ELSE
0904- 0000> .BS $980-*
 0000> .FIN
0980- 01 02 03 1150 DATA .DA #1,#2,#3

If we had written line 1110 as ">ORG $800" the condition on line 1010
would be true, causing line 1020 to be assembled. Line 1020 is
illegal syntax for the assembler, so it will be listed after an error
message. The "]1" will be filled in to make the line list like this:

 *** BAD OPCODE ERROR
 1110> !!! ERROR: ORG $800 RANGE CROSSED !!!

That will occur during pass one of the assembly, so no code will be
generated. The error message will be the only output.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1003 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:Patcher.txt
==

PATCHER: A General-Purpose Patch Installer.........Bill Morgan

My favorite new feature in Version 1.1 of the S-C Macro Assembler is
the .PH directive. When Bob first described the new directive to me,
I didn't quite see how to use it. Then he showed me a program like
this one, and now I don't see how I did without it!

The directive .PH <expr> in an assembly causes the origin to be reset
to <expr>, but the code continues to be stored in successive bytes of
the same area as before. The result is much like the following lines
all rolled into one:

2000 LABEL
2010 .OR SOMEWHERE.ELSE
2020 .TA LABEL

The difference is that the above lines would close an open Target
File, whereas .PH SOMEWHERE.ELSE continues to direct code into the
same file. The end of an offset block is marked with a .EP directive,
that restores the origin to match the target address.

With this feature is so easy to assemble one program to create some
patches and move them into place, all in one step. Anyway, here's the
general purpose PATCHER, with some dummy code to show it off.

Notice that the object code columns show the bytes to be all over
pages 3, 10, 20, and 30. The labels in the Symbol Table show the same
thing. But, if you look around in memory, all this is in page 3.
Once you type $300G, the JMP instructions will be moved to their true
destinations.

Bob's DOS Fast Load patches elsewhere in this issue are an ideal
example of how to use PATCHER. Here's all it takes:

1> Make the following changes to lines 1410-1430 of PATCHER:

 1410 P1.ORIGIN .EQ $BA69
 1420 P2.ORIGIN .EQ $BCDF
 1430 P3.ORIGIN .EQ $ACAF

2> Substitute Lines 1090-1160 of Fast Load for Line 1450 of PATCHER.

3> Substitute Lines 1210-1410 of Fast Load for Lines 1530-1550 of
PATCHER.

4> Substitute Lines 1460-1590 of Fast Load for Lines 1630-1650 of
PATCHER.

5> And substitute the following line for Lines 1740-1750 of PATCHER:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1004 of 2550

Apple II Computer Info

 .DA PATCH1

Now you have a BRUNnable program which will quickly install the Fast
Load patches into DOS. And if you want to add other DOS patches to
the same program, just tack them in between lines 1790 & 1800.

If you want to patch something running in a RAM card, like the Macro
Assembler, you just need to add the following lines:

1082 LDA $C083
1084 LDA $C083

1315 .4 LDA $C080
1320 RTS

And that's how I expect to handle patches from now on. Hope you find
it useful!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1005 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:Prawm.Board.txt
==

More about the PRAWM Board.................Bob Sander-Cederlof

Advanced Peripheral Enterprises has introduced their PRAWM board, and
is advertising elsewhere in this issue of AAL.

The PRAWM board contains from 2K to 8K of EEPROM. Data or programs
can be written into the memory on the card, just as though it were
RAM. Yet the memory is non-volatile, as in ROM, PROM, or EPROM. If
you turn of your Apple, remove the card, ship it around the
world...when you plug it back in the bytes will still be there!

EEPROM stands for "Electrically Eraseable PROM"; circuitry on the card
allows you to individually write any bytes you wish, without erasing
the rest of the memory. You do not need a separate EPROM programmer
and ultraviolet EPROM eraser. There are no batteries either. The
card is priced about the same as an EPROM card, but you save a lot of
money on accessories. You will also save a lot of time, since you
don't have to erase for 30-60 minutes, program chips for 5-20 minutes,
and plug and unplug countless times. (You can program the entire 8K
on a fully loaded PRAWM board in less than 25 seconds!)

The PRAWM card contains from 1 to 4 EEPROM chips, providing from 2K to
8K bytes. Each chip maps into the address space from $C800-$CFFF, and
is accessed by switching in one chip at a time. On-board firmware
makes it easy to move blocks of data between any chip and RAM.

By installing a jumper strap, you can even have the program stored in
the first 2K chip automatically start up when you turn on your Apple,
before or instead of booting a floppy. Just think of the
possibilities: set up special commands, execute security procedures,
power fail recovery, "boot" a mini-DOS of your own creation from
PRAWM, eliminate the need for disk drives in turn-key monitoring
applications...! Other strap options allow you to write-protect the
board and to disable the $CFFF de-select function.

If you do a lot of development work involving EPROMs now, I think this
card would be a big help. See Advanced Peripheral Enterprises' ad for
price and ordering information.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1006 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:Articles:V3N7.3.3E.txt
==

New Version of DOS -- Patchers Beware

When Apple released the //e they apparently also slipped in a slightly
revised version of DOS, called DOS 3.3e (or 3.3c. Reports differ.)
The following information about the changes is from Tom Weishaar's
DOStalk column in the April issue of Softalk.

The boot routine now throws a couple of new soft switches ($C00C and
$C00E) and stores $FF in location $4FB. These steps turn off the
//e's 80-column mode during boot-up.

A routine at $B331 that calculates position in a random access file is
now simplified.

Now for the biggie: Another APPEND fix! (attempted) According to
Weishaar, they eliminated a bug that occurred maybe once in 10,000
tries by introducing a new bug that bites once every 256 calls. Tom
says that the most reliable method is to use the old DOS 3.3 and POKE
-18851,0 before each APPEND.

The most significant thing about the APPEND change is where they put
the patch: at $BA69! That used to be empty space and a popular place
to install patches. No more! As a matter of fact, Bob's Fast Load
patch in this issue goes into that area, and therefore should not be
used with DOS 3.3e.

This means that //e users should be especially careful about
installing published patches into DOS 3.3e, and all of us should quit
using $BA69-BA95 for patches that will be distributed.

 !pr2
**

** Not true! See "New Version of DOS -- Patchers Beware".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1007 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:DOS3.3:Fast.Patch.txt
==

8d∑:®:∑"PATCHING DOS FOR FAST LOADING...":∑20000:®:∑Í'∑
44,47721,173,230,181,208,36,173,194,181,240,31,173,203,181,72,173,204,
181,72,173,195,181,141,203,181,173,196,181,141,204,181,32,182,176,176,
3,76,223,188,76,111,179,76,150,172{ '∑
33,48351,238,228,181,208,3,238,229,181,238,196,181,238,204,181,206,194
,181,208,11,104,141,204,181,104,141,203,181,76,150,172,76,135,186• $'∑
2,44198,105,186™ .'∑ 0ª N∑INSTALL FAST DOS LOAD AND BLOAD
PATCHESÃ *N∑N:∑N»0∏∑‘ 4N∑AÙ >N∑I»1∑N:∑P:∑A,P:A»A¿1:∑
HN∑20010

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1008 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:DOS3.3:S.DATER.txt
==

 1000 *--------------------------------
 1010 * DATE PROCESSING MODULES
 1020 * BY BROOKE BOERING
 1030 *--------------------------------
 1040 .OR $800
 1050 *--------------------------------
 1060 * JUMP TABLE *
 1070 JMP CONV1 MM/DD/YY -> STD FMT
 1080 JMP CONV2 STD FMT -> MM/DD/YY
 1090 JMP CONV3 STD FMT -> CENTURY
 1100 * DAY & WEEKDAY CODE
 1110 JMP CONV4 KICK STD FMT DATE UP
 1120 * (FROM 1 TO 225 DAYS)
 1130 *--------------------------------
 1140 * MONITOR EQUATES
 1150
 1160 COUT .EQ $FDED
 1170 PRBYTE .EQ $FDDA
 1180 *--------------------------------
 1190 * LOCAL EQUATES
 1200
 1210 LOC0 .EQ $40 (A3L)
 1220 LOC1 .EQ $41 (A3H)
 1230 LOC2 .EQ $42 (A5L)
 1240 LOC3 .EQ $43 (A5H)
 1250 ACL .EQ $50
 1260 ACH .EQ $51
 1270 XTNDL .EQ $52
 1280 XTNDH .EQ $53
 1290 AUXL .EQ $54
 1300 AUXH .EQ $55
 1310 ANSLO .EQ $50
 1320 PLIER .EQ $51
 1330 CAND .EQ $52
 1340 SAVER .EQ $53
 1350 SLASH .EQ $AF (/)
 1360 *--------------------------------
 1370 * - - - - LOCAL WORKING - - - - *
 1380 WKG .HS 0000000000000000
 1390 BINYY .EQ WKG+0
 1400 BINMM .EQ WKG+1
 1410 BINDD .EQ WKG+2
 1420 CENTURY.DAY.HI .EQ WKG+4
 1430 CENTURY.DAY.LO .EQ WKG+5
 1440 *--------------------------------
 1450 * USER ALTERABLE CONTROLS
 1460
 1470 * LOWEST ACCEPTABLE YEAR
 1480 * DEFAULT= 75

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1009 of 2550

Apple II Computer Info

 1490 * HIGHEST ACCEPTABLE YEAR
 1500 * DEFAULT= 84
 1510 * DAY-OF-WEEK SKIP
 1520 * DEFAULT= SUNDAY & SATURDAY
 1530 *--------------------------------
 1540 * CONVERT EXTERNAL FORMAT
 1550 * MM/DD/YY TO STANDARD INTERNAL
 1560 * FORMAT; BITS YYYYYYYMMMMDDDDD
 1570 *
 1580 * ENTRY: RA= DATA ADDRESS-LO
 1590 * RY= " " -HI
 1600 * EXIT: CC= EQUAL IF OK
 1610 * RA= YYYYYYYM BYTE
 1620 * RX= MMMMDDDD BYTE
 1630 * CC= NEQ IF ERROR
 1635 .PG
 1640 CONV1
 1650 STA LOC2 SET INDIRECT ADDR
 1660 STY LOC3 :
 1670 LDA #0 INIT WKG
 1680 STA BINMM
 1690 STA BINDD
 1700 STA BINYY
 1710 *-- DO 'MM'
 1720 JSR GET.DOUBLE
 1730 BNE BADATE
 1740 TAY ZERO?
 1750 BEQ BADATE
 1760 CMP #13 TOO HI?
 1770 BCS BADATE
 1780 STA BINMM ITS OK
 1790 INC LOC2 KICK PAST '/'
 1800 *-- DO 'DD'
 1810 JSR GET.DOUBLE
 1820 BNE BADATE
 1830 TAY ZERO?
 1840 BEQ BADATE
 1850 LDX BINMM RX= INDEX TO LIST
 1860 DEX
 1870 CMP DAYS.COUNT,X
 1880 BCC .3 G-A IF OK
 1890 BEQ .3 G-A IF OK
 1900 CMP #29 29TH (OF FEB)?
 1910 BNE BADATE NO, ERR!
 1920 STY BINYY YES, SET YY-FLAG
 1930 * (ACCEPT TEMPORARILY)
 1940 .3
 1950 STY BINDD ITS OK (PROBABLY)
 1960 INC LOC2 KICK PAST '/'
 1970 *-- DO 'YY'
 1980 JSR GET.DOUBLE
 1990 BNE BADATE
 2000 CMP OLDEST.YEAR
 2010 BCC BADATE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1010 of 2550

Apple II Computer Info

 2020 LDX BINYY RX= FEB 29TH FLAG
 2030 STA BINYY = 0YYYYYYY
 2040 BEQ .6 G-A IF NOT FEB 29
 2050 AND #$03 LEAP YEAR?
 2060 BNE BADATE ERR IF NOT LEAPYEAR
 2070 *-- SET EXIT CONDITIONS
 2080 .6
 2090 LDA BINMM
 2100 ASL
 2110 ASL
 2120 ASL
 2130 ASL
 2140 ASL
 2150 ORA BINDD
 2160 TAX RX= MMMDDDDD
 2170 LDA BINYY
 2180 ROL RA= YYYYYYYM
 2190 LDY #0 EXIT OK
 2200 RTS
 2210
 2220 BADATE
 2230 LDY #$FF DATE ERROR EXIT
 2240 RTS
 2245 .PG
 2250 *********************************
 2260 * S/R TO GET NEXT DOUBLE DIGIT
 2270 * (MAINLY USED FOR DATE INPUT)
 2280 * ENTRY: LOC2/3= DATA ADDRESS
 2290 GET.DOUBLE
 2300 LDY #0
 2310 LDA (LOC2),Y
 2320 TAX RX= TENS DIGIT
 2330 INC LOC2
 2340 LDA (LOC2),Y RA= UNITS DIGIT
 2350 INC LOC2
 2360 JSR ASC2BIN
 2370 * (CC= ERROR STATUS; PASS BACK)
 2380 RTS
 2390 *********************************
 2400 * S/R TO CONVERT 2 ASCII DIGITS
 2410 * TO SINGLE BINARY BYTE
 2420 *
 2430 * ENTRY: RA= UNITS ASCII DIGIT
 2440 * RX= TENS ASCII DIGIT
 2450 *
 2460 * EXIT: CC= EQUAL IF OK
 2470 * RA= BINARY EQUIV
 2480 * CC= NEQ IF NON DIGIT
 2490 ASC2BIN
 2500 STA LOC1 (SAVE TEMP)
 2510 TXA RA= TENS
 2520 CMP #0
 2530 BCC NOTNUM
 2540 CMP #10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1011 of 2550

Apple II Computer Info

 2550 BCS NOTNUM
 2560 AND #$0F
 2570 BEQ .4
 2580 TAX
 2590 LDA #0
 2600 CLC
 2610 .3
 2620 ADC #10
 2630 DEX
 2640 BNE .3
 2650 .4
 2660 STA LOC0
 2670 LDA LOC1 RA= UNITS
 2680 CMP #0
 2690 BCC NOTNUM
 2700 CMP #10
 2710 BCS NOTNUM
 2720 AND #$0F
 2730 CLC
 2740 ADC LOC0
 2750 LDX #0 SET EXIT= OK
 2760 RTS
 2770
 2780 NOTNUM
 2790 LDX #$FF
 2800 RTS
 2805 .PG
 2810 *--------------------------------
 2820 * CONVERT STANDARD INTERNAL
 2830 * DATE FORMAT, YYYYYYYMMMMDDDDD
 2840 * TO EXTERNAL FORMAT MM/DD/YY.
 2850 *
 2860 * ENTRY: RA= HI BYTE (YYYYYYYM)
 2870 * RX= LO BYTE (MMMDDDDD)
 2880 * CV/CH PRESUMED PRESET
 2890 CONV2
 2900 *-- EXPLODE TO BINYY,BINMM,BINDD
 2910 JSR EXPLODE.STANDARD.FORMAT
 2920 LDA BINMM
 2930 JSR DATE.MM PRINT MM
 2940 LDA #SLASH PRINT '/'
 2950 JSR COUT
 2960 LDA BINDD
 2970 JSR DATE.DD PRINT DD
 2980 LDA #SLASH PRINT '/'
 2990 JSR COUT
 3000 LDA BINYY
 3010 JSR DATE.YY PRINT YY
 3020 RTS
 3030 *********************************
 3040 * S/R TO CONVERT YY BYTE TO DECI-
 3050 * MAL, THEN TO ASCII & DISPLAY.
 3060 DATE.YY
 3070 CMP #100 OVFLO PROTECT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1012 of 2550

Apple II Computer Info

 3080 BCC .4 :
 3090 LDA #99 :
 3100 .4
 3110 JMP DATE.DD GOTO COMMON
 3120 *********************************
 3130 * S/R TO CONVERT MM BYTE TO DECI-
 3140 * MAL, THEN TO ASCII & DISPLAY.
 3150 DATE.MM
 3160 CMP #12 OVFLO PROTECT
 3170 BCC .4 :
 3180 LDA #12 :
 3190 .4
 3200 JMP DATE.DD GOTO COMMON
 3210 *********************************
 3220 * S/R TO CONVERT DD BYTE TO DECI-
 3230 * MAL, THEN TO ASCII & DISPLAY.
 3240 DATE.DD
 3250 LDX #0 RX= 10'S CTR
 3260 .2
 3270 CMP #$A < 10 ?
 3280 BCC .3 YES, JUMP OUT
 3290 SEC
 3300 SBC #$A MINUS 10
 3310 INX KICK 10'S CTR
 3320 BNE .2 LOOP BACK
 3330 *JMP^^^
 3340 .3
 3350 STA LOC0 SAVE TEMP
 3360 TXA GET 10'S CTR
 3370 ASL POSN HI
 3380 ASL :
 3390 ASL :
 3400 ASL :
 3410 ORA LOC0 'OR' TOGETHER
 3420 JMP PRBYTE PRINT IT
 3430 *RTS*
 3435 .PG
 3440 *--------------------------------
 3450 * CONVERT STANDARD FORMAT TO
 3460 * CENTURY DAY & WEEKDAY CODE
 3470 *
 3480 * ENTRY: RA= YYYYYYYM
 3490 * RX= MMMMDDDD
 3500 *
 3510 * EXIT: RA= CENTURY DAY (HI)
 3520 * RX= CENTURY DAY (LO)
 3530 * RY= WEEKDAY CODE
 3540 * 1= MONDAY
 3550 * 2= TUESDAY
 3560 * 3= WEDNESDAY
 3570 * 4= THURSDAY
 3580 * 5= FRIDAY
 3590 * 6= SATURDAY
 3600 * 7= SUNDAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1013 of 2550

Apple II Computer Info

 3610 * 0= UNKNOWABLE
 3620 CONV3
 3630 *-- EXPLODE TO BINYY,BINMM,BINDD
 3640 JSR EXPLODE.STANDARD.FORMAT
 3650 *-- CALCULATE DAYS OF PRIOR YEARS
 3660 LDY BINYY STORE 256 DAYS
 3670 DEY : FOR EACH
 3680 STY CENTURY.DAY.HI : PRIOR YEAR
 3690 TYA STORE 1 DAY
 3700 LSR : FOR EACH
 3710 LSR : PRIOR
 3720 STA CENTURY.DAY.LO : LEAP YEAR
 3730 LDA #109 STORE 109 DAYS
 3740 JSR MULTIPLY.8X8 : FOR EACH
 3750 CLC A : PRIOR
 3760 ADC CENTURY.DAY.LO : YEAR
 3770 STA CENTURY.DAY.LO :
 3780 TYA :
 3790 ADC CENTURY.DAY.HI :
 3800 STA CENTURY.DAY.HI :
 3810
 3820 *-- CALCULATE DAYS OF THIS YEAR
 3830 LDY BINDD RY= DD
 3840 TYA (IN CASE WAS JAN)
 3850 LDX BINMM RX= MM
 3860 DEX RX= MM-1
 3870 BEQ .7 G-A IF WAS JAN
 3880 CPX #1
 3890 BEQ .3 G-A IF WAS FEB
 3900 LDA BINYY (WAS MAR - DEC)
 3910 AND #$03 LEAP YEAR?
 3920 BNE .3 NO, G-A
 3930 INY YES, KICK DAY CTR
 3940 .3
 3950 TYA RA= DD (OR DD+1)
 3960 .4
 3970 CLC ADD A MONTH'S DAYS
 3980 ADC DAYS.COUNT-1,X :
 3990 BCC .5 G-A IF > 255 DAYS
 4000 INC CENTURY.DAY.HI
 4010 .5
 4020 DEX DECR CTR
 4030 BNE .4 LOOP TIL DONE
 4035 .PG
 4040 .7
 4050 *-- ADD THIS YEAR'S DAYS
 4060 * TO PRIOR YEARS' DAYS
 4070 *RA= DAYS THIS YEAR
 4080 CLC
 4090 ADC CENTURY.DAY.LO :
 4100 STA CENTURY.DAY.LO :
 4110 BCC .8 :
 4120 INC CENTURY.DAY.HI :
 4130 .8

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1014 of 2550

Apple II Computer Info

 4140 *-- CALCULATE WEEKDAY CODE
 4150 TAX RX= CENTURY.DAY.LO
 4160 LDA CENTURY.DAY.HI
 4170 JSR GET.WEEKDAY
 4180 * RY= WEEKDAY CODE
 4190 RTS
 4200 *********************************
 4210 * CALCULATE WEEKDAY CODE FROM
 4220 * CENTURY DATE
 4230 *
 4240 * ENTRY: RA= CENTURY DATE-HI
 4250 * RX= CENTURY DATE-LO
 4260 *
 4270 * EXIT: RA/RX= AS ON ENTRY
 4280 * RY= WEEKDAY CODE
 4290 * 1= MONDAY
 4300 * 2= TUESDAY
 4310 * 3= WEDNESDAY
 4320 * 4= THURSDAY
 4330 * 5= FRIDAY
 4340 * 6= SATURDAY
 4350 * 7= SUNDAY
 4360 * 0= UNKNOWABLE
 4370 GET.WEEKDAY
 4380 STA ACH
 4390 STX ACL
 4400 PHA SAVE RA
 4410 TXA SAVE RX
 4420 PHA :
 4430 LDA #0
 4440 STA XTNDH SET DIV'D (HIHI)
 4450 STA XTNDL SET DIV'D (LOLO)
 4460 STA AUXH SET DIVISOR(LO)
 4470 LDA #7 SET DIVISOR(HI)
 4480 STA AUXL :
 4490 LDY #8 SET FOR 8BIT DIVSR
 4500 JSR DIVIDE.32X16
 4510 LDA XTNDL
 4520 CLC REMAINDER + WEEKDAY
 4530 ADC #0 : OF 12/31/1900
 4540 TAY (PRESET)
 4550 SEC
 4560 SBC #7
 4570 BCC .4 G-A IF RY OK
 4580 TAY (RESET)
 4590 .4
 4600 INY ADJ: ANS+1 = CODE
 4610 PLA RESTORE RA/RX
 4620 TXA :
 4630 PLA :
 4640 RTS
 4645 .PG
 4650 *--------------------------------
 4660 * ADD FROM 1 TO 225 DAYS TO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1015 of 2550

Apple II Computer Info

 4670 * A GIVEN STD FORMAT DATE
 4680 *
 4690 * ENTRY: RA= YYYYYYYM
 4700 * RX= MMMMDDDD
 4710 * RY= # DAYS TO ADD
 4720 * EXIT: RA/RX UPDATED
 4730 CONV4
 4740 *-- SAVE RY TO STACK
 4750 STA LOC0
 4760 TYA
 4770 PHA
 4780 LDA LOC0
 4790 *-- EXPLODE TO BINYY,BINMM,BINDD
 4800 JSR EXPLODE.STANDARD.FORMAT
 4810 *-- INIT FOR LOOP
 4820 PLA = # DAYS TO KICK
 4830 CLC
 4840 ADC BINDD RA= WKG CTR
 4850 LDX BINMM RX= WKG MM
 4860 .2
 4870 * IN THIS LOOP:
 4880 * RY= UTILITY REGISTER
 4890 * RX= WKG MM TO BE INCREMENTED
 4900 * RA= WKG CTR TO BE DECREMENTED
 4910 * LOC3= WKG DAY COUNT FOR THE
 4920 * CURRENT MM (IN RX)
 4930 LDY DAYS.COUNT-1,X
 4940 STY LOC3 = MM'S DAY COUNT
 4950 CPX #2 IS MM FEB?
 4960 BNE .4 NO, G-A
 4970 *-- DO FEB
 4980 PHA SAVE WKG CTR
 4990 LDA BINYY
 5000 AND #$03 LEAP YEAR?
 5010 BNE .3 NO, G-A
 5020 LDA #29 RESET DAY COUNT
 5030 STA LOC3 :
 5040 .3
 5050 PLA RESTORE WKG CTR
 5060 .4
 5070 CMP LOC3
 5080 BCC .7 G-A IF DONE
 5090 BEQ .7 : (ALSO DONE)
 5100 SEC WKG CTR MINUS
 5110 SBC LOC3 : WKG DAY COUNT
 5120 INX MM+1
 5130 CPX #13 OVFLO?
 5140 BCC .2 NO, LOOP BACK
 5150 LDX #1 YES, SET MM= JAN
 5160 INC BINYY : AND SET YY+1
 5170 JMP .2 : AND LOOP BACK
 5180 .7
 5190 STA BINDD
 5200 STX BINMM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1016 of 2550

Apple II Computer Info

 5210 JSR IMPLODE.STANDARD.FORMAT
 5220 RTS
 5225 .PG
 5230 *********************************
 5240 * S/R TO EXPLODE STD FORMAT TO
 5250 * BINYY, BINMM & BINDD
 5260 * ENTRY: RA= YYYYYYYM
 5270 * RX= MMMMDDDD
 5280 * EXIT: BINYY,BINMM,BINDD SET
 5290 EXPLODE.STANDARD.FORMAT
 5300 LSR RA= 0YYYYYYY CC=M
 5310 STA BINYY
 5320 TXA RA= MMMDDDDD
 5330 PHA SAVE MMMDDDDD
 5340 ROR RA= MMMMDDDD
 5350 LSR 0MMMMDDD
 5360 LSR 00MMMMDD
 5370 LSR 000MMMMD
 5380 LSR 0000MMMM
 5390 STA BINMM
 5400 PLA PULL MMMDDDDD
 5410 AND #$1F RA= 000DDDDD
 5420 STA BINDD
 5430 RTS
 5440 *********************************
 5450 * S/R TO IMPLODE BINYY, BINMM &
 5460 * BINDD TO STD FORMAT
 5470 * ENTRY: BINYY,BINMM,BINDD PRESET
 5480 * EXIT: RA= YYYYYYYM
 5490 * RX= MMMMDDDD
 5500 IMPLODE.STANDARD.FORMAT
 5510 LDA BINMM RA= 0000MMMM
 5520 ASL 000MMMM0
 5530 ASL 00MMMM00
 5540 ASL 0MMMM000
 5550 ASL MMMM0000
 5560 ASL MMM00000 (CC=M)
 5570 ORA BINDD MMMDDDDD
 5580 TAX RX= MMMDDDDD (CC=M)
 5590 LDA BINYY RA= 0YYYYYYY (CC=M)
 5600 ROL RA= YYYYYYYM
 5610 RTS
 5620 *********************************
 5630
 5640 OLDEST.YEAR
 5650 .DA #75
 5660 HIGHEST.YEAR
 5670 .DA #84
 5680 DAYS.COUNT
 5690 .DA #31 (JAN)
 5700 .DA #28 (FEB)
 5710 .DA #31 (MAR)
 5720 .DA #30 (APR)
 5730 .DA #31 (MAY)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1017 of 2550

Apple II Computer Info

 5740 .DA #30 (JUN)
 5750 .DA #31 (JUL)
 5760 .DA #31 (AUG)
 5770 .DA #30 (SEP)
 5780 .DA #31 (OCT)
 5790 .DA #30 (NOV)
 5800 .DA #31 (DEC)
 5805 .PG
 5810 *********************************
 5820 *
 5830 * 8 X 8 MULTIPLY
 5840 *
 5850 * ENTRY: RY= MULTIPLCAND
 5860 * RA= MULTIPLIER
 5870 *
 5880 * EXIT: RY= ANSWER-HI
 5890 * RA= ANSWER-LO
 5900 *
 5910 * TIMING: 212 US - MAX
 5920 * 180 US - MIN
 5930 * 192 US - AVER
 5940 * NOTE: KEEP CLOSE TO SGN8X8
 5950 MULTIPLY.8X8
 5960 STA PLIER SAVE (MULTI)PLIER
 5970 STY CAND SAVE (MULTIPL)CAND
 5980 LDA #0 RA= ANSWER-HI
 5990 LDY #8 SET 8-BIT CTR
 6000 MUL1
 6010 LSR PLIER TEST NEXT BIT
 6020 BCC MUL2 IF OFF, GO ROUND
 6030 CLC
 6040 ADC CAND IF ON, ADD
 6050 MUL2
 6060 ROR SHIFT ANSWER 1 BIT
 6070 ROR ANSLO :
 6080 DEY DECR POSITION CTR
 6090 BNE MUL1 LOOP TIL DONE 8 BITS
 6100 TAY RY= ANSWER-HI
 6110 LDA ANSLO RA= ANSWER-LO
 6120 RTS
 6130 *********************************
 6140 *
 6150 * 32 X 16 DIVIDE
 6160 *
 6170 * PRE-ENTRY:
 6180 * DIVIDEND IN:
 6190 * XTNDH,XTNDL,ACH,ACL
 6200 * DIVISOR --> AUXL,AUXH
 6210 *
 6220 * EXIT: QUOTIENT -> ACL,ACH
 6230 * REMAINDER -> XTNDL,XTNDH
 6240 DIVIDE.32X16
 6250 LDY #$10 INDEX FOR 16 BITS
 6260 .2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1018 of 2550

Apple II Computer Info

 6270 ASL ACL
 6280 ROL ACH
 6290 ROL XTNDL XTND/AUX
 6300 ROL XTNDH : -> ACCUM
 6310 SEC
 6320 LDA XTNDL
 6330 SBC AUXL MOD TO XTND.
 6340 TAX
 6350 LDA XTNDH
 6360 SBC AUXH
 6370 BCC .3
 6380 STX XTNDL
 6390 STA XTNDH
 6400 INC ACL
 6410 .3
 6420 DEY
 6430 BNE .2
 6440 RTS
 6450 *********************************

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1019 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:DOS3.3:S.FAST.LOAD.txt
==

 1000 *--------------------------------
 1010 * S.FAST LOAD.1
 1020 *
 1030 * FAST "LOAD" AND "BLOAD"
 1040 *
 1050 * INSTALLED IN UNUSED AREAS IN DOS 3.3:
 1060 * $BA69-$BA95 (45 BYTES FREE)
 1070 * $BCDF-$BCFF (33 BYTES FREE)
 1080 *--------------------------------
 1090 READ.RANGE .EQ $AC96
 1100 READ.NEXT.SECTOR .EQ $B0B6
 1110 END.OF.DATA.ERROR .EQ $B36F
 1120 RANGE.LENGTH .EQ $B5C1,C2
 1130 RANGE.ADDRESS .EQ $B5C3,C4
 1140 BUFFER.ADDRESS .EQ $B5CB,CC
 1150 SECTOR.COUNT .EQ $B5E4,E5
 1160 BYTE.OFFSET .EQ $B5E6
 1170 *--------------------------------
 1180 .OR $BA69
 1190 .TF B.PATCH1
 1200
 1210 PATCH1 LDA BYTE.OFFSET LAST BYTE OF
 1220 BNE GO.READ.RANGE A SECTOR?
 1230 LDA RANGE.LENGTH+1 WHOLE SECTOR LEFT?
 1240 BEQ GO.READ.RANGE NO.
 1250 LDA BUFFER.ADDRESS SAVE BUFFER ADDRESS
 1260 PHA
 1270 LDA BUFFER.ADDRESS+1
 1280 PHA
 1290 LDA RANGE.ADDRESS READ DIRECTLY
 1300 STA BUFFER.ADDRESS INTO RANGE
 1310 LDA RANGE.ADDRESS+1
 1320 STA BUFFER.ADDRESS+1
 1330
 1340 READ.LOOP
 1350 JSR READ.NEXT.SECTOR
 1360 BCS .1
 1370 JMP PATCH2
 1380 .1 JMP END.OF.DATA.ERROR
 1390
 1400 GO.READ.RANGE
 1410 JMP READ.RANGE
 1420 *--------------------------------
 1430 .OR $BCDF
 1440 .TF B.PATCH2
 1450
 1460 PATCH2 INC SECTOR.COUNT
 1470 BNE .1
 1480 INC SECTOR.COUNT+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1020 of 2550

Apple II Computer Info

 1490 .1 INC RANGE.ADDRESS+1 NEXT PAGE
 1500 INC BUFFER.ADDRESS+1
 1510 DEC RANGE.LENGTH+1
 1520 BNE .2
 1530 PLA RESTORE BUFFER
 1540 STA BUFFER.ADDRESS+1
 1550 PLA
 1560 STA BUFFER.ADDRESS
 1570 JMP READ.RANGE ONE BYTE AT A TIME
 1580
 1590 .2 JMP READ.LOOP
 1600 *--------------------------------
 1610 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1021 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:DOS3.3:S.ORG.MACRO.txt
==

 1000 .MA ORG
 1010 .DO *>]1
 1020 !!! ERROR: ORG]1 RANGE CROSSED !!!
 1030 .ELSE
 1040 .BS]1-*
 1050 .FIN
 1060 .EM
 1070 *--------------------------------
 1080 .OR $800
 1090 SAMPLE LDA $1234
 1100 RTS
 1110 >ORG $800
 1120 STA $1234
 1130 RTS
 1140 >ORG $980
 1150 DATA .DA #1,#2,#3
 1160 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1022 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8304:DOS3.3:S.PATCHER.txt
==

 1000 *SAVE S.PATCHER
 1010 *--------------------------------
 1020 PNTR .EQ $00,01
 1030 PATCH .EQ $02,03
 1040 *--------------------------------
 1050 .OR $300
 1060 .TF B.PATCHER
 1070 *--------------------------------
 1080 PATCHER
 1090 LDA #PATCHES-1
 1100 STA PNTR
 1110 LDA /PATCHES-1
 1120 STA PNTR+1
 1130 LDY #0
 1140
 1150 .1 JSR GET.BYTE LENGTH OF NEXT PATCH
 1160 BEQ .4 FINISHED
 1170 TAX SAVE LENGTH IN X
 1180 JSR GET.BYTE ADDRESS OF PATCH
 1190 STA PATCH
 1200 JSR GET.BYTE
 1210 STA PATCH+1
 1220
 1230 .2 JSR GET.BYTE
 1240 STA (PATCH),Y
 1250 INC PATCH
 1260 BNE .3
 1270 INC PATCH+1
 1280 .3 DEX
 1290 BNE .2
 1300 BEQ .1 ...ALWAYS
 1310
 1320 .4 RTS
 1330 *--------------------------------
 1340 GET.BYTE
 1350 INC PNTR
 1360 BNE .1
 1370 INC PNTR+1
 1380 .1 LDA (PNTR),Y
 1390 RTS
 1400 *--------------------------------
 1410 P1.ORIGIN .EQ $1000
 1420 P2.ORIGIN .EQ $2000
 1430 P3.ORIGIN .EQ $3000
 1440
 1450 * OTHER .EQUATES HERE
 1460
 1470 *--------------------------------
 1480 PATCHES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1023 of 2550

Apple II Computer Info

 1490
 1500 .DA #P1.LENGTH,P1.ORIGIN
 1510 .PH P1.ORIGIN
 1520
 1530 PATCH1
 1540 * PATCH1 CODE HERE
 1550 JMP PATCH2
 1560
 1570 P1.LENGTH .EQ *-PATCH1
 1580 .EP
 1590 *--------------------------------
 1600 .DA #P2.LENGTH,P2.ORIGIN
 1610 .PH P2.ORIGIN
 1620
 1630 PATCH2
 1640 * PATCH2 CODE HERE
 1650 JMP PATCH3
 1660
 1670 P2.LENGTH .EQ *-PATCH2
 1680 .EP
 1690 *--------------------------------
 1700 .DA #P3.LENGTH,P3.ORIGIN
 1710 .PH P3.ORIGIN
 1720
 1730 PATCH3
 1740 * PATCH3 CODE HERE
 1750 JMP PATCH1
 1760
 1770 P3.LENGTH .EQ *-PATCH3
 1780 .EP
 1790 *--------------------------------
 1800 .DA #0 END OF PATCHES
 1810 *--------------------------------
 1820 .DO *>$3D0
 1830 !!! PATCHER IS TOO BIG !!!
 1840 .FIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1024 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:AAL.CHART.txt
==

Apple Assembly Line

Issue......1......3......5......7......9.....11...
 +------+------+------+------+------+------+
Oct 80 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Nov 80 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Dec 80 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Jan 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Feb 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Mar 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Apr 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
May 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Jun 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Jul 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Aug 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Sep 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Oct 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Nov 81 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Dec 81 | | | | | | |plus
 | | | | | | |middle sheet

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1025 of 2550

Apple II Computer Info

 +------+------+------+------+------+------+
Jan 82 | | | | | | |
 | | | | | | |
 +------+------+------+------+------+------+
Issue......1......3......5......7......9.....11...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1026 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:APPLE.CHIPS.txt
==

 Board Chip
Chip Location(s) Description
---- ----------- --------

555 A13 B3 Timer
558 H13 3 Timers
741 K13 Op Amp

2316B A5 (Rev 7,RFI) ROM (character generator)
2513 A5 (Rev 0,1) ROM (character generator)
4116 C3-10 D3-10 E3-10 RAM
6502 H6-9 Microprocessor
9316B F3-11 (6 chips) ROM (monitor and language)

74LS00 A2 4 2-input NAND
74LS02 A12 A14 B13 B14 4 2-input NOR
74LS04 C11 6 Inverters
74LS08 B11 H1 4 2-input AND
74LS11 B12 3 3-input AND
74LS20 D2 2 4-input NAND
74LS32 C14 4 2-input OR
74LS51 C13 AND3-NOR2, AND2-NOR2
74LS74 A11 B10 J13 2 Flip-Flops
74LS86 B2 4 2-input XOR
74LS138 F12 F13 H2 H12 3-by-8 Decoder
74LS139 E2 F2 2 3-by-4 Decoders
74LS151 A9 1-of-8 Selector
74LS153 C1 E11 E12 E13 2 1-of-4 selectors
74LS161 D11-14 Counter
74 166 A3 8-bit Shift Register
74LS174 B5 B8 6 Flip-Flops
74LS175 B1 4 Flip-Flops
74LS194 A10 B4 B9 4-bit Shift Register
74LS195 C2 4-bit Shift Register
74LS251 H14 1-of-8 Selector
74LS257 A8 B7 C12 J1 4 1-of-2 Selectors
74LS259 F14 8-bit Addressable Latch
74LS283 E14 4-bit Full Adder
74LS367 H3 H4 H5 (on some models) 6 Bus Drivers

8T97 H3 H4 H5 (on most models) 6 Bus Drivers
8T28 H10 H11 (on rev 0,1,7) 4 Bus Buffers
8304 H10 (on ref RFI) 8 Bus Buffers
!E

Drawing
XC-x Description RevisionY
2 Clock Generator
3 Video Adress Generator

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1027 of 2550

Apple II Computer Info

4 Memory address--part 1 0,1
5 Memory address--part 1 7, RFI
6 Memory address--part 2 All
7 RAM All
8 Microprocessor 0,1,7
9 Microprocessor RFI
10 ROM All
11 Peripheral I/O All
12 On-board I/O--part 1 All
13 On-board I/O--part 2 All
14 Video Generator--part 1 0
15 Video Generator--part 1 1
16 Video Generator--part 1 7,RFI
17 Video Generator--part 2 0
18 Video Generator--part 2 1
19 Video Generator--part 2 7
20 Video Generator--part 2 RFI
21 Single-piece keyboard
22 Two-piece keyboard
23 Power Supply

Board
XLocation Drawing C-x Y XLocation Drawing C-
x Y
A2 2, 4, 5
A3 14-16
A5 14-16
A7 13
A8-A10 . . . 14-16
A11. 15, 16
A12. 13, 15, 16, 18, 19
A13. 13
A14. 19, 20

B2 2, 14-16
B3-B4. . . . 14-16
B5 7, 14-16
B6-B7. . . . 13
B8 7, 14-16
B9 14-16
B10. 13-16
B11. 8, 9, 14-20
B12-B13. . . 2, 14-20

C1 2, 4, 5
C2 2
C3-C10 . . . 7
C11. 3-6, 8, 9, 13, 17-20
C12. 4, 5, 6
C13. 17-20
C14. 4, 7-9, 17-20

D1 4
D2 2, 4, 5

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1028 of 2550

Apple II Computer Info

D3-D10 . . . 7
D11-D14. . . 3

E1-E2. . . . 4
E3-E10 . . . 7
E11-E14. . . 6

F1 4
F2 4, 5
F3-F12 . . . 10
F13-F14. . . 12

H1 4, 5, 10
H3 8, 9, 11
H4-H10 . . . 8, 9
H11. 8
H12. 11
H14. 12

J1 4, 5
J13-J14. . . 12

K13. 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1029 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:Apple.Chips.Txt.txt
==

Apple Chips..Bob and Bill

You may recall that when Bill reviewed Apple][Circuit Description
last month, he bemoaned the lack of a "Cross Reference", by board
location, of all the Apple's ICs. Well Bob has worked out a couple of
tables to fill that gap, and we'll be including those tables in future
shipments of the book.

In the meantime, here's another sort of table, showing the locations
and descriptions of all the chips in your Apple. This one is
organized by chip number.

 Board Chip
Chip Location(s) Description
---- ----------- --------

555 A13 B3 Timer
558 H13 3 Timers
741 K13 Op Amp

2316B A5 (Rev 7,RFI) ROM (character generator)
2513 A5 (Rev 0,1) ROM (character generator)
4116 C3-10 D3-10 E3-10 RAM
6502 H6-9 Microprocessor
9316B F3-11 (6 chips) ROM (monitor and language)

74LS00 A2 4 2-input NAND
74LS02 A12 A14 B13 B14 4 2-input NOR
74LS04 C11 6 Inverters
74LS08 B11 H1 4 2-input AND
74LS11 B12 3 3-input AND
74LS20 D2 2 4-input NAND
74LS32 C14 4 2-input OR
74LS51 C13 AND3-NOR2, AND2-NOR2
74LS74 A11 B10 J13 2 Flip-Flops
74LS86 B2 4 2-input XOR
74LS138 F12 F13 H2 H12 3-by-8 Decoder
74LS139 E2 F2 2 3-by-4 Decoders
74LS151 A9 1-of-8 Selector
74LS153 C1 E11 E12 E13 2 1-of-4 selectors
74LS161 D11-14 Counter
74 166 A3 8-bit Shift Register
74LS174 B5 B8 6 Flip-Flops
74LS175 B1 4 Flip-Flops
74LS194 A10 B4 B9 4-bit Shift Register
74LS195 C2 4-bit Shift Register
74LS251 H14 1-of-8 Selector
74LS257 A8 B7 C12 J1 4 1-of-2 Selectors
74LS259 F14 8-bit Addressable Latch

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1030 of 2550

Apple II Computer Info

74LS283 E14 4-bit Full Adder
74LS367 H3 H4 H5 (on some models) 6 Bus Drivers

8T97 H3 H4 H5 (on most models) 6 Bus Drivers
8T28 H10 H11 (on rev 0,1,7) 4 Bus Buffers
8304 H10 (on ref RFI) 8 Bus Buffers

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1031 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:Cross.Ad.txt
==

S-C Macro Cross Assemblers

The high cost of dedicated microprocessor development systems has
forced many technical people to look for alternate methods to develop
programs for the various popular microprocessors. Combining the
versatile Apple II with the S-C Macro Assembler provides a cost
effective and powerful development system. Hobbyists and engineers
alike will find the friendly combination the easiest and best way to
extend their skills to other microprocessors.

The S-C Macro Cross Assemblers are all identical in operation to the
S-C Macro Assembler; only the language assembled is different. They
are sold as upgrade packages to the S-C Macro Assembler. The S-C
Macro Assembler, complete with 100-page reference manual, costs $80;
once you have it, you may add as many Cross Assemblers as you wish at
a nominal price. The following S-C Macro Cross Assembler versions are
now available, or soon will be:

Motorola: 6800/6801/6802 now $32.50
 6805 now $32.50
 6809 now $32.50
 68000 now $50.00

Intel: 8048 now $32.50
 8051 now $32.50
 8085 soon $32.50

Zilog: Z-80 now $32.50

RCA: 1802/1805 now $32.50

Rockwell: 65C02 now $20.00

DEC: PDP-11/LSI-11 now $50.00

The S-C Macro Assembler family is well known for its ease-of-use and
powerful features. Thousands of users in over 30 countries and in
every type of industry attest to its speed, dependablility, and user-
friendliness. There are 20 assembler directives to provide powerful
macros, conditional assembly, and flexible data generation. INCLUDE
and TARGET FILE capabilities allow source programs to be as large as
your disk space. The integrated, co-resident source program editor
provides global search and replace, move, and edit. The EDIT command
has 15 sub-commands combined with global selection.

Each S-C Assembler diskette contains two complete ready-to-run
assemblers: one is for execution in the mother-board RAM; the other
executes in a 16K RAM Card. The HELLO program offers menu selection
to load the version you desire. The disks may be copied using any

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1032 of 2550

Apple II Computer Info

standard Apple disk copy program, and copies of the assembler may be
BSAVEd on your working disks.

S-C Software Corporation has frequently been commended for outstanding
support: competent telephone help, a monthly (by subscription)
newsletter, continuing enhancements, and excellent upgrade policies.

S-C Software Corporation (214) 324-2050
P.O. Box 280300, Dallas, Texas, 75228

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1033 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:Display.CharSet.txt
==

Displaying Character Generator EPROMs......Bob Sander-Cederlof

We make our own Character Generator EPROMs for Revision 7 or later
Apple II Plusses. I use the Mountain Hardware EPROM Burner to burn
the data into 2716 EPROMs. We have several different character sets,
and it can be a lot of trouble to check the results.

After designing a character set, and formatting all the bits into the
2048 bytes of EPROM space, and burning it in, we still have to take an
Apple apart and plug the chip in to see if all the characters look
right.

I decided to write a program which would map the EPROM data onto the
hi-res screen, allowing me to test without wasting time
burning/erasing EPROMs and dismantling/re-assembling my Apple.

Even if you don't have the same requirements, you can learn a lot
about indexing techniques and address shuffling from studying the
following program.

Starting at the top.... I set up three page-zero variables in lines
1040-1060. The S-C Macro Assembler is a great environment for making
short programs like this one, because I can cycle through edit-
assemble-test until it works just right without ever leaving the
assembler. S-C Macro allows me to use zero-page locations $00-$1F
without fear of inteference ($00-$1E in the Apple //e).

Lines 1080 and 1090 define two buffers where I BLOAD two different
EPROM images. I put one at $6800-6FFF, the other at $7000-77FF.
There is room on the screen to display one character set in a 16x16
matrix on the left side, and the other on the right side.

For grins, I decided to use the subroutine in Applesoft ROM at $F3E2
to turn on hi-res mode. This is the code executed for the HGR
statement, so I called it AS.HGR at line 1110. HGR sets all the soft-
switches to hi-res page 1, and clears the screen.

Lines 1160-1180 call the HGR subroutine. Since I was using S-C Macro
in the RAM card, and since the Applesoft ROMs are not switched on when
a program is executing in the RAM card, I had a problem. The first
time I tried to run DISPLAY, I left out lines 1160 and 1180. The
result was a total disaster. Line 1170 did a JSR $F3E2 into the RAM
card! I had to RESET and reboot the computer to get control again.
Look out for these kinds of problems whenever you are trying to use
code in both places at once.

Lines 1190-1280 set up the starting addresses to display the first
character set on the left half of the screen. Lines 1290-1380 do the
same job to show the second set on the right half-screen.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1034 of 2550

Apple II Computer Info

The top line of hi-res page 1 starts at $2000, and goes to $2027. The
middle of the line starts at $2014. The starting addresses of
subsequent lines can be computed from these two base addresses,
although it is a little tricky. More on this later.

The hi-res screen shows the least significant seven bits from each
byte. There are forty bytes in each line, making a total of 280 dots
across. The dots in each byte are in reverse order: the least
significant bit is the leftmost dot. On the other hand, the EPROM
image is in normal order. The subroutine DISPLAY.ONE.SET takes care
of all the addressing, and REVERSE.BITS handles the reversals.

Lines 1400-1410 pause until I hit any key on the keyboard. During
this pause I can examine the screen as long as I wish. When I type
any key, the keyboard strobe will be set and $C000 will go negative.
Line 1420 will then clear the keyboard strobe, and the RTS at line
1430 returns to the S-C Macro Assembler.

This brings us to a closer examination of the subroutine to actually
display a character set, in lines 1440-1770. We will be displaying 16
rows of characters, with 16 characters in each row. It is therefore
natural to simplify the problem by writing another subroutine to
display one row of characters, and call it sixteen times.

Lines 1480 and 1490 start a loop much like Applesoft's FOR I = 1 TO
16...except in assembly language it is easier to go from 16 to 1. The
equivalent to NEXT I is at lines 1750 and 1760, where CNT16 is
decremented. In between we have the body of the loop.

Line 1500 calls DISPLAY.ONE.ROW, a subroutine that only gets called
from this one line. I made it into a separate subroutine so I could
put off writing it until later, and concentrate on one loop at a time.
DISPLAY.ONE.ROW expects the addresses at SCREEN.ADR and EPROM.ADR to
be already set up for the first byte to be displayed in the current
row. After it returns, those addresses will have been modified.

Lines 1510-1580 add 15*8, or 120, to the address in EPROM.ADR.
DISPLAY.ONE.ROW already added 8, so the total augment is 128. This
moves us up to the beginning of the next set of sixteen characters.

Lines 1590-1740 assume that DISPLAY.ONE.ROW already added $2000 to the
address in SCREEN.ADR, and subtracts that value back out. At the same
time, we add back in $80, to move to the next group of eight screen
lines for the next row of characters. This is sufficient for the
first eight rows of characters, but in moving to the ninth row there
is a discontinuity which requires adding $28 and subtracting $400 to
get the right address. The fact that the ninth row has arrived is
apparent by the fact that the high byte of the address goes above $23
(lines 1670 and 1680).

Here is a table of the starting addresses for each of the 24 character
rows (we only use the first 16):

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1035 of 2550

Apple II Computer Info

Row Address Row Address Row Address
 1 $2000 9 $2028 17 $2050
 2 $2080 10 $20A8 18 $20D0
 3 $2100 11 $2128 19 $2150
 4 $2180 12 $21A8 20 $21D0
 5 $2200 13 $2228 21 $2250
 6 $2280 14 $22A8 22 $22D0
 7 $2300 15 $2328 23 $2350
 8 $2380 16 $23A8 24 $23D0

The starting addresses for the right half-screen can be obtained by
just adding $14 to all of the above addresses. What we do is START at
$2014, and all the rest are computed automatically.

Now we can talk about what goes on inside one row of characters.
Lines 1810-2000 do the job of moving bytes from the EPROM image to the
eight screen lines which form the row of characters. Lines 1820-1830
start a loop to count out eight repetitions, and lines 1980-1990
perform the NEXT on this loop.

On each pass through the loop the subroutine GET.PUT is called sixteen
times to move a byte for each character to the screen image. GET.PUT
is another subroutine only called from one place, but made into a
subroutine for ease of understanding. The inner loop of 0 through 15
is controlled by the X-register. Line 1850 sets X=0, and lines 1910-
1930 increment, test, and branch ("NEXT X" sequence). The X-register
also indexes the STA instruction inside GET.PUT, so that the screen
byte for each character is stored into the right place on the screen
line. The Y-register is used as an index into the EPROM data by
GET.PUT, and parallels the X-register but with an increment of 8
rather than 1. Lines 1870-1900 bump the Y-register by 8 each time
through the inner loop.

GET.PUT (lines 2230-2340) does the very simple job of moving one byte
from one place in memory to another. Or is it so simple.... Notice
that the addresses inside the LDA and STA instructions are filled in
when the program runs. This is called self-modifying code, and I
normally avoid such code at all costs. It can lead to all sorts of
devastating things. Nevertheless, there are exceptions to most rules,
and a time for nearly everything. This is one of those, I think.
Isolating the offensive code into its own little subroutine appeases
my conscience somewhat.

In between LDA and STA I call REVERSE.BITS, yet another simple
subroutine which could be written in-line. I prefer making it
separate for nicer modularity. The comments show what is going on,
bit-by-bit. If you were working from character generator data written
for the DOS TOOL KIT or HIGHER TEXT, the bits would already be in the
right order. It is just because I am using data for the character
generator EPROM that we need to reverse the bits.

Here is a printout done with my NEC PC-8023 and a Grappler+ interface
card. The two character sets shown are the ones we sell. The one on
the left uses regular lower case characters, with descenders. All the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1036 of 2550

Apple II Computer Info

lower case characters are raised up one screen line to leave room for
the descenders. The set on the right uses small caps for the lower
case, and is the one we use in all the Apples here. The first four
rows are the characters used in INVERSE mode, and the next four rows
are for FLASH mode. (Doesn't flash too well on paper!)

<character sets and program follow>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1037 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:FADD.txt
==

FADD -- Find ADDress references..................Brooke Boering

Recently I have been messing around with modifications to DOS. Since
I didn't have the complete source code for it, I simply used the
explanations in "Beneath Apple DOS". I did find that I also needed a
utility to locate all references to certain addresses. FADD was the
result, and it's mighty useful. It's much quicker than doing a
complete disassembly.

FADD will locate all instructions within 64K of memory referring to a
given address. It skips the $C000-$CFFF (I/O) pages and avoids
missing memory by doing a double read test.

It is intended to be used by the serious assembly language programmer
for debugging and analysis. I'ts faster than doing a disassembly,
though not quite so informative.

FADD is origined at $300 (what else?) and uses 8 zero page locations
that are generally unused by programs except as scratch. You can
alter both the origin point and zero page locations to suit your
individual needs.

To use FADD:

 1- BLOAD B.FADD
 2- Get to Monitor
 3- 'Fat finger' your address into 6-7 in HI-LO order.
 4- Execute with a '300G'

 NOTE: Use the spacebar to pause/release listing.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1038 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 8 May, 1983

In This Issue...

Displaying Character Generator EPROMS. 2
S-C Word Processor Note. 10
Apple Chips. 12
S-C Capture. 13
A PAUSE Directive. 17
Some New Cards . 20
FADD -- Find ADDress References. 21
Generating Parity. 24
ROGRAM TOO LARGE???. 28

Yet Another Cross Assembler: PDP-11

We are turning the tables at last. When the 6502 was created six or
seven years ago, programmers used PDP-11 development systems with
cross assemblers to write 6502 code. Now you can use your Apple to
write programs for the Digital Equipment Corporation's -11 family.
Thanks to Martin Buchholtz for encouraging us to develop this one. He
plans to use it for writing programs to run in DEC Falcon SBC-11 based
systems. Only $50, if you already own the S-C Macro Assembler. See
our ad on page 16 for more about the Cross Assemblers.

We Need Your Help

Does anybody have complete details of the file format of the Apple
///'s relocatable object files? That's the last remaining stumbling
block on the road to the S-C Macro Assembler ///. Has anyone figured
it out yet?

All Around the World

We are now sending the Apple Assembly Line to subscribers in 32
different countries. (That's about 1200 copies to the USA, and about
100 copies to the other 31 nations.)

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1039 of 2550

Apple II Computer Info

Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1040 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:Mikes80ColCmts.txt
==

About the 80 column Macro Assembler versions.

The 80 column versions of the Assembler have several changes made in
the editing section of the assembler. Therefore, you must be aware
when making patches to the assembler that the different versions will
have different patch locations.

When using the ESCape key editing functions (keys A-F, IJKM, and @)
you should exit the ESCape mode with some key other than right arrow.
This is because the right arrow key will send the character beneath
the cursor to the escape key processor and some funny things might
happen to the screen if the key matches one of the valid ESCape key
functions.

To exit from the assembler you should use PR#3 to unhook the assembler
I/O hooks. Then type FP, or INT. If you do not do this and leave the
assembler you could crash the computer. This is especially critical
in the Language card assembler versions.

To return to the assembler after using a printer, use RESET to turn
off the printer and return to the assembler. Although PR#3 appears to
let you return to the assembler you will find that some of the
keyboard editing functions may not work right because the assembler is
not hooked into the I/O hooks. The RESET will cause the assembler to
hook itself back into the I/O hooks and return I/O to your 80 column
card.

In using the MNTR command, the ESCape editing functions will not work
from the apple monitor unless you type PR#3 to unhook the assembler
before typing MNTR. You should then return to the assembler with 3D0G
or RESET to have the assembler rehook itself back into the I/O hooks.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1041 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50
 For registered owners of the S-C Macro Assembler.
Source code of S-C Assembler II, Version 4.0, on disk..............$95.00
 Fully commented, easy to understand and modify to your own tastes.
S-C Macro Assembler /// ..$100.00
 Preliminary version. Call or write for details.

S-C Cross Reference Utility$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00

S-C Word Processor...$50.00
 As is, with fully commented source code. Needs S-C Macro Assembler.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)................... $79.00
Source Code for FLASH! Runtime Package.............................$39.00
Full Screen Editor for S-C Macro Assembler (Laumer Research).......$49.00

The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $45.00
Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
DISASM Dis-Assembler (Rak-Ware)....................................$30.00

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Reload your own NEC PC-8023 ribbon cartridges...........each ribbon $5.00
Reload your own NEC Spinwriter Multi-Strike Film cartridges....each $2.50
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
ZIF Game Socket Extender...$20.00
Ashby Shift-Key Mod..$15.00
Lower-Case Display Encoder ROM.....................................$25.00
 Only Revision level 7 or later Apples.

Grappler+ Printer Interface (Orange Micro).............($175.00) $150.00
Bufferboard 16K Buffer for Grappler (Orange Micro).....($175.00) $150.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1042 of 2550

Apple II Computer Info

Buffered Grappler+ NEW!! Interface and 16K Buffer.....($239.00) $200.00

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($15.95) $15.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($16.99) $16.00
 "6502 Subroutines", Leventhal........................($12.99) $12.00

 Add $1 per book for US postage. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1043 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:New.Cards.txt
==

Some New Cards

1. Bob Stout just called from Houston to renew his subscription to
AAL, and to tell me about a new toy he's getting. It seems that
Legend Industries has a new kind of RAM card, containing 18K of static
RAM, with battery backup.

16K of the memory on the card is mapped just like a language card, so
it can be used in slot 0. The card also has a hardware write-protect
switch, that you can throw to completely protect the memory. Once you
have done that whatever you have stored in the card is there to stay.

The card can also be used in a higher slot for boot-up operation. The
other 2K of memory is mapped at $CN00 and $C800, just like the ROM on
a standard peripheral card. Think of the possibilities!

This new card from Legend is available with either NiCad or Lithium
batteries. This gives you a choice between rechargeability or very
long power-off life (about 2 years). The price is $149.95.

2. Saturn Systems has introduced a card with 64K RAM and a 6502 on
it. The CPU runs at 3.6 MHz, compared to Apple's roughly 1 MHz.
Comes with a pre-boot disk to let you use this faster processor with
Applesoft, Pascal, and Integer BASIC. Price is $599. See their ad in
the latest Softalk Magazine.

3. Analytical Engines, Inc. has one-upped the DTACK Grounded board.
For only $1550, you can plug in an 8 MHZ 68000 card with 128K RAM
(expandable to 512K on the card!). You can upgrade to a 12.5 MHz chip
if you really need it. DTACK is NOT grounded on this board, so you
have access to the full 16-megabyte address space. The 16K ROM on the
board contains monitor functions and diagnostics. YOu can replace the
ROM with up to 64K of EPROM if you want. Software? The price
includes a complete UCSD P-system (I think he said version 4.1) with
Pascal, Basic, and Fortran compilers. You also get an Applesoft-
compatible BASIC interpreter that runs entirely inside the 68000.
CP/M-68 is optional, and Unix is supposed to be available soon. See
their ad in the latest Nibble Magazine.

4. Lee Meador has designed a board with 64K RAM, 4K EPROM, and a 2MHz
6502 on it. This unique board does not talk directly to the Apple
bus; instead, there are two parallel ports (I presume implemented with
a 6522 chip). One 8-bit port talks to the Apple I/O bus, and the
other is available to outside devices. Software runs on the board at
2MHz, and at the same time your Apple chips do their 1MHz processing.
I can think of a lot of neat ways to use Lee's board, including as a
printer buffer/controller, as a high-speed math processor, as a hard
disk interface, and so on. If enough of you are interested, Lee will
sell these for around $500 each, along with some demonstration

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1044 of 2550

Apple II Computer Info

software.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1045 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:ORDER.FORM.txt
==

!A
S-C Software Corporation
2331 Gus Thomasson, #125
 Dallas, TX 75228
 (214) 324-2050
BE

Order Date: ___/___/ 84 Ship Date: ___/___/ 84

Ship to: ______________________________Bill to:

Phone: (_____) _____-____________ P/O #:

Terms: [] Bill ___ days Ship by:

 [] COD

 [] Charge MC/VISA _______ _______ _______ _______ ___/___

 [] Charge Am. Ex. ______ _____________ __________ ___/___

 exp
date approv

Quantity | Item | Price |
Total
-----------|--|-----------|-

1 | | |
 | | |
-----------|--|-----------|-

2 | | |
 | | |
-----------|--|-----------|-

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1046 of 2550

Apple II Computer Info

3 | | |
 | | |
-----------|--|-----------|-

4 | | |
 | | |
-----------|--|-----------|-

5 | | |
 | | |
-----------|--|-----------|-

6 | | |
 | | |
-----------|--|-----------|-

7 | | |
 | | |
-----------|--|-----------|-

8 | | |
 | | |
-----------|--|-----------|-

 Total: $

 Shipping: $

=============

 $

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1047 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:Parity.txt
==

Generating Parity..........................Bob Sander-Cederlof

When large amounts of data are being moved around it is easy to garble
some. When you transmit characters over the telephone, or read them
from a tape or disk, you want some kind of assurance that the message
does not get modified by the medium.

Lots of schemes have been invented to prevent, detect, and even
correct transmission errors: checksums, parity, cyclic redundancy
codes, and more.

Checksums are used inside the Apple all the time. If you ever used
cassette tapes with your Apple, you were re-assured to know that each
program was recorded with a checksum. DOS 3.3 adds a checksum to the
end of every sector on the disk. The checksum is re-computed when you
read a tape or disk sector; if the result is different, at least one
bit in the data is wrong.

Most of the checksums I have seen are of the exclusive-or type. All
the bytes in the data record are EORed together, and the result is
written at the end of the record. When the data is read, the in-
coming bytes are again EORed together, and finally EORed with the
checksum itself. If the final result is non-zero, an error occurred.

Checksums in the Apple are usually one byte wide. However, for more
security, you could form a wider checksum. Or you could ADD the bytes
together and store a two byte sum. Or store the complement of the
sum, so that adding all the bytes plus the complement will give a zero
result if there are no errors. [Checksums may check out OK even
though errors occur, if the errors are sneaky enough to cancel each
other out.]

Parity is really a kind of checksum, but only one bit wide. A series
of bits is EORed together, and the single-bit result is the parity
value. In an ASCII character there is provision for the leading bit
position to be used for storing a parity bit. An eight-bit byte holds
seven data bits plus a parity bit.

There are two kinds of parity in use: even and odd. Even parity
makes the total number of 1-bits in the stream of bits even; odd
parity makes the total number of 1-bits odd. Both even and odd are in
use today in various kinds of equipment. Many terminals and serial
communication boards allow you to select even, odd, or no parity.
Looking at the ASCII code for a couple of letters, each could be
transmitted in four ways:

Letter "M" 0 1 0 0 1 1 0 1 -- No parity, 8th bit always 0
 1 1 0 0 1 1 0 1 -- No parity, 8th bit always 1
 0 1 0 0 1 1 0 1 -- Even parity

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1048 of 2550

Apple II Computer Info

 1 1 0 0 1 1 0 1 -- Odd parity

Letter "Q" 0 1 0 1 0 0 0 1 -- No parity, 8th bit always 0
 1 1 0 1 0 0 0 1 -- No parity, 8th bit always 1
 1 1 0 1 0 0 0 1 -- Even parity
 0 1 0 1 0 0 0 1 -- Odd parity

Sometimes I have needed a quick way to generate or verify a parity bit
with software. These matters are usually handled in hardware, but not
always.

In the 6502, it is a very simple matter to rotate a byte around and
count the number of one bits present. Then the parity bit can be
merged with the byte, or compared with what is already there.

The following subroutine (PARITY) computes the parity bit and merges
it with the data byte. Call PARITY with the character to be merged in
the A-register. Only the seven data bits will be counted. As
written, the subroutine computes an odd parity bit. You can change
line 1030 to "LDX #0" to compute even parity.

1000 *-------------------------------
1010 * Compute and merge parity bit
1020 *-------------------------------
1030 PARITY LDX #1 (#0 FOR EVEN PARITY)
1040 ASL SHIFT PARITY POSITION OUT
1050 PHA SAVE SHIFTED CHARACTER
1060 .1 BPL .2 IF NEXT BIT = 0, DON'T COUNT
1070 INX IF NEXT BIT = 1, COUNT IT
1080 .2 ASL SHIFT IN NEXT BIT
1090 BNE .1 IF ANY REMAINING BITS = 1
1100 TXA GET COUNT OF 1-BITS
1110 LSR EVEN/ODD BIT OF COUNT INTO CARRY
1120 PLA ORIGINAL CHAR BUT SHIFTED
1130 ROR SHIFT PARITY BIT INTO BIT 8
1140 RTS

I wrote a little program to drive the PARITY subroutine, using all
possible values from 0 through 127, and print out the results:

1150 *-------------------------------
1160 PRHEX .EQ $FDDA MONITOR PRINT (A) IN HEX
1170 COUT .EQ $FDED MONITOR PRINT CHAR IN (A)
1180 *-------------------------------
1190 DEMO LDA #0 FOR CHAR = $00 TO $7F
1200 STA CHAR
1210 .1 JSR PARITY CALL THE PARITY SUBROUTINE
1220 JSR PRHEX PRINT THE CHARACTER
1230 INC CHAR NEXT CHAR
1240 LDA CHAR SEE IF TIME FOR A NEW LINT
1250 AND #$07
1260 BEQ .2 YES
1270 LDA #$A0 <SPACE>
1280 BNE .3 ...ALWAYS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1049 of 2550

Apple II Computer Info

1290 .2 LDA #$8D <RETURN>
1300 .3 JSR COUT PRINT SPACE OR RETURN
1310 LDA CHAR
1320 BPL .1 STILL LESS THAN $80
1330 RTS DEMO FINISHED

When I set it up for odd parity, here is part of the table printed out
by DEMO:

80 01 02 83 04 85 86 07
08 89 8A 0B 8C 0D 0E 8F
10 91 92 13 94 15 16 97
 .
 .
 .

F8 79 7A FB 7C FD FE 7F

Now, how about a subroutine to check parity? Here is a version that
checks an 8-bit value for odd parity. Simply change line 1420 to "LDX
#0" to check for even parity instead. The subroutine returns with
CARRY CLEAR for good parity, or CARRY SET for bad parity.

1400 *-----------------------------
1410 CHECK.PARITY
1420 LDX #1 (OR #0 FOR EVEN PARITY)
1430 PHA SAVE ORIGINAL CHAR
1440 .1 ASL SHIFT NEXT BIT INTO CARRY
1450 BEQ .2 NO REMAINING 1-BITS
1460 BCC .1 LEADING BIT NOT 1-BIT
1470 INX COUNT THE 1-BIT
1480 BCS .1 ...ALWAYS
1490 .2 BCC .3 LATEST SHIFTED BIT WAS 0
1500 INX LATEST SHIFTED BIT WAS 1
1510 .3 TXA BIT COUNT
1520 LSR SHIFT EVEN/ODD BIT INTO CARRY
1530 PLA RESTORE ORIGINAL CHARACTER
1540 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1050 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:Pause.Direct.txt
==

A PAUSE Directive...................................Mike Laumer

Maybe your source code has outgrown even two disks and you need to
know when to swap disks during assembly. Maybe you're using a single-
sheet printer and need to change pages. Maybe you want to change
typefaces on your letter-quality printer. Maybe you want to check the
address of a routine or variable, without having to constantly watch
the screen until it comes along. For whatever reason, you need to
have the S-C Macro Assembler pause during assembly. Here is a new .US
directive to let you do just that!

With this directive, you can insert a line like this anywhere in your
code:

 1300 .US SWAP SOURCE DISK

In each pass, when the assembler encounters this line it will pause,
display "SWAP SOURCE DISK" in inverse text at the bottom of the
screen, beep twice, and wait for a keypress. You can take whatever
action you need to, and press any key to resume assembly.

The listing is for the Language Card version of the assembler. If you
are using the main memory version, you don't need to worry about
write-enabling and -protecting, so you can just delete lines 1220,
1230 and 1280.

The values for the .EQ statements in lines 1170-1180 depend on whether
you are using the Main Memory or the Language Card assembler, and
whether you have Version 1.0 or 1.1. Here's a table of the values for
US.VCTR and SC.CMNT:

 Main Language
 Memory Card Version
 ------ -------- -------

US.VCTR $100C $D00C Both

SC.CMNT $1FD8 $E124 1.0
 $1FCA $E0E4 1.1

That's all there is to it! Now you don't have to constantly stare at
the screen during those long assemblies. Now you can sit back and
wait for your Apple to call you when it needs you.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1051 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:PDP11.XAsm.txt
==

Yet Another Cross Assembler: PDP-11

We are turning the tables at last. When the 6502 was created six or
seven years ago, programmers used PDP-11 development systems with
cross assemblers to write 6502 code. Now you can use your Apple to
write programs for the Digital Equipment Corporation's -11 family.
Thanks to Martin Buchholtz for encouraging us to develop this one. He
plans to use it for writing programs to run in DEC Falcon SBC-11 based
systems. Only $50, if you already own the S-C Macro Assembler.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1052 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:Rogram.2.Large.txt
==

ROGRAM TOO LARGE???..................................Lee Meador

I was writing an ampersand file-handling routine, using the File
Manager in DOS as described in chapter 6 of Beneath Apple DOS. I
wanted my Applesoft program to be able to set ONERR and catch errors
in files (wrong name, too short, etc.) But I also wanted the error
messages to come out in immediate mode or with no ONERR set. Since I
was doing my own file-handling, I was going to have to provide my own
error outputs. Originally I tried this:

ERROR LDY #$0A error code offset
 LDA ($04),Y $04 -> FM parmlist
 JMP $A6D2 jump into DOS error handler

This worked OK when used in code that was called from an Applesoft
program, but when I called it in immediate mode (from the "]") I would
always get "ROGRAM TOO LARGE" when an error occurred.

You might guess that I have found a solution. The problem is caused
when we jump into DOS at $A6D2 with the IO hooks still pointing into
DOS. The routine starting at $A6D2 saves the error code in a
temporary location at $AA5C and calls $A702 to print a
"<return><beep><return>". Since we entered illegally that output goes
to DOS at $9EBD, then via a JSR to $9ED1 where the accumulator is
saved in a temporary location -- $AA5C! This leaves that last
<return> in $AA5C.

When control returns to the error handler DOS then tries to look up
error message number 141 ($8D) in the 16-entry table of offsets
starting at $AA3F. This loads the offset from location $AACC, which
happens to contain the high-order byte of the address of the OPEN
command handler ($AB22)! This leaves the error message printer with
an offset of $AB into the messages at $A971. And that is what
produces "ROGRAM TOO LARGE". Look at the routines at $A6D2 and $A702
for more detail. $A702 is meant to be called with the error code in
the X register.

Now here's a method to have the error handled correctly:

OUT.HOOK .EQ $36
HARD.COUT .EQ $FDF0

ERROR LDA #HARD.COUT point hook out of DOS
 STA OUT.HOOK
 LDA /HARD.COUT
 STA OUT.HOOK+1 DOS will fix it back
 LDY #$0A index to error code
 LDA ($04),Y $04 -> FM parmlist
 JMP $A6D2 do it ...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1053 of 2550

Apple II Computer Info

That takes care of getting the right error messages. Now if I could
just figure out some way to make sure that no errors ever occur. . .

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1054 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:Articles:SC.Capture.txt
==

S-C CAPTURE -- A Modem Program for the Word Processor..........
 Jim Church

If you like to sign on to the The Source or CompuServe or some such
system, you should get a copy of the S-C Word Processor. I like to
receive the programs from CALL-A.P.P.L.E. magazine by modem and the S-
C Word Processor really makes that easy.

What you do is quite simple. Just put a copy of B.SC.CAPTURE on the
disk with the Word Processor. Then, whenever you want to capture a
session with a remote system, you can choose D from the word processor
menu and BLOAD B.SC.CAPTURE. After the routine is loaded, return to
the main menu and choose L to load a sign-on file containing the
commands necessary to dial the number you want to call. Here is a
sample sign-on file, which I use to call up The Source.

 !pr2
 Q_*367-6021 (The Q_ is a Control-Q)
 !pr768

Now choose P from the menu, and your word processor will start dialing
the phone! From here on you just operate the remote system as usual.
The top line of the screen will show the address where characters are
being stored, and the rest of the screen shows the text you are
entering and receiving.

When you want to quit, just type a Control Z to hang up your phone and
return to the word processor's main menu. Select E and you will see a
copy of everything that transpired. Now you can edit the text however
you want to, and save it all to your disk.

The !pr768 command above is intended to provide a hook for a user-
written printer driver. It sets the output hook at $36-37 to $300.
The next time the Word Processor tries to output a character, it wakes
up the capture routine, which completely takes over until it is turned
off with a Control Z. This is slightly abusing the !pr directive, so
if you follow this example for other routines, be sure to have lines
like 1570-1590 at the beginning of your routine, and exit to $803 at
the end, so the Word Processor can reconnect itself correctly.

That's all there is to it. You could probably do a lot to "smarten
up" this dumb terminal program. The way I have done it, it recognizes
a Control Z from the keyboard and filters out incoming Control J's.
That's all it does. Probably it should filter out Control G too, at
the very least. My intention is to demonstrate the simple fact that
the word processor is a very versatile creature.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1055 of 2550

Apple II Computer Info

This works, the way it is, with the D. C. Hayes Micromodem II in Slot
2. If your modem is in a different slot, just change line 1260 to
show the correct slot number.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1056 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:DOS3.3:S.DispCharSet.txt
==

 1000 *SAVE S.DISPLAY CHAR SET
 1010 *--------------------------------
 1020 * DISPLAY CHARACTER SET
 1030 *--------------------------------
 1040 CNT8 .EQ $00
 1050 B .EQ $01
 1060 CNT16 .EQ $02
 1070 *--------------------------------
 1080 EPROM.A.IMAGE .EQ $6800
 1090 EPROM.B.IMAGE .EQ $7000
 1100 *--------------------------------
 1110 AS.HGR .EQ $F3E2
 1120 *--------------------------------
 1130 .OR $803
 1140 DISPLAY
 1150 *---TURN ON HI-RES GRAPHICS------
 1160 LDA $C081 GET A/S ROMS ON MOTHERBOARD
 1170 JSR AS.HGR
 1180 LDA $C080 BACK TO S-C ASM IN RAM CARD
 1190 *---FIRST CHAR SET---------------
 1200 LDA /$2000 TOP LINE, LEFT SIDE
 1210 STA SCREEN.ADR+1
 1220 LDA #$2000
 1230 STA SCREEN.ADR
 1240 LDA /EPROM.A.IMAGE FIRST CHARACTER SET
 1250 STA EPROM.ADR+1
 1260 LDA #EPROM.A.IMAGE
 1270 STA EPROM.ADR
 1280 JSR DISPLAY.ONE.SET
 1290 *---SECOND CHAR SET--------------
 1300 LDA /$2014 TOP LINE, RIGHT SIDE
 1310 STA SCREEN.ADR+1
 1320 LDA #$2014
 1330 STA SCREEN.ADR
 1340 LDA /EPROM.B.IMAGE SECOND CHARACTER SET
 1350 STA EPROM.ADR+1
 1360 LDA #EPROM.B.IMAGE
 1370 STA EPROM.ADR
 1380 JSR DISPLAY.ONE.SET
 1390 *---PAUSE UNTIL KEYSTROKE--------
 1400 .1 LDA $C000
 1410 BPL .1
 1420 STA $C010
 1430 RTS RETURN TO ASSEMBLER
 1440 *--------------------------------
 1450 * DISPLAY ONE CHARACTER SET IN 16-BY-16 FORMAT
 1460 *--------------------------------
 1470 DISPLAY.ONE.SET
 1480 LDA #16 COUNT 16 ROWS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1057 of 2550

Apple II Computer Info

 1490 STA CNT16
 1500 .1 JSR DISPLAY.ONE.ROW
 1510 *---NEXT ROW IN EPROM DATA-------
 1520 CLC
 1530 LDA EPROM.ADR
 1540 ADC #15*8
 1550 STA EPROM.ADR
 1560 LDA EPROM.ADR+1
 1570 ADC #0
 1580 STA EPROM.ADR+1
 1590 *---NEXT ROW ON SCREEN-----------
 1600 SEC
 1610 LDA SCREEN.ADR
 1620 SBC #$2000-$80
 1630 STA SCREEN.ADR
 1640 LDA SCREEN.ADR+1
 1650 SBC /$2000-$80
 1660 STA SCREEN.ADR+1
 1670 CMP #$24 HIT THE BREAK YET?
 1680 BCC .2 NO, GO ON
 1690 LDA SCREEN.ADR YES, ADJUST THE ADDRESSES
 1700 SBC #$400-$28
 1710 STA SCREEN.ADR
 1720 LDA SCREEN.ADR+1
 1730 SBC /$400-$28
 1740 STA SCREEN.ADR+1
 1750 .2 DEC CNT16 LAST ROW YET?
 1760 BNE .1 ...NO
 1770 RTS ...YES, RETURN
 1780 *--------------------------------
 1790 * DISPLAY ONE ROW OF 16 CHARACTERS
 1800 *--------------------------------
 1810 DISPLAY.ONE.ROW
 1820 LDA #8 8 SCREEN LINES FOR ONE ROW
 1830 STA CNT8
 1840 .1 LDY #0 EPROM DATA INDEX
 1850 LDX #0 SCREEN IMAGE INDEX
 1860 .2 JSR GET.PUT MOVE ONE BYTE TO SCREEN
 1870 TYA ADD 8 TO EPROM DATA INDEX
 1880 CLC
 1890 ADC #8
 1900 TAY
 1910 INX BUMP SCREEN IMAGE INDEX
 1920 CPX #16
 1930 BCC .2 MORE CHARACTERS
 1940 INC EPROM.ADR BUMP TO NEXT LINE OF EPROM DATA
 1950 LDA SCREEN.ADR+1 +$400
 1960 ADC #3 (CARRY = 1)
 1970 STA SCREEN.ADR+1
 1980 DEC CNT8 NEXT SCREEN LINE
 1990 BNE .1 ...IF ANY
 2000 RTS RETURN
 2010 *--------------------------------
 2020 * REVERSE THE ORDER OF BITS 6-0 IN A-REG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1058 of 2550

Apple II Computer Info

 2030 * (CHANGE XABCDEFG TO 0GFEDCBA)
 2040 *--------------------------------
 2050 REVERSE.BITS
 2060 LSR REVERSE 7 BITS
 2070 ROL B A=0XABCDEF B=XXXXXXXG
 2080 LSR
 2090 ROL B A=00XABCDE B=XXXXXXGF
 2100 LSR
 2110 ROL B A=000XABCD B=XXXXXGFE
 2120 LSR
 2130 ROL B A=0000XABC B=XXXXGFED
 2140 LSR
 2150 ROL B A=00000XAB B=XXXGFEDC
 2160 LSR
 2170 ROL B A=000000XA B=XXGFEDCB
 2180 LSR
 2190 ROL B A=0000000X B=XGFEDCBA
 2200 LDA B
 2210 AND #$7F 0GFEDCBA
 2220 RTS
 2230 *--------------------------------
 2240 * PICK UP A BYTE OF EPROM DATA,
 2250 * REVERSE THE BITS, AND STORE
 2260 * IT ON THE SCREEN.
 2270 *--------------------------------
 2280 GET.PUT
 2290 LDA $FFFF,Y
 2300 EPROM.ADR .EQ *-2
 2310 JSR REVERSE.BITS
 2320 STA $FFFF,X
 2330 SCREEN.ADR .EQ *-2
 2340 RTS
 2350 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1059 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:DOS3.3:S.FADD.txt
==

 1000 *********************************
 1010 * *
 1020 * F A D D *
 1030 * *
 1040 * (FIND ADDRESS REFERENCES) *
 1050 * ------------------------- *
 1060 * *
 1070 * A PUBLIC DOMAIN UTILITY *
 1080 * *
 1090 * BY.. BROOKE W BOERING *
 1100 * *
 1110 *********************************
 1350
 1360 * TO USE:
 1370 * 1- BLOAD FADD.OBJ
 1380 * 2- GET TO MONITOR
 1390 * 3- 'FAT FINGER' YOUR ADDRESS
 1400 * INTO 6-7 IN HI-LO ORDER.
 1410 * NOTE ------> ^^ ^^ <-------
 1420 * 4- EXECUTE WITH A '300G'
 1430
 1460 *---------------------------------
 1470 * E Q U A T E S
 1480
 1490 TARGHI .EQ $6
 1500 TARGLO .EQ $7
 1510 * NOTE: ABOVE REVERSES NORMAL LO/HI-BYTE
 1520 * ORDER FOR EASIER KEYIN FROM MONITOR
 1530 WHER .EQ $8
 1540 WHERLO .EQ $8
 1550 WHERHI .EQ $9
 1560
 1570 LENGTH .EQ $2F
 1580 PCL .EQ $3A
 1590 PCH .EQ $3B
 1600 COLOR .EQ $30
 1610
 1620 INSDS2 .EQ $F88E
 1630 INSTDSP .EQ $F8D0
 1640 PCADJ3 .EQ $F956
 1650 CROUT .EQ $FD8E
 1660 *---------------------------------
 1670 .OR $300
 1680 * .TF B.FADD
 1690 *---------------------------------
 1700 START
 1710
 1720 LDX #0
 1730 STX WHERLO START AT BEGINNING

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1060 of 2550

Apple II Computer Info

 1740 STX WHERHI OF MEMORY
 1750
 1760 *-- CHECK FOR DIRECT REFERENCE
 1770 .1
 1780 LDY #0
 1790 LDA (WHER),Y GET WHERAT-LO
 1800 STA COLOR SAVE TEMP
 1810 LDA (WHER),Y GET IT AGAIN
 1820 CMP COLOR STILL THE SAME?
 1830 BNE .8 NO, SKIP IT, NO MEMORY HERE
 1840 * (FALL THROUGH IF MEMORY AT THIS ADDRESS)
 1850
 1860 CMP TARGLO ? TARGET-LO ?
 1870 BNE .3 NO, GO AHEAD
 1880 INY
 1890 LDA (WHER),Y GET WHERAT-HI
 1900 CMP TARGHI ? TARGET-HI ?
 1910 BNE .3 NO, GO AHEAD
 1920 * (FALL THROUGH IF 2-BYTE MATCH ON TARGET)
 1930
 1940 *-- APPARENT MATCH;
 1950 * MAKE SURE IT'S A 3-BYTE INSTRUCTION
 1960 .2
 1970 LDY WHERHI GET ADDRESS OF MATCH
 1980 LDX WHERLO
 1990 BNE .24
 2000 DEY POINT TO INSTRUCTION BYTE
 2010 .24
 2020 DEX
 2030 STX PCL AND SET PROGRAM COUNTER
 2040 STY PCH
 2050
 2060 LDX #0
 2070 LDA (PCL,X) GET OPCODE
 2080 JSR INSDS2 USE MONITOR DISASSEMBLER ROUTINE
 2090 LDA LENGTH
 2100 CMP #2 3-BYTE INSTRUCTION?
 2110 BEQ .6 OK; GO AHEAD TO DISPLAY
 2120 * (FALL THROUGH WHEN NOT A 3-BYTE INSTR)
 2130
 2140 *-- CHECK FOR RELATIVE BRANCH
 2150 .3
 2160 LDY #0
 2170 LDA (WHER),Y GET INSTRUCTION BYTE
 2180 AND #$1F ISOLATE SIGNIFICANT BITS
 2190 CMP #$10 A BRANCH INSTRUCTION?
 2200 BNE .8 DEFINITELY NOT
 2210 * (FALL THROUGH WHEN A BRANCH INSTRUCTION)
 2220
 2230 *-- TEST IF BRANCHING TO TARGET
 2240 * NOTE: USING MONITOR TECHNIQUE
 2250 .4
 2260 LDX WHERLO PRESET FOR PCADJ3
 2270 LDY WHERHI

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1061 of 2550

Apple II Computer Info

 2280 STX PCL SET PC TO OPCODE BYTE
 2290 STY PCH
 2300 LDY #1
 2310 LDA (WHER),Y GET OFFSET BYTE
 2320 JSR PCADJ3 LEAVES EFFECTIVE ADDRESS-1
 2330 * IN Y AND A
 2340 TAX
 2350 INX
 2360 BNE .43
 2370 INY
 2380 .43
 2390 *-- NOW 'BRANCH TO' ADDRESS IS IN Y AND X
 2400 CPX TARGLO
 2410 BNE .8
 2420 CPY TARGHI
 2430 BNE .8
 2440 * (FALL THROUGH ON MATCH)
 2450
 2460 *-- DISPLAY MATCHED INSTRUCTION
 2470 .6
 2480 * PCL/PCH ARE SET
 2490 JSR INSTDSP <= MONITOR ROUTINE
 2500
 2510 *-- ALLOW KEYED PAUSE/RELEASE
 2520 .7
 2530 BIT $C000 KEY DOWN?
 2540 BPL .8 NO, GO AHEAD
 2550 BIT $C010 YES, CLEAR STROBE
 2560 .77
 2570 BIT $C000 RELEASED?
 2580 BPL .77 NO, LOOP TIL SO
 2590 BIT $C010 YES, CLEAR STROBE
 2600
 2610 *-- POST DISPLAY (OR NO MATCH)
 2620 .8
 2630 INC WHERLO KICK ADDRESS
 2640 BNE .1 LOOP 255 OF 256
 2650 INC WHERHI KICK ADDR PAGE#
 2660 BEQ .9 EXIT AT 65536 OVFLO
 2670
 2680 *-- AT NEW PAGE !!
 2690 LDA WHERHI
 2700 CMP #$C0 AT THE I/O PORTS ?
 2710 BNE .1 NO, LOOP BACK
 2720 LDA #$D0 YES, SKIP 'EM
 2730 STA WHERHI : (AVOID PROBLEMS)
 2740 BNE .1 LOOP BACK
 2750
 2760 .9
 2770 JMP CROUT RETURN THROUGH CROUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1062 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:DOS3.3:S.PARITY.txt
==

 1000 *--------------------------------
 1010 * DEMONSTRATE PARITY SUBROUTINE
 1020 *--------------------------------
 1030 PRHEX .EQ $FDDA
 1040 COUT .EQ $FDED
 1050 DEMO LDA #0 FOR CHAR = $00 TO $7F
 1060 STA CHAR
 1070 .1 LDA CHAR
 1080 JSR PARITY MERGE WITH PARITY BIT
 1090 JSR PRHEX PRINT AS TWO HEX DIGITS
 1100 LDA #$A0 SPACE
 1110 JSR COUT SEPARATE WITH TWO SPACES
 1120 JSR COUT
 1130 INC CHAR NEXT CHAR
 1140 BPL .1
 1150 RTS RETURN
 1160 *--------------------------------
 1170 CHAR .BS 1
 1180 *--------------------------------
 1190 * COMPUTE PARITY BIT AND MERGE WITH CHAR
 1200 * CALL: (A) = 7-BIT CHARACTER, HIGH BIT IGNORED
 1210 * RETURN: (A) = SAME CHARACTER, WITH PARITY IN HIGH BIT
 1220 *--------------------------------
 1230 PARITY LDX #1 OR #0 FOR EVEN PARITY
 1240 ASL SHIFT PARITY POSITION OUT
 1250 PHA SAVE SHIFTED CHAR
 1260 .1 BPL .2 IF NEXT BIT = 0
 1270 INX IF NEXT BIT = 1, COUNT IT
 1280 .2 ASL SHIFT IN NEXT BIT
 1290 BNE .1 IF ANY REMAINING BITS = 1
 1300 TXA GET 1-BIT COUNT
 1310 LSR PUT PARITY BIT INTO CARRY
 1320 PLA ORIGINAL CHAR BUT SHIFTED
 1330 ROR MERGE PARITY BIT
 1340 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1063 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:DOS3.3:S.PauseDirect.txt
==

 1000 *--------------------------------
 1010 * .US DIRECTIVE TO PAUSE DURING ASSEMBLY
 1020 *
 1030 * SYNTAX: .US <phrase>
 1040 * RESULT: Displays <phrase> in inverse text
 1050 * and waits for a keypress
 1060 *
 1070 *--------------------------------
 1080 CHR.PTR .EQ $7B
 1090 WBUF .EQ $200
 1100 CORNER .EQ $7D0
 1110 KEYBOARD .EQ $C000
 1120 STROBE .EQ $C010
 1130 PROTECT .EQ $C080
 1140 ENABLE .EQ $C083
 1150 BELL .EQ $FBE2
 1160
 1170 US.VCTR .EQ $D00C
 1180 SC.CMNT .EQ $E124
 1190 *--------------------------------
 1200 .OR $300
 1210 *--------------------------------
 1220 LDA ENABLE WRITE ENABLE
 1230 LDA ENABLE RAM CARD
 1240 LDA #PAUSE
 1250 STA US.VCTR+1 POINT .US VECTOR
 1260 LDA /PAUSE
 1270 STA US.VCTR+2 TO PAUSE ROUTINE
 1280 LDA PROTECT PROTECT CARD
 1290 RTS
 1300 *--------------------------------
 1310 PAUSE JSR BELL BEEP
 1320 LDX #0
 1330 LDY CHR.PTR CHAR POINTER
 1340 .1 LDA WBUF,Y GET CHAR FROM CALL LINE
 1350 BEQ .2 END OF LINE?
 1360 AND #$3F NO, INVERT CHAR
 1370 STA CORNER,X AND PUT IT AT BOTTOM OF SCREEN
 1380 INX
 1390 INY
 1400 CPX #40 LINE FULL?
 1410 BCC .1 NO, GET ANOTHER CHAR
 1420
 1430 .2 JSR BELL BEEP
 1440 .3 LDA KEYBOARD
 1450 BPL .3 WAIT FOR KEYPRESS
 1460 STA STROBE
 1470 JMP SC.CMNT RETURN TO ASSEMBLY
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1064 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8305:DOS3.3:S.SC.CAPTURE.txt
==

 1000 *--------------------------------
 1010 *
 1020 * S-C CAPTURE
 1030 *
 1040 * A COMMUNICATIONS MODULE FOR
 1050 * THE S-C WORD PROCESSOR
 1060 *
 1070 * BY JIM CHURCH
 1080 *
 1090 *--------------------------------
 1100 * FULL DUPLEX CAPTURE PROGRAM
 1110 * WORKS WITH MICROMODEM II
 1120 * AND S-C WORD PROCESSOR
 1130 *
 1140 * GO INTO EDITOR W/EMPTY BUFFER
 1150 * ENTER COMMANDS AS FOLLOW:
 1160 *
 1170 * !pr2
 1180 * Q*367-6021 THE "Q" IS A CONTROL-Q
 1190 * !pr768
 1200 *
 1210 * LEAVE EDITOR, CHOOSE P ON MENU
 1220 *--------------------------------
 1230 .OR $300
 1240 .TF B.SC.CAPTURE
 1250
 1260 SLOT .EQ $02
 1270 SLOT16 .EQ SLOT*16
 1280
 1290 PTR .EQ $00
 1300 WNDTOP .EQ $22
 1310 CH .EQ $24
 1320
 1330 HOOK .EQ $3EA
 1340
 1350 BUFFER .EQ $2000
 1360
 1370 KEYBOARD .EQ $C000
 1380 STROBE .EQ $C010
 1390 MM.CR2 .EQ $C085+SLOT16
 1400 MM.STATUS .EQ $C086+SLOT16
 1410 MM.DATA .EQ $C087+SLOT16
 1420
 1430 PRNTAX .EQ $F941
 1440 INIT .EQ $FB2F
 1450 VTAB .EQ $FC22
 1460 VTABZ .EQ $FC24
 1470 HOME .EQ $FC58
 1480 COUT1 .EQ $FDF0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1065 of 2550

Apple II Computer Info

 1490 SETKBD .EQ $FE89
 1500 SETVID .EQ $FE93
 1510 *--------------------------------
 1520 SC.CAPTURE
 1530 JSR INIT FIX SCREEN
 1540 JSR HOME CLEAR SCREEN
 1550 LDA #1 RESERVE TOP LINE
 1560 STA WNDTOP FOR LOCATION COUNTER
 1570 JSR SETVID PR#0
 1580 JSR SETKBD IN#0
 1590 JSR HOOK TELL DOS
 1600 LDX #0 WORD PROCESSOR
 1610 STX BUFFER NEEDS 0 AT $2000
 1620 INX
 1630 STX PTR START POINTER
 1640 LDA /BUFFER AT $2001
 1650 STA PTR+1
 1660
 1670 TERMINAL
 1680 LDA KEYBOARD KEY DOWN?
 1690 BPL MODEM NO, CHECK MODEM
 1700 STA STROBE YES, CLEAR STROBE
 1710 CMP #$9A CONTROL Z?
 1720 BEQ QUIT YES, LEAVE
 1730 PHA SAVE KEYPRESS
 1740 .1 LDA MM.STATUS CHECK IF THE TRANSMIT
 1750 AND #$02 REGISTER EMPTY BIT IS SET
 1760 BEQ .1 NO, WAIT FOR IT
 1770 PLA YES, GET KEY BACK
 1780 STA MM.DATA SEND IT
 1790 BMI TERMINAL AND LOOP AGAIN
 1800
 1810 MODEM LDA MM.STATUS CHECK IF THE RECEIVER
 1820 AND #$01 REGISTER FULL BIT IS SET
 1830 BEQ TERMINAL NO, LOOP AGAIN
 1840 LDA MM.DATA YES, GET CHARACTER
 1850 ORA #$80 SET HI BIT
 1860 CMP #$8A CONTROL J?
 1870 BEQ TERMINAL IGNORE IT
 1880 JSR COUT1 PRINT CHAR
 1890 LDY #0
 1900 STA (PTR),Y CAPTURE IT IN BUFFER
 1910
 1920 INCR INC PTR BUMP POINTER LO
 1930 BNE COUNT NOT 0
 1940 INC PTR+1 BUMP POINTER HI
 1950 LDA PTR+1 CHECK IF
 1960 CMP #$96 BUFFER END?
 1970 BCS QUIT FULL BUFFER, LEAVE
 1980
 1990 COUNT LDA CH SAVE CH
 2000 PHA ON STACK
 2010 LDA #0 TOP LINE
 2020 JSR VTABZ FOR LOCATION COUNTER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1066 of 2550

Apple II Computer Info

 2030 LDA #$14 COL 20
 2040 STA CH IN CH
 2050 LDA PTR+1 HI BYTE OF LOCATION
 2060 LDX PTR LO BYTE
 2070 JSR PRNTAX PRINT ADDRESS
 2080 PLA GET OLD CH AND RETURN
 2090 STA CH TO WHERE WE WERE
 2100 JSR VTAB OLD LINE
 2110 BCC TERMINAL START OVER
 2120
 2130 QUIT LDA #$00 END-OF-TEXT MARKER
 2140 STA (PTR),Y FOR WORD PROCESSOR
 2150 LDA #$05 HANG UP PHONE
 2160 STA MM.CR2 AT CONTROL REGISTER
 2170 JMP $803 COLDSTART WORD PROCESSOR
 2190 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1067 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Cross.Ad.txt
==

S-C Macro Cross Assemblers

The high cost of dedicated microprocessor development systems has
forced many technical people to look for alternate methods to develop
programs for the various popular microprocessors. Combining the
versatile Apple II with the S-C Macro Assembler provides a cost
effective and powerful development system. Hobbyists and engineers
alike will find the friendly combination the easiest and best way to
extend their skills to other microprocessors.

The S-C Macro Cross Assemblers are all identical in operation to the
S-C Macro Assembler; only the language assembled is different. They
are sold as upgrade packages to the S-C Macro Assembler. The S-C
Macro Assembler, complete with 100-page reference manual, costs $80;
once you have it, you may add as many Cross Assemblers as you wish at
a nominal price. The following S-C Macro Cross Assembler versions are
now available, or soon will be:

Motorola: 6800/6801/6802 now $32.50
 6805 now $32.50
 6809 now $32.50
 68000 now $50.00

Intel: 8048 now $32.50
 8051 now $32.50
 8085 now $32.50

Zilog: Z-80 now $32.50

RCA: 1802/1805 now $32.50

Rockwell: 65C02 now $20.00

DEC: PDP-11/LSI-11 now $50.00

The S-C Macro Assembler family is well known for its ease-of-use and
powerful features. Thousands of users in over 30 countries and in
every type of industry attest to its speed, dependablility, and user-
friendliness. There are 20 assembler directives to provide powerful
macros, conditional assembly, and flexible data generation. INCLUDE
and TARGET FILE capabilities allow source programs to be as large as
your disk space. The integrated, co-resident source program editor
provides global search and replace, move, and edit. The EDIT command
has 15 sub-commands combined with global selection.

Each S-C Assembler diskette contains two complete ready-to-run
assemblers: one is for execution in the mother-board RAM; the other
executes in a 16K RAM Card. The HELLO program offers menu selection
to load the version you desire. The disks may be copied using any

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1068 of 2550

Apple II Computer Info

standard Apple disk copy program, and copies of the assembler may be
BSAVEd on your working disks.

S-C Software Corporation has frequently been commended for outstanding
support: competent telephone help, a monthly (by subscription)
newsletter, continuing enhancements, and excellent upgrade policies.

S-C Software Corporation (214) 324-2050
P.O. Box 280300, Dallas, Texas, 75228

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1069 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:FastTextFileIO.txt
==

 Paul Schlyter's DOS patch
Speeding-up Text File I/O......................Paul Schlyter

In the April 1983 AAL (pages 2-8), Bob Sander-Cederlof presented a
small patch that I had sent him almost a year earlier. The patch
greatly speeded up LOAD/BLOAD of long files. At the moment, I had
recreated a lot of very long assembler source files, such as the
source code to DOS and Applesoft. The long assembly times grew
annoying, especially when I realized how much time was wasted inside
RWTS just waiting for the right sector to pass under the R/W head of
the disk drive!

Just one note about what was written on the bottom of page 2 of that
issue: my patch does not influence SAVE/BSAVE at all. The read-
after-write during a SAVE/BSAVE is made using the VERIFY command, and
that command already works at top speed; in fact, VERIFY's speed was a
major inspiration for my LOAD/BLOAD patch.

Next I tried to speed up SAVE/BSAVE with an equally simple patch. I
found it was not so easy, mainly because SAVE/BSAVE might have to
allocate new sectors for the file. I also felt it wasn't worth the
trouble writing a more complicated patch, since SAVE/BSAVE isn't
really used that often.

Next in line was a speedup of text file read and write. Here I found
a great "time-hog" in DOS. The innocent-looking routines at $AE68 and
$AE7E each require about 800 cycles to execute. All they do is to
swap a 45-byte area back and forth between the file buffers and a
local workarea inside the file manager. This is of course necessary
when you open/close files or switch from file to file. But if you're
reading the same text file, the swapping may not be needed.
Nevertheless, file manager swaps the buffer in and out for each and
every character you read or write! This amounts to 256*(800+800) =
roughly 410,000 cycles or 0.4 seconds for each sector you read or
write! This is about six seconds for each track! And all it does
during those six seconds is needlessly swap the same 45 bytes back and
forth!

The principle of my patch is this: When entering or exiting the file
manager, first check to see if you're doing something else besides
reading/writing. If so, just go on as usual. If you are
reading/writing, check to see if the local workarea belongs to the
file being read/written. If so, just exit and save 800 clock cycles.
If not, check to see if it belongs to another file. If the workarea
contains another file's data, put it back into the file buffer where
it belongs and then get the workarea for the current file. All occurs
this when you enter the file manager.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1070 of 2550

Apple II Computer Info

Upon exit from the file manager, if you're reading/writing, just set a
flag to mark that the local workarea is being used, and save the
address of the file buffer it came from. This always saves 800
cycles.

Practical tests show that text file reading/writing is done up to
about 40% faster with this patch installed. This is slower than
Diversi-DOS, but on the other hand this patch is compatible with S-C
assemblers (and almost everything else in sight). Also, this patch
works equally well for all file types; it even speeds up the loading
of type-R files with RBOOT/RLOAD (from DOS Tool Kit). Diversi-DOS
treats T type files in a special way, but does nothing to speed up
type-R files. And mine is free!

I put the patch at $300, because there's no free area large enough
inside DOS where you can put it...especially if you have already
installed the LOAD/BLOAD speedup described by Bob last April. The
listing which follows includes code to hook in the patches by
overwriting the file manager where it calls the two workarea transfer
subroutines.

Making Paul's Patches Fit in DOS...........Bob Sander-Cederlof

Don't tell me it won't fit! It is so good, it MUST fit!

Let's see...there are 74 bytes available from $B6B3 thru $B6FC. But
Paul's patches are 93 bytes long. Maybe if I twist it sideways and
then hold my mouth just right....

Ha! It worked!

Let me tell you how, but please don't think I am trying to pick Paul
apart. His analysis and creative programming are terrific! He has
taught me a lot.

First I noticed some common code in PATCH1 and PATCH2. I made a
subroutine called CHECK.OPCODE to test for the read or write command.
I used the carry status to pass back the answer to the caller. Then I
put the call to POINT.TO.WORKAREA (which loads an address into $42 and
$43) at the top of the subroutine. There's no need to duplicate it in
the two callers. These changes saved two or three bytes, for a tiny
penalty in speed.

I noticed Paul used CLC, ROR FLAG to clear the sign bit of FLAG. I
save one byte two times by replacing these with LSR FLAG. I set up
the carry status info in CHECK.OPCODE so that carry SET means
read/write...this lets me omit the SEC before ROR FLAG when I want to
turn on the sign bit.

I noticed that both patches used the current contents of PNTR: PATCH1
compared PNTR to PNTR.SAVE, while PATCH2 copied PNTR into PNTR.SAVE.
So I loaded up the contents of PNTR into the A- and X-registers inside
my CHECK.OPCODE subroutine. This saves a few more bytes.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1071 of 2550

Apple II Computer Info

At lines 1320-1330 in Paul's program he uses BNE to jump around an
RTS. I changed that to BEQ to an existing RTS further down in the
program, saving one byte.

I moved the PNTR.SAVE variable, two bytes, to another area. $B5CF and
$B5D0 are unused, at the end of the file manager parameter list.
Conveniently, the subroutines which load addresses into PNTR refer to
three such addresses inside the parameter list. (See the code at
$AF08-$AF1C.) The X-register is loaded with 0, 2, or 4 to index into
the list. By putting PNTR.SAVE at the end of the list, I can load the
X-register with 8 (PNTR.SAVE-$B5C7) and use the same subroutine,
entering at $AF12. This takes five bytes instead of twelve for LDA-
STA- LDA-STA.

The final shortener I applied was to make the code which clears FLAG
and copies the workarea to a buffer into a subroutine. This is called
PATCH4 in my listing. The two lines at PATCH4 look just like what was
in line inside the PATCH1 code, but different from what was done by
the PATCH2 code.

PATCH2 falls into PATCH4 if the opcode was not read/write. This used
to clear the flag and call $AE7E; now it is $AE81. Since the
difference between $AE7E and $AE81 is a JSR to setup PNTR with the
workarea address, and since that was already arranged by CHECK.OPCODE,
I can safely enter at $AE81.

No doubt if you followed me this far, you can see even more ways to
save bytes. In fact, I see one extra byte myself! But the program is
now just the right size for that hole at $B6B3, so enough is enough.

My listing includes some code to install the patches. If you assemble
my version, and BSAVE it on a binary file (A$300,L$6A), you can BRUN
it whenever you want to install the patches. Or, with version 1.1 of
the Macro Assembler just add these lines:

1195 .TF B.FAST TEXT
1380 .PH $B6B3
1790 .EP

I also worked out the code for using Applesoft POKEs to patch it all
in, and here it is:

100 REM TEXT FILE SPEEDUP PATCH
110 READ N
 : IF N = 0 THEN END
120 READ A
 : FOR I = 0 TO N - 1
 : READ X
 : POKE A + I,X
 : NEXT
 : GOTO 110
200 DATA 74,46771,32,210,182,144,10,205,207,181,
 208,5,236,208,181,240,51,44,252,182,16,
 8,162,8,32,18,175,32,246,182,76,106,174,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1072 of 2550

Apple II Computer Info

 32,8,175,173
210 DATA 187,181,56,73,3,240,5,73,7,240,1,24,165,
 66,166,67,96,32,210,182,144,10,110,252,182,
 141,207,181,142,208,181,96,78,252,182,76,
 129,174,0
220 DATA 2,43787,179,182
230 DATA 2,45967,231,182
240 DATA 0

I tested the patches on a 24-sector text file. The file was created
by using the TEXT command in the S-C Macro Assembler. I used EXEC to
read it back in. I also wrote a short Applesoft program which read
the whole file with GET A$ in a loop. Here are the results:

 NORMAL PATCHED CHANGE

TEXT 24 sec 18 sec 25% faster
EXEC 52 sec 34 sec 35% faster
GET A$ 30 sec 21 sec 30% faster

I think you get the most benefit if the un-patched DOS has to work so
long between calls to RWTS that the disk motor stops, but the patched
DOS keeps the motor alive. You save 0.4 seconds per sector anyway,
but you can also save waiting for the motor to come up to speed.

Warning: One danger I noted, and which I am wary of, is that FLAG
could get out of sync with reality. For example, if somehow FLAG was
set with the sign bit on before ever calling the file manager, it
could try to copy the workarea to any-old-place in RAM (or ROM, or I/O
space). If you install the patches after booting, there should be no
problem. But what happens if you initialize a disk with the patched
DOS? I think the flag MIGHT turn out wrong. Maybe a little patch is
needed to insure FLAG starts out clear, and is cleared after abnormal
exits from file manager (such as RESET).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1073 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Feature.txt
==

Assembly Listing Into a Text File...................Bill Morgan

"That's not a bug, that's a feature!" We've all heard (or said?) that
before, but this time it really seems to be true. We have just
discovered an undocumented feature in Version 1.1 of the S-C Macro
Assembler.

I was trying to see if a program would assemble, and wanted the
assembly to be as fast as possible. For some reason I didn't want to
do the obvious thing and just switch the listing off, and using a .TA
wasn't convenient. So, I stuck a .DU (DUmmy) directive at the
beginning of my program, and a .ED (End Dummy)at the end, figuring
that would eliminate the time spent writing object code to the disk.
When I typed ASM the assembler paused a moment for pass one, then
started listing the beginning of the program. But, when the assembler
got to the .TF directive the listing stopped and the disk drive
started spinning. That wasn't supposed to happen!

When the assembly finished, and the drive stopped turning, I CATALOGed
the disk to see what had happened. There was a Binary file, with the
filename from my .TF directive, but instead of being much smaller that
the source file, it was about twice as big. What could be in that
file?

It seemed dangerous to just BLOAD a file that shouldn't exist, so I
booted up a disk zap program and inspected the disk. That Binary file
contained the text of the assembly listing, starting with the .TF
line. Also, the file had no load address and length bytes. The first
four bytes were "A0 A0 A0 A0", or the ASCII codes for four spaces. If
I had tried to BLOAD the file, it would have loaded at $A0A0, which
would have immediately clobbered DOS!

I was preparing a note to warn everybody not to use .TF within a .DU -
.ED block, when Bob reminded me of how often we WANT an assembly
listing on a Text file, to read into the S-C Word Processor and merge
into an article. Why didn't I find out what the Word Processor would
make of this file? Well, it read the file just fine, but discarded
the first four bytes, since it expects load address and length bytes
in a Binary file. In most cases that is no problem, since the first
line is the .TF <filename> directive, and will be discarded anyway.

Now we have a Binary file containing the text. That's fine with the
S-C Word Processor, but what about other programs, that might require
Text files? As it happens, the Macro Assembler creates a Target File
as a Text file, then updates the Catalog to turn it into a Binary
file. All we have to do is patch the assembler to prevent that change
in the file type. That is only a 1-byte patch.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1074 of 2550

Apple II Computer Info

So, all it takes to send the assembly listing to a disk file is to
begin the program with a .DU and a .TF, and end it with a .ED. If you
want a real Text file, you only have to patch one byte in the
assembler.

To make a long story short, here's how to create a Text file
containing an assembly listing:

1) At the beginning of your program, put the lines:

0000 .DU
0001 .TF LISTING

 and at the end put:

65535 .ED

2) If there is already another .TF directive in your program, insert a
"*" at the beginning of the line, to make it into a comment.

3) Enter one of the following patches:

$1000 Versions: $29DF:0
$D000 Versions: $C083 C083 EAF9:0 N C080

4) Type ASM.

5) And restore the patched location:

$1000 Versions: $29DF:4
$D000 Versions: $C083 C083 EAF9:4 N C080

Now you can load LISTING into a word processor, delete the first and
last lines, and do whatever you want with it!

I tried creating an EXEC file to do all those steps automatically, but
ran into trouble. When the assembly ends the EXEC file loses control,
and the Text file LISTING doesn't get closed. When I can solve that
one I'll let you know.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1075 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 10 July, 1983

In This Issue...

6502 Mini-Assembler in Applesoft 2
Assembly Listing Into a Text File. 8
Speeding-up Text File I/O. 10
Making Paul's Patches Fit in DOS 13
65C02 Department 18
Revised Monitor Patch for ASCII Display. . . 20
Answered Prayer. 23
Eighty-Column SHOW Command 24
Explanation of the New DOS APPEND Bug. . . . 25
New 1983 Edition of DOS 3.3. 26
More Opcodes for the S-C Macro Assembler . . 31

Latest 65C02 Word

The 65C02 really does exist, and we now have a couple of them. As
reported inside, the chips we received work in an Apple //e, but not
in a][+. Well that seems to be a problem with the NCR chips that I
have. Don Lancaster reports that his GTE chips work just fine in all
flavors of Apples. I'm swapping an NCR processor for one of his
GTE's, and will have more details next month. For the time being, if
you buy a 65C02, be sure to get a guarantee that it will work in your
Apple.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1076 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Mini.Assembler.txt
==

6502 Mini-Assembler in Applesoft...........Bob Sander-Cederlof

The original Apple II came with a built-in mini-assembler. By typing
"F666G" in the monitor, you entered a new realm. The prompt changed
from "*" to "!"; errors not only earned a "beep" but also a printed
"?"; and monitor commands were still available by typing an initial
"$". I learned 6502 programming using this little tool, together with
the handy "L" disassembly command. At the time, none of the other
computer systems on the market came with either mini-assembler or "L"
command.

A mini-assembler allows you to type in mnemonics rather than
converting them "by hand". It also will translate branch addresses to
the relative offsets needed in relative branch instructions. It will
not retain the source code on a file, and will not handle labels. If
you want to modify a program, you have to use patches or retype the
whole thing. A full assembler will accept labels and comments, and
will have some method for working with stored source programs. The S-
C Macro Assembler, for example, includes a co-resident source program
editor. The extra features a full assembler can include are limited
only by the potential market. But mini-assemblers are free.

A long time ago MICRO published a 6502 mini-assembler written in
Commodore or OSI BASIC. I started converting it, just for fun, into
Applesoft. It wasn't long before I realized that my thought processes
were totally incompatible with the author's programming techniques.
So I essentially started over. Last month the partially finished
listing appeared out of some long forgotten crack, so I dusted it off
and finished the program.

It operates a lot like the old "F666G" mini-assembler by Steve
Wozniak. (And, even though it is in Applesoft, it is almost as fast.)
The initial display is the address "0300" at the left margin, and the
cursor in column 20 of the top line on an otherwise empty screen. You
can type RETURN to quit, a colon followed by a hex address to change
the assembly address, or an instruction mnemonic to be assembled.

I could go into a long-winded explanation of how the program works,
describing each subroutine. But you can probably read the listing
easily enough, and there are identifying REM statements with each
subroutine. The really interesting part to me is the structure of the
opcode tables which are contained as strings in OP$, F$, and E$.
These tables are set up in lines 2030 through 2050.

OP$ contains the opcodes names. OP$(1) holds the names of all the
single byte opcodes. If the input line has no operand data after the
opcode mnemonic, the program will search through OP$(1) and had better
find your mnemonic. If not, it is "???" for you! Note that the
opcode names are three characters each, packed into one long string.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1077 of 2550

Apple II Computer Info

Also note that ASL, LSR, ROL, and ROR appear in this string. These
four opcodes can have an operand-less mode, as well as any of four
modes with operands.

OP$(2) contains the mnemonics for the relative branches. OP$(3) holds
"JMP" and "JSR". And OP$(4) holds all the rest, which I call the
complex opcodes. These are the ones which can have a variety of
addressing modes.

F$(1) through F$(4) correspond to OP$(1) through OP$(4). Each three
digit group in one of the F$ strings is the opcode value (in decimal)
for the corresponding mnemonic from OP$. F$(4) contains a base value,
which will be augmented to obtain a specific value for the particular
address mode chosen.

The complex opcodes can be classified in many different ways...I tried
so many I lost count. I finally settled on the scheme shown in the
two tables below:

 Imm Zp Abs Z,X A,X Z,Y A,Y (X) ()Y
 + 08 04 0C 14 1C -- 18 00 10 Base
--
ADC 0 69 65 6D 75 7D -- 79 61 71 61 097
AND 0 29 25 2D 35 3D -- 39 21 31 21 033
CMP 0 C9 C5 CD D5 DD -- D9 C1 D1 C1 193
EOR 0 49 45 4D 55 5D -- 59 41 51 41 065
LDA 0 A9 A5 AD B5 BD -- B9 A1 B1 A1 161
ORA 0 09 05 0D 15 1D -- 19 01 11 01 001
SBC 0 E9 E5 ED F5 FD -- F9 E1 F1 E1 225

STA 1 -- 85 8D 95 9D -- 99 81 91 81 129

 Imm Zp Abs Z,X A,X Z,Y A,Y (X) ()Y
 + 00 04 0C 14 1C 14 1C -- -- Base
--
ASL 2 -- 06 0E 16 1E -- -- -- -- 02 002
LSR 2 -- 46 4E 56 5E -- -- -- -- 42 066
ROL 2 -- 26 2E 36 3E -- -- -- -- 22 034
ROR 2 -- 66 6E 76 7E -- -- -- -- 62 098

BIT 3 -- 24 2C -- -- -- -- -- -- 20 032

CPX 4 E0 E4 EC -- -- -- -- -- -- E0 224
CPY 4 C0 C4 CC -- -- -- -- -- -- C0 192

DEC 5 -- C6 CE D6 DE -- -- -- -- C2 194
INC 5 -- E6 EE F6 FE -- -- -- -- E2 226

LDX 6 A2 A6 AE -- -- B6 BE -- -- A2 162

LDY 7 A0 A4 AC B4 BC -- -- -- -- A0 160

STX 8 -- 86 8E -- -- 96 -- -- -- 82 130

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1078 of 2550

Apple II Computer Info

STY 9 -- 84 8C 94 -- -- -- -- -- 80 128

The first column of numbers is the opcode class number. These numbers
are stored in E$ (see line 2050). The next nine columns show the hex
opcode values for each valid combination of opcode and address mode.
The last two columns show the "base" value in both hex and decimal.

The top row of numbers (above the dashed lines) shows the augment
needed to transform a "base" opcode value into the value for a
specific address mode. I broke the data into two separate tables
because the Imm and A,Y columns have one pair of values for class 0
and 1 opcodes and another for classes 2 through 9. The class number
is used to select which address modes are legal for a given opcode, as
well as in selecting the augment values.

If you have ever studied the listing of Wozniak's mini- assembler, you
know that his approach was entirely different. If you look inside the
S-C Macro Assembler you will find yet another approach. I suppose
there are more approaches than existing assemblers. In our line of
Cross Assemblers we use about five or six different techniques. The
choice depends on the syntax of the operands and the bit structure of
the opcodes, as well as whim.

I have also written a disassembler in Applesoft, and the beginnings of
a simulator for 6502 code. Maybe they will see print in the near
future. There is a lot to be learned from studying or even writing
these kinds of programs, and they can even be useful.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1079 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Miracle.txt
==

Answered Prayer............................Bob Sander-Cederlof

Last month's headlines bemoaned our burglary, with equipment worth
over $11000 missing from our offices. And un-measurable amounts of
software. And a damaged Spinwriter. And no insurance. We didn't even
have all of the serial numbers recorded. The police indicated we
should have no hope of recovering anything.

I know that God, who made the heavens and the earth and all that is in
them, is sovereign. I said, "Thank you for this, too. And thank you
that we still have enough left to continue business. And that nothing
irreplaceable was taken."

And we tried to to put the pieces back together. We bought insurance,
and recorded all the remaining serial numbers. We made backup copies
of critical software to be kept at other locations. We engraved our
driver's license numbers on our equipment. We even installed an alarm
system.

After about two hours with a screwdriver and needlenose pliers the
Spinwriter was back in working condition. Almost as good as
new...just one crippled foot where it landed when dropped. NEC makes
durable gear. I spent another 8 hours figuring out how to talk to it
with a serial interface card (with no documentation), and writing the
driver program. Once it all worked, we were able to print the mailing
labels for last month's AAL.

The burglary occured sometime after 8:30 pm, Wednesday night, May
25th. The next Wednesday night, after choir practice, we took some
time to pray. Among other concerns, we prayed about the burglary. I
suggested, "Let's pray that the burglars be caught and the things they
took be recovered. It can't hurt to ask!" So we did.

The next day the police received a tip from an informer. They went to
investigate, just in time to catch two 18-year-olds carrying computers
from apartment to car. One of them was a well-known burglar, with at
least six-year record. The equipment matched the description I had
given them. Friday morning the investigator called: "We have some of
your computers. You can come and pick them up at noon." Although a
little dirty, none of the equipment or software was damaged. Two
thirds of all that had been stolen was recovered! "A miracle", the
police said. "Amen."

The following Monday the police called again. "We have some more."
The third computer system, a brand new Apple //e with extended 80-
column card, two disk drives, monitor, and Epson printer had been sold
to a technically-minded friend (of the burglars) for only $100.
Responding to the alternatives offered by our excellent police

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1080 of 2550

Apple II Computer Info

("Return the computer, or go to jail"), the friend brought in all he
had bought. Almost everything was back in our office!

Thursday, June 16th, I was called a third time. "We have another disk
drive." They also had another FlipFile with about 15 more diskettes.
Now all that is missing is a TI Programmer calculator and an old
Panasonic Cassette Recorder.

Yes, God is sovereign, and also He cares about us as individuals. He
allowed our things to be taken, but not everything. He gave us faith
to ask for them to be returned. And He caused them to be returned.
"Trust in the Lord with all your heart, and do not lean on your own
understanding. In all your ways acknowledge Him, and He shall direct
your paths." [Proverbs 3-5,6]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1081 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:MonAsciiDisplay.txt
==

Revised Monitor Patch for ASCII Display....Bob Sander-Cederlof

Peter Bartlett gave us a nice patch to the Apple Monitor to add ASCII
display to the memory dump command. It was published in the Dec 1981
issue of Apple Assembly Line, pages 18-20. You may remember that
Peter's patch over-wrote the cassette tape code. Last summer I
received two suggested modifications to Peter's code, and at last I
pass them on to you.

Bruce Field, from Rockville, Maryland: "I finally got around to
building my own EPROM burner the other day, and one of the first
things I did was to modify my F8 ROM to include an ASCII listing with
the hex dump. I used the routine originally submitted by Peter
Bartlett. I found a minor problem with this code.

"The problem is that I have the modified ROM on an Integer BASIC card,
and an unmodified ROM on the mother board. If I am in the modified
ROM and want to soft-switch back to the mother board, typing 'C081'
should do it. But with Peter's patch location C081 is accessed inside
the patch itself, so the card switches off with PC pointing inside the
cassette tape code!

"My solution is to leave the loading of the memory location in its
original position. This makes the patch slightly longer, but it still
fits inside the cassette tape space. Also, since I detest flashing
characters, I filter these out. I force control characters to inverse
mode, and all others to normal video."

<Bruce's code here>

Brooke Boering, from Schaumburg, Illinois: "Here is a slightly
modified version of Peter Bartlett's monitor patch. I modify control
characters to display as an underline character, and lower case codes
to inverse video. Other characters display in normal video."

<Brooke's code here>

After assembling Bruce's version above, using the S-C Macro Assembler
resident in my language card, I installed the patch by typing:

 $C083 C083 (write enable RAM card)
 $FCC9<CC9.CE3M (move the patch into the
 cassette space)
 $FDBE:C9 FC (install patch address in JSR)

And it worked! To install Brooke's code I had to move a few more
bytes:

 $FCC9<CC9.CE9M

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1082 of 2550

Apple II Computer Info

If you have an Apple //e, or a lower case display adapter in an older
Apple, you will not want to display lower case characters in inverse
mode. Everyone seems to have their own preferences about how to
display the 256 possible hex values on Apple's screen. Choose your
own favorite

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1083 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50

S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00

S-C Word Processor...$50.00
 As is, with fully commented source code. Needs S-C Macro Assembler.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)................... $79.00
Source Code for FLASH! Runtime Package.............................$39.00
Full Screen Editor for S-C Macro Assembler (Laumer Research).......$49.00

The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $45.00
Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00

Blank Diskettes (with hub rings).................package of 20 for $50.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Reload your own NEC Spinwriter Multi-Strike Film cartridges....each $2.50
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
ZIF Game Socket Extender...$20.00
Ashby Shift-Key Mod..$15.00
Lower-Case Display Encoder ROM.....................................$25.00
 Only Revision level 7 or later Apples.

STB-80 80-column Display Board (STB Systems)...........($249.00) $225.00
STB-128 128K RAM Card (STB Systems)....................($399.00) $350.00

Grappler+ Printer Interface (Orange Micro).............($175.00) $150.00
Bufferboard 16K Buffer for Grappler (Orange Micro).....($175.00) $150.00
Buffered Grappler+ NEW!! Interface and 16K Buffer.....($239.00) $200.00

Books, Books, Books..........................compare our discount prices!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1084 of 2550

Apple II Computer Info

 "THE Book of Apple Software 1983 (with supplement)...($24.90) $18.00
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00

 Add $1.50 per book for US postage. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1085 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:New.DOS3.3.txt
==

The new 1983 edition of DOS 3.3............Bob Sander-Cederlof

Co-incident with the release of the //e, Apple started shipping a
slightly modified version of DOS 3.3. Three changes are evident: the
sample programs have been moved to a separate diskette; a few
instructions to kill 80-column display during a boot were added; and
yet another patch to the APPEND command.

I booted an old DOS 3.3, and then used monitor move to make a copy in
memory running from 5D00-7FFF of the DOS image. Then I booted the new
DOS, which loaded into 9D00-BFFF. Using the monitor "V" command, I
located all of the changes. It was a little tricky skipping over the
variables and buffers, but with the aid of a well-worn copy of
"Beneath Apple DOS" I managed. Here are all the changes I found:

 Old DOS 3.3 New DOS 3.3
---------------------- ----------------------
A6BB:EA NOP A6BB:20 69 BA JSR $BA69
A6BC:EA NOP
A6BD:EA NOP
A6BE:A2 00 LDX #0 A6BE:unchanged
A6C0:8E C3 B5 STX $B5C3
A6C3:60 RTS

The code above is jumped to from one of the older APPEND patches at
$B6A8. It used to be JMP $A6BC, and has been changed to JMP $A6BB to
pick up the new JSR there.

The latter part of the file position calculator has been re-written to
assure carry is clear before adding record size to previous position.

 Old DOS 3.3 New DOS 3.3
---------------------- ----------------------
B33E:AD BF B5 LDA $B5BF B33E:18 CLC
B341:8D EC B5 STA $B5EC B33F:AD BF B5 LDA $B5BF
B344:6D E6 B5 ADC $B5E6 B342:8D EC B5 STA $B5EC
B347:8D E6 B5 STA $B5E6 B345:6D E6 B5 ADC $B5E6
B34A:AD C0 B5 LDA $B5C0 B348:8D E6 B5 STA $B5E6
B34D:8D ED B5 STA $B5ED B34B:AD C0 B5 LDA $B5C0
B350:6D E4 B5 ADC $B5E4 B34E:8D ED B5 STA $B5ED
B353:8D E4 B5 STA $B5E4 B351:6D E4 B5 ADC $B5E4
B356:A9 00 LDA #0 B354:8D E4 B5 STA $B5E4
B358:6D E5 B5 ADC $B5E6 BE57:90 03 BCC $B35C
B35B:8D E5 B5 STA $B5E5 BE59:EE E5 B5 INC $B5E5
B35E:60 RTS BE5C:60 RTS
 BE5D:00 00 filler

Note that there was room for adding the CLC at the top, because of the
in-efficiency of the original code.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1086 of 2550

Apple II Computer Info

Code executed at the end of a boot has been modified to clear 80-
column mode in case you are booting in an Apple //e.

 Old DOS 3.3 New DOS 3.3
---------------------- ----------------------
BFD6:4C 44 B7 JMP $B744 BFD6:20 76 BA JSR $BA76
 BFD9:4C 44 B7 JMP $B744

Three patches were stuffed into the hole at $BA69.

 Called from $A6BB:

BA69:AE 5F AA LDX $AA5F If last command was
BA6C:E0 1C CPX #$1C APPEND, clear flag
BA6E:FO 05 BEQ $BA75 Not APPEND
BA70:A2 00 LDX #0 Yes, APPEND
BA72:8E 5D B6 STX $B65D Clear APPEND flag
BA75:60 RTS

 Called from $BFD6:

BA76:A9 FF LDA #$FF
BA78:8D FB 04 STA $04FB MODE = $FF
BA7B:8D 0C C0 STA $C00C 80-column display OFF
BA7E:8D 0E C0 STA $C00E Alternate Char Set OFF
BA81:4C 2F FB JMP $FB2F Exit via monitor INIT

 Called from $B683:

BA84:AD BD B5 LDA $B5BD Previous file position
BA87:8D E6 B5 STA $B5E6 LSB of fle position
BA8A:8D EA B5 STA $B5EA Record #
BA8D:BA TSX
BA8E:8E 9B B3 STX $B39B Save stack position
BA91:4C 7F B3 JMP $B37F Leave File Manager

Note that this last patch jumps into the file manager exit routine
even though the file manager had not been entered. The purpose is to
save a copy of the file manager workarea in the file buffer after
patching the file position low-order byte. Seems to me that jumping
directly to $AE7E, without the two lines saving the stack pointer
above, would avoid the very dangerous step of jumping into the middle
of a subroutine. But in any case, as Tom Weishaar points out, the
code is wrong in that it does not recover the higher bytes of the file
position. Will APPEND ever really be fixed?

A few months back I published a patch for faster LOAD, etc) in these
pages which used the space from $BA69 through $BA95. I suggest you
use the older version of DOS 3.3 for the time being. But eventually
you may be forced to find another home for the fast LOAD patch.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1087 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:OBriens.BGE.BLT.txt
==

More opcodes for the S-C MACRO ASSEMBLER.........R.F. O'Brien

While using the assembler I felt that it was a pity that the BGE and
BLT instructions had not been incorporated especially as it would only
have meant an extra 6 bytes of code. This minimal extra overhead is
because of the way opcodes are handled in the assembler.

Take for example the BRANCH opcode table, which resides in locations
$EF5B-EF93. ($2E29-2E47 for RAM version.) [These addresses are for
version 1.0]

This table is preceded by a 2-byte descriptor and ends as one would
expect with a 00 as end-of-table marker. The descriptor in this case
is 0302, i.e. 3-byte entries having a 2-byte name. The table holds the
standard 8 6502-opcodes and the 10 Sweet-16 opcodes, interestingly the
B of each instruction name has been dropped, saving 18 bytes.

The entries in the table consist of the last 2 letters of the
instruction name followed by the hex code. In the case of 2-letter
names the entry consists of the second letter plus a space ($20)
followed by its hex code.

I decided that I could dispense with the SW-16 codes BM1 and BNM1
without suffering too much if I wanted to write Sweet-16 code in my
programs. However, I found that to incorporate the new codes they
would have to be placed between the 6502 codes and the SW-16 codes in
the table.

It was just a matter of pushing the code for BR to BNZ up in RAM 6
bytes and slotting in the code for BLT and BGE.

To install the code for the two new opcodes just enter the following
at any convenient location e.g.$4000 and BSAVE as
BLT/BGE.CODE,A$4000,L$1F

 :$4000:47 45 B0 4C 54 90 ("G E B0 L T 90")
 :$:52 20 01 4E 43 02 43 20 03 50 20 04
 :$:4D 20 05 5A 20 06 4E 5A 07 53 20 0C 00

To install in LC-Version just enter:

 :$C083 C083 write enable card.
 :BLOAD BLT/BGE.CODE,A$EF75
 :$C080 write protect card.

To install in RAM-Version just enter:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1088 of 2550

Apple II Computer Info

 :BLOAD BLT/BGE.CODE,A$2E29

If you never use Sweet-16 you only need to use the first 6 bytes of
the above code. However, this will wipe out the BR and BNC codes in
the table.

Now you can use either BCC or its synonym BLT (Branch if Less Than)
and BCS or BGE (Branch if Greater than or Equal to) in your programs
and have them assembled correctly without using macro definitions.

The load address for the patch file for version 1.1 will vary
depending on which of the 8 versions you are patching:

 40-col //e Videx STB-80
Motherboard $31A9 318D 3274 329D

RAM Card $F2C3 F2A7 F397 F3C0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1089 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Opcodes.txt
==

 Imm Zp Abs Z,X A,X Z,Y A,Y (X) ()Y
 + 08 04 0C 14 1C -- 18 00 10 Base
--
ADC 0 69 65 6D 75 7D -- 79 61 71 61 097
AND 0 29 25 2D 35 3D -- 39 21 31 21 033
CMP 0 C9 C5 CD D5 DD -- D9 C1 D1 C1 193
EOR 0 49 45 4D 55 5D -- 59 41 51 41 065
LDA 0 A9 A5 AD B5 BD -- B9 A1 B1 A1 161
ORA 0 09 05 0D 15 1D -- 19 01 11 01 001
SBC 0 E9 E5 ED F5 FD -- F9 E1 F1 E1 225

STA 1 -- 85 8D 95 9D -- 99 81 91 81 129

 Imm Zp Abs Z,X A,X Z,Y A,Y (X) ()Y
 + 00 04 0C 14 1C 14 1C -- -- Base
--
ASL 2 -- 06 0E 16 1E -- -- -- -- 02 002
LSR 2 -- 46 4E 56 5E -- -- -- -- 42 066
ROL 2 -- 26 2E 36 3E -- -- -- -- 22 034
ROR 2 -- 66 6E 76 7E -- -- -- -- 62 098

BIT 3 -- 24 2C -- -- -- -- -- -- 20 032

CPX 4 E0 E4 EC -- -- -- -- -- -- E0 224
CPY 4 C0 C4 CC -- -- -- -- -- -- C0 192

DEC 5 -- C6 CE D6 DE -- -- -- -- C2 194
INC 5 -- E6 EE F6 FE -- -- -- -- E2 226

LDX 6 A2 A6 AE -- -- B6 BE -- -- A2 162

LDY 7 A0 A4 AC B4 BC -- -- -- -- A0 160

STX 8 -- 86 8E -- -- 96 -- -- -- 82 130

STY 9 -- 84 8C 94 -- -- -- -- -- 80 128

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1090 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Othello.txt
==

Bobby Deen's Latest Stuff

Bobby Deen is a name you may remember seeing in these pages in several
past issues. He will be entering Texas A & M University this fall.
Bobby programmed most of the cross assembler modules for the S-C Macro
Assembler, some parts of the S-C Word Processor, about half of the
yet-to-be-released 18-digit commercial math package (S-C DP18), and
parts of the CPR Training System we did for the American Heart
Association. A man of many interests, Bobby also has produced some
excellent music disks for the ALF music synthesizers (or any Alf
compatibles, such as Applied Engineering), and now a fantastic
"Othello" game.

His six-voice renditions of the William Tell Overture by Rossini and
Tchaikovsky's Nutcracker Suite are outstanding, and the price is only
$10. If you have a synthesizer, you ought to have Bobby's music.

Bobby's Othello program is available now for an introductory price of
only $20. Of course he wrote it in assembly language, so it is FAST,
and has excellent hi-res graphics. You select among six skill levels;
Apple can suggest your next move; you can swap sides with the
computer; you can modify the board in mid-game (cheat?); you can pit
the computer against itself. Whenever two or more moves tie for the
machine's best next move, Apple randomizes its choice. This way you
never play the same identical game twice.

Order either of these disks from S-C Software.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1091 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Short.Subjects.txt
==

Osborne Raises Book Prices

Osborne/McGraw-Hill has raised the prices of most of their books. In
particular, all of their books which we carry have new higher prices.
They are still bargains when you consider how good they are, and how
packed with information:

Title Was Is Now Our Price

6502 Assembly Lang Prog $16.99 $18.95 $18.00
6502 Subroutines $15.95 $17.95 $17.00
Z-80 Assembly Lang Prog $16.99 $18.95 $18.00
Z-80 Subroutines $15.95 $17.95 $17.00

Eighty-Column SHOW Command.....................Robert Bragner
 Istanbul, Turkey

I make frequent use of the SHOW command for text files (see AAL July
1982), and I wanted to see it in 80-column glory on my shiny new //e.
If you've tried it, you will have noticed that the command places a
character in every other column on the 80-column screen, so you still
only see 40-columns of data per line!

The reason is that the SHOW command code calls COUT1 at $FDF0 for its
character output, and COUT1 knows nothing about 80-column output. By
calling COUT ($FDED) instead, the text file output will be routed to
whatever your current output device happens to be (including printer,
80-column display, etc.).

If you use the Applesoft on page 27 of that issue to load SHOW, all
you need to do is change the ninth item on line 100 from 240 to 237.

Here is the modified POKEr, complete with the additions made by Bil
Morgan in the June 83 issue, to save you hunting through all those
back issues:

100 DATA 21,42319,32,163,162,169,141,32,237,253,32,142,
 174,240,5,32,140,166,208,243,76,252,162
110 DATA 23,44686,173,0,192,16,17,141,16,192,201,141,
 240,10,173,0,192,16,251,141,16,192,201,141,96
115 DATA 13,44709,224,0,240,4,162,2,208,2,162,4,76,3,171
116 DATA 3,43773,76,165,174
120 DATA 4,43140,83,72,79,215
130 DATA 2,43273,32,48
140 DATA 0
150 READ N : IF N THEN READ A : FOR I = 1 TO N
 : READ D : POKE A+I-1,D : NEXT : GO TO 150

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1092 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:Show.Poker.txt
==

100 DATA
21,42319,32,163,162,169,141,32,237,253,32,142,174,240,5,32,140,166,208
,243,76,252,162
110 DATA
23,44686,173,0,192,16,17,141,16,192,201,141,240,10,173,0,192,16,251,14
1,16,192,201,141,96
115 DATA 13,44709,224,0,240,4,162,2,208,2,162,4,76,3,171
116 DATA 3,43773,76,165,174
120 DATA 4,43140,83,72,79,215
130 DATA 2,43273,32,48
140 DATA 0
150 READ N : IF N THEN READ A : FOR I = 1 TO N : READ D : POKE A+I-1,D
: NEXT : GO TO 150

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1093 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:V3N10.65C02.txt
==

65C02 Department....................................Bill Morgan

I am holding a brand new NCR65C02A. Now I finally believe that there
is such a creature as a 65C02! NCR's version of this processor seems
to be the same as GTE's. That is, it has all of the enhancements
described in the December '82 issue of AAL, except for the single bit
set, reset and branch instructions.

We have tested the chip in the computers here, and there's good news
and bad news. As Don Lancaster reported last month, the new chip
works perfectly in an Apple //e. You just swap processors and start
using new opcodes. However, 65C02 chips do not work in the Apple][
or Apple][+.

I am told that the problem lies in the execution of instructions like
ASL or INC, which read memory, modify the contents, and write the
result back to the same address. The 6502 processor does one read and
two writes during such an instruction, which is really incorrect. In
the 65C02 this has been changed to the proper combination of two reads
and one write.

Unfortunately, the Apple][s rely on the timing of the read-write-
write cycle, and the read-read-write cycle is just different enough to
cause the system to fail. Hopefully some of the hardware specialists
can come up with a modification to the older Apples to allow the use
of the enhanced processors.

Let's talk about programming the 65C02. With the new chip in a //e,
Bob and I started tearing into the S-C Word Processor. We just went
through the code, looking for places to substitute a new instruction
for several old ones. Come to find out, the most useful change is the
true Indirect addressing mode, in place of Indexed Indirect. That
means replacing

 STY YSAVE
 LDY #0
 LDA (POINTER),Y
 LDY YSAVE with LDA (POINTER).

That's replacing 8 bytes with 2 bytes. BRA (BRanch Always) and STZ
(STore Zero) also came in very handy.

All things considered, Bob has decided to wait for the Rockwell
version of the 65C02, because he really wants those single bit set,
reset, and branch instructions. At last word Rockwell was expecting
to start shipping in August, so it will be at least that long before
we have any. NCR's chip costs about $10. The Rockwell chip may cost
a little more, if and when. We have noticed ads offering 65C02's for
$35, which just goes to show how expensive advertising can be.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1094 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:Articles:WeishaarIIeDOS.txt
==

Explanation of the new DOS Append Bug..............Tom Weishaar
 Overland Park, Kansas

[Tom is author of ProntoDOS, published by Beagle Bros, an excellent
speed-enhanced DOS which happens to be compatible with nearly
everything. He also writes the monthly DOStalk column in Softalk
Magazine.]

I was behind on my reading when I wrote, in the April Softalk DOStalk,
about the changes Apple made to DOS 3.3 in the new //e release. At
that time I noticed the routine used to calculate random access file
position at $B331 had been modified, but the change looked
insignificant to me.

It turns out this change was supposed to fix another bug in the Append
command! The change was very well documented by Art Schumer in the
August 1982 Call APPLE, page 57.

In pre-//e DOS, Append called on this random-access file position
calculator to reset the position-in-file pointer. As you know, Append
simply looks through a file byte-by-byte until it finds the end, which
can be indicated either by a zero byte or by a lack of additional
sectors.

When Append finds a zero byte in the file, it knows it has reached the
end, but by then the position-in-file pointer is one byte beyond the
zero and has to be backed up. Somebody once thought a call to the
random-access file position calculator would be a good way to do this.

But on sequential files (the only kind you can append to) the File
Manager uses a record length of one. Thus files longer than 32767
bytes come to this routine with more than 32767 "records", which is
beyond what DOS normally allows. The calculation fails.

Schumer's patch gets it to calculate correctly right up to 65535. At
that point it stops working for good. Apple tried to get around this
in //e-DOS by throwing out Append's reliance on the random-access
calculator. Instead they go back in and change the position-in-file
pointer directly, then trick the File Manager into re-saving his
workarea.

Problem: they only decrement the low byte of the position-in- file
pointer. If the file-ending zero comes in the last byte of a sector,
the high byte will have been advanced to point at the next sector.
Since they don't decrement it, the position- in-file pointer is 256
bytes beyond where it should be.
Uh Oh...!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1095 of 2550

Apple II Computer Info

I've been trying to get folks at Apple to recognize the problem, but
Append doesn't appear to be one of their priorities. If they don't do
something soon I'll publish a patch in Softalk. I'd do it now, but I
fear treading where so many have failed before me.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1096 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:DOS3.3:MINI.ASSEMBLER.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1097 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:DOS3.3:S.FastTextRBSC.txt
==

 1000 *SAVE S.FAST TEXT (RBS-C)
 1010 *--------------------------------
 1020 * PAUL SCHLYTER'S TEXT FILE SPEED-UP
 1030 * AS MODIFIED BY BOB SANDER-CEDERLOF
 1040 * JUNE 8, 1983
 1050 *--------------------------------
 1060 PNTR .EQ $42,43
 1070 *--------------------------------
 1080 COPY.BUFFER.TO.WORKAREA .EQ $AE6A
 1090 SAVE.WORKAREA .EQ $AE81
 1100 POINT.TO.WORKAREA .EQ $AF08
 1110 SETUP.PNTR .EQ $AF12
 1120 FM.OPCODE .EQ $B5BB
 1130 PNTR.SAVE .EQ $B5CF,B5D0
 1140 *--------------------------------
 1150 PATCH.AREA .EQ $B6B3
 1160 PATCH.LINK1 .EQ $AB0B
 1170 PATCH.LINK2 .EQ $B38F
 1180 *--------------------------------
 1190 .OR $300
 1200 *--------------------------------
 1210 INSTALL.PATCHES
 1220 LDX #PATCH.SIZE-1
 1230 .1 LDA PATCH.CODE,X
 1240 STA PATCH.AREA,X
 1250 DEX
 1260 BPL .1
 1270 LDA #PATCH1
 1280 STA PATCH.LINK1
 1290 LDA /PATCH1
 1300 STA PATCH.LINK1+1
 1310 LDA #PATCH2
 1320 STA PATCH.LINK2
 1330 LDA /PATCH2
 1340 STA PATCH.LINK2+1
 1342 LDA #20
 1344 STA $A1B1
 1350 RTS
 1360 *--------------------------------
 1370 PATCH.CODE
 1380 .OR $B6B3
 1390 .TA PATCH.CODE
 1400 PATCH1 JSR CHECK.OPCODE
 1410 BCC .1 NOT READ/WRITE
 1420 CMP PNTR.SAVE
 1430 BNE .1 NO
 1440 CPX PNTR.SAVE+1
 1450 BEQ PATCH3 YES, RETURN NOW
 1460 .1 BIT FLAG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1098 of 2550

Apple II Computer Info

 1470 BPL .2
 1480 LDX #PNTR.SAVE-$B5C7
 1490 JSR SETUP.PNTR
 1500 JSR PATCH4 CLEAR FLAG, SAVE WORKAREA
 1510 .2 JMP COPY.BUFFER.TO.WORKAREA
 1520 *--------------------------------
 1530 PATCH2 JSR CHECK.OPCODE
 1540 BCC PATCH4 NOT READ OR WRITE
 1550 ROR FLAG SET SIGN BIT
 1560 STA PNTR.SAVE
 1570 STX PNTR.SAVE+1
 1580 PATCH3 RTS
 1590 *--------------------------------
 1600 PATCH4 LSR FLAG CLEAR SIGN BIT
 1610 JMP SAVE.WORKAREA
 1620 *--------------------------------
 1630 CHECK.OPCODE
 1640 JSR POINT.TO.WORKAREA
 1650 LDA FM.OPCODE
 1660 SEC
 1670 EOR #3 READ?
 1680 BEQ .1 YES
 1690 EOR #7 WRITE?
 1700 BEQ .1
 1710 CLC
 1720 .1 LDA PNTR
 1730 LDX PNTR+1
 1740 RTS
 1750 *--------------------------------
 1760 FLAG .HS 00 MUST START WITH FLAG=0
 1770 *--------------------------------
 1780 PATCH.SIZE .EQ *-PATCH1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1099 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:DOS3.3:S.FTSchlyter.txt
==

 1000 *SAVE S.FAST TEXT (SCHLYTER)
 1010 *--------------------------------
 1020 * SPEEDUP OF DOS TEXT FILE READ/WRITE
 1030 * BY PAUL SCHLYTER, SWEDEN, MAY 1983.
 1040 *--------------------------------
 1050 PNTR .EQ $42,43 DOS VARIABLE
 1060 *--------------------------------
 1070 GET.WRKAREA.FROM.BUFFER .EQ $AE6A
 1080 SAVE.WRKAREA.TO.BUFFER .EQ $AE7E
 1090 SAVE.OLD.WRKAREA .EQ $AE7E+3
 1100 POINT.TO.WRKAREA.BUFFER .EQ $AF08
 1110 FM.OPCODE .EQ $B5BB
 1120 *--------------------------------
 1130 .OR $300
 1140 JMP INSTALL
 1150 *--------------------------------
 1160 * PATCH EXECUTED UPON ENTRY TO FILE MANAGER:
 1170 * 1. IF READ/WRITE AND CORRECT WORK AREA, RETURN
 1180 * 2. IF WRONG WORK AREA, SAVE OLD WORK AREA
 1190 * 3. LOAD NEW WORK AREA.
 1200 *--------------------------------
 1210 PATCH1 LDA FM.OPCODE IF NOT READ OR WRITE,
 1220 CMP #3 DO AS USUAL
 1230 BCC .1 ...LESS THAN READ/WRITE
 1240 CMP #5
 1250 BCS .1 ...HIGHER THAN READ/WRITE
 1260 JSR POINT.TO.WRKAREA.BUFFER
 1270 LDA PNTR CHECK TO SEE IF CORRECT WORKAREA
 1280 CMP PNTR.S ALREAD LOADED
 1290 BNE .1 NO
 1300 LDA PNTR+1
 1310 CMP PNTR.S+1
 1320 BNE .1 NO
 1330 RTS YES, NOTHING ELSE TO DO,
 1340 * SO EXIT NOW AND SAVE 800 CYCLES!
 1350 *
 1360 * OPCODE NOT READ OR WRITE, OR WRONG WORK AREA.
 1370 .1 BIT FLG NEED TO PUT BACK THIS WORK AREA?
 1380 BPL .2 NO, JUST GET NEW ONE
 1390 CLC YES, CLEAR FLAG
 1400 ROR FLG
 1410 LDA PNTR.S
 1420 STA PNTR
 1430 LDA PNTR.S+1
 1440 STA PNTR+1
 1450 JSR SAVE.OLD.WRKAREA
 1460 .2 JMP GET.WRKAREA.FROM.BUFFER
 1470 *--------------------------------
 1480 * PATCH EXECUTED WHEN FILE MANAGER IS FINISHED:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1100 of 2550

Apple II Computer Info

 1490 * 1. IF READ/WRITE, SET FLAG AND SAVE PNTR
 1500 * 2. IF NOT R/W, CLEAR FLAG AND SAVE WORK AREA
 1510 *--------------------------------
 1520 PATCH2 LDA FM.OPCODE R/W?
 1530 CMP #3
 1540 BCC .1 NO
 1550 CMP #5
 1560 BCS .1 NO
 1570 SEC YES, SET FLAG
 1580 ROR FLG
 1590 JSR POINT.TO.WRKAREA.BUFFER
 1600 LDA PNTR AND SAVE POINTER
 1610 STA PNTR.S
 1620 LDA PNTR+1
 1630 STA PNTR.S+1
 1640 RTS SAVE ANOTHER 800 CYCLES
 1650 .1 CLC CLEAR FLAG
 1660 ROR FLG
 1670 JMP SAVE.WRKAREA.TO.BUFFER
 1680 *
 1690 PNTR.S .HS 0000
 1700 FLG .HS 00
 1710 *--------------------------------
 1720 * TO INSTALL, PATCH DOS LIKE THIS:
 1730 * .OR $AB0A
 1740 * JSR PATCH1
 1750 *
 1760 * .OR $B38E
 1770 * JSR PATCH2
 1780 *
 1790 * HERE IS ONE WAY TO DO IT:
 1800 *--------------------------------
 1810 INSTALL
 1820 LDA #$20 JSR OPCODE
 1830 STA $AB0A
 1840 STA $B38E
 1850 LDA #PATCH1
 1860 STA $AB0B
 1870 LDA /PATCH1
 1880 STA $AB0C
 1890 LDA #PATCH2
 1900 STA $B38F
 1910 LDA /PATCH2
 1920 STA $B390
 1930 RTS
 1940 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1101 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:DOS3.3:S.MAD.BOERING.txt
==

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1102 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:DOS3.3:S.MAD.FIELD.txt
==

 1000 *SAVE S.MON ASCII DISPLAY (FIELD)
 1010 *---------------------------------
 1020 * PATCHES TO ADD ASCII DUMP TO APPLE MONITOR
 1030 * ORIGINAL BY PETER BARTLETT
 1040 * MODIFIED BY BRUCE FIELD
 1050 *---------------------------------
 1060 A1L .EQ $3C
 1070 COUT .EQ $FDED
 1080 PRBYTE .EQ $FDDA
 1090 *---------------------------------
 1100 .OR $FDBD
 1110 .TA $0DBD
 1120 JSR PATCH CALL MY PATCH CODE
 1130 *---------------------------------
 1140 .OR $FCC9
 1150 .TA $0CC9
 1160 PATCH PHA SAVE BYTE
 1170 LDA A1L LOW BYTE OF DUMP ADDRESS
 1180 AND #7 MASK LINE POSITION
 1190 CLC
 1200 ADC #31 COMPUTE HORIZONTAL OFFSET
 1210 TAY
 1220 PLA GET BYTE FROM STACK
 1230 PHA KEEP COPY ON STACK
 1240 ORA #$80 FORCE NORMAL VIDEO
 1250 CMP #$A0 MAKE CONTROL-CHARS INVERSE
 1260 BCS .1 ...NOT CTRL
 1270 AND #$7F ...CTRL
 1280 .1 STA ($28),Y STORE IT ON THE SCREEN
 1290 LDY #0 RESTORE Y
 1300 PLA RECOVER BYTE AGAIN
 1310 JMP PRBYTE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1103 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8307:DOS3.3:TxtFileSpeedup.txt
==

 d≤ TEXT FILE SPEEDUP PATCH-náN:≠N–0ƒÄNxáA:ÅI–
0¡N…1:áX:πA»I,X:Ç:´110÷»É74,46771,32,210,182,144,10,205,207,181,208,5,
236,208,181,240,51,44,252,182,16,8,162,8,32,18,175,32,246,182,76,106,1
74,32,8,175,173a

“É187,181,56,73,3,240,5,73,7,240,1,24,165,66,166,67,96,32,210,182
,144,10,110,252,182,141,207,181,142,208,181,96,78,252,182,76,129,174,0
v ‹É2,43787,179,182ã ÊÉ2,45967,231,182ú É 1,41393,20£ ˙É0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1104 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:Bit.and.Pieces.txt
==

Grappler Interfaces

There should be a leaflet included with this issue describing the
Grappler printer interfaces. We now have three of them "in the
family" here, and have been very pleased with their performance.
Check the brochure for features, the ad on page three for our prices,
and let us hear from you.

WICO Track Ball

Several of you have inquired about or ordered the WICO Track Ball that
I reviewed a couple of months ago, so we've decided to carry them
regularly. WICO has since raised their price from $79.95 to $89.95,
so we're going from $75 to $80.

Diskettes

There's getting to be a lot more competition in the diskette business,
so prices are falling. After seeing so many ads at such attractive
prices, Bob called Verbatim and told them that we had to have a better
price, or we would have to change brands. That paid off, so we can
now offer the same high- quality Verbatim Datalife diskettes at $45.00
for a package of 20. That's $2.25 each for the best diskettes we've
found.

Whatever You Want

If you're shopping for a new peripheral, accessory, or program, give
us a call and ask for a quote. We can get nearly anything you might
want, and we'd love the chance to serve you.

Mailing AAL

Let's review how AAL is mailed, when you should expect to receive it,
and what to do about it when you don't. Most of you get your
newletter by Bulk Mail, which is a little erratic. You should receive
your issue around the third week of each month, but don't start
worrying until the end of the month. If you haven't received an issue
by the end of the month, call or write and we'll send a replacement.
Those of you who have First Class Mail subscriptions should receive
your issue around the tenth of the month, and certainly before the
twentieth.

The Post Office does not forward Bulk Mail, so make certain to tell us
if you move.

The number in the upper right corner of your mailing label is the
expiration date of your subscription. If that number is 8308, you're
holding your last issue and better renew now. We send out postcards

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1105 of 2550

Apple II Computer Info

when your subscription is about to expire, and when it has expired.
All you have to do is send us a check, or phone with a charge card
number, and we'll keep your AAL coming.

65C02

People who have started reading AAL since last December have asked
what is all this 65C02 business, anyway? Well the 65C02 is a new CMOS
version of the 6502 microprocessor. (CMOS stands for Complementary
Metal Oxide Semiconductor. That's a different way of making chips.
CMOS circuits are noted for extremely low power consumption and
extremely high sensitivity to static electricity.) To us Apple
owners, the important thing is that the designers of the new chip
corrected the bugs in the 6502 and added several new instructions and
addressing modes.

The new instructions include PHX, PLX, PHY, and PLY (push and pull the
X and Y registers from the stack), BRA (branch always), STZ (store
zero), TSB and TRB (test and set or reset bits), and SMB, RMB, BBR and
BBS (set, reset and branch on single bits). The main new addressing
mode is true indirect without indexing, LDA ($12). This mode is now
available for ORA, AND, EOR, ADC, STA, LDA, CMP, and SBC. There are
also new modes for the BIT and JMP instructions. INC and DEC can now
work on the A register.

There are some problems, though. Rockwell, GTE, NCR, and Synertek
(maybe) are manufacturing 65C02 processors, but they are not all the
same. The SMB, RMB, BBS, and BBR instructions are only available in
the Rockwell chip. The NCR chip works in the Apple //e, but not in
older Apples. The GTE processor does work in all Apples (this is
being written on an Apple][+ with a GTE 65C02). I haven't yet
received a sample of the Rockwell processor, so I don't personally
know if it works in older Apples. Some people say yes, others no.

That's a summary of what we know so far. The confusion is beginning
to clear up, but there are still questions about what will or won't
work in which Apples, and why. Stay tuned...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1106 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:FasterSpiral.PT.txt
==

Speeding Up Spirals........................Bob Sander-Cederlof

Several have written to us about Roger Keating's Spiral Screen Clear
(AAL June 1983). Charles Putney, who you may remember as the first
one to double the speed of the prime number program in AAL several
years ago, has now applied his talent to unwinding the screen.

Roger's program ran in 55 seconds, my table-lookup for BASCALC
shortened it to 40 seconds. Charlie wrote the whole thing out as one
long string of LDA-STA pairs, and trimmed the time to only 7 seconds!

Let's see...there are 960 characters on the screen. If I write a LDA-
STA pair to move each byte ahead one position along the spiral path, I
will have 959 such pairs. Each LDA and each STA will take 3 bytes, so
the program to shift the whole screen one step around the spiral path
will take 2x3x959 = 5754 bytes. Add another 5 bytes to LDA #$A0 and
store it in the center of the screen before the first rotation. Then
add some code to re- run the 959 steps 959 more times, so that the
whole screen clears, and you get Charlie's program, 5777 bytes.

Now try to type it all in! Don't worry, we aren't even going to list
it here. It will be on the next Quarterly disk, though.

Charlie decided to use five macros, to decrease the amount of manual
labor involved. He defined a macro named MOVE which builds the LDA-
STA pair for a pair of arguments:

 .MA MOVE
 LDA]1
 STA]2
 .EM

Then he defined one macro for each leg of the spiral: MOVED, MOVEL,
MOVEU, and MOVER for down, left, up, and right respec- tively. With a
few comment lines, the macro definitions take a mere 488 lines! The
macros are each called with three parameters:

 >MOVED col,low.row,high.row
 >MOVEL row,low.col,high.col
 >MOVEU col,low.row,high.row
 >MOVER row,low.col,high.col

The definitions out of the way, it only remains to write 12 sets of 4
macro calls, or 48 lines, and a driving loop to do it all 960 times.
Here is a condensed listing of the actual code part of Charlie's
program:

NGE TO ELITE TYPE AND SPACING
6400 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1107 of 2550

Apple II Computer Info

6410 *
6420 * SPIRAL PROGRAM
6430 .OR $6000 OUT OF THE WAY
6440 .TF SPIRAL.OBJ
6450 *
6460 *
6470 SPIRAL LDA #' '+$80 GET A SPACE
6480 STA R12+12 PUT IT IN CENTER
6490 LDX #960 HOW MANY TIMES ?
6500 LDY /960 HIGH ORDER
6510 *
6520 SPI1 >MOVED 0,0,23
6530 >MOVEL R0,0,39
6540 >MOVEU 39,0,23
6550 >MOVER R23,1,39
6560 *
6570 >MOVED 1,1,23
6580 >MOVEL R1,1,38
6590 >MOVEU 38,1,22
6600 >MOVER R22,2,38
6610 *
6620 >MOVED 2,2,22
6630 >MOVEL R2,2,37
6640 >MOVEU 37,2,21
6650 >MOVER R21,3,37
6660 *
6670 >MOVED 3,3,21
6680 >MOVEL R3,3,36
6690 >MOVEU 36,3,20
6700 >MOVER R20,4,36
6710 *
6720 >MOVED 4,4,20
6730 >MOVEL R4,4,35
6740 >MOVEU 35,4,19
6750 >MOVER R19,5,35
6760 *
6770 >MOVED 5,5,19
6780 >MOVEL R5,5,34
6790 >MOVEU 34,5,18
6800 >MOVER R18,6,34
6810 *
6820 >MOVED 6,6,18
6830 >MOVEL R6,6,33
6840 >MOVEU 33,6,17
6850 >MOVER R17,7,33
6860 *
6870 >MOVED 7,7,17
6880 >MOVEL R7,7,32
6890 >MOVEU 32,7,16
6900 >MOVER R16,8,32
6910 *
6920 >MOVED 8,8,16
6930 >MOVEL R8,8,31
6940 >MOVEU 31,8,15

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1108 of 2550

Apple II Computer Info

6950 >MOVER R15,9,31
6960 *
6970 >MOVED 9,9,15
6980 >MOVEL R9,9,30
6990 >MOVEU 30,9,14
7000 >MOVER R14,10,30
7010 *
7020 >MOVED 10,10,14
7030 >MOVEL R10,10,29
7040 >MOVEU 29,10,13
7050 >MOVER R13,11,29
7060 *
7070 >MOVED 11,11,13
7080 >MOVEL R11,11,28
7090 >MOVEU 28,11,12
7100 >MOVER R12,12,28
7110 *
7120 DEX
7130 CPX #$FF
7140 BNE SPI2
7150 DEY
7160 CPY #$FF
7170 BNE SPI2
7180 RTS
7190 SPI2 JMP SPI1

NOW CHANGE BACK TO PICA
Remember, the whole source with the full macro definitions will be on
the next quarterly disk ($15, for all source code in issues July-
August-September 1983).

Because Charlie's program makes such heavy use of macros, it takes
considerable time to assemble. He timed it at nearly two minutes. If
the program were written out the long way, without macros, it would
take only about 20 seconds to assemble.

Charlie pointed out that we are needlessly moving the center of the
spiral, which is already blank. As the blanked portion grows, this
becomes very significant. In fact, by eliminating moving the cleared
portion, the time could be further reduced to only 3 1/2 seconds.
Each LDA-STA takes 8 cycles. The long way takes 959*960 pairs, plus
some overhead. Ignoring the overhead, we get 7365120 cycles, or about
7.2 seconds. Forgetting the blanked stuff makes it 3.6 seconds. Any
takers?

And I was just wondering...how about an Applesoft program which writes
the 959 LDA-STA pairs as assembly language source on a text file? Or
POKEs the actual object code, by computing the addresses necessary,
into a binary buffer area. Again, any takers?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1109 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 11 August, 1983

In This Issue...

Using Auxiliary Memory in the //e. 2
65C02. 12
Speeding Up Spirals. 13
Tinkering With Variable Cross Reference. 17
Reversing, Getting, and Putting Nybbles. 19
Odds and Ends. 21
Some Small Patches . 22
More 68000 Boards. 23
Bringing Some Patches Together 24

Mailing AAL

Let's review how AAL is mailed, when you should expect to receive it,
and what to do about it when you don't. Most of you get your
newletter by Bulk Mail, which is a little erratic. You should receive
your issue around the third week of each month, but don't start
worrying until the end of the month. If you haven't received an issue
by the end of the month, call or write and we'll send a replacement.
The Post Office does not forward Bulk Mail, so make certain to tell us
if you move. Those of you who have First Class Mail subscriptions
should receive your issue around the tenth of the month, and certainly
before the twentieth.

The number in the upper right corner of your mailing label is the
expiration date of your subscription. If that number is 8308, you're
holding your last issue and better renew now. We send out postcards
when your subscription is about to expire, and when it has expired.
All you have to do is send us a check, or phone with a charge card
number, and we'll keep your AAL coming.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1110 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:IIe.Auxmem.Bugs.txt
==

Using Auxiliary Memory in the //e.............David C. Johnson
 Ridgefield, CT

When I bought my Apple //e (3 days after they became available!), I
also got the Extended 80-Column Text Card. I wanted it both to have
80 column text capability and a full complement of Apple Computer Inc.
supported memory. However, Apple only supplied two small subroutines
in ROM and incomplete (but otherwise excellent) documentation in their
manuals, in "support" of the auxiliary memory.

I say "incomplete" because two I/O locations that I used in my program
are not mentioned (in English anyway) anywhere in the manuals except
in the listings of the 80-column firmware. The two I/O locations are
$C011 & $C012 which I call READ.BSR.BANK & READ.BSR.RAM.READ. Apple
evidently intends to let software developers determine how the
auxiliary memory is to be used.

Well here goes: my program is called "USE.AUXMEM". This program
allows you to access the "other" 64K in a manner most Apple users
should already be familiar with: monitor commands.

The simplest way to see what I mean is to type in & assemble the
program (not so simple), type :"MGO G", :"PR#3" and then :"$^Y" (that
is control-Y). You will get a bell and the monitor's prompt. Any
monitor commands you type now will "use" the auxiliary memory. Try
these now:

 *3D0:55
 *3D0 (double nickels, right?)
 *^Y (back to SCASM!)
 :$3D0 (a $4C!)

You should note that control-Y while using the auxiliary memory
returns to main memory with everything as it was. Now try these:

 :$^Y 3D0
 *3D0 ^Y

After the second control-Y returned to main memory, SCASM finished the
first command line!

The reason I had you type :"PR#3" before is quite simple: things
don't all work right without the 80 column firmware active;
specifically, right-arrow & escape functions. You can also type
"escape 4" if you don't want 80 columns.

But wait a minute, if you read the 80-column firmware listing
(carefully), you know that it does NOT work with the auxiliary memory
enabled (as doesn't the regular 40-column firmware), so how is this

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1111 of 2550

Apple II Computer Info

all working? Well, the I/O hooks in the auxiliary memory zero page
point to routines in USE.AUXMEM which switch to main memory, perform
the I/O, switch back to auxiliary memory, and return to the monitor.
The monitor executes its commands between I/O calls while auxiliary
memory is enabled. These switchings also change the bank switched
memory state.

The USE.AUXMEM program has two other control-Y commands. They
implement the crossbank subroutines AUXMOVE & XFER (supplied in ROM)
as monitor commands. See the comments at the top of the source listing
for their syntax.

About Some //e Monitor Bugs...

One routine, USE.AUXMEM.CONTROL.Y.HANDLER, deserves a special note.
It compensates for a bug in the Apple //e version of the monitor:
when parsing a control-Y command the ASCII string "Bryan" at $FEC5 is
executed as instructions prior to JMPing to USRADR ($03F8). This bug
has a long history.

In the original Apple monitor the CHRSRCH loop ($FF78 - $FF81) scans
the CHRTBL ($FFCC - $FFE2) from end to beginning, which matches the
$B2 at $FFCD causing TOSUB ($FFBE - $FFCB) to load the $C9 at $FFE4
and RTS to USR ($FECA) which is a JMP USRADR ($03F8).

Things started to go astray when the autostart ROM was created, and
the Apple II Plus. To make room for new features, (like printing
"APPLE][" at the top of the screen on power up, and like the escape-
IJKM cursor motion), the TRACE and STEP commands were removed. To
disable the entries for Trace and Step in CHRTBL, the bytes for "T"
and "S" were changed: ($FFCF:B2 & $FFD2:B2, also $FFE9:C4). Locations
$FEC5 - $FEC9, immediately prior to USR, were changed to NOPs.

Unfortunately, someone forgot that CHRTBL is searched from end to
beginning, causing a control-Y command to be matched with the $B2 at
$FFD2, corresponding to the branch address in SUBTBL at $FFE9. So
when you type a control-Y command the monitor branches to $FFC5 and
executes the 5 NOPs. If $FFE9 had been changed to $C9 instead of $C4,
everything would have still been fine.

Executing 5 NOPs is not a bad bug. But when the Apple //e monitor was
created those 5 NOPs were replaced by the string "Bryan". In hex it
is C2 F2 F9 E1 EE. The 6502 instruction set does not include a
definition for $C2, but after a little investigation, or after reading
Bob Sander-Cederlof's article in AAL March 1981, you find out that $C2
acts like a two-byte NOP. The "r" is skipped over. The "yan",
however, is a SBC $EEE1,Y instruction.

The USE.AUXMEM.CONTROL.Y.HANDLER uses the passed contents of the A & X
registers to decide which of the three control-Y commands you've
typed. The SBC $EEE1,Y changes the A register so its contents must be
reconstructed. The reconstruction is further complicated by the fact
that the monitor leaves the carry flag set when it RTS's to $FEC5,
while the S-C Assembler and Mini-Assembler leave the carry flag clear.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1112 of 2550

Apple II Computer Info

To restore the A register to its proper value you must set the carry
to the complement of the value that it was set to prior to the SBC
$EEE1,Y then execute ADC $EEE1,Y.

The Apple //e 80 column firmware also contains a bug. Because of the
$11 at $C92A, the key sequence "ESCape ^L" causes a RTS to $4CCE.
Location $C92A should contain a $10. This bug can be used to
advantage if you feel like adding a secret command to your own
software. Just be certain you have the code for your command starting
at $4CCE, and that you are running in 80-column mode. Then whenever
you type control-L in the escape mode (cursor is an inverse plus) your
code will be executed.

I hope all of you enjoy using your auxiliary memory as much as I do.

Last Minute Note: David just called to report yet another oddity in
the //e ROMs. In 40-column ESCape mode the (, 5, *, and + keys
duplicate the arrow keys. That is, "ESC 5" moves the cursor right one
space, just like ESC right arrow. This is a little bit weird, but it
doesn't seem to hurt anything. The effect is caused by an unnecessary
AND #$DF instruction at $C26E.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1113 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:Kill.LIST.Cmd.txt
==

Killing Applesoft's LIST Command...........Bob Sander-Cederlof

1. patch DOS to trap it?
2. patch CHRGET to trap it?
3. preventing access to the monitor
4. preventing use of peek/poke to undo patches.
5. the builtin LOCK at $D6
6. patching the forward link in the first line.
7. Using & followed by tokens above $EA for ordinary keywords.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1114 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:Macro.Patches.txt
==

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1115 of 2550

Apple II Computer Info

Some Small Patches..............................Bill Morgan

We've had several calls requesting the patch addresses for a couple of
features in the S-C Macro Assemblers.

Ansert?

In Version 1.1 of the Macro Assembler, Bob changed the CTRL-I (Insert)
command in the EDIT mode to CTRL-A (for ADD). This was done because
the Apple //e keyboard has the TAB key, which generates a CTRL-I code.
It didn't seem to make much sense to have the TAB key do an insert
operation, so he added a clear- to-next-tab-stop function for CTRL-I.

Well, a lot of people don't have //e's, or don't much care about the
TAB key. A lot of us are used to CTRL-I for Insert, and would like to
keep it that way.

The CTRL-A character ($81) is at $1C87 in the $1000 version, and at
$DCB7 in the $D000 version. Just change that byte to a $89, and
you'll have your good old CTRL-I back. If you want to keep the clear-
to-tab-stop function, you can change the $89 at $1CC6 ($DCC6) to a
$81. That will make CTRL-A do the clear-to- tab.

.BS Filler Byte

The directive .BS <expr> skips over <expr> bytes when you are
assembling to memory, and sends <expr> zero bytes to the target file
when you are assembling to disk. Several people have asked how to
change the zero to some other value.

For example, a freshly-erased EPROM contains all $FF bytes. When you
burn data into the chip, you actually write in just the zero bits. If
you are assembling code to be written into an EPROM, you want any fill
bytes to be $FF, so you can add patches later without having to erase
and re-write the whole chip.

The following table shows the addresses of the zero byte in the
various versions of the Macro Assembler. Just change the indicated
byte to the value you want to use for filler.

Version 1.0 | 1.1
 | 40-col //e Videx STB
 $1000 2D43 | 2D62 2D48 2E37 2E60
 $D000 EE8F | EE86 EE62 EF5A EF83

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1116 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:More.68K.Boards.txt
==

Some More 68000 Boards

First let me apologize for an erroneous statement in the May '83
issue, in which I juxtaposed two unrelated facts in a cause-effect
sentence. Many readers have sent corrections: I am told that
grounding the DTACK signal has nothing to do with how much memory you
can add. How did I ever get the idea that it did? If you want the
straight scoop on this, subscribe to Digital Acoustics' newsletter
"DTACK Grounded".

Digital Acoustics has announced a new board, called the "DTACK
Grande". Almost sounds like "grounded", but this time it isn't. You
get one megabyte of RAM and a 12.5 MHz 68000. RAM refresh is handled
by an interrupt routine, with software. The overhead is only 4%,
giving an effective speed of 10 MHz. Expansion connectors on the card
can connect to another 15.7 megabytes. I'd say Saybrook has been
passed by, but Hal Hardenburg beat me to it! (Digital Acoustics, 1415
E. McFadden, Suite F, Santa Ana, CA 92705. (714) 835-4884)

Mike Heckman at Anthro-Digital sent me some literature on another new
68000 board. Enhancement Technology Corporation calls it the "PDQ//".
Specs include: 10 MHZ, 256K RAM, UCSD p-system, Applesoft-compatible
BASIC. The price will be $1495, available by the end of August. We
may be able to make you a deal on one of these. (ETC, P.O.Box 1267,
Pittsfield, MA 01202. (413) 445-4219)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1117 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50

S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00

S-C Word Processor...$50.00
 As is, with fully commented source code. Needs S-C Macro Assembler.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)................... $79.00
Full Screen Editor for S-C Macro Assembler (Laumer Research).......$49.00

The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $45.00
Super Disk Copy III (Sensible Software).............(reg. $30.00) $27.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00

Blank Diskettes (with hub rings).................package of 20 for $45.00
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
ZIF Game Socket Extender...$20.00
Shift-Key Modifier...$15.00
Lower-Case Display Encoder ROM.....................................$25.00
 Only Revision level 7 or later Apples.
WICO Track Ball...($89.95) $80.00
STB-80 80-column Display Board (STB Systems)...........($249.00) $225.00
STB-128 128K RAM Card (STB Systems)....................($399.00) $350.00

Grappler+ Printer Interface (Orange Micro).............($175.00) $150.00
Bufferboard 16K Buffer for Grappler (Orange Micro).....($175.00) $150.00
Buffered Grappler+ NEW!! Interface and 16K Buffer.....($239.00) $200.00

Books, Books, Books..........................compare our discount prices!
 "THE Book of Apple Software 1983 (with supplement)...($24.90) $18.00
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1118 of 2550

Apple II Computer Info

 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00
 Add $1.50 per book for US postage. Foreign orders add postage needed.

Whatever Else You Need............................Call for Our Low Prices

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We take Master Charge, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1119 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:Pitz.VCR.Patch.txt
==

Tinkering with Variable Cross Reference...........Louis Pitz
 De Witt, Iowa

I am a tinkerer! Yes I love to take programs and add features to
improve them. Sometimes the "improved" version even works! Usually I
learn a lot about humility, and occasionally a bit about programming.

A case in point is the program for doing an Applesoft Variable Cross
Reference (from the November 1980 issue of Apple Assembly Line). I
just recently got Quarterly Disk #1 with its source code, and so it
became "tinker-time".

VCR works just fine, and is fast! But it only produces 40- column
output, and I wanted both 40-column screen and 80-column printer
hardcopy. Here are some patches which will do the job. It makes a
good short example of changing output hooks in the middle of a program
without goofing up DOS.

1060 .TF B.VCRP "P" FOR PRINTER VERSION

4534 LDA #0 RESET COUNTER TO 0
4538 STA $6 FOR EACH VARIABLE

4821 INC $6 COUNT THE SCREEN LINE
4822 LDA $6
4823 AND #1 LOOK AT ODD-EVEN BIT
4824 BEQ TAB.NEW.LINE BOTH SCRN AND PRINTER
4825 LDA #$FDF0 ONLY SCRN GETS NEW LINE
4826 STA $36 SO DISCONNECT PRINTER
4827 LDA /$FDF0
4828 STA $37
4829 JSR $3EA PASS TO DOS
4830 JSR MON.CROUT SCREEN ONLY
4831 LDA #$C100 REHOOK PRINTER
4832 STA $36
4833 LDA /$C100
4834 STA $37
4835 JSR $3EA PASS TO DOS
4836 BNE .1 ...ALWAYS

To use the printer version of VCR, BRUN B.VCRP. This sets up the
ampersand vector. Then LOAD your Applesoft program. Use PR#1 to turn
on your printer. Then type "&" and RETURN, and watch the cross
reference.

If your printer is in some slot other than 1, change lines 4831 and
4833 to the correct value ($Cs00, where s=slot#).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1120 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:Reverse.Nybbles.txt
==

Reversing, Getting, and Putting Nybbles....Bob Sander-Cederlof

In the process of de-crypting a large data base, I needed to reverse
the nybbles in each of roughly 32000 bytes. There are probably a lot
of ways to do this, but I found one which takes only 12 bytes to
reverse the nybbles in the A-register.

Just to be sure we agree on what I am talking about, here is a little
diagram:

 a b c d e f g h

 e f g h a b c d

One way, sort of brute force, involves breaking the nybbles out and
remerging them:

 LDA (PNTR),Y
 ASL SHIFT EFGH LEFT
 ASL
 ASL
 ASL
 STA TEMP
 LDA (PNTR),Y
 LSR SHIFT ABCD RIGHT
 LSR
 LSR
 LSR
 ORA TEMP RE-MERGE NYBBLES
 STA (PNTR),Y

From another perspective, I am trying to rotate the data byte half-way
around. But if I try to do it with ROL or ROR instructions, one bit
gets left in CARRY, and an extra bit gets inserted in the middle.
Here is how I finally did it:

 LDA (PNTR),Y abcd efgh
 ASL bcde fgh0
 ADC #0 bcde fgha
 ASL cdef gha0
 ADC #0 cdef ghab
 ASL defg hab0
 ADC #0 defg habc
 ASL efgh abc0
 ADC #0 efgh abcd
 STA (PNTR),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1121 of 2550

Apple II Computer Info

Each ASL-ADC pair shifts the byte around one bit. The ASL shifts the
leftmost bit into the CARRY bit, and a zero into the right end. The
ADC #0 adds CARRY into the rightmost bit.

Naturally, curiosity forces me to look at the possibility of shifting
right one bit also. We have LSR and ROR, of course, but both of these
leave the shifted out bit in CARRY. I want that bit back in the sign
position, like this:

 ABCDEFGH should become HABCDEFG

Two similar methods come to mind, depending on how I might use it. If
the byte to be shifted is in A-reg, and needs to remain there, and I
don't want to upset any other registers, I can do it like this:

 PHA save unshifted value
 LSR get rightmost bit in CARRY
 PLA restore unshifted value
 ROR shift again, putting right bit on left

If the byte to be shifted is in memory, and I want the results to be
in memory, I might do it like this:

 LDA FLAG
 LSR RIGHTMOST BIT INTO CARRY
 ROR FLAG SHIFT BYTE, PUTTING RIGHT INTO LEFT

Note that I can branch according to the value of the bit which moved
around by using BMI or BPL, because that bit is the new sign bit.

The last method above can be useful when you have a program that needs
to alternate between two paths. For example, suppose I write a
program to pick up the "next nybble" from a data area. The first time
I call it, I want to get the left nybble of the first byte. Next
time, the right nybble of the same byte. Next time the left nybble of
the next byte. And so on.

I might store the value $55 in FLAG initially, and then use LDA FLAG,
LSR, ROR FLAG, to shift it around. FLAG will alternate between $55
and $AA. My subroutine can alternate between left and right nybbles.

Not to leave you hanging, I wrote "get next nybble" and "put next
nybble" subroutines. By the time I finished polishing, yet another
technique had surfaced for rotating the $55/$AA flag. I used this new
method so as not disturb the contents of the A-register.

To set up either routine, the address of the beginning of the data
area must be put into PNTR and PNTR+1, and $55 must be put into FLAG.

 <<<routines here>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1122 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:Wetzels.Patches.txt
==

Bringing Some Patches Together.....................Jim Wetzel

Earlier this year I decided to break down and finally buy an 80-column
card for my Apple II+. After all, it's cheaper than a IIe. I was
just about to type in the Videx patches from AAL Volume 2, No.11, when
Bob announced Version 1.1. Well with the Videx patches and all the
new features I just couldn't pass up his offer. After a call to Bob
and a three day wait I had version 1.1 of the S-C Macro Assembler.

While testing out the new version I soon discovered most of the
patches I had applied to version 1.0 would not work properly. The
addresses of the routines/tables had all moved. After a few hours
work and a lot of dis-assembling I would like to share the new
locations with AAL readers and bring some of the patches together.

First I will describe the new addresses and then show how I used them.

The Escape Function Table is now located at $14AB-$14C6 <ESC-@ thru
ESC-M>. This is a group of two-byte addresses (minus 1, because they
are of the PHA-PHA-RTS variety) of the routines to handle the escape
functions.

The Edit Function Table is now located at $1CB4-$1CE3 <ctrl-@ thru
ctrl-X>. This table is somewhat different. Each entry is three bytes
long and it contains the control character and the address-minus-1 of
the routine to handle the function.

Location $14D3 contains the dash count <$26> for the ESC-L function.

Location $13FF contains a JSR to the monitor Bell routine. This is
the end of the input checker, the JSR BELL is executed when an invalid
character is entered, and a good place to put a JSR to an extended
input processor.

These locations are valid for the regular version and the Videx
version which load at $1000. For language card users just add $C000
to the address. My hat is off to Bob for adding all the features of
Videx and still keeping the assembler looking the same. I have not
checked the STB or the IIe versions for compatibility but, with a
little bit of work and knowing what to look for it should be an easy
process.

Now, what can you do with this information? I have modified Bob's
language card loader to show you (figure 1). With the exception of
the REM statements, lines 1000-1140 of the file are as Bob supplied;
after that the changes begin. I will not spend a lot of time
explaining the routines themselves because they are all well
documented in the referenced AAL articles.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1123 of 2550

Apple II Computer Info

The first thing I do is load in my extended input processor (figure 2)
at $F600. There appears to be about two free pages after the
assembler and before monitor in the language card version. For
standard version users just move the symbol table up as described AAL
Vol. 2, No. 9. My input processor is a combination of Auto Catalog
(AAL 2.9) and Toggling Upper/Lower Case (AAL 3.3). Next I modify the
JSR BELL to JSR CONTROL.A.

Once you have control you can add any routines you wish (such as R. F.
O'Brien's Auto/Manual Toggle AAL 2.11). For now I am only interested
in an upper/lower case toggle.

Line 1170 modifies the ESC-C function to JSR to my routine for auto
Catalog. Remember this should be the address of the routine - 1.
Lines 1180-1190 change the cursor to a blinking underline (as
described in AAL 3.5) along with line 1200 which changes the number of
"-"'s from 38 to 64 (I found 68 to be too many).

Last but not least is an answer to Steve Mann's request for a
upper/lower case toggle in EDIT mode. In version 1.1 Bob changed the
ctrl-I key function in EDIT mode and added a ctrl-A key function in
its place. He did it so that the //e TAB key, which generates
control-I, would really mean TAB.

Well Bob, I like mnemonic commands (like ctrl-I for Insert), and think
the older Apples should still take precedence. Line 1210 changes the
ctrl-A key to branch to my upper/lower case toggle routine, just past
the character check, and line 1220 changes the ctrl-I routine back to
its proper function (this was the address found in the ctrl-A area).

 I hope these patches will be useful to other AAL readers not only for
what they do, but for how they do it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1124 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:Articles:Whisper.VolCtrl.txt
==

"One more beep and you're out!"

We have uncovered another neat new Apple accessory: a volume control
for the speaker! If other people within earshot of your computer are
trying to sleep, or just can't take another five minutes of bells,
beeps, and buzzes, the WHISPER VOLUME CONTROL is for you. The Apple
version works with II, II Plus, //e, or ///. All you have to do to
install it is take the case off your Apple, unplug the speaker wire
from the board, plug in the WVC cable, and plug the speaker wire into
the other end of the WVC connector. You can also get WVC for the
IBM/PC. The retail price is $22.95 for the standard version, or
$25.95 with a headphone jack, from Information Dynamics Corp., 1251
Exchange Drive, Richardson, TX 75081. Phone (214)783-8090. Or if you
like, buy them from us at $21 and $24, respectively.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1125 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:DOS3.3:S.NybbleGetPut.txt
==

 1000 *SAVE NYBBLE GET & PUT
 1010 *--------------------------------
 1020 PNTR .EQ 0 AND 1
 1030 FLAG .EQ 2
 1040 *--------------------------------
 1050 * PUT NEXT NYBBLE AT (PNTR)
 1060 * IF FLAG = $55, PUT LEFT NYBBLE
 1070 * = $AA, PUT RIGHT NYBBLE
 1080 *--------------------------------
 1090 PUT.NEXT.NYBBLE
 1100 LDX #0
 1110 LSR FLAG $55 OR $AA
 1120 BCS .1 ...IT WAS $AA, NOW $54
 1130 *---STORE IN LEFT NYBBLE---------
 1140 ASL FLAG NOW $AA
 1150 ASL
 1160 ASL
 1170 ASL
 1180 STA (PNTR,X)
 1190 RTS
 1200 *---STORE IN RIGHT NYBBLE--------
 1210 .1 ORA (PNTR,X) MERGE WITH LEFT NYBBLE
 1220 STA (PNTR,X)
 1230 INC FLAG MAKE $54 INTO $55
 1240 INC PNTR MOVE PNTR TO NEXT BYTE
 1250 BNE .2
 1260 INC PNTR+1
 1270 .2 RTS
 1280 *--------------------------------
 1290 * GET NEXT NYBBLE
 1300 * IF FLAG = $55, GET LEFT NYBBLE
 1310 * = $AA, GET RIGHT NYBBLE
 1320 *--------------------------------
 1330 GET.NEXT.NYBBLE
 1340 LDX #0
 1350 LSR FLAG WAS $55 OR $AA
 1360 LDA (PNTR,X) GET BYTE WITH NYBBLES
 1370 BCS .1 ...WAS $AA, NOW $54
 1380 *---GET LEFT NYBBLE--------------
 1390 LSR
 1400 LSR
 1410 LSR
 1420 LSR
 1430 RTS
 1440 *---GET RIGHT NYBBLE--------------
 1450 .1 INC FLAG MAKE $54 INTO $55
 1460 INC PNTR ADVANCE TO NEXT BYTE
 1470 BNE .2
 1480 INC PNTR+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1126 of 2550

Apple II Computer Info

 1490 .2 AND #$0F ISOLATE NYBBLE
 1500 RTS
 1510 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1127 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:DOS3.3:S.PutneySpiral.txt
==

 1000 *SAVE S.PUTNEY'S SPIRAL
 1010 *
 1020 *
 1030 * FAST SPIRAL SCREEN CLEAR
 1040 *
 1050 * CHARLES H. PUTNEY
 1060 * 18 QUINNS ROAD
 1070 * SHANKILL
 1080 * CO. DUBLIN
 1090 * IRELAND
 1100 *
 1110 *
 1120 *
 1130 *
 1140 *--------------------------------
 1150 *
 1160 * TEXT PAGE BASE ADDRESSES
 1170 *
 1180 *
 1190 R0 .EQ $400
 1200 R1 .EQ $480
 1210 R2 .EQ $500
 1220 R3 .EQ $580
 1230 R4 .EQ $600
 1240 R5 .EQ $680
 1250 R6 .EQ $700
 1260 R7 .EQ $780
 1270 R8 .EQ $428
 1280 R9 .EQ $4A8
 1290 R10 .EQ $528
 1300 R11 .EQ $5A8
 1310 R12 .EQ $628
 1320 R13 .EQ $6A8
 1330 R14 .EQ $728
 1340 R15 .EQ $7A8
 1350 R16 .EQ $450
 1360 R17 .EQ $4D0
 1370 R18 .EQ $550
 1380 R19 .EQ $5D0
 1390 R20 .EQ $650
 1400 R21 .EQ $6D0
 1410 R22 .EQ $750
 1420 R23 .EQ $7D0
 1430 *
 1440 *
 1450 *--------------------------------
 1460 *
 1470 * MACRO DEFINITIONS
 1480 *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1128 of 2550

Apple II Computer Info

 1490 *
 1500 .MA MOVE
 1510 LDA]1
 1520 STA]2
 1530 .EM
 1540 *
 1550 *
 1560 *
 1570 .MA MOVER MOVE RIGHT ROW,COLLOW,COLHIGH FROM 0-39
 1580 .DO]3>]2
 1590 >MOVE]1+]3-1,]1+]3
 1600 .FIN
 1610 .DO]3-1>]2
 1620 >MOVE]1+]3-2,]1+]3-1
 1630 .FIN
 1640 .DO]3-2>]2
 1650 >MOVE]1+]3-3,]1+]3-2
 1660 .FIN
 1670 .DO]3-3>]2
 1680 >MOVE]1+]3-4,]1+]3-3
 1690 .FIN
 1700 .DO]3-4>]2
 1710 >MOVE]1+]3-5,]1+]3-4
 1720 .FIN
 1730 .DO]3-5>]2
 1740 >MOVE]1+]3-6,]1+]3-5
 1750 .FIN
 1760 .DO]3-6>]2
 1770 >MOVE]1+]3-7,]1+]3-6
 1780 .FIN
 1790 .DO]3-7>]2
 1800 >MOVE]1+]3-8,]1+]3-7
 1810 .FIN
 1820 .DO]3-8>]2
 1830 >MOVE]1+]3-9,]1+]3-8
 1840 .FIN
 1850 .DO]3-9>]2
 1860 >MOVE]1+]3-10,]1+]3-9
 1870 .FIN
 1880 .DO]3-10>]2
 1890 >MOVE]1+]3-11,]1+]3-10
 1900 .FIN
 1910 .DO]3-11>]2
 1920 >MOVE]1+]3-12,]1+]3-11
 1930 .FIN
 1940 .DO]3-12>]2
 1950 >MOVE]1+]3-13,]1+]3-12
 1960 .FIN
 1970 .DO]3-13>]2
 1980 >MOVE]1+]3-14,]1+]3-13
 1990 .FIN
 2000 .DO]3-14>]2
 2010 >MOVE]1+]3-15,]1+]3-14
 2020 .FIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1129 of 2550

Apple II Computer Info

 2030 .DO]3-15>]2
 2040 >MOVE]1+]3-16,]1+]3-15
 2050 .FIN
 2060 .DO]3-16>]2
 2070 >MOVE]1+]3-17,]1+]3-16
 2080 .FIN
 2090 .DO]3-17>]2
 2100 >MOVE]1+]3-18,]1+]3-17
 2110 .FIN
 2120 .DO]3-18>]2
 2130 >MOVE]1+]3-19,]1+]3-18
 2140 .FIN
 2150 .DO]3-19>]2
 2160 >MOVE]1+]3-20,]1+]3-19
 2170 .FIN
 2180 .DO]3-20>]2
 2190 >MOVE]1+]3-21,]1+]3-20
 2200 .FIN
 2210 .DO]3-21>]2
 2220 >MOVE]1+]3-22,]1+]3-21
 2230 .FIN
 2240 .DO]3-22>]2
 2250 >MOVE]1+]3-23,]1+]3-22
 2260 .FIN
 2270 .DO]3-23>]2
 2280 >MOVE]1+]3-24,]1+]3-23
 2290 .FIN
 2300 .DO]3-24>]2
 2310 >MOVE]1+]3-25,]1+]3-24
 2320 .FIN
 2330 .DO]3-25>]2
 2340 >MOVE]1+]3-26,]1+]3-25
 2350 .FIN
 2360 .DO]3-26>]2
 2370 >MOVE]1+]3-27,]1+]3-26
 2380 .FIN
 2390 .DO]3-27>]2
 2400 >MOVE]1+]3-28,]1+]3-27
 2410 .FIN
 2420 .DO]3-28>]2
 2430 >MOVE]1+]3-29,]1+]3-28
 2440 .FIN
 2450 .DO]3-29>]2
 2460 >MOVE]1+]3-30,]1+]3-29
 2470 .FIN
 2480 .DO]3-30>]2
 2490 >MOVE]1+]3-31,]1+]3-30
 2500 .FIN
 2510 .DO]3-31>]2
 2520 >MOVE]1+]3-32,]1+]3-31
 2530 .FIN
 2540 .DO]3-32>]2
 2550 >MOVE]1+]3-33,]1+]3-32
 2560 .FIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1130 of 2550

Apple II Computer Info

 2570 .DO]3-33>]2
 2580 >MOVE]1+]3-34,]1+]3-33
 2590 .FIN
 2600 .DO]3-34>]2
 2610 >MOVE]1+]3-35,]1+]3-34
 2620 .FIN
 2630 .DO]3-35>]2
 2640 >MOVE]1+]3-36,]1+]3-35
 2650 .FIN
 2660 .DO]3-36>]2
 2670 >MOVE]1+]3-37,]1+]3-36
 2680 .FIN
 2690 .DO]3-37>]2
 2700 >MOVE]1+]3-38,]1+]3-37
 2710 .FIN
 2720 .DO]3-38>]2
 2730 >MOVE]1+]3-39,]1+]3-38
 2740 .FIN
 2750 .EM
 2760 *
 2770 *
 2780 *
 2790 .MA MOVEL MOVE LEFT ROW,COLLOW,COLHIGH FROM 0-39
 2800 .DO]3>]2
 2810 >MOVE]1+]2+1,]1+]2
 2820 .FIN
 2830 .DO]3-1>]2
 2840 >MOVE]1+]2+2,]1+]2+1
 2850 .FIN
 2860 .DO]3-2>]2
 2870 >MOVE]1+]2+3,]1+]2+2
 2880 .FIN
 2890 .DO]3-3>]2
 2900 >MOVE]1+]2+4,]1+]2+3
 2910 .FIN
 2920 .DO]3-4>]2
 2930 >MOVE]1+]2+5,]1+]2+4
 2940 .FIN
 2950 .DO]3-5>]2
 2960 >MOVE]1+]2+6,]1+]2+5
 2970 .FIN
 2980 .DO]3-6>]2
 2990 >MOVE]1+]2+7,]1+]2+6
 3000 .FIN
 3010 .DO]3-7>]2
 3020 >MOVE]1+]2+8,]1+]2+7
 3030 .FIN
 3040 .DO]3-8>]2
 3050 >MOVE]1+]2+9,]1+]2+8
 3060 .FIN
 3070 .DO]3-9>]2
 3080 >MOVE]1+]2+10,]1+]2+9
 3090 .FIN
 3100 .DO]3-10>]2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1131 of 2550

Apple II Computer Info

 3110 >MOVE]1+]2+11,]1+]2+10
 3120 .FIN
 3130 .DO]3-11>]2
 3140 >MOVE]1+]2+12,]1+]2+11
 3150 .FIN
 3160 .DO]3-12>]2
 3170 >MOVE]1+]2+13,]1+]2+12
 3180 .FIN
 3190 .DO]3-13>]2
 3200 >MOVE]1+]2+14,]1+]2+13
 3210 .FIN
 3220 .DO]3-14>]2
 3230 >MOVE]1+]2+15,]1+]2+14
 3240 .FIN
 3250 .DO]3-15>]2
 3260 >MOVE]1+]2+16,]1+]2+15
 3270 .FIN
 3280 .DO]3-16>]2
 3290 >MOVE]1+]2+17,]1+]2+16
 3300 .FIN
 3310 .DO]3-17>]2
 3320 >MOVE]1+]2+18,]1+]2+17
 3330 .FIN
 3340 .DO]3-18>]2
 3350 >MOVE]1+]2+19,]1+]2+18
 3360 .FIN
 3370 .DO]3-19>]2
 3380 >MOVE]1+]2+20,]1+]2+19
 3390 .FIN
 3400 .DO]3-20>]2
 3410 >MOVE]1+]2+21,]1+]2+20
 3420 .FIN
 3430 .DO]3-21>]2
 3440 >MOVE]1+]2+22,]1+]2+21
 3450 .FIN
 3460 .DO]3-22>]2
 3470 >MOVE]1+]2+23,]1+]2+22
 3480 .FIN
 3490 .DO]3-23>]2
 3500 >MOVE]1+]2+24,]1+]2+23
 3510 .FIN
 3520 .DO]3-24>]2
 3530 >MOVE]1+]2+25,]1+]2+24
 3540 .FIN
 3550 .DO]3-25>]2
 3560 >MOVE]1+]2+26,]1+]2+25
 3570 .FIN
 3580 .DO]3-26>]2
 3590 >MOVE]1+]2+27,]1+]2+26
 3600 .FIN
 3610 .DO]3-27>]2
 3620 >MOVE]1+]2+28,]1+]2+27
 3630 .FIN
 3640 .DO]3-28>]2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1132 of 2550

Apple II Computer Info

 3650 >MOVE]1+]2+29,]1+]2+28
 3660 .FIN
 3670 .DO]3-29>]2
 3680 >MOVE]1+]2+30,]1+]2+29
 3690 .FIN
 3700 .DO]3-30>]2
 3710 >MOVE]1+]2+31,]1+]2+30
 3720 .FIN
 3730 .DO]3-31>]2
 3740 >MOVE]1+]2+32,]1+]2+31
 3750 .FIN
 3760 .DO]3-32>]2
 3770 >MOVE]1+]2+33,]1+]2+32
 3780 .FIN
 3790 .DO]3-33>]2
 3800 >MOVE]1+]2+34,]1+]2+33
 3810 .FIN
 3820 .DO]3-34>]2
 3830 >MOVE]1+]2+35,]1+]2+34
 3840 .FIN
 3850 .DO]3-35>]2
 3860 >MOVE]1+]2+36,]1+]2+35
 3870 .FIN
 3880 .DO]3-36>]2
 3890 >MOVE]1+]2+37,]1+]2+36
 3900 .FIN
 3910 .DO]3-37>]2
 3920 >MOVE]1+]2+38,]1+]2+37
 3930 .FIN
 3940 .DO]3-38>]2
 3950 >MOVE]1+]2+39,]1+]2+38
 3960 .FIN
 3970 .EM
 3980 *
 3990 *
 4000 *
 4010 .MA MOVEU MOVE UP COL,ROWLOW,ROWHIGH FROM 0-23
 4020 .DO]2<1
 4030 .DO]3+1>1
 4040 >MOVE]1+R1,]1+R0
 4050 .FIN
 4060 .FIN
 4070 .DO]2<2
 4080 .DO]3+1>2
 4090 >MOVE]1+R2,]1+R1
 4100 .FIN
 4110 .FIN
 4120 .DO]2<3
 4130 .DO]3+1>3
 4140 >MOVE]1+R3,]1+R2
 4150 .FIN
 4160 .FIN
 4170 .DO]2<4
 4180 .DO]3+1>4

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1133 of 2550

Apple II Computer Info

 4190 >MOVE]1+R4,]1+R3
 4200 .FIN
 4210 .FIN
 4220 .DO]2<5
 4230 .DO]3+1>5
 4240 >MOVE]1+R5,]1+R4
 4250 .FIN
 4260 .FIN
 4270 .DO]2<6
 4280 .DO]3+1>6
 4290 >MOVE]1+R6,]1+R5
 4300 .FIN
 4310 .FIN
 4320 .DO]2<7
 4330 .DO]3+1>7
 4340 >MOVE]1+R7,]1+R6
 4350 .FIN
 4360 .FIN
 4370 .DO]2<8
 4380 .DO]3+1>8
 4390 >MOVE]1+R8,]1+R7
 4400 .FIN
 4410 .FIN
 4420 .DO]2<9
 4430 .DO]3+1>9
 4440 >MOVE]1+R9,]1+R8
 4450 .FIN
 4460 .FIN
 4470 .DO]2<10
 4480 .DO]3+1>10
 4490 >MOVE]1+R10,]1+R9
 4500 .FIN
 4510 .FIN
 4520 .DO]2<11
 4530 .DO]3+1>11
 4540 >MOVE]1+R11,]1+R10
 4550 .FIN
 4560 .FIN
 4570 .DO]2<12
 4580 .DO]3+1>12
 4590 >MOVE]1+R12,]1+R11
 4600 .FIN
 4610 .FIN
 4620 .DO]2<13
 4630 .DO]3+1>13
 4640 >MOVE]1+R13,]1+R12
 4650 .FIN
 4660 .FIN
 4670 .DO]2<14
 4680 .DO]3+1>14
 4690 >MOVE]1+R14,]1+R13
 4700 .FIN
 4710 .FIN
 4720 .DO]2<15

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1134 of 2550

Apple II Computer Info

 4730 .DO]3+1>15
 4740 >MOVE]1+R15,]1+R14
 4750 .FIN
 4760 .FIN
 4770 .DO]2<16
 4780 .DO]3+1>16
 4790 >MOVE]1+R16,]1+R15
 4800 .FIN
 4810 .FIN
 4820 .DO]2<17
 4830 .DO]3+1>17
 4840 >MOVE]1+R17,]1+R16
 4850 .FIN
 4860 .FIN
 4870 .DO]2<18
 4880 .DO]3+1>18
 4890 >MOVE]1+R18,]1+R17
 4900 .FIN
 4910 .FIN
 4920 .DO]2<19
 4930 .DO]3+1>19
 4940 >MOVE]1+R19,]1+R18
 4950 .FIN
 4960 .FIN
 4970 .DO]2<20
 4980 .DO]3+1>20
 4990 >MOVE]1+R20,]1+R19
 5000 .FIN
 5010 .FIN
 5020 .DO]2<21
 5030 .DO]3+1>21
 5040 >MOVE]1+R21,]1+R20
 5050 .FIN
 5060 .FIN
 5070 .DO]2<22
 5080 .DO]3+1>22
 5090 >MOVE]1+R22,]1+R21
 5100 .FIN
 5110 .FIN
 5120 .DO]2<23
 5130 .DO]3+1>23
 5140 >MOVE]1+R23,]1+R22
 5150 .FIN
 5160 .FIN
 5170 .EM
 5180 *
 5190 *
 5200 *
 5210 .MA MOVED MOVE DOWN COL,ROWLOW,ROWHIGH FROM 0-23
 5220 .DO]2<23
 5230 .DO]3+1>23
 5240 >MOVE]1+R22,]1+R23
 5250 .FIN
 5260 .FIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1135 of 2550

Apple II Computer Info

 5270 .DO]2<22
 5280 .DO]3+1>22
 5290 >MOVE]1+R21,]1+R22
 5300 .FIN
 5310 .FIN
 5320 .DO]2<21
 5330 .DO]3+1>21
 5340 >MOVE]1+R20,]1+R21
 5350 .FIN
 5360 .FIN
 5370 .DO]2<20
 5380 .DO]3+1>20
 5390 >MOVE]1+R19,]1+R20
 5400 .FIN
 5410 .FIN
 5420 .DO]2<19
 5430 .DO]3+1>19
 5440 >MOVE]1+R18,]1+R19
 5450 .FIN
 5460 .FIN
 5470 .DO]2<18
 5480 .DO]3+1>18
 5490 >MOVE]1+R17,]1+R18
 5500 .FIN
 5510 .FIN
 5520 .DO]2<17
 5530 .DO]3+1>17
 5540 >MOVE]1+R16,]1+R17
 5550 .FIN
 5560 .FIN
 5570 .DO]2<16
 5580 .DO]3+1>16
 5590 >MOVE]1+R15,]1+R16
 5600 .FIN
 5610 .FIN
 5620 .DO]2<15
 5630 .DO]3+1>15
 5640 >MOVE]1+R14,]1+R15
 5650 .FIN
 5660 .FIN
 5670 .DO]2<14
 5680 .DO]3+1>14
 5690 >MOVE]1+R13,]1+R14
 5700 .FIN
 5710 .FIN
 5720 .DO]2<13
 5730 .DO]3+1>13
 5740 >MOVE]1+R12,]1+R13
 5750 .FIN
 5760 .FIN
 5770 .DO]2<12
 5780 .DO]3+1>12
 5790 >MOVE]1+R11,]1+R12
 5800 .FIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1136 of 2550

Apple II Computer Info

 5810 .FIN
 5820 .DO]2<11
 5830 .DO]3+1>11
 5840 >MOVE]1+R10,]1+R11
 5850 .FIN
 5860 .FIN
 5870 .DO]2<10
 5880 .DO]3+1>10
 5890 >MOVE]1+R9,]1+R10
 5900 .FIN
 5910 .FIN
 5920 .DO]2<9
 5930 .DO]3+1>9
 5940 >MOVE]1+R8,]1+R9
 5950 .FIN
 5960 .FIN
 5970 .DO]2<8
 5980 .DO]3+1>8
 5990 >MOVE]1+R7,]1+R8
 6000 .FIN
 6010 .FIN
 6020 .DO]2<7
 6030 .DO]3+1>7
 6040 >MOVE]1+R6,]1+R7
 6050 .FIN
 6060 .FIN
 6070 .DO]2<6
 6080 .DO]3+1>6
 6090 >MOVE]1+R5,]1+R6
 6100 .FIN
 6110 .FIN
 6120 .DO]2<5
 6130 .DO]3+1>5
 6140 >MOVE]1+R4,]1+R5
 6150 .FIN
 6160 .FIN
 6170 .DO]2<4
 6180 .DO]3+1>4
 6190 >MOVE]1+R3,]1+R4
 6200 .FIN
 6210 .FIN
 6220 .DO]2<3
 6230 .DO]3+1>3
 6240 >MOVE]1+R2,]1+R3
 6250 .FIN
 6260 .FIN
 6270 .DO]2<2
 6280 .DO]3+1>2
 6290 >MOVE]1+R1,]1+R2
 6300 .FIN
 6310 .FIN
 6320 .DO]2<1
 6330 .DO]3+1>1
 6340 >MOVE]1+R0,]1+R1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1137 of 2550

Apple II Computer Info

 6350 .FIN
 6360 .FIN
 6370 .EM
 6380 *
 6390 *
 6400 *--------------------------------
 6410 *
 6420 * SPIRAL PROGRAM
 6430 .OR $6000 OUT OF THE WAY
 6440 .TF SPIRAL.OBJ
 6450 *
 6460 *
 6470 SPIRAL LDA #' '+$80 GET A SPACE
 6480 STA R12+12 PUT IT IN CENTER
 6490 LDX #960 HOW MANY TIMES ?
 6500 LDY /960 HIGH ORDER
 6510 *
 6520 SPI1 >MOVED 0,0,23
 6530 >MOVEL R0,0,39
 6540 >MOVEU 39,0,23
 6550 >MOVER R23,1,39
 6560 *
 6570 >MOVED 1,1,23
 6580 >MOVEL R1,1,38
 6590 >MOVEU 38,1,22
 6600 >MOVER R22,2,38
 6610 *
 6620 >MOVED 2,2,22
 6630 >MOVEL R2,2,37
 6640 >MOVEU 37,2,21
 6650 >MOVER R21,3,37
 6660 *
 6670 >MOVED 3,3,21
 6680 >MOVEL R3,3,36
 6690 >MOVEU 36,3,20
 6700 >MOVER R20,4,36
 6710 *
 6720 >MOVED 4,4,20
 6730 >MOVEL R4,4,35
 6740 >MOVEU 35,4,19
 6750 >MOVER R19,5,35
 6760 *
 6770 >MOVED 5,5,19
 6780 >MOVEL R5,5,34
 6790 >MOVEU 34,5,18
 6800 >MOVER R18,6,34
 6810 *
 6820 >MOVED 6,6,18
 6830 >MOVEL R6,6,33
 6840 >MOVEU 33,6,17
 6850 >MOVER R17,7,33
 6860 *
 6870 >MOVED 7,7,17
 6880 >MOVEL R7,7,32

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1138 of 2550

Apple II Computer Info

 6890 >MOVEU 32,7,16
 6900 >MOVER R16,8,32
 6910 *
 6920 >MOVED 8,8,16
 6930 >MOVEL R8,8,31
 6940 >MOVEU 31,8,15
 6950 >MOVER R15,9,31
 6960 *
 6970 >MOVED 9,9,15
 6980 >MOVEL R9,9,30
 6990 >MOVEU 30,9,14
 7000 >MOVER R14,10,30
 7010 *
 7020 >MOVED 10,10,14
 7030 >MOVEL R10,10,29
 7040 >MOVEU 29,10,13
 7050 >MOVER R13,11,29
 7060 *
 7070 >MOVED 11,11,13
 7080 >MOVEL R11,11,28
 7090 >MOVEU 28,11,12
 7100 >MOVER R12,12,28
 7110 *
 7120 DEX
 7130 CPX #$FF
 7140 BNE SPI2
 7150 DEY
 7160 CPY #$FF
 7170 BNE SPI2
 7180 RTS
 7190 SPI2 JMP SPI1
 7200 *
 7210 ZZSIZE .EQ *-SPIRAL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1139 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:DOS3.3:S.Wetzel11Patch.txt
==

 1000 *SAVE WETZEL'S PATCHES TO 1.1
 1010 .OR $F600
 1020 .TF SCM.PATCH
 1030 *--
 1040 CH .EQ $24
 1050 BASL .EQ $28
 1060 YSAVE .EQ $40
 1070 WBUF .EQ $200
 1080 LCPROT .EQ $C080 LC Protect
 1090 LCWRT .EQ $C083 LC Write enable
 1100 UCFLAG .EQ $D016 UC/LC Flag
 1110 BELL .EQ $FF3A Monitor Bell
 1120 *--
 1130 CONTROL.A
 1140 CMP #$81 Was a CNTL-A entered
 1150 BNE ERROR No - then signal error
 1160 LDA LCWRT Write enable Language card
 1170 LDA LCWRT
 1180 LDA UCFLAG Get upper case flag
 1190 EOR #$FF Reverse it
 1200 STA UCFLAG Put it back
 1210 LDA LCPROT Write protect Language card
 1220 RTS
 1230 ERROR
 1240 JSR BELL Ring bell to signal error
 1250 RTS Return
 1260 *--
 1270 ESCAPE.C
 1280 CPX #0 Start of line?
 1290 BNE .2 No, rtn
 1300 LDY #0
 1310 .1 LDA MSG,Y Get message
 1320 STA WBUF,Y Put in buffer
 1330 STA (BASL),Y Put on screen (40-column)
 1340 INY
 1350 CPY #7 Finished ?
 1360 BNE .1 Not yet
 1370 STY YSAVE
 1380 INY
 1390 STY CH Tell assembler
 1400 TSX this was an
 1410 LDA #$CC ESC-L so it will
 1420 STA $103,X exec command
 1430 LDX YSAVE
 1440 .2 RTS
 1450 MSG .AS -/CATALOG/

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1140 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:DOS3.3:S.WetzelLoader.txt
==

 1000 REM LOAD S-C MACRO ASSEMBLER (VIDEX)
 1010 REM INTO RAM AT $D000
 1020 REM LOAD PATCHES AT $F600
 1030 REM PATCH INPUT TEST TO CHECK FOR MY COMMANDS BEFORE ERROR
 1040 REM PATCH ESCAPE TABLE ($D4AB-) FOR ESCAPE-C
 1050 REM CHANGE CURSOR TO BLINKING UNDERLINE
 1060 REM PATCH ESC-L DASH LINE COUNT
 1070 REM PATCH EDIT CNTL-A TO MY ROUTINE
 1080 REM PATCH EDIT CNTL-I BACK TO INSERT FUNCTION
 1090 CALL-151
 1100 C081 C081
 1110 F800<F800.FFFFM
 1120 BLOAD S-C.ASM.MACRO.D000.VIDEX
 1130 300:A9 4C CD 00 E0 F0 12 8D 00 E0 A9 00 8D 01 E0 A9 D0 8D 02 E0
A9 CB 8D D1 03 60
 1140 300G
 1150 BLOAD SCM.PATCH
 1160 D3FF:20 00 F6
 1170 D4B1:19 F6
 1180 C0B0:0A 68
 1190 C0B0:0B 08
 1200 D4D3:40
 1210 DCB8:03 F6
 1220 DCC7:0B DC
 1230 C080
 1240 3D3G

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1141 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8308:DOS3.3:SJohnson.AUXMEM.txt
==

 1000 *SAVE JOHNSON'S USE AUXMEM
 1010 *--------------------------------
 1020 * SWITCH.MIND Command: ^Y
 1030 *
 1040 * When in main bank, enters monitor in
 1050 * auxmem BSR (hooks I/O through main
 1060 * and brings USE.AUXMEM to auxmem too)
 1070 * When in aux bank, returns to main bank
 1080 * Best used w/80 column firmware active
 1090 *--------------------------------
 1100 * USE.AUXMOVE Command: DEST<SOURCE.END^Y{CARRY}
 1110 *
 1120 * DEST = Destination in one bank
 1130 * SOURCE = Start in other bank
 1140 * END = End in other bank
 1150 * CARRY = Direction of move
 1160 * (1 = Main Ram-->Card Ram)
 1170 * (0 = Card Ram-->Main Ram)
 1180 * DEST, SOURCE, & END must be: >=$0200 & <=$BFFF
 1190 *--------------------------------
 1200 * USE.XFER Command: ADDRESS^Y{CARRY}{OVERFLOW}
 1210 *
 1220 * ADDRESS = Transfer address
 1230 * CARRY = Desired 48K Bank ($0200 - $BFFF)
 1240 * (1 = Use 48K in Card Ram)
 1250 * (0 = Use 48K in Main Ram)
 1260 * OVERFLOW = Desired ZP/STK/BSR
 1270 * (1 = Use ZP/STK/BSR in Card Ram)
 1280 * (0 = Use ZP/STK/BSR in Main Ram)
 1290 * If using USE.XFER from auxmem, routine in main mem
 1300 * MUST LDX BANK.SP.SAVE, TXS if it uses the stack at all
 1310 *--------------------------------
 1320 MON.BASL .EQ $28,$29
 1330 MON.YSAV .EQ $34
 1340 MON.CSWL .EQ $36,$37
 1350 MON.KSWL .EQ $38,$39
 1360 MON.A1 .EQ $3C,$3D Source,Address
 1370 MON.A2 .EQ $3E,$3F End
 1380 MON.A4 .EQ $42,$43 Dest
 1390 MON.STATUS .EQ $48
 1400 *--------------------------------
 1410 IN .EQ $0200 - $02FF
 1420 BANK.X.SAVE .EQ $03CC
 1430 BANK.BSR.BANK.SAVE .EQ $03CD
 1440 BANK.BSR.RAM.READ.SAVE .EQ $03CE
 1450 BANK.SP.SAVE .EQ $03CF
 1460 TRANSFER .EQ $03ED,$03EE
 1470 MON.BRKV .EQ $03F0,$03F1
 1480 USRADR .EQ $03F8 - $03FA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1142 of 2550

Apple II Computer Info

 1490 NMI .EQ $03FB - $03FD
 1500 MON.IRQLOC .EQ $03FE,$03FF
 1510 *--------------------------------
 1520 READ.MAIN.RAM .EQ $C002
 1530 READ.AUX.RAM .EQ $C003
 1540 WRITE.MAIN.RAM .EQ $C004
 1550 WRITE.AUX.RAM .EQ $C005
 1560 USE.MAIN.ZP.STK.BSR .EQ $C008
 1570 USE.AUX.ZP.STK.BSR .EQ $C009
 1580 READ.BSR.BANK .EQ $C011
 1590 READ.BSR.RAM.READ .EQ $C012
 1600 READ.RAM.READ.STATUS .EQ $C013
 1610 READ.RAM.WRITE.STATUS .EQ $C014
 1620 READ.ZP.STK.BSR.STATUS .EQ $C016
 1630 BSR.2.RAM.READ.ONLY .EQ $C080
 1640 BSR.2.ROM.READ.RAM.WRITE .EQ $C081
 1650 BSR.2.ROM.READ.ONLY .EQ $C082
 1660 BSR.2.RAM.READ.RAM.WRITE .EQ $C083
 1670 BSR.1.RAM.READ.ONLY .EQ $C088
 1680 BSR.1.ROM.READ.RAM.WRITE .EQ $C089
 1690 BSR.1.ROM.READ.ONLY .EQ $C08A
 1700 BSR.1.RAM.READ.RAM.WRITE .EQ $C08B
 1710 *--------------------------------
 1720 AUXMOVE .EQ $C311
 1730 XFER .EQ $C314
 1740 MONITOR .EQ $F800 - $FFFF
 1750 MON.OLDBRK .EQ $FA59
 1760 BEEP .EQ $FBDD
 1770 MON.RDKEY .EQ $FD0C
 1780 MON.JSR.CLREOL .EQ $FD8B - $FD8D
 1790 MON.COUT .EQ $FDED
 1800 MON .EQ $FF65
 1810 *--------------------------------
 1820 .OR $0803
 1830 USE.AUXMEM
 1840 G
 1850 JMP CONNECT.CONTROL.Y
 1860 JMP.TO.RETURN.TO.MAIN
 1870 JMP RETURN.TO.MAIN
 1880 JMP.TO.RETURN.TO.AUX
 1890 JMP RETURN.TO.AUX
 1900 JMP.TO.SAVE.BSR.STATE
 1910 JMP SAVE.BSR.STATE
 1920 JMP.TO.RESTORE.BSR.STATE
 1930 JMP RESTORE.BSR.STATE
 1940 *--------------------------------
 1950 CONNECT.CONTROL.Y
 1960 LDA /USE.AUXMEM.CONTROL.Y.HANDLER
 1970 STA USRADR+2
 1980 LDA #USE.AUXMEM.CONTROL.Y.HANDLER
 1990 STA USRADR+1
 2000 LDA #$4C JMP
 2010 STA USRADR
 2020 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1143 of 2550

Apple II Computer Info

 2030 *--------------------------------
 2040 USE.AUXMEM.CONTROL.Y.HANDLER
 2050 * Reconstruct monitor mode byte
 2060 * after "Bryan" messed with it
 2070 * ("Br" is NOPish)
 2080 PHA
 2090 LDA IN
 2100 CMP #"$"
 2110 * Branch w/Carry set causa S-C or Mini-Asm
 2120 BEQ .1
 2130 CLC
 2140 .1 PLA
 2150 * These lines are for you Bryan
 2160 .DA #'y'
 2170 .AS -'an' Builds SBC $EEE1,Y
 2180 * Check for user specified address
 2190 CPX #$01
 2200 BNE SWITCH.MIND
 2210 TAY
 2220 * Lesser complex is USE.XFER
 2230 BEQ USE.XFER
 2240 * Most complex is USE.AUXMOVE
 2250 *--------------------------------
 2260 USE.AUXMOVE
 2270 * Fetch what should be a "0"
 2280 * or "1" to be AUXMOVE's carry
 2290 LDY MON.YSAV
 2300 LDA IN,Y
 2310 * Shift what we fetched to carry
 2320 LSR
 2330 * Save carry while comparing
 2340 PHP
 2350 * This is a "0" or "1" after a LSR
 2360 CMP #"0"/2
 2370 BNE INVALID.CARRY
 2380 INC MON.YSAV
 2390 * Recover Carry
 2400 PLP
 2410 CALL.AUXMOVE.WITH.CARRY
 2420 JSR AUXMOVE
 2430 RTS
 2440 *--------------------------------
 2450 USE.XFER
 2460 * Set XFER Transfer address
 2470 * from monitor parameter
 2480 LDA MON.A1,X
 2490 STA TRANSFER,X
 2500 DEX
 2510 BPL USE.XFER
 2520 * Fetch what should be a "0"
 2530 * or "1" to be XFER's carry
 2540 LDY MON.YSAV
 2550 LDA IN,Y
 2560 * Shift what we fetched to carry

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1144 of 2550

Apple II Computer Info

 2570 LSR
 2580 * Save carry for a while
 2590 PHP
 2600 * This is a "0" or "1" after a LSR
 2610 CMP #"0"/2
 2620 BNE INVALID.CARRY
 2630 INC MON.YSAV
 2640 * Fetch what should be a "0"
 2650 * or a "1" to be XFER's overflow
 2660 INY
 2670 LDA IN,Y
 2680 * Shift what we fetched to carry
 2690 LSR
 2700 * Save this carry too, while we compare
 2710 PHP
 2720 * This is a "0" or "1" after a LSR
 2730 CMP #"0"/2
 2740 BNE INVALID.OVERFLOW
 2750 INC MON.YSAV
 2760 * Recovered carry is valid overflow
 2770 PLP
 2780 * Move it back to bit 0
 2790 ROL
 2800 * Recover carry
 2810 PLP
 2820 * Construct overflow
 2830 CLV
 2840 AND #%0000.0001
 2850 BEQ .1
 2860 BIT SEV
 2870 * Save BSR bank, BSR ram read, and SP
 2880 * for any calls or returns to main/auxmem
 2890 .1 JSR SAVE.BSR.STATE
 2900 TSX
 2910 STX BANK.SP.SAVE
 2920 JMP.XFER.WITH.CARRY.AND.OVERFLOW
 2930 * Routines in aux/main bank may jmp
 2940 * to RETURN.TO.MAIN/AUX when done
 2950 SEV JMP XFER
 2960 *--------------------------------
 2970 INVALID.OVERFLOW
 2980 PLP
 2990 INVALID.CARRY
 3000 PLP
 3010 * Let's not process rest of line
 3020 LDY MON.YSAV
 3030 LDA #$8D
 3040 STA IN,Y
 3050 JMP BEEP
 3060 *--------------------------------
 3070 SWITCH.MIND
 3080 * Check in main or aux now
 3090 LDA READ.RAM.READ.STATUS
 3100 BPL ENTER.AUX.MON

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1145 of 2550

Apple II Computer Info

 3110 JMP RETURN.TO.MAIN
 3120 ENTER.AUX.MON
 3130 * Move USE.AUXMEM to auxmem too
 3140 LDA #USE.AUXMEM
 3150 STA MON.A1
 3160 STA MON.A4
 3170 LDA /USE.AUXMEM
 3180 STA MON.A1+1
 3190 STA MON.A4+1
 3200 LDA #USE.AUXMEM.END
 3210 STA MON.A2
 3220 LDA /USE.AUXMEM.END
 3230 STA MON.A2+1
 3240 SEC
 3250 JSR AUXMOVE
 3260 * Save BSR bank, BSR ram read, and SP
 3270 * for calls and return to main mem
 3280 JSR SAVE.BSR.STATE
 3290 TSX
 3300 STX BANK.SP.SAVE
 3310 * Continue in auxmem w/rom
 3320 STA READ.AUX.RAM
 3330 STA WRITE.AUX.RAM
 3340 STA USE.AUX.ZP.STK.BSR
 3350 LDA BSR.2.ROM.READ.RAM.WRITE
 3360 LDA BSR.2.ROM.READ.RAM.WRITE
 3370 * What else but this too
 3380 LDX #$FF
 3390 TXS
 3400 * Copy rom monitor to auxmem BSR
 3410 LDY #MONITOR
 3420 STY MON.A1
 3430 STY MON.STATUS
 3440 LDA /MONITOR
 3450 STA MON.A1+1
 3460 .1 LDA (MON.A1),Y
 3470 STA (MON.A1),Y
 3480 INY
 3490 BNE .1
 3500 INC MON.A1+1
 3510 BNE .1
 3520 * Now use auxmem BSR
 3530 LDA BSR.2.RAM.READ.RAM.WRITE
 3540 LDA BSR.2.RAM.READ.RAM.WRITE
 3550 * Fix monitor in BSR
 3560 LDA /DO.CLREOL
 3570 STA MON.JSR.CLREOL+2
 3580 LDA #DO.CLREOL
 3590 STA MON.JSR.CLREOL+1
 3600 * Hook I/O through main
 3610 LDA #COUT.TO.MAIN
 3620 STA MON.CSWL
 3630 LDA #RDKEY.FROM.MAIN
 3640 STA MON.KSWL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1146 of 2550

Apple II Computer Info

 3650 LDA /COUT.TO.MAIN
 3660 STA MON.CSWL+1
 3670 * LDA /RDKEY.FROM.MAIN
 3680 STA MON.KSWL+1
 3690 * USE.AUXMEM in auxmem too
 3700 JSR CONNECT.CONTROL.Y
 3710 * Do page 3 locs
 3720 STA NMI
 3730 LDA #MON
 3740 STA NMI+1
 3750 STA MON.IRQLOC
 3760 LDA /MON
 3770 STA NMI+2
 3780 STA MON.IRQLOC+1
 3790 LDA #MON.OLDBRK
 3800 STA MON.BRKV
 3810 LDA /MON.OLDBRK
 3820 STA MON.BRKV+1
 3830 * Enter monitor in auxmem BSR
 3840 JMP MON
 3850 *--------------------------------
 3860 RETURN.TO.AUX
 3870 * Continue in aux ram
 3880 STA READ.AUX.RAM
 3890 STA WRITE.AUX.RAM
 3900 STA USE.AUX.ZP.STK.BSR
 3910 JMP RETURN.COMMON
 3920 RETURN.TO.MAIN
 3930 * Continue in main ram
 3940 STA READ.MAIN.RAM
 3950 STA WRITE.MAIN.RAM
 3960 STA USE.MAIN.ZP.STK.BSR
 3970 RETURN.COMMON
 3980 * Recover SP
 3990 LDX BANK.SP.SAVE
 4000 TXS
 4010 RESTORE.BSR.STATE
 4020 CLV
 4030 LDX BANK.BSR.BANK.SAVE
 4040 BPL .2
 4050 LDX BANK.BSR.RAM.READ.SAVE
 4060 BPL .1
 4070 LDX BSR.2.RAM.READ.RAM.WRITE
 4080 LDX BSR.2.RAM.READ.RAM.WRITE
 4090 BVC .4
 4100 .1 LDX BSR.2.ROM.READ.RAM.WRITE
 4110 LDX BSR.2.ROM.READ.RAM.WRITE
 4120 BVC .4
 4130 .2 LDX BANK.BSR.RAM.READ.SAVE
 4140 BPL .3
 4150 LDX BSR.1.RAM.READ.RAM.WRITE
 4160 LDX BSR.1.RAM.READ.RAM.WRITE
 4170 BVC .4
 4180 .3 LDX BSR.1.ROM.READ.RAM.WRITE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1147 of 2550

Apple II Computer Info

 4190 LDX BSR.1.ROM.READ.RAM.WRITE
 4200 .4 RTS
 4210 *--------------------------------
 4220 SAVE.BSR.STATE
 4230 LDX READ.BSR.BANK
 4240 STX BANK.BSR.BANK.SAVE
 4250 LDX READ.BSR.RAM.READ
 4260 STX BANK.BSR.RAM.READ.SAVE
 4270 RTS
 4280 *--------------------------------
 4290 DO.CLREOL
 4300 LDA #"]"-'@'
 4310 COUT.TO.MAIN
 4320 * Save auxmem's X
 4330 STX BANK.X.SAVE
 4340 * Save BSR bank, BSR ram read, and SP
 4350 * over call to main ram
 4360 JSR SAVE.BSR.STATE
 4370 TSX
 4380 STX BANK.SP.SAVE
 4390 * Continue in main ram
 4400 STA READ.MAIN.RAM
 4410 STA WRITE.MAIN.RAM
 4420 STA USE.MAIN.ZP.STK.BSR
 4430 * Recover SP
 4440 LDX BANK.SP.SAVE
 4450 TXS
 4460 JSR RESTORE.BSR.STATE
 4470 JSR MON.COUT
 4480 JMP IO.COMMON
 4490 *--------------------------------
 4500 RDKEY.FROM.MAIN
 4510 * Repair monitor's sillier attempt
 4520 STA (MON.BASL),Y
 4530 * Save auxmem's X
 4540 STX BANK.X.SAVE
 4550 * Save BSR bank, BSR ram read, and SP
 4560 * over call to main ram
 4570 JSR SAVE.BSR.STATE
 4580 TSX
 4590 STX BANK.SP.SAVE
 4600 * Continue in main ram
 4610 STA READ.MAIN.RAM
 4620 STA WRITE.MAIN.RAM
 4630 STA USE.MAIN.ZP.STK.BSR
 4640 LDX BANK.SP.SAVE Recover SP
 4650 TXS
 4660 JSR RESTORE.BSR.STATE
 4670 JSR MON.RDKEY
 4680 *--------------------------------
 4690 IO.COMMON
 4700 STA READ.AUX.RAM Continue in Aux RAM
 4710 STA WRITE.AUX.RAM
 4720 STA USE.AUX.ZP.STK.BSR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1148 of 2550

Apple II Computer Info

 4730 LDX BANK.SP.SAVE Recover SP
 4740 TXS
 4750 JSR RESTORE.BSR.STATE
 4760 LDX BANK.X.SAVE Recover X
 4770 RTS
 4780 *--------------------------------
 4790 USE.AUXMEM.END .EQ *-1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1149 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:Amper.Monitor.txt
==

Amper-Monitor..............................Bob Sander-Cederlof

It would be nice to be able to use monitor commands from within
Applesoft, both in direct commands and within running Applesoft
programs. At least Kraig Arnett, from Homestead, Florida, thinks so.

I agree, and so I whipped out another handy-dandy &-subroutine for
just that purpose. I call it Amper-Monitor. You can install it by
BRUNning it from a binary file, or by adding some POKEs to your
Applesoft program. My listing shows it residing at the ever popular
$300 address, but it can be reassebled to run anywhere. Just remember
to connect it properly to the Ampersand Vector.

Once Amper-Monitor is installed and hooked to the ampersand vector,
you call it by typing an ampersand, a quotation mark, and a monitor
command. Here is a sample program showing some uses of the Amper-
Monitor.

100 FOR I = 768 TO 855
110 READ D : POKE I,D : NEXT
120 CALL 768

130 &"300.357
140 &"380:12 34 56 78 9A BC DE F0
150 &"FBE2G
160 &"300L 380.387

200 DATA 169,11,141,246,3,169,3,141,247,3,96
210 DATA 201,34,208,70,32,177,0,160,0,177,184,201,0
220 DATA 240,8,9,128,153,0,2,200,208,242,169,141
230 DATA 153,0,2,152,24,101,184,133,184,144,2,230
240 DATA 185,32,199,255,32,167,255,132,52,160,23
250 DATA 136,48,23,217,204,255,208,248,192,21,240
260 DATA 8,32,190,255,164,52,76,52,3,32,197,255
270 DATA 76,0,254,76,201,222

Why did I choose to require the quotation mark after the ampersand?
Because normally Applesoft would parse the line, eliminating blanks,
changing DEF to a token instead of three hex digits, using ":" to end
a line, and so on. Using the "-mark prevents all this, leaving the
line in raw ASCII form. Here is a listing of the program in assembly
language:

Lines 1200-1240 link in the ampersand vector. This is the only part
that would have to be changed if you move the routine.

When Applesoft sees an "&", it will JSR to AMPER.MONITOR. The A-
register will hold the character following the "&", which we hope is a
quotation mark. Lines 1270 and 1280 do this hoping.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1150 of 2550

Apple II Computer Info

Lines 1290-1380 copy the characters following the quotation mark into
the monitor buffer starting at $200. If you typed in the &"... as a
direct command, it is already in the monitor buffer but starts at
$202, so it gets shifted over two bytes. If the command is in a
program, it will be copied out of program space into $200. Applesoft
has stripped off the sign bit from every byte, so my loop adds the
sign bit back in to satisfy the monitor's requirements. Applesoft
ends the line with a $00 byte, and the monitor wants $8D, so I fix
that up too. I don't let colon terminate the line, because colon is a
valid character in a monitor command line. I use "LDA (TXTPTR),Y"
rather than repeated calls to AS.CHRGET because AS.CHRGET would
eliminate blanks.

Lines 1390-1440 adjust the Applesoft pointer to the end of the line,
so upon returning we won't get false syntax errors and the Applesoft
program can continue executing.

Lines 1450-1590 parse the command line one command at a time, call on
the monitor to execute each command, and finally return to Applesoft
after the last command on the line. (The idea for this code came
originally from code Steve Wozniak wrote for the mini-assembler in the
old Apple monitor ROM.) Note that an illegal monitor command will
result in a syntax error.

I thought it would now be possible to use the Amper-Monitor to write
hex dumps on text files...BUT: Unfortunately DOS uses some critical
zero page locations which prevent using the Amper-Monitor while
writing on a text file. Monitor commands use locations $3D through
$42, and so does DOS. I tried using the &"300.357 to do a hex dump
into a text file, but DOS went wild and clobbered itself. Sorry, but
I see no solution without changing DOS or recoding the entire monitor.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1151 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:AmperMon.Poker.txt
==

d∑I»768∑855-n∑D:∑I,D:∑'x†7685∑∑"300.357W†∑"380:12 34 56 78 9A BC DE
F0c®∑"FBE2Gv∞∑"300L 380.387∞¿∑ 169,11,141,246,3,169,3,141,247,3,96… ∑
201,34,208,70,32,177,0,160,0,177,184,201,0ˇ’∑
240,8,9,128,153,0,2,200,208,242,169,141. „∑
153,0,2,152,24,101,184,133,184,144,2,230\ Ì∑
185,32,199,255,32,167,255,132,52,160,23∑ ¯∑
136,48,23,217,204,255,208,248,192,21,240∑ ∑
8,32,190,255,164,52,76,52,3,32,197,255 ∑ 76,0,254,76,201,222

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1152 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:ASCII.80.Cols.txt
==

80 Column ASCII Monitor Dump..........................Mike Dobe
 O'fallon, IL

I have been trying out the monitor patches in the July issue of AAL
for adding an ASCII display to the memory dump, and I have two
problems with them. Because the routines place the characters
directly into the Apple's screen memory, they do not work with my 80
column card. The same problem also arises when I want to send a dump
to a printer. As a solution to this problem I present still another
monitor patch for an ASCII display. My version is slightly longer
than the others, but it still fits in the cassette tape portion of the
monitor (just barely, I might add).

In order to take advantage of the 80 column display I first made the
following patches to the monitor:

FDA6:0F
FDB0:0F

These changes allow the dump routine to print 16 values on each line,
rather than the usual eight.

Since the characters have to be printed after the current line of the
dump is finished, I need a place to buffer up to 16 characters.
$BCDF, an unused area in DOS, serves this purpose. My routine buffers
each byte before calling PRBYTE to display the hex value. If a
particular byte will be the last one on that line of the dump, the
patch calls PRBYTE to print the byte, then tabs to column 60 and
displays the contents of the buffer. Upper and lower case characters
are printed as they are, and control characters are replaced with
blanks. (That's my style. As Bob said in July, choose your own
favorite!)

Of course the following patch needs to be made to the dump code, to
call my routine (this is the same as shown in the July article):

FDBE:C9 FC

The patch can be used with a 40 column display by ignoring the above
patches to $FDA6 and $FDB0, and by making the following changes to my
patch routine:

1140 AND #7
1200 EOR #7
1300 LDA #30
1420 CPX #8

This patch was tested on a Microtek Magnum 80 card, but it should work
on other brands as well.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1153 of 2550

Apple II Computer Info

[It also works fine with the STB80 card, and the Apple //e...Bill]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1154 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:BaseAddr.Calc.txt
==

Base Address Calculation...................Bob Sander-Cederlof

I believe that Steve Wozniak was the first to use the tricks in a
microcomputer, back in 1976 and 1977. All of the other designs I
recall either used the more expensive static RAM, or used a complex
circuit to refresh dynamic RAM arrays. Steve's design allowed the use
of dynamic RAM without any separate circuitry for refresh.

Dynamic RAM needs refreshing because each bit cell is really only a
capacitor, and the charge runs out after a few milliseconds. By
reading each bit and re-writing it every few milliseconds, the data in
memory is maintained as long as you like. Each 16384-bit RAM-chip is
organized in 128 rows by 128 columns of bytes, and the chips are
designed so that merely addressing each row often enough will keep the
bits fresh as a daisy. Steve hooked up the Apple so that the process
of keeping data displayed on the screen also ran through all the row
addresses.

His second trick was to keep the screen (and therefore the RAM) happy
without stealing any time from the CPU. He did this by using
alternate half cycles of the clock. The one-megahertz clock runs the
6502 every other half cycle, and the screen gets its whacks at memory
in between.

What has all the above to do with an article titled "Base Address
Calculation"? Well, I'm getting to that. In order to address each
row often enough, Steve re-arranged the address bits in a rather
complicated way. As the screen is refreshed, scan-line by scan-line,
bytes are read from RAM in an order that assures every RAM row is
accessed about every 2 milliseconds. [For the exact details of this
process, see Winston Gayler's "Apple II Circuit Description", pages
41-57.]

All this boils down to a need to go through a complicated calculation
to convert a display line number into a base address in RAM. The
process is implemented for the text screen at $FBC1 in the monitor
ROM; for the lo-res graphics screen at $F847 in the monitor ROM; for
the hi-res graphics screen at $F417 in the Applesoft ROM.

If we represent the 8-bit value for the line number on the text screen
as "000abcde", the base calculation computes the address in RAM for
the first character on that line and stores the result in two bytes at
$28 and $29 in the form "000001cd eabab000". The two bits "ab" may
have values "00", "01", or "10" for lines 0-7, 8-15, and 16-23
respectively. The "abab000" part of the least significant byte of the
base address represents "ab" times 40. Remember there are 40
characters on a line?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1155 of 2550

Apple II Computer Info

The hi-res base address calculation is more complicated, but it really
the same thing. If we think of a text line as being made up of 8 hi-
res lines, both calculations ARE the same. Except that the lo-res RAM
starts at $400, and the hi-res starts at $2000. A hi-res line number
runs from 0 through 191, or $00 - $BF. If we visualize it as
"abcdefgh", the base address calculation merely re-arranges the bits
to "001fghcd eabab000". Note that if we multiply the text line number
by 8 and run it through the hi-res calculation we will get "001000cd
eabab000" which is correct except for starting at $2000 rather than
$400.

The hi-res calculation inside Applesoft takes 33 bytes and 61 cycles.
Harry Cheung, who lives in Onitsha, Nigeria, wrote a letter to Call
APPLE (page 70, July, 1983) to present his shorter, faster version.
Harry did it in 25 bytes and only 46 cycles (one more byte and 6 more
cycles if you count the RTS, but I didn't count an RTS in the
Applesoft version). Here is Harry's code, with my comments.

I need to point out several things here. Harry used page zero
locations $00 and $01 for the resulting base address. If you want to
use his program with Applesoft, change them to $26 and $27. Harry
save the line number temporarily in the Y-register. If the Y-register
is already holding something important (it is in the Applesoft case),
you can substitute PHA and PLA for the TAY and TYA above. Same number
of bytes, but 3 cycles longer.

If you want REAL speed, and can spare a few more bytes, you need to
pre-compute all the base addresses and store them in a table. Then
you can use the line number as an index into the table and do a base
address TRANSLATION in just a few cycles. For example, assume you
store all the low-order bytes in a 192-byte table called LO.BASE, and
similarly the high-order bytes at HI.BASE. If you get the line number
in the Y-register, then you can convert the line number to a base
address like this:

 LDA LO.BASE,Y
 STA $26
 LDA HI.BASE,Y
 STA $27

That takes 10 bytes of program, 384 bytes of table, and only 14 to 16
cycles. I say 14 to 16, because it depends on whether either or both
of the two tables cross page boundaries. If they each are entirely
within a memory page, 14 cycles.

Now here is a little piece of code I wrote to test out Harry's
calculator. It runs through each of the 192 lines and prints out the
line number, an equal sign, the base address, and a space for each
line (all in hex).

The monitor address $FDD3 is not a labelled entry point, but I think
it will probably stay consistent in future editions of the Apple ROMs.
It saves whatever is in the A-register, prints "=", restores the A-

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1156 of 2550

Apple II Computer Info

register, and falls into $FDDA. The routine at $FDDA prints the
contents of A in hex.

Just for fun I also wrote some new versions of the text base address
calculator. One of them is shorter but takes more time, and the other
is longer but takes less time. Oh well, can't win every race! Here
are listings of them both, followed by a commented listing of the
Applesoft hi-res calculator.

By the way, if you want to see the WHOLE thing...a commented listing
of the entire Applesoft ROM, we have it on disk in format for the S-C
Macro Assembler.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1157 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:Break.Cat.txt
==

New CATALOG Interrupt......................Col. Paul L. Shetler
 Tripler AMC, Hawaii

Most of the routines I've seen to terminate a CATALOG listing involve
patching in a routine that checks for a particular key input and
adding code to do different actions, like aborting or single-stepping
the catalog list. Here is a modification I came up with that requires
only a small change and no additional code.

This is the section of DOS that handles a new line in the CATALOG
display:

 1000 .OR $AE2C
 1010
AE2C- 4C 7F B3 1020 JMP $B37F leave File Manager
AE2F- A9 8D 1030 NEWLN LDA #$8D carriage return
AE31- 20 ED FD 1040 JSR $FDED MON.COUT
AE34- CE 9D B3 1050 DEC $B39D line count
AE37- D0 08 1060 BNE .1
AE39- 20 0C FD 1070 JSR $FD0C MON.RDKEY
AE3C- A9 15 1080 LDA #$15 count 21 lines
AE3E- 8D 9D B3 1090 STA $B39D reset line count
AE41- 60 1100 .1 RTS

Line 1020 is really the end of the previous routine, but we're going
to be borrowing it, so I'll show it here. NEWLN is called every time
the catalog list finishes a file name.

Notice that two bytes are wasted in lines 1030-1040. Why do LDA #$8D,
JSR $FDED, when JSR $FD8E does the same thing? Two bytes may not
sound like much, but in this case it's enough to work some magic! Try
replacing the above piece of DOS with this:

 1000 .OR $AE2C
 1010
AE2C- 4C 7F B3 1020 EXIT JMP $B37F leave File Manager
AE2F- 20 8E FD 1030 NEWLN JSR $FD8E MON.CROUT
AE32- CE 9D B3 1040 DEC $B39D line count
AE35- D0 0A 1050 BNE .1 return if not done
AE37- 20 0C FD 1060 JSR $FD0C get a keypress
AE3A- 29 17 1070 AND #$17 the magic number
AE3C- F0 EE 1080 BEQ EXIT abort CATALOG
AE3E- 8D 9D B3 1090 STA $B39D new line count
AE41- 60 1100 .1 RTS

Slipping in that AND #$17, BEQ EXIT, has several effects:

1. Space Bar or Back Arrow will terminate the listing.
2. Forward Arrow will advance the listing one page (just like normal.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1158 of 2550

Apple II Computer Info

3. The "A" key will advance the listing one line.

And it all fits into the original space! The other keys will have
different effects, depending on the value left in the accumulator
after AND #$17. Most keys will advance the listing between 1-23
lines.

Try substituting other values for the $17 in line 1070. Remember that
the value of (Keypress AND Value) will be the new line count. The
catalog display will scroll up by that number of lines. If the result
is zero, the catalog display will end. The maximum result is the same
as the mask value, that is, 23 lines for a $17 mask.

[My favorite mask value is $4F. With that value SPACE still breaks
the display, but now the numeral keys scroll up by the same number of
lines, i.e., pressing the "1" key gives one more line, "2" shows two
more names, and so on. Also, the "O" (oh, not zero) key scrolls up by
79 lines, which usually means all the way to the end of the
catalog....Bill]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1159 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:Churchs.Quickie.txt
==

Saving Source with Apple's Mini-Assembler.........Jim Church
 Trumbull, CT

I have discovered a way to store source code, complete with comments,
on disk files for the Apple mini-assembler (at $F666 in the Integer
BASIC ROM or Language Card load). I use what I call "the world's best
word processor", the one you get from S-C Software for $50. I create
a text file that looks like this:

FP
CALL-151
C080
F666G
300:LDX #C0 ;START WITH "A"-1
 INX ;LOOP COMES HERE
 TXA ;CHAR TO PRINT
 JSR FDED ;PRINT IT
 CPX #DA ;STOP AFTER "Z"
 BCC 302 ;NOT THERE YET
 RTS ;FINISHED!
FP
CALL768

Assuming I have Integer BASIC in my RAM card, EXECing the above text
file assembles the code very nicely and even runs the program once!
Note that the Mini-Assembler does allow comments following a ";".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1160 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:Front.Page.txt
==

$1.50

Volume 3 -- Issue 12 September, 1983

In This Issue...

Jump Vectoring . 2
Using QUICKTRACE with the S-C Assembler. 8
Generate Machine Code with Applesoft 10
Amper-Monitor. 14
Yet Another New Version of DOS 3.3 16
Base Address Calculation 18
Saving Source Files for Apple's Mini-Assembler 21
Generic Screen Dump. 22
New CATALOG Interrupt. 26
80 Column ASCII Monitor Dump 27

65C02 Notes

We now have a sample from Rockwell, and it shares the problem of not
working in an older Apple. It's running just fine in the //e, but it
doesn't work in the][+. Rockwell's distributor says that regular
delivery is now scheduled for November. Sigh....

There's a bug in the 65C02 chips! Among the new features are several
new addressing modes for the BIT instruction, including BIT
#immediate.

The BIT instruction actually does two operations:

1) It ANDs together the Accumulator and the specified memory byte, and
sets the Zero flag according to the result.

2) It sets the Overflow and Negative flags to the values of bits 6 and
7 of the memory byte.

Well, the BIT #immediate instruction does not do step two; it only
modifies the Zero flag. The other new address modes for BIT behave
correctly. BIT #$40 sure would have come in handy for a SEV (SEt
oVerflow flag) instruction.

As always, we'll keep you posted.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1161 of 2550

Apple II Computer Info

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1162 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:Gen.Screen.Dump.txt
==

Generic Screen Dump.............................Steve Knouse
 Tomball, TX

Some computer terminals have a special key on the keyboard which will
dump whatever is on the screen to a printer. The following program
will give the same function to an Apple, using the ctrl-P key.

Many different versions of screen dump programs have been written, and
published hither and yon. Most of them work with the particular
author's printer and interface combination, but not mine or yours. I
found the one Bob S-C published in the July 81 issue of AAL to be like
that, so I worked it over. Now I believe it can truly be called
"generic", or at least general, because it runs on every combination
of printers and interfaces I can find.

I tested it on systems using the following interfaces:

 Epson APL
 Orange Micro Grappler, Grappler+, & Buffered Grappler+
 Practical Peripherals Microbuffer II
 SSM AIO II & ASIO
 Tymac Parallel
 Videx PSIO

The screen dump should work with any interface which recognizes the
Apple standard method for turning off video output. The standard is
to "print" a control-I followed by an "N". Lines 2190 through 2250
perform the output of these two characters.

The only board I found which did not work with this convention was the
SSM AIO board, so the program which follows has a special conditional
assembly mode to make it assembly slightly different object code for
that board. If you have that board, change line 1610 to say "VERSION
.EQ AIO" and it will assembly your version. Instead of Lines 2190
through 2250 being assembled, lines 2260 through 2310 will. They do
not show up in the listing, so here they are:

 2260 .DO VERSION=AIO
 2270 LDA #$80
 2280 JSR COUT
 2290 LDX SLOT
 2300 STA NOVID,X
 2310 .FIN

If your assembler does not support conditional assembly, you can
merely type in the lines 2270-2300 above in place of lines 2190-2310.

If your printer interface is not plugged into slot 1, change the slot
number in line 2030, or at $0319.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1163 of 2550

Apple II Computer Info

Install the program by BRUNning the binary file of the object code, or
by BLOADing it and doing a CALL768. Then whenever you type control-P,
the screen will be printed. You can also call the screen dump from a
running Applesoft program with CALL 794.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1164 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:Jump.Vectoring.txt
==

Jump Vectoring.............................Bob Sander-Cederlof

Applesoft has a statement which allows branching according to a
computed index:

 ON X GO TO 100,200,300,400

Integer BASIC has a different method, simply allowing the line number
after a GOTO, THEN, or GOSUB to be a computed value:

 GO TO X*100

Most other languages have some technique for vectoring to one of a
series of places based on the value of a variable. Modern languages
like Pascal have a CASE statement, which can combine a comparison
step.

 case PIECE of
 Pawn : ...;
 Knight : ...;
 Bishop : ...;
 Rook : ...;
 Queen : ...;
 King : ...;
 end

I frequently find myself building various schemes to handle the CASE
statement in assembly language. For example, I might accept a
character from the keyboard and then compare it to a series of legal
inputs, and branch accordingly to process the input.

One common way involves a series of CMP BEQ pairs, like this:

 JSR GETCHAR
 CMP #$81 control-A?
 BEQ ... yes
 CMP #$84 control-D?
 BEQ ... yes
 CMP #$8D return?
 BEQ ... yes
 et cetera

If there are not too many cases, and if the processing routines are
not too far away for the BEQs to reach, this is a good way to do the
job. If the routines are bigger, and therefore tend to be too far
away (causing RANGE ERRORS at assembly time), I might string together
CMP BNE pairs instead:

 JSR GETCHAR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1165 of 2550

Apple II Computer Info

 CMP #$81 control-A?
 BNE TRY.D no, try ctrl-D

 <code to process ctrl-A here>

TRY.D CMP #$84 control-D?
 BNE TRY.M no, try return

 <code for ctrl-D here>
TRY.M CMP #$8D return?
 BNE ... et cetera

 <code for ctrl-M here>

The trouble with the latter way is that programs get strung all over
the place, and become very difficult to follow. Unstructured, some
would say. The structure is really there, because we are just
implementing a CASE statement; however, assembly language code over a
sheet of paper long LOOKS unstructured, no matter what it is
implementing. And once a programmer gets his CASE statement spread
over several sheets of paper, the temptation to begin making a "rat's
nest" out of it can be overwhelming.

I prefer to put things into nice neat data tables. Back in the August
1982 issue of AAL I presented a "Search and Perform" subroutine to
handle a table like this:

 .DA #$81,CTRL.A-1
 .DA #$84,CTRL.D-1
 .DA #$8D,RETURN-1
 etc.

The table consists of three bytes per line, the first byte being the
CASE value, and the other two being the address of the processing
routine.

Another method is handy when the variable has a nice numeric range.
For example, what if I have processing routines for every possible
control character from ctrl-A through ESC? That is ASCII codes $81
through $9B. If I subtract $81, I get a value from 0 through 26
(decimal). If I then multiply the value by three, and add it to a
base address, and store the result into another variable, and JMP
indirect, I can access a series of JMPs to each processing routine:

 JSR GETCHAR
CASE SEC
 SBC #$81
 CMP #27
 BCS ...ERROR, NOT IN RANGE
 STA ADDR TIMES THREE
 ASL
 ADC ADDR
 ADC #TABLE PLUS TABLE BASE ADDRESS
 STA ADDR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1166 of 2550

Apple II Computer Info

 LDA #0
 ADC /TABLE
 STA ADDR+1
 JMP (ADDR)
ADDR .BS 2
TABLE JMP CTRL.A
 JMP CTRL.B
 .
 .
 JMP ESCAPE

Note that if we got to the CASE program by doing a JSR CASE, then each
processing routine can do an RTS to return to the main line program.
This makes our CASE look like it is doing a series of JSR's instead of
JMP's.

We can shave bytes off the above technique by only keeping the address
in TABLE, without all the JMP opcodes. Then the variable only needs
to be multiplied by two instead of three. We will have to use the
doubled variable for an index to pick up the address in the table and
put it into ADDR:

 JSR GETCHAR
CASE SEC
 SBC #$81
 CMP #27
 BCS ...ERROR, NOT IN RANGE
 ASL DOUBLE THE INDEX
 TAX
 LDA TABLE,X
 STA ADDR
 LDA TABLE+1,X
 STA ADDR+1
 JMP (ADDR)
ADDR .BS 2
TABLE .DA CTRL.A
 .DA CTRL.B
 .
 .
 .DA ESCAPE

I don't recommend self-modifying code, but I still use it sometimes.
If you want to save two more bytes above, then you can store the jump
address directly into the second and third bytes on a direct JMP
instruction:

 LDA TABLE,X
 STA ADDR+1
 LDA TABLE+1,X
 STA ADDR+2
ADDR JMP 0

A much better way involves pushing the processing routine address onto
the stack, and using an RTS to branch to the pushed address. Since

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1167 of 2550

Apple II Computer Info

RTS adds 1 to the address on the stack before branching, we have to
push the address-1:

 LDA TABLE+1,X
 PHA HIGH BYTE FIRST
 LDA TABLE,X
 PHA
 RTS
TABLE .DA CTRL.A-1
 .DA CTRL.B-1
 .
 .
 .DA ESCAPE-1

Note that this method not only is not self-modifying, it also is a few
bytes shorter and a tad faster.

All this is only necessary because the designers of the 6502 did not
give us a JMP (addr,X) instruction. If they had, we could do it like
this:

 JSR GETCHAR
CASE SEC
 SBC #$81
 CMP #27
 BCS ...ERROR
 ASL DOUBLE FOR INDEX
 TAX
 JMP (TABLE,X)
TABLE .DA CTRL.A, CTRL.B,...,ESCAPE

Then the hardware would add the doubled character offset (0,2,4,...52
for ctrl-A thru ESC) to the base address of the table, pick up the
address from the table, and jump to the corresponding processing
routine.

Since that would be so nice, and the designers agreed, the new 65C02
chip has it! So if you know you are writing for a 65C02, and don't
EVER intend to run in a plain 6502, you can use the JMP (TABLE,X).

It would also be nice to have JSR (TABLE,X), but you can simulate that
by calling CASE with a JSR. Or in other situations, you might merely
do it this way:

 JSR CALL
 .
 .
CALL JMP (TABLE,X)

Sometimes it so happens that your program can be arranged so that all
the processing routines are in the same memory page. Then there is no
need to store the high byte of the address in the table, right? Steve
Wozniak thought this way, and you can see the result in the Apple
monitor at $FFBE and following:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1168 of 2550

Apple II Computer Info

TOSUB LDA #$FE HIGH BYTE OF ALL ADDRESSES
 PHA
 LDA SUBTBL,Y
 PHA
ZMODE LDY #0
 STY MODE
 RTS
 .
 .
SUBTBL .DA #BASCONT-1 CTRL-C
 .DA #USR-1 CTRL-Y
 .DA #BEGZ-1 CTRL-E
 .
 .
 .DA #BLANK-1 BLANK

Steve also used this technique inside the SWEET-16 interpreter. You
can see the code at $F69E through $F6C6 in the Integer BASIC ROM or
RAM image.

If the routines are not necessarily all in one page, but are all
within one 256-byte range, you can add an offset from the table to a
known starting address.

Here is a method I would NEVER use, but it is cute, and short:

 LDA TABLE,X X IS CALCULATED INDEX
 STA BRANCH+1 INTO BCC INSTRUCTION
 CLC make branch always...
BRANCH BCC BRANCH 2ND BYTE GETS FILLED IN
BASE .EQ *
 ...
 ...all the routines here
 ...
TABLE .DA #CTRL.A-BASE
 .DA #CTRL.B-BASE
 etc.

The table has pre-computed relative offsets from BASE, so that the
values can be plugged directly into the BCC instruction. This is a
fast and short technique, but somehow it scares me to think about
self-modifying code. If you need it, go ahead and use it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1169 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:My.Ad.txt
==

S-C Macro Assembler (the best there is!)...........................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50

S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00

S-C Word Processor (the one we use!)...............................$50.00
 With fully commented source code. Needs S-C Macro Assembler.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.

FLASH! Integer BASIC Compiler (Laumer Research)................... $79.00
Full Screen Editor for S-C Macro Assembler (Laumer Research).......$49.00

The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $45.00
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00

Blank Diskettes..................................package of 20 for $45.00
 (Premium quality, single-sided, double density, with hub rings)
Small 3-ring binder with 10 vinyl disk pages and disks.............$36.00
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
ZIF Game Socket Extender...$20.00
Shift-Key Modifier...$15.00
Lower-Case Display Encoder ROM.....................................$25.00
 Only Revision level 7 or later Apples.
STB-80 80-column Display Board (STB Systems)...........($249.00) $225.00
STB-128 128K RAM Card (STB Systems)....................($399.00) $350.00

Grappler+ Printer Interface (Orange Micro).............($175.00) $150.00
Bufferboard 16K Buffer for Grappler (Orange Micro).....($175.00) $150.00
Buffered Grappler+ NEW!! Interface and 16K Buffer.....($239.00) $200.00

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1170 of 2550

Apple II Computer Info

 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Micro Cookbook, vol. 2", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00
 Add $1.50 per book for US postage. Foreign orders add postage needed.

Whatever Else You Need............................Call for Our Low Prices

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1171 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:New.DOS33.Patch.txt
==

Yet Another New Version of DOS 3.3.........Bob Sander-Cederlof

In the July issue of AAL I outlined the changes Apple made to DOS 3.3
early this year. Today I received a new "Developer's System Master",
with a cover letter claiming another correction to the APPEND routine.
The letter binds developers to begin using the new version no later
than November 1st.

If you like APPEND, or would like to like it, you might want to make
these patches in your own system master. I am going to assume you
already have the "early 1983" version, either because you bought a //e
or a disk drive this year, or you copied one from a friend, or you
made the patches from my July article. Here are the new changes:

"early 1983" August, 1983
--------------------- -----------------------
B683:4C 84 BA JMP $BA84 B683:4C B3 B6 JMP $B6B3

$B6B3-B6CE:ALL ZEROES B6B3:AD BD B5 LDA $B5BD
 B6B6:8D E6 B5 STA $B5E6
 B6B9:8D EA B5 STA $B5EA
 B6BC:AD BE B5 LDA $B5BE
 B6BF:8D E7 B5 STA $B5E7
 B6C2:8D EB B5 STA $B5EB
 B6C5:8D E4 B5 STA $B5E4
 B6C8:BA TSX
 B6C9:8E 9B B3 STX $B39B
 B6CC:4C 7F B3 JMP $B37F

$BA84-BA93:PATCH BA84-BA93:ALL ZEROES

What Apple has done is move the patch they had put at $BA84 down to
$B6B3 and added four extra lines to that patch. I HOPE IT IS NOW
CORRECT!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1172 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:QuickTrace.Load.txt
==

Using QUICKTRACE with S-C Assembler..............Bob Urschel
 Valparaiso, IN

I wanted to use QUICKTRACE in conjunction with the S-C Assembler
without having QUICKTRACE interfere with either my source file or any
object code generated. Since I always use the LC version of the
assembler, I modified the HELLO program on the S-C assembler disk as
follows:

10 HOME:PRINT "LOADING QUICKTRACE..."
20 POKE 40192,211:POKE40193,142:CALL42964
30 PRINT CHR$(4)"BLOAD QUICKTRACE,A$8F00"
40 PRINT:PRINT "LOADING S-C ASSEMBLER..."
50 VTAB24:POKE34,23:PRINTCHR$(4)"EXEC LOAD LCASM"
60 END

Line 20 in the HELLO program modifies the location of the DOS buffers
by $E00 bytes to make room for the QUICKTRACE program. After running
the HELLO program, when the S-C prompt appears and BEFORE loading any
S-C source files, enter:

 :$8F00G <return>

This initializes QUICKTRACE.

I also changed the address at MON$ (from within QUICKTRACE) to
MON$=D003 so when I press M from single-step mode, I return to the S-C
Assembler with my source file intact.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1173 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:RENEWAL.PLEA.txt
==

It is now three years since I began writing and publishing the Apple
Assembly Line. Beginning small, and growing gradually, we now send
out about 1400 copies each month to over 30 countries.

Many of our readers are also writers, both of text and of software.
It is a distinct pleasure each month to recognize the names of so many
authors of magazine articles and books as being our subscribers.
Names like Roger Wagner, Tom Weishaar, Don Lancaster, Preston Black,
Sandy Mossberg, Joe Devine, Jules Gilder, Al Tommervik, Val Golding,
Roger Keating, Peter Weiglin, and I could go on and on. They all
receive and read AAL, and we enjoy the occasional feedback from them
as well.

And of software...our readers have produced Format II, The DOS
Enhancer, Font Downloader, ES-CAPE, Cytron Masters, Cartels and
Cutthroats, Flash!, The Routine Machine, Amper-Magic, ProntoDOS, The
Visible Computer, firmware for numerous interface cards, Data Capture,
Nibbles Away, and again I could go on and on. We don't take credit,
be we sure enjoy the company!

By the way, we have noticed that your subscription ran out some time
ago. We have missed you! If you are one of those who just forgot,
perhaps you would like to be reminded that S-C Software and the Apple
Assembly Line are still going strong. If you are using assembly
language in your Apple, we believe the newsletter will help make you
more proficient, and keep you up-to-date with new hardware, software,
and books. Regardless of your skill level, it is easy to find at
least one item out of twelve issues that pays for the subscription
many times over.

Why not sign up again for another year? It is only $15 for twelve
monthly issues, or you can have it by First Class Mail for only $3
more. If you want to pick up the back issues you missed (we have them
all), they are only $1.50 each. Let us hear from you!

Sincerely,

Bob Sander-Cederlof

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1174 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:SAMPLE.txt
==

d∑I»768∑855-n∑D:∑I,D:∑'x†7685∑∑"300.357W†∑"380:12 34 56 78 9A BC DE
F0c®∑"FBE2Gv∞∑"300L 380.387∞¿∑ 169,11,141,246,3,169,3,141,247,3,96… ∑
201,34,208,70,32,177,0,160,0,177,184,201,0ˇ’∑
240,8,9,128,153,0,2,200,208,242,169,141. „∑
153,0,2,152,24,101,184,133,184,144,2,230\ Ì∑
185,32,199,255,32,167,255,132,52,160,23∑ ¯∑
136,48,23,217,204,255,208,248,192,21,240∑ ∑
8,32,190,255,164,52,76,52,3,32,197,255 ∑ 76,0,254,76,201,222

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1175 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:Articles:Spiral.Compiler.txt
==

Generate Machine Code with Applesoft.......Bob Sander-Cederlof

Apparently nobody picked up my challenge at the end of the article
about Charlie Putney's faster spiral screen clear program (August 1983
AAL, page 16). I suggested someone write a program in Applesoft which
would in turn construct a machine language screen clear.

Nobody else did it, so I did. And whether you are interested in fancy
ways to clear the screen or not, the techniques I used may be put to
other uses.

The task of building a screen clear program can be divided into two
parts. First, generate the memory addresses of the 960 cells on the
screen, in the order (or path) that the spiral shift will follow.
Second, using that table of addresses, generate the 959 pairs of LDA
and STA instructions necessary to move the screen one position along
the spiral path. There is really a third part: to generate the
necessary prologue and postlogue instructions to make those 959 LDA-
STA pairs be executed 960 times, and to clear the vacated byte at the
tail end of the spiral path.

After trying various ways to understand the spiral path, I arrived at
a table-driven approach. I put the table into data statements (lines
3000-3110 below), and made a simple loop to generate the 960 addresses
(lines 100-150).

You might notice that the twelve lines of data correspond very closely
to the parameters on Charlie Putney's macro calls. After I typed in
the twelve lines, I noticed a definite pattern. I could have used
only the first line of data, and computed the others by a simple
algorithm: increment each value smaller than 13, and decrement each
value 13 or larger. Well, no program is ever finished....

Once the 960 addresses are stored in array A%(0) through A%(959), I
proceed to generate machine language code. Line 180 does it all, with
the help of four simple subroutines. Then line 190 rings the bell,
and line 200 calls the machine language program just generated for a
fast two-and-a-half second demonstration.

During the address array building process, I fill up the screen with
the letters U, D, L, and R. These show the direction (up, down, left,
and right) which a given character will be shifted along the spiral
path. The directions are just the opposite from the order in which
the letters are displayed, because I generate the address list
backwards (from head to tail).

During the generation of the machine language program, which takes
about two minutes, I toggle the tail end character between normal to

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1176 of 2550

Apple II Computer Info

inverse video. This gives you something to watch for those
lloooonnggg two minutes.

The generation process is broken into four parts, represented by four
subroutines at 5000, 5100, 5200, and 5300.

GOSUB 5000 generates a four byte prologue, starting at memory address
$2710, or 10000. The code looks like this:

 LDX /-960
 LDY #-960

Actually, not -960, but -960/S. S gives a step size. Sidestepping a
little from the main discussion, let me tell you about S.

Don Lancaster called last week to talk about a few things with Bill,
and passed on the results of his experiments with Charlie's program.
He noted that the video refresh rate is 60 times per second, and that
a 7.5 second screen clear moves a little more than two steps for each
frame time. Therefore you don't really SEE each step. Therefore the
screen clear routine could move each character two steps ahead at a
time with the same smooth effect on the screen, but clearing the
screen in half the time. Or three steps, clearing in one third the
time. The variable S in my program lets you experiment with the
number of steps each character moves during each pass. As listed,
S=3, so the screen clears in 2.5 seconds.

GOSUB 5100 generates the requisite number of LDA-STA pairs to move the
screen one step of size S along the spiral path.

GOSUB 5200 generates the instructions to clear the bytes at the tail
end of the spiral. If S=3, you will get:

 LDA #$A0 BLANK
 STA $636
 STA $635
 STA $634

GOSUB 5300 generates the end-of-loop code:

 INY
 BNE LP
 INX
 BNE LP
 RTS
 LP JMP 10004

The screen need not necessarily be cleared to all blanks. By changing
the value POKEd in the second part of line 5210 you can fill with all
stars, or all white, or whatever.

Another interesting option occurs to me. Given a table in the A%
array of all the screen addresses, in any arrangement that suits my
fancy, I can clear the screen in 2.5 to 7.5 seconds by shifting the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1177 of 2550

Apple II Computer Info

screen along that particular path. It could be random, spiral,
kaleidoscopic, or whatever.

There are so many other things I could explain about this little
program, I hardly know where to stop. I think I'll stop here, and
leave the rest for your own rewarding investigation and analysis.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1178 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:DOS3.3:AmperMtr.Poker.txt
==

d∑I»768∑855-n∑D:∑I,D:∑'x†7685∑∑"300.357W†∑"380:12 34 56 78 9A BC DE
F0c®∑"FBE2Gv∞∑"300L 380.387∞¿∑ 169,11,141,246,3,169,3,141,247,3,96… ∑
201,34,208,70,32,177,0,160,0,177,184,201,0ˇ’∑
240,8,9,128,153,0,2,200,208,242,169,141. „∑
153,0,2,152,24,101,184,133,184,144,2,230\ Ì∑
185,32,199,255,32,167,255,132,52,160,23∑ ¯∑
136,48,23,217,204,255,208,248,192,21,240∑ ∑
8,32,190,255,164,52,76,52,3,32,197,255 ∑ 76,0,254,76,201,222

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1179 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:DOS3.3:JOHNSONS.MACROS.txt
==

 1000 *SAVE JOHNSON'S MACROS
 1010 *--------------------------------
 1020 * DAVID JOHNSON'S MACROS
 1030 * FOR THE FAST SHAPE TABLE
 1040 * PROGRAM IN LATEST BYTE MAGAZINE
 1050 *--------------------------------
 1060 .MA Q
 1070 R .SE 0
 1080 >R
 1090 Q .SE Q+1
 1100 .DO Q<40
 1110 >Q
 1120 .FI
 1130 .EM
 1140 .MA R
 1150 .DA #Q,#R
 1160 R .SE R+1
 1170 .DO R<7
 1180 >R
 1190 .FI
 1200 .EM
 1210 Q .SE 0
 1220 >Q

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1180 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:DOS3.3:S.AMPER.MONITOR.txt
==

 1000 *SAVE S.AMPER.MONITOR
 1010 *--------------------------------
 1020 * &-MONITOR COMMANDS
 1030 *--------------------------------
 1040 MON.MODE .EQ $31
 1050 MON.YSAV .EQ $34
 1060 TXTPTR .EQ $B8 AND B9
 1070 MON.BUFFER .EQ $200
 1080 AMPERSAND.VECTOR .EQ $3F5
 1090 *--------------------------------
 1100 AS.CHRGET .EQ $00B1
 1110 AS.SYNERR .EQ $DEC9
 1120 MON.BL1 .EQ $FE00
 1130 MON.GETNUM .EQ $FFA7
 1140 MON.TOSUB .EQ $FFBE
 1150 MON.ZMODE .EQ $FFC7
 1160 MON.CHRTBL .EQ $FFCC
 1170 *--------------------------------
 1180 .OR $300
 1190 *--------------------------------
 1200 SETUP LDA #AMPER.MONITOR
 1210 STA AMPERSAND.VECTOR+1
 1220 LDA /AMPER.MONITOR
 1230 STA AMPERSAND.VECTOR+2
 1240 RTS
 1250 *--------------------------------
 1260 AMPER.MONITOR
 1270 CMP #$22 MUST BE QUOTATION MARK HERE
 1280 BNE .6 SYNTAX ERROR
 1290 JSR AS.CHRGET
 1300 LDY #0
 1310 .1 LDA (TXTPTR),Y
 1320 BEQ .2
 1330 ORA #$80
 1340 STA MON.BUFFER,Y
 1350 INY
 1360 BNE .1
 1370 .2 LDA #$8D
 1380 STA MON.BUFFER,Y
 1390 TYA
 1400 CLC
 1410 ADC TXTPTR
 1420 STA TXTPTR
 1430 BCC .25
 1440 INC TXTPTR+1
 1450 .25 JSR MON.ZMODE
 1460 .3 JSR MON.GETNUM
 1470 STY MON.YSAV
 1480 LDY #23

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1181 of 2550

Apple II Computer Info

 1490 .4 DEY
 1500 BMI .6 SYNTAX ERROR
 1510 CMP MON.CHRTBL,Y
 1520 BNE .4 NOT THIS ENTRY
 1530 CPY #21
 1540 BEQ .5 <RETURN> ALONE
 1550 JSR MON.TOSUB
 1560 LDY MON.YSAV
 1570 JMP .3
 1580 .5 JSR MON.ZMODE-2
 1590 JMP MON.BL1
 1600 .6 JMP AS.SYNERR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1182 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:DOS3.3:S.CatalogInt.txt
==

 1000 *SAVE S.CATALOG INTERRUPT
 1010 *--------------------------------
 1020 FMEXIT .EQ $B37F
 1030 COUNT .EQ $B39D
 1040 RDKEY .EQ $FD0C
 1050 CROUT .EQ $FD8E
 1060 *--------------------------------
 1070 .OR $AE2C
 1080
 1090 EXIT JMP FMEXIT leave File Manager
 1100 NEWLN JSR CROUT send <CR>
 1110 DEC COUNT line count
 1120 BNE .1 return if not done
 1130 JSR RDKEY get a keypress
 1140 AND #$17 the magic number
 1150 BEQ EXIT abort CATALOG
 1160 STA COUNT new line count
 1170 .1 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1183 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:DOS3.3:S.FastShortHBC.txt
==

 1000 *SAVE FAST & SHORT HBASCALC
 1010 *--------------------------------
 1020 * DRIVER ROUTINE TO PRINT OUT
 1030 * CALCULATED BASE ADDRESSES
 1040 *--------------------------------
 1050 TEST LDX #0
 1060 .1 TXA
 1070 JSR CALC
 1080 TXA
 1090 JSR $FDDA
 1100 LDA 1
 1110 JSR $FDD3
 1120 LDA 0
 1130 JSR $FDDA
 1140 LDA #$A0
 1150 JSR $FDED
 1160 INX
 1170 CPX #192
 1180 BCC .1
 1190 RTS
 1200 *--------------------------------
 1210 * BASE ADDRESS CALCULATOR
 1220 * HARRY CHEUNG
 1230 * PMB 1601, ONITSHA, NIGERIA
 1240 * CALL APPLE, JULY 1983, PAGE 70
 1250 *--------------------------------
 1260 CALC TAY (TAY..TYA COULD BE PHA..PLA)
 1270 AND #$C7 ABCDEFGH
 1280 STA 0 AB000FGH
 1290 ORA #$08 FOR BASE = $2000, $10 FOR $4000
 1300 STA 1 AB001FGH
 1310 TYA ABCDEFGH
 1320 * CARRY..A-REG......$00.......$01...
 1330 ASL A--BCDEFGH0 AB000FGH AB001FGH
 1340 ASL B--CDEFGH00 " "
 1350 ROR 0 H-- " BAB000FG "
 1360 ASL C--DEFGH000 " "
 1370 ROL 1 A-- " " B001FGHC
 1380 ROR 0 G-- " ABAB000G "
 1390 ASL D--EFGH0000
 1400 ROL 1 B-- " " 001FGHCD
 1410 ASL E--FGH00000 " "
 1420 ROR 0 G-- " EABAB000 001FGHCD
 1430 RTS
 1440 *--------------------------------
 1450 LRCALC.1
 1460 PHA
 1470 AND #$18 000DE000
 1480 ASL 00DE0000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1184 of 2550

Apple II Computer Info

 1490 STA 0
 1500 ASL 0DE00000
 1510 ASL DE000000
 1520 ORA 0 DEDE0000
 1530 STA 0
 1540 PLA 000DEFGH
 1550 LSR 0000DEFG
 1560 ROR 0 HDEDE000
 1570 AND #$03 000000FG
 1580 ORA #$04 000001FG (FOR PAGE 1)
 1590 STA 1
 1600 RTS
 1610 *--------------------------------
 1620 LRCALC.2
 1630 PHA
 1640 AND #$18 000DE000
 1650 BEQ .1
 1660 CMP #$10
 1670 LDA #$A0
 1680 BCS .1
 1690 LSR
 1700 .1 STA 0 DEDE0000
 1710 PLA 000DEFGH
 1720 LSR 0000DEFG
 1730 ROR 0 HDEDE000
 1740 AND #$03 000000FG
 1750 ORA #$04 000001FG (FOR PAGE 1)
 1760 STA 1
 1770 RTS
 1780 *--------------------------------
 1790 * FROM APPLESOFT ROM AT $F417-$F437
 1800 *--------------------------------
 1810 MON.GBASL .EQ $26
 1820 MON.GBASH .EQ $27
 1830 HGR.PAGE .EQ $E6
 1840 AS.HRCALC
 1850 PHA Y-POS ALSO ON STACK
 1860 AND #$C0 CALCULATE BASE ADDRESS FOR Y-POS
 1870 STA MON.GBASL FOR Y=ABCDEFGH
 1880 LSR GBASL=ABAB0000
 1890 LSR
 1900 ORA MON.GBASL
 1910 STA MON.GBASL
 1920 PLA (C) (A) (GBASH) (GBASL)
 1930 STA MON.GBASH ?-ABCDEFGH ABCDEFGH ABAB0000
 1940 ASL A-BCDEFGH0 ABCDEFGH ABAB0000
 1950 ASL B-CDEFGH00 ABCDEFGH ABAB0000
 1960 ASL C-DEFGH000 ABCDEFGH ABAB0000
 1970 ROL MON.GBASH A-DEFGH000 BCDEFGHC ABAB0000
 1980 ASL D-EFGH0000 BCDEFGHC ABAB0000
 1990 ROL MON.GBASH B-EFGH0000 CDEFGHCD ABAB0000
 2000 ASL E-FGH00000 CDEFGHCD ABAB0000
 2010 ROR MON.GBASL 0-FGH00000 CDEFGHCD EABAB000
 2020 LDA MON.GBASH 0-CDEFGHCD CDEFGHCD EABAB000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1185 of 2550

Apple II Computer Info

 2030 AND #$1F 0-000FGHCD CDEFGHCD EABAB000
 2040 ORA HGR.PAGE 0-PPPFGHCD CDEFGHCD EABAB000
 2050 STA MON.GBASH 0-PPPFGHCD PPPFGHCD EABAB000
 2060 *--------------------------------
 2070 RTS
 2080 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1186 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:DOS3.3:S.GenScreenDump.txt
==

 1000 *SAVE GENERIC SCREEN DUMP
 1010 *--------------------------------
 1020 *
 1030 * GENERIC SCREEN DUMP
 1040 *
 1560 *--------------------------------
 1570
 1580 GENERIC .EQ 1
 1590 AIO .EQ 2
 1600
 1610 VERSION .EQ GENERIC
 1620
 1630 CH .EQ $24
 1640 BASL .EQ $28
 1650 CSWL .EQ $36
 1660 CSWH .EQ CSWL+1
 1670 KSWL .EQ $38
 1680 KSWH .EQ KSWL+1
 1690
 1700 DOS.HOOK .EQ $3EA
 1710
 1720 BASCALC .EQ $FBC1
 1730 COUT .EQ $FDED
 1740 KEYIN .EQ $FD1B
 1750 RDKEY .EQ $FD0C
 1760 OUTPORT .EQ $FE95
 1770 VTAB .EQ $FC22
 1780
 1790 CR .EQ $8D CARRIAGE RETURN
 1800 NOVID .EQ $578
 1810 *--------------------------------
 1820 .OR $300
 1890 *--------------------------------
 1900 START LDA #ENTRY HOOK ROUTINE INTO DOS
 1910 STA KSWL
 1920 LDA /ENTRY
 1930 STA KSWH
 1940 JMP DOS.HOOK
 1950 *--------------------------------
 1960 ENTRY JSR KEYIN WAIT FOR A KEYPRESS
 1970 CMP #$90 ^P ?
 1980 BNE .1 NO
 1990 JSR DUMP YES
 2000 JMP RDKEY
 2010 .1 RTS
 2020 *--------------------------------
 2030 SLOT .DA #1
 2040 *--------------------------------
 2050 DUMP PHA SAVE A, X, Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1187 of 2550

Apple II Computer Info

 2060 TXA
 2070 PHA
 2080 TAY
 2090 PHA
 2100 LDA CH SAVE CH
 2110 PHA
 2120 LDA CSWL SAVE OUTPUT HOOKS
 2130 PHA
 2140 LDA CSWH
 2150 PHA
 2160 *
 2170 LDA SLOT COLD START BOARD
 2180 JSR OUTPORT IN SLOT 1
 2190 .DO VERSION=GENERIC
 2200 LDA #$89 KILL VIDEO ECHO
 2210 JSR COUT
 2220 LDA #"N"
 2230 JSR COUT
 2240 NOP PAD TO STAY ALIGNED W/ AIO VERSION
 2250 .FIN
 2260 .DO VERSION=AIO
 2270 LDA #$80 KILL VIDEO ECHO
 2280 JSR COUT
 2290 LDX SLOT
 2300 STA NOVID,X
 2310 .FIN
 2320 *
 2330 LDA #CR START ON A NEW LINE
 2340 JSR COUT
 2350 *
 2360 LDX #0 START W/ 1ST LINE (0TH)
 2370 STX CH SET CH TO 0 SO PRINTER WON'T INDENT
 2380
 2390 .1 TXA LINE LOOP
 2400 JSR BASCALC GET ADDR OF LINE
 2410 LDY #0 START W/ 1ST CHARACTER (0TH)
 2420 .2 LDA (BASL),Y GET A CHAR
 2430 .3 CMP #$A0 CONVERT FLASH/INVERSE CHAR
 2440 BCS .4 NON-FLASHING U.C.
 2450 ADC #$40
 2460 BNE .3 ..ALWAYS
 2470 .4 AND #$7F MASK OFF HI BIT TO AVOID
 2480 * EPSON BLOCK GRAPHICS
 2490 JSR COUT PRINT IT
 2500 INY LOOP FOR ANOTHER CHAR
 2510 CPY #40
 2520 BCC .2
 2530 LDA #CR END OF LINE
 2540 JSR COUT
 2550 INX LOOP FOR ANOTHER LINE
 2560 CPX #24
 2570 BCC .1
 2580
 2590 PLA RESTORE OUTPUT HOOKS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1188 of 2550

Apple II Computer Info

 2600 STA CSWH
 2610 PLA
 2620 STA CSWL
 2630 PLA RESTORE CH
 2640 STA CH
 2650 JSR VTAB AND LINE
 2660 PLA RESTORE Y, X, A
 2670 TAY
 2680 PLA
 2690 TAX
 2700 PLA
 2710 RTS ..THAT'S ALL FOLKS
 2720 *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1189 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:DOS3.3:S.Mon.ASC.DOBE.txt
==

 1000 *SAVE S.MON ASCII DISPLAY (DOBE)
 1010 *--------------------------------
 1020 CH .EQ $24
 1030 A1L .EQ $3C
 1040 A1H .EQ $3D
 1050 A2L .EQ $3E
 1060 A2H .EQ $3F
 1070 BUFFER .EQ $BCDF
 1080 PRBYTE .EQ $FDDA
 1090 COUT .EQ $FDED
 1100 *--------------------------------
 1110 .OR $FCC9
 1120 .TA $CC9
 1130
 1140 PATCH PHA save byte
 1150 LDA A1L low byte of dump address
 1160 AND #$F is transformed to
 1170 TAX offset in buffer
 1180 PLA get original byte back
 1190 PHA but keep it on the stack
 1200 STA BUFFER,X buffer the character
 1210 CPX #$F last byte of line?
 1220 BEQ .0 if so, print the buffer
 1230 LDA A2L
 1240 CMP A1L done with range?
 1250 BNE .3 return to monitor if not
 1260 LDA A2H
 1270 CMP A1H check high bytes
 1280 BNE .3 return if more
 1290
 1300 .0 PLA
 1310 JSR PRBYTE print the last byte
 1320 LDA #60 tab to column 60
 1330 STA CH
 1340 LDX #0
 1350 .1 LDA BUFFER,X display the buffer
 1360 ORA #$80
 1370 CMP #$A0 control character?
 1380 BCS .2
 1390 LDA #$A0 if so, substitute blank
 1400 .2 JSR COUT print the character
 1410 LDA #$A0
 1420 STA BUFFER,X blank out buffer as we go
 1430 INX
 1440 CPX #$10 done?
 1450 BCC .1 no, go on
 1460 RTS
 1470
 1480 .3 PLA restore original byte

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1190 of 2550

Apple II Computer Info

 1490 JMP PRBYTE returns to caller

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1191 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8309:DOS3.3:Spiral.Scr.Addr.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1192 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:AAL.AUTHORS.txt
==

Alphabetical Listing of Authors

Anders, Greg
Barkovitch, Dave
Bartley, David
Bartlett, Peter C. Jr.
Bernard, Robert H.
Black, Preston
Boering, Brooke
Bragner, Robert
Brightwell, Anthony
Broderick, John
Church, Jim
Collins, Bill
Deen, Bobby
Dobe, Mike
Fabbri, Richard
Greenfarb, Sanford
Hatcher, Rick
Hirai, Frank
Johnson, David C.
Kassel, Jim
Keating, Roger
Knouse, Steve
Kriegsmann, Mark
Lancaster, Don
Laumer, Mike
Linn, Bill
Mann, Steve
Marsalis, Allen
Matzinger, Bob
McKinstry, Herbert A.
McKinstry, Herbert L.
Meador, Lee
Meyer, Peter
Morgan, Bill
Mossberg, Sandy
Nacon, Bob
O'Brien, R. F.
Parker, Bill
Perkins, Bob
Pitz, Louis
Pote, Dan
Potts, Bob
Putney, Charles
Sander-Cederlof, Bob
Sanders, Mike
Savoie, William R.
Schlichtman, Ulf

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1193 of 2550

Apple II Computer Info

Schlyter, Paul
Schneider, Horst
Schumer, Art
Shafer, Tracy L.
Shetler, Col. Paul L.
Steiner, Robert B.
Taylor, Don
Urschel, Bob
Weishaar, Tom
Welman, Chuck
Wetzel, Jim
Wiggs, Chris

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1194 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Adv.v1.v3.txt
==

E
Index to Advertising

Advanced Peripheral Enterprises, Inc.
 PRAWM Board 83: 4/23,5/7
Anthro-Digital
 Amper-Magic 82: 4/14,5/23,7/17,8/26,9/10,10/10,11/21,12/31
 83: 1/6,2/24,3/23
 QuickTrace 82: 4/18,5/21,7/14,8/8,9/8,10/26,11/13,12/24
 83: 1/18,2/6,3/6,4/21,5/11,6/10,7/27,8/25,9/13
Applied Engineering
 A/D System 81: 7/15,8/10,9/15,10/5,11/8
 82: 1/13,2/10
 General 81: 12/10
 82: 8/12,9/6,10/3,11/27,11/9
 83: 4/11,5/27,6/18,7/19,8/18,9/9
 Time II 81: 7/12,8/9,9/2,10/10,11/13
 82: 3/14,4/3,5/15,6/8,7/27
 Music Syntheszr 81: 8/15,9/7,10/7
 82: 3/23,4/15,5/14,6/27,7/24
Arrow Micro Software
 DFX 82: 7/29
 Reflexive VC 82: 7/29
Aurora Systems
 QuickTrace 81: 12(insert)
 82: 3/6
 Amper-Magic 82: 3/2
Axlon (RAM-disk) 82: 7/23,8/17,9/31,10/27,11/15,12/27
Broderick & Assoc.
 John's Debugger 81: 8/8,10/13
 82: 4/27,5/5
 B.I.S. 82: 5/9
Castle Designs (Bill Goodwill)
 Fastdraw 1.1 83: 4/9,5/8
Church, James O.
 Super Phone 82: 4/20,6/22
Computer Data Services
 DOSSOURCE 3.3 81: 10/17
Computer Micro Works, Inc.
 3 Products 82: 12/11
 Disk Switch 83: 2/15
 PROM Switch 83: 5/26
Crow Ridge Associates
 Apple Flasher 82: 7/26
Cut The Bull Software
 Other Epson Man 82: 7/16
Decision Systems 80: 12/10
 81:
1/7,2/10,3/6,4/9,5/11,6/9,7/8,8/5,9/10,10/11,11/18,12/15

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1195 of 2550

Apple II Computer Info

 82:
1/10,2/5,3/16,4/16,5/16,6/15,7/5,8/15,9/4,10/20,11/18,12/12
Douglas Electronics
 Appleseed System 83: 8/15,9/25
ESD Labs Excel-9 81: 12/19
FM Panatronics
 Serial Card 82: 9/22,10/7
Golden Delicious Software
 CIA 83: 7/14,8/7
GSR Associates
 EPSON Graphics 82: 2/14,5/6,6/6
 Clone Kit 82: 2/14,5/6,6/6
Laumer Research
 FLASH! 82: 1/24,2/13,3/8,5/13
 Full Screen Edit 83: 3/9,4/19,5/15,6/31,7/17,8/16
Lee Meador
 Disassembler 81: 2/16
Linn Software
 AED II 82: 4/23,5/19
Martcomm, Inc.
 EPROM Plug 82: 9/19,10/31
Micro Application 81: 12/22
Micro Mart 82: 3/12,5/30,6/10
Micromation
 Hero Robot Stuff 83: 9/7
Missouri Indexing 82: 1/17
Omega Microware, Inc.
 The Inspector 83: 4/25,5/19,6/15
 Watson 83: 4/27,5/21,6/13
RAK-WARE
 Disasm 80: 12/15
 81: 1/9,3/5,5/2,7/11,8/12,9/13,12/23
 82: 1/4,2/17
 TAB, XREF, GSR 81: 11/15,12/21
 82: 1/5,2/12
 XREF 81: 4/7
 XREF & GSR 81: 5/4,6/11,10/3
 MX80 Formatter 82: 3/15,4/4,5/11
 Disasm, Utilites 82: 3/18,4/2,5/25,9/14,10/18,11/7,12/28
 83: 1/27,2/13,3/8,4/24
 Disasm, Util, Mirror
 82: 6/23,7/31,8/6
 Performer Board 82: 6/24,7/20,8/10
 RAM/ROM,Performer, and Mirror
 82: 9/18,10/28,11/20,12/8
 83: 1/14,2/27,3/25,4/16
 Font Downloader 83: 5/18,6/23,7/29,8/10,9/17
Scientific Software Products
 Amper-Ware 82: 9/16,10/14
S-C Software
 S-C Macro Asm 83: 6/14,7/22
 Cross Assemblers 82: 8/1
 83: 1/16,2/10,3/18,5/16,6/29,7/30,8/27
 ES-CAPE 82: 7/1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1196 of 2550

Apple II Computer Info

 83: 6/28,7/12,8/23,9/24
 General 81: 12/5
 82: 1/7,2/3,8/3,11/82,12/3
 83: 1/3,2/3,3/3,4/3,5/3,6/3,7/3,8/3,9/3
 NEC Printers 82: 5/31
 FLASH! special 82: 7/32
S&H Software
 Amper Sort/Merge 82: 7/21,8/30,9/28,10/19,11/5,12/21
 DOS Enhancer 82: 9/28,10/19,11/5,12/21
 UBI 4.0 82: 4/12,7/21,8/30
Softkey Publishing
 Diskedit 82: 6/20
 HARDCORE Mag 82: 6/18,8/19,9/20,10/23,11/23,12/18
 83: 1/24,3/11,4/15
 HyperDOS 82: 9/26,10/29
Software Systems Support
 Furniture 82: 4/28,5/32,6/28
Soph-Key 83: 1/22,2/20
Southwestern Data Systems
 Write Now 81: 10/4,12/18
 82: 2/21,4/21,6/11,8/22,10/16
 Routine Machine 82: 9/24,11/10,12/6
Tau Lambda
 SeaFORTH 82: 1/6,2/22
United Computer 83: 4/5,5/5,6/5,7/5
Vagabondo Enterprises
 CEEMAC 82: 1/14,7/8-9
Welman, C. J. 81: 2/13

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1197 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Asm.From.400.txt
==

Assembling in RAM from $400-$9AA6.............Robert F. O'Brien
 Dublin, Ireland

I liked the procedure for getting listings into a text file during
assembly (AAL July '83). However, it won't work if the file is too
large and requires .IN directives. I recently did a large assembly
using the following source code:

0 .DU
1 .TF LISTING
2 .IN PART1
3 .IN PART2
4 .ED

What I expected to get was a 356-sector text file on disk, but all I
got was a 2-sector file -- the code for PART1 and PART2 was not sent
to the disk (they did list to the screen!) I solved my particular
problem by making more of RAM available for the assembly as follows:

a) Issue MAXFILES 1
b) LOAD/MERGE PART1 & PART2 source code in RAM and add .DU, .TF
LISTING, and .ED lines
c) $C083 C083 N EAF9:0 N D021:4_ N D003G
d) ASM

By letting the symbol table build from $400 up we make the space
between $400-$9AA6 available for assembly use (using the RAM card
version of the assembler). I use the VIDEX version with a Peanut 80-
column card and I find the screen gets messed up and a re-boot is
necessary after assembly, but that's very little bother for the
benefit received. It would be better of course to be able to use .IN
directives.

[This is a neat trick, but boy, does it scare me! Use this
technique only with a backed-up disk and be very certain that the
monitor isn't going to try to scroll the Apple's screen during
assembly, because that will scramble the Symbol Table and leave you
who-knows-where! The 80-column card (and any other peripherals that
aree on) gets scrambled because of the slot-reserved variables just
off the edge of the screen memory. Also note that you can't start all
the way down at $400 if you are using macros with private labels,
since that table grows downward from the base of the Symbol Table.
....Bill]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1198 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Avoid.Extra.Def.txt
==

Avoiding EXTRA DEFINITION ERROR.....................Bill Morgan

No sooner said...

OK, here are some patches to defeat the check for double definitions
in the S-C Macro Assemblers. Just put an RTS ($60) at the appropriate
location:

Version 1.0 -- Motherboard: $221D
 Language Card: $E369

Version 1.1 -- Motherboard: $210E
 Language Card: $E228

Be very certain that any double definitions are intentional and
identical. If you use the same label with two different values
(unless it's defined with .SE) the assembler cannot produce correct
code.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1199 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Front.Page.txt
==

$1.50

Volume 4 -- Issue 1 October, 1983

In This Issue...

Compilation of Monitor Modifications 2
Still More Tinkering with VCR. 11
Corrections to the Generic Screen Dump 12
Index to Volumes 1-3 Insert
Price Changes. 13
Duplicated Ideas and Red Faces 13
Faster Booting for ScreenWriter II 14
Large Assembly Listing into Text File. 16
Avoiding EXTRA DEFINITION ERROR. 17
Lower Case Titles in Version 1.1 17
Suppressing Unwanted Object Bytes. 19
Where To?. 19
Macro-Calculated Spiral Screen Clear 20
Counting Lines . 22

Index to Apple Assembly Line

Why haven't we ever published an index to AAL?, you ask. Now that
there are three year's worth of back issues to dig through for that
article you know you saw a while back, wouldn't a true index come in
handy? Well here it is! The 12 center pages of this issue are a
complete index to volumes 1 through 3 of Apple Assembly Line. That's
October, 1980 through September, 1983, all at your fingertips. The
index is placed in the center of this issue so that, if you wish, you
can easily remove those pages and store them separately.

More Applesoft Variable Cross Reference

In this issue Louis Pitz presents us with still more tinkering with
the old Applesoft Variable Cross Reference. Now that the program has
been modified a couple of times, and since it appeared way back in the
second issue of Apple Assembly Line, we'll include the complete source
code, including all of Louis' enhancements, on the next Quarterly
Disk. Remember that all of the back issues are still available, if
you don't have Volume 1, Number 2.

New Basis Version 1.1 Available

If any of you are using the S-C Macro Assembler with a Basis 108
computer, Bob Matzinger has adapted version 1.1 for you. Call us for
the upgrade price. (214) 324-2050.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1200 of 2550

Apple II Computer Info

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1201 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Generic.Correx.txt
==

Corrections to the Generic Screen Dump

Steve Knouse called to thank us for printing his Generic Screen Dump
program last month, and to chew us out for garbling it.

It seems that we edited and renumbered the code, but didn't update the
line number references in the text.

Here's a table to translate what the article says into what it means:

Says Means

1610 1100

2030 1460

2190 1620
2250 1680
2260 1690
2270 1700
2280 1710
2290 1720
2300 1730
2310 1740

Sorry about that, readers. Sorry about that, Steve.

[And another last-minute correction -- the TAY instruction in line
1510 should be a TYA.]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1202 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Index.AAAA.GGGG.txt
==

EIndex to Articles in "Apple Assembly Line", Volumes 1-3

AAAA
Amper-Monitor...Bob S-C...
9/83/14-16
Ampersand Monitor Caller................................Bob S-C...
6/83/30-32
Apple Chips...............................Bob S-C & Bill Morgan...
5/83/12
Applesoft
 Adding Decimal ASCII Strings..........................Bob S-C...
2/83/2-11
 All About PTRGET and GTARYPT..........................Bob S-C...
3/83/2-9
 A New Hi-Res Function (HXPLOT)....................Mike Laumer...
6/82/7-10
 Applesoft Program Locater.........................Bill
Morgan...11/82/19-22
 Applesoft Source, Completely Documented...............Bob S-
C...12/82/15
 CHRGET and CHRGOT in Applesoft........................Bob S-C...
9/81/8-9
 Correction to "CHRGET..."...........................Bob S-
C...10/81/18
 Compute GOSUB...Bob S-C...
1/81/8
 EXEC without END from Applesoft.......................Bob S-
C...11/82/17
 Fast String Input Routine.............................Bob S-C...
4/81/6-8
 Correction to "Fast String Input"...................Bob S-
C...10/81/18
 Improved "Fast String Input"........................Bob S-
C...12/81/16-17
 Field Input Routine.................................Bob Potts...
9/81/2-7
 Finding Applesoft Line Numbers......................Bob Potts...
8/81/2
 Floating Point Number Format..........................Bob S-
C...11/81/2
 Formatted Print Routine...............................Bob S-
C...11/81/6-13
 Garbage Collection Indicator for Applesoft.........Lee Meador...
3/83/22
 Generate Machine Code with Applesoft..................Bob S-C...
9/83/10-12
 GOTO from Assembly Language...........................Bob S-
C...12/81/23-24

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1203 of 2550

Apple II Computer Info

 Hex Constants in Applesoft......................David
Bartley...12/81/6-9
 Hi-Res SCRN Function..................................Bob S-C...
5/81/2-3
 Hi-Res SCRN Function with Color..................David Doudna...
1/82/2-5
 Hi-Res Subroutines....................................Bob S-
C...12/81/2-4
 Integer Input (0-65535) Using ROM Routines........Peter
Meyer...12/81/insert
 Internal Entry Points.................................Bob S-C...
4/81/4-5
 Interpreter for Using Applesoft ROMs from Assembly Language..
 ...Bob S-
C...11/81/2-13
 Line Editing Aid...............................Sandy
Mossberg...12/81/11-14
 Mini-Assembler for 6502 Written in Applesoft..........Bob S-C...
7/83/2-7
 Patch Applesoft for Garbage Collection Indicator...Lee Meador...
3/83/22
 Relocatable Ampersand Vector.......................Steve Mann...
9/82/15-18
 REPEAT and UNTIL for Applesoft.....................Bobby
Deen...11/82/24-28
 Save Garbage by Emptying Arrays.......................Bob S-
C...12/82/22-25
 Splitting Strings to Fit Your Display.................Bob S-
C...12/82/26-28
 String SWAP Subroutine................................Bob S-C...
2/81/14-15
 Substring Search Function.............................Bob S-C...
4/81/18-20
 TRAPPER: An Applesoft Input Tuner.............Allen Marsalis...
2/83/18-23
 Using Applesoft ROMs from Assembly Language
 (FP Arithmetic and Formatted Print)..............Bob S-
C...11/81/2-13
 Using USR for a WEEK (2-Byte PEEK)....................Bob S-
C...10/82/30
 Variable Cross Reference Program......................Bob S-
C...11/80/2-8
Arithmetic
 Adding Decimal Values from ASCII Strings..............Bob S-C...
1/83/21
 Really Adding ASCII Strings.........................Bob S-C...
2/83/2-11
 Converting Binary Values to Decimal for Printing......Bob S-C...
6/83/11-13
 Division..Bob S-C...
3/83/15-21
 On Dividing by Ten...............................Jim Church...
2/82/24

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1204 of 2550

Apple II Computer Info

 Floating Point Number Format..........................Bob S-
C...11/81/2

Arithmetic, contd.
 How To Add and Subtract One...........................Bob S-
C...10/80/2
 Multiplying on the 6502...............................Bob S-C...
2/81/11-12
 More About Multiplying on the 6502..................Bob S-C...
6/81/5-8
 Using Applesoft ROMs for Arithmetic...................Bob S-
C...11/81/2-13
Assembler Directives, A Directory of....................Bob S-C...
9/82/3-14

BBBB
Beginner's Tutorials
 Adding Decimal Values from ASCII Strings..............Bob S-C...
1/83/21
 Really Adding ASCII Strings.........................Bob S-C...
2/83/2-11
 Base Address Calculations.............................Bob S-C...
9/83/18-21
 Bubble Sort Demonstration Program.....................Bob S-C...
6/82/11
 Chart of 6502 Operations..............................Bob S-C...
5/81/10
 Converting Binary Values to Decimal for Printing......Bob S-C...
6/83/11-13
 Division..Bob S-C...
3/83/15-21
 Don't Be Shiftless....................................Bob S-C...
5/81/6-9
 How to Add and Subtract One...........................Bob S-
C...10/80/2
 How to Move Memory....................................Bob S-C...
1/81/2-6
 Jump Vectoring..Bob S-C...
9/83/2-8
 Loops...Bob S-
C...11/81/19-20
 Multiplying on the 6502...............................Bob S-C...
2/81/11-12
 More About Multiplying on the 6502..................Bob S-C...
6/81/5-8
 On Dividing by Ten...............................Jim Church...
2/82/24
 Programming a Language Card.......................Bill Morgan...
1/83/25-26
 Search and Perform Subroutine.........................Bob S-C...
8/82/2-5
 Simple Hi-Res Animation...........................Mike Laumer...
7/82/15-22

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1205 of 2550

Apple II Computer Info

 Text File I/O in Assembly Language Programs...........Bob S-C...
4/81/2-4
 Yes/No Subroutine.....................................Bob S-C...
6/82/13
Book Reviews
 Apple Graphics & Arcade Game Design, Jeffrey Stanton..Bob S-C...
8/82/23
 Apple II Circuit Description, Winston Gayler......BIll Morgan...
4/83/20-22
 Apple Machine Language, Inman.........................Bob S-C...
3/81/1
 Apple Machine Language, Inman.........................Bob S-C...
8/81/6-7
 Assembly Lines: The Book, Roger Wagner................Bob S-C...
5/82/1
 Bag of Tricks, Worth & Lechner........................Bob S-C...
4/82/1
 Beneath Apple DOS, Worth & Lechner....................Bob S-C...
6/81/19-20
 Enhancing Your Apple II, Don Lancaster............Bill
Morgan...12/82/29-30
 Hardcore Magazine.....................................Bob S-C...
9/82/19
 Still More on Hardcore Magazine.....................Bob S-C...
1/83/23
 INDEX, Bill Wallace...................................Bob S-C...
1/82/12
 Micro Cookbook Volume I, Don Lancaster............Bill Morgan...
1/83/8
 Practical Microcomputer Programming: the 6502, W.J. Weller......
3/81/1
 The Book of Apple Software 1983.................................
1/83/26
 The Other Epson Manual, Bill Parker...................Bob S-C...
3/82/15
 More about "Other Epson Manual"........Bill Parker, Bob S-C...
7/82/3
 What's Where in the Apple, 2nd Edition..........................
1/83/23
 6502 Assembly Language Subroutines, Lance Leventhal.............
3/82/23

CCCC
Clarification on Loading the RAM Card.............Paul
Schlyter...12/82/32
Clear Text Screen Three Times Faster....................Bob S-C...
9/82/25-27
Converting ToolKit Source to S-C........................Bob S-
C...10/82/21-27

Cross Assemblers
 1802 Version Ready..
4/83/1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1206 of 2550

Apple II Computer Info

 Special Note for 6800 Version.........................Bob S-C...
9/82/30
 Funny Opcode Names in the 6801 Manual.................Bob S-C...
1/83/9

DDDD
Date Processing Modules..........................Brooke Boering...
4/83/13-19
Directives
 Allow List of Expressions with .DA Directive..........Bob S-
C...12/80/9
 Directives Used in Roger Wagner's Book................Bob S-C...
9/82/14-15
 Directory of Assembler Directives.....................Bob S-C...
9/82/3-14
 Filler Byte for .BS Directive.....................Bill Morgan...
8/83/22
 Large Source Files with .IN and .TF Directives....Bill Morgan...
8/82/25-27
 Making Lower Case Work in .AS and .AT Strings.........Bob S-C...
8/82/28
 Patch to Extend .TF to 63 Target Files................Bob S-C...
2/83/17
 Patch to Fix .TI Problem..........................Mike Laumer...
2/83/15
 Problem with .IN Directive............................Bob S-
C...11/80/1
 .US Directive as Fancier .AS Directive................Bob S-C...
9/81/12-15
Disassemblers
 Broderick's Disassembler (first Ad).............................
8/81/8
 Decision System's Disassembler (first
Ad).......................12/80/10
 Lee Meador's Disassembler.......................................
2/81/16
 Poor Man's Disassembler...James O.
Church.......................11/81/14-17
 Rak-Ware's Disassembler (first
Ad)..............................12/80/15
DOS 3.2.1 Commented Listings
 $B800-$BCFF (Disk I/O)................................Bob S-C...
5/81/12-20
 $BD00-$BE9F (RWTS)....................................Bob S-C...
3/81/15-19
 $BEA0-$BFFF (Format)..................................Bob S-C...
4/81/11-14
DOS 3.3 Commented Listings
 Boot ROM on Controller Card...........................Bob S-C...
8/81/17-20
 $B052-$B0B5 and $B35F-$B7FF (part of File Manager)....Bob S-
C...10/81/18-24
 $B800-$BCFF (Disk I/O)................................Bob S-C...
6/81/10-18

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1207 of 2550

Apple II Computer Info

 $BD00-$BEAE (RWTS)....................................Bob S-C...
9/81/16-20
 $BEAF-$BFFF (Format)..................................Bob S-C...
4/81/14-17
DOS Enhancements
 Catalog Arranger..................................Bill
Morgan...10/82/2-16
 An Addition to the CATALOG ARRANGER.........Dave Barkovitch...
1/83/10
 And Another Change.............................Bill Collins...
1/83/10
 A Filename Editor for the CATALOG ARRANGER......Bill Morgan...
1/83/11-20
 On CATALOG ARRANGER and RAM Card DOS...........Chuck Welman...
2/83/14
 Dating Files with Applied Engineering TIME II Card....Bob S-C...
3/82/19-22
 DOS Error Trapping from Machine Language...........Lee Meador...
2/82/2-10
 EXEC without END from Applesoft.......................Bob S-
C...11/82/17
 Fast LOAD/BLOAD Patches for DOS 3.3...Bob S-C & Paul Schlyter...
4/83/2-8
 Firmware Card in Slot 4.......................Michael Sanders...
7/81/1
 Free Space Patch Compatible with S-C Macro.......Mike Sanders...
8/82/9-10
 Handy EXEC Files......................................Bob S-C...
1/82/20-21
 Hiding Things Under DOS..........................Rick Hatcher...
4/81/10
 Correction to "Hiding Things..."....................Bob S-C...
6/81/5
 More about the Firmware Card in Slot 4................Bob S-C...
9/81/1
 New CATALOG Interrupt....................Col. Paul L. Shetler...
9/83/26-27
 New Revision of DOS 3.3 -- Patchers Beware............Bob S-C...
4/83/23
 Detail of Differences in New Version................Bob S-C...
7/83/26-28
 Yet Another New Version of DOS 3.3..................Bob S-C...
9/83/16
 Quick Way to Write DOS on a Disk..................Bob Perkins...
8/82/24

DOS Enhancements, contd.
 Replacing INIT Can Be Dangerous...................Bill Morgan...
6/83/16-17
 Restoring Clobbered Page 3 Pointers.............Preston Black...
7/81/9
 ROGRAM TOO LARGE???................................Lee Meador...
5/82/28

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1208 of 2550

Apple II Computer Info

 RWTS Caller.......................................Bill Morgan...
5/82/20-25
 Secret RWTS Caller inside DOS.....................Bill Parker...
5/82/2
 Speeding Up Text File I/O.......................Paul Schlyter...
7/83/10-12
 Making Paul's Patches Fit in DOS....................Bob S-C...
7/83/13-17
 Text File Display Command for DOS.....................Bob S-C...
7/82/23-27
 80-Column SHOW Command.........................Robert Bragner...
7/83/24
DOS Problems
 Explanation of New DOS 3.3 Append Bug............Tom Weishaar...
7/83/25
 Serious Problem in DOS (with IRQ interrupts)..........Bob S-C...
1/82/13

EEEE
Enhancements and Patches to S-C Assembler II Version 4.0
 Ampersand Interface for S-C Assembler II..............Bob S-C...
3/81/20
 Assembly Source on Text Files.........................Bob S-
C...11/80/9-14
 Correction to "Assembly Source on Text Files".................
8/81/16
 A Use for the USR Command.............................Bob S-
C...11/80/15
 Allow List of Expressions with .DA Directive..........Bob S-
C...12/80/9
 Block MOVE and COPY for Version 4.0...................Bob S-
C...12/80/11-14
 Bug Corrections.....................................Bob S-C...
2/81/1,12
 EDITASM & COPY on the Language Card............Chuck Welman...
3/81/12-14
 Installing COPY in the Assembler.................Lee Meador...
1/81/9
 Controlling Software Configuration.................Don Taylor...
4/82/24-26
 EDIT Command for S-C Assembler II.................Mike Laumer...
1/81/10-16
 EDITASM & COPY on the Language Card............Chuck Welman...
3/81/12-14
 Leaving the S-C Assembler II..........................Bob S-C...
9/81/11
 Another Way Out.................................James
Church...10/81/1
 Problem with .IN Directive.............................Bob S-
C...11/80/1
 Putting Version 4.0 on the Language Card........Paul Schlyter...
1/82/15-19
 See All Error Messages in One Pass....................Bob S-C...
4/81/6

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1209 of 2550

Apple II Computer Info

 Stuffing Code in Protected Places.....................Bob S-C...
2/81/9
 TAB Locations..Bob S-
C...1/81/1
 Typing LOAD with no filename loads cassette............Bob S-
C...11/80/1
 .US Directive as a Fancier .AS Directive...............Bob S-C...
9/81/12-15
 Using Lower Case.................................Bob
Matzinger...10/80/4,9-10
Enhancements and Patches to S-C Macro Assembler
 Another Lower Case Patch for S-C Macro.................Bob S-
C...10/82/32
 Assembly Listing into a Text File..................Bill Morgan...
7/83/8-9
 Assembly Listings on Text Files........................Bob S-
C...12/82/13
 AUTO/MANUAL Toggle Using Ctrl-A..................R. F. O'Brien...
8/82/6-7
 Automatic CATALOG via Esc-C........................Bill Morgan...
6/82/23-24
 Automatic CATALOG in the Language Card.............Bill
Morgan...10/82/31
 Auto-SAVE.......................................Greg H. Anders...
4/2-9
 Bringing Some Patches Together......................Jim Wetzel...
8/83/24-28
 Converting ToolKit Source to S-C.......................Bob S-
C...10/82/21-27
 Easy Automatic SAVE...............................Bob and Bill...
6/82/12
 EPROM Version Available for $64........................Bob S-C...
5/82/1
 Free Space Patch Compatible with S-C Macro........Mike Sanders...
8/82/9-10
 Large Source Files with .IN & .TF Directives.......Bill Morgan...
8/82/25-27
 Macro/Videx Connection..............................Don Taylor...
8/82/11-22
 Right Arrow for the Videx Patches................Mike Laumer...
9/82/29-31
 More on the Macro/Videx Connection.................Bill Linn...
2/83/12-13

Enhancements to S-C Macro, contd.
 Making Lower Case Work in .AS and .AT Strings..........Bob S-C...
8/82/28
 More Opcodes for S-C Macro Assembler.............R. F. O'Brien...
7/83/31-32
 Moving the Symbol Table............................Bill
Morgan...11/82/16
 Optional Patch for the TEXT/ Command...................Bob S-C...
3/83/14

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1210 of 2550

Apple II Computer Info

 Patch to Fix .TI Problem...........................Mike Laumer...
2/83/15
 Patch to Extend .TF to 63 Target Files.................Bob S-C...
2/83/17
 Patch to List Object Code Only Inside Macros...........Bob S-C...
2/83/27
 PAUSE Directive....................................Mike Laumer...
5/83/17-19
 Right Arrow for the Videx Patches..................Mike Laumer...
9/82/29-31
 Some Patches for the S-C Macro Assembler...............Bob S-C...
5/82/3-5
 Some Small Patches (^A vs ^I, .BS Filler Byte).....Bill Morgan...
8/83/22
 Star-tling Stunts....................Bill Morgan & Mike Laumer...
2/83/25-26
 Stopping After One Error...............................Bob S-C...
8/82/27
 Toggling Upper/Lower Case in S-C Macro.............Steven
Mann...12/82/19-20
EPROM Blaster Defined....................................Bob S-C...
3/82/9

FFFF
FLASH!, An Integer BASIC Compiler, Review.............Bobby Deen...
1/82/22-24
Formatting for Printing
 Converting Binary Values to Decimal for Printing.......Bob S-C...
6/83/11-13
 Dashed Line Across Screen......................Horst Schneider...
1/83/20
 Date Processing Modules.........................Brooke Boering...
4/83/13-19
 Formatted Print Routine for Applesoft..................Bob S-
C...11/81/6-13
 General Message Printing Subroutine....................Bob S-
C...10/80/2-8
 Print 2 Bytes in Hex...................................Bob S-
C...12/82/30
 Splitting Strings to Fit Your Display..................Bob S-
C...12/82/26-28
FID -- A Wild-carded Catalog..........................Lee Meador...
8/81/10

GGGG
Generate Machine Code with Applesoft.....................Bob S-C...
9/83/10-12
Graphics
 A New Hi-res Function (HXPLOT).....................Mike Laumer...
6/82/7-10
 Base Address Calculations..............................Bob S-C...
9/83/18-21
 Displaying Character Generator EPROMs..................Bob S-C...
5/83/2-10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1211 of 2550

Apple II Computer Info

 Hi-Res SCRN Function...................................Bob S-C...
5/81/2-3
 Hi-Res SCRN Function with Color..................................
1/82/2-4
 Hi-Res Subroutines.....................................Bob S-
C...12/81/2-4
 Number Nine Graphics Card (description).........Richard Fabbri...
1/83/28
 Simple Hi-Res Animation............................Mike Laumer...
7/82/15-22
 "Apple Graphics & Arcade Game Design", Book Review.....Bob S-C...
8/82/23

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1212 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Index.HHHH.End.txt
==

HHHH
Hardware Reviews
 Apple //e Notes.......................................Bob S-C...
2/83/16-17
 More On //e...Bob S-C...
3/83/26
 Ashby's Easy Shift-Key Modifier.......................Bob S-C...
4/82/13
 Axlon RAMDISK 320.................................Bill Morgan...
7/82/11-13
 EXCEL-9: 6809 Card with FLEX.........................Bob S-
C...12/81/1
 Number Nine Graphics and Processor Cards.......Richard Fabbri...
1/83/28
 PRAWM Board from Advanced Peripheral Enterpises.......Bob S-C...
4/83/28
 Promette from Computer Micro Works....................Bob S-C...
1/83/28
 Some New Cards..
5/83/20
 Some More 68000
Boards...8/83/23
 Tiniest Motherboard, Douglas Electronics..............Bob S-C...
6/83/15

Hardware Reviews, contd.
 Track Balls, Wico and TG Products.................Bill Morgan...
6/83/24-28
 Volume Control for Apple Speaker................................
8/83/28
 Zero-Insertion-Force Game Socket Extender.............Bob S-C...
2/83/1

IIII
Input Routines
 Binary Keyboard Input.................................Bob S-C...
8/81/3-4
 Blinking Underline Cursor...........................Bill Linn...
8/82/29-31
 A Note on "Blinking Underline Cursor"...............Bob S-C...
9/82/32
 Date Processing Modules........................Brooke Boering...
4/83/13-19
 Fast String Input Routine.............................Bob S-C...
4/81/6-8
 Correction to "Fast String Input"...................Bob S-
C...10/81/18
 Improved "Fast String Input"........................Bob S-
C...12/81/16-17

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1213 of 2550

Apple II Computer Info

 Field Input Routine.................................Bob Potts...
9/81/2-7
 Integer Input (0-65535) Using Applesoft ROMs......Peter
Meyer...12/81/insert
 Lower-Case Input Using the Shift-Key Mod..............Bob S-C...
6/82/16-17
 Numeric Keypad, Simulated.............................Bob S-C...
11/80/15-16
 TRAPPER: An Applesoft Input Tuner.............Allen Marsalis...
2/83/18-23
 Yes/No Subroutine.....................................Bob S-C...
6/82/13
Integer BASIC
 FLASH! Compiler for Integer BASIC, A Review........Bobby Deen...
1/82/22-24
 Pretty Lister for Integer BASIC Programs..............Bob S-
C...12/80/3-8

LLLL
Language Card
 Clarification on Loading the RAM Card...........Paul
Schlyter...12/82/32
Lower Case
 Lower-Case Input Using the Shift-Key Mod..............Bob S-C...
6/82/16-17
 Lower Case Apple................................Bob Matzinger...
7/81/2-5
 Patches to S-C Macro Assembler Version 1.1
 To Accept ".em" and ".eM"...........................Bob S-
C...10/82/32
 To Generate Lower Case in .AS and .AT Strings.......Bob S-C...
8/82/28
 Toggling Upper/Lower Case in S-C Macro............Steven
Mann...12/82/19-20
 Using Lower Case................................Bob
Matzinger...10/80/4,9-10

MMMM
Macros
 An "ORG" Macro for Self-Aligning Code.................Bob S-C...
4/83/10-12
 Funny Opcode Names in the 6801 Manual.................Bob S-C...
1/83/9
 Giant Macro for Writing Messages............Robert B. Steiner...
7/82/6-7
 Macro Branch Library............................R. F. O'Brien...
5/82/29-31
 Macros Can Build Macros...........................Mike Laumer...
3/83/10
 Macro to Speed Up Prime Benchmark..........Anthony
Brightwell...11/82/11-15
 Macros for BLT and BGE................................Bob S-C...
1/83/9

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1214 of 2550

Apple II Computer Info

 Patch to List Object Code Only Inside Macros..........Bob S-C...
2/83/27
 Recursive Macro for Repeating Code.................Lee Meador...
4/82/22
 Recursive Macro for Generating Data................Lee Meador...
5/82/17-18
 So You Never Need Macros!.............................Bob S-
C...10/82/17-18
 Using Macros and Nested Macros....................Art Schumer...
4/82/17
Mini-Assembler for 6502 Written in Applesoft............Bob S-C...
6/83/2-7
Monitor Enhancements
 Add Bit Control to Apple Monitor......................Bob S-
C...12/82/10-11
 Control-Y Linkage Explained...........................Bob S-
C...10/81/14-17
 Disassembly of an Address Range.......................Bob S-
C...10/81/14-17

Monitor Enhancements, contd.
 Dump in both Hex and ASCII
 A Beautiful Dump..........................Robert H. Bernard...
3/81/2-5
 Adding ASCII to Monitor Dump........................Bob S-
C...12/81/18-21
 Examiner..Bill Morgan...
6/82/25-27
 Extending the Apple Monitor.........................Bob S-
C...10/81/14-17
 Revised Monitor Patch for ASCII Display.............Bob S-C...
7/83/20-21
 80-Column ASCII Monitor Dump......................Mike Dobe...
9/83/27-28
 FADD -- Find ADDress References................Brooke Boering...
5/83/21-23
 Lower Case Apple................................Bob Matzinger...
7/81/2-5
 Some Seed Thoughts on Extensions............Sanford Greenfarb...
1/83/27

NNNN
New Products
 Applesoft Source, On Disk, Completely Commented.......Bob S-
C...12/82/15
 Apple /// Version of S-C Macro Assembler Coming.................
1/83/1
 Apple /// Version Working and Ready.............................
2/83/1
 BASIS 108 Version of S-C Macro Assembler Now Available..........
1/83/1
 Bobby Deen's Latest Stuff (Music and Othello).........Bob S-C...
7/83/32
 Cross Assemblers

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1215 of 2550

Apple II Computer Info

 6809 Version 4.0................................Chris
Wiggs...10/81/12
 Macro 1802 Ready..
4/83/1
 Macro 6800, 6809, and Z-80
Versions............................8/82/1
 Macro 68000 Version...
9/82/2
 Macro PDP-11 Available..
5/83/1
 ES-CAPE, A New Software Tool..........................Bob S-C...
7/82/1
 New Compiler: FLASH!..................reviewed by Bobby Deen...
1/82/22-24
 Note about FLASH!...
3/83/8
 S-C Assembler II Version 4.0..........................Bob S-
C...10/80/4-8
 S-C Cross Reference Utility.......................Mike Laumer...
4/83/12
 S-C Macro Assembler Version 1.0.......................Bob S-C...
3/82/3-7
 S-C Macro in EPROM for $64............................Bob S-C...
5/82/1
 S-C Macro Assembler Version 1.1.................................
3/83/1,24-25
 Screen-Oriented Editor for S-C Macro Assembler....Mike Laumer...
3/83/1
 S-C Word Processor....................................Bob S-C...
2/83/28
 Note on S-C Word Processor......................Mike Laumer...
5/83/10
 Capture, A Modem Program for S-C Word............Jim Church...
5/83/13-15
 Source Code for a Word Processor......................Bob S-C...
2/83/28
 Source Code on Disk for Version 4.0...................Bob S-
C...10/81/1
 SynAssembler..
9/82/2
 Vinyl Diskette Pages for S-C Assembler Binder.........Bob S-C...
5/82/5
Noises and Other Sounds
 Alarm in only Eleven Bytes............................Bob S-C...
2/83/14
 A Sight of Sound............Herbert A. & Herbert L.
McKinstry...11/82/2
 Funny Noise...Bob S-C...
4/82/27
 My Own Little Bell....................................Bob S-C...
6/82/14
 Simple tone, bell, machine-gun, laser-swoop,
 laser-blast, inch-worm, touch-tones, and Morse code.)...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1216 of 2550

Apple II Computer Info

 ...Bob S-C...
2/81/2-9
 Speaking of Speech................................Bill
Morgan...11/82/9
 Two Fancy Tone Generators......................Mark Kriegsman...
6/81/2-4
 Your Apple Can Talk...................................Bob S-
C...11/82/2-9
Numeric Key Pad, Simulated..............................Bob S-
C...11/80/15-16

PPPP
Paddles and Buttons
 Conquering Paddle Jitter.......................Brooke Boering...
5/81/4-5
 No More Paddle Interaction........................Mike Laumer...
9/82/21-23
 Reading the Game Buttons...........................Jim Kassel...
5/82/26-28
 Reading Two Paddles at the Same Time..................Bob S-C...
3/82/1,24
PATCHER: A General-Purpose Patch Installer..........Bill Morgan...
4/83/24-27
Patches and Modifications to Other Software
 Add a New Feature to ES-CAPE........................Bill
Linn...12/82/14
 Rak-Ware's DISASM and the //e.....................Bill Morgan...
4/83/1
 Patches for Applewriter to Unhook PLE.................Bob S-C...
2/82/21-22
 Using QUICKTRACE with S-C Assembler...............Bob Urschel...
9/83/8
Prime Number Sieve Benchmark
 Sifting Primes Faster and Faster......................Bob S-
C...10/81/2-10
 Even Faster Primes.............................Charles Putney...
2/82/15-17
 Even Faster Primes Than Charlie's..........Anthony
Brightwell...11/82/11-15
 Short Note About Prime Benchmarks.................Frank Hirai...
3/83/21
Printer Handler with FIFO Buffer.....................Jim Kassel...
2/82/18
 Correcton to "FIFO"...............................BIll Morgan...
3/82/9
Printer Interfaces
 80 Columns with Apple's Parallel Interface............Bob S-C...
4/81/1
 Another Way to Get 80 Columns.........................Bob S-C...
6/81/1
 Improving the Epson Controller Card.....Peter C. Bartlett, Jr...
2/82/11-13
 More about the Epson Interface.....................Jim Church...
3/82/14

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1217 of 2550

Apple II Computer Info

 Potential Trouble in TYMAC Interface........Robert H. Bernard...
4/82/15
 The Other Epson Manual -- A Review....................Bob S-C...
3/82/15
 More about "Other Epson Manual"........Bill Parker, Bob S-C...
7/82/3

RRRR
Random Number Generator.................................Bob S-C...
8/81/11-14
Reviews, see "Book Reviews", "Hardware Reviews", "Software Reviews"

SSSS
S-C Software Corporation
 Answered Prayer.......................................Bob S-C...
7/83/23-24
 At Apple/Fest in Houston..............................Bob S-
C...11/82/1
 Burglary, Breaking and Entering...................Bill Morgan...
6/83/9
 Trip to California....................................Bob S-
C...10/82/1
 Who Are We and What Are We Doing?.................Mike Laumer...
7/82/4
Screen Printer..Bob S-C...
7/81/5-7
 Epson MX-80 Text Screen Dump..................Ulf Schlichtman...
3/83/12-14
 Generic Screen Dump..............................Steve Knouse...
9/83/22-24
Scrolling Faster..Bob S-C...
9/82/25-27
 Correction to Bob's Fast Screen Scroll.............Jim
Church...10/82/28
 Super Scroller................................Jeffrey Scott...
1/83/2-7
Software Reviews
 AED II -- A New Applesoft Program Editor..............Bob S-C...
4/82/10-11
 New AED Features....................................Bob S-C...
5/82/15
 Amper-Magic...Bob S-C...
3/82/10-13
 Bag of Tricks...Bob S-C...
4/82/1
 DFX: DOS File Exchange via Hayes Micromodem......Bill Morgan...
6/82/12
 FLASH!, An Integer BASIC Compiler..................Bobby Deen...
1/82/22-24
 Hierographic Transport............................Mike Laumer...
7/82/28-31
 Intelligent Disassemblers.............................Bob S-
C...12/80/2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1218 of 2550

Apple II Computer Info

 Lee Meador's Disassembler (ad).....................Lee Meador...
2/81/16

Software Reviews, contd.
 QuickTrace..Bob S-C...
8/82
 S-C Macro Assembler Version 1.0.......................Bob S-C...
3/82/3-7
 S-C Macro Assembler Version 1.1...................Bill Morgan...
3/83/24-25
 The Visible Computer: 6502, Software Masters..........Bob S-C... 3-
83/27-28
Search for Page-Zero References.........................Bob S-C...
6/82/19-21
Sorting Out Page Zero References................Tracy L. Shafer...
7/82/10
Source Code On Disk
 For All Code Printed in Apple Assembly
Line.....................12/80/1
 For Applesoft ROM
Image...12/82/15
 For Chris Wiggs' 6809 Cross Assembler (Version
4.0).............10/81/12
 For Laumer Research Screen Editor...............................
3/83/1
 For S-C Assembler II Version
4.0................................10/81/1
 For S-C Cross Reference...
4/83/12
 For S-C Word Processor..
2/83/28
Spiral Screen Clear.....................Bob S-C & Roger Keating...
6/83/2-8
 Speeding Up Spirals..................Bob S-C & Charles Putney...
8/83/13-15
 Generate Machine Code with Applesoft..................Bob S-C...
9/83/10-12
Step-Trace Utility......................................Bob S-C...
7/81/11-20
Strings
 Adding Decimal ASCII Strings..........................Bob S-C...
2/83/2-11
 Fast String Input Routine.............................Bob S-C...
4/81/6-8
 Correction to "Fast String INput"...................Bob S-
C...10/81/18
 Improved "Fast String Input"........................Bob S-
C...12/81/16-17
 Splitting Strings to Fit Your Display.................Bob S-
C...12/82/26-28
 String SWAP Subroutine................................Bob S-C...
2/81/18-20
 Substring Search Function.............................Bob S-C...
4/81/18-20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1219 of 2550

Apple II Computer Info

TTTT
Techniques
 All About PTRGET and GTARYPT..........................Bob S-C...
3/83/2-9
 Benchmarking Block Moves....................William R. Savoie...
5/82/7-14
 Blinking Underline Cursor...........................Bill Linn...
8/82/29-31
 A Note on "Blinking Underline Cursor"...............Bob S-C...
9/82/32
 Controlling Software Configuration.................Don Taylor...
4/82/24-26
 Displaying Character Generator EPROMs.................Bob S-C...
5/83/2-10
 Examiner..Bill Morgan...
6/82/25-27
 Generating Parity.....................................Bob S-C...
5/83/24-26
 Handling Jump Tables on the Stack.....................Bob S-
C...10/80/11
 Implementing New Opcodes Using "BRK"..................Bob S-C...
6/82/2-5
 Lower-Case Input Routine Using the Shift-Key Mod......Bob S-C...
6/82/16-17
 Making Internal JMPs and JSRs Relocatable........Peter
Meyer...12/82/2-8
 No More Paddle Interaction........................Mike Laumer...
9/82/21-23
 PATCHER: A General-Purpose Patch Installer........Bill Morgan...
4/83/24-27
 Programming a Language Card.......................Bill Morgan...
1/83/25-26
 Random Number Generator...............................Bob S-C...
8/81/11-14
 Reading the Game Buttons...........................Jim Kassel...
5/82/26-28
 Reformatting a Lot of Text............................Bob S-C...
6/83/19-22
 Run-Anywhere Subroutine Calls..............Bob Nacon, Bob S-C...
7/82/2
 Correction to "Run-Anywhere" re BIT instruction.....Bob S-C...
8/82/24
 Reversing, Getting, and Putting Nybbles...............Bob S-C...
8/83/19-21
 RWTS Caller.......................................Bill Morgan...
5/82/20-25
 Search and Perform Subroutine.........................Bob S-C...
8/82/2-5
 Simple Hi-Res Animation...........................Mike Laumer...
7/82/15-22

Techniques, contd.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1220 of 2550

Apple II Computer Info

 Some Fast Screen Tricks...............................Bob S-C...
9/82/25-27
 Correction to Bob's Fast Screen Scroll...........Jim
Church...10/82/28
 So You Never Need Macros!.............................Bob S-
C...10/82/17-18
 TIME II Card, Applied Engineering, Using the..........Bob S-C...
3/82/19-22
 Tricky Code that Always Skips.........................Bob S-C...
3/82/17-18
 Two Ways to Compare a Byte.........................Lee Meador...
8/81/9
 Using the Shift-Key Mod...............................Bob S-C...
6/82/16-17
 Using Auxiliary Memory in the //e............David C. Johnson...
8/83/2-12
 What Does This Code Do?........................John Broderick...
8/81/15
 Yes/No Subroutine.....................................Bob S-C...
6/82/13
Tips and Hints
 Alarm in only Eleven Bytes............................Bob S-C...
2/83/14
 Dashed Line Across Screen.....................Horst Schneider...
1/83/20
 Easy Automatic SAVE in S-C Macro Assembler.......Bob and Bill...
6/82/12
 Merge Selected Bits...................................Bob S-
C...12/82/13
 Print 2 bytes in hex..................................Bob S-
C...12/82/30
 Saving Source with Apple's Mini-Assembler..........Jim Church...
9/83/21
 Shift 2-byte value right with sign extension..........Bob S-
C...12/82/15
 Star-tling Stunts...................Mike Laumer & Bill Morgan...
2/83/25-26
 Test a Byte without Register Use......................Bob S-
C...12/82/14

UUUU
Using USR for a WEEK (2-Byte Peek)......................Bob S-
C...10/82/30
Utility Programs
 Applesoft Program Locater.........................Bill
Morgan...11/82/19-22
 Catalog Arranger Utility..........................Bill
Morgan...10/82/2-16
 An Addition to the CATALOG ARRANGER.........Dave Barkovicth...
1/83/10
 And Another Change.............................Bill Collins...
1/83/10
 A Filename Editor for the CATALOG ARRANGER......Bill Morgan...
1/83/11-20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1221 of 2550

Apple II Computer Info

 On CATALOG ARRANGER and RAM Card DOS...........Chuck Welman...
2/83/14
 Displaying Character Generator EPROMs.................Bob S-C...
5/83/2-10
 Examiner..Bill Morgan...
6/82/25-27
 FADD -- Find Address References................Brooke Boering...
5/83/21-23
 Mini-Assembler for 6502 Written in Applesoft..........Bob S-C...
6/83/2-7
 PATCHER: A General Purpose Patch Installer.......Bill Morgan...
4/83/24-27
 Pretty Lister for Integer BASIC.......................Bob S-
C...12/80/3-8
 Relocator...Bob S-C...
1/82/8-12
 Screen Printer..Bob S-C...
7/81/5-7
 Epson MX-80 Text Screen Dump.................Ulf Sclichtman...
3/83/12-14
 Generic Screen Dump............................Steve Knouse...
9/83/22-24
 Search for Page-Zero References.......................Bob S-C...
6/82/19-21
 Sorting Out Page-Zero References..............Tracy L. Shafer...
7/82/10
 Step-Trace Utility....................................Bob S-C...
7/81/11-20
 Corrections to "Step-Trace Utility".................Bob S-C...
1/82/6
 Variable Cross Reference for Applesoft................Bob S-
C...11/80/2-8

VVVV
Variable Cross Reference for Applesoft..................Bob S-
C...11/80/2-8
 Corrections to VCR....................................Bob S-C...
7/81/10
 Tinkering with Variable Cross Reference............Louis Pitz...
9/83/17
Videx/Macro Connection...............................Don Taylor...
8/82/11-22
 Right Arrow for the Videx Patches.................Mike Laumer...
9/82/29-31
 More on the Macro/Videx Connection..................Bill Linn...
2/83/12-13

WWWW
WICO Track Ball Driver and Demonstration............Bill Morgan...
6/83/24-28
 WICO Price Increase...............................Bill Morgan...
7/83/21
Writing for Apple Assembly Line.........................Bob S-
C...10/82/32

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1222 of 2550

Apple II Computer Info

ZZZZ
Zero-Page References
 Searching for All Page-Zero References................Bob S-C...
6/82/19-21
 Sorting Out Page-Zero References..............Tracy L. Shafer...
7/82/10

6502
 Chart of 6502 Operations..............................Bob S-C...
5/81/10
 Hardware Error in ALL 6502 Chips!.....................Bob S-
C...10/80/10,11
 Mini-Assembler for 6502 Written in Applesoft..........Bob S-C...
7/83/2-7
 So-called Unused Opcodes..............................Bob S-C...
3/81/7-11
 6500/1 One-Chip Computer.............................Dan Pote...
1/82/21

65C02
 New Enhanced 6502 Nearly Here!........................Bob S-
C...12/82/16-17
 Note on GTE Version.............................Don Lancaster...
6/83/1
 Latest 65C02 Word.................................Bill Morgan...
7/83/1,18
 65C02: What It Is.................................Bill Morgan...
8/83/12
 65C02 Notes, BIT Immediate Opcode Faulty..........Bill Morgan...
9/83/1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1223 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Index.Page.nums.txt
==

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1224 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Knouse.Mtr.txt
==

A Compilation of Monitor Modifications.............Steve Knouse

Over the years since I bought my Apple I have been collecting various
handy modifications to the Apple Monitor. I wanted a convenient way
to load up all my patches so that they would be there when I needed
them.

