Apple 11 Computer Info

g
' Apple Il Family Technical Documents ‘

Apple Assembly Line
Article Archive

Written by Bob Sander-Cederlof
from October 1980 through May 1988

This archive contains issues
for October 1980 to June 1986

Source:
http://salfter.dyndns.org/aal/
salfter@salfter.dyndns.org
15 September 2000

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 1 of 2550

Apple 11 Computer

Apple Assembly Line Archive

A while back, 1 downloaded all of the issues of Apple Assembly Line that had
been archived in GEnie®"s A2Pro file area. At this point, GEnie is either
dead or dying (last time 1 used it was a few years ago). Delphi®s A2Pro
might eventually get them, but it hasn®"t happened yet.

until that time, 1"ve put them all here. The only change from the way they
were presented on GEnie is that 1 renamed the files so that a directory
listing of them could easily be sorted chronologically...instead of
"AAL.JAN.85.BXY," for instance, that file is now "AAL.8501.BXY." The info
about each issue given in this HTML document is, if | remember right, the
description that GEnie had used for the file.

So, without further ado, here"s the archive. The whole lot is only about
2.5MB, so you can either just click away at the links or use something like
Go!Zilla (no, Go!Zilla isn"t an Apple 1l program) to "leech”™ all of "em in
one swell foop. :-)

The entire collection is also available as a single ZIP archive. It"s mainly

of benefit to non-Apple Il users who might want to browse the collection.
(There are unzip programs for the 11, but Shrinklt files are better if
you"re working with this stuff on a Il1.)

Also, 1 received email on 2 Nov 99 from Bob Sander-Cederlof, the author of
most of these files. It turns out that publication ceased sometime in 1988,
which means 1"m missing a few files. If you have "em and can send "em to me,
1*"d be interested...send me mail.

AAL.ZIP
The entire collection as a single (-2MB) file.

AAL .8010.BXY

This issue contains articles on alternate ways to add and subtract one from
a number, a general message printing subroutine, some S-C Macro Assembler
patches and a hardware error in the JMP (addr) instruction in all 6502 chips
(one of the fFirst publications of this bug!).

AAL .8011.BXY

This issue contains articles on bugs and new commands for the S-C Macro
Assembler, a new USR command for that assembler, instructions for turning
S-C files into text source files, a variable cross-reference generator for
Applesoft programs and a simulated numeric keypad for the Apple 11+, all in
6502 assembly!

AAL.8012.BXY

This issue contains articles on intelligent disassemblers, a pretty LIST for
Integer BASIC, new commands and directives for the S-C Macro Assembler and
ways to handle 16-bit comparisons on an 8-bit machine.

AAL.8101.BXY
This issue contains articles on how to move memory, a computed GOSUB for
Applesoft and putting a new COPY and EDIT into the S-C Macro Assembler.

AAL.8102.BXY
This issue contains articles on making all kinds of noises with the Apple 11
speaker (tones, bells, machine guns, swoops, lasers, inch-worms, touch-tones

Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 2 of 2550

Apple 11 Computer Info

and morse code)! It also has stuffing object code in protected places,
multiplying on the 6502 and string swapping in Applesoft.

AAL .8103.BXY

This issue contains articles on a pretty "dump® command, "unused® opcodes
and what they do on a 6502, a complet 6502 opcode chart, moving commands to
the language card, a _commented_ listing of the DOS 3.2.1 RWTS and an "&"
command for the S-C Assembler 11.

AAL .8104 .BXY

This issue contains articles on text file 1/0 in assembly language,
AppleSoft internal entry points, fast string input for Applesoft, hiding
things in DOS, and the format code for both DOS 3.2.1 and DOS 3.3! PLUS a
substring search for Applesoft and some S-C Assembler 11 patches.

AAL .8105.BXY

This issue contains articles on a hi-res SCRN function for Applesoft,
conquering paddle jitter, a shift-key modification, the 6502 programming
model and a commented listing of DOS 3.2.1 from $B800 through $BCFF.

AAL .8106.BXY

This issue contains articles on two fancy tone generators, more
multiplication on the 6502, specialized multiplication, a commented listing
of DOS 3.3 from $B800 through $BCFF and a review of "Beneath Apple DOS" from
when it was _new .

AAL .8107 .BXY

This issue contains articles on lower case in a ll+, printing the screen,
restoring clobbered page 3 pointers, corrections to the variable X-ref
program in VIN2 (AAL.8011.BXY) and a step-trace utility!

AAL .8108.BXY

This issue contains articles on finding Applesoft line numbers, binary
keyboard input, two ways to compare a byte, selective catalogs in FID,
random number generation in Integer BASIC, corrections to VIN2
(AAL.8011.BXY) and a commented listing of the DOS 3.3 boot ROM!

AAL .8109.BXY

This issue contains articles on a field input routine for Applesoft, CHRGET
and CHRGOT, exiting the S-C Assembler 11, a new .AS directive for that
assembler and a commented listing of DOS 3.3 RWTS (also used in ProDOS)!

AAL.8110.BXY

This issue contains articles on sifting primes faster and faster, a 6809
cross assembler, extending the Apple Il monitor, some errata and a
disassembly of DOS 3.3 from $B052-$BOB5 and $B35F-$B7FF.

AAL.8111.BXY

This issue contains articles on using AppleSoft from assembly language, a
formatted print subroutine, a poor man®s disassembler and a beginning lesson
on loops.

AAL.8112_BXY

This issue contains articles on a 6809 card with FLEX, AppleSoft hi-res
subroutines, hex constants in AppleSoft, an AppleSoft line editing aid,
improved AppleSoft fast string input, adding ASCII dump to the original
Apple 11 monitor and an AppleSoft GOTO from assembly language.

AAL .8201.BXY

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 3 of 2550

Apple 11 Computer

This issue contains articles on a hi-res SCRN function with color, a 6502
relocator, a note of a problem in DOS 3.3, some handy EXEC files, a one-chip
microcomputer, a couple of reviews and some S-C Assembler goodies.

AAL .8202.BXY

This issue contains articles on DOS error trapping from machine language,
improving the EPSON controller card, even faster primes, a printer FIFO
buffer, patches for Apple Writer to unhook PLE, a great free adventure and
dividing by ten.

AAL .8203.BXY

This issue contains articles on reading 2 paddles at once, EPROM blasters,
reviews, more about the EPSON interface, tricky code that always skips,
using the AE Time 1l card, some corrections and a note from the publisher.

AAL .8204 .BXY

This issue contains articles on adding auto-save to the S-C assembler, a
review of an Applesoft editor, an easy shift-key modifier, using macros and
nested macros and recursive macros, controlling software configuration and
making a funny noise.

AAL .8205.BXY

This issue contains articles on a secret RWTS caller inside DOS 3.3,
benchmarking block MOVEs, another recursive macro, reading a whole track
with RWTS, reading the game buttons unambiguously and a macro branch
library.

AAL .8206.BXY

This issue contains articles on implementing "new"™ opcodes using BRK, a new
hi-res function for Applesoft, a bubble sort, macro hints, a yes/no
subroutine, a bell routine, a shift-key modification, searching for
zero-page references, an automatic CATALOG for the S-C Macro Assembler and a
memory examiner.

AAL .8207 .BXY

This issue contains articles on run-anywhere subroutines, a giant macro for
messages, sorting out zero-page references, simple hi-res animation, a text
file display command for DOS and some reviews.

AAL .8208.BXY

This issue contains articles on search and perform subroutines, DOS free
space patches, a quick way to write DOS on a disk, corrections to the July
relocatable JSR command, efficient handling of very large assembly source
files, a blinking underscore cursor and lots more goodies!

AAL .8209.BXY

This issue contains articles on new S-C products, a directory of assembler
directives, relocatable ampersand-vector code, eliminating paddle
interaction, some fast screen tricks, a bibliography, a note about the 6800
cross assembler and the underline cursor and some reviews and patches.

AAL .8210.BXY

This issue contains articles on a DOS 3.3 catalog arranger, why you need
macros, converting toolkit source to S-C, S-C assembler goodies and info on
how people could have written for AAL, plus a correction to the fast screen
scrolling by Bob.

AAL.8211.BXY
This issue contains articles on sound patterns, digitized speech on an Apple

Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 4 of 2550

Apple 11 Computer

11, more fast primes, moving a symbol table, EXEC without END in Applesoft,
an Applesoft program locator and REPEAT/UNTIL for Applesoft.

AAL.8212.BXY

This issue contains articles on making relocatable JMPs and JSRs, adding
bit-control to the monitor, assembly listings on text files, commented
Applesoft source, 65C02 preview, garbage collection in arrays, splitting
strings to display length, several quickies and more S-C assembler goodies.

AAL .8301.BXY

This issue contains articles on a Super Scroller, branch opcode names, more
on catalog arranger, adding decimal values from ASCII strings, programming
the language card, seed thoughts on extensions, more quickies, ideas and
reviews.

AAL .8302.BXY

This issue contains articles on really useful ASCII string adding, an
endless alarm, Apple Ile notes (introduced just before this issue), an
Applesoft INPUT tuner, star-tling stunts and quickies, S-C goodies and
reviews.

AAL .8303.BXY

This issue contains articles on PTRGET and GETARYPT, a macro-building macro,
Epson MX-80 screen dumps, a division tutorial, a note on prime benchmarks,
garbage-collection indicator for Applesoft, more on the lle and reviews.

AAL .8304 .BXY

This issue contains articles on patching DOS 3.3 for fast LOAD and BLOAD, an
"ORG" macro, date processing modules, a new version of DOS 3.3, a general
purpose patch installer, more reviews and a few notes.

AAL .8305.BXY

This issue contains articles on displaying character generator EPROMs, a
reference of chips in the Apple 11+, a PAUSE directive for S-C, some new
cards, a program to find address references, generating parity and garbled
error messages under DOS.

AAL .8306 .BXY

This issue contains articles on a spiral screen clear, a burglary (for
real), binary to decimal conversion, why not to replace INIT in DOS 3.3,
reformatting a lot of text, working with track balls and an ampersand
monitor caller.

AAL .8307.BXY

This issue contains articles on a 6502 mini-assembler in Applesoft, speeding
up text file 1/0, the 65C02, a revised monitor patch for ASCII display, an
80-column SHOW command, an explanation of the DOS 3.3 APPEND bug, S-C
goodies and the resolution of the burglary.

AAL .8308.BXY

This issue contains articles on using auxiliary memory on the Ile, the
65C02, speeding up spirals, tinkering with variable cross references,
reversing, getting and storing nibbles, some small patches and patch
unification, and some 68000 boards for the Apple II.

AAL .8309.BXY

This issue contains articles on jump vectoring, generating machine code with
Applesoft, Amper-monitor, more DOS 3.3 revisions, calculating base
addresses, saving source files for Apple®s mini-assembler, generic screen

Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 5 of 2550

Apple 11 Computer

dumps, a CATALOG interrupt and an 80-column ASCI1 Monitor dump.

AAL.8310.BXY

This issue contains articles on more tinkering with variable
cross-references, faster booting for ScreenWriter 11, large assembly
listings to text files, lower case titles, a macro-calculated spiral screen
clear, counting lines and more goodies.

AAL.8311.BXY

This issue contains articles with a commented listing of ProDOS 8"s disk
nibblization routines, a look at Aztec C, killing an EXEC file, shapemaker
enhancements, ProDOS clock drivers and more on lower case titles.

AAL.8312.BXY

This issue contains articles with more disassemblies of ProDOS 8, more
assembly listings into text files, more on Aztec C, generalized GOTO and
GOsuB, finding trouble in a RAM card, the TimeMaster 11 from AE and
converting S-C files to text files.

AAL .8401.BXY

This issue contains articles on a code profiler, more on a Don Lancaster
assembly language book, DOS patches to avoid interrupt problems, more on the
65C02, some reviews, online with Steve Wozniak and a 68000 "color pattern-.

AAL .8402 .BXY

This issue contains articles on listing buried messages, peeking at the
catalog, fast scrolling on Ile 80-column screens, a look at the Macintosh,
wrap-around addressing, delays, lle soft switches, a text area erase
routine, a macro to generate a quotient/remainder table for Hi-Res and even
more good stuff!

AAL .8403.BXY

This issue contains articles on fast garbage collection, changing VERIFY to
DISPLAY, faster table lookups via redundancy, disk drive pressure pads,
ProDOS on a Franklin, the color pattern in 6502 code and a philosophical
article wondering if ProDOS will succeed.

AAL .8404 .BXY

This issue contains articles on a CRC subroutine, more clocks, an evening
with Woz, quick DOS updating (no more MASTER CREATE), burning and erasing
EPROMs, and macro source code available.

AAL .8405.BXY

This issue contains articles on random numbers for Applesoft, the Apple llc,
news from Roger Wagner, the enhanced Apple Il ROM, the 65C02 in older Apple
Il machines, decimal floating point arithmetic, making a difference map and
a solution to an old puzzle.

AAL .8406 .BXY

This issue contains articles on 18-digit arithmetic (part 2), DOS studies,
revisiting $48, more random number generators, booting ProDOS with a
modified ROM, Ffinding the bad bit using CRCs, and lots more too intricate to
list here!

AAL .8407 .BXY

This issue contains articles on 18-digit arithmetic (part 3), building label
tables for DISASM, quick memory testing, a 68000 sieve benchmark, an updated
6502 prime sifter, sorting and swapping, "gotchas® on the Apple Ilc, orphans
and widows, and speed vs. space.

Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 6 of 2550

Apple 11 Computer

AAL .8408.BXY

This issue contains articles on 18-digit arithmetic (part 4), enabling and
disabling IRQ from Applesoft, line number cross references, slow chips, and
a modification to DOS 3.3 for big BSAVEs.

AAL .8409 .BXY

This issue contains articles on 18-digit arithmetic (part 5), faster
ampersand routines to zero arrays, turning an index into a mask, putting
messages on the screen, a bibliography on hi-res graphics and some great
"new" books.

AAL .8410.BXY

This issue contains amplifications on past articles on 18-digit arithmetic
(plus part 6 of the series), more on "index to mask®, a review and sample
program for the 65802, an index to volume 4 and reviews of two early
Macintosh 68000 assemblers, of all things.

AAL .8411 .BXY

This issue contains part 7 of 18-digit arithmetic (and square roots!),
megabytes for the lle, the 65816, an improved 80-column monitor dump,
generating cross-reference files with DISASM, macro information by example,
turning bit-masks into indexes and converting two-digit decimal strings to
binary.

AAL .8412 _BXY

This issue contains part 8 of 18-digit arithmetic, more details on 65C02"s
in older Apple Il computers, corrections on V5N2"s MVN/MVP, a strange way to
divide by 7, sly hex conversion, remembering early computer prices, tables
for faster hi-res, Blankenship®s BASIC and a solution to overlapping DOS 3.3
patches.

AAL .8501.BXY

This issue contains part 9 of 18-digit arithmetic (the printing routinel!), a
symbol table source maker and a short single-byte hex-to-decimal printer.
The first two routines are so informative they take up almost all of the
32-page paper issuel

AAL .8502.BXY

This issue contains part 10 of 18-digit arithemetic, questions and answers
on the S-C 2.0 assembler, making DOS-less disks, corrections, reviews, more
S-C assembler stuff and building hi-res pre-shift tables.

AAL .8503.BXY

This issue contains info on shortening the DOS file buffer builder, more on
65C02s in older Apple Ils, improved DOS 3.3 number parsing and lower-case
DOS 3.3 commands, the Oki 6203 multiply/divide chip, a real 65816
diassembler (with sourcel!) and finding memory size from the ProDOS 8 global

page.

AAL .8504 .BXY

This issue contains a volume catalog for Corvus and Sider hard disks,
shrinking code inside BASIC.System, fast text windows for Applesoft,
discussion of some "new" products, reviews and S-C macro assembler stuff.

AAL .8505.BXY

This issue contains a new catalog for DOS 3.3, an 80-column window utility
for the Ile and Ilc, adding a DATE command to BASIC.System and lots of S-C
Macro Assembler 2.0 modifications, plus some reviews and modifying the

Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 7 of 2550

Apple 11 Computer Info

Rak-Ware DISASM program, for all of us who still use it.

AAL .8506.BXY

This issue contains the Boyer-Morris string search algorithm, a short
integer square-root subroutine, a note on the TXS instruction on the 65802,
interrupt trace, improving the single-byte converter, two ROM sets in one
Ile, a Call utility for Applesoft and some final DP18 subroutines.

AAL .8507 .BXY

This issue contains info on how to read DOS 3.3 disks under ProDOS, how to
recursively list files (including contents of subdirectories) on a ProDOS
filesystem, and how to BSAVE to a new non-binary file under BASIC.SYSTEM
1.1. A review of the MCT SpeedDemon accelerator is also included.

AAL .8508.BXY

This issue contains how to make a 576K printer buffer on your Ilc with a
Z-RAM card, a discussion of how many bytes each opcode takes, some generic
conversion routines and a wildcard file name search.

AAL .8509.BXY

This issue contains a prime benchmark for the 65802, putting DOS and ProDOS
on the same disk, software sources for 65802 and 65816, problems putting
65802 chips in Apple 11+ computers and a short binary-to-decimal conversion
routine In 65802 (good for 65816 as well).

AAL .8510.BXY

This issue contains articles on a ProDOS driver that records what calls are
made to it, a DOS 3.3 RWTS patch to do the same recording, a puzzle in a
program that erases itself and more, more on putting 65C02 chips in older
Apple 11 machines, a multiple-column disassembler, reviews, news and more.

AAL.8511.BXY

This issue contains articles on a 15K language card-based RAM disk for DOS
3.3, a patch to ProDOS QUIT to allow the right-arrow key, three solutiosn to
the previous month"s puzzle, a commented disassembly of the ProDOS QUIT
call, and two ways to merge fields into one byte.

AAL .8512 .BXY

This issue contains articles on bugs in last month"s RAM disk driver,
tracing the ProDOS MLI, a review of the OKS Kache Card, more puzzle
solutions, pseudo-variables in machine language and computing the day of the
week .

AAL .8601.BXY

This issue contains articles on converting lo-res pictures to hi-res, a
question on returning from BRUN, text file transfer under DOS 3.3, fast 6502
and 65802 multiplication routines, a RAMWorks compatible auxmove routine, a
correction to the dual DOS 3.3/ProDOS disk creator and trivia from Bill
Mensch on the origin of the number "6502°.

AAL .8602.BXY

This issue contains articles on a wildcard-capable CATALOG for DOS 3.3, the
Mitsubishi 50740 series microprocessors (MPW Ilgs assembler actually
recognizes these guys), a faster CRC method, corrections to faster garbage
collection and a DOS 3.3 patch to prevent directly-entered commands from
working.

AAL .8603.BXY
This issue contains articles on running ProDOS on non-Apple ROMs, even

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 8 of 2550

Apple 11 Computer

faster 16X16 multiplication for the 65802 (or 65816), making a smarter 65816
disassembler, the fastest 6502 multiplication yet, PAL programming hardware,
reviews, and a routine to determine which 65XXX series processor you“re
using!

AAL .8604 .BXY

This issue contains articles on tool for restoring lost catalogs, using
primitive text windows, dividing BCD values by four, booting into 80
columns, a faster boot for DOS 3.3 with more disk space and a screen hole
gaffe in the second Apple Ilc ROM release.

AAL .8605.BXY

This issue contains articles on modifying DOS 3.3 to use 3.5" disks,
recovering lost programs in the S-C assembler environment and even more
better division by seven.

AAL 8606 .BXY

This issue contains articles on the 65816 stack relative addressing mode,

fast 16X16 multiply and divide for the 65802, the real story about DOS and
BRUN, toggling between two values, using SmartPort, generalized MLI error

handling and a practical CRC use.

Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 9 of 2550

Apple 11 Computer

DOCUMENT IREAD.ME.txt

/ V4 \ APPLE 11 PROGRAMMERS AND DEVELOPERS
/_ /11 11 ROUNDTABLE (A2Pro)
/_/ 1 17 /
/ \/_7/ _ Part of GEnie, the General Electric
/_/ 117 / /7 /7 7 Network for Information Exchange
/_/ 11 // / \/_/

APPLE ASSEMBLY LINE (ANOTHER RELEASE OF THE LOST CLASSICS PROJECT OF THE
APPLE 11 ROUNDTABLES ON GENIE): IMPORTANT INFORMATION

Welcome to A2Pro"s release of Apple Assembly Line, the outstanding assembly-
language programming newsletter written and published by Bob Sander-Cederlof
from October 1980 through May 1988. These programming magazines are now
available to all members of A2Pro on GEnie for only the cost of a download,
including all source code disks and all articles!

IT you wish to become a part of the Lost Classics project, visit the Lost
Classics headquarters in the A2 RoundTable (p. 645) on the GEnie Information
Service and check out the Lost Classics Bulletin Board Category (#7). This is
a continuing effort, and we wish to embrace the entire Apple Il community.
Your assistance is greatly appreciated, and by helping Lost Classics you help
all Apple 11 users everywhere!

The author, Bob Sander-Cederlof, retains full copyright and its protection
for the product known as Apple Assembly Line. This product can be neither
bought nor sold, nor may it be modified, converted to other computer
platforms or operating systems without prior permission. User groups may
make it available for a nominal fee, but may derive no special income from
its distribution. In other words, you may charge a few dollars for the disk
and postage, but no charge for the program itself. This is not to discourage
the use of the code and techniques presented here iIn your own programs, but
is instead intended to protect the author from knock-off clones where the
same programs are distributed as someone else"s work with only one or two
things changed, or a different user interface and a feature or two added

to the same code.

Should you have any questions about the distribution restrictions, you may
contact the A2Pro RoundTable (A2PRO.HELP) on GEnie for more detailed
information.

THESE ARTICLES AND PROGRAMS MAY NOT BE UPLOADED TO BULLETIN BOARDS OR ONLINE
SERVICES. THE APPLE 11 PROGRAMMERS® ROUNDTABLE ON GENIE 1S THE EXCLUSIVE

SOURCE FOR ELECTRONIC DISTRIBUTION OF APPLE ASSEMBLY LINES. Violating these
distribution agreements is an infringement of copyright. A2Pro on GEnie has

exclusive license to distribute these articles and programs and they may NOT be

distributed via any other modem-based service without the express written
permission of the A2Pro Head Sysop.

NOTES ON FILES AND ORGANIZATION

Until July 1985, all Apple Assembly Lines source code and articles were created

and delivered exclusively on DOS 3.3 disks. To help alleviate difficulty in
retrieving the information, we have used the DOS 3.3 FST in GS/0S to transfer

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 10 of 2550

Apple 11 Computer Info

all files to ProDOS disks. We"ve also renamed the files accordingly so you can
easily unpack, read and enjoy them.

Starting in Jully 1985, Apple Assembly Lines was delivered (to those
subscribers who also purchased the disks) on "hybrid" DOS 3.3/ProDOS disks.
These disks contain both ProDOS and DOS 3.3 catalogs. The ProDOS side
usually included ProDOS versions of the source code and programs, and would
occasionally include ProDOS-specific code or discussion.

Each issue in A2Pro"s release of Apple Assembly Lines contains up to three
folders:

ARTICLES: Text files with the articles as printed in AAL that month.
Articles were written using Apple Writer and still have some
Apple Writer formatting commands in the files.

D0S3.3: Source and object code files from the DOS 3.3 parts of disks,
copied to ProDOS disks and archived
PRODOS: Source and object code files from the ProDOS parts of disks,

when available.

Some of the information may be duplicated, but we prefer to bring it to you as
it was mailed to subscribers.

ABOUT THE SOURCE CODE

Nearly all source code supplied is for the S-C Macro Assembler (also written by
Bob Sander-Cederlof). The S-C Macro Assembler used a BASIC-like file format to
store source code, including line numbers and simple compression of repeating
characters. It "stole" the Integer BASIC file type (in both DOS 3.3 and
ProDOS) to store its source Files, making them not very useful to those without
the S-C Macro Assembler.

To help the code look as it did in the magazine, we"ve converted all the files
to ASCII text files, including their original line numbers, so you can follow
the descriptions of the code in the articles. The conversion was done through
a custom command for the Davex eight-bit command shell. The command (“sclist™)
is available separately in A2Pro"s library.

We chose not to increase the archive sizes by including the original files as
well as the text file versions. |If you have need for any unmodified files from
an original Apple Assembly Line disk, please let us know in the A2Pro bulletin
board and we"l1l1 do what we can to make it available.

A2Pro and Lost Classics are pleased to bring this long-gone programming
information back to Apple Il programmers around the world. If you have any
suggestions or comments, please come talk to us in the A2Pro bulletin board
on GEnie (menu option #1 on page 530), or send GEnie mail to A2PRO.HELP (from
internet, A2PRO.HELP@genie.geis.com).

Enjoy the Apple Assembly Line!

To sign up for GEnie, follow these simple steps:

1. Set your communications software to 8N1, half duplex (local echo),
at 300, 1200 or 2400 baud.
2. Dial toll-free 1-800-638-8369, or in Canada, 1-800-387-8330.

Upon connection, enter HHH.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 11 of 2550

Apple 11 Computer Info

3. At the U#= prompt, enter XTX99020,A2PRO and then press <RETURN>.
4. Have a major credit card ready. In the U.S., you may also use
your checking account number.

For more information, call 1-800-638-9636, mail feedback@genie.geis.com,
or write:

GEnie, c/o GE Information Services, P.0O. Box 6403, Rockville, MD 20850

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 12 of 2550

Apple 11 Computer Info

CATALOG

Name Type Crtr Size Flags Last-Mod-Date Creation-Date
TREAD .ME. txt TEXT R*ch 97K lvbspolmad 11/3/99 2:41 AM 1/5/78 12:05 PM
AAL-8010 Fldr FIdr 776K IvbspolMAd 9/18/00 5:51 PM 9/18/00 5:49 PM
AAL-8011 Fldr FIdr 873K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8012 Fldr Fldr 1261K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8101 Fldr FIdr 970K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8102 Fldr Fldr 1746K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8103 Fldr Fldr 1067K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8104 Fldr FIdr 1261K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8105 Fldr FIdr 970K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8106 Fldr FIdr 970K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8107 Fldr FIdr 1067K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8108 Fldr Fldr 1746K IvbspolMAd 9/18/00 5:53 PM 9/18/00 5:49 PM
AAL-8109 Fldr Fldr 1261K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8110 Fldr FIdr 1552K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8111 Fldr FIdr 582K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8112 Fldr Fldr 1940K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8201 Fldr FIdr 1940K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8202 Fldr Fldr 1843K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8203 Fldr Fldr 1455K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8204 Fldr FIdr 1358K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8205 Fldr Fldr 1746K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8206 Fldr Fldr 2134K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8207 Fldr FIdr 1649K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8208 Fldr Fldr 2134K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8209 Fldr Fldr 1843K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8210 Fldr FIdr 873K lvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8211 Fldr Fldr 2037K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8212 Fldr Fldr 2037K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:49 PM
AAL-8301 Fldr FIdr 2231K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8302 Fldr Fldr 2910K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8303 Fldr Fldr 1746K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8304 Fldr FIdr 1455K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8305 Fldr Fldr 2037K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8307 Fldr Fldr 2134K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8308 Fldr FIdr 1649K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8309 Fldr Fldr 2231K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8310 Fldr Fldr 2910K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8311 Fldr FIdr 1455K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8312 Fldr Fldr 1358K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8401 Fldr Fldr 1746K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8402 Fldr FIdr 2134K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8403 Fldr Fldr 1843K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8404 Fldr Fldr 1261K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8405 Fldr FIdr 1746K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8406 Fldr Fldr 1940K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8407 Fldr Fldr 1940K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8408 Fldr FIdr 1067K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8409 Fldr Fldr 1261K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8410 Fldr Fldr 1552K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8411 Fldr FIdr 1940K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8412 Fldr Fldr 2037K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:50 PM
AAL-8501 Fldr FIdr 970K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8502 Fldr FIdr 1261K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8503 Fldr Fldr 1649K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:51 PM
AAL-8504 Fldr Fldr 2037K IvbspolMAd 9/18/00 5:54 PM 9/18/00 5:51 PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 13 of 2550

AAL-8505
AAL-8506
AAL-8507
AAL-8508
AAL-8509
AAL-8510
AAL-8511
AAL-8512
AAL-8601
AAL-8602
AAL-8603
AAL-8604
AAL-8605
AAL-8606

AAL-8010:
Articles
D0S3.3

:AAL-8010:Articles:
Add.Sub.One.txt
Front._Page.txt
Gen.Msg.Printer.txt
HW.Err.6502.txt
LC.for.SCAsm.txt
New.Products.txt

-AAL-8010:D0S3.3:
LowerCase.Adapt.txt
S_Msg-Printer.txt

AAL-8011:
Articles
DOS3.3

:AAL-8011:Articles:
BagsDisks4Sale.txt
Front.Page.txt
Sim.KeyPad.txt
Src.On.TxtFiles.txt
Use.For.USR.Cmd.txt
Variable.XRef.txt

-AAL-8011:D0S3.3:
S_NumericKeyPad. txt
S.TEXT.LIST.txt
S.Var.XRef.txt

AAL-8012:
Articles
D0S3.3

tAAL-8012:Articles:
BlockMoveCopy - txt
Compare.16Bits.txt
Front._Page.txt
IBas.Prty.List_txt
Listed.Xprsns.txt
PrinterOnError.txt
Smart.Disasms.txt

-AAL-8012:D0S3.3:
B.COPY.LINES.txt
MkCopyLinesFile.txt
S.COPY.LINES.txt

Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr
Fldr

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

1261K
1940K

873K
1067K
1358K
1843K
1746K
1455K
2328K
1164K
2231K
1358K

970K
2716K

582K
194K

97K
97K
97K
97K
97K
97K

97K
97K

582K
291K

97K
97K
97K
97K
97K
97K

97K
97K
97K

679K
582K

97K
97K
97K
97K
97K
97K
97K

97K
97K
97K

IvbspoIMAd
IvbspoIMAd
IvbspolIMAd
IvbspoIMAd
IvbspoIMAd
IvbspolIMAd
IvbspoIMAd
IvbspoIMAd
IvbspolIMAd
IvbspoIMAd
IvbspoIMAd
IvbspolIMAd
IvbspoIMAd
IvbspoIMAd

IvbspoIMAd
IvbspolIMAd

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

(614

NN

[¢)]

N NN

(614

N NN

NNNNNN oo oaoolooo o

NNNNNN

NNNNNNDDN

41
41
41

:49
:49

41
41
41

Apple 11 Computer Info

AM
AM

PM
PM

AM
AM
AM

PM
PM

9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00
9/18/00

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78

(614

12
12
12

12
12
12

gooooaougoaogolo oo o

:05
:05
:05

:49
:49

:05
:05
:05

PM
PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 14 of 2550

S.IB_Ptry.Lstr._txt
S_PATCH.DA.txt
Setup.CopyLines.txt

AAL-8101:
Articles
DOS3.3

tAAL-8101:Articles:
Computed.Gosub . txt
Copy . for.SCAsm.txt
Edit.Cmd.SCASM.txt
Front._Page.txt
How.Move .Mem. txt

AAL-8101:D0S3.3:
S.AmperGosub. txt
S_ASoft_BLTU.txt
S_EDIT.COMMAND . txt
S.GENERAL .MOVE . txt
Test.AmperGosub . txt

AAL-8102:
Articles
DOS3.3

tAAL-8102:Articles:
AppleNoiseSound. txt
AS._Str.Swapper . txt
Front._Page._Misc.txt
GRAM.Buy -Printr.txt
GRAM.Ftr._Laumer.txt
GRAM.Hello.AS.txt

Multiply.6502.txt

“AAL-8102:D0S3.3:
Demo.Str._Swap.txt
-APPLE.BELL.txt
- INCH_WORM. txt

-LASER.BLAST . txt
-LASER . SWOOP . txt
-MACHINE.GUN. txt
-MORSE . CODE . txt
-MULTIPLY . txt

-SIMPLE.TONE. txt
-STRING.SWAP . txt
- TOUCH.TONES . txt

DL OLOLOLOLnnm

AAL-8103:
Articles
D0S3.3

tAAL-8103:Articles:
A_Beaut.Dump.txt
Amper .Cmd. Int._txt
DOS321.RWTS.Lst.txt
Front._Page.txt
Opcode.Chart.txt
Unused.Opcodes. txt

:AAL-8103:D0S3.3:
AsmDisk4.0.Mod.txt
DOS321 .BDOOBEYF. txt
S_AmperIntf.txt
S.BernardMemD.txt

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch

97K
97K
97K

485K
485K

97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

679K
1067K

97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

582K
485K

97K
97K
97K
97K
97K
97K

97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99

NNN

[¢)]

NNNNN

[¢)]

(614

NNNDN

NNNNDN

NNNNNNDDN

NNNNNNNNNNDN

NNNNNDDN

41
41
41

41
41
41
41
41

41
41
41
41

Apple 11

AM
AM
AM

PM
PM

AM
AM
AM
AM
AM

AM
AM
AM
AM
AM

PM
PM

AM
AM
AM
AM

1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12
12
12

12
12
12
12
12

12:
12:
12:
12:

:05
:05
:05

:49
:49

:05
:05
:05
:05
:05

:05
:05
:05
:05
:05

:49
:49

PM
PM
PM

PM
PM

PM
PM
PM
PM
PM

PM
PM
PM
PM
PM

PM
PM

PM
PM
PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 15 of 2550

Welman.Modifier.txt

:AAL-8104:
Articles
DOS3.3

:AAL-8104:Articles:
AS.Substr.srch.txt
DOS.Format.List.txt
Front._Page.txt
Hiding.Undr.DOS.txt
Part.l.txt
Text.File.10.txt

:AAL-8104:D0S3.3:
Demo.Txt.FI._.Rd.txt
DOS321BEAO.BFFF.txt
DOS33.BEAF.BFFF.txt
FastStr. Input.txt
Substr.search.txt
Test.Str. Input.txt
Test.Subst.Srch.txt

:AAL-8105:
Articles
DOS3.3

:AAL-8105:Articles:
DontBeShiftless.txt
D0S321.B800.Lst.txt
Front._Page.txt
GRAM_.WPs . txt
Hires.Scrn.Func.txt
No.Pdl.Jitter.txt

:AAL-8105:D0S3.3:
DOS321.B80OBCFF . txt
HIRES.SCRN.TEST . txt
S.HIRES.SCRN. txt
S_PADDLE._JITTER. txt

:AAL-8106:
Articles
DOS3.3

:AAL-8106:Articles:
D0S33.B800.List.txt
FancyToneMakers.txt
Front._Page.txt
Multiplication.txt
Rvw_Beneath._DOS.txt

-AAL-8106:D0S3.3:
D0S33.B800.BCFF.txt
S.AMPERTONES. txt
S.BASCALC.txt
S.BY.TEN.txt
S.MXN.MULTIPLY . txt

:AAL-8107:
Articles
DOS3.3

:AAL-8107:Articles:
Front.Page.txt

TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT

R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch

97K

582K
679K

97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

582K
388K

97K
97K
97K
97K
97K
97K

97K
97K
97K
97K

485K
485K

97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

582K
485K

97K

Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad

11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99

(6 ¢)

(6 ¢)

[61¢)

NNNNN

a1 o

NNNNNDN

NNNNNNDDN

NNNNNDN

NNNN

NNNNN

41

:49
:49

41
41
41
41

41

41

41
41
41

41

41
41
41
41
41

:49
:49

41

Apple 11

AM

PM
PM

AM
AM
AM
AM
AM
AM

AM
AM
AM
AM
AM
AM
AM

AM
AM
AM
AM

PM
PM

AM

1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78

Computer Info

12:05 PM

12
12
12
12

12

12:
12:
12:
12:

12:

12
12
12

12

12

:49
:49

:05
:05
:05
:05
:05
:05

:05
:05
:05
:05
:05

:49
:49

:05

PM
PM

PM
PM
PM
PM
PM
PM

PM
PM
PM
PM
PM
PM
PM

PM
PM

PM
PM
PM
PM
PM

PM
PM

PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 16 of 2550

LowerCaseApple.txt
Miscel laneous.txt

Screen.Printer.txt
StepTrace.Util . txt
Var .XRef.Correx.txt

:AAL-8107:D0S3.3:
S.F8EpromLC.txt
S_RESTORE.1.txt
S.RESTORE.2.txt
S.ScrnPrinter.txt
S_STEP.TRACE.txt

-AAL-8108:
Articles
DOS3.3

:AAL-8108:Articles:
Bin.Kbd. Input.txt
Compare.2Ways . txt
DOS33BootROMLSt. txt
FID.Select.Cat.txt
FindASLineNums.txt
Front._Page.txt
Miscel laneous. txt
Rand.Nums. IntBA.txt
Re.AsmSrc.Text.txt
Rvw_Apple.ML.txt
Whaduzzit.Do.txt

-AAL-8108:D0S3.3:
DOS33.Boot.ROM. txt
Hello.FW.Slot4.txt
S_.AMPERFIND.txt
S.Bin.Keyboard.txt
S.CalllB.Random.txt
S_RANDOM.TEST . txt
S.Rnd.Function.txt

AAL-8109:
Articles
D0S3.3

tAAL-8109:Articles:
CHRGET .CHRGOT . txt
DOS3.3.RWTS.Src.txt
Fancy.AS.Direct.txt
FieldlnputRtn.txt
Front._Page.txt
LeaveVers4.0.txt

-AAL-8109:D0S3.3:
Demo.US.Direct.txt
S_CHRGET .PATCH. txt
S_CHRGET . txt
S.D33.BDOOBEAE . txt
S_FldInputRtn.txt
S_US_DIRECTIVE.txt
Tst.FId. Inp.Rtn.txt

AAL-8110:
Articles
D0S3.3

:AAL-8110:Articles:

TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

1067K
679K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

582K
679K

97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

873K
679K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

NNNNN

[¢)]

(614

(614

NNNNDN

NNNNNNNNNNDN

NNNNNNDN

NNNNNDDN

NNNNNNDN

41
41
41
41
41

Apple 11

AM
AM
AM
AM
AM

AM
AM
AM
AM
AM

PM
PM

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

Computer Info

12
12
12
12
12

12
12
12
12
12

:05
:05
:05
:05
:05

:05
:05
:05
:05
:05

:49
:49

PM
PM
PM
PM
PM

PM
PM
PM
PM
PM

PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 17 of 2550

DOS3.3Disasm.txt
Errata.CHRGET . txt
Front._Page.txt
GRAM.1lineprint.txt
Gram.Book.Revws. txt
GRAM.Hello.AS.txt
Sifting.Primes.txt
XAsm.6809.txt
Xtnd.Apples._Mtr.txt

-AAL-8110:D0S3.3:
IB.Prime.Bench.txt
S_ASCII .Dump.P._txt
S.D33.B35F.B7FF.txt
S_.Mtr._Xtns.txt
S.Prm.B. .Savoie.txt
S.Prm.Bnch.Fst.txt
S.Prm.Bnch.RBSC.txt