Let me point out right now that the following set of patches will NOT
work in an Apple //e. They are only for the Apple II Plus monitor.
Anyway, several of my favorite patches are already implemented in the
Apple //e; the others may fit, but I haven't tried them.

There are two basic ways to get a modified monitor into an Apple. The
first requires burning an EPROM with the new version, modifying the
motherboard to accept an EPROM in the F8 ROM socket, and plugging it
in. (Rather than cutting and splicing the motherboard, a better way
is to use a PROMETTE from Computer Micro Works.) The second way is to
run out of a language card (16K RAM Card), with a modified monitor at
F800 in the RAM card. Some RAM cards may not allow this, leaving the
motherboard F8 ROM always switched on, but all the ones I have tried
work. If you want to use Applesoft with the modified monitor, or
patch Applesoft as well, you can copy it up into the language card
too.

I combined my favorite patches with Bill Morgan's patch program (see
"PATCHER: General Purpose Patch Installer", AAL, April, 1983) so that
BRUNning the program copies the motherboard monitor into a RAM card
and then installs all the patches.

The listing that follows uses the .PH and .EP directives found in
Version 1.1 of the S-C Macro Assembler. .PH starts a phase, and .EP
ends one. At the start of a phase the current assembler origin is
saved and the address from the .PH is substituted. Code continues to
be assembled into the target file or at the target address, and the
saved origin is incremented along with the phase origin. At the end
of the phase the saved origin is restored. This allows me to assemble
a series of patches with the correct addresses all into one big target
file.

Here is a list of my favorite patches:

1 Allow lowercase input -- nullify conversion of lowercase to
uppercase, make cursor over lowercase character to uppercase inverse
(since Apple doesn't have inverse or flashing lowercase). (From Videx
Keyboard Enhancer II Manual, page 4.)

2 Non-flashing cursor -- Make cursor inverse instead of flashing.
(From Videx Keyboard Enhancer II Manual, page 4.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1225 of 2550

Apple II Computer Info

3 Inverse + cursor when in escape mode -- to indicate IJKM is active.
(By Donald W. Miller, Jr., Call-APPLE Mar 83 pp 51-52.)

4 ASCII dump -- display both hex and ASCII values. (By Peter
Bartlett, AAL Dec 81 pp 18-20, and Bruce Field, AAL Jul 83 page 20.)

5 Mask -- XXYY<ADR1.ADR2W masks bytes in memory range, ANDing with XX
and ORing with YY. (By Bob Sander-Cederlof, AAL Dec 82 pp 10-11.)

6 Search -- XXYY<ADR1.ADR2S searches memory range for XXYY, printing
addresses of matches. If XXYY is in the range $00-$FF, only one byte
will be compared; otherwise both bytes will be compared during the
search. (By Steve Knouse)

I included several conditional assembly options, using the .DO, .ELSE,
and .FIN directives. These let you select or reject the non-flashing
cursor patch and the lowercase display patch. The third option allows
you to copy Applesoft from the motherboard along with the monitor, or
just the monitor by itself.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1226 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Large.Asm.Text.txt
==

Large Assembly Listing into Text File.........Robert F. O'Brien
 Dublin, Ireland

I liked the procedure for getting listings into a text file during
assembly (AAL July '83). However, it won't work if the file is too
large and requires .IN directives. I recently did a large assembly
using the following source code:

0 .DU
1 .TF LISTING
2 .IN PART1
3 .IN PART2
4 .ED

What I expected to get was a 356-sector text file on disk, but all I
got was a 2-sector file -- the code for PART1 and PART2 was not sent
to the disk (they did list to the screen!)

I first tried to solve my particular problem by making more RAM
available for the assembly by moving the Symbol Table base down to
$400. I thought that should work, since I use an 80-column card and
not the Apple's text screen. However, the assembler and the system
monitor had other ideas, and promptly destroyed the symbol table by
scrolling the screen memory.

However, I did manage to get my large assembly listing to go to disk
as a text file -- by doing it in two parts. I used a utility program
from the assembler disk to give each part the missing label
definitions from the other part.

The steps are as follows:

1) Assemble the code normally with .IN directives.

0001 .IN PART1
0002 .IN PART2

2) BRUN B.MAKE EQUATE FILE (from the S-C Macro Version 1.1 Disk.)
That creates a file of .EQ statements called SYMBOLS which contains
all the normal labels and values from the Symbol Table in memory.

3) Merge SYMBOLS with PART1 and delete all duplicate labels from the
SYMBOLS section.

4) Assemble PART1 using the .DU-.TF-.ED trick, and using .LIST OFF/ON
so that the SYMBOLS section does not write to the text file.

5) Repeat steps 3 and 4 on PART2.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1227 of 2550

Apple II Computer Info

It is a bit laborious deleting all the duplicate labels in the two
assemblies. I hope someone can suggest a patch to the assembler to
prevent it from reporting "EXTRA DEFINITION ERROR". That certainly
would make this listing process easier.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1228 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:LC.Titles.txt
==

Lower Case Titles in Version 1.1..................Bob Matzinger

A simple one-byte patch will enable you to use lower-case letters
inside .TI titles. There are eight versions of the assembler on the
Version 1.1 release disk, and the byte to be changed is in a different
place for each version.

The code for the .TI directive looks the same wherever it is located.
Here is a hex dump of the code, with a square around the byte to be
changed:

 A2 00 LDX #0
 20 3E x2 JSR $123E or $D23E
 C9 2C CMP #$2C
 D0 0D BNE ...

 20 3E x2 JSR $123E or $D23E

 B0 08 BCS ...
 9D 70 01 STA $170,X

The following table shows the address of the byte to be changed:

 File Name x = 1000 x = D000
 -------- --------
S-C.ASM.MACRO.x $2CE6 $EE00
S-C.ASM.MACRO.x.E $2CC2 $EDDC
S-C.ASM.MACRO.x.STB80 $2DDA $EEFD
S-C.ASM.MACRO.x.VIDEX $2DB1 $EED4

Once you find the right byte, which contains $3E, change it to $4E.
(Remember to change a byte in the RAM card you need to write-enable it
first.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1229 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Line.Counter.txt
==

Counting Lines......................................Bill Morgan

When Bob and I were first looking at Bruce Love's version of the
Spiral Screen Clear, we got to wondering just how many lines actually
were being processed by the assembler. With all those nested
recursive macros, the total was bound to be in the thousands. Here's
a little filter program I threw together to do a count:

0000- 1000 COUNT.LO .EQ 0
0001- 1010 COUNT.HI .EQ 1
0036- 1020 OUTHOOK .EQ $36
03EA- 1030 DOSHOOK .EQ $3EA
 1040 *--------------------------------
 1050 .OR $300
 1060
0300- A9 00 1070 LDA #0
0302- 85 00 1080 STA COUNT.LO zero the counters
0304- 85 01 1090 STA COUNT.HI
0306- A9 11 1100 LDA #LINE.COUNTER
0308- 85 36 1110 STA OUTHOOK direct output
030A- A9 03 1120 LDA /LINE.COUNTER to my routine
030C- 85 37 1130 STA OUTHOOK+1
030E- 4C EA 03 1140 JMP DOSHOOK
 1150 *--------------------------------
 1160 LINE.COUNTER
0311- C9 8D 1170 CMP #$8D carriage return?
0313- D0 06 1180 BNE .1 no, exit
0315- E6 00 1190 INC COUNT.LO yes, count it
0317- D0 02 1200 BNE .1
0319- E6 01 1210 INC COUNT.HI
031B- 60 1220 .1 RTS

I assembled that code at $300, and then used these commands to set the
PRT vector:

:$C083 C083 D009:4C 0 3 N C080

(For the motherboard versions of the S-C Assemblers, you only need to
type :$1009:4C 0 3)

With that in place just load a source file, set .LIST ON, type PRT,
and then type ASM. When the assembly is finished, type PR#0 to get
the output back to the screen. Now you can type :$0.1 to look at the
counters. You might also want to put a .LIST OFF line at the end of
your program, so the count won't include the Symbol Table.

By the way, when the macros are expanded those 80 lines of Bruce's
program produce 13,593 lines of code, or enough to fill over 200 pages
of printout.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1230 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Loves.Spiral.txt
==

Macro-Calculated Spiral Screen Clear..............Bruce V. Love
 Hamilton, New Zealand

Here is what I think is a beautiful example of using nested recursive
macros with the new .SE directive to calculate the addresses for a
Spiral Screen Clear.

The macro SPIRAL calls, in order, LEFT, BOTTOM, RIGHT, and TOP to
produce the code to handle each side of the screen. Each of those
macros adjusts the appropriate X or Y coordinate and then calls GETADR
to calculate the addresses and actually assemble the next instruction
pair.

This program won't win any prizes for fast assembly: I timed it at
almost 4 minutes. You could speed up the process by rewriting the
BOTTOM and TOP macros. They really don't have to call GETADR for all
the calculation, they only need to increment or decrement the
addresses, but that destroys the symmetry of the original.

I have also produced a faster version of the program. This one uses
self-modifying code to avoid shifting the already-cleared bytes on the
screen. It's interesting to watch the self-modifying version
accelerate as it moves fewer bytes each time through the loop. To
produce the faster version, just replace the code from line 1680 on
with this new code:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1231 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:More.VCR.Tinker.txt
==

Still More Tinkering with VCR........................Louis Pitz
 De Witt, Iowa

I finally figured out how to modify the Applesoft Variable Cross
Reference (from the November, 1980 AAL) to distinguish between defined
functions and array variables. As Bob mentioned at that time, VCR
tags an occurence of FN AB(whatever) as an appearance of the array
variable AB().

It turns out that the changes needed aren't many, and are compatible
with my tinkering in the August '83 AAL, which added 80-column output
to a printer.

As VCR is scanning for variables, in the GET.NEXT.VARIABLE section,
add the check for the FN token in lines 2132-2134. If found, go to
lines 2222-2228 to set a flag and go back to get the
NEXT.CHAR.NOT.QUOTE. Unless the Applesoft program is in error, a
variable name immediately follows the FN token.

In PACK.VARIABLE.NAME, the program distinguishes variables by VARNAM+2
having a space, $, or %. Array variables have the high bit set. In
lines 2791-2796 I set apart FN variables by placing a dash (-) with
the high bit set in VARNAM+2. This will make FN types come after the
others alphabetically.

Now we come to the printing stage, in PRINT.LETTER.CHAIN. There the
variable name (and dash, in case of FN types) is printed. If the high
bit of VARNAM+2 is set, lines 4292-4294 check for the dash value. If
so, skip to lines 4511-4515 and print out "FN" also.

This way, FN AB will come out as "AB-FN", which is a bit of a cop-out
on my part. But I opted for making minimal changes to VCR to keep
things simple.

If you play with long programs also having defined functions, as I
have, these additions to VCR should help.

[Now that the Variable Cross Reference program has been modified a
couple of times, and since it appeared way back in the second issue of
Apple Assembly Line, we'll include the complete source code, including
all of Louis' enhancements, on the next Quarterly Disk. Remember that
all of the back issues are still available, if you don't have Volume
1, Number 2. ...Bill]

2132 CMP $#C2
2134 BEQ .4

2222 .4 STA $7 set FLAG2
2224 BEQ .1 ...always

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1232 of 2550

Apple II Computer Info

2226 * unless syntax error, NEXT.CHAR.NOT.QUOTE
2228 * will be letter, hence variable!

2791 LDA $7 recall FLAG2
2792 CMP #$C2 FN token?
2793 BNE .5 (to RTS)
2794 LDA #'-+80 "-"
2795 STA VARNAM+2 to indicate FN
2796 STA $7 and reset FLAG2

4292 CMP #$AD not array, but FN?
4294 BEQ .6

4511 .6 LDA #'F add 'FN' after
4512 JSR PRINT.CHAR
4513 LDA #'N variable name
4514 JSR PRINT.CHAR
4515 BNE .4 ...always

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1233 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0....................................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50
Full Screen Editor for S-C Macro Assembler..........(reg. $49.00) $40.00**
 Includes complete source code.
S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $40.00**

S-C Word Processor (the one we use!)...............................$50.00
 With fully commented source code.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor.....(reg. $60.00) $40.00**

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Routine Machine (Southwestern Data Systems).........(reg. $64.95) $60.00
FLASH! Integer BASIC Compiler (Laumer Research).....(reg. $79.00) $50.00**

Blank Diskettes..................................package of 20 for $45.00
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
ZIF Game Socket Extender...$20.00
Shift-Key Modifier...$15.00

Grappler+ Printer Interface (Orange Micro).............($175.00) $150.00
Bufferboard 16K Buffer for Grappler (Orange Micro).....($175.00) $150.00
Buffered Grappler+ NEW!! Interface and 16K Buffer.....($239.00) $200.00

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Micro Cookbook, vol. 2", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1234 of 2550

Apple II Computer Info

 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00
 Add $1.50 per book for US postage. Foreign orders add postage needed.

Whatever Else You Need............................Call for Our Low Prices

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

(** Special price to subscribers only through December 31, 1983.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1235 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:PDos.Disasm.Xp.txt
==

Commented Listing of ProDOS $F800-$F90B, $F996-FEBD
 Bob Sander-Cederlof

ProDOS boots its bulk into the RAM card, from $D000 thru $FFFF. More
is loaded into the alternate $D000-DFFF space, and all but 255 bytes
are reserved out of the entire 16K space.

A system global page is maintained from $BF00-BFFF, for various
variables and linkage routines. All communication between machine
language programs and ProDOS is supposed to be through MLI (Machine
Language Interface) calls and the system global page.

One of the first things I did with ProDOS was to start dis-assembling
and commenting it. I want to know what is inside and how it works!
Apple's 4-inch thick binder tells a lot, but not all.

Right away I ran into a roadblock: to disassemble out of the RAM card
it has to be turned on. There is no monitor in the RAM card when
ProDOS is loaded. Turning on the RAM card from the motherboard
monitor causes a loud crash!

I overcame most of the problem by copying a monitor into the $F800-
FFFF region of the RAM card like this:

 *C089 C089 F800<F800.FFFFM
 *C083 C083

The double C089 write-enables the RAM card, while memory reads are
still from the motherboard. The rest of the line copies a monitor up.
The two C083's get me into the RAM card monitor, ready to type things
like "D000LLLLLLLLLLLL"

But what about dis-assemblies of the space between $F800 and $FFFF?
For this I had to write a little move program. My program turned on
the RAM card and copied $F800-FFFF down to $6800-6FFF. Then I BSAVEd
it, and later disassembled it.

The code from $F800-FFFF is the mostly equivalent to what is in DOS
3.3 from $B800-BFFF. First I found a read/write block subroutine,
which calls an RWTS-like subroutine twice per block. (All ProDOS
works with 512-byte blocks, rather than sectors; this is like Apple
Pascal, and the Apple ///.)

The listing which follows shows the RWB and RWTS subroutines, along
with the READ.ADDRESS and READ.SECTOR subroutines. Next month I plan
to lay out the SEEK.TRACK and WRITE.SECTOR subroutines, as well as the
interrupt and reset handling code.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1236 of 2550

Apple II Computer Info

The outstanding difference between ProDOS and DOS 3.3 disk I/O is
speed. ProDOS is considerably faster. Most of the speed increase is
due to handling the conversion between memory-bytes and disk-bytes on
the fly. DOS pre-converted a 256-byte block into 342 bytes in a
special buffer, and then wrote the 342 bytes; ProDOS forms the first
86 bytes of the disk data in a special buffer, writes them, and then
proceeds to write the rest of the data directly from the caller's
buffer. When reading, DOS read the 342 disk-bytes into a buffer for
later decoding into the caller's buffer. ProDOS reads and decodes
simultaneously directly into the caller's buffer. The result is
achieved by extensive use of tables and self-modifying code.

Not only is direct time saved by doing a lot less copying of buffers,
but also the sector interleaving can be arranged so that only two
revolutions are required to read all 8 blocks on a track.

I believe Apple Pascal uses the same technique, at least for reading.

Whoever coded ProDOS decided to hard-code some parameters which DOS
used to keep in tables specified by the user. For example, the number
which tells how long to wait for a drive motor to rev up used to be
kept in a Device Characteristics Table (DCT). That value is now
inside a "LDA #$E8" instruction at $F84F. That means that if you are
using a faster drive you have to figure out how to patch and unpatch
ProDOS to take advantage of it.

Another hard-coded parameter is the maximum block number. This is no
longer part of the data on an initialized disk. It is now locked into
the four instructions at $F807-F80D, at a maximum of 279. If you have
a 40- or 70-track drive, you can only use 35. Speaking of tracks, the
delay tables for track seeking are still used, but they are of course
buried in this same almost-unreachable area. If you have a drive with
faster track-to-track stepping, the table to change is at $FB73-FB84.

Calls to RWTS in DOS 3.3 involved setting up two tables, an IOB and a
DCT. The IOB contained all the data about slot, drive, track, sector,
buffer address, etc. The DCT was a 5-byte table with data concerning
the drive. ProDOS RWB is called in an entirely different way. A
fixed-position table located at $42-47 in page zero is set up with the
command, slot, buffer address, and block number.

There are three valid commands, which I call test, read, and write.
Test (0) starts up the indicated drive. If it is successful, a normal
return occurs; if not, you get an error return (carry set, and (A)
non-zero). Read (1) and write (2) are what you expect them to be.
RWB has a very simple job: validate the call parameters in $42-47,
convert block number to track and sector, and call RWTS twice (once
for each sector of the block).

ProDOS RWTS expects the sector number in the A-register, and the track
in a variable at $FB56. RWTS handles turning on the drive motor and
waiting for it to come up to speed. RWTS then calls SEEK.TRACK to
find the desired track, READ.ADDRESS to find the selected sector, and
branches READ.SECTOR or WRITE.SECTOR depending on the command.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1237 of 2550

Apple II Computer Info

READ.ADDRESS is virtually the same in ProDOS as it was in DOS 3.3.
READ.SECTOR is entirely different. I should point out here that
ProDOS diskettes are entirely compatible with Apple /// diskettes.
The file structures are exactly the same. Both ProDOS and Apple ///
diskettes use the same basic recording techniques on the disk as DOS
3.3, so the diskettes are copyable using standard DOS 3.3 copiers such
as the COPYA program on your old System Master Diskette.

READ.SECTOR begins by computing several addresses and plugging them
into the code further down. (This enables the use of faster
addressing modes, saving enough cycles to leave time for complete
decoding of disk data on the fly.) First the disk slot number is
merged into the instructions which read bytes from the drive. Next
the caller's buffer address is put into the store instructions.

Your buffer is divided into three parts: two 86-byte chunks, and one
of 84 bytes. Data coming from the disk is in four chunks: three of
86 bytes, and one of 84.

The first chunk contains the lower two bits from every byte in the
original data. READ.SECTOR reads this chunk into TBUF, so that the
bits will be available later for merging with the upper six of each
byte. ($FC53-FC68)

The second chunk contains the upper six bits from the first 86 bytes
of the original data. $FC69-FC83 reads the chunk and merges in the
lower two bits from TBUF, storing the completed bytes in the first 85
bytes of the caller's buffer. The last (86th) byte is saved on the
stack (I am not sure why), and not stored in the caller's buffer until
after all the rest of the data has been read.

A tricky manipulation is necessary to merge in those lower two bits.
The data in TBUF has those bits in backward order, packed together
with the bits from the other chunks. There was a good diagram of this
on page 10 of the June 1981 issue of AAL. DOS merged them with a
complex time-consuming shifting process. ProDOS does a swift table
lookup, using the TBUF byte as an index to the BIT.PAIR.TABLE.

BIT.PAIR.TABLE has four bytes per row. The first three in each row
supply the bit pairs; the fourth is used by SECTOR.WRITE to encode
data, and will be covered next month.

When $FC69-FC83 is reading the first chunk, the first byte in each row
is used to supply the lower two data bits. The byte in TBUF
corresponding to the current position in the chunk selects a byte from
BIT.PAIR.TABLE, and the two parts are merged together.

The next two chunks are handled just like the one I just described.
After all the data has been read, READ.SECTOR expects to have
accumulated a checksum of 00, and expects to find a trailing $EB after
the data. Return with carry clear indicates all went well; carry set
indicates a read error (bad checksum, missing header, or missing
trailer).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1238 of 2550

Apple II Computer Info

I can't help wondering: can this fast read technique be fit into DOS
3.3? It takes a little more code and table space, but on the other
hand it uses 256 bytes less of intermediate buffer. If we sacrificed
the INIT command, could both the fast read and write be squeezed into
DOS 3.3?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1239 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Price.Changes.txt
==

Price Changes...............................Bob Sander-Cederlof

It has been nearly two years since we raised the price of a
subscription from $12 to $15 per year, and now we are forced to
another increase. Effective January 1, 1984, a year's subscription by
bulk mail in the USA will be $18. For First Class Mail in the USA,
Canada, and Mexico, add $3. Subscriptions to other countries,
including postage, will be $30 per year.

You can beat the price by renewing early. All renewals received
before January 1st will be at the old rates.

Now for some good news! We want to reduce our inventory of back
issues, so we are offering some special prices. We normally sell them
for $1.50 each; between now and January 1st you can buy them for only
$1 each!

We want to encourage more of you to save your time and energy by
getting the Quarterly Disks, with all the source code from three
issues already correctly entered. Each Quarterly Disk costs only $15.
To save even more trouble, and some $$$, you can subscribe to the
Quarterly Disks. Effectively immediately, prepaid subscriptions for
four Quarterly Disks will be only $45. You save 25%!

Continuing in the Christmas spirit, here are some more specials good
through the end of this year, only for subscribers to Apple Assembly
Line:

 Regular Special
 FLASH! Integer BASIC Compiler $79 $50
 The Visible Computer: 6502 $50 $40
 ES-CAPE $60 $40
 S-C Math Disk & Game Disk Set $35 $20
 Laumer's Full Screen Editor $49 $40

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1240 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Rates.txt
==

Apple Assembly Line is published monthly by S-C Software Corporation,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

Every three months the source code is collected into a Quarterly Disk.
The quarters are Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec. Each
Quarterly Disk costs $15.00.

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved.
(Apple is a registered trademark of Apple Computer, Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1241 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Red.Faces.txt
==

Duplicated Ideas and Red Faces..............Bob Sander-Cederlof

I suppose it had to happen at least once in three years, but it still
came as a shock.

Last June I wrote and published a program and article called Amper-
Monitor, and then I did it all over again for the September issue.
The programs are slightly different, both in design and
implementation, but they still do the same thing.

Maybe now that we have a complete index to the first three volumes I
won't make this mistake again.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1242 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:ScreenWriter.II.txt
==

Faster Booting for ScreenWriter II...................Bob Leedom
 Glenwood, Maryland

I have found a solution to ScreenWriter II's long boot-up time (which
is one of my few complaints with the product). Would you believe a
reduction from 46 seconds to just under 14 seconds?

The solution was given in a patch to DOS 3.3 given by Paul Schlyter
and Bob Sander-Cederlof in the April 1983 issue of AAL. Since
ScreenWriter's DOS is nearly identical to 3.3, I was inspired to try
the patch (on ONE of my two copy-protected original disks) -- and it
worked!

I installed the patch between lines 50 and 60 of APP2 (ScreenWriter's
customizeable startup program). The POKEs will only be performed at
startup -- if you look closely at APP2, you'll see that the POKEing
lines will be skipped when the program is used to switch between
Editor and Runoff in the non-RAMcard version.

To install the patch, do the following:

1. From BASIC, LOAD APP2
2. Type in Lines 51 - 59, carefully!
3. SAVE APP2
4. RUN CUSTOMIZEA

That's it! You will now have a fast-booting ScreenWriter. You may
also want to do this to some of your normal DOS 3.3 disks -- the patch
is in an unused area of DOS, and seems to coexist happily with
everything else I tried (like PLE and GPLE for instance). Exception:
in the //e version of DOS 3.3, the patch screws up the infamous APPEND
command -- no great loss, in my opinion.

51 READ N: IF N=0 THEN 59:REM Make this "THEN 60" (60 is the next
ScreenWriter II line) when line 59 is DELETEd
52 READ A: SUM = SUM + A + N
53 FOR I = 1 TO N: READ P: POKE A,P: A=A+1: SUM=SUM+P: NEXT
54 GOTO 51
55 DATA 44, 47721, 173, 230, 181, 208, 36, 173, 194, 181, 240, 31,
173, 203, 181, 72, 173, 204, 181, 72, 173, 195, 181, 141, 203, 181,
173, 196, 181, 141, 204, 181, 32, 182, 176, 176, 3, 76, 223, 188, 76,
111, 179, 76, 150, 172
56 DATA 33, 48351, 238, 228, 181, 208, 3, 238, 229, 181, 238, 196,
181, 238, 204, 181, 206, 194, 181, 208, 11, 104, 141, 204, 181, 104,
141, 203, 181, 76, 150, 172, 76, 135, 186
57 DATA 2, 44198, 105, 186
58 DATA 0
59 IF SUM <> 153114 THEN PRINT "OOPS! DATA IS OFF BY "153114-SUM:
STOP: REM (Delete this line when you are SURE it works!)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1243 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:ShapeMaker.txt
==

If You Like Shapes, Try Shapemaker.........Bob Sander-Cederlof

Frank Belanger sent me a copy of his new Hi-Res utility program,
called SHAPEMAKER. I know, there are a lot of these on the market,
such as Accu-Shapes and Apple Mechanic. Frank's is priced between
those two, at $35, and look at all you get:

* Shape Editor
* Shape Table Editor
* Nine &-routines, including
 * Clear any window in the hi-res page
 * Display string of shapes
 * Input anything
* 44-page manual
* Source Code of &-routines in S-C format
* Unprotected, copyable, modifiable

If these features interest you, write Frank at 4200 Avenue B, Austin,
TX 78751. Or call (512) 451-6868.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1244 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Supress.Hex.txt
==

Suppressing Unwanted Object Bytes

Sometimes we want to get an assembly listing that doesn't use up half
a page of paper for each .AS or .HS line, listing three object bytes
on each line. A number of you have asked for a patch to show the
source line without listing each and every one of those hex bytes.

Well, David Roberts, a subscriber in Australia, has come up with a
simple way to do just that. He uses macros! David suggests these
definitions:

.MA AS

.AS -"]1"

.EM

.MA AT

.AT "]1"

.EM

.MA HS

.HS "]1"

.EM

Now you can code text with >AS "THIS IS MY STRING", and use the .LIST
MOFF option to suppress the hex listing. That's really a "why didn't
I think of that?" Thanks, David.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1245 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Where.To.txt
==

Where To?...Bill Morgan

The word is that the new Mackintosh machine from Apple is going to be
68000-based and affordable. I know that I am going to want one, and I
would like to get a leg up on learning the machine, so I'm starting to
study 68000. It looks like a lot of fun. With seventeen registers
addressing 16 megabytes at 12 megaHertz or thereabouts, we should be
able to do just about anything we want. I'll have a review next month
of a new 68000 trainer board for your Apple, at about half the price
of the existing 68000 boards.

To get to the point, how many of you good folks out there are
interested in 68000? How many of you already know a little or a lot
about it? Should we start a new newsletter about Mackintosh? Should
we devote a few pages of this one to it? Let us hear from you.

And another thing, how about C language? Several of you have
mentioned that great August issue of Byte and expressed an interest in
learning more about C. I know that I'm going to study up on it.
There is a good C compiler available for the Apple, the Aztec C
Compiler System from Manx Software. I'll have a review of it in the
next month or two, and we may start carrying it for sale. Let me know
if you're interested.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1246 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:Articles:Writers.Guide.txt
==

date

name
address
city, state zip

name,

Thank you for your inquiry about writing for Apple Assembly Line.

We accept articles and programs in almost any form, including paper,
but the best thing is to have the article in a standard DOS 3.3 Text
file, and the program source code in an S-C Macro Assembler type I
file.

We use our own word processor, which reads either standard text files
or Applewriter files. If the article file is in some other format,
please tell us what the data looks like.

Of course, we use the S-C Macro Assembler. (Doesn't every- body?) We
can translate programs from other assemblers, if the source code is in
a standard text file, but we do prefer S-C format.

The only payment we can offer for your article is glory: Apple
Assembly Line reaches about 1300 readers all around the world. In
case you are interested in a stepping-stone to the trade magazines,
our subscribers include the editors and/or publishers of SofTalk,
Nibble, Apple Orchard, and Call-A.P.P.L.E., as well as many software
publishers.

Once again, thanks for writing. We look forward to seeing your
articles.

Sincerely,

Bill Morgan

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1247 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:DOS3.3:KnouseMtrPatch.txt
==

 1000 *SAVE S.KNOUSE'S MONITOR PATCHES
 1010 *--------------------------------
 1020 *
 1030 * A COMPILATION OF MONITOR MODIFICATIONS
 1040 *--------------------------------
 1050 YES .EQ 1
 1060 NO .EQ 0
 1070 *
 1080 * OPTIONS
 1090 *
 1100 NFC .EQ YES SET TO YES IF YOU WANT
 1110 * A NON-FLASHING CURSOR
 1120 LOWERCASE .EQ YES SET TO YES IF YOU CAN
 1130 * DISPLAY LOWER CASE
 1140 W.APPLESOFT .EQ YES SET TO YES IF YOU WANT
 1150 * TO MOVE APPLESOFT WITH
 1160 * THE MONITOR, ELSE SET
 1170 * TO NO IF YOU ONLY WANT
 1180 * TO MOVE AND MODIFY THE
 1190 * MONITOR
 1200 *--------------------------------
 1210 PNTR .EQ $00,01
 1220 PATCH .EQ $02,03
 1230 A1L .EQ $3C
 1240 A1H .EQ A1L+1
 1250 A2L .EQ $3E
 1260 A2H .EQ A2L+1
 1270 A4L .EQ $42
 1280 A4H .EQ A4L+1
 1290 BASL .EQ $28
 1300 CH .EQ $24
 1310 KSWL .EQ $38
 1320 *--------------------------------
 1330 COUT .EQ $FDED
 1340 CRMON .EQ $FEF6
 1350 CROUT .EQ $FD8E
 1360 MON.HEADR .EQ $FCC9
 1370 MON.MOVE .EQ $FE2C
 1380 NXTA1 .EQ $FCBA
 1390 PRA1 .EQ $FD92
 1400 PRBYTE .EQ $FDDA
 1410 PRERR .EQ $FF2D
 1420 RDKEY .EQ $FD0C
 1430 MON.READ .EQ $FEFD
 1440 MON.WRITE .EQ $FECD
 1450 *--------------------------------
 1460 ROMR.RAMW .EQ $C081
 1470 RAMRW .EQ $C083
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1248 of 2550

Apple II Computer Info

 1490 *
 1500 * GENERAL PURPOSE PATCHER
 1510 *
 1520 *--------------------------------
 1530 .OR $2D0
 1540 .DO W.APPLESOFT
 1550 .TF PATCH MONITOR & APPLESOFT
 1560 MON.START .EQ $D000
 1570 .ELSE
 1580 .TF PATCH MONITOR ONLY
 1590 MON.START .EQ $F800
 1600 .FIN
 1610 MON.END .EQ $FFFF
 1620 *--------------------------------
 1630 PATCH.MONITOR
 1640 LDA #MON.START COPY MONITOR TO RAM CARD
 1650 STA A4L
 1660 STA A1L
 1670 LDA /MON.START
 1680 STA A4H
 1690 STA A1H
 1700 LDA #MON.END
 1710 STA A2L
 1720 LDA /MON.END
 1730 STA A2H
 1740 LDA ROMR.RAMW WRITE ENABLE RAM CARD
 1750 LDA ROMR.RAMW BY 2 OF THESE
 1760 LDY #0 SET UP MON.MOVE
 1770 JSR MON.MOVE COPY FROM MOTHERBOARD TO RAMCARD
 1780 *
 1790 LDA #PATCHES-1
 1800 STA PNTR
 1810 LDA /PATCHES-1
 1820 STA PNTR+1
 1830 LDY #0
 1840 *
 1850 .1 JSR GET.BYTE LENGTH OF NEXT PATCH
 1860 BEQ .4
 1870 TAX SAVE LENGTH IN X
 1880 JSR GET.BYTE GET ADDR OF PATCH
 1890 STA PATCH
 1900 JSR GET.BYTE
 1910 STA PATCH+1
 1920 *
 1930 .2 JSR GET.BYTE GET A BYTE
 1940 STA (PATCH),Y STORE AT DESTINATION
 1950 INC PATCH BUMP SOURCE ADDRESS
 1960 BNE .3
 1970 INC PATCH+1
 1980 .3 DEX DECREMENT NUMBER OF BYTES
 1990 BNE .2 LOOP FOR MORE
 2000 BEQ .1 ... ALWAYS
 2010 *
 2020 .DO W.APPLESOFT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1249 of 2550

Apple II Computer Info

 2030 .4 LDA RAMRW
 2040 RTS
 2050 .ELSE
 2060 .4 RTS
 2070 .FIN
 2080 *--------------------------------
 2090 GET.BYTE
 2100 INC PNTR
 2110 BNE .1
 2120 INC PNTR+1
 2130 .1 LDA (PNTR),Y
 2140 RTS
 2150 *--------------------------------
 2160 .MA PATCH
 2170]1.ORG .EQ]2
 2180 .DA #]1.LENGTH
 2190 .DA]1.ORG
 2200 .PH]1.ORG
 2210]1
 2220 .EM
 2230 *
 2240 .MA ENDP
 2250]1.END .EQ *-1
 2260]1.LENGTH .EQ *-]1
 2270 .EP
 2280 .EM
 2290 *--------------------------------
 2300 PATCHES .EQ *
 2310 *--------------------------------
 2320 * MONITOR LOWERCASE INPUT ROUTINE
 2330 *--------------------------------
 2340 *
 2350 *---DON'T STOMP ON LOWERCASE-----
 2360 >PATCH NOP.CONVERT,$FD82
 2370 AND #$FF DO NOTHING
 2380 >ENDP NOP.CONVERT
 2390 *
 2400 *---MAKE SENSIBLE CURSOR---------
 2410 >PATCH HANDLE.CURSOR,$FBB3
 2420 CMP #$E0 IS IT LOWER CASE?
 2430 BCS .1
 2440 AND #$3F NO - MAKE CHAR INVERSE
 2450 .DO NFC
 2460 ORA #$00
 2470 .ELSE
 2480 ORA #$40 THEN FLASHING
 2490 .FIN
 2500 RTS
 2510 .1 AND #$1F CONVERT TO UC INVERSE
 2520 RTS
 2530 >ENDP HANDLE.CURSOR
 2540 *
 2550 *---CALL NEW CURSOR ROUTINE------
 2560 >PATCH VEC.HANDLE.CURSOR,$FD11

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1250 of 2550

Apple II Computer Info

 2570 JSR HANDLE.CURSOR GO TO PATCH
 2580 NOP FILL BYTE
 2590 >ENDP VEC.HANDLE.CURSOR
 2600 *--------------------------------
 2610 * ASCII DUMP
 2620 *--------------------------------
 2630 *
 2640 *---MODIFIED DUMPER--------------
 2650 >PATCH ASC.DUMP,MON.HEADR
 2660 PHA SAVE CHAR
 2670 LDA A1L GET LO ADDR BYTE
 2680 AND #$07 MOD 8
 2690 CLC ADD DISPLACEMENT
 2700 ADC #30 OF 30 CHAR
 2710 TAY
 2720 PLA RECOVER CHARACTER
 2730 PHA SAVE IT AGAIN
 2740 ORA #$80 FORCE NORMAL VIDEO
 2750 CMP #$A0 MAKE CONTROL CHAR INVERSE
 2760 BCS .1 ...NOT CONTROL
 2770 .DO LOWERCASE
 2780 AND #$7F ...CONTROL
 2790 .1 STA (BASL),Y PUT ON SCREEN
 2800 NOP TO STAY ALIGNED W/
 2810 NOP NON-LOWERCASE CODE
 2820 NOP
 2830 NOP
 2840 NOP
 2850 NOP
 2860 .ELSE
 2870 LDA #$DF MAKE CTRL-CHARS INVERSE
 2880 .1 CMP #$E0 IN LOWER CASE RANGE?
 2890 BCC .2 ..NO, DISPLAY NORMAL VIDEO
 2900 AND #$1F ..YES, FORCE INVERSE VIDEO
 2910 .2 STA (BASL),Y STORE IT ON SCREEN
 2920 .FIN
 2930 LDY #0 RESTORE Y REG
 2940 PLA RECOVER BYTE AGAIN
 2950 JMP PRBYTE
 2960 >ENDP ASC.DUMP
 2970 *
 2980 *---CALL ASCII DUMP--------------
 2990 >PATCH VEC.ASC.DUMP,$FDBD
 3000 JSR ASC.DUMP
 3010 >ENDP VEC.ASC.DUMP
 3020 *--------------------------------
 3030 * + CURSOR IN ESCAPE MODE
 3040 *--------------------------------
 3050 *
 3060 *---SAVE SCREEN, SPOT + ---------
 3070 >PATCH RDKEY2,ASC.DUMP.END+1
 3080 LDY CH SAVE CHARACTER
 3090 LDA (BASL),Y
 3100 PHA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1251 of 2550

Apple II Computer Info

 3110 LDA #'+ PUT AN INVERSE + ON SCREEN
 3120 STA (BASL),Y
 3130 PLA GET THE CHARACTER BACK
 3140 JMP (KSWL)
 3150 .BS RDKEY-* FILL W/ 0'S TO RDKEY
 3160 >ENDP RDKEY2
 3170 *
 3180 *---CALL + CURSOR----------------
 3190 >PATCH VEC.RDKEY2.1,$FBA2
 3200 JSR RDKEY2
 3210 >ENDP VEC.RDKEY2.1
 3220 *
 3230 *---CALL + CURSOR----------------
 3240 >PATCH VEC.RDKEY2.2,$FD2F
 3250 JSR RDKEY2
 3260 >ENDP VEC.RDKEY2.2
 3270 *--------------------------------
 3280 * MASK BIT CONTROL OVER MEMORY RANGE
 3290 * XXYY<ADR1.ADR2W FORMS M=(M.AND.XX).OR.YY
 3300 *--------------------------------
 3310 *
 3320 >PATCH WRITE,MON.WRITE
 3330 LDA (A1L),Y GET A BYTE
 3340 AND A4H AND IT WITH XX
 3350 ORA A4L OR IT WITH YY
 3360 STA (A1L),Y PUT IT BACK
 3370 JSR NXTA1 INCR ADDRESS
 3380 BCC WRITE LOOP FOR MORE
 3390 RTS
 3400 .BS CRMON-* FILL W/ 0'S TO CRMON
 3410 >ENDP WRITE
 3420 *--------------------------------
 3430 * SEARCH
 3440 * XXYY<ADR1.ADR2S
 3450 *--------------------------------
 3460 *
 3470 *---SEARCH PROCESSOR-------------
 3480 >PATCH SEARCH,MON.READ
 3490 LDA A4H IS THIS A 1 OR 2 BYTE COMPARE
 3500 BEQ .2 ..ONE BYTE
 3510 LDA A2L ..TWO BYTE
 3520 BNE .1 DECREMENT ENDING ADDR
 3530 DEC A2H
 3540 .1 DEC A2L
 3550 *
 3560 .2 LDA A4H GET FIRST BYTE TO COMPARE
 3570 BEQ .3 IF ZERO DO A ONE BYTE SEARCH
 3580 CMP (A1L),Y COMPARE WITH MEMORY
 3590 BNE .4 NOT EQUAL - GO TO NEXT BYTE
 3600 INY GET NEXT BYTE
 3610 .3 LDA (A1L),Y
 3620 LDY #0 RESTORE Y REG
 3630 CMP A4L COMPARE
 3640 BNE .4 NOT EQUAL - DRIVE ON

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1252 of 2550

Apple II Computer Info

 3650 JSR PRA1
 3660 .4 JSR NXTA1 GET NEXT BYTE
 3670 BCC .2 LOOP FOR MORE
 3680 RTS
 3690 .BS PRERR-* FILL W/ 0'S TO PRERR
 3700 >ENDP SEARCH
 3710 *
 3720 *---PATCH COMMAND TABLE----------
 3730 >PATCH VEC.SEARCH,$FFDE
 3740 .DA #$EC 'S' EOR $B0 + $89
 3750 >ENDP VEC.SEARCH
 3760 *--------------------------------
 3770 .DA #0 END OF PATCHES
 3780 *--------------------------------
 3790 END .EQ *-1
 3800 LENGTH .EQ END-PATCH.MONITOR+1
 3810 .LIST OFF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1253 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:DOS3.3:S.LINE.COUNTER.txt
==

 1000 COUNT.LO .EQ 0
 1010 COUNT.HI .EQ 1
 1020 OUTHOOK .EQ $36
 1030 DOSHOOK .EQ $3EA
 1040 *--------------------------------
 1050 .OR $300
 1060
 1070 LDA #0
 1080 STA COUNT.LO zero the counters
 1090 STA COUNT.HI
 1100 LDA #LINE.COUNTER
 1110 STA OUTHOOK direct output
 1120 LDA /LINE.COUNTER to my routine
 1130 STA OUTHOOK+1
 1140 JMP DOSHOOK
 1150 *--------------------------------
 1160 LINE.COUNTER
 1170 CMP #$8D carriage return?
 1180 BNE .1 no, exit
 1190 INC COUNT.LO yes, count it
 1200 BNE .1
 1210 INC COUNT.HI
 1220 .1 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1254 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:DOS3.3:S.LOVES.SPIRAL.txt
==

 1000 .TF CLEAR
 1010 .LIST OFF
 1020 *--------------------------------
 1030 .MA SPIRAL
 1040 >LEFT move left side up
 1050 BOTLFT .SE BOTLFT-1 and move corner up
 1060 >BOTTOM move bottom left
 1070 BOTRGT .SE BOTRGT-1 and move corner left
 1080 >RIGHT move right side down
 1090 TOPRGT .SE TOPRGT+1 and move corner down
 1100 >TOP move top right
 1110 TOPLFT .SE TOPLFT+1 and move corner right
 1120 .DO TOPLFT<13 done?
 1130 >SPIRAL no, do it again
 1140 .FIN
 1150 .EM
 1160 *--------------------------------
 1170 .MA GETADR
 1180 ADRTO .SE ADRFRM
 1190 BLOCK .SE Y.CORD/8 hi, mid, or low, 0-2
 1200 BLK.AD .SE BLOCK*$28 block offset
 1210 TEMP .SE BLOCK*8
 1220 LINE .SE Y.CORD-TEMP line within block, 0-7
 1230 LIN.AD .SE LINE*$80 line offset
 1240 ADRFRM .SE $400+BLK.AD+LIN.AD+X.CORD
 1250 LDA ADRFRM
 1260 STA ADRTO
 1270 .EM
 1280 *--------------------------------
 1290 .MA LEFT
 1300 Y.CORD .SE Y.CORD+1 down one step
 1310 >GETADR
 1320 .DO Y.CORD<BOTLFT done?
 1330 >LEFT no, again
 1340 .FIN
 1350 .EM
 1360 *--------------------------------
 1370 .MA BOTTOM
 1380 X.CORD .SE X.CORD+1 right one step
 1390 >GETADR
 1400 .DO X.CORD<BOTRGT done?
 1410 >BOTTOM no, again
 1420 .FIN
 1430 .EM
 1440 *--------------------------------
 1450 .MA RIGHT
 1460 Y.CORD .SE Y.CORD-1 up one step
 1470 >GETADR
 1480 .DO Y.CORD>TOPRGT done?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1255 of 2550

Apple II Computer Info

 1490 >RIGHT no, again
 1500 .FIN
 1510 .EM
 1520 *--------------------------------
 1530 .MA TOP
 1540 X.CORD .SE X.CORD-1 left one step
 1550 >GETADR
 1560 .DO X.CORD>TOPLFT done?
 1570 >TOP no, again
 1580 .FIN
 1590 .EM
 1600 *--------------------------------
 1610 BOTLFT .SE 23 bottom left Y coord
 1620 BOTRGT .SE 39 bottom right X coord
 1630 TOPRGT .SE 0 top right Y coord
 1640 TOPLFT .SE 1 top left X coord
 1650 X.CORD .SE 0 start with upper
 1660 Y.CORD .SE 0 left corner
 1670 ADRFRM .SE $400
 1680 *--------------------------------
 1690 LDX #960 do the loop 960 times
 1700 LDY /960
 1710 LDA #$A0 put space in center
 1720 STA $5B4
 1730 LOOP >SPIRAL do one spiral
 1740 END DEX
 1750 BNE .1 branch if not done
 1760 DEY
 1770 BPL .1
 1780 JMP $3D0 exit to DOS
 1790 .1 JMP LOOP go spiral again

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1256 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:DOS3.3:S.LoveSpiralFst.txt
==

 1000 .TF CLEAR
 1010 .LIST OFF
 1020 *--------------------------------
 1030 .MA SPIRAL
 1040 >LEFT move left side up
 1050 BOTLFT .SE BOTLFT-1 and move corner up
 1060 >BOTTOM move bottom left
 1070 BOTRGT .SE BOTRGT-1 and move corner left
 1080 >RIGHT move right side down
 1090 TOPRGT .SE TOPRGT+1 and move corner down
 1100 >TOP move top right
 1110 TOPLFT .SE TOPLFT+1 and move corner right
 1120 .DO TOPLFT<13 done?
 1130 >SPIRAL no, do it again
 1140 .FIN
 1150 .EM
 1160 *--------------------------------
 1170 .MA GETADR
 1180 ADRTO .SE ADRFRM
 1190 BLOCK .SE Y.CORD/8 hi, mid, or low, 0-2
 1200 BLK.AD .SE BLOCK*$28 block offset
 1210 TEMP .SE BLOCK*8
 1220 LINE .SE Y.CORD-TEMP line within block, 0-7
 1230 LIN.AD .SE LINE*$80 line offset
 1240 ADRFRM .SE $400+BLK.AD+LIN.AD+X.CORD
 1250 LDA ADRFRM
 1260 STA ADRTO
 1270 .EM
 1280 *--------------------------------
 1290 .MA LEFT
 1300 Y.CORD .SE Y.CORD+1 down one step
 1310 >GETADR
 1320 .DO Y.CORD<BOTLFT done?
 1330 >LEFT no, again
 1340 .FIN
 1350 .EM
 1360 *--------------------------------
 1370 .MA BOTTOM
 1380 X.CORD .SE X.CORD+1 right one step
 1390 >GETADR
 1400 .DO X.CORD<BOTRGT done?
 1410 >BOTTOM no, again
 1420 .FIN
 1430 .EM
 1440 *--------------------------------
 1450 .MA RIGHT
 1460 Y.CORD .SE Y.CORD-1 up one step
 1470 >GETADR
 1480 .DO Y.CORD>TOPRGT done?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1257 of 2550

Apple II Computer Info

 1490 >RIGHT no, again
 1500 .FIN
 1510 .EM
 1520 *--------------------------------
 1530 .MA TOP
 1540 X.CORD .SE X.CORD-1 left one step
 1550 >GETADR
 1560 .DO X.CORD>TOPLFT done?
 1570 >TOP no, again
 1580 .FIN
 1590 .EM
 1600 *--------------------------------
 1610 BOTLFT .SE 23 bottom left Y coord
 1620 BOTRGT .SE 39 bottom right X coord
 1630 TOPRGT .SE 0 top right Y coord
 1640 TOPLFT .SE 1 top left X coord
 1650 X.CORD .SE 0 start with upper
 1660 Y.CORD .SE 0 left corner
 1670 ADRFRM .SE $400
 1680 POINTER .EQ 0
 1690 *--------------------------------
 1700 LDY #0 no indexing
 1710 LDA #END start pointer at end of code
 1720 STA POINTER
 1730 LDA /END
 1740 STA POINTER+1
 1750 .2 JSR LOOP do one step
 1760 LDA #$AD restore LDA code
 1770 STA (POINTER),Y
 1780 *--------------------------------
 1790 LDA POINTER decrement pointer
 1800 SEC by 6
 1810 SBC #6
 1820 STA POINTER
 1830 BCS .1
 1840 DEC POINTER+1
 1850 .1 LDA #$60 insert RTS code
 1860 STA (POINTER),Y
 1870 *--------------------------------
 1880 LDA POINTER compare pointer
 1890 CMP #LOOP to beginning of code
 1900 BNE .2
 1910 LDA POINTER+1
 1920 SBC /LOOP
 1930 BNE .2 branch if not yet done
 1940 *--------------------------------
 1950 FIXUP LDA #$AD restore LDA
 1960 STA LOOP at beginning
 1970 LDA #$60 and RTS
 1980 STA END at end
 1990 JMP $3D0 and reenter DOS
 2000 *--------------------------------
 2010 SAVE .DA #$A0 <space> to fill screen
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1258 of 2550

Apple II Computer Info

 2030 LOOP >SPIRAL
 2040 LDA SAVE
 2050 STA $5B4
 2060 END RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1259 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8310:DOS3.3:S.VCR.REVISED.txt
==

 1000 *---------------------------------
 1010 * VARIABLE CROSS REFERENCE
 1020 * FOR APPLESOFT PROGRAMS
 1030 *---------------------------------
 1040 ZZ.BEG .EQ $8800
 1050 .OR ZZ.BEG
 1060 .TF B.VCRP
 1070 *---------------------------------
 1080 LDA #$4C AMPERSAND VECTOR
 1090 STA $3F5
 1100 LDA #VCR
 1110 STA $3F6
 1120 LDA /VCR
 1130 STA $3F7
 1140 RTS
 1150 *---------------------------------
 1160 PNTR .EQ $18,19 POINTER INTO PROGRAM
 1170 DATA .EQ $1A THRU $1D
 1180 LZFLAG .EQ $1A LEADING ZERO FLAG
 1190 NEXTLN .EQ $1A,1B ADDRESS OF NEXT LINE
 1200 LINNUM .EQ $1C,1D CURRENT LINE NUMBER
 1210 STPNTR .EQ $1E,1F POINTER INTO VARIABLE TABLE
 1220 TPTR .EQ $9B,9C TEMP POINTER
 1230 SYMBOL .EQ $9D THRU $A4 8 BYTES
 1240 VARNAM .EQ SYMBOL+1
 1250 HSHTBL .EQ $280
 1260 ENTRY.SIZE .EQ $A5,A6
 1270 *---------------------------------
 1280 PRGBOT .EQ $67,68 BEGINNING OF PROGRAM
 1290 LOMEM .EQ $69,6A BEGINNING OF VARIABLE SPACE
 1300 EOT .EQ $6B,6C END OF VARIABLE TABLE
 1310 *---------------------------------
 1320 TKN.REM .EQ 178
 1330 TKN.DATA .EQ 131
 1340 *---------------------------------
 1350 MON.CH .EQ $24
 1360 MON.PRBL2 .EQ $F94A
 1370 MON.COUT .EQ $FDED
 1380 MON.CROUT .EQ $FD8E
 1390 *---------------------------------
 1400 VCR
 1410 JSR INITIALIZATION
 1420 .1 JSR PROCESS.LINE
 1430 BNE .1 UNTIL END OF PROGRAM
 1440 JSR PRINT.REPORT
 1450 JSR INITIALIZATION ERASE VARIABLE TABLE
 1452 LDA #0 CLEAR $A4 SO APPLESOFT WILL
 1454 STA $A4 WORK CORRECTLY
 1460 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1260 of 2550

Apple II Computer Info

 1470 *---------------------------------
 1480 INITIALIZATION
 1490 LDA LOMEM
 1500 STA EOT
 1510 LDA LOMEM+1
 1520 STA EOT+1
 1530 LDX #52 # OF BYTES FOR HASH POINTERS
 1540 LDA #0
 1550 .1 STA HSHTBL-1,X
 1560 DEX
 1570 BNE .1
 1580 LDA PRGBOT
 1590 STA PNTR
 1600 LDA PRGBOT+1
 1610 STA PNTR+1
 1620 RTS
 1630 *---------------------------------
 1640 PROCESS.LINE
 1650 LDY #3 CAPTURE POINTER AND LINE #
 1660 .1 LDA (PNTR),Y
 1670 STA DATA,Y
 1680 DEY
 1690 BPL .1
 1692 LDA DATA+1 CHECK IF END
 1694 BEQ .3 YES
 1700 CLC SKIP OVER DATA
 1710 LDA PNTR
 1720 ADC #4
 1730 STA PNTR
 1740 BCC .2
 1750 INC PNTR+1
 1760 .2 JSR SCAN.FOR.VARIABLES
 1770 LDA DATA
 1780 STA PNTR
 1790 LDA DATA+1
 1800 STA PNTR+1
 1810 * BNE .3
 1820 .3 RTS
 1830 *---------------------------------
 1840 SCAN.FOR.VARIABLES
 1850 .1 JSR GET.NEXT.VARIABLE
 1860 BEQ .3 END OF LINE
 1870 JSR PACK.VARIABLE.NAME
 1880 JSR SEARCH.VARIABLE.TABLE
 1890 BCC .2 FOUND SAME VARIABLE
 1900 LDA #0
 1910 STA SYMBOL+4 START OF LINE NUMBER CHAIN
 1920 STA SYMBOL+5
 1930 LDA LINNUM+1 MSB FIRST
 1940 STA SYMBOL+6
 1950 LDA LINNUM
 1960 STA SYMBOL+7
 1970 LDA #8 ADD 8 BYTE ENTRY
 1980 JSR ADD.NEW.ENTRY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1261 of 2550

Apple II Computer Info

 1990 JMP .1
 2000 .2 JSR SEARCH.LINE.CHAIN
 2010 BCC .1 FOUND SAME LINE NUMBER
 2020 LDA #4 ADD 4 BYTE ENTRY
 2030 JSR ADD.NEW.ENTRY
 2040 JMP .1
 2050 .3 RTS
 2060 *---------------------------------
 2070 GET.NEXT.VARIABLE
 2080 .1 JSR NEXT.CHAR.NOT.QUOTE
 2090 BEQ .2 END OF LINE
 2100 CMP #TKN.DATA
 2110 BEQ .3
 2120 CMP #TKN.REM
 2130 BEQ .2 SKIP TO NEXT LINE
 2132 CMP #$C2 FN token?
 2134 BEQ .4
 2140 JSR LETTER LETTER?
 2150 BCC .1 NO, KEEP LOOKING
 2160 .2 RTS
 2170 * DATA, SO SKIP TO NEXT STATEMENT
 2180 .3 JSR NEXT.CHAR.NOT.QUOTE
 2190 BEQ .2 EOL, RETURN
 2200 CMP #': COLON?
 2210 BNE .3 NOT END YET
 2220 BEQ .1 ...ALWAYS
 2222 .4 STA $7 set FLAG2
 2224 BEQ .1 ...always
 2226 * unless syntax error, NEXT.CHAR.NOT.QUOTE
 2228 * will be letter, hence variable!
 2230 *---------------------------------
 2240 NEXT.CHAR.NOT.QUOTE
 2250 .1 JSR NEXT.CHAR
 2260 BEQ .2 EOL, RETURN
 2270 CMP #'" QUOTE?
 2280 BEQ .3 YES, SCAN OVER QUOTATION
 2290 .2 RTS RETURN
 2300 .3 JSR NEXT.CHAR
 2310 BEQ .2 EOL, RETURN
 2320 CMP #'" TERMINAL QUOTE?
 2330 BNE .3 NOT YET
 2340 BEQ .1 ...ALWAYS
 2350 *---------------------------------
 2360 * NEXT CHARACTER FROM LINE
 2370 * CALL: JSR NEXT.CHAR
 2380 * RETURN: (A)=CHAR FROM LINE
 2390 * IF CHAR .NE. EOL,
 2400 * INCREMENT PNTR AND
 2410 * STATUS Z=0
 2420 * IF CHAR .EQ. EOL,
 2430 * STATUS Z=1
 2440 *---------------------------------
 2450 NEXT.CHAR
 2460 LDY #0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1262 of 2550

Apple II Computer Info

 2470 LDA (PNTR),Y
 2480 BEQ .1 EOL
 2490 INC PNTR BUMP POINTER
 2500 BNE .1
 2510 INC PNTR+1
 2520 .1 RTS
 2530 *---------------------------------
 2540 PACK.VARIABLE.NAME
 2550 STA VARNAM FIRST CHAR OF NAME
 2560 LDA #' BLANKS FOR OTHER TWO CHARS
 2570 STA VARNAM+1
 2580 STA VARNAM+2
 2590 JSR NEXT.CHAR
 2600 BEQ .5 END OF LINE
 2610 JSR LTRDIG
 2620 BCC .2 NOT LETTER OR DIGIT
 2630 STA VARNAM+1
 2640 .1 JSR NEXT.CHAR IGNORE EXCESS NAME
 2650 BEQ .5 END OF LINE
 2660 JSR LTRDIG
 2670 BCS .1 LETTER OR DIGIT
 2680 .2 CMP #'$ DOLLAR SIGN?
 2690 BEQ .3 YES
 2700 CMP #'% PER CENT?
 2710 BNE .4 NO
 2720 .3 STA VARNAM+2
 2730 JSR NEXT.CHAR
 2740 BEQ .5 END OF LINE
 2750 .4 CMP #'(LEFT PAREN?
 2752 BEQ .6 YES
 2754 CMP #'" QUOTE?
 2760 BNE .5 NO
 2762 LDA PNTR YES, BACK UP POINTER
 2763 BNE .7
 2764 DEC PNTR+1
 2765 .7 DEC PNTR
 2766 RTS
 2770 .6 LDA VARNAM+2 SET HIGH BIT
 2780 ORA #$80 TO FLAG ARRAY
 2790 STA VARNAM+2 REFERENCE
 2791 LDA $7 recall FLAG2
 2792 CMP #$C2 FN token?
 2793 BNE .5 (to RTS)
 2794 LDA #'-+$80 "-"
 2795 STA VARNAM+2 to indicate FN
 2796 STA $7 and reset FLAG2
 2800 .5 RTS
 2810 *---------------------------------
 2820 SEARCH.VARIABLE.TABLE
 2830 SEC CONVERT 1ST CHAR TO
 2840 LDA VARNAM HASH TABLE INDEX
 2850 SBC #'A
 2860 ASL
 2870 ADC #HSHTBL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1263 of 2550

Apple II Computer Info

 2880 STA STPNTR
 2890 LDA /HSHTBL
 2900 ADC #0
 2910 STA STPNTR+1
 2920 *--- FALL INTO CHAIN SEARCH ROUTINE
 2930 *---------------------------------
 2940 CHAIN.SEARCH
 2950 .1 LDY #0 POINT AT POINTER IN ENTRY
 2960 LDA (STPNTR),Y
 2970 STA TPTR
 2980 INY
 2990 LDA (STPNTR),Y
 3000 BEQ .4 END OF CHAIN, NOT IN TABLE
 3010 STA TPTR+1
 3020 LDX #2 2 MORE CHARS IN SYMBOL
 3030 LDY #2 POINT AT NAME IN ENTRY
 3040 .2 LDA (TPTR),Y COMPARE NAMES
 3050 CMP SYMBOL,Y
 3060 BCC .3 NOT THIS ONE, BUT KEEP LOOKING
 3070 BNE .4 NOT IN THIS CHAIN
 3080 DEX
 3090 BEQ .5 NAME IS THE SAME
 3100 INY NEXT BYTE PAIR
 3110 BNE .2 ...ALWAYS
 3120 *---------------------------------
 3130 .3 JSR .5 UPDATE POINTER, CLEAR CARRY
 3140 BCC .1 ...ALWAYS
 3150 *---------------------------------
 3160 .4 SEC DID NOT FIND
 3170 RTS
 3180 *---------------------------------
 3190 .5 LDA TPTR
 3200 STA STPNTR
 3210 LDA TPTR+1
 3220 STA STPNTR+1
 3230 CLC
 3240 RTS
 3250 *---------------------------------
 3260 ADD.NEW.ENTRY
 3270 STA ENTRY.SIZE
 3280 CLC SEE IF ROOM
 3290 LDX #1
 3300 LDY #0
 3310 STY ENTRY.SIZE+1
 3320 .1 LDA (STPNTR),Y GET CURRENT POINTER
 3330 STA SYMBOL,Y
 3340 LDA EOT,Y
 3350 STA (STPNTR),Y
 3360 STA TPTR,Y
 3370 ADC ENTRY.SIZE,Y
 3380 STA EOT,Y
 3390 INY
 3400 DEX
 3410 BPL .1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1264 of 2550

Apple II Computer Info

 3420 *--- SEE IF GOING TO BE ENOUGH ROOM
 3430 LDA EOT
 3440 CMP #ZZ.BEG
 3450 LDA EOT+1
 3460 SBC /ZZ.BEG
 3470 BCS .3 MEM FULL ERR
 3480 *--- MOVE ENTRY INTO VARIABLE TABLE
 3490 LDY ENTRY.SIZE
 3500 DEY
 3510 .2 LDA SYMBOL,Y
 3520 STA (TPTR),Y
 3530 DEY
 3540 BPL .2
 3550 LDA TPTR
 3560 STA STPNTR
 3570 LDA TPTR+1
 3580 STA STPNTR+1
 3590 RTS
 3600 .3 JMP MEM.FULL.ERR
 3610 MEM.FULL.ERR
 3620 BRK
 3630 *---------------------------------
 3640 SEARCH.LINE.CHAIN
 3650 CLC ADJUST POINTER TO START
 3660 LDA STPNTR OF LINE # CHAIN
 3670 ADC #4
 3680 STA SYMBOL
 3690 LDA STPNTR+1
 3700 ADC #0
 3710 STA SYMBOL+1
 3720 LDA #SYMBOL
 3730 STA STPNTR
 3740 LDA /SYMBOL
 3750 STA STPNTR+1
 3760 LDA LINNUM PUT LINE NUMBER INTO SYMBOL
 3770 STA SYMBOL+3
 3780 LDA LINNUM+1
 3790 STA SYMBOL+2
 3800 JMP CHAIN.SEARCH
 3810 *---------------------------------
 3820 PRINT.REPORT
 3830 LDA #'A START WITH A'S
 3840 .1 STA VARNAM
 3850 SEC
 3860 SBC #'A CONVERT TO HSHTBL INDEX
 3870 ASL
 3880 TAY
 3890 LDA HSHTBL+1,Y
 3900 BEQ .2 NO ENTRY FOR THIS LETTER
 3910 STA PNTR+1
 3920 LDA HSHTBL,Y
 3930 STA PNTR
 3940 JSR PRINT.LETTER.CHAIN
 3950 .2 INC VARNAM NEXT LETTER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1265 of 2550

Apple II Computer Info

 3960 LDA VARNAM
 3970 CMP #'Z+1
 3980 BCC .1 STILL MORE LETTERS
 3990 RTS FINISHED
 4000 *---------------------------------
 4010 LTRDIG
 4020 CMP #'0 DIGIT?
 4030 BCC LD1 NO
 4040 CMP #'9+1
 4050 BCC LD2 YES
 4060 LETTER
 4070 CMP #'A LETTER?
 4080 BCC LD1 NO
 4090 CMP #'Z+1
 4100 BCC LD2 YES
 4110 CLC NO
 4120 LD1 RTS
 4130 LD2 SEC
 4140 RTS
 4150 *---------------------------------
 4160 PRINT.LETTER.CHAIN
 4170 .1 LDA VARNAM FIRST LETTER
 4180 JSR PRINT.CHAR
 4190 LDY #1
 4200 .2 INY
 4210 LDA (PNTR),Y REST OF NAME
 4220 AND #$7F
 4230 CMP #' BLANK?
 4240 BEQ .3
 4250 JSR PRINT.CHAR
 4260 .3 CPY #3
 4270 BCC .2
 4280 LDA (PNTR),Y CHECK IF ARRAY
 4290 BPL .4
 4292 CMP #$AD not array, but FN?
 4294 BEQ .6
 4300 LDA #'(
 4310 JSR PRINT.CHAR
 4320 .4 CLC POINT AT LINE # CHAIN
 4330 LDA PNTR
 4340 ADC #4
 4350 STA TPTR
 4360 LDA PNTR+1
 4370 ADC #0
 4380 STA TPTR+1
 4390 JSR PRINT.LINNUM.CHAIN
 4400 JSR MON.CROUT
 4410 LDY #1
 4420 LDA (PNTR),Y POINTER TO NEXT VARIABLE
 4430 BEQ .5 NO MORE
 4440 PHA
 4450 DEY
 4460 LDA (PNTR),Y
 4470 STA PNTR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1266 of 2550

Apple II Computer Info

 4480 PLA
 4490 STA PNTR+1
 4500 BNE .1 ...ALWAYS
 4510 .5 RTS
 4511 .6 LDA #'F add 'FN' after
 4512 JSR PRINT.CHAR
 4513 LDA #'N variable name
 4514 JSR PRINT.CHAR
 4515 BNE .4 ...always
 4520 *---------------------------------
 4530 PRINT.LINNUM.CHAIN
 4534 LDA #0 reset counter to 0
 4538 STA $6 for each variable
 4540 .1 JSR TAB.NEXT.COLUMN
 4550 LDY #2 POINT AT LINE #
 4560 LDA (TPTR),Y
 4570 STA LINNUM+1
 4580 INY
 4590 LDA (TPTR),Y
 4600 STA LINNUM
 4610 JSR PRINT.LINE.NUMBER
 4620 LDY #1 SET UP NEXT POINTER
 4630 LDA (TPTR),Y
 4640 BEQ .2
 4650 PHA
 4660 DEY
 4670 LDA (TPTR),Y
 4680 STA TPTR
 4690 PLA
 4700 STA TPTR+1
 4710 BNE .1 ...ALWAYS
 4720 .2 RTS
 4730 *---------------------------------
 4740 TAB.NEW.LINE
 4750 JSR MON.CROUT
 4760 TAB.NEXT.COLUMN
 4770 .1 LDA #7 FIRST TAB STOP
 4780 .2 CMP MON.CH CURSOR POSITION
 4790 BCS .3 PERFORM TAB
 4800 ADC #6 NEXT TAB STOP
 4810 CMP #33 END OF LINE?
 4820 BCC .2
 4821 INC $6 count the screen line
 4822 LDA $6
 4823 AND #1 look at odd-even bit
 4824 BEQ TAB.NEW.LINE both scrn and printer
 4834 LDA #$8D
 4835 JSR $FDF0 <CR> to screen only
 4836 JMP .1 ...always
 4840 .3 BEQ .4 ALREADY THERE
 4850 SBC MON.CH CALCULATE # OF BLANKS
 4860 TAX
 4870 JSR MON.PRBL2
 4880 .4 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1267 of 2550

Apple II Computer Info

 4890 *---------------------------------
 4900 PRINT.LINE.NUMBER
 4910 LDX #4 PRINT 5 DIGITS
 4920 STX LZFLAG TURN ON LEADING ZERO FLAG
 4930 .1 LDA #'0 DIGIT=0
 4940 .2 PHA
 4950 SEC
 4960 LDA LINNUM
 4970 SBC PLNTBL,X
 4980 PHA
 4990 LDA LINNUM+1
 5000 SBC PLNTBH,X
 5010 BCC .3 LESS THAN DIVISOR
 5020 STA LINNUM+1
 5030 PLA
 5040 STA LINNUM
 5050 PLA
 5060 ADC #0 INCREMENT DIGIT
 5070 BNE .2 ...ALWAYS
 5080 .3 PLA
 5090 PLA
 5100 CMP #'0
 5110 BEQ .5 ZERO, MIGHT BE LEADING
 5120 SEC TURN OFF LZFLAG
 5130 ROR LZFLAG
 5140 .4 JSR PRINT.CHAR
 5150 DEX
 5160 BPL .1
 5170 RTS
 5180 .5 BIT LZFLAG LEADING ZERO FLAG
 5190 BMI .4 NO
 5200 LDA #' BLANK
 5210 BNE .4 ...ALWAYS
 5220 PLNTBL .DA #1
 5230 .DA #10
 5240 .DA #100
 5250 .DA #1000
 5260 .DA #10000
 5270 PLNTBH .DA /1
 5280 .DA /10
 5290 .DA /100
 5300 .DA /1000
 5310 .DA /10000
 5320 *---------------------------------
 5330 PRINT.CHAR
 5340 ORA #$80
 5350 JSR MON.COUT
 5360 RTS
 5370 *---------------------------------
 5380 ZZ.END .EQ *
 5390 ZZ.SIZ .EQ ZZ.END-ZZ.BEG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1268 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:Aztec.C.txt
==

A Look at the Aztec C Compiler for Apple DOS........Bill Morgan

As I mentioned last month, I'm getting very interested in the C
language. That August issue of Byte definitely turned me on, so I've
started to look at ways to get C into my Apple.

Byte featured a comparative review of several C compilers for CP/M.
One of the highest-rated was the Aztec C Compiler System, which is
also available for Apple DOS 3.3. The Aztec compiler was given
especially high marks for being truly complete and compatible with the
standard for C, the book "The C Programming Language", by Kernigan and
Ritchie.

I haven't had a chance to actually do any programming with the Aztec
system yet, but, thanks to Donna Lamb, a subscriber in New York City,
I was able to spend an afternoon looking over the manual. Here are
some of my impressions.

Manual

The manual is 135 pages long in 5 chapters and 2 appendices:

Tutorial Intro - 15pp - Getting started, configuring and using the
SHELL, compiling, assembling, linking and executing. A get-your-toes-
damp intro to the system.

Shell - 22pp - The SHELL program resides in the language card, at
$D000-$F7FF. It replaces the Command Interpreter portion of DOS 3.3
and provides a UNIX-like user interface, including I/O redirection and
command parsing with argument passing.

Programs - 23pp - Using the editor, compilers, assemblers, linker, and
utilities.

Libraries - 33pp - Discussion of the Standard I/O, System I/O,
Utility, and Math Routines supplied with the system.

Technical Info - 28pp - Miscellaneous information on the internals of
the system and the assembly-language interface. Manx promises
continuing additions to this chapter, as part of the updates.

Appendices - 12pp - Error messages and examples of the compiler and
assembler outputs for a simple program.

DOS 3.3 Interface

The disks you receive from Manx do not include DOS, so to enter the
system you must first boot DOS, then BRUN SHELL.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1269 of 2550

Apple II Computer Info

SHELL overlays the DOS Command Interpreter and patches at least two
(unspecified) points inside the File Manager. All the documentation
has to say about non-standard (i.e., fast) DOS's is "try it and see."
I am told that Diversi-DOS does not work; I don't know about others.
Two Compilers for the Price of One

The Aztec system includes two separate compilers and two assemblers.
There is a compiler/assembler pair for generating native 6502 code,
and another compiler/assembler for an interpreted pseudo-code. The
native code is fast but large, while the pseudo-code is slower but
smaller. You can compile most of your program to pseudo-code, compile
the time-critical parts to machine code, and write any extremely
critical sections directly in assembly language. You can then link
all these different object modules into one executable program.

Updates

The copy I saw was Version 1.05b of the Aztec system. Updates are
available for an unspecified "nominal" fee, or an automatic update
service is available for $50 per year.

Drawbacks

The people I have talked to who use the Aztec system regularly mention
two drawbacks: compilation time and program size. Much of the
compile time problem seems to be a matter of the Apple's disk speed,
which can be improved.

The program size is related to the size of the run-time routines and
the libraries included in a program. Experienced C programmers say
that it is usually possible to manipulate the libraries to minimize
the size of included code, but that is a fairly advanced technique.

ProDOS Version

There is supposed to be a ProDOS version of the Aztec system, which
should be significantly faster, coming sometime. It's too soon to
tell when that is likely to appear, so we'll just have to wait. The
ProDOS version will be marketed as a completely separate version,
rather than as an update to the DOS 3.3 version.

Conclusions

The Aztec C Compiler System is a full C compiler that runs in an Apple
][, and that makes it unique. Since my interest is in learning C and
starting to develop programs that will be used on other, more powerful
computers, I plan to place my order as soon as the ProDOS version is
available.

All things considered, the Aztec system is not a great approach for
developing applications intended only for use on Apple][computers.
The Apple is simply too limited for full C.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1270 of 2550

Apple II Computer Info

Available from: Manx Software Systems, Box 55, Shrewsbury, NJ 07701.
(201) 780-4004.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1271 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:Front.Page.txt
==

$1.50

Volume 4 -- Issue 2 November, 1983

In This Issue...

Commented Listing of ProDOS $F800-F90B, $F996-FEBD 2
Qwerty 68000 Training/Development System 16
A Look at the Aztec C Compiler for Apple DOS 18
Hitachi 6301 Cross Support 21
Killing the EXEC . 22
The Computer Hacker and Dataphile Digest 24
Shapemaker Enhancements. 24
ProDOS and Clock Drivers 25
Lower Case Titles Revisited. 28

Tearing into ProDOS

Have we got a treat for you! You've heard about ProDOS, the new
operating system for the Apple II's. Its main advantage over DOS 3.3
is speed, and on the next page of this issue you'll start to see what
makes it so fast. ProDOS uses a completely different technique for
translating between memory bytes and nibble-coded disk data, and here
it is! Start reading Bob's completely commented disassembly.

Holiday Special Prices

Remember that we are offering special prices on several popular
products from our list. Check the ad on page two for details. We are
also having a sale on back issues of Apple Assembly Line: now only
$1.00 each, rather than the usual $1.50. This is the time to complete
your set! Subscription rates will be going up as of the first of the
year, but you can still renew at the current prices. Let us hear from
you.

Non-volatile RAM

Rodney Jacks, a Mostek engineer, tells us of a very interesting new
chip: a 2K-byte static RAM, plug compatible with a 2716 EPROM, with a
built-in lithium battery. Call your distributor and ask for Mostek
MK48Z02. I can hardly wait to get some.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $15 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $13 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1272 of 2550

Apple II Computer Info

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1273 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:Ideas....txt
==

Possible articles for v4n2

Timemaster review ###

ProDOS class, features, prognosis ###

News about Apple II mouse, lack of sockets on future motherboards

Possiblity of extending Timemaster firmware by using PortA outputs to
select EPROM page ###

Review of CHEAP Assembler

Notice about Dataphile Digest ###

Labelled GOTOs and GOSUBs ###

Visit with Tom Weishaar

Visit with Jack Lewis, Micromation
 look for exciting new stuff
 robot conference in spring

Anyone else run into trouble reading huge text files like Bob Nacon
did?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1274 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:Killing.Exec.txt
==

Killing the EXEC....................................Bob Bragner
 Istanbul, Turkey

Have you ever been at the beginning of the execution of a l-o-n-g EXEC
file and realized you didn't really want to go through with it?
There's not really much you can do. Control-C and RESET are
ineffective even if you have an old Apple][without the Autostart
ROM. On a //e you can hit Control-Open Apple-RESET, but at the
expense of anything you may have in the Apple's memory -- a rather
drastic solution.

As it turns out, there is a very easy way to terminate an EXEC file in
progress. Apple DOS contains a single byte ($AAB3 when DOS is at its
normal location) which is called "EXEC.STATUS". If the value of this
byte is not 0 DOS thinks an EXEC file is in charge. If it is 0 then
as far as DOS is concerned, no EXEC file is active. So we have the
following little routine:

This routine can be reassembled to run anywhere. the INIT portion
simply directs the RESET vector to the KILL.EXEC part of the routine
and must be called before the EXEC command is issued. KILL.EXEC
stores a 0 in the EXEC.STATUS flag and jumps to the DOS warm start at
$3D0. Now if you hit RESET during an EXEC file's operation, the file
will terminate politely.

Here is a series of POKES and a CALL that could be placed at the
beginning of any EXEC program:

POKE 1010,13 : POKE 1011,3 : CALL 64367
POKE 781,169 : POKE 782,0 : POKE 783,141 : POKE 784,179
POKE 785,170 : POKE 786,76 : POKE 787,208 : POKE 788,3
(the rest of your program goes here)

This works from machine language, Integer BASIC, Applesoft, AND the S-
C RAMcard Macro Assembler. The latter is a big help when you discover
you're EXEC'ing the wrong 2000-line text file into the assembler, or
you've forgotten to turn AUTO on!

[Just a couple of comments: this trick won't work with an old non-
Autostart ROM Apple, since you can't redirect RESET; and be sure to
type the CLOSE command after the RESET, to free up the file buffer
that the EXEC file was using. Bill]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1275 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:Lower.Case.Sq.txt
==

Lower Case Titles Revisited.........................Bill Morgan

Last month we published Bob Matzinger's patch to Version 1.1 of the
Macro Assembler to allow lower-case characters in a .TItle line. The
article contained this sentence: "Here is a hex dump of the code,
with a square around the byte to be changed:" But I forgot to draw
the square on the page!

Here is that section of code again, this time with the square drawn
in:

 A2 00 LDX #0
 20 3E x2 JSR $123E or $D23E
 C9 2C CMP #$2C
 D0 0D BNE ...

 20 3E x2 JSR $123E or $D23E

 B0 08 BCS ...
 9D 70 01 STA $170,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1276 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0....................................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50
Full Screen Editor for S-C Macro Assembler..........(reg. $49.00) $40.00**
 Includes complete source code.
S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $40.00**

S-C Word Processor (the one we use!)...............................$50.00
 With fully commented source code.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor.....(reg. $60.00) $40.00**

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Routine Machine (Southwestern Data Systems).........(reg. $64.95) $60.00
FLASH! Integer BASIC Compiler (Laumer Research).....(reg. $79.00) $50.00**

Blank Diskettes..................................package of 20 for $45.00
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
ZIF Game Socket Extender...$20.00
Shift-Key Modifier...$15.00

Grappler+ Printer Interface (Orange Micro).............($175.00) $150.00
Bufferboard 16K Buffer for Grappler (Orange Micro).....($175.00) $150.00
Buffered Grappler+ NEW!! Interface and 16K Buffer.....($239.00) $200.00

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Micro Cookbook, vol. 1", Lancaster..................($15.95) $15.00
 "Micro Cookbook, vol. 2", Lancaster..................($15.95) $15.00
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Apple Graphics & Arcade Game Design", Stanton.......($19.95) $18.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1277 of 2550

Apple II Computer Info

 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00
 Add $1.50 per book for US postage. Foreign orders add postage needed.

Whatever Else You Need............................Call for Our Low Prices

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

(** Special price to subscribers only through December 31, 1983.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1278 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:PDOs.Clk.Drvr.txt
==

ProDOS and Clock Drivers, with a...........Bob Sander-Cederlof
Commented Listing of ProDOS $F142-$F1BE

ProDOS is a new operating system which Apple expects to release to the
public during the first quarter of 1984. I am told that new computers
and disk drives will be shipped with ProDOS rather than DOS 3.3.
Version 1.0 is already available to licensed developers (I have it).

Apple has released massive amounts of documentation to licensed
developers, and has even been offering a full day class at $225 per
seat in various cities around the country. I attended the Dallas
class on October 21st. Even with all the help they are giving, there
are still a lot of unclear details that can only be illuminated by
well-commented assembly listings of the actual ProDOS code. Apple
will never publish these, so we will do it ourselves.

My first serious foray into ProDOS began at the request of Dan Pote,
Applied Engineering. Dan wanted me to modify the firmware of his
Timemaster clock card so that it automatically had full compatibility
with ProDOS. Dan wanted all programs, even protected ones, which boot
under ProDOS, to be able to read the date and time from his card.
Also, he wanted ProDOS to time/date stamp the files in the directory
with his card, just as it does with Thunderclock. (No small task, it
turned out.)

ProDOS, when booting, searches the slots for a Thunderclock. If it
finds one, it marks a bit in the machine ID byte (MACHID, bit 0 of
$BF98 = 1); it plugs two bytes at $F14D and F150 with $CN, where N is
the slot number; and it stores a JMP opcode ($4C) at $BF06.

$BF06 is a standard vector to whatever clock routine is installed. If
no Thunderclock was found, an RTS opcode will be stored there.

The ProDOS boot slot search looks for these Thunderclock ID bytes:

 $CN00 = $08
 $CN02 = $28
 $CN04 = $58
 $CN08 = $70

After booting, ProDOS loads and executes the program called STARTUP.
The standard STARTUP program searches the slots for various cards and
displays a list of what it finds. Unfortunately this list seldom
agrees with the true configuration in any of my computers. For one
thing, STARTUP examines different bytes than the boot search does. In
looking for a clock card, STARTUP wants:

 $CN00 = $08
 $CN01 = $78

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1279 of 2550

Apple II Computer Info

 $CN02 = $28

If you do not have a Thunderclock, but do have some other clock, you
have several options. What I did for Dan was change the firmware of
Timemaster so that it emulates Thunderclock. ProDOS is convinced it
has a Thunderclock, but you are saved the extra expense, and you gain
extra features.

Another approach is to write a program which installs your own clock
driver inside ProDOS. Mike Owen, of Austin, Texas, did this for Dan.
After ProDOS boots it loads the first type SYS file it can find in the
directory whose name ends with ".SYSTEM". Normally this is
"BASIC.SYSTEM", which then proceeds to execute STARTUP. However, you
can set up your disk with CLOCK.SYSTEM before BASIC.SYSTEM in the
directory.

Write CLOCK.SYSTEM so that it begins at $2000, because all type SYS
files load there. The program should mark the clock ID bit in MACHID,
punch a JMP opcode at $BF06, and look at the address in $BF07,BF08.
That address is the beginning of the clock driver inside the language
card. Right now that address is $F142, but it could change.

Your program should write enable the language card by two "LDA $C081"
instructions in a row, and then copy your clock driver into the space
starting at that address. You can use up to 124 bytes. If your
driver has references to the clock slot, be sure to modify them to the
actual slot you are using. If your driver has internal references, be
sure to modify them to point to the actual addresses inside the new
physical location.

It is standard practice in peripheral firmware to use the following
code to find out which slot the card is in:

 JSR $FF58 A Guaranteed $60 (RTS opcode)
 TSX Stack pointer
 LDA $100,X Get $CN off stack

Many cards also use "BIT $FF58" as a means for setting the V-bit in
the status register. BE AWARE THAT ProDOS DOES NOT HAVE $60 AT $FF58
in the language card!!!!

The Thunderclock has two entries, at $CN08 and $CN0B, which assume
that $CN is already in the X-register. $CN0B allows setting the clock
mode, and $CN08 reads the clock in the current mode. The ProDOS
driver calls on these two entries, as the following listing shows.

ProDOS maintains a full page at $BF00 called the System Global Page.
The definition of this page should not change, ever. They say.
Locations $BF90-BF93 contain the current date and time in a packed
format. A system call will read the clock, if a driver is installed,
and format the year-month-day-hour-minute into these four bytes.

Now here is a listing of the current Thunderclock driver, as labelled
and commented by me.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1280 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:PDos.Disasm.Ex.txt
==

Commented Listing of ProDOS $F800-$F90B, $F996-FEBD
 Bob Sander-Cederlof

ProDOS boots its bulk into the RAM card, from $D000 thru $FFFF. More
is loaded into the alternate $D000-DFFF space, and all but 255 bytes
are reserved out of the entire 16K space.

A system global page is maintained from $BF00-BFFF, for various
variables and linkage routines. All communication between machine
language programs and ProDOS is supposed to be through MLI (Machine
Language Interface) calls and the system global page.

One of the first things I did with ProDOS was to start dis-assembling
and commenting it. I want to know what is inside and how it works!
Apple's 4-inch thick binder tells a lot, but not all.

Right away I ran into a roadblock: to disassemble out of the RAM card
it has to be turned on. There is no monitor in the RAM card when
ProDOS is loaded. Turning on the RAM card from the motherboard
monitor causes a loud crash!

I overcame most of the problem by copying a monitor into the $F800-
FFFF region of the RAM card like this:

 *C089 C089 F800<F800.FFFFM
 *C083 C083

The double C089 write-enables the RAM card, while memory reads are
still from the motherboard. The rest of the line copies a monitor up.
The two C083's get me into the RAM card monitor, ready to type things
like "D000LLLLLLLLLLLL"

But what about dis-assemblies of the space between $F800 and $FFFF?
For this I had to write a little move program. My program turned on
the RAM card and copied $F800-FFFF down to $6800-6FFF. Then I BSAVEd
it, and later disassembled it.

The code from $F800-FFFF is mostly equivalent to what is in DOS 3.3
from $B800-BFFF. First I found a read/write block subroutine, which
calls an RWTS-like subroutine twice per block. (All ProDOS works with
512-byte blocks, rather than sectors; this is like Apple Pascal, and
the Apple ///.)

The listing which follows shows the RWB and RWTS subroutines, along
with the READ.ADDRESS and READ.SECTOR subroutines. Next month I plan
to lay out the SEEK.TRACK and WRITE.SECTOR subroutines, as well as the
interrupt and reset handling code.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1281 of 2550

Apple II Computer Info

The outstanding difference between ProDOS and DOS 3.3 disk I/O is
speed. ProDOS is considerably faster. Most of the speed increase is
due to handling the conversion between memory-bytes and disk-bytes on
the fly. DOS pre-converted a 256-byte block into 342 bytes in a
special buffer, and then wrote the 342 bytes; ProDOS forms the first
86 bytes of the disk data in a special buffer, writes them, and then
proceeds to write the rest of the data directly from the caller's
buffer. When reading, DOS read the 342 disk-bytes into a buffer for
later decoding into the caller's buffer. ProDOS reads and decodes
simultaneously directly into the caller's buffer. This is achieved by
extensive use of tables and self-modifying code.

Not only is direct time saved by doing a lot less copying of buffers,
but also the sector interleaving can be arranged so that only two
revolutions are required to read all 8 blocks on a track.

I believe Apple Pascal uses the same technique, at least for reading.

Whoever coded ProDOS decided to hard-code some parameters which DOS
used to keep in tables specified by the user. For example, the number
which tells how long to wait for a drive motor to rev up used to be
kept in a Device Characteristics Table (DCT). That value is now
inside a "LDA #$E8" instruction at $F84F. That means that if you are
using a faster drive you have to figure out how to patch and unpatch
ProDOS to take advantage of it.

Another hard-coded parameter is the maximum block number. This is no
longer part of the data on an initialized disk. It is now locked into
the four instructions at $F807-F80D, at a maximum of 279. If you have
a 40- or 70-track drive, you can only use 35. Speaking of tracks, the
delay tables for track seeking are still used, but they are of course
buried in this same almost-unreachable area. If you have a drive with
faster track-to-track stepping, the table to change is at $FB73-FB84.

Calls to RWTS in DOS 3.3 involved setting up two tables, an IOB and a
DCT. The IOB contained all the data about slot, drive, track, sector,
buffer address, etc. The DCT was a 5-byte table with data concerning
the drive. ProDOS RWB is called in an entirely different way. A
fixed-position table located at $42-47 in page zero is set up with the
command, slot, buffer address, and block number.

There are three valid commands, which I call test, read, and write.
Test (0) starts up the indicated drive. If it is successful, a normal
return occurs; if not, you get an error return (carry set, and (A)
non-zero). Read (1) and write (2) are what you expect them to be.
RWB has a very simple job: validate the call parameters in $42-47,
convert block number to track and sector, and call RWTS twice (once
for each sector of the block).

ProDOS RWTS expects the sector number in the A-register, and the track
in a variable at $FB56. RWTS handles turning on the drive motor and
waiting for it to come up to speed. RWTS then calls SEEK.TRACK to
find the desired track, READ.ADDRESS to find the selected sector, and
branches to READ.SECTOR or WRITE.SECTOR depending on the command.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1282 of 2550

Apple II Computer Info

READ.ADDRESS is virtually the same in ProDOS as it was in DOS 3.3.
READ.SECTOR is entirely different. I should point out here that
ProDOS diskettes are entirely compatible with Apple /// diskettes.
The file structures are exactly the same. Both ProDOS and Apple ///
diskettes use the same basic recording techniques on the disk as DOS
3.3, so the diskettes are copyable using standard DOS 3.3 copiers such
as the COPYA program on your old System Master Diskette.

READ.SECTOR begins by computing several addresses and plugging them
into the code further down. (This enables the use of faster
addressing modes, saving enough cycles to leave time for complete
decoding of disk data on the fly.) First the disk slot number is
merged into the instructions which read bytes from the drive. Next
the caller's buffer address is put into the store instructions.

Note that the byte from the disk is loaded into the X-register, then
used to index into BYTE.TABLE, at $F996, to get the equivalent 6-bit
data value. Since a disk byte may only have certain values, there is
some space within BYTE.TABLE that will never be accessed. Most of
this unused space contains $FF bytes, but some of it is used for other
small tables: BIT.PAIR.LEFT, .MIDDLE, and .RIGHT, and DATA.TRAILER.
These are used by WRITE.SECTOR, which we'll look at next month.

Your buffer is divided into three parts: two 86-byte chunks, and one
of 84 bytes. Data coming from the disk is in four chunks: three of
86 bytes, and one of 84.

The first chunk contains the lower two bits from every byte in the
original data. READ.SECTOR reads this chunk into TBUF, so that the
bits will be available later for merging with the upper six of each
byte. ($FC53-FC68)

The second chunk contains the upper six bits from the first 86 bytes
of the original data. $FC69-FC83 reads the chunk and merges in the
lower two bits from TBUF, storing the completed bytes in the first 85
bytes of the caller's buffer. The last (86th) byte is saved on the
stack (I am not sure why), and not stored in the caller's buffer until
after all the rest of the data has been read.

A tricky manipulation is necessary to merge in those lower two bits.
The data in TBUF has those bits in backward order, packed together
with the bits from the other chunks. There was a good diagram of this
on page 10 of the June 1981 issue of AAL. DOS merged them with a
complex time-consuming shifting process. ProDOS does a swift table
lookup, using the TBUF byte as an index to the BIT.PAIR.TABLE.

BIT.PAIR.TABLE has four bytes per row. The first three in each row
supply the bit pairs; the fourth is used by SECTOR.WRITE to encode
data, and will be covered next month.

When $FC69-FC83 is reading the first chunk, the first byte in each row
is used to supply the lower two data bits. The byte in TBUF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1283 of 2550

Apple II Computer Info

corresponding to the current position in the chunk selects a byte from
BIT.PAIR.TABLE, and the two parts are merged together.

The next two chunks are handled just like the one I just described.
After all the data has been read, READ.SECTOR expects to have
accumulated a checksum of 00, and expects to find a trailing $EB after
the data. Return with carry clear indicates all went well; carry set
indicates a read error (bad checksum, missing header, or missing
trailer).

I can't help wondering: can this fast read technique be fit into DOS
3.3? It takes a little more code and table space, but on the other
hand it uses 256 bytes less of intermediate buffer. If we sacrificed
the INIT command, could both the fast read and write be squeezed into
DOS 3.3?

For more good information on ProDOS, be sure to take a look at Tom
Weishaar's DOStalk column in the current issue of Softalk.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1284 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:Qwerty.Review.txt
==

Qwerty 68000 Training/Development System...Bob Sander-Cederlof

There is now a plethora of 68000 boards designed to fit inside, or
nearly inside, your Apple. Names like DTACK Grounded, PDQ, Saybrook,
and Acorn.

Most of these are aimed at hot-rodding your Apple. Some come with the
UCSD p-System, including Pascal and an Applesoft- compatible BASIC and
much more. Others have a more limited selection. Most are too costly
for most of us, around $1500.

Motorola and others sell development systems based on the 68000 for
$10K-30K. The Apple Lisa makes an excellent development system, at
$6995 plus the developer's software kit (when it becomes available).

"Wait a minute! I don't even have a spare $1500, let alone $10K! And
I want to get my feet wet first, before diving in over my head!"

"In fact, I want to try my hand at learning 68000 assembly language
first. I need an assembler, some books, and a monitor with step and
trace commands. I would like a hands-on tutorial I can work though at
my own pace."

"I can't afford to lay out more than $750 right now. But I want an
expandable system, that can grow with my knowledge and needs."

Guess what...somebody overheard our thoughts! Jerry Hansen and Lane
Hauck, of Qwerty Inc., have put together a package deal too good to
resist: a complete integrated training and software development
package for only $695.

The package includes a card to plug in any slot of your Apple II, II
Plus, or //e; a reference manual which leads you through the details
of the card, their firmware, and the assembler; a full-fledged macro
assembler; the best three reference books, with other booklets and
reference cards. You can use the books in a hands-on tutorial
fashion, mastering the 68000 assembly language as you go.

The Q-68 card is the heart of the package. It is a compact, well-
crafted design, with a 68008 microprocessor, 2K bytes of RAM, and 8K
bytes of EPROM. The full Apple address-space can be addressed by the
68008 as well, including any memory expansion cards you may have. RAM
can be expanded on-board to 8K, and EPROM to 32K. A 50-pin expansion
connector allows connection of additional memory, to a total of 1
megabyte.

You don't need any external power supply or chassis. The card draws a
maximum of 400 milliamps. (While this is more than Apple will
recommend, it seems to be well within the capability of the Apple

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1285 of 2550

Apple II Computer Info

power supply.) If you don't already have a cooling fan, you will
probably want one after installing this card. The 68008 is the main
power user, which fact makes me ever-so-hungry for a CMOS version.
The 68008 is a trimmed-down version of the 68000, with an 8-bit data
bus. The instruction set is unchanged, but it comes in a smaller
package: fewer pins, fewer milliamps, fewer dollars. On the Q-68
board, the 68008 is clocked at 7.16 MHz.

The Apple 6502 keeps running while the 68008 is executing code; when
the 68008 refers to Apple memory, the 68008 slows down to wait for the
Apple bus, and the Apple slows to half speed during that cycle. True
multiprocessing is possible.

The Q-68 EPROM is loaded with good things. You get a comprehensive
self-test facility, and an easy-to-use debugging monitor. The
debugging monitor allows you to step and trace through your programs,
and set breakpoints. There are five different display windows you can
cycle through with a single keystroke: Register, Memory, Disassembly,
and Breakpoint displays, and a helpful Command Summary.

Qwerty is aiming primarily at the those of us who want to learn 68000
programming and/or develop 68000 software without investing in an
expensive complete 68000 system. However, there are many other
exciting possibilities for this board. Those of you who really do
want to speed up your Apple can certainly write code for the purpose.
(Or maybe adapt public domain code already written for other 68K
boards.) The Q-68 card may be used as a powerful controller or co-
processor with your yet-to-be-written software. You can connect the
Q-68 to the outside world directly, as well as through the Apple bus.

Now for something truly unique: the package comes with a special
version of the S-C 68000 Cross Assembler. The S-C manual has been re-
written to give 68000 code examples throughout. New commands have
been added to start the Q-68 card, either in debug mode or at full
speed. Three versions are included to provide different memory usage
options.

What you get is a near optimum environment both for learning and for
serious software development. Gone are the "load the editor, load-
edit-save the source program, load the assembler, assemble, load the
loader, load the object program, run into a bug, load the editor...."
blues. With this package you simply edit, assemble, and run directly
from RAM.

Programs too large for RAM can be assembled and loaded using multiple
source and object files when necessary, but you still never need to
reload the editor/assembler or monitor/debugger.

Current users of the S-C Assembler family already know the commands
and editing techniques. You can concentrate on learning the 68000
itself, and the Qwerty debugger, without being distracted by a whole
new operating system. (Later, when you can afford a Lisa or
MacIntosh, you will already know the language and can concentrate on
learning the operating system.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1286 of 2550

Apple II Computer Info

Here is another new twist: Qwerty offers a free 30-day trial period.
If you're not happy with the package for any reason, you can return it
within 30 days in salable condition for a full refund. Qwerty, Inc.
Phone (619) 569-5283.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1287 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:Shapemaker.Enh.txt
==

Shapemaker Enhancements....................Bob Sander-Cederlof

Frank Belanger sent me a new updated version of his Shapemaker
Utility. He says it is now the best program of its type on the
market, and he is really proud of it. Here are the new features:

* Clearer, more accessible HELP screens.
* RENUMBER command in the Shape Editor.
* Two grid sizes: 18x30 and 24x40.
* Hi-Res Dump for Epson printer, accessible
 both in Shapemaker and with an &-command.
* Four new typefaces (total now 9).
* Manual now 55 pages long.

Shapemaker is still just $35, from Frank at 4200 Avenue B, Austin, TX
78751.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1288 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:Shorts.txt
==

The Computer Hacker and Dataphile Digest

I received Vol 1 No 2 of the "Computer Hacker", and I think it will be
a useful newsletter. As the magazines become more and more general,
filled with reviews of packaged systems and software, we will have to
look elsewhere for articles that get down to the nitty-gritty. Even
local club newsletters are steering away from the hobbyist's or
technician's needs.

The issue I have includes listings of a pair of programs to transfer
data from one computer to another in the CP/M environment; part two of
a detailed explanation of the RS-232 "standard"; part one of
directions for building a hardware print spooler; a review of floppy
disk formats; an Apple (6502) assembly language program for sending
Morse code; and a beginner's introduction to electronics.

The Computer Hacker, 12 issues per year for $24, P. O. Box 1697,
Kalispell, MT 59903.

Dataphile Digest is a monthly survey of Apple related periodicals.
Bill & Shannon Bailey scan more than a dozen magazines each month, and
write brief descriptions of each article relating to Apple computers.
They organize the descriptions into categories that make it easy to
find any topic you like. The second issue covered one or two issues
of 14 different magazines, and included 840 entries organized into 38
categories.

Dataphile Digest is typeset, and printed the same size as Apple
Assembly Line. The current issue is 78 pages (plus cover and contents
pages), and bears a cover price of $3.50. No subscription price is
given, so I would suggest writing to them at P. O. Box 2806, Del Mar,
CA 92014. Or call at (619) 436-9382.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1289 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:Articles:XAsm.6301.txt
==

Hitachi 6301 Cross Support.................Bob Sander-Cederlof

As you probably know, we have a growing line of cross assemblers
available. You can use your Apple as a development system without
ever learning another editor/assembler/operating-system, on any of ten
or more different chips.

It all started back in 1980 when Nigel Nathan paid me to create a 6801
cross assembler based on version 4.0 of the S-C Assembler II. Later
Bob Urschel bought a copy. Back then we thought $300 a copy was a
pretty good price.

All our competition in this field seems to agree. Avocet charges $200
or more per cross assembler. Byte magazine carries several ads
showing prices for cross assemblers between $395 and $1000 apiece.
Our assemblers are just as good, and many of you tell us ours are
easier to use and more powerful. But we charge either $32.50 or $50
apiece, after you own the $80 S-C Macro Assembler.

Until very recently, the 6800/1/2 Macro Cross Assembler came with only
one version on the disk. This one version assembled all of the
opcodes of the 6801 chip. If you were programming for a 6800, which
did not support all of those opcodes and addressing modes, it was a
little dangerous. Last month we upgraded this disk by making two
versions: one for 6800 only, and one for 6801.

Now I have added a third version for the Hitachi 6301. The 6301 is a
CMOS chip, includes all the opcodes of the 6801, and adds six more:

 XGDX Exchange D and X
 SLP Sleep (reduced power mode)
 AIM And Immediate into Memory
 OIM Or Immediate into Memory
 EIM Exclusive Or Immediate into Memory
 TIM Test Memory Immediate

The last four each have two addressing modes. You can write "AIM
#val,addr" or "AIM #val,addr,X". In both modes the address is only 8
bits. You can see that AIM lets you clear any bits in a memory byte;
OIM lets you set any bits in a byte; EIM lets you toggle any bits; and
TIM lets you test any bits. TIM forms the logical product (AND) of
the memory byte and the immediate value, and tests for sign and zero.

The 6301 includes extensive memory mapped I/O on the chip, mapped into
the zero page. With these "xIM" opcodes you have an extremely
powerful I/O capability.

If you have the older disk of the 6800/1/2 cross assembler, and want
to upgrade to get the 6301 version, send $5.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1290 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:DOS3.3:PDOS.F142.F1Be.txt
==

 1000 *SAVE S.PRODOS $F142...$F1BE
 1010 *--------------------------------
 1020 * IF THE PRODOS BOOT RECOGNIZES A THUNDERCLOCK,
 1030 * A "JMP $F142" IS INSTALLED AT $BF06 AND
 1040 * THE SLOT ADDRESS IS PATCHED INTO THE FOLLOWING
 1050 * CODE AT SLOT.A AND SLOT.B BELOW.
 1060 *--------------------------------
 1070 DATE .EQ $BF90 $BF91 = YYYYYYYM
 1080 * $BF90 = MMMDDDDD
 1090 TIME .EQ $BF92 $BF93 = 000HHHHH
 1100 * $BF92 = 00MMMMMM
 1110 MODE .EQ $5F8-$C0 THUNDERCLOCK MODE IN SCREEN HOLE
 1120 *--------------------------------
 1130 .OR $F142
 1140 .TA $800
 1150 *--------------------------------
 1160 PRODOS.THUNDERCLOCK.DRIVER
 1170 LDX SLOT.B $CN
 1180 LDA MODE,X SAVE CURRENT THUNDERCLOCK MODE
 1190 PHA
 1200 LDA #$A3 SEND "#" TO THUNDERCLOCK TO
 1210 JSR $C20B SELECT INTEGER MODE
 1220 SLOT.A .EQ *-1
 1230 *--------------------------------
 1240 * READ TIME & DATE INTO $200...$211 IN FORMAT:
 1250 *--------------------------------
 1260 JSR $C208
 1270 SLOT.B .EQ *-1
 1280 *--------------------------------
 1290 * CONVERT ASCII VALUES TO BINARY
 1300 * $3E -- MINUTE
 1310 * $3D -- HOUR
 1320 * $3C -- DAY OF MONTH
 1330 * $3B -- DAY OF WEEK
 1340 * $3A -- MONTH
 1350 *--------------------------------
 1360 CLC
 1370 LDX #4
 1380 LDY #12 POINT AT MINUTE
 1390 .1 LDA $200,Y TEN'S DIGIT
 1400 AND #$07 IGNORE TOP BIT
 1410 STA $3A MULTIPLY DIGIT BY TEN
 1420 ASL *2
 1430 ASL *4
 1440 ADC $3A *5
 1450 ASL *10
 1460 ADC $201,Y ADD UNIT'S DIGIT
 1470 SEC
 1480 SBC #$B0 SUBTRACT ASCII ZERO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1291 of 2550

Apple II Computer Info

 1490 STA $3A,X STORE VALUE
 1500 DEY BACK UP TO PREVIOUS FIELD
 1510 DEY
 1520 DEY
 1530 DEX BACK UP TO PREVIOUS VALUE
 1540 BPL .1 ...UNTIL ALL 5 FIELDS CONVERTED
 1550 *--------------------------------
 1560 * PACK MONTH AND DAY OF MONTH,
 1570 *--------------------------------
 1580 TAY MONTH (1...12)
 1590 LSR 00000ABC--D
 1600 ROR D00000AB--C
 1610 ROR CD00000A--B
 1620 ROR BCD00000--A
 1630 ORA $3C MERGE DAY OF MONTH
 1640 STA DATE SAVE PACKED DAY AND MONTH
 1650 PHP SAVE TOP BIT OF MONTH
 1660 *--------------------------------
 1670 * CONVERT MONTH, DAY OF MONTH,
 1680 * AND DAY OF WEEK INTO YEAR.
 1690 *--------------------------------
 1700 AND #$1F ISOLATE DAY OF MONTH (1...31)
 1710 * CARRY SET FOR MONTHS 8...12
 1720 ADC YEAR.DAY,Y COMPUTE DAY OF YEAR
 1730 BCC .2
 1740 ADC #3 ADJUST REMAINDER FOR YEARDAY > 255
 1750 .2 SEC GET REMAINDER MODULO 7
 1760 .3 SBC #7
 1770 BCS .3 ...UNTIL ALL 7'S REMOVED
 1780 ADC #7 RESTORE TO POSITIVE VALUE
 1790 SBC $3B SUBTRACT KNOWN DAY OF WEEK
 1800 BCS .4 NO BORROW
 1810 ADC #7 BORROWED, SO ADD 7 BACK
 1820 .4 TAY ADJUSTED DAY OW WEEK AS INDEX
 1830 LDA YRTBL,Y GET YEAR (82...87)
 1840 PLP GET HIGH BIT OF MONTH IN CARRY
 1850 ROL FORM YYYYYYYM
 1860 STA DATE+1
 1870 LDA $3D GET HOUR
 1880 STA TIME+1
 1890 LDA $3E GET MINUTE
 1900 STA TIME
 1910 PLA RESTORE THUNDERCLOCK MODE
 1920 LDX SLOT.B GET $CN FOR INDEX
 1930 STA MODE,X
 1940 RTS
 1950 *--------------------------------
 1960 YEAR.DAY .EQ *-1 OFFSET BECAUSE INDEX 1...12
 1970 .DA #0,#31,#59,#90 JAN,FEB,MAR,APR
 1980 .DA #120,#151,#181,#211 MAY,JUN,JUL,AUG
 1990 .DA #242,#20,#51,#81 SEP,OCT,NOV,DEC
 2000 *--------------------------------
 2010 YRTBL .DA #84,#84,#83,#82,#87,#86,#85
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1292 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:DOS3.3:PDos.F800.FFFF.txt
==

 1000 .TI 76,PRODOS F800-FFFF.....COMMENTED BY RBS-C 11-8-
83............
 1010 *SAVE S.PRODOS F800-FFFF
 1020 *--------------------------------
 1030 RUNNING.SUM .EQ $3A
 1040 TBUF.0 .EQ $3A
 1050 BYTE.AT.BUF00 .EQ $3B
 1060 BYTE.AT.BUF01 .EQ $3C
 1070 LAST.BYTE .EQ $3D
 1080 SLOT.X16 .EQ $3E
 1090 INDEX.OF.LAST.BYTE .EQ $3F
 1100 *--------------------------------
 1110 RWB.COMMAND .EQ $42
 1120 RWB.SLOT .EQ $43 DSSSXXXX
 1130 RWB.BUFFER .EQ $44,45
 1140 RWB.BLOCK .EQ $46,47 0...279
 1150 *--------------------------------
 1160 BUFF.BASE .EQ $4700 DUMMY ADDRESS FOR ASSEMBLY ONLY
 1170 *--------------------------------
 1180 SAVE.LOC45 .EQ $BF56
 1190 SAVE.D000 .EQ $BF57
 1200 INTAREG .EQ $BF88
 1210 INTBANKID .EQ $BF8D
 1220 IRQXIT.3 .EQ $BFD3
 1230 *--------------------------------
 1240 DRV.PHASE .EQ $C080
 1250 DRV.MTROFF .EQ $C088
 1260 DRV.MTRON .EQ $C089
 1270 DRV.ENBL.0 .EQ $C08A
 1280 DRV.Q6L .EQ $C08C
 1290 DRV.Q6H .EQ $C08D
 1300 DRV.Q7L .EQ $C08E
 1310 DRV.Q7H .EQ $C08F
 1320 *--------------------------------
 1330 * <<<COMPUTED >>>
 1340 MODIFIER .EQ $60 <<<SLOT * 16>>>
 1350 *--------------------------------
 1360 .OR $F800
 1370 .TA $800
 1380 *--------------------------------
 1390 * READ/WRITE A BLOCK
 1400 *
 1410 * 1. ASSURE VALID BLOCK NUMBER (0...279)
 1420 * 2. CONVERT BLOCK NUMBER TO TRACK/SECTOR
 1430 * TRACK = INT(BLOCK/8)
 1440 * BLOCK SECTORS
 1450 * ----- ---------
 1460 * 0 0 AND 2
 1470 * 1 4 AND 6

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1293 of 2550

Apple II Computer Info

 1480 * 2 8 AND 10
 1490 * 3 12 AND 14
 1500 * 4 1 AND 3
 1510 * 5 5 AND 7
 1520 * 6 9 AND 11
 1530 * 7 13 AND 15
 1540 * 3. CALL RWTS TWICE
 1550 * 4. RETURN WITH ERROR STATUS
 1560 *--------------------------------
 1570 RWB
 1580 LDA RWB.BLOCK BLOCK MUST BE 0...279
 1590 LDX RWB.BLOCK+1
 1600 STX RWTS.TRACK
 1610 BEQ .1 ...BLOCK # LESS THAN 256
 1620 DEX
 1630 BNE .5 ...BLOCK # MORE THAN 511
 1640 CMP #$18
 1650 BCS .5 ...BLOCK # MORE THAN 279
 1660 .1 LDY #5 SHIFT 5 BITS OF TRACK #
 1670 .2 ASL RWTS.TRACK A-REG
 1680 ROL RWTS.TRACK ---------- --------
 1690 DEY 00TTTTTT ABC00000
 1700 BNE .2
 1710 ASL TRANSFORM BLOCK # INTO SECTOR #
 1720 BCC .3 ABC00000 --> 0000BC0A
 1730 ORA #$10
 1740 .3 LSR
 1750 LSR
 1760 LSR
 1770 LSR
 1780 PHA
 1790 JSR RWTS R/W FIRST SECTOR OF BLOCK
 1800 PLA
 1810 BCS .4 ...ERROR
 1820 INC RWB.BUFFER+1
 1830 ADC #2
 1840 JSR RWTS R/W SECOND SECTOR OF BLOCK
 1850 DEC RWB.BUFFER+1
 1860 .4 LDA RWTS.ERROR
 1870 RTS
 1880 *---BLOCK NUMBER > 279-----------
 1890 .5 LDA #$27 I/O ERROR
 1900 SEC
 1910 RTS
 1920 *--------------------------------
 1930 * READ/WRITE A GIVEN SECTOR
 1940 *--------------------------------
 1950 RWTS
 1960 LDY #1 TRY SEEKING TWICE
 1970 STY SEEK.COUNT
 1980 STA RWTS.SECTOR
 1990 LDA RWB.SLOT
 2000 AND #$70 0SSS0000
 2010 STA SLOT.X16

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1294 of 2550

Apple II Computer Info

 2020 JSR WAIT.FOR.OLD.MOTOR.TO.STOP
 2030 JSR CHECK.IF.MOTOR.RUNNING
 2040 PHP SAVE ANSWER (.NE. IF RUNNING)
 2050 LDA #$E8 MOTOR STARTING TIME
 2060 STA MOTOR.TIME+1 ONLY HI-BYTE NECESSARY
 2070 LDA RWB.SLOT SAME SLOT AND DRIVE?
 2080 CMP OLD.SLOT
 2090 STA OLD.SLOT
 2100 PHP SAVE ANSWER
 2110 ASL DRIVE # TO C-BIT
 2120 LDA DRV.MTRON,X START MOTOR
 2130 BCC .1 ...DRIVE 0
 2140 INX ...DRIVE 1
 2150 .1 LDA DRV.ENBL.0,X ENABLE DRIVE X
 2160 PLP SAME SLOT/DRIVE?
 2170 BEQ .3 ...YES
 2180 PLP DISCARD ANSWER ABOUT MOTOR GOING
 2190 LDY #7 DELAY 150-175 MILLISECS
 2200 .2 JSR DELAY.100 DELAY 25 MILLISECS
 2210 DEY
 2220 BNE .2
 2230 PHP SAY MOTOR NOT ALREADY GOING
 2240 .3 LDA RWB.COMMAND 0=TEST, 1=READ, 2=WRITE
 2250 BEQ .4 ...0, MERELY TEST
 2260 LDA RWTS.TRACK
 2270 JSR SEEK.TRACK
 2280 .4 PLP WAS MOTOR ALREADY GOING?
 2290 BNE .6 ...YES
 2300 .5 LDA #1 DELAY 100 USECS
 2310 JSR DELAY.100
 2320 LDA MOTOR.TIME+1
 2330 BMI .5 ...WAIT TILL IT OUGHT TO BE
 2340 JSR CHECK.IF.MOTOR.RUNNING
 2350 BEQ .14 ...NOT RUNNING YET, ERROR
 2360 .6 LDA RWB.COMMAND
 2370 BEQ .17 CHECK IF WRITE PROTECTED
 2380 LSR .CS. IF READ, .CC. IF WRITE
 2390 BCS .7 ...READ
 2400 JSR PRE.NYBBLE ...WRITE
 2410 .7 LDY #64 TRY 64 TIMES TO FIND THE SECTOR
 2420 STY SEARCH.COUNT
 2430 .8 LDX SLOT.X16
 2440 JSR READ.ADDRESS
 2450 BCC .10 ...FOUND IT
 2460 .9 DEC SEARCH.COUNT
 2470 BPL .8 ...KEEP LOOKING
 2480 LDA #$27 I/O ERROR CODE
 2490 DEC SEEK.COUNT ANY TRIES LEFT?
 2500 BNE .14 ...NO, I/O ERROR
 2510 LDA CURRENT.TRACK
 2520 PHA
 2530 ASL SLIGHT RE-CALIBRATION
 2540 ADC #$10
 2550 LDY #64 ANOTHER 64 TRIES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1295 of 2550

Apple II Computer Info

 2560 STY SEARCH.COUNT
 2570 BNE .11 ...ALWAYS
 2580 .10 LDY HDR.TRACK ACTUAL TRACK FOUND
 2590 CPY CURRENT.TRACK
 2600 BEQ .12 FOUND THE RIGHT ONE
 2610 LDA CURRENT.TRACK WRONG ONE, TRY AGAIN
 2620 PHA
 2630 TYA STARTING FROM TRACK FOUND
 2640 ASL
 2650 .11 JSR UPDATE.TRACK.TABLE
 2660 PLA
 2670 JSR SEEK.TRACK
 2680 BCC .8 ...ALWAYS
 2690 .12 LDA HDR.SECTOR
 2700 CMP RWTS.SECTOR
 2710 BNE .9
 2720 LDA RWB.COMMAND
 2730 LSR
 2740 BCC .15 ...WRITE
 2750 JSR READ.SECTOR ...READ
 2760 BCS .9 ...READ ERROR
 2770 .13 LDA #0 NO ERROR
 2780 .HS D0 "BNE"...NEVER, JUST SKIPS "SEC"
 2790 .14 SEC ERROR
 2800 STA RWTS.ERROR SAVE ERROR CODE
 2810 LDA DRV.MTROFF,X STOP MOTOR
 2820 RTS RETURN
 2830 *--------------------------------
 2840 .15 JSR WRITE.SECTOR
 2850 .16 BCC .13 ...NO ERROR
 2860 LDA #$2B WRITE PROTECTED ERROR CODE
 2870 BNE .14 ...ALWAYS
 2880 .17 LDX SLOT.X16 CHECK IF WRITE PROTECTED
 2890 LDA DRV.Q6H,X
 2900 LDA DRV.Q7L,X
 2910 ROL
 2920 LDA DRV.Q6L,X
 2930 JMP .16 GIVE ERROR IF PROTECTED
 2940 *--------------------------------
 2950 SEEK.TRACK
 2960 ASL GET PHYSICAL TRACK #
 2970 STA HDR.TRACK ...SAVE HERE
 2980 JSR CLEAR.PHASES (CARRY WAS CLEAR)
 2990 JSR GET.SSSD.IN.X
 3000 LDA OLD.TRACK.TABLE,X
 3010 STA CURRENT.TRACK
 3020 LDA HDR.TRACK
 3030 STA OLD.TRACK.TABLE,X
 3040 JSR SEEK.TRACK.ABSOLUTE
 3050 *--------------------------------
 3060 CLEAR.PHASES
 3070 LDY #3
 3080 .1 TYA
 3090 JSR PHASE.COMMANDER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1296 of 2550

Apple II Computer Info

 3100 DEY
 3110 BPL .1
 3120 LSR CURRENT.TRACK BACK TO LOGICAL TRACK #
 3130 CLC SIGNAL NO ERROR
 3140 RTS
 3150 *--------------------------------
 3160 SEEK.TRACK.ABSOLUTE
 3170 STA TARGET.TRACK SAVE ACTUAL TRACK #
 3180 CMP CURRENT.TRACK ALREADY THERE?
 3190 BEQ .7 ...YES
 3200 LDA #0
 3210 STA STEP.CNT # STEPS SO FAR
 3220 .1 LDA CURRENT.TRACK
 3230 STA CURRENT.TRACK.OLD
 3240 SEC
 3250 SBC TARGET.TRACK
 3260 BEQ .6 ...WE HAVE ARRIVED
 3270 BCS .2 CURRENT > DESIRED
 3280 EOR #$FF CURRENT < DESIRED
 3290 INC CURRENT.TRACK
 3300 BCC .3 ...ALWAYS
 3310 .2 ADC #$FE .CS., SO A=A-1
 3320 DEC CURRENT.TRACK
 3330 .3 CMP STEP.CNT GET MINIMUM OF:
 3340 BCC .4 1. # OF TRACKS TO MOVE LESS 1
 3350 LDA STEP.CNT 2. # OF STEPS SO FAR
 3360 .4 CMP #9 3. EIGHT
 3370 BCS .5
 3380 TAY
 3390 SEC TURN NEW PHASE ON
 3400 .5 JSR .7
 3410 LDA ONTBL,Y DELAY
 3420 JSR DELAY.100
 3430 LDA CURRENT.TRACK.OLD
 3440 CLC TURN OLD PHASE OFF
 3450 JSR PHASE.COMMANDER
 3460 LDA OFFTBL,Y DELAY
 3470 JSR DELAY.100
 3480 INC STEP.CNT # OF STEPS SO FAR
 3490 BNE .1 ...ALWAYS
 3500 .6 JSR DELAY.100
 3510 CLC TURN PHASE OFF
 3520 .7 LDA CURRENT.TRACK
 3530 *--------------------------------
 3540 * (A) = TRACK #
 3550 * .CC. THEN PHASE OFF
 3560 * .CS. THEN PHASE ON
 3570 *--------------------------------
 3580 PHASE.COMMANDER
 3590 AND #3 ONLY KEEP LOWER TWO BITS
 3600 ROL 00000XXC
 3610 ORA SLOT.X16 0SSS0XXC
 3620 TAX
 3630 LDA DRV.PHASE,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1297 of 2550

Apple II Computer Info

 3640 LDX SLOT.X16 RESTORE SLOT*16
 3650 RTS
 3660 *--------------------------------
 3670 * VALUE READ FROM DISK IS INDEX INTO THIS TABLE
 3680 * TABLE ENTRY GIVES TOP 6 BITS OF ACTUAL DATA
 3690 *
 3700 * OTHER DATA TABLES ARE IMBEDDED IN THE UNUSED
 3710 * PORTIONS OF THE BYTE.TABLE
 3720 *--------------------------------
 3730 BYTE.TABLE .EQ *-$96
 3740 .HS 0004FFFF080CFF101418
 3750 BIT.PAIR.LEFT
 3760 .HS 008040C0
 3770 .HS FFFF1C20FFFFFF24282C
 3780 .HS 3034FFFF383C4044
 3790 .HS 484CFF5054585C606468
 3800 BIT.PAIR.MIDDLE
 3810 .HS 00201030
 3820 DATA.TRAILER
 3830 .HS DEAAEBFF
 3840 .HS FFFFFF6CFF70
 3850 .HS 7478FFFFFF7CFFFF
 3860 .HS 8084FF888C9094989CA0
 3870 BIT.PAIR.RIGHT
 3880 .HS 0008040C
 3890 .HS FFA4A8ACFFB0B4B8BCC0
 3900 .HS C4C8FFFFCCD0D4D8
 3910 .HS DCE0FFE4E8ECF0F4
 3920 .HS F8FC
 3930 *--------------------------------
 3940 BIT.PAIR.TABLE
 3950 .HS 00000096
 3960 .HS 02000097
 3970 .HS 0100009A
 3980 .HS 0300009B
 3990 .HS 0002009D
 4000 .HS 0202009E
 4010 .HS 0102009F
 4020 .HS 030200A6
 4030 .HS 000100A7
 4040 .HS 020100AB
 4050 .HS 010100AC
 4060 .HS 030100AD
 4070 .HS 000300AE
 4080 .HS 020300AF
 4090 .HS 010300B2
 4100 .HS 030300B3
 4110 .HS 000002B4
 4120 .HS 020002B5
 4130 .HS 010002B6
 4140 .HS 030002B7
 4150 .HS 000202B9
 4160 .HS 020202BA
 4170 .HS 010202BB

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1298 of 2550

Apple II Computer Info

 4180 .HS 030202BC
 4190 .HS 000102BD
 4200 .HS 020102BE
 4210 .HS 010102BF
 4220 .HS 030102CB
 4230 .HS 000302CD
 4240 .HS 020302CE
 4250 .HS 010302CF
 4260 .HS 030302D3
 4270 .HS 000001D6
 4280 .HS 020001D7
 4290 .HS 010001D9
 4300 .HS 030001DA
 4310 .HS 000201DB
 4320 .HS 020201DC
 4330 .HS 010201DD
 4340 .HS 030201DE
 4350 .HS 000101DF
 4360 .HS 020101E5
 4370 .HS 010101E6
 4380 .HS 030101E7
 4390 .HS 000301E9
 4400 .HS 020301EA
 4410 .HS 010301EB
 4420 .HS 030301EC
 4430 .HS 000003ED
 4440 .HS 020003EE
 4450 .HS 010003EF
 4460 .HS 030003F2
 4470 .HS 000203F3
 4480 .HS 020203F4
 4490 .HS 010203F5
 4500 .HS 030203F6
 4510 .HS 000103F7
 4520 .HS 020103F9
 4530 .HS 010103FA
 4540 .HS 030103FB
 4550 .HS 000303FC
 4560 .HS 020303FD
 4570 .HS 010303FE
 4580 .HS 030303FF
 4590 *--------------------------------
 4600 TBUF .BS 86
 4610 *--------------------------------
 4620 RWTS.TRACK .HS 07
 4630 RWTS.SECTOR .HS 0F
 4640 RWTS.ERROR .HS 00
 4650 OLD.SLOT .HS 60
 4660 CURRENT.TRACK .HS 07
 4670 .HS 00
 4680 *--------------------------------
 4690 OLD.TRACK.TABLE .EQ *-4
 4700 .HS 0000 SLOT 2, DRIVE 0--DRIVE 1
 4710 .HS 0000 SLOT 3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1299 of 2550

Apple II Computer Info

 4720 .HS 0000 SLOT 4
 4730 .HS 0000 SLOT 5
 4740 .HS 0E00 SLOT 6
 4750 .HS 0000 SLOT 7
 4760 *--------------------------------
 4770 .HS 00
 4780 *--------------------------------
 4790 SEARCH.COUNT .BS 1
 4800 SEEK.COUNT .BS 1
 4810 STEP.CNT .EQ *
 4820 SEEK.D5.CNT .EQ *
 4830 X1X1X1X1 .BS 1 ALSO STEP.CNT & SEEK.D5.CNT
 4840 CHECK.SUM .BS 1
 4850 HDR.CHKSUM .BS 1
 4860 HDR.SECTOR .BS 1
 4870 HDR.TRACK .EQ *
 4880 MOTOR.TIME .BS 2 ALSO HDR.TRACK & HDR.VOLUME
 4890 CURRENT.TRACK.OLD .BS 1
 4900 TARGET.TRACK .BS 1
 4910 *--------------------------------
 4920 * DELAY TIMES FOR ACCELERATION & DECELERATION
 4930 * OF TRACK STEPPING MOTOR
 4940 *--------------------------------
 4950 ONTBL .HS 01302824201E1D1C1C
 4960 OFFTBL .HS 702C26221F1E1D1C1C
 4970 *--------------------------------
 4980 * DELAY ABOUT 100*A MICROSECONDS
 4990 * RUN DOWN MOTOR.TIME WHILE DELAYING
 5000 *--------------------------------
 5010 DELAY.100
 5020 .1 LDX #17
 5030 .2 DEX
 5040 BNE .2
 5050 INC MOTOR.TIME
 5060 BNE .3
 5070 INC MOTOR.TIME+1
 5080 .3 SEC
 5090 SBC #1
 5100 BNE .1
 5110 RTS
 5120 *--------------------------------
 5130 READ.ADDRESS
 5140 LDY #$FC TRY 772 TIMES TO FIND $D5
 5150 STY SEEK.D5.CNT (FROM $FCFC TO $10000)
 5160 .1 INY
 5170 BNE .2 ...KEEP TRYING
 5180 INC SEEK.D5.CNT
 5190 BEQ .11 ...THAT IS ENUF!
 5200 .2 LDA DRV.Q6L,X GET NEXT BYTE
 5210 BPL .2
 5220 .3 CMP #$D5 IS IT $D5?
 5230 BNE .1 ...NO, TRY AGAIN
 5240 NOP ...YES, DELAY
 5250 .4 LDA DRV.Q6L,X GET NEXT BYTE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1300 of 2550

Apple II Computer Info

 5260 BPL .4
 5270 CMP #$AA NOW NEED $AA AND $96
 5280 BNE .3 ...NO, BACK TO $D5 SEARCH
 5290 LDY #3 (READ 3 BYTES LATER)
 5300 .5 LDA DRV.Q6L,X GET NEXT BYTE
 5310 BPL .5
 5320 CMP #$96 BETTER BE...
 5330 BNE .3 ...IT IS NOT
 5340 SEI ...NO INTERRUPTS NOW
 5350 LDA #0 START CHECK SUM
 5360 .6 STA CHECK.SUM
 5370 .7 LDA DRV.Q6L,X GET NEXT BYTE
 5380 BPL .7 1X1X1X1X
 5390 ROL X1X1X1X1
 5400 STA X1X1X1X1
 5410 .8 LDA DRV.Q6L,X GET NEXT BYTE
 5420 BPL .8 1Y1Y1Y1Y
 5430 AND X1X1X1X1 XYXYXYXY
 5440 STA HDR.CHKSUM,Y
 5450 EOR CHECK.SUM
 5460 DEY
 5470 BPL .6
 5480 TAY CHECK CHECKSUM
 5490 BNE .11 NON-ZERO, ERROR
 5500 .9 LDA DRV.Q6L,X GET NEXT BYTE
 5510 BPL .9
 5520 CMP #$DE TRAILER EXPECTED $DE.AA.EB
 5530 BNE .11 NO, ERROR
 5540 NOP
 5550 .10 LDA DRV.Q6L,X
 5560 BPL .10
 5570 CMP #$AA
 5580 BNE .11 NO, ERROR
 5590 CLC
 5600 RTS
 5610 .11 SEC
 5620 RTS
 5630 *--------------------------------
 5640 READ.SECTOR
 5650 TXA SLOT*16 ($60 FOR SLOT 6)
 5660 ORA #$8C BUILD Q6L ADDRESS FOR SLOT
 5670 STA .9+1 STORE INTO READ-DISK OPS
 5680 STA .12+1
 5690 STA .13+1
 5700 STA .15+1
 5710 STA .18+1
 5720 LDA RWB.BUFFER PLUG CALLER'S BUFFER
 5730 LDY RWB.BUFFER+1 ADDRESS INTO STORE'S
 5740 STA .17+1 PNTR FOR LAST THIRD
 5750 STY .17+2
 5760 SEC PNTR FOR MIDDLE THIRD
 5770 SBC #84
 5780 BCS .1
 5790 DEY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1301 of 2550

Apple II Computer Info

 5800 .1 STA .14+1
 5810 STY .14+2
 5820 SEC PNTR FOR BOTTOM THIRD
 5830 SBC #87
 5840 BCS .2
 5850 DEY
 5860 .2 STA .11+1
 5870 STY .11+2
 5880 *---FIND $D5.AA.AD HEADER--------
 5890 LDY #32 MUST FIND $D5 WITHIN 32 BYTES
 5900 .3 DEY
 5910 BEQ .10 ERROR RETURN
 5920 .4 LDA DRV.Q6L,X
 5930 BPL .4
 5940 .5 EOR #$D5
 5950 BNE .3
 5960 NOP
 5970 .6 LDA DRV.Q6L,X
 5980 BPL .6
 5990 CMP #$AA
 6000 BNE .5
 6010 NOP
 6020 .7 LDA DRV.Q6L,X
 6030 BPL .7
 6040 CMP #$AD
 6050 BNE .5
 6060 *---READ 86 BYTES INTO TBUF...TBUF+85----------
 6070 *---THESE ARE THE PACKED LOWER TWO BITS--------
 6080 *---FROM EACH BYTE OF THE CALLER'S BUFFER.-----
 6090 LDY #170
 6100 LDA #0 INIT RUNNING EOR-SUM
 6110 .8 STA RUNNING.SUM
 6120 .9 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6130 BPL .9
 6140 LDA BYTE.TABLE,X DECODE DATA
 6150 STA TBUF-170,Y
 6160 EOR RUNNING.SUM
 6170 INY
 6180 BNE .8
 6190 *---READ NEXT 86 BYTES-------------------------
 6200 *---STORE 1ST 85 IN BUFFER...BUFFER+84---------
 6210 *---SAVE THE 86TH BYTE ON THE STACK------------
 6220 LDY #170
 6230 BNE .12 ...ALWAYS
 6240 *--
 6250 .10 SEC I/O ERROR EXIT
 6260 RTS
 6270 *--
 6280 .11 STA BUFF.BASE-171,Y
 6290 .12 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6300 BPL .12
 6310 EOR BYTE.TABLE,X DECODE DATA
 6320 LDX TBUF-170,Y MERGE LOWER 2 BITS
 6330 EOR BIT.PAIR.TABLE,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1302 of 2550

Apple II Computer Info

 6340 INY
 6350 BNE .11
 6360 PHA SAVE LAST BYTE (LATER BUFFER+85)
 6370 *---READ NEXT 86 BYTES-----------
 6380 *---STORE AT BUFFER+86...BUFFER+171------------
 6390 AND #$FC MASK FOR RUNNING EOR.SUM
 6400 LDY #170
 6410 .13 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6420 BPL .13
 6430 EOR BYTE.TABLE,X DECODE DATA
 6440 LDX TBUF-170,Y MERGE LOWER 2 BITS
 6450 EOR BIT.PAIR.TABLE+1,X
 6460 .14 STA BUFF.BASE-84,Y
 6470 INY
 6480 BNE .13
 6490 *---READ NEXT 84 BYTES-------------------------
 6500 *---INTO BUFFER+172...BUFFER+255---------------
 6510 .15 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6520 BPL .15
 6530 AND #$FC
 6540 LDY #172
 6550 .16 EOR BYTE.TABLE,X DECODE DATA
 6560 LDX TBUF-172,Y MERGE LOWER 2 BITS
 6570 EOR BIT.PAIR.TABLE+2,X
 6580 .17 STA BUFF.BASE,Y
 6590 .18 LDX DRV.Q6L+MODIFIER READ NEXT BYTE
 6600 BPL .18
 6610 INY
 6620 BNE .16
 6630 AND #$FC
 6640 *---END OF DATA------------------
 6650 EOR BYTE.TABLE,X DECODE DATA
 6660 BNE .20 ...BAD CHECKSUM
 6670 LDX SLOT.X16 CHECK FOR TRAILER $DE
 6680 .19 LDA DRV.Q6L,X
 6690 BPL .19
 6700 CMP #$DE
 6710 CLC
 6720 BEQ .21 ...GOOD READ!
 6730 .20 SEC ...SIGNAL BAD READ
 6740 .21 PLA STORE BYTE AT BUFFER+85
 6750 LDY #85
 6760 STA (RWB.BUFFER),Y
 6770 RTS
 6780 *--------------------------------
 6790 UPDATE.TRACK.TABLE
 6800 JSR GET.SSSD.IN.X
 6810 STA OLD.TRACK.TABLE,X
 6820 RTS
 6830 *--------------------------------
 6840 CHECK.IF.MOTOR.RUNNING
 6850 LDX SLOT.X16
 6860 CHECK.IF.MOTOR.RUNNING.X
 6870 LDY #0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1303 of 2550

Apple II Computer Info

 6880 .1 LDA DRV.Q6L,X READ CURRENT INPUT REGISTER
 6890 JSR .2 ...12 CYCLES...
 6900 PHA ...7 MORE CYCLES...
 6910 PLA
 6920 CMP DRV.Q6L,X BY NOW INPUT REGISTER
 6930 BNE .2 SHOULD HAVE CHANGED
 6940 LDA #$28 ERROR CODE: NO DEVICE CONNECTED
 6950 DEY BUT TRY 255 MORE TIMES
 6960 BNE .1 ...RETURN .NE. IF MOVING...
 6970 .2 RTS ...RETURN .EQ. IF NOT MOVING...
 6980 *--------------------------------
 6990 GET.SSSD.IN.X
 7000 PHA SAVE A-REG
 7010 LDA RWB.SLOT DSSSXXXX
 7020 LSR
 7030 LSR
 7040 LSR
 7050 LSR 0000DSSS
 7060 CMP #8 SET CARRY IF DRIVE 2
 7070 AND #7 00000SSS
 7080 ROL 0000SSSD
 7090 TAX INTO X-REG
 7100 PLA RESTORE A-REG
 7110 RTS
 7120 *--------------------------------
 7130 WRITE.SECTOR
 7140 SEC IN CASE WRITE-PROTECTED
 7150 LDA DRV.Q6H,X
 7160 LDA DRV.Q7L,X
 7170 BPL .1 ...NOT WRITE PROTECTED
 7180 JMP WS.RET ...PROTECTED, ERROR
 7190 *--------------------------------
 7200 .1 LDA TBUF
 7210 STA TBUF.0
 7220 *---WRITE 5 SYNC BYTES-----------
 7230 LDA #$FF
 7240 STA DRV.Q7H,X
 7250 ORA DRV.Q6L,X
 7260 LDY #4
 7270 NOP $FF AT 40-CYCLE INTERVALS LEAVES
 7280 PHA TWO ZERO-BITS AFTER EACH $FF
 7290 PLA
 7300 .2 PHA
 7310 PLA
 7320 JSR WRITE2
 7330 DEY
 7340 BNE .2
 7350 *---WRITE $D5 AA AD HEADER-------
 7360 LDA #$D5
 7370 JSR WRITE1
 7380 LDA #$AA
 7390 JSR WRITE1
 7400 LDA #$AD
 7410 JSR WRITE1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1304 of 2550

Apple II Computer Info

 7420 *---WRITE 86 BYTES FROM TBUF-------------------
 7430 *---BACKWARDS: TBUF+85...TBUF+1, TBUF.0------
 7440 TYA =0
 7450 LDY #86
 7460 BNE .4
 7470 .3 LDA TBUF,Y
 7480 .4 EOR TBUF-1,Y
 7490 TAX
 7500 LDA BIT.PAIR.TABLE+3,X
 7510 LDX SLOT.X16
 7520 STA DRV.Q6H,X
 7530 LDA DRV.Q6L,X
 7540 DEY
 7550 BNE .3
 7560 LDA TBUF.0
 7570 *---WRITE PORTION OF BUFFER------
 7580 *---UP TO A PAGE BOUNDARY--------
 7590 LDY #*-* FILLED IN WITH LO-BYTE OF BUFFER ADDRESS
 7600 WS...5 EOR BUFF.BASE,Y HI-BYTE FILLED IN
 7610 AND #$FC
 7620 TAX
 7630 LDA BIT.PAIR.TABLE+3,X
 7640 WS...6 LDX #MODIFIER
 7650 STA DRV.Q6H,X
 7660 LDA DRV.Q6L,X
 7670 WS...7 LDA BUFF.BASE,Y HI-BYTE FILLED IN
 7680 INY
 7690 BNE WS...5
 7700 *---BRANCH ACCORDING TO BUFFER BOUNDARY CONDITIONS-----
 7710 LDA BYTE.AT.BUF00
 7720 BEQ WS..17 ...BUFFER ALL IN ONE PAGE
 7730 LDA INDEX.OF.LAST.BYTE
 7740 BEQ WS..16 ...ONLY ONE BYTE IN NEXT PAGE
 7750 *---MORE THAN ONE BYTE IN NEXT PAGE--------------------
 7760 LSR ...DELAY TWO CYCLES
 7770 LDA BYTE.AT.BUF00 PRE.NYBBLE ALREADY ENCODED
 7780 STA DRV.Q6H,X THIS BYTE
 7790 LDA DRV.Q6L,X
 7800 LDA BYTE.AT.BUF01
 7810 NOP
 7820 INY
 7830 BCS WS..12
 7840 WS...8 EOR BUFF.BASE+256,Y HI-BYTE FILLED IN
 7850 AND #$FC
 7860 TAX
 7870 LDA BIT.PAIR.TABLE+3,X
 7880 WS...9 LDX #MODIFIER
 7890 STA DRV.Q6H,X
 7900 LDA DRV.Q6L,X
 7910 WS..10 LDA BUFF.BASE+256,Y HI-BYTE FILLED IN
 7920 INY
 7930 WS..11 EOR BUFF.BASE+256,Y HI-BYTE FILLED IN
 7940 WS..12 CPY INDEX.OF.LAST.BYTE
 7950 AND #$FC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1305 of 2550

Apple II Computer Info

 7960 TAX
 7970 LDA BIT.PAIR.TABLE+3,X
 7980 WS..13 LDX #MODIFIER
 7990 STA DRV.Q6H,X
 8000 LDA DRV.Q6L,X
 8010 WS..14 LDA BUFF.BASE+256,Y HI-BYTE FILLED IN
 8020 INY
 8030 BCC WS...8
 8040 BCS .15 ...3 CYCLE NOP
 8050 .15 BCS WS..17 ...ALWAYS
 8060 *---WRITE BYTE AT BUFFER.00---------------------------
 8070 WS..16 .DA #$AD,BYTE.AT.BUF00 4 CYCLES: LDA BYTE.AT.BUF00
 8080 STA DRV.Q6H,X
 8090 LDA DRV.Q6L,X
 8100 PHA
 8110 PLA
 8120 PHA
 8130 PLA
 8140 WS..17 LDX LAST.BYTE
 8150 LDA BIT.PAIR.TABLE+3,X
 8160 WS..18 LDX #MODIFIER
 8170 STA DRV.Q6H,X
 8180 LDA DRV.Q6L,X
 8190 LDY #0
 8200 PHA
 8210 PLA
 8220 *---WRITE DATA TRAILER: $DE AA EB FF----------
 8230 NOP
 8240 NOP
 8250 .19 LDA DATA.TRAILER,Y
 8260 JSR WRITE3
 8270 INY
 8280 CPY #4
 8290 BNE .19
 8300 CLC SIGNAL NO ERROR
 8310 WS.RET LDA DRV.Q7L,X DRIVE TO SAFE MODE
 8320 LDA DRV.Q6L,X
 8330 RTS
 8340 *--------------------------------
 8350 WRITE1 CLC
 8360 WRITE2 PHA
 8370 PLA
 8380 WRITE3 STA DRV.Q6H,X
 8390 ORA DRV.Q6L,X
 8400 RTS
 8410 *--------------------------------
 8420 PRE.NYBBLE
 8430 LDA RWB.BUFFER PLUG IN ADDRESS TO LOOP BELOW
 8440 LDY RWB.BUFFER+1
 8450 CLC
 8460 ADC #2
 8470 BCC .1
 8480 INY
 8490 .1 STA PN...6+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1306 of 2550

Apple II Computer Info

 8500 STY PN...6+2
 8510 SEC
 8520 SBC #$56
 8530 BCS .2
 8540 DEY
 8550 .2 STA PN...5+1
 8560 STY PN...5+2
 8570 SEC
 8580 SBC #$56
 8590 BCS .3
 8600 DEY
 8610 .3 STA PN...4+1
 8620 STY PN...4+2
 8630 *---PACK THE LOWER TWO BITS INTO TBUF-------------
 8640 LDY #170
 8650 PN...4 LDA BUFF.BASE-170,Y ADDRESS FILLED IN
 8660 AND #3
 8670 TAX
 8680 LDA BIT.PAIR.RIGHT,X
 8690 PHA
 8700 PN...5 LDA BUFF.BASE-84,Y
 8710 AND #3
 8720 TAX
 8730 PLA
 8740 ORA BIT.PAIR.MIDDLE,X
 8750 PHA
 8760 PN...6 LDA BUFF.BASE+2,Y
 8770 AND #3
 8780 TAX
 8790 PLA
 8800 ORA BIT.PAIR.LEFT,X
 8810 PHA
 8820 TYA
 8830 EOR #$FF
 8840 TAX
 8850 PLA
 8860 STA TBUF,X
 8870 INY
 8880 BNE PN...4
 8890 *---DETERMINE BUFFER BOUNDARY CONDITIONS----------
 8900 *---AND SETUP WRITE.SECTOR ACCORDINGLY------------
 8910 LDY RWB.BUFFER
 8920 DEY
 8930 STY INDEX.OF.LAST.BYTE
 8940 LDA RWB.BUFFER
 8950 STA WS...5-1
 8960 BEQ .7
 8970 EOR #$FF
 8980 TAY
 8990 LDA (RWB.BUFFER),Y
 9000 INY
 9010 EOR (RWB.BUFFER),Y
 9020 AND #$FC
 9030 TAX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1307 of 2550

Apple II Computer Info

 9040 LDA BIT.PAIR.TABLE+3,X
 9050 .7 STA BYTE.AT.BUF00 =0 IF BUFFER NOT SPLIT
 9060 BEQ .9
 9070 LDA INDEX.OF.LAST.BYTE
 9080 LSR
 9090 LDA (RWB.BUFFER),Y
 9100 BCC .8
 9110 INY
 9120 EOR (RWB.BUFFER),Y
 9130 .8 STA BYTE.AT.BUF01
 9140 .9 LDY #$FF
 9150 LDA (RWB.BUFFER),Y
 9160 AND #$FC
 9170 STA LAST.BYTE
 9180 *---INSTALL BUFFER ADDRESSES IN WRITE.SECTOR------
 9190 LDY RWB.BUFFER+1
 9200 STY WS...5+2
 9210 STY WS...7+2
 9220 INY
 9230 STY WS...8+2
 9240 STY WS..10+2
 9250 STY WS..11+2
 9260 STY WS..14+2
 9270 *---INSTALL SLOT*16 IN WRITE.SECTOR---------------
 9280 LDX SLOT.X16
 9290 STX WS...6+1
 9300 STX WS...9+1
 9310 STX WS..13+1
 9320 STX WS..18+1
 9330 RTS
 9340 *--------------------------------
 9350 WAIT.FOR.OLD.MOTOR.TO.STOP
 9360 EOR OLD.SLOT SAME SLOT AS BEFORE?
 9370 ASL (IGNORE DRIVE)
 9380 BEQ .2 ...YES
 9390 LDA #1 LONG MOTOR.TIME
 9400 STA MOTOR.TIME+1 (COUNTS BACKWARDS)
 9410 .1 LDA OLD.SLOT
 9420 AND #$70
 9430 TAX
 9440 BEQ .2 ...NO PREVIOUS MOTOR RUNNING
 9450 JSR CHECK.IF.MOTOR.RUNNING.X
 9460 BEQ .2 ...NOT RUNNING YET
 9470 LDA #1 DELAY ANOTHER 100 USECS
 9480 JSR DELAY.100
 9490 LDA MOTOR.TIME+1
 9500 BNE .1 KEEP WAITING
 9510 .2 RTS
 9520 *--------------------------------
 9530 .BS $FF9B-* <<<<EMPTY SPACE>>>>
 9540 *--------------------------------
 9550 IRQ
 9560 PHA SAVE A-REG
 9570 LDA $45 SAVE LOC $45

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1308 of 2550

Apple II Computer Info

 9580 STA SAVE.LOC45
 9590 PLA SAVE A-REG AT LOC $45
 9600 STA $45
 9610 PLA GET STATUS BEFORE IRQ
 9620 PHA
 9630 AND #$10 SEE IF "BRK"
 9640 BNE .2 ...YES, LET MONITOR DO IT
 9650 LDA $D000 SAVE $D000 BANK ID
 9660 EOR #$D8
 9670 BEQ .1
 9680 LDA #$FF
 9690 .1 STA INTBANKID
 9700 STA SAVE.D000
 9710 LDA #$BF PUSH FAKE "RTI" VECTOR WITH
 9720 PHA IRQ DISABLED
 9730 LDA #$50 AND SET TO RETURN TO $BF50
 9740 PHA
 9750 LDA #4
 9760 PHA
 9770 .2 LDA #$FA PUSH "RTS" VECTOR FOR MONITOR
 9780 PHA
 9790 LDA #$41
 9800 PHA
 9810 CALL.MONITOR
 9820 STA $C082 SWITCH TO MOTHERBOARD
 9830 *--------------------------------
 9840 RESET
 9850 LDA RESET.VECTOR+1
 9860 PHA PUSH "RTS" VECTOR FOR MONITOR
 9870 LDA RESET.VECTOR
 9880 PHA
 9890 JMP CALL.MONITOR
 9900 *--------------------------------
 9910 RESET.VECTOR
 9920 .DA $FA61 MON.RESET-1
 9930 *--------------------------------
 9940 INT.SPLICE
 9950 STA INTAREG
 9960 LDA SAVE.LOC45
 9970 STA $45
 9980 LDA $C08B SWITCH TO MAIN $D000 BANK
 9990 LDA SAVE.D000
10000 JMP IRQXIT.3
10010 *--------------------------------
10020 .BS $FFFA-* <<<<<EMPTY SPACE>>>>>
10030 *--------------------------------
10040 V.NMI .DA $03FB
10050 V.RESET .DA RESET
10060 V.IRQ .DA IRQ
10070 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1309 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8311:DOS3.3:S.KILL.EXEC.txt
==

 1000 *SAVE S.KILL.EXEC
 1010 *--------------------------------
 1020 RESET .EQ $3F2
 1030 SET.PWR.BYTE .EQ $FB6F
 1040 DOS.ENTRY .EQ $3D0
 1050 EXEC.STATUS .EQ $AAB3
 1060 *--------------------------------
 1070 .OR $300
 1080 .TF B.KILL.EXEC
 1090 *--------------------------------
 1100 INIT LDA #KILL.EXEC
 1110 STA RESET
 1120 LDA /KILL.EXEC
 1130 STA RESET+1
 1140 JMP SET.PWR.BYTE
 1150 *--------------------------------
 1160 KILL.EXEC
 1170 LDA #0
 1180 STA EXEC.STATUS
 1190 JMP DOS.ENTRY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1310 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:Dataphile.Dgst.txt
==

Demise of Bailey's DataPhile Digest

Unfortunately, we no sooner sent out last month's AAL than we received
a letter from the Baileys saying that they have ceased to publish the
DataPhile Digest.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1311 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:Front.Page.txt
==

$1.50

Volume 4 -- Issue 3 December, 1983

In This Issue...

Listing of ProDOS $F90C-F995, $FD00-FE9A, $FEBE-FFFF . . . 2
More Assembly Listing into Text Files. 12
Note on Aztec C. 14
Generalized GOTO and GOSUB 15
Timemaster II from Applied Engineering 19
Finding Trouble in a Big RAM Card. 21
Converting S-C Source Files to Text Files. 26
Where To?, Revisited 28

Demise of Bailey's DataPhile Digest

Unfortunately, we no sooner sent out last month's AAL than we received
a letter from the Baileys saying that they have ceased to publish the
DataPhile Digest.

Quarterly Disk 13

QD 13 is now ready, and it includes both installments of ProDOS
commented source code as listed last month and this. The code is in
the format used by the S-C Macro Assembler. (Since the disk also
includes the CONVERT S-C TO TEXT program in this issue, all of you can
use it!) Quarterly Disks are $15 each, or $45 for a year's
subscription.

Subscription Rates

Remember, subscriptions to Apple Assembly Line will be increasing to
$18/year effective January 1. Since some of you may not receive this
issue (or your renewal notice) until after that date, we'll extend the
deadline to January 15 for renewals.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1312 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:LabelGOTO.Gosub.txt
==

Generalized GOTO and GOSUB.................Bob Sander-Cederlof

Tim Mowchanuk, a lecturer at Brisbane College in Australia, sent the
following suggestion:

"How can I implement a named GOTO or GOSUB routine? There are
numerous routines that implement computed GOTO/GOSUB, but I consider
that a futile exercise. Computed GOTO/GOSUB mess up renumbering
utilities, and violate modern trends toward structured programming.

"What I really want is something that will handle BASIC like

 100 & GOSUB NAME$

where NAME$ holds the name of a subroutine. I envision subroutine
names being defined by a special REM statement of the form

 200 REM "SUBROUTINE NAME"

The &GOSUB or &GOTO processor can search through the program for a
line beginning with a REM token. If the first non-blank after the REM
token is a quotation mark, the processor can compare the characters to
the string value. If there is an exact match, the line containing the
REM is the target for the &GOTO or &GOSUB."

The problem sounded just the right size for an interesting AAL
article, so I started trying to write some code.

I published an &GOSUB routine back in April 1981 of the type that Tim
thinks futile. The following program combines the two "futile"
computed &GOSUB and &GOTO routines with two new ones that allow the
computed value to be a string expression. If the expression after
&GOTO or &GOSUB is numeric, the processor will search for a matching
line number. If the result is a string, the processor will search for
a REM label as Tim described above.

Only REM's at the beginning of a numbered line will be considered as
labels. The label must be included in quotation marks. Spaces are OK
between the word REM and the first quotation mark. Anything after the
second quotation mark will be ignored.

You can now write a menu program that uses the actual command word as
the name of a subroutine, and cease worrying about line numbers. The
accompanying Applesoft program is an example of just such a technique.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1313 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0....................................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50
Full Screen Editor for S-C Macro Assembler..........(reg. $49.00) $40.00**
 Includes complete source code.
S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $40.00**

S-C Word Processor (the one we use!)...............................$50.00
 With fully commented source code.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor.....(reg. $60.00) $40.00**

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Routine Machine (Southwestern Data Systems).........(reg. $64.95) $60.00
FLASH! Integer BASIC Compiler (Laumer Research).....(reg. $79.00) $50.00**
Fontrix (Data Transforms).. $75.00
Aztec C Compiler System (Manx Software)............(reg. $199.00) $180.00

Blank Diskettes..................................package of 20 for $45.00
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
ZIF Game Socket Extender...$20.00
Shift-Key Modifier...$15.00

Grappler+ Printer Interface (Orange Micro).............($175.00) $150.00
Bufferboard 16K Buffer for Grappler (Orange Micro).....($175.00) $150.00
Buffered Grappler+ NEW!! Interface and 16K Buffer.....($239.00) $200.00

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1314 of 2550

Apple II Computer Info

 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00
 Add $1.50 per book for US postage. Foreign orders add postage needed.

Whatever Else You Need............................Call for Our Low Prices

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

(** Special price to subscribers only through December 31, 1983.)
 ** Last Chance!! Order now and save.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1315 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:ProDOS.Listing.txt
==

Commented Listing of ProDOS $F90C-F995, $FD00-FE9A, $FEBE-FFFF
 Bob Sander-Cederlof

Last month I printed the commented listing of the disk reading
subroutines. This month's selection covers disk writing, track
positioning, and interrupt handling. Together the two articles cover
all the code between $F800 and $FFFF.

Several callers have wondered if this is all there is to ProDOS. No!
It is only a small piece. In my opinion, this is the place to start
in understanding ProDOS's features: A faster way of getting
information to and from standard floppies. But remember that ProDOS
also supports the ProFILE hard disk, and a RAM disk in the extended
Apple //e memory.

Further, ProDOS has a file structure exactly like Apple /// SOS, with
a hierarchical directory and file sizes up to 16 megabytes.

Further, ProDOS includes support for a clock/calendar card, 80-columns
with Smarterm or //e, and interrupts.

ProDOS uses or reserves all but 255 bytes of the 16384 bytes in the
language card area (both $D000-DFFF banks and all #E000-FFFF). The
255 bytes not reserved are from $D001 through $D0FF in one of the
$D000 banks. The byte at $D000 is reserved, because ProDOS uses it to
distinguish which $D000 bank is switched on when an interrupt occurs.
The space at $BF00-BFFF is used by ProDOS for system linkages and
variables (called the System Global Page).

In addition, if you are using Applesoft, ProDOS uses memory from
$9600-BEFF. This space does not include any file buffers. When you
OPEN files, buffers are allocated as needed. CLOSEing automatically
de-allocates buffers. Each buffer is 1024 bytes long. As you can
see, with ProDOS in place your Applesoft program has less room than
ever.

Track Seeking: $F90C-F995

The SEEK.TRACK subroutine begins at $F90C. The very first instruction
multiplies the track number by two, converting ProDOS logical track
number to a physical track number. If you want to access a "half-
track" position, you could either store a NOP opcode at $F90C, or
enter the subroutine at $F90D.

A table is maintained of the current track position for each of up to
12 drives. I call it the OLD.TRACK.TABLE. The subroutine
GET.SSSD.IN.X forms an index into OLD.TRACK.TABLE from slot# * 2 +
drive#. There are no entries in the table for drives in slots 0 or 1,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1316 of 2550

Apple II Computer Info

which is fine with me. ProDOS uses these slots as pseudo slots for
the RAM-based pseudo-disk and for ProFILE, if I remember correctly.

The code in SEEK.TRACK.ABSOLUTE is similar but not identical to code
in DOS 3.3. The differences do not seem to be significant.

Disk Writing: $FD00-FE9A

The overall process of writing a sector is handled by code in RWTS,
which was listed last month. After the desired track is found, RWTS
calls PRE.NYBBLE to build a block of 86 bytes containing the low-order
two bits from each byte in the caller's buffer. PRE.NYBBLE also
stores a number of buffer addresses and slot*16 values inside the
WRITE.SECTOR subroutine. Next RWTS calls READ.ADDRESS to find the
sector, and then WRITE.SECTOR to put the data out.

WRITE.SECTOR is the real workhorse. And it is very critically timed.
Once the write head in your drive is enabled, every machine cycle is
closely counted until the last byte is written. First, five sync
bytes are written (ten bits each, 1111111100). These are written by
putting $FF in the write register at 40 cycle intervals. Following
the sync bytes W.S writes a data header of D5 AA AD.

Second, the 86-byte block which PRE.NYBBLE built is written, followed
by the coded form of the rest of your buffer. WRITE.SECTOR picks up
bytes directly from your buffer, keeps a running checksum, encodes the
high-order six bits into an 8-bit value, and writes it on the
disk...one byte every 32 cycles, exactly. Since your buffer can be
any arbitrary place in memory, and since the 6502 adds cycles for
indexed instructions that cross page boundaries, WRITE.SECTOR splits
the buffer in parts before and after a page boundary. All the
overhead for the split is handled in PRE.NYBBLE, before the timed
operations begin.

Finally, the checksum and a data trailer of DE AA EB FF are written.

Empty Space: $FEBE-FF9A

This space had no code in it. Nearly a whole page here.

Interrupt & RESET Handling: $FF9B-FFFF

If the RAM card is switched on when an interrupt or RESET occurs, the
vectors at $FFFA-FFFF will be those ProDOS installed rather than the
ones permanently coded in ROM. It turns out the non-maskable
interrupt (NMI) is still vectored down into page 3. But the more
interesting IRQ interrupt is now vectored to code at $FF9B inside
ProDOS.

The ProDOS IRQ handler performs two functions beyond those built-in to
the monitor ROM. First, the contents of location $45 are saved so
that the monitor can safely clobber it. Second, a flag is set
indicating which $D000 bank is currently switched on, so that it can

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1317 of 2550

Apple II Computer Info

be restored after the interrupt handler is finished. (The second step
is omitted if the interrupt was caused by a BRK opcode.)

If the IRQ was not due to a BRK opcode, a fake "RTI" vector is pushed
on the stack. This consists of a return address of $BF50 and a status
of $04. The status keeps IRQ interrupts disabled, and $BF50 is a
short routine which turns the ProDOS memory back on and jumps up to
INT.SPLICE at $FFD8:

 BF50- 8D 8B C0 STA $C08B
 BF53- 4C D8 FF JMP $FFD8

Of course, before coming back via the RTI, ProDOS tries to USE the
interrupt. If you have set up one or more interrupt vectors with the
ProDOS system call, they will be called.

INT.SPLICE restores the contents of $45 and switches the main $D000
bank on. Then it jumps back to $BFD3 with the information about which
$D000 bank really should be on. $BFD3 turns on the other bank if
necessary, and returns to the point at which the interrupt occured.

The instruction at $FFC8 is interesting. STA $C082 turns on the
monitor ROM, so the next instruction to be executed is at $FFCB in
ROM. This is an RTS opcode, so the address on the stack at that point
is used. There are two possible values: $FA41 if an IRQ interrupt is
being processed, or $FA61 if a RESET is being processed. This means
the RTS will effectively branch to $FA42 or $FA62.

Uh Oh! At this point you had better hope that you are not running
with the original Apple monitor ROM. The Apple II Plus ROM (called
Autostart Monitor) and the Apple //e ROM are fine. $FA42 is the
second instruction of the IRQ code, and $FA62 is the standard RESET
handler. But the original ROM, like I have in my serial 219 machine,
has entirely different code there.

I have an $FF at $FA42, followed by code for the monitor S (single
step) command. And $FA62 is right in the middle of the S command.
There is no telling what might happen, short of actually trying it
out. No thanks. Just remember that RESET, BRK, and IRQ interrupts
will not work correctly if they happen when the RAM area is switched
on and you have the old original monitor in ROM.

There is another small empty space from $FFE9 through $FFF9, 17 bytes.

Perhaps I should point out that the listings this month and last are
from the latest release of ProDOS, which may not be the final released
version. However, I would expect any differences in the regions I
have covered so far to be slight

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1318 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:Shafer.Asm.Text.txt
==

More Assembly Listing into Text Files...........Tracy L. Shafer
 MacDill AFB, FL

In the October '83 issue of AAL, Robert F. O'Brien presented a way to
create a text file containing the assembly listing of a large program.
(See also "Assembly Listing Into a Text File", by Bill Morgan, July
'83 AAL.) Actually, he created several text files; one for each .IN
directive in the root file. You can't put the whole listing into one
text file by using one .TF directive because of the way the .IN
directive affects the DOS I/O hooks.

Robert's method for obtaining assembly listing text files is good, but
I found a different way to create the text files of assembly listings
that doesn't involve creating separate SYMBOLS sections, deleting
duplicate labels, and putting up with "EXTRA DEFINITIONS ERROR"
messages. It's a fairly simple approach and hinges on the fact that
the problem presented by the .IN directive affects the source file
containing the .IN, but not the source file to which the .IN refers.
Instead of putting one .TF directive in the root file, put a .TF in
each source file pointed to by a .IN directive.

For example:

 ROOT FILE

 1000 .DU
 1010 .IN PART 1
 1020 .IN PART 2
 1030 .ED

 PART 1

 1000 .TF LISTING 1
 1010 (source for part 1)

 PART 2

 1000 .TF LISTING 2
 1010 (source for part 2)

From here on, follow Bill Morgan's original instructions. What
follows is a summary of those instructions.

After deleting all other .TF directives, or turning them into comments
by inserting "*" at the beginning of the line, typing ASM will create
two binary files named LISTING 1 and LISTING 2. Each of these
contains the assembly listing of PART 1 and PART 2 respectively, in
text form. These binary files will not have starting address and
length in the first four bytes. DO NOT attempt to BLOAD these files.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1319 of 2550

Apple II Computer Info

You could really clobber DOS. To obtain true text files, make the
following patch to the S-C Assembler before you assemble the program:

 $1000 versions: $29DF:0 (original value is 04)
 $D000 versions: $C083 C083 EAF9:0 N C083

After the patch is made, assemble the program and restore the original
value to $29DF ($EAF9).

For really large programs, it could get very tedious adding a .TF
directive to each sub-file to obtain a text file listing and then
deleting those .TF directives to prevent messing up the object file
the next time the program is assembled. Fortunately, the S-C Macro
Assembler's conditional assembly feature makes our work a lot easier.
By placing an equated flag in the root file and surrounding each .TF
with .DO and .FIN, we only have to change one line to set up our
program for text file output or object file creation. For example:

 ROOT FILE

 1000 LSTOUT .EQ 0 TO ASSEMBLE OBJECT
 1010 * 1 TO OUTPUT TEXT FILES
 1020 .DO LSTOUT
 1040 .DU
 1050 .ELSE
 1060 .TF OBJECT FILE
 1070 .FIN
 1080 .IN PART 1
 1090 .IN PART 2
 1100 .DO LSTOUT
 1110 .ED
 1120 .FIN

 PART 1

 1000 .DO LSTOUT
 1010 .TF LISTING 1
 1020 .FIN
 1030 (source for part 1)

 PART 2

 1000 .DO LSTOUT
 1010 .TF LISTING 2
 1020 .FIN
 1030 (source for part 2)

Don't forget to patch $29DF ($EAF9 for the language card version) with
0 to output true text files and back to 04 create object files. The
last thing to remember is to use .LIST ON during the assembly. You
won't write any text files if the assembler isn't producing a listing.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1320 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:Short.Stuff.txt
==

Note on Aztec C.....................................Bill Morgan

I just talked to the people at Manx Software about the ProDOS version
of their C compiler, and this time they assured me that owners of the
current Apple DOS version will be able to purchase the ProDOS version
at a reduced upgrade price. That is enough to tip the balance in
favor of buying the compiler right now, so I have ordered some. List
price is $199: we'll have them for $180 + shipping.

Where To?, Revisited................................Bill Morgan

Many thanks to all of you who responded to my questions about 68000,
C, and the future of Apple Assembly Line.

Your answers ran about eight to one in favor of including 68000
information in AAL. Several writers suggested starting with a few
pages, and possibly splitting off a separate newletter someday. That
sounds like a good plan, so we'll start a regular section next issue.
Those of you who already know 68000 can now start teaching the rest of
us. Bob Urschel has already sent in a brief article and program! He
has a QWERTY Q68 board like that we reviewed last month, and speaks
very highly of it.

Interest in Mackintosh (MacIntosh? Apple 32?) is growing rapidly: the
announcement is expected at the Apple shareholder meeting in mid-
January. Some reports claim that some developers have had Mac for up
to 18 months now. We haven't been among those so privileged, but I
hope to be the first on my block with one. (Unless the thing turns
out to have some fatal flaw, like no expansion slots. That was one
rumor!)

Several of you also expressed an interest in C, but not even a
majority. More like 30%. It looks like a number of people are
curious, but feel that too much coverage would dilute AAL. Stephen
Bach said it best, "... don't spread yourselves too thin and try to do
C also." I expect to do occasional reviews and mentions of books and
other aids to learning C, and to report on anything specifically
related to C on Apple computers, but not much more.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1321 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:STB.128.Testing.txt
==

Finding Trouble in a Big RAM Card..........Bob Sander-Cederlof

Last night (Monday, Nov 28th) I took home an Apple to do some
spreadsheet work. I took home the most portable one, but first
swapped RAM cards. I took the STB-128 out of my oldest Apple and put
it into the Apple II Plus with the fewest attachments.

When I plugged it in at home and booted the spreadsheet program, all
appeared to be well. But it wasn't. I loaded in a model, and during
the re-calculation the spreadsheet program hit a BRK opcode and died.
I pressed RESET and looked at the partially re-calculated sheet: it
was sprinkled with nonsense characters, and the keyboard was locked
up. I played with various combinations for an hour or so, including
other programs which use the RAM card. Everything pointed to there
being a bad bit somewhere in the card.

Of course the RAM card test program was back at the office. I decided
to write another one rather than face the two mile round trip.

The 128K space on the STB-128 is divided into 8 banks. You select a
bank by storing a bank number (0-7) at any address in the
$C080+slot*16 space which has bit 2 = 1. For slot 0, that means store
in $C080, $C081, $C082, $C083, $C088, $C089, $C08A, or $C08B. The
card has three green LEDs on top which show which bank is currently
selected.

Each 16K bank is further divided to fit into the 12K address space
between $D000 and $FFFF. The softswitch controlled by bit 3 in the
$C08x address selects which of two 4K banks will be enabled at $D000-
DFFF. The other 8K always sits at $E000-FFFF. A red LED signals
which $D000 bank is selected.

The low-order two bits of the $C08x address control the mode of the
RAM card. Accessing $C080 or $C088 write protects the card, and read
enables it. This means the $D000-FFFF references the RAM card rather
than the motherboard ROM. Accessing $C082 or $C08A write protects the
RAM card and disables reading it; in other words, it switches on the
motherboard ROM.

$C081 or $C089 also turn on the mother board ROM for reading, but if
you access one of these twice in a row it will write enable the RAM
card. In this mode reads reference the motherboard ROM, but writes
write into the RAM card. This mode is used when loading the RAM card
so that monitor and Applesoft routines which are in motherboard ROM
can be used for the loading process.

Accessing $C083 or $C08B once read enables the STB-128 card and write
protects it. A second access write enables the card. This is the
mode we use for a memory test.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1322 of 2550

Apple II Computer Info

Thinking about how to test such a card, I wrote down the following
"flow chart":

 For Bank = 0 to 7
 Store Bank in $C083
 Access $C083 again to write enable
 Test $D000-DFFF
 Access $C08B twice
 Test $D000-FFFF
 Next Bank

I broke the actual testing of a range of memory into four parts.
First I stored zeroes into every location, and checked to be sure I
read zeroes back. Then I did the same with $FF. Then, $55. Then,
$AA. This is certainly not an exhaustive test, but I hoped it would
be sufficient.

The tricky part was informing myself of the locations and values
involved of any memory errors found during the test. I could not
conveniently use the monitor subroutines to write addresses and values
on the screen, because the monitor only existed in the motherboard ROM
and it was switched off! So, I wrote a quick and dirty display
routine.

The routine for display in the listing below is not quite so "quick
and dirty". The program starts by clearing the screen using the
monitor HOME subroutine at $FC58. Then it switches to the RAM card
and runs the test. The program pokes test failure data directly to
the screen. I direct the data for each of the 8 banks to a different
line. When a failure occurs, I print the address, the value that
should have been there, the actual value found, and the exclusive-or
of the two values. The exclusive-or shows me which bit or bits was
incorrect.

After running the test it was obvious that the least significant bit
in banks 5 and 6 was not working. When it should be zero it was
sometimes one, and vice versa.

I did not know which chip on the STB-128 card belonged to which bit
slice or which bank, so I guessed. I was lucky, and guessed right the
first time. I pulled out the chip I thought might be the bad one, and
re-ran the test. This time the test indicated the least significant
bit of banks 4-7 was missing. (It happened to be the chip in the
lower-left corner when looking at the face of the card.)

I put the chip back in, hoping that it would miraculously heal itself.
Then I looked at the back of the board to see if anything looked
suspicious there. Sure enough! STB did not trim off the excess
length of the socket pins after soldering the board. One of those
long pins had bent over and was possibly shorted to another, on the
lower left socket. I straightened the pin and re-ran the test.
Voila! It passed!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1323 of 2550

Apple II Computer Info

After I finished patting myself on the back I tried to run the
spreadsheet again. It still failed! This morning I put the cards
back in their usual homes, and everything works fine.

Tuesday Afternoon....Lo and behold, the card is still bad. I found
the STB Systems diskette, and ran their RAM test program. It
identified the same chip as being bad. But after running the test for
several hours, the errors stopped. Obviously the chip's problems are
intermittent.

Wednesday Morning....The chip is still giving errors. I called STB
and they said to bring the board by. Wednesday afternoon....STB
replaced the chip, and all is well.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1324 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:TimeMaster.txt
==

Timemaster II from Applied Engineering.....Bob Sander-Cederlof

It may come as a surprise (it did to me), but there are apparently now
only three calendar/clocks still on the market for the Apple II, II
Plus, //e. The others, and there were a lot of them, seemed to have
dropped off the map. And even one of the three (Mountain Computer)
does not advertise anywhere I can find.

Another surprise: the most expensive clock has the fewest features,
and the least expensive has the most features.

Mountain Computer Apple Clock

$280 in current catalog listing; most recent ad I could find was in
Jan 1980 Byte, at $199. Features below are guessed at from ad and
conversations with Dan Pote. Works with BASIC only, does not include
any DOS Dater or ProDOS support.

Gives month, day of month, hour, minute, second, millisecond

Interrupt available: Second, Millisecond

Thunderware Thunderclock Plus

Gives month, day of month, day of week, hour, minute, second.

$150 with BASIC software for DOS or ProDOS
$ 29 extra for Pascal software
$ 29 extra for DOS-DATER/DEMO disk

Interrupts available: 64, 256, or 2048 times per second

Applied Engineering Timemaster

$129 includes Applesoft support for DOS or ProDOS
 includes Pascal and CP/M support
 includes DOS Dater

Gives year, month, day of month, day of week, hour, minute, second

Interrupts available: Millisecond, Second, Minute, Hour. Switchable
to either NMI or IRQ interrupt line.

For some reason they have not chosen to explain, the wizards at Apple
who created ProDOS decided to "wire in" support for the Thunderclock
(and ONLY Thunderclock). A system call reads the time and date from
Thunderclock, calculates the year from the given information, and
stores year-month-day-hour-minute in a packed format at $BF90...BF93.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1325 of 2550

Apple II Computer Info

ProDOS automatically records time/date of creation and time/date of
last modification.

In order to get the year with these dates, ProDOS goes through a
calculation to derive year from given day of month, month, and day of
week information. The calculation involves remaindering and table
lookup...but it only works from 1982 through 1987. I suppose by 1988
they will have generated a new version which works beyond, or else we
won't care anymore. Better yet, by 1988 maybe they will have driver-
ized the clock support so we can use Dan's card directly.

Dan Pote sent me a Timemaster to play with, in hopes that I would
figure out how to make it look like a Thunderclock to ProDOS. I did,
so if you buy one now it will be completely compatible with ProDOS.
You select by DIP Switch which page of the onboard EPROM will be
mapped into the $CN00 space (where N is slot 1-7). One setting
selects the ProDOS section, and the others select various versions
designed for use with DOS and Applesoft.

You can talk to Dan's card directly, as well as through the EPROM. If
you don't like the way his firmware works (unlikely), you can either
ignore it or change it.

(By the way.... Call A.P.P.L.E., a club/magazine with a penchant for
value and quality, has chosen to offer another one of Applied
Engineering's boards in its latest catalog: the Viewmaster 80. Their
price is $140, which is 20% below normal retail.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1326 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:Articles:Trans.Src.Files.txt
==

Procedure for Converting S-C Source Files to Text Files
Without Owning an S-C Assembler
 Bob Sander-Cederlof

Strangely enough, there are some of you who still do not own an S-C
Assembler. And some of you buy or would like to buy our Quarterly
Disks or the Applesoft Docu-Mentor disks.

These disks contain source files which are only usable by the S-C
Macro Assembler. However, it is possible (even without an S-C
Assembler) to convert them to regular text files so as to be readable
by another brand assembler/editor.

The files appear in the catalog as type "I", which is supposed to mean
Integer BASIC. Of course the contents has nothing to do with Integer
BASIC, but making them "I-files" has several advantages:

 * they LOAD/SAVE faster than text files
 * standard DOS commands can be used for load/save
 * when the S-C Assembler is in the RAM card,
 DOS can automatically switch between
 Applesoft and Assembler as it normally
 would between Applesoft and Integer BASIC.

There are also some dis-advantages:

 * some users have trouble believing they
 are not really Integer BASIC programs,
 and try to RUN them.
 * the files are harder for people without
 an S-C Assembler to convert to another
 brand.

Which brings us back to the point of this article.

To make the procedure simple, you need at least a 64K Apple. If you
have an Apple //e, you are all set. An older Apple needs a "language
card", or "RAM card".

The first step in the conversion process is to load the file into
memory and find out where it is. Start by booting with your DOS 3.3
System Master disk, which loads Integer BASIC into the RAM card. Then
LOAD the S-C source file which you want to convert. Integer BASIC
will be switched on, but don't try to LIST or RUN!

Enter the Monitor by typing "CALL -151". At this point you will get
an asterisk prompt. Look at locations $4C, $4D, $CA, and $CB. You
can do it like this:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1327 of 2550

Apple II Computer Info

 *4C.4D CA.CB
 004C- 00 96
 00CA- 58 73

Interpret the above as meaning that the source code begins in memory
at $7358 and ends one byte before $9600.

If you use the monitor commands to look at the first 30 or 40 bytes
(or more), you will discover how the source lines are stored. Each
line begins with a byte count, which if added to the address will give
the address of the first byte of the next line. Each line ends with a
00 byte. The byte count includes both of these bytes, and all in
between. Here is a sample line:

 0F E8 03 41 42 43 84 4C 44 41 81 23 24 35 00

The second and third bytes are the binary form of the line number. As
usual in 6502 domain, the number is stored low-byte first. $3E8 means
the line above is line 1000.

The fourth byte and beyond are ASCII codes for the text of the line,
with two exceptions. If the bytes are less than $80, they are plain
ASCII. If they are in the range from $81 through $BF, they represent
a series of blanks. $81 means one blank, $84 means four blanks, and
so on. The line above now decodes to:

 1000 ABC LDA #$5

The other exception is not illustrated above, but here is one:

 08 F2 03 2A C0 20 2D 00

The token $C0 means "repeated character". The next byte after $C0
gives the number of repetitions, and the byte after that tells what
character to repeat. Above the C0 20 2D means 32 "-" characters, so
the whole line looks like this:

 1010 *--------------------------------

Armed with all that information, you can probably see how to write a
simple Applesoft program to convert the memory image of the S-C source
file to plain text and then write it on a text file.

In fact, here is just such a program:

 <<<<<listing of CONVERT S-C TO TEXT here>>>>>

Here is a blow-by-blow description of how to use the program.

1. Boot your DOS System Master to load INTBASIC into the RAM card.
2. Load the S-C source file.
3. Type CALL-151 to get into the monitor.
4. Type CA.CB to get the starting address of the S-C source program
(xx yy).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1328 of 2550

Apple II Computer Info

5. Type 300:xx yy to store the starting address in a place Applesoft
will not clobber.
6. Type 3D0G to return to Integer BASIC.
7. Type RUN CONVERT S-C TO TEXT to execute the Applesoft program
listed above.
8. Stand back and wait while the program chugs through the bytes.
When you see the Applesoft prompt again, it is all done!

If you add a line at 315 to turn on MONCIO, you can see the text as it
is produced.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1329 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:DOS3.3:Conv.SC2Text.txt
==

)d≤CONVERT MEMORY IMAGE OF S-C SOURCEDn≤TO ORDINARY TEXT FILE[»HM–
‚(76)»256 ‚(77)t“PP–‚(768)»256 ‚(769)|‹£PPí,≤OPEN A TEXT FILEû6D$–
Á(4)“@∫D$"OPEN TEXTFILENAME":∫D$"DELETE TEXTFILENAME" J∫D$"OPEN
TEXTFILENAME":∫D$"WRITE TEXTFILENAME" êL–PP% ö≠L–
HMƒ∫D$"CLOSE":Ä< §∞500:≤ DO ONE LINEE Æ´410] Ù≤DO ONE
SOURCE LINEh ˛N–‚(L)è LN–‚(L»1)»256 ‚(L»2):∫LN" ";:L–L»2Ø

L–L»1:C–‚(L):≠C–0ƒ∫:L–L»1:±∆ ≠C—128ƒ∫Á(C);:´530È &≠C—
192ƒÅI–1¡C…128:∫" ";:Ç:´530
0≠C–192ƒÅI–1¡‚(L»1):∫Á(‚(L»2));:ÇI:L–L»2:´530M
:∫:∫D$"CLOSE":∫"***ERROR IN SOURCE AT "L"***":Ä

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1330 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:DOS3.3:S.Labelled.GOs.txt
==

 1000 *SAVE S.LABELLED GO'S
 1010 *--------------------------------
 1020 * & GOTO <STR EXP>
 1030 * & GOSUB<STR EXP>
 1040 * REM "<LABEL>"
 1050 *
 1060 * AS SUGGESTED BY TIM MOWCHANUK
 1070 *--------------------------------
 1080 AS.VALTYP .EQ $11
 1090 AS.TEMPPT .EQ $52,53
 1100 INDEX.REM .EQ $5E
 1110 INDEX.GO .EQ $5F
 1120 PRGBOT .EQ $67,68
 1130 AS.CURLIN .EQ $75,76
 1140 PNTR .EQ $9B,9C
 1150 STRLEN .EQ $9D
 1160 STRADR .EQ $9E,9F
 1170 VPNT .EQ $A0,A1
 1180 TXTPTR .EQ $B8,B9
 1190 *--------------------------------
 1200 TKN.GOTO .EQ $AB
 1210 TKN.GOSUB .EQ $B0
 1220 TKN.REM .EQ $B2
 1230 *--------------------------------
 1240 AMPERSAND.VECTOR .EQ $3F5 ... 3F7
 1250 *--------------------------------
 1260 AS.CHRGET .EQ $00B1
 1270 AS.CHRGOT .EQ $00B7
 1280 AS.MEMCHK .EQ $D3D6
 1290 AS.NEWSTT .EQ $D7D2
 1300 AS.GOTO1 .EQ $D941
 1310 AS.GOTO.3 .EQ $D95E
 1320 AS.UNDERR .EQ $D97C
 1330 AS.FRMEVL .EQ $DD7B
 1340 AS.SYNERR .EQ $DEC9
 1350 AS.FRETMP .EQ $E604
 1360 AS.GETADR .EQ $E752
 1370 *--------------------------------
 1380 .OR $300
 1390 .TF B.LABELLED GO'S
 1400 *--------------------------------
 1410 SETUP LDA #LABELLED.GOTO.AND.GOSUB
 1420 STA AMPERSAND.VECTOR+1
 1430 LDA /LABELLED.GOTO.AND.GOSUB
 1440 STA AMPERSAND.VECTOR+2
 1450 RTS
 1460 *--------------------------------
 1470 LABELLED.GOTO.AND.GOSUB
 1480 JSR AS.CHRGOT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1331 of 2550

Apple II Computer Info

 1490 CMP #TKN.GOTO
 1500 BEQ .3
 1510 CMP #TKN.GOSUB
 1520 BEQ .2 ...GOOD SYNTAX SO FAR
 1530 .1 JMP AS.SYNERR
 1540 *---SETUP GOSUB RETURN DATA------
 1550 .2 LDA #3
 1560 JSR AS.MEMCHK
 1570 LDA TXTPTR+1
 1580 PHA
 1590 LDA TXTPTR
 1600 PHA
 1610 LDA AS.CURLIN+1
 1620 PHA
 1630 LDA AS.CURLIN
 1640 PHA
 1650 LDA #TKN.GOSUB
 1660 PHA
 1670 BNE .4 ...ALWAYS
 1680 *---SETUP FOR GOTO---------------
 1690 .3 PLA POP RETURN TO "NEWSTT"
 1700 PLA
 1710 *---FIND LABEL AFTER TOKEN-------
 1720 .4 JSR AS.CHRGET
 1730 BEQ .1
 1740 JSR AS.FRMEVL EVALUATE EXPRESSION
 1750 BIT AS.VALTYP $00 IF NUMERIC, $FF IF STRING
 1760 BMI .5 ...STRING
 1770 *---NUMERIC EXPRESSION-----------
 1780 JSR AS.GETADR CONVERT TO INTEGER
 1790 JSR AS.GOTO1
 1800 JMP AS.NEWSTT
 1810 *---FREE ANY TEMP STRINGS--------
 1820 .45 LDA AS.TEMPPT+1
 1830 LDY #0
 1840 JSR AS.FRETMP
 1850 .5 LDA AS.TEMPPT
 1860 CMP #$56 EMPTY?
 1870 BCS .45 ...NO, FREE A STRING
 1880 *---COPY STRING LENGTH/ADDRESS---
 1890 LDY #2
 1900 .55 LDA (VPNT),Y
 1910 STA STRLEN,Y
 1920 DEY
 1930 BPL .55
 1940 *---SEARCH PROGRAM FOR LABEL-----
 1950 LDA PRGBOT+1 POINT TO BEGINNING
 1960 LDX PRGBOT OF PROGRAM
 1970 *---LOOK AT NEXT LINE------------
 1980 .6 STA PNTR+1 UPDATE PNTR TO NEXT LINE
 1990 STX PNTR
 2000 LDY #1 HI-BYTE OF FWD PNTR
 2010 LDA (PNTR),Y
 2020 BEQ .11 ...END OF PROGRAM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1332 of 2550

Apple II Computer Info

 2030 *---CHECK FOR 'REM "'------------
 2040 LDY #4
 2050 LDA (PNTR),Y
 2060 CMP #TKN.REM
 2070 BNE .10 ...NOT REM STATEMENT
 2080 .7 INY NEXT BYTE OF LINE
 2090 LDA (PNTR),Y
 2100 CMP #' ' IGNORE BLANKS BEFORE "
 2110 BEQ .7
 2120 CMP #'"' " YET?
 2130 BNE .10 ...NO, NOT A LABEL
 2140 *---COMPARE LABEL----------------
 2150 STY INDEX.REM
 2160 LDA #-1
 2170 STA INDEX.GO
 2180 .8 INC INDEX.REM
 2190 LDY INDEX.REM
 2200 LDA (PNTR),Y
 2210 BEQ .1 ...EARLY END OF LABEL
 2220 INC INDEX.GO
 2230 LDY INDEX.GO
 2240 CMP #'"' LEGAL END OF LABEL?
 2250 BEQ .9 ...YES
 2260 CMP (STRADR),Y
 2270 BEQ .8 ...KEEP MATCHING
 2280 BNE .10 ...DOESN'T MATCH
 2290 .9 CPY STRLEN CORRECT LENGTH?
 2300 BNE .10 ...NO, KEEP SEARCHING
 2310 *---FOUND LABEL, SO GO TO IT-----
 2320 JSR AS.GOTO.3
 2330 JMP AS.NEWSTT
 2340 *---DOESN'T MATCH, TRY NEXT LINE-
 2350 .10 LDY #0 GET FORWARD POINTER
 2360 LDA (PNTR),Y LO-BYTE
 2370 TAX
 2380 INY HI-BYTE
 2390 LDA (PNTR),Y
 2400 BNE .6 ...NOT END OF PROGRAM YET
 2410 *---END OF PROGRAM, UNDEF LBL----
 2420 .11 JMP AS.UNDERR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1333 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:DOS3.3:S.Test.STB.128.txt
==

 1000 .LIF
 1010 *SAVE S.TEST STB-128
 1020 *--------------------------------
 1030 * TEST STB-128
 1040 *--------------------------------
 1050 YSAVE .EQ 0
 1060 LIMIT .EQ 1
 1070 ADDR .EQ 2,3
 1080 BANK .EQ 4
 1090 BYTE .EQ 5
 1100 SCREEN .EQ 6,7
 1110 *--------------------------------
 1120 SELECT .EQ $C080
 1130 *--------------------------------
 1140 TTTT JSR TEST
 1150 JSR TEST
 1160 JSR TEST
 1170 JSR TEST
 1180 RTS
 1190 *--------------------------------
 1200 TEST LDA #0
 1210 STA BANK
 1220 STA ADDR
 1230 JSR $FC58 CLEAR SCREEN
 1240 LDA #$04
 1250 STA SCREEN+1
 1260 LDA #$28
 1270 STA SCREEN
 1280 *---SELECT BANK------------------
 1290 .1 LDA BANK
 1300 STA SELECT+$07
 1310 ORA #$B0 CONVERT TO SCREEN ASCII
 1320 LDY #0
 1330 STA (SCREEN),Y
 1340 LDA SELECT+$03
 1350 *---TEST D000...DFFF-------------
 1360 LDA #$E0
 1370 STA LIMIT
 1380 JSR TEST.ZEROS
 1390 JSR TEST.ONES
 1400 JSR TEST.FIVES
 1410 JSR TEST.AYES
 1420 *---SWITCH TO OTHER D000---------
 1430 LDA SELECT+$0B
 1440 LDA SELECT+$0B
 1450 *---TEST D000...FFFF-------------
 1460 LDA #0
 1470 STA LIMIT
 1480 JSR TEST.ZEROS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1334 of 2550

Apple II Computer Info

 1490 JSR TEST.ONES
 1500 JSR TEST.FIVES
 1510 JSR TEST.AYES
 1520 *---NEXT BANK--------------------
 1530 LDA SCREEN
 1540 EOR #$80
 1550 STA SCREEN
 1560 BMI .2
 1570 INC SCREEN+1
 1580 .2 INC BANK
 1590 LDA BANK
 1600 CMP #8
 1610 BCC .1
 1620 *---SWITCH TO ROMS---------------
 1630 LDA SELECT+$01
 1640 RTS
 1650 *--------------------------------
 1660 TEST.ZEROS
 1670 LDA #0
 1680 .HS 2C
 1690 TEST.ONES
 1700 LDA #$FF
 1710 .HS 2C
 1720 TEST.FIVES
 1730 LDA #$55
 1740 .HS 2C
 1750 TEST.AYES
 1760 LDA #$AA
 1770 STA BYTE
 1780 LDA #$D0
 1790 STA ADDR+1
 1800 .1 JSR FILL
 1810 JSR COMPARE
 1820 INC ADDR+1
 1830 LDA ADDR+1
 1840 CMP LIMIT
 1850 BNE .1
 1860 RTS
 1870 *--------------------------------
 1880 FILL LDY #0
 1890 LDA BYTE
 1900 .1 STA (ADDR),Y
 1910 INY
 1920 BNE .1
 1930 RTS
 1940 *--------------------------------
 1950 COMPARE
 1960 LDY #0
 1970 .1 LDA (ADDR),Y
 1980 CMP BYTE
 1990 BNE .3
 2000 .2 INY
 2010 BNE .1
 2020 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1335 of 2550

Apple II Computer Info

 2030 .3 PHA SAVE ACTUAL DATA
 2040 STY YSAVE SAVE Y-REG
 2050 LDA ADDR+1 PRINT ADDRESS OF FAILURE
 2060 LDY #2
 2070 JSR CONBYTE
 2080 LDA YSAVE LO-BYTE OF ADDRESS
 2090 JSR CONBYTE
 2100 INY
 2110 LDA BYTE WHAT DATA SHOULD HAVE BEEN
 2120 JSR CONBYTE
 2130 INY
 2140 PLA WHAT DATA REALLY WAS
 2150 PHA KEEP ON STACK TOO
 2160 JSR CONBYTE
 2170 INY
 2180 PLA FIGURE WHICH BITS WERE WRONG
 2190 EOR BYTE
 2200 JSR CONBYTE
 2210 LDY #0 DELAY LOOP TO SLOW THINGS DOWN
 2220 .4 DEY FOR OBSERVATION
 2230 BNE .4
 2240 LDY YSAVE
 2250 JMP .2 REJOIN TEST
 2260 *--------------------------------
 2270 CONBYTE
 2280 PHA
 2290 LSR
 2300 LSR
 2310 LSR
 2320 LSR
 2330 JSR CONNYBBLE
 2340 PLA
 2350 CONNYBBLE
 2360 AND #$0F
 2370 CMP #10
 2380 BCC .1
 2390 ADC #6
 2400 .1 ADC #$B0
 2410 STA (SCREEN),Y
 2420 INY
 2430 RTS
 2440 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1336 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8312:DOS3.3:Test.Lbld.GOs.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1337 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:Bill.Mensch.txt
==

More on the new 6502.......................Bob Sander-Cederlof

I talked for about 15 minutes this morning (Dec 16th) with Bill
Mensch. Bill used to work at Motorola, and was involved in the design
of the original 6800 family there. Chuck Peddle joined the group, and
noticed opportunities others were overlooking. Chuck and Bill decided
to move to Pennsylvania, and with a few friends founded MOS
Technology. They designed and built the 6501 microprocessor, but
someone said it looked too much like the 6800 for comfort. Then came
the 6502, leading to multiple millions of video games and personal
computers. Bill is now at his own design company (Western Design
Systems).

Bill told me he designed all the various CMOS versions of the 6502.
Now he has designed the 65802 and 65816, CMOS versions with 16-bit
registers and 16-megabyte address space. And he is currently working
on a 32-bit version!

You probably read about these new versions on page 64 of the December
Softalk, or in recent issues of Infoworld or Electronic Design.
Elsewhere in Softalk you might also have noticed a box summarizing
comments by Woz about plans for a new enhanced Apple //e with 16-
megabyte capability. There are probably still other manufacturers out
there with boxes and sockets just waiting on the first of Bill's new
chips!

I just wish I could convey on paper how excited I am about this new
chip! To me, it is as revolutionary as the original microprocessors
were in their day. I predict that the 65816 and its successors will
prove to be more powerful than the 68008: you will be able to write
more compact code that runs faster, and build boards for less money
that use less electricity.

With Bill's permission I am re-printing parts of his data sheet. You
can get the complete package by calling (602) 962-4545 or writing to
Western Design Center, 2166 E. Brown Rd, Mesa, Arizona 85203.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1338 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 4 January, 1984

In This Issue...

Profiler . 2
More from Don Lancaster. 9
DOS Patches to Avoid Interrupt Trouble 10
It Was a Bad Dream, I Think. 12
More on the New 6502 14
68000 "Color Pattern". 21
"Understanding the Apple II", A Review 25
Locksmith 5.0 Reviewed 26
On-Line with Steve Wozniak 27

News from Apple

Apple sent us a mouse the other day, and we hope to build some
software around it. The mouse came with a disk of graphic software
(done by Bill Budge) which makes the plain old Apple II look almost as
good as Lisa. I didn't know your could do all that on a 280x192
screen, and as fast as he does it. The mouse itself appears identical
to the Lisa mouse. It attaches to a cute red interface card you plug
into any slot. The card has a version of the 6805 microprocessor on
it...the kind with internal ROM and RAM which is not visible from the
outside world.

Apple also is spreading the word that future Apple //e's are going to
have 32 icon characters in the alternate character set. This probably
means some changes to the Cx ROM... (Erv Edge says he hopes that means
they are going to fix some bugs, too!)

Another tidbit from Apple is that future //e's will have most of the
chips soldered to the motherboard, rather than riding in sockets.
They say that should solve most of the remaining reliability problems.
In my experience, Apple doesn't have any reliability problems. And I
like sockets, because I like to tinker. And if something eventually
does go bad, it is certainly easier to trade chips than motherboards.
Nevertheless, they have made up their minds.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1339 of 2550

Apple II Computer Info

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1340 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:Interrupt.Patch.txt
==

DOS Patches to Avoid Interrupt Trouble..............Bill Morgan

As we reported a couple of years ago (V2N4, Jan 82), there is a
serious problem in using interrupts in the Apple. The Monitor's IRQ
interrupt handler uses location $45 to store the contents of the A-
register while it is checking to see if the interrupt was from IRQ, or
from a BRK instruction. Unfortunately, DOS 3.3 uses $45 for temporary
storage in several different routines. If an IRQ interrupt occurs
while DOS is active, the Monitor clobbers $45 and DOS can lose a
variable.

The usual solution has been to change the Monitor to use some other
address to stash the Accumulator. This can be done by copying the
Monitor into the RAM card and patching in the new address, or by
burning a new Monitor in EPROM and modifying the Apple to accept the
chip. The byte that needs changing is at $FA41 in the Autostart ROM,
or $FA87 in the Old Monitor ROM.

In the January 84 issue of Washington Apple Pi, Bruce Field reports
about the other approach to resolving the conflict. He passes along
Wilton Helm's details of the locations in DOS that refer to $45, and
how to change things around to safely use interrupts without affecting
anything else. Here's Helm's report:

"Location $45 is used at the following places in DOS 3.3:

$A133 $A13E $A158 $A1BE $A1D3 $A1E8 $A1F7 $A1F9 $A201 $A2CC $A767
$A77F $ADBA $AE0A $AE54 $AE58 $BED3 $BF16 $BF39 $BF55 $BF57 $BF5B
$BF9D $BFA3 $BFA5.

These locations should be changed to $46. Location $46 is used for
only one purpose, at $BA06 and at $BDA4. These two locations should
be changed to $2C. Location $2C is used only by RWTS subroutines and
does not conflict with this additional use. The end result is that
DOS no longer uses $45 and does not use any new locations."

Field also reports that "these modifications have been made in
Universal DOS ... and similar patches have been made in Diversi-DOS."

Bob S-C put together the following Applesoft program to install the
patches. The program first checks to make sure that the DOS in memory
has not had the patches applied already, then puts them in place. The
check beforehand will also avoid clobbering a non-standard DOS.

100 REM PREPARE DOS 3.3 FOR INTERRUPTS
110 READ A: IF A = 0 THEN 200
120 IF PEEK (A) = 69 THEN 110
130 PRINT "THIS DOS IS ALREADY PATCHED": END
140 I = I + 2: GOTO 120

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1341 of 2550

Apple II Computer Info

200 READ A: IF A = 0 THEN 300
210 IF PEEK (A) = 70 THEN 200
220 PRINT "THIS DOS IS ALREADY PATCHED": END
300 RESTORE
310 READ A: IF A < > 0 THEN POKE A,70: GOTO 310
320 READ A: IF A < > 0 THEN POKE A,44: GOTO 320
330 END
1000 DATA 41267,41278,41304,41406,41427,41448,41463,41465,
 41473,41676,42855,42879,44474,44554,44628,44632,48851,
 48918,48953,48981,48983,48987,49053,49059,49061,0
1010 DATA 47622,48548,0

While we're on the subject of interrupts, I'd like to recommend a book
to you: "Real Time Programming - Neglected Topics", by Caxton C.
Foster. (Addison-Wesley, 1981. Paperback, $8.95 a couple of years
ago.) Foster covers interrupts, ports, timing considerations, A/D
conversion, filters, control loops, and communication issues. He
points out that these are "enough topics to make up the better part of
a full-fledged masters program in electrical engineering or computer
science" and that "no book less than 10 inches thick could cover all
these topics in detail." Nevertheless, in about 180 pages he does an
excellent job of introducing the reader to the material, covering both
hardware and software.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1342 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:Lancaster.Books.txt
==

A couple of people have pointed out to me that we have advertised Don
Lancaster's "Micro Cookbook, Volume II", but have never described it.
This one is subtitled Machine Language Programming, and picks up where
Volume I left off. He devotes about 450 pages to machine language
programming, simple I/O ports, and his Micro Applications Attack
method of problem-solving.

Lancaster's method of teaching machine language looks a little strange
from my perspective: he says don't even think about an assembler
until you have thoroughly learned the instructions from hand assembly.
He lays out a system of learning all the instructions and addressing
modes by documenting them on 3X5 cards. All his examples refer to the
6502, but the system can be applied to any processor. I suppose this
IS a great way to engrave into your memory exactly how a processor
works. All this is handled in Don's usual entertaining and
enlightening fashion.

This is a good place to mention another book of Lancaster's that has
been around for a while: The Hexadecimal Chronicles. This is a huge
collection of conversion tables for moving around between ASCII,
decimal, hexadecimal and octal (including Apple's negative decimal way
of handling addresses.) My TI Programmer calculator is a lot smaller
and easier to use, but much more expensive too. If you can find a
copy of this book, look it over carefully. It may be exactly what you
need.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1343 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:LocksmithReview.txt
==

Locksmith 5.0 Reviewed......................Bob Sander-Cederlof

I received my copy of Locksmith 5.0 last week. I haven't tried any of
the lock-busting capabilities, because I have no particular need for
that. But there are other features which justify the price. The new
manual has information on copy protection schemes which I think has
never been published before. The new manual is 140 pages long! I
remember the first edition came with a tiny 1/2 page summary of
operation!

The other item I am in love with is the fast copy program for ordinary
DOS 3.3 disks. In a 64K Apple with two disk drives on one controller,
it will make a copy in only 19 seconds! And if you have a larger
memory (32K beyond a 128K //e, or a II with a 128K card), it can make
a complete copy in only 16 seconds. And if you want to make multiple
copies of the same disk, and have large enough memory to hold an
entire disk image, you can make additional copies in 8 seconds flat!
These copies are without verify, but a verify pass only adds 7 more
seconds.

I think this one feature is worth the $99.95 price tag, but there are
many more reasons for owning a copy. If you own a previous version,
they have an attractive upgrade policy. If not, we will send you a
copy for $90 + shipping.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1344 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0....................................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50
Full Screen Editor for S-C Macro Assembler....................... $49.00
 Includes complete source code.
S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $45.00

S-C Word Processor (the one we use!)...............................$50.00
 With fully commented source code.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Routine Machine (Southwestern Data Systems).........(reg. $64.95) $60.00
FLASH! Integer BASIC Compiler (Laumer Research)....................$79.00
Fontrix (Data Transforms).. $75.00
Aztec C Compiler System (Manx Software)............(reg. $199.00) $180.00

Blank Diskettes..................................package of 20 for $45.00
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
 Cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 5 cents each
ZIF Game Socket Extender...$20.00

Grappler+ Printer Interface (Orange Micro).............($175.00) $150.00
Bufferboard 16K Buffer for Grappler (Orange Micro).....($175.00) $150.00
Buffered Grappler+ NEW!! Interface and 16K Buffer.....($239.00) $200.00

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Understanding the Apple II", Sather.................($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50
 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1345 of 2550

Apple II Computer Info

 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00

 Add $1.50 per book for US shipping. Foreign orders add postage needed.

Whatever Else You Need............................Call for Our Low Prices

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1346 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:Profiler.txt
==

Profiler..Bill Morgan

For the last several months, I've been intrigued by an article in the
August '83 issue of Byte Magazine, "Chisel Your Code with a Profiler",
by Dennis Leas and Paul Wintz. They describe a utility program,
called a profiler, which measures where an executing program is
spending most of its time. The largest application for such a tool is
testing programs compiled from a high-level language. Typically such
a program will spend nearly all of its time executing only a small
section of the code. Leas and Wintz claim that the proportion is
about 90% of the time in about 10% of the code. With a profiler you
can identify the bottleneck and speed up the whole program by recoding
one small piece.

The profiler first divides your program into sixteen "bins". It then
interrupts your program periodically and reads the stored Program
Counter from the stack. If the program is in the area you want to
measure, it increments one of an array of counters. The profiler then
returns control to your program until the next interrupt occurs. When
the testing period is finished you can display the counters and spot
your problem areas.

An essential part of this tool is a source of regularly timed
interrupts. The best place to get a timed interrupt signal is from a
suitable clock card. All of the clock cards have some provision for
generating interrupts, usually at intervals of about 1 millisecond or
1 second. Some also have available 64 Hz or 256 Hz frequencies, or
other values. Check the documentation with your clock to see exactly
how to use its interrupt features.

The interrupt timing you want to use will in part be a function of how
long your program, or subroutine, will run. If you're profiling a
sort that takes several minutes to complete, a 1000 Hz interrupt will
overflow the counters long before a significant amount has been done.
If the routine takes a short time, a 60 Hz clock won't catch enough
hits to be meaningful. Leas and Wintz use a 6 Hz signal picked up
from their disk drives to profile a compiler that runs for about 10
minutes.

If all you have available is a high-frequency signal, it's easy enough
to divide it down to something usable. Just initialize a counter in
the setup portion of the program to the necessary value. Then
whenever an interrupt occurs, decrement the counter. Most of the time
the counter will be non-zero, so then branch directly to the exit
portion of the handler. When the counter reaches zero, go ahead and
do the full interrupt processing and then reset the counter.

What if I don't have a clock?, you ask. That is exactly the problem I
had when I started thinking about this project. Then I ran across an

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1347 of 2550

Apple II Computer Info

article in the July 83 issue of Micro in which Charles Putney (a
subscriber and sometimes contributor to these pages) told how to get a
60 Hz signal to the interrupt line. Charles' article tells how to use
that signal to implement a real-time clock, but it seemed to me that
here was exactly the interrupt signal I had been seeking for my
profiler.

All you need to do is add a wire inside your Apple, from pin 11 of the
74LS161 at coordinate D11 to pin 4 of the 6502. I used a pair of
plunger clips (Radio Shack #270-370, the smallest ones) to attach the
wires, and also put a pushbutton in the circuit. When attaching the
clips to the IC pins, be EXTREMELY careful not to short any adjacent
pins, and try to arrange things so that the wire doesn't wobble
around. TURN THE POWER OFF BEFORE MESSING WITH WIRING INSIDE YOUR
COMPUTER.

Here's a drawing that shows where to connect the wires:

Note that the photograph in the Micro article does NOT show the
correct pins. The description in Putney's text is correct, but
whoever did the photo artwork garbled it.

The signal we are borrowing is one of the video timing signals, called
V5. V5 is normally high (~5 volts). It goes low every 1/60th of a
second, and stays low for about 380 microseconds. That's a pretty
good interrupt signal, but we're going to have to allow time for V5 to
get back to its high state before we return to the main program, or
we'll get more than one interrupt per cycle.

The program

When you BRUN or CALL Profiler, lines 1120-1130 hook the Initialize
portion of the program into the monitor's CTRL-Y vector.

Initialize first connects the Handler routine to the IRQ vector (1190-
1220). It then gets the starting and ending addresses from where the
Monitor left them, takes the difference and divides by 16 to get the
size of each bin (1270-1390).

Build Table then starts the table with the Start address and loops to
set each table entry Step bytes larger than the previous one (1420-
1650). At the same time the routine sets the count for each bin to
zero and adds an extra zero byte after the count (1610-1630). This
extra byte makes the table easier to read with a Monitor memory dump.

Note that the last entry is set to the End value, rather than a
calculated step (1670-1700). This makes the last bin larger than the
others, by somewhere between 0 and 15 bytes, to compensate for the
remainder left behind when we divided to get Step.

Now we come to the Handler itself. When an IRQ interrupt occurs we
first save all the registers on the stack (1740-1790). The next step
is to extract the Program Counter value from inside the stack and save
it (1800-1840).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1348 of 2550

Apple II Computer Info

The next step is checking that PC value to see if it is inside the
range we want (1860-1920). If not, go on to Exit.

If we are in range, search down the table to find the right bin (1930-
1980) and register the count (2000-2040). Since the counters only go
up to 255, I have the profiler stop when one of them wraps around
(2070-2080).

The Exit routine includes a delay loop (2120-2140) to make sure that
the Handler takes at least 380 microseconds. This insures that the V5
line we're using for an interrupt source has gone back high, and won't
interrupt again as soon as the RTI is done. If you're lucky enough to
be getting your interrupts from a clock card you won't need this loop,
but you will need to do something to tell the card that you're done
with this interrupt. Check your clock manual. Profiler then ends by
restoring the registers and doing an RTI.

The Compare Entry routine (2220-2270) just compares the PC value to
the current table value.

The funny-looking FILLER space (line 2340) makes sure that the Table
begins on a new line in the Monitor memory dump, keeping things easy
to read.

Using Profiler

When I want to profile a program, I first assemble Profiler to run
somewhere out of the way above or below the program I want to test.
Then I enter the Monitor and type addrG to connect Profiler to CTRL-Y.
Next I enter addr1.addr2^Y (that's <Start-address>.<End-address><CTRL-
Y>) to initialize things.

The next step is to start the program I want to measure, and then
start the interrupts coming. My system has a pushbutton between the
60 Hz source and the IRQ line, so I just hold the button down for the
period I want to check on. If you're using a clock card you can
probably insert instructions into your program to start and stop the
interrupts at the points you want.

If one of the counters passes 255 Profiler will Break into the
Monitor. Otherwise get into the monitor after your program has
finished and examine the table. There's a record of exactly where
your program has been.

In a large program, the bin with the highest count may be too wide to
really tell where the bottleneck is. If so, just use the control Y
command to profile only the bin that had the largest count. This will
divide that section into 16 segments so you can see more detail.

Limitations and possible improvements

The profiler described by Leas and Wintz displays the counts as a bar
graph, so the largest count really stands out. My version just leaves

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1349 of 2550

Apple II Computer Info

the addresses and counts where you can read them with the Monitor, so
I'm sure you can come up with ways to improve that.

Sometimes it would be nice to be able to build the address table
interactively, rather than having it forced to sixteen equal-sized
sections. Maybe something like entering the starting address you want
for each bin, and a zero at the end.

The DOS problem

There has always been a problem with using interrupts in the Apple II
under DOS 3.3, but the solutions are now pretty well-known. Elsewhere
in this issue we cover the DOS or Monitor patches necessary to use the
6502's IRQ interrupt without trouble. This program assumes that all
that has been taken care of, or that you don't care.

References

1. "Chisel Your Code with a Profiler" Dennis Leas & Paul Wintz.
Byte Magazine. August, 1983, pp 286-290.
2. "A Clock Interrupt for Your Apple" Charles Putney. Micro
Magazine. July, 1983, pp 36-41.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1350 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:TEXT.TUTORIAL.txt
==

WELCOME TO THE S-C WORD PROCESSOR!

The S-C Word Processor turns your Apple
into a powerful electronic typewriter:
you can type as fast as you like, make
corrections instantly, move words and
paragraphs around, and much more.

See that blinking rectangle in the
top left corner of the screen? We
call that a cursor.

Find the key marked ESC and press it
once. Now look at the cursor: it has
changed to a flashing "+". Press ESC
again, and you will see that it changes
back to a plain flashing rectangle.

Now press ESC again, getting the
flashing plus. Press the M key once.
Notice that the cursor moves down to
the next lower line. Press M over and
over, until the cursor reaches the
bottom of the screen. To continue
reading this tutorial, keep typing M.
More text will keep appearing at the
bottom of the screen, and the text
you already have read will disappear
off the top of the screen.

You're doing great! Keep pressing M.

Whenever the cursor is a flashing "+",
the four letters I,J,K, and M will move
the cursor around the screen. Look at
your keyboard, and you can see that
these four letters form a "diamond"
pattern, like this:
 I
 J K
 M

When the cursor is a flashing "+":
 I moves the cursor up
 M moves it down
 J moves it left
 K moves it right

You can practice a while with these

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1351 of 2550

Apple II Computer Info

keys now, if you like.

If you press any other letters, numbers,
or punctuation marks while the cursor is
a flashing "+", the cursor will change
back to a flashing rectangle. Just
press ESC again, and you will get the
flashing "+" back.

By now you have probably noticed that
the cursor always splits the text,
making room for itself. This helps you
to know exactly where the next character
will be placed or where the next command
will take effect.

You have also noticed that when you are
moving the cursor down, it tends to stay
on the left side of the screen. When
you are moving the cursor up, it rides
the ends of the lines. When you move
the cursor left past the beginning of a
line, it goes to the end of the previous
line; when you move past the end going
right, the cursor goes to the beginning
of the next line.

All the cursor moves you have tried so
far have moved the cursor a short dis-
tance: either up or down one line, or
left or right one character. If you
hold the shift key down, and type I, J,
K, or M, you can move the cursor by
leaps. J and K move the cursor left
or right six characters at a time, while
I and M move it up or down 12 lines at
a time.

Play with the cursor move controls some
more, until you feel fairly comfortable
with them. Then come back to this point
and continue the tutorial.

Four different cursors are used in the
S-C Word Processor. You are pretty
handy with one of them already. The
two most used ones are the flashing
rectangle and the flashing "+". When
the cursor is a flashing rectangle, any
characters you type will be inserted
into the text.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1352 of 2550

Apple II Computer Info

Try it now. Press ESC until you see
a flashing rectangle cursor, and then
type a few characters.

See them squeezing onto this screen?
(You can delete them if you wish by
using the left arrow key to back up
over them.)

You can change the flashing rectangle
to a flashing "^" cursor by holding
down the CTRL key while you type the
letter C. (That is called typing a
control-C, or CTRL-C.) Do this, and
then type a few random letters. Notice
that they are all CAPITAL? You are in
the caps-lock mode. You can get out
of caps-lock mode by typing another
CTRL-C, or by typing ESC a couple of
times.

There is one more cursor: the flashing
"#". You get this one by typing
CTRL-C when the cursor is already a
flashing "+". The flashing "#" serves
two functions. You can move the cursor
around with the IJKM diamond, but when
you do an amazing thing happens to all
the text you pass over! Lower case
letters change to capitals, and capitals
change to lower case! Try playing with this one a while too. You can
turn off
the flashing "#" by typing another
CTRL-C, or by pressing ESC.

Summary of cursors:

Cursor How you use it

 insert text

 ^ insert text all capitalized

 + move cursor with IJKM

 # move cursor, changing case

#
###################
Now let's get you to type something.
If this explanation scrolls off the
screen, and you want to retrieve it,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1353 of 2550

Apple II Computer Info

use the + cursor and the I key.

Use the M key to move the + cursor
down the page until it's on the blank
line after the "First Official Blank
Line:" after the next paragraph.

Now get ready to type: make a cursor
by typing the space bar (or any key
except I or J or K or M). Next, type
a few lines. When you're done, press
ESC twice to get the + cursor, and use
the M key to see new information.

First Official Blank Line:

The keyboard is very similar to a
typewriter's. One main difference is
that you can keep typing at the edge of
the screen: whatever you type will simp
ly be displayed on the next line, as sh
own here. You may have seen this happe
n when you typed in your Official Blank
Line; the phenomenon is often called "
wrap-around".

When you use the Apple Writer to print
text onto paper, wrap-around does not
occur. Wrap-around has been avoided in
the tutorial to make it easier to read.
The manual discusses the issue in more
detail.

The Apple Writer has many features that
let you modify what you type. With the
 cursor, the left-arrow key deletes
the character before the cursor. The
right-arrow key makes deleted
characters reappear.

Here's a chance to try using the left-
arrow and right-arrow keys:

Second Official Blank Line:

Because the Apple screen cannot display
lower case, all the characters you see
on the screen are upper case. But when
this document is printed on a printer,
you'll see both upper and lower case
letters. The screen's white-on-black
letters will all be lower case. The
black-on-white letters, as at the start
of sentences, will print as upper case.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1354 of 2550

Apple II Computer Info

To make upper case letters, press the
space bar, the press the ESC key ONCE
to make the cursor look like this: ^.
The next character you type will be
shown black-on-white and will be
printed on a printer as upper case.
Notice that after typing one character,
the cursor looks like this: . For
now, you must press ESC once to make a
^ cursor before each capital letter.

Here's a chance for you to try typing
with upper case letters.

Third Official Blank Line:

Next you'll learn how to leave the
editor, and save this file, including
your sample typing. Read everything
from the word START to the word END
before you type anything. A summary of
the instructions appears after the
discussion.

START

You need to know how to use the special
command CTRL-Q, called "control Q".
To use CTRL-Q, hold down the key marked
"CTRL" while you press the Q.

To leave the editor, use:
ESC ESC CTRL-Q
You'll next see the editor menu. The
menu tells you things that you can do
at that point.

If you turn off your Apple without
saving the file you are working on, you
will loose the file and all the
changes you made. The Save option on
the editor menu allows you to save the
file you've been editing on a diskette.

To save a file, use:
S
and press the RETURN key. You will
be asked the question
 USE "TUTORIAL"
 AS FILE NAME (Y/N) ?
since the editor remembers that you
last loaded a file called "TUTORIAL".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1355 of 2550

Apple II Computer Info

It's not a good idea to save this file
using the same name, since this file
now contains your sample typing. So
when asked whether to use "TUTORIAL" as
the file name, type N for no, then
press the RETURN key. You'll then see
the message
 ENTER FILE NAME:

Choose a name for the file. Let's
assume you call it XXX. Type this:
XXX
and press the RETURN key. The light
on the disk drive will come on, and the
disk drive will whirr as the file is
stored.

Next check to see that things really
worked as reported: turn off the Apple,
turn it on again, then Load your file
XXX and choose the Edit option.

Look though the file. Your sample
typing should be there, a clear sign
that you've successfully created a file
using the Apple Writer. Finally, read
the few paragraphs that follow the
summary.

Here's the summary of commands you'll
need to use to save the file and
return to the editor.

WHAT YOU TYPE: WHAT HAPPENS:

ESC ESC CTRL-Q editor menu displayed

S USE "TUTORIAL" AS NAME?

N told "ENTER FILE NAME:"

XXX drive light comes on,
 "SELECT:" displayed

Turn OFF the Apple, then turn it ON.

L told "ENTER FILE NAME:"

XXX drive light comes on,
 "SELECT:" displayed

E you're at the start of
 the file XXX; read the
 paragraphs after this.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1356 of 2550

Apple II Computer Info

END: Now try saving the file.

The last editor menu option, Quit,
returns you to BASIC. If you stop
using the editor and then want to stop
using your Apple, you can turn it off
instead of using Quit.

The time has come to quit, even though
we've barely scratched the surface of
all the things you can do with this
editor. We haven't discussed the
editor's ability to look for a word or
series of characters and substitute any
other word or series of characters of
your choice in its place. Many other
things await you in your Apple Writer
manual, so type this:
ESC ESC CTRL-Q
to get to the editor menu, then choose
the Quit option, and start reading!

 BYE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1357 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:ThreeSuitPieces.txt
==

It Was a Bad Dream, I Think................Bob Sander-Cederlof

For two hours two nights ago I tossed, turned, wrestled, and wrote a
speech on trends in our favorite industry. I think it went like
this....

3-piece Suits

Woz likes blue jeans and jogging shoes. Engineers and programmers
tend to put their craft ahead of their tailors. And the most
productive rank skills before degrees.

But once an industry starts creating wealth, the business grads and 3-
piece suiters quickly rise to the top.

Woz worked in a little cubicle at Hewlett-Packard. With their
blessing he left with the seeds of the most munificent Apple tree
ever. Now he is back to working in a cubicle. Are other seeds
incubating? Will they stay in the same orchard?

Lawsuits

Another kind of action is drawn by the magnet of success: legal.
Friends suing friends for more than they ever made. Visicorp suing
Software Arts for $50 million: "You were too slow putting advanced
Visicalc onto the IBM-PC." Software Arts suing Visicorp for $87
million: "You didn't promote Visicalc well enough."

United Computer Corporation (why buy when you can rent) being sued by
MicroPro and others. Maybe some people only rent so they can make
their own copies. In any case, UCC shouldn't remove the license
agreements from the packages!

UCC has also earned some lawsuits over their advertising debts. They
prepay the first month, and ask for 30-day terms to run until further
notice. That was last April...we caught on in July.

Following Suit

The whole world seems to be going IBM. Last year it was all CP/M.
Next year it may be all AT&T. Remember back when everyone was copying
Apple?

Businessmen buy those computers having the most on-going software and
hardware development. Developers, programmers, cloners, and other
entrepreneurs gather around systems businessmen are buying. The boys
go where the girls are, which is where the boys are, which is where
the girls are.... Being popular is so popular!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1358 of 2550

Apple II Computer Info

All of which slows down innovation in the marketplace. Not that
innovation is all good and popularity is all bad. One secret of
success is to stay the same long enough. Apple II/Plus/e has
presented a stable yet growing environment for developers...contrast
with Commodore/OSI/Radio Shack and their strings of mutually
incompatible environments.

But innovators brought us the computer. And the supercomputer. And
the minicomputer. And the microcomputer. And the Apple. And the....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1359 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:Understanding.txt
==

"Understanding the Apple II", a Review.....Bob Sander-Cederlof

If you want the real inside scoop on the Apple II, you need
"Understanding the Apple II". Following close on the heels of
Gayler's "Apple II Circuit Description", this book is no second-place
sequel.

"Understanding..." was written by Jim Sather, a former ITT technical
representative, after many moons of trial-and-error, pick-and-shovel
research into the inner sanctum of our favorite computer. Jim has a
gift for clearly explaining how things work. My degree is a little
rusty, or mildewed, or whatever, and hardware never was my long suit.
But Jim makes it all make sense for me.

The process of "understanding" starts with a few full color diagrams
and charts. In the back of the book there are two foldout full color
charts of bus structure and chip layout. Surprisingly, you find color
sprinkled throughout the book, along with many black & white
illustrations, photos, tables, diagrams, etc.

Sather describes microcomputer fundamentals with specific applications
to the Apple II. He carefully documents all the circuits on the
motherboard, as well as the firmware and language cards, and Wozniak's
patented disk controller.

The chapter on the disk drive and controller is especially thorough,
devoting some 45 large pages, including many diagrams, to the exact
workings of these devices. I have never seen a better explication of
the Apple's unique disk controller.

There are especially useful discussions of address decoding, RAM/ROM
addressing, and bus structure. Sather's readable style avoids much of
the reference-book prose common to authoritative technical books.

Each chapter ends with some of nearly two dozen hardware & software
projects, including reprogramming screen character sets, an NMI based
single stepper, detecting and using television sync, modifying the
firmware card so the F8 ROM can be switch-selected, and more.

"Understanding..." begins with a foreword by Steve Wozniak, and ends
near an appendix describing a conversation with Woz about some of the
original design decisions that made our Apples what they are today.

This would be a good text book in computer hardware fundamentals at
high school level or above. Most of the courses I took in college
(now over 25 years ago!) were rather abstract and difficult to relate
to real applications. What better way to understand how computers
work, how they can be modified and maintained, and how to design them,
than to dissect a living breathing example like the Apple II!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1360 of 2550

Apple II Computer Info

Here's a quick look at the structure of "Understanding the Apple II":

Chapters
 1 Overview
 2 Bus Structure
 3 Timing Generation and the Video Scanner
 4 The 6502 Microprocessor
 5 RAM
 6 ROM
 7 Address Decoding and I/O
 8 Video Generation
 9 Disk Controller
 10 Maintenance and Care

Glossary of 7 pages, about 150 entries.

Appendices: references, trademarks, 6502 data sheets, program
listings, logic circuits primer, number systems primer, apple ii
revisional info, historical notes, conversation with Woz, how to
remove the motherboard, list of figures and tables.

Schematics

Index

"Understanding the Apple II" describes the Apple II and Apple II Plus.
Much of the book's information, especially the chapter on the disk
controller, applies also to the Apple //e. "Understanding the Apple
//e" is promised sometime in 1984.

Understanding the Apple II, Jim Sather. About 356 pages. Quality
Software, $22.95 (Buy it from us for only $21 + shipping).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1361 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:Urschels.Color.txt
==

68000 "Color Pattern"...............................Bob Urschel
 Valparaiso, Indiana

I have had my QWERTY Q68 board for about 2 weeks now. In my opinion
this seems to be an excellent product and also a very inexpensive way
to learn about the MC68000 MPU.

As an exercise I rewrote an Integer BASIC program called "ROD'S COLOR
PATTERN" found in my red Apple II Reference Manual (1978). I am
sending you two versions of my program. the first version does the
calculation for the LORES screen base addresses. The second version
looks up the base addresses in a table, consequently running slightly
faster than the first version. The second version runs (as close as I
can tell) about 50 times faster than the Integer BASIC program.

[We're printing only the first version, since the GBASCALC routine
is more interesting than a table lookup. QD 14 will include both
version... Bill]

After the 68000 source code has been assembled, I BRUN a very short
6502 program which consists of the following code:

 .OR $1080
 JSR $30B TURN ON THE Q68 BOARD
HERE JMP HERE DON'T DO ANYTHING

This keeps the 6502 busy while the 68000 is doing all the work.

Here's a listing of ROD'S COLOR PATTERN in Integer BASIC:

10 GR
20 FOR W = 3 T0 50
30 FOR I = 1 TO 19
40 FOR J = 0 TO 19
50 K = I+J
60 COLOR = J*3 / (I+3) + I*W/12
70 PLOT I,K: PLOT K,I: PLOT 40-I,40-K: PLOT 40-K,40-I
80 PLOT K,40-I: PLOT 40-I,K: PLOT I,40-K: PLOT 40-K,I
90 NEXT J: NEXT I: NEXT W
100 GOTO 20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1362 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:V4N4.6502.NOTES.txt
==

Notes on the 6502 from various sources

EDN magazine, Nov 10, 1983, page 194, summarized the 650x and 65C0x
processors. Softalk, Dec 1983, page 64, in an article about Hayden
Software, discussed two new versions of this family.

Original design by MOS Technology (bought out by Commodore). Made by
Commodore, Rockwell, Synertek, GTE, NCR, Ricoh, and Western Design
Center.

6502...NMOS...available now in 1, 2, or 3 MHz...$5 each in 100
quantity for 1MHz.

65C02...CMOS...available now in 1MHz at $8.55 each or 2 MHz at $9.40.
3 and 4MHz coming in '84.

These clock rates are slow compared to Z-80, 68000, etc.; however,
each instruction takes only 2-7 clock cycles. Thus a 1MHz 6502 is
roughly the same net speed as a 4MHz Z-80.

65802...Adds 16-bit registers and operations using status bit.
Available soon from Western Design Center, phone (602) 962-4545. See
Softalk.

65816...Adds 16-bit registers and operations, plus 24-bit address-bus
for direct access to 16 megabytes. Available soon from Western Design
Center. See Softalk.

6500 family still has the highest volume of any 8-bit
microprocesser...15 million in 1982! Commodore uses all the chips
they make in their own products, so second sources supply the rest of
the world's needs. Even without the new 16-bit enhancements, this
chip will probably continue to be used in new designs for at least 5
years.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1363 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:Articles:Woz.Online.txt
==

On-Line with Steve Wozniak

Steve Knouse sent a printout of the "on-line with Woz" session you may
have heard about. Some intriguing Woz-words:

About ProDOS use of >64K memory: "Our enhanced //e family is headed
toward 16M bytes in short time with a revolutionary 6502-based
processor."

About software for extended RAM cards: "I promise an alternative
solution soon (6 mo?) for direct addressing of 24-bit address."

About MAC: "...look at LISA. Then imagine slightly fewer resources
and memory but advantage taken to make it faster and better with fewer
resources (sound familiar //e world?). Mouse, no color, no slots,
finest software (BASIC and Pascal are finest ever done too). MAC will
use its own op-sys which was developed to handle the user interface of
LISA more directly with better performance. Such good software has
been written for MAC (128K bytes in ROM) that it will be transferred
to LISA soon!" "Initially MAC won't displace the PC as a small
business machine but is intended to be a more finished product for the
bulk of the personal market -- assuming which peripherals and features
they would want and supplying them at lower cost than if they have
slots to make their own choices. Interesting." "I believe that MAC
is the most revolutionary computer of all time -- not that what it
does hasn't been done before, but that it hasn't been done at a price
which will wind up with millions experiencing it." "The MAC
unfortunately is so perfect that we didn't leave much room for hackers
to do hardware 'for themselves' or 'their own way' -- we feel there
were no alternatives. The philosophy on software is different --
open, access the hardware at various levels."

About larger ProFILEs: "...yes, plans for larger ProFILEs. Pretty
the minimal hard disk for small business has grown to 10MB, soon 20."

About the Apple: "The Apple II was not built to be a product for
sale. It looked like the best thing available in 1976. The first
computer ever (low cost) with color, hi-res, Basic in ROM, plastic
case, switching power supply, dynamic memories, paddles, speaker,
cassette, etc, all STANDARD. Look at virtually every "personal"
computer since. We needed $250,000 to build a thousand--where do you
get that kind of money when you're a couple of kids with no business
experience? We sought venture money and Mike Markkula agreed to HELP
us write a business plan. He realized we were onto something that
happens once a decade -- a huge market expanding out of nothing. He
joined us (equal partner) and loaned $250,000. He told me I had to
quit HP and go 100% Apple. HP is a good company and it's hard to
leave any company for anything when you believe it's good to its
employees. I said "NO" on my ultimatum day and we were not going to

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1364 of 2550

Apple II Computer Info

do Apple. Steve Jobs was (in tears) and got relatives and friends of
mine to call me at work and tell me why I should start Apple. Finally
I realized I could have a great time doing the one important thing in
my life -- design computers for myself and start the company to make
money and in my head they didn't have to be dependent. So I turned
around. Markkula decided that he and Jobs had better have 52% of
Apple combined -- I realize now that they were probably afaid I was a
little unpredictable. A true story."

About a faster //e: "The Accelerator [Saturn, 3.58MHz 6502 with 64K
RAM] is my favorite card, largely because without any fancy jumpers
EVERYTHING ran with it. The only exception with the software I use is
Word Juggler under ProDOS. The current Accelerator should have
problems with the //e extended memory usage once software uses it. I
heard that they are working on a new one to get around this. Its
amazing to see everything work faster. My main direction on return to
Apple was to get 3.6 MHz built in. Look for it someday. Saturn has
shown it's possible."

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1365 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:DOS3.3:Ptch.DOS33.IRQ.txt
==

%d≤PREPARE DOS 3.3 FOR INTERRUPTS5náA:≠A–0ƒ200Fx≠‚(A)–69ƒ110kÇ∫"THIS
DOS IS ALREADY PATCHED":ÄzåI–I»2:´120ä»áA:≠A–0ƒ300õ“≠‚(A)–
70ƒ200¿‹∫"THIS DOS IS ALREADY PATCHED":Ä∆,Æfi6áA:≠A —
œ0ƒπA,70:´310ˆ@áA:≠A—œ0ƒπA,44:´320¸JÄö ËÉ
41267,41278,41304,41406,41427,41448,41463,41465,41473,41676,42855,4287
9,44474,44554,44628,44632,48851,48918,48953,48981,48983,48987,49053,49
059,49061,0Æ ÚÉ 47622,48548,0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1366 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:DOS3.3:Rods.Clr.Pat.txt
==

 10 L
 20
U333
33333333333333333
 30
U111
11111111111111111
 40
U000
00000000000000000
 50
II
IIIW

 60 f33333333333333333333
 70 (
 80 g (
 90
YYYYYYYg44
44(
 100 _

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1367 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:DOS3.3:S.PROFILER.txt
==

 1000 *SAVE S.PROFILER
 1010 *--------------------------------
 1020 A2L .EQ $3E
 1030 A2H .EQ $3F
 1040 A3L .EQ $40
 1050 A3H .EQ $41
 1060
 1070 STACK .EQ $100
 1080 IRQ.VECTOR .EQ $3FE
 1090 CONTROL.Y.VECTOR .EQ $3F9
 1100 *--------------------------------
 1110 .TF PROFILER
 1120 LDA /INITIALIZE
 1130 STA CONTROL.Y.VECTOR+1
 1140 LDA #INITIALIZE
 1150 STA CONTROL.Y.VECTOR
 1160 RTS
 1170 *--------------------------------
 1180 INITIALIZE
 1190 LDA #HANDLER install vector
 1200 STA IRQ.VECTOR
 1210 LDA /HANDLER
 1220 STA IRQ.VECTOR+1
 1230 LDA #0 initialize variables
 1240 STA HITS
 1250 STA HITS+1
 1260 SEC
 1270 LDA A2L
 1280 SBC A3L calculate step size
 1290 STA STEP
 1300 LDA A2H
 1310 SBC A3H
 1320 BCC ERROR end<start
 1330 STA STEP+1
 1340
 1350 LDX #3 divide STEP by 16
 1360 .1 LSR STEP+1 (shift it right 4)
 1370 ROR STEP
 1380 DEX
 1390 BPL .1
 1400
 1410 BUILD.TABLE
 1420 LDA A3L first table entry
 1430 STA TABLE is start address
 1440 LDA A3H
 1450 STA TABLE+1
 1460 LDX #0
 1470 STX TABLE+2 zero count
 1480 STX TABLE+3 and fill byte

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1368 of 2550

Apple II Computer Info

 1490
 1500 .1 INX next entry
 1510 INX
 1520 INX
 1530 INX
 1540 CLC
 1550 LDA TABLE-4,X
 1560 ADC STEP add step size to
 1570 STA TABLE,X last entry
 1580 LDA TABLE-3,X
 1590 ADC STEP+1
 1600 STA TABLE+1,X
 1610 LDA #0
 1620 STA TABLE+2,X zero count
 1630 STA TABLE+3,X and fill byte
 1640 CPX #$3C done?
 1650 BCC .1 no
 1660
 1670 LDA A2L
 1680 STA TABLE+4,X and make last entry
 1690 LDA A2H equal end
 1700 STA TABLE+5,X
 1710 ERROR RTS
 1720 *--------------------------------
 1730 HANDLER
 1740 LDA $45 get A back from where
 1750 PHA Monitor stashed it
 1760 TXA
 1770 PHA save registers
 1780 TYA
 1790 PHA
 1800 TSX
 1810 LDA STACK+6,X get PC from stack
 1820 STA PCH
 1830 LDA STACK+5,X
 1840 STA PCL
 1850 *---SEARCH TABLE----------------
 1860 LDX #0 compare PC to start
 1870 JSR COMPARE.ENTRY of table
 1880 BCC EXIT below table
 1890 LDX #$40 and compare to
 1900 JSR COMPARE.ENTRY end of table
 1910 BCS EXIT above table
 1920
 1930 .1 DEX next entry
 1940 DEX
 1950 DEX
 1960 DEX
 1970 JSR COMPARE.ENTRY
 1980 BCC .1 not there yet
 1990
 2000 INC HITS count hit in total
 2010 BNE .2
 2020 INC HITS+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1369 of 2550

Apple II Computer Info

 2030 .2 INC TABLE+2,X count hit in bracket
 2040 BNE EXIT
 2050
 2060 * counter overflowed, so put it back to $FF and end
 2070 DEC TABLE+2,X
 2080 BRK
 2090 * ... do whatever it takes to clean up the stack
 2100 * and display the results
 2110
 2120 EXIT LDY #55 delay about 275 usec so
 2130 .1 DEY V5 will be high on exit
 2140 BNE .1
 2150 PLA restore registers
 2160 TAY
 2170 PLA
 2180 TAX
 2190 PLA
 2200 RTI and exit
 2210 *--------------------------------
 2220 COMPARE.ENTRY
 2230 LDA PCL
 2240 CMP TABLE,X
 2250 LDA PCH
 2260 SBC TABLE+1,X
 2270 RTS
 2280 *--------------------------------
 2290 VARIABLES
 2300 PCL .BS 1 program counter
 2310 PCH .BS 1
 2320 HITS .BS 2 total count
 2330 STEP .BS 2 bracket size
 2340 FILLER .BS */8*8+8-* align table
 2350 *--------------------------------
 2360 TABLE .EQ *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1370 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:DOS3.3:S.Urschel.ClPat.txt
==

 1000 *SAVE S.URSCHEL'S COLOR PATTERN
 1010 *--------------------------------
 1020 * RODS COLOR PATTERN
 1030 * RE-WRITTEN BY BOB URSCHEL
 1040 * USING THE QWERTY Q68 MC68000 MPU
 1045 *
 1047 .OR $1000
 1050 MOVE.L #$1100,A0 MOVE PROGRAM TO FAST MEMORY
 1060 MOVE.L #$18600,A1
 1070 MOVE #END-START,D1
 1080 XFER MOVE.B (A0)+,(A1)+
 1090 DBF D1,XFER
 1095 JMP $18600
 1100 *
 1110 *--------------------------------
 1120 *
 1140 .OR $18600
 1150 .TA $1100
 1160 START
 1170 TST.B $C050 >GR
 1180 BSR CLRSCR CLEAR SCREEN
 1190 *--------------------------------
 1200 START.W
 1210 MOVE.B #3,W >FOR W = 3 TO 50
 1220 START.I
 1230 MOVEQ #1,D7 >FOR I = 1 TO 19
 1240 START.J
 1250 MOVEQ #0,D3 >FOR J = 0 TO 19
 1260 SET.K MOVE D7,D6 >K = I + J
 1270 ADD.B D3,D6
 1280 *--------------------------------
 1290 MOVEQ #0,D0 >COLOR = J*3/(I+3)+I*W/12
 1300 MOVE D3,D0
 1310 MULU #3,D0 J*3
 1320 MOVEQ #0,D1
 1330 MOVE D7,D1
 1340 ADDQ #3,D1 I+3
 1350 DIVU D1,D0 J*3/(I+3) --> D0
 1360 MOVE D7,D1
 1370 MOVEQ #0,D2
 1380 MOVE.B W,D2
 1390 MULU D1,D2 I*W --> D2
 1400 DIVU #12,D2 D2 / 12
 1410 ADD D0,D2
 1420 ANDI.B #$F,D2
 1430 MOVE.B D2,COLOR SET COLOR
 1440 *
 1450 *
 1460 * SUBTRACT I AND K FROM 40

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1371 of 2550

Apple II Computer Info

 1470 *
 1480 MOVEQ #40,D5
 1490 SUB D7,D5 D5 = 40 - I
 1500 MOVEQ #40,D4
 1510 SUB D6,D4 D4 = 40 - K
 1520 MOVE D7,D0 >PLOT I,K
 1530 MOVE D6,D1
 1540 BSR.S PLOT
 1550 MOVE D6,D0 >PLOT K,I
 1560 MOVE D7,D1
 1570 BSR.S PLOT
 1580 MOVE D5,D0 >PLOT 40-I,40-K
 1590 MOVE D4,D1
 1600 BSR.S PLOT
 1610 MOVE D4,D0 >PLOT 40-K,40-I
 1620 MOVE D5,D1
 1630 BSR.S PLOT
 1640 MOVE D6,D0 >PLOT K,40-I
 1650 MOVE D5,D1
 1660 BSR.S PLOT
 1670 MOVE D5,D0 >PLOT 40-I,K
 1680 MOVE D6,D1
 1690 BSR.S PLOT
 1700 MOVE D7,D0 >PLOT I,40-K
 1710 MOVE D4,D1
 1720 BSR.S PLOT
 1730 MOVE D4,D0 >PLOT 40-K,I
 1740 MOVE D7,D1
 1750 BSR.S PLOT
 1760 ADDQ #1,D3 >NEXT J
 1770 CMPI #20,D3
 1780 BNE SET.K
 1790 ADDQ #1,D7 >NEXT I
 1800 CMPI #20,D7
 1810 BNE START.J
 1820 ADDQ.B #1,W >NEXT W
 1830 CMPI.B #51,W
 1840 BEQ START.W
 1850 BNE START.I
 1860 *
 1870 *--------------------------------
 1880 * PLOT SUBROUTINE
 1890 *
 1900 * A0 = SCREEN ADDRESS
 1910 * D0 = X-COORD
 1920 * D1 = Y-COORD
 1930 * D2 = WORK REGISTER
 1940 *
 1950 PLOT MOVE D0,A0 SAVE X-COORD
 1960 LSR.B #1,D1 GET CARRY
 1970 MOVE SR,D0 SAVE ODD-EVEN STATUS
 1980 BSR.S GBASCALC
 1990 ADD D1,A0 FINAL SCREEN ADDR
 2000 MOVE.B #$F0,MASK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1372 of 2550

Apple II Computer Info

 2010 MOVE.B COLOR,D1
 2020 MOVE D0,CCR ODD OR EVEN?
 2030 BCC.S PLOT1 EVEN...
 2040 MOVE.B #$F,MASK
 2050 LSL.B #4,D1 ROTATE COLOR
 2060 PLOT1 MOVE.B (A0),D2 ORIGINAL BYTE
 2070 AND.B MASK,D2 MASK OUT OLD COLOR
 2080 OR.B D1,D2 AND GET NEW COLOR
 2090 MOVE.B D2,(A0) PLOT TO SCREEN
 2100 MOVEQ #0,D0 CLEAR OUT CCR
 2110 MOVEQ #0,D1
 2120 RTS
 2130 *
 2140 * CALCULATE BASE ADDRESS
 2150 *
 2160 GBASCALC
 2170 MOVE D1,D2 000DEFGH
 2180 AND.B #$18,D1 000DE000
 2190 LSL.B #5,D2 FGH00000
 2200 OR.B D2,D1 FGHDE000
 2210 MOVE.B D1,D2
 2220 AND.B #$18,D2 000DE000
 2230 LSR.B #2,D2 00000DE0
 2240 OR.B D2,D1 FGHDEDE0
 2250 OR #$100,D1 1FGHDEDE0
 2260 LSL #2,D1 1FGHDEDE000
 2270 RTS
 2280 *
 2290 * CLEAR LORES SCREEN
 2300 *
 2310 CLRSCR CLR D0
 2320 MOVE #511,D1 # OF WORDS TO MOVE MINUS 1
 2330 MOVE #$800,A0 ENDING SCREEN ADDR
 2340 .1 MOVE D0,-(A0)
 2350 DBF D1,.1
 2360 RTS
 2370 *--------------------------------
 2380 * WORK AND STORAGE
 2390 *
 2400 MASK .BS 1
 2410 COLOR .BS 1
 2420 W .BS 1
 2430 *
 2440 *--------------------------------
 2450 END
 2460 .OR $800
 2470 .DA $18800
 2480 .DA $1000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1373 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8401:DOS3.3:S.Urschel.table.txt
==

 1000 *SAVE S.URSCHEL'S COLOR PATTERN.TABLE
 1010 *--------------------------------
 1020 * RODS COLOR PATTERN
 1030 * RE-WRITTEN BY BOB URSCHEL
 1040 * USING THE QWERTY Q68 MC68000 MPU
 1050 *
 1060 .OR $1000
 1070 MOVE.L #$1100,A0 MOVE PROGRAM TO FAST MEMORY
 1080 MOVE.L #$18600,A1
 1090 MOVE #END-START,D1
 1100 XFER MOVE.B (A0)+,(A1)+
 1110 DBF D1,XFER
 1120 JMP $18600
 1130 *
 1140 *--------------------------------
 1150 *
 1160 .OR $18600
 1170 .TA $1100
 1180 START
 1190 TST.B $C050 >GR
 1200 BSR CLRSCR CLEAR SCREEN
 1210 *--------------------------------
 1220 START.W
 1230 MOVE.B #3,W >FOR W = 3 TO 50
 1240 START.I
 1250 MOVEQ #1,D7 >FOR I = 1 TO 19
 1260 START.J
 1270 MOVEQ #0,D3 >FOR J = 0 TO 19
 1280 SET.K MOVE D7,D6 >K = I + J
 1290 ADD.B D3,D6
 1300 *--------------------------------
 1310 MOVEQ #0,D0 >COLOR = J*3/(I+3)+I*W/12
 1320 MOVE D3,D0
 1330 MULU #3,D0 J*3
 1340 MOVEQ #0,D1
 1350 MOVE D7,D1
 1360 ADDQ #3,D1 I+3
 1370 DIVU D1,D0 J*3/(I+3) --> D0
 1380 MOVE D7,D1
 1390 MOVEQ #0,D2
 1400 MOVE.B W,D2
 1410 MULU D1,D2 I*W --> D2
 1420 DIVU #12,D2 D2 / 12
 1430 ADD D0,D2
 1440 ANDI.B #$F,D2
 1450 MOVE.B D2,COLOR SET COLOR
 1460 *
 1470 *
 1480 * SUBTRACT I AND K FROM 40

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1374 of 2550

Apple II Computer Info

 1490 *
 1500 MOVEQ #40,D5
 1510 SUB D7,D5 D5 = 40 - I
 1520 MOVEQ #40,D4
 1530 SUB D6,D4 D4 = 40 - K
 1540 MOVE D7,D0 >PLOT I,K
 1550 MOVE D6,D1
 1560 BSR.S PLOT
 1570 MOVE D6,D0 >PLOT K,I
 1580 MOVE D7,D1
 1590 BSR.S PLOT
 1600 MOVE D5,D0 >PLOT 40-I,40-K
 1610 MOVE D4,D1
 1620 BSR.S PLOT
 1630 MOVE D4,D0 >PLOT 40-K,40-I
 1640 MOVE D5,D1
 1650 BSR.S PLOT
 1660 MOVE D6,D0 >PLOT K,40-I
 1670 MOVE D5,D1
 1680 BSR.S PLOT
 1690 MOVE D5,D0 >PLOT 40-I,K
 1700 MOVE D6,D1
 1710 BSR.S PLOT
 1720 MOVE D7,D0 >PLOT I,40-K
 1730 MOVE D4,D1
 1740 BSR.S PLOT
 1750 MOVE D4,D0 >PLOT 40-K,I
 1760 MOVE D7,D1
 1770 BSR.S PLOT
 1780 ADDQ #1,D3 >NEXT J
 1790 CMPI #20,D3
 1800 BNE SET.K
 1810 ADDQ #1,D7 >NEXT I
 1820 CMPI #20,D7
 1830 BNE START.J
 1840 ADDQ.B #1,W >NEXT W
 1850 CMPI.B #51,W
 1860 BEQ START.W
 1870 BNE START.I
 1880 *
 1890 *--------------------------------
 1900 CLRSCR CLR D0
 1910 MOVE #511,D1 # OF WORDS TO MOVE MINUS 1
 1920 MOVE #$800,A0 ENDING SCREEN ADDR
 1930 .1 MOVE D0,-(A0)
 1940 DBF D1,.1
 1950 RTS
 1960 *--------------------------------
 1970 PLOT LEA SCREEN.ADDR,A0
 1980 MOVE.B D1,D2 SAVE Y-COORD
 1990 ANDI.B #$FE,D1 GET INDEX INTO TABLE
 2000 MOVE 0(A0,D1),A0
 2010 ADD D0,A0 FINAL SCREEN ADDRESS
 2020 MOVE.B #$F0,MASK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1375 of 2550

Apple II Computer Info

 2030 MOVE.B COLOR,D1
 2040 LSR.B #1,D2 ODD OR EVEN?
 2050 BCC.S PLOT1 EVEN..
 2060 MOVE.B #$F,MASK
 2070 LSL.B #4,D1
 2080 PLOT1 MOVE.B (A0),D2 GET ORIGINAL BYTE
 2090 AND.B MASK,D2
 2100 OR.B D1,D2 NEW COLOR
 2110 MOVE.B D2,(A0)
 2120 RTS
 2130 *
 2140 *
 2150 SCREEN.ADDR
 2160 .DA /$400
 2170 .DA /$480
 2180 .DA /$500
 2190 .DA /$580
 2200 .DA /$600
 2210 .DA /$680
 2220 .DA /$700
 2230 .DA /$780
 2240 .DA /$428
 2250 .DA /$4A8
 2260 .DA /$528
 2270 .DA /$5A8
 2280 .DA /$628
 2290 .DA /$6A8
 2300 .DA /$728
 2310 .DA /$7A8
 2320 .DA /$450
 2330 .DA /$4D0
 2340 .DA /$550
 2350 .DA /$5D0
 2360 .DA /$650
 2370 .DA /$6D0
 2380 .DA /$750
 2390 .DA /$7D0
 2400 *
 2410 *--------------------------------
 2420 * WORK AND STORAGE
 2430 *
 2440 MASK .BS 1
 2450 COLOR .BS 1
 2460 W .BS 1
 2470 *
 2480 *--------------------------------
 2490 END
 2500 .OR $800
 2510 .DA $18800
 2520 .DA $1000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1376 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:Biblio.68000.txt
==

Annotated 68000 Bibliography........................Bill Morgan

Here is a quick look at some of the books and articles about the 68000
that I have found to be helpful.

Another possible source of 68000 information is the newsletter "DTACK
Grounded", published by Digital Acoustics, 1415 E. McFadden, Suite F,
Santa Ana, CA 92705. I've only seen one or two issues, back before I
got interested in 68000, so I don't know exactly what they've been up
to lately. I'll be finding out soon and pass it on. I might note
that the issue I have (#7, Feb-Mar 1982) contains about 12 pages of
more-or-less interesting gossip, and no code. I don't know if that is
typical.

Books:

68000 Assembly Language Programming. Gerry Kane, Doug Hawkins & Lance
Leventhal. OSBORNE/McGraw-Hill, 1981.
The Leventhal book. Need I say more? Recommended.

The 68000: Principles and Programming. Leo. J. Scanlon.
Blacksburg/Sams, 1981.
Tutorial. Looks pretty good. Recommended.

MC68000 16-bit Microprocessor User's Manual, third edition.
Motorola/Prentice-Hall, 1982.
Motorola's manual. THE basic reference. There is a fourth edition
coming this year (1984). There is also a Mostek version of this book,
but the Motorola edition is better.

MK68000 Microcomputer Programming Reference Guide. Mostek Corp, 1981.
A 42-page Quick Reference Card. Isn't that a bit much?

Programming the M68000. Tim King and Brian Knight. Addison-Wesley,
1983.
Tutorial. Looks very good. Lots of examples, building up to a simple
monitor/debugger. Recommended.

Articles:

Design Philosophy Behind Motorola's MC68000. Thomas W. Starnes (of
Motorola, Inc.) Byte. April-June, 1983 (3 parts).
Very good. Lives up to the title. Recommended.

68000 Instructions and Addressing Modes. Joe Hootman. Micro. #'s
52,54-57,60-62 (8 parts).
Summaries of the instruction set. OK if you already have the stack of
Micro back issues.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1377 of 2550

Apple II Computer Info

An MC68000 Overview. Joe Jelemensky & Tom Whiteside. Micro. #'s
52,54.
Some good examples of the instructions at work.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1378 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:Creamers.Erase.txt
==

Text Area Erase Routine..........................Jeff Creamer
 Yavapai College, Prescott AZ

Good programs interact frequently with their users, providing error
messages, helpful prompts, and information about what the program is
doing. For programmers, this raises the question of what to do with
the messages once they have been printed, especially if you want to
get rid of them while leaving the rest of the screen intact.

I have used several strategies to clear specific areas of the text
screen. The simplest solution, and probably the most commonly used,
is to place all messages at the end of the page. Then you can HTAB
and VTAB to the first character of the message and CALL the Monitor
routine at $FC42 (CLREOP). From Applesoft, CALL -958. Such messages
must be kept to the lower part of the screen, however, and the method
can interfere with decorative borders, etc., placed around your
screens.

Another thing I have done is to print strings of blanks over the
offending message. I use a loop to HTAB and VTAB to the left margin
of the message area, incrementing the vertical coordinate each time,
then printing a string variable set to a predetermined number of
blanks. This method is slow, but not unbearable. Still, it is clumsy
and wastes memory storing the blanks.

Of course, instantaneous clears of a given area are easily done by
resetting the text window through POKEing values to locations $25-$28,
then executing a HOME. This requires POKEing 4 values before the
clear, however, and POKEing 4 coordinates to reset the current window
when you are done (or "TEXT" to reset the default window). Downright
unpleasant. For a time I resorted to this method to protect my
decorative borders, however.

Now I have come up with a routine that I think is an improvement over
the above. It clears rectangular areas of the text screen given the
width and depth (number of lines) needed. Because it uses the Monitor
COUT routine, it should also work with those hi-res character
generator utilities that interface to the normal output hooks, giving
a controlled hi-res screen clear. While it requires Applesoft in ROM,
it is fully relocatable, making it ideal for people who use Ampersand
utilities like AmperMagic or The Routine Machine.

The routine, which I call "ERASE", is used by first HTABing and
VTABing to the upper left corner of the area to be cleared. Then CALL
the routine giving the width and depth of the area to be cleared,
using commas, like so:

 CALL ADDRESS,WIDTH,DEPTH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1379 of 2550

Apple II Computer Info

For example, assume you BLOAD the routine at $300, the most common
place to do such things. (At least while we are testing the program.)
Then, to clear an area 15 characters wide by 4 lines deep, write:

 CALL 768,15,4
The command shown above uses simple constants, but ERASE can handle
any quantities "width" and "depth" up to formulas as complex as those
Applesoft can normally handle. (I can't brag about that part, since
all the work is done by Applesoft's formula evaluation routine
"FRMEVL", called indirectly in my program by the "JSR GETBYT".

In case you don't have John Crossley's article on Applesoft Internal
Entry Points, GETBYT is a subsidiary routine that evaluates formulas,
bringing back a single-byte integer in the X-register and in location
$A1--"FACLO". I don't use "FACLO" in this routine. GETBYT gives an
illegal quantity error if the formula evaluates to more than 255 or
less than 0.)

If you specify a width or depth of zero, ERASE will give an illegal
quantity error. If the width of the line goes past the right edge of
the screen, the blanks will wrap around the screen on the next line
down. ERASE will pick up at the correct horizontal/vertical location
when clearing subsequent lines, however. If the area to be erased
goes past the bottom of the screen, do not fear: ERASE wraps around
to the top of the screen. Your program and variables will not be
hurt.

Here is a short Applesoft program that demonstrates ERASE in action.
The program first fills the entire screen with asterisks, and then
clears three windows. The first window wraps around from the right
edge of the screen to the left. The second wraps around from the
bottom to the top. The third is in the middle of the screen. (I am
assuming a 40-column screen here.)

100 FOR I = 1 TO 24: PRINT
 "**"; : NEXT
110 HTAB 30: VTAB 10: CALL 768,20,5
120 HTAB 10: VTAB 20: CALL 768,20,8
130 HTAB 15: VTAB 10: CALL 768,10,5

And here is another demo, one which is closer to the way you will find
yourself using ERASE. This one prints an array of six messages in six
windows on the scrren, and lets you selectively erase them in any
order one-by-one. As it turned out, the way I located the upper
corners of the messages involved some lengthy formulas, but these
ended up in the HTAB and VTAB statements. Note that I could have used
data statements for similar results.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1380 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:Delays.txt
==

Delays, delays, delays.....................Bob Sander-Cederlof

We always want speed. Making computers compute faster keeps our
industry humming. Yet nearly every major program has pieces of code
called delays.

We use them to generate carefully controlled, timed events: for
example, generating a musical tone. We use them to synchronize
events, or to provide time for external events to occur. We even use
them just to slow the computer down so we can watch it work.

Delays are used so often that Woz had the foresight to put a general
purpose delay subroutine permanently inside the monitor ROM. It
resides at $FCA8. It is short (only 12 bytes), sweet (only uses one
register, the same one which controls how long a delay you get), and
slow (on purpose). Here is a listing:

WAIT SEC PREPARE TO SUBTRACT
.1 PHA SAVE A COPY OF A-REG
.2 SBC #1 COUNT A-REG DOWN TO ZERO
 BNE .2 ...UNTIL A=0
 PLA GET SAVED COPY OF A-REG
 SBC #1 COUNT THIS COPY DOWN TOO
 BNE .1 ...UNTIL A=0
 RTS

To use this subroutine, you load the A-register with a value which
will determine the length of the delay, and then JSR WAIT. When the
subroutine returns, A=0 and somewhere between 29 and 167309 clock
cycles have elapsed. The formula, somewhat confusingly printed on
page 165 of the white Apple II Reference Manual (and elsewhere in
other manuals), is:

 # cycles = (5*A*A + 27*A + 26)/2

For an example of its use, look in the monitor listing at $FBDD (the
bell routine). Examples of other timing loops are found in the tape
cassette I/O routines ($FCC9-$FD0B) and the paddle reading subroutine
($FB1E).

Bill and I spent the last two weeks working with software which
surrounds the Novation Cat Modem. It is loaded with calls on the
monitor WAIT subroutine. It is exceedingly tiresome to crank out a
formula like the quadratic above by hand, or even with a calculator,
over and over and over, when you have several Apples sitting in the
same room!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1381 of 2550

Apple II Computer Info

After four or five trips to the manual and the calculator, I decided
to work out the times for all possible values of the A-register. Once
and for all.

Here is a little Applesoft program which does the job, and elsewhere
in this AAL you will find a full page showing all the cycle counts.

The A-register values are given in both hex and decimal. The delay
count is given in thousands of cycles. Each cycle is close to one
microsecond, so you could think of the counts as being in
milliseconds.

The purists among you will want to multiply these cycle counts by the
ACTUAL clock period (.9799268644 microseconds average, according to
Sather) to get ACTUAL time.

RWTS in DOS or ProDOS also give lessons in the use of precise delays.
You will find weird little pieces of code which make no sense whatever
inside RWTS. Things like PHA followed immediately by PLA, followed by
a NOP. These are usually just delaying tricks. A PHA-PLA pair takes
exactly seven cycles, a NOP 2 more. There is a delay while waiting
for the motor to come up to speed. Another while stepping the head
from track to track.

These last two are intertwined, so that delays used while stepping
across tracks count towards the total delay required
to get the disk rotating at 300 rpm.

Don Lancaster in his Enhancing the Apple books makes good use of
delays in synchronizing graphics generation with the CRT. By updating
a picture in one graphics page while displaying another, and then
switching pages, you can get pretty impressive animation. However,
the page flipping operations sometimes splatter the display. Using
delays just right, you can make the switching occur when it won't be
noticed. You can even mix graphics into the middle of a text screen
or vice versa, or mix hi-res and lo-res on the same screen.

Jim Sather in "Understanding the Apple II" also uses delays to control
the screen switches in interesting ways. Jim figured out exactly how
many cycles everything in the video generation circuitry takes. Using
his programs you can even use hi-res to draw underlines on text
screens! A horizontal scan takes exactly 65 clock cycles. A vertical
scan takes exactly 17030 cycles. The following program, adapted from
one given on page 3-16 of Sather's book, splits the screen between hi-
res and lo-res. Tapping the space bar moves the boundaries of the
split. Play with it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1382 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 5 February, 1984

In This Issue...

Listing Buried Messages. 2
Peeking at the Catalog 6
Fast Scroll for //e 80-Column. 8
DOS 3.3 Checksummer Debate Update. 10
So That's a Macintosh! 11
Reminder about Wrap-Around Addressing. 12
Delays, Delays, Delays 14
Annotated 68000 Bibliography 19
Table of //e Soft Switches 20
Text Area Erase Routine. 22
Amazing "quikLoader" Card. 27
Macro to Generate Quotient/Remainder Table for Hi-Res. . . 28

Yes, ProDOS is Now Being Shipped

We bought an Apple //e last weekend, and it came with system disks for
both DOS 3.3 and ProDOS. There was no DOS Reference Manual, although
a little of DOS is mentioned in the Owner's manual. There is a very
nice ProDOS User's Manual, 150 pages of text and photos and drawings.
The dealer says he still has no word on ProDOS as a separate product.

I Can't Believe He Typed The Whole Thing!

One of our readers took a few evenings and typed in the source code of
the whole CX ROM from the Apple //e Reference Manual Addendum. This
is the code from $C100 through $CFFC, which is listed on pages 23-49.
He added some of his own comments to the source, which more fully
explain what is going on in there. The source for the F8 ROM is on
the disk too, but without many comments (pages 3-18 of the addendum).
Naturally, the source files are in the format of the S-C Macro
Assembler.

We think having the source of these ROMs on disk could enhance the //e
in two ways: you can make a larger size copy of the listings, so they
can be read in normal room light; and you can experiment with
improvements to the code. If you have a PROM burner that will burn
2764s, I think you can even replace the chips. If you'd like a copy,
send us $15: we'll mail the disk to you, and pass along a percentage
to the energetic typist.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1383 of 2550

Apple II Computer Info

for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1384 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:FstScroll.IIe80.txt
==

Fast Scroll for //e 80-column..............Bob Sander-Cederlof

The //e 80-column firmware scrolls in an annoying fashion. If you are
trying to watch a listing go by, it looks like a bunch of kids on the
playground, jumping up and down. And it is slower than almost any
brand of 80-column card that plugs into slot 3.

The "slot 3" kind of 80-column card usually has a general purpose CRT
controller chip on it. These chips use a wrap-around memory, and have
one register that tells the chip where in memory to start the screen
display. Scrolling is instantaneous, because it only involves writing
a new address into two registers.

The //e 80-column card has no built-in features at all. All it is, is
plain old RAM. A few extra circuits allow alternate columns to be
taken first from the mother board and then from the 80-column card,
back and forth. And the video rate is doubled, so 80 columns appear
on each line. The scroll routine moves the whole screen up in two
steps. First all the odd columns (in main memory) are moved up, and
then all the even columns (in 80-column card memory). That is why you
see the zig-zag effect.

The scroll is slower than a 40-column scroll by a factor of two.
After all, it is essentially the same code, just called twice.

As I said in my article on fast scrolling in the September 1982 issue
of AAL, you have to bear in mind that the authors of the programs in
Apple ROM were not usually aiming for speed. They were trying to
squeeze as much as possible into that tiny space, and make it as
general as they could. The //e 80-column firmware supports windows
smaller than a full screen, and that is seldom found in other types of
80-column cards.

On the other hand, since I am used to not having nice windows in the
other cards, I can live with that in the //e. And I am having a hard
time adjusting to that see-saw slow-motion scroller.

I re-wrote all the fast screen tricks from the September 1982 article
to work in the //e with the Apple 80-column card. It scrolls as
smooth as glass, but I still can't read it: now it's too fast!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1385 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:Mac.Thoughts.txt
==

So That's a Macintosh!..............................Bill Morgan

Well, now we know. The rumors were basically correct: 68000
processor, 128K RAM, 3.5 inch disk drive (but only one), portable,
Lisa descendant, about $2500, and no expansion slots.

That last "feature" still has me a little shaken. I thought that if
anybody knew better, it would be Apple, whose whole fortune is based
on the expandability of the Apple][. My first reaction was totally
negative: who wants to bother with a dead-end machine? A total of
128K of RAM, and the screen memory occupies over 20K. Now that I've
read a little more about the internals, and about the design
objectives, things look a lot brighter. The on-board memory will be
expandable to 512K when the 256K chips get more affordable.

System expansion will take place via the high-speed RS-422 serial
ports. One of the designers pointed out that at 1 million bits per
second (which can be reached with external clocking) you can transfer
the entire memory image of the machine in one second. A couple of
manufacturers (Davong and Tecmar) have already announced hard disks.
Tecmar also announced an IEEE 488 interface. Macintosh designers also
speak of "virtual slot" protocols for the serial ports, and "multi-
drop (party line) capability".

There's another departure from usual Apple practice: no programming
language is resident in the machine, or included in the purchase
price! Several options will be available, including Pascal, Mac
Basic, Microsoft Basic, Logo, and an Assembler/Debugger. The prices
for the above packages will run in the $100-$150 range, not too bad.
One article also mentioned C, about six months from now. It wasn't
clear whether that was from Apple or an outside vendor. All of the
above languages are scheduled for release in the next few months,
except for Microsoft Basic. Russ Weaver, at Simtec/Quest, tells me he
received that yesterday.

There is also 64K ROM (two 23256's) in the Mac, which holds the key to
most programming. That ROM contains the code to support the "desk
top" environment of mouse, icons, etc., the disk I/O, and the serial
I/O. That is supposed to be 64K of the most tightly coded 68000
machine language around (as opposed to Lisa's compiled Pascal
operating system code). I am told that there are over 400 entry
points available to the programmer, with complete documentation coming
soon from Apple for $250.

Several information sources have already popped up. If you haven't
seen the February issue of Byte, go get it. There is a large section
on Mac, including the best technical data so far. There are already
two magazines specializing in Macintosh: Macworld, from the
publishers of PC World, and ST.Mac, from Softalk. (Saint Mac? Come

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1386 of 2550

Apple II Computer Info

on.) Macworld looks very good, especially for evaluation and
demonstration of software. I haven't seen a copy of ST.Mac yet, but
Softalk is about the best of the "general" Apple magazines so I expect
good things from their entry. You can pay $2495 for a Macintosh
serial number and get a year's free subscription to ST.Mac.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1387 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:Message.Search.txt
==

Listing Buried Messages....................Bob Sander-Cederlof

Do you like treasure hunts? Dis-assembling, analyzing, understanding,
and modifying programs written in assembly language, with nothing to
go by but the program in memory and maybe a user's manual ... to me it
is a treasure hunt.

Last week I desperately need to make full use of a Novation Cat II
Modem. "Full use" of almost any peripheral device implies the use of
assembly language. Even though Novation includes a very nice manual
for the purpose, it did not answer half my questions.

Novation also includes a disk with a program called Com-Ware II. This
program is assembly language, and takes 74 sectors on the disk.
Somewhere, hidden in a small, dark corner, guarded by gnomes,
surrounded by wild beasts, lay the answers to all my questions.

I started by BLOADing the file. Then "CALL -151" to get into the
monitor, and typed "AA60.AA73". The first two bytes diplayed the
length of the file, and the last two bytes are the starting address.
I learned it loaded at $900, and was $4825 bytes long.

I started using the monitor L command to scan through the program, and
discovered that the programmer had placed all the screen messages "in
line". That is, rather than putting all the screen text at the end of
the whole program, or in the middle, or wherever, he coded the ASCII
strings right in place. Each message was preceded by "JSR $3866", and
ended with a $00 byte. The subroutine at $3866 retrieved the return
address from the stack, used it to address the message text while
printing it out, and then placed a new return address on the stack to
continue execution right after the $00 byte.

This makes it difficult to use a program like Rak-Ware's wonderful
DISASM, because you have to tell the boundaries of all non-executable
code. And there seemed to be LOTS of messages.

On the other hand, it also makes it easier to follow the flow of the
program. The buried messages are almost like living comments, telling
me exactly what is going on in every section of code.

I decided to get my Apple to help. I wrote a "quick and dirty"
program to scan through the whole image from $900 through $5125,
looking for every occurrence of "JSR $3866". I printed out the
address of the next byte, which is the first byte of message text.
Then I searched for the terminating $00 byte, and printed out its
address. Then I went back and printed out the message text.

After several tries, I even made my quick and dirty program nice and
clean. I printed all the messages out, nicely formated for easy

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1388 of 2550

Apple II Computer Info

visual scanning. I set my printer on 8 lines/inch and 12 chars/inch
to save paper, and let 'er rip. Six whole pages! I think a third of
Com-Ware is taken up by messages!

Here is a sample of the printout. Notice that I printed control
characters, including <RETURN>, as "^" followed by the printing form
of the character. Thus "^M" means <RETURN>.

<<<sample printout here>>>

I believe a lot of programs of interest use a similar technique for
message printing, and slight adaptation of my MESSAGE SEARCH program
could help YOU find some buried treasure!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1389 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0....................................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50
Full Screen Editor for S-C Macro Assembler....................... $49.00
 Includes complete source code.
S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $45.00

S-C Word Processor (the one we use!)...............................$50.00
 With fully commented source code.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Routine Machine (Southwestern Data Systems).........(reg. $64.95) $60.00
FLASH! Integer BASIC Compiler (Laumer Research)....................$79.00
Fontrix (Data Transforms).. $75.00
Aztec C Compiler System (Manx Software)............(reg. $199.00) $180.00
IACcalc Spreadsheet Program.........................(reg. $84.95) $75.00
 The one we use every day. It's better than Visicalc!

Blank Diskettes..................................package of 20 for $45.00
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
 Cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 5 cents each
ZIF Game Socket Extender...$20.00

Buffered Grappler+ Interface and 16K Buffer............($239.00) $200.00
quikLoader EPROM Card..................................($179.50) $179.00

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Understanding the Apple II", Sather.................($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1390 of 2550

Apple II Computer Info

 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00

 Add $1.50 per book for US shipping. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1391 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:QR.Macros.txt
==

Macro to Generate Quotient/Remainder Table for Hi-Res Work
 Bob Sander-Cederlof

A few months back an article in Byte magazine presented some fast hi-
resolution plotting routines. One of the secrets to fast plotting is
table lookup rather than computation of base addresses and offsets.
The article included a 560 byte table for all the possible quotients
and remainers you can get when dividing X by 7, where X is the
horizontal coordinate (0 to 279).

The table of quotients and remainders makes it easy to get the byte
position on a line (quotient) and the bit position in the byte
(remainder) for a given dot X-coordinate.

Typing a 560 byte table into the computer is no fun, no matter how you
do it. You might go into the monitor and type directly in hex, then
later BSAVE the table. Or you might use an Applesoft program to build
the table. I think the easiest way is to write a few short macros,
and let the assembler do the work.

If you have Version 1.1 of the S-C Macro Assembler, the following code
will do the trick. Version 1.0 cannot handle it, because the nesting
level goes too deep. The listing it prints out gets quite long, due
to all the macro expansion. Therefore I am just printing the source
code here. The table it produces is also long, so I am just showing
the beginning and end of it.

1000 *--------------------------------
1010 * GENERATE QUOTIENT-REMAINDER
1020 * TABLE FOR ALL POSSIBLE VALUES
1030 * OF X/7, WHERE X=0...279
1040 *--------------------------------
1050 .MA DO.QS
1060 R .SE 0
1070 >DO.RS
1080 Q .SE Q+1
1090 .DO Q<40
1100 >DO.QS
1110 .FIN
1120 .EM
1130 *--------------------------------
1140 .MA DO.RS
1150 .DA #Q,#R
1160 R .SE R+1
1170 .DO R<7
1180 >DO.RS
1190 .FIN
1200 .EM
1210 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1392 of 2550

Apple II Computer Info

1220 Q .SE 0
1230 QR >DO.QS
1240 *--------------------------------

<<<show the beginning and end few lines of the hex dump of the table
here>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1393 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:QuikLoader.Card.txt
==

The Amazing "quikLoader" Card..............Bob Sander-Cederlof

Jim Sather, author of "Understanding the Apple II", has designed and
programmed a great new plug-in. It is basically a ROM card, but hold
on to your hats!

The card has sockets for 8 EPROMs, and they can be any EPROM size from
2716 up through 27256. That means the card can hold a up to 256
kilobytes!

The card comes loaded already with three 2764 devices, programmed with
licensed copies of DOS 3.3, FID, COPYA, the quikLoad operating system,
and possibly more. I think Integer BASIC is on there too. With DOS
on the card, you can leave it off your disks. You gain at least two
tracks per disk this way.

The quikLoad operating system allows you to load any program from the
card into RAM in a flash. If you have an EPROM programmer that can
burn 2764s or larger, you can put favorites like the S-C Macro
Assembler and our word processor permanently there. The programs
don't even have to be modified, because they will be loaded into their
normal RAM locations for execution.

You control the card by typing a control character along with RESET.
For example, ctrl-C RESET catalogs a disk; ctrl-H RESET runs "HELLO";
others boot a disk or enter the monitor. Ctrl-Q RESET gives you a
catalog of your quikLoader ROMs, in the form of a menu; a single
keystroke then selects a program.

The board is compatible with Apple II, II Plus, and //e. In a II Plus
with a 16K RAM card, you may need to perform a slight modification to
the RAM card as explained in the documentation.

The boards are being manufactured by Southern California Research
Group (SCRG), P. O. Box 2231, Goleta, CA 93118. Phone (805) 685-1931.
Their price is $179.50. You can order them from us if you like, at
$170 + shipping.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1394 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:Revisit.48.0.txt
==

Revisiting $48:0...........................Bob Sander-Cederlof

Remember all those warnings about storing 0 in $48 after DOS had a
whack at your zero page? Maybe not, but let me remind you.

Apple's monitor uses locations $45 through $49 in a very special way.
Ignoring this, the writers of DOS also used them. When you start
execution from the monitor (using the G, S, or T commands) The data in
these locations gets loaded into the registers: $45 into A, $46 into
X, $47 into Y, $48 into P (status), and $49 into S (stack pointer).
When a program hits a BRK opcode, or the S command has finished
executing a single opcode, the monitor saves these five registers back
into $45...$49.

No serious problem, unless you like to enter the monitor and issue the
G, S, or T commands. Even less of a problem, because the S and T
commands were removed from the monitor ROM when the Apple II Plus came
out. And if you don't care what is in the registers anyway....

But the P-register is rather special, too. One of its bits, called
"D", controls how arithmetic is performed. If "D" is zero, arithmetic
will be done in the normal binary way; if D=1, arithmetic is done in
BCD mode. That is, adding one to $49 will produce $50 rather than
$4A. If the program you are entering doesn't expect to be in decimal
mode, and tries arithmetic, you will get some rather amusing results.

Hence the warning: before using the G command from the monitor, type
48:0 to be sure decimal mode is off. Later versions of DOS store 0
into $48 after calling those routines which use $48. And the monitor
stores 0 into $48 whenever you hit the RESET key (or Control-RESET).

**
* *
* Now I am here to tell you that storing 0 into *
* $48 is ALL WRONG! It took Bill and me 5 hours *
* to unravel the mystery caused by storing zero *
* there! *
* *
**

You should put into $48 a sensible value. Better, DOS should never
use $45 through $48; if it must use them, save and restore them.
There are eight bits in the P-register, and in the 6502 seven of them
are important. One of them, we discovered, is VERY important.

The bit named "I" controls the IRQ interrupt. If I=1, IRQ interrupts
will not be accepted. If I=0, IRQ interrupts will be accepted.
So...who cares about interrupts?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1395 of 2550

Apple II Computer Info

Hardly anyone uses interrupts in Apple II's, because of all the hidden
problems. But there are some very nice boards for the Apple that are
designed to be used with interrupts. Most of them are safe, because
RESET disables their interrupt generators.

Need I say that we discovered a board that does not disable the
interrupt generators when you hit RESET? The Novation Cat Modem (a
very excellent product) leaves at least one of its potential IRQ
sources in an indeterminate state. IRQ's don't immediately show up,
though, because they are trapped until you have addressed any of the
soft switches on the card. But, for example, if that card is in slot
2 and I read or write any location from $C0A0 through $C0AF, IRQ's
start coming. Still no problem, because I=1 in the P-register.

UNTIL WE USE THE MONITOR G COMMAND!

If I use the monitor G command, location $48, containing 0, is loaded
into the P-register. Then an IRQ gets through and sends the 6502
vectoring through an unprepared vector at $3FE,3FF and BANG!

Our solution was to put SEI instructions in various routines, and to
make sure that $48 contains 4, not 0, before using the G command.

From now on, whenever you hear that you need to be sure $48 contains
zero, think four.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1396 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:Short.Subjects.txt
==

International Personal Robotics Conference

If you are among the many experimenting with little personal robots,
such as Heathkit's HERO, you may be interested in attending the above
named conference in Albuquerque next April 13-15. They are expecting
around 4000 to show up from all over the world. You can meet such
well known robotics experts as Joseph Engleberger, Nels Winless and
others. It's a fair bet you'll find Jack Lewis of Micromation there.
For more info, call Betty Bevers of IRPC at (303) 278-0662, or write
to them at 1547 South Owens St. #46, Lakewood, Colorado 80226.

DOS 3.3 Checksummer Debate Update..........Bob Sander-Cederlof

A letter from Bill Basham (Diversi-DOS author) defending the practice
of omitting the automatic VERIFY after SAVE to gain speed, was
published in the September 1983 Softalk (page 37, 38). At the top of
page 38 Bill claimed that the checksumming method used by DOS was of
no value at all, because the checksum only depended on the last two
bytes. In other words, Bill claims that errors in the first 340 bytes
of a sector will not be caught.

Diversi-DOS is a fine product, and many thousands are enjoying its
advantages. Nevertheless, Bill is wrong about the checksum. It does
indeed catch errors throughout a sector. For a complete explanation,
see the February 1984 Softalk. David Wagner clearly explains how the
checksummer works, and refutes Bill's claim. See his letter on page
40.

You can look at the code, too. We printed a full commented source
listing of this code in the June 1981 issue of AAL.

Peeking at the CATALOG.....................Bob Sander-Cederlof

Have you ever wanted just a quick peek at the catalog entry for a
file? Maybe you want to know where the track/sector list is? Or
maybe you want to see if there are any control characters in the name?
Or if the number of sectors is more than 255? You need to peek,
because CATALOG won't tell you these details.

After all these years, I found out a simple way to do it. That is,
assuming you can OPEN, SAVE, LOCK, or otherwise somehow make DOS go
looking for the file.

After DOS has found the file, it leaves the directory sector
containing the filename in the buffer at $B4BB-B5BA. DOS also leaves
an index to the very byte at which the information on your file is
found. The value in $B39C, if added to the address $B4C6, gives you
the address of the start of the entry. $22 bytes later it ends.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1397 of 2550

Apple II Computer Info

A minute ago I saved the contents of this and a few other short
articles on a file named V4N5 SHORT SUBJECTS. Then I left my word
processor, typed CALL -151 to get into the monitor, and... Well,
here, look for yourself:

]CALL-151
 *B39C
 B39C- D2 (offset from B4C6)
 *C6+D2
 =98 (first byte of entry)
 *98+22
 =BA (last byte of entry)
 *B598.B5BA
 B598- 0C 0E 00 D6 B4 CE B5 A0
 B5A0- D3 C8 CF D2 D4 A0 D3 D5
 B5A8- C2 CA C5 C3 D4 C3 A0 A0
 B5B0- A0 A0 A0 A0 A0 A0 A0 A0
 B5B8- A0 07 00

The first byte at B598 is the track, and the second is the sector,
where the track/sector list for this file is stored. The third byte
is the file type (00 means an unlocked text file). The last two bytes
are the file size. All the bytes in between are the file name.

If you are interested in the entry for a file you cannot reach
directly, perhaps because there are hidden characters in the name,
just LOCK, UNLOCK, or whatever a file above or below it in the
catalog. Then peek at B39C and B4BB...B5BA to find the entry you are
really interested in.

Bill and I found this technique extremely useful on the most recent
consulting job we handled.

We also took advantage of the fact that the track/sector list of a
file read or written on can be found at the beginning of the file
buffer. If there are three buffers (MAXFILES=3), and if the file in
question was the only one being accessed at the time, the T/S list
will be found at $9600...$96FF. You can get the data you need
immediately, without even finding your favorite ZAP utility.

Yes, ProDOS is Now Being Shipped

We bought an Apple //e last weekend, and it came with system disks for
both DOS 3.3 and ProDOS. There was no DOS Reference Manual, although
a little of DOS is mentioned in the Owner's manual. There is a very
nice ProDOS User's Manual, 150 pages of text and photos and drawings.

I Can't Believe He Typed The Whole Thing!

One of our readers took a few evenings and typed in the source code of
the whole CX ROM from the Apple //e Reference Manual Addendum. This
is the code from $C100 through $CFFC, which is listed on pages 23-49.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1398 of 2550

Apple II Computer Info

He added some of his own comments to the source, which more fully
explain what is going on in there. The source for the F8 ROM is on
the disk too, but without many comments (pages 3-18 of the addendum).
Naturally, the source files are in the format of the S-C Macro
Assembler.

We think having the contents of these ROMs on disk could enhance the
//e in two ways: you can make a larger size copy of the listings, so
they can be read and studied in normal room light; and you can
experiment with improvements to the code. If you have a PROM burner
that will burn 2764s, I think you can even replace the chips....

If you'd like a copy, send us $15: we'll mail a copy of the disk to
you, and pass along a percentage to the energetic typist.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1399 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:SoftswitchChart.txt
==

Table of //e Soft Switches.................Bob Sander-Cederlof

For some reason none of the //e manuals I own give a complete chart in
one place of all the new soft switches. If I print one here, I'll
have one when I need it, so that's what the first chart on the
following page is.

I have ordered them according to the location you peek at to find
which position the soft switch is in. The first column is the
location you read. The sense of the switch is given by bit 7 of the
byte you read, and that bit's value is given at the top of the next
two columns.

Note that there is an error in the Apple //e Reference Manual, on both
pages 133 and 214, where the SLOTCXROM soft switch is described. In
both places, the slot/internal designations are backwards. It looks
like the book was written rationally, and the circuit behaves
irrationally, because the SLOTC3ROM switch operates the opposite
manner from the SLOTCXROM switch. Oh well...

The maze of information regarding the bank switching switches has me
baffled. The second chart should help demystify things. I show which
switches to throw which way to make any particular range of memory
come from the main 64K or the auxiliary bank. To keep the chart from
growing beyond the page, I did not include the LCBANK, SLOTCX, or
SLOTC3 switches.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1400 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:SWITCH.TABLES.txt
==

Status 0 1
====================================
C011 C08(8-B) C08(0-3)
LCBANK Bank 1 Bank 2
 D000-DFFF

C012 C081,2,9,A C080,3,8,B
LCRAM Select ROM Select RAM
 D000-FFFF

C013 C002 C003
RAMRD Read Main Read Aux
 200-BFFF

C014 C004 C005
RAMWRT Write Main Write Aux
 200-BFFF

C015 C006 C007
SLOTCX Slot Internal
 C100-C7FF

C016 C008 C009
ALTZP Main Aux
 0-1FF, D000-FFFF

C017 C00A C00B
SLOTC3 Internal Slot
 C300-C3FF, C800-CFFF

C018 C000 C001
80STORE RAMRD/RAMWRT PAGE2
 400-7FF, 2000-3FFF

C019
VBL in display in blanking

C01A C050 C051
TEXT Graphics Text

C01B C052 C053
MIXED All Text or Mixed text
 all graphics & graphics

C01C C054 C055
PAGE2 Page 1/Main Page 2/Aux
 400-7FF, 2000-3FFF

C01D C056 C057

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1401 of 2550

Apple II Computer Info

HIRES Lo-Res Hi-Res

Status 0 1
====================================
C01E C00E C00F
CHARSET Normal Alternate

C01F C00C C00D
80COL 40 Columns 80 Columns
====================================

Address Main Memory Aux Memory
=======================================
D000-FFFF C008 ALTZP=0 C009 ALTZP=1
 C080,3,8,B C080,3,8,B
 LCRAM=1 LCRAM=1

C000-CFFF I/O Space

4000-BFFF Read: C002 Read: C003
 Write: C004 Write: C005

2000-3FFF C001 80STORE=1 C001 80STORE=1
 C057 HIRES=1 C057 HIRES=1
 C054 PAGE2=0 C055 PAGE2=1

 or
 C000 80STORE=0 C000 80STORE=0
 Read: C002 Read: C003
 Write: C004 Write: C005

 or
 C056 HIRES=0 C056 HIRES=0
 Read: C002 Read: C003
 Write: C004 Write: C005

800-1FFF Read: C002 Read: C003
 Write: C004 Write: C005

400-7FF C001 80STORE=1 C001 80STORE=1
 C054 PAGE2=0 C055 PAGE2=1

 or
 C000 80STORE=0 C000 80STORE=0
 Read: C002 Read: C003
 Write: C004 Write: C005

200-3FF Read: C002 Read: C003
 Write: C004 Write: C005

0-1FF C008 ALTZP=0 C009 ALTZP=1
=======================================

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1402 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:TimeMaster.II.txt
==

New Clock Card from Applied Engineering....Bob Sander-Cederlof

Dan Pote has a new improved clock/calendar card, the Timemaster II.
The improvements include a new circuit design, all new firmware, a new
manual, and new sample programs.

In one of the four switch-selectable modes, the Timemaster II is
completely compatible with ProDOS. It emulates the clock protocol and
formats of Thunderclock, Appleclock, and older versions of Dan's
cards.

You still get a disk full of programs showing various ways to use the
clock, including date-stamping of DOS 3.3 files, various digital and
analog clock displays, and interrupt handling.

If you have been putting off the purchase of a clock card, wondering
why, whether and which, now may be the time. The reason: ProDOS.
The right card: if you want BSR control on the same card,
Thunderclock; if you want the most clock for the best price,
Timemaster II from Applied Engineering.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1403 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:Articles:WrapAround.Addr.txt
==

Reminder about Wrap-Around Addressing.............Bill Parker

Buried on the right side of page 65 of the November, 1983 issue of
Call APPLE is the examination by Martin Smith of another quirk of the
6502. I say "another quirk" because it is similar to the JMP indirect
wrap-around bug. Remember it?

As reported in the October 1980 issue of Apple Assembly Line, "JMP
($xxFF)" will not jump to the address pointed to by the two bytes
beginning at $xxFF; rather the two bytes at $xxFF and $xx00 will be
used. (Where xx means any page of memory.

A similar wrap-around situation can be found when indexing like this:

 STACK .EQ $100
 LDX #1
 LDA STACK-1,X

Since STACK-1 is $FF, a page zero address mode is assembled. Indexing
from within page zero never leaves page zero, so the above example
references loacation $0000 rather than $0100.

The above is important, because many programmers use it in a
"WHEREAMI" section of code to find the program's current address:
 STACK .EQ $100
 WHEREAMI JSR $FF58 (KNOWN rts INSTRUCTION)
 TSX
 LDA STACK-1,X GET PCL
 LDY STACK,X GET PCH

For the Merlin Assembler, the problem can be corrected by forcing the
assembler to use an absolute addressing mode rather than a page zero
addressing mode. This is done by suffixing a ":" to the opcode, like
this:

 LDA: STACK-1,X

The S-C Assemblers have no syntactical way to force absolute mode, but
it can be done by defining the symbol STACK after its use. Here's an
interesting example:

 0800- BD FF 00 1000 LDA STACK-1,X
 0100- 1010 STACK .EQ $100
 0803- B5 FF 1020 LDA STACK-1,X

Since the assembler doesn't know the value of STACK in the first line,
it has to assume it will be a two-byte address, and allocates that
much space. By the time it gets to the last line it knows better.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1404 of 2550

Apple II Computer Info

The fact that indexing wraps around inside page zero is a plus
sometimes. (I guess that explains why the chip works that way!) It
has the effect of letting you use both positive and negative index
offsets. Just beware of getting so used to negative offsets that you
try to use them OUTSIDE page zero!

Clarification about our copyrights.........Bob Sander-Cederlof

We frequently are asked if it is all right to use ideas and even
programs published in the Apple Assembly Line in articles or books our
readers write for publication elsewhere, or even in software they plan
to sell.

Sure! Just give us credit. Say where you got it, and hopefully tell
your customers how they too can subscribe. The more you sell, the
more we sell. The more we spread the good information around, the
more we all benefit.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1405 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:DOS3.3:DELAY.TIMES.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1406 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:DOS3.3:ERASE.DEMO.1.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1407 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:DOS3.3:ERASE.DEMO.2.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1408 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:DOS3.3:S.Erase.Creamer.txt
==

 1000 *SAVE S.ERASE (JEFF CREAMER)
 1010 *--------------------------------
 1020 * *
 1030 * ERASE ROUTINE *
 1040 * *
 1050 * Jeff Creamer *
 1060 * *
 1070 * CALL 768,(WIDTH),(DEPTH) *
 1080 * *
 1090 *--------------------------------
 1100 * PAGE ZERO VARIABLES
 1110 *--------------------------------
 1120 MON.CH .EQ $24
 1130 MON.CV .EQ $25
 1140 *--------------------------------
 1150 * APPLESOFT ROUTINES USED
 1160 *--------------------------------
 1170 AS.CHKCOM .EQ $DEBE
 1180 AS.GETBYT .EQ $E6F8
 1190 AS.IQERR .EQ $E199
 1200 *--------------------------------
 1210 * MONITOR ROUTINES USED
 1220 *--------------------------------
 1230 MON.VTAB .EQ $FC22
 1240 MON.PRBL2 .EQ $F94A
 1250 *--------------------------------
 1260 .OR $300
 1270 .TF ERASE
 1280 *--------------------------------
 1290 * JEFF'S ERASE ROUTINE
 1300 *--------------------------------
 1310 ERASE LDA MON.CV GET VERTICAL COORD
 1320 PHA SAVE ON STACK
 1330 LDA MON.CH AND HORIZ COORD
 1340 PHA SAVE IT ON STACK, TOO
 1350 JSR AS.CHKCOM COMMA?
 1360 JSR AS.GETBYT YES, GET WIDTH TO ERASE
 1370 TXA INTO ACC
 1380 BEQ .4 WIDTH MUST BE NON-ZERO
 1390 PHA PUSH WIDTH ON STACK
 1400 JSR AS.CHKCOM COMMA NEXT?
 1410 JSR AS.GETBYT YES, GET DEPTH
 1420 TXA AND TRANSFER TO ACC
 1430 BEQ .4 DEPTH MUST BE NON-ZERO
 1440 TAY DEPTH INTO Y REGISTER
 1450 PLA WIDTH BACK OFF STACK
 1460 PHA BUT KEEP IT THERE ALSO
 1470 TAX AND INTO X-REG
 1480 .1 LDA MON.CV REMEMBER CV ON STACK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1409 of 2550

Apple II Computer Info

 1490 PHA
 1500 JSR MON.PRBL2 PRINT WIDTH # OF BLANKS
 1510 PLA GET OLD CV OFF STACK
 1520 DEY DECREMENT DEPTH
 1530 BEQ .3 ZERO LINES LEFT?
 1540 TAX OLD CV INTO X-REGISTER
 1550 INX NEXT LINE
 1560 CPX #24 OFF THE BOTTOM?
 1570 BCC .2 NO, USE THIS ONE
 1580 LDX #0 YES, WRAP BACK TO TOP
 1590 .2 STX MON.CV
 1600 JSR MON.VTAB ADJUST BASE ADDRESS
 1610 PLA WIDTH OFF STACK
 1620 TAX TO SET UP X AGAIN
 1630 PLA HORIZ COORD OFF STACK
 1640 PHA BUT MAINTAIN IT THERE ALSO
 1650 STA MON.CH AND RESTORE HCURSOR
 1660 TXA PUSH WIDTH BACK ON STACK
 1670 PHA FOR NEXT TIME AROUND
 1680 BNE .1 LOOP ALWAYS
 1690 .3 PLA POP WIDTH OFF
 1700 PLA GET HORIZ COORDINATE
 1710 STA MON.CH AND RESTORE IT
 1720 PLA GET VERTICAL COOORDINATE
 1730 STA MON.CV RESTORE IT, TOO
 1740 JSR MON.VTAB ADJUST BASE ADDRESS
 1750 RTS DONE
 1760 .4 JMP AS.IQERR ILLEGAL QUANTITY ERROR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1410 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:DOS3.3:S.Msg.Search.txt
==

 1000 *SAVE S.MESSAGE SEARCH
 1010 *--------------------------------
 1020 * FIND ALL MESSAGES IN COM-WARE II VERSION 5.0-3
 1030 *
 1040 * ALL MESSAGES ARE PRECEDED BY "JSR $3866"
 1050 * AND END WITH A $00 BYTE:
 1060 *
 1070 * 20 66 38 <MSG> 00
 1080 *--------------------------------
 1090 MSG.PNTR .EQ $00,01
 1100 END.PNTR .EQ $02,03
 1110 *--------------------------------
 1120 PRINTAX .EQ $F941
 1130 COUT .EQ $FDED
 1140 CROUT .EQ $FD8E
 1150 *--------------------------------
 1160 KEYBOARD .EQ $C000
 1170 STROBE .EQ $C010
 1180 *--------------------------------
 1190 FIND LDA #$900 COMWARE WAS BLOADED AT $900
 1200 STA MSG.PNTR
 1210 LDA /$900
 1220 STA MSG.PNTR+1
 1230 .1 LDA MSG.PNTR
 1240 CMP #$5125 COMWARE ENDS AT $5125
 1250 LDA MSG.PNTR+1
 1260 SBC /$5125
 1270 BCC .2 ...NOT AT END YET
 1280 RTS ...FINISHED
 1290 *---SEARCH FOR A $20 BYTE--------
 1300 .2 LDY #0
 1310 LDA (MSG.PNTR),Y
 1320 CMP #$20
 1330 BEQ .4 FOUND $20
 1340 .3 JSR INC
 1350 BNE .1 ...ALWAYS
 1360 *---CHECK FOR $66, $38 AFTER $20---
 1370 .4 INY
 1380 LDA (MSG.PNTR),Y
 1390 CMP #$66
 1400 BNE .3
 1410 INY
 1420 LDA (MSG.PNTR),Y
 1430 CMP #$38
 1440 BNE .3
 1450 *---FOUND A MESSAGE!-------------
 1460 LDX #10
 1470 JSR MARGIN
 1480 JSR PAUSE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1411 of 2550

Apple II Computer Info

 1490 JSR INC SKIP OVER THE $20, $66, $38
 1500 JSR INC
 1510 JSR INC
 1520 LDA MSG.PNTR+1 PRINT STARTING ADDRESS
 1530 STA END.PNTR+1
 1540 LDX MSG.PNTR
 1550 STX END.PNTR
 1560 JSR PRINTAX
 1570 *---SEARCH FOR END OF STRING-----
 1580 LDY #0
 1590 .5 LDA (END.PNTR),Y
 1600 BEQ .6 FOUND END
 1610 INC END.PNTR
 1620 BNE .5
 1630 INC END.PNTR+1
 1640 BNE .5
 1650 *---FOUND END OF STRING----------
 1660 .6 LDA #"." PRINT "..."
 1670 JSR COUT
 1680 JSR COUT PRINT THE END ADDRESS
 1690 JSR COUT
 1700 LDA END.PNTR+1
 1710 LDX END.PNTR
 1720 JSR PRINTAX
 1730 LDA #$A0 PRINT " "
 1740 JSR COUT
 1750 JSR COUT
 1760 JSR COUT
 1770 *---PRINT OUT THE STRING---------
 1780 LDY #0
 1790 LDX #0
 1800 .7 LDA (MSG.PNTR),Y
 1810 BEQ .9 ...END OF STRING
 1820 ORA #$80
 1830 CMP #$A0 PRINTING CHARACTER
 1840 BCS .8 ...YES, GO PRINT IT
 1850 ORA #$40 ...NO, CONTROL, CHANGE TO
 1860 PHA PRINTING FORM
 1870 LDA #"^" PRINT "^" FOLLOWED BE CHAR
 1880 INX
 1890 JSR COUT
 1900 PLA
 1910 .8 JSR COUT
 1920 INX
 1930 JSR INC ADVANCE MSG.PNTR
 1940 CPX #55 IS THIS LINE FULL?
 1950 BCC .7 ...NO, KEEP GOING
 1960 LDX #24 ...YES, START NEW LINE
 1970 JSR MARGIN INDENT
 1980 LDX #0
 1990 BEQ .7 ...ALWAYS
 2000 *--------------------------------
 2010 .9 JSR CROUT
 2020 JMP .1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1412 of 2550

Apple II Computer Info

 2030 *--------------------------------
 2040 INC INC MSG.PNTR
 2050 BNE .1
 2060 INC MSG.PNTR+1
 2070 .1 RTS
 2080 *--------------------------------
 2090 PAUSE LDA KEYBOARD ANY KEY PRESSED?
 2100 BPL .3 ...NO, RETURN
 2110 STA STROBE ...YES, CLEAR STROBE
 2120 CMP #$8D WAS KEY <RETURN>?
 2130 BNE .2 ...NO, JUST A PAUSE
 2140 .1 JMP $3D0 ...YES, ABORT
 2150 .2 LDA KEYBOARD ANY KEY PRESSED?
 2160 BPL .2 ...NO, KEEP WAITING
 2170 STA STROBE ...YES, CLEAR STROBE
 2180 CMP #$8D WAS KEY <RETURN>?
 2190 BEQ .1 ...YES, ABORT
 2200 .3 RTS ...NO, END OF PAUSE
 2210 *--------------------------------
 2220 MARGIN JSR CROUT START A NEW LINE
 2230 LDA #$A0 SKIP OVER (X) SPACES
 2240 .10 JSR COUT
 2250 DEX
 2260 BNE .10
 2270 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1413 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8402:DOS3.3:S.ScrnTrIIe80.txt
==

 1000 * S.SCREEN TRICKS //E 80-COLUMN
 1010 *--------------------------------
 1020 * FAST SCREEN CLEAR SUBROUTINE
 1030 *--------------------------------
 1040 GCLEAR LDA #255
 1050 .HS 2C SKIP OVER NEXT TWO BYTES
 1060 CLEAR LDA #$A0
 1070 SET LDY #119
 1080 .1 LDX #1
 1090 .2 STA $C054,X
 1100 STA $400,Y LINES: 0 8 16
 1110 STA $500,Y 2 10 18
 1120 STA $600,Y 4 12 20
 1130 STA $700,Y 6 14 22
 1140 STA $480,Y 1 9 17
 1150 STA $580,Y 3 11 19
 1160 STA $680,Y 5 13 21
 1170 STA $780,Y 7 15 23
 1180 DEX
 1190 BPL .2
 1200 DEY
 1210 BPL .1
 1220 RTS
 1230 *--------------------------------
 1240 * SET SCREEN TO ALL VALUES
 1250 *--------------------------------
 1260 SETALL LDA #0
 1270 .1 PHA
 1280 JSR SET
 1290 PLA
 1300 CLC
 1310 ADC #1
 1320 BNE .1
 1330 RTS
 1340 *--------------------------------
 1350 * ALTERNATE SCREEN UNTIL KEY PRESSED
 1360 *--------------------------------
 1370 ALTER LDA #$20 INVERSE BLANK
 1380 JSR SET
 1390 JSR CLEAR
 1400 LDA $C000
 1410 BPL ALTER
 1420 STA $C010
 1430 RTS
 1440 *--------------------------------
 1450 * FAST SCROLL UP SUBROUTINE
 1460 *--------------------------------
 1470 SCROLL LDY #0
 1480 .1 LDX #1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1414 of 2550

Apple II Computer Info

 1490 .3 LDA $C054,X
 1500 LDA $400,Y SAVE LINES: 0 8 16
 1510 PHA
 1520 LDA $480,Y MOVE 1>0, 9>8, 17>16
 1530 STA $400,Y
 1540 LDA $500,Y MOVE 2>1, 10>9, 18>17
 1550 STA $480,Y
 1560 LDA $580,Y MOVE 3>2, 11>10, 19>18
 1570 STA $500,Y
 1580 LDA $600,Y MOVE 4>3, 12>11, 20>19
 1590 STA $580,Y
 1600 LDA $680,Y ET CETERA
 1610 STA $600,Y
 1620 LDA $700,Y
 1630 STA $680,Y
 1640 LDA $780,Y
 1650 STA $700,Y
 1660 PLA MOVE 8>7, 16>15
 1670 CPY #40
 1680 BCC .2 DISCARD OLD LINE 0
 1690 STA $780-40,Y
 1700 .2 DEX
 1710 BPL .3
 1720 INY
 1730 CPY #120
 1740 BCC .1
 1750 RTS
 1760 *--------------------------------
 1770 * SCROLL AROUND, MOVING TOP LINE TO BOTTOM
 1780 *--------------------------------
 1790 SCR LDY #39 SAVE TOP LINE ON STACK
 1800 .1 LDA $C054
 1810 LDA $400,Y
 1820 PHA
 1830 LDA $C055
 1840 LDA $400,Y
 1850 PHA
 1860 DEY
 1870 BPL .1
 1880 JSR SCROLL SCROLL SCREEN UP ONE LINE
 1890 LDY #0 STORE OLD TOP LINE
 1900 .2 LDA $C055
 1910 PLA ON BOTTOM OF SCREEN
 1920 STA $7D0,Y
 1930 LDA $C054
 1940 PLA
 1950 STA $7D0,Y
 1960 INY
 1970 CPY #40
 1980 BCC .2
 1990 RTS
 2000 *--------------------------------
 2010 * ROTATE SCREEN UNTIL KEY PRESSED
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1415 of 2550

Apple II Computer Info

 2030 S JSR SCR SCROLL AROUND ONCE
 2040 LDA $C000 ANY KEY PRESSED?
 2050 BPL S NO, SCROLL AGAIN
 2060 STA $C010 YES, CLEAR STROBE
 2070 RTS ...AND RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1416 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:BragnerGPLEEtc..txt
==

S-C Macro and GPLE.LC on the //e...................Bob Bragner
 Istanbul, Turkey

I've long been bothered by the way loading the S-C Macro Assembler
wipes out GPLE (Neil Konzen's Global Program Line Editor) when you go
from Applesoft to Assembler. It shouldn't happen, because GPLE
resides in the alternate bank at $D000, not used by Macro. I've also
been unhappy that the //e version of S-C Macro Assembler doesn't have
the automatic line of dashes provided by <esc> L after a line number
when you are in 80-column mode.

Just the other day I discovered by accident that all is not lost. If
things are done in just the right sequence both of my peeves vanish.

First load up the S-C Macro Assembler into the $D000 area. Then enter
Applesoft by typing the FP command, and BRUN GPLE.LC. Initialize the
80-column card with ctrl-V and enter the assembler by typing the INT
command. This leaves GPLE connected so that the assembler sees the
<esc> L command. Try it by typing a line number and <esc> L.

It also allows the assembler to see <esc> L to turn a catalog line
into a LOAD command, but due to the way the word LOAD is poked onto
the screen you get L O A D which clobbers the file name. (I never use
the automatic load anyway, so this does not bother me.)

RESET will partially disable GPLE.LC, but you can restore it by typing
the & command from Applesoft. If you want RESET to NOT molest GPLE,
change the reset vector to $B6B3. You can do this from the monitor
with "3F2:B3 B6 13", or from S-C Macro with "RST $B6B3".

I don't know why this all works, but I think it has something to do
with the way the 80-column card initializes itself by copying the
//e's monitor ROM into the $F800-FFFF space of RAM.

By the way, GPLE uses some patch space inside DOS 3.3 which is also
used by the fast DOS text file I/O patch, so beware of mixing them.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1417 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:Customizing68K.txt
==

Changing Tab Stops in the 68000 Cross Assembler................
 Bob Sander-Cederlof

The procedure as described in the S-C Macro Assembler manual works for
the 6502 version and for all the cross assemblers except the 68000
cross assembler. The procedure described in Appendix D will not work
because the 68000 cross assembler uses both banks of memory at $D000-
DFFF. In order to be certain the correct one is switched on, the
command interpreter keeps using the selection soft switches. The
result is that the bank stays write-protected, and no patches ever get
installed.

Of course, there is a simple way around the problem. Here is how to
change the tab stops in the 68000 Cross Assembler:

First, boot the cross assembler disk and select option 2, loading the
language card version at $D000.

:BLOAD S-C.ASM.MACRO.68000.LC
:MNTR
*AA60.AA61
*AA60- xx yy (probably C6 27)
*D010.D014
D010- 0E 16 1B 20 00
*C083 C083 D010:7 10 1B 2B (or whatever values you like)
C083- zz
C083- zz
*D010.D014
D010- 07 10 1B 2B 00
*BSAVE S-C.ASM.MACRO.68000.LC,A$D000,L$yyxx
*3D0G
: that's it!

Similar methods apply to the other customizing patches mentioned in
Appendix D.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1418 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:Felt.Pads.txt
==

About Disk Drive Pressure Pads.............Bob Sander-Cederlof

After you have used your disk drive for six months or so, it will
probably develop a scary noise or two. I know mine have.

My oldest drive is serial 1901 (the Shugart mechanics inside the box
have a number somewhere in the low 400's). Every once and a while it
will make the most dangerous sounding noise you ever heard, something
like dragging rusty chains across the road. I have read in various
magazines and newsletters that these noises are almost always caused
by a dirty pressure pad.

The pressure pad rides on the top surface of the disk, pressing the
disk surface down against the recording head. It is a 1/8 inch circle
of felt glued to a slightly larger plastic stud. The shaft of the
stud is split and tapered, so it will fit through a hole and lock in
place. You can easily remove the pad and stud by pressing on the
split end.

But where do you get new ones? Maybe at a computer store, but they
sure don't keep them on display. I decided to try a little home
maintenance, and it worked. I gently scraped the felt surface with
the blade of my pocket knife, and all the old caked oxide turned to
powder and fell off. Then I rubbed the oxide on a piece of paper, to
smooth out the felt. After putting the drive all back together, it
ran quietly.

It worked so well, I performed the operation on two more drives. And
surprisingly, one drive which had been giving lots of errors was
working accurately again.

A few other disk maintenance tips:

One particularly noisy drive a few years ago had loose screws trying
to hold the drive motor down. A few wrist twists and all was well.

If a drive can read, but writes garbage, it is probably the 74LS125 on
the analog board inside the drive. Replace that chip for 25 cents or
so, and you have saved $60 in repair bills.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1419 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 6 March, 1984

In This Issue...

Fast Garbage Collection. 2
Changing VERIFY to DISPLAY 13
Changing Tab Stops in the 68000 Cross Assembler. 15
S-C Macro and GPLE.LC on the //e 16
Redundancy in Tables for Faster Lookups. 17
Speaking of Locksmith. 19
Lancaster's OBJ.APWRT][F 19
About Disk Drive Pressure Pads 20
Will ProDOS Work on a Franklin?. 20
Rod's Color Pattern in 6502 Code 21
Will ProDOS Really Fly?. 28

For some time now we have been selling our S-C Word Processor,
complete with all source code on disk. We hoped that some users would
send us their improvements, and sure enough they have. Bob Gardner
recently sent us a bunch, and that motivated me to go back over the
package.

The disk now includes both II/IIPlus and //e versions. The //e
version allows an 80-column preview (still only 40-column during edit
mode). I added titles and page numbers, a single sheet mode, and
more. Even with all the new features, the new object code is a little
shorter than the old, leaving even more room for your own
modifications and enhancements. I improved the internal
documentation. The "manual-ette" is now 10 pages rather than 6. A
small tutorial file helps you get started.

The price is still only $50. Owners of the old version can get a new
copy for only $5.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1420 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:Garbage.Collec.txt
==

Fast Garbage Collection................Col. Paul Shetler, MD
 Honolulu, Hawaii

When Applesoft programs manipulate strings, memory gradually fills up
with little bits and pieces of old strings. Eventually this space
needs to be recovered so the program can continue. The process of
searching through all the still active strings, moving them back to
the top of free memory, and making the remaining space available again
is called "garbage collection".

Applesoft will automatically collect garbage when memory fills up.
However, the garbage collector in the Applesoft ROMs is pitifully
slow. Worse yet, the time to collect is proportional to the square of
the number of strings in use. That is, if you have 100 active strings
it will take four times as long to collect garbage as if you had only
50 active strings.

Cornelis Bongers, of Erasmus University in Rotterdam, Netherlands,
published a brilliant Garbage Collector for Applesoft strings in
Micro, August 1982. The speed of his program, when compared to the
one residing in ROM, is incredible. And the time is directly
proportional to the number of strings, rather than the square of the
number of strings. The only problem with his program is that it
belongs to the magazine that published it. Or worse yet, it is tied
to a program called Ampersoft, marketed by Microsparc (publishers of
Nibble magazine) for $50. When I asked them about a license, they
wanted big bucks.

So, I decided to write my own garbage collector, based on the ideas
behind Cornelis Bongers' program. And then I further decided to make
it available to all readers of Apple Assembly Line, where I myself
have received so much help.

There are several catches. Normal Applesoft programs save all string
data with the high-order bit of each byte zero (positive ASCII).
Further, normal Applesoft programs never allow more than one string
variable to point to the same exact memory copy of the string. The
method of garbage collection my program uses (Bongers' method) DEPENDS
on these constraints. If either is not true, LOOK OUT! Of course, if
your Applesoft programs are normal, you need have no fear. Only if
you are doing exotic things with your own machine language appendages
to Applesoft might these constraints be violated.

The basic concept is fairly simple. Applesoft uses descriptors to
point to the string in the string pool. The descriptor consists of
three bytes -- the length, and the address of the characters in the
string pool.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1421 of 2550

Apple II Computer Info

Strings build down from the top of memory (HIMEM) and the descriptors
build up from the end of the program in the variable space. Since a
new value assigned to a string is added to the bottom of the string
pool, the pool is soon full of "garbage".

Applesoft frees the garbage one string at a time. This n-square
method takes forever, when there are large string arrays. Bongers
introduced the idea of marking active strings in the pool by setting
the third byte in the string to a negative ASCII value, then storing
the location of the descriptor in the first two bytes. The first two
bytes of the string are saved safely in the address of field of the
descriptor. The address previously in the address field will be
changed anyway after all the strings are moved up in memory.

Another pass through the string pool moves all active strings as high
in memory as they can go, retrieves the first two characters from
storage in the descriptor, and points it to the new string location.

Since three bytes are used in the active strings, one and two
character strings require different treatment. On the first pass
through the variable space, the characters pointed to by the 'short'
descriptors are stored in the length and, if len=2, the low address
byte of the descriptor. The short descriptor is flagged with one or
more "FF"'s, since no string can have an address greater than $FF00.

If short strings are found on the first pass, a third pass returns
them to the string pool and points the descriptors to their new
location.

Short strings do slow collection a little, however, the number of
passes is proportional to the number of strings, and not the number
squared.

Bongers' program was driven by calls via the &-statement. Mine
differs in that it invoked with the USR function. Although it is
easily converted to an ampersand routine, I wrote it using the USR
function to provide fast garbage collection with Hayden's compiler
(which also uses string descriptors and a string pool). The compiler
allows USR functions, but makes & difficult. Another reason is to
investigate some uses for USR.

USR(#) converts '#' to a floating point value in the FAC (floating
point accumulator) and then jumps via $0A to the address pointed to in
$0B, $0C. The results of the machine language subroutine can be
returned in the FAC. The USR function, floating point calls, and
addresses are described in Apple's BASIC REFERENCE MANUAL FOR
APPLESOFT (Product #A2L0006).

The USR argument for my garbage collector requires a number in the
range of +32767 to -32767. If the number is negative, the string pool
is checked for negative ASCII. If any such characters are found,
USR(-1) will return a value of 0, and no garbage collection will be
attempted. If no negative ASCII characters are found, garbage

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1422 of 2550

Apple II Computer Info

collection will proceed. In this case USR(-1) returns the number of
bytes of free space after collection.

If the USR argument is zero, for example K = USR(0), then collection
is forced and USR will return the amount of free space. This is
slightly faster than calling with USR(-1), because the preliminary
scan for negative ASCII bytes is skipped. But USR(-1) is safer, if
you are not sure.

If you use a positive argument N in the USR function, then no garbage
collection will be performed unless there is less than 256*N bytes of
free space left. Whether or not collection is performed, USR will
tell you how much free space is left.

Only the lower five bits of the USR argument are tested. This means
that USR(32) is the same as USR(0), USR(33) is the same as USR(1), and
so on.

I have shown the program as residing at $9400, but of course you may
re-assemble it for any favorite place.

The following Applesoft program makes a lot of garbage, and sees to
the collection of it using my garbage collector. If the call to the
USR function in line 245 left out, the program dies for 47 seconds
while Applesoft does its own garbage collection. With the USR call as
shown, the delay is less than one second.

<<<<sample here>>>>

<<<<collector listing here>>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1423 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:Lancaster.SCWP.txt
==

Lancaster's OBJ.APWRT][F.................Bob Sander-Cederlof

You may have noticed a little ad in the last few issues for an obscure
title, "OBJ.APWRT][F". Don Lancaster, author of such favorites as
Enhancing the Apple, Incredible Secret Money Machine, Micro Cookbook,
etc., has torn into Applewriter //e. After a thorough analysis, he
completely documented it, in the style of Beneath Apple DOS. The
results, or at least part of them, will be chapter 12 in volume 2 of
Enhancing.

He sent me a pre-print to look at and make comments about. My main
comment is WOW! It doesn't matter if you like Applewriter or not. It
doesn't even matter if you have never seen Applewriter. You still can
learn a tremendous amount by reading through Don's text and comments.
Of course it is better if you DO have Applewriter //e, because he
tells you how to make some great customizing modifications.

You can get it all on disk for only $29.95. Actually, it is not on
"disk" ... it is on SIX disk sides, jam-packed full. Don even throws
in a free book for good measure.

You can order OBJ.APWRT][F directly from Synergetics, or from S-C
Software.

Speaking of Word Processors................Bob Sander-Cederlof

For some time now we have been selling our S-C Word Processor,
complete with all source code on disk. We hoped that some users would
send us their improvements, and sure enough they have. Bob Gardner
recently sent us a bunch, and that motivated me to go back over the
package.

The disk now includes both II/IIPlus and //e versions. The //e
version allows an 80-column preview (still only 40-column during edit
mode). I added titles and page numbers, a single sheet mode, and
more. Even with all the new features, the new object code is a little
shorter than the old, leaving even more room for your own
modifications and enhancements. I improved the internal
documentation. The "manual-ette" is now 10 pages rather than 6. A
small tutorial file helps you get started.

The price is still only $50. Owners of the old version can get a new
copy for only $5.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1424 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0....................................$80.00
S-C Macro Assembler Version 1.1 Update.............................$12.50
Full Screen Editor for S-C Macro Assembler.........................$49.00
 Includes complete source code.
S-C Cross Reference Utility..$20.00
S-C Cross Reference Utility with Complete Source Code..............$50.00
DISASM Dis-Assembler (RAK-Ware)....................................$30.00
Quick-Trace (Anthro-Digital)........................(reg. $50.00) $45.00
The Visible Computer: 6502 (Software Masters).......(reg. $50.00) $45.00

S-C Word Processor (the one we use!)...............................$50.00
 With fully commented source code.
Applesoft Source Code on Disk......................................$50.00
 Very heavily commented. Requires Applesoft and S-C Assembler.
ES-CAPE: Extended S-C Applesoft Program Editor....................$60.00

AAL Quarterly Disks...each $15.00
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984

Double Precision Floating Point for Applesoft......................$50.00
 Provides 21-digit precision for Applesoft programs.
 Includes sample Applesoft subroutines for standard math functions.
Amper-Magic (Anthro-Digital)........................(reg. $75.00) $67.50
Amper-Magic Volume 2 (Anthro-Digital)...............(reg. $35.00) $30.00
Routine Machine (Southwestern Data Systems).........(reg. $64.95) $60.00
FLASH! Integer BASIC Compiler (Laumer Research)....................$79.00
Fontrix (Data Transforms).. $75.00
Aztec C Compiler System (Manx Software)............(reg. $199.00) $180.00
IACcalc Spreadsheet Program.........................(reg. $84.95) $75.00
 The one we use every day. It's better than Visicalc!

Blank Diskettes..................................package of 20 for $45.00
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold one disk each................10 for $6.00
Diskette Mailing Protectors.........................10-99: 40 cents each
 100 or more: 25 cents each
 Cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 5 cents each
ZIF Game Socket Extender...$20.00

Buffered Grappler+ Interface and 16K Buffer............($239.00) $200.00
quikLoader EPROM Card..................................($179.50) $170.00

Books, Books, Books..........................compare our discount prices!
 "The Apple][Circuit Description", Gayler...........($22.95) $21.00
 "Understanding the Apple II", Sather.................($22.95) $21.00
 "Enhancing Your Apple II, vol. 1", Lancaster.........($17.95) $17.00
 "Incredible Secret Money Machine", Lancaster..........($7.95) $7.50

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1425 of 2550

Apple II Computer Info

 "Beneath Apple DOS", Worth & Lechner.................($19.95) $18.00
 "Bag of Tricks", Worth & Lechner, with diskette......($39.95) $36.00
 "Assembly Lines: The Book", Roger Wagner.............($19.95) $18.00
 "What's Where in the Apple", Second Edition..........($24.95) $23.00
 "What's Where Guide" (updates first edition)..........($9.95) $9.00
 "6502 Assembly Language Programming", Leventhal......($18.95) $18.00
 "6502 Subroutines", Leventhal........................($17.95) $17.00

 Add $1.50 per book for US shipping. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1426 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:Putney.ClrPat.txt
==

Rod's Color Pattern in 6502 Code.............Charles H. Putney

When I read the January AAL with Bob Urschel's article about running
Rod's Color Pattern on the QWERTY 68000 board, it sounded like a
challenge. You may remember I like speed challenges, at least inside
computers.