AAL-8111:
Articles
DOS3.3

AAL-8111:Articles:
AS .ROMsFromAsm. txt
Front.Page.txt
Loops4Begs .. txt
PoorMansDisasm. txt

:AAL-8111:D0S3.3:
PoorMans.Dsasm.txt
S.FrmtPrint.txt

AAL-8112:
Articles
D0S3.3

tAAL-8112:Articles:
AS.GotoFromAsm.txt
AS_HiRes.Subs.txt
AS.LineEditAID.txt
ASCI I :Mon.Dump . txt
Excel .9.Review.txt
Front.Page.txt
FstrStringlnput.txt
Hex.Const.AS.txt
Price.List.txt

:AAL-8112:D0S3.3:
AS.DEMO.HI .RES.txt
.ASoft.Inline.txt
.Fast_Read.txt
.GOTO.txt
-HEX_CONSTANTS. txt
-HI _.RES_.DEMO. txt

- INTEGER. INPUT . txt
-Mossberg.LE._txt
-PMD.Subr.txt
TEST.FAST.READ. txt
Test.GotoFromML . txt

(NG E RO NONG N R))

-AAL-8201:
Articles
DOS3.3

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT

TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch

R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

388K
194K

97K
97K
97K
97K

97K
97K

873K
1067K

97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

873K
1067K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

[¢)]

NN

(614

[S0e)]

NNNNNNNNDDN

NNNNNNDDN

NNNN

NNNNNNNDNN

NNNNNNNNNNDN

41
41
41

41
41

:49
:49

:49
:49

Apple 11

AM
AM
AM

AM
AM

PM
PM

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

Computer Info

12:

12:
12:

12
12

:05
:05

:49
:49

:49
:49

PM
PM
PM

PM
PM

PM
PM

PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 18 of 2550

:AAL-8201:Articles:
Front.Page.txt
HandyExecFiles.txt
HiresScrnColor.txt
OneChip6500.1.txt
Relocator.6502.txt
Review. Index.txt
SCAsm.2.LC.txt
SeriousDOSPro.txt
StepTraceCorrex.txt

:AAL-8201:D0S3.3:
AS_Copy.FW._txt

AS _MAKE . LANGASM. txt
ASM. txt

COPY .FIRMWARE . txt
INT.txt
LOAD.ASM. txt

MAKE . LANGASM. txt
READ.EXEC.FILE.txt
S.HiresScrnClr.txt
S.RELOCATE. txt
WRITE.EXEC.FILE.txt

AAL-8202:
Articles
D0S3.3

:AAL-8202:Articles:
BMA.VERSES. txt
DOS.Error.Trap.txt
EvenFstrPrimes.txt
Front._Page.txt
Great.Free.Adv.txt
ImprvEpsonCard. txt
My.Ad.txt
On._DivBy10.txt
Overseas.Subs.txt
Patch_AW.PLE.txt
PrinterFIFOBuf.txt
Problem.QD5.txt

-AAL-8202:D0S3.3:

AW_Patch4PLE . txt

PutneyPrimeDrvr.txt
S_DIVIDE.BY.TEN.txt
S._.DOSONErrXmpl . txt
S._EpsonROMChng - txt
S_FIFOPrntHndlr.txt
S.Putney.Primes.txt

-AAL-8203:
Articles
D0S3.3

tAAL-8203:Articles:
Code.Alwys.Skip.txt
Correx.2.FIFO.txt
EPROM.Blstr.Def.txt
Front._Page.txt
More.Epson. Intf.txt
New.SCAsm.Ad. txt
OtherEpsonMan . txt
Rvw.6502.Subs.txt
Rvw.AmperMagic.txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

1164K
679K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

1067K
388K

97K
97K
97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

11/3/99
11/3/99
1173799
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

(614

(614

NNNNNNNNDDN

NNNNNNNNNNDN

NNNNNNNNNNNDDN

NNNNNNDN

NNNNNNNDNN

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 19 of 2550

Rvw.Timell .Card.txt
SCAsm.Ready . txt

-AAL-8203:D0S3.3:
Inst.DOS.Patch.txt
S_DATE.FILES.txt
S_DISPLAY.TIME.txt
S.PADDLES.txt

AAL-8204:
Articles
D0S3.3

tAAL-8204:Articles:
Add.AutoSave.txt
Ashby_Shift._Mod.txt
Front._Page.txt
Pot.Tymac.Troub.txt
Recursive._Macro.txt
Review.AED.I1._txt
Sftwr.Cnfg.Ctri.txt
Using.Macros.txt

:AAL-8204:D0S3.3:
Inst_LA.Taylor._txt
S.Autosave. txt
S.FUNNY_NOISE.txt
S_LA_Ext.Taylor.txt
S.Recurs.Macro.txt
S.Schumer .Macro.txt

-AAL-8205:
Articles
DOS3.3

:AAL-8205:Articles:
Anthr.Recur .Mac.txt
BIkMv.Benchmrk.txt
Branch.MacLIlb.txt
Front._Page.txt

Game .Buttons. txt
NewAEDFeatures.txt
NewOpcodes. txt
Printers.4Sale.txt
RWTS.Caller.txt
SCMacro.patches.txt
Secret.RWTS.Clr.txt

:AAL-8205:D0S3.3:
A.BlkMov.Bnch.txt
S.BlkMovBench.txt
S.BRANCH.MACROS. txt
S.GAME.BUTTON. txt
S.RecurMac.2.txt
S.TRACK.READ.txt
S.WRTDIR.txt

-AAL-8206:
Articles
D0S3.3

tAAL-8206:Articles:
Auto.Catalog.txt
BRK.Opcodes. txt
BubbleSort.Demo.txt

TEXT
TEXT

TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT

R*ch
R*ch

R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch

97K
97K

97K
97K
97K
97K

776K
582K

97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

1067K
679K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

1164K
970K

97K
97K
97K

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99

NN

(614

[¢)]

(614

N NN

NNNNNNNDN NNNDN

NNNNNN

NNNNNNNNNNDN

NNNNNNDN

41

41
41
41
41

:49
:49

41
41
41

Apple 11

AM
AM

AM

AM
AM
AM
AM

PM
PM

PM
PM

AM
AM
AM

1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78

Computer Info

12:05 PM
12:05 PM

12:05 PM

12:05 PM
12:05 PM
12:05 PM
12:05 PM

5:49 PM

12:05 PM
12:05 PM
12:05 PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 20 of 2550

DFX.Review.txt
Examiner.txt
Front._Page.txt
Hint.txt
My.Bell.txt
Search.ZP.txt
Shift.Key_Mod.txt
XPlot4ASoft. txt
Yes.No.txt

-AAL-8206:D0S3.3:
HXPLOT .DEMO. txt
-AUTO.CATALOG.txt
-BubbleSrtDemo.txt
-EXAMINER . txt
-HXPLOT . txt
-Look4zP . txt
-MyOwnLtIBell .txt
-NewBrkOpcodes. txt
-ReadKeyCase.txt
-YES_NO.txt

(RO ONONGNO RN N

-AAL-8207:
Articles
DOS3.3

:AAL-8207:Articles:
Animation.txt
Axlon.Review.txt
Flash.Ad.txt
Front._Page.txt
Giant.Macro.txt
Hierographic.txt
OtherEpson -Man . txt
Relocatable.JSR.txt
Showfile.txt
Sorted.ZeroPage.txt
Who.Are.We.txt

:AAL-8207:D0S3.3:
Inst.Show.Cmd.txt
S.FILEDUMP . txt
S.GIANT.MACRO. txt
S.SHOW. txt
S_Smpl.Anim.txt
S.ZP.InOrder.txt

:AAL-8208:
Articles
DOS3.3

:AAL-8208:Articles:
AGAG.Review.txt
Auto._Man.Toggle.txt
Cursor .Routine.txt
Free.Space.txt
Front._Page.txt
Large.Src.Files.txt
Macro.LC.Patch.txt
My.Ad.txt
Quick.DOS.Write.txt
QuickTrace.txt
Search.Perform.txt
Shorts.txt
Videx.Patches.txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

1067K
582K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

1261K
873K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

[¢)]

(6 ¢)

NNNNNNNNDDN

NNNNNNNNDNN

NNNNNNNNNNDN

NNNNNDN

NNNNNNDNNNNNNNDN

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 21 of 2550

:AAL-8208:D0S3.3:
Do.Torens.Videx.txt
S_AutoMan.Tgle.txt
S.Free.Sectors.txt
S.SearchPerform.txt
S.UL.Cursor.txt
S.Videx.RtArrow.txt
S_Videx.Taylor._txt
S._Videx.Toren.txt
Toren.Dox.txt

-AAL-8209:
Articles
D0S3.3

:AAL-8209:Articles:
Amper _Vector . txt
Directives.txt
Front.Page.txt
Hardcore.txt
New.Products.txt
Read.Paddles.txt
Screen.Tricks.txt
Underline.Fix.txt
VidexPatchPatch.txt
VidexRtArrow. txt

-AAL-8209:D0S3.3:
S_CatalogArr._txt
S_PdIWOIntAct.txt
S.RelocAmperMac. txt
S_RelocAmpersnd.txt
S.Screen.Tricks.txt
S.Tookit.Conv.txt
S_Usr.Week.Fn._txt
TEST.USR. txt
Toolkit.Conv.txt

AAL-8210:
Articles

:AAL-8210:Articles:
Autocat.For.LC.txt
CatalogArranger.txt
Front._Page.txt
SC.LC.Patch.txt
Scroll.Correx.txt
SQ.-Macro.txt
Toolkit.2.SC.txt
USR.Week . txt
Writing.4._AAL._txt

tAAL-8211:
Articles
DOS3.3

tAAL-8211:Articles:
Apple.Talker.txt
Changing.Lomem.txt
Exec.WO.End.txt
Front._Page.txt
Locator . txt
More.Speech.txt

My .Ad.txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K
97K
97K
97K

970K
873K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K

873K

97K
97K
97K
97K
97K
97K
97K
97K
97K

873K
1164K

97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

11/3/99
1173799
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

(614

a1

a1 o

NNNNNNNDNN

NNNNNNNNDNDN

NNNNNNNNDDN NNNNNNNDNN

NNNNNNDN

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

PM 9/18/00

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 22 of 2550

Repeat._Until.txt
TonyFasterPrime.txt

-AAL-8211:D0S3.3:
S_LOCATOR.txt
S_NewAplTalker.txt
S_Repeat.Until . txt
S.TonyFasterPrm.txt
SOUND.1.txt
SOUND.2.txt
SOUND.3.txt
SOUND .4 . txt
SOUND.5.txt
Talk.A.Test.txt
TestRepeatUntil . txt
TONY.S.DRIVER.txt

tAAL-8212:
Articles
DOS3.3

AAL-8212:Articles:
AS.Src.Code.txt
Bit.Control .txt
ClearStrngArray.txt
Enhanced .6502.txt
Enhancemnt.Rvw.txt
Es.Cape.Patch.txt
Front.Page.txt
Lancaster.Addtn.txt
ListOnTXTFile.txt
LoadRAMCard. txt
My.Ad.txt
Quickies.txt
RelocJMPsMeyer . txt
Split.txt
Toggle.Case.txt

ZAAL-8212:D0S3.3:
Meyers._Reloc.txt
S.BITS.txt
S_SPLIT.txt
S_StrArrayClear.txt
Test.Split.txt
Test.StrArrClr._txt

-AAL-8301:
Articles
DOS3.3

:AAL-8301:Articles:
Amper _Review.txt
Arranger .Addtns.txt
Cookbook.Review.txt
CROSS.AD.txt
Filename.Editor.txt
Front._Page.txt
Hardcore Mag.txt
Last.Minute.txt
My.Ad.txt
New.Hardware.txt
QD9.COVER.txt
Quickies.txt
RAM.Cards.txt
S.C.DOCU.MENTOR. txt

TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

1455K
582K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

1940K
291K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

NN

(6 ¢)

[¢)]

NNNNNNNNNNNDN

NNNNNNNNNNNNNNDN

NNNNNN

NNNNNNNNNNNNNDN

Apple 11

AM
AM

1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12:05 PM
12:05 PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 23 of 2550

Seed.Thought.txt
String.Addition.txt
Super .Scroller_txt
The.Book. txt
V3N4.6801.txt
Whats_Where._txt

-AAL-8301:D0S3.3:
S.Fname.Editor.txt
S.STRING.ADD.txt
S.SuperScroll . txt

-AAL-8302:
Articles
D0S3.3

:AAL-8302:Articles:
Front._Page.txt
Gilder_.Note.txt
Ile.txt
MoreVidexPatchs.txt
My .Ad.txt
Patch.TF.txt
Patch.Tl.txt
PtchMacroHex. txt
Quickie.6.txt
SC.WP._txt
Scooter.txt
Skinny.Page.txt
Stars.txt
String.Adder.txt
Trapper.txt

:AAL-8302:D0S3.3:
Divide.16.16.txt
-ARRAYS_txt
.Div.32.16.Trc.txt
.Div.8.4.txt
.Divide.32.16.txt
LinnsVidex.txt
-MACRO.MACROS. txt
.ScreenPrinter.txt
.ScrnPrntrPlus.txt
-SuperStrAddr.txt
.TRAPPER. txt
TEST.ARRAYS.txt
Test.Str.Adder.txt
TEST.TRAPPER.2.txt
TEST.TRAPPER. txt

(RGN ONONGNORONG N R))

:AAL-8303:
Articles

:AAL-8303:Articles:
AAL . INDEX. txt
CROSS.AD.txt
Division.txt
Front._Page.txt
Garbage. Indic.txt
lle.Stuff_txt
Macro.Macros.txt

My .Ad.txt
Patch.4.68K.Asm.txt
PtrGet.GetAryPt.txt
QD10.COVER.txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K

97K
97K
97K

1455K
1455K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

1746K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

N NN

(614

a1

NNNNNN

NNNNNNNNNNNNNDDNDN

NNNNNNNNNNNNNNDN

NNNNNNNNNNDN

41
41
41

:50
:50

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

Computer Info

12:05
12:05
12:05

5:50
5:50

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 24 of 2550

Screen.Printer.txt
Short. Item.txt
ShortPrimeNotes. txt
T.MACRO.MACROS. txt
Versionl.l.txt
VersionllShort.txt
VisibleCPU.txt

:AAL-8304:
Articles
DOS3.3

:AAL-8304:Articles:
Circut.Desc.txt
Disasm.Patches.txt
Fast.DOS.Patch.txt
Front.Page.txt
Mikes.Stuff.txt

My .Ad.txt
ORG.Macro.txt
Patcher.txt
Prawm.Board.txt
V3N7.3.3E.txt

AAL-8304:D0S3.3:
Fast.Patch.txt
S_DATER.txt
S_.FAST.LOAD.txt
S.ORG.MACRO.txt
S._PATCHER.txt

-AAL-8305:
Articles
DOS3.3

tAAL-8305:Articles:
AAL .CHART . txt
APPLE._CHIPS.txt
Apple.Chips.Txt.txt
Cross.Ad.txt
Display.CharSet.txt
FADD. txt
Front._Page.txt
Mikes80ColCmts.txt
My.Ad.txt
New.Cards.txt
ORDER . FORM. txt
Parity.txt
Pause.Direct.txt
PDP11.XAsm.txt
Rogram.2.Large.txt
SC.Capture.txt

:AAL-8305:D0S3.3:
S_DispCharSet.txt
S.FADD.txt
S.PARITY.txt
S.PauseDirect.txt
S.SC.CAPTURE. txt

-AAL-8307:
Articles
D0S3.3

:AAL-8307:Articles:

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

97K
97K
97K
97K
97K
97K
97K

970K
485K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

1552K
485K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

1552K
582K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

(6 ¢)

NNNNN

[¢)]

(614

NNNNNNDDN

NNNNNNNNNN

NNNNNNDNNNNNNNNNDNDN

NNNNDN

41
41
41
41
41

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

Computer Info

12:05
12:05
12:05
12:05
12:05

PM
PM
PM
PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 25 of 2550

Cross.Ad.txt
FastTextFilelO.txt
Feature.txt
Front._Page.txt

Mini .Assembler.txt
Miracle.txt

MonAsci iDisplay.txt
My .Ad.txt
New.DOS3.3.txt
OBriens.BGE.BLT.txt
Opcodes. txt
Othello.txt
Short.Subjects.txt
Show.Poker . txt
V3N10.65C02.txt
Weishaarl 1eDOS.txt

-AAL-8307:D0S3.3:
MINI _ASSEMBLER . txt
S_FastTextRBSC. txt
S_FTSchlyter._txt
S_MAD_BOERING. txt
S_MAD.FIELD.txt
TxtFileSpeedup.txt

-AAL-8308:
Articles
DOS3.3

:AAL-8308:Articles:
Bit.and.Pieces.txt
FasterSpiral .PT.txt
Front._Page.txt

I le_Auxmem._Bugs.txt
Kill.LIST.Cmd.txt
Macro.Patches.txt
More.68K.Boards.txt
My .Ad.txt
Pitz.VCR.Patch.txt
Reverse.Nybbles.txt
Wetzels.Patches.txt
Whisper.VolCtrl . txt

:AAL-8308:D0S3.3:

S_NybbleGetPut.txt
S_PutneySpiral . txt
S.WetzelllPatch.txt
S.WetzellLoader.txt
SJohnson.AUXMEM. txt

-AAL-8309:
Articles
DOS3.3

tAAL-8309:Articles:
Amper .Monitor.txt
AmperMon.Poker . txt
ASCI1.80.Cols.txt
BaseAddr.Calc.txt
Break.Cat.txt
Churchs.Quickie.txt
Front._Page.txt
Gen.Screen.Dump.txt
Jump . Vectoring.txt
My .Ad.txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

1164K
485K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

1455K
776K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

[¢)]

(6 ¢)

NNNNNNDNNDNNNNNNNNNDN

NNNNNN

NNNNNNNNNNNDN

NNNNN

NNNNNNNNNN

41
41
41

41

Apple 11

AM
AM
AM

AM

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12
12
12

12

:05
:05
:05

:05

PM
PM
PM

PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 26 of 2550

New.DOS33.Patch.txt
QuickTrace.lLoad.txt
RENEWAL .PLEA. txt
SAMPLE . txt

Spiral .Compiler.txt

-AAL-8309:D0S3.3:

AmperMtr.Poker . txt
JOHNSONS . MACROS . txt
S_AMPER_MONITOR. txt
S.Catalogint.txt

S._FastShortHBC.txt
S.GenScreenDump . txt
S_Mon.ASC.DOBE. txt
Spiral .Scr.Addr.txt

-AAL-8310:
Articles
DOS3.3

:AAL-8310:Articles:
AAL .AUTHORS. txt
Adv.vl.v3.txt
Asm_From.400.txt
Avoid.Extra.Def.txt
Front.Page.txt
Generic.Correx.txt
Index.AAAA _GGGG. txt
Index.HHHH.End. txt
Index.Page.nums.txt
Knouse .Mtr.txt
Large.Asm.Text.txt
LC.Titles.txt
Line.Counter.txt
Loves.Spiral . txt
More.VCR.Tinker.txt
My .Ad.txt
PDos.Disasm.Xp.txt
Price.Changes.txt
Rates.txt
Red.Faces.txt
ScreenWriter.ll.txt
ShapeMaker . txt
Supress.Hex.txt
Where.To.txt
Writers.Guide.txt

:AAL-8310:D0S3.3:
KnouseMtrPatch.txt
S.LINE.COUNTER.txt
S.LOVES.SPIRAL . txt
S_LoveSpiralFst.txt
S.VCR.REVISED.txt

AAL-8311:
Articles
D0S3.3

tAAL-8311:Articles:
Aztec.C.txt
Front._Page.txt
Ideas. ... txt
Killing.Exec.txt
Lower .Case.Sq.txt
My .Ad.txt

TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K

2425K
485K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

1164K
291K

97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

[¢)]

(614

NNNNDN

NNNNNNNDN

NNNNNNDNDNNNNNNNDNDNNDNNNNNNNNNN

NNNNDN

NNNNNDDN

Apple 11

AM
AM
AM
AM
AM

AM
AM

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12
12
12
12
12

12
12

:05
:05
:05
:05
:05

:05
:05

PM
PM
PM
PM
PM

PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 27 of 2550

PDOs.CIk.Drvr.txt
PDos.Disasm.Ex.txt
Qwerty.Review.txt
Shapemaker .Enh._txt
Shorts.txt
XAsm_6301.txt

-AAL-8311:D0S3.3:
PDOS.F142.F1Be.txt
PDos.F800.FFFF.txt
S.KILL.EXEC.txt

AAL-8312:
Articles
D0S3.3

:AAL-8312:Articles:
Dataphile.Dgst.txt
Front._Page.txt
LabelGOTO.Gosub.txt
My.Ad.txt
ProDOS.Listing.txt
Shafer.Asm.Text.txt
Short.Stuff.txt
STB.128_Testing.txt
TimeMaster.txt
Trans.Src.Files.txt

-AAL-8312:D0S3.3:
Conv.SC2Text.txt
S.Labelled.GOs.txt
S.Test.STB.128.txt
Test.Lbld.GOs.txt

-AAL-8401:
Articles
DOS3.3

AAL-8401:Articles:
Bill .Mensch.txt
Front.Page.txt
Interrupt.Patch.txt
Lancaster .Books.txt
LocksmithReview.txt
My.Ad.txt
Profiler.txt
TEXT.TUTORIAL . txt
ThreeSuitPieces.txt
Understanding.txt
Urschels.Color.txt
V4AN4 .6502 .NOTES . txt
Woz.Online.txt

:AAL-8401:D0S3.3:
Ptch.DOS33. IRQ.txt
Rods.Clr.Pat.txt
S.PROFILER.txt
S.Urschel .CIPat.txt
S.Urschel . table.txt

AAL-8402:
Articles
D0S3.3

tAAL-8402:Articles:

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

97K
97K
97K
97K
97K
97K

97K
97K
97K

970K
388K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K

1261K
485K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

1552K
582K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

N NN

(614

[¢)]

(614

NNNN NNNNNNNNDNDN NNNNNN

NNNNNNDNNNNNNNDN

NNNNDN

41
41
41

:50
:50

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

Computer Info

12:05
12:05
12:05

5:50
5:50

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 28 of 2550

Bibli0.68000.txt
Creamers.Erase.txt
Delays.txt
Front._Page.txt
FstScroll.11e80.txt
Mac.Thoughts.txt
Message -Search.txt
My .Ad.txt
QR-Macros.txt
QuikLoader .Card.txt
Revisit.48.0.txt
Short.Subjects.txt
SoftswitchChart.txt
SWITCH.TABLES . txt
TimeMaster.11.txt
WrapAround . Addr . txt

:AAL-8402:D0S3.3:
DELAY.TIMES.txt
ERASE .DEMO.1.txt
ERASE.DEMO.2.txt
S._Erase.Creamer.txt
S_.Msg.Search.txt
S.ScrnTri1e80.txt

-AAL-8403:
Articles
DOS3.3

tAAL-8403:Articles:
BragnerGPLEEtc. . txt
Customizing68K.txt
Felt.Pads.txt
Front._Page.txt
Garbage.Collec.txt
Lancaster.SCWP.txt
My .Ad.txt
Putney.ClrPat.txt
Redunancy.Table.txt
Shorts.txt
SILLY_SONGS.txt
VerifyN2Display . txt

“AAL-8403:D0S3.3:
GARBAGE . TEST . txt
PutneyTableMake . txt
QR.Table.Maker.txt
S_DISPLAY_FILE.txt
S_FastGarbage . txt
S.PutneysColor.txt
SATHER.3.16.txt

-AAL-8404:
Articles
DOS3.3

:AAL-8404:Articles:
BurnErase .EPROM. txt
CRC.txt
Disasm.wExec.txt
Front._Page.txt
Ideas....txt
Intellec.Hex.txt

My .Ad.txt
New.Source.Code.txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

1164K
679K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

970K
291K

97K
97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

[¢)]

[S0e)]

NNNNNNDNNDNNNNNNNNNDN

NNNNNN

NNNNNNNNNNNDN

NNNNNNDDN

NNNNNNNN

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 29 of 2550

Quick.DOS._Updtr.txt
Woz.Talks.txt

:AAL-8404:D0S3.3:

S.ApplyDOSPatch. txt
S.CRCHansKnecht.txt
S.Intellec.Hex.txt

:AAL-8405:
Articles
DOS3.3

:AAL-8405:Articles:
Differences.txt
DP18.Part.l1.txt
Front._Page.txt

My .Ad.txt

New. Ile.ROMs.txt
Random.Numbers.txt
S.11c.65C02.txt
That.Code.Did.txt
Wagner .News . txt

-AAL-8405:D0S3.3:
ANOTHER.TEST.txt
Lic.Plate.Game.txt
More.Rnd.Tests.txt
S_DIFFERENCES. txt
S.DP18.ADD.SUB.txt
S.RANDOM.KEYIN.txt
S_.RANDOM.KNUTH. txt
S.USRND.S.C.txt
TEST.USRND. txt

-AAL-8406:
Articles
DOS3.3

:AAL-8406:Articles:
Andromeda.Board.txt
Barkovitch.Mntn.txt
CRC.Bad.Bit.txt
DOSology - txt
DP18.Part.2.txt
Front._Page.txt
LancastersStuff.txt
Making65C02Work . txt
More.Rnd.Stuff.txt
Moto.Formatter.txt
My .Ad.txt

PDos.Mod .Mtr.txt
PRT.Command . txt
Revisit.48.0.txt

:AAL-8406:D0S3.3:
S.CRCBadBidFndr.txt
S_DP18_MULTIPLY.txt
S.DP18.Pack.Un.txt
S.KANER.VOKEY . txt
S_MotoSType.Obj . txt
S.PRT.COMMAND. txt

:AAL-8407:
Articles
DOS3.3

TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

R*ch
R*ch

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

97K
97K

97K
97K
97K

873K
873K

97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K

1358K
582K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

1067K
873K

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

1173799
11/3/99

11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

(6 ¢)

[¢)]

a1 o

N NN

NNNNNNNNDDN

NNNNNNNNDDN

NNNNNNNNNNNNNDN

NNNNNDN

:50
:50

Apple 11

AM
AM

1/5/78
1/5/78

1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

Computer Info

12:05 PM
12:05 PM

5:50 PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 30 of 2550

tAAL-8407:Articles:
DisasmNameTable.txt
DP18_Part.3.txt
Front._Page.txt
Ilc_Notes.txt

My .Ad.txt
Orphans.Widows . txt
Quick.Mem_Test.txt
Sieve.6502.txt
Sieve.68000.txt
Speed.Vs.Space.txt
Swap.Sort.txt

:AAL-8407:D0S3.3:
Faster.ShiftRtl.txt
LIST.PRIMES.txt
S.DP18.DIVIDE.txt
S.DP18.FIN.txt
S.DP18.FstrMult.txt
S_SFPrimesImp.txt
S.SWAP.AND.SORT.txt
Sieve.Eratos.1.txt
Sieve.Eratos.2.txt

-AAL-8408:
Articles
DOS3.3

tAAL-8408:Articles:
Big.BSAVEs.txt
DP18.FOUT . txt

Enbl .Dsbl . IRQ.txt
Front._Page.txt
LCR.Diagram.txt
LCR.txt

My .Ad.txt
Slow.Chips.txt

-AAL-8408:D0S3.3:
S.DP18.FOUT.txt
S.DP18.PackUn.txt
S.LCR.txt

-AAL-8409:
Articles
DOS3.3

tAAL-8409:Articles:
Clear.Arrays.txt
Dan.Pote .Ad.txt
DP18.Link.txt
Fast.Scrn.Msgs.txt
Front._Page.txt
Graph.Biblio.txt
Index.2.Mask.txt
My.Ad.txt

Reviews. .txt

-AAL-8409:D0S3.3:
S.CLEAR.ARRAYS.txt
S.DP18AmperLink.txt
S. INDEX_MASK.txt
TWIRLERS . txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K

776K
291K

97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K

873K
388K

97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

11/3/99
1173799
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99

[¢)]

(6 ¢)

NNNNNNNNNNN

NNNNNNNNDDN

NNNNNNNN

N NN

NNNNNNNNDDN

NNNN

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 31 of 2550

AAL-8410:
Articles
D0S3.3

:AAL-8410:Articles:
Arctec.Ad.txt
DP18.Correction.txt
DP18.txt
Front._Page.txt
Graphics.SW.txt
Index.2.Vol .4._txt
LCR.Correx.txt
Mac.Assemblers.txt
My .Ad.txt
Odd.Ways.txt
Out.OF.Print.txt
Putneys.Way . txt
V5N1.65802.txt

-AAL-8410:D0S3.3:
S.DP18.FUNC.1.txt
S.GENERAL .MOVER. txt
S.PUTNEYS.WAY . txt

AAL-8411:
Articles
D0S3.3

cAAL-8411:Articles:
Alliance.CPUs.txt
Annc.2.0.txt
Disasm.Patches.txt
DP18.Func.2.txt
DP18.New.SQRT.txt
Front.Page.txt
Macro.Examples.txt
Mask2Index.txt

My .Ad.txt

New.Dump .Rtn.txt
News.65816.txt
Quick.DecHex.txt
RAMWorks .MB.txt

-AAL-8411:D0S3.3:
Opcodes.65816 . txt
S.DP18.FUNC.LOG.txt
S.Macro.Ex.txt
S_MASK. INDEX. txt
S.New80ColMD. txt
S.NewSQR.Rtn.txt
S.QUICK.DEC.HEX.txt

tAAL-8412:
Articles
DOS3.3

AAL-8412:Articles:
BBasic.Review.txt
CorrectnMVNMVP . txt
DP18.Trig.txt
Front._Page.txt
Funny .DivBy7.txt
Hex.To.Dec.txt
HiresTableMaker . txt
Ile.Auxmem.LC.txt

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

1261K
291K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K

1261K
679K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

1358K
679K

97K
97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

(614

(614

[S0e)]

NNNNNNNDNNNNNNDDN

N NN

NNNNNNNDNNNNNNDDN

NNNNNNDDN

NNNNNNNN

Apple 11

PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78

Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 32 of 2550

11Plus.65C02.txt
Little.Review.txt
My.Ad.txt
Overlap.Patches.txt
Remember ingWhen.txt
XMas.CloseOuts.txt

tAAL-8412:D0S3.3:
-DP18_TRIG.txt
-Funny.Divby15._txt
-FunnyDivby3.txt
-FunnyDivby7 . txt
-HEX.TO.DEC.txt
-MakeHiresAddr.txt
-Time_MVN._txt

(RN RONNR)]

-AAL-8501:
Articles
DOS3.3

sAAL-8501:Articles:
DP18.Print.txt
Front.Page.txt
My.Ad.txt
Short.on.Mans.txt
ShortPrint255. txt
Sym.Sourceror . txt
XASM.6800.2.0.txt

:AAL-8501:D0S3.3:
S_DP18.Print.txt
S_PRINT.000.255.txt
S.SymSourceror . txt

-AAL-8502:
Articles
DOS3.3

:AAL-8502:Articles:
Book.review.txt
DOSless.Disks.txt
DP18. Input.txt
Front._Page.txt

My .Ad.txt
Preshift.Tables.txt
Q-n.A.txt

Symbol .Pgm.Crx.txt
WriteGuard.txt
YostsFreeOffer.txt

:AAL-8502:D0S3.3:
S.Bld.PreShft.txt
S.DOSLESS. INIT.txt
S.DP18. INPUT.txt

-AAL-8503:
Articles
DOS3.3

:AAL-8503:Articles:
BAP.Correction.txt
Disasm.65816.txt
DOS.Buffer.Bldr.txt
DOS .Numin.txt
Front.Page.txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

679K
291K

97K
97K
97K
97K
97K
97K
97K

97K
97K
97K

970K
291K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K

776K
873K

97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

[¢)]

[¢)]

[Se)]

NNNNDN

NNNNNN

NNNNNNDDN

NNNNNNDDN

NNN

NNNNNNNNNN

NNN

41
41
41
41
41

Apple 11

AM
AM
AM
AM
AM

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12:
12:
12:
12:
12:

PM
PM
PM
PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 33 of 2550

My .Ad.txt
OKI.6203.txt
Sather.on.65C02.txt

-AAL-8503:D0S3.3:
PatchDOS4LC. txt
.65816.DISASM. txt
.DOS.NUMIN.txt
-DOSLCPatch.txt
.DOSNuminRBSC. txt
- INIT.BUFFERS. txt
- InitBuf802_XY.txt
- InitBufs.802.txt
-InitBufs.SC.txt

DO Lnmmnm,m

AAL-8504:
Articles
D0S3.3

:AAL-8504:Articles:
AD.8086 . XASM. txt
Cross.8086.8088.txt
Fast.Windows.txt
Front._Page.txt
Hard.Cat.txt
Inside. llc.Book.txt
ListMajorLabels.txt
LovesConversion.txt
Micro.Magic.txt
My.Ad.txt
ProDOS . numout.txt
Q.n.A_txt
QuikLoader .Euge.txt
Review.Sider.txt

:AAL-8504:D0S3.3:
Asm2 .0OFastBLOAD. txt
S.Hard.Cat.txt
S_List.Mjr.Lbl _txt
S.PD.NUMOUT.SC.txt
S.ProDOS .NUMOUT . txt
S.WINDOWS . txt
WINDOW.DEMO . txt

:AAL-8505:
Articles
DOS3.3

:AAL-8505:Articles:
Auto.Manual . txt
Disasm.TechNote.txt
Front.page.txt
Littles.ProDOS.txt
My.Ad.txt
New.Catalog.txt
Probs32BitValue.txt
ProDOS .Date.txt
Windows80Column.txt

ZAAL-8505:D0S3.3:
S_AUTO.MAN. txt
S.DATE.txt
S.NEW.CATALOG. txt
S_WINDOWS.80.txt

TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch

97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K

1358K
679K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

873K
388K

97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99

NNN

(614

(6 ¢)

NNNNNNNDNN

NNNNNNNNNNNNNDN

NNNNNNDDN

NNNNNNNNDDN

NNNN

41
41
41

Apple 11

AM
AM
AM

1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12
12
12

:05
:05
:05

PM
PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 34 of 2550

-AAL-8506:
Articles
D0S3.3

:AAL-8506:Articles:
Ads.txt
Alliance.Note.txt
AppleVisions.txt
BernardsHexSrch.txt
DP18.Leftovers.txt
Firmware.27128.txt
Front._Page.txt
Johnsons.Call . txt
My .Ad.txt
Note.65802.txt
Putney. IRQTrace.txt
SQRT16.txt

:AAL-8506:D0S3.3:
DIGITS.3.txt
DP18_.MOVE.SUBS. txt
S.CALL.UTIL.txt
S.HEX.SEARCH. txt
S.IRQ.TRAPPER. txt
S.LovesConvers.txt
S.SQRT16.txt
TEST.SQRT16.txt

-AAL-8507:
Articles
ProDOS

:AAL-8507:Articles:
BSave2NewFile.txt
Front.Page.txt
My.Ad.txt
New.Cat.Revisit.txt
ProDOS.DOS. Load.txt
Recursive.Cat.txt
SpeedDemon. txt

-AAL-8507 :ProDOS:
S.DOS.LOAD.txt
S.RECURCAT . txt

:AAL-8508:
Articles
D0S3.3
ProDOS

:AAL-8508:Articles:
Conversions. txt
Davids. llc.Buff.txt
Front._Page.txt
How.Many .Bytes.txt
My .Ad.txt

Wi ldcardMatcher . txt

-AAL-8508:D0S3.3:
S_Byte.Table.txt
S_WILDCARD. txt

-AAL-8508:ProDOS:
BUF.320K.txt
BUF.576K . txt

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT

TEXT
TEXT

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch

R*ch
R*ch

1164K
776K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K

679K
194K

97K
97K
97K
97K
97K
97K
97K

97K
97K

582K
194K
291K

97K
97K
97K
97K
97K
97K

97K
97K

97K
97K

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99

11/3/99
11/3/99

(614

NNNNNNDDN (2]

NN

NNNNNN o1 o101

NN

NNNNNNNNNNNDDN

NNNNNNNDN

41
41
41
41
41
41
41

41
41

:51
:51
:51

41
41
41
41
41
41

41
41

41
41

Apple 11

PM
PM

AM

AM
AM
AM

AM

AM

PM
PM
PM

AM
AM
AM
AM
AM
AM

AM
AM

AM
AM

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78

9/18/00
9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78

1/5/78
1/5/78

Computer Info

12:

12:
12:
12:

12:

12:

12:
12:
12:
12:
12:
12:

12:
12:

12
12

[N N6

:05
:05

PM
PM
PM
PM
PM
PM
PM

PM
PM

PM
PM
PM

PM
PM
PM
PM
PM
PM

PM
PM

PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 35 of 2550

BUF.64K._txt

-AAL-8509:
Articles
DOS3.3

:AAL-8509:Articles:
Convert.65802.txt
DOS.PDos. Init.txt
Front._Page.txt

My .Ad.txt
PrimeSieve65802.txt
Problems.65802. txt
RainbowProglnfo.txt
Software.65802.txt

-AAL-8509:D0S3.3:
PrintPrimeTable.txt
S.65802.Convers.txt
S.BINDEC.txt
S.Init.Dos.PDos.txt
S.SF802PrmPlus.txt
S.SFast802Prm.txt

:AAL-8510:
Articles
D0S3.3
ProDOS

tAAL-8510:Articles:
Another65C02Fix . txt
Apple_Manuals.txt
ErvEdgeExecFile.txt
ErvEdgeWildcat.txt
ErvEdgeWi ldcatx. txt
Front._Page.txt
Gilder_Review.txt
Index.2.Vol .5.txt
JohnLoveArticle.txt
Mcinerney.Sieve.txt
My .Ad.txt

PolyCol .Disasm.txt
Puzzle.txt
QD20.CoverSheet. txt
Snooper . txt
Snoopers. txt

“AAL-8510:D0S3.3:
S_POLYCOL . txt
S_.RWTS.SNOOPER. txt

:AAL-8510:ProDOS:
PRODOS . SNOOPER.. txt

tAAL-8511:
Articles
D0S3.3
ProDOS

tAAL-8511:Articles:
Front._Page.txt
Kablit.txt
Merging.txt

My .Ad.txt
Object.Vector.txt

TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT

TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT

R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch

R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch

97K

776K
582K

97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

1552K
194K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K

97K

1067K
582K
97K

97K
97K
97K
97K
97K

Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99

11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

(6 ¢)

a1 o1 o1 NN

NNNNDN

NNNNNNNDN

NNNNNDN

a1 o1 o1

NNNNNNDNNNNNNNNNDNDN

41

:51
:51
:51

41
41
41
41
41

Apple 11

AM

PM
PM

AM

PM
PM
PM

AM
AM
AM
AM
AM

1/5/78

9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78

1/5/78

9/18/00
9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12:05 PM

12:

12:
12:
12:
12:
12:

[N

[N N6]

51
51

:05
:05

PM
PM

PM
PM

PM

PM
PM
PM

PM
PM
PM
PM
PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 36 of 2550

PDos.Quit.Code.txt
ProDOS.Quit.txt
Puzzle.Solves.txt
RAMDiIsk.txt
SathersComments. txt
Words.On.MacAsm. txt

-AAL-8511:D0S3.3:
DJohnsonsFiller.txt
LittleRamDisk.txt
MergeFieldByte.txt
S_RAMFi Il _Adam.txt
S.RAMFILL.RBSC.txt
S.WROMAWRITE . txt

-AAL-8511:ProDOS:
S.PRODOS.QUIT.txt

AAL-8512:
Articles
D0S3.3

:AAL-8512:Articles:
Day.Of_.Week.txt
Front._Page.txt
Kashmarek.Trace.txt
More.Pzl .Solves.txt
My .Ad.txt

PORS.txt
PseudoVariables.txt
RAMDisk .Bug.txt

:AAL-8512:D0S3.3:
S_DAY .OF .WEEK . txt
S_RAVFIII.BLove.txt
S_.RAMFILLPutney.txt
S_READ.TIME.txt
S_READTIMEPLUS . txt
Test_DayWeek.1._txt
Test._DayWeek.2._txt

:AAL-8601:
Articles
DOS3.3
ProDOS

:AAL-8601:Articles:
Browns .Mover . txt
Correx.DblInit.txt
Front.Page.txt
Lawries.Notes.txt
Lores2Hires.txt
Monthly.Disks.txt
Multiplying.txt

My .Ad.txt
Parker.Trivia.txt
Potts. TxtCopy.txt

-AAL-8601:D0S3.3:
BrownMoveProg.txt
POTTS.A
PottsTextCopier.txt
S_Lores2Hires.txt
S_M1616.802.EF.txt
S_Mult.16.16.txt

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT

Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
Fldr
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch

Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
Fldr
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

97K

776K
679K

97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K

970K
776K
582K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99

9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
9/18/00
11/3/99
11/3/99
11/3/99
11/3/99

(614

NNNNNN

NNNNNDN

NNNNNNNN

NNNNNNDDN

NNNNNNNNNN [O)Né e

NNNNON

Apple 11

AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
PM 9/18/00
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
AM 1/5/78
PM 9/18/00
AM 1/5/78
AM 1/5/78
AM 1/5/78

AM 1/5/78

Computer Info

g oo
al
=
T
=

12:05 PM
5:51 PM
12:05 PM
12:05 PM
12:05 PM
12:05 PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 37 of 2550

S_MULTIPLY.8X8.txt
TextTransferObj . txt

TEXT
TEXT

“AAL-8601:D0S3.3:-POTTS.A:

S.TRANSFER. txt

-AAL-8601:ProDOS:
BROWNS .MOVE . txt
POTTSTEXTCOPIER.txt
S.LORESTOHIRES. txt
S.MUL16X1665802.txt
S_MULTIPLY16X16.txt
S_MULTIPLY8X8.txt

-AAL-8602:
Articles
DOS3.3
ProDOS

:AAL-8602:Articles:
ErvEdge .Wildcat.txt
Faster .CRCs.txt
Front.Page.txt
Garbage.Correx.txt
Mitsubishi.txt
RichardDOSPatch.txt

:AAL-8602:D0S3.3:
Gendron.DOS .Mod . txt
S.CRC.GENERATOR. txt
S_WILDCAT .EXEC.txt
S_WILDCAT.txt
WILDCAT .EXEC.txt

-AAL-8602:ProDOS:
S.CRC.GENERATOR.txt

-AAL-8603:
Articles
DOS3.3
ProDOS

:AAL-8603:Articles:
Boughner .Mult.txt
Disasm65816Plus.txt
Front._Page.txt

PAL .Programmer . txt
PDos.Franklines.txt
Putney .Mul8x8.txt
Transwarp.Rvw.txt
VBNG6. I IX.Rumors.txt
Weishaars.Book.txt
Which.Processor.txt

-AAL-8603:D0S3.3:
Boughner .Mult.txt
Creat.SqTbl._Src.txt
Putney.Fst.8x8.txt
Putney.Fstr._8x8.txt
S_Which.CPU.txt

-AAL-8603:ProDOS:
BOUGHNERS .MULT . txt
CHECKSUMMER . txt
CREATE.SQUARE.T.txt

TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT

R*ch
R*ch

R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch

97K
97K

97K

97K
97K
97K
97K
97K
97K

582K
485K
97K

97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

97K

970K
485K
776K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

97K
97K
97K

Ivbspoimad
Ivbspoimad

Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99

11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99

N NN

a1 o1 o NNNNNDN

NNNNNDN

g1 o101 NNNNN

NNNNNNNNNN

NNNNN

41
41

41

41
41
41
41

41

41
41
41

Apple 11

AM
AM

AM

AM
AM
AM
AM
AM
AM

PM
PM
PM

AM

PM
PM
PM

1/5/78
1/5/78

1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78

9/18/00
9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78

Computer Info

12:05 PM
12:05 PM

12:05 PM

12:05 PM
12:05 PM
12:05 PM
12:05 PM
12:05 PM
12:05 PM

g oo
al
=
T
=

12:05 PM

g,
al
=
s}
=

12:05 PM
12:05 PM
12:05 PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 38 of 2550

PUTNEYS.8X8.txt

ROBISONS.8X8. txt
S.816.DSM.NEW. txt
S_WHICH.PROC. txt
TEST .CKSUMMER. txt

:AAL-8604:
Articles
D0S3.3
ProDOS

tAAL-8604:Articles:
BCD.Magic.txt
Boot.80.txt
Front._Page.txt
11c.ROM.Bug.txt
Msg. Into.Window. txt
NewDOSInit._Boot.txt
Rest.Clob.Cata.txt

:AAL-8604:D0S3.3:
BCD.MAGIC.txt
DOS33.B700.B7FF.txt
S._BigCatDisp.txt
S_Find.TS.Lists.txt
S_Msg. Into.Wind.txt

-AAL-8604:ProDOS:
BCD.MAGIC.txt
S_MSG. INTO.WNDW.txt

-AAL-8605:
Articles
DOS3.3
ProDOS

:AAL-8605:Articles:
Bartletts.Searc.txt
Division_By7.txt
Front.page.txt
UniDisk.RWTS.txt

-AAL-8605:D0S3.3:
BETTER.DIV.7.txt
FIND.START.txt
RWTS.3.5.txt
S.Format.UDsk.txt
S_UNIDISK.RWTS.txt

-AAL-8605:ProDOS:
BETTER.DIV.7.txt

-AAL-8606:
Articles
DOS3.3
ProDOS

:AAL-8606:Articles:
Butterill.Ops.txt
Call _Sequences.txt
CorrexAbtBruns.txt
Front.Page.txt

MLI .Error.Hndlr.txt
Protocol .Conv.txt
Rindsbergs.CRC.txt

TEXT
TEXT
TEXT
TEXT
TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT

TEXT

Fldr
Fldr
Fldr

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch
R*ch
R*ch
R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch

R*ch

Fldr
Fldr
Fldr

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K
97K
97K
97K

679K
485K
194K

97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K

97K
97K

388K
485K
97K

97K
97K
97K
97K

97K
97K
97K
97K
97K

97K

873K
873K
970K

97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99
11/3/99
1173799
11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99

9/18/00
9/18/00
9/18/00

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

NN

NNNNN

o o1 o

NNNNDN

a1 o1 o1

NNNNNNDDN

NNNNDN

o o1 o

NNNDN

NNNNNNDN

41
41
41
41
41

41

:51
:51
:51

Apple 11

AM
AM
AM
AM
AM

PM
PM
PM

AM
AM

PM
PM
PM

AM
AM
AM
AM
AM

AM

PM
PM
PM

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

9/18/00
9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78

9/18/00
9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78

9/18/00
9/18/00
9/18/00

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12:05 PM
12:05 PM
12:05 PM
12:05 PM
12:05 PM

:51 PM
51 PM
51 PM

[N

g o
al
=
s}
=

12:05 PM
12:05 PM
12:05 PM
12:05 PM
12:05 PM

12:05 PM

51 PM
51 PM
:51 PM

g o

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 39 of 2550

Stack.Relative.txt
Toggling.Values.txt

:AAL-8606:D0S3.3:
Bell.Demo.Src.txt
Butterill .Demo.txt
Butterill_Div.txt
Butterill Mult.txt
Div16.Demo.Src.txt
Mulltl6.Demo.Src.txt
ROM.CRC.Calc.txt
S.Test6502Call . txt
S.Test816Call . txt

-AAL-8606:ProDOS:
BUTTERILL .DEMO.txt
BUTTERILLS.DIV.txt
BUTTERILLS.MUL.txt
DIV16.DEMO.txt
MLI.ERROR.PLUS.txt
MLI .ERROR.txt
MULT16.DEMO. txt
ROM.CRC.CALC.txt
S.02.CALL.SEQ.txt
S.816.CALL.SEQ.txt

TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch
R*ch

97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K

97K
97K
97K
97K
97K
97K
97K
97K
97K
97K

Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad
Ivbspoimad

1173799
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99
11/3/99

NN

NNNNNNNNDDN

NNNNNNNNDNN

Apple 11

AM
AM

1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78
1/5/78

Computer Info

12:05 PM
12:05 PM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 40 of 2550

Apple 11 Computer Info

I suppose there are as many ways to do it as there are programmers.
Some are short and fast, some long and slow, some neat, some sloppy.-
Adding one to a number is called "incrementing”, and subtracting one
is called "decrementing”. The 6502 has two instructions for these two
functions: INC and DEC. (For the moment 1 will overlook the four
instructions for doing the same to the X and Y registers: INX, INY,
DEX, and DEY.) It is easy to see how to use them on single-byte
values; with a little more trouble we can also use them for values of
two or more bytes.

Single-Byte Values:
Here are five different ways to increment a single byte:

Methods 1 and 2: Add 1

CLC SEC

LDA VALUE LDA VALUE

ADC #1 ADC #O0

STA VALUE STA VALUE
Method 3 and 4: Subtract (-1)

SEC CLC

LDA VALUE LDA VALUE

SBC #S$FF SBC #$FE

STA VALUE STA VALUE

Method 5: Use the INC instruction
INC VALUE

Here are five similar ways to decrement a value:

Method 1 and 2: Subtract 1

SEC CLC

LDA VALUE LDA VALUE
SBC #1 SBC #0
STA VALUE STA VALUE

Method 3 and 4: Add (-1)

CLC SEC

LDA VALUE LDA VALUE
ADC #S$FF ADC #$FE
STA VALUE STA VALUE

Method 5: Use the DEC instruction
DEC VALUE

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 41 of 2550

Apple 11 Computer Info

There are times when any of the above may be justified, depending on
the state of the A-register and the Carry Status bit.

Multi-Byte Values:

Incrementing a two-byte value Is a very common practice in 6502
programs. Here are two methods:

Method 1: Add 1
CLC
LDA VALL LOW BYTE
ADC #1
STA VALL
LDA VALH HIGH BYTE
ADC #O0
STA VALH

Method 2: Use the INC instruction
INC VALL INCREMENT LOW BYTE
BNE .1 IF NOT ZERO, THEN NO CARRY
INC VALH INCREMENT HIGH BYTE

Of course, there are many variations on these methods. It is easy to
see how to extend these two methods to more than two bytes. Here is a
three-byte version of Method 2:

INC VALL INCREMENT LOW BYTE

BNE .1 UNLESS ZERO, NO CARRY
INC VALM INCREMENT MIDDLE BYTE
BNE .1 UNLESS ZERO, NO FURTHER CARRY

INC VALH INCREMENT HIGH BYTE
-1 -

Believe it or not, there is one disadvantage to using Method 2, in
some circumstances. Sometimes code is required to have a constant
running time; then, Method 1 is the one to use. But most of the time,
Method 2 is the best.

How about subtracting one? Here are two ways to do it to a two-byte
value:

Method 1: Subtract 1

SEC

LDA VALL

SBC #1

STA VALL

LDA VALH

SBC #0

STA VALH

Method 2: Use the DEC instruction
LDA VALL SEE IF NEED TO BORROW
BNE .1 NO

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 42 of 2550

Apple 11 Computer Info

DEC VALH YES
-1 DEC VALL

Which one do you like better? 1t is still a matter of taste, unless
the amount of memory used or time consumed is very important. There
are also different side effects, such as the final state of the carry
status. [INC and DEC do not change the carry status, while of course
ADC and SBC do. You may wish to preserve carry through the process,
making the INC/DEC code preferable. Or, you may wish to know the
resulting carry status after incrementing or decrementing for some
reasong; then you should use the ADC/SBC code.

Back to subtracting one...how about doing it to a three-byte value?
We just add three more lines:

LDA VALL SEE IF NEED TO BORROW

BNE .2 NO
LDA VALM SEE IF NEED TO BORROW AGAIN
BNE .1 NO

DEC VALH BORROW FROM HIGH BYTE
-1 DEC VALM BORROW FROM MIDDLE BYTE
.2 DEC VALL

Easier than you though, right? You would not believe the many strange
ways | have seen this operation coded in commercial software (even
some released by Apple themselves!). Yet it seems to me that this
method is the same way we would do it with pencil and paper in decimal
arithmetic. Think how you would do this:

123040
-1

XXXXXX

IT you think of each digit as though it were a byte...isn"t the
algorithm the same?

Now it is time for all of us to go back over the programs we wrote
during the past three years for the Apple, and replace a lot of old
code!

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 43 of 2550

Apple 11 Computer Info

Volume 1 -- Issue 1 October, 1980
Welcome to the premier issue of the Apple Assembly Line!

This new monthly newsletter is dedicated to the many Apple owners
using assembly language, or who would like to learn how. Articles
will include commented disassemblies of Apple ROM routines, DOS, and
other commercial software; how to augment and modify existing
products; beginner®s lessons in assembly language; handy subroutines
every programmer needs in his tool kit; and many more.

In this issue you will find a tutorial on efficient ways to increment
and decrement multiple-byte values, a very powerful subroutine for
formatting messages on the screen, and patch code for the S-C
ASSEMBLER 11 Version 4.0 to "adapt™ it to the Paymar Lower-Case
Adapter. There is also an article describing a recently reported
error found in ALL 6502 chips, and a brief announcement of some new
products from S-C SOFTWARE.

Since there will be a lot of source code printed in this and
forthcoming issues of the Apple Assembly Line, 1 plan to offer
quarterly diskettes containing all published source code (in the
format of the S-C ASSEMBLER Il Version 4.0) at a nominal price. How
does $15 per quarter sournd? OF course, you can always type it in....
The articles should be considered copy-righted, but feel free to use
the code in any way you can. It is printed here for your
enlightenment, entertainment, and for your USE. I hope you find it
all helpful.

I do not know all there is to know about the 6502, or the Apple, or
about anything! Nor do I have an infinite amount of time. Therefore,
I will be happy to accept articles and programs from you. | may print
them exactly as you write them, or 1 may modify them first. In any
case, you will get credit, and the satisfaction of knowing you are
helping many others in their conquest of the computer.

If you know others who should be receiving this newsletter, spread the
word! If you are not subscribing yet, then send your $12 today! If
you have any comments about the content, format, or whatever, write
now! Or, you can call me during reasonable at (214) 324-2050.
Sincerely,
<<signature>>

Bob Sander-Cederlof

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 44 of 2550

Apple 11 Computer Info

General Message Printing Subroutine

Formatting a series of nice messages or screens-full of messages is
hard enough to do in Applesoft..._but in assembly language i1t can
really be a difficult job. And it seems to take so much memory to do
the equivalent of VTAB, HTAB, HOME, and PRINT. 1 was recently
motivated to do something about this for a large, verbose program. |
designed a general subroutine for printing text, which can print all
128 chracters of ASCI1, plus do some fancy footwork on the way.

Embedded control codes in the text to be printed perform such handy
functions as HTAB, VTAB, HOME, NORMAL, INVERSE, Clear to End of LlIne,
Clear to End of Page, Two-Second Delay, and Repeat. All characters to
be printed directly are entered with the high-order bit set to one;
bytes with the high order bit zero are control codes. Comments in
lines 1250-1350 of the listing show what the codes are.

To simplify the calling sequence, a table of message addresses 1is
built along with the messages themselves. To print a specific
message, merely load the message index number into the A-register (LDA
#0 for the first message, LDA #1 for the second, etc.), and JSR
MESSAGE.PRINTER. Some sample messages are given in the listing,
starting at line 2240.

There are a lot of unused control codes, which you can use to augment
the subroutine. 1 am planning to add a code to switch to a HI-RES
TEXT driver, for writing text on either of the two Hi-Res screens.

You can probably think of a lot of useful ones yourself. The point is
that this type of subroutine can simplify programming of an
interactive program, and save memory too.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 45 of 2550

Apple 11 Computer Info

Hardware Error in ALL 6502 Chips!

INTERFACE, the newsletter of Rockwell International (P. 0. Box 3669,
RC 55, Anaheim, CA 92803), Issue No. 2, is the source for the
following information. It should be noted by all Apple owners working
in assembly language, because it could cause an almost unfindable bug!

There is an error in the JUMP INDIRECT instruction of ALL 6500 family
CPU chips, no matter where they were made. This means the error is
present in ALL APPLES. This fatal error occurs only when the low byte
of the indirect pointer location happens to be $FF, as in JMP ($08FF).
Normally, the processor should fetch the low-order address byte from
location $08FF, increment the program counter to $0900, and then fecth
the high-order address byte from $0900. Instead, the high-order byte
of the program counter never gets incremented! The high-order address
byte gets loaded from $0800 instead of $0900! For this reason, your
program should NEVER include an instruction of the type JMP ($xxFF).

Try this example to satisfy yourself that you understand the problem:
insert the following data from the monitor.

*800:09

*810:6C FF 08 (this is JMP ($08FF)

*8FF:50 OA (pointer

*A50:00 (BRK i1nstruction we SHOULD reach)
*950:00 (BRK i1nstruction we DO reach!)

Execute the instruction at $0810 by typing 810G. If the JMP indirect
worked correctly, it would branch to location $0A50 and execute the
BRK instruction there. However, since the JMP indirect instruction
has this serious flaw, it will actually branch to the BRK instruction
at $0950!

Since i1t is very difficult to predict the final address of all
pointers in a large assembly language program, unless they are all
grouped in a block at the beginning of the program, 1 suggest that you
take special measures to protect yourself against this hardware
problem. (One measure, of course, was suggested in that sentence.)

My favorite method is to avoid using the JMP indirect instruction. It
takes too long to set it up In most cases anyway. | prefer to push
the branch address (less one) onto the stack, and RTS to effect the
branch. This allows me to create the effect of an indexed JMP. For
example, suppose a command character is being decoded. 1 process it
into a value in the A-register between 0 and N-1 (for N commands), and
do the following:

ASL Double to create index
TAX for address table
LDA JUMP.TABLE+1,X High order byte

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 46 of 2550

Apple 11 Computer Info

PHA of branch address
LDA JUMP_TABLE,X Low order byte
PHA of branch address
RTS

The jump table looks like this:

JUMP_TABLE
.DA COMMANDA-1 The "-1" is
.DA COMMANDB-1 on each line
.DA COMMANDC-1 because the RTS
.DA COMMANDD-1 adds one before
et cetera branching.

This trick was described by Steve Wozniak in an article in BYTE
magazine back in 1977 or 1978. It is also used by him in the Apple
monitor code, and in SWEET-16. 1In both of these cases, he has
arranged all the command processors to be in the same page, so that
the high order byte of the address can be loaded into the A-register
with a load-A-immediate, and the jump table can be only one-byte-per-
command. See your Apple ROMs at locations $FFBE-FFCB (Jump table at
$FFE3-FFF9) and in SWEET-16 at $F69E, F6A0, F684-F6B8 (Jump table at
$F6E3-F702).

You can extend this idea of an indexed JMP instruction into a
simulated indexed JSR instruction. All you have to do is first push
onto the stack the return address (less one), and then the branch
address (less one). | use this trick in the Message.Printer program
described elsewhere in this issue.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 47 of 2550

Apple 11 Computer Info

Using the Paymar Lower-Case Adapter Bob Matzinger
with S-C Assembler 11 Version 4.0 817-275-2910

Since purchasing the Paymar adapter, 1 have spent a lot of time
adapting software to effectively use it! The program geven here will
adapt the version 4.0 of Bob Sander-Cederlof"s assembler to allow
lower-case comments.

The two patches at lines 1340 and 1390 have to be entered, and the
body of the patch loaded at $300. Once installed, typing a control-A
will toggle the shift-lock; control-S will perform a single-character
upper-case shift; control-K, -L, and -0 give access to the characters
normally missing from the Appple keyboard.

Only comments can be entered in lower-case. Further modification to
the assembler would be required to allow commands, labels, and opcodes
to be entered in lowr- or mixed-case.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 48 of 2550

Apple 11 Computer Info

New Products from S-C SOFTWARE

As many of you know, because you have already bought it, version 4.0
of the S-C Assembler 11 is now on the market. With this new version,
the price has gone up from $35 to $55. An upgrade kit for owners of
previous versions is only $22.50

Now another new version is available, for those of you without disks!
Tape Version 4.0 requires only 16K RAM and a cassette drive. The
price is $45 for the complete package, or $22.50 for an upgrade kit
from the previous tape version. All of the new features of Disk
Version 3.2 and 4.0 are included, except those which require a disk
drive. For the time being, the manual consists of a copy of the disk
version 4.0 manuals, with a single sheet describing the differences in
the tape version. Purchasers of tape version 4.0 will be able to
upgrade to the disk version when they get a disk drive, for only
$12.50.

And still another version of the assembler! This one is a cross
assembler for the Motorola 6800, 6801, and 6802 microprocessors. It
has all the features of the S-C Assembler 11 Disk Version 4.0, but the
source language accepted is that of the 6800 family rather than the
6502. The price for this package is only $300, which is less than a
month of time-sharing services for an equivalent capability would
cost! An Apple, a ROM blower from Mountain Hardware, and the S-C
Assembler 11-6800 are all you need for a full-blown development
system.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 49 of 2550

Apple 11 Computer Info

1000 *———mm e
1010 * Lower case conversion for

1020 * S-C ASSEMBLER 11 Version 4.0

1030 * Copyright 1980 by S-C SOFTWARE
1040 * Complete with 126 ASCII characters
1050 *———mm
1060 * The CTRL-A and CTRL-S keys are used similar to
1070 * shift and lock keys on a standard typewriter.
1080 *

1090 * CTRL-A is the shift-lock key.

1100 * Each time CTRL-A is pressed the case
1110 * will toggle to the opposite mode.
1120 *

1130 * CTRL-S makes the following character
1140 * enter in upper-case.

1150 *--—-——----———
1160 * REMEMBER!

1170 * All commands and mnemonic entries
1180 * must be in UPPER case!

1190 * Use lower case only for comments!
1200 *———m e
1210 CTRLA _EQ $%$81 SHIFT LOCK

1220 CTRLK _.EQ $8B [or {

1230 CTRLL .EQ $8C \ or |

1240 CTRLO .EQ $8F __or rubout

1250 CTRLS .EQ $93 SHIFT

1260 *—-—m
1270 * Remember:

1280 * shift M yields] or }

1290 * shift N yields ™ or ~

1300 * shift P yields @ or ~

1310 RDKEY .EQ $FDOC

1320 *—-— e
1330 -OR $1380

1340 .TF LC.PATCH1

1350 JSR LC

1360 *———mm
1370 -OR $139A

1380 .TF LC.PATCH2

1390 AND #$FF

1400 *————m
1410 -OR $300

1420 * CAUTION: Do not assemble your programs into
1430 * $0300 up. You will destroy this routinell!l!

1440 LC JSR RDKEY
1450 CMP #CTRLA
1460 BEQ LOCK
1470 CMP #CTRLS
1480 BNE CHECK

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 50 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

SHIFT LDA
STA
SHIFT1 LDA
STA
BEQ
LOCK LDA
EOR
STA
BNE
LDA
STA
BNE
CHECK CMP
BEQ
CMP
BEQ
CMP
BNE
SPEC ORA
CONV CMP
BCC
ORA
RETURN PHA
LDA
BNE
LDA
STA
ouT PLA
RTS
LCKFLG .DA
CASE .DA

*

#0
LCKFLG
#0
CASE
LC - - -ALWAYS
LCKFLG
#1
LCKFLG
SHIFT1
#$20
CASE
LC - - -ALWAYS
#CTRLK
SPEC
#CTRLL
SPEC
#CTRLO
CONV
#$50
#$CO
RETURN
CASE

LCKFLG
ouT
#$20
CASE

#0
#$20

* Written by Bob Matzinger
* September 6, 1980

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 51 of 2550

Apple 11 Computer Info

1000
1010 MON.CH _EQ $24
1020 MON.CV _EQ $25

1030 MON.VTAB .EQ $FC22
1040 MON.CLREOP .EQ $FC42
1050 MON.HOME .EQ $FC58
1060 MON.CLREOL .EQ $FC9OC
1070 MON.WAIT .EQ $FCAS8
1080 MON.COUT -.EQ $FDED
1090 MON.NORMAL .EQ $FE84
1100 MON.INVERSE .EQ $FE80

1120 MSG.PNTR -EQ $18,19
1130 MSG.SCANNER .EQ $1A

1140 F oo oo

1150 = MESSAGE PRINTER

1160 *

1170 * CALL:

1180 * (A) = MESSAGE # (0-N)

1190 = JSR MESSAGE.PRINTER

1200 *

1210 * ACTION:

1220 * 1. FINDS SPECIFIED MESSAGE

1230 * 2. PRINTS ON THE SCREEN

1240 * 3. INTERPRETS CHARACTERS AS FOLLOWS:
1250 * $00 END OF MESSAGE

1260 * $01-28 HTAB 1-40

1270 = $40-57 VTAB 1-24

1280 * $60 CLEAR SCREEN, HOME CURSOR
1290 * $61XXYY REPEAT CHARACTER YY, XX TIMES
1300 * $62 DELAY ABOUT TWO SECONDS
1310 = $63 NORMAL MODE

1320 * $64 INVERSE MODE

1330 * $65 CLEAR TO END OF LINE
1340 = $66 CLEAR TO END OF SCREEN
1350 * $80-FF PRINT AS IS

1360 *

1370 F oo

1380 MESSAGE.PRINTER

1390 ASL DOUBLE MSG NUMBER TO GET INDEX
1400 TAY

1410 LDA MESSAGE .ADDRESS.TABLE,Y

1420 STA MSG.PNTR

1430 LDA MESSAGE .ADDRESS.TABLE+1,Y

1440 STA MSG.PNTR+1

1450 LDA #0

1460 STA MSG.SCANNER

1470 .1 JSR GET.NEXT.CHAR.FROM_MESSAGE

1480 BNE .3

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 52 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

.5
MON .

Apple 11 Computer Info

$00: EOM
SPECIAL ACTION
COUT PRINT THE CHARACTER

CHECK FOR VTAB
YES
IN RANGE FOR HTAB?
NO, IGNORE
-CH
-CH
- - -ALWAYS
IN RANGE FOR VTAB?
NO
MASK VALUE
Ccv YES
VTAB

/. 4-
#.4-
MSGT

MSGT

CHECK FOR TOKENS

$60 THROUGH $66

NOT TOKEN, SO IGNORE
MAKE DUBLE INDEX

1 PUT RETURN ON STACK

TO SIMULATE A JSR ADDR,X
1
KNTBL+1,X

KNTBL, X

MSGTKNTBL
-DA
-DA
-DA
-DA
-DA
-DA
-DA

MON .
MSG.
LONG
MON .
MON .
MON .
MON .

HOME-1
REPEAT-1
-DELAY-1
NORMAL-1
INVERSE-1
CLREOL-1
CLREOP-1

MSG.REPEAT
JSR
TAX
JSR
-1 JSR
DEX
BNE
RTS

-NEXT.CHAR.FROM.MESSAGE

NUMBER OF MULTIPLES

-NEXT.CHAR.FROM.MESSAGE
.COUT

LONG.DELAY

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 53 of 2550

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560

Apple 11 Computer Info

LDY #12
21 JSR MON.WAIT DELAY 167309 CYCLES
DEY
BNE .1
RTS
GET.NEXT.CHAR . FROM . MESSAGE
LDY MSG.SCANNER
LDA (MSG.PNTR),Y
INC MSG.SCANNER
BNE .1
INC MSG.PNTR+1
21 CMP #0
RTS
MESSAGE . ADDRESS . TABLE
_.DA MSGO
_DA MSG1
_DA MSG2
_DA MSG3
MSGO .HS 60 HOME SCREEN
* CELL 1 -- VOCABULARY CHECK
_HS 64 INVERSE MODE
_HS 6129AD 4A DASHES
_HS 28ADAD 2 DASHES
_HS 28ADAD
_HS 28ADAD 2 DASHES
_HS 28ADAD 2 DASHES
_HS 28ADAD 2 DASHES
_HS 28ADAD 2 DASHES
_HS 286129AD 41 DASHES

.HS 63 NORMAL MODE

-HS 4205 VTAB 3, HTAB 5
.AS -/DEMONSTRATION OF MESSAGE PRINTER/
-HS 440F VTAB 5, HTAB 15
.AS -/S5-C SOFTWARE/

-HS 450E VTAB 6, HTAB 14
.AS -/P. O. BOX 5537/

-HS 460B VTAB 7, HTAB 11
.AS -/RICHARDSON, TX 75080/
-HS 4A VTAB 11

.HS 00

MSG1 .HS 490166 VTAB 10, HTAB 1, CLR EOP
.AS -/SELECT ONE: 7/

.HS 00
MSG2 -HS 570165 VTAB 24, HTAB 1, CLR EOL
-HS 64 INVERSE MODE
.AS -/ <SPACE> FOR MENU, <RETURN> FOR MORE /
.HS 6300 NORMAL MODE, EOM

MSG3 .HS 87878D

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof

Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 54 of 2550

Apple 11 Computer Info

2570 .AS -/***SYNTAX ERROR/
2580 .HS 8D00

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 55 of 2550

Apple 11 Computer Info

Bags, Boxes, et cetera

Since | sell software in stores, | buy a lot of zip-lock bags,
cardboard mailing boxes, diskettes, and so on. | thought that maybe
you need some of these, and haven®t been able to find a source at good
prices in small quantities. |1 will sell you some of mine, at the
follwoing prices:

6"'x9" zip-lock bags $8.50/100

9""x12" zip-lock bags $12/100

Verbatim diskettes
without hubrings $30 for box of ten, $265 for 100
with hubrings $32 for box of ten, $285 for 100

Anything else you need? Let me know, maybe I have it or can get it
for you or tell you where you can get it at a good price.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 56 of 2550

Apple 11 Computer Info

Volume 1 -- Issue 2 November, 1980

Our second issue is 33% larger than the first! And not only so, but
also there is useful information on the back page! 1 found a source
for 6x9 white envelopes, so your address can be external to the
newsletter, and so your copy will arrive in better condition. 1In less
than a month since the newsletter was first announced, we already have
over 45 paid subscribers. They are sprinkled all over the map,
including one in Japan!

In This Issue...

A Bug in S-C Assembler Il Version 4.0
Variable Cross Reference for Applesoft Programs
Bags, Boxes, et cetera - . . . - o - - - .
Assembly Source on Text Files . . . _ . . _
A Use for the USR Command
A Simulated Numeric Key-Pad

e
CUIOON R

A Bug in S-C Assembler 11 Disk Version 4.0

One real bug has turned up, and a few of you have had the bad luck to
discover it the hard way. The assembler is free-format, in that
opcodes and directives may start in any column after the blank which
terminates the label field. However, the "_.IN" directive will
malfunction unless there are at least six spaces. |If you tab over
before typing ".IN" there will be no problem. However, iIf you type
your line like 1230 .IN FILE1", with only two spaces between the
line number and the period, you are in for a long wait. The processor
goes into a loop printing D"s. If you have the MONC mode on, you will
see "'LOADDDDDDDDD. " with D"s forever appearing on your screen.
Remember to TAB OVER, and it will not malfunction.

One fancied bug has been reported, and 1 would like to explain it. A
user pointed out that you cannont shorten the SAVE command to three
letters 1T you wish to save the source program on a disk file. Why?
Because "SAVE"™ or "SAV" with no file name is not a DOS command. It is
an assembler command to save the source program on cassette tape! On
the other hand, SAVE with a filename is not an assembler command. It
is a DOS command, and the assembler never sees it. The same goes for
"LOAD™, "LOA"™, and LOAD with a Ffilename.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 57 of 2550

Apple 11 Computer Info

A Simulated Numeric Key-Pad

This little program will turn part of your Apple®s keyboard into a
simulated numeric key-pad. A lot cheaper than buying a real one! It
is set up to run in page 3, and assumes you are using DOS. |If not,
just change line 1120 to an RTS.

If you BRUN it or CALL it at 768, the input vector is patched to input
all characters through the NKP program. Typing a control-S will
toggle the numeric key-pad translator on and off. When the translator
is off, all keyboard action is normal, except that another control-S
will turn it back on again. When the translator is on, all keys which
are not part of the simulated key-pad will input normally.

The keys translated by the simulator are listed in line 1390. The
slash key duplicates RETURN, because it is easier to hit when yu are
entering a lot of numbers. For the same reason, the L-key duplicates
-, In case you are in a hurry to enter negative numbers too. The
space bar is used for "0". I set it up to use "NM," for 123", "HJIK"
for 456", and "YUI"™ for "789". You shuld be able to easily change
these translations to any other combination, by changing lines 1390-
1420.

The heart of the translator is the search loop in lines 1240-1280. If
the input character is not found in CHRTBL, the search loop drops out
and the character is not changed. |If the character is found, line
1310 picks up the alias for the key, and returns. That"s all there is
to i1t!

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 58 of 2550

Apple 11 Computer Info

Assembly Source on Text Files

Version 4.0 of the S-C Assembler 11 allows you to EXEC a source
program, if it is on a DOS text file. This is handy if you have
created it with a different editor, or perhaps with a compiler. But
what 1If you want to go the other way? What if you want to SAVE a
source program on a text file, so that it can be used in another
editor, or by another assembler?

There is no built-in command to allow it, so I have now written a
separate program to do it. The program loads at $0800 thru $093C, and
does not borrow any code from the assembler. 1t does use some
routines in the Monitor ROMs, and the DOS 1/0 rehook routine. 1IFf you
BRUN the program, it will assume the pointers at $CA,CB and $4C,4D are
bracketing a valid assembly source program, and try to list it on a
text File.

The main body of the program is in lines 1190 thru 1630. Lines 1200
and 1210 serve to un-hook the S-C Assembler 11 from the output. They
will also turn off your printer, if you had it on. Lines 1220 and
1230 tell DOS that it should recognize commands printed after a
control-D. Lines 1240 and 1250 change the prompt symblol to a blank,
so that the monitor input subroutine will not print a colon or some
other character as the prompt when reading the file name.

Lines 1290-1360 request you to enter a file name, read it into the
monitor buffer starting at $0200, and move it to a safe place at
$0280. It has to be moved, because when we print DOS commands later
the area starting at $0200 will be written on by DOS.

Once the file name you have typed is safely stored at $0280 and
following, lines 1410 thru 1490 will set up the file for writing.

This is done in fTive steps. First, close all files. Second, issue an
OPEN-DELETE-OPEN sequence, with the file name (of course); this will
make sure that we are writing on a fresh empty file. Then the WRITE
command is sent, and we are ready to roll.

Line 1530 calls a subroutine which lists your source program. Since
the file is OPEN and in WRITE mode, the listing goes into your text
file. If you have MON O mode set, you will also see the listing on
your screen. Note that it is not really necessary for me to use a
subroutine at this point. ASM._LIST is only called once, and it is not
very long. But I did it anyway, to keep the main body short enough to
fit on a page (of paper), easy to understand, modular, structured,
etc.

After the listing is completed, line 1570 will close the text file.
Lines 1610 and 1620 turn off the DOS run flag, so that DOS will not

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 59 of 2550

Apple 11 Computer Info

look for control-D commands. And finally, line 1630 re-enters the S-C
Assembler 11 through its soft entry point.

Lines 1670 thru 1780 are text strings, printed by the subroutine named
PRINT.QUOTE. Each string is written with the sign bit of every byte
zero except for the last byte. The sign bit of the last byte is 1,
telling PRINT.QUOTE that it is finished. For example, the first
message is the word "CLOSE™ and a carriage return. The carriage
return is entered in hex with the sign bit 1 as in $8D. The second
message is the word "OPEN", and the letter "N" is preceded by a minus
sign in the _AS directive to indicate that the sign bit should be 1.

The PRINT.QUOTE subroutine is at lines 2140 thru 2200. It expects the
Y-register to contain the offset of the desired message from the
beginning of all the messages at QTS. It calls on PRINT.CHAR to
actually send each character.

PRINT.CHAR, at lines 2020 thru 2100, calls on the monitor print
character routine at $FDED. This branches through DOS, and DOS writes
the character on the text file. PRINT.CHAR saves and restores the Y-
register and A-register contents. It also sets the sign bit on each
character before printing it. Upon exit, the status will reflect the
value of the character printed.

Lines 1820-1980 issue a DOS command. The Y-register points at one of
the message strings in QTS. Control-D is printed, followed by the
command key word, a space, and file name you previously typed. Since
DOS does not allow slot and drive specifications on the WRITE command,
and since it is sufficient to specify them only once, the subroutine
chops them off after printing them once. The logic for this is in
lines 1910-1940: after printing a comma, it is replaced with a
carriage return. The next time the name is printed, the carriage
return will be the end.

The subroutine which really controls the listing is in lines 2330-
2450. The First four instructions set up a zero-page pointer SRCP to
point at the beginning of your source program. Lines 2380-2420
compare the pointer with HIMEM to see if the listing is completed. |If
you really had no source program, we would already be finished at this
point. IFf there is another line (or more), the subroutine named
ASM_LIST.LINE is called to list the next Ine. The process iIs repeated
until the last line has been printed onto your text file.

At this point it might be helpful to explain how source lines are
stored in memory. Each line begins with a single byte which contains
the byte-count of the line. Next are a byte-pailr containing the line
number of the line, iIn the usual backwards 6502 format. The text of
the line follows, and a final byte containing $00 ends the line. No
carriage return is stored. Blanks are treated specially. A single
blank is stored as $81. Two blanks in a row are replaced by one byte
of value $82. Any string of blanks up to 63 blanks is thus replaced
by a single token of value $80 plus the blank count. Longer strings
of blanks will take more than one token.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 60 of 2550

Apple 11 Computer Info

For example, the source line
1000 ABC LDA SAM

is stored as: OF (total of 15 bytes in line image)
E8 03 (line number 1000)
41 42 43 84 ("ABC"™ and 4 blanks)
4C 44 41 81 (""LDA™ and 1 blank)
53 41 4D ('SAVM™)
00 (end of line indicator)

The subroutine ASM_LIST_.LINE at lines 2490-2610 prints one source
line. A subroutine named GNB (‘'get next byte"™) is called to skip over
the length byte, and to pick up the line number. PRINT_LINNUM 1is
called to convert the line number to decimal and print it, with
leading zeroes if necessary, as a four digit number. The loop at
lines 2570-2600 is seeded with a blank (because the blank between the
line number and the label field is not actually stored in the source
program), and the text of the line is printed. The loop prints a
character, and then calls NEXT.TOKEN to get the next one. When the
token returned equals $00, the line is finished.