Fifty times faster than Basic didn't sound too fast, so I checked a
simple loop to see if it might be possible to save the dignity of the
6502. It did look possible, at least by using tricky table-driven
code.

So, I wrote some more code and it looked like 8.0 seconds per loop.
This clocks out at 55 times faster than Integer BASIC, but I didn't
have the internal calculation for the color value exactly like the
original.

I finally decided to use a table lookup for the color calculation.
Now the problem was how to create all those data statements. I
thought about using some macros, but the calculations are too
involved. I wrote an Applesoft program to generate the lines of code
for the assembler, and then EXECed them into my source code. I
finally got all the bugs out and timed it.

The table-driven version performs a main loop every 6.2 seconds,
compared to 446 seconds per loop for the Integer BASIC version. That
is nearly 72 times faster.

Well, my only worry now is that Bob Urschel made an error in his
timing, and his really runs 200 times faster. If not, we have saved
face for the venerable 6502.

Of course, we did use a little more memory. But that is frequently a
trade-off worth making in important programs.

For comparison purposes, here is the Integer BASIC program again:

10 GR
20 FOR W = 3 TO 50
30 FOR I = 1 TO 19
40 FOR J = 0 TO 19
50 K = I+J
60 COLOR = J*3 / (I+3) + I*W/12
70 PLOT I,K: PLOT K,I: PLOT 40-I,40-K:PLOT40-K,40-I
80 PLOT K,40-I: PLOT 40-I,K: PLOT I,40-K: PLOT 40-K,I
90 NEXT J: NEXT I: NEXT 2
100 GO TO 20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1427 of 2550

Apple II Computer Info

My program to generate the data tables includes similar logic. I
broke the tables into two planes, rather than storing one data table
48*19*20 = 18,240 bytes long. One plane computes J*3/(I+3), and
includes 380 bytes. The other computes I*W/12 and includes 48*19=912
bytes. My table lookup routine uses I and J to index into the first
plane, and I and W into the second. Then the two values are added
together. Pretty tricky!

I believe in letting computers work for me, so I had to use some
macros to simplify typing in all the code for those eight plot
statements. I wrote a PLOT macro, but then I noticed that there was
some redundant code that way. By rearranging the order of the PLOT
statements, I can separate the y-setup from the x-setup and plot.
That way the base address does not get re-calculated as often, saving
more time. Here is my program:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1428 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:Redunancy.Table.txt
==

Redundancy in Tables for Faster Lookups....Bob Sander-Cederlof

When speed is the main objective, you can sometimes use table lookups
to great advantage. You trade program size for speed.

Here is an easy example. Suppose I want to convert the two nybbles of
a byte to ASCII characters. I can do it all with code, like this:

CONVERT
 PHA Save original byte
 LSR Position first nybble
 LSR
 LSR
 LSR
 JSR MAKE.ASCII
 STA XXX
 PLA Original byte
 AND #$0F Isolate second nybble
 JSR MAKE.ASCII
 STA XXX+1
 RTS

MAKE.ASCII
 ORA #$B0 Make B0...BF
 CMP #$BA
 BCC .1 It is 0-9
 ADC #6 Make A-F codes
.1 RTS

That takes 30 bytes, and 75-77 cycles including a JSR CONVERT to call
it. Actually 75 cycles if both nybbles are 0-9, 77 cycles if they
both are A-F, and 76 cycles if there is one of each. If I move the
code from MAKE.ASCII in-line, it saves 24 cycles (two JSRs, two RTSs),
and only lengthens the program by one byte.

Or I can do a table lookup by substituting these two lines for both
JSR MAKE.ASCII lines above:

 TAX
 LDA ASCII.TABLE,X

and making a little table like this:

ASCII.TABLE .AS -/0123456789ABCDEF/

In this form, the program takes 49 cycles, and uses a total of 39
bytes including the table. Perhaps it could be an advantage that the
of cycles is always constant, regardless of the value being
converted.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1429 of 2550

Apple II Computer Info

You can make it even faster by using two whole pages for table space,
like this:

CONVERT
 TAX
 LDA HI.TABLE,X
 STA XXX
 LDA LO.TABLE,X
 STA XXX+1
 RTS

HI.TABLE
 .AS -/0000000000000000/
 .AS -/1111111111111111/
 .
 .
 .AS -/FFFFFFFFFFFFFFFF/

LO.TABLE
 .AS -/0123456789ABCDEF/
 .AS -/0123456789ABCDEF/
 .
 .
 .AS -/0123456789ABCDEF/

The program itself is 14 bytes long, but there are 512 bytes of
tables. The conversion, including JSR and RTS, now takes only 30
cycles. And since the program is now so short, it would probably get
placed in line, saving the JSR-RTS, converting in only 18 cycles. And
if the in-line routine already had the nybble in the X-reg, whack off
another two cycles.

The redundancy in the tables gives a huge speed increase.

I have been tearing into the super fast copy utility that comes with
Locksmith 5.0, and I discovered some of these redundancy tricks in
their disk I/O tables. For example, the table for converting a six-
bit value into a disk-code normally takes 64 bytes. The table looks
like this:

TABLE .HS 96979A9B9D9E9FA6
 .
 .
 .HS F7F9FAFBFCFDFEFF

Code to access the table might look like this:
 LDA BUFFER,X
 AND #$3F Mask to 6 bits
 TAY
 LDA TABLE,Y

When you are writing to a disk, every single cycle counts. Therefore,
it is pleasant to discover redundant tables. By making four copies of

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1430 of 2550

Apple II Computer Info

the table, using 256 bytes rather than 64, we no longer need to strip
off the first two bits. The code can be shortened to this:

 LDY BUFFER,X
 LDA TABLE,Y

It only saves 3 cycles, but those three cycles can and do make the
whole difference in the fast copy program. That is part of
Locksmith's secret to reading a whole disk into RAM in only 8 seconds.

Speaking of Locksmith........................Warren R. Johnson

Did you know that Locksmith 5.0 can nearly be copied by plain old
COPYA? Or with its own fast backup copier? All but the last few
tracks copy, and they may not be necessary.

The only problem is, the resulting copy will not boot until you make a
small patch using some sort of disk ZAP utility. (You can use Omega's
Inspector/Watson team, Bag of Tricks, Disk Fixer, CIA, for example.)
Patch Track-0F Sector-0E Byte-6F: change it from 6C to 0F. [Editor's
note: in my copy, Locksmith had C6 in that byte rather than 6C. And
I have not tried the resulting disk to see if all functions work.]

I have modified my Apple a little to make my life easier. I have
2732's in the motherboard ROM sockets, with bank switch selection.
Applesoft is in one bank, and a modified version of Applesoft in the
other. My modifications include replacing the old cassette commands
(LOAD/SAVE/SHLOAD etc.) for an INWAT command. INWAT downloads the
Inspector and Watson from some expansion chassis ROM boards.

1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1431 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:Shorts.txt
==

Will ProDOS Work on a Franklin?.....................Bob Stout

If you try to boot up ProDOS on a Franklin, it probably will fail.
The ProDOS boot routine checks to see if you are in a genuine Apple
monitor ROM. However, you can make it work.

Start the boot procedure; when meaningful action appears to have
ceased, press the RESET switch. Get into the monitor and type 2647:EA
EA and 2000G. Voila!

Will Rockwell 65C02's work in an old Apple..........Bob Stout

Not unless you have the 2 MHz part. For some reason the timing is too
tight and slightly different to use a 1MHz 65C02, unless you have an
Apple //e. The 2 MHz chips WILL work in Apple II and II Plus.

Will ProDOS Really Fly?....................Bob Sander-Cederlof

ProDOS appears to have been eclipsed by MacIntosh. The major software
houses are probably putting their main effort into Mac.

ARTSCI has announced a ProDOS version of their MagiCalc spreadsheet
program. Owners of the DOS 3.3 version may upgrade for $40, new
customers pay $149.95. The only differences claimed are faster disk
I/O and ability to edit the printer setup string. Nice, but $40 is a
lot. And the spreadsheet files would no longer be accessible to DOS-
based utilities.

ARTSCI will also send you their ProDOS catalog sorter program,
complete with BASIC.SYSTEM, CONVERT, FILER, and the ProDOS image for
only $24.95. Apple will reputedly be selling ProDOS with a user's
manual and some tutorial files in addition to the files on ARTSCI's
disk, but price and date are still unclear. (You get them free with a
new disk drive.)

Practical Peripherals has announced a new clock card which is ProDOS
compatible. Their design is apparently an upgrade of Superclock II
(by Jeff Mazur, Westside Electronics). ProDOS was designed around
Thunderclock, so other clocks must either emulate one of the
Thunderclock modes or patch ProDOS during the boot process. Applied
Engineering's new Timemaster II emulates Thunderclock and several
others, so it is fully ProDOS compatible.

According to Don Lancaster, Applewriter //e has been written so that
changing to ProDOS would be easy. Therefore we might expect a ProDOS-
based version of this popular word processor to be announced soon. Or
maybe they won't bother to announce it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1432 of 2550

Apple II Computer Info

Meanwhile, I know of at least two people with plans to integrate the
faster RWTS ProDOS uses into their enhanced DOS 3.3 packages. Have
you seen the latest ads for David-DOS? Dave Weston compares the
speeds of his fast DOS with DOS 3.3 and Pro-DOS. Guess what ... Pro-
DOS doesn't win.

Unless you MUST have file compatibility with Apple /// SOS; or you
MUST have hard hard-disk support for very large files; or you MUST
have a hierarchical file directory; then stick with DOS 3.3, enhanced
by Dave, or Bill Basham, or Art Schumer, or others. And if you MUST
have at least 32K of program space with Applesoft; or you MUST have
Integer BASIC support; or you MUST have compatibility with hundreds of
existing software products; then stick with DOS 3.3.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1433 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:SILLY.SONGS.txt
==

The Baloney Song.......by Bob Sander-Cederlof

A piece of baloney got stuck in my nose,
I can't get it out with sniffles or blows.
It comes out a little, then back up it goes.
I reached in to get it, and pulled out my toes.
...but I got that baloney out of my nose!

A plate of spaghetti spilled over my beard,
and I can tell you it sure did look weird.
I hoped no one noticed, but just as I feared,
The rest of the restaurant stood up and cheered,
...and now you know why I shaved off my beard!

A big piece of bubble gum got in my hair.
I sure don't know how it got up there.
I blew a big bubble with the utmost care,
and then it exploded and flew everywhere.
...that must be how it got in my hair!

The Canoe Song........by Bob Sander-Cederlof

My canoe is blue all-around.
I'm a-gonna ride it up the river and down.
When I'm done I'm gonna put it away,
And there it's going to stay,
...until the next time that I ride it.

Momma's guitar is smaller than mine,
But she says she likes it just fine.
She's gonna play it all over town,
And then she's gonna put it down,
...until the next time that she plays it.

Trisha's pretty shoes are on the closet shelf,
She can put them on all by herself.
She's gonna wear them to the Sunday School today,
And then she's gonna put them away,
...until the next time that she wears them.

This is my song, I made it up one day.
Maybe you think I shoulda thrown it away.
By the look on your face I can tell it hurts your ear.
It's the worst you'll ever hear,
...until the next time that I sing it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1434 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:Articles:VerifyN2Display.txt
==

Changing VERIFY to DISPLAY.................Bob Sander-Cederlof

In the July 1982 issue of AAL we showed how to make a text file
display command inside DOS. Bob Bragner added 80-column display to it
in the July 1983 issue. The Dec 1983 InCider printed an article by
William G. Wright about a DOS modification that provided text file
display without removing any previous features.

Wright's patches modify the VERIFY command so that as sectors are
being verified, if the file is a text file, they are displayed on the
screen or printer. If there are any $00 bytes in a sector, they are
merely skipped over, so his patches will handle some random access
files, as well as sequential. Non-text files are still verified in
the normal manner.

I was prompted by his article to write ukp another little program.
This one will hook into the VERIFY processor in the file manager when
you BRUN the program. Later, 30BG from the monitor or CALL 779 from
Applesoft will dis-install the patch. My patch modifies VERIFY so
that as each sector of a file is verified it is displayed in
hexadecimal on the screen or a printer. I do not distinguish between
text and non-text files, although it would be a simple matter to do
so. As with Wright's patches, random access files may also be
displayed, up to the first hole in the track/sector list.

The creative among you will want to add many bells and whistles to my
little program. Perhaps 80-column display, showing an entire sector
at a time rather than half a sector. Perhaps display of the bytes in
both hex and ASCII on the same line. Perhaps the ability to scan back
and forth through a file, using the arrow keys. All these are
possible, and not too difficult. Have fun!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1435 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:DOS3.3:GARBAGE.TEST.txt
==

d£37888:≤ $9400>n∫Á(4)"BLOAD B.FAST GARBAGE
COLLECTOR"Wxπ10,76:π11,0:π12,148q»N–25:ÜA$(N,N),B$(N,N)É“ÅI–1¡N:ÅJ –
1¡N£‹A$(I,J)–"X":B$(I,J)–"Y":Ç:ÇÆÊÅI–1¡N„ F–
(‚(112) 256»‚(111))…(‚(110) 256»‚(109)):∫F" ";ÓıL–’(2)˘˙ÅJ–1¡N

ÅK–1¡10:A$(I,J)–A$(I,J)»"*":Ç' ∫"*";:Ç/ ∫:Ç

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1436 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:DOS3.3:PutneyTableMake.txt
==

#d≤BUILD TABLES FOR ROD'S COLOR/nD$–Á(4)Px∫D$"OPEN TTT":∫D$"WRITE
TTT"YÇ∞200hå∫D$"CLOSE"nñÄz»ÅI–1¡19ô“∫"WI"Ë(‰(I)»" ",2)" .HS ";Æ‹ÅW –
3¡26:∞500:Ç:∫¿Ê∫" .HS ";÷ ÅW–27¡50:∞500:Ç:∫›˙ÇIÈ,ÅI–1¡19

6∫"JI"Ë(‰(I)»" ",2)" .HS "; @ÅJ–0¡19A JC–”(J 3À(I»3)):C–
C…”(CÀ16) 16:≠Cœ9ƒC–C»7R T∫"0"Á(C»48);Z ^Ç:∫a hÇIg

r±ë ÙC–”(I WÀ12):C–C…”(CÀ16) 16:≠Cœ9ƒC–C»7¢ ˛∫"0"Á(C»48);®
 ±

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1437 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:DOS3.3:QR.Table.Maker.txt
==

 1000 *--------------------------------
 1010 * GENERATE QUOTIENT-REMAINDER
 1020 * TABLE FOR ALL POSSIBLE VALUES
 1030 * OF X/7, WHERE X=0...255
 1040 *--------------------------------
 1050 .MA DO.QS
 1060 R .SE 0
 1070 >DO.RS
 1080 Q .SE Q+1
 1090 .DO Q<40
 1100 >DO.QS
 1110 .FIN
 1120 .EM
 1130 *--------------------------------
 1140 .MA DO.RS
 1150 .DA #Q,#R
 1160 R .SE R+1
 1170 .DO R<7
 1180 >DO.RS
 1190 .FIN
 1200 .EM
 1210 *--------------------------------
 1220 Q .SE 0
 1230 >DO.QS
 1240 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1438 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:DOS3.3:S.DISPLAY.FILE.txt
==

 1000 *SAVE S.DISPLAY FILE
 1010 *--------------------------------
 1020 * PATCH DOS TO CHANGE VERIFY
 1030 * INTO DISPLAY
 1040 *--------------------------------
 1050 MON.PRNTAX .EQ $F941
 1060 MON.PRBL2 .EQ $F94A
 1070 MON.CROUT .EQ $FD8E
 1080 MON.PRBYTE .EQ $FDDA
 1090 MON.COUT .EQ $FDED
 1100 *--------------------------------
 1110 .OR $300
 1120 *--------------------------------
 1130 PATCH LDA #DISPLAY HOOK INTO VERIFY COMMAND
 1140 STA $AD1C
 1150 LDA /DISPLAY
 1160 STA $AD1D
 1170 RTS
 1180 *--------------------------------
 1190 UNPATCH
 1200 LDA #$B0B6 RESTORE NORMAL VERIFY
 1210 STA $AD1C
 1220 LDA /$B0B6
 1230 STA $AD1D
 1240 RTS
 1250 *--------------------------------
 1260 DISPLAY
 1270 JSR MON.CROUT START SECTOR WITH <RET>
 1280 JSR $B0B6 READ NEXT SECTOR
 1290 BCS .1 END OF FILE
 1300 LDY #0 DISPLAY FIRST HALF SECTOR
 1310 JSR SHOW
 1320 JSR SHOW DISPLAY SECOND HALF
 1330 CLC SIGNAL NOT END OF FILE
 1340 .1 RTS
 1350 *--------------------------------
 1360 SHOW LDA $B5E5 DISPLAY SECTOR POSITION
 1370 LDX $B5E4
 1380 JSR MON.PRNTAX
 1390 LDA #16 16 LINES PER BLOCK
 1400 STA LCNT
 1410 BNE .2 ...ALWAYS
 1420 .1 LDX #4 PRINT 4 BLANKS
 1430 JSR MON.PRBL2 SO COLUMNS LOOK NEATER
 1440 .2 LDA #8 8 BYTES PER LINE
 1450 STA BCNT
 1460 TYA PRINT BYTE COUNT
 1470 JSR MON.PRBYTE
 1480 LDA #"-" PRINT "-"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1439 of 2550

Apple II Computer Info

 1490 JSR MON.COUT
 1500 .3 LDA #" " PRINT " "
 1510 JSR MON.COUT
 1520 LDA ($42),Y NEXT BYTE FROM FILE
 1530 INY
 1540 JSR MON.PRBYTE
 1550 DEC BCNT
 1560 BNE .3 MORE TO THIS LINE
 1570 JSR MON.CROUT NEXT LINE
 1580 DEC LCNT
 1590 BNE .1
 1600 RTS
 1610 *--------------------------------
 1620 BCNT .BS 1
 1630 LCNT .BS 1
 1640 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1440 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:DOS3.3:S.FastGarbage.txt
==

 1000 *SAVE S.FAST GARBAGE COLLECTOR
 1010 *--------------------------------
 1020 * FAST GARBAGE COLLECTOR
 1030 *--------------------------------
 1040 * BY COL. PAUL SHETLER, MD
 1050 * INSPIRED BY CORNELIS BONGERS
 1060 *--------------------------------
 1070 *
 1080 * CALL FROM APPLESOFT WITH K=USR(N)
 1090 *
 1100 * IF N=0, THEN COLLECTION FORCED
 1110 *
 1120 * IF N<0, THEN POOL CHECKED FOR NEG ASCII.
 1130 * IF NO NEG ASCII, THEN GC FORCED
 1140 * IF NEG ASCII FOUND, THEN
 1150 * SET USER(#)=0 AND QUIT.
 1160 *
 1170 * IF N>0, THEN COLLECTION PERFORMED ONLY IF
 1180 * LESS THAN N*256 BYTES OF FREE
 1190 * SPACE LEFT.
 1200 *--------------------------------
 1210 * THE APPLESOFT PROGRAM MUST INLCUDE
 1220 * THE FOLLOWING STATEMENTS TO SET UP
 1230 * THIS GARBAGE COLLECTOR:
 1240 *
 1250 * 100 HIMEM:37888:REM$9400
 1260 * 110 PRINT CHR$(4)"BLOAD B.FAST GARBAGE COLL
 1270 * ECTOR"
 1280 * 120 POKE 10,76 : POKE 11,0 : POKE 12,148
 1290 *--------------------------------
 1300 * EQUATES FOR GARBAGE COLLECTION
 1310 *--------------------------------
 1320 SHORT.FLAG .EQ $06
 1330 STRING.LENGTH .EQ $07
 1340 INDEX .EQ $19
 1350 OFFSET .EQ $1B
 1360 ARRAY.END .EQ $1D
 1370 *--------------------------------
 1380 * USER(#) EQUATES
 1390 *--------------------------------
 1400 FACMO .EQ $A0
 1410 FACLO .EQ $A1
 1420 AYINT .EQ $E10C
 1430 GIVAYF .EQ $E2F2
 1440 *--------------------------------
 1450 * STANDARD EQUATES
 1460 *--------------------------------
 1470 LOWTR .EQ $9B
 1480 FORPNT .EQ $08

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1441 of 2550

Apple II Computer Info

 1490 STREND .EQ $6D
 1500 VARTAB .EQ $69
 1510 FRESPC .EQ $71
 1520 FRETOP .EQ $6F
 1530 MEMSIZE .EQ $73
 1540 ARYTAB .EQ $6B
 1550 *--------------------------------
 1560 .OR $9400
 1570 .TF B.FAST GARBAGE COLLECTOR
 1580 *--------------------------------
 1590 USR.GARBAGE.COLLECTOR
 1600 JSR AYINT CONVERT USR ARGUMENT TO INTEGER
 1610 * WITH HIBYTE IN FACMO, LO IN FACLO
 1620 LDA FACMO IS # MINUS?
 1630 BMI .3 ...NEED TO CHECK FOR NEG ASCII
 1640 LDA FACLO
 1650 AND #$1F 8136 BYTES
 1660 BEQ .4 ...IF =0 THEN FORCED COLLECTION
 1670 CLC
 1680 ADC STREND+1
 1690 CMP FRETOP+1
 1700 BCS .4 ...NEED TO COLLECT NOW
 1710 *---CALC FREE SPACE--------------
 1720 .1 SEC
 1730 LDA FRETOP
 1740 SBC STREND
 1750 TAY LO BYTE
 1760 LDA FRETOP+1
 1770 SBC STREND+1
 1780 *---FLOAT (AY) FOR USR RESULT----
 1790 .2 JMP GIVAYF FLOAT (AY) AND RETURN
 1800 *---CHECK POOL FOR NEG ASCII-----
 1810 .3 JSR SET.STRING.POOL.STROLL
 1820 JSR FIND.NEXT.NEG.BYTE.IN.POOL
 1830 LDA #0 PREPARE ZERO IN CASE NEG ASCII
 1840 TAY
 1850 BCS .2 ...FOUND SOME NEG ASCII
 1860 *---COLLECT GARBAGE NOW----------
 1870 .4 JSR MARK.ALL.ACTIVE.STRINGS
 1880 JSR RAISE.ALL.ACTIVE.STRINGS
 1890 *---FINAL CLEAN UP---------------
 1900 LDA LOWTR STORE NEW BOTTOM OF STRING POOL
 1910 STA FRESPC
 1920 LDA LOWTR+1
 1930 STA FRESPC+1
 1940 LDA SHORT.FLAG NEED TO FIX SHORT STRINGS?
 1950 BEQ .5 ...NO, NOT ANY SHORT ONES
 1960 JSR FIX.SHORT.STRINGS
 1970 .5 LDA FRESPC SET FRETOP TO TOP OF FREE SPACE
 1980 STA FRETOP
 1990 LDA FRESPC+1
 2000 STA FRETOP+1
 2010 JMP .1
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1442 of 2550

Apple II Computer Info

 2030 * MARK ACTIVE STRINGS WITH NEG BYTE
 2040 *--------------------------------
 2050 MARK.ALL.ACTIVE.STRINGS
 2060 LDA #0 FLAG->NONE
 2070 STA SHORT.FLAG
 2080 JSR INITIATE.SEARCH
 2090 .1 JSR FIND.NEXT.STRING.VARIABLE
 2100 BCS .5 ...NO MORE VARIABLES
 2110 LDY #0 POINT AT LENGTH BYTE OF DESC.
 2120 LDA (LOWTR),Y
 2130 BEQ .1 STRING LEN =0
 2140 *---CHECK LOCATION OF STRING-----
 2150 TAX SAVE STRLEN IN X-REG
 2160 INY IF STRING DATA INSIDE PROGRAM,
 2170 LDA (LOWTR),Y THEN NO NEED TO FIDDLE
 2180 STA FORPNT WITH IT FURTHER.
 2190 CMP VARTAB
 2200 INY
 2210 LDA (LOWTR),Y
 2220 STA FORPNT+1
 2230 SBC VARTAB+1 IN PROGRAM?
 2240 BCC .1 ...YES, SO PASS
 2250 *---CHECK FOR SHORT STRING-------
 2260 CPX #3 IF 1 OR 2, SPECIAL TREATMENT
 2270 BCS .3 ...LONG STRING
 2280 *---SHORT STRING HANDLER---------
 2290 STX SHORT.FLAG NON-ZERO TO FLAG
 2300 LDA #$FF
 2310 STA (LOWTR),Y MARKER IN 3RD DESC. BYTE
 2320 DEY POINT AT 2ND DESC. BYTE
 2330 DEX CHECK LENGTH
 2340 BEQ .2 LEN=1, PUT $FF IN 2ND BYTE
 2350 LDA (FORPNT),Y LEN=2, SAVE CHAR IN 2ND BYTE
 2360 .2 STA (LOWTR),Y
 2370 DEY POINT AT 1ST BYTE OF DESC.
 2380 LDA (FORPNT),Y MOVE FIRST BYTE OF STRING
 2390 STA (LOWTR),Y TO DESC.
 2400 BPL .1 ALWAYS
 2410 *---LONG STRING HANDLER----------
 2420 .3 LDA (FORPNT),Y MARK FIRST BYTE OF STRING
 2430 ORA #$80 MAKE NEG ASCII
 2440 .4 STA (FORPNT),Y
 2450 DEY BACK UP TOWARD BEG. OF DATA
 2460 BMI .1 ...FINISHED MARKING THIS
 2470 LDA (FORPNT),Y SAVE STRING CHAR IN DESC.
 2480 INY
 2490 STA (LOWTR),Y IN LAST 2 BYTES
 2500 DEY OF DESCRIPTOR
 2510 LDA LOWTR,Y SAVE ADDR INSIDE STRING
 2520 BCS .4 ALWAYS SET
 2530 *---FINISHED MARKING STRINGS-----
 2540 .5 RTS
 2550 *--------------------------------
 2560 * MOVE THE STRINGS AS HIGH AS POSSIBLE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1443 of 2550

Apple II Computer Info

 2570 *--------------------------------
 2580 RAISE.ALL.ACTIVE.STRINGS
 2590 JSR SET.STRING.POOL.STROLL
 2600 STX LOWTR+1 STARTS AT TOP
 2610 STA LOWTR OF STRNG POOL
 2620 .1 JSR FIND.NEXT.NEG.BYTE.IN.POOL
 2630 *--------------------------------
 2640 * CARRY CLEAR ON RETURN WHEN THRU
 2650 *--------------------------------
 2660 BCC .4 ...NO MORE STRINGS IN POOL
 2670 LDY #0
 2680 AND #$7F
 2690 STA (FRESPC),Y
 2700 *--------------------------------
 2710 * RESTORE STRING POOL TO POS ASC
 2720 * THEN RESET POINTERS
 2730 *--------------------------------
 2740 SEC
 2750 LDA FRESPC RECOVER ADDR.
 2760 SBC #2 OF DESCRIPTOR
 2770 STA FRESPC FROM THE STR
 2780 BCS .2 ...NO BORROW
 2790 DEC FRESPC+1
 2800 .2 LDA (FRESPC),Y
 2810 STA FORPNT AND PUT IT
 2820 INY IN FORPNT
 2830 LDA (FRESPC),Y
 2840 STA FORPNT+1
 2850 INY Y=2
 2860 LDA (FORPNT),Y
 2870 *--------------------------------
 2880 * RESTORE STRING BY RETURNING
 2890 * THE FIRST TWO BYTES WHICH WERE
 2900 * STORED IN THE DESCRIPTOR.
 2910 *
 2920 * THEN POINT DESCRIPTOR TO THE
 2930 * NEW, CORRECT STRING POSITION.
 2940 *--------------------------------
 2950 DEY
 2960 STA (FRESPC),Y
 2970 LDA (FORPNT),Y
 2980 DEY Y=0
 2990 STA (FRESPC),Y
 3000 LDA (FORPNT),Y
 3010 STA STRING.LENGTH
 3020 SEC
 3030 LDA LOWTR
 3040 *--------------------------------
 3050 * POINT LOWTR & STRING DESCRIPTOR
 3060 * TO BOTTOM OF NEW STRING POOL.
 3070 *
 3080 * LOWTR HOLDS THE MOVING BOTTOM
 3090 * OF THE STRING POOL.
 3100 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1444 of 2550

Apple II Computer Info

 3110 SBC STRING.LENGTH
 3120 STA LOWTR
 3130 INY
 3140 STA (FORPNT),Y
 3150 LDA LOWTR+1
 3160 SBC #0
 3170 STA LOWTR+1
 3180 INY
 3190 STA (FORPNT),Y
 3200 *--------------------------------
 3210 * NOW MOVE THE STRING TO ITS
 3220 * NEW ADDRESS.
 3230 *--------------------------------
 3240 LDY STRING.LENGTH
 3250 .3 DEY
 3260 LDA (FRESPC),Y
 3270 STA (LOWTR),Y
 3280 TYA
 3290 BNE .3 ...NOT FINISHED YET
 3300 BEQ .1 ...ALWAYS
 3310 *---FINISHED MOVING STRINGS------
 3320 .4 RTS
 3330 *--------------------------------
 3340 * RESTORE NORMAL CONFIGURATION OF PNTR AND DATA
 3350 * FOR STRINGS OF 1 OR 2 CHARACTERS
 3360 *
 3370 * SCAN THRU VARIABLE SPACE AGAIN:
 3380 * DESCRIPTORS OF STRINGS MARKED WITH $FF
 3390 * CONTAIN THE CHAR(S) TO RESTORE TO POOL.
 3400 *
 3410 * FRESPC POINTS AT BOTTOM OF POOL
 3420 * LOWTR POINTS AT DESCRIPTORS
 3430 *--------------------------------
 3440 FIX.SHORT.STRINGS
 3450 JSR INITIATE.SEARCH
 3460 .1 JSR FIND.NEXT.STRING.VARIABLE
 3470 BCS .5 ...FINISHED!
 3480 LDY #2 POINT AT 3RD BYTE, 2ND OF ADDR
 3490 STY STRING.LENGTH
 3500 LDA (LOWTR),Y IF 3RD BYTE =$FF, SHORTY.
 3510 CMP #$FF A SHORTY?
 3520 BNE .1 ...NO, KEEP SCANNING VARIABLES
 3530 DEY ...YES, POINT AT 2ND BYTE
 3540 LDA (LOWTR),Y IF 2ND BYTE ALSO $FF,
 3550 PHA THEN LEN=1
 3560 BPL .2 ...NOT $FF, ITS A STR CHAR
 3570 DEC STRING.LENGTH
 3580 .2 DEY POINT AT 1ST BYTE OF DESCRIPTOR
 3590 LDA (LOWTR),Y GET 1ST ASC CHAR OF STRING
 3600 PHA SAVE ON STACK
 3610 *---CALC PLACE IN POOL FOR DATA--
 3620 SEC
 3630 LDA FRESPC REPOINT FRESPC
 3640 SBC STRING.LENGTH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1445 of 2550

Apple II Computer Info

 3650 STA FRESPC
 3660 BCS .3
 3670 DEC FRESPC+1
 3680 *---RESTORE LENGTH TO DESC.------
 3690 .3 LDA STRING.LENGTH
 3700 STA (LOWTR),Y
 3710 *---STORE CHARS INTO POOL--------
 3720 *--AND ADDR INTO DESCRIPTOR------
 3730 PLA FIRST CHAR
 3740 STA (FRESPC),Y
 3750 INY
 3760 LDA FRESPC LOBYTE OF ADDR
 3770 STA (LOWTR),Y
 3780 PLA 2ND CHAR
 3790 BMI .4 ...IT IS $FF, ONLY 1 CHAR
 3800 STA (FRESPC),Y
 3810 .4 INY
 3820 LDA FRESPC+1 HIBYTE OF ADDR
 3830 STA (LOWTR),Y
 3840 BNE .1 ALWAYS
 3850 *---ALL FINISHED WITH SHORTIES---
 3860 .5 RTS
 3870 *--------------------------------
 3880 * STRING POOL STROLL
 3890 *--------------------------------
 3900 SET.STRING.POOL.STROLL
 3910 LDX MEMSIZE+1 POINT FRESPC
 3920 LDA MEMSIZE AT HIMEM
 3930 STA FRESPC TO START
 3940 STX FRESPC+1 STROLL.
 3950 RTS
 3960 *--------------------------------
 3970 * SEARCH STRING POOL FROM TOP TO BOTTOM
 3980 * FOR A NEGATIVE BYTE.
 3990 *
 4000 * RETURN .CS. IF NEG BYTE FOUND,
 4010 * .CC. IF REACHED END OF POOL
 4020 *--------------------------------
 4030 FIND.NEXT.NEG.BYTE.IN.POOL
 4040 LDX FRESPC+1
 4050 LDY FRESPC
 4060 LDA #0 PAGE AT A TIME
 4070 STA FRESPC
 4080 TYA IS IT ZERO?
 4090 BNE .2 NO!
 4100 .1 DEX YES
 4110 CPX FRETOP+1 STILL IN POOL?
 4120 BCC .5 ...NO
 4130 STX FRESPC+1 DO NEXT PAGE
 4140 .2 DEY
 4150 BEQ .3
 4160 LDA (FRESPC),Y
 4170 BPL .2 POS ASCII
 4180 BMI .4 NEG SO QUIT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1446 of 2550

Apple II Computer Info

 4190 .3 LDA (FRESPC),Y
 4200 BPL .1 NEW PAGE
 4210 .4 CPX FRETOP+1
 4220 BNE .5 FRESPC>FRETOP
 4230 CPY FRETOP FOR CARRY FLAG
 4240 .5 STY FRESPC FRESPC POINTS TO NEG ASC
 4250 RTS
 4260 *--------------------------------
 4270 * SET UP SEARCH OF VAR TABLE
 4280 *--------------------------------
 4290 INITIATE.SEARCH
 4300 LDA VARTAB START AT BEGINNING OF VARIABLES
 4310 STA INDEX
 4320 LDX VARTAB+1
 4330 STX INDEX+1
 4340 LDY #7 EACH VAR TAKES 7 BYTES
 4350 STY OFFSET
 4360 RTS
 4370 *--------------------------------
 4380 * FIND NEXT STRING VARIABLE
 4390 *--------------------------------
 4400 FIND.NEXT.STRING.VARIABLE
 4410 .1 LDX INDEX+1 SETUP SEARCH FOR NEXT STRING
 4420 LDA INDEX
 4430 LDY OFFSET
 4440 CPY #7 STILL IN SIMPLE VARIABLES?
 4450 BNE .4 ...NO, IN ARRAYS
 4460 CPX ARYTAB+1 WE WERE, CHECK FURTHER...
 4470 BCC .2 ...YES, STILL SIMPLE
 4480 CMP ARYTAB
 4490 BCS .3 ...NO
 4500 .2 JSR IS.THIS.A.STRING.VARIABLE
 4510 BCS .8 ...STRING FOUND
 4520 JSR NXTEL NOT A STRING
 4530 BCC .1 ...ALWAYS, TRY AGAIN
 4540 .3 LSR OFFSET SET OFFSET TO 3 NOW
 4550 STA ARRAY.END
 4560 STX ARRAY.END+1
 4570 .4 CPX ARRAY.END+1 INSIDE AN ARRAY?
 4580 BCC .8 ...YES
 4590 CMP ARRAY.END
 4600 BCC .8
 4610 CPX STREND+1 STILL IN VAR SPC?
 4620 BCC .5 ...YES
 4630 CMP STREND
 4640 BCC .5 ...YES
 4650 RTS CARRY SET WHEN THRU VAR SPC
 4660 *---SET UP A NEW ARRAY-----------
 4670 .5 LDY #2
 4680 CLC
 4690 LDA (INDEX),Y
 4700 ADC INDEX
 4710 STA ARRAY.END POINTER TO
 4720 INY NEXT ARRAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1447 of 2550

Apple II Computer Info

 4730 LDA (INDEX),Y
 4740 ADC INDEX+1
 4750 STA ARRAY.END+1
 4760 JSR IS.THIS.A.STRING.VARIABLE IS THIS A STR?
 4770 BCS .6 ...YES
 4780 LDA ARRAY.END
 4790 STA INDEX NO
 4800 LDX ARRAY.END+1
 4810 STX INDEX+1
 4820 BNE .4 ...ALWAYS
 4830 *---FOUND STRING ARRAY-----------
 4840 .6 LDY #4 POINT AT
 4850 LDA (INDEX),Y #DIMENSIONS OF ARRAY
 4860 ASL *2
 4870 ADC #5
 4880 ADC INDEX POINT INDEX TO
 4890 STA INDEX FIRST ELEMENT
 4900 BCC .7 OF NEW ARRAY
 4910 INC INDEX+1
 4920 .7 LDX INDEX+1
 4930 *
 4940 .8 STA LOWTR LOWTR->STR DESCRIPTOR
 4950 STX LOWTR+1
 4960 *---NEXT VARIABLE----------------
 4970 NXTEL CLC
 4980 LDA OFFSET POINT INDEX TO
 4990 ADC INDEX NEXT VAR OR ELEMENT
 5000 STA INDEX
 5010 BCC .1
 5020 INC INDEX+1
 5030 CLC
 5040 .1 RTS STR FOUND,CARRY CLEAR
 5050 *--------------------------------
 5060 * SUBROUTINE STRING CHECK
 5070 *--------------------------------
 5080 IS.THIS.A.STRING.VARIABLE
 5090 LDY #0
 5100 CLC INCASE NOT STR
 5110 LDA (INDEX),Y
 5120 BMI .2 ...NOT STRING
 5130 INY
 5140 LDA (INDEX),Y
 5150 BPL .2 ...NOT STRING
 5160 LDA #2 POINT PAST STR NAME
 5170 ADC INDEX
 5180 BCC .1 ...STRING
 5190 INX INDEX+1
 5200 .1 SEC CARRY SET IF STR FOUND
 5210 .2 RTS
 5220 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1448 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:DOS3.3:S.PutneysColor.txt
==

 1000 .LIST MOFF
 1010 *SAVE S.PUTNEY'S COLOR
 1020 .OR $6000
 1030 .TF B.PUTNEY
 1040 *--------------------------------
 1050 *
 1060 * FAST ROD'S COLOR PATTERN
 1070 *
 1080 * CHARLES H. PUTNEY
 1090 * 18 QUINNS ROAD
 1100 * SHANKILL
 1110 * CO. DUBLIN
 1120 * IRELAND
 1130 *
 1140 *--------------------------------
 1150 *
 1160 * PAGE ZERO ADDRESSES
 1170 *
 1180 INVI .EQ $EE VARIABLE 40 - I
 1190 INVK .EQ $EF VARIABLE 40 - K
 1200 POINTR .EQ $F9 LORES PAGE POINTER (TWO BYTES)
 1210 I .EQ $FB VARIABLE I
 1220 J .EQ $FC VARIABLE J
 1230 K .EQ $FD VARIABLE K
 1240 W .EQ $FE VARIABLE W
 1250 COLOR1 .EQ $07 HALF OF COLOR FORMULA
 1260 *--------------------------------
 1270 COLOR .EQ $08,09
 1280 COLEVN .EQ $08 EVEN ROW COLOR
 1290 COLODD .EQ $09 ODD ROW COLOR
 1300 MASK .EQ $0A,0B
 1310 MSKODD .EQ $0A
 1320 MSKEVN .EQ $0B
 1330 *
 1340 *--------------------------------
 1350 *
 1360 * ADDRESS TABLE
 1370 *
 1380 ODDMSK .EQ $F0 MASK FOR ELIMINATING UPPER BLOCK (LOWER
NIBBLE)
 1390 EVNMSK .EQ $0F MASK FOR ELIMINATING LOWER BLOCK (UPPER
NIBBLE)
 1400 GRAPH .EQ $FB40 ENABLE LO RES GRAPHICS
 1410 *--------------------------------
 1420 * MACRO DEFINITIONS
 1430 *--------------------------------
 1440 .MA PLY PLY]1
 1450 LDY]1 Y-COORD
 1460 LDA LORESL,Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1449 of 2550

Apple II Computer Info

 1470 STA POINTR
 1480 LDA LORESH,Y
 1490 STA POINTR+1
 1500 TYA
 1510 AND #1 GET LSB
 1520 TAX
 1530 .EM
 1540 *--------------------------------
 1550 .MA PLX PLX]1
 1560 LDY]1 X-COORD
 1570 LDA (POINTR),Y GET THE PAGE BYTE
 1580 AND MASK,X
 1590 ORA COLOR,X
 1600 STA (POINTR),Y PUT IT BACK
 1610 .EM
 1620 *--------------------------------
 1630 .MA NEXT NEXT VAR,LIMIT+1
 1640 INC]1 INCREMENT]1 VARIABLE
 1650 LDA]1 TEST IF]1=]2 YET
 1660 CMP #]2
 1670 BCS :1 YES, LEAVE LOOP
 1680 JMP NEXT.]1 NO, KEEP LOOPING
 1690 :1
 1700 .EM
 1710 *--------------------------------
 1720 .MA GET GET FORMULA,INDEX
 1730 LDY I
 1740 LDA]1L-1,Y
 1750 STA POINTR
 1760 LDA]1H-1,Y
 1770 STA POINTR+1
 1780 LDY]2
 1790 LDA (POINTR),Y
 1800 .EM
 1810 *--------------------------------
 1820 *
 1830 *
 1840 * MAIN LOOP
 1850 *
 1860 ROD LDA $C056 SET LORES GRAPHICS ON
 1870 LDA $C053 MIXED MODE
 1880 JSR GRAPH
 1890 LDA #ODDMSK
 1900 STA MSKODD
 1910 LDA #EVNMSK
 1920 STA MSKEVN
 1930 *--------------------------------
 1940 BIG.LOOP
 1950 JSR $FBE2 *** TESTING BEEP ***
 1960 LDA #0 FOR W=3 TO 50 (0...47)
 1970 STA W
 1980 *---NEXT W COMES HERE------------
 1990 NEXT.W LDA #1 FOR I=1 TO 19
 2000 STA I

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1450 of 2550

Apple II Computer Info

 2010 LDA #39
 2020 STA INVI
 2030 LDA $C030 JUST FOR AUDIBLE FEEDBACK
 2040 *---NEXT I COMES HERE------------
 2050 NEXT.I LDA I SET UP K = I+J
 2060 STA K
 2070 LDA INVI
 2080 STA INVK
 2090 >GET FORM1,W
 2100 STA COLOR1 SAVE IT FOR INNER LOOP
 2110 LDA #0 FOR J=0 TO 19
 2120 STA J
 2130 *---NEXT J COMES HERE------------
 2140 NEXT.J >GET FORM2,J
 2150 CLC ADD THE FORMULAS
 2160 ADC COLOR1 ACC = J*3/(I+3)+I*W/12
 2170 AND #$0F MASK OFF TOP
 2180 STA COLEVN EVEN COLOR
 2190 ASL SHIFT 4 BITS
 2200 ASL
 2210 ASL
 2220 ASL
 2230 STA COLODD ODD COLOR
 2240 *--------------------------------
 2250 >PLY I
 2260 >PLX K
 2270 >PLX INVK
 2280 *--------------------------------
 2290 >PLY INVI
 2300 >PLX K
 2310 >PLX INVK
 2320 *--------------------------------
 2330 >PLY K
 2340 >PLX I
 2350 >PLX INVI
 2360 *--------------------------------
 2370 >PLY INVK
 2380 >PLX I
 2390 >PLX INVI
 2400 *--------------------------------
 2410 INC K
 2420 DEC INVK
 2430 >NEXT J,20
 2440 *--------------------------------
 2450 DEC INVI
 2460 >NEXT I,20
 2470 *--------------------------------
 2480 >NEXT W,48
 2490 *--------------------------------
 2500 LDA $C000 ANY KEY PRESSED?
 2510 BMI ROD4 YES
 2520 JMP BIG.LOOP NO, KEEP LOOPING
 2530 ROD4 STA $C010
 2540 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1451 of 2550

Apple II Computer Info

 2545 .LIST OFF
 2550 *--------------------------------
 2560 *
 2570 * LORES GRAPHICS PAGE
 2580 * BASE ADDRESSES (40 COL)
 2590 *
 2600 LORESL .HS 0000808000008080
 2610 .HS 0000808000008080
 2620 .HS 2828A8A82828A8A8
 2630 .HS 2828A8A82828A8A8
 2640 .HS 5050D0D05050D0D0
 2650 LORESH .HS 0404040405050505
 2660 .HS 0606060607070707
 2670 .HS 0404040405050505
 2680 .HS 0606060607070707
 2690 .HS 0404040405050505
 2700 *
 2710 *--------------------------------
 2720 *
 2730 * TABLE FOR I*W/12
 2740 *
 2750 FORM1L .DA #WI1,#WI2,#WI3,#WI4,#WI5,#WI6,#WI7
 2760 .DA #WI8,#WI9,#WI10,#WI11,#WI12,#WI13,#WI14
 2770 .DA #WI15,#WI16,#WI17,#WI18,#WI19
 2780 FORM1H .DA /WI1,/WI2,/WI3,/WI4,/WI5,/WI6,/WI7
 2790 .DA /WI8,/WI9,/WI10,/WI11,/WI12,/WI13,/WI14
 2800 .DA /WI15,/WI16,/WI17,/WI18,/WI19
 2810 *--------------------------------
 2820 WI1 .HS 000000000000000000010101010101010101010101020202
 2830 .HS 020202020202020202030303030303030303030303040404
 2840 WI2 .HS 000000010101010101020202020202030303030303040404
 2850 .HS 040404050505050505060606060606070707070707080808
 2860 WI3 .HS 000101010102020202030303030404040405050505060606
 2870 .HS 060707070708080808090909090A0A0A0A0B0B0B0B0C0C0C
 2880 WI4 .HS 010101020202030303040404050505060606070707080808
 2890 .HS 0909090A0A0A0B0B0B0C0C0C0D0D0D0E0E0E0F0F0F000000
 2900 WI5 .HS 0101020202030304040505050606070707080809090A0A0A
 2910 .HS 0B0B0C0C0C0D0D0E0E0F0F0F000001010102020303040404
 2920 WI6 .HS 01020203030404050506060707080809090A0A0B0B0C0C0D
 2930 .HS 0D0E0E0F0F00000101020203030404050506060707080809
 2940 WI7 .HS 0102020304040505060707080809090A0B0B0C0C0D0E0E0F
 2950 .HS 0F00000102020303040505060607070809090A0A0B0C0C0D
 2960 WI8 .HS 0202030404050606070808090A0A0B0C0C0D0E0E0F000001
 2970 .HS 0202030404050606070808090A0A0B0C0C0D0E0E0F000001
 2980 WI9 .HS 02030304050606070809090A0B0C0C0D0E0F0F0001020203
 2990 .HS 04050506070808090A0B0B0C0D0E0E0F0001010203040405
 3000 WI10 .HS 0203040505060708090A0A0B0C0D0E0F0F00010203040405
 3010 .HS 06070809090A0B0C0D0E0E0F000102030304050607080809
 3020 WI11 .HS 02030405060708090A0B0B0C0D0E0F000102030405060607
 3030 .HS 08090A0B0C0D0E0F00010102030405060708090A0B0C0C0D
 3040 WI12 .HS 030405060708090A0B0C0D0E0F000102030405060708090A
 3050 .HS 0B0C0D0E0F000102030405060708090A0B0C0D0E0F000102
 3060 WI13 .HS 030405060708090A0B0D0E0F0001020304050607080A0B0C
 3070 .HS 0D0E0F0001020304050708090A0B0C0D0E0F000102040506

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1452 of 2550

Apple II Computer Info

 3080 WI14 .HS 0304050708090A0B0C0E0F0001020305060708090A0C0D0E
 3090 .HS 0F00010304050607080A0B0C0D0E0F01020304050608090A
 3100 WI15 .HS 03050607080A0B0C0D0F00010204050607090A0B0C0E0F00
 3110 .HS 010304050608090A0B0D0E0F00020304050708090A0C0D0E
 3120 WI16 .HS 04050608090A0C0D0E00010204050608090A0C0D0E000102
 3130 .HS 04050608090A0C0D0E00010204050608090A0C0D0E000102
 3140 WI17 .HS 04050708090B0C0E0F010203050608090A0C0D0F00020304
 3150 .HS 0607090A0B0D0E000103040507080A0B0C0E0F0102040506
 3160 WI18 .HS 040607090A0C0D0F000203050608090B0C0E0F0102040507
 3170 .HS 080A0B0D0E000103040607090A0C0D0F000203050608090B
 3180 WI19 .HS 040607090B0C0E0F0103040607090A0C0E0F010204060709
 3190 .HS 0A0C0D0F0102040507090A0C0D0F0002040507080A0C0D0F
 3200 *--------------------------------
 3210 *
 3220 * TABLE FOR J*3/(I+3)
 3230 *
 3240 FORM2L .DA #JI1,#JI2,#JI3,#JI4,#JI5,#JI6,#JI7
 3250 .DA #JI8,#JI9,#JI10,#JI11,#JI12,#JI13,#JI14
 3260 .DA #JI15,#JI16,#JI17,#JI18,#JI19
 3270 FORM2H .DA /JI1,/JI2,/JI3,/JI4,/JI5,/JI6,/JI7
 3280 .DA /JI8,/JI9,/JI10,/JI11,/JI12,/JI13,/JI14
 3290 .DA /JI15,/JI16,/JI17,/JI18,/JI19
 3300 *--------------------------------
 3310 JI1 .HS 00000102030304050606070809090A0B0C0C0D0E
 3320 JI2 .HS 00000101020303040405060607070809090A0A0B
 3330 JI3 .HS 0000010102020303040405050606070708080909
 3340 JI4 .HS 0000000101020203030304040505060606070708
 3350 JI5 .HS 0000000101010202030303040404050506060607
 3360 JI6 .HS 0000000101010202020303030404040505050606
 3370 JI7 .HS 0000000001010102020203030303040404050505
 3380 JI8 .HS 0000000001010101020202030303030404040405
 3390 JI9 .HS 0000000001010101020202020303030304040404
 3400 JI10 .HS 0000000000010101010202020203030303030404
 3410 JI11 .HS 0000000000010101010102020202030303030304
 3420 JI12 .HS 0000000000010101010102020202020303030303
 3430 JI13 .HS 0000000000000101010101020202020203030303
 3440 JI14 .HS 0000000000000101010101010202020202030303
 3450 JI15 .HS 0000000000000101010101010202020202020303
 3460 JI16 .HS 0000000000000001010101010102020202020203
 3470 JI17 .HS 0000000000000001010101010101020202020202
 3480 JI18 .HS 0000000000000001010101010101020202020202
 3490 JI19 .HS 0000000000000000010101010101010202020202
 3500 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1453 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8403:DOS3.3:SATHER.3.16.txt
==

 1000 *SAVE SATHER 3-16
 1010 *--------------------------------
 1020 * HIRES-LORES SPLIT
 1030 * SATHER 3-16
 1040 *--------------------------------
 1050 KYBD .EQ $C000
 1060 STRB .EQ $C010
 1070 GRAPHICS .EQ $C050
 1080 TEXT .EQ $C051
 1090 NOTMIXED .EQ $C052
 1100 PAGE1 .EQ $C054
 1110 LORES .EQ $C056
 1120 *--------------------------------
 1130 * TOGGLE HI/LO-RES EVERY 8515 CYCLES
 1140 *--------------------------------
 1150 .OR $300
 1160 SPLIT LDY PAGE1 HI/LO PAGE 1
 1170 LDY NOTMIXED
 1180 LDY GRAPHICS
 1190 *--------------------------------
 1200 SLEW LDY #39 (2) SLEW SCREEN IF KEY PRESSED
 1210 JSR WAITX10 (390) 6*65+7 CYCLES
 1220 LDY STRB (4)
 1230 *--------------------------------
 1240 KEYCHK LDY KYBD (4) ANY KEY PRESSED?
 1250 BMI SLEW (2 OR 3) YES, SLEW ONE LINE
 1260 ADC #1 (2) MAKE ALTERNATING 0 AND 1
 1270 AND #1 (2)
 1280 TAX (2) REMEMBER, 0 OR 1
 1290 LDY LORES,X (4) LORES IF X=0, HIRES IF X=1
 1300 LDX #8 (2)
 1310 JSR WAITX1K (8000)
 1320 LDY #49 (2)
 1330 JSR WAITX10 (490)
 1340 CLC (2)
 1350 BCC KEYCHK (3) ...ALWAYS
 1360 * ======
 1370 * (8515)
 1380 *
 1390 *--------------------------------
 1400 * TIMING ROUTINES
 1410 *--------------------------------
 1420 *
 1430 *---WAIT 10Y CYCLES--------------
 1440 *---(INCLUDING JSR)--------------
 1450 WAITX10 DEY (2) WAIT Y-REG TIMES 10
 1460 .1 DEY (2)
 1470 NOP (2)
 1480 BNE .2 (3 OR 2)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1454 of 2550

Apple II Computer Info

 1490 RTS (6)
 1500 .2 BNE .1 (3) ...ALWAYS
 1510 *--------------------------------
 1520 *
 1530 *---WAIT 1000X CYCLES------------
 1540 *---(INCLUDING JSR)--------------
 1550 LOOP1K PHA (3)
 1560 PLA (4)
 1570 NOP (2)
 1580 NOP (2)
 1590 WAITX1K LDY #98 (2) WAIT X-REG TIMES 1000
 1600 JSR WAITX10 (980)
 1610 NOP (2)
 1620 DEX (2)
 1630 BNE LOOP1K (3 OR 2)
 1640 RTS (6)
 1650 *--------------------------------
 1660 *--------------------------------
 1670 * HORIZONTAL SPLIT
 1680 * BY BOB SANDER-CEDERLOF
 1690 *--------------------------------
 1700 HSPLIT
 1710 LDA GRAPHICS (4 4)
 1720 LDA KYBD (4 4) SEE IF SHOULD SLEW
 1730 BPL .1 (3 2)
 1740 STA STRB (4)
 1750 BMI .3 (3)
 1760 .1 NOP (2)
 1770 BPL .3 (3)
 1780 .3 JSR DLY12 (12 12)
 1790 NOP (2 2)
 1800 NOP (2 2)
 1810 * --- ---
 1820 * (32 33)
 1830 *
 1840 LDA TEXT (4)
 1850 JSR DLY21 (21)
 1860 CLC (2)
 1870 BCC .2 (3)
 1880 .2 BCC HSPLIT (3)
 1890 * ----
 1900 * (33)
 1910 *
 1920 *--------------------------------
 1930 * JSR DLY.. (6) (6)
 1940 DLY21 PHA (3)
 1950 PLA (4)
 1960 NOP (2)
 1970 DLY12 RTS (6) (6)
 1980 * ---- ----
 1990 * (21) (12)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1455 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:BurnErase.EPROM.txt
==

Burning and Erasing EPROMs.................Bob Sander-Cederlof

We get a lot of questions about EPROM burners and erasers. Perhaps
this list will help...

Burners_______

PROM Blaster System, $119, Apparat, 4401 South Tamarac Parkway,
Denver, CO 80237. Phone (303) 741-1778 or (800) 525-7674. Will burn
most 24-pin EPROMS. Price includes personality modules for 2704,
2708, 2508, 2758, 2716(TI), 2516, 2716, 2532, 2732, 2732A, 68764,
2815, and 2816. ZIF socket for EPROM. No power switch, so you must
power down the Apple whenever you insert or remove an EPROM.

Apple-PROM, $149.95, Computer Technology Associates, 1704 Moon N.E.,
Suite 14, Albuquerque, NM 87112. Phone (505)298-0942. Will burn most
24-pin EPROMS. DIP switch selection for 2708, 2716, 2516, 2532, 2732,
2732A, 2764, 2564. Low insertion force socket for EPROM.

Romwriter, $175, Mountain Computer....(I cannot find any recent ads,
but they are still listed in distributor catalogs). We have heard
that they are no longer manufacturing this card, but there are still
many available. Only burns 2716 (single voltage version, not TI).
ZIF for EPROM. Power switch on card allows you to safely insert and
remove EPROMs without turning off your Apple. I have been using this
one for several years with no problems, although I did rewrite the
software to suit my own tastes and needs.

Quick EPROM Writer, $149, available from Handwell Corp., 4962 El
Camino Real, Suite 119, Los Altos, CA 94022. Phone (415) 962-9265.
Made in Taiwan by "COPAM". Burns both 24- and 28- pin EPROMs. All
software is in firmware on the card. Nice menu select for 2716, 2516,
2532, 2732, 2732A, 2564, 2764, and 27128. No personality modules or
switch selection required, as all configuration is software
controlled. Power is applied to and removed from the ZIF socket under
software control, so that EPROMs can be inserted and removed without
turning off your Apple. Manual includes schematic, pinout diagrams
for EPROMs, and a (sparsely) commented listing of firmware. The
firmware apparently implements an intelligent burning algorithm, which
burns twice as long as it takes to get the byte burned, rather than
using a fixed delay for each byte. The result is much faster burn
times than most other burners listed here.

HM3264, $395, Hollister Microsystems, 5081 Fairview, Hollister, CA
95023. Phone (408) 637-0753. Programs 2716, 2732, 2732A, 2764, and
27128. Henry Spragens uses this one, and says it is very well
designed and built, though expensive. Henry has modified the software
Hollister provides to use the intelligent burn algorithm (it was
pretty slow until he did this). Hollister use the C800-CFFF address

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1456 of 2550

Apple II Computer Info

space, like Mountain Computer does, as a 2048-byte window into the
EPROM. Bank switching on the card lets you program larger EPROMS.
Power switch on card allows you to safely insert and remove chips. A
program switch helps prevent inadvertent programming.

Model EP-2A-79, $169 plus $17 to $35 each for personality modules and
$19 to $40 for software. Optimal Technology, Earlysville, VA 22936.
Phone (804) 973-5482. Programs full range from 2708 through 27128,
plus 38E70 and 8751 MPUs, assuming you purchase the corresponding
personality modules and software. It is not clear to me whether this
plugs directly into an Apple or requires a separate serial interface
card.

Erasers_______

QUV-T8 EPROM Erasers, Logical Devices, 1321E N.W. 65 Place, Fort
Lauderdale, FL 33309. Phone (305) 974-0967 or (800) EE1-PROM (that is
331-7766). Four models, ranging from $49.95 to $124.95. I use and
recommend the $97.50 model, which includes a slide-out tray, anti-
static foam pad, UV indicator lens, timer, and safety interlock
switch.

Spectronics, marketed by JDR Microdevices, 1224 S. Bascom Avenue, San
Jose, CA 95128. Phone (800) 662-6279 or (408) 995-5430. Six models
from $83 to $595. The $83 unit has no timer, all the others do. [
JDR's latest ad in Byte shows eight 250nsec 4116's for $7.95!]

Jade Computer Products carries both brands of EPROM Erasers. Their
price on the least expensive Spectronics is only $69.95.

Jameco Electronics lists an eraser for $79.95.

More Clocks for Apple......................Bob Sander-Cederlof

Some more clock cards have been brought to my attention recently.

Prometheus Versacard includes a clock, and it is compatible with
ProDOS due to its ability to emulate a Thunderclock. List price is
$199.

Naturally, there is a clock on the Mountain Computer CPS/Multifunction
Card. Naturally, because "CPS" stands for Clock Parallel Serial, the
three functions the card supports. I cannot find a current price for
this card.

Practical Peripherals is advertising ProClock, no price mentioned.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1457 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:CRC.txt
==

Cyclic Redundancy Check Subroutine.........Bob Sander-Cederlof

In the May 1983 AAL I wrote about checksums and parity, two ways to
guarantee the integrity of data. In the world of microprocessors, you
may encounter checksums at the end of data records on tape or disk,
and parity bits on characters sent via a modem between computers.
Tacking on parity bits and checksums to data helps in checking whether
the data has been changed. However, there are more secure methods.

The best method I have ever heard of is commonly called Cyclic
Redundancy Check, or CRC for short. Since it appears a lot more
complicated than parity or checksum, it stands to reason it should
have a more complex name. Right? But programmers have a way of
reducing all complexity to three capital letters, so we will call it
CRC.

First, a little review. The kind of parity I most frequently see adds
an 8th bit on the left of a 7-bit value. The parity bit is chosen so
that the total number of one-bits in the 8-bit byte is odd. For
example, the seven bit number 1011010 (which might stand for an ASCII
"Z") becomes 11011010, or $DA. If we run into the value 01011010
($5A), we know there has been an error somewhere. Of course we don't
know which bit is wrong, but we know at least one is because the total
number of one-bits is even.

Checksums I run into are normally 8-bit or 16-bit "sums" of a large
number of bytes or double bytes. I put "sums" in quotation marks
because the checksum may be formed by the exclusive-or operation
rather than true addition. In fact, it usually is. Eight-bit
checksums formed with exclusive-or are in reality a kind of lengthwise
parity. Each bit of the checksum is a parity bit for the column of
bits in that position in the block of data.

In the old days, when dinosaurs first began to associate with herds of
wildly spinning tape drives, you heard the words "vertical parity" and
"longitudinal parity". Vertical parity was in those days a seventh
bit for each six-bit character written on the tape, and longitudinal
parity was a 7-bit character tacked on the end of each tape record,
just like a checksum.

Enough review.

CRC is a much better scheme. A typical CRC implementation would add a
16-bit code to the end of a 256-byte block of data. A simple checksum
would warn you of all single-bit errors, and some errors involving
more than one bit. But CRC could detect all single and double bit
errors, all errors with an odd number of error bits, all bursts of
errors up to 16-bits in a row, and nearly all bursts of 17 or 18 bits
in a row. Wow!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1458 of 2550

Apple II Computer Info

Also, you can even use CRC codes to CORRECT single-bit errors, if you
trade off against some detection of longer error bursts.

You will run into CRC if you look into hard disks, or well- written
modem software.

I like to write well-written programs, so I have been trying to
understand CRC for some time now. A long time ago I had access to a
book called "Error Correcting Codes", which is a classic. But I can't
locate a copy now. I have seen numerous articles on the topic,
especially in Computer Design. There was even one in Byte, Sept. 83,
page 438. But I couldn't make the program in Byte work the way CRC's
are supposed to, and I don't save my old Computer Design magazines.

Bobby Deen to the rescue. Bobby had a copy of a public domain routine
by Paul Hansknecht, of Carpenter Associates, Box 451, Bloomfield
Hills, MI 48013. Actually four little subroutines, to:

 * clear the CRC code value
 * cycle the eight bits of a data byte
 through the CRC algorithm
 * finish the CRC calculation for an outbound message
 * check the CRC bytes of a received message.

What is the basic idea of CRC? You perform an algorithm on each bit
of a block of data, and get a CRC value. You append the CRC value to
the data, and transmit both data and CRC. The receiver performs the
same algorithm on the total record, both the data and the CRC code;
when finished, the result of the receiver's CRC algorithm should be
zero. If not zero, there was an error.

I am speaking in terms of sending and receiving, as in transmitting
data with a modem. It all applies equally to writing and reading
records on a disk, or even in adding check codes to a ROM. The
programs I wrote and will list here merely operate on a buffer in RAM,
so that I can see what is happening. You can extend them to practical
uses from this base.

Which brings us to algorithms. The one Bobby gave me works like this:

The 16-bit value is initialized to zero. Then each bit in the data
buffer is presented one at a time where the input arrow is. The bits
in the 16-bit value are all shifted left one position, and the new
data bit comes in the right end to become the new bit 0. The bit
which shifts out the left end is Exclusive-ORed with the bits now
found in bits 12, 5, and 0. That is, if the bit shifted out was a
zero, nothing happens. If the bit shifted out was a one, exclusive or
the 16 bit value with $1021.

If you understand the math of cyclic polynomials (I don't), this is
supposed to be equivalent to X^16 + X^12 + X^5 + 1. An organization
known to me only as CCITT recommends this polynomial. Another good

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1459 of 2550

Apple II Computer Info

one is reputed to be X^16 + X^15 +X^2 + 1, which is implemented by
changing the exclusive or value from $1021 to $8005.

After all the bits of the data have been processed through the
algorithm, 16 more zero bits are shifted through. After the zeroes,
the value in the CRC register is the CRC code we append to the data.

The "receiver" processes the data the same way, starting by zeroing
the CRC register. But instead of ending by shifting in 16 more
zeroes, the receiver ends by shifting in the CRC code received.

I wanted to see if it really could find all those kinds of errors
mentioned above. I wrote a program which would compute the CRC value
and append it to a data block. Then I wrote another program which
would "receive" the block and print out the resulting CRC value. Then
I modified it to one-by-one toggle each bit position in the entire
block, simulating a single bit error in each bit position in the whole
buffer. My buffer is 256 bytes long, so that means 8*256 or 2048,
different error positions. Actually 2064, because of the two bytes of
CRC.

This way I experimentally "discovered" that the value produced by the
CRC computation on the received message is dependent on the error bit
position. It doesn't matter what the data was. Therefore, if I had a
lookup table of 2064 16-bit entries, I could search through it and
find out which bit position was wrong. There must be an easier way to
figure out which bit position is wrong, but that is one of the things
I still need to learn.

Okay. CRC.BYTE (lines 2890-3060) is a subroutine to process the eight
bits of one byte through the CRC algorithm. CRC.BYTE needs to be
called once for each byte of data in the buffer, plus either two zero
bytes for a SEND routine or two CRC bytes for a RECV routine.

CRC.BUFFER (lines 2700-2850) is a little subroutine which calls
CRC.BYTE once for each byte in the extended buffer. I assume it is
called with PNTR pointing at the first byte in the buffer, and LIMIT
is equated to the byte just beyond the end. The extended buffer
includes either two zeroes on the end, or the two CRC bytes.

SETUP (lines 2610-2690) is a subroutine to initialize the CRC value
register to zeroes, and to set PNTR to point at the beginning of the
buffer.

The SEND and RECV routines at lines 1160-1380 simulate "sending" and
"receiving" the buffer. Note that both SEND and RECV finish by
displaying the calculated CRC value. SEND also stores the calculated
CRC value into the end of the extended buffer. RECV should end up
with a CRC value of $0000, unless there have been bits changed between
calls to SEND and RECV.

TEST.SINGLE.BIT.ERRORS (lines 1390-1800) is the testing subroutine
which I described above. It calls CRC.BUFFER 2064 times. Each time a
different bit is changed. I print out the resulting CRC code each

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1460 of 2550

Apple II Computer Info

time, eight to a line, with the address of the byte containing the
error bit leading the line. Before running TEST.SINGLE.BIT.ERRORS,
you should run SEND to be sure a valid CRC code is installed in the
extended test buffer.

I wrote another test routine which tests all two-bit errors. See
TEST.DOUBLE.BIT.ERRORS, lines 1810-2410. The only trouble is it would
take about 72 hours to run, so I haven't let it go all the way. I
designed it to step through every bit position in two nested loops.
If both loops happen to be at the same bit position, the bit will be
toggled twice resulting in no error. I designed the program to print
the address of the current byte whenever there was no error.

You might experiment with error bursts of various lengths, which
should take no longer than TEST.SINGLE.BIT.ERRORS to run.

I would really be interested in finding out how to go backwards from a
non-zero received CRC value to correct single-bit errors. Is there
some easy way, without either a huge table or a long computation? If
any of you know how, or have an article that tells how, pass it along.

1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1461 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:Disasm.wExec.txt
==

Using EXEC Files with Rak-Ware's DISASM...........Bob Kovacs

[Bob is the author of DISASM, owner of Rak-Ware]

I recently received a phone call from Alan Lloyd who had just
purchased DISASM. He wanted to use it to disassemble the Autostart
ROM so he could customize the code for a particular application. He
was frustrated by the limited editing capabilities of DISASM which
makes you start all over again if you don't catch your mistake before
hitting RETURN. Since he had to enter the starting and ending
addresses of over a dozen data tables, he began searching for an
easier (and less painful) way of entering the data. He decided to try
using an EXEC file with DISASM, and it worked! Well, sort of.

I thought about the problems he ran into, and found out some
interesting things about the S-C Macro Assembler along the way. It
turns out that with the help of a small patch to DISASM that it is
possible to run the entire program via "remote control" using an EXEC
file.

The first step is to create the TEXT file that will later be EXECed.
You can do this in a word processor, if your word processor makes
ordinary DOS text files. Or you can write an Applesoft program to
help you build an array of addresses and the proper answers to the
various prompts in DISASM, and then write a complete EXEC file. I
decided to use the S-C Macro Assembler, because you can use the TEXT
<filename> command to write a text file. You can have the assembler
in the language card, DISASM at $800, the thing to be disassembled
wherever you want, and pop back and forth fast as lightning.

Just enter each line of "source" as if you were responding to the
questions put to you be DISASM. You can even include lines to turn on
display of DOS commands and I/O (MONIOC), and the BLOADing of DISASM
and NAMETABLE.

The S-C Macro Assembler does make one thing difficult. Some of the
questions asked by DISASM require a null line (a RETURN all by
itself), and S-C makes it very hard to get a null line. The first of
these is used to terminate the entry of data table addresses. (Alan
was satisfied to have his EXEC file stop here and take over manually.)

Normally, S-C does not let you enter totally empty lines. Typing a
line number without any following text is one of the ways to DELETE a
line, just as in both BASIC's. After a little experimenting I
discovered a trick to fool the S-C input routine. I still don't get a
totally empty line, but I can put extra RETURNs into an existing line.
Here's how:

 1. Type in the text of all the non-null lines

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1462 of 2550

Apple II Computer Info

 you want in your EXEC file.

 2. Use the EDIT command to insert extra RETURNs
 in the proper places: move the cursor to
 the character position desired, and type
 ctrl-O followed by RETURN to insert each
 extra RETURN. Each extra RETURN will show
 up as an inverse "M" as you are editing.
 Then type one more RETURN to exit the EDIT mode.

The next problem I ran into was the Y/N responses for the "Full Cross-
Reference" and "Generate Text File" questions. DISASM looks directly
at the keyboard for those two responses, so it is blind to any EXEC
file inputs. A five byte patch fixes all that, so you can use EXEC
file as well as keyboard inputs. Just change the code starting at
location $C5A from AD 00 C0 10 FB to 20 18 FD 09 80.

The following arbitrary example illustrates how an EXEC file might
look when typed into the S-C assembler (extra RETURNs are indicated by
<M>):

1000 MONIOC
1010 BLOAD DISASM
1020 BLOAD NAMETABLE
1030 $800G (Use call 2048 to EXEC from BASIC)
1040 2 (select S-C Assembler format)
1050 F800 (starting physical address)
1060 F9B9 (ending physical address)
1070 F800 (starting execution address)
1080 F8CD (table #1 start)
1090 F8CF (table #1 end)
1100 3 (table #1 format)
1110 F962 (table #2 start)
1120 F9A5 (table #2 end)
1130 5 (table #2 format)
1140 F9A6 (table #3)
1150 F9B3
1160 8
1170 F9B4 (table #4)
1180 F9B9
1190 6
1200 <M>2000 (end of tables, and NAMETABLE address)
1210 0 (no printer output)
1220 <M>NYDEMO (RETURN for no single cross reference,
 N for no full cross reference,
 Y for creating a textfile named DEMO)

(Of course, you realize that the explanatory comments in parentheses
are not supposed to be typed.) I advise you to SAVE the lines on a
file as S-C source code, using the SAVE <filename> command. This will
become the copy you re-LOAD when you want to make changes. Then use
the TEXT <filename> command to write out the EXEC file. Finally, EXEC
<filename> to run the disassembly!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1463 of 2550

Apple II Computer Info

When EXECing, the table addresses are entered at a blinding speed that
is almost imposssible to follow. If your text file has an error in it
such that it does not conform to the DISASM input syntax, then things
can go very wrong very fast. For those of you who would rather not
see things move along quite so fast, I suggest adding a small patch to
the COUT vector which provides a short delay. The following program
works fine:

 $300:48 PHA
 A9 80 LDA #$80
 20 A8 FC JSR $FCA8
 68 PLA
 4C F0 FD JMP $FDF0

You can hook this into DOS from the assembler by typing "$36:00 03 N
3EAG". Then change line 1030 above to $812G (or CALL 2048+18 for EXEC
from BASIC) to bypass DISASM's effort to setup the default DOS
vectors.

Or you can even include all this stuff along with the original EXEC
file. Either way, it is easier to use DISASM with an EXEC file when
there are lots of data tables to be entered and you have fumble-
fingers at the keyboard.

From now on, DISASM will be shipped with the five-byte patch indicated
above already installed, and with two sample EXEC files designed to be
EXECed from BASIC.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1464 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 7 April, 1984

In This Issue...

Cyclic Redundancy Check Subroutine 2
More Clocks for Apple. 10
An Evening with Woz. 11
Converting to Intellec Hex Format. 14
Quick DOS Updating vs. MASTER CREATE 19
Burning and Erasing EPROMS 23
Using EXEC Files with Rak-Ware's DISASM. 26
Macro Source Code Now Available. 28

Have we got news for you this month!

First, the simple announcements: We now have a new S-C Macro Cross
Assembler for the Zilog Z-8 microprocessor. For only $32.50 Macro
Assembler owners can add the ability to develop code for this popular
chip.

And some good news for you Corvus hard disk owners: The problem in
the Macro Assembler with having your Target File on a different volume
from your source files is now whipped. Just send in your original
Version 1.1 diskette for a free update.

Now the big story: After repeated requests from many users, we have
decided to make available the complete Source Code for S-C Macro
Assembler Version 1.1. See the last page of this issue for details.

Another product for which we have held back selling source code is the
Double Precision Floating Point package for Applesoft (DPFP). From
now on that product will be sold WITH source code, at the
unforgiveably low price of $50. If you already are a registered owner
of DPFP, or can supply other proof-of- purchase, we will send you the
source code for $15. In case you never heard of DPFP, it is a 2048-
byte &-module that provides 21-digit arithmetic and I/O for Applesoft.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1465 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:Ideas....txt
==

IDEAS FOR V4N7

 MAKE YOUR OWN SHIFTKEY MOD

 INTELLEC FORMATTER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1466 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:Intellec.Hex.txt
==

Converting to Intellec Hex Format..........Bob Sander-Cederlof

The Prom Burners reviewed elsewhere in this issue all were designed
especially for Apple owners, and plug directly into an Apple slot.
Believe it or not, there are other computers.... There are many
brands of industrial grade prom burners which are not specifically
designed for a particular computer host. Most of these connect to a
serial port on whatever host computer you choose.

Many of these expect to receive data in a special format, called by
some the Intellec Hex Paper Tape Format. Or, since at least two of
those capitalized words are rather old- fashioned, the Intellec Hex
Format. Intellec is also used to communicate with a variety of
Emulation hardware, and Development Systems.

The S-C Assemblers produce either binary files or the binary image in
memory of the object code. Can we convert a file or range of RAM to
the Intellec format, and send it via a serial port? Sure, it only
takes a little software....

Let's first simplify a little by assuming we can BLOAD a binary file
first into Apple RAM. Then we only need a program which can translate
and send a block of Apple RAM.

I would like to be able to operate the program by a control-Y monitor
command. I want to type what looks like the memory move ("M")
command: the first address specifies to the target system where the
data should load; the second and third addresses specify the Apple RAM
to be sent. I also would like to be able to specify which slot the
serial port is in, or where in RAM a subroutine to send bytes to the
target system can be found if there is no intelligent interface card.

The program I wrote fulfills those wishes. It loads at $300, and
self-installs a control-Y vector for the monitor. Location $0000 and
$0001 must then be set to the low- and high-bytes of the port, and the
"M"-like control-Y command can be typed. For example:

 :BRUN B.INTELLEC
 :$0:2 0
 :$F800<800.FFF^O^Y

The port value is 0002, which means slot 2. I wrote the program so
that a port value 0001 thru 0007 means a slot number; 0100 thru FFFF
means a subroutine address for your own driver; 0000 means send the
output where it already is directed when you type the control-Y
command. The "^O^Y" on the third line above means "control-O control-
Y", which is how you type a control-Y when you are in the S-C
Assembler. If you type the command from the monitor (*-prompt), omit
the control-O.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1467 of 2550

Apple II Computer Info

I chose to send the data in a form that is compatible with both Intel
and Zilog specifications, as I understand them. I do not have any
equipment which expects this format around here, so I cannot test the
program with live data. If you do, and you find I have mis-
interpreted something, I would sure appreciate some feedback.

There are two types of records sent: data and end-of-file records.
Each record begins with a colon (:) and ends with carriage return
linefeed (CRLF, which is $8D8A). The records consist of five fields.

Record length field: two hex digits which specify how many bytes of
data will be in the data field. Will be 00 for an end-of-file record.
In keeping with Zilog's standard, the maximum length will be 32 bytes.

Address field: four hex digits which specify the load address in a
data record, and the run address in an end-of-file record.

Record type field: 00 for a data record, and 01 for an end-of-file
record.

Data field: two hex digits for each byte of data specified by the
record length field. Empty for an end-of-file record.

Checksum field: two hex digits which represent the complement of the
8-bit sum of the 8-bit bytes which result from converting each pair of
hex digits in the other four fields of this record to 8-bit binary
values.

Lines 1250-1330 of the program set up the control-Y vector for the
Apple Monitor. If this is unfamiliar to you, you might like to read
all about it in the October 1981 issue of Apple Assembly Line, pages
14-17.

Briefly, once set up, a control-Y command will branch to your own
code. It gives a way to extend the Apple monitor. You can type up to
three addresses before the control-Y, and they will be parsed by the
monitor and saved in five two-byte variables (called A1, A2, A3, A4,
and A5). If you type "aaaa<bbbb.cccc" before the control-Y:

 aaaa will be saved in A4 and A5
 bbbb will be saved in A1 and A3
 cccc will be saved in A2

If you wish to pass more than three items of information to the
control-Y routine, you can pre-store them in other locations. In my
routine, you must pre-store the port value in $0000 and $0001.

The whole control-Y routine is shown in just four lines of code:
lines 1470-1500. Of course, these are all subroutine calls.

TURN.ON.OUTPUT.PORT (lines 1510-1650) examines locations $0000 and
0001. If they contain 0000, then the output port is not changed. If
they contain 0001 thru 00FF, the lower three bits are used to select

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1468 of 2550

Apple II Computer Info

an intelligent interface card in slot 1 through 7. A larger value
indicates your own driver routine address.

TURN.OFF.OUTPUT.PORT (lines 2010-2030) sets the output back to the
Apple screen.

SEND.DATA.RECORDS (lines 1660-1890) divides the area to be transmitted
into a number of 32-byte blocks. Each block is send as one data
record. The final block may be less than 32 bytes.

SEND.EOF.RECORD (lines 1900-2000) sends the end-of-file record. The
original loading address is assumed to be the run address. If you
would rather send 0000 for a run address, you can change lines 1960
and 1980 to "LDA #0".

SEND.RECORD (lines 2050-2330) formats and transmits one record of
either type, using the count, address, and type information already
setup by the caller. It also updates A1 and A4 for the next record.

SEND.BYTE (lines 2340-2420) accumulates a byte in the checksum, and
then converts it to two hex digits and transmits it.

You can use this program with any of the S-C Macro Assemblers or Cross
Assemblers, exactly as shown. If you are using some other brand of
assembler, you will probably have to leave the assembler environment
to load this program, load the object code you wish to transmit, and
run the program.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1469 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 1.1 Update.............................$12.50
Source Code for Version 1.1 (on two disks)...........................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984

OBJ.APWRT][F (Don Lancaster, Synergetics).............................$30
Quick-Trace (Anthro-Digital)..............................(reg. $50) $45
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
Amper-Magic (Anthro-Digital)..............................(reg. $75) $65
Amper-Magic Volume 2 (Anthro-Digital).....................(reg. $35) $30
Routine Machine (Southwestern Data Systems)............(reg. $64.95) $60
FLASH! Integer BASIC Compiler (Laumer Research).......................$79
Fontrix (Data Transforms)...$75
Aztec C Compiler System (Manx Software)..................(reg. $199) $180
IACcalc Spreadsheet Program............................(reg. $84.95) $75
 The one we use every day. It's better than Visicalc!
Locksmith 5.0 (Omega MicroWare)........................(reg. $99.95) $90

Blank Diskettes (Verbatim)............2.50 each, or package of 20 for $45
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
ZIF Game Socket Extender (Ohm Electronics)$20

Books, Books, Books..........................compare our discount prices!
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($17.95) $17
 "Incredible Secret Money Machine", Lancaster.............($7.95) $7

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1470 of 2550

Apple II Computer Info

 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Bag of Tricks", Worth & Lechner, with diskette.........($39.95) $36
 "Assembly Lines: The Book", Roger Wagner................($19.95) $18
 "What's Where in the Apple", Second Edition.............($24.95) $23
 "What's Where Guide" (updates first edition).............($9.95) $9
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($17.95) $17
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9

We have small quantities of other great books, call for titles & prices.
Add $1.50 per book for US shipping. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1471 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:New.Source.Code.txt
==

Macro Source Code Now Available.............Bob Sander-Cederlof

We have finally become convinced that we should make the source code
of our S-C Macro Assembler available for purchase. Many of you have
requested, for a long time now. We have resisted, I suppose through a
mild case of the same paranoia which causes so many other software
publishers to use copy protection and license agreements (which we
eschew).

We have absolutely no experiential basis for mistrust. You have all
treated our previous offerings of source code in the most honorable
fashion, and we expect you will continue to do so.

Effective immediately, registered owners of Version 1.1 of the S-C
Macro Assembler can purchase the source code for $100. You will be
able to assemble it to obtain a paper listing, study it to learn
techniques, and modify it to your own tastes. We hope many of you
will make improvements and send them back to us for inclusion in
future versions.

The code resides on two nearly-full diskettes. You need at least two
drives to assemble it. The source is fully commented, and is
organized in a logical easy-to-follow manner.

If you do not yet own Version 1.1, you may purchase or upgrade to it
simultaneously with the purchase of the source code, if you wish. If
you are one of those who purchased the Version 4.0 source code, we
will give you $40 credit toward the purchase of the Macro 1.1 source.

Another product for which we have held back selling source code is the
Double Precision Floating Point package for Applesoft (DPFP). From
now on that product will be sold WITH source code, at the
unforgiveably low price of $50. If you already are a registered owner
of DPFP, or can supply other proof-of-purchase, we will send you the
source code for $15. In case you never heard of DPFP, it is a 2048-
byte &-module that provides 21-digit arithmetic and I/O for Applesoft.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1472 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:Quick.DOS.Updtr.txt
==

Quick DOS Updating vs MASTER.CREATE........Bob Sander-Cederlof

When DOS was young, Apples tended to have varying amounts of memory
under 48K. Some had 16K, which was the standard purchase at a
computer store; others 24K, with one row of 16K and two of 4K; others
32K; and some 48K. Trying to write a DOS image that would fit all of
these memories was quite a task.

Apple introduced the concept of a "master" and a "slave" disk. Master
disks have a generic image of DOS. The boot process first loads the
DOS image as though the machine only has 16K RAM, and then the image
is relocated as high as possible in memory. Slave disks have a frozen
image, already relocated for a particular memory size. The INIT
command always creates a slave disk. In order to make a master disk
you either copy and old master using COPYA (or equivalent copy
program), or you use the MASTER.CREATE program on the DOS System
Master Disk. (For a while the MASTER.CREATE program was called UPDATE
3.3.)

But now! But now you will have a difficult time finding an Apple with
less than 48K memory. After all, the chips are only about a dollar
apiece, or $8 to $12 for a set of eight. Who needs master disks
anymore?

A lot of people think they do, because MASTER.CREATE is there and the
reference manual makes such a big deal about it. And this causes a
problem. What if I want a master disk with a modified DOS?
MASTER.CREATE always reads the DOS image off the system master disk,
and it is unmodified. Well, you can use a disk zap program on a copy
of the system master.

Or, you can forget all about MASTER.CREATE and use my handy- dandy
little patch installer. The program which follows reads the DOS image
from the first 3 tracks into memory from $4000 thru $64FF. Then it
installs patches from a table of patches; this part is almost
identical to the patch installer published in the April 1983 issue of
AAL. Finally it writes the patched DOS back on the first three
tracks. And it does all this so fast you'll think it never happened.

Once you have coded the patches you want, and have tested them, you
can update all your old DOS 3.3 disks almost as fast as you can open
and close the drive door. With slight modifications, you could have
it write the patched image on successive disks without re-reading and
re-patching each time.

Looking at the program, Lines 1200-1240 do the overall job. Just
below that, lines 1260-1290 give two entry points to a block of code
that sets up an IOB for RWTS and then calls RWTS. The only difference
between the two calls is the opcode, either READ or WRITE. Below that

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1473 of 2550

Apple II Computer Info

point, there is a backwards loop that counts from track 2, sector 4,
back to track 0, sector 0. Just for fun, I print out the track and
sector numbers just before reading or writing each sector. (If you
get tired of the fun, simply delete line 1450, the JSR $F941.)

The DOS image on tracks 0, 1, and 2 is not in exactly the same order
as you find it in memory after booting. Therefore the patcher maps
patch addresses to the new locations. Lines 1060-1080 define the
remapping constants. Addresses which in the running image will be
between $B600 and $BFFF will be located from $4000 thru $49FF. If the
original was a master, code which does the relocating part of the boot
will be found from $4A00 thru $4BFF. The code between $9D00 and $B5FF
will be found from $4C00 thru $64FF. The two constants DOS.9D and
DOS.B6 are used in figuring the application points of the patches in
lines 2110, 2350, and 2540.

For a full explanation of lines 1590-1900, see the April 1983 AAL,
pages 24-27. The patch set up to be installed in lines 2020-2580 is
the fast LOAD, BLOAD, RUN, BRUN patch from pages 2-8 of the same
issue.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1474 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:Articles:Woz.Talks.txt
==

An Evening with Woz.................................Bill Morgan

Well, maybe not a whole evening, but a good portion of it. And
certainly not alone, there were about 150 others in the room. But I
did have the opportunity to attend a dinner sponsored by the River
City Apple Corps, in Austin, Texas, and hear a speech by Steve
Wozniak, the designer of our favorite pastime.

Most of Steve's speech was devoted to the history of his involvement
with computers, and the development of the Apple II. That story is
pretty well-known by now, so I won't mention too much of it here. The
most interesting facets to me were hearing how much of a prankster Woz
has always been, and finding out how many features of the Apple II
were motivated only by Steve's desire to write a Breakout game in
BASIC.

My favorite part of the evening was the question-and-answer session
and the informal chats afterward, when we all got our chance to ask
about what we really wanted to know. The first question is mine, the
rest came from all around the room. These are the items that seem to
be of most concern to AAL readers:

How about 65816 machines?

We're heavily involved in a computer based around that chip. But,
final computer becoming a full-fledged product is subject to too many
other variations, such as: you start working on it and you decide,
no, this computer didn't come out right, it's too long, the actual
date it will be done, it's not enough, we have to do a different
product. So, it may be as soon as a few months, and it may be as long
as a couple years before Apple has a product based around that new
processor. Fortunately it is 100% compatible with what we've done
before. Meaning it's a compatible upgrade, and that's what the Apple
II has to do.

When can we expect a portable //e?

It's ... in the works. We're certainly thinking about it and delving
into it and unless the project gets cancelled, probably very soon, but
you can never say for sure until it's out.

How about color on the Macintosh?

There is no color on the Macintosh. ... Laser printers ... (and) ...
LCD displays ... are converging on black and white technology being
appropriate for that product line. There is no color for the
Macintosh at this time.

Do you expect to see the 3 1/2 inch disks on the //e?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1475 of 2550

Apple II Computer Info

Apple believes that it's time to start moving the entire company
toward higher density, better technology, more modern technology disk
drives, and the 3 1/2 inch disk drives from Sony that is in the Lisa
and Macintosh computers now is the proper direction to move in. It'll
be interesting to see how it unfolds over time, as to how the
conversion is made and yet extreme compatibility and support taken
into account. All the software exists today on 5 1/4 inch disks. How
do we get there?

It could be like your second disk can be a nice 3 1/2 inch with a lot
more storage capability, but it may be years before it's proper to
expect bootable software, to be able to boot on 3 1/2 inch drives.
It's a challenge, and it just can't be turned over overnight. We
could come out with a product for the Apple II today that uses a 3 1/2
inch drive as your only drive, and you know you can't run any of your
software on it.... The sales of such a product would not start until
there was a software base established.

What are you personally working on?

I'm interested in the future Apple II families. We're always pursuing
higher performance-to-cost versions of the Apple II. And sometimes
that's achieved by integrating several chips down into one custom
chip, or by looking at accessories that are very commonplace, that
almost everyone's going to buy for their //e. You can build one
version of it with a lot of those accessories in and save a lot of
money in the end, a lot of hassle. There are ways to improve the
cost/performance ratio.

The other end, we're always trying to improve the capabilities of the
machine. How are we going to eventually, someday, challenge IBM in
the multi-megabyte computer world, the high-end? How are we going to
improve performance?, increase screen resolution?, all those sort of
questions, those sort of enhancements. I've been working very closely
on one of those projects in Apple since returning.

... I think we've got to start heading towards a real, more useful
home machine that does have a few of the things that we originally
pursued, that we now believe is only about 10% of our market. Things
such as: speech recognition and speech generation, built in, because
they're relatively inexpensive and easy to do now to some level of
quality. And it should also have more of the home-ish features, the
features that are used in a personal, home environment built in.

So, that's the gist of it. I would like to thank Stuart Greenfield,
of the River City Apple Corps, for the invitation to attend their
dinner, and of course thank you, Woz, for coming to visit us.

One last note: Steve referred to a portable Apple //e as "probably
very soon". Lately we've been hearing about the Apple //c, a 9-pound
machine sporting 128K RAM, one disk drive, built-in serial and
parallel ports, and no slots. Also no monitor, which sounds a little

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1476 of 2550

Apple II Computer Info

strange. Price -- $1200. The //c announcement is expected in late
April.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1477 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:DOS3.3:S.ApplyDOSPatch.txt
==

 1000 *SAVE S.APPLY DOS PATCHES
 1010 *--------------------------------
 1020 PNTR .EQ $00,01
 1030 PATCH .EQ $02,03
 1040 SECTOR.CNT .EQ $04
 1050 *--------------------------------
 1060 DOS.IMAGE .EQ $4000 - $64FF
 1070 DOS.9D .EQ $9D00-DOS.IMAGE-$0C00
 1080 DOS.B6 .EQ $B600-DOS.IMAGE
 1090 *--------------------------------
 1100 GETIOB .EQ $3E3
 1110 RWTS .EQ $3D9
 1120 *--------------------------------
 1130 IOB .EQ $B7E8
 1140 IOB.VOLUME .EQ IOB+3
 1150 IOB.TRACK .EQ IOB+4
 1160 IOB.SECTOR .EQ IOB+5
 1170 IOB.BUFADR .EQ IOB+8
 1180 IOB.OPCODE .EQ IOB+12
 1190 *--------------------------------
 1200 PATCH.DOS
 1210 JSR READ.DOS.IMAGE
 1220 JSR PATCHER
 1230 JSR WRITE.DOS.IMAGE
 1240 RTS
 1250 *--------------------------------
 1260 READ.DOS.IMAGE
 1270 LDA #$01 READ OPCODE
 1280 .HS 2C
 1290 WRITE.DOS.IMAGE
 1300 LDA #$02 WRITE OPCODE
 1310 STA IOB.OPCODE
 1320 LDA #0
 1330 STA IOB.BUFADR
 1340 STA IOB.VOLUME
 1350 LDA #DOS.IMAGE/256+16+16+5-1
 1360 STA IOB.BUFADR+1
 1370 LDA #2 TRACK 2
 1380 STA IOB.TRACK
 1390 LDA #4 SECTOR 4
 1400 STA IOB.SECTOR
 1410 LDA #16+16+5
 1420 STA SECTOR.CNT
 1430 .1 LDA IOB.TRACK
 1440 LDX IOB.SECTOR
 1450 JSR $F941
 1460 JSR GETIOB
 1470 JSR RWTS
 1480 LDY IOB.SECTOR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1478 of 2550

Apple II Computer Info

 1490 DEY
 1500 BPL .2
 1510 LDY #15
 1520 DEC IOB.TRACK
 1530 .2 STY IOB.SECTOR
 1540 DEC IOB.BUFADR+1
 1550 DEC SECTOR.CNT
 1560 BNE .1
 1570 RTS
 1580 *--------------------------------
 1590 PATCHER
 1600 LDA #PATCHES-1
 1610 STA PNTR
 1620 LDA /PATCHES-1
 1630 STA PNTR+1
 1640 LDY #0
 1650
 1660 .1 JSR GET.BYTE LENGTH OF NEXT PATCH
 1670 BEQ .4 FINISHED
 1680 TAX SAVE LENGTH IN X
 1690 JSR GET.BYTE ADDRESS OF PATCH
 1700 STA PATCH
 1710 JSR GET.BYTE
 1720 STA PATCH+1
 1730
 1740 .2 JSR GET.BYTE
 1750 STA (PATCH),Y
 1760 INC PATCH
 1770 BNE .3
 1780 INC PATCH+1
 1790 .3 DEX
 1800 BNE .2
 1810 BEQ .1 ...ALWAYS
 1820
 1830 .4 RTS
 1840 *--------------------------------
 1850 GET.BYTE
 1860 INC PNTR
 1870 BNE .1
 1880 INC PNTR+1
 1890 .1 LDA (PNTR),Y
 1900 RTS
 1910 *--------------------------------
 1920 PATCHES
 1930 *--------------------------------
 1940 * S.FAST LOAD
 1950 *
 1960 * FAST "LOAD" AND "BLOAD"
 1970 *
 1980 * INSTALLED IN UNUSED AREAS IN DOS 3.3:
 1990 * $BA69-$BA95 (45 BYTES FREE)
 2000 * $BCDF-$BCFF (33 BYTES FREE)
 2010 *--------------------------------
 2020 READ.RANGE .EQ $AC96

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1479 of 2550

Apple II Computer Info

 2030 READ.NEXT.SECTOR .EQ $B0B6
 2040 END.OF.DATA.ERROR .EQ $B36F
 2050 RANGE.LENGTH .EQ $B5C1,C2
 2060 RANGE.ADDRESS .EQ $B5C3,C4
 2070 BUFFER.ADDRESS .EQ $B5CB,CC
 2080 SECTOR.COUNT .EQ $B5E4,E5
 2090 BYTE.OFFSET .EQ $B5E6
 2100 *--------------------------------
 2110 .DA #P1.LENGTH,$BA69-DOS.B6
 2120 .PH $BA69
 2130 PATCH1 LDA BYTE.OFFSET LAST BYTE OF
 2140 BNE GO.READ.RANGE A SECTOR?
 2150 LDA RANGE.LENGTH+1 WHOLE SECTOR LEFT?
 2160 BEQ GO.READ.RANGE NO.
 2170 LDA BUFFER.ADDRESS SAVE BUFFER ADDRESS
 2180 PHA
 2190 LDA BUFFER.ADDRESS+1
 2200 PHA
 2210 LDA RANGE.ADDRESS READ DIRECTLY
 2220 STA BUFFER.ADDRESS INTO RANGE
 2230 LDA RANGE.ADDRESS+1
 2240 STA BUFFER.ADDRESS+1
 2250 READ.LOOP
 2260 JSR READ.NEXT.SECTOR
 2270 BCS .1
 2280 JMP PATCH2
 2290 .1 JMP END.OF.DATA.ERROR
 2300 GO.READ.RANGE
 2310 JMP READ.RANGE
 2320 P1.LENGTH .EQ *-PATCH1
 2330 .EP
 2340 *--------------------------------
 2350 .DA #P2.LENGTH,$BCDF-DOS.B6
 2360 .PH $BCDF
 2370 PATCH2 INC SECTOR.COUNT
 2380 BNE .1
 2390 INC SECTOR.COUNT+1
 2400 .1 INC RANGE.ADDRESS+1 NEXT PAGE
 2410 INC BUFFER.ADDRESS+1
 2420 DEC RANGE.LENGTH+1
 2430 BNE .2
 2440 PLA RESTORE BUFFER
 2450 STA BUFFER.ADDRESS+1
 2460 PLA
 2470 STA BUFFER.ADDRESS
 2480 JMP READ.RANGE
 2490
 2500 .2 JMP READ.LOOP
 2510 P2.LENGTH .EQ *-PATCH2
 2520 .EP
 2530 *--------------------------------
 2540 .DA #P3.LENGTH,$ACA5-DOS.9D
 2550 .PH $ACA5
 2560 PATCH3 JMP PATCH1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1480 of 2550

Apple II Computer Info

 2570 P3.LENGTH .EQ *-PATCH3
 2580 .EP
 2590 *--------------------------------
 2600 .DA #0 END OF PATCHES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1481 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:DOS3.3:S.CRCHansKnecht.txt
==

 1000 *SAVE S.CRC GENERATOR (HANSKNECHT)
 1010 *--------------------------------
 1020 BUFFER .EQ $4000
 1030 LIMIT .EQ $4102
 1040 *--------------------------------
 1050 CRC .EQ $00,01
 1060 PNTR .EQ $02,03
 1070 TPTR .EQ $04,05
 1080 TMASK .EQ $06
 1090 SPTR .EQ $07,08
 1100 SMASK .EQ $09
 1110 *--------------------------------
 1120 PRNTAX .EQ $F941
 1130 CROUT .EQ $FD8E
 1140 PRBYTE .EQ $FDDA
 1150 COUT .EQ $FDED
 1160 *--------------------------------
 1170 * SIMULATE SENDING A BUFFER-FULL
 1180 *--------------------------------
 1190 SEND JSR SETUP CLEAR CRC, POINT AT BUFFER
 1200 LDA #0 CLEAR CRC BYTES IN BUFFER
 1210 STA LIMIT-1
 1220 STA LIMIT-2
 1230 JSR CRC.BUFFER COMPUTE CRC OF 258 BYTES
 1240 LDX CRC STORE CRC INTO LAST 2 BYTES
 1250 LDA CRC+1
 1260 STX LIMIT-1
 1270 STA LIMIT-2
 1280 JSR PRNTAX DISPLAY THE CRC
 1290 JMP CROUT <RETURN> AND RETURN
 1300 *--------------------------------
 1310 * SIMULATE RECEIVING A BUFFER-FULL
 1320 *--------------------------------
 1330 RECV JSR SETUP CLEAR CRC, POINT AT BUFFER
 1340 JSR CRC.BUFFER COMPUTE CRC OF 258 BYTES
 1350 LDX CRC DISPLAY CRC IN HEX
 1360 LDA CRC+1
 1370 JSR PRNTAX
 1380 JMP CROUT
 1390 *--------------------------------
 1400 * TRY "RECEIVING" THE 258 BYTES
 1410 * WITH A KNOWN SINGLE-BIT ERROR.
 1420 *--------------------------------
 1430 TEST.SINGLE.BIT.ERRORS
 1440 LDA #BUFFER
 1450 STA TPTR FOR TPTR = BUFFER TO LIMIT
 1460 LDA /BUFFER
 1470 STA TPTR+1
 1480 .1 LDA TPTR+1 PRINT TPTR"-"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1482 of 2550

Apple II Computer Info

 1490 LDX TPTR
 1500 JSR PRNTAX
 1510 LDA #"-"
 1520 JSR COUT
 1530 LDA #$80 FOR TMASK =
 1540 STA TMASK $80,40,20,10,8,4,2,1
 1550 .2 LDY #0
 1560 LDA (TPTR),Y INVERT BIT, MAKING ERROR
 1570 EOR TMASK
 1580 STA (TPTR),Y
 1590 JSR SETUP CLEAR CRC, POINT AT BUFFER
 1600 JSR CRC.BUFFER COMPUTE CRC
 1610 LDA #" " PRINT " "CRC
 1620 JSR COUT
 1630 LDA CRC+1
 1640 LDX CRC
 1650 JSR PRNTAX
 1660 LDA (TPTR),Y FIX ERRONEOUS BIT
 1670 EOR TMASK
 1680 STA (TPTR),Y
 1690 LSR TMASK NEXT TMASK
 1700 BNE .2 ...MORE
 1710 JSR CROUT PRINT<CR>
 1720 INC TPTR NEXT TPTR
 1730 BNE .3
 1740 INC TPTR+1
 1750 .3 LDA TPTR
 1760 CMP #LIMIT
 1770 LDA TPTR+1
 1780 SBC /LIMIT+1
 1790 BCC .1 ...MORE
 1800 RTS
 1810 *--------------------------------
 1820 TEST.DOUBLE.BIT.ERRORS
 1830 LDA #BUFFER
 1840 STA SPTR FOR SPTR=BUFFER TO LIMIT
 1850 LDA /BUFFER
 1860 STA SPTR+1
 1870 *--------------------------------
 1880 .1 LDA #$80 FOR SMASK=80,40,20,10,8,4,2,1
 1890 STA SMASK
 1900 *--------------------------------
 1910 .2 LDA #BUFFER FOR TPTR=BUFFER TO LIMIT
 1920 STA TPTR
 1930 LDA /BUFFER
 1940 STA TPTR+1
 1950 *--------------------------------
 1960 .3 LDA #$80 FOR TMASK=80,40,20,10,8,4,2,1
 1970 STA TMASK
 1980 *--------------------------------
 1990 .4 LDY #0
 2000 LDA (TPTR),Y MAKE FIRST ERROR
 2010 EOR TMASK
 2020 STA (TPTR),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1483 of 2550

Apple II Computer Info

 2030 LDA (SPTR),Y MAKE SECOND ERROR
 2040 EOR SMASK
 2050 STA (SPTR),Y
 2060 JSR SETUP CLEAR CRC, POINT AT BUFFER
 2070 JSR CRC.BUFFER COMPUTE CRC
 2080 LDA (SPTR),Y FIX BOTH ERRORS
 2090 EOR SMASK
 2100 STA (SPTR),Y
 2110 LDA (TPTR),Y
 2120 EOR TMASK
 2130 STA (TPTR),Y
 2140 *--------------------------------
 2150 LDA CRC IF CRC=0, DISPLAY POINTERS
 2160 ORA CRC+1
 2170 BNE .5 ...CRC .NE. 0, SO CONTINUE
 2180 JSR DISPLAY.POINTERS
 2190 *--------------------------------
 2200 .5 LSR TMASK NEXT TMASK
 2210 BNE .4 ...MORE
 2220 INC TPTR NEXT TPTR
 2230 BNE .6
 2240 INC TPTR+1
 2250 .6 LDA TPTR
 2260 CMP #LIMIT
 2270 LDA TPTR+1
 2280 SBC /LIMIT+1
 2290 BCC .3 ...MORE
 2300 *--------------------------------
 2310 LSR SMASK NEXT SMASK
 2320 BNE .2 ...MORE IN THIS BYTE
 2330 INC SPTR NEXT SPTR
 2340 BNE .7
 2350 INC SPTR+1
 2360 .7 LDA SPTR
 2370 CMP #LIMIT
 2380 LDA SPTR+1
 2390 SBC /LIMIT+1
 2400 BCC .1 ...MORE
 2410 RTS
 2420 *--------------------------------
 2430 DISPLAY.POINTERS
 2440 LDA TPTR+1 PRINT TPTR"-"TMASK" ";
 2450 LDX TPTR
 2460 JSR PRNTAX
 2470 LDA #"-"
 2480 JSR COUT
 2490 LDA TMASK
 2500 JSR PRBYTE
 2510 LDA #" "
 2520 JSR COUT
 2530 LDA SPTR+1 PRINT SPTR"-"SMASK
 2540 LDX SPTR
 2550 JSR PRNTAX
 2560 LDA #"-"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1484 of 2550

Apple II Computer Info

 2570 JSR COUT
 2580 LDA SMASK
 2590 JSR PRBYTE
 2600 JMP CROUT
 2610 *--------------------------------
 2620 SETUP LDA #0 CLEAR CRC
 2630 STA CRC
 2640 STA CRC+1
 2650 LDA #BUFFER SET UP PNTR TO BUFFER
 2660 STA PNTR
 2670 LDA /BUFFER
 2680 STA PNTR+1
 2690 RTS
 2700 *--------------------------------
 2710 * COMPUTE CRC FROM (PNTR) THRU LIMIT
 2720 *--------------------------------
 2730 CRC.BUFFER
 2740 .1 LDY #0 SCAN THRU THE BUFFER
 2750 LDA (PNTR),Y
 2760 JSR CRC.BYTE
 2770 INC PNTR NEXT BYTE
 2780 BNE .2
 2790 INC PNTR+1
 2800 .2 LDA PNTR CHECK LIMIT
 2810 CMP #LIMIT
 2820 LDA PNTR+1
 2830 SBC /LIMIT
 2840 BCC .1 MORE TO GO
 2850 RTS
 2860 *--------------------------------
 2870 * COMPUTE CRC ON A SINGLE BYTE
 2880 *--------------------------------
 2890 CRC.BYTE
 2900 LDX #8 DO 8 BITS
 2910 .1 ASL MSB OF BYTE TO CARRY
 2920 ROL CRC
 2930 ROL CRC+1
 2940 BCC .2 --> 0, GET NEXT BIT
 2950 PHA --> 1, TOGGLE POLYNOMIAL BITS
 2960 LDA CRC
 2970 EOR #$21 TOGGLE BITS 0 AND 5
 2980 STA CRC
 2990 LDA CRC+1
 3000 EOR #$10 TOGGLE BIT 12
 3010 STA CRC+1
 3020 PLA
 3030 .2 DEX NEXT BIT
 3040 BNE .1
 3050 RTS
 3060 *--------------------------------
 3070 * FIND WHICH BIT IS BAD IN BUFFER+CRC
 3080 *
 3090 * RESULT IS BIT POSITION IN MESSAGE,
 3100 * WHERE THE FIRST BIT OF THE MESSAGE IS BIT 0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1485 of 2550

Apple II Computer Info

 3110 * AND (IN THIS CASE) THE LAST CRC BIT IS BIT $80F.
 3120 *
 3130 * ALGORITHM BY BRUCE LOVE, NEW ZEALAND
 3140 *--------------------------------
 3150 BIT.NUMBER .EQ $10,11
 3160 DUMMY.CRC .EQ $12,13
 3170 *--------------------------------
 3180 FIND.BAD.BIT
 3190 LDA #$80F TOTAL # BITS - 1
 3200 STA BIT.NUMBER (WE WILL COUNT BACKWARDS)
 3210 LDA /$80F
 3220 STA BIT.NUMBER+1
 3230 LDA #$0001 STARTING POINT FOR BIT FINDER
 3240 STA DUMMY.CRC
 3250 LDA /$0001
 3260 STA DUMMY.CRC+1
 3270 .1 LDA CRC COMPARE RECEIVED CRC WITH
 3280 CMP DUMMY.CRC PROCESSED VALUE;
 3290 BNE .2 IF THEY MATCH, WE HAVE FOUND THE
 3300 LDA CRC+1 BAD BIT.
 3310 CMP DUMMY.CRC+1
 3320 BEQ .4 ...FOUND BAD BIT!
 3330 .2 LDA BIT.NUMBER DECREMENT BIT COUNTER
 3340 BNE .3
 3350 DEC BIT.NUMBER+1
 3360 BMI .5 WENT TOO FAR
 3370 .3 DEC BIT.NUMBER
 3380 ASL DUMMY.CRC
 3390 ROL DUMMY.CRC+1
 3400 BCC .1
 3410 LDA DUMMY.CRC
 3420 EOR #$21
 3430 STA DUMMY.CRC
 3440 LDA DUMMY.CRC+1
 3450 EOR #$10
 3460 STA DUMMY.CRC+1
 3470 JMP .1
 3480 .4 LDA BIT.NUMBER+1 PRINT THE BIT NUMBER
 3490 JSR PRBYTE (IF $8000, THE ERROR WAS
 3500 LDA BIT.NUMBER NOT A SINGLE BIT)
 3510 JSR PRBYTE
 3520 JMP CROUT
 3530 .5 BRK
 3540 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1486 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8404:DOS3.3:S.Intellec.Hex.txt
==

 1000 *SAVE S.INTELLEC HEX FORMATTER
 1010 .OR $300
 1020 *--------------------------------
 1030 PORT .EQ $00,01
 1040 CHECK.SUM .EQ $02
 1050 TYPE .EQ $03
 1060 COUNT .EQ $04
 1070 REMAINING .EQ $05,06
 1080 *--------------------------------
 1090 A1 .EQ $3C,3D
 1100 A2 .EQ $3E,3F
 1110 A3 .EQ $40,41
 1120 A4 .EQ $42,43
 1130 A5 .EQ $44,45
 1140 *--------------------------------
 1150 CTRLY.VECTOR .EQ $3F8 THRU $3FA
 1160 DOS.REHOOK .EQ $3EA
 1170 *--------------------------------
 1180 MON.NXTA4 .EQ $FCB4
 1190 MON.CROUT .EQ $FD8E
 1200 MON.PRHEX .EQ $FDDA
 1210 MON.COUT .EQ $FDED
 1220 MON.SETVID .EQ $FE93
 1230 *--------------------------------
 1240 * SETUP CONTROL-Y
 1250 *--------------------------------
 1260 SETUP LDA #SEND.DATA
 1270 STA CTRLY.VECTOR+1
 1280 LDA /SEND.DATA
 1290 STA CTRLY.VECTOR+2
 1300 LDA #$4C
 1310 STA CTRLY.VECTOR
 1320 RTS
 1330 *--------------------------------
 1340 * *0:XX YY (LO,HI OF PORT)
 1350 * *TARGET<START.END<Y>
 1360 * IF PORT IS 0, DO NOT CHANGE OUTPUT
 1370 * IF PORT IS 1...7, OUTPUT TO SLOT.
 1380 * ELSE OUTPUT TO SUBROUTINE
 1390 * SEND BYTES START...END
 1400 *
 1410 * 1. TURN ON OUTPUT PORT
 1420 * 2. SEND DATA RECORDS
 1430 * 3. SEND EOF RECORD
 1440 * 4. TURN OFF OUTPUT PORT
 1450 *--------------------------------
 1460 SEND.DATA
 1470 JSR TURN.ON.OUTPUT.PORT
 1480 JSR SEND.DATA.RECORDS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1487 of 2550

Apple II Computer Info

 1490 JSR SEND.EOF.RECORD
 1500 JMP TURN.OFF.OUTPUT.PORT
 1510 *--------------------------------
 1520 TURN.ON.OUTPUT.PORT
 1530 LDX PORT+1 HI-BYTE OF PORT SPECIFIED
 1540 BNE .1
 1550 LDA PORT LO-BYTE, MUST BE SLOT
 1560 AND #$07
 1570 BEQ .3 SLOT 0, JUST SCREEN
 1580 ORA #$C0
 1590 BNE .2 ...ALWAYS
 1600 .1 TXA HI-BYTE OF SUBROUTINE
 1610 LDX PORT LO-BYTE OF SUBROUTINE
 1620 .2 STA $37
 1630 STX $36
 1640 JSR DOS.REHOOK
 1650 .3 RTS
 1660 *--------------------------------
 1670 SEND.DATA.RECORDS
 1680 LDA #0
 1690 STA TYPE
 1700 INC A2 POINT JUST BEYOND THE END
 1710 BNE .1
 1720 INC A2+1
 1730 .1 SEC
 1740 LDX #32
 1750 LDA A2 SEE HOW MANY BYTES LEFT
 1760 SBC A1
 1770 STA REMAINING
 1780 LDA A2+1
 1790 SBC A1+1
 1800 STA REMAINING+1
 1810 BNE .2 USE MIN(32,A2-A1+1)
 1820 CPX REMAINING
 1830 BCC .2
 1840 LDX REMAINING
 1850 BEQ .3 ...FINISHED
 1860 .2 STX COUNT
 1870 JSR SEND.RECORD
 1880 JMP .1 ...ALWAYS
 1890 .3 RTS
 1900 *--------------------------------
 1910 SEND.EOF.RECORD
 1920 LDY #0
 1930 STY COUNT
 1940 INY
 1950 STY TYPE
 1960 LDA A5 RUN ADDRESS (LO)
 1970 STA A4
 1980 LDA A5+1 RUN ADDRESS (HI)
 1990 STA A4+1
 2000 JMP SEND.RECORD
 2010 *--------------------------------
 2020 TURN.OFF.OUTPUT.PORT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1488 of 2550

Apple II Computer Info

 2030 JSR MON.SETVID
 2040 JMP DOS.REHOOK
 2050 *--------------------------------
 2060 SEND.RECORD
 2070 LDA #":"
 2080 JSR MON.COUT
 2090 LDA #0
 2100 STA CHECK.SUM
 2110 LDA COUNT
 2120 JSR SEND.BYTE
 2130 LDA A4+1
 2140 JSR SEND.BYTE
 2150 LDA A4
 2160 JSR SEND.BYTE
 2170 LDA TYPE
 2180 JSR SEND.BYTE
 2190 LDA COUNT
 2200 BEQ .2
 2210 LDY #0
 2220 .1 LDA (A1),Y
 2230 JSR SEND.BYTE
 2250 JSR MON.NXTA4
 2260 DEC COUNT
 2270 BNE .1
 2280 .2 SEC
 2285 LDA #0
 2290 SBC CHECK.SUM
 2300 JSR SEND.BYTE
 2310 JSR MON.CROUT
 2320 LDA #$8A LINEFEED
 2330 JMP MON.COUT
 2340 *--------------------------------
 2350 SEND.BYTE
 2360 PHA
 2370 CLC
 2380 ADC CHECK.SUM
 2390 STA CHECK.SUM
 2400 PLA
 2410 JMP MON.PRHEX
 2420 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1489 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:Differences.txt
==

Making a Map of Differences................Bob Sander-Cederlof

Many times I have had two versions of the same program, and wondered
where the differences might be.

For example, where are the differences between DOS 3.2 and 3.3, or
between the various releases of DOS 3.3? And now that Apple has sent
out some pre-releases of a new set of CDEF ROMs for the //e, where are
the differences between these and the current //e ROMs?

I have always used the monitor V command to find them. By doing it a
small piece at a time, I can pinpoint the changes. Then I turn on my
printer and use the L command to document the new version wherever
there are differences. But the piecemeal use of the V command wastes
a lot of time. I wish I had some way of printing a complete map of
all the differences....

What if I had a command which would compare two areas of memory, and
print a map of differences? I could use a "." to represent matching
locations, and a "*" to represent those that do not match. I could
print either 32 or 64 per line: 32 on a 40-column screen, 64 on an
80-column screen or printer. Then I could tell at a glance where all
changes had occurred!

I looked at the October 1981 issue of AAL to find out how to use the
control-Y monitor command to add a new monitor feature. Then I looked
in the listing of the monitor ROM (in my old "red" Apple Reference
Manual) at the code for the V command and the command which prints a
range of memory.

The program on the next page is the result.

Lines 1150-1190 set up the monitor control-Y vector. Booting DOS
stores a branch which effectively makes the control-Y command do
nothing. Storing the address of a real program there allows you to
add your own commands to the monitor. Once installed, typing a
control-Y into the monitor will execute the program named DIFFERENCES.

When we get there, if we typed a full length monitor command of the
form "address1<address2.address3^Y" (by "^Y" I mean control-Y), all
three of the addresses will have been converted to binary and stored
in some standard locations. Address1 will be in $42 and $43, address2
in $3C and $3D, and address3 in $3E and $3F. We will interpret the
addresses to mean to compare the block of memory beginning at address1
with the block running from address2 through address3.

Line 1220 prints a carriage return, the current address value in $3C
and $3D, and a dash. Lines 1230-1280 compare the bytes at

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1490 of 2550

Apple II Computer Info

corresponding positions in the two blocks of memory, and select either
a "." or a "*" accordingly. Line 1290 prints the selected character.

Lines 1300-1310 increment the two base addresses to point to the next
byte in both memory blocks. The new address2 is also compared to
address3 to see if we are finished yet.
Lines 1320-1350 check to see if we have printed all 32 on the current
screen line. If not, back to .1 to print the next one. Otherwise,
all the way back to print a new address and dash, starting a new line.
If you want 64 bytes per line, change the mask in line 1330 from #$1F
to #$3F. You might want to have the program check to see whether 80-
columns is turned on or not, and automatically select #$1F or #$3F
accordingly. You could also check to see if the output hook at $36,
37 is pointing at a printer, and use the longer lines.

Experiment. You'll learn a lot and have a lot of fun at the same
time!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1491 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:DP18.Part.1.txt
==

Decimal Floating Point Arithmetic..........Bob Sander-Cederlof

Perhaps you have wondered why PRINT INT(14.9 * 10) in Applesoft prints
148. This and many other such seeming bugs are a very common
idiosyncrasy in the computer world.

Applesoft use binary floating point format for storing numbers and
doing arithmetic. The number 14.9 is very clean in decimal, but it is
an awful mess in binary. If you look at what is stored in RAM after
doing X=14.9, you will find 84 6E 66 66 66. The first byte, 84, means
the remaining four should be understood as four bits of binary integer
(the "14" of "14.9") and 28 bits of binary fraction (the ".9" part).
The first bit of the second byte is zero, which means the number is
positive. Applesoft stores the sign in this bit position, knowing
that ALL values other than 0.0 will have a 1-bit in this position of
the magnitude.

Just before doing any arithmetic on the value above, Applesoft will
unpack it, separating the sign, binary exponent, and the rest. The
fancy name for the rest is the "mantissa". Writing out the mantissa
for 14.9 we see EE 66 66 66. The first "E" means 14, and the .E666666
is APPROXIMATELY equal to .9. It is actual less than .9 by
.000000066666666...forever. Since the number is not quite 14.9,
multiplying by 10 gives not quite 149. And taking the INT of not-
quite-149 gives the CORRECT answer of 148.

CORRECT, but not what you WANTED or EXPECTED. Right, Ethan? That is
why you will find business software written in Applesoft is full of
little fudge factors. We always need to multiply by enough 10's to
make all pennies into integers, and then round up, and then truncate.

An alternative is to use DECIMAL arithmetic. And guess what: the
6502 has built-in decimal arithmetic. The only trouble is that
Applesoft does not know about it.

I wrote an Applesoft extension package called DPFP which gives
Applesoft 21-digit precision, rather than the normal 9. But it is
still binary, so you still get those round-off and truncation problems
with clearcut decimal fractions. About two and a half years ago I
wrote another Applesoft extension package called DP18. This one is
DECIMAL, and gives 18-digit precision. Bobby Deen helped me flesh it
out with full support for arithmetic expressions and all the math
functions.

Well, it has been hiding on my shelf long enough! I am going to start
publishing it in AAL, a piece at a time. In this issue you will find
the routines for addition and subtraction.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1492 of 2550

Apple II Computer Info

First a word about the way DP18 stores numbers. Since Applesoft uses
five bytes for each floating point value, and since it is relatively
easy to connect to Applesoft using multiples of five bytes, I use ten
bytes for each DP18 value. The first byte holds the sign and exponent
for the value. The remaining nine bytes hold 18 decimal digits, in
BCD format. That is, each digit takes four bits.
The first bit of the first byte is the sign bit. Zero means plus, one
means minus. If the whole first byte is zero, the whole number is
zero. The remaining seven bits of the first byte are the decimal
exponent, excess $40. The value $40 means ten to the zero power. $41
means 10, $42 means 100, and so on. $3F means .1, $3E means .01, and
so on. Thus the exponent range is from $01 through $7F, meaning from
10^-63 through 10^64.

The mantissa bytes are considered to be a decimal fraction. The
number is stored so that the most significant digit is always in the
first nybble of the first byte, and the exponent is adjusted
accordingly. Let's look at a few examples:

 42 14 90 00 00 00 00 00 00 00 = 14.9
 41 31 41 59 26 53 58 97 93 23 = pi
 38 50 00 00 00 00 00 00 00 00 = .000000005
 B8 50 00 00 00 00 00 00 00 00 = -.000000005

Since listing the whole program at once is impossible, I have jumped
right down to the lowest level so you can see how the elementary
functions of addition and subtraction work. I put the origin at $0800
for this listing, but of course the final package will run wherever
you assemble it for. Later we will get into I/O conversions, multiply
and divide, math functions, print using, conversions between Applesoft
and DP18 values, handling expressions with precedence and parentheses,
and the linkage between DP18 and Applesoft.

The listing shown below has two main entry points, DSUB and DADD. You
can guess what they mean! The two values to be operated on will
already be unpacked into DAC and ARG by the time DSUB or DADD is
called. Note that there is one extra byte for each accumulator, so
that series of calculations will carry around an extra two digits of
precision to avoid rounding errors. Unpacking a value into DAC
involves storing the exponent byte in DAC.SIGN and then stripping the
sign bit from DAC.EXPONENT.

DSUB and DADD both begin with the easiest cases, in which at least one
of the values is zero. DSUB complements the value in DAC by merely
toggling the sign bit, and then falls into DADD. In other words, ARG-
DAC is the same as ARG+(-DAC).

DADD then determines which of the two values has the larger exponent.
If necessary, it swaps ARG and DAC: the object is to have the value
with the larger exponent in DAC (unless they are the same). Then the
value in ARG is shifted right N digits, where N is the difference in
the exponents. This what our teachers called "lining up the decimal
points".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1493 of 2550

Apple II Computer Info

The subroutine which shifts ARG right N digits is rather smart.
First, it will just fill ARG with zeros if the shift is 20 or more.
Next, if the shift count is odd, it shifts right one digit position,
or four bits. Then it does a direct move to shift the rest of the
digits by N/2 bytes, and fills in with zero bytes on the left.

Addition is divided into two cases: either both arguments have the
same sign, or they are different. If they are both the same, a simple
addition loop is used. If the result carries into the next digit, DAC
is shifted right one digit and a "1" is installed in the leftmost
digit.

Otherwise, ARG is subtracted from DAC. If both ARG and DAC had the
same exponents, it is possible that the value in ARG is larger than
the value in DAC. In this case the subtracion loop will end with a
"borrow" status, so the result needs to be complemented. I complement
by subtracting from zero. Note that the three loops just described
are all performed with the 6502 in decimal mode (the SED opcode at
line 1490). CLD later reverts back to binary mode. After the
mantissas are combined, the result may have one or more zero digits on
the left. Therefore we go to a NORMALIZE subroutine.

NORMALIZE shifts the mantissa left until a non-zero digit is in the
leftmost digit position. It also decrements the exponent for each
digit-shift. I tried to do the shifting involved as intelligently as
possible.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1494 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 8 May, 1984

In This Issue...

Random Numbers for Applesoft 2
Apple //c. 14
News from Roger Wagner 17
Apple //e ROM Revision 18
65C02 vs the Older Apples. 19
Decimal Floating Point Arithmetic. 20
What That Code Did . 26
Making a Map of Differences. 27

This month we are beginning a series of articles describing a double-
precision decimal arithmetic package for Applesoft. Imagine 18-digit
arithmetic with none of the screwy rounding errors we are used to
seeing in Applesoft's binary arithmetic.

You will also find quick looks at the new Apple //c and a forthcoming
set of revised ROMs for the //e. We finally have the solution to a
three-year-old mystery! You old-timers might remember that in August
of 1981 we published a peculiar little "what does this code do?" item
from John Broderick. Well he has revealed answer at long last.

Oops!

There are a couple of bugs in the Intellec Hex Converter we published
last month. To correct the program you should delete line 2240 (the
INY) and add a LDA #0 at line 2285. That will take care of it! Our
thanks to Chaim Palman, of Calcomp, for pointing out the problems.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1495 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 1.1....................................$92.50
Version 1.1 Update...$12.50
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984

OBJ.APWRT][F (Don Lancaster, Synergetics).............................$30
Quick-Trace (Anthro-Digital)..............................(reg. $50) $45
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
Amper-Magic (Anthro-Digital)..............................(reg. $75) $65
Amper-Magic Volume 2 (Anthro-Digital).....................(reg. $35) $30
Routine Machine (Southwestern Data Systems)............(reg. $64.95) $60
FLASH! Integer BASIC Compiler (Laumer Research).......................$79
Fontrix (Data Transforms)...$75
Aztec C Compiler System (Manx Software)..................(reg. $199) $180
IACcalc Spreadsheet Program............................(reg. $84.95) $75
 The one we use every day. It's better than Visicalc!
Locksmith 5.0 (Omega MicroWare)........................(reg. $99.95) $90

Blank Diskettes (Verbatim)............2.50 each, or package of 20 for $45
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
ZIF Game Socket Extender (Ohm Electronics)$20

Books, Books, Books..........................compare our discount prices!
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1496 of 2550

Apple II Computer Info

 Second edition, with //e information.
 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Bag of Tricks", Worth & Lechner, with diskette.........($39.95) $36
 "Assembly Lines: The Book", Roger Wagner................($19.95) $18
 "What's Where in the Apple", Second Edition.............($24.95) $23
 "What's Where Guide" (updates first edition).............($9.95) $9
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($17.95) $17
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9

We have small quantities of other great books, call for titles & prices.
Add $1.50 per book for US shipping. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1497 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:New.IIe.ROMs.txt
==

Apple //e ROM Revision.....................Bob Sander-Cederlof

Dated March 21, 1984, I received a pair of 2764 ROMs and 12-page
writeup. These are preliminary versions of a new set predicted to be
in general distribution by early next year.

The new //e ROMs are substantially better than the current ones.
Changes include:

Applesoft: modified to work in 80-column mode, and with lower case.

Monitor:

* modified to work with new Mouse ICON characters;

* modified to accept lowercase input;

* location $1F no longer used;

* miniassembler is back;

* search command added;

* IRQ handling substantially modified.

Video Firmware (after PR#3):

* fixed many bugs;

* no more jagged scrolling, now smooth and 30% faster;

* two new escape commands to enable/disable printing
 of control characters;

* SETVID ($FE93) now turns off 80-column mode;

* escape-R removed.

The new IRQ handler should finally make interrupts actually usable on
the Apple. The old problem with location $45 is fixed. The settings
of the various soft-switches which control memory mapping are saved
and the machine is put into a cononical state. The standard IRQ
return sequence will restore the interrupted state of all those
switches.

The total overhead from IRQ-event to your IRQ-subroutine will run from
250 to 300 microseconds, depending on the soft-switch settings. If
you are in a ProDOS environment, you will have to add all the overhead
caused by ProDOS.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1498 of 2550

Apple II Computer Info

Of course, there will be new problems. ProDOS bent over backwards in
a very strange way to solve the $45 problem with interrupts. Now that
it is not necessary, ProDOS should be changed. But it can't be
changed for the new and still work in the old, so.... The new IRQ and
BRK handler also clobbers locations $100 and $101, which is BAD! Both
those locations are used by Applesoft and many other programs!

If you think these changes will impact your work, or want to be
involved in shaking out bugs, you might contact Developer Relations at
Apple (408) 996-1010 and discuss the Certified Apple Developer
program. I think it is because I am one of those that I received this
material.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1499 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:Random.Numbers.txt
==

Random Numbers for Applesoft...............Bob Sander-Cederlof

The RND function in Applesoft is faulty, and many periodicals have
loudly proclaimed its faults. "Call APPLE", Jan 83, pages 29-34,
tells them in "RND is Fatally Flawed", and presents an alternative
routine which can be called with the USR function.

First, the flaws: 1) the initialization code fails to preset all five
bytes of the seed value (only the first four of five are loaded); 2)
the RND code uses a poor algorithm, and depends on "tweaks" to make
the numbers more random; 3) the RND code does not properly implement
the algorithm it appears to be aiming at.

BAD INITIALIZATION. The initialization code is at $F150 in the
Applesoft ROMs. This loop moves the CHRGET subroutine down to $B1-C8,
and is also supposed to copy the random number seed into $C9-CD. The
last byte does not get copied, due to a bug. Changing $F151 from $1C
to $1D would fix it. Most of us don't really care about this bug,
because we are trying to get random numbers for games and the like,
and the more random the better: not copying the last byte could make
the numbers generated a little more random from one run to the next.
However, some applications in simulation programs require REPEATABLE
sequences of random numbers, so the effect of model changes can be
seen independent of the random number generator.

POOR ALGORITHM. Most generators use an algorithm which makes the next
random number by multiplying the previous one by a constant, and
adding another constant. The result is reduced by dividing by a third
constant and saving the remainder as the next random number. More on
this later. The proper choice of the three constants is critical. I
am not sure whether the Applesoft authors just made poor choices, or
whether the bugs mentioned below drove them to tweaking. Tweaking the
generated value is often thought to produce even more random results.
In fact, according to authorities like Donald Knuth, they almost
always ruin the generator. Applesoft tweaks the generated value by
reversing the middle two bytes of the 32-bit value. Guess what: it
ruins the generator, assuming it was good to start with.

BUGGY ALGORITHM. The congruency algorithm described in words above
will only work properly when integer arithmetic is used. Applesoft
uses floating point arithmetic. Further, Applesoft arithmetic
routines expect five-byte operands. For some reason the constants
used in RND are only four bytes long each. It appears that the
exponents may have been omitted, in the expectation that integer
arithmetic was going to be used. You can see the code for RND at
$EFAE.

If you want to see some non-random features using RND, type in and RUN
the following program:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1500 of 2550

Apple II Computer Info

 10 HGR:HCOLOR=3
 20 X=RND(1)*280:Y=RND(1)*160
 30 HPLOT X,Y
 40 GO TO 20
You will see the Hi-Res screen being sprinkled with dots. After about
seven minutes, but long before the screen is full, new dots stop
appearing. RND has looped, and is replotting the same sequence of
numbers. Another test disclosed that the repetition starts at the
37,758th "random" number.

Mathematicians have developed many sophisticated tests for random
number generators, but Applesoft fails even these simple ones!
Depending on the starting value, you can get the Applesoft generator
in a loop. You never get anywhere near the theoretically possible 4
billion different values.

The Call APPLE article proposes a new algorithm. It comes with
impressive claims and credentials, but I have not found it to be
better than a properly implemented congruential algorithm. The
algorithm multiplies the previous seed by 8192, and takes the
remainder after dividing by 67099547. This is a congruency algorithm:

 X(n+1) = (a * X(n) + c) mod m

 with a=8192, c=0, m=67099547

I re-implemented the Call APPLE algorithm, and my listing follows.
The Call APPLE version would not quite fit in page 3, but mine does
with a little room to spare. I also dug into some other references
and came up with another algorithm, from Knuth. It is also a
congruency, but with a=314159269, c=907633386, and m=2^32. This turns
out to be easier to compute, and according to Knuth it should be
"better". "Better" is in quotes because it is really hard to pin down
what are the most important properties. Anyway this one should have
very good characteristics.

The RND function does three different things, depending on the
argument. You write something like R=RND(X). If X=0, you get the
same number as the previous use of RND produced. If X<0, the absolute
value of X becomes the new seed value. This allows you to control the
sequence when you wish, and also to randomize it somewhat by using a
"random" seed. If X>0, you get the next random number. The value
will always be a positive number less than 1. If you want to generate
a number in a range, you multiply by the width of the range and add
the starting value. For example, to generate a random integer between
1 and 10:

 R = INT(RND(1)*10) + 1

The programs I have written build a little on the options available
with RND. They all begin with a little routine which hooks in the USR
vector. After executing this, you can write R=USR(X), in other words
substitute USR(X) anywhere you would have used RND(X). But I have

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1501 of 2550

Apple II Computer Info

added, following the Call APPLE article, the option to automatically
generate integers in a range based at 0. If 0<X<2, you will get the
next random fraction. If X is 2 or greater than 2, you will get a
random integer between 0 and X-1. Thus you can make a random integer
between 1 and 10 like this:

 R = USR(10) + 1

as well as with:

 R = INT (USR(1)*10) + 1

I wrote a third program which makes a 16-bit random value. This one
uses the seed at $4E and $4F which the Apple increments continuously
whenever the standard monitor input loop is waiting for an input
keystroke. Integer BASIC uses this seed, and as a result is quite
valuable in writing games. My new program gives you all the options
stated above, and is significantly quicker than any of the others. It
uses a=19125, c=13843, and m=2^16 in a standard congruency algorithm.

If you are seriously interested in random numbers, you need to read
and study Donald Knuth. Volume 2 of his series "The Art of Computer
Programming" is called "Seminumerical Algorithms". Chapter 3, pages
1-160, is all about random numbers. (There is only one other chapter
in this volume, all about arithmetic in nearly 300 pages!) Knuth
started the series back in the 60's, with the goal of seven volumes
covering most of what programmers do. He finished the first three by
1972, went back and revised the first one, and then evidently got
sidetracked into typesetting (several books around a typesetting
language he calls "Tex").

Speaking of being sidetracked...!

Knuth ends his chapter with a list of four rules for selecting a, c,
and m for congruency algorithms. Let me summarize those rules here:

1. The number m is conveniently taken as the word size. In
Applesoft, the floating point mantissa is 32 bits; hence, I chose
m=2^32.

2. If m is a power of 2 (and mine is), pick "a" so that "a mod 8 =
5". This, together with the rules on choosing c below, ensure that
all m values will produced before the series repeats.

3. Pick "a" between m/100 and m-sqrt(m). The binary digits should
NOT have a simple, regular pattern. Knuth recommends taking some
haphazard constant, such as a=3131492621.

4. "c" should be odd, and preferable near "m*.2113248654".

Now for the program listings.

The first listing is for my rendition of Call APPLE's algorithm.
Lines 1220-1280 link in the USR vector. Lines 1370-1450 branch

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1502 of 2550

Apple II Computer Info

according to the value of the argument of the USR function. If the
argument is negative, lines 1550-1620 set up its absolute value as the
new seed. If the argument is zero, the old seed is used without
change, lines 1420-1450. If positive non-zero, lines 1470-1490 set up
the argument as the RANGE.

Lines 1640-1690 calculate the new seed, which will be 8192 times the
old seed, modulo 67099547. 8192 is 2^13, so we can multiply be 13
left shifts. After each shift, if the result is bigger than 67099547,
we subtract that value and keep the remainder. The final result will
be some number smaller than 67099547.

Lines 1700-1770 save the new seed, and then divide it by 67099547 to
get a fraction for the USR function result. Lines 1780-1860 check the
initial argument to see if you wanted a fraction between 0 and 1, or
an integer between 0 and arg-1. If the latter, the fraction is
multiplied by the range and reduced to an integer.

The subroutine named MODULO subtracts 67099547 from the seed value if
it would leave a positive remainder, and then renormalizes the result
into floating point.

Line 2270 defines the initial seed after loading the program to be
1.0. If you want some other seed, change this line or be sure to seed
it with R=USR(-seed) in your Applesoft program.

<<<<listing of S.USRND S-C>>>>>

The second listing is for my 32-bit algorithm based on Knuth's rules.
Again, lines 1210-1270 set up the USR linkage. Lines 1360-1400 decide
what kind of argument has been used. If negative, lines 1470-1590
prepare a new seed value. If zero, the previous value is re-used. If
positive, the argument is the range.

In this version the seed is maintained as a 32-bit integer. Lines
1470-1590 convert from the floating point form of the argument in FAC
to the integer form in SEED. If the argument happens to be bigger
than 2^32, I simply force the exponent to 2^32.

Lines 1600-1690 form the next seed by multiplying by 314159269 and
adding 907633386. The calculation is done in a somewhat tricky way.
Essentially it involves loading 907633386 into the product register,
and then adding the partial products of 314159269*seed to that
register. The tricks allow me to do all that with a minimum of
program and variable space, and I hope with plenty of speed. I
understood it all this morning, but it is starting to get hazy now.
If you really need a detailed explanation, call me some day. The
modulo 2^32 part is automatic, because bits beyond 32 are thrown away.

Lines 1700-1780 load the seed value into FAC and convert it to a
floating point fraction.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1503 of 2550

Apple II Computer Info

Lines 1790-1870 check the range requested. If less than 2, the
fraction is returned as the USR result. If 2 or more, the fraction is
multiplied by the range and integerized.

<<<S.RANDOM KNUTH here>>>

The third listing is cut down from the second one, to produce a 16-bit
random number. The code is very similar to the program above, so I
will not describe it line-by-line. If you want an optimized version
of this, the multiply especially could be shortened.

<<<S.RANDOM KEYIN>>>

What do you do if you want even more randomness than you can get from
one generator? You can use two together. The best way (for greatest
randomness) is to use one to select values from a table produced by
the other. First generate, say 50 or 100, random values with one
generator. The generate a random value with the second generator and
use it to pick one of the 50 or 100 values. That picked value is the
first number to use. Then replace the picked value with a new value
from the first generator. Pick another value randomly using the
second generator, and so on. This is analogous to two people working
together. The first person picks a bowlful at random from the
universe. The second person picks items one at a time from the bowl.
The first person keeps randomly picking from the universe to replace
the items removed from the bowl by the second person.

You could use the 16-bit generator to pick values from a "bowl" kept
full by my 32-bit generator.

Now back to those tests mentioned at the beginning. I am happy to
report that all three of the algorithms listed above completely fill
the hi-res screen, no holes left, eventually.

By the way, the August 1981 AAL contained an article about the Integer
BASIC RND function, and how to use it from assembly language.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1504 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:S.IIc.65C02.txt
==

65C02 vs the older Apples...................Bob Sander-Cederlof

A few months ago we reported that apparently 2-MHz versions of the
65C02 chip worked in Apple IIs and II Plusses. (Even 1-MHz versions
work in //e's.) Bob Stout was our source: he tried it, it worked,
and he told us so.

Based on Bob's good luck, Stephen Bach tried it, it did not work, and
he told us so. Steve and Bob got together, and it seems that the 2-
MHz parts work in some IIs and II Plusses, but not all. "Try it and
see" seems to be the only definitive answer.

By the way, you can get the 65C02 from Hamilton/Avnet and several
other distributors for under $15 each. The 1MHz version is under $10
from Western Design Center. There is no incentive for dealers to get
into the distribution of chips like this, because quantity price
breaks depend on volumes in the thousands.

If you are having trouble finding a distributor, call Rockwell
International's sales office; they might sell to you directly, point
you to a distributor, or even give you a free sample. If not
Rockwell, then try GTE or NCR, who also manufacture the 65C02, albeit
without the extra 32 instructions Rockwell inserted. Here are some
phone numbers for Rockwell:

 California: (714) 833-4655
 Texas: (214) 996-6500
 Illinois: (312) 297-8862
 New Jersey: (609) 596-0090
 Tokyo: (03) 265-8806
 West Germany:(089) 857-6016
 England: (01) 759-9911

You might possibly find these chips at Apple dealers or repair centers
in the near future, because it is being used in the Apple //c. Apple
is apparently not using the Rockwell version, because the BYTE article
about the //c says the chip has 27 new opcodes. This is the total
count of new opcodes including the new addressing modes added by the
65C02 offered by NCR, GTE, Western Design, and others. The Rockwell
version adds an additonal 32. Those 32 are NOT in the 65802 or 65816,
so chasing after them will lead you into dead-end streets.

If you are able to wait, the 65802 and 65816 far surpass the 65C02.
You can order samples from Western Design Center, (602)962-4545, at
$95 each. Originally expected in January, they are now targeting June
15th.

The Apple //c..............................Bob Sander-Cederlof

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1505 of 2550

Apple II Computer Info

In August 1977 I walked into CompuShop with checkbook in hand, hoping
to fill a void in my life by (finally) buying my own personal
computer. I didn't know one brand from another, but there was a 4K
Apple II running a color demo in lo-res graphics that caught my eye.
I bought it. My toy, because I certainly could think of no possible
way to consider it more than a toy. The serial number is 219, and I
am using it to write this article. By the way, the other brands that
were at CompuShop in 1977 are now all out of business.

The price for 4K was $1298; I got 4K extra RAM and paid $1348 plus
sales tax. No software. No CRT. No floating point BASIC. No slick
manuals. About 45 pages of mimeographed notes was the total
documentation package. I had to build a modulator kit that afternoon
so I could hook it up to my TV set. The only other connection which
seemed of any use was the cassette tape, which several hundred of you
may remember. The store gave me a cassette containing the color demo
and Woz's Breakout game. That was all there was! Eight empty slots,
and absolutely nothing on the market to plug into them. Not even
enough memory for hi-res graphics, which I did not even know existed.
Absolutely no software for sale from any vendor.

I have spent a lot of time on this Apple. And money. And it is not
JUST a toy any more! It has Applesoft on the motherboard, with 48K
RAM. Slot 0 has an STB 128K RAM card (the best, in my opinion). All
the other slots are full, but with what depends on the work for the
day.

Now there is the Apple //c. $1295 buys you 128K RAM, Applesoft BASIC,
a disk drive, and ProDOS! Probably over 10,000 programs on the market
which will run in it, and many more to come. Built-in interfaces
including two serial ports, mouse, disk controller, 80-columns, many
video options, and more. The most often purchased interfaces are all
there, enough to fill five slots in an older Apple. They added a
headphone jack and volume control, too; it is recessed under the left
edge. Using it will let you work later at night without disturbing
light sleepers. You still get a "game" port, but it is a 9-pin D-
socket and doubles as the mouse port. Sorry, no more Cassette port.
A second disk drive can be added, and it costs significantly less than
a second //e drive.

There are two new switches beside the RESET switch, labeled 40/80 and
Keyboard. The first switches between 40 and 80 columns. The second
selects QWERTY or Dvorak keyboard arrangement. Think a while of the
implications to future generations of including THAT switch. The
40/80 switch is really just connected to what used to be cassette
input $C060. You can read the switch position like the firmware does,
by looking at the sign bit of that byte.

Until now all Apple game ports had four analog inputs, four switch
outputs, and three switch inputs. The //c has only two analog inputs,
and no switch outputs. The three switch inputs remain, with switch
two dedicated to the mouse button. The other two analog input
addresses are used as single bits to read the mouse X and Y direction.
The four output bits are now used to control various interrrupt modes.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1506 of 2550

Apple II Computer Info

An interesting new softswitch input is at $C077. If bit 7 of the byte
is 1, the current line being stroked on the screen is graphics; if 0,
it is text. People like Bob Bishop, Don Lancaster, and Bill Budge
probably already have figured out fantastic new tricks using this bit.

The power supply is now in a little box that is part of the power
cord. 115 volts AC in, 12 volts DC out. The rest of the supply
voltages derived inside the case. There will be a battery pack option
later. And how about an adapter for running in the car?

The video output capability is phenomenal. Now you get all the
American and European options built in. One connector gives you the
NTSC we are all used to. Another gives you RF-modulated form for an
American TV set. You also get RGB and various European standards.
The 15-pin video connector also gives you an audio signal and various
timing signals.

The ROM in the //c is VERY different. The differences include serial
port and mouse firmware, better interrupt handling, the improvements
made in the new //e ROMs, no more self-test program, and extensions to
the disassembler (monitor L-command) for the 65C02 chip.

It is getting to be quite a chore for software to distinguish which
kind of Apple II it is in. Here is a chart showing Apple's official
ID bytes:

$FBB3 $FB1E $FBC0 Environment

 $38 Old (Original) Apple][
 $EA $AD Apple][Plus Autostart
 $EA $8A Apple /// Emulation
 $06 $EA Apple //e
 $06 $E0 New Apple //e ROM
 $06 $00 Apple //c

Interrupts are used extensively by the mouse firmware. A keyboard
interrupt plus firmware implements a 128-character type-ahead buffer.

All this talk about mouse support leads me to make one clarification.
You don't get a mouse unless you pay an extra $100. The firmware and
interface are built-in, but the actual device is optional.

By the way, besides the 16 memory chips there are and only 21 other
chips. More special chips, including IWM (Integrated Woz Machine, the
disk controller); GLU (General Logical Unit); and TMG (Timing
Generator). Compare the total 37 chips with about 50 in the
Macintosh, and more than 90 in the IBM PCjr. Most of the chips are
soldered in, but a few still sit in sockets.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1507 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:That.Code.Did.txt
==

What That Code Did.........................Bob Sander-Cederlof

Way back in August 1981 I published a short article by John Broderick
titled "What Does This Code Do?" Well, John never did tell us. But
in the May 1984 Nibble, page 115, he finally has let the cat out of
the bag. I think this article has probably been banging around the
Nibble office for some time now, because John hasn't done anything
with Apple's in quite a while. He developed a super fast accounting
program in Apple II assembly language, then re-wrote the whole thing
for the Sage 68000-based system. Last I heard he was in the IBM
world.

The code he gave us three years ago was five bytes long:

 BRK
 PLA
 PLA
 PLA
 RTS

As published in Nibble, it is a little longer:

 BREAK BRK
 NOP
 PLA
 PLA
 JSR $FF3F
 RTS

Boiling it all down, John used this code during debugging sessions.
By putting a JSR to the 8-byte program he can effect a clean
breakpoint. Clean, in that he can use the monitor "G" command to
continue execution after the BRK.

When JSR BREAK is executed, the BRK opcode will send Apple into the
monitor and display the five registers. Their contents will have been
saved at $45 thru $49. The address of the first PLA will also be
saved. Typing the monitor "G" command will continue execution at that
PLA. The two PLA's will pop off the return address the G command put
on the stack, leaving it as it was before the BRK. The JSR $FF3F will
restore the A-register, which the two PLA's clobbered. The the RTS
will return right after the JSR BREAK which started this paragraph.

The original five-byte version was both confusing and erroneous.
Confusing, because the PLA immediately after the BRK is never
executed. BRK seems like a two-byte opcode to the 6502, so the saved
address skips over the following byte. Erroneous, because the A-
register has been changed by the time the RTS is executed. I think I
would amend both of his versions to this:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1508 of 2550

Apple II Computer Info

 BREAK BRK
 NOP
 PLA
 PLA
 LDA $45
 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1509 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:Articles:Wagner.News.txt
==

Some Interesting News

Roger Wagner: well known to most of us as owner of Southwestern Data
Systems, author of "Assembly Lines: The Book", author of several
popular programs in early Apple days, speaker at AppleFests, and so
forth. Roger is branching out.

Last month he incorporated and changed the name of SDS to Roger Wagner
Publishing. Along with the name change, the product packaging has
been changed. After a poll of dealers, they decided to replace the
plush padded binders with a new package design which allows customers
to browse through the manuals, while the diskette and other package
contents are securely kept intact. No more shrink wrap! Simpler
packaging is less expensive, so the prices of some products have been
lowered. And one step further, even more significant: no more copy
protection!

We applaud Roger for taking this step. As I remember it, Roger was
one of the first publishers to use any kind of software protection,
back in the 70's. His scheme included a program on the master disk
which allowed you to make a limited number of back up copies. Now
Roger joins us and a handful of other publishers who refuse to shackle
users with protected software.

Roger has also joined forces with Val Golding (founder and long-time
editor of Call-A.P.P.L.E.) to form Emerald City Publishing, Inc.
Their first project is "The Apple's Apprentice", a magazine aimed at
Apple-teens.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1510 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:ANOTHER.TEST.txt
==

R–’(…1)M–40:ÜC(M)"ó=-R–’(M):N–N»1:ñ1:¢1:∫N;M(C(R)–C(R)»1d2X –
”(RÀ10):Y–R…X 10|<¢Y»2:ñ10 X»1:∫C(R);ÑF´30

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1511 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:Lic.Plate.Game.txt
==

N–0:ÜNC(279):ó$T–0:ÅL–0¡25D-≠L–’(26)ŒL–’(26)ŒL–’(26)ƒ50R(T–
T»1:´30u2∫Á(L»65);:Ç:T–TÀ2:≠Tœ279ƒT–279¨<NC(T)–NC(T)»1:N–N»1:∫" -- "N"
"T:≠‚(…16384)—128ƒ20‚Fπ…16368,0:M–0:F–279:L–0:ÅJ–0¡279:≠NC(J)œMƒM –
NC(J)˜K≠NC(J)œ0ÕJœLƒL–J

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1512 of 2550

Apple II Computer Info

P≠NC(J)œ0ÕJ—FƒF–J! ZÇJ:ë:π49234,0:í34 _ì0,191¡279,191Z
dÅJ–F¡L:ìJ,191 (1…NC(J)ÀM)¡J,191:Çq n≠‚(…16384)—128ƒ110Ö
xπ…16368,0:â:´20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1513 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:More.Rnd.Tests.txt
==

ë:í3:π49234,0*ì’(280),’(192):´204dà:†15Jnç’(40),’(40):´110V»R1–
’(1)u“N–N»1:ñ1:∫N;:≠’(1)—œR1ƒ210Ñ‹∫:∫R1,’(0)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1514 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:S.DIFFERENCES.txt
==

 1000 *SAVE S.DIFFERENCES
 1010 *--------------------------------
 1020 * DISPLAY MAP OF DIFFERENCES
 1030 * IN TWO MEMORY REGIONS
 1040 *
 1050 * ADR1<ADR2.ADR3^Y
 1060 *
 1070 *--------------------------------
 1080 A1 .EQ $3C,3D
 1090 A4 .EQ $42,43
 1100 *--------------------------------
 1110 MON.NXTA4 .EQ $FCB4
 1120 MON.PRA1 .EQ $FD92
 1130 MON.COUT .EQ $FDED
 1140 *--------------------------------
 1150 SETUP LDA #DIFFERENCES
 1160 STA $3F9
 1170 LDA /DIFFERENCES
 1180 STA $3FA
 1190 RTS
 1200 *--------------------------------
 1210 DIFFERENCES
 1220 JSR MON.PRA1 PRINT CR, ADDRESS AND "-"
 1230 .1 LDY #0 COMPARE TWO BYTES
 1240 LDA (A1),Y
 1250 CMP (A4),Y
 1260 BEQ .2 SAME, SELECT FIRST CHAR
 1270 INY DIFF, SELECT 2ND CHAR
 1280 .2 LDA CHARS,Y GET DISPLAY CHAR
 1290 JSR MON.COUT PRINT SAME OR DIFF CHAR
 1300 JSR MON.NXTA4 NEXT ADDRESS AND TEST
 1310 BCS .3 ...FINISHED
 1320 LDA A1 CHECK FOR FULL LINE
 1330 AND #$1F OF 32
 1340 BNE .1 ...FULL YET
 1350 BEQ DIFFERENCES ...FULL
 1360 .3 RTS
 1370 *--------------------------------
 1380 CHARS .AS -/.*/ SAME AND DIFF CHARS
 1390 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1515 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:S.DP18.ADD.SUB.txt
==

 1000 .LIF
 1010 *SAVE S.DP18 ADD & SUB
 1020 *--------------------------------
 1030 * 18-DIGIT DECIMAL FLOATING POINT
 1040 * ADDITION AND SUBTRACTION
 1044 *--------------------------------
 1046 AS.OVRFLW .EQ $E8D5
 1050 *--------------------------------
 1060 DAC .BS 12
 1070 DAC.EXPONENT .EQ DAC
 1080 DAC.HI .EQ DAC+1
 1090 DAC.EXTENSION .EQ DAC+10
 1100 DAC.SIGN .EQ DAC+11
 1110 *--------------------------------
 1120 ARG .BS 12
 1130 ARG.EXPONENT .EQ ARG
 1140 ARG.HI .EQ ARG+1
 1150 ARG.EXTENSION .EQ ARG+10
 1160 ARG.SIGN .EQ ARG+11
 1170 *--------------------------------
 1180 SWAP.ARG.DAC
 1190 LDY #11 SWAP 12 BYTES
 1200 .1 LDA ARG,Y
 1210 LDX DAC,Y
 1220 STA DAC,Y
 1230 TXA
 1240 STA ARG,Y
 1250 DEY
 1260 BPL .1
 1270 RTS
 1280 *--------------------------------
 1290 * SUBTRACT DAC FROM ARG
 1300 * DAC = ARG - DAC
 1310 *--------------------------------
 1320 DSUB LDA DAC.EXPONENT
 1330 BEQ SWAP.ARG.DAC ARG-0=ARG
 1340 LDA DAC.SIGN
 1350 EOR #$80
 1360 STA DAC.SIGN
 1370 *--------------------------------
 1380 * ADD ARG TO DAC
 1390 * DAC = ARG + DAC
 1400 *--------------------------------
 1410 DADD LDA ARG.EXPONENT
 1420 BEQ .3 DAC+0=DAC
 1430 .1 SEC COMPARE EXPONENTS
 1440 LDA DAC.EXPONENT
 1450 BEQ SWAP.ARG.DAC ARG+0=ARG
 1460 SBC ARG.EXPONENT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1516 of 2550

Apple II Computer Info

 1470 BMI .8 ARG IS LARGER
 1480 JSR SHIFT.ARG.RIGHT.N
 1490 SED SET DECIMAL MODE
 1500 LDA DAC.SIGN COMPARE SIGNS
 1510 EOR ARG.SIGN
 1520 BMI .4 OPPOSITE SIGNS
 1530 *---SAME SIGNS-------------------
 1540 CLC SAME SIGNS, JUST ADD VALUES
 1550 LDY #9 TEN BYTES
 1560 .2 LDA DAC.HI,Y
 1570 ADC ARG.HI,Y
 1580 STA DAC.HI,Y
 1590 DEY
 1600 BPL .2
 1610 CLD BINARY MODE
 1620 BCC .3 NO CARRY
 1630 JSR SHIFT.DAC.RIGHT.ONE
 1640 LDA DAC.HI
 1650 ORA #$10
 1660 STA DAC.HI
 1670 .3 RTS
 1680 *---DIFFERENT SIGNS--------------
 1690 .4 SEC SUBTRACT ARG FROM FAC
 1700 LDY #9 TEN BYTES
 1710 .5 LDA DAC.HI,Y
 1720 SBC ARG.HI,Y
 1730 STA DAC.HI,Y
 1740 DEY
 1750 BPL .5
 1760 BCS .7 NO BORROW
 1770 SEC BORROW, SO COMPLEMENT
 1780 LDY #9
 1790 .6 LDA #0
 1800 SBC DAC.HI,Y
 1810 STA DAC.HI,Y
 1820 DEY
 1830 BPL .6
 1840 LDA ARG.SIGN
 1850 STA DAC.SIGN
 1860 .7 CLD
 1870 JMP NORMALIZE.DAC
 1880 *---SWAP ARG & DAC, TRY AGAIN----
 1890 .8 JSR SWAP.ARG.DAC
 1900 JMP .1
 1910 *--------------------------------
 1920 * SHIFT DAC RIGHT ONE DECIMAL DIGIT
 1930 *--------------------------------
 1940 SHIFT.DAC.RIGHT.ONE
 1950 INC DAC.EXPONENT
 1955 BMI .2
 1960 LDY #4 4 BITS RIGHT
 1970 .1 LSR DAC.HI
 1980 ROR DAC.HI+1
 1990 ROR DAC.HI+2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1517 of 2550

Apple II Computer Info

 2000 ROR DAC.HI+3
 2010 ROR DAC.HI+4
 2020 ROR DAC.HI+5
 2030 ROR DAC.HI+6
 2040 ROR DAC.HI+7
 2050 ROR DAC.HI+8
 2060 ROR DAC.HI+9 EXTENSION
 2070 DEY
 2080 BNE .1
 2090 RTS
 2095 .2 JMP AS.OVRFLW
 2100 *--------------------------------
 2110 * SHIFT ARG RIGHT N DIGITS
 2120 *--------------------------------
 2130 SHIFT.ARG.RIGHT.N
 2140 LDY #9 SET UP FOR 10 BYTES
 2150 CMP #20 DON'T BOTHER IF OFF END
 2160 BCS .4 JUST ENTER ZERO INTO ARG
 2170 LSR TEST SHIFT COUNT ODD OR EVEN
 2180 BCC .2 EVEN
 2190 JSR SHIFT.ARG.RIGHT.ONE
 2200 .2 TAY # BYTES TO SHIFT
 2210 BEQ .6 NONE
 2220 EOR #$FF -(#BYTES+1)
 2230 CLC
 2240 ADC #10 9-#BYTES
 2250 TAX
 2260 LDY #9
 2270 .3 LDA ARG.HI,X
 2280 STA ARG.HI,Y
 2290 DEY
 2300 DEX
 2310 BPL .3
 2320 .4 LDA #0
 2330 .5 STA ARG.HI,Y
 2340 DEY
 2350 BPL .5
 2360 .6 RTS
 2370 *--------------------------------
 2380 * NORMALIZE VALUE IN DAC
 2390 *--------------------------------
 2400 NORMALIZE.DAC
 2410 LDY #-1
 2420 .1 INY NEXT BYTE
 2430 CPY #10
 2440 BCS .7 ...NO MORE BYTES
 2450 LDA DAC.HI,Y
 2460 BEQ .1 ...STILL ZEROES
 2500 *--------------------------------
 2510 .2 TYA TEST BYTE COUNT
 2520 BEQ .5 FIRST BYTE IS NON-ZERO
 2530 LDX #0 POINT X AT FIRST BYTE
 2540 .3 LDA DAC.HI,Y
 2550 STA DAC.HI,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1518 of 2550

Apple II Computer Info

 2560 INX
 2570 INY
 2580 CPY #10
 2590 BCC .3
 2600 *--------------------------------
 2610 LDA #0 FILL REST OF DAC WITH ZEROES
 2620 .4 STA DAC.HI,X
 2630 DEC DAC.EXPONENT ADJUST EXPONENT
 2640 DEC DAC.EXPONENT FOR SHIFT DISTANCE
 2650 INX
 2660 CPX #10
 2670 BCC .4
 2680 *--------------------------------
 2690 .5 LDA DAC.HI SEE IF NEED ONE-DIGIT SHIFT
 2700 AND #$F0
 2710 BNE .6 NO NYBBLE SHIFT NEEDED
 2720 DEC DAC.EXPONENT
 2730 JSR SHIFT.DAC.LEFT.ONE
 2740 .6 LDA DAC.EXPONENT
 2741 BPL .8
 2742 .7 LDA #0
 2743 STA DAC.EXPONENT
 2744 STA DAC.SIGN
 2745 .8 RTS
 2750 *--------------------------------
 2760 SHIFT.DAC.LEFT.ONE
 2770 LDY #4
 2780 .1 ASL DAC.EXTENSION
 2790 ROL DAC.HI+8
 2800 ROL DAC.HI+7
 2810 ROL DAC.HI+6
 2820 ROL DAC.HI+5
 2830 ROL DAC.HI+4
 2840 ROL DAC.HI+3
 2850 ROL DAC.HI+2
 2860 ROL DAC.HI+1
 2870 ROL DAC.HI
 2880 DEY
 2890 BNE .1
 2900 RTS
 2910 *--------------------------------
 2920 * SHIFT ARG RIGHT ONE DECIMAL DIGIT
 2930 *--------------------------------
 2940 SHIFT.ARG.RIGHT.ONE
 2950 LDY #4
 2960 .1 LSR ARG.HI
 2970 ROR ARG.HI+1
 2980 ROR ARG.HI+2
 2990 ROR ARG.HI+3
 3000 ROR ARG.HI+4
 3010 ROR ARG.HI+5
 3020 ROR ARG.HI+6
 3030 ROR ARG.HI+7
 3040 ROR ARG.HI+8

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1519 of 2550

Apple II Computer Info

 3050 ROR ARG.HI+9 EXTENSION
 3060 DEY
 3070 BNE .1
 3080 RTS
 3090 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1520 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:S.RANDOM.KEYIN.txt
==

 1000 *--------------------------------
 1010 *SAVE S.RANDOM KEYIN
 1020 *--------------------------------
 1030 * ALLOWS ACCESS TO THE KEYIN RANDOM VALUE
 1040 *--------------------------------
 1050 .OR $300
 1060 .TF B.RANDOM KEYIN
 1070 *--------------------------------
 1080 NORMALIZE.FAC .EQ $E82E
 1090 FMUL.FAC.BY.YA .EQ $E97F
 1100 STORE.FAC.AT.YX.ROUNDED .EQ $EB2B
 1110 AS.QINT .EQ $EBF2
 1120 AS.INT .EQ $EC23
 1130 *--------------------------------
 1140 USER.VECTOR .EQ $0A THRU $0C
 1150 FAC .EQ $9D THRU $A2
 1160 FAC.SIGN .EQ $A2
 1170 FAC.EXTENSION .EQ $AC
 1180 KEY.SEED .EQ $4E,4F
 1190 *--------------------------------
 1200 LINK LDA #$4C "JMP" OPCODE
 1210 STA USER.VECTOR
 1220 LDA #RANDOM
 1230 STA USER.VECTOR+1
 1240 LDA /RANDOM
 1250 STA USER.VECTOR+2
 1260 RTS
 1270 *--------------------------------
 1280 * R = USR (X)
 1290 * IF X < 0 THEN RESEED WITH ABS(X)
 1300 * IF X = 0 THEN R = REPEAT OF PREVIOUS VALUE
 1310 * IF 0 < X < 2 THEN GENERATE NEXT SEED AND RETURN
 1320 * 0 <= R < 1
 1330 * IF X >= 2 THEN R = INT(RND*X)
 1340 *--------------------------------
 1350 RANDOM
 1360 LDA FAC.SIGN CHECK FOR RESEEDING
 1370 BMI .1 ...YES
 1380 LDA FAC CHECK FOR X=0
 1390 BEQ .6 ...YES, REUSE LAST NUMBER
 1400 *---X --> RANGE------------------
 1410 LDX #RANGE
 1420 LDY /RANGE
 1430 JSR STORE.FAC.AT.YX.ROUNDED $EB2B
 1440 JMP .4
 1450 *---PREPARE SEED-----------------
 1460 .1 LDA #0 MAKE SEED POSITIVE
 1470 STA FAC.SIGN
 1480 LDA FAC LIMIT SEED TO 2^16-1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1521 of 2550

Apple II Computer Info

 1490 CMP #$90
 1500 BCC .2
 1510 LDA #$90
 1520 STA FAC
 1530 .2 JSR AS.QINT $EBF2
 1540 LDA FAC+3
 1550 STA KEY.SEED
 1560 LDA FAC+4
 1570 STA KEY.SEED+1
 1580 *---SEED*19125+13843-------------
 1590 .4 LDX #0
 1600 .5 LDA KEY.SEED,X
 1610 STA MULTIPLIER
 1620 LDA C,X
 1630 STA KEY.SEED,X
 1640 JSR MULTIPLY
 1650 INX
 1660 CPX #2
 1670 BCC .5
 1680 *---LOAD SEED INTO FAC-----------
 1690 .6 LDA #0
 1700 STA FAC+3
 1710 STA FAC+4
 1720 STA FAC.SIGN
 1730 STA FAC.EXTENSION
 1740 LDA #$80
 1750 STA FAC
 1760 LDA KEY.SEED
 1770 STA FAC+1
 1780 LDA KEY.SEED+1
 1790 STA FAC+2
 1800 JSR NORMALIZE.FAC
 1810 *---SCALE TEST-------------------
 1820 LDA RANGE
 1830 CMP #$82 IS RANGE BETWEEN ZERO AND ONE?
 1840 BCC .8 ...YES
 1850 *---SCALE------------------------
 1860 LDA #RANGE
 1870 LDY /RANGE
 1880 JSR FMUL.FAC.BY.YA $E97F
 1890 JSR AS.INT $EC23
 1900 *---RETURN-----------------------
 1910 .8 RTS
 1920 *--------------------------------
 1930 MULTIPLY
 1940 STX BYTE.CNT
 1950 LDY #1
 1960 .1 LDA A,Y
 1970 STA MULTIPLICAND,X
 1980 DEY
 1990 DEX
 2000 BPL .1
 2010 LDY #8
 2020 BNE .2 ...ALWAYS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1522 of 2550

Apple II Computer Info

 2030 *--------------------------------
 2040 .5 CLC DOUBLE THE MULTIPLICAND
 2050 .6 ROL MULTIPLICAND,X
 2060 DEX
 2070 BPL .6
 2080 .2 LSR MULTIPLIER
 2090 BCC .4
 2100 LDX BYTE.CNT
 2110 CLC
 2120 .3 LDA MULTIPLICAND,X
 2130 ADC KEY.SEED,X
 2140 STA KEY.SEED,X
 2150 DEX
 2160 BPL .3
 2170 .4 LDX BYTE.CNT
 2180 DEY
 2190 BNE .5
 2200 RTS
 2210 *--------------------------------
 2220 RANGE .HS 81.00000000
 2230 A .DA /19125,#19125
 2240 C .DA /13843,#13843
 2250 MULTIPLIER .BS 1
 2260 MULTIPLICAND .BS 2
 2270 BYTE.CNT .BS 1
 2280 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1523 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:S.RANDOM.KNUTH.txt
==

 1000 *--------------------------------
 1010 *SAVE S.RANDOM KNUTH
 1020 *--------------------------------
 1030 * FROM KNUTH'S "THE ART OF COMPUTER PROGRAMMING"
 1040 * VOLUME 2, PAGES 155-157.
 1050 *--------------------------------
 1060 .OR $300
 1070 .TF B.RANDOM KNUTH
 1080 *--------------------------------
 1090 NORMALIZE.FAC .EQ $E82E
 1100 FMUL.FAC.BY.YA .EQ $E97F
 1110 STORE.FAC.AT.YX.ROUNDED .EQ $EB2B
 1120 AS.QINT .EQ $EBF2
 1130 AS.INT .EQ $EC23
 1140 *--------------------------------
 1150 USER.VECTOR .EQ $0A THRU $0C
 1160 FAC .EQ $9D THRU $A2
 1170 FAC.SIGN .EQ $A2
 1180 FAC.EXTENSION .EQ $AC
 1190 AS.SEED .EQ $CA THRU $CD
 1200 *--------------------------------
 1210 LINK LDA #$4C "JMP" OPCODE
 1220 STA USER.VECTOR
 1230 LDA #RANDOM
 1240 STA USER.VECTOR+1
 1250 LDA /RANDOM
 1260 STA USER.VECTOR+2
 1270 RTS
 1280 *--------------------------------
 1290 * R = USR (X)
 1300 * IF X < 0 THEN RESEED WITH ABS(X)
 1310 * IF X = 0 THEN R = REPEAT OF PREVIOUS VALUE
 1320 * IF 0 < X < 2 THEN GENERATE NEXT SEED AND RETURN
 1330 * 0 <= R < 1
 1340 * IF X >= 2 THEN R = INT(RND*X)
 1350 *--------------------------------
 1360 RANDOM
 1370 LDA FAC.SIGN CHECK FOR RESEEDING
 1380 BMI .1 ...YES
 1390 LDA FAC CHECK FOR X=0
 1400 BEQ .6 ...YES, REUSE LAST NUMBER
 1410 *---X --> RANGE------------------
 1420 LDX #RANGE
 1430 LDY /RANGE
 1440 JSR STORE.FAC.AT.YX.ROUNDED $EB2B
 1450 JMP .4
 1460 *---PREPARE SEED-----------------
 1470 .1 LDA #0 MAKE SEED POSITIVE
 1480 STA FAC.SIGN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1524 of 2550

Apple II Computer Info

 1490 LDA FAC LIMIT SEED TO 2^32-1
 1500 CMP #$A0
 1510 BCC .2
 1520 LDA #$A0
 1530 STA FAC
 1540 .2 JSR AS.QINT $EBF2
 1550 LDX #3 COPY FAC INTO SEED
 1560 .3 LDA FAC+1,X
 1570 STA SEED,X
 1580 DEX
 1590 BPL .3
 1600 *---SEED*314159269+907633386-----
 1610 .4 LDX #0
 1620 .5 LDA SEED,X
 1630 STA MULTIPLIER
 1640 LDA C,X
 1650 STA SEED,X
 1660 JSR MULTIPLY
 1670 INX
 1680 CPX #4
 1690 BCC .5
 1700 *---LOAD SEED INTO FAC-----------
 1710 .6 LDX #5
 1720 .7 LDA FLT.SEED,X
 1730 STA FAC,X
 1740 DEX
 1750 BPL .7
 1760 LDA #0
 1770 STA FAC.EXTENSION
 1780 JSR NORMALIZE.FAC
 1790 *---SCALE TEST-------------------
 1800 LDA RANGE
 1810 CMP #$82 IS RANGE BETWEEN ZERO AND ONE?
 1820 BCC .8 ...YES
 1830 *---SCALE------------------------
 1840 LDA #RANGE
 1850 LDY /RANGE
 1860 JSR FMUL.FAC.BY.YA $E97F
 1870 JSR AS.INT $EC23
 1880 *---RETURN-----------------------
 1890 .8 RTS
 1900 *--------------------------------
 1910 MULTIPLY
 1920 STX BYTE.CNT
 1930 LDY #3
 1940 .1 LDA A,Y
 1950 STA MULTIPLICAND,X
 1960 DEY
 1970 DEX
 1980 BPL .1
 1990 LDY #8
 2000 BNE .2 ...ALWAYS
 2010 *--------------------------------
 2020 .5 CLC DOUBLE THE MULTIPLICAND

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1525 of 2550

Apple II Computer Info

 2030 .6 ROL MULTIPLICAND,X
 2040 DEX
 2050 BPL .6
 2060 .2 LSR MULTIPLIER
 2070 BCC .4
 2080 LDX BYTE.CNT
 2090 CLC
 2100 .3 LDA MULTIPLICAND,X
 2110 ADC SEED,X
 2120 STA SEED,X
 2130 DEX
 2140 BPL .3
 2150 .4 LDX BYTE.CNT
 2160 DEY
 2170 BNE .5
 2180 RTS
 2190 *--------------------------------
 2200 RANGE .HS 81.00000000
 2210 FLT.SEED .HS 80
 2220 SEED .HS 00.00.00.00
 2230 .HS 00 SIGN
 2240 A .HS 12.B9.B0.A5 314159269
 2250 C .HS 36.19.62.EB 907633386
 2260 MULTIPLIER .BS 1
 2270 MULTIPLICAND .BS 4
 2280 BYTE.CNT .BS 1
 2290 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1526 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:S.USRND.S.C.txt
==

 1000 *--------------------------------
 1010 *SAVE S.USRND S-C
 1020 *--------------------------------
 1030 * FROM CALL APPLE, JAN 1983, PAGE 29-34
 1040 *--------------------------------
 1050 .OR $300
 1060 .TF B.USRND
 1070 *--------------------------------
 1080 NORMALIZE.FAC .EQ $E82E
 1090 FMUL.FAC.BY.YA .EQ $E97F
 1100 LOAD.ARG.FROM.YA .EQ $E9E3
 1110 FDIV.ARG.BY.YA .EQ $EA5C
 1120 LOAD.FAC.FROM.YA .EQ $EAF9
 1130 STORE.FAC.AT.YX.ROUNDED .EQ $EB2B
 1140 COPY.FAC.TO.ARG .EQ $EB66
 1150 AS.INT .EQ $EC23
 1160 *--------------------------------
 1170 USER.VECTOR .EQ $0A THRU $0C
 1180 FAC .EQ $9D THRU $A2
 1190 FAC.SIGN .EQ $A2
 1200 CNTR .EQ $A5
 1210 *--------------------------------
 1220 LINK LDA #$4C "JMP" OPCODE
 1230 STA USER.VECTOR
 1240 LDA #RANDOM
 1250 STA USER.VECTOR+1
 1260 LDA /RANDOM
 1270 STA USER.VECTOR+2
 1280 RTS
 1290 *--------------------------------
 1300 * R = USR (X)
 1310 * IF X < 0 THEN RESEED WITH ABS(X)
 1320 * IF X = 0 THEN R = REPEAT OF PREVIOUS VALUE
 1330 * IF 0 < X < 2 THEN GENERATE NEXT SEED AND RETURN
 1340 * 0 <= R < 1
 1350 * IF X >= 2 THEN R = INT(RND*X)
 1360 *--------------------------------
 1370 RANDOM
 1380 LDA FAC.SIGN CHECK FOR RESEEDING
 1390 BMI .2 ...YES
 1400 LDA FAC CHECK FOR X=0
 1410 BNE .1 ...NO, X=RANGE
 1420 LDA #SEED
 1430 LDY /SEED
 1440 JSR LOAD.ARG.FROM.YA
 1450 JMP .5
 1460 *---X --> RANGE------------------
 1470 .1 LDX #RANGE
 1480 LDY /RANGE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1527 of 2550

Apple II Computer Info

 1490 JSR STORE.FAC.AT.YX.ROUNDED $EB2B
 1500 *---SEED --> FAC-----------------
 1510 LDA #SEED
 1520 LDY /SEED
 1530 JSR LOAD.FAC.FROM.YA $EAF9
 1540 *---PREPARE SEED-----------------
 1550 .2 LDA #0 MAKE SEED POSITIVE
 1560 STA FAC.SIGN
 1570 LDA FAC LIMIT SEED TO 67099547
 1580 CMP #$9A
 1590 BCC .3
 1600 LDA #$9A
 1610 STA FAC
 1620 JSR MODULO
 1630 *---(8192*SEED) MOD 67099547-----
 1640 .3 LDA #13
 1650 STA CNTR
 1660 .4 INC FAC
 1670 JSR MODULO
 1680 DEC CNTR
 1690 BNE .4
 1700 *---SEED/67099547----------------
 1710 LDX #SEED
 1720 LDY /SEED
 1730 JSR STORE.FAC.AT.YX.ROUNDED
 1740 JSR COPY.FAC.TO.ARG $EB66
 1750 .5 LDA #FLT67
 1760 LDY /FLT67
 1770 JSR FDIV.ARG.BY.YA $EA5C
 1780 *---SCALE TEST-------------------
 1790 LDA RANGE
 1800 CMP #$82 IS RANGE BETWEEN ZERO AND ONE?
 1810 BCC .6 ...YES
 1820 *---SCALE------------------------
 1830 LDA #RANGE
 1840 LDY /RANGE
 1850 JSR FMUL.FAC.BY.YA $E97F
 1860 JSR AS.INT $EC23
 1870 *---RETURN-----------------------
 1880 .6 RTS
 1890 *--------------------------------
 1900 MODULO
 1910 LDY #0
 1920 LDA FAC
 1930 CMP #$9A
 1940 BCC .3 < 67099547
 1950 BEQ .1 67099547...
 1960 LDY #4
 1970 .1 SEC
 1980 LDA FAC+4 LSB
 1990 SBC MAN67+3,Y
 2000 PHA
 2010 LDA FAC+3
 2020 SBC MAN67+2,Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1528 of 2550

Apple II Computer Info

 2030 PHA
 2040 LDA FAC+2
 2050 SBC MAN67+1,Y
 2060 PHA
 2070 LDA FAC+1
 2080 SBC MAN67+0,Y
 2090 PHA
 2100 BCC .2 <67099547
 2110 PLA
 2120 STA FAC+1
 2130 PLA
 2140 STA FAC+2
 2150 PLA
 2160 STA FAC+3
 2170 PLA
 2180 STA FAC+4
 2190 JMP NORMALIZE.FAC $E82E
 2200 .2 PLA
 2210 PLA
 2220 PLA
 2230 PLA
 2240 .3 RTS
 2250 *--------------------------------
 2260 RANGE .HS 81.00000000
 2270 SEED .HS 81.00000000
 2280 FLT67 .HS 9A.7FF6E6C0 = 67,099,547
 2290 MAN67 .HS FFF6E6C0
 2300 .HS 7FFB7360
 2310 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1529 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8405:DOS3.3:TEST.USRND.txt
==

ê:í3:X–’(…1))ì’(280),’(192):´20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1530 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:Andromeda.Board.txt
==

Fixing the Andromeda 16K Card.....................Bob Bernard

In the April 1984 Call-APPLE there was a letter from John Wallace
regarding a problem with the Andromeda 16K RAM card. As this card was
the second on the market, first after Apple's (which was bundled with
Pascal), there are probably still tens of thousands in use. Yet the
Andromeda is anathema to some hardware and software.

In particular, it played havoc with John Wallace's copy of Apple PIE
(a popular word processor from yesteryear), and my Lobo 8" floppy
drive controller (another relic, I suppose). Bob S-C tells of running
into the problem too:

"I have an Andromeda board, and I ran into this problem with early
versions of ES-CAPE. Using a STA (or other store) opcode to any soft
switches on the Andromeda card write-protected the card. Using two
stores in a row to try to write-enable the card does no good either.
I had to change all stores to loads or BITs to make it work. Apple's
board accepts either stores or loads, as do all other memory cards I
have tested."

There are probably lots of interfaces and programs out there which
stumble over Andromeda. Wallace details a hardware modification to
the Andromeda board which makes it work the same as all other memory
boards. I found a slightly simpler way, and I recommend that all
Andromeda owners fix their boards as soon as possible.

Remove the 74LS08 chip at board location U13. Bend pin 10 out so that
it sticks straight out, and plug the chip back into its socket so that
pin 10 is on the outside. Solder a small wire to pin 10 (carefully),
and solder the other end of the wire to pin 14 of the same chip. Or,
you can solder to a solder pad pin 14 is connected to, as shown in the
drawing below. (Pin 14 is connected to Vcc, the +5 volts line.)
That's all there is to it.

John Wallace suggests using a 1K resistor rather than a wire, but I
found a wire is sufficient.

With the wire installed, both reads and writes can be used to switch
the card, just like Apple intended it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1531 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:Barkovitch.Mntn.txt
==

The Barkovitch Utilities

Did you notice Dave Barkovitch's ad last month? He has written a very
handy set of utilities for us serious Applers, and sells 'em cheap!
Be prepared to puzzle your way through his admittedly skimpy
documentation, but it is all there.

The I/O Tracer comes in EPROM on a little card that plugs into any
slot 1-7 for only $40.50 (including shipping). I/O Tracer is
essentially a powerful disk ZAP utility, allowing you to
read/write/edit any DOS 3.3 sector. You see an entire sector at once
on the screen, in either hex or ASCII, along with all status
information.

Dave's Single-Step Trace program will help you debug assembly
language. He likes it better than the other commercial varieties of
debuggers, and sells it for only $35.

Any questions, call Dave at (201) 499-0636.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1532 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:CRC.Bad.Bit.txt
==

Finding the Erroneous Bit Using CRC.................Bruce Love
 Hamilton, New Zealand

The April 1984 AAL article about using Cyclic Redundancy Codes posed
the question, "How do you find out which bit was in error, assuming
only one was wrong?" I found a way.

My algorithm assumes that there was one and only one bit wrong in the
entire 258-byte message (256 bytes of original message plus 2 bytes of
CRC). The bits are numbered left-to-right, or most significant bit of
first byte received through the least significant bit of the CRC, 0
through $80F (or 2063, if you prefer decimal).

After receiving the data and CRC, the RECV program has computed a
composite CRC and the result will be $0000 if there were no errors.
If the result is non-zero, it uniquely determines which bit was wrong.
Here is a summary of my algorithm for finding which bit:

 let bit.number = 2063
 let dummy.crc = 1
 -->if dummy.crc = crc, then we found the bit
 | decrement bit.number
 | shift dummy.crc left 1 bit
 | if carry set, EOR with $1021
 ---loop

[The following comments are by Bob Sander-Cederlof.]

The program listing which follows is an addendum to the listing in the
April issue of AAL. Lines 3070 through the end should be appended to
the program in that issue. If you buy the AAL Quarterly Disk, it will
already be there.

The sequence I used for testing the program went like this. First I
assembled the whole program, April's plus the one below. Then I typed
"$4000<F800.F8FFM" to move a copy of the monitor's first page into the
test buffer. I thought this would be "interesting" data to play with.
Then these steps:

 :MGO SEND (fakes sending the buffer)
 1F45 (SEND prints out the CRC for BUFFER)
 :$4000 (see what is there)
 4A (it was $4A)
 :$4000:CA (make a fake error in the 1st bit)
 :MGO RECV
 xxxx (some non-zero value)
 :MGO FIND.BAD.BIT
 0000 (the bad bit was the first bit)
 $4000:4A (restore the correct bit

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1533 of 2550

Apple II Computer Info

Then I tried the same steps on various other bit positions, with
accurate results in every case.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1534 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:DOSology.txt
==

DOSology and DOSonomy......................Bob Sander-Cederlof

The other day I was thinking about the way Apple spells ProDOS. They
jealously guard the spelling, having trademarked the idea of upper-
case "P" and "DOS" with lower-case "ro".

Of course, we all know that "Pro" is a standard prefix, with origins
in the Greek language. In Greek it means "before". I think Apple
derived it from the English word "professional", so that ProDOS means
"professional DOS". Nevertheless, the "pro" even in the word
professional means before, according to the etymologies in
dictionaries.

I took some Greek courses at Dallas Theological Seminary back in 1973
and 1974. I remember very little now, but one thing stuck with me:
prepositions. "Pro" is one, but there are a lot more. What other
interesting DOSses can we invent?

By the way, the preferred pronunciation of DOS rhymes with "boss", not
"gross". If you insist on rhyming with the latter, your pronunciation
has a decided Spanish accent. For you we have invented "UnoDOS",
which is of course two-thirds of a popular product on the IBM-PC, uno-
dos-tres by Lotus. Ha!

The first that came to mind was "ParaDOS". We like it so well, we've
decided to trademark it! It could relate to either paradox or pair-
of-dice or paradise, take your pick. A shrewdly written DOS could
appear as all three at different times to different people.

Bill and I then started to brainstorm, and we can't stop. We've got a
blackboard full of neat names, just waiting for some one to write code
for. We may have stumbled on to some previously-used names, like
SoliDOS and ProntoDOS, but for the most part I think we have cornered
the market.

AmbiDOS MisoDOS PhiloDOS BiblioDOS ViviDOS DiaDOS
PaleoDOS MesoDOS NeoDOS PsychoDOS MoriDOS Dial-a-DOS
ChromoDOS BlancoDOS TechniDOS SomatoDOS DulciDOS AnoDOS
AcriDOS FeloniDOS BaloniDOS FormiDOS MiniDOS CathoDOS
MicroDOS MidiDOS MilliDOS MegaDOS NanoDOS VagaDOS
TeraDOS UniDOS BioDOS StupiDOS TorriDOS FabriDOS
SemiDOS PeriDOS AntiDOS AnteDOS ProsDOS ExoDOS
HypoDOS HyperDOS OvaDOS PupaDOS PropoDOS EnDOS
ArcheDOS StatiDOS DynamoDOS DynaDOS ProtoDOS EschatoDOS
OsteoDOS MultiDOS PuroDOS CardioDOS PyroDOS PrimaDOS
FrigiDOS InterDOS AndroDOS GynoDOS GymnoDOS PseudoDOS
HieroDOS SpiroDOS HelioDOS CycloDOS AutoDOS AggreDOS
ManoDOS ChiroDOS PetroDOS LithoDOS AeroDOS PosiDOS
PlanoDOS LiquiDOS MarbleDOS PedoDOS GraviDOS NegaDOS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1535 of 2550

Apple II Computer Info

PedaDOS GeriaDOS NutriDOS FlexiDOS PleniDOS NecroDOS
VisiDOS InvisiDOS FluoriDOS FloriDOS FaunaDOS PensaDOS
ThanaDOS AgriDOS NaviDOS NovaDOS SpuriDOS MensaDOS
StereoDOS VerbiDOS VermiDOS CineDOS GeoDOS TragiDOS
MonoDOS DuoDOS CobraDOS FerroDOS OxyDOS AfroDOS
EuroDOS NippoDOS FrancoDOS IndoDOS CanaDOS HispanoDOS

Get the idea?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1536 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:DP18.Part.2.txt
==

18-Digit Arithmetic, Part 2................Bob Sander-Cederlof

Feedback on installment one of this series came from as far away as
Sweden. Paul Schlyter, with others, pointed out the omission of three
very important letters. PRINT (14.9*10) indeed prints 149, as
expected. What I meant to say was that PRINT INT(14.9*10) prints 148.

I noticed another error at the top of page 21. The exponent range
runs from 10^-63 thru 10^63, not 10^64.

Paul pointed out that my routines did not check for underflow and
overflow. I did have such checks in another part of the code, as yet
unlisted, but I now agree with him that some checks belong in the
routines printed last month.

The subroutine SHIFT.DAC.RIGHT.ONE is called when a carry beyond the
most significant bit is detected in DADD, at line 1620. If the
exponent is already 10^63, or $7F, this shift right will cause
overflow. That means the sum formed by DADD is greater than 10^63,
and we need to do either of two things. My usual choice, assuming the
routines are being used from Applesoft, is to JMP directly to the
Applesoft ROM overflow error routine, at $E8D5. Another option is to
set the DAC exponent to $7F, and the mantissa to all 9's. To
implement it my way, add these lines:

 1945 BMI .2

 2085 .2 JMP $E8D5

Underflow needs to be tested in the NORMALIZE.DAC subroutine.
Underlofw happens when the exponent falls below 10^-63. The normal
procedure upon underflow is to set the result to zero. Zero values in
DP18 are indicated by the exponent being zero, regardless of the
mantissa value. Delete lines 2400-2480 and line 2730, and enter the
following lines

 2400 LDY #-1
 2410 .1 INY
 2420 CPY #10
 2430 BCS .7
 2440 LDA DAC.HI,Y
 2450 BEQ .1

 2730 .6 LDA DAC.EXPONENT
 2731 BPL .8
 2732 .7 LDA #0
 2733 STA DAC.EXPONENT
 2734 STA DAC.SIGN
 2735 .8 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1537 of 2550

Apple II Computer Info

All these changes will be installed on Quarterly Disk 15.

This month I want to present several pack and unpack subroutines, and
one which rounds the value in DAC according to the value in the
extension byte.

Note that I have just LISTed the subroutines below, rather than
showing the assembly listing, because the program parts need to all be
assembled together before they are meaningful.

There are two "unpack" subroutines, MOVE.YA.DAC and MOVE.YA.ARG. They
perform the "load accumulator" function. There is one "pack"
subroutine, MOVE.DAC.YA, which performs the "store accumulator"
function.

The MOVE routines use a page-zero pair at $5E and $5F. Assuming the
DP18 package will be called from Applesoft via the &-vector, there
will be no page-zero conflicts here.

The subroutines DADD and DSUB from last month, and DMULT and DDIV to
come, all expect two arguments in DAC and ARG and leave the result in
DAC. Assuming there are two packed DP18 value at VAL.A and VAL.B, and
that I want to add them together and store the result in VAL.C, I
would do it this way:

 LDA #VAL.A
 LDY /VAL.A
 JSR MOVE.YA.DAC
 LDA #VAL.B
 LDY /VAL.B
 JSR MOVE.YA.ARG
 JSR DADD
 LDA #VAL.C
 LDY /VAL.C
 JSR MOVE.DAC.YA

Note that MOVE.DAC.YA calls ROUND.DAC before storing the result.
ROUND.DAC checks the extension byte. If the extension byte has a
value less than $50, no rounding need be done. If it is $50 through
$99, the value in DAC should be rounded up. If the higher digits are
less than .999999999999999999, then there will be no carry beyond the
most significant digit, and no chance for overflow. However, if it is
all 9's we will get a final carry and we will need to change the
number to 100000000000000000 and add one to the exponent. In tiny
precision, this is like rounding .995 up to 1.00. If the exponent was
already 10^63, rounding up with a final carry causes overflow, so I
jump to the Applesoft error handler.
 <<<< MOVE listings here>>>>
None of the pack/unpack code is especially tricky, but the same cannot
be said for DMULT. Multiplication is handled "just like you do it
with pencil and paper", but making it happen at all efficiently makes
things look very tricky.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1538 of 2550

Apple II Computer Info

Call DMULT after loading the multiplier and multiplicand into DAC and
ARG (doesn't matter which is which, because multiplication is
commutative). Then JSR DMULT to perform the multiply. The result
will be left in DAC.

Looking at the DMULT code, lines 1040-1070 handle the special cases of
either argument being 0. Anything times zero is zero, and zero values
are indicated by the exponent being zero, so this is real easy.

Lines 1090-1130 clear a temporary register which is 20 bytes long.
This register will be used to accumulate the partial products. Just
in case some of the terminology is losing you, here are some
definitions:

 12345 <-- multiplicand
 x 54321 <-- multiplier

 12345 <-- 1st partial product
 24690 <-- 2nd partial product
 37035 <-- 3rd " "
 49380 <-- 4th " "
 61725 <-- 5th " "

 670592745 <-- product

Lines 1150-1180 form the 20-digit product of the two 10-digit
arguments. I wanted to reduce the number of times the individual
digits have to be isolated, or the accumulators shifted by 4-bits, so
I used a trick. Line 1150 calls a subroutine which multiplies the
multiplicand (in ARG) by all the low-order digits in each byte of the
multiplier (in DAC). In other words, I accumulate only the odd
partial products at this time. Then I shift DAC 4-bits right, which
places the other set of digits in the low-order side of each byte. I
also have to shift the result register, MAC, right 4-bits, and then I
call the MULTIPLY.BY.LOW.DIGITS subroutine again.

Lines 1200-1270 form the new exponent, which is the sum of the
exponents of the two arguments. Since both exponents have the value
$40 added to make them appear positive, one of the $40's has to be
subtracted back out. But before that, if the sum is above $C0 then we
have an overflow condition. After subtracting out one of the $40's,
if the result is negative we have an underflow condition. Note that
since the carry status was clear at line 1250, I subtracted $3F; for
one more byte, I could have done it the normal way and used SEC, SBC
#$40.

Lines 1290-1310 form the sign of the product, which is the exclusive-
or of the signs of the two arguments. Lines 1330-1370 copy the most
significant 10 bytes of the product from MAC to DAC.

The result may have a leading zero digit in the left half of the first
byte, so I call NORMALIZE.DAC at line 1390. If The leading digit was
zero, normalizing will shift DAC left one digit position, leaving room

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1539 of 2550

Apple II Computer Info

for another significant digit on the right end. Lines 1400-1490
handle installing the extra digit if necessary.

MULTIPLY.BY.LOW.DIGITS picks up the low-order digit out of each byte
of the multiplier, one-by-one, and calls MULTIPLY.ARG.BY.N.

MULTIPLY.ARG.BY.N does the nitty-gritty multiplication. And here is
where I lost all my ingenuity, too. The multiplier digit is stored in
DIGIT, and used to count down a loop which adds ARG to MAC DIGIT
times. Surely this can be done more efficiently! How about it Paul?
Or Charlie? Anyone?

Well, that's all for this month. Next month expect some simple I/O
routines and the divide subroutine.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1540 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 9 June, 1984

In This Issue...

18-Digit Arithmetic, Part 2. 2
DOSology and DOSonomy. 9
OBJ.APWRT][F Updated to AWIIe Toolkit. 10
Using the PRT Command. 12
Revisiting $48:0 . 13
More Random Number Generators. 15
Booting ProDOS with a Modified Monitor ROM 18
Fixing the Andromeda 16K Card. 19
Finding the Erroneous Bit Using CRC. 20
The Barkovitch Utilities 21
Converting to Motorola S-Format. 22
Making a 65C02 Work in my Apple II Plus. 28

More on ProDOS and Nonstandard Apples

In the March issue we published Bob Stout's note on how to make ProDOS
boot in a Franklin computer. The current issue, (No. 9) of Hardcore
Computist points out that the address given in that note didn't work
for the ProDOS version dated 1-JAN-84. Apparently Bob was referring
to an earlier version. The correct address for the NOPs is $265B.

In a similar vein, inside this issue Jan Eugenides points out that
ProDOS will also fail in an Apple with a modified Monitor ROM. He
then gives a slightly different patch to defeat the check code.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1541 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:LancastersStuff.txt
==

OBJ.APWRT][F updated to AWIIe Toolkit...........Don Lancaster

I have packed even more goodies on eight disk sides, combining the
HACKER and USER packages into one powerful Toolkit. The price is only
slightly higher... They were $29.50 each, now only $39.50 together.

Now that we have yet another Apple monitor, vastly different yet
purportedly compatible, guess what! Applewriter //e is not QUITE
compatible with the //c. Surprise, surprise! The status line display
gets turned into garbage. One of the patches included in the new
AWIIe Toolkit solves the problem admirably. This AWIIE CLARIFIER
Applesloth program modifies your Applewriter IIe backup diskettes to
eliminate trashing of the IIc status display line. Here it is now,
more than slightly compressed for AAL, to tease you into getting the
whole Toolkit:

100 REM *---------------------------------------*
200 REM * COPYRIGHT 1984 BY DON LANCASTER AND *
220 REM * SYNERGETICS, BOX 1300, THATCHER AZ *
240 REM * 85552 Phone: (602) 428-4073 *
260 REM * ALL COMMERCIAL RIGHTS RESERVED *
280 REM *---------------------------------------*
380 TEXT : HOME : HIMEM: 8000
400 HTAB 8: PRINT "Applewriter IIe CLARifier": PRINT
600 REM Check Validity
660 PRINT CHR$(4)"BLOAD OBJ.APWRT][F,A$2300
670 IF PEEK (14815) < > 188 THEN 880
680 IF PEEK (15052) < > 41 THEN 880
690 IF PEEK (15096) < > 59 THEN 880
695 REM Install Patches
700 POKE 14815,60: POKE 14816,36: POKE 14817,207:
 POKE 14818,16: POKE 14819,2: POKE 14820,169:
 POKE 14821,62
710 POKE 15052,208: POKE 15053,42
720 POKE 15062,96
730 POKE 15096,41: POKE 15097,127: POKE 15098,201:
 POKE 15099,96: POKE 15100,176: POKE 15101,208:
 POKE 15102,201: POKE 15103,64
740 POKE 15104,144: POKE 15105,204: POKE 15106,41:
 POKE 15107,63: POKE 15108,176: POKE 15109,200
750 PRINT CHR$(4)"UNLOCK OBJ.APWRT][F"
760 PRINT CHR$(4)"BSAVE OBJ.APWRT][F,A$2300,L$30D3"
770 PRINT CHR$(4)"LOCK OBJ.APWRT][F"
870 PRINT "IT WORKED!" : END
880 PRINT "Will not verify as AWIIe; patch ABORTED" : END

Gotchas: Fixes only the status line. Rare and brief changes in the
flashing cursor symbol will remain.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1542 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:Making65C02Work.txt
==

Making a 65C02 Work in my Apple II Plus........William O'Ryan

I am writing this on my Apple II Plus running a 2 MHz 65C02 (GTE
G65SC02PI-2). All is well now, but it took some doing.

A few days after pluggin in the chip I started noticing problems.
Applesoft found itself unable to process numeric literals, and the
version of FORTH I have been developing began acting weird.

Following the tip in AAL that the timing of the fetch-process- save
instructions might be responsible, I ran some tests on them. The
65C02 worked flawlessly. Apparently the problem is elsewhere.

After further checking, especially in my FORTH, I found that a certain
BNE instruction sitting in the first byte of a page and branching
backward into the prior page frequently branched back one byte less
than it should.

I'm not a hardware person, but I figured debugging is debugging and I
really wanted that chip to work, so I began staring at the circuit
diagram in the Apple Reference manual. After several hours I
concluded that I stood for input, O for output, D for data, and A for
address.

The easiest hypothesis to check seemed to be that data was not getting
back from the RAMs to the microprocessor in time. So I wrote down
some chip numbers and went downtown to see if I could buy some faster
varients. Well, the first two chips I replaced solved the problem.

They were 74LS257 chips at B6 and B7. These chips multiplex the
output of RAM with the output of the keyboard and send the result to
the 65C02. I replaced them with 74F257 chips. I understand these
consume less power, respond faster, and are more susceptible to
electrostatic damage.

Anyway, my 65C02 is happy now. I would like to hear whether this
modification works in other Apples, and with other 65C02s. Drop a
line to Bob and Bill at S-C if you have any word on this.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1543 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:More.Rnd.Stuff.txt
==

More Random Number Generators..............Bob Sander-Cederlof

I published my "Random Numbers for Applesoft" article last month just
in time. The June issue of Micro includes a 9.5 page article called
"A Better Random Number Generator", by H. Cem Kaner and John R. Vokey.
The article reports on work funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

The authors give an excellent overview of the various methods used to
test random number generators, and the methods they used during their
seven years of research to produce three "better" generators. It is
worth buying a copy of Micro to get a copy of this article.

The authors used the same linear congruential algorithm I discussed
last month, but with different parameters. My favorite last month
was:

 R(new) = (R(old) * A + C) mod 2^32
 where A = 314159269
 and C = 907633386

Kaner and Vokey decided to use a 40-bit seed and use mod 2^40 in
calculating each successive value. After extensive analysis and
testing, they came up with three generators based on the following
values for "A" and "C":

 RNG 1: A = 31415938565
 C = 26407

 RNG 2: A = 8413453205
 C = 99991

 RNG 3: A = 27182819621
 C = 3

There are an unusually large number of typos in the article, and some
of them are hard to decipher. The value 26407 above was written in
the comment field as 24607; however, in the hexadecimal constant
assembly code it was 0000006727, which is 26407. Even worse, in the
listing there are missing lines of code and missing characters here
and there. All of the immediate mode instructions are missing a "#"
character. Four or five labels are never defined in the listing.

Since the program as printed cannot possibly be successfully loaded,
assembled, POKEd, or executed, I have chosen to re-write it for
inclusion here, after my own style. I believe my version is also
significantly improved in coding and speed.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1544 of 2550

Apple II Computer Info

The reason given for choosing to work with 40 bits rather than 32,
even though Applesoft only stores 32 and using 40 takes longer, was
that it is important to provide more values between 0.0 and 2^-32. I
tend to disagree on the importance of this, since most uses of random
numbers on the Apple are for games, and simulate such simple things as
dealing cards or throwing dice. Perhaps more serious simulations need
more precise randomness. Of course they also increase by a factor of
256 the number of numbers generated before the sequence repeats.

Buried in the middle of the program is a well-optimized 40-bit
multiplication loop. You might enjoy puzzling out how it works!

The program uses USR(x), where x selects which of the three generators
to use. There is no provision for setting the seed or for selecting a
range other than 0...1, such as I included in my programs last month.
Some enterprising individual will marry the shell of my USR subroutine
with the RNG of Kaner and Vokey to produce a really great Applesoft
Random Number Generator.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1545 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:Moto.Formatter.txt
==

Converting to Motorola S-Format............Bob Sander-Cederlof

Last April I told how to convert object code to the Intellec Hex
Format (AAL pages 14-18, April, 1984). Both Intel and Zilog use that
format. Motorola, on the other hand, has its own format for object
code. It is similar, but it is significantly different. If you are
programming for a Motorola chip, or using a PROM burner that uses
Motorola format, then the following program is for you.

The Motorola S-Type format has three kinds of records: header, data,
and end-of-file. Each record begins with the letter "S" and ends with
a carriage return linefeed (CRLF). According to the samples I have
seen, all of the bytes in a record are in ASCII code with the high bit
zero. (Apple peripherals tend to like the high bit = 1, so I made
this an option.) The maximum length including the "S" and up to but
not including the CRLF is 64 "frames". Between the "S" and CRLF, each
record consists of five fields:

Record format field: ASCII 0, 1, or 9 (hex $30, $31, or $39) for
header, data, or end-of-file records respectively.

Byte count field: the count expressed as two ASCII digits of the
number of bytes (half the number of frames) from address field through
the checksum field. The minimum is 3, and the maximum is 60 decimal
or $3C hexadecimal.

Address field: four frames representing the four digits of the load
address for data bytes in a data record, or the run address in an end-
of-file record. All four digits will be "0" in a header record.

Data field: two hex digits for each byte of data. The number of
bytes will be 3 less than the number specified in the byte count
field, because that count includes two bytes for the address and one
byte for the checksum.

Checksum field: two hex digits representing the 1's complement of the
binary sum of all the bytes in the previous four fields.

If you compare the S-Type format with the Intellec format, you will
note several differences:

* records start with "S" instead of ":"
* the fields are in a different order
* there was no header record for Intellec
* the byte count covers three fields instead of only
 the data field
* the checksum is computed by a different algorithm
 and covers different data.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1546 of 2550

Apple II Computer Info

I tried to use as much as possible of the Intellec program when
writing the Motorola program. You will find a lot of similarities if
you compare the two. Both are designed to be used with the monitor's
control-Y instruction. Both expect you to enter the output slot
number or address in zero-page bytes 0 and 1.

The Motorola program requires two additional pieces of information.
It needs a byte at 0002 which will be either $00 or $80, denoting
whether to set the high bit to 0 or 1 on every output byte. It also
needs an eight character name for the header record. This should be
entered in zero-page locations 0003 through 000A.

For example, assume the object code I want to format is in the Apple
between $6000 and $67FF. In the target processor it will load at
address $1000. The name of the program is "SAMPLE". I want to send
the data with the high bit = 0. The device I want to send it to is
connected to an intelligent peripheral card in slot 2. Here is what I
type:

]BRUN B.MOTOROLA FORMATTER (or :BRUN B.MOTOROLA FORMATTER
]CALL -151 (or :MNTR)
*0:2 0 (send to slot 2)
*:0 (hi-bit = 0)
*:53 41 4D 50 4C 45 20 20 ("SAMPLE")
*1000<6000.67FF^Y (^Y means control-Y)

I recommend comparing this program and my description of it with the
Intellec program and article in the April AAL. Here is the Motorola
formatter:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1547 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 1.1....................................$92.50
Version 1.1 Update...$12.50
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984 QD#15: Apr-Jun 1984

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Quick-Trace (Anthro-Digital)..............................(reg. $50) $45
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
Amper-Magic (Anthro-Digital)..............................(reg. $75) $65
Amper-Magic Volume 2 (Anthro-Digital).....................(reg. $35) $30
Routine Machine (Southwestern Data Systems)............(reg. $64.95) $60
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36
FLASH! Integer BASIC Compiler (Laumer Research).......................$79
Fontrix (Data Transforms)...$75
Aztec C Compiler System (Manx Software)..................(reg. $199) $180

Blank Diskettes (Verbatim)............2.50 each, or package of 20 for $45
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
ZIF Game Socket Extender (Ohm Electronics)$20

Books, Books, Books..........................compare our discount prices!
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15
 Second edition, with //e information.
 "Incredible Secret Money Machine", Lancaster.............($7.95) $7

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1548 of 2550

Apple II Computer Info

 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Assembly Lines: The Book", Roger Wagner................($19.95) $18
 "What's Where in the Apple", Second Edition.............($24.95) $23
 "What's Where Guide" (updates first edition).............($9.95) $9
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($17.95) $17
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9

We have small quantities of other great books, call for titles & prices.
Add $1.50 per book for US shipping. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1549 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:PDos.Mod.Mtr.txt
==

Booting ProDOS with a Modified Monitor ROM........Jan Eugenides

You may have already figured this out, but ProDOS won't boot if you
have installed S. Knouse's modified ROM in your Apple. This can
easily be fixed, as follows:

On track 1, sector C, change bytes B4-B6 from AE B3 FB to A2 EA EA.
This tells ProDOS your machine is a II+. If it's a //e, make B5 an A0
instead.
On track 1, sector 9, change bytes 60-61 from A9 00 to A5 0C. This
defeats the ROM check routine.

Ta daaa! Now ProDOS works just fine with your modified ROM.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1550 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:PRT.Command.txt
==

Using the PRT Command...............................Bill Morgan

New users of the S-C Macro Assembler have asked for examples of how to
use some of the customizing features. For example, just now I had a
call from a gentleman who needed to know how to set up the PRT vector
to turn on his printer and send the special control strings it
requires.

It happens that I had the same problem just a few weeks ago. I just
picked up an OkiData 92 printer, which I am quite happy with, except
for a couple of small warts. Setting Elite spacing (12
characters/inch, 8 lines/inch) on that printer requires these hex
codes: 9C 9B B8. The catch is that 9C, which corresponds to Control-
backslash. I can't type CTRL-\ on my Apple II+! Besides, by the time
I type in the commands to turn on the printer, set Elite mode, and set
a left margin, I have entered 15 keystrokes. That's too many for my
lazy, dyslexic fingers, so I came up with a PRT command to do the
whole job.

The addresses in this routine are set up for the 40-column Version 1.1
Language Card assembler. If you are using another version, check to
make sure that the patch space is indeed all zeroes. All $D000
versions of the assembler have some blank space before $E000. If you
are using a $1000 version, look to see if there is some space
available between the end of the assembler and the beginning of the
Symbol Table and set PATCH.SPACE to that address. You will also have
to set PRT.VECTOR to $1009.

Here are the exact steps to use this patch:

Start the assembler.

$C083 C083
$D01C:0 D0 0 F8

$AA60.AA61

LOAD S.PRT

ASM

$D01C:0 0 0 0
$C080

BSAVE <assembler>,A$D000,L$XXXX

The $AA60.AA61 line gives you the length that you will need to use for
the BSAVE command. Substitute the filename of the version you use for
<assembler> in the above command.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1551 of 2550

Apple II Computer Info

If you are using Version 1.0 of the assembler, things are a little
different. You should omit the $D01C entries in the above commands,
delete lines 1090 and 1100, and add this line to the program:

 1125 .TA $800
Then, after the assembly, install the patch with $DF00<800.81EM and
$D009: 4C 00 DF. These extra steps are necessary because Version 1.0
lacks the ability to override memory protection during assembly.

Lines 1270-1290 are where you should install the codes your printer
needs.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1552 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:Articles:Revisit.48.0.txt
==

Revisiting $48:0...........................Bob Sander-Cederlof

Remember all those warnings about storing 0 in $48 after DOS had a
whack at your zero page? Maybe not, but let me remind you.

Apple's monitor uses locations $45 through $49 in a very special way.
Ignoring this, the writers of DOS also used them. When you start
execution from the monitor (using the G, S, or T commands) The data in
these locations gets loaded into the registers: $45 into A, $46 into
X, $47 into Y, $48 into P (status), and $49 into S (stack pointer).
When a program hits a BRK opcode, or the S command has finished
executing a single opcode, the monitor saves these five registers back
into $45...$49.

No serious problem, unless you like to enter the monitor and issue the
G, S, or T commands. Even less of a problem, because the S and T
commands were removed from the monitor ROM when the Apple II Plus came
out. And if you don't care what is in the registers anyway....

But the P-register is rather special, too. One of its bits, called
"D", controls how arithmetic is performed. If "D" is zero, arithmetic
will be done in the normal binary way; if D=1, arithmetic is done in
BCD mode. That is, adding one to $49 will produce $50 rather than
$4A. If the program you are entering doesn't expect to be in decimal
mode, and tries arithmetic, you will get some rather amusing results.

Hence the warning: before using the G command from the monitor, type
48:0 to be sure decimal mode is off. Later versions of DOS store 0
into $48 after calling those routines which use $48. And the monitor
stores 0 into $48 whenever you hit the RESET key (or Control-RESET).

**
* *
* Now I am here to tell you that storing 0 into *
* $48 is ALL WRONG! It took Bill and me 5 hours *
* to unravel the mystery caused by storing zero *
* there! *
* *
**

You should put into $48 a sensible value. Better, DOS should never
use $45 through $48; if it must use them, save and restore them.
There are eight bits in the P-register, and in the 6502 seven of them
are important. One of them, we discovered, is VERY important.

The bit named "I" controls the IRQ interrupt. If I=1, IRQ interrupts
will not be accepted. If I=0, IRQ interrupts will be accepted.
So...who cares about interrupts?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1553 of 2550

Apple II Computer Info

Hardly anyone uses interrupts in Apple II's, because of all the hidden
problems. But there are some very nice boards for the Apple that are
designed to be used with interrupts. Most of them are safe, because
RESET disables their interrupt generators.

Need I say that we discovered a board that does not disable the
interrupt generators when you hit RESET? The Novation Cat Modem (a
very excellent product) leaves at least one of its potential IRQ
sources in an indeterminate state. IRQ's don't immediately show up,
though, because they are trapped until you have addressed any of the
soft switches on the card. But, for example, if that card is in slot
2 and I read or write any location from $C0A0 through $C0AF, IRQ's
start coming. Still no problem, because I=1 in the P-register.

UNTIL WE USE THE MONITOR G COMMAND!

If I use the monitor G command, location $48, containing 0, is loaded
into the P-register. Then an IRQ gets through and sends the 6502
vectoring through an unprepared vector at $3FE,3FF and BANG!

Our solution was to put SEI instructions in various routines, and to
make sure that $48 contains 4, not 0, before using the G command.

From now on, whenever you hear that you need to be sure $48 contains
zero, think four.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1554 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:DOS3.3:S.CRCBadBidFndr.txt
==

 1000 *SAVE S.CRC BAD BIT FINDER
 1010 *--------------------------------
 1020 BUFFER .EQ $4000
 1030 LIMIT .EQ $4102
 1040 *--------------------------------
 1050 CRC .EQ $00,01
 1060 PNTR .EQ $02,03
 1070 TPTR .EQ $04,05
 1080 TMASK .EQ $06
 1090 SPTR .EQ $07,08
 1100 SMASK .EQ $09
 1110 *--------------------------------
 1120 PRNTAX .EQ $F941
 1130 CROUT .EQ $FD8E
 1140 PRBYTE .EQ $FDDA
 1150 COUT .EQ $FDED
 1160 *--------------------------------
 3060 *--------------------------------
 3070 * FIND WHICH BIT IS BAD IN BUFFER+CRC
 3080 *
 3090 * RESULT IS BIT POSITION IN MESSAGE,
 3100 * WHERE THE FIRST BIT OF THE MESSAGE IS BIT 0
 3110 * AND (IN THIS CASE) THE LAST CRC BIT IS BIT $80F.
 3120 *
 3130 * ALGORITHM BY BRUCE LOVE, AUSTRIALIA.
 3140 *--------------------------------
 3150 BIT.NUMBER .EQ $10,11
 3160 DUMMY.CRC .EQ $12,13
 3170 *--------------------------------
 3180 FIND.BAD.BIT
 3190 LDA #$80F TOTAL # BITS - 1
 3200 STA BIT.NUMBER (WE WILL COUNT BACKWARDS)
 3210 LDA /$80F
 3220 STA BIT.NUMBER+1
 3230 LDA #$0001 STARTING POINT FOR BIT FINDER
 3240 STA DUMMY.CRC
 3250 LDA /$0001
 3260 STA DUMMY.CRC+1
 3270 .1 LDA CRC COMPARE RECEIVED CRC WITH
 3280 CMP DUMMY.CRC PROCESSED VALUE;
 3290 BNE .2 IF THEY MATCH, WE HAVE FOUND THE
 3300 LDA CRC+1 BAD BIT.
 3310 CMP DUMMY.CRC+1
 3320 BEQ .4 ...FOUND BAD BIT!
 3330 .2 LDA BIT.NUMBER DECREMENT BIT COUNTER
 3340 BNE .3
 3350 DEC BIT.NUMBER+1
 3360 BMI .5 WENT TOO FAR
 3370 .3 DEC BIT.NUMBER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1555 of 2550

Apple II Computer Info

 3380 ASL DUMMY.CRC
 3390 ROL DUMMY.CRC+1
 3400 BCC .1
 3410 LDA DUMMY.CRC
 3420 EOR #$21
 3430 STA DUMMY.CRC
 3440 LDA DUMMY.CRC+1
 3450 EOR #$10
 3460 STA DUMMY.CRC+1
 3470 JMP .1
 3480 .4 LDA BIT.NUMBER+1 PRINT THE BIT NUMBER
 3490 JSR PRBYTE (IF $8000, THE ERROR WAS
 3500 LDA BIT.NUMBER NOT A SINGLE BIT)
 3510 JSR PRBYTE
 3520 JMP CROUT
 3530 .5 BRK
 3540 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1556 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:DOS3.3:S.DP18.MULTIPLY.txt
==

 1000 *SAVE S.DP18 MULTIPLY
 1010 *--------------------------------
 1020 * DAC = ARG * DAC
 1030 *--------------------------------
 1040 DMULT LDA DAC.EXPONENT IF DAC=0, EXIT
 1050 BEQ .3
 1060 LDA ARG.EXPONENT IF ARG=0, SET DAC=0 AND EXIT
 1070 BEQ .4
 1080 *---CLEAR RESULT REGISTER--------
 1090 LDA #0
 1100 LDY #19
 1110 .1 STA MAC,Y
 1120 DEY
 1130 BPL .1
 1140 *---FORM PRODUCT OF FRACTIONS----
 1150 JSR MULTIPLY.BY.LOW.DIGITS
 1160 JSR SHIFT.MAC.RIGHT.ONE
 1170 JSR SHIFT.DAC.RIGHT.ONE
 1180 JSR MULTIPLY.BY.LOW.DIGITS
 1190 *---ADD THE EXPONENTS------------
 1200 LDA DAC.EXPONENT
 1210 CLC
 1220 ADC ARG.EXPONENT
 1230 CMP #$C0 CHECK FOR OVERFLOW
 1240 BCS .5 ...OVERFLOW
 1250 SBC #$3F ADJUST OFFSET
 1260 BMI .4 ...UNDERFLOW
 1270 STA DAC.EXPONENT
 1280 *---FORM SIGN OF PRODUCT---------
 1290 LDA DAC.SIGN
 1300 EOR ARG.SIGN
 1310 STA DAC.SIGN
 1320 *---MOVE MAC TO DAC--------------
 1330 LDY #9
 1340 .2 LDA MAC,Y
 1350 STA DAC.HI,Y
 1360 DEY
 1370 BPL .2
 1380 *---NORMALIZE DAC----------------
 1390 JSR NORMALIZE.DAC
 1400 LDA MAC IF LEADING DIGIT=0,
 1410 AND #$F0 THEN GET ANOTHER DIGIT
 1420 BNE .3
 1430 LDA MAC+10
 1440 LSR
 1450 LSR
 1460 LSR
 1470 LSR
 1480 ORA DAC.HI+9

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1557 of 2550

Apple II Computer Info

 1490 STA DAC.HI+9
 1500 .3 RTS
 1510 .4 LDA #0
 1520 STA DAC.SIGN
 1530 STA DAC.EXPONENT
 1540 RTS
 1550 .5 JMP AS.OVRFLW
 1560 *--------------------------------
 1570 * MULTIPLY BY EVERY OTHER DIGIT
 1580 *--------------------------------
 1590 MULTIPLY.BY.LOW.DIGITS
 1600 SED DECIMAL MODE
 1610 LDX #9
 1620 LDY #19
 1630 .1 LDA DAC.HI,X
 1640 AND #$0F ISOLATE NYBBLE
 1650 BEQ .2 0, SO NEXT DIGIT
 1660 JSR MULTIPLY.ARG.BY.N
 1670 .2 DEY NEXT MAC POSITION
 1680 DEX NEXT DAC DIGIT
 1690 BPL .1 DO NEXT DIGIT
 1700 CLD BINARY MODE
 1710 RTS DONE
 1720 *--------------------------------
 1730 MULTIPLY.ARG.BY.N
 1740 STA DIGIT N = 1...9
 1750 STY TEMP SAVE Y
 1760 STX TEMP+1 SAVE X
 1770 .1 LDX #9 INDEX INTO ARG
 1780 CLC
 1790 .2 LDA ARG.HI,X
 1800 ADC MAC,Y ADD IT
 1810 STA MAC,Y
 1820 DEY NEXT MAC
 1830 DEX NEXT ARG
 1840 BPL .2 NEXT DIGIT
 1850 BCC .4 NO CARRY
 1860 .3 LDA #0 PROPAGATE CARRY
 1870 ADC MAC,Y
 1880 STA MAC,Y
 1890 DEY
 1900 BCS .3 MORE CARRY
 1910 .4 LDY TEMP GET POSITION IN MAC
 1920 .5 DEC DIGIT NEXT DIGIT
 1930 BNE .1
 1940 LDX TEMP+1
 1950 RTS DONE
 1960 *--------------------------------
 1970 SHIFT.MAC.RIGHT.ONE
 1980 LDY #4 4 BITS RIGHT
 1990 .0 LDX #1 20 BYTES
 2000 LSR MAC
 2010 .1 ROR MAC,X
 2020 INX NEXT BYTE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1558 of 2550

Apple II Computer Info

 2030 PHP
 2040 CPX #20
 2050 BCS .2 NO MORE BYTES
 2060 PLP
 2070 JMP .1
 2080 .2 PLP
 2090 DEY NEXT BIT
 2100 BNE .0
 2110 RTS
 2120 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1559 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:DOS3.3:S.DP18.Pack.Un.txt
==

 1000 *SAVE S.DP18 PACK & UNPACK
 1010 *-------------------------------
 1020 * ADDRESSES INSIDE APPLESOFT
 1030 *-------------------------------
 1040 AS.OVRFLW .EQ $E8D5 OVERFLOW ERROR
 1050 *--------------------------------
 1060 * PAGE ZERO USAGE
 1070 *-------------------------------
 1080 PNTR .EQ $5E,5F
 1090 *-------------------------------
 1100 * MOVE (Y,A) INTO DAC AND UNPACK
 1110 *--------------------------------
 1120 MOVE.YA.DAC
 1130 STA PNTR
 1140 STY PNTR+1
 1150 LDY #9 MOVE 10 BYTES
 1160 .1 LDA (PNTR),Y
 1170 STA DAC,Y
 1180 DEY
 1190 BPL .1
 1200 INY Y=0
 1210 STY DAC.EXTENSION
 1220 LDA DAC.EXPONENT
 1230 STA DAC.SIGN
 1240 AND #$7F
 1250 STA DAC.EXPONENT
 1260 RTS
 1270 *--------------------------------
 1280 * MOVE (Y,A) INTO ARG AND UNPACK
 1290 *--------------------------------
 1300 MOVE.YA.ARG
 1310 STA PNTR
 1320 STY PNTR+1
 1330 LDY #9 MOVE 10 BYTES
 1340 .1 LDA (PNTR),Y
 1350 STA ARG,Y
 1360 DEY
 1370 BPL .1
 1380 INY Y=0
 1390 STY ARG.EXTENSION
 1400 LDA ARG.EXPONENT
 1410 STA ARG.SIGN
 1420 AND #$7F
 1430 STA ARG.EXPONENT
 1440 RTS
 1450 *--------------------------------
 1460 * PACK AND MOVE DAC TO (Y,A)
 1470 *--------------------------------
 1480 MOVE.DAC.YA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1560 of 2550

Apple II Computer Info

 1490 STA PNTR
 1500 STY PNTR+1
 1510 JSR ROUND.DAC
 1520 LDA DAC.EXPONENT
 1530 BIT DAC.SIGN
 1540 BPL .1 POSITIVE
 1550 ORA #$80 NEGATIVE
 1560 .1 LDY #0
 1570 .2 STA (PNTR),Y
 1580 INY
 1590 LDA DAC,Y
 1600 CPY #10
 1610 BCC .2
 1620 RTS
 1630 *--------------------------------
 1640 * ROUND DAC BY EXTENSION
 1650 *--------------------------------
 1660 ROUND.DAC
 1670 LDA DAC.EXTENSION
 1680 CMP #$50 COMPARE TO .5
 1690 BCC .3 NO NEED TO ROUND
 1700 LDY #8
 1710 SED DECIMAL MODE
 1720 .1 LDA #0
 1730 ADC DAC.HI,Y
 1740 STA DAC.HI,Y
 1750 BCC .2 NO NEED FOR FURTHER PROPAGATION
 1760 DEY
 1770 BPL .1 ...MORE BYTES
 1780 INC DAC.EXPONENT
 1790 BMI .4 ...OVERFLOW
 1800 LDA #$10 .999...9 ROUNDED TO 1.000...0
 1810 STA DAC.HI
 1820 .2 CLD
 1830 .3 LDA #0
 1840 STA DAC.EXTENSION
 1850 RTS
 1860 .4 CLD
 1870 JMP AS.OVRFLW
 1880 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1561 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:DOS3.3:S.KANER.VOKEY.txt
==

 1 .LIF
 1000 *SAVE S.KANER & VOKEY
 1010 *--------------------------------
 1020 * BASED ON PROGRAM PRINTED IN MICRO MAGAZINE
 1030 * JUNE 1984, PAGES 33,34, BY H. CEM KANER
 1040 * AND JOHN R. VOKEY
 1050 *--------------------------------
 1060 USER.VECTOR .EQ $0A,0B,0C
 1070 FAC .EQ $9D THRU $A1
 1080 FAC.SIGN .EQ $A2
 1090 FAC.EXT .EQ $AC
 1100 *--------------------------------
 1110 NORMALIZE.FAC.2 .EQ $E82E
 1120 *--------------------------------
 1130 .OR $300
 1140 .TF B.KANER & VOKEY
 1150 *--------------------------------
 1160 LINK LDA #$4C "JMP" OPCODE
 1170 STA USER.VECTOR
 1180 LDA #RANDOM
 1190 STA USER.VECTOR+1
 1200 LDA /RANDOM
 1210 STA USER.VECTOR+2
 1220 RTS
 1230 *--------------------------------
 1240 Z.C .HS 00.00.00.67.27 26407
 1250 Z.A .HS 07.50.89.2E.05 31415938565
 1260 Z.OLD .HS 00.00.00.00.00
 1270 *--------------------------------
 1280 Y.C .HS 00.00.01.86.97 99991
 1290 Y.A .HS 01.F5.7B.1B.95 8413453205
 1300 Y.OLD .HS 00.00.00.00.00
 1310 *--------------------------------
 1320 X.C .HS 00.00.00.00.03 3
 1330 X.A .HS 06.54.38.E9.25 27182819621
 1340 X.OLD .HS 00.00.00.00.00
 1350 *--------------------------------
 1360 GROUP .BS 1
 1370 MULTIPLIER .BS 5
 1380 OLD .BS 5
 1390 *--------------------------------
 1400 RANDOM LDY #Z.C-Z.C+4
 1410 LDA FAC.SIGN
 1420 BMI .1 SELECT Z
 1430 LDY #Y.C-Z.C+4
 1440 LDA FAC
 1450 BEQ .1 SELECT Y
 1460 LDY #X.C-Z.C+4 SELECT X
 1470 .1 STY GROUP SAVE FOR LATER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1562 of 2550

Apple II Computer Info

 1480 *---LOAD SELECTED GROUP----------
 1490 LDX #4 MOVE 5 BYTES
 1500 .2 LDA Z.C,Y
 1510 STA FAC+1,X
 1520 LDA Z.A,Y
 1530 STA MULTIPLIER,X
 1540 LDA Z.OLD,Y
 1550 STA OLD,X
 1560 DEY
 1570 DEX
 1580 BPL .2
 1590 *---MULTIPLY INTO FAC------------
 1600 LDX #4
 1610 .3 STX FAC.EXT USE FOR BYTE COUNT
 1620 LDA MULTIPLIER,X
 1630 STA FAC SAVE FOR 8-BIT MULITPLY
 1640 LDY #7 COUNT BITS
 1650 .4 LSR FAC GET RIGHTMOST BIT INTO CARRY
 1660 BCC .6 =0, SO WE DO NOT ADD THIS TIME
 1670 CLC =1, SO WE BETTER ADD
 1680 .5 LDA FAC+1,X
 1690 ADC OLD,X
 1700 STA FAC+1,X
 1710 DEX
 1720 BPL .5
 1730 .6 ASL OLD+4 SHIFT MULTIPLICAND LEFT
 1740 ROL OLD+3
 1750 ROL OLD+2
 1760 ROL OLD+1
 1770 ROL OLD
 1780 LDX FAC.EXT GET BYTE COUNT AGAIN
 1790 DEY NEXT BIT
 1800 BPL .4
 1810 DEX REDUCE BYTE COUNT
 1820 BPL .3 ...MORE BYTES
 1830 *---SAVE NEW SEED IN OLD---------
 1840 LDX #4
 1850 LDY GROUP
 1860 .7 LDA FAC+1,X
 1870 STA Z.OLD,Y
 1880 DEY
 1890 DEX
 1900 BPL .7
 1910 *---NORMALIZE NEW VALUE----------
 1920 LDY #$80 ASSUME A FRACTION
 1930 .8 LDA FAC+1 LOOK AT LEADING BIT
 1940 BMI .9 ...FINISHED NORMALIZING
 1950 LSR FAC.SIGN
 1960 ROR FAC+4
 1970 ROR FAC+3
 1980 ROR FAC+2
 1990 ROR FAC+1
 2000 DEY
 2010 CPY #$58

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1563 of 2550

Apple II Computer Info

 2020 BCS .8
 2030 LDY #0 LESS THAN 2^-40 IS ZERO
 2040 .9 STY FAC EXPONENT
 2050 LDA #0
 2060 STA FAC.SIGN MAKE IT POSITIVE
 2070 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1564 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:DOS3.3:S.MotoSType.Obj.txt
==

 1000 *SAVE S.MOTOROLA S-TYPE OBJECT
 1010 .OR $800
 1020 *--------------------------------
 1030 PORT .EQ $00,01
 1040 HI.BIT .EQ $02
 1050 NAME .EQ $03 ... $0A
 1060 CHECK.SUM .EQ $12
 1070 TYPE .EQ $13
 1080 COUNT .EQ $14
 1090 REMAINING .EQ $15,16
 1100 START .EQ $17,18
 1110 END .EQ $19,1A
 1120 TARGET .EQ $1B,1C
 1130 *--------------------------------
 1140 A1 .EQ $3C,3D
 1150 A2 .EQ $3E,3F
 1160 A3 .EQ $40,41
 1170 A4 .EQ $42,43
 1180 A5 .EQ $44,45
 1190 *--------------------------------
 1200 CTRLY.VECTOR .EQ $3F8 THRU $3FA
 1210 DOS.REHOOK .EQ $3EA
 1220 *--------------------------------
 1230 MON.NXTA4 .EQ $FCB4
 1240 MON.CROUT .EQ $FD8E
 1250 MON.PRHEX .EQ $FDDA
 1260 MON.COUT .EQ $FDED
 1270 MON.SETVID .EQ $FE93
 1280 *--------------------------------
 1290 * SETUP CONTROL-Y
 1300 *--------------------------------
 1310 SETUP LDA #SEND.DATA
 1320 STA CTRLY.VECTOR+1
 1330 LDA /SEND.DATA
 1340 STA CTRLY.VECTOR+2
 1350 LDA #$4C
 1360 STA CTRLY.VECTOR
 1370 RTS
 1380 *--------------------------------
 1390 * *0:XX YY (LO,HI OF PORT)
 1400 * *:ZZ (00 OR 80, FOR ASCII HI-BIT)
 1410 * *:C1 C2 C3 C4 C5 C6 C7 C8 ASCII VALUES FOR
 1420 * THE 8 CHARACTERS OF THE NAME
 1430 * *TARGET<START.END<Y>
 1440 * IF PORT IS 0, DO NOT CHANGE OUTPUT
 1450 * IF PORT IS 1...7, OUTPUT TO SLOT.
 1460 * ELSE OUTPUT TO SUBROUTINE
 1470 * SEND BYTES START...END
 1480 *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1565 of 2550

Apple II Computer Info

 1490 * 1. TURN ON OUTPUT PORT
 1500 * 2. SEND ID RECORD
 1510 * 3. SEND DATA RECORDS
 1520 * 4. SEND EOF RECORD
 1530 * 5. TURN OFF OUTPUT PORT
 1540 *--------------------------------
 1550 SEND.DATA
 1560 JSR SAVE.PARAMETERS
 1570 JSR TURN.ON.OUTPUT.PORT
 1580 JSR SEND.ID.RECORD
 1590 JSR RESTORE.PARAMETERS
 1600 JSR SEND.DATA.RECORDS
 1610 JSR SEND.EOF.RECORD
 1620 JMP TURN.OFF.OUTPUT.PORT
 1630 *--------------------------------
 1640 SAVE.PARAMETERS
 1650 LDX #1
 1660 .1 LDA A1,X
 1670 STA START,X
 1680 LDA A2,X
 1690 STA END,X
 1700 LDA A4,X
 1710 STA TARGET,X
 1720 DEX
 1730 BPL .1
 1740 RTS
 1750 *--------------------------------
 1760 RESTORE.PARAMETERS
 1770 LDX #1
 1780 .1 LDA START,X
 1790 STA A1,X
 1800 LDA END,X
 1810 STA A2,X
 1820 LDA TARGET,X
 1830 STA A4,X
 1840 DEX
 1850 BPL .1
 1860 RTS
 1870 *--------------------------------
 1880 TURN.ON.OUTPUT.PORT
 1890 LDX PORT+1 HI-BYTE OF PORT SPECIFIED
 1900 BNE .1
 1910 LDA PORT LO-BYTE, MUST BE SLOT
 1920 AND #$07
 1930 BEQ .3 SLOT 0, JUST SCREEN
 1940 ORA #$C0
 1950 BNE .2 ...ALWAYS
 1960 .1 TXA HI-BYTE OF SUBROUTINE
 1970 LDX PORT LO-BYTE OF SUBROUTINE
 1980 .2 STA $37
 1990 STX $36
 2000 JSR DOS.REHOOK
 2010 .3 RTS
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1566 of 2550

Apple II Computer Info

 2030 SEND.ID.RECORD
 2040 LDA #'0' TYPE = "0"
 2050 STA TYPE
 2060 LDA #8 COUNT = 8
 2070 STA COUNT
 2080 LDA #0 ADDR=0
 2090 STA A4
 2100 STA A4+1
 2110 STA A1+1
 2120 STA A2+1
 2130 LDA #NAME
 2140 STA A1
 2150 LDA #NAME+7
 2160 STA A2
 2170 JMP SEND.RECORD
 2180 *--------------------------------
 2190 SEND.DATA.RECORDS
 2200 LDA #'1' TYPE = "1"
 2210 STA TYPE
 2220 INC A2 POINT JUST BEYOND THE END
 2230 BNE .1
 2240 INC A2+1
 2250 .1 SEC
 2260 LDX #20
 2270 LDA A2 SEE HOW MANY BYTES LEFT
 2280 SBC A1
 2290 STA REMAINING
 2300 LDA A2+1
 2310 SBC A1+1
 2320 STA REMAINING+1
 2330 BNE .2 USE MIN(20,A2-A1+1)
 2340 CPX REMAINING
 2350 BCC .2
 2360 LDX REMAINING
 2370 BEQ .3 ...FINISHED
 2380 .2 STX COUNT
 2390 JSR SEND.RECORD
 2400 JMP .1 ...ALWAYS
 2410 .3 RTS
 2420 *--------------------------------
 2430 SEND.EOF.RECORD
 2440 LDA #0 # OF DATA BYTES = 0
 2450 STA COUNT
 2460 LDA #'9' TYPE="9"
 2470 STA TYPE
 2480 LDA TARGET RUN ADDRESS (LO)
 2490 STA A4
 2500 LDA TARGET+1 RUN ADDRESS (HI)
 2510 STA A4+1
 2520 JMP SEND.RECORD
 2530 *--------------------------------
 2540 TURN.OFF.OUTPUT.PORT
 2550 JSR MON.SETVID
 2560 JMP DOS.REHOOK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1567 of 2550

Apple II Computer Info

 2570 *--------------------------------
 2580 SEND.RECORD
 2590 LDA #'S' LETTER "S"
 2600 JSR SEND.FRAME
 2610 LDA TYPE TYPE "0", "1", OR "9"
 2620 JSR SEND.FRAME
 2630 LDA #0 INIT CHECKSUM
 2640 STA CHECK.SUM
 2650 CLC
 2660 LDA COUNT SEND BYTE COUNT
 2670 ADC #3 ...INCLUDING ADDR AND CSUM
 2680 JSR SEND.BYTE
 2690 LDA A4+1 SEND ADDRESS
 2700 JSR SEND.BYTE
 2710 LDA A4
 2720 JSR SEND.BYTE
 2730 LDA COUNT ANY DATA?
 2740 BEQ .2 ...NO
 2750 LDY #0 ...YES, SEND DATA
 2760 .1 LDA (A1),Y
 2770 JSR SEND.BYTE
 2780 JSR MON.NXTA4
 2790 DEC COUNT
 2800 BNE .1
 2810 .2 LDA CHECK.SUM SEND CHECK SUM
 2820 EOR #$FF
 2830 JSR SEND.BYTE
 2840 LDA #$0D SEND CRLF
 2850 JSR SEND.FRAME
 2860 LDA #$0A LINEFEED
 2870 JMP SEND.FRAME
 2880 *--------------------------------
 2890 SEND.BYTE
 2900 PHA SAVE BYTE
 2910 CLC
 2920 ADC CHECK.SUM ACCUMULATE CHECKSUM
 2930 STA CHECK.SUM
 2940 PLA RECOVER BYTE
 2950 PHA SAVE ANOTHER COPY
 2960 LSR READY FIRST DIGIT
 2970 LSR
 2980 LSR
 2990 LSR
 3000 JSR SEND.DIGIT
 3010 PLA RECOVER BYTE
 3020 AND #$0F READY SECOND DIGIT
 3030 SEND.DIGIT
 3040 ORA #$30 CHANGE TO ASCII
 3050 CMP #$3A
 3060 BCC SEND.FRAME
 3070 ADC #6 CHANGE TO A...F
 3080 SEND.FRAME
 3090 ORA HI.BIT $00 OR $80
 3100 JMP MON.COUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1568 of 2550

Apple II Computer Info

 3110 *--------------------------------
 3120 .OR $300
 3130 SAMPLE
 3140 .HS 86.44.B7.01.00.41.42.43
 3150 .HS 44.45.46.47.48.49.4A.4B
 3160 .HS 4C.4D.4E

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1569 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8406:DOS3.3:S.PRT.COMMAND.txt
==

 1000 *--------------------------------
 1010 *
 1020 * SAMPLE PRT COMMAND
 1030 *
 1040 *--------------------------------
 1050 PRT.VECTOR .EQ $D009
 1060 PATCH.SPACE .EQ $DF00
 1070 MON.COUT .EQ $FDED
 1080 *--------------------------------
 1090 .OR PRT.VECTOR
 1100 JMP PRT JUMP TO HANDLER
 1110 *--------------------------------
 1120 .OR PATCH.SPACE
 1130
 1140 PRT LDX #0
 1150 .1 LDA STRING,X OUTPUT THE
 1160 BEQ .2 CONTROL
 1170 JSR MON.COUT STRING
 1180 INX
 1190 BPL .1
 1200
 1210 .2 RTS
 1220 *--------------------------------
 1230 STRING .HS 8D84 <CR><^D>
 1240 .AS -/PR#1/
 1250 .HS 8D <CR>
 1260
 1270 .HS 9C9BB8 ELITE SPACING
 1280 .HS 9BA5C3 LEFT MARGIN
 1290 .HS B0B9B0 90 DOT SPACES
 1300 .HS 00 END MARKER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1570 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:DisasmNameTable.txt
==

Building Label Tables for DISASM...........Bob Sander-Cederlof

RAK-Ware's DISASM has the nice feature of being able to used a list of
pre-defined labels when you are disassembling a block of code. I
needed to turn the //c monitor ROM ($F800-$FFFF) into source code, and
Apple sent me a list of all their labels in this area.

The format of the label table, or name table, is very simple. Each
entry takes eight bytes: the first two are the value, high byte
first; the remaining six are the label name, in ASCII with high bit
set. If the name is less than six characters long, zeroes are used to
fill out the entry.

Very simple to explain, but how do you enter things like that in the
S-C Macro Assembler? The example on the DISASM disk does it this way:

 1000 .HS FDED
 1010 .AS -/COUT/
 1020 .HS 00000000
 1030 .HS FDF0
 1040 .AS -/COUT1/
 1050 .HS 000000
 and so on.

That works, but it is so error prone and time wasting that I gave up
before I started. However, there is an easy way using macros and
abbreviations.

Start by defining a macro which will build one entry:

 1000 .MA LBL
 1010 .HS]1
 1020 .AS -/]2/
 1030 .BS *+7/8*8-*
 1040 .EM

The macro is named LBL, and will be used like this:

 1050 >LBL FDED,COUT
 1060 >LBL FDF0,COUT1

Line 1030 is the tricky one. This .BS will pad out an entry to an
even multiple of 8 bytes. Now, assuming the origin started at an even
multiple of 8, and assuming you are writing the table on a target
file, that macro builds the kind of entries DISASM wants. Instead of
just assuming, lets add:

 0900 .OR $4000
 0910 .TF B.NAMETBL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1571 of 2550

Apple II Computer Info

I also mentioned abbreviations above. I even get tired of typing
"tab>LBL ", you know. Usually when I have a lot of lines to type that
have a common element, I use some special character that is easy to
type and not present in the lines I plan to type. Then after all the
lines are in, I use the REPLACE command to substitute the longer
string for the single-character abbreviation I have used. Thus, I can
type:

 1050 .FDED,COUT
 1060 .FDF0,COUT1
 et cetera

and after many lines type

 REP /./ >LBL /1050,A

I was about up to FA90 when it dawned on me that I could break the
symbols into blocks within a page, and include the page value in my
abbreviation:

 1050 .ED,COUT
 1060 .F0,COUT1
 REP /./ >LBL FD/1050,A

With all these shortcuts, I was able to enter over 400 label names and
definitions in less than an hour.

Let the computer work FOR you!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1572 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:DP18.Part.3.txt
==

18-digit Arithmetic, Part 3................Bob Sander-Cederlof

Plowing ahead, this installment will offer the division and input
conversion subroutines.

You will remember that we covered addition and subtraction in the May
1984 issue, and multiplication in June. Now it's time for division,
which completes the fundamental arithmetic operations. All four of
these routines are designed to operate on two arguments stored in DAC
and ARG, leaving the result in DAC. Addition and subtraction leave
"garbage" in ARG. Multiplication leaves ARG unchanged. Division
leaves in ARG what was in DAC.

Division is simple enough in concept, but no one would call it simple
in implementation. "How many groups of X are in Y?" "If I deal an
entire deck of 52 cards to 4 people, how many will each person get?"
"If I scramble a dozen eggs, and serve them in equal-size portions to
7 people, how many eggs will each eat?" (Really, I am good cook!)

Suppose I have a pile of pennies, and want to find out how many
dollars they represent. I will count out piles of 100 pennies, moving
them into separate piles. Then I will count the little piles. Now,
suppose I have two 18-digit numbers in my computer and want to divide
the one in ARG by the one in DAC.... I will subtract the value in DAC
from the one in ARG over and over, until I finally cross zero. Then
if I was wise enough to count how many times I did the subtraction, I
have the answer.

Let's look at the problem in more detail now. What I want to do is
divide the value in ARG by the value in DAC:

 numerator (in ARG)
 -------------------- = quotient (in DAC)
 denominator (in DAC)

Numbers in DP18 can be positive or negative, so we have to remember
the rules of signed division. If the signs of the numerator and
denominator are the same, the quotient will be positive; if they are
different, the quotient will be negative.

Numbers in DP18 are coded as 18-digit fractions with a power- of-ten
exponent. Remembering algebra:

 .f * 10^m f
 --------- = --- * 10^(m-n)
 .g * 10^n g

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1573 of 2550

Apple II Computer Info

The 18-digit fractions are normalized so that there are no leading
zeroes. That is, the value will either be all zero, or it will be
between .1 and .999999999999999999 (inclusive).

I think it is time now to start looking at the program. In the
listing which follows there are references to subroutines and
variables which we defined in the previous two installments of this
series.

Line 4250 swaps the contents of ARG and DAC. I did it this way
because it leaves something possibly useful in ARG after the division
is finished. If you wanted to form the reciprocal quotient,
DAC=DAC/ARG, you can enter at DDIVR, which skips the swapping step.

Lines 4260-4270 check for the illegal case of division by zero. If I
divide something into zero-size parts, I get an infinite number of
these parts. That's fine, but the DP18 has no representation for
infinity; therefore we say it is illegal to divide by zero, just like
Applesoft does. Some computers and some software arithmetic packages
do represent infinity, but DP18 does not. Zero values are represented
by having an exponent byte of zero, so we only have to check one byte
here.

Lines 4280-4310 form the sign of the quotient. This is the same as
lines 1280-1310 of the DMULT listing given last month, and so we could
make them into a subroutine. The subroutine would take 10 bytes, and
the two JSR's make another 6. That's 16 bytes, against the 18 bytes
for the two versions of in-line code. Saves a total of 2 bytes, at a
cost of adding 12 cpu cycles to both multiply and divide. (Small
digression into the kind of trade-offs I am continually making....)

Lines 4330-4390 compute the exponent of the quotient, and check for
overflow and underflow cases. The special case of the numerator being
zero is also caught here, line 4350. Line 4380 restores the bias of
$40. Bias? Remember, the exponent is kept in memory with $40 added
to it, so that the range -63 through +63 is represented by $01 through
$7F.

If the new exponent is still in the range $00 through $7F, we will go
ahead and do the division. If not, the quotient is either too small
(underflow) or too large (overflow). For example, 10^-40 / 10^40
results in 10^-80, which is too small for DP18. Lines 4410-4470 catch
these cases, and change the quotient to zero. If the new exponent is
between $80 and $BF, it represents 10^64 or larger, and so we call on
the Applesoft OVERFLOW error.

Lines 4500-4550 set up the loop which does the actual division of the
fractions. The 6502's decimal mode will be used during this loop.
Ten bytes in MAC (defined in DMULT last month) will be used to hold
the quotient until we are through with DAC. The X-register will be
used to count out the 20 digits. The other end of the loop is in
lines 4920-4930, where X is decremented and tested.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1574 of 2550

Apple II Computer Info

The body of the loop is really a lot simpler than it looks.
Basically, ARG is subtracted from DAC until DAC goes negative. The
number of subtractions is counted in MAC+9. Then ARG is added back to
DAC to make it positive again, and MAC+9 decremented. The result is a
quotient digit in MAC+9, and a remainder in DAC. One extra digit is
needed, extending DAC on the left end. This digit is carried in the
stack. See it pushed at line 4710, pulled at line 4790.

After each digit of the quotient is determined, both MAC and DAC are
shifted left one digit place. This might shift a significant digit
out of DAC (the remainder), so it is lifted out first and saved on the
stack (lines 4570-4630). If the first two digits of the remainder
(happen to be "00", then we know without subtracting that the quotient
digit in this position will also be "0". (Remember that the leading
digit of the denominator in ARG is NEVER zero.) This fact can speed
up divisions, so it is tested for at line 4580, with lines 4670-4680.

After all 20 digits are formed, the loop terminates. Line 4950 then
returns us to binary mode. Line 4960 adds one to the quotient
exponent, adjusting for the normalization step. (.9/.1 = 9, but we
want to represent it as .9*10^1.) If the exponent now is negative
($80), it may be still in range if the leading digit of the quotient
is zero (.1/.9 = 0.1111...). This test takes place at lines 4970-
5000.

Lines 5020-5060 copy the quotient from MAC to DAC. These are the same
as lines 1330-1370 in DMULT, so they could be made into a subroutine.
Two other candidates for subroutines are lines 4720-4780, which are
identical to lines 1680-1740 of DADD (May 1984); and lines 4830-4890,
which are the same as 1530-1590 of DADD.

Finally, DDIV exits by jumping to NORMALIZE.DAC.

Doesn't all this take a lot of time? You bet it does! I timed it in
the full DP18 package with a program that looked like this:

 &DP:INPUT X(0) : INPUT X(2)
 FOR I = 1 TO 100
 &DP:X(4) = X(0)/X(2)
 NEXT

I determined the loop overhead by entering a value zero for X(0).
Since this case skips around nearly everything in DDIV, I called its
time the loop overhead time. After subtracting out the loop overhead,
the times look like this:

 0/anything 0
 x/x 12 msec
 1/9=.1111... 23 msec
 8/9=.8888... 49 msec
 1/7=.142857... 35 msec

It looks like the maximum time, which would be for a quotient with all
20 digits = 9, would be about 53 msec. The average time, about 35

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1575 of 2550

Apple II Computer Info

msec. This compares with an average Applesoft 9-digit division time
of about 7 msec.

<<<listing here.>>>

DP18 Input Conversion

The input conversion subroutine processes characters from memory to
produce a value in DAC. This is analogous to what the equivalent
subroutine in Applesoft ROMs does.

It is so analogous, in fact, that I even depend upon CHRGET and CHRGOT
to fetch successive characters from memory. It is a lot faster than
Applesoft conversion, however, because it is BCD coded rather than
binary. This means that, stripping away the frills such as sign,
exponent part, and decimal point, it even easier than an ASCII to hex
conversion.

Of course, we need all those frills. Look ahead to the program
listing which follows: Lines 1200-1220, just those three little
lines, handle the conversion of digits. All the rest of the page is
for frills! Well, to be honest about it, two of the three lines call
subroutines, but still, the frills predominate.

The acceptable format of numbers is basically the same as that which
normal Applesoft accepts. A leading sign is optional. The numeric
portion can be more than 20 digits long, but only the first 20 will be
accumulated (not counting leading zeroes). A decimal point is
optional anywhere in the numeric portion. An exponent part can be
appended to the numeric portion, and consists of the letter "E", and
optional sign, and one or two digits. The exponent can be up to 81,
just so the final number evaluates between .1*10^-63 and
.9999...9*10^63. Numbers smaller than .1*10^-63 will be changed to
zero, and numbers larger than .9999...9*10^63 will cause an OVERFLOW
ERROR.

Looking at the program, lines 1040-1080 clear a working area which
comprises DAC and four other variables: SGNEXP, EXP, DGTCNT, and
DECFLG. SGNEXP will be used to hold the sign of the exponent part;
EXP will hold the value of the exponent part; DGTCNT will count the
digits in the numeric portion; and DECFLG will flag the occurrence of
a decimal point. DAC includes DAC.SIGN. Note that the X-register
will be left with $FF, which fact is important at line 1170 below.

Lines 1090-1100 preset the DAC.EXPONENT to $40, which indicates 10^0.
This will be incremented along with DGTCNT until a decimal point is
encountered.

Lines 1110-1180 handle the optional leading sign. DAC.SIGN has
already been cleared above, indicating the positive case. If a minus
sign is in front of the number, line 1170 sets DAC.SIGN negative.
Note that calling CHRGOT and CHRGET to retrieve characters
automatically eliminates (ignores) blanks. CHRGOT/CHRGET also checks
whether the character retrieved is a digit or not, and indicates

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1576 of 2550

Apple II Computer Info

digits by carry clear. If the first non-blank character is a digit,
we immediately jump to the numeric loop at line 1200. If not, the
subroutine FIN.SIGN checks for a + or - character. The + or - may or
may not be tokenized, depending on whether the string is from an INPUT
statement or is a constant embedded in a program, so we have to check
for both the character and the token form of both signs. FIN.SIGN
handles this checking.

If that first character is neither a digit nor a sign, it may be a
letter "E" or a decimal point; so, we go down to lines 1240-1270 to
check for those two cases. If neither of these either, we must be at
the end of the number. If it is a decimal point, lines 1630-1650
record the fact that a decimal point was found and also check whether
this is the first one found or not. If the first, back we go to
continue looking for digits. If not the first, it must be the end of
the number, so we fall into the final processing section at line 1670.

Exponents are more difficult, because the value actually must be
converted from ASCII to binary. Lines 1290-1610 do the work,
including handling of the optional sign, and range checking.

Lines 1670-1730 compute the final exponent value. This is the number
of digits before the decimal point (not counting any leading zeroes
you may have typed to confuse me) plus the exponent computed in the
optional "E" field. If the result is negative, between $C0 and $FF,
it indicates underflow; in this case, the value is changed to zero.
If there were no non-zero digits in the numeric portion, the value is
set to zero regardless of any "E" field. If the resulting exponent is
between $80 and $BF, it indicates OVERFLOW.

Lines 1840-2130 accumulate individual digits. DGTCNT is used to index
into the nybbles of DAC, and the digit is stored directly into place.
Leading zeroes on the numeric field are handled here (lines 2090-
2120). Leading zeroes before a decimal point are entirely ignored,
while leading zeroes after a decimal point cause the DAC.EXPONENT to
be decremented. The incrementation of DAC.EXPONENT for each
significant digit on the left of the decimal point is also taken care
of here (lines 2020-2070).

This complete the third installment of DP18. We are well on the way
to a working subset of the entire package. We still need output
conversion and some sort of linkage to Applesoft before we can begin
to see it all run. The entire DP18 package really exists, and works,
now. It includes PRINT USING, very fancy input screen handling, full
expression parsing, and all the math functions. Several of you have
been very anxious to get the whole package for use in projects of your
own, so we have offered a source code license to DP18 on an "as is"
basis for only $200.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1577 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 10 July, 1984

In This Issue...

18-Digit Arithmetic, Part 3. 2
Building Label Tables for DISASM 12
Quick Memory Testing 14
68000 Sieve Benchmark. 16
Updating the 6502 Prime Sifter 18
Sorting and Swapping 20
Apple //c Gotchas. 24
Orphans and Widows . 25
Speed vs. Space. 26

Feedback on our DOSonomy

Our little dossier of DOS names was well received. It may be we will
soon have so many names we will need a dosser (a large basket that can
be carried on the back) to hold them all. On the other hand, if we
keep writing about this our fortunes may reverse, forcing to finding
new quarters in a doss house. What is the critical dosage?

Dan Pote offers "Kinda-Sorta-DOS". Which led Bill to coin "MaybeDOS".
Randy Horton reminded us of "Ante-DiluviDOS". Chris Balthrop enters
MacroDOS and "What's Up DOS". (I think the latter is "Buggy". Or
"Bugsy"? Oh, it's not bunny anymore...) If you can take all this,
you may be too docile.

Don Lancaster Strikes Again

We just have a little space and a little time to mention Don's new
Assembly Cookbook for the Apple II/IIe, which just arrived. It looks
like another winner! Look for a full review next month, or check our
ad on page 3 for ordering info.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1578 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:IIc.Notes.txt
==

Our //c came in, and we love it. However...

The //c package does not include any DOS 3.3 master. Everything is
ProDOS. Of course you do get a DOS 3.3 with most software you
purchase. And of course ProDOS includes a disk copier that is
supposed to be able to copy DOS 3.3 disks when you need to back up
your DOS-based software. However...

The ProDOS disk copier which is being shipped with the //c has a
serious bug. When you are copying a DOS-based disk it ignores the
volume number recorded on the source disk, and forces the copy to be
volume 254. That is fine if the source just happened to be volume 254
also, but chances are it isn't. I have many disks around here which
are volume 1. The DOS image and the VTOC both think the disk copied
by //c ProDOS is volume 1, but RWTS discovers it is volume 254 and
refuses to cooperate any further.

I guess the solution is to use the old faithful COPYA from your DOS
3.3 System Master. Since that doesn't come with a //c system, we are
including licensed copies of COPYA and FID on our Macro 1.1 disks now.

More gotchas.... Apple decided it was time to rewrite large chunks of
the monitor. Necessarily so, because the disassembler now has to cope
with 27 new opcodes and address modes. The removed four entries from
the monitor command table, and changed its starting point. This
throws off the "$" command in the S-C Macro Assemblers, all versions.

If you have Macro 1.1, the //e version is the one you should be
running in your //c. You can fix the "$" command with these patches:

 $1000 $D000 old new
 version version value value
 ------- ------- ----- -----
 $147B $D47B $17 $13
 $1486 $D486 $CC $CD
 $148B $D48B $15 $11

A more elegant patch is possible, which automatically adjusts for
whether you are in a //e or //c. If you want this, and have a 1.1
version prior to serial # 675, send us $5 for an update.

We have tried RAK-Ware's DISASM 2.2e on our //c, and it works fine.
It even picks up the 27 new opcodes and address modes automatically,
because DISASM links to the monitor disassembler. Older versions of
DISASM will not run on a //e or //c.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1579 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 1.1....................................$92.50
Version 1.1 Update...$12.50
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984 QD#15: Apr-Jun 1984

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Quick-Trace (Anthro-Digital)..............................(reg. $50) $45
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
Amper-Magic (Anthro-Digital)..............................(reg. $75) $65
Amper-Magic Volume 2 (Anthro-Digital).....................(reg. $35) $30
Routine Machine (Southwestern Data Systems)............(reg. $64.95) $60
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36
FLASH! Integer BASIC Compiler (Laumer Research).......................$79
Fontrix (Data Transforms)...$75
Aztec C Compiler System (Manx Software)..................(reg. $199) $180

Blank Diskettes (Verbatim)............2.50 each, or package of 20 for $45
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
ZIF Game Socket Extender (Ohm Electronics)$20

Books, Books, Books..........................compare our discount prices!
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15
 Second edition, with //e information.
 "Assembly Cookbook for the Apple II/IIe", Lancaster.....($21.95) $20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1580 of 2550

Apple II Computer Info

 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Assembly Lines: The Book", Roger Wagner................($19.95) $18
 "What's Where in the Apple", Second Edition.............($19.95) $19
 "What's Where Guide" (updates first edition).............($9.95) $9
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($17.95) $17
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9

We have small quantities of other great books, call for titles & prices.
Add $1.50 per book for US shipping. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1581 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:Orphans.Widows.txt
==

Orphans and Widows.........................Bob Sander-Cederlof

James, a brother of Jesus Christ, wrote: "Pure religion and undefiled
before God and the Father is this, to visit the fatherless and widows
in their affliction, and to keep himself unspotted from the world."
(chapter 1, verse 27, King James Version)

Of course, he was referring to real life and to real people with real
needs, but it still serves to introduce this little announcement.

"Orphans" and "widows" are also terms used in word processing to
describe the lamentable situation of one line of a paragraph being
left all alone on one page, while the rest is on another page. If
that one line is the last line of a paragraph which won't quite fit,
"she" is forced to the top of the next page, and is a widow. If the
lonely line is the first line of a paragraph, dwelling at the bottom
of a page, bereft of the rest of its family on the following page, he
or she is indeed an orphan.

High class word processors give you the option of automatically
"visiting" orphans and widows "in their affliction". Thanks to Bobby
Deen, this feature is now (as of June 29th) included in the S-C Word
Processor (whether high class or not). When the feature is selected
(by the "!or1" directive), orphans get moved to the next page and
widows get squeezed onto the current page.

Bobby is also working on, and he says it is now functional but
somewhat unfinished, a version that fully uses the 80-column display
on the Apple //e. We already had 80-column preview, but he is
developing 80-column text display during edit/entry mode.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1582 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:Quick.Mem.Test.txt
==

Quick Memory Testing.......................Bob Sander-Cederlof

What do you do when a friend brings his Apple over with an
intermittent memory failure? You KNOW you have a memory test program
somewhere, but WHERE?

Here is a quick way to test normal RAM between $7D0 and $BFFF. (RAM
in //e hyperspace or banked into ROM space is another matter.) Turn
on your friend's computer, and hit reset to abort the booting
sequence. We don't need or want DOS around while we are testing
memory. Type HOME and CALL-151 to get into the monitor. Then type
the following monitor command:

*N 7D0:00 N 7D1<7D0.BFFEM 7D1<7D0.BFFEV
 7D0:55 N 7D1<7D0.BFFEM 7D1<7D0.BFFEV
 7D0:AA N 7D1<7D0.BFFEM 7D1<7D0.BFFEV
 7D0:FF N 7D1<7D0.BFFEM 7D1<7D0.BFFEV
 34:0

The "*" is the monitor prompt, so don't you type it. There are no
carriage returns in the line above, it just wraps around the 40-column
screen that way. There must be one trailing blank after the "34:0" at
the end. This makes the monitor repeat the whole command line
forever.

I started the test at $7D0 so there will be some visible feedback, but
most of the screen will stay clear. If you begin testing at a lower
address, any errors displayed on the screen might be overwritten as
soon as they show up.

When you type the RETURN key you will see a line of inverse at-signs
at the bottom of the screen. After a few seconds, this will change to
flashing U. Then *, and then some other character, depending on what
kind of Apple you have. Then the cycle will start over again.

Until a memory error is detected. Any error will cause two lines to
be printed, giving the address before the error with its contents and
the contents of the error byte, and the address of the error byte with
its actual contents and should-be contents. For example, if you were
in the "AA" phase, and $8123 came up with $AB, you would see:

 8122-AA (AB) byte before error
 8123-AB (AA) error byte

If any error lines start printing, note which bit is bad and which 16K
bank it is in. Then you can point directly to the bad chip.

 7 6 5 4 3 2 1 0
 7D0...3FFF C10 C9 C8 C7 C6 C5 C4 C3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1583 of 2550

Apple II Computer Info

 4000...7FFF D10 D9 D8 D7 D6 D5 D4 D3
 8000...BFFF E10 E9 E8 E7 E6 E5 E4 E3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1584 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:Sieve.6502.txt
==

Updating the 6502 Prime Sifter.............Bob Sander-Cederlof

I spent a half day applying Peter's algorithm improvements to the
November 1982 6502 version, and refining the program as much as I
could. It now runs in 175 milliseconds per iteration, or 1000
iterations in 175 seconds. Still way behind the 68000, of course. On
the other hand, a 6MHz 6502, with fast enough RAM for no wait states,
would be faster than a 12.5 MHz 68000. And it remains to be seen what
the 65802 could do.

In the process of running various versions and various tests, I
discovered that the innermost loop, at lines 1820-1850, is executed
10277 times. This means that, while marking out the odd non-primes
between 1 and 16383, a total of 10277 such marks are made. Since only
odd numbers are assigned slots in the working array, giving only 8192
such slots, you can see that some numbers get stricken more than once.
These are the numbers with more than one prime factor. The most-
stricken number is 3*5*7*11*13 = 15015, which gets five strikes. The
loop takes 11 cycles as written, and I don't see any way to shorten it
any further or to reduce the number of times it is used. Do you?

The loop time is 11*10277 is 121297 cycles, or about 120 msec out of
the total 175. The array clearing accounts for another 41 msecs,
leaving only 14 msec for all the rest of the program. Not bad!

Here is a little Applesoft program which will make a nice neat listing
of primes from the working array, assuming it runs from $6000 through
$7FFF.

100 HIMEM:24576
110 FOR A = 24576 TO 32767
120 IF PEEK (A) = 0 THEN
 PRINT RIGHT$(" "+STR$((A-24576)*2+1,7);:
 N = N + 1
130 IF N = 10 THEN PRINT : N = 0
140 NEXT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1585 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:Sieve.68000.txt
==

68000 Sieve Benchmark.......................Peter J. McInerney
 New Zealand

Here are two versions of the Sieve of Eratosthenes for the MC68000.
They provide ample justification for the power claimed for this chip.

The first version is a fairly straightforward translation of the
algorithm as presented in the November 1982 AAL, by Tony Brightwell.
Tony's best time in the 6502 was 183 seconds for 1000 repetitions; in
my 12.5 MHz DTACK GROUNDED attached processor, 1000 repetitions took
only 40 seconds.

Compare the 68000 code with the 6502 code, and I'm sure you will agree
the 68000 version is much easier to understand. Note the use of long
instructions in the array clearing loop and the two-dimensional
indexing in lines 1230 and 1310. Other nice things are the shift left
by 3 (multiply by 8) in line 1270 and the decrement & branch
instructions in lines 1120 and 1400. Also very useful is the
postincrement address mode, which automatically increments the address
kept in the referenced register by 1, 2, or 4 depending on the size of
the operation. This is used for popping off (downward growing) stacks
or as here to advance through memory. There is also a predecrement
mode but I did not use it in these example programs.

The second version uses a modified algorithm. The changes I made
should apply to the 6502 version also, improving it in about the same
proportion.

* Since we are ignoring even numbers, we may as well leave them out
of the array entirely, thus halving the array size.

* We can therefore simplify the formula for odd squares from S*8+1 to
S*4.

* We can even do away with the *4 part by adding 4 each time rather
than 1.

* The initial array clearing loop can be made faster by using more
than one CLR instruction per loop.

This modified version does 1000 iterations in only 33 seconds! It is
only slightly harder to follow than the first version, and only
slightly larger. In fact, if we forego the final modification above,
the code is actually shorter. I think most of the speedup comes from
halving the array size.

If you have a Macintosh, and can manage to load machine code into it,
you should find everything running about half as fast as my DTACK
GROUNDED board.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1586 of 2550

Apple II Computer Info

[We tried the program on our QWERTY Q-68 board, and it took roughly
10 times as long as Peter's DG board. Understandable, since it was
using Apple memory at .5MHz rate for all work. (Bill&Bob)]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1587 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:Speed.Vs.Space.txt
==

Speed vs. Space.............................Bob Sander-Cederlof

There are always tradeoffs. If you have plenty of memory, you can
write faster code. If you have plenty of time, you can write smaller
code. In an "academic" situation you may have plenty of both, so you
can write "creative" code, stretching the frontiers of knowledge. In
a "real" world it seems there is never enough time or memory, so jobs
have to be finished on a very short schedule, fit in a tiny ROM or
RAM, and run like greased lightning.

A case in point is last month's segment of the DP18 series: the
SHIFT.MAC.RIGHT.ONE subroutine on page 8 takes about 1827 clock
cycles, and fits in 25 bytes. Upon reflection, I see a way to write a
34-byte version that takes only 1029 cycles. If I can use nine more
bytes, I can shave about 800 microseconds off each and every multiply.
(Maybe a total of a whole minute per day!) That might be important,
or it might not; but seeing the two techniques side-by-side is
probably valuable.

1970 SHIFT.MAC.RIGHT.ONE
1980 LDY #4 4 BITS RIGHT
1990 .0 LDX #1 20 BYTES
2000 LSR MAC
2010 .1 ROR MAC,X
2020 INX NEXT BYTE
2030 PHP
2040 CPX #20
2050 BCS .2 NO MORE BYTES
2060 PLP
2070 JMP .1
2080 .2 PLP
2090 DEY NEXT BIT
2100 BNE .0
2110 RTS

1970 SHIFT.MAC.RIGHT.ONE
1980 LDX #0 FOR X=0 TO 19
1990 TXA NEW 1ST NYBBLE = 0
2000 .1 STA TEMP SAVE FOR HI NYBBLE
2010 LDA MAC,X MOVE LOW NYBBLE
2020 ASL TO HI SIDE
2030 ASL
2040 ASL
2050 ASL
2060 PHA SAVE ON STACK
2070 LDA MAC,X MOVE HI NYBBLE
2080 LSR TO LOW SIDE
2090 LSR
2100 LSR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1588 of 2550

Apple II Computer Info

2110 LSR
2120 ORA TEMP MERGE WITH NEW
2130 STA MAC,X HI NYBBLE
2140 PLA HI NYBBLE OF NEXT BYTE
2150 INX NEXT X
2160 CPX #20
2170 BCC .1
2180 RTS
The smaller method uses two nested loops. The inner loop shifts all
20 bytes of MAC right one bit. The outer loop does the inner loop
four times. If I counted cycles correctly, the time is
4*(19*23+18)+7. The faster method uses one loop to scan through the
twenty bytes one time. The timing works out as 20*51+9.

Upon still further reflection, it dawned on me that a 38 byte version
could run in 840 cycles! This version processes the bytes from right
to left instead of left to right; eliminates the PHA-PLA and STA-ORA
TEMP of the second version above; and loops only 19 times rather than
20. The timing is 19*43+23.

1970 SHIFT.MAC.RIGHT.ONE
1980 LDX #19 FOR X = 19 TO 1 STEP -1
1990 .1 LDA MAC,X SHIFT HI- TO LO-
2000 LSR
2010 LSR
2020 LSR
2030 LSR
2040 STA MAC,X SAVE IN FORM 0X
2050 LDA MAC-1,X GET LO- OF HIGHER BYTE
2060 ASL
2070 ASL
2080 ASL
2090 ASL
2100 ORA MAC,X MERGE THE NYBBLES
2110 STA MAC,X
2120 DEX NEXT X
2130 BNE .1 ...UNTIL 0
2140 LDA MAC PROCESS HIGHEST BYTE
2150 LSR INTRODUCE LEADING ZERO
2160 LSR
2170 LSR
2180 LSR
2190 STA MAC
2200 RTS

Of course an even faster approach is to emulate the loops I wrote for
shifting 10-bytes left or right 4-bits. The program would look like
this:

1970 SHIFT.MAC.RIGHT.ONE
1980 LDY #4
1990 .1 LSR MAC
2000 LSR MAC+1
 .

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1589 of 2550

Apple II Computer Info

 .
 .
2180 LSR MAC+19
2190 DEY
2200 BNE .1
2210 RTS

This version takes 2+3*20+4 = 66 bytes. Yet the timing is only
(4*6+5)*20+7 = 587 clock cycles. And by writing out the four loops
all the way, we use 4*3*20 = 240 bytes; the time would be 4*6*20 or
480 cycles.
How about another example? The MULTIPLY.ARG.BY.N subroutine on the
same page last month was nice and short, but very slow. The
subroutine is called once for each non-zero digit in the multiplier,
or up to 20 times. What it does is add the multiplicand to MAC the
number of times corresponding to the current multplier digit. If we
assume the distribution of digits is random, with equal probablility
for any digit 1...9 in any position, the average number of adds will
be 5. Actually there will be zero digits too, so the average will be
4.5 instead of 5, with the subroutine not even being called for zero
digits.

For 20 digits, 4.5 addition loops per digit, that is an average of 90
addition loops. And a maximum, when all digits are 9, of 180 addition
loops.

Now, if there is enough RAM around, we can pre-calculate all partial
products from 1 to 9 of the multiplicand and save them in a buffer
area. Each partial product will take 11 bytes. We already have the
first one in ARG, so for 2...9 we will need 8*11 or 88 bytes of
storage. It will take 8 addition loops to form these partial
products. Once they are all stored, the MULTIPLY.ARG.BY.N subroutine
will always do exactly one addition loop no matter what the non-zero
digit is. Therefore the maximum number of addition loops is 8+20 or
28, compared to 180! And the average (assuming there will be 2 zero
digits out of 20 on the average) will be 26 addition loops.

The inner loop in MULTIPLY.ARG.BY.N, called "addition loop" above,
takes 20 cycles. If we implement this new method, we will have
shortened the average case from 1800 to 520 cycles, and the maximum
from 3600 to 560 cycles. Of course the whole DMULT routine includes
more time-consuming code, but this subroutine was the biggest factor.
Taking the SHIFT.MAC.RIGHT.ONE improvements also, we have shortened
the overall time in the average case by 2078 cycles, or 2 milliseconds
per multiply. In the maximum case, the savings is nearly 4
milliseconds.

Of course, it takes more code space as well as the 88-byte partial
product buffer for the new method. And it will take more time to
write such a program. You have to make tradeoffs.
1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1590 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:Articles:Swap.Sort.txt
==

Sorting and Swapping.......................Bob Sander-Cederlof

Jack McDonald, writing in the July 1984 Software News, posed a puzzle
for programmers: using nothing more than a series of calls to a SWAP,
sort five items into ascending order. SWAP compares two items
according to the indexes supplied, and exchanges the items if they are
out of order. For example, calls on SWAP which follow the pattern of
a "Bubble Sort" would look like this:

 SWAP (1,2) SWAP (1,2) SWAP (1,2) SWAP (1,2)
 SWAP (2,3) SWAP (2,3) SWAP (2,3)
 SWAP (3,4) SWAP (3,4)
 SWAP (4,5)

That is ten swaps, which is more than necessary. You can do it in
nine, which was McDonalds Puzzle. He gave an answer, and I found
another. It was fun writing some quick code to test various swap-
lists.

First I wrote a macro named "S" which loaded the two index numbers
into X and Y, and called a subroutine named SWAP. See it in lines
1030-1070.

Then I coded SWAP (lines 1200-1290), which compared two bytes at
BASE,X and BASE,Y; if they were out of order, I swapped them around.
To make things easy for me, I put BASE at $500, which just happens to
be the third line on the video screen. That way I could watch
everything happen without struggling to code I/O routines.

I wrote a program which would initialize a 5-byte string to all $01
(no program, really just a data definition at line 1670); another
which copies the string to BASE (LOAD, lines 1590-1650); another which
counts up from 0101010101 to 0505050505, so that all possible
combinations would be run through (NEXT, lines 1770-1870); and another
to do all these in connection with SORT, which performed a list of
SWAP calls. The result was a method for visualizing and checking
various groups of SWAPs to see if they could sort any initial
permutation into ascending order. Assemble, and type MGO NEXT to see
it all work.

Here is the code, with two possible SWAP orders which work, of nine
steps each.

I also got interested in permutation generation, and came up with the
following macros and code to generate all 120 permutations of five
items, without any extra steps, each step being the simple interchange
of two items. Assemble, and type MGO PERMUTE to see it generate 120
strings of the letters ABCDE in different arrangements.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1591 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:Faster.ShiftRt1.txt
==

 1970 SHIFT.MAC.RIGHT.ONE
 1980 LDX #0 FOR X=0 TO 19
 1990 TXA NEW 1ST NYBBLE = 0
 2000 .1 STA TEMP SAVE FOR HI NYBBLE
 2010 LDA MAC,X MOVE LOW NYBBLE TO HI SIDE
 2020 ASL
 2030 ASL
 2040 ASL
 2050 ASL
 2060 PHA SAVE ON STACK
 2070 LDA MAC,X MOVE HI NYBBLE TO LOW
 2080 LSR
 2090 LSR
 2100 LSR
 2110 LSR
 2120 ORA TEMP MERGE WITH NEW HI NYBBLE
 2130 STA MAC,X
 2140 PLA GET HI NYBBLE OF NEXT BYTE
 2150 INX NEXT X
 2160 CPX #20
 2170 BCC .1
 2180 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1592 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:LIST.PRIMES.txt
==

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1593 of 2550

Apple II Computer Info

£24576 dÅA–24576¡32767Rn≠‚(A)–0ƒ∫È(" "»‰((A…24576) 2»1),7);:N –
N»1bx≠N–10ƒ∫:N–0hÇÇ

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1594 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:S.DP18.DIVIDE.txt
==

 1000 *SAVE S.DP18 DIVIDE
 4220 *--------------------------------
 4230 * DAC = ARG / DAC
 4240 *--------------------------------
 4250 DDIV JSR SWAP.ARG.DAC ...CHANGE TO DAC = DAC/ARG
 4260 DDIVR LDA ARG.EXPONENT CHECK FOR ZERO DENOMINATOR
 4270 BEQ .2 ...X/0 IS ILLEGAL
 4280 *---FORM SIGN OF QUOTIENT--------
 4290 LDA DAC.SIGN
 4300 EOR ARG.SIGN
 4310 STA DAC.SIGN
 4320 *---COMPUTE EXPONENT OF QUOTIENT-
 4330 SEC
 4340 LDA DAC.EXPONENT
 4350 BEQ .0 ...0/X=0
 4360 SBC ARG.EXPONENT
 4370 CLC
 4380 ADC #$40 ADJUST OFFSET
 4390 STA DAC.EXPONENT
 4400 *---CHECK OVER/UNDERFLOW---------
 4410 BPL .3 ...NEITHER
 4420 ASL SEE WHICH...
 4430 BPL .1 ...OVERFLOW
 4440 .0 LDA #0 ...UNDERFLOW, SET RESULT = 0
 4450 STA DAC.SIGN
 4460 STA DAC.EXPONENT
 4470 RTS
 4480 .1 JMP AS.OVRFLW
 4490 .2 JMP AS.ZRODIV DIVISION BY ZERO ERROR
 4500 *---SET UP QUOTIENT LOOP---------
 4510 .3 SED DECIMAL MODE
 4520 LDA #0
 4530 STA MAC+9 CLEAR FIRST QUOTIENT DIGIT
 4540 LDX #20 DO 20 DIGITS
 4550 BNE .5 ...ALWAYS
 4560 *---CONTINUE QUOTIENT LOOP-------
 4570 .4 LDA DAC.HI
 4580 PHP SAVE ZERO STATUS
 4590 LSR
 4600 LSR
 4610 LSR
 4620 LSR
 4630 PHA DAC LEFT EXTENSION
 4640 JSR SHIFT.DAC.LEFT.ONE
 4650 JSR SHIFT.MAC.LEFT.ONE
 4660 PLA DAC LEFT EXTENSION
 4670 PLP SEE IF FIRST TWO DIGITS = 0
 4680 BEQ .9 ...YES, SO QUOTIENT IS ALSO ZERO
 4690 *---SUBTRACT WHILE POSSIBLE------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1595 of 2550

Apple II Computer Info

 4700 .5 INC MAC+9 COUNT 1 SUBTRACTION
 4710 PHA DAC LEFT EXTENSION
 4720 SEC DO A TRIAL SUB
 4730 LDY #9
 4740 .7 LDA DAC.HI,Y
 4750 SBC ARG.HI,Y
 4760 STA DAC.HI,Y
 4770 DEY
 4780 BPL .7
 4790 PLA DAC LEFT EXTENSION
 4800 SBC #0
 4810 BCS .5 NO BORROW
 4820 *---OVERSHOT, SO RESTORE---------
 4830 LDY #9 BORROW,SO ADD IT BACK IN
 4840 CLC
 4850 .8 LDA DAC.HI,Y
 4860 ADC ARG.HI,Y
 4870 STA DAC.HI,Y
 4880 DEY
 4890 BPL .8
 4900 DEC MAC+9 BACK OFF QUOTIENT DIGIT, TOO
 4910 *---NEXT DIGIT-------------------
 4920 .9 DEX ALL DIGITS?
 4930 BNE .4 ...NOT YET, KEEP GOING
 4940 *---ADJUST EXP, CHECK OVERFLOW---
 4950 CLD BINARY MODE
 4960 INC DAC.EXPONENT ADJUST FOR OFFSET
 4970 BPL .10 ...NO OVERFLOW PROBLEM
 4980 LDA MAC COULD BE OVERFLOW
 4990 AND #$F0
 5000 BNE .1 ...OVERFLOW
 5010 *---COPY QUOTIENT TO DAC---------
 5020 .10 LDY #9
 5030 .11 LDA MAC,Y
 5040 STA DAC.HI,Y
 5050 DEY
 5060 BPL .11
 5070 JMP NORMALIZE.DAC
 5080 *--------------------------------
 5090 * SHIFT 20 DIGITS IN MAC RIGHT ONE PLACE
 5100 *--------------------------------
 5110 SHIFT.MAC.LEFT.ONE
 5120 LDY #4
 5130 .1 ASL MAC+9
 5140 ROL MAC+8
 5150 ROL MAC+7
 5160 ROL MAC+6
 5170 ROL MAC+5
 5180 ROL MAC+4
 5190 ROL MAC+3
 5200 ROL MAC+2
 5210 ROL MAC+1
 5220 ROL MAC
 5230 DEY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1596 of 2550

Apple II Computer Info

 5240 BNE .1
 5250 RTS
 5260 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1597 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:S.DP18.FIN.txt
==

 1000 *SAVE S.DP18 FIN
 1010 *--------------------------------
 1020 * DP18 INPUT CONVERSION
 1030 *--------------------------------
 1040 FIN LDA #0 CLEAR WORK AREA
 1050 LDX #WRKSZ-1 (DAC, SGNEXP, EXP,
 1060 .1 STA WORK,X DGTCNT, & DECFLG)
 1070 DEX
 1080 BPL .1 LEAVE X=$FF WHEN FINISHED
 1090 LDA #$40
 1100 STA DAC.EXPONENT
 1110 *---HANDLE LEADING SIGN----------
 1120 JSR AS.CHRGOT
 1130 BCC .2 IF DIGIT 0-9
 1140 JSR FIN.SIGN ...SEE IF + OR - SIGN
 1150 BNE .4 ...NEITHER + NOR -
 1160 BCC .3 ...+
 1170 STX DAC.SIGN ...-, SET TO $FF
 1180 BCS .3 ...ALWAYS
 1190 *---GET DIGITS TILL NON-DIGIT----
 1200 .2 JSR ACCUMULATE.DIGIT
 1210 .3 JSR AS.CHRGET GET NEXT CHARACTER
 1220 BCC .2 ...DIGIT
 1230 *---".", "E", OR END-------------
 1240 .4 CMP #'. DECIMAL POINT?
 1250 BEQ .9 YES
 1260 CMP #'E LETTER E
 1270 BNE .10 END OF NUMBER
 1280 *---HANDLE EXPONENT FIELD--------
 1290 JSR AS.CHRGET
 1300 BCC .6 ...DIGIT, ASSUME POSITIVE
 1310 JSR FIN.SIGN ...SEE IF + OR - SIGN
 1320 BNE .8 ...NEITHER + NOR -
 1330 BCC .5 ...+
 1340 ROR SGNEXP ...-, SO SET SGNEXP NEGATIVE
 1350 .5 JSR AS.CHRGET GET FIRST DIGIT OF EXP
 1360 BCS .8 ...NO DIGITS!
 1370 .6 AND #$0F ...ISOLATE EXP 1ST DIGIT
 1380 STA EXP
 1390 JSR AS.CHRGET GET 2ND DIGIT OF EXP, IF ANY
 1400 BCS .8 ...NO MORE DIGITS
 1410 AND #$0F ISOLATE 2ND DIGIT
 1420 PHA SAVE ON STACK
 1430 LDA EXP MULTIPLY 1ST DIGIT BY 10
 1440 ASL
 1450 ASL (CLEARS CARRY TOO)
 1460 ADC EXP *5
 1470 ASL *10 (CARRY STILL CLEAR)
 1480 STA EXP ADD 2ND DIGIT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1598 of 2550

Apple II Computer Info

 1490 PLA
 1500 ADC EXP
 1510 STA EXP 2 DIGIT EXP
 1520 CMP #64+18 ALLOW .00000000000000001E+82
 1530 BCS .7 OR 999999999999999999E-82
 1540 JSR AS.CHRGET GET NEXT CHAR
 1550 BCS .8 NO MORE DIGITS
 1560 .7 JMP AS.OVRFLW OVERFLOW ERROR
 1570 .8 ASL SGNEXP CHECK SIGN OF EXP
 1580 BCC .10 ...POSITIVE
 1590 LDA #0 ...NEGATIVE, SO COMPLEMENT EXP
 1600 SBC EXP
 1610 JMP .11 ...ALWAYS
 1620 *---FOUND DECIMAL POINT----------
 1630 .9 ROR DECFLG SET DECIMAL POINT FLAG
 1640 BIT DECFLG CHECK FOR TWO DECIMAL POINTS
 1650 BVC .3 NO
 1660 *---COMPUTE FINAL EXPONENT-------
 1670 .10 LDA EXP GET EXPLICIT EXPONENT
 1680 .11 CLC
 1690 ADC DAC.EXPONENT
 1700 LDX DGTCNT SEE IF ANY SIGNIFICANT DIGITS
 1710 BNE .12 ...YES
 1720 TXA ...NO, MAKE EXPONENT ZERO
 1730 .12 STA DAC.EXPONENT
 1740 TAX TEST RANGE OF EXPONENT
 1750 BMI .13 ...NOT IN RANGE 0...7F
 1760 RTS
 1770 *---EITHER UNDER- OR OVER-FLOW---
 1780 .13 ASL UNDER, OR OVER?
 1790 BCC .7 ...OVERFLOW
 1800 LDA #0
 1810 STA DAC.SIGN
 1820 BEQ .12 ...ALWAYS
 1830 *--------------------------------
 1840 ACCUMULATE.DIGIT
 1850 AND #$0F ISOLATE DIGIT
 1860 BEQ .4 ZERO DIGIT
 1870 TAX SAVE DIGIT IN X-REG
 1880 LDA DGTCNT NO MORE THAN 20 SIGNIFICANT DIGITS
 1890 CMP #20
 1900 BCS .2 DISCARD EXTRA DIGITS
 1910 *---STORE THE DIGIT IN DAC-------
 1920 LSR ODD/EVEN TO CARRY
 1930 TAY INDEX TO Y-REG
 1940 TXA GET DIGIT FROM X-REG
 1950 BCS .1 ODD DIGIT ON RIGHT SIDE
 1960 ASL EVEN DIGIT MUST BE SHIFTED
 1970 ASL
 1980 ASL
 1990 ASL
 2000 .1 ORA DAC.HI,Y MERGE
 2010 STA DAC.HI,Y
 2020 *---COUNT THE DIGIT--------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1599 of 2550

Apple II Computer Info

 2030 .2 INC DGTCNT COUNT SIGNIFICANT DIGIT
 2040 LDA DECFLG SEE IF IN FRACTION
 2050 BMI .3 YES
 2060 INC DAC.EXPONENT NO
 2070 .3 RTS
 2080 *---DIGIT = 0--------------------
 2090 .4 LDA DGTCNT SEE IF LEADING ZERO
 2100 BNE .2 NO
 2110 LDA DECFLG SEE IF PART OF FRACTION
 2120 BPL .5 NO, COMPLETELY IGNORE IT
 2130 DEC DAC.EXPONENT
 2140 .5 RTS
 2150 *--------------------------------
 2160 * SCAN + OR - SIGN
 2170 * -------------------
 2180 * + .EQ., .CC.
 2190 * - .EQ., .CS.
 2200 * OTHER .NE.
 2210 *--------------------------------
 2220 FIN.SIGN
 2230 CMP #'-'
 2240 BEQ .2
 2250 CMP #TKN.MINUS
 2260 BEQ .2
 2270 CMP #'+'
 2280 BEQ .1
 2290 CMP #TKN.PLUS
 2300 .1 CLC
 2310 .2 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1600 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:S.DP18.FstrMult.txt
==

 1000 *SAVE S.DP18 FASTER MULTIPLY
 1010 *--------------------------------
 1020 * DAC = ARG * DAC
 1030 *--------------------------------
 1040 DMULT LDA DAC.EXPONENT IF DAC=0, EXIT
 1050 BEQ .3
 1060 LDA ARG.EXPONENT IF ARG=0, SET DAC=0 AND EXIT
 1070 BEQ .4
 1080 *---CLEAR RESULT REGISTER--------
 1090 LDA #0
 1100 LDY #19
 1110 .1 STA MAC,Y
 1120 DEY
 1130 BPL .1
 1140 *---FORM PRODUCT OF FRACTIONS----
 1150 JSR MULTIPLY.BY.LOW.DIGITS
 1160 JSR SHIFT.MAC.RIGHT.ONE
 1170 JSR SHIFT.DAC.RIGHT.ONE
 1180 JSR MULTIPLY.BY.LOW.DIGITS
 1190 *---ADD THE EXPONENTS------------
 1200 LDA DAC.EXPONENT
 1210 CLC
 1220 ADC ARG.EXPONENT
 1230 CMP #$C0 CHECK FOR OVERFLOW
 1240 BCS .5 ...OVERFLOW
 1250 SBC #$3F ADJUST OFFSET
 1260 BMI .4 ...UNDERFLOW
 1270 STA DAC.EXPONENT
 1280 *---FORM SIGN OF PRODUCT---------
 1290 LDA DAC.SIGN
 1300 EOR ARG.SIGN
 1310 STA DAC.SIGN
 1320 *---MOVE MAC TO DAC--------------
 1330 LDY #9
 1340 .2 LDA MAC,Y
 1350 STA DAC.HI,Y
 1360 DEY
 1370 BPL .2
 1380 *---NORMALIZE DAC----------------
 1390 JSR NORMALIZE.DAC
 1400 LDA MAC IF LEADING DIGIT=0,
 1410 AND #$F0 THEN GET ANOTHER DIGIT
 1420 BNE .3
 1430 LDA MAC+10
 1440 LSR
 1450 LSR
 1460 LSR
 1470 LSR
 1480 ORA DAC.HI+9

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1601 of 2550

Apple II Computer Info

 1490 STA DAC.HI+9
 1500 .3 RTS
 1510 .4 LDA #0
 1520 STA DAC.SIGN
 1530 STA DAC.EXPONENT
 1540 RTS
 1550 .5 JMP AS.OVRFLW
 1560 *--------------------------------
 1570 * MULTIPLY BY EVERY OTHER DIGIT
 1580 *--------------------------------
 1590 MULTIPLY.BY.LOW.DIGITS
 1600 SED DECIMAL MODE
 1610 LDX #9
 1620 LDY #19
 1630 .1 LDA DAC.HI,X
 1640 AND #$0F ISOLATE NYBBLE
 1650 BEQ .2 0, SO NEXT DIGIT
 1660 JSR MULTIPLY.ARG.BY.N
 1670 .2 DEY NEXT MAC POSITION
 1680 DEX NEXT DAC DIGIT
 1690 BPL .1 DO NEXT DIGIT
 1700 CLD BINARY MODE
 1710 RTS DONE
 1720 *--------------------------------
 1730 MULTIPLY.ARG.BY.N
 1740 STA DIGIT N = 1...9
 1750 STY TEMP SAVE Y
 1760 STX TEMP+1 SAVE X
 1770 .1 LDX #9 INDEX INTO ARG
 1780 CLC
 1790 .2 LDA ARG.HI,X
 1800 ADC MAC,Y ADD IT
 1810 STA MAC,Y
 1820 DEY NEXT MAC
 1830 DEX NEXT ARG
 1840 BPL .2 NEXT DIGIT
 1850 BCC .4 NO CARRY
 1860 .3 LDA #0 PROPAGATE CARRY
 1870 ADC MAC,Y
 1880 STA MAC,Y
 1890 DEY
 1900 BCS .3 MORE CARRY
 1910 .4 LDY TEMP GET POSITION IN MAC
 1920 .5 DEC DIGIT NEXT DIGIT
 1930 BNE .1
 1940 LDX TEMP+1
 1950 RTS DONE
 1960 *--------------------------------
 1970 SHIFT.MAC.RIGHT.ONE
 1980 LDY #4 4 BITS RIGHT
 1990 .0 LDX #1 20 BYTES
 2000 LSR MAC
 2010 .1 ROR MAC,X
 2020 INX NEXT BYTE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1602 of 2550

Apple II Computer Info

 2030 PHP
 2040 CPX #20
 2050 BCS .2 NO MORE BYTES
 2060 PLP
 2070 JMP .1
 2080 .2 PLP
 2090 DEY NEXT BIT
 2100 BNE .0
 2110 RTS
 2120 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1603 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:S.SFPrimesImp.txt
==

 1000 .LI MOFF
 1010 *SAVE S.SUPER-FAST PRIMES IMPROVED
 1020 .OR $8000 SAFELY OUT OF WAY
 1030 *--------------------------------
 1040 BASE .EQ $6000 BASE OF PRIME ARRAY
 1050 BEEP .EQ $FF3A BEEP THE SPEAKER
 1060 SQZZZZ .EQ 0,1
 1070 START .EQ 2
 1080 COUNT .EQ 4,5
 1090 *--------------------------------
 1100 .MA ZERO
 1110 STA]1+$000,X
 1120 STA]1+$100,X
 1130 STA]1+$200,X
 1140 STA]1+$300,X
 1150 STA]1+$400,X
 1160 STA]1+$500,X
 1170 STA]1+$600,X
 1180 STA]1+$700,X
 1190 .EM
 1200 *--------------------------------
 1210 * MAIN CALLING ROUTINE
 1220 *
 1230 MAIN LDA #-100 DO 1000 TIMES SO WE CAN MEASURE
 1240 STA COUNT THE TIME IT TAKES
 1250 LDA /-100
 1260 STA COUNT+1
 1270 JSR BEEP ANNOUNCE START
 1280 .1 JSR PRIME
 1290 INC COUNT
 1300 BNE .1
 1310 INC COUNT+1
 1320 BNE .1
 1330 JMP BEEP SAY WE'RE DONE
 1340 *--------------------------------
 1350 * PRIME ROUTINE
 1360 * SETS ARRAY STARTING AT BASE
 1370 * TO $FF IF NUMBER IS NOT PRIME
 1380 * CHECKS ONLY ODD NUMBERS > 3
 1390 * INC = INCREMENT OF KNOCKOUT
 1400 * N = KNOCKOUT VARIABLE
 1410 *--------------------------------
 1420 PRIME
 1430 LDX #0
 1440 TXA CLEAR WORKING ARRAY
 1450 .1 >ZERO BASE
 1460 >ZERO BASE+$0800
 1470 >ZERO BASE+$1000
 1480 >ZERO BASE+$1800

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1604 of 2550

Apple II Computer Info

 1490 INX
 1500 BNE .1 NOT FINISHED CLEARING
 1530 *--------------------------------
 1540 LDA /BASE+4 POINT AT FIRST PRIME-SQUARED
 1550 STA SQZZZZ+1 (WHICH IS 3*3=9)
 1560 LDA #BASE+4
 1570 STA SQZZZZ
 1580 LDA #1 POINT AT FIRST PRIME (3)
 1590 BNE .4 ...ALWAYS
 1600 *--------------------------------
 1610 .2 TXA
 1620 ASL
 1630 ASL
 1640 ADC SQZZZZ
 1650 STA SQZZZZ
 1660 BCC .3
 1670 INC SQZZZZ+1
 1680 .3 LDA BASE,X GET A POSSIBLE PRIME
 1690 BNE .8 THIS ONE HAS BEEN KNOCKED OUT
 1700 TXA
 1710 *--------------------------------
 1720 .4 STA START
 1730 ASL INC = START*2 + 1
 1740 ADC #1
 1750 STA .7+1
 1760 LDA SQZZZZ+1 MOVE MULT TO N
 1770 STA .6+2
 1780 LDA SQZZZZ
 1790 .5 TAX
 1800 BEQ .9 ...SPECIAL CASE FOR X=0
 1810 *---STRIKE OUT MULTIPLES---------
 1820 .6 STA $FF00,X REMEMBER THAT N IS REALLY AT .6+2
 1830 .7 ADC #*-* N = N + INC
 1840 TAX
 1850 BCC .6 DONT'T BOTHER TO ADD, NO CARRY
 1860 CLC
 1870 INC .6+2 INC HIGH ORDER
 1880 BPL .5 ...NOT FINISHED
 1890 *--------------------------------
 1900 LDX START GET OUR NEXT KNOCKOUT
 1910 .8 INX POINT AT NEXT ODD NUMBER
 1920 CPX #64 UP TO 127
 1930 BCC .2 WE'RE DONE IF X>127
 1940 RTS
 1950 *--------------------------------
 1960 .9 LDA .6+2
 1970 STA .10+2
 1980 .10 STA $FF00
 1990 TXA
 2000 BEQ .7 ...ALWAYS
 2010 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1605 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:S.SWAP.AND.SORT.txt
==

 1000 *SAVE S.SWAP AND SORT
 1010 .LIST MOFF,CON
 1020 *--------------------------------
 1030 .MA S
 1040 LDX #]1
 1050 LDY #]2
 1060 JSR SWAP
 1070 .EM
 1080 *--------------------------------
 1090 .MA INC
 1100 INC PERM+]1
 1110 LDA PERM+]1
 1120 CMP #6
 1130 BCC :1
 1140 LDA #1
 1150 STA PERM+]1
 1160 :1
 1170 .EM
 1180 *--------------------------------
 1190 * SWAP (X,Y)
 1200 *--------------------------------
 1210 SWAP LDA BASE,X
 1220 CMP BASE,Y
 1230 BCC .1
 1240 PHA
 1250 LDA BASE,Y
 1260 STA BASE,X
 1270 PLA
 1280 STA BASE,Y
 1290 .1 RTS
 1300 *--------------------------------
 1310 * SORT BY SWAPS
 1320 *--------------------------------
 1330 SORT
 1340 .DO 0 CHANGE TO 1 TO SELECT MCDONALD'S LIST
 1350 >S 4,5 MCDONALD'S ORDER
 1360 >S 3,5
 1370 >S 3,4
 1380 >S 1,2
 1390 >S 1,4
 1400 >S 1,3
 1410 >S 2,5
 1420 >S 2,4
 1430 >S 2,3
 1440 .ELSE
 1450 >S 1,4 MY ORDER
 1460 >S 2,5
 1470 >S 1,3
 1480 >S 3,5

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1606 of 2550

Apple II Computer Info

 1490 >S 2,4
 1500 >S 1,2
 1510 >S 2,3
 1520 >S 3,4
 1530 >S 4,5
 1540 .FIN
 1550 RTS
 1560 *--------------------------------
 1570 BASE .EQ $500
 1580 *--------------------------------
 1590 LOAD LDX #5 COPY PERM LIST TO BASE ON SCREEN
 1600 .1 LDA PERM,X
 1610 STA BASE,X
 1620 STA BASE+128,X
 1630 DEX
 1640 BNE .1
 1650 RTS
 1660 *--------------------------------
 1670 PERM .HS 000101010101
 1680 *--------------------------------
 1690 CHECK LDX #4 CHECK IF LIST IS SORTED
 1700 .1 LDA BASE+1,X
 1710 CMP BASE,X
 1720 BCC .2
 1730 DEX
 1740 BNE .1
 1750 .2 RTS
 1760 *--------------------------------
 1770 NEXT >INC 5 INCREMENT PERM LIST
 1780 BCC .1 EACH BYTE RANGES FROM
 1790 >INC 4 01 TO 05
 1800 BCC .1
 1810 >INC 3
 1820 BCC .1
 1830 >INC 2
 1840 BCC .1
 1850 >INC 1
 1860 BCC .1
 1870 RTS FINISHED
 1880 .1 JSR LOAD COPY PERMLIST TO SCREEN
 1890 JSR SORT SORT IT ON THE SCREEN
 1900 JSR CHECK CHECK IF SORTED
 1910 BCS NEXT ...SORTED, TRY NEXT SEQUENCE
 1920 RTS ...NOT SORTED
 1930 *--------------------------------
 1940 .MA SS
 1950 LDX #]1
 1960 LDY #]2
 1970 JSR EXCHANGE
 1980 .EM
 1990 *--------------------------------
 2000 EXCHANGE
 2010 LDA PERM,X
 2020 PHA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1607 of 2550

Apple II Computer Info

 2030 LDA PERM,Y
 2040 STA PERM,X
 2050 PLA
 2060 STA PERM,Y
 2070 LDX #1
 2080 .1 LDA PERM,X
 2090 ORA #$C0
 2100 JSR $FDED
 2110 INX
 2120 CPX #6
 2130 BCC .1
 2140 LDA #$A0
 2150 JSR $FDED
 2160 RTS
 2170 *--------------------------------
 2180 .MA S3
 2190 >SS 1,2
 2200 >SS 1,3
 2210 >SS 1,2
 2220 >SS 1,3
 2230 >SS 1,2
 2240 .EM
 2250 *--------------------------------
 2260 .MA S4
 2270 >S3
 2280 JSR $FD8E
 2290 >SS 1,4
 2300 >S3
 2310 JSR $FD8E
 2320 >SS 2,4
 2330 >S3
 2340 JSR $FD8E
 2350 >SS 3,4
 2360 >S3
 2370 JSR $FD8E
 2380 .EM
 2390 *--------------------------------
 2400 PERMUTE
 2410 LDX #5
 2420 .1 TXA
 2430 STA PERM,X
 2440 DEX
 2450 BNE .1
 2460 *--------------------------------
 2470 >SS 1,1
 2480 >S4
 2490 >SS 1,5
 2500 >S4
 2510 >SS 1,5
 2520 >S4
 2530 >SS 1,5
 2540 >S4
 2550 >SS 1,5
 2560 >S4

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1608 of 2550

Apple II Computer Info

 2570 *--------------------------------
 2580 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1609 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:Sieve.Eratos.1.txt
==

 1000 *SAVE SIEVE OF ERATOSTHENES.1
 1010 *--------------------------------
 1020 * CODED BY PETER J. MCINERNEY, NEW ZEALAND
 1030 *--------------------------------
 1040 .OR $3800
 1050 ARRAY .EQ $4000
 1060 *--------------------------------
 1070 SIEVE MOVE #999,D6 DO 1000 TIMES
 1080 *---CLEAR WORKING ARRAY----------
 1090 .1 MOVE #ARRAY,A0 CLEAR ARRAY FROM
 1100 MOVE #$FFF,D0 $4000 TO $7FFF
 1110 .2 CLR.L (A0)+
 1120 DBF D0,.2
 1130 *---INIT VARIABLES---------------
 1140 MOVEQ #3,D0 START AT 3
 1150 MOVEQ #1,D1 SUM OF ODD NUMBERS
 1160 MOVEQ #1,D2 COUNT OF ODD NUMBERS
 1170 MOVEQ #1,D3 USED FOR STRIKING NON-PRIMES
 1180 MOVE #ARRAY,A0 START OF ARRAY
 1190 BRA.S .4 JUMP INTO LOOP
 1200 *---START SIFTING----------------
 1210 .3 ADDQ #1,D2 COUNT ODD NUMBERS
 1220 ADD D2,D1 GET SUM OF ODDS
 1230 .4 CMPI.B #0,0(A0,D0) IS THIS A PRIME?
 1240 BNE.S .6 NO
 1250 *---STRIKE OUT MULTIPLES---------
 1260 MOVE D1,D4 GET 8*S+1 = N*N
 1270 ASL #3,D4
 1280 ADDQ #1,D4
 1290 MOVE D0,D5 ONLY STRIKE ODD MULTIPLES
 1300 ASL #1,D5
 1310 .5 MOVE.B D3,0(A0,D4) STRIKE ONE
 1320 ADD D5,D4 NEXT STRIKE
 1330 CMPI #$4000,D4 ...FINISHED?
 1340 BLS .5 ...NO
 1350 *---GET NEXT SIEVE SIZE----------
 1360 .6 ADDQ #2,D0 NEXT ODD NUMBER
 1370 CMPI #127,D0 UNTIL SQRT $4000-1
 1380 BLS .3
 1390 *---DO IT ALL 1000 TIMES---------
 1400 DBF D6,.1 NEXT TIME
 1410 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1610 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8407:DOS3.3:Sieve.Eratos.2.txt
==

 1000 *SAVE SIEVE OF ERATOSTHENES.2
 1010 *--------------------------------
 1020 * CODED BY PETER J. MCINERNEY, NEW ZEALAND
 1030 *--------------------------------
 1040 .OR $3800
 1050 ARRAY .EQ $4000
 1060 *--------------------------------
 1070 SIEVE MOVE #999,D6 DO 1000 TIMES
 1080 *---CLEAR WORKING ARRAY----------
 1090 .1 MOVE #ARRAY,A0 CLEAR ARRAY FROM
 1100 MOVE #$FF,D0 $4000 TO $7FFF
 1110 .2 CLR.L (A0)+
 1120 CLR.L (A0)+
 1130 CLR.L (A0)+
 1140 CLR.L (A0)+
 1150 CLR.L (A0)+
 1160 CLR.L (A0)+
 1170 CLR.L (A0)+
 1180 CLR.L (A0)+
 1190 DBF D0,.2
 1200 *---INIT VARIABLES---------------
 1210 MOVEQ #3,D0 START AT 3
 1220 MOVEQ #4,D4 CORRESPONDS TO 9
 1230 MOVEQ #4,D2 DELTA
 1240 MOVEQ #1,D3 USED FOR STRIKING NON-PRIMES
 1250 MOVE #ARRAY+1,A0 POSITION OF 3
 1260 MOVE #ARRAY,A1 START OF ARRAY
 1270 BRA.S .4 JUMP INTO LOOP
 1280 *---START SIFTING----------------
 1290 .3 ADDQ #4,D2 UPDATE DIFFERENCE
 1300 ADD D2,D4 UPDATE SQUARE POINTER
 1310 .4 CMPI.B #0,(A0)+ IS THIS A PRIME?
 1320 BNE.S .6 NO
 1330 *---STRIKE OUT MULTIPLES---------
 1340 MOVE D4,D5 GET LATEST SQUARE
 1350 .5 MOVE.B D3,0(A1,D5) STRIKE ONE
 1360 ADD D0,D5 NEXT STRIKE
 1370 CMPI #$2000,D5 ...FINISHED?
 1380 BLS .5 ...NO
 1390 *---GET NEXT SIEVE SIZE----------
 1400 .6 ADDQ #2,D0 NEXT ODD NUMBER
 1410 CMPI #127,D0 UNTIL SQRT $4000-1
 1420 BLS .3
 1430 *---DO IT ALL 1000 TIMES---------
 1440 DBF D6,.1 NEXT TIME
 1450 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1611 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:Articles:Big.BSAVEs.txt
==

Modify DOS 3.3 for Big BSAVEs..............Bob Sander-Cederlof

Jim Sather (author of "Understanding the Apple II" and designer of the
QuikLoader card) called today, and one topic of discussion was DOS
3.3's limit of 32767 for the maximum size of a binary file. Jim has
been blowing 27256 EPROMs, which are 32768 bytes long. To write a
whole EPROMs worth of code on disk it takes two files, because the
EPROM holds one more byte than the maximum size file.

The limit doesn't apply if you write the file with the .TF directive
in the S-C Macro Assembler, but it is checked when you type in a BSAVE
command. The "L" parameter must be less than 32768.

I remembered that somewhere very recently I had read of a quick patch
to DOS to remove the restriction. Where? Hardcore Computing? Call
APPLE? Washington Apple Pi?

The answer was "yes" to both Call APPLE and W.A.P., because Bruce
Field's excellent Apple Doctor column is printed in both magazines.
The July 1984 Call APPLE, on page 55, has the answer:

"Sure, change memory location $A964 in DOS from $7F to $FF. From
Applesoft this can be done with POKE 43364,255. This changes the
range attribute table in DOS to allow binary files as large as 65535
bytes."

By the way, please do not try to BSAVE 65535 bytes on one file. You
will not succeed, because doing so will involve saving bytes from the
$C000-C0FF range. This is where all the I/O soft switches are, any
you will drive your Apple and peripherals wild. And you will not be
able to BLOAD it, because it will load on top of the DOS buffers. In
general, do not BSAVE any area of RAM which includes $C000-C0FF. Do
not BLOAD into the DOS buffers or DOS variables.

If you want to test Bruce's patch, make the patch and then BSAVE
filename,A$800,L$8E00. This will save from $800 through $95FF.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1612 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:Articles:DP18.FOUT.txt
==

18-Digit Arithmetic, Part 4................Bob Sander-Cederlof

This month we will look at two output conversion routines. The first
one always prints in exponential form, while the second one allows
setting a field width and number of fractional digits. The routines
are written so that the output string may either be printed or fed to
an Applesoft string variable.

Let's assume that the value to be printed has already been loaded into
the DP18 accumulator, DAC. Lines 1230-1270 describe DAC as a 12-byte
variable. The exponent is in the first byte, DAC.EXPONENT. It has a
value from $00 to $7F:

 $00 means the whole number is zero
 $01 means the power of ten exponent is -63
 $3F means 10^-1
 $40 means 10^0
 $41 means 10^1
 $7F means 10^63

The 18 digits of the number, plus two extension digits, are in the
next ten bytes in decimal format (each digit takes four bits). The
extension is zeroed when you load a fresh value into DAC, but after
some computations it holds two more digits to guard against roundoff
and truncation problems.

The sign of the number is stored in DAC.SIGN: if the value in
DAC.SIGN is from $00 to $7F, the number is positive; if from $80 to
$FF, the number is negative.

If you have been following the DP18 series from the beginning, and
typing in all the code (or getting it from the Quarterly Disks), then
you will realize that to integrate each installment takes some work.
In order to print the sections separately, and have them separately
readable, I must repeat some variable declarations. The listing this
month refers to two previously printed subroutines, DADD and
MOVE.YA.ARG. These are simply equated to $FFFF in lines 1030 and
1040, so that the code will assemble. If you really want it to work,
you have to remove those two lines and include the code for the
subroutines. The fact that three installments have already been
printed also somewhat restricts me, because even if I see possible
improvements I must be careful not to contradict the code you already
have.

Quick Standard Format Conversion

The subroutine QUICK.FOUT which begins on line 1600 converts the
contents of DAC to a string in FOUT.BUF in the format

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1613 of 2550

Apple II Computer Info

 sd.dddddddddddddddddEsxx

The first s is the sign, which is included only if negative. The d's
are a series of up to 18 significant digits (trailing zeroes will not
be included). The letter E is always included, to signify the power-
of-ten exponent field. The letter s after the E is the sign of the
exponent: it is always included, and will be either + or -. The xx
is a two-digit exponent, and both digits will always be included. The
decimal point will be included only if there are non-zero digits after
it. If the number is exactly zero, the string in FOUT.BUF will be
simply "0". Here are some more examples:

 value string
 1000 "1E+03"
 .001 "1E-03"
 -262564478.5 "-2.625644785E+08"

Two processes are involved in converting from DAC to FOUT.BUF. One is
the analysis of the DAC contents; the other is the process of storing
sequential characters into FOUT.BUF. The latter process is handled in
most cases by the subroutine at lines 3720-3820. Entry at STORE.CHAR
stores the contents of the A-register in the next position in
FOUT.BUF, and increments the position pointer (INDEX). Entry at
STORE.DIGIT first converts the value in the A-register to an ASCII
digit by setting the high nybble to "3". (The digits 0-9 are $30-$39
in ASCII.)

QUICK.FOUT begins by setting INDEX, the FOUT.BUF position pointer, to
0. At lines 1630-1700 the special case of the value in DAC being
exactly zero is tested and handled. If the value in DAC is zero, then
DAC.EXPONENT will be zero. (This is a convention throughout DP18, to
simplify making values of zero and testing for them.) If the value is
zero, ASCII zero is stored in FOUT.BUF, followed by a terminating $00
byte.

If the value is not zero, the next job is to check the sign of the
value. Lines 1710-1740 insert a minus sign in FOUT.BUF if the value
is negative.

Lines 1760-1910 pull out the 18 digits of the mantissa from DAC.HI
through DAC.HI+8. The extension digits are ignored. The code here
looks an awfully lot like a routine to convert from hex to ASCII,
ignoring the possible hex digits A-F. That is because the digits are
four bits each, and ARE like hex digits. Lines 1830-1860 insert the
decimal point after the first digit.

Lines 1930-2020 look at the formatted number in FOUT.BUF and trim off
the trailing zeroes. If all digits after the decimal point are zero,
the decimal point is trimmed off too. If you would rather that
QUICK.FOUT always printed exactly 18 digits, trailing zeroes and all,
you could cut out these lines.

Lines 2040-2290 format the exponent field. First the letter E is
installed in FOUT.BUF. Then lines 2060-2120 install the exponent

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1614 of 2550

Apple II Computer Info

sign. There is a little adjustment here due to the fact that the
value in DAC is in the form ".DDDD" times a power of ten, and we are
converting to "D.DDD" times a power. That means the exponent in
DAC.EXPONENT is one larger than we will print. The DEY at line 2080
adjusts for this offset.

Lines 2130-2180 get the absolute value of the exponent by removing the
$40 bias and taking the 2's complement if the result is negative.
Lines 2190-2290 convert the binary value of the exponent to two
decimal digits, and insert them into FOUT.BUF. Lines 2300-2310
terminate the FOUT.BUF string with $00.

Once the value has been converted to a string in FOUT.BUF, we can
either print it or put it into an Applesoft string variable. The
subroutine QUICK.PRINT which begins at line 1370 calls QUICK.FOUT and
then prints the characters from FOUT.BUF.

Fancier Formatted Conversion

The second conversion routine, which begins at line 2350, allows you
to specify the number of digits to display after the decimal point,
and the number of characters in the output field. The value will be
formatted into the field against the right end, with leading blanks as
necessary to fill the field. The value will be rounded to the number
of digits that will be converted. If you are familiar with the
FORTRAN language, you will recognize this as the "Fw.d" format. W is
the width of the field, and D is the number of fractional digits.
Here are some examples:

 W D value string
 12 5 1234.56 " 1234.56000"
 12 1 1234.56 " 1234.6"

As before, the output string will be stored in FOUT.BUF in ASCII code,
terminated by a $00 byte. If the value will not fit into the W.D
field you specify, the entire field will be filled with "*"
characters.

As listed here, I have set FOUT.BUF as a 41-byte variable. This means
the maximum W is 40, leaving room for the terminating $00 byte. If
you want longer conversions, simply change line 1060.

FOUT expects the W and D parameters to be in the A- and Y-registers,
respectively. Lines 2380-2460 check W and D for legality. If W is
larger than FOUT.BUF.SIZE-1, then it is set to that value. We don't
want to store converted characters beyond the end of FOUT.BUF! Then
if D is larger than W-1, it is pruned back.

Lines 2480-2540 initialize various variables used during the following
conversion. Once again, INDEX will point to the position in FOUT.BUF.
I could probably have economized some in the use of variables by re-
using the same variables for different purposes, but I wanted to keep
them separate to make it easier to code and debug.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1615 of 2550

Apple II Computer Info

Line 2560 calls ROUND.DAC.D to round the value in DAC to D digits
after the decimal point. This boils down to adding .5 times 10 to the
D power to the value in DAC. ROUND.DAC.D, at lines 3860-4000, does
just that. First the rounding number is built in ARG, then DADD adds
ARG to FAC.

Lines 2570-2610 store a minus sign into SIGN.CHAR if the value in DAC
is negative. SIGN.CHAR was initialized to $00 above. If the sign is
negative, line 2590 will increment SIGN.SIZE. SIGN.SIZE will either
be 0 or 1, and will be used later in determining how many leading
blanks are needed. We cannot store the sign character into FOUT.BUF
until the leading blanks have been stored.

Lines 2630 to 2710 compute how many digits will be printed before the
decimal point (NO.LEADING.DIGITS), and how many zeroes before the
first significant digit after the decimal point (NO.LEADING.ZEROES).
If the power-of-ten exponent was negative, there will be no leading
digits and some leading zeroes; if positive, there will be some
leading digits and no leading zeroes. For example,

 .2345E-5 .000002345 5 leading zeroes
 .2345E+3 234.5 3 leading digits

What if the exponent is more than 18? This would mean more digits
might be extracted from DAC than exist, so lines 2730-2790 limit
NO.LEADING.DIGITS to 18. NO.INTEGRAL.ZEROES takes up the slack, to
print any necessary zeroes between the last significant digit before
the decimal point, and the decimal point. For example, if W=25 and
D=2, and the value is .1234E+20, we will get NO.LEADING.DIGITS=18 and
NO.INTEGRAL.ZEROES=2:

 " 12340000000000000000.00"

Lines 2810-2870 now calculate the total number of non-blank characters
which will be required: one for sign if the sign is negative, all the
leading digits and integral zeroes before the decimal point, one for
the decimal point itself, and D fractional digits. (Just now I
noticed that I could have saved two bytes and two cycles by changing
line 2810 from CLC to SEC, and eliminating the ADC #1 at line 2860.)

Lines 2890-2920 compute how many significant digits of fraction will
be needed. You specified D digits of fraction, but only DD of them
will come from the value in DAC. This will be less than D if there
are any leading zeroes.

Lines 2940-2970 check whether the converted number can fit in a W-wide
field. If not, Lines 3370-3400 fill the field with stars and exit.

Lines 2980-3030 compute how many leading blanks will be needed to
right justify the number in the W-field. There is some hopscotch here
because we are going to put "0." in front of numbers that have no
integral digits.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1616 of 2550

Apple II Computer Info

At long last, we are ready to begin string characters in FOUT.BUF.
Lines 3050-3070 store the leading blanks. A subroutine STORE.N.CHARS
does the dirty work. STORE.N.CHARS (lines 3670-3710) expects the
character to be stored in the A-register, and the count in the Y-
register. It also expects that the Z-status is set according to the
count in Y. Thus, if the count is zero, the subroutines returns
immediately without storing any characters.

STORE.N.DIGITS, at lines 3440-3620, is quite similar to STORE.N.CHARS.
Once again, the count must be in the Y-register and the Z-status
should reflect the value in Y. Digits are picked out of the value in
DAC using an index DIGIT.PICKER, and stored into FOUT.BUF using
STORE.DIGIT.

Lines 3090-3110 store the sign if it is negative. Lines 3120-3210
print whatever digits are needed before the decimal point. This will
include leading digits (if any) and integral zeroes (if any), or
simply one zero (if neither of the other).

Lines 3230-3320 store the fractional part. This includes the decimal
point, leading fractional zeroes (if any), and fractional digits (if
any).

Finally, lines 3340-3350 store a terminating $00 at the end of the
string in FOUT.BUF.

A subroutine called FORMAT.PRINT at line 1450 calls FOUT and then
prints the contents of FOUT.BUF. You could now write a higher level
routine, if you wish, which would examine the exponent to determine
whether the number would fit in a 20-character field. If not, you
could use QUICK.PRINT. If so, use FOUT with W=40 and D=18, and then
truncate leading spaces and trailing zeroes. This would give you a
complete print routine for any numbers, printing them in simple form
when they fit and exponential form when they don't. Indeed, just such
a routine already exists in DP18, but will have to wait for a future
installment. FOUT can also be used as the base for a complete PRINT
USING facility, and that is also already in DP18 waiting for future
installments.
 Meanwhile, enjoy these two conversions, and experiment with your
own.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1617 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:Articles:Enbl.Dsbl.IRQ.txt
==

Enable/Disable IRQ from Applesoft..........Bob Sander-Cederlof

If you have applied the patches to DOS 3.3 that we published in the
January 1984 issue (pages 10,11), and if you now are using interrupts
from such sources as the Timemaster II or a handy pushbutton, you have
probably run into the need to enable and disable IRQ from within an
Applesoft program. (That sentence is the kind you have to read
without interruption, so I really should have begun the paragraph with
SEI and ended it with CLI.)

What is need is four bytes of assembly language, at a location that
you can CALL. For example:

 300- 58 CLI
 301- 60 RTS
 302- 78 SEI
 303- 60 RTS

If those four bytes are in memory as shown, you can CALL 768 to enable
IRQ interrupts, and CALL 771 to disable them. You can install the
four bytes like this:

 100 POKE 768,88: POKE 769,96
 110 POKE 770,120:POKE 771,96

Now there are often times when poking into page 3 is not possible.
Are there other tricky ways to get those bytes installed, without
using page 3?

I found a half dozen or so. First, realize that the four bytes only
need to be there when you call them. The rest of the time the same
locations could be used for other purposes. For example, we could
poke them into the input buffer at $200, as long as we do it every
time we CALL it:

 100 POKE 512,88:POKE 513,96:CALL 512
 to enable interrupts, or

 500 POKE 512,120:POKE 513,96:CALL 512
 to disable them.

The result of a multiplication or division is left, sometimes
normalized and sometimes not, in $62...$66. If we find two numbers
whose product leaves the bytes $58 and $60 at $62 and $63, we could
CALL 98:

 100 X = 1*707 : CALL 98 : REM ENABLE IRQ
 200 X = 1*963 : CALL 98 : REM DISABLE IRQ

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1618 of 2550

Apple II Computer Info

On the next page is a table showing the various methods I found:

Enable (CLI..RTS) Disable (SEI..RTS)

100 POKE 38,88 100 POKE 38,120
110 POKE 39,96 110 POKE 39,96
120 CALL 38 120 CALL 38

100 CALL 8411232-8411065 100 CALL 8419424-8419257

100 GOSUB 24664 100 GOSUB 24696
... ...
24664 CALL 117:RETURN 24696 CALL 117:RETURN

100 X = 1*707 : CALL 98 100 X = 1*963 : CALL 98

100 X = RND(-8411323.5) 100 X = RND(-8419424.5)
110 CALL 203 110 CALL 203

100 HOME:FLASH:PRINT"X " 100 HOME:FLASH:PRINT"8 "
110 NORMAL:CALL1024 110 NORMAL:CALL1024

Can you figure out how all these work? They are pretty tricky! Can
you think of some more?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1619 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 11 August, 1984

In This Issue...

18-Digit Arithmetic, Part 4. 2
Enable/Disable IRQ from Applesoft. 13
Line Number Cross Reference. 15
Speaking of Slow Chips 27
Modify DOS 3.3 for Big BSAVEs. 28

New Cross Assemblers Available

We have recently added three new cross assemblers to the S-C Macro
family.

 Intel Z-8...................$32.50
 General Instruments 1650....$50.00
 General Instruments 1670....$50.00

Unlike previous cross assemblers, which were based on Version 1.0 of
the S-C Macro Assembler, these are based on Version 1.1. This means
80-column support for the Videx, STB-80, and Apple //e-//c 80-column,
as well as standard 40-column. It also adds certain directives and
fixes some problems which were in version 1.0.

We have also been hard at work generating Version 2.0 of the S-C Macro
Assembler. It will be ready soon, complete with a brand new manual.
It will support all the new opcodes and address modes of the 65C02,
65802, and 65816 processors. Owners of older versions of the S-C
Assemblers will be able to upgrade for a very reasonable fee.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1620 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:Articles:LCR.Diagram.txt
==

One of
64 hash Calling Line Lists
pointers

 ---- --------- ----
 | |--->| | |--->| |--->0
 ---- --------- ----

 --------- ---- ---- ----
 | | |--->| |--->| |--->| |--->0
 --------- ---- ---- ----
Called
Line
Chain ---------
 | | |--->0

 --------- ----
 | | |--->| |--->0
 --------- ----

Found a Call

 * Use high 6 bits of called line number to index Hash Table
 * Get pointer from Hash Table to find start of chain
 * If no pointer in Hash Table, make new entry
 * Search chain for same line number
 * If not found, make new link in chain
 * If found, search calling line list
 * Enter new calling line in list

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1621 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:Articles:LCR.txt
==

Line Number Cross Reference.........................Bill Morgan

Have you ever had to modify a BASIC program written by someone who
didn't seem to know what he was doing? Deciphering several hundred
undocumented lines of split FOR/NEXTs and tangled GOTOs can lead to a
severe headache. We recently had a consulting job that involved just
such a project: one program to be altered was about a hundred sectors
of spaghetti-plate Applesoft. A couple of the biggest problems were
figuring out which lines used a particular variable, and what lines
called others, or were called from where.

Back in November of 1980, AAL published a Variable Cross Reference
program which neatly took care of the first problem by producing a
listing in alphabetical order of all the variables used and all the
lines using them. At the end of that article, Bob S-C pointed out
that the program could, with some effort, be modified into just the
sort of Line Number Cross Reference we now needed. Well, I drew the
job of making that modification, and here's what I came up with.

The Basis

These Cross Reference programs use a hash-chain data structure to
store the called and calling line numbers. Each called line has its
own list of lines which refer to it. We locate these lists by using
the upper six bits of the line number for an index into a table
located at $280. This table contains the address of the beginning of
each of the 64 possible chains. Each chain is made up of the data for
a range of 1024 possible called line numbers. The first one has
called lines 0-1023, the second has 1024-2047, and so on.

The entry for each called line is made up of a pointer to the next
called line in that chain, this called line number, a pointer to the
next calling line, and the number of this calling line. Each
subsequent calling line entry has only the last four bytes. A pointer
with a value of zero marks the end of each chain and each list.

VCR used three characters for each variable: the first two letters of
the variable name and a type designator of "$", "%" or " ". The first
character was the hash index and the last two characters were stored
at the beginning of each variable's chain. LCR uses the high-order 6
bits of the called line number for the hash index and stores both
bytes of the number in the chain. This is slightly redundant, so if
you want to store more information about the called line, you can use
the upper six bits of the chain entry.

VCR stored the calling line numbers with the high byte first,
backwards from usual 6502 practice. This was done so the same search-
compare code could handle both variable names and line numbers. To

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1622 of 2550

Apple II Computer Info

simplify the conversion I kept the same structure, even though it's no
longer strictly necessary.