GNB, lines 2630-2690, clears the queued blank count, picks up the
character pointed at by SRCP, and increments SRCP.

NEXT.TOKEN, lines 2710-2820, tests the blank count. |If it is non-
zero, the count is decremented and a blank ($20) character is
returned. ITf the count was zero, the next character is picked up from
the line. 1If this character is not a blank count token, it is
returned and the pointer in SRCP is incremented. |If the character is
a blank count token, it is saved, the SRCP pointer is incremented past
the token, and then the count is decremented and a blank returned.

The PRINT.LINNUM routine, lines 2860-3170, is a revision of a routine
used In the Integer BASIC ROMs. 1 think it is commented well enough
for you to follow. The general idea is to divide by 1000 and print
the quotient; divide the remainder by 100 and print the quotient; then
by 10; and finally print the remainder.

Since several of you have asked me to provide the capability to list
programs onto text files, you should be pleased with this program. If
you do not need it, then maybe it has shed some light on the internal
structure of part of the assembler, or served as a tutorial in
programming .

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 61 of 2550

Apple 11 Computer Info

A Use for the USR Command

The S-C Assembler 11 Version 4.0 has one user-programmable command,
called "USR". (The Quick Reference Card spells it erroneously
"USEr'”.) One good use for it is to re-print the current symbol table.

After an assembly, if the listing was not printed, it is often
desirable to be able to see what the spelling or value of a symbol or
group of symbols is. |If the VAL command is not enough for you, then
the following steps will set up the USR command to re-list the symbol
table on the screen. And, if your printer is selected, it will also
print there.

Get into the assembler, by using BRUN ASMDISK 4.0 from either
Applesoft or Integer BASIC. Type "S$1E4EL"™ after the prompt. The
first two lines listed should be "LDY #$02" and "STY $E1". |If they
are not, you have a different version. (It may still be version 4.0,
but slightly different.) The "LDY#$02" line is the first instruction
of the symbol table printing subroutine.

Patch the USR vector by typing "$1007:4E 1E", and then BSAVE the
result like this:

:BSAVE ASMDISK 4.0 (WITH USR),A$1000,L$14FB
This new version, whenever you type "USR"™, will print out the current

symbol table. It will look exactly the same as the symbol table
pritned out at the end of an assembly.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 62 of 2550

Apple 11 Computer Info

Variable Cross Reference for Applesoft Programs

Besides illustrating a lot of programming techniques, the VCR program
is a very useful tool when you are writing large Applesoft programs.
As listed here, it requires a 48K Apple, and assumes that HIMEM is set
to at least $8AA7. You BRUN it, and it sets up the &-vector. When
you are ready to print a cross reference, you merely type "&" and a
carriage return, and out it comes. It is VERY fast: about 15 times
faster than the VCR program included in Apple®s DOS Tool Kit. It also
takes less memory than Apple®s version, both for the program itself
and for the tables it constructs during execution.

The main body of the program is in lines 1400 thru 1460. After
calling INITIALIZATION, the subroutine PROCESS.LINE is called until
there are no more lines. Then PRINT.REPORT is called, and finally
INITIALIZATION is called again to restore Applesoft®s tables to their
original form.

INITIALIZATION sets up PNTR to point to the beginning of the program,
and EOT to point to the end of the table area. 1t also clears out a
set of 26 two-byte pointers in HSHTBL (hash table). PROCESS.ONE scans
a single line looking for variables by calling SCAN.FOR.VARIABLES,
until the end of the program is reached. PRINT.REPORT merely prints a
nice orderly report from the data which has been stored in the table
by SCAN.FOR.VARIABLES.

The symbol table routines used in VCR are very similar to the ones
used inside S-C Assembler 11 Version 4.0. There are 26 pointers
starting at HSHTBL ($280), each one representing one letter of the
alphabet. The fTirst letter of a variable name selects one of these
pointers. The pointer points at the first entry in a chain of
variable names. When a new variable name is found, it is iInserted in
the appropriate chain at the place where it will be in alphabetical
order. A sub-chain is kept for each variable name of all the line
numbers from which it is referenced. The line number chain is
maintained in numerical order. Thus there is no sorting necessary
when it comes time to print the report.

Since no routines from the Applesoft ROMs are used, VCR will work with
no changes with the RAM version of Aplesoft. Since it loads below
$9000, it will not conflict with Neil Konzen®"s PLE (Program Line
Editor). Since it is just straight-forward code, with no address
tables or embedded data, you can easily relocate it to a different
running address; only the 3-byte instructions with the third byte
equal to $88, $89, or $8A need to be changed. Or, you can type it in,
and use a different origin (line 1040).

If you like to modify programs, this one needs one improvement. (Only
one?) |1 forgot to take note of the FN token, so any FN definitions or

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 63 of 2550

Apple 11 Computer Info

uses will look like references to an array variable. Another kind of
modification, called "major"™ perhaps, will turn the VCR into LNCR
(Line Number Cross Reference).

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 64 of 2550

Apple 11 Computer Info

#1
TOGGLE
#NKP
$38
/NKP
$39
$3EA

$FD1B
#$93
-4
TOGGLE
.2 NOT
SAVEY
#TBLS1Z-1
CHRTBL,Y

.3 FOUND

CONTROL-S

IN NUMERIC MODE

IN TABLE

-1
SAVEY

ALIAS,Y
SAVEY

TOGGLE
#$80
TOGGLE
$FDOC

CHRTBL

TBLSI1Z .

ALIAS

-"/L NM,HJIKYUI"
*-CHRTBL

8D
-""-0123456789"

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 65 of 2550

Apple 11 Computer Info

1000 _LIST OFF
1010 F oo oo

1020 * WRITE ASSEMBLY SOURCE ON A TEXT FILE
1080 Fo oo oo

1040 _OR $800

1050 MON.PROMPT _EQ $33

1060 PP _EQ $CA,CB

1070 HIMEM .EQ $4C,4D
1080 DOS.RUNFLAG .EQ $D9
1090 MON.BUFFER .EQ $200
1100 DOS.BUFFER .EQ $280
1110 MON.GETLN _EQ $FD6A
1120 MON.CROUT .EQ $FDSE
1130 MON.COUT -.EQ $FDED
1140 MON.SETVID .EQ $FE93
1150 DOS.REHOOK .EQ $3EA
1160 BLANK.COUNT .EQ $00
1170 SRCP -EQ $01,02
1180 LINNUM _EQ $03,04

1190 F oo oo

1200 TEXT.LIST

1210 JSR MON_SETVID

1220 JSR DOS.REHOOK

1230 LDA #$FF

1240 STA DOS.RUNFLAG

1250 LDA #" +$80 SET PROMPT CHAR = BLANK
1260 STA MON.PROMPT

1270 F oo

1280 * GET FILE NAME

1290 Fom oo

1300 LDY #QF ILNAM-QTS

1310 JSR PRINT.QUOTE

1320 JSR MON.GETLN

1330 LDY #$7F MOVE FILE NAME TO SEPARATE BUFFER
1340 .1 LDA MON.BUFFER,Y

1350 STA DOS.BUFFER,Y

1360 DEY

1370 BPL .1

1380 Fom oo

1390 * SET UP THE TEXT FILE

1400 * (CLOSE, OPEN, DELETE, OPEN, WRITE)
1410 Fom oo

1420 JSR CLOSE.FILE

1430 LDY #QOPEN-QTS

1440 JSR ISSUE.DOS.COMMAND

1450 LDY #QDELETE-QTS

1460 JSR 1SSUE.DOS.COMMAND

1470 LDY #QOPEN-QTS

1480 JSR ISSUE.DOS.COMMAND

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 66 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

LDY #QWRITE-QTS
JSR 1SSUE.DOS . COMMAND

* RETURN TO CALLER
LDA #0
STA DOS.RUNFLAG
JMP $1003

* MESSAGE TEXT

QTS _EQ *

QCLOSE .AS /CLOSE/

.HS 8D

QOPEN .AS /0OPE/

.AS -/N/

QDELETE .AS /DELET/

.AS -/E/

QWRITE .AS /WRIT/

.AS -/E/

QFILNAM _HS OD

.AS /TEXT FILE NAME:/
.AS -/ /

I1SSUE . DOS . COMMAND
LDA #$84 CONTROL-D
JSR PRINT.CHAR
JSR PRINT.QUOTE
LDY #0
LDA #" PRINT A SPACE
.5 JSR PRINT.CHAR
CMP #$8D
BEQ .7
CMP #$AC
BNE .6
LDA #$8D
STA DOS.BUFFER-1,Y
.6 LDA DOS.BUFFER,Y
INY
BNE .5
.7 RTS

COMMA?

- - -ALWAYS

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 67 of 2550

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560

PRINT.CHAR
PHA
STY PC.SAVEY
ORA #$80
JSR MON.COUT
LDY PC.SAVEY

PLA
RTS
PC.SAVEY .BS 1
* PRINT A QUOTATION
PRINT.QUOTE .NEXT
INY
PRINT.QUOTE
LDA QTS,Y

JSR PRINT.CHAR
BPL PRINT.QUOTE.NEXT
RTS

CLOSE.FILE
JSR
LDA

MON . CROUT

#$84

JSR PRINT.CHAR CONTROL-D
LDY #QCLOSE-QTS

JMP PRINT.QUOTE

ASM_LIST
LDA PP
STA SRCP
LDA PP+1
STA SRCP+1
-1 LDA SRCP
CMP HIMEM
LDA SRCP+1
SBC HIMEM+1
BCS .2 FINISHED
JSR ASM.LIST.LINE
JMP .1
.2 RTS

ASM_LIST.LINE

JSR GNB SKIP OVER BYTE COUNT
JSR GNB GET LINE NUMBER

STA LINNUM

JSR GNB

STA LINNUM+1

JSR PRINT.LINNUM

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 68 of 2550

2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100

Apple 11 Computer Info

LDA #* BLANK
-1 JSR PRINT.CHAR

JSR NEXT.TOKEN

CMP #0

BNE .1

JMP MON.CROUT
GNB LDY #0

STY BLANK.COUNT

LDA (SRCP),Y
GNBI INC SRCP

BNE .1

INC SRCP+1

NEXT . TOKEN
LDY #0
LDA BLANK.COUNT
BNE .1
LDA (SRCP),Y
BPL GNBI
AND #$7F
STA BLANK.COUNT
JSR GNBI

21 DEC BLANK.COUNT
LDA #" BLANK
RTS

PRINT . LINNUM
LDX #3 PRINT 4 DIGITS
.3 LDA #"0 SET DIGIT TO ASCI1 ZERO
-1 PHA PUSH DIGIT ON STACK
SEC SUBTRACT CURRENT DIVISOR
LDA LINNUM
SBC PLNTBL, X
PHA SAVE BYTE ON STACK
LDA LINNUM+1
SBC PLNTBH, X

BCC .2 LESS THAN DIVISOR
STA LINNUM+1
PLA GET LOW BYTE OFF STACK
STA LINNUM
PLA GET DIGIT FROM STACK
ADC #0 INCREMENT DIGIT
BNE .1 - - -ALWAYS

.2 PLA DISCARD BYTE FROM STACK
PLA GET DIGIT FROM STACK
JSR PRINT.CHAR
DEX NEXT DIGIT
BPL .3
RTS RETURN

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof

Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 69 of 2550

3110
3120
3130
3140
3150
3160
3170
3180

PLNTBL

PLNTBH

-DA
-DA
-DA
-DA
-DA
-DA
-DA
-DA

#1
#10
#100
#1000
/1
/10
/100
/1000

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 70 of 2550

Apple 11 Computer Info

VARIABLE CROSS REFERENCE
FOR APPLESOFT PROGRAMS

LDA #3$4C AMPERSAND VECTOR

PNTR -EQ $18,19 POINTER INTO PROGRAM

DATA .EQ $1A THRU $1D
LZFLAG .EQ $1A LEADING ZERO FLAG

NEXTLN _EQ $1A,1B ADDRESS OF NEXT LINE
LINNUM _EQ $1C,1D CURRENT LINE NUMBER

STPNTR .EQ $1E,1F POINTER INTO VARIABLE TABLE

TPTR .EQ $9B,9C TEMP POINTER
SYMBOL .EQ $9D THRU $A4 8 BYTES
VARNAM .EQ SYMBOL+1

HSHTBL .EQ $280

ENTRY.SIZE .EQ $A5,A6

PRGBOT .EQ $67,68 BEGINNING OF PROGRAM

LOMEM _EQ $69,6A BEGINNING OF VARIABLE SPACE

EOT -EQ $6B,6C END OF VARIABLE TABLE

TKN . REM _EQ 178
TKN.DATA .EQ 131

MON . CH _EQ $24

MON.PRBL2 .EQ $F94A

MON.COUT .EQ $FDED

MON.CROUT .EQ $FDSE

JSR INITIALIZATION
-1 JSR PROCESS.LINE

BNE .1 UNTIL END OF PROGRAM

JSR PRINT.REPORT

JSR INITIALIZATION ERASE VARIABLE TABLE

LDA #0 CLEAR $A4 SO APPLESOFT WILL
STA $A4 WORK CORRECTLY
RTS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 71 of 2550

Apple 11 Computer Info

1470 F oo
1480 INITIALIZATION

1490 LDA LOMEM

1500 STA EOT

1510 LDA LOMEM+1

1520 STA EOT+1

1530 LDX #52 # OF BYTES FOR HASH POINTERS
1540 LDA #0

1550 .1 STA HSHTBL-1,X

1560 DEX

1570 BNE .1

1580 LDA PRGBOT

1590 STA PNTR

1600 LDA PRGBOT+1

1610 STA PNTR+1

1620 RTS

1630 Fom oo
1640 PROCESS.LINE

1650 LDY #3 CAPTURE POINTER AND LINE #
1660 .1 LDA (PNTR),Y

1670 STA DATA,Y

1680 DEY

1690 BPL .1

1692 LDA DATA+1 CHECK IF END
1694 BEQ .3 YES

1700 CLC SKIP OVER DATA
1710 LDA PNTR

1720 ADC #4

1730 STA PNTR

1740 BCC .2

1750 INC PNTR+1

1760 .2 JSR SCAN.FOR.VARIABLES

1770 LDA DATA

1780 STA PNTR

1790 LDA DATA+1

1800 STA PNTR+1

1810 * BNE .3

1820 .3 RTS

1830 Fom oo
1840 SCAN.FOR.VARIABLES

1850 .1 JSR GET.NEXT.VARIABLE

1860 BEQ .3 END OF LINE

1870 JSR PACK.VARIABLE .NAME

1880 JSR SEARCH.VARIABLE.TABLE
1890 BCC .2 FOUND SAME VARIABLE
1900 LDA #0

1910 STA SYMBOL+4 START OF LINE NUMBER CHAIN
1920 STA SYMBOL+5

1930 LDA LINNUM+1 MSB FIRST

1940 STA SYMBOL+6

1950 LDA LINNUM

1960 STA SYMBOL+7

1970 LDA #8 ADD 8 BYTE ENTRY
1980 JSR ADD.NEW._ENTRY

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 72 of 2550

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520

Apple 11 Computer Info

IWP .1
.2 JSR SEARCH.LINE.CHAIN
BCC .1 FOUND SAME LINE NUMBER
LDA #4 ADD 4 BYTE ENTRY
JSR ADD.NEW.ENTRY
IWP .1
.3 RTS
GET.NEXT.VARIABLE
21 JSR NEXT.CHAR.NOT.QUOTE
BEQ .2 END OF LINE
CMP #TKN.DATA
BEQ .3
CMP #TKN.REM
BEQ .2 SKIP TO NEXT LINE
JSR LETTER LETTER?
BCC .1 NO, KEEP LOOKING
.2 RTS
* DATA, SO SKIP TO NEXT STATEMENT
.3 JSR NEXT.CHAR.NOT.QUOTE
BEQ .2 EOL, RETURN
CMP #": COLON?
BNE .3 NOT END YET
BEQ .1 - . .ALWAYS
NEXT .CHAR.NOT.QUOTE
21 JSR NEXT.CHAR
BEQ .2 EOL, RETURN
CMP #=" QUOTE?
BEQ .3 YES, SCAN OVER QUOTATION
.2 RTS RETURN
.3 JSR NEXT.CHAR
BEQ .2 EOL, RETURN
CMP #"* TERMINAL QUOTE?
BNE .3 NOT YET
BEQ .1 - . .ALWAYS

NEXT CHARACTER FROM LINE
CALL: JSR NEXT.CHAR
RETURN: (A)=CHAR FROM LINE
IF CHAR .NE. EOL,
INCREMENT PNTR AND

ok X % ok o X % ok %

STATUS Z=0
IF CHAR .EQ. EOL,
STATUS z=1
NEXT.CHAR
LDY #0
LDA (PNTR),Y
BEQ .1 EOL
INC PNTR BUMP POINTER
BNE .1
INC PNTR+1
21 RTS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof

Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 73 of 2550

2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2752
2754
2760
2762
2763
2764
2765
2766
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990

PACK.VARIABLE.NAME
STA VARNAM
LDA #*
STA VARNAM+1
STA VARNAM+2
JSR NEXT.CHAR

BEQ .5 END OF LINE
JSR LTRDIG
BCC .2 NOT LETTER OR DIGIT
STA VARNAM+1
21 JSR NEXT.CHAR IGNORE EXCESS NAME
BEQ .5 END OF LINE
JSR LTRDIG
BCS .1 LETTER OR DIGIT
.2 CMP #"$ DOLLAR SIGN?
BEQ .3 YES
CMP #"% PER CENT?
BNE .4 NO
.3 STA VARNAM+2
JSR NEXT.CHAR
BEQ .5 END OF LINE
.4 CMP #"(LEFT PAREN?
BEQ .6 YES
CMP #=" QUOTE?
BNE .5 NO
LDA PNTR YES, BACK UP POINTER
BNE .7
DEC PNTR+1
.7 DEC PNTR
RTS
.6 LDA VARNAM+2 SET HIGH BIT
ORA #$80 TO FLAG ARRAY

STA VARNAM+2 REFERENCE
-5 RTS

SEARCH.VARIABLE.TABLE

SEC CONVERT 1ST CHAR TO
HASH TABLE INDEX

LDA VARNAM
SBC #"A

ASL

ADC #HSHTBL
STA STPNTR
LDA /HSHTBL
ADC #0

STA STPNTR+1

Fe—— FALL INTO CHAIN SEARCH ROUTINE

CHAIN.SEARCH

21 LDY #0 POINT AT POINTER
LDA (STPNTR),Y
STA TPTR
INY

LDA (STPNTR),Y

FIRST CHAR OF NAME
BLANKS FOR OTHER TWO CHARS

Apple 11 Computer Info

IN ENTRY

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 74 of 2550

Apple 11 Computer Info

3000 BEQ .4 END OF CHAIN, NOT IN TABLE
3010 STA TPTR+1

3020 LDX #2 2 MORE CHARS IN SYMBOL
3030 LDY #2 POINT AT NAME IN ENTRY
3040 .2 LDA (TPTR),Y COMPARE NAMES

3050 CMP SYMBOL,Y

3060 BCC .3 NOT THIS ONE, BUT KEEP LOOKING
3070 BNE .4 NOT IN THIS CHAIN

3080 DEX

3090 BEQ .5 NAME 1S THE SAME

3100 INY NEXT BYTE PAIR

3110 BNE .2 .. .ALWAYS

3120 Fom oo mm e

3130 .3 JSR .5 UPDATE POINTER, CLEAR CARRY
3140 BCC .1 .. .ALWAYS

3150 Fom oo o

3160 .4 SEC DID NOT FIND

3170 RTS

3180 Fomm oo

3190 .5 LDA TPTR

3200 STA STPNTR

3210 LDA TPTR+1

3220 STA STPNTR+1

3230 CLC

3240 RTS

3250 oo oo

3260 ADD.NEW.ENTRY

3270 STA ENTRY.SIZE

3280 CLC SEE IF ROOM

3290 LDX #1

3300 LDY #0

3310 STY ENTRY.SIZE+1

3320 .1 LDA (STPNTR),Y GET CURRENT POINTER
3330 STA SYMBOL,Y

3340 LDA EOT,Y

3350 STA (STPNTR),Y

3360 STA TPTR,Y

3370 ADC ENTRY.SIZE,Y

3380 STA EOT,Y

3390 INY

3400 DEX

3410 BPL .1

3420 *--- SEE IF GOING TO BE ENOUGH ROOM

3430 LDA EOT

3440 CMP #ZZ.BEG

3450 LDA EOT+1

3460 SBC /ZZ_.BEG

3470 BCS .3 MEM FULL ERR

3480 *--- MOVE ENTRY INTO VARIABLE TABLE

3490 LDY ENTRY.SIZE

3500 DEY

3510 .2 LDA SYMBOL,Y

3520 STA (TPTR),Y

3530 DEY

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 75 of 2550

Apple 11 Computer Info

3540 BPL .2

3550 LDA TPTR

3560 STA STPNTR

3570 LDA TPTR+1

3580 STA STPNTR+1

3590 RTS

3600 .3 JMP MEM.FULL.ERR

3610 MEM.FULL.ERR

3620 BRK

3630 *----mmm
3640 SEARCH.LINE.CHAIN

3650 CLC ADJUST POINTER TO START
3660 LDA STPNTR OF LINE # CHAIN
3670 ADC #4

3680 STA SYMBOL

3690 LDA STPNTR+1

3700 ADC #0

3710 STA SYMBOL+1

3720 LDA #SYMBOL

3730 STA STPNTR

3740 LDA /SYMBOL

3750 STA STPNTR+1

3760 LDA LINNUM PUT LINE NUMBER INTO SYMBOL
3770 STA SYMBOL+3

3780 LDA LINNUM+1

3790 STA SYMBOL+2

3800 JMP CHAIN.SEARCH

3810 *—--mmm -
3820 PRINT.REPORT

3830 LDA #"A START WITH A*®S
3840 .1 STA VARNAM

3850 SEC

3860 SBC #"A CONVERT TO HSHTBL INDEX
3870 ASL

3880 TAY

3890 LDA HSHTBL+1,Y

3900 BEQ .2 NO ENTRY FOR THIS LETTER
3910 STA PNTR+1

3920 LDA HSHTBL,Y

3930 STA PNTR

3940 JSR PRINT.LETTER.CHAIN

3950 .2 INC VARNAM NEXT LETTER
3960 LDA VARNAM

3970 CMP #"Z+1

3980 BCC .1 STILL MORE LETTERS
3990 RTS FINISHED

4000 *——-mmm -
4010 LTRDIG

4020 CMP #70 DIGIT?

4030 BCC LD1 NO

4040 CMP #79+1

4050 BCC LD2 YES

4060 LETTER

4070 CMP #"A LETTER?

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 76 of 2550

4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610

LD1
LD2

BCC
CMP
BCC
CLC
RTS
SEC
RTS

Apple 11 Computer Info

LD1 NO

#Z+1

LD2 YES
NO

PRINT.LETTER.CHAIN

-1

LDA
JSR
LDY
INY
LDA
AND
CMP
BEQ
JSR
CPY
BCC
LDA
BPL
LDA
JSR
CLC
LDA
ADC
STA
LDA
ADC
STA
JSR
JSR
LDY
LDA
BEQ
PHA
DEY
LDA
STA
PLA
STA
BNE
RTS

VARNAM FIRST LETTER
PRINT.CHAR
#1

(PNTR),Y REST OF NAME
#$TF
#- BLANK?
.3
PRINT.CHAR
#3
.2
(PNTR),Y CHECK IF ARRAY
-4
#°(
PRINT.CHAR
POINT AT LINE # CHAIN
PNTR
#4
TPTR
PNTR+1
#0
TPTR+1
PRINT.LINNUM.CHAIN
MON.CROUT
#1
(PNTR),Y POINTER TO NEXT VARIABLE
.5 NO MORE

(PNTR), Y
PNTR

PNTR+1
-1 - - -ALWAYS

PRINT.LINNUM.CHAIN

-1

JSR
LDY
LDA
STA
INY
LDA
STA
JSR

TAB.NEXT.COLUMN

#2 POINT AT LINE #
(TPTR),Y

L INNUM+1

(TPTR),Y
L INNUM
PRINT.LINE.NUMBER

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 77 of 2550

4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150

LDY #1
LDA (TPTR),Y
BEQ .2
PHA
DEY
LDA (TPTR),Y
STA TPTR
PLA
STA TPTR+1
BNE .1

.2 RTS

- - -ALWAYS

TAB._NEW.LINE
JSR MON.CROUT
TAB .NEXT .COLUMN

-1 LDA #7 FIRST TAB STOP
.2 CMP MON.CH CURSOR POSITION
BCS .3 PERFORM TAB
ADC #6 NEXT TAB STOP
CMP #33 END OF LINE?
BCC .2
BCS TAB.NEW.LINE .._ALWAYS
.3 BEQ .4 ALREADY THERE
SBC MON.CH CALCULATE # OF BLANKS
TAX
JSR MON.PRBL2
-4 RTS

PRINT.LINE.NUMBER
LDX #4
STX LZFLAG
-1 LDA #"0
.2 PHA
SEC
LDA LINNUM
SBC PLNTBL, X
PHA
LDA LINNUM+1
SBC PLNTBH, X

DIGIT=0

BCC .3 LESS THAN DIVISOR
STA LINNUM+1
PLA
STA LINNUM
PLA
ADC #0 INCREMENT DIGIT
BNE .2 - - -ALWAYS

.3 PLA
PLA
CMP #70
BEQ .5 ZERO, MIGHT BE LEADING
SEC TURN OFF LZFLAG
ROR LZFLAG

-4 JSR PRINT.CHAR
DEX

SET UP NEXT POINTER

PRINT 5 DIGITS
TURN ON LEADING ZERO FLAG

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 78 of 2550

5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390

BPL
RTS
-5 BIT
BMI
LDA
BNE
PLNTBL .DA
-DA
-DA
-DA
-DA
PLNTBH .DA
-DA
-DA
-DA
-DA

PRINT.CHAR
ORA
JSR
RTS

ZZ.END .EQ
Z2Z.S1Z .EQ

-1

LZFLAG
-4

4

-4

#1

#10
#100
#1000
#10000
/1

/10
/100
/1000
/10000

#$80
MON.COUT

LEADING ZERO FLAG

NO
BLANK
- - -ALWAYS

ZZ _END-ZZ .BEG

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 79 of 2550

Apple 11 Computer Info

Block MOVE and COPY for Version 4.0

How many times have you wished there was an easy way to move a bunch
of lines of your source program to some other place? 1 know it
happens to me, and I frequently wish the assembler had this
capability. Now, at last, it is possible. 1 no longer have to use
DELETE, SAVE, HIDE, MERGE, LOAD in a very complicated sequence just to
move that 20 line subroutine from the middle to the end of my source
program!

The program as written assumes you have set up the USR command vector
to jump to $800. You do this by stuffing a 0 into $1007 and an 8 into
$1008 (type $1007:00 08 as a command). Then if you type, for example,
"USR 1100,1190,1800", a copy of lines 1100 through 1190 will be
inserted before line 1800. A word of caution: the lines in their new
location will still have the old line numbers, until you RENUMBER.

You can LIST, SAVE, and LOAD while the lines are out of sequence like
this, but beware of doing any further editing! First, use the USR
command to make the new copy of the lines; second, RENUMBER the
program; third, DELETE the lines form their old location. Voila! You
have moved them.

I just know someone (maybe everyone) is going to think that I should
have made this program do its own renumbering. The reason I am
confident of this is that | feel the same way. But the program as it
stands is useful, and I will refine i1t later. My plan is to add one
more parameter which specifies the increment for the line numbers in
their new location. Then let the third parameter be the line number
for the fTirst line of the block being copied. The program will check
whether making the copy will clobber any existing lines, and error out

if so. |If not, the copy will be made with its new line numbers. Then
a question will be asked of the form™ DO YOU WISH TO DELETE THE OLD
LINES? (Y/N)". But for now, I will live with the more tedious but

still very useful version you see here.

I would suggest that you put the object code of this program on a
binary file, and then create an EXEC text file that contains the patch
line to set up the USR command and a BLOAD command for the COPY
program. The quarterly AAL diskette contains just such a file.

Now let me describe how the COPY program works. Notice that lines
1000-1060 are a summary of the operating syntax. Line 1070, together
with lines 2390 and 2400, make the last three symbols in the symbol
table listing tell me the start, end, and length of the object code.
These are very useful for writing the object code out to a binary
file. (Of course, 1 could use the _TF directive and write It
automatically.)

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 80 of 2550

Apple 11 Computer Info

Lines 1090-1220 define the page-zero locations the program uses. SS,
SE, SL, and NEWPP are peculiar to this program; the rest of them are
used by the monitor and the assembler. PP points to the beginning of
the fTirst source line in memory, and LOMEM is the lowest PP can go.
A0, Al, A2, and A4 are used to pass addresses to the Apple Monitor
Memory Move subroutine.

Linew 1240-1280 define some addresses of routines inside the S-C
ASSEMBLER 11 Version 4.0. SYNX is the Syntax Error routine. You will
get a syntax error message if you type in less than three parameters
with the USR command, if the Ffirst two parameters are backwards or the
same, If the block specified to be copied is empty, or if the target
location is inside the block to be copied. MFER is the routine to
print MEM FULL ERR, and you will get this error message if there is
not room to make a copy; that is, the space between PP and LOMEM is
less than the size of the block you want to copy.

SCND i1s the assembler routine to scan an input line from the current
position and look for a decimal number. |If it finds a decimal number,
it will convert the number to binary and store it in A2L and A2H. As
explained on page 10 of the Upgrade manual for Version 4.0, the first
two parameters will have already been stored in AO and Al.

SERTXT is the assembler routine to find a line In your source program,
given the line number. It is called with the X-register containing
the address of the fTirst byte in page-zero of the byte-pair containing
the line number you are looking for. When SERTXT is finished, $E4,E5
points at the first byte of the line found, and $E6,E7 points at the
first byte of the next line. (Of course, if your line number could
not be found, both pointers will point at the next larger line.)

MON.MOVE is a program inside the Apple Monitor ROM. 1t will copy a
block of memory whose first byte address is in Al, last byte address
in A2, to a new place in memory starting at the byte address in A4.
This is the routine used when you use the monitor "M" command. It
works fine as long as the target is not inside the source block.

Now to the COPY program itself. Briefly, the three parameters are
checked for presence and consistency, and pointers are set up defining
the area to be copied. A new value of PP is computed based on the
length of this block, and I check to see iIf there is room in memory.
Next 1 search for the target location, and check to make sure it is
not inside the source block. (We don"t wat any infinite loops!) If
the target is higher in memory than the source block 1 adjust the
source block pointers by subtracting the block length from them. Then
I move all source lines below the insertion point down in memory far
enough to make a hole in the text into which the source block can be
copied. Finally, 1 copy in the source block, and return.

Some final comments... The COPY program is very fast, so play with it
a little on a scratch program to convince yourself it is working. |If

you don"t want to type in the source, you can just enter the hex codes
from the monitor, and BSAVE it. Or, your can order the Quarterly AAL

diskette, which will have the source, object, and a textfile to EXEC

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 81 of 2550

Apple 11 Computer Info

for BLOADing and patching the USR vector. Or, if you are very
patient, you can wait till next August for Version 5.0 of the S-C
ASSEMBLER 11!

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 82 of 2550

Apple 11 Computer Info

Handling 16-bit Comparisons

It can be confusing enough in the 6502 to compare two single-byte
values. Trying to remember that BCC means "branch if less than"
(assuming that the values were considered to be unsigned values from
0-255), and that BCS means "branch if greater than or equal to" 1is
enough to saturate my memory banks. 1 finally made a note on a card
and tacked it up over my computer. Of course, if the values are
considered to be signed values, in the range of -128 through +127, the
problem is compounded, to say the least.

But what about comparing two values of two-bytes each? Like comparing
two address pointers, for instance? A last resort would be to
subtract one from the other, iIn two-byte arithmetic, and then compare
the difference to zero. At least that would be understandable! But
let"s try to do it a little better than that. There is an example of
this kind of comparison in lines 1310 through 1350 of the PRETTY.LIST
program elsewhere in this issue of the Apple Assembly Line. Here is
the segment:

1310 .1 LDA SCRP

1320 CMP HIMEM
1330 LDA SRCP+1
1340 SBC HIMEM+1
1350 BCS .2

The object is to determine whether the value in PP,PP+1 is still less
than the value in HIMEM,HIMEM+1 or not. The low-order byte of each
value is stored in the first byte of each byte-pair, and the high-
order byte is stored in the second byte. |If all we needed to compare
was the low-order bytes, we could do it with lines 1310 and 1320
above. Carry would be cleared by the CMP instruction it (SCRP) was
less than (HIMEM). (1 have just started using (" and)" to mean
"the value stored in'.)

Now let"s use that carry bit and continue the comparison by actually
subtracting the two high-order bytes. If the result of the
subtraction leaves carry clear, we know that (SCRP) is indeed less tha
(HIMEM), all 16 bits of it.

If you need to extend this to more than two bytes per value, you may.
Just insert a pair of LDA-SBC instructions for each extra byte of
precision, before the BCS instruction.

For another example of this kind of comparison, you might look up the
NXTA1l routine in the Apple Monitor listing, at $FCBA. This routine is
used by the Monitor MOVE command, and several other routines.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 83 of 2550

Apple 11 Computer Info

As 1 write thes, there are 85 paid subscribers! 1 sent out about 140
flyers in the last two weeks, so maybe the number will double again

next month! Pass the word to your friends and local Apple clubs ...
and let me know how you like the content, style, et cetera.

In this issue...

Intelligent Disassemblers _
Integer BASIC Pretty Lister . . . - e e e e e ..
Listed Expressions with _.DA Dlrectlve - e e e e ..
Block MOVE and COPY for Version 4.0
Handling 16-Bit Comparisons

P
OROWN

Quarterly Disk #1

If you find there just isn"t enough time to type in all the source
programs in the Apple Assembly Line, 1 will be happy to save you the
trouble. Every three months I will put together a "Disk of the
Quarter'™ which contains all the source In the format of the S-C
ASSEMBLER 11 Version 4.0. The price is only $15, and 1 will pay the
postage.

The Ffirst such disk is ready now, covering October, November, and
December of 1980. The disks and the programs are for subscribers
only. Save your fingers, get yours now!

Help for Beginners

I will write some beginner®s material from time to time for this
newsletter, but I cannot cover every base at once. Meanwhile, many of
the magazines and club newsletters are beginning to publish articles
for beginners who want to learn assembly language. One of the best
and most accessible is Creative Computing. Chuck Carpenter®s "Apple-
Cart"™, a monthly feature, in the November, 1980 issue, was great! He
actually began the subject of machine language in the October issue,
but in the November one he covered indexing, indirect addressing, and
interrupts. By the way, Chuck is also a subscriber to the Apple
Assembly Line.

There have also been some good beginner articles In recent copies of
Nibble and Softalk. Nibble has been printing a lot of assembly
language programs, which are good to study.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 84 of 2550

Apple 11 Computer Info

Integer BASIC Pretty Lister

About 2 1/2 years ago, Mike Laumer, of Carrollton, Texas, wrote a
program to make pretty listing of Integer BASIC programs. He gave me
a copy to look at, and then we both forgot about it. A few days ago I
found it again, dusted it off, typed it in, and tried it out. After a
little debugging, here is the result.

Which i1s neater?
100 FOR 1=1 TO 40: A(D)=I1: A(1+41)=1*1: NEXT 1

or? 100 FOR I=1 TO 40
- ACD=I
- A(1+41)=1*1
- NEXT 1

Mike and 1 happen to like the latter format, especially for printing
in newsletters. It is a lot easier to read. And why print it if no
one is going to read it?

If you are in Integer BASIC, and you have a program in memory ready to
list, here are the steps to get a "pretty listing".

1. BLOAD B.PRETTY.LISTER
2. POKE 0,40 (or whatever number of characters
3. CALL 2048 per line you wish It to use)

IT you want it to print on your printer, be sure to turn it on in the
way you usually do before the CALL 2048. For example, if you have a
standard Apple interface in slot 1, type "PR#1" just before the CALL
2048.

IT you check it out, you will find a lot of similarity between the
code iIn this program and what is stored in the Integer BASIC ROMs
around locations $EOOC through $EOF9. The routines are not in the
same order, and there are a few significant changes to make the
listing "pretty” and to control the line length. As | was typing in
Mike"s program, 1 took the liberty of "modularizing”™ it a little more,
so that 1 could understand it. the PRINT.DECIMAL routine in lines
2500-2810 is almost identical to the one at $E51B in the BASIC ROMs.
The changes are for the purpose of counting the number digits actually
printed; this allows a closer control over line length.

Since one of the promised features of the Apple Assembly Line was
commented disassemblies of some of the Apple®s ROM code, 1 will try to
explain how PRETTY.LIST works in some detail, module by module. You
can then apply my explanation to the code which resides in ROM at
$EOOC-$EOF9.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 85 of 2550

Apple 11 Computer Info

PRETTY.LIST: This module is the overall control for the listing
process. Since PP points to the beginning of the BASIC source
program, lines 1270-1300 transfer this pointer into SRCP. Then SRCP
is compared with HIMEM, to see if we are finished listing. The check
is made before even listing one line, because it is possible that
there is no source program to list! |If the value in SRCP is greater
than or equal to the value in HIMEM, then the listing is finished, and
PRETTY.LIST returns to BASIC by JMP to DOS.REENTRY ($3D0). If the
listing 1s not finished, 1 call PRINT.ONE.LINE to format and print out
one line of the source program. '"One line" may be several statements
separated by colons. Then I jump back to the test to see if we are
through yet, and so on and on and on.

PRINT_.ONE.LINE: A source line in Integer BASIC is encoded in token
form, and this routine has to convert it back to the original form to
list it. First, let"s look at how a coded line is laid out.

line
bytes number body of source line 01

The fTirst byte of a line is the line length; we will ignore it in this
program, because we do not need it. The last byte of each line is the
hex value $01, which is the token for end-of-line. That is all we
need to signal the end of a line, and the start of another one. The
second and third bytes of each line are the line number, in binary,
with the low byte first. The body of the line is made up of a
combination of tokens and ASCII characters.

For the most part, tokens have a hex value less than $80, while the
ASCII characters have a hex value greater than $80. One important
exception is the token for a decimal constant. These are flagged by a
pseudo-token consisting of the first digit of the constant in ASCII
(hex $BO through $B9); after the token, two bytes follow which contain
the binary form of the constant with the low byte first. For example,
the decimal constant 1234 would be stored in three bytes as: $B1 D2
04.