The Program

LCR, the overall control level, is identical to VCR and just calls the
other routines.

INITIALIZATION prepares a couple of pointers and zeroes the hash
table. The only difference here is the size of the hash table.

PROCESS.LINE is also the same as in VCR. This routine steps through
the lines of the Applesoft program, moving the calling line number
into our data area and JSRing to SCAN.FOR.CALLS to work on each line.

SCAN.FOR.CALLS is the first really new section of code. We start by
setting a flag used to mark ON ... GO statements. Then we step
through the bytes of the line, looking for tokens that call another
line. GOTO and GOSUB are processed immediately. For a THEN token we
check to see if the next character is a number. If it is, we deal
with it; if not, we go on. If we find an ON token, we set the flag
and keep looking. After a GOTO or GOSUB we check ONFLAG. If there
was an ON, we look for a comma to mark another called line number.

PROCESS.CALL first converts the ASCII line number of the called line
into a two-byte binary number and then searches the data structure for
that line. If it is there, we simply add this calling line to the
list. If we don't find the called line we create a new entry for it.

CONVERT.LINE.NUMBER is lifted straight from Applesoft's LINGET, at
$DA0C.

NEXT.CHAR is a utility routine to get the next byte from the program
and advance the pointer.

SEARCH.CALL.TABLE starts the search pointer on the appropriate chain.

CHAIN.SEARCH uses the pointer in an entry to step to the next entry.
If the pointer is zero, then there is no next entry and the search has
failed. We then compare the line number in the entry to the one we're
looking for. If the entry is less than the search key, we go on. If
it is equal, we update the pointer and report success. If we hit an
entry greater than the key, the search fails and we return.

SEARCH.LINE.CHAIN is called after SEARCH.CALL.TABLE has found a match.
Here we move the pointer to the calling line field of the matching
entry and use the current calling line for a search key.

ADD.NEW.ENTRY first updates the pointers in the previous entry and
this new entry, and the end-of-table pointer. We then make sure there
is room for the new entry and move the data up into the new space.

Now we are done with the routines devoted to building the Cross
Reference tables. Interestingly, SEARCH.CALL.TABLE, CHAIN.SEARCH,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1623 of 2550

Apple II Computer Info

SEARCH.LINE.CHAIN, and ADD.NEW.ENTRY are the real heart of this
program, and the only change I had to make in these routines from VCR
to LCR was to alter the method of figuring the hash index in
SEARCH.CALL.TABLE. Next we come to getting the data back out of the
tables and onto a display.

PRINT.REPORT first sets a pointer we'll be using later on and then
steps through the hash table, calling PRINT.CHAIN for each entry
found.

PRINT.CHAIN starts out by checking for a pause or abort signal from
the keyboard. It then moves the current called line number into
LINNUM, checks to see if it really exists, and prints it, followed by
an asterisk if it is undefined. Now we move a pointer up to the start
of the calling line list and call PRINT.LINNUM.CHAIN to display all
the entries. The last step is to move the pointer up to the next
called line in this chain, if any, and go back to do that one.

CHECK.DEFINITION keeps its own pointer into the program and steps
along checking each called line to see if it actually exists. It
provides a space or an asterisk to be printed after the line number.

PRINT.LINNUM.CHAIN displays the calling lines stored for each called
line. We first tab to the next column (or line if necessary), then
get the line number out of the list and print it. Lastly, we move the
pointer up to the next entry, if any, and loop back.

TAB.NEXT.COLUMN prints enough blanks to move over to the next output
position. If a new line is necessary, it checks the line number to
see if the new line should go to the screen only, or also to a
printer. This is Louis Pitz's addition, designed to automatically
handle either 40- or 80-column output.

PRINT.LINE.NUMBER and CHECK.FOR.PAUSE are pretty standard routines to
convert a two-byte binary number into five decimal characters, and to
provide for pause/abort during display.

Well, now we have a Line Number Cross Reference to go along with the
Variable Cross Reference. Now all that remains is to integrate the
two programs into one master Applesoft Cross Reference Utility. Maybe
you could call it with "&V" for VCR, or "&L" for LCR, and simply "&"
to get both listings. Any takers out there?

PS: Bob suggested that I add a diagram of the hash chain structure,
and a summary of the search process. OK, here they are...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1624 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 1.1....................................$92.50
Version 1.1 Update...$12.50
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984 QD#15: Apr-Jun 1984

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Quick-Trace (Anthro-Digital)..............................(reg. $50) $45
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
Amper-Magic (Anthro-Digital)..............................(reg. $75) $65
Amper-Magic Volume 2 (Anthro-Digital).....................(reg. $35) $30
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36
Aztec C Compiler System (Manx Software)..................(reg. $199) $180

Blank Diskettes (Verbatim)............2.50 each, or package of 20 for $45
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
ZIF Game Socket Extender (Ohm Electronics)$20
QuikLoader EPROM System (SCRG)................................($179) $170

Books, Books, Books..........................compare our discount prices!
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15
 Second edition, with //e information.
 "Assembly Cookbook for the Apple II/IIe", Lancaster.....($21.95) $20
 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1625 of 2550

Apple II Computer Info

 "What's Where in the Apple", Second Edition.............($19.95) $19
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($18.95) $18
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9
 "Microcomputer Graphics", Myers.........................($12.95) $12
 "Microcomputer Design & Troubleshooting", Zumchak.......($17.95) $17

We have small quantities of other great books, call for titles & prices.
Add $1.50 per book for US shipping. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1626 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:Articles:Slow.Chips.txt
==

Speaking of Slow Chips.......................Robert H. Bernard

William O'Ryan's article (AAL June 1984) about making the 65C02 work
in II+s reminds me of some other slow chip problems I have had in the
past with Apples.

Years ago, I had a problem with an SSM AIO card in an Apple that
traced to a slow 74LS138 at position H2. The symptom was that every
few hours the program would fly off into the weeds. I traced it to
the device select for the slot, which caused the data on the bus to be
late for ROM program fetches from the card. I was able to fix the
problem in that case by swapping H2 with another '138 from a different
(less critical) position.

Some time later I was able to fix a problem in another machine by
swapping the ROM SELECT chip at position F12 (another 74LS138) with
another '138. There are apparently many marginal timing situations in
II+s, and they are not necessarily in the oldest ones.

All this slow circuit stuff has some interesting side effects. I
personally had a number of conversations with SSM about this problem
before I found the real cause, and all they could suggest was a
capacitor on the clock line. Even after I found the problem, the SSM
people I talked to seemed uninterested in the fix, perhaps because
they couldn't apply it directly to their product.

The unfortunate end result was that a number of organizations that
previously sold or recommended AIO cards stopped doing so. A domino
effect was that our local retailer stopped pushing Anadex printers
(which required the DTR signal, at that time only available on the
AIO) rather than find another serial card to replace the AIO. I
always wondered if the Anadex people noticed the effect on their
sales....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1627 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:DOS3.3:S.DP18.FOUT.txt
==

 1000 *SAVE S.DP18 FOUT
 1010 *--------------------------------
 1020 AS.COUT .EQ $DB5C
 1030 DADD .EQ $FFFF
 1040 MOVE.YA.ARG .EQ $FFFF
 1050 *--------------------------------
 1060 FOUT.BUF .BS 41
 1070 FOUT.BUF.SIZE .EQ *-FOUT.BUF
 1080 *--------------------------------
 1090 W .BS 1
 1100 D .BS 1
 1110 INDEX .BS 1
 1120 SIGN.SIZE .BS 1
 1130 SIGN.CHAR .BS 1
 1140 ZERO.CHAR .BS 1
 1150 WW .BS 1
 1160 DD .BS 1
 1170 DIGIT.PICKER .BS 1
 1180 NO.LEADING.ZEROES .BS 1
 1190 NO.LEADING.DIGITS .BS 1
 1200 NO.INTEGRAL.ZEROES .BS 1
 1210 NO.LEADING.BLANKS .BS 1
 1220 *--------------------------------
 1230 DAC .BS 12
 1240 DAC.EXPONENT .EQ DAC
 1250 DAC.HI .EQ DAC+1
 1260 DAC.EXTENSION .EQ DAC+10
 1270 DAC.SIGN .EQ DAC+11
 1280 *--------------------------------
 1290 ARG .BS 12
 1300 ARG.EXPONENT .EQ ARG
 1310 ARG.HI .EQ ARG+1
 1320 ARG.EXTENSION .EQ ARG+10
 1330 ARG.SIGN .EQ ARG+11
 1340 *--------------------------------
 1350 * QUICK PRINT
 1360 *--------------------------------
 1370 QUICK.PRINT
 1380 JSR QUICK.FOUT
 1390 JMP FOR.PRINT.1
 1400 *--------------------------------
 1410 * FORMATTED PRINT
 1420 * (A)=WIDTH OF FIELD
 1430 * (Y)=# OF FRACTIONAL DIGITS
 1440 *--------------------------------
 1450 FORMAT.PRINT
 1460 LDX #'0 USE ZEROES BEFORE FRACTION
 1470 STX ZERO.CHAR
 1480 JSR FOUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1628 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 FOR.PRINT.1
 1510 LDY #0
 1520 .1 LDA FOUT.BUF,Y
 1530 BEQ .2
 1540 JSR AS.COUT
 1550 INY
 1560 BNE .1 ...ALWAYS
 1570 .2 RTS
 1580 *--------------------------------
 1590 * QUICK CONVERSION
 1600 *--------------------------------
 1610 QUICK.FOUT
 1620 LDY #0
 1630 STY INDEX
 1640 LDA DAC.EXPONENT
 1650 BNE .0 NUMBER IS NOT ZERO
 1660 INC INDEX
 1670 STY FOUT.BUF+1
 1680 LDA #'0
 1690 STA FOUT.BUF MAKE IT '0'
 1700 RTS
 1710 .0 LDA DAC.SIGN
 1720 BPL .1
 1730 LDA #'- NEGATIVE
 1740 JSR STORE.CHAR
 1750 *--------------------------------
 1760 .1 LDA DAC.HI,Y NEXT BYTE OF #
 1770 PHA
 1780 LSR
 1790 LSR
 1800 LSR
 1810 LSR
 1820 JSR STORE.DIGIT
 1830 CPY #0
 1840 BNE .2
 1850 LDA #'. PUT DECIMAL POINT
 1860 JSR STORE.CHAR
 1870 .2 PLA DO 2ND DIGIT
 1880 JSR STORE.DIGIT
 1890 INY
 1900 CPY #9 8 MORE BYTES
 1910 BCC .1
 1920 *--------------------------------
 1930 LDY INDEX TRUNCATE TRAILING ZEROS
 1940 .3 DEY
 1950 LDA FOUT.BUF,Y
 1960 CMP #'0
 1970 BEQ .3 DONE
 1980 CMP #'. TRAILING DECIMAL PT?
 1990 BNE .4 NO
 2000 DEY YES, DELETE IT
 2010 .4 INY
 2020 STY INDEX SAVE NEW END OF NUMBER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1629 of 2550

Apple II Computer Info

 2030 *--------------------------------
 2040 LDA #'E
 2050 JSR STORE.CHAR E FOR EXPONENT
 2060 LDA #'+
 2070 LDY DAC.EXPONENT
 2080 DEY
 2090 CPY #$40
 2100 BCS .5
 2110 LDA #'-
 2120 .5 JSR STORE.CHAR
 2130 TYA EXPONENT
 2140 SEC
 2150 SBC #$40 REMOVE OFFSET
 2160 BPL .6
 2170 EOR #$FF
 2180 ADC #1
 2190 .6 LDX #'0-1
 2200 SEC
 2210 .8 INX
 2220 SBC #10
 2230 BCS .8
 2240 ADC #'9+1
 2250 PHA
 2260 TXA
 2270 JSR STORE.CHAR
 2280 PLA
 2290 JSR STORE.CHAR
 2300 LDA #0
 2310 JMP STORE.CHAR
 2320 *--------------------------------
 2330 * FORMATTED CONVERSION
 2340 * (A)=WIDTH OF FIELD
 2350 * (Y)=# OF FRACTIONAL DIGITS
 2360 *--------------------------------
 2370 FOUT
 2380 CMP #FOUT.BUF.SIZE LIMIT WIDTH
 2390 BCC .1
 2400 LDA #FOUT.BUF.SIZE-1
 2410 .1 STA W
 2420 CPY W FORCE D<W
 2430 BCC .2
 2440 TAY
 2450 DEY
 2460 .2 STY D
 2470 *--------------------------------
 2480 LDA #0
 2490 STA INDEX
 2500 STA SIGN.SIZE
 2510 STA SIGN.CHAR
 2520 STA NO.INTEGRAL.ZEROES
 2530 STA NO.LEADING.ZEROES
 2540 STA DIGIT.PICKER
 2550 *--------------------------------
 2560 JSR ROUND.DAC.D ROUND TO D DIGITS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1630 of 2550

Apple II Computer Info

 2570 LDA DAC.SIGN
 2580 BPL .3
 2590 INC SIGN.SIZE
 2600 LDA #'- MINUS SIGN
 2610 STA SIGN.CHAR
 2620 *--------------------------------
 2630 .3 SEC
 2640 LDA DAC.EXPONENT
 2650 SBC #$40 REMOVE OFFSET
 2660 BPL .4
 2670 EOR #$FF
 2680 STA NO.LEADING.ZEROES
 2690 INC NO.LEADING.ZEROES
 2700 LDA #0
 2710 .4 STA NO.LEADING.DIGITS
 2720 *--------------------------------
 2730 SEC
 2740 LDA NO.LEADING.DIGITS
 2750 SBC #18
 2760 BMI .5
 2770 STA NO.INTEGRAL.ZEROES
 2780 LDA #18 18 SIGNIF DIGITS MAX
 2790 STA NO.LEADING.DIGITS
 2800 *--------------------------------
 2810 .5 CLC CALCULATE TOTAL # OF DIGITS
 2820 LDA SIGN.SIZE
 2830 ADC NO.LEADING.DIGITS
 2840 ADC NO.INTEGRAL.ZEROES
 2850 ADC D
 2860 ADC #1
 2870 STA WW
 2880 *--------------------------------
 2890 SEC
 2900 LDA D
 2910 SBC NO.LEADING.ZEROES
 2920 STA DD
 2930 *--------------------------------
 2940 SEC
 2950 LDA W
 2960 SBC WW
 2970 BMI .14 ...OVERFLOW
 2980 STA NO.LEADING.BLANKS
 2990 LDA NO.LEADING.DIGITS
 3000 BNE .6
 3010 DEC NO.LEADING.BLANKS
 3020 BPL .6
 3030 INC NO.LEADING.BLANKS IT WENT -, MAKE 0
 3040 *---STORE LEADING BLANKS---------
 3050 .6 LDA #' ' BLANK
 3060 LDY NO.LEADING.BLANKS
 3070 JSR STORE.N.CHARS
 3080 *---STORE SIGN-------------------
 3090 LDA SIGN.CHAR
 3100 BEQ .8

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1631 of 2550

Apple II Computer Info

 3110 JSR STORE.CHAR
 3120 *---STORE INTEGRAL DIGITS--------
 3130 .8 LDY NO.LEADING.DIGITS
 3140 BEQ .10
 3150 JSR STORE.N.DIGITS
 3160 BEQ .11 ...ALWAYS
 3170 .10 LDA ZERO.CHAR NO INTEGER PART,SO PRINT 0
 3180 JSR STORE.CHAR
 3190 .11 LDA #'0
 3200 LDY NO.INTEGRAL.ZEROES
 3210 JSR STORE.N.CHARS
 3220 *---STORE FRACTION---------------
 3230 LDA #'.
 3240 JSR STORE.CHAR
 3250 LDA DD
 3260 ORA NO.LEADING.ZEROES
 3270 BEQ .13
 3280 LDA ZERO.CHAR
 3290 LDY NO.LEADING.ZEROES
 3300 JSR STORE.N.CHARS
 3310 LDY DD
 3320 JSR STORE.N.DIGITS
 3330 *---TERMINATE STRING-------------
 3340 .13 LDA #0
 3350 JMP STORE.CHAR
 3360 *--------------------------------
 3370 .14 LDA #'*' FILL FIELD WITH STARS
 3380 LDY W
 3390 JSR STORE.N.CHARS
 3400 JMP .13
 3410 *--------------------------------
 3420 * STORE NEXT (Y) DIGITS
 3430 *--------------------------------
 3440 SND..1 LDA DIGIT.PICKER
 3450 CMP #20
 3460 BCC .1
 3470 LDA #0
 3480 BEQ .2 ...ALWAYS
 3490 .1 LSR LEFT/RIGHT --> C
 3500 TAX INDEX --> X
 3510 INC DIGIT.PICKER
 3520 LDA DAC.HI,X
 3530 BCS .2
 3540 LSR
 3550 LSR
 3560 LSR
 3570 LSR
 3580 .2 JSR STORE.DIGIT
 3590 DEY
 3600 STORE.N.DIGITS
 3610 BNE SND..1
 3620 RTS
 3630 *--------------------------------
 3640 * STORE (Y) OF THE CHARACTER IN (A)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1632 of 2550

Apple II Computer Info

 3650 * (Z-STATUS IF COUNT IS 0)
 3660 *--------------------------------
 3670 SNC..1 JSR STORE.CHAR
 3680 DEY
 3690 STORE.N.CHARS
 3700 BNE SNC..1
 3710 RTS
 3720 *--------------------------------
 3730 * STORE A CHAR IN THE BUFFER
 3740 *--------------------------------
 3750 STORE.DIGIT
 3760 AND #$0F
 3770 ORA #'0'
 3780 STORE.CHAR
 3790 LDX INDEX
 3800 STA FOUT.BUF,X
 3810 INC INDEX
 3820 RTS
 3830 *--------------------------------
 3840 * ROUND DAC TO (D) DECIMAL PLACES
 3850 *--------------------------------
 3860 ROUND.DAC.D
 3870 LDA DAC.SIGN GET THE SIGN
 3880 PHA SAVE IT
 3890 LDA #CON.1HALF
 3900 LDY /CON.1HALF
 3910 JSR MOVE.YA.ARG MOVE .5*10^-D INTO ARG
 3920 PLA GET SIGN
 3930 STA ARG.SIGN
 3940 LDA D GET # OF PLACES
 3950 EOR #$FF MAKE IT NEGATIVE BY 2S COMPLEMENT
 3960 SEC ADD 1 DURING NEXT ADD
 3970 ADC #$40 ADD OFFSET
 3980 STA ARG.EXPONENT
 3990 JMP DADD ADD .5*10^-D;FOUT WILL TRUNCATE IT
 4000 *--------------------------------
 4010 CON.1HALF .HS 4050000000000000000000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1633 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:DOS3.3:S.DP18.PackUn.txt
==

 1000 *SAVE S.DP18 PACK & UNPACK
 1010 *-------------------------------
 1020 * ADDRESSES INSIDE APPLESOFT
 1030 *-------------------------------
 1040 AS.OVRFLW .EQ $E8D5 OVERFLOW ERROR
 1050 *--------------------------------
 1060 * PAGE ZERO USAGE
 1070 *-------------------------------
 1080 PNTR .EQ $5E,5F
 1090 *-------------------------------
 1100 * MOVE (Y,A) INTO DAC AND UNPACK
 1110 *--------------------------------
 1120 MOVE.YA.DAC
 1130 STA PNTR
 1140 STY PNTR+1
 1150 LDY #9 MOVE 10 BYTES
 1160 .1 LDA (PNTR),Y
 1170 STA DAC,Y
 1180 DEY
 1190 BPL .1
 1200 INY Y=0
 1210 STY DAC.EXTENSION
 1220 LDA DAC.EXPONENT
 1230 STA DAC.SIGN
 1240 AND #$7F
 1250 STA DAC.EXPONENT
 1260 RTS
 1270 *--------------------------------
 1280 * MOVE (Y,A) INTO ARG AND UNPACK
 1290 *--------------------------------
 1300 MOVE.YA.ARG
 1310 STA PNTR
 1320 STY PNTR+1
 1330 LDY #9 MOVE 10 BYTES
 1340 .1 LDA (PNTR),Y
 1350 STA ARG,Y
 1360 DEY
 1370 BPL .1
 1380 INY Y=0
 1390 STY ARG.EXTENSION
 1400 LDA ARG.EXPONENT
 1410 STA ARG.SIGN
 1420 AND #$7F
 1430 STA ARG.EXPONENT
 1440 RTS
 1450 *--------------------------------
 1460 * PACK AND MOVE DAC TO (Y,A)
 1470 *--------------------------------
 1480 MOVE.DAC.YA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1634 of 2550

Apple II Computer Info

 1490 STA PNTR
 1500 STY PNTR+1
 1510 JSR ROUND.DAC
 1520 LDA DAC.EXPONENT
 1530 BIT DAC.SIGN
 1540 BPL .1 POSITIVE
 1550 ORA #$80 NEGATIVE
 1560 .1 LDY #0
 1570 .2 STA (PNTR),Y
 1580 INY
 1590 LDA DAC,Y
 1600 CPY #10
 1610 BCC .2
 1620 RTS
 1630 *--------------------------------
 1640 * ROUND DAC BY EXTENSION
 1650 *--------------------------------
 1660 ROUND.DAC
 1670 LDA DAC.EXTENSION
 1680 CMP #$50 COMPARE TO .5
 1690 BCC .3 NO NEED TO ROUND
 1700 LDY #8
 1710 SED DECIMAL MODE
 1720 .1 LDA #0
 1730 ADC DAC.HI,Y
 1740 STA DAC.HI,Y
 1750 BCC .2 NO NEED FOR FURTHER PROPAGATION
 1760 DEY
 1770 BPL .1 ...MORE BYTES
 1780 INC DAC.EXPONENT
 1790 BMI .4 ...OVERFLOW
 1800 LDA #$10 .999...9 ROUNDED TO 1.000...0
 1810 STA DAC.HI
 1820 .2 CLD
 1830 .3 LDA #0
 1840 STA DAC.EXTENSION
 1850 RTS
 1860 .4 CLD
 1870 JMP AS.OVRFLW
 1880 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1635 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8408:DOS3.3:S.LCR.txt
==

 1000 *SAVE S.LCR
 1010 *--------------------------------
 1020 * LINE NUMBER CROSS REFERENCE
 1030 * FOR APPLESOFT PROGRAMS
 1040 *
 1050 * Based on Variable Cross Reference
 1060 * Original by Bob S-C 11/80
 1070 * Modified by Louis Pitz 8/83
 1080 * Adapted by Bill Morgan 8/84
 1090 *--------------------------------
 1100 .OR $6000
 1110 * .TF B.LCR
 1120 *--------------------------------
 1130 LDA #$4C set & vector
 1140 STA $3F5
 1150 LDA #LCR
 1160 STA $3F6
 1170 LDA /LCR
 1180 STA $3F7
 1190 RTS
 1200 *--------------------------------
 1210 TEMP .EQ $15
 1220 COUNTER .EQ $16
 1230 ONFLAG .EQ $17 ON ... GO flag
 1240 DEFFLAG .EQ $17
 1250 PNTR .EQ $18,19 pointer into program
 1260 LZFLAG .EQ $1A leading zero flag
 1270 DATA .EQ $1A thru $1D
 1280 NEXTLN .EQ $1A,1B address of next line
 1290 LINNUM .EQ $1C,1D current line number
 1300 STPNTR .EQ $1E,1F pointer into call table
 1310 TPTR .EQ $9B,9C temp pointer
 1320 ENTRY .EQ $9D thru $A4 8 bytes
 1330 CALL .EQ ENTRY+2
 1340 SIZE .EQ $A5,A6
 1350 HSHTBL .EQ $280
 1360 *--------------------------------
 1370 PRGBOT .EQ $67,68 beginning of program
 1380 LOMEM .EQ $69,6A beginning of variable space
 1390 EOT .EQ $6B,6C end of variable table
 1400 *--------------------------------
 1410 COMMA .EQ ',
 1420 CR .EQ $8D
 1430 TKN.GOTO .EQ $AB
 1440 TKN.GOSUB .EQ $B0
 1450 TKN.ON .EQ $B4
 1460 TKN.THEN .EQ $C4
 1470 *--------------------------------
 1480 MON.CH .EQ $24

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1636 of 2550

Apple II Computer Info

 1490 KEYBOARD .EQ $C000
 1500 STROBE .EQ $C010
 1510 AS.MEMFULL .EQ $D410
 1520 MON.PRBL2 .EQ $F94A
 1530 MON.CROUT .EQ $FD8E
 1540 MON.COUT .EQ $FDED
 1550 MON.COUT1 .EQ $FDF0
 1560 *--------------------------------
 1570 LCR JSR INITIALIZATION
 1580 .1 JSR PROCESS.LINE
 1590 BNE .1 until end of program
 1600 JSR PRINT.REPORT
 1610 JSR INITIALIZATION erase call table
 1620 LDA #0 clear $A4 so Applesoft
 1630 STA $A4 will work correctly
 1640 RTS
 1650 *--------------------------------
 1660 INITIALIZATION
 1670 LDA LOMEM start call table
 1680 STA EOT after program
 1690 LDA LOMEM+1
 1700 STA EOT+1
 1710 LDX #$80 # of bytes for hash pointers
 1720 LDA #0
 1730 .1 STA HSHTBL-1,X
 1740 DEX
 1750 BNE .1
 1760 LDA PRGBOT start pointer at
 1770 STA PNTR beginning of program
 1780 LDA PRGBOT+1
 1790 STA PNTR+1
 1800 RTS
 1810 *--------------------------------
 1820 PROCESS.LINE
 1830 LDY #3 capture pointer and line #
 1840 .1 LDA (PNTR),Y
 1850 STA DATA,Y
 1860 DEY
 1870 BPL .1
 1880 LDA DATA+1 check if end
 1890 BEQ .3 yes, return .EQ.
 1900 CLC
 1910 LDA PNTR adjust pointer to
 1920 ADC #4 skip over data
 1930 STA PNTR
 1940 BCC .2
 1950 INC PNTR+1
 1960 .2 JSR SCAN.FOR.CALLS
 1970 LDA DATA point to next line
 1980 STA PNTR
 1990 LDA DATA+1 and return .NE.
 2000 STA PNTR+1
 2010 .3 RTS
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1637 of 2550

Apple II Computer Info

 2030 SCAN.FOR.CALLS
 2040 LDA #$FF
 2050 STA ONFLAG
 2060 .1 JSR NEXT.CHAR
 2070 BEQ .4
 2080 CMP #TKN.THEN scan for call token
 2090 BEQ .2
 2100 CMP #TKN.GOTO
 2110 BEQ .3
 2120 CMP #TKN.GOSUB
 2130 BEQ .3
 2140 CMP #TKN.ON
 2150 BNE .1 no match, keep going
 2160 LSR ONFLAG set flag for ON token
 2170 BPL .1 ...always
 2180
 2190 .2 LDY #0 after THEN, check
 2200 LDA (PNTR),Y for line number
 2210 CMP #'0
 2220 BCC .1 <0 isn't
 2230 CMP #'9+1
 2240 BCS .1 neither is >9
 2250
 2260 .3 JSR PROCESS.CALL handle this call
 2270 LDA ONFLAG are we in ON?
 2280 BMI SCAN.FOR.CALLS no, go on
 2290 JSR NEXT.CHAR yes, look for comma
 2300 BEQ .4 EOL
 2310 CMP #COMMA
 2320 BEQ .3 comma, get another call
 2330 BNE SCAN.FOR.CALLS ...always
 2340
 2350 .4 RTS
 2360 *--------------------------------
 2370 PROCESS.CALL
 2380 JSR CONVERT.LINE.NUMBER
 2390 JSR SEARCH.CALL.TABLE
 2400 BCC .2 found same call
 2410 LDA #0
 2420 STA ENTRY+4 start of line number chain
 2430 STA ENTRY+5
 2440 LDA LINNUM+1 MSB first
 2450 STA ENTRY+6
 2460 LDA LINNUM
 2470 STA ENTRY+7
 2480 LDA #8 add 8 byte entry
 2490 .1 JMP ADD.NEW.ENTRY
 2500
 2510 .2 JSR SEARCH.LINE.CHAIN
 2520 BCC .3 found same line number
 2530 LDA #4 add 4 byte entry
 2540 BNE .1 ...always
 2550
 2560 .3 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1638 of 2550

Apple II Computer Info

 2570 *--------------------------------
 2580 CONVERT.LINE.NUMBER
 2590 LDA #0
 2600 STA CALL+1
 2610 STA CALL
 2620 .1 JSR NEXT.CHAR
 2630 BEQ .2 EOL
 2640 SEC
 2650 SBC #'0 make value
 2660 BCC .2 <0 isn't number
 2670 CMP #9+1
 2680 BCS .2 >9 isn't number
 2690 PHA save value
 2700 LDA CALL
 2710 STA TEMP
 2720 LDA CALL+1 multiply CALL * 10
 2730 ASL
 2740 ROL TEMP
 2750 ASL
 2760 ROL TEMP
 2770 ADC CALL+1
 2780 STA CALL+1
 2790 LDA TEMP
 2800 ADC CALL
 2810 STA CALL
 2820 ASL CALL+1
 2830 ROL CALL
 2840 PLA get value this digit
 2850 ADC CALL+1 and add it in
 2860 STA CALL+1
 2870 BCC .1
 2880 INC CALL
 2890 BCS .1 ...always
 2900
 2910 .2 LDA PNTR back up PNTR
 2920 BNE .3
 2930 DEC PNTR+1
 2940 .3 DEC PNTR
 2950 RTS
 2960 *--------------------------------
 2970 NEXT.CHAR
 2980 LDY #0
 2990 LDA (PNTR),Y
 3000 BEQ .1 EOL
 3010 INC PNTR bump pointer
 3020 BNE .1
 3030 INC PNTR+1
 3040 .1 RTS
 3050 *--------------------------------
 3060 SEARCH.CALL.TABLE
 3070 LDA CALL hi-byte of called line
 3080 AND #$FC hi 6 bits
 3090 LSR make 0-126
 3100 ADC #HSHTBL carry is clear

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1639 of 2550

Apple II Computer Info

 3110 STA STPNTR
 3120 LDA /HSHTBL
 3130 ADC #0
 3140 STA STPNTR+1
 3150 *--- fall into CHAIN.SEARCH routine
 3160 *--------------------------------
 3170 CHAIN.SEARCH
 3180 .1 LDY #0 point at pointer in entry
 3190 LDA (STPNTR),Y
 3200 STA TPTR
 3210 INY
 3220 LDA (STPNTR),Y
 3230 BEQ .4 end of chain, not in table
 3240 STA TPTR+1
 3250 LDX #2 2 bytes in number
 3260 LDY #2 point at line number in entry
 3270 .2 LDA (TPTR),Y compare numbers
 3280 CMP ENTRY,Y
 3290 BCC .3 not this one, but keep looking
 3300 BNE .4 not in this chain
 3310 DEX
 3320 BEQ .5 same number
 3330 INY next byte pair
 3340 BNE .2 ...always
 3350
 3360 .3 JSR .5 update pointer, clear carry
 3370 BCC .1 ...always
 3380
 3390 .4 SEC did not find
 3400 RTS
 3410
 3420 .5 LDA TPTR point to matching entry
 3430 STA STPNTR
 3440 LDA TPTR+1
 3450 STA STPNTR+1
 3460 CLC
 3470 RTS
 3480 *--------------------------------
 3490 SEARCH.LINE.CHAIN
 3500 CLC adjust pointer to start
 3510 LDA STPNTR of line # chain
 3520 ADC #4
 3530 STA ENTRY
 3540 LDA STPNTR+1
 3550 ADC #0
 3560 STA ENTRY+1
 3570 LDA #ENTRY
 3580 STA STPNTR
 3590 LDA /ENTRY
 3600 STA STPNTR+1
 3610 LDA LINNUM put line number into symbol
 3620 STA ENTRY+3
 3630 LDA LINNUM+1
 3640 STA ENTRY+2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1640 of 2550

Apple II Computer Info

 3650 JMP CHAIN.SEARCH
 3660 *--------------------------------
 3670 ADD.NEW.ENTRY
 3680 STA SIZE
 3690 CLC see if room
 3700 LDX #1
 3710 LDY #0
 3720 STY SIZE+1
 3730 .1 LDA (STPNTR),Y get current pointer
 3740 STA ENTRY,Y into new entry
 3750 LDA EOT,Y point old entry
 3760 STA (STPNTR),Y to this one
 3770 STA TPTR,Y
 3780 ADC SIZE,Y and adjust end-of-table
 3790 STA EOT,Y
 3800 INY
 3810 DEX
 3820 BPL .1 now do low-bytes
 3830 *--- see if there's going to be enough room
 3840 LDA EOT
 3850 CMP #LCR
 3860 LDA EOT+1
 3870 SBC /LCR
 3880 BCS .3 MEM FULL error
 3890 *--- move entry into call table
 3900 LDY SIZE
 3910 DEY
 3920 .2 LDA ENTRY,Y
 3930 STA (TPTR),Y
 3940 DEY
 3950 BPL .2
 3960 LDA TPTR
 3970 STA STPNTR
 3980 LDA TPTR+1
 3990 STA STPNTR+1
 4000 RTS
 4010
 4020 .3 JMP AS.MEMFULL abort with error message
 4030 *--------------------------------
 4040 PRINT.REPORT
 4050 LDA PRGBOT
 4060 STA PNTR start defined line search
 4070 LDA PRGBOT+1 at beginning of program
 4080 STA PNTR+1
 4090 LDA #0 start at chain 0
 4100 .1 STA TEMP
 4110 ASL
 4120 TAY
 4130 LDA HSHTBL+1,Y
 4140 BEQ .2 no entries for this chain
 4150 STA STPNTR+1
 4160 LDA HSHTBL,Y
 4170 STA STPNTR
 4180 JSR PRINT.CHAIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1641 of 2550

Apple II Computer Info

 4190 .2 INC TEMP
 4200 LDA TEMP
 4210 CMP #$40
 4220 BCC .1 still more chains
 4230 RTS finished
 4240 *--------------------------------
 4250 PRINT.CHAIN
 4260 JSR CHECK.FOR.PAUSE
 4270 BEQ .1 <CR> abort
 4280 LDY #2
 4290 LDA (STPNTR),Y
 4300 STA LINNUM+1
 4310 INY
 4320 LDA (STPNTR),Y
 4330 STA LINNUM
 4340 JSR CHECK.DEFINITION
 4350 JSR PRINT.LINE.NUMBER
 4360 LDA DEFFLAG "*" or " "
 4370 JSR MON.COUT
 4380 CLC
 4390 LDA STPNTR
 4400 ADC #4 point at line # chain
 4410 STA TPTR
 4420 LDA STPNTR+1
 4430 ADC #0
 4440 STA TPTR+1
 4450 JSR PRINT.LINNUM.CHAIN
 4460 JSR MON.CROUT
 4470 LDY #1
 4480 LDA (STPNTR),Y pointer to next call
 4490 BEQ .2 no more
 4500 PHA
 4510 DEY
 4520 LDA (STPNTR),Y
 4530 STA STPNTR
 4540 PLA
 4550 STA STPNTR+1
 4560 BNE PRINT.CHAIN ...always
 4570
 4580 .1 PLA return to top level
 4590 PLA if <CR> abort
 4600 .2 RTS
 4610 *--------------------------------
 4620 CHECK.DEFINITION
 4630 LDY #3
 4640 LDX #1
 4650 .1 LDA (PNTR),Y look at next line in program
 4660 CMP LINNUM,X
 4670 BCC .4 < our number, get new line
 4680 BNE .2 > " " , not defined
 4690 DEY = " " , go on
 4700 DEX now do low order bytes
 4710 BPL .1
 4720 LDA #" " found it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1642 of 2550

Apple II Computer Info

 4730 BNE .3 ...always
 4740
 4750 .2 LDA #"*" flag undefined line
 4760 .3 STA DEFFLAG
 4770 RTS
 4780
 4790 .4 LDY #1
 4800 LDA (PNTR),Y hi-byte of next line address
 4805 BEQ .2
 4810 PHA
 4820 DEY
 4830 LDA (PNTR),Y and lo-byte
 4840 STA PNTR
 4850 PLA
 4860 STA PNTR+1
 4870 JMP CHECK.DEFINITION
 4880 *--------------------------------
 4890 PRINT.LINNUM.CHAIN
 4900 LDA #0 reset counter to 0
 4910 STA COUNTER for each call
 4920 .1 JSR TAB.NEXT.COLUMN
 4930 LDY #2 point at line #
 4940 LDA (TPTR),Y
 4950 STA LINNUM+1
 4960 INY
 4970 LDA (TPTR),Y
 4980 STA LINNUM
 4990 JSR PRINT.LINE.NUMBER
 5000 LDY #1 set up next pointer
 5010 LDA (TPTR),Y
 5020 BEQ .2 end of chain
 5030 PHA
 5040 DEY
 5050 LDA (TPTR),Y
 5060 STA TPTR
 5070 PLA
 5080 STA TPTR+1
 5090 BNE .1 ...always
 5100
 5110 .2 RTS
 5120 *--------------------------------
 5130 TAB.NEW.LINE
 5140 JSR MON.CROUT
 5150
 5160 TAB.NEXT.COLUMN
 5170 .1 LDA #7 first tab stop
 5180 .2 CMP MON.CH cursor position
 5190 BCS .3 perform tab
 5200 ADC #6 next tab stop
 5210 CMP #33 end of line?
 5220 BCC .2
 5230 INC COUNTER count the screen line
 5240 LDA COUNTER
 5250 AND #1 look at odd-even bit

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1643 of 2550

Apple II Computer Info

 5260 BEQ TAB.NEW.LINE both scrn and printer
 5270 LDA #CR
 5280 JSR MON.COUT1 <CR> to screen only
 5290 JMP .1 ...always
 5300
 5310 .3 BEQ .4 already there
 5320 SBC MON.CH calculate # of blanks
 5330 TAX
 5340 JSR MON.PRBL2
 5350 .4 RTS
 5360 *--------------------------------
 5370 PRINT.LINE.NUMBER
 5380 LDX #4 print 5 digits
 5390 STX LZFLAG turn on leading zero flag
 5400 .1 LDA #'0 digit=0
 5410 .2 PHA
 5420 SEC
 5430 LDA LINNUM
 5440 SBC PLNTBL,X
 5450 PHA
 5460 LDA LINNUM+1
 5470 SBC PLNTBH,X
 5480 BCC .3 less than divisor
 5490 STA LINNUM+1
 5500 PLA
 5510 STA LINNUM
 5520 PLA
 5530 ADC #0 increment digit
 5540 BNE .2 ...always
 5550
 5560 .3 PLA
 5570 PLA
 5580 CMP #'0
 5590 BEQ .5 zero, might be leading
 5600 SEC turn off LZFLAG
 5610 ROR LZFLAG
 5620 .4 ORA #$80
 5630 JSR MON.COUT
 5640 DEX
 5650 BPL .1
 5660 RTS
 5670 .5 BIT LZFLAG leading zero flag
 5680 BMI .4 no
 5690 CPX #0 if all zeroes, print one
 5700 BEQ .4
 5710 LDA #' blank
 5720 BNE .4 ...always
 5730
 5740 PLNTBL .DA #1
 5750 .DA #10
 5760 .DA #100
 5770 .DA #1000
 5780 .DA #10000
 5790 PLNTBH .DA /1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1644 of 2550

Apple II Computer Info

 5800 .DA /10
 5810 .DA /100
 5820 .DA /1000
 5830 .DA /10000
 5840 *--------------------------------
 5850 CHECK.FOR.PAUSE
 5860 LDA KEYBOARD keypress?
 5870 BPL .2 no, go on
 5880 STA STROBE
 5890 CMP #CR RETURN?
 5900 BEQ .2 yes
 5910 .1 LDA KEYBOARD no, wait for
 5920 BPL .1 another stroke
 5930 STA STROBE
 5940 CMP #CR return .EQ. if RETURN
 5950 .2 RTS
 5960 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1645 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:Clear.Arrays.txt
==

Faster Amper-routine to Zero Arrays.........Johan Zwiekhorst
 Maasmechelen, Belgium

Although I have never subscribed to Apple Assembly Line, a friend of
mine (who lives in nearby Heerlen, the Netherlands) does, and I always
read his copies.

A few days ago I needed a routine to clear to zero all the elements in
a number of Applesoft arrays, so I started looking in my friend's
collection of AAL for such a program. I found the article entitled
"Save Garbage by Emptying Arrays" in the December 1982 issue, pages
22-25.

That routine, however, only cleared string arrays. Bob designed it to
set all strings in an array to null strings, so that garbage
collection would be faster. But I needed a fast way to clear integer
and real arrays as well. Bob's routine was also limited to clearing
one array per call.

My routine clears any type of arrays, and can accept a list of array
names separated by commas. It uses the ampersand hook, like this:

 & CLEAR array1,array2,array3,...

You can load the routine in any available memory, anywhere you have a
spare 79 bytes. The listing shows it assembled into the ever-popular
$300 space, but there are no internal addresses which require it to be
there. Just be sure you hook the ampersand to the program, wherever
you put it. If it is at $300, hook it like this:

 POKE 1013,76 : POKE 1014,0 : POKE 1015,3

The program is very similar to Bob's 1982 version: I eliminated the
check he made for string arrays, added ampersand control, and checked
for a comma to allow a list of array names rather than just one.

Lines 1250-1260 check that the byte following the ampersand is the
CLEAR token. If not, a SYNTAX ERROR will result. If it is CLEAR, all
is well.

Lines 1280-1290 check for a comma, and are not used until we have
finished clearing an array. At the end, lines 1690-1710, you find my
test after clearing an array. If the next byte of program is not a
colon or end of line, it will branch back to the comma-test.

The code in between zeroes all the data bytes in an array. I could
have done it the same way Bob did, but I did change a few things.
Compare mine with his and you will learn two ways to control a
clearing loop.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1646 of 2550

Apple II Computer Info

How about a complete example of using &CLEAR? Lets make three arrays,
with a mixture of types and dimensions. Of course, when the DIM
statement works it initially zeroes the arrays, but I needed them
cleared again later on.
 100 DIM A(10,20), B%(200,4,4), C%(20)
 110 PRINT CHR$(4)"BLOAD B.CLEAR ARRAYS,A$300"
 120 POKE 1013,76:POKE1014,0:POKE1015,3
 ...
 500 &CLEAR A,B%,C$

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1647 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:Dan.Pote.Ad.txt
==

__

Help Wanted

Electronic Engineer

Applied Engineering, manufacturer of Apple peripherals, needs a
digital design engineer with Apple experience.

(214) 492-2027

__

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1648 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:DP18.Link.txt
==

18-Digit Arithmetic, Part 5................Bob Sander-Cederlof

There is a lot of ground to cover in this installment, so I have been
forced to use smaller type to squeeze it all in. I want to describe
and list the code for the linkage to Applesoft, and for handling
arithmetic expressions.

Loading and Linking to Applesoft

The ampersand (&) statement, according to the Applesoft Reference
Manual (page 123, top of page) is

"intended for the computer's internal use only; it is not a proper
Applesoft command. This symbol, when executed as an instruction,
causes an unconditional jump to location $3F5. Use reset ctrl-C
return to recover."

Not so! The &-statement is intended for adding extensions to the
Applesoft language! It does cause a jump by the Applesoft interpreter
to $3F5. If you have not set up any extensions you will get a syntax
error when you use "&". But if you have extensions installed, you can
work all manner of miracles. DP18 is one such miraculous extension.
There are many more around, both in the public domain and in the form
of commercial products.

This of course leads to a problem. What if you want to use two or
more such extensions? I have written DP18 so that you can chain
together one or more additional extension packages as you see fit.

It is very important to decide where the DP18 package will reside in
memory. I spent weeks tossing around various options, back when I was
designing the DPFP 21-digit package. Of course, at that time, Apples
came equipped with anywhere from 16K to 64K RAM; now you can depend on
almost all Apples having at least 48K RAM. I still favor the decision
I made four years ago, to load the double precision code at $803,
after shifting the Applesoft program far enough up in RAM to leave
room.

I have a program I call ML LOADER, which is included on the S-C Macro
Assembler disk as a sample program. It performs the function of
moving an already- executing Applesoft program up higher in RAM. By
including the following line at the beginning of my Applesoft program,
I can load DP18 and link it to the & hook at $3F5:

10 IF PEEK(104)=8 THEN PRINT CHR$(4)"BLOADB.ML LOADER"
 :POKE 768,0 : POKE769,30 : CALL770
 :PRINT CHR$(4)"BLOAD DP18"
 :POKE 1014,PEEK(2051) : POKE 1015,PEEK(2052)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1649 of 2550

Apple II Computer Info

PEEK(104) looks at the high byte of the starting address of the
Applesoft program. Normally Applesoft programs begin at $801, so
PEEK(104)=8. If DP18 has not yet been loaded, then PEEK(104) will
still be equal to 8. If it has already been loaded, then the rest of
line 10 is skipped.

B.ML LOADER loads at $300. Its function is to shove the Applesoft
program higher in RAM. You POKE the distance to shove into 768 (low
byte) and 769 (high byte), than CALL 770. When you wake up an instant
later, you have been relocated. The Applesoft program keeps on
executing as though nothing happened. Only now there is a gaping hole
between $800 and whatever.

DP18 loads at $803 and extends well into page $25. I grabbed 30
pages, moving the Applesoft program to $2601.It thus clobbers hires
screen 1 memory. If you want to use hires screen 2 and the program is
too large to fit under it, use POKE 769,88 instead of POKE 769,30 in
line 10. This makes the program start at $6001, and leaves $2600-3FFF
totally unused.

If you want to use other ampersand routines, POKE the link address at
locations 2053 and 2054 ($805 and $806). If DP18 finds an ampersand
command not starting with "DP", it jumps indirectly through this
vector. The vector initially contains the address of Applesoft's
SYNTAX ERROR routine, but it can be changed to allow using more than
one set of &-routines.

Calling DP18

Whenever you want to execute a DP18 feature, you use the "&DP"
statement. If DP18 has been properly connect to the & hook at $3F5,
then the & will send the computer to DP18 (at line 2430 in the listing
which follows). At this point DP18 begins to analyze and execute the
characters that follow the ampersand.

If the first two characters after the ampersand are not "DP", the
program will jump to a vector at $805 & $806. This normally points to
Applesoft's SYNTAX ERROR routine. However, this location can easily
be patched to point to your own ampersand routine.

If the first two characters are correct, DP18 will analyze succeeding
statements separated by colons on the same line. There must be a
colon immediately after the "&DP" statement. All of the rest of the
statements on the line will be executed by DP18, rather than by the
normal Applesoft interpreter. If you want to shut off DP18 before the
end of the line, two colons in a row with nothing between will do so.

 150 & DP: INPUT X(0)
 160 & DP:Y(0) = X(0) * X(0) * PI: PRINT Y(0) :: GOTO 150

It is not necessary that the "&DP:" be the first statement in a line.
For example, the following statement will take the square root of a
number if the two strings are equal. It uses an Applesoft string
comparison, and a double precision square root.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1650 of 2550

Apple II Computer Info

 170 IF A$ = "SQR" THEN & DP:Y(0) = SQR (X(0))

You can also type double precision statements as direct commands in
Applesoft once DP18 has been loaded.

]&DP:PRINT X(0): PRINT X(0) ^ 2

Four types of statements can be executed by the DP18 package:
assignment, INPUT, PRINT, and IF statements. INPUT and PRINT
statements will be covered in a later installment.

The DP18 IF statement evaluates a logical expression in 18-digit
precision, and then reverts to normal Applesoft processing:

 180 &DP : IF A(0) < 1.52345678976543 THEN X = 3

The DP18 assignment statement takes two forms: real assignment, and
string assignment. String assignment is used to convert DP18 values
to strings, so that they can be used by normal Applesoft:

 190 &DP : A$ = STR$ (X(0))

Real assignments are the normal computational statements, like:

 200 &DP : A(0) = (4*PI*R(0)^3)/3

DP18 Variables

All variables referenced by DP18 must consist of two adjacent array
elements. The array must be a REAL array, that is, it must not be
INTEGER or STRING.

Remember that Applesoft array subscripts begin with 0 and go up to the
limit defined in the DIM statement. An array dimensioned "3,11,11"
has three dimensions. The first runs from 0 to 3; the second from 0
to 11; and the third also from 0 to 11. It could contain 4*12*12=576
real elements, or 2*12*12=288 double precision elements.

Applesoft arrays are stored in memory with the leftmost subscript
varying the fastest. For example, in the array XY(3,10,10), element
XY(0,j,k) comes immediately before element XY(1,j,k). Therefore you
may, in effect, create an array of double precision values by merely
prefixing an extra dimension to the dimension list.

If you wish to set up separate variables, you may do so by
dimensioning them to have two real elements each. For example, the
statement

 10 DIM A(1),B(1),C(1),X(1)

will set up four separate variables for use with DP18. You reference
the variables within double precision statements with the subscript 0.
For example:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1651 of 2550

Apple II Computer Info

 20 & DP:X(0) = (A(0) + B(0)) * C(0)

Note that you don't have to dimension these variables, since Applesoft
will default to a dimension of 10. However, it is a good idea to
dimension all double precision variables because it saves memory (only
2 real elements are allocated instead of 11) and it makes it easier
for someone else to follow your program.

If you wish to create an array of double precision values, you do so
by dimensioning the array with one extra dimension. The extra
dimension comes first and should be "1"; this dimension generates two
real items, or one double precision item. For example,

 10 DIM A(1,12),B(1,5,6)

creates two arrays that can be used for double precision values. The
array A can be thought of as an array of 13 double precision values
from A(0,0) to A(0,12). The array B could store 42 double precision
values from B(0,0,0) to B(0,5,6). If you always remember to use one
extra dimension, to put that extra dimension first, to set that
dimension to "1", and to refer to items with the first subscript = 0,
then you will succeed in using DP18.

DP18 Constants

Double precision constants are entered in the same way as single
precision constants. The differences between standard Applesoft and
the DP18 constants are that DP18 converts and stores 18 significant
digits rather than 9, and that exponents may be in the range of +/- 63
rather than +/- 38.

Conversion of constants is very fast in DP18. DP18 will convert
constants over 4 times faster than normal Applesoft, even using more
digits! It is quicker to convert a constant than it is to find and
use a DP18 variable, especially multi-dimensioned variables. This is
completely opposite from normal Applesoft, where variables are quicker
than constants.

Conversion Between Single and Double Precision

You will often need to convert a single precision value into a double
precision one for purposes of computation. This is easily done by
first converting it to a string and then using DP18's VAL function as
shown here.

 100 REM CONVERT X TO DOUBLE PRECISION VALUE
 110 DIM DP(1)
 120 INPUT "VALUE TO BE CONVERTED? ";X
 130 &DP:DP(0) = VAL (STR$ (X))
 140 &DP: PRINT DP(0)
 150 GOTO 120

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1652 of 2550

Apple II Computer Info

You will also want to convert from double precision back to single
precision. This also involves converting to a string, but takes more
than one statement.

 100 REM CONVERT DP(0) TO SINGLE PRECISION VALUE
 110 DIM DP(1)
 120 &DP:INPUT "VALUE TO BE CONVERTED? ";DP(0)
 130 &DP:A$ = STR$ (DP(0))
 140 X = VAL (A$) : PRINT X
 150 GOTO 120

Note that lines 130 and 140 could be combined onto one line if there
were two colons separating the statements. See the section on
functions for more information about the STR$ and VAL functions.

DP18 Arithmetic Expressions

Expressions in DP18 are very much like expressions in Applesoft.
Except for AND and OR, they are evaluated using the standard rules of
precedence as found on page 36 of the Applesoft manual. AND and OR
have the same precedence in DP18 and are executed left to right. The
order of precedence is listed below. Operations on a higher line are
executed before operations on a lower line. Operators on the same
line are executed left to right.

() function calls
+ - NOT unary operators
^
* /
+ -
< > = <= >= => =< <> ><
AND OR
These all work the same as they do in Applesoft, except that they
operate on double precision numbers.

DP18 supports many of the numerical functions that Applesoft does:
SIN, COS, TAN, LOG, EXP, SGN, ABS, INT, SQR, ATN, VAL, and the string
function STR$. There is also a special function, PI, which has no
arguments. You don't even write parentheses after it. You just use
it like it was a constant. Wherever you use it, you get the value pi
accurate to 20 digits.

Explanation of the Code

As in previous installments of this series on DP18, I cannot show
everything at once. A whole series of subroutines which have either
already been printed or will be printed in future installments are
represented in this listing by ".EQ $FFFF" in lines 1330-1550. All
the data areas actually used in the code listed this month are
included, so that you can see what the code is working with and on.

As mentioned above, the "&" statement sends Applesoft to line 2430.
Lines 2430-2500 check for "DP" following the ampersand. If not "DP",
then lines 2370-2390 branch to the next ampersand interpreter in your

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1653 of 2550

Apple II Computer Info

chain. If you have not set up another &-interpreter, then the SYNTAX
ERROR message will pop out.

DP.NEXT.CMD (lines 2520-2800) begins by looking for a colon or end-of-
line. End of line means you are through with DP18, so an RTS carries
you back to the Applesoft interpreter. A colon means you are ready
with a DP18 statement. If the next character is also a colon,
however, you are sent back to Applesoft (lines 2570-2580). Next I
check for the three legal tokens (IF, INPUT, and PRINT) and branch
accordingly.

Since IF is simple and IF is included in this listing, let's look at
IF now. Lines 3130-3280 handle the IF statement. First I evaluate
the expression, which is considered to be a logical expression with a
true-or-false value. Zero means false, non-zero means true.
Following the expression I must find either a THEN or GOTO token. The
truth value is found in DAC.EXPONENT, because a $00 exponent means a
zero value. AS.IF.JUMP in the Applesoft ROMs can handle the rest,
because the THEN or GOTO pops us out of DP18 back to normal Applesoft.
Neat!

Meanwhile, back in DP.NEXT.CMD, if the statement is not IF-INPUT-PRINT
it must be an assignment statement. If I am successful at getting a
variable name next, it may be either a DP18 variable or a string
variable. If AS.VALTYP is negative, it is a string variable and
DP.STR takes over. If not, CHECK.DP.VAR will verify that it is a real
array variable. The address is saved at RESULT, the DP18 expression
evaluated, and then the answer saved at RESULT. And back to the top
of DP.NEXT.CMD.

DP.STR handles statements like A$=STR$(xxx) where xxx is a DP18
expression. You can probably follow the comments in this section.

GET.A.VAR checks to see that the current character from your program
is a letter, because all variables must start with a letter. If so,
AS.PTRGET will search the variable tables and return with an address
in the Y- and A-registers. CHECK.DP.VAR compares this address with
the beginning of the array variable table. If it is inside the array
table, and if the variable is real (not string or integer), it is a
valid DP18 variable.

DP.EVALUATE cracks and calculates a DP18 expression. A special stack
is used for temporary values, and it is deep enough to hold 10 of
them. If your expression is so complicated that more than 10
temporary values need to be stacked (very unlikely), then the FORMULA
TOO COMPLEX message will scream. Applesoft uses the hardware stack in
page 1 for the same purpose, but it only has to stack 5-byte values;
DP18 stacks 12 bytes for each value. EVALUATE starts by emptying the
stack, zeroing a parenthesis level count, and clearing the accumulator
(DAC). After DP.EXP finishes all the dirty work, The stack must be
empty and the parenthesis level zero or there was a SYNTAX ERROR.

Actually parsing and computing an expression can be done in many ways.
I chose a recursive approach that breaks the job up into little

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1654 of 2550

Apple II Computer Info

independent pieces small enough to understand. First, let's allow all
expressions to be a series of relational expressions connected with
ANDs and ORs. The simplest case of this is merely a relational
expression alone. And the simplest relational expression is an
expression all by itself with no relations. If the expression does
have relational operators or ANDs or ORs, the result will be a true or
false value. If not, it will have a numerical value.

Comment blocks atop DP.EXP, DP.RELAT, DP.SUM, etc. show the continued
breakdown of parts of an expression. DP.RELAT connects one or more
sums with relational operators. DP.SUM connects one or more terms
with "+" and "-" operators. DP.TERM connects one or more factors with
"*" and "/" operators. DP.FACTOR connects one or more elements with
the exponentiation operator (^). DP.ELEMENT cracks a constant,
searches for a variable's value, calls a function, or calls on DP.EXP
recursively to handle an expression in parentheses. DP.ELEMENT also
handles the unary operators "+", "-", and "NOT".

If DP.ELEMENT determines that the element is a function call, there
are several types. The VAL function is supervised by lines 5800-5830.
Since the argument of the VAL function is a string expression, it is
significantly different from the other functions. The ATN function is
also given special treatment, because DP18 allows the ATN function to
be called with one or two arguments. All the rest of the functions
have one DP18 expression for an argument, so they are handled as a
group. A table of addresses at lines 2160-2310 directs us to the
appropriate processor. The code for all these functions will be
revealed in future installments.

DP.VARNUM is called upon to handle variables and numbers. First lines
6130- 6280 check for and handle the special DP18 constant "PI". Lines
6300-6350 handle DP18 variables, and lines 6370-6470 handle numbers.

PUSH.DAC.STACK pushes the 12-byte value in DAC on the special
expression stack, unless there is not enough room. POP.STACK.ARG
pulls a 12-byte value off the stack and plops it into ARG.

And Next Month...

There are three major areas left for future installments: INPUT,
PRINT, and the math functions. Some of you have been diligently
studying and entering each installment as we go, and are gradually
obtaining a powerful package. Others are waiting for the Quarterly
Disks, to conserve their fingertips. Remember, all the source code
each three months is available on disk for only $15.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1655 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:Fast.Scrn.Msgs.txt
==

Put Your Messages on the Screen..............William M. Reed

COUT is slow. COUT with DOS looking on is even slower. And I suppose
with ProDOS, more so. If you want to get a short message on the
screen in a hurry, you can bypass COUT and put it there directly.

In all of the following examples I am going to assume that the message
is stored in RAM exactly as it should be on screen, and that after the
last character is a byte with $00 in it. I also assume that you are
only writing one line, so that the message will not spill over to
another line.

Here is a loop that writes a message on the bottom line of the screen:

MESSAGE
 LDY #0
.1 LDA MESSAGE,Y
 BEQ .2 ...END OF MESSAGE
 STA $7D0,Y
 INY
 BNE .1 ...ALWAYS
.2 RTS

If you want to write on the current line, whose base address is kept
by the monitor in BASL and BASH ($28 and $29), just change the STA
$7D0,Y line to STA (BASL),Y.

All well and good for 40 columns, but what about the 80-column //e and
//c screens? Well, you can still do it, like this:

MESSAGE.80
 LDX #0 MESSAGE INDEX
.1 TXA
 LSR COLUMN/2, ODD/EVEN TO CARRY
 TAY INDEX INTO SCREEN MEMORY
 LDA MESSAGE,X
 BEQ .3 ...END OF MESSAGE
 STA PAGE1
 BCS .2 ...ODD, PAGE 1
 STA PAGE2 ...EVEN, PAGE 2
.2 STA (BASL),Y
 INX
 BNE .1 ...ALWAYS
.3 RTS
PAGE1 .EQ $C054
PAGE2 .EQ $C055

Of course, these routines put the messages on the screen only. But
that may be just what you want, to put messages on the screen without

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1656 of 2550

Apple II Computer Info

affecting the report going out to file or printer. Also, these
routines do not handle CR, end of line, scroll, etc; but they sure get
to the screen in a hurry!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1657 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:Front.Page.txt
==

$1.80

Volume 4 -- Issue 12 September, 1984

In This Issue...

18-Digit Arithmetic, Part 5. 2
Faster Amper-routine to Zero Arrays. 16
Turn an Index into a Mask. 18
Put Your Messages on the Screen. 22
Bibliography on Apple Hi-Res Graphics. 23
Some Great New Books 28

News about Micromation.

Jack Lewis's company, which among other things makes a line of Apple-
related products to support the Heathkit Hero robot, has changed its
name to Arctec Systems, Inc.

Jack also has a stand alone voice recognition system with an RS-232C
interface which may be of interest to some of you. It contains a
65C02 processor, 4K ROM, and 16K of battery-backed-up RAM. Speaker-
dependent recognition of up to 256 words or short phrases is possible,
with 95-98% accuracy claimed. Arctec's number is (301) 730-1237, in
Columbia, Maryland.

And Some Bad Tidings

The saddest news I have heard lately is of the demise (bankruptcy) of
Softalk Publishing. Softalk has been my favorite of all the magazines
devoted to the Apple. At this point I do not know how to obtain
copies of any of their back issues, or of the books they have
published. I assume, and hope, they will be available again soon.
With the passing of so many companies, via Chapter 11, many magazines
are having great difficulty this year. Unpaid advertising bills then
cause a domino effect....

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1658 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:Graph.Biblio.txt
==

Bibliography on Apple Hi-Res Graphics......Bob Sander-Cederlof

There has been a lot of material published in the last seven years
about Apple's hi-res graphics. The problem is finding it! Most of
the neat programs and explanations have not yet made it from the pages
of various magazines into full size books. I recently decided to make
a list, so that I don't have to keep leafing through mile-high stacks
of magazines. Since I have never been a devotee of Pascal, I
purposely omitted most articles relating to graphics in that language.
I also omitted reviews and announcements of commercial hi-res
products.

I looked through my book shelves and noted all books I could find
there. I also went through all my back issues of Byte, Micro, Call
APPLE, and Apple Orchard. Still to go are Nibble, Kilobaud, Softalk,
and Creative Computing.

Books
Apple Graphics & Arcade Game Design, Jeffrey Stanton. The Book Co.,
1982, 288 pages, $19.95. By the time you work through this one, you
have a functioning hi-res arcade game!

Apple II Graphics, Ken Williams. Prentice Hall, 1983, 150 pages,
$19.95. (Originally a series of articles in Softline Magazine, Sep 81
through Jan 83.)

Applied Apple Graphics, Pip Forer. Prentice-Hall, 1984, about 400
pages plus diskette, price unknown. Lo-res, Hi-res, 3-D, etc., with
over 50 program in BASIC on disk.

Graphically Speaking, Mark Pelczarski. Softalk Books, 1984, 170
pages, $19.95. Originally a series of articles which ran from May
1982 through September 1983 in Softalk Magazine. Includes many
programs in Applesoft and assembly language. Covers drawing,
animation, filling, packing/unpacking, and 3-D. Disk available.

Microcomputer Graphics, Roy E. Myers. Addison-Wesley, 1982, 282
pages, $12.95. More than 80 Applesoft programs. 2-D and 3-D
graphics, windowing, transformations, hidden lines, and much more.
Disk available.

Books with some material on Apple Graphics
Animation, Games, and Sound for the Apple II/IIe, Tony Fabbri.
Prentice-Hall, 144 pages.

Enhancing Your Apple II, Volume I, Don Lancaster. Howard Sams & Co.,
1984, 268 pages, $15.95. Hardware and software tricks for switching
between modes and screens dynamically, programs for hundreds of hi-res

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1659 of 2550

Apple II Computer Info

colors and patterns, fast screen fill. Good explanations of the way
things work.

What's Where in the Apple, William F. Luebbert. Micro Ink, 1982,
about 300 pages. First half of book is text describing Apple; chapter
14 covers lo-res graphics, and chapter 16 covers hi-res graphics.
Includes details about hardware switches, memory mapping, and
firmware.

Magazine columns
Assembly Lines, Roger Wagner, Softalk Magazine. From March 82 to June
83 this column covered various topics in Apple hi-res graphics. It
should be made into a book, but has not yet been.

The Graphics Page, Bill Budge, Softalk Magazine. Oct 83 through Jun
84. Deep material, by the author of Pinball Construction Set.
Further installments were promised, but not yet seen.

Apple II Graphics, Ken Williams, Softline Magazine. Sep 81 through
Jan 83. Now available in book form (see above).

Graphically Speaking, Mark Pelczarski, Softalk Magazine. May 82
through Sep 83. Now available in book form.

Magazine Articles
Byte

Apple FAX: Weather Maps on a Video Screen, Keith H. Sueker. Jun 84,
146-151.

CHEDIT: a Graphics-Character Editor, Jerry Sweet. May 82, p426-444.

Double the Apple II's Color Choices, Robert H. Sturges. Nov 83, p449-
463.

Double-Width Silentype Graphics for Apple, Charles Putney. Feb 82,
p413-423.

GRPRINT: an Apple Utility Program, Douglas Arnott. Dec 82, 398-403.

Interactive 3-D Graphics for Apple II, Andrew Pickholtz. Nov 82, 474-
505.

Kinetic String Art for the Apple, Louis Cesa. Nov 80, p62-63.

More Colors for your Apple, Allen Watson, Steve Wozniak. Jun 79, p60-
68.

New Shape Subroutine for the Apple, Richard T. Simoni. Aug 83, p292-
309.

Picture Perfect Apple, Phil Roybal. Jan 81, p226-235.

Shape Table Conversion for the Apple II, Dave Partyka. Nov 79, p63.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1660 of 2550

Apple II Computer Info

Simplified Theory of Video Graphics, Allen Watson. Part 1, Nov 80,
p180-189. Part 2, Dec 80, p142-156.

Three-dimensional Graphics for the Apple II, Dan Sokol, Nov 80, p148-
154.

Micro

Apple Bits, Richard C. Vile Jr. Part I, Sep 81, p75-77. Part 2, Oct
81, p94-96. Part 3, Nov 81, p105-108. (Lo-Res)

Apple Color Filter, Stephen R. Berggren. Jun 81, p53-54.

A Hi-Res Graph Plotting Subroutine in Integer BASIC for the Apple II,
Richard Fam. Feb 80, p9-10.

Apple Graphics, staff. Sep 81, p49. Intro to several other articles.

Apple Graphics for Okidata Microline 80, Gary Little. May 83, p80-86.

Apple Hi-Res Graphics and Memory Use, Dan Weston. Nov 82, p79-81.

Apple II High Resolution Graphics Memory Organization, Andrew H.
Eliason. Oct-Nov 1978, p43-44.

Apple II Hi-Res Picture Compression, Bob Bishop. Nov 79, p17-24.

Apple Pascal Hi-Res Screen Dump, Robert D. Walker. Feb 83, p54-55.

Apple Shootdown, a lo-res graphics game, Eric Grammer. Nov 82, p72-
73.

A Versatile Hi-Res Graphics Routine for the Apple, Adam P. King. Mar
83, p77-81.

Constructing Truly 3-D Mazes, Dr. Alan Stankiewicz. Aug 84, p19-21.

Creating Shape Tables, Improved!, Peter A. Cook. Sep 80, p7-12.

Define Hi-Res Characters for the Apple II, Robert F. Zant. Aug 79,
p44-45.

Getting Around the Apple Hi-Res Graphics Page, Eagle Berns. Nov 82,
p93-95.

Graphing Rational Functions, Ron Carlson. Dec 80, 7-9.

Hi-Res Characters for Logo, Dan Weston. Sep 83, p50-53.

Hi-Res Screen Dump for Epson MX-80, Robert D. Walker. Apr/May 84,
p55-61.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1661 of 2550

Apple II Computer Info

How to Do a Shape Table Easily and Correctly, John Figueras. Dec 79,
p11-22.

Introduction to 3-D Rotation on the Apple, Chris Williams. Nov 82,
p99-101.

Paddle Hi-Res Graphics, Kim G. Woodward. Sep 81, p68-69.

Random Number Generator in Machine Language for the Apple, Arthur
Matheny. Includes a graphics simulation of a globular cluster. Aug
82, p57-60.

SHAPER: A Utility Program for Managing Shape Tables, Clement D.
Osborne. Sep 81, p50-56.

Sun and Moon on the Apple, Svend Ostrup. Jan 83, p35-37. Hi-res
simulation of orbits and phases.

True 3-D Images on Apple II, Art Radcliffe. Sep 81, p71-73.

Call-A.P.P.L.E.

80-column //e Lo-Res Graphics, Rob Moore. Jul 83, p9-13.

Adding XPLOT to Applesoft, Mark Harris. Apr 84, p17-18,24.

A Higher Text Apple-cation, Donal Buchanan. Nov 82, p47-50. Using
Higher Text for ancient alphabets.

Animation with Data Arrays, Pat Connelly. Nov-Dec 80, p11-17.

Apple Gaming: Playing Card Generation, Jim Hilger. Nov-Dec 79, p39-
45; Jan 80, p39. Hi-res playing card pictures from Integer BASIC.

Applesoft Firmware Card Hi-Res Routines, Steve Alex. Oct 79, p33.

Applesoft Graphics Mover, Homer O. Porter. Sep 83, p29-31.

Arcade Graphics Techniques, Chris Jochumson. Apr 83, p9-14.

Character Generator ROM, Ian M. Jackson. Nov 82, p21-29. Programs
for moving a Higher Text font into ROM.

Color 21, Darrell Aldrich. Jul-Aug 79, p21.

Color Me Apple, M. A. Iannce. Nov 82, p9-18. In-depth explanation of
hi-res color with demo program.

Doing the Splits, Roy Myers. Aug 82, p61-65. Making room for hi-res
pictures by moving your program.

Graphic Garbage Collection, Richard Cornelius & Melvin Zandler. Nov
82, p53-55. Lets you watch garbage collection activity on the hi-res
screen.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1662 of 2550

Apple II Computer Info

Higher Text in Action, Steve Brugger. Jan 84, p30-31.

Higher Text on the Loose, Val J. Golding. Jun 81, p47-49.
Explanation of the background functions of Higher Text.

Hi-Res Dump program modification, Tom Lewellen. Jul-Aug 79, p36.

Hi-Res Full Scroll, Edward C. So. Feb 82, p23-34. Scroll up, down,
left, or right by one pixel position at a time.

Hi-Res Hi-Jinx, Edward C. So. Apr 82, p59. POKEing and PEEKing dots.

Hi-Res Screen Switch (program), Wes Huntress. Jul-Aug 80, p48-49.

Hi-Res Slide Show, Stowe Keller. Dec 83, p49-54.

Magic Square Dance, J. Taylor. Sep 83, p51-52.

MX-100 Hi-Res Dump, Bruce C. Detterich. Mar 82, p41-49.

Painting the RAMcard, Donald W. Miller Jr. Apr 83, p51-54.

Picture Compression, Edward C. So. May 82, p21-35. Very complete,
builds on Bob Bishop's attempts.

Playing Card Generator, Vincent Aderente. Nov 82, p31-35. Applesoft
versions of Jim Hilger's stuff.

Scrunch, Darrell Aldrich. Jun 79, p21-23. Squeeze four pictures into
one screen.

Shape Display Utility, Major Peter M. Beck. Mar-Apr 80, p39.

Shape Table Splicer, Cyrus W. Roton. Sep 83, p33-35.

Slow Plot, Jim Morriset. Nov 82, p63-64. Speed control for hi-res
drawing.

Smooth Animation, Jonathan Kandell. Feb 83, p61-62.

The Graphics Toolkit, Randi J. Rost. Part 1: Apr 84, p10-15 (screen
mapping). Part 2: May 84, p23-26. Part 3: Aug 84, p43-48. Line
drawing algorithms, disassembly of Applesoft HPLOT.

Three Dee Demos, David Sun. Jan 83, p49-51.

Understanding Hi-Res Graphics, Loy Spurlock. Jan 80, p6-15.

Using the Splitter, Norman L. Kushnick. Jan 83, p53-55. More help in
making room for pictures.

Why Don't You Watch Where You're Going?, Kenneth Manly. Oct 80, p25-
28. A hi-res SCRN function.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1663 of 2550

Apple II Computer Info

Zoom, Neil Konzen. Jan 80, p28-32. Expand a 1/9th screen to full
size.

Apple Orchard

Double-Size Graphics for the Silentype, Bruce F. Field. Spring 81,
p30-34.

Hi-Res Dump Routine for Integral Data Printer (IDS-225), Darrell & Ron
Aldrich. Mar-Apr 80, p54-55. (Originally published in Call APPLE).

Hi-Res Graphics: Resolving the Resolution Myth, Bob Bishop. Fall 80,
p7-10.

How the Dot Patterns Produce Colors, Allen Watson III. Jan 84, p44-
46.

How the Double Hi-Res Hardware Came to Be, Allen Watson III. Jan 84,
p42,43.

Notes on Hi-Res Graphics Routines in Applesoft, C. K. Mesztenyi.
Spring 81, p17-19.

Practical Super Hi-Res Graphics, R. H. Good. Spring 81, p20.

Secrets of Professional Graphics, William Harvey. Part I, Behind the
Scenes, Sep-Oct 82, p64-72. Part II, The Real Challenge: Putting It
All Together, Nov-Dec 82, p36-53. Part III, Techniques of Animation,
Mar 83, p62-69.

Shape Definition Conversion Table, David G. Huffman. Fall 81, p78-79.

Shaping Up with the Apple II, Mark L. Crosby. Mar-Apr 80, p37-45.

The Mysterious Orange Vertical Line, Pete Rowe. Fall 80, p11.

True 16-color Hi-Res, Allen Watson III. Jan 84, p26-41.

Understanding Hi-Res Graphics, and how to include text in your Hi-Res
Graphics Programs, Loy Spurlock. Fall 80, p12-21.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1664 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:Index.2.Mask.txt
==

Turn an Index into a Mask..................Bob Sander-Cederlof

How do you write a program that will turn a number from 0 to 7 into a
bit mask $01, $02, ...$40, $80? I want an index of 0 to return $01, 1
to return $02, 2 to return $04, and so on up to 7 returning $80.

The simplest, shortest, and speediest is to use a direct table look-
up. Assuming the byte with the index value is in the A-register, the
code would look like this:

 AND #7 isolate index bits
 TAX index to X-register
 LDA TABLE,X get mask from table

and the table would look like this:

 TABLE .HS 01020408
 .HS 10204080

This technique has the wonderful advantage that if you need a
different translation, you can simply use a different table. For
example, if you want the reverse pattern, with 0 returning $80 and 7
returning $01, simply change the table to:

 TABLE .HS 80402010
 .HS 08040201

The table lookup method has the shortest code, but counting the table
does take 14 bytes. If you don't worry so much about speed and
flexibility, you can write a little loop that will create the mask
value like this:

 MAKE.MASK.2
 AND #7 isolate index bits
 TAX index into X-register
 LDA #$01 initial mask value
 .1 ASL shift loop to position
 DEX to Xth bit
 BPL .1 shifts once to many
 ROR restore after extra shift
 RTS

I put an RTS at the end because this piece of code makes a nice size
subroutine. Nevertheless, for comparison to the table lookup code
above, let's count neither the JSR to call it nor the RTS at the end.
The shift-loop method takes only 10 bytes, four less than the table
lookup. But it is slower, taking 14 cycles if the index is 0, 21 if
1, up to 63 for an index of 7. Sometimes saving four bytes is more
important that speed, and sometimes speed is more important.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1665 of 2550

Apple II Computer Info

To generate the reverse sequence with the shift loop method, make
three simple changes to MAKE.MASK.2: the initial mask value from $01
to $80; the ASL to LSR; and the ROR to ROL.

Note that both techniques shown above use the X-register. If the X-
register is busy, you could use the Y-register instead. Just for the
challenge, I wanted to see if I could write a reasonably efficient
index-to-mask routine that did not use the X- or Y- registers at all.

The first method that came to mind was fast enough, but took too much
space and did not seem creative. It involved a series of CMP and BEQ
instructions to branch to 8 different LDA's:

 SILLY.WAY
 AND #7 isolate index
 BEQ .0 index=0
 CMP #1
 BEQ .1 index=1
 ...
 CMP #6
 BEQ .6 index=6
 LDA #$80 index=7
 RTS
 .0 LDA #$01
 RTS
 .1 LDA #$02
 RTS
 ...
 .6 LDA #$40 index=6
 RTS

If I had written every line above, you would see that it takes 52
bytes.

Next I though of a more efficient way to do the CMP's so that not so
many were needed.

 NOT.SO.SILLY.WAY
 AND #7 isolate mask
 BEQ .0 index=0
 CMP #4
 BEQ .4 index=4
 BCS .60 index=5, 6, or 7
 CMP #2 index=1, 2, or 3
 BEQ .2 index=2
 BCS .3 index=3
 LDA #$02 index=1
 RTS
 .60 CMP #6 index=5, 6, 0r 7
 BEQ .6 index=6
 BCS .7 index=7
 LDA #$20 index=5
 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1666 of 2550

Apple II Computer Info

 .0 LDA #$01 index=0
 RTS
 .2 LDA #$04 index=2
 RTS
 and so on.

This method takes a total of 46 bytes.

Here is one which is even shorter, which uses "tricky" arithmetic.

 TRICKY.WAY
 AND #7
 CMP #2
 BCC .5 (0 or 1) plus 1
 BEQ .5 (2) plus CARRY plus 1 --> 4
 CMP #4
 BCC .4 (3) plus 4+1 --> 8
 BEQ .3 (4) plus 6+4+1+C --> $10
 CMP #6
 BCC .2 (5) plus $10+6+4+1
 BEQ .1 (6) plus $1E+$10+6+4+1+C
 ADC #$3F (7) plus $3F+$1E+$10+6+4+1+C
 .1 ADC #$1E
 .2 ADC #$10
 .3 ADC #6
 .4 ADC #4
 .5 ADC #1
 RTS

Not counting the RTS, that is 31 bytes. Cases 0 and 1 take only 9
cycles. The longest one, when the index is 7, takes 32 cycles.

All of these longer methods can be made to generate the reverse
sequence by simply inverting the index before beginning the tests.
Use "EOR #7" before the "AND #7".

I came up with an even trickier version, which shaved another byte or
two off TRICKY.WAY. Believe it or not, it really works:

 TRICKIER.WAY.REVERSE
 EOR #7
 TRICKIER.WAY
 AND #7 isolate index
 SEC 00-01-02-03-04-05-06-07
 ROL 01-03-05-07-09-0B-0D-0F
 CMP #3
 BCC .0 turn 0 into $01
 CMP #7
 BCC .12 03-->02, 05-->04
 ADC #6 ..-..-..-0E-10-12-14-16
 CMP #$12
 BCC .34 0E-->08, 10-->10
 ADC #$2B ..-..-..-..-..-3E-40-42
 CMP #$42

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1667 of 2550

Apple II Computer Info

 BCC .56 3E-->20, 40-->40
 ASL 42-->84-->80
 .56 AND #$E0
 .34 AND #$F8
 .12 AND #$FE
 .0 RTS

If the index is 0, this one takes 11 cycles. Worst case is for index
7, at 34 cycles.

A source file on the quarterly disk will include all of the above
examples, plus a driving program that runs through all 8 cases and
displays the results for each and every method.

In real life, I would probably use the shift-loop or the table look
up. Most likely the table lookup, because it is the easiest to
understand and modify, and by far the shortest in time. Nevertheless,
it is very useful to experiment with other techniques. You learn a
lot from the experience, and it is fun!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1668 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 1.1....................................$92.50
Version 1.1 Update...$12.50
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984 QD#15: Apr-Jun 1984
 QD#16: Jul-Sep 1984

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Quick-Trace (Anthro-Digital)..............................(reg. $50) $45
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
Amper-Magic (Anthro-Digital)..............................(reg. $50) $45
Amper-Magic Volume 2 (Anthro-Digital).....................(reg. $30) $25
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36
Aztec C Compiler System (Manx Software)..................(reg. $199) $180

Blank Diskettes (Verbatim)............2.25 each, or package of 20 for $40
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
QuikLoader EPROM System (SCRG)................................($179) $170

Books, Books, Books..........................compare our discount prices!
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15
 Second edition, with //e information.
 "Assembly Cookbook for the Apple II/IIe", Lancaster.....($21.95) $20
 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1669 of 2550

Apple II Computer Info

 "Beneath Apple ProDOS", Worth & Lechner.................($19.95) $18
 "What's Where in the Apple", Second Edition.............($19.95) $19
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($18.95) $18
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9
 "Microcomputer Graphics", Myers.........................($12.95) $12
 "Microcomputer Design & Troubleshooting", Zumchak.......($17.95) $17

We have small quantities of other great books, call for titles & prices.
Add $1.50 per book for US shipping. Foreign orders add postage needed.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1670 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:Articles:Reviews..txt
==

Some Great New Books......................Bob Sander-Cederlof

"Beneath Apple ProDOS", by Don Worth and Pieter Lechner. Quality
Software, 1984, 276 pages plus 10 page reference card, $19.95. (By it
from us for $18 plus shipping.)

We have been waiting a long time for this one, by the authors of
"Beneath Apple DOS". If you read that one, you'll want this one too.
And if you use or plan to use ProDOS, you will almost REQUIRE this new
book.

Apple has documented ProDOS pretty thoroughly, but just TRY to get a
copy of their books. Hardly any Apple dealers stock the reference
manuals now. Apple requires a minimum order to buy the manuals, and
they are a relatively slow moving item. Hence, dealers don't order
them. Some we have talked with lately refused to admit they knew of
the existence of even the Apple //e Reference Manual (over 18 months
old now)! And Apple so far will not sell the books to anyone who is
not an authorized Apple dealer. Catch-22, right?

But even if you have Apple's ProDOS reference manuals, as I do, you
still need "Beneath Apple ProDOS". Look at the table of contents, and
see if you can resist.

The most heavily thumbed pages in my copy of "Beneath Apple DOS" are
the ones which give detailed comments on the entire DOS assembly
language image. Unfortunately, the equivalent section does not come
bound in to "Beneath Apple ProDOS". Since Apple has decided to freeze
DOS, a published commentary is possible. But ProDOS is deliberately
kept warm and fluid. So far there are at least four versions around;
all have the same characteristics and machine language interface, but
subroutines have been shuffled and rewritten. A line-by-line
commentary could become obsolete every six months.

A special coupon is bound into the book at the place where you would
expect the commentary. If you want the commentary, you remove the
coupon page, fill in your name, address, and ProDOS version number,
and send it with $12.50 to Quality Software. With the commentary you
will receive a new coupon so your can order a subsequent supplement
when ProDOS changes versions.

"Assembly Cookbook for the Apple II/IIe", Don Lancaster. Howard Sams
& Co., 1984, 408 pages, $21.95. (Buy it from us for $20 plus
shipping.)

Don is sold on the synergistic combination of a full-screen 80-column
word processor for handling source code with an assembler. His
favorite pairing is Applewriter //e with EDASM (from DOS ToolKit).
Consequently a large section of the book is devoted to how the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1671 of 2550

Apple II Computer Info

marriage is performed, what the advan- tages are, and how to work
around or ignore the disadvantages. Don knows Applewriter inside out,
and uses it for all his word processing as well as for programming.
There are some distinct advantages to using the same editor for both:
writing books about assembly language programming is easier; only one
set of commands, tricks, and quirks need be learned. Applewriter
//e's WPL language helps overcome the disadvantages of using a screen-
oriented processor on line-oriented information.

The second half of the book contains sample assembly language
programs, explained in detail. These are not your run-of-the- mill
examples, but great subroutines and programs you can actually use, as
well as learn from.

"Microcomputer Design and Troubleshooting", by Eugene M. Zumchak.
Howard Sams & Co., 1982, 350 pages, $17.95. (Buy it from us for $17
plus shipping.)

From time to time I am called upon to understand and work with
electronics. My degree is in Electronic Engineering, but I got it in
the vacuum tube era (over 20 years ago). What now fits on one chip
used to fill a whole ship.... Anyway, I struggle through. But I have
found a book recently that has really helped: it is not really a new
book, but is new to me.

Gene Zumchak has a unique approach, which is PRACTICAL. He believes
in designs which are easy to troubleshoot. He tells how adding a few
low cost components here and there will avoid the expense of a logic
analyzer and three weeks of debugging time. For example, using an
EPROM emulator and a few LED's in critical places in a microprocessor
design could save endless hours of burning and erasing EPROMs,
attaching logic analyzer leads and watching oscilloscope traces, and
pulling all your hair out. Although every chapter has helpful ideas
in the areas of trouble prevention and diagnosis, chapter 6 is devoted
entirely to the subject. Another feature Gene promotes is low power
consumption.

Jack Lewis is president of Micromation, a company which makes hardware
for use with the Hero-1 Robot. They have designed interfaces between
Apple and Hero, speech input processors, and much more. When Jack
began, he contracted with Gene Zumchak to teach his people the
techniques which are now in this book. Jack is the one who
recommended the book to me.

And now I recommend the book to you, if you like to dabble in hardware
design. Even practicing designers will find the ideas well worth the
price of reading the book.

I also recommend "The Computer Journal", a monthly newsletter/
magazine published by Art Carlson. $24/year (U.S.) gets you regular
articles such as "Build a 68008 CPU Board for the S-100 Bus",
"Electronic Dial Indicator", "Writing Your Own Threaded Language", and
"Interfacing Tips and Troubles". Write to Art at P. O. Box 1697,
Kalispell, MT 59903.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1672 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:DOS3.3:S.CLEAR.ARRAYS.txt
==

 1000 *SAVE S.CLEAR ARRAYS
 1010 *--------------------------------
 1020 * &CLEAR <ARRAY LIST>
 1030 * SETS ALL VALUES IN REAL ARRAYS TO 0
 1040 * INTEGER ARRAYS TO 0
 1050 * STRING ARRAYS TO ""
 1060 *--------------------------------
 1070 * WRITTEN BY JOHAN ZWIEKHORST, BASED ON
 1080 * "CLEAR STRING ARRAY" BY BOB SANDER-CEDERLOF
 1090 * IN DECEMBER, 1982 APPLE ASSEMBLY LINE
 1100 *--------------------------------
 1110 T.CLEAR .EQ $BD "CLEAR" TOKEN
 1120 *--------------------------------
 1130 ARYPT .EQ $94
 1140 LOWTR .EQ $9B
 1150 ARYEND .EQ $9D (= FAC)
 1160 *--------------------------------
 1170 CHRGET .EQ $B1
 1180 CHRGOT .EQ $B7
 1190 SYNERR .EQ $DEC9
 1200 GETARYPT .EQ $F7D9
 1210 *--------------------------------
 1220 .OR $300 (COULD BE ANYWHERE YOU LIKE)
 1230 *--------------------------------
 1240 CLEAR.ARRAYS
 1250 CMP #T.CLEAR &CLEAR?
 1260 BEQ .3 ...YES
 1270 .1 JMP SYNERR
 1280 .2 CMP #$2C COMMA?
 1290 BNE .1
 1300 *---GET STARTING ADDRESS---------
 1310 .3 JSR CHRGET GET NEXT CHAR (SHOULD BE LETTER)
 1320 JSR GETARYPT FIND NAME/ADDRESS OF ARRAY
 1330 LDY #4 COMPUTE SIZE OF PREAMBLE
 1340 LDA (LOWTR),Y # DIMENSIONS
 1350 ASL *2, AND CLEAR CARRY
 1360 ADC #5 +5 (2 FOR NAME)
 1370 ADC LOWTR (2 FOR OFFSET)
 1380 PHA (1 FOR # DIMS)
 1390 LDA LOWTR+1
 1400 ADC #0 ADD CARRY
 1410 STA ARYPT+1
 1420 *---GET ENDING ADDRESS-----------
 1430 CLC ADD OFFSET TO GET ADDRESS OF END
 1440 LDY #2
 1450 LDA (LOWTR),Y
 1460 ADC LOWTR
 1470 STA ARYEND
 1480 INY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1673 of 2550

Apple II Computer Info

 1490 LDA (LOWTR),Y
 1500 ADC LOWTR+1
 1510 STA ARYEND+1
 1520 *---SET UP POINTER TO START------
 1530 PLA
 1540 TAY
 1550 LDA #0
 1560 STA ARYPT
 1570 LDX ARYPT+1
 1580 *---LOOP TO SET ELEMENTS ZERO----
 1590 .4 STA (ARYPT),Y
 1600 INY
 1610 BNE .5 ...USUALLY
 1620 INX ...NEXT PAGE
 1630 STX ARYPT+1
 1640 .5 CPY ARYEND AT END YET?
 1650 BNE .4 ...NO
 1660 CPX ARYEND+1
 1670 BNE .4 ...NO
 1680 *---CHECK IF ANOTHER ARRAY-------
 1690 JSR CHRGOT
 1700 BNE .2 ...YES, UNLESS SYNTAX ERROR
 1710 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1674 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:DOS3.3:S.DP18AmperLink.txt
==

 1000 *SAVE S.DP18 AMPER-LINK
 1010 *--------------------------------
 1020 .OR $803
 1030 *-------------------------------
 1040 * APPLESOFT SUBROUTINES
 1050 *-------------------------------
 1060 AS.ADDON .EQ $D998 ADD (Y) TO TXTPTR
 1070 AS.IF.JUMP .EQ $D9DA HANDLE T/F FOR IF
 1080 AS.FRMNUM .EQ $DD67 EVAL FP FORMULA
 1090 AS.CHKCLS .EQ $DEB8 CHECK FOR)
 1100 AS.CHKOPN .EQ $DEBB CHECK FOR (
 1110 AS.CHKCOM .EQ $DEBE CHECK FOR COMMA
 1120 AS.SYNCHR .EQ $DEC0 CHARACTER SCAN OR FAIL
 1130 AS.SYNERR .EQ $DEC9 SYNTAX ERROR
 1140 AS.PTRGET .EQ $DFE3 FIND VARIABLE
 1150 AS.ISLETC .EQ $E07D LETTER CHECK
 1160 AS.FRMCPX .EQ $E430 "FORMULA TOO COMPLEX" ERROR
 1170 AS.GETSPA .EQ $E452 GET SPACE FOR STRING
 1180 AS.MOVSTR .EQ $E5E2 MOVE STRING
 1190 *--------------------------------
 1200 * PAGE ZERO USAGE
 1210 *-------------------------------
 1220 AS.VALTYP .EQ $11 LAST FAC OP 0=NUM,FF=STRING
 1230 ARYTAB .EQ $6B,6C
 1240 AS.FRESPA .EQ $71,72
 1250 VARNAM .EQ $81,82
 1260 AS.CHRGET .EQ $B1
 1270 AS.CHRGOT .EQ $B7
 1280 TXTPTR .EQ $B8,B9
 1290 P2 .EQ $F9
 1300 *--------------------------------
 1310 * DP18 SUBROUTINES ASSEMBLED ELSEWHERE
 1320 *--------------------------------
 1330 DP.PRINT .EQ $FFFF
 1340 DP.INPUT .EQ $FFFF
 1350 FIN .EQ $FFFF
 1360 DP.SGN .EQ $FFFF
 1370 DP.INT .EQ $FFFF
 1380 DP.ABS .EQ $FFFF
 1390 DP.SQR .EQ $FFFF
 1400 DP.LOGE .EQ $FFFF
 1410 DP.EXPE .EQ $FFFF
 1420 DP.COS .EQ $FFFF
 1430 DP.SIN .EQ $FFFF
 1440 DP.TAN .EQ $FFFF
 1450 MOVE.DAC.YA .EQ $FFFF
 1460 QUICK.FOUT .EQ $FFFF
 1470 DP.POWER .EQ $FFFF
 1480 DSUB .EQ $FFFF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1675 of 2550

Apple II Computer Info

 1490 DADD .EQ $FFFF
 1500 DMULT .EQ $FFFF
 1510 DDIV .EQ $FFFF
 1520 DP.ATN .EQ $FFFF
 1530 DP.VAL .EQ $FFFF
 1540 MOVE.YA.DAC .EQ $FFFF
 1550 MOVE.YA.DAC.1 .EQ $FFFF
 1560 *--------------------------------
 1570 * AMPERSAND VECTORS
 1580 *--------------------------------
 1590 .DA DP18 STARTING ADDRESS FOR &-INTERPRETER
 1600 AMP.LINK .DA AS.SYNERR LINK TO NEXT &-INTERPRETER
 1610 *-------------------------------
 1620 * WORK AREAS FOR DPFP
 1630 *-------------------------------
 1640 WORK .EQ *
 1650 SGNEXP .BS 1
 1660 EXP .BS 1
 1670 DGTCNT .BS 1
 1680 DECFLG .BS 1
 1690 *-------------------------------
 1700 DAC .BS 12
 1710 DAC.EXPONENT .EQ DAC
 1720 DAC.HI .EQ DAC+1
 1730 DAC.EXTENSION .EQ DAC+10
 1740 DAC.SIGN .EQ DAC+11
 1750 *-------------------------------
 1760 WRKSZ .EQ *-WORK
 1770 *-------------------------------
 1780 ARG .BS 12
 1790 *--------------------------------
 1800 *BUFFER FOR 'FOUT' AND
 1810 *LARGE ACC FOR MULTIPLICATION
 1820 *--------------------------------
 1830 FOUT.BUF .BS 41
 1840 FOUT.BUF.SIZE .EQ *-FOUT.BUF
 1850 MAC .EQ FOUT.BUF
 1860 *-------------------------------
 1870 STACK.SIZE .EQ 12*10 10 ENTRIES BEFORE OVERFLOW
 1880 STACK.PNTR .BS 1
 1890 STACK .BS STACK.SIZE
 1900 RPAREN.CNT .BS 1
 1910 *-------------------------------
 1920 REL.OPS .BS 1
 1930 RESULT .BS 2
 1940 INDEX .BS 1
 1950 *-------------------------------
 1960 * TOKEN ASSIGNMENTS
 1970 *-------------------------------
 1980 TKN.PLUS .EQ 200 +
 1990 TKN.MINUS .EQ 201 -
 2000 TKN.STAR .EQ 202 *
 2010 TKN.SLASH .EQ 203 /
 2020 TKN.POWER .EQ 204 ^

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1676 of 2550

Apple II Computer Info

 2030 TKN.EQUAL .EQ 208 =
 2040 TKN.PRINT .EQ 186 PRINT
 2050 TKN.INPUT .EQ 132 INPUT
 2060 TKN.STR .EQ 228 STR$
 2070 TKN.IF .EQ 173 IF
 2080 TKN.THEN .EQ 196 THEN
 2090 TKN.GOTO .EQ 171 GOTO
 2100 TKN.NOT .EQ 198 NOT
 2110 TKN.AND .EQ 205 AND
 2120 TKN.OR .EQ 206 OR
 2130 *-------------------------------
 2140 * JMP TABLE FOR FUNCTIONS
 2150 *--------------------------------
 2160 DP.FUNC
 2170 .DA DP.SGN-1 SGN (TKN 210)
 2180 .DA DP.INT-1 INT
 2190 .DA DP.ABS-1 ABS
 2200 .DA AS.SYNERR-1 USR
 2210 .DA AS.SYNERR-1 FRE
 2220 .DA AS.SYNERR-1 SCRN(
 2230 .DA AS.SYNERR-1 PDL
 2240 .DA AS.SYNERR-1 POS
 2250 .DA DP.SQR-1 SQR
 2260 .DA AS.SYNERR-1 RND
 2270 .DA DP.LOGE-1 LOG #220
 2280 .DA DP.EXPE-1 EXP
 2290 .DA DP.COS-1 COS
 2300 .DA DP.SIN-1 SIN
 2310 .DA DP.TAN-1 TAN
 2320 * ATN HANDLED SPECIALLY
 2330 *--------------------------------
 2340 *--------------------------------
 2350 * &-INTERPRETER FOR DP18
 2360 *--------------------------------
 2370 NOT.DP18.CALL
 2380 JSR AS.CHRGOT
 2390 JMP (AMP.LINK) SYNTAX ERROR OR NEXT CHAINED &-ROUTINE
 2400 *--------------------------------
 2410 * & ENTRY POINT
 2420 *--------------------------------
 2430 DP18 CMP #'D' CHECK FOR "DP:" AFTER "&"
 2440 BNE NOT.DP18.CALL
 2450 LDY #1
 2460 LDA (TXTPTR),Y
 2470 CMP #'P'
 2480 BNE NOT.DP18.CALL
 2490 INY ADD 2 TO TXTPTR, TO POINT
 2500 JSR AS.ADDON AT NEXT CHAR AFTER "&DP"
 2510 *--------------------------------
 2520 DP.NEXT.CMD
 2530 JSR AS.CHRGOT SEE IF EOL
 2540 BNE DP.SYNERR.1 ...NEITHER COLON NOR EOL
 2550 TAY CHECK FOR EOL
 2560 BEQ .3 ...EOL, SO RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1677 of 2550

Apple II Computer Info

 2570 JSR AS.CHRGET CHARACTER AFTER COLON
 2580 BEQ .3 ...COLON OR EOL
 2590 CMP #TKN.PRINT
 2600 BEQ .1
 2610 CMP #TKN.INPUT
 2620 BEQ .2
 2630 CMP #TKN.IF
 2640 BEQ DP.IF
 2650 JSR GET.A.VAR GET ADDRESS OF VAR
 2660 LDX AS.VALTYP
 2670 BMI DP.STR STRING VAR
 2680 JSR CHECK.DP.VAR
 2690 STY RESULT+1 SAVE ADRS OF VARIABLE
 2700 STA RESULT
 2710 LDA #TKN.EQUAL NEXT CHAR MUST BE "="
 2720 JSR AS.SYNCHR OR ELSE SYNTAX ERROR
 2730 JSR DP.EVALUATE
 2740 LDA RESULT
 2750 LDY RESULT+1
 2760 JSR MOVE.DAC.YA
 2770 JMP DP.NEXT.CMD
 2780 .1 JMP DP.PRINT
 2790 .2 JMP DP.INPUT
 2800 .3 RTS
 2810 *--------------------------------
 2820 DP.SYNERR.1
 2830 JMP AS.SYNERR
 2840 *--------------------------------
 2850 * <STRING> = STR$(<DPEXP>)
 2860 *--------------------------------
 2870 DP.STR STA P2 SAVE ADDR OF STRING VARIABLE
 2880 STY P2+1
 2890 LDA #TKN.EQUAL MUST HAVE "="
 2900 JSR AS.SYNCHR
 2910 LDA #TKN.STR MUST HAVE "STR$"
 2920 JSR AS.SYNCHR
 2930 JSR AS.CHKOPN MUST HAVE "("
 2940 JSR DP.EVALUATE GET EXPRESSION
 2950 JSR AS.CHKCLS MUST HAVE ")"
 2960 JSR QUICK.FOUT CONVERT TO SIMPLE STR$ FORMAT
 2970 DEC INDEX DON'T COUNT TRAILING $00 BYTE
 2980 LDA INDEX GET LENGTH
 2990 JSR AS.GETSPA GET SPACE IN STRING AREA
 3000 LDY #0 MOVE DATA INTO VARIABLE
 3010 STA (P2),Y LENGTH
 3020 LDA AS.FRESPA
 3030 INY
 3040 STA (P2),Y LO ADDRESS
 3050 LDA AS.FRESPA+1
 3060 INY
 3070 STA (P2),Y HI ADDRESS
 3080 LDX #FOUT.BUF COPY STRING DATA INTO PLACE
 3090 LDY /FOUT.BUF
 3100 LDA INDEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1678 of 2550

Apple II Computer Info

 3110 JSR AS.MOVSTR
 3120 JMP DP.NEXT.CMD
 3130 *--------------------------------
 3140 * IF <DPEXP> THEN <NORMAL STATEMENTS>
 3150 * IF <DPEXP> THEN <LINE #>
 3160 * IF <DPEXP> GOTO <LINE #>
 3170 *--------------------------------
 3180 DP.IF JSR AS.CHRGET GOBBLE THE IF
 3190 JSR DP.EVALUATE GET THE EXPRESSION
 3200 JSR AS.CHRGOT GET NEXT CHAR
 3210 CMP #TKN.GOTO GOTO?
 3220 BEQ .1 ...YES
 3230 LDA #TKN.THEN ...NO, TRY "THEN"
 3240 JSR AS.SYNCHR
 3250 .1 LDA DAC.EXPONENT GET RESULT OF EXPRESSION
 3260 JMP AS.IF.JUMP LET APPLESFOT FIRMWARE DO IT
 3270 * AS.IF.JUMP COMPARES ACC TO 0. IF 0, IT SKIPS
 3280 * TO NEXT PROG. LINE. IF # 0, IT EXECUTES NEXT STATEMENT
 3290 *--------------------------------
 3300 * GET VARIABLE NAME AND ADDRESS
 3310 *--------------------------------
 3320 GET.A.VAR
 3330 JSR AS.ISLETC 1ST CHAR MUST BE LETTER
 3340 BCC DP.SYNERR.1 NO, SYN ERR
 3350 JMP AS.PTRGET GET ADRS OF VAR
 3360 *--------------------------------
 3370 * CHECK IF VALID DP18 VARIABLE
 3380 * ASSUME THIS ROUTINE CALLED AFTER "GET.A.VAR"
 3390 * A DP18 VARIABLE MUST BE A REAL ARRAY
 3400 *--------------------------------
 3410 CHECK.DP.VAR
 3420 CPY ARYTAB+1 BE SURE IT IS AN ARRAY
 3430 BCC DP.SYNERR.1 NO, SYNTAX ERROR
 3440 BNE .1 YES, AN ARRAY
 3450 CMP ARYTAB
 3460 BCC DP.SYNERR.1 NOT AN ARRAY, SYNTAX ERROR
 3470 .1 BIT VARNAM+1 BE SURE FLOATING POINT
 3480 BMI DP.SYNERR.1 NO, SYNTAX ERROR
 3490 RTS
 3500 *--------------------------------
 3510 * EVALUATE DP18 EXPRESSION
 3520 *--------------------------------
 3530 DP.EVALUATE
 3540 LDA #0 START WITH EMPTY STACK
 3550 STA RPAREN.CNT ...AND NO PARENTHESES
 3560 STA STACK.PNTR
 3570 JSR DP.ZERO ZERO TO DAC
 3580 JSR DP.EXP EVALUATE AN EXPRESSION
 3590 LDA STACK.PNTR SHOULD BE BACK TO EMPTY STACK
 3600 ORA RPAREN.CNT AND NO PARENTHESES
 3610 BNE DP.SYNERR.2 ...SYNTAX ERROR
 3620 RTS ...ALL OKAY!
 3630 *--------------------------------
 3640 * GENERAL EXPRESSION

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1679 of 2550

Apple II Computer Info

 3650 * EXP = RELAT
 3660 * EXP = EXP LOGOP RELAT
 3670 * LOGOP = "AND" OR "OR"
 3680 *--------------------------------
 3690 DP.EXP JSR DP.RELAT
 3700 .1 JSR AS.CHRGOT
 3710 CMP #TKN.AND
 3720 BEQ .3
 3730 CMP #TKN.OR
 3740 BNE .6 ...FINISHED
 3750 *---<EXP> OR <EXP>---------------
 3760 JSR .5 GET NEXT RELAT
 3770 ORA DAC.EXPONENT
 3780 BNE .4 ...TRUE
 3790 .2 JSR DP.FALSE ...FALSE
 3800 JMP .1
 3810 *---<EXP> AND <EXP>--------------
 3820 .3 JSR .5 GET NEXT RELAT
 3830 AND DAC.EXPONENT
 3840 BEQ .2 ...FALSE
 3850 .4 JSR DP.TRUE ...TRUE
 3860 JMP .1
 3870 *---GET <EXP> AFTER RELOP--------
 3880 .5 LDA DAC.EXPONENT
 3890 PHA
 3900 JSR AS.CHRGET
 3910 JSR DP.RELAT
 3920 PLA
 3930 .6 RTS
 3940 *--------------------------------
 3950 DP.SYNERR.2
 3960 JMP AS.SYNERR
 3970 *--------------------------------
 3980 * RELATIONAL EXPRESSION
 3990 * RELAT = SUM
 4000 * RELAT = RELAT RELOP SUM
 4010 * RELOP = "<", "=", ">", "<=", "=<", ">=",
 4020 * "=>", "<>", OR "><"
 4030 *--------------------------------
 4040 DP.RELAT
 4050 JSR DP.SUM GET <EXP>
 4060 .1 LDA #0
 4070 STA REL.OPS
 4080 JSR AS.CHRGOT
 4090 .2 SEC > IS $CF, = IS $D0, < IS $D1
 4100 SBC #$CF > IS 0, = IS 1, < IS 2
 4110 BCC .4 ...NOT RELOP
 4120 CMP #$03
 4130 BCS .4 ...NOT RELOP
 4140 ROL > IS 0, = IS 2, < IS 4
 4150 BNE .3 4 OR 2
 4160 LDA #1 > IS 1
 4170 .3 EOR REL.OPS SET BITS IN REL.OPS: 00000<=>
 4180 CMP REL.OPS CHECK FOR REPEATED OPS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1680 of 2550

Apple II Computer Info

 4190 BCC DP.SYNERR.2 ...YES, SYNTAX ERROR
 4200 STA REL.OPS
 4210 JSR AS.CHRGET GET NEXT CHAR
 4220 JMP .2 CHECK FOR <=> AGAIN
 4230 *---PERFORM RELOP----------------
 4240 .4 LDA REL.OPS WERE THERE ANY?
 4250 BEQ .8 NO, RETURN
 4260 CMP #7 ALL THREE OPS?
 4270 BEQ DP.SYNERR.2 ...YES, SYNTAX ERROR
 4280 JSR PUSH.DAC.STACK SAVE EXP1
 4290 JSR DP.SUM GET NEXT EXP2
 4300 JSR POP.STACK.ARG GET EXP1 IN ARG
 4310 JSR DSUB FORM EXP1 - EXP2
 4320 LDA DAC.EXPONENT
 4330 BEQ .45 EXP1 = EXP2
 4340 LDA DAC.SIGN
 4350 BMI .6 EXP1 < EXP2
 4360 LDA REL.OPS EXP1 > EXP2
 4370 AND #$01 ">" OPERATOR?
 4380 BEQ .7 ...NO, FALSE
 4390 BNE .5 ...YES, TRUE
 4400 .45 LDA REL.OPS EXP1 = EXP2
 4410 AND #$02 "=" OPERATOR?
 4420 BEQ .7 ...NO, FALSE
 4430 .5 JSR DP.TRUE ...YES, TRUE
 4440 JMP .1
 4450 .6 LDA REL.OPS EXP1 < EXP2
 4460 AND #$04 "<" OPERATOR?
 4470 BNE .5 ...YES, TRUE
 4480 .7 JSR DP.FALSE ...NO, FALSE
 4490 JMP .1
 4500 .8 RTS
 4510 *--------------------------------
 4520 * SUMMATION
 4530 * SUM = TERM
 4540 * SUM = SUM ADDOP TERM
 4550 * ADDOP = "+" OR "-"
 4560 *--------------------------------
 4570 DP.SUM JSR DP.TERM
 4580 .1 JSR AS.CHRGOT
 4590 CMP #TKN.PLUS
 4600 BEQ .3 +
 4610 CMP #'+
 4620 BEQ .3 +
 4630 CMP #TKN.MINUS
 4640 BEQ .4 -
 4650 CMP #'-
 4660 BEQ .4 -
 4670 RTS END OF EXP
 4680 .3 CLC .CC. FOR +, .CS. FOR -
 4690 .4 PHP SAVE WHETHER + OR -
 4700 JSR PUSH.DAC.STACK
 4710 JSR AS.CHRGET
 4720 JSR DP.TERM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1681 of 2550

Apple II Computer Info

 4730 JSR POP.STACK.ARG
 4740 PLP .CC. FOR +, .CS. FOR -
 4750 BCC .5
 4760 LDA DAC.SIGN
 4770 EOR #$FF
 4780 STA DAC.SIGN
 4790 .5 JSR DADD
 4800 JMP .1
 4810 *--------------------------------
 4820 * TERMS OF A SUMMATION
 4830 * TERM = FACTOR
 4840 * TERM = TERM MULOP FACTOR
 4850 * MULOP = "*" OR "/"
 4860 *--------------------------------
 4870 DP.TERM
 4880 JSR DP.FACTOR
 4890 .1 JSR AS.CHRGOT
 4900 CMP #TKN.STAR *?
 4910 BEQ .2
 4920 CMP #TKN.SLASH / ?
 4930 BEQ .3
 4940 RTS
 4950 .2 CLC .CC. FOR *, .CS. FOR /
 4960 .3 PHP SAVE * OR / FLAG
 4970 JSR PUSH.DAC.STACK
 4980 JSR AS.CHRGET
 4990 JSR DP.FACTOR
 5000 JSR POP.STACK.ARG
 5010 PLP GET * OR / FLAG
 5020 BCS .4 .../
 5030 JSR DMULT ...*
 5040 JMP .1
 5050 .4 JSR DDIV
 5060 JMP .1
 5070 *--------------------------------
 5080 * FACTORS OF A TERM
 5090 * FACTOR = ELEMENT
 5100 * FACTOR = FACTOR ^ ELEMENT
 5110 *--------------------------------
 5120 DP.FACTOR
 5130 JSR AS.CHRGOT
 5140 JSR DP.ELEMENT.1
 5150 .1 JSR AS.CHRGOT
 5160 CMP #TKN.POWER ^?
 5170 BEQ .2
 5180 RTS NO
 5190 .2 JSR PUSH.DAC.STACK
 5200 JSR DP.ELEMENT
 5210 JSR POP.STACK.ARG
 5220 JSR DP.POWER
 5230 JMP .1
 5240 *--------------------------------
 5250 * ELEMENTS OF A FACTOR
 5260 * ELEMENT = NUMBER, VARIABLE, OR FUNCTION()

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1682 of 2550

Apple II Computer Info

 5270 * ELEMENT = (EXP)
 5280 * ELEMENT = UNARY ELEMENT
 5290 * UNARY = "+" OR "-" OR "NOT"
 5300 *--------------------------------
 5310 DP.ELEMENT
 5320 JSR AS.CHRGET
 5330 DP.ELEMENT.1
 5340 CMP #TKN.PLUS CHECK FOR UNARY +
 5350 BEQ DP.ELEMENT ...YES, JUST IGNORE IT
 5360 CMP #TKN.MINUS CHECK FOR UNARY -
 5370 BNE .1 ...NO
 5380 JSR DP.ELEMENT GET THE EXP VALUE (RECURSIVE CALL)
 5390 LDA DAC.SIGN AND NEGATE IT
 5400 EOR #$FF
 5410 STA DAC.SIGN
 5420 RTS
 5430 *---CHECK FOR (EXP)--------------
 5440 .1 CMP #'(
 5450 BNE .2 ...NO
 5460 INC RPAREN.CNT
 5470 JSR AS.CHRGET GET 1ST CHAR OF EXP
 5480 JSR DP.EXP (EXP)
 5490 JSR AS.CHKCLS
 5500 DEC RPAREN.CNT
 5510 RTS
 5520 *---TRY VARIOUS FUNCTIONS--------
 5530 .2 TAY SEE IF FUNCTION
 5540 BPL DP.VARNUM ...NO, TRY NUMBER OR VARIABLE
 5550 CMP #TKN.NOT "NOT"?
 5560 BEQ .5 ...YES
 5570 CMP #210 CHECK RANGE
 5580 BCC DP.SYNERR.3 ...NOT VALID DP FUNCTION
 5590 CMP #229 MAY BE "VAL"
 5600 BEQ .4 ...VAL(STRING)
 5610 CMP #225 ATN?
 5620 BCC .3 ...NO, BUT IN RANGE FOR OTHERS
 5630 BNE DP.SYNERR.3 ...NOT VALID DP18 FUNCTION
 5640 JMP DP.ATN
 5650 .3 SBC #209 CARRY CLEAR SUBS 1 MORE
 5660 ASL MULT BY 2
 5670 TAY INDEX INTO TABLE
 5680 LDA DP.FUNC+1,Y GET HI ADR
 5690 PHA
 5700 LDA DP.FUNC,Y GET LO ADR
 5710 PHA
 5720 JSR AS.CHRGET
 5730 JSR AS.CHKOPN MUST HAVE (
 5740 INC RPAREN.CNT
 5750 JSR DP.EXP EVALUATE ARG
 5760 JSR AS.CHKCLS
 5770 DEC RPAREN.CNT
 5780 RTS EVALUATES FUNCTION
 5790 *---"VAL" FUNCTION---------------
 5800 .4 JSR AS.CHRGET

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1683 of 2550

Apple II Computer Info

 5810 JSR AS.CHKOPN
 5820 JSR DP.VAL
 5830 JMP AS.CHKCLS
 5840 *---"NOT" ELEMENT----------------
 5850 .5 JSR DP.ELEMENT GET ARGUMENT (RECURSIVE CALL)
 5860 LDA DAC.EXPONENT
 5870 BEQ DP.TRUE
 5880 * FALL INTO DP.FALSE
 5890 *--------------------------------
 5900 DP.ZERO
 5910 DP.FALSE
 5920 LDA #0 FALSE, PUT 0 IN DAC
 5930 LDY #11
 5940 .1 STA DAC,Y
 5950 DEY
 5960 BPL .1
 5970 RTS
 5980 *--------------------------------
 5990 DP.TRUE
 6000 LDA #CON.ONE TRUE, PUT 1 IN DAC
 6010 LDY /CON.ONE
 6020 JMP MOVE.YA.DAC
 6030 *--------------------------------
 6040 DP.SYNERR.3 JMP AS.SYNERR
 6050 *--------------------------------
 6060 * VARIABLE OR NUMBER
 6070 * VARNUM = DP18 VARIABLE
 6080 * VARNUM = NUMBER
 6090 * VARNUM = NEGOP NUMBER
 6100 * VARNUM = "PI"
 6110 *--------------------------------
 6120 DP.VARNUM
 6130 LDY #0
 6140 LDA (TXTPTR),Y
 6150 CMP #'P CHECK FOR PI
 6160 BNE .1
 6170 INY Y=1
 6180 LDA (TXTPTR),Y
 6190 CMP #'I
 6200 BNE .1
 6210 INY Y=2
 6220 LDA (TXTPTR),Y
 6230 CMP #'(MUST NOT BE ARRAY
 6240 BEQ .1
 6250 JSR AS.ADDON ADVANCE TXTPTR PAST "PI"
 6260 LDA #CON.PI
 6270 LDY /CON.PI
 6280 JMP MOVE.YA.DAC.1 GET PI INTO DAC W/GUARD DIGITS
 6290 *---CHECK FOR VARIABLE-----------
 6300 .1 JSR AS.CHRGOT
 6310 JSR AS.ISLETC
 6320 BCC .2 ...NOT LETTER, TRY NUMBER
 6330 JSR AS.PTRGET ...LETTER, GET VARIABLE ADDR
 6340 JSR CHECK.DP.VAR BE SURE IT IS REAL ARRAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1684 of 2550

Apple II Computer Info

 6350 JMP MOVE.YA.DAC GET VALUE INTO DAC
 6360 *---CHECK FOR NUMBER-------------
 6370 .2 CMP #'. DECIMAL POINT?
 6380 BEQ .3 YES
 6390 CMP #TKN.PLUS PLUS?
 6400 BEQ .3 YES
 6410 CMP #TKN.MINUS MINUS?
 6420 BEQ .3 YES
 6430 CMP #'0
 6440 BCC DP.SYNERR.3 NOT A DIGIT
 6450 CMP #'9+1
 6460 BCS DP.SYNERR.3 NOT A DIGIT
 6470 .3 JMP FIN CONVERT NUMBER
 6480 *--------------------------------
 6490 * PUSH (DAC) ONTO EXPRESSION STACK
 6500 *--------------------------------
 6510 PUSH.DAC.STACK
 6520 LDY STACK.PNTR
 6530 CPY #STACK.SIZE-12
 6540 BCS .2 STACK ALREADY FULL
 6550 LDX #0
 6560 .1 LDA DAC,X
 6570 STA STACK,Y
 6580 INY
 6590 INX
 6600 CPX #12 STACK 12 BYTES
 6610 BCC .1
 6620 STY STACK.PNTR
 6630 RTS
 6640 .2 JMP AS.FRMCPX FORMULA TOO COMPLEX
 6650 *--------------------------------
 6660 * POP EXPRESSION STACK INTO ARG
 6670 *--------------------------------
 6680 POP.STACK.ARG
 6690 LDY STACK.PNTR
 6700 BEQ DP.SYNERR.3 STACK IS EMPTY
 6710 LDX #11
 6720 .1 DEY
 6730 LDA STACK,Y
 6740 STA ARG,X
 6750 DEX
 6760 BPL .1
 6770 STY STACK.PNTR
 6780 RTS
 6790 *--------------------------------
 6800 CON.ONE .HS 4110000000000000000000
 6810 CON.PI .HS 4131415926535897932385
 6820 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1685 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:DOS3.3:S.INDEX.MASK.txt
==

 1000 .LIF
 1010 *SAVE S.INDEX --> MASK
 1020 *--------------------------------
 1030 TEST LDY #"0"
 1040 .1 TYA
 1050 JSR $FDED
 1060 TYA
 1070 JSR TRICKY.WAY
 1080 JSR HEX
 1090 TYA
 1100 JSR TRICKIER.WAY
 1110 JSR HEX
 1120 TYA
 1130 JSR SHIFT.LOOP
 1140 JSR HEX
 1150 TYA
 1160 JSR TABLE.LOOKUP
 1170 JSR HEX
 1180 TYA
 1190 JSR SILLY.WAY
 1200 JSR HEX
 1210 TYA
 1220 JSR NOT.SO.SILLY.WAY
 1230 JSR HEX
 1240 TYA
 1250 JSR TRICKY.WAY.R
 1260 JSR HEX
 1270 TYA
 1280 JSR TRICKIER.WAY.R
 1290 JSR HEX
 1300 TYA
 1310 JSR SHIFT.LOOP.R
 1320 JSR HEX
 1330 TYA
 1340 JSR TABLE.LOOKUP.R
 1350 JSR HEX
 1360 JSR $FD8E
 1370 INY
 1380 CPY #"8"
 1390 BCC .1
 1400 RTS
 1410 *--------------------------------
 1420 HEX PHA
 1430 LDA #"-"
 1440 JSR $FDED
 1450 PLA
 1460 JMP $FDDA
 1470 *--------------------------------
 1480 TRICKY.WAY.R

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1686 of 2550

Apple II Computer Info

 1490 EOR #7
 1500 TRICKY.WAY
 1510 AND #7
 1520 CMP #2
 1530 BCC .5 1+1=$02
 1540 BEQ .5 2+1+CARRY=$04
 1550 CMP #4
 1560 BCC .4 3+1+4=$08
 1570 BEQ .3 4+1+4+CARRY+6=$10
 1580 CMP #6
 1590 BCC .2 5+1+4+6+$10=$$20
 1600 BEQ .1 6+1+4+6+$10+CARRY+$1E=$40
 1610 ADC #$3F 7+1+4+6+$10+$1E+CARRY=$80
 1620 .1 ADC #$1E
 1630 .2 ADC #$10
 1640 .3 ADC #6
 1650 .4 ADC #4
 1660 .5 ADC #1
 1670 RTS
 1680 *--------------------------------
 1690 TRICKIER.WAY.R
 1700 EOR #7
 1710 TRICKIER.WAY
 1720 AND #7 00-01-02-03-04-05-06-07
 1730 SEC
 1740 ROL 01-03-05-07-09-0B-0D-0F
 1750 CMP #3
 1760 BCC .0 TURN 00 INTO 01
 1770 CMP #7
 1780 BCC .12 TURN 03 INTO 02, 05 INTO 04
 1790 ADC #6 ..-..-..-0E-10-12-14-16
 1800 CMP #$12
 1810 BCC .34 TURN 0E INTO 08, 10 INTO 10
 1820 ADC #$2B ..-..-..-..-..-3E-40-42
 1830 CMP #$42
 1840 BCC .56 TURN 3E INTO 20, 40 INTO 40
 1850 ASL TURN 42 INTO 84
 1860 .56 AND #$E0 MASK 3E-40-84 TO 20-40-80
 1870 .34 AND #$F8 MASK 0E-10-20-40-80 TO 08-10-20-40-80
 1880 .12 AND #$FE MASK 03-05... TO 02-04...
 1890 .0 RTS
 1900 *--------------------------------
 1910 SHIFT.LOOP
 1920 AND #7
 1930 TAX
 1940 LDA #1
 1950 .1 ASL
 1960 DEX
 1970 BPL .1
 1980 ROR
 1990 RTS
 2000 *--------------------------------
 2010 TABLE.LOOKUP
 2020 AND #7

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1687 of 2550

Apple II Computer Info

 2030 TAX
 2040 LDA TABLE,X
 2050 RTS
 2060 TABLE .HS 0102040810204080
 2070 *--------------------------------
 2080 SHIFT.LOOP.R
 2090 AND #7
 2100 TAX
 2110 LDA #$80
 2120 .1 LSR
 2130 DEX
 2140 BPL .1
 2150 ROL
 2160 RTS
 2170 *--------------------------------
 2180 TABLE.LOOKUP.R
 2190 AND #7
 2200 TAX
 2210 LDA RTABLE,X
 2220 RTS
 2230 RTABLE .HS 8040201008040201
 2240 *--------------------------------
 2250 SILLY.WAY
 2260 AND #7
 2270 BEQ .0
 2280 CMP #1
 2290 BEQ .1
 2300 CMP #2
 2310 BEQ .2
 2320 CMP #3
 2330 BEQ .3
 2340 CMP #4
 2350 BEQ .4
 2360 CMP #5
 2370 BEQ .5
 2380 CMP #6
 2390 BEQ .6
 2400 LDA #$80
 2410 RTS
 2420 .6 LDA #$40
 2430 RTS
 2440 .5 LDA #$20
 2450 RTS
 2460 .4 LDA #$10
 2470 RTS
 2480 .3 LDA #$08
 2490 RTS
 2500 .2 LDA #$04
 2510 RTS
 2520 .1 LDA #$02
 2530 RTS
 2540 .0 LDA #$01
 2550 RTS
 2560 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1688 of 2550

Apple II Computer Info

 2570 NOT.SO.SILLY.WAY
 2580 AND #7
 2590 BEQ .0
 2600 CMP #4
 2610 BEQ .4
 2620 BCS .60
 2630 CMP #2
 2640 BEQ .2
 2650 BCS .3
 2660 LDA #$02
 2670 RTS
 2680 .60 CMP #6
 2690 BEQ .6
 2700 BCS .7
 2710 LDA #$20
 2720 RTS
 2730 .7 LDA #$80
 2740 RTS
 2750 .6 LDA #$40
 2760 RTS
 2770 .4 LDA #$10
 2780 RTS
 2790 .3 LDA #$08
 2800 RTS
 2810 .2 LDA #$04
 2820 RTS
 2830 .0 LDA #$01
 2840 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1689 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8409:DOS3.3:TWIRLERS.txt
==

 1 .LIF
 1000 *SAVE TWIRLERS
 1010 *--------------------------------
 1020 T
 1030 .1 TXA
 1040 AND #3
 1050 TAX
 1055 LDA CHARS,X
 1060 JSR FILL
 1070 INX
 1075 LDA #180
 1080 JSR $FCA8
 1090 LDA $C000
 1100 BPL .1
 1110 STA $C010
 1120 RTS
 1130 CHARS .HS A1AFADDC
 1140 *--------------------------------
 1150 FILL LDY #4
 1160 STY 1
 1170 STY 2
 1180 LDY #0
 1190 STY 0
 1200 .1 STA (0),Y
 1210 INY
 1220 BNE .1
 1230 INC 1
 1240 DEC 2
 1250 BNE .1
 1260 RTS
 1270 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1690 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:Arctec.Ad.txt
==

Assembly Language Programmers

Columbia, Maryland

Full Time Position Available Immediately

Send Resume to: Arctec Systems, Inc.
 9104 Red Branch Road
 Columbia, MD 21045
 Attn: Karen Shelsby

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1691 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:DP18.Correction.txt
==

Correction to DP18, Part 5.......................Paul Schlyter

The following comments relate to the listing on page 13 of the
September 1984 issue.

It appears to me that lines 4610-4620 and 4650-4660 can be deleted.
They check for the non-tokenized forms of "+" and "-", which I believe
will never be presented to DP18.

There is a definite bug at line 4460: the "LDA #$02" should be "LDA
#$04". Compare with lines 4370 and 4410, and you will see how I
caught it. Also the comment on line 4170, which says the bit map is
in the form "00000<=>".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1692 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:DP18.txt
==

18-Digit Arithmetic, Part 6................Bob Sander-Cederlof

This month's installment will cover some of the elementary functions:
VAL, INT, ABS, SGN, and SQR. I will also introduce a general
polynomial evaluator, which will be used by most of the other math
functions.

Most of the functions expect a single argument, which will be loaded
into DAC by the expression evaluator just before calling the function
code. The function code will compute a value based on the argument,
and leave the result in DAC. As the expression evaluator calls with
JSR, the function code returns with RTS.

One exception to the above paragraph is the VAL function. VAL
processes a string expression, and converts it into a value in DAC.
The code in lines 1350-1610 of the listing closely parallels the VAL
code in the Applesoft ROMs. Lines 1350-1370 evaluate the string
expression. Lines 1380-1460 save the current TXTPTR value (which
points into your Applesoft program), and makes TXTPTR point instead at
the resulting string. Lines 1470-1520 save the byte just past the end
of the string and store a 00 terminator byte in its place. FIN will
evaluate the string, placing the numeric value into DAC. Then lines
1540-1600 restore the byte after the string and TXTPTR.

The INT function zeroes any digits after the decimal point in a
number. A number in DAC has 20 digits. The exponent will be $00 if
the value is zero, $01-40 if the value is all fractional, $41-53 if
the value has from 1 to 19 digits before the decimal point, or $54-7F
if the value has no fractional digits.

Lines 1650-1700 remove the $40 bias from the exponent. If the
exponent was $00-40, DP.ZERO will force DAC to zero. Lines 1730-1740
check for the case of no fractional digits, and exit immediately.
Lines 1750-1860 zero the digits after the decimal point. If the
exponent was odd, there is one digit to be removed in the first byte
to be cleared; the rest get both digits zeroed.

The simplest function is ABS, or absolute value. All it requires is
forcing the sign positive, handled at lines 1910-1930.

Almost as simple is SGN, or sign function. SGN returns -1, 0, or +1,
according as DAC was negative, zero, or greater-than- zero. Lines
1970-1980 check DAC.EXPONENT, which will be zero if-and-only-if DAC is
zero. If the value is not zero, lines 1990-2030 force the value to be
1.0, while retaining the original sign.

SQR, the square root function, is more interesting. Do you remember
the way you learned to take square roots in high school? Neither do
I, but there is a handier way in computers anyway.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1693 of 2550

Apple II Computer Info

Suppose I want to find square root of 25. I could start with a wild
guess, check it to see if I am close by squaring and comparing with
25, and then refining my guess until it is as accurate as I need.
Suppose my wild guess is 7 (pretty wild!).

7*7 is 49, which is bigger than 25, so my next guess should be less
than 7. Instead of just guessing wildly for the next one, why not
take the average between 7 and 25/7? That average is 5.286. The
average of 5.286 and 25/5.286 is 5.0076. The next one is 5.0000079.
You can see that I am rapidly approaching the answer of 5.0.

The method of refining an approximation as exemplified above was
derived originally be Sir Isaac Newton. His method involves calculus,
can get quite complex, and applies to all sorts of problems. But in
the case of the square root, it is as simple as averaging an
approximation with the argument divided by the approximation.

It turns out that it is a very good method, because if you can get an
initial approximation that has the first few digits right, the number
of digits that are correct will slightly more than double each time
you run through Newton's improver.

The next trick is to reduce the range of possible arguments from the
full range of zero to 10^63 down to the range from .1 to 1.0. The
zero case is easy, because SQR(0) = 0, and is handled at lines 2100-
2110. Notice that lines 2120-2130 weed out negative arguments, which
are not allowed.

Remember that the square root of X*10^n is equal to SQR(X)*10^(n/2).
Lines 2150-2190 save the exponent, and change it to $40. This changes
the value in DAC to the range .1 to 1.0. I have a book which gives
polynomial approximations to the square root in that range. One with
the form aX^4+bX^3+...+e gives an approximation with is accurate in
the first 2.56 digits. Three iterations by Newton yield more than 22
accurate digits. The same book shows a cubic polynomial which gives
2.98 accurate digits if we can get the value into the range between
.25 and 1.0.

Lines 2200-2280 fold the values between .1 and .25 up to the range .4
through 1.0 by multiplying the value by 4. (This multiplication goes
pretty fast, since most of the bytes are zero.) The fact that we
quadrupled the value is remembered, so that we can later halve the
approximate root at lines 2350-2410. The cubic polynomial is
evaluated in lines 2290-2340, by calling POLY.N. The result, by the
time we reach line 2420, is an approximate square root of the number
between .1 and 1; now we need to make it an approximate root of the
original argument.

Lines 2420-2480 compute the exponent of the square root, by simply
dividing the original exponent by two. If there is a remainder,
meaning the original exponent was odd, then we also need to multply
the trial root by SQR(10). This is handled in lines 2490-2550. The
halved original exponent next is added to the trial exponent, giving a

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1694 of 2550

Apple II Computer Info

good first approximation to the square root of the original argument.
Lines 2600-2740 run through three cycles of the Newton iteration,
giving plenty of precision. If we were carrying enough digits along,
the 2.98 digits of precision our polynomial produced would be refined
to a full 26 digits, according to my book.

Speaking of the book, it is one I bought a number of years ago when
working on double precision math for a Control Data 3300 time sharing
system. As far as I know, it is still the best book in its field.
"Computer Approximations", by J. F. Hart and about seven other
authors, was published in 1968 by John Wiley & Sons. I don't know if
it is still in print or not, but if you ever need to create some high
precision math routines, you ought to try to find a copy.

A very common element in the evaluation of many math functions is an
approximation to the function over a limited range by a polynomial, or
by the quotient of two polynomials. Therefore it is handy to have an
efficient subroutine to evaluate a polynomial. Two different entry
points allow efficient evaluation of two kinds: those whose first
coefficient is 1, and the rest. POLY.N evaluates those whose first
coefficient is not one, and POLY.1 does those whose first is 1.

 POLY.N -- a*x^n + b*x^n-1 + ...
 POLY.1 -- x^n + a*x^n-1 + ...

In both cases, you enter with the address of a table of coefficients
in the Y- and A-registers (hi-byte in Y, lo-byte in A), and the degree
of the polynomial in the X-register. Thus you see that in lines 2290-
2340 the table P.SQR is addressed, and the degree of polynomial is 3
(cubic). Both POLY.N and POLY.1 assume that the value of x is in
TEMP2. Where all terms have been computed and added, the result will
be in DAC.

Actually, I may have misled you a little in the last sentence. The
terms of the polynomial are not separately computed and added, but
rather they are accumulated in a simple serial fashion:

 poly = (((a * x + b) * x + c) * x + d) * x + e

The coefficients and other constants shown in lines 2770-2830 are in a
special format which includes an extra two digits. You will remember
that the basic operations (+-*/) are carried out to 20 digits.
Therefore these constants are carried out to 20 digits. They are not
critical in the square root computation, thanks to Sir Isaac, but the
log and trig functions will need them.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1695 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 1 October, 1984

In This Issue...

18-Digit Arithmetic, Part 6. 2
An Even Trickier "Index to Mask" 9
Correction to DP18, Part5. 10
Another Tricky Way . 10
And Still Another. 10
The 65802 is Here! . 12
Out of Print . 16
Corrections to Line Number Cross Reference 18
Index to Articles in "Apple Assembly Line", Volume 4 . . . 19
Macintosh Assemblers 24

Index to Volume 4

This time last year we published a cumulative index to the first three
years of Apple Assembly Line. In this issue we add a separate index
to Volume 4, covering October 83 through September 84. Perhaps in
another year or two we can do another complete index.

65802 is Here!

After nearly a year of more or less patient waiting, we finally have a
sample 65802 microprocessor. It does indeed plug right into an Apple
//e, and works just fine. See Bob's story inside for all the details.

Blind Word Processor

Subscriber Larry Skutchan, of Little Rock, Arkansas, has adapted the
S-C Word Processor to work with the Echo Two Speech Synthesizer. He
now has a special word processor for the blind, which he says is the
best available. The price will be $95.50. Larry is a blind
university student, majoring in Computer Science. You can reach him
at (501) 568-2172.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.50 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1696 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:Graphics.SW.txt
==

Apple II Graphics Software

Accent Software The Graphic Solution $150
(415) 949-2711

Avant Garde Graphics Applications $10
(503) 345-3043 Hi-Res Secrets $130
 Paintmaster $35
 Starsprite (with board) $395
 Super Shape Draw $35
 Ultra Plot $70

Beagle Brothers Alpha Plot $40
(619) 296-6400 Apple Mechanic $30
 Flex Type $30
 Type Faces $20

Broderbund Arcade Machine $60
 Paint Shop $50

Business and Pro- Business Graphics $350
 fessional Software
(617) 491-3377

Calif Pacific Comp. Bill Budge's 3-D Animation $40

Castle Designs Fastdraw 1.1 $??

Chalkboard Chalkboard w/ software $100

Computer Station Enhanced Graphic Soft. $35
(314) 432-7019 Graphic Writer $55
 Ultra Hi-Res Graphics $50

Datasoft Micropainter $35
(818) 701-5161

Decision Resources Micropainter $375
(203) 222-1974

Desktop Computer Soft. Graph 'n' Calc $195
(408) 458-9095

Dickens Data Syst. Super Plotter $70
(404) 448-6177 Wall Street Plotter $125

Ferox Microsyst. Graphpower $295
(703) 841-0800

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1697 of 2550

Apple II Computer Info

Frank Belanger Shapemaker $??
(512) 451-6868

Funk Software Sideways $60
(617) 497-6339

Graphware Charts Unlimited $195
(513) 424-6733

Insoft GraFORTH $90

Interactive Microware Curve Fitter $35
(814) 238-8294 Quick-Draft $50
 Scientific Plotter $25

Koala Technologies Koala Tablet w/ soft. $125
 Gibson Light Pen $250

Laumer Research Mike's Magic Matrix $??
(214) 245-3927

Mad West Software Ampergraph $45

Micro Lab Multigraph $150
(312) 433-7550 Painter Power $40

Muse Software Data Plot $60

Penguin Software Complete Graphics Sys. $80
(312) 232-1984 Graphics Magician $60
 Gr. Mag. Pict. Painter $50
 Map Pack $20
 Additional Type Sets $20
 Paper Graphics $50
 Special Effects $40

Primesoft The Prime Plotter $240
(301) 229-4229

Scarborough Syst. PictureWriter $40

Sensible Software Image Printer $50
(313) 399-8877 Graphics Department $125

Softalk Publishing SoftGraph (David Durkee) free

Software Publishing PFS:Graph $125

Synergistic Software Higher Graphics II $35
 Higher Text $??
 Higher Fonts $15

Visicorp Visitrend/Visiplot $99

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1698 of 2550

Apple II Computer Info

(408) 946-9000

Zoom Software Zoom Grafix $50

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1699 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:Index.2.Vol.4.txt
==

Index to Articles in "Apple Assembly Line", Volume 4

AAAA
Applesoft
 Fast Garbage Collection..........................Paul Shetler... 3/84/2-12
 Faster Amper-Routine to Zero Arrays..........Johan Zwiekhorst... 9/84/16-17
 Generalized GOTO and GOSUB............................Bob S-C...12/83/15-17
 Random Numbers for Applesoft..........................Bob S-C... 5/84/2-13
 More Random Number Generators.........................Bob S-C... 6/84/15-18

BBBB
Benchmarks
 Rod's Color Pattern in 6502 Code............Charles H. Putney... 3/84/21-26
 Sieve Benchmark on the 68000...............Peter J. McInerney... 7/84/16-17
 Updating the 6502 Prime Sifter........................Bob S-C... 7/84/18-19
Book Reviews
 Annotated 68000 Bibliography......................Bill Morgan... 2/84/19
 Assembly Cookbook for the Apple II/IIe................Bob S-C... 9/84/28,30
 Beneath Apple ProDOS..................................Bob S-C... 9/84/28,31
 Bibliography on Apple Hi-Res Graphics.................Bob S-C... 9/84/23-27
 "The Computer Hacker" and "Dataphile Digest"....................11/83/24
 Demise of "Dataphile Digest"..................................12/83/1
 Don Lancaster's "Micro Cookbook", Volume 2........Bill Morgan... 1/84/9
 Don Lancaster Strikes Again (another new book).................. 7/84/1
 Microcomputer Design & Troubleshooting................Bob S-C... 9/84/30
 Understanding the Apple II, by Jim Sather.............Bob S-C... 1/84/25-26

CCCC
Corrections
 Corrections to Generic Screen Dump...............Steve Knouse...10/83/12
 Corrections to the Intellec Hex Converter.............Bob S-C... 5/84/1
Cross Assemblers
 Changing Tab Stops in the 68000 Cross Assembler.......Bob S-C... 3/84/15
 Converting to Intellec Hex Format.....................Bob S-C... 4/84/14-18
 Corrections to the Intellec Hex Converter...........Bob S-C... 5/84/1
 Converting to Motorola S-Format.......................Bob S-C... 6/84/22-27
 Hitachi 6301 Cross Assembler (announcement)...........Bob S-C...11/83/21
 New Cross Assemblers: Z-8, GI-1650, GI-1670.................... 8/84/1
 Zilog Z-8 Cross Assembler....................................... 4/84/1
Cyclic Redundancy Check Subroutine......................Bob S-C... 4/84/2-10
 Finding the Erroneous Bit Using CRC................Bruce Love... 6/84/20-21

DDDD
Disassemblers
 Building Label Tables for DISASM......................Bob S-C... 7/84/12-13
 Using EXEC Files with Rak-Ware's DISASM............Bob Kovacs... 4/84/26-28
Disk Drive Pressure Pads................................Bob S-C... 3/84/20
DOS Enhancements and Patches
 Changing VERIFY to DISPLAY............................Bob S-C... 3/84/13-14
 DOS Checksummer Debate Update.........................Bob S-C... 2/84/10
 DOSology and DOSonomy.................................Bob S-C... 6/84/9
 Feedback on our DOSonomy...................................... 7/84/1
 Faster Booting for Screenwriter II.................Bob Leedom...10/83/14
 Killing the EXEC..................................Bob Bragner...11/83/22

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1700 of 2550

Apple II Computer Info

 Modify DOS for Big BSAVEs.............................Bob S-C... 8/84/28
DOS Enhancements and Patches, contd.
 Patches to Avoid Interrupt Trouble.........
 Bruce Field, Bob S-C, and Bill Morgan... 1/84/10-11
 Peeking at the CATALOG................................Bob S-C... 2/84/6
 Quick DOS Updating vs. MASTER.CREATE..................Bob S-C... 4/84/19-23
 Using EXEC Files with Rak-Ware's DISASM............Bob Kovacs... 4/84/26-28
Double Precision Arithmetic Package
 DPFP Now Includes Source Code................................... 4/84/1
 Decimal 18-Digit Floating Point Arithmetic Package....Bob S-C...
 Part 1, Addition and Subtraction.............................. 5/84/20-25
 Part 2, Over/Underflow, Load/Store, Multiplication, Rounding.. 6/84/2-8
 Part 3, Division and Input Conversion......................... 7/84/2-11
 Part 4, Output Conversion..................................... 8/84/2-11
 Part 5, Applesoft Linkage and Expression Parsing.............. 9/84/2-15
 Speed vs. Space, Faster Multiplication........................ 7/84/26-28

EEEE
Enhancements and Patches to S-C Macro Assembler
 Changing Tab Stops in the 68000 Cross Assembler.......Bob S-C... 3/84/15
 EXTRA DEFINITION ERROR, Avoiding..................Bill Morgan...10/83/17
 Large Assembly Listing into Text File.......Robert F. O'Brien...10/83/16
 Lower Case Titles in Version 1.1................Bob Matzinger...10/83/17
 Lower Case Titles Revisited.....................Bob Matzinger...11/83/28
 More on Assembly Listing into Text File.......Tracy L. Shafer...12/83/12-14
 Procedure for Converting S-C Source Files to Text Files
 without Owning an S-C Assembler..........Bob S-C...12/83/26-28
 S-C Macro and GPLE.LC on the //e..................Bob Bragner... 3/84/16
 Suppressing Unwanted Object Bytes in Listings...David Roberts...10/83/19
 Using the PRT Command in S-C Macro................Bill Morgan... 6/84/12-14
EPROMs
 Burning and Erasing EPROMs............................Bob S-C... 4/84/23-24
 Converting to Intellec Hex Format.....................Bob S-C... 4/84/14-18
 Corrections to Intellec Hex Converter...............Bob S-C... 5/84/1
 Converting to Motorola S-Format.......................Bob S-C... 6/84/22-27

GGGG
Graphics
 Bibliography on Apple Hi-Res Graphics.................Bob S-C... 9/84/23-27
 If You Like Shapes, Try Shapemaker....................Bob S-C...10/83/24
 Macro Generates Quotient/Remainder Table for Hi-Res...Bob S-C... 2/84/28
 Rod's Color Pattern in 6502 Code............Charles H. Putney... 3/84/21-26

HHHH
Hardware Troubleshooting
 About Disk Drive Pressure Pads........................Bob S-C... 3/84/20
 Finding Trouble in a Big RAM Card.....................Bob S-C...12/83/21-24
 Making a 65C02 Work in My Apple II Plus........William O'Ryan... 6/84/28
 Quick Memory Testing..................................Bob S-C... 7/84/14
 Review of "Microcomputer Design & Troubleshooting.....Bob S-C... 9/84/28-31
 Speaking of Slow Chips..............................Bob Stout... 8/84/27
Hardware Reviews
 Amazing "quikLoader" Card.............................Bob S-C... 2/84/27
 An Apple Mouse, and other news.................................. 1/84/1
 Apple //c...Bob S-C... 5/84/14-16
 Our //c came in and we love it; however.............Bob S-C... 7/84/24
 Burning and Erasing EPROMs............................Bob S-C... 4/84/23-24
Hardware Reviews, contd.
 More Clocks for Apple.................................Bob S-C... 4/84/10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1701 of 2550

Apple II Computer Info

 More on the New 65802 and 65816.......................Bob S-C... 1/84/14-20
 Non-volatile RAM Chip (mention)..................Rodney Jacks...11/83/1
 Qwerty 68000 Training/Development System..............Bob S-C...11/83/16-17
 So That's a Macintosh!............................Bill Morgan... 2/84/11
 Timemaster II from Applied Engineering................Bob S-C...12/83/19-20

IIII
Interrupts
 DOS Patches to Avoid Interrupt Trouble.....
 Bruce Field, Bob S-C, and Bill Morgan... 1/84/10-11
 Enable/Disable IRQ from Applesoft.....................Bob S-C... 8/84/13-14
 Profiler: Using 60Hz IRQ's to Profile a Program...Bill Morgan... 1/84/2-9

LLLL
Language Card
 Finding Trouble in a Big RAM Card.....................Bob S-C...12/83/21-24
 Fixing the Andromeda 16K RAM Card.................Bob Bernard... 6/84/19
 Table of //e Soft Switches............................Bob S-C... 2/84/20-21
Line Number Cross Reference for Applesoft...........Bill Morgan... 8/84/15-26
Listing into Text File, Large Assembly........Robert F. O'Brien...10/83/16
 More on Assembly Listing intor Text Files.....Tracy L. Shafer...12/83/12-14
Lower Case
 Titles in Version 1.1...........................Bob Matzinger...10/83/17
 Titles Revisited................................Bob Matzinger...11/83/28

MMMM
Macros
 Building Label Tables for DISASM......................Bob S-C... 7/84/12-13
 Counting Lines Produced by Macro Expansion........Bill Morgan...10/83/21
 Macro-calculated Spiral Screen Clear............Bruce V. Love...10/83/20
 Macro Generates Quotient/Remainder Table for Hi-Res...Bob S-C... 2/84/28
 Sorting and Swapping..................................Bob S-C... 7/84/20-23
Memory Testing
 Finding Trouble in a Big RAM Card.....................Bob S-C...12/83/21-24
 Quick Memory Testing..................................Bob S-C... 7/84/14
Monitor Enhancements
 Booting ProDOS with a Modified Monitor ROM......Jan Eugenides... 6/84/18
 Compilation of Monitor Modifications.............Steve Knouse...10/83/2-9
 Fast Scroll for the //e 80-column.....................Bob S-C... 2/84/8-10
 Apple //e ROM Revision................................Bob S-C... 5/84/18-19
Monitor Information
 Erv Edge's Source of //e CxROM on Disk.......................... 2/84/1
 Delays, delays, delays (especially $FCA8).............Bob S-C... 2/84/14-18

PPPP
Patches and Modifications to Other Software
 Booting ProDOS with a Modified Monitor ROM......Jan Eugenides... 6/84/18
 Faster Booting for Screenwriter II.................Bob Leedom...10/83/14
 More on ProDOS and Non-Standard Apples.......................... 6/84/1
 S-C Macro and GPLE.LC on the //e..................Bob Bragner... 3/84/16
 Speaking of Locksmith 5.0...................Warren R. Johnson... 3/84/19
 Using EXEC Files with Rak-Ware's DISASM............Bob Kovacs... 4/84/26-28
 Will ProDOS Work on a Franklin?.....................Bob Stout... 3/84/20

Prime Number Sieve Benchmark
 Sieve Benchmark on the 68000...............Peter J. McInerney... 7/84/16-17
 Updating the 6502 Prime Sifter........................Bob S-C... 7/84/18-19
Printer Interfaces
 Using the PRT Command in S-C Macro................Bill Morgan... 6/84/12-14

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1702 of 2550

Apple II Computer Info

ProDOS
 Booting ProDOS with a Modified Monitor ROM......Jan Eugenides... 6/84/18
 Clock Drivers and ProDOS..............................Bob S-C...11/83/25-28
 Commented Listings
 $F800-F90B, $F996-FEBD..............................Bob S-C...11/83/2-14
 $F142-F1BE..Bob S-C...11/83/25-28
 $F90C-F995, $FD00-FE9A, $FEBE-FFFF..................Bob S-C...12/83/2-11
 More on ProDOS and Non-Standard Apples.......................... 6/84/1
 Review of "Beneath Apple ProDOS"......................Bob S-C... 9/84/28-31
 Will ProDOS Really Fly?...............................Bob S-C... 3/84/28
 Will ProDOS Work on a Franklin?.....................Bob Stout... 3/84/20
Profiler: Using 60Hz IRQ's to Profile a Program.....Bill Morgan... 1/84/2-9

RRRR
Random Number Generators
 Random Numbers for Applesoft..........................Bob S-C... 5/84/2-13
 More Random Number Generators.........................Bob S-C... 6/84/15-18
Reviews, see "Book Reviews", "Hardware Reviews", "Software Reviews"

SSSS
S-C Macro Assembler Enhancements and Patches........
 see Enhancements and Patches to S-C Macro Assembler
S-C Software Corporation
 Clarification about our Copyrights....................Bob S-C... 2/84/8
 I Think It Was a Bad Dream (Suits, Suits, Suits)......Bob S-C... 1/84/12-14
 New Cross Assemblers: Z-8, GI-1650, GI-1670.................... 8/84/1
 New Products: Z-8 Cross Asm, DPFP, and Macro 1.1 Source......... 4/84/1,28
 Orphans and Widows, Updating the S-C Word Processor...Bob S-C... 7/84/25
 Price Changes...Bob S-C...10/83/13
 Where To? (68000? C?)............................Bill Morgan...10/83/19
 Where To? Revisited...............................Bill Morgan...12/83/28
Screen Dump, Corrections to Generic................Steve Knouse...10/83/12
Screenwriter II, Faster Booting for..................Bob Leedom...10/83/14
Software Reviews
 Aztec C Compiler for Apple DOS....................Bill Morgan...11/83/18-20
 Note on Aztec C.................................Bill Morgan...12/83/14
 Barkovitch Utilities.. 6/84/21
 Lancaster's OBJ.APWRT][F..............................Bob S-C... 3/84/19
 Locksmith 5.0...Bob S-C... 1/84/26
 Speaking of Locksmith 5.0.................Warren R. Johnson... 3/84/19
 OBJ.APWRT][F Updated to AW//e Toolkit...........Don Lancaster... 6/84/10
 Shapemaker
 If You Like Shapes, Try Shapemaker..................Bob S-C...10/83/24
 Shapemaker Enhancements......................Frank Belanger...11/83/24
Source Code On Disk
 DPFP (Double Precision for Applesoft)........................... 4/84/1
 Erv Edge's Source for //e CxROM................................. 2/84/1
 S-C Macro Assembler Version 1.1 Source Code..................... 4/84/1,28
Spiral Screen Clear, Macro-Calculated.............Bruce V. Love...10/83/20

TTTT
Techniques
 Cyclic Redundancy Check Subroutine....................Bob S-C... 4/84/2-10
 Finding the Erroneous Bit Using CRC..............Bruce Love... 6/84/20-21
 Delays, delays, delays (especially $FCA8).............Bob S-C... 2/84/14-18
 Enable/Disable IRQ from Applesoft.....................Bob S-C... 8/84/13-14
 Fast Scroll for the //e 80-column.....................Bob S-C... 2/84/8-10
 Listing Buried Messages...............................Bob S-C... 2/84/2-5
 Making a Map of Differences...........................Bob S-C... 5/84/27-28

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1703 of 2550

Apple II Computer Info

 Peeking at the CATALOG................................Bob S-C... 2/84/6
 Put Your Messages on the Screen...............William R. Reed... 9/84/22
 Redundancy in Tables for Faster Lookups...............Bob S-C... 3/84/17-18
 Text Area Erase Routine..........................Jeff Creamer... 2/84/22-25
 Turn an Index into a Mask.............................Bob S-C... 9/84/18-21
 Sorting and Swapping..................................Bob S-C... 7/84/20-23
 Speed vs. Space, faster DP18 Multiplication...........Bob S-C... 7/84/26-28
Tips and Hints
 Reminder about Wrap-Around Addressing.............Bill Parker... 2/84/12
 Table of //e Soft Switches............................Bob S-C... 2/84/20-21
 What That Code Did....................John Broderick, Bob S-C... 5/84/26

UUUU
Utility Programs
 Corrections to Generic Screen Dump...............Steve Knouse...10-83/12
 Converting S-C Source Files to Text Files without
 Owning an S-C Assembler..................Bob S-C...12/83/26-28
 Line Number Cross Reference for Applesoft.........Bill Morgan... 8/84/15-26
 PROFILER: Using 60Hz IRQ's to Profile a Program...Bill Morgan... 1/84/2-9
 Still More Tinkering with VCR......................Louis Pitz...10/83/11

VVVV
VCR, Still More Tinkering with.......................Louis Pitz...10/83/11

WWWW
Wagner, Roger, Some Interesting News.............................. 5/84/17
Wozniak, Steve
 On-Line with Steve Wozniak...................................... 1/84/27-28
 Evening with Woz..................................Bill Morgan... 4/84/11-12

6502
65802, 65816
 More on the New 65802 and 65816.......................Bob S-C... 1/84/14-20
65C02
 Making a 65C02 Work in My Apple II Plus........William O'Ryan... 6/84/28
 Will Rockwell's 65C02 Work in an Old Apple?.........Bob Stout... 3/84/16
 65C02 vs. the Older Apples............................Bob S-C... 5/84/19
68000
 Annotated 68000 Bibliography......................Bill Morgan... 2/84/19
 Qwerty 68000 Training/Development System (review).....Bob S-C...11/83/16-17
 68000 Color Pattern...............................Bob Urschel... 1/84/21-24
 Changing Tab Stops in the 68000 Cross Assembler.......Bob S-C... 3/84/15
 Sieve Benchmark on the 68000...............Peter J. McInerney... 7/84/16-17

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1704 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:LCR.Correx.txt
==

Corrections to Line Number Cross Reference..........Bill Morgan

Allen Miller just called up from Hong Kong (at 3:30 AM his time!) to
report a problem with the Line Number Cross Reference program in the
August issue. It seems that as published it only prints out the first
line number list in each chain. The troublemaker is line 4560, which
says BNE .1. Well .1 is the next line, so the routine is always
exiting after only one pass. Line 4560 should read BNE PRINT.CHAIN,
to go back to the beginning rather than on to the end.

Then Chuck Welman called to point out yet another problem. It seems
that an undefined line number greater than the last line of the
program caused LCR to head off into the wilderness. When I
investigated this one it proceeded to get even stranger. LCR would
hang only if the undefined line number was greater than 19668! Less
than 19668 came out just right, and equal to 19668 worked, but LCR
mistakenly said the line was defined. Now here was a real creepy
crawler of a bug!

Well the problem turned out to be in the CHECK.DEFINITION routine.
Here are the offending lines:

4790 .4 LDY #0
4800 LDA (PNTR),Y lo-byte of next line address
4810 PHA
4820 INY
4830 LDA (PNTR),Y and hi-byte
4840 STA PNTR+1
4850 PLA
4860 STA PNTR
4870 JMP CHECK.DEFINITION

This code is called when CHECK.DEFINITION wants to get the next line
of the Applesoft program. The trouble comes up because there is no
check for end-of-program. Sooner or later we come to the zero bytes
that mark the end, load up PNTR with zeroes, and go back to
CHECK.DEFINITION to try what seems to be the next line. That routine
then compares the line number we are checking to the contents of
locations 2 and 3 of memory, which Applesoft has loaded with D4 and
4C. Now $4CD4 equals 19668, so that's where that funny number came
from!

Here is a slightly rearranged, working version of lines 4790-4870.
Note that we have reversed the hi-lo byte sequence and added a check
for a zero hi-byte:

4790 .4 LDY #1
4800 LDA (PNTR),Y hi-byte of next line address
4805 BEQ .2 end of program?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1705 of 2550

Apple II Computer Info

4810 PHA
4820 DEY
4830 LDA (PNTR),Y and lo-byte
4840 STA PNTR
4850 PLA
4860 STA PNTR+1
4870 JMP CHECK.DEFINITION

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1706 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:Mac.Assemblers.txt
==

Macintosh Assemblers.................................Lane Hauck
 San Diego, CA

I have the privilege* of Beta testing two 68000 assemblers for the
Macintosh -- the one from Apple (Workshop), and the one from Mainstay.
Mainstay is the "serious" side of Funsoft.

* (If you are masochistic, and enjoy little surprises like alert boxes
with no messages or GoAwayButtons in them, frequent crashes, and
system fonts abruptly changing; you too might want to become a Beta
Tester.)

I've gotten permission from both Apple and Mainstay to talk about
these products. The versions I'm testing are preliminary, and
therefore subject to change.

The Workshop is in "version 0.6" release, and is expected to be
available about October (I'd guess November). The Mainstay product is
scheduled for early October release, and judging from their staff and
working hours, I think they'll make it. (I visited them in Agoura,
CA, and found a very smart and hard working group of programmers.)

Although both assemblers do the same thing -- translate 68000 source
programs into runnable programs on the Macintosh -- they couldn't be
more different in how they operate!

The Apple Assembler

The Workshop has several parts. EDIT, ASM, LINK and EXEC are four
applications that do the actual code development. Additionally,
RMAKER creates resource files from text source files created by EDIT.
And finally, MacDB and its associated "Nub" programs provide debug
support for when your code doesn't run.

The development system can run on one drive, but two are highly
recommended.

EDIT: This is a DISK BASED editor, so the short document frustrations
of MacWrite are avoided. Additionally, you can open up to four
documents, and cut and paste between them (a la Lisa)! This is a bare
bones (but wonderful) editor, without fancy fonts or formatting. One
improvement over the Lisa editor: it has a "reverse tab" -- hitting
backspace from a tab stop takes you back not one space, but back one
tab position. This is a great convenience when you're entering
formatted source code.

ASM: Supports conditional assembly, macros (both "Lisa-type" and new
"Mac-type"). It's tailored to the Mac development environment (for
example it helps you write relocatable code).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1707 of 2550

Apple II Computer Info

Toolbox support is provided by special, compressed equate files (they
are compressed by a program called PacSyms, which you can use to
compress your own equate files). The Workshop provides all the Trap
and symbol equates mentioned in Inside Macintosh.

LINK: Links ".REL" code modules produced by the Assembler, and
(eventually -- not working yet) output files from RMAKER to produce a
final file, complete with your code and resources. Takes its
direction from a ".LINK" text file.

EXEC: Lets you automate the entire ASM-LINK process. One great
improvement over the Lisa version: you can direct EXEC to reenter the
editor if any assembly or link errors occur.

FIVE debuggers are supplied. MacDB is the best, most visible debugger
I'ver ever seen. It requires two Macs (or one Mac and a Lisa running
MacWorks). The Workshop will be supplied with an interconnect cable
for two Macs. Other debugger versions (which don't require the second
Mac) let you debug from an 8-line onscreen window on the Mac, and from
any remote terminal.

This is a professional, complete, "industrial strength" 68000 assembly
language development package. Its utilization of the Macintosh
environment is total and outstanding. My only real quibble is that it
takes a fair amount of time (a few minutes) to "turn" one cycle from
EDIT to running the new code. A hard disk would presumably improve
this greatly.

If you're an "interactive" programmer who likes to make changes and
see their results QUICKLY, you might be interested in the Mainstay
Assembler.

The Mainstay Assembler

If you've ever used any of the assemblers for the Apple II from S-C
Software, you'll feel right at home with the Mainstay environment.
It's patterned after the S-C 68000 Cross Assembler, and it looks and
feels just like you're running on an Apple //e!

The fact that none of the Macintosh interface is used will bother
some, especially the Mac purists. Mainstay's intention is to get a
quality assembler to market quickly, and the approach they've taken
allows this to happen. I don't mind non-fidelity to the Mac interface
in a DEVELOPMENT product -- we developers are EXPECTED to put up with
all sorts of indignities!

This is an absolute assembler, meaning that your code module is
produced with an address origin, and it is loaded and run at that
address. It does not produce "linkable" code modules, as does the
Apple Workshop Assembler. In fact no linker is supplied or required.

The Editor is built in, and it functions much like the Apple II. The
cursor is moved around with keyboard commands. The Editor has BASIC-

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1708 of 2550

Apple II Computer Info

like line numbers and the normal complement of line-number oriented
commands (RENumber, COPY, MOVE, etc.).

Resources are handled right inside your source code (remember there is
only one code "module"). This is more convenient than the Apple
"RMAKER" approach.

The Assembler supports conditional assembly, macros, and local labes.
It takes a novel approach in how it is installed and run on the
Macintosh.

When you start the Assembler, it grabs a large chunk of memory from
the application heap, and uses it for storing the symbol table, source
code, and object code. Typing MEM shows you exactly where these three
memory areas are. While you're in the Assembler environment, your
code "stays put", so you can deal with absolute addresses without fear
that the memory manager will move things around on you.

This means that you can edit, assemble, and test your code
IMMEDIATELY, without goin through a linking and (optionally) a
resource compiling step. This is the primary strength of this
assembler -- it allows "quicklook" programming which is ideal for
experimentation and learning the Macintosh system.

Eventually you will want to make your application an "installable"
Macintosh program, so you should get into the habit of writing
position independent code. The Mainstay package will supply the tools
necessary to make your application runnable on the Mac. It will also
contain Toolbox and Operating System equate files.

There are some nice "Apple II-like" features, such as typing DIR to
look at the disk catalog. In the Mac environment, you have to exit
the application and get back to the desktop to see your files. You
can also type "EJECT" and eject a disk immediately. I like to do this
just before running new code, to protect disks from my runaway test
programs that mysteriously fire up the disk drive.

Having this assembler, a Mac, and a copy of INSIDE MACINTOSH might
just be the most efficient way to learn the Macintosh. The prime
benefit of this assembler is its very high speed in moving between
editing, assembling, and running your test code.

Which One?

Which assembler would I recommend? At this stage I'd have to give the
universal Computer Salesman answer: "It depends."

The Apple one allows you to write separate code modules, assemble
them, and then link them together later. This allows you to utilize
already written and debugged modules in new programs.

Another advantage of the "linker" approach is that a single module can
be changed and reassembled, and then linked to other already-debugged

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1709 of 2550

Apple II Computer Info

modules. This saves reassembling the whole shebang every time you
make a change.

If you like this "relocatable assembler" approach, you'll want the
Apple Assembler. (If you're comfortable with the Lisa Assembler,
ditto.)

The Mainstay Assembler, by contrast, is an absolute assembler - it
puts code at a particular place in memory (set by an ORG - origin
statement), and allows only one "module" -- your entire program.
(Better write relocatable code if you want it to run as an
application, though!)

The Mainstay Assembler is so fast (especially if you put a "LIST OFF"
directive at the beginning of your code), that it negates the speed
advantage of the linked module approach. I would guess that it takes
you from source code edit to running reassembled code in about one-
twentieth the time required by the Apple Assembler. if you're an
"interactive" programmer who likes to see results of program changes
FAST, the Mainstay Assembler is for you.

If time is a factor, the Mainstay product will ship within a week; the
Apple Assembler is supposed to come out in October, but I doubt it.

If you're unhappy with "non-Mac-user-interface" products, you're
better off with the Apple version. The operation of the Mainstay
assembler is a bit strange at first, but anyone with Apple II roots
will adjust quickly.

Here's a factor I consider very important: Apple is a "Pascal house"
with almost no support given to assembly language programming of the
Macintosh. I've found their support in this area dismal.

The Mainstay Assembler is a major committment by this small company.
I've had quite a bit of technical interaction with them, and have
found them to be very intelligent, motivated, and responsive. I've
had indications that you'll be able to expect not only Assembler
support from Mainstay, but also some Macintosh support as well.

[10/15 -- The folks at Mainstay tell me they started shipping last
week, so we should have some copies for sale by the time you read
this. The introductory price is $100. -- Bill].

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1710 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 1.1....................................$92.50
Version 1.1 Update...$12.50
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984 QD#15: Apr-Jun 1984
 QD#16: Jul-Sep 1984

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Quick-Trace (Anthro-Digital)..............................(reg. $50) $45
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
Amper-Magic (Anthro-Digital)..............................(reg. $50) $45
Amper-Magic Volume 2 (Anthro-Digital).....................(reg. $30) $25
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36

Blank Diskettes (Verbatim)............2.25 each, or package of 20 for $40
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
QuikLoader EPROM System (SCRG)................................($179) $170
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32

Books, Books, Books..........................compare our discount prices!
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15
 Second edition, with //e information.
 "Assembly Cookbook for the Apple II/IIe", Lancaster.....($21.95) $20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1711 of 2550

Apple II Computer Info

 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Beneath Apple ProDOS", Worth & Lechner.................($19.95) $18
 "What's Where in the Apple", Second Edition.............($19.95) $19
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($18.95) $18
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9
 "Microcomputer Graphics", Myers.........................($12.95) $12

We have small quantities of other great books, call for titles & prices.
Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1712 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:Odd.Ways.txt
==

Another Tricky Way....Bruce Love
 Hamilton, New Zealand

Here is my effort to improve your version of turning an index into a
mask. It uses (shudder!) self-modifying code, but it is shorter and
faster and I think easy to understand.

LOVE.VERSION
 AND #7
 EOR #7
 STA .1+1
 LDA #1
.1 BNE .1 (OFFSET FILLED IN)
 ASL
 ASL
 ASL
 ASL
 ASL
 ASL
 ASL
 RTS

And Still Another...David Eisler
 Littleton, Colorado

With reference to "Turn Index into a Mask" (AAL Sept 84), here is
another tricky alternative. It uses only the A-register, is only 16
bytes long, and takes 9 to 23 cycles.

EISLER.VERSION
 AND #7
 STA .1+1
 LDA #$80
.1 BNE .1 (OFFSET FILLED IN)
 LSR
 LSR
 LSR
 LSR
 LSR
 LSR
 LSR
 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1713 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:Out.Of.Print.txt
==

Out of Print...............................Bob Sander-Cederlof

After printing the mini-review of Gene Zumchak's "Microprocessor
Design and Troubleshooting" last month, we naturally started receiving
orders for the book. I had some on order from Sams, but Lo! It is
now out-of-print! I talked with someone inside Sams and they said it
will probably remain out-of-print.

I talked with the author directly, and I believe that if necessary he
will re-publish the book himself. It is a worthy book, and needs to
be available. He wants to update some of the material, too. We'll
let you know when we can get it again.

You may have noticed that "computer" books are now the "in" thing to
publish. I would not be surprised if some publishers began having
serious difficulties because of their eagerness to grab this market.
They are publishing fluff for the neophytes, forgetting the really
useful technical titles. I hope Sams does not forget how it got where
it is today.

Meanwhile, as Art Carlson says, "If you see a book you need you had
better get while it is still available."

On this same subject, let's see if we can put some pressure on Apple
to make their reference manuals more readily available. I find that
very few (hardly any) Apple dealers will stock or even special order
the ProDOS, //e, and //c Reference Manuals. More than twice I have
been told that (for example) the //e manual had never been published,
even though I bought a copy at a store many moons ago. It seems that
Apple will only sell the books in bundles of five or more of the same
title, and then only to Apple dealers. Apple dealers seem to not want
to order five or more of what are a relatively slow moving item.
After all, they are not book stores. And consequently, Apple gets the
erroneous impression that they really do not need to publish the
manuals, because no one is buying them! If you know anyone in Apple,
pass the word to them: WE DO WANT REFERENCE MANUALS. Maybe it does
make sense not to ship a copy of every manual with every computer, but
some means MUST be available for EVERY owner to buy the manuals he
needs.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1714 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:Putneys.Way.txt
==

An Even Trickier "Index to Mask"...............Charles Putney
 Dublin, Eire

I got AAL today (September 1984 issue), and pored through it as usual.
The "index" article on page 18 caught my eye. Naturally I tried to
think of a smaller way of coding the routine like your "TRICKIER.WAY"
of 32 bytes. Here it is, in only 23 bytes!

1000 *--------------------------------
1010 * PUTNEY'S WAY
1020 *--------------------------------
1030 PUTNEY.WAY
1040 AND #7 421
1050 LSR 42, 1 IN CARRY
1060 PHA SAVE FOR LATER PLP
1070 LDA #1 INITIAL MASK VALUE
1080 BCC .1 NO NEED TO SHIFT 1
1090 ASL
1100 .1 PLP GET 1.....42 AS NV.BDIZC
1110 BCC .2 NO NEED TO SHIFT 2
1120 PHP
1130 ASL
1140 ASL
1150 PLP
1160 .2 BNE .3 NO NEED TO SHIFT 4
1170 ASL
1180 ASL
1190 ASL
1200 ASL
1210 .3 RTS

The timing, not including a JSR to it nor the RTS at the end, varies
from a best case of 21 cycles to a worst case of 39 cycles.

[One note of warning: the PLP pulls a status of 000000xx, setting the
I-status to zero. This enables IRQ interrupts, which might be very
dangerous if you have an interrupting source connected and were
otherwise unprepared.]

Another Tricky Way................................Bruce Love
 Hamilton, New Zealand

Here is my effort to improve your version of turning an index into a
mask. It uses (shudder!) self-modifying code, but it is shorter and
faster and I think easy to understand.

LOVE.VERSION
 AND #7
 EOR #7

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1715 of 2550

Apple II Computer Info

 STA .1+1
 LDA #1
.1 BNE .1 (OFFSET FILLED IN)
 ASL
 ASL
 ASL
 ASL
 ASL
 ASL
 ASL
 RTS

And still another................................David Eisler
 Littleton, Colorado

With reference to "Turn Index into a Mask" (AAL Sept 84), here is
another tricky alternative. It uses only the A-register, is only 16
bytes long, and takes 9 to 23 cycles.

EISLER.VERSION
 AND #7
 STA .1+1
 LDA #$80
.1 BNE .1 (OFFSET FILLED IN)
 LSR
 LSR
 LSR
 LSR
 LSR
 LSR
 LSR
 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1716 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:Articles:V5N1.65802.txt
==

The 65802 is Here!.........................Bob Sander-Cederlof

I think it was last December that I learned of the new 16-bit versions
of our old friend, the 6502. You will remember my enthusiastic
description in the Jan 84 issue. People at Western Design Center were
optimistic about shipping chips in a month or so. Very optimistic.
Way too optimistic. Nevertheless, they followed the tradition of our
whole industry by continuing to stick by their commitment. Every time
we called, it was always "in a month or so"!

But yesterday (Oct 12th) it arrived. Nice shiny new COD sticker on
top, for $98.05, and nice new 40-legged bug inside. I plugged the
65802 into my //e, after carefully removing the 65C02 I had just put
in a week before. Power on, the drive whirrs, RESET works, hurray!

So far I have spent about six hours exploring the new opcodes. I used
the new but yet unreleased version 2.0 of the S-C Macro Assembler,
naturally. The literature available up till now has been very sketchy
on the details of some of the new opcodes and addressing modes.
Anyway, no matter how well the printed word is used, the chip itself
will always have the final say, the last word.

Which reminds me that I have already had to correct one mis-
understanding (bug?). I was not computing the relative offsets for
the 16-bit relative address mode. There are two opcodes which use
this mode: BRL, Branch Relative Long; and PER, Push Effective address
Relative.

BRL can branch anywhere within a 64K memory, using an offset of 16-
bits. Compare this with the other relative branches, which use only
an 8-bit offset and can only branch inside a 256-byte space centered
around the instruction. BRL's offset ranges from -32768 to +32767.

PER pushes two bytes onto the stack. The two bytes pushed are the
high byte and then the low byte of the address calculated by adding
the 16-bit offset to the current PC-register. For example,

 0800- 62 FD FF PER $0800
 0803-

pushes first $08 and then $00 onto the stack. Voila! Now we really
can write position independent code! Using the 16-bit mode, I can PER
the address of a data item or table onto the stack, and then PLX (Pull
to X-register) that address, and access data by LDA 0,X or the like.

Another favorite pair are the two block move instructions: MVN and
MVP. With these I can move any block of memory from 1 byte up to 64K
bytes from anywhere to anywhere. With the 65802, anywhere is still

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1717 of 2550

Apple II Computer Info

limited to the 64K address space, but with the 65816 it can be
anywhere in 16 megabytes.

To get full advantage of MVP and MVN, you need to be in the 16-bit
mode. You get there in two steps: first you turn on the 65802 mode,
as opposed to the 6502-emulation mode; and then you set some status
bits which select 16-bit memory references and 16-bit indexing.

You turn on the 65802 mode by clearing the new E-bit in the status
register. The E-bit hides behind the Carry bit, and you access it
with the XCE (Exchange C and E) instruction.

 CLC
 XCE turns on 65802 mode

 SEC
 XCE turns on 6502 emulation mode

Then REP #$30 turns on the 16-bit mode. REP stands for Reset P-bits.
Wherever there are one bits in the immediate value, the corresponding
status bits will be cleared. Where there are zero bits in the
immediate value, the corresponding status bits will be unaffected.
The two bits cleared by REP #$30 are the M- and X-bits. If either of
these, or both, are zero, the immediate mode of LDA, LDX, LDY, CMP,
ADC, SBC, AND, ORA, and EOR become three byte instructions. For
example,

 LDA ##$1234

loads $1234 into the extended 16-bit A-register. The long A-reg gets
a new name or two. The high byte is called the B-register, the low
byte is still the A-register, and the pair together are called the C-
register.

Okay. Now back to the block movers. Both of the moves require some
setting up first. You put the 16-bit address of the source block into
the X-register, the destination address in Y, and the move count in C.
For example, suppose I want to move the block $0800-$0847 up to $0912:

 LDX ##$0800 source
 LDY ##$0912 destination
 LDA ##$0047 # bytes - 1
 MVN 0,0 move it

As each byte is moved, X and Y are incremented and A is decremented.
After all is complete, A will have $FFFF, X=$0848, and Y=$095A.

MVP, on the other hand, decrements the A-, X- and Y-registers for each
byte moved. If the block source and destination overlap, you can use
the one which moves in the order that prevents mis-copying.

Those two zeroes after the MVN instruction above are two 8-bit values.
In the 65802 they don't mean anything, but in the 65816 they are the
high 8-bits of the 24-bit addresses of source and destination. In the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1718 of 2550

Apple II Computer Info

65816, you could copy one entire 64K bank to another with just four
instructions! And it only takes 3 cycles per byte moved!

The 65802 plugs directly into the 6502 socket in your Apple //e. It
may or may not work in older Apples ... I haven't tried it yet. The
65816 will not plug into any current Apple II, even though it also has
forty pins. The extra 8-bits of address are multiplexed on the 8 data
lines, and the meaning of the other pins is somewhat changed.

Please don't get the idea that plugging in this new chip will speed up
your old software. Old software will stay in the 6502 emulation mode,
and will run at exactly the same pace as before. New software can be
written which will take advantage of the new features, and it can be a
little faster, more compact, and so on. The exciting future of the
65802 and 65816 lies not inside old Apples, but in the Apples yet to
be born. I am dreaming of a 4-megahertz, 1- to 8-megabyte Apple ...

Meanwhile, here is a REAL example. Way back in the January 1981 issue
of Apple Assembly Line I published a General Move Subroutine. It was
set up as a control-Y command for the monitor. As an improvement over
the monitor M-command, it could move blocks which overlapped either up
or down in memory without repeating the leading bytes.

The following program takes advantage of the MVN and MVP commands to
greatly speed up and shrink my previous effort. The old one took 149
bytes, the new one only 80. Disregarding all the setup time, which
also improved, the time to move a single byte changed from a minimum
of 16 cycles to a consistent 3 cycles.

Lines through 1090 describe how to set up and run the program, but
don't even TRY it until you get a 65802 chip into your Apple! The new
opcodes will do amazing things in an old 6502 chip, but nothing at all
like intended.

Line 1100, the .OP 65816 directive, tells version 2.0 that it should
allow and assemble the full 65816 instruction set.

Lines 1180-1250 are executed if you use $300G after assembling, or if
you BRUN it from a type-B file.

A1, A2, and A4 are monitor variables which are setup by the control-Y
command. When you type, for example, 800<900.957^Y (where by ^Y I
mean control-Y), $800 is stored in A4, $900 in A1, and $957 in A2.

Lines 1270-1290 save the three registers, and these will be restored
later at lines 1500-1520. Lines 1320-1340 get us unto the 16-bit mode
described above. Just before returning to the monitor we will switch
back to 6502 emulation mode, at lines 1480-1490.

Lines 1360-1390 calculate the "#bytes-1" to be moved, by using 16-bit
subtraction. Note that the opcodes assembled are exactly the same as
they would be for 8-bit operations; the cpu does 16-bit steps here
because we set the 16-bit mode.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1719 of 2550

Apple II Computer Info

Lines 1410-1460 determine which direction the block is to be moved:
up toward higher memory addresses, or down toward lower addresses. By
using two separate routines we prevent garbling the move of an
overlapping block.

Lines 1610-1660 move a block down. It is as easy as rolling off a
log.... Just load up the registers, and do an MVN command.

Lines 1680-1760 move a block up. Here we need the addresses of the
ends of the blocks, so lines 1690-1720 calculate the end address for
the destination. Then we do the MVP command, and zzaappp! it's done.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1720 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:DOS3.3:S.DP18.FUNC.1.txt
==

 1000 *SAVE S.DP18 FUNC 1
 1010 *--------------------------------
 1020 AS.CHRGOT .EQ $00B7
 1030 AS.FRMEVL .EQ $DD7B
 1040 AS.CHKSTR .EQ $DD7B
 1050 AS.FRESTR .EQ $E600
 1060 AS.ILLERR .EQ $E199
 1070 *--------------------------------
 1080 DMULT .EQ $FFFF
 1090 DDIV .EQ $FFFF
 1100 DADD .EQ $FFFF
 1110 FIN .EQ $FFFF
 1120 DP.TRUE .EQ $FFFF
 1130 DP.ZERO .EQ $FFFF
 1140 MOVE.DAC.TEMP3 .EQ $FFFF
 1150 MOVE.DAC.TEMP2 .EQ $FFFF
 1160 MOVE.TEMP2.DAC .EQ $FFFF
 1170 MOVE.YA.DAC.1 .EQ $FFFF
 1180 MOVE.YA.ARG.1 .EQ $FFFF
 1190 MOVE.TEMP3.ARG .EQ $FFFF
 1200 MOVE.TEMP2.ARG .EQ $FFFF
 1210 *--------------------------------
 1220 TXTPTR .EQ $B8,B9
 1230 DEST .EQ $60,61
 1240 *--------------------------------
 1250 TEMP2 .BS 1
 1260 TEMP3 .BS 1
 1270 P1 .BS 2
 1280 DAC.EXPONENT .BS 1
 1290 DAC.HI .BS 10
 1300 DAC.SIGN .BS 1
 1310 *--------------------------------
 1320 * VAL (X$) FUNCTION
 1330 *--------------------------------
 1340 DP.VAL JSR AS.CHRGOT
 1350 JSR AS.FRMEVL GET STRING
 1360 JSR AS.CHKSTR MAKE SURE IT IS A STRING
 1370 LDA TXTPTR SAVE TXTPTR
 1380 PHA ...ON STACK
 1390 LDA TXTPTR+1
 1400 PHA
 1410 JSR AS.FRESTR FREE THE STRING;GET ADR IN
 1420 STX TXTPTR Y,X AND LEN IN A
 1430 STX DEST SAVE BEGINNING OF STRING
 1440 STY TXTPTR+1
 1450 STY DEST+1
 1460 TAY LENGTH TO Y
 1470 STA TEMP2 SAVE LENGTH
 1480 LDA (TXTPTR),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1721 of 2550

Apple II Computer Info

 1490 PHA SAVE CHAR AT END OF STRING
 1500 LDA #0
 1510 STA (TXTPTR),Y PUT 0 AT END OF STRING
 1520 JSR FIN GET THE NUMBER
 1530 PLA GET CHAR
 1540 LDY TEMP2 GET LENGTH
 1550 STA (DEST),Y
 1560 PLA RESTORE TXTPTR
 1570 STA TXTPTR+1
 1580 PLA
 1590 STA TXTPTR
 1600 RTS VAL IS IN DAC
 1610 *--------------------------------
 1620 * INT FUNCTION
 1630 *--------------------------------
 1640 DP.INT LDA DAC.EXPONENT
 1650 SEC
 1660 SBC #$40 REMOVE OFFSET
 1670 BPL .1 POSITIVE EXP
 1680 *---ALL FRACTION, MAKE = 0-------
 1690 .0 JMP DP.ZERO
 1700 *---SOME INTEGER, TRUNCATE-------
 1710 .1 BEQ .0 ...ALL FRACTION
 1720 CMP #20 ALL INTEGER?
 1730 BCS .4 ...YES, NONTHING TO LOP
 1740 LSR DIVIDE BY 2
 1750 TAY BYTE INDEX
 1760 BCC .3 ...NO NYBBLE TO CLEAR
 1770 LDA DAC.HI,Y ...CLEAR A NYBBLE
 1780 AND #$F0
 1790 STA DAC.HI,Y
 1800 .2 INY ...NEXT BYTE
 1810 CPY #10 FINISHED?
 1820 BCS .4 ...YES
 1830 .3 LDA #0 CLEAR A BYTE
 1840 STA DAC.HI,Y
 1850 BEQ .2 ...ALWAYS
 1860 .4 RTS
 1870 *--------------------------------
 1880 * ABS (DAC)
 1890 *--------------------------------
 1900 DP.ABS LDA #0 STORE 0 IN
 1910 STA DAC.SIGN SIGN
 1920 RTS
 1930 *--------------------------------
 1940 * SGN (DAC)
 1950 *--------------------------------
 1960 DP.SGN LDA DAC.EXPONENT
 1970 BEQ .1 IT IS 0, SO LEAVE IT
 1980 LDA DAC.SIGN
 1990 PHA SAVE SIGN
 2000 JSR DP.TRUE PUT 1 IN DAC
 2010 PLA
 2020 STA DAC.SIGN RESTORE SIGN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1722 of 2550

Apple II Computer Info

 2030 .1 RTS
 2040 *--------------------------------
 2050 * SQR (DAC)
 2060 * #0072 IN HART, ET AL
 2070 *--------------------------------
 2080 ERR.SQ JMP AS.ILLERR ILLEGAL QUANTITY
 2090 DP.SQR LDA DAC.EXPONENT
 2100 BEQ .3 SQR(0)=0
 2110 LDA DAC.SIGN
 2120 BMI ERR.SQ MUST BE POSITIVE
 2130 JSR MOVE.DAC.TEMP3 SAVE X
 2140 *---REDUCE RANGE TO .1 - 1-------
 2150 LDA DAC.EXPONENT
 2160 PHA SAVE EXPONENT
 2170 LDA #$40 CHANGE RANGE TO .1 THRU .9999...9
 2180 STA DAC.EXPONENT
 2190 *---REDUCE RANGE TO .25 - 1------
 2200 LDA DAC.HI
 2210 CMP #$25 LESS THAN .25?
 2220 PHP SAVE ANSWER
 2230 BCS .4 ...NO
 2240 LDA #CON.FOUR
 2250 LDY /CON.FOUR
 2260 JSR MOVE.YA.ARG.1
 2270 JSR DMULT
 2280 *---CALC FIRST APPROX.-----------
 2290 .4 JSR MOVE.DAC.TEMP2
 2300 LDA #P.SQR GET FIRST APPROXIMATION
 2310 LDY /P.SQR FROM AX^3+BX^2+CX+D
 2320 LDX #P.SQR.N
 2330 JSR POLY.N
 2340 *---ADJUST APPROX FOR FOLDING----
 2350 PLP WAS X<.25?
 2360 BCS .5 ...NO
 2370 LDA #CON.HALF
 2380 LDY /CON.HALF
 2390 JSR MOVE.YA.ARG.1
 2400 JSR DMULT
 2410 *---COMPUTE SQR EXPONENT---------
 2420 .5 PLA GET EXPONENT FROM BEGINNING
 2430 SEC
 2440 SBC #$40 REMOVE OFFSET
 2450 ROR DIVIDE BY TWO (KEEP SIGN)
 2460 EOR #$80
 2470 BCC .1 DON'T MULT BY SQR(10)
 2480 *---ADJUST APPROX FOR ODD EXP----
 2490 PHA SAVE EXPONENT/2
 2500 LDA #CON.SQR10
 2510 LDY /CON.SQR10
 2520 JSR MOVE.YA.ARG.1
 2530 JSR DMULT
 2540 PLA
 2550 *---INSTALL NEW EXPONENT---------
 2560 .1 CLC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1723 of 2550

Apple II Computer Info

 2570 ADC DAC.EXPONENT
 2580 STA DAC.EXPONENT
 2590 *---THREE NEWTON ITERATIONS------
 2600 LDA #3
 2610 STA TEMP3
 2620 .2 JSR MOVE.DAC.TEMP2 TEMP2 = Y
 2630 JSR MOVE.TEMP3.ARG GET X
 2640 JSR DDIV X/Y
 2650 JSR MOVE.TEMP2.ARG
 2660 JSR DADD X/Y+Y
 2670 LDA #CON.HALF
 2680 LDY /CON.HALF
 2690 JSR MOVE.YA.ARG.1
 2700 JSR DMULT (X/Y+Y)/2
 2710 DEC TEMP3 ANY MORE?
 2720 BNE .2 ...YES
 2730 .3 RTS ...DONE
 2740 *--------------------------------
 2750 P.SQR.N .EQ 3
 2760 P.SQR .HS 4028736982400000000000
 2770 .HS C082588889100000000000
 2780 .HS 4113225638600000000000
 2790 .HS 4021701867200000000000
 2800 CON.SQR10 .HS 4131622776601683793320
 2810 CON.HALF .HS 4050000000000000000000
 2820 CON.FOUR .HS 4140000000000000000000
 2830 *--------------------------------
 2840 * POLYNOMIAL EVALUATOR ROUTINES
 2850 * (Y,A) = ADDRESS OF COEFFICIENT TABLE
 2860 * ARRANGED HIGHEST POWER TO LOWEST
 2870 * CONSTANTS DO USE GUARD BYTE (11 TOTAL)
 2880 *--------------------------------
 2890 * DO A POLYNOMIAL WITH 1ST CONSTANT 1
 2900 * (TEMP2) IS X-VALUE
 2910 * (X-REG) IS N
 2920 * WHERE N = POWER OF X
 2930 * FOR EXAMPLE, IF N=2 : X^2+AX+B
 2940 * N=4 : X^4+AX^3+BX^2+CX+D
 2950 *--------------------------------
 2960 POLY.1
 2970 STA P1
 2980 STY P1+1
 2990 STX TEMP3
 3000 JSR MOVE.TEMP2.DAC
 3010 POLY LDA P1
 3020 LDY P1+1
 3030 JSR MOVE.YA.ARG.1
 3040 JSR DADD
 3050 DEC TEMP3 FINISHED YET?
 3060 BNE POLY2 ...NO
 3070 RTS ...YES
 3080 *--------------------------------
 3090 * DO A POLYNOMIAL WITH 1ST CONSTANT <> 1
 3100 * (TEMP2) IS X-VALUE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1724 of 2550

Apple II Computer Info

 3110 * (X-REG) IS N
 3120 * WHERE N = POWER OF X
 3130 * FOR EXAMPLE, IF N=2 : AX^2+BX+C
 3140 * N=3 : AX^3+BX^2+CX+D
 3150 *--------------------------------
 3160 POLY.N
 3170 STA P1
 3180 STY P1+1
 3190 STX TEMP3
 3200 JSR MOVE.YA.DAC.1
 3210 POLY2 JSR MOVE.TEMP2.ARG
 3220 JSR DMULT
 3230 CLC
 3240 LDA P1
 3250 ADC #11 NUMBER OF BYTES
 3260 STA P1
 3270 BCC POLY
 3280 INC P1+1
 3290 BNE POLY ...ALWAYS
 3300 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1725 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:DOS3.3:S.GENERAL.MOVER.txt
==

 1000 *SAVE S.GENERAL MOVER
 1010 *--------------------------------
 1020 * BRUN the program to set it up as
 1030 * a control-Y monitor command.
 1040 *--------------------------------
 1050 * Use like the Monitor M-command:
 1060 * A1 -- Source start address
 1070 * A2 -- Source end address
 1080 * A4 -- Destination start address
 1090 *--------------------------------
 1100 .OP 65816
 1110 .OR $300
 1120 *--------------------------------
 1130 A1 .EQ $3C,3D
 1140 A2 .EQ $3E,3F
 1150 A4 .EQ $42,43
 1160 BLKSIZ .EQ $00,01
 1170 *--------------------------------
 1180 CONTROL.Y.SETUP
 1190 LDA #$4C
 1200 STA $3F8
 1210 LDA #GENERAL.MOVER
 1220 STA $3F9
 1230 LDA /GENERAL.MOVER
 1240 STA $3FA
 1250 RTS
 1260 *--------------------------------
 1270 GENERAL.MOVER
 1280 PHA
 1290 PHY
 1300 PHX
 1310 *--------------------------------
 1320 CLC 65816 MODE
 1330 XCE
 1340 REP #$30 16-BIT MODE
 1350 *--------------------------------
 1360 SEC Compute block length - 1
 1370 LDA A2
 1380 SBC A1
 1390 STA BLKSIZ
 1400 *--------------------------------
 1410 LDA A1
 1420 CMP A4 Determine direction of move
 1430 BCC .1 ...UP
 1440 JSR MOVE.DOWN
 1450 BRA .2 ...ALWAYS
 1460 .1 JSR MOVE.UP
 1470 *--------------------------------
 1480 .2 SEC RETURN TO 6502 MODE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1726 of 2550

Apple II Computer Info

 1490 XCE
 1500 PLX
 1510 PLY
 1520 PLA
 1530 RTS
 1600 *--------------------------------
 1610 MOVE.DOWN
 1620 LDX A1 Source start address
 1630 LDY A4 Destination start address
 1640 LDA BLKSIZ # Bytes - 1
 1650 MVN 0,0
 1660 RTS
 1670 *--------------------------------
 1680 MOVE.UP
 1690 CLC
 1700 LDA A4
 1710 ADC BLKSIZ
 1720 TAY Destination end address
 1730 LDX A2 Source end address
 1740 LDA BLKSIZ # Bytes - 1
 1750 MVP 0,0
 1760 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1727 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8410:DOS3.3:S.PUTNEYS.WAY.txt
==

 1000 .LIF
 1010 *SAVE S.PUTNEY'S WAY
 1020 *--------------------------------
 1030 * PUTNEY'S WAY
 1040 *--------------------------------
 1050 PUTNEY.WAY
 1060 AND #7 421
 1070 LSR 42, 1 IN CARRY
 1080 PHA SAVE FOR LATER PLP
 1090 LDA #1 INITIAL MASK VALUE
 1100 BCC .1 NO NEED TO SHIFT 1
 1110 ASL
 1120 .1 PLP GET 1.....42 AS NV.BDIZC
 1130 BCC .2 NO NEED TO SHIFT 2
 1140 PHP
 1150 ASL
 1160 ASL
 1170 PLP
 1180 .2 BNE .3 NO NEED TO SHIFT 4
 1190 ASL
 1200 ASL
 1210 ASL
 1220 ASL
 1230 .3 RTS
 1240 *--------------------------------
 1250 * BRUCE LOVE'S METHODS
 1260 *--------------------------------
 1270 LOVE.1 AND #7
 1280 LSR
 1290 PHP
 1300 LSR
 1310 EOR #1
 1320 BNE .1
 1330 LDA #$10
 1340 .1 BCC .2
 1350 ASL
 1360 ASL
 1370 .2 PLP
 1380 BCC .3
 1390 ASL
 1400 .3 RTS
 1410 *--------------------------------
 1420 LOVE.2 AND #7
 1430 EOR #7
 1440 STA .1+1
 1450 LDA #1
 1460 .1 BNE .2
 1470 .2 ASL
 1480 ASL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1728 of 2550

Apple II Computer Info

 1490 ASL
 1500 ASL
 1510 ASL
 1520 ASL
 1530 ASL
 1540 RTS
 1550 *--------------------------------
 1560 * MASK --> INDEX
 1570 * 19 BYTES (NOT COUNTING RTS)
 1580 *-------------------80-40-20-10-08-04-02-01
 1590 RBSC.1 LSR 40 20 10 08 04 02 01 00
 1600 CMP #4
 1610 BCC .2
 1620 BEQ .1
 1630 LSR 20 10 08 04
 1640 LSR 10 08 04 02
 1650 LSR 08 04 02 01
 1660 ADC #8 10 0C 0A 09
 1670 LSR 08 06 05 04
 1680 CMP #8
 1690 BCC .2
 1700 .1 SBC #1 07 03
 1710 .2 RTS 07 06 05 04 03 02 01 00
 1720 * CYCLES: 24 23 23 23 10 07 07 07 (WITHOUT RTS)
 1730 * AVERAGE = 15.5 CYCLES
 1740 *--------------------------------
 1750 * MASK --> INDEX VIA X-LOOP
 1760 *--------------------------------
 1770 RBSC.2 LDX #8
 1780 .1 DEX
 1790 ASL
 1800 BCC .1
 1810 TXA
 1820 RTS
 1830 *--------------------------------
 1840 TESTMX LDA #1
 1850 .1 PHA
 1860 JSR RBSC.1
 1870 JSR $FDDA
 1880 LDA #"-"
 1890 JSR $FDED
 1900 PLA
 1910 PHA
 1920 JSR $FDDA
 1930 JSR $FD8E
 1940 PLA
 1950 ASL
 1960 BCC .1
 1970 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1729 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:Alliance.CPUs.txt
==

New Source for 65802's

I talked to Constantine Geromnimon at Alliance Computers this morning.
His company has ordered hundreds of 65802's, and offers them to you at
$49.95 each. They expect their next shipment to come in around the
middle of January, so now is the time to order. Call them at (718)
672-0684, or write to P. O. Box 408, Corona, NY 11368.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1730 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:Annc.2.0.txt
==

S-C Macro Assembler Version 2.0....................Bill Morgan

We are now accepting orders for the upgrade to S-C Macro Assembler
Version 2.0. Here is a summary of the new features:

o The big news, of course, is the ability to assemble 65C02, 65802,
and 65816 opcodes. The new .OP directive switches between the 6502,
Sweet-16, 65C02, and 65816 opcode sets.

o All screen output now passes through one driver routine, which will
be much easier to modify for other displays. Drivers are included for
40-column, //e and //c 80-column, and STB-80.

o Typing a Control-C at the command prompt (:) emits CATALOG, leaving
the cursor at the end of the line, to add slot and drive specifiers if
needed.

o There is a sort of Auto-SAVE function. Once you have created a
comment line near the beginning of your source file containing the
phrase "SAVE filename", typing ESC-S will emit that phrase and
position the cursor at the end, so you can add a suffix or just press
RETURN.

o The COPY command asks "DELETE ORIGINAL?" If you type "Y", the
effect will be that of a MOVE command.

o The tape LOAD and SAVE commands have been removed, to make room for
new features.

o All operand expressions are calculated to 32 bits and .DA data
values may be larger, to allow for the 65816's extended addressing
capabilities.

o You can force Zero Page or Absolute addressing modes by prefixing
the operand with < or >.

o Operand expressions may include bitwise logical operations. &, !
(or |), and ^ are AND, OR, and EOR.

o Control-S functions as a case lock key, toggling upper/lower case
entry.

o The .BS directive allows you to specify the value of the fill byte
generated. This directive now creates fill bytes in assemblies into
memory, rather than to disk only.

o The assembler tests for the "/" command character, to simplify use
of the Laumer Research Full Screen Editor.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1731 of 2550

Apple II Computer Info

o All object code bytes are vectored through a standard location, so
you can intercept the assembler's output for special purposes.

Registered owners of S-C Macro Assembler will be able to purchase the
upgrade to Version 2.0 for only $20.00. Just send us a check or
charge card number, and you will be among the first to have the new
version.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1732 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:Disasm.Patches.txt
==

Generating Cross Reference Text File with DISASM...Bob Kovacs

I received a phone call from Don Lancaster the other day. He had been
using DISASM to probe the mysteries of AppleWriter, and was now
preparing to document his findings. Although he liked the way DISASM
generated a triple cross reference table, he preferred to have it in a
form that could be used by his word processor (that is, on a text
file). The cross reference table generated by DISASM is normally
output to either the screen or a printer, so Don's only alternative
was to manually type it into his word processor. There were hundreds
of labels....

It turned out that a simple patch to DISASM will do the trick. All
that is necessary is to change the JSR PASS2 which normally generates
the source code listing to JSR XREF.

The following patch outputs the cross reference table to your file
after responding "Y" to the prompt "GENERATE TEXT FILE?":

 $09A1:20 F1 0A

Back in the April issue of AAL, I described a method of using EXEC
files with DISASM. A patch was required to the "YES/NO" routine to
input the response via KEYIN rather than directly from the keyboard.
Although the patch I gave in April works, KEYIN uses the Y-register as
an index to the screen. My patch did not always wind up in the right
place. So I have expanded the patch as follows:

 $0C57:EA A4 24 20 18 FD 09 80

I hope that this has not caused any inconvenience.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1733 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:DP18.Func.2.txt
==

18-Digit Arithmetic, Part 7................Bob Sander-Cederlof

Last month we began the implementation of math functions, so it seems
appropriate to continue in the same direction. This month we will
reveal the LOG and EXP functions.

As always, I turned to "Computer Approximations" for some good
algorithms. I mentioned this book last month, and several of you have
tried to find copies.

Thanks to Trey Johnson, of Monolith Inc. in San Antonio, for the
following information: John Wiley & Sons stopped publishing the book
"Computer Approximations" in 1977. They sold the rights to Krieger
Publishing Co., and it is now being published under the same title.
Trey was quoted a price of $22.50 + shipping. Krieger's address is P.
O. Box 9542, Melbourne, FL 32901; phone is (305) 724-9542.

"Computer Approximations" is the only book I have found which lists
all the actual coefficients needed to produce good approximations for
the whole variety of standard functions. Pages 189-339 are packed
solid with nothing by numbers. For example, there are ten pages of
numbers for the EXP function alone, providing over 100 different
approximation formulas for the EXP function. The chapter covering EXP
describes the math behind the approximations. You pick an algorithm
according to the precision you need, the number base you are using (2,
10, or whatever), the tradeoff between speed and size, and the range
of arguments you will be using. Each algorithm in the book has a
number, and I indicate that number in the comments to the programs
which follow.

Almost all of the approximations involve these steps:

 SIFT: Check the argument for legal range and
 easy arguments.
 FOLD: Reduce the range of the argument.
 POLY: Use a polynomial or a ratio of polynomials
 to approximate the function in the reduced
 range.
 UNFOLD: Expand the result by the reverse of the
 processes used to reduce the range.

When we first learned about logarithms in high school, we used tables
in books. One set of tables converted normal numbers to logs, and the
other converted logs back to normal numbers. The LOG function takes
the place of the first set of tables, and the EXP function replaces
the second. By the way, those high school logarithms were base 10
logs. The log of a number is the power to which you would have to
raise 10 to equal the number. For example, the log base 10 of 1000 is
3; of the square root of 10 is .5.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1734 of 2550

Apple II Computer Info

Scientists prefer base "e" logs. "e" is an irrational number (as is
pi) approximately equal to 2.71828182845904523536. Did the original
scientists have 2.718281828... fingers? Maybe, if they had to chop
firewood (logs?)! Anyway, EXP and LOG in Applesoft work with base e.
LOG tells you to what power you would raise e to equal the argument,
and EXP raises e to the power of the argument.

One great application of LOG and EXP is to raise any number to any
power. Applesoft (as well as DP18) has an exponentiation operator "^"
for this purpose, but the code inside does it by calling on EXP and
LOG. Here are some mathematical symbols to indicate how it is done:

 let z = x^y
 then log z = log (x^y)
 log z = y log x
 exp (log z) = exp (y log x)
 x^y = exp (y log x)

Here is the code for the exponentiation operator in DP18:

*-------------------------------------
* EXPONENTIATION: X ^ Y
* (DAC) = Y
* (ARG) = X
*-------------------------------------
DP.POWER
 JSR MOVE.DAC.TEMP3 SAVE DAC (POWER) IN TEMP3
 JSR SWAP.ARG.DAC
 JSR DP.LOG10 GET LOG X
 JSR MOVE.TEMP3.ARG GET Y IN ARG
 JSR DMULT Y LOG X
 JMP DP.EXP10 X ^ Y

Notice I used base 10 log and exp? That is because DP18 is basically
decimal. In a binary floating point scheme such as is internal to
Applesoft, base 2 log and exp would probably be used. After all,
floating point notation is a kind of half-log half-normal notation.

Which leads to the topic of converting from one logarithmic base to
another. If my internal subroutines work in base 10, how do I get LOG
and EXP to base e? Some more math is due:

 suppose e^x = 10^y
 then log10 (e^x) = log10 (10^y)
 x log10(e) = y log10(10)
 x log10(e) = y

Log10(e) is a constant, approximately 0.43429448190325182765. So if I
want to know what EXP(3) is, I can first get 3*log10(e) = 1.302...,
and 10^1.302... = 20.0855...

EXP Function

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1735 of 2550

Apple II Computer Info

Lines 1640-1660 of the program check for a zero argument, which is an
easy case: e^0 = 1. Lines 1670-1700 multiply the argument by
log10(e), so that EXP10 can be used.

Lines 1730-1740 again sift out the easy case of 10^0, in case DP.EXP10
was called directly.

Lines 1750-1790 begin the folding process. We can cut the range in
half by folding all negative arguments on top to the positive range:
EXP(-x) = 1/EXP(x).

Lines 1810,1820 further sift, by eliminating arguments larger than 99.
If the exponent of the argument is $43 or more, then the argument is
100 or more. Arguments that large are too large. (Indeed, any
argument above 63 is too large.) The Applesoft ROM routine for
OVERFLOW ERROR will let you know you tried it.

The arguments we have left will be in the range 0 < x < 100. We can
further subdivide the range by separating the integer and fractional
parts of the argument. Remember that 10^(x+y) = (10^x)*(10^y)? For
illustration, suppose the argument is 3.75. Then 10^3.75 = 10^3 *
10^.75 = 5623.4132.... Lines 1830-2100 perform the separation. The
variable INTPWR will get the integer part, which may range from 0 to
99. The corresponding digits are zeroed in DAC, and the resulting
fraction is re-normalized. If the fractional part is zero, then the
log of the fractional part is 1; lines 2080-2100 sift out this special
case. This section could be accomplished by using previously covered
subroutines, such as DP.INT to get the integer part, and DSUB to get
the fractional part. However, that would take considerably longer for
only a slight savings in space.

The active part of the argument has now been reduced to the range
0<x<1. The next adjustment will cut that in half. If the argument
x<.5, this adjustment will be skipped. Lines 2120-2160 perform the
test, and line 2170 saves the result of the test on the stack. We
need the result later when we are unfolding. If x >= .5, then lines
2190-2210 subtract .5 from it. If x = .5, then the result after
subtraction will be zero. In this case, the correct answer is a known
constant, the square root of 10. Lines 2230-2270 load up that value
and skip over the POLY part on down to the UNFOLDing. If not exactly
.5, we now have a folded argument in the range 0<x<.5, with a flag on
the stack indicating whether or not we subtracted .5 to get there.
Later, if we DID subtract .5, we will multiply the result of POLY by
the square root of 10 to unfold the answer.

We could have arbitrarily subtracted .5, changing the range from 0<x<1
to -.5<x<.5, with the same result. This would have saved the trouble
of determining which side of .5 we were on, and of later deciding
whether or not to multiply by SQR(10). However, it would also take
longer for those cases already under .5, so I decided against it.

The POLY part is lines 2280-2520. This is a ratio of two polynomials,
both 8th degree. However, because of derivational and computational
reasons, it is actually written and calculated in a different form:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1736 of 2550

Apple II Computer Info

 Q(x^2) + xP(x^2)
 POLY(x) = ----------------
 Q(x^2) - xP(x^2)

Lines 2290-2320 save x and compute x^2. Lines 2330-2380 call on
POLY.N (covered last month) to compute the P polynomial, and then
multiply the result by x. The constants are given in lines 1440-1490.
So that you see the form, I will give it here with the coefficients
rounded off:

 xP = 31x^7 + 4562x^5 + 134331x^3 + 760254x

Lines 2400-2430 compute the Q-polynomial, by calling POLY.1 (also
covered last month). POLY.1 is used when the coefficient of the
highest degreed term is 1. We get, approximately,

 Q = x^8 + 477x^6 + 29732x^4 + 408437x^2 + 660349

Lines 2440-2520 form the numerator and denominator and divide, giving
us a very nice approximation to the function for the folded argument.

Lines 2530-2590 begin the unfolding process, by multiplying by SQR(10)
if we previously folded .5<x<1 down to 0<x<.5.

Lines 2600-2660 take care of the integral portion of the original
argument, by adding it to the EXPONENT of the result so far. This is
equivalent to multiplying by the integral power of ten, but much
faster. Isn't base ten nice?

The final adjustment is to take the reciprocal if the original
argument was negative, done in lines 2670-2730.

LOG Function

The LOG function is the inverse of the EXP function. Now if we could
just run the 6502 backwards....

Log base e is related to log base 10 the same way the exp functions
were:

 loge x = loge(10) * log10 (x)

Lines 2990-3040 call on the LOG10 subroutine and then multiply the
result by the log base e of 10.

The LOG10 routine begins by sifting out the objectionable argument
values, at lines 3100-3130. The argument MUST be positive, and MUST
NOT be zero. Negative or zero arguments send you to Applesoft's
ILLEGAL QUANTITY ERROR.

Lines 3140-3170 separate the exponent from the mantissa of the
argument. The exponent represents the power of 10 multiplier, so as
an integer it can just be added to the logarithm of the mantissa

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1737 of 2550

Apple II Computer Info

viewed as a fraction. The exponent is saved in INTPWR, to be
processed later. Stuffing $40 in its place in DAC makes the range now
.1<=x<1.

Lines 3180-3210 multiply the fraction by SQR(10), which changes the
range to

 1
 ------- <= x < SQR(10)
 SQR(10)

This can be compensated for later by subtracting .5 from the logarithm
of the folded argument.

Lines 3220 further thrash the argument by forming an intermediate
argument z = (x-1)/(x+1). This value z will be in the range -.52 < z
< +.52, which is a nice symmetrical value to run through a ratio of
polynomials. I get lost in the math that motivates this step.

The POLY part is again a ratio of two polynomials. Lines 3330-3440
calculate the numerator, which is approximately

 -15z^11 + 301z^9 - 1726z^7 + 4060z^5 - 4192z^3 + 1576z

The denominator, formed in lines 3450-3500, is approximately

 z^12-68z^10+764z^8-3200z^6+6122z^4-5432z^2+1815

Dividing at line 3510 gives the logarithm of the value x. To unfold,
we need to subtract .5, handled by lines 3860-3920. We also need to
add as an integer the power of ten we saved in INTPWR. The latter is
trickier, because we must convert a biased binary integer to a signed
decimal floating point value.

Lines 3530-3600 un-bias INTPWR. If the exponent happens to be exactly
$40, which in un-biased terms is 0, the rest of this step can be
skipped (because the log of 10^0 is zero, adding nothing). If not, it
is time to build a DP18 value in ARG. Line 3570 saves the sign in
ARG.SIGN.

Lines 3610-3620 pre-clear ARG.HI, which is where we will be putting
the one or two digits of INTPWR. Line 3630 assumes it will be a one-
digit value, and lines 3640-3650 test that assumption. If it is one
digit, lines 3730-3780 will shift the digit to the left nybble and
store it in ARG.HI. If two digits, lines 3660 will divide by ten to
get the high digit as quotient and low digit as remainder. Then lines
3730-3780 will merge the two digits into ARG.HI.

Lines 3790-3840 complete the construction of ARG by storing the
exponent and clearing the remaining mantissa bytes. Line 3850 adds
the value to the results of the POLY step, lines 3870-3920 subtract
.5, and the answer is ready.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1738 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:DP18.New.SQRT.txt
==

New DP18 Square Root Subroutine............Bob Sander-Cederlof

Even after bending over backwards to be certain I had the best
possible SQR implementation in the October AAL, I still found some
ways to improve it. Last night I found some more information in a
book called "Software Manual for the Elementary Functions", by William
Cody and William Waite, Prentice-Hall, 1980.

They pointed out that in general an extra Newton iteration took less
time than a complex method of getting an initial approximation which
would be accurate enough to avoid one iteration. In other words,
using a cubic polynomial like I did in October is just not worth it.
Not worth the time, and not worth the space.

They further pointed out that it is best to compute the last Newton
iteration in a slightly different fashion, to avoid shifting out the
last significant digit. The normal iteration computes (x/y + y)*.5.
Re-arrangement to y+(x/y-y)*.5 is better. Since it takes an extra
step, it should only be used the last time.

To see the difference, consider the example below. I have used a
precision of just 3 digits (instead of 18 or 20)to simplify the
illustration:

 let x=.253, and y=.5
 then x/y=.506

 x/y+y=1.00 (truncating to 3 places)
 (x/y+y)*.5 = .500, which is wrong

 x/y-y=.006
 (x/y-y)*.5=.003
 y+(x/y-y)*.5 = .503, which is correct.

My new SQR version uses a much faster method for getting the first
approximation. The first two digits of the argument (in DAC.HI) must
be in the range from 10 to 99. I convert them to an index between $02
and $13 by shifting the first digit over three, and adding one if the
second digit is 5 or more. In other words, 10-14 become $02, $15-19
become $03, on up to $95-99 becoming $13. Then I use that value as an
index into a table which gives a good approximation to the first two
digits of the square root. For example, any number between .10 and
.19999...9 will get a first approximation of .35. I store those two
digits into DAC.HI, letting the remaining digits stay as they were.
This method gives a first approximation which in the worst case still
has at least the first digit correct.

It turns out the worst case is for numbers with odd exponents and the
mantissa=1, such as 1 (which is .1*10^1), 100 (which is .1*10^3), and

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1739 of 2550

Apple II Computer Info

so on. Even in this worst case, four iterations give 20 digits of
precision.

The end result of these changes is a faster and shorter program which
is more accurate. Here is the new listing:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1740 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:Front.Page.txt
==

Volume 5 -- Issue 2 November, 1984

In This Issue...

18-Digit Arithmetic, Part 7. 2
S-C Macro Assembler Version 2.0. 14
Convert Two Decimal Digits to Binary 15
A Whole Megabyte for your Apple //e. 18
65816 News . 19
New DP18 Square Root Subroutine. 20
Improvements to 80-Column Monitor Dump 22
Generating Cross Reference Text Files with DISASM. 23
Macro Information by Example 24
Turning Bit-Masks into Indices 26
Apple //e Reference Manual Source. 28

Apple II Troubleshooting Guide

We have just received a new book from Howard Sams: Apple II+/IIe
Troubleshooting & Repair Guide, by Robert C. Brenner. At a glance, it
looks like quite a good introduction to the Apple hardware and its
potential problems. The first chapter is Basic Troubleshooting,
followed by three chapters on Description, Operations, and Specific
Troubleshooting for the II Plus, three more similar chapters on the
//e, and two chapters on Preventive Maintenance and Advanced Trouble-
shooting. Here's a quote from the Introduction:

This book is a detailed troubleshooting and repair document. It is
not a treatise on basic computer theory or a discussion of chip
operation, registers, busses, and logic gates. It is an all "meat and
potatoes" manual to enable the computer user to repair his or her own
machine in those 95 percent of circumstances where knowledge and a
good reference are enough to find and repair a failure.

List price of the Troubleshooting & Repair Guide is $19.95. Our price
will be $18 + shipping.

Apple //e Reference Manual Source

We have located a mail- or phone-order source for the Apple manuals!
A reader in New York City phoned to let us know that the McGraw-Hill
Bookstore there carries the Apple publications. Apparently the
bookstore is also a computer store and an Apple Dealer. The address
is McGraw-Hill Bookstore, 1221 Sixth Ave., New York, NY 10020. The
phone number is (212) 512-4100.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1741 of 2550

Apple II Computer Info

for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1742 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:Macro.Examples.txt
==

Macro Information by Example...................Sandy Greenfarb

The following are three examples of macro use which I have found
interesting and informative.

The first example, TEST, shows that you can use parameters in places
other than the operand field. In this case, one of the parameters
becomes part of an opcode name.

SETD shows how a macro can make more efficient code. If both bytes
are the same, there is no need to have two LDA instructions.

MOVD copies two bytes from one variable to another. If you use MOVD
to move two bytes one byte higher in RAM, MOVD will reverse the order
the bytes are moved so that the data are not clobbered.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1743 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:Mask2Index.txt
==

Turning Bit-Masks into Indices.............Bob Sander-Cederlof

A few months ago I presented several ways to turn an index (0-7) into
a bit mask (01, 02, 04,...,80). We got a lot of feedback, including
some faster and better programs. Bruce Love suggested the possibility
of the reverse transformation.

According to Bruce, who is a high school teacher in New Zealand, the
method which uses the fewest bytes is the one I show in lines 1390-
1450. In order to be fair in comparing different algorithms, I am
going to count the RTS opcodes both for bytes and for cycles. With
this in mind, Bruce's routine takes 8 bytes and from 16 to 65 cycles.
This is certainly the smallest way, and it really is pretty fast.

Bruce mentioned that he had written several other programs to solve
the same problem: one used the X-register, took 26 bytes with an
average of 33.5 cycles; another without useing X or Y took 28 bytes
and an average of 39 cycles. Unfortunately, he did not include a copy
of either of these.

I worked out four more methods, shown in the listing after Bruce's. I
wrote a test driver which is in lines 1000-1310. The test driver
calls each routine, printing the results of each, for all possible
values of the bit-mask.

The following table summarizes the data for the five algorithms:

 # of cycles
 bytes min max ave
 SMALLEST.WAY 8 16 65 40.5
 WAY.WITH.X 26 25 42 33.5
 WAY.WITHOUT.X 23 14 30 22
 ANOTHER.WAY.W... 32 14 24 18.375
 STRAIGHT.TEST... 33 14 27 18.5

If the SMALLEST.WAY is not fast enough, I would probably go with the
one named WAY.WITHOUT.X. It is almost as fast as the fastest, and is
the shortest of the longer routines. Of course, some of you may come
up with better and faster ones....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1744 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 1.1....................................$92.50
Version 1.1 Update...$12.50
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984 QD#15: Apr-Jun 1984
 QD#16: Jul-Sep 1984

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39

Quick-Trace (Anthro-Digital)...........CLOSEOUT SPECIAL!..(reg. $50) $45/// $35

Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36

Blank Diskettes (Verbatim)............2.25 each, or package of 20 for $40
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
QuikLoader EPROM System (SCRG)................................($179) $170
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32

Books, Books, Books..........................compare our discount prices!

 "Apple II+/IIe Troubleshooting & Repair Guide", Brenner.($19.95) $18
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1745 of 2550

Apple II Computer Info

 Second edition, with //e information.
 "Assembly Cookbook for the Apple II/IIe", Lancaster.....($21.95) $20
 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Beneath Apple ProDOS", Worth & Lechner.................($19.95) $18
 "What's Where in the Apple", Second Edition.............($19.95) $19
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($18.95) $18
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9
 "Microcomputer Graphics", Myers.........................($12.95) $12

We have small quantities of other great books, call for titles & prices.
Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1746 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:New.Dump.Rtn.txt
==

Improvements to 80-column Monitor Dump.........Jan Eugenides

I found a little bug in the 80-column ASCII monitor dump, as presented
in Sept 1983 AAL (page 27,28). It worked great in the 80-column mode,
but if I happened to be in 40-column mode when I used the monitor dump
command something strange happens.

Some time ago I incorporated the dump and Steve Knouse's monitor
patches into an EPROM and installed it in my system. Everything
seemed to be working fine, until one day.... I was working on a short
Applesoft program, and I went into the monitor in 40-column mode to
check a few program bytes. When I returned to Applesoft and listed
the program, the first line had been changed. Huh?

I eventually figured out that the problem had to do with the tab to
column 60. In 40-column mode this will be 20 characters beyond the
bottom of the screen, which is $80C.

The solution was to just print a few spaces rather than attempting to
tab. This approach makes for more compatibility among various 80-
column devices, too.

While I was at it, I even squeezed a byte out of the code.

[And I squeezed some more, saving a total of 11 bytes. Bob S-C]

Here is the modified routine:

<<<<code here>>>>

Note the directions for installing the routine in a RAM card copy of
the monitor, in lines 1020-1060. "$C083 C083 FCC9<CC9.CFFM" write
enables the RAM area and copies the dump code over the top of cassette
I/O stuff. "$FDBE:C9 FC N FDA6:F N FDB0:F" patches the monitor dump
command code to call the new patch, and also patches to print 16 bytes
per screen line.

If you want to use this routine in 40-column mode only, change line
1240 from "AND #$0F" to "AND #$07", line 1310 from "CPX #$10" to "CPX
#$08", and leave out the patches at FDA6 and FDB0 in the previous
paragraph.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1747 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:News.65816.txt
==

65816 News..Bill Morgan

Did you see the Infoworld article a few weeks ago (November 5 issue)
about the 65816? That story mentioned a plug-in board for the Apple
II containing a 65816 processor and extra RAM. Well, I spoke today
with Larry Hittel of Com Log, producers of that board, and it does
sound very interesting.

Com Log intended their board, the Apple16, to be a developers' tool,
rather than a consumer item, or an Apple hot-rod device. They were
therefore a little surprised and overwhelmed by the response to the
Infoworld story: When I talked to Larry they had exactly one board in
stock, and it was waiting for purchase order paperwork from Apple
Computer. They are a month or two away from full production
quantities.

The Apple16 board uses DMA (Direct Memory Access) to take control of
the Apple, shutting down the 6502 and taking over the address bus.
They have found that the DMA does not function properly in Apples
earlier than Revision 4, due to problems with the bus driver chips on
the motherboard.

The 65816 chips are designed to operate at 8 MHz and are currently
testing out at 2-4 MHz, but, in order to maintain compatibility with
the Apple, the Com Log processor is clocked at 1 MHz.

To the '816, the 64K of Apple memory, both RAM and ROM, is bank 0.
Bank 1 echoes the Apple from 0-DFFF, but contains space for new EPROM
at E000-FFFF. Banks 2 and 3 are reserved for more new EPROM. Banks
4-7 are the on-board RAM, consisting of one set of either 64K or 256K
chips. Banks 8-255 are available on an expansion connector, intended
for a future separate memory board. There is abort logic to provide
an interrupt on access to non-existent memory.

Com Log is selling the boards now with no EPROMs. They are working on
an operating system and an Applesoft interpreter, but those are still
some time away. No price has been set for the firmware yet.

The current price of the Apple16 board is $395 with no RAM, $450 with
64K, and $795 with 256K. They are not expecting to have them
available in production quantities until January or later, by which
time the prices might change. Contact Com Log Corporation at 11056 N.
23rd Dr., Suite 104, Phoenix, AZ 85029. Phone (602) 248-0769.

That Infoworld story quoted an Apple spokesman as saying that the
65816 was to be used in an earlier project that had been shelved.
That project is being dusted off and revived, now that the 65816 chips
are really coming through. We've been hearing of it as the Apple //x.
According to an article in the November 19 issue of Infoworld about an

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1748 of 2550

Apple II Computer Info

interview with Woz, the //x is still not a fixed design and will not
be ready for market until 1986. There's always something new to look
forward to!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1749 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:Quick.DecHex.txt
==

Convert Two Decimal Digits to Binary.......Bob Sander-Cederlof

I have recently been running into more and more uses for the decimal
mode in the 6502. In the decimal mode, each byte contains a value
from 0 to 99, with the ten's digit in the left nybble and the units
digit in the right nybble.

The 6502 has built-in capability to add and subtract values in this
format, with automatic carry when a nybble exceeds 9. If you have
been following my series on 18-digit arithmetic, you have seen a lot
of examples of its use.

A frequent problem that arises is conversion between the decimal form
and the binary form of a number. I suppose I have written ten million
different programs to do this kind of conversion, on at least a
thousand different kinds of computers! (Ever notice that my
exaggerations are always in decimal?)

For a small (byte-size) example, suppose a byte contains two decimal
digits ($00-$99) and you want to convert it to binary ($00-$63). The
first step is to separate the two digits into two different variables.
The the ten's digit should be multiplied by ten, and the unit's digit
added.

Lines 1390-1510 in the listing perform these steps, but there are a
few tricks. Lines 1410-1420 strip out the unit's digit and save it in
LOW, and lines 1440-1450 save the high digit in HIGH. Notice that I
did not shift the high digit down, so it is really the ten's digit
times 16 (call it "tens*16").

Lines 1460-1500 multiply the tens*16 by 10/16. Then line 1500 adds
the unit's digit.

The program in lines 1010-1190 is a test driver, which calls the
DEC.HEX.2 routine 100 times with successive values in the A-register
between $00 and $99. DEC.HEX.2 returns with the converted value ($00-
$63 in the A-register, and the test driver prints out the value. If
everything is okay, the hexadecimal numbers from $00 through $63 will
be displayed.

DEC.HEX.2 as written takes 18 bytes plus two variables in page zero.
If the variables are not in page zero, the program will take an
additional four bytes.

A faster program which takes only a few more bytes, and does not use
any variables in RAM other than the stack, is shown in lines 1200-
1340. Lines 1220-1260 convert the ten's digit into an index 0-9 in
the X-register. Line 1270 retrieves the original number from the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1750 of 2550

Apple II Computer Info

stack. Lines 1290-1300 add a value from the table, indexed by the
ten's digit, giving a total which is the converted number.

The values in the table consist of one byte each, having selected so
that they subtract out the hexadecimal value of the ten's digit and
add back the value of that digit-times-ten in binary. For example, if
the original number was $58 (meaning decimal 58 in BCD storage
format), we will add the value $E2 (which is 50-$50). $58+$E2 = $3A,
which is the correct hexadecimal conversion.

I recently worked on a consulting project which included a lot of
mixed decimal and hexadecimal calculations. The project was
implemented on a 6511 chip, which has only 192 bytes of RAM. That is
total, including the stack! We also had 4096 bytes of EPROM. The
system operates in a real-time mode with relatively high-speed
interrupts occurring. With these constraints, every routine had to be
written to use the minimum amount of RAM and to be as fast as
possible. A few extra bytes of code would be all right, because 4096
bytes of EPROM was more than enough. In situations like this,
programs like the one in lines 1200-1300 come in real handy.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1751 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:Articles:RAMWorks.MB.txt
==

A Whole Megabyte for your Apple //e........ Bob Sander-Cederlof

Both Applied Engineering and Saturn have announced 1 Mbyte cards for
the //e. Saturn's, I understand, plugs into any slot 1-7; this of
course makes it a little non-standard compared to other //e memory
expanders when it comes to software access.

The new board from Applied Engineering, called RAM WORKS, fits in the
//e auxiliary slot. You get 80 column text and double hi-res, with
anywhere from 64K to 1 Megabyte of expansion RAM in 64K or 256K
increments. You can buy RAM WORKS already expanded, or expand it
yourself later. Prices: 64K = $179, 128K = $249, 256K = $449, 512K =
$799, and 1Meg = $1499. The first 512K fits one a normal size card,
about 6 inches long. The second 512K come in a piggy-back card which
attaches to the main card. Another option, an RGB video generator
($129), attaches to the front of the memory card.

The megabyte is divided into 16 chapters of 64K each. You select
which one is active by storing a value from $00 to $0F in a register
at $C073. Then the normal //e maze of soft switches lets you access
the active chapter the same way you would access Apple's standard 64K
card.

RAM WORKS has some new design ideas, for which patents are pending,
including a power saving circuit and a video refresh circuit. The
latter eliminates the annoying screen flicker that normally occurs
when you switch chapters with older expansion cards.

Low cost software options available with RAM WORKS include disk
emulation for DOS and ProDOS, and workspace expansion for Appleworks.
Standard ProDOS will turn Apple's RAM card into a half-size RAMdisk,
but with RAM WORKS you get a full megabyte!

If you like the idea of souping up your //e, one of these boards plus
a new 65802 processor may be just the ticket!
1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1752 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:DOS3.3:Opcodes.65816.txt
==

 1000 *SAVE NEW 65816 OPCODES
 1010 .OP CON
 1020 ROCKWELL .EQ 0
 1030 *--------------------------------
 1040 ZP .EQ $45
 1050 LONG .EQ $300 <<<24-BIT VALUE>>>
 1060 *--------------------------------
 1070 TEST BRA .1
 1080 *--------------------------------
 1090 ORA (ZP)
 1100 AND (ZP)
 1110 EOR (ZP)
 1120 ADC (ZP)
 1130 STA (ZP)
 1140 LDA (ZP)
 1150 CMP (ZP)
 1160 SBC (ZP)
 1170 *--------------------------------
 1180 .1 JMP (TEST),X
 1190 *--------------------------------
 1200 BIT #$45 IMMEDIATE
 1210 BIT ZP ZERO PAGE
 1220 BIT LONG ABSOLUTE
 1230 BIT ZP,X ZP,X
 1240 BIT LONG,X ABS,X
 1250 *--------------------------------
 1260 INC
 1270 DEC
 1280 *--------------------------------
 1290 PHX
 1300 PLX
 1310 PHY
 1320 PLY
 1330 *--------------------------------
 1340 STZ ZP
 1350 STZ LONG
 1360 STZ ZP,X
 1370 STZ LONG,X
 1380 *--------------------------------
 1390 TSB ZP
 1400 TSB LONG
 1410 TRB ZP
 1420 TRB LONG
 1430 *--------------------------------
 1440 .DO ROCKWELL
 1450 RMB 0,ZP
 1460 RMB 1,ZP
 1470 RMB 2,ZP
 1480 SMB 0,ZP

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1753 of 2550

Apple II Computer Info

 1490 SMB 1,ZP
 1500 SMB 2,ZP
 1510 *--------------------------------
 1520 BBR 0,ZP,SS
 1530 BBR 1,ZP,SS
 1540 BBR 2,ZP,SS
 1550 SS BBS 0,ZP,SS
 1560 BBS 1,ZP,SS
 1570 BBS 2,ZP,SS
 1580 .FIN
 1590 *--------------------------------
 1600 .DO WDM.65816
 1610 *---ABSOLUTE LONG----------------
 1620 ORA LONG 0F LL HH BB
 1630 AND LONG 2F LL HH BB
 1640 EOR LONG 4F LL HH BB
 1650 ADC LONG 6F LL HH BB
 1660 STA LONG 8F LL HH BB
 1670 LDA LONG AF LL HH BB
 1680 CMP LONG CF LL HH BB
 1690 SBC LONG EF LL HH BB
 1700 *---ABSOLUTE INDEXED LONG--------
 1710 ORA LONG,X 1F LL HH BB
 1720 AND LONG,X 3F LL HH BB
 1730 EOR LONG,X 5F LL HH BB
 1740 ADC LONG,X 7F LL HH BB
 1750 STA LONG,X 9F LL HH BB
 1760 LDA LONG,X BF LL HH BB
 1770 CMP LONG,X DF LL HH BB
 1780 SBC LONG,X FF LL HH BB
 1790 *---DIRECT INDIRECT LONG----------------
 1800 * ADDRESS POINTED TO IS 3 BYTES LONG
 1810 * NEED A SYNTAX CHANGE HERE!!!
 1820 * I PROPOSE "ORA.L"
 1830 ORA.L (ZP) 07 ZP
 1840 AND.L (ZP) 27 ZP
 1850 EOR.L (ZP) 47 ZP
 1860 ADC.L (ZP) 67 ZP
 1870 STA.L (ZP) 87 ZP
 1880 LDA.L (ZP) A7 ZP
 1890 CMP.L (ZP) C7 ZP
 1900 SBC.L (ZP) E7 ZP
 1910 *---DIRECT INDIRECT INDEXED ZP--------
 1920 ORA.L (ZP),Y 17 ZP
 1930 AND.L (ZP),Y 37 ZP
 1940 EOR.L (ZP),Y 57 ZP
 1950 ADC.L (ZP),Y 77 ZP
 1960 STA.L (ZP),Y 97 ZP
 1970 LDA.L (ZP),Y B7 ZP
 1980 CMP.L (ZP),Y D7 ZP
 1990 SBC.L (ZP),Y F7 ZP
 2000 *---STACK RELATIVE---------------
 2010 * NEED A SYNTAX CHANGE HERE!!!
 2020 * I PROPOSE "ORA.S"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1754 of 2550

Apple II Computer Info

 2030 ORA.S SR 03 SR
 2040 AND.S SR 23 SR
 2050 EOR.S SR 43 SR
 2060 ADC.S SR 63 SR
 2070 STA.S SR 83 SR
 2080 LDA.S SR A3 SR
 2090 CMP.S SR C3 SR
 2100 SBC.S SR E3 SR
 2110 *---STACK RELATIVE INDIRECT INDEXED-----
 2120 * NEED A SYNTAX CHANGE HERE!!!
 2130 * I PROPOSE "ORA.S"
 2140 ORA.S (SR),Y 13 SR
 2150 AND.S (SR),Y 33 SR
 2160 EOR.S (SR),Y 53 SR
 2170 ADC.S (SR),Y 73 SR
 2180 STA.S (SR),Y 93 SR
 2190 LDA.S (SR),Y B3 SR
 2200 CMP.S (SR),Y D3 SR
 2210 SBC.S (SR),Y F3 SR
 2220 *--------------------------------
 2230 PEA $HHLL F4 LL HH
 2240 * EQUIVALENT TO: LDA /ABS;PHA;LDA #ABS;PHA
 2250 PEI ZP D4 ZP PUSH (ZP+1),(ZP)
 2260 * EQUIVALENT TO: LDA ZP+1;PHA;LDA ZP;PHA
 2270 PER ABS 62 LL HH
 2280 * PUSHES PC+HHLL
 2290 *--------------------------------
 2300 PHB 8B PUSH DBR
 2310 PLB AB PULL DBR
 2320 PHD 0B PUSH D-REG
 2330 PLD 2B PULL D-REG
 2340 PHK 4B PUSH PBR
 2350 RTL 6B RTS LONG
 2360 *--------------------------------
 2370 REP #BYTE C2 XX RESET BITS IN STATUS
 2380 * PHP;PLA;EOR#FF;ORA#XX;EOR#FF;PHA;PLP
 2390 SEP #BYTE E2 XX SET BITS IN STATUS
 2400 * PHP;PLA;ORA#XX;PHA;PLP
 2410 *--------------------------------
 2420 TCS 1B C --> S
 2430 TSC 3B S --> C
 2440 TCD 5B C --> D
 2450 TDC 7B D --> C
 2460 TXY 9B X --> Y
 2470 TYX BB Y --> X
 2480 WAI CB WAIT FOR INTERRUPT
 2490 STP DB STOP UNTIL RESET
 2500 XBA EB A <--> B (REGISTERS)
 2510 XCE FB C <--> E (STATUS BITS)
 2520 *--------------------------------
 2530 COP #XX 02 XX COPROCESSOR INTERRUPT
 2540 JSL LONG 22 LL HH BB
 2550 WDM 42 <<<RESERVED>>>
 2560 BRL ADDR 82 LL HH BRANCH RELATIVE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1755 of 2550

Apple II Computer Info

 2570 *--------------------------------
 2580 JMP (TEST,X) 7C LL HH
 2590 JSR (TEST,X) FC LL HH
 2600 JML (TEST) DC LL HH 3 BYTES AT TEST ARE LONG ADDRESS
 2610 JMP LONG 5C LL HH BB
 2620 *--------------------------------
 2630 * LDA #NUMBER OF BYTES
 2640 * LDX #SOURCE ADDRESS
 2650 * LDY #DESTINATION ADDRESS
 2660 MVP SBANK,DBANK 44 DB SB
 2670 MVN SBANK,DBANK 54 DB SB
 2680 *--------------------------------
 2690 .FIN
 2700 *--------------------------------
 2710 * WE EVIDENTLY NEED A NEW DIRECTIVE TO TELL
 2720 * THE ASSEMBLER WHETHER TO USE 8- OR 16-BIT OPERANDS
 2730 * IN IMMEDIATE MODE.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1756 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:DOS3.3:S.DP18.FUNC.LOG.txt
==

 1000 *SAVE S.DP18 FUNC LOG
 1010 *--------------------------------
 1020 AS.OVRFLW .EQ $E8D5
 1030 AS.ILLERR .EQ $E199
 1040 *--------------------------------
 1050 POLY.1 .EQ $FFFF
 1060 POLY.N .EQ $FFFF
 1070 DADD .EQ $FFFF
 1080 DSUB .EQ $FFFF
 1090 DMULT .EQ $FFFF
 1100 DDIV .EQ $FFFF
 1110 DP.TRUE .EQ $FFFF
 1120 MOVE.YA.ARG.1 .EQ $FFFF
 1130 MOVE.YA.DAC.1 .EQ $FFFF
 1140 SWAP.DAC.ARG .EQ $FFFF
 1150 MOVE.TEMP1.ARG .EQ $FFFF
 1160 MOVE.TEMP2.ARG .EQ $FFFF
 1170 MOVE.TEMP3.ARG .EQ $FFFF
 1180 MOVE.DAC.ARG .EQ $FFFF
 1190 MOVE.TEMP3.DAC .EQ $FFFF
 1200 MOVE.DAC.TEMP1 .EQ $FFFF
 1210 MOVE.DAC.TEMP2 .EQ $FFFF
 1220 MOVE.DAC.TEMP3 .EQ $FFFF
 1230 NORMALIZE.DAC .EQ $FFFF
 1240 *--------------------------------
 1250 DAC.EXPONENT .BS 1
 1260 DAC.HI .BS 10
 1270 DAC.SIGN .BS 1
 1280 *--------------------------------
 1290 ARG.EXPONENT .BS 1
 1300 ARG.HI .BS 10
 1310 ARG.SIGN .BS 1
 1320 *--------------------------------
 1330 SIGN .BS 1
 1340 INTPWR .BS 1
 1350 *--------------------------------
 1360 CON.ONE .HS 41.10000.00000.00000.00000
 1370 CON.1HALF .HS 40.50000.00000.00000.00000
 1380 CON.SQR10 .HS 41.31622.77660.16837.93320
 1390 *--------------------------------
 1400 * EXP (DAC) E^DAC
 1410 * OR 10^DAC
 1420 * #1446 IN HART, ET AL
 1430 *--------------------------------
 1440 P.EXP .EQ *
 1450 P.EXP.N .EQ 3
 1460 .HS 42.31341.17940.19730.48777
 1470 .HS 44.45618.28316.94656.35848
 1480 .HS 46.13433.11347.35855.59034

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1757 of 2550

Apple II Computer Info

 1490 .HS 46.76025.44794.41265.39434
 1500 Q.EXP .EQ *
 1510 Q.EXP.N .EQ 4
 1520 .HS 43.47705.44030.08207.98775
 1530 .HS 45.29732.60655.85996.83303
 1540 .HS 46.40843.69796.67736.28236
 1550 .HS 46.66034.86505.27141.54491
 1560 *--------------------------------
 1570 CON.LOGE .HS 40.43429.44819.03251.82765
 1580 *--------------------------------
 1590 DP.EXP.NULL
 1600 JMP DP.TRUE E^0 = 10^0 = 1.0
 1610 DP.EXP.OVERFLOW
 1620 JMP AS.OVRFLW
 1630 *--------------------------------
 1640 DP.EXPE
 1650 LDA DAC.EXPONENT
 1660 BEQ DP.EXP.NULL
 1670 LDA #CON.LOGE
 1680 LDY /CON.LOGE
 1690 JSR MOVE.YA.ARG.1
 1700 JSR DMULT CHANGE TO 10^X
 1710 *--------------------------------
 1720 DP.EXP10
 1730 LDX DAC.EXPONENT 10^0 = 1
 1740 BEQ DP.EXP.NULL
 1750 *---HANDLE NEGATIVE POWERS-------
 1760 LDA DAC.SIGN SAVE FOR 1/EXP IF NEGATIVE
 1770 STA SIGN
 1780 LDA #0 GET ABS(X)
 1790 STA DAC.SIGN
 1800 *---SPLIT INTEGER & FRACTION-----
 1810 CPX #$43 THREE OR MORE INTEGER DIGITS?
 1820 BCS DP.EXP.OVERFLOW YES, OVERFLOW
 1830 LDA #0 ...ALL FRACTIONAL
 1840 STA INTPWR
 1850 CPX #$41
 1860 BCC .3 ...NO INTEGRAL PART
 1870 LDA DAC.HI ...1 OR 2 DIGITS
 1880 LSR
 1890 LSR
 1900 LSR
 1910 LSR
 1920 STA INTPWR
 1930 LDA DAC.HI
 1940 AND #$0F
 1950 STA DAC.HI
 1960 CPX #$41 ONE OR TWO DIGITS?
 1970 BEQ .2 ...ONE DIGIT INTEGER
 1980 LDA INTPWR DIGIT*10
 1990 ASL
 2000 ASL
 2010 ADC INTPWR
 2020 ASL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1758 of 2550

Apple II Computer Info

 2030 ADC DAC.HI
 2040 STA INTPWR
 2050 LDX #0
 2060 STX DAC.HI
 2070 .2 JSR NORMALIZE.DAC ADJUST REMAINING FRACTION
 2080 BNE .3 FRACTION NOT 0
 2090 JSR DP.TRUE 10^0 = 1
 2100 JMP .7
 2110 *---ADJUST FRACTION SO < .5------
 2120 .3 LDA DAC.EXPONENT
 2130 CMP #$40
 2140 BCC .4
 2150 LDA DAC.HI
 2160 CMP #$50
 2170 .4 PHP REMEMBER...
 2180 BCC .5 ...ALREADY < .5
 2190 SBC #$50
 2200 STA DAC.HI
 2210 JSR NORMALIZE.DAC
 2220 BNE .5 ...REST OF FRACTION NOT 0
 2230 PLA POP SAVED STATUS
 2240 LDA #CON.SQR10
 2250 LDY /CON.SQR10
 2260 JSR MOVE.YA.DAC.1
 2270 JMP .7
 2280 *---COMPUTE 10^.XXXX-------------
 2290 .5 JSR MOVE.DAC.TEMP1 SAVE X
 2300 JSR MOVE.DAC.ARG
 2310 JSR DMULT GET X^2
 2320 JSR MOVE.DAC.TEMP2 SAVE X^2
 2330 LDA #P.EXP COMPUTE P(X^2)
 2340 LDY /P.EXP
 2350 LDX #P.EXP.N
 2360 JSR POLY.N
 2370 JSR MOVE.TEMP1.ARG COMPUTE XP(X^2)
 2380 JSR DMULT
 2390 JSR MOVE.DAC.TEMP3 SAVE XP(X^2)
 2400 LDA #Q.EXP COMPUTE Q(X^2)
 2410 LDY /Q.EXP
 2420 LDX #Q.EXP.N
 2430 JSR POLY.1
 2440 JSR MOVE.DAC.TEMP2 SAVE Q(X^2)
 2450 JSR MOVE.TEMP3.ARG NUMERATOR = Q+XP
 2460 JSR DADD Q(X^2)+XP(X^2)
 2470 JSR MOVE.DAC.TEMP1 SAVE UMERATOR
 2480 JSR MOVE.TEMP2.ARG DENOMINATOR = Q-XP
 2490 JSR MOVE.TEMP3.DAC
 2500 JSR DSUB Q(X^2)-XP(X^2)
 2510 JSR MOVE.TEMP1.ARG 10^.XXX = N/D
 2520 JSR DDIV
 2530 *---ADJUST BY SQR(10)------------
 2540 PLP SEE IF ADJUSTMENT NEEDED
 2550 BCC .7 ...NO
 2560 LDA #CON.SQR10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1759 of 2550

Apple II Computer Info

 2570 LDY /CON.SQR10
 2580 JSR MOVE.YA.ARG.1
 2590 JSR DMULT
 2600 *---ADD INTEGRAL POWER-----------
 2610 .7 CLC
 2620 LDA DAC.EXPONENT
 2630 ADC INTPWR
 2640 BPL .8 ...NO OVERFLOW
 2650 JMP DP.EXP.OVERFLOW
 2660 .8 STA DAC.EXPONENT
 2670 *---ADJUST FOR SIGN--------------
 2680 LDA SIGN GET ORIGINAL SIGN
 2690 BPL .9 POSITIVE, WE ARE DONE
 2700 LDA #CON.ONE NEGATIVE, FORM RECIPROCAL
 2710 LDY /CON.ONE
 2720 JSR MOVE.YA.ARG.1
 2730 JSR DDIV
 2740 .9 RTS
 2750 *--------------------------------
 2760 * LN (DAC) LOG E (DAC)
 2770 * OR LOG 10 (DAC)
 2780 * #2330 IN HART, ET AL
 2790 *--------------------------------
 2800 P.LOG .EQ *
 2810 P.LOG.N .EQ 5
 2820 .HS C2.14933.41871.23101.49868
 2830 .HS 43.30132.34734.14748.46138
 2840 .HS C4.17255.36265.00653.03387
 2850 .HS 44.40598.33123.94476.21513
 2860 .HS C4.41923.45602.07081.07911
 2870 .HS 44.15764.33484.51127.69255
 2880 Q.LOG .EQ *
 2890 Q.LOG.N .EQ 6
 2900 .HS C2.67696.41190.46224.52758
 2910 .HS 43.76357.00230.09155.79877
 2920 .HS C4.32000.87986.36664.12225
 2930 .HS 44.61216.00041.77468.78069
 2940 .HS C4.54315.94950.92575.25735
 2950 .HS 44.18149.36120.76616.30282
 2960 *--------------------------------
 2970 CON.LN10 .HS 41.23025.85092.99404.56840
 2980 *--------------------------------
 2990 DP.LOGE
 3000 JSR DP.LOG10
 3010 LDA #CON.LN10 CONVERT LOG10 TO LN
 3020 LDY /CON.LN10
 3030 JSR MOVE.YA.ARG.1
 3040 JMP DMULT
 3050 *--------------------------------
 3060 DP.LOG.ERR
 3070 JMP AS.ILLERR
 3080 *--------------------------------
 3090 DP.LOG10
 3100 LDA DAC.SIGN CHECK RANGE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1760 of 2550

Apple II Computer Info

 3110 BMI DP.LOG.ERR ...NEGATIVE
 3120 LDA DAC.EXPONENT
 3130 BEQ DP.LOG.ERR ...ZERO
 3140 STA INTPWR SAVE POWER OF 10
 3150 *---ADJUST RANGE-----------------
 3160 LDA #$40 MAKE FRACTION .1 TO .9999
 3170 STA DAC.EXPONENT
 3180 LDA #CON.SQR10 1/SQR(10) ... SQR(10)
 3190 LDY /CON.SQR10
 3200 JSR MOVE.YA.ARG.1
 3210 JSR DMULT
 3220 *---FORM (X-1)/(X+1)-------------
 3230 JSR MOVE.DAC.TEMP1
 3240 JSR MOVE.DAC.ARG
 3250 JSR DP.TRUE GET 1 IN DAC
 3260 JSR DSUB X-1
 3270 JSR MOVE.DAC.TEMP2 SAVE IT
 3280 JSR DP.TRUE GET 1 IN DAC
 3290 JSR MOVE.TEMP1.ARG
 3300 JSR DADD X+1
 3310 JSR MOVE.TEMP2.ARG
 3320 JSR DDIV X-1/X+1
 3330 *---NUMERATOR = Z*P(Z^2)---------
 3340 JSR MOVE.DAC.TEMP1 SAVE IT
 3350 JSR MOVE.DAC.ARG
 3360 JSR DMULT Z^2
 3370 JSR MOVE.DAC.TEMP2 SAVE Z^2
 3380 LDA #P.LOG
 3390 LDY /P.LOG
 3400 LDX #P.LOG.N
 3410 JSR POLY.N
 3420 JSR MOVE.TEMP1.ARG
 3430 JSR DMULT Z*P(Z^2)
 3440 JSR MOVE.DAC.TEMP1
 3450 *---DENOMINATOR = Q(Z^2)---------
 3460 LDA #Q.LOG
 3470 LDY /Q.LOG
 3480 LDX #Q.LOG.N
 3490 JSR POLY.1
 3500 JSR MOVE.TEMP1.ARG
 3510 JSR DDIV Z*P(Z^2)/Q(Z^2)
 3520 *---ADD INTEGER POWER------------
 3530 SEC
 3540 LDA INTPWR GET POWER OF 10
 3550 SBC #$40
 3560 BEQ .5 ...0, NO NEED TO ADD ANYTHING
 3570 STA ARG.SIGN
 3580 BCS .1 ...1 TO 63
 3590 EOR #$FF MAKE IT POSITIVE
 3600 ADC #1
 3610 .1 LDY #0
 3620 STY ARG.HI
 3630 LDX #$41
 3640 CMP #10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1761 of 2550

Apple II Computer Info

 3650 BCC .3 1...9
 3660 INX 10...63
 3670 .2 STA ARG.HI STORE REMAINDER
 3680 SBC #10
 3690 INY INC. QUOTIENT
 3700 BCS .2 ...TRY ANOTHER SUBTRACTION
 3710 DEY CORRECT QUOTIENT
 3720 TYA GET QUOTIENT
 3730 .3 ASL LEFT JUSTIFY
 3740 ASL
 3750 ASL
 3760 ASL
 3770 ORA ARG.HI MERGE WITH NEXT DIGIT
 3780 STA ARG.HI
 3790 STX ARG.EXPONENT $41 OR $42
 3800 LDX #9 CLEAR REST OF ARG
 3810 LDA #0
 3820 .4 STA ARG.HI,X
 3830 DEX
 3840 BNE .4
 3850 JSR DADD
 3860 *---SUBTRACT 0.5-----------------
 3870 .5 LDA #CON.1HALF
 3880 LDY /CON.1HALF
 3890 JSR MOVE.YA.ARG.1
 3900 LDA #$FF
 3910 STA ARG.SIGN
 3920 JMP DADD
 3930 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1762 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:DOS3.3:S.Macro.Ex.txt
==

 1000 *SAVE S.MACRO EXAMPLES
 1010 *--------------------------------
 1020 * BY SANDY GREENFARB
 1030 *--------------------------------
 1040 *
 1050 * PARAMETERS CAN SUBSTITUTE ANYWHERE,
 1060 * EVEN IN OPCODES
 1070 *--------------------------------
 1080 .MA TEST VALUE,CONDITION,LABEL
 1090 CMP]1
 1100 B]2]3
 1110 .EM
 1120 *
 1130 >TEST #3,CC,SMALLER
 1140 >TEST TYPE,EQ,SAME
 1150 *
 1160 TYPE .DA #35
 1170 SAME NOP
 1180 SMALLER NOP
 1190 *--------------------------------
 1200 *
 1210 * MACROS CAN SIMPLIFY CODE FOR EFFICIENCY
 1220 *--------------------------------
 1230 .MA SETD VALUE,VARIABLE
 1240 LDA #]1 LO-BYTE
 1250 STA]2
 1260 .DO]1/256*257-]1 ARE LOW AND HI EQUAL?
 1270 LDA /]1
 1280 .ELSE
 1290 * HI = LO-BYTE
 1300 .FIN
 1310 STA]2+1
 1320 .EM
 1330 *
 1340 >SETD $1234,VALUE
 1350 >SETD $2323,VALUE
 1360 *
 1370 VALUE .BS 2
 1380 *--------------------------------
 1400 *
 1410 * MACROS CAN PREVENT PROGRAMMING MISTAKES
 1420 * SUCH AS OVER-WRITING WHEN YOU COPY
 1430 * ONE VARIABLE INTO ANOTHER.
 1440 *--------------------------------
 1450 .MA MOVD VAR1,VAR2
 1460 .DO]2-]1-1
 1470 LDA]1 NO OVERLAP
 1480 STA]2
 1490 LDA]1+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1763 of 2550

Apple II Computer Info

 1500 STA]2+1
 1510 .ELSE
 1520 LDA]1+1 THIS CODE BUILT WHEN THE
 1530 STA]2+1 VARIABLES OVERLAP
 1540 LDA]1
 1550 STA]2
 1560 .FIN
 1570 .EM
 1580 *
 1590 >MOVD $11,$22
 1600 >MOVD $28,VALUE
 1610 >MOVD $11,$12
 1620 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1764 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:DOS3.3:S.MASK.INDEX.txt
==

 1000 *SAVE S.MASK --> INDEX
 1010 *--------------------------------
 1020 TEST LDY #$01
 1030 .1 TYA
 1040 JSR $FDDA
 1050 TYA
 1060 JSR SMALLEST.WAY
 1070 JSR HEX
 1080 TYA
 1090 JSR WAY.WITH.X
 1100 JSR HEX
 1110 TYA
 1120 JSR WAY.WITHOUT.X
 1130 JSR HEX
 1140 TYA
 1150 JSR ANOTHER.WAY.WITHOUT.X
 1160 JSR HEX
 1170 TYA
 1180 JSR STRAIGHT.TESTING.WAY
 1190 JSR HEX
 1200 JSR $FD8E
 1210 TYA
 1220 ASL
 1230 TAY
 1240 BCC .1
 1250 RTS
 1260 *--------------------------------
 1270 HEX PHA
 1280 LDA #"-"
 1290 JSR $FDED
 1300 PLA
 1310 JMP $FDDA
 1320 *--------------------------------
 1330 * WAY WITH FEWEST BYTES
 1340 * 8 BYTES
 1350 * MIN: 16 CYCLES
 1360 * MAX: 65 CYCLES
 1370 * AVE: 40.5 CYCLES
 1380 *--------------------------------
 1390 SMALLEST.WAY
 1400 LDX #8
 1410 .1 DEX
 1420 ASL
 1430 BCC .1
 1440 TXA
 1450 RTS
 1460 *--------------------------------
 1470 * FASTER WAY USING X-REGISTER
 1480 * 26 BYTES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1765 of 2550

Apple II Computer Info

 1490 * MIN: 25 CYCLES
 1500 * MAX: 42 CYCLES
 1510 * AVE: 33.5 CYCLES
 1520 *--------------------------------
 1530 WAY.WITH.X
 1540 LDX #0 KEEP INDEX IN X
 1550 CMP #$10 80-40-20-10 / 08-04-02-01
 1560 BCC .1 ...8,4,2,1
 1570 LSR ...80,40,20,10
 1580 LSR SHIFT OVER TO 8,4,2,1
 1590 LSR
 1600 LSR
 1610 LDX #4 AND BUMP INDEX BY 4
 1620 .1 CMP #$04 08-04 / 02-01
 1630 BCC .2 ...2,1
 1640 LSR ...8,4
 1650 LSR SHIFT OVER TO 2,1
 1660 INX AND BUMP INDEX BY 2
 1670 INX
 1680 .2 LSR 02 / 01
 1690 BEQ .3 ...01
 1700 INX ...02, BUMP INDEX
 1710 .3 TXA GET RESULT
 1720 RTS
 1730 *--------------------------------
 1740 * WAY WITHOUT USING X-REGISTER
 1750 * 23 BYTES
 1760 * MIN: 14 CYCLES
 1770 * MAX: 30 CYCLES
 1780 * AVE: 22 CYCLES
 1790 *--------------------------------
 1800 WAY.WITHOUT.X
 1810 LSR 40-20-10-08-04-02-01-00
 1820 CMP #$04
 1830 BCC .2 ...2,1,0
 1840 BEQ .3 ...4, SHOULD BE 3
 1850 LSR 20-10-08-04
 1860 LSR 10-08-04-02
 1870 LSR 08-04-02-01
 1880 LSR 04-02-01-00
 1890 CMP #4
 1900 BCC .1 2,1,0 INTO 6,5,4
 1910 LDA #2 4 INTO 7
 1920 .1 ADC #4
 1930 .2 RTS
 1940 .3 SBC #1 4 INTO 3
 1950 RTS
 1960 *--------------------------------
 1970 * ANOTHER WAY WITHOUT X-REGISTER
 1980 * 32 BYTES
 1990 * MIN: 14 CYCLES
 2000 * MAX: 24 CYCLES
 2010 * AVE: 18.375 CYCLES
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1766 of 2550

Apple II Computer Info

 2030 ANOTHER.WAY.WITHOUT.X
 2040 CMP #$08 80-40-20-10-08-04-02-01
 2050 BCC .5 ...4,2,1
 2060 BEQ .4 ...8, SHOULD BE 3
 2070 CMP #$40
 2080 BCC .2 ...20,10
 2090 BEQ .1 ...40
 2100 LDA #7
 2110 RTS
 2120 .1 LDA #6
 2130 RTS
 2140 .2 CMP #$20
 2150 BEQ .3
 2160 LDA #4
 2170 RTS
 2180 .3 LDA #5
 2190 RTS
 2200 .4 SBC #2
 2210 .5 LSR
 2220 RTS
 2230 *--------------------------------
 2240 * STRAIGHTFORWARD TESTING APPROACH
 2250 * 33 BYTES
 2260 * MIN: 14 CYCLES
 2270 * MAX: 27 CYCLES
 2280 * AVE: 18.5 CYCLES
 2290 *--------------------------------
 2300 STRAIGHT.TESTING.WAY
 2310 CMP #$08
 2320 BCC .5
 2330 BEQ .4
 2340 CMP #$20
 2350 BCC .3
 2360 BEQ .2
 2370 CMP #$80
 2380 BCC .1
 2390 LDA #7
 2400 RTS
 2410 .1 LDA #6
 2420 RTS
 2430 .2 LDA #5
 2440 RTS
 2450 .3 LDA #4
 2460 RTS
 2470 .4 LDA #3
 2480 RTS
 2490 .5 LSR CONVERT 4,2,1 TO 2,1,0
 2500 RTS
 2510 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1767 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:DOS3.3:S.New80ColMD.txt
==

 1000 *SAVE S.NEW 80 COL MONITOR DUMP
 1010 *--------------------------------
 1020 * TO INSTALL,
 1030 * 1. ASSEMBLE THIS PROGRAM
 1040 * 2. ENTER THESE MONITOR COMMANDS
 1050 * $C083 C083 FCC9<CC9.CEFM
 1060 * $FDBE:C9 FC N FDA6:F N FDB0:F
 1070 *--------------------------------
 1080 * BY JAN EUGENIDES & BOB S-C
 1090 *--------------------------------
 1100 CH .EQ $24
 1110 A1 .EQ $3C,3D
 1120 A2 .EQ $3E,3F
 1130 A4 .EQ $42,43
 1140 BUFFER .EQ $2F0
 1150 PRBYTE .EQ $FDDA
 1160 COUT .EQ $FDED
 1170 PRBLNK .EQ $F948
 1180 *--------------------------------
 1190 .OR $FCC9
 1200 .TA $CC9
 1210 *--------------------------------
 1220 PATCH PHA SAVE BYTE
 1230 LDA A1 COMPUTE INDEX
 1240 AND #$0F 0...F
 1250 TAX
 1260 PLA GET BYTE AGAIN
 1270 STA BUFFER,X SAVE IN BUFFER
 1280 JSR PRBYTE PRINT ON SCREEN
 1290 INX GET # BYTES THIS LINE
 1300 STX A4 SAVE IN A4L
 1310 CPX #$10 END OF LINE?
 1320 BEQ .1 ...YES, PRINT ASCII CHARS
 1330 LDA A1 ...NO, SEE IF END OF RANGE
 1340 CMP A2
 1350 LDA A1+1
 1360 SBC A2+1
 1370 BCC .4 ...NO, RETURN
 1380 .1 JSR PRBLNK PRINT 3 SPACES
 1390 LDX #0 PRINT ASCII CHARS FROM BUFFER
 1400 .2 LDA BUFFER,X GET CHAR
 1410 ORA #$80 MAKE NORMAL VIDEO
 1420 CMP #$A0 TRAP CONTROL CHARS
 1430 BCS .3 ...NOT CONTROL CHAR
 1440 LDA #$AE ...CTRL, SUBSTITUTE "."
 1450 .3 JSR COUT PRINT CHAR
 1460 INX NEXT
 1470 CPX A4 END OF LIST?
 1480 BCC .2 ...NOT YET

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1768 of 2550

Apple II Computer Info

 1490 .4 RTS RETURN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1769 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:DOS3.3:S.NewSQR.Rtn.txt
==

 1000 *SAVE S.NEW SQR ROUTINE
 1010 *--------------------------------
 1020 * SQR (DAC)
 1030 *--------------------------------
 1040 ERR.SQ JMP AS.ILLERR ILLEGAL QUANTITY
 1050 DP.SQR.0 RTS
 1060 DP.SQR LDA DAC.EXPONENT
 1070 BEQ DP.SQR.0 SQR(0)=0
 1080 LDA DAC.SIGN
 1090 BMI ERR.SQ MUST BE POSITIVE
 1100 JSR MOVE.DAC.TEMP3 SAVE X
 1110 *---APPROX. ROOT OF .1 - 1-------
 1120 LDA DAC.HI CONVERT TWO DIGITS TO BINARY
 1130 AND #$0F SAVE LO DIGIT
 1140 CMP #5 01234 OR 56789
 1150 PHP SAVE ANSWER
 1160 LDA DAC.HI GET HI DIGIT
 1170 LSR
 1180 LSR
 1190 LSR
 1200 LSR $01...$09
 1210 PLP 01234 OR 56789
 1220 ROL $02...$13
 1230 TAX
 1240 LDA SQR.TBL,X
 1250 STA DAC.HI
 1260 *---TAKE HALF OF EXPONENT--------
 1270 LDA DAC.EXPONENT
 1280 SEC
 1290 SBC #$40 REMOVE OFFSET
 1300 ROR DIVIDE BY TWO (KEEP SIGN)
 1310 PHP SAVE ODD/EVEN BIT
 1320 CLC
 1330 ADC #$C0 RE-BIAS EXPONENT
 1340 STA DAC.EXPONENT
 1350 PLP
 1360 BCC .1 EVEN, DON'T MULT BY SQR(10)
 1370 *---ADJUST APPROX FOR ODD EXP----
 1380 LDA #CON.SQR10
 1390 LDY /CON.SQR10
 1400 JSR MOVE.YA.ARG.1
 1410 JSR DMULT
 1420 *---THREE NEWTON ITERATIONS------
 1430 .1 LDA #3
 1440 STA TEMP3
 1450 .2 JSR MOVE.DAC.TEMP2 TEMP2 = Y
 1460 JSR MOVE.TEMP3.ARG GET X
 1470 JSR DDIV X/Y
 1480 JSR MOVE.TEMP2.ARG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1770 of 2550

Apple II Computer Info

 1490 JSR DADD X/Y+Y
 1500 LDA #CON.HALF
 1510 LDY /CON.HALF
 1520 JSR MOVE.YA.ARG.1
 1530 JSR DMULT (X/Y+Y)/2
 1540 DEC TEMP3 ANY MORE?
 1550 BNE .2 ...YES
 1560 *---ONE MORE NEWTON ITERATION----
 1570 JSR MOVE.DAC.TEMP2 TEMP2 = Y
 1580 JSR MOVE.TEMP3.ARG GET X
 1590 JSR DDIV X/Y
 1600 JSR MOVE.TEMP2.ARG
 1610 LDA #$FF
 1620 STA ARG.SIGN
 1630 JSR DADD X/Y-Y
 1640 LDA #CON.HALF
 1650 LDY /CON.HALF
 1660 JSR MOVE.YA.ARG.1
 1670 JSR DMULT (X/Y-Y)/2
 1680 JSR MOVE.TEMP2.ARG
 1690 JMP DADD Y + (X/Y-Y)/2
 1700 *--------------------------------
 1710 SQR.TBL .EQ *-2 (NO ENTRIES AT 0...1)
 1720 .HS 35.42.47.52.57.61.65.69.72
 1730 .HS 76.79.82.85.88.91.94.96.99
 1740 CON.SQR10 .HS 4131622776601683793320
 1750 CON.HALF .HS 4050000000000000000000
 1760 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1771 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8411:DOS3.3:S.QUICK.DEC.HEX.txt
==

 1000 *SAVE S.QUICK DEC-HEX
 1010 *--------------------------------
 1020 T LDA #0
 1030 STA 0
 1040 .1 LDA 0
 1050 JSR DEC.HEX.2
 1060 JSR $FDDA
 1070 LDA #" "
 1080 JSR $FDED
 1090 JSR $FDED
 1100 SED
 1110 CLC
 1120 LDA 0
 1130 ADC #1
 1140 STA 0
 1150 CLD
 1160 CMP #0
 1170 BNE .1
 1180 RTS
 1190 *--------------------------------
 1200 DEC.HEX
 1210 PHA SAVE BYTE
 1220 LSR
 1230 LSR
 1240 LSR
 1250 LSR
 1260 TAX HI NYBBLE TO X
 1270 PLA GET ORIG BYTE
 1280 CLC
 1290 ADC TBL,X
 1300 RTS
 1310 *--------------------------------
 1320 TBL .DA #0-0,#10-$10,#20-$20,#30-$30
 1330 .DA #40-$40,#50-$50,#60-$60
 1340 .DA #70-$70,#80-$80,#90-$90
 1350 *--------------------------------
 1360 LOW .EQ 1
 1370 HIGH .EQ 2
 1380 *--------------------------------
 1390 DEC.HEX.2
 1400 PHA
 1410 AND #$0F SAVE LOW NYBBLE
 1420 STA LOW
 1430 PLA
 1440 AND #$F0 GET HIGH NYBBLE
 1450 STA HIGH
 1460 LSR /2
 1470 LSR /4
 1480 ADC HIGH /4*5

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1772 of 2550

Apple II Computer Info

 1490 LSR /8*5 = *10/16
 1500 ADC LOW + LOW NYBBLE
 1510 RTS
 1520 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1773 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:BBasic.Review.txt
==

Blankenship's Basic........................Bob Sander-Cederlof

John Blankenship has put together an Applesoft enhancement package, at
a mouth-watering price. (See his ad elsewhere in this issue for his
$20 introductory offer.) He sent me a review copy, so I tried it
out.

BBASIC is a large chunk of machine language code that sits between
HIMEM and the DOS file buffers. It also sits between you and
Applesoft, hiding itself behind a facade of new editing and listing
features. BBASIC takes control even in direct mode, giving you an
EDIT command, structured listings, and the ability to skip out of long
catalogs.

In pure BBASIC, line numbers are used only as line numbers, not as
destinations for GOTOs or GOSUBs. A built-in RENUM command soon
convinces you to live this way and like it. In place of line-number
branches, you use alphabetic "names" for subroutines, and WHEN-ELSE-
ENDWHEN for logic flow. John has also added WHILE-ENDWHILE, REPEAT-
UNTIL, CASE, and other structured looping and branching words.

During execution, a special COMPILE verb creates a table of "names"
used in your program. This speeds up execution.

Hires Text generation is built-in, along with some extensions to the
hires graphics. Musical tone generation with control over pitch,
duration, and timbre is also included. You also get SORT, SEARCH, and
PRINT USING.

I am just scratching the surface. I didn't like every feature, but
there is plenty left over. Worth a lot more than $20.

By the way, if John's name sounds familiar, it may be because he is
the author of "The Apple House", a book on controlling your home
published by Prentice-Hall. John also is a Professor at DeVry
Institute.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1774 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:CorrectnMVNMVP.txt
==

Correction re MVN and MVP in 65802.........Bob Sander-Cederlof

In the October AAL I presented a general memory mover written in 65802
code. I stated that the MVP and MVN instructions took 3 cycles-per-
byte during the move. I was wrong.

In looking through small tiny print in the preliminary documentation
for the chip, I came across the number "7". Shocked, I wrote a little
test program which moved 10000 bytes 1000 times. That means the MVN
in my test would move a total of 10,000,000 bytes. With a stop watch
I clocked the running time at just under 70 seconds. If it had been 3
cycles-per-byte, the test would have run in 30 seconds.

I don't know how I got that "3" in my head, but the right number is
"7". Still considerably faster than 6502, though.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1775 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:DP18.Trig.txt
==

18-Digit Arithmetic, Part 8................Bob Sander-Cederlof

Someone pointed out last week that this series is getting a little
long. Well, we are nearing the end. What we are doing is probably
unprecedented in the industry: listing the source code and explaining
it for a large commercially valuable software product. It takes time
and space to break precedents.

This month's installment completes the normal set of math functions,
with sine, cosine, and arc tangent. We even slipped in a simple form
of the tangent function. Still to come are the formatted INPUT and
PRINT routines.

Some Elementary Info:

Trigonometry is a frightening word. (If it doesn't scare you, skip
ahead several paragraphs.) The "-ometry" refers to measurement, but
what is a "trigon". Believe it or not, "trigon" is another name for a
triangle. Trigon means three sides, and figures with three sides just
happen to also have three angles. "Trig" (a nice nickname) is a
branch of mathematics dealing with triangles, without which we could
not fly to the moon, draw a map, or build bridges. Strangely enough,
much of electronics also uses trig funtions ... are electrons
triangular?

When I took trig in high school, long before the day of personal
calculators, we used trig tables. (These were not articles of
furniture made in the local woodshop, but rather long lists of strange
numbers printed and bound into books.) The tables contained values
for various ratios of the sides of a triangle having one 90-degree
angle. Now we use calculators or computers, but obviously the trig
tables would not fit in them. Instead, approximation formulas are
used.

In high school, we talked about six different ratios: sine, cosine,
tangent, cotangent, secant, and cosecant. When it is all boiled down,
we really only need the sine; all the rest are derivable from those.
The sine function gives a a number for any angle. We frequently need
to be able to go from a trig value back to an angle, and the most
useful function for that is called the inverse tangent, or arctangent.

Even though I have been talking about triangles, trig functions are
even more related to circles. We compute functions of the angle
between any two radii, like the hands on an old-fashioned, pre-digital
wrist watch. When we start talking about circles, we get into radians
vs. degrees.

Just as scientists like logarithms to the base e (rather than 10),
they also like trig functions based on angles expressed in radians,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1776 of 2550

Apple II Computer Info

rather than degrees. Degrees were invented back in Babylon, I
understand, and are nice and clean: 360 make a complete circle.
Radians are not clean: 360 degrees is two-times-pi radians.
Nevertheless, many physical and electronic formulas simplify when
angles are expressed in radians. Consequently, calculators and
computer languages usually expect your angles to be expressed in
radians. Some allow both options. Applesoft expects radians, and so
do my DP18 programs.

We commonly think of an angle as being somewhere between 0 and 360
degrees, or the equivalent range in radians. However, angles can
actually be any number, from -infinity to +infinity. The numbers
beyond one complete circle are valid, but they don't buy much. If you
stand in one place and spin around 1445 degrees (4*360 + 5) you will
end up pointing the same direction as if you merely swiveled 5
degrees. Therefore the first step in a sine function calculation
involves subtracting out all the multiples of a full circle from the
angle.

The arctangent function could return an infinite number of answers,
but that is impractical. We will return only the principal value,
which is the one closest to 0. All others are that value plus or
minus any number of full circles. In DP18 the ATN function may have
one or two arguments. If you only have one argument, the result will
be an angle between -pi/2 and +pi/2. If you specify two arguments, a
value between -pi and +pi will be returned.

The Nitty-Gritty:

Enough of this preliminary stuff, let's get into the code. In the
listing which follows, you will find entries for four functions: SIN,
COS, TAN, and ATN.

Perhaps the easiest is the TAN function, at lines 2530-2630. Since
tan=sin/cos, that is all this code does. We lose a little speed and
possibly some precision with this simplistic solution, but the TAN
function is relatively rarely called.

Next in difficulty is the COS function, lines 1630-1710. Since cos(-
x)=cos(x), we start by making the sign positive (lines 1690-1700.
Since cos(x)=sin(x+pi/2), we add pi/2 and fall into the SIN function.
Simple, but effective.

The SIN function gets more interesting. For very very small angles,
within the precision of 20 digits, sin(x)=x. Lines 1780-1810 check
for exponents below -10; all angles smaller than 10^-10 are small
enough that sin(x)=x.

Next we take advantage of the fact that sin(-x)=-sin(x), at lines
1820-1860. We remember the sign by shoving it on the stack, and force
the sign of x positive.

Lines 1870-1950 get the principal angle. I divide x by twopi, and
throw away the integral part. The fractional part that remains is a

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1777 of 2550

Apple II Computer Info

fraction of a full circle, a value between 0 and .999999...9 (not
radians, and not degrees either). Note that if x was extremely large
there will be no fractional part, and the remainder will be zero.
Some SIN function calculators give an error message when this happens,
but I chose to let it ride.

Lines 1960-2000 multiply the circle-fraction by four. This gives a
number between 0 and 3.99999...9, which I will refer to later as the
"circle fraction times four", or c-f-t-f. The integer part is
effectively a quadrant number, and the fractional part a fraction
within the quadrant:
 |
 1 | 0

 2 | 3
 |

Lines 2010-2030 determine if the angle is in the first (0) quadrant.
If so, no folding need be done.

Lines 2040-2070 determine if the angle is in the second (1) quadrant.
If so, we skip ahead to apply the fact that sin(pi/2 + x) = sin(pi/2 -
x).

Lines 2080-2160 are executed if the angle is in the 3rd or 4th
quadrants (integral part is 2 or 3). Here I apply the fact that
sin(pi+x)=-sin(x). I pull the saved sign off the stack, complement
it, and shove it back on (lines 2090-2110). Then I subtract 2 from
the c-f-t-f, yielding a number between 0 and 1.99999...9. We have
folded the third and fourth quadrants over the first and second
quadrants. Next lines 2170-2190 determine if the result was in the
first quadrant or not.

Lines 2200-2240 fold a second quadrant number into the first quadrant,
by applying the fact that sin(pi/2+x) = sin(pi/2-x). Subtacting the
c-f-t-f from 2 flips us into the first quadrant.

Lines 2260-2270 pull the sign off the stack and make it the sign of
the angle. Remember that now the angle is a fraction (between 0 and
.99999...9) of a quadrant. After all these folding operations, the
angle might again be very very small, so lines 2280-2300 check for
that possibility. If so, sin(x)=x, but that is only true when x is in
radians. Lines 2490-2520 convert the quadrant-fraction to radians by
multiplying by pi/2, and exits.

Lines 2310-2470 handle larger angles by computing x*P/Q, where P and Q
are polynomials in x^2. The constants for P and Q are given in lines
1420-1550, and come from the Hart book. [I should mention here that
I wrote those constants with pretty periods separating groups of five
digits. This will not assemble in some older versions of the S-C
Macro Assembler. If you get a syntax error, just leave out the
periods.]

Turning the Tables:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1778 of 2550

Apple II Computer Info

ATN is hardest to compute. First we have to deal with the two
variants of calls, having one or two arguments. While all the
previous function programs were called with the argument already in
DAC, DP.ATN is called immediately after parsing the ATN-token. Lines
2960-3070 parse and process the following parentheses and whatever is
between them.

Lines 2960-2970 require an opening parenthesis. Line 3070 requires
the closing parenthesis. In between we expect one expression, or two
expressions separated by a comma. If there is only one, we fake a
second one (= 1.0).

What are the two arguments? Looking at a cartesian system, with the
vector shown below, the arguments are (Y,X). If you call with one
argument, it is (Y/X).

 y
 |
 | .
 |
 --------x
 |

By using two separate arguments, rather than just the ratio, we can
tell which of the four quadrants the vector was in. DP.ATAN will
return a value between -pi and +pi, depending on the two signs. If
you specify only the ratio, DP.ATAN will return a value between 0 and
+pi depending on the sign.

Lines 3120-3160 save the two signs in bits 6 and 7 of UV.SIGN. Way at
the end, lines 4100 and following, UV.SIGN determines the final value.
If the sign of the denominator (X-vector) was negative, the composite
vector is in the 2nd or 3rd quadrant: computing pi - angle gives a
result between pi/2 and pi.

If the numerator (Y-vector) was negative, the composite vector is in
the 3rd or 4th quadrant. Flipping the sign gives a result between 0
and -pi.

Lines 3180-3220 check for special cases of Y=0 or X=0. If the first
argument (Y-vector) is zero, the angle is 0 or pi depending on the
sign of the second argument. If the second argument (X-vector) is
zero, the angle is either +pi/2 or -pi/2, depending on the sign of the
first argument. What if both arguments are zero? That should produce
an error message, but I am overlooking it: I will return an angle of
0 in this case.

If neither argument is zero, some special checks are made to see if
the value of the ratio is very small or very large. I check before
actually dividing, so the divide routine won't kick out on an overflow
error. If the ratio would be greater than 10^20, I return a value of
pi/2. This is accurate within the precision of DP18. On the other
hand, if the ratio is smaller than 10^-63 I return 0. If neither

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1779 of 2550

Apple II Computer Info

extreme is true, I go ahead an divide to get the actual ratio. Then I
check for an extremely small ratio, in which case atan(x)=x.

If we find our way down to line 3390, the ratio is between 10^-10 and
10^20. That is still too large a range for comfort, so we apply the
fact that atan(1/x) = atan(pi/2 - x). If the ratio of Y/X is greater
than 1.0, then we take the reciprocal and remember that we did so.
This in effect folds the range at pi/4. The resulting argument range
is between 10^-10 and 1. The variable N holds either 0 or 2 as a
flag: 0 if we were already under 1, 2 if we formed the reciprocal.

The shape of the curve of the arctangent function between 0 and 1 (an
angle between 0 and pi/4) is deceptive. It looks nice and easy, but a
polynomial over that range with 20 digits of precision is much too
long. We can easily reduce the range still further by applying
another identity. If the reduced argument is now already below
tan(pi/12), fine. If not, calculating (x*sqr(3)-1) / (sqr(3)+x) will
bring it into that range. If we have to apply that formula, N will be
incremented (making it 1 or 3).

The curve between 0 and tan(pi/12) looks almost like a straight line
to the naked eye, but it really is far from straight. It takes a
ratio of the form P/xQ where P and Q are polynomials in x^2. The
coefficients are given in lines 2650-2770, again from Hart. The ratio
is computed in lines 3800-3960.

Lines 3970-4080 start the unfolding process. The variable N is either
0, 1, 2, or 3 by this time. If N is 0, no folding was done. If N is
1, only folding above pi/12 was done. If N is 2, only folding above
pi/4 was done. If N is 3, both folds were done. These lines convert
the angle back to the correct value, using a table of addends and an
optional sign flip:

 N unfolding formula

 0 none
 1 pi/6 + x
 2 pi/2 - x
 3 pi/2 - (pi/6 + x) = pi/3 - x

That's it! We already discussed the code beyond line 4100, which
figures out which quadrant the angle is in.

Any questions?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1780 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:Front.Page.txt
==

Volume 5 -- Issue 3 December, 1984

In This Issue...

18-Digit Arithmetic, Part 8. 2
More Details on Using 65C02's in Older Apples. 15
"Inside the Apple //e", a Review 16
Correction re MVN and MVP in 65802 18
Strange Way to Divide by 7 19
Sly Hex Conversion . 21
Remembering When . 23
Generating Tables for Faster Hi-Res. 24
Blankenship's BASIC. 26
Solution to Overlapping DOS Patches. 27

New Source for 65802's

I talked to Constantine Geromnimon at Alliance Computers this morning.
His company has ordered hundreds of 65802's, and offers them to you at
$49.95 each. They expect their next shipment to come in around the
middle of January, so now is the time to order. Call them at (718)
672-0684, or write to P. O. Box 408, Corona, NY 11368.

EPROM Programmer

A new EPROM Programmer, called the PROmGRAMER, is out from SCRG (the
makers of quikLoader). This one burns anything from 2716's up to
27256's, and retails at $149.50. We'll sell 'em to you for a nice
round $140. The software comes on disk, with instructions for loading
it into EPROM for the quikLoader card.

Tom Weishaar Writes Again!

If you are among the throng who mourn the passing of Softalk, and
particularly of the many informative columns such as DOStalk by Tom
Weishaar, you will be as glad as I am that Tom has started publishing
his own monthly newsletter.

Called "Open-Apple", you can subscribe for $24. In an unprecedented
move toward international goodwill and the wholesome exchange of
information, Tom has set the price the same for everyone, everywhere.
We promptly sent him a check. If you love your Apple, do likewise.
Send to Open-Apple, 10026 Roe, Overland Park, Kansas 66207. If you
are cautious, send no money; Tom will bill you with the first issue,
and you can cancel if you lose interest.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1781 of 2550

Apple II Computer Info

for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1782 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:Funny.DivBy7.txt
==

Strange Way to Divide by 7.................Bob Sander-Cederlof

Division by seven is a necessary step for hi-res plotting routines.
The quotient is the byte index on a given scan line. The remainder
gives the bit position within that byte.

The hi-res code inside the Applesoft ROMs uses a subtraction loop to
divide by seven, which can loop up to 36 times at 7 cycles per loop.
This is a maximum of over 250 cycles, which is why super-fast hi-res
usually uses lookup tables for the quotient and remainder.

I stumbled on a faster way of dividing any value up to 255 by seven.
This is not directly usable by standard hi-res, because the x-
coordinate can be as large as 279. My trick also does not give the
remainder, just the quotient.

Here is the program, along with a test routine which tries every value
from 0 to $FF, printing the quotient. The output from the test
program is also shown, and you can see that the quotient is correct in
every case. Can you explain why it works?

[Hint: 1/7 = 1/8 + 1/64 + 1/512 + 1/4096 + ...]

<<<<program>>>>

It is possible to divide by 3 or 15 using a program based on the same
principle as the divide-by-seven above. Here is the code for those.

>>>>listings>>>>>, side by side>>>>>

Using the divide by 15, you could make a divide by ten. First
multiply the original number by three (by shifting one bit left and
adding), then divide by 15 using the above program, and then by 2 (by
shifting one bit right). Since 3X/30 = X/10, there you have it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1783 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:Hex.To.Dec.txt
==

Sly Hex Conversion.........................Bob Sander-Cederlof

Have you ever wondered what would happen if you added, in the 6502
decimal mode,values that were not decimal? I have. I also wondered
if any of the results might be useful.

For example, what happens if I add 0 to $0A, in decimal mode? The
following little piece of code will tell me:

 CLC
 SED set decimal mode
 LDA #$0A
 ADC #0
 CLD clear decimal mode
 JMP $FDDA monitor print byte routine

Lo! The $0A turns into $10! It makes sense, because of course adding
zero does not change anything. But the automatic "decimal adjust"
that occurs after the add when the 6502 is in decimal mode detects the
"A" nybble, generates a carry to the next nybble, and subtracts $0A.

It turns out the same process turns $0B into $11, $0C into $12, and so
on up to $0F into $15.

That is a useful result! That means that I can convert a hex nybble
to BCD byte by merely adding zero when in decimal mode!

A little further experimentation will lead to another useful trick.
If I add first $90 and then $40, both additions in decimal mode, a
value between $00 and $0F will be converted to the ASCII code for the
digits 0-9 and letter A-F. Believe it or not!

The first addition, of $90, gives us $90-$9F. The automatic "decimal
adjust" does nothing to $90-$99, and carry will be clear afterwards.
If the intermediate result was $9A-$9F, the decimal adjust will first
generate a nybble carry because the A-F nybble is greater than 9, and
reduce that nybble by A. The nybble carry will increment the 9 nybble
to A, which gets reduced back to 0 and a byte carry is set. This
means we end up with $90-$99 with carry clear or $00-$05 with carry
set.

Adding $40 in the next step brings the $90-$99 up to $30-$39 (with
carry out of the byte, which we will ignore). The $00-$05 will be
brought up to $41-$45, ASCII codes for A-F. Voila!

Useful, but maybe not the best. It turns out that a more traditional
approach is only one byte longer and saves a few cycles. With the
value $00-$0F in the A-register:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1784 of 2550

Apple II Computer Info

 CMP #$0A
 BCC .1 0-9
 ADC #6 convert A-F to $11-16
 .1 ADC #$30

will convert to ASCII.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1785 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:HiresTableMaker.txt
==

Generating Tables for Faster Hi-Res........Bob Sander-Cederlof

Look on page A23 in the Apple Supplement in the back of the December
1984 issue of Byte for an excellent article for the hi-res graphics
buff: "Preshift-Table Graphics on Your Apple", by Bill Budge, Gregg
Williams, and Rob Moore.

The article presents another of Bill Budge's secrets for fast
animation using block graphics. If you want to move a block a few
dots left or right, it is time-consuming to shift the 7-bits-in-8 dot
images. Older techniques stored pre-shifted sets for each image that
might be moved. The neater method described in this article stores a
14x256 byte table of all possible shifts of all possible bytes, and
uses a fast lookup technique. I am not going to repeat all that here
... get the article.

The article also included some sample programs that used two other
tables: a 192 entry address table for the addresses of each hi-res
line, and a 280 entry table for the quotient and remainder of each
horizontal position. Both of these tables were originally generated
by Applesoft programs, and BSAVEd. The example program BLOADed them.

It dawned on me that a machine language program to generate those two
tables would take less than half a page of code and be considerably
faster than BLOADing pre-generated tables. Furthermore, once the
tables were generated, the half-page of code could be overlaid with
other programs or data. In a commercial product, this could cut down
the boot time significantly.

First I wrote a program to generate the 192 addresses. This was
almost a hand-compilation of the Applesoft program in the Byte
article, but not quite. (I wrote the comments in near- Basic, as you
can see.)

Then I merged into that program the stuff to generate the first 192
quotients and remainders. This is the horizontal dot position divided
by 7 (7 dots per byte) to give the byte position on the line and the
bit position in that byte.

After the 192 trips through that code, I added a loop to generate the
rest of the Q/R pairs, from dot position 192 up to 279.

I timed the program by running it 250 times. All 250 took roughly 3
seconds, which means building the tables once takes about 12
milliseconds. Compare that to loading them from disk, which would
take at least a half second.

I haven't tried it yet, but I think the preshift tables which were the
meat of the Byte article could also be generated by a machine language

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1786 of 2550

Apple II Computer Info

program much quicker than BLOADing the same. And since the program
only needs to be used once, during initialization, it too could be
burned after using.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1787 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:IIe.Auxmem.LC.txt
==

Using the //e or //c Auxiliary Memory "Language Card"
 William M. Reed

From what I have seen in print, I had assumed that the portion of the
80 column "aux memory" that corresponds to the language card is
(generally) unavailable for use. This assumption is only partly true.

In order to access this area ($D000-FFFF, banks 1 and 2) you must
switch the ZERO PAGE at the same time. There seem to be no examples
of this in the Apple manual, and very little advice.

The only "tricky" thing was to save the stack pointer (in the old
manual supplement) before switching zero pages and language cards.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1788 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:IIPlus.65C02.txt
==

More Detail on Using 65C02's in old Apples......Andrew Jackson

In recent issues of AAL there have been several articles on the 65C02
and how to get it running in the Apple II+. I too was keen to get a
65C02 working in my machine, and had spent some time trying to get
first a 1MHz part and then a 2MHz part to work.

William D. O'Ryan's letter in the June 84 AAL prompted me to try again
and I am happy to report that the modification he described does work
(replacing the LS257's at B6 and B7 with F257's). I wanted to find
exactly why I could not simply substitute a 65C02 for a 6502, and so I
spent some time looking at the circuit and specifications, using an
oscilloscope to check my results.

The reasons that I eventually came up with are as follows. The Apple
II circuit relies on various 'features' of the 6502 so that all the
various parts of the Apple will work. The circuit diagram shows that
the system timing is derived from o/0; the 6502 actually expects
system timing to be derived from o/2. There is a slight delay between
these two signals: on a 6502 it is about 50ns and on a 65C02 it is
about 30ns. This difference in delays is what causes the problems
when fitting a 65C02.

To simplify its circuit design the Apple uses a rather dirty trick
when reading data from RAM memory. Normally when the 6502 reads data
it expects the data on the bus to be valid 100ns before the end of
o/2, and it latches the data into its internal registers when o/2
changes. The setup time allows the data bus to settle into a
consistent state before being read. The Apple reduces the setup time
to about 45 ns (worst case). This setup time would be ample for the
65C02 were it not for the shift between o/0 and o/2; this shift
reduces the setup time to 25ns. A 2MHz 65C02 specifies a MINIMUM 40ns
setup time; obviously there is a -15ns tolerance on the setup time,
and hence the processor works erratically when timings fall into worst
case conditions.

The tolerance is regained by substituting 74F257's for the two
74LS257's at board locations B6 and B7. These two chips multiplex the
RAM data and the keyboard data; in doing so they add a delay of 30ns
worst case to the data. By substituting F257's, the added delay is
reduced to 5 ns; this changes the tolerance on the data setup time
from -15ns to +10ns.

The Apple //e must use a slightly modified technique when reading data
from RAM which explains why a 65C02 works in it without any
modifications. I cannot check this as I do not have a //e circuit
description. Anyway, it is probably all inside the MMU chip.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1789 of 2550

Apple II Computer Info

[The 65816 specifications state a minimum read data setup time of
50ns, 10ns longer than the 65C02. One AAL reader has called us to
report that the 65802 works wonderfully well in his old II+, even
better than the original 6502. Some of you have wondered where to get
the F257's: try Jameco Electronics, 1355 Shoreway Road, Belmont, CA
94002, phone (415) 592-8097. Their ad in Byte, Dec '84, page 349,
says they have 74F257's at $1.79 each. (editor)]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1790 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:Little.Review.txt
==

Gary Little's New Book, "Inside the Apple //e"

This is a useful book. The kind you want to keep, read, and
constantly use as a reference. About 400 pages thick, 6x9, published
by Brady Communications at $19.95.

Gary, a lawyer in Vancouver, has been serious about Apples since 1978
(almost as long as me). He's a long-time subscriber to AAL, Call
APPLE, and other sources of the in-depth knowledge crammed into his
book. He's also a programmer, with serious software on the market
such as "Modem Magician". He knows what he's writing about, and
writes it well.

A walk through the chapters may be the quickest way to get the measure
of the book.

1--condensed history of Apple; intro. to binary, hex, and assembly
language.

2--inside the 6502 itself: zero page, stack, registers, status,
opcodes, address modes, I/O, interrupts, and the memory layout in the
//e.

3--the Apple monitor: the commands explained, plus a table of the
most useful subroutines in the monitor ROM.

4--Applesoft: memory map, tokenization, variable storage, integer and
real numbers, the CHRGET subroutine, linking to assembly language
programs, subroutines in ROM, and more.

5--DOS: internal structure, memory map, page 3 vectors, VTOC,
catalog, track/sector lists, RWTS, and a read.sector program. ProDOS:
memory map, page 3 vectors, volume bit map, directory, MLI, and a
read.block program.

6--character input and the keyboard: RDKEY, 80-column firmware,
RDCHAR, reading a line, changing input devices, encoding of keys,
auto-repeat, type-ahead, all about RESET.

7--character and graphic output: too much to list here, all the way
through double hi-res.

8--memory management: bank switching of ROM and RAM, auxiliary RAM,
running co-resident programs.

9--speaker and cassette ports: music and voice.

10--game port: experiments, push button inputs, annunciators, strobe.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1791 of 2550

Apple II Computer Info

11--peripheral slots: I/O memory locations, slot ROM, expansion ROM,
scratchpad RAM, auxiliary slot, software protocols.

Many useful and interesting programs are listed in the book. There is
an optional diskette available (coupon bound in the book offers it for
$20). The diskette also includes a few bonus utility programs for use
with DOS 3.3, including RAMDISK and DISK MAP.

Each chapter ends with a bibliography of related books, manuals, and
articles. (You'll find lots of references to AAL.)

If you grew along with Apple, as I did, you probably don't really need
this book. On the other hand, you will still enjoy it, and probably
want it for you collection. If you are relatively new, and having
difficulty gathering all the information from past publications and
scattered sources, you will want Gary's book too.

As you might suspect, we like the book so well we have decided to
stock it. You can get from us for $18 plus shipping (and tax where
applicable).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1792 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 2.0......................................$100
Version 2.0 Update..$20
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984 QD#15: Apr-Jun 1984
 QD#16: Jul-Sep 1984 QD#17: Oct-Dec 1984

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39

Quick-Trace (Anthro-Digital)...........CLOSEOUT SPECIAL!..(reg. $50) $45/// $35

Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36

Blank Diskettes (Verbatim)...........$2.25 each, or package of 20 for $40
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
quikLoader EPROM System (SCRG)................................($179) $170
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32
PROMgrammer (SCRG)...($149.50) $140

Books, Books, Books..........................compare our discount prices!

 "Inside the Apple //e", Little..........................($19.95) $18
 "Apple II+/IIe Troubleshooting & Repair Guide", Brenner.($19.95) $18
 "Apple][Circuit Description", Gayler..................($22.95) $21

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1793 of 2550

Apple II Computer Info

 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15
 Second edition, with //e information.
 "Assembly Cookbook for the Apple II/IIe", Lancaster.....($21.95) $20
 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Beneath Apple ProDOS", Worth & Lechner.................($19.95) $18
 "What's Where in the Apple", Second Edition.............($19.95) $19
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($18.95) $18
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9
 "Microcomputer Graphics", Myers.........................($12.95) $12

Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1794 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:Overlap.Patches.txt
==

A Solution to Overlapping DOS Patches.............Paul Lewis
 Fairfax, Virginia

I have recently resolved a compatibility problem between two desirable
sets of DOS 3.3 patches: the RAMdisk of the 192K Neptune extended
memory card, and the DOS Dater that comes with Applied Engineering's
Timemaster II. It seems they both want to put patches into the same
"unused" spaces inside DOS.

After examining the two patches carefully, I found out which parts of
the patches were overlapping. Being unable to find a truly unused
area inside DOS, I used the technique on page 7.3 of "Beneath Apple
DOS" of placing routines in the "safe" area between DOS and its
buffers. This seems to work fine. [Until you try to run some other
program that does the same thing, like PLE... (editor)]

The file DATER.OBJ0 contains the DOS.DATER patch that I use. I
noticed that the patch could be placed anywhere, since there are no
internal references. Using an Applesoft program (part of my HELLO), I
move the DOS buffers down far enough to fit this code in, and then
BLOAD the patches.

100 PRINT CHR$(4)"BRUN AUTO NEPTUNE"
110 PRINT "PSEUDO DISK INSTALLED"
120 POKE 40192,128 : REM Lower the buffers
130 PRINT CHR$(4)"MAXFILES 3"
140 PRINT "BUFFERS MOVED"
150 PRINT CHR$(4)"BLOAD DATER.OBJ0,A$9CD0"
160 POKE 45571,15 :REM Patch file name length
170 POKE 42883,14
180 POKE 44085,208 :REM Hook DOS to the DATER code
190 POKE 44086,156
200 PRINT "DOS DATER INSTALLED"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1795 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:RememberingWhen.txt
==

Remembering When...........................Bob Sander-Cederlof

There is a lot of grumbling going on, or at least so says the media.
Supposedly Mac owners are MAD over Apple's $995 price tag for the 512K
upgrade kit. And the fact that new buyers get a lower system price
makes them even madder.

If it's true, then I guess the computer "for the rest of us" has found
a market with a real-estate or Detroit mentality. Haven't they
noticed that prices on virtually all electronic items go down every
year? (I always say, "If houses and cars had gone the way electronics
has over the last 30 years, we would now be able to buy a 3-bedroom
home for two dollars and a nice car for 50 cents. Of course they
would both fit on the head of a pin....")

I remember when I bought my Apple, with two rows of 4K RAM chips
totalling 8K bytes. Adding another row of 4K chips would have cost me
about $50. The price at that time for one set of 8 16K chips was
$520. Through a special arrangement at Mostek, members of our local
club were able to get them for $150. So to raise my Apple from 8K to
48K cost me $450. Retail price would have been $1560, plus tax.

Looking back even further, I found a letter from a Raymond Hoobler to
the editor of the Journal of Dentistry, from October 1976. Ray owned
an Apple 1, which was populated with 1K RAM chips. He was VERY happy
with Apple's promise of an upgrade kit consisting of 4K RAM chips for
ONLY $500!

It will not be too long before the price of 256K RAMs drops. Then we
can start grumbling about the price of 4-megabyte upgrade kits. Or,
we could rejoice at the blessings of ever improving technology, mass
marketing, and understanding wives.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1796 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:Articles:XMas.CloseOuts.txt
==

Some Christmas Specials....................Bob Sander-Cederlof

We only have a limited quantity of some of the following items, and
since they are out of the main stream of our business we probably will
not be re-ordering them.

 # in Regular Special
Item stock price price

Quick-Trace 11 $49.95 $35

The DOS Enhancer 1 $69.95 $30

Add-on Libraries for The Routine Machine
 &Screen 1 $29 $15
 &Chart 1 $29 $15
 &Array 1 $29 $15

Micro On The Apple (book and disk)
 Volume 1 1 $24.95 $10
 Volume 2 2 $24.95 $10

Think Tank (II+ 40-col) 1 $120 $60

Good books we probably will not re-stock
 Z-80 Subroutines 3 $18.95 $12
 by Lance Leventhal

 68000 Assem Lang Prog 3 $18.95 $12
 by Lance Leventhal

 Data Base Mgmt Systems 3 $16.95 $10.50
 by David Kruglinski

 Programmer's CP/M Hbk 1 $21.95 $14

 User Guide to Unix 1 $17.95 $11

 Graphics Primer/IBM PC 2 $21.95 $14

 Visicalc Home/Office 1 $15.99 $9

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1797 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:DOS3.3:S.DP18.TRIG.txt
==

 1000 *SAVE S.DP18 TRIG
 1010 *--------------------------------
 1020 AS.CHRGET .EQ $B1
 1030 AS.CHRGOT .EQ $B7
 1040 AS.CHKCLS .EQ $DEBB
 1050 AS.CHKOPN .EQ $DEB8
 1060 *--------------------------------
 1070 POLY.1 .EQ $FFFF
 1080 POLY.N .EQ $FFFF
 1090 DADD .EQ $FFFF
 1100 DSUB .EQ $FFFF
 1110 DMULT .EQ $FFFF
 1120 DDIV .EQ $FFFF
 1130 DP.INT .EQ $FFFF
 1140 DP.EXP .EQ $FFFF
 1150 DP.TRUE .EQ $FFFF
 1160 DP.FALSE .EQ $FFFF
 1170 MOVE.DAC.ARG .EQ $FFFF
 1180 MOVE.YA.ARG.1 .EQ $FFFF
 1190 MOVE.YA.DAC.1 .EQ $FFFF
 1200 SWAP.ARG.DAC .EQ $FFFF
 1210 MOVE.DAC.TEMP1 .EQ $FFFF
 1220 MOVE.DAC.TEMP2 .EQ $FFFF
 1230 MOVE.DAC.TEMP3 .EQ $FFFF
 1240 MOVE.TEMP1.DAC .EQ $FFFF
 1250 MOVE.TEMP1.ARG .EQ $FFFF
 1260 MOVE.TEMP2.ARG .EQ $FFFF
 1270 MOVE.TEMP3.ARG .EQ $FFFF
 1280 PUSH.DAC.STACK .EQ $FFFF
 1290 POP.STACK.ARG .EQ $FFFF
 1300 *--------------------------------
 1310 DAC.EXPONENT .BS 1
 1320 DAC.HI .BS 10
 1330 DAC.SIGN .BS 1
 1340 *--------------------------------
 1350 ARG.EXPONENT .BS 1
 1360 ARG.HI .BS 10
 1370 ARG.SIGN .BS 1
 1380 *--------------------------------
 1390 N .BS 1
 1400 UV.SIGN .BS 1
 1410 *--------------------------------
 1420 P.SIN .EQ *
 1430 P.SIN.N .EQ 6 P6*X^6 + P5*X^5 + ... + P1*X + P0
 1440 .HS 3C.50312.63884.64664.12845 P6
 1450 .HS BE.82818.08039.29577.39110 P5
 1460 .HS 40.62919.63490.93113.55230 P4
 1470 .HS C2.25642.44036.60338.57070 P3
 1480 .HS 43.53892.64053.57788.76289 P2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1798 of 2550

Apple II Computer Info

 1490 .HS C4.49326.67470.47152.36677 P1
 1500 .HS 45.12596.16380.91365.41816 P0
 1510 *--------------------------------
 1520 Q.SIN .EQ *
 1530 Q.SIN.N .EQ 2 X^2 + Q1*X + Q0
 1540 .HS 43.15743.43316.33194.13935 Q1
 1550 .HS 44.80189.66936.87727.15787 Q0
 1560 *--------------------------------
 1570 CON.ONE .HS 41.10000.00000.00000.00000
 1580 CON.TWO .HS 41.20000.00000.00000.00000
 1590 CON.2PI .HS 41.62831.85307.17958.64769
 1600 CON.PI.2 .HS 41.15707.96326.79489.66192
 1610 CON.PI .HS 41.31415.92653.58979.32385
 1620 CON.1..2PI .HS 40.15915.49430.91895.33577 1/2PI
 1630 *--------------------------------
 1640 * COS (DAC)
 1650 *--------------------------------
 1660 DP.COS LDA #CON.PI.2 PI/2
 1670 LDY /CON.PI.2
 1680 JSR MOVE.YA.ARG.1 COS(X) = SIN(X+PI/2)
 1690 LDA #0 GET ABS(DAC) TO FORCE
 1700 STA DAC.SIGN ...COS(-X)=COS(X)
 1710 JSR DADD
 1720 *--------------------------------
 1730 * SIN (DAC)
 1740 * #3371
 1750 *--------------------------------
 1760 DP.SIN
 1770 *---IF X VERY SMALL...-----------
 1780 LDA DAC.EXPONENT
 1790 CMP #$40-10
 1800 BCS .1 NOT VERY SMALL
 1810 RTS VERY SMALL, SIN(X)=X
 1820 *---ADJUST FOR SIGN OF X---------
 1830 .1 LDA DAC.SIGN SIN(-X) = - SIN(X)
 1840 PHA ...SO SAVE SIGN OF X
 1850 LDA #0 ...AND MAKE X POSITIVE
 1860 STA DAC.SIGN
 1870 *---X*(1/2PI)--------------------
 1880 LDA #CON.1..2PI
 1890 LDY /CON.1..2PI
 1900 JSR MOVE.YA.ARG.1
 1910 JSR DMULT
 1920 *---GET FRACTIONAL PART----------
 1930 JSR MOVE.DAC.ARG
 1940 JSR DP.INT
 1950 JSR DSUB
 1960 *---FOLD QUADRANTS INTO ONE------
 1970 JSR MOVE.DAC.ARG MULTIPLY BY FOUR
 1980 JSR DADD BY DOUBLING TWICE
 1990 JSR MOVE.DAC.ARG
 2000 JSR DADD 0 <= DAC < 4
 2010 LDA DAC.EXPONENT IS DAC < 1?
 2020 CMP #$41

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1799 of 2550

Apple II Computer Info

 2030 BCC .4 ...YES, IT IS IN 1ST QUADRANT
 2040 *---2ND, 3RD, OR 4TH-------------
 2050 LDA DAC.HI
 2060 CMP #$20 IS DAC < 2.0?
 2070 BCC .3 ...YES, 1ST OR 2ND QUADRANT
 2080 *---FOLD 3RD-4TH OVER 1ST-2ND----
 2090 PLA ...NO, FLIP SIGN FOR
 2100 EOR #$80 3RD OR 4TH QUADRANTS
 2110 PHA
 2120 LDA #CON.TWO FOLD 3RD & 4TH OVER 1ST & 2ND
 2130 LDY /CON.TWO
 2140 JSR MOVE.YA.ARG.1
 2150 JSR SWAP.ARG.DAC
 2160 JSR DSUB
 2170 LDA DAC.EXPONENT
 2180 CMP #$41
 2190 BCC .4 ...ALREADY IN 1ST
 2200 *---FOLD 2ND OVER 1ST------------
 2210 .3 LDA #CON.TWO LET X=2-X
 2220 LDY /CON.TWO
 2230 JSR MOVE.YA.ARG.1
 2240 JSR DSUB
 2250 *---ANGLE NOW IN 1ST QUADRANT----
 2260 .4 PLA PUT FINAL SIGN ON X
 2270 STA DAC.SIGN
 2280 LDA DAC.EXPONENT CHECK FOR VERY SMALL
 2290 CMP #$40-9
 2300 BCC .5 ...YES, SIN(X)=X*PI/2
 2310 JSR MOVE.DAC.ARG PREPARE FOR POLYNOMIALS
 2320 JSR MOVE.DAC.TEMP1 X IN TEMP1
 2330 JSR DMULT X*X IN TEMP2
 2340 JSR MOVE.DAC.TEMP2
 2350 LDA #P.SIN
 2360 LDY /P.SIN
 2370 LDX #P.SIN.N
 2380 JSR POLY.N
 2390 JSR MOVE.DAC.TEMP3
 2400 LDA #Q.SIN
 2410 LDY /Q.SIN
 2420 LDX #Q.SIN.N
 2430 JSR POLY.1
 2440 JSR MOVE.TEMP3.ARG
 2450 JSR DDIV P/Q
 2460 JSR MOVE.TEMP1.ARG XP/Q
 2470 JMP DMULT
 2480 *--------------------------------
 2490 .5 LDA #CON.PI.2 FOR VERY SMALL X
 2500 LDY /CON.PI.2 SIN(2X/PI) = X*PI/2
 2510 JSR MOVE.YA.ARG.1
 2520 JMP DMULT
 2530 *--------------------------------
 2540 * TAN (DAC) = SIN(DAC) / COS(DAC)
 2550 *--------------------------------
 2560 DP.TAN JSR PUSH.DAC.STACK SAVE ANGLE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1800 of 2550

Apple II Computer Info

 2570 JSR DP.SIN TAN=SIN/COS
 2580 JSR POP.STACK.ARG GET ANGLE
 2590 JSR PUSH.DAC.STACK SAVE SIN
 2600 JSR SWAP.ARG.DAC
 2610 JSR DP.COS GET COSINE
 2620 JSR POP.STACK.ARG GET SIN
 2630 JMP DDIV SIN/COS
 2640 *--------------------------------
 2650 P.ATN .EQ * HART # 5505
 2660 P.ATN.N .EQ 3 P3*X^3 + P2*X^2 + P1*X + P0
 2670 .HS 42.12595.80226.30295.47240 P3
 2680 .HS 43.12557.91664.37980.65520 P2
 2690 .HS 43.29892.80380.69396.22448 P1
 2700 .HS 43.19720.30956.84935.02854 P0
 2710 *--------------------------------
 2720 Q.ATN .EQ *
 2730 Q.ATN.N .EQ 4 X^4 + Q3X^3 + Q2X^2 + Q1X + Q0
 2740 .HS 42.37066.08632.20190.23801 Q3
 2750 .HS 43.20769.26817.33604.63361 Q2
 2760 .HS 43.36466.24032.97707.76242 Q1
 2770 .HS 43.19720.30956.84935.02861 Q0
 2780 *--------------------------------
 2790 ATN.TBL.H
 2800 .DA /CON.PI.6
 2810 .DA /CON.PI.2
 2820 .DA /CON.PI.3
 2830 ATN.TBL.L
 2840 .DA #CON.PI.6
 2850 .DA #CON.PI.2
 2860 .DA #CON.PI.3
 2870 *--------------------------------
 2880 CON.TAN.PI.12 .HS 40.26794.91924.31122.70647
 2890 CON.PI.6 .HS 40.52359.87755.98298.87308
 2900 CON.PI.3 .HS 41.10471.97551.19659.77462
 2910 CON.SQR.3 .HS 41.17320.50807.56887.72935
 2920 *--------------------------------
 2930 * ATN FUNCTION
 2940 * 1 OR 2 ARGUMENTS
 2950 *--------------------------------
 2960 DP.ATN JSR AS.CHRGET
 2970 JSR AS.CHKOPN CHECK FOR (
 2980 JSR DP.EXP GET EXPRESSION
 2990 JSR PUSH.DAC.STACK
 3000 JSR DP.TRUE IN CASE 1 ARGUMENT
 3010 JSR AS.CHRGOT
 3020 CMP #', TWO-ARG?
 3030 BNE .1 NO
 3040 JSR AS.CHRGET GOBBLE ,
 3050 JSR DP.EXP YES,GET OTHER ONE
 3060 .1 JSR POP.STACK.ARG GET 1ST ARG BACK
 3070 JSR AS.CHKCLS REQUIRE ")"
 3080 *--------------------------------
 3090 * ATN (ARG,DAC) ARG/DAC
 3100 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1801 of 2550

Apple II Computer Info

 3110 DP.ATAN
 3120 LDA DAC.SIGN SAVE BOTH SIGNS
 3130 ASL SIGN OF DENOMINATOR
 3140 LDA ARG.SIGN SIGN OF NUMERATOR
 3150 ROR BIT 7 = DENOM SIGN
 3160 STA UV.SIGN BIT 6 = NUMER SIGN
 3170 *---CHECK FOR BOUNDARIES---------
 3180 LDA DAC.EXPONENT CHECK DENOMINATOR
 3190 BEQ .1 ...V/0, SO RETURN PI/2
 3200 SEC
 3210 LDA ARG.EXPONENT
 3220 BEQ .12 ...0/U, SO RETURN 0
 3230 SBC DAC.EXPONENT
 3240 BMI .13
 3250 CMP #20 IF >10^20, RETURN PI/2
 3260 BCC .11 ...NOT >10^20
 3270 .1 LDA #CON.PI.2 V/0 OR OVERFLOW
 3280 LDY /CON.PI.2 SO RETURN PI/2
 3290 JSR MOVE.YA.DAC.1
 3300 JMP DP.ATN.C
 3310 .13 CMP #-63 IF <10^-63, RETURN 0
 3320 BCS .11
 3330 .12 JSR DP.FALSE RETURN 0
 3340 .14 JMP DP.ATN.B
 3350 .11 JSR DDIV CALCULATE V/U
 3360 LDA DAC.EXPONENT
 3370 CMP #$40-10 IF X VERY SMALL, ATAN(X)=X
 3380 BCC .14 ...VERY SMALL INDEED!
 3390 *---FOLD AT PI/4-----------------
 3400 LDA #0 GET ABS(X), BECAUSE
 3410 STA DAC.SIGN SIGNS ALREADY REMEMBERED
 3420 STA N
 3430 LDA DAC.EXPONENT IS X<1?
 3440 CMP #$41
 3450 BCC .3 ...YES, X<1
 3460 LDA #CON.ONE FORM RECIPROCAL
 3470 LDY /CON.ONE
 3480 JSR MOVE.YA.ARG.1
 3490 JSR DDIV 1/X
 3500 LDA #2 AND REMEMBER WE DID IT
 3510 STA N
 3520 *---FOLD AT PI/12----------------
 3530 .3 JSR MOVE.DAC.TEMP1 SAVE X
 3540 LDA #CON.TAN.PI.12 TAN(PI/12)
 3550 LDY /CON.TAN.PI.12
 3560 JSR MOVE.YA.ARG.1
 3570 JSR DSUB IS X>TAN(PI/12)?
 3580 LDA DAC.SIGN
 3590 PHA
 3600 JSR MOVE.TEMP1.DAC RESTORE X
 3610 PLA
 3620 BPL .4 ...NO, WE DON'T HAVE TO FOLD
 3630 INC N ...YES, SO FORM
 3640 LDA #CON.SQR.3 (X*SQR(3)-1) / (SQR(3)+X)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1802 of 2550

Apple II Computer Info

 3650 LDY /CON.SQR.3
 3660 JSR MOVE.YA.ARG.1
 3670 JSR DMULT X*SQR(3)
 3680 JSR MOVE.DAC.ARG
 3690 JSR DP.TRUE
 3700 JSR DSUB X*SQR(3)-1
 3710 JSR MOVE.DAC.TEMP2 SAVE IT
 3720 JSR MOVE.TEMP1.ARG GET X
 3730 LDA #CON.SQR.3
 3740 LDY /CON.SQR.3
 3750 JSR MOVE.YA.DAC.1
 3760 JSR DADD SQR(3)+X
 3770 JSR MOVE.TEMP2.ARG
 3780 JSR DDIV THE ANSWER
 3790 JSR MOVE.DAC.TEMP1 SAVE FOLDED-UP X
 3800 *---ATAN(0...PI/12)--------------
 3810 .4 JSR MOVE.DAC.ARG
 3820 JSR DMULT X^2
 3830 JSR MOVE.DAC.TEMP2 SAVE X^2
 3840 LDA #P.ATN
 3850 LDY /P.ATN
 3860 LDX #P.ATN.N
 3870 JSR POLY.N
 3880 JSR MOVE.DAC.TEMP3
 3890 LDA #Q.ATN
 3900 LDY /Q.ATN
 3910 LDX #Q.ATN.N
 3920 JSR POLY.1
 3930 JSR MOVE.TEMP3.ARG GET P
 3940 JSR DDIV P/Q
 3950 JSR MOVE.TEMP1.ARG GET X
 3960 JSR DMULT P(X^2)/Q(X^2)*X
 3970 *---UNFOLD FROM PI/12, PI/4------
 3980 LDX N 0, 1, 2, OR 3
 3990 BEQ DP.ATN.B ...NO ADDEND
 4000 DEX 0, 1, OR 2
 4010 BEQ .5 ...NO COMPLEMENT
 4020 LDA DAC.SIGN ATAN(1/X)=ATAN(PI/2 - X)
 4030 EOR #$80
 4040 STA DAC.SIGN
 4050 .5 LDA ATN.TBL.L,X GET A(N)
 4060 LDY ATN.TBL.H,X
 4070 JSR MOVE.YA.ARG.1
 4080 JSR DADD X + A(N)
 4090 *---UNFOLD INTO QUADRANTS--------
 4100 DP.ATN.B
 4110 BIT UV.SIGN TEST SIGN OF DENOMINATOR
 4120 BPL DP.ATN.C ...POSITIVE, 1ST OR 4TH
 4130 LDA #CON.PI ...NEGATIVE, 2ND OR 3RD
 4140 LDY /CON.PI SO DO PI-X
 4150 JSR MOVE.YA.ARG.1
 4160 JSR DSUB
 4170 *--------------------------------
 4180 DP.ATN.C

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1803 of 2550

Apple II Computer Info

 4190 BIT UV.SIGN TEST SIGN OF NUMERATOR
 4200 BVC .6 ...POSITIVE, 1ST OR 2ND
 4210 LDA DAC.SIGN ...NEGATIVE, 3RD OR 4TH
 4220 EOR #$80 -X
 4230 STA DAC.SIGN
 4240 .6 RTS
 4250 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1804 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:DOS3.3:S.Funny.Divby15.txt
==

 1000 *SAVE S.FUNNY DIVIDE BY FIFTEEN
 1010 *--------------------------------
 1020 BYTE .EQ 0
 1030 *--------------------------------
 1040 T LDA #0
 1050 STA BYTE
 1060 .2 LDX #15
 1110 .1 JSR DIVIDE.BY.FIFTEEN
 1120 JSR $FDDA
 1130 INC BYTE
 1140 BEQ .3
 1150 DEX
 1160 BNE .1
 1170 JSR $FD8E
 1180 JMP .2
 1190 .3 RTS
 1200 *--------------------------------
 1210 DIVIDE.BY.FIFTEEN
 1220 LDA BYTE
 1230 LSR
 1240 LSR
 1250 LSR
 1260 LSR
 1270 ADC BYTE
 1280 ROR
 1290 LSR
 1300 LSR
 1310 LSR
 1320 ADC BYTE
 1330 ROR
 1340 LSR
 1350 LSR
 1360 LSR
 1370 RTS
 1380 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1805 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:DOS3.3:S.FunnyDivby3.txt
==

 1000 *SAVE S.FUNNY DIVIDE BY THREE
 1010 *--------------------------------
 1020 BYTE .EQ 0
 1030 *--------------------------------
 1040 T LDA #0
 1050 STA BYTE
 1060 .2 LDX #15
 1070 .1 CPX #7
 1080 BNE .4
 1090 LDA #$A0
 1100 JSR $FDED
 1110 .4 JSR DIVIDE.BY.THREE
 1120 JSR $FDDA
 1130 INC BYTE
 1140 BEQ .3
 1150 DEX
 1160 BNE .1
 1170 JSR $FD8E
 1180 JMP .2
 1190 .3 RTS
 1200 *--------------------------------
 1210 DIVIDE.BY.THREE
 1220 LDA BYTE
 1230 LSR
 1240 LSR
 1250 ADC BYTE
 1260 ROR
 1270 LSR
 1280 ADC BYTE
 1290 ROR
 1300 LSR
 1310 ADC BYTE
 1320 ROR
 1330 LSR
 1340 ADC BYTE
 1350 ROR
 1360 LSR
 1370 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1806 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:DOS3.3:S.FunnyDivby7.txt
==

 1000 *SAVE S.FUNNY DIVIDE BY SEVEN
 1010 *--------------------------------
 1020 BYTE .EQ 0
 1030 *--------------------------------
 1040 T LDA #0
 1050 STA BYTE
 1060 .2 LDX #14
 1070 .1 CPX #7
 1080 BNE .4
 1090 LDA #$A0
 1100 JSR $FDED
 1110 .4 JSR DIVIDE.BY.SEVEN
 1120 JSR $FDDA
 1130 INC BYTE
 1140 BEQ .3
 1150 DEX
 1160 BNE .1
 1170 JSR $FD8E
 1180 JMP .2
 1190 .3 RTS
 1200 *--------------------------------
 1210 DIVIDE.BY.SEVEN
 1220 LDA BYTE
 1230 LSR
 1240 LSR
 1250 LSR
 1260 ADC BYTE
 1270 ROR
 1280 LSR
 1290 LSR
 1300 ADC BYTE
 1310 ROR
 1320 LSR
 1330 LSR
 1340 RTS
 1350 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1807 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:DOS3.3:S.HEX.TO.DEC.txt
==

 1000 *SAVE S.HEX TO DEC
 1010 T LDX #0
 1020 .1 TXA
 1030 JSR $FDDA
 1040 LDA #"-"
 1050 JSR $FDED
 1060 TXA
 1070 *--------------------------------
 1080 SED
 1090 CLC
 1110 ADC #0
 1120 CLD
 1130 *--------------------------------
 1140 JSR $FDDA
 1150 LDA #"-"
 1160 JSR $FDED
 1170 TXA
 1180 *--------------------------------
 1190 SED
 1200 CLC
 1210 ADC #$90
 1220 ADC #$40
 1230 CLD
 1240 *--------------------------------
 1250 JSR $FDDA
 1260 LDA #"-"
 1270 JSR $FDED
 1280 TXA
 1290 *--------------------------------
 1300 CMP #10
 1310 BCC .2
 1320 ADC #6
 1330 .2 ADC #$30
 1340 *--------------------------------
 1350 JSR $FDDA
 1360 *--------------------------------
 1370 JSR $FD8E
 1380 INX
 1390 CPX #16
 1400 BCC .1
 1410 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1808 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:DOS3.3:S.MakeHiresAddr.txt
==

 1000 *SAVE S.MAKE HIRES ADDRS
 1010 *--------------------------------
 1020 I .EQ 0
 1030 JL .EQ 1
 1040 JH .EQ 2
 1050 K .EQ 3
 1060 Q .EQ 4
 1070 R .EQ 5
 1080 *--------------------------------
 1090 ADDRL .EQ $900
 1100 ADDRH .EQ $9C0
 1110 QUO.1 .EQ $A80
 1120 QUO.2 .EQ QUO.1+192
 1130 REM.1 .EQ QUO.1+280
 1140 REM.2 .EQ REM.1+192
 1150 *--------------------------------
 1160 BUILD LDX #0 FOR X = 0 TO 191 STEP 1
 1170 STX I FOR I = 0 TO $50 STEP $28
 1180 STX JL FOR J = 0 TO $0380 STEP $0080
 1190 STX JH
 1200 STX K FOR K = 0 TO $1C STEP $04
 1210 STX Q QUOTIENT = 0
 1220 STX R REMAINDER = 0
 1230 *---BUILD NEXT HI-RES ADDR-------
 1240 .1 LDA I
 1250 ORA JL
 1260 STA ADDRL,X
 1270 LDA #$20
 1280 ORA JH
 1290 ORA K
 1300 STA ADDRH,X
 1310 *---SAVE NEXT Q/R PAIR-----------
 1320 LDA Q
 1330 STA QUO.1,X
 1340 LDA R
 1350 STA REM.1,X
 1360 *---NEXT K-----------------------
 1370 CLC
 1380 LDA K
 1390 ADC #4
 1400 STA K
 1410 EOR #$20
 1420 BNE .2
 1430 *---NEXT J-----------------------
 1440 STA K
 1450 LDA JL
 1460 EOR #$80
 1470 STA JL
 1480 BNE .2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1809 of 2550

Apple II Computer Info

 1490 INC JH
 1500 LDA JH
 1510 EOR #4
 1520 BNE .2
 1530 *---NEXT I-----------------------
 1540 STA JH
 1550 CLC
 1560 LDA I
 1570 ADC #$28
 1580 STA I
 1590 *---BUMP Q/R PAIR----------------
 1600 .2 INC R R COUNTS 0...6
 1610 LDA R
 1620 EOR #7 IF R=7, MAKE 0 AND BUMP Q
 1630 BNE .3 ...NOT 7 YET
 1640 STA R ...R=7, SO MAKE IT 0
 1650 INC Q AND BUMP Q
 1660 *---NEXT X-----------------------
 1670 .3 INX
 1680 CPX #192
 1690 BCC .1
 1700 *---NOW FINISH Q/R PAIRS---------
 1710 *---BETWEEN 192 AND 279----------
 1720 LDX #0 FOR X = 0 TO 280-192-1
 1730 .4 LDA Q
 1740 STA QUO.2,X
 1750 LDA R
 1760 STA REM.2,X
 1770 *---BUMP Q/R PAIR AS BEFORE------
 1780 INC R
 1790 LDA R
 1800 EOR #7
 1810 BNE .5
 1820 STA R
 1830 INC Q
 1840 *---NEXT X-----------------------
 1850 .5 INX
 1860 CPX #280-192
 1870 BCC .4
 1880 RTS
 1890 *--------------------------------
 1900 .LIST OFF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1810 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8412:DOS3.3:S.Time.MVN.txt
==

 1000 *SAVE S.TIME MVN
 1010 .OP 65816
 1020 .OR $300
 1030 *--------------------------------
 1040 CNTR .EQ 0 AND 1
 1050 *--------------------------------
 1060 MVN.TIMER
 1070 CLC 65816 MODE
 1080 XCE
 1090 REP #$30 16-BIT MODE
 1100 *--------------------------------
 1110 LDA ##1000
 1120 STA CNTR
 1130 *--------------------------------
 1140 .1 LDX ##$3000 Source start address
 1150 LDY ##$4000 Destination start address
 1160 LDA ##9999 # Bytes - 1
 1170 MVN 0,0
 1180 DEC CNTR
 1190 * BNE .1
 1200 *--------------------------------
 1210 SEC RETURN TO 6502 MODE
 1220 XCE
 1230 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1811 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:Articles:DP18.Print.txt
==

18-Digit Arithmetic, Part 9................Bob Sander-Cederlof

Nearing the home stretch, this month I will cover the DP18 PRINT
statement. I believe that only leaves INPUT for next month.

Normal Applesoft PRINT has a wide variety of options. PRINT may
appear all by itself to print a carriage return, or with one or more
expressions. The expressions may be separated by commas or
semicolons: both are used to separate the expressions for syntax
purposes, but commas also cause a form of tabbing. A final comma or
semicolon may be used to suppress the normal carriage return at the
end of the printed line. All numeric values are printed in an
unformatted style.

We wanted to have additional formatting capabilities in DP18 PRINT.
Many users of Applesoft have tried to write money handling programs,
agonizing over the contortions necessary to make pretty reports.
BASIC on many other micros comes with PRINT USING, which includes a
string describing the exact format to use for print a list of items.
Applesoft doesn't have PRINT USING (we have graphics instead, and all
in a 10K interpreter). DP18 does.

DP18 doesn't have everything though. Here are some things we left
out. Commas may be used to separate items in a DP18 PRINT statement,
but no tabbing happens. Instead, commas cause carriage returns. DP18
values are so long that comma tabbing seemed useless. You cannot fit
two fully extended unformatted values in one 40-column line. Maybe
you could say we do tab, all the way to the next line. Anyway, this
gives us a useful NEW feature: the ability for one PRINT statement to
print on more than one line.

DP18 PRINT can only print DP18 expressions. Normal Applesoft real or
integer expressions can be printed by normal Applesoft PRINT, or by
converting them to DP18 values using VAL and STR$. Applesoft string
expressions can be printed using a DP18 "picture", but not in the
simple manner you are used to in normal Applesoft PRINT.

DP18 in its present form supports three different kinds of items in a
PRINT statement: DP18 expressions, #WD items, and $PIC items.

The first kind is the easiest to use, and will remind you a lot of
Applesoft. Since all you tell DP18 is the expression, it makes up its
own mind about the format to use. We call this "unformatted", because
it hard to predict how it will look once it is printed. If the
absolute value of the number to be printed is within the range from
.01 to 999,999,999,999,999,999 (18 digits) it will print as a normal
number, with no leading or trailing blanks and no trailing zeroes. If
outside that range, it will be printed with an E exponent. Doesn't

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1812 of 2550

Apple II Computer Info

this remind you of Applesoft? Here are some examples using numbers
(bear in mind they could be long complicated DP18 expressions):

]&DP:PRINT 1,2,3;4;5
 1
 2
 345
]&DP:PRINT .009,.01,999999999999999999
 9E-3
 .01
 999999999999999999
]&DP:PRINT 1000000000000000000
 1E+18
]

If a PRINT list item begins with the character "#", it is a #WD
formatted item. Three things follow the "#" character, separated by
commas: a field width, the number of fractional digits, and a DP18
expression. (If you have ever used Fortran, this is going to remind
you of the "Fw.d" format.)