The task of PRINT.ONE.LINE is to scan through the coded form of a
line, printing each ASCII character, and converting each token to its
printing form. In addition, the routine must count line position as
it goes, so that a new line can be started when one fills up.

Furthermore, we want it to start a new line whenever the ":" indicates
a new statement has begun within a line. We have to look out for REM
statements and quoted strings, because the ":" might appear in them

without signalling a new statement.

Lines 1400-1460 start the ball rolling. The line position is set to
zero, and the fill flag for the PRINT.DECIMAL routine is set to
produce a right-justified-blank-filled number. Then GET.NEXT.BYTE is
called to advance the SCRP past the byte count in the first byte of
the line. GET.NEXT.BYTE returns the value of the byte in A, and with
Y=0. This time we ignore the value In A, and use the fact that Y=0 to
clear A.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 86 of 2550

Apple 11 Computer Info

Lines 1470-1510 pick up the two bytes of the line number and call
PRINT.DECIMAL to print it out. These same lines will be used later to
print out any constants which are in the line. These lines are
entered this time with A=0 and with IB.FILL set for the RJBF mode
(right-justiftied-blank-filled). Later for constants they will be
entered with IB_FILL set for printing with no leading blanks, and with
A <> 0. The value In A is used to set IB.FLAG, which determines
whether a trailing blank will be printed. One will be printed after
the line number, but not after a constant inside a line. (For a
character that uses so little ink, blanks can sure eat up a lot of
codel)

At line 1520 the main body of the PRINT.ONE.LINE routine begins.
CHECK.EOL.GET.NEXT.BYTE decides whether we are getting too close to
the end of the line. This prevents splitting token-words in half,
with a few characters dangling off the end of one line, and the rest
starting a new one. (At least, on the screen it would look like that;
on a printer it might just print out into a margin.) The routine will
start a new line before returning if the end is too near. When it
finally does return, the next byte will be in A, and Y will be zero.
If the next byte is a token (less than $80), control branches to line
1720. 1f the first bit of the byte is 1, and the second bit is 0, the
code at lines 1550-1580 assumes the pseudo-token for a constant has
appeared. |If the second bit is also 1, the byte is an ASCII
character. Before printing the character, lines 1590-1630 may print a
blank. This would be a trailing blank after printing a token or a
line number. The character is then printed at lines 1640-1650, and
another end-of-line check is made. This time "too near the end" is
defined as within 3 spaces. The next byte must either be a token or
yet another ASCII character, so a determination is made in lines 1660-
1700.

Tokens are harder to handle, because we have to test for several
special cases, and if not a special case the token table must be
searched to find the token®"s name. Lines 1720-1740 test for the end-
of-line token; if this is iIt, a carriage return is printed and
PRINT.ONE.LINE returns back to its caller.

If the token is the new-statement-token, used for ":", a new line is
started. Then the fun begins: we have to search the token table.
This table is the most recondite portion of the whole Apple computer!
I have only scratched its surface. The table is located between $ECO0
and $EDFF, but it is not in that order. 1t goes like this: first
$EDOO, then $EDFF-$EDO1 (yes, backwards!), then $EC00, then $ECFF-
$ECO01. The names for all the tokens are stored in the table, along
with various bits of information about precedence and syntax. |If you
print out the table, you will not see any names... Steve Wozniak
subtracted $20 from each byte before putting it into the table. Well,
there is a lot more to it than that, but I am getting lost, side-
tracked.

After fTinding the token®"s name string inside the token table, we have
to print it out. This is done in lines 1840-1940. The name is

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 87 of 2550

Apple 11 Computer Info

terminated either by the last character having a value greater than
$BF, or by the next character in the table having a value less than
$80. The routine at $EO0C decides whether or not to print a trailing
blank, 1 think.

After printing the token®s name, lines 1960-2010 test for REM or a
quoted string. Either of these would be followed by a bunch of ASCII
characters terminated by a token, so control branches to line 1660 to
print them out. |If neither, we go back to line 1520, to get the next
token, or whatever.

Somehow 1 skipped over line 1830. 1 believe the JSR $EFF8 determines
whether or not to print a space in front of the token name.

FIND.TOKEN: Lines 2040-2110 set up a pointer to the half of the token
table which contains the name string for the token we want. Tokens
$00 through $50 are in the first half, and $51 through $7F are in the
second half.

Lines 2120-2250 scan through the table, counting token names as they
are passed. When the nth one is found, where n is the token value,
the routine returns. It returns with A=0, and Y = offset in the half
of the token table we have been scanning.

CHECK.EOL.GET.NEXT.BYTE: Enter this routine with A containing the
number of bytes short of the end of the line you want to test for, as
a negative number. |If too near the end, CR.7.BLANKS will be called to
start a new line. 1In any case the routine exits by transferring to
GET.NEXT.BYTE to get the next byte from the source line.

CR.7.BLANKS: Prints a carriage return adn 7 blanks to start a new
line.

CHAR.OUT: Simply counts characters and then calls on the Apple
monitor to print out a character. We need to count columns for
CHECK.EOL.GET.NEXT.BYTE.

PRINT.DECIMAL: Lifted out of Integer BAIC from $E51B, and modified to
eliminate the ability to store the converted number in the input
buffer, and to add the ability to count output characters.

Additions to this program: You might like to add some more featrures
to this program. For example, it would be nice to have it request the
line length and printer slot number itself, and turn the printer on
and off. Also, it would be helpful to add indentation for FOR.._NEXT
loops and IF...THEN statements. The same program could be merged with
a cross reference program to build and print a variable and line
number cross reference.

If you decide to try any of these, or any other enhancements, why not
write them up and send them to me for publication?

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 88 of 2550

Apple 11 Computer Info

Allow List of Expressions with .DA Directive

Some customers have said they wished the _DA directive in the S-C
ASSEMBLER 11 allowed more than one expression per line. For example,
"_DA 1000,100,10,1" would then produce 8 bytes of code just as though
there were four separate .DA lines. (Once and a while I wish it
worked this way too!)

The following little patch will transform your _DA in just that way.
Because of the _OR and .TF directives, assembling these 42 lines will
produce two binary files that are ready to BLOAD. When you BLOAD
them, the copy of the assembler in memory will be patched. You can
then BSAVE the assembler (use a different name!), and you have the new
capability.

If you do not have Version 4.0 of the assembler, then this patch will
not work. If you have one of the very earliest copies of Version 4.0,
it may have some different addresses. Check it out before you type in
the code: at $20D4 you should find three JMP instructions, as
indicated in the comments here in lines 1210 through 1230. If you
find those JMPs, go right ahead and make the patches. OFf course, if
you have already added some code at $24B0, then you will have to put
this patch somewhere else.

IT you do not find those JMP instructions at $20D4, but you do find
them at $20B1, then you need to change a few addresses in the patch
code. Change the following lines as indicated:

1170 PSDA .EQ $2092
1190 .OR $20B1

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 89 of 2550

Apple 11 Computer Info

Keeping Printer On After Error Message

One customer wanted this, and maybe you would too. He needed the
printer to stay enabled even if an editor or assembler error message
was generated. S-C ASSEMBLER Il Version 4.0 shuts off any printer
after any error occurs, so he couldn®t get his printer to stay on long
enough to get a listing.

Here i1s a patch that will leave a printer "hooked in".

:$1756:F0 24 (address of patch area)
:$24F0:A9 FF 85 D9 20 80 1F 4C 26 10

After making the patch, you can BSAVE using A$1000,L$14FB.

The patch is put at $24F0; if you have already put some other patch
there, be sure to put this one somewhere else! Be sure you TEST it
before you clobber or delete the original! Be sure you really WANT it
before you even bother to type it in!

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 90 of 2550

Apple 11 Computer Info

Intelligent Disassemblers

Not one, but two! |In this issue of AAL you find two ads for
intelligent disassemblers. Dr. Robert F. Zant, of Decision Systems,
and Bob Kovacs, of RAK-WARE, have each written one. After all these
years, two of them pop up in the same week!

Dr. Zant"s reads a binary fTile and writes a text file which can be
EXECed into either the S-C ASSEMBLER 11 Version 4.0 or the Apple
assembler from the DOS Tool Kit. He writes an intermediate text file
during pass one of the disassembly, and then reads it back in, formats
it for the desired assembler, and writes i1t back out. His
disassembler is a combination of machine language code and Applesoft
code; you have to have Applesoft in ROM and at least 32K RAM. He
includes a couple of handy utility programs on the diskette.

Bob Kovac®s disassembler works from a binary program already in
memory. Both passes are performed in memory, and then the text file
is written. Since everything is done in memory, it iIs very fast. The
resulting text file is EXECed into the S-C ASSEMBLER 11 Version 4.0.

Both disassemblers create labels for all branch addresses inside the
block being disassembled. Bob Kovac®"s version also makes labels for
all external branch addresses, putting -EQ lines at the beginning to
define them. The RAK-WARE version also make symbols for all page-zero
references. They also are set up with _EQ lines at the beginning of
the text file.

Both disassemblers output a control-1 at the beginning of each line
rather than a line number. This causes the assembler to generate its
own line number when the file is EXECed, and allows you to set your
own increment and starting line number just before typing the EXEC
command. Set the increment by using the INC command; and set the
starting line number by typing the number you want less the increment,
followed by a space and return.

I forgot to mention, Bob Kovac®"s disassembler works with eihter
Integer BASIC or Applesoft. He has driver programs written in both
languages on the diskette.

They both are excellent tools, which have long been needed. They both
cost the same, $25. What can | say? Buy them both! Do it before the
end of 1980, and get a tax deduction before Reagan and our new
Congress lower the incode tax rate!l

Advertising in AAL

For the first time, there are some ads in your newsletter. 1 think
you will find them almost as useful as the non-ad material, because so

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 91 of 2550

Apple 11 Computer Info

many of you have asked me for compatible two-pass disassemblers to go
along with the S-C ASSEMBLER. 1If you have written some programs that
your want to sell, which you think other readers of the Apple Assembly
Line would be interested in, you can advertise here, too. The cost is
quite low ... $20 for a full page, $10 for 1/2 page.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 92 of 2550

Apple 11 Computer Info

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 93 of 2550

Apple 11 Computer Info

AMAKE TEXT FILE14aTO SET UP "COPY.LINES"=-D$»%(4)\(aD$"OPEN SETUP COPY
LINES"]2aD$"WRITE SETUP COPY LINES"£<a"$1007:00 08"aFa'"BLOAD
B.COPY.LINES"aPaD$""CLOSE"

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 94 of 2550

Apple 11 Computer Info

1010

1010 * COPY L1,L2,L3

1020 * L1 = FIRST LINE OF RANGE TO COPY
1030 * L2 = LAST LINE OF RANGE TO COPY
1040 * L3 = LINE NUMBER BEFORE WHICH TO INSERT
1050 * THE COPIED LINES

1060 F oo oo

1070 ZZ.BGN .EQ *

1080 F—m oo

1090 SS _EQ $00,01 START OF SOURCE BLOCK
1100 SE _.EQ $02,03 END OF SOURCE BLOCK
1110 SL _EQ $04,05 LENGTH OF SOURCE BLOCK
1120 NEWPP .EQ $06,07 NEW PROGRAM POINTER
1130 AOL EQ $3A

1140 AOH EQ $3B

1150 AlL EQ $3C

1160 AlH EQ $3D

1170 A2L EQ $3E

1180 A2H EQ $3F

1190 A4L EQ $42

1200 A4H EQ $43

1210 LOMEM .EQ $4A,4B

1220 PP EQ $CA,CB

1230 Fom oo

1260 SCND .EQ $112D
1270 SERTXT .EQ $14F6
1280 MON.MOVE .EQ S$FE2C

1360 *--omm e

1370 COPY

1380 JSR SCND GET THIRD PARAMETER

1390 CPX #6 BE SURE WE GOT THREE
1400 BCC ERR1 NOT ENOUGH PARAMETERS
1410 LDX #AOL FIND BEGINNING OF SOURCE
1420 JSR SERTXT

1430 LDA $E4 SAVE POINTER

1440 STA SS

1450 LDA $E5

1460 STA SS+1

1470 LDX #A1L FIND END OF SOURCE BLOCK
1480 JSR SERTXT

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 95 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

$E6

Apple 11 Computer Info

SAVE POINTER AND COMPUTE LENGTH

SOURCE LENGTH

RANGE BACKWARD

NOTHING TO MOVE

COMPUTE NEW PP POINTER

LOMEM
NEWPP+1
LOMEM+1
ERR3

SEE IF ROOM FOR THIS

MEM FULL ERR

BCC
* TARGET
* ADJUST
SEC
LDA
SBC
STA
LDA
SBC
STA
SEC
LDA
SBC
STA
LDA
SBC

H#A2L
SERTXT
SS
$E4
SS+1
$E5
1
$E4
SE
$E5
SE+1
ERR4

FIND TARGET LOCATION

BE SURE NOT INSIDE SOURCE BLOCK

BELOW SOURCE BLOCK

INSIDE SOURCE BLOCK

IS ABOVE SOURCE BLOCK, SO WE HAVE TO
SOURCE BLOCK POINTERS.

SS
SL
SS
SS+1
SL+1
SS+1

SE
SL
SE
SE+1
SL+1

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 96 of 2550

Apple 11 Computer Info

2030 STA SE+1

2040 *o-emmm -
2050 .1 LDA PP SET UP MOVE TO MAKE HOLE
2060 STA AlL

2070 LDA PP+1

2080 STA AlH

2090 LDA NEWPP

2100 STA PP

2110 STA A4L

2120 LDA NEWPP+1

2130 STA PP+1

2140 STA A4H

2150 LDA $E5

2160 STA A2H

2170 LDA $E4

2180 STA A2L

2190 BNE .2

2200 DEC A2H

2210 .2 DEC A2L

2220 LDY #O

2230 JSR MON.MOVE

2240 Fommmm -
2250 LDA SS MOVE IN SOURCE BLOCK
2260 STA AlL

2270 LDA SS+1

2280 STA AlH

2290 LDA SE+1

2300 STA A2H

2310 LDA SE

2320 STA A2L

2330 BNE .3

2340 DEC A2H

2350 .3 DEC A2L

2360 JSR MON.MOVE

2370 RTS

2380 *o-mmmee -

2390 ZZ_END .EQ *-
2400 ZZ.S1Z .EQ ZZ.END-ZZ.BGN+1

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 97 of 2550

Apple 11 Computer Info

1000 _TF B.PRETTY.LISTER

1010 _LIST OFF

101 J
1030 * INTEGER BASIC PRETTY-LIST
10271
1050 LINE.LENGTH _EQ $00

1060 LINE.POSITION _EQ $01

1070 MON.CH _EQ $24

1080 PP _EQ $CA,CB

1090 HIMEM .EQ $4C,4D
1100 SRCP -EQ $E2,ES3
1110 TKNP -EQ $CE,CF

1120 1B.FLAG _EQ $EA

1130 IB.FILL _EQ $FA

1140 F oo
1150 DOS.REENTRY _EQ $3D0

1160 GET.NEXT.BYTE _EQ $EO02A

1170 TOKEN.TABLE _EQ $EDOO

1180 MON.COUT _EQ $FDED

1190 MON.CROUT _EQ $FDSE

1200 Fom oo
1210 TOKEN.EOL _EQ $01

1220 TOKEN.COLON _EQ $03

1230 TOKEN.REM _EQ $5D

1240 TOKEN.QUOTE _EQ $28

1250 Fom oo
1260 PRETTY.LIST

1270 LDA PP

1280 STA SRCP

1290 LDA PP+1

1300 STA SRCP+1

1310 .1 LDA SRCP SEE IF AT END
1320 CMP HIMEM

1330 LDA SRCP+1

1340 SBC HIMEM+1

1350 BCS .2 FINISHED

1360 JSR PRINT.ONE.LINE

1370 IMP .1

1380 .2 JMP DOS.REENTRY

1390 Fom oo
1400 PRINT.ONE.LINE

1410 LDA #0

1420 STA LINE.POSITION

1430 LDA #$A0 SET UP PRINT.DECIMAL FOR RJBF
1440 STA IB.FILL

1450 JSR GET.NEXT.BYTE SKIP OVER BYTE COUNT
1460 TYA (A)=0

1470 .1 STA IB.FLAG

1480 JSR GET.NEXT.BYTE GET LINE NUMBER

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 98 of 2550

Apple 11 Computer Info

1490 TAX LOW BYTE

1500 JSR GET.NEXT.BYTE HIGH BYTE

1510 JSR PRINT.DECIMAL PRINT THE LINE NUMBER RJBF
1520 .2 LDA #-7 WITHIN 7 OF END OF LINE
1530 JSR CHECK.EOL.GET.NEXT.BYTE

1540 STY IB.FILL CLEAR RJBF

1550 TAX TEST BYTE AND SAVE IN X-REG
1560 BPL .6 TOKEN

1570 ASL

1580 BPL .1 CONSTANT, GO PRINT IT
1590 LDA IB.FLAG

1600 BNE .3 DO NOT NEED A BLANK
1610 LDA #$A0

1620 STA 1B.FLAG

1630 JSR CHAR.OUT

1640 .3 TXA RETRIEVE BYTE

1650 .4 JSR CHAR.OUT AND PRINT IT

1660 .5 LDA #-3 WITHIN 3 OF EOL

1670 JSR CHECK.EOL.GET.NEXT.BYTE

1680 TAX TEST BYTE, SAVE IN X-REG
1690 BMI .4 NORMAL CHAR

1700 STA 1B.FLAG

1710 F oo

1720 .6 CMP #TOKEN.EOL

1730 BNE .7 NOT END OF LINE

1740 JMP MON.CROUT END OF LINE

1750 .7 CMP #TOKEN.COLON

1760 BNE .8

1770 JSR CR.7.BLANKS

1780 LDA #TOKEN.COLON

1790 .8 PHA SAVE TOKEN

1800 JSR FIND.TOKEN

1810 BIT IB.FLAG

1820 BMI .9

1830 JSR $EFF8

1840 .9 LDA (TKNP),Y GET CHAR OF TOKEN NAME
1850 BPL .10

1860 TAX SAVE CHAR IN X

1870 AND #$3F

1880 STA IB.FLAG

1890 CLC

1900 ADC #$A0

1910 JSR CHAR.OUT

1920 DEY

1930 CPX #$CO

1940 BCC .9

1950 .10 JSR $E00C

1960 PLA GET ORIGINAL UNMOLESTED TOKEN
1970 CMP #TOKEN .REM

1980 BEQ .5 REM

1990 CMP #TOKEN.QUOTE

2000 BEQ .5 QUOTATION

2010 BNE .2 NEITHER

2020 Fom oo

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 99 of 2550

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560

FIND.TOKEN
LDX
STX
LDX
CMP
BCC
DEX
SBC
-1 STX
.2 PHA
LDA
.3 TAX
DEY
LDA
BPL
CPX
BCS
CPX
BMI
-4 TAX
PLA
SBC
BNE
RTS

Apple 11 Computer Info

#TOKEN . TABLE
TKNP
/TOKEN.TABLE
#$51 SEE IF NEED OTHER HALF TOKEN.TABLE
21 NO
YES
#$50
TKNP+1
SAVE MODIFIED TOKEN ON STACK
(TKNP),Y Y GOES O,FF,FE, ...

(TKNP),Y LOOK FOR NEGATIVE BYTE

.3

#$CO IF BYTE BEFORE NEGATIVE BYTE 1S
-4 BTWN $CO AND $FF, THEN

#$00 KEEP LOOKING

.3

#1 DECREMENT TOKEN
.2 NOT THERE YET

CHECK.EOL.GET.NEXT.BYTE

CLC
ADC
CMP
BCS
JSR
-1 JMP

CR.7.BLANKS

LDA
LDY
STY
-1 JSR
LDA
DEY
BNE
RTS

CHAR.OUT
INC
JMP

LINE.LENGTH
LINE.POSITION
-1
CR.7.BLANKS
GET.NEXT.BYTE

#$8D

#r
LINE.POSITION
CHAR.OUT

#$A0

LINE.POSITION
MON.COUT

PRINT.DECIMAL

STA
STX
LDX
STA
e LDA
STA

$F3

$F2

#4

$C9 LEADING ZERO FLAG
#$BO

$F9

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 100 of 2550

2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810

LDA
CMP
LDA
SBC
BCC
STA
LDA
SBC
STA
INC
BNE
LDA
CPX
BEQ
CMP
BEQ
STA
BIT
BMI
LDA
BEQ
JSR
DEX
BPL
RTS

$F2
$E563,X
$F3
$E568,X
.2

$F3

$F2
$E563,X
$F2

$F9

-1

$F9

#0

-4

#$BO

.3

$C9

$C9

-4
IB_.FILL
.5
CHAR.OUT

-7

Apple 11 Computer Info

- - -ALWAYS

SEE IF LAST DIGIT

YES

NO, SEE IF LEADING ZERO
MAYBE

NO

STILL PLUS IF LEADING ZERO
NOT LEADING ZERO

SEE IF BLANK FILL

NO

PRINT CHAR

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 101 of 2550

Apple 11 Computer Info

DOCUMENT
1000 *--——ommm-
1010 *

1020 F--——mmmm-
1030 *

1040 * TO
1050 *

1060 * 1.
1070 * 2.
1080 * 3.
1090 * 4.
1100 *

1110 *—-—mmm-
1120 EXP.VALUE
1130 Fo-—mmmm-
1140 GNC EQ
1150 EMIT .EQ
1160 CMNT .EQ
1170 PSDA .EQ
1180 *--——mm—-
1190 _OR
1200 _TF
1210 JIMP
1220 IMP
1230 IMP
1240 Fo-—ommmmo-
1250 _OR
1260 _TF
1270 BOTH.BYTES
1280 LDA
1290 JSR
1300 HIGH.BYTE
1310 LDA
1320 ALL JSR
1330 JSR
1340 CMP
1350 BEQ
1360 IMP
1370 MORE JMP
1380 LOW.BYTE
1390 LDA
1400 CLC
1410 BCC

INSTALL THIS PATCH:

BRUN ASMDISK 4.0
BLOAD PATCH.DA.1
BLOAD PATCH.DA.2
BSAVE ASMDISK 4.1,A$1000,L$14FB

$20D4
PATCH.DA.1
BOTH.BYTES
LOW.BYTE
HIGH.BYTE

REPLACES:

(IMP $19B2)
(IMP $194D)
(IMP $19D7)

$24B0 PATCH AREA
PATCH.DA.2

EXP.VALUE
EMIT

EXP.VALUE+1
EMIT
GNC

#,

MORE
CMNT
PSDA

COMMA?

FINISHED

EXP.VALUE

ALL - - -ALWAYS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 102 of 2550

Apple 11 Computer Info

$1007:00 08
BLOAD B.COPY.LINES

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 103 of 2550

Apple 11 Computer Info

A Computed GOSUB for Applesoft

How many times 1 have wished for one! | guess I am spoiled from
FORTRAN and Apple Integer BASIC. The Computed GOTO is also left out,
but I saw that one written up in a recent newsletter. The author said
he didn*"t know how to do the Computed GOSUB, so here it is!

<<<<|isting>>>>

Lines 1160 and 1170 check the token after the "&" to see if it is
"GOSUB™; if not, you will get a big SYNTAX ERROR. Lines 1180 and 1190
check the stack to see if there is room for another GOSUB entry; if
not, you get an OUT OF MEMORY error. Lines 1200-1290 push the data on
the stack that will be needed to RETURN. Lines 1300 and 1310 compute
the value of whatever expression follows the &GOSUB, and turn it into
an integer that looks just like a line number. Finally, lines 1320
and 1330 simulate a normal GOTO. That"s all there is to it!

Here is a sample Appplesoft program using the new &GOSUB statement:

10 POKE 1013,76: POKE 1014,0: POKE 1015,3
20 INPUT X

30 &GOSUB x*100

40 GOTO 20

100 PRINT 100:RETURN
200 PRINT 200:RETURN
300 PRINT 300:RETURN
400 PRINT 400:RETURN

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 104 of 2550

Apple 11 Computer Info

Putting COPY in S-C Assembler 11

I just looked at the fTirst AAL Disk of the Quarter. The fTirst item of
business was to incorporate the changes into my copy of the assembler.

The lower-case mod and the _DA mod went just as described in AAL.
However, when it came to the COPY stuff, 1 found that I wasn"t really
happy to load it at $800 and hope it didn"t get clobbered. Here"s
what I did....

I changed the origin of the COPY program to $25A0 (since | already
have a special printer driver at $2500.259F). The COPY program runs
from $25A0 through $266F, so | changed the symbol table origin by
typing ""$1011:27". This sets the bottom of the symbol table at $2700.
I put a "_.TF B.SC COPY MODS™ line in, to write the object on a binary
file.

After assembling, | BLOADed the file B.SC COPY MODS into memory. Then
I could have plugged in the USR vector like Bob suggested, but 1
wanted a real "COPY'"™ command. Therefore 1 searched around in the

assembler until 1 found the command table. 1 put the letters "COP"™
and the program address over the top of the tape SAVE command entry,
by typing "1246:43 4F 50 9F 25"_. 1 felt the loss of the tape SAVE

command was worth it, to get a real COPY command.

Now the command "COPY 1000,1050,2500" will copy lines 1000 through
1150 into the pplace right before line 2500. The USR command is still
intact and I"m ready for some more changes!

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 105 of 2550

Apple 11 Computer Info

EDIT Command for S-C Assembler VWl.. Mike Laumer

At last! Owners of the S-C Assembler 11 Version 4.0 can now have the
power of an EDIT command similar in function to the popular "Program
Line Editor™ (PLE) by Neil Knozen. (PLE only works with INteger BASIC
and Applesoft, although some wizards have figured out how to interface
it with the S-C Assembler.) The program presented here will patch
itself into Version 4.0 to turn the "USR"™ command into an EDIT
command .

Several weeks ago Bob Sander-Cederlof contacted me about some contract
programming, to help out on various projects he had in mind. So 1
suggested lunch, and we met to discuss some of his projects. 1 was
amazed at the list (as long as my arm!) of the the ideas for just one
of his products, the S-C Assembler I11. (If you like version 3.2, as |
did; if you are thrilled with version 4.0, as I am; then version 5.0
will ___.) So I picked out a couple that would be fairly
straightforward and would let me pick up the internal structure of the
assembler gradually.

After signing a non-disclosure agreement, | obtained the source files
and made a listing of the assembler. Lucky for me I have a brand new
Epson MX-80 printer! 1 think it is the greatest!

Thursday, 1 made the listing. Friday 1 looked at the listing. Friday
night 1 began writing code for the EDIT command. Saturday from 9AM
till 1AM 1 wrote more code, read it through, and rewrote it. Sunday
morning 1 typed it into my Apple and eliminated the assembly errors
(typos). And by 11AM, with the exception of two trivial bugs, 1 had
it working! 1 nearly fell out of my chair! A 377-line program worked
on the first run!

After you type iIn the program, assemble it, and BRUN it, the USR
command will work as an edit command. |If you type the command USR
with no line number, it will do nothing. 1If you type USR and one line
number, it will list the line on the bottom of the screen and set yo
up to edit it. |If you type USR and two line numbers, separated by a
comma, all the lines in the range will be set up to edit, one at a
time.

How to Use EDIT: Twelve editing functions are available, and you may
see Tit to add some more. Each function is selected by typing a
control character. |If you type a normal character, it will write over
the top of the characters already in the line. The control characters
and their associated functions are:

control-B Move to beginning of line.
control-D Delete character beneath cursor.
control-E Move to end of line.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 106 of 2550

Apple 11 Computer Info

control-F Find a character; the character searched for
is typed after the control-F; repeatedly
typing the same character will keep looking
successive occurrences.

control-H Backspace (left arrow).

control-1 Insert characters before current cursor
position.

control-M (RETURN) Stop editing the line,
and submit it to the line input routine
in the assembler.

control-O Same as control-1, except next character
may be any control character.

control-Q same as control-M, but line beyond cursor
is truncated.

control-T Skip to next tab stop.

control-U (Right Arrow) Move cursor forward.

control-X Kill edit, does not submit line.

How EDIT Works: When you BRUN the file B_EDIT (after assembly has
written the object code therel!), the code in lines 1360-1530 is
executed. This patches the USR command vector to jump to EDIT (line
1720), and makes some patches inside the assembler. The patches only
work for version 4.0! Their purpose is to make the code which
processes a source line into a subroutine.

Lines 1540-1620 are part of the patch code for the source line
processing subroutine.

Lines 1720-2040 determine the number of line numbers typed, and search
for them in the source program. Then E.LIST is called for each line
to be edited.

Lines 2050-2360 list the source line on the screen and also stuff it
into the line input buffer at $0200. All changes will be made in the
buffer, not in the source program.

Lines 2370-2530 read a key from the keyboard and search the command
table. 1T the key is found in the table, then DOIT is called to
execute the command. |If the key is not found, I assume it is a type-
over character. The command table search is actually performed by a
rather neat subroutine inside the assembler, called SEARCH.

Lines 2540-2690 process a type-over character, in which the key just
typed replaces the character under the cursor. Then the modified line
in the buffer is re-displayed on the screen.

Lines 2700-2750 position the cursor at the beginning of line 19 (on
the screen), where the source line will be listed.

Lines 2760-2900 display the line from the buffer. Display always
starts at line 19 on the screen. Control characters are shown in
inverse video.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 107 of 2550

Apple 11 Computer Info

Lines 2910-4090 process the various commands. Each processor is
written as a subroutine. The RTS returns to line 2520; at this point
the Carry Status is used to flag whether or not to re-display the
source line from the buffer.

Lines 4100-4260 read a character from the keyboard by calling on the
monitor RDKEY subroutine. The internal line buffer index is also
converted to cursor line and column position on the screen.

Lines 4270 through the end are the command table. The first line
defines the entry size and key size for the SEARCH subroutine; 3
bytes per entry, with a one byte key at the fron of each entry. The
remaining two bytes of each entry are the starting-address-minus-one
of the command processor rotuine. A final $00 byte terminates the
table.

WARNING! 1 have used the patch for Bob"s assembler which allows a
list of _DA items! Lines 4270-4420 require this patch to be
installed. You can read about the patch in Apple Assembly Line for
December, 1980, on page 9. |If you have not installed the patch, then
lines 4270-4420 need to be re-written with each _DA item on a separate
source line.

Well, you better get typing on that Apple, 1 know this is one routine
you can"t wait to key in. 1 know I couldn®"t wait to create it! Or,
if you CAN wait, you can get the source on the next Disk of the
Quarter from Bob.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 108 of 2550

Apple 11 Computer Info

Volume 1 -- Issue 4 January, 1981

There are, as of Christmas Eve, 179 of you subscribing to the Apple
Assembly Line! Last month I wondered if circulation could double,
from 85, but we did even better! Also, several stores have decided to
carry the AAL for sale like a magazine. We are growing a lot faster
than 1 predicted, and I like it!

In This Issue...

How to Move Memory . . e e e e e e e e e L2
Computed GOSUB for Applesoft - - e
Putting COPY into S-C Assembler II e ¢
EDIT Command for S-C Assembler 10 . _ . . _ _ . . . 10

First "Disk of the Quarter"

Every three months 1 collect onto one disk all the source programs
published in AAL for the quarter. QD#1 (for October, November, and
December of 1980) is now available, for $15. You can save a lot of

typing.

If you would like to help promote the newsletter, here is a nice
offer: you sign up four new subscribers, and send me their mailing
addresses and money, and I will send you a "Disk of the Quarter™ FREE
and POSTPAID!

Those Compatible Disassemblers

Bob Zant and Bob Kovacs both report that their new two-pass
disassemblers are selling well. Well enough to warrant advertising
again! Have you bought a copy yet?

TAB Locations in S-C Assembler Il Version 4.0

For some reason, people are always asking me where the tab stops are
kept, because they want to change them. The old version 3.2 manual
gives the patch locations for the three tab stops, but they are
different in version 4.0. You will find them at:

column location
1st tab 14 $140D:0B
2nd tab 18 $1411:0F
3rd tab 27 $1402:18

Note that the value stored in memory is three less than the column
number.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 109 of 2550

Apple 11 Computer Info

How to Move Memory

One of the most common problems in assembly language programming is
the problem of moving data from one place in memory to another.

Moving Little Blocks: |If you only need to move one or two bytes of
data from one place to another in memory, it is easy. You might do it
like this:

LDA SOURCE
STA DEST

LDA SOURCE+1
STA DEST+1

Or, i1If the A-register was busy but X and Y were not, you might write:

LDX SOURCE
LDY SOURCE+1
STX DEST

STY DEST+1

If you know ahead of time exactly how many bytes you want to move, and
exactly where you want it copied from and to, you can write a very
fast loop. For example, suppose 1 know that 1 want to copy 20 bytes
from BUFFER1 into BUFFER2, and that there is no overlap. Then I can
write:

LDX #19

LOOP LDA BUFFER1,X
STA BUFFER2,X
DEX
BPL LOOP

The loop moves the last byte first, then the next-to-last, and so on
until the first byte in BUFFER1 is moved into BUFFER2. IT it is
important to move them in the opposite direction (first byte first,
last byte last), you can change the loop this way:

LDX #0O

LOOP LDA BUFFER1,X
STA BUFFER2,X
INX
CPX #20

BCC LOOP

Terminating the loop can be done in various ways. The two examples
above do it with a count in the X-register. Another way is to use a

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 110 of 2550

Apple 11 Computer Info

data sentinel. For example, the last byte to be moved, and only the
last byte, might contain the value $00, or $FF, or anything you
choose. Then after moving a byte, you can check to see if the
sentinel byte was just moved. |If it was, you are finished moving.
Here is an example using a sentinel of $00:

LDX #-1

LOOP INX
LDA BUFFER1,X
STA BUFFER2,X
BNE LOOP

Pascal Language promoters often recommend the sentinel technique;
however, in Assembly Language, you msut be very careful if you plan to
use it. The sentinel you choose today may become a valid data value
tomorrow!

Moving Bigger Blocks: All of the examples so far will only work if
the total number of bytes to be moved is less than 256. What if you
need to move a larger block?

When 1 need to move a large block of data from one place to another, |1
frequently use the MOVE subroutine in the Apple Monitor ROM. It
starts at $FE2C, and looks like this:

FE2C- B1 3C MOVE LDA (A1L),Y MOVE (Al...A2)

FE2E- 91 42 STA (A4L),Y TO (A4)
FE30- 20 B4 FC JSR NSTA4

FE33- 90 F7 BCC MOVE

FE35- 60 RTS

The subroutine NXTA4 (at $FCB4) increments A4L,A4H ($42,43), which is
the destination address. Then it compares AlL,Al1H ($3C,3D) to A2L,A2H
($3E,3F); the result of the comparison is left in the Carry Status
bit: Carry is set if Al is greater than or equal to A2. Finally, the
subroutine increments A2L,A2H ($3E,3F).

To use the MOVE subroutine, you have to set the starting address of
the block to be copied into $3C,3D; the last address of the block to
be copied into $3E,3F; and the starting address of the destination
into $42,43. You also need to be sure that the Y-register contains
zero before you start. Here is an example:

LDY #O CLEAR Y-REGISTER

LDA #BUFFER1 START ADDRESS OF SOURCE

STA $3C

LDA /BUFFER1

STA $3D

LDA #BUFFER1.END END ADDRESS OF SOURCE

STA $3E

LDA /BUFFER1.END

STA $3F

LDA #BUFFER2 START ADDRESS OF DESTINATION

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 111 of 2550

Apple 11 Computer Info

STA $42

LDA /BUFFER2
STA $43

JSR $FE2C

Because it is there, the Monitor MOVE subroutine is handy. But it is
not a general subroutine. |If the source and destination blocks
overlap, you may get funny results. For example, if 1 try to move the
data between $1000 and $10FF up one byte in memory, so that it runs
from $1001 to $1100, the MOVE subroutine will not work. Instead, it
will copy the contents of $1000 into every location from $1001 through
$1100.

The MOVE subroutine is also not very fast. Anyway, it is not as fast
as it could be. Steve Wozniak evidently wrote with size in mind (to
make it fit in ROM) rather than speed.

The Applesoft ROMs contain several subroutines for moving data around
in memory. Here is one used during execution to move the array table
up to make room for a new simple variable:

<<<<listing of BLTU, $D393...D3D5>>>>

Since this code moves from the end of the block backwards, it will
safely move a block up in memory. However, it would not be save to
use with an overlapping range down in memory; it will do the same
thing as the Monitor MOVE subroutine.

The Applesoft subroutine is faster than the Monitor subroutine,
because the least significant half of the pointer is kept in the Y-
register instead of in page-zero of memory. The INY instruction takes
only two cycles, whereas an INC instruction takes five. The three
cycles saved in moving each byte add up to nearly 25 milliseconds in
moving 8K bytes. The extra overhead of setting up the pointers is
more than paid for.

Additional time is saved in the termination test. Instead of testing
after moving every byte with a LDA, CMP, LDA, SBC sequence, the number
of full 256-byte blocks to be moved is put in the X-register; only a
DEX instruction once out of every 256 bytes is needed. This saves
over 100 millisecondes in moving an 8K block. By putting the
incrementing and testing code in line, rather than in a subroutine
like NXTA4, we save the JSR and RTS time. This amounts to another 100
milliseconds in moving an 8K block.

A General Move Subroutine: Can we write a subroutine which will move
a block of data from one place to anothere regardless of overlap and
direction? OFf course! All we have to do is test at the beginning for
direction, and choose which method to use accordingly.

Here is a fast subroutine which will move any block of memory anywhere
you want. You call it by putting the starting address of the source
block in AlL,Al1H; the end address of the source in A2L,A2H; and the

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 112 of 2550

Apple 11 Computer Info

start address of the destination in A4L,A4H. (This is the same way
you set up the MOnitor MOVE subroutine.) 1 wrote it to be used with
the control-Y monitor command.

<<<<listing of general move subroutine>>>>

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 113 of 2550

Apple 11 Computer Info

1000
1010 * &GOSUB <EXPRESSION>

1020 Fommmm e

1030 TKN.GOSUB .EQ $BO

1040 Fommmm e

1050 AS.SYNCHR .EQ $DECO

1060 AS.MEMCHK .EQ $D3D6

1070 AS.TXTPTR .EQ $B8,B9

1080 AS.LINNUM .EQ $50,51

1090 AS.FRMNUM .EQ $DD67

1100 AS.GOTO1 EQ $D941

1110 AS.NEWSTT .EQ $D7D2

1120 AS.GETADR .EQ $E752

1130 Fommmm e

1140 _.OR $300

1150 VARIABLE.GOSUB

1160 LDA #TKN.GOSUB CHECK IF &GOSUB
1170 JSR AS.SYNCHR

1180 LDA #3 CHECK IF ROOM ON STACK
1190 JSR AS.MEMCHK

1200 LDA AS.TXTPTR+1

1210 PHA STACK TXTPTR

1220 LDA AS.TXTPTR

1230 PHA

1240 LDA AS.LINNUM+1

1250 PHA STACK CURRENT LINE NO.
1260 LDA AS.LINNUM

1270 PHA

1280 LDA #TKN.GOSUB MARK STACK

1290 PHA

1300 JSR AS.FRMNUM EVALUATE FORMULA
1310 JSR AS.GETADR CONVERT TO INTEGER
1320 JSR AS.GOTO1 USE GOTO CODE

1330 IMP AS.NEWSTT

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 114 of 2550

Apple 11 Computer Info

1000 *—-omm e

1010 * BLTU -- FROM THE APPLESOFT ROM

1020 * $D393 THROUGH $D3D5

1030 *--mmm e

1040 * ON ENTRY:

1050 * Y,A AND HIGHDS CONTAIN DESTINATION END + 1
1060 * LOWTR CONTAINS LOWEST ADDRESS OF SOURCE

1070 * HIGHTR CONTAINS HIGHEST SOURCE ADDRESS + 1
1080 *—-ommmmmm e

1090 * PAGE-ZERO VARIABLE NAMES FROM "THE APPLE ORCHARD"

1100 * VOL. 1, NO. 1, PAGES 12-18.