 &DP:PRINT #w,d,value

The w and d parameters are Applesoft expressions (or simple
constants), and the value is a DP18 expression. The value will be
printed right-justified in a field w-characters wide, with d decimal
places after the decimal point. Leading blanks will be printed if
there is room for any. If the number will not fit in w characters, w
asterisks will be printed instead to show you there was an overflow
problem. Values are rounded to the required number of decimal places,
not just truncated. Here are some examples:

]&DP:PRINT #8,3,2.04;#8,3,5,#10,5,3.14159,#3,1,99
 2.040 5.000
 3.14159

]&DP:PRINT #8,4,3.14159,#7,3,3.14159,#6,2,3.14159
 3.1416
 3.142
 3.14

 100 FOR I=0TO5
 110 PRINT I;:&DP:PRINT #10-I,5-I,3.1415926
 120 NEXT
]RUN
 0 3.14159
 1 3.1416
 2 3.142
 3 3.14
 4 3.1
 5 3.

The third type of PRINT item begins with a dollar sign. A string
constant, variable, or expression follows the dollar sign. If the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1813 of 2550

Apple II Computer Info

picture specifies fields for DP18 or string values to be printed in,
then the list of values must follow the picture, all separated by
commas.

 &DP:PRINT $ picture
 &DP:PRINT $ picture,list

The "picture" is any Applesoft string expression; it is used as the
template for formatting the expressions in the optional list. The
list may have any number of expressions separated by commas as long as
they correspond with the picture. You may even have no expressions at
all, which is why I say the list is optional.

The picture consists of a string of characters. There are four basic
types of characters used in pictures: commands, literals, numbers,
and field descriptions. These are described below.

Any number in the picture makes up a repeat count. The repeat count
specifies how many times to repeat the following command or field-
description character. If a command is not preceded by a repeat
count, a 1 is assumed. Repeat counts may range anywhere from 1 to
255.

The commands which may be included in pictures give you control over
the screen and cursor. Some of the commands allow a repeat count to
be specified. In the following descriptions, "n" refers to the
optional repeat count. If no repeat count is used, n=1.

/ -- Prints n carriage returns.

X -- Prints n spaces.

> -- Clear to from the cursor to the end of line.
 If the next picture character is also ">",
 clear from the cursor to the end of screen.

V -- Performs VTAB n, where n must be from 1 to 24.

H -- Performs HTAB n. [As implemented now, this is
 probably not compatible with your printer or
 80-column cards.]

Literals are defined in strings using the apostrophe. Any text you
want to print from inside the picture may be included between
apostrophes. If you want to include an apostrophe inside a literal,
put two apostrophes in a row. If you put a repeat count before the
literal, it will be printed n times.

Now here are some examples using repeat counts, commands, and
literals.

&DP:PRINT $ "VH>>" (moves the cursor to the top left
 corner, and clears the screen.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1814 of 2550

Apple II Computer Info

]&DP:PRINT $ "'SEPARATE'/'LINES'"
SEPARATE
LINES
]&DP:PRINT $ "4V10H3'BANG! '"
starting at line 4 column 10 prints:
 BANG! BANG! BANG!

There are two kind of field descriptions: one for telling DP18 how to
print numbers and the other for telling how to print strings. Since
string descriptors are easier, let's start with them.

A string field descriptor tells DP18 how to print the value of an
Applesoft string. There are three different characters used, which
tell DP18 whether to left-justify, right-justify, or center the value
of the string within the field. Since we are building a "picture",
the width of the field is shown by using multiples of the controlling
character. The three different controlling characters are:

A -- Print the string left justified in the field.

R -- Print the string right justified in the field.

C -- Print the string centered in the field.

The data to be printed comes from the list of data items which follows
the picture. Here are some examples using string descriptors:

]A$="ABC"
]P$="AAAAAAA'-'RRRRRRR'-'CCCCCCC'-'"
]&DP:PRINT $ P$,A$,A$,A$
ABC - ABC- ABC -
aaaaaaa.rrrrrrr.ccccccc.

]PRINT $"RRRRR X 5A 'HI' 6C 'BYE'","AB","ABC","XY"
 AB ABC HI XY BYE
rrrrrxaaaaa..cccccc...

If you mix the A, C, and R control letters in one string field
descriptor, the controlling letter will be the last one in the field.
If you want to have two fields adjacent to each other, you can
separate the descriptors with a space. The space will not become part
of the printed output. If a string value is too long to fit in a
field, the field will be filled with asterisks instead of the actual
data. When you see asterisks where you expected data, the data was
too long.

]&DP:PRINT$"AAA AAA AAA","AN","EGG","ROLLS"
AN EGG***

Numeric field descriptors are made up of the characters listed below.
The number to be printed is taken from the expression list. The
expression corresponding to a numeric field descriptor MUST be a DP18
expression. If it is not a DP18 numeric expression, an error will
result. If the number is too large for the field, asterisks will be

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1815 of 2550

Apple II Computer Info

printed. The number is rounded to the number of decimal places you
specify in the descriptor before printing. Trailing zeroes after the
decimal point are printed if necessary to fill up the field.

+ -- Reserves a place for the sign of the number.
 the sign will be printed in this position
 even if the number is positive. The sign
 may be placed anywhere within or at either
 end of the number.

- -- Also reserves a place for the sign, but the
 sign will only be printed if it is negative.
 If the number is positive, the fill character
 is printed instead.

(If neither + nor - is present in the field descriptor, the sign is
printed only if the number is negative. It is printed just to the
left of the first significant digit of the number. If you used zero
or star fill, this looks ridiculous; therefore be sure to specify the
sign position when you use zero or star fill.)

-- Reserves a place for a digit, and selects
 space fill. Unused digit positions to the
 left of the most significant digit will be
 filled with spaces.

* -- Reserves a place for a digit, and selects
 star fill. Unused digit positions to the
 left of the most significant digit will be
 filled with stars.

Z -- Reserves a place for a digit, and selects
 zero fill. Unused digit positions to the
 left of the most significant digit will be
 filled with zeroes.

. -- Reserves a position for the decimal point.
 The number will be lined up with the decimal
 point. If no decimal point is present in
 the picture, none is printed. Don't try
 to put more than one decimal point in one
 descriptor.

, -- Puts a comma in the number. If the comma
 would precede all the non-blank characters
 printed in the field, the comma will not be
 printed.

If a mixture of #, *, and Z characters are used in field descriptor,
the field will be controlled by the last one.

]PRINT$ "'THE ANSWER IS '###,###.##",53156.6378
THE ANSWER IS 53,156.64

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1816 of 2550

Apple II Computer Info

]PRINT$ "####.##+/####.##-/####.##+/####.##-",
12,12.3,-12.34,-12.345
 12.00+
 12.30
 12.34-
 12.35-

]PRINT$ "5Z.3Z",125.65
00125.650

The listing of the DP18 PRINT code follows. There are references to
five subroutines printed in previous issues of AAL in lines 1220-1260.
The subroutines INPUT.NUM and INPUT.STR which are also referenced will
not be printed until next month. Ah, anticipation...!

When the &DP processor encounters a PRINT token, it jumps to DP.PRINT
at line 1690. I like simple code, so you can see for yourself that
DP.PRINT is only three lines long. All the work is done by PRINT.END
(lines 2100-2420) and the routines it calls.

PRINT.END checks for ";" and "," separators between PRINT groups, and
branches to the processors for each of the three types of PRINT
groups. Lines 2110-2130 check whether we are at the end of the PRINT
statement. If so, AS.CROUT prints a carriage return and we leave. If
not at the end, a semicolon takes us down to line 2400. There we
again check for the end, because a semicolon on the end of the PRINT
statement means to omit the final carriage return. A comma takes us
to line 2380 where we force-print a carriage return (DP18's kind of
tabbing, remember).

Lines 2180-2210 check for the three possible types of PRINT groups:
"$" means print with a picture, "#" means print with a w.d format, and
anything else means unformatted printing. The #w.d type is handled
right here in lines 2230-2360.

Lines 2230-2250, with the help of some code in the Applesoft ROMs,
read the next characters from the PRINT statement, calculate whatever
expression they represent, and save the result for the field width
"w". Lines 2260-2300 do the same for "d". Line 2310 evaluates the
DP18 expression for the data value to be printed. Lines 2320-2350
call on the FORMAT.PRINT subroutine discussed some months ago in AAL.
After printing, we go back to the top of PRINT.END to allow another
PRINT group.

Unformatted printing is handled in lines 1740-2080. Line 1750
evaluates the DP18 expression to be printed. Lines 1760-1800 decide
whether to use normal or exponential format, depending on position of
the decimal point. The exponential format is handled by QUICK.PRINT
and the normal format by FOUT, both printed in an earlier installment.
We call FOUT with a format of 40 characters wide and 19 places after
the decimal point. Then we print only the significant digits of the
resulting string. All leading blanks and trailing zeroes are omitted.
If the last character is a trailing decimal point, it too is omitted.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1817 of 2550

Apple II Computer Info

Printing with a picture starts at line 2440. The picture processing
code is also used by DP18's INPUT$ statement, and a simple flag is
used to tell who called. PRINT sets the INPUT.FLAG = 1, INPUT sets it
= 0. INPUT$ and PRINT$ join at line 2470.

The first step in picture processing is to make a working copy of the
picture in DP18's PICTURE.BUF. Lines 2490-2510 evaluate the string
expression which is the picture. Lines 2520-2650 copy the result into
PICTURE.BUF, and place a terminating $00 at the end. Line 2680
initializes a bunch of variables so we can begin to process a field
within the picture. (PICTURE.BUF is 256 bytes long. If you want a
good project, figure out how to avoid using PICTURE.BUF. We could
with more difficulty use the picture right where it is after AS.FRMEVL
finishes.)

Lines 2700-2840 control the picture parsing. The basic idea is to
scan through the picture executing command characters as we go,
converting numbers to repeat counts, and printing literals. When a
field descriptor is encountered, it is built up in WBUF to form a
template for the conversion. If any of the characters of the
descriptor were preceded by a repeat count, those characters will be
reduplicated the specified number of times in the WBUF template.
After the template is complete, an expression will be evaluated from
the PRINT list, and converted into character form. Then those
characters will be merged into the template, and the result printed.
I got ahead of myself a little, but I wanted to give the overall view
first.

PRUS.NEXT calls LOOKUP to process each character of the picture.
Lookup searches the table shown in lines 3620-4010. Each entry in the
table is three bytes long: the first byte is the character to be
matched, and the next two are the address of a subroutine for
processing that character. Actually this address is one less than the
subroutine address, because it will be pushed onto the stack and
branched to with an RTS instruction (see lines 3160-3190 and 3260).
The order of the entries in the table is also somewhat significant.
There are three groups of entries: the first group includes
characters which may be part of a numberic field descriptor; the
second, characters for string field descriptors; and the third,
command characters. The labels L.EITHER and L.BOTH mark the edges of
these three groups.

If LOOKUP matches a character, it checks to see if the character is in
the third group (line 2980). If so, we know any field descriptor
which may have been building is ended, so lines 3000-3010 clear the
FLD.FLAG. If not, lines 3030-3070 start a new field unless we were
already in one.

Lines 3080-3140 check if we have finished a field descriptor. We may
have, if the matched character was a command character or a field-
descriptor character of the opposite type field. So, if the mathced
character was a numeric-field character, we call PRT.STR.IF.NEEDED; if
it was a string-field character, we call PRT.NUM.IF.NEEDED; and if a
command character, we call both of the IF.NEEDED's. The IF.NEEDED

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1818 of 2550

Apple II Computer Info

routines check if we were building up the corresponding field
descriptor. If so, we need to get a value from the PRINT list and
print it now, before continuing to process the latest picture
character.

Next, LOOKUP branches to the processor for the particular character
matched. It sets up the repeat count, if any has been accumulated, in
the Y-register. If no repeat count has been accumulated, y is set to
1. The routines are all in lines 4020-5250.

If LOOKUP does not find the picture character in the table, it may be
a digit of a repeat count. If so, lines 3280-3450 multiply the
existing repeat count by ten and add in the new digit. No check for
overflow is done here, so if you write a repeat count of more than
255, it will be taken modulo 256. If you want to check for overflow,
insert the check after line 3330:

 CMP #25
 BCS RP.OVERFLOW

and put a line after line 3610:

 RP.OVERFLOW JMP AS.OVRFLW

If the character is not even a digit, it is good for nothing but
separating field descriptors. Lines 3470-3480 call the two IF.NEEDED
routines, in case a field descriptor preceded the non-matching
character, and then fall into PRUS.CLEAR to get ready for the next
picture character.

If the picture character is Z, #, or * the code at lines 4070-4240
goes to work. There are three different entry points here. A "Z"
enters at IP.ZERO, where the A-register is cleared and a $2C opcode is
used to skip over the following two bytes of code. You may recall
that $2C is the opcode for BIT with a two-byte address. The 6502 acts
like the "LDA #' '" is an address for the BIT instruction, and in
effect that "hops over" line 4110. (This is a common coding trick in
the 6502 world, and is safe except when the second of the two skipped
bytes is in the range from $C0 through $C7. In that range you run the
risk of flipping some soft switches in the I/O space.)

Lines 4070-4140 store zero, blank, or asterisk in FILL.CHAR and in the
template being created in WBUF. These positions in the template will
later be replaced with the actual digits of the converted number,
unless they precede the most significant digit. The "w" and "d"
parameters are also incremented as appropriate, so that we can later
call FOUT to create the initial image of the converted number. Lines
4220-4230 loop on the repeat count, storing multiple copies of the
fill character if you used a repeat count. We also set the FOUND.NUM
flag non-zero, so that the PRT.NUM.IF.NEEDED subroutine will realize
the need to print.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1819 of 2550

Apple II Computer Info

The RTS on the end of all the IP... processors takes control back to
the middle of PRUS.NEXT, because they are actually just extensions to
LOOKUP.

Lines 4290-4310 handle both the + and - picture characters. The
character is stored in the template, and also in SIGN.CHAR1 as a flag.
We need later to know whether any + or - appeared in the template at
all, so the flag will be useful then.

If a decimal point appears in the picture, we store it in the template
and also note the fact by setting DECFLG non-zero. A comma is merely
stored in the template. See lines 4340-4440 for these two.

Lines 4450-4560 build templates for string field descriptors. The
characters A, C, and R and just counted, while saving the lates one in
FOUND.CHAR. When the PRT.STR.IF.NEEDED subroutine is called later,
all we will need to know is which mode to use (A, C, or R) and how
wide the field is.

Lines 4570-4760 print literal strings from the picture. The only
tricky part of this is the handling of the closing apostrophe. A
single apostrophe signals the end of the literal string, while two
apostrophe's in a row mean an apostrophe should be printed within the
literal.

Slash or "X" in a picture are handled by lines 4770-4880. Note the
use again of the $2C to skip over two bytes of code.

Lines 4900-4960 handle the HTAB command. This is the bare minimum
handling, and I can suggest some enhancements you might like to add
here. You might want to check and be sure the value is between 1 and
40, giving an error message if out of range. You might want to adapt
it to work with your particular printer and 80-column card
combinations. Or 132-column Ultra-Term. It's up to you.

Lines 4970-5040 process the VTAB command, and here I do check for a
valid line number. Of course, if you have an Ultra-Term set up for
more than 24 lines you would want to change the limit in line 5000.

Lines 5050-5180 handle the screen clearing commands. A single ">"
character calls MON.CLREOL to clear from the cursor to the end of the
current line. If the following character in the picture is also a
">", MON.CLREOS is called instead.

PRT.NUM.IF.NEEDED (lines 5190-5330)is one of the two IF.NEEDED twins.
If FOUND.NUM is non-zero, indicating that we have been building a
numeric field template, then now is the time to print a number.
Unless, of course, we are doing INPUT$ rather than PRINT$. More on
that subject next month. PRT.STR.IF.NEEDED (lines 6320-6460) does the
same for strings.

When a number needs to be printed, lines 5340-5420 get it ready for
conversion. Line 5390 evaluates the next expression from the PRINT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1820 of 2550

Apple II Computer Info

list, and it all falls into PRT.NUM.1 at line 5440. INPUT$ has an
entry at this same point.

Lines 5450-5490 make room for the sign character if the expression
value is negative and a sign reservation character was used in the
template. Then W and D are correct for calling FOUT in lines 5500-
5530. The remainder of the PRINT.NUM subroutine copies characters
from the FOUT.BUF string into the template, and then prints the
fleshed-out template. Sounds easier than it really is....

Lines 5540-5690 control the scan through the template in WBUF. Commas
in the template are handled right there: if any previous digits have
been displayed, or if the fill character is "0" or "*", the comma is
left in the template. If no digits have been stored yet and the fill
character is blank, the comma is blanked out. It would look kind of
silly hanging out in front of a number.

Lines 5700-5720 process a + or - character from the template. The
actual code for PRUS.SGN at lines 6110-6310 does the work. If the
template character is "+", it gets changed to "-" if the sign of the
numeric value is negative. If the template character is "-", it gets
changed to blank if the numeric value is positive.

If the template character is a digit place-holder, the next character
from FOUT.BUF is examined. If the FOUT.BUF character is a digit, it
is stored into the template. If not a digit, it might be a decimal
point, a minus sign, or a leading blank. A leading blank gets changed
to whatever the fill character is for the current template and stored
in the template. A minus sign will be stored if there was no sign-
position character in the template. A decimal point will be in the
same position in both template and FOUT.BUF, so nothing needs to be
done with it.

Since a sign-position character could come at the end of the template,
lines 6000-6020 check for that condition.

Finally, lines 6030-6100 print out the composite string from WBUF.

String fields are printed by PRINT.STR, starting at line 6470. Lines
6470-6550 evaluate a string expression from the PRINT list, and set up
a pointer to the resulting string value. The entry PRINT.STR.1 is
shared with INPUT$. Lines 6570-6620 determine how much longer the
field is than the string value. If it is too short, lines 6630-6700
fill the field with stars for an overflow indication.

If the string will fit, lines 6710-6750 store the number of left-over
spaces in the field. If we are left-justifying, these will all come
at the end; if right-justifying, at the beginning; if centering, half
on each end. Lines 6760-6800 branch according to which type of string
field we have (A, C, or R). Lines 6810-6840 print leading spaces for
type-R fields.

Lines 6850-6910 divide the number of extra spaces in half, so half can
be printed before the string and half after. If there were an odd

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1821 of 2550

Apple II Computer Info

number of extra spaces, the extra extra space will be printed after
the string. For example, a four-character string in a nine-character
field would be preceded by two blanks and followed by three.

That about winds up the discussion of the DP18 PRINT support. You can
add or subtract features from this base, to create the exact
configuration you need.

I should give credit to Bobby Deen for the original coding of the
PRINT statement routines published this month, and the INPUT stuff
next month. I revised them considerably since he wrote them two years
ago, but you can still see his marks. Bobby is still pulling in a 4.0
average (highest possible) at Texas A & M, and programming for pay at
the same time.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1822 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 4 January, 1985

In This Issue...

18-Digit Arithmetic, Part 9. 2
Symbol Table Source Maker. 25
Short Single-Byte Hex-to-Decimal Printer 31

Note about Apple Manuals

We have mentioned before how hard it is to find the Apple technical
manuals, but it looks like there is now hope. We read somewhere this
week that Apple has arranged for Addison- Wesley to distribute the
manuals. If this really comes to pass, we will probably be able to
get them for you like any bookstore. Here's hoping!

New Version of 6800/6801/6301 Cross Assembler

We have started the long process of upgrading the various S-C Cross
Assemblers, and the first one is now available. Owners of Version 1.0
of the 6800/6801/6301 Cross Assembler and of the Version 2.0 of the S-
C Macro Assembler can upgrade to Version 2.0 of the Cross Assembler
for $20.

If you have not already upgraded to Version 2.0 of the S-C Macro
Assembler (for the 6502 et al), you need to do that first or at the
same time. If you already have 6502 Version 2.0, but don't have the
older version of the 6800 product, you can go directly there for only
$50.

6800 XASM Version 2.0 adds 80-column support (for //e, //c, Videx, and
STB-80 users), five new directives, and all the other bells and
whistles of our 2.0 products.

New disk price!!

Due to incredible competition, floppy disk prices are falling almost
as fast as if they were semiconductors! Check our ad on page three
for the current low price.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1823 of 2550

Apple II Computer Info

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

==
DOCUMENT :AAL-8501:Articles:My.Ad.txt
==

S-C Macro Assembler Version 1.0.......................................$80
S-C Macro Assembler Version 2.0......................................$100
Version 2.0 Update..$20
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30

S-C Word Processor (with complete source code)........................$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler Version 1.1. Other
assemblers require some effort to convert file type and edit directives.)

AAL Quarterly Disks..each $15
 Each disk contains all the source code from three issues of "Apple
 Assembly Line", to save you lots of typing and testing time.
 QD#1: Oct-Dec 1980 QD#2: Jan-Mar 1981 QD#3: Apr-Jun 1981
 QD#4: Jul-Sep 1981 QD#5: Oct-Dec 1981 QD#6: Jan-Mar 1982
 QD#7: Apr-Jun 1982 QD#8: Jul-Sep 1982 QD#9: Oct-Dec 1982
 QD#10: Jan-Mar 1983 QD#11: Apr-Jun 1983 QD#12: Jul-Sep 1983
 QD#13: Oct-Dec 1983 QD#14: Jan-Mar 1984 QD#15: Apr-Jun 1984
 QD#16: Jul-Sep 1984 QD#17: Oct-Dec 1984

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor.......................$60
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36

Blank Diskettes (Verbatim)......................... package of 20 for $35
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 These are cardboard folders designed to fit into 6"X9" Envelopes.
Envelopes for Diskette Mailers............................. 6 cents each
quikLoader EPROM System (SCRG)................................($179) $170
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32
PROmGRAMER (SCRG)..($149.50) $140

Books, Books, Books..........................compare our discount prices!

 "Inside the Apple //e", Little..........................($19.95) $18
 "Apple II+/IIe Troubleshooting & Repair Guide", Brenner.($19.95) $18
 "Apple][Circuit Description", Gayler..................($22.95) $21

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1824 of 2550

Apple II Computer Info

 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15
 Second edition, with //e information.
 "Assembly Cookbook for the Apple II/IIe", Lancaster.....($21.95) $20
 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Beneath Apple ProDOS", Worth & Lechner.................($19.95) $18
 "What's Where in the Apple", Second Edition.............($19.95) $19
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($18.95) $18
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9
 "Microcomputer Graphics", Myers.........................($12.95) $12

Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1825 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:Articles:Short.on.Mans.txt
==

Note about Apple Manuals

We have mentioned before how hard it is to find the Apple technical
manuals, but it looks like there is now hope. We read somewhere this
week that Apple has arranged for Addison-Wesley to distribute the
manuals. If this really comes to pass, we will probably be able to
get them for you like any bookstore. Here's hoping!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1826 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:Articles:ShortPrint255.txt
==

Short Single-Byte Hex-to-decimal Printer...Bob Sander-Cederlof

Inside DOS there exists a subroutine whose purpose is to convert a
single byte into a three digit decimal number, and print it out. It
is called twice from within the CATALOG processor: to print the volume
number, and to print the number of sectors in a file. It isn't very
space or speed efficient, and has been picked apart in various
articles in Nibble and elsewhere. The DOS routine is located at
$AE42.

In any case, here is a shorter routine that does the same job. I also
added a little test routine which exercises the subroutine by calling
it for every possible value of a byte.

Lines 1200-1290 are the test routine. It is essentially equivalent
to: FOR A = 0 TO 255 : PRINT X" "; : NEXT X.

Lines 1020-1160 are the conversion and print subroutine. It is
written as a loop that runs the Y-register from 2 down to 0. Line
1030 starts Y=2, and lines 1140-1150 decrement and test Y, like
BASIC's NEXT Y.

Another loop keeps subtracting a table entry from the value being
converted until the remainder is smaller than the table entry. The
table contains powers of ten. The first time through, 100 is
subtracted as many times as possible. Each time, the X-register is
incremented. Since line 1040 started X out as the ASCII code for
zero, when the inner loop finishes X will have the ASCII code for the
next decimal digit of the original value. Line 1120 calls the monitor
COUT routine to print the digit.

The next time through the table value that gets subtracted is 10, and
the third and last time through 1 gets subtracted. So you see that we
first print the hundreds digit, then the tens digit, and finally the
units digit.

The DOS version takes 40 bytes plus a three byte table, and mine takes
25 bytes plus a three byte table. It's probably not fair to compare
40 to 25 too unfavorably, because mine does use the X-register while
the DOS version does not. The part of the CATALOG code that prints
the number of sectors in a file requires that the X-register not be
changed, so mine is not quite compatible as is. On the other hand,
DOS goes to the trouble of saving the value to be printed in location
$44, which is unnecessary, and also saves a value in $45 which is
otherwise totally ignored. This foolishness takes place at $ADB9-
$ADBF and $AE04-$AE0A.

Anyway, here is my code:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1827 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:Articles:Sym.Sourceror.txt
==

Symbol Table Source Maker......Peter McInerney and Bruce Love

When developing a very large program in separately assembled stages,
it is nice to be able to carry forward the information in the symbol
table of one section into the equates section to later section. You
might do this as a normal part of development or as response to a bug
detected in an earlier stage which forces some re-assembly. We
designed this utility program to take all the hard work out of the
process of building an equate file from a symbol table.

After an assembly, BRUNning the following utility will cause whatever
source is in memory to be replaced by a series of .EQ lines
constructed from the current symbol table. All global labels are
included, in numerical order. The generated source lines can be saved
or merged in the usual fashion.

The plan of the program falls into three steps. First the existing
symbol table is sorted into numeric order by the value of each symbol.
Next a line corresponding to each symbol is constructed and merged
into the source code. Finally the source lines are renumbered
starting with 1000 using an increment of 10, and control is passed
back to the S-C Macro Assembler.

We originally wrote our program based on Version 1.1 of the S-C Macro
Assembler. Version 2.0 differs in that each symbol value uses four
bytes rather than two, and the RENUMBER routine is in a different
location. Bob Sander-Cederlof added some code to handle Version 2.0,
and that version is listed here. All the changes that need to be made
to use our utility with Version 1.1 are controlled by .DO-.ELSE-.FIN
sets, so that you only have to change line 1030 to assemble the other
version. Since the following listing was made with the CON listing
option, the code between .ELSE and .FIN is shown as non-assembled
lines; this allows you to type in both versions of the program.

After an assembly, the symbol table consists of 26 chains of symbols.
A hash table of 26 pointers contains the beginning of each of the 26
chains. There is one chain for each letter of the alphabet, and
symbols are assigned to a chain based on the first letter of the
symbol name. Within each chain, the symbols are linked together in
alphabetical order. The first two bytes of each symbol entry are a
forward pointer to the next symbol in the chain, or $0000 if it is the
end of the chain. If there is no chain for a particular letter, that
pointer in the hash table will be $0000.

The value of the symbol is in the next two or four bytes (Version 1.1
or 2.0, respectively). The high byte of the value is first, the low
byte last. The byte following the value contains the length of the
symbol name in the lower six bits. The length will be a number
between 1 and 32, or $01 and $20. Following the length byte are the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1828 of 2550

Apple II Computer Info

characters of the name itself. Some other information is stored in
the table, including various flags, local labels, and any macro
definitions which were in your program; however, we are not concerned
with these in our program.

The program begins by setting the output hook to point to our routine
named MYCOUT. Any characters that are "printed" through the monitor's
COUT routine will be routed to MYCOUT, at lines 2980-3070. MYCOUT
merely stores the characters in successive positions of a buffer we
put at $280. Lines 1350-1380 zap any source program still in memory,
in preparation for adding the new .EQ lines.

Since every symbol carries a pointer, we decided to simply re-string
them on a new chain in numeric order by value. Lines 1390-2040 build
this new chain. Lines 1390-1490 and 1990-2040 step through each of
the 26 alphabetical-order (A-O) chains. The numerical-order (N-O)
chain is built with the pointer in ROOT pointing at the largest value,
each symbol's pointer pointing at the next smallest value. When we
find an A-O chain which is not empty, lines 1500-1980 chomp through
the chain finding the right place in the N-O chain for each symbol.

Once the symbols are all strung on the N-O chain, lines 2050-2940 use
the N-O chain to generate source lines for each symbol. Lines 2090-
2100 check for the possibility of no symbols, just in case you are
testing us.

Lines 2110-2210 pick up the value of the symbol (two or four bytes
worth) and push it on the stack, low byte first. The loop actually
pushes the byte following the value as well, because it saved a few
program bytes to include it in the loop. Line 2220 pulls that byte
back off.

Lines 2220-2280 pick up the characters of the symbol name and "print"
them. Remember that the print hook points to MYCOUT, so that the
characters are really placed in WBUF starting at WBUF+3. (The
locations WBUF through WBUF+2 are reserved for the line length and
line number.)

Lines 2290-2360 generate enough blanks to tab over to column 25. If
the symbol is longer than 25 characters, only one blank is generated.
All of the blanks are squeezed into a single compressed blank token
($80 + # of blanks). We put this into WBUF by calling MYCOUT1 to
avoid the AND #$7F at the beginning of MYCOUT.

Lines 2370-2420 "print" the string of characters " .EQ $", which are
stored in backwards order in line 3090.

Lines 2430-2610 "print" the value of the symbol in hexadecimal. Since
the value may have up to three bytes of leading zeros, there is code
here to suppress those bytes.

Lines 2620-2720 terminate the source line in WBUF with a $00 code, and
store the line length in the first byte position. Now the line is
ready to be added to the source code being built up.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1829 of 2550

Apple II Computer Info

Lines 2730-2790 make room for the new source line by lowering the
pointer PRG.BEG, which points at the start of the source code. We are
adding the source lines starting with the highest value, which will be
at the end of the source program, and working down to the lowest value
at the beginning of the source program.

Lines 2800-2850 copy the line into the hole we just made. Note that
we have not filled in a valid line number yet.

LInes 2860-2940 promote the ROOT pointer to the next symbol in the N-O
chain. If there are no more symbols, line 2950 calls on the RENUMBER
subroutine inside the S-C Macro Assembler to put real line numbers in
each line. The point at which RENUMBER is entered is just after a
series of three JSR's, all to the same address. The instruction we
branch to is a "CPX #$06". We are pointing this out here just in case
you have a version of the S-C Macro Assembler with a slightly
different position for the RENUMBER subroutine. Of course, you could
omit line 2950 and just remember to type "REN" after running our
program.

Finally, line 2960 restores the output hook to the 40-column screen
output. This will not be what you want if you are using an 80-column
card. If you are doing that, we suggest saving the output hook way
back at the beginning before stuffing MYCOUT into it, and then
restoring the original value here. We didn't do it that way because
we were trying every possible way to make this whole program fit in
only one page.

One caveat remains. We did not include any test to see whether the
source code being generated starts to overlap the end of the symbol
table. If you have a gigantic symbol table, say over half of the
available memory for source+symbols, you may run into this problem.

When you are using this program, be sure you save the source of
whatever you assembled first. Our program replaces the source in
memory with the .EQ source lines. Also, realize that the symbol table
is essentially wiped out by running our program, because all the chain
links are restructured for numerical order. You will have to re-
assemble the original program to re-create the original symbol table.
Of course, if you assemble the source lines we generate, you will re-
create all the global labels of the original program.

We think you will find many uses for our program, beyond the ones
which prompted us to write it. We are very proud that we managed to
fit everything into a single page, but don't let that stop you from
adding features to fit your own needs.
1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1830 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:Articles:XASM.6800.2.0.txt
==

New Version of 6800/6801/6301 Cross Assembler

We have started the long process of upgrading the various S-C Cross
Assemblers, and the first one is now available. Owners of Version 1.0
of the 6800/6801/6301 Cross Assembler and of the Version 2.0 of the S-
C Macro Assembler can upgrade to Version 2.0 of the Cross Assembler
for $20.

If you have not already upgraded to Version 2.0 of the S-C Macro
Assembler (for the 6502 et al), you need to do that first or at the
same time. If you already have 6502 Version 2.0, but don't have the
older version of the 6800 product, you can go directly there for only
$50.

6800 XASM Version 2.0 adds 80-column support (for //e, //c, Videx, and
STB-80 users), five new directives, and all the other bells and
whistles of our 2.0 products.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1831 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:DOS3.3:S.DP18.Print.txt
==

 1000 *SAVE S.DP18 PRINT
 1010 *-------------------------------
 1020 * APPLESOFT SUBROUTINES
 1030 *-------------------------------
 1040 AS.CROUT .EQ $DAFB PRINT CARRIAGE RETURN
 1050 AS.COUT .EQ $DB5C PRINT A CHARACTER
 1060 AS.FRMEVL .EQ $DD7B EVAL FP FORM. OR STRING
 1070 AS.CHKCOM .EQ $DEBE CHECK FOR COMMA
 1080 AS.SYNERR .EQ $DEC9 SYNTAX ERROR
 1090 AS.ILLERR .EQ $E199 ILLEGAL QUANTITY ERROR
 1100 AS.FRESTR .EQ $E5FD ERR IF NOT STRING, FREE UP A TEMP
STRING
 1110 AS.GTBYTC .EQ $E6F5 CHRGET, THEN GETBYT
 1120 AS.GETBYT .EQ $E6F8 GET EXPR AS BYTE IN X
 1130 *--------------------------------
 1140 * MONITOR SUBROUTINES
 1150 *--------------------------------
 1160 MON.VTABZ .EQ $FC24
 1170 MON.CLREOS .EQ $FC42
 1180 MON.CLREOL .EQ $FC9C
 1190 *--------------------------------
 1200 * DP SUBROUTINES PRINTED ELSEWHERE
 1210 *--------------------------------
 1220 DP.NEXT.CMD .EQ $FFFF
 1230 DP.EVALUATE .EQ $FFFF
 1240 FOUT .EQ $FFFF
 1250 QUICK.PRINT .EQ $FFFF
 1260 FORMAT.PRINT .EQ $FFFF
 1270 INPUT.NUM .EQ $FFFF
 1280 INPUT.STR .EQ $FFFF
 1290 *-------------------------------
 1300 * PAGE ZERO USAGE
 1310 *-------------------------------
 1320 MON.CH .EQ $24
 1330 MON.CV .EQ $25
 1340 AS.CHRGET .EQ $B1
 1350 AS.CHRGOT .EQ $B7
 1360 P2 .EQ $F9
 1370 P1 .EQ $FD GP POINTER
 1380 TEMP2 .EQ $FB
 1390 *--------------------------------
 1400 WBUF .EQ $0200
 1410 *-------------------------------
 1420 * WORK AREAS FOR DPFP
 1430 *-------------------------------
 1440 DECFLG .BS 1
 1450 DAC.EXPONENT .BS 1
 1460 DAC.SIGN .BS 1
 1470 FOUT.BUF .BS 41

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1832 of 2550

Apple II Computer Info

 1480 STACK.PNTR .BS 1
 1490 W .BS 1
 1500 D .BS 1
 1510 SIGN.CHAR1 .BS 1
 1520 INPUT.TYPE .BS 1
 1530 FOUND.NUM .BS 1
 1540 FOUND.STR .BS 1
 1550 STR.LEN .BS 1
 1560 REPEAT.CNT .BS 1
 1570 FOUND.LEN .BS 1
 1580 FOUND.CHAR .BS 1
 1590 FILL.CHAR .BS 1
 1600 CHAR .BS 1
 1610 INPUT.FLAG .BS 1
 1620 ZERO.CHAR .BS 1
 1630 FLD.FLAG .BS 1
 1640 FLD.START .BS 1
 1650 TEMP3 .BS 2
 1660 INDEX .BS 1
 1670 PICTURE.BUF .BS 256
 1680 *-------------------------------
 1690 DP.PRINT
 1700 JSR AS.CHRGET
 1710 JSR PRINT.END
 1720 JMP DP.NEXT.CMD
 1730 *--------------------------------
 1740 DP.UNFORMAT
 1750 JSR DP.EVALUATE GET EXPRESSION
 1760 LDA DAC.EXPONENT GET EXPONENT
 1770 CMP #$40+19 MORE THAN 18 DIGITS BEFORE DECPT?
 1780 BCS .5 YES, USE SCIENTIFIC
 1790 CMP #$40-1 LESS THAN .01?
 1800 BCC .5 YES, USE SCIENTIFIC
 1810 LDA #'0
 1820 STA ZERO.CHAR
 1830 LDA #40 ALLOW PLENTY OF WIDTH
 1840 LDY #19 AND DECIMAL PLACES
 1850 JSR FOUT
 1860 *---TRIM TRAILING ZEROES---------
 1870 LDY INDEX FIND END OF BUFFER
 1880 .1 DEY
 1890 LDA FOUT.BUF-1,Y TRUNCATE TRAILING ZEROES
 1900 CMP #'0 IS THIS ONE ZERO?
 1910 BEQ .1 ...YES, KEEP TRIMMING
 1920 CMP #'. OMIT DECIMAL POINT ON INTEGERS
 1930 BEQ .2 ...GOT A DECPT
 1940 INY TRIM NO MORE...
 1950 .2 LDA #0 MARK END OF MEANINGFUL CHARS
 1960 STA FOUT.BUF-1,Y
 1970 STY INDEX
 1980 *---PRINT WITHOUT LEADING BLANKS-
 1990 TAY Y=0
 2000 .3 LDA FOUT.BUF,Y
 2010 BEQ PRINT.END

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1833 of 2550

Apple II Computer Info

 2020 CMP #$20 BLANK?
 2030 BEQ .4 ...YES, DON'T PRINT
 2040 JSR AS.COUT ...NO, PRINT IT
 2050 .4 INY
 2060 BNE .3 ...ALWAYS
 2070 *---PRINT WITH EXPONENT----------
 2080 .5 JSR QUICK.PRINT
 2090 *--------------------------------
 2100 PRINT.END
 2110 JSR AS.CHRGOT
 2120 BNE .1 NOT ":" OR EOL
 2130 JMP AS.CROUT
 2140 .1 CMP #';'
 2150 BEQ .3
 2160 CMP #','
 2170 BEQ .2
 2180 CMP #'$ PRINT USING?
 2190 BEQ DP.PRINT.USING
 2200 CMP #'# PRINT W,D?
 2210 BNE DP.UNFORMAT NO,UNFORMATTED PRINT
 2220 *---PRINT #W,D,VALUE-------------
 2230 JSR AS.GTBYTC GET W IN X-REG
 2240 TXA
 2250 PHA
 2260 JSR AS.CHKCOM MUST HAVE COMMA
 2270 JSR AS.GETBYT GET D IN X-REG
 2280 TXA
 2290 PHA
 2300 JSR AS.CHKCOM ANOTHER COMMA
 2310 JSR DP.EVALUATE GET EXPR
 2320 PLA GET D
 2330 TAY
 2340 PLA GET W
 2350 JSR FORMAT.PRINT
 2360 JMP PRINT.END
 2370 *---COMMA AFTER ITEM-------------
 2380 .2 JSR AS.CROUT DP18'S KIND OF TABBING
 2390 *---"," OR ";" AFTER ITEM--------
 2400 .3 JSR AS.CHRGET NEXT CHAR
 2410 BNE .1 NEXT PRINT ITEM
 2420 RTS
 2430 *--------------------------------
 2440 DP.PRINT.USING
 2450 LDA #1 PRINT,NOT INPUT
 2460 *--------------------------------
 2470 PRINT.INPUT
 2480 STA INPUT.FLAG 0=INPUT, 1=PRINT
 2490 JSR AS.CHRGET EAT THE $
 2500 JSR AS.FRMEVL GET PICTURE
 2510 JSR AS.FRESTR ERR IF NOT STRING, FREE TEMP
 2520 STX P1 ADDR IN Y,X, LEN IN A
 2530 STY P1+1
 2540 STA STR.LEN
 2550 INC STR.LEN WE'RE GOING TO ADD ONE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1834 of 2550

Apple II Computer Info

 2560 TAY LENGTH TO Y
 2570 LDA #0 PUT 0 AT END OF PICTURE
 2580 STA PICTURE.BUF,Y
 2590 STA STACK.PNTR
 2600 STA FLD.FLAG
 2610 .1 DEY
 2620 LDA (P1),Y MOVE PICTURE TO BUFFER
 2630 STA PICTURE.BUF,Y
 2640 TYA TEST FOR END
 2650 BNE .1 ...MORE
 2660 STY REPEAT.CNT Y IS 0
 2670 DEY Y = $FF
 2680 JSR PRUS.CLEAR CLEAR VARIABLES
 2690 *--------------------------------
 2700 * PARSE THE PICTURE
 2710 *--------------------------------
 2720 PRUS.NEXT
 2730 INY NEXT CHAR
 2740 CPY STR.LEN DONE?
 2750 BEQ .1 ...YES
 2760 LDA PICTURE.BUF,Y GET A CHAR
 2770 STY TEMP2 SAVE PICTURE PNTR
 2780 JSR LOOKUP
 2790 LDY TEMP2 RESTORE PICTURE PNTR
 2800 JMP PRUS.NEXT
 2810 .1 LDA INPUT.FLAG
 2820 BNE .2
 2830 JMP AS.CROUT
 2840 .2 JMP PRINT.END HANDLE ; AT END OF STATEMENT
 2850 *--------------------------------
 2860 * LOOKUP LOOKS UP THE ENTRY CORRESPONDING TO (A)
 2870 *--------------------------------
 2880 LOOKUP STA CHAR SAVE KEY
 2890 LDY #-3
 2900 .1 INY
 2910 INY
 2920 INY NEXT ENTRY
 2930 LDA TBL.BASE,Y
 2940 BEQ .7 END OF TABLE
 2950 CMP CHAR ONE WE WANT?
 2960 BNE .1 NO,NEXT ENTRY
 2970 *---FOUND CHAR IN TABLE----------
 2980 CPY #L.BOTH NEW FIELD?
 2990 BCC .2 ...MAYBE NOT
 3000 LDA #0 START A NEW FIELD
 3010 STA FLD.FLAG
 3020 BEQ .3 ...ALWAYS
 3030 .2 LDA FLD.FLAG BEGINNING OF FIELD?
 3040 BNE .3 ...NO, NOT A NEW FIELD
 3045 JSR PRUS.CLEAR ...YES, NEW FIELD
 3050 LDA TEMP2
 3060 STA FLD.START
 3070 INC FLD.FLAG
 3080 *---PRINT WHATEVER'S NEEDED------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1835 of 2550

Apple II Computer Info

 3090 .3 CPY #L.EITHER
 3100 BCC .4 ...ONLY TRY PRT.STR.IF.NEEDED
 3110 JSR PRT.NUM.IF.NEEDED
 3120 CPY #L.BOTH
 3130 BCC .5 ...ONLY TRY PRT.NUM.IF.NEEDED
 3140 .4 JSR PRT.STR.IF.NEEDED
 3150 *---GET ROUTINE ADDRESS----------
 3160 .5 LDA TBL.BASE+2,Y
 3170 PHA PUT ADDRESS ON STACK
 3180 LDA TBL.BASE+1,Y
 3190 PHA
 3200 LDY REPEAT.CNT GET THE COUNT
 3210 BNE .6 COUNT IS NON-0
 3220 INY COUNT IS 0, SO MAKE IT 1
 3230 .6 LDA #0 CLEAR REPEAT.CNT
 3240 STA REPEAT.CNT
 3250 LDA CHAR GET THE ORIGINAL CHARACTER
 3260 RTS JUMP TO ROUTINE
 3270 *---CHAR NOT IN TABLE------------
 3280 .7 LDA CHAR GET CHAR AGAIN
 3290 EOR #'0 CHECK FOR DIGIT 0-9
 3300 CMP #10
 3310 BCS .9 ...NOT A NUMBER
 3320 STA TEMP3
 3330 LDA REPEAT.CNT PREVIOUS * 10
 3340 ASL *2
 3350 ASL *4
 3360 ADC REPEAT.CNT *5
 3370 ASL *10
 3380 ADC TEMP3 + DIGIT
 3390 STA REPEAT.CNT
 3400 LDA FLD.FLAG BEGINNING OF FIELD?
 3410 BNE .8 ...NO
 3420 LDA TEMP2 YES, SAVE STARTING POSN
 3430 STA FLD.START
 3440 INC FLD.FLAG
 3450 .8 RTS
 3460 *---NOT IN TABLE, NOT A DIGIT----
 3470 .9 JSR PRT.STR.IF.NEEDED
 3480 JSR PRT.NUM.IF.NEEDED
 3490 *--------------------------------
 3500 PRUS.CLEAR
 3510 LDX #1
 3520 STX W W = 1
 3530 DEX REST = 0
 3540 STX D
 3550 STX DECFLG NO DECIMAL
 3560 STX SIGN.CHAR1
 3570 STX FOUND.NUM FLAG IF # HAS BEEN FOUND
 3580 STX FOUND.STR
 3590 STX FOUND.LEN
 3600 STX FOUND.CHAR
 3610 RTS
 3620 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1836 of 2550

Apple II Computer Info

 3630 * TABLE IS IN THREE SECTIONS:
 3640 * 1ST SECTION (BEFORE L.EITHER) ARE FOR
 3650 * FOR DESCRIBING NUMERIC FIELDS, AND CAN
 3660 * TERMINATE A STRING FIELD.
 3670 *
 3680 * 2ND SECTION (BTWN L.EITHER & L.BOTH) IS
 3690 * FOR DESCRIBING STRING FIELDS, AND CAN
 3700 * TERMINATE A NUMERIC FIELD
 3710 *
 3720 * 3RD SECTION (AFTER L.BOTH) CAN TERMINATE
 3730 * BOTH KINDS OF FIELDS.
 3740 *
 3750 * TABLE FORMAT = #CHAR,ADDRESS-1
 3760 * END OF TABLE MARKED WITH $00
 3770 *--------------------------------
 3780 .MA TBL
 3790 .DA #']1',]2-1
 3800 .EM
 3810 *--------------------------------
 3820 TBL.BASE
 3830 >TBL "+",IP.PLUS.MINUS -#-
 3840 >TBL "-",IP.PLUS.MINUS -#-
 3850 >TBL "#",IP.NUMBER -#-
 3860 >TBL "*",IP.ASTERISK -#-
 3870 >TBL "Z",IP.ZERO -#-
 3880 >TBL ".",IP.POINT -#-
 3890 >TBL ",",IP.COMMA -#-
 3900 L.EITHER .EQ *-TBL.BASE
 3910 >TBL "A",IP.ACR -$-
 3920 >TBL "C",IP.ACR -$-
 3930 >TBL "R",IP.ACR -$-
 3940 L.BOTH .EQ *-TBL.BASE
 3950 >TBL "'",IP.QT -#$-
 3960 >TBL "/",IP.SLASH -#$-
 3970 >TBL "X",IP.X -#$-
 3980 >TBL "H",IP.HTAB -#$-
 3990 >TBL "V",IP.VTAB -#$-
 4000 >TBL ">",IP.GREATER -#$-
 4010 .HS 00 END OF TABLE
 4020 *--------------------------------
 4030 * Z -- Digit position marker, zero fill
 4040 * # -- Digit position marker, blank fill
 4050 * * -- Digit position marker, star fill
 4060 *--------------------------------
 4070 IP.ZERO
 4080 LDA #'0 USE 0 FOR FILL CHAR
 4090 .HS 2C
 4100 IP.NUMBER
 4110 LDA #' ' USE BLANK FOR FILL CHAR
 4120 IP.ASTERISK
 4130 STA FILL.CHAR SAVE AS FILL CHAR
 4140 .1 JSR STA.WBUFX.INX
 4150 INC FOUND.NUM FOUND A DIGIT
 4160 INC W LENGTH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1837 of 2550

Apple II Computer Info

 4170 PHA
 4180 LDA DECFLG HAD DECIMAL PT?
 4190 BEQ .2 NO
 4200 INC D YES
 4210 .2 PLA
 4220 DEY
 4230 BNE .1 NEXT ONE
 4240 RTS
 4250 *--------------------------------
 4260 * + -- Sign position marker (prints + or -)
 4270 * - -- Sign position marker (prints space or -)
 4280 *--------------------------------
 4290 IP.PLUS.MINUS
 4300 STA SIGN.CHAR1 SAVE SIGN CHAR
 4310 JMP STA.WBUFX.INX
 4320 *--------------------------------
 4330 * . -- Decimal position marker
 4340 *--------------------------------
 4350 IP.POINT
 4360 INC DECFLG FOUND A DECIMAL POINT
 4370 *--------------------------------
 4380 * , -- Puts a comma in a number
 4390 *--------------------------------
 4400 IP.COMMA
 4410 STA.WBUFX.INX
 4420 STA WBUF,X SAVE CHAR
 4430 INX
 4440 RTS
 4450 *--------------------------------
 4460 * A -- String field, left justified
 4470 * C -- String field, centered
 4480 * R -- String field, right justified
 4490 *--------------------------------
 4500 IP.ACR INC FOUND.STR FOUND A STRING
 4510 STA FOUND.CHAR SAVE THE CHAR
 4520 TYA
 4530 CLC
 4540 ADC FOUND.LEN ADD LENGTH TO REPEAT COUNT
 4550 STA FOUND.LEN
 4560 RTS
 4570 *--------------------------------
 4580 * ' -- Start of embedded string
 4590 *--------------------------------
 4600 IP.QT
 4610 .1 LDX TEMP2 X = PICTURE PNTR
 4620 .2 INX
 4630 LDA PICTURE.BUF,X GET CHAR
 4640 CMP #'' APOSTROPHE?
 4650 BNE .3 ...NO, PRINT IT
 4660 LDA PICTURE.BUF+1,X
 4670 CMP #'' TWO APOSTROPHE'S IN A ROW?
 4680 BNE .4 ...NO, MEANS END OF LITERAL
 4690 INX ...YES, PRINT APOSTROPHE
 4700 .3 JSR AS.COUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1838 of 2550

Apple II Computer Info

 4710 JMP .2
 4720 .4 DEY REPEAT COUNT
 4730 BNE .1 ...REPEAT THE STRING
 4740 STX TEMP2 NEW PICTURE PNTR
 4750 RTS
 4760 .5 JMP AS.SYNERR
 4770 *--------------------------------
 4780 * / -- Print n carriage returns
 4790 * X -- print n spaces
 4800 *--------------------------------
 4810 IP.SLASH
 4820 LDA #$0D CR'S
 4830 .HS 2C (SKIP NEXT 2 BYTES)
 4840 IP.X LDA #$20 BLANKS'
 4850 .1 JSR AS.COUT PRINT THE CHAR
 4860 DEY
 4870 BNE .1
 4880 RTS
 4890 *--------------------------------
 4900 * H -- HTAB to column n
 4910 * V -- VTAB to line n
 4920 *--------------------------------
 4930 IP.HTAB
 4940 DEY
 4950 STY MON.CH HTAB
 4960 RTS
 4970 *--------------------------------
 4980 IP.VTAB
 4990 DEY
 5000 CPY #24
 5010 BCS .1 OUT OF RANGE
 5020 TYA
 5030 JMP DP.VTAB
 5040 .1 JMP AS.ILLERR ILLEGAL QUANTITY ERROR
 5050 *--------------------------------
 5060 * > -- CLEAR TO END OF LINE
 5070 * >> -- CLEAR TO END OF SCREEN
 5080 *--------------------------------
 5090 IP.GREATER
 5100 LDY TEMP2
 5110 LDA PICTURE.BUF+1,Y
 5120 CMP #'>'
 5130 BEQ .1 ...CLEAR TO END OF SCREEN
 5140 *---CLEAR TO END OF LINE---------
 5150 JMP MON.CLREOL
 5160 *---CLEAR TO END OF SCREEN-------
 5170 .1 INC TEMP2
 5180 JMP MON.CLREOS
 5190 *--------------------------------
 5200 PRT.NUM.IF.NEEDED
 5210 LDA FOUND.NUM HAS # BEEN FOUND?
 5220 BEQ .1 NO
 5230 TYA
 5240 PHA SAVE Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1839 of 2550

Apple II Computer Info

 5250 LDA INPUT.FLAG
 5260 BEQ .2 INPUT
 5270 JSR PRINT.NUM PRINT
 5280 JMP .3
 5290 .2 JSR INPUT.NUM
 5300 .3 PLA RESTORE Y
 5310 TAY
 5320 JSR PRUS.CLEAR
 5330 .1 RTS
 5340 *--------------------------------
 5350 PRINT.NUM
 5360 LDA #0 PUT $00
 5370 STA WBUF,X AT END OF STRING
 5380 JSR AS.CHKCOM MUST HAVE COMMA
 5390 JSR DP.EVALUATE GET EXPRESSION
 5400 LDA #'0
 5410 STA ZERO.CHAR
 5420 *
 5430 *--------------------------------
 5440 PRT.NUM.1
 5450 LDA DAC.SIGN
 5460 BPL .1
 5470 LDA SIGN.CHAR1 SIGN IS -
 5480 BEQ .1 NO SIGN CHAR
 5490 INC W RESERVE PLACE FOR SIGN
 5500 *---CONVERT VALUE INTO FOUT.BUF--
 5510 .1 LDA W
 5520 LDY D
 5530 JSR FOUT
 5540 *---FILL IN THE PICTURE----------
 5550 LDX #0 INDEX INTO WBUF
 5560 LDY #0 INDEX INTO FBUF
 5570 STY DECFLG USE FOR DIGITS FLAG
 5580 .2 LDA WBUF,X GET CHAR FROM PICTURE
 5590 BEQ .10 END OF PICTURE
 5600 CMP #', COMMA?
 5610 BNE .3
 5620 INX
 5630 LDA DECFLG ANY DIGITS BEFORE THIS?
 5640 BNE .2 ...YES, LEAVE COMMA
 5650 LDA FILL.CHAR ...NO, BUT LEAVE IF FILL
 5660 CMP #' ' IS NON-BLANK.
 5670 BNE .2 ...NOT BLANK, SO LEAVE IN THE COMMA
 5680 STA WBUF-1,X ...COVER COMMA WITH BLANK
 5690 BNE .2 ...ALWAYS
 5700 *---CHECK FOR PICTURE SIGN-------
 5710 .3 JSR PRUS.SGN IF + OR -, PROCESS
 5720 BCC .2 ...WAS + OR -
 5730 *---PICTURE IS DIGIT OR DECPT----
 5740 LDA FOUT.BUF,Y GET CHAR FROM VALUE STRING
 5750 CMP #$20 SPACE?
 5760 BNE .5 ...NO
 5770 LDA FILL.CHAR ...YES, USE FILL CHAR
 5780 .5 PHA SAVE FOUT OR FILL CHAR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1840 of 2550

Apple II Computer Info

 5790 CMP #'- IS IT A SIGN CHAR?
 5800 BNE .7 ...NO
 5810 LDA SIGN.CHAR1 IS THERE A SIGN IN FORMAT?
 5820 BNE .8 ...YES, SKIP THE SIGN
 5830 LDA WBUF+1,X ...NO, INSTALL SIGN HERE
 5840 CMP #', (UNLESS NEXT PIC.CHAR IS COMMA)
 5850 BNE .6 ...NOT COMMA
 5860 LDA FILL.CHAR ...COMMA, SO COVER WITH FILLER
 5870 JSR STA.WBUFX.INX
 5880 .6 LDA FOUT.BUF,Y GET SIGN CHAR AGAIN
 5890 .7 JSR STA.WBUFX.INX
 5900 .8 PLA GET FOUT OR FILL CHAR BACK
 5910 INY ADVANCE FOUT PNTR
 5920 CPY INDEX END OF FOUTBUF?
 5930 BCS .9 ...YES
 5940 CMP FILL.CHAR IF WE INSTALLED A DIGIT
 5950 BEQ .2 WE MUST SET THE DIGITS FLAG
 5960 CMP #'- SIGN CHAR?
 5970 BEQ .2 ...YES
 5980 INC DECFLG FOUND A DIGIT
 5990 BNE .2 ...ALWAYS
 6000 *---END OF FOUT.BUF--------------
 6010 .9 LDA WBUF,X
 6020 JSR PRUS.SGN
 6030 *---END OF FOUT OR PICTURE-------
 6040 .10 LDY #0
 6050 .11 LDA WBUF,Y
 6060 BEQ .12
 6070 JSR AS.COUT PRINT IT
 6080 INY
 6090 BNE .11 ALWAYS
 6100 .12 RTS
 6110 *--------------------------------
 6120 PRUS.SGN
 6130 CMP #'+ SIGN?
 6140 BNE .1 NO
 6150 INX
 6160 LDA DAC.SIGN
 6170 BPL .2 SIGN ALREADY +
 6180 LDA #'-
 6190 STA WBUF-1,X
 6200 BNE .2 ALWAYS
 6210 .1 CMP #'- -?
 6220 BNE .3 NO
 6230 INX
 6240 LDA DAC.SIGN
 6250 BMI .2 SIGN ALREADY -
 6260 LDA FILL.CHAR
 6270 STA WBUF-1,X BLANK OUT SIGN
 6280 .2 CLC
 6290 RTS
 6300 .3 SEC
 6310 RTS
 6320 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1841 of 2550

Apple II Computer Info

 6330 PRT.STR.IF.NEEDED
 6340 LDA FOUND.STR HAS STRING BEEN FOUND?
 6350 BEQ .3 NO
 6360 TYA
 6370 PHA SAVE Y
 6380 LDA INPUT.FLAG
 6390 BEQ .1
 6400 JSR PRINT.STR
 6410 JMP .2
 6420 .1 JSR INPUT.STR
 6430 .2 PLA
 6440 TAY RESTORE Y
 6450 JSR PRUS.CLEAR
 6460 .3 RTS
 6470 *--------------------------------
 6480 PRINT.STR
 6490 LDA #$20
 6500 STA FILL.CHAR
 6510 JSR AS.CHKCOM MUST HAVE COMMA
 6520 JSR AS.FRMEVL GET EXPRESSION
 6530 JSR AS.FRESTR GET ADR AND LEN
 6540 STX P2
 6550 STY P2+1
 6560 *--------------------------------
 6570 PRINT.STR.1
 6580 PHA SAVE LENGTH
 6590 SEC LENGTH IS IN A
 6600 SBC FOUND.LEN SUBTRACT FIELD LENGTH
 6610 BEQ .2 ...SAME, SO OKAY
 6620 BCC .2 ...EXP IS SHORTER THAN FIELD
 6630 *---FIELD OVERFLOW---------------
 6640 PLA DISCARD LENGTH
 6650 LDY FOUND.LEN GET FIELD LEN
 6660 LDA #'* OVERFLOW CHAR
 6670 .1 JSR AS.COUT
 6680 DEY
 6690 BNE .1
 6700 RTS
 6710 *---JUSTIFY IN FIELD-------------
 6720 .2 EOR #$FF GET POSITIVE #
 6730 TAY
 6740 INY
 6750 STY FOUND.LEN
 6760 LDA FOUND.CHAR
 6770 CMP #'A LJ FIELD
 6780 BEQ .5
 6790 CMP #'C CJ FIELD
 6800 BEQ .4
 6810 *---RIGHT JUSTIFY----------------
 6820 JSR PRINT.Y.SPACES
 6830 PLA RESTORE STRING LEN
 6840 JMP PRT.STR PRINT STRING
 6850 *---CENTER JUSTIFY---------------
 6860 .4 TYA # OF SPACES

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1842 of 2550

Apple II Computer Info

 6870 LSR DIVIDE BY 2
 6880 TAY # LEADING BLANKS
 6890 ADC #0 +1 IF IT WAS ODD
 6900 STA FOUND.LEN # TRAILING BLANKS
 6910 JSR PRINT.Y.SPACES
 6920 *---LEFT JUSTIFY-----------------
 6930 .5 PLA GET STRING LEN
 6940 JSR PRT.STR PRINT IT
 6950 LDY FOUND.LEN TRAILING SPACES
 6960 JMP PRINT.Y.SPACES
 6970 *--------------------------------
 6980 PRT.STR
 6990 STA FOUND.CHAR LEN OF STRING
 7000 LDY #$FF
 7010 .1 INY
 7020 CPY FOUND.CHAR
 7030 BCS .2 DONE
 7040 LDA (P2),Y GET CHAR
 7050 JSR AS.COUT PRINT IT
 7060 JMP .1
 7070 .2 RTS
 7080 *--------------------------------
 7090 PRINT.Y.SPACES
 7100 TYA TEST COUNT
 7110 BEQ .2 ...ZERO, EXIT NOW
 7120 LDA FILL.CHAR
 7130 .1 JSR AS.COUT
 7140 DEY
 7150 BNE .1
 7160 .2 RTS
 7170 *--------------------------------
 7180 DP.VTAB
 7190 STA MON.CV
 7200 JMP MON.VTABZ
 7210 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1843 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:DOS3.3:S.PRINT.000.255.txt
==

 1000 *SAVE S.PRINT 000-255
 1010 *--------------------------------
 1020 PRINT.000.255
 1030 LDY #2
 1040 .1 LDX #"0"
 1050 .2 CMP DECTBL,Y
 1060 BCC .3 DIGIT FINISHED
 1070 SBC DECTBL,Y
 1080 INX
 1090 BNE .2 ...ALWAYS
 1100 .3 PHA SAVE REMAINDER
 1110 TXA
 1120 JSR $FDED
 1130 PLA GET REMAINDER
 1140 DEY
 1150 BPL .1
 1160 RTS
 1170 *--------------------------------
 1180 DECTBL .DA #1,#10,#100
 1190 *--------------------------------
 1200 T LDA #0
 1210 .1 PHA SAVE VALUE
 1220 JSR PRINT.000.255
 1230 LDA #" "
 1240 JSR $FDED
 1250 PLA GET PREVIOUS VALUE
 1260 CLC
 1270 ADC #1 INCREMENT
 1280 BNE .1
 1290 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1844 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8501:DOS3.3:S.SymSourceror.txt
==

 1000 .LIST CON
 1010 *SAVE S.SYMBOL SOURCEROR
 1020 *--------------------------------
 1030 VERSION .EQ 1 0=1.1, 1=2.0
 1040 *--------------------------------
 1050 * THE FOLLOWING ADDRESS SHOULD POINT
 1060 * TO A "CPX #$06" INSTRUCTION. IF IT
 1070 * DOESN'T IN YOUR PARTICULAR COPY, FIND
 1080 * THAT INSTRUCTION AND PLACE THE CORRECT
 1090 * ADDRESS HERE.
 1100 *--------------------------------
 1110 .DO VERSION ...V 2.0
 1120 RENUMBER .EQ $D65B V 2.0
 1130 .ELSE ...V 1.1
 1140 RENUMBER .EQ $D7DA V 1.1
 1150 .FIN
 1160 *--------------------------------
 1170 PTR .EQ $00,01
 1180 A1 .EQ $02,03
 1190 A2 .EQ $04,05
 1200 ROOT .EQ $06,07
 1210 XSAVE .EQ $8
 1220 CSW .EQ $36,37
 1230 *--------------------------------
 1240 HASH.TAB .EQ $132
 1250 WBUF .EQ $280
 1260 *--------------------------------
 1270 PRBYTE .EQ $FDDA
 1280 COUT .EQ $FDED
 1290 SETVID .EQ $FE93
 1300 *--------------------------------
 1310 * PROGRAM POINTERS
 1320 *--------------------------------
 1330 PRG.BEG .EQ $CA,CB
 1340 PRG.END .EQ $4C,4D
 1350 *--------------------------------
 1360 MAKE.SOURCE.FROM.SYMBOL.TABLE
 1370 LDA #MYCOUT GRAB THE OUTPUT HOOK
 1380 STA CSW
 1390 LDA /MYCOUT
 1400 STA CSW+1
 1410 LDA PRG.END EMPTY THE PROGRAM AREA
 1420 STA PRG.BEG
 1430 LDA PRG.END+1
 1440 STA PRG.BEG+1
 1450 *---SCAN THROUGH HASH TABLE------
 1460 LDX #0
 1470 STX ROOT EMPTY NUMERIC-ORDER CHAIN
 1480 STX ROOT+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1845 of 2550

Apple II Computer Info

 1490 *---GET START OF NEXT CHAIN------
 1500 .1 LDA HASH.TAB+1,X
 1510 BEQ .6 ...THIS CHAIN IS EMPTY
 1520 STA PTR+1
 1530 LDA HASH.TAB,X
 1540 STA PTR
 1550 STX XSAVE
 1560 *---SEARCH FOR POSITION IN N-O CHAIN---
 1570 .2 LDA #ROOT START SEARCH FROM BEGINNING
 1580 STA A1 OF NUMERIC-ORDER CHAIN
 1590 LDA /ROOT
 1600 STA A1+1
 1610 .3 LDA A1 PROMOTE BOTH POINTERS
 1620 STA A2 TO THE NUMERIC-ORDER CHAIN
 1630 LDA A1+1
 1640 STA A2+1
 1650 LDY #0
 1660 LDA (A1),Y
 1670 TAX
 1680 INY
 1690 LDA (A1),Y
 1700 STA A1+1
 1710 STX A1
 1720 BEQ .5
 1730 *---COMPARE A-O WITH N-O VALUE---
 1740 .DO VERSION ...V 2.0
 1750 LDX #3 4-BYTE VALUES
 1760 .ELSE ...V 1.1
 1770 LDX #1 2-BYTE VALUES
 1780 .FIN
 1790 SEC
 1800 .4 INY
 1810 LDA (A1),Y
 1820 SBC (PTR),Y
 1830 DEX
 1840 BPL .4
 1850 BCS .3 ...A-O VALUE < N-O VALUE
 1860 *---INSERT A-O VALUE INTO N-O CHAIN---
 1870 .5 LDY #0
 1880 LDA (PTR),Y
 1890 TAX
 1900 LDA A1
 1910 STA (PTR),Y
 1920 LDA PTR
 1930 STA (A2),Y
 1940 INY
 1950 LDA (PTR),Y
 1960 PHA
 1970 LDA A1+1
 1980 STA (PTR),Y
 1990 LDA PTR+1
 2000 STA (A2),Y
 2010 STX PTR
 2020 PLA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1846 of 2550

Apple II Computer Info

 2030 STA PTR+1
 2040 BNE .2 ...NOT END OF CHAIN YET
 2050 *---NEXT HASH CHAIN--------------
 2060 LDX XSAVE
 2070 .6 INX
 2080 INX
 2090 CPX #2*26 26 HASH CHAINS
 2100 BCC .1 ...STILL ANOTHER CHAIN
 2110 *--------------------------------
 2120 * RUN THROUGH NUMERIC-ORDER CHAIN
 2130 * AND CREATE A SOURCE LINE FOR EACH SYMBOL.
 2140 *--------------------------------
 2150 LDA ROOT+1 CHECK FOR NO CHAIN AT ALL
 2160 BEQ .17
 2170 .DO VERSION ...V 2.0
 2180 .8 LDX #4
 2190 .ELSE ...V 1.1
 2200 .8 LDX #2
 2210 .FIN
 2220 LDY #2
 2230 .9 LDA (ROOT),Y
 2240 PHA
 2250 INY
 2260 DEX
 2270 BPL .9
 2280 PLA
 2290 AND #$3F
 2300 TAX
 2310 .10 LDA (ROOT),Y
 2320 JSR COUT
 2330 DEX
 2340 BNE .10
 2350 *---TAB TO .EQ COLUMN------------
 2360 LDA #$81
 2370 CPY #25
 2380 BCS .11
 2390 TYA
 2400 EOR #$FF
 2410 ADC #$9A
 2420 .11 JSR MYCOUT1
 2430 *---OUTPUT ".EQ $"---------------
 2440 LDX #4
 2450 .12 LDA STRING,X
 2460 JSR COUT
 2470 DEX
 2480 BPL .12
 2490 *---OUTPUT VALUE OF SYMBOL-------
 2500 .DO VERSION ...V 2.0
 2510 LDX #4
 2520 PLA
 2530 BNE .16 ...PRINT 32-BITS
 2540 DEX
 2550 PLA
 2560 BNE .16 ...PRINT 24-BITS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1847 of 2550

Apple II Computer Info

 2570 .ELSE ...V 1.1
 2580 LDX #2
 2590 .FIN
 2600 DEX
 2610 PLA
 2620 BNE .16 ...PRINT 24-BITS
 2630 DEX
 2640 .13 PLA
 2650 .16 JSR PRBYTE
 2660 DEX
 2670 BNE .13
 2680 *---APPEND $00 BYTE--------------
 2690 TXA APPEND $00 BYTE
 2700 .DO VERSION ...V 2.0
 2710 STA WBUF-4,Y
 2720 DEY
 2730 DEY
 2740 .ELSE ...V 1.1
 2750 STA WBUF-2,Y
 2760 .FIN
 2770 DEY
 2780 STY WBUF # BYTES IN LINE
 2790 *---MAKE ROOM IN SOURCE AREA-----
 2800 LDA PRG.BEG
 2810 SEC
 2820 SBC WBUF
 2830 STA PRG.BEG
 2840 BCS .14
 2850 DEC PRG.BEG+1
 2860 *---COPY LINE INTO SOURCE AREA---
 2870 .14 DEY
 2880 .15 LDA WBUF,Y
 2890 STA (PRG.BEG),Y
 2900 DEY
 2910 BPL .15
 2920 *---NEXT SYMBOL FROM CHAIN-------
 2930 INY Y=0
 2940 LDA (ROOT),Y FROM THE NUMERIC-ORDER CHAIN
 2950 TAX
 2960 INY
 2970 LDA (ROOT),Y
 2980 STA ROOT+1
 2990 STX ROOT
 3000 BNE .8 ...NOT END OF CHAIN YET
 3010 JSR RENUMBER ...END, SO RENUMBER THE LINES
 3020 .17 JMP SETVID RESTORE HOOK AND RETURN
 3030 *--------------------------------
 3040 MYCOUT
 3050 AND #$7F
 3060 MYCOUT1
 3070 INY
 3080 .DO VERSION ...V 2.0
 3090 STA WBUF-5,Y
 3100 .ELSE ...V 1.1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1848 of 2550

Apple II Computer Info

 3110 STA WBUF-3,Y
 3120 .FIN
 3130 RTS
 3140 *--------------------------------
 3150 STRING .AS "$ QE."
 3160 *--------------------------------
 3170 END

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1849 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:Book.review.txt
==

Review of "Assembly Language for the Applesoft Programmer"
 reviewed by Bob Sander-Cederlof

Roy E. Myers (author of Microcomputer Graphics) and C.W. Finley, Jr.,
are the authors of the new book named above, and published by Addison-
Wesley. We like it.

Until August of last year we consistently recommended Roger Wagner's
"Assembly Lines: the Book" when you asked us which book would best
help you learn Apple assembly language. It was especially well-suited
to beginners at assembly language who were nevertheless somewhat
familiar with the Apple and Applesoft. But it went out of print with
the demise of Softalk Publishing, and we can't get them now.

Finley and Myers have not only filled the void, they have improved on
our previous favorite. Physically, the book is larger (7x9, paper,
361 + vi pages). It is set in large clear type. And it only costs
$16.95 (Wagner's book was $19.95). I especially like the fact that
they use the S-C assembler for all of the examples. However, if you
don't use our assembler, the book loses no value; all the examples are
written so as to be as compatible as possible with other possible
assemblers.

Take another look at that title: "Assembly Language for the Applesoft
Programmer." There is a double meaning there. This is not only a
text for the Applesoft programmer who wants to learn beginning
assembly language. It also for the person who wants to USE assembly
language along with Applesoft programs. Combining both languages
gives the best of both worlds, but doing so involves a lot of work.
This book will help.

The book divides into five main sections:

* Introduction

* Fundamentals of 6502 Programming: 6502 architecture, instruction
set; addressing; branches, loops, nesting; logical operations and bit
manipulation.

* Linkage: fitting a program into the Apple; accessing machine
language programs via BLOAD, POKE, USR, ctrl-Y, and "&"; soft
switches; using Applesoft ROM subroutines, esp. floating point math;
development of a working example.

* Graphics: the Screen, its organization and addressing with text,
lo-res, and hi-res; ROM routines for lo- and hi-res graphics; bit-
pattern images and animation; bit-masking techniques and complementary
drawing; development of a working shoot-em-up video game (GREMLIN).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1850 of 2550

Apple II Computer Info

* Searching and Sorting: &-routine to sort array elements; another
to search strings.

There are five useful appendices and an index.

We think enough of this book to add it to our stock. Check our list
of books on page 3 for price.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1851 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:DOSless.Disks.txt
==

Making Dos-less Disks......................Bob Sander-Cederlof

Last night I re-invented the wheel, and I think I made a pretty good
one. I learned a little at the same time.

When you use the DOS "INIT" command, a copy of DOS is written on
tracks 0 through 2. If the disk is meant to be a data disk, that
wastes three perfectly good tracks. Because of the way DOS checks for
the end of track-sector lists and various other things, a standard DOS
cannot allow files to be written into track 0. But it is perfectly
all right to leave the DOS image off of tracks 1 and 2 and use them
for files. Of course it is a good idea to change the image on track 0
so that it will not begin to boot DOS and get lost (when you forget it
is DOS-less and try to boot it anyway).

There are some more wasted sectors in track 17, the catalog track.
INIT sets up 15 sectors for the catalog, which is enough for 105
files. I have never needed that many, but some of you might have even
needed more. Last night I needed only about 30 files, and I needed
every sector I could get to store them all. My "wheel" sets up only
seven catalog sectors, enough for only 49 files. This frees up eight
more sectors for data.

With the help of "Beneath Apple DOS" I examined the code in the DOS
File Manager which handles the INIT command ($AE8E-AF07). This
routine calls RWTS to initialize 35 empty tracks on a diskette, writes
a VTOC in track 17 sector 0 and writes 15 empty catalog sectors on the
rest of track 17. Then it scoots back to track 0 and writes the DOS
image on the first three tracks.

I used Rak-Ware's DISASM to make a source file out of the INIT code,
and then loaded it into the S-C Macro Assembler. Then step-by-step I
proceeded to add meaningful labels and comments, and modify the code
to do what I wanted.

The File Manager INIT code expects various parameters to have been set
up by the DOS command parser, and those will not be set up when my
program runs. I decided I would let my program assume that the last
disk drive you accessed is the one where you have placed the blank
disk you want to initialize.

I also decided to make the volume number always 001. I always do this
anyway, and generally consider the volume number to be a nuisance
(since I don't have a Corvus which uses the volume numbers for
something useful). If you want to be able to choose the volume
number, you could add the code for that purpose. Lines 1240-1270 set
the volume number into the VTOC image and into the RWTS parameter
block (IOB).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1852 of 2550

Apple II Computer Info

Lines 1290-1300 call RWTS to format the blank diskette. Beware! It
is entirely too easy to forget to remove your heavily loaded program
diskette before running this program! Be absolutely SURE you have the
diskette in the drive which you WANT to initialize. After this
program runs, the disk will have no remnant of any data which may have
been on it before.

Lines 1310-1570 set up a VTOC image. The program assumes that part of
the VTOC image at $B3BB is already set up, because you could not run
this program without having read at least one VTOC somewhere along the
way. The VTOC bitmap is set up first to $FFFF0000 at each sector
position, and then the entry for track 0 is cleared. Finally the bits
for sector 0 and sectors 9 through 15 of track 17 are cleared. Then
lines 1580-1640 call on RWTS to write out the VTOC on track 17, sector
0.

The catalog sectors are chained together with a series of pointers. A
pointer in the VTOC points to the first catalog sector, which is
almost always track 17 sector 15. A pointer in the first catalog
sector points to the second one, and so on. The last catalog sector
points at track 0, which is a flag indicating the end of the catalog.
(Too bad, because if DOS tested for a final pointer to 0,0 instead of
just 0,x we could put the catalog for this data disk all in track 0
and free up even more sectors.)

Lines 1650-1700 clear the catalog buffer, and then lines 1710-1900
insert the forward pointers and call on RWTS to write each sector on
the disk.

Finally, lines 1910-2000 write out a bootup program on track 0 sector
0. BOOTER is the code that will be executed if you accidentally try
to boot our DOS-less disk.

Lines 2010-2090 finish setting up a call to RWTS, and check for an I/O
error. I didn't bother to write any error handler into this program,
as you can see by the BRK in line 2090. If you want you can printout
the DOS error code at this point, or at least get it in the A-register
before the BRK.

The BOOTER program is tricker than it looks. Anyway it tricked me a
lot. First notice the .PH and .EP directives in lines 2120 and 2280.
These tell the assembler to continue assembling bytes following the
preceding code, but to assemble it with the assumption that at
execution time it will be origined at $0800. The boot ROM on the disk
controller reads track 0 sector 0 into $800-$8FF, so BOOTER has to be
set up to run there.

Notice line 2140, which is ".HS 01" The boot ROM reads the first
sector into $800-8FF, then checks location $800 to see how many
sectors you want the boot ROM to read. About the only disk I have
heard of which has anything other than 01 in this byte is the BASICS
disk. If you put, for example, 03 in that byte sectors 1 and 2 would
be read into $900 and $A00. You can read up to 16 sectors this way,
but remember that the sector numbers will not be the same as the ones

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1853 of 2550

Apple II Computer Info

you use when you write them with RWTS. (RWTS uses a table to convert
logical sector numbers into physical sector numbers.)

Line 2150 turns off the disk motor. I forgot the first time, and of
course the drive just kept spinning.

Lines 2160-2210 print out the message from lines 2240-2270. My first
attempt I called the standard COUT subroutine at $FDED to print each
character, and I lost an hour finding out why I never saw my message.
Instead, the drive just kept grinding the head to track 0, over and
over and over.... But it worked if I first copied the boot ROM code
from $C600 down to $8600, and typed 8600G to boot. I finally figured
out that PR#6 sets the output hook to slot 6 and leaves it there.
Then the next character that is printed (usually the prompt character
for whatever language you are in) through COUT goes to the disk
interface and proceeds to boot. My message sent another character to
COUT and restarted the boot, ad infinitum. Changing line 2190 to "JSR
$FDF0" fixed it all.

After printing the message line 2220 jumps to the initial entry point
of the monitor, so you get a "*" prompt. If you previously had DOS in
memory, you will probably be able to use 3D0G to get back to BASIC or
the assembler or whatever. Otherwise, stick in a disk that DOES have
DOS and try booting again.

Line 2300 is just window dressing. It assures that the rest of track
0 sector 0 will have nothing but zeroes in it. No particular value,
but I like it that way.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1854 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:DP18.Input.txt
==

18-Digit Arithmetic, Part 10...............Bob Sander-Cederlof

At least one error crept into the PRINT USING program we printed last
month. A line should be inserted to correct the problem:

 3045 JSR PRUS.CLEAR YES, NEW FIELD

This is what I expect to be the final installment of the DP18 series.
Some of you have been typing in and trying out the various
installments, and others buying the source code on the various
quarterly disks. We plan to make the composite DP18 source available
at a reasonable price: all parts will be properly integrated as a set
of 12 source files, ready to assemble with the S-C Macro Assembler.
The disk will also include example programs illustrating the various
features, the object file of DP18, and a loader program for installing
DP18. The price for all of it, on one diskette, will be $50.

Normal Applesoft INPUT statements can be written in several ways. An
optional quotation can be used for a prompting message; if one is used
a semicolon must follow the quotation. A list of one or more
variables follows.

 INPUT variable
 INPUT "quote";variable

In DP18 we implemented the two forms of the INPUT statement shown
above, except that only a single variable may be used in each
statement. We also implemented two additional kinds of INPUT
statements. INPUT# statements allow expressions to be entered during
execution. INPUT$ statements allow picture- controlled input.

 INPUT # variable
 INPUT # "quote";variable
 INPUT $ string,variable-list

The INPUT# statement allows you to read expressions and evaluate them
during an INPUT operation. This can greatly simplify entering some
numbers. For example, one-third can be entered as either
".3333333333333333333333" or simply as "1/3". You can enter values
such as SQR(2), 2*PI, and so on. You can even refer to variables used
in the program. After you have entered the expression and typed
RETURN, DP18 calls on Applesoft to tokenize the line, evaluates the
expression to a numeric value, and stores the value in the INPUT
variable your program specified.

We call the INPUT$ statement "INPUT using". It is analogous to "PRINT
using", or the PRINT$ statement discussed last month. All characters
in the INPUT$ picture are proccessed the same as for PRINT$ until

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1855 of 2550

Apple II Computer Info

characters defining a numeric or string field are encountered. Then
the magic begins....

For a numeric field, underlines are printed to indicate digit
positions. The cursor is placed after the last underline. If there
is a decimal point in the picture it will be printed. A plus sign in
the picture will also be printed. All other positions of the field
will be printed as underlines. Once the field has been displayed in
this fashion, DP18 will check the current value in the variable
corresponding with the field. If the current value is zero, DP18
merely waits for you to enter digits. If the current value is non-
zero, that value is displayed in the field on the screen, to be used
as a default value.

When INPUT$ is waiting for you to enter a numeric value, you can type
the RETURN key to accept the default value. If no default value is
displayed and you type the RETURN key, you will be entering a value of
zero. If you begin to type digits, they will enter the field from the
right end in "calculator style". Using backspace will cause the
displayed value to be popped to the right, deleting the last digit you
typed. One digit will be deleted each time you type backspace.

If you type a period, enough zeroes will be automatically entered to
reach the displayed decimal point. This makes the digits you typed
before the period into an integer. Then as you continue to type
digits they will be appended after the decimal point. If you type
more fractional digits than can be seen in the displayed field, they
do become part of the input value; you just cannot see them on the
screen. The value on the screen is rounded up if necessary.

A control-X will erase everything you have typed in the current field
and allow you to start over. A control-C will immediately BREAK,
stopping the program.

If you type a backspace when there are no digits remaining in a field,
DP18 will attempt to go back to the previous field in the same
picture. This will only work if the screen has not scrolled during
the development of the picture, and requires a little bit of planning.
(Isn't that what programming is all about?)

Probably it is time for an example.

 100 &DP: INPUT $ "HV>>'ENTER X: '###.#/
 'ENTER Y: '###.#",X(0),Y(0)

Remember how to read pictures from last month's article? The "H" all
by itself sets the horizontal cursor position to 0 (beginning of the
line). Likewise, "V" sets us to the top line. The ">>" clears from
cursor to end of screen. Therefore the "HV>>" does the same thing as
a normal HOME command, but from within a picture. The string between
apostrophes is printed on the screen. Then "###.#" defines a numeric
field, corresponding to the variable X(0). The "/" causes a carriage
return to be displayed, and then "ENTER Y:" and the second field.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1856 of 2550

Apple II Computer Info

During execution you will first see the screen clear and the top line
become "ENTER X: ___._" followed by a flashing cursor. You can type
digits, a sign, a decimal point, backspace, and so on. When you
finally type the RETURN a second line will appear: "ENTER Y: ___._".
If you then type a backspace, the cursor will move back to the first
line, displaying as a default value whatever you left in that line.

And what about string fields in the INPUT$ command? Again, underlines
will be displayed for each position of the string field. If the
string already is non-null, its current value will be displayed as a
default.

The code that follows is, as has been our practice throughout the DP18
series, preceded by some .EQ lines to define routines previously
published, or part of the Apple ROMs. Variable storage is also
defined. In the integrated source all these definitions are only done
once, and the whole program is assembled together.

When the main execution loop of DP18 encounters the INPUT token, we
land at line 1840. Lines 1850-1860 get the character following INPUT,
and abort with SYNTAX ERROR if that character is a colon or end-of-
line token. Lines 1870-1910 handle INPUT$, by merely loading up zero
in the A-register and jumping to PRINT.INPUT (which was listed last
month as part of the PRINT USING code). The zero value will be stored
in a flag, indicating to PRINT.INPUT later on that it was called from
INPUT$ rather than PRINT$. When the picture processor encounters a
numeric or string field description in the picture either INPUT.NUM or
INPUT.STR will be called, rather than PRINT.NUM or PRINT.STR.

Lines 1930-2510 handle the normal INPUT and INPUT# modes. The
character which follows INPUT is stored at INPUT.TYPE, to be checked
later. If that character was "#", line 1960 gets the next character
to position properly for scanning optional quote or the variable name.
Lines 1970-2120 process the optional quote. If it is not there, a "?"
prompt is used; it it is there, the string itself is printed. Lines
2090-2110 make a ";" optional after the quote. Normal Applesoft INPUT
requires a semicolon after the quote, but DP18's INPUT makes it
optional. In fact, you could even get by with a whole bunch of
semicolons, if you feel like it....

Lines 2140-2190 read a line of text. If the first character of the
line is a control-C, we abort just like Applesoft. An empty line
returns a zero value, using line 2500-2510.

Lines 2210-2270 set up the input line, which begins at $0200 (WBUF),
so that it can be scanned using CHRGET, after pushing current TXTPTR
value on the stack. If the INPUT.TYPE was "#", AS.PARSE and
DP.EVALUATE convert the expression down to a value. If not, FIN
converts the number string to a value. I could have used PARSE and
EVALUATE regardless, but it would take a lot more time to convert
plain numbers that way. Lines 2400-2430 restore the old value of
TXTPTR, so that we can continue scanning the program.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1857 of 2550

Apple II Computer Info

Lines 2440-2480 scan the input variable name, and store the converted
value in that variable. Then back to DP18's main loop to get the next
command!

If we are processing an INPUT$ statement, chances are good that we
will input a number. If so, the picture processor will call on
INPUT.NUM at line 2530. WBUF at this time holds the image of the
numeric field description, as amplified from the picture. Lines 2540-
2600 copy it into IBUF, because we are going to clobber the WBUF
version everytime we re-display the value being entered. IBUF is
currently assembled as a 256 byte buffer, which is quite extravagant.
Probably this is an area where things could be tightened up, if you
need the memory space.

The code beyond line 2530 is hard to follow. I am reminded of the
original Adventure game, and its twisty little passages, little twisty
passages, and so on. I am going to give it a broad brush, and those
of you with an intense interest can explore in more detail on your
own.

As each digit is typed, it is appended to the numeric value by
ACCUMULATE.DIGIT. Then, after refreshing the picture of the field
from IBUF, the value is reconverted to display format and shown on the
screen. It may sound inefficient, but it all works nicely. Trimming
off digits when backspace is typed is done by truncating the DP18
value and then redisplaying.

LAST.FLD is the routine that tries to back up input to a previous
field when you type backspace beyond the first digit. At the
beginning of each field, all the necessary parameters are pushed on
DP18's stack. LAST.FLD pops these back to move to a previous field.
Guess what ... I forgot to check for stack overflow in the STACK.IT
subroutine. Should be no problem, however, because only five bytes
are stacked for each field, there is room for 24 fields. Since a
picture must necessarily be less than 256 characters (maximum length
of an Applesoft string) thereby limiting the number of fields, it is
unlikely that you will have more than 24 fields stack up. If you
think it important to have more, you had better increase the size of
STACK.

String input is handled in an analogous fashion by INPUT.STR, starting
at line 4970.

As I mentioned before, this is my final article on DP18. But maybe
not, if you want more. Some of you might send improvements,
corrections, or whatever, and I might pass them along in these pages.

DP18 works, and works well; we're proud of it. You can use DP18 in
your programs, even those you plan to sell. Just give us credit where
appropriate in your documentation. Remember, you can get all the
source code already typed in and integrated together from us for only
$50.
1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1858 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 5 February, 1985

In This Issue...

18-Digit Arithmetic, Part 10 2
Questions and Answers. 16
Patches Available for Time/Date in Titles. 18
Write Guard Disk Modification Kit. 19
Assembly Language for the Applesoft Programmer, a Review . 20
Making DOS-Less Disks. 21
Correction for Symbol Table Source Maker 25
Building Hi-Res Pre-Shift Tables 26

65816 News -- Talked with Bill Mensch a few days ago, and he expects
full production in just a few weeks. There should be a lot of sources
soon. Bill has a few more great chips in mind, upgrading the 6502
family even further.

David Eyes is writing a detailed programmer's reference manual for the
65816, to be published about July by Brady. Bill says it should
answer all our questions. I'll be reviewing it as soon as possible.

We hear of a 6MHz 65816 board with 256K RAM for plugging into Apples.
Let you know when we learn more details.

Woz News -- We hear Steve, Wendell Sander (/// designer), and Joe
Ennis (//c designer have teamed up to form a new enterprise, outside
Apple, with plans to produce a device for the home video market.

Apple II Forever College -- If you would like in-depth training in
Cupertino, $500 buys 3 days under the masters. One session starts
March 6th, another May 8th. Call Marian Djurovich at (408) 973-6411
for details.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1859 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......................................$100
 Version 2.0 Upgrade Kit (for 1.0/1.1/1.2 owners)...................$20
 Source Code for Version 1.1 (on two disk sides)...................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility for S-C Macro (without source code).......$20
 Source Code for S-C Cross Reference Utility.............additional $50
DISASM Dis-Assembler (RAK-Ware).......................................$30
 Source Code for DISASM..................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

AAL Quarterly Disks.........................each $15, or any four for $45
 Jan-Mar Apr-Jun Jul-Sep Oct-Dec
 Each disk contains 1980 - - - 1
 the source code from 1981 2 3 4 5
 three issues of AAL, 1982 6 7 8 9
 saving you lots of 1983 10 11 12 13
 typing and testing. 1984 14 15 16 17

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor (new price, was $60)..$40
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36

Blank Diskettes (Verbatim)......................... package of 20 for $32
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 or $25 per 100
 (These are cardboard folders designed to fit into 6"X9" Envelopes.)
Envelopes for Diskette Mailers............................. 6 cents each
quikLoader EPROM System (SCRG)................................($179) $170
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32
PROmGRAMER (SCRG)..($149.50) $140
Write Guard Disk Mod Kit (Mark IV)....................................$40

Books, Books, Books..........................compare our discount prices!
 "Inside the Apple //e", Little...........................($19.95) $18
 "Apple II+/IIe Troubleshooting & Repair Guide", Brenner..($19.95) $18
 "Apple][Circuit Description", Gayler...................($22.95) $21
 "Understanding the Apple II", Sather.....................($22.95) $21
 "Understanding the Apple //e", Sather (avail. April, price about $21)
 "Enhancing Your Apple II, vol. 1", Lancaster.............($15.95) $15
 Second edition, with //e information.
 "Enhancing Your Apple II/IIe, vol 2", Lancaster(May, $19.95) $19
 "Assembly Cookbook for the Apple II/IIe", Lancaster......($21.95) $20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1860 of 2550

Apple II Computer Info

 "Incredible Secret Money Machine", Lancaster..............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner.....................($19.95) $18
 "Beneath Apple ProDOS", Worth & Lechner..................($19.95) $18
 "What's Where in the Apple", Second Edition..............($19.95) $19
 "6502 Assembly Language Programming", Leventhal..........($18.95) $18
 "6502 Subroutines", Leventhal............................($18.95) $18
 "Real Time Programming -- Neglected Topics", Foster.......($9.95) $9
 "Microcomputer Graphics", Myers..........................($12.95) $12
 "Apple II Assembly Language", DeJong.....................($15.95) $15
 "Apple II Applications" (Interfacing & I/O experiments)..($13.95) $13
 "Apple Programmer's Handbook", Paul Irwin................($22.95) $21
 "Electronically Hearing: Computer Speech Recognition.....($13.95) $13
 "Electron. Speaking: Computer Speech Generation (Cater)...($14.95) $14
 "Assem. Lang. for Applesoft Programmers", Finley & Myers..($16.95) $16

Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1861 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:Preshift.Tables.txt
==

Building Hi-Res Pre-Shift Tables.............Gianluca Pomponi
 Pisa, Italy

Given my interest in everything related to graphics, I read eagerly
Bob's article "Generating Tables..." in the Dec 94 issue of AAL. I
haven't yet had the chance to read the Apple Supplement of Byte (my
local newsstand receives it discontinuously); however, I had already
heard about the use of preshift tables in animation. I experimented
with this technique some time ago, getting excellent results in moving
colored shapes against some very complex backgrounds with relatively
simple code.

Maybe one of the most challenging steps is typing in the preshift
tables. Writing a program to generate the tables is not difficult,
and is probably better. The code that follows only takes $68 bytes as
a subroutine, using two page zero variables. And it only takes 24
milliseconds to generate the tables, which is many times faster than
reading them from a disk.

The Byte article used 14 tables of 256 bytes each. They correspond to
left and right portions of each possible 8-bit value shifted any
amount from 1 to 7 bits. No columns are kept in memory for shifting 0
bits, as the result is entirely too predictable.

Since, in hi-res graphics, the high bit does not get shifted, you can
deal with it separately. Before looking up the preshifted values you
can split off the high bit and rejoin it later. The extra code for
this is very minor, and it results in a vast memory saving. By doing
it this way we get by with 12 tables of 128 bytes each (six pages
instead of 14!). Six tables for the left side results and six for the
right, for every possible shift of from 1 to 6 bits, for every
possible value from $00 to $7F.

I sometimes find it worthwhile to limit the quotient-remainder tables
such as Bob generated in the December article to only 256 bytes each
(instead of 280), using code like the following to read them when the
X-coordinate is larger than 255:

 LDX XCOORD low byte of xcoord
 LDA QUO+4,X
 CLC
 ADC #$24
 STA XBYTE
 LDA REM+4,X
 STA XBIT

Here now is my program to generate the preshift tables, as modified by
Bob. LInes 1080-1210 allocate space for the 12 tables, each 128 bytes

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1862 of 2550

Apple II Computer Info

long. I put them at $0900 for this example, but of course you can put
them wherever you wish.

Lines 1230-1310 are a macro definition. The macro is called out six
times in the main loop, once for each shift of a value. For the
benefit of those without a macro assembler, I have shown the expansion
in the listing of lines 1430-1480. Some of the code in the macro
could have been handled by a subroutine, but it would save a
negligible amount of space at a cost of an non-negligible amount of
time.

The shifting algorithm is familiar to those of you who have been
fiddling with hi-res for a while. Remember that the picture bits are
stored backwards in each byte, so that shifting the picture on the
screen right one bit requires shifting the bits in memory left within
each byte, stepping over bit 7, and from byte to byte in a left-to-
right direction.

The little program called TIME, lines 1530-1660, calls the BUILD
program 1000 times. I ran it and clocked it at a little less than 24
seconds, which means building once took less than 24 milliseconds.
The tables would take up six disk sectors if they were stored part of
the program on disk. The disk spins at 300 rpm, or 200 milliseconds
per revolution. The absolute minimum time to read six sectors would
be 67.5 milliseconds, but in actual practice it takes closer to a half
second. It depends on whether it is part of a larger file or stored
as a separate file, the latter taking longer. Since the program only
needs to be executed once, even the memory it occupies it available to
the program for other purposes.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1863 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:Q.n.A.txt
==

Questions and Answers

I have just finished installing Version 2.0 of your assembler, and I
have a few questions.

a. First, how is the line length of the escape-L changed? The short
line looks ridiculous on an 80-column screen. I would also like to
change the first character from "*" to ";".

b. How can I get the assembler to initialize things with DOS's MON CI
modes set?

c. In working with big programs, it is easy to exceed line number
9999. It happens all the time. As new lines get added, the
formatting of lines around 9999 goes haywire, as the spacing is done
according to the line number at the time of entry. Thus when a line
number changes from 4 to 5 digits or vice versa due to renumbering the
opcode and operand columns no longer line up properly. What can be
done about the erratic column alignment?

d. I noticed that the symbol table generated by an assembly takes
more memory with version 2.0 than it did with 1.1. Why?

e. There appear to be two errors in the sample program S.INLINE on
the Macro 2.0 disk. The comment on how to use it shows a comma
between the &INPUT and the string variable, when the program in fact
requires that there be NO comma. Then, the first line of the main
routine does a CMP, which should be an LDA. With these corrections,
the program is great. &INPUT will accept input from keyboard or disk,
and reads the complete record including commas, quotes, and colons.
This I find rather useful.

Mike Lawrie, South Africa

a. The routine which generates the star-dash line starts at $DB21,
with the following:

 TXA
 BEQ ...
 LDA #$AA change to $BB for ";"
 JSR ...
 LDA $D01E ("-" CHAR)
 CPX #$26 increase as you like

For example, I changed mine just now like this:

 $C083 C083 DB25:BB N DB2D:46

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1864 of 2550

Apple II Computer Info

b. Whatever selections you have turned on with the MON command are
turned off by the DOS "INT" or "FP" commands. I guess if you want the
MONCI modes all the time you could add code to the assembler to set
the proper bits inside DOS. The flags are in $AA5E: C=$40, I=$20,
O=$10. Store $60 into $AA5E to effect MONCI.

c. I agree with you that it is annoying the way the columns stagger
when the line numbers are near 9999. There are several possible
solutions. One solution, is to start line numbers at 10000. You can
do this by changing the code at $D32B:

 LDA #990 change to #9990
 STA ...
 LDA /990 change to /9990

A better way is to make a the line numbers always print with five
digits. To effect this, change the code at $DE63:

 LDX #3 change to LDX #4

 $C083 C083 DE64:4

d. The symbol table does indeed take more space in version 2.0 than
it did in previous versions. This is due to the fact that symbols can
have values up to 32-bits long. Every symbol has two more bytes in
the table now.

e. Right on both counts. Disks with serial numbers 1186 and larger
have the corrections you give.

Is there any way of loading a program from the monitor (without going
back to Basic) or reload DOS or reboot without losing what is in
memory?

Munson Compton, Shreveport, LA

If you entered the monitor via CALL-151 from Basic, or MNTR or MGO-151
from the S-C Macro Assembler, DOS is still alive and will still
respond to commands. You can BLOAD or LOAD a program, but of course
using LOAD will flip you into either Applesoft, Integer BASIC, or the
Macro Assembler depending on file type and what languages are around.
If you want to stay in the monitor after the LOAD file has been read
into memory, you could temporarily patch the DOS LOAD code which
starts at $A413. The book "Beneath Apple DOS" would be helpful here.
It looks to me like you could so subvert type A files by patching the
JMP ($9D60) at $A44D to RTS (by putting 60 at $A44D). Type I files
might be tricked by putting an RTS (60) at $A5AF. I don't know what
other ramifications these patches might have. Beware!!!

You can reboot a slave disk without losing the actual text of an
assembler source file from memory. However, the pointer which tells
the assembler where the program starts will be reset. Before
rebooting, record the value stored in $CA and $CB, and after getting
back into the assembler restore those two bytes. Of course, if the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1865 of 2550

Apple II Computer Info

assembler is in the language card rebooting DOS marks it as not being
there. From the monitor you can put it all back by typing:

]CALL-151
 *C081 C081 E000:20
 *INT
 :$CA:...(whatever values you recorded earlier)
 :LIST (Voila!)

I have the Apple ToolKit and the Big Mac assemblers, and use them
primarily to key in source files from articles such as yours. I've
figured out how to transpose most of the different labels and opcodes,
but would like some enlightenment on the use of the .1, .2, .3 etc.
labels that are repeated in the code. I assume this is a capability
of your assembler that others don't have.

David Roberson

For help in converting our listings to other assemblers and vice
versa, you should refer to my "Directory of Assembler Directives"
article in the September 1982 AAL. You are correct in assuming that
most other assemblers do not have the kind of local labels as the S-C
assemblers, but some do. These numeric labels are one or two digits
after a period, and are very convenient for branch points within a
sub- routine. They are defined below a normal label, and are only
accessible within that area. The local labels are defined internally
relative to the preceding normal label, and must be within a 255-byte
range after the normal label. Once a new normal label is defined, a
whole new set of local labels is available. The use of local labels
simplifies programming, because there is no need to think up dozens of
unique names like LOOP1, LOP2, LUPA, LUPB, and so on. Local labels
also encourage writing good modular code, with only one entry point
per module, since the local labels are not accessible outside the
routine in which they are defined.

The LISA assembler uses a different type of numeric label, which I
call a near-by label. These are redefinable at will, and when they
are referenced a pointer must be included to tell the assembler which
direction to search for the definition. You can refer to the nearest
definition in either a forward or backward direction. I get
thoroughly confused trying to read and/or modify programs using these.

.

.

.

.

.

.

.

.

.
1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1866 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:Symbol.Pgm.Crx.txt
==

Correction for Symbol Table Source Maker...Bob Sander-Cederlof

I went to great lengths to verify the address of the entry into
RENUMBER used by Peter's and Bruce's program, and the day after
picking up the printed newsletters Bill discovered that I had used a
pre-release copy of Version 2.0. The address in the actual release is
different. The correct line 1060 for the version we are sending out
is:

 1060 RENUMBER .EQ $D658 for the D000 version
 OR 1060 RENUMBER .EQ $1658 for the 1000 version

In any case, just be sure the address is the location of the CPX #$06
instruction.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1867 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:WriteGuard.txt
==

Write Guard Disk Modification Kit

Mark IV Designs (Mark Hansen) has come up with a neat way to override
the write protect switch in a disk drive. Sometimes you want to write
on the back side of a disk, in spite of all good breeding. Yet it is a
nuisance to have to cut a notch in the other edge of the disk. We
finally bought a hole punch, but it is still a nuisance. Other times
you want to write protect a disk, but not put one of those little
sticky things over the existing notch. What to do?

Instructions for adding an external toggle switch in series or in
parallel with the internal sensor are easy to come by, but who wants
to drill holes and solder? The Write Guard kit from Mark IV Desings
accomplishes all you could wish for without any drilling, cutting, or
soldering.

You get a small (1x2x3 inches) box with three-position toggle switch
and LED. A short flat cable runs out the back, and you plug that into
a socket inside the disk drive (after removing the 74125 from that
socket). A piece of velcro attaches the plastic box to either side of
your drive. The switch selects normal, always protected, or always
unprotected. The LED lights whenever the disk is not protected. One
chip on the disk controller card also is replaced with a chip from the
kit.

If this kit sounds like something you have been waiting for, you can
order one from us at $40.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1868 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:Articles:YostsFreeOffer.txt
==

Patches Available for Time/Date in Titles...........R. M. Yost

I have implemented a patch to include a Thunderclock (or compatible)
time string in the .TItle for version 2.0 of the S-C Macro Assembler.
The patch program automatically loads the assembler and my favorite
I/O driver, installs the time patch and several others I like, and
writes the assembler back on the disk. The new file includes both
assembler and driver, with the patches, as well as a loader which
allows the whole thing to be executed with a single BRUN.

I will gladly send a listing of the source code to any Assembly Line
reader who is interested. Just send a stamped self- addressed
envelope to R.M.Yost, 7436 Pointe, Canton, MI 48187.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1869 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:DOS3.3:S.Bld.PreShft.txt
==

 1000 *SAVE S.BUILD.PRESHIFT.TABLES
 1010 *--------------------------------
 1020 * WRITTEN BY G. L. POMPONI, PISA, ITALY
 1030 * MODIFIED BY BOB SANDER-CEDERLOF
 1040 *--------------------------------
 1050 L.BYTE .EQ 0
 1060 R.BYTE .EQ 1
 1070 *--------------------------------
 1080 .OR $900
 1090 SHIFT.1 .BS 128
 1100 SHIFT.2 .BS 128
 1110 SHIFT.3 .BS 128
 1120 SHIFT.4 .BS 128
 1130 SHIFT.5 .BS 128
 1140 SHIFT.6 .BS 128
 1150 *--------------------------------
 1160 REMND.1 .BS 128
 1170 REMND.2 .BS 128
 1180 REMND.3 .BS 128
 1190 REMND.4 .BS 128
 1200 REMND.5 .BS 128
 1210 REMND.6 .BS 128
 1220 *--------------------------------
 1230 .MA SHIFT
 1240 ASL L.BYTE
 1250 ROL R.BYTE
 1260 LDA L.BYTE
 1270 LSR
 1280 STA SHIFT.]1,X
 1290 LDA R.BYTE
 1300 STA REMND.]1,X
 1310 .EM
 1320 *--------------------------------
 1330 .OR $800
 1340 *--------------------------------
 1350 BUILD.PRESHIFT.TABLES
 1360 LDX #0 FOR X = 0 TO $7F
 1370 *--------------------------------
 1380 .1 STX L.BYTE
 1390 LDA #0
 1400 STA R.BYTE
 1410 ASL L.BYTE
 1420 *--------------------------------
 1430 >SHIFT 1
 1440 >SHIFT 2
 1450 >SHIFT 3
 1460 >SHIFT 4
 1470 >SHIFT 5
 1480 >SHIFT 6

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1870 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 INX NEXT X
 1510 BPL .1 (...UNTIL $80)
 1520 RTS
 1530 *--------------------------------
 1540 * BUILDS 1000 TIMES IN LESS THAN 24 SECONDS,
 1550 * SO LESS THAN 24 MILLISECONDS TO BUILD ONCE
 1560 *--------------------------------
 1570 TIME LDA #4 4*250 = 1000
 1580 STA $500
 1590 .1 LDY #250
 1600 .2 JSR BUILD.PRESHIFT.TABLES
 1610 DEY
 1620 BNE .2
 1630 DEC $500
 1640 BNE .1
 1650 RTS
 1660 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1871 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:DOS3.3:S.DOSLESS.INIT.txt
==

 1000 *SAVE S.DOSLESS INIT
 1010 *--------------------------------
 1020 RWTS .EQ $03D9
 1030 GETIOB .EQ $03E3
 1040 *--------------------------------
 1050 VTOC .EQ $B3BB
 1060 V.VOLUME .EQ $B3C1
 1070 V.NXTTRK .EQ $B3EB
 1080 V.DIRECT .EQ $B3EC
 1090 V.BITMAP .EQ $B3F3
 1100 *--------------------------------
 1110 CATALOG.BUFFER .EQ $B4BB
 1120 C.TRACK .EQ $B4BC
 1130 C.SECTOR .EQ $B4BD
 1140 *--------------------------------
 1150 R.PARMS .EQ $B7E8
 1160 R.VOLUME .EQ $B7EB
 1170 R.TRACK .EQ $B7EC
 1180 R.SECTOR .EQ $B7ED
 1190 R.BUFFER .EQ $B7F0,B7F1
 1200 R.OPCODE .EQ $B7F4
 1210 *--------------------------------
 1220 .OR $800
 1230 *--------------------------------
 1240 DOSLESS.INIT
 1250 LDA #1 INIT AS VOLUME 001
 1260 STA R.VOLUME
 1270 STA V.VOLUME
 1280 *--------------------------------
 1290 LDA #$04 INIT OPCODE FOR RWTS
 1300 JSR CALL.RWTS.OP.IN.A
 1310 *---MAKE A GENERIC VTOC----------
 1320 LDA #$11
 1330 STA V.NXTTRK
 1340 STA R.TRACK
 1350 LDY #1
 1360 STY V.DIRECT FORWARD DIRECTION
 1370 DEY Y=0
 1380 STY R.SECTOR
 1390 *---PREPARE BITMAP---------------
 1400 LDY #4*35
 1410 .1 LDA #0
 1420 DEY
 1430 STA V.BITMAP,Y
 1440 DEY
 1450 STA V.BITMAP,Y
 1460 DEY
 1470 LDA #$FF
 1480 STA V.BITMAP,Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1872 of 2550

Apple II Computer Info

 1490 DEY
 1500 STA V.BITMAP,Y
 1510 BNE .1
 1520 STY V.BITMAP CANNOT ALLOCATE TRACK 0
 1530 STY V.BITMAP+1
 1540 INY Y=1, RESERVE F...9
 1550 STY 4*17+V.BITMAP FREE SECTOR 8
 1560 LDA #$FE RESERVE 0
 1570 STA 4*17+V.BITMAP+1 FREE 7...1
 1580 *---WRITE VTOC ON NEW DISK-------
 1590 LDA #VTOC
 1600 STA R.BUFFER
 1610 LDA /VTOC
 1620 STA R.BUFFER+1
 1630 LDA #2 RWTS WRITE OPCODE
 1640 JSR CALL.RWTS.OP.IN.A
 1650 *---PREPARE CATALOG SECTOR-------
 1660 LDX #$00
 1670 TXA
 1680 .2 STA CATALOG.BUFFER,X
 1690 INX
 1700 BNE .2
 1710 *---WRITE CATALOG CHAIN----------
 1720 LDA #CATALOG.BUFFER
 1730 STA R.BUFFER
 1740 LDA /CATALOG.BUFFER
 1750 STA R.BUFFER+1
 1760 LDA #17 TRACK 17
 1770 LDY #15 START IN SECTOR 15
 1780 .3 STA C.TRACK
 1790 .4 STY R.SECTOR
 1800 DEY
 1810 STY C.SECTOR
 1820 JSR CALL.RWTS
 1830 LDY C.SECTOR
 1840 CPY #9
 1850 BNE .4
 1860 STY R.SECTOR
 1870 LDY #0
 1880 STY C.TRACK
 1890 STY C.SECTOR
 1900 JSR CALL.RWTS
 1910 *---WRITE BOOT SECTOR------------
 1920 .5 LDA #BOOTER
 1930 STA R.BUFFER
 1940 LDA /BOOTER
 1950 STA R.BUFFER+1
 1960 LDA #0
 1970 STA R.TRACK
 1980 STA R.SECTOR
 1990 JSR CALL.RWTS
 2000 RTS
 2010 *--------------------------------
 2020 CALL.RWTS.OP.IN.A

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1873 of 2550

Apple II Computer Info

 2030 STA R.OPCODE
 2040 CALL.RWTS
 2050 JSR GETIOB
 2060 JSR RWTS
 2070 BCS .1 ERROR
 2080 RTS
 2090 .1 BRK
 2100 *--------------------------------
 2110 BOOTER
 2120 .PH $800
 2130 BOOTER.PHASE
 2140 .HS 01
 2150 LDA $C088,X MOTOR OFF
 2160 LDY #0
 2170 .1 LDA MESSAGE,Y
 2180 BEQ .2
 2190 JSR $FDF0
 2200 INY
 2210 BNE .1
 2220 .2 JMP $FF59
 2230 *--------------------------------
 2240 MESSAGE
 2250 .HS 8D8D8787
 2260 .AS -/NO DOS IMAGE ON THIS DISK/
 2270 .HS 8D8D00
 2280 .EP
 2290 *--------------------------------
 2300 .BS 256,0
 2310 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1874 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8502:DOS3.3:S.DP18.INPUT.txt
==

 1000 *SAVE S.DP18 INPUT
 1010 *-------------------------------
 1020 * APPLESOFT SUBROUTINES
 1030 *-------------------------------
 1040 AS.INLIN .EQ $D52E READ A LINE
 1050 AS.PARSE .EQ $D559 PARSE INPUT BUFFER
 1060 AS.BREAK .EQ $D863 CTRL-C BREAK
 1070 AS.ADDON .EQ $D998 ADD (Y) TO TXTPTR
 1080 AS.COUT .EQ $DB5C PRINT A CHARACTER
 1090 AS.CHKCOM .EQ $DEBE CHECK FOR COMMA
 1100 AS.SYNERR .EQ $DEC9 SYNTAX ERROR
 1110 AS.GETSPA .EQ $E452
 1120 AS.MOVSTR .EQ $E5E2
 1130 *--------------------------------
 1140 * MONITOR SUBROUTINES
 1150 *--------------------------------
 1160 MON.RDKEY .EQ $FD0C
 1170 MON.LF .EQ $FC66
 1180 *--------------------------------
 1190 * DP SUBROUTINES PRINTED ELSEWHERE
 1200 *--------------------------------
 1210 DP.NEXT.CMD .EQ $FFFF
 1220 DP.EVALUATE .EQ $FFFF
 1230 MOVE.DAC.YA .EQ $FFFF
 1240 DP.VTAB .EQ $FFFF
 1250 DP.INT .EQ $FFFF
 1260 DP.FALSE .EQ $FFFF
 1270 MOVE.DAC.TEMP1 .EQ $FFFF
 1280 MOVE.TEMP1.DAC .EQ $FFFF
 1290 PRINT.INPUT .EQ $FFFF
 1300 FIN .EQ $FFFF
 1310 GET.A.VAR .EQ $FFFF
 1320 CHECK.DP.VAR .EQ $FFFF
 1330 MOVE.YA.DAC .EQ $FFFF
 1340 PRUS.CLEAR .EQ $FFFF
 1350 PRUS.NEXT .EQ $FFFF
 1360 ACCUMULATE.DIGIT .EQ $FFFF
 1370 PRT.NUM.1 .EQ $FFFF
 1380 PRINT.STR.1 .EQ $FFFF
 1390 *-------------------------------
 1400 * PAGE ZERO USAGE
 1410 *-------------------------------
 1420 AS.VALTYP .EQ $11
 1430 MON.WNDWIDTH .EQ $21
 1440 MON.CH .EQ $24
 1450 MON.CV .EQ $25
 1460 AS.FRESPA .EQ $71,72
 1470 AS.CHRGET .EQ $B1
 1480 AS.CHRGOT .EQ $B7

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1875 of 2550

Apple II Computer Info

 1490 TXTPTR .EQ $B8,B9
 1500 P2 .EQ $F9
 1510 P1 .EQ $FD GP POINTER
 1520 *--------------------------------
 1530 WBUF .EQ $0200
 1540 *-------------------------------
 1550 * WORK AREAS FOR DPFP
 1560 *-------------------------------
 1570 DECFLG .BS 1
 1580 DAC.EXPONENT .BS 1
 1590 DAC.SIGN .BS 1
 1600 IBUF .BS 256
 1610 STACK.PNTR .BS 1
 1620 STACK .BS 12*10
 1630 W .BS 1
 1640 D .BS 1
 1650 OLD.W .BS 1
 1660 OLD.D .BS 1
 1670 DGTCNT .BS 1
 1680 INPUT.TYPE .BS 1
 1690 FOUND.NUM .BS 1
 1700 FOUND.STR .BS 1
 1710 FOUND.LEN .BS 1
 1720 FOUND.CHAR .BS 1
 1730 FILL.CHAR .BS 1
 1740 ZERO.CHAR .BS 1
 1750 FLD.FLAG .BS 1
 1760 FLD.START .BS 1
 1770 TEMP .BS 2
 1780 RESULT .BS 2
 1790 DEFAULT.FLAG .BS 1
 1800 LEN .BS 1
 1810 *--------------------------------
 1820 DP.SYN3 JMP AS.SYNERR
 1830 *--------------------------------
 1840 DP.INPUT
 1850 JSR AS.CHRGET
 1860 BEQ DP.SYN3 ...COLON OR EOL
 1870 *---INPUT USING------------------
 1880 CMP #'$' INPUT USING PICTURE?
 1890 BNE .1 ...NO
 1900 LDA #0 ...YES, SIGNAL "INPUT" AND JOIN
 1910 JMP PRINT.INPUT "PRINT $"
 1920 *---INPUT AN EXPRESSION----------
 1930 .1 STA INPUT.TYPE ="#" IF EXP, ELSE <>"#"
 1940 CMP #'#' INPUT AN EXPRESSION?
 1950 BNE .2 ...NO
 1960 JSR AS.CHRGET ...YES, GET NEXT CHAR
 1970 .2 LDX #"?" PROMPT CHAR FOR NO QUOTE
 1980 CMP #'"' QUOTE?
 1990 BNE .6 ...NO, SIMPLE INPUT
 2000 LDY #0 ...YES, PRINT IT NOW
 2010 .3 INY
 2020 LDA (TXTPTR),Y NEXT QUOTED CHARACTER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1876 of 2550

Apple II Computer Info

 2030 BEQ DP.SYN3 ...NO CLOSING QUOTE
 2040 CMP #'"' CLOSING QUOTE YET?
 2050 BEQ .4 ...YES
 2060 JSR AS.COUT ...NO, PRINT CHARACTER
 2070 BNE .3 ...ALWAYS
 2080 .4 JSR AS.ADDON ADD (Y) TO TXTPTR
 2090 .5 JSR AS.CHRGET SCAN NEXT CHAR
 2100 CMP #';' ALLOW OPTIONAL SEMICOLON
 2110 BEQ .5 ...KEEP LOOKING TILL NOT ';'
 2120 LDX #$80 NULL PROMPT CHARACTER
 2130 *---READ A LINE OF TEXT----------
 2140 .6 JSR AS.INLIN '?' OR NULL PROMPT
 2150 LDA WBUF CHECK FOR EMPTY LINE
 2160 BEQ .11 ...EMPTY LINE
 2170 CMP #$03 CTRL-C?
 2180 BNE .7 ...NO
 2190 JMP AS.BREAK ABORT INPUT
 2200 *---PARSE THE INPUT LINE---------
 2210 .7 LDA TXTPTR SAVE TXTPTR, WHICH POINTS
 2220 PHA AT THE PROGRAM
 2230 LDA TXTPTR+1
 2240 PHA
 2250 STX TXTPTR MAKE TXTPTR POINT AT INPUT BUFFER
 2260 STY TXTPTR+1
 2270 JSR AS.CHRGET GET FIRST CHAR FROM LINE
 2280 LDY INPUT.TYPE SEE IF SIMPLE OR EXPRESSIONS
 2290 CPY #'#'
 2300 BNE .8 SIMPLE NUMERIC INPUT
 2310 JSR AS.PARSE EXPRESSION INPUT, SO PARSE
 2320 LDA #WBUF-1 POINT AT INPUT BUFFER AGAIN
 2330 STA TXTPTR SO EVALUATE CAN PROCESS THE
 2340 LDA /WBUF-1 PARSED LINE
 2350 STA TXTPTR+1
 2360 JSR AS.CHRGET SCAN FIRST CHAR
 2370 JSR DP.EVALUATE EVALUATE THE EXPRESSION
 2380 JMP .9
 2390 .8 JSR FIN SIMPLE NUMERIC INPUT
 2400 .9 PLA RESTORE TXTPTR TO PROGRAM
 2410 STA TXTPTR+1
 2420 PLA
 2430 STA TXTPTR
 2440 .10 JSR AS.CHRGOT GET CURRENT PROGRAM CHAR
 2450 JSR GET.A.VAR GET INPUT VARIABLE
 2460 JSR CHECK.DP.VAR MUST BE DP18 VARIABLE
 2470 JSR MOVE.DAC.YA STORE INPUT VALUE
 2480 JMP DP.NEXT.CMD ...FINISHED?
 2490 *---EMPTY INPUT LINE-------------
 2500 .11 JSR DP.FALSE RETURN VALUE = 0
 2510 JMP .10
 2520 *--------------------------------
 2530 INPUT.NUM
 2540 LDA #0 TERMINATE STRING IN BUFFERS
 2550 STA IBUF,X
 2560 STA WBUF,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1877 of 2550

Apple II Computer Info

 2570 .1 LDA WBUF-1,X COPY STRING TO IBUF
 2580 STA IBUF-1,X
 2590 DEX
 2600 BNE .1
 2610 LDA FILL.CHAR
 2620 STA TEMP
 2630 JSR STACK.IT
 2640 JSR AS.CHKCOM MUST HAVE COMMA
 2650 JSR GET.A.VAR
 2660 JSR CHECK.DP.VAR
 2670 STA RESULT SAVE ADR OF VARIABLE
 2680 STY RESULT+1
 2690 JSR MOVE.YA.DAC MOVE DEFAULT INTO DAC
 2700 LDA W
 2710 STA OLD.W
 2720 LDA #1
 2730 STA DEFAULT.FLAG
 2740 LDA DAC.EXPONENT IS DAC 0?
 2750 BNE INP.X1 NO
 2760 INP.X JSR INP.ZERO.DAC DEFAULT IS 0 OR CTRL-X
 2770 INP.X1 LDA #0
 2780 STA FLD.FLAG
 2790 STA DGTCNT
 2800 STA DECFLG
 2810 LDA D
 2820 STA OLD.D
 2830 LDA #$5F UNDERLINE
 2840 STA FILL.CHAR
 2850 INP.NEXT.ZERO.CHAR
 2860 STA ZERO.CHAR
 2870 *--------------------------------
 2880 INP.NEXT
 2890 JSR INP.PRINT.NUM PRINT THE NUMBER
 2900 JSR MOVE.TEMP1.DAC
 2910 JSR MON.RDKEY
 2920 AND #$7F
 2930 CMP #$0D RETURN?
 2940 BEQ .2 ...YES
 2950 LDX DEFAULT.FLAG
 2960 BEQ .1 NO DEFAULT
 2970 JSR INP.ZERO.DAC IGNORE DEFAULT
 2980 CMP #8 BACKSPACE?
 2990 BEQ INP.NEXT YES,IGNORE
 3000 *---DIGIT------------------------
 3010 .1 CMP #'0 SEE IF NUMBER
 3020 BCC .4 NO
 3030 CMP #'9+1
 3040 BCS .4 NO
 3050 JSR ACCUMULATE.DIGIT
 3060 JMP INP.NEXT
 3070 *---CARRIAGE RETURN--------------
 3080 .2 LDA DGTCNT IS NUMBER 0?
 3090 ORA DEFAULT.FLAG
 3100 BNE .3 NO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1878 of 2550

Apple II Computer Info

 3110 STA DAC.EXPONENT YES,SO ZERO THE EXPONENT
 3120 .3 LDA RESULT GET ADR OF VAR
 3130 LDY RESULT+1
 3140 JSR MOVE.DAC.YA PUT IT IN VAR
 3150 LDA TEMP RESTORE ORIGINAL FILL CHAR
 3160 STA FILL.CHAR
 3170 LDA #'0
 3180 STA ZERO.CHAR
 3190 JMP INP.PRINT.NUM PRINT THE NUMBER
 3200 * AND RETURN
 3210 *---DECIMAL POINT----------------
 3220 .4 CMP #'. DEC POINT?
 3230 BNE .5 ...NO
 3240 * SEC 'CMP' LEFT CARRY SET
 3250 ROR DECFLG FOUND DEC PT
 3260 BIT DECFLG
 3270 BVS INP.NEXT TWO DEC PTS.
 3280 LDA #$40
 3290 CLC
 3300 ADC DGTCNT
 3310 STA DAC.EXPONENT
 3320 LDA #'0
 3330 BEQ INP.NEXT.ZERO.CHAR ALWAYS
 3340 *---MINUS SIGN-------------------
 3350 .5 CMP #'- MINUS?
 3360 BNE .6
 3370 * SEC 'CMP' LEFT CARRY SET
 3380 ROR DAC.SIGN MAKE DAC NEGATIVE
 3390 BNE INP.NEXT ...ALWAYS
 3400 *---PLUS SIGN--------------------
 3410 .6 CMP #'+ PLUS?
 3420 BNE .7 ...NO
 3430 STA DAC.SIGN PUT POSITIVE VALUE IN SIGN
 3440 BEQ INP.NEXT ...ALWAYS
 3450 *---CTRL-X-----------------------
 3460 .7 CMP #$18 CTRL-X?
 3470 BNE .8
 3480 LDA OLD.D
 3490 STA D
 3500 JMP INP.X
 3510 *---CTRL-C-----------------------
 3520 .8 CMP #$3 CTRL-C?
 3530 BNE .9 ...NO, TRY BACKSPACE
 3540 JMP AS.BREAK
 3550 *---BACKSPACE--------------------
 3560 .9 CMP #$08 BACKSPACE?
 3570 BNE .17 ...NO, TAKE PATH TO INP.NEXT
 3580 LDA DECFLG
 3590 BPL .10
 3600 LDA DAC.EXPONENT
 3610 SEC
 3620 SBC #$40
 3630 CMP DGTCNT
 3640 BEQ .15 REMOVE DEC PT ONLY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1879 of 2550

Apple II Computer Info

 3650 *--------------------------------
 3660 .10 LDA DAC.EXPONENT
 3670 PHA SAVE EXPONENT
 3680 LDA DGTCNT
 3690 CLC
 3700 ADC #$3F
 3710 STA DAC.EXPONENT
 3720 JSR DP.INT CHOP OFF LAST DIGIT
 3730 LDA DAC.EXPONENT
 3740 BEQ .14 THE NUMBER IS 0, SO RESET EVERYTHING
 3750 .11 PLA
 3760 STA DAC.EXPONENT
 3770 LDA DGTCNT
 3780 BNE .12
 3790 JSR LAST.FLD
 3800 JMP INP.NEXT
 3810 .12 DEC DGTCNT
 3820 BNE .13
 3830 DEC DAC.EXPONENT
 3840 .13 LDA DECFLG
 3850 BPL .16 DELETE BY SHIFT
 3860 BMI .17 ALWAYS
 3870 *--------------------------------
 3880 .14 LDA DECFLG
 3890 BPL .11
 3900 PLA
 3910 .15 LDA #$3F
 3920 SEC
 3930 SBC OLD.D
 3940 ADC DGTCNT
 3950 STA DAC.EXPONENT
 3960 LDA #0
 3970 STA DECFLG
 3980 LDA #$5F
 3990 JMP INP.NEXT.ZERO.CHAR
 4000 *--------------------------------
 4010 .16 LDA DGTCNT
 4020 BEQ .17
 4030 DEC DAC.EXPONENT
 4040 .17 JMP INP.NEXT
 4050 *--------------------------------
 4060 INP.PRINT.NUM
 4070 LDX #-1 COPY IBUF TO WBUF
 4080 .1 INX
 4090 LDA IBUF,X
 4100 STA WBUF,X
 4110 BNE .1
 4120 JSR RESTORE.HV.FROM.STACK
 4130 LDA OLD.W
 4140 STA W
 4150 LDA OLD.D
 4160 STA D
 4170 JSR MOVE.DAC.TEMP1
 4180 LDA DECFLG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1880 of 2550

Apple II Computer Info

 4190 PHA
 4200 JSR PRT.NUM.1
 4210 PLA
 4220 STA DECFLG
 4230 RTS
 4240 *--------------------------------
 4250 INP.ZERO.DAC
 4260 PHA
 4270 JSR DP.FALSE PUT 0 IN DAC
 4280 LDA #$40
 4290 SEC
 4300 SBC D CALCULATE EXPONENT
 4310 STA DAC.EXPONENT
 4320 LDA #0
 4330 STA DEFAULT.FLAG
 4340 PLA
 4350 RTS
 4360 *--------------------------------
 4370 LAST.FLD
 4380 LDY STACK.PNTR
 4390 DEY
 4400 DEY
 4410 DEY
 4420 DEY
 4430 DEY
 4440 BNE .1
 4450 RTS FIRST FIELD
 4460 .1 PLA DISCARD JSR LAST.FLD
 4470 PLA "
 4480 PLA DISCARD JSR INPUT.NUM
 4490 PLA "
 4500 PLA DISCARD Y-REG
 4510 PLA DISCARD JSR PRT.NUM.IF.NEEDED
 4520 PLA "
 4530 PLA DISCARD JSR LOOKUP
 4540 PLA "
 4550 DEY
 4560 LDA STACK,Y
 4570 STA TXTPTR+1
 4580 DEY
 4590 LDA STACK,Y
 4600 STA TXTPTR
 4610 DEY
 4620 LDA STACK,Y
 4630 PHA SAVE INDEX INTO PICTURE
 4640 DEY
 4650 LDA STACK,Y
 4660 JSR DP.VTAB
 4670 DEY
 4680 LDA STACK,Y
 4690 STA MON.CH
 4700 STY STACK.PNTR
 4710 PLA RESTORE INDEX INTO PICTURE
 4720 TAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1881 of 2550

Apple II Computer Info

 4730 JSR PRUS.CLEAR
 4740 JMP PRUS.NEXT
 4750 *--------------------------------
 4760 STACK.IT
 4770 LDY STACK.PNTR
 4780 LDA MON.CH SAVE WHERE THE FIELD IS
 4790 STA STACK,Y
 4800 INY
 4810 LDA MON.CV
 4820 STA STACK,Y
 4830 INY
 4840 DEC FLD.START
 4850 LDA FLD.START
 4860 STA STACK,Y
 4870 INY
 4880 LDA TXTPTR
 4890 STA STACK,Y SAVE TXTPTR
 4900 INY
 4910 LDA TXTPTR+1
 4920 STA STACK,Y
 4930 INY
 4940 STY STACK.PNTR
 4950 RTS
 4960 *--------------------------------
 4970 INPUT.STR
 4980 JSR STACK.IT
 4990 JSR AS.CHKCOM MUST HAVE COMMA
 5000 JSR GET.A.VAR GET ADR OF VAR
 5010 LDX AS.VALTYP STR OR NUM
 5020 BMI .1 OK
 5030 JMP AS.SYNERR MUST BE STRING
 5040 .1 STA P1
 5050 STY P1+1
 5060 LDY #0 GET STRING
 5070 STY DEFAULT.FLAG
 5080 STY FLD.FLAG
 5090 STY LEN
 5100 LDA (P1),Y LENGTH
 5110 BEQ .3 NULL STRING, SO DO NOTHING
 5120 STA LEN
 5130 INY
 5140 LDA (P1),Y ADR OF STRING
 5150 STA P2 LO ADR
 5160 INY
 5170 LDA (P1),Y
 5180 STA P2+1 HI ADR
 5190 LDY LEN GET LENGTH
 5200 DEY
 5210 .2 LDA (P2),Y
 5220 STA WBUF,Y
 5230 DEY
 5240 BNE .2
 5250 LDA (P2),Y MOVE LAST BYTE
 5260 STA WBUF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1882 of 2550

Apple II Computer Info

 5270 INY Y = 1
 5280 STA DEFAULT.FLAG YES THERE IS A DEFAULT
 5290 .3 LDA #WBUF
 5300 STA P2
 5310 LDA /WBUF
 5320 STA P2+1
 5330 BNE IS.X1 ALWAYS
 5340 *--------------------------------
 5350 IS.X LDA #0
 5360 STA LEN
 5370 IS.X1 LDA FOUND.LEN
 5380 PHA
 5390 LDA FOUND.CHAR
 5400 PHA
 5410 JSR RESTORE.HV.FROM.STACK
 5420 LDA #$5F UNDERLINE
 5430 STA FILL.CHAR
 5440 LDA LEN
 5450 JSR PRINT.STR.1
 5460 PLA
 5470 STA FOUND.CHAR
 5480 PLA
 5490 STA FOUND.LEN
 5500 CMP LEN
 5510 BCC .3 OVERFLOW
 5520 *---FIND END OF STRING & PUT CURSOR THERE---
 5530 JSR RESTORE.HV.FROM.STACK
 5540 CLC
 5550 ADC LEN ADD LENGTH OF STRING
 5560 .1 CMP MON.WNDWIDTH LONGER THAN WINDOW?
 5570 BCC .2
 5580 SBC MON.WNDWIDTH WRAP AROUND
 5590 PHA
 5600 JSR MON.LF JUMP DOWN TO NEXT LINE
 5610 PLA
 5620 JMP .1
 5630 .2 STA MON.CH PUT COLUMN BACK IN CH
 5640 *---INPUT A CHAR NOW-------------
 5650 .3 JSR MON.RDKEY
 5660 AND #$7F
 5670 *---CARRIAGE RETURN--------------
 5680 CMP #$0D RETURN?
 5690 BNE .5 ...NO
 5700 LDA DEFAULT.FLAG
 5710 BNE .4 DEFAULT, SO LEAVE IT ALONE
 5720 LDA LEN GET LENGTH
 5730 JSR AS.GETSPA MAKE ROOM FOR STRING
 5740 LDY #0 MOVE DATA INTO VARIABLE
 5750 STA (P1),Y LENGTH
 5760 LDA AS.FRESPA
 5770 INY
 5780 STA (P1),Y LO ADDRESS
 5790 LDA AS.FRESPA+1
 5800 INY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1883 of 2550

Apple II Computer Info

 5810 STA (P1),Y HI ADDRESS
 5820 LDX #WBUF
 5830 LDY /WBUF
 5840 LDA LEN
 5850 JSR AS.MOVSTR
 5860 .4 JSR RESTORE.HV.FROM.STACK
 5870 LDA #$20 SPACE
 5880 STA FILL.CHAR
 5890 LDA LEN
 5900 JMP PRINT.STR.1 PRINT IT ONE MORE TIME
 5910 *--------------------------------
 5920 .5 LDX DEFAULT.FLAG
 5930 BEQ .6 ...NO DEFAULT
 5940 LDX #0
 5950 STX DEFAULT.FLAG GET RID OF DEFAULT
 5960 STX LEN NULL STRING
 5970 CMP #8 BACKSPACE AND DEFAULT?
 5980 BNE .8
 5990 JMP IS.X1
 6000 *---BACKSPACE--------------------
 6010 .6 CMP #8 BACKSPACE?
 6020 BNE .8
 6030 LDA LEN
 6040 BNE .7
 6050 JSR LAST.FLD BACKUP A FIELD
 6060 JMP IS.X1
 6070 .7 DEC LEN
 6080 JMP IS.X1
 6090 *---CTRL-X-----------------------
 6100 .8 CMP #$18 CTRL-X?
 6110 BNE .9
 6120 JMP IS.X
 6130 *---CTRL-C-----------------------
 6140 .9 CMP #3 CTRL-C?
 6150 BNE .10 ...NO
 6160 JMP AS.BREAK
 6170 *---CHAR FOR STRING--------------
 6180 .10 LDY LEN NORMAL CHAR,
 6190 STA WBUF,Y SAVE IT
 6200 INC LEN
 6210 JMP IS.X1
 6220 *--------------------------------
 6230 RESTORE.HV.FROM.STACK
 6240 LDY STACK.PNTR
 6250 LDA STACK-4,Y
 6260 JSR DP.VTAB
 6270 LDA STACK-5,Y
 6280 STA MON.CH
 6290 RTS
 6300 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1884 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:Articles:BAP.Correction.txt
==

Finding Memory Size in ProDOS..............Bob Sander-Cederlof

On page 6-63 of Beneath Apple ProDOS there is a small piece of code
designed to determine how much memory there is:

 LDA $BF98
 ASL
 ASL
 BIT 0
 BPL SMLMEM 48K
 BVS MEM128 128K
 ... otherwise 64K

The code will not work. The BIT 0 will test bits 7 and 6 of memory
location $0000, which have nothing whatsoever to do with how much
memory is in your machine. What was intended was to test bits 7 and 6
of the A-register, or in other words bits 5 and 4 of $BF98. Here is
one way you can do that:

 LDA $BF98
 ASL
 ASL
 ASL
 BCC SMLMEM 48K
 BMI MEM128 128K
 ... OTHERWISE 64K

Notice that not only does this perform the test correctly, it is also
one byte shorter!

If you insist on using the same number of bytes, here is another way
to test those bits:

 LDA $BF98
 AND #%00110000 ISOLATE BITS 5 AND 4
 CMP #%00100000
 BCC SMLMEM 48K
 BNE MEM128 128K
 ... OTHERWISE 64K

If any of you have discovered any other problems with the sample code
in this book, pass them along.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1885 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:Articles:Disasm.65816.txt
==

A Disassembler for the 65816...............Bob Sander-Cederlof

When I first got my Apple, there were no books around for learning
6502 assembly language. It took me about 3 months to locate and buy a
copy of the 6502 programmer's manual from MOS Technology. About the
same time I found a book by William Barden that briefly covered the
8080, 6800, and 6502. But the way I really learned the 6502 was by
using Woz's L command in the Apple monitor.

Of course there were no printers or printer interfaces around in those
days either, so I spent hours upon hours copying 20 lines at a time
off the screen. I wrote down a lot of the monitor, and all of the
floating point package and Sweet-16 from the tail end of the Integer
BASIC ROM. Fortunately, Apple has never gotten around to eliminating
the fabulous L-command from the monitor.

In fact, they have even augmented it. The //c version includes
patches to allow disassembly of the additional opcodes and address
modes of the 65C02. Since Rak-Ware's DISASM calls on the ROM
disassembler to decipher each line of code, the //c version
automatically grows to accomodate the 65C02.

Now, what about the 65802 and 65816? It's about time someone wrote a
disassembler for that. Someone? Why not me?

It's not easy. On the one hand there is the pressure of competition.
Woz's code is SO compact! On the other hand, the new chip is SO
complex! It is even ambiguous. There is absolutely no way for a
65816 disassembler to know whether an immediate-mode instruction is
two or three bytes long. Only by executing the programming, and
tracing it line-by-line, can we tell. And even then, it is possible
that a tricky programmer might set up code so that it can be
interpreted both ways, depending on other conditions.

To make a long story a little shorter, I did it. You guessed that of
course. My solution to the ambiguity problem was to put the burden on
the person using it. My solution to the complexity problem was to use
extensive tables. My solution to the competition with Woz was to do
my best and let him keep his well-deserved glory.

In fact, I started by carefully analyzing Woz's code. The trail
starts at $FE9E in the monitor ROM. That short piece of code calls
INSTDSP at $F8D0 twenty times to disassemble 20 lines of code. If you
take a peek ahead to my listing, lines 1390-1400 patch the language
card copy of the monitor inside the L-command loop, so that instead of
calling $F8D0 twenty times it calls my disassembler at $0B67 twenty
times. (If you are using the language card version of the S-C Macro
Assembler, there is a copy of the monitor in the language card too.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1886 of 2550

Apple II Computer Info

BRUNning the 65816 disassembler will install this little patch and
toggle the immediate-mode size flag. Thereafter each 800G command
will toggle the state of the immediate-mode size flag. In one state
this flag causes immediate mode instructions to be disassembled as 2-
byte instructions; in the other, 3-byte instructions.

The tables are quite complicated, and difficult to type in accurately.
Therefore I used macros and let the S-C Macro Assembler do the dirty
work. The first table starts at line 1500, and consists of the packed
names of the single byte opcodes. The macro at lines 1210-1290
defines how the packing is done. The calling line is of the form ">ON
A,B,C,D" where the A, B, and C parameters are the three letters of the
opcode name. The D parameter is the letter "A" on those opcodes which
might also be multiple-byte: ASL, DEC, INC, LSR, ROR, and ROL.

The packing algorithm is almost the same as the one Woz used in the
monitor. Each character is represented by five bits, so that three
letters take only 15 bits. The macro sets L1, L2, and L3 to the ASCII
value (less 64) of the letters of the opcode name. The .SE directive
is used for this so that each invocation of the macro can redefine
these variables. This compresses the letters from the range $41...5A
to $01...1A. Then the .DA line uses multiplication and addition to
pack up the compressed letters. Since arithmetic expressions are
parsed by the S-C Macro Assembler in a strict left-to-right fashion,
"L1*32+L2*32+L3*2" packs them together.

The "ON" macro also generates a label for the opcode name value by
using the opcode name, together with the 4th parameter when present.
These names are referred to by another table later on.

The second table is just like the first, but with the names of the
longer opcodes instead. Notice that ASL, DEC, etc are in this table
too, but without the 4th parameter.

The third and fourth tables have 256 entries, one for every possible
opcode byte. Each entry is only one byte long, so each table is 256
bytes. Woz used several smaller tables, because the 6502 didn't use
every possible opcode value. The 65816 does define an opcode name for
every possible value.

The OPINDEX table uses two macros: "OXA" for single byte opcodes, and
"OXB" for longer opcodes. Each entry is a pointer to the name in the
OPNAMES.A or OPNAMES.B tables. The pointer is divided by two, leaving
room for a flag bit which tells which of the two tables the name is
in.

The entries in the OPFORMAT table are offsets into the FMTBL. These
are all multiples of 2, because the FMTBL entries are two bytes each.

FMTBL contains coded information indicating how many bytes comprise
the instruction and operand, and what the address mode looks like in
assembly language. The length can be from two to four bytes, and is
coded as 1...3 in the last two bits. The rest of the bits tell which
special characters to print and where to print the value of the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1887 of 2550

Apple II Computer Info

operand bytes. Single byte opcodes don't have any entries in this
table.

One more table, the last one: FMTSTR. This defines the meaning of
the bits in FMTBL. Note that the characters are the same as the ones
in the various comment lines within FMTBL, only in reverse order.

Finally, we get to the code. The 20-line disassembler calls INSTDSP
at line 6180. This starts by calling INSDS1 at line 5760. INSDS1 and
INSDS2 are kept as defined points because other software sometimes
calls these two points. If you wanted to modify Rak-Ware's DISASM,
for example, you would probably need these.

Lines 5760-5840 print the address of the next opcode, and "- ". Lines
5850-5860 pick up that opcode byte. If you enter at INSDS2, have the
opcode byte already in the A-register. Lines 5870-5980 dig into the
tables to get the opcode name, format, and length for single-byte
opcodes. Lines 6000-6160 do the same for longer opcodes. The
differences for longer opcodes are several: the second opname table
is used, the format is gotten from the tables, and the immediate-mode
size flag is used to determine the length of immediate mode opcodes.

Lines 6200-6300 print out the 1-4 bytes of the opcode in hex. If
there are less than four bytes, enough blanks are printed so that we
always end up in the same position. Lines 6310-6400 unpack the opcode
name and print it out. If the opcode is single byte, lines 6410-6420
find out and send us back home (we are finished with this line).

Lines 6430-6450 test the format to detect MVP, MVN, and relative
address mode instructions. These special cases are handled by lines
6690-7050. All other operand formats are handled by lines 6470-6680.
I see now that I could have put lines 6470-6480 back before line 6430,
so that the blank separating the opname from the operand was printed
before splitting on the mode. Then lines 6700-6710 could be deleted,
saving five bytes. Of course line 6720 would then receive the ".9"
label.

Lines 6500-6520 shift out one bit at a time of the format bit string.
The corresponding index counts down in the X-register from 10 to 0,
and picks a format character from FMTSTR to print. After the
character is printed, two special cases are looked for. If the
character was "#", meaning immediate mode, and if the immediate-mode
size flag indicates long immediates, another "#" is printed. If the
character was "$", it is time to print the operand in hex, as two,
four, or six digits (lines 6620-6650).

Relative addresses may be either 8-bit or 16-bit. Lines 6780-6820
start the computation for 8-bit values, and call on a monitor routine
to finish the printing. Lines 6840-6950 do the same for 16-bit
relatives. (There are no two-bit relatives here, no matter what the
family tree has borne.)

Finally, lines 6970-7050 print out the two bank bytes for the MVP and
MVN instructions. This is different from the way you write MVP and

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1888 of 2550

Apple II Computer Info

MVN for assembly by the S-C Macro Assembler. In the assembler you
write "MVP addr1,addr2", where both addresses are 24-bit values. The
bank bytes come from the high byte of each 24-bit address. To be
compatible with the assembler I should change lines 6970-7050 to print
out "0000" after each bank byte.

It seems like a worthy project for someone to incorporate my program
into Rak-Ware's DISASM, or perhaps a new similar product. If so, that
someone should figure out a neat interactive way to control the
immediate-mode size flag. How about it, Bob?

That's enough of that. The assembly listing of that table expands to
about 4 pages, so here's a hex dump of OPNAMES.A and OPNAMES.B (By the
way, OPNAMES.B .EQ $881):

And the OPINDEX table runs about 7 pages, so another hex dump:

The assembly listing of OPFORMAT is around a page and a half, so we'll
just LIST this one:

For a complete source listing of this program send a legal-size self-
addressed envelope with 2 ounces postage. Or, order Quarterly Disk
#18 for $15 to get S.65816.DISASM along with all the rest of the
source code from the last three issues on disk.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1889 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:Articles:DOS.Buffer.Bldr.txt
==

Shortening the DOS File Buffer Builder.....Bob Sander-Cederlof

Lately I have been looking through DOS for subroutines that can be
shrunk. There seem to be a lot of them, or at least I have been lucky
in finding some easy ones with little trouble. Elsewhere this month I
show how to shrink the numeric input conversion routine, saving enough
bytes to make room for a useful new feature.

Yesterday I happened across the file buffer initializer, which starts
at $A7D4 and goes up to $A850. Scanning quickly through the code it
looked a likely candidate for the shrinking process. If you take a
quick peek, you'll see that it starts out with an SEC instruction that
is totally unnecessary. Already we have shaved off one byte!

The DOS file buffers are each 595 bytes, linked together with a chain
of pointers. There are normally three buffers, starting at $9600,
$9853, and $9AA6. (If you have "Beneath Apple DOS", look on page 6-13
for some explanation.) Each buffer contains a 256 byte area for data,
another 256 byte area for a track/ sector list, a 30-character
filename, a 45-byte working area for the DOS File Manager, and 4 2-
byte pointers. There is a two-byte pointer kept at $9D00,9D01 which
points at the first character of the filename in the highest buffer.
This is normally $9CD3. Here is a picture of the normal three
buffers, all chained together:

9D00: 9CD3

 9CF7- Link addr Link addr Link addr
 ($9A80) ($982D) ($0000)
 9CF5- Data addr Data addr Data addr
 ($9AA6) ($9853) ($9600)
 9CF3- TSL addr TSL addr TSL addr
 ($9BA6) ($9953) ($9700)
 9CF1- FMW addr FMW addr FMW addr
 ($9CA6) ($9A53) ($9800)

 30-chars
 9CD3- filename 9A80- filename 982D- filename

 45 bytes
 9CA6- FMW area 9A53- FMW area 9800- FMW area

 256 bytes
 9BA6- TSL area 9953- TSL area 9700- TSL area

 256 bytes
 9AA6- Data area 9853- Data area 9600- Data area

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1890 of 2550

Apple II Computer Info

The file buffer initializer gets called during the boot procedure, and
by the MAXFILES command processor. There are two input parameters:
the start of buffers address at $9D00, and the number of file buffers
at $AA57. The job of the initializer is to fill in the four address
values at the top of each buffer, to store a 00 byte in the first
character of the filename of each buffer, and to store a new value in
the HIMEM variable for the current language. Here's the way it was,
without comments.

I rearranged the code, kept mental track of carry status, optimized
register usage, and lopped off 11 bytes. Speed is no issue, because
it is not a time critical operation anyway, but mine may be a tad
quicker. Compare the two versions, and you can learn a few tricks for
your own use.

I found it even more interesting to re-write this program using the
65802 capabilities. The 16-bit registers save a lot of byte
shuffling, and eliminate the need for TEMP and PNTR. What's more,
instead of saving only 11 bytes over the original DOS 3.3 version,
this time I whacked out 46 bytes! And it could be made even smaller,
if we could make some assumptions about the CPU status.

In general, we don't know whether we are in 65802 or 6502 mode until
we peek at the "hidden" status bit (the E-bit). In the process of
peeking we may change it, and may also change the M- and X-bits.
Lines 1190 save the current status, flip into '802 mode and save the
status again. The first PHP is there in case we were already in '802
mode. If we were, it saves the M- and X- bits and they will be
restored by the PLP at line 1620. The second PHP saves the status of
the mysterious E-bit (the XCE opcode swaps E and C). Lines 1600-1610
pull this saved status and do another XCE, restoring E to what it was
when this sub- routine was called. If we could ASSUME that we were
called in '802 mode, we could delete lines 1190-1210 and lines 1610-
1620 (saving 5 more bytes). Or, if we could be sure we were always
called from 6502 mode, we could delete 1190, 1220, and 1620, and
change line 1600 to ".4 SEC" (saving 3 bytes). Probably better never
to assume, at least until we are a lot more familiar with this
marvelous chip.

The XCE instruction swaps the C- and E-bits, but that is not
necessarily all. The M- and X-bits always come up in the 8-bit mode
after an XCE. Therefore in line 1240, the LDX will load $00 into the
high byte of the X-register and the number of buffers into the low
byte. In line 1250 I turn on 16-bit mode for both indexing and
memory-accumulator operations, and I will keep it that way until the
PLP at line 1600.

6502 programs are always full of page zero pointer addressing modes,
but in 65802 programs we may see a lot less of them. Now we can load
a whole 16-bit address into the X- or Y- register.

 Instead of: We can write:
 ----------- -------------
 LDA BUF.PNTR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1891 of 2550

Apple II Computer Info

 STA PNTR
 LDA BUF.PNTR+1
 STA PNTR+1
 LDY #$1E LDY BUF.PNTR
 LDA DATA... LDA DATA...
 STA (PNTR),Y STA $1E,Y

Lines 1280-1290 zero the first byte of the filename. As an "extra"
feature now, the second byte is also zeroed. In lines 1300-1380 I can
compute and store the three area pointers in a very straightforward
manner. It now occurs to me that by swapping the roles of the X- and
Y-registers I could save six more bytes, since the STA $offset,X
instructions would assemble in two bytes rather than three. (The only
problem might be that the D-register must = $0000 for this to work.)

Since I don't have to use the X-register to hold temporary values
during the buffer creation loop, I can use it instead to count
buffers. Lines 1400-1410 do the counting.

If we have not just built the last buffer, lines 1420-1460 set the
"next buffer" link address and branch back to build another buffer.

Lines 1470-1500 save the address of the data area in the X- register
and store 0000 in the link address for the last buffer. The data area
address is going to be the new HIMEM value.

Lines 1510-1590 store the new HIMEM value for the currently selected
language. If we are in Applesoft, the string area normally bumps
against HIMEM; we now empty that area, because HIMEM may have moved.
If we are in Integer BASIS or the S-C Assembler (which fools DOS into
believing it is I/B), the source program nestles against HIMEM; it is
therefore emptied by storing the HIMEM value into PP.

Won't it be nice when we all have 65802's and can USE these new code
segments? It may not be as long as you think. In the mean time,
maybe we can develop our expertise. And we can carve enough holes in
DOS to leave room for some great new features.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1892 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:Articles:DOS.Numin.txt
==

Improved DOS 3.3 Number Parsing............Bob Sander-Cederlof

Whether Apple knows or not, cares or not, likes it or not, DOS 3.3 is
still alive. And still the system of choice to most of their loyal
customers.

The //c ROMs new //e ROMs and patch Applesoft so that lower case
keywords and commands can be typed without penalty. However, since
they are promoting ProDOS and do not care about DOS, they did nothing
to give it the freedom to accept lower case commands. I am constantly
chafing over the necessity of popping the shift lock key up and down,
(down for DOS and up for word processing). Surely a very small patch
would do the trick.

I looked around and found the subroutine DOS uses to pick characters
out of the command buffer, at $A193-$A1AD. Six bytes of new code
inserted right before the CMP #$AC at $A1A1 would do it. By putting a
JSR to a patch in place of the STX $AA5D at $A19E, a ten-byte patch
subroutine would solve my problem.

But where do I get a ten-byte hole to fit this patch into? All the
holes I know about have already been used now, and I really don't want
to eliminate any exisiting features. The only solution is to find
some loosely written code and rewrite it with compactness as the major
criterion.

The code to be recoded must be relatively unused. That is, not likely
to be called at internal places by sneaky software. I found a likely
candidate in the number conversion subroutine used in parsing DOS
commands. This subroutine occupies from $A1B9 through $A228. I ran a
cross reference on the outer shell portion of DOS ($9D84-$A883) using
Rak-Ware's DISASM program, and verified that there are no entry points
into this code except at the beginning. It is called from only two
places, $A0AA and $A127.

Here is a commented disassembly of the subroutine.

<<<code here for Apple's version>>>

Now here is my revised version, which is sixteen bytes shorter. It is
also a little faster, though that is not important. As far as I can
tell, no features are changed. There is room for my ten-byte lower-
case patch and six bytes to spare!

Compare the two versions to see where I found the extra bytes. Part
of the savings was gained by using a better algorithm for reducing an
ASCII character to a hex or decimal digit. Changing the order of the
sections of the program saved more bytes, by eliminating JMPs and

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1893 of 2550

Apple II Computer Info

"branch always" ops. I kept the same local line numbers in the new
version to aid you in locating similar sections.

<<<code for new version>>>

It is always nice to be able to make a self-installing patch, so I dug
out the April 83 issue of AAL for Bill Morgan's PATCHER program. I
found the source on a Quarterly Disk, and merged it with the new
number parser. Then I added my lower case patch, and glued it all
together. The listing that follows is the result. If the program is
BRUN it will install the new parser and the lower case filter
automatically.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1894 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 6 March, 1985

In This Issue...

Shortening the DOS File Buffer Builder 2
65C02s in Old Apples 10
Improved DOS 3.3 Number Parsing. 15
 & Lower-Case DOS Commands
The Oki 6203 Multiply/Divide Chip. 19
A Disassembler for the 65816 20
Finding Memory Size in ProDOS. 28

Videx Ultraterm Driver

We've just completed a Videx Ultraterm display driver for S-C Macro
Assembler Version 2.0, so now you fine-print fans can use the
assembler with that card's high-density modes. (My favorite is the 48
x 80 inverse mode.) As with the other Version 2.0 drivers, complete
source code is supplied so you can tailor the card's performance to
your tastes.

This driver is included on all Version 2.0 disks after number 1274.
Those of you with lower serial numbers can return your original disk
for updating. Please include $1.00 to cover postage and handling. We
have also corrected several minor assembler bugs in the last month, so
those of you with serial numbers below 1252 might want to update your
disks as well.

Quarterly Disk #18

I'd also like to remind you that AAL Quarterly Disk #18 is now ready.
This disk contains all of the source code from the January through
March '85 issues, including the final install- ments of DP18 and this
month's 65816 disassembler. That's many hours' worth of typing saved,
at a cost of only $15. Remember that we also sell a year's
subscription to the Quarterly disks for only $45. That's four disks
for the price of three!

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $12 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1895 of 2550

Apple II Computer Info

Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1896 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......................................$100
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

AAL Quarterly Disks.........................each $15, or any four for $45
 Jan-Mar Apr-Jun Jul-Sep Oct-Dec
 Each disk contains 1980 - - - 1
 the source code from 1981 2 3 4 5
 three issues of AAL, 1982 6 7 8 9
 saving you lots of 1983 10 11 12 13
 typing and testing. 1984 14 15 16 17
 1985 18

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor (new price, was $60) $40
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36

Blank Diskettes (Verbatim)......................... package of 20 for $32
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100
Envelopes for Diskette Mailers............................. 6 cents each

quikLoader EPROM System (SCRG)................................($179) $170
PROmGRAMER (SCRG)..($149.50) $140
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32
Write Guard Disk Mod Kit (Mark IV).................................. $40

Books, Books, Books..........................compare our discount prices!

 "Inside the Apple //e", Little..........................($19.95) $18
 "Apple II+/IIe Troubleshooting & Repair Guide", Brenner.($19.95) $18
 "Apple][Circuit Description", Gayler..................($22.95) $21
 "Understanding the Apple II", Sather....................($22.95) $21
 "Enhancing Your Apple II, vol. 1", Lancaster............($15.95) $15
 Second edition, with //e information.
 "Assembly Cookbook for the Apple II/IIe", Lancaster.....($21.95) $20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1897 of 2550

Apple II Computer Info

 "Incredible Secret Money Machine", Lancaster.............($7.95) $7
 "Beneath Apple DOS", Worth & Lechner....................($19.95) $18
 "Beneath Apple ProDOS", Worth & Lechner.................($19.95) $18
 "What's Where in the Apple", Second Edition.............($19.95) $19
 "6502 Assembly Language Programming", Leventhal.........($18.95) $18
 "6502 Subroutines", Leventhal...........................($18.95) $18
 "Real Time Programming -- Neglected Topics", Foster......($9.95) $9
 "Microcomputer Graphics", Myers.........................($12.95) $12
 "Assem. Lang. for Applesoft Programmers", Finley & Myers($16.95) $16

Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1898 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:Articles:OKI.6203.txt
==

The Oki 6203 Multiply/Divide Chip..........Bob Sander-Cederlof

If you really need to multiply or divide in a hurry, the Oki 6203 may
the ticket. This device sells for about $7, and can be almost
directly connected to the Apple bus. All you need is one inverter and
a prototyping board.

Assuming you built a little card with the device on it, with its two
address lines connected to Apple's A0 and A1 lines, you could multiply
two 8-bit numbers for a 16-bit product like this:

 MUL.6203 STA SLOT*16+$C080 1ST OPERAND
 STY SLOT*16+$C081 2ND OPERAND
 LDA #2 MULTIPLY COMMAND
 STA SLOT*16+$C083 COMMAND REGISTER
 NOP DELAY FOR RESULT
 LDA SLOT*16+$C081 HI-BYTE OF PRODUCT
 LDY SLOT*16+$C082 LO-BYTE OF PRODUCT
 RTS

A very similar program can divide a 16-bit value by an 8-bit value,
producing a quotient and remainder. The time for the multiply is only
22 cycles (plus the JSR and RTS if you make a subroutine), and 24
cycles for the divide.

(Please don't try to order the chip from us, because we don't sell
chips.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1899 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:Articles:Sather.on.65C02.txt
==

65C02s in Old Apples...............................Jim Sather

I read Andrew Jackson's 12/84 AAL comments on 65C02 operation in an
Apple II with interest since I had looked into the same subject while
doing research for "Understanding the Apple IIe". I share Mr.
Jackson's conclusion that the problem is short read data setup time
from motherboard RAM, but I disagree with his analysis and conclusion
that a 65C02 only gets a setup of 25 nsec in an Apple II.

The motherboard RAM read data setup time in an Apple II is

 70 nsec (one 14M period)
 minus LS174 pin 9 to data out propagation delay (B5/B8 latch)
 minus LS257 data propagation delay (B6/B7 mux)
 minus 8304 or 8T28 data propagation delay (H10/H11 driver)
 plus MPU PHASE 0 to PHASE 2 propagation delay
 plus 74LS08 propagation delay (B11 PHASE 0 gate).

Longer PHASE 0 - PHASE 2 delays result in longer read data setup time,
not shorter. With the 6502s and 65C02s I have experimented with,
PHASE 0 to PHASE 2 delay has always been in the 20-40 nsec region.
Whatever the variation, I have found no NCR or GTE 65C02 that will
work in my Apple II.

Taking all delays into account, the motherboard read data setup time
for a 6502 or 65C02 is about 65 nsec. This is not good enough for 1
MHz 6502/65C02 specifications but it is good enough for 2 MHz
6502/65C02 specifications. In other words, the Apple II does not meet
the read data setup spec of the 1 MHz 6502 that it was manufactured
with. Based on this fact, the 100 nsec read data setup spec of 1 MHz
6502s is unrealistically conservative.

But why won't a 2 MHz 65C02 run in the Apple II if it requires only 50
nsec setup time and it gets 65 nsec? The answer, in my opinion, is
that NCR and GTE 2 MHz 65C02s do not operate to spec. With certain
instruction sequences, they require more than 50 (and, in fact, more
than 65) nsec read data setup time. The instruction sequences that
bomb are VERY limited, so the 65C02 only gets into trouble when a
certain few code sequences are executed. The 65C02 symptom in the
Apple II is, therefore, that most things work, but some don't.

Efforts to improve 65C02 operation in the Apple II can be concentrated
on decreasing data delays (by replacing the LS174s and LS257s with
equivalent devices from a faster logic family) or increasing MPU data
clock delays (by adding TTL devices in series with the MPU PHASE 0
input). Possible reduction in data delays is limited, so increased
MPU PHASE 0 delay is tempting. Be forewarned, though, that 6502 PHASE
2 is already very late for peripheral slot and serial input mux data
transfer, and that such data transfer already depends on the long

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1900 of 2550

Apple II Computer Info

bleed off time of data from the floating data bus. It is certainly
feasible that some Apples with heavy data bus loads will begin to show
bugs if any MPU PHASE 0 delay is introduced. But in all probability,
you can increase the MPU PHASE 0 delay in a given Apple until MPU
PHASE 2 falls concurrently with RAM SELECT' after access to an address
above $C00F in the Apple II. This point is 60 nsec after peripheral
slot PHASE 0 falls in my Apple II.

AAL readers may be interested in the following excerpt from
"Understanding the Apple IIe". It details some features of the 65C02
which are not clear from the data sheet and describes instruction
sequences that I have found that make NCR and GTE 65C02s bomb in an
Apple II. Note particularly that I have a Rockwell 1 MHz 65C02 that
operates without a hitch in my Apple II. This may be a lucky
coincidence, or Rockwell 65C02s may not have the read data setup
problems of the NCR and GTE chips.

[Following is an excerpt from "Understanding the Apple //e",
copyright (c) 1985 by Quality Software, published here by permission
of Quality Software.]

THE 65C02 MICROPROCESSOR

A recent development in the 6502 world has been the introduction of
the 65C02 MPU. This MPU (manufactured by NCR, Rockwell, and alternate
sources) is fabricated using CMOS technology, instead of the NMOS used
in the 6502. The general advantage of CMOS over NMOS is lower power
consumption, but the 65C02 also has some new instructions which make
it operationally more powerful than its NMOS brother. A 65C02 can
execute any 6502 program that doesn't depend on fine instruction
execution timing, but a 6502 cannot execute 65C02 programs that
utilize the new 65C02 instructions.

Apple uses the 65C02 MPU in the Apple //c microcomputer, and they
intend to convert the Apple //e over to the 65C02. The plan is to
retrofit older Apple //e's with the 65C02 as part of the firmware
upgrade package described in Chapter 6. This will maximize
compatiblity betweeen the Apple //e and the Apple //c, and make it
possible to write shorter and faster Apple //e assembly language
programs. Because the Apple //e may become a 65C02 based computer in
the future, some data on the 65C02 is given here and in other parts of
"Understanding the Apple //e".

The 65C02 improvements consist of the addition of new instructions and
addressing modes, and the removal of some old 6502 bugs. For the most
part, differences between the 6502 and 65C02 are well documented in
the partial NCR 65C02 data sheet in Appendix C at the back of this
book. Descriptions here will therefore be limited to a few points
whose ramifications are not made entriely clear by the data sheet.
Please note also that details of 65C02 instruction execution are given
in Tables 4.3 and 4.4 in an application note later in this chapter.

First, the NCR and Rockwell 65C02s are not identical. The Rockwell
chip executes some instructions that are not part of the NCR 65C02

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1901 of 2550

Apple II Computer Info

repertoire. These are the zero page instructions RMBn (Reset Memory
Bit n) and SMBn (Set Memory Bit n), and the zero page relative branch
instructions BBRn (Branch on Bit n Reset) and BBSn (Branch on Bit n
Set). The opcodes of these Rockwell instructions ($X7 and $XF)
represent NOPs in the NCR chip. Apple appears to be using NCR
compatible 65C02s in its computers, but the Rockwell chip works fine
in the Apple //e. Please refer to Tables 4.3 and 4.4 for details of
the additional Rockwell instructions.

The READY line of a 6502 will not halt the MPU during a write cycle,
but the 65C02 READY line will. This raises the question, "what
happens to the Apple IIe data bus if READY is pulled low during a
write cycle and is held low for a number of following write cycles?"
If the 65C02 attempts to control the data bus constantly for a series
of wait state write cycles, it will compete with motherboard RAM for
control of the data bus near the end of PHASE 1. Investigation shows
that this is not a problem. During a long series of wait state write
cycles, the 65C02 control the data bus only during that portion of the
machine cycle in which it controls the data bus during a normal write
cycle. Therefore, its data bus connection is at high impedance during
the majority of PHASE 1 in all wait state write cycles, and
motherboard RAM is free to control the data bus near the end of PHASE
1.

The fact that interrupts do not cause abortion of a BREAK instruction
is listed as an operational enhancement of the 65C02 on page 3 of the
data sheet. The data sheet is referring to non-maskable interrupts,
not interrupt requests. In a 6502 or 65C02, IRQ' falling after a
BREAK op code fetch does not interfere with BREAK execution. However,
if NMI' falls after a BREAK op code fetch and before the interrupt
vector is fetched in a 6502, then the NMI' interrupt vector is
fetched, and the NMI' handler is executed. An RTI at the end of the
NMI' handler causes return to the address (plus two) of the BREAK
instruction and probable program crashing. This bug is fixed in the
65C02. As the data sheet indicates, NMI' falling during BREAK
execution results in NMI' execution after BREAK execution is complete.

The NCR data sheet refers to the new increment accumulator and
decrement accumulator instrucions as INA and DEA. I don't know why
they do this, because these instructions are clearly just new
addressing modes of the INC and DEC instructions. The new mnemonics
should be INC A and DEC A or just INC and DEC as given in the Rockwell
data sheet. The addition of the INC and DEC accumulator addressing
modes means these instructions have all the addressing modes of the
other 6502 read-modify-write instructions (ASL, LSR, ROL, and ROR).

Another notable feature of the 65C02 data sheet is the 5000-
microsecond maximum cycle time in the AC characteristics table on page
3. I take this to mean that you can stop the clock for a guaranteed
minimum of 5000 microseconds with PHASE 0 high, but not with PHASE 0
low. The Rockwell data sheet is more specific about the difference.
It states: "The input clock can be held in the high state
indefinitely; however, if the input clock is held in the low state
longer than 5 microseconds, internal register and data status can be

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1902 of 2550

Apple II Computer Info

lost". The significance is that, when the Apple IIe DMA' line is held
low, it forces the PHASE 0 input to the MPU to a low state. I
therefore conclude that long term continuous DMA in the Apple IIe
cannot be performed with a 65C02 any easier than it can with a 6502.
In either case, long term continuous DMA can only be performed by
pulling DMA' low after the MPU has been stopped via READY low, and
only after the X4 and X5 Apple IIe motherboard jumpers have been
configured so the MPU clock is not stopped when DMA' is pulled low.

A feature of the 65C02 that does not show up in the NCR data sheet is
that the new BIT immediate instruction operates differently than BIT
in the other addressing modes. In the other addressing modes, BIT
sets the negative, overflow, and zero flags based respectively on
operand bit 7, operand bit 6, and the result of Accumulator AND
operand. The 65C02 BIT immediate instruction affects only the zero
flag, not the negative and overflow flags.

A final point about 65C02 operation that I'd like to make is mildly
speculative. The 65C02 is pin compatible with the 6502, and was
designed as a direct but more powerful substitute for the 6502. To
make it work in the Apple IIe, you simply remove the 6502 and plug in
the 65C02. However, the 65C02 does not work reliably in the older
Apple II. I believe that the reason for this is that the 65C02 (or at
least an NCR 65C02) requires read data to be set up longer than a 6502
operating at the same frequency. RAM read data in the Apple II
becomes valid at the MPU (about 60 nsec before PHASE 2 falls) much
later than it does in the Apple IIe (about 250 nsec before PHASE 2
falls). Whereas the 6502 can handle the short RAM read data set up
time, the 65C02 seems to have trouble with it.

I have performed limited experiments with 65C02s in an Apple II.
Basically, I found that two NCR 65C02As (2 MHz?) and one NCR
compatible GTE G65SC02P-2 (2 MHz) caused intermittent program crashing
that got worse as the peripheral card data bus load was increased.
The Rockwell R65C02P1 (1 MHz) that I tried caused no program crashes.
The NCR 65C02 program drashes occurred only with certain data bus
sequences. If an RTS instruction is preceded by a NOP or SBC, and the
Apple II video data preceding the RTS opcode fetch is $A0, $A2, or $A9
then the carry flag is set during otherwise normal execution of the
RTS instruction. This unwanted setting of the carry flag occurred as
mentioned with all three NCR type chips. One of the chips also set
the carry flag if the video data preceding the RTS was $89, and
another one also set the carry flag if the video data preceding RTS
was $89 or $E9. Note that $89, $A0, $A2, $A9, and $E9 are all
immediate mode 65C02 instructions.

In these experiments, I did not conclusively prove that the problem
with the 65C02 in the Apple II is short set up time of RAM read data.
This is merely a highly educated guess upon which I would be willing
to bet a paycheck (if only I had one). Setting the data up quicker
definitely helps, because the bugs mentioned in the previous paragraph
do not exist when the program resides in a 16K RAM card whose read
data becomes valid just after Q3 falls during PHASE 0. In any case, I

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1903 of 2550

Apple II Computer Info

am suspicious of the validity of the NCR claim of 50-nsec minimum read
data set up time in its 65C02.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1904 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:PatchDOS4LC.txt
==

 d∑PATCH DOS FOR LOWER CASE-
 n∑N:∑N»0∏∑Kx∑B:∑I»1∑N:∑D:∑B,D:B»B¿1:∑T∑∑110" Â∑

112,41401,160,0,132,68,132,69,32,164,161,240,46,201,164,240,62,73,176,
201,10,176,73,6,68,38,69,101,68,170,152,101,69,72,6,68,38,69,6,68,38,6
9,138,101,68,133,68,104,101,69,133,69,176,42,32,164,161,208· Ô∑
214,166,68,165,69,24,96,10,10,10,10,162,4,10,38,68,38,69,202,208,248,3
2,164,161,240,231,73,176,201,10,144,231,105,136,201,250,176,225,56,96,
142,93,170,201,224,144,2,41,223,96,0,0,0,0,0,0 ˙ ˙∑
3,41374,32,25,162
\∑0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1905 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:S.65816.DISASM.txt
==

 1000 .LIF
 1010 .TI 76,65816 DISASSEMBLER.................FEBRUARY 14,
1985...........
 1020 *SAVE S.65816 DISASM
 1030 *--------------------------------
 1040 IMM.SIZE .EQ $00
 1050 LMNEM .EQ $2C
 1060 RMNEM .EQ $2D
 1070 FORMATL .EQ $2E
 1080 LENGTH .EQ $2F
 1090 FORMATH .EQ $30
 1100 PCL .EQ $3A
 1110 PCH .EQ $3B
 1120 *--------------------------------
 1130 SCRN2 .EQ $F879
 1140 RELADR .EQ $F938
 1150 PRNTAX .EQ $F941
 1160 PRBLNK .EQ $F948
 1170 PRBL2 .EQ $F94A
 1180 PCADJ .EQ $F953
 1190 CROUT .EQ $FD8E
 1200 PRBYTE .EQ $FDDA
 1210 COUT .EQ $FDED
 1220 *--------------------------------
 1230 .MA ON
 1240 .LIST OFF
 1250 L1 .SE ']1-64
 1260 L2 .SE ']2-64
 1270 L3 .SE ']3-64
 1280 * .LIST ON
 1290]1]2]3]4 .DA L1*32+L2*32+L3*2
 1300 .EM
 1310 *--------------------------------
 1320 .MA OXA
 1330 .DA #]1-OPNAMES.A/2+128
 1340 .EM
 1350 *--------------------------------
 1360 .MA OXB
 1370 .DA #]1-OPNAMES.B/2
 1380 .EM
 1390 *--------------------------------
 1400 T LDA $C083
 1410 LDA $C083
 1420 LDA #INSTDSP
 1430 STA $FE65
 1440 LDA /INSTDSP
 1450 STA $FE66
 1460 LDA IMM.SIZE
 1470 EOR #$FF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1906 of 2550

Apple II Computer Info

 1480 STA IMM.SIZE
 1490 RTS
 1500 *--------------------------------
 1510 OPNAMES.A
 1520 >ON A,S,L,A
 1530 >ON B,R,K
 1540 >ON C,L,C
 1550 >ON C,L,D
 1560 >ON C,L,I
 1570 >ON C,L,V
 1580 >ON C,O,P
 1590 >ON D,E,C,A
 1600 >ON D,E,X
 1610 >ON D,E,Y
 1620 >ON I,N,C,A
 1630 >ON I,N,X
 1640 >ON I,N,Y
 1650 >ON L,S,R,A
 1660 >ON N,O,P
 1670 >ON P,H,A
 1680 >ON P,H,B
 1690 >ON P,H,D
 1700 >ON P,H,K
 1710 >ON P,H,P
 1720 >ON P,H,X
 1730 >ON P,H,Y
 1740 >ON P,L,A
 1750 >ON P,L,B
 1760 >ON P,L,D
 1770 >ON P,L,P
 1780 >ON P,L,X
 1790 >ON P,L,Y
 1800 >ON R,O,L,A
 1810 >ON R,O,R,A
 1820 >ON R,T,I
 1830 >ON R,T,L
 1840 >ON R,T,S
 1850 >ON S,E,C
 1860 >ON S,E,D
 1870 >ON S,E,I
 1880 >ON S,T,P
 1890 >ON T,A,X
 1900 >ON T,A,Y
 1910 >ON T,C,D
 1920 >ON T,C,S
 1930 >ON T,D,C
 1940 >ON T,S,C
 1950 >ON T,S,X
 1960 >ON T,X,A
 1970 >ON T,X,S
 1980 >ON T,X,Y
 1990 >ON T,Y,A
 2000 >ON T,Y,X
 2010 >ON W,A,I

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1907 of 2550

Apple II Computer Info

 2020 >ON W,D,M
 2030 >ON X,B,A
 2040 >ON X,C,E
 2050 *--------------------------------
 2060 OPNAMES.B
 2070 >ON A,D,C
 2080 >ON A,N,D
 2090 >ON A,S,L
 2100 >ON B,C,C
 2110 >ON B,C,S
 2120 >ON B,E,Q
 2130 >ON B,I,T
 2140 >ON B,M,I
 2150 >ON B,N,E
 2160 >ON B,P,L
 2170 >ON B,R,A
 2180 >ON B,R,L
 2190 >ON B,V,C
 2200 >ON B,V,S
 2210 >ON C,M,P
 2220 >ON C,P,X
 2230 >ON C,P,Y
 2240 >ON D,E,C
 2250 >ON E,O,R
 2260 >ON I,N,C
 2270 >ON J,M,L
 2280 >ON J,M,P
 2290 >ON J,S,L
 2300 >ON J,S,R
 2310 >ON L,D,A
 2320 >ON L,D,X
 2330 >ON L,D,Y
 2340 >ON L,S,R
 2350 >ON M,V,N
 2360 >ON M,V,P
 2370 >ON O,R,A
 2380 >ON P,E,A
 2390 >ON P,E,I
 2400 >ON P,E,R
 2410 >ON R,E,P
 2420 >ON R,O,L
 2430 >ON R,O,R
 2440 >ON S,B,C
 2450 >ON S,E,P
 2460 >ON S,T,A
 2470 >ON S,T,X
 2480 >ON S,T,Y
 2490 >ON S,T,Z
 2500 >ON T,R,B
 2510 >ON T,S,B
 2520 *--------------------------------
 2530 OPINDEX
 2540 *---0X---------------------------
 2550 >OXA BRK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1908 of 2550

Apple II Computer Info

 2560 >OXB ORA
 2570 >OXA COP
 2580 >OXB ORA
 2590 >OXB TSB
 2600 >OXB ORA
 2610 >OXB ASL
 2620 >OXB ORA
 2630 >OXA PHP
 2640 >OXB ORA
 2650 >OXA ASLA
 2660 >OXA PHD
 2670 >OXB TSB
 2680 >OXB ORA
 2690 >OXB ASL
 2700 >OXB ORA
 2710 *---1X---------------------------
 2720 >OXB BPL
 2730 >OXB ORA
 2740 >OXB ORA
 2750 >OXB ORA
 2760 >OXB TRB
 2770 >OXB ORA
 2780 >OXB ASL
 2790 >OXB ORA
 2800 >OXA CLC
 2810 >OXB ORA
 2820 >OXA INCA
 2830 >OXA TCS
 2840 >OXB TRB
 2850 >OXB ORA
 2860 >OXB ASL
 2870 >OXB ORA
 2880 *---2X---------------------------
 2890 >OXB JSR
 2900 >OXB AND
 2910 >OXB JSL
 2920 >OXB AND
 2930 >OXB BIT
 2940 >OXB AND
 2950 >OXB ROL
 2960 >OXB AND
 2970 >OXA PLP
 2980 >OXB AND
 2990 >OXA ROLA
 3000 >OXA PLD
 3010 >OXB BIT
 3020 >OXB AND
 3030 >OXB ROL
 3040 >OXB AND
 3050 *---3X---------------------------
 3060 >OXB BMI
 3070 >OXB AND
 3080 >OXB AND
 3090 >OXB AND

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1909 of 2550

Apple II Computer Info

 3100 >OXB BIT
 3110 >OXB AND
 3120 >OXB ROL
 3130 >OXB AND
 3140 >OXA SEC
 3150 >OXB AND
 3160 >OXA DECA
 3170 >OXA TSC
 3180 >OXB BIT
 3190 >OXB AND
 3200 >OXB ROL
 3210 >OXB AND
 3220 *---4X---------------------------
 3230 >OXA RTI
 3240 >OXB EOR
 3250 >OXA WDM
 3260 >OXB EOR
 3270 >OXB MVP
 3280 >OXB EOR
 3290 >OXB LSR
 3300 >OXB EOR
 3310 >OXA PHA
 3320 >OXB EOR
 3330 >OXA LSRA
 3340 >OXA PHK
 3350 >OXB JMP
 3360 >OXB EOR
 3370 >OXB LSR
 3380 >OXB EOR
 3390 *---5X---------------------------
 3400 >OXB BVC
 3410 >OXB EOR
 3420 >OXB EOR
 3430 >OXB EOR
 3440 >OXB MVN
 3450 >OXB EOR
 3460 >OXB LSR
 3470 >OXB EOR
 3480 >OXA CLI
 3490 >OXB EOR
 3500 >OXA PHY
 3510 >OXA TCD
 3520 >OXB JMP
 3530 >OXB EOR
 3540 >OXB LSR
 3550 >OXB EOR
 3560 *---6X---------------------------
 3570 >OXA RTS
 3580 >OXB ADC
 3590 >OXB PER
 3600 >OXB ADC
 3610 >OXB STZ
 3620 >OXB ADC
 3630 >OXB ROR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1910 of 2550

Apple II Computer Info

 3640 >OXB ADC
 3650 >OXA PLA
 3660 >OXB ADC
 3670 >OXA RORA
 3680 >OXA RTL
 3690 >OXB JMP
 3700 >OXB ADC
 3710 >OXB ROR
 3720 >OXB ADC
 3730 *---7X---------------------------
 3740 >OXB BVS
 3750 >OXB ADC
 3760 >OXB ADC
 3770 >OXB ADC
 3780 >OXB STZ
 3790 >OXB ADC
 3800 >OXB ROR
 3810 >OXB ADC
 3820 >OXA SEI
 3830 >OXB ADC
 3840 >OXA PLY
 3850 >OXA TDC
 3860 >OXB JMP
 3870 >OXB ADC
 3880 >OXB ROR
 3890 >OXB ADC
 3900 *---8X---------------------------
 3910 >OXB BRA
 3920 >OXB STA
 3930 >OXB BRL
 3940 >OXB STA
 3950 >OXB STY
 3960 >OXB STA
 3970 >OXB STX
 3980 >OXB STA
 3990 >OXA DEY
 4000 >OXB BIT
 4010 >OXA TXA
 4020 >OXA PHB
 4030 >OXB STY
 4040 >OXB STA
 4050 >OXB STX
 4060 >OXB STA
 4070 *---9X---------------------------
 4080 >OXB BCC
 4090 >OXB STA
 4100 >OXB STA
 4110 >OXB STA
 4120 >OXB STY
 4130 >OXB STA
 4140 >OXB STX
 4150 >OXB STA
 4160 >OXA TYA
 4170 >OXB STA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1911 of 2550

Apple II Computer Info

 4180 >OXA TXS
 4190 >OXA TXY
 4200 >OXB STZ
 4210 >OXB STA
 4220 >OXB STZ
 4230 >OXB STA
 4240 *---AX---------------------------
 4250 >OXB LDY
 4260 >OXB LDA
 4270 >OXB LDX
 4280 >OXB LDA
 4290 >OXB LDY
 4300 >OXB LDA
 4310 >OXB LDX
 4320 >OXB LDA
 4330 >OXA TAY
 4340 >OXB LDA
 4350 >OXA TAX
 4360 >OXA PLB
 4370 >OXB LDY
 4380 >OXB LDA
 4390 >OXB LDX
 4400 >OXB LDA
 4410 *---BX---------------------------
 4420 >OXB BCS
 4430 >OXB LDA
 4440 >OXB LDA
 4450 >OXB LDA
 4460 >OXB LDY
 4470 >OXB LDA
 4480 >OXB LDX
 4490 >OXB LDA
 4500 >OXA CLV
 4510 >OXB LDA
 4520 >OXA TSX
 4530 >OXA TYX
 4540 >OXB LDY
 4550 >OXB LDA
 4560 >OXB LDX
 4570 >OXB LDA
 4580 *---CX---------------------------
 4590 >OXB CPY
 4600 >OXB CMP
 4610 >OXB REP
 4620 >OXB CMP
 4630 >OXB CPY
 4640 >OXB CMP
 4650 >OXB DEC
 4660 >OXB CMP
 4670 >OXA INY
 4680 >OXB CMP
 4690 >OXA DEX
 4700 >OXA WAI
 4710 >OXB CPY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1912 of 2550

Apple II Computer Info

 4720 >OXB CMP
 4730 >OXB DEC
 4740 >OXB CMP
 4750 *---DX---------------------------
 4760 >OXB BNE
 4770 >OXB CMP
 4780 >OXB CMP
 4790 >OXB CMP
 4800 >OXB PEI
 4810 >OXB CMP
 4820 >OXB DEC
 4830 >OXB CMP
 4840 >OXA CLD
 4850 >OXB CMP
 4860 >OXA PHX
 4870 >OXA STP
 4880 >OXB JML
 4890 >OXB CMP
 4900 >OXB DEC
 4910 >OXB CMP
 4920 *---EX---------------------------
 4930 >OXB CPX
 4940 >OXB SBC
 4950 >OXB SEP
 4960 >OXB SBC
 4970 >OXB CPX
 4980 >OXB SBC
 4990 >OXB INC
 5000 >OXB SBC
 5010 >OXA INX
 5020 >OXB SBC
 5030 >OXA NOP
 5040 >OXA XBA
 5050 >OXB CPX
 5060 >OXB SBC
 5070 >OXB INC
 5080 >OXB SBC
 5090 *---FX---------------------------
 5100 >OXB BEQ
 5110 >OXB SBC
 5120 >OXB SBC
 5130 >OXB SBC
 5140 >OXB PEA
 5150 >OXB SBC
 5160 >OXB INC
 5170 >OXB SBC
 5180 >OXA SED
 5190 >OXB SBC
 5200 >OXA PLX
 5210 >OXA XCE
 5220 >OXB JSR
 5230 >OXB SBC
 5240 >OXB INC
 5250 >OXB SBC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1913 of 2550

Apple II Computer Info

 5260 *--------------------------------
 5270 OPFORMAT
 5280 F.0 .HS 00.14.00.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5290 F.1 .HS 26.16.12.1E.02.08.08.22.00.10.00.00.04.0A.0A.0C
 5300 F.2 .HS 04.14.06.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5310 F.3 .HS 26.16.12.1E.08.08.08.22.00.10.00.00.0A.0A.0A.0C
 5320 F.4 .HS 00.14.00.1C.24.02.02.20.00.00.00.00.04.04.04.06
 5330 F.5 .HS 26.16.12.1E.24.08.08.22.00.10.00.00.06.0A.0A.0C
 5340 F.6 .HS 00.14.28.1C.02.02.02.20.00.00.00.00.18.04.04.06
 5350 F.7 .HS 26.16.12.1E.08.08.08.22.00.10.00.00.1A.0A.0A.0C
 5360 F.8 .HS 26.14.28.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5370 F.9 .HS 26.16.12.1E.08.08.0E.22.00.10.00.00.04.0A.0A.0C
 5380 F.A .HS 00.14.00.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5390 F.B .HS 26.16.12.1E.08.08.0E.22.00.10.00.00.0A.0A.10.0C
 5400 F.C .HS 00.14.00.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5410 F.D .HS 26.16.12.1E.02.08.08.22.00.10.00.00.18.0A.0A.0C
 5420 F.E .HS 00.14.00.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5430 F.F .HS 26.16.12.1E.08.08.08.22.00.10.00.00.1A.0A.0A.0C
 5440 *--------------------------------
 5450 FMTBL
 5460 *-----# > ($, X S) , Y $ - - - LL
 5470 .DA %1.0.0.1.0.0.0.0.0.0.0.0.0.0.01 -- IMMEDIATE 00
 5480 .DA %0.0.0.1.0.0.0.0.0.0.0.0.0.0.01 -- DIRECT 02
 5490 .DA %0.0.0.1.0.0.0.0.0.0.0.0.0.0.10 -- ABS 04
 5500 .DA %0.0.0.1.0.0.0.0.0.0.0.0.0.0.11 -- LONG 06
 5510 *-----# > ($, X S) , Y $ - - - LL
 5520 .DA %0.0.0.1.1.1.0.0.0.0.0.0.0.0.01 -- DIRECT,X 08
 5530 .DA %0.0.0.1.1.1.0.0.0.0.0.0.0.0.10 -- ABS,X 0A
 5540 .DA %0.0.0.1.1.1.0.0.0.0.0.0.0.0.11 -- LONG,X 0C
 5550 *-----# > ($, X S) , Y $ - - - LL
 5560 .DA %0.0.0.1.1.0.0.0.0.1.0.0.0.0.01 -- DIRECT,Y 0E
 5570 .DA %0.0.0.1.1.0.0.0.0.1.0.0.0.0.10 -- ABS,Y 10
 5580 *-----# > ($, X S) , Y $ - - - LL
 5590 .DA %0.0.1.1.0.0.0.1.0.0.0.0.0.0.01 -- IND 12
 5600 .DA %0.0.1.1.1.1.0.1.0.0.0.0.0.0.01 -- INDX 14
 5610 .DA %0.0.1.1.0.0.0.1.1.1.0.0.0.0.01 -- INDY 16
 5620 *-----# > ($, X S) , Y $ - - - LL
 5630 .DA %0.0.1.1.0.0.0.1.0.0.0.0.0.0.10 -- INDABS 18
 5640 .DA %0.0.1.1.1.1.0.1.0.0.0.0.0.0.10 -- INDABSX 1A
 5650 *-----# > ($, X S) , Y $ - - - LL
 5660 .DA %0.0.0.1.1.0.1.0.0.0.0.0.0.0.01 -- STK 1C
 5670 .DA %0.0.1.1.1.0.1.1.1.1.0.0.0.0.01 -- STKY 1E
 5680 *-----# > ($, X S) , Y $ - - - LL
 5690 .DA %0.1.1.1.0.0.0.1.0.0.0.0.0.0.01 -- INDLONG 20
 5700 .DA %0.1.1.1.0.0.0.1.1.1.0.0.0.0.01 -- INDLONGY 22
 5710 .DA %0.0.0.1.0.0.0.0.1.0.1.0.0.0.10 -- MVN & MVP 24
 5720 .DA %0.0.0.0.0.0.0.0.0.0.1.0.0.0.01 -- RELATIVE 26
 5730 .DA %0.0.0.0.0.0.0.0.0.0.1.0.0.0.10 -- LONG RELA. 28
 5740 *--------------------------------
 5750 FMTSTR .AS -/$Y,)SX,$(>#/
 5760 *--------------------------------
 5770 INSDS1 JSR CROUT
 5780 LDA PCH
 5790 JSR PRBYTE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1914 of 2550

Apple II Computer Info

 5800 LDA PCL
 5810 JSR PRBYTE
 5820 LDA #"-"
 5830 JSR COUT
 5840 LDA #" "
 5850 JSR COUT
 5860 LDY #0
 5870 LDA (PCL),Y GET OPCODE
 5880 INSDS2 TAY SAVE IN Y-REG
 5890 LDA OPINDEX,Y
 5900 ASL
 5910 TAX
 5920 BCC .1 ...NOT SINGLE BYTE OPCODE
 5930 LDA OPNAMES.A,X
 5940 STA RMNEM
 5950 LDA OPNAMES.A+1,X
 5960 STA LMNEM
 5970 LDA #0
 5980 STA LENGTH
 5990 RTS
 6000 *--------------------------------
 6010 .1 LDA OPNAMES.B,X
 6020 STA RMNEM
 6030 LDA OPNAMES.B+1,X
 6040 STA LMNEM
 6050 LDX OPFORMAT,Y
 6060 LDA FMTBL+1,X
 6070 STA FORMATH
 6080 LDA FMTBL,X
 6090 STA FORMATL
 6100 AND #3
 6110 STA LENGTH
 6120 TXA CHECK IF IMMEDIATE
 6130 BNE .2 ...NO
 6140 BIT IMM.SIZE CHECK IF 16-BIT MODE
 6150 BPL .2 ...NO
 6160 INC LENGTH ...YES
 6170 .2 RTS
 6180 *--------------------------------
 6190 INSTDSP
 6200 JSR INSDS1
 6210 LDY #0
 6220 .1 LDA (PCL),Y
 6230 JSR PRBYTE
 6240 LDX #1 PRINT 1 BLANK
 6250 .2 JSR PRBL2
 6260 CPY LENGTH
 6270 INY
 6280 BCC .1
 6290 LDX #3
 6300 CPY #4
 6310 BCC .2
 6320 *---PRINT MNEMONIC---------------
 6330 LDY #3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1915 of 2550

Apple II Computer Info

 6340 .3 LDA #6
 6350 .4 ASL RMNEM
 6360 ROL LMNEM
 6370 ROL
 6380 BPL .4
 6390 JSR COUT
 6400 DEY
 6410 BNE .3
 6420 LDY LENGTH
 6430 BEQ .8 ...SINGLE BYTE OPCODE
 6440 LDA FORMATL
 6450 AND #$20 SEE IF SPECIAL
 6460 BNE .9 ...YES, MOVES OR RELATIVES
 6470 *---PRINT NORMAL OPERANDS--------
 6480 LDA #" "
 6490 JSR COUT
 6500 LDX #10 11 FORMAT BITS
 6510 .5 ASL FORMATL
 6520 ROL FORMATH
 6530 BCC .7
 6540 LDA FMTSTR,X
 6550 JSR COUT
 6560 CMP #"#"
 6570 BNE .55
 6580 BIT IMM.SIZE
 6590 BPL .7
 6600 JSR COUT
 6610 .55 CMP #"$"
 6620 BNE .7
 6630 .6 LDA (PCL),Y
 6640 JSR PRBYTE
 6650 DEY
 6660 BNE .6
 6670 .7 DEX
 6680 BPL .5
 6690 .8 RTS
 6700 *---SPECIAL CASES----------------
 6710 .9 LDA #" "
 6720 JSR COUT
 6730 LDA #"$"
 6740 JSR COUT
 6750 LDA FORMATL
 6760 BMI .11 MVN & MVP
 6770 DEY DISTINGUISH RELATIVES
 6780 BNE .10 16-BIT RELATIVE
 6790 *---8-BIT RELATIVE---------------
 6800 INY 8-BIT RELATIVE
 6810 LDA (PCL),Y GET 8-BIT OFFSET
 6820 SEC
 6830 JMP RELADR
 6840 *---16-BIT RELATIVE--------------
 6850 .10 LDA (PCL),Y LOW BYTE OF OFFSET
 6860 STA FORMATL
 6870 INY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1916 of 2550

Apple II Computer Info

 6880 LDA (PCL),Y HIGH BYTE OF OFFSET
 6890 STA FORMATH
 6900 JSR PCADJ
 6910 CLC
 6920 ADC FORMATL
 6930 TAX
 6940 TYA
 6950 ADC FORMATH
 6960 JMP PRNTAX
 6970 *---MVN & MVP--------------------
 6980 .11 LDA (PCL),Y
 6990 JSR PRBYTE
 7000 LDA #","
 7010 JSR COUT
 7020 LDA #"$"
 7030 JSR COUT
 7040 DEY
 7050 LDA (PCL),Y
 7060 JMP PRBYTE
 7070 *--------------------------------
 7080 TT LDY #0
 7090 LDA #$C0
 7100 STA PCL
 7110 LDA #2 $2C0...$3C3
 7120 STA PCH
 7130 .1 TYA
 7140 STA $2C0,Y
 7150 INY
 7160 BNE .1
 7170 STY $3C0
 7180 INY
 7190 STY $3C1
 7200 INY
 7210 STY $3C2
 7220 .2 JSR INSTDSP
 7230 LDY #0
 7240 LDA (PCL),Y
 7250 CMP #$FF
 7260 BEQ .3
 7270 .4 LDA $C000
 7280 BPL .4
 7290 STA $C010
 7300 INC PCL
 7310 BNE .2
 7320 INC PCH
 7330 BNE .2 ...ALWAYS
 7340 .3 RTS
 7350 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1917 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:S.DOS.NUMIN.txt
==

 1000 *SAVE S.DOS NUMIN
 1010 *--------------------------------
 1020 NUML .EQ $44
 1030 NUMH .EQ $45
 1040 *--------------------------------
 1050 GNNB .EQ $A1A4
 1060 *--------------------------------
 1070 .OR $A1B9
 1080 .TA $09B9
 1090 *--------------------------------
 1100 * RETURN .CC. WITH NUMBER IN A,X
 1110 * OR .CS. IF BAD SYNTAX
 1120 *--------------------------------
 1130 CONVERT.NUMBER.IN.WBUF
 1140 LDA #0 INIT NUMBER = 0
 1150 STA NUML
 1160 STA NUMH
 1170 JSR GNNB GET NEXT NON-BLANK CHAR
 1180 PHP
 1190 CMP #"$" HEX OR DECIMAL?
 1200 BEQ .6 ...HEX
 1210 PLP
 1220 JMP .2 ...DECIMAL (OR NONE)
 1230 *---NEXT CHAR OF DECIMAL #-------
 1240 .1 JSR GNNB GET NEXT NON-BLANK CHAR
 1250 .2 BNE .3 ...NOT COMMA OR CR
 1260 LDX NUML END OF NUMBER
 1270 LDA NUMH VALUE IN A,X
 1280 CLC SIGNAL VALID NUMBER
 1290 RTS RETURN
 1300 *---CONVERT DECIMAL NUMBER-------
 1310 .3 SEC CONVERT CHAR TO DIGIT
 1320 SBC #$B0
 1330 BMI .4 ...NOT DIGIT
 1340 CMP #$0A
 1350 BCS .4 ...NOT DIGIT
 1360 JSR .5 SHIFT VALUE 1 LEFT
 1370 ADC NUML 2*VALUE + DIGIT
 1380 TAX
 1390 LDA #$00
 1400 ADC NUMH
 1410 TAY
 1420 JSR .5 SHIFT VALUE 1 LEFT
 1430 JSR .5 SHIFT VALUE 1 LEFT
 1440 TXA ...+ 8*VALUE
 1450 ADC NUML
 1460 STA NUML
 1470 TYA
 1480 ADC NUMH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1918 of 2550

Apple II Computer Info

 1490 STA NUMH
 1500 BCC .1 ...NO OVERFLOW
 1510 .4 SEC SIGNAL BAD CHAR OR OVERFLOW
 1520 RTS
 1530 *---SHIFT VALUE 1 BIT LEFT-------
 1540 .5 ASL NUML
 1550 ROL NUMH
 1560 RTS
 1570 *---CONVERT HEX NUMBER-----------
 1580 .6 PLP POP USELESS STATUS
 1590 .7 JSR GNNB GET NEXT NON-BLANK CHAR
 1600 BEQ .2 ...END OF NUMBER
 1610 SEC CONVERT ASCII TO DIGIT
 1620 SBC #$B0
 1630 BMI .4 ...NOT A DIGIT
 1640 CMP #$0A
 1650 BCC .8 ...0-9
 1660 SBC #$07 TRY LETTERS
 1670 BMI .4 ...NOT A DIGIT
 1680 CMP #$10
 1690 BCS .4 ...NOT A DIGIT
 1700 .8 LDX #4 SHIFT VALUE 4 BITS LEFT
 1710 .9 JSR .5 SHIFT VALUE 1 LEFT
 1720 DEX
 1730 BNE .9
 1740 ORA NUML MERGE VALUE WITH NEW DIGIT
 1750 STA NUML
 1760 JMP .7 ...NEXT DIGIT
 1770 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1919 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:S.DOSLCPatch.txt
==

 1000 *SAVE S.DOS LC PATCHES
 1010 *--------------------------------
 1020 PNTR .EQ $00,01
 1030 PATCH .EQ $02,03
 1040 *--------------------------------
 1050 .OR $300
 1060 .TF B.DOS LC PATCHES
 1070 *--------------------------------
 1080 PATCHER
 1090 LDA #PATCHES-1
 1100 STA PNTR
 1110 LDA /PATCHES-1
 1120 STA PNTR+1
 1130 LDY #0
 1140
 1150 .1 JSR GET.BYTE LENGTH OF NEXT PATCH
 1160 BEQ .4 FINISHED
 1170 TAX SAVE LENGTH IN X
 1180 JSR GET.BYTE ADDRESS OF PATCH
 1190 STA PATCH
 1200 JSR GET.BYTE
 1210 STA PATCH+1
 1220
 1230 .2 JSR GET.BYTE
 1240 STA (PATCH),Y
 1250 INC PATCH
 1260 BNE .3
 1270 INC PATCH+1
 1280 .3 DEX
 1290 BNE .2
 1300 BEQ .1 ...ALWAYS
 1310
 1320 .4 RTS
 1330 *--------------------------------
 1340 GET.BYTE
 1350 INC PNTR
 1360 BNE .1
 1370 INC PNTR+1
 1380 .1 LDA (PNTR),Y
 1390 RTS
 1400 *--------------------------------
 1410 NUML .EQ $44
 1420 NUMH .EQ $45
 1430 *--------------------------------
 1440 GNNB .EQ $A1A4
 1450 *--------------------------------
 1460 PATCHES
 1470 .DA #P1.LENGTH,$A1B9
 1480 .PH $A1B9

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1920 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 * RETURN .CC. WITH NUMBER IN A,X
 1510 * OR .CS. IF BAD SYNTAX
 1520 *--------------------------------
 1530 CONVERT.NUMBER.IN.WBUF
 1540 LDY #0 INIT NUMBER = 0
 1550 STY NUML (AND LEAVE Y=0 TOO)
 1560 STY NUMH
 1570 JSR GNNB GET NEXT NON-BLANK CHAR
 1580 BEQ .2 ...NO NUMBER, RETURN 0
 1590 CMP #"$" HEX OR DECIMAL?
 1600 BEQ .7 ...HEX
 1610 *---CONVERT DECIMAL NUMBER-------
 1620 .3 EOR #$B0 CONVERT CHAR TO DIGIT
 1630 CMP #10
 1640 BCS .4 ...NOT DIGIT
 1650 ASL NUML SHIFT VALUE 1 LEFT
 1660 ROL NUMH
 1670 ADC NUML 2*VALUE + DIGIT
 1680 TAX
 1690 TYA A = Y = 0
 1700 ADC NUMH
 1710 PHA
 1720 ASL NUML SHIFT VALUE 1 LEFT
 1730 ROL NUMH
 1740 ASL NUML SHIFT VALUE 1 LEFT
 1750 ROL NUMH
 1760 TXA ...+ 8*VALUE
 1770 ADC NUML
 1780 STA NUML
 1790 PLA
 1800 ADC NUMH
 1810 STA NUMH
 1820 BCS .4 ...OVERFLOW
 1830 .1 JSR GNNB GET NEXT NON-BLANK CHAR
 1840 BNE .3 ...NOT COMMA OR CR
 1850 *---NUMBER IS FINISHED-----------
 1860 .2 LDX NUML END OF NUMBER
 1870 LDA NUMH VALUE IN A,X
 1880 CLC SIGNAL VALID NUMBER
 1890 RTS RETURN
 1900 *---MERGE NEXT HEX DIGIT---------
 1910 .8 ASL POSITION DIGIT
 1920 ASL
 1930 ASL
 1940 ASL
 1950 LDX #4 SHIFT VALUE 4 BITS LEFT
 1960 .9 ASL SHIFT DIGIT INTO VALUE
 1970 ROL NUML
 1980 ROL NUMH
 1990 DEX
 2000 BNE .9
 2010 *---CONVERT HEX NUMBER-----------
 2020 .7 JSR GNNB GET NEXT NON-BLANK CHAR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1921 of 2550

Apple II Computer Info

 2030 BEQ .2 ...END OF NUMBER
 2040 EOR #$B0 CONVERT ASCII TO DIGIT
 2050 CMP #10 0...9?
 2060 BCC .8 ...YES, 0-9
 2070 ADC #$88 SHIFT RANGE FOR A-F TEST
 2080 CMP #$FA A...F?
 2090 BCS .8 ...A-F
 2100 *---SYNTAX ERROR-----------------
 2110 .4 SEC SIGNAL BAD CHAR OR OVERFLOW
 2120 RTS
 2130 *--------------------------------
 2140 GNC.LC.PATCH
 2150 STX $AA5D
 2160 CMP #$E0
 2170 BCC .1
 2180 AND #$DF
 2190 .1 RTS
 2200 *--------------------------------
 2210 .BS $A229-*
 2220 *--------------------------------
 2230 P1.LENGTH .EQ *-$A1B9
 2240 .EP
 2250 *--------------------------------
 2260 .DA #3,$A19E
 2270 .PH $A19E
 2280 JSR GNC.LC.PATCH
 2290 .EP
 2300 *--------------------------------
 2310 .DA #0 END OF PATCHES
 2320 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1922 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:S.DOSNuminRBSC.txt
==

 1000 *SAVE S.DOS NUMIN (RBSC)
 1010 *--------------------------------
 1020 NUML .EQ $44
 1030 NUMH .EQ $45
 1040 *--------------------------------
 1050 GNNB .EQ $A1A4
 1060 *--------------------------------
 1070 .OR $A1B9
 1080 .TA $09B9
 1090 *--------------------------------
 1100 * RETURN .CC. WITH NUMBER IN A,X
 1110 * OR .CS. IF BAD SYNTAX
 1120 *--------------------------------
 1130 CONVERT.NUMBER.IN.WBUF
 1140 LDY #0 INIT NUMBER = 0
 1150 STY NUML (AND LEAVE Y=0 TOO)
 1160 STY NUMH
 1170 JSR GNNB GET NEXT NON-BLANK CHAR
 1180 BEQ .2 ...NO NUMBER, RETURN 0
 1190 CMP #"$" HEX OR DECIMAL?
 1200 BEQ .7 ...HEX
 1210 *---CONVERT DECIMAL NUMBER-------
 1220 .3 EOR #$B0 CONVERT CHAR TO DIGIT
 1230 CMP #10
 1240 BCS .4 ...NOT DIGIT
 1250 ASL NUML SHIFT VALUE 1 LEFT
 1260 ROL NUMH
 1270 ADC NUML 2*VALUE + DIGIT
 1280 TAX
 1290 TYA A = Y = 0
 1300 ADC NUMH
 1310 PHA
 1320 ASL NUML SHIFT VALUE 1 LEFT
 1330 ROL NUMH
 1340 ASL NUML SHIFT VALUE 1 LEFT
 1350 ROL NUMH
 1360 TXA ...+ 8*VALUE
 1370 ADC NUML
 1380 STA NUML
 1390 PLA
 1400 ADC NUMH
 1410 STA NUMH
 1420 BCS .4 ...OVERFLOW
 1430 .1 JSR GNNB GET NEXT NON-BLANK CHAR
 1440 BNE .3 ...NOT COMMA OR CR
 1450 *---NUMBER IS FINISHED-----------
 1460 .2 LDX NUML END OF NUMBER
 1470 LDA NUMH VALUE IN A,X
 1480 CLC SIGNAL VALID NUMBER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1923 of 2550

Apple II Computer Info

 1490 RTS RETURN
 1500 *---MERGE NEXT HEX DIGIT---------
 1510 .8 ASL POSITION DIGIT
 1520 ASL
 1530 ASL
 1540 ASL
 1550 LDX #4 SHIFT VALUE 4 BITS LEFT
 1560 .9 ASL SHIFT DIGIT INTO VALUE
 1570 ROL NUML
 1580 ROL NUMH
 1590 DEX
 1600 BNE .9
 1610 *---CONVERT HEX NUMBER-----------
 1620 .7 JSR GNNB GET NEXT NON-BLANK CHAR
 1630 BEQ .2 ...END OF NUMBER
 1640 EOR #$B0 CONVERT ASCII TO DIGIT
 1650 CMP #10 0...9?
 1660 BCC .8 ...YES, 0-9
 1670 ADC #$88 SHIFT RANGE FOR A-F TEST
 1680 CMP #$FA A...F?
 1690 BCS .8 ...A-F
 1700 *---SYNTAX ERROR-----------------
 1710 .4 SEC SIGNAL BAD CHAR OR OVERFLOW
 1720 RTS
 1730 *--------------------------------
 1740 .OR $800
 1750 TEST JSR $FD67
 1760 TXA
 1770 BEQ .1
 1780 LDX #0
 1790 STX $AA5D
 1800 JSR CONVERT.NUMBER.IN.WBUF
 1810 JSR $F941
 1820 JMP TEST
 1830 .1 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1924 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:S.INIT.BUFFERS.txt
==

 1000 *SAVE S.INIT BUFFERS
 1010 *--------------------------------
 1020 PNTR .EQ $40,41
 1030 HIMEM .EQ $4C,4D
 1040 FP.STRINGS .EQ $6F,70
 1050 FP.HIMEM .EQ $73,74
 1060 PP .EQ $CA,CB
 1070 *--------------------------------
 1080 BUF.START .EQ $9D00
 1090 NO.FILES .EQ $AA57
 1100 TEMP .EQ $AA63
 1110 ACTIVE.BASIC.FLAG .EQ $AAB6
 1120 *--------------------------------
 1130 .OR $A7D4
 1140 .TA $08D4
 1150 *--------------------------------
 1160 INIT.FILE.BUFFERS
 1170 SEC
 1180 LDA BUF.START
 1190 STA PNTR
 1200 LDA BUF.START+1
 1210 STA PNTR+1
 1220 LDA NO.FILES
 1230 STA TEMP
 1240 *--------------------------------
 1250 .1 LDY #0
 1260 TYA
 1270 STA (PNTR),Y
 1280 LDY #$1E
 1290 SEC
 1300 LDA PNTR
 1310 SBC #$2D
 1320 STA (PNTR),Y
 1330 PHA
 1340 LDA PNTR+1
 1350 SBC #0
 1360 INY
 1370 STA (PNTR),Y
 1380 TAX
 1390 DEX
 1400 PLA
 1410 PHA
 1420 INY
 1430 STA (PNTR),Y
 1440 TXA
 1450 INY
 1460 STA (PNTR),Y
 1470 TAX
 1480 DEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1925 of 2550

Apple II Computer Info

 1490 PLA
 1500 PHA
 1510 INY
 1520 STA (PNTR),Y
 1530 INY
 1540 TXA
 1550 STA (PNTR),Y
 1560 DEC TEMP
 1570 BEQ .2
 1580 TAX
 1590 PLA
 1600 SEC
 1610 SBC #$26
 1620 INY
 1630 STA (PNTR),Y
 1640 PHA
 1650 TXA
 1660 SBC #0
 1670 INY
 1680 STA (PNTR),Y
 1690 STA PNTR+1
 1700 PLA
 1710 STA PNTR
 1720 JMP .1
 1730 *--------------------------------
 1740 .2 PHA
 1750 LDA #0
 1760 INY
 1770 STA (PNTR),Y
 1780 INY
 1790 STA (PNTR),Y
 1800 LDA ACTIVE.BASIC.FLAG
 1810 BEQ .3
 1820 PLA
 1830 STA FP.HIMEM+1
 1840 STA FP.STRINGS+1
 1850 PLA
 1860 STA FP.HIMEM
 1870 STA FP.STRINGS
 1880 RTS
 1890 *--------------------------------
 1900 .3 PLA
 1910 STA HIMEM+1
 1920 STA PP+1
 1930 PLA
 1940 STA HIMEM
 1950 STA PP
 1960 RTS
 1970 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1926 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:S.InitBuf802.XY.txt
==

 1000 *SAVE S.INIT BUFFERS (802) X/Y
 1010 .OP 65816
 1020 *--------------------------------
 1030 * REPLACEMENT FOR DOS 3.3 CODE
 1040 * (SAVES 52 BYTES, NO CHANGE IN FUNCTION)
 1050 *--------------------------------
 1060 HIMEM .EQ $4C,4D
 1070 FP.STRINGS .EQ $6F,70
 1080 FP.HIMEM .EQ $73,74
 1090 PP .EQ $CA,CB
 1100 *--------------------------------
 1110 BUF.START .EQ $9D00
 1120 NO.FILES .EQ $AA57
 1130 ACTIVE.BASIC.FLAG .EQ $AAB6
 1140 *--------------------------------
 1150 .OR $A7D4
 1160 .TA $08D4
 1170 *--------------------------------
 1180 INIT.FILE.BUFFERS
 1190 PHP SAVE CURRENT STATUS AND
 1200 CLC TURN ON 802 MODE
 1210 XCE
 1220 PHP
 1230 *--------------------------------
 1240 LDY NO.FILES DO (NO.FILES) TIMES
 1250 REP #$30 16-BIT OPERATIONS
 1260 LDX BUF.START POINT TO FIRST BUFFER
 1270 *--------------------------------
 1280 .1 LDA ##0 STORE ZERO OVER 1ST & 2ND CHARS
 1290 STA 0,X OF FILENAME TO FREE BUFFER
 1300 *---FILL IN 3 PNTRS--------------
 1310 SEC COMPUTE LOW BYTE OF POINTERS
 1320 TXA FROM FILENAME ADDR
 1330 SBC ##$2D
 1340 STA $1E,X ...FMW ADDR
 1350 SBC ##$100
 1360 STA $20,X ...TSL ADDR
 1370 SBC ##$100
 1380 STA $22,X ...DATA ADDR
 1390 *---IS THAT THE LAST BUFFER?-----
 1400 DEY
 1410 BEQ .2 ...NO MORE BUFFERS
 1420 *---BUILD LINK TO NEXT BUFFER----
 1430 SBC ##$26 ADDR OF FILENAME IN NEXT BUFFER
 1440 STA $24,X
 1450 TAX BASE ADDRESS FOR NEXT BUFFER
 1460 BRA .1 ...ALWAYS
 1470 *---SET FORWARD PNTR = 0000------
 1480 .2 TAY SAVE HIMEM VALUE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1927 of 2550

Apple II Computer Info

 1490 LDA ##0
 1500 STA $24,X
 1510 *---SET HIMEM AND EMPTY BLOCK----
 1520 LDA ACTIVE.BASIC.FLAG
 1530 AND ##$FF
 1540 BEQ .3 INTEGER BASIC
 1550 STY FP.HIMEM APPLESOFT
 1560 STY FP.STRINGS
 1570 BRA .4
 1580 .3 STY HIMEM INTEGER BASIC
 1590 STY PP
 1600 .4 PLP
 1610 XCE
 1620 PLP
 1630 RTS
 1640 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1928 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:S.InitBufs.802.txt
==

 1000 *SAVE S.INIT BUFFERS (802)
 1010 .OP 65816
 1020 *--------------------------------
 1030 * REPLACEMENT FOR DOS 3.3 CODE
 1040 * (SAVES 46 BYTES, NO CHANGE IN FUNCTION)
 1050 *--------------------------------
 1060 HIMEM .EQ $4C,4D
 1070 FP.STRINGS .EQ $6F,70
 1080 FP.HIMEM .EQ $73,74
 1090 PP .EQ $CA,CB
 1100 *--------------------------------
 1110 BUF.START .EQ $9D00
 1120 NO.FILES .EQ $AA57
 1130 ACTIVE.BASIC.FLAG .EQ $AAB6
 1140 *--------------------------------
 1150 .OR $A7D4
 1160 .TA $08D4
 1170 *--------------------------------
 1180 INIT.FILE.BUFFERS
 1190 PHP SAVE CURRENT STATUS AND
 1200 CLC TURN ON 802 MODE
 1210 XCE
 1220 PHP
 1230 *--------------------------------
 1240 LDX NO.FILES DO (NO.FILES) TIMES
 1250 REP #$30 16-BIT OPERATIONS
 1260 LDY BUF.START POINT TO FIRST BUFFER
 1270 *--------------------------------
 1280 .1 LDA ##0 STORE ZERO OVER 1ST & 2ND CHARS
 1290 STA 0,Y OF FILENAME TO FREE BUFFER
 1300 *---FILL IN 3 PNTRS--------------
 1310 SEC COMPUTE LOW BYTE OF POINTERS
 1320 TYA FROM FILENAME ADDR
 1330 SBC ##$2D
 1340 STA $1E,Y ...FMW ADDR
 1350 SBC ##$100
 1360 STA $20,Y ...TSL ADDR
 1370 SBC ##$100
 1380 STA $22,Y ...DATA ADDR
 1390 *---IS THAT THE LAST BUFFER?-----
 1400 DEX
 1410 BEQ .2 ...NO MORE BUFFERS
 1420 *---BUILD LINK TO NEXT BUFFER----
 1430 SBC ##$26 ADDR OF FILENAME IN NEXT BUFFER
 1440 STA $24,Y
 1450 TAY BASE ADDRESS FOR NEXT BUFFER
 1460 BRA .1 ...ALWAYS
 1470 *---SET FORWARD PNTR = 0000------
 1480 .2 TAX SAVE HIMEM VALUE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1929 of 2550

Apple II Computer Info

 1490 LDA ##0
 1500 STA $24,Y
 1510 *---SET HIMEM AND EMPTY BLOCK----
 1520 LDA ACTIVE.BASIC.FLAG
 1530 AND ##$FF
 1540 BEQ .3 INTEGER BASIC
 1550 STX FP.HIMEM APPLESOFT
 1560 STX FP.STRINGS
 1570 BRA .4
 1580 .3 STX HIMEM INTEGER BASIC
 1590 STX PP
 1600 .4 PLP
 1610 XCE
 1620 PLP
 1630 RTS
 1640 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1930 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8503:DOS3.3:S.InitBufs.SC.txt
==

 1000 *SAVE S.INIT BUFFERS (S-C)
 1010 *--------------------------------
 1020 * REPLACEMENT FOR DOS 3.3 CODE
 1030 * (SAVES 11 BYTES, NO CHANGE IN FUNCTION)
 1040 *--------------------------------
 1050 PNTR .EQ $40,41
 1060 HIMEM .EQ $4C,4D
 1070 FP.STRINGS .EQ $6F,70
 1080 FP.HIMEM .EQ $73,74
 1090 PP .EQ $CA,CB
 1100 *--------------------------------
 1110 BUF.START .EQ $9D00
 1120 NO.FILES .EQ $AA57
 1130 TEMP .EQ $AA63
 1140 ACTIVE.BASIC.FLAG .EQ $AAB6
 1150 *--------------------------------
 1160 .OR $A7D4
 1170 .TA $08D4
 1180 *--------------------------------
 1190 INIT.FILE.BUFFERS
 1200 LDA NO.FILES DO (NO.FILES) TIMES
 1210 STA TEMP USE TEMP FOR COUNTER
 1220 LDA BUF.START POINT TO FIRST BUFFER
 1230 LDX BUF.START+1
 1240 *--------------------------------
 1250 .1 STA PNTR
 1260 STX PNTR+1
 1270 LDY #0 Store zero over 1st char of
 1280 TYA filename to mark it as a
 1290 STA (PNTR),Y free buffer.
 1300 *---FILL IN 3 PNTRS--------------
 1310 SEC COMPUTE LOW BYTE OF POINTERS
 1320 LDA PNTR
 1330 SBC #$2D
 1340 LDY #$1E ...FMW ADDR
 1350 STA (PNTR),Y
 1360 LDY #$20 ...TSL ADDR
 1370 STA (PNTR),Y
 1380 LDY #$22 ...DATA ADDR
 1390 STA (PNTR),Y
 1400 PHA
 1410 LDA PNTR+1 COMPUTE HIGH BYTE OF FMW ADDR
 1420 SBC #0
 1430 LDY #$1F ...FMW ADDR
 1440 STA (PNTR),Y
 1450 SBC #1
 1460 LDY #$21 ...TSL ADDR
 1470 STA (PNTR),Y
 1480 SBC #1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1931 of 2550

Apple II Computer Info

 1490 LDY #$23 ...DATA ADDR
 1500 STA (PNTR),Y
 1510 *---IS THAT THE LAST BUFFER?-----
 1520 INY POINT AT FWD LINK LO-BYTE
 1530 TAX SAVE HI BYTE OF DATA ADDR
 1540 DEC TEMP
 1550 BEQ .2 ...NO MORE BUFFERS
 1560 *---BUILD LINK TO NEXT BUFFER----
 1570 PLA GET LO BYTE
 1580 SBC #$26 ADDR OF FILENAME IN NEXT BUFFER
 1590 STA (PNTR),Y ...LO BYTE
 1600 PHA SAVE ON STACK
 1610 TXA GET HI BYTE
 1620 SBC #0
 1630 INY ...HI BYTE
 1640 STA (PNTR),Y
 1650 TAX SAVE IN X
 1660 PLA GET LO BYTE AGAIN
 1670 BCS .1 ...ALWAYS
 1680 *---SET FORWARD PNTR = 0000------
 1690 .2 LDA #0
 1700 STA (PNTR),Y
 1710 INY
 1720 STA (PNTR),Y
 1730 *---SET HIMEM AND EMPTY BLOCK----
 1740 LDA ACTIVE.BASIC.FLAG
 1750 BEQ .3 INTEGER BASIC
 1760 STX FP.HIMEM+1 APPLESOFT
 1770 STX FP.STRINGS+1
 1780 PLA
 1790 STA FP.HIMEM
 1800 STA FP.STRINGS
 1810 RTS
 1820 .3 STX HIMEM+1
 1830 STX PP+1
 1840 PLA
 1850 STA HIMEM
 1860 STA PP
 1870 RTS
 1880 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1932 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:AD.8086.XASM.txt
==

8086/8088 Cross Assembler
Use your Apple to learn 8086 programming! You can program for the IBM
PC, the clones, and ALF's co-processor board without ever leaving the
friendly environment of Apple DOS 3.3.

This easy-to-use cross assembler, based on the S-C Assembler II
(Version 4.0), covers all the 8086 and 8088 instructions and all the
addressing modes. Instruction mnemonics are based on the Microsoft
8086 assembler. Does not include newer S-C Assembler features like
macros or the EDIT command.

Documentation covers the differences from standard S-C Assembler
operation and syntax. Sample source programs help you become familiar
with the assembler syntax.

With permission from S-C Software, XSM 8086/8088 is available to
owners of any S-C Assembler for $80.00 post-paid. (No credit cards or
purchase orders.)

Don Rindsberg
The Bit Stop
5958 S. Shenandoah Rd.
Mobile, AL 36608

(205) 342-1653
==
DOCUMENT :AAL-8504:Articles:Cross.8086.8088.txt
==

An 8086/8088 Cross Assembler......................Don Rindsberg

As one of S-C's avid fans, I have developed an 8086/8088 Cross
Assembler for your Apple which will enable you to generate code to run
on the IBM PC's and their clones as well as many other 16-bit
machines. All the 8086/8088 instructions are covered as well as the
multiplicity of addressing modes. The mnemonics are based on
Microsoft's assembler. This assembler is based on S-C Assembler II
Version 4.0 (the one before Macro Assembler), so it doesn't include
the newer features like macros or the EDIT command. Documentation
covering the differences from the 6502 version is included.

With Bob's permission, XSM 8086/8088 is available to owners of the S-C
6502 assembler (Version 4.0 or later) for $80.00 post- paid. Included
on the disk are sample source programs so you can become familiar with
the syntax. Send personal check or money order (no credit cards or
purchase orders) to:

The Bit Stop
5958 S. Shenandoah Rd.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1933 of 2550

Apple II Computer Info

Mobile, AL 36608
Attn: Don Rindsberg
(205) 342-1653

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1934 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:Fast.Windows.txt
==

Fast Text Windows for Applesoft..................Michael Ching
 2118 Kula Street, Honolulu, HI 96817

The program WINDER by Mike Seeds in the January 1985 NIBBLE was found
to be very interesting. This was especially so because we,
coincidentally, had been working on a similar routine for use in an
upcoming strategy sports game.

The main difference between our programs was that the routines used in
WINDER are written completely in Applesoft, and thus suffer from the
relatively slow speed of the Applesoft interpreter. This is
especially evident in the opening of the windows. Our routine, on the
other hand, is written in assembly language and executes more quickly.

There are a couple of other major differences. Seeds' routine saves
the text, to be overwritten by the window, in a string array WS$. Our
routine saves the text in the secondary text page (memory locations
$800 through $BFF). One advantage of doing this is that more than one
window can be opened at the same time, (although the windows may not
overlap). A disadvantage is that the secondary text page occupies the
same space that an Applesoft program normally would start at. This
makes it necessary to relocate the Applesoft program above the
secondary text page.

Another difference is that WINDER specifies the window dimensions with
the width and height of the window, along with the top and left
coordinates. We chose to specify directly the top, bottom, left, and
right boundaries.

The assembly language routine is called by the familiar & followed by
the appropriate parameters. The format is & WT,WB,WL,WR,TP where WT
is the top coordinate of the window, WB is the bottom coordinate, WL
is the left coordinate, WR is the right coordinate, and TP is the text
page number. If TP is set to 1, the text to be replaced by the window
is saved to the secondary text page and the window is formed. If TP
is set to 2, the text is restored to the primary text page from the
secondary text page. At present, there is no error checking of the
parameter values, and care must be taken to ensure that WB is set
greater than WT, and WR greater than WL.

The program is assembled to load into the tail end of the input buffer
and the free space in page 3 ($2F5-3C9). The portion inside page 2 is
only used to set up the ampersand hook, so it is not a problem if this
code gets wiped out by long input lines after loading. This setup is
done in lines 1250-1290.

Lines 1320-1470 perform the task of getting the parameter values from
Applesoft and placing them into temporary storage. The routines
GETBYT and COMBYTE are used, and will evaluate expressions used in the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1935 of 2550

Apple II Computer Info

calling Applesoft program. The width of the window is also calculated
here. The text page value is decremented by one for ease of future
manipulation. Line 1340 initializes the beginning of a loop which
will copy the characters in the designated text page to the opposite
text page.

Lines 1500-1510 call the monitor routine BASCALC. BASCALC calculates
the starting (leftmost) memory address of the screenline, and stores
it in the pointers BASL and BASH.

Lines 1520-1640 set up two pointers, one in the real screen and one in
the alternate screen area. The pointers point to the beginning of the
current line starting at the left edge of the caller's window. A1
points at the source, and A2 at the destination, for a move loop which
will copy the characters within the window on the current line.

The destination address is the source address offset by $400 (up or
down depending on the source text page). The calculation is done by
exclusive ORing the source address with #$0C (or 00001100 in binary).
For example, if BASH was $07, exclusive ORing will yield $0B. If it
was $0B, exclusive ORing will yield $07.

Lines 1660-1700 comprise the move loop.

Lines 1720-1850 check to see if the frame of the window needs to be
drawn. If the text page is being restored (window being closed), then
the frame routine is skipped. If the window is being cleared, the
frame is drawn.

First I store an inverse blank at each end of the line, which is
sufficient for all except the top and bottom lines. Then I check: if
it is the top or bottom line, I fill in the rest of the line with
inverse blanks.

Lines 1870-1900 check whether the entire window has been processed.
If not, the program loops back to process the next line.

Lines 1920-2050 check to see whether the window boundaries need to be
set. If the window is being opened (TPAGE = 0), then they are set,
and HOME clears out the window. Note that the window parameters are
set so that the frame is outside it.

<<<assembly listing here.....

The next listing shows the revised WINDER routine using the assembly
language routines. Line 40 checks to see if the program has been
relocated above the secondary text page. If not, the start of program
pointers are changed and the program is re-RUN. This causes DOS to
position the program above the secondary text page. Line 50 BRUNS the
assembly language routine.

The program is really quite different from that of Mike Seeds, as you
can see if you compare them. Clearing and restoring windows is now
very efficient, due to the &-routine. I moved the delay and closing

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1936 of 2550

Apple II Computer Info

logic into a common subroutine. I also added a randomly sized and
positioned window in lines 400-410.

<<<<Applesoft listing>>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1937 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 7 April, 1985

In This Issue...

Putting S-C Macro on a quikLoader Card 2
New Book: Inside the Apple //c. 7
Volume Catalog for Corvus and Sider. 9
Shrinking Code Inside ProDOS 12
Fast Text Windows for Applesoft. 16
8086/8088 Cross Assembler. 21
Powerful 65816 Board on the Horizon. 22
USR Command to List Major Labels Only. 24
Review of the FCP Sider Hard Disk. 27

A New Book Appears

Jim Sather's new book, Understanding the Apple //e, arrived today.
We'll have a complete review next month, but at first glance it looks
even better than his first book. Check our ad on page 3 for pricing.

And an Old Book Reappears

Roger Wagner Publishing has obtained the rights to Roger's "Assembly
Lines -- the Book" from Softalk. A new edition is now available,
still at $19.95. We sold hundreds of copies of this book, which in
excellent tutorial fashion leads a beginner into the fascinating world
of assembly language. "Assembly Lines -- the Disk" is also available,
with all the sample source code formatted for the Merlin assembler.
If you wish to order the book from us, our price is only $18 plus
shipping.

Postage Increases

The recent Post Office rate increases had little effect on the Bulk
and First Class rates, only $.015-.03 per piece, or $.18-.36 per year
per subscription. We'll accept that much of a cost increase. Foreign
Air Mail is another matter, though. Those rates went up by $.16-.19
per piece, or $1.92-2.28 per year per subscription. Therefore, the
foreign subscription rate is now $32 per year.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1938 of 2550

Apple II Computer Info

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1939 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:Hard.Cat.txt
==

Volume Catalog for Corvus and Sider........Bob Sander-Cederlof

When I have a stack of floppies, I can quickly shuffle through them
reading labels to find the two or three most likely to have the
elusive file I want. On a hard disk it is hard to read the labels....

The last time I had a Corvus sitting in this room, there was a program
on the utility disk which would list the first file name from each
volume. If you were careful about making the first file name
descriptive, it could act like a label. Of course, nearly every
floppy around here has a first file named HELLO. Not too helpful.

Several years ago Bill Morgan wrote a program we published in AAL
called the Catalog Arranger. It allows you to re-arrange the
filenames in any catalog to any order you wish, and to rename the
files using any combination of upper/lower case, inverse, flashing,
and control-characters. I use Catalog Arranger to make a "title" file
at the beginning of each hard disk volume. (If you never heard of
Catalog Arranger, you can type it in from AALs of October 1982 and
January 1983. It is also available on a Quarterly disk for only $15.)

Now that I don't have the Corvus, or its handy program for listing the
names of the first file in each volume, I decided to write my own.
The program that follows prints out the volume number, two spaces, and
then the name of the first file. If the volume is empty, it prints
"<<<EMPTY VOLUME>>>". You can abort the listing by pressing RETURN or
ESCAPE, or pause it by pressing any other key.

Lines 1090-1100 set the origin at $803 and cause the object program to
be written on a BRUNnable file called CAT. We write it at $803 rather
than $800 so that Applesoft will work correctly after CAT is finished.
Applesoft gets upset if $800 has any non-zero value in it.

I used two monitor routines. $FD8E prints a carriage return, and
$FDED prints any character from the A-register.

I also used routines inside DOS. $AFF7 reads the VTOC of the current
volume, using the inverse volume number from the variable R.VOLUME.
If there is any error in trying to read the VTOC, DOS would normally
go through its procedure of printing the message and returning to
Applesoft. We cannot allow that, so I install a temporary patch to
make the error condition cause a return to my code with carry set. If
there is no error, carry will be clear. The only likely error is that
I am asking for the VTOC of a non-existing volume, which means I have
already processed them all. The patching, call, and de-patching take
place in lines 1160-1220. Line 1230 branches to my exit routine if
there was an error reported.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1940 of 2550

Apple II Computer Info

I also call on $B011 to read the first sector of the catalog. If you
call $B011 with carry clear it reads the first sector of the catalog;
with carry set, it reads the next sector of the catalog. The sector
is read into a standard buffer at $B4BB-B5BA. See "Beneath Apple
DOS" for a complete description of the catalog sectors.

Lines 1270-1440 convert the volume number to decimal and print it out.
Lines 1450-1480 check for an empty directory. If it is empty, lines
1740-1800 print the empty volume message. Otherwise, lines 1490-1550
print the file name. Right here my program could use some
improvement. It is possible for an empty volume to not look empty,
because deleted files are not physically removed from the catalog.
The byte we check for an empty volume could have $FF in it, signifying
a deleted file. In this case my program should continue searching
through the catalog for either the end or a non-deleted file. I
didn't think it was absolutely necessary, since I was using Catalog
Arranger to remove all deleted files from the catalog and position the
title line at the very top.

Line 1730 returns back to DOS by JMP $3D0. This reminds me of glitch
we all run into from time to time. If you intend to BRUN a program
from the command level of the assembler or of Applesoft, it needs to
end with JMP $3D0. Ending with an RTS will not do, because BRUN does
not leave any return address on the stack. On the other hand, if you
intend to start the program by using a CALL or MGO or $...G command,
it is all right to end with an RTS. In fact, with a CALL from inside
a running Applesoft program you MUST use an RTS. Just something to
watch out for.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1941 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:Inside.IIc.Book.txt
==

New Book: Inside the Apple //c

What Gary Little did for the //e he has repeated for the //c. Of
course a lot of the material is the same for both computers and both
books, but there is much new material. If you have a //c and not a
//e, then this book will be much more helpful.

For one thing, when explaining assembly language he includes the new
opcodes and address modes of the 65C02. For another, the chapter on
Disk Operating Systems is now 100% ProDOS, and includes more detail on
ProDOS than the //e book. Naturally, since the //c has no cassette
port or I/O slots, that material has been left out. On the other hand
there is a lot of new data about the Apple mouse port and the built-in
serial ports.

The book is published by Brady (Prentice-Hall), is 363 + xv pages, and
sells for $19.95. (We'll send you one for a little less, see page 3
of this newsletter.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1942 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:ListMajorLabels.txt
==

USR Command to List Major Labels Only......Bob Sander-Cederlof

Sometimes when I am working with a large source file in the S-C Macro
Assembler it would be nice to be able to list only those lines that
define major labels. Seeing only them would give an overview of an
entire file, and enable me to quickly find the section I want to work
on.

A major label is one that starts with a letter. Local labels start
with a period, macro private labels start with a colon. Lines might
also start with an asterisk or semicolon, if they are comments, or
with blank.

You can add commands to the Macro Assembler in several ways. One easy
built in one is the USR command. A vector at $D007 (or $1007 with the
low memory version) can point to the code to process a command of your
own making. Lines 1080-1140 in the following listing set up the
vector for my special USR command. Since it is in the high RAM area
(sometimes called "language card"), I reference $C083 twice to write
enable the RAM.

Once the USR vector is loaded, typing a command "USR" will execute my
code. When this happens, the entire command I typed will be in a
buffer starting at $200. Some routines exist inside S-C Macro which
can help in parsing the command further and in implementing its
functions, and I will use them in this example. If you have the
source code to one of the S-C Macro versions, it is not too difficult
to find these routines. And if you don't have it, you can always
disassemble and analyze, a true form of adventure. The addresses
shown in lines 1040-1060 correspond to version 2.0 of the S-C Macro
Assembler.

Line 1165 calls on a subroutine I call PARSE.LINE.RANGE (PLR). PLR
starts by setting up SRCP to point to the beginning of the source
program, and ENDP to the end of same. Then it looks at the command
line for various forms of line numbers. You might have none at all,
in which case PLR is finished. You might have one number alone, or a
period. (A period is shorthand for the last remembered line number.)
That might be preceded by or followed by a comma. You might have two
numbers separated by a comma. Here is a table showing what happens in
each case:

 SRCP ENDP CARRY
 ---- ---- -----
 none pstart pend set
 # #start #end clear
 #, #start pend clear
 ,# pstart #end clear
 #1,#2 #1start #2end clear

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1943 of 2550

Apple II Computer Info

 where # means number or "."
 pstart = address of start of source code
 pend = address of end of source code
 #start = address of starting line #
 #end = address of ending line #

Line 1170 call a routine in the assembler to compare SRCP and ENDP to
see if we are finished or not. The code is simply:
 LDA SRCP
 CMP ENDP
 LDA SRCP+1
 SBC ENDP+1

Lines 1200-1210 pick up the first character after the line number.
The source line format in memory is one byte for a byte count, two
bytes for the line number, the text of the line, and a final
terminating 00 byte. The blank which follows just after the line
number in listings is not actually stored.

Characters in a source line are stored in "low" ASCII, values between
$01 and $7F. Values from $81 through $BF indicate 1 to 63 blanks.
The value $C0 indicates repetitions of some other character. The byte
following a $C0 is the repetition count, and the byte after that is
the character to be repeated. Lines 1220-1240 check for blanks and
repeat tokens. Lines 1340-1350 pick up the repeated character if we
found a repeat token.

Lines 1360-1390 check if the first character is a letter. If not,
this line will not be listed. Lines 1250-1320 are executed to skip
over the current line without listing it. Since the first byte of the
line has a byte count, it is added to SRCP to move up the next line.

At line 1400 I call LIST.CURRENT.LINE to ... you guessed it. This
subroutine also advances SRCP, so after it is finished I jump back to
the top to check pointers and get the next line.

After assembling the program, I type MGO INIT to hook it in. Then
"USR 1070," would list just lines 1080 and 1160.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1944 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:LovesConversion.txt
==

Improving the Single-Byte Converter................Bruce Love
 New Zealand

Bob's single byte converter (see Jan 85 issue, pages 31-32) can be
shortened by one byte. The left column is from Bob's code, the right
a shorter version:

 1040 .1 LDX #"0" .1 LDX #"0"-1
 1050 .2 CMP DECTBL,Y SEC
 1060 BCC .3 .2 SBC DECTBL,Y
 1070 SBC DECTBL,Y INX
 1080 INX BCS .2
 1090 BNE .2 ADC DECTBL,Y

I also tried a different approach, using the decimal mode to count
tens, then printing the tens as a hex value with the monitor routine
at $FDDA and the remainder (units digit) with $FDED. This routine
takes longer time, but does not need to use the X-register.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1945 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:Micro.Magic.txt
==

A Powerful 65816 Board on the Horizon......Bob Sander-Cederlof

Some of you may have heard of Micro Magic, a company in Mary- land
that is planning to produce a plug-in card for your Apple with fast
RAM and a fast 65816. Well, if not, now you have.

I spoke yesterday with Will Troxell, and got an overview of their
plans. He and Frank Krol are working together on the project. Their
goal is to produce the most powerful and flexible card they can and
yet still bring it in for a low price. The card will basically be
similar to the Accelerator //e, in that it consists of a fast
microprocessor, fast RAM, and the logic to take control away from the
6502 or 65C02 on your Apple motherboard.

But instead of a 65C02 running at 3.58 MHz, you will get a 65816
running at 6 MHz. Instead of one row of RAM chips, you get two.
Troxell's board will probably come with 64K or 128K of 6MHz dynamic
RAM, but later this year they have been promised that 256K RAMs fast
enough for 6 MHz operation will be in production; then you will be
able to expand your board to 256K or 512K bytes of RAM.

There is a firmware socket on the board which can accept a 27128 (16K
bytes of firmware, the same as you find in a //c). They do not plan
to include any firmware at the beginning, but it certainly can be
filled up with your own goodies.

There are two external connectors on the board. One of these allows
you to add another 512K RAM. Remember, this is directly addressable
RAM, not bank-switched. The 65816 can directly address up to 16
megabytes, with its 24-bit address bus.

It is also exciting to remember that a plain ol 6502 running at 1 MHz
(what you have now) is roughly equivalent in speed to most of the 8088
and Z-80 computers on the market. A 6 MHz 6502 could beat a 20MHz Z-
80 (were they to make one so fast). A 6 MHz 65816 will beat out
68000's, 80286's, and so on. Why is this true? Because all those
other chips use micro- programmed instruction sets, taking many clock
cycles for each instruction. The 6502 and its progeny are fully
implemented in hardware gates, so only a handful of clock cycles are
needed.

Furthermore, a 65816 instruction will take from one to four bytes of
memory, while a 68000 instruction will take 2, 4, 6, 8, or 10 bytes.
Now I am not trying to deny the power of some of those 68000
instructions. One of them may take many steps in 65816 code.
Especially if you need to deal with 32-bit operands. But it is my
experience that those super instructions are relatively infrequent in
practical programs. Most programs spend most of their time just
moving bytes from here to there and back again.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1946 of 2550

Apple II Computer Info

Now if we could only get one! For about fifteen months we have been
hearing "in two to four weeks". We could despair, were it not for our
historical perspective. The same thing happened with the 65C02, and
now we really do have them in abundance. By this time next year, you
may be hearing solid confirmation of the rumor (heard this week) that
Apple and GTE are discussing large orders of 65816s.

But I digress. Back to Troxell and Krol. There new board will be
called the MAX-816, and a new operating system they are designing for
it will be MAX-OS. A special circuit on the card will optimize memory
re-mapping for both DOS and ProDOS, automatically, so that maximum
possible use is made of the fast RAM on the card. THe fewer times the
card has to slow down to use motherboard RAM, the faster your programs
fly.

MAX-OS will not be necessary for you to get a bang out of MAX-816,
because it will work like the Accelerator //e and make most existing
programs six times faster (exclusive of I/O). But when it is ready,
it will open up new vistas, with RAM stretching out in every direction
as far as the eye can see. In a design reminiscent of one from a
certain large phone company, the kernel is written in assembly
language, with a C-shell wrapped around it.

Personally, I am no great fan of complex operating systems. The
simpler and smaller the better, in my book. I still like DOS 3.3,
especially with enhancements I regularly patch in. Nevertheless it
does take more management when you have the magnitude and variety of
resources that will be in the Apple of the future. Maybe MAX-OS will
be the winner.

If Will and Frank are whetting your appetite, you can write to them at
Micro Magic, Box 281, Millersville, MD 21108. Or you might be able to
reach them at (301) 987-6083.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1947 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......................................$100
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

AAL Quarterly Disks.........................each $15, or any four for $45
 Jan-Mar Apr-Jun Jul-Sep Oct-Dec
 Each disk contains 1980 - - - 1
 the source code from 1981 2 3 4 5
 three issues of AAL, 1982 6 7 8 9
 saving you lots of 1983 10 11 12 13
 typing and testing. 1984 14 15 16 17
 1985 18

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
Visible Computer: 6502 (Software Masters).................(reg. $50) $45
ES-CAPE: Extended S-C Applesoft Program Editor (new price, was $60) $40
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36

Blank Diskettes (Verbatim)......................... package of 20 for $32
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100
Envelopes for Diskette Mailers............................. 6 cents each

quikLoader EPROM System (SCRG)................................($179) $170
PROmGRAMER (SCRG)..($149.50) $140
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32
Write Guard Disk Mod Kit (Mark IV).................................. $45

Books, Books, Books..........................compare our discount prices!

"Inside the Apple //c", Little..............................($19.95) $18
"Inside the Apple //e", Little..............................($19.95) $18
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18
"Apple][Circuit Description", Gayler......................($22.95) $21
"Understanding the Apple II", Sather........................($22.95) $21
"Understanding the Apple //e", Sather.......................($24.95) $23
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1948 of 2550

Apple II Computer Info

"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20
"Incredible Secret Money Machine", Lancaster.................($7.95) $7
"Beneath Apple DOS", Worth & Lechner........................($19.95) $18
"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18
"What's Where in the Apple", Second Edition.................($19.95) $19
"6502 Assembly Language Programming", Leventhal.............($18.95) $18
"6502 Subroutines", Leventhal...............................($18.95) $18
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9
"Microcomputer Graphics", Myers.............................($12.95) $12
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16
"Assembly Lines -- the Book", Wagner........................($19.95) $18

Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1949 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:ProDOS.numout.txt
==

Shrinking Code Inside ProDOS...............Bob Sander-Cederlof

David Johnson challenged me a few days ago. We were talking about
ProDOS: the need for a ProDOS version of the S-C Macro Assembler, the
merits vs. enhanced DOS 3.3, and the rash of recent articles on
shrinking various routines inside DOS to make room for more features.

I've been avoiding ProDOS as much as possible, trying not to notice
its ever-increasing market-share. Dave's comment, "ProDOS is a
fertile field for your shrinking talent," may have finally pushed me
into action.

I am trying to make the ProDOS version of the S-C Macro Assembler, but
is hard. I have Apple's manuals, Beneath Apple ProDOS, and the
supplement to the latter book which explains almost every line of
ProDOS code. Nevertheless, version 1.1.1 of ProDOS doesn't seem to
conform to all these descriptions in every particular. I spent four
hours last night chasing one little discrepancy. (Turned out to be my
own bug, though.)

In the process, I ran across the subroutine ProDOS uses to convert
binary numbers to decimal for printing. In version 1.1.1 it starts at
$A62F, and with comments looks like this.

 <<<< prodos listing >>>>

The conversion routine is designed to handle values between 0 and
$FFFFFF. The heghest byte must already have been stored at ACCUM+2
before calling CONVERT.TO.DECIMAL. The middle byte must be in the X-
register, and the low byte in the A-register. The decimal digits will
be stored in ASCII in the $200 buffer, starting and $201+Y and working
backwards.

One way of converting from binary to decimal is to perform a series of
divide-by-ten operations. After each division, the remainder will be
the next digit of the decimal value, working from right to left. That
is the technique ProDOS uses, and the division is done by the
subroutine in lines 1280-1420.

The dividend is in ACCUM, a 3-byte variable. The low byte is first,
then the middle, and finally the high byte. One more byte is set
aside for the remainder. A 24-step loop is set up to process all 24
bits of ACCUM. In the loop ACCUM and REMAINDER are shifted left. If
REMAINDER is 10 or more, it is reduced by ten and the next quotient
bit set to 1; otherwise the next quotient bit is 0.

The first possible improvement I noted was in the area of lines 1330-
1360. the ROL REMAINDER will always leave carry status clear, because
we never let REMAINDER get larger than 9. If we delete the SEC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1950 of 2550

Apple II Computer Info

instruction, and change SBC #10 to SBC #9 (because carry clear means
we need to borrow), we can save one byte. But that's not really worth
the effort.

Next I realized that REMAINDER could be carried in the A-register
within the 24-step loop, and not stored until the end of the loop.
Here is that version, which saves seven bytes (original = 31 bytes,
this one = 24 bytes):

 <<<< listing of my lines 1260-1380 >>>>

To make sure my version really worked, I re-assembled the conversion
program with an origin of $800, and appended a little test program.
Here is my test program, which converts the value at $0000...0002 and
prints it out.

 <<<<listing of my lines 1510-1620 >>>>

My best version is yet to come. I considered the fact that we could
SHIFT the next quotient bit into the low end of ACCUM rather than
using INC ACCUM to set a one-bit. I rearranged the loop so that the
remainder reduction was done first, followed by the shift-left
operation. I had to change the remainder reduction to work modulo 5
rather than 10, because the shifting operation came afterwards. I
also had to inlcude my own three lines of code to ROL ACCUM, since the
little subroutine in ProDOS started with ASL ACCUM. The result is
still shorter than 31 bytes, but only four bytes shorter.
Nevertheless, it is faster and neater, in my opinion.

 <<<<lines 1640-1770>>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1951 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:Q.n.A.txt
==

Questions and Answers

I noticed in your article about making DOS-less disks that you
shortened the catalog so as to make some of the track 17 sectors
available. That's nice, but DOS will not allocate sectors out of
track 17 unless a small patch is made to the allocation routine.

Change the byte at $B292 from $69 to $A9, and those sectors your freed
will be usable.

 Larry Anderson

Thanks, Larry! You are exactly right. Evidently FID uses a different
scheme for allocation, because when I filled up my DOS-less disk my
sectors in track 17 were used. If I had used LOAD-SAVE to move the
files, those sectors would have not been found. From now on I am
going to use your patch.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1952 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:QuikLoader.Euge.txt
==

Putting S-C Macro on a QuikLoader Card..........Jan Eugenides

The QuikLoader by Southern California Research Group is one of those
rare devices that causes you to wonder how you ever got along without
one. I have had mine for about a year now, and I would never go back
to the old way of loading programs!

Briefly, the QuikLoader allows you to put whatever programs you desire
on EPROMS, which then plug into the QuikLoader. EPROMS from 2716-
27512 can be used, for a possible 512K bytes of program space on one
QuikLoader (equivalent to four Apple floppies!). You can have more
than one card, of course, so there's lots of room available for just
about anything. The QuikLoader also comes with DOS 3.3 already
installed, along with FID, and COPYA. When you turn on your machine,
you'll hear a little whoop instead of the familiar beep. DOS has just
been loaded in about 2 seconds. No more booting! In fact, I seldom
put DOS on a disk anymore, and I can use the space for programs
instead.

Programs which are on the QuikLoader can be loaded into RAM and
executed in about 2 seconds, with just two keystrokes! Since they are
loaded into their regular RAM locations, they do NOT need to be
modified in any way.

You can see a catalog of the QuikLoader by typing "Q" followed by
RESET. The program names appear with letters A-Z next to them. Then
you can select and run the programs by typing the letter corresponding
to that program. Alternatively, if you want to run the primary
routine on a chip, just press the number of the socket it is in
followed by RESET. More on this later.

Putting programs on the QuikLoader is somewhat problematical, however.
The manual is STILL in it's draft form, although they have been
promising a better one for over a year. Oh well...a little trial and
error is good for the soul.

In order to put the S-C Macro Assembler on the QuikLoader, it is
necessary to write what's known as a "primary" routine. The
QuikLoader has a built-in operating system which allows you to move
blocks of memory to their RAM locations from the various EPROMS on the
QuikLoader card, and then execute them however you wish. The
following program is intended to be used on a 27128 EPROM, which will
hold the entire S-C Macro Assembler, with driver (I used the Ultraterm
driver for this program) and the Fast Bload patches, which I chose to
load between DOS and its buffers, rather than actually patch the DOS.
You can do it either way, it's up to you.

This program is called the "overhead" for the EPROM. It goes at $FEB0
in the actual chip. The catalog must appear at $FF00. These are the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1953 of 2550

Apple II Computer Info

addresses as the Apple would see them, not the absolute addresses
relative to the chip. A 27128 will address as though it runs from
$C000 to $FFFF as far as the Apple is concerned. In other words, the
chip's address $0000 equals the Apple's address $C000. Things are
further complicated by the fact that an Apple II+ cannot address the
range from $C000 to $C7FF without a small circuit modification. In
this case it's no problem, the space from $C800-$FFFF is more than
enough to house the entire assembler. If you needed more space, you
could put your primary routine in the $C000-$C7FF space.

The rest of the EPROM contains the code for the assembler itself, and
the fast Bload patch. The assembler goes from $C800-$EFFF, and the
Bload patch from $F000 to $F04D. You must pack these files together
in RAM somewhere prior to burning the chip. In other words, Bload the
assembler at, say, $2800-4FFF. Put the Bload patch at $5000-504D
Then Bload the overhead program at $5EB0. The rest of the EPROM
doesn't matter. Then burn all this stuff into the EPROM starting at
$800 relative to the chip. Thus, when you install the chip on the
card, it will show up at $C800-FFFF like it should. If your EPROM
burner won't burn partial chips, just start the burn from $2000 and
it'll work out.

That's it. Just install the chip on the QuikLoader in any socket. To
run the assembler just type the socket number followed by RESET. In
two seconds the assembler will load and start! No more waiting to
boot DOS, load the program, etc. You don't even have to look for a
disk! Sure speeds up the work.

This should help augment the information in the manual a little, and
get you on your way. I have installed the S-C assembler, Rak-ware's
DISASM, a modified SOURCEROR (it now ouputs S-C format code, heh heh),
the S-C Word Processor, a terminal program of my own design (it's
capture buffer exactly coincides with the S-C Word Processor buffer!
I can come off-line and begin editing with two keystrokes, and no disk
access!), and some other utilities. All stored inside the Apple,
available instantly at any time. For $170 (the price from S-C
Software), the QuikLoader is a MUST.

By the way, for a reasonable fee I will install programs on EPROMS for
you. You supply the programs and EPROMS, and I'll do the rest. Some
programs are not suitable...particularly those which access the disk a
lot. They would require extensive modification and that's best left
to the original author. Also, copy-protected stuff cannot be loaded,
because there's no way to ge at the files. Contact me if you're
interested, at 11601 NW 18th St., Pembroke Pines, FL 33026.

[For $20, S-C Software will send registered owners of version 2.0 a
27128 with the S-C Macro Assembler on it. This adds five lines to the
QuikLoader menu, allowing you to choose the screen driver you wish.
Only the $D000 (language card) version is provided.]

Here's the overhead program, with GETSLOT overhead taken from the
QuikLoader manual.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1954 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:Articles:Review.Sider.txt
==

Review of the FCP Hard Disk................Bob Sander-Cederlof

First Class Peripherals has been advertising for some months now their
10 megabyte hard disk system (The Sider) for the Apple. At only $695,
including drive, controller, cable, and software, it sounds too good
to be true. We called them and asked for a chance to write a review,
and they loaned us one for a month.

I first tried hooking it up to an Apple II Plus, the same one we have
used with hard disks in the past. However, after 5 or 6 wasted hours,
it still would not function. We could not even get the disk to
completely initialize. I finally called the 800 number for customer
service, and found out that there have been problems hooking the Sider
to some II+'s. They suggested trying it on a //e before giving up.
Sure enough, it worked perfectly on our //e. The Sider is sold
subject to a 15-day trial period, so there is plenty of time to find
out if it will work with your II+.

I am very pleased. The Sider works well, looks good, and is not too
noisy. We have heard of at least one customer who did complain of the
noise level, but I have never listened to a quieter one. Because of
the venting design there is no internal fan, so the only noise is the
spinning disk. Anyway, my office already has two fans going on Apples
and another in a Minolta copier. The Sider nicely masks them all.

The size and shape are nice, too. It is somewhat smaller than I
expected: less than 4x8x16 inches. At first I set it along side of
my Apple (after all it is called the Sider), but now it is along the
back edge of my work table. This way it takes practically no space at
all, yet I can still easily reach the on/off switch.

The installation software that comes with the Sider initializes the 10
megabytes into four separate partitions. One is for DOS, one for
ProDOS, one for CP/M, and one for Pascal. You can vary the partition
size for each one, although a certain minimum amount must be
allocated; you cannot squeeze one all the way out. The DOS partition
allows a combination of floppy size volumes and large volumes. The
large volumes give you three times the amount of a regular Apple
floppy. I set mine up with 32 small volumes and one large volume.

The ProDOS partition divides the allocated space into two equal size
volumes, designated /HARD1/ and /HARD2/. Since I shrank CP/M and
Pascal to the minimum, the ProDOS volumes are about 2.5 megabytes
each.

If you want to change the partitions, you have to completely re-
initialize. That means all your files will disappear. Of course you
can restore them from your backup floppy copies.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1955 of 2550

Apple II Computer Info

The only modification to DOS 3.3 that the Sider makes is to put a call
to their firmware at $BD00. I decided to apply my own set of patches,
which among other things speed up LOAD, BLOAD, RUN, and BRUN. They
were not only compatible, they even speeded up the hard disk! Here is
a table comparing the Sider with floppies, both with and without my
patches:

BLOAD ----floppies----- ----The Sider----
 # sectors standard patched standard patched

 22 7.7 3.8 3.0 1.3
 69 18.7 5.6 6.7 2.4
 131 32.6 8.6 12.3 3.8

I also timed the assembly of a large program, whose source was on two
disks (the S-C Macro Assembler itself, in fact). With my speed up
patches the floppy assembly took 4 minutes 50 seconds; the Sider with
standard DOS took 3 minutes 50 seconds; the Sider with my patches took
only 2 minutes 32 seconds.

All these times are under DOS 3.3 of course. ProDOS is about the same
as my patched version of DOS in speed, but has other advantages like
larger volumes and files.

The main competition for the Sider comes from the two most popular
companies, Apple and Corvus. Apple's ProFILE hard disk is sleek and
nice, and only costs three times what the Sider does. Since you are
paying more, you also get less: Apple only supports ProDOS. The
ProFILE doesn't work with CP/M, Pascal, or DOS 3.3. (Unless there is
a new ProDOS compatible Pascal.) Corvus costs even more than ProFILE,
last time I checked. On the other hand, they have an excellent
reputation.

Its always hard to trust some new little company, even when they have
a great product and price. Just who is First Class Peripherals,
anyway? Well, they are a subsidiary of Xebec, one of the bigger
makers of hard disks. Xebec has been around a long time (over ten
years) and has a first class reputation. I think we can depend on
them. The Sider comes with a one-year limited warranty, which I think
means that if it breaks you send it in and they will fix it or replace
it. (Note: a whole year, not just 90 days!) After the warranty has
expired there is a flat $150 charge for repairs.

The only way to buy a Sider is directly from First Class Peri-
pherals. You can call them at 1-800-538-1307, or write to 2158 Avenue
C, Bethlehem, PA 18001. If you are in a user group of significant
size, I understand someone at FCP might want to visit with a demo
unit. You might give them a call.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1956 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:DOS3.3:Asm2.0FastBLOAD.txt
==

 1000 *SAVES.ASSEM.2.0.OH(FAST BLOAD)
 1010 *--------------------------------
 1020 *1/31/85
 1030 *--------------------------------
 1040 *
 1050 *S-C MACRO ASSEMBER OVERHEAD - ULTRATERM VERSION
 1060 * by Jan Eugenides
 1070 * 3/9/85
 1080 *
 1090 *--------------------------------
 1100 *CHIP 0 ROUTINE EQUATES
 1110 *--------------------------------
 1120 *Y-register indexes of the chip 0 routines
 1130 *--------------------------------
 1140 *
 1150 MOVEBLK .EQ 0 Move data block to RAM
 1160 GOMRBRD .EQ 8 Go to motherboard
 1170 *--------------------------------
 1180 *
 1190 * GENERAL EQUATES
 1200 *
 1210 *--------------------------------
 1220 PRISLOT .EQ $26 Storage for primary slot
 1230 QLMAP .EQ $2D bitmap of QL slots
 1240 SRCL .EQ $3A indirect source
 1250 SAVCTRL .EQ $20A save control word
 1260 QLCTRL .EQ $C081 QL control register
 1270 *--------------------------------
 1280 *
 1290 * GET SLOT EQUATES
 1300 *
 1310 *--------------------------------
 1320 QLOFF .EQ $18 00011000 QLOFF; CHIP 0
 1330 CHKNUM .EQ $20 NUMBER OF FIND SLOT CHECKS
 1340 GSCL .EQ $40 GET SLOT C PARAMETER.
 1350 GSCH .EQ $41
 1360 GSEL .EQ $42 GET SLOT E PARM
 1370 GSEH .EQ $43
 1380 SLTXROM .EQ $C006 IIE SOFT SWITCH
 1390 INT3ROM .EQ $C00A "
 1400 SLT3ROM .EQ $C00B "
 1410 CLRROM .EQ $CFFF
 1420 *--------------------------------
 1430 .OR $FEB0
 1440 .TF ASM.2.0.OH
 1450 *--------------------------------
 1460 * This program will start the assembler in 80x32
 1470 * mode with ultraterm. Assumes that assembler has
 1480 * been patched at $DBC9 and $DC11 for 32 line mode,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1957 of 2550

Apple II Computer Info

 1490 * i.e. the normal $17 is now $1F. If mode is changed
 1500 * these bytes must be re-patched. ($2F for 48 line mode)
 1510 * For S-C assember 2.0 March 1985 version with Bob's
 1520 * ultraterm driver attached at $F700.
 1530 *--------------------------------
 1540 START.PROG LDA #0 Turn on Ultraterm
 1550 JSR $C300
 1560 LDA #22 bring up in 80x32 mode
 1570 JSR $FDED
 1580 LDA #"5 Mode 5
 1590 JSR $FDED
 1600 LDA #$CB
 1610 STA $3D1 set warmstart vector
 1620 LDA #0
 1630 STA $9D00 make room between DOS a buffers
 1640 JSR $A7D4 for fast BLOAD patch
 1650 LDA #$30
 1660 STA $ACA6 patch dos to call fast Bload
 1670 LDA #$9C
 1680 STA $ACA7 which is now at $9C30
 1690 LDA #$4C
 1700 STA $E000
 1710 LDA #0
 1720 STA $E001 put assembler coldstart vector at $E000
 1730 LDA #$D0
 1740 STA $E002
 1750 LDA $C080 select ram card
 1760 JMP $D000 coldstart assembler
 1770 SP.END
 1780 *--------------------------------
 1790 .BS $FF00-* SKIP TO FF00
 1800 *--------------------------------
 1810 *KATALOG ENTRIES START HERE
 1820 *--------------------------------
 1830 ASMK .DA #$90 PRIMARY
 1840 .DA N.RESET SOURCE
 1850 .DA $0000 LENGTH
 1860 .DA $0000 DESTINATION
 1870 .AS -"ASM"
 1880 *--------------------------------
 1890 .DA #$86 END OF KAT RECORD
 1900 *--------------------------------
 1910 ASMPARM1 .DA $C800 SOURCE assembler + driver goes here
 1920 .DA $27FF LENGTH will load from $D000-$F7FF
 1930 .DA $D000 DESTINATION
 1940 ASMPARM2 .DA $F000 SOURCE fast bload routine
 1950 .DA $004D LENGTH
 1960 .DA $9C30
 1970 *--------------------------------
 1980 INVERT LSR
 1990 ROR
 2000 ROR
 2010 ROR
 2020 AND #$E0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1958 of 2550

Apple II Computer Info

 2030 STA SAVCTRL
 2040 RTS
 2050 *--------------------------------
 2060 .BS $FF53-* SKIP TO FF53
 2070 OFFLP LDA #QLOFF
 2080 STA QLCTRL,X TURN OFF THE QL
 2090 RTSLOC JSR GETSLOT THIS INSTRUCTION AT $FF58 (RTS)
 2100 BNE OFFLP
 2110 *--------------------------------
 2120 *
 2130 * FIND SLOT NUMBER BY COMPARING CNXX TO ENXX FOR EACH SLOT
 2140 * START WITH SLOT 7. USR MUST BE RESET FOR SEARCH TO BE
 2150 * EFFECTIVE IN II OR IIE.
 2160 *--------------------------------
 2170 GETSLOT STA SLTXROM ENABLE IIE I/O SELECTS
 2180 STA SLT3ROM
 2190 LDA #0
 2200 STA GSCL
 2210 STA GSEL
 2220 TRYAGEN LDA #$C1 START WITH SLOT 1
 2230 STA GSCH
 2240 LDA #$E1
 2250 STA GSEH DESTINATION = $EN00
 2260 LDY #CHKNUM GET NUMBER OF CHECKS TO VERIFY
 2270 LOOKLP LDA (GSCL),Y
 2280 CMP (GSEL),Y
 2290 BNE NOTHERE BRANCH IF QL NOT IN THIS SLOT
 2300 DEY
 2310 BNE LOOKLP
 2320 LDA GSCH
 2330 TAY
 2340 ASL GET SLOTNUM TIMES $10 TO X
 2350 ASL
 2360 ASL
 2370 ASL
 2380 TAX
 2390 LDA $FE86,Y GET BIT MAP
 2400 ORA QLMAP
 2410 STA QLMAP SET BIT IN QLMAP
 2420 STA INT3ROM LEAVE INT3ROM AS NORMAL RESET DOES
 2430 *--------------------------------
 2440 *NORMAL RESET FORCES SLTXROM
 2450 *LEAVE 3ROM AND XROM AS WITH NORMAL RESET
 2460 *--------------------------------
 2470 LDA CLRROM EXPANSION ROM OFF
 2480 RTS
 2490 NOTHERE INC GSCH
 2500 INC GSEH CHECK IN NEXT SLOT
 2510 BNE LOOKLP BRANCH ALWAYS
 2520 *--------------------------------
 2530 *EQU $C0 SHOULDN'T OCCUR; BOMB IF DOES
 2540 *--------------------------------
 2550 MAP .DA #$80
 2560 .DA #$40

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1959 of 2550

Apple II Computer Info

 2570 .DA #$20
 2580 .DA #$10
 2590 .DA #$08
 2600 .DA #$04
 2610 .DA #$02
 2620 *--------------------------------
 2630 * THIS IS N.RESET ROUTINE OF THIS CHIP
 2640 *--------------------------------
 2650 N.RESET JSR INVERT Invert the control word
 2660 LDY #5
 2670 .1 LDA ASMPARM1,Y Move ASSEMBLER parms
 2680 STA SRCL,Y
 2690 DEY
 2700 BPL .1
 2710 LDA SAVCTRL get control word
 2720 LDX PRISLOT slot in X reg
 2730 LDY #MOVEBLK Command index for move block
routine
 2740 JSR GOCHIP0 Call chip 0 to move block
 2750 LDY #5
 2760 .2 LDA ASMPARM2,Y Move Fast Bload routine parms
 2770 STA SRCL,Y
 2780 DEY
 2790 BPL .2
 2800 LDA SAVCTRL get control word
 2810 LDX PRISLOT Slot in X reg
 2820 LDY #MOVEBLK Command index - move block
 2830 JSR GOCHIP0 Call chip 0
 2840 LDY #SP.END-START.PROG
 2850 .3 LDA START.PROG,Y Move startup program to $300
 2860 STA $300,Y
 2870 DEY
 2880 BPL .3
 2890 LDA #$02 put address-1 on stack
 2900 PHA
 2910 LDA #$FF
 2920 PHA
 2930 LDY #GOMRBRD jmp to $300 to start
 2940 LDA SAVCTRL
 2950 LDX PRISLOT
 2960 JMP GOCHIP0
 2970 *--------------------------------
 2980 .BS $FFEC-* SKIP TO FFEC
 2990 GOCHIP0 STA QLCTRL,X GO TO CHIP 0
 3000 JMP N.RESET DO N.RESET ROUTINE OF THIS CHIP
 3010 .BS 3
 3020 RTS
 3030 .BS 2
 3040 .DA ASMK FIRST KATALOG LOCATION
 3050 .DA $3FB NMI VECTOR
 3060 .LIST OFF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1960 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:DOS3.3:S.Hard.Cat.txt
==

 1000 *SAVE S.HARD CAT
 1010 *--------------------------------
 1020 RWTS .EQ $03D9
 1030 GETIOB .EQ $03E3
 1040 *--------------------------------
 1050 CATALOG.BUFFER .EQ $B4BB
 1060 *--------------------------------
 1070 R.VOLUME .EQ $B5F9
 1080 *--------------------------------
 1090 .OR $803
 1100 .TF CAT
 1110 *--------------------------------
 1120 HARD.CAT
 1130 JSR $FD8E
 1140 LDA #$FE FOR VOLUME=1 TO 254
 1150 STA R.VOLUME (.EOR.FF OF VOLUME #)
 1160 *---PATCH DOS TO TRAP ERROR------
 1170 .1 LDA #$60 'RTS'
 1180 STA $B09E
 1190 JSR $AFF7 READ VTOC OF VOLUME
 1200 *---REMOVE PATCH-----------------
 1210 LDA #$B0 'BCS'
 1220 STA $B09E
 1230 BCS .7 OUT OF LOOP, BEYOD LAST VOLUME
 1240 *---READ 1ST CATALOG SECTOR------
 1250 CLC
 1260 JSR $B011
 1270 *---PRINT VOLUME #---------------
 1280 LDA R.VOLUME INVERSE OF #
 1290 EOR #$FF BACK TO NORMAL FORM
 1300 LDX #"0" CONVERT TO DECIMAL
 1310 .2 CMP #10 ANY 10'S?
 1320 BCC .3 ...NONE LEFT
 1330 SBC #10 ...YES, DIMINISH
 1340 INX AND COUNT IT
 1350 BNE .2 ...ALWAYS
 1360 .3 PHA SAVE UNITS
 1370 TXA PRINT TENS
 1380 JSR $FDED
 1390 PLA GET UNITS
 1400 ORA #"0" AND PRINT IT
 1410 JSR $FDED
 1420 LDA #" " PRINT " "
 1430 JSR $FDED
 1440 JSR $FDED
 1450 *---PRINT NAME OF FIRST FILE-----
 1460 LDY #11
 1470 LDA $B4BB,Y
 1480 BEQ .8 ...EMPTY VOLUME

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1961 of 2550

Apple II Computer Info

 1490 LDX #0
 1500 .4 LDA $B4BB+3,Y
 1510 INY
 1520 JSR $FDED
 1530 INX
 1540 CPX #30
 1550 BCC .4
 1560 *---PRINT CARRIAGE RETURN--------
 1570 .5 JSR $FD8E
 1580 *---NEXT VOLUME------------------
 1590 DEC R.VOLUME
 1600 *---POSSIBLE PAUSE OR ABORT------
 1610 LDA $C000 ANY KEY PAUSES
 1620 BPL .1 NO KEY
 1630 STA $C010
 1640 CMP #$8D <RETURN> ABORTS
 1650 BEQ .7
 1660 .6 LDA $C000 PAUSE LOOP
 1670 BPL .6
 1680 STA $C010
 1690 CMP #$8D AGAIN, RETURN AGORTS
 1700 BNE .1
 1710 *--------------------------------
 1720 .7 JSR $FD8E <RETURN>
 1730 JMP $3D0 BACK TO DOS
 1740 *---EMPTY VOLUME-----------------
 1750 .8 LDX #0
 1760 .9 LDA MT,X PRINT STRING BELOW
 1770 BEQ .5
 1780 JSR $FDED
 1790 INX
 1800 BNE .9 ...ALWAYS
 1810 *--------------------------------
 1820 MT .AS -/<<<EMPTY VOLUME>>>/
 1830 .HS 00
 1840 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1962 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:DOS3.3:S.List.Mjr.Lbl.txt
==

 1000 *SAVE S.LIST MAJOR LABELS
 1010 *--------------------------------
 1020 SRCP .EQ $DD,DE
 1030 *--------------------------------
 1040 PARSE.LINE.RANGE .EQ $DEAF OR 1EAF
 1050 CMP.SRCP.ENDP .EQ $DF11 OR 1F11
 1060 LIST.CURRENT.LINE .EQ $D737 OR 1737
 1070 *---LINK COMMAND-----------------
 1080 INIT LDA $C083 ENABLE LANGUAGE CARD
 1090 LDA $C083
 1100 LDA #USR.LIST SET UP USR VECTOR
 1110 STA $D007
 1120 LDA /USR.LIST
 1130 STA $D008
 1140 RTS
 1150 *---USR COMES HERE---------------
 1160 USR.LIST
 1165 JSR PARSE.LINE.RANGE
 1170 .1 JSR CMP.SRCP.ENDP
 1180 BCC .2
 1190 RTS
 1200 .2 LDY #3 POINT TO FIRST CHAR
 1210 LDA (SRCP),Y
 1220 BPL .5 NOT TOKEN
 1230 CMP #$C0
 1240 BCS .4 REPEAT TOKEN
 1250 .3 LDY #0 SKIP TO NEXT LINE
 1260 LDA (SRCP),Y LINE LENGTH
 1270 CLC
 1280 ADC SRCP
 1290 STA SRCP
 1300 BCC .1
 1310 INC SRCP+1
 1320 BNE .1 ...ALWAYS
 1330 *--------------------------------
 1340 .4 LDY #5 POINT AT RPTD CHAR
 1350 LDA (SRCP),Y
 1360 .5 CMP #'A'
 1370 BCC .3 NOT LETTER
 1380 CMP #'Z'+1
 1390 BCS .3 NOT LETTER
 1400 JSR LIST.CURRENT.LINE
 1410 JMP .1
 1420 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1963 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:DOS3.3:S.PD.NUMOUT.SC.txt
==

 1000 *SAVE S.PRODOS NUMOUT (SC)
 1010 *--------------------------------
 1020 *--------------------------------
 1030 * CONVERT 00.XX.AA FROM BINARY TO DECIMAL
 1040 * STORE UNITS DIGIT AT $201,Y
 1050 * STORE OTHER DIGITS AT SUCCESSIVE LOWER ADDRESSES
 1060 *
 1070 * Note: it is assumed and required that
 1080 * ACCUM+2 already by zeroed!
 1090 * Either that, or already set to the
 1100 * highest byte of a 24-bit value.
 1110 *--------------------------------
 1120 CONVERT.TO.DECIMAL
 1130 STX ACCUM+1
 1140 STA ACCUM
 1150 .1 JSR DIVIDE.ACCUM.BY.TEN
 1160 LDA REMAINDER
 1170 ORA #"0"
 1180 STA BUFFER+1,Y
 1190 DEY
 1200 LDA ACCUM CHECK IF QUOTIENT ZERO
 1210 ORA ACCUM+1
 1220 ORA ACCUM+2
 1230 BNE .1
 1240 RTS
 1250 *--------------------------------
 1260 DIVIDE.ACCUM.BY.TEN
 1270 LDX #24 24 BITS IN DIVIDEND
 1280 LDA #0 START WITH REM=0
 1290 .1 JSR SHIFT.ACCUM.LEFT
 1300 ROL
 1310 CMP #10
 1320 BCC .2 STILL < 10
 1330 SBC #10
 1340 INC ACCUM QUOTIENT BIT
 1350 .2 DEX NEXT BIT
 1360 BNE .1
 1370 STA REMAINDER
 1380 RTS
 1390 *--------------------------------
 1400 ACCUM .BS 3
 1410 REMAINDER .BS 1
 1420 BUFFER .EQ $0200
 1430 *--------------------------------
 1440 *--------------------------------
 1450 SHIFT.ACCUM.LEFT
 1460 ASL ACCUM
 1470 ROL ACCUM+1
 1480 ROL ACCUM+2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1964 of 2550

Apple II Computer Info

 1490 RTS
 1500 *--------------------------------
 1510 T LDA 0
 1520 STA ACCUM+2
 1530 LDX 1
 1540 LDA 2
 1550 LDY #10
 1560 JSR CONVERT.TO.DECIMAL
 1570 .1 INY
 1580 LDA BUFFER+1,Y
 1590 JSR $FDED
 1600 CPY #10
 1610 BCC .1
 1620 RTS
 1630 *--------------------------------
 1640 DIVIDE.ACCUM.BY.TEN.SHORTEST
 1650 LDX #24 24 BITS IN DIVIDEND
 1660 LDA #0 START WITH REM=0
 1670 .1 CMP #5
 1680 BCC .2 STILL < 10
 1690 SBC #5
 1700 .2 ROL ACCUM
 1710 ROL ACCUM+1
 1720 ROL ACCUM+2
 1730 ROL
 1740 DEX NEXT BIT
 1750 BNE .1
 1760 STA REMAINDER
 1770 RTS
 1780 *--------------------------------
 9999 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1965 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:DOS3.3:S.ProDOS.NUMOUT.txt
==

 1000 *SAVE S.PRODOS NUMOUT
 1010 *--------------------------------
 1020 .OR $A62F
 1030 .TA $800
 1040 *--------------------------------
 1050 * CONVERT 00.XX.AA FROM BINARY TO DECIMAL
 1060 * STORE UNITS DIGIT AT $201,Y
 1070 * STORE OTHER DIGITS AT SUCCESSIVE LOWER ADDRESSES
 1080 *
 1090 * Note: it is assumed and required that
 1100 * ACCUM+2 already by zeroed!
 1110 * Either that, or already set to the
 1120 * highest byte of a 24-bit value.
 1130 *--------------------------------
 1140 CONVERT.TO.DECIMAL
 1150 STX ACCUM+1
 1160 STA ACCUM
 1170 .1 JSR DIVIDE.ACCUM.BY.TEN
 1180 LDA REMAINDER
 1190 ORA #"0"
 1200 STA BUFFER+1,Y
 1210 DEY
 1220 LDA ACCUM CHECK IF QUOTIENT ZERO
 1230 ORA ACCUM+1
 1240 ORA ACCUM+2
 1250 BNE .1
 1260 RTS
 1270 *--------------------------------
 1280 DIVIDE.ACCUM.BY.TEN
 1290 LDX #24 24 BITS IN DIVIDEND
 1300 LDA #0 START WITH REM=0
 1310 STA REMAINDER
 1320 .1 JSR SHIFT.ACCUM.LEFT
 1330 ROL REMAINDER
 1340 SEC REDUCE REMAINDER MOD 10
 1350 LDA REMAINDER
 1360 SBC #10
 1370 BCC .2 STILL < 10
 1380 STA REMAINDER
 1390 INC ACCUM QUOTIENT BIT
 1400 .2 DEX NEXT BIT
 1410 BNE .1
 1420 RTS
 1430 *--------------------------------
 1440 ACCUM .EQ $BCAF,BCB0,BCB1
 1450 REMAINDER .EQ $BCB2
 1460 BUFFER .EQ $0200
 1470 *--------------------------------
 1480 .OR $AAD7

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1966 of 2550

Apple II Computer Info

 1490 .TA $900
 1500 *--------------------------------
 1510 SHIFT.ACCUM.LEFT
 1520 ASL ACCUM
 1530 ROL ACCUM+1
 1540 ROL ACCUM+2
 1550 RTS
 1560 *--------------------------------
 1570 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1967 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:DOS3.3:S.WINDOWS.txt
==

 1000 *SAVE S.WINDOWS
 1010 *--------------------------------
 1020 * MOVE WINDOW
 1030 * by Mike Ching, Kula Software
 1040 * 2118 Kula Street, Honolulu, HI 96817
 1050 *--------------------------------
 1060 WNDLFT .EQ $20
 1070 WNDWDTH .EQ $21
 1080 WNDTOP .EQ $22
 1090 WNDBTM .EQ $23
 1100 BASL .EQ $28
 1110 BASH .EQ $29
 1120 A1 .EQ $18,19 MEMORY SOURCE START
 1130 A2 .EQ $1A,1B MEMORY SOURCE END
 1140 *--------------------------------
 1150 AMPERV .EQ $3F5
 1160 *--------------------------------
 1170 GETBYT .EQ $E6F8
 1180 COMBYTE .EQ $E74C
 1190 BASCALC .EQ $FBC1
 1200 HOME .EQ $FC58
 1210 *--------------------------------
 1220 .OR $2F5
 1230 .TF B.WINDOWS
 1240 *--------------------------------
 1250 SETUP LDA #MOVE.WINDOW SET UP & VECTOR
 1260 STA AMPERV+1
 1270 LDA /MOVE.WINDOW
 1280 STA AMPERV+2
 1290 RTS
 1300 *--------------------------------
 1310 MOVE.WINDOW
 1320 JSR GETBYT GET VALUES FROM APPLESOFT
 1330 STX TOP
 1340 STX LINE
 1350 JSR COMBYTE
 1360 STX BOTTOM
 1370 JSR COMBYTE
 1380 STX LEFT
 1390 JSR COMBYTE
 1400 STX RIGHT
 1410 SEC WIDTH = RIGHT-LEFT
 1420 TXA
 1430 SBC LEFT
 1440 STA WIDTH
 1450 JSR COMBYTE GET DIRECTION (1 OR 2)
 1460 DEX
 1470 STX TPAGE
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1968 of 2550

Apple II Computer Info

 1490 MOVE.LINE
 1500 LDA LINE BASL,H = BASCALC(LINE)
 1510 JSR BASCALC
 1520 CLC
 1530 LDA BASH
 1540 LDX TPAGE
 1550 BEQ .1 ...SOURCE IS REAL SCREEN
 1560 EOR #$0C ...SOURCE IS SAVED SCREEN
 1570 .1 STA A1+1 SOURCE HI BYTE
 1580 EOR #$0C FLIP TEXT PAGE
 1590 STA A2+1 DESTINATION HI BYTE
 1600 CLC MEMSTART = BASL,H + LEFT
 1610 LDA BASL
 1620 ADC LEFT
 1630 STA A1 SOURCE LO BYTE
 1640 STA A2 DESTINATION LO BYTE
 1650 *---MOVE THE LINE SEGMENT--------
 1660 LDY WIDTH
 1670 .2 LDA (A1),Y
 1680 STA (A2),Y
 1690 DEY
 1700 BPL .2
 1710 *---IF CLEARING, DRAW FRAME------
 1720 LDY TPAGE
 1730 BNE .4 ...NOT CLEAR, DO NOT DRAW FRAME
 1740 LDA #$20 INVERSE BLANK
 1750 STA (A1),Y LEFT SIDE
 1760 LDY WIDTH
 1770 STA (A1),Y RIGHT SIDE
 1780 LDX LINE
 1790 CPX TOP
 1800 BEQ .3 ...TOP LINE
 1810 CPX BOTTOM
 1820 BNE .4 ...NEITHER TOP NOR BOTTOM
 1830 .3 STA (A1),Y
 1840 DEY
 1850 BNE .3
 1860 *---NEXT LINE--------------------
 1870 .4 INC LINE UNTIL LINE > BOTTOM
 1880 LDA BOTTOM
 1890 CMP LINE
 1900 BCS MOVE.LINE ANOTHER LINE TO MOVE
 1910 *---IF CLEARING, SET WINDOW------
 1920 LDA TPAGE
 1930 BNE .5
 1940 LDX LEFT
 1950 INX
 1960 STX WNDLFT
 1970 LDX WIDTH
 1980 DEX
 1990 STX WNDWDTH
 2000 LDX TOP
 2010 INX
 2020 STX WNDTOP

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1969 of 2550

Apple II Computer Info

 2030 LDX BOTTOM
 2040 STX WNDBTM
 2050 JSR HOME
 2060 .5 RTS
 2070 *--------------------------------
 2080 TOP .BS 1 PROGRAM STORAGE
 2090 BOTTOM .BS 1
 2100 LEFT .BS 1
 2110 RIGHT .BS 1
 2120 WIDTH .BS 1
 2130 LINE .BS 1
 2140 TPAGE .BS 1
 2150 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1970 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8504:DOS3.3:WINDOW.DEMO.txt
==

-

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1971 of 2550

Apple II Computer Info

≤ WINDOW DEMO PROGRAM, BASED ON PROGRAMS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1972 of 2550

Apple II Computer Info

≤ BY MIKE SEEDS, NIBBLE, JAN 1985q

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1973 of 2550

Apple II Computer Info

-≤ -----------------------´

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1974 of 2550

Apple II Computer Info

(P–12:≠‚(104)—Pƒπ104,P:πP 256,0:∫Á(4)"RUN WINDOW DEMO"≈

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1975 of 2550

Apple II Computer Info

2∫Á(4)"BRUN B.WINDOWS"„

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1976 of 2550

Apple II Computer Info

<≤ -----------------------Î

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1977 of 2550

Apple II Computer Info

dâ:ó
nÅI–1024¡2047«128:ÅJ–0¡119:πI»J,¤(1) 26»193:ÇJ,IS
x∫" WINDOW DEMONSTRATION";:å…868:∫:å…868Ç
Ç¢22:å…958:∫:∫" PRESS ANY KEY TO HALT";£
å≤ -------------------------‘
ñT–10:B–14:L–12:R–21:ØT,B,L,R,1:≤ OPEN WINDOW
†∫" TINY WINDOW":∞1000:≤ DELAY AND CLOSE WINDOW&™≤------------- -
--------F»T–2:B–7:L–6:R–31:ØT,B,L,R,1Ç“¢T»3:ñ4:∫"NOTICE THE TEXT
IS":ñ4:∫"RESTORED CORRECTLY."å‹∞1000ßÊ≤---------------------¿T –
10:B–19:ØT,B,L,R,1¤ÅJ–1¡25:∫" ";J,J J:ÇJ¸∫:∫" SCROLLING IS
AUTOMATIC"\"∞1000&J≤--------------------------jêW–¤(1) 20»5:H–
¤(1) 10»5:T–¤(1) (24…H):B–T»H:L–¤(1) (40…W):R–
L»WùöØT,B,L,R,1:∫"ABCDEFGHIJKLMNOPQRSTUVWXYZ":∞1000¶§´150∂ËÅD –
1¡1500:Ç”ÚØT,B,L,R,2:≤CLOSE WINDOWË¸≠‚(…16384)—
128ƒ±˛\°:π…16368,0:â:ó:Ä

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1978 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:Auto.Manual.txt
==

AUTO/MANUAL Toggle Update forRobert F. O'Brien
S-C Macro Assembler Version 2.0 Dublin, Ireland

Here is a short routine (23 bytes) which makes use of the ESC-U
command option to toggle the Auto-linenumbering mode on and off
readily. The routine is relocatable so you can put it anywhere you
have sufficient free space - just set the ESC-U vector to point to it,
in this case :$C083 C083 D00C:4C 00 03 N C080.

When the cursor is waiting for input at the beginning of the command
line, typing ESC-U will generate the command AUTO and then you have
the option of entering a line number and/or RETURN. To cancel the
AUTO mode just type ESC-U while the cursor is at the beginning of the
line (just after the linenumber - 4 or 5 digit line numbers are
catered for).

Extended AUTO command:

The second routine, starting at $317, is just 17 bytes long and
extends the AUTO command so that you can specify the increment after
the starting linenumber. For example, AUTO 3000,1 sets a starting
line number of 3000 and an increment of 1. This code is also
relocatable but you must patch the first instruction in the main AUTO
command so that it uses the new code as a sub- routine. In this case
it's :$C083 C083 D392:20 17 03 N C080.

The addresses specified for these new features are for the corrected
version of the Assembler - i.e. serial nos. greater than 1251; see
note in AAL March '85. Here is a table of what to expect at each of
the addresses used, so you can find the equivalent spots in other
copies of the assembler:

$D198 -- 20 xx D2 (JSR GNC)
 B0 17 (BCS to RTS)
 49 30 (EOR #$30)

$D392 -- 20 xx D1 (JSR GET.VALUE)
 CA (DEX)
 30 0E (BMI to SEC)

$D40B -- 41 55 54 CF (.AT /AUTO/)
 xx D3 (.DA AUTO-1)

$DB9A -- 09 80 (ORA #$80)
 9D 00 02 (STA $0200,X)
 C9 A0 (CMP #$A0)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1979 of 2550

Apple II Computer Info

Note that with the Auto/Manual Toggle function installed you won't
need the MANUAL command any more, so you have a spare command if you
need it!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1980 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:Disasm.TechNote.txt
==

Adapting the Output Format of Rak-Ware DISASM.......Bob Kovacs

This technical note describes the format table used within DISASM
2.2e, which can be modified to adapt the output text file format to
other assemblers. Even if you never plan to modify DISASM, or even if
you don't own a copy of DISASM, you can learn a lot about the use of
configuration tables by studying what follows.

The current version of the disassembler provides three different
output formats to support the DOS ToolKit, S-C, and LISA assemblers.
The format table contains various attributes which are unique to each
assembler. The table begins at location $1331 and is $3F bytes long.
Let's first examine the table and then determine how to adapt it to
other assembler formats.

 Item ToolKit S-C LISA
--------- ----------- ----------- -----------

comment AA * AA * BB ;
firstchr 00 none 89 ^I 00 none
tabchr1 A0 spc 89 ^I A0 spc
tabchr2 A0 spc A0 spc A0 spc
opchr C1 A 00 none 00 none
pgzchr C5D1D5 EQU AEC5D1 .EQ C5D0DA EPZ
extchr C5D1D5 EQU AEC5D1 .EQ C5D1D5 EQU
hexchr C4C6C2 DFB AEC8D3 .HS C8C5D8 HEX
orgchr CFD2C7 ORG AECFD2 .OR CFD2C7 ORG
prechr AA0000 * 000000 none C9CED3 INS
postchr 00 none 98 ^X 85 ^E

 comment: the character used at the beginning of a line to signify a
comment line.

firstchr: the character ouput at the beginning of each line.

 tabchr1: the character used to tab to the opcode field.

 tabchr2: the character used to tab to the operand field.

 opchr: operand for impled accumulator instructions (ASL, LSR, ROR,
ROL).

 pgzchr: directive for page zero declarations.

 extchr: directive for absolute declarations.

 hexchr: directive for data tables.

 orgchr: directive for setting the program origin.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1981 of 2550

Apple II Computer Info

 prechr: preamble sequence for initialization of the assembler.

 postchr: postamble character for termination of the assembler's
loading operation.

You will find that it is relatively simple to modify the format table
for other assemblers. First, determine which of the three existing
formats is to be overwritten (just pick the one you think you'll need
the least). Then determine the format data which is appropriate to
your assembler. BLOAD DISASM, enter the monitor, and stuff the new
values into the table. Finally BSAVE DISASM,A$800,L$D00.

Or, if you have purchased the source code of DISASM 2.2e (or created
your own using DISASM!), you can merely edit the table with your
assembler and re-assemble the program.

You might also need or want to change some other paramteters, which
are not in the format table:

Label Prefix: located at $132E, the current value is C9DAD8 (the
letters "IZX"). These letters are used to indicate internal,
pagezero, and external labels in the generated text file.

Menu Table: located at $1300, this table contains the names of the
three assemblers listed in the first menu. Each name is stored in
ASCII, followed by a return ($0D) and a terminator ($00).

Label Name Separator: A period ($AE) is output as the second
character in every generated label name. This can be changed to any
other character by editing the LDA #$AE instruction at location $0EA4.

I would be interested in hearing from any of you who have already
modified DISASM. This kind of feedback can lead to new versions with
even more powerful features.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1982 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:Front.page.txt
==

$1.80

Volume 5 -- Issue 8 May, 1985

In This Issue...

New Catalog for DOS 3.3. 2
80-Column Window Utility for //e and //c 11
AUTO/MANUAL Toggle Update for Version 2.0. 15
Apple ProDOS: Advanced Features for Programmers 18
Adapting the Output Format of Rak-Ware DISASM. 21
DATE Command for ProDOS. 23
32-bit Values in Version 2.0 32

S-C Macro Assembler for ProDOS

At long last, the news you've all been waiting for: the ProDOS
version of the S-C Macro Assembler is almost ready. We have a working
assembler in Beta testing, and it's doing just fine. We need to spend
another month or two shaking on it and developing documentation, so it
will be just a little longer 'til we start shipping, but it's on the
way! Watch the front page of AAL for the announcement.

News from Don Lancaster

After nearly a year of delay at the publisher, Enhancing Your Apple II
and //e, volume 2 is here! This followup to his very popular
collection of Apple tricks, gimmicks, and techniques contains still
more high-quality information on how to get the most out of our
favorite computer. Here Don provides the tricks of microjustification
and proportional spacing for Applewriter //e, an absolute "Old
Monitor" style RESET for the //e, a software-only video
synchronization technique for all Apple II's and //e's, and a just-
for-fun guide to mapping and playing Castle Wolfenstein.

I've been saving the best for last: Tearing Into Applewriter //e.
Here is 86 pages of priceless data on the internal workings of the
most popular Apple Word Processor, including how to capture source
code and customize it to your own taste. See our ad on page three for
price and shipping.

As you will notice from his ad in this issue, Lancaster has been hard
at work tearing into Appleworks, and has a set of disks available on
that program. We haven't seen those yet, but I'll bet they're more of
the same great inside info we've come to expect from Don.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1983 of 2550

Apple II Computer Info

for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1984 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:Littles.ProDOS.txt
==

Apple ProDOS: Advanced Features for Programmers, a Review.....
 Bill Morgan

Gary Little, the prolific author of Inside the Apple //e and Inside
the Apple //c, has yet another new book out. This one is called Apple
ProDOS: Advanced Features for Programmers. In this volume Little
covers just about all you need to know to write assembly language
programs under ProDOS, from simply passing commands to BASIC.SYSTEM,
through great detail on all the MLI calls, to writing your own
interrupt handlers and device drivers.

Here's a quick summary of the book's contents:

1 - An Introduction to ProDOS -- Little starts out with the history of
Apple's DOS's, a comparison of ProDOS and DOS 3.3, and a summary of
important features of ProDOS.

2 - Files and File Management -- Here he covers the directory
structures, file structures, disk formatting, and gives us a
READ.BLOCK program.

3 - Loading and Installing ProDOS -- This chapter goes into the boot
process, ProDOS' memory usage, and the Global Page.

4 - The Machine Language Interface -- This is the information on using
the MLI, its error codes, and complete details of all MLI calls.

5 - System Programming Featuring BASIC.SYSTEM -- Here we have a
discussion of system programs, the structure and commands of
BASIC.SYSTEM, and assembly language programming under BASIC.SYSTEM.

6 - Interrupts -- In this chapter Little covers interrupts in general,
ProDOS interrupt handling, and programming the Apple mouse.

7 - Disk Drivers -- Nearing the end, we go into identifying and
handling foreign disk drivers, driver commands, the /RAM driver, and
adding your own driver.

8 - ProDOS Clock Drivers -- And finally we find out about using the
built-in clock support, adding a clock driver, and reading the date
and time from Applesoft.

An important strength of this book is the wealth of examples. In the
chapter on the Machine Language Interface there is an example of the
correct use of EVERY MLI call. The BASIC.SYSTEM chapter includes an
ONLINE command, to identify all disk volumes currently on line. The
chapter on interrupts contains a couple of examples of mouse
programming. The Disk driver section has a listing of a simple /RAM
driver for main memory. And this is just a sample of the useful code

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1985 of 2550

Apple II Computer Info

provided in Little's new book. A companion disk containing all of the
book's programs and more is available for $25.00 from the author.

I hear some of you asking: How does Apple ProDOS: Advanced Features
(APAF) compare to Beneath Apple ProDOS (BAP)? Well, the two books
complement each other quite nicely. With all its examples, treatment
of interrupt handlers and device drivers, and overall clarity, I'd say
that APAF is the better book on programming under ProDOS. BAP has
useful examples as well, and better detail about the internals of
diskette formatting and how ProDOS works, especially with its 120+
page supplement describing the code on a line-by-line basis. So if
you're concerned with understanding the inner workings of the
operating system, or with modifying its behavior, BAP is the book to
have. Otherwise, get APAF for the best information on programming
using ProDOS. Personally, I'm glad to have both books on the shelf
here, along with Apple's ProDOS Technical Reference Manual.

Apple ProDOS: Advanced Features for Programmers, by Gary B. Little.
Brady Communications Co., 1985. 266+iv pp., Reference Card. $17.95.
Available from S-C Software for $17 + shipping.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1986 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......................................$100
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

AAL Quarterly Disks.........................each $15, or any four for $45
 Jan-Mar Apr-Jun Jul-Sep Oct-Dec
 Each disk contains 1980 - - - 1
 the source code from 1981 2 3 4 5
 three issues of AAL, 1982 6 7 8 9
 saving you lots of 1983 10 11 12 13
 typing and testing. 1984 14 15 16 17
 1985 18

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
ES-CAPE: Extended S-C Applesoft Program Editor (new price, was $60) $40
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36

Blank Diskettes (Verbatim)......................... package of 20 for $32
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100
Envelopes for Diskette Mailers............................. 6 cents each

quikLoader EPROM System (SCRG)................................($179) $170
PROmGRAMER (SCRG)..($149.50) $140
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32

"Apple ProDOS: Advanced Features for programmers", Little..($17.95) $17
"Inside the Apple //c", Little..............................($19.95) $18
"Inside the Apple //e", Little..............................($19.95) $18
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18
"Apple][Circuit Description", Gayler......................($22.95) $21
"Understanding the Apple II", Sather........................($22.95) $21
"Understanding the Apple //e", Sather.......................($24.95) $23
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15
"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20
"Beneath Apple DOS", Worth & Lechner........................($19.95) $18

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1987 of 2550

Apple II Computer Info

"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18
"6502 Assembly Language Programming", Leventhal.............($18.95) $18
"6502 Subroutines", Leventhal...............................($18.95) $18
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9
"Microcomputer Graphics", Myers.............................($12.95) $12
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16
"Assembly Lines -- the Book", Wagner........................($19.95) $18

Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1988 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:New.Catalog.txt
==

A New Catalog for DOS 3.3...................Robert F. O'Brien
 Dublin, Ireland

In AAL March '85 Bob S-C presented re-writes of some loosely coded DOS
sections to make space for patches - the Catalog Function Handler is
another such loose bit of code, but rather than just free up some
bytes I decided to add some useful features which Apple omitted and
correct an annoying error at the same time. This new routine adds the
following features to the CATALOG command:

1. Displays the free space remaining on the disk.

2. Allows you to terminate the Catalog during the normal pause after
a screenful of files have been displayed by pressing the <ESC>-key (or
other designated key).

3. Displays the correct number of sectors for each file in the
Catalog for even the very large files - where the number of sectors
exceeds 255 (which was the limit of the old PRINT.DECIMAL subroutine
at $AE42 in DOS 3.3).

4. Optionally displays two filenames on each line of the Catalog -
this is an 80-Column card option, also great for double-barrelled
CATALOG printouts (for labels etc.).

In addition, the new Catalog retains the principal features of the old
routine such as displaying the Volume number, the locked file
indicator (*) and the file type abbreviation so that the user is not
deprived of any essential information.

All the foregoing was achieved without using any additional DOS RAM
space or zero-page locations other than that space already used by the
Catalog Function Handler itself. Of course, something of the old
routine had to be sacrificed in order to add the new features - it was
necessary to omit the message "DISK VOLUME " from the beginning of the
display. The 12-byte space where this message resided is now used to
house a subroutine to check for locked files.

Even with all these enhancements, there are 17 free bytes left over!
You could use some of them to print out an abbreviated form of the
"DISK VOLUME " message, like "V=".

An additional constraint I saddled myself with in doing the re-write
was that PRINT.DECIMAL (the DOS subroutine used to convert the
hexadecimal numbers in locations $44,45 to decimal and print them)
should retain its normal entry point ($AE42) so that the new code
would be compatible with other programs which might use it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1989 of 2550

Apple II Computer Info

For those who wish to get double-barrelled Catalog listings on an 80-
column card or on a printer just change the "SEC" at line 2010 to
"LSR". In other words, $AE12:4A will enable the wide printout, and
$AE12:38 will put it back to normal.

To install the new patches just BLOAD the two binary files: NEW
CATALOG PART 1, and NEW CATALOG PART 2. You can put the modified DOS
onto any normal disk using Bob Perkins' technique (in AAL Aug 1982
p.24) without disturbing any other files present, or INIT a blank disk
and the modified DOS will be incorporated on it. If you prefer to
terminate long Catalog's with the <RETURN> key as you do for listings
with the S-C Macro Assemblers just change byte $AE21:8D.

Also, if you are prepared to restrict yourself to 11 character file-
names you can have a double-barrelled Catalog on the 40-Column screen
by changing byte $ADF7:0B (POKE 44535,11), but I feel it would be of
little value overall.

Now for a more detailed look at the program internals. Due to the
requirement to save as many bytes as possible to squeeze in the
desired features it was not possible to write the code in as straight-
forward a manner as one would like. Even so, the routine was written
with 17 byte to spare - after many re-writes to fit in all the
features.

Lines 1020-1240 define various subroutines, variables, and data tables
inside the rest of DOS.

Lines 1320-1360 use the same code as the original Catalog routine to
initialize the File Manager and read the disk Volume Table Of Contents
(VTOC).

In lines 1370-1410 we clear LINE.SKIP.FLAG which is used by SKIP.LINE
subroutine to determine whether to tab to a second column or print a
carriage return. Then we call PRINT.DECIMAL.YA to print the volume
number. The volume number itself is passed in the A-register, and a
zero high-byte in Y. Since we stripped out the code for printing
"DISK VOLUME ", the volume number will be printed immediately to the
right of the CATALOG command, on the same line. You will see "CATALOG
254 395", or the like, where the first number is the volume number
and the second is the count of free sectors.

By making a special entry above the PRINT.DECIMAL subroutine which is
used both here and at line 1830 below, we save several bytes. Of
course we have already save a couple dozen bytes by not printing "DISK
VOLUME ".

Calculation of the free disk space is made in lines 1420-1530. We
make use of a new feature in the corrected PRINT.DECIMAL routine
whereby $44 and $45 are reduced to 0 during the conversion - resulting
in a saving of 4 bytes by not having to re-zero $45. (In the old
routine only $44 was reduced to 0.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1990 of 2550

Apple II Computer Info

In the VTOC 4 bytes are set aside for each track to indicate sector
usage although only 2 are needed for a standard Apple disk. (The
extra space allows up to 50 tracks and up to 32 sectors per track to
be initialized.) A bit set=1 means that the corresponding sector on
the track is available for use. If a bit is set=0 then the sector is
already allocated. So it was simply a matter of counting every bit set
from offset byte $38 (track 0) to Byte $C3 (for Trk $22) of the VTOC
buffer to get a count of the free space. If you want to count all the
way to the 50th track, in case the program is working with a hard disk
like the Sider or Corvus, or a RANA 320K floppy, change lines 1430-
1440:

 1430 LDX #$38
 1440 LDA VTOC.BUFFER,X

In line 1550 we have another departure from the original code - 2
bytes were saved by entering the tail end of the SKIP.LINE subroutine
in order to set the number of lines to place on the screen before
pausing during a Catalog. This has the added advantage that you can
customize your Catalog more easily in that the line count can be
adjusted by modifying a single byte ($AE25).

At lines 1570-1610 we start by clearing the Carry flag so that the
first sector of the directory will be read (track $11, sector $0F).
Also we set the index (X) to the first filename entry in the sector.

Lines 1620-1660 examine the track number of the Track/Sector list for
the current filename entry. Should this number be 0 it indicates that
we are at the end of the directory, at which point we would terminate
the Catalog by exiting the File Manager routine by a jump to $B37F.

Fortunately, there was a JMP $B37F instruction within relative
branching distance of the Catalog Function Handler. We could
therefore dispense with the JMP to $B37F in the original code saving a
further 3 bytes by branching to FM.EXIT at $AD86 instead. This is an
address in the DELETE Function Handler ($AD2B-AD97) which precedes the
Catalog routine in RAM. There are three ways we can terminate the
Catalog, which all result in a branch to FM.EXIT: here at line 1600
when we find there are no more catalog sectors, at line 1650 when we
find there are no more catalog entries, and at line 2090 when the ESC-
key is typed during a screen-pause.

At line 1660 if the track number value is negative (bit 7 set) then we
have found a deleted file. Deleted files don't show up on the
Catalog, so we call on the subroutine at $B230 which sets the X-
Register to the value of the entry point offset for the next entry in
the sector, if any.

If on return from this subroutine the Carry flag bit is set (=1) then
we have reached the end of the current catalog sector and we branch
back to READ.SECTOR at line 1580 to read the next directory sector, if
any. (Each directory sector accommodates 7 entries.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1991 of 2550

Apple II Computer Info

At line 1680 we call the SKIP.LINE subroutine, which normally merely
prints a carriage return. This routine was called from five different
places in the original catalog code, so we have saved a dozen bytes by
only calling it from this one place. (Putting it in-line would save
four more!)

At line 1700 we call the new subroutine at the site of the DISK VOLUME
message space to check for locked files and print the space or
asterisk. This routine also leaves the file type code in the Y-
register. This code could be placed in-line, rather than making it a
subroutine, but then the final two lines could not be used as a short
PRINT.SPACE subroutine.

Lines 1710-1790 convert the file type code to a file type character.
The file type code is in bits 6-0, and is either zero (meaning type
T), or a single bit. The hex values 40, 20, 10, 08, 04, 02, and 01
stand for file types B, A, R, S, B, A, and I. A string at $B4C8 holds
"TIABSRAB", so we need to convert the bit position to an index value,
and pick up the character out of that string. The ASL at line 1740
elminates the "lock/unlock" bit. The loop in line 1750-1770 shifts
bits out until the value is zero, counting up in the Y-register. If
the value was already zero, we exit immediately with Y=0, and type is
"T". A type value of 1 gives an index of 1, up through $40 giving an
index of 7.

By the way, types 40 and 20 are not Binary and Applesoft. They are
hardly ever used, except in protection schemes. Types 04 and 02 are
Binary and Applesoft.

The original catalog code had a significantly longer loop for
converting the file type number to an index. You might want to
compare the two.

The number of sectors in the file is picked up and converted in lines
1800-1830 and the decimal value is printed, surrounded by spaces.
Lines 1840-1900 print out the file name.

Lines 1920-1950 advance to the next filename entry, and branch either
to process it or to read in another catalog sector.

Lines 1970-2130 usually print a carriage return. If you have changed
line 2010 to "LSR", to get double column catalogs, the least
significant bit of LINE.SKIP.FLAG will determine whether to print a
carriage return or not. When line 2010 is "SEC" we will always get a
carriage return. If a carriage return is printed, we also count the
line. When the line count is complete, we pause and wait for a
keystroke. If that key is an ESC-key, the catalog will terminate. If
not, the line count is re-initialized and we go back for more file
names.

Line 2150 simply reserves 17 bytes, shoving the PRINT.DECIMAL routine
down so that it still starts at $AE42 like it used to. These 17 bytes
could be used for other code or data, whatever you like.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1992 of 2550

Apple II Computer Info

Lines 2160-2230 store a value to be converted and printed, print a
blank, and then fall into the PRINT.DECIMAL subroutine.

The new corrected PRINT.DECIMAL subroutine is actually a little
shorter than th buggy original. It left room for a JMP PRINT.SPACE at
the end, which saved calling PRINT.SPACE from several other places.
It also left room for the LINE.SKIP.FLAG variable.

The PRINT.DECIMAL subroutine (lines 2240-2490) effectively divides the
number in $44,45 by subtracting in turn the values 100, 10 and 1 from
it - a 16-bit subtraction. The count of the number of subtractions
and the low order byte remainder are temporarily stored on the stack
to conserve memory usage. We start with 100 and keep subtracting it
and incrementing the subtraction-counter until we get borrow, at which
point we print the counter value.

Now $44,45 will contain the remainder and so we continue using 10 and
then 1 until three decimal digits are printed. This subroutine can
accurately convert numbers having values up to 999 decimal.

CHALLENGE. Even though we have already squeezed out 17 bytes, while
adding new features, we did lose the "DISK VOLUME " message. Can
someone out there squeeze enough more out, without losing any
features, to slip the message back in?

CAVEAT. If you decide to put this new CATALOG program on your disks,
please be careful. There are some programs which temporarily patch
the catalog routine themselves. In particular, ES-CAPE and other
commercial programs patch the SKIP.LINES subroutine so that the pause
is eliminated. Since SKIP.LINES has been moved and is different, no
telling what might happen.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1993 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:Probs32BitValue.txt
==

32-bit Values in Version 2.0 -- A Mixed Blessing......Bob S-C

In previous versions of the S-C assemblers, expressions were evaluated
in 16 bits, and symbol values were kept in the table in 16-bit form.
Version 2.0 works with 32-bit expressions and symbol values. We added
this feature for your benefit, but it may sometimes be a mixed
blessing.

For example, Bob Bernard had a problem with a program which assembled
perfectly under Version 1.0, but gave countless BAD ADDRESS errors in
version 2.0. We traced the problem to his origin statement, which was
".OR -31488". In older versions, -31488 is the same as $8500, but in
version 2.0 it is $FFFF8500. The following code will not assemble:

 .OR -31488
 SSS JMP SSS

Why? Because the value of SSS is also $FFFF8500, and it will not fit
in a JMP instruction. In 65816 mode, using a JML instruction, it
would be legal.

Two ways to fix come to mind. You normally work in hexadecimal when
you are in assembly language, rather than decimal. Therefore, change
the origin statement to ".OR $8500". Or, if you really want to use
decimal, write ".OR 65536-31488".

Another owner of version 2.0 had a problem with a program that used
many macros, and lots of private labels. Private labels are the ones
used inside macro definitions, which are written with a colon and a
one or two digit number. The private label table normally begins at
$FFF and grows downward toward $800. His program assembled with no
problems before, but under version 2.0 it got a MEM FULL error.
Reason, again, the 32-bit symbol values. Each entry in the private
label table now takes two more bytes, so he ran out of space sooner.
His solution was to move the beginning of the label table higher.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1994 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:ProDOS.Date.txt
==

DATE Command for ProDOS.............................Bill Morgan

One of the nice new features in ProDOS is the way the diskette catalog
shows the date of creation and last modification for each file, IF you
have a clock/calendar card installed in your Apple. Well I don't have
such a card in either of the Apples I use regularly, at work or at
home. And no //c has a clock! (Yet, at least. I'll bet someone will
come up with a way...)

Anyway, I got tired of always seeing <NO DATE> and started figuring
out how to set a date without a clock to do it for me. A look at
Beneath Apple ProDOS informed me that the current date is transformed
into the format YYYYYYYMMMMDDDDD and stored (in the usual 6502 low
byte/high byte sequence) at $BF90-BF91 in the ProDOS Global Pages (the
fixed locations of all of the accessible system variables). The first
thing I did was manually convert the current date into that format and
poke it in from the Monitor. That went like this:

 $BF90 $BF91
May = $5 = 0101 MMM DDDDD YYYYYYY M
 10 = $A = 01010 101 01010 1010101 0
'85 = $55 = 1010101 $AA $AA

So, the values to poke into $BF90-91 were $AA and $AA. What better
time than a four-A day to start such a project!

That experiment worked just fine: the next file I saved on the disk
showed creation and modification dates of 10-MAY-85, just as I had
hoped. With that success under my belt the next step had to be to
come up with a program to read and/or set those date bytes. And,
while I'm at it, why not take advantage of ProDOS' built-in hooks for
installing new commands and add a DATE command to the operating
system?

How do I go about adding a command? The ProDOS Technical Reference
Manual is pretty sketchy on the subject, but two other books, Beneath
Apple ProDOS and the new Apple ProDOS: Advanced Features for
Programmers, have good descriptions and examples of the procedure. If
you're going to do much assembly language programming under ProDOS you
should have one or both of those books.

When ProDOS fails to recognize a command it does a JSR EXTRNCMD
($BE06) to find out if an external command processor will claim this
one. What I have to do is install the address of DATE in $BE07-08,
after moving the address that was already there into a JMP
instruction. This way, if DATE doesn't recognize the command it can
pass it along to any other processor that might have been there
before.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1995 of 2550

Apple II Computer Info

Processing of an external command is normally divided into two phases,
a parser and a handler. The parser section will scan the command name
at the beginning of the line. If the command is not recognized, the
parser should set the carry bit and JMP on to the address found in
EXTRNCMD to see if another external processor will claim it.

If the command is recognized, the parser can set certain bits in PBITS
($BE54-55) to signify which parameters are permitted or required on
the command line, and store the address of the handler in EXTRNADDR
($BE50-51). After storing the command length minus one in XLEN
($BE52) and a zero in XCNUM ($BE53), to signify that an external
processor did claim the command, the parser then returns control to
ProDOS to scan the rest of the line. If the line was syntactically
correct, ProDOS will return the values of the parameters in a set of
standard locations ($BE58-6F) and pass control back to the handler
address specified.

Since DATE is a simple processor that uses a nonstandard parameter, I
just set PBITS to zero, to indicate no parsing necessary, and store
the address of an RTS instruction in EXTRNADDR. I then proceed to do
all my processing before returning to ProDOS.

There is one additional wrinkle to using an external command with
ProDOS: where do I put my code so ProDOS, Applesoft, and others don't
stomp all over it? In the interest of simplicity I have ignored that
problem here. The best procedure, as shown in the books mentioned
above, is to call ProDOS to assign me a buffer and then relocate my
code into that buffer. The examples in the books provide details of
this process.

Now, let's take a look at the code:

Lines 1310-1400 install DATE by moving the current External Command
address to my exit JMP instruction and storing DATE's address in the
vector.

Lines 1440-1540 check the input buffer to see if this is a DATE
command. If not we branch on down to that JMP instruction where we
earlier put the address found in the External Command vector. This
passes control either on to the next external command in the chain, or
back to ProDOS for a SYNTAX ERROR.

If the command matched we go on to lines 1560-1650 to do the necessary
housekeeping. This involves storing the command length-1 in the
Global Page, setting a couple of flags to tell ProDOS not to parse the
rest of the command line, and that an external command has taken over.
Then we supply a handler address for the second half of ProDOS'
processing, which in this case is just an RTS instruction. Finally we
reach lines 1670-1690, where we check to see if the character
following DATE is a Carriage Return. If so we branch forward to
RETURN.DATE to display the existing date.

If there is more than just DATE on the command line, we must want to
set a new date, so we fall into SET.DATE at line 1710. This routine

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1996 of 2550

Apple II Computer Info

makes heavy use of ACCUMULATE.DIGITS at line 2400, so we'll examine
that code first. The first step is to zero the byte where we'll be
accumulating the value typed in. Then we scan forward in the input
buffer, looking for a nonblank character. When we find one we first
check to see if it is a slash, which marks the end of a number, or a
Carriage Return, which marks the end of the line. If it was either of
those we exit, setting the Carry bit to indicate which one we found.

If the character found was not a delimiter we next check to see if it
is a number. If not, we have a SYNTAX ERROR. When we do get a
number, we strip off the high bits to convert the ASCII code to a
binary value, and save that value. We then multiply the previous
value in ACCUM by 10 and add in the new value. Then it's back to line
2440 to get another character. Lines 2710-2730 load the A-register
with the value found and branch to the error exit if that value was
zero.

Now, back to SET.DATE. That routine begins at line 1720 with a DEY to
get ready for the INY at the beginning of ACCUMULATE.DIGITS. We then
get the month, check for a legal value, and store it. Next we get the
day, save the status, and check and save that value. Then it's time
to check the status to see if the day was followed by a slash, or by a
Carriage Return. If it was a slash then a year was specified, so we
go get that value. If it was a Return no year was present, so we use
1985. (I guess that means we'll have to reassemble or patch this
program every year. I think I can handle that.)

The last step in SET.DATE is to fold the year, month, and day together
as described above and store the results in the Global Page. The
comments in the listing illustrate how the bits are shuffled around to
the correct format. After setting the date we fall into RETURN.DATE
to display the result.

RETURN.DATE, at lines 2080-2290, is quite straightforward. It just
gets the bytes from the Global Page, unfolds them, and calls DEC.OUT
to translate them to decimal numbers and display those numbers.
Again, the comments illustrate the bit manipulations involved in the
unfolding process.

The final section of code is DEC.OUT, at lines 2750-2910. In lines
2760-2810 we use the Y-register to count how many times we can
subtract 10 from the number passed in the A-register. Then lines
2830-2910 restore and save the A-register, make sure the tens count is
non-zero, convert it to a character and print it. We then recover the
units value and print that out.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1997 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:Articles:Windows80Column.txt
==

80-Column Window Utility for //e and //c............Bill Reed
 New Orleans, LA

I throughly enjoyed "Fast Text Windows" by Michael Ching. However, I
prefer not to use the area at $800-BFF as a text buffer; I much prefer
to use the first bank of the language card, which is not normally used
by Applesoft programs running under DOS 3.3.

I modified Mike's program by changing the immediate values in lines
1560 and 1580 from #$0C to #$D4 and adding lines 1644, 1646 and 1905.
The first two lines enable the bank of RAM to be read or written to.
The last re-enables the Applesoft ROMS.

 1644 LDA $C08B
 1646 LDA $C08B
 1905 LDA $C082

I further modified the program to function in 80 columns on a //e or
//c. The big problem was to mimic the text card, which uses bank
switching to store adjacent characters in the same address, but
different locations (main RAM and aux RAM). This was solved by using
one buffer for the "even" characters and another for the "odd".

Additional code was required to determine the even/odd condition, so I
(being lazy) removed the border portion of the program to conserve
room. The border routines could certainly be retained if part of the
program was also moved to bank one of the language card area. (Be
careful if you try this, because you must avoid calling the monitor or
Applesoft ROMs when the ROMs are switched off. You can possibly get
away with calling the monitor with the ROMs switched off, but only if
you first make a copy of the monitor in the F800-FFFF area of RAM.)

I moved the data storage to the zero page, mostly because it was
available and slightly faster.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1998 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:DOS3.3:S.AUTO.MAN.txt
==

 1000 *SAVE S.AUTO/MAN
 1010 *--------------------------------
 1020 .OR $300
 1030 * .TF AUTO/MAN TOGGLE
 1040 *--------------------------------
 1050 INCREMENT .EQ $5A,5B
 1060 SYM.VALUE .EQ $B8,B9
 1070 AUTO.FLAG .EQ $E3
 1080
 1090 WARM.START .EQ $D028
 1100 GET.VALUE .EQ $D198
 1110 AUTO.CMD .EQ $D40B
 1120 INSTALL.CHAR .EQ $DB9A
 1130 *--------------------------------
 1140 AUTO.MAN.CODE
 1150 TXA check cursor posn.
 1160 BEQ .1 OK to output cmd.
 1170 CPX #7 line start?
 1180 BGE .2 ignore ESC-U.
 1190 LSR AUTO.FLAG cancel auto-mode.
 1200 JMP WARM.START
 1210
 1220 .1 LDA AUTO.CMD,X output cmd. name
 1230 JSR INSTALL.CHAR put in buffer+scrn.
 1240 CPX #4 4 chars. output?
 1250 BNE .1 no.
 1260 .2 RTS exit ESC-U routine
 1270 *-----------------------------
 1280 * Point start of AUTO cmd. handler
 1290 * to here for extended function.
 1300 *--------------------------------
 1310 NEW.AUTO.EXT
 1320 JSR GET.VALUE get linenum if any.
 1330 JSR GET.VALUE get inc. if any.
 1340 CPX #3 increment?
 1350 BLT .1 no
 1360 DEX adjust for inc.
 1370 DEX do.
 1380 LDA SYM.VALUE set inc. low byte
 1390 STA INCREMENT
 1400 * (following 2 lines only needed
 1410 * if you use increments of 255+!)
 1420 * LDA SYM.VALUE+1 set inc. high byte
 1430 * STA INCREMENT+1
 1440 .1 RTS finish AUTO cmd.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1999 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:DOS3.3:S.DATE.txt
==

 1000 *SAVE S.DATE
 1010 *--------------------------------
 1020 *
 1030 * Program to read or set the
 1040 * date bytes in the Global Page
 1050 *
 1060 * by Bill Morgan
 1070 *
 1080 *--------------------------------
 1090 POINTER .EQ $40,41
 1100 ACCUM .EQ $42
 1110 MONTH .EQ $43
 1120 DAY .EQ $44
 1130 TEMP .EQ $45
 1140
 1150 WBUF .EQ $200
 1160
 1170 EXTRNCMD .EQ $BE07
 1180 EXTRNADDR .EQ $BE50,51
 1190 XLEN .EQ $BE52
 1200 XCNUM .EQ $BE53
 1210 PBITS .EQ $BE54
 1220 GP.DATE .EQ $BF90
 1230
 1240 PRAX .EQ $F941
 1250 CROUT .EQ $FD8E
 1260 COUT .EQ $FDED
 1270 *--------------------------------
 1280 .OR $803
 1290 * .TF B.DATE
 1300 *--------------------------------
 1310 INSTALL
 1320 LDA EXTRNCMD+1 exit to old
 1330 STA EXIT+2 user command
 1340 LDA EXTRNCMD
 1350 STA EXIT+1
 1360 LDA /DATE become new
 1370 STA EXTRNCMD+1 user command
 1380 LDA #DATE
 1390 STA EXTRNCMD
 1400 RTS
 1410 *--------------------------------
 1420 COMMAND .AS /DATE/
 1430 *--------------------------------
 1440 DATE LDY #0
 1450 STY POINTER point to input buffer
 1460 LDA /WBUF
 1470 STA POINTER+1
 1480 .1 LDA (POINTER),Y scan command

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2000 of 2550

Apple II Computer Info

 1490 AND #%01111111
 1500 CMP COMMAND,Y
 1510 BNE ERR.BRIDGE not mine
 1520 INY
 1530 CPY #4
 1540 BCC .1
 1550 *--- ProDOS bookkeeping ---------
 1560 DEY
 1570 STY XLEN command length - 1
 1580 INY
 1590 LDA #0
 1600 STA PBITS don't parse parms
 1610 STA XCNUM external command
 1620 LDA #RTS1
 1630 STA EXTRNADDR no execution after
 1640 LDA /RTS1 command parsing
 1650 STA EXTRNADDR+1
 1660 *--- set or display date? -------
 1670 LDA (POINTER),Y
 1680 CMP #$8D DATE only?
 1690 BEQ RETURN.DATE yes, return old date
 1700 *--------------------------------
 1710 SET.DATE
 1720 DEY
 1730 JSR ACCUMULATE.DIGITS get month
 1740 CMP #13
 1750 BCS ERROR >12 no good
 1760 STA MONTH
 1770 JSR ACCUMULATE.DIGITS get day
 1780 PHP save status
 1790 CMP #32
 1800 BCC GO.ON <=31 ok
 1810
 1820 PLP
 1830 ERR.BRIDGE
 1840 BNE ERROR ...always
 1850
 1860 GO.ON STA DAY
 1870 PLP recover status
 1880 BCC .1 .CC. if "/"
 1890 LDA #85 year defaults to '85
 1900 BNE .2 ...always
 1910 .1 JSR ACCUMULATE.DIGITS get year
 1920 CMP #100
 1930 BCS ERROR >99 no good
 1940 .2 PHA save year
 1950 LDA MONTH X 0000MMMM
 1960 LSR M 00000MMM
 1970 ROR M M00000MM
 1980 ROR M MM00000M
 1990 ROR M MMM00000
 2000 STA MONTH
 2010 PLA M 0YYYYYYY
 2020 ROL 0 YYYYYYYM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2001 of 2550

Apple II Computer Info

 2030 STA GP.DATE+1
 2040 LDA MONTH MMM00000
 2050 ORA DAY MMMDDDDD
 2060 STA GP.DATE
 2070 *--------------------------------
 2080 RETURN.DATE
 2090 JSR CROUT
 2100 LDA GP.DATE+1 X YYYYYYYM
 2110 LSR M 0YYYYYYY
 2120 PHA
 2130 LDA GP.DATE M MMMDDDDD
 2140 PHA
 2150 ROR X MMMMDDDD
 2160 LSR X 0MMMMDDD
 2170 LSR X 00MMMMDD
 2180 LSR X 000MMMMD
 2190 LSR X 0000MMMM
 2200 JSR DEC.OUT display month
 2210 LDA #"/" /
 2220 JSR COUT
 2230 PLA X MMMDDDDD
 2240 AND #%00011111 X 000DDDDD
 2250 JSR DEC.OUT display day
 2260 LDA #"/" /
 2270 JSR COUT
 2280 PLA X 0YYYYYYY
 2290 JSR DEC.OUT display year
 2300 *--------------------------------
 2310 GOOD.EXIT
 2320 CLC signal no error
 2330 RTS1 RTS
 2340 *--------------------------------
 2350 ERROR1 PLA clean up
 2360 PLA return addresses
 2370 ERROR SEC signal error
 2380 EXIT JMP RTS1 INSTALL makes address
 2390 *--------------------------------
 2400 ACCUMULATE.DIGITS
 2410 LDA #0
 2420 STA ACCUM zero accumulator
 2430
 2440 .1 INY next character
 2450 LDA (POINTER),Y
 2460 AND #%01111111 hi-bit off
 2470 CMP #' ' space?
 2480 BEQ .1 back for another
 2490 CMP #'/' slash?
 2500 BEQ .2 yes, exit .CC.
 2510 CMP #$0D <CR>?
 2520 BEQ .3 yes, exit .CS.
 2530 CMP #'0' too small?
 2540 BCC ERROR1 not digit
 2550 CMP #'9'+1 too big?
 2560 BCS ERROR1 not digit

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2002 of 2550

Apple II Computer Info

 2570
 2580 AND #%00001111 isolate value
 2590 STA TEMP stash it
 2600 LDA ACCUM
 2610 ASL X 2
 2620 ASL X 4
 2630 ADC ACCUM X 5
 2640 ASL X 10
 2650 ADC TEMP add new digit
 2660 BCS ERROR1 too big
 2670 STA ACCUM
 2680 BCC .1 ...always
 2690
 2700 .2 CLC .CC. if /
 2710 .3 LDA ACCUM return value
 2720 BEQ ERROR1 0 no good
 2730 RTS
 2740 *--------------------------------
 2750 DEC.OUT
 2760 LDY #0 zero counter
 2770 SEC get ready
 2780 .1 SBC #10 subtract 10
 2790 BCC .2 borrow?
 2800 INY count a 10
 2810 BPL .1 ...always
 2820
 2830 .2 ADC #10 restore borrow
 2840 PHA save units
 2850 TYA print 10's count
 2860 BEQ .3 no leading zero
 2870 ORA #$B0 make character
 2880 JSR COUT print it
 2890 .3 PLA recover units
 2900 ORA #$B0 make character
 2910 JMP COUT return through COUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2003 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:DOS3.3:S.NEW.CATALOG.txt
==

 1000 *SAVE S.NEW CATALOG
 1010 *--------------------------------
 1020 DOS.ARITH.REG .EQ $44,45
 1030 *--------------------------------
 1040 ADV.NEXT.DIR.ENTRY .EQ $B230
 1050 DOS.INIT.FM .EQ $ABDC
 1060 EXIT.FM .EQ $AD86
 1070 MON.COUT .EQ $FDED
 1080 MON.CROUT .EQ $FD8E
 1090 MON.RDKEY .EQ $FD0C
 1100 READ.DIRECTORY.SECTOR .EQ $B011
 1110 READ.VTOC .EQ $AFF7
 1120 *--------------------------------
 1130 DEC.CONVERSION.TABLE .EQ $B3A4
 1140 FILE.TYPE.NAME.TABLE .EQ $B3A7
 1150 *--------------------------------
 1160 CATALOG.LINE.COUNT .EQ $B39D
 1170 DIRECTORY.ENTRY .EQ $B4C6
 1180 DIRECTORY.INDEX .EQ $B39C
 1190 DISK.VOL.NUMBER .EQ $B7F6
 1200 FILE.NAME .EQ $B4C9
 1210 FILE.SIZE .EQ $B4E7
 1220 FILE.TYPE .EQ $B4C8
 1230 FM.VOL.NUMBER .EQ $B5F9
 1240 VTOC.BUFFER .EQ $B3BB
 1250 *--------------------------------
 1260 * New Catalog for DOS 3.3
 1270 * by Robert F.O'Brien
 1280 *--------------------------------
 1290 .OR $AD98
 1300 .TF NEW CATALOG PART 1
 1310 *--------------------------------
 1320 CATALOG
 1330 JSR DOS.INIT.FM Init file manager.
 1340 LDA #$FF Set Volume = 0
 1350 STA FM.VOL.NUMBER (matches any volume)
 1360 JSR READ.VTOC Load in VTOC into buffer.
 1370 *---Print Volume Number----------
 1380 LDY #0 High byte = 0
 1390 STY LINE.SKIP.FLAG (signal to skip)
 1400 LDA DISK.VOL.NUMBER low byte
 1410 JSR PRINT.DECIMAL.YA
 1420 *---Calculate Free Space---------
 1430 LDX #$74 Trk 0 VTOC offset
 1440 .1 LDA VTOC.BUFFER+$38-$74,X Bit Map Byte
 1450 .2 BPL .3 This sector in use
 1460 INC DOS.ARITH.REG Count a free sector.
 1470 BNE .3
 1480 INC DOS.ARITH.REG+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2004 of 2550

Apple II Computer Info

 1490 .3 ASL Check next bit
 1500 BNE .2 Still more in this byte
 1510 .4 INX Next byte of bit map
 1520 BNE .1 ...still more
 1530 JSR PRINT.DECIMAL print number free
 1540 *---Start Line count-------------
 1550 JSR SET.LINE.COUNT lines to print.
 1560 *---Start reading directory------
 1570 CLC Get first sector.
 1580 READ.SECTOR
 1590 JSR READ.DIRECTORY.SECTOR
 1600 BCS EXIT.FM No more sectors
 1610 LDX #0 Index to 1st file in sector
 1620 SET.ENTRY.INDEX
 1630 STX DIRECTORY.INDEX Set entry offset
 1640 LDA DIRECTORY.ENTRY,X See if valid filename
 1650 EXIT BEQ EXIT.FM ...end of directory
 1660 BMI NEXT.ENTRY ...ignore deleted file.
 1670 *---Start next file display------
 1680 JSR SKIP.LINE Next line or Tab
 1690 *---Locked or Unlocked-----------
 1700 JSR LOCKED.FILE.CHECK "*" if locked file.
 1710 *---File Type--------------------
 1720 TYA Get file type byte
 1730 LDY #-1 Index to type table
 1740 ASL Ignore Bit 7
 1750 .1 INY Next file type code
 1760 LSR Check bit of type byte
 1770 BNE .1 ...not yet
 1780 .2 LDA FILE.TYPE.NAME.TABLE,Y Get file type
 1790 JSR MON.COUT ...and print it
 1800 *---File Size--------------------
 1810 LDY FILE.SIZE+1,X high order byte
 1820 LDA FILE.SIZE,X low order byte
 1830 JSR PRINT.DECIMAL.YA print total sect.
 1840 *---File Name--------------------
 1850 LDY #30
 1860 .3 LDA FILE.NAME,X char. no. in Y.
 1870 JSR MON.COUT print file name.
 1880 INX next char.
 1890 DEY
 1900 BNE .3 not done yet!
 1910 *---Next File in Directory-------
 1920 NEXT.ENTRY
 1930 JSR ADV.NEXT.DIR.ENTRY Set X-Reg for next file
 1940 BCC SET.ENTRY.INDEX more in sector
 1950 BCS READ.SECTOR get next sector
 1960 *--------------------------------
 1970 SKIP.LINE
 1980 JSR PRINT.SPACE Separate 2nd line entry
 1990 INC LINE.SKIP.FLAG Toggle lsbit
 2000 LDA LINE.SKIP.FLAG Check Odd or Even
 2010 SEC <<<Change to "LSR" for double
 2020 * column CATALOG >>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2005 of 2550

Apple II Computer Info

 2030 BCC RETURN
 2040 JSR MON.CROUT Start a new line
 2050 DEC CATALOG.LINE.COUNT continue countdown
 2060 BNE RETURN not full screen yet
 2070 JSR MON.RDKEY Pause for keypress!
 2080 CMP #$9B Is it ESC-key?
 2090 BEQ EXIT ...yes, exit file manager
 2100 SET.LINE.COUNT
 2110 LDA #21 lines per screenful
 2120 STA CATALOG.LINE.COUNT
 2130 RETURN RTS Continue catalog
 2140 *--------------------------------
 2150 .BS 17 17 FREE BYTES!
 2160 *--------------------------------
 2170 * Print (YA) with leading and
 2180 * trailing blanks.
 2190 *--------------------------------
 2200 PRINT.DECIMAL.YA
 2210 STY DOS.ARITH.REG+1
 2220 STA DOS.ARITH.REG
 2230 JSR PRINT.SPACE
 2240 *--------------------------------
 2250 * Print ($44,45) with trailing blank
 2260 *--------------------------------
 2270 PRINT.DECIMAL
 2280 LDY #2 Set for 3 divisors
 2290 .1 LDA #$B0 ASCII zero
 2300 .2 PHA save digit on stack
 2310 SEC Subtract 100, 10, or 1
 2320 LDA DOS.ARITH.REG from remainder
 2330 SBC DEC.CONVERSION.TABLE,Y
 2340 PHA save remainder on stack
 2350 LDA DOS.ARITH.REG+1
 2360 SBC #0 (divisor high byte = 0)
 2370 BCC .3 ...far enough
 2380 STA DOS.ARITH.REG+1 Update remainder
 2390 PLA
 2400 STA DOS.ARITH.REG
 2410 PLA get current digit
 2420 ADC #0 and count the subtraction
 2430 BNE .2 ...continue subtracting
 2440 .3 PLA Discard stacked remainder byte
 2450 PLA Get quotient digit
 2460 JSR MON.COUT and print it!
 2470 DEY Next divisor
 2480 BPL .1 ...not finished yet
 2490 JMP PRINT.SPACE Trailing space
 2500 *--------------------------------
 2510 LINE.SKIP.FLAG .DA #0 LEAST SIGNIFICANT BIT IS FLAG
 2520 *--------------------------------
 2530 .OR $B3AF
 2540 .TF NEW CATALOG PART 2
 2550 *--------------------------------
 2560 * OVERLAYS "DISK VOLUME " MESSAGE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2006 of 2550

Apple II Computer Info

 2570 *--------------------------------
 2580 LOCKED.FILE.CHECK
 2590 LDA #"*"
 2600 LDY FILE.TYPE,X file type code.
 2610 BMI CAT.COUT ...the file is locked
 2620 PRINT.SPACE
 2630 LDA #" "
 2640 CAT.COUT
 2650 JMP MON.COUT
 2660 *--------------------------------
 2670 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2007 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8505:DOS3.3:S.WINDOWS.80.txt
==

 1000 ; SAVES.WINDOWS.80
 1010 *-AAL APRIL 85 P 16-------------
 1020 .OR $2F5
 1030 .TF B.WINDOWS.80
 1040 *-------------------------------
 1050 TOP .EQ $00 $0-$6 DATA
 1060 BOTTOM .EQ $01
 1070 LEFT .EQ $02
 1080 RIGHT .EQ $03
 1090 WIDTH .EQ $04
 1100 LINE .EQ $05
 1110 DIREC .EQ $06
 1120 *
 1130 B1 .EQ $18,19 TEXT PNTR
 1140 B2 .EQ $1A,1B BUFR PNTR
 1150 B3 .EQ $1C,1D BUFR PNTR
 1160 WNDLFT .EQ $20
 1170 WNDWDTH .EQ $21
 1180 WNDTOP .EQ $22
 1190 WNDBTM .EQ $23
 1200 BASL .EQ $28
 1210 BASH .EQ $29
 1220 *-------------------------------
 1230 AMPERV .EQ $3F5
 1240 PAG2OFF .EQ $C054 READ MRBRD
 1250 PAG2ONN .EQ $C055 READ AUXBRD
 1260 LCROM .EQ $C082
 1270 LCRAM1 .EQ $C08B
 1280 GETBYTE .EQ $E6F8
 1290 COMBYTE .EQ $E74C
 1300 BASCALC .EQ $FBC1
 1310 HOME .EQ $FC58
 1320 *-------------------------------
 1330 SETUP
 1340 LDA #MOVE.WINDOW
 1350 STA AMPERV+1
 1360 LDA /MOVE.WINDOW
 1370 STA AMPERV+2
 1380 RTS
 1390 *-------------------------------
 1400 MOVE.WINDOW
 1410 JSR GETBYTE
 1420 STX TOP
 1430 STX LINE
 1440 JSR COMBYTE
 1450 STX BOTTOM
 1460 JSR COMBYTE
 1470 STX LEFT
 1480 JSR COMBYTE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2008 of 2550

Apple II Computer Info

 1490 STX RIGHT
 1500 INX
 1510 SEC
 1520 TXA
 1530 SBC LEFT
 1540 STA WIDTH
 1550 JSR COMBYTE
 1560 DEX
 1570 STX DIREC
 1580 *-------------------------------
 1590 *-------------------------------
 1600 MOVE.LINE
 1610 LDA LINE
 1620 JSR BASCALC
 1630 LDA BASH
 1640 STA B1+1
 1650 EOR #$D4
 1660 STA B2+1
 1670 CLC
 1680 ADC #$04 2ND BUFR
 1690 STA B3+1
 1700 LDA BASL
 1710 STA B1
 1720 STA B2
 1730 STA B3
 1740 LDA LCRAM1 ENABLE LANG
 1750 LDA LCRAM1 CARD R/W
 1760 *--MOVE THE LINE SEGMENT--------
 1770 LDA RIGHT
 1780 LSR A/2 + EVN/ODD
 1790 TAY TXT SCRN PNTR
 1800 LDX DIREC
 1810 BNE .3
 1820 *--MOVE IT UP-------------------
 1830 LDX WIDTH DOWN COUNTER
 1840 BCC .2
 1850 .1 LDA (B1),Y DO ODD COLS
 1860 STA (B2),Y
 1870 DEX
 1880 BMI .6
 1890 .2 LDA PAG2ONN DO EVN COLS
 1900 LDA (B1),Y
 1910 STA (B3),Y
 1920 LDA PAG2OFF
 1930 DEY
 1940 DEX
 1950 BPL .1
 1960 BMI .6
 1970 *--MOVE IT DOWN-----------------
 1980 .3 LDX WIDTH
 1990 BCC .5
 2000 .4 LDA (B2),Y DO ODD COLS
 2010 STA (B1),Y
 2020 DEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2009 of 2550

Apple II Computer Info

 2030 BMI .6
 2040 .5 LDA PAG2ONN DO EVN COLS
 2050 LDA (B3),Y
 2060 STA (B1),Y
 2070 LDA PAG2OFF
 2080 DEY
 2090 DEX
 2100 BPL .4
 2110 *--NEXT LINE--------------------
 2120 .6 INC LINE
 2130 LDA LCROM RESTORE ROM
 2140 LDA BOTTOM
 2150 CMP LINE
 2160 BCS MOVE.LINE
 2170 *--IF CLEARING, SET WINDOW------
 2180 LDA DIREC
 2190 BNE .7
 2200 LDX LEFT
 2210 STX WNDLFT
 2220 LDX WIDTH
 2230 DEX
 2240 STX WNDWDTH
 2250 LDX TOP
 2260 INX
 2270 STX WNDTOP
 2280 LDX BOTTOM
 2290 STX WNDBTM
 2300 JSR HOME
 2310 .7 RTS
 2320 *-------------------------------
 2330 ZZEND .EQ *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2010 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:Ads.txt
==

8086/8088 Cross Assembler
Use your Apple to learn 8086 programming! You can program for the IBM
PC, the clones, and ALF's co-processor board without ever leaving the
friendly environment of Apple DOS 3.3.

This easy-to-use cross assembler, based on the S-C Assembler II
(Version 4.0), covers all the 8086 and 8088 instructions and all the
addressing modes. Instruction mnemonics are based on the Microsoft
8086 assembler. Does not include newer S-C Assembler features like
macros or the EDIT command.

Documentation covers the differences from standard S-C Assembler
operation and syntax. Sample source programs help you become familiar
with the assembler syntax.

With permission from S-C Software, XSM 8086/8088 is available to
owners of any S-C Assembler for $80.00 post-paid. (No credit cards or
purchase orders.)

Don Rindsberg
The Bit Stop
5958 S. Shenandoah Rd.
Mobile, AL 36608

(205) 342-1653

WORDPAK - The Wordprocessor Plus

 1. Switch freely between 40-col and 80-col screen
 2. Write formletters, even personalized formletters
 3. Chain files and create extra large documents
 4. Create, maintain, and access your own data base
 5. Insert printer or typesetting codes into text
 6. Formfill mode allows filling fields in forms
 7. Print address blocks on letters and envelopes
 8. Mailing labels: sorted, also printed selectively
 9. Data base allows up to 1,118 addresses per disk
10. Footnotes at bottom of pages or at end of text
11. Large textbuffer holds over 31,000 characters
12. Fast? - Whoa! - Loads itself in just 4 seconds
13. For Apple //e, //c, or Apple][+ w/Language Card

- And much more. See your dealer, or order direct.
$199.95 + $1.50 shipping/handling charge via UPS (US)
Mid-West Marketing, 1492 Ammons, Denver, CO. 80215

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2011 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:Alliance.Note.txt
==

Note About Alliance Computers

Back in January Alliance Computers advertised 65802's for $50.00, but
couldn't fill the orders because the chips didn't exist yet. Some of
their formerly unhappy customers tell me that their orders have now
arrived, so Alliance is taking care of their customers. You can reach
Alliance Computers at P.O. Box 408, Corona, NY 11368.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2012 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:AppleVisions.txt
==

AppleVisions, a Glimpse

Here is a very elementary introduction to Apple Assembly Language
programming by that old master Bob Bishop, along with Linda Gross-
berger and Harry Vertelney. This 150+ page book and its companion
diskette gently and humorously guide the beginning programmer into the
realm of machine code. A "Cardboard Computer" introduces the concepts
of registers, machine instructions, addressing, and branching. This
background is then applied to the Apple's 6502 and the surrounding
computer. AppleVisions is a nice place for the absolute beginner to
start, especially the younger programmers interested in finding out
what assembly language is.

AppleVisions. Addison-Wesley, 1985. $39.95 including diskette.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2013 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:BernardsHexSrch.txt
==

The Boyer-Morris String Search Algorithm..........Bob Bernard
 Westport, CT

For years now, I have been working on a debugger for the Apple.
Lately I have been adding a hex string search capability to it.

I needed one so I could look through the Apple IIc (ProDOS) utilites
to see how it squirrels away in the alternate page screen holes user
specified default settings for the serial ports. These are used at
PR#1 or 2 time to simulate the dip switches on the Super Serial Card
in a IIe. Without setting them you always get 9600 bps, etc.
(Imagewriter settings, that is). I (and I assume other AAL readers)
want a little routine for DOS 3.3 hello that will allow the user's
defaults to be put away the same as the IIc utility does.

Well, that routine is not ready yet. However, the search utility is
rather interesting in its own right.

I was just going to code up a straight hex search, but then I
mentioned it to my computer science graduate son, David. He was
horrified that I would waste my time on anything so crude. That's
what I get for bringing up a programmer! David insisted that I should
instead code an implementation of Boyer and Moore's algorithm, which
appeared in the October 1977 issue of the Communications of the ACM.
[A more recent reference is in the book "Algorithms", by Robert
Sedgewick, (Addison-Wesley Publishing Co., 1983, 551 pages) on pages
249-252.]

Well, I read the article and it seemed like a challenge. Besides it
looked like a real time saver, and could also be used for character
string searches. The code here has been excerpted from my debugger,
and then worked over by Bob S-C.

The "conventional" or "brute-force" search technique aligns the search
pattern with the left end of the string to be searched through and
compares one byte at a time, from left to right, until either the
entire pattern is compared successfully or a mismatch occurs. In the
latter case the search window is moved one byte to the right, and the
comparing process is repeated.

Without any knowledge about the contents of the search pattern, the
most the window can be moved is one place to the right. Boyer-Moore
owes its speed advantage to the fact that it uses context (i.e.
knowledge about the contents of the pattern to be searched for) to
increase the distance that the search window can be advanced when a
mismatch occurs. Thus efficiency increases as the length of the
pattern increases, which does not happen in a conventional search.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2014 of 2550

Apple II Computer Info

The cost of this benefit (there always is a cost) is that a table
(called DELTA1 in the CACM article and DELTA.TABLE in my program) is
required to store this context information, 256 bytes in this
implementation. One byte is needed in the table for every possible
value of the characters in the string to be searched.

If a particular byte appears in the search pattern, then the
corresponding DELTA table entry contains the distance that the
rightmost occurrence of that byte is from the left end of the pattern.
All other entries contain the value -1. When a mismatch occurs, the
DELTA table entry corresponding to that byte from the text being
searched is used to compute how far to advance the search window. If
that byte does not appear anywhere in the pattern, then the search
window can be advanced by the full length of the pattern.

Since moving the search window, and the associated testing for
finished, take most of the time in any searching technique, saving
time here can be extremely beneficial, and explains why Boyer and
Moore should be complimented.

My program uses the control-Y monitor command, in the form

 adr1.adr2^Y <hexstring>

The two addresses specify the start and end of the area to be
searched. "^Y" stands for "control-Y". The hex string may be
separated from the control-Y by one or more spaces, if you desire.
Since the control-Y doesn't show up on the screen, I usually type at
least one space before the hex string. The hex string itself is a
continuous string of hex digits, with no imbedded spaces. Here is an
example that will search from $800 to $BFFF for "BERNARD":

 800.BFFF^Y 4245524E415244

The program will list the starting addresses of any and all complete
matches that are found.

The maximum length of the hex string is limited by the monitor input
buffer. Since the longest command you can type is less than 256, and
you have to use around ten characters for the addresses and control-Y,
that puts an upper limit of less than 246 hex digits in your command.
Each byte of the search pattern (or "key") is made up of two hex
digits, so the maximum hex string will be less than 123 bytes long.

I assigned DELTA.TABLE to the area $02D0.03CF. Since I scan and
collect the search pattern right in the monitor keyboard buffer at
$0200, after converting to hex bytes it will run no higher than $027F.

Actually, I only implemented a simplified version of Boyer and Moore's
procedure. The CACM article also discusses a second table, DELTA2,
which is filled with additional context information regarding
"terminating substrings" of the search pattern. In cases where a
partial mismatch occurs, it may be possible to advance the search
window farther than the DELTA1 table would indicate. However, since

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2015 of 2550

Apple II Computer Info

such situations occur in less than 20% of the cases, David allowed
that the potential additional speed did not justify the time and
effort and the additional table and code space that would have been
required, and he gave me a passing grade on my effort without it. The
incorporation of this additional capability, and changes to make the
program an ASCII search, are left "as a exercise for the reader."

My program must go through several steps. First it has to find and
pack up the search key. Next it must build the DELTA table. And
finally the search can be performed.

Lines 1290-1360 will be executed when you BRUN the program. They
install the control-Y vector and jump into the monitor, just as though
you entered with CALL-151.

When you enter the search command, the Apple monitor parses the
command line up to and including the control-Y, and then branches to
my code at line 1380. The two addresses will have been converted and
stuffed into A1 ($3C,3D) and A2 ($3E,3F). A variable named YSAV (at
$34) contains the index to the next character following the control-Y.

Lines 1400-1440 skip over any blanks you may have typed between the
control-Y and the first hex digit. Actually, the Y-register gets
incremented once too often, so lines 1460-1470 decrement Y and save
it; now YSAV points to the first hex digit in the search key.

The next problem I had to solve was to differentiate odd from even
length strings and arrange them properly, adding a leading zero when
an odd number of hex digits is input. Lines 1490-1530 search for the
end of the hex string; if there are no digits at all, we are finished
and line 1530 returns for the next monitor command.

This is a nice place to insert a brief description of the NXTCHAR
subroutine, found in lines 2460-2590. NXTCHAR picks up the next
character from the input buffer, and tests to see if it is a hex
digit. If so, it returns either $00-09 or $FA-FF in the A-register,
and carry will be clear. If not a hex digit, it returns with carry
set. If we got a digit, the Y-register indexing the input buffer will
have been advanced.

Lines 1550-1590 compute the key length. Since two digits make a byte,
the number of digits in the hex string divided by two gives the number
of bytes. But I actually want to use the byte-count-minus-one. Also
I need to adjust for odd or even length strings. Lines 1600-1650 take
care of these details. If the count was odd, I jump into the middle
of the packing loop so that a leading zero gets inserted.

Lines 1670-1800 comprise the packing loop. NXTCHAR will return with
carry set when we try to get a digit beyond the end of the key, so
line 1680 is the only test in the loop. Lines 1670-1730 retrieve a
left-hand digit and store it in the buffer. Lines 1740-1800 do the
same for right-hand digits. Key bytes are stored starting at $0200,
so they never catch up to the advancing retrieval of digits.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2016 of 2550

Apple II Computer Info

Line 1810 sets YSAV to point to the first character past the end of
the hex string. This will usually be a carriage return, or another
monitor command. Unless it is beyond $2CF, the monitor will correctly
continue parsing whatever is in the buffer when we are through
searching. At $2D0 and beyond, the DELTA table will clobber any
further characters.

Now we come to the Boyer-Moore part. Lines 1820-1870 initialize the
DELTA table to all -1 values, which is what we want for any bytes not
present in the key. When the loop finishes, X=0 again.

Lines 1880-1970 scan through the search key from left to right, and
store into DELTA the index of the rightmost occurrence of each value
in the key. For example, if the key is "4245524E415244" ("BERNARD"
again), the DELTA values will be:

 DELTA+$41: 4
 DELTA+$42: 0
 DELTA+$44: 6
 DELTA+$45: 1
 DELTA+$4E: 3
 DELTA+$52: 5 (also at 2, but 5 is rightmost)
 all others: -1

We'll continue with this example after a brief look at the rest of the
code.

Lines 1980-2040 back up the end pointer, which has been patiently
waiting all this time in A2L and A2H. We subtract the key length (in
bytes, not digits) from the end pointer, so that we will not try to
match the key any further than necessary. We could do this inside the
search loop, but it will run faster if we do it once before the loop.

Lines 2050-2440 perform the search. I inserted lines 2070-2110 inside
the loop to printout the search window start address each time through
the loop. This helps me to make sure it is working, and to explain
how. Of course you should remove these five lines before using the
routine for real problems. Notice they are all marked "<<<DEBUG>>>".

Lines 2120-2170 check whether the beginning of the search window has
moved past the end of the area to be searched. If so, we are
finished.

Lines 2180-2240 compare bytes from the key and the search window. If
the entire key matches, we fall out of the loop into lines 2250-2300,
where the address of the match will be printed. After a successful
match the search window will be moved one byte to the right by lines
2370-2430, and we will begin the SEARCH.LOOP again.

Notice that the key is compared from right-to-left, not left- to-
right. This is a critical part of the Boyer-Moore method. If a key
byte does not match a search-window byte, we branch to line 2320. The
byte from the search window is in the A-register. Lines 2320-2370
compute how far we can advance the search window, based on just what

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2017 of 2550

Apple II Computer Info

character we DID find in the search window, and how far into the key
we had already matched.

To see how this works, let's continue the "BERNARD" example. Suppose
the text we are searching is "THERE ARE FEW ST. BERNARDS IN SAN
BERNARDINO." The key will be BERNARD, entered in hex as shown above.
We first try to match BERNARD at the beginning of the text. We start
at the right end, matching the "D" of the key with "A" of the text.
The match fails, so we look up the "A" value in the DELTA table, which
is 4. We subtract the delta value (4) from the current key index (6)
and add the result (6-4=2) to the search window address. Note that
this has the result of aligning the "A" of BERNARD with the "A" in the
text.

Back to the top, and we now try to match the "D" of BERNARD to the "E"
at the end of "ARE". Failure again! This time the DELTA value is 1,
and we are still at position 6 in the key: index-delta is 5, so we
advance the window by 5. This lines up the "E" of BERNARD with the E
of the text. The next attempted match will find a blank in the text,
which does not occur in the key at all. The delta value for blank is
-1: 6-(-1)=7, so we will advance the window by 7. Now the window is
up to "ST. BER" in the text.

When we compare "D" of BERNARD to "R" in the text, we fail again. The
delta value for R is 5. There are two R's in BERNARD, but the
rightmost one is at index 5. We can move the search window by 6-5=1.
Next we try "D" against "N". The delta value of "N" is 3, so we can
move the window 6-3=3 bytes. This time we have found "BERNARD"!

If you count it all up, we have compared the "D" of BERNARD with only
six characters, and already we are at the first occurrence of the
whole key in the text. A conventional search would have tried to
match the first character of the key ("B") with all 18 characters in
the text which precede the first "B" of the text. We have saved 13
times around the main loop! Of course, our loop is a tiny bit longer,
but the end result is faster.

Here is a step-by-step picture of the entire search, which finds
BERNARD twice:

 THERE ARE FEW ST. BERNARDS IN SAN BERNARDINO.
 BERNARD
 BERNARD
 BERNARD
 BERNARD
 BERNARD
 BERNARD (success!)
 BERNARD
 BERNARD
 BERNARD
 BERNARD (success!)
 BERNARD
 BER... (end)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2018 of 2550

Apple II Computer Info

I have tacked two more examples onto the end of the source code, at
lines 2620-2690. You can play with them. The five <<<DEBUG>>> lines
will print out the window address at each step, so you can see how the
search progresses. Remember to take those lines out before you make a
production version of the program.

If you decide to include this search algorithm in your own private
debugger program, like I am, you might want to add the ability to use
an ASCII string for the key. You could use a quotation mark after the
control-Y to signal the packer loop that an ASCII string follows. You
might also want to add single-byte wildcard characters, and/or the
ability to ignore the high-order bit of each byte matched.

Perhaps the Boyer-Moore algorithm would be even more useful in a data
base program, a word processor, or other context in which you are
searching through huge quantities of text for relatively interesting
keys. My example should get you started, and my son will be proud of
you!
1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2019 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:DP18.Leftovers.txt
==

Some Final DP18 Subroutines................Bob Sander-Cederlof

Gerald Ferrier (Princeton, Minnesota) wrote to point out that we
somewhow omitted a double-handful of subroutines from our lengthy
series on 18-digit arithmetic for Applesoft. With apologies to you
all, and thanks to Gerald, here they are:

<<<double column listing>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2020 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:Firmware.27128.txt
==

Two ROM Sets in One Apple //e..............Bob Sander-Cederlof

If and when you decide to upgrade to the new enhanced //e ROMs (which
Apple sells for $70 along with a 65C02), you will probably have to
turn your old ROMs over to the store that makes the switch.
Reportedly, Apple is binding the stores with a contract that forces
them to collect all the old chips.

That is VERY unfortunate. It could lead to wild shouting and panic,
when you discover some of your favorite old software no longer works.

The upgrade consists of three parts:

* the new processor chip (65C02), which is nice but not especially
useful until software which uses its new features becomes available;

* a new character generator ROM which includes special characters for
icons and line drawing in text mode (called the "mouse" characters).

* new CD and EF ROMs which upgrade the firmware.

The new firmware does NOT use any of the new features in the 65C02, so
you could use it without the new cpu chip. Furthermore, there is no
absolute requirement to have the new character generator installed.
The new firmware is much better than the old, having lost some bugs
and speeded up the 80-column scrolling and added lower-case support to
Applesoft (among other things). It is compatible with the 6502, the
65C02, and the new 65802.

I personally do not yet have any use for the mouse characters, and do
not expect to. Don Lancaster, in the June 1985 issue of "Computer
Shopper", tells how to connect a 2764 EPROM in the character generator
socket. The 2764 can hold two complete character sets, because it has
twice the capacity of the 2732 normally in that socket. However, the
socket has only 24 holes and the 2764 has 28 pins! Don shows how to
wire this up with a socket adapter, and use a toggle switch to select
either half.

And now Apple has "sort of" released an even more enhanced set of
firmware, with debugging stuff built in. You may not see them on the
open market for some time, but I like them even better than the
standard enhanced ROMs. The "debug" ROMs add an absolute RESET (ctrl-
RESET with solid apple), 16-byte hex display in the monitor when in
80-column mode, display of both hex and ASCII values of each byte in a
memory dump, and the ability to use all monitor commands on both main
and auxiliary memory. The disassembler and miniassembler are both
present, and enhanced to include the 65C02 extensions.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2021 of 2550

Apple II Computer Info

The CD and EF ROM sockets are compatible with 2764 EPROMs. You can
also use 27128s, which have twice the space. Pin 26 on the 2764 is
always tied to +5 volts. On a 27128, pin 26 selects the top or bottom
half of the 16K bytes inside. You can burn one set of firmware in one
half, and the other set in the other half. Then bend out pin 26 a
little, so that it does not go into the socket when you insert the
chip. Attach a clip lead to the bent-out pin, and connect the other
end to either +5 volts or ground, to select the half you want at any
given time.

You can connect it to a toggle switch, or just stick the bare end of a
wire into the game paddle connector. If you use the game socket on
the motherboard, pin 1 is +5 volts and pin 8 is ground. Or stick a
wire into one of the annunciator outputs (pins 12, 13, 14, and 15) so
you can flip back and forth between firmware sets by software control.

It can be a little tricky to make a copy of the ROM firmware and get
it into RAM or on a disk, so that you can later burn it in your own
EPROM. Especially in the Cxxx part. My approach, since I have more
than one Apple, is to put my SCRG PromGramer card in a different
machine. Then one by one I can read the //e ROMs and burn them into
the appropriate 27128s. This a lot faster than trying to figure out
how to flip all the //e soft switches so as to get at the different
banks of Cx ROM code.

I have recently seen 27128s priced as low as $5 and as high as $20, in
the back of Byte magazine. It is well worth it to invest in a
PromGramer, at $140, and an EPROM eraser ($50 to $100 from Logical
Devices in Florida, see Byte ads). You can keep your Apple standard
for commercial software, and still have your own private firmware on
the motherboard at the flip of a switch!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2022 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 9 June, 1985

In This Issue...

The Boyer-Morris String Search Algorithm 2
Short Integer Square Root Subroutine 13
Note on the TXS Instruction in the 65802 14
Interrupt Trace. 16
Improving the Single-Byte Converter. 21
AppleVisions, A Glimpse. 21
Two ROM Sets in One Apple //e. 22
Call Utility for Applesoft 24
Some Final DP18 Subroutines. 28

S-C Macro Assembler ProDOS

We will begin shipping the ProDOS version of the S-C Macro Assembler
in July, so we are now accepting advance orders. There is more to the
ProDOS version than just a change of operating systems. The new
upgrade includes a couple of major new features:

.INB (INclude Blocked) directive -- This works just like .IN, except
that only one disk block at a time is overlaid into memory. Allows
assembly of much larger files, with only a minor speed penalty.

.AC (Ascii Compressed) directive -- Generates compressed strings from
a string between delimiters, according to rule tables. Very complex,
but worth the effort if you have a lot of messages and need to save
memory.

The price of the ProDOS version alone will be $100. The up- grade
from DOS Version 2.0 to ProDOS will be $30. The upgrade from DOS
Version 1.0 or 1.1 to ProDOS will be $50, and will include DOS Version
2.0. The initial purchase price of the DOS 3.3 and ProDOS versions
together will be $120. These are introductory prices which may well
be raised in a few months.

65802's Are Here!

After many months of manufacturing delays, Western Design Center is
shipping 65802 and 65816 microprocessors. We recently received a
final production '802, and it's now happily processing away in Bob's
oldest Apple II (#219). You can order the chips from WDC for $95.00.
Call (602) 962-4545.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2023 of 2550

Apple II Computer Info

Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2024 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:Johnsons.Call.txt
==

A CALL Utility for Applesoft...................David C. Johnson
 Applied Engineering

Anyone who has ever used Applesoft eventually realizes that the most
powerful statement in the language is CALL. It allows you to get to
the Monitor for instance (however, Extended Debugging Monitor users
have a better way). When writing a program in BASIC, you invariably
will want to do something that is at best difficult and often
impossible to code using the other Applesoft statements.

The solution to this type of situation is to speak to your Apple in
its native tongue. There are several way this can be done. Ampersand
(&) routines are a popular technique. The USR(function even has its
uses. The most logical way, for me, is the CALL statement.

Using CALL neatly transfers control from the Applesoft interpreter to
whatever you want to do in machine language. The one disadvantage to
CALL is that the processor's registers do not contain useful data when
your machine code gets control.

The CALL utility presented in this article will allow you to specify,
as part of the CALL statement, the contents of any or all of the
registers upon entry of your machine language subroutine. You assign
the register contents with LET-like structures. Obviously you can
only fit an 8 bit value into the 8 bit registers and the program
counter value will probably be a 16 bit number. Here's how the CALL
statement should be written:

 CALL 768,PC=word,A=byte,X=byte,Y=byte,P=byte

The expressions "word" and "byte" may be any valid Applesoft numeric
expression. This is because the utility calls routines internal to
Applesoft to evaluate the expressions. If an expression results in a
value larger than the register to which it is being assigned, or isn't
numeric, or is invalid, you will get one of the usual errors. The
commas shown separating the register assignments are required (syntax
error if comma missing). The equals characters ("=") are also
required. The register names (PC, A, X, Y, & P) must be upper case
on older Apples, while the newer firmware will convert lower case for
you (or in spite of you). The register assignments may appear, after
the first comma, in any order and need not all be specified.
Unspecified registers will be loaded with their last used value.
Previously unused registers default to zero, except the P-register
which defaults to $04 in order to set the interrupt disable flag.

The program is well commented, but I'll add one more note of caution.
Readers with Apples containing reqular 6502s (not 65C02s or 65802s)
should avoid re-assembling the code with the label PC.Sav's bytes
falling across a page boundary ($XXFF).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2025 of 2550

Apple II Computer Info

The program was written using the ProDOS version of the S-C Macro
Assembler 2.0, while I was beta testing it for Bob. It works GREAT!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2026 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......................................$100
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

AAL Quarterly Disks.........................each $15, or any four for $45
 Jan-Mar Apr-Jun Jul-Sep Oct-Dec
 Each disk contains 1980 - - - 1
 the source code from 1981 2 3 4 5
 three issues of AAL, 1982 6 7 8 9
 saving you lots of 1983 10 11 12 13
 typing and testing. 1984 14 15 16 17
 1985 18 19

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
ES-CAPE: Extended S-C Applesoft Program Editor (new price, was $60) $40
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36
MacASM -- Macro Assembler for MacIntosh (Mainstay).........($150.00) $100

Blank Diskettes (Verbatim)......................... package of 20 for $32
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100
Envelopes for Diskette Mailers............................. 6 cents each

quikLoader EPROM System (SCRG)................................($179) $170
PROmGRAMER (SCRG)..($149.50) $140
D MAnual Controller (SCRG).....................................($90) $85
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32

"Apple ProDOS: Advanced Features for programmers", Little..($17.95) $17
"Inside the Apple //c", Little..............................($19.95) $18
"Inside the Apple //e", Little..............................($19.95) $18
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18
"Apple][Circuit Description", Gayler......................($22.95) $21
"Understanding the Apple II", Sather........................($22.95) $21
"Understanding the Apple //e", Sather.......................($24.95) $23
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15
"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2027 of 2550

Apple II Computer Info

"Beneath Apple DOS", Worth & Lechner........................($19.95) $18
"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18
"6502 Assembly Language Programming", Leventhal.............($18.95) $18
"6502 Subroutines", Leventhal...............................($18.95) $18
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9
"Microcomputer Graphics", Myers.............................($12.95) $12
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16
"Assembly Lines -- the Book", Wagner........................($19.95) $18
"AppleVisions", Bishop & Grossberger........................($39.95) $36

Add $1.50 per book for US shipping. Foreign orders add postage needed.

 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2028 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:Note.65802.txt
==

Note on the TXS instruction in the 65802...Bob Sander-Cederlof

Sandy Greenfarb wrote the other day that he had received a 65802 and
plugged it into his Basis 108 with success.

He has been trying various permutations of the new opcodes and modes,
and discovered some stones are better left unturned:

"The following programs should both print the letter "A" on the
screen. However, the one on the left works, while the one on the
right hangs up the computer."

 Works Hangs Up
 -------- --------
 CLC CLC
 XCE XCE
 LDA #"A LDA #"A
 JSR $FDF0 JSR $FDED
 SEC SEC
 XCE XCE
 RTS RTS

The only difference in the two programs is that the unsuccessful one
weaves its way through DOS. I looked at the DOS code it goes through,
and at first glance it appears there should be NO PROBLEMS associated
with executing all this code in 65802 mode, since both 16-bit modes
are off.

However, for some reason it still hangs up. Actually, it might not
always hang: it depends on what is in page zero at the corresponding
position as the stack pointer in page one.

I do not know why, but the TXS instruction transfers the entire 16-bit
value of X to S when you are in the 65802 mode, regardless of the
status of the M and X bits. Since M and X are both 1, the high byte
of the X-register is 00. Therefore the TXS instruction at $9FB9 in
DOS clears the high byte of the S-register. The RTS at $9FC4 then
uses a return address from page zero, rather than page one.

I tried various experiments to see how TXS and TSX worked, and also
examined TXA and TAX. In my humble opinion, the 65802 is inconsistent
here. If you are in 65802 mode with M and X = 1, TXA does not modify
the high byte of the A-register. This is what I expect and what I
want. But TXS does modify the high byte of the S-register, contrary
to my expectations.

Of course, as long as you know exactly how the chip works it really
doesn't matter a lot. The problems come when we ASSUME we know how it
works, but are wrong. The best antidote for these kind of

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2029 of 2550

Apple II Computer Info

assumptions, at least until a definitive reference manual for the chip
is published, is trial and error.

I have had my 65802 for about six months now, and still have had no
problems whatsoever with compatibility as long as I stay in normal
6502 mode. If I leave it in 65802 and go charging through a program
written for the 6502 mode, I expect I will run into trouble.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2030 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:Putney.IRQTrace.txt
==

Interrupt Trace..............................Charles H. Putney
 Dublin, Ireland

Have you ever wondered what's happening when the Apple goes off into
nothingness? If your answer is yes, then this short utility will help
you find out.

I was recently debugging an assembly language program and ran into
this problem. The program seemed to work for almost all the input
data, but occasionally would hang. After several frustrating hours
trying to simulate the event, I decided that an interrupt trace
utility would solve my problems. Later when I had this utility
working, it was easy to see why the program was hanging.

This utility consists of a pushbutton addition to the Apple which
connects to the interrupt request line (IRQ) of the 6502 and an
interrupt service routine which is in page three. When the interrupt
pushbutton is depressed, the interrupt service routine displays the
program counter and all the registers on the bottom line of the
screen. It also displays a flashing cursor and waits for an "S" or
"G" from the keyboard to stop or resume execution.

I have mounted a pushbutton switch at the upper right hand side of the
keyboard in the center of the styling surface. For a temporary
installation I suggest leaving the pushbutton on a flexible lead. The
wiring is easily done with 30 gage wire wrap wire. One side of the
pushbutton is connected to ground. You may solder a wire to any
convenient ground point on the top of the circuit board. Or, for a
temporary installation, you could stick a wire into pin 8 of the game
I/O connector.

The other side of the pushbutton is connected to the IRQ signal. I
found that signal at pin 4 of the 6502. Remove the 6502 from the
socket and strip the insulation from the end of the 30 gage wire.
Insert it in the socket for the 6502 in pin 4 and replace the 6502 to
retain the wire. Route the wire along the chips for a neat
installation.

For a temporary hookup, Bob S-C suggests folding a 3-by-5 card in
half, and triming it so that the folded edge just fits into an empty
slot. Then, while power to the Apple is off, slip one wire into the
space between the card and pin 26 (ground) and the other wire between
the card and pin 30 (IRQ). Both of these wires will be on the power-
supply side of the card: pin 26 is at the back edge, and pin 30 is
the fifth from the back. Once the wires are inserted, you may wish to
tape them down.

Enter the routine at address $300 and BSAVE it. When you want to
debug a hanging program, first BRUN the INTERRUPT TRACE utility. This

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2031 of 2550

Apple II Computer Info

installs the utility at address $300 to $3CA. Pressing the pushbutton
will cause an immediate display of the current program counter and
registers. The utility will wait with a blinking cursor for a "G" or
"S" from the keyboard to continue or enter monitor.

Sometimes the program you're investigating may not respond to the
pushbutton. This is because somewhere in the program interrupts have
been disabled with the SEI command ($78). You must search through the
entire program and replace these with a CLI instruction ($58). Make
sure that each $78 found is not data in the program and is a valid
instruction before you replace it.

The next time that you have a problem with your Apple "hanging" for no
apparent reason, use this utility to see where the 6502 "is". It may
help solve those "hard to debug programs".

When you run the program, the SETUP routine (from $300 to $30B) sets
the interrupt vector location and then enables interrupts. When the
pushbutton is depressed, the IRQ line (pin 4 on the 6502) is pulled
low. At the completion of the current instruction, the program
counter high, program counter low, and processor status are pushed on
the stack. Interrupt disable is automatically set and the program
counter is loaded with the contents of $FFFE and $FFFF. In the
Autostart monitor ROM the program counter is set to $FA40 where the
monitor interrupt service routine is located. (In the old monitor the
identical routine is at $FA86) This routine saves the accumulator in
$45 and examines the processor status register to see if the inter-
rupt was caused by a BRK command. Remember, the BRK command shares
the same vector location with the interrupt for software simulation of
interrupts. If the interrupt was not caused by BREAK then a JMP
indirect to location ($3FE) is performed.

Lines 1280-1290 save the X- and Y-registers. The accumulator has
already been saved by the monitor interrupt routine.

Lines 1300-1350 copy the register display titles to the bottom of the
screen. Of course, if your program happened to be in one of the full-
screen graphics modes, this line will not be visible. If you have a
//e, you can add code to sense the graphics mode, save it, switch to
text mode; then you will have to restore it all when you type "G" to
continue after the interrupt. The new enhanced //e ROMs automatically
handle saving and restoring all the bank switched memory, but they
still leave the graphics modes up to the programmer.

Lines 1360-1510 convert the values of the five registers and store
them into the bottom line. I add 3 to the S-register value before
displaying it, so you see the value before the IRQ code pushed PC and
S onto the stack. I start with the Y-register pointing at the point
on the bottom line where the A-register should be displayed. The
DISPLAY.HEX subroutine advances the Y-register by 5, so it is always
ready for displaying the next register.

Lines 1520-1590 display the PC-register. This value is taken from the
stack, where the IRQ automatically saved it.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2032 of 2550

Apple II Computer Info

Lines 1600-1750 wait for you to type "G" or "S". While waiting, the
last character on the bottom line is flashed to remind you to type.
If you type "G", lines 1760-1800 restore the registers and return to
the interrupted program. If you type "S", line 1820 takes you to the
monitor.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2033 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:Articles:SQRT16.txt
==

Short Integer Square Root Subroutine.......Bob Sander-Cederlof

In some graphics situations you need a square root subroutine (it is
probably the fault of Pythagoras). Since the screen coordinates are
integers, a short and fast integer square root subroutine can be
handy.

The following program is probably not in the "fast" category, but it
is indeed short. It can produce the integer value of the square root
of any integer from 0 through 65535. The program uses the method of
subtracting successive odd numbers.

Every perfect square (N*N, where N is an integer) is the sum of a
series of odd numbers from 1 through 2*N-1. Thus 4=1+3, 25=1+3+5+7+9,
etc.

The program starts by subtracting 1, then 3, then 5, and so on until
the remainder is negative. When the remainder goes negative, the last
odd number subtracted was 2*N+1, so we can get the square root by
dividing that odd number by 2.

I set up the routine so I could test it with an Applesoft pro- gram.
You can POKE the low 8-bits of a number at 768 ($300), the high 8-bits
at 769, and CALL 772. Upon return, PEEK(770)+ 256*PEEK(771) gives you
the integer value of the square root.

I used a couple of tricks in the code. For one, the variable ODD is
always an even number. Since I preface the subtraction with CLC, a
"borrow" is assumed, so it has the effect of sub- tracting the odd
number which is one larger than the even number in ODD. This save a
LDA #1 instruction after line 1090.

In lines 1190-1230, I add 2 to the even number in ODD. But you can
see that line 1200 is ADC #1. This adds 2 because carry happens to be
set.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2034 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:DOS3.3:DIGITS.3.txt
==

 1000 *SAVE DIGITS.3
 1010 *--------------------------------
 1020 .LIST OFF
 1030 *--------------------------------
 1040 BYTE .EQ $00
 1050 COUT .EQ $FDED
 1060 CROUT .EQ $FD8E
 1070 PRBYTE .EQ $FDDA
 1080 *--------------------------------
 1090 * COMMAND
 1100 *--------------------------------
 1110 P LDA #0
 1120 STA BYTE
 1130 .1 JSR WRITE
 1140 JSR CROUT
 1150 INC BYTE
 1160 LDA BYTE
 1170 BNE .1
 1180 RTS
 1190 *--------------------------------
 1200 * WRITE
 1210 *--------------------------------
 1220 WRITE LDY #0
 1230 SEC
 1240 .1 SBC #10
 1250 PHP
 1260 PHA
 1270 TYA
 1280 SED
 1290 ADC #0
 1300 TAY
 1310 PLA
 1320 PLP
 1330 BCS .1
 1340 ADC #"0+10
 1350 PHA
 1360 TYA
 1370 JSR PRBYTE
 1380 PLA
 1390 JMP COUT
 1400 *--------------------------------
 1410 SC
 1420 LDY #"0"
 1430 TAX
 1440 BEQ .3
 1450 LDA #0
 1470 SED
 1475 .2 CLC
 1480 ADC #1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2035 of 2550

Apple II Computer Info

 1490 BCC .25
 1500 INY
 1510 .25 DEX
 1520 BNE .2
 1530 CLD
 1540 .3 PHA
 1550 TYA
 1560 JSR COUT
 1570 PLA
 1580 JMP $FDDA
 1590 *--------------------------------
 1600 T LDA #0
 1610 .1 STA BYTE
 1620 JSR SC
 1630 LDA BYTE
 1640 JSR $FDDA
 1650 JSR CROUT
 1651 LDA $C000
 1652 BPL .2
 1653 STA $C010
 1654 .3 LDA $C000
 1655 BPL .3
 1656 .2 STA $C010
 1660 LDA BYTE
 1670 CLC
 1680 ADC #1
 1690 BNE .1
 1700 RTS
 1710 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2036 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:DOS3.3:DP18.MOVE.SUBS.txt
==

 1000 *SAVE DP18.MOVE.SUBS
 2020 *--------------------------------
 2030 * MOVE (Y,A) INTO DAC. YA IS UNPACKED
 2040 *--------------------------------
 2050 MOVE.YA.DAC.1
 2060 STA PNTR
 2070 STY PNTR+1
 2080 LDY #10 MOVE 11 BYTES
 2090 .1 LDA (PNTR),Y
 2100 STA DAC,Y
 2110 DEY
 2120 BPL .1
 2130 LDA DAC.EXPONENT
 2140 STA DAC.SIGN
 2150 AND #$7F
 2160 STA DAC.EXPONENT
 2170 RTS
 2180 *--------------------------------
 2190 * MOVE (Y,A) INTO ARG. YA IS UNPACKED
 2200 *--------------------------------
 2210 MOVE.YA.ARG.1
 2220 STA PNTR
 2230 STY PNTR+1
 2240 LDY #10 MOVE 11 BYTES
 2250 .1 LDA (PNTR),Y
 2260 STA ARG,Y
 2270 DEY
 2280 BPL .1
 2290 LDA ARG.EXPONENT
 2300 STA ARG.SIGN
 2310 AND #$7F
 2320 STA ARG.EXPONENT
 2330 RTS
 2340 *--------------------------------
 2350 * MOVE DAC TO (Y,A) WITHOUT PACKING
 2360 *--------------------------------
 2370 MOVE.DAC.YA.1
 2380 STA PNTR
 2390 STY PNTR+1
 2400 LDA DAC.EXPONENT
 2410 BPL .0
 2420 JMP DAC.YA.O.U OVER- OR UNDER-FLOW
 2430 .0 BIT DAC.SIGN
 2440 BPL .1 POSITIVE
 2450 ORA #$80 NEGATIVE
 2460 .1 LDY #0
 2470 .2 STA (PNTR),Y
 2480 INY
 2490 LDA DAC,Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2037 of 2550

Apple II Computer Info

 2500 CPY #11 11 BYTES
 2510 BCC .2
 2520 RTS
 2530 *--------------------------------
 2540 MOVE.DAC.TEMP1
 2550 LDA #DP.TEMP1
 2560 LDY /DP.TEMP1
 2570 JMP MOVE.DAC.YA.1
 2580 *--------------------------------
 2590 MOVE.TEMP1.ARG
 2600 LDA #DP.TEMP1
 2610 LDY /DP.TEMP1
 2620 JMP MOVE.YA.ARG.1
 2630 *--------------------------------
 2640 MOVE.TEMP1.DAC
 2650 LDA #DP.TEMP1
 2660 LDY /DP.TEMP1
 2670 JMP MOVE.YA.DAC.1
 2680 *--------------------------------
 2690 MOVE.DAC.TEMP2
 2700 LDA #DP.TEMP2
 2710 LDY /DP.TEMP2
 2720 JMP MOVE.DAC.YA.1
 2730 *--------------------------------
 2740 MOVE.TEMP2.DAC
 2750 LDA #DP.TEMP2
 2760 LDY /DP.TEMP2
 2770 JMP MOVE.YA.DAC.1
 2780 *--------------------------------
 2790 MOVE.TEMP2.ARG
 2800 LDA #DP.TEMP2
 2810 LDY /DP.TEMP2
 2820 JMP MOVE.YA.ARG.1
 2830 *--------------------------------
 2840 MOVE.TEMP3.DAC
 2850 LDA #DP.TEMP3
 2860 LDY /DP.TEMP3
 2870 JMP MOVE.YA.DAC.1
 2880 *--------------------------------
 2890 MOVE.TEMP3.ARG
 2900 LDA #DP.TEMP3
 2910 LDY /DP.TEMP3
 2920 JMP MOVE.YA.ARG.1
 2930 *--------------------------------
 2940 MOVE.DAC.TEMP3
 2950 LDA #DP.TEMP3
 2960 LDY /DP.TEMP3
 2970 JMP MOVE.DAC.YA.1
 2980 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2038 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:DOS3.3:S.CALL.UTIL.txt
==

 1000 *SAVE S.CALL.UTIL
 1010
 1020 * 6/13/85 dcj
 1030
 1040 * CALL 768{,pc=word,a=byte,x=byte,y=byte,p=byte}
 1050
 1060 *--------------------------------
 1070
 1080 .OR $300
 1090 .TF CU
 1100
 1110 EQ.TOK .EQ $D0 Applesoft '=' token
 1120
 1130 CHRGET .EQ $B1 -$C8 advance TXTPTR & fetch chr
 1140 CHRGOT .EQ $B7 just fetch chr
 1150
 1160 FRMNUM .EQ $DD67 evaluate FP expression (FAC)
 1170 SYNCHR .EQ $DEC0 require chr in Acc syntax @ TXTPTR
 1180 SYNERR .EQ $DEC9 syntax error
 1190 GETBYT .EQ $E6F8 evaluate 8 bits @ TXTPTR (X-reg)
 1200 GETADR .EQ $E752 convert FAC to 16 bits in Acc & Y-reg
(hi/lo)
 1210
 1220 *--------------------------------
 1230
 1240 CALL.UTIL
 1250
 1260 JSR CHRGOT get chr after call adr expression
 1270 CMP #',' comma indicates more stuff follows
 1280 BEQ .1 =>go continue parsing
 1290 LDA P.SAV load registers
 1300 PHA (P-reg via stack)
 1310 LDA ACC.SAV
 1320 LDX X.SAV
 1330 LDY Y.SAV
 1340 PLP
 1350 JMP (PC.SAV) go 4 it!
 1360
 1370 * we got something to parse
 1380
 1390 .1 JSR CHRGET get chr after comma
 1400 CMP #'A' (as in 'Acc')
 1410 BEQ .2 =>go get '=' & byte for Acc
 1420 CMP #'X' (as in 'X-reg')
 1430 BEQ .3 =>go get '=' & byte for X-reg
 1440 CMP #'Y' (as in 'Y-reg')
 1450 BEQ .4 =>go get '=' & byte for Y-reg
 1460 CMP #'P' (as in P-reg or Program Counter)
 1470 BEQ .5 =>go get '=' or 'C='...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2039 of 2550

Apple II Computer Info

 1480 JMP SYNERR razz
 1490
 1500 * pickup Acc byte
 1510
 1520 .2 JSR .7 require '=' (@ next) & fetch byte exp
 1530 STX ACC.SAV stuff it
 1540 BVC CALL.UTIL ...always
 1550
 1560 * pickup X-reg byte
 1570
 1580 .3 JSR .7 require '=' (@ next) & fetch byte exp
 1590 STX X.SAV stuff it
 1600 BVC CALL.UTIL ...always
 1610
 1620 * pickup Y-reg byte
 1630
 1640 .4 JSR .7 require '=' (@ next) & fetch byte exp
 1650 STX Y.SAV stuff it
 1660 BVC CALL.UTIL ...always
 1670
 1680 * Finish parsing 'P=' or 'PC='
 1690
 1700 .5 JSR CHRGET advance to next chr position & fetch it
 1710 CMP #'C' (as in 'Program Counter')
 1720 BEQ .6 =>go get '=' & 16 bits for PC
 1730
 1740 * pickup P-reg byte
 1750
 1760 JSR .10 require '=' @ current chr position
 1770 JSR .8 fetch byte expression
 1780 STX P.SAV stuff it
 1790 BVC CALL.UTIL ...always
 1800
 1810 * pickup PC word
 1820
 1830 .6 JSR .9 require '=' @ next chr position
 1840 JSR FRMNUM fletch FP expression
 1850 JSR GETADR convert FP expression to Acc & Y-reg
(hi/lo)
 1860 STY PC.SAV stuff 'em
 1870 STA PC.SAV+1
 1880 JMP CALL.UTIL no flag known...
 1890
 1900 .7 JSR .9 require '=' @ next chr position
 1910
 1920 .8 JSR GETBYT fetch byte expression (2 X-reg)
 1930 CLV to force branch
 1940 RTS
 1950
 1960 .9 JSR CHRGET 1st advance to next chr position
 1970
 1980 .10 LDA #EQ.TOK require '=' before register expressions
 1990 JMP SYNCHR (SYNTAX ERROR IF '=' NOT FOUND)
 2000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2040 of 2550

Apple II Computer Info

 2010 *--------------------------------
 2020
 2030 ACC.SAV .DA #$00
 2040 X.SAV .DA #$00
 2050 Y.SAV .DA #$00
 2060 P.SAV .DA #$04
 2070 PC.SAV .DA $0000
 2080
 2090 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2041 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:DOS3.3:S.HEX.SEARCH.txt
==

 1000 *SAVE S.HEX.SEARCH
 1010 *--------------------------------
 1020 * MEMORY SEARCH FOR HEX STRING
 1030 * BY BOB BERNARD, MAY 17, 1985
 1040 * MODIFIED BY BOB S-C, MAY 27TH
 1050 * ADR1.ADR2^YXXXXXXXXXXXX
 1060 * ("^Y" MEANS CONTROL-Y)
 1070 *
 1080 * SEARCH MEMORY FROM ADR1 THRU ADR2
 1090 * LOOKING FOR REFERENCES TO
 1100 * THE HEX STRING, XXXXXXXXXX
 1110 *
 1120 *--------------------------------
 1130 YSAV .EQ $34
 1140 A1L .EQ $3C,3D START OF SEARCH AREA
 1150 A2L .EQ $3E,3F END OF SEARCH AREA
 1160 KEY.LENGTH .EQ $40 (MONITOR'S A3L)
 1170 *--------------------------------
 1180 KBDBUF .EQ $0200 THRU $2CF
 1190 DELTA.TABLE .EQ $02D0 THRU $3CF
 1200 USRADR .EQ $03F8 CTL-Y JUMPS HERE
 1210 *--------------------------------
 1220 PRINTAX .EQ $F941
 1230 CROUT .EQ $FD8E NEW LINE
 1240 MONZ .EQ $FF69 MONITOR, NO BELL
 1250 *--------------------------------
 1260 .OR $0800
 1270 .TF B.HEX.SEARCH
 1280 *--------------------------------
 1290 HEX.SEARCH
 1300 LDA #$4C JMP OPCODE
 1310 STA USRADR STUFF INTO CNTL-Y EXIT LOC
 1320 LDA #SEARCH LO ADR
 1330 STA USRADR+1
 1340 LDA /SEARCH HI ADR
 1350 STA USRADR+2
 1360 JMP MONZ MONITOR, NO BELL
 1370 *--------------------------------
 1380 SEARCH
 1390 *---SKIP LEADING BLANKS----------
 1400 LDY YSAV NEXT VALID KBDBUF CHAR
 1410 .1 LDA KBDBUF,Y GET CHAR FROM
 1420 INY KEYBOARD BUFFER
 1430 CMP #" " SKIP LEADING BLANKS
 1440 BEQ .1
 1450 *---MARK KEY START---------------
 1460 DEY
 1470 STY YSAV WHERE SCAN STARTS
 1480 *---FIND END OF KEY--------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2042 of 2550

Apple II Computer Info

 1490 .2 JSR NXTCHAR
 1500 BCC .2 ...HEX DIGIT
 1510 CPY YSAV CHECK FOR NULL KEY
 1520 BNE .3 ...NOT NULL
 1530 RTS NULL KEY
 1540 *---COMPUTE KEY LENGTH-----------
 1550 .3 TYA
 1560 SBC YSAV
 1570
 1580 LSR
 1590 STA KEY.LENGTH
 1600 LDY YSAV
 1610 LDX #0
 1620 STX KBDBUF (IN CASE ODD COUNT)
 1630 BCS .5 ...ODD NUMBER OF BYTES
 1640 *---ADJUST FOR EVEN LENGTH-------
 1650 DEC KEY.LENGTH MAKE EVEN LENGTH ONE LESS
 1660 *---LEFT NYBBLE------------------
 1670 .4 JSR NXTCHAR
 1680 BCS .6 END OF KEY
 1690 ASL
 1700 ASL
 1710 ASL
 1720 ASL
 1730 STA KBDBUF,X LEFT HALF DEST CHAR
 1740 *---RIGHT NYBBLE-----------------
 1750 .5 JSR NXTCHAR
 1760 AND #$0F
 1770 ORA KBDBUF,X MERGE HI NIBBLE
 1780 STA KBDBUF,X
 1790 INX
 1800 BNE .4 ...ALWAYS
 1810 .6 STY YSAV
 1820 *---INIT ALL DELTAS=-1 ----------
 1830 LDX #0
 1840 LDA #-1
 1850 .7 STA DELTA.TABLE,X
 1860 INX
 1870 BNE .7 ...256 OF THEM
 1880 *---DELTA(KEY(I))=I--------------
 1890 LDY #0 FOR I=0 TO KEYLEN
 1900 .8 LDA KBDBUF,Y DELTA(K) = DISTANCE FROM LEFT END
 1910 TAX OF RIGHT-MOST OCCURENCE OF
 1920 TYA 8-BIT VALUE "K" IN KEY.
 1930 STA DELTA.TABLE,X
 1940 INY NEXT I
 1950 CPY KEY.LENGTH
 1960 BCC .8
 1970 BEQ .8
 1980 *---ADJUST END OF SEARCH---------
 1990 SEC
 2000 LDA A2L
 2010 SBC KEY.LENGTH
 2020 STA A2L

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2043 of 2550

Apple II Computer Info

 2030 BCS SEARCH.LOOP
 2040 DEC A2L+1
 2050 *--------------------------------
 2060 SEARCH.LOOP
 2070 LDA A1L+1 <<<DEBUG>>>
 2080 LDX A1L <<<DEBUG>>>
 2090 JSR PRINTAX <<<DEBUG>>>
 2100 LDA #"-" <<<DEBUG>>>
 2110 JSR $FDED <<<DEBUG>>>
 2120 LDA A2L CHECK AGAINST
 2130 CMP A1L UPPER BOUND
 2140 LDA A2L+1 FOR SEARCH
 2150 SBC A1L+1
 2160 BCS .1 A1<=A2, NOT FINISHED
 2170 RTS A1>A2, FINISHED
 2180 *---COMPARE IN THIS POSITION-----
 2190 .1 LDY KEY.LENGTH FOR I=KEYLEN TO 0
 2200 .2 LDA (A1L),Y CHECK BYTES FROM
 2210 CMP KBDBUF,Y RIGHT TO LEFT
 2220 BNE .3 ...DID NOT MATCH
 2230 DEY NEXT I
 2240 BPL .2
 2250 *---MATCH FOUND------------------
 2260 LDX A1L PRINT ADR
 2270 LDA A1L+1 WHERE MATCH
 2280 JSR PRINTAX WAS FOUND
 2290 JSR CROUT NEW LINE
 2300 JMP .4
 2310 *---ADVANCE SEARCH POINTER-------
 2320 .3 TAX STRING CHAR JUST LOOKED AT
 2330 TYA I
 2340 CLC
 2350 SBC DELTA.TABLE,X
 2360 BPL .5 ...VALUE IS POSITIVE
 2370 .4 LDA #0 ...ADVANCE BY 1
 2380 .5 SEC COMPENSATE
 2390 ADC A1L
 2400 STA A1L
 2410 BCC SEARCH.LOOP
 2420 INC A1L+1
 2430 BNE SEARCH.LOOP ...ALWAYS, UNLESS WE
 2440 RTS ...RAN OFF THE END OF MEMORY
 2450 *--------------------------------
 2460 NXTCHAR
 2470 LDA KBDBUF,Y NEXT ACTIVE CHAR
 2480 INY
 2490 EOR #$B0 CONVERT ASCII TO DIGIT
 2500 CMP #10 0..9?
 2510 BCC .1 YES
 2520 ADC #$88 SHIFT RANGE FOR A-F TEST
 2530 CMP #$FA A..F?
 2540 BCS .1 YES. EXIT CC
 2550 SEC NOT HEX CHAR
 2560 DEY BACK UP INDEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2044 of 2550

Apple II Computer Info

 2570 RTS
 2580 .1 CLC SIGNAL HEX CHAR
 2590 RTS
 2600 *--------------------------------
 2610 END .BS $A00-*
 2620 TEST.STRING
 2630 .AS /XXXXXXXCOCACACACACACACACACACACAC/
 2640 * TRY A00.A1F^Y 43414341434143
 2650 * SHOULD GET A09-A0B-A0D-A0F-A11-A13-A15-A17-A19
 2660 *--------------------------------
 2670 TS2 .AS /A STRING SEARCHING EXAMPLE CONSISTING OF SIMPLE
TEXT/
 2680 * TRY A20.A53^Y48494E47
 2690 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2045 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:DOS3.3:S.IRQ.TRAPPER.txt
==

 1000 *SAVE S.IRQ TRAPPER
 1010 *--------------------------------
 1020 * INTERRUPT TRACE UTILITY
 1030 *
 1040 * BY: CHARLES H. PUTNEY
 1050 * 18 QUINNS ROAD
 1060 * SHANKILL
 1070 * COUNTY DUBLIN
 1080 * IRELAND
 1090 *--------------------------------
 1100 A.REG .EQ $45 A-REG SAVE AREA USED BY MONITOR
 1110 STACK .EQ $100 STACK PAGE
 1120 INTVEC .EQ $3FE INTERRUPT VECTOR
 1130 BOTTOM.LINE .EQ $7D0 LINE 24 OF TEXT SCREEN
 1140 *--------------------------------
 1150 KEYBD .EQ $C000 KEYBOARD DATA
 1160 KEYSTB .EQ $C010 KEYBOARD STROBE
 1170 MNTR .EQ $FF69 MONITOR ENTRY POINT (CALL -151)
 1180 *--------------------------------
 1190 .OR $300 PAGE THREE
 1200 *--------------------------------
 1210 SETUP LDA #INT LOAD IRQ VECTOR
 1220 STA INTVEC LOW BYTE
 1230 LDA /INT
 1240 STA INTVEC+1 HIGH BYTE
 1250 CLI ALLOW IRQ'S
 1260 RTS
 1270 *--------------------------------
 1280 INT STX XREG SAVE X (A-REG SAVED BY MONITOR)
 1290 STY YREG SAVE Y
 1300 *---DISPLAY REG TITLES-----------
 1310 LDX #39 PUT UP MESSAGE LINE
 1320 .1 LDA TITLES,X GET MESSAGE CHAR
 1330 STA BOTTOM.LINE,X PUT ON SCREEN
 1340 DEX
 1350 BPL .1 DONE ?
 1360 *---DISPLAY REG VALUES-----------
 1370 LDY #10 START OF REG DISPLAY AREA
 1380 LDA A.REG ...A-REG
 1390 JSR DISPLAY.HEX
 1400 LDA XREG ...X-REG
 1410 JSR DISPLAY.HEX
 1420 LDA YREG ...Y-REG
 1430 JSR DISPLAY.HEX
 1440 TSX GET STACK POINTER
 1450 INX POINT AT PROCESSOR STATUS
 1460 LDA STACK,X ...P-REG
 1470 JSR DISPLAY.HEX
 1480 INX ADJUST S-REG

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2046 of 2550

Apple II Computer Info

 1490 INX
 1500 TXA ...S-REG AS WAS BEFORE INTERRUPT
 1510 JSR DISPLAY.HEX
 1520 *---DISPLAY PC-REG---------------
 1530 LDY #0 START OF PC-REG DISPLAY
 1540 LDA STACK,X GET PC HIBYTE
 1550 JSR DISPLAY.HEX
 1560 DEX
 1570 LDY #2
 1580 LDA STACK,X GET PC LOBYTE
 1590 JSR DISPLAY.HEX
 1600 *---WAIT FOR "S" OR "G"----------
 1610 .2 LDA KEYBD KEY PRESSED ?
 1620 BPL .3 NO
 1630 STA KEYSTB CLEAR THE KEY
 1640 CMP #"G" GO AHEAD ?
 1650 BEQ .4 YES
 1660 CMP #"S" STOP ?
 1670 BEQ .5 YES
 1680 .3 DEX BLINK CURSOR
 1690 BNE .3
 1700 DEY LONGER DELAY
 1710 BNE .3
 1720 LDA BOTTOM.LINE+39 LAST CHAR ON SCREEN
 1730 EOR #$80 INVERT IT
 1740 STA BOTTOM.LINE+39 REPLACE IT
 1750 BNE .2 BRANCH ALWAYS
 1760 *---"G" TYPED, RETURN------------
 1770 .4 LDA A.REG RESTORE THE REGISTERS
 1780 LDX XREG
 1790 LDY YREG
 1800 RTI BACK TO WORK
 1810 *---"S" TYPED, SO STOP-----------
 1820 .5 JMP MNTR ENTER THE MONITOR
 1830 *--------------------------------
 1840 DISPLAY.HEX
 1850 PHA SAVE THE A-REG
 1860 LSR SHIFT INTO LOWER NIBBLE
 1870 LSR
 1880 LSR
 1890 LSR
 1900 JSR DIGIT MAKE IT A DIGIT
 1910 STA BOTTOM.LINE,Y SHOW HIGH NIBBLE
 1920 PLA GET A-REG AGAIN
 1930 AND #$0F MASK IT
 1940 JSR DIGIT MAKE IT A DIGIT
 1950 STA BOTTOM.LINE,Y SHOW LOWER NIBBLE
 1960 INY
 1970 INY
 1980 INY
 1990 RTS
 2000 *--------------------------------
 2010 DIGIT INY
 2020 ORA #$B0 ADD NUMBER ZERO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2047 of 2550

Apple II Computer Info

 2030 CMP #$BA IS IT A LETTER
 2040 BCC .1 NO - DONE
 2050 ADC #$6 6 PLUS CARRY MAKES A
 2060 .1 RTS
 2070 *--------------------------------
 2080 TITLES .AS -/ - A= X= Y= P= S= /
 2090 *--------------------------------
 2100 XREG .DA #*-* X REGISTER SAVE AREA
 2110 YREG .DA #*-* Y REGISTER SAVE AREA
 2120 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2048 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:DOS3.3:S.LovesConvers.txt
==

 1000 *SAVE S.LOVE'S CONVERSION
 1010 *--------------------------------
 1020 .LIST OFF
 1030 *--------------------------------
 1040 BYTE .EQ $00
 1050 COUT .EQ $FDED
 1060 CROUT .EQ $FD8E
 1070 PRBYTE .EQ $FDDA
 1080 *--------------------------------
 1090 * COMMAND
 1100 *--------------------------------
 1110 P LDA #0
 1120 STA BYTE
 1130 .1 JSR PRINT.000.255
 1140 JSR CROUT
 1150 INC BYTE
 1160 LDA BYTE
 1170 BNE .1
 1180 RTS
 1190 *--------------------------------
 1200 * PRINT.000.255
 1210 *--------------------------------
 1220 PRINT.000.255
 1230 LDY #0
 1240 SEC
 1250 .1 SBC #10
 1260 PHP
 1270 PHA
 1280 TYA
 1290 SED
 1300 ADC #0
 1310 TAY
 1320 PLA
 1330 PLP
 1340 BCS .1
 1350 ADC #"0+10
 1360 PHA
 1370 TYA
 1380 JSR PRBYTE
 1390 PLA
 1400 JMP COUT
 1410 *--------------------------------
 1420 SC
 1430 LDY #"0"
 1440 TAX
 1450 BEQ .3
 1460 LDA #0
 1470 SED
 1480 .2 CLC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2049 of 2550

Apple II Computer Info

 1490 ADC #1
 1500 BCC .25
 1510 INY
 1520 .25 DEX
 1530 BNE .2
 1540 CLD
 1550 .3 PHA
 1560 TYA
 1570 JSR COUT
 1580 PLA
 1590 JMP $FDDA
 1600 *--------------------------------
 1610 T LDA #0
 1620 .1 STA BYTE
 1630 JSR SC
 1640 LDA #" "
 1650 JSR $FDED
 1660 LDA BYTE
 1670 JSR $FDDA
 1680 JSR CROUT
 1690 LDA $C000
 1700 BPL .2
 1710 STA $C010
 1720 .3 LDA $C000
 1730 BPL .3
 1740 .2 STA $C010
 1750 LDA BYTE
 1760 CLC
 1770 ADC #1
 1780 BNE .1
 1790 RTS
 1800 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2050 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:DOS3.3:S.SQRT16.txt
==

 1000 *SAVE S.SQRT16
 1010 *--------------------------------
 1020 .OR $300
 1030 ARG .BS 2
 1040 ODD .BS 2
 1050 *--------------------------------
 1060 SQRT LDX ARG+1 X = HI BYTE HI
 1070 LDY ARG Y = LO BYTE LO
 1080 LDA #0 START ODD=0
 1090 STA ODD+1
 1100 .1 STA ODD
 1110 CLC BORROW ON, SUBTRACT (ODD+1)
 1120 TYA LO
 1130 SBC ODD
 1140 TAY
 1150 TXA HI
 1160 SBC ODD+1
 1170 TAX
 1180 BCC .2 ...ODD>REMAINDER, FINISHED
 1190 LDA ODD CARRY SET, ADD 2 TO ODD
 1200 ADC #1
 1210 BCC .1 ...NEXT
 1220 INC ODD+1
 1230 BNE .1 ...ALWAYS ...ALWAYS
 1240 .2 LSR ODD+1 SQRT IS (ODD/2)
 1250 ROR ODD
 1260 RTS
 1270 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2051 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8506:DOS3.3:TEST.SQRT16.txt
==

Ë≤TEST SQRT16:ÌW–256:A–768:B–769:C–770:D–771:E–772ZÚÅXH–
0¡255:∫XH"-";:ÅXL–0¡255m \πA,XL:πB,XH:åE�Y–‚(D) W»‚(C)°≠Y —
œ”(⁄(XH W»XL))ƒ∫:∫XH W»L,Y©$Ç:Ç

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2052 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:Articles:BSave2NewFile.txt
==

Allow BSAVE to New Non-Binary Files in BASIC.SYSTEM 1.1
 Mark Jackson
 Chicago, Illinois

I consider it a bug: BASIC.SYSTEM doesn't allow BSAVEing to a new
file unless the type is binary. Yet it is equally desirable to be
able to BSAVE to non-binary files without first CREATEing them.

I discovered this problem while implementing FIG-FORTH in ProDOS when
I wanted to save the data blocks using as little code as possible, and
at the same time allow use of standard text-file word processors.

BSAVEing would solve the code length problem, but to make a text file
I would have had to CREATE the file first, thus decreasing speed and
increasing code length. Therefore I looked for the BSAVE code inside
BASIC.SYSTEM to fix the bug.

As it comes from Apple, BASIC.SYSTEM's parser puts the specified type
in $BE6A and then the BSAVE processor places it there again. I used
the space this redundant code took for my patch.

There seems to be no good reason for Apple to purposely prevent
BSAVEing to new non-binary files, so I think my patch is both
worthwhile and safe.

The following applies only to Apple's BASIC.SYSTEM version 1.1, which
is the latest as far as I know. The addresses shown are the actual
running position. If you want to patch the SYS file by BLOADing at
A$2000, then addresses $ADxx will be at $37xx and addresses $AExx will
be at $38xx.

The following is in the CREATE code.

Now is:

 AD41- A9 0F LDA #$0F DEFAULT SYS FILE
 AD43- 8D 6A BE STA $BE6A PUT IN GLOBAL PAGE

Change to:

 AD41- A2 0F LDX #$0F
 AD43- 8E 6A BE STX $BE6A

The following is in the BSAVE code, and is only reached if it is a new
file:

Now is:

 ADF5- A9 06 LDA #$06 ASSUME TYPE IS BIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2053 of 2550

Apple II Computer Info

 ADF7- 8D 6A BE STA $BE6A PUT IN GLOBAL PAGE
 ADFA- 8D B8 BE STA $BEB8 SET-FILE-INFO LIST
 ADFD- AD 56 BE LDA $BE56 CHECK IF TYPE GIVEN
 AE00- 29 04 AND #$04
 AE02- D0 0E BNE $AE12 IF YES, THEN ERROR
 AE04- 20 46 AD JSR $AD46 CREATE NEW FILE

Change to:

 ADF5- AE 6A BE LDX $BE6A FILE TYPE FROM PARSING
 ADF8- AD 56 BE LDA $BE56 CHECK IF TYPE GIVEN
 ADFB- 29 04 AND #$04
 ADFD- D0 02 BNE $AE01 IF YES SKIP DEFAULT
 ADFF- A2 06 LDX #$06 DEFAULT BIN FILE
 AE01- 8E B8 BE STX $BEB8 SET-FILE-INFO LIST
 AE04- 20 43 AD JSR $AD43 GO CREATE FILE

Thanks to Don Worth and Pieter Lechner for their help in dis-
assembling, through their book "Supplement to Beneath Apple ProDOS."
(This is the book you get by sending in $10 and a coupon from Beneath
Apple ProDOS.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2054 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 10 July, 1985

In This Issue...

Reading DOS 3.3 Disks with ProDOS. 2
Review of M-c-T SpeedDemon 16
Multi-Level ProDOS Catalog 23
Allow BSAVE to New Non-Binary Files in BASIC.SYSTEM. . . . 30

ProDOS Macro Assembler

We are now shipping the ProDOS version of the S-C Macro Assembler. As
reported last month, the ProDOS version alone is $100 and the DOS and
ProDOS versions together are $120. The ProDOS update for owners of
the DOS Version 2.0 is $30, and for owners of DOS Version 1.x is $50.

The S-C Cross Reference Utility and the Laumer Research Full Screen
Editor have been updated to ProDOS versions. The ProDOS code will be
included on the back of the disk in all new shipments, and current
owners can return their original disks to be updated at a cost of only
$5 per program.

65802 Chips

Good News! We have arranged a quantity price on 65802 processors, so
we will be able to sell them to our readers for only $50 + shipping.
That's only $51.50 in the US for this powerful new 16-bit processor
that plugs right into your Apple II, II+, //e, or //c. Combine this
chip with the S-C Macro Assembler Version 2.0 and you can start
writing faster, more compact code. Order yours today!

Updated VideoTerm Driver

We recently revised the Videx VideoTerm driver in the S-C Macro
Assembler Version 2.0 to make it firmware-independent and ViewMaster-
compatible. This revision is effective with Serial Number T-1483, so
owners of earlier copies can send in their original disks and $5 for
an updated copy.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2055 of 2550

Apple II Computer Info

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2056 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0 (DOS or ProDOS)......................$100
S-C Macro Assembler Version 2.0 (DOS and ProDOS).....................$120
ProDOS Upgrade Kit for Version 2.0 DOS owners.........................$30
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code for Version 1.1 (on two disk sides)......................$100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility (without source code).....................$20
S-C Cross Reference Utility (with complete source code)...............$50
DISASM Dis-Assembler (RAK-Ware).......................................$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15

(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

AAL Quarterly Disks.........................each $15, or any four for $45
 Jan-Mar Apr-Jun Jul-Sep Oct-Dec
 Each disk contains 1980 - - - 1
 the source code from 1981 2 3 4 5
 three issues of AAL, 1982 6 7 8 9
 saving you lots of 1983 10 11 12 13
 typing and testing. 1984 14 15 16 17
 1985 18 19

AWIIe Toolkit (Don Lancaster, Synergetics)............................$39
ES-CAPE: Extended S-C Applesoft Program Editor (new price, was $60) $40
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36
MacASM -- Macro Assembler for MacIntosh (Mainstay).........($150.00) $100

Blank Diskettes (Verbatim)......................... package of 20 for $32
 (Premium quality, single-sided, double density, with hub rings)
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100
Envelopes for Diskette Mailers............................. 6 cents each

65802 Microprocessor (Western Design Center)...................($95) $50
quikLoader EPROM System (SCRG)................................($179) $170
PROmGRAMER (SCRG)..($149.50) $140
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32

"Apple ProDOS: Advanced Features for programmers", Little..($17.95) $17
"Inside the Apple //c", Little..............................($19.95) $18
"Inside the Apple //e", Little..............................($19.95) $18
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18
"Apple][Circuit Description", Gayler......................($22.95) $21
"Understanding the Apple II", Sather........................($22.95) $21
"Understanding the Apple //e", Sather.......................($24.95) $23
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2057 of 2550

Apple II Computer Info

"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20
"Beneath Apple DOS", Worth & Lechner........................($19.95) $18
"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18
"6502 Assembly Language Programming", Leventhal.............($18.95) $18
"6502 Subroutines", Leventhal...............................($18.95) $18
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9
"Microcomputer Graphics", Myers.............................($12.95) $12
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16
"Assembly Lines -- the Book", Wagner........................($19.95) $18
"AppleVisions", Bishop & Grossberger........................($39.95) $36

 Add $1.50 per book for US shipping. Foreign orders add postage needed.
 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2058 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:Articles:New.Cat.Revisit.txt
==

New Catalog Revisited........................Robert F. O'Brien
 Dublin, Ireland

In the May issue of AAL Bob S-C published my article "A New Catalog
for Dos 3.3" - he failed to mention or take credit for the fact that
he modified my routine and managed to leave a whopping 17 spare bytes
- which is 16 more than I left. I was happy enough to have added the
new features.

At the end of that article Bob S-C set the challenge to add the Disk
Volume message back. However, I have another possible use for those
17 spare bytes - well at least 14 of them!

How about a single-key format control feature for the Catalog command?
The user issues the CATALOG command normally; then one more keypress
will select either a normal or double- barrelled Catalog display.

Once you install the following additional code, when you issue the
CATALOG command the routine waits for a keypress. If you press "D"
you get a double-barrelled Catalog listing for your 80-column card or
printer. Any other keypress will result in the normal 40-column
version.

The line numbers on the 14-byte routine which follows make the code
fit into the listing from the May article.

 1320 CATALOG
AD98- 20 0C FD 1321 JSR MON.RDKEY await keypress
AD9B- 49 8E 1322 EOR #$8E "D" ($C4) eor LSR ($4A)
AD9D- C9 4A 1323 CMP #$4A if was "D", now LSR
AD9F- F0 02 1324 BEQ .0 ...it was "D"
ADA1- A9 38 1325 LDA #$38 SEC opcode
ADA3- 8D 21 AE 1326 .0 STA DBL.SWITCH set option
 .
 .
 .
 2010 DBL.SWITCH SEC
 .
 .
 .
 2150 .BS 3 three free bytes.

The code above is of the deadly self-modifying variety, so beware.

Note that if you have version 2.0 of the S-C Macro Assembler, you can
write line 1322 as EOR #"D"^$4A if you wish.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2059 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:Articles:ProDOS.DOS.Load.txt
==

Reading DOS 3.3 Disks With ProDOS..........Bob Sander-Cederlof

At the track and sector level, DOS 3.3 disks are identical to ProDOS
disks. They both have 35 tracks, 16 sectors, and the sectors are laid
out on the tracks the same way in both systems. You can use DOS's
COPYA program to copy ProDOS disks, and you can use some ProDOS
utilities on DOS disks.

The structure of the files is of course entirely different between the
two systems. Hence the need for the CONVERT program found on ProDOS
system master disks, and the System Utilities Disk that comes with the
//c. Unfortunately both of the above programs have bugs that get in
the way nearly every time I want to move a file from DOS to ProDOS.
The one that bites me the most is the way CONVERT dies when it
encounters a DOS filename which does not start with a letter. We
routinely use such "illegal" filenames on our disks to separate and
identify sections of long catalogs, but CONVERT goes absolutely crazy
when it finds one.

Therefore, I decided to write a program which could "LOAD" assembler
source files from a DOS 3.3 disk while I am running the ProDOS version
of the S-C Macro Assembler. Even with error messages and other fancy
features, the program turns out to be only a little over $280 bytes
long, and it works.

It is based on the fact that the Block Read MLI call does not care
whether the disk being read is a DOS or a ProDOS disk. The Block Read
MLI call reads 512 bytes, or two sectors, at a time. The call looks
like this:

 JSR $BF00 (MLI link in global page)
 .DA #$80 (block read code)
 .DA PARMLIST (address of parameters)

MLI returns with carry clear if there was no error, or carry set if
there was an error. The error code will be in the A-register if there
was an error.

The PARMLIST for Block Read looks like this:

 PARMLIST .DA #3 (3 parameters)
 .DA #$60 (1-byte unit number)
 .DA BUFFER (address of 512-byte buffer)
 .DA 2 (2-byte block number)

Page 3-17 of "Beneath Apple ProDOS" contains a table which converts
block numbers to physical track/sector, and vice versa. The latest
printing of the book also includes a line which correlates the
physical sector values to the DOS 3.3 logical sector. Boiling it

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2060 of 2550

Apple II Computer Info

down, you can derive a ProDOS block number from the DOS 3.3 logical
sector by multiplying the track number by 8 and adding a value
according to the sector number from the following table:

 DOS sector #: 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0 7 6 6 5 5 4 4 3 3 2 2 1 1 0 F

For example, track 0 sector 2 is in ProDOS block 6. The only problem
is, so is DOS track 0 sector 3. We also need to remember whether a
given sector is in the upper or lower half of a 512-byte block.

I developed the following subroutine, which will translate the DOS
logical track and sector numbers into the appropriate block number,
read the block, and return with the address of the buffer page in
which the sector data has been read. Call the routine with the track
number in the A-register and the sector number in the X-register. The
high-byte of the buffer address will return in the X-register. If MLI
detects an error, the subroutine will return with carry set.

RTS LDY #0 ASSUME BLOCK # < $100
 ASL FORM TRACK*8
 ASL
 ASL
 BCC .1 ...BLOCK < $100
 INY ...BLOCK > $0FF
.1 ASL *2, MAKE ROOM FOR H/L FLAG BIT
 ORA BLKTBL,X MERGE FROM SECTOR TRANSLATION
 ROR H/L FLAG BIT TO CARRY
 STA BLOCK
 STY BLOCK+1
 LDX /BLOCK.BUFFER HIGH BYTE OF BUFFER ADDRESS
 BCC .2 ...LOWER HALF OF BUFFER
 INX ...UPPER HALF OF BUFFER
.2 JSR $BF00
 .DA #$80,PARMLIST
 RTS

BLKTBL .HS 00.0E.0D.0C.0B.0A.09.08
 .HS 07.06.05.04.03.02.01.0F

PARMLIST
 .DA #3
 .DA #$60 SLOT 6, DRIVE 1
 .DA BLOCK.BUFFER
BLOCK .DA 0 <FILLED IN>

After playing with the subroutine a while, I proceeded to write the
load program. Using a well-worn copy of "Beneath Apple DOS", I
figured out once more how to work through a DOS catalog. I decided to
display a menu of files on the screen, and allow a single keystroke to
select a file to be loaded.

The program that follows is designed to work with the ProDOS version
of the S-C Macro Assembler. Assuming it has been assembled and is in

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2061 of 2550

Apple II Computer Info

a ProDOS binary file as DOS.LOAD, and assuming you have booted the
ProDOS version of the S-C Macro Assembler, you can start up the load
program by typing "-DOS.LOAD". It will load source files from DOS
disks, which are DOS type I files, and place them in the assembler's
edit area. After selecting the slot and drive, the program reads the
DOS catalog and displays 20 filenames at a time. Only type I
filenames are displayed, any others are skipped over. If there are
more than 20 files, you can page through them. If you change your
mind about loading a file, you can abort. If you see the file you
want to load, you type a single letter to select it. A few seconds
later it has been loaded, and you are returned to the assembler.

The assembler's soft entry point is at $8003, and the load program
jumps there after finishing a load or after encountering an error.
Three pointer locations in page zero which the assembler uses are used
by the load program: HIMEM ($73,74) points one byte higher than the
program can be loaded; PP ($CA,CB) will point to the beginning of the
program, if it is successfully loaded; LOMEM ($67,68) points to the
lowest address the program can occupy. HIMEM is normally at $7400,
and LOMEM at $1000, but these can be changed with the HIMEM and LOMEM
commands. LOMEM could be set as low as $0800.

With these limitations on the program extent ($0800...73FF), you can
see that the maximum size assembler source file that can be loaded
from a DOS disk is $6C00 bytes, or 108 sectors. Or, if you prefer to
leave LOMEM at $1000, you can load $6400 bytes or 100 sectors. Most
likely you do not have any source files which are bigger than that
anyway. If you do, you need to load the DOS version of the assembler
and split the files before they can be transferred to ProDOS. The
maximum size file of 108 data sectors would only have one track/sector
list, so I did not include any logic to chain to a second track/sector
list. You may be wondering where the load program itself loads....

The command interpreter I developed for the ProDOS version of the S-C
Macro Assembler has three 1024-byte buffers permanently allocated
between $7400 and $7FFF. None of them will be in use while the load
program is executing, so I borrowed some of that space for the load
program. The load program itself loads inside the buffer space
allocated to the EXEC command, at $7400-77FF. The blocks read by MLI
will be stored at $7C00-7DFF, and I will save a copy of the
track/sector list for the file being loaded at $7E00-7EFF.

Now for a description of the actual code. Lines 1270-1410 ask you to
type in the slot and drive numbers of the floppy drive the DOS disk is
in. ProDOS uses a "unit number", which is a coded form of the slot
and drive all in one byte. The slot number is in bits 4-6, and the
drive number (0 or 1, corresponding to drives 1 or 2 respectively) in
bit 7. My subroutine GETNUM prints a prompt message (selected by the
Y-register), inputs a single character from the keyboard, and checks
it for legal range. GETNUM is designed to accept only digits,
starting with "1", and up to but not including the value in the A-
register when GETNUM is called.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2062 of 2550

Apple II Computer Info

Once the unit number has been established, we fall into the LOAD.MENU
code. This code is somewhat convoluted, enough to disgust even me.
Interlocking loops? Multiple entries and exits? Ouch! Maybe it
really IS structured code, but just not in Euclidean space. I think
maybe it could be diagrammed on the surface of a Klein bottle
(recursive torus?).

Anyway, let's walk through it. Line 1440-1500 set up a fresh menu
display and read in the DOS VTOC page so we can start reading the
catalog. The second and third bytes in the VTOC page give the track
and sector of the first catalog sector. This is almost always track
$11, sector $0F; however, by starting at VTOC, we are a little more
general. We are still assuming we know where the VTOC is, which is
track $11, sector 0. Some non-standard software sets up disks with
the VTOC somewhere else, but you are very unlikely to find any S-C
source code on such a disk. Each sector of the catalog also contains
the track/sector of the next catalog sector in the 2nd and 3rd bytes.

Lines 1530-1550 read in the next catalog sector and set the pointer to
the first file entry in that sector. Each file entry is 35 bytes
long, and the first one starts at $0B within the sector. The
subroutine READ.NEXT.CATALOG.SECTOR will return with carry set if
there are no more catalog sectors. The first time through this code,
when we fall in from the code above, we will read the first catalog
sector.

Lines 1570-1960 pick up filenames out of the catalog sectors and write
them on the screen. Not all file names are used: line 1610 filters
out deleted files; lines 1660-1700 filter out files which are not type
I. The track and sector of the active type-I files are saved in an
array, indexed by the menu letter. These values are first picked up
in lines 1620-1650, and added to the array in lines 1870-1940. Lines
1720-1770 print the menu letter and two dashes, and then lines 1780-
1850 print the filename.

Lines 1950-1960 decrement the line count and test if the screen is
full yet. I arbitrarily call a screen full if it has 20 filenames,
leaving room for my three-line prompt message. We jump to
MENU.SELECTION when we reach 20 lines or when we reach the end of the
catalog, whichever comes first.

If we are not yet at the end of catalog and have not yet filled the
screen, or if the file was one that got filtered out of the menu, we
come to GET.NEXT.FILE at line 1980. Lines 1990-2040 update the
pointer into the catalog sector so that it points at the next file, if
there is another one. If so, we branch back to NEXT.FILE.NAME, to try
the next one in the current sector. If no more names in this sector,
we go back to NEXT.CAT.SECTOR to get the next catalog sector (if any).

When we reach the end of catalog, lines 2070,2080 set a flag. We need
a flag to tell whether it was screen-full or catalog- end which caused
us to come to MENU.SELECTION, so we can either continue through the
catalog or wrap-around to the beginning should you wish to see another
screenful of filenames.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2063 of 2550

Apple II Computer Info

The MENU.SELECTION section prints a three-line prompt message and
waits for you to type a character. If you type a space, you seethe
next screenful of filenames. (Of course, if there are fewer than 21
type I files on the disk you will see the same ones over again.) If
you type the RETURN or ESCAPE keys, the load program will abort,
returning directly to the assembler without loading a file. If you
type a letter in the range of the menu, that file will be loaded. Any
other key is ignored.

Lines 2260-2370 convert the menu letter you typed into an index to get
the track and sector for the track/sector list of the selected file.
The track/sector list contains the track and sector for every data
sector in the file. Line 2310 reads the track/sector list, and lines
2330-2370 copy it into a special buffer.

The first two bytes of the first data sector of a type-I file contain
the length of the file. We need to know the length so we can figure
out where to read the data. Lines 2390-2510 read in the first data
sector and get the file size.

Lines 2520-2630 figure out where PP should be set so that the file
exactly fits between PP and HIMEM, and checks to make sure that it
does not go below LOMEM.

Lines 2650-2670 copy the rest of that first sector into the load area,
starting at PP. If the file is so short it doesn't fill the first
data sector, the LOAD.FROM.SECTOR subroutine will return with carry
set and we will return to the assembler, all finished. Otherwise, we
fall into the code below, to load the succeeding data sectors.
Eventually we will bump into HIMEM, and we are finished.

Now that this program is working I can see neat ways to extend it.
Why restrict it to type-I files? It could also BLOAD type-B files, as
long as an appropiate load address was set up. It could do the
equivalent of a BLOAD on a type-T file, which then could be BSAVE as
type TXT in ProDOS. Seems like we might be able to do away with the
need for CONVERT, at least in the direction of moving from DOS to
ProDOS.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2064 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:Articles:Recursive.Cat.txt
==

Multi-Level ProDOS Catalog.................Bob Sander-Cederlof

Last week I looked through some old piles of papers and came across a
program by Greg Seitz, dated Dec 20, 1983. It was attached to a set
of ProDOS Tech Notes, and Greg apparently worked at Apple at that
time.

Greg's program lists the filenames of an entire ProDOS directory,
showing the whole tree. It shows directory files by printing a slash
in front of the filename, and shows the level by indenting. For
example, a typical listing might look like this:

 PRODOS
 BASIC.SYSTEM
 /UTILITIES
 HELPER
 DOER
 /MORE
 WHATEVER
 AND.ANOTHER
 TEXT.FILE
 ANOTHER

A listing like this can be a big help in finding things on a large
hard disk. The program can also be extended in many ways. One that
comes to mind immediately is to print the rest of the CATALOG
information as well as the file names. Another is to create a
complete CATALOG MANAGER utility, which would permit re-arranging the
filenames, promoting and demoting files, and so on.

I typed in Greg's program, and then I rewrote it. The listing that
follows bears very little resemblance to his code, but I do thank him
for the help in getting started.

The program assumes a prefix has been set. If there is no prefix, you
will get a beep and no listing. If there is a prefix, and the
directory named is online, the listing will begin with that directory.
Another enhancement would be to display the current prefix, and allow
accepting it or changing it before starting the filename listing.

If we were always starting with the volume directory, it would be a
little easier. The volume directory always starts in block 2.
However, since we are able to start with any directory, we do not know
where it starts. ProDOS allows you to read a directory, and we can
get the first block of any directory by using MLI to open the
directory file.

Lines 1100-1120 read the current prefix into a buffer. The lines
1130-1150 open that file. Although I have never seen it in the books,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2065 of 2550

Apple II Computer Info

apparently OPEN also reads the first block. After the OPEN call,
BUFFER.ONE contains the first block of the directory file. Unless we
are willing to do a complete search without ProDOS's help, this is the
only way I know of to find the first block of a directory file (other
than the volume directory).

Since the only reason to OPEN the directory file was to read the first
block, lines 1180-1200 close it again. If any of these MLI calls
don't go through, line 1210 will ring the alarm and stop.

Lines 1230-1260 start up the directory listing. The first block ONLY
will be in BUFFER.ONE. All subsequent blocks will be read into
BUFFER.TWO. In order to make the LIST.DIRECTORY program completely
recursive, it is called with the buffer address in a zero-page
pointer. SETUP.NEXT.BLOCK also gets the next block pointer from the
buffer and saves it in NEXT.BLOCK.

LIST.DIRECTORY is really quite simple, in spite of its size. Its main
function is to print a list of filenames. Each filename is preceded
by a number of blanks, determined by NEST.LEVEL. NEST.LEVEL is
incremented at line 1290, each time LIST.DIRECTORY is called. If a
file listed happens to be a directory file, LIST.IDRECTORY saves all
the pointers and counters on the stack and then calls itself. When
the subdirectory's files have all been listed, that recursive call of
LIST.DIRECTORY will return, the pointers and counters can be
unstacked, and the listing can continue.

The format of the information in a directory is detailed quite well in
both "Beneath Apple ProDOS" and "Apple ProDOS Advanced Features". (We
recommend and sell both books.) The first four bytes of each block
are two block numbers: that of the previous block, and that of the
next block, in the same directory. This allows scanning in both
forward and reverse directions through a directory. We will only use
the next-block pointers in our program. After the block numbers there
are 13 descriptors of 39 bytes each. The first descriptor in a
directory describes the directory itself, and the rest describe files.

For some reason Apple was not quite sure that it would always use 13
39-byte descriptors, so they stored these two numbers in the directory
descriptor. Anyone who access a directory is supposed to look up
these two numbers and use them, just in case Apple decides to change
them someday. The directory descriptor also contains an active file
count. When a file is deleted this count is decremented, but the file
descriptor remains. We use the active file count to determine when we
reach the end of a directory. Lines 1300-1360 pick up the bytes per
descriptor, descriptors per block, and active file count and save
them.

Lines 1370-1450 set up PNTR to point at the first file descriptor,
which follows the directory header. CURRENT.ENTRY.NUMBER will count
up to 13, so we will know when it is time to read another block. We
start at 2, because the first block uses the first descriptor for the
header. We also clear the file count.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2066 of 2550

Apple II Computer Info

Lines 1460-1500 check for the special case of an empty directory. If
there are no active files, we are finished.

Lines 1510-1750 print out the file name from the current file
descriptor. The first byte of a descriptor contains a code for the
type of file in the first nybble, and the length of the file name in
the second nybble. If both are zero, the file has been deleted. The
other legal values are $1x, $2x, and $3x to signify a seedling,
sapling, or tree file, respectively; and $Dx to signify a directory
file. All we care about is whether is a directory file or not, and
how long the file name is.

If it is a directory file, lines 1760-2100 will be executed. Lines
1760-1860 push the counters and pointers on the stack. Lines 1870-
1930 read in the first block of the sub-directory. Line 1950 calls
LIST.DIRECTORY to list the subdirectory. After it is finished, line
1960 will decrement the nesting level. Lines 1970-2060 unstack the
pointers and counters. If we were still in the first block of the
highest level directory (where we started), we do not need to read the
block again: it is still in BUFFER.ONE. Otherwise, lines 2070-2100
read the block back in. If we did not care how much memory we used,
we could make this program a lot faster by using more buffers. We
could have a different buffer for each level, so that blocks would
never have to be re-read.

Lines 2110-2210 count the file just listed, and then check to see if
our count is the same as the active file count from the directory
header. If so, we are finished.

If we are not finished, lines 2220-2290 bump the pointer into the
directory block by the size of a descriptor entry. If we are still in
the same block, that is all that we need to do. If not, lines 2350-
2420 read in the next block and set things up for it. Then it's back
to the top again for the next file name!

We hope some time in the not-so-distant future to be able to write a
complete catalog manager program like I started to describe back at
the beginning of this article. Some of you are using Bill Morgan's
CATALOG ARRANGER for DOS 3.3, and this would be an equivalent utility
for ProDOS. We're not quite ready yet, but this program is a step in
the right direction.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2067 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:Articles:SpeedDemon.txt
==

Review of M-c-T SpeedDemon.................Bob Sander-Cederlof

Is the Apple II a slow machine? Hey, it MUST be! After all, it is
over 8 years old! It only has an 8-bit microprocessor! It only has a
1-MHz clock! It must be many times slower than today's PC clones,
etc. Isn't it?

No.

The 6502 is inherently faster than most other microprocessors. An old
rule of thumb had it that a 4-MHz Z-80 ran roughly the same speed as a
1-MHz 6502. Other factors, such as memory speeds, overhead for screen
and keyboard, and disk I/O also influence the overall speed, often in
favor of the venerable Apple.

Some comparisons come to mind with machines from the past. Anyone
remember MIT's "Whirlwind"? A long time ago, its speed was considered
super. I'll bet it wasn't as fast as an Apple. According to the
book, it had an upper limit of 2048 16-bit words of "high-speed"
memory, and had a design limit of 50,000 instructions per second. In
actual implementation, it only ever achieved 20,000 operations per
second. And that was with a 1 MHz clock! The 6502 with a 1 MHz clock
runs from 500,000 to 142,000 operations per second, depending on which
ones you are doing. Probably an average of 250,000.

How about the Bendix G-15? It was the "personal" computer of the
1950's, roughly the size of a large refrigerator (much warmer though)
and selling for only $50,000. Engineering firms bought them eagerly
for their friendly features, amazing flexibility, capacity, and speed.
Let's see.... G-15 had 2183 words of RAM, on a magnetic drum, 29 bits
per word. Most operations were measured in milliseconds. A floating
point interpretive package, called Intercom 500 (or 1000 for double
precision), could almost keep up with the typewriter (an IBM
Executive, the primary user I/O device). Paper tape cassettes served
as handy off-line storage devices.

Some other popular systems were considered fast with memory cycle
times over ten microseconds per byte. Fast enough to support several
users in a timesharing environment, compile large Fortran programs,
and manage large businesses. And usually with smaller than 128K bytes
of RAM. Or "core", as we called it in those days.

Nevertheless, Apples often seem slow. Because we ask them to do a
lot, and don't want to wait around while it is done. And tolerable
waiting times one day seem intolerable the next, because we get used
to it. Remember when a trip around the world in 80 days seemed
impossibly fast?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2068 of 2550

Apple II Computer Info

Perceived necessity being a prime motivator for innovation, several
methods for dramatically accelerating Apples have been developed.
Titan Technologies markets the Accelerator, and Microcomputer
Technologies (McT) the SpeedDemon. These both promise "up to" 3.5
times faster running speed, and actually deliver an average of over 2
times faster.

We have wanted to try one of these boards for years. The price was
too high and our faith too low, so we never bought one. Recently the
price has dropped considerably, and reports from friends using them
have increased our faith. When McT offered to loan us one for a
month, we had no more resistance at all.

Imagine this scenario: the card arrives by UPS at noon. Thirty
seconds later we have it in our hands, and are trying to find an Apple
with at least one empty slot. Despairing of that, we take out a card
and make room for the SpeedDemon in our //e. We turn on the //e, load
up the S-C Macro Assembler, and proceed to assemble the biggest
program we have. Wow! That's fast!

We promptly ran a lot of speed tests, timing various programs we
commonly use around here:

S-C Word Processor
 Load 89 sectors 6.8 5.5 1.2
 Search /###/ 10.4 3.3 3.2
 Replace /85/##/ 8.3 2.8 3.0

Mail Label System (primarily Applesoft)
 Load 48 sectors 23.7 13.8 1.7
 Sort - last name 140.6 49.1 2.9
 Sort - zip code 56.0 20.0 2.8

S-C Macro Assembler
 Assemble 771 lines 7.2 3.0 2.4

AppleWorks Data Base
 Load 47K 25.7 25.0 1.0+
 Sort - last name 2.2 1.0 2.2
 Sort - zip code 5.0 2.0 2.5

AppleWorks Spreadsheet
 Load 35K 20.3 19.3 1.1
 Recalculate 14.9 6.6 2.3
 Insert 9 rows 4.9 1.8 2.7

In a review by Lee The, Personal Computing, Jan 85, the Apple with
SpeedDemon was compared to a Compaq PC. Lee compared the systems
using word processors on the two machines. The accelerated Apple ran
faster in most cases, except when disk I/O was involved. In one case,
even an un-accelerated Apple ran faster; the SpeedDemon to Compaq
ratio was 4.4!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2069 of 2550

Apple II Computer Info

To summarize, the SpeedDemon really does make your software run
faster. The absolute maximum speedup factor is 3.5, but no "real"
program would achieve it. The two things that keep you from reaching
3.5 are I/O and memory.

Some I/O cards, notably the disk interface, use software timing. If
you speed up the processor while trying to read or write the disk, you
are in trouble. SpeedDemon automatically slows down to normal Apple
speed when you access slot 6. Jumpers on the card allow you to do the
same for slots 4 and 5. I have a disk controller in slot 7 in one of
my Apples; I cannot read or write to disks using that controller when
the SpeedDemon is active.

Old Apple serial interface cards used software timing loops to convert
a byte to a bit stream at a given baud rate. These cards normally
were placed in slots 1 or 2, and thus would not be compatible with the
SpeedDemon. Modem cards sometimes use software timing for dialing,
and they would not work right if accelerated. Any sound effects
created through the Apple speaker will be raised way up in pitch.
Music cards which depend on timing loops will make a whole new kind of
sound.

The card can be turned off in two ways, so the above problem areas can
be circumvented. During the power up cycle you have about two seconds
during which you may tap the ESCAPE key. If you do, the card will be
turned off. Then you hit ctrl-RESET to go into a normal boot.
Another way to turn off the card is to store anything into $C05B (POKE
49243,0). After the POKE the Apple will lock up; when you hit ctrl-
RESET it will come back in normal speed. There is no way to turn the
card back on without turning off the Apple. (Some of you can probably
find a way to re-wire it so it could be turned back on.)

The other way the card slows down is during memory access. Apple
memory can only be accessed at a 1 MHz rate, so the processor can
spend time waiting for memory. SpeedDemon has a 4096-byte cache
memory which can run at a full 3.58 MHz rate. The cache is
implemented with 4 static RAM chips, providing 8192 bytes of RAM.
These are paired so that you get 4096 data bytes and 4096 address
bytes. Whenever you read a byte from RAM or ROM, the low-order 12
bits of the address select one of thes 4096 byte pairs. The high 4
bits of the address are compared to the 4 bits in the cache; if they
are the same then the data in the cache is presumed to be the data you
want. If not, the processor will wait for Apple's memory to read, and
then update the cache with the result. Something like that, anyway.
Stores into memory always slow down to a 1 MHz rate, because the
stores MUST be performed in real RAM, not just cache RAM.

I might have been talking through my hat in the above paragraph.
There is no technical documentation available on the SpeedDemon, so I
am just deducing the way it works from external appearances.

The Titan Accelerator card has a full 64K RAM, rather than a cache.
It is therefore a little bit faster. Reports from those who have
tried both indicate Titan is only about 10 percent faster, if that

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2070 of 2550

Apple II Computer Info

much. Of course you could design artificial situations in which the
difference would be much more dramatic. Personally I think I would
rather have the cache. And also the cash, since SpeedDemon costs
about $25 less.

Titan's card draws about 300 ma at 5 volts, SpeedDemon draws about 600
ma. Titan's card uses more CMOS, and is more sensitive to static
electricity.

SpeedDemon uses a 65C02, so you have the additional opcodes and
address modes of this enhanced 6502 chip available. I believe you
could romove the 65C02 plug a 65802 into the socket and gain even
greater enhancements. You would have to have a 65802 rated at 4MHz,
but the ones I have are only 2 MHz chips.

There are five PLA's on the SpeedDemon. At least some of these are
used to keep track of whatever bank switching you do with Apple's RAM
and ROM. Somehow they are able to keep track of the RAMWORKS card
too, so the cache doesn't get confused even with a megabyte of RAM. I
worry about using it with my STB128 card, or the other cards of the
type. Boards which store into Apple RAM using DMA transfer will
possible give trouble. I don't know for certain because I don't have
any.

I also worried about compatibility with QuikLoader. Both QL and SD
want to take control of the bus on power up or reset. Both substitute
their own firmware for whatever is plugged into the mother board.
Sure enough, when I tried them both in the same machine they did not
work. On power up both cpu's began to operate. SD drew its hi-res
graphic logo, and then died. QL died too. Take either card out, and
all is well.

Speaking of firmware, I should mention that there is a 2716 with 2K of
firmware on the SpeedDemon. When you power up or hit ctrl-RESET the
firmware on the card takes control. It sets a bunch of //e soft
switches, in case it is in a //e, and then looks at the power-up bytes
to see whther this is a RESET or power up. (Remember the power up
bytes at $3F3 and $3F4? These bytes will be random when you first
turn on your Apple, but during initialization they are set so that the
exclusive-or of the two bytes is $A5.) If SpeedDemon thinks you have
pressed ctrl-RESET, it copies a short (21-byte) program from its own
ROM down to $1D0 and jumps to it. The program turns off the
SpeedDemon ROM (by storing at $C800) and then uses a loop to make sure
the cache doesn't contain misleading information (I call this action
TRASHING the CACHE). Then it jumps to Apple's normal reset code.

If SpeedDemon thinks it is power-up time, because the "eor" the bytes
at $3F3 and $3F4 is not $A5, it trashes the cache and copies a large
program down to RAM at $1000 through $17FF. Then it trashes the cache
again, clears the text screen, and jumps to $1000. The copied code at
$1000 turns off the firmware ROM, clears the hi-res screen, switches
on hi-res graphics, and draws the SpeedDemon logo. This all takes
about two seconds. Then it reads the keyboard to see whether you have
typed an ESCAPE, a "1", or a "T". ESCAPE signals SpeedDemon you want

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2071 of 2550

Apple II Computer Info

to run at normal Apple speed, so it shuts itself off. The other codes
cause self-testing code to be executed.

I had a lot of fun figuring out the firmware. It so happens they
purposely arranged all the bits in the EPROM in reverse order, so that
I had to write a program to flip the bytes around before disassembling
the code. I guess it was an attempt to frustrate reverse engineering.
I think they should have re-arranged the address lines too, if they
really are worried about it.

If all the above makes you want to rush right out and buy one, the
price is $295 from Microcomputer Technologies (McT), at 1745 21st St.,
Santa Monica, CA 90404. Their phone number is (213) 829-3641. If you
are a member of Call APPLE, they are selling the SpeedDemon card for
only $199. The name on the card has been changed to "Mach 3.5", but
it is the same as SpeedDemon. Call them at (206) 251-5222. Since the
Call APPLE price is as close to wholesale price as we can get, we will
not be trying to sell this board at S-C Software.

By the way, Call APPLE's ad contains a warning: "Mach 3.5 is not
compatible in speedup mode with Saturn, Legend, Prometheus expansion
memory cards with programs that make use of the extra banks on these
cards. A compatible version of Mach 3.5 may be specially ordered."

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2072 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:ProDOS:S.DOS.LOAD.txt
==

 1000 *SAVE S.DOS.LOAD
 1010 *--------------------------------
 1020 .OR $7400
 1030 .TF DOS.LOAD
 1040 *--------------------------------
 1050 PNTR .EQ $00,01
 1060 CAT.INDEX .EQ $02
 1070 MENU.LETTER .EQ $03
 1080 LINE.COUNT .EQ $04
 1090 TRACK .EQ $05
 1100 SECTOR .EQ $06
 1110 DONE.FLAG .EQ $07
 1120 SIZE .EQ $08,09
 1130 LIMIT .EQ $0A
 1140 *--------------------------------
 1150 LOMEM .EQ $67,68
 1160 HIMEM .EQ $73,74
 1170 PP .EQ $CA,CB
 1180 *--------------------------------
 1190 BLOCK.BUFFER .EQ $7C00
 1200 TS.LIST .EQ $7E00
 1210 *--------------------------------
 1220 MON.RDKEY .EQ $FD0C
 1230 MON.CROUT .EQ $FD8E
 1240 MON.PRHEX .EQ $FDDA
 1250 MON.COUT .EQ $FDED
 1260 *--------------------------------
 1270 DOS.LOAD
 1280 LDY #EM3 "SLOT:"
 1290 LDA #"8" 1...7
 1300 JSR GETNUM 00000SSS
 1310 LSR 000000SS S
 1320 ROR S000000S S
 1330 ROR SS000000 S
 1340 ROR SSS00000
 1350 STA UNIT
 1360 LDY #EM4 "DRIVE:"
 1370 LDA #"3" 1...2
 1380 JSR GETNUM
 1390 LSR
 1400 LSR
 1410 ROR UNIT DSSS0000
 1420 *--------------------------------
 1430 LOAD.MENU
 1440 JSR SETUP.SCREEN
 1450 LDA #17 TRACK 17
 1460 LDX #0 SECTOR 0
 1470 STX DONE.FLAG
 1480 STX PNTR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2073 of 2550

Apple II Computer Info

 1490 JSR RTS READ DOS 3.3 VTOC
 1500 STX PNTR+1 SET POINTER
 1510 *--------------------------------
 1520 NEXT.CAT.SECTOR
 1530 JSR READ.NEXT.CATALOG.SECTOR
 1540 BCS END.OF.CATALOG
 1550 LDY #$0B
 1560 *--------------------------------
 1570 NEXT.FILE.NAME
 1580 STY CAT.INDEX
 1590 LDA (PNTR),Y TRACK
 1600 BEQ END.OF.CATALOG
 1610 BMI GET.NEXT.FILE ...DELETED FILE
 1620 STA TRACK
 1630 INY
 1640 LDA (PNTR),Y
 1650 STA SECTOR
 1660 INY
 1670 LDA (PNTR),Y FILE TYPE
 1680 ASL INGORE LOCK BIT
 1690 CMP #2 MUST BE TYPE I
 1700 BNE GET.NEXT.FILE ...NOT I, SKIP OVER IT
 1710 *---DISPLAY MENU LINE------------
 1720 LDA MENU.LETTER
 1730 JSR MON.COUT DISPLAY MENU LETTER,
 1740 INC MENU.LETTER
 1750 LDA #"-"
 1760 JSR MON.COUT ...TWO DASHES
 1770 JSR MON.COUT
 1780 LDX #30
 1790 .1 INY
 1800 LDA (PNTR),Y
 1810 ORA #$80
 1820 JSR MON.COUT ...AND FILENAME
 1830 DEX
 1840 BNE .1
 1850 JSR MON.CROUT
 1860 *---SAVE T/S OF TS-LIST----------
 1870 LDA MENU.LETTER
 1880 AND #$1F CONVERT TO INDEX
 1890 TAX
 1900 DEX ...SINCE LETTER INC'ED ALREADY
 1910 LDA TRACK
 1920 STA TRACKS,X
 1930 LDA SECTOR
 1940 STA SECTORS,X
 1950 DEC LINE.COUNT
 1960 BEQ MENU.SELECTION BRANCH IF SCREEN FULL
 1970 *--------------------------------
 1980 GET.NEXT.FILE
 1990 CLC
 2000 LDA CAT.INDEX
 2010 ADC #35
 2020 TAY BUMP INDEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2074 of 2550

Apple II Computer Info

 2030 BCC NEXT.FILE.NAME
 2040 BCS NEXT.CAT.SECTOR
 2050 *--------------------------------
 2060 END.OF.CATALOG
 2070 LDA #1
 2080 STA DONE.FLAG
 2090 MENU.SELECTION
 2100 LDY #EM0 3-LINE PROMPT
 2110 JSR PRINT.MSG
 2120 .2 JSR MON.RDKEY
 2130 CMP #$E0 LOWER CASE?
 2140 BCC .3
 2150 AND #$DF STRIP CASE
 2160 .3 CMP #" " SPACE?
 2170 BEQ MENU.NEXT.SCREEN
 2180 CMP #$8D RETURN?
 2190 BEQ ABORT
 2200 CMP #$9B ESCAPE?
 2210 BEQ ABORT
 2220 CMP #"A"
 2230 BCC .2 NOT A-Z, SO IGNORE
 2240 CMP MENU.LETTER
 2250 BCS .2 BEYOND VALID VALUES
 2260 *---GET T/S LIST-----------------
 2270 AND #$1F CONVERT LETTER TO INDEX
 2280 TAY
 2290 LDX SECTORS,Y
 2300 LDA TRACKS,Y
 2310 JSR RTS READ TRACK/SECTOR LIST
 2320 STX PNTR+1 SET POINTER
 2330 LDY #0
 2340 .4 LDA (PNTR),Y MOVE T/S LIST TO ITS BUFFER
 2350 STA TS.LIST,Y
 2360 INY
 2370 BNE .4
 2380 *---GET THE FILE SIZE------------
 2390 LDY #$0C POINT AT FIRST T/S
 2400 STY CAT.INDEX
 2410 LDA TS.LIST,Y TRACK
 2420 BEQ ERR.EMPTY.FILE
 2430 LDX TS.LIST+1,Y SECTOR
 2440 JSR RTS READ FIRST SECTOR
 2450 STX PNTR+1
 2460 LDY #0
 2470 LDA (PNTR),Y GET FILE SIZE
 2480 STA SIZE
 2490 INY
 2500 LDA (PNTR),Y
 2510 STA SIZE+1
 2520 *---MAKE ROOM FOR FILE-----------
 2530 SEC
 2540 LDA HIMEM
 2550 SBC SIZE
 2560 STA PP SET ASSEMBLER'S POINTER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2075 of 2550

Apple II Computer Info

 2570 STA LPTR+1 AND OUR LOAD POINTER
 2580 LDA HIMEM+1
 2590 SBC SIZE+1
 2600 STA PP+1
 2610 STA LPTR+2
 2620 CMP LOMEM+1
 2630 BCC ERR.TOO.BIG ...TOO LOW
 2640 *---LOAD FROM 1ST SECTOR---------
 2650 INY POINT AT FIRST PROGRAM BYTE
 2660 .5 JSR LOAD.FROM.SECTOR
 2670 BCS ABORT ...END OF LOAD
 2680 *---LOAD REST OF FILE------------
 2690 LDY CAT.INDEX
 2700 INY
 2710 INY
 2720 BEQ ABORT
 2730 STY CAT.INDEX NEXT TRACK/SECTOR
 2740 LDA TS.LIST,Y TRACK
 2750 BEQ ABORT ...END OF FILE
 2760 LDX TS.LIST+1,Y SECTOR
 2770 JSR RTS READ IT
 2780 STX PNTR+1 SET POINTER
 2790 LDY #0
 2800 BEQ .5 ...ALWAYS
 2810 *--------------------------------
 2820 ABORT JMP $8003 WARMSTART ASSEMBLER
 2830 *--------------------------------
 2840 MENU.NEXT.SCREEN
 2850 LDA DONE.FLAG
 2860 BEQ .1
 2870 JMP LOAD.MENU START ALL OVER
 2880 .1 JSR SETUP.SCREEN
 2890 JMP GET.NEXT.FILE
 2900 *--------------------------------
 2910 ERR.EMPTY.FILE
 2920 LDY #EM1
 2930 .HS 2C
 2940 ERR.TOO.BIG
 2950 LDY #EM2
 2960 JSR PRINT.MSG
 2970 JMP $8003
 2980 *--------------------------------
 2990 PRINT.MSG
 3000 .1 LDA EMS,Y
 3010 BEQ .2 00 IS END OF MESSAGE
 3020 JSR MON.COUT
 3030 INY
 3040 BNE .1 ...ALWAYS
 3050 .2 RTS
 3060 *--------------------------------
 3070 GETNUM
 3080 STA LIMIT
 3090 JSR PRINT.MSG PROMPT
 3100 .1 JSR MON.RDKEY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2076 of 2550

Apple II Computer Info

 3110 CMP #"1"
 3120 BCC .1 GO BACK IF TOO SMALL
 3130 CMP LIMIT
 3140 BCS .1 ...OR TOO LARGE
 3150 JSR MON.COUT ECHO CHARACTER
 3160 EOR #"0" EXTRACT VALUE
 3170 RTS
 3180 *--------------------------------
 3190 READ.NEXT.CATALOG.SECTOR
 3200 LDA #$0B RESTART INDEX
 3210 STA CAT.INDEX
 3220 SEC IN CASE NO MORE SECTORS
 3230 LDY #2
 3240 LDA (PNTR),Y
 3250 TAX SECTOR
 3260 DEY
 3270 LDA (PNTR),Y TRACK
 3280 BEQ .1 END OF CATALOG
 3290 JSR RTS READ IT
 3300 STX PNTR+1 PAGE IN BUFFER
 3310 CLC SIGNAL WE GOT A SECTOR
 3320 .1 RTS
 3330 *--------------------------------
 3340 * READ TRACK/SECTOR
 3350 * (A)=TRACK, (X)=SECTOR
 3360 * RETURNS (X)=PAGE OF BUFFER CONTAINING SECTOR
 3370 * CARRY SET IF ERROR
 3380 * CLOBBERS (A) AND (Y)
 3390 *--------------------------------
 3400 RTS
 3410 LDY #0
 3420 ASL TRACK*8
 3430 ASL
 3440 ASL
 3450 BCC .1 BLOCK < $100
 3460 INY BLOCK > $0FF
 3470 .1 ASL *2, MAKE ROOM FOR H/L FLAG BIT
 3480 ORA BLKTBL,X
 3490 ROR H/L BIT TO CARRY
 3500 STA BLOCK
 3510 STY BLOCK+1
 3520 LDX /BLOCK.BUFFER
 3530 BCC .2 LOWER HALF OF BLOCK
 3540 INX UPPER HALF OF BLOCK
 3550 .2 JSR $BF00
 3560 .DA #$80,PARMLIST
 3570 BCS .3 ...ERROR
 3580 RTS
 3590 .3 PHA SAVE ERROR CODE
 3600 LDY #EM5 "ERROR"
 3610 JSR PRINT.MSG
 3620 PLA
 3630 JSR MON.PRHEX DISPLAY CODE
 3640 JMP $8003 SOFTLY BACK TO S-C MACRO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2077 of 2550

Apple II Computer Info

 3650 *--------------------------------
 3660 SETUP.SCREEN
 3670 LDA #20 LINES PER SCREEN
 3680 STA LINE.COUNT
 3690 LDA #"A" START MENU WITH LETTER "A"
 3700 STA MENU.LETTER
 3710 JSR MON.CROUT THREE BLANK LINES
 3720 JSR MON.CROUT
 3730 JMP MON.CROUT RETURN THROUGH CROUT
 3740 *--------------------------------
 3750 * RETURN .CS. IF END OF LOAD
 3760 *--------------------------------
 3770 LOAD.FROM.SECTOR
 3780 LDA LPTR+1 IS THERE ROOM FOR
 3790 CMP HIMEM ANOTHER BYTE?
 3800 LDA LPTR+2
 3810 SBC HIMEM+1
 3820 BCS LFS2 NO, END OF LOAD
 3830 LDA (PNTR),Y
 3840 LPTR STA $5555
 3850 INC LPTR+1
 3860 BNE .1
 3870 INC LPTR+2
 3880 .1 INY
 3890 BNE LOAD.FROM.SECTOR
 3900 LFS2 RTS
 3910 *--------------------------------
 3920 EMS
 3930 EM0 .EQ *-EMS
 3940 .HS 8D
 3950 .AS -/TYPE LETTER TO LOAD A FILE,/
 3960 .HS 8D
 3970 .AS -/OR <SPACE> FOR MORE FILES,/
 3980 .HS 8D
 3990 .AS -/OR <RET> OR <ESC> TO ABORT: /
 4000 .HS 00
 4010 EM1 .EQ *-EMS
 4020 .HS 8D
 4030 .AS -/FILE IS EMPTY/
 4040 .HS 00
 4050 EM2 .EQ *-EMS
 4060 .HS 8D
 4070 .AS -/FILE IS TOO BIG/
 4080 .HS 00
 4090 EM3 .EQ *-EMS
 4100 .AS -/ SLOT: /
 4110 .HS 00
 4120 EM4 .EQ *-EMS
 4130 .HS 8D
 4140 .AS -/DRIVE: /
 4150 .HS 00
 4160 EM5 .EQ *-EMS
 4170 .HS 8D
 4180 .AS -/ERROR /

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2078 of 2550

Apple II Computer Info

 4190 .HS 00
 4200 *--------------------------------
 4210 BLKTBL .HS 00.0E.0D.0C.0B.0A.09.08
 4220 .HS 07.06.05.04.03.02.01.0F
 4230 *--------------------------------
 4240 PARMLIST
 4250 .DA #3
 4260 UNIT .HS 60 DRIVE-1*8+SLOT*16
 4270 .DA BLOCK.BUFFER
 4280 BLOCK .DA 2
 4290 *--------------------------------
 4300 TRACKS .BS 21
 4310 SECTORS .BS 21

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2079 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8507:ProDOS:S.RECURCAT.txt
==

 1000 *SAVE S.RECURCAT
 1010 *--------------------------------
 1020 MLI .EQ $BF00
 1030 DEVNUM .EQ $BF30
 1040 BELL .EQ $FBDD
 1050 CROUT .EQ $FD8E
 1060 COUT .EQ $FDED
 1070 PNTR .EQ $EB AND EC
 1080 *--------------------------------
 1090 CAT
 1100 JSR MLI GET CURRENT PREFIX
 1110 .DA #$C7,P.PREFIX
 1120 BCS .1 ...ERROR
 1130 JSR MLI OPEN THE DIRECTORY
 1140 .DA #$C8,P.OPEN AND READ FIRST BLOCK
 1150 BCS .1 ...ERROR
 1160 LDA DEVNUM SET UP READ MLI BLOCK
 1170 STA R.DEVNUM
 1180 JSR MLI CLOSE THE DIRECTORY
 1190 .DA #$CC,P.CLOSE
 1200 BCC .2 ...NO ERROR
 1210 .1 JSR BELL INDICATE ERROR
 1220 RTS
 1230 .2 LDA #0 BUFFERS ON PAGE BOUNDARIES
 1240 STA NEST.LEVEL START AT TOP LEVEL
 1250 LDY /BUFFER.ONE POINT TO NEXT BLOCK
 1260 JSR SETUP.NEXT.BLOCK
 1270 *--------------------------------
 1280 LIST.DIRECTORY
 1290 INC NEST.LEVEL DROP TO NEXT LEVEL
 1300 *---GET DIR DATA-----------------
 1310 LDY #38
 1320 .1 LDA (PNTR),Y GET: BYTES.PER.ENTRY....35
 1330 STA BYTES.PER.ENTRY-35,Y ENTRIES.PER.BLOCK..36
 1340 DEY FILE.COUNT......37,38
 1350 CPY #35
 1360 BCS .1
 1370 *---POINT TO FIRST FILE NAME-----
 1380 LDA #2 SKIP OVER DIR HEADER
 1390 STA CURRENT.ENTRY.NUMBER
 1400 ASL A=4, CLEAR CARRY
 1410 ADC BYTES.PER.ENTRY
 1420 STA PNTR POINT AT FIRST NAME
 1430 LDA #0 START FILE COUNT
 1440 STA CURRENT.FILE.COUNT
 1450 STA CURRENT.FILE.COUNT+1
 1460 *---STOP IF NO ACTIVE FILES------
 1470 LDA ACTIVE.FILE.COUNT
 1480 ORA ACTIVE.FILE.COUNT+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2080 of 2550

Apple II Computer Info

 1490 BNE .2 ...AT LEAST ONE FILE
 1500 RTS ...END OF DIRECTORY
 1510 *---PRINT FILE NAME--------------
 1520 .2 LDY #0 POINT TO TYPE/LENGTH
 1530 LDA (PNTR),Y
 1540 BEQ .8 0 = DELETED FILE
 1550 AND #$0F ISOLATE NAME LENGTH
 1560 TAX X = #CHARS IN NAME
 1570 LDY NEST.LEVEL NUMBER OF LEADING BLANKS
 1580 LDA #" "
 1590 .3 JSR COUT INDENT BY DIRECTORY LEVEL
 1600 DEY
 1610 BNE .3
 1620 LDA (PNTR),Y GET TYPE/LENGTH
 1630 PHA 1L, 2L, 3L, OR DL
 1640 BPL .4 ...NOT DIR FILE
 1650 LDA #"/" DIR FILE, PRINT A SLASH
 1660 JSR COUT
 1670 .4 INY PRINT THE FILE'S NAME
 1680 LDA (PNTR),Y
 1690 ORA #$80
 1700 JSR COUT
 1710 DEX
 1720 BNE .4
 1730 JSR CROUT
 1740 PLA GET TYPE/LENGTH AGAIN
 1750 BPL .7 ...NOT DIR FILE
 1760 *---PUSH DATA ON STACK-----------
 1770 LDA PNTR+1 SAVE POINTER IN CURRENT BLOCK
 1780 PHA
 1790 LDA PNTR
 1800 PHA SAVE: R.BLOCK
 1810 LDX #0 BYTES.PER.ENTRY
 1820 .5 LDA PUSH.VARS,X ENTRIES.PER.BLOCK
 1830 PHA ACTIVE.FILE.COUNT
 1840 INX CURRENT.FILE.COUNT
 1850 CPX #PUSH.COUNT CURRENT.ENTRY.NUMBER
 1860 BNE .5 NEXT.BLOCK
 1870 *---READ HEADER OF SUBDIR--------
 1880 LDY #$12 POINT AT KEYBLOCK POINTER
 1890 LDA (PNTR),Y GET HIGH BYTE
 1900 TAX
 1910 DEY
 1920 LDA (PNTR),Y GET LOW BYTE
 1930 JSR READ.NEXT.BLOCK
 1940 *---RECURSIVE CALL---------------
 1950 JSR LIST.DIRECTORY
 1960 DEC NEST.LEVEL POP TO HIGHER LEVEL
 1970 *---POP DATA OFF STACK-----------
 1980 LDX #PUSH.COUNT GET BLOCK OF VARS
 1990 .6 PLA
 2000 STA PUSH.VARS-1,X
 2010 DEX
 2020 BNE .6

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2081 of 2550

Apple II Computer Info

 2030 PLA
 2040 STA PNTR GET KEYBLOCK POINTER
 2050 PLA
 2060 STA PNTR+1
 2070 CMP /BUFFER.TWO IS BLOCK IN BUFFER.TWO?
 2080 BCC .7 ...NO, DON'T NEED TO READ
 2090 JSR MLI ...YES, MUST READ THE BLOCK
 2100 .DA #$80,P.READ
 2110 *---COUNT THE FILE---------------
 2120 .7 INC CURRENT.FILE.COUNT
 2130 BNE .8
 2140 INC CURRENT.FILE.COUNT+1
 2150 *---SEE IF THAT WAS LAST FILE----
 2160 .8 LDA CURRENT.FILE.COUNT
 2170 CMP ACTIVE.FILE.COUNT
 2180 LDA CURRENT.FILE.COUNT+1
 2190 SBC ACTIVE.FILE.COUNT+1
 2200 BCC .9 ...NOT LAST FILE
 2210 RTS ...END OF DIRECTORY
 2220 *---ADVANCE PNTR TO NEXT ENTRY---
 2230 .9 CLC
 2240 LDA PNTR GET RESULT IN Y,X
 2250 ADC BYTES.PER.ENTRY
 2260 TAX
 2270 LDA PNTR+1
 2280 ADC #0
 2290 TAY
 2300 *---ARE WE STILL INSIDE BLOCK?---
 2310 LDA CURRENT.ENTRY.NUMBER
 2320 INC CURRENT.ENTRY.NUMBER
 2330 CMP ENTRIES.PER.BLOCK
 2340 BCC .10 ...INSIDE SAME BLOCK
 2350 *---READ NEXT BLOCK--------------
 2360 LDA NEXT.BLOCK
 2370 LDX NEXT.BLOCK+1
 2380 JSR READ.NEXT.BLOCK
 2390 LDA #1 START WITH FIRST ENTRY
 2400 STA CURRENT.ENTRY.NUMBER IN NEW BLOCK
 2410 LDX #4 SKIP OVER BLOCK NUMBERS
 2420 LDY /BUFFER.TWO
 2430 .10 STX PNTR NEW PNTR VALUE
 2440 STY PNTR+1
 2450 JMP .2 ...TO LIST NEXT FILENAME
 2460 *--------------------------------
 2470 READ.NEXT.BLOCK
 2480 STA R.BLOCK BLOCK # IN X,A
 2490 STX R.BLOCK+1
 2500 JSR MLI READ THE BLOCK
 2510 .DA #$80,P.READ
 2520 LDA #BUFFER.TWO WE USED BUFFER.TWO
 2530 LDY /BUFFER.TWO
 2540 SETUP.NEXT.BLOCK
 2550 STA PNTR PNTR FROM Y,A
 2560 STY PNTR+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2082 of 2550

Apple II Computer Info

 2570 LDY #2 GET NEXT BLOCK #
 2580 LDA (PNTR),Y
 2590 STA NEXT.BLOCK
 2600 INY
 2610 LDA (PNTR),Y
 2620 STA NEXT.BLOCK+1
 2630 RTS RETURN
 2640 *--------------------------------
 2650 P.PREFIX .DA #1
 2660 .DA BUFFER.TWO
 2670 *--------------------------------
 2680 P.OPEN .DA #3
 2690 .DA BUFFER.TWO
 2700 OPENBUF .DA BUFFER.ONE
 2710 .DA #0
 2720 *--------------------------------
 2730 P.CLOSE .DA #1
 2740 .DA #0
 2750 *--------------------------------
 2760 P.READ .DA #3
 2770 R.DEVNUM .DA #$60
 2780 .DA BUFFER.TWO
 2790 PUSH.VARS .EQ *
 2800 R.BLOCK .DA 0
 2810 *--------------------------------
 2820 BYTES.PER.ENTRY .BS 1
 2830 ENTRIES.PER.BLOCK .BS 1
 2840 ACTIVE.FILE.COUNT .BS 2
 2850 CURRENT.FILE.COUNT .BS 2
 2860 CURRENT.ENTRY.NUMBER .BS 1
 2870 NEXT.BLOCK .BS 2
 2880 PUSH.COUNT .EQ *-PUSH.VARS
 2890 *--------------------------------
 2900 NEST.LEVEL .BS 1
 2910 *--------------------------------
 2920 WASTED .EQ *+255/256*256-*
 2930 .BS WASTED
 2940 *--------------------------------
 2950 BUFFER.ONE .BS 512
 2960 BUFFER.TWO .BS 512
 2970 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2083 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:Articles:Conversions.txt
==

Generic Conversion Routines................Bob Sander-Cederlof

I may have written hundreds of different versions of the elementary
I/O conversion routines. The first few would have been for the IBM
704, back in college days. Then there was the G-15, the 1620, the
3100, the 3300, the 6600, the 1700, the 8090, the 960, the 980, the
990, and so on. Don't worry of those numbers don't mean anything to
you. They are the "names" of computers out of the past, not micro
chips.

What I am talking about is writing programs which convert input
decimal characters representing decimal numbers into internal binary
form, and the converse operation of converting binary numbers into
decimal form. We have published several variations of both in
previous newsletters, but I have some special ones to present here.

There are many variations of the basic routines, and that is one
reason I have written so many. Thinking just of the output
conversions (binary to decimal):

 * Convert to a string in memory, or print it out.
 * Number of bytes in binary number.
 * Supply leading zeroes or blanks or neither.
 * Integer, fraction, floating point, or fixed point.
 * Signed or unsigned.

The routine I set out to write today works with unsigned integers,
prints out the resulting characters rather than storing them in a
string, and does not print any leading zeroes or blanks. I wrote it
to work with two-byte values, between 0 adn 65535. As an added
feature, I indicated in the comments how to expand it to work with
larger values.

Lines 1800-2080 in the listing comprise the output conversion routine.
I divide the number by ten, saving the remainder as the least
significant digit; the quotient becomes the new number, so I repeat
the process until the quotient is zero. Then the digits, which were
all saved on the 6502 stack, are popped back off and printed.

Line 1810 starts the digit counter at 0, and line 1950 increments the
counter each time a new digit is pushed onto the stack. Lines 2020-
2060 pull the digits off the stack and print them in reverse order.

Lines 1970-2000 test the quotient: if it is non-zero, another
division is performed; if not, we are ready to print the result. This
is one place where you need to add code if your input values are
larger than two bytes, as I indicated in line 1980. By the way, since
we do one division before testing, an input value of zero will print
as "0".

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2084 of 2550

Apple II Computer Info

Lines 1830-1930 divide the input value by ten. It may look like I am
dividing by five, but remember 5 = 10/2. I did more fiddling than
analyzing in this loop, but it really does work. Line 1840 sets the
loop count to 16, the number of bits in two bytes. If you want to
convert three-byte values, change the 16 to 24. The loop needs to be
executed once for each bit in the input value. If you are going to
have values longer than two bytes, you also need to add more ROL
instructions between lines 1880 and 1900, as indicated in my comment
line 1890. If you were to need a three byte conversion routine, you
could just remove the "*--" from the front of lines 1890 and 1980, and
chane line 1840 to LDY #24.

Notice that this subroutine is very short, and fairly fast. I have an
idea that some of you will think of ways to make it shorter and
faster; if you do, try to keep it easily modifiable for the number of
bytes in values.

Next I wrote a program to convert from a decimal string into binary,
lines 1290-1720. It is also set up for unsigned two-byte integer
values, with comments indicating how to modify it for longer values.
I have written shorter routines before, but this one makes extension
to longer values easy and tests for overflow.

The string is assumed to be in ASCII, with high bits = 1, starting at
$0200, and terminated by any non-digit. It just so happens that these
are just the conditions you usually find in an Apple, because almost
all input routines use the buffer at $0200. Woz started it, and we
all followed Woz.

Lines 1300-1330 clear the value, as well as starting the buffer index
at zero. The rest of the routine scans through the digits. Each time
the current value is multiplied by ten, and the next digit added. If
at any point an overflow is detected (a value too large for the number
of bytes) the routine rings the bell and quits. You can use some
other error indication, and probably should, such as printing "NUMBER
TOO LARGE".

In order to multiply by ten, I set aside another storage area equal in
length to the value accumulator. At line 1380 the new digit is saved
in the Y-register. The accumulated value at this point is in XH and
XL. Lines 1390-1480 form the value*4 in SH and XL, leaving the
original value in XH and SL. (Yes, they are criss-crossed.) Lines
1410-1420 show how you would extend this portion to longer values.

Lines 1490-1610 add value*4 to value to get value*5, and then double
the result to get value*10. Again, lines 1530-1550 show how to extend
the value. Lines 1630-1700 add in the new digit, and the comments
show how to extend to longer values.

The top level routine in lines 1130-1270 is just a test routine. It
calls the monitor line input routine. If you type an empty line, it
will stop. Otherwise it calles the input conversion routine, prints

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2085 of 2550

Apple II Computer Info

the resulting value in hexadecimal, and converts it back to decimal
with the output conversion routine.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2086 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:Articles:Davids.IIc.Buff.txt
==

Another Auxiliary Memory Program...............David C. Johnson
 Applied Engineering

What has 640K of memory and is as cute as a button? My Apple //c! It
didn't come with all that memory, "only" 128K of it. Before I even
powered it up for the first time, I installed a 512K Z-RAM. Ready to
take on Blue's 640K machine? Maybe.

I've had quite a few Apple Computers, my first had Integer ROMs and a
serial number in the thirty one thousands, and my current workhorse is
an Apple //e with the works. So why a //c? Well, for one it's cute,
and secondly its firmware was written by Ernie Beernink and Rich
Williams, the same guys that wrote the //e Enhanced ROMs and Extended
Debugging Monitor. These guys write slick code. Finally, I can type
control-reset with one hand.

Well, what to do after getting it home? I tried my mouse out on it,
but moved it back to the //e. My paddles and joysticks all have 16-
pin plugs, so I couldn't use them. I don't have an RGB interface for
the //c yet, so the color monitor has to stay put. That leaves my
Imagewriter printer to play with.

Having two computers and only one printer is an old problem. One
usually solved with a rotary switch. I figured that I could do a
little better. What I did is connect the Imagewriter to the //c's
Printer port, and the //e's Super Serial Card (SSC) to the //c's Modem
port. I then wrote the program that follows this article. It
implements a 576K buffer for the //e, in the //c. Now I can use the
printer from the //c just by typing pr#1. When I want to print from
the //e, I just boot a disk on the //c, then type pr#1 on the //e.
However, the printing, for the //e, goes MUCH faster. I've setup the
link between the //e and the //c to transmit at 19200 baud!
Assembling a listing of the buffering program takes about 7 seconds
(and half of that is writing the target file)!

The SSC is in slot 1, it is configured as follows:

 SW1: off off off off off on on
 SW2: on off off on on off off
 The jumper block is installed pointing towards modem

The Imagewriter's swiches are set:

 SW1: open open open open closed closed open open
 SW2: closed closed open open.

The pieces are connected with two DIN 5-Pin(m) to DB-25(m) cables,
Apple Model Number: A9C0308 (4-2, 2-3, 1-6, 3-7, and 5-20). The cable

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2087 of 2550

Apple II Computer Info

from the //e to the //c is plugged into a //c System Clock which in
turn is plugged into the Modem Port.

The program should work with most any serial printer, and serial card,
however, if the serial card cannot "eliminate the modem", you will
need a modem-eliminator cable extension, or will have to reverse pins
2 and 3 and pins 6 and 20 of the DB-25 connector. The Apple cable I
used cannot be modified.

While the listing included with this article requires a 512K Applied
Engineering Z-RAM board, I have also written versions that work in a
256K Z-RAM and in a stock Apple //c. More on these versions later.
The memory on a Z-RAM is implemented as additional banks of auxiliary
memory. Which of the auxiliary banks is the current auxiliary bank is
controlled by a new hardware location at $C073. The Z-RAM powers-up
disabled, that is, with the //c's built-in auxiliary bank as the
current auxiliary bank. The //c powers-up with main memory enabled
and all auxiliary memory disabled. Once selected as the current
auxiliary bank, a Z-RAM bank is switched around by all the normal soft
switches in the same manner as the //c's built-in auxiliary bank. A
512K Z-RAM has 8 additional banks and a 256K Z-RAM has 4 more. Which
additional bank is the current auxiliary bank is selected by writing
an ODD number between 1 and $F (inclusive) to the bank register at
$C073. The 4 most significant data bits are ignored and any even
number (usually zero) selects the //c's built-in auxiliary bank. A
256K Z-RAM only has bank numbers 3, 7, $B, and $F. To ease the task
of writing programs that display 80 columns of text or double hires
graphics, video data is always fetched from the //c's banks, even if a
Z-RAM bank is the current auxiliary bank. Because the Z-RAM plugs
into the processor and MMU sockets of the //c, and since only one
board may be added this way, the Z-RAM includes a Z-80 processor. The
Z-RAM is also totally compatible with the RamWorks board for the //e.

The //c's serial ports are a lot like Super Serial Cards in slots 1
and 2 of a //e. The ports and the SSC both use the 6551 ACIA
(Asynchronous Communications Interface Adapter) and the firmware is
quite similar. There is one significant difference that I found. The
SSC tells an external source of data to stop transmitting by asserting
the Data Terminal Ready bit of the ACIA command register (and thus the
DTR pin when the jumper block is in the terminal position), while the
//c's ports control the DTR pin with the Request To Send (and
transmitter control) bits. It's right there on page 254 of The Apple
//c Reference Manual Volume 1. Compare this to the schematic on page
100 of the SSC Manual.

Because every //c has a 65C02 processor, I can write code using the
new opcodes and it will work in other peoples' machines. Of course if
the code will also work in a //e, I can not be sure that it will be
executed on a 65C02. With the release of the //e enhancement kit,
this situation should improve. 65802 opcodes, being new and rare,
must be reserved for programs intended for use in a very few machines.

On to the program. The target file is intended to load at $2000 in
main memory. The code from lines 32 to 73 is executed in the $2000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2088 of 2550

Apple II Computer Info

area. This section does all of the setup for what is to come. The D
and I flags are cleared and set respectively, ten soft switches are
thrown, the screen is cleared, the remainder of the code is copied
into ALL auxiliary zero pages and stacks, a text message is written to
the screen, and the two ACIAs are initialized. The code copy and
message printing share a loop. Lines 66 and 70 cheat a little. The
INCs are assembled and the LDA #s are treated as comments. They work
because the would-be operands of the LDA #s are one greater than the
values just loaded by the previous LDA #s. The 'A' in line 74 is an
open-apple MouseText character. The code in aux bank 0 is then
entered at label 'Scan'.

The routines 'Write' and 'Read' (lines 79 and 88), handle all access
to the buffer. In 'Write', the aux bank is selected, the address
within that bank is written into the operand of a store absolute
instruction (the copy in the bank just selected), and then the data
byte is written. That's a total of four bytes of information passed
in internal registers. The data byte had to be passed in the stack
pointer! It couldn't have been passed in a memory location because it
would have been switched out. 'Read' is a little simpler, it returns
a data byte in the Acc. Since I'm using the S-reg for data and the
aux bank 0 stack page for code, the program doesn't make any use of
regular stack operations. After re-selecting aux bank 0, 'Write' and
'Read' jump back to the code just after the jumps that 'called' them.
Even though the $2000 code copied the entire image into every aux
bank, only 'Write' and 'Read' are not used as buffer in the Z-RAM
banks.

Lines 99 to 108 allocate the (zero page!) variables required to keep
track of the buffer. The 'Receive' variables indicate where the next
byte received will be buffered, the 'Transmit' variables indicate
where the next byte to be printed is buffered, and the 'Byte.Counter'
variables keep track of how full (or empty) the buffer is. If the
byte counter is zero, then the 'Transmit' variables are equal to the
'Receive' variables and the buffer is empty. 'RTS.Bit' is used to
keep track of the //c's 'select' state.

Lines 110 to 128 run an indicator at the top-center of the screen and
check to see if you've pressed a key. If you press the space bar, and
if the program hasn't asserted the Request To (NOT) Send bit (because
the buffer is nearly full), the //e may be halted. This works like a
printer's select button.

Lines 129 to 207 handle buffering incoming data. If the Modem ACIA
detects any transmission errors, you will see an indication of this at
the left end of screen line three. If no character has been received,
we go check the Printer port. When a character has been received, we
test if the buffer is almost full. If it is, we assert RTS' (another
character may already be on the way). The byte counter is
incremented. If the buffer is completely full, we tick the third
position of screen line one and go check the Printer port. This means
that the RTS' handshaking isn't working. You will also get overrun
errors. If we have room for the character, we increment the upper
left screen position, and load the character from the RxD reg into the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2089 of 2550

Apple II Computer Info

stack pointer. We then load the 'Receive' variables, maybe juggle the
address high order nibble for the overlapping language card banks, and
call 'Write'. Upon return, the 'Receive' variables are advanced
through the buffer memory, avoiding our program and invalid aux banks.
We then fall into the Printer port code.

Lines 208 to 271 handle printing buffered data as the printer can take
it. This code is similar to the code for incoming data. Fewer things
can go wrong, we of course test for an empty TxD reg and an empty
buffer. We check to see if the buffer is somewhat less than almost
full, and may release RTS'. The byte counter is decremented here.
When a character is to be printed, we increment the upper right screen
position, load the 'Transmit' variables, maybe juggle, call 'Read' and
stuff the character into the TxD reg. Upon return, the 'Transmit'
variables are advanced (same way), and we loop to 'Scan'. Forever.
Reset exits the program.

The program loops VERY quickly. It has to. At 19200 baud, a
character is received from the //e every half millisecond and at 9600
baud, a character may be printed every millisecond. The pair of
locations at the top center of the screen, that are changed every time
around the loop, give a good indication of how fast things are
happening. The locations in the upper corners (my //e is to the left
of the //c and the printer is to the right) are a good representation
of the values of the 'Receive' and 'Transmit' variables. When
buffering, the receive indicator races ahead while the transmit
indicator lags behind, but since they are both initialized to blanks
and the appropriate one is incremented when a character is moved, they
come to rest displaying the same character when the buffer is empty.

The symbols 'Z.RAM.Banks.Avail', 'Z.RAM.Banks.Used',
'IIc.Aux.Bank.Avail' and 'BufLen' (lines 94, 96, 273-274) determine
the size of the buffer. The ADC immediate operands in lines 195 and
259 cause the buffer to advance from bank 0 to 1 to 3 to 5... to $F.
The listing is setup to use a //c's aux bank and a 512K Z-RAM. The
changes for a 256K Z-RAM are easy: change the SAVE and .tf filenames
(320K), change the 8 in line 96 to a 4, change the 9 in line 274 to a
5, and change the ADC #1s in lines 195 and 259 to ADC #3s. The
changes for operating without a Z-RAM are not as simple. I removed
all the bank stuff, made the byte counter only 16 bits, and combined
the code copy with the screen clear instead of the message printing.
It took about 5 minutes. The resulting code just fit into the aux
zero page! The source code for all three versions will be on S-C
Software's next quarterly disk, and I will send a paper listing of the
//c only version to anyone who sends a self addressed stamped envelope
to me care of Applied Engineering. I sometimes use the //c only
version even though I have a Z-RAM. With the ProDrive disk emulation
software, I can lock-out bank 0, leaving it available for double hires
or a 64K buffer for my //e. With a 512K Z-RAM, I get a 1024 block
/RAM volume.

The program does not use any main memory for the buffer because when
you have 576K of aux memory, why bother programming for "only" another
64K? The //c only version, with 64K of buffer memory, is as big or

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2090 of 2550

Apple II Computer Info

bigger than most buffer boards/boxes. If anyone writes a 128K
main/aux version of the program I would appreciate a copy.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2091 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 11 August, 1985

In This Issue...

//c + Z-RAM = 576K Printer Buffer 2
How Many Bytes for Each Opcode?. 12
Generic Conversion Routines. 17
Wildcard Filename Search 22

The 65816 continues to make news. We hear of at least two major books
on 65816 Assembly Language, which should be in print soon. We also
hear that sales of the chip are taking off, with some firms ordering
multiplied thousands. Although we have yet to SEE one, we keep
hearing reports of plug-in boards for Apples that contain a 65816 and
lots of RAM: ComLog, MicroMagic, Checkmate Technology, and others.

Meanwhile, we contemplate the future advantages to just enhancing
existing Apples with 65802's and big RAM boards. Applied Engineering
or Checkmate will be delighted to stuff 512K additional RAM into your
//c. You can add five times that much to your //e with AE's latest
version of RAMWorks. Apple's forthcoming Slinky card will add up to a
megabyte to any II, II Plus, or //e with a spare slot (1-7). Call
APPLE's latest magazine offers the BIG BOARD for slot 0-7 use, one
megabyte addressable either in Slinky fashion or with "standard" D000-
FFFF mapping, for only $599. If you hurry, they have a special (even
lower) price good until Sept 30th.

6800 Cross Assembler for ProDOS

The S-C 6800 Macro Cross Assembler is now also available in a ProDOS
version. This is the Version 2.0 level Cross Assembler, including the
additional opcodes of the Motorola 6801 and Hitachi 6301
microprocessors. Either the DOS or the ProDOS Version 2.0 Cross
Assembler is $50; if you already have one you can add the other for
only $20.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2092 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:Articles:How.Many.Bytes.txt
==

How Many Bytes for each Opcode?............Bob Sander-Cederlof

I have been thinking about a semi-automatic object code relocation
scheme lately. Steve Wozniak wrote one for the 6502 back in 1976,
published in various places such as Call APPLE's "Wozpak". But we are
needing one for the 65C02, and maybe for the 65816.

Steve's version used his "Sweet-16" interpreter for some of the
address arithmetic. That was okay, because Sweet-16 was in ROM in
every Apple in those days. Not so now, although it is available to
DOS 3.3 users as part of the Integer BASIC package. But we should
write one that does not require Sweet-16.

Steve's relocator also used a ROM-based routine (part of the built-in
disassembler) to determine how many bytes are used by each opcode.
This routine has been modified in the //c monitor and the new enhanced
//e monitor to include the 65C02 opcodes. That's nice, because that
means Woz's program will automatically work with 65C02 programs if you
run it with the new monitors. However, since I want to include all
the 65816 opcodes, I need a new version.

The first step seems to be to write a program which will tell me how
many bytes each opcode uses. I know that opcodes which are only one
or two bytes do not need any relocation adjustments when a program is
moved to a different place in memory. Most 3-byte and all 4-byte
instructions contain absolute addresses; if an absolute address is
inside the program being moved, it will have to be adjusted for the
new location.

I haven't written the entire relocator yet, but I have written a
program which will tell me all I need to know about the length of an
opcode. My program returns the length in bytes and also two flags.
One flag indicates the opcode is a 3-byte instruction which does
include an absolute address. The other flag indicates the opcode was
an immediate mode instruction. Immediate mode in 65816 code is
ambiguous in length, except during execution. My program calls them
two-byte instructions, but they may be three bytes each if the status
bits so indicate at execution time. I am not sure how my relocator
will handle this ambiguity, but for now I am content just to set a
flag.

The code in the monitor which determines the length of opcodes uses a
table lookup method. I figure that I could do that too, with a 64-
byte table, using two bits for each opcode. I would still need a way
to test for immediate mode and the special three-byte opcodes which do
not have absolute addresses (MVP, MVN, PER, and BRL).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2093 of 2550

Apple II Computer Info

After looking at a chart which showed all the lengths, I decided to do
it with bit analysis rather than table lookup. It is probably a
little slower, but also a little smaller.

It turns out that almost all of the opcodes whose second hex digit is
less than 8 use two bytes. There are only nine exceptions. One
interesting case here is BRK, which assembles to only one byte but is
considered by the microprocessor to be a two-byte opcode. I am not
sure whether the relocator should considere BRK as a single byte or a
two-byte opcode, but I think it should probably be one byte.

All opcodes of the with the hex values of $x8, $xA, and $xB are one
byte, without exception. All opcodes with the hex values $xC, $xD,
and $xE are three bytes with absolute addresses, with only one
exception: $5C is a four-byte instruction. All opcodes with value
$xF are four bytes each.

The column of opcodes with values $x9 are divided into two groups.
Those with the first digit even ($09, 29, 49, etc.) are all three
bytes each with absolute addresses. The odd ones are immediate mode
opcodes, which may be either two or three bytes each depending on
status bits during execution.

Here is a table of the various byte counts, which was actually
computed by my program. I printed "2#" for immediate mode opcodes,
and "3+" for three-byte opcodes with absolute addresses.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 A
 B
 C
 D
 E
 F

The program which printed the table is in lines 1050-1320 below. The
program which computes how many bytes in an opcode follows that. By
inserting a "BEQ .6" between lines 1410 and 1420 I could make BRK a
one-byte opcode.

My relocator should probably also be on the lookout for calls to
ProDOS MLI. This is in effect a six-byte instruction. The first
three bytes are $20, $00, $BF (JSR MLI). The fourth byte is the MLI

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2094 of 2550

Apple II Computer Info

function code. The last two bytes are the address of a parameter
table, and so should be considered as a relocatable address.

I hope to continue to pursue this idea of a relocator, but I make no
promises. Maybe one of you would like to write one and share it with
the rest of us.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2095 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......DOS $100, ProDOS $100, both for $120
ProDOS Upgrade Kit for Version 2.0 DOS owners.........................$30
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility......without source code $20, with source $50
RAK-Ware DISASM...$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36
MacASM -- Macro Assembler for MacIntosh (Mainstay).........($150.00) $100
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15
Cross Assemblers for owners of S-C Macro Assembler.....$32.50 to $50 each
 (Available: 6800/1/2, 6301, 6805, 6809, 68000, Z-80, Z-8, 8048, 8051,
 8085, 1802/4/5, PDP-11, GI1650/70, others)

AAL Quarterly Disks.........................each $15, or any four for $45
 Jan-Mar Apr-Jun Jul-Sep Oct-Dec
 Each disk contains 1980 - - - 1
 the source code from 1981 2 3 4 5
 three issues of AAL, 1982 6 7 8 9
 saving you lots of 1983 10 11 12 13
 typing and testing. 1984 14 15 16 17
 1985 18 19

(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

Verbatim Diskettes (with hub rings)................ package of 20 for $32
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100
Envelopes for Diskette Mailers............................. 6 cents each

65802 Microprocessor (Western Design Center)...................($95) $50
quikLoader EPROM System (SCRG)................................($179) $170
PROmGRAMER (SCRG)..($149.50) $140
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32

"Apple ProDOS: Advanced Features for programmers", Little..($17.95) $17
"Inside the Apple //c", Little..............................($19.95) $18
"Inside the Apple //e", Little..............................($19.95) $18
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18
"Apple][Circuit Description", Gayler......................($22.95) $21
"Understanding the Apple II", Sather........................($22.95) $21
"Understanding the Apple //e", Sather.......................($24.95) $23
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15
"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20
"Beneath Apple DOS", Worth & Lechner........................($19.95) $18
"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2096 of 2550

Apple II Computer Info

"6502 Assembly Language Programming", Leventhal.............($18.95) $18
"6502 Subroutines", Leventhal...............................($18.95) $18
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9
"Microcomputer Graphics", Myers.............................($12.95) $12
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16
"Assembly Lines -- the Book", Wagner........................($19.95) $18
"AppleVisions", Bishop & Grossberger........................($39.95) $36

 Add $1.50 per book for US shipping. Foreign orders add postage needed.
 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2097 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:Articles:WildcardMatcher.txt
==

A Wildcard Filename Search.................Bob Sander-Cederlof

Over the years I have fallen into certain habits when it comes to
naming files. I find it convenient to use names starting with "S."
for assembly language source files, "B." for binary object code files,
and so on. Others like to use suffixes like ".SRC" and ".OBJ" for the
same reasons. Some operating systems, like CP/M for example, use
suffixes to indicate file type. Others, like ProDOS, let you build
sub-directories to categorize your files.

Sometimes I would like to have the ability to do the same operation on
a whole group of files. For example, I might want to DELETE all files
starting with "B.". Or I might want to copy a whole group of files
from one disk to another. If the files happen to have similar names,
and if DOS allowed wildcards in filenames, it would be easier.

Some DOS 3.3 programs do have this feature: Apple's FID program,
Sensible Software's Super Disk Copy, and others. They have a method
for specifying a filename without spelling out the entire name.

The subroutine inside DOS 3.3 which compares a filename you have
specified with the names in a catalog is found at $B1F5:

 LDY #0
 INX
 INX
 .1 INX
 LDA ($42),Y Filename you specified
 CMP $B4C6,X Filename in catalog sector
 BNEdid not match
 INY
 CPY #30
 BNE .1
 ... matched ...

This is a very straightforward string comparison. It requires an
exact match of all 30 characters of a filename. There is a similar
routine at $A782 which compares a filename you specify with the
filenames in the open file buffers.

I wrote a subroutine called MATCH which compares two 30-character
strings, allowing wildcards. Unfortunately, it not a simple matter to
plug such a subroutine into DOS 3.3, and I have not done that. It is
more likely that this subroutine will find its way into some future
utility programs.

I also wrote a testing program, so that I could see if my code worked.
The program in lines 1110-1380 searches through a list of 30-character
strings, printing those which match a key string. To simplify my test

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2098 of 2550

Apple II Computer Info

program (a good idea to keep testers simple, so they are not
themselves more buggy than the testees!) I assembled in the key string
and the list of strings to be searched. A slightly better test would
allow me to type in the key string.

My MATCH program assumes that the address of the string to be compared
with the key is stored at FN and FN+1. Characters in the filename are
addressed by "(FN),Y", and in the key are addressed by "KEY,X". MATCH
will return with carry set if the filename matches the key, and carry
clear if not.

Both the filename and the key are stored "left-justified, blank-
filled". That means there may be any number of non-significant blanks
on the right end. Lines 1490-1530 scan the current filename from
right-to-left, looking for the last non-blank in the name. Lines
1550-1590 do the same for the key. If there is any chance either
filename or key could be completely blank, an extra line "BMI ERROR"
should be inserted at 1505 and 1565.

I save the index to the right end of the key in KEY.START. Because
the end of the filename and key strings is variable, I actually do the
comparison from right to left. This makes the "end" actually the
beginning.

Line 1610 could be "JMP .4" or "BNE .4", because the object is to get
to line 1660. However, the "INX" allows me to fall through lines
1630-1640 and it takes only one byte rather than two or three.

The comparison begins at line 1660. Remember we are scanning
backwards, from right to left. Lines 1660-1670 save the two string
pointers. Line 1680 gets the next character from the key. If it is a
wildcard, I branch back to line 1630. Note that all that happens is
that the wildcard is skipped over!

If the key character is not a wildcard, it gets compared to the next
character of the filename at line 1710. If it matches, lins 1730-1760
advance both pointers and the comparison continues. These lines also
check to see if we have come to the left end of the key or of the
filename.

If we are at the end of the filename, lines 1770-1820 check the rest
of the key. If there are any characters left in the key which are not
wildcards, then the current filename does not match. Otherwise, it
does match. Lines 1830-1880 set the appropriate carry status and
return.

If we are at the end of the key, lines 1900-1910 check whether we are
also at the end of the filename. If so, the filename matched. If
not, maybe it did not match. I say maybe, because if there was a
wildcard, we might come out with a match if we widen the amount
matched by that wildcard. Lines 1920-1990 will handle that
possibility.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2099 of 2550

Apple II Computer Info

Two conditions bring us to line 1930. Either a character in the key
did not match the current character in the filename, or there are
unmatched filename characters left over after the end of the key. In
either case, if there has been no wildcard in the key (so far), then
the filename does not match the key. If there has been a wildcard, we
can try again to match from the most recent wildcard on. We can tell
whether or not there has been a wildcard so far by comparing KEY.PNTR
with KEY.START. If they are the same, there has been no wildcard.
Lines 1920-1990 handle all these details.

I made the wild card character itself a variable, so that you could
change it by program control. Since "=" is a valid character in a
filename, you might want to use something else.

With this kind of MATCH subroutine, a key of "=.OBJ" would match all
names ending with ".OBJ"; "S.=" would match all names starting with
"S."; "=A=B=" would match all names containing "A" followed by "B".

You can see the similarity between MATCH and a global search
capability such as you might find in a word processor, or in the S-C
Macro Assembler. The FIND and REPLACE commands in S-C Macro allow
wildcards. However, MATCH differs in that it anchors the key to the
beginning and end of the file name (unless you specify a wildcard in
those positions).

If string comparisons of this type intrigue you, the book "Software
Tools" develops an extremely powerful one in chapter 5. "Software
Tools" is a classic book by Kernighan and Plauger, available at many
bookstores. (A "classic" in computer books is one still in print
after five years; this one qualifies, since it was originally
published in 1976.) Their string match routine allows single- and
multi-character wildcards, semi-wildcards that match subsets of
characters, control of anchoring, and more. It would be a worthwhile
exercise to try implementing their algorithm in 6502 language.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2100 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:DOS3.3:S.Byte.Table.txt
==

 1000 *SAVE S.BYTE TABLE
 1010 *--------------------------------
 1020 COUT .EQ $FDED
 1030 CROUT .EQ $FD8E
 1040 *--------------------------------
 1050 T
 1060 LDX #0
 1070 .1 TXA
 1080 AND #$0F
 1090 BNE .2
 1100 JSR CROUT
 1110 .2 TXA
 1120 JSR GET.LENGTH.OF.OPCODE
 1130 PHA
 1140 AND #$07
 1150 ORA #"0"
 1160 JSR COUT
 1170 PLA
 1180 ASL POSITION XY FOR INDEX
 1190 ROL
 1200 ROL
 1210 AND #$03 0000 00XY
 1220 TAY
 1230 LDA TABLE,Y
 1240 JSR COUT
 1250 LDA #" "
 1260 JSR COUT
 1270 INX
 1280 BNE .1
 1290 JMP CROUT
 1300 *--------------------------------
 1310 TABLE .AS -/ #+/
 1320 *--------------------------------
 1330 * CALL WITH (A)= OPCODE
 1340 * RETURN WITH (Y)= OPCODE
 1350 * (A)= XY000LLL
 1360 * LLL = # OF BYTES, 1...4
 1370 * X = 1 IF ABS ADDRESS
 1380 * Y = 1 IF IMMEDIATE
 1390 *--------------------------------
 1400 GET.LENGTH.OF.OPCODE
 1410 TAY
 1420 AND #$0F
 1430 CMP #$08
 1440 BCC .4 XXXX 0XXX
 1450 CMP #$0C
 1460 BCC .3 XXXX 10XX
 1470 CMP #$0F
 1480 BEQ .2 XXXX 1111, L=4

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2101 of 2550

Apple II Computer Info

 1490 CPY #$5C
 1500 BEQ .2 0101 1100, L=4
 1510 *---L=3, ABS ADDRESS-------------
 1520 .1 LDA #$83
 1530 RTS
 1540 *---L=4--------------------------
 1550 .2 LDA #4
 1560 RTS
 1570 *---XXXX 10XX--------------------
 1580 .3 CMP #$09
 1590 BNE .6 X8, XA, or XB
 1600 *---XXXX 1001--------------------
 1610 TYA
 1620 AND #$10
 1630 BNE .1 XXX1 1001, L=3
 1640 *---XXX0 1001, IMMEDIATES, L=2---
 1650 LDA #$42 OR 3 IF ## MODE
 1660 RTS
 1670 *---XXXX 0XXX--------------------
 1680 .4 LSR CHECK ODD/EVEN
 1690 BCS .5 ODD, L=2
 1700 CPY #$22
 1710 BEQ .2 JSL LABS, L=4
 1720 CPY #$20
 1730 BEQ .1 JSR ABS, L=3
 1740 CPY #$40
 1750 BEQ .6 RTI, L=1
 1760 CPY #$60
 1770 BEQ .6 RTS, L=1
 1780 CPY #$62
 1790 BEQ .7 PER LREL, L=3
 1800 CPY #$82
 1810 BEQ .7 BRL LREL, L=3
 1820 CPY #$44
 1830 BEQ .7 MVP, L=3
 1840 CPY #$54
 1850 BEQ .7 MVN, L=3
 1860 CPY #$F4
 1870 BEQ .1 PEA ABS, L=3
 1880 *---L=2--------------------------
 1890 .5 LDA #2 L=2
 1900 RTS
 1910 *---L=1--------------------------
 1920 .6 LDA #1
 1930 RTS
 1940 *---L=3, NON-ABS ADDRESS---------
 1950 .7 LDA #3
 1960 RTS
 1970 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2102 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:DOS3.3:S.WILDCARD.txt
==

 1000 *SAVE S.WILDCARD
 1010 *--------------------------------
 1020 COUT .EQ $FDED
 1030 CROUT .EQ $FD8E
 1040 *--------------------------------
 1050 KEY.PNTR .EQ $00
 1060 BUF.PNTR .EQ $01
 1070 FN .EQ $02,03
 1080 KEY.START .EQ $04
 1090 CNTR .EQ $05
 1100 *--------------------------------
 1110 T
 1120 LDA #NAME.CNT
 1130 STA CNTR
 1140 LDA #FNLIST
 1150 LDY /FNLIST
 1160 .1 STA FN
 1170 STY FN+1
 1180 JSR MATCH
 1190 BCC .2 ...DID NOT MATCH
 1200 JSR DISPLAY
 1210 .2 LDA FN
 1220 CLC
 1230 ADC #30
 1240 LDY FN+1
 1250 BCC .3
 1260 INY
 1270 .3 DEC CNTR
 1280 BNE .1
 1290 RTS
 1300 *--------------------------------
 1310 DISPLAY
 1320 LDY #0
 1330 .1 LDA (FN),Y
 1340 JSR COUT
 1350 INY
 1360 CPY #30
 1370 BCC .1
 1380 JMP CROUT
 1390 *--------------------------------
 1400 * COMPARE KEY TO A FILE NAME
 1410 * KEY MAY CONTAIN WILDCARDS
 1420 * TRAILING BLANKS DON'T COUNT
 1430 * FILE NAME ADDRESSED VIA "(FN),Y"
 1440 * KEY ADDRESSED VIA "KEY,X"
 1450 * KEY AND FILE NAME ARE UP TO 30 CHARS LONG
 1460 * (STORED LEFT-JUSTIFIED, BLANK-FILLED)
 1470 *--------------------------------
 1480 MATCH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2103 of 2550

Apple II Computer Info

 1490 LDY #30 FIND LAST NON-BLANK CHAR
 1500 .1 DEY IN FILE NAME
 1510 LDA (FN),Y
 1520 CMP #" "
 1530 BEQ .1
 1540 *--------------------------------
 1550 LDX #30 FIND LAST NON-BLANK CHAR
 1560 .2 DEX IN KEY
 1570 LDA KEY,X
 1580 CMP #" "
 1590 BEQ .2
 1600 STX KEY.START
 1610 INX
 1620 *---WILD CARD--------------------
 1630 .3 DEX ADVANCE KEY POINTER
 1640 BMI .8 ...END OF KEY IS WILD, SO MATCHES
 1650 *--------------------------------
 1660 .4 STX KEY.PNTR
 1670 .5 STY BUF.PNTR
 1680 .6 LDA KEY,X
 1690 CMP WILD.CARD
 1700 BEQ .3 ...WILD CARD CHARACTER
 1710 CMP (FN),Y
 1720 BNE .11 ...NO MATCH
 1730 DEX
 1740 BMI .10 ...END OF KEY
 1750 DEY
 1760 BPL .6 ...STILL MORE TO COMPARE
 1770 *---END OF FILE NAME, MORE KEY---
 1780 .7 LDA KEY,X
 1790 CMP WILD.CARD
 1800 BNE .9 ...REST OF KEY NOT WILD, NO MATCH
 1810 DEX
 1820 BPL .7
 1830 *---VALID MATCH------------------
 1840 .8 SEC SIGNAL MATCH
 1850 RTS
 1860 *---NOT A MATCH------------------
 1870 .9 CLC
 1880 RTS
 1890 *---END OF KEY-------------------
 1900 .10 DEY MATCH IF END OF NAME
 1910 BMI .8 ...END OF NAME
 1920 *---IF AFTER WILDCARD, SLIP------
 1930 .11 LDX KEY.PNTR START KEY OVER AGAIN
 1940 CPX KEY.START
 1950 BEQ .9 ...NOT AFTER A WILDCARD
 1960 LDY BUF.PNTR SLIP TO LEFT IN BUFFER
 1970 DEY
 1980 BPL .5 TRY AGAIN
 1990 BMI .7 REST OF KEY BETTER BE WILD
 2000 *--------------------------------
 2010 WILD.CARD .AS -/=/
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2104 of 2550

Apple II Computer Info

 2030 KEY .AS -/A= /
 2040 *--------------------------------
 2050 FNLIST .AS -/A SIMPLE KEY /
 2060 .AS -/NOT SUCH A SIMPLE KEY /
 2070 .AS -/NOT A SIMPLE KEY AT ALL /
 2080 .AS -/A SIMPLE KEY AFTER ALL /
 2090 NAME.CNT .EQ *-FNLIST/30
 2100 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2105 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:ProDOS:BUF.320K.txt
==

 0 .ti 81,BNApple //c w/256K Z-RAM buffering program 2.0 8/5/85
dcj
 1 ;SAVE Buf.320K
 2 ;--------------------------------
 3 ; Dedicated to Allan B. Calhamer.
 4 ;--------------------------------
 5 Printer.ACIA.TxD .eq $C098 (w)
 6 Printer.ACIA.Status .eq $C099 (r)
 7 Printer.ACIA.Command .eq $C09A (r/w)
 8 Printer.ACIA.Control .eq $C09B (r/w)
 9 Modem.ACIA.RxD .eq $C0A8 (r)
 10 Modem.ACIA.Status .eq $C0A9 (r)
 11 Modem.ACIA.Command .eq $C0AA (r/w)
 12 Modem.ACIA.Control .eq $C0AB (r/w)
 13 Z.RAM.Bank.Reg .eq $C073 (w) same as RamWorks
 14 Keyboard .eq $C000 (r)
 15 Store80 .eq $C001 (w) on
 16 RAMRd .eq $C003 (w) aux
 17 RAMWrt .eq $C005 (w) aux
 18 AltZP .eq $C009 (w) aux
 19 Vid40 .eq $C00C (w)
 20 SetAltChr .eq $C00F (w) w/MouseText
 21 Clear.Key.Strobe .eq $C010 (r)
 22 Text .eq $C051 (r)
 23 Page1 .eq $C054 (r) main
 24 Page2 .eq $C055 (r) aux
 25 Hires .eq $C057 (r) $2000-$3FFF too...
 26 LCRAM2 .eq $C083 (r/w; write doesn't
 27 LCRAM1 .eq $C08B change write enable)
 28 ;--------------------------------
 29 .op 65C02
 30 .or $2000
 31 .tf /IIc.buf/Bufit320K/
 32 dcj CLD rqd (now)
 33 SEI close this can of worms...
 34 LDA LCRAM2 1x...switches setup
 35 LDA Text
 36 LDA Page1
 37 LDA Hires
 38 STZ Store80
 39 STZ RAMRd
 40 STZ RAMWrt
 41 STZ AltZP
 42 STZ SetAltChr
 43 STZ Vid40
 44 LDA #" " clear 40 column screen
 45 LDX #0
 46 .1 STA $400,X
 47 STA $500,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2106 of 2550

Apple II Computer Info

 48 STA $600,X
 49 STA $700,X
 50 INX
 51 BNE .1
 52 LDY #$0F install Image in aux ZPs/Stacks
 53 .2 STY Z.RAM.Bank.Reg
 54 .3 LDA Image,X
 55 STA $00,X
 56 LDA Image+$100,X
 57 STA $100,X
 58 INX
 59 BNE .3
 60 LDA Msg,Y put up a message
 61 STA $50C,Y
 62 DEY
 63 BPL .2
 64 LDA #%000.0.10.1.0 bop ACIAs
 65 STA Printer.ACIA.Command
 66 inc LDA #%000.0.10.1.1 RTS' lo
 67 STA Modem.ACIA.Command
 68 LDA #%0.00.1.1110 9600 baud
 69 STA Printer.ACIA.Control
 70 inc LDA #%0.00.1.1111 19200 baud!
 71 STA Modem.ACIA.Control
 72 LDA Modem.ACIA.RxD
 73 JMP Scan go 2 it
 74 Msg .AS 'A' as in Apple
 75 .AS -" //c buffer pgm"
 76 Image .ph $00
 77 ; aux bank specified by Acc, bank adr lo by X-reg,
 78 ; bank adr hi by Y-reg, and byte passed in S-reg!
 79 Write STA Z.RAM.Bank.Reg bank in Z-RAM
 80 STX <.1+1 modify STX operand in "this" bank
 81 STY <.1+2
 82 TSX get byte to a usable reg!
 83 .1 STX $FFFF abs adr modified for each write
 84 STZ Z.RAM.Bank.Reg revert to //c aux bank
 85 JMP W.Ret
 86 ; aux bank specified by Acc, bank adr lo by X-reg,
 87 ; bank adr hi by Y-reg, and byte returned in Acc.
 88 Read STA Z.RAM.Bank.Reg bank in Z-RAM
 89 STX <.1+1 modify LDA operand in "this" bank
 90 STY <.1+2
 91 .1 LDA $FFFF abs adr modified for each read
 92 STZ Z.RAM.Bank.Reg revert to //c aux bank
 93 JMP R.Ret
 94 Z.RAM.Banks.Avail .eq *-3
 95 ; (-3 because JMP R.Ret never executed in Z-RAM)
 96 Z.RAM.used .eq Z.RAM.Banks.Avail*4
 97 ;--------------------------------
 98 ; buffer starts at first available location in //c aux bank
 99 Receive.Adr.Lo .da #IIc.Aux.Bank.Avail
 100 Receive.Adr.Hi .da /IIc.Aux.Bank.Avail
 101 Receive.Bank .da #$00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2107 of 2550

Apple II Computer Info

 102 Transmit.Adr.Lo .da #IIc.Aux.Bank.Avail
 103 Transmit.Adr.Hi .da /IIc.Aux.Bank.Avail
 104 Transmit.Bank .da #$00
 105 Byte.Counter.Lo .da #$000000 indicates empty
 106 Byte.Counter.Mid .da #$000000/256
 107 Byte.Counter.Hi .da #$000000/65536
 108 RTS.Bit .da #%000.0.10.0.0 RTS' lo
 109 ;--------------------------------
 110 Scan LDA Page1 access main text screen
 111 INC $413 show we're alive
 112 DEC $414
 113 LDA Page2 back to aux
 114 LDA Keyboard scan keyboard
 115 BPL Scan.Modem.Port
 116 CMP #" " space toggles RTS' (DTR2B) to //e
 117 BNE .2
 118 LDA Modem.ACIA.Command
 119 AND #%000.0.10.0.0
 120 BNE .1 =>It's ok, you can turn it off...
 121 LDA RTS.Bit
 122 BNE Scan.Modem.Port =>don't do it! (yet)
 123 .1 LDA Modem.ACIA.Command
 124 EOR #%000.0.10.0.0
 125 STA Modem.ACIA.Command
 126 AND #%000.0.10.0.0
 127 STA RTS.Bit
 128 .2 BIT Clear.Key.Strobe
 129 Scan.Modem.Port
 130 LDY Modem.ACIA.Status
 131 TYA
 132 AND #%0000.0111 error bits mask
 133 BEQ .1 =>error-free operation
 134 TAX
 135 LDA Page1 access main text screen
 136 INC $4FF,X indicate error...
 137 LDA Page2 back to aux
 138 .1 TYA
 139 AND #%0000.1000 receive data reg full mask
 140 BEQ CantRx =>not full
 141 LDA Byte.Counter.Lo received a byte,
 142 LDX Byte.Counter.Mid do we assert RTS' ?
 143 LDY Byte.Counter.Hi
 144 CMP #BufLen-256
 145 BNE .2 =>buffer not @ full-256
 146 CPX /BufLen-256
 147 BNE .2 =>buffer not @ full-256
 148 CPY ^BufLen-256
 149 BNE .2 =>buffer not @ full-256
 150 LDA #%000.0.10.0.0 assert RTS'
 151 TRB Modem.ACIA.Command
 152 LDA Byte.Counter.Lo reload it
 153 .2 INC fig next byte count
 154 BNE .3
 155 INX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2108 of 2550

Apple II Computer Info

 156 BNE .3
 157 INY
 158 .3 CMP #BufLen do we have room for it ?
 159 BNE Room =>buffer not full
 160 CPX /BufLen
 161 BNE Room =>buffer not full
 162 CPY ^BufLen
 163 BNE Room =>buffer not full
 164 LDA Page1 access main text screen
 165 INC $402 indicate full
 166 LDA Page2 back to aux
 167 CantRx BRA Cant.Receive =>buffer is full!
 168 Room STA Byte.Counter.Lo
 169 STX Byte.Counter.Mid
 170 STY Byte.Counter.Hi
 171 LDA Page1 access main text screen
 172 INC $400 show we received a byte
 173 LDA Page2 back to aux
 174 LDX Modem.ACIA.RxD
 175 TXS pass it in S-reg
 176 LDX Receive.Adr.Lo
 177 LDY Receive.Adr.Hi
 178 BIT LCRAM2 normally use LC bank 2
 179 TYA
 180 AND #$F0
 181 CMP /$C000 if adr is in $CXXX range
 182 BNE .1
 183 BIT LCRAM1 use LC bank 1
 184 TYA
 185 ORA /$D000
 186 TAY
 187 .1 LDA Receive.Bank
 188 JMP Write
 189 W.Ret INC Receive.Adr.Lo fig next receive adr
 190 BNE Scan.Printer.Port
 191 INC Receive.Adr.Hi
 192 BNE Scan.Printer.Port
 193 LDA Receive.Bank
 194 CMP #1
 195 ADC #3 clear carry if 0, else set it
 196 CMP #$10
 197 BCC .1 =>entering/still in Z-RAM
 198 LDA #$00 wrap to //c bank 0
 199 LDX #IIc.Aux.Bank.Avail
 200 LDY /IIc.Aux.Bank.Avail
 201 BRA .2
 202 .1 LDX #Z.RAM.Banks.Avail
 203 LDY /Z.RAM.Banks.Avail
 204 .2 STA Receive.Bank
 205 STX Receive.Adr.Lo
 206 STY Receive.Adr.Hi
 207 Cant.Receive
 208 Scan.Printer.Port
 209 LDA #%0011.0000 make transmit data reg empty and

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2109 of 2550

Apple II Computer Info

 210 AND Printer.ACIA.Status Data Carrier Detect mask
 211 CMP #%0001.0000 test empty and DCD' lo
 212 BNE Cant.Transmit =>not empty or not ready
 213 LDA Byte.Counter.Lo printer can take another byte,
 214 ORA Byte.Counter.Mid do we have one ?
 215 ORA Byte.Counter.Hi
 216 BEQ Cant.Transmit =>buffer is empty!!!
 217 LDA Byte.Counter.Lo do we release RTS' ?
 218 LDX Byte.Counter.Mid
 219 LDY Byte.Counter.Hi
 220 CMP #BufLen-2048
 221 BNE .1 =>buffer not @ full-2048
 222 CPX /BufLen-2048
 223 BNE .1 =>buffer not @ full-2048
 224 CPY ^BufLen-2048
 225 BNE .1 =>buffer not @ full-2048
 226 LDA RTS.Bit
 227 TSB Modem.ACIA.Command release RTS' (maybe)
 228 .1 STA Z.RAM.Bank.Reg+5
 229 LDA Byte.Counter.Lo fig next byte count
 230 BNE .3
 231 LDA Byte.Counter.Mid
 232 BNE .2
 233 DEC Byte.Counter.Hi
 234 .2 DEC Byte.Counter.Mid
 235 .3 DEC Byte.Counter.Lo
 236 LDA Page1 access main text page
 237 INC $427 show we printed a byte
 238 LDA Page2 back to aux
 239 LDX Transmit.Adr.Lo
 240 LDY Transmit.Adr.Hi
 241 BIT LCRAM2 normally use LC bank 2
 242 TYA
 243 AND #$F0
 244 CMP /$C000 if adr in $CXXX range
 245 BNE .4
 246 BIT LCRAM1 use LC bank 1
 247 TYA
 248 ORA /$D000
 249 TAY
 250 .4 LDA Transmit.Bank
 251 JMP Read
 252 R.Ret STA Printer.ACIA.TxD
 253 INC Transmit.Adr.Lo fig next transmit adr
 254 BNE Next
 255 INC Transmit.Adr.Hi
 256 BNE Next
 257 LDA Transmit.Bank
 258 CMP #1 clear carry if 0, else set it
 259 ADC #3
 260 CMP #$10
 261 BCC .1 =>entering/still in Z-RAM
 262 LDA #$00 wrap to //c bank 0
 263 LDX #IIc.Aux.Bank.Avail

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2110 of 2550

Apple II Computer Info

 264 LDY /IIc.Aux.Bank.Avail
 265 BRA .2
 266 .1 LDX #Z.RAM.Banks.Avail
 267 LDY /Z.RAM.Banks.Avail
 268 .2 STA Transmit.Bank
 269 STX Transmit.Adr.Lo
 270 STY Transmit.Adr.Hi
 271 Cant.Transmit
 272 Next JMP Scan
 273 IIc.Aux.Bank.Avail .eq *
 274 BufLen .eq $50000-Z.RAM.Used-IIc.Aux.Bank.Avail
 275 .lif

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2111 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:ProDOS:BUF.576K.txt
==

 0 .ti 81,BNApple //c w/512K Z-RAM buffering program 2.0 8/5/85
dcj
 1 ;SAVE Buf.576K
 2 ;--------------------------------
 3 ; Dedicated to Allan B. Calhamer.
 4 ;--------------------------------
 5 Printer.ACIA.TxD .eq $C098 (w)
 6 Printer.ACIA.Status .eq $C099 (r)
 7 Printer.ACIA.Command .eq $C09A (r/w)
 8 Printer.ACIA.Control .eq $C09B (r/w)
 9 Modem.ACIA.RxD .eq $C0A8 (r)
 10 Modem.ACIA.Status .eq $C0A9 (r)
 11 Modem.ACIA.Command .eq $C0AA (r/w)
 12 Modem.ACIA.Control .eq $C0AB (r/w)
 13 Z.RAM.Bank.Reg .eq $C073 (w) same as RamWorks
 14 Keyboard .eq $C000 (r)
 15 Store80 .eq $C001 (w) on
 16 RAMRd .eq $C003 (w) aux
 17 RAMWrt .eq $C005 (w) aux
 18 AltZP .eq $C009 (w) aux
 19 Vid40 .eq $C00C (w)
 20 SetAltChr .eq $C00F (w) w/MouseText
 21 Clear.Key.Strobe .eq $C010 (r)
 22 Text .eq $C051 (r)
 23 Page1 .eq $C054 (r) main
 24 Page2 .eq $C055 (r) aux
 25 Hires .eq $C057 (r) $2000-$3FFF too...
 26 LCRAM2 .eq $C083 (r/w; write doesn't
 27 LCRAM1 .eq $C08B change write enable)
 28 ;--------------------------------
 29 .op 65C02
 30 .or $2000
 31 .tf Bufit576K
 32 dcj CLD rqd (now)
 33 SEI close this can of worms...
 34 LDA LCRAM2 1x...switches setup
 35 LDA Text
 36 LDA Page1
 37 LDA Hires
 38 STZ Store80
 39 STZ RAMRd
 40 STZ RAMWrt
 41 STZ AltZP
 42 STZ SetAltChr
 43 STZ Vid40
 44 LDA #" " clear 40 column screen
 45 LDX #0
 46 .1 STA $400,X
 47 STA $500,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2112 of 2550

Apple II Computer Info

 48 STA $600,X
 49 STA $700,X
 50 INX
 51 BNE .1
 52 LDY #$0F install Image in aux ZPs/Stacks
 53 .2 STY Z.RAM.Bank.Reg
 54 .3 LDA Image,X
 55 STA $00,X
 56 LDA Image+$100,X
 57 STA $100,X
 58 INX
 59 BNE .3
 60 LDA Msg,Y put up a message
 61 STA $50C,Y
 62 DEY
 63 BPL .2
 64 LDA #%000.0.10.1.0 bop ACIAs
 65 STA Printer.ACIA.Command
 66 inc LDA #%000.0.10.1.1 RTS' lo
 67 STA Modem.ACIA.Command
 68 LDA #%0.00.1.1110 9600 baud
 69 STA Printer.ACIA.Control
 70 inc LDA #%0.00.1.1111 19200 baud!
 71 STA Modem.ACIA.Control
 72 LDA Modem.ACIA.RxD
 73 JMP Scan go 2 it
 74 Msg .AS 'A' as in Apple
 75 .AS -" //c buffer pgm"
 76 Image .ph $00
 77 ; aux bank specified by Acc, bank adr lo by X-reg,
 78 ; bank adr hi by Y-reg, and byte passed in S-reg!
 79 Write STA Z.RAM.Bank.Reg bank in Z-RAM
 80 STX <.1+1 modify STX operand in "this" bank
 81 STY <.1+2
 82 TSX get byte to a usable reg!
 83 .1 STX $FFFF abs adr modified for each write
 84 STZ Z.RAM.Bank.Reg revert to //c aux bank
 85 JMP W.Ret
 86 ; aux bank specified by Acc, bank adr lo by X-reg,
 87 ; bank adr hi by Y-reg, and byte returned in Acc.
 88 Read STA Z.RAM.Bank.Reg bank in Z-RAM
 89 STX <.1+1 modify LDA operand in "this" bank
 90 STY <.1+2
 91 .1 LDA $FFFF abs adr modified for each read
 92 STZ Z.RAM.Bank.Reg revert to //c aux bank
 93 JMP R.Ret
 94 Z.RAM.Banks.Avail .eq *-3
 95 ; (-3 because JMP R.Ret never executed in Z-RAM)
 96 Z.RAM.used .eq Z.RAM.Banks.Avail*8
 97 ;--------------------------------
 98 ; buffer starts at first available location in //c aux bank
 99 Receive.Adr.Lo .da #IIc.Aux.Bank.Avail
 100 Receive.Adr.Hi .da /IIc.Aux.Bank.Avail
 101 Receive.Bank .da #$00

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2113 of 2550

Apple II Computer Info

 102 Transmit.Adr.Lo .da #IIc.Aux.Bank.Avail
 103 Transmit.Adr.Hi .da /IIc.Aux.Bank.Avail
 104 Transmit.Bank .da #$00
 105 Byte.Counter.Lo .da #$000000 indicates empty
 106 Byte.Counter.Mid .da #$000000/256
 107 Byte.Counter.Hi .da #$000000/65536
 108 RTS.Bit .da #%000.0.10.0.0 RTS' lo
 109 ;--------------------------------
 110 Scan LDA Page1 access main text screen
 111 INC $413 show we're alive
 112 DEC $414
 113 LDA Page2 back to aux
 114 LDA Keyboard scan keyboard
 115 BPL Scan.Modem.Port
 116 CMP #" " space toggles RTS' (DTR2B) to //e
 117 BNE .2
 118 LDA Modem.ACIA.Command
 119 AND #%000.0.10.0.0
 120 BNE .1 =>It's ok, you can turn it off...
 121 LDA RTS.Bit
 122 BNE Scan.Modem.Port =>don't do it! (yet)
 123 .1 LDA Modem.ACIA.Command
 124 EOR #%000.0.10.0.0
 125 STA Modem.ACIA.Command
 126 AND #%000.0.10.0.0
 127 STA RTS.Bit
 128 .2 BIT Clear.Key.Strobe
 129 Scan.Modem.Port
 130 LDY Modem.ACIA.Status
 131 TYA
 132 AND #%0000.0111 error bits mask
 133 BEQ .1 =>error-free operation
 134 TAX
 135 LDA Page1 access main text screen
 136 INC $4FF,X indicate error...
 137 LDA Page2 back to aux
 138 .1 TYA
 139 AND #%0000.1000 receive data reg full mask
 140 BEQ CantRx =>not full
 141 LDA Byte.Counter.Lo received a byte,
 142 LDX Byte.Counter.Mid do we assert RTS' ?
 143 LDY Byte.Counter.Hi
 144 CMP #BufLen-256
 145 BNE .2 =>buffer not @ full-256
 146 CPX /BufLen-256
 147 BNE .2 =>buffer not @ full-256
 148 CPY ^BufLen-256
 149 BNE .2 =>buffer not @ full-256
 150 LDA #%000.0.10.0.0 assert RTS'
 151 TRB Modem.ACIA.Command
 152 LDA Byte.Counter.Lo reload it
 153 .2 INC fig next byte count
 154 BNE .3
 155 INX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2114 of 2550

Apple II Computer Info

 156 BNE .3
 157 INY
 158 .3 CMP #BufLen do we have room for it ?
 159 BNE Room =>buffer not full
 160 CPX /BufLen
 161 BNE Room =>buffer not full
 162 CPY ^BufLen
 163 BNE Room =>buffer not full
 164 LDA Page1 access main text screen
 165 INC $402 indicate full
 166 LDA Page2 back to aux
 167 CantRx BRA Cant.Receive =>buffer is full!
 168 Room STA Byte.Counter.Lo
 169 STX Byte.Counter.Mid
 170 STY Byte.Counter.Hi
 171 LDA Page1 access main text screen
 172 INC $400 show we received a byte
 173 LDA Page2 back to aux
 174 LDX Modem.ACIA.RxD
 175 TXS pass it in S-reg
 176 LDX Receive.Adr.Lo
 177 LDY Receive.Adr.Hi
 178 BIT LCRAM2 normally use LC bank 2
 179 TYA
 180 AND #$F0
 181 CMP /$C000 if adr is in $CXXX range
 182 BNE .1
 183 BIT LCRAM1 use LC bank 1
 184 TYA
 185 ORA /$D000
 186 TAY
 187 .1 LDA Receive.Bank
 188 JMP Write
 189 W.Ret INC Receive.Adr.Lo fig next receive adr
 190 BNE Scan.Printer.Port
 191 INC Receive.Adr.Hi
 192 BNE Scan.Printer.Port
 193 LDA Receive.Bank
 194 CMP #1
 195 ADC #1 clear carry if 0, else set it
 196 CMP #$10
 197 BCC .1 =>entering/still in Z-RAM
 198 LDA #$00 wrap to //c bank 0
 199 LDX #IIc.Aux.Bank.Avail
 200 LDY /IIc.Aux.Bank.Avail
 201 BRA .2
 202 .1 LDX #Z.RAM.Banks.Avail
 203 LDY /Z.RAM.Banks.Avail
 204 .2 STA Receive.Bank
 205 STX Receive.Adr.Lo
 206 STY Receive.Adr.Hi
 207 Cant.Receive
 208 Scan.Printer.Port
 209 LDA #%0011.0000 make transmit data reg empty and

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2115 of 2550

Apple II Computer Info

 210 AND Printer.ACIA.Status Data Carrier Detect mask
 211 CMP #%0001.0000 test empty and DCD' lo
 212 BNE Cant.Transmit =>not empty or not ready
 213 LDA Byte.Counter.Lo printer can take another byte,
 214 ORA Byte.Counter.Mid do we have one ?
 215 ORA Byte.Counter.Hi
 216 BEQ Cant.Transmit =>buffer is empty!!!
 217 LDA Byte.Counter.Lo do we release RTS' ?
 218 LDX Byte.Counter.Mid
 219 LDY Byte.Counter.Hi
 220 CMP #BufLen-2048
 221 BNE .1 =>buffer not @ full-2048
 222 CPX /BufLen-2048
 223 BNE .1 =>buffer not @ full-2048
 224 CPY ^BufLen-2048
 225 BNE .1 =>buffer not @ full-2048
 226 LDA RTS.Bit
 227 TSB Modem.ACIA.Command release RTS' (maybe)
 228 .1 STA Z.RAM.Bank.Reg+5
 229 LDA Byte.Counter.Lo fig next byte count
 230 BNE .3
 231 LDA Byte.Counter.Mid
 232 BNE .2
 233 DEC Byte.Counter.Hi
 234 .2 DEC Byte.Counter.Mid
 235 .3 DEC Byte.Counter.Lo
 236 LDA Page1 access main text page
 237 INC $427 show we printed a byte
 238 LDA Page2 back to aux
 239 LDX Transmit.Adr.Lo
 240 LDY Transmit.Adr.Hi
 241 BIT LCRAM2 normally use LC bank 2
 242 TYA
 243 AND #$F0
 244 CMP /$C000 if adr in $CXXX range
 245 BNE .4
 246 BIT LCRAM1 use LC bank 1
 247 TYA
 248 ORA /$D000
 249 TAY
 250 .4 LDA Transmit.Bank
 251 JMP Read
 252 R.Ret STA Printer.ACIA.TxD
 253 INC Transmit.Adr.Lo fig next transmit adr
 254 BNE Next
 255 INC Transmit.Adr.Hi
 256 BNE Next
 257 LDA Transmit.Bank
 258 CMP #1 clear carry if 0, else set it
 259 ADC #1
 260 CMP #$10
 261 BCC .1 =>entering/still in Z-RAM
 262 LDA #$00 wrap to //c bank 0
 263 LDX #IIc.Aux.Bank.Avail

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2116 of 2550

Apple II Computer Info

 264 LDY /IIc.Aux.Bank.Avail
 265 BRA .2
 266 .1 LDX #Z.RAM.Banks.Avail
 267 LDY /Z.RAM.Banks.Avail
 268 .2 STA Transmit.Bank
 269 STX Transmit.Adr.Lo
 270 STY Transmit.Adr.Hi
 271 Cant.Transmit
 272 Next JMP Scan
 273 IIc.Aux.Bank.Avail .eq *
 274 BufLen .eq $90000-Z.RAM.Used-IIc.Aux.Bank.Avail
 275 .lif

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2117 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8508:ProDOS:BUF.64K.txt
==

 1000 .ti 81,BNApple //c buffering program 2.0 8/5/85 dcj
 1010 ;SAVE Buf.64K
 1020 ;--------------------------------
 1030 ; Dedicated to Allan B. Calhamer.
 1040 ;--------------------------------
 1050 Printer.ACIA.TxD .eq $C098 (w)
 1060 Printer.ACIA.Status .eq $C099 (r)
 1070 Printer.ACIA.Command .eq $C09A (r/w)
 1080 Printer.ACIA.Control .eq $C09B (r/w)
 1090 Modem.ACIA.RxD .eq $C0A8 (r)
 1100 Modem.ACIA.Status .eq $C0A9 (r)
 1110 Modem.ACIA.Command .eq $C0AA (r/w)
 1120 Modem.ACIA.Control .eq $C0AB (r/w)
 1130 Keyboard .eq $C000 (r)
 1140 Store80 .eq $C001 (w) on
 1150 RAMRd .eq $C003 (w) aux
 1160 RAMWrt .eq $C005 (w) aux
 1170 AltZP .eq $C009 (w) aux
 1180 Vid40 .eq $C00C (w)
 1190 SetAltChr .eq $C00F (w) w/MouseText
 1200 Clear.Key.Strobe .eq $C010 (r)
 1210 Text .eq $C051 (r)
 1220 Page1 .eq $C054 (r) main
 1230 Page2 .eq $C055 (r) aux
 1240 Hires .eq $C057 (r) $2000-$3FFF too...
 1250 LCRAM2 .eq $C083 (r/w; write doesn't
 1260 LCRAM1 .eq $C08B change write enable)
 1270 ;--------------------------------
 1280 .op 65C02
 1290 .or $2000
 1300 .tf /IIc.buf/Bufit64K/
 1310 dcj SEI close this can of worms...
 1320 LDA LCRAM2 1x...switches setup
 1330 LDA Text
 1340 LDA Page1
 1350 LDA Hires
 1360 STZ Store80
 1370 STZ RAMRd
 1380 STZ RAMWrt
 1390 STZ AltZP
 1400 STZ SetAltChr
 1410 STZ Vid40
 1420 LDX #0
 1430 .1 LDA #" " clear 40 column screen
 1440 STA $400,X
 1450 STA $500,X
 1460 STA $600,X
 1470 STA $700,X
 1480 LDA Image,X install Image in aux ZP/Stack

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2118 of 2550

Apple II Computer Info

 1490 STA $00,X
 1500 INX
 1510 BNE .1
 1520 LDY #$0F
 1530 .2 LDA Msg,Y put up a message
 1540 STA $50C,Y
 1550 DEY
 1560 BPL .2
 1570 LDA #%000.0.10.1.0 bop ACIAs
 1580 STA Printer.ACIA.Command
 1590 inc LDA #%000.0.10.1.1 RTS' lo
 1600 STA Modem.ACIA.Command
 1610 LDA #%0.00.1.1110 9600 baud
 1620 STA Printer.ACIA.Control
 1630 inc LDA #%0.00.1.1111 19200 baud!
 1640 STA Modem.ACIA.Control
 1650 LDA Modem.ACIA.RxD
 1660 JMP Scan go 2 it
 1670 Msg .AS 'A' as in Apple
 1680 .AS -" //c buffer pgm"
 1690 Image .ph $00
 1700 ;--------------------------------
 1710 ; buffer starts at first available location in //c aux bank
 1720 Receive.Adr.Hi .da /IIc.Aux.Bank.Avail
 1730 Receive.Adr.Lo .da IIc.Aux.Bank.Avail
 1740 Transmit.Adr.Hi .da /IIc.Aux.Bank.Avail
 1750 Transmit.Adr.Lo .da IIc.Aux.Bank.Avail
 1760 Byte.Counter.Lo .da #$0000 indicates empty
 1770 Byte.Counter.Hi .da /$0000
 1780 RTS.Bit .da #%000.0.10.0.0 RTS' lo
 1790 ;--------------------------------
 1800 Scan LDA Page1 access main text screen
 1810 INC $413 show we're alive
 1820 DEC $414
 1830 LDA Page2 back to aux
 1840 LDA Keyboard scan keyboard
 1850 BPL Scan.Modem.Port
 1860 CMP #" " space toggles RTS' (DTR2B) to //e
 1870 BNE .2
 1880 LDA Modem.ACIA.Command
 1890 AND #%000.0.10.0.0
 1900 BNE .1 =>It's ok, you can turn it off...
 1910 LDA RTS.Bit
 1920 BNE Scan.Modem.Port =>don't do it! (yet)
 1930 .1 LDA Modem.ACIA.Command
 1940 EOR #%000.0.10.0.0
 1950 STA Modem.ACIA.Command
 1960 AND #%000.0.10.0.0
 1970 STA RTS.Bit
 1980 .2 BIT Clear.Key.Strobe
 1990 Scan.Modem.Port
 2000 LDY Modem.ACIA.Status
 2010 TYA
 2020 AND #%0000.0111 error bits mask

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2119 of 2550

Apple II Computer Info

 2030 BEQ .1 =>error-free operation
 2040 TAX
 2050 LDA Page1 access main text screen
 2060 INC $4FF,X indicate error...
 2070 LDA Page2 back to aux
 2080 .1 TYA
 2090 AND #%0000.1000 receive data reg full mask
 2100 BEQ Cant.Receive =>not full
 2110 LDX Byte.Counter.Lo received a byte,
 2120 LDY Byte.Counter.Hi do we assert RTS' ?
 2130 CPX #BufLen-256
 2140 BNE .2 =>buffer not @ full-256
 2150 CPY /BufLen-256
 2160 BNE .2 =>buffer not @ full-256
 2170 LDA #%000.0.10.0.0 assert RTS'
 2180 TRB Modem.ACIA.Command
 2190 .2 INX fig next byte count
 2200 BNE .3
 2210 INY
 2220 .3 CPX #BufLen do we have room for it ?
 2230 BNE Room =>buffer not full
 2240 CPY /BufLen
 2250 ; $402 indicator gone to fit into ZP (cause I wanna)
 2260 BEQ Cant.Receive =>buffer is full!
 2270 Room STX Byte.Counter.Lo
 2280 STY Byte.Counter.Hi
 2290 LDA Page1 access main text screen
 2300 INC $400 show we received a byte
 2310 LDA Page2 back to aux
 2320 LDY Receive.Adr.Hi
 2330 BIT LCRAM2 normally use LC bank 2
 2340 TYA
 2350 AND #$F0
 2360 CMP /$C000 if adr is in $CXXX range
 2370 BNE .1
 2380 BIT LCRAM1 use LC bank 1
 2390 TYA
 2400 ORA /$D000
 2410 TAY
 2420 .1 STY Receive.Adr.Lo+1
 2430 LDA Modem.ACIA.RxD
 2440 STA (Receive.Adr.Lo)
 2450 INC Receive.Adr.Lo fig next receive adr
 2460 BNE Scan.Printer.Port
 2470 INC Receive.Adr.Hi
 2480 BNE Scan.Printer.Port
 2490 LDX #IIc.Aux.Bank.Avail
 2500 STX Receive.Adr.Lo
 2510 Cant.Receive
 2520 Scan.Printer.Port
 2530 LDA #%0011.0000 make transmit data reg empty and
 2540 AND Printer.ACIA.Status Data Carrier Detect mask
 2550 CMP #%0001.0000 test empty and DCD' lo
 2560 BNE Cant.Transmit =>not empty or not ready

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2120 of 2550

Apple II Computer Info

 2570 LDA Byte.Counter.Lo printer can take another byte,
 2580 ORA Byte.Counter.Hi do we have one ?
 2590 BEQ Cant.Transmit =>buffer is empty!!!
 2600 LDX Byte.Counter.Lo do we release RTS' ?
 2610 LDY Byte.Counter.Hi
 2620 CPX #BufLen-2048
 2630 BNE .1 =>buffer not @ full-2048
 2640 CPY /BufLen-2048
 2650 BNE .1 =>buffer not @ full-2048
 2660 LDA RTS.Bit
 2670 TSB Modem.ACIA.Command release RTS' (maybe)
 2680 .1 STA $C073+5
 2690 LDA Byte.Counter.Lo fig next byte count
 2700 BNE .2
 2710 DEC Byte.Counter.Hi
 2720 .2 DEC Byte.Counter.Lo
 2730 LDA Page1 access main text page
 2740 INC $427 show we printed a byte
 2750 LDA Page2 back to aux
 2760 LDY Transmit.Adr.Hi
 2770 BIT LCRAM2 normally use LC bank 2
 2780 TYA
 2790 AND #$F0
 2800 CMP /$C000 if adr in $CXXX range
 2810 BNE .4
 2820 BIT LCRAM1 use LC bank 1
 2830 TYA
 2840 ORA /$D000
 2850 TAY
 2860 .4 STY Transmit.Adr.Lo+1
 2870 LDA (Transmit.Adr.Lo)
 2880 STA Printer.ACIA.TxD
 2890 INC Transmit.Adr.Lo fig next transmit adr
 2900 BNE Next
 2910 INC Transmit.Adr.Hi
 2920 BNE Next
 2930 LDX #IIc.Aux.Bank.Avail
 2940 STX Transmit.Adr.Lo
 2950 Cant.Transmit
 2960 Next JMP Scan
 2970 IIc.Aux.Bank.Avail .eq *
 2980 BufLen .eq $10000-IIc.Aux.Bank.Avail
 2990 .lif

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2121 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:Articles:Convert.65802.txt
==

Short Binary-to-Decimal Conversion in 65802...........Bob S-C

Since the 65802 supports 16-bit registers, it is possible to write a
very tiny loop that will convert 16-bit binary numbers to four- or
five-digit decimal values. Jim Poponoe called today and suggested the
idea to me.

The idea is to count down the binary number in binary mode while
incrementing a four-digit decimal value in the A-register. It
certainly isn't very fast, but it is small.

The two programs below illustrate the technique. CONV.1 converts a
two-byte value at $0000 (and $0001) and stores the four-digit result
in $0002 (and $0003). CONV.1 goes one step further, handling a fifth
digit which is stored in $0004.

You could use CONV.1 inside the CATALOG command to convert volume
numbers and sector counts. It is probably shorter than the existing
code. Since the numbers converted are less than 500, the maximum time
is still less than half a millisecond.

Lines 1080 and 1090 put the 65802 into "native" mode, so that we can
use the 16-bit features. Lines 1210,1220 put the 65802 back into 6502
"emulation" mode, since the subroutine was written under the
assumption that the caller would be in emulation mode. If you plan to
use the subroutine within a program that runs entirely in native mode,
you could leave these four lines out. If you plan to call it from
both native mode and emulation mode, you need to save the E status and
restore it at the end. You can do that like this:

 CONV.1 CLC ENTER NATIVE MODE
 XCE
 PHP SAVE CALLER'S MODE (IN C-BIT)
 .
 .
 .
 PLP GET CALLER'S MODE
 XCE RESTORE CALLER'S MODE
 RTS

Line 1100 clears both the X- and M-bits, so that all 16-bit features
are on. Note that when either of these bits are cleared, immediate-
mode operands are two bytes long. The assembler doesn't keep track of
the state of these two bits, because it would be impossible in the
general case without a complete flow analysis of the program. It is
up to the programmer to tell the assembler whether to assemble one- or
two-byte immediate operands. You do this in S-C Macro Assembler by
using a double pound-sign notation, as in lines 1110 and 1160.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2122 of 2550

Apple II Computer Info

Line 1110 loads a full 16-bit value zero into the A-register. Line
1120 loads the 16-bit value from location $0000 and $0001. the low
byte of the value is in $0000, and the high byte in $0001. If all 16-
bits of this value are zero, line 1130 will branch around the
conversion loop. If not, it will not branch.

Line 1140 sets the decimal mode, which affects only the ADC and SBC
instructions. Line 1190 turns it back to binary. If you use the PHP
and PLP steps shown above in the discussion about native and emulation
modes, you could leave out the CLD in line 1190: the PHP would
restore the D-bit properly.

The loop in lines 1160-1180 adds one to the A-register and subtracts
one from the X-register, until the X-register reaches zero. Since we
are in decimal mode, the A-register counts up in BCD format. The
largest number the loop can handle correctly is 9999 decimal ($270F).
Larger values will not even have the correct lower four digits, since
CARRY gets set when 9999 is incremented.

After the loop finishes, line 1200 stores the result low-byte- first
at $0002 and $0003.

CONV.2 is almost identical to CONV.1, on purpose. There are five new
lines of code, at lines 1330, 1390-1410, and 1480. We use the Y-
register to keep track of the fifth digit, so that we can convert
numbers larger than 9999. Line 1330 sets Y=0. Line 1390 checks for
the carry that occurs when 9999 is incremented. If there is no carry,
the loop is the same as in CONV.1. If there is a carry, line 1400
increments the Y-register and line 1410 clears carry. (We could save
one byte at the expense of slower operation by including the CLC on
line 1370 inside the conversion loop.)

Line 1480 stores the fifth digit in location $0004. I put it after
the switch back to emulation mode, since I only wanted to store one
byte.

I timed these subroutines by counting cycles, as shown in the comments
in lines 1040,1050 and 1250,1260. In the process I was suprised to
learn that the DEX opcode still takes only two cycles, even when in
16-bit mode. Of course, the same goes for INX, DEY, INY. It is also
true of ASL, LSR, ROL, ROR, INC, and DEC when the operand is the A-
register.
1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2123 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:Articles:DOS.PDos.Init.txt
==

Put DOS and ProDOS Files on Same Disk......Bob Sander-Cederlof

In the February 1985 issue of AAL I showed how to create a DOS-less
DOS 3.3 data disk. Tracks 1 and 2, normally full of the DOS image,
were instead made available for files. Booting the disk gets you a
message that such a disk cannot be booted.

Now that we are publishing more and more programs intended for use
under ProDOS, we foresee the need to publish Quarterly Disks that
contain both DOS and ProDOS programs. Believe it or not, this is
really possible.

The DOS operating system keeps its Volume Table of Contents (VTOC) and
catalog in track $11. The VTOC is in sector 0 of that track, and the
catalog normally fills the rest of the track. A major part of the
VTOC is the bit map, which shows which sectors are as yet unused by
any files. If we want to reserve some sectors for use by a ProDOS
directory on the same disk, we merely mark those sectors as already
being in use in the DOS bit map.

ProDOS keeps its directory and bit map all in track 0. This track is
not available to DOS for file storage anyway, so we can be comfortable
stealing it for a ProDOS setup on the same diskette.

I decided to keep things fairly simple, by splitting the disk into two
parts purely on a track basis. ProDOS gets some number of tracks
starting with track 0, and DOS gets all the tracks from just after
ProDOS to track 34. If ProDOS gets more than 17 tracks, it will hop
over track $11 (since DOS's catalog is there). Normally I will split
the disk in half, giving tracks 0-16 to ProDOS and tracks 17-34 to
DOS. With this arrangement, ProDOS thus starts with 129 free blocks,
and DOS starts with 272 free sectors.

The program I wrote does not interact with the user; instead, you set
all the options by changing the source code and re-assembling. It
would be nice to have an interactive front end to get slot, drive,
volume number for the DOS half, volume name for the ProDOS half, and
how many tracks to put in each half. Maybe we'll add this stuff
later, or maybe you would like to try your hand at it.

The parameters you might want to change are found in lines 1020-1050.
You can see that I started the DOS allocation at track $12, just after
the catalog track. I also chose volume 1, drive 1, slot 6. You can
use any volume number from 1 to 254. Since these numbers were under
my control, I did not bother to check for legal values. If we add an
interactive front end, we will have to validate them. We might also
want to display the number of ProDOS blocks and DOS sectors that
result from the DOS.LOW.TRACK selection, maybe in a graphic format.
You might even use a joystick or mouse....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2124 of 2550

Apple II Computer Info

You might also want to change the ProDOS volume name. I am calling it
"DATA". The name is in line 2850. It can be up to 15 characters
long, and the number of characters must be stored in the right nybble
of the byte just before the name. This is automatically inserted for
you, by the assembler. If you should try to assemble a name larger
than 15 characters, line 2870 will cause a RANGE ERROR. Another way
of changing the ProDOS volume name is to do so after initialization
using the ProDOS FILER program.

Lines 1090 and 1100 compute the number of free DOS sectors and ProDOS
blocks. The values are not used anywhere in the program, but are nice
to know.

Line 1300 sets the program origin at $803. Why $803, and not $800?
If we load and run an assembly language program at $800, and then
later try to load and run an Applesoft program, Applesoft can get
confused. Applesoft requires that $800 contain a $00 value, but it
does not make sure it happens when you LOAD an Applesoft program from
the disk. By putting our program at $803 we make sure we don't kill
the $00 and $800. Well, then why not start at $801? I don't know, we
just always did it that way. (It would make good sense if our program
started by putting $00 in $801 and $802, indicating to Applesoft that
it had no program in memory.)

DOUBLE.INIT is written to run under DOS 3.3, and makes calls on the
RWTS subroutine to format and write information on the disk. The
entire DOUBLE.INIT program is driven by lines 1320-1490. The flow is
very straightforward:

 1. Format the disk as 35 empty tracks.
 2. Write DOS VTOC and Catalog in track 17.
 3. Write ProDOS Directory and bit map in track 0.
 4. Write "YOU CANNOT BOOT" code in boot sector.

Formatting a blank disk is simple, unless you have a modified DOS with
the INIT capability removed. Lines 1510-1590 set up a format call to
RWTS, and fall into my RWTS caller.

Lines 1600-1800 call RWTS and return, unless there was an error
condition. If there was an error, I will print out "RWTS ERROR" and
the error code in hex. The error code values you might see are:

 $08 -- Error during formatting
 $10 -- Trying to write on write protected disk
 $40 -- Drive error

I don't think you can get $20 (volume mismatch) or $80 (read error)
from DOUBLE.INIT. After printing the error message, DOS will be warm
started, aborting DOUBLE.INIT.

Building the DOS VTOC and Catalog is handled by lines 1820- 2310. The
beginning section of the VTOC contains information about the number of
tracks and sectors, where to find the catalog, etc. This is all

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2125 of 2550

Apple II Computer Info

assembled in at lines 2260-2310, and is copied into my buffer by lines
1880-1930. Since the volume number is a parameter, I specially load
it in with lines 1940 and 1950. The rest of the VTOC is a bit map
showing which sectors are not yet used. Lines 1960-2090 build this
bit map. Lines 1840-1870 and 2100-2120 cause the VTOC image to be
written on track 17 ($11) sector 0.

There are some unused bytes in the beginning part of the VTOC, so I
decided to put some private information in there. See line 2270 and
line 2290.

The rest of track 17 is a series of empty linked sectors comprising
the catalog. The chain starts with sector $0F, and works backward to
sector 1. Lines 2130-2240 build each sector in turn and write it on
the disk.

The ProDOS directory and bit map are installed in track 0 by lines
2330-2900. This gets a little tricky, because we are trying to write
ProDOS blocks with DOS 3.3 RWTS. Here is a correspondence table,
showing the blocks and sectors in track 0:

 ProDOS Block: 0 1 2 3 4 5 6 7
 DOS 3.3 Sectors: 0,E D,C B,A 9,8 7,6 5,4 3,2 F,1

The first sector of each pair contains the first part of each block,
and so on.

The ProDOS bit map goes in block 6, which is sectors 3 and 2. Even if
we had an entire diskette allocated to ProDOS the bit map would occupy
very little of the first of these two sectors. Since formatting the
disk wrote 256 zeroes into every sector, we can leave sector 2
unchanged. Lines 2700-2820 build the bit map data for sector 3 and
write it out. Note that block 7 is available, all blocks in track 17
are unavailable.

The ProDOS Directory starts in block 2. The first two bytes of a
directory sector point to the previous block in the directory chain,
and the next two bytes point to the following block in the chain. We
follow the standard ProDOS convention of linking blocks 3, 4, and 5
into the directory. Those three blocks contain no other information,
since there are as yet no filenames in the directory. Here's how the
chain links together:

 Previous Next
 Block Block
 Block 2: 0 3 (zero means the beginning)
 Block 3: 2 4
 Block 4: 3 5
 Block 5: 4 0 (zero means the end)

Block 2 gets some extra information, the volume header. Lines 2840-
2900 contain the header data, which is copied into my buffer by lines
2590-2630.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2126 of 2550

Apple II Computer Info

The no-booting boot program is shown in lines 3000-3190. This is
coded as a .PHase at $800 (see lines 3010 and 3190), since the disk
controller boot ROM will load it at that address. All the program
does is turn off the disk motor and print out a little message. Lines
1410-1490 write this program on track 0 sector 0.

I think if you really wanted to you could put a copy of the ProDOS
boot program in block 0 (sectors 0 and E). Then if you copied the
file named PRODOS into the ProDOS half of the disk, you could boot
ProDOS.

There is one thing to look out for if you start cranking out DOUBLE
DISKS. There are some utility programs in existence which are
designed to "correct" the DOS bitmap in the VTOC sector. Since these
programs have never heard of ProDOS, let alone of DOUBLE DISKS, they
are going to tell DOS that all those tracks we carefully gave to
ProDOS belong to DOS. If you let that happen to a disk on which you
have already stored some ProDOS files, zzzaaaapppp!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2127 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:Articles:Front.Page.txt
==

$1.80

Volume 5 -- Issue 12 September, 1985

In This Issue...

Prime Benchmark for 65802. 2
Put DOS and ProDOS on the Same Disk. 11
Software Sources for 65802 and 65816 21
Problems with 65802's in Apple II+ 23
Short Binary-to-Decimal Conversion in 65802. 24

Many of you have added 65802 processors to your Apples, and are now
looking for more data on programming the new features of this powerful
chip. We've been getting several calls per week asking: "Now that I
have this thing, how can I find out more about it?" Well, this issue
of AAL will keep you folks busy for a while! We have that standard
benchmark, the Sieve of Eratosthenes, coded in 65802, along with a
startlingly small routine to convert binary to decimal. And more to
come...

In another couple of months there will be a significant addition to
the 65816 library. We've been previewing a copy of the galley proofs
of a new book on the 65816 by David Eyes. We will have a full review
of this important resource, and copies for sale, as soon as the book
is really available.

"Now that You Know Apple Assembly Language, What Can You Do with It?"
That's the title of a new book written and published by Jules Gilder,
a long time contributor to Apple magazines. We'll have a full review
next month, and may be carrying the book. In the meantime, see Jules'
ad on page 7 of this issue.

S-C Macro Assembler Version 2.0 DOS Source Code

Here's another item we've had many requests for: the source code to
S-C Macro Assembler Version 2.0. Now that the DOS ver- sion has been
out a few months, and seems to be stable, we're releasing the source
code. Registered owners of S-C Macro Assembler Version 2.0 can
purchase the source, on disk, for only $100. Those of you who
purchased the source of an earlier Macro version may add the 2.0
source for only $50. It will be a few more months until the ProDOS
Version source code appears.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2128 of 2550

Apple II Computer Info

for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2129 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......DOS $100, ProDOS $100, both for $120
ProDOS Upgrade Kit for Version 2.0 DOS owners.........................$30
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code of S-C Macro 2.0 (DOS only)...................additional $100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility......without source code $20, with source $50
RAK-Ware DISASM...$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36
MacASM -- Macro Assembler for MacIntosh (Mainstay).........($150.00) $100
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15
Cross Assemblers for owners of S-C Macro Assembler.....$32.50 to $50 each
 (Available: 6800/1/2, 6301, 6805, 6809, 68000, Z-80, Z-8, 8048, 8051,
 8085, 1802/4/5, PDP-11, GI1650/70, others)

AAL Quarterly Disks.........................each $15, or any four for $45
 Jan-Mar Apr-Jun Jul-Sep Oct-Dec
 Each disk contains 1980 - - - 1
 the source code from 1981 2 3 4 5
 three issues of AAL, 1982 6 7 8 9
 saving you lots of 1983 10 11 12 13
 typing and testing. 1984 14 15 16 17
 1985 18 19 20

(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

Diskettes (with hub rings)......................... package of 20 for $32
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100
Envelopes for Diskette Mailers............................. 6 cents each

65802 Microprocessor (Western Design Center)...................($95) $50
quikLoader EPROM System (SCRG)................................($179) $170
PROmGRAMER (SCRG)..($149.50) $140
Switch-a-Slot (SCRG)..($190) $175
Extend-a-Slot (SCRG)...($35) $32

"Apple ProDOS: Advanced Features for programmers", Little..($17.95) $17
"Inside the Apple //c", Little..............................($19.95) $18
"Inside the Apple //e", Little..............................($19.95) $18
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18
"Apple][Circuit Description", Gayler......................($22.95) $21
"Understanding the Apple II", Sather........................($22.95) $21
"Understanding the Apple //e", Sather.......................($24.95) $23
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15
"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20
"Beneath Apple DOS", Worth & Lechner........................($19.95) $18

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2130 of 2550

Apple II Computer Info

"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18
"6502 Subroutines", Leventhal...............................($18.95) $18
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9
"Microcomputer Graphics", Myers.............................($12.95) $12
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16
"Assembly Lines -- the Book", Wagner........................($19.95) $18
"AppleVisions", Bishop & Grossberger........................($39.95) $36

 Add $1.50 per book for US shipping. Foreign orders add postage needed.
 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2131 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:Articles:PrimeSieve65802.txt
==

Prime Benchmark for 65802..................Bob Sander-Cederlof

Jim Gilbreath really started something. He is the one who popularized
the use of the Sieve of Eratosthenes as a benchmark program for
microcomputers and their various languages. You can read about it in
BYTE September 1981, "A High-Level Language Benchmark"; and later in
BYTE January 1983, "Eratosthenes Revisited".

In a nutshell, the benchmark creates an array of 8192 bytes,
representing the odd numbers from 1 to 16383. The prime numbers in
this array are flagged by the program using the Eratosthenes
algorithm. All of the times published in the BYTE articles are for
ten repetitions of the algorithm.

The second article lists page after page of timing results for various
computers and languages. They range from .0078 seconds for an
assembly language version running in an IBM 3033, to 5740 seconds for
a Cobol version in a Xerox 820.

There are many factors which affect the results, not just the basic
speed of the computer involved. The language used is obviously
significant, as some languages are more efficient than others for
particular purposes. Slight variations in the implementation of the
Eratosthenes algorithm can be very significant. The skill and
persistence of the programmer are also very important.

Gilbreath's times for the Apple II vary from 2806 seconds for an
Applesoft version to 160 seconds for a Pascal version. The same table
shows an OSI Superboard, using a 6502 like the Apple, ran an assembly
language version in 13.9 seconds. (I don't know what the clock rate
of the OSI board was.)

We have published a series of articles in AAL on the same subject.
"Sifting Primes Faster and Faster", in October 1981, gave programs in
Apple assembly language by William Robert Savoie and myself. At the
time I had overlooked the fact that BYTE's times were for ten trips
through the program, so I was perhaps a little overly enthusiastic.
The table below shows the adjusted times for ten repetitions.

 Version Time in seconds

 My Integer BASIC version 1880
 Mike Laumers Int BASIC 2380
 Mike's compiled by FLASH! 200
 Bill Savoie's 6502 assembly 13.9
 My first re-write of Bill's 9.3
 My 6502 version 7.4
 My 6502 with faster clear 6.9

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2132 of 2550

Apple II Computer Info

I challenged you readers to do it faster, and some of you did.
Charles Putney ("Even Faster Primes", Feb 1982 AAL) knocked the time
for ten trips down to 3.3 seconds. Tony Brightwell ("Faster than
Charlie", Nov 1982 AAL) combined tricks from number theory with a
faster array clear technique to trim the time to 1.83 seconds.
Peter McInerney sent us an implementation he did on the DTACK Grounded
68000 board, which uses a 12.5 MHz clock. His program ("68000 Sieve
Benchmark", July 1984 AAL) did 10 repetitions in .4 seconds. (An 8
MHz time was logged in the BYTE article at .49 seconds. Upping the
clock speed does not always speed everything up proportionally, due to
the need to wait for slower memory chips.) I translated Peter's code
back to 6502 code in "Updating the 6502 Prime Sifter", same issue. My
time for ten loops was 1.75 seconds. In that article I stated, "...it
remains to be seen what the 65802 could do.

David Eyes, in his new book on 65816 Assembly Language, presents a
version which uses the expanded capabilities in that chip. He
evidently did not build on our base, because his time for a 4 MHz
65816 was 1.56 seconds. I presume that means if the clock rate was
the same as Apple's it would have taken 6.24 seconds. I have been
previewing David's book, from the galleys, but the listing of that
program was not included in the material I received from the
typesetter.

I decided to try updating my 1984 version to 65802 code, using
whatever tricks I could come up with. The result runs ten times in
1.4 seconds in the 65802 plugged into my Apple II Plus. I suppose
that means a 4 MHz version would run in .35 seconds, or faster than a
12.5 MHz 68000!

Lines 1100-1210 are an outer shell to drive the PRIME program. The
shell begins and ends by ringing the Apple bell, to help me run my
stopwatch. I ran the PRIME program 1000 times, and then divided the
time by 100 to get the seconds for ten repetitions. In between
ringing the bells everything is done in 65802 mode. Lines 1110-1120
turn on "native" mode, and lines 1190-1200 restore "emulation" mode.

When you switch on native mode the M and X bits always come up as 1's.
That is, both are set to 8-bit mode. The M-bit controls the size of
operations on the A-register, and the X-bit controls the size for the
X- and Y-registers. Line 1130 turns on 16-bit mode for the A-
register. I use this setting throughout the rest of the program,
until we go back to emulation mode. All operations which affect the
A-register will be 16-bits, while I will only use X and Y with 8-bit
values.

Lines 1140-1180 call PRIME 1000 times. Since I have Mbit=0, line 1140
uses the 16-bit LDA immediate. STA COUNT stores both bytes: the low
byte at COUNT and and the high byte at COUNT+1. DEC COUNT decrements
the full 16-bit value, returning a .NE. status until both bytes are
zero. This is certainly a lot easier than a two-byte decrement in
6502 code:

 LDA COUNT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2133 of 2550

Apple II Computer Info

 BNE .1
 DEC COUNT+1
 .1 DEC COUNT
 BNENOT AT 0000 YET
 LDA COUNT+1
 BNENOT AT 0000 YET
Line 1140 may need some explanation, since there are now at least four
assemblers available for the Apple which handle 65802 assembly
language. Each of the four have chosen a different way to inform the
assembler about the number of bytes to assemble for immediate
operands. S-C Macro uses a "#" to indicate and 8-bit operand, and
"##" to indicate a 16-bit immediate operand. This seems to me to be
the easiest to figure out when I come back to read a program listing
after several weeks of working on something else. The "double #" is
an immediate visual clue (pun intended) that the immediate operand is
double size.

Since ORCA/M was a Hayden Software product, and David Eyes was product
manager of ORCA/M at Hayden as well as an early contributor to 65816
design, ORCA/M turned out to be the first assembler to include 65816
support. Mike Westerfield had a version running before the rest of us
even knew the 65816 was going to exist. Consequently, Mike's and
David's choices for assembly syntax and rules has achieved the honor
of being used in the 65816 data sheet and in David's book.

Mike and David decided to inform the assembler what size immediate
operands to use with two assembler directives. LONGA controls the
size of immediate operands on LDA, CMP, ADC, ORA, EOR, AND, BIT, and
SBC: LONGA ON makes them 16-bits, LONGA OFF makes them 8-bits.
Likewise, LONGI ON or OFF controls the immediate operands on LDX, LDY,
CPX, and CPY. You have to sprinkle your code with these so that the
assembler always knows which size to use. Since the directives may
not be close to the affected lines of code, it can be a chore to read
unfamiliar source code.

Merlin Pro uses a single directive to inform the assembler as to the
settings of M and X which will be in effect at execution time. The
directive is called "MX", and can have an operand of 0, 1, 2, or 3 (or
a symbol whose value is 0-3). The bits of the value correspond to the
M- and X-bit settings:

 MX 0 M=0, X=0 (both 16-bits)
 MX 1 M=0, X=1 (A/16, XY/8)
 MX 2 M=1, X=0 (A/8, XY/16)
 MX 3 M=1, X=1 (A/16, XY/16)

I understand that the latest version of Lazerware's Lisa Assembler
supports the 65816, but I don't have a copy. I do not know how Randy
Hyde indicates immediate operand size.

By the way, in all of the assemblers it is entirely up to the
programmer to be sure that you keep all the immediate sizes correct.
There is no way for an assembler to second-guess you on this. If you
tell it to make a 16-bit operand, and then execute that instruction in

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2134 of 2550

Apple II Computer Info

8-bit mode, the third byte will be treated as the next opcode. Vice
versa is just as bad. I have blown it many times already, with the
result that I am a lot more careful now.

Now let's look at the PRIME subroutine itself. The first section
clears an array of 8192 bytes, storing $00 in each byte. There are a
lot of ways to store zeroes. The most obvious is with a loop of STA
addr,X lines, such as we used in previous versions. The 65802 has a
STZ instruction, which stores zero without using the A-register, but
it is not faster. We could store a zero at the beginning of the array
and then use an overlapping MVN instruction to copy that zero through
the whole array:

 LDX ##BASE
 LDY ##BASE+1
 LDA ##8190
 MVN 0,0

That would be simple, but it would take over 56000 cycles. We can do
a lot better than that.

My version uses the PHD instruction 4096 times to push 8192 zeroes on
the stack. I start by setting the stack register to point at the last
byte of my array (BASE+8191). Each PHD pushes the direct page
register (which is currently set to $0000) on the stack. My loop
includes 16 PHD's, so 256 times around will fill the array (or empty
it, if you like). All this action is in lines 1320-1380. To save
space in the source code, rather than write 16 lines of PHD's, I wrote
them out as hex strings in lines 1350-1360.

Lines 1310, 1390-1410 save and restore the original stack pointer.
(At first I didn't do this, with disastrous results! The stack
pointer was sitting just below the cleared array. When I did an RTS,
the next opcode encountered was $00, which is a BRK. Since I was in
native mode, the BRK vectored through $FFE6,7 instead of $FFFE,F. Et
cetera.) Note that the TSX only saves the low byte of S, because X is
in 8-bit mode. I am assuming that the high byte was $01, since I came
from normal Apple 6502 code. Lines 1390-1400 put $01 in front of the
low byte, and the TCS puts both bytes back in the S-register.

Lines 1430-1440 push the address of the fifth byte in the array onto
the stack. Since the 65802 has a stack-relative addres- sing mode, we
can access the pointer with an address of "1,S". Remember the bytes
in the array represent the odd numbers. The fifth byte represents the
number 9, which is the square of the first odd prime (3). (At a very
slight penalty in speed, we can change line 1430 to "LDA ##BASE" and
delete line 1460.)

Lines 1480-1520 update the pointer we are keeping on the stack to
point to the next square. For an explanation of how this works, go to
the July 1984 and Nov 1982 articles. Lines 1530-1540 skip the sifting
process for numbers that have already been flagged as non-prime.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2135 of 2550

Apple II Computer Info

Lines 1550-1580 compute the prime number itself from the index
(2*index+1) and store it into the operand bytes of the "ADC ##"
instruction at line 1630. Ouch! Self-modifying code! But that is
often the price of speed.

Line 1590 picks up the pointer to the square of the prime, which is
the first number that must be flagged as non-prime, from our holding
location on the stack. Lines 1610-1640 get tricky. Line 1610 puts
the current pointer in the D-register, which tells where in RAM the
direct page starts. This means that the "STX 0" in line 1620 stores
into the byte pointed to. X was holding the current index, so we are
storing a non-zero number into that byte, which flags it as being non-
prime.

As a pleasant side effect, the non-zero numbers being stored in the
array have meaning. If we double the value we stored and add one, we
will get the value of the prime factor of the non-prime number. After
the whole PRIME program has executed, the flag value will produce the
largest prime factor.

In the loop of lines 1610-1640, we keep adding the prime number to the
pointer value in the A-register, and transferring the result to the D-
register. Hence the STX 0 will store X at multiples of the prime
number. The loop terminates when the pointer value in the A-register
goes negative. Why? Because we carefully positioned the array from
$6000 to $7FFF. The first time we add the prime to the pointer and
get an address $8000 or higher, we know we went off the end of the
array. Addresses of $8000 or higher will set the negative status
flag, so our loop terminates.

Lines 1660-1680 bump the prime index by one, and test for hav- ing
reached the largest prime of interest. If not, we go back to sift out
the next one. If we are finished, lines 1690-1700 restore the D-
register to point to true page zero. Line 1710 pops the pointer off
the stack, and that's all there is to it!

<<<<listing>>>>

Here is an Applesoft program which will look through the array PRIME
produces. Every zero byte in the array indicates a prime number. The
value of the prime number at ARRAY+I is I*2+1, since the array only
represents odd numbers. This program prints out the value 1 first,
which really is not considered a prime number, but it does make the
table easier to read.

The program is designed to display 10 8-character fields on a line,
which works well on the Apple 80-column screen. I left out the code
to print a RETURN after 10 numbers, because the Apple screen
automatically goes to the next line.

Line 120 prints out the primes. Delete line 125 if all you want to
see is primes. Line 125 prints the largest prime fac- tor of
nonprimes, followed by "*" and the other factor (which may not be
prime). For example, 16383 is printed as 127*129.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2136 of 2550

Apple II Computer Info

100 HIMEM: 24576
110 FOR A = 24576 TO 32767
120 IF PEEK (A) = 0 THEN
 PRINT RIGHT$(" " + STR$((A - 24576)*2+1),8);
125 IF PEEK (A) <> 0 THEN
 F1 = PEEK (A) * 2 + 1
 : F2 = ((A - 24576) * 2 + 1) / F1
 : PRINT RIGHT$(" "+STR$(F1)+"*"+STR$(F2),8);
140 NEXT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2137 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:Articles:Problems.65802.txt
==

Problems with 65802's in Apple II+..........Bob Sander-Cederlof

Much to our dismay, we have just learned that some Apple II+ machines
will not function properly with a 65802 installed. It is probably the
same kind of timing problem that exists with the 65C02 in nearly all
Apple II and Apple II+ machines. We had thought the 65802 would work
in all II and II+ machines, but it will not. It works in my old II,
and one of my II+ machines, but not the other one. We have heard of
lots of successful installations, and a few unsuccessful ones. We
have not yet heard whether changing to 74F257's will fix things up, as
it does with the 65C02.

If you would like to try this exciting enhancement in your Apple, we
are selling the 2 MHz 65802 for only $50 (plus $1.50 shipping, and
plus 6.125% sales tax if you are in Texas). (The price direct from
Western Design Center is still $95 each.) If you want to try it in a
II or II+, go ahead and order one; if it turns out to be incompatible,
you can send it back for a refund.

I hope we are safe in assuming that anyone who orders such a chip
knows how to properly handle, install, and remove CMOS parts. They
are extremely sensitive to static electricity, at levels too small for
humans to even feel. You can kill them with the voltage generated by
moving your arm, if you are wearing a synthetic shirt. You need to be
careful, very careful. It is also very easy to bend the leads, or
insert the parts backwards. I know, because I have done it. If you
want a 65802 but are not confident about the installation, find
someone who will do it for you.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2138 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:Articles:RainbowProgInfo.txt
==

Transfer ProDOS Files to DOS Disks.........Bob Sander-Cederlof

The CONVERT utility program which Apple supplies with ProDOS can be
used to transfer ProDOS files to DOS disks, but only if the file type
is supported under DOS. Types BAS, INT, TXT, and BIN can be
transferred; other types, such as SYS, cannot.

We needed a program which could transfer any reasonable file. By
reasonable, I mean the file must be able to fit on a floppy, and must
not be a sparse file. Sparse files could also be transferred, but we
would need to handle them in a special manner beyond what we have done
so far.

The files we need to transfer will be stored on the DOS disk, but they
will not actually be used there. We need them on a DOS disk (either
floppy or a harddisk volume) so that a telecommunications downloading
system can send them to a ProDOS-based caller. Since our central
system is DOS-based, all the files which are available for downloading
must be on DOS disks.

We devised a scheme which should allow the files to be stored under
the DOS-based central system, making very few changes to the central
system. We think the only central system change needed will be to use
a different menu tree for callers who are calling with ProDOS callup
disks.

ProDOS files have three essential descriptive items in addition to the
filename: file type (a single byte), auxiliary file type (two bytes),
and end-of-file (three bytes). DOS files also have a single byte file
type, but it only may have one of eight possible values (0, 1, 2, 4,
8, 16, 32, or 64). DOS files which need the equivalent of the
auxiliary file type store it at the beginning of the data area of the
file. DOS files signal end-of-file by a terminal 00 byte, or by
adding a two-byte value to the beginning of the data area.

ProDOS filenames are up to 15 characters long. DOS filenames can be
up to 30 characters long. We decided to use the extra 15 characters
in the DOS filename to encode the ProDOS filetype, auxiliary file
type, and end-of-file value. Thus a ProDOS file named "MY.FILE" with
a type $FC (BAS), auxiliary type $0801 (this is the starting address),
and end-of-file $030F (length of the file) would receive the DOS name
of

 "MY.FILE .FC.0801.00030F"

All of the data blocks of the ProDOS file will be directly written on
DOS sectors, and the DOS file will be arbitrarily classified as a type
T file.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2139 of 2550

Apple II Computer Info

When the central telecommunications system downloads this camouflaged
ProDOS file, the ProDOS callup disk will first create a TXT file with
all the data bytes. When the DOS filename is received, the callup
disk will modify the information in the ProDOS directory to the
correct file type, auxiliary file type, and end-of-file values.

The transfer utility is easy to use. It runs in the DOS environment,
and is invoked by the BRUN command. The first thing the program wants
to know is the slot and drive of the floppy disk drive containing the
ProDOS diskette with files to be transferred. You will see prompts
"PRODOS SLOT:" and "DRIVE:", and should type in the appropriate data:

 PRODOS SLOT: 6
 DRIVE: 1

Since both slot and drive can only be one digit, the program responds
as soon as you have typed a valid digit. You will not need to type a
RETURN. If you type ESCAPE instead of a digit, the program will
terminate. If you type a backspace (left arrow) you will get another
chance to enter both slot and drive.

Once the program knows the slot and drive, it will read in the catalog
of the ProDOS in that drive. The file names in the main directory
will be displayed, along with the file type, auxiliary file type, and
end-of-file values. To the left of each filename the program will
display a menu-selection letter. Up to 20 filenames can be listed at
once on the Apple screen. At this point you can abort by typing the
ESCAPE or the RETURN key, see another screenful of filenames by typing
the SPACE key, or select a filename by typing a menu letter.

If the filename you select is a subdirectory file, you will get a new
menu displaying the filenames in that subdirectory. In this way you
can go down any branch of the tree-structured directory. Typing the
SPACE key when there are no more filenames in particular subdirectory
returns you to the beginning of the main directory.

If the filename you select is any other file type, that file will be
transferred to a DOS disk volume. You have to specify the slot,
drive, and volume of the DOS volume. You will be prompted like this:

 DOS SLOT: 7
 DRIVE: 1
 VOLUME: 14

Both slot and drive always require only one digit, so you do not type
return after entering those items. However, volume may be from 1 to 3
digits long. You do have to type RETURN after the volume number. If
you type RETURN without entering any volume number, V0 will be
assumed. This will be valid for ANY volume number in a floppy drive.
You can abort the program by typing ESCAPE instead of any of these
numbers, and you can go back to entering DOS SLOT by typing a
backspace.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2140 of 2550

Apple II Computer Info

If you are transferring to a hard disk volume V0 indicates that the
same volume number should be used as that of the most recent disk
access. It is hard to predict what that volume will be. Moral: be
specific about the volume number if you are writing to a hard disk
volume.

After the file you selected has been transferred, you have the option
to quit or to transfer another file. If you want to transfer another
file, you have the option to use the same slot/drive/volume numbers,
or to change them.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2141 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:Articles:Software.65802.txt
==

Software Sources for 65802 and 65816.......Bob Sander-Cederlof

Western Design Center reports rising interest among software
developers in supporting the new 65802 and 65816 microprocessors.

Since the 65802 chip can be plugged into almost any old Apple, and
65816 co-processor cards are available for Apples, most new software
is designed to run in Apples. Of course, the 65802 will also fit in
old Ataris and Commodores and even the venerable KIM-1, but these are
of lesser interest to AAL.

Four companies have adapted their Apple assemblers to include the new
opcodes and addressing modes of the 65802 and 65816.

Of course, you know we have. Last December we released Version 2.0 of
the S-C Macro Assembler, and in July we released the ProDOS version.
Both of these include full support for the 6502, 65C02 (both standard
and Rockwell versions), 65802, and 65816. The DOS version requires at
least 48K RAM, and the ProDOS version requires at least 64K.

Other companies supporting the 658xx are Roger Wagner Publishing
(Merlin Pro), The Byte Works (ORCA/M 3.5), and Lazerware (Lisa 3.2).

Merlin Pro is the latest version of Merlin, by Glen Bredon. (Big Mac,
marketed by Call APPLE, is virtually the same as Merlin, not Merlin
Pro.) Merlin Pro will only run in a //c or a //e with at least 128K
RAM. In order to assemble the 65C02 additions, you must either be in
a //c or in a //e with the enhanced monitor ROM. (If you have an
older //e, you must first BRUN a file named MON.65C02.) 65816 support
is not complete: the long 24-bit addressing modes were omitted on the
premise that these are useless in a 65802 environment. (But what if I
am developing code for a co-processor card with a 65816 on it?) The
special opcodes in Rockwell's 65C02 are not directly supported, but a
file of macro definitions is provided. Merlin Pro does include the
capability of producing and linking relocatable object files with
external symbols.

Lisa 3.2 is Randy Hyde's latest version of one of the fastest 6502
assemblers around. I have not seen 3.2, but it is reported to support
the 65816.

ORCA/M (which is MACRO spelled backwards) was originally published by
Hayden Software. They let it go after spending a lot of money
promoting it as "the world's best assembler." I remember seeing that
claim appear for the first time in Nibble magazine only a few pages
away from the same claim in an ad for Nibble's own MicroSparc
assembler. Anyway, ORCA/M is now published by The Byte Works,
apparently connected more directly with the author (Mike Westerfield).
ORCA/M was the first assembler to be revised to support the 65816, and

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2142 of 2550

Apple II Computer Info

as such Mike had the honor of deciding what some of the assembler
rules and syntax would be.

David Eyes, author of the first book on 65816 assembly language, has
developed a Pascal P-Code Interpreter which takes advantage of the
65802 features and works with Apple Pascal. (191 Parkview Ave.,
Lowell, MA 01852)

Starlight Forth Systems has a FIG Forth compatible package for the
802/816, for operation in an Apple. (15247 North 35 St., Phoenix, AZ
85032)

Comlog offers an Applesoft compatible, extended Basic which can be
used in an Apple //e equipped with their 65816 co-processor board.
(7825 E. Redfield Rd, Scottsdale, AZ 85260)

Manx Software claims to have a 65816 C compiler and assembler under
development. (Box 55, Shrewsbury, NJ 07701)

Will Troxell, of MicroMagic, is not only developing a co-processor
card for Apples. He is also producing the first operating system for
the 65816, which will be similar to Unix.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2143 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:DOS3.3:PrintPrimeTable.txt
==

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2144 of 2550

Apple II Computer Info

 d£24576 nÅA–24576¡32767Mx≠‚(A)–0ƒ∫È("
"»‰((A…24576) 2»1),8);ú}≠‚(A)—œ0ƒF1–‚(A) 2»1:F2–
((A…24576) 2»1)ÀF1:∫È(" "»‰(F1)»"*"»‰(F2),8);¢åÇ

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2145 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:DOS3.3:S.65802.Convers.txt
==

 1000 *SAVE S.65802.CONVERSIONS
 1010 *--------------------------------
 1020 .OP 65802
 1030 *--------------------------------
 1040 * CONVERT UP TO 9999, MAX TIME < 80 MSEC
 1050 * # CYCLES = 8*NUMBER + 44
 1060 *--------------------------------
 1070 CONV.1
 1080 CLC ENTER 65802 NATIVE MODE
 1090 XCE
 1100 REP #$30 16-BIT MODES
 1110 LDA ##0 START WITH 0000
 1120 LDX 0 GET NUMBER TO BE CONVERTED
 1130 BEQ .2 ...IT IS 0000
 1140 SED ENTER DECIMAL MODE
 1150 CLC
 1160 .1 ADC ##1 INCREMENT BCD VALUE
 1170 DEX DECREMENT BINARY VALUE
 1180 BNE .1 ...NOT FINISHED YET
 1190 CLD BACK TO BINARY MODE
 1200 .2 STA 2 STORE RESULT
 1210 SEC BACK TO 6502 EMULATION MODE
 1220 XCE
 1230 RTS RETURN TO CALLER
 1240 *--------------------------------
 1250 * CONVERT UP TO 65535, MAX TIME < 705 MSEC
 1260 * # CYCLES = 11*NUMBER +3*INT(NUMBER/10000) + 50
 1270 *--------------------------------
 1280 CONV.2
 1290 CLC ENTER 65802 NATIVE MODE
 1300 XCE
 1310 REP #$30 16-BIT MODES
 1320 LDA ##0 START WITH 0000
 1330 TAY CLEAR 10000'S DIGIT
 1340 LDX 0 GET NUMBER TO BE CONVERTED
 1350 BEQ .2 ...IT IS 0000
 1360 SED ENTER DECIMAL MODE
 1370 CLC
 1380 .1 ADC ##1 INCREMENT BCD VALUE
 1390 BCC .3
 1400 INY INCREMENT 10000'S DIGIT
 1410 CLC
 1420 .3 DEX DECREMENT BINARY VALUE
 1430 BNE .1 ...NOT FINISHED YET
 1440 CLD BACK TO BINARY MODE
 1450 .2 STA 2 STORE RESULT
 1460 SEC BACK TO 6502 EMULATION MODE
 1470 XCE
 1480 STY 4 STORE 10000'S DIGIT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2146 of 2550

Apple II Computer Info

 1490 RTS RETURN TO CALLER
 1500 *--------------------------------
 1510 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2147 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:DOS3.3:S.BINDEC.txt
==

 1000 *SAVE S.BINDEC
 1010 *--------------------------------
 1020 XL .EQ $00
 1030 XH .EQ $01
 1040 SL .EQ $10
 1050 SH .EQ $11
 1060 *--------------------------------
 1070 BELL .EQ $FBDD
 1080 RDLINE .EQ $FD6A
 1090 PRBYTE .EQ $FDDA
 1100 COUT .EQ $FDED
 1110 CROUT .EQ $FD8E
 1120 *--------------------------------
 1130 T
 1140 JSR RDLINE
 1150 TXA
 1160 BNE .1
 1170 RTS
 1180 .1 JSR CONVERT.DEC.TO.BIN
 1190 LDA XH
 1200 JSR PRBYTE
 1210 LDA XL
 1220 JSR PRBYTE
 1230 LDA #"="
 1240 JSR COUT
 1250 JSR CONVERT.BIN.TO.DEC
 1260 JSR CROUT
 1270 JMP T
 1280 *--------------------------------
 1290 CONVERT.DEC.TO.BIN
 1300 LDX #0
 1310 STX XL least significant byte
 1320 *-- STX XI ---ANY INTERMEDIATE BYTES---
 1330 STX XH most significant byte
 1340 .1 LDA $200,X
 1350 EOR #"0"
 1360 CMP #10
 1370 BCS .3 ...END OF NUMBER
 1380 TAY SAVE CURRENT DIGIT
 1390 LDA XL
 1400 STA SL
 1410 *-- LDA XI ---ANY INTERMEDIATE BYTES---
 1420 *-- STA SI ---FOLLOW THIS PATTERN------
 1430 LDA XH
 1440 JSR SHIFT.X
 1450 BCS .2 ...OVERFLOW
 1460 JSR SHIFT.X
 1470 BCS .2 ...OVERFLOW
 1480 STA SH

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2148 of 2550

Apple II Computer Info

 1490 CLC
 1500 LDA XL
 1510 ADC SL
 1520 STA XL
 1530 *-- LDA XI ---ANY INTERMEDIATE BYTES---
 1540 *-- ADC SI ---FOLLOW THIS PATTERN------
 1550 *-- STA XI ----------------------------
 1560 LDA XH
 1570 ADC SH
 1580 BCS .2 ...OVERFLOW
 1590 JSR SHIFT.X
 1600 BCS .2 ...OVERFLOW
 1610 STA XH
 1620 INX SCAN TO NEXT DIGIT
 1630 TYA GET DIGIT
 1640 ADC XL LEAST SIGNIFICANT BYTE
 1650 STA XL
 1660 BCC .1 ...NO CARRY
 1670 *-- INC XI ---ANY INTERMEDIATE BYTES---
 1680 *-- BNE .1 ---FOLLOW THIS PATTERN------
 1690 INC XH MOST SIGNIFICANT BYTE
 1700 BNE .1 ...UNLESS OVERFLOW
 1710 .2 JSR BELL SIGNAL OVERFLOW
 1720 .3 RTS
 1730 *--------------------------------
 1740 SHIFT.X
 1750 ASL XL LEAST SIGNIFICANT BYTE
 1760 *-- ROL XI ---ANY INTERMEDIATE BYTES---
 1770 ROL ...MOST SIGNIFICANT BYTE IN A
 1780 RTS
 1790 *--------------------------------
 1800 CONVERT.BIN.TO.DEC
 1810 LDX #0 DIGIT COUNTER
 1820 *---DIVIDE BY TEN----------------
 1830 .1 LDA #0
 1840 LDY #16 2*(# Bytes being converted)
 1850 .2 CMP #5
 1860 BCC .3
 1870 SBC #5
 1880 .3 ROL XL
 1890 *-- ROL XI ---ANY INTERMEDIATE BYTES---
 1900 ROL XH
 1910 ROL
 1920 DEY
 1930 BNE .2
 1940 PHA SAVE DIGIT ON STACK
 1950 INX COUNT THE DIGIT
 1960 *---NEXT DIGIT-------------------
 1970 LDA XL
 1980 *-- ORA XI ---ANY INTERMEDIATE BYTES---
 1990 ORA XH
 2000 BNE .1
 2010 *---PRINT DECIMAL----------------
 2020 .4 PLA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2149 of 2550

Apple II Computer Info

 2030 ORA #"0"
 2040 JSR COUT
 2050 DEX
 2060 BNE .4
 2070 RTS
 2080 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2150 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:DOS3.3:S.Init.Dos.PDos.txt
==

 1000 *SAVE S.INIT DOS & PRODOS
 1010 *--------------------------------
 1020 DOS.LOW.TRACK .EQ $12 DOS $12...$22
 1030 DOS.VOLUME .EQ 1
 1040 SLOT .EQ 6
 1050 DRIVE .EQ 1
 1060 *--------------------------------
 1070 PRODOS.MAX.BLOCKS .EQ DOS.LOW.TRACK*8
 1080 *--------------------------------
 1090 ACTUAL.DOS.SECTORS .EQ DOS.LOW.TRACK>$11+34-DOS.LOW.TRACK*16
 1100 ACTUAL.PRODOS.BLOCKS .EQ DOS.LOW.TRACK<$12+DOS.LOW.TRACK-2*8+1
 1110 *--------------------------------
 1120 DOS.WARM.START .EQ $03D0
 1130 RWTS .EQ $03D9
 1140 GETIOB .EQ $03E3
 1150 *--------------------------------
 1160 R.PARMS .EQ $B7E8
 1170 R.SLOT16 .EQ $B7E9
 1180 R.DRIVE .EQ $B7EA
 1190 R.VOLUME .EQ $B7EB
 1200 R.TRACK .EQ $B7EC
 1210 R.SECTOR .EQ $B7ED
 1220 R.BUFFER .EQ $B7F0,B7F1
 1230 R.OPCODE .EQ $B7F4
 1240 R.ERROR .EQ $B7F5
 1250 *--------------------------------
 1260 MON.CROUT .EQ $FD8E
 1270 MON.PRBYTE .EQ $FDDA
 1280 MON.COUT .EQ $FDED
 1290 *--------------------------------
 1300 .OR $803
 1310 *--------------------------------
 1320 DOUBLE.INIT
 1330 JSR FORMAT.35.TRACKS
 1340 LDA #INIT.BUFFER
 1350 STA R.BUFFER
 1360 LDA /INIT.BUFFER
 1370 STA R.BUFFER+1
 1380 JSR BUILD.DOS.CATALOG
 1390 JSR BUILD.PRODOS.CATALOG
 1400 *---WRITE BOOT PROGRAM-----------
 1410 LDA #BOOTER
 1420 STA R.BUFFER
 1430 LDA /BOOTER
 1440 STA R.BUFFER+1
 1450 JSR CLEAR.INIT.BUFFER
 1460 LDA #0
 1470 STA R.TRACK
 1480 STA R.SECTOR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2151 of 2550

Apple II Computer Info

 1490 JMP CALL.RWTS
 1500 *--------------------------------
 1510 FORMAT.35.TRACKS
 1520 LDA #SLOT*16
 1530 STA R.SLOT16
 1540 LDA #DRIVE
 1550 STA R.DRIVE
 1560 LDA #DOS.VOLUME
 1570 STA R.VOLUME
 1580 STA V.VOLUME
 1590 LDA #$04 INIT OPCODE FOR RWTS
 1600 CALL.RWTS.OP.IN.A
 1610 STA R.OPCODE
 1620 CALL.RWTS
 1630 JSR GETIOB
 1640 JSR RWTS
 1650 BCS .1 ERROR
 1660 RTS
 1670 .1 LDY #0 PRINT "ERROR"
 1680 .2 LDA ERMSG,Y
 1690 BEQ .3
 1700 JSR MON.COUT
 1710 INY
 1720 BNE .2 ...ALWAYS
 1730 .3 LDA R.ERROR GET ERROR CODE
 1740 JSR MON.PRBYTE
 1750 JSR MON.CROUT
 1760 JMP DOS.WARM.START
 1770 *--------------------------------
 1780 ERMSG .HS 8D87
 1790 .AS -/RWTS ERROR /
 1800 .HS 00
 1810 *--------------------------------
 1820 BUILD.DOS.CATALOG
 1830 JSR CLEAR.INIT.BUFFER
 1840 LDA #17
 1850 STA R.TRACK
 1860 LDA #0
 1870 STA R.SECTOR
 1880 *---BUILD GENERIC VTOC-----------
 1890 LDY #VTOC.SZ-1
 1900 .0 LDA VTOC,Y
 1910 STA INIT.BUFFER,Y
 1920 DEY
 1930 BPL .0
 1940 LDA #DOS.VOLUME
 1950 STA V.VOLUME
 1960 *---PREPARE BITMAP---------------
 1970 LDY #4*34
 1980 LDA #$FF
 1990 .1 CPY #4*17 ARE WE ON CATALOG TRACK?
 2000 BEQ .2
 2010 CPY #4*DOS.LOW.TRACK
 2020 BCC .3 IN PRODOS ARENA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2152 of 2550

Apple II Computer Info

 2030 STA V.BITMAP+1,Y
 2040 STA V.BITMAP,Y
 2050 .2 DEY
 2060 DEY
 2070 DEY
 2080 DEY
 2090 BNE .1
 2100 *---WRITE VTOC ON NEW DISK-------
 2110 .3 LDA #2 RWTS WRITE OPCODE
 2120 JSR CALL.RWTS.OP.IN.A
 2130 *---WRITE CATALOG CHAIN----------
 2140 JSR CLEAR.INIT.BUFFER
 2150 LDA #17 TRACK 17
 2160 LDY #15 START IN SECTOR 15
 2170 STA C.TRACK
 2180 .4 STY R.SECTOR
 2190 DEY
 2200 STY C.SECTOR
 2202 BNE .5
 2203 STY C.TRACK TERMINATE THE CHAIN
 2210 .5 JSR CALL.RWTS
 2220 LDY C.SECTOR
 2230 BNE .4
 2240 RTS
 2250 *--------------------------------
 2260 VTOC .HS 04.11.0F.03.00.00.01
 2270 .AS "COMBINATION DOS/PRODOS DATA DISK"
 2280 .HS 7A
 2290 .AS /07-25-85/
 2300 .HS 11.01.00.00.23.10.00.01
 2310 VTOC.SZ .EQ *-VTOC
 2320 *--------------------------------
 2330 BUILD.PRODOS.CATALOG
 2340 LDA #0
 2350 STA R.TRACK
 2360 JSR CLEAR.INIT.BUFFER
 2370 *--------------------------------
 2380 LDA #5 SECTOR 5 = BLOCK 5
 2390 STA R.SECTOR BACK LINK = 0004
 2400 LDA #4 FWD LINK = 0000
 2410 STA INIT.BUFFER
 2420 JSR CALL.RWTS
 2430 *--------------------------------
 2440 LDA #7 SECTOR 7 = BLOCK 4
 2450 STA R.SECTOR BACK LINK = 0003
 2460 DEC INIT.BUFFER FWD LINK = 0005
 2470 LDA #5
 2480 STA INIT.BUFFER+2
 2490 JSR CALL.RWTS
 2500 *--------------------------------
 2510 LDA #9 SECTOR 9 = BLOCK 3
 2520 STA R.SECTOR BACK LINK = 0002
 2530 DEC INIT.BUFFER FWD LINK = 0004
 2540 DEC INIT.BUFFER+2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2153 of 2550

Apple II Computer Info

 2550 JSR CALL.RWTS
 2560 *--------------------------------
 2570 LDA #11 SECTOR 11 = BLOCK 2
 2580 STA R.SECTOR BACK LINK = 0000
 2590 LDY #HDR.SZ-1 FWD LINK = 0003
 2600 .1 LDA HEADER,Y
 2610 STA INIT.BUFFER,Y GET VOLUME HEADER
 2620 DEY
 2630 BPL .1
 2640 LDA #PRODOS.MAX.BLOCKS
 2650 STA INIT.BUFFER+$29
 2660 LDA /PRODOS.MAX.BLOCKS
 2670 STA INIT.BUFFER+$2A
 2680 JSR CALL.RWTS
 2690 *--------------------------------
 2700 LDA #3
 2710 STA R.SECTOR
 2720 JSR CLEAR.INIT.BUFFER
 2730 LDA #$FF
 2740 LDY #DOS.LOW.TRACK-1
 2750 .2 CPY #17 SKIP OVER DOS CATALOG TRACK
 2760 BEQ .3
 2770 STA INIT.BUFFER,Y
 2780 .3 DEY
 2790 BPL .2
 2800 LDA #1 MAKE ONLY BLOCK 7 AVAILABLE
 2810 STA INIT.BUFFER IN TRACK 0
 2820 JMP CALL.RWTS
 2830 *--------------------------------
 2840 HEADER .DA 0,3,#$F0+VNSZ
 2850 VN .AS /DATA/
 2860 VNSZ .EQ *-VN
 2870 .BS 15-VNSZ
 2880 .HS 00.00.00.00.00.00.00.00.00.00.00.00
 2890 .HS 00.00.C3.27.0D.00.00.06.00.08.00
 2900 HDR.SZ .EQ *-HEADER
 2910 *--------------------------------
 2920 CLEAR.INIT.BUFFER
 2930 LDY #0
 2940 TYA
 2950 .1 STA INIT.BUFFER,Y
 2960 INY
 2970 BNE .1
 2980 RTS
 2990 *--------------------------------
 3000 BOOTER
 3010 .PH $800
 3020 BOOTER.PHASE
 3030 .HS 01
 3040 LDA $C088,X MOTOR OFF
 3050 LDY #0
 3060 .1 LDA MESSAGE,Y
 3070 BEQ .2
 3080 JSR $FDF0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2154 of 2550

Apple II Computer Info

 3090 INY
 3100 BNE .1
 3110 .2 JMP $FF59
 3120 *--------------------------------
 3130 MESSAGE
 3140 .HS 8D8D8787
 3150 .AS -"COMBINATION DOS/PRODOS DATA DISK"
 3160 .HS 8D8D8787
 3170 .AS -/NO DOS IMAGE ON THIS DISK/
 3180 .HS 8D8D00
 3190 .EP
 3200 *--------------------------------
 3210 INIT.BUFFER .BS 256
 3220 *--------------------------------
 3230 V.VOLUME .EQ INIT.BUFFER-$BB+$C1
 3240 V.BITMAP .EQ INIT.BUFFER-$BB+$F3
 3250 *--------------------------------
 3260 C.TRACK .EQ INIT.BUFFER+1
 3270 C.SECTOR .EQ INIT.BUFFER+2
 3280 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2155 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:DOS3.3:S.SF802PrmPlus.txt
==

 1000 .OP 65816
 1010 *SAVE S.SUPER-FAST PRIMES 65802+
 1020 .OR $8000 SAFELY OUT OF WAY
 1030 *--------------------------------
 1040 BASE .EQ $6000 PRIME ARRAY $6000...7FFF
 1050 BEEP .EQ $FF3A BEEP THE SPEAKER
 1060 COUNT .EQ 0,1
 1070 *--------------------------------
 1080 * MAIN CALLING ROUTINE
 1090 *--------------------------------
 1100 MAIN JSR BEEP
 1110 CLC ...ENTER NATIVE MODE
 1120 XCE
 1130 REP #$20 A/16, XY/8
 1140 LDA ##1000 DO IT 1000 TIMES
 1150 STA COUNT
 1160 .1 JSR PRIME
 1170 DEC COUNT
 1180 BNE .1
 1190 SEC ...ENTER EMULATION MODE
 1200 XCE
 1210 JMP BEEP SAY WE'RE DONE
 1220 *--------------------------------
 1230 * PRIME ROUTINE
 1240 * SETS ARRAY STARTING AT BASE
 1250 * TO $FF IF NUMBER IS NOT PRIME
 1260 * CHECKS ONLY ODD NUMBERS > 3
 1270 * INC = INCREMENT OF KNOCKOUT
 1280 * N = KNOCKOUT VARIABLE
 1290 *--------------------------------
 1300 PRIME
 1310 TSX SAVE STACK PNTR
 1320 LDY #0 256 * 16 * 2 = 8192 BYTES
 1330 LDA ##BASE+8191 BASE...BASE+8191
 1340 TCS TEMPORARY STACK PNTR
 1350 .1 .HS 0B.0B.0B.0B.0B.0B.0B.0B ...16 PHD'S
 1360 .HS 0B.0B.0B.0B.0B.0B.0B.0B
 1370 DEY 256 TIMES
 1380 BNE .1
 1390 TXA
 1400 ORA ##$0100 RESTORE STACK PNTR
 1410 TCS
 1420 *--------------------------------
 1430 LDA ##BASE+4 POINT AT FIRST PRIME-SQUARED
 1440 PHA (WHICH IS 3*3=9)
 1450 LDX #1 POINT AT FIRST PRIME (3)
 1460 BNE .4 ...ALWAYS
 1470 *--------------------------------
 1480 .2 TXA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2156 of 2550

Apple II Computer Info

 1490 ASL
 1500 ASL *4, CLEARS CARRY TOO
 1510 ADC 1,S TO PNTR
 1520 STA 1,S
 1530 LDY BASE,X GET A POSSIBLE PRIME
 1540 BNE .8 THIS ONE HAS BEEN KNOCKED OUT
 1550 .4 TXA
 1560 ASL INC = START*2 + 1
 1570 INC
 1580 TAY
 1590 STY .7+1
 1600 LDA 1,S MOVE MULT TO N
 1610 *---STRIKE OUT MULTIPLES---------
 1620 .5 SEP #$20 A/8
 1630 .6 TCD
 1640 STX 0
 1650 .7 ADC #*-*
 1660 BCC .6
 1670 REP #$20 A/16
 1680 ADC ##$FF APPLY CARRY
 1690 BPL .5 ...NOT FINISHED
 1700 *--------------------------------
 1710 .8 INX
 1720 CPX #64 UP TO 127
 1730 BCC .2 WE'RE DONE IF X>127
 1740 LDA ##0
 1750 TCD
 1760 PLA
 1770 RTS
 1780 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2157 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8509:DOS3.3:S.SFast802Prm.txt
==

 1000 .OP 65816
 1010 *SAVE S.SUPER-FAST PRIMES 65802
 1020 .OR $8000 SAFELY OUT OF WAY
 1030 *--------------------------------
 1040 BASE .EQ $6000 PRIME ARRAY $6000...7FFF
 1050 BEEP .EQ $FF3A BEEP THE SPEAKER
 1060 COUNT .EQ 0,1
 1070 *--------------------------------
 1080 * MAIN CALLING ROUTINE
 1090 *--------------------------------
 1100 MAIN JSR BEEP
 1110 CLC ...ENTER NATIVE MODE
 1120 XCE
 1130 REP #$20 A/16, XY/8
 1140 LDA ##1000 DO IT 1000 TIMES
 1150 STA COUNT
 1160 .1 JSR PRIME
 1170 DEC COUNT
 1180 BNE .1
 1190 SEC ...ENTER EMULATION MODE
 1200 XCE
 1210 JMP BEEP SAY WE'RE DONE
 1220 *--------------------------------
 1230 * PRIME ROUTINE
 1290 *--------------------------------
 1300 PRIME
 1310 TSX SAVE STACK PNTR
 1320 LDY #0 256 * 16 * 2 = 8192 BYTES
 1330 LDA ##BASE+8191 BASE...BASE+8191
 1340 TCS TEMPORARY STACK PNTR
 1350 .1 .HS 0B.0B.0B.0B.0B.0B.0B.0B ...16 PHD'S
 1360 .HS 0B.0B.0B.0B.0B.0B.0B.0B
 1370 DEY 256 TIMES
 1380 BNE .1
 1390 TXA
 1400 ORA ##$0100 RESTORE STACK PNTR
 1410 TCS
 1420 *--------------------------------
 1430 LDA ##BASE+4 POINT AT FIRST PRIME-SQUARED
 1440 PHA (WHICH IS 3*3=9)
 1450 LDX #1 POINT AT FIRST PRIME (3)
 1460 BNE .4 ...ALWAYS
 1470 *--------------------------------
 1480 .2 TXA
 1490 ASL
 1500 ASL *4, CLEARS CARRY TOO
 1510 ADC 1,S ADD TO PREVIOUS PNTR
 1520 STA 1,S PNTR TO SQUARE OF ODD NUMBER
 1530 LDY BASE,X GET A POSSIBLE PRIME

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2158 of 2550

Apple II Computer Info

 1540 BNE .8 THIS ONE HAS BEEN KNOCKED OUT
 1550 .4 TXA
 1560 ASL DELTA = START*2 + 1
 1570 INC
 1580 STA .7+1
 1590 LDA 1,S PNTR TO SQUARE OF PRIME
 1600 *---STRIKE OUT MULTIPLES---------
 1610 .6 TCD POINT AT MULTIPLE
 1620 STX 0 STORE NON-ZERO AS FLAG
 1630 .7 ADC ##*-* (VALUE FILLED IN)
 1640 BPL .6 ...NOT FINISHED
 1650 *---NEXT ODD NUMBER--------------
 1660 .8 INX
 1670 CPX #64 UP TO 127
 1680 BCC .2 WE'RE DONE IF X>127
 1690 LDA ##0 RESTORE DIRECT PAGE REGISTER
 1700 TCD
 1710 PLA POP PNTR OFF STACK
 1720 RTS
 1730 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2159 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Another65C02Fix.txt
==

A Different Patch for 65C02 & Old Apples...William O'Ryan Jr.

Since my earlier letter (Jun 84) on the 65C02 and the Apple II+ I was
interested and gratified to read Andrew Jackson's (Dec 84) and Jim
Sather's (Mar 85) letters on the same subject. However, two things
began to worry me. First, the smallness of the time gain in the F257
chips (around 7 nanoseconds, I understand). That did not seem enough
to be very reliable. Second, a friend in town has an Apple whose
speed was not sufficiently improved to allow the 65C02 to work
(although there was some noticeable improvement).

After reading the first few chapters of Jim Sather's book,
"Understanding the Apple II", I was able to come up with a new
solution. As I figure it, this new solution yields an improvement of
around 70 nanoseconds, more than enough. Simply put, just replace
the -RAS line inputs to the 74LS174 chips at B5 and B8 with AX. AX
rises 70 nsec earlier than -RAS, enabling those chips to latch RAM
output 70 nsec earlier. It is a simple patch and may be done either
with or without altering the motherboard.

I tried it first without altering my motherboard, on a Rev 44-1 Apple
using 200 nsec 16K RAM chips. I was surprised to see it work, as I had
expected that 200 nsec RAM chips would be too slow for the patch. (I
haven't tried it yet with 250 nsec RAM chips.) Actually, this
particular Apple did not need any speed-up -- the 65C02 was already
working in it.

To do this patch: remove the chips at B5 and B8; seat an extra socket
under each of them; pin 9 on these sockets should be bent out so they
do not go into the motherboard sockets; remove the chip at C2 and put
an extra socket under it; connect a wire from pin 14 of the C2 socket
to the bent out pins 9 of B5 and B8. Pin 14 of the 74S195 at C2 is a
source of the AX signal; pin 9 of B5 and B8 was previously connected
to -RAS.

<<<picture>>>

I have another Apple (Rev 4) which has 24 150 nsec 64K RAM chips
(using the Cramapple mod). This Apple already had F257's in it with a
65C02. I put the old LS257's back in, and sure enough the 65C02 began
to stumble. Then I removed the motherboard and on the underside cut
the trace to -RAS and soldered in a jumper wire to pin 14 of C2. It
worked perfectly!

<<<picture>>>

Naturally those who try any of these patches do so at their own risk.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2160 of 2550

Apple II Computer Info

I must thank Jim Sather for his book; it was only by studying the
timing diagrams in that book and staring at the circuit diagram
published by Apple that I was able to do this. I hope some of the
hardware types will be able to tell me if I have built a time bomb. I
am also very interested to hear whether the problem with the 65802 is
the same.

Jumper wires

Pins 9 not
plugged into RAS

View from top front

74LS195

74LS174

74LS174

AX

Underside of
motherboard
viewed from rear

Jumper wire

 Cut
trace here

AX

RAS

RAM

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2161 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Apple.Manuals.txt
==

Apple Manuals from Addison-Wesley...................Bill Morgan

Those elusive Apple technical manuals are finally coming out of
hiding! As we reported some months ago, Addison-Wesley is beginning
to distribute Apple's manuals, and we can now supply them for you.
The ones we have seen are at least as good as Apple's own editions,
and in some cases better.

Here are the titles that we can order for you:

Applesoft Tutorial - $29.95, disk. Beginner's introduction to
Applesoft, with a disk of examples.

Applesoft BASIC Programmer's Reference Manual - $22.95, 373+xxv pages.
Complete reference manual for Applesoft, documenting all features with
many examples.

BASIC Programming with ProDOS - $29.95, 264+xxix pages, disk Covers
using ProDOS from BASIC, including command and file handling. The
disk includes lots of examples, and the useful Applesoft Programmer's
Assistant program, which includes RENUMBER, MERGE, AUTOmatic line
numbering, REM deletion, variable cross reference, and other features.

And here are the ones that look most important, that we expect to keep
in stock here at S-C:

Apple //e Technical Reference manual - $24.95, 409+xxxii pages.
Here's Apple's documentation of all the internals of the //e,
including I/O devices and firmware, memory organi- zation, the System
Monitor, peripheral-card programming, the Super Serial Card, and
hardware implementation. The new edition includes all the new
features of the Enhanced //e and a complete source listing of the
ROMs. This book is essential for serious //e programming.

Apple //c Technical Reference Manual - $24.95. And here is the same
detailed coverage of the //c, and more. Additional topics documented
in this book are the built-in serial I/O ports, the mouse input, and
interrupt handling. If you want to use these features of the //c, get
this book.

ProDOS Technical Reference Manual- $29.95, 186+xvii pages, disk. This
is the official book on ProDOS, covering files, MLI calls, System
programs, interrupt handling, and more. The disk is the ProDOS
Exerciser, which allows you to experiment with all of the MLI calls
without writing special programs. This book completes a ProDOS
programmer's reference shelf, along with Beneath Apple ProDOS, and
Apple ProDOS: Advanced Features.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2162 of 2550

Apple II Computer Info

The //e manual was scheduled for July publication: we just received
it and the ProDOS manual today. The //c manual is scheduled for
November delivery: we'll accept orders and ship the book as soon as
A-W comes through.

Many thanks to Apple and to Addison-Wesley for making these important
documents so easily available.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2163 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:ErvEdgeExecFile.txt
==

MON I
CALL -151
9D26:B2 B6
9D3E:DC A5
9FA8:CA
9FC5:A9 A0 2C A9 8D 6C 36 00
A710:CA
A186:AC 5F AA B9 1F 9D 48 B9
 :1E 9D 48 60 EA
A56E:4C DD A5 A5 EC 20 CA 9F
 :4C C5 9F EA
A5DD:AD 75 AA 85 EE 8E 75 AA
 :A9 0D 4C AA A2 EA
A921:60 70
A929:60
AAE3:9A AD
AB10:C9 0E
A4F0:A9 A0 BE C8 B4 10 02 A9
 :AA 4C CA 9F
A9FD:D2 2C 06 E0 30 03 4C 24
 :ED 4C 1B E5
A021:EA EA EA
AA2C:C9 A0 F0 0C A0 A0 CC 76
 :AA F0 03 4C C4 A6 C5 EC
 :60 EA EA
AD98:20 84 A8 20 DC AB D0 57
 :4C F4 AD EA EA 20 84 A8
 :20 84 A8 20 38 AE
ADAE:20 2F AE A2 0C BD AE B3
 :20 CA 9F CA D0 F7 20 69
 :BA 20 2F AE 20 2F AE
ADC5:18 90 04 EA 20 84 A8 20
 :11 B0 B0 5B A2 00 8E 9C
 :B3 BD C6 B4 F0 51 30 48
ADDD:BD C8 B4 0A A0 07 0A B0
 :03 88 D0 FA
ADE9:B9 A7 B3 85 EC A0 1E 84
 :EF D0 4B
ADF4:20 84 A8 20 F7 AF 90 AF
ADFC:EA EA AC 9C B3 20 F0 A4
 :20 71 A5
AE07:BE E7 B4 B9 E8 B4 20 FE
 :A9 A0 07 84 24 AE 9C B3
AE17:BD C9 B4 20 DA B6 E8 C6
 :EF D0 F5 20 2F AE
AE25:20 30 B2 90 A9 B0 A0 4C
 :7F B3
AE2F:C6 EB D0 09 20 8D B7 F0
 :F4 A9 15 85 EB 4C C8 9F

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2164 of 2550

Apple II Computer Info

AE3F:A5 EE C9 DE F0 07 20 2C
 :AA F0 B4 D0 D9
AE4C:84 ED A0 01 C6 ED 30 D1
 :CA 88 D0 FC C8 E8 B9 75
 :AA C9 A0 F0 9D DD C9 B4
 :F0 F2 E8 D0 E7 EA
BA69:86 44 86 45 A0 C8 B9 F2
 :B3 0A 90 06 E6 44 D0 F9
 :E6 45 D0 F5 88 D0 EF A6
 :44 A5 45 4C FE A9
BA87:20 A8 FC C6 55 D0 82 A9
 :4F 85 55 4C C8 9F EA
B6B3:20 A3 A2 20 8E BA 20 8C
 :A6 F0 14 C9 8D F0 F4 20
 :DA B6 A5 F1 20 87 BA AD
 :00 C0 10 EA 8D 10 C0 20
 :8D B7 D0 E2 4C FC A2
B6DA:A8 10 08 C9 A0 B0 0E 24
 :EA 30 0A 46 32 46 32 29
 :3F 69 1F 49 E0
B6EF:C9 E0 90 02 29 FF 20 CA
 :9F A9 FF 85 32 60
B78D:20 0C FD C9 91 60
B3AF:BD C5 C3 C1 D0 D3 A0 C5
 :C5 D2 C6 A0
A884:A9 A0 85 EE 18 60
A88A:49 4E 49 D4 4C 4F 41 C4
 :53 41 56 C5 52 55 CE 54
 :59 50 C5
A89D:44 45 4C 45 54 C5 4C 4F
 :43 CB 55 4E 4C 4F 43 CB
A8AD:43 4C 4F 53 C5 52 45 41
 :C4 45 58 45 C3 57 52 49
 :54 C5
A8BF:44 49 D2
9FFB:B9 8A A8
9FED:59 8A A8
48:04 N 3D0G
NOMON I

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2165 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:ErvEdgeWildcat.txt
==

WildCAT for DOS 3.3....................................Erv Edge
 Anchorage, Alaska

WildCAT is a series of patches to DOS 3.3 which modify the CATALOG
command. The new features include:

 * A catalog by "wildcard" FILENAME facility.
 * A catalog by FILETYPE facility.
 * An alternate, short-form: either DIR or CAT.
 * Catalog free space patch.
 * Ctrl-Q catalog abort.
 * TYPE a random or sequential text file.

Lee Reynold's FILEDUMP command has been re-packaged and re-presented
as TYPE (see Call-A.P.P.L.E. 6/82 p47). More on this later.
WildCAT, along with TYPE, is an attempt to teach new tricks to an old
dog, as it were.

The normal DOS catalog command allows slot, drive, and volume
parameters. I have added a filename parameter, but it is processed a
little differently than the way file names are usually processed. To
display the catalog entries for all files whose names contain a
particular string, type any of the folowing:

 CATALOG ^string [,Dn] [,Sn] [,Vn]
 DIR ^string [,Dn] [,Sn] [,Vn]
 CAT ^string [,Dn] [,Sn] [,Vn]

where "^string" begins with the "^" or caret symbol (shifted N on the
][+ or shifted 6 on the //e); the string should contain no blanks,
although it may "end" with them; the string would normally end with a
carriage return or with a comma if a drive or slot number is
specified. Only those files that contain the "string" somewhere in
the filename will be listed. (Of course you already know that the D,
S, and V parameters are shown in brackets above because they are
optional; you do not type the brackets.)

For example, "CATALOG ^TEST" would list each file with 'TEST' as part
of the filename; while "DIR ^PAY." would list those with 'PAY.'
somewhere in the filename; and "CAT^.OBJ,D2" would list filenames on
drive 2 that contain the partial string '.OBJ'. "CAT" and "DIR" are
simply synonyms for "CATALOG".

I have also arranged things so you can list the catalog entries of a
specified file-type. You simply type the file taype code in the
CATALOG command:

 CATALOG t [,Dn] [,Sn] [,Vn]
 DIR t [,Dn] [,Sn] [,Vn]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2166 of 2550

Apple II Computer Info

 CAT t [,Dn] [,Sn] [,Vn]

where "t" is any of the unadorned, single-letter filetypes: A B I R S
T. Only that type of file (if present) will be listed.

For example, "CATALOG T" would list all the text files; "DIR A,D2"
would list all of the Applesoft files on drive 2; "CAT B,S5,D1" would
list all the binary files on slot 5, drive 1. Yes, "DIRT" works just
fine.

I added the TYPE command, which allows you to display the contents of
text files. Both CATALOG and TYPE will optionally:

 1. Print "hidden" control characters as inverse:
 POKE 234,0 to print as inverse (default)
 POKE 234,255 to function as-is

 2. Lower case letters may be shifted to upper case:
 POKE -18700,255 no shift (default)
 POKE -18700,223 to shift lower to upper case.

You can slow down TYPE's output via SPEED=xx or POKE 241,xx; it can be
paused by pressing any key; then Ctrl-Q to abort. Also, TYPE pauses
and waits for a keypress when it encounters a hex 00 imbedded in the
file or at end of file; press Ctrl-Q to quit. Random text files may
be TYPE'd by holding down REPT-SPACE to get past the hex 00's at the
end of each logical record.

The listing that follows is intended for information only: it is not
BRUNable. My intention is that you prepare the EXEC shown below to
actually install the patches. Any word processor that produces a
straight, sequential text file may be used to prepare the EXEC. Of
course you can also use the S-C Macro Assembler for this purpose.
Then, type EXEC WILDCAT to apply the patches to DOS 3.3 in memory.
After checking it out and running any other tests you like, put in a
new diskette, enter a HELLO program, and type INIT HELLO to
"permanently" install WildCAT in the DOS on tracks 0, 1, and 2.

When I wrote WildCAT, I had two main goals in mind: it should be a
(mostly in-place) code replacement, and it should be compatible with
the known means of using (abusing?) the existing CATALOG code at
$AD98-AE69.

One major design consideration was a mechanism for entering the
^string/type parameter. This required merely changing the "keyword
parameter table" to allow CATALOG to have a "filename".

Next, a distinction had to be made between a "wildcard" and a
"filetype" parameter. It made sense to 'delimit' the wildcard string;
then the single-character filetype would be just that: a single
character, entered without a delimiter. But this "phony" name
mechanism has it's own problems:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2167 of 2550

Apple II Computer Info

First, "What's in a Name?" (DOS Manual p. 16): it has to start with a
letter...which automatically eliminates most special characters (eg,
equal, pound, slash, colon, etc) as the delimiter. The command
parsing routine doesn't really know what it's working on at the time.
All it knows is: if a name may be present, it must be valid. The
validity test is only that the first character be equal to or greater
that $C0 or an @-sign. The @-sign could have been used, but it's a
problem on some 80-column boards; the ^ or caret works nicely (and
besides, it looks good).

Second, now that we have a name (however, phony) and since the CATALOG
command lives in the File Manager (FM) portion of DOS, there will be a
buffer allocated for it. Unfortunately, the Command Interpreter (CI)
DOCAT routine, which calls the FM, already "knows" that there will not
really be a name, so it does not include housekeeping code to
deallocate a buffer. So merrily allocating files without closing
them...after the third time: NO BUFFERS AVAILABLE. And naively adding
CLOSE (even if there were room for it), would have one very
undesirable side effect if a "regular" catalog were requested:
CATALOG-CLOSE without FNAME means close all open files. WildCAT,
instead, plays a little shell game with DOS: The new DOCAT routine
saves the first character of FNAME and substitutes a zero.
Thereafter, neither the File Manager nor the rest of DOS ever knows
that a name has been entered, and a buffer is never actually
allocated.

Third, what really should happen if a phony name is not entered? A
regular catalog, of course, but how would this be indicated to
WildCAT? Well, the shell game has a sting. Early on when the CI PARSE
routine discovers that a filename is a valid parameter, it first
clears FNAME to all blanks, expecting to fill it in with whatever
comes in next. If a comma or carriage return comes in next, then
FNAME still contains the blank; and that's what WildCAT saves off
(under the shell) before it substitutes the zero.

Thus, the "sting" is that the CI "tricks" itself into telling WildCAT
what to do in the absence of a ^string/type specification: WildCAT
takes a blank to indicate "do a regular" catalog; just as positively
as a "^" indicates "do a wildcard" catalog, and a single, undelimited
character indicates "do a filetype" catalog.

The blank indicator also helps satisfy the second goal above and
solves the problem of compatibilty with the "known means" of
using/abusing the existing CATALOG code. WildCAT simply has to put a
blank under the shell at each of the points where the code could most
reasonably be entered without going thru the Command Interpreter's new
DOCAT routine. That's exactly what all the JSR's to the routine
AllowENTry are doing.

Satisfying that second goal takes up considerable space, however; and
has somewhat undermined the first constraint: WildCAT certainly isn't
"in-place" in one place! And I apologize for this rather bizarre,
serpentine code; I do hope that now you understand why some things
were done the way they were.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2168 of 2550

Apple II Computer Info

Although considerable effort was spent to maintain compatibilty with
the existing DOS commands, there were some compromises:

1. While the DOS manual (page 22) states: "To specify drive 1, you
use the notation D1 separated from the file name by a comma", you can
in fact leave out the comma between CATALOG and D1. With WildCAT that
comma is now required; otherwise, it would take the "D" as a filetype
and try to find it...which of course it wouldn't and there would be no
files reported. This would also be a problem for Applesoft programs
that do something like: PRINT D$"CATALOG D1" without the separating
comma. Therefore, WildCAT issues a (late) "SYNTAX ERROR" message if
it encounters an undelimited string of length 2 or more.

2. CATALOG is a favorite routine to execute directly, bypassing the
DOS Command Interpreter. FID, for example, provides its CATALOG via
the "external" entry to the File Manager, which means that the main
entry at CATHNDLR must provide for a "regular" catalog. It is also
possible from machine language, however, to bypass both the CI and the
FM. This usually involves changing the exit JMP address at DONEXT2
(to return to the user's code) and then jumping directly into almost
anywhere in the CATALOG code (see the Listing 1 labels that begin
"at"). I believe most of these cases are covered, but you may find
some programs, which provide an "internal" CATALOG, that just won't
work with WildCAT.

3. In order to both gain some patch space and provide the DIR/CAT
short-form command name, the DOS command POSITION was eliminated. You
may have to read about it just to find out that it is, much less what
it is. Its relative lack of use may be due to its implementation: it,
like APPEND, finds its way through the file one byte at a time...all
day long. Any program that uses it will now get a syntax error. If
POSITION is really needed, it can be readily simulated by programming
a read-loop to discard N-1 fields before processing the desired Nth
field.

The following is a brief commentary on the assembly listing. The
paragraph numbers correspond to comment numbers in the listing.

The page zero locations I used ($EB thru $EF) are free, i.e. not used
by DOS, the Monitor, or the Basics.

(1) In CMDTBL, replace Integer CHAIN address with TYPE and DOCAT
address with NewDOCAT.

(2) Rearrange some code (and change the two references to it) to add a
"print blank" capability. The Command Interpreter uses its own vector
to a "COUT" routine via CSW at $36; however, the File Manager
(previously) used the Monitor COUT and CROUT routines for printing the
catalog. With WildCAT all of DOS now consistently uses the vector at
$9FCA for output; plus it has a new BlankOUT routine, all within the
original code space.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2169 of 2550

Apple II Computer Info

(3) Recode a very cumbersome form of the "indexed indirect jump" to
use register Y and leave X (which is zero by a previous operation) so
it can be used in NewDOCAT.

(4) Replace old DOCAT's 12 bytes of code with a JMP to NewDOCAT and
use the remainder to space over to column 7 after the file length has
been displayed.

(5) NewDOCAT saves the first character of FNAME and substitutes a zero
to prevent buffer allocation. It then loads 13, the new Catalog
Function Code, and proceeds to CMDHNDLR2. Function 13 enters the
catalog code past the "allow for irregular, direct entry".

(6) In the keyword parameter table, change parms to allow a filename
with CATALOG and a filename, drive, and slot with DIR. Set new
Function 13 address (previously a useless "no-op" to NOERROR routine)
to WildCAT and change the range check to 14 to allow for it.

(7) Replace the Integer CHAIN code; PrtLOCK displays an asterisk or
blank if the file is locked or not.

(8) Shorten the "NO BUFFERS AVAILABLE" message to "NO BUFFER" and re-
use the space to decide which Basic is active, then JMP to the
appropriate decimal print routine; used to print the free sector value
and catalog filesizes. The value to be printed has been previously
loaded into A and X.

(9) First, eliminate the need for "NOT DIRECT COMMAND" error message
and then re-use the space to check for a "regular" catalog (no
filename) or for a catalog by filetype (undelimited, single
character). If more than a single, non-blank character is detected
(ie, 2nd byte of FNAME is not blank), then "SYNTAX ERROR" message is
issued.

(10) At the beginning of catalog code, allow for most reasonable
points where the code could be directly entered. The new "official"
function 13, WildCAT entry initializes the FM workarea (per normal)
and branches to Read VTOC to "find" the first catalog sector.

(11) Freespace "prolog"; clear carry and branch around another likely
"irregular" entry point. Read first/next catalog sector, then lookup
and save the filetype. Setup Y with 30 for name length and branch to
CkFNAME.

(12) AllowVTOC fakes a "regular" catalog and falls into a JSR to read
the VTOC. The BCC to initialize linecount is always taken; only if
there had been an I/O error would the carry be set, in which case,
control would have passed to the error-message-print exit anyway.

(13) PrtCat displays a catalog line. Note that loc $24, CH, is
"POKEd" with 7 for uniform spacing over to the filename. If your
printer interface board or 80-column card do not support this
convention, then the display will not be properly spaced. The DONEXT
routine is unchanged. SKIPLN has been re-arranged to allow init

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2170 of 2550

Apple II Computer Info

linecount, put out a carriage return, and check for a keypress (Ctrl-Q
to quit) after 22 lines. Note: This leaves the cursor in column 37;
see below.

(14) CkFNAME "looks under the shell" to figure out what to do. A
caret indicates to check for a wildcard string. After JSR to CkCAT,
if the equal status is set, then branch to print the catalog line.
DoWild checks for the occurence of the wildcard string within the
filename. $B4C9,X indexes the name in the Catalog Sector; $AA75,Y
indexes the wildcard string; CatNmLen counts from 30 to 0, to scan the
whole name.

(15) FreeSpce counts the free sectors, as indicated by the VTOC, loads
X and A with the count, and JMPs ToPrtDec.

(16) WaitCk79 provides the "wait" for TYPE; also checks and puts out a
carriage return after 79 characters to avoid over-printing long lines
on certain printers, such as the MX-80.

(17) TYPE displays the contents of a sequential or random text file.
A keypress will pause the display, and Ctrl-Q aborts or quits the
display.

(18) InvCOUT is used by both CATALOG and TYPE. It converts hi-bit off
characters to proper inverse. It will optionally display control
characters as inverse or allow them the "function" as-is; and it will
optionally "shift" lower case letters to upper case, if you do not
have a lower case adapter; see "...Options" above. Location $EA,
decimal 234, is the Applesoft Hi-Res collision counter; it should
always be zero, unless you POKE it.

(19) WaitCQ waits for a keypress and sets the equal status, if Ctrl-Q
was pressed.

(20) Replace the inverted phrase DISK VOLUME with FREE SPACE=.

(21) The DOSCMDS list is moved down 6 bytes. AllowENT re-uses these 6
bytes to force a blank in FName1 "under the shell" to facilitate
"irregular" entries into the catalog code; and clears the carry in
case the entry was 'atADC9' which also previously cleared the carry.
In the command list, TYPE replaces CHAIN and DIR replaces POSITION;
change $A8BF:43 41 D4 to replace with CAT.

(22) Change the two references to DOSCMDS to the new location. These
two changes must be done last as the EXEC is changing the very code
that is executing.

I would like to thank Lee Reynolds and Art Schumer for their helpful
comments and suggestions.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2171 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:ErvEdgeWildcatx.txt
==

WildCAT for DOS 3.3....................................Erv Edge
 Anchorage, Alaska

WildCAT is a series of patches to DOS 3.3 which modify the CATALOG
command. The new features include:

 * A catalog by "wildcard" FILENAME facility.
 * A catalog by FILETYPE facility.
 * An alternate, short-form: either DIR or CAT.
 * Catalog free space patch.
 * Ctrl-Q catalog abort.
 * TYPE a random or sequential text file.

Lee Reynold's FILEDUMP command has been re-packaged and re-presented
as TYPE (see Call-A.P.P.L.E. 6/82 p47). More on this later.
WildCAT, along with TYPE, is an attempt to teach new tricks to an old
dog, as it were.

The normal DOS catalog command allows slot, drive, and volume
parameters. I have added a filename parameter, but it is processed a
little differently than the way file names are usually processed. To
display the catalog entries for all files whose names contain a
particular string, type any of the folowing:

 CATALOG ^string [,Dn] [,Sn] [,Vn]
 DIR ^string [,Dn] [,Sn] [,Vn]
 CAT ^string [,Dn] [,Sn] [,Vn]

where "^string" begins with the "^" or caret symbol (shifted N on the
][+ or shifted 6 on the //e); the string should contain no blanks,
although it may "end" with them; the string would normally end with a
carriage return or with a comma if a drive or slot number is
specified. Only those files that contain the "string" somewhere in
the filename will be listed. (Of course you already know that the D,
S, and V parameters are shown in brackets above because they are
optional; you do not type the brackets.)

For example, "CATALOG ^TEST" would list each file with 'TEST' as part
of the filename; while "DIR ^PAY." would list those with 'PAY.'
somewhere in the filename; and "CAT^.OBJ,D2" would list filenames on
drive 2 that contain the partial string '.OBJ'. "CAT" and "DIR" are
simply synonyms for "CATALOG".

I have also arranged things so you can list the catalog entries of a
specified file-type. You simply type the file taype code in the
CATALOG command:

 CATALOG t [,Dn] [,Sn] [,Vn]
 DIR t [,Dn] [,Sn] [,Vn]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2172 of 2550

Apple II Computer Info

 CAT t [,Dn] [,Sn] [,Vn]

where "t" is any of the unadorned, single-letter filetypes: A B I R S
T. Only that type of file (if present) will be listed.

For example, "CATALOG T" would list all the text files; "DIR A,D2"
would list all of the Applesoft files on drive 2; "CAT B,S5,D1" would
list all the binary files on slot 5, drive 1. Yes, "DIRT" works just
fine.

I added the TYPE command, which allows you to display the contents of
text files. Both CATALOG and TYPE will optionally:

 1. Print "hidden" control characters as inverse:
 POKE 234,0 to print as inverse (default)
 POKE 234,255 to function as-is

 2. Lower case letters may be shifted to upper case:
 POKE -18700,255 no shift (default)
 POKE -18700,223 to shift lower to upper case.

You can slow down TYPE's output via SPEED=xx or POKE 241,xx; it can be
paused by pressing any key; then Ctrl-Q to abort. Also, TYPE pauses
and waits for a keypress when it encounters a hex 00 imbedded in the
file or at end of file; press Ctrl-Q to quit. Random text files may
be TYPE'd by holding down REPT-SPACE to get past the hex 00's at the
end of each logical record.

The listing that follows is intended for information only: it is not
BRUNable. My intention is that you prepare the EXEC shown below to
actually install the patches. Any word processor that produces a
straight, sequential text file may be used to prepare the EXEC. Of
course you can also use the S-C Macro Assembler for this purpose.
Then, type EXEC WILDCAT to apply the patches to DOS 3.3 in memory.
After checking it out and running any other tests you like, put in a
new diskette, enter a HELLO program, and type INIT HELLO to
"permanently" install WildCAT in the DOS on tracks 0, 1, and 2.

When I wrote WildCAT, I had two main goals in mind: it should be a
(mostly in-place) code replacement, and it should be compatible with
the known means of using (abusing?) the existing CATALOG code at
$AD98-AE69.

One major design consideration was a mechanism for entering the
^string/type parameter. This required merely changing the "keyword
parameter table" to allow CATALOG to have a "filename".

Next, a distinction had to be made between a "wildcard" and a
"filetype" parameter. It made sense to 'delimit' the wildcard string;
then the single-character filetype would be just that: a single
character, entered without a delimiter. But this "phony" name
mechanism has it's own problems:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2173 of 2550

Apple II Computer Info

First, "What's in a Name?" (DOS Manual p. 16): it has to start with a
letter...which automatically eliminates most special characters (eg,
equal, pound, slash, colon, etc) as the delimiter. The command
parsing routine doesn't really know what it's working on at the time.
All it knows is: if a name may be present, it must be valid. The
validity test is only that the first character be equal to or greater
that $C0 or an @-sign. The @-sign could have been used, but it's a
problem on some 80-column boards; the ^ or caret works nicely (and
besides, it looks good).

Second, now that we have a name (however, phony) and since the CATALOG
command lives in the File Manager (FM) portion of DOS, there will be a
buffer allocated for it. Unfortunately, the Command Interpreter (CI)
DOCAT routine, which calls the FM, already "knows" that there will not
really be a name, so it does not include housekeeping code to
deallocate a buffer. So merrily allocating files without closing
them...after the third time: NO BUFFERS AVAILABLE. And naively adding
CLOSE (even if there were room for it), would have one very
undesirable side effect if a "regular" catalog were requested:
CATALOG-CLOSE without FNAME means close all open files. WildCAT,
instead, plays a little shell game with DOS: The new DOCAT routine
saves the first character of FNAME and substitutes a zero.
Thereafter, neither the File Manager nor the rest of DOS ever knows
that a name has been entered, and a buffer is never actually
allocated.

Third, what really should happen if a phony name is not entered? A
regular catalog, of course, but how would this be indicated to
WildCAT? Well, the shell game has a sting. Early on when the CI PARSE
routine discovers that a filename is a valid parameter, it first
clears FNAME to all blanks, expecting to fill it in with whatever
comes in next. If a comma or carriage return comes in next, then
FNAME still contains the blank; and that's what WildCAT saves off
(under the shell) before it substitutes the zero.

Thus, the "sting" is that the CI "tricks" itself into telling WildCAT
what to do in the absence of a ^string/type specification: WildCAT
takes a blank to indicate "do a regular" catalog; just as positively
as a "^" indicates "do a wildcard" catalog, and a single, undelimited
character indicates "do a filetype" catalog.

The blank indicator also helps satisfy the second goal above and
solves the problem of compatibilty with the "known means" of
using/abusing the existing CATALOG code. WildCAT simply has to put a
blank under the shell at each of the points where the code could most
reasonably be entered without going thru the Command Interpreter's new
DOCAT routine. That's exactly what all the JSR's to the routine
AllowENTry are doing.

Satisfying that second goal takes up considerable space, however; and
has somewhat undermined the first constraint: WildCAT certainly isn't
"in-place" in one place! And I apologize for this rather bizarre,
serpentine code; I do hope that now you understand why some things
were done the way they were.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2174 of 2550

Apple II Computer Info

Although considerable effort was spent to maintain compatibilty with
the existing DOS commands, there were some compromises:

1. While the DOS manual (page 22) states: "To specify drive 1, you
use the notation D1 separated from the file name by a comma", you can
in fact leave out the comma between CATALOG and D1. With WildCAT that
comma is now required; otherwise, it would take the "D" as a filetype
and try to find it...which of course it wouldn't and there would be no
files reported. This would also be a problem for Applesoft programs
that do something like: PRINT D$"CATALOG D1" without the separating
comma. Therefore, WildCAT issues a (late) "SYNTAX ERROR" message if
it encounters an undelimited string of length 2 or more.

2. CATALOG is a favorite routine to execute directly, bypassing the
DOS Command Interpreter. FID, for example, provides its CATALOG via
the "external" entry to the File Manager, which means that the main
entry at CATHNDLR must provide for a "regular" catalog. It is also
possible from machine language, however, to bypass both the CI and the
FM. This usually involves changing the exit JMP address at DONEXT2
(to return to the user's code) and then jumping directly into almost
anywhere in the CATALOG code (see the Listing 1 labels that begin
"at"). I believe most of these cases are covered, but you may find
some programs, which provide an "internal" CATALOG, that just won't
work with WildCAT.

3. In order to both gain some patch space and provide the DIR/CAT
short-form command name, the DOS command POSITION was eliminated. You
may have to read about it just to find out that it is, much less what
it is. Its relative lack of use may be due to its implementation: it,
like APPEND, finds its way through the file one byte at a time...all
day long. Any program that uses it will now get a syntax error. If
POSITION is really needed, it can be readily simulated by programming
a read-loop to discard N-1 fields before processing the desired Nth
field.

The following is a brief commentary on the assembly listing. The
paragraph numbers correspond to comment numbers in the listing.

The page zero locations I used ($EB thru $EF) are free, i.e. not used
by DOS, the Monitor, or the Basics.

(1) In CMDTBL, replace Integer CHAIN address with TYPE and DOCAT
address with NewDOCAT.

(2) Rearrange some code (and change the two references to it) to add a
"print blank" capability. The Command Interpreter uses its own vector
to a "COUT" routine via CSW at $36; however, the File Manager
(previously) used the Monitor COUT and CROUT routines for printing the
catalog. With WildCAT all of DOS now consistently uses the vector at
$9FCA for output; plus it has a new BlankOUT routine, all within the
original code space.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2175 of 2550

Apple II Computer Info

(3) Recode a very cumbersome form of the "indexed indirect jump" to
use register Y and leave X (which is zero by a previous operation) so
it can be used in NewDOCAT.

(4) Replace old DOCAT's 12 bytes of code with a JMP to NewDOCAT and
use the remainder to space over to column 7 after the file length has
been displayed.

(5) NewDOCAT saves the first character of FNAME and substitutes a zero
to prevent buffer allocation. It then loads 13, the new Catalog
Function Code, and proceeds to CMDHNDLR2. Function 13 enters the
catalog code past the "allow for irregular, direct entry".

(6) In the keyword parameter table, change parms to allow a filename
with CATALOG and a filename, drive, and slot with DIR. Set new
Function 13 address (previously a useless "no-op" to NOERROR routine)
to WildCAT and change the range check to 14 to allow for it.

(7) Replace the Integer CHAIN code; PrtLOCK displays an asterisk or
blank if the file is locked or not.

(8) Shorten the "NO BUFFERS AVAILABLE" message to "NO BUFFER" and re-
use the space to decide which Basic is active, then JMP to the
appropriate decimal print routine; used to print the free sector value
and catalog filesizes. The value to be printed has been previously
loaded into A and X.

(9) First, eliminate the need for "NOT DIRECT COMMAND" error message
and then re-use the space to check for a "regular" catalog (no
filename) or for a catalog by filetype (undelimited, single
character). If more than a single, non-blank character is detected
(ie, 2nd byte of FNAME is not blank), then "SYNTAX ERROR" message is
issued.

(10) At the beginning of catalog code, allow for most reasonable
points where the code could be directly entered. The new "official"
function 13, WildCAT entry initializes the FM workarea (per normal)
and branches to Read VTOC to "find" the first catalog sector.

(11) Freespace "prolog"; clear carry and branch around another likely
"irregular" entry point. Read first/next catalog sector, then lookup
and save the filetype. Setup Y with 30 for name length and branch to
CkFNAME.

(12) AllowVTOC fakes a "regular" catalog and falls into a JSR to read
the VTOC. The BCC to initialize linecount is always taken; only if
there had been an I/O error would the carry be set, in which case,
control would have passed to the error-message-print exit anyway.

(13) PrtCat displays a catalog line. Note that loc $24, CH, is
"POKEd" with 7 for uniform spacing over to the filename. If your
printer interface board or 80-column card do not support this
convention, then the display will not be properly spaced. The DONEXT
routine is unchanged. SKIPLN has been re-arranged to allow init

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2176 of 2550

Apple II Computer Info

linecount, put out a carriage return, and check for a keypress (Ctrl-Q
to quit) after 22 lines. Note: This leaves the cursor in column 37;
see below.

(14) CkFNAME "looks under the shell" to figure out what to do. A
caret indicates to check for a wildcard string. After JSR to CkCAT,
if the equal status is set, then branch to print the catalog line.
DoWild checks for the occurence of the wildcard string within the
filename. $B4C9,X indexes the name in the Catalog Sector; $AA75,Y
indexes the wildcard string; CatNmLen counts from 30 to 0, to scan the
whole name.

(15) FreeSpce counts the free sectors, as indicated by the VTOC, loads
X and A with the count, and JMPs ToPrtDec.

(16) WaitCk79 provides the "wait" for TYPE; also checks and puts out a
carriage return after 79 characters to avoid over-printing long lines
on certain printers, such as the MX-80.

(17) TYPE displays the contents of a sequential or random text file.
A keypress will pause the display, and Ctrl-Q aborts or quits the
display.

(18) InvCOUT is used by both CATALOG and TYPE. It converts hi-bit off
characters to proper inverse. It will optionally display control
characters as inverse or allow them the "function" as-is; and it will
optionally "shift" lower case letters to upper case, if you do not
have a lower case adapter; see "...Options" above. Location $EA,
decimal 234, is the Applesoft Hi-Res collision counter; it should
always be zero, unless you POKE it.

(19) WaitCQ waits for a keypress and sets the equal status, if Ctrl-Q
was pressed.

(20) Replace the inverted phrase DISK VOLUME with FREE SPACE=.

(21) The DOSCMDS list is moved down 6 bytes. AllowENT re-uses these 6
bytes to force a blank in FName1 "under the shell" to facilitate
"irregular" entries into the catalog code; and clears the carry in
case the entry was 'atADC9' which also previously cleared the carry.
In the command list, TYPE replaces CHAIN and DIR replaces POSITION;
change $A8BF:43 41 D4 to replace with CAT.

(22) Change the two references to DOSCMDS to the new location. These
two changes must be done last as the EXEC is changing the very code
that is executing.

I would like to thank Lee Reynolds and Art Schumer for their helpful
comments and suggestions.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2177 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Front.Page.txt
==

$1.80

Volume 6 -- Issue 1 October, 1985

In This Issue...

ProDOS Snooper . 2
Different Patch for 65C02 & Old Apples 6
DOS 3.3 RWTS Snooper 9
Feedback about the Latest Sieve. 12
Paint Yourself into the Corner 14
Index to Apple Assembly Line, Volume 5 15
Multiple Column Dis-Assembly 20
Apple Manuals from Addison-Wesley. 29
Now That You Know Apple Assembly Language, 30

Book, Books, Books

Inside this issue you will find a review of Jules Gilder's new book on
intermediate-level Apple assembly language programming, and the
details on those long-awaited Addison-Wesley editions of Apple's
Technical Manuals. We're now offering these items for sale, and the
details are in our ad.

The latest word from Prentice-Hall is that David Eyes' "Programming
the 65816" will be shipped on October 29, so we may actually have
copies by the time you read this. Bob will have a full review next
month, and we are beginning to get orders already. The list price is
expected to be $22.95. If that holds, our price will be $21.00 +
postage.

A Rumor Regarding the Next Apple II

We have heard from two sources now a rumor that Apple does not plan to
use the 65816 in its next Apple II. Nor the 65802, nor the 65C02.
Instead, we heard, they will use a custom version of the 68000 family
with 65C02 emulation capability. I think that I hope that the rumor
is groundless, but I'll keep my ear to the ground anyway.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2178 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Gilder.Review.txt
==

Now That You Know Apple Assembly Language,
What Can You Do With It?..................Review by Bill Morgan

Do you know the difference between LDA LABEL,X and LDA (LABEL),Y but
wonder when to use which? Are you confused by the way PHA, PHA, RTS
doesn't go home, but jumps somewhere else entirely? Do you know what
the 6502 opcodes do, but still feel lost when it comes time to combine
them into a program?

Jules Gilder, a long-time contributor to several of the Apple
Magazines, has written a book just for you. He spends about 190 pages
covering the intermediate level of assembly language programming in
the Apple II computer. His programs are very well commented, and the
accompanying text contains almost a line-by-line discussion of how and
why each program works.

Gilder concentrates on the Apple-specific features of 6502
programming: input and output hooks, the internal speaker, and basic
linkage to Applesoft. This combination should make this book
especially appealing to those of you who have learned 6502 from a
"generic" book and want to find out how to apply your new knowledge to
your Apple II's.

Here is a summary of each chapter of Now That You Know...:

1) Before You Get Started -- This is an introduction to assemblers and
their conventions.

2) Getting Information out of Your Computer -- This chapter covers
simple output, including message printing and decimal number display.

3) Getting Information into Your Computer -- Here we get into reading
keystrokes and lines, handling decimal input, and also menu control
structures.

4) Stealing Control of the Output -- This one goes into taking over
the output hook to do custom printer setup codes and drivers, output
filtering, and formatting.

5) Stealing Control of the Input -- Learn how to grab the input hook
to add a custom cursor, numeric keypad, an in-memory EXEC simulator,
an Applesoft keyboard macro facility, and a lower-case input driver
using the shift-key modification.

6) Using Sound in Your Programs -- How to use the Apple's built-in
speaker to create a variety of sounds.

7) Learning to Use the Ampersand -- Here are techniques for hooking
into the &-vector to do hexadecimal input and output in Applesoft,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2179 of 2550

Apple II Computer Info

find a program line in memory, append two Applesoft programs, and
revive a program lost by the NEW command.

8) Expanding Applesoft BASIC -- Now we can have computed GOTO, GOSUB
and LIST, do double-byte PEEKs and POKEs, switch between two Applesoft
programs sharing memory and variables, and add function keys to
control output modes.
The only real weakness in this book is the complete lack of attention
to the Apple's graphic display possibilities, and comparatively little
coverage of dealing with DOS (and only one small appendix covering
conversion to ProDOS.) I suppose Gilder regards these as more
advanced topics. Hopefully he will see fit to focus on such subjects
in a future book.

Gilder's company, Redlig Sytems, Inc., also has diskettes of all the
programs in the book, in either source or object form.

We'll be carrying Now That You Know... for only $18 + shipping.

Apple Software Protection Digest

Gilder is also starting a newsletter on the subject of Apple software
protection. This publication is devoted both to protecting your own
programs and defeating the protection on others'. Here is part of
Jules' description:

Apple computer owners need a place where they can get more information
about software protection. They need a forum where they can exchange
ideas with others who face the same or similar problems. They need to
know what software protection is, how it's implemented, what are the
consequences of it, how it can be overcome if necessary and if there
are any comparable unprotected alternatives to particular protected
software packages.

Apple Software Protection Digest will provide you with this
information and more. It will show you new ways to protect, unprotect
and backup your programs. It will teach you how to prevent others
from accessing your programs and it will show you how to make them
more difficult to copy. In addition, you'll learn how to overcome
these and other protection schemes that are in use. You'll learn how
to use the powerful, but compli- cated nibble copy programs. You'll
also learn how to crack or remove protection entirely from many
programs.

In the first issue he covers hiding Applesoft program lines (and
finding them once they're hidden), making a machine language program
automatically execute when BLOADed, protecting a disk by adding extra
tracks and leaving some tracks unformatted, backing up The Print Shop,
and he reviews the Copy II Plus nibble copier.

As a special offer for AAL subscribers, Gilder will give you a free
copy of the first issue of Apple Software Protection Digest. Just
send your name and address to Redlig Systems, Inc., 2068) 79th St.,

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2180 of 2550

Apple II Computer Info

Brooklyn, NY, 11214. Be sure to mention that you are an AAL reader.
The subscription rate is $24 for one year, or $42 for two years.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2181 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Index.2.Vol.5.txt
==

INDEX

Apple Assembly Line, Volume 5
October, 1984 through September, 1985

AAAA

Applesoft
 A CALL Utility for Applesoft....................David Johnson...
6/85/24-27
 Correction to Line Number XREF....................Bill
Morgan...10/84/18
 Double Precision Arithmetic
 ...see Double Precision Floating Point Package
 Fast Text Windows for Applesoft.................Michael Ching...
4/85/16-20
 80-Column Window Utility for //e and //c............Bill Reed...
5/85/11-15

BBBB

Benchmarks
 Prime Benchmark for the 65802.........................Bob S-C...
9/85/2-9
Book Reviews
 "Apple II+/IIe Troubleshooting & Repair
Guide"..................11/84/1
 "Apple ProDOS: Advanced Features for Programmers"..............
5/85/18-19
 "Applevisions"..
6/85/21
 "Assembly Language for the Applesoft Programmer"................
2/85/20
 "Enhancing Your Apple II and //e, vol. 2".......................
5/85/1
 "Inside the Apple //c"..
4/85/7
 "Inside the Apple
//e"..12/84/16-18
 "Open
Apple"..12/84/1
 Out of Print..Bob S-
C...10/84/16
The Boyer-Morris String Search Algorithm............Bob Bernard...
6/85/2-12
Buffering
 //c + Z-RAM = 576K Printer Buffer...............David Johnson...
8/85/2-10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2182 of 2550

Apple II Computer Info

CCCC

Conversions
 Convert Two Decimal Digits to Binary..................Bob S-
C...11/84/15-16
 Generic Conversion Routines...........................Bob S-C...
8/85/17-21
 Improving the Single-Byte Converter................Bruce Love...
6/85/21
 Short Binary-Decimal Conversion in 65802..............Bob S-C...
9/85/24-28
 Short Single-Byte Hex-to-Decimal Printer..............Bob S-C...
1/85/31-32
 Sly Hex Conversion....................................Bob S-
C...12/84/21-22
Corrections
 Correction to DP18, part 5......................Paul
Schlyter...10/84/10
 Correction to Line Number XREF....................Bill
Morgan...10/84/18
 Correction to Symbol Table Source Maker...............Bob S-C...
2/85/25
 Improvements to 80-Column Monitor Dump..........Jan
Eugenides...11/84/22-23
Cross Assemblers
 6800/6801/6301 Cross Assembler Version 2.0......................
1/85/1
 6800/6801/6301 Cross Assembler ProDOS...........................
8/85/1
 An 8086/8088 Cross Assembler....................Don Rindsberg...
4/85/21

DDDD

Disassemblers
 Adapting the Output Format of RAK-Ware DISASM......Bob Kovacs...
5/85/21-22
 A Disassembler for the 65816..........................Bob S-C...
3/85/20-28
 Generating Cross Reference Text File with DISASM...Bob
Kovacs...11/84/23
 How Many Bytes for Each Opcode?.......................Bob S-C...
8/85/12-16
DOS Enhancements and Patches
 Improved DOS 3.3 Number Parsing & Lower-Case Commands.Bob S-C...
3/85/15-18
 Making DOS-Less Disks.................................Bob S-C...
2/85/21-25
 New Catalog for DOS 3.3.....................Robert F. O'Brien...
5/85/2-11
 New Catalog Revisited.......................Robert F. O'Brien...
7/85/32
 Put DOS and ProDOS Files on the Same Disk.............Bob S-C...
9/85/11-20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2183 of 2550

Apple II Computer Info

 Reading DOS 3.3 Disks with ProDOS.....................Bob S-C...
7/85/2-14
 Shortening the DOS File Buffer Builder................Bob S-C...
3/85/2-9
 A Solution to Overlapping DOS Patches..............Paul
Lewis...12/84/27
 Volume Catalog for Corvus and Sider...................Bob S-C...
4/85/9-11
 Wildcard Filename Search..............................Bob S-C...
8/85/22-28
Double Precision Floating Point Package
 Correction to DP18, part 5......................Paul
Schlyter...10/84/10
 New DP18 Square Root Subroutine.......................Bob S-
C...11/84/20-21
 Part 6, VAL, INT, ABS, SGN, and SQR Functions.........Bob S-
C...10/84/2-9
 Part 7, LOG and EXP Functions.........................Bob S-
C...11/84/2-13
 Part 8, Trig Functions................................Bob S-
C...12/84/2-14
 Part 9, PRINT...Bob S-C...
1/85/2-24
 Part 10, INPUT..Bob S-C...
2/85/2-14
 Some Final DP18 Subroutines...........................Bob S-C...
5/85/28

GGGG

Graphics
 Building Hi-Res Pre-Shift Tables.............Gianluca Pomponi...
2/85/26-28
 Generating Tables for Faster Hi-Res...................Bob S-
C...12/84/24-26
 Short Integer Square Root Subroutine..................Bob S-C...
6/85/13

HHHH

Hardware Reviews
 The Oki 6203 Multiply/Divide Chip.....................Bob S-C...
3/85/19
 Review of the FCP Hard Disk (The Sider)...............Bob S-C...
4/85/27-28
 Review of the M-c-T SpeedDemon........................Bob S-C...
7/85/16-22
 A Whole Megabyte for Your Apple //e...................Bob S-
C...11/84/18
 Write Guard Disk Modification Kit...............................
2/85/19

IIII

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2184 of 2550

Apple II Computer Info

Interrupt Trace...............................Charles H. Putney...
6/85/16-20

MMMM

Macro Information by Example....................Sandy
Greenfarb...11/84/24-25
Monitor Enhancements and Patches
 Two ROM Sets in One Apple //e.........................Bob S-C...
6/85/22-23

NNNN

New Product Announcements
 6800/6801/6301 Cross Assembler Version 2.0......................
1/85/1
 6800/6801/6301 Cross Assembler ProDOS...........................
8/85/1
 Blind Word
Processor..10/84/1
 S-C Macro Assembler Version
2.0.................................11/84/14
 S-C Macro Assembler Version 2.0 DOS Source Code.................
9/85/1
 S-C Macro Assembler ProDOS......................................
6/85/1

PPPP

Prime Benchmark for the 65802...........................Bob S-C...
9/85/2-9
ProDOS
 Allow BSAVE to New Non-Binary Files in BASIC.SYSTEM.........
 Mark Jackson...
7/85/30-31
 DATE Command for ProDOS...........................Bill Morgan...
5/85/23-32
 Finding Memory Size in ProDOS.........................Bob S-C...
3/85/28
 Multi-Level ProDOS Catalog............................Bob S-C...
7/85/23-30
 Put DOS and ProDOS Files on the Same Disk.............Bob S-C...
9/85/11-20
 Reading DOS 3.3 Disks with ProDOS.....................Bob S-C...
7/85/2-14
 Shrinking Code Inside ProDOS..........................Bob S-C...
4/85/12-14

RRRR

Remembering When..Bob S-
C...12/84/23
Reviews, see "Book Reviews", "Hardware Reviews", "Software Reviews"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2185 of 2550

Apple II Computer Info

SSSS

S-C Macro Assembler
 32-bit Values in Version 2.0 -- A Mixed Blessing......Bob S-C...
5/85/32
 AUTO/MANUAL Toggle Update for Version 2.0...Robert F. O'Brien...
5/85/15-16
 Patches for Time/Date in Titles....................R. M. Yost...
2/85/18
 Putting S-C Macro on a QuikLoader Card..........Jan Eugenides...
4/85/2-7
 Questions and Answers...
2/85/16-18
 Reading DOS 3.3 Disks with ProDOS.....................Bob S-C...
7/85/2-14
 S-C Macro Assembler Version 2.0...................Bill
Morgan...11/84/14
 Symbol Table Source Maker......Peter McInerney and Bruce Love...
1/85/25-30
 USR Command to List Major Labels Only.................Bob S-C...
4/85/24-27
 Videx UltraTerm Driver..
3/85/1
 Videx VideoTerm Driver Revision.................................
7/85/1
Searching
 Boyer-Morris String Search Algorithm..............Bob Bernard...
6/85/2-12
 Wildcard Filename Search..............................Bob S-C...
8/85/22-28
Software Reviews
 Blankenship's BASIC...................................Bob S-
C...12/84/26
 Macintosh Assemblers...............................Lane
Hauck...10/84/24-28
 Software Sources for the 65802 and 65816..............Bob S-C...
9/85/21-23
String Search Algorithm, Boyer-Morris...............Bob Bernard...
6/85/2-12
Symbol Table Source Maker........Peter McInerney and Bruce Love...
1/85/25-30
 Correction to Symbol Table Source Maker...............Bob S-C...
2/85/25

TTTT

Techniques
 The Boyer-Morris String Search Algorithm..........Bob Bernard...
6/85/2-12
 Building Hi-Res Pre-Shift Tables.............Gianluca Pomponi...
2/85/26-28
 Even Trickier "Index to Masks"......
 Charles Putney, Bruce Love, and David
Eisler...10/84/9-10

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2186 of 2550

Apple II Computer Info

 Generating Tables for Faster Hi-Res...................Bob S-
C...12/84/24-26
 Making DOS-Less Disks.................................Bob S-C...
2/85/21-25
 Short Integer Square Root Subroutine..................Bob S-C...
6/85/13
 Strange Way to Divide by 7............................Bob S-
C...12/84/19-20
 Turning Bit-Masks into Indices........................Bob S-
C...11/84/26-28
Two ROM Sets in One Apple //e...........................Bob S-C...
6/85/22-23

UUUU

Utility Programs
 A CALL Utility for Applesoft....................David Johnson...
6/85/24-27
 A Disassembler for the 65816..........................Bob S-C...
3/85/20-28
 Interrupt Trace.............................Charles H. Putney...
6/85/16-20
 Making DOS-Less Disks.................................Bob S-C...
2/85/21-25
 Multi-Level ProDOS Catalog............................Bob S-C...
7/85/23-30
 Put DOS and ProDOS Files on the Same Disk.............Bob S-C...
9/85/11-20
 Reading DOS 3.3 Disks with ProDOS.....................Bob S-C...
7/85/2-14
 Symbol Table Source Maker......Peter McInerney and Bruce Love...
1/85/25-30

VVVV

Volume Catalog for Corvus and Sider.....................Bob S-C...
4/85/9-11

WWWW

Wildcard Filename Search................................Bob S-C...
8/85/22-28

65C02

65C02s in Old Apples.................................Jim Sather...
3/85/10-14
More on Using 65C02's in Old Apples..............Andrew
Jackson...12/84/15

65802/65816

 The 65802 is Here!....................................Bob S-
C...10/84/12-16

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2187 of 2550

Apple II Computer Info

 65816 News..Bill
Morgan...11/84/19
 Correction re MVN and MVP in 65802....................Bob S-
C...12/84/18
 A Disassembler for the 65816..........................Bob S-C...
3/85/20-28
 How Many Bytes for Each Opcode?.......................Bob S-C...
8/85/12-16
 Note on the TXS Instruction in the 65802..............Bob S-C...
6/85/14-15
 A Powerful 65816 Board on the Horizon.................Bob S-C...
4/85/22-23
 Prime Benchmark for the 65802.........................Bob S-C...
9/85/2-9
 Problems with 65802's in Apple II+....................Bob S-C...
9/85/23
 Short Binary-Decimal Conversion in 65802..............Bob S-C...
9/85/24-28
 Shortening the DOS File Buffer Builder................Bob S-C...
3/85/2-9
 Software Sources for the 65802 and 65816..............Bob S-C...
9/85/21-23

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2188 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:JohnLoveArticle.txt
==

(Semi-) Protect a Disk......................John A. Love, III
 Washington Apple Pi

In the September 1985 issue of AAL Bob S-C developed a program to
create a combination DOS 3.3 and ProDOS Data disk. My first program
listing is in response to his invitation to readers for the
development of a front-end wherein the user can select the following:

 1. Slot #.
 2. Drive #.
 3. DOS 3.3 low Track #.
 4. ProDOS Volume Name.

Notice that I did NOT include the DOS 3.3 Volume number which default
value provided by DOS 3.3 is 254. Since I do not own a Hard Disk, I
saw no need for changing it.