1110 STREND .EQ $6D,6E TOP OF ARRAY STORAGE

1120 HIGHDS .EQ $94,95 BLTU"S DESTINATION POINTER
1130 HIGHTR .EQ $96,97 BLTU"S SOURCE END POINTER
1140 LOWTR .EQ $9B,9C BLTU®S SOURCE START POINTER

1160 REASON .EQ $D3E3 CHECK IF ENOUGH MEMORY

1170 F oo oo

1180 BLTU JSR REASON BE SURE (Y,A) < FRETOP

1190 STA STREND NEW TOP OF ARRAY STORAGE

1200 STY STREND+1

1210 SEC COMPUTE # OF BYTES TO BE MOVED
1220 LDA HIGHTR

1230 SBC LOWTR

1240 STA $5E SAVE PARTIAL PAGE AMOUNT

1250 TAY ALSO IN Y

1260 LDA HIGHTR+1

1270 SBC LOWTR+1

1280 TAX NUMBER OF WHOLE PAGES IN X
1290 INX

1300 TYA # BYTES IN PARTIAL PAGE

1310 BEQ .4 NO PARTIAL PAGE

1320 LDA HIGHTR BACK UP HIGHTR BY PARTIAL PAGE #
1330 SEC

1340 SBC $5E

1350 STA HIGHTR

1360 BCS .1

1370 DEC HIGHTR+1

1380 SEC

1390 .1 LDA HIGHDS BACK UP HIGHDS BY PARTIAL PAGE #
1400 SBC $5E

1410 STA HIGHDS

1420 BCS .3

1430 DEC HIGHDS+1

1440 BCC .3 .. _ALWAYS

1450 .2 LDA (HIGHTR),Y

1460 STA (HIGHDS),Y

1470 .3 DEY

1480 BNE .2 LOOP TO END OF THIS 256 BYTES

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 115 of 2550

Apple 11 Computer Info

1490 LDA (HIGHTR),Y MOVE ONE MORE BYTE

1500 STA (HIGHDS),Y

1510 .4 DEC HIGHTR+1 DOWN TO NEXT BLOCK OF 256
1520 DEC HIGHDS+1

1530 DEX PAGE COUNT

1540 BNE .3

1550 RTS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 116 of 2550

Apple 11 Computer Info

WRITTEN BY MIKE LAUMER
DECEMBER 6, 1980

.OR $0800

.TF B.EDIT2

MON.COUT .EQ $FDED
MON_BELL .EQ $FF3A
MON_RDKEY .EQ $FDOC
MON.CLREOP .EQ $FC42
MON_.VTAB .EQ $FC22
CH _EQ $24

cV _EQ $25
DOS.REENTRY .EQ $03DO

* ASSEMBLER EQUATES

GNL EQ $1026
NML EQ $1063
PLNO EQ $1779
GNB EQ $12C5

DOIT .EQ $1874
SEARCH .EQ $164B
SERTXT .EQ $14F6
SERNXT .EQ $14FE
NTKN .EQ $12AF
AOL _EQ $3A,3B
A1L _EQ $3C,3D
SRCP _EQ $DD,DE
WBUF .EQ $0200

* ENTRY POINT FOR BRUN. ACTIVATES
* THE USR ASSEMBLER COMMAND.
ENTRY LDA #EDIT
STA $1007 PATCH ASM USR COMMAND
LDA /EDIT
STA $1008
LDA #$60 PATCH NML TO MAKE IT
STA $1125 A SUBROUTINE
LDA #3$4C
STA NML
STA $1078

EDIT COMMAND FOR S-C ASSEMBLER Il VERSION 4.0

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 117 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

LDA #NEW._NML

STA NML+1

LDA /NEW.NML

STA NML+2

JMP DOS.REENTRY

* PATCH ROUTINES FOR ASSEMBLER

NEW.NML JSR MY .NML

JMP GNL
MY_NML LDY #O
JSR $128D
JSR $114A
JMP $1066

JSR .3
LDX #A1L
JSR SERNXT
LDA $E6
STA END
LDA $E7
STA END+1
-1 LDA NEXT+1
STA SRCP+1

LDA NEXT
STA SRCP
CMP END

SBC END+1
BCS .2
JSR E.LIST
JMP .1

.3 LDX #AOL
JSR SERTXT
LDA $E4
STA SRCP
STA NEXT
LDA $E5
STA SRCP+1
STA NEXT+1

NO ARGUMENTS
1 ARGUMENT

2 ARGUMENTS
FIND END PTR

PAST END LINE?
YES, EXIT

NO, LIST AND EDIT
TRY FOR NEXT LINE
FIND START PTR

SAVE NEXT LINE ADRS

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 118 of 2550

Apple 11 Computer Info

2030 .4 JSR .3 SEARCH FOR LINE

2040 BCC .2 NOT FOUND EXIT

2050 E.LIST JSR E.POSN POSITION FOR EDIT
2060 JSR MON.CLREOP PREPARE DISPLAY
2070 JSR GNB GET LINE SIZE

2080 CLC

2090 ADC NEXT COMPUTE NEXT LINE ADRS
2100 STA NEXT

2110 TYA

2120 ADC NEXT+1

2130 STA NEXT+1

2140 JSR GNB GET LINE NUMBER FOR DISPLAY
2150 STA CURRENT.LINE.NUMBER

2160 JSR GNB

2170 STA CURRENT.LINE.NUMBER+1

2180 SEC

2190 ROR $F8 STUFF WBUF FLAG

2200 JSR PLNO

2210 LSR $F8 TURN OFF FLAG

2220 LDA #$20 SPACE AFTER LINE #
2230 LDX #0O

2240 .1 STX EDPTR

2250 ORA #$80 FORCE VIDEO BIT

2260 STA WBUF+4,X STORE INTO INPUT BUFFER
2270 CMP #$A0 TEST FOR CONTROL CHAR
2280 BCS .2 OK, IF NOT

2290 AND #$7F OUTPUT INVERSE ALPHA
2300 .2 JSR MON.COUT PRINT CHAR

2310 JSR NTKN GET NEXT TOKEN

2320 LDX EDPTR

2330 INX

2340 CMP #0 END TOKEN?

2350 BNE .1 NO, PRINT IT

2360 STA WBUF+4,X YES, PUT IT IN TOO
2370 E.LINE LDX #O

2380 E.O STX EDPTR

2390 E.1 JSR E.INPUT GET INPUT CHAR

2400 E.2 LDA #EDTB

2410 STA $2

2420 LDA /EDTB

2430 STA $3

2440 LDA #CHAR

2450 STA $12

2460 LDA /CHAR

2470 STA $13

2480 JSR SEARCH SEARCH EDIT COMMAND TABLE
2490 BNE .2 NOT IN TABLE

2500 LDX EDPTR

2510 JSR DOIT EXECUTE COMMAND ROUTINE
2520 BCC E.O NO DISPLAY ON RETURN
2530 BCS .5 DISPLAY ON RETURN
2540 .2 LDX EDPTR MUST BE TYPE OVER
2550 LDA CHAR

2560 CMP #$A0

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 119 of 2550

2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100

Apple 11 Computer Info

-4

MON.BELL ERR IF CONTROL KEY

E.1

WBUF+5,X SEE IF END OF LINE

.6 TYPE OVER IF NOT

WBUF+6,X SHIFT OVER END OF LINE

CHAR STUFF CHAR INTO BUFFER

WBUF+5, X

#256-5-2 TEST BUFFER SIZE

-5 TYPE OVER LAST CHAR IN BUFFER
INSTEAD OF BUFFER END

E.DISP DISPLAY LINE

E.O GET NEXT EDIT COMMAND
#19 POSITION TO LINE 19,
Ccv

#0 COLUMN O

CH

MON.VTAB

EDPTR

E.POSN POSITION DISPLAY

#$FF

WBUF, X GET BUFFER CHAR

.3 END OF BUFFER

#$A0 CONTROL CHAR?

.2 NO

#S7TF PRINT INVERSE ALPHA
MON.COUT PRINT CHAR

-1 NEXT CHAR

MON.CLREOP CLEAN ANY REMAINING SCREEN
EDPTR

WBUF+5,X IS THIS THEN END OF
.2

WBUF+5,X SHIFT TO LOWER MEMORY
WBUF+4,X TO DELETE CHAR

RETURN WITH DISPLAY

WBUF+5,X END OF BUFFER?

-1 YES
NO

E.END TRY END AGAIN
RETURN NO DISPLAY

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 120 of 2550

3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640

Apple 11 Computer Info

WBUF+5,X END OF BUFFER?
.2 NO
FKEY YES SO ERR
MON.BELL RING BELL
RETURN NO DISPLAY

E.INPUT GET 1 CHAR

FKEY SAVE KEY TO LOCATE
WBUF+5,X TEST BUFFER

-1 END OF BUFFER

FKEY NO, SEE IF KEY

.3 NO, GO FORWARD
E.INPUT TRY ANOTHER KEY
FKEY SAME CHAR?

.3 YES, SEARCH AGAIN

EDPTR NO, EXIT POINTING HERE

AT BEGINNING?

-1 YES, STAY THERE
BACKUP
RETURN NO DISPLAY

E.INPUT READ CHAR
E.INS1 SKIP CONTROL CHECK

E.INS2

E.INPUT READ CHAR

#$A0 CONTROL CHAR POPS USER OUT
E.INS2 OF INSERT

#256-5-2 END OF BLOCK

-1 YES STAY THERE

EDPTR
CHAR TO INSERT
WBUF+4,X SAVE CHAR TO MOVE

GET CHAR TO INSERT
WBUF+4,X PUT OVER SAVED CHAR

INSERT SAVED CHAR
.2 IF NOT BUFFER END
WBUF+4 ,X STUFF END CODE
WBUF+256-5-1 INSURE A END CODE
EDPTR
E.DISP DISPLAY LINE
E.INS GET NEXT INSERT CHAR
SEND CHAR TO
COMMAND SEARCH

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 121 of 2550

3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180

E.RETQ LDA #0
STA WBUF+5,X
JSR E.DISP
E.RET LDX #$FF

LDA WBUF,X

BCS .1
LDA WBUF+5, X
BEQ .1

CPX #7
BEQ .1
CPX #11
BNE E.TAB

E.RIT LDA WBUF+5,X
BNE .1
STA WBUF+6,X
LDA #$A0
STA WBUF+5,X
CPX #256-5-2

BEQ .2
1 INX
2 CLC
RTS
E.ABORT LDA #$DC
STA WBUF+5
LDA #0
STA WBUF+6
JSR E.DISP
JMP GNL
E.INPUT LDA #19
STA CV
TXA
CLC
ADC #5
21 CMP #40
BCC .2
SEC

Apple 11 Computer Info

CLEAR REST OF LINE

DISPLAY LINE
SUBMIT LINE TO ASSEMBLER
COMPUTE LINE SIZE

SAVE SIZE

SUBMIT THE LINE

< COL 207?

NO

END OF BUFFER?
YES

MOVE FORWARD
TAB MATCH?

TAB MATCH?

RETURN WITHOUT DISPLAY

END OF BUFFER
NO

PUT A BLANK
TO EXTEND LINE

MOVE AHEAD
RETURN NO DISPLAY

OUTPUT BACKSLASH

SHOW CANCEL
GET NEXT COMMAND

POSITION TO CURSOR

THIS LINE?
YES

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 122 of 2550

Apple 11 Computer Info

4190 SBC #40

4200 INC CV ON NEXT LINE
4210 BNE .1

4220 .2 STA CH

4230 JSR MON.VTAB SET BASL

4240 JSR MON.RDKEY INPUT A CHAR
4250 STA CHAR

4260 RTS

4270 Fommmm e -
4280 * COMMAND TABLE

4290 Fommmmm -
4300 EDTB DA #3,#1 ITEM SIZE, KEY SIZE

4310 .DA #$82,E.BEG-1 "B
4320 .DA #$84,E_DEL-1 7D
4330 .DA #$85,E_END-1 ~E
4340 .DA #$86,E_FIND-1 ~F
4350 .DA #$88,E.BKSP-1 ~H
4360 .DA #$89,E_INS-1 /I
4370 .DA #$8D,E.RET-1 ~M
4380 .DA #$8F,E.OVR-1 7O
4390 .DA #$91,E_RETQ-1 ~Q
4400 .DA #$94,E.TAB-1 AT
4410 DA #$95,E.RIT-1 AU
4420 .DA #$98,E_ABORT-1 ~X
4430 DA #0

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 123 of 2550

Apple 11 Computer Info

1010

1010 * GENERAL MOVE SUBROUTINE

1020 Fom oo

1030 * BRUN THE PROGRAM TO SET UP AS CONTROL-Y
1040 * MONITOR ROUTINE

1050 Fom oo

1060 * USE LIKE MONITOR MOVE SUBROUTINE:
1070 * A1L,AlH -- SOURCE START ADDRESS
1080 * A2L,A2H -- SOURCE END ADDRESS

1090 * A4L,A4H -- DESTINATION START ADDRESS
1100 F oo

1110 BLOCK.SIZE .EQ $00,01

1120 AlL _EQ $3C

1130 A1lH _EQ $3D

1140 A2L _EQ $3E

1150 A2H _EQ $3F

1160 A4L _EQ $42

1170 A4H _EQ $43

1180 CONTROL.Y .EQ $3F8

1190 F oo oo

1200 CONTROL.Y.SETUP

1210 LDA #$4C JMP OPCODE

1220 STA CONTROL.Y

1230 LDA #GENERAL .MOVE

1240 STA CONTROL.Y+1

1250 LDA /GENERAL .MOVE

1260 STA CONTROL.Y+2

1270 RTS

1280 Fom oo e

1290 GENERAL.MOVE

1300 PHA SAVE REGISTERS

1310 TYA

1320 PHA

1330 TXA

1340 PHA

1350 INC A2L BUMP END ADDRESS ONCE
1360 BNE .1

1370 INC A2H

1380 .1 SEC COMPUTE SIZE OF BLOCK
1390 LDA A2L

1400 SBC AlL

1410 STA BLOCK.SIZE

1420 LDA A2H

1430 SBC A1H

1440 STA BLOCK.SIZE+1

1450 TAX

1460 INX NUMBER OF BLOCKS TO MOVE
1470 LDA AlL DETERMINE DIRECTION
1480 CMP A4L

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 124 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

Apple 11 Computer Info

LDA AlH

SBC A4H

BCC .2 Al < A4
JSR MOVE.DOWN

JMP .3

JSR MOVE.UP

PLA RESTORE REGS
TAX

PLA

TAY

PLA

RTS

MOVE . DOWN

LDY #0

DEX ANY WHOLE BLOCKS LEFT?
BEQ .2 NO

LDA (AlL),Y MOVE 256 BYTES

STA (A4L),Y

INY

BNE .1

INC AlH POINT AT NEXT BLOCK
INC A4H

DEX ANY MORE WHOLE BLOCKS?
BNE .1 YES

LDX BLOCK.SIZE ANY EXTRA BYTES IN A SHORT BLOCK?
BEQ .4 NONE LEFT

LDA (AlL),Y

STA (A4L),Y

INY

DEX

BNE .3

RTS

MOVE . UP

CLC COMPUTE DESTINATION END + 1
LDA A4L

ADC BLOCK.SIZE

STA A4L

LDA A4H

ADC BLOCK.SIZE+1

STA A4H

LDY #O

BEQ .3 - - -ALWAYS

*___MOVE A WHOLE BLOCK————m———ceem

-1

.2

LDA (A2L),Y MOVE BYTES 255 THRU 1 IN BLOCK
STA (A4L),Y

DEY

BNE .1

LDA (A2L),Y MOVE LOWEST BYTE IN BLOCK

STA (A4L),Y

DEC A2H

DEC A4H

DEX ANY MORE BLOCKS?

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof

Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 125 of 2550

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120

BNE .2 YES
*___MOVE SHORT BLOCK IF ANY----—-—-—-
LDX BLOCK.SIZE
BEQ .5 NONE LEFT
.4 DEY
LDA (A2L),Y
STA (A4L),Y
DEX
BNE .4
.5 RTS

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 126 of 2550

Apple 11 Computer Info

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 127 of 2550

Apple 11 Computer Info

Making Noise and Other Sounds

The Apple®s built-in speaker is one of its most delightful features.
To be sure, it is very limited; but I have used i1t for everything from
sound effects iIn games to music in six parts (weird-sounding guitar
chords) and even speech. Too many ways to put all in one AAL article!
I will describe some of the sound effects 1 have used, and maybe you
can go on from there.

The speaker hardware is very simple. A flip-flop controls the current
through the speaker coil. Everytime you address $C030, the flip-flop
changes state. This in turn reverses the current through the speaker
coil. If the speaker cone was pulled in, it pops out; if it was out,
it pulls Iin. IFf we "toggle"” the state at just the right rate, we can
make a square-wave sound. By changing the time between reversals
dynamically, we can make very complex sounds. We have no control over
the amplitude of the speaker motions, only the frequency.

Simple Tone: This program generates a tone burst of 128 cycles (or
256 half-cycles, or 256 pulses), with each half-cycle being 1288 Apple
clocks. Just to make it easy, let"s call Apple®s clock 1MHz. It is
really a little faster, but that will be close enough. So the tone
will be about 388 Hertz (cycles per second, if you are as old as mel).

How did 1 figure out those numbers? To get the time for a half-cycle
(which I am going to start calling a pulse), | added up the Apple 6502
cycles for each instruction in the loop. LDA SPEAKER takes 4 cycles.
DEX is 2 cycles, and BNE is 3 cycles when it branches. The DEX-BNE
pair will be executed 256 times for each pulse, but the last time BNE
does not branch; BNE only takes 2 cycles when it does not branch. The
DEY-BNE pair will branch during each pulse, so we use 5 cycles there.
So the total i1s 4+256*5-1+5=1288 cycles. |1 got the frequency by the
formula f=1/T; T is the time for a whole cycle, or 2576 microseconds.

Apple "Bell"™ Subroutine: Inside your monitor ROM there is a
subroutine at $FBE2 which uses the speaker to make a bell-like sound.
Here is a copy of that code. Notice that the pulse width is
controlled by calling another monitor subroutine, WAIT.

Machine-Gun Noise: What if we use a random pulse width? Then we get
something called noise, instead of a tone. We can create a burst of
pulses of random-sounding width by using values from some arbitrary
place in the Apple®s memory as loop counts. The program uses the 256
values starting at $BA00 (which is inside DOS). |If you make just one
burst like that, it doesn®"t sound like much. But if you make ten in a
row, you get a pattern of repetitious random noise bursts that in this
case sounds like machine-gun fire. Doesn"t it? Well, close

enough. ...

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 128 of 2550

Apple 11 Computer Info

Laser "SWOOP'"™ Sound: We can change the pulse width by making it go
from wide to narrow in steps of 5 microseconds. It sounds like a low
tone that gradually slides higher and higher until it is beyond the
range of the human ear (or the Apple speaker). 1 used this program in
a "'space war'" game to go with the laser fire. Even though the sound
was entirely generated before the laser even appeared on the screen,
it looks and sounds like the light beam and sound are simultaneous.

I have indicated in line 1110 that you should try experimenting with
some other values for the maximum pulse width count. 1 have included
a separate entry point at SWOOP2 to make ten swoops in a row. Try the
various values for the maximum width and run each one from SWOOP2.

You might also experiment with running the pulse width in the opposite
direction (from narrow to wide) by changing line 1200 to INC
PULSE._WIDTH.

Another Laser Blast: This one sounds very much the same as the swoop
of the previous program, but it uses less memory. You should try
experimenting with the pulse widths of the first and last pulses in
lines 1060 and 1130. You could also try changing the direction by
substituting a DEX in line 1120.

Inch-Worm Sounds: | stumbled onto this one by accident, while looking
for some sound effects for a lo-res graphics demo. The demo shows
what is supposed to be an inch-worm, inching itself across the screen.
By plugging various values (as indicated in lines 1100 and 1130), 1
got some sounds that synchronized beautifully with the animation.
Complete with an exhausted sigh at the end!

Touch-Tones Simulator: 1 used this one with a telephone demo program.
The screen shows a touch tone pad. As you press digits on the
keyboard, the corresponding button on the screen lights up (displays
in inverse mode). Then the demo program CALLs this machine language
code to produce the twin-tone sound that your telephone makes. It
isn"t perfect, you can"t fool the Bell System. But i1t makes a good
demo!

I will describe the program from the top down. The four variables in

page zero are kept in a "'safe' area, inside Applesoft®s floating point
accumulator. Applesoft doesn®t use these locations while executing a

CALLed machine language routine.

The Applesoft demo program stores the button number (0-9) in location
$E7. This could be done with "POKE 231,DGT", but I had more fun using
"SCALE=DGT"™. SCALE= is a hi-res graphics command, but all it really
does is store the value as a one-byte integer in $E7. Since we aren"t
using hi-res graphics, the location is perfectly safe to use.

CALL 768 gets us to line 1150, TWO.TONES. This is the main routine.
It uses the button number to select the two tone numbers from
LOW_.TONES and HIGH.TONES. ONE.TONE is called to play first the low
tone, then the high tone, back and forth, for ten times each. This is
my attempt to fool the ear, to make it sound like both are being
played at once.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 129 of 2550

Apple 11 Computer Info

ONE.TONE wiggles the speaker for LENGTH half-cycles. Each half-cycle
is controlled by either the UPTIME or DOWNTIME counts. These three
parameters are selected from three tables, according to the tone
number selected by TWO.TONES. Lines 1270-1340 pick up the values from
the three tables and load the page zero variables. Lines 1360-1500 do
the actual speaker motions and time everything. The purpose of having
two routines, one for uptime and one for downtime, is to be able to
more closely approximate the frequency. For example, if the loop
count we ought to use is 104.5, we could use an uptime of 104 and a
down time of 105; this makes the total time for the full cycle
correct. The redundant BEQ in line 1420 is there to make the loop
times for UPTIME and DOWNTIME exactly the same.

Since you do not have my Applesoft program, which drives this, | wrote
a simulated drive to just "push'™ the buttons 0-9. Lines 1650-1790 do
this. | separated each button push by a call to the monitor WAIT

subroutine, to make them easier to distinguish.

Morse Code Output: 1 have always thought that computers really only
need one output line and one input line for communicating with humans.
I could talk to my Apple with a code key, and it could beep back at
me. One of the first programs 1 attempted in 6502 language was a
routine to echo characters in Morse code. 1 looked it up about two
hours ago, and shuddered at my sloppy, inefficient, hard to follow
code. So, | wrote a new one.

I broke the problem down into three littler ones: 1) getting the
characters which are to be output; 2) converting the ASCII codes to
the right number of dots and dashes; and 3) making tones and spaces of
the right length.

SETUP._MORSE (lines 1190-1240) links my output routine through the
monitor output vector. Line 1240 JMPs to $3EA to re-hook DOS after
me .

MORSE (lines 1260-1310) are an output filter. |If the character code
is less than $BO, | don"t know how to send it in Morse code;
therefore, | just go to $FDFO to finish the output on the screen.
Codes exist for these other characters, but I did not look them up.
IT you want a complete routine, you should modify line 1260 to CMP
#$A0 and add the extra codes to the code table (lines 1130-1170).

SEND.CHAR looks up the Morse code for the character in the code table,
and splits it into the number of code elements (low-order three bits)
and the code elements themselves (high-order five bits). |If a code
element is zero, a short beep (dot) is sounded. |If an element is one,
three calls to the short beep routine make one long beep (dash).
Between elements, a silence equal to the length of a short beep
intervenes. After the last beep of a character, a longer silence,
equal to three short silences, is produced. A 00 code from the code
table makes a silent gap of three times the inter-character gap.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 130 of 2550

Apple 11 Computer Info

EL.SPACE and EL.DIT are nearly identical. The only difference is that
EL.DIT makes a sound by addressing the speaker, while EL.SPACE does
not. The value of EL.PITCH determines the pulse width, and EL.SPEED
determines the number of pulses for an inter-element-space or a short
beep. 1T the code stream is too fast for you, you can slow it down by
increasing either or both of these two numbers.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 131 of 2550

Apple 11 Computer Info

A String Swapper fTor Applesoft

Practically every program rearranges data in some way. Many times you
must sort alphanumeric data, and Applesoft makes this relatively easy.
At the heart of most sort algorithms you will have to swap two items.

IT the 1tems are numbers, you might do it like this: T=A(l) :
A(1)=A@J) : A(I)=T. ITf the items are in string variables, you might
use this: T$=A$(1) : AS(1)=A3$I) : A$I)=T.

Before long, Applesoft®s wonderful string processor eats up all
available memory and your program screeches to a halt with no warning.
You think your computer died. Just about the time you reach for the
power switch, it comes to life again (if you aren®"t too impatient!);
the garbage collection procedure has found enough memory to continue
processing. |If only Applesoft had a command to swap the pointers of
two strings, this wouldn®t happen.

What are pointers? Look on page 137 of your Applesoft Reference
Manual. The third column shows how string variables are stored in
memory. Each string, whether a simple variable or an element of an
array, is represented by three bytes: the first byte tells how many
bytes are in the string value at this time; the other two bytes are
the address of the first byte of the string value. The actual string
value may be anywhere in memory. 1 am calling the three bytes which
define a string a "'pointer'.

All right, how can we add a string swap command? The authors of
Applesoft thoughtfully provided us with the "&" command; it allows us
to add as many new commands to the language as we want. (Last month 1
showed you how to add a computed GOSUB command using the &.) We could
make up our own swap command; perhaps something like &SWAP A$(l) WITH
A$(J). However, to keep it a little simpler, | wrote it this way:
&AS(1),A$(d).

The program is In two sections. The first part, called SETUP, simply
sets up the &-vector at $3F5, $3F6, and $3F7. It stores a "JMP SWAP"
instruction there. When Applesoft finds an ampersand (&) during
execution, it will jump to $3F5; our JMP SWAP will start up the second
section.

SWAP calls on two routines inside the Applesoft ROMs: PTRGET ($DFE3)
and SCAN.COMMA ($DEBE). I found the addresses for these routines in
the article "Applesoft Internal Entry Points'™, by John Crossley, pages
12-18 of the March/April 1980 issue of The Apple Orchard. 1 also have
disassembled and commented the Applesoft ROMs, so I checked to see if
there were any bad side effects. Both routines assume that Applesoft
is about to read the next character of your program. PTRGET assumes

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 132 of 2550

Apple 11 Computer Info

you are sitting on the first character of a variable name. SCAN.COMMA
hopes you are sitting on a comma.

SWAP merely calls PTRGET to get the address of the pointer for the
first variable, check for an intervening comma, and then calls PTRGET
again to get the pointer address for the second variable. Then lines
1350-1430 exchange the three bytes for the two pointers.

How about a demonstration? 1 have a list of 20 names (all are
subscribers to the Apple Assembly Line), and 1 want to sort them into
alphabetical order. Since I am just writing this to demonstrate using
the swap command, | will use one of the WORST sort algorithms: the
bubble sort.

Line 100 clears the screen and prints a title line. Line 110 loads
the swap program and calls SETUP at 768 ($0300). Line 120 reads in
the 20 names from the DATA statement in line 130, and calls a
subroutine at line 200 to print the names in a column.

Lines 150-170 are the bubble sort algorithm. |If two names are out of
order, they are swapped at the end of line 160. Line 180 prints the
sorted list of names iIn a second column.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 133 of 2550

Apple 11 Computer Info

Stuffing Object Code in Protected Places

Several users of Version 4.0 have asked for a way to defeat the
protection mechanism, so that they can store object code directly into
the language card. One customer has a EPROM burner which accepts code
at $D000. He wants to let the assembler write it out there directly,
even though he could use the _TA directive and later a monitor move
command. Or, he could use the .TF directive, and a BLOAD into his
EPROM.

For whatever reason, if you really want to do it, all you have to do
is type the following patch just before you assemble: $1A25:EA EA.
In case you want to put it back, or check before you patch, what
should be there is BO 28.

Bug Reports

1. Several readers have reported a problem with the COPY program in
the December issue. As written, if you try to copy a block of lines
to a point before the first line of the program, the block is inserted
between the first and second bytes of the first line. Ouch! To fix
it, insert lines 2221-2225 and change line 2250:

2221 LDA A2L
2222 CMP Al1L
2223 LDA AZ2H
2224 SBC AlH
2225 BCC .5
2250 .5 LDA SS MOVE IN SOURCE BLOCK

2. When I typed up Lee Meador®"s article for the January issue, |
inadvertently changed one address to a crazy value. The address $2746
in the 4th paragraph on page 9 should be $1246.

3. The Variable Cross Reference program for Applesoft from the
November issue leaves something behind after it has run. If you LIST
the Applesoft program after running VCR, the line number of the first
line will come out garbage. This only happens the first time you use
the LIST command. For some reason, typing CALL 1002 before the LIST
will fix it. 1 haven"t found out the cause or cure yet. |If you find
it first, let me know!

In This Issue...

Apple Noises and Other Sounds
Simple Tone o o o o o o < & 4 . .
Apple "Bell"™ Subroutine
Machine-Gun Noise - .

WWNN

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 134 of 2550

Apple 11 Computer Info

Laser "SWOOP"™ Sound o . o . . .
Another Laser Blast
Inch-Worm Sounds - o . . .
Touch-Tones Simulator _
Morse Code Output
Stuffing Object Code in Protected Places
Multiplying on the 6502
A String Swapper for Applesoft . . _ . . _

ArrroO~NOTOIA_W

P

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 135 of 2550

Apple 11 Computer Info

Buying a Printer for your Apple 1l.._. . _ Mike Laumer

I purchased my first printer in November just before Thanksgiving.
The process of selecting a printer can be confusing, painful, and very
expensive. Here is my tale.

After writing printer drivers for other people®s printers for
several years, | was not convinced that the IDS 225 or the Paper Tiger
were for me. They are fairly bulky, noisy, and the print quality was
not up to the quality 1 am used to every day at work. The Trendcom
100 was quieter, but only 40 columns wide. The Trendcom 200 and Apple
Silentype are 80 columns, but 40 columns per second is rather slow
when you want to print 60 pages. From my experience thermal paper
yellows and is hard to write on with ball point pens. The only thing
I really liked about these printers was the price. The AXIOM printer
(which prints on aluminum coated paper by blasting off the aluminum
with electrical sparks, exposing a black paper beneath) was faster,
but the weird paper looked expensive and did not come in fan-fold. |
did like the speed and price. Several new manufacturers began
advertising printers that looked good, but I could never watch them
operate at a computer store, and | heard negative comments about them.

Enter the Japanese! 1 was getting desperate for a printer, ready to
buy almost anything. 1 begain hearing rumors about the new EPSON MX-
80 printer: $650, reliable, 80 columns per second, bi-directional

printing, a possible graphics ROM add-on.... Sounded good, so I went
shopping.

[Store #1 1] I asked, ""Do you sell the MX-80 printer?"” They said,
"1t will be in next week, on Wednesday.” 1 came back Wednesday, and
saw the MX-80 working on an Apple 11. The print clarity was the best
I had seen on an inexpensive printer. It was comparable to the
Centronix 779, which was huge, very noisy, and twice the price. "How
much does it cost?"™ It was $130 more than advertised, but it included

interface and cables.

[Store #2] I went to another store, a new one I had never seen
before. They had a bunch of Atari home computers (cute, aren”t
they?). "Do you sell anything for the Apple 11? | see you don"t have
any Apples on the floor."” The salesman was busy with a customer and a
take-out lunch. I looked around, and noticed an MX-80 on a table.
After getting his attention (he was quite busy eating his sandwich,
and asking if 1 didn"t mind), | asked the salesman a few questions
about the printer and its price. "Only $499", he said. '"How come the
low price?"” "We don"t have a bunch of other printers to unload that
are clearly beat by the price-performance of the MX-80." The Apple
interface would run about $50, he thought. 1t looked like a good
deal, so I went home to discuss it with my wife.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 136 of 2550

Apple 11 Computer Info

[Store #2] HOW NOT TO SELL ANYTHING. ... My wife thought it
sounded good, too. | returned to the store a few days later. The
same salesman was there selling an Atari home computer (to me they are
just programmable video games). It was 15-20 minutes before he was
done, but the prospect of the low printer price gave me patience...l
waited. After the sale, he picked up his sandwich and let me ask some
more questions. That"s when 1 found out about the graphics ROM that
Epson plans to offer in the future. "We will be raising the price to
$599 next week, but it is still $499 this week. However, we are out
of stock right now. 1 can get you one by the middle of next week."
But I really wanted to get one for the holiday weekend, since 1 could
do a lot of computer work then. "No way. There just won"t be any
until next week. And, you will have to pay now to get the price."
This sales pitch was getting just a little suspicious..._but the price
still had me hooked. I was trying to justify buying now, paying now,
saving now, picking up later. Then he began saying how he was the
first Epson dealer in Dallas, and that the other stores had complained
to Epson about his price. He had to raise his price or Epson would
not let him sell their printer any more. "1 sold 23 printers already
this week'™, he bragged, as he hauled out a wad of checks from his
pocket to show me. "1 can®"t spend any more time with you now. My
profit margin is too low to justify more than five minutes.”™ (There
were no other customers in the store.) Well, he convinced me, all
right. "Fine!"™ 1 walked out the door, driving right over to....

[Store #1 1] Do you have the MX-80 in stock?" 1 asked. ™"Yes we
do", replied the cashier. ™1 would like to buy one"™, 1 stated. The
sales girl went into a back room, returning with a big box and a small
box. She took my charge card and rang up the sale. 1 went home and
had a great weekend.

Lesson for the Day:

1. After all the rip-off"s from the early days of the microcomputer
market, nobody gets my money in advance unless they have built a
reputation in the community. |1 never saw this store before, and they
wanted my money iIn advance after a strange sales push.

2. Anyone who displays customer checks so casually to other customers
gets an immediate black mark with me. 1 wouldn"t like mine to be
treated in such a cavalier manner.

3. 1 don"t like to spend my lunch hour talking to someone stuffing
his face while 1 am hungry.

4. 1T 1t isn"t profitable for the salesman to try to sell me his
printer, I really want to know. 1"1l go to someone who does believe
it to be profitable, and is a lot more courteous about selling it.

If my $600 has no profit for him, 1 am not going to pay in advance and
lose it when he goes bankrupt the next day, before 1 get my printer.

5. Don"t ever hire a turkey (even in late November!) who does a good
Jjob sending your customers to someone else"s store. Especially buying
customers.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 137 of 2550

Apple 11 Computer Info

The Future of Personal Computers... Mike Laumer

The days of 8-bit microcomputers are numbered. First 16-bit, and now
32-bit chips are creeping out of the laboratories. INTEL, Hewlett-
Packard, Tl, and Motorola are shrinking the supercomputers down to
1/4-inch square slivers of silicon.

Motorola®s 68000 microprocessor chip uses a 16-bit memory and
input/output bus, but internally it has a 32-bit architecture. Texas
Instruments has just announced the 99000, an upward-compatible
enhancement of the 9900. The 99000 has new instructions and the
fastest clock in the country...18 MHz!

The boys in the labs at Hewlett-Packard are spreading the word about
their new 32-bit design. It multiplies two 16-bit numbers in 1.6
microseconds, and divides a 32-bit number by a 16-bit one in 3.5
microseconds. That"s 12 times faster than the Tl 9900! They are also
working on a 528K bit ROM (equivalent to 64K bytes on one chip!) and a
128K RAM.

The INTEL 32-bit micro (iAPX 432) was designed together with the
operating system; it supports multiprocessing and multitasking from
the ground up. They claim to be abel to stack them in parallel to
boost system throughput and performance up to the level of an IBM
370/158. 1t also executes an instruction set which easily supports
ADA (a new programming language which is set to be the standard
language for the Defense Department). INTEL already had to expand the
ADA language to take advantage of the new architecture. The operating
system itself is also coded in the ADA language.

The home computers of the mid and late 1980"s will be very nice
indeed! And maybe we won"t even have to wait that long. Read this
little clipping from EETimes:

If this is true, it may mean that the Apple IV is less than a year
away!

Now in production are the INTEL 8086, Motorola 68000, and Tl 9900;
several more are on the way. The new micro"s will be 2 to 5 times
faster than the 8-bit processors, and be able to access up to 1000
times the memory.

The speed advantage of the 16-bit and 32-bit chips is not very large
it floating point numbers must still be processed with software
subroutines. Software floating point routines are about 1000 times
slower than large-scale computer hardware. But now INTEL and others
are bringing out hardware co-processor chips which implement the
floating-point math. They are 100 times faster than software
emulation.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 138 of 2550

Apple 11 Computer Info

The ability to address significantly more than 64K of memory space
brings on the need for memory management techniques. Some
manufacturers will offer memory mapping, memory protection, virtual
memory, and segmented memory. From the standpoint of an application
program, it is most useful to have directly accesible memory. Virtual
memory is the second choice. Memory protection and memory mapping are
necessary in a multi-tasking environment, or in a timesharing system.

Great new products are foreseen in memories, too. You know that the
Apple 11°s memory chips are 16K chips; it takes 8 of them to make 16K
bytes, and 32 to make 64K bytes. Well, there are now 64K memory
chips; i1t would only take 8 of them to get 64K bytes. Of course, the
Apple 11 would have to modified or redesigned to make use of them.
The Apple 111 is designed to accept them, I think.

Bubble memories are also available, with 1,000,000 bits per device.
These memories operate like little solid state disk drives, and their
best application would be as the "roll in/roll out" device for a
virtual memory system. They are faster than mechanical disk drives:
in the time it takes a moving arm disk to begin to read or write the
first byte of data, a bubble memory will have already transferred 4K
to 16K bytes of data. Bubble memory technology is still new, so they
have a high price. 1In 3 or 4 years they will be iInexpensive enough to
put into personal computers.

I can hardly wait to get my Ffirst Apple Umpteenth, with 32-bit
architecture, a 50 MHz clock, hardware floating point math (25-digit
precision), ten million bytes of bubble memory, one million bytes of
RAM, built-in peripherals including a printer, 4 disk drives, and a
CRT...and it will probably Ffit in my pocket!