Several items pertaining to my front-end should be noticed. First,
the error trapping; for example, the Slot number must be between 1 & 7
and the ProDOS Volume Name not only must begin with a letter but also
must NOT exceed 15 characters in length. Second, since each input is
either one Byte or a string of single Bytes, there were a few
instances in which I had to change Bob's code. For example, such
expressions as "LDA #SLOT*16" and "CPY #4*DOS.LOW.TRACK" were out of
the question. As you compare his listing with mine, you will notice
the changes that I had to incorporate in order to accomodate user
input.

Well, enough of un-finished business. The other evening I was asked
how to protect a Disk from un-warranted intrusion. Initially, I knew
nothing about Disk protection except to state the obvious; namely,
that given enough time and talent ANY protection scheme can be broken.
As the very old adage stipulates -- "Locks are meant only to keep
honest people out". With this "awesome" knowledge in mind and Bob's
program at my elbow, I decided to apply his program's logic to simply
slow the folks down a bit.

My second program does NOT inhibit COPYA in the slightest. But,
that's okay because the caller, a teacher at one of the local
colleges, didn't mind. You see, his Disk contained quizzes along with
the answers. Get the drift.... So, I decided to:

1. Defeat the CATALOG Command on the DOS stored on the Disk. If the
Disk was cold-booted, the user would not know the names of the files
to LOAD & LIST.

2. Place the CATALOG info on a Track other than #17 (I chose #18
since DOS searches uphill from 17 before going downhill -- in short,
keep the time element at a minimum). In this manner, if the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2189 of 2550

Apple II Computer Info

inquisative user attempts to CATALOG the quiz Disk with his own System
Master, he will get a blank screen. Part of my code to follow will
ensure not only a blank screen, but also a full disk indication
because I place 00's throughout Track 17, Sector 0.

Admittedly, such a scheme is very UN-sophisticated. However, all I
wished to do was to slow the inquisative folks down a bit.

With respect to my adaptation of Bob's program, notice that the only
parameter I chose for user input was the Drive number. Others, such
as the Slot #, the Volume # and the "real" CATALOG Track # I inserted
directly into the code. Using my logic pertaining to inputting the
Drive #, these other parameters can easily be input as well. Also,
notice that I have included remarks at the end of the Source Code on
how to use "DISK.SAFE" .

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2190 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Mcinerney.Sieve.txt
==

Feedback about the latest Sieve............Peter J. McInerney

So the Sieve lives! Bob's article last month misses some of the
facts, however. He states that my improved 68000 version on my 12.5
MHz DTACK Grounded board ran in .4 seconds; the actual time was .33
seconds. This is proportional to the .49 seconds claimed in the later
Byte article for an 8 MHz 68000. My DTACK Grounded board uses 120
nanosecond static RAM and runs at a full 12.5 MHz speed (DTACK
grounded means that the processor CANNOT wait for memory).

Hal Hardenburgh (editor of the now sadly no more DTACK newsletter and
no slouch when it comes to assembly programming on the 68000) produced
his own version of the original algorithm, essentially hand-compiled
BASIC since that was what he wanted to compare to, and that ran in
1.29 secs for 10 iterations on a 10MHz board.

My faster 68000 sieve was my first 68000 program, so in light of my
now more extended experience I tried to tighten it up even further.
The result runs in .28 seconds for ten iterations on my DTACK board,
and .72 seconds on a Macintosh. The main speed improvement comes from
loading two extra registers for comparisons rather than doing CMPI's.
The use of MOVEM for clearing the array was pointed out to me by Hal
Hardenburgh and accounts for about .02 secs saved, at the expense of a
large amount of elegance (oh well, what price aesthetics?).

In trying to guess the comparisons of the 65816 systems of the future
with existing 68000 systems, two questions come to mind. First, if 6
or 8 MHz 65816s become available in quantity, how fast will the memory
have to be to keep up? The 68000 can automatically adjust for slower
memories, but is this true of the 65816? Second, and more
importantly, is the question of memory addressing.

I wrote a version of the sieve that sifts the first 262143 integers.
This took 13.5 seconds for 10 iterations on a Macintosh (this should
equate to 5.3 seconds on my DTACK board, but I don't have enough
memory to test it.) The program is only minimally different from the
original (some constants changed and some address modes changed from
word to long.)

How about writing a 65816 program to handle this large of an array?
How much extra baggage is required to test page boundaries, move base
addresses, etc? My point is that the restriction of 64K banks can
really hurt in accessing large data arrays. Memory is getting cheaper
all the time, so using more bytes for a 68000 program may well be no
penalty, compared with the extra difficulty of writing 65816 code to
handle large amounts of data.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2191 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......DOS $100, ProDOS $100, both for $120
ProDOS Upgrade Kit for Version 2.0 DOS owners.........................$30
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code of S-C Macro 2.0 (DOS only)...................additional $100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility......without source code $20, with source $50
RAK-Ware DISASM...$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36 *
MacASM -- Macro Assembler for MacIntosh (Mainstay).........($150.00) $100 *
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15
Cross Assemblers for owners of S-C Macro Assembler.....$32.50 to $50 each
 (Available: 6800/1/2, 6301, 6805, 6809, 68000, Z-80, Z-8, 8048,
 8051, 8085, 1802/4/5, PDP-11, GI1650/70, others)

AAL Quarterly Disks.........................each $15, or any four for $45
 Each disk contains the source code from three issues of AAL,
 saving you lots of typing and testing.
 The quarters are Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec.
(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

Diskettes (with hub rings)......................... package of 20 for $32 *
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6 *
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100 *
Envelopes for Diskette Mailers............................. 6 cents each

65802 Microprocessor (Western Design Center)...................($95) $50 *
quikLoader EPROM System (SCRG)................................($179) $170 *
PROmGRAMER (SCRG)..($149.50) $140 *
Switch-a-Slot (SCRG)..($190) $175 *
Extend-a-Slot (SCRG)...($35) $32 *

"Programming the 65816", Eyes...............................($22.95) $21 *
"Apple //e Reference Manual", Apple Computer................($24.95) $23 *
"Apple //c Reference Manual", Apple Computer................($24.95) $23 *
"ProDOS Technical Reference Manual", Apple Computer.........($29.95) $27 *
"Now That You Know Apple Assembly Language...", Gilder......($19.95) $18 *
"Apple ProDOS: Advanced Features for Programmers", Little..($17.95) $17 *
"Inside the Apple //c", Little..............................($19.95) $18 *
"Inside the Apple //e", Little..............................($19.95) $18 *
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18 *
"Apple][Circuit Description", Gayler......................($22.95) $21 *
"Understanding the Apple II", Sather........................($22.95) $21 *
"Understanding the Apple //e", Sather.......................($24.95) $23 *
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15 *
"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17 *
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20 *
"Beneath Apple DOS", Worth & Lechner........................($19.95) $18 *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2192 of 2550

Apple II Computer Info

"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18 *
"6502 Subroutines", Leventhal...............................($18.95) $18 *
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9 *
"Microcomputer Graphics", Myers.............................($12.95) $12 *
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16 *
"Assembly Lines -- the Book", Wagner........................($19.95) $18 *
"AppleVisions", Bishop & Grossberger........................($39.95) $36 *

 * On these items add $2.00 for the first item and
 $.75 for each additional item for US shipping.
 Foreign customers inquire for postage needed.
 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2193 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:PolyCol.Disasm.txt
==

Multiple Column Dis-Assembly.......................Adam Levin

When I'm writing and debugging a program, I always use a lot of
printer paper as I list and re-list version after version of my
creation. Using the Apple monitor's 'L' command wastes a lot of that
paper, too. Since each disassembled line takes at most 36 characters,
I end up wasting half of each page!. I know I could feed the paper
through a second time with the right hand side now on the left, but
the left hand listing isn't always the same length as the right, so I
end up with listings that span several separate lengths of paper.
I've written a program to solve this dilemma (as if you hadn't
guessed!), and I call it PolyCol.

PolyCol will be of use no matter what type of printer you have:
daisywheel printer and 80-column video card owners will get two
columns per page (screen), 80-column dot matrix owners can get up to
four columns per page by using compressed printing, and those with
wider carriages can get even more! In addition, by compressing the
print size vertically as well, it is possible to get a disassembly of
all the ROMs in the Apple onto only 16 pages! (It's also possible to
go blind trying to read it!)

Note that rather than creating all the text in memory, and then
dumping an entire page at once, PolyCol calculates which opcode to
disassemble where, 'on-the-fly'. You might think that this would slow
things down appreciably; but in fact unless you require tens of
columns, the listing is done relatively quickly.

As you will see from the listing, seven zero-page locations are used
to hold the parameters which the user must specify. You must store
the starting and ending addresses of the area to be dis-assembled into
locations $00-03. Locations $04-07 control the number of lines per
page and columns per line, as well as several other features. Here
are some examples to show what you can do with different parameter
settings:

 $04 $05 $06
 --- --- ---

 $01 $14 $FE - Standard monitor 'L' listing.
 Press any key to see the next page.

 $02 $36 $FF - Two column, 54 line page with a form feed
 in between pages

 $04 $4C $0C - Four column, 76 line page with 12 spaces
 between pages. Don't forget to set
 elite typeface and compressed print.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2194 of 2550

Apple II Computer Info

 $04 $70 $FF - Four column, 112 lines per page!
 To do this I had to use compressed
 elite super- script, with a line
 spacing of 1/12th in.

You can add just a little code to POLYCOL to set it up as a control-Y
command. Then you could set the starting and ending addresses as in
normal monitor commands. The other four parameters could also be
specified in the control-Y command format, if you really get serious
about modifications.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2195 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Puzzle.txt
==

Paint Yourself into the Corner....................Adam Levin

I think I have come up with an interesting puzzle. Pretend that your
Apple has only 48K of RAM: no ROM, no soft switches, no memory cards,
just 48152 bytes of contiguous RAM from $0000 through $BFFF. Now,
write a program which will store one number (of your choosing) into
each and every one of these 49152 locations. The stumper here is
creating a program which can overwrite itself completely, and which
will not go running off through the I/O area causing disks to spin,
etc.

There are certain limitations to actually implementing this on an
Apple. When you hit <RESET> to examine the contents of memory after
running your program, memory will be changed before you can look at
it. It is unavoidable that page zero, the stack, and text screen
memory will all get disrupted as soon as <RESET> is pressed. You
still need to include these areas in your program, but you just will
not be able to check them.

You will have to figure out some way of stopping the program before it
runs off into the $Cxxx space. I decided to accept this limitation by
allowing three bytes at $BFFD-F to contain a JMP instruction, not
stuffing my favorite number in them. So my solution actually only
stuffs my number into $0000-$BFFC.

Bob Sander-Cederlof has a solution that stuffs the same number in
every byte from $0000 through $BFFF, but depends on two locations in
the I/O area to stop the program from rampaging around $Cxxx space.

Try your hand at this puzzle! Next month we'll show some of the best
solutions.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2196 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:QD20.CoverSheet.txt
==

QUARTERLY DISK #20 contains all the source code from Volume 5, Issues
10-12 of the Apple Assembly Line newsletter. The files are formatted
for the S-C Macro Assembler, on a combination DOS 3.3 and ProDOS disk.

DOS Files

S.BINDEC -- A program to do binary/decimal/binary conversions. This
one is designed to be especially easy to modify for the precision you
need.

S.BYTE TABLE -- This routine returns the number of bytes used by each
opcode (including 65816), along with flags to indicate if it's
immediate or absolute. Here's a piece of a possible future relocator.

S.WILDCARD -- A filename search routine, with wildcards, useful in any
kind of DOS utility.

S.65802.CONVERSIONS -- Extremely short binary-to-decimal conversion
using the 65802.

S.INIT DOS & PRODOS -- Program to initialize a data disk with
partitions for both DOS 3.3 and ProDOS. This is the program used to
produce this disk.

S.SUPER-FAST PRIMES 65802, S.SUPER-FAST PRIMES 65802+, PRINT PRIME
TABLE -- The Sieve of Eratosthenes prime-number generator, coded for
the 65802.

ProDOS Files

S.RECURCAT -- A program to list all files in all subdirectories of a
ProDOS disk. Also an interesting example of recursive techniques.

S.DOS.LOAD -- This program LOADs DOS 3.3 source files into the ProDOS
version of the S-C Macro Assembler.

BUF.576K, BUF.320K, BUF.64K -- Use your extra Apple //c with Z-RAM for
a serial printer buffer!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2197 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Snooper.txt
==

ProDOS Snooper.............................Bob Sander-Cederlof

This past week I have been working on a project which involved
creating a new device driver for a disk-like device. In the process
of debugging my driver, I had to write a "snooper" program.

By "snooper", I meean a program which will make a list of all calls to
the driver, recording the origin of the call and the parameters of the
call.

ProDOS keeps a table of the addresses of the device drivers assigned
to each slot and drive between $BF10 and $BF2F. There are two bytes
for each slot and drive. $BF10-1F is for drive 1, and $BF20-2F is for
drive 2. For example, the address of the device driver for slot 6
drive 1 is at $BF1C,1D. (Normally this address is $D000.)

I have a Sider drive in slot 7. The device driver address for the
Sider is $C753, and is kept at $BF1E,1F and $BF2E,2F.

By patching the device driver address to point to my own code, I can
get control whenever ProDOS tries to read or write or whatever. If I
save and restore all the registers, and jump to the REAL device driver
after I am finished, ProDOS will never be the wiser. But I will!

While my program has control, I can capture all the information I am
interested in. Unfortunately I cannot print it out at this time,
because if I try to ProDOS will get stuck in a loop. Instead I will
save the data in a buffer so I can look at it later.

The program which follows has three distinct parts. Lines 1140-1290
are an installation and removal tool. If the program has just been
BLOADed or LOADed and ASMed, running INSTALL.SNOOPER will (you guessed
it!) install the snooper. The actual device driver address for the
slot (which you specified in line 1060 before assembling the program)
will be saved in my two-byte variable DRIVER. The previous contents
of DRIVER, which is the address of my snoop routine, will be copied
into ProDOS's table. The value of DRIVES, which you specified before
assembling the program at line 1070, will determine whether SNOOPER is
connected to drive 2 or not. It will always be connected to drive 1.

If SNOOPER has already been installed, running INSTALL.SNOOPER will
reverse the installation process, returning ProDOS to its original
state. INSTALL.SNOOPER also resets the buffer I use to keep the
captured information. To make it easy to run INSTALL.SNOOPER, I put a
JMP to it at $300. After assembly you can type "$300G" to install the
snooper, and type the same again to dis-install it.

The JMP at $303 (line 1120) goes to the display program. After
SNOOPER has been installed, all disk accesses on the installed slot

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2198 of 2550

Apple II Computer Info

will cause information to be accumulated in BUFFER. Typing "$303G"
will cause the contents of BUFFER to be displayed in an easy-to-read
format.

I set up SNOOPER to capture eight bytes of information each time it is
activated. You might decide to save more or less. I save the return
address from the stack, to get some idea of which routine inside
ProDOS is trying to access the disk. I also save the six bytes at
$42-47, which are the calling parameters for the device driver. Page
6-8 of Beneath Apple ProDOS describes these parameters; you can also
find out about them in Apple's ProDOS Technical Reference Manual and
in Gary Little's "Apple ProDOS--Advanced Features".

$42 contains the command code: 00=status, 01=read, 02=write, and
03=format. $43 contains the unit number, in the format DSSS0000
(where SSS=slot and D=0 for drive 1, D=1 for drive 2). $44-45 contain
the address of the memory buffer, lo-byte first; the buffer is 512
bytes long. $46-47 contain the block number to be read or written.

My DISPLAY program displays each group of eight bytes on a separate
line, in the following format:

 hhll:cc.uu.buff.blok

where hhll is the return address from the stack, hi-byte first; cc is
the command code; uu is the unit number; buff is the buffer address,
hi-byte first; blok is the block number, hi-byte first.

If you get into figuring out more of what ProDOS is doing, you might
want to save more information from the stack. You can look behind the
immediate return address to get more return addresses and other data
which have been saved on the stack before calling the device driver.

a word of explanation about lines 1040, 1360, 1370, 1490, and 1500.
Line 1040 tells the S-C Macro Assembler that it is OK to assemble
opcodes legal in the 65C02. The PHX, PHY, PLX and PLY opcodes are in
the 65C02, 65802, and 65816; however, they are not in the 6502. If
you have only the 6502 in your Apple, you will need to substitute the
longer code shown in the comments. Leave out line 1040, and use the
following:

 1360 TYA
 1365 PHA
 1370 TXA
 1375 PHA
 .
 .
 .
 1490 PLA
 1495 TAX
 1500 PLA
 1505 TAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2199 of 2550

Apple II Computer Info

In the process of "snooping" I was able to debug my new device drivers
for the project I was developing. I also discovered what appear to be
some gross in-efficiencies in ProDOS. In the course of even simple
CATALOGs, LOADs, and SAVEs the same blocks are read into the same
buffers over and over, at times when it would appear to be totally
unnecessary. If there was some mechanism inside MLI to keep track of
the fact that a complete un-spoiled copy of a particular block was
already in RAM, it could save a lot of time. On the other hand, it
could be that the current approach is safer. I think it is a
potentially fruitful area for further investigation. Any takers?

DOS 3.3 RWTS Snooper.......................Bob Sander-Cederlof

Of course if I want to look around in ProDOS the same curiosity
certainly applies to DOS 3.3. The fact of the matter is, I started
snooping in DOS first; nevertheless, the ProDOS article took
precedence in these pages.

There are several nice places to patch a snooper into DOS 3.3. One is
right at the beginning of RWTS, $BD00. This position is usually taken
by hard disks, however. For example, Sider and Corvus use $BD00. I
could skip down below $BD00, but Sider for one expects several bytes
after $BD00 to be normal DOS code. Looking backward, $BD00 is
normally called only from a subroutine which starts at $B7B5. This
subroutine, in turn, is normally only called from $B090. Your own
programs may call RWTS differently, but DOS itslef almost always goes
through $B090. (The exceptions are the reading and writing of the DOS
image during boot or INITialization.)

Therefore...I patched my SNOOPER program in at $B090. The
INSTALL.SNOOPER code in lines 1060-1160 is very similar to that in the
ProDOS snooper. It swaps the address currently in my variable DRIVER
with the address at $B091,2. Typing "$800G" will install SNOOPER, and
typing it again will dis-install SNOOPER.

The DOS snooper prints out each line of information as it goes along,
without storing the data. Each line contains the two most recent
return address from the stack, so you can trace who is calling RWTS.
I also print out the RWTS command, the track and sector, and the
buffer address.

Here is an example of the printout, in this case during a SAVE
operation:

:LOAD S.RWTS.SNOOPER
:ASM Assembler SNOOPER

0000 ERRORS IN ASSEMBLY
:$800G install SNOOPER
:SAVE S.RWTS.SNOOPER sample DOS command
AB24.AD45.01.11.00.B3BB read VTOC
AB45.B1E6.01.11.0F.B4BB read Catalog sector
A6AA.AB24.01.1F.0F.9700 T/S list
C3E9.ACDD.01.1F.0E.9600 read 1st data sector

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2200 of 2550

Apple II Computer Info

ACDD.B0C8.02.1F.0E.9600 write 1st data sector
D349.ACDD.01.1F.0D.9600 read 2nd data sector
ACDD.B0C8.02.1F.0D.9600 write 2nd data sector
D328.ACDD.01.1F.0C.9600 read 3rd data sector
ACDD.B0C8.02.1F.0C.9600 write 3rd data sector
D352.ACDD.01.1F.0B.9600 read 4th data sector
ACDD.B0C8.02.1F.0B.9600 write 4th data sector
A2F8.A6AA.01.11.00.B3BB read VTOC
A6AA.AC1E.01.11.0F.B4BB read catalog sector
A2F8.A6AA.02.11.0F.B4BB write catalog sector
AD1A.AB45.01.11.00.B3BB read VTOC
AB45.B1E6.01.11.0F.B4BB read catalog sector
A6AA.AD1A.01.1F.0F.9700 read T/S list
A6AA.AD1D.01.1F.0E.9600 read 4 data sectors
A6AA.AD1D.01.1F.0D.9600 to VERIFY the file
A6AA.AD1D.01.1F.0C.9600
A6AA.AD1D.01.1F.0B.9600
:$800G dis-install SNOOPER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2201 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:Articles:Snoopers.txt
==

ProDOS Snooper.............................Bob Sander-Cederlof

This past week I have been working on a project which involved
creating a new device driver for a disk-like device. In the process
of debugging my driver, I had to write a "snooper" program.

By "snooper", I mean a program which will make a list of all calls to
the driver, recording the origin of the call and the parameters of the
call.

ProDOS keeps a table of the addresses of the device drivers assigned
to each slot and drive between $BF10 and $BF2F. There are two bytes
for each slot and drive. $BF10-1F is for drive 1, and $BF20-2F is for
drive 2. For example, the address of the device driver for slot 6
drive 1 is at $BF1C,1D. (Normally this address is $D000.)

I have a Sider drive in slot 7. The device driver address for the
Sider is $C753, and is kept at $BF1E,1F and $BF2E,2F.

By patching the device driver address to point to my own code, I can
get control whenever ProDOS tries to read or write or whatever. If I
save and restore all the registers, and jump to the REAL device driver
after I am finished, ProDOS will never be the wiser. But I will!

While my program has control, I can capture all the information I am
interested in. Unfortunately I cannot print it out at this time,
because if I try to ProDOS will get stuck in a loop. Instead I will
save the data in a buffer so I can look at it later.

The program which follows has three distinct parts. Lines 1140-1290
are an installation and removal tool. If the program has just been
BLOADed or LOADed and ASMed, running INSTALL.SNOOPER will (you guessed
it!) install the snooper. The actual device driver address for the
slot (which you specified in line 1060 before assembling the program)
will be saved in my two-byte variable DRIVER. The previous contents
of DRIVER, which is the address of my snoop routine, will be copied
into ProDOS's table. The value of DRIVES, which you specified before
assembling the program at line 1070, will determine whether SNOOPER is
connected to drive 2 or not. It will always be connected to drive 1.

If SNOOPER has already been installed, running INSTALL.SNOOPER will
reverse the installation process, returning ProDOS to its original
state. INSTALL.SNOOPER also resets the buffer I use to keep the
captured information. To make it easy to run INSTALL.SNOOPER, I put a
JMP to it at $300. After assembly you can type "$300G" to install the
snooper, and type the same again to dis-install it.

The JMP at $303 (line 1120) goes to the display program. After
SNOOPER has been installed, all disk accesses on the installed slot

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2202 of 2550

Apple II Computer Info

will cause information to be accumulated in BUFFER. Typing "$303G"
will cause the contents of BUFFER to be displayed in an easy-to-read
format.

I set up SNOOPER to capture eight bytes of information each time it is
activated. You might decide to save more or less. I save the return
address from the stack, to get some idea of which routine inside
ProDOS is trying to access the disk. I also save the six bytes at
$42-47, which are the calling parameters for the device driver. Page
6-8 of Beneath Apple ProDOS describes these parameters; you can also
find out about them in Apple's ProDOS Technical Reference Manual and
in Gary Little's "Apple ProDOS--Advanced Features".

$42 contains the command code: 00=status, 01=read, 02=write, and
03=format. $43 contains the unit number, in the format DSSS0000
(where SSS=slot and D=0 for drive 1, D=1 for drive 2). $44-45 contain
the address of the memory buffer, lo-byte first; the buffer is 512
bytes long. $46-47 contain the block number to be read or written.

My DISPLAY program displays each group of eight bytes on a separate
line, in the following format:

 hhll:cc.uu.buff.blok

where hhll is the return address from the stack, hi-byte first; cc is
the command code; uu is the unit number; buff is the buffer address,
hi-byte first; blok is the block number, hi-byte first.

If you get into figuring out more of what ProDOS is doing, you might
want to save more information from the stack. You can look behind the
immediate return address to get more return addresses and other data
which have been saved on the stack before calling the device driver.

A word of explanation about lines 1040, 1360, 1370, 1490, and 1500.
Line 1040 tells the S-C Macro Assembler that it is OK to assemble
opcodes legal in the 65C02. The PHX, PHY, PLX and PLY opcodes are in
the 65C02, 65802, and 65816; however, they are not in the 6502. If
you have only the 6502 in your Apple, you will need to substitute the
longer code shown in the comments. Leave out line 1040, and use the
following:

 1360 TYA
 1365 PHA
 1370 TXA
 1375 PHA
 .
 .
 .
 1490 PLA
 1495 TAX
 1500 PLA
 1505 TAY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2203 of 2550

Apple II Computer Info

In the process of "snooping" I was able to debug my new device drivers
for the project I was developing. I also discovered what appear to be
some gross in-efficiencies in ProDOS. In the course of even simple
CATALOGs, LOADs, and SAVEs the same blocks are read into the same
buffers over and over, at times when it would appear to be totally
unnecessary. If there was some mechanism inside MLI to keep track of
the fact that a complete un-spoiled copy of a particular block was
already in RAM, it could save a lot of time. On the other hand, it
could be that the current approach is safer. I think it is a
potentially fruitful area for further investigation. Any takers?

DOS 3.3 RWTS Snooper.......................Bob Sander-Cederlof

Of course if I want to look around in ProDOS the same curiosity
certainly applies to DOS 3.3. The fact of the matter is, I started
snooping in DOS first; nevertheless, the ProDOS article took
precedence in these pages.

There are several nice places to patch a snooper into DOS 3.3. One is
right at the beginning of RWTS, $BD00. This position is usually taken
by hard disks, however. For example, Sider and Corvus use $BD00. I
could skip down below $BD00, but Sider for one expects several bytes
after $BD00 to be normal DOS code. Looking backward, $BD00 is
normally called only from a subroutine which starts at $B7B5. This
subroutine, in turn, is normally only called from $B090. Your own
programs may call RWTS differently, but DOS itself almost always goes
through $B090. (The exceptions are the reading and writing of the DOS
image during boot or INITialization.)

Therefore...I patched my SNOOPER program in at $B090. The
INSTALL.SNOOPER code in lines 1060-1160 is very similar to that in the
ProDOS snooper. It swaps the address currently in my variable DRIVER
with the address at $B091,2. Typing "$800G" will install SNOOPER, and
typing it again will dis-install SNOOPER.

The DOS snooper prints out each line of information as it goes along,
without storing the data. Each line contains the two most recent
return address from the stack, so you can trace who is calling RWTS.
I also print out the RWTS command, the track and sector, and the
buffer address.

Here is an example of the printout, in this case during a SAVE
operation:

:LOAD S.RWTS.SNOOPER
:ASM Assembler SNOOPER

0000 ERRORS IN ASSEMBLY
:$800G install SNOOPER
:SAVE S.RWTS.SNOOPER sample DOS command
AB24.AD45.01.11.00.B3BB read VTOC
AB45.B1E6.01.11.0F.B4BB read Catalog sector
A6AA.AB24.01.1F.0F.9700 T/S list
C3E9.ACDD.01.1F.0E.9600 read 1st data sector

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2204 of 2550

Apple II Computer Info

ACDD.B0C8.02.1F.0E.9600 write 1st data sector
D349.ACDD.01.1F.0D.9600 read 2nd data sector
ACDD.B0C8.02.1F.0D.9600 write 2nd data sector
D328.ACDD.01.1F.0C.9600 read 3rd data sector
ACDD.B0C8.02.1F.0C.9600 write 3rd data sector
D352.ACDD.01.1F.0B.9600 read 4th data sector
ACDD.B0C8.02.1F.0B.9600 write 4th data sector
A2F8.A6AA.01.11.00.B3BB read VTOC
A6AA.AC1E.01.11.0F.B4BB read catalog sector
A2F8.A6AA.02.11.0F.B4BB write catalog sector
AD1A.AB45.01.11.00.B3BB read VTOC
AB45.B1E6.01.11.0F.B4BB read catalog sector
A6AA.AD1A.01.1F.0F.9700 read T/S list
A6AA.AD1D.01.1F.0E.9600 read 4 data sectors
A6AA.AD1D.01.1F.0D.9600 to VERIFY the file
A6AA.AD1D.01.1F.0C.9600
A6AA.AD1D.01.1F.0B.9600
:$800G dis-install SNOOPER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2205 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:DOS3.3:S.POLYCOL.txt
==

 1000 *SAVE S.POLYCOL
 1010 *--------------------------------
 1020 * PolyCol
 1030 * Produces multi-column Apple monitor dis-assemblies.
 1040 * Copyright (c) 1986 Adam Levin
 1050 *--------------------------------
 1060 .OR $800
 1070 *---User parameters--------------
 1080 STRTL .EQ $00 Starting address
 1090 STRTH .EQ $01
 1100 ENDL .EQ $02 Ending address
 1110 ENDH .EQ $03
 1120 NCPP .EQ $04 # Columns per page
 1130 * (0 <= NCPP <= FF)
 1140 * (each column takes 34 chars.)
 1150 NLPP .EQ $05 # Lines printed per page
 1160 * (0 <= NLPP <= FF)
 1170 NSKP .EQ $06 # Blank lines between pages
 1180 * (0 <= NSKP <= FF)
 1190 * (FF = Form feed)
 1200 * (FE = pause between pages)
 1210 SLOT .EQ $07 Slot # to direct output to
 1220 * (0 <= SLOT <= 7)
 1230 * (0 = use currently active device)
 1240 *---Program variables------------
 1250 BRUNFX .EQ $08 Holds the DOS stack pointer
 1260 TOFARL .EQ $09 Adrs of 1st opcode in col 2;
 1270 TOFARH .EQ $0A 1st column ends just before it.
 1280 TCSWL .EQ $0B Holds the 'other' CSWL address
 1290 TCSWH .EQ $0C
 1300 COLCNT .EQ $0D Current column
 1310 TEMPL .EQ $0E Temporary storage
 1320 TEMPH .EQ $0F " "
 1330 *---Monitor variables-------------
 1340 FORMAT .EQ $2E Holds addressing mode code
 1350 CSWL .EQ $36 Character Output SWitch Low address
 1360 CSWH .EQ $37 " " " High "
 1370 PCL .EQ $3A Adrs of opcode currently being
 1380 PCH .EQ $3B dis-assembled.
 1390 STKPTR .EQ $AA59 DOS 3.3 stack pointer save loc't'n
 1400 KBD .EQ $C000 Keyboard
 1410 STROBE .EQ $C010 Clear keyboard strobe
 1420 *---Monitor ROM Subroutines------
 1430 INSDS2 .EQ $F88C Formats each disassembly line
 1440 INSTDSPA .EQ $F8D3 Print opcode & operand
 1450 PRBL2 .EQ $F94A Prints (X-reg) many blank spaces
 1460 PCADJ .EQ $F953 Adjusts A,Y (PCL,H) after each line
 1470 RDKEY .EQ $FD0C Get an input character
 1480 CROUT .EQ $FD8E Print a <RETURN>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2206 of 2550

Apple II Computer Info

 1490 PRYX2A .EQ $FD99 Print 'adrs-'
 1500 COUT .EQ $FDED Print Acc as a character
 1510 *---Macro definitions------------
 1520 .MA CMPD Double byte CMP
 1530 LDA]1 From the S-C
 1540 CMP]2 MACRO LIBRARY file.
 1550 LDA]1+1
 1560 SBC]2+1
 1570 .EM
 1580 *
 1590 .MA MOVD Double byte MOV
 1600 LDA]1
 1610 STA]2
 1620 LDA]1+1
 1630 LDA]2+1
 1640 .EM
 1650 *
 1660 .MA MSG MESSAGE PRINT MACRO
 1670 LDX #]1
 1680 JSR PRINT.MESSAGE
 1690 .EM
 1700 *---------------------------------
 1710 POLYCOL
 1720 LDA STKPTR Save stack pointer now,
 1730 STA BRUNFX restore it at the end.
 1740 LDA SLOT Send the output to another device?
 1750 BEQ .1 No.
 1760 ORA #$C0 Use $Cn00 (n=SLOT) so we can simulate a
 1770 LDX #0 PR#n when we swap CSWL,H & TCSWL,H.
 1780 BEQ .2 This creates a problem if SLOT <> 0 &
 1790 .1 LDA CSWH SLOT contains an 80-col card since PR#
 1800 LDX CSWL can activate card, but not de-activate.
 1810 .2 STA TCSWH No harm done, but it can be confusing.
 1820 STX TCSWL
 1830 JMP PAUSE2 Start out by waiting for a keypress.
 1840 *--------------------------------
 1850 STRT LDA NLPP 'CALC' NLPP lines from STRTL,H.
 1860 STA TEMPL Adrs of the opcode just after the last
 1870 LDA #0 one in column one. Store in TOFARL,H
 1880 STA TEMPH to keep STRTL,H from going beyond it.
 1890 JSR CALC
 1900 >MOVD PCL,TOFARL
 1910 COLM1 LDA #1 Always start in column one.
 1920 STA COLCNT Set COLCNT to 1
 1930 >CMPD ENDL,STRTL Have we finished?
 1940 BCS NOESC No, ENDL,H >= STRTL,H
 1950 JSR CROUT Yes, purge last printed line.
 1960 ESC JSR SWAP <ESC> brings you here, too.
 1970 >MSG M.BYE Print end message.
 1980 LDA BRUNFX Restore the stack pointer
 1990 STA STKPTR
 2000 RTS All done.
 2010 NOESC >CMPD STRTL,TOFARL About to pass col 2?
 2020 BCC NULINE No, so continue

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2207 of 2550

Apple II Computer Info

 2030 LDX NCPP Yes, so find the new first
 2040 JSR MULT line for the new first column.
 2050 JSR CALC
 2060 >MOVD PCL,STRTL
 2070 NUPAGE LDX NSKP Page breaks
 2080 CPX #$FE
 2090 BEQ PAUSE Pause
 2100 BCS FRMFD Form feed
 2110 CPX #0
 2120 .1 BEQ STRT No break - solid listing
 2130 JSR CROUT Yes, print NSKP lines
 2140 DEX
 2150 JMP .1
 2160 *--------------------------------
 2170 FRMFD LDA #$8C
 2180 JSR COUT
 2190 JMP STRT
 2200 *--------------------------------
 2210 PAUSE JSR CROUT Print a <RETURN>
 2220 JSR SWAP Swap TCSWL,H & CSWL
 2230 PAUSE2 >MSG M.PAUSE Print PAUSE msg
 2240 JSR RDKEY
 2250 JSR SWAP Swap back
 2260 JMP STRT Do it all again
 2270 *--------------------------------
 2280 NULINE JSR CROUT Print a <RETURN>
 2290 LDA KBD A key might have been pressed
 2300 EOR #$9B It might have been <ESC>
 2310 BNE OFFSET It wasn't; continue
 2320 BIT STROBE It was! ESCape!
 2330 JMP ESC
 2340 OFFSET LDX COLCNT Compute which opcode to
 2350 JSR MULT Disassemble next.
 2360 JSR CALC
 2370 >CMPD ENDL,PCL Is adrs be beyond ENDL,H?
 2380 BCC NEXTOP Yes, don't bother with it
 2390 LDX PCL No, so disassemble it
 2400 LDY PCH
 2410 JSR PRYX2A Print the opcode address
 2420 LDX #1
 2430 JSR PRBL2 Print 1 blank. Monitor puts three
 2440 * here, but if each column is no more
 2450 * than 34 chars long, can fit 4 columns
 2460 * onto a printer with 132 chars/line.
 2470 JSR INSDS2 Format it
 2480 JSR INSTDSPA Print it
 2490 LDA COLCNT If last column, don't pad.
 2500 CMP NCPP
 2510 BEQ NXTCOL It is, get out
 2520 LDX #0 Isn't, so pad with blanks so that each
 2530 * column takes exactly 34 characters.
 2540 JSR INSDS2 Calculate the format code
 2550 LDX #10 ASSUME 10 SPACES
 2560 LDA FORMAT Get it

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2208 of 2550

Apple II Computer Info

 2570 BEQ SPACE 1 byte code requires 10 spaces
 2580 LDX #7 ASSUME 7 SPACES
 2590 CMP #$81 Z-page
 2600 BEQ SPACE
 2610 DEX ASSUME 6 SPACES
 2620 CMP #$21 Immediate
 2630 BEQ SPACE
 2640 DEX ASSUME 5 SPACES
 2650 CMP #$82 Absolute
 2660 BEQ SPACE 5 SPACES
 2670 CMP #$85 Zpage,Y
 2680 BEQ SPACE 5 SPACES
 2690 CMP #$91 Zpage,X
 2700 BEQ SPACE 5 SPACES
 2710 CMP #$9D Relative
 2720 BEQ SPACE 5 SPACES
 2730 LDX #3 All others
 2740 SPACE JSR PRBL2 Print (X-reg) many blanks
 2750 NXTCOL INC COLCNT Go to next column
 2760 LDA NCPP
 2770 CMP COLCNT Have we gone too far?
 2780 BCS OFFSET No, do OFFSET
 2790 NEXTOP LDA #1 Jump over the line
 2800 STA TEMPL just done.
 2810 LDA #0
 2820 STA TEMPH
 2830 JSR CALC
 2840 >MOVD PCL,STRTL Store it in STRTL,H
 2850 JMP COLM1 And do it all again
 2860 *---------------------------------
 2870 * CALC returns the opcode adrs that is TEMPL,H
 2880 * disassembled (!) lines from STRTL,H
 2890 * It returns this address in PCL,H
 2900 CALC >MOVD STRTL,PCL Put STRTL,H into PCL,H for INSDS1
 2910 .1 LDA TEMPL If TEMPL,H = 0 then done
 2920 ORA TEMPH
 2930 BEQ .3
 2940 LDX #0
 2950 JSR INSDS2 Get end of the next opcode & operand
 2960 JSR PCADJ Get the new address from PCADJ
 2970 STA PCL Store the resulting address in PCL,H
 2980 STY PCH
 2990 LDA TEMPL DEC TEMPL,H - with help
 3000 BNE .2 from the MACRO LIBRARY again!
 3010 DEC TEMPH
 3020 .2 DEC TEMPL
 3030 CLV Exit from top of loop, not here
 3040 BVC .1 Always taken
 3050 .3 RTS
 3060 *--------------------------------
 3070 * MULT returns (NLPP * n-1). N is usually
 3080 * COLCNT, and as such is usually a small
 3090 * number (almost always smaller than NLPP).
 3100 * So MULT simply adds NLPP to itself n times.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2209 of 2550

Apple II Computer Info

 3110 * Returns with result in TEMPL,H
 3120 MULT LDA #0 Zero TEMPL,H
 3130 STA TEMPL
 3140 STA TEMPH
 3150 .1 CLC
 3160 .2 DEX Exit loop from top, so call with n+1
 3170 BEQ .3 Anything times 0 equals 0
 3180 LDA TEMPL Add NLPP to TEMPL,H
 3190 ADC NLPP
 3200 STA TEMPL
 3210 BCC .1 ...NO CARRY, KEEP ADDING
 3220 INC TEMPH ...CARRY
 3230 BCS .1 ...ALWAYS
 3240 .3 RTS
 3250 *--------------------------------
 3260 SWAP LDA CSWL Swap output device adrses. They are
 3270 LDX TCSWL the same if SLOT = 0, but swap anyway.
 3280 STX CSWL
 3290 STA TCSWL
 3300 LDA CSWH
 3310 LDX TCSWH
 3320 STX CSWH
 3330 STA TCSWH
 3340 RTS
 3350 *--------------------------------
 3360 PM.1 JSR COUT
 3370 INX
 3380 PRINT.MESSAGE
 3390 LDA MSGS,X
 3400 BMI PM.1
 3410 RTS
 3420 *--------------------------------
 3430 MSGS
 3440 M.PAUSE .EQ *-MSGS
 3450 .AT -'PRESS A KEY '
 3460 M.BYE .EQ *-MSGS
 3470 .AT -'*** END OF LISTING '
 3480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2210 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:DOS3.3:S.RWTS.SNOOPER.txt
==

 1000 *SAVE S.RWTS.SNOOPER
 1010 *--------------------------------
 1020 PRBYTE .EQ $FDDA
 1030 CROUT .EQ $FD8E
 1040 COUT .EQ $FDED
 1050 *--------------------------------
 1060 INSTALL.SNOOPER
 1070 LDX #1
 1080 .1 LDA DRIVER,X
 1090 PHA
 1100 LDA $B091,X
 1110 STA DRIVER,X
 1120 PLA
 1130 STA $B091,X
 1140 DEX
 1150 BPL .1
 1160 RTS
 1170 *--------------------------------
 1180 DRIVER .DA SNOOPER MODIFIED DURING OPERATION
 1190 *--------------------------------
 1200 SNOOPER
 1210 LDA $778
 1220 STA SAVE778
 1230 LDA $7F8
 1240 STA SAVE7F8
 1250 *--------------------------------
 1260 TSX
 1270 JSR CROUT
 1280 JSR PRADDR PRINT RETURN ADDR FROM STACK
 1290 JSR PRADDR AND ANOTHER ONE
 1300 *--------------------------------
 1310 LDA $B7F4 COMMAND
 1320 JSR BYTE
 1330 LDA $B7EC TRACK
 1340 JSR BYTE
 1350 LDA $B7ED SECTOR
 1360 JSR BYTE
 1370 LDA $B7F1 BUFFER ADDRESS
 1380 JSR PRBYTE
 1390 LDA $B7F0
 1400 JSR PRBYTE
 1410 *--------------------------------
 1420 LDA SAVE778
 1430 STA $778
 1440 LDA SAVE7F8
 1450 STA $7F8
 1460 LDA $AAC2
 1470 LDY $AAC1
 1480 JMP (DRIVER)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2211 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 PRADDR
 1510 LDA $108,X
 1520 JSR PRBYTE
 1530 LDA $107,X
 1540 DEX SET UP FOR NEXT ADDRESS
 1550 DEX
 1560 BYTE JSR PRBYTE
 1570 LDA #"."
 1580 JMP COUT
 1590 *--------------------------------
 1600 SAVEX .BS 1
 1610 SAVEY .BS 1
 1620 SAVE778 .BS 1
 1630 SAVE7F8 .BS 1
 1640 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2212 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8510:ProDOS:PRODOS.SNOOPER.txt
==

 1010 *SAVE PRODOS.SNOOPER
 1020 *--------------------------------
 1030 .OR $300
 1040 .OP 65C02 (If you have one)
 1050 *--------------------------------
 1060 SLOT .EQ 6
 1070 DRIVES .EQ 2
 1080 *--------------------------------
 1090 BUFFER .EQ $800
 1100 *--------------------------------
 1110 A300 JMP INSTALL.SNOOPER
 1120 A303 JMP DISPLAY
 1130 *--------------------------------
 1140 INSTALL.SNOOPER
 1150 LDX #1
 1160 .1 LDA 2*SLOT+$BF10,X
 1170 PHA SAVE CURRENT DRIVER ADDRESS
 1180 LDA DRIVER,X INSTALL NEW DRIVER ADDRESS
 1190 STA 2*SLOT+$BF10,X
 1200 .DO DRIVES=2
 1210 STA 2*SLOT+$BF20,X
 1220 .FIN
 1230 PLA REMEMBER OLD DRIVER
 1240 STA DRIVER,X
 1250 LDA BUFFER.ADDR,X
 1260 STA A+1,X
 1270 DEX
 1280 BPL .1 NOW THE OTHER BYTE
 1290 RTS
 1300 *--------------------------------
 1310 DRIVER .DA SNOOPER
 1320 BUFFER.ADDR .DA BUFFER
 1330 *--------------------------------
 1340 SNOOPER
 1350 PHA
 1360 PHY (If no 65C02 use TYA, PHA)
 1370 PHX (If no 65C02 use TXA, PHA)
 1380 TSX
 1390 LDA $104,X LO-BYTE OF RETURN ADDR
 1400 JSR STORE.BYTE
 1410 LDA $105,X HI-BYTE OF RETURN ADDR
 1420 JSR STORE.BYTE
 1430 LDX #0 $42...47
 1440 .1 LDA $42,X WHICH ARE THE PARAMETERS
 1450 JSR STORE.BYTE FOR THE CALL
 1460 INX
 1470 CPX #6
 1480 BCC .1
 1490 PLX (If no 65C02 use PLA, TAX)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2213 of 2550

Apple II Computer Info

 1500 PLY (If no 65C02 use PLA, TAY)
 1510 PLA
 1520 JMP (DRIVER) CONTINUE IN DRIVER
 1530 *--------------------------------
 1540 STORE.BYTE
 1550 A STA BUFFER THIS ADDRESS IS MODIFIED
 1560 INC A+1 BUMP PNTR TO NEXT ADDRESS
 1570 BNE .1
 1580 INC A+2
 1590 .1 RTS
 1600 *--------------------------------
 1610 COUT .EQ $FDED
 1620 CROUT .EQ $FD8E
 1630 PRBYTE .EQ $FDDA
 1640 PNTR .EQ $00,01
 1650 *--------------------------------
 1660 DISPLAY
 1670 LDA #BUFFER SET UP PNTR INTO BUFFER
 1680 STA PNTR
 1690 LDA /BUFFER
 1700 STA PNTR+1
 1710 *---CHECK IF FINISHED------------
 1720 .1 LDA PNTR
 1730 CMP A+1
 1740 LDA PNTR+1
 1750 SBC A+2
 1760 BCC .2
 1770 RTS
 1780 *---DISPLAY NEXT 8 BYTES---------
 1790 .2 LDY #1
 1800 JSR WORD DISPLAY RETURN ADDRESS
 1810 LDA #":" "XXXX:"
 1820 JSR COUT
 1830 JSR BYTE DISPLAY ($42)=OPCODE
 1840 JSR BYTE DISPLAY ($43)=UNIT NUMBER
 1850 INY
 1860 JSR WORD DISPLAY ($44,45)=BUFFER ADDR
 1870 JSR DOT
 1880 JSR WORD DISPLAY ($46,47)=BLOCK NUMBER
 1890 JSR CROUT CARRIAGE RETURN
 1900 LDA PNTR ADVANCE PNTR TO NEXT
 1910 CLC GROUP OF 8 BYTES
 1920 ADC #8
 1930 STA PNTR
 1940 BCC .1
 1950 INC PNTR+1
 1960 BNE .1 ...ALWAYS
 1970 *--------------------------------
 1980 WORD LDA (PNTR),Y DISPLAY HI-BYTE
 1990 JSR PRBYTE
 2000 DEY DISPLAY LO-BYTE
 2010 LDA (PNTR),Y
 2020 INY
 2030 INY ADVANCE INDEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2214 of 2550

Apple II Computer Info

 2040 JMP PRBYTE
 2060 *--------------------------------
 2070 BYTE LDA (PNTR),Y DISPLAY BYTE
 2080 JSR PRBYTE
 2090 DOT LDA #"." PRINT "."
 2100 INY ADVANCE INDEX
 2110 JMP COUT
 2120 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2215 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:Front.Page.txt
==

$1.80

Volume 6 -- Issue 2 November, 1985

In This Issue...

Little DOS RAM Disk in Language Card 2
Kablit Security System 11
Easier QUIT from ProDOS. 11
Solutions to Adam Levin's Painting Puzzle. 12
Using the Object Vector in S-C Macro Assembler 18
Note on Mainstay MacASM for Macintosh. 19
Commented Listing of ProDOS QUIT Code. 20
Two Ways to Merge Fields in a Byte 28
Comments on O'Ryan's 65C02 mod for Apple II. 32

Programming the 65816

Last month we expected to have ready for this issue a review of David
Eyes' new book on programming the 65816 microprocessor. Well the
books still haven't arrived, despite the passing of two promised
shipping dates, so we're still waiting to see when they will really be
available and what they come out like. We are accepting orders (about
20 so far!) and will send out the books and publish a review as soon
as they arrive from Prentice-Hall.

quikLoading AppleWorks

For you quikLoader owners who are also using AppleWorks (or for you
AppleWorks enthusiasts who want your computer to instantly start up in
AppleWorks), Southern California Research Group can now produce a set
of quikLoader EPROMs from your configured AppleWorks program disks.
The price for the EPROMs and the programming service is $89.50. For
more information call SCRG at (805) 529-2082.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2216 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:Kablit.txt
==

Kablit Security System

After three burglaries or attempts here at the office, and four at
Bill's house, we have been looking into ways to make our Apples a
little more secure. There are a variety of products available these
days, some involving special furniture that locks up around computer,
and others consisting of brackets that lock the equipment to the desk
top. These solutions seem too expensive and limiting for out
purposes. We are always shifting the computers and monitors around to
install or remove cards or to connect or disconnect some accessory.
And four computers here in the office and two more at our houses mean
that the system had better be inexpensive.

Well we have found what looks to be the answer: the Kablit Security
System, from Secure-It, Inc. This is 10 feet of 3/16" steel cable
with a high-quality padlock-type lock and an assortment of special
hardware to attach the cable to your computer, monitor, disk drives,
printer, or whatever. The connectors attach using the normal case
screws of your equipment, so in most cases there is no need to drill
holes or otherwise tear things up. There are specific kits for the
Apple //c and the Macintosh.

The list price of the Kablit Security System is $49.95; we will be
offering them for $45 + shipping.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2217 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:Merging.txt
==

Two Ways to Merge Fields in a Byte.........Bob Sander-Cederlof

One of the advantages of assembly language is that data can be
manipulated easily at the bit and byte level. This leads to
efficiencies in both speed and memory usage which cannot be matched
with most higher-level languages.

We can pack more than one data item into the same byte. For example,
I may use the first three bits of a byte to indicate which of eight
colors to use, and the other five bits to indicated position on a 32-
pixel line. There are endless examples. Since we need to be able to
store into and retrieve from bit-fields within bytes, all of the
microprocessors include opcodes which make it possible.

To merge two values together which already are "clean", we simply use
the ORA opcode. For example, if I have data for field A in VAL.A as
xxx00000 and data for field B in VAL.B as 000xxxxx, I merge them like
this:

 LDA VAL.A
 ORA VAL.B

By "clean" I mean that all the bits in VAL.A and VAL.B which are not
part of the field values are already zero. If they are not, then we
must first strip out those bits with the AND opcode:

 LDA VAL.A
 AND #$E0
 STA TEMP
 LDA VAL.B
 AND #$1F
 ORA TEMP

There is another way, which is shorter and faster and does not need
TEMP. However, it is harder to figure out why it works.

 LDA VAL.A
 EOR VAL.B
 AND #$1F
 EOR VAL.A

Can you explain it? I was so unsure of myself when I first ran into
this technique that I devised a test program. My test tries all 256
values of VAL.A and VAL.B, with all possible contiguous fields from 1
bit for VAL.A to 7 bits for VAL.A. Probably overkill, but it runs in
a few seconds.

My program prints out the two field masks for each of the seven field
sizes, so that I can tell it is running. If the two methods for

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2218 of 2550

Apple II Computer Info

merging get the same results, that is the only output. If they do
not, indicating that one method or the other does not work, I print
out more data.

While I was writing the program I tried several variations, such as
printing all the results whether they agreed or not. In order to be
able to look at that volume of output reasonably, I added a PAUSE
subroutine which enabled me to stop the output by tapping any key,
restart it the same way, and abort by tapping the RETURN key.

The code for the first merging method is in lines 1310-1380; that for
the second at lines 1400-1450.

The test was conclusive. I tried every possible combination, and both
methods always give the same results. Looking back, I can see that
the whole test was unnecessary; the second method will OBVIOUSLY
produce the same results. Now I see it. Do you?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2219 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......DOS $100, ProDOS $100, both for $120
ProDOS Upgrade Kit for Version 2.0 DOS owners.........................$30
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code of S-C Macro 2.0 (DOS only)...................additional $100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility......without source code $20, with source $50
RAK-Ware DISASM...$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36 *
MacASM -- Macro Assembler for MacIntosh (Mainstay).........($150.00) $100 *
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15
Cross Assemblers for owners of S-C Macro Assembler.....$32.50 to $50 each
 (Available: 6800/1/2, 6301, 6805, 6809, 68000, Z-80, Z-8, 8048,
 8051, 8085, 1802/4/5, PDP-11, GI1650/70, others)

AAL Quarterly Disks.........................each $15, or any four for $45
 Each disk contains the source code from three issues of AAL,
 saving you lots of typing and testing.
 The quarters are Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec.
(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

Diskettes (with hub rings)......................... package of 20 for $32 *
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6 *
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100 *
Envelopes for Diskette Mailers............................. 6 cents each

65802 Microprocessor (Western Design Center)...................($95) $50 *
quikLoader EPROM System (SCRG)................................($179) $170 *
PROmGRAMER (SCRG)..($149.50) $140 *
Switch-a-Slot (SCRG)..($190) $175 *
Extend-a-Slot (SCRG)...($35) $32 *
Kablit Security System (Secure-It, Inc.)....................($49.95) $45 *

"Programming the 65816", Eyes...............................($22.95) $21 *
"Apple //e Reference Manual", Apple Computer................($24.95) $23 *
"Apple //c Reference Manual", Apple Computer................($24.95) $23 *
"ProDOS Technical Reference Manual", Apple Computer.........($29.95) $27 *
"Now That You Know Apple Assembly Language...", Gilder......($19.95) $18 *
"Apple ProDOS: Advanced Features for Programmers", Little..($17.95) $17 *
"Inside the Apple //c", Little..............................($19.95) $18 *
"Inside the Apple //e", Little..............................($19.95) $18 *
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18 *
"Apple][Circuit Description", Gayler......................($22.95) $21 *
"Understanding the Apple II", Sather........................($22.95) $21 *
"Understanding the Apple //e", Sather.......................($24.95) $23 *
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15 *
"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17 *
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20 *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2220 of 2550

Apple II Computer Info

"Beneath Apple DOS", Worth & Lechner........................($19.95) $18 *
"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18 *
"6502 Subroutines", Leventhal...............................($18.95) $18 *
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9 *
"Microcomputer Graphics", Myers.............................($12.95) $12 *
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16 *
"Assembly Lines -- the Book", Wagner........................($19.95) $18 *
"AppleVisions", Bishop & Grossberger........................($39.95) $36 *

 * On these items add $2.00 for the first item and
 $.75 for each additional item for US shipping.
 Foreign customers inquire for postage needed.
 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2221 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:Object.Vector.txt
==

Using the Object Vector in S-C Macro Assembler......Bill Morgan

Sometimes we want to do something special with the object code
generated by the S-C Macro Assembler. Maybe write it directly into an
EPROM programmer, send it out through a serial port, or store it into
some special device. One such device is the Douglas Electronics
Writable ROM Board, which appears to the Apple as 2K of RAM at $C800
but brings out a cable that plugs right into a 2716 EPROM socket.
With this card we can test the assembled code instantly in the target
machine, without the delay and hassle of programming and transferring
an EPROM.

There are a couple of hitches along the way. The assembler normally
protects everything above $BFFF from code storage, and we need some
special code because we have to temporarily switch off any other card
using $C800, switch on the WROM Board, write a byte, and switch the
WROM Board off again.

Fortunately, Version 2.0 of the S-C Macro Assembler has some special
features for cases just like this. There are parameters at the
beginning of the assembler to unprotect a specified area of memory,
and each byte generated is passed through an Object Vector on its way
to storage, so we can intercept the byte and do our memory switching
before passing it back to the assembler.

Since the object code is going to be stored in successive memory
locations pointed to by the Target Address, we can just use the Macro
Assembler's normal STORE.OBJECT.BYTE routine. The address of
STORE.OBJECT.BYTE is in the JMP instruction at OBJECT.VECTOR, so it's
easy to get that address, plug it into our code, and then install our
address in OBJECT.VECTOR. If we needed to do something different with
the object code, like storing each byte into the same hardware
register, we would do that instead at the line labelled CALL.

Writable ROM Board, by Douglas Electronics, 718 Marina Blvd., San
Leandro, CA 94577. (415) 483-8770. $95.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2222 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:PDos.Quit.Code.txt
==

Commented Listing of ProDOS QUIT Code......Bob Sander-Cederlof

After reading Mark Jackson's article on improving the ProDOS QUIT
code, I though it would be nice to have a commented listing of that
program. The listing which follows is just that.

The ProDOS QUIT code is booted into $D100-D3FF in the alternate $D000
bank (the one you get by diddling $C083). Normally ProDOS MLI stays
in the $C08B side. When a program issues the QUIT call (MLI code
$65), the contents of $D100-D3FF are copied to $1000-12FF; then ProDOS
jumps to $1000.

If you BLOAD the SYS file named PRODOS from a bootable ProDOS 1.1.1
disk, and examine it, you will find that it is laid out in eight
parts. The first part is a relocator, which copies the other seven
parts into their normal homes. Like this:

 Position Position
 as loaded copied to

 2000-29FF --- Relocator
 2A00-2BFF Aux 200-3FF /RAM/ driver
 2C00-2C7F FF00-FF7F /RAM/ driver
 2C80-2CFF nowhere All zeroes
 2D00-4DFF D000-F0FF MLI Kernel
 4E00-4EFF BF00-BFFF System Global Page
 4F00-4F7F D742-D7BD Thunderclock driver
 4F80-4FFF FF80-FFFF Interrupt Code
 5000-56FF F800-FEFF Device Drivers
 5700-59FF D100-D3FF(alt) QUIT Code
 zeroes F100-F7FF

The part I am interested in right now is the QUIT code, which is at
$5700-$59FF in the PRODOS file.

The QUIT code is not written very efficiently. For some reason, there
are two completely separate editing programs: one for the prefix, and
another for the pathname. (And as Mark points out, neither one is
very handy.) Even the code that initializes the BITMAP is
inefficient.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2223 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:ProDOS.Quit.txt
==

An Easier QUIT from ProDOS.........................Mark Jackson
 Chicago, IL

When using a hard disk with ProDOS it is often useful to use the MLI
QUIT call to go from one application to another. However, if you are
deep within a subdirectory the QUIT code makes you retype the entire
Prefix if you want to shorten it. To allow the use of the right arrow
during the QUIT call do the following:

UNLOCK PRODOS
BLOAD PRODOS,A$2000,TSYS
CALL-151
5764:75 (for ProDOS 1.1.1 -- use 5964 for 1.0.1)
BSAVE PRODOS,A$2000,TSYS
LOCK PRODOS

This changes the input call to $FD75 which allows right arrow input.
There is one drawback: now to restore the prompted prefix you must
press ESCape when asked for the Pathname of the next application.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2224 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:Puzzle.Solves.txt
==

Solutions to Adam Levin's Painting Puzzle....Adam Levin, et al

The puzzle, published last month, was to write a program which would
fill all RAM from $0000 through $BFFF with the same value. What value
is your choice.

The listing of my solution follows. It executes at $9966, which is
inside the middle DOS buffer. To get it there, you can BLOAD or BRUN
it. A few seconds after the screen fill's up with "Y" characters, the
program has completely filled RAM from $0000 through $BFFD with $99.

Lines 1080-1200 fill all the RAM not occupied by my program (addresses
$0000-$98FF and $99C8-$BFFF) with $99. I first fill the RAM from
$99C8 up, and then from $0000 up through $98FF. You have to forgive
the self-modifying code in a puzzle solution like this.

Lines 1210-1280 store a NOP and a JMP $0000 at the end of RAM. Lines
1320-1350 store $99 into $9900-$9999. It's getting hot in here!

Lines 1390-1590 get executed more than once. The first time, they
store $99 into $999B-$99A3, and $99A5. By this time every byte from
$0000 through $99A5 is set $99. All those bytes can be executed as
"STA $9999,Y" instructions, and the JMP $0000 we placed at the end of
RAM will do just that. When we get back up to line 1430, at $99A9, we
start moving Y again and store $99 into $99A6-99AC and $99AE. It
progressively keeps covering itself up, and eventually it is all gone:

 999B
 999C
 999D 99A6
 999E 99A7 99AF
 999F 99A8 99B0
 99A0 99A9 99B1 99B7
 99A1 99AA 99B2 99B8
 99A2 99AB 99B3 99B9 99BD
 99A3 99AC 99B4 99BA 99BE 99C1
 ...
 99A5 99A3 99B6 99BC 99C0 99C3 99C5 99C6

<<<<code here >>>.

Bob S-C's solution

The program loads at $800, but actually executes at $100. Lines 1030-
1080 move the filler program down to $100 and jump to it. This
solution fills all of RAM from $0000-BFFF with $48, which is a "PHA"
instruction.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2225 of 2550

Apple II Computer Info

To keep from running off the end of RAM into the I/O space, I took
advantage of the fact that the keyboard register can be read at both
$C000 and $C001. Lines 1140-1160 wait until you type a zero key
("0"). The ASCII code for "0" is $B0. Two $B0 values in a row at
$C000 and $C001 will dis-assemble as a BCS to $BFB2. Hence my
solution finishes with an infinite loop running from $BFB2 to $C001.

Lines 1170-1290 fill RAM from $200-$BFFF with $48's, which are "PHA"
opcodes. Lines 1300-1330 do the same with page zero.

Line 1350 jumps to $200, which means that the PHA opcodes start being
executed. Since the stack is only 256 bytes long, and since the stack
pointer wraps around, by the time the PHA at $2FF has executed all of
page 1 will have been filled with $48. Since carry is set, when
execution reaches $C000 the processor will go into that infinite loop
I mentioned above.

<<<<code here>>>>

David Johnson's solution

My solution uses the power of the 65802. There was no restriction to
the 6502 mentioned in the puzzle last month. All 49152 locations of
motherboard RAM are filled with $DB, which happens to be the opcode
value for the "STP" opcode. STP means "stop the processor", so once
all RAM is filled it quits!

I use the MVP instruction to do the actual filling. The MVP
instruction is located at $0000. I first put $DB into $BFFF. Then I
set up the registers so that MVP will copy $BFFF into $BFFE, then
$BFFE into $BFFD, and so on down to copying $0001 into $0000. By this
time the MVP runs out, and the processor executes the STP opcode at
$0003.

The 2nd and 3rd bytes of the MVP opcode specify which 64K memory banks
to use; on a 65802 these don't do anything, because the bank addresses
don't get out of the chip. On a 65816 my program won't work
correctly, because the bank bytes will be changed at the end. First
the Source bank address will be changed, so that a byte will be copied
from $DB.0002 into $00.0001. Now the Destination Bank Address is
changed, to we don't know what: we will finally copy $DB.0001 into
$xx.0000. That last byte-move could be catastrophic (who knows, since
we don't have any 65816-based systems yet?). Anyway, my program works
fine in an Apple equipped with a 65802.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2226 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:RAMDisk.txt
==

Little DOS RAM Disk in Language Card.......Bob Sander-Cederlof

For some reason, we have until now avoided this subject. Many
versions of RAM disks have been created and published in various
magazines. The programs always seemed to me to be rather long and
involved for what they really had to do. Recently a friend typed one
in from Nibble, prompting me to try my hand.

The so-called "language card" is really the 16K RAM area. In //e and
//c computers it is not a separate card at all, just the top 16K of
the motherboard RAM. It received the monicker of "language card"
because it was first sold as a separate card with the Pascal language
system. The RAM in this area is not directly addressable, because the
top 16K of Apple's address space is normally allocated to I/O ($C000-
CFFF) and ROM ($D000-FFFF).

By flipping a few software-controlled switches the address range from
$D000 through $FFFF can be made to point at the 16K RAM instead of
ROM. Furthermore, the addresses from $D000 through $DFFF can be
pointed at either of two 4K banks. If you have an Apple II or II+
with a 16K RAM card you already know this, of course.

Some programs use the language card under DOS, and some do not. Some
which do are Integer BASIC, S-C Macro Assembler, Visicalc, Magicalc,
Big Mac, and Merlin. If you are just using Applesoft to run your own
programs, the language card is not used.

If the card is otherwise idle, that RAM could be used to simulate a
small disk drive. My program sets it up as a 64 sector drive, with 60
sectors available for files. One sector is used for the VTOC, and
three sectors are used for the catalog. You can save up to 21 files
into the disk, or one file of up to 60 sectors.

One of the first questions I had to answer was where to put the
program. Naturally, it ended up at $300. This is almost always my
first choice, because it is so easy. If I find some substantial
reasons, I try harder and find some other place in RAM for my
programs. The ramdisk code could be placed inside DOS itself, on top
of the RWTS format code. Another choice might be to use up one page
of the language card for the bulk of the code, using only a few lines
of code inside RWTS to switch it on and off. I like this idea, but it
does deprive me of one sector out of 60. Anyway, for now let's just
leave it at $300.

Another choice to be made is how to link into DOS. Many hard disks
and other ramdisks do it by placing a JMP or JSR instruction at the
beginning of RWTS ($BD00-BD02). This works very well, but it would be
nice to be able to use both our ramdisk and any hard disk also.
Therefore, I figured out a way to chain my ramdisk together with my

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2227 of 2550

Apple II Computer Info

Sider hard disk. The method should be compatible with all the
ramdisks and hard disks which patch in at $BD00.

The program is broken into two parts. The first part installs the
ramdisk, and the second part performs the reads and writes. The
installer loads and executes at $4000, but of course you could change
it to whatever you wish.

I use six page zero locations. These are all locations which are used
by regular RWTS, so it is all right for me to use them. I don't even
need to save the original data and restore it when I am finished.

Lines 1090-1150 copy the read/write part down to $300-3B4. I actually
copy a few extra bytes, but no harm done. I do have to be careful not
to write any bytes above $3CF, because $3D0-3FF is already used by DOS
and the monitor.

Lines 1160-1230 save the current contents of $BD00-BD02, and place a
JMP to my ramdisk code there. Any future calls to RWTS will be
vectored to my code down in page 3.

Lines 1250 and 1260 may look ridiculous, if you have not tried
programming the language card before. The software-controlled
switches ("soft switches") in the Apple are designed so that you have
to make two references to address $C083 to turn it on and un-protect
it. Two references to $C08B turn on the card also, but with the other
4K bank at $D000.

Lines 1270-1340 store zeroes in every byte from $D000-D3FF. In my
scheme, those four pages are equivalent to four sectors (track $11,
sectors 0-3). Now that I have mentioned that, why not tell you how I
have laid out the whole 16K?

 Bank Addresses Trk Sectors

 C083 D000-D3FF $11 0-3
 C083 D400-DFFF $01 4-F
 C08B D000-DFFF $02 0-F
 E000-EFFF $03 0-F
 F000-FFFF $04 0-F

Lines 1350-1420 chain the three catalog sectors together. I have set
up track $11 sector 3 as the first catalog sector, sector 2 as the
second, and sector 1 as the third and last. This is the same kind of
chain DOS makes on a real disk, but shorter.

Lines 1430-1500, together with the two data lines at 1550 and 1560,
fill in the non-zero bytes in the VTOC sector. This table driven
technique takes somewhat fewer bytes than direct code. I know,
because the first time I wrote it the direct way: LDA, STA, LDA, STA,
etc. The code as it now is plus the tables takes 45 bytes. The other
way it takes 42 bytes just for the STA instructions. If I use LDA
#$xx for each of the different values, that is another 16 bytes. So,
I saved about 13 bytes. The TBLX line gives the offsets into the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2228 of 2550

Apple II Computer Info

$D000 page, and the TBLA line gives the data value which should be
stored at each one. I use a 00 offset to indicate the end of the
list.

Line 1580 tells the assembler to start assembling code to be executed
at $300, but to keep putting the object code bytes in a continuous
stream. Since we are writing the code on a target file (see line
1030), the whole program is on one file. RAMDISK.IMAG gets the value
$4076, which is what the program counter is BEFORE the .PH directive
takes effect. At line 1590 RAMDISK.REAL gets the value $300.

When a program calls RWTS, it is usually through as JSR $B7B5
instruction. The code at $B7B5 disables the interrupts and then does
a JSR $BD00. We put our hook at $BD00, so the code jumps to $306, my
label LITTLE.RAM.DISK. Lines 1650 and 1660 are the code which
normally is executed at $BD00-BD03. They store the IOB address.

Lines 1670-1700 pick up the slot number out of the IOB. This is
actually the slot number times 16. If the caller has specified slot
3, he wants to read or write the ramdisk. Any other slot, we need to
let regular RWTS do the work. Lines 1710-1750 copy the original
contents back to $BD00-BD02. Then I can call RWTS again, and this
time it won't come back until it has done its job. Lines 1760-1780
restore Y and A as they were before we got involved, and re-call RWTS.
When RWTS is finished, lines 1790-1830 put my hook back into $BD00-
BD02. You might wonder if I should be saving and restoring the Y- and
A-registers here. I originally did, saving them before line 1790 and
restoring them before 1840. Then I realized that the normal contents
of Y and A after visiting RWTS are not meaningful. Only the carry
status bit is important, as it signifies whether there was an error or
not.

If the caller specified slot 3, he wants to talk to our ramdisk.
Lines 1860-1900 check to make sure he specified drive 1. If not, we
call it an error. I funneled all of the messages through .99, setting
the error byte in the IOB to $40. This causes DOS to say there was an
I/O error.

I used an EOR #1 rather than CMP #1 at line 189~ so that if the drive
was correct, we would also have 0 in the A-register. At some point I
need to store 0 into RAMP, and this saves me a LDA #0 instruction.
Then line 1910 can set RAMP to 0.

Lines 1930-1970 pick up the sector number the caller specified, and
checks it for proper range. It must be from 0 to 15 to be valid. For
the time being I save it in a handier location, RAMP+1.

Lines 1980-2020 and 2110-2120 check the track value. I will accept
tracks 1-4 and $11, but no others. I have to accept $11, because that
is where DOS always expects the VTOC to be, and where the catalog
almost always is. The other four tracks could be anything I want,
just so they are not $11. Since I am only using 4 sectors of track 11
for VTOC and catalog, I want the others to be usable for files. DOS
refuses to allocate any sectors to files in track 11 unless we patch

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2229 of 2550

Apple II Computer Info

some code in the file manager, so I just put the rest of that bank of
ram in another track.

Lines 2040-2060 make sure that if the caller wants track $11, his
sector number is not bigger than 3. Lines 2130-2170 make sure that if
the caller wants track 1, his sector number is not less than 4. If
the track is either $11 or 1, lines 2070-2090 set us up to use the
$C083 bank at $D000, with the sector specifying which page in that
bank to use.

If the caller wants track 2, 3, or 4 then lines 2250-2310 set up the
$C08B side, and compute the page number according to the table given
above.

All this may be academic, because we have yet to look at the opcode.
We are only implementing read and write, so if the opcode is something
else we give an error. Lines 2340-2390 check the opcode, and also set
the carry status for read or clear carry for write.

Lines 2400-2420 write enable the ramcard and select the proper $D000
bank. The value in the X-register is either 0 or 8, so we are either
addressing $C083 or $C08B twice. We don't really need to write enable
it unless the opcode was WRITE, but it doesn't hurt anything.

Lines 2430-2460 clear the error byte in the IOB. I could save two
bytes by doing this above, just after line 1910.

Lines 2470-2530 pick up the caller's buffer address and store it in a
pointer in page zero. I don't do any range checking on the buffer
address, but then neither does RWTS.

Lines 2540-2550 set Y=0 to start the read or write loop, and then
branch to the read loop if carry was set. Lines 2570-2610 comprise
the write loop, and lines 2620-2660 the read loop.

Finally, line 2670 turns the language card back off. Then we clear
carry status to indicate no errors, and return.

And that is how you make a ramdisk. If you have a bigger RAM card, it
probably came with a ramdisk program. But if not, you ought to be
able to see how to extend this program to handle larger amounts of
memory.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2230 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:SathersComments.txt
==

Comments on O'Ryan's 65C02 Mod for Apple II.........Jim Sather

William O'Ryan's method (October 1985 AAL) of modifying old Apples to
accept 65C02s looks like a very reliable fix. I notice no negative
consequences in RAM or video timing. I do however recommend switching
to 150 nanosecond motherboard RAM.

Apple motherboard RAM read access is CAS' limited, meaning TCAC (delay
from CAS' falling to read data valid) is the critical RAM chip
specification. In an Apple with O'Ryan's fix, RAM chips have 140 nsec
minus 74LS139 pin 1 to pins 4,5,6 high/low propagation delay to get
RAM read data valid after CAS' falls at the RAM chips. This means
TCAC needs to be 119 nsec or less with a typical LS139. TCAC
specifications are 100 nsec for 150 nsec RAM and 135 nsec for 200 nsec
RAM, so 150 nsec or faster chips should be installed to be within RAM
chip specifications with O'Ryan's fix.

A given Apple II may work with O'Ryan's fix and 200 nsec RAM chips,
but operation may not be reliable over a wide range of room
temperatures. Again I say, O'Ryan's fix calls for 150 nsec RAM chips.
To operate with slower chips is asking for trouble.

Incidentally, 16K RAM chips don't cost as much as they used to. The
cheapest 150 nsec 16K RAM chips I can find in my current mail order
catalogs are 45 cents apiece at Jameco Electronics, 1355 Shoreway Rd.,
Belmont, CA 94002. [Slower ones were $65.00 apiece in 1978!]

As an alternative to replacing slow motherboard RAM chips, one can
replace the 74LS139 at F2 with a 74S139. This changes the TCAC
requirement with O'Ryan's fix to 133 nsec for a typical S139, and to
130 nsec for a worst case S139. These are barely less than the 135
nsec specification of 200 nsec RAM, so operation with 200 nsec RAM is
probably reliable.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2231 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:Articles:Words.On.MacAsm.txt
==

Note on Mainstay MACASM for the Macintosh

We still have a small supply of the original release of this highly-
praised development tool for the Macintosh. (Even Jerry Pournelle had
good words for it.) I say original edition, because they are now at
version 1.2, with 1.3 scheduled in January.

Mainstay has told us that there is little real difference in the
various versions, not enough to influence your decision as to where to
buy. And they also have a policy that they will provide your first
upgrade absolutely free. All you need to do is fill in your
registration card, make a backup copy of MacASM to use in the interim,
and send them your original MacASM disk.

Their current end-user price is $125. Note that ours are still being
sold at the intorductory price of $100. Wow! It's a steal!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2232 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:DOS3.3:DJohnsonsFiller.txt
==

 1000 *SAVE DAVID JOHNSON'S FILLER
 1010 *--------------------------------
 1020 * SOLUTION TO PUZZLE BY DAVID C. JOHNSON
 1030 *--------------------------------
 1040 .OP 65802 I got mine!
 1050 *--------------------------------
 1060 .OR $00
 1070 *--------------------------------
 1080 paint mvp 0,0 fill $BFFE-$0000 from $BFFF
 1090 *--------------------------------
 1100 START LDA #$DB "STP" OPCODE
 1110 STA $BFFF SEED FOR THE "MVP" INSTRUCTION
 1120 CLC GET INTO NATIVE MODE
 1130 XCE
 1140 REP #$30 16-BIT REGISTERS
 1150 LDX ##$BFFF Source Address = $BFFF
 1160 TXY
 1170 DEY Destination Address = $BFFE
 1180 TYA # Bytes -1 to be "moved"
 1190 BRA paint MVP must be at $0000
 1200 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2233 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:DOS3.3:LittleRamDisk.txt
==

 1 .LIF
 1000 *SAVE S.LITTLE RAM DISK
 1010 *--------------------------------
 1020 .OR $4000
 1030 .TF B.LITTLE RAM DISK
 1040 *--------------------------------
 1050 RAMP .EQ $3C,3D
 1060 BUFP .EQ $3E,3F
 1070 IOB .EQ $48,49
 1080 *--------------------------------
 1090 INSTALL
 1100 LDY #0 COPY CODE TO PAGE 3
 1110 .0 LDA RAMDISK.IMAG,Y
 1120 STA RAMDISK.REAL,Y
 1130 INY
 1140 CPY #$D0 NOT PAST $3CF
 1150 BCC .0
 1160 *---INSTALL DOS HOOK-------------
 1170 LDY #2
 1180 .1 LDA $BD00,Y
 1190 STA OLD.BD00,Y
 1200 LDA NEW.BD00,Y
 1210 STA $BD00,Y
 1220 DEY
 1230 BPL .1
 1240 *---INIT VTOC & CATALOG----------
 1250 LDA $C083
 1260 LDA $C083
 1270 INY Y=0
 1280 TYA
 1290 .2 STA $D000,Y CLEAR VTOC
 1300 STA $D100,Y CLEAR THREE CATALOG PAGES
 1310 STA $D200,Y ...ROOM FOR 21 FILES
 1320 STA $D300,Y
 1330 INY
 1340 BNE .2
 1350 *---CATALOG CHAIN----------------
 1360 LDA #$11 SIMULATED TRACK 11
 1370 STA $D201
 1380 STA $D301
 1390 INY Y=1
 1400 STY $D202 POINT TO 3RD CATALOG SECTOR
 1410 INY Y=2
 1420 STY $D302 POINT TO 2ND CATALOG SECTOR
 1430 *---FINISH THE VTOC--------------
 1440 LDY #0 USE TABLES FOR VTOC
 1450 .3 LDX TBLX,Y INDEX INTO VTOC
 1460 BEQ .4 ...FINISHED
 1470 LDA TBLA,Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2234 of 2550

Apple II Computer Info

 1480 STA $D000,X
 1490 INY
 1500 BNE .3 ...ALWAYS
 1510 *--------------------------------
 1520 .4 LDA $C082 BACK TO MOTHERBOARD ROM
 1530 RTS
 1540 *--------------------------------
 1550 TBLX .HS 01.02.27.34.35.37.3C.3D.40.41.44.45.48.49.00
 1560 TBLA .HS 11.03.7A.23.10.01.FF.F0.FF.FF.FF.FF.FF.FF
 1570 *--------------------------------
 1580 RAMDISK.IMAG .PH $300
 1590 RAMDISK.REAL
 1600 *--------------------------------
 1610 OLD.BD00 .BS 3
 1620 NEW.BD00 JMP LITTLE.RAM.DISK
 1630 *--------------------------------
 1640 LITTLE.RAM.DISK
 1650 STY IOB
 1660 STA IOB+1
 1670 LDY #1 LOOK AT SLOT NUMBER
 1680 LDA (IOB),Y
 1690 CMP #$30 RAMDISK IN SLOT 3
 1700 BEQ RAM.DISK.SELECTED
 1710 LDY #2
 1720 .1 LDA OLD.BD00,Y
 1730 STA $BD00,Y
 1740 DEY
 1750 BPL .1
 1760 LDY IOB
 1770 LDA IOB+1
 1780 JSR $BD00
 1790 LDY #2
 1800 .2 LDA NEW.BD00,Y
 1810 STA $BD00,Y
 1820 DEY
 1830 BPL .2
 1840 RTS
 1850 *--------------------------------
 1860 RAM.DISK.SELECTED
 1870 INY LOOK AT DRIVE
 1880 LDA (IOB),Y
 1890 EOR #1 MUST BE DRIVE 1
 1900 BNE .99 ...NOT DRIVE 1, ERROR
 1910 STA RAMP LO-BYTE OF RAMPAGE
 1920 *--------------------------------
 1930 LDY #5 GET SECTOR #
 1940 LDA (IOB),Y
 1950 CMP #16
 1960 BCS .99 BAD T/S
 1970 STA RAMP+1
 1980 DEY GET TRACK #
 1990 LDA (IOB),Y
 2000 BEQ .99 INVALID TRACK #
 2010 CMP #$11 IS IT VTOC TRACK?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2235 of 2550

Apple II Computer Info

 2020 BNE .2 NOT TRACK 17
 2030 *---TRACK 17---------------------
 2040 LDA RAMP+1 GET SECTOR #
 2050 CMP #4 MUST BE 0-3
 2060 BCS .99 NOT VALID T/S
 2070 .1 ORA #$D0 FORM HI-BYTE OF ADDRESS
 2080 LDX #0 C083 BANK
 2090 BEQ .4 ...ALWAYS
 2100 *---TRACK 1-4--------------------
 2110 .2 CMP #5 OTHERWISE MUST BE TRACK 1-4
 2120 BCS .99 NOT VALID T/S
 2130 CMP #1 TRACK 1?
 2140 BNE .3 ...NO
 2150 LDA RAMP+1 GET SECTOR #
 2160 CMP #4 MUST BE 4-F
 2170 BCS .1 ...GOOD
 2180 *---ERROR------------------------
 2190 .99 LDY #13
 2200 LDA #$40
 2210 STA (IOB),Y
 2220 SEC
 2230 RTS
 2240 *--------------------------------
 2250 .3 ASL CHANGE 2,3,4 TO 20,30,40
 2260 ASL
 2270 ASL
 2280 ASL
 2290 ADC #$B0 ... TO D0,E0,F0
 2300 ORA RAMP+1 MERGE SECTOR
 2310 LDX #8 C08B BANK
 2320 .4 STA RAMP+1
 2330 *--------------------------------
 2340 LDY #12 LOOK AT OPCODE
 2350 LDA (IOB),Y
 2360 BEQ .99 ...NOT RD OR WRT
 2370 CMP #3 IS IT RD OR WRT?
 2380 BCS .99 ...NO, IGNORE
 2390 LSR SET CARRY IF READ, CLR IF WRT
 2400 *---SELECT RAMCARD BANK----------
 2410 LDA $C083,X
 2420 LDA $C083,X
 2430 *---CLEAR ERROR CODE-------------
 2440 LDY #13
 2450 LDA #0
 2460 STA (IOB),Y
 2470 *---GET BUFFER ADDRESS-----------
 2480 LDY #8
 2490 LDA (IOB),Y
 2500 STA BUFP
 2510 INY
 2520 LDA (IOB),Y
 2530 STA BUFP+1
 2540 LDY #0
 2550 BCS .6 ...READ

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2236 of 2550

Apple II Computer Info

 2560 *---WRITE A SECTOR---------------
 2570 .5 LDA (BUFP),Y
 2580 STA (RAMP),Y
 2590 INY
 2600 BNE .5
 2610 BEQ .7 ...ALWAYS
 2620 *---READ A SECTOR----------------
 2630 .6 LDA (RAMP),Y
 2640 STA (BUFP),Y
 2650 INY
 2660 BNE .6
 2670 .7 LDA $C082 BACK TO MOTHERBOARD ROM
 2680 CLC
 2690 RTS
 2700 *--------------------------------
 2710 .EP
 2720 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2237 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:DOS3.3:MergeFieldByte.txt
==

 1000 *SAVE MERGE FIELDS IN A BYTE
 1010 *--------------------------------
 1020 CROUT .EQ $FD8E
 1030 PRBYTE .EQ $FDDA
 1040 COUT .EQ $FDED
 1050 *--------------------------------
 1060 FIELD.A .EQ $00
 1070 FIELD.B .EQ $01
 1080 VAL.A .EQ $02
 1090 VAL.B .EQ $03
 1100 MERGE.1 .EQ $04
 1110 MERGE.2 .EQ $05
 1120 *--------------------------------
 1130 T
 1140 *---FOR FIELD= 80,7F TO 7F,80----
 1150 LDA #$7F DEFINE FIELDS AS 1,7
 1160 STA FIELD.B
 1170 LDA #$80
 1180 STA FIELD.A
 1190 *---FOR A=0 TO MAX VAL-----------
 1200 .1 LDA #0
 1210 STA VAL.A
 1220 JSR CROUT
 1230 LDA FIELD.A
 1240 JSR PRBYTESP
 1250 LDA FIELD.B
 1260 JSR PRBYTE
 1270 *---FOR B=0 TO MAX VAL-----------
 1280 .2 LDA #0
 1290 STA VAL.B
 1300
 1310 *---MERGE FIRST METHOD-----------
 1320 .3 LDA VAL.A
 1330 AND FIELD.A
 1340 STA MERGE.1
 1350 LDA VAL.B
 1360 AND FIELD.B
 1370 ORA MERGE.1
 1380 STA MERGE.1
 1390
 1400 *---MERGE SECOND METHOD----------
 1410 LDA VAL.A
 1420 EOR VAL.B
 1430 AND FIELD.B
 1440 EOR VAL.A
 1450 STA MERGE.2
 1460
 1470 *---PRINT RESULTS, IF NOT EQUAL--
 1480 CMP MERGE.1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2238 of 2550

Apple II Computer Info

 1490 BEQ .4
 1500 JSR CROUT
 1510 LDA FIELD.A
 1520 JSR PRBYTESP
 1530 LDA VAL.A
 1540 JSR PRBYTESP
 1550 LDA VAL.B
 1560 JSR PRBYTESP
 1570 LDA MERGE.1
 1580 JSR PRBYTESP
 1590 LDA MERGE.2
 1600 JSR PRBYTE
 1610 JSR PAUSE
 1620 *---NEXT B-----------------------
 1630 .4 INC VAL.B
 1640 BNE .3
 1650 *---NEXT A-----------------------
 1660 INC VAL.A
 1670 BNE .2
 1680 *---NEXT FIELD-------------------
 1690 SEC
 1700 ROR FIELD.A
 1710 LSR FIELD.B
 1720 BNE .1 CONTINUE
 1730 RTS FINISHED
 1740 *--------------------------------
 1750 PRBYTESP
 1760 JSR PRBYTE
 1770 LDA #$A0
 1780 JMP COUT
 1790 *--------------------------------
 1800 PAUSE LDA $C000
 1810 BPL .3
 1820 STA $C010
 1830 CMP #$8D
 1840 BNE .2
 1850 .1 PLA
 1860 PLA
 1870 RTS
 1880 .2 LDA $C000
 1890 BPL .2
 1900 STA $C010
 1910 CMP #$8D
 1920 BEQ .1
 1930 .3 RTS
 1940 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2239 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:DOS3.3:S.RAMFill.Adam.txt
==

 1000 *SAVE S.RAMFILL ADAM
 1010 *--------------------------------
 1020 * ADAM LEVIN'S SOLUTION TO THE PUZZLE
 1030 *--------------------------------
 1040 .OR $9966 MUST START HERE
 1050 .TF B.PAINTER
 1060 *--------------------------------
 1070 PAINTER
 1080 LDY #END-1
 1090 LDA #$99 STORE $99 FROM END OF PROGRAM
 1100 COAT1 STA $9900,Y THROUGH $BFFF
 1110 INY
 1120 BNE COAT1
 1130 INC COAT1+2 NEXT PAGE
 1140 LDX COAT1+2
 1150 CPX #$C0 REACHED $BFFF YET?
 1160 BNE .2 ...NOT YET
 1170 LDX #0 WRAP AROUND AND STORE FROM
 1180 STX COAT1+2 $0000 THRU $HERE
 1190 .2 CPX #$99 HAVE WE COME FULL CIRCLE?
 1200 BNE COAT1 ...NO, KEEP PAINTING
 1210 LDY #$EA ...YES, NOW PATCH END OF RAM
 1220 STY $BFFB FOR WRAPPING AROUND
 1230 STY $BFFC
 1240 LDY #$4C NOP, JMP $0000
 1250 STY $BFFD
 1260 LDY #0
 1270 STY $BFFE
 1280 STY $BFFF
 1290 *--------------------------------
 1300 * PAINT $9900-HERE
 1310 *--------------------------------
 1320 COAT2 STA $9900,Y
 1330 INY
 1340 CPY #COAT2+2
 1350 BCC COAT2
 1360 *--------------------------------
 1370 * TRY TO GET OUT WITHOUT LEAVING FOOTPRINTS!
 1380 *--------------------------------
 1390 LDY #2 SET INDEX TO POINT TO $999B
 1400 STA $9999,Y
 1410 INY $999C
 1420 STA $9999,Y
 1430 INY $999D
 1440 STA $9999,Y
 1450 INY $999E
 1460 STA $9999,Y
 1470 INY $999F
 1480 STA $9999,Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2240 of 2550

Apple II Computer Info

 1490 INY $99A0
 1500 STA $9999,Y
 1510 INY $99A1
 1520 STA $9999,Y
 1530 INY $99A2
 1540 STA $9999,Y
 1550 INY $99A3
 1560 STA $9999,Y
 1570 INY $99A4
 1580 INY $99A5
 1590 END STA $9999,Y
 1600 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2241 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:DOS3.3:S.RAMFILL.RBSC.txt
==

 1000 *SAVE S.RAMFILL RBSC
 1010 *--------------------------------
 1020 .OR $800
 1030 MOVER LDY #LENGTH MOVE "FILLER" PROGRAM
 1040 .1 LDA MY.FILLER,Y TO EXECUTION AREA
 1050 STA FILLER,Y AT $100...
 1060 DEY
 1070 BPL .1
 1080 JMP FILLER NOW START FILLING!
 1090 *--------------------------------
 1100 * FOLLOWING CODE EXECUTES AT $100...
 1110 *--------------------------------
 1120 MY.FILLER .PH $100
 1130 FILLER
 1140 .1 LDA $C000 WAIT UNTIL "0" TYPED
 1150 CMP #$B0 ($B0 IS ALSO BCS OPCODE)
 1160 BNE .1
 1170 *---FILL $200-$BFFF--------------
 1180 LDY #0
 1190 STY 0
 1200 LDA #2
 1210 STA 1
 1220 LDA #$48 PHA OPCODE
 1230 .2 STA (0),Y
 1240 INY
 1250 BNE .2
 1260 INC 1
 1270 LDX 1
 1280 CPX #$C0 UNTIL $BFFF
 1290 BCC .2
 1300 *---FILL PAGE ZERO---------------
 1310 .3 STA 0,Y
 1320 INY
 1330 BNE .3
 1340 *---FILL PAGE ONE----------------
 1350 JMP $200
 1360 LENGTH .EQ *-FILLER
 1370 .EP
 1380 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2242 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:DOS3.3:S.WROMWRITE.txt
==

 1000 *SAVE S.WROMWRITE
 1010 *--------------------------------
 1020 LC .EQ 1 1 if $D000 assembler
 1030 WROMSLOT .EQ 7
 1040 *--------------------------------
 1050 .DO LC
 1060 OBJECT.VECTOR .EQ $D012
 1070 UNPROTECT.LOW .EQ $D024
 1080 UNPROTECT.HIGH .EQ $D026
 1090 .ELSE
 1100 OBJECT.VECTOR .EQ $1012
 1110 UNPROTECT.LOW .EQ $1024
 1120 UNPROTECT.HIGH .EQ $1026
 1130 .FIN
 1140
 1150 WRITECARD .EQ WROMSLOT*$10+$C080
 1160 CARDOFF .EQ WROMSLOT*$10+$C081
 1170 C800.OFF .EQ $CFFF
 1180
 1190 TARGET.LOW .EQ $C800
 1200 TARGET.HIGH .EQ $CFFF
 1210 *--------------------------------
 1220 .OR $300
 1230 * .TF WROMWRITE
 1240 INSTALL
 1250 .DO LC
 1260 BIT $C083
 1270 BIT $C083
 1280 .FIN
 1290 LDA /TARGET.LOW
 1300 STA UNPROTECT.LOW+1
 1310 LDA #TARGET.LOW
 1320 STA UNPROTECT.LOW
 1330 LDA /TARGET.HIGH
 1340 STA UNPROTECT.HIGH+1
 1350 LDA #TARGET.HIGH
 1360 STA UNPROTECT.HIGH
 1370 LDA OBJECT.VECTOR+2
 1380 STA CALL+2
 1390 LDA OBJECT.VECTOR+1
 1400 STA CALL+1
 1410 LDA /CARDON
 1420 STA OBJECT.VECTOR+2
 1430 LDA #CARDON
 1440 STA OBJECT.VECTOR+1
 1450 .DO LC
 1460 BIT $C080
 1470 .FIN
 1480 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2243 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 CARDON BIT C800.OFF
 1510 BIT WRITECARD
 1520 CALL JSR $FFFF
 1530 BIT CARDOFF
 1540 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2244 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8511:ProDOS:S.PRODOS.QUIT.txt
==

 1000 *SAVE S.PRODOS.QUIT
 1010 *--------------------------------
 1020 CH .EQ $24
 1030 CV .EQ $25
 1040 ERRCOD .EQ $DE
 1050 *--------------------------------
 1060 BUF .EQ $0280
 1070 *--------------------------------
 1080 SYSTEM .EQ $2000
 1090 *--------------------------------
 1100 MLI .EQ $BF00
 1110 BITMAP .EQ $BF58
 1120 *--------------------------------
 1130 KEY .EQ $C000
 1140 S80STOREOFF .EQ $C000
 1150 S80OFF .EQ $C00C
 1160 SALTON .EQ $C00F
 1170 STROBE .EQ $C010
 1180 ROM .EQ $C082
 1190 *--------------------------------
 1200 HOME .EQ $FC58
 1210 CLREOL .EQ $FC9C
 1220 RDKEY .EQ $FD0C
 1230 CROUT .EQ $FD8E
 1240 COUT .EQ $FDED
 1250 SETKBD .EQ $FE89
 1260 SETVID .EQ $FE93
 1270 BELL .EQ $FF3A
 1280 *--------------------------------
 1290 .MA MLI
 1300 JSR MLI
 1310 .DA #$]1,]2
 1320 .EM
 1330 *--------------------------------
 1340 .OR $1000
 1350 .TA $5700
 1360 *--------------------------------
 1370 PRODOS.QUIT
 1380 LDA ROM TURN ON THE MONITOR ROM
 1390 JSR SETVID GET BACK TO GOOD OLD-FASHIONED
 1400 JSR SETKBD DOWN-HOME 40 COLUMN DISPLAY
 1410 STA S80OFF
 1420 STA SALTON Know what I mean, Vern?
 1430 STA S80STOREOFF
 1440 *---PREPARE BITMAP---------------
 1450 LDX #$17
 1460 LDA #1 Mark $BFxx in use
 1470 STA BITMAP,X
 1480 DEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2245 of 2550

Apple II Computer Info

 1490 LDA #0 Most pages are free
 1500 .1 STA BITMAP,X
 1510 DEX
 1520 BPL .1
 1530 LDA #$CF $0000-01FF, $0400-07FF in use
 1540 STA BITMAP
 1550 *---DISPLAY PREFIX---------------
 1560 GET.PREFIX
 1570 JSR HOME
 1580 JSR CROUT
 1590 LDA #Q.PRFX
 1600 STA MSG.ADDR
 1610 LDA /Q.PRFX
 1620 STA MSG.ADDR+1
 1630 JSR PRINT.MESSAGE
 1640 LDA #3 VTAB 4
 1650 STA CV
 1660 JSR CROUT MAKE IT 5
 1670 >MLI C7,PREFIX.PARM
 1680 LDX BUF # CHARS IN PREFIX
 1690 LDA #0 MARK END OF PREFIX WITH 00
 1700 STA BUF+1,X SO OUR MESSAGE PRINTER WILL
 1710 LDA #BUF+1 PRINT IT.
 1720 STA MSG.ADDR
 1730 LDA /BUF+1
 1740 STA MSG.ADDR+1
 1750 JSR PRINT.MESSAGE
 1760 *---GET NEW PREFIX---------------
 1770 LDX #0
 1780 DEC CV MOVE CURSOR TO BEGINNING OF LINE
 1790 JSR CROUT
 1800 NEXT.PREFIX.CHAR
 1810 JSR RDKEY
 1820 CMP #$8D
 1830 BEQ SET.NEW.PREFIX ...ACCEPT WHAT IS ON SCREEN
 1840 PHA ERASE PREFIX FROM SCREEN
 1850 JSR CLREOL
 1860 PLA
 1870 CMP #$9B IS CHAR <ESCAPE>?
 1880 BEQ GET.PREFIX ...YES, START ALL OVER
 1890 CMP #$98 IS CHAR CTRL-X?
 1900 START.PREFIX.OVER
 1910 BEQ GET.PREFIX ...START ALL OVER
 1920 CMP #$89 IS CHAR <TAB>?
 1930 BEQ .3 ...YES, RING BELL
 1940 CMP #$88 IS CHAR BACKSPACE?
 1950 BNE .2 ...NO, APPEND TO LINE
 1960 CPX #0 ...BACKSPACE, UNLESS AT BEGINNING
 1970 BEQ .1 AT BEGINNING ALREADY
 1980 DEC CH BACK UP
 1990 DEX
 2000 .1 JSR CLREOL CHOP OFF AFTER CURSOR
 2010 JMP NEXT.PREFIX.CHAR
 2020 .2 BCS .4 OTHER CONTROL CHAR < $88

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2246 of 2550

Apple II Computer Info

 2030 .3 JSR BELL
 2040 JMP NEXT.PREFIX.CHAR
 2050 .4 CMP #"Z"+1
 2060 BCC .5 ...NOT LOWER CASE
 2070 AND #$DF CONVERT LOWER CASE TO UPPER
 2080 .5 CMP #"." ALLOW PERIOD, SLASH, DIGITS
 2090 BCC .3 ...TOO SMALL
 2100 CMP #"Z"+1 ALLOW LETTERS
 2110 BCS .3 ...TOO LARGE
 2120 CMP #"9"+1
 2130 BCC .6 ...PERIOD, SLASH, OR DIGIT
 2140 CMP #"A"
 2150 BCC .3 ...NOT A LEGAL CHARACTER
 2160 .6 INX
 2170 CPX #$27
 2180 BCS START.PREFIX.OVER ...TOO LONG
 2190 STA BUF,X
 2200 JSR COUT ECHO THE CHARACTER
 2210 JMP NEXT.PREFIX.CHAR
 2220 *--------------------------------
 2230 SET.NEW.PREFIX
 2240 CPX #0 DID WE CHANGE IT?
 2250 BEQ GET.PATHNAME ...NO
 2260 STX BUF ...YES, SO TELL SYSTEM
 2270 >MLI C6,PREFIX.PARM
 2280 BCC GET.PATHNAME ...NO ERRORS
 2290 JSR BELL DING, DONG!
 2300 LDA #0 SET .EQ. STATUS
 2310 PFXOVR BEQ START.PREFIX.OVER ...ALWAYS
 2320 *--------------------------------
 2330 GET.PATHNAME
 2340 JSR HOME
 2350 START.PATHNAME.OVER
 2360 JSR CROUT
 2370 LDA #Q.PATH
 2380 STA MSG.ADDR
 2390 LDA /Q.PATH
 2400 STA MSG.ADDR+1
 2410 JSR PRINT.MESSAGE
 2420 LDA #3 VTAB 4
 2430 STA CV
 2440 JSR CROUT MAKE IT 5
 2450 LDX #0
 2460 NEXT.PATHNAME.CHAR
 2470 LDA #$FF CURSOR CHARACTER
 2480 JSR COUT
 2490 DEC CH BACK UP OVER CURSOR
 2500 .1 LDA KEY
 2510 BPL .1 ...WAIT TILL KEY PRESSED
 2520 STA STROBE
 2530 CMP #$9B <ESCAPE>?
 2540 BNE .2 ...NO
 2550 LDA CH IF AT BEGINNING, GET PREFIX OVER
 2560 BNE GET.PATHNAME ...ELSE GET PATHNAME OVER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2247 of 2550

Apple II Computer Info

 2570 BEQ PFXOVR
 2580 .2 CMP #$98 CONTROL-X?
 2590 .3 BEQ GET.PATHNAME
 2600 CMP #$89 TAB KEY?
 2610 BEQ .5 ...YES
 2620 CMP #$88 BACKSPACE?
 2630 BNE .4 ...NO
 2640 JMP BACKSPACE.IN.PATHNAME
 2650 *--------------------------------
 2660 .4 BCS .6
 2670 .5 JSR BELL ...INVALID CHAR, RING BELL
 2680 JMP NEXT.PATHNAME.CHAR
 2690 *--------------------------------
 2700 .6 CMP #$8D
 2710 BEQ SET.NEW.PATHNAME
 2720 CMP #"Z"+1
 2730 BCC .7
 2740 AND #$DF CHANGE LOWER CASE TO UPPER
 2750 .7 CMP #"." ACCEPT DOT, SLASH, OR DIGIT
 2760 BCC .5 ...TOO SMALL
 2770 CMP #"Z"+1 ACCEPT LETTERS
 2780 BCS .5 ...TOO LARGE
 2790 CMP #"9"+1
 2800 BCC .8 ...DOT, SLASH, OR DIGIT
 2810 CMP #"A"
 2820 BCC .5 ...NOT A VALID CHARACTER
 2830 .8 PHA CLEAR BEYOND THIS POINT
 2840 JSR CLREOL
 2850 PLA
 2860 JSR COUT ECHO THE NEW CHARACTER
 2870 INX
 2880 CPX #$27
 2890 BCS .3 ...NAME TOO LONG
 2900 STA BUF,X APPEND CHAR TO NAME
 2910 JMP NEXT.PATHNAME.CHAR
 2920 *--------------------------------
 2930 SET.NEW.PATHNAME
 2940 LDA #" "
 2950 JSR COUT
 2960 STX BUF
 2970 >MLI C4,FILE.INFO.PARM
 2980 BCC .1 ...NO ERRORS
 2990 JMP PROCESS.ERROR
 3000 *--------------------------------
 3010 .1 LDA FILTYP FILE.INFO.PARM+4
 3020 CMP #$FF
 3030 BEQ .2 "SYS" FILE
 3040 LDA #1
 3050 JMP PROCESS.ERROR
 3060 *--------------------------------
 3070 .2 LDA #0
 3080 STA CL.REF CLOSE.PARM+1, REF NO.
 3090 >MLI CC,CLOSE.PARM
 3100 BCC .3 ...NO ERROR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2248 of 2550

Apple II Computer Info

 3110 JMP PROCESS.ERROR
 3120 *--------------------------------
 3130 .3 LDA ACBITS FILE.INFO.PARM+3
 3140 AND #1
 3150 BNE .4 ...OKAY TO READ IT
 3160 LDA #$27
 3170 JMP PROCESS.ERROR
 3180 *--------------------------------
 3190 .4 >MLI C8,OPEN.PARM
 3200 BCC .5 ...NO ERRORS
 3210 JMP PROCESS.ERROR
 3220 *--------------------------------
 3230 .5 LDA OP.REF OPEN.PARM+5, REF NO.
 3240 STA RD.REF READ.PARM+1, REF NO.
 3250 STA EF.REF EOF.PARM+1, REF NO.
 3260 >MLI D1,EOF.PARM
 3270 BCC .6 ...NO ERRORS
 3280 JMP PROCESS.ERROR
 3290 *--------------------------------
 3300 .6 LDA FIL.SZ+2 EOF.PARM+4
 3310 BEQ .7 ...NOT TOO LONG
 3320 LDA #$27
 3330 JMP PROCESS.ERROR
 3340 *--------------------------------
 3350 .7 LDA FIL.SZ EOF.PARM+2
 3360 STA READ.PARM+4
 3370 LDA FIL.SZ+1 EOF.PARM+3
 3380 STA READ.PARM+5
 3390 >MLI CA,READ.PARM
 3400 PHP
 3410 >MLI CC,CLOSE.PARM
 3420 BCC .9
 3430 PLP
 3440 .8 JMP PROCESS.ERROR
 3450 *--------------------------------
 3460 .9 PLP
 3470 BCS .8
 3480 JMP SYSTEM
 3490 *--------------------------------
 3500 BACKSPACE.IN.PATHNAME
 3510 LDA CH UNLESS ALREADY AT BEGINNING
 3520 BEQ .1 ...WE WERE
 3530 DEX
 3540 LDA #" "
 3550 JSR COUT
 3560 DEC CH
 3570 DEC CH
 3580 JSR COUT
 3590 DEC CH
 3600 .1 JMP NEXT.PATHNAME.CHAR
 3610 *--------------------------------
 3620 PRINT.MESSAGE
 3630 LDX #0
 3640 MSG.LP LDA MSG.LP,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2249 of 2550

Apple II Computer Info

 3650 MSG.ADDR .EQ *-2
 3660 BEQ .1
 3670 ORA #$80
 3680 JSR COUT
 3690 INX
 3700 BNE MSG.LP
 3710 .1 RTS
 3720 *--------------------------------
 3730 PROCESS.ERROR
 3740 STA ERRCOD
 3750 LDA #12 VTAB 13
 3760 STA CV
 3770 JSR CROUT MAKE IT 14
 3780 LDA ERRCOD
 3790 CMP #1
 3800 BNE .1
 3810 LDA #ERQT.1
 3820 STA MSG.ADDR
 3830 LDA /ERQT.1
 3840 STA MSG.ADDR+1
 3850 BNE .3
 3860 .1 CMP #$40
 3870 BEQ .2
 3880 CMP #$44
 3890 BEQ .2
 3900 CMP #$45
 3910 BEQ .2
 3920 CMP #$46
 3930 BEQ .2
 3940 LDA #ERQT.2
 3950 STA MSG.ADDR
 3960 LDA /ERQT.2
 3970 STA MSG.ADDR+1
 3980 BNE .3 ...ALWAYS
 3990 .2 LDA #ERQT.3
 4000 STA MSG.ADDR
 4010 LDA /ERQT.3
 4020 STA MSG.ADDR+1
 4030 .3 JSR PRINT.MESSAGE
 4040 LDA #0 VTAB 1
 4050 STA CV
 4060 JMP START.PATHNAME.OVER
 4070 *--------------------------------
 4080 Q.PRFX .AS -/ENTER PREFIX (PRESS "RETURN" TO ACCEPT)/
 4090 .HS 00
 4100 Q.PATH .AS -/ENTER PATHNAME OF NEXT APPLICATION/
 4110 .HS 00
 4120 ERQT.1 .HS 87
 4130 .AS -/NOT A TYPE "SYS" FILE/
 4140 .HS 00
 4150 ERQT.2 .HS 87
 4160 .AS -"I/O ERROR "
 4170 .HS 00
 4180 ERQT.3 .HS 87

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2250 of 2550

Apple II Computer Info

 4190 .AS -"FILE/PATH NOT FOUND "
 4200 .HS 00
 4210 *--------------------------------
 4220 FILE.INFO.PARM
 4230 .DA #10
 4240 .DA BUF
 4250 ACBITS .HS 00
 4260 FILTYP .HS 00
 4270 .BS 13
 4280 *--------------------------------
 4290 OPEN.PARM
 4300 .DA #3
 4310 .DA BUF
 4320 .DA $1800 BUFFER ADDR
 4330 OP.REF .BS 1 REF NO.
 4340 *--------------------------------
 4350 CLOSE.PARM
 4360 .DA #1
 4370 CL.REF .BS 1 REF NO.
 4380 *--------------------------------
 4390 READ.PARM
 4400 .DA #4
 4410 RD.REF .BS 1 REF NO.
 4420 .DA $2000 BUFFER ADDR
 4430 .BS 2 # BYTES TO READ
 4440 .BS 2 # ACTUALLY READ
 4450 *--------------------------------
 4460 EOF.PARM
 4470 .DA #2
 4480 EF.REF .BS 1 REF NO.
 4490 FIL.SZ .BS 3 EOF POSITION
 4500 *--------------------------------
 4510 PREFIX.PARM
 4520 .DA #1
 4530 .DA BUF
 4540 *--------------------------------
 4550 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2251 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:Articles:Day.Of.Week.txt
==

Computing the Day of Week...............Bob Sander-Cederlof

Within reasonable limits, it should be possible for a clock/ calendar
card to automatically set the day-of-week number when given the year,
month, and day. The algorithm for deriving day-of-week from the date
is simple enough. However, as the algorithm is stated in all my
reference material, it involves multiplication and division by numbers
that are not simple powers of two.

I have simplified the algorithm so that it will work over the range
from March 1, 1984 through December 31, 2083. That should be an
adequate range for any Apple products!

Years evenly divisible by 4 are leap years, having 366 days. The
years ending in 00 are exceptions, unless they are divisible by 400.
Thus 1900 was not a leap year, 2100 will not be a leap year, but 2000
is a leap year.

My algorithm started out as a method for converting a Y-M-D date to a
Julian date, which is a unique number that was 0 several thousand
years ago. I could get the remainder after dividing the Julian date
by 7, and use it for a day-of-week index. However, the numbers get
rather large; they won't fit in one byte.

By converting all the intermediate values to their modulo 7
equivalents, I can keep the result down to byte-size. Here is an
Applesoft program which implements my algorithm:

100 DIM MD(11),D$(6)
110 DATA 3,6,1,4,6,2,5,0,3,5,1,4
120 DATA SUN,MON,TUES,WEDNES,THURS,FRI,SATUR
130 FOR I=0 TO 6 : READ M : MD(I)=M : NEXT
140 FOR I=0 TO 11: READ D$: D$(I)=D$: NEXT
200 INPUT Y,M,D
210 M = M-3
220 IF M<0 THEN M=M+12 : Y=Y-1
230 Y=Y-1984
240 W = Y + INT(Y/4) + MD(M) + D
250 IF W>6 THEN W=W-7 : GO TO 250
260 PRINT D$(W)"DAY"
270 GO TO 200

Lines 100-140 build two arrays. The MD array holds a modulo 7 number
for the number of days preceding each month in a normal year (not leap
year). The D$ array holds the names of the days, shortened by the
last three letters.

Line 200 waits for you to type in the year, month, and day as three
numbers. I did not add any error testing, but I expect the year to be

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2252 of 2550

Apple II Computer Info

from 1984 up. The month should be a number from 1 to 12, and the day
from 1 to 31.

Lines 210-220 adjust the month number. I move January and February to
the end of the previous year, like it must have been in the olden
days. That makes leap day the last day of the year, where it belongs.
It also makes the month names for Sept-, Oct-, Nov-, and Dec-ember
make linguistic sense! March becomes the first month, December the
tenth, and so on. Internally, the value of the variable M will be a
number from 0 to 11.

Line 230 adjusts the year to start at 1984. Line 240 adds up the
various day-values. We add Y, the number of the years since 1984,
because 365 = 1 mod 7. We add INT(Y/4) to get the leap days. MD(M)
adds in the bias for the number of days beyond an integral number of
weeks to the end of the previous month. D adds in the day number.
Altogether we have a number which is still less than 256, and fits in
one byte in a machine language version of the algorithm.

Line 250 subtracts 7 (whole weeks) until we get to a number less than
7. The result is the day number in a week with 0 meaning Sunday, 1
meaning Monday, and so on. Line 260 prints the day name, and line 270
lets us try another date.

After making sure of my method with the Applesoft program, I coded it
in assembly language. The program which follows is set up to be used
from inside Applesoft, and I also list here the Applesoft driver. I
did it this way to make it easy to test my assembly language code.
Later I will probably put the code inside a larger package which sets
the time and day on my clock card. Once it is in there, I can forever
forget about the need to tell the card what day of week it is.

Lines 1020-1050 are the variables used to communicate with the
Applesoft test program, by way of PEEKs and POKEs. The program
assumes that only the last two digits of the year are used, so that
YEAR is a number from 84 to 99 for 1984 to 1999; values from 0 to 83
signify years from 2000 to 2083.

Lines 1080-1130 change the year number, which runs 84...99 and 00...83
to a value based at 1984, running from 00 to 99. 00 means 1984, 99
means 2083.

Lines 1150-1210 are equivalent to the Applesoft lines 210 and 220 in
the first program above. Lines 1220-1290 are equivalent to the
Applesoft line 240. Lines 1300-1340 reduce the result to a modulo 7
remainder. The final value, a number from 0 to 6, is stored in line
1350 where an Applesoft driver can find it by PEEK(771).

Here is my Applesoft test program. This time I went in for a little
range checking on the input values for year, month, and day.

100 DIM D$(6)
110 DATA SUN,MON,TUES,WEDNES,THURS,FRI,SATUR
120 FOR I=0 TO 6 : READ M : MD(I)=M : NEXT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2253 of 2550

Apple II Computer Info

200 INPUT "YEAR (1984-2083): ";Y
210 IF Y<1984 OR Y>2083 THEN 200
220 Y = Y - INT(Y/100)*100
230 POKE 768,Y
300 INPUT " MONTH (1-12): ";M
310 IF M<1 OR M>12 THEN 300
320 POKE 769,M
400 INPUT " DAY (1-31): ";D
410 IF D<1 OR D>31 THEN 400
420 POKE 770,D
500 CALL 772
510 W = PEEK(771)
600 PRINT D$(W)"DAY"
610 GO TO 200

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2254 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:Articles:Front.Page.txt
==

$1.80

Volume 6 -- Issue 3 December, 1985

In This Issue...

ProDOS MLI Tracing . 2
Ohio Systems Kache Card. 8
More Puzzle Solutions. 10
S-C Macro Assembler Quick Reference Booklet. 14
Using Pseudo-Variables in Machine Language 16
Computing Day of the Week. 20

Little RAM Disk Bug

Does that mean a Bug in the Little RAM Disk, or a Little Bug in the
RAM Disk? Actually, both. Several of you have called or written to
point out a problem in Bob's program last month.

The TAY instruction at line 1280 (on page 8) should be a TYA. It does
seem pointless to force Y to zero and then immediately clobber it with
whatever the processor read out of $C083. This code worked when Bob
tested it on his //e, because that computer does return a zero when
you read $C083. My][+, on the other hand, returns a byte of video
data, usually $A0, and that really makes a mess out of the VTOC and
Catalog sectors.

There's one other glitch in that article as well. In the fifth
paragraph on page 5 there is a reference to line number "189~". I bet
you can guess that's really supposed to be "1890".

So, thanks to all of you who caught us on this one! It's nice to know
you're keeping an eye on us.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

==
DOCUMENT :AAL-8512:Articles:Kashmarek.Trace.txt
==

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2255 of 2550

Apple II Computer Info

ProDOS MLI Tracing...............................Ken Kashmarek
 Eldridge, Iowa

I took Bob S-C's work with ProDOS Snooper (October 1985 AAL) one step
further: I added MLI calls to the information that is collected in
the trace table. By combining the MLI call data with the device
driver data, we get a better idea of what is happening.

The entries below all come from slot 6 drive 1. MLI calls are tagged
with an "M" after the hex data. To support both the MLI calls and
device driver calls, the hex output provides the data as it exists in
memory without taking into account whether a set of bytes is a two
byte memory pointer or a single data byte.

For all calls, the return address is still shown as hi-byte first
before the colon. Data for the device driver parameter is still from
$42-$47. For MLI calls, the return address is to the program that
called the routine in the BASIC.SYSTEM global page. All BASIC.SYSTEM
calls go to the $BE00 global page and then to the $BF00 ProDOS global
page. MLI data is the MLI call number followed by the first five
bytes of the parameter list (some bytes do not apply if the list is
shorter).

The volume in question is labeled /TEST and has one file, ABC, in the
root directory.

First of all, issue: CAT,S6

A6E9:C7 BC BC 02 BC BC M GET PREFIX
A85F:C5 60 01 02 00 03 M ON LINE CALL + Not used when
EC0C:01 50 00 DC 02 00 READ BLOCK 2 + CAT /TEST entered
A825:C4 BC BC C3 0F 00 M GET FILE INFO
EC0C:01 60 00 DC 02 00 READ BLOCK 2
EC0C:01 60 00 DC 06 00 READ Bit Map
B1B9:C8 BC BC 00 8A 01 M OPEN FILE
EC0C:01 60 00 DC 02 00 READ BLOCK 2
EE85:01 60 00 8A 02 00 READ BLOCK 2
B175:CA 01 59 02 2B 00 M READ FILE
B201:CE 01 2B 00 00 03 M SET FILE MARK + Appears for each
B208:CA 01 59 02 27 00 M READ FILE + file in directory
B0A5:CC 01 00 C3 CF D0 M CLOSE FILE
B0FB:C5 60 BD BC 00 03 M ON LINE CALL
EC0C:01 50 00 DC 02 00 READ BLOCK 2
B10F:C4 BC BC C3 0F 18 M GET FILE INFO
EC0C:01 60 00 DC 02 00 READ BLOCK 2
EC0C:01 60 00 DC 06 00 READ Bit Map

For this simple operation, there are ten MLI calls and eight device
driver calls (disk I/O operations). I do not understand the reason
for the Get Prefix call at the beginning. It would appear that the On
Line call and the Get File Info call at the end are unnecessary (we
will be checking this out as we go). On Line returns the volume name,
but this should already be available through the prefix or pathname of
the directory. Get File Info information should already be available

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2256 of 2550

Apple II Computer Info

from the previous call, and the bit map was already read in once.
However, this is a simple catalog operation and may be indicative of
some of the steps necessary for more complex catalog operations.

Carrying this one step further, I issued CAT /TEST/DIR. In this case,
the first read of the bit map is not performed. Next, the former
apparently duplicate read of block 2 now turns into a read of block 7,
the key block for subdirectory DIR (in /TEXT/DIR; the device driver
return address is $EE85, the buffer address is $8A00). Note: block 2
is the key block of the root directory.

A Get File Info call for a volume name (/TEST) always reads the bit
map. Therefore, this call is repeated when cataloging a volume, but
not when cataloging a subdirectory. As to the On Line call, it is
used to get volume name for the Get File Info call for the free space
information for the volume, since the initial catalog command may have
been for a subdirectory. This explains (only partially) what appeared
to be duplicate reads of the same information.

Now, let's try loading an Applesoft file: LOAD ABC,S6

A85F:C5 60 01 02 00 03 M ON LINE CALL + Not used for
EC0C:01 60 00 DC 02 00 READ BLOCK 2 + LOAD /TEST/ABC
A825:C4 BC BC E3 FC 01 M GET FILE INFO
EC0C:01 60 00 DC 02 00 READ BLOCK 2
AC00:CC 00 00 C3 CF D0 M CLOSE ALL FILES
B1B9:C8 BC BC 00 8A 01 M OPEN FILE
EC0C:01 60 00 DC 02 00 READ BLOCK 2
EE85:01 60 00 8A 07 00 READ BLOCK 7
AC22:D1 01 01 02 00 03 M GET FILE EOF
AC4B:CA 01 01 08 09 00 M READ FILE
AC50:CC 01 00 C3 CF D0 M CLOSE FILE

The loaded program is less than 512 bytes in length, so the key block
read is the only data I/O operation. As with the catalog operation,
the Get File Info call is used to verify the file type. Close All
Files is used in case the previous program left any open. Note the
Get File EOF call which is used to get the length for the Read File
call (which performs the entire load operation). This example is
relatively simple. Let's check what happens when we create an
Applesoft file that is just over 512 bytes in length (changing our
seedling file into a sapling file, which requires an index block and
two data blocks).

We'll lengthen the program, and then type: SAVE /TEST/ABC.3

A825:C4 BC BC C3 0F 18 M GET FILE INFO
EC0C:01 60 00 DC 02 00 READ BLOCK 2
ACDC:C0 BC BC C3 FC 01 M CREATE FILE
EC0C:01 60 00 DC 02 00 READ BLOCK 2
F477:00 60 00 DC 00 00 STATUS S6,D1
EC0C:01 60 00 DA 06 00 READ BIT MAP
EC0C:02 60 00 DC 07 00 WRITE BLOCK 7
EC0C:01 60 00 DC 02 00 READ BLOCK 2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2257 of 2550

Apple II Computer Info

EC0C:02 60 00 DC 02 00 WRITE BLOCK 2
EC0C:02 60 00 DA 06 00 WRITE BIT MAP
B1B9:C8 BC BC 00 8A 01 M OPEN FILE CALL
EC0C:01 60 00 DC 02 00 READ BLOCK 2
EE85:01 60 00 8A 07 00 READ BLOCK 7
AD0A:CB 01 01 08 5B 02 M WRITE FILE CALL
F477:00 60 01 08 00 00 STATUS S6,D1
EE85:02 60 00 8A 07 00 WRITE BLOCK 7
EC0C:01 60 00 DA 06 00 READ BIT MAP
EC0C:02 60 00 DA 06 00 WRITE BIT MAP
EE85:02 60 00 8C 08 00 WRITE BLOCK 8
EC0C:01 60 00 DA 06 00 READ BIT MAP
AD11:D0 01 5B 02 00 03 M SET FILE E0F CALL
AD16:CC 01 00 C3 CF D0 M CLOSE FILE CALL
EE85:02 60 00 8A 09 00 WRITE BLOCK 9
EC0C:02 60 00 DA 06 00 WRITE BIT MAP
EE85:02 60 00 8C 08 00 WRITE BLOCK 8
EC0C:01 60 00 DC 02 00 READ BLOCK 2
EC0C:01 60 00 DC 02 00 READ BLOCK 2
EC0C:02 60 00 DC 02 00 WRITE BLOCK 2

This sequence has the same number of MLI calls for a seedling or a
sapling file. The big difference is allocating the index block (block
number 8) and additional data blocks. This also generates additional
calls to read and write the bit map.

If the file already exists, and the SAVE command does not change the
length, then the Create File call is not executed, there are no
accesses to the bit map (block 6), and the index block does not
change. If the file length changes sufficiently to add or delete
blocks, then the bit map is updated and the index block is rewritten
(this is forced by the Set File EOF call which adjusts the file
length).

Interesting note: whenever a file is opened, the first data block is
always read in, even if the file will subsequently be written to.
Likewise, when a new file is allocated, the first data block is
allocated and written, even if no data is placed in the block.

In the above sequence, what appears to be a duplicate read of block 2
(return address $EC0C) is actually a read to separate blocks if the
SAVE command was to a subdirectory. It turns out to be duplicate
reads to the subdirectory block, write to the subdirectory, then read
and write the root directory. Sigh.

LOAD /TEST/ABC.3 is similar to the previous load operation, except
that we must also read the index block before reading the data blocks,
and there are two data blocks rather than one.

Finally, let's try deleting this file: DELETE /TEST/ABC.3

A825:C4 BC BC E3 04 00 M GET FILE INFO CALL
EC0C:01 60 00 DC 02 00 READ BLOCK 2
9AD7:C1 BC BC 02 BC BC M DESTROY FILE CALL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2258 of 2550

Apple II Computer Info

EC0C:01 60 00 DC 02 00 READ BLOCK 2
F477:00 60 00 DC 00 00 STATUS S6,D1
EC0C:01 60 00 DC 08 00 READ BLOCK 8 (index block)
EC0C:01 60 00 DA 06 00 READ BIT MAP
EC0C:02 60 00 DC 08 00 WRITE INDEX BLOCK (zeroed)
EC0C:01 60 00 DC 07 00 READ BLOCK 7
EC0C:02 60 00 DA 06 00 WRITE BIT MAP
EC0C:01 60 00 DC 02 00 READ BLOCK 2
EC0C:02 60 00 DC 02 00 WRITE BLOCK 2

Again, use Get File Info for file type and status call to see if the
disk can be written to. The bit map is read and written to reflect
the freed blocks. Block 8, the former file index block, is trashed.
I don't know why block 7 is read in. Trashing the index block makes
it very hard to reconstruct a DELETEd file.

At this point, we get a feel for what is happening between the MLI
calls and the device driver calls. Consider how extensive these
simple examples become on a hard disk if working down three or four
directory levels and at the second, third, or fourth block in each
directroy, and the hard disk has five blocks for the bit map (and we
need the fifth block because the disk is almost full). Ouch!

I performed one more test case, far too long to list here. It
involved adding a record to a new sparse random access file. The new
record caused the file to grow to a tree file. The program used was:

 10 D$ - CHR$(4)
 20 PRINT D$"OPEN /TEST/NAMES,L140"
 30 PRINT D$"WRITE/TEST/NAMES,R936"
 40 PRINT "XXX ... XXX": REM 120 X's
 50 PRINT D$"CLOSE/TEST/NAMES"

This sequence produced eight MLI calls and 29 device driver calls to
perform I/O (there were three status calls). The file ended up with
six blocks (master index block, two index blocks, and three data
blocks) which generated 12 accesses to read and write the bit map.

A 32 megabyte hard disk, the maximum size supported by ProDOS,
requires 16 blocks for the free space bit map. Obviously, such a disk
would suffer quite a performance impact when allocating new files, or
adding space to existing files, if the hard disk were more than half
full.

Ohio Systems Kache Card....................Bob Sander-Cederlof

After reading Ken's article, I came to the conclusion that the Kache
Card or something like it is a MUST for users of large hard disks.

The Kache Card has 256K RAM and a controlling Z-80 on it. As far as
the Apple is concerned, it is just a hard disk controller. It
replaces the controller card which came with your Sider. But it is
smarter.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2259 of 2550

Apple II Computer Info

The Kache card remembers the most recently read or most frequently
read data blocks. Over 2000 of them. You can see that the entire bit
map and at least all the directory blocks associated with the
currently used pathnames would stay in RAM on the card. When ProDOS
issues a READ command, the DMA interface on the Kache Card simply
transfers the block, without doing anything to the hard disk.

When you write to the hard disk, the Kache Card sends it to the hard
disk as well as updating its RAM-based copy. You can write to the
Kache Card faster than the Kache Card writes to the disk, and your
program keeps chugging along while the Kache Card spins out the data
to the drive.

The Kache Card is expensive ($695), at least relative to the price of
a Sider. A 10-meg Sider is currently $595, and a 20-meg Sider is
currently $895. Nevertheless, if you are using 20 megabytes or more
you really need a caching system of some kind.

Of course, you could implement caching inside the operating system.
ProDOS could be modified (perish the thought) to use about 16K RAM
from the //e's auxiliary memory to cache the bit map, root directory,
and other frequently used blocks, for each on-line hard disk. (It
does not seem profitable to try to cache blocks from floppies, because
you can too easily mess things up by removing one floppy and inserting
another.)

Like I said, you COULD do it this way. However, it would be very
difficult to make it work with the variety of peripherals available to
Apple owners. It seems much more reasonable to include caching on the
controller card, or even inside the hard disk box itself. I think
256K is probably overkill, 64K per hard drive should be plenty.

My first brush with the Kache Card was not pleasant. I ended up
returning the card with a list of complaints. They called me about a
month later with the news that they had taken my compaints seriously,
and rectified the problems I had pointed out. Or at least most of
them.

If you are interested in the Kache Card, contact Ohio Kache Systems
Corporation, 75 Tahlequah Trail, Springboro, Ohio 45066. Or call them
at (513)746-9160. Tell them where you read this.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2260 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:Articles:More.Pzl.Solves.txt
==

More Puzzle Solutions...............Bruce Love & Charles Putney

It takes a little longer for the mail to carry our messages overseas,
so these solutions missed the November issue.

Bruce Love (from Hamilton, New Zealand) uses the power of the 65802 in
a different manner than David Johnson did last month. Remember that
David used the MVP instruction to fill all RAM with the STP opcode.
Bruce uses a combination of a loop and the PHA instruction to fill all
of RAM with $4C, which is a JMP opcode.

If you disassemble a series of $4C's, you will see JMP $4C4C.
Therefore Bruce positioned his code so that the last byte to be filled
is at $4C4C.

The loop in lines 1160-1200 fills all RAM below $4C4C with the $4C
value. After finishing, it jumps back to $4C4C where a two-line loop
pushes the A-register on the stack. The trick here is that the stack
pointer in the 65802 is 16-bits long. Bruce starts it at $BFFF, and
each PHA lowers it by one location. The last location to be changed
is $4C4C itself, and after that it loops endlessly executing JMP $4C4C
at $4C4C.

Bruce points out that you can test the effectiveness of his program
(if you have a 65802 in your Apple) by changing lines 1130 and 1160 to
LDX ##$4FFF and LDX ##$4000 respectively. Then it will fill the range
from $4000 through $4FFF with $4C, and you can examine it to be sure
it did.

Charles Putney (from Shankill, Dublin, Ireland) fills RAM with $48,
using the normal 6502 instruction set. Charlie used a combination
similar to Bob S-C's solution last month. The final loop resides
inside the stack page, and the infinite series of PHA's fills the
stack. The difference is that Charlie has the user type an "L" key,
which loads the keyboard register with $CC. Then he clears the
strobe, which changes it to $4C. Since the locations $C000 through
$C002 will all read back as $4C, the cpu will execute JMP $4C4C.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2261 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......DOS $100, ProDOS $100, both for $120
ProDOS Upgrade Kit for Version 2.0 DOS owners.........................$30
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code of S-C Macro 2.0 (DOS only)...................additional $100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility......without source code $20, with source $50
RAK-Ware DISASM...$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36 *
MacASM -- Macro Assembler for MacIntosh (Mainstay).........($150.00) $100 *
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15
Cross Assemblers for owners of S-C Macro Assembler.....$32.50 to $50 each
 (Available: 6800/1/2, 6301, 6805, 6809, 68000, Z-80, Z-8, 8048,
 8051, 8085, 1802/4/5, PDP-11, GI1650/70, others)

AAL Quarterly Disks.........................each $15, or any four for $45
 Each disk contains the source code from three issues of AAL,
 saving you lots of typing and testing.
 The quarters are Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec.
(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

Diskettes (with hub rings)......................... package of 20 for $32 *
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6 *
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100 *
Envelopes for Diskette Mailers............................. 6 cents each

65802 Microprocessor (Western Design Center)...................($95) $50 *
quikLoader EPROM System (SCRG)................................($179) $170 *
PROmGRAMER (SCRG)..($149.50) $140 *
Switch-a-Slot (SCRG).......................................($179.50) $170 *
Extend-a-Slot (SCRG)...($35) $32 *
Kablit Security System (Secure-It, Inc.)....................($49.95) $45 *

"Programming the 65816", Eyes...............................($22.95) $21 *
"Apple //e Reference Manual", Apple Computer................($24.95) $23 *
"Apple //c Reference Manual", Apple Computer................($24.95) $23 *
"ProDOS Technical Reference Manual", Apple Computer.........($29.95) $27 *
"Now That You Know Apple Assembly Language...", Gilder......($19.95) $18 *
"Apple ProDOS: Advanced Features for Programmers", Little..($17.95) $17 *
"Inside the Apple //c", Little..............................($19.95) $18 *
"Inside the Apple //e", Little..............................($19.95) $18 *
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18 *
"Apple][Circuit Description", Gayler......................($22.95) $21 *
"Understanding the Apple II", Sather........................($22.95) $21 *
"Understanding the Apple //e", Sather.......................($24.95) $23 *
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15 *
"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17 *
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20 *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2262 of 2550

Apple II Computer Info

"Beneath Apple DOS", Worth & Lechner........................($19.95) $18 *
"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18 *
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9 *
"Microcomputer Graphics", Myers.............................($12.95) $12 *
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16 *
"Assembly Lines -- the Book", Wagner........................($19.95) $18 *
"AppleVisions", Bishop & Grossberger........................($39.95) $36 *

 * On these items add $2.00 for the first item and
 $.75 for each additional item for US shipping.
 Foreign customers inquire for postage needed.
 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** We accept Master Card, VISA and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2263 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:Articles:PQRS.txt
==

S-C Macro Assembler Quick Reference Booklet

We have a new Quick Reference Booklet for the S-C Macro Assembler!
With all the new features of the Version 2.0 Macro Assemblers,
including the 65C02 and 65816 in both DOS and ProDOS, we have outgrown
the old Programmer Reference Card. Taking its place is our new
Programmer Reference, a 14-page booklet containing even more
information on the S-C Macro Assembler, even more information on the
6502/65C02/65802/65816 processors, and even more information on the
Apple II, II+, //e, and //c computers.

All this new reference information is organized into an easy-to-read
14-page booklet, with the S-C Macro Assembler commands at the
beginning and the 65XXX opcode tables in the center spread, so it will
be as easy as possible to flip right to those important items.

These are the major subject headings covered in the new Programmer
Reference:

S-C Macro Assembler Commands
Shorthand Commands
EDIT Mode Commands
DOS Commands Relevant to S-C Macro Assembler
ProDOS Commands Active under S-C Macro Assembler
S-C Macro Assembler Directives
Operand Expressions
6502/65C02 Instructions with Opcode and Execution Cycles
65802/65816 Instructions
Status Registers
Interrupt Vectors
Page Three Locations
Apple Monitor Commands
Apple Monitor Entry Points
S-C Macro Assembler Memory Maps
Source File Formats
S-C Macro Assembler Parameters
Sweet-16 Opcodes
//e and //c Bank Switches
ASCII Chart
Apple II I/O Addresses

As you see, we've packed just about all of the important assembler,
processor and computer information you need into this convenient 5 1/2
x 8 1/2 inch package.

The new S-C Macro Assembler Programmer Reference is only $3.00 (plus
$1.00 postage for foreign orders).

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2264 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:Articles:PseudoVariables.txt
==

Using Pseudo-Variables in Machine Language...........John Oakey
 227 Creekstone Bend, Peachtree City, GA

A couple of years ago I got a bright idea. I was working on an
Applesoft program that required knowing what files were on the disk in
a given disk drive. By creating binary "images" of Applesoft
variables, I was able to hook into DOS 3.3 and employ Applesoft
routines to convert the information DOS 3.3 prints to the screen into
regular Applesoft variables.

The whole thing worked beautifully and was printed in the last of only
four "Second Grade Chats" ever published in Softalk Magazine -- in the
very last issue. ("Sorree -- your number has been dis-co-nected.") I
never did get paid. ($!#%~&*)

Oh, well. We Apple owners mainly do it for the love of the little
machine anyway. Right? Since that time I have realized that the most
important thing which I did in that article was to discover the
technique of creating pseudo-variables for use in an applications
program which can make available all the subroutines already written
in the Applesoft ROMs.

It doesn't require a long explanation. Just one example should be
enough, and it so happens that one is printed below. This short
program, when called from an Applesoft program, will "poll" an Applied
Engineering TIMEMASTER H.O. card from 80-column mode without affecting
the screen and move the ASCII string which the time card places in the
input buffer into the Applesoft variable TIME$. It not only makes
getting the time while in 80-column mode possible without blowing away
the screen, but it also is a great deal faster than trying to use an
Applesoft interface.

This routine should also work with ThunderClock and other compatible
clock cards. Permission is granted to reprint this article and to use
the copyrighted program below for non-commercial applications. Have a
good TIME$!

And, as usual, Bob couldn't resist squeezing out a few bytes:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2265 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:Articles:RAMDisk.Bug.txt
==

Little RAM Disk Bug

Does that mean a Bug in the Little RAM Disk, or a Little Bug in the
RAM Disk? Actually, both. Several of you have called or written to
point out a problem in Bob's program last month.

The TAY instruction at line 1280 (on page 8) should be a TYA. It does
seem pointless to force Y to zero and then immediately clobber it with
whatever the processor read out of $C083. This code worked when Bob
tested it on his //e, because that computer does return a zero when
you read $C083. My][+, on the other hand, returns a byte of video
data, usually $A0, and that really makes a mess out of the VTOC and
Catalog sectors.

There's one other glitch in that article as well. In the fifth
paragraph on page 5 there is a reference to line number "189~". I bet
you can guess that's really supposed to be "1890".

So, thanks to all of you who caught us on this one! It's nice to know
you're keeping an eye on us.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2266 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:DOS3.3:S.DAY.OF.WEEK.txt
==

 1000 *SAVE S.DAY OF WEEK
 1001 .OR $300
 1010 *--------------------------------
 1020 YEAR .BS 1 84-99 MEANS 1984-1999; 0-83 MEANS 2000-2083
 1030 MONTH .BS 1 1...12 FOR JAN...DEC
 1040 DAY .BS 1 1...31
 1050 W .BS 1
 1060 *--------------------------------
 1070 DOW
 1080 LDA YEAR NORMALIZE YEAR TO 1984
 1090 SEC SO IT RUNS 1...99
 1100 SBC #84 (MAR 1, 1984 THROUGH DEC 31, 2083)
 1110 BCS .1 WAS 1984-1999
 1120 ADC #100 WAS 2000-2083
 1130 .1 STA W
 1140 *--------------------------------
 1150 LDA MONTH ADJUST MONTH SO FEBRUARY IS END OF YEAR
 1160 SEC
 1170 SBC #3
 1180 BCS .2
 1190 DEC W
 1200 ADC #12
 1210 .2 TAX
 1220 *--------------------------------
 1230 LDA W YEAR
 1240 LSR
 1250 LSR
 1260 CLC + INT (YEAR/4)
 1270 ADC W
 1280 ADC MD,X + MD(ADJ.MONTH)
 1290 ADC DAY + DAY
 1300 *--------------------------------
 1310 SEC
 1320 .3 SBC #7 MOD 7
 1330 BCS .3
 1340 ADC #7
 1350 STA W
 1360 RTS
 1370 *--------------------------------
 1380 MD .DA #3,#6,#1,#4,#6,#2,#5,#0,#3,#5,#1,#4
 1390 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2267 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:DOS3.3:S.RAMFIll.BLove.txt
==

 1000 *SAVE S.RAMFILL BRUCE LOVE
 1010 *--------------------------------
 1020 .OP 65802
 1030 .OR $4C49
 1040 *--------------------------------
 1050 PAINT JMP .2
 1060 *--------------------------------
 1070 .1 PHA PUSH FROM $BFFF DOWN
 1080 JMP .1 (NOTE = 4C4C4C)
 1090 *--------------------------------
 1100 .2 CLC TURN ON 65802 MODE
 1110 XCE
 1120 REP #$10 X=16 BIT, A=8 BIT
 1130 LDX ##$BFFF POINT STACK TO TOP OF RAM
 1140 TXS
 1150 LDA #$4C FILL VALUE
 1160 LDX ##0 POINT TO BOTTOM OF RAM
 1170 .3 STA >0,X FILL FROM $0000 TO $4C4B
 1180 INX
 1190 CPX ##$4C4C
 1200 BCC .3
 1210 BCS .1 BACK TO FILL FROM TOP DOWN
 1220 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2268 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:DOS3.3:S.RAMFILLPutney.txt
==

 1000 *SAVE S.RAMFILL PUTNEY
 1010 *--------------------------------
 1020 * BY CHARLES H. PUTNEY
 1030 * 18 QUINNS ROAD
 1040 * SHANKILL
 1050 * CO. DUBLIN
 1060 * IRELAND
 1070 *--------------------------------
 1080 .OR $803 NORMAL PLACE
 1090 *--------------------------------
 1100 PNTR .EQ $06 BLOCK MOVE POINTER
 1110 *--------------------------------
 1120 KEYBD .EQ $C000 KEYBOARD DATA
 1130 KEYSTB .EQ $C010 KEYBOARD STROBE
 1140 VIDOUT .EQ $FDF0 VIDEO OUTPUT ROUTINE
 1150 CROUT .EQ $FD8E SEND A RETURN
 1160 *--------------------------------
 1170 WIPE JSR CROUT START A NEW LINE
 1180 LDX #$00
 1190 .1 LDA MESS,X TELL HIM WHAT KEY TO PUSH
 1200 JSR VIDOUT SEND IT
 1210 INX NEXT CHAR
 1220 TAY CHECK IF LAST ONE
 1230 BMI .1 NO
 1240 JSR CROUT SEND A RETURN
 1250 LDX #$00
 1260 .2 LDA IMAGE,X RELOCATE CODE TO PAGE ONE
 1270 STA $200-CODEND+CODE,X
 1280 INX
 1290 CPX #CODEND-CODE
 1300 BNE .2
 1310 .3 BIT KEYBD KEY PRESSED ?
 1320 BPL .3 WAIT UNTIL PUSHED ?
 1330 LDA KEYSTB RESET STROBE
 1340 LDA KEYBD MAKE SURE ITS THE RIGHT KEY
 1350 CMP #$4C IS IT L ? (JMP OPCODE)
 1360 BNE WIPE TELL HIM AGAIN
 1370 JMP CODE WIPE OUT !
 1380 *--------------------------------
 1390 * THIS CODE IS RELOCATED TO PAGE ONE
 1400 *--------------------------------
 1410 IMAGE .PH $1E1
 1420 CODE LDA #$00 INITIALIZE POINTER
 1430 STA PNTR
 1440 LDA #$02
 1450 STA PNTR+1 START AT PAGE TWO
 1460 LDA #$48 GET A PHA OPCODE
 1470 LDY #$00 INIT Y REG
 1480 .1 STA (PNTR),Y SAVE PHA OPCODE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2269 of 2550

Apple II Computer Info

 1490 INY NEXT
 1500 BNE .1 FULL PAGE DONE ?
 1510 INC PNTR+1 NEXT PAGE
 1520 LDX PNTR+1 CHECK IF DONE
 1530 CPX #$C0 AT I/O AREA ?
 1540 BNE .1 NOT YET
 1550 .2 STA $00,Y SET PAGE ZERO TO $48
 1560 INY NEXT
 1570 BNE .2 FULL PAGE WIPED ?
 1580 * FALL INTO PAGE 2 PHA'S
 1590 CODEND .EP
 1600 *--------------------------------
 1610 MESS .AT -/TYPE UPPER CASE L TO SET MEMORY TO $48 /
 1620 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2270 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:DOS3.3:S.READ.TIME.txt
==

 1000 *SAVE S.READ.TIME
 1010 *--------------------------------
 1020 * READ TIMEMASTER H.O. CARD, PUTTING
 1030 * TIME INTO APPLESOFT STRING TI$.
 1040 *--------------------------------
 1050 * ORIGINAL BY JOHN OAKEY, 11-22-85
 1060 * (c) 1985
 1070 *
 1080 * MODIFIED BY BOB SANDER-CEDERLOF
 1090 *--------------------------------
 1100 FORPNT .EQ $85,86
 1110 TXTPTR .EQ $B8,B9
 1120 *--------------------------------
 1130 WBUF .EQ $200
 1140 *--------------------------------
 1150 SLOT .EQ 5 <<<BE SURE TO PUT YOUR SLOT HERE>>>
 1160 *--------------------------------
 1170 AS.GDBUFS .EQ $D539 MARK END, CLEAR HI-BITS
 1180 AS.SAVD .EQ $DA9A FINISH INSTALLING STRING
 1190 AS.PTRGET .EQ $DFE3 PARSE STRING NAME
 1200 AS.STRLIT .EQ $E3E7 BUILD STRING DESCRIPTOR
 1210 *--------------------------------
 1220 .OR $300 (WHERE ELSE!)
 1230 *--------------------------------
 1240 RDTIME LDA TXTPTR SAVE CURRENT TEXT PNTR
 1250 PHA
 1260 LDA TXTPTR+1
 1270 PHA
 1280 *---READ TIME INTO BUFFER--------
 1290 LDA #"%" MODE: "FRI JAN 03 10:11:32 AM"
 1300 JSR SLOT*256+$C00B
 1310 JSR SLOT*256+$C008 READ TIME STRING
 1320 *---PREPARE STRING FOR A/S-------
 1330 LDX #23 LENGTH OF STRING
 1340 JSR AS.GDBUFS CLEAR HI-BITS AND MARK END
 1350 *---SETUP TI$ VARIABLE-----------
 1360 LDA #VARNAM
 1370 STA TXTPTR
 1380 LDA /VARNAM
 1390 STA TXTPTR+1
 1400 JSR AS.PTRGET
 1410 STA FORPNT
 1420 STY FORPNT+1
 1430 *---MOVE TIME INTO TI$-----------
 1440 LDA #WBUF+1 SKIP OVER LEADING QUOTE
 1450 LDY /WBUF+1
 1460 JSR AS.STRLIT
 1470 JSR AS.SAVD
 1480 *---RESTORE TXTPTR, RETURN-------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2271 of 2550

Apple II Computer Info

 1490 PLA
 1500 STA TXTPTR+1
 1510 PLA
 1520 STA TXTPTR
 1530 RTS
 1540 *--------------------------------
 1550 VARNAM .AS /TI$/

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2272 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:DOS3.3:S.READTIMEPLUS.txt
==

 1000 *SAVE S.READ.TIME+
 1010 *--------------------------------
 1020 * READ TIMEMASTER H.O. CARD, PUTTING
 1030 * TIME INTO APPLESOFT STRING TI$.
 1040 *--------------------------------
 1050 * BY BOB SANDER-CEDERLOF
 1060 *--------------------------------
 1070 VARNAM .EQ $81,82
 1080 FORPNT .EQ $85,86
 1090 *--------------------------------
 1100 WBUF .EQ $200
 1110 *--------------------------------
 1120 SLOT .EQ 5 <<<BE SURE TO PUT YOUR SLOT HERE>>>
 1130 *--------------------------------
 1140 AS.GDBUFS .EQ $D539 MARK END, CLEAR HI-BITS
 1150 AS.SAVD .EQ $DA9A FINISH INSTALLING STRING
 1160 AS.PTRGET9 .EQ $E04F FIND OR MAKE VARIABLE
 1170 AS.STRLIT .EQ $E3E7 BUILD STRING DESCRIPTOR
 1180 *--------------------------------
 1190 .OR $300 (WHERE ELSE!)
 1200 *--------------------------------
 1210 RDTIME
 1220 LDA #"%" MODE: "FRI JAN 03 10:11:32 AM"
 1230 JSR SLOT*256+$C00B
 1240 JSR SLOT*256+$C008 READ TIME STRING
 1250 *---PREPARE STRING FOR A/S-------
 1260 LDX #23 LENGTH OF STRING
 1270 JSR AS.GDBUFS CLEAR HI-BITS AND MARK END
 1280 *---SETUP TI$ VARIABLE-----------
 1290 LDA #'T' HI-BIT OFF FOR STRING VARIABLE
 1300 STA VARNAM
 1310 LDA #"I" HI-BIT ON FOR STRING VARIABLE
 1320 STA VARNAM+1
 1330 JSR AS.PTRGET9
 1340 STA FORPNT
 1350 STY FORPNT+1
 1360 *---MOVE TIME INTO TI$-----------
 1370 LDA #WBUF+1 SKIP OVER LEADING QUOTE
 1380 LDY /WBUF+1
 1390 JSR AS.STRLIT
 1400 JMP AS.SAVD CLEAN UP STRINGS AND RETURN
 1410 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2273 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:DOS3.3:Test.DayWeek.1.txt
==

dÜMD(11),D$(6)0nÉ3,6,1,4,6,2,5,0,3,5,1,4YxÉSUN,MON,TUES,WEDNES,THURS,
FRI,SATURnÇÅI–0¡11:áMD(I):ÇÇåÅI–0¡6:áD$(I):Çç»ÑY,M,Dó“M–M…3≠‹≠M—0ƒM–
M»12:Y–Y…1∫ÊY–Y…1984— W–Y»”(YÀ4)»MD(M)»DÂ˙≠Wœ6ƒW –
W…7:´250ı∫D$(W)"DAY"˛´200

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2274 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8512:DOS3.3:Test.DayWeek.2.txt
==

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2275 of 2550

Apple II Computer Info

 dÜD$(6)5nÉSUN,MON,TUES,WEDNES,THURS,FRI,SATURIxÅI–0¡6:áD$(I):Çf»Ñ"YEAR
(1984-2083): ";Y}“≠Y—1984ŒYœ2083ƒ200í‹Y–Y…”(YÀ100) 100ùÊπ768,Y∫,Ñ"
MONTH (1-12): ";MÃ6≠M—1ŒMœ12ƒ300◊@π769,MÙêÑ" DAY (1-31):
";D\ ö≠D—1ŒDœ31ƒ400 §π77,D Ùå772& ˛W–‚(771)6

X∫D$(W)"DAY"? b´200

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2276 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Browns.Mover.txt
==

RAMWORKS Compatible Auxiliary MOVE Routine.....Harvey Brown
 Spirit River, Alberta, CANADA

The MOVE routine inside the Apple //c and //e ROM transfers data
conveniently to and from the auxiliary 48K area, but it does not work
with the upper 16K area. Also, it does not work with the extra banks
of RAM available in cards such as the RAMWORKS from Applied
Engineering.

I needed that ability, so I wrote my own MOVE subroutine. Mine uses
the page at $200 in main RAM as a buffer, to simplify the movement
code. If you want to move from an arbitrary bank to another arbitrary
bank, my program will require you to use $200 in main RAM as an
intermediate buffer. (Somewhat like stopping at Chicago on your way
from Toronto to Dallas.) My program also assumes you are always
moving exactly 256 bytes (one page). This simplifies the code and the
calling sequence, and is probably a reasonable restriction.

The program begins by copying itself into every bank you are using.
The bank numbers must be assembled in to the list in lines 1800-1870.
Notice that I use bank number $FF to signal the main RAM, and banks
from $00 up to signal the banks of Auxiliary RAM. This code needs to
reside in the same location in every bank that will be switched on,
because when you move from an auxiliary bank to the main RAM that
auxiliary bank will be set up so that all RAM reads come from it.
This includes reads for the program, so the program had better be
there.

Once the program has been initialized, you can JSR MOVE (or JSR $C03
if you want to use a "frozen" entry point) to move a page. At the
time of the JSR MOVE, you should have the high byte of the Auxiliary
RAM address in the A-register, and the bank number in the X-register.
Set carry (SEC opcode) to indicate moving from main $200, or clear
carry (CLC opcode) to indicate moving into main $200. Thinking in
terms of a ramdisk application, SEC for a write or CLC for a read.

Warning: my program assumes you are calling from a program that runs
with the Applesoft ROM selected (see line 1780). If you plan to run
it with RAM selected in the upper 16K, you will have to make
appropriate changes. You could save the status of the LCRAM and
LCBANK soft switches ($C012 and $C011 respectively) before changing
them. These partially indicate the status of the $C08x switches. You
can tell whether RAM or ROM was selected, and restore the proper one
after MOVE is finished. You can also tell which $D000 bank was
selected. However, you cannot tell whether the RAM was write-enabled
or not; also, you cannot tell if it was in the special mode in which
you read ROM and write RAM.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2277 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Correx.DblInit.txt
==

Correction to DOS/ProDOS Double Init.......Bob Sander-Cederlof

The Sep 85 (V5N12) issue of AAL included an article and program to
initialize a disk with both DOS and ProDOS catalogs in separate halves
of the disk. After trying to use Catalog Arranger on a disk we made
with DOUBLE.INIT, we discovered that program has a bug.

The DOS catalog is written in track $11, starting with sector 15 and
going backwards to sector 1. The second and third bytes in each
catalog sector are supposed to point to the next catalog sector, with
the exception of those bytes in the LAST catalog sector. In the last
catalog sector, the link bytes should both be $00, to signal to anyone
who tries to read the catalog that this is indeed the last sector.
DOUBLE.INIT stored $11 in the first link byte, and so some catalog
reading programs such as Catalog Arranger get very confused.

The fix is to add the following lines to the program, where the line
numbers correspond to those in the printed listing in AAL:

 2201 BNE .5
 2202 STY C.TRACK (Y=0)

Add the label ".5" to line 2210, so that it reads:

 2210 .5 JSR CALL.RWTS

If you have already created some disks with DOUBLE.INIT, we suggest
you use a program such as Bag of Tricks, CIA, or some other disk zap
program to clear the second byte of track $11, sector $01 on those
disks.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2278 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Front.Page.txt
==

$1.80

Volume 6 -- Issue 4 January, 1986

In This Issue...

Convert Lo-Res Pictures to Hi-Res. 2
A Question About BRUN. 10
Monthly AAL Source Disk Subscriptions. 11
Text File Transfer Using DOS 3.3 File Manager. 12
Fast 6502 & 65802 Multiply Routines. 18
RAMWORKS Compatible Auxiliary MOVE Routine 27
Correction to DOS/ProDOS Double INIT 32
An Interesting Bit of Trivia 32

New Low Diskette Price

When we first started offering blank diskettes for sale, back in May
of 1981, we were able to sell them for the then below retail price of
only $50 for 20 diskettes. There have been quite a few changes in
this industry in the last five years, and prices have continued to
fall. We have a new supplier and can now offer you quality diskettes
for only $20 per package of 20, a reduction of 37% since last month.

New Monthly Disks

Since diskette prices have fallen so far, we are now planning to send
out disks containing the source code from AAL on a monthly basis,
instead of quarterly as we have in the past. See the note on page 11
for the details.

Discover

Sears Financial Network is launching a new credit card this year,
called Discover. They offer lower interest rates and no yearly charge
to the consumer, and better rates to the merchants as well, so we are
pleased to be able to accept this card now. You can use it just like
any other card for your phone and mail orders.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2279 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Lawries.Notes.txt
==

A Question About BRUN

Mike Lawrie, a reader in South Africa, reports that he tried our prime
benchmark (Sep 85 AAL) in a Titan Accelerator card equipped with a
65802. It ran 1000 times in 41 seconds, which correlates very nicely
with my predictions in the article. The Titan card runs at 3.58 MHz,
and I predicted .35 seconds for 10 repetitions at 4 MHz.

Mike also asked an interesting question, which has been asked by a lot
of you at one time or another. Why is it that some assembly language
programs can be BLOADed and CALLed, but not BRUN? Even the following
very simple program will not return from a BRUN, while it will from a
BLOAD followed by a CALL:

 JSR $FF3A Ring the bell
 RTS

The problem is inside the DOS BRUN command. This command does not use
a JSR command to jump to the binary code just loaded. Rather, it uses
a JMP command. No return address is left on the stack. When the RTS
at the end of the program is executed, it pops garbage off the stack
and returns wherever that garbage indicates. What will happen is
rather unpredictable.

The Applesoft CALL command does use JSR, and so it works. So does the
monitor G command, and the S-C Macro Assembler MGO command. In
ProDOS, the BRUN processor works correctly, using a JSR.

This leaves the question: How should a BRUNnable program end under
DOS 3.3? If it is to return to the command prompt (] for Applesoft)
then the last line should be JMP $3D0. If the BRUN command came from
a machine language program (unlikely) then the called program should
end with a JMP to a known entry point in the calling program. The
most likely case is an Applesoft program that uses a machine language
routine. The best way to handle this is to use BLOAD and CALL.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2280 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Lores2Hires.txt
==

Convert Lo-Res Pictures to Hi-res....Bob Sander-Cederlof

Most Apple dot-matrix printer interfaces now include the firmware to
print hi-res graphics pictures directly from a screen image. However,
most do not provide any way to print lo-res graphics pictures. With
the program presented here you can convert a lo-res graphics image
into a hi-res picture, ready to be printed by your interface firmware.

Even if you don't ever plan to do such a thing, there are some neat
coding tricks in the following program, which you might be able to
apply to other hi-res programs.

Lines 1070-1200 demonstrate the use of my lo- to hi-res conversion
program. Notice that I started with the label "T". I find I am using
that label all the time, lately. I think I started using it as a
short mnemonic for "TEST". It is convenient, because in the S-C Macro
Assembler environment I can test the program I just assembled by
typing "MGO" and the label I want to start at. I find my fingers can
now type "MGOT" without my brain even realizing it happened.

The first thing my demo does is call PLOT to create a lo-res picture.
I didn't have any real lo-res art around, so I simply drew a 4-by-4
pattern showing all 16 lo-res colors. PLOT fills 16 (4x4) pixels with
color 0, 16 with color 1, and so on:

lo-res 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 0 0 0 0 4 4 4 4 8 8 8 8 C C C C
 1 0 0 0 0 4 4 4 4 8 8 8 8 C C C C
 2 0 0 0 0 4 4 4 4 8 8 8 8 C C C C
 3 0 0 0 0 4 4 4 4 8 8 8 8 C C C C

 15 3 3 3 3 7 7 7 7 B B B B F F F F

The rest of the lo-res screen I did not change, so it will normally
show the lo-res equivalent of whatever text was on the screen. Of
course if you were really trying to use my CONVERT program you would
draw your real lo-res picture.

Lines 1090-1120 turn on the lo-res graphics display, and line 1130
waits until I press a key on the keyboard. After running this much of
the program, and studying the dot patterns on the screen, I realized
that it is not possible to exactly reproduce the lo-res colors on the
hi-res screen (unless I used //e or //c double hi-res). However, by
mixing various patterns of dots within the 28 dots (7x4) each lo-res
pixel maps to, I can come close to the same color. I don't really
know how close I came, because I do not have a color monitor.
However, I can at least tell by inspection that all 16 colors map to
different dot patterns that will be distinguishable colors.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2281 of 2550

Apple II Computer Info

The PAUSE.FOR.ANY.KEY subroutine will return EQ status if the key I
press is RETURN, and NE status if it is any other key. Line 1140 will
terminate my test program if RETURN was typed. If it was not RETURN,
line 1150 turns on hi-res graphics and line 1160 calls the convert
program. Then line 1170 waits for another keypress. Again, RETURN
will terminate the test, and any other key will flop back to let me
see the lo-res display again. Line 1190 turns the text display back
on.

CONVERT is very straightforward. The outer loop, using the X-
register, runs from 23 down to 0. This corresponds to the 24 text
lines on the screen, or 48 lo-res rows. If your lo-res picture does
not use the bottom 4 lines (8 rows), change line 1300 to "LDX #19".

The inner loop, using the Y-register, runs from 39 down to 0,
corresponding to the 40 columns of lo-res pixels. Each of the 960
bytes addressed by X and Y contains two lo-res pixels. The top lo-res
row (HLIN 0,39 AT 0) is in the low-order nybble of each of 40 bytes
starting at $400. The second row (HLIN 0,39 AT 1) is in the high-
order nybble of the same 40 bytes. The third and fourth rows are in
the 40 bytes starting at $480, and so on. The starting addresses for
each row-pair are exactly the same as those for the 24 lines of the
text screen. They also happen to be very closely related to the
starting addresses for the corresponding rows on the hi-res screen.

I stored the 24 starting addresses in two tables, LOL and LOH. LOL
contains the low-half of each address, and LOH the high. Lines 1320-
1360 pick up the base address for the current row- pair and put it in
pointer LBAS. Lines 1340 and 1370-1380 set up a similar pointer for
the hi-res screen. Note that the only difference is that the lo-res
screen starts at $400, and the hi-res screen starts at $2000. This
address points at the first byte (first seven dots) of the top line of
the eight hi- res lines that are in the same position as the lo-res
row-pair.

Each lo-res pixel will be mapped to four lines on the hi-res screen,
and will be seven dots (or one byte) wide. Each of the 960 lo-res
bytes has two pixels, so each byte uses eight lines on the hi-res
screen. The right lo-res nybble will be the top four lines, and the
left nybble will be the bottom four. After studying the tables of hi-
res addresses, I noticed that each set of eight lines follow a very
regular pattern. Given the address for the leftmost byte of the top
line of a set of eight lines, I can compute the addresses for the next
seven lines by successively adding 4 to the high byte of the address.
Thus the base addresses for the first eight lines are $2000, $2400,
$2800, $2C00, $3000, $3400, $3800, and $3C00. I can always get the
base address for the first of the eight by subtracting $400 and adding
$2000 to the corresponding lo-res pointer. Line 1370 does that
operation in one step with "EOR #$24".

Lines 1400-1480 pick up the current lo-res byte and feed first the
right nybble and then the left nybble to PROCESS.NYBBLE. For indexing
purposes I multiply the nybble by 8, so that the lo-res color is in

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2282 of 2550

Apple II Computer Info

the A-register like this: xCCCCxxx. More on that later. Lines 1490-
1530 are the south ends of the two nested loops, equivalent to NEXT Y
and NEXT X. By the way, please don't get confused by the terms Y and
X. They refer in my program to 6502 registers, not Cartesian
coordinates. Just to keep your minds nimble, I use the Y-register for
the X-coordinate. The X-register is half the lo-res Y-coordinate.

I mentioned above the problem of coming up with patterns of 28 dots to
approximate the lo-res colors. There are only six solid hi-res
colors, which correspond exactly to lo-res colors 0, 3, 6, 9, 12, and
15. The other 10 lo-res colors take double the normal hi-res
resolution to reproduce exactly. However, as Don Lancaster explains
in detail in his "Enhancing Your Apple II -- Volume I", you can
produce thousands of shades in hi-res by using dot patterns. I picked
12 of his patterns based on the names he gave them, since I did not
have a color monitor. His patterns fit in a 28-dot by two line array.
Since each byte stores seven dots, it takes 28 dots before the some of
the patterns repeat. Using two lines with different or offset
patterns gives even more variety.

The table SHADES in lines 1900-2050 give sixteen patterns. The first
four bytes of each color are for the first line of 28 dots, and the
other four bytes give the second line of 28 dots. Each lo-res pixel
will use only one pair of bytes from the set of eight, depending on
which column it is in. The last two bits of the lo-res column number
(in the Y-register) select which byte pair to use.

Lines 1650-1700 build an index to the byte pair by merging those two
bits with the color*8. Then by addressing "SHADE,X" I get the first
byte of a pair, and by using "SHADE+4,X" I get the second one. Each
lo-res pixel will use the four hi-res bytes by repeating the pair
selected from SHADES.

The rest of the code in PROCESS.NYBBLE involves putting the selected
color bytes into the hi-res area. HBAS points at the top line of the
four to be stored into, and the Y-register points to the byte on that
line; so "STA (HBAS),Y" will store into that byte. COMMON.CODE (so
named because of a lack of creativity on my part this morning when I
discovered that the same eight lines appeared twice) gets and puts two
color bytes. The first byte goes into (HBAS),Y; then I add 4 to the
high byte of HBAS (since I KNOW it is zero, ORA can be used to add the
bit) and store the second byte at the new (HBAS),Y. The "EOR #$0C" at
line 1720 changes $24 to $28 or $34 to $38. Similarly, the "EOR #$1C"
at line 1750 changes $2C to $30 or $3C to $20. This last possibility
leaves HBAS prepared for the next column, automatically!

Some of the same tricks could be used in writing a program to copy
text from the text screen to the hi-res graphics screen, or for a
general purpose routine to write characters onto the hi-res screen.
Instead of using a color map, we would need a table of dot-matrix
characters. Maybe this is just how everyone does it, but I don't
recall seeing all of these tricks in any previous code. Especially
the idea of getting the hi-res base pointer by merely toggling two

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2283 of 2550

Apple II Computer Info

bits in the equivalent text pointer, and the idea of generating
successive hi-res pointers by merely adding 4 to that base pointer.

When I wrote this program I wasn't really worrying about speed or
space. Nevertheless, as you can see, it is fairly compact. As for
speed, it takes less than a second.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2284 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Monthly.Disks.txt
==

Monthly AAL Source Disk Subscriptions Now Available

We have always made the source code of all the programs published in
Apple Assembly Line available on disks. We have collected the
programs from three issues together on Quarterly Disks, priced at $15
each or $45/year.

Now that diskettes are so much less expensive, we have decided to try
another approach. For those who are interested in getting the source
code on disk, we would like to send the source disk along with each
newsletter. We will still collect three issues onto Quarterly Disks,
for late comers. But those of you who have Quarterly Disk
subscriptions will start getting the Monthly Disks. We will send the
disk and newsletter in the same envelope, First Class Mail.

The price for combined newsletter/disk subscriptions will be $64 in
the USA, Canada, and Mexico. For other countries the postage is
higher, so the fee will be $87.

If you want to synchronize your newsletter and Monthly Disk
subscriptions, you can pro-rate the Monthly Disk at $3.75 per month
($4.75 for overseas). You can check the length remaining on your
current newsletter subscription by looking at the mailing label: the
number in the upper-right corner is the year and month of the last
issue of your current subscription.

If you currently are receiving the Quarterly Disk by an automatic
charge to your credit card each quarter there will be no change: you
will still get the Quarterly Disk rather than the monthly disk.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2285 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Multiplying.txt
==

Fast 6502 & 65802 Multiply Routines........Bob Sander-Cederlof

Since multiplication is not a built-in function in the 6502, 65C02, or
65802, many of us have written our own subroutines for the purpose. I
will present some efficient subroutines here, to handle the 8-bit and
16-bit cases.

I will assume both arguments are the same length (either 8-bits or 16-
bits) and that we want the full product. If the arguments are only 8-
bits long, the product will by 16-bits long. If the arguments are 16-
bits long, the product will be 32-bits long. I will also assume the
arguments are unsigned values. Thus $FF times $FF will be $FE01 (in
decimal, 255x255 = 65025).

Way back in February, 1981, I published an article with a Brooke
Boering's fast 16-bit multiplication subroutine. His subroutine
duplicated the functions of the subroutine in the original Apple
Monitor ROM, but was nearly twice as fast. Brooke's programs were
originally published in the December, 1980, Micro magazine (now
defunct). He included an 8-bit multiply subroutine with an average
time of only 192 cycles.

Damon Slye wrote an article for Call APPLE, published June, 1983. He
introduced some coding tricks which allow an 8-bit multiply in an
average of 160 cycles. I have reproduced Damon's program below, in
lines 1010-1300. His trick involves eliminating a CLC opcode from the
loop in lines 1210-1260. Ordinarily you would need a CLC before the
ADC instruction; Damon decremented the multiplicand by one before
starting the loop, so that adding with carry set works. He does the
decrementing in lines 1130-1160. Note that if the original
multiplicand was zero, he skips all the rest of the code and just
returns the answer: 0.

I had to go at least one step faster, so I partially "un-wrapped" the
8-step loop. I changed it to loop only four times, but handled two
bits of the multiplier each time. This runs an average time of 140
cycles. You could unwrap it all the way, writing out the BCC-ADC-ROR-
ROR lines a total of 8 times, and cut the average time down to only
111 cycles.

Let me stop here and say what I mean by average time. I am stating
time in terms of "cycles", rather than seconds or microseconds. The
Apple two different cycle times, depending on the video timing logic.
The average Apple speed is 1020488 cycles per second. The multiply
algorithms will vary in speed depending on the number of bits in the
multiplier which equal "1". If the multiplier = $FF (all ones) the
algorithm will take the maximum time. If the multiplier is $00, it
will take the minimum time. On the average for random arguments, the
multiplier will have four zeroes and four ones, so the average time is

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2286 of 2550

Apple II Computer Info

equal to the average of the minimum and maximum times. For all of the
subroutines, I included the cycles for a JSR to call them, and for the
RTS at the end.

I programmed an 8-bit multiply using 65802 opcodes, as shown below in
lines 1560-1790. The program is slightly shorter (one byte), but that
really isn't a fair comparison. The arguments and product are handled
differently, and so the effort to call the program may be more or less
than that for the 6502 version. Rather than passing the multiplicand
in the X-register, I have it in the A-register. I pass the multiplier
in the high byte of the A-register. Since X is not used for passing
any values, I saved and restored it (lines 1620 and 1770). I assumed
the program would be called from the 6502 mode, which of course it was
as long as I was testing it. In "real life" it might be written to be
called from Native 65802 mode, since the larger program it was a part
of would also be taking advantage of all the 65802 features.

I used a couple of tricks to save space and time. One you may justly
complain about is that I store the multiplicand directly into the
operand field of the ADC instruction at line 1720. This definitely
saves time, but it also could have serious drawbacks. (For example,
it would not work if executed from ROM.) Since I enter in 6502
Emulation mode, line 1640 only loads 0 into the low byte of the A-
register. Lines 1650-1660 enter the 65802 Native mode. Line 1680
sets the A-register to 16-bit mode.

In line 1690 I form the inverse (one's complement) of the multiplier.
This is just another way of eliminating the CLC from the loop. Note
that the multiplier is in the high byte of A, and the product is going
to be accumulated in the low byte. The loop runs from line 1700
through line 1740. Line 1700 shifts to the left both the partial
product and what remains of the multiplier, putting the highest
remaining bit of the multiplier into the carry status bit. If that
bit = 1, then the original bit in the multiplier before complementing
was a zero, so we do not add the multiplicand to the current partial
product. As we continue through the loop, the bits of the multiplier
keep shifting out just ahead of the ever-growing partial product,
until finally we have the answer.

Lines 1750-1780 restore the machine state to the 6502 Emulation mode
and restore the original X-register value. The full product is now in
the A-register. If I wanted to print out the product, I might do it
like this:

 XBA GET HIGH BYTE INTO LOW-A
 JSR $FDDA MONITOR PRINT-BYTE SUBROUTINE
 XBA GET LOW BYTE INTO LOW-A
 JMP $FDDA

Here is a summary of the execution times (in cycles) for the three 8-
bit multiply subroutines:

 Minimum Maximum Average
 Slye 152 168 160

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2287 of 2550

Apple II Computer Info

 RBSC 132 148 140
 65802 119 135 127

The 65802 version would be seven cycles faster if we did not require
saving and restoring the X-register. If you want to change the 65802
version for calling from Native mode, delete lines 1650, 1660, 1750,
and 1760. Then insert the following:

 1612 PHP
 1614 SEP #$30
 ...
 1772 PLP

These changes add one cycle to the time.

 <<<8x8 listings here>>>

I will also show three sample 16-bit multiply subroutines....no, four.
The first one is a copy of Brooke Boering's code. The second is a
direct conversion of Brooke's code to 65802 code, with emphasis on
space. The third modifies the second with the tricks of Damon Slye;
it takes more space, but it is faster.

The first three of these subroutines are modeled after the code in the
original Apple monitor ROM. The arguments are expected in page zero
locations, low-byte first. The result will also be in page zero
locations. The function performed is actally a little more than just
multiplication, because it is possible to specify an addend as well.
The final result will be PRODUCT = ADDEND + (MULTIPLIER *
MULTIPLICAND). PRODUCT is stored in four consecutive bytes,
backwards. The highest byte is at PRODUCT+1, the next at PRODUCT, the
next at PLIER+1, and the lowest at PLIER. The fourth subroutine
differs in that the product does not overlap the multiplier.

Looking at Brooke's version (lines 1000-1270) you can see that the
loop contains a 16-bit addition (lines 1130-1190). There are also two
16-bit ROR shifts, at lines 1200-1230. These are the likely
candidates for shortening via 65802 code. My first version for the
65802 made no other changes in the loop. I merely prefixed Brooke's
code with CLC-XCE-REP to get into the 16-bit Native mode, and suffixed
it with SEC-XCE to get back to Emulation mode. Then I noticed another
shortcut, and the result is in lines 1300-1480.

By moving the LDA PRODUCT up before the BCC opcode in lines 1370-1380,
I was able to change a ROR PRODUCT to a simple ROR on the A-register
followed by a STA PRODUCT. This saves a net six cycles when the
multiplier bit is "1", and costs two cycles when the multiplier bit is
"0". The average savings for random multipliers is four cycles,
inside a loop that runs 16 times.

The faster version, in lines 1500-1780, merely implements Damon Slye's
trick of pre-decrementing the multiplicand so as to avoid an explicit
CLC opcode inside the 16-time loop. It costs 12 cycles for the extra
setup, but it saves two cycles for each one-bit in the multiplier.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2288 of 2550

Apple II Computer Info

The fourth version, in the separate listing as lines 1000-1430, uses
the trick of splitting the multiplier in half. In effect, two
parallel 8-bit by 16-bit multiplies are accomplished, with the result
usually taking less time than any of the other algorithms. By
deleting line 1130 (which shaves off another four cycles) the feature
of allowing an addend can be included.

Here is a summary of the execution cycles for the four 16-bit multiply
subroutines:

 Minimum Maximum Average
 Boering 541 845 693
 Smaller 519 599 559
 Faster 531 579 555
 Fourth 332 684 508 (usually fastest)

Note that the third subroutine also goes even faster when the
multiplicand = zero, because the bulk of the code is skipped.

These are pretty good subroutines, but I have no doubt that they can
be improved upon. Why not try your hand? If you can significantly
improve either space or time or features, send your code to AAL.
We'll publish the best ones, and help advance the state of the art.
And if you have some classy division subroutines, they are welcome
too!

 <<<listings of 16x16 routines>>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2289 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:My.Ad.txt
==

S-C Macro Assembler Version 2.0......DOS $100, ProDOS $100, both for $120
ProDOS Upgrade Kit for Version 2.0 DOS owners.........................$30
Version 2.0 Upgrade Kit for 1.0/1.1/1.2 owners........................$20
Source Code of S-C Macro 2.0 (DOS only)...................additional $100
Full Screen Editor for S-C Macro (with complete source code)..........$49
S-C Cross Reference Utility......without source code $20, with source $50
RAK-Ware DISASM...$30
Source Code for DISASM.....................................additional $30
S-C Word Processor (with complete source code)........................$50
DP18 Source and Object..$50
Double Precision Floating Point for Applesoft (with source code)......$50
"Bag of Tricks", Worth & Lechner, with diskette.............($39.95) $36 *
MacASM -- Macro Assembler for MacIntosh (Mainstay).........($150.00) $100 *
S-C Documentor (complete commented source code of Applesoft ROMs).....$50
Source Code of //e CX & F8 ROMs on disk...............................$15
Cross Assemblers for owners of S-C Macro Assembler.....$32.50 to $50 each
 (Available: 6800/1/2, 6301, 6805, 6809, 68000, Z-80, Z-8, 8048,
 8051, 8085, 1802/4/5, PDP-11, GI1650/70, others)

AAL Quarterly Disks.........................each $15, or any four for $45
 Each disk contains the source code from three issues of AAL,
 saving you lots of typing and testing.
 The quarters are Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec.
(All source code is formatted for S-C Macro Assembler. Other assemblers
require some effort to convert file type and edit directives.)

Diskettes (with hub rings)......................... package of 20 for $20 *
Vinyl disk pages, 6"x8.5", hold two disks each..................10 for $6 *
Diskette Mailing Protectors (hold 1 or 2 disks).............40 cents each
 (Cardboard folders designed to fit 6"X9" Envelopes.) or $25 per 100 *
Envelopes for Diskette Mailers............................. 6 cents each

65802 Microprocessor (Western Design Center)...................($95) $50 *
quikLoader EPROM System (SCRG)................................($179) $170 *
PROmGRAMER (SCRG)..($149.50) $140 *
Switch-a-Slot (SCRG).......................................($179.50) $170 *
Extend-a-Slot (SCRG)...($35) $32 *

"Programming the 65816", Eyes...............................($22.95) $21 *
"Apple //e Reference Manual", Apple Computer................($24.95) $23 *
"Apple //c Reference Manual", Apple Computer................($24.95) $23 *
"ProDOS Technical Reference Manual", Apple Computer.........($29.95) $27 *
"Now That You Know Apple Assembly Language...", Gilder......($19.95) $18 *
"Apple ProDOS: Advanced Features for Programmers", Little..($17.95) $17 *
"Inside the Apple //c", Little..............................($19.95) $18 *
"Inside the Apple //e", Little..............................($19.95) $18 *
"Apple II+/IIe Troubleshooting & Repair Guide", Brenner.....($19.95) $18 *
"Apple][Circuit Description", Gayler......................($22.95) $21 *
"Understanding the Apple II", Sather........................($22.95) $21 *
"Understanding the Apple //e", Sather.......................($24.95) $23 *
"Enhancing Your Apple II, vol. 1", Lancaster................($15.95) $15 *
"Enhancing Your Apple II, vol. 2", Lancaster................($17.95) $17 *
"Assembly Cookbook for the Apple II/IIe", Lancaster.........($21.95) $20 *
"Beneath Apple DOS", Worth & Lechner........................($19.95) $18 *

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2290 of 2550

Apple II Computer Info

"Beneath Apple ProDOS", Worth & Lechner.....................($19.95) $18 *
"Real Time Programming -- Neglected Topics", Foster..........($9.95) $9 *
"Microcomputer Graphics", Myers.............................($12.95) $12 *
"Assem. Language for Applesoft Programmers", Finley & Myers.($16.95) $16 *
"Assembly Lines -- the Book", Wagner........................($19.95) $18 *
"AppleVisions", Bishop & Grossberger........................($39.95) $36 *

 * On these items add $2.00 for the first item and
 $.75 for each additional item for US shipping.
 Foreign customers inquire for postage needed.
 Texas residents please add 6 1/8 % sales tax to all orders.

 *** S-C SOFTWARE, P. O. BOX 280300, Dallas, TX 75228 ***
 *** (214) 324-2050 ***
 *** Master Card, VISA, Discover and American Express ***

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2291 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Parker.Trivia.txt
==

An Interesting Bit of Trivia........................Bill Parker

Some time ago I asked Bob S-C if he knew the origin of the term
"6502". Why was this particular number chosen? Bob didn't know, but
referred me to Bill Mensch at Western Design Center.

Bill worked at Motorola and was on the design team that created the
6800, which later led to the development of the 68000. He left
Motorola with a few others and formed MOS Technology (now absorbed
into Commodore), where they developed a new micro- processor which was
supposed to be an improved version of the 6800. Hence the decision
was made to use a number in the 6000 series. As for the hundreds
digit, Commodore already had chips that used just about every digit,
except "5". Thus, the "6500" series of chips was born.

As history tells us, the first chip in the series, the 6501, was too
close to Motorola's design, and had to be revised. The result was the
6502.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2292 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:Articles:Potts.TxtCopy.txt
==

Text File Transfer Using DOS 3.3 File Manager.....Bob Potts

Transferring text files from one drive to another can be frustrating
and time consuming. The standard procedure is to read from the file
on the source drive and write to the file on the target drive. One
possible solution is to use FID, but you must BRUN FID and cannot use
it from inside an Applesoft program.

With this in mind, I set out to write a utility which will transfer a
text file using the DOS 3.3 File Manager (FM) routines. FM has been a
part of every release of DOS, but very little documentation has been
written about these powerfull routines. While RWTS concerns itself
with tracks and sectors, FM deals with whole files, be they binary,
text, or Applesoft. I recalled that a couple of years ago, Bob
Sander-Cederlof had assisted me with a communications program and had
used the FM routines to read and store the file. I located the
listing we used, analyzed the code, and here is the result.

The entire program could have been written in assembler, but since
most of my programs are in Applesoft (with machine language support
routines), I decided to write it as simple as possible. The name of
the file to be transferred, the OPEN, READ, WRITE, and CLOSE commands
are all obtained through a short Applesoft front end program. The
machine language portion is broken down as follows.

Lines 1130-1150 are simply easily accessible jump vectors to the two
routines which will be CALLed from inside an Applesoft driver.

Lines 1190-1320 clear the buffer, in this case $2000-95FF, to zeroes.
This gives us a buffer of 30,208 bytes, which should be large enough
for most text files. (This is 118 sectors.) Lines 1330-1340 reset
the base buffer address, for use later to find the end of the data in
the buffer.

Lines 1360-1460 load the file that has been OPENed by the Applesoft
driver. The process of setting up a FM parameter block is simplified
by using a preset data area called RD.BLK, lines 1790-1800. Calling
FM.SETUP sets up the Y- and A-registers properly, and then calling
FM.ENTRY reads the text file.

Lines 1500-1580 search through the data buffer for the first
occurrence of a 00 byte, which will signal the end of data. By
subtracting the base buffer address in lines 1660-1710 we get the
actual length of the data. Lines 1600-1650 copy in the initial
parameter values for writing, and lines 1660-1710 set up the length.

Lines 1720-1740 call on FM to actually write the data on the file that
has been opened in the Applesoft driver.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2293 of 2550

Apple II Computer Info

The time saving using this transfer is significant. A text file
containing 8000 bytes took 49 seconds to read and write using pure
Applesoft. Using the FM the same operation was accomplished in only
17 seconds.

Since the program is only 120 bytes long, it can be placed almost
anywhere there is free space, especially on page 3. If you are
working from a larger Applesoft program, the starting point for the
buffer could be moved as needed to load your text file.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2294 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:DOS3.3:BrownMoveProg.txt
==

 1000 *SAVE BROWN'S MOVE PROGRAM
 1010 *--------------------------------
 1020 * MOVE by H. Brown
 1030 * Jan 18/86
 1040 *--------------------------------
 1050 PTR .EQ $00,01
 1060 BUFFER .EQ $200
 1070 RAMRD .EQ $C002
 1080 RAMWRT .EQ $C004
 1090 ALTZP .EQ $C008
 1100 BNKSEL .EQ $C073 RAMWORKS BANK SELECT REGISTER
 1110 ROM .EQ $C082
 1120 RAM1 .EQ $C08B
 1130 RAM2 .EQ $C083
 1140 *--------------------------------
 1150 .OR $C00 ORG AT BEGINNING OF A PAGE
 1160 *--------------------------------
 1170 COMMONPG
 1180 JMP INIT BRUN OR JSR TO INITIALIZE
 1190 JMP MOVE NORMAL ENTRY
 1200 *--------------------------------
 1210 * INIT copies COMMONPG to all 64K banks
 1220 *--------------------------------
 1230 INIT LDX BANKS START WITH LAST 64K BANK
 1240 .1 LDA BANKS,X GET BANK #
 1250 STA BNKSEL SELECT 64K BANK
 1260 STA RAMWRT+1 CHOOSE TO WRITE
 1270 LDY #0 COPY PAGE
 1280 .2 LDA COMMONPG,Y
 1290 STA COMMONPG,Y
 1300 INY
 1310 BNE .2 LOOP TO END OF PAGE
 1320 DEX
 1330 BNE .1 LOOP TO START OF TABLE
 1340 BEQ EXIT RESTORE STANDARD MEMORY
 1350 *--------------------------------
 1360 * enter MOVE with A = page (CX for 2nd DX)
 1370 * X = 64K bank #
 1380 * Carry SET for write, CLEAR for read
 1390 *--------------------------------
 1400 MOVE BCS .3 BRANCH IF WRITING
 1410 CMP #$C0
 1420 BCS .1 BRANCH IF UPPER 16K
 1430 CPX #$FF --- READ 48K ---
 1440 BEQ .2 SKIP IF MAIN 64K
 1450 STA RAMRD+1 READ FROM AUX 48K
 1460 STX BNKSEL SELECT 64K BANK
 1470 BNE .2
 1480 .1 JSR SEL16K --- READ 16K ---

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2295 of 2550

Apple II Computer Info

 1490 CPX #$FF
 1500 BEQ .2 SKIP IF MAIN 64K
 1510 STX BNKSEL SELECT 64K BANK
 1520 STA ALTZP+1 SELECT AUX 16K
 1530 .2 CLC
 1540 JSR COPYPAGE
 1550 BEQ EXIT
 1560 *--------------------------------
 1570 * WRITING
 1580 *--------------------------------
 1590 .3 CMP #$C0
 1600 BCS .4 BRANCH IF UPPER 16K
 1610 CPX #$FF --- WRITE 48K ---
 1620 BEQ .5 SKIP IF MAIN 64K
 1630 STX BNKSEL
 1640 STA RAMWRT+1 WRITING TO AUX 48K
 1650 BNE .5
 1660 .4 JSR SEL16K --- WRITE 16K ---
 1670 CPX #$FF
 1680 BEQ .5
 1690 STX BNKSEL
 1700 STA ALTZP+1
 1710 .5 SEC
 1720 JSR COPYPAGE
 1730 *--------------------------------
 1740 EXIT STY BNKSEL RESORE STD 64K FOR VIDEO
 1750 STA RAMWRT MAIN 48K
 1760 STA RAMRD
 1770 STA ALTZP MAIN 16K
 1780 LDA ROM
 1790 RTS
 1800 *--------------------------------
 1810 * BANKS is a table of 64K bank #'s, where
 1820 * FF = main 64k, 00 = alt 64K when no RAMWORKS
 1830 * 00,04,08,0C = banks of a 256K RAMworks
 1840 * 1st entry is # of banks
 1850 *--------------------------------
 1860 BANKS .HS 05 Five banks all told
 1870 .HS FF.00.04.08.0C
 1880 *--------------------------------
 1890 * COPYPAGE copies 256 bytes
 1900 * from (PTR) in specified bank to motherboard $200
 1910 * or from motherboard $200 to (PTR) in specified bank
 1920 *--------------------------------
 1930 COPYPAGE
 1940 STA PTR+1
 1950 LDY #0
 1960 STY PTR
 1970 BCS .2
 1980 .1 LDA (PTR),Y
 1990 STA BUFFER,Y
 2000 INY
 2010 BNE .1
 2020 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2296 of 2550

Apple II Computer Info

 2030 .2 LDA BUFFER,Y
 2040 STA (PTR),Y
 2050 INY
 2060 BNE .2
 2070 RTS
 2080 *--------------------------------
 2090 * SEL16K selects the appropriate bank in 16K area
 2100 *--------------------------------
 2110 SEL16K CMP #$D0
 2120 BCS .1
 2130 LDY RAM2 C0 -> AUX D0
 2140 LDY RAM2
 2150 ADC #$10
 2160 RTS
 2170 .1 LDY RAM1 SELECT RD/WRT RAM
 2180 LDY RAM1
 2190 RTS
 2200 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2297 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:DOS3.3:POTTS.A:S.TRANSFER.txt
==

'
≤ PROGRAM TO TRANSFER A TEXT FILEK≤ FROM DRIVE 1 TO DRIVE 2 USINGo-≤
DOS 3.3 FILE MANAGER ROUTINESù(≤---BY BOB POTTS, LOUISVILLE, KENTUCKY-
--∂c≤-------------------⁄d£8192:≤ $2000-95FF IS MY BUFFERÊnD$ –
Á(4)˚x∫D$"NOMON I,O,C" Ç∫D$"BLOAD TEXT.TRANSFER.OBJ"5 «≤------------
-------[»RF–768:≤CALL ADDRESS TO READ FILEÇ “WF–771:≤CALL ADDRESS TO
WRITE FILEÆ ‹RC–226:≤PEEK ADDRESS FOR FM RETURN CODE ,≤------
----------------Ë 6â:ó:∫"TEXT FILE TRANSFER"
@∫"------------------"
JÑ"ENTER FILE NAME: ";F$;
ê≤READ FILE FROM DRIVE 1O
ö∫D$"OPEN"F$",D1_
§∫D$"READ"F$g
ÆåRFx
∏≠‚(RC)–5ƒ500á
¬∫D$"CLOSE"¨
Ã∫"RETURN CODE NOT 'END OF DATA'"≤
÷≥Õ
Ù≤WRITE FILE TO DRIVE 2‹
˛∫D$"CLOSE"
∫D$"OPEN"F$",D2
∫D$"WRITE"F$
åWF
&≠‚(RC)–0ƒ600)
0∫D$"CLOSE"F
:∫"RETURN CODE WAS "‚(RC)L
D≥Z
X≤FINISHEDi
b∫D$"CLOSE"Ç
l∫"TRANSFER COMPLETE"à
vÄ

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2298 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:DOS3.3:PottsTextCopier.txt
==

 1000 *SAVE POTTS TEXT COPIER
 1010 *--------------------------------
 1020 .OR $300
 1025 .TF TEXT.TRANSFER.OBJ
 1030 *--------------------------------
 1040 MY.BUFFER .EQ $2000
 1050 *--------------------------------
 1060 BUFFER .EQ $E0,E1 POINT TO FILE BUFFER
 1070 RESULT .EQ $E2 FILE MANAGER RETURN CODE
 1080 *--------------------------------
 1090 FM.SETUP .EQ $3DC INITIALIZE Y & A
 1100 FM.ENTRY .EQ $3D6 FILE MANAGER ENTRY POINT
 1110 FM.BLK .EQ $B5BB FILE MANAGER PARM LIST
 1120 *--------------------------------
 1130 * SET UP JUMP VECTORS
 1140 JMP INITIALIZE.AND.READ
 1150 JMP FIND.END.AND.WRITE
 1160 *--------------------------------
 1170 INITIALIZE.AND.READ
 1180 *--------------------------------
 1190 INITIALIZE.THE.BUFFER
 1200 LDA #MY.BUFFER
 1210 STA BUFFER LSB
 1220 LDA /MY.BUFFER
 1230 STA BUFFER+1 MSB
 1240 LDY #0
 1250 .1 LDA #0 CLEAR BUFFER UP TO $95FF
 1260 .2 STA (BUFFER),Y
 1270 INY NEXT BYTE IN THIS PAGE
 1280 BNE .2 ...STILL IN THE PAGE
 1290 INC BUFFER+1 NEXT PAGE
 1300 LDA BUFFER+1
 1310 CMP #$96 AT END OF STORAGE?
 1320 BNE .1 ...NO, KEEP CLEARING
 1330 LDA /MY.BUFFER RESET BUFFER POINTER
 1340 STA BUFFER+1
 1350 *--------------------------------
 1360 READ.THE.FILE
 1370 LDX #9 10 BYTES
 1380 .1 LDA RD.BLK,X
 1390 STA FM.BLK,X
 1400 DEX
 1410 BPL .1
 1420 JSR FM.SETUP
 1430 JSR FM.ENTRY
 1440 LDA FM.BLK+10 GET RETURN CODE
 1450 STA RESULT SAVE FOR APPLESOFT PEEK
 1460 RTS RETURN TO APPLESOFT
 1470 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2299 of 2550

Apple II Computer Info

 1480 FIND.END.AND.WRITE
 1490 *--------------------------------
 1500 FIND.END.OF.BUFFER
 1510 LDY #0 SEARCH FOR 00 BYTE
 1520 .1 LDA (BUFFER),Y
 1530 BEQ .2 ...FOUND END
 1540 INY
 1550 BNE .1 ...NEXT BYTE IN SAME PAGE
 1560 INC BUFFER+1 NEXT PAGE
 1570 BNE .1 ...ALWAYS
 1580 .2 STY BUFFER LSB OF EOF BYTE
 1590 *--------------------------------
 1600 WRITE.FILE
 1610 LDX #9 10 BYTES
 1620 .1 LDA WR.BLK,X
 1630 STA FM.BLK,X
 1640 DEX
 1650 BPL .1
 1660 LDA BUFFER LSB
 1670 STA FM.BLK+6 LSB OF FILE LENGTH
 1680 SEC
 1690 LDA BUFFER+1
 1700 SBC /MY.BUFFER
 1710 STA FM.BLK+7 MSB OF FILE LENGTH
 1720 JSR FM.SETUP
 1730 LDX #1 IF NO FILE, ALLOCATE ONE
 1740 JSR FM.ENTRY WRITE THE FILE
 1750 LDA FM.BLK+10 RETURN CODE
 1760 STA RESULT SAVE FOR APPLESOFT PEEK
 1770 RTS RETURN TO APPLESOFT
 1780 *--------------------------------
 1790 RD.BLK .HS 03.02.0000.0000
 1800 .DA $9600-MY.BUFFER,MY.BUFFER
 1810 WR.BLK .HS 04.02.0000.0000
 1820 .DA $9600-MY.BUFFER,MY.BUFFER
 1830 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2300 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:DOS3.3:S.Lores2Hires.txt
==

 1000 *SAVE S.LORES TO HIRES
 1010 *--------------------------------
 1020 LBAS .EQ $26,27
 1030 HBAS .EQ $2A,2B
 1040 SAVEX .EQ $2E
 1050 COLOR .EQ $30
 1060 *--------------------------------
 1070 T
 1080 JSR PLOT
 1090 LDA $C050 GRAPHICS
 1100 LDA $C052 SOLID (40 BY 48 PIXELS)
 1110 LDA $C054 PRIMARY PAGE
 1120 .1 LDA $C056 LO-RES
 1130 JSR PAUSE.FOR.ANY.KEY
 1140 BEQ .2 ...<RETURN>
 1150 LDA $C057 HIRES
 1160 JSR CONVERT
 1170 JSR PAUSE.FOR.ANY.KEY
 1180 BNE .1 ...NOT <RETURN>
 1190 .2 LDA $C051 TEXT
 1200 RTS
 1210 *--------------------------------
 1220 PAUSE.FOR.ANY.KEY
 1230 .1 LDA $C000 WAIT FOR ANY KEY
 1240 BPL .1 ...NOT YET
 1250 STA $C010 CLEAR STROBE
 1260 CMP #$8D SET .EQ. IF <RETURN>
 1270 RTS
 1280 *--------------------------------
 1290 CONVERT
 1300 LDX #23 OR #19 IF MIXED MODE
 1310 .1 LDY #39 COLUMNS 0...39
 1320 LDA LOL,X SET UP BASE POINTER FOR LINE
 1330 STA LBAS
 1340 STA HBAS SAME FOR HI-RES
 1350 LDA LOH,X
 1360 STA LBAS+1
 1370 EOR #$24 SHIFT FROM $400 TO $2000 FOR HI-RES
 1380 STA HBAS+1
 1390 STX SAVEX SAVE X-REG
 1400 .2 LDA (LBAS),Y GET TWO LO-RES PIXELS
 1410 PHA SAVE FOR LOWER ONE
 1420 ASL UPPER PIXEL * 8
 1430 ASL
 1440 ASL
 1450 JSR PROCESS.NYBBLE
 1460 PLA GET LOWER PIXEL
 1470 LSR TIMES 8
 1480 JSR PROCESS.NYBBLE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2301 of 2550

Apple II Computer Info

 1490 DEY NEXT COLUMN, SCANNING RIGHT TO LEFT
 1500 BPL .2 ...ANOTHER ONE
 1510 LDX SAVEX RESTORE X-REG
 1520 DEX NEXT LINE, SCANNING BOTTOM TO TOP
 1530 BPL .1 ...ANOTHER ONE
 1540 RTS FINISHED!
 1550 *--------------------------------
 1560 LOH .HS 04.04.05.05.06.06.07.07 HIGH BYTES
 1570 .HS 04.04.05.05.06.06.07.07 OF SCRN PNTRS
 1580 .HS 04.04.05.05.06.06.07.07 (TEXT OR LO-RES)
 1590 *--------------------------------
 1600 LOL .HS 00.80.00.80.00.80.00.80 LOW BYTES
 1610 .HS 28.A8.28.A8.28.A8.28.A8 OF SCRN PNTRS
 1620 .HS 50.D0.50.D0.50.D0.50.D0
 1630 *--------------------------------
 1640 PROCESS.NYBBLE
 1650 AND #$78 MASK THE SHIFTED NYBBLE
 1660 STA COLOR
 1670 TYA LO-RES COLUMN
 1680 AND #3 LOW 2 BITS
 1690 ORA COLOR 0CCCC0YY
 1700 TAX
 1710 JSR COMMON.CODE
 1720 EOR #$0C 3RD LINE OF 4
 1730 STA HBAS+1
 1740 JSR COMMON.CODE
 1750 EOR #$1C NEXT LINE
 1760 STA HBAS+1
 1770 RTS
 1780 *--------------------------------
 1790 COMMON.CODE
 1800 LDA SHADES,X EVEN LINE
 1810 STA (HBAS),Y
 1820 LDA HBAS+1
 1830 ORA #4
 1840 STA HBAS+1
 1850 LDA SHADES+4,X ODD LINE
 1860 STA (HBAS),Y
 1870 LDA HBAS+1
 1880 RTS
 1890 *--------------------------------
 1900 SHADES .HS 00.00.00.00.00.00.00.00 0--BLACK
 1910 .HS AA.D5.AA.D5.55.2A.55.2A 1--MAGENTA
 1920 .HS 91.A2.C4.88.C4.88.91.A2 2--DARK BLUE
 1930 .HS 11.22.44.08.44.08.11.22 3--PURPLE
 1940 .HS 2A.55.2A.55.2A.55.2A.55 4--DARK GREEN
 1950 .HS 33.66.4C.19.4C.19.33.66 5--GRAY 1
 1960 .HS D5.AA.D5.AA.D5.AA.D5.AA 6--MEDIUM BLUE
 1970 .HS DD.BB.F7.EE.F7.EE.DD.BB 7--LIGHT BLUE
 1980 .HS A2.C4.88.91.88.91.A2.C4 8--BROWN
 1990 .HS AA.D5.AA.D5.AA.D5.AA.D5 9--ORANGE
 2000 .HS B3.E6.CC.99.CC.99.B3.E6 A--GRAY 2
 2010 .HS D5.AA.D5.AA.AA.D5.AA.D5 B--PINK
 2020 .HS 6E.5D.3B.77.3B.77.6E.5D C--LIGHT GREEN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2302 of 2550

Apple II Computer Info

 2030 .HS 2A.55.2A.55.AA.D5.AA.D5 D--YELLOW
 2040 .HS 2A.55.2A.55.D5.AA.D5.AA E--AQUAMARINE
 2050 .HS 7F.7F.7F.7F.7F.7F.7F.7F F--WHITE
 2060 *--------------------------------
 2070 * FILL CORNER WITH SAMPLES OF EACH COLOR
 2080 *--------------------------------
 2090 PLOT LDY #0
 2100 STY COLOR
 2110 .1 LDX #3
 2120 .2 LDA COLOR 00, 44, 88, CC
 2130 STA $400,Y GR ROWS 0-3
 2140 STA $480,Y
 2150 CLC
 2160 ADC #$11 11, 55, 99, DD
 2170 STA $500,Y GR ROWS 4-7
 2180 STA $580,Y
 2190 ADC #$11 22, 66, AA, EE
 2200 STA $600,Y GR ROWS 8-11
 2210 STA $680,Y
 2220 ADC #$11 33, 77, BB, FF
 2230 STA $700,Y GR ROWS 12-15
 2240 STA $780,Y
 2250 INY
 2260 DEX
 2270 BPL .2
 2280 ADC #$11 .., 44, 88, CC, END
 2290 STA COLOR
 2300 BCC .1 ...MORE
 2310 RTS
 2320 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2303 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:DOS3.3:S.M1616.802.EF.txt
==

 1000 *SAVE S.MUL.16X16.65802.EVEN.FASTER
 1010 *--------------------------------
 1020 .OP 65802
 1030 *--------------------------------
 1040 A .EQ 0,1
 1050 B .EQ 2,3
 1060 P .EQ 4,5,6,7
 1070 *--------------------------------
 1080 MUL.EVEN.FASTER
 1090 CLC
 1100 XCE ENTER NATIVE MODE
 1110 REP #$20 16-BIT A-REGISTER
 1120 STZ P+2 MAKE SURE NO ADDEND IN HI-16
 1130 STZ P (DELETE IF WANT AN ADDEND IN LO-16)
 1140 LDX #8
 1150 BRA .2 ...HOP OVER SHIFTS
 1160 *--------------------------------
 1170 .1 ASL P DOUBLE THE PRODUCT
 1180 ROL P+2
 1190 .2 LDA A
 1200 AND ##$0080 LOOK AT SIGN OF LO-BYTE
 1210 BEQ .3 ...DON'T ADD MULTIPLICAND
 1220 CLC
 1230 LDA P
 1240 ADC B
 1250 STA P
 1260 BCC .3
 1270 INC P+2 ADD CARRY TO HI-16
 1280 *--------------------------------
 1290 .3 ASL A SHIFT MULTIPLIER
 1300 BCC .4
 1310 CLC
 1320 LDA P+1 ADD TO MIDDLE OF PRODUCT
 1330 ADC B
 1340 STA P+1
 1350 BCC .4
 1360 INC P+3 (NEVER BOTHERS P+4)
 1370 *--------------------------------
 1380 .4 DEX
 1390 BNE .1
 1400 SEC
 1410 XCE
 1420 RTS
 1430 *--------------------------------
 1440 T
 1450 JSR MUL.EVEN.FASTER
 1460 LDA P+3
 1470 JSR PRB
 1480 LDA P+2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2304 of 2550

Apple II Computer Info

 1490 JSR PRB
 1500 LDA P+1
 1510 JSR PRB
 1520 LDA P+0
 1530 PRB JMP $FDDA
 1540 *--------------------------------
 1550 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2305 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:DOS3.3:S.Mult.16.16.txt
==

 1000 *SAVE S.MULTIPLY 16X16
 1010 *--------------------------------
 1020 PLICAND .EQ $00,01 MULTIPLICAND
 1030 PLIER .EQ $02,03 MULTIPLIER, LO-16 OF PRODUCT
 1040 PRODUCT .EQ $04,05 HI-16 OF PRODUCT
 1050 *--------------------------------
 1060 .OP 6502
 1070 *--------------------------------
 1080 MULTIPLY.16X16.6502
 1090 LDX #16
 1100 .1 LDA PLIER CHECK NEXT BIT OF MULTIPLIER
 1110 LSR
 1120 BCC .2 ...DON'T ADD MULTIPLICAND
 1130 CLC
 1140 LDA PRODUCT
 1150 ADC PLICAND
 1160 STA PRODUCT
 1170 LDA PRODUCT+1
 1180 ADC PLICAND+1
 1190 STA PRODUCT+1
 1200 .2 ROR PRODUCT+1
 1210 ROR PRODUCT
 1220 ROR PLIER+1
 1230 ROR PLIER
 1240 DEX
 1250 BNE .1
 1260 RTS
 1270 *--------------------------------
 1280 .OP 65802
 1290 *--------------------------------
 1300 MULTIPLY.16X16.65802.SMALLER
 1310 CLC
 1320 XCE NATIVE MODE
 1330 REP #$20 A-REG 16-BITS
 1340 LDX #16 LOOP 16 TIMES
 1350 .1 LDA PLIER CHECK NEXT BIT OF MULTIPLIER
 1360 LSR
 1370 LDA PRODUCT GET HI-16 OF PRODUCT
 1380 BCC .2 ...DO NOT NEED TO ADD
 1390 CLC
 1400 ADC PLICAND
 1410 .2 ROR
 1420 STA PRODUCT
 1430 ROR PLIER USE FOR LO-16 OF PRODUCT
 1440 DEX
 1450 BNE .1
 1460 SEC
 1470 XCE BACK TO EMULATION MODE
 1480 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2306 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 MULTIPLY.16X16.65802.FASTER
 1510 CLC
 1520 XCE NATIVE MODE
 1530 REP #$20 A-REG 16-BITS
 1540 LDA PLICAND
 1550 BEQ .3 0*ANYTHING=0
 1560 DEC
 1570 STA PLICAND
 1580 LDX #16 LOOP 16 TIMES
 1590 .1 LDA PLIER CHECK NEXT BIT OF MULTIPLIER
 1600 LSR
 1610 LDA PRODUCT GET HI-16 OF PRODUCT
 1620 BCC .2 ...DO NOT NEED TO ADD
 1630 ADC PLICAND
 1640 .2 ROR
 1650 STA PRODUCT
 1660 ROR PLIER USE FOR LO-16 OF PRODUCT
 1670 DEX
 1680 BNE .1
 1690 SEC
 1700 XCE BACK TO EMULATION MODE
 1710 RTS
 1720 .3 LDA PRODUCT INITIAL ADDEND
 1730 STA PLIER LOW 16 OF PRODUCT
 1740 STZ PRODUCT HIGH 16 OF PRODUCT
 1750 SEC
 1760 XCE BACK TO EMULATION MODE
 1770 RTS
 1780 *--------------------------------
 1790 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2307 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:DOS3.3:S.MULTIPLY.8X8.txt
==

 1000 *SAVE S.MULTIPLY 8X8
 1010 *--------------------------------
 1020 CAND .EQ 2
 1030 PLIER .EQ 3
 1040 PROD .EQ 4,5
 1050 *--------------------------------
 1060 * FAST 6502 MULTIPLICATION, BY DAMON SLYE
 1070 * CALL APPLE, JUNE 1983, P45-48.
 1080 * (A-REG) = MULTIPLIER
 1090 * (X-REG) = MULTIPLICAND
 1100 * RETURNS PRODUCT IN A,X (X=LO-BYTE)
 1110 *--------------------------------
 1120 FAST.8X8.SLYE
 1130 CPX #0
 1140 BEQ .3 A*0=0
 1150 DEX DECR. CAND TO AVOID
 1160 STX CAND THE CLC BEFORE ADC CAND
 1170 LSR PREPARE FIRST BIT
 1180 STA PLIER
 1190 LDA #0
 1200 LDX #8
 1210 .1 BCC .2 NO ADD
 1220 ADC CAND
 1230 .2 ROR
 1240 ROR PLIER
 1250 DEX
 1260 BNE .1
 1270 LDX PLIER
 1280 RTS
 1290 .3 TXA
 1300 RTS
 1310 *--------------------------------
 1320 FAST.8X8.RBSC
 1330 CPX #0
 1340 BEQ .3 A*0=0
 1350 DEX DECR. CAND TO AVOID
 1360 STX CAND THE CLC BEFORE ADC CAND
 1370 LSR PREPARE FIRST BIT
 1380 STA PLIER
 1390 LDA #0
 1400 LDX #4
 1410 .1 BCC .2 NO ADD
 1420 ADC CAND
 1430 .2 ROR
 1440 ROR PLIER
 1450 BCC .25 NO ADD
 1460 ADC CAND
 1470 .25 ROR
 1480 ROR PLIER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2308 of 2550

Apple II Computer Info

 1490 DEX
 1500 BNE .1
 1510 LDX PLIER
 1520 RTS
 1530 .3 TXA
 1540 RTS
 1550 *--------------------------------
 1560 .OP 65816
 1570 *--------------------------------
 1580 * MULTIPLIER IN A(15-8), MULTIPLICAND IN A(7-0)
 1590 * RETURN PRODUCT IN A(15-0)
 1600 *--------------------------------
 1610 MULTIPLY.8X8.65802
 1620 PHX
 1630 STA .2+1 SAVE MULTIPLICAND
 1640 LDA #0
 1650 CLC
 1660 XCE
 1670 LDX #8
 1680 REP #$20 A-REG 16 BITS
 1690 EOR ##$FF00 COMPLEMENT MULTIPLIER
 1700 .1 ASL
 1710 BCS .3 ...IF ORIGINAL BIT=0
 1720 .2 ADC ##0 ADD MULTIPLICAND
 1730 .3 DEX
 1740 BNE .1
 1750 SEC
 1760 XCE
 1770 PLX
 1780 RTS
 1790 *--------------------------------
 1800 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2309 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:DOS3.3:TextTransferObj.txt
==

™‡ Ωÿ\ù◊\ËêÛ©†ù◊\`ò™©†ù◊\Ë‡-ê¯` Lçtò™Ë‡-∞Ω◊\Õt–Ûä® ä
 LÕt ‰hh≠nLa

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2310 of 2550

Apple II Computer Info

LX†π◊ \…†–àˆ¿ »`≠p …
†±ô‘\»¿!êˆ`òH≠p …
†π‘\ë»

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2311 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:ProDOS:BROWNS.MOVE.txt
==

 1000 *SAVE BROWNS.MOVE
 1010 *--------------------------------
 1020 * MOVE by H. Brown
 1030 * Jan 18/86
 1040 *--------------------------------
 1050 PTR .EQ $00,01
 1060 BUFFER .EQ $200
 1070 RAMRD .EQ $C002
 1080 RAMWRT .EQ $C004
 1090 ALTZP .EQ $C008
 1100 BNKSEL .EQ $C073 RAMWORKS BANK SELECT REGISTER
 1110 ROM .EQ $C082
 1120 RAM1 .EQ $C08B
 1130 RAM2 .EQ $C083
 1140 *--------------------------------
 1150 .OR $C00 ORG AT BEGINNING OF A PAGE
 1160 *--------------------------------
 1170 COMMONPG
 1180 JMP INIT BRUN OR JSR TO INITIALIZE
 1190 JMP MOVE NORMAL ENTRY
 1200 *--------------------------------
 1210 * INIT copies COMMONPG to all 64K banks
 1220 *--------------------------------
 1230 INIT LDX BANKS START WITH LAST 64K BANK
 1240 .1 LDA BANKS,X GET BANK #
 1250 STA BNKSEL SELECT 64K BANK
 1260 STA RAMWRT+1 CHOOSE TO WRITE
 1270 LDY #0 COPY PAGE
 1280 .2 LDA COMMONPG,Y
 1290 STA COMMONPG,Y
 1300 INY
 1310 BNE .2 LOOP TO END OF PAGE
 1320 DEX
 1330 BNE .1 LOOP TO START OF TABLE
 1340 BEQ EXIT RESTORE STANDARD MEMORY
 1350 *--------------------------------
 1360 * enter MOVE with A = page (CX for 2nd DX)
 1370 * X = 64K bank #
 1380 * Carry SET for write, CLEAR for read
 1390 *--------------------------------
 1400 MOVE BCS .3 BRANCH IF WRITING
 1410 CMP #$C0
 1420 BCS .1 BRANCH IF UPPER 16K
 1430 CPX #$FF --- READ 48K ---
 1440 BEQ .2 SKIP IF MAIN 64K
 1450 STA RAMRD+1 READ FROM AUX 48K
 1460 STX BNKSEL SELECT 64K BANK
 1470 BNE .2
 1480 .1 JSR SEL16K --- READ 16K ---

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2312 of 2550

Apple II Computer Info

 1490 CPX #$FF
 1500 BEQ .2 SKIP IF MAIN 64K
 1510 STX BNKSEL SELECT 64K BANK
 1520 STA ALTZP+1 SELECT AUX 16K
 1530 .2 CLC
 1540 JSR COPYPAGE
 1550 BEQ EXIT
 1560 *--------------------------------
 1570 * WRITING
 1580 *--------------------------------
 1590 .3 CMP #$C0
 1600 BCS .4 BRANCH IF UPPER 16K
 1610 CPX #$FF --- WRITE 48K ---
 1620 BEQ .5 SKIP IF MAIN 64K
 1630 STX BNKSEL
 1640 STA RAMWRT+1 WRITING TO AUX 48K
 1650 BNE .5
 1660 .4 JSR SEL16K --- WRITE 16K ---
 1670 CPX #$FF
 1680 BEQ .5
 1690 STX BNKSEL
 1700 STA ALTZP+1
 1710 .5 SEC
 1720 JSR COPYPAGE
 1730 *--------------------------------
 1740 EXIT STY BNKSEL RESORE STD 64K FOR VIDEO
 1750 STA RAMWRT MAIN 48K
 1760 STA RAMRD
 1770 STA ALTZP MAIN 16K
 1780 LDA ROM
 1790 RTS
 1800 *--------------------------------
 1810 * BANKS is a table of 64K bank #'s, where
 1820 * FF = main 64k, 00 = alt 64K when no RAMWORKS
 1830 * 00,04,08,0C = banks of a 256K RAMworks
 1840 * 1st entry is # of banks
 1850 *--------------------------------
 1860 BANKS .HS 05 Five banks all told
 1870 .HS FF.00.04.08.0C
 1880 *--------------------------------
 1890 * COPYPAGE copies 256 bytes
 1900 * from (PTR) in specified bank to motherboard $200
 1910 * or from motherboard $200 to (PTR) in specified bank
 1920 *--------------------------------
 1930 COPYPAGE
 1940 STA PTR+1
 1950 LDY #0
 1960 STY PTR
 1970 BCS .2
 1980 .1 LDA (PTR),Y
 1990 STA BUFFER,Y
 2000 INY
 2010 BNE .1
 2020 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2313 of 2550

Apple II Computer Info

 2030 .2 LDA BUFFER,Y
 2040 STA (PTR),Y
 2050 INY
 2060 BNE .2
 2070 RTS
 2080 *--------------------------------
 2090 * SEL16K selects the appropriate bank in 16K area
 2100 *--------------------------------
 2110 SEL16K CMP #$D0
 2120 BCS .1
 2130 LDY RAM2 C0 -> AUX D0
 2140 LDY RAM2
 2150 ADC #$10
 2160 RTS
 2170 .1 LDY RAM1 SELECT RD/WRT RAM
 2180 LDY RAM1
 2190 RTS
 2200 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2314 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:ProDOS:POTTSTEXTCOPIER.txt
==

 1000 *SAVE POTTS TEXT COPIER
 1010 *--------------------------------
 1020 .OR $300
 1025 .TF TEXT.TRANSFER.OBJ
 1030 *--------------------------------
 1040 MY.BUFFER .EQ $2000
 1050 *--------------------------------
 1060 BUFFER .EQ $E0,E1 POINT TO FILE BUFFER
 1070 RESULT .EQ $E2 FILE MANAGER RETURN CODE
 1080 *--------------------------------
 1090 FM.SETUP .EQ $3DC INITIALIZE Y & A
 1100 FM.ENTRY .EQ $3D6 FILE MANAGER ENTRY POINT
 1110 FM.BLK .EQ $B5BB FILE MANAGER PARM LIST
 1120 *--------------------------------
 1130 * SET UP JUMP VECTORS
 1140 JMP INITIALIZE.AND.READ
 1150 JMP FIND.END.AND.WRITE
 1160 *--------------------------------
 1170 INITIALIZE.AND.READ
 1180 *--------------------------------
 1190 INITIALIZE.THE.BUFFER
 1200 LDA #MY.BUFFER
 1210 STA BUFFER LSB
 1220 LDA /MY.BUFFER
 1230 STA BUFFER+1 MSB
 1240 LDY #0
 1250 .1 LDA #0 CLEAR BUFFER UP TO $95FF
 1260 .2 STA (BUFFER),Y
 1270 INY NEXT BYTE IN THIS PAGE
 1280 BNE .2 ...STILL IN THE PAGE
 1290 INC BUFFER+1 NEXT PAGE
 1300 LDA BUFFER+1
 1310 CMP #$96 AT END OF STORAGE?
 1320 BNE .1 ...NO, KEEP CLEARING
 1330 LDA /MY.BUFFER RESET BUFFER POINTER
 1340 STA BUFFER+1
 1350 *--------------------------------
 1360 READ.THE.FILE
 1370 LDX #9 10 BYTES
 1380 .1 LDA RD.BLK,X
 1390 STA FM.BLK,X
 1400 DEX
 1410 BPL .1
 1420 JSR FM.SETUP
 1430 JSR FM.ENTRY
 1440 LDA FM.BLK+10 GET RETURN CODE
 1450 STA RESULT SAVE FOR APPLESOFT PEEK
 1460 RTS RETURN TO APPLESOFT
 1470 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2315 of 2550

Apple II Computer Info

 1480 FIND.END.AND.WRITE
 1490 *--------------------------------
 1500 FIND.END.OF.BUFFER
 1510 LDY #0 SEARCH FOR 00 BYTE
 1520 .1 LDA (BUFFER),Y
 1530 BEQ .2 ...FOUND END
 1540 INY
 1550 BNE .1 ...NEXT BYTE IN SAME PAGE
 1560 INC BUFFER+1 NEXT PAGE
 1570 BNE .1 ...ALWAYS
 1580 .2 STY BUFFER LSB OF EOF BYTE
 1590 *--------------------------------
 1600 WRITE.FILE
 1610 LDX #9 10 BYTES
 1620 .1 LDA WR.BLK,X
 1630 STA FM.BLK,X
 1640 DEX
 1650 BPL .1
 1660 LDA BUFFER LSB
 1670 STA FM.BLK+6 LSB OF FILE LENGTH
 1680 SEC
 1690 LDA BUFFER+1
 1700 SBC /MY.BUFFER
 1710 STA FM.BLK+7 MSB OF FILE LENGTH
 1720 JSR FM.SETUP
 1730 LDX #1 IF NO FILE, ALLOCATE ONE
 1740 JSR FM.ENTRY WRITE THE FILE
 1750 LDA FM.BLK+10 RETURN CODE
 1760 STA RESULT SAVE FOR APPLESOFT PEEK
 1770 RTS RETURN TO APPLESOFT
 1780 *--------------------------------
 1790 RD.BLK .HS 03.02.0000.0000
 1800 .DA $9600-MY.BUFFER,MY.BUFFER
 1810 WR.BLK .HS 04.02.0000.0000
 1820 .DA $9600-MY.BUFFER,MY.BUFFER
 1830 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2316 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:ProDOS:S.LORESTOHIRES.txt
==

 1000 *SAVE S.LORES TO HIRES
 1010 *--------------------------------
 1020 LBAS .EQ $26,27
 1030 HBAS .EQ $2A,2B
 1040 SAVEX .EQ $2E
 1050 COLOR .EQ $30
 1060 *--------------------------------
 1070 T
 1080 JSR PLOT
 1090 LDA $C050 GRAPHICS
 1100 LDA $C052 SOLID (40 BY 48 PIXELS)
 1110 LDA $C054 PRIMARY PAGE
 1120 .1 LDA $C056 LO-RES
 1130 JSR PAUSE.FOR.ANY.KEY
 1140 BEQ .2 ...<RETURN>
 1150 LDA $C057 HIRES
 1160 JSR CONVERT
 1170 JSR PAUSE.FOR.ANY.KEY
 1180 BNE .1 ...NOT <RETURN>
 1190 .2 LDA $C051 TEXT
 1200 RTS
 1210 *--------------------------------
 1220 PAUSE.FOR.ANY.KEY
 1230 .1 LDA $C000 WAIT FOR ANY KEY
 1240 BPL .1 ...NOT YET
 1250 STA $C010 CLEAR STROBE
 1260 CMP #$8D SET .EQ. IF <RETURN>
 1270 RTS
 1280 *--------------------------------
 1290 CONVERT
 1300 LDX #23 OR #19 IF MIXED MODE
 1310 .1 LDY #39 COLUMNS 0...39
 1320 LDA LOL,X SET UP BASE POINTER FOR LINE
 1330 STA LBAS
 1340 STA HBAS SAME FOR HI-RES
 1350 LDA LOH,X
 1360 STA LBAS+1
 1370 EOR #$24 SHIFT FROM $400 TO $2000 FOR HI-RES
 1380 STA HBAS+1
 1390 STX SAVEX SAVE X-REG
 1400 .2 LDA (LBAS),Y GET TWO LO-RES PIXELS
 1410 PHA SAVE FOR LOWER ONE
 1420 ASL UPPER PIXEL * 8
 1430 ASL
 1440 ASL
 1450 JSR PROCESS.NYBBLE
 1460 PLA GET LOWER PIXEL
 1470 LSR TIMES 8
 1480 JSR PROCESS.NYBBLE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2317 of 2550

Apple II Computer Info

 1490 DEY NEXT COLUMN, SCANNING RIGHT TO LEFT
 1500 BPL .2 ...ANOTHER ONE
 1510 LDX SAVEX RESTORE X-REG
 1520 DEX NEXT LINE, SCANNING BOTTOM TO TOP
 1530 BPL .1 ...ANOTHER ONE
 1540 RTS FINISHED!
 1550 *--------------------------------
 1560 LOH .HS 04.04.05.05.06.06.07.07 HIGH BYTES
 1570 .HS 04.04.05.05.06.06.07.07 OF SCRN PNTRS
 1580 .HS 04.04.05.05.06.06.07.07 (TEXT OR LO-RES)
 1590 *--------------------------------
 1600 LOL .HS 00.80.00.80.00.80.00.80 LOW BYTES
 1610 .HS 28.A8.28.A8.28.A8.28.A8 OF SCRN PNTRS
 1620 .HS 50.D0.50.D0.50.D0.50.D0
 1630 *--------------------------------
 1640 PROCESS.NYBBLE
 1650 AND #$78 MASK THE SHIFTED NYBBLE
 1660 STA COLOR
 1670 TYA LO-RES COLUMN
 1680 AND #3 LOW 2 BITS
 1690 ORA COLOR 0CCCC0YY
 1700 TAX
 1710 JSR COMMON.CODE
 1720 EOR #$0C 3RD LINE OF 4
 1730 STA HBAS+1
 1740 JSR COMMON.CODE
 1750 EOR #$1C NEXT LINE
 1760 STA HBAS+1
 1770 RTS
 1780 *--------------------------------
 1790 COMMON.CODE
 1800 LDA SHADES,X EVEN LINE
 1810 STA (HBAS),Y
 1820 LDA HBAS+1
 1830 ORA #4
 1840 STA HBAS+1
 1850 LDA SHADES+4,X ODD LINE
 1860 STA (HBAS),Y
 1870 LDA HBAS+1
 1880 RTS
 1890 *--------------------------------
 1900 SHADES .HS 00.00.00.00.00.00.00.00 0--BLACK
 1910 .HS AA.D5.AA.D5.55.2A.55.2A 1--MAGENTA
 1920 .HS 91.A2.C4.88.C4.88.91.A2 2--DARK BLUE
 1930 .HS 11.22.44.08.44.08.11.22 3--PURPLE
 1940 .HS 2A.55.2A.55.2A.55.2A.55 4--DARK GREEN
 1950 .HS 33.66.4C.19.4C.19.33.66 5--GRAY 1
 1960 .HS D5.AA.D5.AA.D5.AA.D5.AA 6--MEDIUM BLUE
 1970 .HS DD.BB.F7.EE.F7.EE.DD.BB 7--LIGHT BLUE
 1980 .HS A2.C4.88.91.88.91.A2.C4 8--BROWN
 1990 .HS AA.D5.AA.D5.AA.D5.AA.D5 9--ORANGE
 2000 .HS B3.E6.CC.99.CC.99.B3.E6 A--GRAY 2
 2010 .HS D5.AA.D5.AA.AA.D5.AA.D5 B--PINK
 2020 .HS 6E.5D.3B.77.3B.77.6E.5D C--LIGHT GREEN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2318 of 2550

Apple II Computer Info

 2030 .HS 2A.55.2A.55.AA.D5.AA.D5 D--YELLOW
 2040 .HS 2A.55.2A.55.D5.AA.D5.AA E--AQUAMARINE
 2050 .HS 7F.7F.7F.7F.7F.7F.7F.7F F--WHITE
 2060 *--------------------------------
 2070 * FILL CORNER WITH SAMPLES OF EACH COLOR
 2080 *--------------------------------
 2090 PLOT LDY #0
 2100 STY COLOR
 2110 .1 LDX #3
 2120 .2 LDA COLOR 00, 44, 88, CC
 2130 STA $400,Y GR ROWS 0-3
 2140 STA $480,Y
 2150 CLC
 2160 ADC #$11 11, 55, 99, DD
 2170 STA $500,Y GR ROWS 4-7
 2180 STA $580,Y
 2190 ADC #$11 22, 66, AA, EE
 2200 STA $600,Y GR ROWS 8-11
 2210 STA $680,Y
 2220 ADC #$11 33, 77, BB, FF
 2230 STA $700,Y GR ROWS 12-15
 2240 STA $780,Y
 2250 INY
 2260 DEX
 2270 BPL .2
 2280 ADC #$11 .., 44, 88, CC, END
 2290 STA COLOR
 2300 BCC .1 ...MORE
 2310 RTS
 2320 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2319 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:ProDOS:S.MUL16X1665802.txt
==

 1000 *SAVE S.MUL16X1665802
 1010 *--------------------------------
 1020 .OP 65802
 1030 *--------------------------------
 1040 A .EQ 0,1
 1050 B .EQ 2,3
 1060 P .EQ 4,5,6,7
 1070 *--------------------------------
 1080 MUL.EVEN.FASTER
 1090 CLC
 1100 XCE ENTER NATIVE MODE
 1110 REP #$20 16-BIT A-REGISTER
 1120 STZ P+2 MAKE SURE NO ADDEND IN HI-16
 1130 STZ P (DELETE IF WANT AN ADDEND IN LO-16)
 1140 LDX #8
 1150 BRA .2 ...HOP OVER SHIFTS
 1160 *--------------------------------
 1170 .1 ASL P DOUBLE THE PRODUCT
 1180 ROL P+2
 1190 .2 LDA A
 1200 AND ##$0080 LOOK AT SIGN OF LO-BYTE
 1210 BEQ .3 ...DON'T ADD MULTIPLICAND
 1220 CLC
 1230 LDA P
 1240 ADC B
 1250 STA P
 1260 BCC .3
 1270 INC P+2 ADD CARRY TO HI-16
 1280 *--------------------------------
 1290 .3 ASL A SHIFT MULTIPLIER
 1300 BCC .4
 1310 CLC
 1320 LDA P+1 ADD TO MIDDLE OF PRODUCT
 1330 ADC B
 1340 STA P+1
 1350 BCC .4
 1360 INC P+3 (NEVER BOTHERS P+4)
 1370 *--------------------------------
 1380 .4 DEX
 1390 BNE .1
 1400 SEC
 1410 XCE
 1420 RTS
 1430 *--------------------------------
 1440 T
 1450 JSR MUL.EVEN.FASTER
 1460 LDA P+3
 1470 JSR PRB
 1480 LDA P+2

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2320 of 2550

Apple II Computer Info

 1490 JSR PRB
 1500 LDA P+1
 1510 JSR PRB
 1520 LDA P+0
 1530 PRB JMP $FDDA
 1540 *--------------------------------
 1550 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2321 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:ProDOS:S.MULTIPLY16X16.txt
==

 1000 *SAVE S.MULTIPLY 16X16
 1010 *--------------------------------
 1020 PLICAND .EQ $00,01 MULTIPLICAND
 1030 PLIER .EQ $02,03 MULTIPLIER, LO-16 OF PRODUCT
 1040 PRODUCT .EQ $04,05 HI-16 OF PRODUCT
 1050 *--------------------------------
 1060 .OP 6502
 1070 *--------------------------------
 1080 MULTIPLY.16X16.6502
 1090 LDX #16
 1100 .1 LDA PLIER CHECK NEXT BIT OF MULTIPLIER
 1110 LSR
 1120 BCC .2 ...DON'T ADD MULTIPLICAND
 1130 CLC
 1140 LDA PRODUCT
 1150 ADC PLICAND
 1160 STA PRODUCT
 1170 LDA PRODUCT+1
 1180 ADC PLICAND+1
 1190 STA PRODUCT+1
 1200 .2 ROR PRODUCT+1
 1210 ROR PRODUCT
 1220 ROR PLIER+1
 1230 ROR PLIER
 1240 DEX
 1250 BNE .1
 1260 RTS
 1270 *--------------------------------
 1280 .OP 65802
 1290 *--------------------------------
 1300 MULTIPLY.16X16.65802.SMALLER
 1310 CLC
 1320 XCE NATIVE MODE
 1330 REP #$20 A-REG 16-BITS
 1340 LDX #16 LOOP 16 TIMES
 1350 .1 LDA PLIER CHECK NEXT BIT OF MULTIPLIER
 1360 LSR
 1370 LDA PRODUCT GET HI-16 OF PRODUCT
 1380 BCC .2 ...DO NOT NEED TO ADD
 1390 CLC
 1400 ADC PLICAND
 1410 .2 ROR
 1420 STA PRODUCT
 1430 ROR PLIER USE FOR LO-16 OF PRODUCT
 1440 DEX
 1450 BNE .1
 1460 SEC
 1470 XCE BACK TO EMULATION MODE
 1480 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2322 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 MULTIPLY.16X16.65802.FASTER
 1510 CLC
 1520 XCE NATIVE MODE
 1530 REP #$20 A-REG 16-BITS
 1540 LDA PLICAND
 1550 BEQ .3 0*ANYTHING=0
 1560 DEC
 1570 STA PLICAND
 1580 LDX #16 LOOP 16 TIMES
 1590 .1 LDA PLIER CHECK NEXT BIT OF MULTIPLIER
 1600 LSR
 1610 LDA PRODUCT GET HI-16 OF PRODUCT
 1620 BCC .2 ...DO NOT NEED TO ADD
 1630 ADC PLICAND
 1640 .2 ROR
 1650 STA PRODUCT
 1660 ROR PLIER USE FOR LO-16 OF PRODUCT
 1670 DEX
 1680 BNE .1
 1690 SEC
 1700 XCE BACK TO EMULATION MODE
 1710 RTS
 1720 .3 LDA PRODUCT INITIAL ADDEND
 1730 STA PLIER LOW 16 OF PRODUCT
 1740 STZ PRODUCT HIGH 16 OF PRODUCT
 1750 SEC
 1760 XCE BACK TO EMULATION MODE
 1770 RTS
 1780 *--------------------------------
 1790 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2323 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8601:ProDOS:S.MULTIPLY8X8.txt
==

 1000 *SAVE S.MULTIPLY 8X8
 1010 *--------------------------------
 1020 CAND .EQ 2
 1030 PLIER .EQ 3
 1040 PROD .EQ 4,5
 1050 *--------------------------------
 1060 * FAST 6502 MULTIPLICATION, BY DAMON SLYE
 1070 * CALL APPLE, JUNE 1983, P45-48.
 1080 * (A-REG) = MULTIPLIER
 1090 * (X-REG) = MULTIPLICAND
 1100 * RETURNS PRODUCT IN A,X (X=LO-BYTE)
 1110 *--------------------------------
 1120 FAST.8X8.SLYE
 1130 CPX #0
 1140 BEQ .3 A*0=0
 1150 DEX DECR. CAND TO AVOID
 1160 STX CAND THE CLC BEFORE ADC CAND
 1170 LSR PREPARE FIRST BIT
 1180 STA PLIER
 1190 LDA #0
 1200 LDX #8
 1210 .1 BCC .2 NO ADD
 1220 ADC CAND
 1230 .2 ROR
 1240 ROR PLIER
 1250 DEX
 1260 BNE .1
 1270 LDX PLIER
 1280 RTS
 1290 .3 TXA
 1300 RTS
 1310 *--------------------------------
 1320 FAST.8X8.RBSC
 1330 CPX #0
 1340 BEQ .3 A*0=0
 1350 DEX DECR. CAND TO AVOID
 1360 STX CAND THE CLC BEFORE ADC CAND
 1370 LSR PREPARE FIRST BIT
 1380 STA PLIER
 1390 LDA #0
 1400 LDX #4
 1410 .1 BCC .2 NO ADD
 1420 ADC CAND
 1430 .2 ROR
 1440 ROR PLIER
 1450 BCC .25 NO ADD
 1460 ADC CAND
 1470 .25 ROR
 1480 ROR PLIER

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2324 of 2550

Apple II Computer Info

 1490 DEX
 1500 BNE .1
 1510 LDX PLIER
 1520 RTS
 1530 .3 TXA
 1540 RTS
 1550 *--------------------------------
 1560 .OP 65816
 1570 *--------------------------------
 1580 * MULTIPLIER IN A(15-8), MULTIPLICAND IN A(7-0)
 1590 * RETURN PRODUCT IN A(15-0)
 1600 *--------------------------------
 1610 MULTIPLY.8X8.65802
 1620 PHX
 1630 STA .2+1 SAVE MULTIPLICAND
 1640 LDA #0
 1650 CLC
 1660 XCE
 1670 LDX #8
 1680 REP #$20 A-REG 16 BITS
 1690 EOR ##$FF00 COMPLEMENT MULTIPLIER
 1700 .1 ASL
 1710 BCS .3 ...IF ORIGINAL BIT=0
 1720 .2 ADC ##0 ADD MULTIPLICAND
 1730 .3 DEX
 1740 BNE .1
 1750 SEC
 1760 XCE
 1770 PLX
 1780 RTS
 1790 *--------------------------------
 1800 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2325 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:Articles:ErvEdge.Wildcat.txt
==

WildCAT for DOS 3.3....................................Erv Edge

WildCAT is a series of patches to DOS 3.3 which modify the CATALOG
command. The new features include:

 * A catalog by "wildcard" FILENAME facility.
 * A catalog by FILETYPE facility.
 * An alternate, short-form: either DIR or CAT.
 * Catalog free space patch.
 * Ctrl-Q catalog abort.
 * TYPE a random or sequential text file.

Lee Reynold's FILEDUMP command has been re-packaged and re-presented
as TYPE (see Call-A.P.P.L.E. 6/82 p47). More on this later.
WildCAT, along with TYPE, is an attempt to teach new tricks to an old
dog, as it were.

The normal DOS CATALOG command allows slot, drive, and volume
parameters. I have added a filename parameter, but process it a
little differently than the way file names are usually processed. To
display the catalog entries for all files whose names contain a
particular string, type any of the following:

 CATALOG ^string [,Dn] [,Sn] [,Vn]
 DIR ^string [,Dn] [,Sn] [,Vn]
 CAT ^string [,Dn] [,Sn] [,Vn]

where "^string" begins with the "^" or caret symbol (shifted N on the
][+ or shifted 6 on the //e or //c); the string should contain no
blanks, although it may "end" with them; the string would normally end
with a carriage return or with a comma if a drive or slot number is
specified. Only those files that contain the "string" somewhere in
the filename will be listed. (Of course you already know that the D,
S, and V parameters are shown in brackets above because they are
optional; you do not type the brackets.)

For example, "CATALOG ^TEST" would list each file with 'TEST' as part
of the filename; while "DIR ^PAY." would list those with 'PAY.'
somewhere in the filename; and "CAT^.OBJ,D2" would list filenames on
drive 2 that contain the partial string '.OBJ'. "CAT" and "DIR" are
simply synonyms for "CATALOG".

I have also arranged things so you can list the catalog entries of a
specified file-type. You simply type the file type code in the
CATALOG command:

 CATALOG t [,Dn] [,Sn] [,Vn]
 DIR t [,Dn] [,Sn] [,Vn]
 CAT t [,Dn] [,Sn] [,Vn]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2326 of 2550

Apple II Computer Info

where "t" is any of the unadorned, single-letter filetypes: A B I R S
T. Only that type of file (if present) will be listed.

For example, "CATALOG T" would list all the text files; "DIR A,D2"
would list all of the Applesoft files on drive 2; "CAT B,S5,D1" would
list all the binary files on slot 5, drive 1. Yes, "DIRT" works just
fine.

I added the TYPE command, which allows you to display the contents of
text files. Both CATALOG and TYPE will optionally:

 1. Print "hidden" control characters as inverse:
 POKE 234,0 to print as inverse (default)
 POKE 234,255 to function as-is

 2. Lower case letters may be shifted to upper case:
 POKE -18700,255 no shift (default)
 POKE -18700,223 to shift lower to upper case.

You can slow down TYPE's output via SPEED=xx or POKE 241,xx; or pause
by pressing any key; then Ctrl-Q to abort. Also, TYPE pauses and
waits for a keypress when it encounters a hex 00 imbedded in the file
or at end of file; press Ctrl-Q to quit. You may TYPE random text
files by holding down REPT-SPACE to get past the hex 00's at the end
of each logical record.

The listing that follows is intended for information only: it is not
BRUNable. My intention is that you prepare the EXEC shown below to
actually install the patches. Any word processor that produces a
straight, sequential text file may be used to prepare the EXEC. Of
course you can also use the S-C Macro Assembler for this purpose.
Then, type EXEC WILDCAT to apply the patches to DOS 3.3 in memory.
After checking it out and running any other tests you like, put in a
new diskette, enter a HELLO program, and type INIT HELLO to
"permanently" install WildCAT in the DOS on tracks 0, 1, and 2.

When I wrote WildCAT, I had two main goals in mind: it should be a
(mostly in-place) code replacement, and it should be compatible with
the known means of using (abusing?) the existing CATALOG code at
$AD98-AE69.

One major design consideration was a mechanism for entering the
^string/type parameter. This required merely changing the "keyword
parameter table" so CATALOG could have a "filename".

Next, a distinction had to be made between a "wildcard" and a
"filetype" parameter. It made sense to 'delimit' the wildcard string;
then the single-character filetype would be just that: a single
character, entered without a delimiter. But this "phony" name
mechanism has it's own problems:

First, "What's in a Name?" (DOS Manual p. 16): a filename has to
start with a letter...which automatically eliminates most special

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2327 of 2550

Apple II Computer Info

characters (eg, equal, pound, slash, colon, etc) as the delimiter.
The command parsing routine doesn't really know what it's working on
at the time. All it knows is: if a name may be present, it must be
valid. The validity test is only that the first character be equal to
or greater that $C0 or an @-sign. The @-sign could have been used,
but it's a problem on some 80-column boards; the ^ or caret works
nicely (and besides, it looks good).

Second, now that we have a name (however, phony) and since the CATALOG
command lives in the File Manager (FM) portion of DOS, there will be a
buffer allocated for it. Unfortunately, the Command Interpreter (CI)
DOCAT routine, which calls the FM, already "knows" that there will not
really be a name, so it does not include housekeeping code to
deallocate a buffer. So merrily allocating files without closing
them...after the third time: NO BUFFERS AVAILABLE. And naively adding
CLOSE (even if there were room for it), would have one very
undesirable side effect if a "regular" catalog were requested:
CATALOG-CLOSE without FNAME will close all open files. WildCAT
instead plays a little shell game with DOS: The new DOCAT routine
saves the first character of FNAME and substitutes a zero.
Thereafter, neither the File Manager nor the rest of DOS ever knows
that a name has been entered, so FM never actually allocates a buffer.

Third, what really should happen if a phony name is not entered? A
regular catalog, of course, but how would this be indicated to
WildCAT? Well, the shell game has a sting. Early on when the CI
PARSE routine discovers that a filename is a valid parameter, it first
clears FNAME to all blanks, expecting to fill it in with whatever
comes in next. If a comma or carriage return comes in next, then
FNAME still contains the blank; and that's what WildCAT saves off
(under the shell) before it substitutes the zero.

Thus, the "sting" is that the CI "tricks" itself into telling WildCAT
what to do in the absence of a ^string/type specifier: WildCAT takes a
blank to indicate "do a regular" catalog; just as positively as a "^"
indicates "do a wildcard" catalog, and a single character indicates
"do a filetype" catalog.

The blank indicator also helps satisfy the second goal above and
solves the problem of compatibilty with the "known means" of
using/abusing the existing CATALOG code. WildCAT simply has to put a
blank under the shell at each of the points where the code could most
reasonably be entered without going thru the Command Interpreter's new
DOCAT routine. That's exactly what all the JSR's to the routine
AllowENTry are doing.

Satisfying that second goal takes up a lot of space, however; and has
somewhat undermined the first constraint: WildCAT certainly isn't "in-
place" in one place! And I apologize for this rather bizarre,
serpentine code; I do hope that now you understand why some things
were done the way they were.

Although considerable effort was spent to maintain compatibilty with
the existing DOS commands, there were some compromises:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2328 of 2550

Apple II Computer Info

1. While the DOS manual (page 22) states: "To specify drive 1, you
use the notation D1 separated from the file name by a comma", you can
in fact leave out the comma between CATALOG and D1. With WildCAT that
comma is now required; otherwise, it would take the "D" as a filetype
and try to find it ... which of course it wouldn't and there would be
no files reported. This would also be a problem for Applesoft
programs that do something like: PRINT D$"CATALOG D1" without the
comma. Therefore, WildCAT issues a (late) "SYNTAX ERROR" message if
it encounters an undelimited string of length 2 or more.

2. CATALOG is a favorite routine to execute directly, bypassing the
DOS Command Interpreter. FID, for example, provides its CATALOG via
the "external" entry to the File Manager, which means that the main
entry at CATHNDLR must provide for a "regular" catalog. It is also
possible from machine language, however, to bypass both the CI and the
FM. This usually involves changing the exit JMP address at DONEXT2
(to return to the user's code) and then jumping directly into almost
anywhere in the CATALOG code (see the Listing 1 labels that begin
"at"). I believe most of these cases are covered, but you may find
some programs, which provide an "internal" CATALOG, that just won't
work with WildCAT.

3. In order to both gain some patch space and provide the DIR/CAT
short-form command name, the DOS command POSITION was eliminated. You
may have to look it up just to find out that it is, much less what it
is. Its relative rarity may be due to its implementation: it, like
APPEND, finds its way through the file one byte at a time...all day
long. Any program that uses it will now get a syntax error. If
POSITION is really needed, it can be readily simulated by programming
a read-loop to discard N-1 fields before processing the desired Nth
field.

The following is a brief commentary on the assembly listing. The
paragraph numbers correspond to numbers in comment lines.

The page zero locations I used ($EB thru $EF) are free, i.e. not used
by DOS, the Monitor, or the Basics.

(1) In CMDTBL, replace Integer CHAIN address with TYPE and DOCAT
address with NewDOCAT.

(2) Rearrange some code (and change both references to it) to add a
"print blank" capability. The Command Interpreter uses its own vector
to a "COUT" routine via CSW at $36; however, the File Manager
(previously) used the Monitor COUT and CROUT routines for printing the
catalog. With WildCAT all of DOS now consistently uses the vector at
$9FCA for output; plus it has a new BlankOUT routine, all within the
original code space.

(3) Recode a very cumbersome form of the "indexed indirect jump" to
use register Y and leave X (which is zero by a previous operation) so
it can be used in NewDOCAT.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2329 of 2550

Apple II Computer Info

(4) Replace old DOCAT's 12 bytes of code with a JMP to NewDOCAT and
use the remainder to space over to column 7 after the file length has
been displayed.

(5) NewDOCAT saves the first character of FNAME and substitutes a zero
to prevent buffer allocation. It then loads 13, the new Catalog
Function Code, and proceeds to CMDHNDLR2. Function 13 enters the
catalog code past the "allow for irregular, direct entry".

(6) In the keyword parameter table, change parms to allow a filename
with CATALOG and a filename, drive, and slot with DIR. Set new
Function 13 address (previously a "no-op" to NOERROR) to WildCAT and
change the range check to 14 to allow for it.

(7) Replace the Integer CHAIN code; PrtLOCK displays an asterisk or
blank if the file is locked or not.

(8) Shorten the "NO BUFFERS AVAILABLE" message to "NO BUFFER" and re-
use the space to decide which Basic is active, then JMP to the
appropriate decimal print routine; used to print the free sector value
and catalog filesizes. The value to be printed has been previously
loaded into A and X.

(9) First, eliminate the need for "NOT DIRECT COMMAND" error message
and then re-use the space to check for a "regular" catalog (no
filename) or for a catalog by filetype (undelimited, single
character). If more than a single, non-blank character is detected
(ie, 2nd byte of FNAME is not blank), then "SYNTAX ERROR" message is
issued.

(10) At beginning of catalog code allow for most normal points where
the code could be directly entered. The new "official" Function 13,
WildCAT initializes the FM workarea (per normal) and branches to Read
VTOC to "find" the first catalog sector.

(11) Freespace "prolog"; clear carry and branch around another likely
"irregular" entry point. Read first/next catalog sector, then lookup
and save the filetype. Setup Y with 30 for name length and branch to
CkFNAME.

(12) AllowVTOC fakes a "regular" catalog and falls into a JSR to read
the VTOC. The BCC to initialize linecount is always taken; only if
there had been an I/O error would the carry be set, in which case,
control would have passed to the error-message-print exit anyway.

(13) PrtCat displays a catalog line. Note that loc $24, CH, is
"POKEd" with 7 for uniform spacing over to the filename. If your
printer interface board or 80-column card do not support this
convention, then the display will not be properly spaced. The DONEXT
routine is unchanged. SKIPLN has been re-arranged to allow init
linecount, put out a carriage return, and check for a keypress (Ctrl-Q
to quit) after 22 lines. Note: This leaves the cursor in column 37;
see below.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2330 of 2550

Apple II Computer Info

(14) CkFNAME "looks under the shell" to figure out what to do. A
caret indicates to check for a wildcard string. After JSR to CkCAT,
if the equal status is set, then branch to print the catalog line.
DoWild checks for the occurence of the wildcard string within the
filename. $B4C9,X indexes the name in the Catalog Sector; $AA75,Y
indexes the wildcard string; CatNmLen counts from 30 to 0, to scan the
whole name.

(15) FreeSpce counts the free sectors, as indicated by the VTOC, loads
X and A with the count, and JMPs ToPrtDec.

(16) WaitCk79 provides the "wait" for TYPE; also checks and puts out a
carriage return after 79 characters to avoid over- printing long lines
on certain printers, such as the MX-80.

(17) TYPE displays the contents of a sequential or random text file.
A keypress will pause the display, and Ctrl-Q quits.

(18) InvCOUT is used by both CATALOG and TYPE. It converts hi- bit
off characters to proper inverse. It will optionally show control
characters as inverse or allow them to "function" as- is; and it will
optionally "shift" lower case letters to upper case, if you do not
have a lower case adapter; see "...Options" above. Loc $EA, decimal
234, is the Applesoft Hi-Res collision counter; it should always be
zero, unless you POKE it.

(19) WaitCQ waits for a keypress and sets the equal status, if Ctrl-Q
was pressed.

(20) Replace the inverted phrase DISK VOLUME with FREE SPACE=.

(21) The DOSCMDS list is moved down 6 bytes. AllowENT re-uses these 6
bytes to force a blank in FName1 "under the shell" to ease "irregular"
entries into the catalog code; and clears the carry in case the entry
was 'atADC9' which also cleared the carry. In the command list, TYPE
replaces CHAIN and DIR replaces POSITION; change $A8BF:43 41 D4 to
replace with CAT.

(22) Change the two references to DOSCMDS to the new location. These
two changes must be done last as the EXEC is changing the very code
that is executing.

I would like to thank Lee Reynolds and Art Schumer for their helpful
comments and suggestions.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2331 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:Articles:Faster.CRCs.txt
==

Faster Cyclic Redundancy Checking..........Bob Sander-Cederlof

In the April 1984 issue of AAL I showed how to compute a cyclic
redundancy check code (CRC) for a buffer full of data. I also tried
to explain a little of the theory, as much as I understood. In the
June 1984 issue Bruce Love explained how to work backward from the
computed CRC of a received buffer to correct a single bit error. Both
of these programs were written in plain 6502 code.

In the February 1986 "Dr. Dobb's Journal" Terry Ritter writes about
"The Great CRC Mystery". He also presents some Pascal programs and
8088 machine code programs for calculating the CRC in various ways.
Terry describes very briefly a table driven method (the very fastest
way) and a byte-oriented method (almost as fast as table-driven).

I translated Terry's machine-coded byte-oriented method from 8088 to
65802 code, but even after twiddling and tweaking for half a day I
could not make it give the correct answers. I don't know if his
method is correct or not, but of course it MUST be, since it is
printed in Dr. Dobb's and since he claims it works and since he even
tells how many milliseconds it takes.

Anyway, I decided to derive my own byte-oriented method. The CRC
algorithm is basically a "long division" of the entire bit stream in
the buffer as though it were one long binary word. The divisor is
$11021 in the CCITT scheme. The check code we use is the remainder of
the division. The normal algorithm does "long division" on a bit-by-
bit basis. The byte-oriented algorithm does "long division" on a
byte-by-byte basis.

I put long division in quotation marks above because it is not EXACTLY
long division. The difference is that the subtraction steps are
replaced with exclusive-or operations. The exclusive-or is performed
whenever the leading bit of the new dividend is a 1-bit. Here is a
fully worked out example, for a CRC-so-far = $E1F0, and the next byte
= $CC:

 "divide" $E1F0CC by $11021, "quotient bits" down
 the left edge. Next CRC is the "remainder"

 1110 0001 1111 0000 1100 1100 (E1F0CC in binary)
1 eor 1000 1000 0001 0000 1 (11021 in binary)

 110 1001 1110 0000 01
1 eor 100 0100 0000 1000 01

 10 1101 1110 1000 000
1 eor 10 0010 0000 0100 001

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2332 of 2550

Apple II Computer Info

0 0 1111 1110 1100 0010
 1111 1110 1100 0010 1
1 eor 1000 1000 0001 0000 1

 111 0110 1101 0010 01
1 eor 100 0100 0000 1000 01

 11 0010 1101 1010 000
1 eor 10 0010 0000 0100 001

 1 0000 1101 1110 0010
1 eor 1 0001 0000 0010 0001

 0001 1101 1100 0011 = $1DC3

Note that the "quotient" is $EF. This "quotient" can always be
exactly computed by using just the first byte of the dividend (the
high byte of the old CRC code): quotient = crchi .eor. crchi/16. If
you carefully study the worked out example above, you should be able
to see why this is true. Now, if we use the exclusive-or rather than
addition to perform a multiplication of the quotient times $11021, it
will look like this:

 uuuu.vvvv (symbolic quotient in binary)
 x $11021 (multiplier in hexadecimal)

 uuuu.vvvv
 u.uuuu.vvv0
 uuuu.vvvv
 uuuu.vvvv

 whatever........

There are several significant things to notice about the
multiplication above. First, we only need to save the rightmost 16
bits of the "product". If we exclusive-or those bits with the
rightmost 16 bits of the original dividend (which means the low byte
of the old CRC followed by the new byte), we will get the next CRC.
(This trick relies on the fact that exclusive-or is a reversible
operation, so that "adding" and "subtracting" give the same result!)

Furthermore, we can organize those "partial products" in a more
efficient way for computation. Now, let's write the original CRC
symbolically as "aaaa.bbbb.cccc.dddd", and the next data byte as
"eeee.ffff". The "quotient" after "dividing" by $11021 will be
"aaaa.bbbb exclusive-or 0000.aaaa"; let's write that symbolically as
"aaaa.gggg". Then we can compute the next CRC code by the following
very simple steps:

 cccc.dddd.eeee.ffff
 eor gggg.0000.aaaa.gggg
 eor 000a.aaag.ggg0.0000

 wwww.xxxx.yyyy.zzzz

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2333 of 2550

Apple II Computer Info

Believe it or not!

The program that follows implements this algorithm, in lines 1550-
1760. I used 65802 code, but it really could be done quite nicely in
plain 6502 as well. I leave it as "an exercise for the reader" (as
college textbooks are wont to say), should you wish to try the
algorithm in a plain-vanilla 6502.

The SEND and RECV programs simulate sending and receiving a buffer-
full of data. I chose to put my buffer at $4000, for 258 bytes. This
is the same as in the April 1984 article.

The FIND.BAD.BIT program is simply a translation of Bruce Love's 1984
program into 65802 code. Thanks to 16-bit registers, it is
significantly faster and shorter.

Speaking of speed, the code for computing the next CRC code for one
new byte takes (if I counted correctly) 57 clock cycles. In a normal
Apple that means about 56 microseconds. The time for 8088 machine
code in Terry Ritter's article was 17 microseconds for the equivalent
steps. He was running with a 7.16 MHz clock. If you ran the 65802
code in an Applied Engineering Transwarp card or a Titan Accelerator
card with a 4-MHz 65802 (running at 3.58 MHz), the time would be only
15.9 microseconds in an Apple.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2334 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:Articles:Front.Page.txt
==

$1.80

Volume 6 -- Issue 5 February, 1986

In This Issue...

WildCAT for DOS 3.3. 2
Mitsubishi 50740 Series Microprocessors. 18
Faster Cyclic Redundancy Checking. 20
Correction to Fast Garbage Collection. 27
DOS Patch: Prevent Direct Commands. 30

Bag of Tricks 2

You've been asking when Bag of Tricks, that very popular and useful
disk utility package, will be updated for ProDOS. Well, you can relax
now: it's here.

The new ZAP program in "Bag of Tricks 2" adds the ability to access
ProDOS blocks, directories, and files; the 80-column display can show
most of a block at one view. The new version of FIXCAT can
reconstruct a blown ProDOS directory, as far as is possible. You do
still need to follow up with ZAP to correct things like file size and
load address, which completely disappear when a directory is damaged.

This new, non-copy-protected edition of an old friend costs $49.95, or
$45 + shipping from S-C. Owners of the older Bag of Tricks can get an
upgrade directly from Quality Software for only $20 by returning your
original disk.

Correction to Day of Week Programs

On page 20 of the December 1985 AAL, change lines 130 and 140 to the
following:

 130 FOR I=0 TO 11 : READ MD(I) : NEXT
 140 FOR I=0 TO 6 : READ D$(I) : NEXT

On page 24, same issue, change line 120 to:

 120 FOR I=0 TO 6 : READ D$(I) : NEXT

That's what we get for typing a program into the Word Processor rather
than printing a LISTing!

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2335 of 2550

Apple II Computer Info

for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage).

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2336 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:Articles:Garbage.Correx.txt
==

Correction to Fast Garbage Collector...Bob Sander-Cederlof

In the March 1984 AAL, Paul Shetler gave us a very fast garbage
collector for Applesoft. Last week Keith Satterley called from
Australia, and mentioned he thought there was a bug in the handling of
strings over 128 characters long. I looked into it, and he is right.

The bug is in the loop in lines 3240-3320, on page 9 of that issue.
The loop moves a string from one place in memory to another. The way
we printed the code, a string longer than 128 characters would only
have one byte moved! Here is the old code and the correct code, side-
by-side:

-----old code------------ -----correct code--------

3240 LDY STRING.LENGTH 3240 LDY STRING.LENGTH
3250 DEY 3250 .3 DEY
3260 .3 LDA (FRESPC),Y 3260 LDA (FRESPC),Y
3270 STA (LOWTR),Y 3270 STA (LOWTR),Y
3280 DEY 3280 TYA
3290 BPL .3 3290 BNE .3
3300 BMI .1 3300 BEQ .1

Can you see why the new code works and the old doesn't?
.
.
.
.
.
.
.
1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2337 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:Articles:Mitsubishi.txt
==

Mitsubishi 50740 Series

I received information from several sources this week about an
interesting new branch of the 6502 tree. Mitsubishi has pub- lished
specs for eight varieties, all part of the "740 series". The chip is
based on the 6502, adds some new addressing modes for some of the
standard 6502 opcodes, and adds 13 new opcodes. (Unfortunately, the
opcode enhancements are not compatible with any of the other enhanced
6502s.)

The chips in the 740 series are intended for use as microcon-
trollers. As such, most of them have on-chip RAM and ROM. They all
have built-in I/O ports, timers, and other goodies. The most
interesting (to Don Lancaster, Nigel Nathan, and me) is the M50734.
This chip, said to cost only $12, has four A/D converters, UART, six
timers, a serial I/O port, four 8-bit I/O ports, a pair of stepper-
motor drivers, and more. It all lives in a 64-pin shrink-DIP package.
The M50734 is the only one in the 740 series which has no internal ROM
and RAM. It is CMOS. The clock runs at 8 MHz, which in effect runs
the opcodes at 2 MHz (that is, two cycle instructions take one
microsecond).

To control all these functions, the bytes in page zero from $DA
through $FF are used as I/O, control, and status registers.

One of the trickiest enhancements allows direct access (without bank
switching or bank registers) to a second 64K memory, for data only.
Apparently one of the address modes changes the state of one of the
output signals during data memory references; if you use that signal
to enable another bank of memory. ALMOST like having direct-
addressability of 128K.

The data bus is multiplexed with half of the address bus, so it's a
little harder to interface. Naturally, to get all the functions I
mentioned above with only 64 pins, there have to be shared pins.
Depending on which functions you are using, some of the timers and
some of the I/O pins have dedicated uses.

The 6502 has one unused status bit. The 740 series calls this the T-
flag, and gives it a use. If T=1, a special address mode is enabled
which allows memory-to-memory operations without using the A-register.
As I understand it, when T=1, address modes which use X as an index
register take on a new meaning: rather than moving data between the
indexed address and the A-register, data is moved between the absolute
address and the zero page location whose address is in the X-register.
If I am correct, ADC $400,X (assume X contains $34) would add the
contents of $400 to the contents of $34, and store the result in $34.
If T=0, indexing works in the old-fashioned 6502 way.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2338 of 2550

Apple II Computer Info

Another powerful enhancement allows you call subroutines with a two-
byte version of the JSR opcode. One variation uses vectors stored in
page zero, and the other uses vectors stored $FF00 through $FFF3. JMP
can also uses vectors stored in page zero, so you have a two-byte JMP
indirect.

Four new opcodes give you the ability to set, clear, or test any bit
in the A-register or in page zero. This uses up 64 opcodes, because
the bit number and bit state are coded into the opcode byte.
Rockwell's version of the 65C02 includes page-zero bit-addressing, but
the opcodes are not the same.

There are other new instructions, including several about which I do
not have accurate complete information.

 RRF zp (I think it swaps nybbles in the byte)
 COM zp (Probably forms 2's complement at zp)
 LDM zp (Probably loads ABS(zp) into A-register)
 CLT clear T-bit in status
 SET set T-bit in status
 STP stop the clock until reset or interrupt
 WIT low power mode " " " "
 SLW (slow?)
 FST (fast?)
 INC increment A-reg
 DEC decrement A-reg
 BRA rel branch always.

Of all the extensions, only ONE (BRA) is compatible with the standard
65C02 and 65816 extensions from Western Design Center (the OFFICIAL
source for 6502 designs). The others, even if they do the same thing,
use a different opcode value. Why?

If you have worked up an appetite for more information on the 740
series, contact Mitsubishi. I don't have all their numbers, but you
can get close by calling 1-800-421-1132.

When we get all the data, we will be writing a Cross Assembler so you
can use your Apple to develop software for this chip.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2339 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:Articles:RichardDOSPatch.txt
==

DOS Patch: Prevent Direct Commands.....Richard Gendron

I operate a AE/CATFUR line using my Apple and a modem in Montreal,
Quebec. I have found that protecting your DOS from illegal entry can
be a tough job to say the least.

In searching for ways to protect my system, I came across an
interesting address in DOS: at $A026 there is some code which is
executed whenever you try to type in a DOS command. The code checks
to see if the command you typed is allowed as a direct command, and if
not gives you the NOT DIRECT COMMAND message (or ERROR 15 if you are
using DiversiDOS).

I have written a little patch that will catch you when you type a DOS
command, and re-RUN the Applesoft program. If a sneaky caller finds a
way to get out of the executing Applesoft program, at least he/she
will be prevented from doing DOS commands.

Now every lock should have a key. You do want to be able to use your
own DOS in direct mode, so I have included a way to turn off the
protection. If you type "PRINT USR (0)" the system will respond with
"PW:". Then enter a two-character password and the protection patch
will be removed. Then you can CATALOG, DELETE, or whatever you want
to do.

Since I use Diversi-DOS, and in both the 48K and 64K configurations, I
set up my patching program so that it will work with both. The code
which checks which version is loaded is in lines 1220-1260 and lines
1390-1410. If the output hook at $36,37 points up to $BDxx or higher,
the 64K version must be running. Normal 48K DOS points to $9EBD.

These patches worked on my system, but yours may be a little different
depending on which version of DOS you use. Examine carefully all the
addresses I use inside DOS to see if yours is the same as mine before
you try to use these patches.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2340 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:DOS3.3:Gendron.DOS.Mod.txt
==

 1000 *SAVE GENDRON DOS MODS
 1010 *--------------------------------
 1020 * DOS PROTECTION FOR THE DIRECT COMMAND "ERROR 15"
 1030 * WRITTEN BY RICHARD GENDRON FOR USE ON TRANSFERS][
 1040 * (514) 738-1247 (AE/CAT-FUR)
 1050 *--------------------------------
 1060 .OR $300
 1070 *--------------------------------
 1080 INSTALL
 1090 LDA #$4C BUILD "USR" VECTOR
 1100 STA $0A "JMP" OPCODE
 1110 LDA #USR
 1120 STA $0B
 1130 LDA /USR
 1140 STA $0C
 1150 *---MOVE DATA INTO DOS-----------
 1160 LDX #P1-PATCHES POINT AT OUR PATCHES
 1170 *** JMP PATCH.DOS
 1180 *--------------------------------
 1190 PATCH.DOS
 1200 LDA #$A026
 1210 STA $00
 1220 LDA $37 48K OR 64K DOS?
 1230 CMP #$BD CARRY CLEAR IF 48K
 1240 LDA /$A026 ...48K
 1250 BCC .1 ...48K
 1260 LDA /$E026 ...64K
 1270 .1 STA $01
 1280 LDY #4 MOVE 5 BYTES
 1290 .2 LDA PATCHES,X
 1300 STA ($00),Y
 1310 DEX
 1320 DEY
 1330 BPL .2
 1340 RTS
 1350 *--------------------------------
 1360 REBOOT
 1370 SEI TURN OFF ANNOYING INTERRUPTS
 1380 JSR $03EA RESET THE I/O HOOKS
 1390 LDA $37 LETS SEE WHICH DOS WE ARE USING
 1400 CMP #$BD IS IT 64K DOS ?
 1410 BMI .1 SNIFF, NO IT IS NOT
 1420 BIT $C081 YES IT IS, SO TURN OFF THE LANGUAGE
CARD
 1430 BIT $C081 TWICE, EVERYONE KNOWS WHY ?.
 1440 JSR $E316 DOS "CLOSE" ALL FILES
 1450 JMP $D566 NOW LET'S JUMP TO THE APPLESOFT
"RUN"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2341 of 2550

Apple II Computer Info

 1460 .1 JSR $A316 DOS "CLOSE" ALL FILES (NO TROUBLE
PLS)
 1470 JMP $A4FC 48K INTERNAL "DOS RUN"
 1480 *--------------------------------
 1490 USR
 1500 LDY #0 START OF LOOP COUNTER
 1510 .1 LDA PASSWORD,Y GET PASSWORD TEXT
 1520 BEQ .2 ...END OF STRING
 1530 JSR PRINT NO, SO PRINT IT
 1540 INY INCREMENT THE LOOP
 1550 BNE .1 FOREVER LOOP (NEVER CAN EXIT)
 1560 *--------------------------------
 1570 .2 JSR INPUT ALL TEXT PRINTED SO LET'S GET A KEY
 1580 CMP #"* WAS IT A "*" ? (OR WHATEVER YOU
WANT)
 1590 BNE .4 NO IT WAS NOT , SO BYE BYE
 1600 JSR INPUT YES IT WAS, SO GET ANOTHER KEY
 1610 CMP #". WAS IT A "." (OR WHATEVER YOU WANT)
 1620 BNE .4 NO IT WAS NOT, SO BYE BYE
 1630 *--------------------------------
 1640 LDX #P2-PATCHES
 1650 JSR PATCH.DOS
 1660 .4 RTS WE HAVE FINISHED
 1670 *--------------------------------
 1680 * TEXT TO BE PRINTED WHEN A
 1690 * "PRINT USE(0)" COMMAND IS DONE
 1700 * IN APPLESOFT
 1710 *--------------------------------
 1720 PASSWORD
 1730 .AS -"PW:"
 1740 .HS 00
 1750 *--------------------------------
 1760 * INPUT AND PRINT SUBROUTINES
 1770 *--------------------------------
 1780 PRINT JMP ($36)
 1790 INPUT JMP ($38)
 1800 *--------------------------------
 1810 PATCHES
 1820 JMP REBOOT CALL OUR NEW CODE
 1830 NOP NEEDED FOR DIVERSI-DOS
 1840 P1 NOP
 1850 *--------------------------------
 1860 .HS A9023909 ORIGINAL CODE
 1870 P2 .HS A9
 1880 *--------------------------------
 9999 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2342 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:DOS3.3:S.CRC.GENERATOR.txt
==

 1000 *SAVE S.CRC GENERATOR
 1010 *--------------------------------
 1020 BUFFER .EQ $4000
 1030 LIMIT .EQ $4102
 1040 *--------------------------------
 1050 CRC .EQ $00,01
 1060 PNTR .EQ $02,03
 1070 TEMP .EQ $0A,0B
 1080 *--------------------------------
 1090 PRNTAX .EQ $F941
 1100 CROUT .EQ $FD8E
 1110 *--------------------------------
 1120 * SIMULATE SENDING A BUFFER-FULL
 1130 *--------------------------------
 1140 SEND
 1150 LDA #0 CLEAR CRC BYTES IN BUFFER
 1160 STA LIMIT-1
 1170 STA LIMIT-2
 1180 JSR NEW.CRC.BUFFER COMPUTE CRC OF 258 BYTES
 1190 LDX CRC STORE CRC INTO LAST 2 BYTES
 1200 LDA CRC+1
 1210 STX LIMIT-1
 1220 STA LIMIT-2
 1230 JSR PRNTAX DISPLAY THE CRC
 1240 JMP CROUT <RETURN> AND RETURN
 1250 *--------------------------------
 1260 * SIMULATE RECEIVING A BUFFER-FULL
 1270 *--------------------------------
 1280 RECV
 1290 JSR NEW.CRC.BUFFER COMPUTE CRC OF 258 BYTES
 1300 LDX CRC DISPLAY CRC IN HEX
 1310 LDA CRC+1
 1320 JSR PRNTAX
 1330 JMP CROUT
 1340 *--------------------------------
 1350 .OP 65802
 1360 *--------------------------------
 1370 * CRCH CRCL DATA
 1380 * aaaa.bbbb.cccc.dddd.eeee.ffff
 1390 * +0000.aaaa
 1400 * ---------
 1410 * aaaa.gggg
 1420 * +gggg.0000.aaaa.gggg
 1430 * +000a.aaag.ggg0.0000
 1440 * -------------------
 1450 * (crchi) (crclo)
 1460 *--------------------------------
 1470 NEW.CRC.BUFFER
 1480 CLC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2343 of 2550

Apple II Computer Info

 1490 XCE
 1500 REP #$30 M&X BOTH 16-BITS
 1510 LDA ##$FFFF
 1520 STA CRC INITIALIZE CRC FOR BUFFER
 1530 LDX ##BUFFER POINT TO BUFFER
 1540 *--------------------------------
 1550 .1 SEP #$20 CRC=aaaabbbbccccdddd, DATA=eeeeffff
 1560 LDA CRC+1 aaaabbbb .eor. 0000aaaa = aaaagggg
 1570 LSR
 1580 LSR
 1590 LSR
 1600 LSR 0000aaaa
 1610 EOR CRC+1 aaaabbbb
 1620 XBA AGXX
 1630 LDA #0 AG00
 1640 REP #$20
 1650 LSR
 1660 LSR
 1670 LSR 000a.aaag.ggg0.0000
 1680 STA TEMP
 1690 LSR 0000.aaaa.gggg.0000
 1700 EOR CRC aaaa.bbbb.cccc.dddd = aaaa.gggg.kkkk.dddd
 1710 XBA kkkk.dddd.aaaa.gggg
 1720 EOR TEMP 000a.aaag.ggg0.0000
 1730 SEP #$20
 1740 EOR 0,X crchi.crclo
 1750 REP #$20
 1760 STA CRC
 1770 *--------------------------------
 1780 INX
 1790 CPX ##LIMIT
 1800 BCC .1
 1810 XCE
 1820 RTS
 1830 *--------------------------------
 1840 * FIND BAD BIT BY BRUCE LOVE'S METHOD
 1850 *--------------------------------
 1860 DUMMY.CRC .EQ $10,11
 1870 *--------------------------------
 1880 FIND.BAD.BIT
 1890 JSR RECV RECEIVE, COMPUTING NEW CRC
 1900 *--------------------------------
 1910 CLC
 1920 XCE ENTER NATIVE MODE
 1930 REP #$30 X,M 16 BITS
 1940 LDX ##$80F X=BIT NUMBER
 1950 LDA ##1 START DUMMY CRC IN A-REG
 1960 .1 CMP CRC
 1970 BEQ .2 ...FOUND BAD BIT!
 1980 DEX DECREMENT BIT NUMBER
 1990 BMI .2 ...WENT TOO FAR, COULDN'T FIND BAD BIT
 2000 ASL SHIFT DUMY CRC
 2010 BCC .1
 2020 EOR ##$1021

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2344 of 2550

Apple II Computer Info

 2030 BCS .1 ...ALWAYS
 2040 *--------------------------------
 2050 .2 TXA BIT NUMBER
 2060 SEC
 2070 XCE
 2080 XBA
 2090 JMP PRNTAX
 2100 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2345 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:DOS3.3:S.WILDCAT.EXEC.txt
==

 1000 MON I
 1010 CALL -151
 1020 9D26:B2 B6
 1030 9D3E:DC A5
 1040 9FA8:CA
 1050 9FC5:A9 A0 2C A9 8D 6C 36 00
 1060 A710:CA
 1070 A186:AC 5F AA B9 1F 9D 48 B9
 1080 :1E 9D 48 60 EA
 1090 A56E:4C DD A5 A5 EC 20 CA 9F
 1100 :4C C5 9F EA
 1110 A5DD:AD 75 AA 85 EE 8E 75 AA
 1120 :A9 0D 4C AA A2 EA
 1130 A921:60 70
 1140 A929:60
 1150 AAE3:9A AD
 1160 AB10:C9 0E
 1170 A4F0:A9 A0 BE C8 B4 10 02 A9
 1180 :AA 4C CA 9F
 1190 A9FD:D2 2C 06 E0 30 03 4C 24
 1200 :ED 4C 1B E5
 1210 A021:EA EA EA
 1220 AA2C:C9 A0 F0 0C A0 A0 CC 76
 1230 :AA F0 03 4C C4 A6 C5 EC
 1240 :60 EA EA
 1250 AD98:20 84 A8 20 DC AB D0 57
 1260 :4C F4 AD EA EA 20 84 A8
 1270 :20 84 A8 20 38 AE
 1280 ADAE:20 2F AE A2 0C BD AE B3
 1290 :20 CA 9F CA D0 F7 20 69
 1300 :BA 20 2F AE 20 2F AE
 1310 ADC5:18 90 04 EA 20 84 A8 20
 1320 :11 B0 B0 5B A2 00 8E 9C
 1330 :B3 BD C6 B4 F0 51 30 48
 1340 ADDD:BD C8 B4 0A A0 07 0A B0
 1350 :03 88 D0 FA
 1360 ADE9:B9 A7 B3 85 EC A0 1E 84
 1370 :EF D0 4B
 1380 ADF4:20 84 A8 20 F7 AF 90 AF
 1390 ADFC:EA EA AC 9C B3 20 F0 A4
 1400 :20 71 A5
 1410 AE07:BE E7 B4 B9 E8 B4 20 FE
 1420 :A9 A0 07 84 24 AE 9C B3
 1430 AE17:BD C9 B4 20 DA B6 E8 C6
 1440 :EF D0 F5 20 2F AE
 1450 AE25:20 30 B2 90 A9 B0 A0 4C
 1460 :7F B3
 1470 AE2F:C6 EB D0 09 20 8D B7 F0
 1480 :F4 A9 15 85 EB 4C C8 9F

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2346 of 2550

Apple II Computer Info

 1490 AE3F:A5 EE C9 DE F0 07 20 2C
 1500 :AA F0 B4 D0 D9
 1510 AE4C:84 ED A0 01 C6 ED 30 D1
 1520 :CA 88 D0 FC C8 E8 B9 75
 1530 :AA C9 A0 F0 9D DD C9 B4
 1540 :F0 F2 E8 D0 E7 EA
 1550 BA69:86 44 86 45 A0 C8 B9 F2
 1560 :B3 0A 90 06 E6 44 D0 F9
 1570 :E6 45 D0 F5 88 D0 EF A6
 1580 :44 A5 45 4C FE A9
 1590 BA87:20 A8 FC C6 55 D0 82 A9
 1600 :4F 85 55 4C C8 9F EA
 1610 B6B3:20 A3 A2 20 8E BA 20 8C
 1620 :A6 F0 14 C9 8D F0 F4 20
 1630 :DA B6 A5 F1 20 87 BA AD
 1640 :00 C0 10 EA 8D 10 C0 20
 1650 :8D B7 D0 E2 4C FC A2
 1660 B6DA:A8 10 08 C9 A0 B0 0E 24
 1670 :EA 30 0A 46 32 46 32 29
 1680 :3F 69 1F 49 E0
 1690 B6EF:C9 E0 90 02 29 FF 20 CA
 1700 :9F A9 FF 85 32 60
 1710 B78D:20 0C FD C9 91 60
 1720 B3AF:BD C5 C3 C1 D0 D3 A0 C5
 1730 :C5 D2 C6 A0
 1740 A884:A9 A0 85 EE 18 60
 1750 A88A:49 4E 49 D4 4C 4F 41 C4
 1760 :53 41 56 C5 52 55 CE 54
 1770 :59 50 C5
 1780 A89D:44 45 4C 45 54 C5 4C 4F
 1790 :43 CB 55 4E 4C 4F 43 CB
 1800 A8AD:43 4C 4F 53 C5 52 45 41
 1810 :C4 45 58 45 C3 57 52 49
 1820 :54 C5
 1830 A8BF:44 49 D2
 1840 9FFB:B9 8A A8
 1850 9FED:59 8A A8
 1860 48:04 N 3D0G
 1870 NOMON I

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2347 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:DOS3.3:S.WILDCAT.txt
==

 1000 *SAVE S.WILDCAT
 1010 *--------------------------------
 1020 CatLnCnt .EQ $EB Catalog Linecount
 1030 FType .EQ $EC Hold looked-up filetype
 1040 FName1 .EQ $EE Hold FNAME shell 1st char
 1050 CatNmLen .EQ $ED CatName check-length=30
 1060 CatPtLen .EQ $EF CatName print-length=30
 1070 *-----(1)----
 1080 .PH $9D26 In CMDTBL, command addresses,
 1090 .DA TYPE-1 change Integer CHAIN to TYPE
 1100 .PH $9D3E In CMDTBL, change address to
 1110 .DA NewDOCAT-1 new DOCAT in POSITION code
 1120 *-----(2)----
 1130 .PH $9FA8 In ECHO, change old COUT ref
 1140 .DA #$CA was JSR $9FC5 now JSR $9FCA
 1150 .PH $9FC5 Cleanup CDI COUT and CROUT
 1160 BlankOUT LDA #" " and add BLANK out routine
 1170 .DA #$2C fake BIT-NOP on fall-thru
 1180 CROUT LDA #$8D DOS vectored CROUT; same loc
 1190 COUT JMP ($36) DOS vectored COUT; new loc
 1200 .PH $A710 In PRTERROR, change old COUT
 1210 .DA #$CA was JSR $9FC5 now JSR $9FCA
 1220 *-----(3)----
 1230 .PH $A186 Cleanup DOCMD; X=0 in NewDOCAT
 1240 LDY $AA5F CMDINDX
 1250 LDA $9D1F,Y CMDTBL+1; use Y instead of X
 1260 PHA
 1270 LDA $9D1E,Y CMDTBL
 1280 PHA
 1290 RTS
 1300 NOP
 1310 *-----(4)----
 1320 .PH $A56E Replace old DOCAT code:
 1330 OldDOCAT JMP NewDOCAT To allow for direct entry
 1340 PrtTYPE LDA FType Print looked-up filetype
 1350 JSR COUT and
 1360 JMP BlankOUT a blank
 1370 NOP
 1380 *-----(5)----
 1390 .PH $A5DD Replace old POSITION code:
 1400 NewDOCAT LDA $AA75 FNAME set by CATALOG command
 1410 STA FName1 save first byte, then zero
 1420 STX $AA75 to avoid buffer allocation
 1430 LDA #13 FM WildCAT Function Code
 1440 JMP $A2AA CMDHNDL2 routine, per usual
 1450 NOP
 1460 *-----(6)----
 1470 .PH $A921 DIR [string] [,Dn] [,Sn]
 1480 .DA #$60,$70 ->First comma: is NOT optional

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2348 of 2550

Apple II Computer Info

 1490 .PH $A929 CATALOG [string] <[,Dn] [,Sn]>
 1500 .DA #$60 ->Must be CATALOG,D1 or DIR,D2
 1510 .PH $AAE3 In FM function table, "borrow"
 1520 .DA WildCAT-1 otherwise useless address
 1530 .PH $AB10 Change range check from 13 for
 1540 CMP #14 above now USEFULL address
 1550 *-----(7)----
 1560 .PH $A4F0 Replace Integer CHAIN code
 1570 PrtLOCK LDA #" " blank=unlocked
 1580 LDX $B4C8,Y Catalog Filetype entry
 1590 BPL ToPrint
 1600 LDA #"*" *=locked
 1610 ToPrint JMP COUT Print " " or "*" indicator
 1620 *-----(8)----
 1630 .PH $A9FD Shorten NO BUFFER[S AVAILABLE]
 1640 .AS -"R" to free 11 bytes for ToPrtDec:
 1650 ToPrtDec BIT $E006 Check which Basic...
 1660 BMI ToInt Integer or
 1670 JMP $ED24 Applesoft; use appropriate
 1680 ToInt JMP $E51B print decimal routine
 1690 *-----(9)----
 1700 .PH $A021 Replace JSR ISBASRUN to allow
 1710 NOP ALL commands entered direct
 1720 NOP then error msg is redundant so
 1730 NOP ok to re-use msg space below
 1740 .PH $AA2C Replace NOT DIRECT COMMAND msg
 1750 CkCAT CMP #" " If blank, do regular catalog
 1760 BEQ ToRTS
 1770 LDY #" " Must be single-char filetype
 1780 CPY $AA76 FNAME+1, ie blank afterwards
 1790 BEQ CkType if catalog by filetype; else
 1800 JMP $A6C4 CSYNTAX error
 1810 CkType CMP FType Does filetype match?
 1820 ToRTS RTS
 1830 NOP
 1840 NOP
 1850 *----(10)----
 1860 .PH $AD98
 1870 CATHNDLR JSR AllowENT Allow for non-CDI entry
 1880 WildCAT JSR $ABDC Init File Manager Workarea
 1890 BNE ToRWVTOC
 1900 atADA0 JMP AlowVTOC Allow for non-CDI entry
 1910 atADA3 NOP Allow for non-CDI entry and
 1920 NOP alignment
 1930 atADA5 JSR AllowENT Allow for non-CDI entry
 1940 atADA8 JSR AllowENT Allow for non-CDI entry
 1950 atADAB JSR InitCR Init Linecount; output C/R
 1960 *----(11)----
 1970 JSR SKIPLN
 1980 LDX #12
 1990 PrtFreSP LDA FreeMsg-1,X
 2000 JSR COUT Print " FREE SPACE="
 2010 DEX
 2020 BNE PrtFreSP X=0 for PrtFreSP

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2349 of 2550

Apple II Computer Info

 2030 JSR FreeSpce Count & print free sectors
 2040 JSR SKIPLN
 2050 JSR SKIPLN
 2060 CLC Setup for RDNXTDIR to read
 2070 BCC RDNXTDIR first sector; always branch
 2080 NOP alignment
 2090 atADC9 JSR AllowENT Allow non-CDI, non-FM entry
 2100 RDNXTDIR JSR $B011 RDDIRSEC
 2110 BCS DONEXT2
 2120 LDX #0
 2130 GTRKNUM STX $B39C DIRINDX
 2140 LDA $B4C6,X Track part of T/S list
 2150 BEQ DONEXT2 If End of Catalog, then exit
 2160 BMI DONEXT If Deleted File, then skip it
 2170 LDA $B4C8,X Catalog Filetype
 2180 ASL ;skip hi-bit LOCK/UNLOCK flag
 2190 LDY #7
 2200 FindTYPE ASL
 2210 BCS GotTYPE
 2220 DEY
 2230 BNE FindTYPE
 2240 GotTYPE LDA $B3A7,Y From filetype table,
 2250 STA FType save looked-up filetype
 2260 LDY #30 Check CatName length and
 2270 STY CatPtLen Print CatName length
 2280 BNE CkFNAME always BNE
 2290 *----(12)----
 2300 AlowVTOC JSR AllowENT Allow for non-CDI entry
 2310 ToRWVTOC JSR $AFF7 RWVTOC read VTOC
 2320 BCC atADAB always; carry set=I/O ERROR
 2330 *----(13)----
 2340 NOP ;alignment
 2350 NOP
 2360 PrtCAT LDY $B39C Restore Y from DIRINDX
 2370 JSR PrtLOCK Print Lock indicator
 2380 JSR PrtTYPE Print filetype and BlankOUT
 2390 LDX $B4E7,Y Filesize
 2400 LDA $B4E8,Y Filesize+1
 2410 JSR ToPrtDec Print "true" filesize
 2420 LDY #7 "Poke" CH with 7 to "tab"
 2430 STY $24 over for filename spacing
 2440 LDX $B39C Restore X from DIRINDX
 2450 PrtFN LDA $B4C9,X Print Catalog Filename
 2460 JSR InvCOUT with optional conversions
 2470 INX
 2480 DEC CatPtLen CatName print length
 2490 BNE PrtFN
 2500 JSR SKIPLN
 2510 DONEXT JSR $B230 NXTDIREN...atAE25
 2520 BCC GTRKNUM
 2530 BCS RDNXTDIR
 2540 DONEXT2 JMP $B37F NOERROR....atAE2C
 2550 SKIPLN DEC CatLnCnt Linecount..atAE2F
 2560 BNE ToCR If not zero, C/R & return

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2350 of 2550

Apple II Computer Info

 2570 JSR WaitCQ else wait for keypress
 2580 BEQ DONEXT2 If Ctrl-Q, exit to NOERROR
 2590 InitCR LDA #22-1 else setup for next 22 lines
 2600 STA CatLnCnt in line count
 2610 ToCR JMP CROUT DOS vectored C/R out
 2620 *----(14)----
 2630 CkFNAME LDA FName1 Holds FNAME first character
 2640 CMP #"^" Wildcard string?
 2650 BEQ DoWild yes...maybe
 2660 JSR CkCAT Regular or by filetype?
 2670 BEQ PrtCAT yes...else
 2680 BNE DONEXT none of the above
 2690 DoWild STY CatNmLen CatName length=30, for NotEQ
 2700 LDY #1 Decr'd to 0; indexes FNAME
 2710 NotEQ DEC CatNmLen Checked all 30 chars?
 2720 BMI DONEXT Yes; no match, do next CatName
 2730 BackDown DEX Backdown to string match start
 2740 DEY Backdown to 0, ie. FNAME start
 2750 BNE BackDown
 2760 YesEQ INY First Y=1, then on past "^"
 2770 INX
 2780 LDA $AA75,Y FNAME
 2790 CMP #" " If blank then wildcard EOS and
 2800 BEQ PrtCAT still =, so we have a match!
 2810 CMP $B4C9,X FNAME = CatName?
 2820 BEQ YesEQ
 2830 INX No, setup X to backdown 1 past
 2840 BNE NotEQ string match start; always BNE
 2850 NOP
 2860 *----(15)----
 2870 .PH $BA69 Catalog Free Space Patch
 2880 FreeSpce STX $44 X=0
 2890 STX $45 Init Free Sec Count var
 2900 LDY #50*4 VTOC entries * entry length
 2910 NxBitMap LDA $B3F2,Y BITMAP-1 in VTOC buffer
 2920 CkFree ASL ;shift hi-order bit into CARRY
 2930 BCC CkMore In use, so check if any more
 2940 INC $44 Incr free sector count
 2950 BNE CkFree Zero means > 255, so
 2960 INC $45 incr "page" part of word
 2970 CkMore BNE CkFree More bits in same byte?
 2980 DEY decr index to next VTOC byte
 2990 BNE NxBitMap All done?
 3000 LDX $44 Yes, so setup count in X & A
 3010 LDA $45 for decimal print via
 3020 JMP ToPrtDec one of the BASICs
 3030 *----(16)----
 3040 WaitCk79 JSR $FCA8 Monitor WAIT routine
 3050 DEC $55 Decr char cnt
 3060 BNE $BA10 Fortuitous RTS; else fall thru
 3070 InitLine LDA #79 TYPE prolog/setup
 3080 STA $55 Init printer 80-col char cnt
 3090 JMP CROUT
 3100 NOP

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2351 of 2550

Apple II Computer Info

 3110 *----(17)----
 3120 .PH $B6B3
 3130 TYPE JSR $A2A3 DOS Open file
 3140 DoInitLn JSR InitLine Init char cnt & CROUT
 3150 ToRead JSR $A68C DOS Read char
 3160 BEQ ToWaitCQ EOF maybe...Ctrl-Q quit?
 3170 CMP #$8D Carriage return?
 3180 BEQ DoInitLn Yes, handle immediately
 3190 JSR InvCOUT Optional Ctrls & Hibit=0 INV
 3200 LDA $F1 Applesoft SPEED=nn byte
 3210 JSR WaitCk79 Wait SPEED; 79 chars yet?
 3220 LDA $C000 Has a key been pressed?
 3230 BPL ToRead No, read on
 3240 STA $C010 Reset keyboard strobe
 3250 ToWaitCQ JSR WaitCQ Wait keypress, check Ctrl-Q?
 3260 BNE ToRead If not Ctrl-Q, read on
 3270 JMP $A2FC DOS Close, Deallocate, Exit
 3280 *----(18)----
 3290 InvCOUT TAY If < $80, then hibit off
 3300 BPL SetINV so set inverse flag & convert
 3310 CMP #$A0 Ctrl-char?
 3320 BCS CkLoCase No
 3330 BIT $EA Usually, loc 234 contains 0:
 3340 BMI CkLoCase POKE 234,255 skips conversion
 3350 SetINV LSR $32 Set Inverse by shifting 0 into
 3360 LSR $32 INVFLG first 2 bits; set carry
 3370 AND #$3F Turn off 1st 2 bits maps down
 3380 ADC #$1F maps up into hibit-on part of
 3390 EOR #$E0 upper-case screen-char range
 3400 CkLoCase CMP #$E0 Lower-case?
 3410 BCC ToCOUT No; but POKE -18700,223 or
 3420 AND #$FF B6F4:DF shifts l.c. to U.C.
 3430 ToCOUT JSR COUT DOS vectored COUT
 3440 LDA #$FF
 3450 STA $32 Set normal video; always
 3460 RTS
 3470 *----(19)----
 3480 .PH $B78D Wait keypress; check Ctrl-Q
 3490 WaitCQ JSR $FD0C Monitor RDKEY
 3500 CMP #$91 Was it Ctrl-Q?
 3510 RTS
 3520 *----(20)----
 3530 .PH $B3AF Replace: DISK VOLUME inverted
 3540 FreeMsg .AS -"=ECAPS EERF " with FREE SPACE=
 3550 *----(21)----
 3560 .PH $A884 Setup FName1 for "irregular"
 3570 AllowENT LDA #" " entry into CATALOG code
 3580 STA FName1 Force blank at CkFNAME above
 3590 CLC For possible RDNXTDIR entry
 3600 RTS
 3610 DOSCMDS .AT 'INIT' Move down DOSCMDS table and
 3620 .AT 'LOAD' re-use the freed space above
 3630 .AT 'SAVE'
 3640 .AT 'RUN'

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2352 of 2550

Apple II Computer Info

 3650 .AT 'TYPE' was CHAIN
 3660 .AT 'DELETE'
 3670 .AT 'LOCK'
 3680 .AT 'UNLOCK'
 3690 .AT 'CLOSE'
 3700 .AT 'READ'
 3710 .AT 'EXEC'
 3720 .AT 'WRITE'
 3730 atA8BF .AT 'DIR' was POSITION; for CAT:43 41 D4
 3740 *----(22)----
 3750 .PH $9FFB In Command Interpreter PARSE
 3760 LDA DOSCMDS,Y DOSCMDS table ref. was $A884
 3770 .PH $9FED Only 2 references to DOSCMDS
 3780 EOR DOSCMDS,Y DO THIS AFTER ABOVE CHANGES!
 3790 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2353 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:DOS3.3:WILDCAT.EXEC.txt
==

MON I
CALL -151
9D26:B2 B6
9D3E:DC A5
9FA8:CA
9FC5:A9 A0 2C A9 8D 6C 36 00
A710:CA
A186:AC 5F AA B9 1F 9D 48 B9
 :1E 9D 48 60 EA
A56E:4C DD A5 A5 EC 20 CA 9F
 :4C C5 9F EA
A5DD:AD 75 AA 85 EE 8E 75 AA
 :A9 0D 4C AA A2 EA
A921:60 70
A929:60
AAE3:9A AD
AB10:C9 0E
A4F0:A9 A0 BE C8 B4 10 02 A9
 :AA 4C CA 9F
A9FD:D2 2C 06 E0 30 03 4C 24
 :ED 4C 1B E5
A021:EA EA EA
AA2C:C9 A0 F0 0C A0 A0 CC 76
 :AA F0 03 4C C4 A6 C5 EC
 :60 EA EA
AD98:20 84 A8 20 DC AB D0 57
 :4C F4 AD EA EA 20 84 A8
 :20 84 A8 20 38 AE
ADAE:20 2F AE A2 0C BD AE B3
 :20 CA 9F CA D0 F7 20 69
 :BA 20 2F AE 20 2F AE
ADC5:18 90 04 EA 20 84 A8 20
 :11 B0 B0 5B A2 00 8E 9C
 :B3 BD C6 B4 F0 51 30 48
ADDD:BD C8 B4 0A A0 07 0A B0
 :03 88 D0 FA
ADE9:B9 A7 B3 85 EC A0 1E 84
 :EF D0 4B
ADF4:20 84 A8 20 F7 AF 90 AF
ADFC:EA EA AC 9C B3 20 F0 A4
 :20 71 A5
AE07:BE E7 B4 B9 E8 B4 20 FE
 :A9 A0 07 84 24 AE 9C B3
AE17:BD C9 B4 20 DA B6 E8 C6
 :EF D0 F5 20 2F AE
AE25:20 30 B2 90 A9 B0 A0 4C
 :7F B3
AE2F:C6 EB D0 09 20 8D B7 F0
 :F4 A9 15 85 EB 4C C8 9F

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2354 of 2550

Apple II Computer Info

AE3F:A5 EE C9 DE F0 07 20 2C
 :AA F0 B4 D0 D9
AE4C:84 ED A0 01 C6 ED 30 D1
 :CA 88 D0 FC C8 E8 B9 75
 :AA C9 A0 F0 9D DD C9 B4
 :F0 F2 E8 D0 E7 EA
BA69:86 44 86 45 A0 C8 B9 F2
 :B3 0A 90 06 E6 44 D0 F9
 :E6 45 D0 F5 88 D0 EF A6
 :44 A5 45 4C FE A9
BA87:20 A8 FC C6 55 D0 82 A9
 :4F 85 55 4C C8 9F EA
B6B3:20 A3 A2 20 8E BA 20 8C
 :A6 F0 14 C9 8D F0 F4 20
 :DA B6 A5 F1 20 87 BA AD
 :00 C0 10 EA 8D 10 C0 20
 :8D B7 D0 E2 4C FC A2
B6DA:A8 10 08 C9 A0 B0 0E 24
 :EA 30 0A 46 32 46 32 29
 :3F 69 1F 49 E0
B6EF:C9 E0 90 02 29 FF 20 CA
 :9F A9 FF 85 32 60
B78D:20 0C FD C9 91 60
B3AF:BD C5 C3 C1 D0 D3 A0 C5
 :C5 D2 C6 A0
A884:A9 A0 85 EE 18 60
A88A:49 4E 49 D4 4C 4F 41 C4
 :53 41 56 C5 52 55 CE 54
 :59 50 C5
A89D:44 45 4C 45 54 C5 4C 4F
 :43 CB 55 4E 4C 4F 43 CB
A8AD:43 4C 4F 53 C5 52 45 41
 :C4 45 58 45 C3 57 52 49
 :54 C5
A8BF:44 49 D2
9FFB:B9 8A A8
9FED:59 8A A8
48:04 N 3D0G
NOMON I

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2355 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8602:ProDOS:S.CRC.GENERATOR.txt
==

 1000 *SAVE S.CRC.GENERATOR
 1010 *--------------------------------
 1020 BUFFER .EQ $4000
 1030 LIMIT .EQ $4102
 1040 *--------------------------------
 1050 CRC .EQ $00,01
 1060 PNTR .EQ $02,03
 1070 TEMP .EQ $0A,0B
 1080 *--------------------------------
 1090 PRNTAX .EQ $F941
 1100 CROUT .EQ $FD8E
 1110 *--------------------------------
 1120 * SIMULATE SENDING A BUFFER-FULL
 1130 *--------------------------------
 1140 SEND
 1150 LDA #0 CLEAR CRC BYTES IN BUFFER
 1160 STA LIMIT-1
 1170 STA LIMIT-2
 1180 JSR NEW.CRC.BUFFER COMPUTE CRC OF 258 BYTES
 1190 LDX CRC STORE CRC INTO LAST 2 BYTES
 1200 LDA CRC+1
 1210 STX LIMIT-1
 1220 STA LIMIT-2
 1230 JSR PRNTAX DISPLAY THE CRC
 1240 JMP CROUT <RETURN> AND RETURN
 1250 *--------------------------------
 1260 * SIMULATE RECEIVING A BUFFER-FULL
 1270 *--------------------------------
 1280 RECV
 1290 JSR NEW.CRC.BUFFER COMPUTE CRC OF 258 BYTES
 1300 LDX CRC DISPLAY CRC IN HEX
 1310 LDA CRC+1
 1320 JSR PRNTAX
 1330 JMP CROUT
 1340 *--------------------------------
 1350 .OP 65802
 1360 *--------------------------------
 1370 * CRCH CRCL DATA
 1380 * aaaa.bbbb.cccc.dddd.eeee.ffff
 1390 * +0000.aaaa
 1400 * ---------
 1410 * aaaa.gggg
 1420 * +gggg.0000.aaaa.gggg
 1430 * +000a.aaag.ggg0.0000
 1440 * -------------------
 1450 * (crchi) (crclo)
 1460 *--------------------------------
 1470 NEW.CRC.BUFFER
 1480 CLC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2356 of 2550

Apple II Computer Info

 1490 XCE
 1500 REP #$30 M&X BOTH 16-BITS
 1510 LDA ##$FFFF
 1520 STA CRC INITIALIZE CRC FOR BUFFER
 1530 LDX ##BUFFER POINT TO BUFFER
 1540 *--------------------------------
 1550 .1 SEP #$20 CRC=aaaabbbbccccdddd, DATA=eeeeffff
 1560 LDA CRC+1 aaaabbbb .eor. 0000aaaa = aaaagggg
 1570 LSR
 1580 LSR
 1590 LSR
 1600 LSR 0000aaaa
 1610 EOR CRC+1 aaaabbbb
 1620 XBA AGXX
 1630 LDA #0 AG00
 1640 REP #$20
 1650 LSR
 1660 LSR
 1670 LSR 000a.aaag.ggg0.0000
 1680 STA TEMP
 1690 LSR 0000.aaaa.gggg.0000
 1700 EOR CRC aaaa.bbbb.cccc.dddd = aaaa.gggg.kkkk.dddd
 1710 XBA kkkk.dddd.aaaa.gggg
 1720 EOR TEMP 000a.aaag.ggg0.0000
 1730 SEP #$20
 1740 EOR 0,X crchi.crclo
 1750 REP #$20
 1760 STA CRC
 1770 *--------------------------------
 1780 INX
 1790 CPX ##LIMIT
 1800 BCC .1
 1810 XCE
 1820 RTS
 1830 *--------------------------------
 1840 * FIND BAD BIT BY BRUCE LOVE'S METHOD
 1850 *--------------------------------
 1860 DUMMY.CRC .EQ $10,11
 1870 *--------------------------------
 1880 FIND.BAD.BIT
 1890 JSR RECV RECEIVE, COMPUTING NEW CRC
 1900 *--------------------------------
 1910 CLC
 1920 XCE ENTER NATIVE MODE
 1930 REP #$30 X,M 16 BITS
 1940 LDX ##$80F X=BIT NUMBER
 1950 LDA ##1 START DUMMY CRC IN A-REG
 1960 .1 CMP CRC
 1970 BEQ .2 ...FOUND BAD BIT!
 1980 DEX DECREMENT BIT NUMBER
 1990 BMI .2 ...WENT TOO FAR, COULDN'T FIND BAD BIT
 2000 ASL SHIFT DUMY CRC
 2010 BCC .1
 2020 EOR ##$1021

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2357 of 2550

Apple II Computer Info

 2030 BCS .1 ...ALWAYS
 2040 *--------------------------------
 2050 .2 TXA BIT NUMBER
 2060 SEC
 2070 XCE
 2080 XBA
 2090 JMP PRNTAX
 2100 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2358 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:Boughner.Mult.txt
==

Even Faster 65802 16x16 Multiply......Bob Sander-Cederlof

Bob Boughner, faithful reader from Yorktown, Virginia, decided that
the challenge at the end of my article in the January 1986 AAL could
not be ignored. He was able to slightly increase the speed of my
16x16 multiply subroutine for the 65802. After studying his code, I
made a few more little changes and squeezed out even more cycles.

To see just how much faster the new subroutine is, I carefully counted
the cycles, and then went back and did the same to January's
subroutine. For some reason I got a new answer for January's program,
slightly slower than published. Here are the results:

 Minimum Maximum Average
 January 333 693 513
 New One 321 633 477

The times include 6 cycles for a JSR to call the subroutine, and 6
cycles for the RTS to return. By putting the code in-line, even these
12 cycles could be eliminated. The so-called average time is merely
the arithmetic average of the minimum and maximum times. The "real"
average for random factors will be faster, because one or both of the
INC instructions at lines 1350 and 1430 would be skipped. In fact,
almost always at least one would be skipped, saving 48 cycles. Note
also that if the factor in CAND is zero, the total time is only 45
cycles.

In counting cycles I assumed that the D-register, which tells the
65802 where the direct page is, has a low byte = 0. If it is non-
zero, all of the references to CAND, PLIER, and PROD would require one
more cycle.

The new subroutine is only 4 bytes longer than the January one. The
new one uses the Y-register, while the old one did not. There are
three tricks in the new code which save time. The first one is
holding the multiplicand in the Y-register, so that TYA instructions
can be used at lines 1310 and 1390. This saves 2 cycles each time, or
a total of 32 cycles in the maximum case. The cost is the LDY CAND in
line 1200, 4 cycles.

The second trick eliminates the CLC instruction before the multiplier
is added in lines 1370-1430. The savings is 16 cycles maximum, and
the cost is 8 cycles to set it up in lines 1120-1140 by inverting the
high byte of the multiplier. This doesn't affect the average time
any, but it does lower the maximum time.

The third trick is at lines 1280 and 1290. I saved 24 cycles by
eliminating January's AND ##$0080 instruction here. The LDA PLIER-1
instruction picks up the low byte of the multiplier in the high byte

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2359 of 2550

Apple II Computer Info

of the A-register, allowing me to see what bit 7 of the multiplier is
without any masking or shifting.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2360 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:Disasm65816Plus.txt
==

Add Smarts to 65816 Dis-Assembler...............Jim Poponoe

I found fascinating the article by Bob Sander-Cederlof in the March
1985 AAL, entitled "A Disassembler for the 65816". I purchased AAL
Quarterly Disk 18 and tried it out for myself, watching 65802
instructions zip before my eyes.

But, whoa! Bob was correct in warning that his disassembler would not
know whether immediate-mode instructions are two or three bytes long.
Bob explained "only by executing the programming, and tracing it line-
by-line, can we tell." A fully accurate disassembler for the 65816
would have to execute the equivalent of STEP and TRACE, following the
logic flow of the program.

I wanted an easier, quick-and-dirty way to spiff up the output, one
that would at least recognize simple, straightforward changes in the
processor status. I reasoned that:

1) Interpretation of immediate-mode instructions depends on the state
of E, M, and X bits in the status register.

2) E and C bits are exchangeable.

3) The disassembler must keep track of all four bits (C, E, X, and M)
in order to disassemble immediate mode opcodes correctly.

4) The disassembler should also keep track of when the processor
status is pushed onto or pulled off the stack.

My implementation assigns a memory location for the E-bit, and a small
"stack" of 8 memory locations for the status register. One more
memory location serves as the stack pointer. Here is the
initialization code for these memory locations, replacing lines 1450-
1480 in Bob's March 1985 listing:

 <<<<lines 1450-1486>>>>

I added a JSR TEST.OP.CODES line at 5865, to call some new code which
looks for CLC, SEC, REP, SEP, PHP, PLP, and XCE instruc- tions. It
adjusts the flags appropriately in response to these instructions. If
the current opcode is none of the above, TEST.OP.CODES checks the
status bits and the opcode to set up the correct immediate-mode
length. If the opcode is an immediate mode operation on the A-
register, and if E=0 and M=0, then 16-bit immediate will be
disassembled. If the opcode is an immediate mode operation on the X-
or Y-register, and if E=0 and X=0, then 16-bit immediate will be
disassembled. Otherwise, any kind of immediate mode instruction will
be disassembled with an 8-bit operand.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2361 of 2550

Apple II Computer Info

I tried the program on all the sample 65802 code I could find, and it
was all disassembled correctly. Of course it is certainly possible to
fool my program. The C-bit, and hence possibly the E-bit, can be
changed in many other ways than by using the CLC and SEC instructions.
The program flow is not followed, so it is possible than my emulation
of the carry status and the XCE will not agree with what happens in
some code. If you adhere to the "nice" standard of always using
explicit SEC or CLC opcodes before an XCE opcode, the disassembler
should stay in step perfectly.

When you type 800G to link in the disassembler (refer to Bob's article
to know what I mean here) the status is initialized to E=C=M=X=1.
This means normal 6502 mode. If you disassemble some code with XCE's
in it, the status I keep will probably be left in some other mode. If
you then try to disassemble some plain vanilla 6502 code, the
immediate instructions may be disassembled with 16-bit operands. Just
type 800G again to get back to normal.

By the way, in working with Bob's disassembler I discovered a typing
error in his code. Line 3980 was originally >OXA TAY, and it should
have been >OXA DEY. The hex listing in Bob's article showed $AF
stored in $963; it really should be $89. Without this change, the DEY
opcode disassembles as TAY!

The listing that follows has been extensively modified by Bob, based
on my code I sent him last September. The lines are numbered to
follow after the last line of the program on the quarterly disk.

<<<<<listing of lines 7060-7880>>>>

Further notes by Bob Sander-Cederlof:

Thanks, Jim! Your ideas were a big help! In looking back over my
work, I noticed some more improvements.

R. F. O'Brien wrote us just this week with the news that he had found
two bugs in the disassembler. One was the typing error at line 3980
which Jim noted above. But Robert found a second typo, at line 4960.
">OXB LDX" should be changed to ">OXB CPX". This changes the byte
shown in the original article at $9BF from $19 to $0F.

I found a way to simplify the >ON macro, which speeds up assembly and
shortens the listing. Replace lines 1220-1290 with the following:

<<<<<listing of lines 1220-1290>>>>

I also discovered that one kind of Apple monitor ROM did not have the
RELADR subroutine, so I re-coded lines 6760-6950. Replace those lines
with the following:

<<<<listing of lines 6760-6900>>>>>

One last item. I wrote a test routine to call the disassembler for
every possible opcode from 00 to FF. Here it is:

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2362 of 2550

Apple II Computer Info

<<<<listing of lines 7890 to end>>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2363 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:Front.Page.txt
==

$1.80
Volume 6 -- Issue 6 March, 1986

In This Issue...

Modifying ProDOS for Non-standard ROMs 2
Even Faster 65802 16x16 Multiply 9
Some More Rumors . 10
Add Smarts to 65816 Dis-Assembler. 12
Fastest 6502 Multiplication Yet. 19
New Hardware for Programming PALs. 25
Review of Applied Engineering Transwarp. 26
New Book by Tom Weishaar 29
Which Processor Am I In? 32

ES-CAPE

Whatever happened to the Extended S-C Applesoft Program Editor?
That's a question we've heard more than a few times in the last year
or two, and we finally have some kind of answer.

We got bogged down in producing Version 2.0 of the program. The new
printer control, Park and Join, and Applesoft and DOS command features
are great. The 40-column, STB-80, and //e versions came out just
fine, but the Videx and Viewmaster versions stumped us. The planned
Renumber and Merge features never made it, and we couldn't settle on a
mechanism for adding other utility programs.

Anyway, we've got a deal for you! How's this for a package?: ES-CAPE
1.0 Source and Object Code and manual, along with ES-CAPE 2.0 Source
and Object Code and a manual supplement on disk. That's all the
source and object code for both versions of the program, for a total
of only $50.00. Registered owners of ES-CAPE 1.0 can purchase this
new package for only $30.00.

New 65816 Book

There's another book coming along on programming the 658xx processors.
This one is called "65816/65802 Assembly Language Programming", by
Michael Fischer, published by Osborne/ McGraw-Hill as an addition to
their Assembly Language Programming series, mostly by Lance Leventhal.
Fischer's book is scheduled for May delivery, so we have ordered some
copies and are beginning to accept orders. Our price will be $18.00 +
shipping.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2364 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:PAL.Programmer.txt
==

New Hardware for Programming PALs......Bob Sander-Cederlof

PALs (programmable array logic chips) are to logic circuitry as ROMs
are to memory. Most of the new cards coming out these days contain
one or more PALs. Engineers write logic equations, feed them into a
PAL Assembler, and run the output to a PAL burner. The programmed PAL
is then ready to use in a circuit. Until now, you had to buy a PAL
development system, either stand-alone or perhaps interfaced to an
IBM-alike.

But now, Dynatek Electronics has introduced a new board than slips
nicely into an Apple slot for programming 20- and 24-pin PALs. The
PALP-701A, for $245, programs 20-pin PALs. The PALP-702A handles both
20- and 24-pin chips, and can also blow the security fuse when you are
ready for it. Both of them come with the PAL Assembler software.

Dynatek's PAL Assembler is compatible with Monolithic Memories PALASM.
It creates a fuse plot from a PAL source file of Boolean equations.
The fuse plot is then used by the PAL Programmer card via on-board
firmware to program the PAL. The firmware on the Programmer card can
also read un-protected PALs, and verify them. There is also a screen
editor for creating, examining, and modifying a fuse plot.

Almost any Apple II system will do. You need at least 16K RAM to use
the card, at least 48K and a disk drive to use the PAL Assembler. And
who, these days, does not have at LEAST 48K?

If you design and build circuits, you ought to investigate this card.
Call Jerry Wang at (312) 255-3469, or write to Dynatek Electronics,
Inc., P. O. Box 1567, Arlington Heights, IL 60006. Tell him we sent
you!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2365 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:PDos.Franklines.txt
==

Modifying ProDOS for Non-Standard ROMs...Bob Sander-Cederlof

We have published several times ways to defeat the ROM Checksummer
that is executed during a ProDOS boot, so that owners of Franklin
clones (or even real Apples with modified monitor ROMs) could use
ProDOS-based software. See AALs of March and June, 1984.

Both of these previous articles are out of date now, because they
apply to older versions of ProDOS than are current. What follows
applies to Version 1.1.1 of ProDOS.

There are two problems with getting ProDOS to boot on a non-standard
machine. The first is the ROM Checksummer. This subroutine starts at
$267C in Version 1.1.1, and is only called from $25EE. The code is
purposely weird, designed to look like it is NOT checking the ROMs.
It also has apparently purposeful side effects. Here is a listing of
the subroutine:

<<<<listing of ROM.CHECKSUMMER>>>>

The pointer at $0A,0B was set up to point to $FB09 using very sneaky
code at $248A. Location $2674 initially contains a 0, and $2677
contains an 8. Only the bytes from $FB09 through $FB10 are
checksummed. Truthfully, "checksummed" is not the correct word.

The wizards who put ProDOS together figured out a fancy function which
changes the 64 bits from $FB09 through $FB10 into the value $75.
Their function does this whether your ROMs are the original monitor
ROM from 1977-78, the Autostart ROM, the original //e ROM, or any
other standard Apple ROM. The values in $FB09-FB10 are not the same
in all cases, but the function result is always $75. However, a
Franklin ROM does not produce $75. Probably a BASIS also gives a
different result, and other clones. Once $75 is obtained, further
slippery code changes the value to $00.

The original Apple II ROM has executable code at $FB09, and in hex it
is this: B0 A2 20 4A FF 38 B0 9E. All other Apple monitor ROMs have
an ASCII string at $FB09. The string is either "APPLE][" or "Apple
][". Notice that the "AND #$DF" in the checksummer strips out the
upper/lower case bit, making both ASCII strings the same.

I wrote a test program to print out all the intermediate values during
the "Checksummer's" operation. Here are the results, for both kinds
of ROMs.

Original ROM Later ROMs
LDA AND ADC STA ROL LDA AND ADC STA ROL
B0 90 00 90 20 C1 C1 00 C1 82
A2 82 20 A2 44 D0/F0 D0 82 52 A5

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2366 of 2550

Apple II Computer Info

20 00 44 44 88 D0/F0 D0 A5 75 EB
4A 4A 88 D2 A4 CC/EC CC EB B7 6F
FF DF A4 83 07 C5/E5 C5 6F 34 69
38 18 07 1F 3E A0 80 69 E9 D2
B0 90 3E C3 9C DD DD D2 AF 5F
9E 9E 9C 3A 75 DB DB 5F 3A 75

I don't understand why this code gives the same result, but I see it
does. Now, dear readers, tell me how anyone ever figured out what
sequence of operations would produce the same result using these two
different sets of eight bytes, and yet produce a different result for
clones! If you understand it, please explain it to me!

By the way, here is a listing of my test program:

<<<<listing of test program>>>>

The checksummer can be defeated. The best way, preserving the various
side effects, is to change the byte at $269F from $03 to $00. This
changes the BNE to an effective no-operation, because it will branch
to the next instruction regardless of the status. Another way to get
the same result is to store $EA at both $269E and $269F. Still
another way is to change the "LDA #0" at $26A3,4 to "LDA $0C" (A5 0C),
so that either case gives the same result.

If it thinks it is in a valid Apple computer, the checksummer returns
a value in the A-register which is non-zero, obtained from location
$0C. The value at $0C has been previously set by looking at other
locations in the ROM, trying to tell which version is there. Part of
this code is at $2402 and following, and part is at $2047 and
following. The byte at $0C will eventually become the Machine ID byte
at $BF98 in the System Global Page, so it also gets some bits telling
how much RAM is available, and whether an 80-column card and a clock
card are found.

If you have a non-standard Apple or a clone the bytes which are
checked to determine which kind of ROM you have may give an illegal
result. The following table shows the bytes checked, and the
resulting values for $0C. The values in parentheses are not ever
checked, but I included them for completeness. The value in $0C will
be further modified to indicate the amount of RAM found and the
presence of a clock card.

 Version FBB3 FB1E FBC0 FBBF $0C

 Original Apple II 38 (AD) (60) (2F) 00
 Autostart, II Plus EA AD (EA) (EA) 40
 Original //e 06 (AD) EA (C1) 80
 Enhanced //e 06 (AD) E0 (00) 80
 DEBUG //e 06 (AD) E1 (00) 80
 Original //c 06 (4C) 00 FF 88
 //c Unidisk 3.5 06 (4C) 00 00 88
 /// Emulating II EA 8A (??) (??) C0

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2367 of 2550

Apple II Computer Info

By the way, ProDOS 1.1.1 will not allow booting by an Apple ///
emulating a II Plus, possibly because the standard emulator only
emulates a 48K machine.

I have no idea what a clone would have in those four locations, but
chances are it would be different. You should probably try to fool
ProDOS into thinking you are in a II Plus, because most clones are II
Plus clones. This means you should somehow change the ID procedures
so that the result in $0C is a value of $40. One way to do this is
change the code at $2402 and following like this:

 Standard Change to

2402- A9 00 LDA #0 2402- A9 40 LDA #$40
2404- 85 0C STA $0C 2404- 4C 2E 24 JMP $242E
2406- A3 B3 FB LDX $FBB3

If your clone or modified ROM is a //e, change $2402 to LDA #$80
instead.

You may also need to modify the code at $2047 and following. If you
are trying to fool ProDOS into thinking you are an Apple II Plus or
//e, and have already made the change described above, change $2047-9
like this:

 Standard Change to

2047- AE B3 FB LDX $FBB3 2047- 4C 6D 20 JMP $206D

No doubt future versions of ProDOS will make provision for clones and
modified ROMs even more difficult. And there are always the further
problems encountered by usage of the ROMs from BASIC.SYSTEM and the
ProDOS Kernel and whatever application program is running.

I am intrigued about seeing what the minimum amount of code is that
can distinguish between the four legal varieties of ROM for ProDOS. I
notice from the table above that I can identify the four types and
weed out the ///emulator by the following simple code at $2402:

 LDA $FBB3
 ORA $FB1E
 LDX #3
 .1 CMP TABLE.1,X
 BEQ .2
 DEX
 BPL .1
 SEC
 RTS
*
TABLE.1 .HS BD.EF.AF.4E
TABLE.2 .HS 00.40.80.88
*
 .2 LDA TABLE.2,X
 JMP $242E

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2368 of 2550

Apple II Computer Info

With this code installed, all the code from $2047-$206C is not needed,
and the JMP $206E should be installed at $2047. The new code at $2402
fits in the existing space with room to spare. Can you do it with
even shorter code?

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2369 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:Putney.Mul8x8.txt
==

Fastest 6502 Multiplication Yet................Charles Putney
 Shankill, Dublin, Ireland

Here is an 8x8 multiply routine that will blow your socks off! The
maximum time, including both a calling JSR and a returning RTS, is
only 66 cycles! The minimum is 60 cycles, and most factors will
multiply in 63 cycles. Recall that the fastest time in Bob S-C's
January 1986 AAL article for a 6502 was 132 cycles. My new one is
twice as fast!

As with most fast routines, there is a trade off in memory space. My
program uses 1024 bytes of lookup tables. This isn't so bad if you
really need or want a 2:1 speed advantage.

My routine is based on the fact that:

 4 * X * Y = (X+Y)^2 - (X-Y)^2

I got this idea from an article in EDN Magazine by Arch D. Robison
(October 13, 1983, pages 263-4). His routine used the fact that:

 2 * X * Y = X^2 + Y^2 - (X-Y)^2

Robison's method requires three dips into the lookup tables.
Formulated to the same method for passing parameters, his method takes
either 74 or 77 cycles. Here is my rendition of his method:

 <<<<listing of Robison's program>>>>

The entries in the two tables (SQL and SQH) are the squares of the
numbers from 0 to 255, divided by two. The low bytes are in the SQL
table, and the high bytes are in SQH. Dividing by two throws away an
important bit for odd factors, but lines 1160-1170 compensate for the
loss.

I looked for a way to add fewer table entries together and came upon
the sum^2 - diff^2. Since the sum can be as large as 255+255=510, I
need twice as much table space. Lest you despair of typing in such a
large table, let me offer an Applesoft program which will write a text
file of the source code for the table:

 <<<listing of Applesoft source creator>>>>

My tables contain the squares divided by four. I can hear you saying,
"Wait a minute! You can't just divide by four and truncate!" Well,
even squares are all multiples of four; odd squares are all multiples
of four with a remainder = 1. The sum of two numbers and the
difference of the same numbers are either both even or both odd.
Therefore, we never lose anything by throwing away our truncated 1.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2370 of 2550

Apple II Computer Info

The number of cycles my MULT8 takes depends on the values of the two
factors. You call MULT8 with one factor in the A-register and the
other in the X-register. If (A) is less than (X), it takes an extra 3
cycles to perform a complement operation. If the sum of the factors
is greater than 255, add another three cycles. To summarize,

 A>=X | A<X

 sum<256 | 60 | 63
 sum>255 | 63 | 66

Just for fun, I also wrote a program to generate the square/4 tables.
This takes less time than loading the tables from disk, so it could
mean faster booting for some hi-resolution game program that needs
super-fast multiplications. It is in lines 1560-2100 below.

The origin I used in my program is meant just to allow me to test it.
I wrote an Applesoft program to call TEST at $6000 (CALL 24576). The
program POKEd two factors at $FA and $FB, called TEST, and then
checked the result at the same two locations. If you want to use
MULT8, you should just assemble it along with the rest of your
program, without any special origin. You should make sure that the
tables start on an even page boundary, or it will cost you up to 8
cycles extra for indexing across a page boundary.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2371 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:Transwarp.Rvw.txt
==

Review of Applied Engineering Transwarp.....Bob Sander-Cederlof

We reviewed the M-c-T SpeedDemon accelerator card in AAL of July 1985.
At the time the price was $295 from the manufacturer or $199 through
Call APPLE. We recently received a promotion sent to software
publishers offering wholesale prices if we would advertise the
SpeedDemon in conjunction with our software. The suggested price is
now $249. (We notice that at least one game publisher took them up on
the offer.)

Now Applied Engineering has released their new accelerator card, the
Transwarp. Their price is $279 with a 65C02 installed, and an optional
upgrade to a fast 65802 for an additional $89. The higher price is
probably well justified by the features.

Transwarp includes 256K of high-speed RAM on the card. This compares
to 64K on the Titan Accelerator, and a 4K cache on the SpeedDemon.
Transwarp will run with the SWYFT card installed, while the others
apparently will not.

Transwarp's 256K RAM is effectively divided into four 64K banks. When
you power-up your Apple with Transwarp installed, all of the ROM from
$D000 through $FFFF is copied into one of the high-speed RAM banks.
The rest of this bank is not used. A second bank is used in place of
the motherboard RAM. The third and fourth banks are used in place of
the first and second banks of AUXMEM, if you have a RAM card such as
RAMWORKS installed in the AUX slot. If you have a large RAMWORKS in
the auxiliary slot of a //e, any additional banks beyond two will
still be usable but at "only" 1 MHz.

When you write data to one of the screen areas (any address $400-$BFF
or $2000-$5FFF), the data is "written through" to the motherboard RAM.
(The video hardware in the Apple requires that the screen data be in
motherboard RAM.) When you read from any of these addresses, the data
will be read from the fast Transwarp RAM.

Transwarp keeps track of the state of all the AUXMEM soft switches, as
well as the RAMWORKS bank register. All reads from any memory that is
supported in the Transwarp RAM will be done at full speed. Reads from
and writes to any address in the range $C000-$CFFF will slow down to 1
MHz for one cycle.

There are 16 dip switches on the card, allowing you to configure for
most environments. Seven switches indicate which slots must execute
code at 1 MHz. Slots designated by switches will slow down the
processor for about 1/2 second after any access to either the slot ROM
or the slot registers. An Apple disk Controller must run at the slow
speed, while most other slots can run faster. Some I/O cards,
especially serial cards, must run at slow speed due to internal

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2372 of 2550

Apple II Computer Info

software-controlled timing. The Transwarp's switches are much more
flexible than the SpeedDemon's system of always slowing down for slot
6 and using jumpers to allow a slowdown for slots 4 and 5.

Another seven switches let you indicate which slots (1-7) have RAM
cards installed. The two remaining switches let you select the
initial speed of the Transwarp card. You can select a default speed
of 3.58 MHz, 1.7 MHz, or 1 MHz. This is the speed the card runs at
when you power up. You might like the 1.7 MHz speed for making your
game software just a LITTLE faster.

Once the Transwarp has taken over, you can switch back and forth
between the default speed and 1 MHz by storing either 0 (default
speed) or 1 (1 MHz) into $C074. In BASIC this would be POKE to -16268
or 49268 of either 0 or 1.

If you POKE a value of 3 to $C074, Transwarp will be shut down
completely; the motherboard processor will take over when you hit
CTRL-RESET. In order to turn Transwarp back on, you have to turn the
computer off and back on again with the power switch. You also have
the option of disabling Transwarp during the power-on cycle, by typing
the ESCAPE key within a couple of seconds after turning on the
computer.

Transwarp has a 4K EPROM on-board with startup and self-test firmware.
Naturally, I disassembled the code to see how it all works. The self-
test is initiated by typing a "0" or "9" during the first two seconds.
The test checks for the type of processor installed (65C02 or 65802),
measures the speed, tests bank switching, and tests RAM. If you are
in a //e, you can hold down the Open-Apple key to keep it looping
through the speed test.

Transwarp measures its own speed by counting how many cycles it takes
for the Vertical Blanking Signal to pass by. This signal is not
available on the II or II Plus, so no speed information is tested on
the older machines.

We tested Transwarp doing various jobs such as assembling, word
processing, and spreadsheet-ing. Everything worked, no glitches, and
a lot faster. The speedup factor depends on the amount of disk I/O,
screen I/O, and so on. Nothing runs with a full 3.5 or 3.6 speed
increase, not even a short timing loop. The very highest factor I
could coax out of my board was about 3.3, on a timing loop running at
$C00. This loop included a large number of STA instructions, on
purpose. When I moved the program to $800, so that the STA
instructions were storing into the range slowed down to 1MHz (between
$400 and $BFF), the loop only ran 2.0 times faster under Transwarp
than under a normal 1 MHz processor.

Why do the advertisements for accelerators claim a 3.6 or larger
speedup factor? I think they are rounding up the clock speed of
3.579... to 3.6, and likewise rounding down the Apple's clock speed
from 1.023 to 1. That is not the way the IRS likes you to do math....

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2373 of 2550

Apple II Computer Info

The actual ratio of the two clock speeds is exactly 3.5, but the mist
does not entirely clear yet.

Remember that the Apple stretches one cycle out of every 65 by an
amount equal to one cycle of the 7MHz signal. See chapter 3 of Jim
Sather's "Understanding the Apple //e" for details. This means the
normal Apple runs a hair slower than the clock rate. But also
remember that dynamic RAM needs refreshing from time to time. The
refresh of the 256K RAM on the Transwarp card occurs once out of every
16 Apple phase 0 (1MHz) clock cycles. During each 16th 1MHz cycle,
the Transwarp slows down to 1MHz. This means that in the time a
normal Apple would execute 16 clock cycles, the full-speed Transwarp
will execute 53 clock cycles. If not for the long refresh cycle,
Transwarp would execute 56 cycles during 16 phase 0 cycles. Now 53
divided by 16 is 3.3125, showing that the maximum speedup factor for
Transwarp is 3.3125. I don't know for certain, but the Titan
Accelerator II probably has the same characteristic. If so, they both
run at a full 3.5 times faster for 15 micro- seconds, slow down for
one microsecond, and then take off again.

The SpeedDemon, on the other hand, can run at a full 3.5 times faster
for somewhat longer bursts. If every byte needed is in the SpeedDemon
cache memory (static RAM, needing no refresh), execution should
proceed at 3.5 times normal Apple speed. Normal programs, however,
which are long enough to make us worry about speed, will never be
entirely inside the cache. In all comparison tests of real software,
Transwarp is faster than either SpeedDemon or Titan. SpeedDemon loses
due to its cache, and Titan loses because it does not speed up any
accesses to AUXMEM.

The S-C Word Processor increased its speed by about 3.2 for compute-
bound operations like searching. Interestingly, an operation that is
limited by screen output, like inserting characters from the yank
buffer, showed almost no increase in speed. In THE Spreadsheet
(MagiCalc) the acceleration factor was about 3.1-3.3, running in a II+
with a Viewmaster 80-column card. Our mailing label system, written
mostly in Applesoft, showed a pretty consistent 3.3 speedup. Programs
which involve disk I/O will not speed up as much, because the disk
still spins at the same 300 rpm.

All in all, we think the Transwarp is a good investment: you get a
quality product at a reasonable price which significantly enhances the
performance of your computer.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2374 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:V6N6.IIX.Rumors.txt
==

Some More Rumors

Electronics magazine printed a brief news item about a second source
for 65816 chips. Western Design has signed up a lot of licensees to
make these chips, but none of them are in production as of this month.
Electronics says VLSI Technology Inc., of San Jose, California, is
projecting prices in the $10 range for volume purchases. When?
Target is to start selling sample quantities next summer. Meanwhile,
volume prices are in the $35 range from Western Design Center. The
single-unit price is still about $100.

The parts we are selling are the 65C802 from Western Design Center.
Our price to you is $50 each. These are normally spec'd at 2MHz, but
sometimes we get 4MHz parts at the same price, when they are out of
the slower ones. Either speed works equally well in an Apple
motherboard, but you need the 4MHz chip to use in a Transwarp
accelerator card.

Rumors continue to ricochet around the club newsletter circuit about
the possible configuration of the new Apple II (usually called the
//x). Most rumor sources agree now that the //x will use a 65C816.
We sure HOPE so! One source said he looks for an 8MHz clock. We
doubt that, because current projections are for 8MHz chips becoming
available about 1st quarter 1987. And the RAM for 8MHz operation
would be far too expensive. My guess we will see either 2MHz or
3.58MHz.

Most are now including a SCSI port in their list of features, since
the Macintosh Plus has one. Some are talking about a smaller set of
normal slots, supplemented by some new super-slots having more signals
available. There are reportedly a number of different versions of the
//x already in existence, seeded around. If that is true, it could be
than no one (even inside Apple) yet knows what the REAL //x will be.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2375 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:Weishaars.Book.txt
==

New Book by Tom Weishaar, reviewed by Bob Sander-Cederlof

A little over a year ago, just before he started the "Open-Apple"
newsletter, Tom wrote a book. Info Books has just released it, called
"Your Best Interest: A Money Book for the Computer Age." It's not
about Apple assembly language, but I cannot resist telling you about
it anyway!

The book is about interest rates -- how to understand them, how to
calculate them, how they affect you. It was written for people who
know how to use a spreadsheet program. All the hard math and books of
tables are replaced your favorite calc-alike.

If you remember Tom's DOSTalk column from the much-missed pages of
Softalk Magazine, or are familiar with his current Open-Apple
newsletter, you know that what he writes is easy to read, fun to read,
and WORTH READING.

Seven fascinating chapters lead you to an understanding of how
financial transactions really work. He starts with simple percentage
calculations, at a level your Junior High children can follow. If you
think that is starting too simply, try explaining percentages to YOUR
children! But he keeps going....

Have you thought about buying a house recently? Tom shows you how to
figure the true cost of an adjustable-rate mortgage, how to compare
different financing schemes, and how to protect your money. You'll
learn about the tricks money lenders sometimes use to take advantage
of unwary investors and borrowers. And all is tied to spreadsheet
models you can put into your Apple. I wish I had only known how to do
these things when I bought a pickup truck last summer. Or leased a
copying machine three years ago. And when we bought some land in the
country....

The book is 160 pages slim (172 counting everything), only $9.95 at
your favorite book store. And worth a trip! Or call Gerald Rafferty
at Info Books, (213) 470-6786. Or write to them at P. O. Box 1018,
Santa Monica, CA 90406.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2376 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:Articles:Which.Processor.txt
==

Which Processor Am I In?.......................Jim Poponoe

One of the first programs I wrote after receiving my 65802 chip was
one which tells me which microprocessor is in my Apple. Since the
65C02 has instructions not in the 6502, and since the 65802 has all of
those and still more, it is possible to tell which is which.

The instructions in the 65802 (or 65816) which are not in the 65C02
are all "no-operation" opcodes in the 65C02. The same is not true for
the un-implemented codes in the 6502! Bob S-C detailed what all the
un-implemented 6502 opcodes do in the March 1981 issue of AAL. Some
of them do really exotic things, but some are in fact NOPs. $80 is a
two-byte NOP in the 6502, but a Branch Always (BRA) in the 65C02 and
658xx. Therefore, the BRA opcode can be used to distinguish between
the 6502 and higher versions.

The XBA instruction ($EB) is a one-byte no-operation in the 65C02. In
the 658xx it exchanges the low and high bytes of the 16-bit A-
register. Therefore it can be used to distinguish between the 65C02
and the 658xx processors.

The following program will print out either "6502", "65C02", or
"65802" depending on which it finds. A few more tests could
distinguish the Rockwell 65C02, which has four opcodes beyond those in
65C02s made by other manufacturers. And a few more might distinguish
between a 65802 in my motherboard and a 65816 running in a co-
processor card. I'll leave those for interested readers to try.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2377 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:DOS3.3:Boughner.Mult.txt
==

 1000 .OP 65802
 1010 *SAVE BOUGHNER'S MULTIPLY
 1020 *--------------------------------
 1030 * CONTRIBUTED BY BOB BOUGHNER
 1040 * MODIFIED A LITTLE MORE BY BOB S-C
 1050 *--------------------------------
 1060 CAND .EQ 0,1
 1070 PLIER .EQ 2,3
 1080 PROD .EQ 4,5,6,7
 1090 *--------------------------------
 1100 MUL.FASTER.YET.16X16.65802
 1110 LDX #8 WILL LOOP 8 TIMES
 1120 LDA PLIER+1 INVERT HIGH BYTE
 1130 EOR #$FF TO SAVE "CLC" IN LOOP
 1140 STA PLIER+1
 1150 CLC
 1160 XCE ENTER "NATIVE" MODE
 1170 REP #$30 16-BITS BOTH X & M
 1180 STZ PROD CLEAR PRODUCT
 1190 STZ PROD+2
 1200 LDY CAND MULTIPLICAND IN Y-REG
 1210 BNE .2 ...NON-ZERO, START LOOP
 1220 XCE ...ZERO, EXIT NOW
 1230 RTS
 1240 *--------------------------------
 1250 .1 ASL PROD DOUBLE THE PRODUCT
 1260 ROL PROD+2
 1270 *--------------------------------
 1280 .2 LDA PLIER-1 GET LOW BYTE IN A(15-8)
 1290 BPL .3 ...ORIG. BIT=0, DON'T ADD
 1300 CLC
 1310 TYA ...ORIG. BIT=1, ADD 'CAND
 1320 ADC PROD
 1330 STA PROD
 1340 BCC .3
 1350 INC PROD+2 ADD CARRY TO HI-16
 1360 *--------------------------------
 1370 .3 ASL PLIER SHIFT MULTIPIER, GET HI-BIT
 1380 BCS .4 ...ORIG. BIT=0, DON'T ADD
 1390 TYA ...ORIG. BIT=1, ADD 'CAND
 1400 ADC PROD+1 ADD TO MIDDLE OF PRODUCT
 1410 STA PROD+1
 1420 BCC .4
 1430 INC PROD+3 (NEVER BOTHERS PROD+4)
 1440 *--------------------------------
 1450 .4 DEX
 1460 BNE .1
 1470 SEC
 1480 XCE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2378 of 2550

Apple II Computer Info

 1490 RTS
 1500 *--------------------------------
 1510 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2379 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:DOS3.3:Creat.SqTbl.Src.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2380 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:DOS3.3:Putney.Fst.8x8.txt
==

 1000 *SAVE ROBISON'S FAST 8X8
 1010 *--------------------------------
 1020 * MODIFIED FROM ORIGINAL PROGRAM
 1030 * BY ARCH D. ROBISON, BURROUGHS CORP.
 1040 * EDN, OCTOBER 13, 1983.
 1050 *--------------------------------
 1060 * ENTER WITH (A)=MULTIPLIER # 1
 1070 * (X)=MULTIPLIER #2
 1080 * EXIT WITH (A)=PRODUCT HI BYTE
 1090 * (X)=PRODUCT LO BYTE
 1100 *--------------------------------
 1110 PROD .EQ $06 PRODUCT TEMP OF M1*M2 (LOW BYTE)
 1120 M2 .EQ $07 TEMP FOR M2 SAVE
 1130 *--------------------------------
 1140 MULT8 TAY SAVE M1 IN Y
 1150 STX M2 SAVE M2
 1160 AND M2 CHECK IF BOTH FACTORS ARE ODD
 1170 LSR SET CARRY <--> BOTH ODD
 1180 LDA SQL,X ADD (X*X)/2 AND (Y*Y)/2
 1190 ADC SQL,Y
 1200 STA PROD SAVE LO BYTE OF PRODUCT
 1210 LDA SQH,X
 1220 ADC SQH,Y
 1230 TAX SAVE HI BYTE OF PRODUCT
 1240 TYA GET M1 BACK
 1250 SEC
 1260 SBC M2 FIND M1 - M2
 1270 BCS .1 M1 >= M2, CONTINUE
 1280 SBC #0 M1 < M2, FORM 2'S COMPLEMENT
 1290 EOR #$FF
 1300 .1 TAY USE ABS(M1-M2) AS INDEX
 1310 LDA PROD TO FIND SQUARE/2 IN TABLE
 1320 SBC SQL,Y NOW SUBTRACT (X-Y)*(X-Y)
 1330 STA PROD SAVE LO BYTE OF RESULT
 1340 TXA HI BYTE FROM PREVIOUS SUM
 1350 SBC SQH,Y
 1360 LDX PROD LO BYTE OF FINAL PRODUCT
 1370 RTS
 1380 *--------------------------------
 1390 .OR $900 PAGE BOUNDARY TO SAVE MAX 6 CYCLES
 1400 *--------------------------------
 1410 SQL
 1420 .DA #0,#0,#2,#4,#8,#12,#18,#24
 1430 .DA #32,#40,#50,#60,#72,#84,#98,#112
 1440 .DA #128,#144,#162,#180,#200,#220,#242,#264
 1450 .DA #288,#312,#338,#364,#392,#420,#450,#480
 1460 .DA #512,#544,#578,#612,#648,#684,#722,#760
 1470 .DA #800,#840,#882,#924,#968,#1012,#1058,#1104
 1480 .DA #1152,#1200,#1250,#1300,#1352,#1404,#1458,#1512

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2381 of 2550

Apple II Computer Info

 1490 .DA #1568,#1624,#1682,#1740,#1800,#1860,#1922,#1984
 1500 .DA #2048,#2112,#2178,#2244,#2312,#2380,#2450,#2520
 1510 .DA #2592,#2664,#2738,#2812,#2888,#2964,#3042,#3120
 1520 .DA #3200,#3280,#3362,#3444,#3528,#3612,#3698,#3784
 1530 .DA #3872,#3960,#4050,#4140,#4232,#4324,#4418,#4512
 1540 .DA #4608,#4704,#4802,#4900,#5000,#5100,#5202,#5304
 1550 .DA #5408,#5512,#5618,#5724,#5832,#5940,#6050,#6160
 1560 .DA #6272,#6384,#6498,#6612,#6728,#6844,#6962,#7080
 1570 .DA #7200,#7320,#7442,#7564,#7688,#7812,#7938,#8064
 1580 .DA #8192,#8320,#8450,#8580,#8712,#8844,#8978,#9112
 1590 .DA #9248,#9384,#9522,#9660,#9800,#9940,#10082,#10224
 1600 .DA #10368,#10512,#10658,#10804,#10952,#11100,#11250,#11400
 1610 .DA #11552,#11704,#11858,#12012,#12168,#12324,#12482,#12640
 1620 .DA #12800,#12960,#13122,#13284,#13448,#13612,#13778,#13944
 1630 .DA #14112,#14280,#14450,#14620,#14792,#14964,#15138,#15312
 1640 .DA #15488,#15664,#15842,#16020,#16200,#16380,#16562,#16744
 1650 .DA #16928,#17112,#17298,#17484,#17672,#17860,#18050,#18240
 1660 .DA #18432,#18624,#18818,#19012,#19208,#19404,#19602,#19800
 1670 .DA #20000,#20200,#20402,#20604,#20808,#21012,#21218,#21424
 1680 .DA #21632,#21840,#22050,#22260,#22472,#22684,#22898,#23112
 1690 .DA #23328,#23544,#23762,#23980,#24200,#24420,#24642,#24864
 1700 .DA #25088,#25312,#25538,#25764,#25992,#26220,#26450,#26680
 1710 .DA #26912,#27144,#27378,#27612,#27848,#28084,#28322,#28560
 1720 .DA #28800,#29040,#29282,#29524,#29768,#30012,#30258,#30504
 1730 .DA #30752,#31000,#31250,#31500,#31752,#32004,#32258,#32512
 1740 SQH
 1750 .DA /0,/0,/2,/4,/8,/12,/18,/24
 1760 .DA /32,/40,/50,/60,/72,/84,/98,/112
 1770 .DA /128,/144,/162,/180,/200,/220,/242,/264
 1780 .DA /288,/312,/338,/364,/392,/420,/450,/480
 1790 .DA /512,/544,/578,/612,/648,/684,/722,/760
 1800 .DA /800,/840,/882,/924,/968,/1012,/1058,/1104
 1810 .DA /1152,/1200,/1250,/1300,/1352,/1404,/1458,/1512
 1820 .DA /1568,/1624,/1682,/1740,/1800,/1860,/1922,/1984
 1830 .DA /2048,/2112,/2178,/2244,/2312,/2380,/2450,/2520
 1840 .DA /2592,/2664,/2738,/2812,/2888,/2964,/3042,/3120
 1850 .DA /3200,/3280,/3362,/3444,/3528,/3612,/3698,/3784
 1860 .DA /3872,/3960,/4050,/4140,/4232,/4324,/4418,/4512
 1870 .DA /4608,/4704,/4802,/4900,/5000,/5100,/5202,/5304
 1880 .DA /5408,/5512,/5618,/5724,/5832,/5940,/6050,/6160
 1890 .DA /6272,/6384,/6498,/6612,/6728,/6844,/6962,/7080
 1900 .DA /7200,/7320,/7442,/7564,/7688,/7812,/7938,/8064
 1910 .DA /8192,/8320,/8450,/8580,/8712,/8844,/8978,/9112
 1920 .DA /9248,/9384,/9522,/9660,/9800,/9940,/10082,/10224
 1930 .DA /10368,/10512,/10658,/10804,/10952,/11100,/11250,/11400
 1940 .DA /11552,/11704,/11858,/12012,/12168,/12324,/12482,/12640
 1950 .DA /12800,/12960,/13122,/13284,/13448,/13612,/13778,/13944
 1960 .DA /14112,/14280,/14450,/14620,/14792,/14964,/15138,/15312
 1970 .DA /15488,/15664,/15842,/16020,/16200,/16380,/16562,/16744
 1980 .DA /16928,/17112,/17298,/17484,/17672,/17860,/18050,/18240
 1990 .DA /18432,/18624,/18818,/19012,/19208,/19404,/19602,/19800
 2000 .DA /20000,/20200,/20402,/20604,/20808,/21012,/21218,/21424
 2010 .DA /21632,/21840,/22050,/22260,/22472,/22684,/22898,/23112
 2020 .DA /23328,/23544,/23762,/23980,/24200,/24420,/24642,/24864

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2382 of 2550

Apple II Computer Info

 2030 .DA /25088,/25312,/25538,/25764,/25992,/26220,/26450,/26680
 2040 .DA /26912,/27144,/27378,/27612,/27848,/28084,/28322,/28560
 2050 .DA /28800,/29040,/29282,/29524,/29768,/30012,/30258,/30504
 2060 .DA /30752,/31000,/31250,/31500,/31752,/32004,/32258,/32512

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2383 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:DOS3.3:Putney.Fstr.8x8.txt
==

 1000 *SAVE PUTNEY'S FASTER 8X8
 1010 *--------------------------------
 1020 * ULTRA-FAST 8 X 8 MULTIPLY
 1030 *--------------------------------
 1040 * ENTER WITH (A)=MULTIPLIER # 1
 1050 * (X)=MULTIPLIER #2
 1060 * EXIT WITH (A)=PRODUCT HI BYTE
 1070 * (X)=PRODUCT LO BYTE
 1080 *--------------------------------
 1090 * TIMING DATA
 1100 * MINIMUM TIME = 54 CYCLES
 1110 * MAXIMUM TIME = 60 CYCLES
 1120 * AVERAGE TIME = 57 CYCLES
 1130 *--------------------------------
 1140 PROD .EQ $06 PRODUCT TEMP OF M1*M2 (LOW BYTE)
 1150 M2 .EQ $07 TEMP FOR M2 SAVE
 1160 *--------------------------------
 1170 .OR $6000 SAFE PLACE
 1180 *--------------------------------
 1190 * TEST FOR APPLESOFT DRIVER
 1200 *--------------------------------
 1210 TEST LDA $FA LOAD ACC AND X SO BASIC CAN TEST
 1220 LDX $FB
 1230 JSR MULT8
 1240 STX $FA NOW BASIC CAN CHECK ACC AND X
 1250 STA $FB
 1260 RTS
 1270 *--------------------------------
 1280 MULT8 TAY SAVE M1 IN Y
 1290 STX M2 SAVE M2
 1300 SEC SET CARRY FOR SUBTRACT
 1310 SBC M2 FIND DIFFERENCE
 1320 BCS .1 WAS M1 > M2 ?
 1330 EOR #$FF INVERT IT
 1340 ADC #$01 AND ADD 1
 1350 .1 TAX USE ABS(M1-M2) AS INDEX
 1360 CLC
 1370 TYA GET M1 BACK
 1380 ADC M2 FIND M1 + M2
 1390 TAY USE M1+M2 AS INDEX
 1400 BCC .2 M1+M2 < 255 ?
 1410 LDA SQL+256,Y FIND SUM SQUARED LOW IF > 255
 1420 SBC SQL,X SUBTRACT DIFF SQUARED
 1430 STA PROD SAVE IN PRODUCT
 1440 LDA SQH+256,Y HI BYTE
 1450 SBC SQH,X
 1460 LDX PROD GET PROD LOW IN X
 1470 RTS DONE
 1480 .2 SEC SET CARRY FOR SUBTRACT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2384 of 2550

Apple II Computer Info

 1490 LDA SQL,Y FIND SUM OF SQUARES LOW IF < 255
 1500 SBC SQL,X SUBTRACT DIFF SQUARED
 1510 STA PROD SAVE IN PRODUCT
 1520 LDA SQH,Y HI BYTE
 1530 SBC SQH,X
 1540 LDX PROD GET PROD LOW IN X
 1550 RTS
 1560 *--------------------------------
 1570 * PROGRAM TO CREATE A TABLE OF SQUARES/4
 1580 *--------------------------------
 1590 LOTP .EQ 0,1
 1600 HITP .EQ 2,3
 1610 *--------------------------------
 1620 SQUARE LDY #0
 1630 STY LOTP
 1640 STY HITP
 1650 STY SQ
 1660 STY SQ+1
 1670 STY SQ+2
 1680 STY DELTA+1
 1690 STY DELTA+2
 1700 STY $6800
 1710 STY $6A00
 1720 INY
 1730 LDA #$40
 1740 STA DELTA
 1750 LDA /$6800
 1760 STA LOTP+1
 1770 LDA /$6A00
 1780 STA HITP+1
 1790 LDX #1
 1800 *--------------------------------
 1810 .1 CLC
 1820 LDA DELTA
 1830 ADC SQ
 1840 STA SQ
 1850 LDA DELTA+1
 1860 ADC SQ+1
 1870 STA SQ+1
 1880 STA (LOTP),Y
 1890 LDA DELTA+2
 1900 ADC SQ+2
 1910 STA SQ+2
 1920 STA (HITP),Y
 1930 *--------------------------------
 1940 LDA DELTA
 1950 ADC #$80
 1960 STA DELTA
 1970 BCC .2
 1980 INC DELTA+1
 1990 BNE .2
 2000 INC DELTA+2
 2010 .2 INY
 2020 BNE .1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2385 of 2550

Apple II Computer Info

 2030 INC LOTP+1
 2040 INC HITP+1
 2050 DEX
 2060 BPL .1
 2070 RTS
 2080 *--------------------------------
 2090 DELTA .BS 3
 2100 SQ .BS 3
 2110 *--------------------------------
 2120 * TABLE OF SQUARES/4 FROM 0 TO 511
 2130 *--------------------------------
 2140 .BS *+$FF/$100*$100-* KEEP TABLES ALIGNED ON PAGE
BOUNDARY
 2150 *--------------------------------
 2160 SQL .DA #0,#0,#1,#2,#4,#6,#9,#12
 2170 .DA #16,#20,#25,#30,#36,#42,#49,#56
 2180 .DA #64,#72,#81,#90,#100,#110,#121,#132
 2190 .DA #144,#156,#169,#182,#196,#210,#225,#240
 2200 .LIF
 2210 .DA #256,#272,#289,#306,#324,#342,#361,#380
 2220 .DA #400,#420,#441,#462,#484,#506,#529,#552
 2230 .DA #576,#600,#625,#650,#676,#702,#729,#756
 2240 .DA #784,#812,#841,#870,#900,#930,#961,#992
 2250 .DA #1024,#1056,#1089,#1122,#1156,#1190,#1225,#1260
 2260 .DA #1296,#1332,#1369,#1406,#1444,#1482,#1521,#1560
 2270 .DA #1600,#1640,#1681,#1722,#1764,#1806,#1849,#1892
 2280 .DA #1936,#1980,#2025,#2070,#2116,#2162,#2209,#2256
 2290 .DA #2304,#2352,#2401,#2450,#2500,#2550,#2601,#2652
 2300 .DA #2704,#2756,#2809,#2862,#2916,#2970,#3025,#3080
 2310 .DA #3136,#3192,#3249,#3306,#3364,#3422,#3481,#3540
 2320 .DA #3600,#3660,#3721,#3782,#3844,#3906,#3969,#4032
 2330 .DA #4096,#4160,#4225,#4290,#4356,#4422,#4489,#4556
 2340 .DA #4624,#4692,#4761,#4830,#4900,#4970,#5041,#5112
 2350 .DA #5184,#5256,#5329,#5402,#5476,#5550,#5625,#5700
 2360 .DA #5776,#5852,#5929,#6006,#6084,#6162,#6241,#6320
 2370 .DA #6400,#6480,#6561,#6642,#6724,#6806,#6889,#6972
 2380 .DA #7056,#7140,#7225,#7310,#7396,#7482,#7569,#7656
 2390 .DA #7744,#7832,#7921,#8010,#8100,#8190,#8281,#8372
 2400 .DA #8464,#8556,#8649,#8742,#8836,#8930,#9025,#9120
 2410 .DA #9216,#9312,#9409,#9506,#9604,#9702,#9801,#9900
 2420 .DA
#10000,#10100,#10201,#10302,#10404,#10506,#10609,#10712
 2430 .DA
#10816,#10920,#11025,#11130,#11236,#11342,#11449,#11556
 2440 .DA
#11664,#11772,#11881,#11990,#12100,#12210,#12321,#12432
 2450 .DA
#12544,#12656,#12769,#12882,#12996,#13110,#13225,#13340
 2460 .DA
#13456,#13572,#13689,#13806,#13924,#14042,#14161,#14280
 2470 .DA
#14400,#14520,#14641,#14762,#14884,#15006,#15129,#15252
 2480 .DA
#15376,#15500,#15625,#15750,#15876,#16002,#16129,#16256

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2386 of 2550

Apple II Computer Info

 2490 .DA
#16384,#16512,#16641,#16770,#16900,#17030,#17161,#17292
 2500 .DA
#17424,#17556,#17689,#17822,#17956,#18090,#18225,#18360
 2510 .DA
#18496,#18632,#18769,#18906,#19044,#19182,#19321,#19460
 2520 .DA
#19600,#19740,#19881,#20022,#20164,#20306,#20449,#20592
 2530 .DA
#20736,#20880,#21025,#21170,#21316,#21462,#21609,#21756
 2540 .DA
#21904,#22052,#22201,#22350,#22500,#22650,#22801,#22952
 2550 .DA
#23104,#23256,#23409,#23562,#23716,#23870,#24025,#24180
 2560 .DA
#24336,#24492,#24649,#24806,#24964,#25122,#25281,#25440
 2570 .DA
#25600,#25760,#25921,#26082,#26244,#26406,#26569,#26732
 2580 .DA
#26896,#27060,#27225,#27390,#27556,#27722,#27889,#28056
 2590 .DA
#28224,#28392,#28561,#28730,#28900,#29070,#29241,#29412
 2600 .DA
#29584,#29756,#29929,#30102,#30276,#30450,#30625,#30800
 2610 .DA
#30976,#31152,#31329,#31506,#31684,#31862,#32041,#32220
 2620 .DA
#32400,#32580,#32761,#32942,#33124,#33306,#33489,#33672
 2630 .DA
#33856,#34040,#34225,#34410,#34596,#34782,#34969,#35156
 2640 .DA
#35344,#35532,#35721,#35910,#36100,#36290,#36481,#36672
 2650 .DA
#36864,#37056,#37249,#37442,#37636,#37830,#38025,#38220
 2660 .DA
#38416,#38612,#38809,#39006,#39204,#39402,#39601,#39800
 2670 .DA
#40000,#40200,#40401,#40602,#40804,#41006,#41209,#41412
 2680 .DA
#41616,#41820,#42025,#42230,#42436,#42642,#42849,#43056
 2690 .DA
#43264,#43472,#43681,#43890,#44100,#44310,#44521,#44732
 2700 .DA
#44944,#45156,#45369,#45582,#45796,#46010,#46225,#46440
 2710 .DA
#46656,#46872,#47089,#47306,#47524,#47742,#47961,#48180
 2720 .DA
#48400,#48620,#48841,#49062,#49284,#49506,#49729,#49952
 2730 .DA
#50176,#50400,#50625,#50850,#51076,#51302,#51529,#51756
 2740 .DA
#51984,#52212,#52441,#52670,#52900,#53130,#53361,#53592
 2750 .DA
#53824,#54056,#54289,#54522,#54756,#54990,#55225,#55460

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2387 of 2550

Apple II Computer Info

 2760 .DA
#55696,#55932,#56169,#56406,#56644,#56882,#57121,#57360
 2770 .DA
#57600,#57840,#58081,#58322,#58564,#58806,#59049,#59292
 2780 .DA
#59536,#59780,#60025,#60270,#60516,#60762,#61009,#61256
 2790 .DA
#61504,#61752,#62001,#62250,#62500,#62750,#63001,#63252
 2800 .DA
#63504,#63756,#64009,#64262,#64516,#64770,#65025,#65280
 2810 *--------------------------------
 2820 .LIST ON
 2830 SQH .DA /0,/0,/1,/2,/4,/6,/9,/12
 2840 .DA /16,/20,/25,/30,/36,/42,/49,/56
 2850 .DA /64,/72,/81,/90,/100,/110,/121,/132
 2860 .LIST OFF
 2870 .DA /144,/156,/169,/182,/196,/210,/225,/240
 2880 .DA /256,/272,/289,/306,/324,/342,/361,/380
 2890 .DA /400,/420,/441,/462,/484,/506,/529,/552
 2900 .DA /576,/600,/625,/650,/676,/702,/729,/756
 2910 .DA /784,/812,/841,/870,/900,/930,/961,/992
 2920 .DA /1024,/1056,/1089,/1122,/1156,/1190,/1225,/1260
 2930 .DA /1296,/1332,/1369,/1406,/1444,/1482,/1521,/1560
 2940 .DA /1600,/1640,/1681,/1722,/1764,/1806,/1849,/1892
 2950 .DA /1936,/1980,/2025,/2070,/2116,/2162,/2209,/2256
 2960 .DA /2304,/2352,/2401,/2450,/2500,/2550,/2601,/2652
 2970 .DA /2704,/2756,/2809,/2862,/2916,/2970,/3025,/3080
 2980 .DA /3136,/3192,/3249,/3306,/3364,/3422,/3481,/3540
 2990 .DA /3600,/3660,/3721,/3782,/3844,/3906,/3969,/4032
 3000 .DA /4096,/4160,/4225,/4290,/4356,/4422,/4489,/4556
 3010 .DA /4624,/4692,/4761,/4830,/4900,/4970,/5041,/5112
 3020 .DA /5184,/5256,/5329,/5402,/5476,/5550,/5625,/5700
 3030 .DA /5776,/5852,/5929,/6006,/6084,/6162,/6241,/6320
 3040 .DA /6400,/6480,/6561,/6642,/6724,/6806,/6889,/6972
 3050 .DA /7056,/7140,/7225,/7310,/7396,/7482,/7569,/7656
 3060 .DA /7744,/7832,/7921,/8010,/8100,/8190,/8281,/8372
 3070 .DA /8464,/8556,/8649,/8742,/8836,/8930,/9025,/9120
 3080 .DA /9216,/9312,/9409,/9506,/9604,/9702,/9801,/9900
 3090 .DA
/10000,/10100,/10201,/10302,/10404,/10506,/10609,/10712
 3100 .DA
/10816,/10920,/11025,/11130,/11236,/11342,/11449,/11556
 3110 .DA
/11664,/11772,/11881,/11990,/12100,/12210,/12321,/12432
 3120 .DA
/12544,/12656,/12769,/12882,/12996,/13110,/13225,/13340
 3130 .DA
/13456,/13572,/13689,/13806,/13924,/14042,/14161,/14280
 3140 .DA
/14400,/14520,/14641,/14762,/14884,/15006,/15129,/15252
 3150 .DA
/15376,/15500,/15625,/15750,/15876,/16002,/16129,/16256
 3160 .DA
/16384,/16512,/16641,/16770,/16900,/17030,/17161,/17292

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2388 of 2550

Apple II Computer Info

 3170 .DA
/17424,/17556,/17689,/17822,/17956,/18090,/18225,/18360
 3180 .DA
/18496,/18632,/18769,/18906,/19044,/19182,/19321,/19460
 3190 .DA
/19600,/19740,/19881,/20022,/20164,/20306,/20449,/20592
 3200 .DA
/20736,/20880,/21025,/21170,/21316,/21462,/21609,/21756
 3210 .DA
/21904,/22052,/22201,/22350,/22500,/22650,/22801,/22952
 3220 .DA
/23104,/23256,/23409,/23562,/23716,/23870,/24025,/24180
 3230 .DA
/24336,/24492,/24649,/24806,/24964,/25122,/25281,/25440
 3240 .DA
/25600,/25760,/25921,/26082,/26244,/26406,/26569,/26732
 3250 .DA
/26896,/27060,/27225,/27390,/27556,/27722,/27889,/28056
 3260 .DA
/28224,/28392,/28561,/28730,/28900,/29070,/29241,/29412
 3270 .DA
/29584,/29756,/29929,/30102,/30276,/30450,/30625,/30800
 3280 .DA
/30976,/31152,/31329,/31506,/31684,/31862,/32041,/32220
 3290 .DA
/32400,/32580,/32761,/32942,/33124,/33306,/33489,/33672
 3300 .DA
/33856,/34040,/34225,/34410,/34596,/34782,/34969,/35156
 3310 .DA
/35344,/35532,/35721,/35910,/36100,/36290,/36481,/36672
 3320 .DA
/36864,/37056,/37249,/37442,/37636,/37830,/38025,/38220
 3330 .DA
/38416,/38612,/38809,/39006,/39204,/39402,/39601,/39800
 3340 .DA
/40000,/40200,/40401,/40602,/40804,/41006,/41209,/41412
 3350 .DA
/41616,/41820,/42025,/42230,/42436,/42642,/42849,/43056
 3360 .DA
/43264,/43472,/43681,/43890,/44100,/44310,/44521,/44732
 3370 .DA
/44944,/45156,/45369,/45582,/45796,/46010,/46225,/46440
 3380 .DA
/46656,/46872,/47089,/47306,/47524,/47742,/47961,/48180
 3390 .DA
/48400,/48620,/48841,/49062,/49284,/49506,/49729,/49952
 3400 .DA
/50176,/50400,/50625,/50850,/51076,/51302,/51529,/51756
 3410 .DA
/51984,/52212,/52441,/52670,/52900,/53130,/53361,/53592
 3420 .DA
/53824,/54056,/54289,/54522,/54756,/54990,/55225,/55460
 3430 .DA
/55696,/55932,/56169,/56406,/56644,/56882,/57121,/57360

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2389 of 2550

Apple II Computer Info

 3440 .DA
/57600,/57840,/58081,/58322,/58564,/58806,/59049,/59292
 3450 .DA
/59536,/59780,/60025,/60270,/60516,/60762,/61009,/61256
 3460 .LIST ON
 3470 .DA
/61504,/61752,/62001,/62250,/62500,/62750,/63001,/63252
 3480 .DA
/63504,/63756,/64009,/64262,/64516,/64770,/65025,/65280
 3490 *--------------------------------
 3500 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2390 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:DOS3.3:S.Which.CPU.txt
==

 1000 *SAVE S.WHICH PROCESSOR
 1010 .OP 65802
 1020 *--------------------------------
 1030 PRBYTE .EQ $FDDA
 1040 COUT .EQ $FDED
 1050 *--------------------------------
 1060 WHICH.PROCESSOR
 1070 LDA #$65
 1080 JSR PRBYTE
 1090 BRA .1
 1100 JMP .2
 1110 .1 LDA #"8"
 1120 XBA
 1130 LDA #"C"
 1140 XBA
 1150 JSR COUT
 1160 .2 LDA #$02
 1170 JMP PRBYTE
 1180 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2391 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:ProDOS:BOUGHNERS.MULT.txt
==

 1000 .OP 65802
 1010 *SAVE BOUGHNERS.MULT
 1020 *--------------------------------
 1030 * CONTRIBUTED BY BOB BOUGHNER
 1040 * MODIFIED A LITTLE MORE BY BOB S-C
 1050 *--------------------------------
 1060 CAND .EQ 0,1
 1070 PLIER .EQ 2,3
 1080 PROD .EQ 4,5,6,7
 1090 *--------------------------------
 1100 MUL.FASTER.YET.16X16.65802
 1110 LDX #8 WILL LOOP 8 TIMES
 1120 LDA PLIER+1 INVERT HIGH BYTE
 1130 EOR #$FF TO SAVE "CLC" IN LOOP
 1140 STA PLIER+1
 1150 CLC
 1160 XCE ENTER "NATIVE" MODE
 1170 REP #$30 16-BITS BOTH X & M
 1180 STZ PROD CLEAR PRODUCT
 1190 STZ PROD+2
 1200 LDY CAND MULTIPLICAND IN Y-REG
 1210 BNE .2 ...NON-ZERO, START LOOP
 1220 XCE ...ZERO, EXIT NOW
 1230 RTS
 1240 *--------------------------------
 1250 .1 ASL PROD DOUBLE THE PRODUCT
 1260 ROL PROD+2
 1270 *--------------------------------
 1280 .2 LDA PLIER-1 GET LOW BYTE IN A(15-8)
 1290 BPL .3 ...ORIG. BIT=0, DON'T ADD
 1300 CLC
 1310 TYA ...ORIG. BIT=1, ADD 'CAND
 1320 ADC PROD
 1330 STA PROD
 1340 BCC .3
 1350 INC PROD+2 ADD CARRY TO HI-16
 1360 *--------------------------------
 1370 .3 ASL PLIER SHIFT MULTIPIER, GET HI-BIT
 1380 BCS .4 ...ORIG. BIT=0, DON'T ADD
 1390 TYA ...ORIG. BIT=1, ADD 'CAND
 1400 ADC PROD+1 ADD TO MIDDLE OF PRODUCT
 1410 STA PROD+1
 1420 BCC .4
 1430 INC PROD+3 (NEVER BOTHERS PROD+4)
 1440 *--------------------------------
 1450 .4 DEX
 1460 BNE .1
 1470 SEC
 1480 XCE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2392 of 2550

Apple II Computer Info

 1490 RTS
 1500 *--------------------------------
 1510 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2393 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:ProDOS:CHECKSUMMER.txt
==

 1000 *SAVE CHECKSUMMER
 1010 *--------------------------------
 1020 .OR $267C POSITION IN PRODOS SYSTEM FILE
 1030 *--------------------------------
 1040 CHECKSUMMER
 1050 CLC
 1060 LDY $2674 (GETS A VALUE 0)
 1070 .1 LDA ($0A),Y GETS (FB09...FB10)
 1080 AND #$DF STRIP OFF LOWER CASE BIT
 1090 ADC $2674 ACCUMULATE SHIFTED SUM
 1100 STA $2674
 1110 ROL $2674 SHIFT RESULT, CARRY INTO BIT 0
 1120 INY
 1130 CPY $2677 DO IT 8 TIMES
 1140 BNE .1
 1150 TYA A = Y = 8
 1160 ASL FORM $80 BY SHIFTING
 1170 ASL
 1180 ASL
 1190 ASL
 1200 TAY $80 TO Y FOR LATER TRICK
 1210 EOR $2674 MERGE WITH PREVIOUS "SUM"
 1220 ADC #11 FORM $00 FOR VALID ROMS
 1230 BNE .2 ...NOT A VALID ROM
 1240 LDA $0C GET MACHINE ID BYTE
 1250 RTS
 1260 .2 LDA #0 SIGNAL INVALIDITY
 1270 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2394 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:ProDOS:CREATE.SQUARE.T.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2395 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:ProDOS:PUTNEYS.8X8.txt
==

 1000 *SAVE PUTNEYS.8X8
 1010 *--------------------------------
 1020 * ULTRA-FAST 8 X 8 MULTIPLY
 1030 *--------------------------------
 1040 * ENTER WITH (A)=MULTIPLIER # 1
 1050 * (X)=MULTIPLIER #2
 1060 * EXIT WITH (A)=PRODUCT HI BYTE
 1070 * (X)=PRODUCT LO BYTE
 1080 *--------------------------------
 1090 * TIMING DATA
 1100 * MINIMUM TIME = 54 CYCLES
 1110 * MAXIMUM TIME = 60 CYCLES
 1120 * AVERAGE TIME = 57 CYCLES
 1130 *--------------------------------
 1140 PROD .EQ $06 PRODUCT TEMP OF M1*M2 (LOW BYTE)
 1150 M2 .EQ $07 TEMP FOR M2 SAVE
 1160 *--------------------------------
 1170 .OR $6000 SAFE PLACE
 1180 *--------------------------------
 1190 * TEST FOR APPLESOFT DRIVER
 1200 *--------------------------------
 1210 TEST LDA $FA LOAD ACC AND X SO BASIC CAN TEST
 1220 LDX $FB
 1230 JSR MULT8
 1240 STX $FA NOW BASIC CAN CHECK ACC AND X
 1250 STA $FB
 1260 RTS
 1270 *--------------------------------
 1280 MULT8 TAY SAVE M1 IN Y
 1290 STX M2 SAVE M2
 1300 SEC SET CARRY FOR SUBTRACT
 1310 SBC M2 FIND DIFFERENCE
 1320 BCS .1 WAS M1 > M2 ?
 1330 EOR #$FF INVERT IT
 1340 ADC #$01 AND ADD 1
 1350 .1 TAX USE ABS(M1-M2) AS INDEX
 1360 CLC
 1370 TYA GET M1 BACK
 1380 ADC M2 FIND M1 + M2
 1390 TAY USE M1+M2 AS INDEX
 1400 BCC .2 M1+M2 < 255 ?
 1410 LDA SQL+256,Y FIND SUM SQUARED LOW IF > 255
 1420 SBC SQL,X SUBTRACT DIFF SQUARED
 1430 STA PROD SAVE IN PRODUCT
 1440 LDA SQH+256,Y HI BYTE
 1450 SBC SQH,X
 1460 LDX PROD GET PROD LOW IN X
 1470 RTS DONE
 1480 .2 SEC SET CARRY FOR SUBTRACT
 1490 LDA SQL,Y FIND SUM OF SQUARES LOW IF < 255
 1500 SBC SQL,X SUBTRACT DIFF SQUARED
 1510 STA PROD SAVE IN PRODUCT
 1520 LDA SQH,Y HI BYTE
 1530 SBC SQH,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2396 of 2550

Apple II Computer Info

 1540 LDX PROD GET PROD LOW IN X
 1550 RTS
 1560 *--------------------------------
 1570 * PROGRAM TO CREATE A TABLE OF SQUARES/4
 1580 *--------------------------------
 1590 LOTP .EQ 0,1
 1600 HITP .EQ 2,3
 1610 *--------------------------------
 1620 SQUARE LDY #0
 1630 STY LOTP
 1640 STY HITP
 1650 STY SQ
 1660 STY SQ+1
 1670 STY SQ+2
 1680 STY DELTA+1
 1690 STY DELTA+2
 1700 STY $6800
 1710 STY $6A00
 1720 INY
 1730 LDA #$40
 1740 STA DELTA
 1750 LDA /$6800
 1760 STA LOTP+1
 1770 LDA /$6A00
 1780 STA HITP+1
 1790 LDX #1
 1800 *--------------------------------
 1810 .1 CLC
 1820 LDA DELTA
 1830 ADC SQ
 1840 STA SQ
 1850 LDA DELTA+1
 1860 ADC SQ+1
 1870 STA SQ+1
 1880 STA (LOTP),Y
 1890 LDA DELTA+2
 1900 ADC SQ+2
 1910 STA SQ+2
 1920 STA (HITP),Y
 1930 *--------------------------------
 1940 LDA DELTA
 1950 ADC #$80
 1960 STA DELTA
 1970 BCC .2
 1980 INC DELTA+1
 1990 BNE .2
 2000 INC DELTA+2
 2010 .2 INY
 2020 BNE .1
 2030 INC LOTP+1
 2040 INC HITP+1
 2050 DEX
 2060 BPL .1
 2070 RTS
 2080 *--------------------------------
 2090 DELTA .BS 3
 2100 SQ .BS 3
 2110 *--------------------------------
 2120 * TABLE OF SQUARES/4 FROM 0 TO 511

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2397 of 2550

Apple II Computer Info

 2130 *--------------------------------
 2140 .BS *+$FF/$100*$100-* KEEP TABLES ALIGNED ON PAGE BOUNDARY
 2150 *--------------------------------
 2160 SQL .DA #0,#0,#1,#2,#4,#6,#9,#12
 2170 .DA #16,#20,#25,#30,#36,#42,#49,#56
 2180 .DA #64,#72,#81,#90,#100,#110,#121,#132
 2190 .DA #144,#156,#169,#182,#196,#210,#225,#240
 2200 .LIF
 2210 .DA #256,#272,#289,#306,#324,#342,#361,#380
 2220 .DA #400,#420,#441,#462,#484,#506,#529,#552
 2230 .DA #576,#600,#625,#650,#676,#702,#729,#756
 2240 .DA #784,#812,#841,#870,#900,#930,#961,#992
 2250 .DA #1024,#1056,#1089,#1122,#1156,#1190,#1225,#1260
 2260 .DA #1296,#1332,#1369,#1406,#1444,#1482,#1521,#1560
 2270 .DA #1600,#1640,#1681,#1722,#1764,#1806,#1849,#1892
 2280 .DA #1936,#1980,#2025,#2070,#2116,#2162,#2209,#2256
 2290 .DA #2304,#2352,#2401,#2450,#2500,#2550,#2601,#2652
 2300 .DA #2704,#2756,#2809,#2862,#2916,#2970,#3025,#3080
 2310 .DA #3136,#3192,#3249,#3306,#3364,#3422,#3481,#3540
 2320 .DA #3600,#3660,#3721,#3782,#3844,#3906,#3969,#4032
 2330 .DA #4096,#4160,#4225,#4290,#4356,#4422,#4489,#4556
 2340 .DA #4624,#4692,#4761,#4830,#4900,#4970,#5041,#5112
 2350 .DA #5184,#5256,#5329,#5402,#5476,#5550,#5625,#5700
 2360 .DA #5776,#5852,#5929,#6006,#6084,#6162,#6241,#6320
 2370 .DA #6400,#6480,#6561,#6642,#6724,#6806,#6889,#6972
 2380 .DA #7056,#7140,#7225,#7310,#7396,#7482,#7569,#7656
 2390 .DA #7744,#7832,#7921,#8010,#8100,#8190,#8281,#8372
 2400 .DA #8464,#8556,#8649,#8742,#8836,#8930,#9025,#9120
 2410 .DA #9216,#9312,#9409,#9506,#9604,#9702,#9801,#9900
 2420 .DA #10000,#10100,#10201,#10302,#10404,#10506,#10609,#10712
 2430 .DA #10816,#10920,#11025,#11130,#11236,#11342,#11449,#11556
 2440 .DA #11664,#11772,#11881,#11990,#12100,#12210,#12321,#12432
 2450 .DA #12544,#12656,#12769,#12882,#12996,#13110,#13225,#13340
 2460 .DA #13456,#13572,#13689,#13806,#13924,#14042,#14161,#14280
 2470 .DA #14400,#14520,#14641,#14762,#14884,#15006,#15129,#15252
 2480 .DA #15376,#15500,#15625,#15750,#15876,#16002,#16129,#16256
 2490 .DA #16384,#16512,#16641,#16770,#16900,#17030,#17161,#17292
 2500 .DA #17424,#17556,#17689,#17822,#17956,#18090,#18225,#18360
 2510 .DA #18496,#18632,#18769,#18906,#19044,#19182,#19321,#19460
 2520 .DA #19600,#19740,#19881,#20022,#20164,#20306,#20449,#20592
 2530 .DA #20736,#20880,#21025,#21170,#21316,#21462,#21609,#21756
 2540 .DA #21904,#22052,#22201,#22350,#22500,#22650,#22801,#22952
 2550 .DA #23104,#23256,#23409,#23562,#23716,#23870,#24025,#24180
 2560 .DA #24336,#24492,#24649,#24806,#24964,#25122,#25281,#25440
 2570 .DA #25600,#25760,#25921,#26082,#26244,#26406,#26569,#26732
 2580 .DA #26896,#27060,#27225,#27390,#27556,#27722,#27889,#28056
 2590 .DA #28224,#28392,#28561,#28730,#28900,#29070,#29241,#29412
 2600 .DA #29584,#29756,#29929,#30102,#30276,#30450,#30625,#30800
 2610 .DA #30976,#31152,#31329,#31506,#31684,#31862,#32041,#32220
 2620 .DA #32400,#32580,#32761,#32942,#33124,#33306,#33489,#33672
 2630 .DA #33856,#34040,#34225,#34410,#34596,#34782,#34969,#35156
 2640 .DA #35344,#35532,#35721,#35910,#36100,#36290,#36481,#36672
 2650 .DA #36864,#37056,#37249,#37442,#37636,#37830,#38025,#38220
 2660 .DA #38416,#38612,#38809,#39006,#39204,#39402,#39601,#39800
 2670 .DA #40000,#40200,#40401,#40602,#40804,#41006,#41209,#41412
 2680 .DA #41616,#41820,#42025,#42230,#42436,#42642,#42849,#43056
 2690 .DA #43264,#43472,#43681,#43890,#44100,#44310,#44521,#44732
 2700 .DA #44944,#45156,#45369,#45582,#45796,#46010,#46225,#46440
 2710 .DA #46656,#46872,#47089,#47306,#47524,#47742,#47961,#48180

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2398 of 2550

Apple II Computer Info

 2720 .DA #48400,#48620,#48841,#49062,#49284,#49506,#49729,#49952
 2730 .DA #50176,#50400,#50625,#50850,#51076,#51302,#51529,#51756
 2740 .DA #51984,#52212,#52441,#52670,#52900,#53130,#53361,#53592
 2750 .DA #53824,#54056,#54289,#54522,#54756,#54990,#55225,#55460
 2760 .DA #55696,#55932,#56169,#56406,#56644,#56882,#57121,#57360
 2770 .DA #57600,#57840,#58081,#58322,#58564,#58806,#59049,#59292
 2780 .DA #59536,#59780,#60025,#60270,#60516,#60762,#61009,#61256
 2790 .DA #61504,#61752,#62001,#62250,#62500,#62750,#63001,#63252
 2800 .DA #63504,#63756,#64009,#64262,#64516,#64770,#65025,#65280
 2810 *--------------------------------
 2820 .LIST ON
 2830 SQH .DA /0,/0,/1,/2,/4,/6,/9,/12
 2840 .DA /16,/20,/25,/30,/36,/42,/49,/56
 2850 .DA /64,/72,/81,/90,/100,/110,/121,/132
 2860 .LIST OFF
 2870 .DA /144,/156,/169,/182,/196,/210,/225,/240
 2880 .DA /256,/272,/289,/306,/324,/342,/361,/380
 2890 .DA /400,/420,/441,/462,/484,/506,/529,/552
 2900 .DA /576,/600,/625,/650,/676,/702,/729,/756
 2910 .DA /784,/812,/841,/870,/900,/930,/961,/992
 2920 .DA /1024,/1056,/1089,/1122,/1156,/1190,/1225,/1260
 2930 .DA /1296,/1332,/1369,/1406,/1444,/1482,/1521,/1560
 2940 .DA /1600,/1640,/1681,/1722,/1764,/1806,/1849,/1892
 2950 .DA /1936,/1980,/2025,/2070,/2116,/2162,/2209,/2256
 2960 .DA /2304,/2352,/2401,/2450,/2500,/2550,/2601,/2652
 2970 .DA /2704,/2756,/2809,/2862,/2916,/2970,/3025,/3080
 2980 .DA /3136,/3192,/3249,/3306,/3364,/3422,/3481,/3540
 2990 .DA /3600,/3660,/3721,/3782,/3844,/3906,/3969,/4032
 3000 .DA /4096,/4160,/4225,/4290,/4356,/4422,/4489,/4556
 3010 .DA /4624,/4692,/4761,/4830,/4900,/4970,/5041,/5112
 3020 .DA /5184,/5256,/5329,/5402,/5476,/5550,/5625,/5700
 3030 .DA /5776,/5852,/5929,/6006,/6084,/6162,/6241,/6320
 3040 .DA /6400,/6480,/6561,/6642,/6724,/6806,/6889,/6972
 3050 .DA /7056,/7140,/7225,/7310,/7396,/7482,/7569,/7656
 3060 .DA /7744,/7832,/7921,/8010,/8100,/8190,/8281,/8372
 3070 .DA /8464,/8556,/8649,/8742,/8836,/8930,/9025,/9120
 3080 .DA /9216,/9312,/9409,/9506,/9604,/9702,/9801,/9900
 3090 .DA /10000,/10100,/10201,/10302,/10404,/10506,/10609,/10712
 3100 .DA /10816,/10920,/11025,/11130,/11236,/11342,/11449,/11556
 3110 .DA /11664,/11772,/11881,/11990,/12100,/12210,/12321,/12432
 3120 .DA /12544,/12656,/12769,/12882,/12996,/13110,/13225,/13340
 3130 .DA /13456,/13572,/13689,/13806,/13924,/14042,/14161,/14280
 3140 .DA /14400,/14520,/14641,/14762,/14884,/15006,/15129,/15252
 3150 .DA /15376,/15500,/15625,/15750,/15876,/16002,/16129,/16256
 3160 .DA /16384,/16512,/16641,/16770,/16900,/17030,/17161,/17292
 3170 .DA /17424,/17556,/17689,/17822,/17956,/18090,/18225,/18360
 3180 .DA /18496,/18632,/18769,/18906,/19044,/19182,/19321,/19460
 3190 .DA /19600,/19740,/19881,/20022,/20164,/20306,/20449,/20592
 3200 .DA /20736,/20880,/21025,/21170,/21316,/21462,/21609,/21756
 3210 .DA /21904,/22052,/22201,/22350,/22500,/22650,/22801,/22952
 3220 .DA /23104,/23256,/23409,/23562,/23716,/23870,/24025,/24180
 3230 .DA /24336,/24492,/24649,/24806,/24964,/25122,/25281,/25440
 3240 .DA /25600,/25760,/25921,/26082,/26244,/26406,/26569,/26732
 3250 .DA /26896,/27060,/27225,/27390,/27556,/27722,/27889,/28056
 3260 .DA /28224,/28392,/28561,/28730,/28900,/29070,/29241,/29412
 3270 .DA /29584,/29756,/29929,/30102,/30276,/30450,/30625,/30800
 3280 .DA /30976,/31152,/31329,/31506,/31684,/31862,/32041,/32220
 3290 .DA /32400,/32580,/32761,/32942,/33124,/33306,/33489,/33672
 3300 .DA /33856,/34040,/34225,/34410,/34596,/34782,/34969,/35156

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2399 of 2550

Apple II Computer Info

 3310 .DA /35344,/35532,/35721,/35910,/36100,/36290,/36481,/36672
 3320 .DA /36864,/37056,/37249,/37442,/37636,/37830,/38025,/38220
 3330 .DA /38416,/38612,/38809,/39006,/39204,/39402,/39601,/39800
 3340 .DA /40000,/40200,/40401,/40602,/40804,/41006,/41209,/41412
 3350 .DA /41616,/41820,/42025,/42230,/42436,/42642,/42849,/43056
 3360 .DA /43264,/43472,/43681,/43890,/44100,/44310,/44521,/44732
 3370 .DA /44944,/45156,/45369,/45582,/45796,/46010,/46225,/46440
 3380 .DA /46656,/46872,/47089,/47306,/47524,/47742,/47961,/48180
 3390 .DA /48400,/48620,/48841,/49062,/49284,/49506,/49729,/49952
 3400 .DA /50176,/50400,/50625,/50850,/51076,/51302,/51529,/51756
 3410 .DA /51984,/52212,/52441,/52670,/52900,/53130,/53361,/53592
 3420 .DA /53824,/54056,/54289,/54522,/54756,/54990,/55225,/55460
 3430 .DA /55696,/55932,/56169,/56406,/56644,/56882,/57121,/57360
 3440 .DA /57600,/57840,/58081,/58322,/58564,/58806,/59049,/59292
 3450 .DA /59536,/59780,/60025,/60270,/60516,/60762,/61009,/61256
 3460 .LIST ON
 3470 .DA /61504,/61752,/62001,/62250,/62500,/62750,/63001,/63252
 3480 .DA /63504,/63756,/64009,/64262,/64516,/64770,/65025,/65280
 3490 *--------------------------------
 3500 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2400 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:ProDOS:ROBISONS.8X8.txt
==

 1000 *SAVE ROBISONS.8X8
 1010 *--------------------------------
 1020 * MODIFIED FROM ORIGINAL PROGRAM
 1030 * BY ARCH D. ROBISON, BURROUGHS CORP.
 1040 * EDN, OCTOBER 13, 1983.
 1050 *--------------------------------
 1060 * ENTER WITH (A)=MULTIPLIER # 1
 1070 * (X)=MULTIPLIER #2
 1080 * EXIT WITH (A)=PRODUCT HI BYTE
 1090 * (X)=PRODUCT LO BYTE
 1100 *--------------------------------
 1110 PROD .EQ $06 PRODUCT TEMP OF M1*M2 (LOW BYTE)
 1120 M2 .EQ $07 TEMP FOR M2 SAVE
 1130 *--------------------------------
 1140 MULT8 TAY SAVE M1 IN Y
 1150 STX M2 SAVE M2
 1160 AND M2 CHECK IF BOTH FACTORS ARE ODD
 1170 LSR SET CARRY <--> BOTH ODD
 1180 LDA SQL,X ADD (X*X)/2 AND (Y*Y)/2
 1190 ADC SQL,Y
 1200 STA PROD SAVE LO BYTE OF PRODUCT
 1210 LDA SQH,X
 1220 ADC SQH,Y
 1230 TAX SAVE HI BYTE OF PRODUCT
 1240 TYA GET M1 BACK
 1250 SEC
 1260 SBC M2 FIND M1 - M2
 1270 BCS .1 M1 >= M2, CONTINUE
 1280 SBC #0 M1 < M2, FORM 2'S COMPLEMENT
 1290 EOR #$FF
 1300 .1 TAY USE ABS(M1-M2) AS INDEX
 1310 LDA PROD TO FIND SQUARE/2 IN TABLE
 1320 SBC SQL,Y NOW SUBTRACT (X-Y)*(X-Y)
 1330 STA PROD SAVE LO BYTE OF RESULT
 1340 TXA HI BYTE FROM PREVIOUS SUM
 1350 SBC SQH,Y
 1360 LDX PROD LO BYTE OF FINAL PRODUCT
 1370 RTS
 1380 *--------------------------------
 1390 .OR $900 PAGE BOUNDARY TO SAVE MAX 6 CYCLES
 1400 *--------------------------------
 1410 SQL
 1420 .DA #0,#0,#2,#4,#8,#12,#18,#24
 1430 .DA #32,#40,#50,#60,#72,#84,#98,#112
 1440 .DA #128,#144,#162,#180,#200,#220,#242,#264
 1450 .DA #288,#312,#338,#364,#392,#420,#450,#480
 1460 .DA #512,#544,#578,#612,#648,#684,#722,#760
 1470 .DA #800,#840,#882,#924,#968,#1012,#1058,#1104
 1480 .DA #1152,#1200,#1250,#1300,#1352,#1404,#1458,#1512

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2401 of 2550

Apple II Computer Info

 1490 .DA #1568,#1624,#1682,#1740,#1800,#1860,#1922,#1984
 1500 .DA #2048,#2112,#2178,#2244,#2312,#2380,#2450,#2520
 1510 .DA #2592,#2664,#2738,#2812,#2888,#2964,#3042,#3120
 1520 .DA #3200,#3280,#3362,#3444,#3528,#3612,#3698,#3784
 1530 .DA #3872,#3960,#4050,#4140,#4232,#4324,#4418,#4512
 1540 .DA #4608,#4704,#4802,#4900,#5000,#5100,#5202,#5304
 1550 .DA #5408,#5512,#5618,#5724,#5832,#5940,#6050,#6160
 1560 .DA #6272,#6384,#6498,#6612,#6728,#6844,#6962,#7080
 1570 .DA #7200,#7320,#7442,#7564,#7688,#7812,#7938,#8064
 1580 .DA #8192,#8320,#8450,#8580,#8712,#8844,#8978,#9112
 1590 .DA #9248,#9384,#9522,#9660,#9800,#9940,#10082,#10224
 1600 .DA #10368,#10512,#10658,#10804,#10952,#11100,#11250,#11400
 1610 .DA #11552,#11704,#11858,#12012,#12168,#12324,#12482,#12640
 1620 .DA #12800,#12960,#13122,#13284,#13448,#13612,#13778,#13944
 1630 .DA #14112,#14280,#14450,#14620,#14792,#14964,#15138,#15312
 1640 .DA #15488,#15664,#15842,#16020,#16200,#16380,#16562,#16744
 1650 .DA #16928,#17112,#17298,#17484,#17672,#17860,#18050,#18240
 1660 .DA #18432,#18624,#18818,#19012,#19208,#19404,#19602,#19800
 1670 .DA #20000,#20200,#20402,#20604,#20808,#21012,#21218,#21424
 1680 .DA #21632,#21840,#22050,#22260,#22472,#22684,#22898,#23112
 1690 .DA #23328,#23544,#23762,#23980,#24200,#24420,#24642,#24864
 1700 .DA #25088,#25312,#25538,#25764,#25992,#26220,#26450,#26680
 1710 .DA #26912,#27144,#27378,#27612,#27848,#28084,#28322,#28560
 1720 .DA #28800,#29040,#29282,#29524,#29768,#30012,#30258,#30504
 1730 .DA #30752,#31000,#31250,#31500,#31752,#32004,#32258,#32512
 1740 SQH
 1750 .DA /0,/0,/2,/4,/8,/12,/18,/24
 1760 .DA /32,/40,/50,/60,/72,/84,/98,/112
 1770 .DA /128,/144,/162,/180,/200,/220,/242,/264
 1780 .DA /288,/312,/338,/364,/392,/420,/450,/480
 1790 .DA /512,/544,/578,/612,/648,/684,/722,/760
 1800 .DA /800,/840,/882,/924,/968,/1012,/1058,/1104
 1810 .DA /1152,/1200,/1250,/1300,/1352,/1404,/1458,/1512
 1820 .DA /1568,/1624,/1682,/1740,/1800,/1860,/1922,/1984
 1830 .DA /2048,/2112,/2178,/2244,/2312,/2380,/2450,/2520
 1840 .DA /2592,/2664,/2738,/2812,/2888,/2964,/3042,/3120
 1850 .DA /3200,/3280,/3362,/3444,/3528,/3612,/3698,/3784
 1860 .DA /3872,/3960,/4050,/4140,/4232,/4324,/4418,/4512
 1870 .DA /4608,/4704,/4802,/4900,/5000,/5100,/5202,/5304
 1880 .DA /5408,/5512,/5618,/5724,/5832,/5940,/6050,/6160
 1890 .DA /6272,/6384,/6498,/6612,/6728,/6844,/6962,/7080
 1900 .DA /7200,/7320,/7442,/7564,/7688,/7812,/7938,/8064
 1910 .DA /8192,/8320,/8450,/8580,/8712,/8844,/8978,/9112
 1920 .DA /9248,/9384,/9522,/9660,/9800,/9940,/10082,/10224
 1930 .DA /10368,/10512,/10658,/10804,/10952,/11100,/11250,/11400
 1940 .DA /11552,/11704,/11858,/12012,/12168,/12324,/12482,/12640
 1950 .DA /12800,/12960,/13122,/13284,/13448,/13612,/13778,/13944
 1960 .DA /14112,/14280,/14450,/14620,/14792,/14964,/15138,/15312
 1970 .DA /15488,/15664,/15842,/16020,/16200,/16380,/16562,/16744
 1980 .DA /16928,/17112,/17298,/17484,/17672,/17860,/18050,/18240
 1990 .DA /18432,/18624,/18818,/19012,/19208,/19404,/19602,/19800
 2000 .DA /20000,/20200,/20402,/20604,/20808,/21012,/21218,/21424
 2010 .DA /21632,/21840,/22050,/22260,/22472,/22684,/22898,/23112
 2020 .DA /23328,/23544,/23762,/23980,/24200,/24420,/24642,/24864

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2402 of 2550

Apple II Computer Info

 2030 .DA /25088,/25312,/25538,/25764,/25992,/26220,/26450,/26680
 2040 .DA /26912,/27144,/27378,/27612,/27848,/28084,/28322,/28560
 2050 .DA /28800,/29040,/29282,/29524,/29768,/30012,/30258,/30504
 2060 .DA /30752,/31000,/31250,/31500,/31752,/32004,/32258,/32512

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2403 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:ProDOS:S.816.DSM.NEW.txt
==

 1 .LIST OFF
 800 .TI 76,65816 DISASSEMBLER.................FEBRUARY 14,
1985...........
 810 *SAVE S.816.DSM.NEW
 820 *--------------------------------
 830 .OR $300
 840 .OP 65816
 850 LDA #3
 860 SEC
 870 LDA #3
 880 CLC
 890 LDA #3
 900 REP #$30
 910 LDA #3
 920 CLC
 930 XCE
 940 LDA ##$EA34
 950 REP #$20
 960 LDA ##$EA34
 970 LDX ##$EA34
 980 REP #$10
 990 LDA ##$EA34
 1000 LDX ##$EA34
 1010 SEP #$30
 1020 .OR $800
 1030 *--------------------------------
 1040 IMM.SIZE .EQ $00
 1050 LMNEM .EQ $2C
 1060 RMNEM .EQ $2D
 1070 FORMATL .EQ $2E
 1080 LENGTH .EQ $2F
 1090 FORMATH .EQ $30
 1100 PCL .EQ $3A
 1110 PCH .EQ $3B
 1120 *--------------------------------
 1130 SCRN2 .EQ $F879
 1140 PRNTAX .EQ $F941
 1150 PRBLNK .EQ $F948
 1160 PRBL2 .EQ $F94A
 1170 PCADJ .EQ $F953
 1180 CROUT .EQ $FD8E
 1190 PRBYTE .EQ $FDDA
 1200 COUT .EQ $FDED
 1210 *--------------------------------
 1211 .LIST ON
 1220 .MA ON
 1280]1]2]3]4 .DA ']1-64*32+']2-64*32+']3-64*2
 1290 .EM
 1291 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2404 of 2550

Apple II Computer Info

 1300 *--------------------------------
 1310 .MA OXA
 1320 .DA #]1-OPNAMES.A/2+128
 1330 .EM
 1340 *--------------------------------
 1350 .MA OXB
 1360 .DA #]1-OPNAMES.B/2
 1370 .EM
 1380 *--------------------------------
 1390 T LDA $C083 WRITE-ENABLE RAM COPY OF MONITOR
 1400 LDA $C083
 1410 LDA #INSTDSP PATCH L-COMMAND TO USE MY
 1420 STA $FE65 DIS-ASSEMBLER
 1430 LDA /INSTDSP
 1440 STA $FE66
 1444 .LIST ON
 1450 LDX #$FF START WITH E=1
 1454 STX E.BIT
 1458 STX STATUS.STACK EMPTY THE STATUS STACK
 1462 INX X=0
 1466 STX STATUS.PNTR
 1470 RTS
 1474 *--------------------------------
 1478 E.BIT .BS 1
 1482 STATUS.PNTR .BS 1
 1486 STATUS.STACK .BS 8
 1488 .LIST OFF
 1490 *--------------------------------
 1500 OPNAMES.A
 1510 >ON A,S,L,A
 1520 >ON B,R,K
 1530 >ON C,L,C
 1540 >ON C,L,D
 1550 >ON C,L,I
 1560 >ON C,L,V
 1570 >ON C,O,P
 1580 >ON D,E,C,A
 1590 >ON D,E,X
 1600 >ON D,E,Y
 1610 >ON I,N,C,A
 1620 >ON I,N,X
 1630 >ON I,N,Y
 1640 >ON L,S,R,A
 1650 >ON N,O,P
 1660 >ON P,H,A
 1670 >ON P,H,B
 1680 >ON P,H,D
 1690 >ON P,H,K
 1700 >ON P,H,P
 1710 >ON P,H,X
 1720 >ON P,H,Y
 1730 >ON P,L,A
 1740 >ON P,L,B
 1750 >ON P,L,D

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2405 of 2550

Apple II Computer Info

 1760 >ON P,L,P
 1770 >ON P,L,X
 1780 >ON P,L,Y
 1790 >ON R,O,L,A
 1800 >ON R,O,R,A
 1810 >ON R,T,I
 1820 >ON R,T,L
 1830 >ON R,T,S
 1840 >ON S,E,C
 1850 >ON S,E,D
 1860 >ON S,E,I
 1870 >ON S,T,P
 1880 >ON T,A,X
 1890 >ON T,A,Y
 1900 >ON T,C,D
 1910 >ON T,C,S
 1920 >ON T,D,C
 1930 >ON T,S,C
 1940 >ON T,S,X
 1950 >ON T,X,A
 1960 >ON T,X,S
 1970 >ON T,X,Y
 1980 >ON T,Y,A
 1990 >ON T,Y,X
 2000 >ON W,A,I
 2010 >ON W,D,M
 2020 >ON X,B,A
 2030 >ON X,C,E
 2040 *--------------------------------
 2050 OPNAMES.B
 2060 >ON A,D,C
 2070 >ON A,N,D
 2080 >ON A,S,L
 2090 >ON B,C,C
 2100 >ON B,C,S
 2110 >ON B,E,Q
 2120 >ON B,I,T
 2130 >ON B,M,I
 2140 >ON B,N,E
 2150 >ON B,P,L
 2160 >ON B,R,A
 2170 >ON B,R,L
 2180 >ON B,V,C
 2190 >ON B,V,S
 2200 >ON C,M,P
 2210 >ON C,P,X
 2220 >ON C,P,Y
 2230 >ON D,E,C
 2240 >ON E,O,R
 2250 >ON I,N,C
 2260 >ON J,M,L
 2270 >ON J,M,P
 2280 >ON J,S,L
 2290 >ON J,S,R

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2406 of 2550

Apple II Computer Info

 2300 >ON L,D,A
 2310 >ON L,D,X
 2320 >ON L,D,Y
 2330 >ON L,S,R
 2340 >ON M,V,N
 2350 >ON M,V,P
 2360 >ON O,R,A
 2370 >ON P,E,A
 2380 >ON P,E,I
 2390 >ON P,E,R
 2400 >ON R,E,P
 2410 >ON R,O,L
 2420 >ON R,O,R
 2430 >ON S,B,C
 2440 >ON S,E,P
 2450 >ON S,T,A
 2460 >ON S,T,X
 2470 >ON S,T,Y
 2480 >ON S,T,Z
 2490 >ON T,R,B
 2500 >ON T,S,B
 2510 *--------------------------------
 2520 OPINDEX
 2530 *---0X---------------------------
 2540 >OXA BRK
 2550 >OXB ORA
 2560 >OXA COP
 2570 >OXB ORA
 2580 >OXB TSB
 2590 >OXB ORA
 2600 >OXB ASL
 2610 >OXB ORA
 2620 >OXA PHP
 2630 >OXB ORA
 2640 >OXA ASLA
 2650 >OXA PHD
 2660 >OXB TSB
 2670 >OXB ORA
 2680 >OXB ASL
 2690 >OXB ORA
 2700 *---1X---------------------------
 2710 >OXB BPL
 2720 >OXB ORA
 2730 >OXB ORA
 2740 >OXB ORA
 2750 >OXB TRB
 2760 >OXB ORA
 2770 >OXB ASL
 2780 >OXB ORA
 2790 >OXA CLC
 2800 >OXB ORA
 2810 >OXA INCA
 2820 >OXA TCS
 2830 >OXB TRB

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2407 of 2550

Apple II Computer Info

 2840 >OXB ORA
 2850 >OXB ASL
 2860 >OXB ORA
 2870 *---2X---------------------------
 2880 >OXB JSR
 2890 >OXB AND
 2900 >OXB JSL
 2910 >OXB AND
 2920 >OXB BIT
 2930 >OXB AND
 2940 >OXB ROL
 2950 >OXB AND
 2960 >OXA PLP
 2970 >OXB AND
 2980 >OXA ROLA
 2990 >OXA PLD
 3000 >OXB BIT
 3010 >OXB AND
 3020 >OXB ROL
 3030 >OXB AND
 3040 *---3X---------------------------
 3050 >OXB BMI
 3060 >OXB AND
 3070 >OXB AND
 3080 >OXB AND
 3090 >OXB BIT
 3100 >OXB AND
 3110 >OXB ROL
 3120 >OXB AND
 3130 >OXA SEC
 3140 >OXB AND
 3150 >OXA DECA
 3160 >OXA TSC
 3170 >OXB BIT
 3180 >OXB AND
 3190 >OXB ROL
 3200 >OXB AND
 3210 *---4X---------------------------
 3220 >OXA RTI
 3230 >OXB EOR
 3240 >OXA WDM
 3250 >OXB EOR
 3260 >OXB MVP
 3270 >OXB EOR
 3280 >OXB LSR
 3290 >OXB EOR
 3300 >OXA PHA
 3310 >OXB EOR
 3320 >OXA LSRA
 3330 >OXA PHK
 3340 >OXB JMP
 3350 >OXB EOR
 3360 >OXB LSR
 3370 >OXB EOR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2408 of 2550

Apple II Computer Info

 3380 *---5X---------------------------
 3390 >OXB BVC
 3400 >OXB EOR
 3410 >OXB EOR
 3420 >OXB EOR
 3430 >OXB MVN
 3440 >OXB EOR
 3450 >OXB LSR
 3460 >OXB EOR
 3470 >OXA CLI
 3480 >OXB EOR
 3490 >OXA PHY
 3500 >OXA TCD
 3510 >OXB JMP
 3520 >OXB EOR
 3530 >OXB LSR
 3540 >OXB EOR
 3550 *---6X---------------------------
 3560 >OXA RTS
 3570 >OXB ADC
 3580 >OXB PER
 3590 >OXB ADC
 3600 >OXB STZ
 3610 >OXB ADC
 3620 >OXB ROR
 3630 >OXB ADC
 3640 >OXA PLA
 3650 >OXB ADC
 3660 >OXA RORA
 3670 >OXA RTL
 3680 >OXB JMP
 3690 >OXB ADC
 3700 >OXB ROR
 3710 >OXB ADC
 3720 *---7X---------------------------
 3730 >OXB BVS
 3740 >OXB ADC
 3750 >OXB ADC
 3760 >OXB ADC
 3770 >OXB STZ
 3780 >OXB ADC
 3790 >OXB ROR
 3800 >OXB ADC
 3810 >OXA SEI
 3820 >OXB ADC
 3830 >OXA PLY
 3840 >OXA TDC
 3850 >OXB JMP
 3860 >OXB ADC
 3870 >OXB ROR
 3880 >OXB ADC
 3890 *---8X---------------------------
 3900 >OXB BRA
 3910 >OXB STA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2409 of 2550

Apple II Computer Info

 3920 >OXB BRL
 3930 >OXB STA
 3940 >OXB STY
 3950 >OXB STA
 3960 >OXB STX
 3970 >OXB STA
 3976 *>>>CHANGED FROM "TAY"
 3977 .LIST ON
 3980 >OXA DEY
 3987 .LIST OFF
 3990 >OXB BIT
 4000 >OXA TXA
 4010 >OXA PHB
 4020 >OXB STY
 4030 >OXB STA
 4040 >OXB STX
 4050 >OXB STA
 4060 *---9X---------------------------
 4070 >OXB BCC
 4080 >OXB STA
 4090 >OXB STA
 4100 >OXB STA
 4110 >OXB STY
 4120 >OXB STA
 4130 >OXB STX
 4140 >OXB STA
 4150 >OXA TYA
 4160 >OXB STA
 4170 >OXA TXS
 4180 >OXA TXY
 4190 >OXB STZ
 4200 >OXB STA
 4210 >OXB STZ
 4220 >OXB STA
 4230 *---AX---------------------------
 4240 >OXB LDY
 4250 >OXB LDA
 4260 >OXB LDX
 4270 >OXB LDA
 4280 >OXB LDY
 4290 >OXB LDA
 4300 >OXB LDX
 4310 >OXB LDA
 4320 >OXA TAY
 4330 >OXB LDA
 4340 >OXA TAX
 4350 >OXA PLB
 4360 >OXB LDY
 4370 >OXB LDA
 4380 >OXB LDX
 4390 >OXB LDA
 4400 *---BX---------------------------
 4410 >OXB BCS
 4420 >OXB LDA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2410 of 2550

Apple II Computer Info

 4430 >OXB LDA
 4440 >OXB LDA
 4450 >OXB LDY
 4460 >OXB LDA
 4470 >OXB LDX
 4480 >OXB LDA
 4490 >OXA CLV
 4500 >OXB LDA
 4510 >OXA TSX
 4520 >OXA TYX
 4530 >OXB LDY
 4540 >OXB LDA
 4550 >OXB LDX
 4560 >OXB LDA
 4570 *---CX---------------------------
 4580 >OXB CPY
 4590 >OXB CMP
 4600 >OXB REP
 4610 >OXB CMP
 4620 >OXB CPY
 4630 >OXB CMP
 4640 >OXB DEC
 4650 >OXB CMP
 4660 >OXA INY
 4670 >OXB CMP
 4680 >OXA DEX
 4690 >OXA WAI
 4700 >OXB CPY
 4710 >OXB CMP
 4720 >OXB DEC
 4730 >OXB CMP
 4740 *---DX---------------------------
 4750 >OXB BNE
 4760 >OXB CMP
 4770 >OXB CMP
 4780 >OXB CMP
 4790 >OXB PEI
 4800 >OXB CMP
 4810 >OXB DEC
 4820 >OXB CMP
 4830 >OXA CLD
 4840 >OXB CMP
 4850 >OXA PHX
 4860 >OXA STP
 4870 >OXB JML
 4880 >OXB CMP
 4890 >OXB DEC
 4900 >OXB CMP
 4910 *---EX---------------------------
 4920 >OXB CPX
 4930 >OXB SBC
 4940 >OXB SEP
 4950 >OXB SBC
 4960 >OXB CPX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2411 of 2550

Apple II Computer Info

 4970 >OXB SBC
 4980 >OXB INC
 4990 >OXB SBC
 5000 >OXA INX
 5010 >OXB SBC
 5020 >OXA NOP
 5030 >OXA XBA
 5040 >OXB CPX
 5050 >OXB SBC
 5060 >OXB INC
 5070 >OXB SBC
 5080 *---FX---------------------------
 5090 >OXB BEQ
 5100 >OXB SBC
 5110 >OXB SBC
 5120 >OXB SBC
 5130 >OXB PEA
 5140 >OXB SBC
 5150 >OXB INC
 5160 >OXB SBC
 5170 >OXA SED
 5180 >OXB SBC
 5190 >OXA PLX
 5200 >OXA XCE
 5210 >OXB JSR
 5220 >OXB SBC
 5230 >OXB INC
 5240 >OXB SBC
 5250 *--------------------------------
 5260 OPFORMAT
 5270 F.0 .HS 00.14.00.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5280 F.1 .HS 26.16.12.1E.02.08.08.22.00.10.00.00.04.0A.0A.0C
 5290 F.2 .HS 04.14.06.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5300 F.3 .HS 26.16.12.1E.08.08.08.22.00.10.00.00.0A.0A.0A.0C
 5310 F.4 .HS 00.14.00.1C.24.02.02.20.00.00.00.00.04.04.04.06
 5320 F.5 .HS 26.16.12.1E.24.08.08.22.00.10.00.00.06.0A.0A.0C
 5330 F.6 .HS 00.14.28.1C.02.02.02.20.00.00.00.00.18.04.04.06
 5340 F.7 .HS 26.16.12.1E.08.08.08.22.00.10.00.00.1A.0A.0A.0C
 5350 F.8 .HS 26.14.28.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5360 F.9 .HS 26.16.12.1E.08.08.0E.22.00.10.00.00.04.0A.0A.0C
 5370 F.A .HS 00.14.00.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5380 F.B .HS 26.16.12.1E.08.08.0E.22.00.10.00.00.0A.0A.10.0C
 5390 F.C .HS 00.14.00.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5400 F.D .HS 26.16.12.1E.02.08.08.22.00.10.00.00.18.0A.0A.0C
 5410 F.E .HS 00.14.00.1C.02.02.02.20.00.00.00.00.04.04.04.06
 5420 F.F .HS 26.16.12.1E.08.08.08.22.00.10.00.00.1A.0A.0A.0C
 5430 *--------------------------------
 5440 FMTBL
 5450 *-----# > ($, X S) , Y $ - - - LL
 5460 .DA %1.0.0.1.0.0.0.0.0.0.0.0.0.0.01 -- IMMEDIATE 00
 5470 .DA %0.0.0.1.0.0.0.0.0.0.0.0.0.0.01 -- DIRECT 02
 5480 .DA %0.0.0.1.0.0.0.0.0.0.0.0.0.0.10 -- ABS 04
 5490 .DA %0.0.0.1.0.0.0.0.0.0.0.0.0.0.11 -- LONG 06
 5500 *-----# > ($, X S) , Y $ - - - LL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2412 of 2550

Apple II Computer Info

 5510 .DA %0.0.0.1.1.1.0.0.0.0.0.0.0.0.01 -- DIRECT,X 08
 5520 .DA %0.0.0.1.1.1.0.0.0.0.0.0.0.0.10 -- ABS,X 0A
 5530 .DA %0.0.0.1.1.1.0.0.0.0.0.0.0.0.11 -- LONG,X 0C
 5540 *-----# > ($, X S) , Y $ - - - LL
 5550 .DA %0.0.0.1.1.0.0.0.0.1.0.0.0.0.01 -- DIRECT,Y 0E
 5560 .DA %0.0.0.1.1.0.0.0.0.1.0.0.0.0.10 -- ABS,Y 10
 5570 *-----# > ($, X S) , Y $ - - - LL
 5580 .DA %0.0.1.1.0.0.0.1.0.0.0.0.0.0.01 -- IND 12
 5590 .DA %0.0.1.1.1.1.0.1.0.0.0.0.0.0.01 -- INDX 14
 5600 .DA %0.0.1.1.0.0.0.1.1.1.0.0.0.0.01 -- INDY 16
 5610 *-----# > ($, X S) , Y $ - - - LL
 5620 .DA %0.0.1.1.0.0.0.1.0.0.0.0.0.0.10 -- INDABS 18
 5630 .DA %0.0.1.1.1.1.0.1.0.0.0.0.0.0.10 -- INDABSX 1A
 5640 *-----# > ($, X S) , Y $ - - - LL
 5650 .DA %0.0.0.1.1.0.1.0.0.0.0.0.0.0.01 -- STK 1C
 5660 .DA %0.0.1.1.1.0.1.1.1.1.0.0.0.0.01 -- STKY 1E
 5670 *-----# > ($, X S) , Y $ - - - LL
 5680 .DA %0.1.1.1.0.0.0.1.0.0.0.0.0.0.01 -- INDLONG 20
 5690 .DA %0.1.1.1.0.0.0.1.1.1.0.0.0.0.01 -- INDLONGY 22
 5700 .DA %0.0.0.1.0.0.0.0.1.0.1.0.0.0.10 -- MVN & MVP 24
 5710 .DA %0.0.0.0.0.0.0.0.0.0.1.0.0.0.01 -- RELATIVE 26
 5720 .DA %0.0.0.0.0.0.0.0.0.0.1.0.0.0.10 -- LONG RELA. 28
 5730 *--------------------------------
 5740 FMTSTR .AS -/$Y,)SX,$(>#/
 5750 *--------------------------------
 5760 INSDS1 JSR CROUT
 5770 LDA PCH
 5780 JSR PRBYTE
 5790 LDA PCL
 5800 JSR PRBYTE
 5810 LDA #"-"
 5820 JSR COUT
 5830 LDA #" "
 5840 JSR COUT
 5850 LDY #0
 5860 LDA (PCL),Y GET OPCODE
 5863 .LIST ON
 5864 *>>>INSERT LINE HERE
 5865 JSR TEST.OP.CODES <<<>>>
 5866 .LIF
 5870 INSDS2 TAY SAVE IN Y-REG
 5880 LDA OPINDEX,Y
 5890 ASL
 5900 TAX
 5910 BCC .1 ...NOT SINGLE BYTE OPCODE
 5920 LDA OPNAMES.A,X
 5930 STA RMNEM
 5940 LDA OPNAMES.A+1,X
 5950 STA LMNEM
 5960 LDA #0
 5970 STA LENGTH
 5980 RTS
 5990 *--------------------------------
 6000 .1 LDA OPNAMES.B,X

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2413 of 2550

Apple II Computer Info

 6010 STA RMNEM
 6020 LDA OPNAMES.B+1,X
 6030 STA LMNEM
 6040 LDX OPFORMAT,Y
 6050 LDA FMTBL+1,X
 6060 STA FORMATH
 6070 LDA FMTBL,X
 6080 STA FORMATL
 6090 AND #3
 6100 STA LENGTH
 6110 TXA CHECK IF IMMEDIATE
 6120 BNE .2 ...NO
 6130 BIT IMM.SIZE CHECK IF 16-BIT MODE
 6140 BPL .2 ...NO
 6150 INC LENGTH ...YES
 6160 .2 RTS
 6170 *--------------------------------
 6180 INSTDSP
 6190 JSR INSDS1
 6200 LDY #0 PRINT BYTES OF OPCODE & OPERAND
 6210 .1 LDA (PCL),Y
 6220 JSR PRBYTE
 6230 LDX #1 PRINT 1 BLANK
 6240 .2 JSR PRBL2
 6250 CPY LENGTH
 6260 INY
 6270 BCC .1
 6280 LDX #3
 6290 CPY #4
 6300 BCC .2
 6310 *---PRINT MNEMONIC---------------
 6320 LDY #3 THREE LETTERS
 6330 .3 LDA #6 SHIFT OUT ONE LETTER, TOP BITS 11
 6340 .4 ASL RMNEM
 6350 ROL LMNEM
 6360 ROL
 6370 BPL .4 ...NOT ENUF BITS YET
 6380 JSR COUT PRINT THE LETTER
 6390 DEY
 6400 BNE .3 ...MORE LETTERS
 6410 LDY LENGTH
 6420 BEQ .8 ...SINGLE BYTE OPCODE
 6430 LDA FORMATL
 6440 AND #$20 SEE IF SPECIAL
 6450 BNE .9 ...YES, MOVES OR RELATIVES
 6460 *---PRINT NORMAL OPERANDS--------
 6470 LDA #" "
 6480 JSR COUT
 6490 LDX #10 11 FORMAT BITS
 6500 .5 ASL FORMATL
 6510 ROL FORMATH
 6520 BCC .7
 6530 LDA FMTSTR,X
 6540 JSR COUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2414 of 2550

Apple II Computer Info

 6550 CMP #"#"
 6560 BNE .55
 6570 BIT IMM.SIZE
 6580 BPL .7
 6590 JSR COUT
 6600 .55 CMP #"$"
 6610 BNE .7
 6620 .6 LDA (PCL),Y
 6630 JSR PRBYTE
 6640 DEY
 6650 BNE .6
 6660 .7 DEX
 6670 BPL .5
 6680 .8 RTS
 6690 *---SPECIAL CASES----------------
 6700 .9 LDA #" "
 6710 JSR COUT
 6720 LDA #"$"
 6730 JSR COUT
 6740 LDA FORMATL
 6750 BMI .11 MVN & MVP
 6755 .LIST ON
 6760 *---8- OR 16-BIT RELATIVE--------
 6770 LDA (PCL),Y 8=OFFSET, 16=OFFSETHI
 6780 DEY TEST LENGTH
 6790 STY FORMATH =0 IF 8-BIT
 6800 BEQ .10 ...8-BIT
 6810 STA FORMATH ...16-BIT
 6820 LDA (PCL),Y LOW BYTE OF 16-BIT OFFSET
 6830 .10 STA FORMATL
 6840 JSR PCADJ
 6850 CLC
 6860 ADC FORMATL
 6870 TAX
 6880 TYA
 6890 ADC FORMATH
 6900 JMP PRNTAX
 6905 .LIST OFF
 6960 *---MVN & MVP--------------------
 6970 .11 LDA (PCL),Y
 6980 JSR PRBYTE
 6990 LDA #","
 7000 JSR COUT
 7010 LDA #"$"
 7020 JSR COUT
 7030 DEY
 7040 LDA (PCL),Y
 7050 JMP PRBYTE
 7055 .LIST ON
 7060 *--------------------------------
 7070 TEST.OP.CODES
 7080 PHA SAVE OPCODE
 7090 LSR IMM.SIZE ASSUME 8-BIT IMMEDIATE
 7100 LDX STATUS.PNTR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2415 of 2550

Apple II Computer Info

 7110 CMP #$18 CLC?
 7120 BEQ CLC.OP
 7130 CMP #$38 SEC?
 7140 BEQ SEC.OP
 7150 INY
 7160 CMP #$C2 REP?
 7170 BEQ REP.OP
 7180 CMP #$E2 SEP?
 7190 BEQ SEP.OP
 7200 DEY
 7210 CMP #$08 PHP?
 7220 BEQ PHP.OP
 7230 CMP #$28 PLP?
 7240 BEQ PLP.OP
 7250 CMP #$FB XCE?
 7260 BEQ XCE.OP
 7270 *--------------------------------
 7280 AND #$1F ORA, AND, EOR, ADC, BIT, LDA, CMP, SBC?
 7290 CMP #$09
 7300 PHP SAVE ANSWER
 7310 LDA #$20 ASSUME M-BIT
 7320 PLP GET PREVIOUS ANSWER
 7330 BEQ .1 IT IS M-BIT
 7340 LSR (LDA #$10) USE X-BIT INSTEAD
 7350 .1 AND STATUS.STACK,X
 7360 BNE .2 ...USE 8-BIT IMMEDIATE
 7370 LDA E.BIT
 7380 LSR
 7390 BCS .2 E=1, USE 8-BIT IMMEDIATE
 7400 LDA #$FF ...USE 16-BIT IMMEDIATE
 7410 STA IMM.SIZE
 7420 .2 PLA GET OPCODE AGAIN
 7430 RTS
 7440 *--------------------------------
 7450 CLC.OP LDA STATUS.STACK,X
 7460 AND #$FE
 7470 UPDATE.STATUS
 7480 STA STATUS.STACK,X
 7490 PLA
 7500 RTS
 7510 *--------------------------------
 7520 SEC.OP LDA STATUS.STACK,X
 7530 ORA #$01
 7540 BNE UPDATE.STATUS ...ALWAYS
 7550 *--------------------------------
 7560 REP.OP LDA (PCL),Y LOOK AT OPERAND
 7570 EOR #$FF
 7580 AND STATUS.STACK,X
 7590 JMP UPDATE.STATUS
 7600 *--------------------------------
 7610 SEP.OP LDA (PCL),Y
 7620 ORA STATUS.STACK,X
 7630 JMP UPDATE.STATUS
 7640 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2416 of 2550

Apple II Computer Info

 7650 PHP.OP LDA STATUS.STACK,X
 7660 INX
 7670 CPX #8
 7680 BCC PHP.PLP
 7690 LDX #0
 7700 PHP.PLP
 7710 STX STATUS.PNTR
 7720 JMP UPDATE.STATUS
 7730 *--------------------------------
 7740 PLP.OP DEX
 7750 BPL PHP.PLP
 7760 LDX #7
 7770 BEQ PHP.PLP
 7780 *--------------------------------
 7790 XCE.OP LSR E.BIT GET E-BIT INTO CARRY
 7800 PHP SAVE IT
 7810 LDA STATUS.STACK,X
 7820 STA E.BIT NEW E-BIT
 7830 LSR C-BIT INTO CARRY
 7840 BCC .1 ...NEW E-BIT = 0
 7850 ORA #$18 ...NEW E-BIT=1, SO SET M=X=1
 7860 .1 PLP GET NEW C-BIT (OLD E-BIT)
 7870 ROL PUT IT INTO STATUS BYTE
 7880 JMP UPDATE.STATUS
 7890 *--------------------------------
 7900 TT LDY #0
 7910 LDA #$C0
 7920 STA PCL
 7930 LDA #2 $2C0...$3C3
 7940 STA PCH
 7950 .1 TYA
 7960 STA $2C0,Y
 7970 INY
 7980 BNE .1
 7990 STY $3C0
 8000 INY
 8010 STY $3C1
 8020 INY
 8030 STY $3C2
 8040 .2 JSR INSTDSP
 8050 LDY #0
 8060 LDA (PCL),Y
 8070 CMP #$FF
 8080 BEQ .3
 8090 .4 LDA $C000
 8100 BPL .4
 8110 STA $C010
 8120 INC PCL
 8130 BNE .2
 8140 INC PCH
 8150 BNE .2 ...ALWAYS
 8160 .3 RTS
 8170 *--------------------------------
 8180 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2417 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:ProDOS:S.WHICH.PROC.txt
==

 1000 *SAVE S.WHICH.PROC
 1010 .OP 65802
 1020 *--------------------------------
 1030 PRBYTE .EQ $FDDA
 1040 COUT .EQ $FDED
 1050 *--------------------------------
 1060 WHICH.PROCESSOR
 1070 LDA #$65
 1080 JSR PRBYTE
 1090 BRA .1
 1100 JMP .2
 1110 .1 LDA #"8"
 1120 XBA
 1130 LDA #"C"
 1140 XBA
 1150 JSR COUT
 1160 .2 LDA #$02
 1170 JMP PRBYTE
 1180 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2418 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8603:ProDOS:TEST.CKSUMMER.txt
==

 1000 .LIF
 1010 *SAVE TEST.CKSUMMER
 1020 *--------------------------------
 1030 * SIMULATE PRODOS $FB09-FB10 CHECK-SUMMER
 1040 * (AT $267C IN PRODOS 1.1.1)
 1050 *--------------------------------
 1060 T
 1070 LDA #S1
 1080 STA $0A
 1090 LDA /S1
 1100 STA $0B
 1110 JSR CS
 1120 LDA #S2
 1130 STA $0A
 1140 LDA /S2
 1150 STA $0B
 1160 CS
 1170 JSR PT
 1180 CLC
 1190 LDY #0
 1200 STY X
 1210 .1 LDA ($0A),Y
 1220 JSR B
 1230 AND #$DF
 1240 JSR B
 1250 LDA X
 1260 JSR B
 1270 LDA ($0A),Y
 1280 AND #$DF
 1290 ADC X
 1300 STA X
 1310 JSR B
 1320 ROL X
 1330 LDA X
 1340 JSR B
 1350 JSR $FD8E
 1360 INY
 1370 CPY #8
 1380 BCC .1
 1390 TYA
 1400 ASL
 1410 ASL
 1420 ASL
 1430 ASL
 1440 ORA X
 1450 JSR B
 1460 ADC #$0B
 1470 *--------------------------------
 1480 B PHA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2419 of 2550

Apple II Computer Info

 1490 PHP
 1500 JSR $FDDA
 1510 LDA #" "
 1520 JSR $FDED
 1530 JSR $FDED
 1540 PLP
 1550 PLA
 1560 RTS
 1570 *--------------------------------
 1580 X .BS 1
 1590 *--------------------------------
 1600 S1 .AS -/APPLE][/
 1610 S2 .HS B0.A2.20.4A.FF.38.B0.9E
 1620 *--------------------------------
 1630 TITLE .HS 8D8D
 1640 .AS -/LDA AND ADC STA ROL/
 1650 .HS 8D00
 1660 *--------------------------------
 1670 PT
 1680 LDY #0
 1690 .1 LDA TITLE,Y
 1700 BEQ .2
 1710 JSR $FDED
 1720 INY
 1730 BNE .1
 1740 .2 RTS
 1750 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2420 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:Articles:BCD.Magic.txt
==

On Dividing a BCD Value by 4..............Bob Sander-Cederlof

The 6502 allows two kinds of addition and subtraction operations,
depending on the state of the D-bit in the status register. After a
SED (Set D) instruction, the ADC and SBC instructions will operate in
decimal mode; after CLD (CLear D), ADC and SBC will operate in binary
mode.

In decimal mode the range of values in a byte is from $00 to $99. The
left nybble is the ten's digit, and the right nybble is the unit's
digit. The decimal mode makes some programs much easier to write, and
others more difficult. Having both modes is nice.

In binary mode, if you want to divide by four you just shift the value
right two bit-positions. If by 8, shift 3 times. And so on. In
decimal mode, you can very easily divide by powers of ten; however,
dividing by four is more difficult.

I needed a quick way to tell if a number in decimal mode was divisible
by four. After inspecting the binary values of the decimal-mode
numbers between 00 and 99 a, I found a way. If the ten's digit is
even and the unit's digit 0, 4, or 8, the number is divisible by four.
Also, if the ten's digit is odd and the unit's digit is 2 or 6, the
number is divisible by four. This can be tested as follows:

 LDA VALUE
 AND #$13
 BEQTEN'S EVEN, UNITS=0,4,8
 EOR #$12
 BEQTEN'S ODD, UNITS=2,6
 NOT DIVISIBLE

Next I needed a way to actually divide by four. Again I started by
inspecting the various values involved. Simply shifting right twice
does not do the job, except for numbers less than ten. You cannot
even divide by two by simply shifting right once, unless the ten's
digit is even. Hmmm.... If the ten's digit is odd, I could subtract
6 frist and then shift right once to divide by two. Doing all that
twice would result in a division by four. The subtraction must be
done in binary mode, not decimal. The subroutine below in lines 1460-
1590 will divide the decimal number in VALUE by four, truncating any
remainder, and return the quotient in the A-register. Lines 1600-1700
show a shorter way to divide by two, provided you don't mind using the
X-register.

To test my subroutines, I wrote some test programs. The first
program, lines 1000-1370, runs through the values 00 to 99, printing
ten values to a line. Each number that is evenly divisible by four is

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2421 of 2550

Apple II Computer Info

flagged with an asterisk. The second program, lines 1720-1990, shows
the quotient after calling DIVIDE.BCD.VALUE.BY FOUR.

I am sure there must be lots of other neat tricks possible by
combining binary and decimal modes in the 6502. Do you know some?
Send them in, and we will publish the best!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2422 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:Articles:Boot.80.txt
==

Booting into 80 Columns..........................Bill Morgan

The ProDOS version of the S-C Macro Assembler is carefully written to
operate in either 40 or 80 columns. When you boot the disk the
assembler starts out in the 40 column mode, because we couldn't take
for granted that you would have (or want) the 80 column display. Well
it turns out that most people (myself included) are using 80 columns
and are getting tired of typing PR#3 every time they start up the
assembler.

Marc Wolfgram called up today from Wisconsin to ask how to make the
assembler start up in 80 columns, and that finally got me around to
finding out how. It's embarassingly easy: just a two-byte patch.
Here's the procedure, assuming you're in S-C Macro Assembler ProDOS:

UNLOCK SCASM.SYSTEM
BLOAD SCASM.SYSTEM,A$2000,TSYS
$6001:00 C3
BSAVE SCASM.SYSTEM,A$2000,TSYS,L17920
LOCK SCASM.SYSTEM

We just changed the IO.INIT call from JMP MON.HOME to JMP $C300, and
that's all there is to it! Now the next time you boot up, the
assembler will be in 80 column mode. RESET will return you to 40
columns. PR#3 or NEW will restore 80 columns.

Thanks, Marc, for prompting me to find out about this.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2423 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:Articles:Front.Page.txt
==

$1.80

Volume 6 -- Issue 7 April, 1986

In This Issue...

Tools for Restoring Lost Catalogs. 2
Writing Messages in Windows. 13
On Dividing a BCD Value by 4 19
Booting into 80 Columns. 23
Faster Boot and More Space for DOS 3.3 24
A "Gotcha!" in the New //c ROMs. 32

65816 Books

The race is on! "Programming the 65816", by David Eyes from Prentice-
Hall, originally scheduled for publication last October, is now
expected in late April. "65816/65802 Assembly Language Programming",
by Michael Fischer from Osborne/McGraw- Hill, scheduled for May
publication, is now also due in late April. We have plenty of copies
of these books on order, and a long list of patient people waiting for
complete information on programming these powerful new chips. Coming
Soon...

More Memory Expansion

We'd like to call your attention to the new ad for Applied
Engineering's RamFactor board. This is a "Slinky" style memory
expansion card for any standard slot of an Apple II, II+, or //e.
We've been doing some of the firmware for this product, and it's been
a delight to work with.

One thing the ad doesn't really emphasize is the power and flexibility
of the program switcher firmware. You can set up the card with a
variable number of variable-sized partitions and then switch between
them almost instantly. Any partition can be based on any operating
system, or on your own program. Couple this with the battery backup
option (it's really more of an uninterruptible power suppply for the
card) and you have what amounts to a hard disk operating at RAM speed!

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage). A subscription to the
newsletter and the Monthly Disk containing all source code is $45 per
year in the US, Canada and Mexico, and $87 to other countries.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2424 of 2550

Apple II Computer Info

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

==
DOCUMENT :AAL-8604:Articles:IIc.ROM.Bug.txt
==

A "Gotcha!" in New //c ROMs.................Robert H. Bernard

Apple seems to have installed a bug in the new ROM for the Apple //c
which affects DOS 3.3. I am talking about the 3.5 ROM that supports
Unidisk 3.5 and AppleTalk.

The new bug manifests itself when you use the control-IxxN command to
either serial port. The older //c ROMs accumulated the "xx" number in
$47F; the new ones do it in $47E. Location $47E is supposed to be
dedicated to slot 6, the slot where the disk drives are. DOS uses
$47E to keep track of the current track position for drive 1. So,
after doing the serial port command to set line length, the next time
DOS tries to look at drive 1 it will have to re-calibrate.

Re-calibration is not a disaster, but it is annoying. A needless and
not noiseless waste of time. To avoid it with the new ROMs, you have
to save and restore the contents of $47E around any serial port
command that involves scanning a numeric field.

I have looked through the entire listing of the 3.5 ROM that came with
my upgrade kit, and there does not appear to be any reason why this
variable was moved. Location $47F is not used for any new value that
I can see.

Even though the Apple //c Technical Reference Manual reserves $47E for
the firmware, and ProDOS doesn't use the cell, using a "slot 6"
screen-hole for a slot 1 and 2 activity is a serious breach of the
protocol for their use that dates back to the earliest Wozdays. I
know Apple is dropping (or at least decreasing) their support of DOS
3.3, but this is ridiculous!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2425 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:Articles:Msg.Into.Window.txt
==

Writing Messages in Windows...............Bob Sander-Cederlof

The idea for the following program came from some similar code in the
Cirtech Flipster software. Their "program manager" software displays
a series of messages and menus in selected windows using a simple
subroutine.

The windows are not quite as sophisticated as you may be used to if
you are a Macintosh fan. This program divides the screen up
vertically, with each window running the full screen width. Calls to
the program specify which window to write a message into. The JSR
MSG.IN.WINDOW is followed by a single byte specifying which window to
use, the ASCII text of the message, and a final 00 byte signifying the
end of message. MSG.IN.WINDOW first sets up the window, then clears
it, then displays the message in it, and then returns to continue
execution right after the 00 byte. MSG.IN.WINDOW does not make any
provision for saving the previous contents of the screen inside the
window and restoring it later. As I said, this is much simpler than
Mac windows.

The Apple monitor has built-in window capability, with the current
window being defined by four bytes in page zero. $20 is called LEFT,
and defines the starting column of a screen line. This is normally 0,
meaning the first column. $21 is called WIDTH, and specifies how many
characters are in each line. This is usually 40 ($28), but may be 80
($50) in a //c or enhanced //e in 80-column mode. MSG.IN.WINDOW does
not make any changes to LEFT or WIDTH, although you could modify it to
do so.

$22 is called WNDTOP, and specifies the top line of the working
window. This is usually 0, meaning to start at the top of the screen.
It could be as large as 23 ($17), meaning the bottom line of the
screen. $23 is called WNDBOT, and specifies the bottom line of the
working window. The number in WNDBOT is actually the number of the
next line below the working window, and is usually 24 ($18) to specify
a window that goes all the way to the bottom of the screen.
MSG.IN.WINDOW stores new values in WNDTOP and WNDBOT, according to a
table of line numbers called WINDOW.DATA.

My WINDOW.DATA table lists six different windows, but of course you
could have as many as you wish. They can even overlap. The table I
used contains the line numbers 0, 24, 0, 3, 9, 18, 20, and 24. This
corresponds to the following windows:

 Index WNDTOP WNDBOT Window
 0 0 24 0-23 <full screen>
 1 <better not use!!!>
 2 0 3 0-2
 3 3 9 3-8

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2426 of 2550

Apple II Computer Info

 4 9 18 9-17
 5 18 20 18-19
 6 20 24 20-23

Lines 1080-1130 in the listing below detail the calling sequence for
MSG.IN.WINDOW. The test program in lines 1500 and following shows
some actual calls, with a "wait for any keystroke" between messages so
you can see it happen.

Lines 1140-1180 save the caller's return address, placed on the stack
by the JSR MSG.IN.WINDOW. This address will be used to pick up the
calling parameters, and then used to return to the calling program.
The subroutine in lines 1400-1460 increments the pointer and picks up
the next byte from the calling sequence.

When we are finished displaying the message, the pointer will be
pointing at the terminal 00 byte. Placing the pointer address back on
the stack lets us use an RTS opcode to return to the caller. This is
done in lines 1340-1390.

Lines 1200-1250 pick up the window index from the first byte following
the JSR instruction. This indexes the WINDOW.DATA table, so two
entries from that table are moved into WNDTOP and WNDBOT. The the
monitor HOME subroutine can be called to clear the window and place
the cursor in the top-left corner of the window.

Lines 1270-1330 display the message, if any. If there is no message,
there still must be a terminal 00 byte. By judicious use of 8D
(return) and 8A (linefeed) characters, you can display the message any
way you like. If the message is too large for the window, lines will
be scrolled out the top of the window and lost.

The MSG.IN.WINDOW subroutine illustrates a commonly used technique of
placing messages to be printed "in-line", like PRINT "message"
statements in Applesoft. I personally prefer to collect all my
messages together, and use a message number in a register to select
which one to print. One problem with my preferred method is that my
programs are then easier to disassemble ... if that is a problem. The
6502 was not designed for easy transfer of calling parameters which
follow the JSR. (The 65816 makes this kind of code easier, with its
stack-relative address mode.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2427 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:Articles:NewDOSInit.Boot.txt
==

Faster Boot and More Space for DOS 3.3....Bob Sander-Cederlof

A freshly initialized DOS 3.3 disk has 496 free sectors, less whatever
is used by your HELLO program. There are 16 more sectors that are
either never used or which are wasted, in tracks 0 and 2. The
following program modifies the code which writes the DOS image and the
code which reads it back during boot, so that the entire image fits in
tracks 0 and 1. A further change makes the space in track 2 available
for normal files.

The new boot procedure actually is faster than the standard one, and
all the new code takes less space than that which is replaced. All
you give up is the ability to boot into machines with less than 48K.
Does anyone still have one?

Standard DOS 3.3 stores the DOS image in two pieces. The code
destined for $B600-BFFF is on track 0, sectors 0 through 9. The code
for $9D00-B500 follows, from track 0/sector 10 through track 2/sector
4. Sectors 5-15 of track 2 are not used. The information stored in
sectors 3 and 4 of track 2 (aimed at $B400-B5FF) is useless, because
all this space is variables for DOS which do not need to be
initialized. The same goes for sector 5 of track 0. The contents of
sectors 10 and 11 of track 0 is not used on a "slave" disk, which is
what you get with the INIT command. My disks have to stay slave
disks, because we are going to reshuffle everything around so all the
unused sectors end up in track 2.

My new layout stores $9D00-9DFF in track 0/sector 5, and $9E00-B3FF in
track 0/sector 10 through track 1/sector 15. The following table
summarizes the old and new layouts.

 Sector Track 0 Track 1 Track 2
 Old New Old New Old New
 0 B6 B6 A1 A4 B1 ..
 1 B7 B7 A2 A5 B2 ..
 2 B8 B8 A3 A6 B3 ..
 3 B9 B9 A4 A7 B4 ..
 4 BA BA A5 A8 B5 ..
 5 BB 9D A6 A9
 6 BC BC A7 AA
 7 BD BD A8 AB
 8 BE BE A9 AC
 9 BF BF AA AD
 10 .. 9E AB AE
 11 .. 9F AC AF
 12 9D A0 AD B0
 13 9E A1 AE B1
 14 9F A2 AF B2
 15 A0 A3 B0 B3

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2428 of 2550

Apple II Computer Info

I published the complete commented disassembly of the code which
writes the DOS image on a disk and the code for the second stage boot
in AAL way back in October, 1981. The second stage boot code begins
at $B700, and the DOS writer starts at $B74A. They both use a
subroutine at $B793 to read/write a range of sectors. I preserved the
starting points for these two routines in the program which follows,
but there is a lot of new empty space. If you are interested, you
could go ahead and shove all the code segments together, patch all the
calls for the new locations, and get one big area of free space for
adding new features.

I was able to save coding space in several ways. First, by deciding
that I would not worry about running in less than 48K. Second, that I
could eliminate the extra code used to clobber the language card.
This is a very common patch anyway, because most of us do not want to
have to keep re-loading the language card area just because we re-boot
DOS. Third, by eliminating the redundant calls to $FE89 and $FE93.
The first stage boot does both of these just before jumping to the
second stage boot, so there is no reason to do them again. And
fourth, by being more efficient. If you want to, you can save even
more by doing away with the subroutine at $B7C2: part of it is
redundant, and the rest can be combined with the code at $B74A.

The standard DOS boot first loads $B600-BFFF from track 0, and then
skips out to track 2 to read the rest hind-end-first. The track steps
are 0-1-2-1-0. My new version starts in track 0, reads it all, then
reads all of track 1, and it is done. The track steps are simply 0-1.
It is a lot faster. However, the overall boot time is not
significantly faster, due to the time spent finding track 0 in the
first place, and the time spent loading the HELLO program.

Lines 1060-1140 install the new code. The entire $B7 page is
replaced, as well as a single byte at $AEB3. This byte changes the
VTOC on the newly initialized disk so that track 2 is available.
While I was looking at this area, I noticed that the VTOC written on
the new disk is not necessarily correct. DOS does not create an
entirely new VTOC for the new disk. The bitmap area is new, and
several other bytes are set up. However, DOS does not store any
values in the bytes which tell how many tracks, sectors per track,
sector size, and T/S entries per T/S list. This means that if the
last access to a disk prior to initializing a new one was to a non-
standard disk, the VTOC may be incorrect on the new disk. If I load a
file from a large volume on my Sider, and then INIT a floppy, the
floppy's VTOC indicates 32 sectors per track and 50 tracks! Ouch!
Beware!

Lines 1180-1480 are the second stage boot code. The first stage boot
is located at $B601, and actually executed at $801. It loads in
sectors 0-9 of track 0 into $B600-BFFF, calls $FE89 and $FE93 to set
the standard 40-column input hooks, and then jumps to $B700 with the
slot*16 in the X-register. My stage two begins by copying the
information which came from sector 5, now found at $BB00-BBFF, to the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2429 of 2550

Apple II Computer Info

place it belongs at $9D00-9DFF (lines 1270-1320). Next I set up a
call to my RWFT subroutine.

RWFT stands for Read/Write From Table. I have a table that describes
all of the segments which must be loaded from the disk during boot, or
written during initialization. Stage two boot must read the same
things written by initialization, but init-ing requires first writing
the stuff which will be loaded by stage one boot. Stage two boot
calls RWFT with A=1 (read opcode for the IOB) and Y=2 (skipping the
first two entries in the table). Initialization calls RWFT with A=2
(write opcode) and Y=0 (start at the beginning of the table).

RWFT gets four items out of the table for each step. The page number
and sector number indicate the end of the range to be read or written.
The count tells how many pages (or sectors) need to be read or
written. All of the sectors must be in the track specified by the
table entry. After one range has been read, RWFT steps to the next.
The table terminates when the page address of 0 is found.

For some reason the code at $AEFF looks like this:

 AEFF- JSR $B7C2
 AF02- JSR $B74A

Both of these subroutines are never called from any other place, so
they could be combined into one. Doing so would save several bytes.
Furthermore, at least with my new RWFT program, lines 2120 and 2130
could be deleted, saving six more bytes.

There are still more ways to increase the storage on standard
floppies, as you probably know. You can shorten the catalog, make a
few other patches, and use some sectors in track 17 ($11).

You can usually use more than 35 tracks, since most drives will handle
at least 36 and many a full 40. This also only takes a few simple
patches. At $AEB5 you normally find a value $8C. Add 4 to this value
for each additional track. This controls the loop that builds the
bitmap of available sectors in the VTOC. The byte at $BEFE controls
how many tracks the formatter in RWTS lays down. It is normally $23
(decimal 35), so add one for each additional track. Just before you
start the INIT command, change the byte at $B3EF. This is normally
$23, the number of tracks. Add 1 for each additional track. You have
to be sure to do this last patch just prior to the INIT, because
reading or writing another disk will cause it to be changed back.

Incidentally, this reminds me of the potential bug I mentioned above
regarding writing out an incorrect VTOC. Once today I tried to
catalog a disk that had been only partially initialized. The tracks
had been written, but no VTOC or catalog sectors were. Of course I
got an I/O ERROR. Next I decided to INIT that same disk. It went
through the formatting stage, then bombed out with an I/O error when
trying to write the catalog. Looking at the VTOC on this disk, the
bytes for number of tracks, et cetera, were all zero!.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2430 of 2550

Apple II Computer Info

Now back to extra tracks. After making a disk with the extra tracks,
you really need to check them to be sure your drive handles them. Use
a disk zap program and try to write on the last track. Then try to
write on the previous track. If your drive will go out that far, you
will be successful. If you get an error trying to find the next to
the last track, keep backing up until you find a track that does work.
All the ones in between were written in the same location on the disk
surface as the last track. If there were any missing tracks, you need
to reformat the disk with fewer tracks.

And interesting side not to this discussion is that you could format a
disk with LESS than 35 tracks if you wish. Just so you at least
include track 17 ($11), you can reduce the values at $BEFE, $B3EF, and
$AEB5 and stop short of a full disk. Some copy protection schemes do
this, along with other tricks, to frustrate the making of copies.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2431 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:Articles:Rest.Clob.Cata.txt
==

Tools for Restoring Lost Catalogs.........Bob Sander-Cederlof

From time to time it happens. One way or another I manage to clobber
a catalog track on a disk. I have done it three times to Volume 1 in
the DOS partition on my 10-megabyte Sider. (All it takes is "INIT
HELLO,V1", forgetting that the last slot I accessed was the Sider's.)

All of the other tracks are still intact, but there is no way to get
to them because the catalog is totally wiped out. One solution would
be to have an accurate backup floppy for each Sider volume. This
should be especially easy for Volume 1, because it is mostly standard
Sider utilities. Mostly.... I have modifed several of them, and
somehow I almost always have several programs-under-development that
end up in V1. Of course, I could just as easily destroy the catalog
track on any other volume, or any floppy for that matter.

It is for mistakes like mine that the program FIXCAT in "Bag of
Tricks" was invented. FIXCAT looks over a diskette, finds all the
sectors which look like they contain track/sector lists, and tries to
piece together a new catalog track. Even though it is fairly
automatic, I find it very difficult to use. I am always getting
confused between old (deleted) copies of files and the current ones,
and my disks usually have at least 2 or 3 dozen active files.

Recently it happened again. In fact, while I was working on one of
the other articles in this issue of AAL. I decided to write a couple
of utilities to help me make more effective use of FIXCAT. My new
tools turn out to be useful even without FIXCAT, and you might enjoy
just playing with them.

I assume you have a copy of "Beneath Apple DOS", or some other
reference work which explains the format of DOS disks, catalog tracks,
and track/sector lists.

The first tool I wrote looks through the tracks and sectors of a
damaged disk for any sectors containing what could be track/sector
lists. When one is found, I display the location of the supposed TS-
list, all of the track/sectors in the list, and the first 64 bytes of
the first data sector of the supposed file. Here is an example of the
display:

03-5: 03-4 03-3 03-2
 07 02 09 E8 03 81 2E 4C 49 46 00 16 F2 03 2A C0
...h...LIF..r.*@
 06 08 53 41 56 45 81 42 43 44 81 4D 41 47 49 43
..SAVE.BCD.MAGIC
 00 08 FC 03 2A C0 20 2D 00 05 06 04 54 00 0B 10 ..|.*@
-....T...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2432 of 2550

Apple II Computer Info

 04 87 4C 44 41 81 23 30 00 0C 1A 04 2E 31 85 53
..LDA.#0.....1.S

The first 64 bytes are displayed in both hexadecimal and in ASCII,
with periods being substituted for unprintable characters.

Having this information on paper before starting up FIXCAT is a big
help. I can peacefully analyze the data at my desk, without the fear
and panic associated with making "life and death" decisions at the
keyboard. The first few bytes of a file will usually reveal what type
of file it is.

If it is a source code file for the S-C Macro Assembler, Integer
BASIC, or Applesoft, it will begin with a two-byte length for the
file. Binary files begin with the load address, then the length.
Text files start right in with data in ASCII, normally with all the
high bits on. Since I almost always have a line near the beginning of
my source files which contains the file name, I can usually read that
file name in the dump of the first 64 bytes.

The FIND.TS.LISTS program is fairly short and simple. Starting from
the bottom, the subroutine READTS at lines 2370-2430 calls on RWTS to
read a particular track and sector. I elected to use my own IOB,
rather than the one inside DOS at $B7E8. For simplicity's sake I
assembled in the slot, drive, and volume information in my IOB.
READTS only has to store the desired track and sector numbers, and
call RWTS. I limited error handling to just re-calling RWTS, in the
hopes of eventually succeeding. Should this begin to be a problem, I
could print out an error message and either quit or continue with the
next sector.

The subroutine READ.NEXT.SECTOR, lines 2200-2350, is used to scan
through the disk from beginning to end. TS-lists cannot be in track
0, so I start with track 1. Since DOS allocates sectors in a track
starting with sector $0F and going backwards to sector $00, I decided
to scan the same way. This makes the files found list more closely to
the same order as they were in the original catalog. I first advance
the track/sector to the next one, then read it. Thus after reading,
CUR.TRACK and CUR.SECTOR are pointing to the one we just read.

Now back to the top. Lines 1100-1130 start CUR.TRACK and CUR.SECTOR
at 0. The first call to READ.NEXT.SECTOR will advance them to track
1, sector $0F. Successive calls will read the rest of track 1, then
advance to track 2, and so on until we have finished track $22. When
we try to read track $23, which does not exist, READ.NEXT.SECTOR will
return with carry set and our program will end.

Lines 1170-1290 examine the data in the sector just read to see if it
might be a track/sector list. The method I use is to require that
there be at least one TS-pair, at BUF+12. I also require that all of
the bytes beyond BUF+12 are within the range of valid track-sector
pairs. If any bytes are out of range, I assume the current sector is
not a TS-list. My tests seem to be adequate, because with every disk
I have used it on it found all and only the TS-lists.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2433 of 2550

Apple II Computer Info

Having found TS-list, I call DISPLAY.TS.LIST to display it. Lines
1450-1540 display the location of the TS-list. The subroutine PR.TS
prints the track and sector numbers from the A- and X-registers in the
form "TT-S". Lines 1550-1720 list the TS-pairs in the TS-list,
stopping at the first pair with a track number of zero. Up to 8 pairs
are listed on a line.

Lines 1330-1430 read the first data sector of the supposed file, and
display the first 64 bytes in hex and ASCII. This display is done by
calling DISPLAY.NEXT.16 four times.

As it happens, I did have a fairly recently made backup of the
clobbered disk. I thought I should also run my program against this
good disk, and comparing the two displays would enable me to pinpoint
each active file. However, what I really want from the GOOD disk is
the information in the CATALOG. I decided to modify FIND.TS.LISTS to
be driven from the catalog track, rather than from a search for TS-
lists. The result was another useful tool, BIG.CATALOG.DISPLAY.

BIG.CATALOG.DISPLAY has the same kind of output that FIND.TS.LISTS
does, except that it also lists the file type, file name, and sector
count from the catalog. Information is included for deleted files for
which entries are found in the catalog, as well as all the active
files.

The subroutines DISPLAY.TS.LIST, DISPLAY.NEXT.16, SEVEN.SPACES, PR.TS,
and READTS are used without any changes from the FIND.TS.LISTS
program. Instead of READ.NEXT.SECTOR, I have now
READ.NEXT.CATALOG.SECTOR. This starts at track $11, sector $0F, and
works back as far as sector $01. A better way might be to follow the
actual chain, beginning in the VTOC sector, but the current scheme is
easier and works with most of my disks.

Lines 1140-1180 set up the initial catalog track and sector. Lines
1190-1210 read the catalog sector. If the returned status is positive
we did read a sector, and continue processing; if not, we are
finished. Lines 1220-1250 set up the buffer address in the IOB for
reading TS-lists and data sectors: we do not want to read them over
the top of the catalog sector we are working with.

Lines 1270-1320 set up a loop for processing each of the seven file
entries in the current catalog sector. The "NEXT" part of the loop is
at lines 1350-1440. Each catalog entry takes 35 bytes, so lines 1350-
1440 add 35 to the pointer.

DISPLAY.DATA.FOR.ONE.FILE first checks for a zero entry, meaning the
end of the catalog. A catalog is initialized to all zeroes, so as
soon as we find a zero entry we know there are no more files. Next,
at lines 1520-1550, I check for a deleted file. If the track number
is negative, it is a deleted file. The actual track number of a
deleted file is saved on top of the 30th character of the file name,
so I pick it up there. Lines 1560-1590 save the track and sector of

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2434 of 2550

Apple II Computer Info

the TS-list, so I can read it later. Lines 1600-1650 display the file
type as a hex value, followed by two dashes.

Lines 1660-1700 print the first 29 characters of the file name. I
don't print the last character because for a deleted file it will have
been clobbered by saving the track number there. Probably what I
should do here is print either the last character for an active file,
or some special symbol for a deleted file. You can add that code if
you like.

Lines 1710-1770 pick up the file size, in number of sectors, and print
it as a hex value. The sector count includes the sector for the TS-
list.

Lines 1780-1860 read the track/sector list for the file. If either
the track number or the sector number is out of range, nothing is read
and we skip any further processing for this file.

Lines 1870-1940 read in the first data sector for the file. Again, if
either the track or sector number is out of range, we don't try to
read it. Finally, lines 1950-2000 display the first 64 bytes of the
file.

I hope you find these new tools as useful as I have. Of course, I
could hope you will never NEED them, but that would prabably be a vain
hope. I also hope you have "Bag of Tricks" or some similar utility to
put it all back together after you get the information my tools
provide. And if I ever clobber Volume 1 on my Sider again (perish the
thought), I intend to modify my copies of DOS so they will not allow
me to INIT a volume on the Sider.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2435 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:DOS3.3:BCD.MAGIC.txt
==

 1000 *SAVE BCD MAGIC
 1010 *--------------------------------
 1020 CROUT .EQ $FD8E
 1030 PRBYTE .EQ $FDDA
 1040 COUT .EQ $FDED
 1050 *--------------------------------
 1060 VALUE .EQ 0
 1070 *--------------------------------
 1080 T
 1090 LDA #0 FOR VALUE = 0 TO $FF
 1100 .1 STA VALUE
 1110 LDA #" "
 1120 JSR COUT
 1130 LDA VALUE
 1140 JSR PRBYTE
 1150 *--------------------------------
 1160 JSR IS.BCD.VALUE.DIVISIBLE.BY.FOUR
 1170 BEQ .2 ...YES
 1180 LDA #" " ...NO
 1190 .HS 2C
 1200 .2 LDA #"*"
 1210 JSR COUT
 1220 *--------------------------------
 1230 LDA #" " SEPARATE ITEMS IN CHART
 1240 JSR COUT
 1250 LDA VALUE NEW LINE AFTER TEN VALUES
 1260 AND #$0F
 1270 CMP #9
 1280 BNE .3
 1290 JSR CROUT
 1300 *---NEXT VALUE-------------------
 1310 .3 SED MUST DO ARITHMETIC
 1320 LDA VALUE IN DECIMAL MODE
 1330 CLC
 1340 ADC #1
 1350 CLD BACK TO BINARY
 1360 BCC .1 ...UNTIL WRAP-AROUND
 1370 RTS
 1380 *--------------------------------
 1390 IS.BCD.VALUE.DIVISIBLE.BY.FOUR
 1400 LDA VALUE RETURN .EQ. STATUS IF YES
 1410 AND #$13 .NE. STATUS IF NOT
 1420 BEQ .1
 1430 EOR #$12
 1440 .1 RTS
 1450 *--------------------------------
 1460 DIVIDE.BCD.VALUE.BY.FOUR
 1470 LDA VALUE
 1480 JSR DIVIDE.BCD.VALUE.BY.TWO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2436 of 2550

Apple II Computer Info

 1490 DIVIDE.BCD.VALUE.BY.TWO
 1500 PHA
 1510 AND #$10
 1520 BEQ .1
 1530 PLA
 1540 SBC #6
 1550 LSR
 1560 RTS
 1570 .1 PLA
 1580 LSR
 1590 RTS
 1600 *--------------------------------
 1610 SHORTER.DIV.BY.TWO
 1620 LSR
 1630 TAX
 1640 AND #8
 1650 BEQ .1
 1660 DEX
 1670 DEX
 1680 DEX
 1690 .1 TXA
 1700 RTS
 1710 *--------------------------------
 1720 D
 1730 LDA #0 FOR VALUE = 0 TO $FF
 1740 .1 STA VALUE
 1750 LDA #" "
 1760 JSR COUT
 1770 LDA VALUE
 1780 JSR PRBYTE
 1790 LDA #"."
 1800 JSR COUT
 1810 *--------------------------------
 1820 JSR DIVIDE.BCD.VALUE.BY.FOUR
 1830 JSR PRBYTE
 1840 *--------------------------------
 1850 LDA #" " SEPARATE ITEMS IN CHART
 1860 JSR COUT
 1870 LDA VALUE NEW LINE AFTER TEN VALUES
 1880 AND #$0F
 1890 CMP #9
 1900 BNE .3
 1910 JSR CROUT
 1920 *---NEXT VALUE-------------------
 1930 .3 SED MUST DO ARITHMETIC
 1940 LDA VALUE IN DECIMAL MODE
 1950 CLC
 1960 ADC #1
 1970 CLD BACK TO BINARY
 1980 BCC .1 ...UNTIL WRAP-AROUND
 1990 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2437 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:DOS3.3:DOS33.B700.B7FF.txt
==

 1000 *SAVE S.B700-B7FF DOS 3.3
 1010 *---------------------------------
 1020 FMP.SUBCOD .EQ $B5BC
 1030 FMW.VOLUME .EQ $B5F9
 1040 RWTS .EQ $BD00
 1050 *---------------------------------
 1060 INSTALL
 1070 LDY #0 COPY NEW CODE INTO DOS
 1080 .1 LDA NEW.B700,Y $B700...B7FF
 1090 STA $B700,Y
 1100 INY
 1110 BNE .1
 1120 LDA #8 PATCH TO INCLUDE TRACK 2
 1130 STA $AEB3 AS FREE SPACE
 1140 RTS
 1150 *---------------------------------
 1160 NEW.B700 .PH $B700
 1170 *--------------------------------
 1180 BOOT.STAGE2
 1190 STX IOB.SLOT16
 1200 STX IOB.PRVSLT
 1210 TXA SLOT*16
 1220 LSR GET SLOT #
 1230 LSR
 1240 LSR
 1250 LSR
 1260 TAX X = SLOT NUMBER
 1270 *---COPY BB00-FF TO 9D00-FF------
 1280 LDY #0
 1290 .1 LDA $BB00,Y
 1300 STA $9D00,Y
 1310 DEY
 1320 BNE .1
 1330 *---SET CURRENT TRACKS @ 0-------
 1340 TYA A = Y = 0
 1350 STA $4F8,X
 1360 STA $478,X
 1370 *---BUILD RWFT CALL--------------
 1380 INY Y = 1
 1390 STY IOB.PRVDRV
 1400 STY IOB.DRIVE DRIVE = 1
 1410 TYA A = 1 (READ OPCODE)
 1420 INY Y = 1 (RWFT INDEX)
 1430 JSR RWFT
 1440 *---COLD START DOS---------------
 1450 LDX #$FF
 1460 TXS EMPTY STACK
 1470 STX IOB.VOLUME
 1480 JMP $9D84 DOS HARD ENTRY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2438 of 2550

Apple II Computer Info

 1490 *--------------------------------
 1500 .BS $B74A-* <<<FILLER>>>
 1510 *---------------------------------
 1520 * WRITE DOS IMAGE ON TRACKS 0-2
 1530 *---------------------------------
 1540 WRITE.DOS.IMAGE
 1550 LDA #2 WRITE OPCODE FOR RWTS
 1560 LDY #0 RWFT INDEX
 1570 *--------------------------------
 1580 * READ/WRITE FROM TABLE
 1590 *--------------------------------
 1600 RWFT
 1610 STA IOB.OPCODE
 1620 .1 STY RWFT.INDEX
 1630 LDA RWFT.ADDR,Y
 1640 BEQ .3 ...END OF RWFT TABLE
 1650 STA IOB.BUFFER+1
 1660 LDA RWFT.TRACK,Y
 1670 STA IOB.TRACK
 1680 LDA RWFT.SECTOR,Y
 1690 STA IOB.SECTOR
 1700 LDA RWFT.COUNT,Y
 1710 STA RWFT.N
 1720 .2 LDA /IOB
 1730 LDY #IOB
 1740 JSR ENTER.RWTS
 1750 BCS .2 ...TRY AGAIN IF ERROR
 1760 DEC IOB.SECTOR NEXT SECTOR
 1770 DEC IOB.BUFFER+1 NEXT PAGE
 1780 DEC RWFT.N
 1790 BNE .2
 1800 LDY RWFT.INDEX
 1810 INY
 1820 BNE .1 ...ALWAYS
 1830 .3 RTS
 1840 *--------------------------------
 1850 RWFT.N .BS 1
 1860 RWFT.INDEX .BS 1
 1870 *--------------------------------
 1880 RWFT.ADDR .HS BF.9D.A3.B3.00
 1890 RWFT.TRACK .HS 00.00.00.01
 1900 RWFT.SECTOR .HS 09.05.0F.0F
 1910 RWFT.COUNT .HS 0A.01.06.10
 1920 *--------------------------------
 1930 .BS $B7B5-* <<<FILLER>>>
 1940 *---------------------------------
 1950 * ENTER RWTS
 1960 *---------------------------------
 1970 ENTER.RWTS
 1980 PHP SAVE STATUS ON STACK
 1990 SEI DISABLE INTERRUPTS
 2000 JSR RWTS CALL RWTS
 2010 BCS .1 ERROR RETURN
 2020 PLP RESTORE STATUS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2439 of 2550

Apple II Computer Info

 2030 CLC SIGNAL NO RWTS ERROR
 2040 RTS RETURN TO CALLER
 2050 .1 PLP RESTORE STATUS
 2060 SEC SIGNAL RWTS ERROR
 2070 RTS RETURN TO CALLER
 2080 *---------------------------------
 2090 * SET UP RWTS TO WRITE DOS
 2100 *---------------------------------
 2110 SETUP.WRITE.DOS
 2120 LDA FMP.SUBCOD IMAGE ADDRESS
 2130 STA IOB.BUFFER+1
 2140 LDA #0
 2150 STA IOB.BUFFER
 2160 LDA FMW.VOLUME VOLUME #
 2170 EOR #$FF UNCOMPLEMENT IT
 2180 STA IOB.VOLUME
 2190 RTS
 2200 *---------------------------------
 2210 * CLEAR 256 BYTES STARTING AT ($42,43)
 2220 *---------------------------------
 2230 ZERO.CURRENT.BUFFER
 2240 LDA #0
 2250 TAY
 2260 .1 STA ($42),Y
 2270 INY
 2280 BNE .1
 2290 RTS
 2300 *---------------------------------
 2310 .BS $B7E8-* <<<FILLER>>>
 2320 *---------------------------------
 2330 * IOB FOR RWTS CALLS
 2340 *---------------------------------
 2350 IOB
 2360 IOB.TYPE .HS 01 0--MUST BE $01
 2370 IOB.SLOT16 .HS 60 1--SLOT # TIMES 16
 2380 IOB.DRIVE .HS 01 2--DRIVE # (1 OR 2)
 2390 IOB.VOLUME .HS 00 3--DESIRED VOL # (0 MATCHES ANY)
 2400 IOB.TRACK .BS 1 4--TRACK # (0 TO 34)
 2410 IOB.SECTOR .BS 1 5--SECTOR # (0 TO 15)
 2420 IOB.PNTDCT .DA DCT 6--ADDRESS OF DCT
 2430 IOB.BUFFER .BS 2 8--ADDRESS OF DATA
 2440 IOB.SECTSZ .DA 256 10--# BYTES IN A SECTOR
 2450 IOB.OPCODE .BS 1 12--0=SEEK, 1=READ, 2=WRITE, OR 4=FORMAT
 2460 IOB.ERROR .BS 1 13--ERROR CODE: 0, 8, 10, 20, 40, 80
 2470 IOB.ACTVOL .BS 1 14--ACTUAL VOLUME # FOUND
 2480 IOB.PRVSLT .HS 60 15--PREVIOUS SLOT #
 2490 IOB.PRVDRV .HS 01 16--PREVIOUS DRIVE #
 2500 .BS 2
 2510 DCT .HS 0001EFD8
 2520 .BS 1
 2530 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2440 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:DOS3.3:S.BigCatDisp.txt
==

 1000 *SAVE S.BIG CATALOG DISPLAY
 1010 *--------------------------------
 1020 CAT.SECTOR .EQ 0
 1030 CAT.TRACK .EQ 1
 1040 CNTR .EQ 2
 1050 PNTR .EQ 3,4
 1060 TS.TRACK .EQ 5
 1070 TS.SECTOR .EQ 6
 1080 *---------------------------------
 1090 COUT .EQ $FDED
 1100 CROUT .EQ $FD8E
 1110 PRBYTE .EQ $FDDA
 1120 ENTER.RWTS .EQ $3D9
 1130 *--------------------------------
 1140 BIG.CATALOG.DISPLAY
 1150 LDA #15
 1160 STA CAT.SECTOR
 1170 LDA #17
 1180 STA CAT.TRACK
 1190 .1 JSR READ.NEXT.CATALOG.SECTOR
 1200 BPL .2 GOT A SECTOR
 1210 .4 RTS
 1220 .2 LDA #BUF
 1230 STA IOB.BUFFER
 1240 LDA /BUF
 1250 STA IOB.BUFFER+1
 1260 *--------------------------------
 1270 LDA #CAT+11
 1280 STA PNTR
 1290 LDA /CAT+11
 1300 STA PNTR+1
 1310 LDA #7
 1320 STA CNTR
 1330 .3 JSR DISPLAY.DATA.FOR.ONE.FILE
 1340 BCS .4 ...END OF CATALOG
 1350 LDA PNTR
 1360 ADC #35
 1370 STA PNTR
 1380 LDA PNTR+1
 1390 ADC #0
 1400 STA PNTR+1
 1410 DEC CNTR
 1420 BNE .3
 1430 JSR CROUT
 1440 JMP .1
 1450 *--------------------------------
 1460 DISPLAY.DATA.FOR.ONE.FILE
 1470 LDY #0
 1480 LDA (PNTR),Y

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2441 of 2550

Apple II Computer Info

 1490 BNE .1
 1500 SEC
 1510 RTS
 1520 .1 BPL .15
 1530 LDY #32
 1540 LDA (PNTR),Y REAL TRACK OF DELETED FILE
 1550 LDY #0
 1560 .15 STA TS.TRACK
 1570 INY
 1580 LDA (PNTR),Y
 1590 STA TS.SECTOR
 1600 INY
 1610 LDA (PNTR),Y GET FILE TYPE
 1620 JSR PRBYTE
 1630 LDA #"-"
 1640 JSR COUT
 1650 JSR COUT
 1660 .2 INY
 1670 LDA (PNTR),Y PRINT FILE NAME
 1680 JSR COUT
 1690 CPY #31 DON'T PRINT LAST CHAR OF NAME
 1700 BCC .2
 1710 INY
 1720 INY
 1730 LDA (PNTR),Y
 1740 JSR PRBYTE
 1750 INY
 1760 LDA (PNTR),Y
 1770 JSR PRBYTE
 1780 *---READ T/S LIST----------------
 1790 LDX TS.SECTOR
 1800 CPX #16
 1810 BCS .9
 1820 LDY TS.TRACK
 1830 CPY #35
 1840 BCS .9
 1850 JSR READTS
 1860 JSR DISPLAY.TS.LIST
 1870 *---READ FIRST DATA SECTOR-------
 1880 LDY BUF+12
 1890 CPY #35
 1900 BCS .9
 1910 LDX BUF+13
 1920 CPX #16
 1930 BCS .9
 1940 JSR READTS
 1950 *---DISPLAY FIRST 64 BYTES-------
 1960 LDY #0
 1970 JSR DISPLAY.NEXT.16
 1980 JSR DISPLAY.NEXT.16
 1990 JSR DISPLAY.NEXT.16
 2000 JSR DISPLAY.NEXT.16
 2010 .9 JSR CROUT
 2020 CLC

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2442 of 2550

Apple II Computer Info

 2030 RTS
 2040 *--------------------------------
 2050 DISPLAY.TS.LIST
 2055 .LIST OFF
 2060 JSR CROUT
 2070 LDA TS.TRACK
 2080 LDX TS.SECTOR
 2090 JSR PR.TS
 2100 LDA #":"
 2110 JSR COUT
 2120 LDA #" "
 2130 JSR COUT
 2140 JSR COUT
 2150 LDY #0
 2160 .1 LDA BUF+13,Y SECTOR
 2170 TAX
 2180 LDA BUF+12,Y TRACK
 2190 BEQ .2 ...END OF LIST
 2200 JSR PR.TS
 2210 LDA #" "
 2220 JSR COUT
 2230 TYA
 2240 AND #$0F
 2250 CMP #$0E
 2260 BNE .3
 2270 JSR SEVEN.SPACES
 2280 .3 INY
 2290 INY
 2300 CPY #-12
 2310 BCC .1
 2320 .2 RTS
 2325 .LIST ON
 2330 *--------------------------------
 2340 DISPLAY.NEXT.16
 2345 .LIST OFF
 2350 JSR SEVEN.SPACES
 2360 .1 LDA BUF,Y
 2370 JSR PRBYTE
 2380 LDA #" "
 2390 JSR COUT
 2400 INY
 2410 TYA
 2420 AND #$0F
 2430 BNE .1
 2440 TYA
 2450 SEC
 2460 SBC #16
 2470 TAY
 2480 .2 LDA BUF,Y
 2490 ORA #$80
 2500 CMP #$A0
 2510 BCS .3
 2520 LDA #"."
 2530 .3 JSR COUT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2443 of 2550

Apple II Computer Info

 2540 INY
 2550 TYA
 2560 AND #$0F
 2570 BNE .2
 2580 RTS
 2585 .LIST ON
 2590 *--------------------------------
 2600 SEVEN.SPACES
 2605 .LIST OFF
 2610 JSR CROUT
 2620 LDA #" "
 2630 LDX #7
 2640 .4 JSR COUT
 2650 DEX
 2660 BNE .4
 2670 RTS
 2675 .LIST ON
 2680 *--------------------------------
 2690 PR.TS
 2695 .LIST OFF
 2700 JSR PRBYTE
 2710 LDA #"-"
 2720 JSR COUT
 2730 TXA
 2740 ORA #"0"
 2750 CMP #$BA
 2760 BCC .1
 2770 ADC #6
 2780 .1 JMP COUT
 2785 .LIST ON
 2790 *--------------------------------
 2800 * READ NEXT CATALOG SECTOR
 2810 *--------------------------------
 2820 READ.NEXT.CATALOG.SECTOR
 2830 LDA #CAT
 2840 STA IOB.BUFFER
 2850 LDA /CAT
 2860 STA IOB.BUFFER+1
 2870 LDX CAT.SECTOR
 2880 LDY CAT.TRACK
 2890 JSR READTS
 2900 DEC CAT.SECTOR
 2910 RTS
 2920 *--------------------------------
 2930 READTS STX IOB.SECTOR
 2935 .LIST OFF
 2940 STY IOB.TRACK
 2950 .2 LDA /IOB
 2960 LDY #IOB
 2970 JSR ENTER.RWTS
 2980 BCS .2 ...TRY AGAIN IF ERROR
 2990 RTS
 2995 .LIST ON
 3000 *---------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2444 of 2550

Apple II Computer Info

 3010 * IOB FOR RWTS CALLS
 3020 *---------------------------------
 3030 IOB
 3035 .LIST OFF
 3040 IOB.TYPE .HS 01 0--MUST BE $01
 3050 IOB.SLOT16 .HS 60 1--SLOT # TIMES 16
 3060 IOB.DRIVE .HS 01 2--DRIVE # (1 OR 2)
 3070 IOB.VOLUME .HS 00 3--DESIRED VOL # (0 MATCHES ANY)
 3080 IOB.TRACK .BS 1 4--TRACK # (0 TO 34)
 3090 IOB.SECTOR .BS 1 5--SECTOR # (0 TO 15)
 3100 IOB.PNTDCT .DA DCT 6--ADDRESS OF DCT
 3110 IOB.BUFFER .DA BUF 8--ADDRESS OF DATA
 3120 IOB.SECTSZ .DA 256 10--# BYTES IN A SECTOR
 3130 IOB.OPCODE .HS 01 12--0=SEEK, 1=READ, 2=WRITE, OR 4=FORMAT
 3140 IOB.ERROR .BS 1 13--ERROR CODE: 0, 8, 10, 20, 40, 80
 3150 IOB.ACTVOL .BS 1 14--ACTUAL VOLUME # FOUND
 3160 IOB.PRVSLT .HS 60 15--PREVIOUS SLOT #
 3170 IOB.PRVDRV .HS 01 16--PREVIOUS DRIVE #
 3175 .LIST ON
 3180 *--------------------------------
 3190 DCT .HS 0001EFD8
 3200 *--------------------------------
 3210 BUF .BS 256
 3220 CAT .BS 256
 3230 *--------------------------------
 3235 .LIST OFF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2445 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:DOS3.3:S.Find.TS.Lists.txt
==

 1000 *SAVE S.FIND T/S LISTS
 1010 *--------------------------------
 1020 CUR.SECTOR .EQ 0
 1030 CUR.TRACK .EQ 1
 1040 *---------------------------------
 1050 COUT .EQ $FDED
 1060 CROUT .EQ $FD8E
 1070 PRBYTE .EQ $FDDA
 1080 ENTER.RWTS .EQ $3D9
 1090 *--------------------------------
 1100 FIND.TS.LISTS
 1110 LDA #0
 1120 STA CUR.SECTOR
 1130 STA CUR.TRACK
 1140 .1 JSR READ.NEXT.SECTOR
 1150 BCC .2 GOT A SECTOR, CHECK IT
 1160 RTS END OF DISK, QUIT
 1170 *---CHECK IF THIS IS T/S LIST----
 1180 .2 LDA BUF+12 TRACK # FOR FIRST DATA SECTOR
 1190 BEQ .1 ...NO, TRY NEXT ONE
 1200 LDY #12
 1210 .3 LDA BUF,Y
 1220 CMP #35
 1230 BCS .1 ...NOT VALID TRACK
 1240 INY
 1250 LDA BUF,Y
 1260 CMP #16
 1270 BCS .1 ...NOT VALID SECTOR
 1280 INY
 1290 BNE .3 ...MORE IN SECTOR TO CHECK
 1300 *---DISPLAY THE T/S LIST---------
 1310 JSR DISPLAY.TS.LIST
 1320 *---READ FIRST DATA SECTOR-------
 1330 LDY BUF+12
 1340 LDX BUF+13
 1350 JSR READTS
 1360 *---DISPLAY FIRST 64 BYTES-------
 1370 LDY #0
 1380 JSR DISPLAY.NEXT.16
 1390 JSR DISPLAY.NEXT.16
 1400 JSR DISPLAY.NEXT.16
 1410 JSR DISPLAY.NEXT.16
 1420 JSR CROUT
 1430 JMP .1
 1440 *--------------------------------
 1450 DISPLAY.TS.LIST
 1460 JSR CROUT
 1470 LDA CUR.TRACK
 1480 LDX CUR.SECTOR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2446 of 2550

Apple II Computer Info

 1490 JSR PR.TS
 1500 LDA #":"
 1510 JSR COUT
 1520 LDA #" "
 1530 JSR COUT
 1540 JSR COUT
 1550 LDY #0
 1560 .1 LDA BUF+13,Y SECTOR
 1570 TAX
 1580 LDA BUF+12,Y TRACK
 1590 BEQ .2 ...END OF LIST
 1600 JSR PR.TS
 1610 LDA #" "
 1620 JSR COUT
 1630 TYA
 1640 AND #$0F
 1650 CMP #$0E
 1660 BNE .3
 1670 JSR SEVEN.SPACES
 1680 .3 INY
 1690 INY
 1700 CPY #-12
 1710 BCC .1
 1720 .2 RTS
 1730 *--------------------------------
 1740 DISPLAY.NEXT.16
 1750 JSR SEVEN.SPACES
 1760 .1 LDA BUF,Y
 1770 JSR PRBYTE
 1780 LDA #" "
 1790 JSR COUT
 1800 INY
 1810 TYA
 1820 AND #$0F
 1830 BNE .1
 1840 TYA
 1850 SEC
 1860 SBC #16
 1870 TAY
 1880 .2 LDA BUF,Y
 1890 ORA #$80
 1900 CMP #$A0
 1910 BCS .3
 1920 LDA #"."
 1930 .3 JSR COUT
 1940 INY
 1950 TYA
 1960 AND #$0F
 1970 BNE .2
 1980 RTS
 1990 *--------------------------------
 2000 SEVEN.SPACES
 2010 JSR CROUT
 2020 LDA #" "

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2447 of 2550

Apple II Computer Info

 2030 LDX #7
 2040 .4 JSR COUT
 2050 DEX
 2060 BNE .4
 2070 RTS
 2080 *--------------------------------
 2090 PR.TS
 2100 JSR PRBYTE
 2110 LDA #"-"
 2120 JSR COUT
 2130 TXA
 2140 ORA #"0"
 2150 CMP #$BA
 2160 BCC .1
 2170 ADC #6
 2180 .1 JMP COUT
 2190 *--------------------------------
 2200 * READ NEXT SECTOR
 2210 *--------------------------------
 2220 READ.NEXT.SECTOR
 2230 LDX CUR.SECTOR
 2240 LDY CUR.TRACK
 2250 DEX NEXT SECTOR
 2260 BPL .1 ...SAME TRACK
 2270 LDX #15 ...NEXT TRACK
 2280 INY
 2290 CPY #35
 2300 BCS .2 ...END OF DISK
 2310 .1 STY CUR.TRACK
 2320 STX CUR.SECTOR
 2330 JSR READTS
 2340 CLC
 2350 .2 RTS
 2360 *--------------------------------
 2370 READTS STX IOB.SECTOR
 2380 STY IOB.TRACK
 2390 .2 LDA /IOB
 2400 LDY #IOB
 2410 JSR ENTER.RWTS
 2420 BCS .2 ...TRY AGAIN IF ERROR
 2430 RTS
 2440 *---------------------------------
 2450 * IOB FOR RWTS CALLS
 2460 *---------------------------------
 2470 IOB
 2480 IOB.TYPE .HS 01 0--MUST BE $01
 2490 IOB.SLOT16 .HS 60 1--SLOT # TIMES 16
 2500 IOB.DRIVE .HS 01 2--DRIVE # (1 OR 2)
 2510 IOB.VOLUME .HS 00 3--DESIRED VOL # (0 MATCHES ANY)
 2520 IOB.TRACK .BS 1 4--TRACK # (0 TO 34)
 2530 IOB.SECTOR .BS 1 5--SECTOR # (0 TO 15)
 2540 IOB.PNTDCT .DA DCT 6--ADDRESS OF DCT
 2550 IOB.BUFFER .DA BUF 8--ADDRESS OF DATA
 2560 IOB.SECTSZ .DA 256 10--# BYTES IN A SECTOR

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2448 of 2550

Apple II Computer Info

 2570 IOB.OPCODE .HS 01 12--0=SEEK, 1=READ, 2=WRITE, OR 4=FORMAT
 2580 IOB.ERROR .BS 1 13--ERROR CODE: 0, 8, 10, 20, 40, 80
 2590 IOB.ACTVOL .BS 1 14--ACTUAL VOLUME # FOUND
 2600 IOB.PRVSLT .HS 60 15--PREVIOUS SLOT #
 2610 IOB.PRVDRV .HS 01 16--PREVIOUS DRIVE #
 2620 *--------------------------------
 2630 DCT .HS 0001EFD8
 2640 *--------------------------------
 2650 BUF .BS 256
 2660 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2449 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:DOS3.3:S.Msg.Into.Wind.txt
==

 1000 *SAVE S.MSG INTO WINDOW
 1010 *--------------------------------
 1020 HOME .EQ $FC58
 1030 COUT .EQ $FDED
 1040 *--------------------------------
 1050 PNTR .EQ $00,01
 1060 WNDTOP .EQ $22
 1070 WNDBOT .EQ $23
 1080 *--------------------------------
 1090 * CALL: JSR MSG.IN.WINDOW
 1100 * .DA #<window number>
 1110 * .AS text of message
 1120 * .HS 00 <end of msg flag>
 1130 *--------------------------------
 1140 MSG.IN.WINDOW
 1150 PLA GET RETURN ADDRESS INTO PNTR
 1160 STA PNTR LO BYTE
 1170 PLA
 1180 STA PNTR+1 HI BYTE
 1190 *---SETUP WINDOW TOP & BOTTOM----
 1200 JSR GET.NEXT.CALL.BYTE
 1210 TAX WINDOW INDEX
 1220 LDA WINDOW.DATA,X
 1230 STA WNDTOP
 1240 LDA WINDOW.DATA+1,X
 1250 STA WNDBOT
 1260 JSR HOME CLEAR THE WINDOW
 1270 *---DISPLAY MESSAGE, IF ANY------
 1280 LDY #0
 1290 .1 JSR GET.NEXT.CALL.BYTE
 1300 BEQ .2 END OF MESSAGE
 1310 ORA #$80 ...JUST IN CASE
 1320 JSR COUT
 1330 JMP .1
 1340 *---RETURN TO CALLER-------------
 1350 .2 LDA PNTR+1 HI BYTE
 1360 PHA
 1370 LDA PNTR LO BYTE
 1380 PHA
 1390 RTS
 1400 *--------------------------------
 1410 GET.NEXT.CALL.BYTE
 1420 INC PNTR LO BYTE
 1430 BNE .1
 1440 INC PNTR+1 HI BYTE
 1450 .1 LDA (PNTR),Y
 1460 RTS
 1470 *--------------------------------
 1480 WINDOW.DATA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2450 of 2550

Apple II Computer Info

 1490 .DA #0,#24,#0,#3,#9,#18,#20,#24
 1500 *--------------------------------
 1510 T
 1520 JSR MSG.IN.WINDOW
 1530 .DA #2 TOP WINDOW
 1540 .AS -/TOP LINE OF THE SCREEN/
 1550 .HS 8D
 1560 .AS -/SECOND LINE OF THE SCREEN/
 1570 .HS 8A
 1580 .AS -/...AND THE THIRD/
 1590 .HS 00 END MSG
 1600 JSR W
 1610 JSR MSG.IN.WINDOW
 1620 .DA #6 BOTTOM WINDOW
 1630 .AS -/LINE 21/
 1640 .HS 8A
 1650 .AS -/...LINE 22/
 1660 .HS 8A.8A
 1670 .AS -/...AND LINE 24/
 1680 .HS 00 END MSG
 1690 JSR W
 1700 JSR MSG.IN.WINDOW
 1710 .DA #0 FULL SCREEN
 1720 .AS -/MY MESSAGE/
 1730 .HS 00 END MSG
 1740 RTS
 1750 *--------------------------------
 1760 W LDA $C000 WAIT FOR KEY BEFORE CONTINUING
 1770 BPL W
 1780 STA $C010
 1790 RTS
 1800 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2451 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:ProDOS:BCD.MAGIC.txt
==

 1000 *SAVE BCD.MAGIC
 1010 *--------------------------------
 1020 CROUT .EQ $FD8E
 1030 PRBYTE .EQ $FDDA
 1040 COUT .EQ $FDED
 1050 *--------------------------------
 1060 VALUE .EQ 0
 1070 *--------------------------------
 1080 T
 1090 LDA #0 FOR VALUE = 0 TO $FF
 1100 .1 STA VALUE
 1110 LDA #" "
 1120 JSR COUT
 1130 LDA VALUE
 1140 JSR PRBYTE
 1150 *--------------------------------
 1160 JSR IS.BCD.VALUE.DIVISIBLE.BY.FOUR
 1170 BEQ .2 ...YES
 1180 LDA #" " ...NO
 1190 .HS 2C
 1200 .2 LDA #"*"
 1210 JSR COUT
 1220 *--------------------------------
 1230 LDA #" " SEPARATE ITEMS IN CHART
 1240 JSR COUT
 1250 LDA VALUE NEW LINE AFTER TEN VALUES
 1260 AND #$0F
 1270 CMP #9
 1280 BNE .3
 1290 JSR CROUT
 1300 *---NEXT VALUE-------------------
 1310 .3 SED MUST DO ARITHMETIC
 1320 LDA VALUE IN DECIMAL MODE
 1330 CLC
 1340 ADC #1
 1350 CLD BACK TO BINARY
 1360 BCC .1 ...UNTIL WRAP-AROUND
 1370 RTS
 1380 *--------------------------------
 1390 IS.BCD.VALUE.DIVISIBLE.BY.FOUR
 1400 LDA VALUE RETURN .EQ. STATUS IF YES
 1410 AND #$13 .NE. STATUS IF NOT
 1420 BEQ .1
 1430 EOR #$12
 1440 .1 RTS
 1450 *--------------------------------
 1460 DIVIDE.BCD.VALUE.BY.FOUR
 1470 LDA VALUE
 1480 JSR DIVIDE.BCD.VALUE.BY.TWO

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2452 of 2550

Apple II Computer Info

 1490 DIVIDE.BCD.VALUE.BY.TWO
 1500 PHA
 1510 AND #$10
 1520 BEQ .1
 1530 PLA
 1540 SBC #6
 1550 LSR
 1560 RTS
 1570 .1 PLA
 1580 LSR
 1590 RTS
 1600 *--------------------------------
 1610 SHORTER.DIV.BY.TWO
 1620 LSR
 1630 TAX
 1640 AND #8
 1650 BEQ .1
 1660 DEX
 1670 DEX
 1680 DEX
 1690 .1 TXA
 1700 RTS
 1710 *--------------------------------
 1720 D
 1730 LDA #0 FOR VALUE = 0 TO $FF
 1740 .1 STA VALUE
 1750 LDA #" "
 1760 JSR COUT
 1770 LDA VALUE
 1780 JSR PRBYTE
 1790 LDA #"."
 1800 JSR COUT
 1810 *--------------------------------
 1820 JSR DIVIDE.BCD.VALUE.BY.FOUR
 1830 JSR PRBYTE
 1840 *--------------------------------
 1850 LDA #" " SEPARATE ITEMS IN CHART
 1860 JSR COUT
 1870 LDA VALUE NEW LINE AFTER TEN VALUES
 1880 AND #$0F
 1890 CMP #9
 1900 BNE .3
 1910 JSR CROUT
 1920 *---NEXT VALUE-------------------
 1930 .3 SED MUST DO ARITHMETIC
 1940 LDA VALUE IN DECIMAL MODE
 1950 CLC
 1960 ADC #1
 1970 CLD BACK TO BINARY
 1980 BCC .1 ...UNTIL WRAP-AROUND
 1990 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2453 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8604:ProDOS:S.MSG.INTO.WNDW.txt
==

 1000 *SAVE S.MSG.INTO.WNDW
 1010 *--------------------------------
 1020 HOME .EQ $FC58
 1030 COUT .EQ $FDED
 1040 *--------------------------------
 1050 PNTR .EQ $00,01
 1060 WNDTOP .EQ $22
 1070 WNDBOT .EQ $23
 1080 *--------------------------------
 1090 * CALL: JSR MSG.IN.WINDOW
 1100 * .DA #<window number>
 1110 * .AS text of message
 1120 * .HS 00 <end of msg flag>
 1130 *--------------------------------
 1140 MSG.IN.WINDOW
 1150 PLA GET RETURN ADDRESS INTO PNTR
 1160 STA PNTR LO BYTE
 1170 PLA
 1180 STA PNTR+1 HI BYTE
 1190 *---SETUP WINDOW TOP & BOTTOM----
 1200 JSR GET.NEXT.CALL.BYTE
 1210 TAX WINDOW INDEX
 1220 LDA WINDOW.DATA,X
 1230 STA WNDTOP
 1240 LDA WINDOW.DATA+1,X
 1250 STA WNDBOT
 1260 JSR HOME CLEAR THE WINDOW
 1270 *---DISPLAY MESSAGE, IF ANY------
 1280 LDY #0
 1290 .1 JSR GET.NEXT.CALL.BYTE
 1300 BEQ .2 END OF MESSAGE
 1310 ORA #$80 ...JUST IN CASE
 1320 JSR COUT
 1330 JMP .1
 1340 *---RETURN TO CALLER-------------
 1350 .2 LDA PNTR+1 HI BYTE
 1360 PHA
 1370 LDA PNTR LO BYTE
 1380 PHA
 1390 RTS
 1400 *--------------------------------
 1410 GET.NEXT.CALL.BYTE
 1420 INC PNTR LO BYTE
 1430 BNE .1
 1440 INC PNTR+1 HI BYTE
 1450 .1 LDA (PNTR),Y
 1460 RTS
 1470 *--------------------------------
 1480 WINDOW.DATA

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2454 of 2550

Apple II Computer Info

 1490 .DA #0,#24,#0,#3,#9,#18,#20,#24
 1500 *--------------------------------
 1510 T
 1520 JSR MSG.IN.WINDOW
 1530 .DA #2 TOP WINDOW
 1540 .AS -/TOP LINE OF THE SCREEN/
 1550 .HS 8D
 1560 .AS -/SECOND LINE OF THE SCREEN/
 1570 .HS 8A
 1580 .AS -/...AND THE THIRD/
 1590 .HS 00 END MSG
 1600 JSR W
 1610 JSR MSG.IN.WINDOW
 1620 .DA #6 BOTTOM WINDOW
 1630 .AS -/LINE 21/
 1640 .HS 8A
 1650 .AS -/...LINE 22/
 1660 .HS 8A.8A
 1670 .AS -/...AND LINE 24/
 1680 .HS 00 END MSG
 1690 JSR W
 1700 JSR MSG.IN.WINDOW
 1710 .DA #0 FULL SCREEN
 1720 .AS -/MY MESSAGE/
 1730 .HS 00 END MSG
 1740 RTS
 1750 *--------------------------------
 1760 W LDA $C000 WAIT FOR KEY BEFORE CONTINUING
 1770 BPL W
 1780 STA $C010
 1790 RTS
 1800 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2455 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:Articles:Bartletts.Searc.txt
==

Recovering & Repairing Lost Programs......Peter Bartlett, Jr.
 Eldridge, Iowa

As a long-time user of the S-C Macro Assembler, I have learned a few
tricks to save a lot of aggravation. Sometimes I mistakenly erase the
source program I have in memory with the "NEW" or "LOAD" command. The
program is not actually gone; instead, the pointer to the start of the
program is changed.

At one time, I would adjust the source pointer by hand until my
program was restored, but this was slow and painful. So like all good
hackers I now have a little program to find the start of a program and
adjust the pointer automatically.

My "Find.Start" program searches through memory for a source line
numbered 1000 and resets the source pointer to that line. The search
begins at HIMEM and proceeds down until it finds line 1000 or address
$800.

The program itself is a simple search for the two-byte hex equivalent
of 1000. On entry, the program starts the search at HIMEM and sets
the "DONE.ONCE" flag so subsequent re-entries pick up the search where
it last left off.

After the program stops, you can run it again to find the next lower
source line numbered 1000. If several programs have been loaded into
memory, you can run "Find.Start" several times to point to the start
of each one.

The only way to start the search from HIMEM again is to re-load the
program. It's not elegant, but does it really need to be?

In many instances, the next step is to re-construct the scrambled part
of a program. This usually seems impossible, because the program's
internal pointers will probably be scrambled and cause weird problems
when editing.

Instead of fighting with the program (or hand-patching as I used to
do), just use the handy "TEXT" command built into the assembler to
create a text version of your program. Then enter the "AUTO" mode and
"EXEC" the text version of your program back into memory. This will
rectify all the internal pointers and leave you free to edit your
program back into shape.

Perhaps that last paragraph is obvious, but I didn't think of it until
recently. And we've had the "TEXT" command available for a long time!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2456 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:Articles:Division.By7.txt
==

More and Better Division by Seven.........Bob Sander-Cederlof

I can think of at least three good reasons we need a good subroutine
for dividing by seven. We need it in computations involving the day
of week. We need it in hi-res graphics programs to calculate the byte
and bit for a particular pixel between 0 and 279 for normal hi-res, or
between 0 and 559 for double hi-res. Lastly, the new protocol
converter interface used in connection with the Unidisk 3.5 works with
packets of up to 767 bytes which are made up of a number of 7-byte
groups.

In looking through the assembly listing of the new //c ROMs, which
come with the Unidisk 3.5 update, I noticed a divide-by- seven
subroutine at $CB45-CBAF. The code divides the buffer size, which can
be up to $2FF, by seven, and saves both the quotient and the
remainder. The code looks too large and too slow and too complicated
... in other words, it looks like a challenging assignment. My
transposition of the //c code follows, and as I count cycles it takes
from 133 to 268 cycles depending on the value of the dividend. The
code and tables take 71 bytes in the //c ROM.

While I was musing on the possibilities, Michael Hackney called me
from Troy, New York. He wondered if we were interested in publishing
his fast 65802 routine for dividing by seven. Michael uses his in a
speedy double hi-res program. He divides values up to 559 ($22F) by
seven, keeping both the quotient and remainder, in 66 cycles.
Michael's subroutine itself is short (37 bytes), but he uses a 140-
byte table to achieve the speed. Adding another 84 bytes to the
tables extends the range to handle dividends up to 895 ($37F).

(In all the times and lengths given here, I am not counting the JSR-
RTS cycles nor the RTS byte. I assume the code is critical enough
that it would be placed in-line in actual use, rather than made into a
JSR-called subroutine. I am also not counting any overhead I added to
switch from 65802 mode to 6502 and back, as this was only added due to
my test program being in 65802 mode. All of the subroutines use page
zero for variable and temporary storage. They would be longer and
slightly slower if the variables and temporaries were not in page
zero.)

Yesterday I spent the whole day dividing by seven. I came up with two
new subroutines: one for the 65802, and one for a normal 6502. They
are both small and fast. First I tackled the 65802 version, and based
in on multiplying by 1/7 as a binary fraction. This one came out 39
bytes long, executing in 64 cycles. This one used a fudge factor; the
largest dividend it can handle is 594 ($252). By using alternate code
to extend the precision, numbers up to 895 ($37F) can be handled.
This one takes the same number of bytes, but 9 cycles longer.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2457 of 2550

Apple II Computer Info

Finally, I wrote a normal 6502 version. Strangely enough, it came out
only 60 bytes long and only 76 cycles! Makes me wonder if I couldn't
do better in the 65802, given another day or two. The 6502 version
handles dividends up to 1023 ($3FF). It would be two bytes shorter if
the range was restricted to $2FF.

Here is a table summarizing the size, timing, and dividend range for
the various subroutines:

 bytes cycles dividend

 //c ROM 71 133-268 0-$2FF
 Hackney 65802 177 66 0-$22F
 RBSC 65802-1 39 64 0-$252
 RBSC 65802-2 39 73 0-$37F
 RBSC 6502 60 76 0-$3FF

The listing which follows includes all five versions, plus a testing
program. The testing program runs through the entire range from $3FF
down to 0. After doing the division by the selected method, a check
subroutine tests for a valid remainder (a number less than 7); it
further tests that the quotient*7 +remainder = the original dividend.
If not, the dividend, quotient, and remainder are all printed in
hexadecimal. If they are correct, the next dividend is tried. A
keyboard pausing subroutine allows you to stop the display momentarily
and/or abort the test run.

Lines 1020-1060 control some conditional assembly which select which
division method to use. By change the value of VERSION in line 1020 I
can assemble any one of the four routines. I used the "CON" listing
option in line 1180 (which is not itself listed: it is "1180 .LIST
CON") so that you can see what the un-assembled lines of code are.
Other conditional code at lines 1720-1860 and 4010-4050 selects
options mentioned above.

Lines 1200-1540 control each test run. I wrote this program using
65802 instructions, although it would not be difficult to re-write it
for a plain 6502. Lines 1210-1220 enter the 65802 Native Mode, and
lines 1520-1530 leave it. It is VERY IMPORTANT to be sure you do not
exit a program and return to normal Apple software while still in the
Native Mode. The most fantastic things can happen if you forget!

Lines 1580-1950 are my 65802 version. This entire subroutine is
executed in the 65802 native mode, with the M-bit set so the A-
register operations are 16-bits. The value 1/7 in binary is
.001001001001001...forever. Multiplying by than number should give
the same answer as dividing by seven. It also has the surprising side
effect that the three bits after the "quotient" portion of the product
will be equal to the "remainder". The values of the fractions from
0/7 to 6/7 are just nice that way:

 repeating same value the first
 fraction decimal in hex three bits
 0/7 .000000 .000 000

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2458 of 2550

Apple II Computer Info

 1/7 .142857.. .249.. 001
 2/7 .285714.. .492.. 010
 3/7 .428571.. .6DB.. 011
 4/7 .571428.. .924.. 100
 5/7 .714285.. .B6D.. 101
 6/7 .857142.. .DB6.. 110

Wow! Isn't that neat? More justification for the numerologists who
claim that seven is the "perfect" number.

Now it remains to find the most efficient way to multiply by that
fraction. The method I came up with first forms the product for
.01000001 (lines 1600-1670). Then I divide that result by 8, which is
the product for .00001000001 (lines 1680- 1700). Adding the two
products in line 1710 gives me the product for .01001001001
(approximately 2/7). Dividing that by two gives me an approximation
for the division by seven. The code that follows in lines 1720-1800
is not assembled, because of the ".DO 0" line. What it does is extend
the multiplication to include one more partial product. The shortest
way I could think of to get that little number is demonstrated in the
code you see. The extra precision makes my subroutine work for
dividends up to $37F. It fails above that value because of overflow
during the multiplication. If I leave out the extra precision, the
subroutine gets the wrong answers for some numbers at each end of the
range. By adding a "fudge factor" (a trick learned in college
laboratory assignments to force experimental results to fit the laws
of science), I can make all the dividends up to $252 work. The fudge
factor adds $000A for values in the A-register of $8800 or more, and
only $0008 for values below $8800.

Line 1870 is the division by two mentioned above. Lines 1880-1940
shift the first three bits of the remainder over to the correct
position in the lower byte of the A-register. As I was writing the
previous sentence, it suddenly struck me that the second set of three
bits might be the same as the first set, if my multiplications
happened to be precise enough. I went back to the assembler, changed
line 1720 to ".DO 1" so the more precise version would assemble, and
then replaced lines 1910-1930 with "1910 AND #7". Guess what! It
worked! One byte shorter and four cycles faster! That makes it 38
bytes long, and only 69 cycles.

Next is my 6502 version, lines 1970-2370. The first four lines simply
save the current state of the M and X bits, and the mode, and switch
to 6502 emulation mode. They are matched by lines 2340-2360, which
restore the mode and state. These will work regardless of what mode
and state the machine was in when the subroutine was called. Since
the subroutine would normally only be used in a 6502, you would leave
out lines 1980-2010 and 2340-2360. I did not count them when timing
the code. Back in December of 1984 I wrote in these pages of a nifty
way to divide a one-byte value by seven. I used that method here, for
dividing the low-order byte of the dividend. I then computed the
remainder by multiplying the quotient by 7 and subtracting it from the
dividend. Saving that quotient and remainder, I used a table lookup
to determine the quotient and remainder of the high-order byte of the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2459 of 2550

Apple II Computer Info

number. Since it could only have the values 0-3, the tables are very
short. Then I add the two remainders together, modulo 7; and the two
quotients, remembering the carry from the remainder if any.

Lines 2030-2170 are essentially the same as published in that December
issue of AAL, except for the addition of lines 2130, 2140, and 2160.
With those two lines I am saving a few steps in the multiplication by
seven that I must do. Lines 2190-2200 finish the multiplication by
seven, by adding the *2 and *4 values saved above. Lines 2210-2200
form the complement of the value, so I can subtract by adding.
Normally a complement is formed by:

 EOR #$FF
 CLC
 ADC #1

I do the same with two less bytes and cycles here by preceding the
addition at line 2230 with SEC rather than the usual CLC. I saved a
byte and two cycles by storing one less than the actual remainder in
the table of remainders at line 2400.

Lines 2420-2640 are called to print out the results when they don't
meet expectations. Notice lines 2430-2460 and 2610-2630, which make
sure I am in the correct state and mode. The monitor routines will
not work correctly in 16-bit state, and may not work correctly in
65802 Native mode.

Lines 2660-2920 check the results. The subroutine returns with carry
clear if the quotient and remainder are correct, or carry set if they
are not. I check both by multiplying the quotient by seven and adding
the remainder to see if the result equals the dividend, and I also
make sure the remainder is less than seven. It is possible to get an
answer with the quotient one less than it should be and a remainder of
7, so I had to test the remainder.

The PAUSE routine checks to see if any key has been typed. If so, and
if it is not a <RETURN>, it waits until another key is typed. Note
that I had to set 8-bit mode, to prevent the softswitch at $C011 from
being switched. This also makes the CMP work properly. Otherwise the
LDA $C000 would get two copies of the same character in the two halves
of the A-register.

Lines 3060-3540 are essentially the code from the new //c ROMs. I re-
arranged it a little, to make a stand-alone routine within my test-
bed, and I changed labels and variable names. Apple uses two sets of
tables. One gives quotients and remainders for 0, $100, and $200 (the
high byte of the dividend). The other gives quotients and remainders
for 0, $08, $10, $20, $40, and $80. A loop runs 5 times to add in the
quotients and remainders for bits 3-7 of the dividend, and then fakes
one more trip to add in the value of bits 0-2. Not efficient!

Michael Hackney's code is in lines 3560-4080. I'll quote from his
letter.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2460 of 2550

Apple II Computer Info

"Apple hi-res graphics characteristically involve various calculations
to determine the exact display address from a given X,Y pair.
Typically, the vertical position (Y) base address is found by table
look-up. The horizontal, or X, position is determined by dividing by
7 (since there are seven pixel bits per byte in the hi-res screen).
The integer portion of the division is the byte offset from the base
address, and the remainder is the position in the byte. Brute
calculation (which is slow for graphics routines) or table lookup
(which takes a lot of space) is used to do the division. Table lookup
is usually used in good graphics programs. Hi-res graphics require
two 280-byte tables, one for quotient and one for remainder. Double
hi-res requires tables twice as big. My interest in 65802/816 double-
he-res graphics drivers has prompted me to find a serviceable divide-
by-seven which is quick and doesn't require more than one page of
memory.

"The 65802/816 16-bit operations are ideally suited for this task.
Larger numbers can be easily manipulated and table lookup can retrieve
2 bytes of data at once. My routine uses both of these techniques to
perform its duty. It divides the original number by eight before
doing any table lookup (this keeps the table smaller). The it
mulitplies both the quotient and remainder retrieved from the table by
8. The resulting remainder is added to the original lower three bits
(the ones shifted out when I divided by 8), and I look into the table
again. The first quotient is added to the second quotient, and it is
finished. The table only takes 140 bytes, storing quotients and
remainders for numbers up to 69. Everything fits in a page with room
to spare.

"As an extra bonus, I included a small routine which generates the
table in situ. The area occupied by the table generator can be used
for data storage once the table is built. It takes longer to load a
table from disk than it does to compute one, and the generator
dissappears after use, so this is the best way to do it."

In order to get the greatest speed, Michael's table should all reside
entirely in the same page of memory. That is why I included line
4100, which justifies the table to the beginning of the next page.

So here you have four great answers to the challenge. Now it's your
turn!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2461 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:Articles:Front.page.txt
==

$1.80

Volume 6 -- Issue 8 May, 1986

In This Issue...

DOS 3.3 for the UniDisk 3.5. 2
Recovering & Repairing Lost Programs 18
More and Better Division by Seven. 20

Enhancing Applesoft with the Toolbox Series

A number of years ago, when Roger Wagner Publishing was still called
Southwestern Data Systems, he published Peter Meyer's program "The
Routine Machine". The system evolved into four packages: Wizard's
Toolbox, Database Toolbox, Video Toolbox, and Chart'n Graph Toolbox.
Each "Toolbox" contains a large assortment of assembly language
routines which enhance the capabilities of Applesoft. The "Workbench"
(included with each Toolbox) allows programmers to add any assortment
of these routines to their Applesoft programs at any time. The
routines are all called by using the ampersand (&) statement.

Roger will make a special deal for Apple Assembly Line sub- scribers:
he'll send a free copy of the "Trial-size Toolbox" (normally $3) to
anyone who mentions reading about the package here. The disk includes
eight ampersand commands, including a charting command-set with 12
sub-commands, a fixed-length input command, and a print with word-wrap
command. All are usable under either DOS 3.3 or ProDOS. Also on the
disk is the text of a 50-page manual. The manual includes a tutorial
for the toolbox system, a complete explanation of the commands
included on the sampler disk, and a comprehensive listing of every
command in each of our Toolbox packages. For the free sampler write
to Roger Wagner Publishing, Box 582, Santee, CA 92071.

The Toolbox packages are normally $39.95 each. We'll sell them here
at S-C for $36 each, or $140 for the complete set.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.
Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage). A subscription to the
newsletter and the Monthly Disk containing all source code is $45 per
year in the US, Canada and Mexico, and $87 to other countries.

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2462 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:Articles:UniDisk.RWTS.txt
==

DOS 3.3 for the UniDisk 3.5 (RWTS 3.5)..............Bill Morgan

We finally got one of Apple's new UniDisk 3.5 drives for the //e, and
let me tell you it's very nice. This small but large addition to our
favorite computer is about half the volume of a Disk II, but each disk
stores almost six times as much infor- mation. It's even a bit faster
than the 5.25" drives, about 1.3 times the speed.

Of course there's a catch. In line with Apple's policy of supporting
ProDOS only, the new device doesn't use DOS 3.3, at least not as far
as Apple is concerned. There are already several different UniDisk
versions of DOS, and we're about to build our own right here. It's
really quite easy.

There are two parts to the problem: intercepting and handling RWTS
calls to the UniDisk slot, and formatting a 3.5" disk with a DOS VTOC
and Catalog.

There are a variety of ways to take over a call to RWTS. When we call
RWTS at $3D9 it jumps on to $B7B5, where interrupts are disabled
before calling the real RWTS entry at $BD00. Some programs take
control at $B7B7 and others at $BD00. I looked at the code at $BD00
and saw that it does a little housekeeping and then at $BD10 loads the
accumulator with the slot*16 value from the IOB. That looks like the
ideal time to check to see if this call is for my slot, so $BD12 is
where I patch in the jump to my code. If you are using several
nonstandard devices with DOS 3.3 (Sider or other hard disk, RAM disk,
other drives) you will need to keep track of who's patching into RWTS
where.

Now we come to the question of where to put our version of RWTS.
There's certainly no room inside DOS for almost a page of code plus
two pages of buffer. I thought I could probably squeeze the code into
page three, but that still left that buffer (not to mention the crowd
already living at that popular address!) It occurred to me to throw
INIT away and put the code inside the existing RWTS at $BEAF, but what
about the buffer? I finally decided to use the time-honored technique
of moving the DOS buffers and HIMEM down and installing my program and
buffer in there. That's also crowded, but where isn't? The first
working version of RWTS 3.5 ran at $9900, with the buffer at $9B00-
9CFF. The installation routine checked to see if anyone else was
using the space and returned an error if so. Applesoft and the S-C
Macro Assembler got along with this arrangement just fine, so I spent
some time polishing the program and started to write this article.

That's when I was forcibly reminded that the S-C Word Processor sets
its own HIMEM and is firmly convinced that $9900-99FF is the buffer
for characters deleted off the screen. In other words, the first time
I tried to save some text to the UniDisk it blew sky high. I had

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2463 of 2550

Apple II Computer Info

decided to live without the Word Processor on the UniDisk for the time
being when I noticed a couple of interesting things in Beneath Apple
DOS. There is a 342-byte buffer inside RWTS at $BB00-BC55, and the
code immediately after that buffer is called only by INIT! There
really are two full pages of available buffer space inside DOS along
with room for the code.

So this edition of RWTS 3.5 runs at $BEAF, with its buffer at $BB00-
BCFF. I did hit one more snag when I went to use that buffer area;
$BCDF-BCFF is officially unused, which means it's a popular place for
other patches. My system has part of our fast LOAD/BLOAD patch (AAL
April 83) there, so I had to shave a few more bytes out of my program
to make room to move the LOAD patch up to $BF97-BFB7. You may have to
make some such adjustment, so be sure to check for some other patch at
$BCDF.

The UniDisk 3.5 uses a new software interface, called the Protocol
Converter. The PC is a sort of serial bus, which can have several
devices daisy-chained to the same controller. We program the PC with
a calling structure very similar to the ProDOS MLI calls. Here's an
example:

CALL JSR DISPATCH
 .DA #1 read command
 .DA PARMLIST
 BCS ERROR
 ... whatever code

PARMLIST
 .DA #3 3 parameters
 .DA #1 unit number
 .DA BUFFER buffer address
 .DA <BLOCK block number (3 bytes)

That's all it takes to read a 512-byte block into our buffer. Notice
that this standard specifies a 3-byte block number: all current
devices use only two bytes of the block number, but they're allowing
for expansion beyond 32 megabytes. The unit number isn't the same as
a ProDOS unit; this is the position of the device in the PC chain. We
need to look up the value of DISPATCH in the card. The byte at $CsFF
(s = slot) contains the offset into the ROM of the ProDOS driver entry
and the Protocol Converter entry is defined to be 3 bytes after that.
For example, in my UniDisk 3.5 controller in slot 5 the byte at $C5FF
is $0A. That means that the ProDOS entry to the card is $C50A and the
PC entry is $C50D.

There's a quick look at the Protocol Converter. We haven't seen much
information published about it yet. The new //c Technical Reference
Manual has a good section, including a ROM listing, but the //e
UniDisk 3.5 includes no programmer's documentation. Bob is planning a
more extensive article on its programming for next month's AAL. Stay
tuned...

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2464 of 2550

Apple II Computer Info

Apple's new memory expansion card has a PC interface and this RWTS
will work with that card as well, but some modification will be needed
to use more than one PC at a time. The installation code could scan
all slots looking for PCs and build a table of valid slots and entry
addresses. Then the initial code at MY.RWTS could search that table
and plug the appropriate PC.DISPATCH address into the calls.

The Protocol Converter sees the UniDisk as 1600 blocks of 512 bytes
each, for a total of 819,200 (800K) bytes of storage. We have no way
to find out about actual tracks and sectors on the disk; this drive
seems to use the Macintosh scheme of a variable number of blocks per
track. Therefore, we're going to translate DOS's tracks and sectors
into some block number and ask the PC for that block, not worrying
about where it actually comes from.

The VTOC on a DOS disk has room for 50 tracks of 32 sectors each.
That adds up to 400K, or exactly half a UniDisk, so we should be able
to set things up with 2 logical drives of 400K each. The number of
tracks per disk and the number of sectors per track are both stored as
parameters in the VTOC as well, just to make things easier. Two
drives per disk means that we can put drive one in the lower 800
blocks and drive two in the upper 800. Figuring that 32 sectors per
track means 16 blocks per track and two sectors per block gives us
this equation:

BLOCK = (DRIVE-1)*800 + TRACK*16 + SECTOR/2

An even-numbered sector is in the lower half of a block, odd in the
upper half.

Since each sector is half of one block on the disk, we can't just
write one sector. We have to read a block, copy the new information
into half of the buffer, then write that block back out. This takes
extra time, but simplifies some of the control logic because every
call does a read first.

That first working version of RWTS 3.5 did a new read for every read
call, and a new read and write for every write. Well that proved to
be much too slow, even slower than the old Disk II. Then I realized
that nearly all DOS operations are reading or writing consecutive
sectors in a file, so I must be spending a lot of time reading a block
that was already in my buffer just to get the sector in the other half
of the block. Sure enough, the performance almost doubled when I
started keeping track of which block was in the buffer and skipping
re-reads of the same block. It does seem to be a good idea to make a
special case of the VTOC sector and always re-read that one, just in
case we change disks after writing the VTOC as the last operation on
the old disk.

Line by Line

In the INSTALL routine we first make sure there is a Protocol
Converter in the slot this RWTS expects. If so, we patch in the JMP
to our code near the beginning of the normal RWTS and disable INIT by

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2465 of 2550

Apple II Computer Info

patching an RTS instruction at the beginning of the command handler.
MOVE then puts our routine into place at $BEAF and looks up the PC
entry point into the ROMS and installs that address into the
instructions that call the interface card. NO.PC provide an error
message if we can't find a PC. The ID.TABLE has the bytes which mark
a PC interface, interspersed with $FFs so we can use the same index
for the ROM and the table.

The meat of the program begins at MY.RWTS. We enter here with
slot*$10 in the A register so we can check to see if we need to handle
this call. If not we execute the instructions we overwrote with the
JMP and go back to the normal RWTS. If is is our call, the first
thing we do at MINE is check to see if we handled the last RWTS call
as well. If so, all is well, but if normal RWTS was used last then it
clobbered the buffer at $BB00. We therefore trash LAST.BLOCK so the
tests down at CHECK.FOR.RE.READ will be forced to read a new block.

SET.BLOCK tranforms the requested track and sector into a block
number, in the process setting carry to indicate whether we want the
high or low half of the block. SET.POINTERS then creates two pointers
for MY.BUFFER and IOB.BUFFER, using that carry bit along the way. At
SET.DRIVE we check which drive is called for and modify BLOCK to read
the other half of the diskette if it says drive 2. While we're at it,
we plug the drive number into the volume number found, so it will
appear as the volume number in a CATALOG. SET.COMMAND gets the
command and makes sure it's either READ or WRITE. Anything else
becomes a NOP.

At CHECK.FOR.RE.READ we compare the block number requested with the
number of the block in the buffer and if they're different we go on to
read the new block. If we already have the block we need,
CHECK.FOR.VTOC double-checks to see if it's a VTOC we're reading. If
so, we need to re-read it anyway, in case it's now a different disk in
the drive. Once all that rigamarole is out of the way, the eight
bytes at READ are all it takes to actually read the block!

At SKIP.READ we get the command again. (I just noticed that we can
move the SET.COMMAND code to this point, since doing an extra READ
won't hurt anything, even if the command is bad. That way we can
eliminate MY.COMMAND and its STA and LDA instructions. Furthermore,
changing the CMP #2 to an LSR and changing the BEQ to a BCC shaves out
another byte, for a total of five fewer bytes. There's always more
space to be found!) If the command is a READ then READ.MOVE.BUFFER
copy MY.BUFFER into the IOB's buffer and we're done. If it's a WRITE,
WRITE.MOVE.BUFFER copies the other way, from the IOB buffer into mine,
and then calls the ROM to write out the block. Then GOOD.EXIT clears
carry and loads a return code of zero before branching to the end.
ERROR.EXIT loads up either WRITE PROTECT or DRIVE ERROR and sets carry
before returning to the caller.

FORMAT 3.5 ---

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2466 of 2550

Apple II Computer Info

Since we threw away INIT to fit all this inside of DOS, and since the
standard INIT wouldn't put enough VTOC or CATALOG space on the disk,
we're also going to need a special FORMAT program.

There are two stages in the process of formatting a disk:
initializing all the tracks with address information; and writing the
VTOC, empty catalog track, and boot program. Initializing a Protocol
Converter device is easy, just call the PC and let it do all the work.
Then we can use our nice new RWTS to write all the rest of the
necessary data. Just be sure that RWTS 3.5 is installed before
calling FORMAT 3.5.

Since this catalog track is 31 sectors long there is room for 217
files instead of the normal 105. Other than the length, the structure
is exactly the same as a normal DOS catalog. The differences in the
VTOC are bytes $34-35, the number of tracks per disk and sectors per
track, and the bitmap. The bitmap skips tracks $0 and $11, fills all
four bytes per track rather than alternate pairs, and extends all the
way to the end of the sector.

The boot program here is just a quick message. I hope to have a real
boot loader ready for next month's AAL.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2467 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:DOS3.3:BETTER.DIV.7.txt
==

 1000 *SAVE BETTER DIV 7+
 1010 *--------------------------------
 1020 VERSION .EQ 1
 1030 RBSC65802 .EQ 1
 1040 HACKNEY .EQ 2
 1050 TWO.C .EQ 3
 1060 RBSC6502 .EQ 4
 1070 *--------------------------------
 1080 DIVIDEND .EQ 0,1
 1090 QUO.REM .EQ 2,3
 1100 T1 .EQ 4,5
 1110 T2 .EQ 6,7
 1120 *--------------------------------
 1130 CROUT .EQ $FD8E
 1140 PRBYTE .EQ $FDDA
 1150 COUT .EQ $FDED
 1160 *--------------------------------
 1170 .OP 65802
 1180 .LIST CON
 1190 *--------------------------------
 1200 TEST
 1210 CLC ENTER NATIVE MODE
 1220 XCE
 1230 .DO VERSION=HACKNEY
 1240 JSR BUILD.HACKNEY.TABLE
 1250 .FIN
 1260 REP #$20 16-BIT A-REGISTER
 1270 LDA ##$3FF LARGEST VALUE TO TEST
 1280 STA DIVIDEND
 1290 .1 LDA DIVIDEND
 1300 .DO VERSION=RBSC65802
 1310 JSR DIVIDE.BY.SEVEN.65802
 1320 STA QUO.REM QUO IN 15...8, REM IN 7...0
 1330 .FIN
 1340 .DO VERSION=HACKNEY
 1350 JSR HACKNEY.DIV7
 1360 STA QUO.REM QUO IN 15...8, REM IN 7...0
 1370 .FIN
 1380 .DO VERSION=RBSC6502
 1390 JSR DIVIDE.BY.SEVEN.6502
 1400 .FIN
 1410 .DO VERSION=TWO.C
 1420 JSR DIV7.TWOC
 1430 .FIN
 1440 JSR CHECK TEST RESULT BY MULTIPLYING
 1450 BCC .2 ...CORRECT ANSWER
 1460 JSR PRINT ...INCORRECT DIVISION
 1470 .2 JSR PAUSE CHECK FOR KEYPRESS
 1480 BEQ .3 <RET>, ABORT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2468 of 2550

Apple II Computer Info

 1490 REP #$20 16-BIT A-REGISTER
 1500 DEC DIVIDEND
 1510 BPL .1 ...NEXT ONE
 1520 .3 SEC RETURN TO EMULATION MODE
 1530 XCE
 1540 RTS
 1550 *--------------------------------
 1560 * QUO = VAL * .001001001001001
 1570 *--------------------------------
 1580 DIVIDE.BY.SEVEN.65802
 1590 STA T1 SAVE ORIGINAL VALUE
 1600 ASL MULTIPLY BY 64
 1610 ASL
 1620 ASL
 1630 ASL
 1640 ASL
 1650 ASL
 1660 ADC T1 ADD, EQUIV. TO * .01000001
 1670 STA T1 SAVE RESULT
 1680 LSR DIVIDE BY 8, WHICH IS
 1690 LSR EQUIV. TO * .00001000001
 1700 LSR
 1710 ADC T1 EQUIV TO * .01001001001
 1720 .DO 0
 1730 STA T1 EXTENDED PRECISION METHOD
 1740 XBA GET EQUIV. TO * .00000000000001
 1750 AND ##$00FF
 1760 LSR
 1770 LSR
 1780 LSR
 1790 LSR
 1800 ADC T1 EQUIV. TO * .01001001001001
 1810 .ELSE
 1820 CMP ##$8800 FUDGE FACTOR METHOD
 1830 ADC ##$0008 ADD $0008 TO ALL VALUES,
 1840 CMP ##$8800 AND $0002 MORE TO BIG ONES
 1850 ADC ##$0000
 1860 .FIN
 1870 LSR DIVIDE BY 2, RESULT IS QUOTIENT
 1880 SEP #$20 IN HI BYTE, REM IN NEXT 3 BITS
 1890 LSR ISOLATE REMAINDER IN LO BYTE
 1900 LSR
 1910 LSR
 1920 LSR
 1930 LSR
 1940 REP #$20
 1950 RTS
 1960 *--------------------------------
 1970 DIVIDE.BY.SEVEN.6502
 1980 PHP SAVE M&X BITS
 1990 SEC SWITCH TO EMULATION MODE
 2000 XCE
 2010 PHP
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2469 of 2550

Apple II Computer Info

 2030 LDA DIVIDEND
 2040 LSR
 2050 LSR
 2060 LSR
 2070 ADC DIVIDEND
 2080 ROR
 2090 LSR
 2100 LSR
 2110 ADC DIVIDEND
 2120 ROR
 2130 AND #$FC
 2140 STA T1
 2150 LSR
 2160 STA T2
 2170 LSR
 2180 STA QUO.REM+1 QUO = LO-BYTE/7
 2190 ADC T1
 2200 ADC T2 QUO*7
 2210 EOR #$FF -QUO*7
 2220 SEC
 2230 ADC DIVIDEND REM
 2240 LDX DIVIDEND+1 0,1, OR 2
 2250 ADC RTBL,X
 2260 CMP #7
 2270 BCC .1
 2280 SBC #7
 2290 .1 STA QUO.REM FINAL REMAINDER
 2300 LDA QTBL,X
 2310 ADC QUO.REM+1
 2320 STA QUO.REM+1 FINAL QUOTIENT
 2330 *--------------------------------
 2340 PLP SWITCH TO ORIGINAL MODE
 2350 XCE
 2360 PLP X&M BITS
 2370 RTS
 2380 *--------------------------------
 2390 QTBL .DA #0,#36,#73,#109
 2400 RTBL .DA #-1,#3,#0,#4
 2410 *--------------------------------
 2420 PRINT
 2430 PHP SAVE M&X BITS
 2440 SEC SWITCH TO EMULATION MODE
 2450 XCE
 2460 PHP SAVE ORIGINAL MODE (C-BIT)
 2470 LDA DIVIDEND+1
 2480 ORA #"0" PRINT DIVIDEND IN HEX
 2490 JSR COUT
 2500 LDA DIVIDEND
 2510 JSR PRBYTE
 2520 LDA #" " PRINT QUOTIENT IN HEX
 2530 JSR COUT
 2540 LDA QUO.REM+1
 2550 JSR PRBYTE
 2560 LDA #" " PRINT REMAINDER IN HEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2470 of 2550

Apple II Computer Info

 2570 JSR COUT
 2580 LDA QUO.REM
 2590 JSR PRBYTE
 2600 JSR CROUT <RETURN>
 2610 PLP RESTORE NATIVE/EMULATION BIT
 2620 XCE
 2630 PLP RESTORE M&X BITS
 2640 RTS
 2650 *--------------------------------
 2660 CHECK
 2670 LDA QUO.REM
 2680 AND ##$FF00 ISOLATE QUOTIENT
 2690 LSR DIVIDE BY 64 FOR NOW
 2700 LSR
 2710 LSR
 2720 LSR
 2730 LSR
 2740 LSR
 2750 STA T1
 2760 LSR MULTIPLY BY SEVEN
 2770 STA T2
 2780 LSR
 2790 ADC T1
 2800 ADC T2
 2810 STA T1 QUO * 7
 2820 LDA QUO.REM CHECK FOR VALID REMAINDER
 2830 AND ##$00FF 0...7
 2840 CMP ##7
 2850 BCS .1 ...INVALID REMAINDER
 2860 ADC T1 ADD QUO*7
 2870 CMP DIVIDEND ...BETTER BE SAME!
 2880 BNE .1 ...NOT, INVALID QUO & REM
 2890 CLC SIGNAL VALID ANSWERS
 2900 RTS
 2910 .1 SEC SIGNAL INVALID ANSWERS
 2920 RTS
 2930 *--------------------------------
 2940 PAUSE
 2950 SEP #$20 8-BIT A-REGISTER
 2960 LDA $C000 CHECK KEYBOARD
 2970 BPL .2 NOTHING TYPED
 2980 STA $C010 CLEAR STROBE
 2990 CMP #$8D <RETURN>?
 3000 BEQ .2 <RET>, SO DON'T PAUSE
 3010 .1 LDA $C000 SOME OTHER KEY, SO PAUSE
 3020 BPL .1 ...TILL ANOTHER KEY TYPED
 3030 STA $C010 CLEAR STROBE
 3040 .2 CMP #$8D .EQ. IF <RET>
 3050 RTS ...ELSE .NE.
 3060 *--------------------------------
 3070 * DIVIDE BY 7 FROM NEW //C ROMS (AT $CB4F-CBB0)
 3080 * USED TO GET NUMBER OF 7-BYTES PACKETS
 3090 * IN A BUFFER, FOR THE PROTOCOL CONVERTER
 3100 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2471 of 2550

Apple II Computer Info

 3110 DIV7.TWOC
 3120 PHP SAVE X&M BITS
 3130 SEC ENTER EMULATION MODE
 3140 XCE
 3150 PHP SAVE PREVIOUS MODE
 3160 *---ALGORITHM FROM //C-----------
 3170 LDX DIVIDEND+1 HI BYTE (0, 1, OR 2)
 3180 LDA PDIV7TAB,X 0, $100, OR $200 DIVIDED BY 7
 3190 STA QUO.REM+1 QUOTIENT SO FAR
 3200 LDA PMOD7TAB,X 0, $100, OR $200 MOD 7
 3210 STA QUO.REM REMAINDER SO FAR
 3220 *---PROCESS NEXT 5 BITS----------
 3230 LDX #5
 3240 LDA DIVIDEND LOW BYTE
 3250 STA T1 WORKING COPY
 3260 AND #7 LOW 3 BITS
 3270 TAY SAVE FOR LATER USE
 3280 .1 ASL T1 GET NEXT BIT FROM DIVIDEND IN CARRY
 3290 BCC .4 IF CLEAR, NO EFFECT ON QUO,MOD
 3300 LDA MOD7TAB,X GET MOD7 FOR 2^N
 3310 .2 CLC UPDATE MOD VALUE
 3320 ADC QUO.REM
 3330 CMP #7 OVERFLOW?
 3340 BCC .3 ...NO
 3350 SBC #7 ...YES, CORRECT
 3360 .3 STA QUO.REM REMAINDER SO FAR
 3370 LDA DIV7TAB,X GET QUOTIENT FOR 2^N
 3380 ADC QUO.REM+1
 3390 STA QUO.REM+1 QUOTIENT SO FAR
 3400 .4 DEX ONE LESS BIT TO DEAL WITH
 3410 BMI .5 ...FINISHED
 3420 BNE .1 ...FIVE TIMES
 3430 TYA GET BACK FIRST 3 BITS
 3440 JMP .2 ADD IN REMAINDER
 3450 *---RETURN TO CALLER-------------
 3460 .5 PLP ORIGINAL MODE
 3470 XCE
 3480 PLP RESTORE X&M BITS
 3490 RTS
 3500 *--------------------------------
 3510 PDIV7TAB .DA #0,#36,#73
 3520 PMOD7TAB .DA #0,#4,#1
 3530 MOD7TAB .DA #0,#1,#2,#4,#1,#2
 3540 DIV7TAB .DA #0,#1,#2,#4,#9,#18
 3550 *--------------------------------
 3560 HACKNEY.DIV7
 3570 STA T1 SAVE VALUE
 3580 AND ##$0007 SAVE LOWER 3 BITS (MOD 8)
 3590 STA T2
 3600 LDA T1 DIVIDE BY 8
 3610 LSR
 3620 LSR
 3630 LSR
 3640 ASL DOUBLE FOR TABLE INDEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2472 of 2550

Apple II Computer Info

 3650 TAX GET QUO & REM FROM TABLE
 3660 LDA TABLE,X
 3670 ASL MULTIPLY BOTH BY 8
 3680 ASL
 3690 ASL
 3700 ADC T2 ADD LOWER BITS BACK
 3710 TAX SAVE RESULT
 3720 AND ##$FF00 KEEP QUOTIENT
 3730 STA T1
 3740 TXA GET REMAINDER
 3750 ASL DOUBLE FOR INDEX
 3760 TAX
 3770 LDA TABLE,X GET QUO & REM FROM TABLE
 3780 CLC ADD PREVIOUS QUOTIENT
 3790 ADC T1
 3800 RTS
 3810 *--------------------------------
 3820 BUILD.HACKNEY.TABLE
 3830 PHP SAVE M&X BITS
 3840 REP #$20 LONG A-REG
 3850 LDA ##TABLE
 3860 STA T1
 3870 SEP #$30 ALL REGS SHORT
 3880 LDX #0 X = REMAINDER
 3890 TXY Y = QUOTIENT
 3900 .1 TXA STORE CURRENT REMAINDER
 3910 STA (T1)
 3920 INC T1
 3930 TYA STORE CURRENT QUOTIENT
 3940 STA (T1)
 3950 INC T1
 3960 INX NEXT REMAINDER
 3970 CPX #7
 3980 BCC .1 ...NO CHANGE TO QUOTIENT
 3990 LDX #0 NEXT QUOTIENT
 4000 INY
 4010 .DO 1
 4020 CPY #10 STOP AFTER QUO=9, REM=6
 4030 .ELSE
 4040 CPY #16 STOP AFTER QUO=15, REM=6
 4050 .FIN
 4060 BCC .1 ...NOT YET
 4070 PLP RESTORE M&X BITS
 4080 RTS
 4090 *--------------------------------
 4100 .BS *+255/256*256-*
 4110 TABLE .EQ *
 4120 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2473 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:DOS3.3:FIND.START.txt
==

 1000 *SAVE FIND.START
 1010 *--------------------------------
 1020 * SEARCH FROM HIMEM TO PP FOR LINE "1000"
 1030 * SET $CA,CB TO BEGINNING OF THAT LINE
 1040 *--------------------------------
 1050 SRCP .EQ $00,01
 1060 HIMEM .EQ $4C,4D
 1070 PP .EQ $CA,CB
 1080 *--------------------------------
 1090 .OR $300
 1100 *--------------------------------
 1110 DO
 1120 LDX PP IF NOT FIRST TIME,
 1130 LDA PP+1 START WHERE WE LEFT OFF
 1140 BIT DONE.ONCE.FLAG
 1150 BMI .1 ...NOT FIRST TIME
 1160 *---HAS TO BE A FIRST TIME-------
 1170 SEC SET FLAG
 1180 ROR DONE.ONCE.FLAG
 1190 LDX HIMEM START AT TOP OF SOURCE AREA
 1200 LDA HIMEM+1
 1210 *---STORE STARTING POINTER-------
 1220 .1 STX SRCP
 1230 STA SRCP+1
 1240 JSR DEC.SRCP
 1250 *---SEARCH FOR "1000"------------
 1260 .2 JSR DEC.SRCP
 1270 LDA SRCP+1
 1280 CMP /$0800 DON'T SEARCH BEYOND $800
 1290 BCC .3 ...END OF SEARCH
 1300 LDY #0
 1310 LDA (SRCP),Y
 1320 CMP #1000 COMPARE LO-BYTE
 1330 BNE .2 ...NO, KEEP SCANNING
 1340 INY ...MATCH, CHECK HI-BYTE
 1350 LDA (SRCP),Y
 1360 CMP /1000
 1370 BNE .2 ...NO, KEEP SCANNING
 1380 *---FOUND IT, POINT PP TO IT-----
 1390 JSR DEC.SRCP BACK UP OVER BYTE COUNT
 1400 LDA SRCP
 1410 STA PP
 1420 LDA SRCP+1
 1430 STA PP+1
 1440 .3 RTS
 1450 *--------------------------------
 1460 DEC.SRCP
 1470 LDA SRCP
 1480 BNE .1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2474 of 2550

Apple II Computer Info

 1490 DEC SRCP+1
 1500 .1 DEC SRCP
 1510 RTS
 1520 *--------------------------------
 1530 DONE.ONCE.FLAG .HS 00
 1540 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2475 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:DOS3.3:RWTS.3.5.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2476 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:DOS3.3:S.Format.UDsk.txt
==

 1000 *SAVE S.FORMAT.UNIDISK
 1010 *--------------------------------
 1020 UNIDISK.SLOT .EQ 5
 1030
 1040 RWTS .EQ $3D9
 1050
 1060 PC.DISPATCH .EQ UNIDISK.SLOT*$100+$C000
 1070
 1080 HOME .EQ $FC58
 1090 COUT .EQ $FDED
 1100 *--------------------------------
 1110 .OR $803
 1120 * .TF FORMAT.UNIDISK
 1130
 1140 FORMAT CLC
 1150 LDA UNIDISK.SLOT*$100+$C0FF
 1160 ADC #3
 1170 STA PC.CALL
 1180 JSR PC.DISPATCH format the disk
 1190 PC.CALL .EQ *-2
 1200 .DA #3
 1210 .DA PC.PARMS
 1220 BCS ERROR
 1230 LDA #2
 1240 STA DRIVE do drive 2 first
 1250
 1260 DO.CATALOG
 1270 JSR CLEAR.BUFFER
 1280 LDA #$11
 1290 STA TRACK
 1300 STA MY.BUFFER+1 link pointer
 1310 LDY #$1F
 1320 .1 STY SECTOR
 1330 DEY
 1340 BNE .2
 1350 STY MY.BUFFER+1 mark end of catalog
 1360 .2 STY MY.BUFFER+2 link pointer
 1370 JSR CALL.RWTS
 1380 LDY SECTOR
 1390 DEY
 1400 BNE .1 and go back for more
 1410 STY SECTOR
 1420
 1430 DO.VTOC
 1440 JSR CLEAR.BUFFER
 1450 LDX #0
 1460 .1 LDY VTOC.INDEXES,X
 1470 LDA VTOC.VALUES,X
 1480 STA MY.BUFFER,Y set VTOC header info

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2477 of 2550

Apple II Computer Info

 1490 INX
 1500 CPX #ENTRY.COUNT
 1510 BCC .1
 1520 LDA DRIVE use drive # for volume
 1530 STA MY.BUFFER+6
 1540 LDA #$FF
 1550 INY
 1560 .2 INY skip a track in bitmap
 1570 INY
 1580 INY
 1590 INY
 1600 .3 STA MY.BUFFER,Y mark free
 1610 INY
 1620 BEQ .4 leave if done
 1630 CPY #$7C track $11?
 1640 BEQ .2 yes, skip it
 1650 BNE .3 no, go on
 1660 .4 JSR CALL.RWTS
 1670 DEC DRIVE now go back and
 1680 BNE DO.CATALOG do drive one
 1690
 1700 DO.BOOT.SECTOR
 1710 INC DRIVE that was drive one,
 1720 JSR CLEAR.BUFFER so write a boot sector
 1730 STA TRACK A = 0
 1740 STA SECTOR
 1750 LDY #BOOT.SIZE
 1760 .1 LDA BOOT.IMAGE,Y install the image
 1770 STA MY.BUFFER,Y
 1780 DEY
 1790 BPL .1 fall into CALL.RWTS
 1800 *--------------------------------
 1810 CALL.RWTS
 1820 LDA /IOB
 1830 LDY #IOB
 1840 JSR RWTS
 1850 BCS ERROR
 1860 RTS
 1870 ERROR BRK
 1880 *--------------------------------
 1890 CLEAR.BUFFER
 1900 LDY #0
 1910 TYA
 1920 .1 STA MY.BUFFER,Y
 1930 INY
 1940 BNE .1
 1950 RTS
 1960 *--------------------------------
 1970 PC.PARMS .DA #1 one parm
 1980 .DA #1 unit one
 1990 *--------------------------------
 2000 IOB .DA #1
 2010 SLOT .DA #UNIDISK.SLOT*$10
 2020 DRIVE .BS 1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2478 of 2550

Apple II Computer Info

 2030 VOL .DA #0
 2040 TRACK .BS 1
 2050 SECTOR .BS 1
 2060 DCT .DA $B7FB
 2070 BUFFER .DA MY.BUFFER
 2080 .BS 1
 2090 .DA #0
 2100 COMAND .DA #2 write
 2110 RETURN .BS 1
 2120 P.VOL .BS 1
 2130 P.SLOT .BS 1
 2140 P.DRIV .BS 1
 2150 *--------------------------------
 2160 VTOC.INDEXES .HS 00.01.02.03.27.30.31.34.35.36.37
 2170 ENTRY.COUNT .EQ *-VTOC.INDEXES
 2180 VTOC.VALUES .HS 04.11.1F.03.7A.11.01.32.20.00.01
 2190 *--------------------------------
 2200 BOOT.IMAGE
 2210 .PH $800
 2220 BOOT .HS 01
 2230 JSR HOME
 2240 LDY #0
 2250 .1 LDA MESSAGE,Y
 2260 BEQ .2
 2270 JSR COUT print message
 2280 INY
 2290 BNE .1
 2300 .2 BEQ .2 and hang...
 2310
 2320 MESSAGE
 2330 .HS 8D8D8D
 2340 .AS -/Sorry, can't boot DOS here yet./
 2350 .HS 8D8700
 2360 .EP
 2370 BOOT.SIZE .EQ *-BOOT.IMAGE
 2380 *--------------------------------
 2390 MY.BUFFER
 2400 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2479 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:DOS3.3:S.UNIDISK.RWTS.txt
==

 1000 *SAVE S.UNIDISK RWTS
 1010 *--------------------------------
 1020 UNIDISK.SLOT .EQ 5
 1030
 1040 MY.COMMAND .EQ $26
 1050 MY.BUFFER.POINTER .EQ $3C
 1060 IOB.BUFFER.POINTER .EQ $3E
 1070 IOB.PTR .EQ $48
 1080
 1090 MY.BUFFER .EQ $BB00
 1100
 1110 PATCH.POINT .EQ $BD12
 1120 PATCH.RETURN .EQ $BD15
 1130
 1140 PC.DISPATCH .EQ UNIDISK.SLOT*$100+$C000
 1150
 1160 PRBYTE .EQ $FDDA
 1170 COUT .EQ $FDED
 1180 *--------------------------------
 1190 .OR $803
 1200 .TF RWTS 3.5
 1210
 1220 INSTALL
 1230 LDX #6 make sure we have a
 1240 .1 LDA ID.TABLE,X protocol converter
 1250 CMP UNIDISK.SLOT*$100+$C001,X
 1260 BNE NO.PC
 1270 DEX
 1280 DEX
 1290 BPL .1
 1300
 1310 LDA #$4C patch in the JMP
 1320 STA PATCH.POINT to our code
 1330 LDA #MY.RWTS
 1340 STA PATCH.POINT+1
 1350 LDA /MY.RWTS
 1360 STA PATCH.POINT+2
 1370 LDA #$60
 1380 STA $A54F disable INIT
 1390
 1400 MOVE LDY #IMAGE.SIZE+1 install our code
 1410 .1 LDA IMAGE-1,Y
 1420 STA MY.RWTS-1,Y
 1430 DEY
 1440 BNE .1
 1450
 1460 CLC
 1470 LDA UNIDISK.SLOT*$100+$C0FF
 1480 ADC #3 find protocol

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2480 of 2550

Apple II Computer Info

 1490 STA READ.CALL converter entry
 1500 STA WRITE.CALL
 1510 BNE DONE ...always
 1520
 1530 NO.PC LDX #0
 1540 .1 LDA MESSAGES,X print an error message
 1550 BEQ DONE
 1560 JSR COUT
 1570 INX
 1580 BNE .1
 1590 DONE JMP $3D0
 1600 *--------------------------------
 1610 MESSAGES
 1620 .HS 8D
 1630 .AS -/No PC in slot /
 1640 .DA #$B0+UNIDISK.SLOT
 1650 .HS 878D00
 1660 *--------------------------------
 1670 ID.TABLE .HS 20.FF.00.FF.03.FF.00
 1680 * ^ ^ ^ ^
 1690 * Protocol Converter ID Bytes
 1700 *--------------------------------
 1710 IMAGE .EQ *
 1720 .PH $BEAF
 1730 MY.RWTS
 1740 CMP #UNIDISK.SLOT*$10
 1750 BEQ MINE my call!
 1760 TAX not mine, so do
 1770 LDY #$F patched-over code
 1780 JMP PATCH.RETURN and go back
 1790 *--------------------------------
 1800 MINE
 1810 LDY #$F
 1820 CMP (IOB.PTR),Y check previous slot
 1830 BEQ SET.BLOCK same, so go on
 1840 STA (IOB.PTR),Y set previous slot
 1850 LDA #$FF
 1860 STA LAST.BLOCK trash LAST.BLOCK
 1870
 1880 SET.BLOCK
 1890 LDA #0
 1900 STA BLOCK+1
 1910 LDY #4
 1920 LDA (IOB.PTR),Y get track
 1930 .1 ASL
 1940 ROL BLOCK+1 *16
 1950 DEY
 1960 BNE .1
 1970 STA BLOCK
 1980 LDY #5
 1990 LDA (IOB.PTR),Y get sector
 2000 LSR /2, odd/even into carry
 2010 ORA BLOCK
 2020 STA BLOCK

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2481 of 2550

Apple II Computer Info

 2030
 2040 SET.POINTERS
 2050 LDA #MY.BUFFER
 2060 STA MY.BUFFER.POINTER
 2070 LDA /MY.BUFFER
 2080 ADC #0 carry sets hi/lo half of buffer
 2090 STA MY.BUFFER.POINTER+1
 2100 LDY #8
 2110 LDA (IOB.PTR),Y get IOB buffer
 2120 STA IOB.BUFFER.POINTER
 2130 INY
 2140 LDA (IOB.PTR),Y
 2150 STA IOB.BUFFER.POINTER+1
 2160
 2170 SET.DRIVE
 2180 LDY #2
 2190 LDA (IOB.PTR),Y get drive
 2200 LDY #$10
 2210 STA (IOB.PTR),Y set previous drive
 2220 DEY
 2230 DEY
 2240 STA (IOB.PTR),Y set previous volume
 2250 LSR
 2260 BCS SET.COMMAND .CS. if D1
 2270 LDA BLOCK add 800 to BLOCK if D2
 2280 ADC #800
 2290 STA BLOCK
 2300 LDA BLOCK+1
 2310 ADC /800
 2320 STA BLOCK+1
 2330
 2340 SET.COMMAND
 2350 LDY #$C
 2360 LDA (IOB.PTR),Y get command
 2370 BEQ GOOD.EXIT
 2380 CMP #3 exit if not READ or WRITE
 2390 BCS GOOD.EXIT
 2400 STA MY.COMMAND save command
 2410
 2420 CHECK.FOR.RE.READ
 2430 LDX #0 zero the flag
 2440 LDY #1 check two bytes
 2450 .1 LDA BLOCK,Y
 2460 CMP LAST.BLOCK,Y compare
 2470 BEQ .2 same, so go on
 2480 INX different, so flag it
 2490 STA LAST.BLOCK,Y and store new value
 2500 .2 DEY
 2510 BPL .1 now do low bytes
 2520 TXA check the flag
 2530 BNE READ if different, go read
 2540
 2550 CHECK.FOR.VTOC
 2560 LDY #5

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2482 of 2550

Apple II Computer Info

 2570 LDA (IOB.PTR),Y get sector
 2580 BNE SKIP.READ non-zero isn't VTOC
 2590 DEY
 2600 LDA (IOB.PTR),Y get track
 2610 CMP #$11
 2620 BNE SKIP.READ not $11 isn't VTOC
 2630
 2640 READ JSR PC.DISPATCH
 2650 READ.CALL .EQ *-2
 2660 .DA #1 READ
 2670 .DA PARMLIST
 2680 BCS ERROR.EXIT
 2690
 2700 SKIP.READ
 2710 LDA MY.COMMAND check command
 2720 CMP #2
 2730 BEQ WRITE.MOVE.BUFFER
 2740
 2750 READ.MOVE.BUFFER
 2760 LDY #0
 2770 .1 LDA (MY.BUFFER.POINTER),Y
 2780 STA (IOB.BUFFER.POINTER),Y
 2790 INY
 2800 BNE .1
 2810 BEQ GOOD.EXIT ...always
 2820
 2830 WRITE.MOVE.BUFFER
 2840 LDY #0
 2850 .1 LDA (IOB.BUFFER.POINTER),Y
 2860 STA (MY.BUFFER.POINTER),Y
 2870 INY
 2880 BNE .1
 2890
 2900 WRITE JSR PC.DISPATCH
 2910 WRITE.CALL .EQ *-2
 2920 .DA #2 WRITE
 2930 .DA PARMLIST
 2940 BCS ERROR.EXIT
 2950
 2960 GOOD.EXIT
 2970 CLC
 2980 LDA #0
 2990 BEQ EXIT ...always
 3000
 3010 ERROR.EXIT
 3020 CMP #$2B write protect?
 3030 BEQ .1
 3040 LDA #$40 make everything else DRIVE ERROR
 3050 .HS 2C
 3060 .1 LDA #$10
 3070 SEC
 3080
 3090 EXIT LDY #$D
 3100 STA (IOB.PTR),Y save return code

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2483 of 2550

Apple II Computer Info

 3110 RTS
 3120 *--------------------------------
 3130 PARMLIST
 3140 .DA #3 3 parameters
 3150 .DA #1 unit number
 3160 .DA MY.BUFFER buffer address
 3170 BLOCK .BS 3 block number
 3180
 3190 LAST.BLOCK .HS FFFF
 3200 *--------------------------------
 3210 .BS $BF97-*
 3220 .EP
 3230 IMAGE.END .EQ *-1
 3240 IMAGE.SIZE .EQ IMAGE.END-IMAGE
 3250 .LIF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2484 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8605:ProDOS:BETTER.DIV.7.txt
==

 1000 *SAVE BETTER.DIV.7
 1010 *--------------------------------
 1020 VERSION .EQ 1
 1030 RBSC65802 .EQ 1
 1040 HACKNEY .EQ 2
 1050 TWO.C .EQ 3
 1060 RBSC6502 .EQ 4
 1070 *--------------------------------
 1080 DIVIDEND .EQ 0,1
 1090 QUO.REM .EQ 2,3
 1100 T1 .EQ 4,5
 1110 T2 .EQ 6,7
 1120 *--------------------------------
 1130 CROUT .EQ $FD8E
 1140 PRBYTE .EQ $FDDA
 1150 COUT .EQ $FDED
 1160 *--------------------------------
 1170 .OP 65802
 1180 .LIST CON
 1190 *--------------------------------
 1200 TEST
 1210 CLC ENTER NATIVE MODE
 1220 XCE
 1230 .DO VERSION=HACKNEY
 1240 JSR BUILD.HACKNEY.TABLE
 1250 .FIN
 1260 REP #$20 16-BIT A-REGISTER
 1270 LDA ##$3FF LARGEST VALUE TO TEST
 1280 STA DIVIDEND
 1290 .1 LDA DIVIDEND
 1300 .DO VERSION=RBSC65802
 1310 JSR DIVIDE.BY.SEVEN.65802
 1320 STA QUO.REM QUO IN 15...8, REM IN 7...0
 1330 .FIN
 1340 .DO VERSION=HACKNEY
 1350 JSR HACKNEY.DIV7
 1360 STA QUO.REM QUO IN 15...8, REM IN 7...0
 1370 .FIN
 1380 .DO VERSION=RBSC6502
 1390 JSR DIVIDE.BY.SEVEN.6502
 1400 .FIN
 1410 .DO VERSION=TWO.C
 1420 JSR DIV7.TWOC
 1430 .FIN
 1440 JSR CHECK TEST RESULT BY MULTIPLYING
 1450 BCC .2 ...CORRECT ANSWER
 1460 JSR PRINT ...INCORRECT DIVISION
 1470 .2 JSR PAUSE CHECK FOR KEYPRESS
 1480 BEQ .3 <RET>, ABORT

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2485 of 2550

Apple II Computer Info

 1490 REP #$20 16-BIT A-REGISTER
 1500 DEC DIVIDEND
 1510 BPL .1 ...NEXT ONE
 1520 .3 SEC RETURN TO EMULATION MODE
 1530 XCE
 1540 RTS
 1550 *--------------------------------
 1560 * QUO = VAL * .001001001001001
 1570 *--------------------------------
 1580 DIVIDE.BY.SEVEN.65802
 1590 STA T1 SAVE ORIGINAL VALUE
 1600 ASL MULTIPLY BY 64
 1610 ASL
 1620 ASL
 1630 ASL
 1640 ASL
 1650 ASL
 1660 ADC T1 ADD, EQUIV. TO * .01000001
 1670 STA T1 SAVE RESULT
 1680 LSR DIVIDE BY 8, WHICH IS
 1690 LSR EQUIV. TO * .00001000001
 1700 LSR
 1710 ADC T1 EQUIV TO * .01001001001
 1720 .DO 0
 1730 STA T1 EXTENDED PRECISION METHOD
 1740 XBA GET EQUIV. TO * .00000000000001
 1750 AND ##$00FF
 1760 LSR
 1770 LSR
 1780 LSR
 1790 LSR
 1800 ADC T1 EQUIV. TO * .01001001001001
 1810 .ELSE
 1820 CMP ##$8800 FUDGE FACTOR METHOD
 1830 ADC ##$0008 ADD $0008 TO ALL VALUES,
 1840 CMP ##$8800 AND $0002 MORE TO BIG ONES
 1850 ADC ##$0000
 1860 .FIN
 1870 LSR DIVIDE BY 2, RESULT IS QUOTIENT
 1880 SEP #$20 IN HI BYTE, REM IN NEXT 3 BITS
 1890 LSR ISOLATE REMAINDER IN LO BYTE
 1900 LSR
 1910 LSR
 1920 LSR
 1930 LSR
 1940 REP #$20
 1950 RTS
 1960 *--------------------------------
 1970 DIVIDE.BY.SEVEN.6502
 1980 PHP SAVE M&X BITS
 1990 SEC SWITCH TO EMULATION MODE
 2000 XCE
 2010 PHP
 2020 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2486 of 2550

Apple II Computer Info

 2030 LDA DIVIDEND
 2040 LSR
 2050 LSR
 2060 LSR
 2070 ADC DIVIDEND
 2080 ROR
 2090 LSR
 2100 LSR
 2110 ADC DIVIDEND
 2120 ROR
 2130 AND #$FC
 2140 STA T1
 2150 LSR
 2160 STA T2
 2170 LSR
 2180 STA QUO.REM+1 QUO = LO-BYTE/7
 2190 ADC T1
 2200 ADC T2 QUO*7
 2210 EOR #$FF -QUO*7
 2220 SEC
 2230 ADC DIVIDEND REM
 2240 LDX DIVIDEND+1 0,1, OR 2
 2250 ADC RTBL,X
 2260 CMP #7
 2270 BCC .1
 2280 SBC #7
 2290 .1 STA QUO.REM FINAL REMAINDER
 2300 LDA QTBL,X
 2310 ADC QUO.REM+1
 2320 STA QUO.REM+1 FINAL QUOTIENT
 2330 *--------------------------------
 2340 PLP SWITCH TO ORIGINAL MODE
 2350 XCE
 2360 PLP X&M BITS
 2370 RTS
 2380 *--------------------------------
 2390 QTBL .DA #0,#36,#73,#109
 2400 RTBL .DA #-1,#3,#0,#4
 2410 *--------------------------------
 2420 PRINT
 2430 PHP SAVE M&X BITS
 2440 SEC SWITCH TO EMULATION MODE
 2450 XCE
 2460 PHP SAVE ORIGINAL MODE (C-BIT)
 2470 LDA DIVIDEND+1
 2480 ORA #"0" PRINT DIVIDEND IN HEX
 2490 JSR COUT
 2500 LDA DIVIDEND
 2510 JSR PRBYTE
 2520 LDA #" " PRINT QUOTIENT IN HEX
 2530 JSR COUT
 2540 LDA QUO.REM+1
 2550 JSR PRBYTE
 2560 LDA #" " PRINT REMAINDER IN HEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2487 of 2550

Apple II Computer Info

 2570 JSR COUT
 2580 LDA QUO.REM
 2590 JSR PRBYTE
 2600 JSR CROUT <RETURN>
 2610 PLP RESTORE NATIVE/EMULATION BIT
 2620 XCE
 2630 PLP RESTORE M&X BITS
 2640 RTS
 2650 *--------------------------------
 2660 CHECK
 2670 LDA QUO.REM
 2680 AND ##$FF00 ISOLATE QUOTIENT
 2690 LSR DIVIDE BY 64 FOR NOW
 2700 LSR
 2710 LSR
 2720 LSR
 2730 LSR
 2740 LSR
 2750 STA T1
 2760 LSR MULTIPLY BY SEVEN
 2770 STA T2
 2780 LSR
 2790 ADC T1
 2800 ADC T2
 2810 STA T1 QUO * 7
 2820 LDA QUO.REM CHECK FOR VALID REMAINDER
 2830 AND ##$00FF 0...7
 2840 CMP ##7
 2850 BCS .1 ...INVALID REMAINDER
 2860 ADC T1 ADD QUO*7
 2870 CMP DIVIDEND ...BETTER BE SAME!
 2880 BNE .1 ...NOT, INVALID QUO & REM
 2890 CLC SIGNAL VALID ANSWERS
 2900 RTS
 2910 .1 SEC SIGNAL INVALID ANSWERS
 2920 RTS
 2930 *--------------------------------
 2940 PAUSE
 2950 SEP #$20 8-BIT A-REGISTER
 2960 LDA $C000 CHECK KEYBOARD
 2970 BPL .2 NOTHING TYPED
 2980 STA $C010 CLEAR STROBE
 2990 CMP #$8D <RETURN>?
 3000 BEQ .2 <RET>, SO DON'T PAUSE
 3010 .1 LDA $C000 SOME OTHER KEY, SO PAUSE
 3020 BPL .1 ...TILL ANOTHER KEY TYPED
 3030 STA $C010 CLEAR STROBE
 3040 .2 CMP #$8D .EQ. IF <RET>
 3050 RTS ...ELSE .NE.
 3060 *--------------------------------
 3070 * DIVIDE BY 7 FROM NEW //C ROMS (AT $CB4F-CBB0)
 3080 * USED TO GET NUMBER OF 7-BYTES PACKETS
 3090 * IN A BUFFER, FOR THE PROTOCOL CONVERTER
 3100 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2488 of 2550

Apple II Computer Info

 3110 DIV7.TWOC
 3120 PHP SAVE X&M BITS
 3130 SEC ENTER EMULATION MODE
 3140 XCE
 3150 PHP SAVE PREVIOUS MODE
 3160 *---ALGORITHM FROM //C-----------
 3170 LDX DIVIDEND+1 HI BYTE (0, 1, OR 2)
 3180 LDA PDIV7TAB,X 0, $100, OR $200 DIVIDED BY 7
 3190 STA QUO.REM+1 QUOTIENT SO FAR
 3200 LDA PMOD7TAB,X 0, $100, OR $200 MOD 7
 3210 STA QUO.REM REMAINDER SO FAR
 3220 *---PROCESS NEXT 5 BITS----------
 3230 LDX #5
 3240 LDA DIVIDEND LOW BYTE
 3250 STA T1 WORKING COPY
 3260 AND #7 LOW 3 BITS
 3270 TAY SAVE FOR LATER USE
 3280 .1 ASL T1 GET NEXT BIT FROM DIVIDEND IN CARRY
 3290 BCC .4 IF CLEAR, NO EFFECT ON QUO,MOD
 3300 LDA MOD7TAB,X GET MOD7 FOR 2^N
 3310 .2 CLC UPDATE MOD VALUE
 3320 ADC QUO.REM
 3330 CMP #7 OVERFLOW?
 3340 BCC .3 ...NO
 3350 SBC #7 ...YES, CORRECT
 3360 .3 STA QUO.REM REMAINDER SO FAR
 3370 LDA DIV7TAB,X GET QUOTIENT FOR 2^N
 3380 ADC QUO.REM+1
 3390 STA QUO.REM+1 QUOTIENT SO FAR
 3400 .4 DEX ONE LESS BIT TO DEAL WITH
 3410 BMI .5 ...FINISHED
 3420 BNE .1 ...FIVE TIMES
 3430 TYA GET BACK FIRST 3 BITS
 3440 JMP .2 ADD IN REMAINDER
 3450 *---RETURN TO CALLER-------------
 3460 .5 PLP ORIGINAL MODE
 3470 XCE
 3480 PLP RESTORE X&M BITS
 3490 RTS
 3500 *--------------------------------
 3510 PDIV7TAB .DA #0,#36,#73
 3520 PMOD7TAB .DA #0,#4,#1
 3530 MOD7TAB .DA #0,#1,#2,#4,#1,#2
 3540 DIV7TAB .DA #0,#1,#2,#4,#9,#18
 3550 *--------------------------------
 3560 HACKNEY.DIV7
 3570 STA T1 SAVE VALUE
 3580 AND ##$0007 SAVE LOWER 3 BITS (MOD 8)
 3590 STA T2
 3600 LDA T1 DIVIDE BY 8
 3610 LSR
 3620 LSR
 3630 LSR
 3640 ASL DOUBLE FOR TABLE INDEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2489 of 2550

Apple II Computer Info

 3650 TAX GET QUO & REM FROM TABLE
 3660 LDA TABLE,X
 3670 ASL MULTIPLY BOTH BY 8
 3680 ASL
 3690 ASL
 3700 ADC T2 ADD LOWER BITS BACK
 3710 TAX SAVE RESULT
 3720 AND ##$FF00 KEEP QUOTIENT
 3730 STA T1
 3740 TXA GET REMAINDER
 3750 ASL DOUBLE FOR INDEX
 3760 TAX
 3770 LDA TABLE,X GET QUO & REM FROM TABLE
 3780 CLC ADD PREVIOUS QUOTIENT
 3790 ADC T1
 3800 RTS
 3810 *--------------------------------
 3820 BUILD.HACKNEY.TABLE
 3830 PHP SAVE M&X BITS
 3840 REP #$20 LONG A-REG
 3850 LDA ##TABLE
 3860 STA T1
 3870 SEP #$30 ALL REGS SHORT
 3880 LDX #0 X = REMAINDER
 3890 TXY Y = QUOTIENT
 3900 .1 TXA STORE CURRENT REMAINDER
 3910 STA (T1)
 3920 INC T1
 3930 TYA STORE CURRENT QUOTIENT
 3940 STA (T1)
 3950 INC T1
 3960 INX NEXT REMAINDER
 3970 CPX #7
 3980 BCC .1 ...NO CHANGE TO QUOTIENT
 3990 LDX #0 NEXT QUOTIENT
 4000 INY
 4010 .DO 1
 4020 CPY #10 STOP AFTER QUO=9, REM=6
 4030 .ELSE
 4040 CPY #16 STOP AFTER QUO=15, REM=6
 4050 .FIN
 4060 BCC .1 ...NOT YET
 4070 PLP RESTORE M&X BITS
 4080 RTS
 4090 *--------------------------------
 4100 .BS *+255/256*256-*
 4110 TABLE .EQ *
 4120 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2490 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:Butterill.Ops.txt
==

Fast 16x16 Multiply & Divide in 65802............John Butterill
 Ottowa, Ontario

Recently I needed a 16-bit multiplication subroutine in my 65802-
enhanced Apple II. Naturally, I needed one that was both fast and
short. I referred back to the Jan 86 AAL, which contained several
examples for the 65802. The one named FASTER caught my fancy because
it seemed a good compromise between size and speed. Then I made some
changes which I think significantly improve it.

I noted that when you ROR the low half of the product into the
multiplier, you get a bit out. This bit remains in the carry. If the
low-product and the multiplier share the same location, then you can
ROL in the low-product bit and ROL out the multi- plier bit at the
same time, instead of loading and LSR-ing the multiplier. By not
having to load the multiplier, the Accumu- lator is free to contain
the high half of the product without saving and loading it each time
around. The result is rather more compact, fitting into 35 bytes
(FASTER took 42 bytes).

It is also faster. By my calculations, the best and worst cases take
335 and 383 cycles, respectively. This includes the JSR to call the
subroutine and the RTS to get back.

At the expense of two more bytes, I can save nine more cycles: delete
line 1240 and add the following:

 1304 ROR
 1305 ROR A

This avoids the 17th trip through the loop, whose only purpose was to
roll-in the final bit of the product.

By the way, some assemblers use the syntax "ROR A" to rotate the
contents of the A-register. The S-C Macro Assembler and some others
use the syntax "ROR" with a blank operand field for that mode. Then
"ROR A" means to rotate the contents of the variable named "A", as in
my program. To avoid confusion, you might want to change the variable
names, avoiding the name "A".

<<<<listing of multiply subroutine>>>>

A 16-bit by 16-bit division seems inherently messier. First, the
divisor must be shifted left until it is at least greater than half
the dividend. One can do a fast cycle which shifts the divisor all
the way to the left, but for every shift left in this loop, the
divisor must be shifted right again in the second (subtracting) loop.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2491 of 2550

Apple II Computer Info

In practice, I feel that the values would not be randomly distributed,
but would be biased toward smaller values. I'm more likely to divide
by 7 than by 32973, for example. Therefore it is worthwhile putting
in the extra code to shift left only as far as is necessary. The
scaling portion in my subroutine, lines 1240-1300, shift the divisor
until either bit 15 = 1 or the divisor equals/exceeds the dividend.

In the second loop, lines 1310-1400, the shifted divisor is repeatedly
compared to the dividend. If it is smaller, it is subtracted and a 1-
bit goes into the quotient; otherwise a 0-bit goes in. The loop stops
after it has operated with the divisor shifted back to its original
position. This is ordinary long division, in binary. The comparison-
subtraction is performed from one to 16 times, depending on the
values.

As I calculate it, the best case (dividend=divisor) takes 82 cycles.
The worst case, which I think would be $FFFF/1, takes 676 cycles. The
time is a function of the number of significant bits in the answer.

<<<division subroutine>>>

[John also wrote a nice demonstration driver for his subroutines,
allowing you to enter two hexadecimal values and see the result in
hexadecimal. The source code for the demo is included on the
monthly/quarterly disk.]

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2492 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:Call.Sequences.txt
==

Using the 65816 Stack Relative Mode........Bob Sander-Cederlof

The 65802 and 65816 have two new address modes that allow you to reach
into the stack. The "offset,S" mode lets you access position relative
to the stack pointer, and the "(offset,S),Y" mode lets you access data
indirectly through an address that is on the stack. The new address
modes are available even when the 65802/16 is in the "emulation" mode.

The hardware adds the value of the offset to the current stack pointer
to form an effective address. The stack pointer is always pointing at
one address below the end of the stack. Thus, an address of "1,S"
points to the first item on the stack.

Having these new modes leads to interesting programming possibilities.
When you design a subroutine, you have to decide how you are going to
pass parameters into and out of the subroutine. Usually we try to use
the A, X, and Y registers first. Another method puts the data of the
address of the data after the JSR that calls the subroutine. ProDOS
MLI calls use this method:

 JSR $BF00
 .DA #$C1,PARMS

In another method you push data or data addresses on the stack, and
then call the subroutine. This is the preferred method in some
computers, but not the 6502. The new modes make this mode work nicely
in the 65802/16, though.

I coded up two examples to show you might use the new modes. They
both are message printing subroutines. The calling method requires
telling the subroutine where to find a variable length message. In
the first example (lines 1070-1330), I chose to push the address of
the message text on the stack before calling the message printing
subroutine. In the second example (lines 1340-1640), I used the
method of storing the message text immediately after the JSR
instruction.

Lines 1070-1110 print out two messages, using the first technique. I
use the PEA (Push Effective Address) instruction to put the address of
the first byte of the message text on the stack. This instruction
pushes first the high byte, then the low byte, of the value of the
operand. (I think I would prefer to have called it "PSH #value",
because that is the effect. Then the PEI opcode, which pushes two
bytes from the direct page, could be "PSH zp". But, nobody asked me.)

Anyway, let's look at the PRINT.IT subroutine. When the subroutine
starts looking at the stack, it looks like this:

 | msg addr lo | 4,S

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2493 of 2550

Apple II Computer Info

 | ------------- |
 | msg addr hi | 3,S
 | ------------- |
 | ret addr lo | 2,S
 | ------------- |
 | ret addr hi | 1,S
 | ------------- |
 | |<---Stack Pointer

The LDA (3,S),Y instruction at line 1240 takes the address at 3,S and
4,S (which is the address of the first byte of the message) and adds
the Y-register to it; then the LDA opcode picks up the message byte.
After printing all the message and finding the terminating 00 byte,
lines 1290-1320 move the return address up two slots higher in the
stack (over the top of the message address). At the same time, the
original copy of the return address is removed from the stack. Then a
simple RTS takes us back to the caller, with a clean stack.

The second example uses the "message buried in the code" method. when
PRINT.MSG looks at the stack, only the return address is there. The
return address points to the third byte of the JSR instruction, one
byte before the message text. Therefore the message printing loop in
lines 1500-1550 starts with Y=1. Lines 1560-1620 add the message
length to the return address, so that an RTS opcode will return to the
caller just past the message.

<<<code here>>>

It might be instructive to look at how these two examples could be
code in a plain 6502 environment. First, we must replace the PEA
opcodes in lines 1070 and 1090 with the following:

 LDA #MESSAGE
 PHA
 LDA /MESSAGE
 PHA

Then PRINT.IT would require using temporary memory somewhere or
writing self-modifying code. With a pointer in page zero, it could
work like this:

<<<6502 version of print.it>>>

PRINT.MSG also can be written in pure 6502 code with either self-
modifying code or a pointer in page zero. Here is the self-modifying
version:

<<<6502 version of print.msg>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2494 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:CorrexAbtBruns.txt
==

The Real Story about DOS and BRUN.........Bob Sander-Cederlof

I was wrong. Some of you were kind enough to point it out. John
Butterill sent a letter, and others called (sorry, names forgotten).
I said, in the January 1986 AAL, that the reason BRUNning programs
from inside Applesoft programs often did not work was the fact that
DOS used a JMP rather than a JSR to call your program.

The truth is that DOS does call your program with a JMP, but there is
still a return address on the stack. The BRUN command processor
itself was called with a JSR, in a way. At $A17A there is a JSR
$A180. The routine at $A180 jumps to the BRUN processor. So when
your program finishes it will return to $A17D, right after the JSR
$A180. From there it goes to $9F83.

At $9F83, DOS will finally exit from doing the BRUN command. If MON C
is on, the carriage return from the end of the BRUN command will be
echoed at this time. This can put you into a loop, however, because
the BRUN command re-installed the DOS hooks in the input and output
vectors. When the DOS hooks are installed, any character input or
output will enter DOS first. Since we are still, in effect, inside
DOS, because of the BRUN, we get into a loop. DOS is not re-entrant,
as John Butterill put it. The BRUN command processor does a JSR
$A851, which re-installs the DOS hooks. If your program tries to do
any character I/O through calls to $FDED (COUT) or $FD0C (RDKEY), and
you start up your program by BRUNning it from inside an Applesoft
program, you will get DOS into a loop. Or, even if your program does
not do any I/O, if MONC is on DOS can still get into a loop.

I still think the easiest way to avoid this problem is to avoid using
BRUN inside Applesoft programs. Use BLOAD and CALL instead. But
sometimes you may want to use BRUN, because you do not know in advance
where the CALL address would be. One way to allow I/O inside your own
program even though it is to be BRUN from inside an Applesoft program
is to disconnect or bypass the hooks. You could output characters by
JSR $FDF0, for example. But that would always go to the screen, and
you may have a printer or an 80-column card or a modem hooked in, so
that isn't a real solution. Another way is to dis-install the DOS
hooks, by doing a JSR $9EE0 or the equivalent. The code at $9EE0 does
this:

 LDX #3
 .1 LDA $AA53,X
 STA $36,X
 DEX
 BPL .1
 RTS

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2495 of 2550

Apple II Computer Info

This unhooks DOS, but leaves any other I/O devices you have connected
hooked in. After doing this step, your program can freely call COUT
or RDKEY without DOS even knowing about it. You might also want to
store a zero at $AA5E, to turn off MONC. Your program can terminate
then by a JMP $3EA, which will restore the DOS hooks.

An alternative that seems to work is to save and restore the location
where DOS saves the entering stack pointer. This is the culprit which
causes the crippling loop. At $9FB6, just before returning to whoever
entered DOS, the stack pointer gets reset to the value it had when DOS
was entered. If you enter DOS while you are still in DOS, the first
value is replaced with the second. Then the final return point is
lost, and it is loop-city. Your program can save and restore $AA59,
where the stack pointer is kept:

 YOUR.PROGRAM
 LDA $AA59 save DOS stack pointer
 PHA
 LDA #0 turn off MON C
 STA $AA5E

 ...do all your stuff, including I/O

 PLA
 STA $AA59
 RTS

This method has the advantage that your program can issue its own DOS
commands by printing them, the way you would from Applesoft. For
example, the following program will work when BRUN from inside
Applesoft.

 .OR $1000
 .TF B.SHOW OFF
DEMONSTRATE
 LDA $AA59
 PHA
 LDY #0 issue DOS CATALOG command
.1 LDA MSG,Y
 JSR $FDED
 INY
 CPY #MSGSZ
 BCC .1
 LDA #0
 STA $AA5E "NOMON C"
 PLA
 STA $AA59
 RTS
MSG .HS 8D.84
 .AS -/CATALOG/
 .HS 8D
MSGSZ .EQ *-MSG

100 PRINT CHR$(4)"MONC"

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2496 of 2550

Apple II Computer Info

110 PRINT CHR$(4)"BRUN B.SHOW OFF"
120 PRINT "FINISHED"

However, that program will not work correctly if you just type "BRUN
B.SHOW OFF" from the command mode. You will get a syntax error after
the catalog displays, because the catalog command is left in the input
buffer incorrectly. Oh well!

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2497 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:Front.Page.txt
==

$1.80

Volume 6 -- Issue 9 June, 1986

In This Issue...

Using the 65816 Stack Relative Mode. 2
Fast 16x16 Multiply & Divide in 65802. 7
The Real Story about DOS and BRUN. 10
Toggling Between Two Values. 13
Using Apple's Protocol Converter 17
Generalized MLI System Error Handling. 24
Practical Application of CRC 30

So Soon?

Another issue of Apple Assembly Line already? Well, readers sent in
articles, Bob went on a writing binge, and we've managed to gain over
a week in our efforts to get AAL back on schedule. You should all
actually receive this issue during the month of June! One side effect
of this acceleration is that Bill wasn't ready in time with the code
to boot DOS 3.3 from his UniDisk 3.5. It looks like next month for
that program and article.

What, Not Yet?

Osborne/McGraw-Hill reports that their copies of 65816 Assembly
Language Programming, by Michael Fischer, arrived today (6/3), so our
orders should be shipped within two weeks. We'll send them on to our
customers just as soon as they arrive. Simon & Schuster has taken
over all of Prentice-Hall's titles, so they are now the ones we are
bugging about Programming the 65816, by David Eyes. The latest word
from S & S is mid-July. Sigh.

We understand that there is a 65816 book from Sybex in the stores, but
the people who have seen it aren't very impressed, describing it as a
6502 book with some '816 information gleaned from the data sheets but
few examples.

More Disk Utilities

We are now carrying the highly-regarded disk utility package Copy II
Plus. This includes disk and file copy programs, catalog and file
handling utilities for both DOS and ProDOS, track and sector editing,
and much more. List price for all this is only $39.95, but we'll have
it for just $35 + shipping.

Apple Assembly Line is published monthly by S-C SOFTWARE CORPORATION,
P.O. Box 280300, Dallas, Texas 75228. Phone (214) 324-2050.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2498 of 2550

Apple II Computer Info

Subscription rate is $18 per year in the USA, sent Bulk Mail; add $3
for First Class postage in USA, Canada, and Mexico; add $14 postage
for other countries. Back issues are available for $1.80 each (other
countries add $1 per back issue for postage). A subscription to the
newsletter and the Monthly Disk containing all source code is $64 per
year in the US, Canada and Mexico, and $87 to other countries.

All material herein is copyrighted by S-C SOFTWARE CORPORATION, all
rights reserved. (Apple is a registered trademark of Apple Computer,
Inc.)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2499 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:MLI.Error.Hndlr.txt
==

Generalized MLI System Error Handling.....Bob Sander-Cederlof

The ProDOS Machine Language Interface (MLI) returns an error code in
the A-register if anything goes wrong. There are about 30 error
codes, with values from $01 to $5A. BASIC.SYSTEM reduces the number
of different error codes to 18, calling many of them simply "I/O
ERROR". A nearly complete description of the error codes can be found
in several references:

 "Apple ProDOS--Advanced Features", pages 68-70.
 "Beneath Apple ProDOS", pages 6-59 thru 6-61.
 "ProDOS Technical Reference Manual", pages 77-79.

When I am working with a new program which has a lot of MLI calls, it
is helpful to have one central error handler to print out the error
information. Gary Little gives us such a subroutine on pages 66 and
67 of his "Apple ProDOS -- Advanced Features." Gary's program prints
the message "MLI ERROR $xx OCCURRED AT LOCATION $yyyy", where xx is
the hexadecimal error code and yyyy is the address of the next byte
after the MLI call. You can mentally subtract 6 from the yyyy address
to get the actual address of the JSR $BF00 that caused the error.

I assume you already know, if you are following me this far, that MLI
calls take the form "JSR $BF00", followed by three data bytes. The
first data byte is the opcode, and the other two are the address of
the parameter block for the MLI call:

 JSR $BF00
 .DA #OPCODE,PARAMETERS

It would be nice if the general error handler would give us a little
more information. First, I would like for it to print out the actual
address of the JSR $BF00, rather than the return address. Second, I
would like for it to print out the three bytes which follow the JSR
$BF00.

First, I recoded Gary's routine so that it took a lot less space.
(Littler than Little's!) I shortened the message and tightened the
code. My version prints simply "AT" in place of "OCCURRED AT
LOCATION." Then I used a message printing subroutine to print the two
text strings, rather than the two separate loops he used. His took 83
bytes, mine only 56.

<<<listing of short version>>>

Next, I started adding the features I mentioned above. The final
program takes 92 bytes, which is 9 more than Gary's. It displays the
error message "MLI ERROR $xx AT $yyyy (op.addr)."

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2500 of 2550

Apple II Computer Info

Lines 1080-1160 pick up the address MLI saved in the System Global
Page, and sbtract six from it. The result is stored into the LDA
$9999,Y instruction at line 1200. Horrors! Self-modifying code! The
loop at lines 1180-1240 copies the three data bytes which follow the
JSR $BF00 into the three variables at lines 1390-1410.

Lines 1260-1360 print out the error message. This loop differentiates
between ASCII characters (bit 7 = 1) and data offsets (bit 7 = 0).
The text to be printed is in lines 1430- 1550. Note that I used the
negative ASCII form for the text, and .DA lines for the data bytes
which will be printed in hexa- decimal. The expressions in those .DA
lines compute an offset from the beginning of the subroutine, which
will come out as a value less than $7F. I also used the value 00 to
terminate the entire message. The $8D bytes are RETURN characters, to
make sure the error message prints on a line by itself.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2501 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:Protocol.Conv.txt
==

Using Apple's Protocol Converter..........Bob Sander-Cederlof

The "Protocol Converter" is a firmware-controlled method of turning
the //c disk port into a multi-drop peripheral bus able to support up
to 127 external I/O devices. The bus connects devices which have
enough intelligence: an "Integrated WOZ Machine" (IWM) chip, a 6502-
type chip, RAM, and ROM. Data is transferred in a serial bit-stream
at roughly 250,000 bits per second. So far, the only device anyone is
building to run on the P/C bus is the Unidisk 3.5 from Apple.

As far as I have been able to determine, Apple's only published
information about the protocol converter is in the Apple //c Technical
Reference Manual, pages 114-142. The listing of the //c firmware in
the same Manual also is informative. A prelim- inary document was
available to developers, but most of the material is now given in the
//c manual. Tom Weishaar ("Uncle DOS") promises a future article on
the P/C in his "Open Apple" newsletter. (By the way, the June issue
of "Open Apple" used the term "Smartport" as synonymous with "Protocol
Converter".)

The Apple //e interface card for the UniDisk 3.5 also supports a
"real" Protocol Converter. The Apple Memory Expansion Card, CirTech
Flipster, and Applied Engineering RamFactor provide the same software
interface with most of the features of the protocol converter for one
I/O device (the memory card itself).

Apple briefly mentions the Protocol Converter in the Apple Memory
Expansion Card manual (Appendix B, last paragraph), but warns against
using it. They say "using the assembly-language protocol is fairly
complicated". Nevertheless, a significant amount of the Apple
firmware is used to implement the protocol converter features. It
appears that someone inside Apple intends that the P/C will be
included in the firmware of most future block-oriented devices. From
a software stand-point, it could be used regardless of whether the
actual hardware used the IWM-based bus, a SCSI bus, or no bus at all.

In order to use the protocol converter firmware, you need first to
find it. The first step in finding it is to find which slot it is in.
All of the cards with P/C firmware (so far) are also cards which
control or emulate disk drives and have firmware supporting the ProDOS
device driver protocol. Cards with ProDOS device driver firmware can
be identified by four bytes: $Cs01 = $20, $Cs03 = $00, $Cs05 = $03,
and $Cs07 = $00. The first three bytes in that list are the same for
all disk drive controllers. The zero value at $Cs07 distinguishes it
as a disk controller with protocol converter firmware.

The next step is to find the entry point in the firmware for protocol
converter calls. The byte at $CsFF is the key. That byte is the
offset in the firmware page for ProDOS calls. If $CsFF = $45, for

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2502 of 2550

Apple II Computer Info

example, ProDOS device driver calls would be "JSR $Cs45". To get the
address of the protocol converter entry point, add 3 to the ProDOS
entry point. In my example, "JSR $Cs48" would enter the protocol
converter firmware. The actual value will probably be different for
each kind of card, so you have to use software to find out what it is.

A program to find the slot and build the address of the protocol
converter could look like this:

 pcaddr .eq $01,$02
 find.pc lda #0
 sta pcaddr
 ldx #$C7 slot = 7 to 1 step -1
 .1 stx pcaddr+1
 ldy #7
 .2 lda (pcaddr),y $Cs07,05,03,01
 cmp pc.sig,y
 beq .3
 dex
 cpx #$c1
 bcs .1 try next slot
 sec signal could not find pc
 rts

 .3 dey
 dey
 bpl .2
 lda (pcaddr),y $CsFF
 adc #2 carry was set
 sta pcaddr
 rts carry clear signals pc found

 pc.sig .HS FF.20.FF.00.FF.03.FF.00

Once you have the address of the protocol converter firmware, you call
it in a manner similar to ProDOS MLI calls. You must plug the address
of the protocol converter entry into a "JSR" instruction, which is
followed by a one-byte command code and a two-byte address. The
command code is a number from $00 to $09 which specifies which action
you want the protocol converter to take. The address is the address
of a parameter block, which provides additional information for
processing the command, or a place for the information returned by the
command. After the protocol converter has finished processing your
command, it returns control to the next byte after the pointer to the
parameter block. If carry is clear, there was no error. If carry is
set, the A-register contains an error code.

Since my FIND.PC program left the address in two page zero locations,
we could simply put a JMP opcode ($4C) in front of the address to make
it into a JMP instruction. Then our calls to the protocol converter
would look like this:

 callpc .eq $00 (just before pcaddr)
 jsr find.pc

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2503 of 2550

Apple II Computer Info

 bcsno pc found
 lda #$4C JMP opcode
 sta callpc
 other code
 jsr callpc
 .da #cmd,parameters
 more code

Apple warns programmers NOT to use any page zero locations when
calling the protocol converter firmware, saying that some page zero
locations are used by that firmware. They do not say what locations
they use, but my investigations show that they use bytes in the range
from $40 to $4F. What they do is push those on the stack, put in
their own data, and at the end restore the original contents from the
stack. They use an awful lot of stack, up to 35 bytes. (The
RamFactor firmware uses no more than 17 bytes of stack for protocol
converter calls, including the two used by your JSR.) If you want be
safe rather than possibly sorry, you can copy the PCADDR bytes up into
your own program. You could even plug them into every JSR which calls
protocol converter. A cleaner way might be like this:

 jsr find.pc
 bcsno pc found
 lda pcaddr
 sta callp+1
 lda pcaddr+1
 sta callpc+2
 ...
 jsr callpc
 .da #cmd,parameters
 ...
 callpc jmp * address filled in

Description of Protocol Converter Commands

Apple defines ten commands for the protocol converter firmware. These
are not necessarily identical in function for all devices which use
the protocol converter. In fact, Apple's memory card uses two of the
commands differently than the UniDisk 3.5 does. The protocol
converter firmware in the RamFactor functions exactly the same as that
in the Apple Memory Expansion Card.

The following chart summarizes the ten commands as implemented in the
Apple Memory Expansion Card and RamFactor firmware. A more detailed
description of each command follows the chart. I am particularly
pointing this at the memory cards rather than the Unidisk 3.5, because
I believe these cards will be more popular with hackers like you and
me. Furthermore, the Unidisk 3.5 information is available in the //c
manual, but Apple has not released this detail for owners of the
memory card.

 Parameters: +0 +1 +2 +3 +4 +5 +6 +7 +8
 cmd cnt unit
PC Status $00 3 0 bufl bufh code

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2504 of 2550

Apple II Computer Info

RAM Status $00 3 1 bufl bufh code
Read Block $01 3 1 bufl bufh blkh blkm blkl
Write Block $02 3 1 bufl bufh blkh blkm blkl
Format $03 1 1
Control $04 3 0/1 bufl bufh code
Init $05 1 0/1
Read Bytes $08 4 1 bufl bufh cnth cntl adrh adrm adrl
Write Bytes $09 4 1 bufl bufh cnth cntl adrh adrm adrl

Error Codes $01 Command not $00-$05,$08, or $09
 $04 Wrong parameter count
 $11 Invalid Unit Number
 $21 Invalid Status or Control code
 $2D Block Number too large
PC Status (cmd $00, unit $00, code $00): reads the status of the
protocol converter itself into your buffer. The status of a memory
card is always 8 bytes, with the first byte = $01 and all the others =
$00. Also returns with $08 in the X-register and $00 in the Y-
register. ($0008 is the number of bytes stored in your buffer.) This
is of value only for compatibi- lity with other devices supporting
protocol converter firmware.

RAM Status (cmd $00, unit $01, code $00 or $03): reads the status of
the memory card into your buffer. Code $00 stores four bytes: the
first is always $F8, and the other three are the number of blocks in
the current partition (lo, mid, hi order). (Y,X) will equal ($00,$04)
when it is finished, showing that four bytes were stored. Code $03
will store 25 bytes: the first four are the same as code $00
returned; the next 17 are the name of the card in "ProDOS Volume Name"
format (length of name in first byte, ASCII characters of name with
hi-bit off, padded with blanks); and finally, four zero bytes. The
card name is "RAMCARD". (Y,X) will return ($00,$19) when finished,
indicating that 25 bytes were stored.

Obviously, the Status commands will operate differently on a real P/C
bus, and the actual details will vary according to the device you
interrogate.

Read Block (cmd $01): reads the specified block from the memory card.
(In RamFactor, the block number is relative, inside the currently
selected RamFactor partition.) You can read a block into a buffer in
//e Auxiliary Memory by calling the P/C with the RAMWRT soft-switch
set to AuxMem.

Write Block (cmd $02): writes the specified block from your buffer
into the memory card. (In RamFactor, the block number is relative,
inside the current RamFactor partition.) If you are careful and
follow all the rules, you can write a block from a buffer in Auxiliary
Memory by calling the protocol con- verter with the RAMRD soft-switch
set to AuxMem. You have to put the code that sets the RAMRD switch
and calls the protocol converter, and its parameter block, in zero-
page or stack-page motherboard RAM ($0000-01FF), or in the language
card RAM area. Or, you can have both RAMRD and RAMWRT set for AuxMem

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2505 of 2550

Apple II Computer Info

and be executing a program from within AuxMem. I always have a
conceptual battle dealing with this kind of bank switching.

Format (cmd $03): does nothing in a memory card.

Control (cmd $04): does nothing in a memory card. If the code is not
$00, you get error code $21. The buffer is never used.

Init (cmd $05): does nothing in a memory card.

Open or Close (cmd $06 or $07): cause error code $01 in a memory
card. These commands only apply to character-oriented devices, and
memory is a block-oriented device (so says Apple). Maybe someday
someone will build a peripheral which is character-oriented and
includes P/C firmware.

Read Bytes (cmd $08): reads a specified number of bytes starting at a
specified memory-card address into your buffer. The byte count may be
as high as $FFFF, but this would obviously wreak havoc inside your
Apple. No checks are made inside the protocol firmware for
reasonableness of the buffer address or the byte count, so be careful.
You would NEVER read into a buffer in the I/O address range ($C000-
$CFFF).

The memory-card address may be as high as $7FFFFF. (In RamFactor, the
address is relative inside the current partition.) This corresponds
to a total of 8 megabytes, which is only half the maximum capacity of
a RamFactor card. Apple has arbitrarily limited us to this maximum,
because they use the top bit of the card address to specify whether
the buffer is in MainMem (bit 23 = 0) or AuxMem (bit 23 = 1). (Bit 23
of the address is bit 7 of the last byte of the parameter block.)

Write Bytes (cmd $09): writes a specified number of bytes from your
buffer starting at a specified memory-card address. The details of
byte count, buffer location, and memory-card address are the same as
for the Read Bytes ($08) command.

The Unidisk 3.5 firmware interprets commands $08 and $09 differently.
Unidisk uses this pair to read and write Macintosh disks, which have
524-byte blocks.

All of the RamFactor protocol converter commands operate within the
current active partition. In the Apple card there is only one
partition (the whole card). RamFactor has nine partitions, and you
are always in one of them. If you start with a blank card, the first
call to the RamFactor protocol converter will set up the first
partition with all but 1024 bytes, make that partition the current
active one, and empty all the others.

Bill Morgan's articles on interfacing the Unidisk 3.5 with DOS 3.3
illustrate the use of protocol converter calls with that device. The
real power of the protocol converter concept will not be realized
until a variety of devices are available which use it. Maybe its real
future is bound up in the new 65816-based Apple //.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2506 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:Rindsbergs.CRC.txt
==

Practical Application of CRC....................Don Rindsberg

When I read Bob S-C's article on CRC in the February 1986 AAL, I said,
"Very interesting, but who needs it". Well, it wasn't long before I
ran into a real need myself!

I bought a used IBM PC-Jr and wanted to put my own routines in an
auto-start ROM cartridge. After some sleuthing, I found that the
power-up routine checks for signature bytes. If they are present, the
routine checks the ROM's CRC, which must be $0000 or the machine locks
up.

Not knowing the 65802 opcodes that Bob used, and being quite familiar
with the 8088 language, I decided to translate the PC-Jr's CRC routine
from "8088 dis-assembly language" to "plain vanilla 6502-ese". I
simulated the 8088's registers with Apple RAM, and wrote subroutines
for some of the 16-bit 8088 instructions.

Now here's what I think is strange about CRC's. If you pass all bytes
of a set of data through the CRC generator and then the two CRC bytes
themselves, the total CRC result is $0000! The PC-Jr add-on ROMs have
the program in all except the last two bytes and the CRC of the
program in those last two, so the total CRC for the entire ROM is
$0000.

My 6502 code requires you to enter the start in Apple RAM and the
length of the ROM data. For example, for a program starting at $2000
in Apple RAM, destined to be blown into a 2716 EPROM (2048 bytes), you
would enter an address of $2000 and a length of $0800. These two
values go into the first four bytes of the Apple zero page, so you can
use a monitor instruction from inside the S-C Assembler like this:

 :$00:00 20 00 08

My program runs a CRC calculation on all but the last two bytes, and
then prints out what the resulting CRC code is. If you store the CRC
value in the last two bytes of the ROM image, add two to the length,
and re-run my program, the result should be 0000. In a particular
example with a 2716, it might look like this:

 :$00:00 20 00 08 (set up address & length)
 :$800G (run CRC calculation)
 82DF (value of CRC computed)
 :$20FE:82 DF (store CRC in EPROM image)
 :$02:02 (increase length by two)
 :$800G (run CRC calcualtion)
 0000 (it worked!)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2507 of 2550

Apple II Computer Info

My routines will not win the speed or elegance contests, but they give
me the data!

If you want another check on your coding, run a CRC calculation on the
Applesoft $D000 ROM with length $0800. You should get $D01E if you
have an Apple II+ or original //e version. The enhanced //e gives a
CRC of $3BD4 because of some small changes Apple made.

By the way, I use my Apple to generate assembly language code for the
IBM PC line. I created an 8086/8088 cross assembler based on the S-C
Assembler for the purpose. Contact me if you need a tool like this:
Don Rindsberg, The Bit Stop, 5958 S. Shenandoah, Mobile, Alabama
36608. Or call at (205) 342-1653.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2508 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:Stack.Relative.txt
==

Using the 65816 Stack Relative Mode........Bob Sander-Cederlof

The 65802 and 65816 have two new address modes that allow you to reach
into the stack. The "offset,S" mode lets you access position relative
to the stack pointer, and the "(offset,S),Y" mode lets you access data
indirectly through an address that is on the stack. The new address
modes are available even when the 65802/16 is in the "emulation" mode.

The hardware adds the value of the offset to the current stack pointer
to form an effective address. The stack pointer is always pointing
one address below the end of the stack. Thus, an address of "1,S"
points to the first item on the stack.

These new modes lead to interesting programming possibilities. When
you design a subroutine, you have to decide how you are going to pass
parameters into and out of the subroutine. Usually we try to use the
A, X, and Y registers first. Another method puts the data or the
address of the data after the JSR that calls the subroutine. ProDOS
MLI calls use this method:

 JSR $BF00
 .DA #$C1,PARMS

In another method you push data or data addresses on the stack, and
then call the subroutine. This is the preferred method in some
computers, but not the 6502. The new modes make this mode work nicely
in the 65802/16, though.

I coded up two examples to show how you can use the new modes, both
message printing subroutines. The calling method requires telling the
subroutine where to find a variable length message. In the first one
(lines 1070-1330), I chose to push the address of the text on the
stack before calling the printing routine. In the second example
(lines 1340-1640), I used the method of storing the message text
immediately after the JSR instruction.

Lines 1070-1110 print out two messages, using the first technique. I
use the PEA (Push Effective Address) instruction to put the address of
the first byte of the message text on the stack. This instruction
pushes first the high byte, then the low byte, of the value of the
operand. (I think I would prefer to have called it "PSH #value",
because that is the effect. Then the PEI opcode, which pushes two
bytes from the direct page, could be "PSH zp". But, nobody asked me.)

Anyway, let's look at the PRINT.IT subroutine. When the subroutine
starts looking at the stack, it looks like this:

 | msg addr lo | 4,S
 | ------------- |

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2509 of 2550

Apple II Computer Info

 | msg addr hi | 3,S
 | ------------- |
 | ret addr lo | 2,S
 | ------------- |
 | ret addr hi | 1,S
 | ------------- |
 | |<---Stack Pointer
The LDA (3,S),Y instruction at line 1240 takes the address at 3,S and
4,S (which is the address of the first byte of the message) and adds
the Y-register to it; then the LDA opcode picks up the message byte.
After printing all the message and finding the terminating 00 byte,
lines 1290-1320 move the return address up two slots higher in the
stack (over the top of the message address). At the same time, the
original copy of the return address is removed from the stack. Then a
simple RTS takes us back to the caller, with a clean stack.

The second example uses a "message buried in the code" method. When
PRINT.MSG looks at the stack, only the return address is there. The
return address points to the third byte of the JSR instruction, one
byte before the message text. Therefore the printing loop in lines
1500-1550 starts with Y=1. Lines 1560- 1620 add the message length to
the return address, so that an RTS opcode will return to the caller
just past the message.

<<<code here>>>

It might be instructive to look at how these two examples could be
code in a plain 6502 environment. First, we must replace the PEA
opcodes in lines 1070 and 1090 with the following:

 LDA #MESSAGE
 PHA
 LDA /MESSAGE
 PHA

Then PRINT.IT would require using temporary memory somewhere or
writing self-modifying code. With a pointer in page zero, it could
work like this:

<<<6502 version of print.it>>>

PRINT.MSG also can be written in pure 6502 code with either self-
modifying code or a pointer in page zero. Here is the self-modifying
version:

<<<6502 version of print.msg>>>

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2510 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:Articles:Toggling.Values.txt
==

Toggling Between Two Values.....................Jan Eugenides

In the course of my job as Technical Editor for MicroSPARC, Inc. (the
publishers of Nibble and Nibble Mac magazines), I am often called upon
to modify programs that we are going to publish to make them
compatible with configurations other than the one the author
originally wrote for. Recently, I had to change a program to toggle
between Drive 1 and Drive 3, rather than Drive ! and Drive 2 as it was
originally coded. Here is the original subroutine which toggled the
drive number stored in a variable named CD:

 TOGGLE.DRIVE
 LDA CD
 CMP #1
 BEQ .1
 LDA #1
 STA CD
 BNE .2
 .1 INC CD
 .2 RTS
 CD .BS 1

This code takes a total of 19 bytes, including the variable CD. My
task was to exactly replace this routine with one which would toggle
between 1 and 3 rather than 1 and 2. It had to use the same number of
bytes, or less. It looks easy enough, but I couldn't come up with a
solution. All my routines required one or two more bytes. I finally
took the easy way out and patched it with a JMP to a free space near
the end of the program, and put my code there. It works, but is there
a shorter way?

Bob, you are the best code squeezer around, so I thought I'd give the
problem to you. You'll undoubtedly come up with some sneaky code that
does the trick in three bytes or less!

An Answer for Jan.........................Bob Sander-Cederlof

I don't know if I am the best code squeezer or not, but I can't
squeeze it all the way to three bytes! My best attempt is nine bytes:

 TOGGLE.DRIVE
 LDA #1
 CD .EQ *-1
 EOR #2
 STA CD
 RTS

In general, you can toggle back and forth between any two values by
using the EOR instruction. The toggle constant is simply the

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2511 of 2550

Apple II Computer Info

exclusive-or of the two values. For example, to toggle back and forth
between the values $A0 and $B2, I would use "EOR #$12".

My subroutine changes 1 to 3 and 3 to 1, as you requested. However,
it is not functionally identical to the original code. The original
code did not store the variable CD inside an immediate-mode LDA, as I
did. If that troubles you, simply change that line to "LDA CD" and
add the line "CD .BS 1" at the end. The result takes ten bytes, still
well under the limit.

The original code also always had the side-effect of setting carry
status, so you might need to add a "SEC" instruction. I doubt it,
because the original code would be very weird if it depended on this
side-effect.

The original code not only changed 3 to 1, but also changed any other
value not already 1 into 1. This is also probably not a necessary
feature, because prior code should have made sure that we started with
a valid drive number.

I came up with several other approaches to the problem, all of which
are shorter than the original subroutine:

 TOGGLE.DRIVE
 LSR CD 3 TO 1, OR 1 TO 0
 BNE .1 IT WAS 3 TO 1
 LDA #3 CHANGE 1 TO 3
 STA CD
 .1 RTS

 TOGGLE.DRIVE
 CLC
 LDA CD
 ADC #2 1 TO 3, OR 3 TO 5
 AND #3 5 TO 1
 RTS

None of these are particularly tricky or sneaky. In fact, the first
and shortest one is the most straightforward. What would be tricky or
sneaky is if the original author depended on the hidden side-effects
in his subroutine.

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2512 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:Bell.Demo.Src.txt
==

 1000 * BRUN DEMO
 1010 *SAVE BELL DEMO SOURCE
 1020 *----------------------------
 1030 * DEMO OF BRUN'ING A ML PROG
 1040 * BY RINGING A BELL
 1050 *
 1060 * DOS IS DISCONNECTED
 1070 * TO ALLOW I/O WITHOUT
 1080 * DISRUPTING PROPER RETURN.
 1090 *--------------------------------
 1100 COUT1 .EQ $FDF0 SCREEN OUTPUT
 1110 KEYIN .EQ $FD1B KEYBOARD INPUT
 1120 *--------------------------------
 1130 .OR $6A00
 1140 DEMO
 1150 LDX #0 BEFORE ANY I/O,
 1160 .10 LDA $36,X DISCONNECT DOS
 1170 PHA BY PUSHING $36.39
 1180 LDA PTRS,X ONTO STACK,
 1190 STA $36,X & REPLACING
 1200 INX WITH COUT1/KEYIN
 1210 CPX #4
 1220 BNE .10
 1230
 1240 JSR $FF3A RING THE BELL
 1250
 1260 LDX #3 RECONNECT DOS
 1270 .90 PLA BY PULLING
 1280 STA $36,X $36.39 FROM
 1290 DEX THE STACK.
 1300 BPL .90
 1310 RTS
 1320 *--------------------------------
 1330 * REPLACEMENT I/O POINTERS
 1340 *--------------------------------
 1350 PTRS .DA COUT1,KEYIN

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2513 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:Butterill.Demo.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2514 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:Butterill.Div.txt
==

 1000 *SAVE BUTTERILL'S DIVIDE
 1010 *--------------------------------
 1020 * 16 BIT DIVIDE WITH REMAINDER
 1030 * DIVIDE B BY A
 1040 * LEAVES QUOTIENT IN B,
 1050 * REMAINDER IN A
 1060 *--------------------------------
 1070 * TIMING: A=$0000 -- 39 cycles
 1080 * B>$7FFF -- 71 or 74 cycles
 1090 * A=B -- 82 cycles
 1100 * A=1,B=$FFFF -- 676 cycles
 1110 *--------------------------------
 1120 A .EQ 0,1 DIVISOR, REMAINDER
 1130 B .EQ 2,3 DIVIDEND, QUOTIENT
 1140 *--------------------------------
 1150 .OP 65802
 1160 DIV16
 1170 CLC ENTER FROM 6502
 1180 XCE NATIVE MODE
 1190 REP #$20 A-REG 16 BITS
 1200 LDX #0 START SCALE CNTR
 1210 LDA A GET DIVISOR
 1220 BEQ .90 ...ZERO DIVISOR
 1230 BMI .30 ...DIVISOR > $7FFF
 1240 *---SCALE DIVISOR----------------
 1250 .10 CMP B ALIGN A TO LEFT
 1260 BCS .20 UNTIL > B
 1270 INX OR BIT 15 SET
 1280 ASL & COUNT IN X
 1290 BPL .10
 1300 .20 STA A SCALED DIVIDEND
 1310 *---START SUBTRACTING------------
 1320 .30 LDA B GET DIVIDEND
 1330 STZ B CLEAR QUOTIENT
 1340 .40 CMP A REPEATED CONDITIONAL
 1350 BCC .50 SUBTRACTION.
 1360 SBC A
 1370 .50 ROL B ROL IN 1 IF SUBT.
 1380 LSR A 0 IF NO SUBT.
 1390 DEX
 1400 BPL .40
 1410 STA A REMAINDER
 1420 *---RETURN TO CALLER-------------
 1430 .60 SEC EXIT TO 6502
 1440 XCE
 1450 RTS
 1460 *---FOR X/0, GIVE 0,0 ANSWER-----
 1470 .90 STA B DIVISION BY ZERO
 1480 BRA .60

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2515 of 2550

Apple II Computer Info

 1490 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2516 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:Butterill.Mult.txt
==

 1000 *SAVE BUTTERILL'S MULTIPLY
 1010 *--------------------------------
 1020 * 16 BIT MULTIPLY FOR 65802
 1030 * MULTIPLIES A BY B
 1040 * LEAVES ANSWER IN A & B
 1050 *--------------------------------
 1060 A .EQ 0,1 MULTIPLIER, PRODUCT-LO
 1070 B .EQ 2,3 MULTIPLICAND, PRODUCT-HI
 1080 *--------------------------------
 1090 * TIMING: B=$0000 -- 27 CYCLES
 1100 * A=$0000 -- 335 CYCLES
 1110 * A=$FFFF -- 383 CYCLES
 1120 * (INCLUDING JSR AND RTS)
 1130 *--------------------------------
 1140 .OP 65802
 1150 MULT16
 1160 CLC ENTER FROM 6502
 1170 XCE
 1180 REP #$20
 1190 LDA B IF B ZERO,
 1200 BEQ .90 THEN BY-PASS
 1210 DEC B
 1220 LDA ##0000
 1230 LDX #16 FOR 16 BITS
 1240 CLC FOR 17'TH CYCLE
 1250 .10 ROR ROLL OUT PRODUCT BIT
 1260 ROR A ROLL IN 'PLIER BIT
 1270 BCC .20
 1280 ADC B
 1290 .20 DEX
 1300 BPL .10 CYCLES 17 TIMES
 1310 STA B
 1320 .30 SEC EXIT TO 6502
 1330 XCE
 1340 RTS
 1350 .90 STA A PROCEDURE FOR B=0
 1360 BRA .30
 1370 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2517 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:Div16.Demo.Src.txt
==

 1000 * DIV16 DEMO
 1010 *SAVE DIV16 DEMO SOURCE
 1020 *--------------------------------
 1030 * DEMO OF BRUN'ING A ML PROG
 1040 * USING DIV16
 1050 *
 1060 * DOS IS DISCONNECTED
 1070 * TO ALLOW I/O WITHOUT
 1080 * DISRUPTING PROPER RETURN
 1090 *--------------------------------
 1100 .OP 65802
 1110 .OR $6A00
 1120 *--------------------------------
 1130 COUT1 .EQ $FDF0 SCREEN OUTPUT
 1140 KEYIN .EQ $FD1B KEYBOARD INPUT
 1150 *--------------------------------
 1160 AL .EQ 0
 1170 AH .EQ 1
 1180 BL .EQ 2
 1190 BH .EQ 3
 1200 DFLG .EQ 4 DELIMITER FLAG
 1210 GETLN1 .EQ $FD6F INPUT LINE TO BUFFER
 1220 PRNTAX .EQ $F941 OUTPUT A,X AS HEX
 1230 COUT .EQ $FDED OUTPUT A AS CHAR
 1240 CROUT .EQ $FD8E OUTPUT CR
 1250 *--------------------------------
 1260 DEMO
 1270 LDX #0 BEFORE ANY I/O,
 1280 .10 LDA $36,X DISCONNECT DOS
 1290 PHA BY PUSHING $36.39
 1300 LDA PTRS,X ONTO STACK,
 1310 STA $36,X & REPLACING
 1320 INX WITH COUT1/KEYIN
 1330 CPX #4
 1340 BNE .10
 1350
 1360 JSR CROUT
 1370 .20 JSR GETLN1 INPUT LINE TO BUFFER
 1380 JSR HEXVALS EXTRACT HEX VALUES
 1390 CPY #1 IF NULL LINE,
 1400 BEQ .80 THEN EXIT
 1410 JSR PROG DIVIDE
 1420 LDA BH
 1430 LDX BL
 1440 JSR PRNTAX DISP QUOTIENT
 1450 LDA #","
 1460 JSR COUT DISP ','
 1470 LDA AH
 1480 LDX AL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2518 of 2550

Apple II Computer Info

 1490 JSR PRNTAX DISP REMAINDER
 1500 JSR CROUT
 1510 JMP .20
 1520
 1530 .80 LDX #3 RECONNECT DOS
 1540 .90 PLA BY PULLING
 1550 STA $36,X $36.39 FROM
 1560 DEX THE STACK.
 1570 BPL .90
 1580 RTS
 1590 *--------------------------------
 1600 * REPLACEMENT I/O POINTERS
 1610 *--------------------------------
 1620 PTRS .DA COUT1,KEYIN
 1630
 1640 *--------------------------------
 1650 * READ TWO HEX 16-BIT WORDS
 1660 * FROM INPUT BUFFER. (AFTER WOZ)
 1670 *--------------------------------
 1680 BUFF .EQ $200
 1690 *--------------------------------
 1700 HEXVALS
 1710 LDY #0 CLEAR BUFFER INDEX
 1720 STY DFLG CLEAR DELIMITER FLAG
 1730 .10 LDA #0 CLEAR A
 1740 STA AL
 1750 STA AH
 1760 .20 LDA BUFF,Y GET CHAR FROM BUFFER
 1770 INY
 1780 CMP #$8D = CR ?
 1790 BNE .30
 1800 RTS
 1810
 1820 .30 EOR #$B0 CONVERT ASCII TO HEX
 1830 CMP #$0A
 1840 BCC .40 IF 0-9
 1850 ADC #$88
 1860 CMP #$FA
 1870 BCS .40 IF A-F
 1880 LDA DFLG ELSE ASSUME
 1890 BNE .10 CHAR IS
 1900 LDA AL A DELIMITER
 1910 STA BL MOVE A TO B
 1920 LDA AH IF NOT REPEATED
 1930 STA BH DELIMITER
 1940 DEC DFLG SET DELIMITER FLAG
 1950 JMP .10
 1960
 1970 .40 ASL SHIFT NIBBLE
 1980 ASL TO LEFT HAND
 1990 ASL SIDE.
 2000 ASL
 2010 LDX #4 & ROL INTO MEMORY
 2020 .50 ASL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2519 of 2550

Apple II Computer Info

 2030 ROL AL
 2040 ROL AH
 2050 DEX
 2060 BNE .50
 2070 STX DFLG CLEAR DELIMITER FLAG
 2080 JMP .20
 2090 *--------------------------------
 2100 * SUBROUTINE
 2110 *--------------------------------
 2120 PROG .IN BUTTERILL'S DIVIDE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2520 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:Mult16.Demo.Src.txt
==

 1000 * MULT16 DEMO
 1010 *SAVE MULT16 DEMO SOURCE
 1020 *--------------------------------
 1030 * DEMO OF BRUN'ING A ML PROG
 1040 * USING MULT16
 1050 *
 1060 * DOS IS DISCONNECTED
 1070 * TO ALLOW I/O WITHOUT
 1080 * DISRUPTING PROPER RETURN
 1090 *--------------------------------
 1100 .OP 65802
 1110 .OR $6A00
 1120 *--------------------------------
 1130 COUT1 .EQ $FDF0 SCREEN OUTPUT
 1140 KEYIN .EQ $FD1B KEYBOARD INPUT
 1150 *--------------------------------
 1160 AL .EQ 0
 1170 AH .EQ 1
 1180 BL .EQ 2
 1190 BH .EQ 3
 1200 DFLG .EQ 4 DELIMITER FLAG
 1210 GETLN1 .EQ $FD6F INPUT LINE TO BUFFER
 1220 PRNTAX .EQ $F941 OUTPUT A,X AS HEX
 1230 CROUT .EQ $FD8E OUTPUT CR
 1240 *--------------------------------
 1250 DEMO
 1260 LDX #0 BEFORE ANY I/O,
 1270 .10 LDA $36,X DISCONNECT DOS
 1280 PHA BY PUSHING $36.39
 1290 LDA PTRS,X ONTO STACK,
 1300 STA $36,X & REPLACING
 1310 INX WITH COUT1/KEYIN
 1320 CPX #4
 1330 BNE .10
 1340
 1350 JSR CROUT
 1360 .20 JSR GETLN1 INPUT LINE TO BUFFER
 1370 JSR HEXVALS EXTRACT HEX VALUES
 1380 CPY #1 IF NULL LINE,
 1390 BEQ .80 THEN EXIT
 1400 JSR PROG MULTIPLY
 1410 LDA BH
 1420 LDX BL
 1430 JSR PRNTAX DISP HI-16
 1440 LDA AH
 1450 LDX AL
 1460 JSR PRNTAX DISP LO-16
 1470 JSR CROUT
 1480 JMP .20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2521 of 2550

Apple II Computer Info

 1490
 1500 .80 LDX #3 RECONNECT DOS
 1510 .90 PLA BY PULLING
 1520 STA $36,X $36.39 FROM
 1530 DEX THE STACK.
 1540 BPL .90
 1550 RTS
 1560 *--------------------------------
 1570 * REPLACEMENT I/O POINTERS
 1580 *--------------------------------
 1590 PTRS .DA COUT1,KEYIN
 1600
 1610 *--------------------------------
 1620 * READ TWO HEX 16-BIT WORDS
 1630 * FROM INPUT BUFFER. (AFTER WOZ)
 1640 *--------------------------------
 1650 BUFF .EQ $200
 1660 *--------------------------------
 1670 HEXVALS
 1680 LDY #0 CLEAR BUFFER INDEX
 1690 STY DFLG CLEAR DELIMITER FLAG
 1700 .10 LDA #0 CLEAR A
 1710 STA AL
 1720 STA AH
 1730 .20 LDA BUFF,Y GET CHAR FROM BUFFER
 1740 INY
 1750 CMP #$8D = CR ?
 1760 BNE .30
 1770 RTS
 1780
 1790 .30 EOR #$B0 CONVERT ASCII TO HEX
 1800 CMP #$0A
 1810 BCC .40 IF 0-9
 1820 ADC #$88
 1830 CMP #$FA
 1840 BCS .40 IF A-F
 1850 LDA DFLG ELSE ASSUME
 1860 BNE .10 CHAR IS
 1870 LDA AL A DELIMITER.
 1880 STA BL MOVE A TO B
 1890 LDA AH IF NOT REPEATED
 1900 STA BH DELIMITER
 1910 DEC DFLG SET DELIMITER FLAG
 1920 JMP .10
 1930
 1940 .40 ASL SHIFT NIBBLE
 1950 ASL TO LEFT HAND
 1960 ASL SIDE.
 1970 ASL
 1980 LDX #4 & ROL INTO MEMORY
 1990 .50 ASL
 2000 ROL AL
 2010 ROL AH
 2020 DEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2522 of 2550

Apple II Computer Info

 2030 BNE .50
 2040 STX DFLG CLEAR DELIMITER FLAG
 2050 JMP .20
 2060 *--------------------------------
 2070 * SUBROUTINE
 2080 *--------------------------------
 2090 PROG .IN BUTTERILL'S MULTIPLY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2523 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:ROM.CRC.Calc.txt
==

 1000 *SAVE ROM CRC CALCULATION
 1010 *--------------------------------
 1020 LOCN .EQ $00,01 ENTER DATA LOCN (L/H)
 1030 SIZE .EQ $02,03 ENTER ROM SIZE (L/H)
 1040 AL .EQ $04 SIMULATED 8088 REGISTERS
 1050 AH .EQ $05
 1060 BL .EQ $06
 1070 BH .EQ $07
 1080 CL .EQ $08
 1090 CH .EQ $09
 1100 DL .EQ $0A
 1110 DH .EQ $0B
 1120 PTR .EQ $0C,0D WORK POINTER
 1130 CTR .EQ $0E,0F BYTE COUNTER
 1140 *--------------------------------
 1150 PRNTAX .EQ $F941
 1160 *--------------------------------
 1170 .OR $300
 1180 *--------------------------------
 1190 START LDA LOCN SETUP POINTER
 1200 STA PTR TO ROM IMAGE
 1210 LDA LOCN+1
 1220 STA PTR+1
 1230 *--------------------------------
 1240 SEC GET BYTE COUNT - 2
 1250 LDA SIZE
 1260 SBC #2
 1270 STA CTR
 1280 LDA SIZE+1
 1290 SBC #0
 1300 STA CTR+1
 1310 *--------------------------------
 1320 LDY #$FF START CRC AT $FFFF
 1330 STY DL
 1340 STY DH
 1350 INY Y=0
 1360 STY AH INIT AH REG
 1370 *--------------------------------
 1380 .1 LDA (PTR),Y GET NEXT BYTE
 1390 JSR FOLD.BYTE.INTO.CRC
 1400 INC PTR BUMP THE WORK POINTER
 1410 BNE .2
 1420 INC PTR+1
 1430 .2 LDA CTR DECREMENT THE BYTE COUNT
 1440 BNE .3
 1450 DEC CTR+1
 1460 .3 DEC CTR
 1470 LDA CTR TEST IF FINISHED
 1480 ORA CTR+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2524 of 2550

Apple II Computer Info

 1490 BNE .1 ...KEEP GOING
 1500 LDX DL DISPLAY THE RESULT
 1510 LDA DH
 1520 JMP PRNTAX
 1530 *--------------------------------
 1540 FOLD.BYTE.INTO.CRC
 1550 EOR DH
 1560 STA DH
 1570 STA AL
 1580 JSR ROLAX4 8088 "ROL AX,C"
 1590 JSR EORAD 8088 "EOR DX,AX"
 1600 JSR ROLAX1 8088 "ROL AX,1"
 1610 LDA DH SWAP BYTES IN REG-D
 1620 LDX DL
 1630 STX DH
 1640 STA DL
 1650 JSR EORAD 8088 "EOR DX,AX"
 1660 JSR RORAX4 8088 "ROR AX,C"
 1670 LDA AL
 1680 AND #$E0
 1690 STA AL
 1700 JSR EORAD 8088 "EOR DX,AX"
 1710 JSR RORAX1 8088 "ROR AX,1"
 1720 LDA AL
 1730 EOR DH
 1740 STA DH
 1750 RTS
 1760 *--------------------------------
 1770 * SIMULATE 8088 "ROL AX,C"
 1780 *--------------------------------
 1790 ROLAX4 JSR ROLAX1 SHIFT 4 BITS BY SHIFTING
 1800 JSR ROLAX1 1 BIT 4 TIMES
 1810 JSR ROLAX1
 1820 *--------------------------------
 1830 * SIMULATE 8088 "ROL AX,1"
 1840 *--------------------------------
 1850 ROLAX1 LDA AL 8088 "ROL" SHIFTS END AROUND
 1860 ASL WITHOUT LEAVING A BIT IN CARRY
 1870 ROL AH
 1880 BCC .1 6502 DOES LEAVE A BIT IN CARRY,
 1890 ORA #$01 SO LETS MERGE CARRY IN HERE.
 1900 .1 STA AL
 1910 RTS
 1920 *--------------------------------
 1930 * SIMULATE 8088 "ROR AX,C"
 1940 *--------------------------------
 1950 RORAX4 JSR RORAX1 SHIFT 4 BITS BY SHIFTING
 1960 JSR RORAX1 1 BIT 4 TIMES
 1970 JSR RORAX1
 1980 *--------------------------------
 1990 * SIMULATE 8088 "ROR AX,1"
 2000 *--------------------------------
 2010 RORAX1 LDA AH 8088 "ROR" SHIFTS END AROUND
 2020 LSR WITHOUT LEAVING A BIT IN CARRY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2525 of 2550

Apple II Computer Info

 2030 ROR AL
 2040 BCC .1 6502 DOES LEAVE A BIT IN CARRY,
 2050 ORA #$80 SO LETS MERGE CARRY IN HERE.
 2060 .1 STA AH
 2070 RTS
 2080 *--------------------------------
 2090 * SIMULATE 8088 "EOR DX,AX"
 2100 *--------------------------------
 2110 EORAD LDA AL
 2120 EOR DL
 2130 STA DL
 2140 LDA AH
 2150 EOR DH
 2160 STA DH
 2170 RTS
 2180 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2526 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:S.Test6502Call.txt
==

 1000 .LIST OFF
 1010 *SAVE S.TEST 6502 CALLING SEQUENCES
 1020 *--------------------------------
 1030 T1 LDA #MESSAGE.1
 1040 PHA
 1050 LDA /MESSAGE.1
 1060 PHA
 1070 JSR PRINT.IT
 1080 LDA #MESSAGE.2
 1090 PHA
 1100 LDA /MESSAGE.2
 1110 PHA
 1120 JSR PRINT.IT
 1130 RTS
 1140 *--------------------------------
 1150 MESSAGE.1
 1160 .HS 8D
 1170 .AS -/MESSAGE ONE/
 1180 .HS 8D.00
 1190 MESSAGE.2
 1200 .HS 8D
 1210 .AS -/MESSAGE TWO/
 1220 .HS 8D.00
 1230 *--------------------------------
 1240 .LIST ON
 1250 RETURN.SAVE .EQ $00,01
 1260 PNTR .EQ $02,03
 1270 PRINT.IT
 1280 PLA POP RETURN ADDRESS
 1290 STA RETURN.SAVE+1
 1300 PLA
 1310 STA RETURN.SAVE
 1320 PLA POP MESSAGE ADDRESS
 1330 STA PNTR+1
 1340 PLA
 1350 STA PNTR
 1360 LDY #0 STARTING INDEX
 1370 .1 LDA (PNTR),Y NEXT CHARACTER OF MESSAGE
 1380 BEQ .2 ...TERMINATING $00
 1390 JSR $FDED PRINT THE CHAR
 1400 INY
 1410 BNE .1 ...ALWAYS
 1420 .2 LDA RETURN.SAVE
 1430 PHA RELOAD RETURN ADDRESS
 1440 LDA RETURN.SAVE+1
 1450 PHA
 1460 RTS RETURN TO CALLER
 1470 .LIST OFF
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2527 of 2550

Apple II Computer Info

 1490 * JSR PRINT.MSG
 1500 * text of message, terminating zero
 1510 *--------------------------------
 1520 T2
 1530 JSR PRINT.MSG
 1540 .HS 8D
 1550 .AS -/MESSAGE AFTER JSR/
 1560 .HS 8D.00
 1570 JSR PRINT.MSG
 1580 .HS 8D
 1590 .AS -/ANOTHER MESSAGE/
 1600 .HS 8D.00
 1610 RTS
 1620 *--------------------------------
 1630 .LIST ON
 1640 PRINT.MSG
 1650 PLA GET RETURN ADDRESS
 1660 STA .1+1 LO-BYTE
 1670 PLA
 1680 STA .1+2 HI-BYTE
 1690 LDY #1
 1700 .1 LDA $9999,Y ADDRESS FILLED IN
 1710 BEQ .2 ...TERMINATING $00
 1720 JSR $FDED PRINT THE CHAR
 1730 INY
 1740 BNE .1 ...ALWAYS
 1750 .2 TYA ADJUST THE RETURN ADDRESS
 1760 CLC BY ADDING THE MESSAGE LENGTH
 1770 ADC .1+1
 1780 TAY SAVE LO BYTE FOR A WHILE
 1790 LDA #0 THE HIGH BYTE TOO
 1800 ADC .1+2
 1810 PHA
 1820 TYA
 1830 PHA
 1840 RTS RETURN TO CALLER
 1850 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2528 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:DOS3.3:S.Test816Call.txt
==

 1000 *SAVE S.TEST 65816 CALLING SEQUENCES
 1010 *--------------------------------
 1020 .OP 65816
 1030 *--------------------------------
 1040 * PEA address of message text
 1050 * JSR PRINT.IT
 1060 *--------------------------------
 1070 T1 PEA MESSAGE.1
 1080 JSR PRINT.IT
 1090 PEA MESSAGE.2
 1100 JSR PRINT.IT
 1110 RTS
 1120 *--------------------------------
 1130 MESSAGE.1
 1140 .HS 8D
 1150 .AS -/MESSAGE ONE/
 1160 .HS 8D.00
 1170 MESSAGE.2
 1180 .HS 8D
 1190 .AS -/MESSAGE TWO/
 1200 .HS 8D.00
 1210 *--------------------------------
 1220 PRINT.IT
 1230 LDY #0 STARTING INDEX
 1240 .1 LDA (3,S),Y NEXT CHARACTER OF MESSAGE
 1250 BEQ .2 ...TERMINATING $00
 1260 JSR $FDED PRINT THE CHAR
 1270 INY
 1280 BNE .1 ...ALWAYS
 1290 .2 PLA MOVE RETURN ADDRESS
 1300 STA 2,S OVER THE TOP OF THE
 1310 PLA MESSAGE ADDRESS, PRUNING
 1320 STA 2,S THE STACK
 1330 RTS
 1340 *--------------------------------
 1350 * JSR PRINT.MSG
 1360 * text of message, terminating zero
 1370 *--------------------------------
 1380 T2
 1390 JSR PRINT.MSG
 1400 .HS 8D
 1410 .AS -/MESSAGE AFTER JSR/
 1420 .HS 8D.00
 1430 JSR PRINT.MSG
 1440 .HS 8D
 1450 .AS -/ANOTHER MESSAGE/
 1460 .HS 8D.00
 1470 RTS
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2529 of 2550

Apple II Computer Info

 1490 PRINT.MSG
 1500 LDY #1 POINT TO FIRST CHAR
 1510 .1 LDA (1,S),Y GET NEXT CHAR
 1520 BEQ .2 ...TERMINATING $00
 1530 JSR $FDED PRINT THE CHAR
 1540 INY
 1550 BNE .1 ...ALWAYS
 1560 .2 TYA ADJUST THE RETURN ADDRESS
 1570 CLC BY ADDING THE MESSAGE LENGTH
 1580 ADC 1,S
 1590 STA 1,S
 1600 LDA #0 THE HIGH BYTE TOO
 1610 ADC 2,S
 1620 STA 2,S
 1630 RTS RETURN TO CALLER
 1640 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2530 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:BUTTERILL.DEMO.txt
==

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2531 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:BUTTERILLS.DIV.txt
==

 1000 *SAVE BUTTERILLS.DIV
 1010 *--------------------------------
 1020 * 16 BIT DIVIDE WITH REMAINDER
 1030 * DIVIDE B BY A
 1040 * LEAVES QUOTIENT IN B,
 1050 * REMAINDER IN A
 1060 *--------------------------------
 1070 * TIMING: A=$0000 -- 39 cycles
 1080 * B>$7FFF -- 71 or 74 cycles
 1090 * A=B -- 82 cycles
 1100 * A=1,B=$FFFF -- 676 cycles
 1110 *--------------------------------
 1120 A .EQ 0,1 DIVISOR, REMAINDER
 1130 B .EQ 2,3 DIVIDEND, QUOTIENT
 1140 *--------------------------------
 1150 .OP 65802
 1160 DIV16
 1170 CLC ENTER FROM 6502
 1180 XCE NATIVE MODE
 1190 REP #$20 A-REG 16 BITS
 1200 LDX #0 START SCALE CNTR
 1210 LDA A GET DIVISOR
 1220 BEQ .90 ...ZERO DIVISOR
 1230 BMI .30 ...DIVISOR > $7FFF
 1240 *---SCALE DIVISOR----------------
 1250 .10 CMP B ALIGN A TO LEFT
 1260 BCS .20 UNTIL > B
 1270 INX OR BIT 15 SET
 1280 ASL & COUNT IN X
 1290 BPL .10
 1300 .20 STA A SCALED DIVIDEND
 1310 *---START SUBTRACTING------------
 1320 .30 LDA B GET DIVIDEND
 1330 STZ B CLEAR QUOTIENT
 1340 .40 CMP A REPEATED CONDITIONAL
 1350 BCC .50 SUBTRACTION.
 1360 SBC A
 1370 .50 ROL B ROL IN 1 IF SUBT.
 1380 LSR A 0 IF NO SUBT.
 1390 DEX
 1400 BPL .40
 1410 STA A REMAINDER
 1420 *---RETURN TO CALLER-------------
 1430 .60 SEC EXIT TO 6502
 1440 XCE
 1450 RTS
 1460 *---FOR X/0, GIVE 0,0 ANSWER-----
 1470 .90 STA B DIVISION BY ZERO
 1480 BRA .60

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2532 of 2550

Apple II Computer Info

 1490 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2533 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:BUTTERILLS.MUL.txt
==

 1000 *SAVE BUTTERILLS.MUL
 1010 *--------------------------------
 1020 * 16 BIT MULTIPLY FOR 65802
 1030 * MULTIPLIES A BY B
 1040 * LEAVES ANSWER IN A & B
 1050 *--------------------------------
 1060 A .EQ 0,1 MULTIPLIER, PRODUCT-LO
 1070 B .EQ 2,3 MULTIPLICAND, PRODUCT-HI
 1080 *--------------------------------
 1090 * TIMING: B=$0000 -- 27 CYCLES
 1100 * A=$0000 -- 335 CYCLES
 1110 * A=$FFFF -- 383 CYCLES
 1120 * (INCLUDING JSR AND RTS)
 1130 *--------------------------------
 1140 .OP 65802
 1150 MULT16
 1160 CLC ENTER FROM 6502
 1170 XCE
 1180 REP #$20
 1190 LDA B IF B ZERO,
 1200 BEQ .90 THEN BY-PASS
 1210 DEC B
 1220 LDA ##0000
 1230 LDX #16 FOR 16 BITS
 1240 CLC FOR 17'TH CYCLE
 1250 .10 ROR ROLL OUT PRODUCT BIT
 1260 ROR A ROLL IN 'PLIER BIT
 1270 BCC .20
 1280 ADC B
 1290 .20 DEX
 1300 BPL .10 CYCLES 17 TIMES
 1310 STA B
 1320 .30 SEC EXIT TO 6502
 1330 XCE
 1340 RTS
 1350 .90 STA A PROCEDURE FOR B=0
 1360 BRA .30
 1370 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2534 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:DIV16.DEMO.txt
==

 1000 * DIV16 DEMO
 1010 *SAVE DIV16.DEMO
 1020 *--------------------------------
 1030 * DEMO OF BRUN'ING A ML PROG
 1040 * USING DIV16
 1050 *
 1060 * DOS IS DISCONNECTED
 1070 * TO ALLOW I/O WITHOUT
 1080 * DISRUPTING PROPER RETURN
 1090 *--------------------------------
 1100 .OP 65802
 1110 .OR $6A00
 1120 *--------------------------------
 1130 COUT1 .EQ $FDF0 SCREEN OUTPUT
 1140 KEYIN .EQ $FD1B KEYBOARD INPUT
 1150 *--------------------------------
 1160 AL .EQ 0
 1170 AH .EQ 1
 1180 BL .EQ 2
 1190 BH .EQ 3
 1200 DFLG .EQ 4 DELIMITER FLAG
 1210 GETLN1 .EQ $FD6F INPUT LINE TO BUFFER
 1220 PRNTAX .EQ $F941 OUTPUT A,X AS HEX
 1230 COUT .EQ $FDED OUTPUT A AS CHAR
 1240 CROUT .EQ $FD8E OUTPUT CR
 1250 *--------------------------------
 1260 DEMO
 1270 LDX #0 BEFORE ANY I/O,
 1280 .10 LDA $36,X DISCONNECT DOS
 1290 PHA BY PUSHING $36.39
 1300 LDA PTRS,X ONTO STACK,
 1310 STA $36,X & REPLACING
 1320 INX WITH COUT1/KEYIN
 1330 CPX #4
 1340 BNE .10
 1350
 1360 JSR CROUT
 1370 .20 JSR GETLN1 INPUT LINE TO BUFFER
 1380 JSR HEXVALS EXTRACT HEX VALUES
 1390 CPY #1 IF NULL LINE,
 1400 BEQ .80 THEN EXIT
 1410 JSR PROG DIVIDE
 1420 LDA BH
 1430 LDX BL
 1440 JSR PRNTAX DISP QUOTIENT
 1450 LDA #","
 1460 JSR COUT DISP ','
 1470 LDA AH
 1480 LDX AL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2535 of 2550

Apple II Computer Info

 1490 JSR PRNTAX DISP REMAINDER
 1500 JSR CROUT
 1510 JMP .20
 1520
 1530 .80 LDX #3 RECONNECT DOS
 1540 .90 PLA BY PULLING
 1550 STA $36,X $36.39 FROM
 1560 DEX THE STACK.
 1570 BPL .90
 1580 RTS
 1590 *--------------------------------
 1600 * REPLACEMENT I/O POINTERS
 1610 *--------------------------------
 1620 PTRS .DA COUT1,KEYIN
 1630
 1640 *--------------------------------
 1650 * READ TWO HEX 16-BIT WORDS
 1660 * FROM INPUT BUFFER. (AFTER WOZ)
 1670 *--------------------------------
 1680 BUFF .EQ $200
 1690 *--------------------------------
 1700 HEXVALS
 1710 LDY #0 CLEAR BUFFER INDEX
 1720 STY DFLG CLEAR DELIMITER FLAG
 1730 .10 LDA #0 CLEAR A
 1740 STA AL
 1750 STA AH
 1760 .20 LDA BUFF,Y GET CHAR FROM BUFFER
 1770 INY
 1780 CMP #$8D = CR ?
 1790 BNE .30
 1800 RTS
 1810
 1820 .30 EOR #$B0 CONVERT ASCII TO HEX
 1830 CMP #$0A
 1840 BCC .40 IF 0-9
 1850 ADC #$88
 1860 CMP #$FA
 1870 BCS .40 IF A-F
 1880 LDA DFLG ELSE ASSUME
 1890 BNE .10 CHAR IS
 1900 LDA AL A DELIMITER
 1910 STA BL MOVE A TO B
 1920 LDA AH IF NOT REPEATED
 1930 STA BH DELIMITER
 1940 DEC DFLG SET DELIMITER FLAG
 1950 JMP .10
 1960
 1970 .40 ASL SHIFT NIBBLE
 1980 ASL TO LEFT HAND
 1990 ASL SIDE.
 2000 ASL
 2010 LDX #4 & ROL INTO MEMORY
 2020 .50 ASL

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2536 of 2550

Apple II Computer Info

 2030 ROL AL
 2040 ROL AH
 2050 DEX
 2060 BNE .50
 2070 STX DFLG CLEAR DELIMITER FLAG
 2080 JMP .20
 2090 *--------------------------------
 2100 * SUBROUTINE
 2110 *--------------------------------
 2120 PROG .IN BUTTERILL'S DIVIDE

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2537 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:MLI.ERROR.PLUS.txt
==

 1000 *SAVE MLI.ERROR.PLUS
 1010 *--------------------------------
 1020 CMDADR .EQ $BF9C
 1030 *--------------------------------
 1040 PRBYTE .EQ $FDDA
 1050 COUT .EQ $FDED
 1060 *--------------------------------
 1070 MLI.ERROR.PLUS
 1080 STA ERRCOD SAVE ERROR NUMBER
 1090 LDY CMDADR+1
 1100 LDA CMDADR SUBTRACT 6 FROM ADDRESS
 1110 SEC
 1120 SBC #6
 1130 STA CALADR+1 CALL ADDR LO
 1140 BCS .1
 1150 DEY
 1160 .1 STY CALADR+2 CALL ADDR HI
 1170 *--------------------------------
 1180 LDY #2
 1190 LDX #3 COPY OPCODE & PARMS ADDR
 1200 CALADR LDA $9999,X (ADDRESS FILLED IN)
 1210 INX
 1220 STA PARMADR.H,Y
 1230 DEY
 1240 BPL CALADR ...UNTIL Y=-1
 1250 *--------------------------------
 1260 BMI .2 ...ALWAYS
 1270 .1 JSR COUT
 1280 .2 INY
 1290 LDA QERR,Y
 1300 BMI .1 ...ASCII CHAR
 1310 BNE .3 ...DATA BYTE
 1320 RTS ...END
 1330 .3 TAX USE AS INDEX
 1340 LDA MLI.ERROR.PLUS,X
 1350 JSR PRBYTE
 1360 JMP .2 NEXT CHAR
 1370 *--------------------------------
 1380 ERRCOD .BS 1
 1390 PARMADR.H .BS 1
 1400 PARMADR.L .BS 1
 1410 OPCODE .BS 1
 1420 *--------------------------------
 1430 QERR .HS 8D
 1440 .AS -/MLI ERROR $/
 1450 .DA #ERRCOD-MLI.ERROR.PLUS
 1460 .AS -/ AT $/
 1470 .DA #CALADR-MLI.ERROR.PLUS+2
 1480 .DA #CALADR-MLI.ERROR.PLUS+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2538 of 2550

Apple II Computer Info

 1490 .AS -/ (/
 1500 .DA #OPCODE-MLI.ERROR.PLUS
 1510 .AS -/./
 1520 .DA #PARMADR.H-MLI.ERROR.PLUS
 1530 .DA #PARMADR.L-MLI.ERROR.PLUS
 1540 .AS -/)/
 1550 .HS 8D.00
 1560 *--------------------------------
 1570 .LIST OFF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2539 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:MLI.ERROR.txt
==

 1000 *SAVE MLI.ERROR
 1010 *--------------------------------
 1020 CMDADR .EQ $BF9C
 1030 *--------------------------------
 1040 PRNTAX .EQ $F941
 1050 CROUT .EQ $FD8E
 1060 PRBYTE .EQ $FDDA
 1070 COUT .EQ $FDED
 1080 *--------------------------------
 1090 MLI.ERROR
 1100 PHA SAVE ERROR CODE
 1110 LDY #QERR
 1120 JSR PRMSG
 1130 PLA
 1140 JSR PRBYTE
 1150 LDY #QAT
 1160 JSR PRMSG
 1170 LDA CMDADR+1
 1180 LDX CMDADR
 1190 JSR PRNTAX
 1200 JMP CROUT
 1210 *--------------------------------
 1220 MSG1 JSR COUT
 1230 INY
 1240 PRMSG LDA MSGS,Y
 1250 BNE MSG1
 1260 RTS
 1270 *--------------------------------
 1280 MSGS
 1290 QERR .EQ *-MSGS
 1300 .HS 8D
 1310 .AS -/MLI ERROR $/
 1320 .HS 00
 1330 QAT .EQ *-MSGS
 1340 .AS -/ AT $/
 1350 .HS 00
 1360 *--------------------------------
 1370 .LIST OFF

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2540 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:MULT16.DEMO.txt
==

 1000 * MULT16 DEMO
 1010 *SAVE MULT16.DEMO
 1020 *--------------------------------
 1030 * DEMO OF BRUN'ING A ML PROG
 1040 * USING MULT16
 1050 *
 1060 * DOS IS DISCONNECTED
 1070 * TO ALLOW I/O WITHOUT
 1080 * DISRUPTING PROPER RETURN
 1090 *--------------------------------
 1100 .OP 65802
 1110 .OR $6A00
 1120 *--------------------------------
 1130 COUT1 .EQ $FDF0 SCREEN OUTPUT
 1140 KEYIN .EQ $FD1B KEYBOARD INPUT
 1150 *--------------------------------
 1160 AL .EQ 0
 1170 AH .EQ 1
 1180 BL .EQ 2
 1190 BH .EQ 3
 1200 DFLG .EQ 4 DELIMITER FLAG
 1210 GETLN1 .EQ $FD6F INPUT LINE TO BUFFER
 1220 PRNTAX .EQ $F941 OUTPUT A,X AS HEX
 1230 CROUT .EQ $FD8E OUTPUT CR
 1240 *--------------------------------
 1250 DEMO
 1260 LDX #0 BEFORE ANY I/O,
 1270 .10 LDA $36,X DISCONNECT DOS
 1280 PHA BY PUSHING $36.39
 1290 LDA PTRS,X ONTO STACK,
 1300 STA $36,X & REPLACING
 1310 INX WITH COUT1/KEYIN
 1320 CPX #4
 1330 BNE .10
 1340
 1350 JSR CROUT
 1360 .20 JSR GETLN1 INPUT LINE TO BUFFER
 1370 JSR HEXVALS EXTRACT HEX VALUES
 1380 CPY #1 IF NULL LINE,
 1390 BEQ .80 THEN EXIT
 1400 JSR PROG MULTIPLY
 1410 LDA BH
 1420 LDX BL
 1430 JSR PRNTAX DISP HI-16
 1440 LDA AH
 1450 LDX AL
 1460 JSR PRNTAX DISP LO-16
 1470 JSR CROUT
 1480 JMP .20

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2541 of 2550

Apple II Computer Info

 1490
 1500 .80 LDX #3 RECONNECT DOS
 1510 .90 PLA BY PULLING
 1520 STA $36,X $36.39 FROM
 1530 DEX THE STACK.
 1540 BPL .90
 1550 RTS
 1560 *--------------------------------
 1570 * REPLACEMENT I/O POINTERS
 1580 *--------------------------------
 1590 PTRS .DA COUT1,KEYIN
 1600
 1610 *--------------------------------
 1620 * READ TWO HEX 16-BIT WORDS
 1630 * FROM INPUT BUFFER. (AFTER WOZ)
 1640 *--------------------------------
 1650 BUFF .EQ $200
 1660 *--------------------------------
 1670 HEXVALS
 1680 LDY #0 CLEAR BUFFER INDEX
 1690 STY DFLG CLEAR DELIMITER FLAG
 1700 .10 LDA #0 CLEAR A
 1710 STA AL
 1720 STA AH
 1730 .20 LDA BUFF,Y GET CHAR FROM BUFFER
 1740 INY
 1750 CMP #$8D = CR ?
 1760 BNE .30
 1770 RTS
 1780
 1790 .30 EOR #$B0 CONVERT ASCII TO HEX
 1800 CMP #$0A
 1810 BCC .40 IF 0-9
 1820 ADC #$88
 1830 CMP #$FA
 1840 BCS .40 IF A-F
 1850 LDA DFLG ELSE ASSUME
 1860 BNE .10 CHAR IS
 1870 LDA AL A DELIMITER.
 1880 STA BL MOVE A TO B
 1890 LDA AH IF NOT REPEATED
 1900 STA BH DELIMITER
 1910 DEC DFLG SET DELIMITER FLAG
 1920 JMP .10
 1930
 1940 .40 ASL SHIFT NIBBLE
 1950 ASL TO LEFT HAND
 1960 ASL SIDE.
 1970 ASL
 1980 LDX #4 & ROL INTO MEMORY
 1990 .50 ASL
 2000 ROL AL
 2010 ROL AH
 2020 DEX

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2542 of 2550

Apple II Computer Info

 2030 BNE .50
 2040 STX DFLG CLEAR DELIMITER FLAG
 2050 JMP .20
 2060 *--------------------------------
 2070 * SUBROUTINE
 2080 *--------------------------------
 2090 PROG .IN BUTTERILL'S MULTIPLY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2543 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:ROM.CRC.CALC.txt
==

 1000 *SAVE ROM.CRC.CALC
 1010 *--------------------------------
 1020 LOCN .EQ $00,01 ENTER DATA LOCN (L/H)
 1030 SIZE .EQ $02,03 ENTER ROM SIZE (L/H)
 1040 AL .EQ $04 SIMULATED 8088 REGISTERS
 1050 AH .EQ $05
 1060 BL .EQ $06
 1070 BH .EQ $07
 1080 CL .EQ $08
 1090 CH .EQ $09
 1100 DL .EQ $0A
 1110 DH .EQ $0B
 1120 PTR .EQ $0C,0D WORK POINTER
 1130 CTR .EQ $0E,0F BYTE COUNTER
 1140 *--------------------------------
 1150 PRNTAX .EQ $F941
 1160 *--------------------------------
 1170 .OR $300
 1180 *--------------------------------
 1190 START LDA LOCN SETUP POINTER
 1200 STA PTR TO ROM IMAGE
 1210 LDA LOCN+1
 1220 STA PTR+1
 1230 *--------------------------------
 1240 SEC GET BYTE COUNT - 2
 1250 LDA SIZE
 1260 SBC #2
 1270 STA CTR
 1280 LDA SIZE+1
 1290 SBC #0
 1300 STA CTR+1
 1310 *--------------------------------
 1320 LDY #$FF START CRC AT $FFFF
 1330 STY DL
 1340 STY DH
 1350 INY Y=0
 1360 STY AH INIT AH REG
 1370 *--------------------------------
 1380 .1 LDA (PTR),Y GET NEXT BYTE
 1390 JSR FOLD.BYTE.INTO.CRC
 1400 INC PTR BUMP THE WORK POINTER
 1410 BNE .2
 1420 INC PTR+1
 1430 .2 LDA CTR DECREMENT THE BYTE COUNT
 1440 BNE .3
 1450 DEC CTR+1
 1460 .3 DEC CTR
 1470 LDA CTR TEST IF FINISHED
 1480 ORA CTR+1

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2544 of 2550

Apple II Computer Info

 1490 BNE .1 ...KEEP GOING
 1500 LDX DL DISPLAY THE RESULT
 1510 LDA DH
 1520 JMP PRNTAX
 1530 *--------------------------------
 1540 FOLD.BYTE.INTO.CRC
 1550 EOR DH
 1560 STA DH
 1570 STA AL
 1580 JSR ROLAX4 8088 "ROL AX,C"
 1590 JSR EORAD 8088 "EOR DX,AX"
 1600 JSR ROLAX1 8088 "ROL AX,1"
 1610 LDA DH SWAP BYTES IN REG-D
 1620 LDX DL
 1630 STX DH
 1640 STA DL
 1650 JSR EORAD 8088 "EOR DX,AX"
 1660 JSR RORAX4 8088 "ROR AX,C"
 1670 LDA AL
 1680 AND #$E0
 1690 STA AL
 1700 JSR EORAD 8088 "EOR DX,AX"
 1710 JSR RORAX1 8088 "ROR AX,1"
 1720 LDA AL
 1730 EOR DH
 1740 STA DH
 1750 RTS
 1760 *--------------------------------
 1770 * SIMULATE 8088 "ROL AX,C"
 1780 *--------------------------------
 1790 ROLAX4 JSR ROLAX1 SHIFT 4 BITS BY SHIFTING
 1800 JSR ROLAX1 1 BIT 4 TIMES
 1810 JSR ROLAX1
 1820 *--------------------------------
 1830 * SIMULATE 8088 "ROL AX,1"
 1840 *--------------------------------
 1850 ROLAX1 LDA AL 8088 "ROL" SHIFTS END AROUND
 1860 ASL WITHOUT LEAVING A BIT IN CARRY
 1870 ROL AH
 1880 BCC .1 6502 DOES LEAVE A BIT IN CARRY,
 1890 ORA #$01 SO LETS MERGE CARRY IN HERE.
 1900 .1 STA AL
 1910 RTS
 1920 *--------------------------------
 1930 * SIMULATE 8088 "ROR AX,C"
 1940 *--------------------------------
 1950 RORAX4 JSR RORAX1 SHIFT 4 BITS BY SHIFTING
 1960 JSR RORAX1 1 BIT 4 TIMES
 1970 JSR RORAX1
 1980 *--------------------------------
 1990 * SIMULATE 8088 "ROR AX,1"
 2000 *--------------------------------
 2010 RORAX1 LDA AH 8088 "ROR" SHIFTS END AROUND
 2020 LSR WITHOUT LEAVING A BIT IN CARRY

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2545 of 2550

Apple II Computer Info

 2030 ROR AL
 2040 BCC .1 6502 DOES LEAVE A BIT IN CARRY,
 2050 ORA #$80 SO LETS MERGE CARRY IN HERE.
 2060 .1 STA AH
 2070 RTS
 2080 *--------------------------------
 2090 * SIMULATE 8088 "EOR DX,AX"
 2100 *--------------------------------
 2110 EORAD LDA AL
 2120 EOR DL
 2130 STA DL
 2140 LDA AH
 2150 EOR DH
 2160 STA DH
 2170 RTS
 2180 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2546 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:S.02.CALL.SEQ.txt
==

 1000 .LIST OFF
 1010 *SAVE S.02.CALL.SEQ
 1020 *--------------------------------
 1030 T1 LDA #MESSAGE.1
 1040 PHA
 1050 LDA /MESSAGE.1
 1060 PHA
 1070 JSR PRINT.IT
 1080 LDA #MESSAGE.2
 1090 PHA
 1100 LDA /MESSAGE.2
 1110 PHA
 1120 JSR PRINT.IT
 1130 RTS
 1140 *--------------------------------
 1150 MESSAGE.1
 1160 .HS 8D
 1170 .AS -/MESSAGE ONE/
 1180 .HS 8D.00
 1190 MESSAGE.2
 1200 .HS 8D
 1210 .AS -/MESSAGE TWO/
 1220 .HS 8D.00
 1230 *--------------------------------
 1240 .LIST ON
 1250 RETURN.SAVE .EQ $00,01
 1260 PNTR .EQ $02,03
 1270 PRINT.IT
 1280 PLA POP RETURN ADDRESS
 1290 STA RETURN.SAVE+1
 1300 PLA
 1310 STA RETURN.SAVE
 1320 PLA POP MESSAGE ADDRESS
 1330 STA PNTR+1
 1340 PLA
 1350 STA PNTR
 1360 LDY #0 STARTING INDEX
 1370 .1 LDA (PNTR),Y NEXT CHARACTER OF MESSAGE
 1380 BEQ .2 ...TERMINATING $00
 1390 JSR $FDED PRINT THE CHAR
 1400 INY
 1410 BNE .1 ...ALWAYS
 1420 .2 LDA RETURN.SAVE
 1430 PHA RELOAD RETURN ADDRESS
 1440 LDA RETURN.SAVE+1
 1450 PHA
 1460 RTS RETURN TO CALLER
 1470 .LIST OFF
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2547 of 2550

Apple II Computer Info

 1490 * JSR PRINT.MSG
 1500 * text of message, terminating zero
 1510 *--------------------------------
 1520 T2
 1530 JSR PRINT.MSG
 1540 .HS 8D
 1550 .AS -/MESSAGE AFTER JSR/
 1560 .HS 8D.00
 1570 JSR PRINT.MSG
 1580 .HS 8D
 1590 .AS -/ANOTHER MESSAGE/
 1600 .HS 8D.00
 1610 RTS
 1620 *--------------------------------
 1630 .LIST ON
 1640 PRINT.MSG
 1650 PLA GET RETURN ADDRESS
 1660 STA .1+1 LO-BYTE
 1670 PLA
 1680 STA .1+2 HI-BYTE
 1690 LDY #1
 1700 .1 LDA $9999,Y ADDRESS FILLED IN
 1710 BEQ .2 ...TERMINATING $00
 1720 JSR $FDED PRINT THE CHAR
 1730 INY
 1740 BNE .1 ...ALWAYS
 1750 .2 TYA ADJUST THE RETURN ADDRESS
 1760 CLC BY ADDING THE MESSAGE LENGTH
 1770 ADC .1+1
 1780 TAY SAVE LO BYTE FOR A WHILE
 1790 LDA #0 THE HIGH BYTE TOO
 1800 ADC .1+2
 1810 PHA
 1820 TYA
 1830 PHA
 1840 RTS RETURN TO CALLER
 1850 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2548 of 2550

Apple II Computer Info

==
DOCUMENT :AAL-8606:ProDOS:S.816.CALL.SEQ.txt
==

 1000 *SAVE S.816.CALL.SEQ
 1010 *--------------------------------
 1020 .OP 65816
 1030 *--------------------------------
 1040 * PEA address of message text
 1050 * JSR PRINT.IT
 1060 *--------------------------------
 1070 T1 PEA MESSAGE.1
 1080 JSR PRINT.IT
 1090 PEA MESSAGE.2
 1100 JSR PRINT.IT
 1110 RTS
 1120 *--------------------------------
 1130 MESSAGE.1
 1140 .HS 8D
 1150 .AS -/MESSAGE ONE/
 1160 .HS 8D.00
 1170 MESSAGE.2
 1180 .HS 8D
 1190 .AS -/MESSAGE TWO/
 1200 .HS 8D.00
 1210 *--------------------------------
 1220 PRINT.IT
 1230 LDY #0 STARTING INDEX
 1240 .1 LDA (3,S),Y NEXT CHARACTER OF MESSAGE
 1250 BEQ .2 ...TERMINATING $00
 1260 JSR $FDED PRINT THE CHAR
 1270 INY
 1280 BNE .1 ...ALWAYS
 1290 .2 PLA MOVE RETURN ADDRESS
 1300 STA 2,S OVER THE TOP OF THE
 1310 PLA MESSAGE ADDRESS, PRUNING
 1320 STA 2,S THE STACK
 1330 RTS
 1340 *--------------------------------
 1350 * JSR PRINT.MSG
 1360 * text of message, terminating zero
 1370 *--------------------------------
 1380 T2
 1390 JSR PRINT.MSG
 1400 .HS 8D
 1410 .AS -/MESSAGE AFTER JSR/
 1420 .HS 8D.00
 1430 JSR PRINT.MSG
 1440 .HS 8D
 1450 .AS -/ANOTHER MESSAGE/
 1460 .HS 8D.00
 1470 RTS
 1480 *--------------------------------

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2549 of 2550

Apple II Computer Info

 1490 PRINT.MSG
 1500 LDY #1 POINT TO FIRST CHAR
 1510 .1 LDA (1,S),Y GET NEXT CHAR
 1520 BEQ .2 ...TERMINATING $00
 1530 JSR $FDED PRINT THE CHAR
 1540 INY
 1550 BNE .1 ...ALWAYS
 1560 .2 TYA ADJUST THE RETURN ADDRESS
 1570 CLC BY ADDING THE MESSAGE LENGTH
 1580 ADC 1,S
 1590 STA 1,S
 1600 LDA #0 THE HIGH BYTE TOO
 1610 ADC 2,S
 1620 STA 2,S
 1630 RTS RETURN TO CALLER
 1640 *--------------------------------

F I N I S

Apple 2 "Apple Assembly Line" Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2550 of 2550