<<<written circa 1980>>>

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 139 of 2550

Apple 11 Computer Info

Two Boots Are Better Than One.............. Bob Sander-Cederlof

If you have been trying to write programs for the whole Apple
community, or just for yourself and a few friends, then you have
probably run into the problem. Your friends or customers do not all
have the same kind of Apple! Some of them have the plain old Apple
11, and only have Integer BASIC. Others have the newer Apple 11 Plus,
and only have Applesoft BASIC in ROM. (OFf course, there are some who
have both BASICs, either in ROM or with the Pascal Language System.

The problem is that the boot program, or the so-called HELLO program,
must be in either Integer BASIC or Applesoft. It cannot be both at
once! So if you use an Applesoft version, the friend without
Applesoft gets the "LANGUAGE NOT AVAILABLE"™ message when he boots up
the disk. Or if you use an Integer BASIC boot program, the person
with an Apple Il Plus and no Integer BASIC gets the message.

There is an answer! | discovered it by reading the documentation that
comes with the Apple Writer Text Editing System. The key is to
remember that iIf the boot program is written in Applesoft, and if
furthermore there is no Applesoft in ROM in your machine, then DOS
tries to load and run an Integer BASIC file with the name APPLESOFT!
So, INIT your disk with an Applesoft boot program named HELLO; then
include on the disk also a similar boot program written in Integer
BASIC and store i1t on the disk under the file name "APPLESOFT™"!

When you boot this disk, DOS will try to boot the program named HELLO.
IT you have Applesoft on ROM, this will succeed, and you are up and
running. 1f you do not have Applesoft, DOS will attempt to load it
from the disk by RUNning the Integer BASIC file named Applesoft (which
is really your other boot program!!)_. Isn*"t the Apple wonderful?

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 140 of 2550

Apple 11 Computer Info

Multiplying on the 6502

Brooke Boering wrote an excellent article, "Multiplying on the 6502",
in MICRO--The 6502 Journal, December, 1980, pages 71-74. |If you are
wondering how to do it, or you want a faster routine for a special
application, look up that article.

Brooke begins by explaining and timing the multiply subroutine found
in the old Apple Monitor ROM. The time to multiply two 16-bit values
and get a 32-bit result varies from 935 to 1511 microseconds,
depending on how many "1" bits are in the multiplier. He proceeds to
modify that subroutine to cut the execution time by 40%!

Finally, he presents two limited versions which are still quite useful
in some applications. His 8x16 multiply averages only 383
microseconds, and his 8x8 version averages 192 microseconds.

Here i1s the code for his 16x16 version, which averages 726
microseconds. It has the same setup as the routine in the Apple ROM.
On entry, the multiplicand should be in AUXL,AUXH ($54,55); the
multiplier should be in ACL,ACH ($50,51); whatever is in XTNDL,XTNDH
($52,53) will be added to the product. Normally, XTNDL and XTNDH
should be cleared to zero before starting to multiply. However, 1
have used this routine to convert from decimal to binary; 1 put the
next digit in XTNDL and clear XTNDH, and then multiply the previous
result by ten. The "next digit" is automatically added to the product
that way. (1 have corrected the typographical error in the listing as
published in MICRO.)

<<<code here>>>

I wrote a test routine for the multiply, so that 1 could check it out.
After assembling the whole program, 1 typed "MGO SETUP.Y"™ to link the
control-Y Monitor Command to my test routine. Control-Y will parse
three 16-bit hexadecimal values this way: vall<val2._.val3cY stores
vall in $42,%$43; val2 in $3C,$3D; and val3 in $3E,$3F. ("'cY" stands
for control-Y.)

I define vall to be the initial value for XTNDL,XTNDH; this should
normally be zero. The two values to be multiplied are val2 and val3.
After TESTMPY receives control from the control-Y processor, it moves
the three values into the right locations for the multiply subroutine.
Then JSR RMUL calls the multiply routine. The following lines (1570-
1640) print the 32-bit result by calling a routine in the monitor ROM
which prints a byte in hex from the A-register.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 141 of 2550

Apple 11 Computer Info

.da:6:3'DEMO USE OF "STRING SWAP" ROUTINE"ZnUA$(20):A(4)""BLOAD
B.STRING.SWAP":8768xxA1-1j20:4A$(1):C:P-1:¥200
CEAMES,BURKE ,PUTNEY, LEE,LEVY,RAMSDELL ,B1SHOP ,RANDALL ,LANDSMAN, LEI
PER,OSLISLO,KOVACS,MEADOR,KRIEGSMAN ,MERCIER,WHITE,LEVY,BLACK,SCHORNAK,
STITT AEBUBBLE SORT" fiM—20a TM—M..1:SW—0:AI-1iM:tAS(I»1)—
AS(D) fSW=1:0A$(I1»1) ,A$(1) :£SWAPO mC:1SWf160 ¥P-20:¥200:A0
»¢3:A1-1j20:AP:AS(1):C:+

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 142 of 2550

Apple 11 Computer Info

1000 *—-omm e

1010 * APPLE "BELL"™ ROUTINE

1020 *--mmmm e

1030 -OR $FBE2 IN MONITOR ROM

1040 .TA $800

1050 *--ommmmmm e

1060 WAIT -EQ $FCA8 MONITOR DELAY ROUTINE

1070 SPEAKER .EQ $C030

1080 *—-ommmmmm e

1090 M.FBE2 LDY #192 # OF HALF-CYCLES

1100 BELL2 LDA #12 SET UP DELAY OF 500 MICROSECONDS
1110 JSR WAIT FOR A HALF CYCLE OF 1000 HERTZ
1120 LDA SPEAKER TOGGLE SPEAKER

1130 DEY COUNT THE HALF CYCLE

1140 BNE BELL2 NOT FINISHED

1150 RTS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 143 of 2550

1000 F oo oo
1010 * INCH-WORM SOUNDS

10
1030 SPEAKER _EQ $C030

1040 PULSE.WIDTH .EQ $00
1050 PULSE.STEP .EQ $01
1060 PULSE.LIMIT _EQ $02

Apple 11 Computer Info

1070 F o m o m e o
1080 INCH.WORM

1090 LDA #1 SET STEP TO 1

1100 * (ALSO TRY 77, 129, 179)

1110 STA PULSE.STEP

1120 LDA #176 SET PULSE.WIDTH AND LIMIT TO 176
1130 * (ALSO TRY 88)

1140 STA PULSE.WIDTH

1150 STA PULSE.LIMIT

1160 .1 LDA SPEAKER TOGGLE SPEAKER

1170 LDX PULSE.WIDTH DELAY LOOP FOR PULSE WIDTH
1180 .2 PHA LONGER DELAY LOOP

1190 PLA

1200 DEX END OF PULSE?

1210 BNE .2 NO

1220 CLC CHANGE PULSE WIDTH BY STEP
1230 LDA PULSE_WIDTH

1240 ADC PULSE.STEP

1250 STA PULSE.WIDTH

1260 CMP PULSE.LIMIT UNTIL IT REACHES THE LIMIT
1270 BNE .1

1280 RTS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 144 of 2550

Apple 11 Computer Info

1000 *—-omm e

1010 * ANOTHER LASER BLAST

1020 *--mmmm e

1030 SPEAKER .EQ $C030

1040 *—-mmm e

1050 BLAST LDY #10 NUMBER OF SHOTS

1060 .1 LDX #64 PULSE WIDTH OF FIRST PULSE
1070 .2 TXA START A PULSE WITHIN A SHOT
1090 .3 DEX DELAY FOR ONE PULSE

1100 BNE .3

1105 TAX

1110 LDA SPEAKER TOGGLE SPEAKER

1120 INX

1130 CPX #192 PULSE WIDTH OF LAST PULSE
1140 BNE .2

1150 DEY FINISHED SHOOTING?

1160 BNE .1 NO

1170 RTS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 145 of 2550

Apple 11 Computer Info

1000 F oo oo
1010 * LASER ''SWOOP™ SOUND

07
1030 SPEAKER _EQ $C030

1040 PULSE.COUNT .EQ $00
1050 PULSE.WIDTH .EQ $01
1060 SWOOP.COUNT .EQ $02

1070 * e

1080 SWOOP LDA #1 ONE PULSE AT EACH WIDTH
1090 STA PULSE.COUNT

1100 LDA #160 START WITH MAXIMUM WIDTH
1110 * (ALSO TRY VALUES OF 40, 80, 128, AND 160.)
1120 STA PULSE.WIDTH

1130 .1 LDY PULSE.COUNT

1140 .2 LDA SPEAKER TOGGLE SPEAKER

1150 LDX PULSE.WIDTH

1160 .3 DEX DELAY LOOP FOR ONE PULSE
1170 BNE .3

1180 DEY LOOP FOR NUMBER OF PULSES
1190 BNE .2 AT EACH PULSE WIDTH

1200 DEC PULSE.WIDTH SHRINK PULSE WIDTH
1210 BNE .1 TO LIMIT OF ZERO

1220 RTS

1230 *-memm e

1240 * MULT I -SWOOPER

1250 *--eemmmmmme -

1260 SWOOP2 LDA #10 NUMBER OF SWOOPS

1270 STA SWOOP.COUNT

1280 .1 JSR SWOOP

1290 DEC SWOOP.COUNT

1300 BNE .1

1310 RTS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 146 of 2550

Apple 11 Computer Info

1000 F oo oo
1010 * MACHINE-GUN NOISE

1020 Fo oo o

1030 SPEAKER _EQ $C030

1040 CNTR _EQ $00

1050 F oo e o e

1060 NOISE LDX #64 LENGTH OF NOISE BURST

1070 F oo oo

1080 LDA #10 NUMBER OF NOISE BURSTS

1090 STA CNTR

1100 .2 LDA SPEAKER TOGGLE SPEAKER

1110 LDY $BA0O,X GET PULSE WIDTH PSEUDO-RANDOMLY
1120 .1 DEY DELAY LOOP FOR PULSE WIDTH

1130 BNE .1

1140 DEX GET NEXT PULSE OF THIS NOISE BURST
1150 BNE .2

1160 DEC CNTR GET NEXT NOISE BURST

1170 BNE .2

1180 RTS RETURN

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 147 of 2550

Apple 11 Computer Info

1030 SPEAKER
1040 DUMMY

1060 SAVEX .BS
1070 SAVEY .BS

_EQ $C030
_EQ $C000
1
1

1080 EL.COUNT .BS 1
1090 EL.CODE .BS 1
1100 EL.SPEED .EQ 120
1110 EL.PITCH .EQ 80

1120 *——-—oomm—-
1130 CODES .HS
1140 HS
1150 HS
1160 HS
1170 HS
1180 *——-——————-
1190 SETUP.MORSE
1200 LDA
1210 STA
1220 LDA
1230 STA
1240 IMP
1250 *——-—m————-
1260 MORSE CMP
1270 BCC
1280 PHA
1290 JSR
1300 PLA
1310 .1 JIMP
1320 *——-—mm———-
1330 SEND.CHAR

1340 STX
1350 STY
1360 SEC
1370 SBC
1380 TAX
1390 LDA
1400 STA
1410 AND
1420 BEQ
1430 STA
1440 .1 ASL
1450 BCC
1460 JSR
1470 JSR
1480 .2 JSR

FD7D3D1DODOS85C5ES5FS5 0, 1-9
000000000000
004284A4830124C3040274A344C2
82E364D443038123146394B4C4
000000000000

#MORSE
$36
/MORSE
$37
$3EA
#$BO SEE IF PRINTING CHAR
-1 NO
SAVE CHAR ON STACK
SEND.CHAR
GET CHAR OFF STACK
$FDFO
SAVEX
SAVEY
#$BO
CODES, X
EL.CODE
#r GET ELEMENT COUNT
-4 NO CODE
EL.COUNT
EL.CODE PUT NEXT ELEMENT INTO CARRY
.2 MAKE "DIT*"
EL.DIT MAKE "DAH®" FROM 3 DITS
EL.DIT
EL.DIT MAKE "DIT*"

Apple 2 "Apple Assembly Line"

Article Archive -- Bob Sander-Cederlof

Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 148 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800

JSR
DEC
BNE
.3 JSR
LDX
LDY
RTS
-4 JSR
JSR
JMP

CH.SPACE
JSR
JSR
EL.SPACE
LDY
-1 LDX
LDA
.2 DEX
BNE
DEY
BNE
RTS

EL.SPACE
EL.COUNT
-1
CH.SPACE
SAVEX
SAVEY

CH.SPACE
CH.SPACE

EL.SPACE
EL.SPACE

#EL . SPEED

#EL_PITCH
DUMMY

#EL . SPEED
#EL_PITCH
SPEAKER
.2

-1

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 149 of 2550

Apple 11 Computer Info

* FASTER 16X16 MULTIPLY
1020 * BY BROOKE W. BOERING
* NEARLY AS PUBLISHED IN MICRO--THE 6502 JOURNAL

1040 PAGE 72, DECEMBER, 1980.
1050 Fommmmmmmm e
1060 ACL EQ $50
1070 ACH EQ $51

1120 *-mmmm e -

1130 RMUL LDY #16 16-BIT MULTIPLIER

1140 .1 LDA ACL (AC * AUX) + XTND

1150 LSR CHECK NEXT BIT OF MULTIPLIER
1160 BCC .2 IF ZERO, DON*"T ADD MULTIPLICAND
1170 CLC ADD MULTIPLICAND TO PARTIAL PRODUCT
1180 LDA XTNDL

1190 ADC AUXL

1200 STA XTNDL

1210 LDA XTNDH

1220 ADC AUXH

1230 STA XTNDH

1240 .2 ROR XTNDH SHIFT PARTIAL PRODUCT

1250 ROR XTNDL

1260 ROR ACH

1270 ROR ACL

1280 DEY NEXT BIT

1290 BNE .1 UNTIL ALL 16

1300 RTS

1310 *--mmmm e

1320 * TEST ROUTINE FOR MULTIPLY

1330 *-emmm e

1340 SETUP.Y

1350 LDA #3$4C PUT "JMP TESTMPY"™ IN $358-35A
1360 STA $3F8

1370 LDA #TESTMPY

1380 STA $3F9

1390 LDA /TESTMPY

1400 STA $3FA

1410 RTS

1420 *--eemm e

1430 TESTMPY

1440 LDA $3C MOVE A1L,A1H TO ACL,ACH

1450 STA ACL

1460 LDA $3D

1470 STA ACH

1480 LDA $3E MOVE A2L,A2H TO AUXL,AUXH

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 150 of 2550

Apple 11 Computer Info

1490 STA AUXL

1500 LDA $3F

1510 STA AUXH

1520 LDA $42 MOVE A4L,A4H TO XTNDL,XTNDH
1530 STA XTNDL

1540 LDA $43

1550 STA XTNDH

1560 JSR RMUL MULTIPLY

1570 LDA XTNDH PRINT 32-BIT RESULT
1580 JSR $FDDA

1590 LDA XTNDL

1600 JSR $FDDA

1610 LDA ACH

1620 JSR $FDDA

1630 LDA ACL

1640 JMP $FDDA

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 151 of 2550

Apple 11 Computer Info

0o J
1010 * SIMPLE TONE

070 J

1030 SPEAKER _EQ $C030

01710 J

1050 TONE LDY #0 START CYCLE COUNTER
1060 LDX #0 START DELAY COUNTER
1070 .1 LDA SPEAKER TOGGLE SPEAKER

1080 .2 DEX DELAY LOOP

1090 BNE .2

1100 DEY QUIT AFTER 128 CYCLES
1110 BNE .1

1120 RTS

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 152 of 2550

Apple 11 Computer

* STRING SWAP FOR APPLESOFT
* "BRUN B.STRING.SWAP"™ TO SET IT UP;
* THEN "&A$,B$" MEANS SWAP A$ AND B$.

.OR $300
-TF B.STRING.SWAP
AMPERSAND.VECTOR .EQ $3F5
PTRGET -EQ $DFE3 SCAN FOR VARIABLE NAME,
* SEARCH FOR ITS ADDRESS,
* LEAVE ADDRESS IN $83,%$84
* AND A,Y
SCAN . COMMA -EQ $DEBE IF NEXT CHARACTER 1S
* IS A COMMA, SCAN OVER
* IT; IF NOT, SYNTAX ERROR.

B.PNTR .EQ $83,84
SETUP LDA #SWAP SET UP AMPERSAND VECTOR
STA AMPERSAND.VECTOR+1
LDA /SWAP
STA AMPERSAND.VECTOR+2
LDA #$4C JMP OPCODE
STA AMPERSAND.VECTOR

SWAP JSR PTRGET GET POINTER TO FIRST STRING
STA A_PNTR
STY A.PNTR+1
JSR SCAN.COMMA CHECK FOR COMMA

JSR PTRGET

LDY #2 PREPARE TO SWAP 3 BYTES
21 LDA (A.PNTR),Y

PHA

LDA (B.PNTR),Y
STA (A.PNTR),Y

PLA

STA (B.PNTR),Y

DEY NEXT BYTE
BPL .1

RTS RETURN

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 153 of 2550

Apple 11 Computer Info

1050 DOWNTIME
1060 UPTIME
1070 LENGTH
1080 CHORD.TIME

1100 BUTTON
1110 *

1130 OR
1150 TWO.TONES
1160 LDA
1170 STA
1180 .3 LDX
1190 LDA
1200 JSR
1210 LDA
1220 JSR
1230 DEC
1240 BNE
1250 RTS
1270 ONE.TONE
1280 TAY
1290 LDA
1300 STA
1310 LDA
1320 STA
1330 LDA
1340 STA
1360 PLAY LDY
1370 LDA
1380 DEC
1390 BEQ
1400 .1 DEY
1410 BNE
1420 BEQ
1430 .2 LDY
1440 LDA
1450 DEC
1460 BEQ
1470 .3 DEY
1480 BNE

SET BY "SCALE=

#ll

USE VALUES FROM O THRU 9

#10
CHORD.TIME
BUTTON
LOW.TONES, X
ONE.TONE
HIGH.TONES, X
ONE.TONE
CHORD.TIME

DOWNTIME.TABLE,Y
DOWNT IME
UPTIME._TABLE,Y
UPTIME
LENGTH.TABLE,Y
LENGTH

UPTIME
SPEAKER
LENGTH
-4 FINISHED

-1

.2

DOWNT IME
SPEAKER
LENGTH
-4

-3

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 154 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790

BEQ PLAY
.4 RTS

DOWNTIME.TABLE
.HS 8E807468514942

UPTIME.TABLE
.HS 8E807469514942

LENGTH.TABLE
-HS 1412100F201D1A

LOW.TONES

.HS 03000000010101020202
HIGH.TONES

.HS 05040506040506040506

MON.WAIT .EQ $FCAS
PUNCH . ALL
LDA #0
STA BUTTON
1 JSR TWO.TONES
LDA #0
JSR MON.WAIT
INC BUTTON
LDA BUTTON
CMP #10
BCC .1
RTS

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 155 of 2550

Apple 11 Computer Info

A Beautiful Dump Robert H. Bernard

The old saying, "You can*t tell the players without a scorecard,™ is
certainly true for program debugging, and sometimes the only way is to
look into memory and see what is there. The Apple Il Monitor has a
memory dump command, but I found it inadequate: 1it"s formatted for a
40-column screen, it doesn®"t show ASCIl codes, and getting output on a
printer is a hassle.

So I sat down and wrote a quick assembly language memory dump modeled
after a System/360 core dump (remember when computer memory was called
"core"?), with both hex and ASCIlI. My first attempt took up more than
one page of memory and was trapped where I assembled it by absolute
internal references. |1 massaged it until it fit in less than a page
and made it relocatable ("run anywhere'™) by making all internal jumps
into relative branches. (A "page"™ in 6502 jargon is 256 bytes, with
addresses running from xx00 through xxFF.)

Next 1 decided to add a printer feature; while I was at it I made it
use 80 columns on the printer, 40 on the screen.

Next I made it print the bytes in groups of four, with a space between
every four bytes. Sixteen bytes are printed per line on the screen,
32 on an 80-column printer. Spacing in groups of four makes it easier
to spot certain address locations. |If a byte value is a printable
ASCI1 code, 1 print the character above the hexadecimal value.

(Values $00-$1F and $80-$9F do not print.)

Then 1 wanted options to browze one screenful at a time, and backup
when 1 passed the place | wanted to look at.

You probably think that by now the program is at least two, and maybe
more, pages long. Not so! AIll the while | was able to keep it in
only one page (which doesn"t say much for my original code).

The end result (after 21 versions!) is listed here for your
examination and pleasure.

Operating Instructions: BRUN the program anywhere in memory that you
have a free page (256 bytes). When the "?" prompt appears, enter the
address of the memory you want to dump in any of the following ways.
After the address or address range, type the return key.

S.E To dump memory from S to E on the screen.
S-E To dump memory from S to E on the printer.
S,E To dump memory from S to E on the screen,

but pauses after each screenful;

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 156 of 2550

Apple 11 Computer Info

press space bar to continue,
or press control-C to stop.

To dump from S, pausing after each line;
press space bar to dump next line,

press letter "B"™ to back up one line,

or press control-C to stop.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 157 of 2550

Apple 11 Computer Info

& Command Interface for S-C Assembler 11

Here is yet another way to add new commands to Version 4.0. You are
somewhat familiar with the use of the & in Applesoft. This little
program patches the assembler so that you can add as many new commands
as you wish.

I have shown as examples the EDIT, COPY, and SYM commands. You need
to fill in the correct starting address in lines 1250 and 1260.

Use the .TF directive to direct the object code to a file. Then use
BRUN to install the patch. Lines 1100-1120 patch the assembler to
hook 1n the code at lines 3010-3100. After it is hooked in, make a
new copy of the assembler by using BSAVE ASMDISK 4.0 WITH
&,A$FD7,L$. ... (Fill in the appropriate length, depending on what
else you have added to the assembler in the past.)

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 158 of 2550

Apple 11 Computer Info

Commented Listing of DOS 3.2.1 RWTS

I promised in the original AAL flyer that 1 would print dis-assemblies
of things like DOS. Here is the fTirst installment. RWTS is described
in some detail in the DOS Reference Manual, pages 94-98.

There are not too many differences between the various versions of
RWTS. Each one, from 3.1 to 3.2 to 3.2.1 to 3.3, seems mainly to
clean up errors of the previous ones. | will probably print some DOS
3.3 listings in the future, as well as more of 3.2.1.

There is a bug in the 3.2.1 version (a bad address), at line 2200. It
works anyway, but it is sloppy. Another problem I have discovered the
hard way: the "previous slot #" in the 10B should be a slot that has
a disk controller in it. |If not, RWTS may do strange things to
whatever is in that slot. 1 put in "0, and it turned on my language
card! Zap! No more Applesoft!

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 159 of 2550

Apple 11 Computer Info

The Apple Assembly Line is still growing! 1 now am sending out over
300 copies per month! 1t is also growing in size, as you can see:
this is the first 20 page issue.

In This Issue...

A Beautiful Dump . . 4
So-Called Unused Opcodes)
Complete 6502 Opcode Chart . . . e K¢
EDIT and COPY on the Language Card e 2
Commented Listing of DOS 3.2.1 RWTS 15
Substring Function for Applesoft 19

Second "Disk of the Quarter"

The second AALDQ is ready! |If you would like to have the source code
on disk in S-C Assembler 11 Version 4.0 format for all the programs
which have appeared in AAL issues 4, 5, and 6, then send me $15. 1
will send you the disk, and you already have the documentation. DQ#1,
covering issues 1, 2, and 3, is also still available at the same
price.

Some New Books about the 6502

Apple Machine Language, by Don Inman and Kurt Inman, published by
Reston (a Prentice-Hall Company). Hard cover, 296 pages, $14.95. |If
you are an absolute beginner, this is the book for you. You start by
typing in an Applesoft program which helps you POKE in machine
language code, and CALL i1t. Most of the examples involve lo-res
graphics and sound. One chapter describes the Apple Mini-Assembler
(which resides in the Integer BASIC ROMs). They never get around to a
real assembler.

Practical Microcomputer Programming: the 6502, by W. J. Weller,
published by Northern Technology Books. Hard cover, 459 pages,
$32.95. Over 110 pages of the book are devoted to a listing of an
assembler and a debugging package. A coupon inside the back cover can
be redeemed for a tape copy which will run on the Apple Il. By adding
$7.50 to the coupon, you can get a disk version. The package can be
loaded from the disk, but there is no capability for keeping source or
object files on disk.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 160 of 2550

Apple 11 Computer Info

1x

2X

3x

4x

5x

6X

7X

8x

9x

AX

Bx

Cx

Dx

Ex

Fx

BRK

BPL

JSR

BMI

RTI

BVC

RTS

BVS

nop2

BCC

LDY

BCS

CPY

BNE

CPX

BEQ

r

r

#v

#v

#v

ORA

ORA

AND

AND

ECOR

ECOR

ADC

ADC

STA

STA

LDA

LDA

CMP

CMP

SBC

SBC

.Y

(.%)

(2).,Y

(.%)

(2).,Y

(.%)

(2).,Y

(.%)

(2).,Y

(.%)

.Y

(.%)

2).,Y

(.%)

2).,Y

hang

hang

hang

hang

hang

hang

hang

nop2

hang

LDX #v

hang

nop2

hang

nop2

hang

ASL
ORA

ROL
AND

ROL
AND

LSR
ECR

LSR
ECR

ROR
ADC

ROR
ADC

A&X
-

(.%)

A&hea

-
LDX
LDA
LDX

LDA
LDX

DEC
CMP

DEC
CMP

INC
SBC

INC

2).,Y

#v
(z.X)
(z.X)

(2).Y
2).,Y

(z.X)
(.%)

2).,Y
2).,Y

(z.X)
(.5

2).,Y

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 161 of 2550

x4

nop2

nop2

BIT z

nop2

nop2

nop2

nop2

nop2

STY z

STY z,X

LDY z

LDY z,X

CPY z

nop2

CPX z

nop2

X8 X9

x5

ORA

ORA

AND

AND

EOR

EOR

ADC

ADC

STA

STA

LDA

LDA

CMP

CMP

SBC

SBC

z

XA

X6

ASL

ASL

ROL

ROL

LSR

LSR

ROR

ROR

STX

STX

LDX

LDX

DEC

DEC

INC

INC

xB

X7

ASL
ORA

ASL
ORA

SBC (2),Y

N N

N N
X X

ROL z
AND z

ROL
AND

N N
X X

LSR z
EOR z

LSR
EOR

N N
X X

ROR z
ADC z

ROR
ADC

A&X
-

A&X
-

LDX
LDA

LDX
LDA

N N
X X

N N

N N
< <

DEC z
CMP z

DEC
CMP

N N
X X

INC z
SBC z

INC
SBC

N N
X X

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 162 of 2550

PHP

CLC

PLP

SEC

PHA

CLI

PLA

SEI

DEY

TYA

TAY

CLvV

INY

CLD

INX

SED

XxC

nop3

nop3

ORA #v

ORA a,Y

AND #v

AND a,Y

EOR #v

EOR a,Y

ADC #v

ADC a,Y

nop2

STA a,Y

LDA #v

LDA a,Y

CMP #v

CMP a,Y

SBC #v

SBC a,Y

xD

ORA

ORA

ASL

nop

ROL

nop

LSR

nop

ROR

nop

TXA

TXS

TAX

TSX

DEX

nop

NOP

nop

a

a,X

AND #v
ASL a,Y
ORA a,Y
AND #v
ROL a,Y
AND a,Y
AND #v
LSR

LSR a,Y
ECOR a,Y
AND #v
ROR

A&X-->S
S&hea+1
--> a,Y

LDA #v
TAX

a,Y & S
-->AXS

SBC #v
INC a,Y
SBC a,Y
XE

ASL a

ASL a,X

xXF

ASL a
ORA a

ASL a,X
ORA a,X

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 163 of 2550

BIT a AND

nop3 AND

JMP a EOR

nop3 EOR

JMP (a) ADC

nop3 ADC

STY a STA

nop3 STA

LDY a LDA

LDY a,X LDA

CPY a CMP

nop3 CMP

CPX a SBC

nop3 SBC a,X
A A-register
S S-register
X X-register
Y Y-register

a 2-byte
r 1-byte
\Y 1-byte
z 1-byte

hea high-byte of effective address
93: the byte at z+1

ROL a ROL
AND

ROL a,X ROL
AND

LSR a LSR
EOR

LSR a,X LSR
EOR

ROR a ROR
ADC

ROR a,X ROR
ADC

STX a A&X
-——>

X&hea+1l A&X
--> a,¥Y -->
LDX a LDX
LDA

LDX a,Y LDX
LDA

DEC a DEC
CMP

DEC a,X DEC
CMP

INC a INC
SBC

INC a,X INC
SBC
(Accumulator)

D ® D D D ® D D D ®
> X > X

D D
> X

D D D D D
> X <<

D
> X

(Stack Pointer)

absolute address
relative address
immediate value

pagezero address

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 164 of 2550

Apple 11 Computer Info

9B: 3rd byte of instruction
9E: 3rd byte of instruction

& and-function (logical product)

hang computer hangs up, only way to
regain control is to hit RESET

nop 1-byte instruction, no operation
nop2 2-byte instruction, no operation
nop3 3-byte instruction, no operation

-—> "result i1s stored In"

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 165 of 2550

Apple 11 Computer Info

So-Called Unused Opcodes

The 6502 has 104 so-called unused opcodes. The various charts and
reference manuals 1 have checked either leave them blank or call them

"unused', '"no-operation’, or "future expansion'”. The 6502 has been
around since 1976; I think we have waited long enough to know there
will be no "expansion™. But are they really unused? Do they have any

effect if we try to execute them? Are they really no-ops? If so, how
many bytes does the processor assume for each one?

These questions had never bothered me until I was looking through some
disassembled memory and thought 1 found evidence of someone USING the
"unused”. It turned out they were not, but my curiosity was aroused.
Just for fun, 1 built a little test routine and tried out the $FF
opcode. Lo and behold! The 6502 thinks it is a 3-byte instruction,
and it changes the A-register and some status bits!

About 45 minutes later | pinned it down: FFxxyy performs exactly the
same as the two instructions FExxyy and FDxxyy. 1t is just as though
I had executed one and then the other. In other words, anywhere in a
program I find:

INC VARIABLE,X

SBC VARIABLE,X
I can substitute:

-HS FF

-DA VARIABLE

You might wonder if 1 will ever find that sequence. 1 did try writing
a program to demonstrate its use. It has the advantage of saving 3
bytes, and 4 clock cycles. (The SBC instruction is executed DURING
the 7 cycles of the INC instruction!)

TEST LDX INDEX
LDA #10 FOR COUNTER(X)=10 TO 39
STA COUNTER, X

.1 LDA COUNTER,X GET COUNTER(X)

JSR $FDDA PRINT IT OUT (OR WHATEVER)
LDA #39 LIMIT
-HS FF DO INC AND SBC
-DA COUNTER ON COUNTER, X
BCS .1 NEXT
RTS
Are there any more? Before 1 could rest my curiosity, | had spent at

least ten more hours, and had figured out what all 104 "unused
opcodes” really do!

The center-fold chart shows the fruit of my detective work. The
shaded opcodes are the "unused"™ ones. 1 don"t know If every 6502

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 166 of 2550

Apple 11 Computer Info

behaves the same as mine or not. Mine appears to be made by Synertek,
and has a date code of 7720 (20th week of 1977). It could be that
later versions or chips from other sources (MOS Technology or
Rockwell) are different. |If you find yours to be different, please
let me know!

Twelve of the opcodes, all in column "x2", hang up the 6502; the only
way to get out is to hit RESET or turn off the machine.

There are 27 opcodes which appear to have no effect on any registers
or on memory. These could be called "NOP", but some of them are
considered by the 6502 to have 2 or 3 bytes. 1 have labeled them
nop', ''nop2"”, and '"nop3" to distinguish how many bytes the 6502
thinks it is using. You could call nop2 "always skip one byte" and
nop3 "always skip two bytes™.

The action most of the rest perform can be deduced by looking at the
other opcodes in the same row. For example, all of the xF column
(except 8F and 9F) perform two instructions together: first the
corresponding XE opcode, and then the corresponding xD opcode. In the
same way, most of the opcodes in column X7 combine the x6 and x5
opcodes. The x3 column mirrors the x7 and xF columns, but with
different addressing modes. And fTinally, the xB column mimics the
other three columns, but with more exceptions. Most of the exceptions
are in the 8x and 9x rows.

A Tfew of the opcodes seem especially iInteresting and potentially
useful. For example, A3xx performs three steps: Tirst it loads xx
into the X-register; then using this new value of X, it moves the byte
addressed by (xx,X) into both the A- and X- registers. Another way of
looking at this one is to say that whatever value xx has is doubled;
then the two pagezero bytes at 2*xx and 2*xx+1 are used as the address
for loading the A- and X-registers. You could use this for something,
couldn®t you?

There are five instructions which form the logical product of the A-
and X-registers (without disturbing either register) and store the
result in memory. |IFf we call this new instruction "SAX", for "Store
A&X"™, we have:

83 SAX (z,X) 8F SAX a
87 SAX z 9F SAX a,X
97 SAX z,Y

We get seven forms of the combination which shift a memory location
using ASL, and then inclusive OR the results into A with an ORA

instruction. IT we call this new iInstruction ALO, we have:
03 ALO (z,X) 1B ALO a,Y
13 ALO (2),Y OF ALO a
07 ALO z 1F ALO a,X

17 ALO z,X

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 167 of 2550

Apple 11 Computer Info

The same seven forms occur for the combinations ROL-AND, LSR-EOR, and
ROR-ADC. Note that if you don"t care what happens to the A-register,
and the status register, these 28 instructions make two extra

addressing modes available to the shift instructions: (z,X) and (z2),Y.

Opcodes 4B and 6B might also be useful. You can do an AND-immediate
followed by LSR or ROR on the A-register.

Opcodes 93, 9B, and 9E are really weird! It took a lot of head-
scratching to figure out what they do.

93 Forms the logical product of the A-register
and byte the at z+1 (which I call "hea")
and stores it at (z2),Y.

9B Forms the logical product of the A- and X-
registers, and stores the result in the S-
register (stack pointer)! Ouch!

Then it takes up the third byte of the
instruction (yy from 9B xx yy) and adds one
to it (I call it "heat+1™). Then i1t forms
the logical product of the new S-register
and "hea+1" and stores the result at "a,Y".
Whew!

9E Forms the logical product of the X-register
and "hea+1" and stores the result at "a,Y".

We get six forms of the new "LAX"™ instruction, which loads the same
value into both the A- and X-registers:

B3 LAX (2),Y AB LAX #v
A7 LAX z AF LAX a
B7 LAX z,Y BF LAX a,Y
I skipped over BB, because it is another extremely weird one. It

forms the logical product of the byte at "a,Y" and S-register, and
stores the result in the A-, X-, and S-registers. No wonder they
didn*"t tell us about it!

Right under that one is the CB instruction. Well, good buddy (please
excuse the CB talk!), it forms the logical product of the A- and X-
registers, subtracts the immediate value (second byte of CB xx), and
puts the result into the X-register.

The Cx and Dx rows provide us with seven forms that do a DEC on a
memory byte, and then CMP the result with the A-register. Likewise,
the Ex and Fx rows give us seven forms that perform INC followed by
SBC.

It is a good thing to be aware that the so-called "unused" opcodes can
be quite dangerous if they are accidentally executed. |If your program
goes momentarily wild and executes some data, chances are something
somewhere will get strangely clobbered.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 168 of 2550

Apple 11 Computer Info

Since all of the above information was deduced by testing and
observation, | cannot be certain that I am 100% correct. |1 may have
overlooked or mis-interpreted some results, or even made a clerical
error. Furthermore, as 1 said before, my 6502 may be different from
yours. You can test your own, to see if it works like mine.

And if the whole exercise seems academic to you, you can at least
enjoy the first legible and complete hexadecimal opcode chart for the
6502.

So-Callec Unused Opcodes

The 6502 has 104 so-called unused opcodes. The various charts and
reference manuals 1 have checkcd either leaue them blank or call them

"unused', '"no-operation’, or "future expansion'”. The 6502 has been
around since 1976; I think we have waited long enough to know there
will be no "expansion™. But are they really unused? Do they have any

effect if we try to execute them? Are they really no-ops? If so, how
many bytes does the processor assume for each one?

These questions had never bothered me until I was looking through some
disassembled memory and thought 1 found evidence of someone USING the
"unused”. It turned out they were not, but my curiosity was aroused.
Just for fun, 1 built a little test routine and tried out the $FF
opcode. Lo and behold! The 6502 thinks it is a 3-byte instruction,
and it changes the A-register and some status bits!

About 45 minutes later | pinned it down: FFxxyy performs exactly the
same as the two instructions FExxyy and FDxxyy. 1t is just as though
I had executed one and then the other. In other words, anywhere in a
program I find:

INC VARIABLE,X

SBC VARIABLE,X
I can substitute:

-HS FF

-DA VARIABLE

You might wonder if 1 will ever find that sequence. 1 did try writing
a program to demonstrate its use. It has the advantage of saving 3
bytes, and 4 clock cycles. (The SBC instruction is executed DURING
the 7 cycles of the INC instruction!)

<show sample program using FF opcode here>

Are there any more? Before 1 could rest my curiosity, | had spent at
least ten more hours, and had figured out what all 104 "unused
opcodes” really do!

The center-fold chart shows the fruit of my detective work. The
shaded opcodes are the "unused"™ ones. |1 don"t know If every 6502
behaves the same as mine or not. Mine appears to be made by Synertek,
and has a date code of 7720 (20th week of 1977). It could be that
later versions or chips from other sources (MOS Technology or

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 169 of 2550

Apple 11 Computer Info

Rockwell) are different. |If you find yours to be different, please
let me know!

Twelve of the opcodes, all in column "x2", hang up the 6502; the only
way to get out is to hit RESET or turn off the machine.

There are 27 opcodes which appear to have no effect on any registers
or on memory. These could be called "NOP", but some of them are
considered by the 6502 to have 2 or 3 bytes. 1 have labeled them
nop', ''nop2"”, and '"nop3" to distinguish how many bytes the 6502
thinks it is using. You could call nop2 "always skip one byte'" and
nop3 "always skip two bytes™.

The action most of the rest perform can be deduced by looking at the
other opcodes in the same row. For example, all of the xF column
(except 8F and 9F) perform two instructions together: first the
corresponding XE opcode, and then the corresponding xD opcode. In the
same way, most of the opcodes in column X7 combine the x6 and x5
opcodes. The x3 column mirrors the x7 and xF columns, but with
different addressing modes. And fTinally, the xB column mimics the
other three columns, but with more exceptions. Most of the exceptions
are in the 8x and 9x rows.

A few of the opcodes seem especially interesting and potentially
useful. For example, A3xx performs three steps: Tfirst it loads xx
into the X-register; then using this new value of X, it moves the byte
addressed by (xx,X) into both the A- and X- registers. Another way of
looking at this one is to say that whatever value xx has is doubled;
then the two pagezero bytes at 2*xx and 2*xx+1 are used as the address
for loading the A- and X-registers. You could use this for something,
couldn®t you?

There are five instructions which form the logical product of the A-
and X-registers (without disturbing either register) and store the
result in memory. |IFf we call this new instruction "SAX", for "Store
A&X"™, we have:

83 SAX (z.X)
Z

87 SAX
97 SAX z,Y
8F SAX a

9F SAX a,X

We get seven forms of the combination which shift a memory location
using ASL, and then inclusive OR the results into A with an ORA

instruction. IT¥ we call this new iInstruction ALO, we have:
03 ALO (z,X) 1B ALO a,Y
13 ALO (2),Y OF ALO a
07 ALO z 1F ALO a,X

17 ALO z,X

The same seven forms occur for the combinations ROL-AND, LSR-EOR, and
ROR-ADC. Note that if you don"t care what happens to the A-register,

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 170 of 2550

Apple 11 Computer Info

and the status register, these 28 instructions make two extra
addressing modes available to the shift instructions: (z,X) and (z2),Y.

Opcodes 4B and 6B might also be useful. You can do an AND-immediate
followed by LSR or ROR.

Opcodes 93, 9B, and 9E are really weird! It took a lot of head-
scratching to figure out what they do.

93 Forms the logical product of the A-register
and byte the at z+1 (which I call "hea")
and stores it at (z2),Y

9B Forms the logical product of the A- and X-
registers, and stores the result in the S-
register (stack pointer)! Ouch!

Then it takes up the third byte of the
instruction (yy from 9B xx yy) and adds one
to it (I call it "heat+1™). Then i1t forms
the logical product of the new S-register
and "hea+1" and stores the result at "a,Y".
Whew!

9E Forms the logical product of the X-register
and "hea+1" and stores the result at "a,Y".

We get six forms of the new "LAX"™ instruction, which loads the same
value into both the A- and X-registers:

B3 LAX (2),Y AB LAX #v
A7 LAX z AF LAX a
B7 LAX z,Y BF LAX a,Y
I skipped over BB, because it is another extremely weird one. It

forms the logical product of the byte at "a,Y" and S-register, and
stores the result in the A-, X-, and S-registers. No wonder they
didn*"t tell us about it!

Right under that one is the CB instruction. Well, good buddy (please
excuse the CB talk!), it forms the logical product of the A- and X-
registers, subtracts the immediate value (second byte of CB xx), and
puts the result into the X-register.

The Cx and Dx rows provide us with seven forms that do a DEC on a
memory byte, and then CMP the result with the A-register. Likewise,
the Ex and Fx rows give us seven forms that perform INC followed by
SBC.

Since all of the above information was deduced by testing and
observation, | cannot be certain that I am 100% correct. | may have
overlooked or mis-interpreted some results, or even made a clerical
error. Furthermore, as 1| said before, my 6502 may be different from
yours. You can test your own, to see if it works like mine. And if

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 171 of 2550

Apple 11 Computer Info

the whole exercise seems academic to you, you can at least enjoy the
first legible, complete hexadecimal opcode chart for the 6502.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 172 of 2550

Apple 11 Computer Info

INT

MON C, I,
BLOAD ASMDISK 4.0
CALL-151

C089
C089

0

BLOAD BMC A$D0O01,A$D001
BLOAD EDITASM A$D13C,A$DI3C

CO8A

101C:20
24CC:AC
24D3:20
24E1:4C
1063:4C
1078:4C
1125:60
1246:43
126E:45
20D4:4C
20D7:4C
20DA:4C
24B0:A5
24BF:FO
1009:4C

NOMON C,1,0

1000G

CcC
88
D9
66
D3

EA
4F
44
BO
C7
BS
DB
03
4E

24
co
24
10
24

EA
50
49
24
24
24
20
4C
1E

20
4C
00

00
3B

FA
8E

80
26
00

DO
D1

19
18

1F 60
10 AO 00 20 8D 12 20 4A 11
00 00 00 00 00

A5 DC 20 FA 19 20 8B 12 C9 2C
4C B5 20 A5 DB 18 90 EB

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 173 of 2550

Apple 11 Computer Info

1000 * LIF
1010 Koo mm e

1020 * DOS 3.2.1 DISASSEMBLY $BDO0-BE9F

1030 * BOB SANDER-CEDERLOF 3-3-81

1040 Fom oo

1050 CURRENT.TRACK _EQ $478

1060 DRIVE.1.TRACK _.EQ $478 THRU 47F (INDEX BY SLOT)
1070 DRIVE.2.TRACK _.EQ $4F8 THRU 4FF (INDEX BY SLOT)
1080 SEARCH.COUNT _EQ $4F8

1090 RETRY.COUNT _EQ $578

1100 SLOT _EQ $5F8

1110 SEEK.COUNT _EQ $6F8

1120 Fom e

1130 PHASE.OFF _EQ $C080

1140 PHASE.ON _EQ $C081

1150 MOTOR.OFF _EQ $C088

1160 MOTOR.ON _EQ $C089

1170 ENABLE.DRIVE.1 _EQ $CO8A

1180 ENABLE.DRIVE.2 _EQ $C08B

1190 Q6L _EQ $co08C

1200 Q6H _EQ $C08D

1210 Q7L _EQ $CO8E

1220 Q7H _EQ $CO8F

1230 Koo

1240 SECTOR _EQ $2D

1250 TRACK _EQ $2E

1260 VOLUME _EQ $2F

1270 DRIVE.NO -EQ $35

1280 DCT.PNTR .EQ $3C,3D
1290 BUF.PNTR .EQ $3E,3F
1300 MOTOR.TIME .EQ $46,47
1310 10B.PNTR -EQ $48,49

1320 *--memm e
1330 PRE.NYBBLE -EQ $B80O

1340 WRITE.SECTOR -.EQ $B86A

1350 READ.SECTOR -.EQ $B8FD

1360 READ.ADDRESS -.EQ $B965

1370 POST.NYBBLE .EQ $B9C1

1380 SEEK.TRACK.ABSOLUTE .EQ $BA1lE

1390 *-eemmmmm e
1400 ERR.WRITE.PROTECT -.EQ $10

1410 ERR.WRONG.VOLUME -EQ $20

1420 ERR.BAD.DRIVE -EQ %40

1430 *--emm e
1440 -.OR $BDOO

1450 .TA $800

1460 *--ommmmmm e
1470 RWTS STY 10B.PNTR SAVE ADDRESS OF 10B
1480 STA 10B.PNTR+1

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 174 of 2550

Apple 11 Computer Info

1490 LDY #2

1500 STY SEEK.COUNT UP TO 2 RE-CALIBRATIONS
1510 LDY #4

1520 STY SEARCH.COUNT

1530 LDY #1 POINT AT SLOT# IN 10B
1540 LDA (IOB.PNTR),Y SLOT# FOR THIS OPERATION
1550 TAX

1560 LDY #15 POINT AT PREVIOUS SLOT#
1570 CMP (10B.PNTR),Y SAME SLOT?

1580 BEQ .3 YES

1590 TXA SAVE NEW SLOT ON STACK
1600 PHA

1610 LDA (I0B.PNTR),Y GET OLD SLOT#

1620 TAX

1630 PLA STORE NEW SLOT #

1640 PHA INTO OLD SLOT# SPOT

1650 STA (10B.PNTR),Y

1660 F oo oo

1670 * SEE IF OLD MOTOR STILL SPINNING

1680 F oo oo

1690 LDA Q7L,X GO INTO READ MODE

1700 .1 LDY #8 IF DATA DOES NOT CHANGE
1710 LDA Q6L,X FOR 96 MICROSECONDS,
1720 .2 CMP Q6L,X THEN THE DRIVE 1S STOPPED
1730 BNE .1 WOOPS! 1T CHANGED!

1740 DEY TIME UP YET?

1750 BNE .2 NO, KEEP CHECKING

1760 PLA GET NEW SLOT # AGAIN

1770 TAX

1780 F oo

1790 .3 LDA Q7L,X SET UP TO READ

1800 LDA Q6L,X

1810 LDA Q6L,X GET CURRENT DATA

1820 PHA 7 CYCLE DELAY

1830 PLA

1840 STX SLOT

1850 CMP Q6L,X SEE IF DATA CHANGED

1860 PHP SAVE ANSWER ON STACK

1870 LDA MOTOR.ON,X TURN ON MOTOR

1880 LDY #6 COPY POINTERS INTO PAGE ZERO
1890 .4 LDA (I0B.PNTR),Y

1900 STA DCT.PNTR-6,Y

1910 INY DCT.PNTR .EQ $3C,3D

1920 CPY #10 BUF.PNTR .EQ $3E,3F

1930 BNE .4

1940 LDY #3 GET MOTOR ON TIME FROM DCT
1950 LDA (DCT.PNTR),Y

1960 STA MOTOR.TIME+1 HIGH BYTE ONLY

1970 LDY #2 GET DRIVE #

1980 LDA (I0B.PNTR),Y

1990 LDY #16 SEE IF SAME AS OLD DRIVE#
2000 CMP (10B.PNTR),Y

2010 BEQ .5 YES

2020 STA (10B.PNTR),Y UPDATE OLD DRIVE #

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 175 of 2550

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560

PLP
LDY
PHP
.5 ROR
BCC
LDA
BCS
.6 LDA
.7 ROR
PLP
PHP
BNE

L I

#0

6

Apple 11 Computer Info

SET Z STATUS
TO FLAG MOTOR OFF

CHECK LSB OF DRIVE #
DRIVE 2

ENABLE.DRIVE.1,X

7

- - -ALWAYS

ENABLE.DRIVE. 2, X
DRIVE.NO SET SIGN BIT IF DRIVE 1

WAS MOTOR PROBABLY OFF?

NO, DEFINITELY ON

DELAY FROM 150 TO 180 MILLISECONDS,
DEPENDING ON WHAT GARBAGE IS IN A-REG

#r
$BATF

YES, WAIT A WHILE
BUGII1 SHOULD BE $BA7B
BUT IT WORKS ANYWAY....

RESTORE SLOT#

FOR

¥ ok X % ok %

L I

#4

GET TRACK #

(10B_PNTR),Y
SEEK . TRACK

WAS MOTOR DEFINITELY ON?

PROCESS.COMMAND YES, MOTOR ON

MOTOR WAS OFF, SO WAIT REST OF MOTOR ON TIME
FOR APPLE DISK Il, MOTOR ON TIME IS 1 SECOND.
PART OF THIS TIME IS COUNTED DOWN WHILE SEEKING

THE TRACK.

11

ABOUT 100 MICROSECONDS PER TRIP

MOTOR. TIME

.10

MOTOR.TIME+1

.10

MOTOR ON AND UP TO SPEED, SO LET"S
FIND OUT WHAT THE COMMAND 1S AND DO IT!

PROCESS . COMMAND

LDY
LDA
BEQ
CMP
BEQ
ROR
PHP
BCS
JSR

#12

GET COMMAND

(10B_PNTR),Y

.8
#4
-9

1

NULL COMMAND, LET"S LEAVE
FORMAT?

YES

SET CARRY=1 IF READ, =0 IF WRITE
SAVE ON STACK

READ

bRE.NYBBLE WRITE

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 176 of 2550

Apple 11 Computer Info

2570 .1 LDY #48 UP TO 48 RETRIES

2580 STY RETRY.COUNT

2590 .2 LDX SLOT GET SLOT NUMBER AGAIN
2600 JSR READ.ADDRESS

2610 BCC .5 GOOD ADDRESS READ

2620 .21 DEC RETRY.COUNT

2630 BPL .2 KEEP TRYING

2640 .3 LDA CURRENT.TRACK GET TRACK WE WANTED
2650 PHA SAVE IT

2660 LDA #96 PRETEND TO BE ON TRACK 96
2670 JSR SETUP.TRACK

2680 DEC SEEK.COUNT

2690 BEQ .6 NO MORE RE-CALIBRATES
2700 LDA #4

2710 STA SEARCH.COUNT

2720 LDA #0 LOOK FOR TRACK 0

2730 JSR SEEK.TRACK

2740 PLA GET TRACK WE REALLY WANT
2750 .4 JSR SEEK.TRACK

2760 IMP .1

2770 H oo

2780 .5 LDY $2E TRACK# IN ADDRESS HEADER
2790 CPY CURRENT.TRACK

2800 BEQ .10 FOUND RIGHT TRACK

2810 LDA CURRENT.TRACK

2820 PHA SAVE TRACK WE REALLY WANT
2830 TYA SET UP TRACK WE ACTUALLY FOUNG
2840 JSR SETUP.TRACK

2850 PLA TRACK WE WANT

2860 DEC SEARCH.COUNT

2870 BNE .4 TRY AGAIN

2880 BEQ .3 TRY TO RE-CALIBRATE AGAIN
2890 Fo oo

2900 * DRIVE ERROR, CANNOT FIND TRACK

2010 Fo oo oo

2920 .6 PLA REMOVE CURRENT.TRACK

2930 LDA #ERR.BAD.DRIVE

2940 .7 PLP

2950 JMP ERROR.HANDLER

2060 Fo oo oo

2970 * NULL COMMAND, ON THE WAY OUT....

2080 Fom oo

2990 .8 BEQ RWTS.EXIT

00

3010 = FORMAT COMMAND

3020 oo oo

3030 .9 LDY #3 GET VOLUME# WANTED

3040 LDA (I0B.PNTR),Y

3050 STA VOLUME SET IN PLACE AND GO FORMAT
3060 IJMP FORMAT

3070 Fo oo

3080 * READ OR WRITE COMMAND

3090 HF oo oo

3100 .10 LDY #3 GET VOLUME# WANTED

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 177 of 2550

Apple 11 Computer Info

3110 LDA (I0B.PNTR),Y

3120 PHA SAVE DESIRED VOLUME# ON STACK
3130 LDA VOLUME

3140 LDY #14 STORE ACTUAL VOLUME NUMBER FOUND
3150 STA (10B.PNTR),Y

3160 PLA GET DESIRED VOLUME# AGAIN

3170 BEQ .11 IF =0, DON"T CARE

3180 CMP VOLUME SEE IF RIGHT VOLUME

3190 BEQ .11 YES

3200 LDA #ERR.WRONG.VOLUME

3210 BNE .7 UH OH!

3220 oo oo oo

3230 .11 LDY #5 GET SECTOR# WANTED

3240 LDA SECTOR AND THE ONE WE FOUND

3250 CMP (10B.PNTR),Y AND COMPARE THEM.

3260 BNE .21 NOT THE RIGHT SECTOR

3270 PLP GET COMMAND FLAG AGAIN

3280 BCC WRITE

3290 JSR READ.SECTOR

3300 PHP SAVE RESULT; IF BAD, WILL BE COMMAND
3310 BCS .21 BAD READ

3320 PLP THROW AWAY

3330 JSR POST.NYBBLE

3340 LDX SLOT

3350 RWTS.EXIT

3360 CLC

3370 _HS 24 "BIT" TO SKIP NEXT INSTRUCTION
3380 Fommm oo

3390 ERROR.HANDLER

3400 SEC INDICATE AN ERROR

3410 LDY #13 STORE ERROR CODE

3420 STA (10B.PNTR),Y

3430 LDA MOTOR.OFF,X

3440 RTS

3450 R oo oo

3460 WRITE JSR WRITE.SECTOR

3470 BCC RWTS.EXIT

3480 LDA #ERR.WRITE.PROTECT

3490 BCS ERROR.HANDLER ...ALWAYS

3500 Fommm oo

3510 * SEEK TRACK SUBROUTINE

3520 * (A) = TRACK# TO SEEK

3530 * (DRIVE.NO) 1S NEGATIVE IF DRIVE 1

3540 * AND POSITIVE IF DRIVE 2

3550 Fom oo

3560 SEEK.TRACK

3570 PHA SAVE TRACK#

3580 LDY #1 CHECK DEVICE CHARACTERISTICS TABLE
3590 LDA (DCT.PNTR),Y FOR TYPE OF DISK

3600 ROR SET CARRY IF TWO PHASES PER TRACK
3610 PLA GET TRACK# AGAIN

3620 BCC .1 ONE PHASE PER TRACK

3630 ASL TWO PHASES PER TRACK, SO DOUBLE IT
3640 JSR .1 FIND THE TRACK

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 178 of 2550

Apple 11 Computer Info

3650 LSR CURRENT.TRACK DIVIDE 1T BACK DOWN
3660 RTS

3670 Fo o m e

3680 .1 STA TRACK

3690 JSR GET.SLOT.IN.Y

3700 LDA DRIVE.1.TRACK,Y

3710 BIT DRIVE.NO WHICH DRIVE?

3720 BMI .2 DRIVE 1

3730 LDA DRIVE.2.TRACK,Y

3740 .2 STA CURRENT.TRACK WHERE WE ARE RIGHT NOW
3750 LDA TRACK WHERE WE WANT TO BE

3760 BIT DRIVE.NO WHICH DRIVE?

3770 BMI .3 DRIVE 1

3780 STA DRIVE.2.TRACK,Y DRIVE 2

3790 BPL .4 .. .ALWAYS

3800 .3 STA DRIVE.1.TRACK,Y

3810 .4 JMP SEEK.TRACK.ABSOLUTE

3820 Fom oo mm e

3830 * CONVERT SLOT*16 TO SLOT IN Y-REG

3840 Fom oo

3850 GET.SLOT.IN.Y

3860 TXA SLOT*16 FROM X-REG

3870 LSR

3880 LSR

3890 LSR

3900 LSR

3910 TAY SLOT INTO Y

3920 RTS

3930 Koo mm oo

3940 * SET UP CURRENT TRACK LOCATION

3950 * IN DRIVE.1_TRACK OR DRIVE.2.TRACK VECTORS,
3960 * INDEXED BY SLOT NUMBER.

3970 *

3980 * (A) = TRACK# TO BE SET UP

3990 Fom oo

4000 SETUP.TRACK

4010 PHA SAVE TRACK # WE WANT TO SET UP
4020 LDY #2 GET DRIVE NUMBER FROM 10B
4030 LDA (I0B.PNTR),Y

4040 ROR SET CARRY IF DRIVE 1, CLEAR IF 2
4050 ROR DRIVE.NO MAKE NEGATIVE IF 1, POSITIVE IF 2
4060 JSR GET.SLOT.IN.Y

4070 PLA GET TRACK #

4080 ASL DOUBLE IT

4090 BIT DRIVE_NO WHICH DRIVE?

4100 BMI .1 DRIVE 1

4110 STA DRIVE.2.TRACK,Y

4120 BPL .2 .. .ALWAYS

4130 .1 STA DRIVE.1.TRACK,Y

4140 .2 RTS

4150 Koo oo

4160 FORMAT

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 179 of 2550

Apple 11 Computer Info

1000 F oo oo
1010 * & COMMAND INTERFACE

1020 *

1030 * &<COMMAND STRING>

1040 *

1050 Fm oo oo
1060 *

1070 * ORIGIN MUST BE SET SO THAT LAST BYTE
1080 * IS AT $OFFF.

1085 _OR $FD1

1090 F oo oo
1100 LDA #AMPERSAND. INTERFACE-$103D
1110 STA $103C

1120 RTS

1130 Fm oo oo
1140 JMP $1000

1150 Fmm oo
1160 AOPTBL .HS 0503

1170 AS /EDI/

1180 _DA EDIT-1

1190 _AS /COP/

1200 _DA COPY-1

1210 _AS /SYM/

1220 _DA STPRNT-1

1230 _HS 00 END OF TABLE

1240 F oo oo

1260 COPY -EQ $1010

3000 Fmmmmmmmmm e
3010 AMPERSAND. INTERFACE
3020 CMP #"&

3030 BEQ .1

3040 IMP $1063
3050 .1 LDA #AOPTBL
3060 STA $02

3070 LDA /AOPTBL
3080 STA $03

3090 LDA #1

3100 IMP $1047

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 180 of 2550

Apple 11 Computer Info

1000 *—-omm e
1010 *

1020 * APPLE 11 RELOCATABLE MEMORY DUMP PROGRAM
1030 * BY ROBERT H. BERNARD

1040 * 35 DOGWOOD LANE

1050 * WESTPORT, CT 06880

1060 *

1070 * JANUARY 17, 1981

1080 *

1090 * COMMERCIAL RIGHTS RESERVED
1100 *

1110 * e -
1120 * MONITOR ROM ROUTINES

1130 *—mmmm e

1140 MON.COUT -.EQ $FDED

1150 MON.RDKEY _EQ $FDOC

1160 MON.GTLNZ _EQ $FD67

1170 MON.ZMODE _EQ $FFC7

1180 MON.GETNUM _EQ $FFA7

1190 MON.CROUT .EQ $FDSE

1200 MON.PRNTYX .EQ $F940

1210 MON.PRBL2 _EQ $F94A

1220 MON.PRBYTE .EQ $FDDA

1230 MON.MON .EQ $FF65

1240 MON.HOME .EQ $FC58

1250 MON.SETMOD .EQ $FE18

1260 MON.OUTPOR .EQ $FE95 SET OUTPUT PORT TO SLOT (A)
1270 MON.SETVID .EQ $FE93 SET VIDEO

1280 *--emmm e

1290 * 1/0 ADDRESSES

1300 *--mmmm e

1310 KBD -EQ $C000 KEYBOARD

1320 KBSTRB .EQ $C010 KBD RESET STROBE

1330 *-emmm e

1340 * PAGE-ZERO VARIABLES

1350 *--memmmmm e

1360 PGCNT .EQ $2E LINES LEFT THIS PAGE
1370 ITEMCT .EQ $30 ITEMS PER LINE

1380 OPTION .EQ $31 SAME AS MON "*MODE™
1390 PROMPT .EQ $33 LOC OF GETLN PROMPT CHAR
1400 YSAV -EQ $34 POINTER TO IN BUFFER
1410 FRADRL .EQ $3C STARTING ADR LO ORDER
1420 FRADRH .EQ $3D --HI ORDER

1430 TOADRL .EQ $3E ENDING ADR LO ORDER
1440 TOADRH .EQ $3F --HI ORDER

1450 *--eommmmm e

1460 * USER-CHANGEABLE PARAMETERS

1470 *emmm e

1480 SCITMS .EQ 16 BYTES PER LINE SCREEN

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 181 of 2550

Apple 11 Computer Info

1490 PRITMS _EQ 32 BYTES PER LINE PRINTER
1500 [ITMSPG .EQ 8 ITEMS PER PAGE

1510 PRSLOT .EQ 1 PRINTER SLOT

1520 *--ommmmmme -

1530 .OR $0800

15640 *--ommmmmme -

1550 MEMDMP JSR MON.SETVID SET PR#0

1560 LDA #$BF "?" FOR BOUNDS

1570 STA PROMPT SET PROMPT CHAR

1580 JSR MON.GTLNZ CR, THEN GET INPUT
1590 JSR MON.ZMODE SET HEX DECODE MODE
1600 JSR MON.GETNUM

1610 STY YSAV REMEMBER SCAN POS.

1620 CPX #0 ANY ADR SCANNED?

1630 BNE .3 YES

1640 RTS NO. TERMINATE

1650 -DA MON.MON MONITOR ENTRY (IN CASE YOU WANT
1660 * TO CHANGE RETURN TO **JMP MON.MON'™)
1670 *

1680 .3 LDA #-SCITMS BYTES PER SCREEN LINE
1690 STA ITEMCT ITEMS PER LINE

1700 JSR MON.SETMOD SET TO SCAN 2ND ARG
1710 CMP #$AD IS OPTION = *"-* 7

1720 BNE .2 NO. CHECK OTHERS

1730 INC OPTION MAKE *.*

1740 LDA #PRSLOT PRINTER SLOT NO

1750 JSR MON.OUTPOR SET OUTPUT PORT
1760 LDA #-PRITMS BYTES PER PRINTER LINE
1770 STA ITEMCT ITEMS PER LINE

1780 BNE .1 GO GET 2ND ARG

1790 *

1800 .2 CMP #$AE L7

1810 BEQ .1 YES. 2 ARGS

1820 CMP #$AC ",

1830 BNE SETPGL ONLY ONE ARG

1840 .1 LDY YSAV PTR TO IN BUFFER

1850 JSR MON.GETNUM SCAN 2ND ARG

1860 STY YSAV PTR TO IN BUFFER

1870 SETPGL LDA #ITMSPG ITEMS PER PAGE

1880 STA PGCNT

1890 *

1900 NEXTLN JSR MON.CROUT SKIP A LINE

1910 LDA ITEMCT -ITEMS PER LINE

1920 AND FRADRL STARTING ADR O MOD ITEMCT
1930 STA FRADRL

1940 TAX

1950 LDY FRADRH --TO PRINT

1960 JSR MON.PRNTYX PRINT 1T IN HEX
1970 LDX ITEMCT NO OF BYTES THIS LINE
1980 LDY #O POINTER

1990 BEQ NOBLNK DON"T SPACE FIRST TIME
2000 *

2010 CHKKEY LDA KBD KEY DOWN?

2020 BPL CKDONE NO

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 182 of 2550

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560

LDA KBSTRB YES. CLEAR KEYBOARD
SEC PREPARE FOR
MDMP2 BCS MEMDMP JMP TO START
NXTCHR TYA TEST FOR
AND #$03 0 MOD 4
BNE NOBLNK
LDA #$A0
JSR MON.COUT PRINT A BLANK
NOBLNK LDA #$A0
JSR MON.COUT PRINT A BLANK
LDA (FRADRL),Y GET CHAR TO PRINT
CMP #%$20 CNTRL CHAR?
BCC .1 YES. SUBSTITUTE BLANK
CMP #$80 CNTRL CHAR?
BCC .2 NO. OK TO PRINT
CMP #$A0 CNTRL CHAR?
BCS .2 NO. OK TO PRINT
21 LDA #$A0 SUBSTITUTE BLANK
.2 JSR MON.COUT
INY POINT AT NEXT
INX DONE ON THIS LINE?
BNE NXTCHR NO
JSR MON.CROUT YES. CR
* PREPARE TO PRINT SAME ITEMS IN HEX
LDX #3
JSR MON.PRBL2 OUTPUT (X) BLANKS
LDX ITEMCT ITEMS PER LINE
LDY #0 POINTER
BEQ NXTHEX (JMP)
SETPL1 BCS SETPGL JUMP TO SET PG LENGTH
CKOPT CMP #S$AC NO. OPTION="," ?
NXTLNL1 BNE NEXTLN NO. JUMP TO PRINT
CKDONE LDA FRADRL TEST IF DONE
CMP TOADRL
LDA FRADRH
SBC TOADRH
BCC NEXTLN FROM < TO
MDMP1 BCS MDMP2 JMP TO START
NXTHEX TYA TEST FOR
AND #$03 0 MOD 4
BNE .1 IF NOT, SKIP BLANK
LDA #$A0
JSR MON.COUT PRINT A BLANK
21 LDA (FRADRL),Y BYTE TO OUTPUT
JSR MON.PRBYTE OUTPUT IN HEX
INY NEXT
INX DONE ON THIS LINE?
BNE NXTHEX NO
JSR MON.CROUT YES. CR
* ADVANCE DUMP ADDRESS
SEC PREPARE FOR SUBTRACT

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 183 of 2550

Apple 11 Computer Info

2570 LDA FRADRL INCREMENT ADDRESS
2580 SBC ITEMCT -ITEMS PER LINE

2590 STA FRADRL

2600 BCC .2 NO CARRY

2610 INC FRADRH PAGE BOUNDARY

2620 BEQ MDMP1 END OF MEMORY

2630 .2 LDA OPTION

2640 CMP #S$AE *."2 (OPTION 1)

2650 BEQ CHKKEY NO. CHECK IF KEY DOWN
2660 CHKPAG DEC PGCNT PAGE END?

2670 BNE CKOPT NO. CHECK OPTION
2680 PAUSE JSR MON.RDKEY GET A CHAR

2690 CMP #$83 CNTRL-C?

2700 BEQ MDMP1 YES. START OVER

2710 CMP #$C2 WAS CHAR READ A "B"?
2720 BEQ BACKUP YES

2730 LDA OPTION

2740 CMP #$AC OPTION="," ?

2750 BEQ SETPL1 YES

2760 ADVNCE INC PGCNT ONE MORE TIME

2770 BNE NXTLN1 JMP TO NXTLN

2780 *

2790 BACKUP LDA FRADRL CARRY IS SET

2800 SBC #144 BACKUP SCITMS*(ITMSPG+1) BYTES
2810 STA FRADRL SAVE LO ORDER

2820 BCS .1 NO CARRY

2830 DEC FRADRH PROPOGATE CARRY

2840 .1 JSR MON.HOME CLEAR SCREEN
2850 SEC SIMULATE JMP

2860 BCS SETPL1 ..TO SETPGL

2870 *

2880 ZZSIZE .EQ *-MEMDMP PROGRAM SIZE

9999 _LIF

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 184 of 2550

Apple 11 Computer Info

(DTC removed -- lots of garbage characters)

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 185 of 2550

Apple 11 Computer Info

Substring Search Function for Applesoft

Lee Reynolds® article in the January 1981 Call A.P_.P.L.E. touched off
this project. When you are searching through text arrays for
keywords, or through a mailing list for someone who lives on "XYZ
Street"”, Applesoft can be vveeerrrrryyy slow. This subroutine, linked
in through the famous ampersand feature, will give you the speed your
Apple is fTamous for.

Lee"s program was quite similar to this one, but it did not allow the
keyword or the string-to-be-searched to be expressions. He left that
extension as "an exercise for the reader™. Being one reader badly in
need of exercise, | took up the challenge.

Although it is not really necessary, | used one of the newly
discovered "'secret” opcodes (which I wrote about last month) at line
2060. If you like, you can replace that line with:

2060 GS1 LDA (FACMO),Y

2065 TAX

Here is a sample Applesoft program which uses the Substring Search
Subroutine. Line 10 loads the subroutine and calls 768 to link in the
ampersand vector. Line 120 reads in your search key. If you just hit
the RETURN key, the program quits.

Line 130 gets the next string to be searched from the DATA list. |If
the value is ".", we are at the end of the list, so it loops back to
line 110.

Line 140 calls our substring search subroutine to see if the key
string can be found in the search string. |If not, 1t jumps back to
line 130 to get another search string. Lines 150-180 print the search
string, emphasizing the portion that matched the key string by
printing It In inverse.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 186 of 2550

Apple 11 Computer Info

Commented Listing of DOS 3.2.1 Format

Here i1s the second installment of DOS disassembly, covering the area
from $BEAO through $BFFF. 1f you read the listing in last month"s AAL
carefully, you probably noted that it ended with the label definition
"FORMAT", but no code followed. Well, here it is!

FORMAT turns a blank diskette into one with address headers recorded
on every track. Otherwise, the disk is empty. No directory 1is
written into track $11 yet, nor is any DOS recorded yet in tracks O,
1, and 2. When you use the INIT command, the first step exectured is
to format the disk; after formatting, a DOS image and empty directory
are written; then your HELLO program is SAVEd.

By the way, there are a lot of differences between DOS 3.2.1 and DOS
3.3 FORMAT routines. Later iIn this issue of AAL you will find a
commented listing of the DOS 3.3 version. |If you compare the two, you
will find at least these major differences:

1. DOS 3.2.1 formats 13 sectors per track, DOS 3.3 formats 16 sectors
per track.
2. DOS 3.2.1 writes an address header followed by a long series of
$FF bytes where the data should be; DOS 3.3 writes an address header
followed by a standard data block (the data is all $00 bytes).
3. DOS 3.2.1 writes an address header starting with $D5AAB5; DOS 3.3
writes an address header starting with $D5AA96.
4. DOS 3.2.1 verifies correct format by trying to read sector O
immediately after formatting the last sector; no other verification is
made. DOS 3.3 tries to read EVERY sector just formatted; it does a
complete check of the track.
5. DOS 3.2.1 writes the sectors in the order 0, 10, 7, 4, 1, 11, 8,
5, 2, 12, 9, 6, 3; DOS 3.3 writes them in sequential order 0, 1, 2,

, 15.

The Apple Disk Interface depends on critical software timing to
operate correctly. You will find many strange sequences of code (such
as PHA, PLA, NOP, PHA, PLA between $BF47 and $BF4B) which are for
timing purposes. |If you are interested in counting cycles, the timing
for each opcode-address mode combination are listed in the Quick
Reference Card that came with your S-C ASSEMBLER 11 Version 4.0.

Commented Listing of DOS 3.3 Format

As promised three or four pages ago, here is my rendition of the DOS
3.3 Format routine.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 187 of 2550

Apple 11 Computer Info

Volume 1 -- Issue 7 April, 1981

As of today the total distribution of the Apple Assembly Line is
nearly 350. Let"s shoot for 1000 by the end of 1981! |1 will have a
full page ad in the next eight issues of NIBBLE, so I think 1000 is a
reasonable goal. Thank you for your support!

In This Issue...

Text File 1/0 in Assembly Language Programs 2
Applesoft Internal Entry Points 4
Patch S-C Assembler Il for More Errors 6
Fast String Input Routine for Applesoft - e e e e o 6
Hiding Things Under DOS . . . - - - - - - . . 10

Commented Listing of DOS 3.2.1 Format A
Commented Listing of DOS 3.3 Format 14
Substring Search for Applesoft 18

Cross Reference (XREF) for S-C ASSEMBLER 11

Bob Kovacs has a new product, one which many of you have asked me for.
It enables you to produce a complete cross reference listing of all
symbols used in an assembly language program. See his ad on page 7
for a description and ordering information.

I am honored to have three companies (Rak-Ware, Decision Systems, and
Flatland Software) producing software to complement my assembler!

80 Columns on Your Printer

For some reason unknown to me Apple®s Parallel Interface Card comes
with at least three different ROM*s. There seems to me no indication
on the package which one you are getting, and no listing in the manual
of the exact ROM on the board. This leads to confusion, because some
ROM versions will print 80-column assembly listings at the drop of a
hat (Just type PR#1 and ASM, and you have it!); but others require you
special treatment.

If you have the latter type, | have found that this works:

PR#1 (assuming slot # 1)
:$579:50 ($578 + slot#)
ASM

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 188 of 2550

Apple 11 Computer Info

Hiding Things Under DOS. i aoaa-- Rick Hatcher

In issue number 5/1980 of NIBBLE, a small article by William Reynolds
11l tells how to do something I have wondered about for a long time.
That is how to move the HIMEM pointer down so that machine language
code or something else can be put out of the way and protected. For
example: | have a lower-case routine 1 like to use on key input; 1
also like to use the character display routine from Lawrence Hall of
Science which is hooked into the control-Y pointer. This Is one way
to dump memory in both hex and ASCII. 1 have looked for protected
areas but until now the only place seemed to be from $300 to $3CF.
This is a little over 200 bytes, and I needed about 400.

Neil Konzen"s Program Line Editor (from Call A.P_.P.L.E.) moves the
file buffers down and leaves space between the buffers and DOS..._but
the manual which I sneaked a look at does not tell how to do it. The
article in NIBBLE on page 40 finally revealed the secret. The Tile
buffers are located by a pointer at locations $9D00 and $9D01 (least
significant byte first, as usual). A DOS routine at $A7D4 builds the
buffers using this pointer and the value of MAXFILES (at $AA57).
[note: all addresses assume a 48K system]

All you have to do is change the address at $9D00.9D01 and call the
routine at $A7D4. 1 wanted to create a space of $200 bytes (512
decimal). The normal value at $9D00.9D01 is $9CD3. 1 changed it to
$9AD3, and then typed A7D4G in the monitor. The value of HIMEM was
automatically changed to $9400 from the usual $9600. The protected
area is from $9B00 to $9CFF. The buffers are located from $9400 to
$9AFF and DOS is located from $9D00 to BFFF. 1f a MAXFILES command is
used it changes HIMEM but the buffer top at $9AFF stays unchanged.

To make space like this from an Applesoft program, here is all you
need:

100 POKE 40193,154
110 POKE 40192,211
120 CALL 42964

It isn"t so easy in Integer BASIC, because the routine moves HIMEM
without moving the program down in memory. (Remember Integer BASIC
programs are at the top of memory up against HIMEM; Applesoft programs
are at the low end of memory.) The NIBBLE article gives a method for
Integer BASIC, but I haven®t tried it.

I use an Applesoft HELLO program which first does the three lines
above, and then BRUNs or BLOADs the code I want to hide. The BRUN
portion sets up the 1/0 hooks at $36.39 and sets up the control-Y
vector at $3F8. 1 use the BLOAD if I want the code resident but not
hooked in.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 189 of 2550

Apple 11 Computer Info

Once the space is made, it stays there. |If you INIT a slave disk, the
slave has the same change.

The NIBBLE article reveals a few more details about the buffers in
which you may be interested.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 190 of 2550

Apple 11 Computer Info

Patch S-C Assembler 1l for More Errors

Some of you have asked for a way to see all your errors at once. |ITf
you patch Version 4.0 in this simple way, you will see all error
messages during one ASM, instead of aborting the assembly after the
first error.

Look at $1752 to $1754; you should see 20 81 1A. |If you do, then make
this patch:

:$1752:4C 8E 18

Now try an assembly of some source code with several errors in it.
You will see all the errors on your screen. Or if your printer is on,
they will all print.

Personally, 1 liked it better the other way. But if you never make
more than one error per program, you won"t be able to tell the
difference!

Fast String Input Routine for Applesoft

Yet another use for the imperious ampersand! This program will read a
line from the keyboard or a text file into a string variable. It will
accept commas and colons without complaint, too. No more "EXTRA
IGNORED"™ messages, and much less chance of garbage collection tying
things up.-

The program is shown here with the origin set to $0300, the most
popular place in your Apple. If that taxi is already full, you can
change the origin to whatever you like. In fact, the subroutine
itself is completely relocatable. You can put it anywhere In memory
you like, just so you set $3F6 and 3F7 to point to it.

Lines 1160-1220 are executed if you BRUN a Ffile with this program on
it. They put a JMP GET into $3F5, so that the "&" will call my
subroutine. Once this code iIs executed, you can execute statements
like "&GET A$" to read a line into a string.

Lines 1240-1500 are the input subroutine. At line 1240 the token
following the ampersand is tested; it should be $BE, which is the
token for "GET". |If not, JMP $DEC9 makes your screen say "SYNTAX
ERROR™"!

Lines 1270 and 1280 set up the address of the string variable in
locations $83 and $84. We will use this later to tell Applesoft where
the input line is.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 191 of 2550

Apple 11 Computer Info

Lines 1290-1360 change the prompt symbol to a bell (in case you
backspace too much) and call on the monitor input routine to read a
line. After the line is read, the prompt is restored to whatever it
was before. The length of the input line is in the X-register, and
the line itself is in the buffer starting at $0200.

Lines 1370 and 1380 call on Applesoft to set aside space for the input
line in the string area. This may force garbage collection if you are
about out of memory at the time. GETSPA leaves the address of the
start of the slot set aside for our input line in locations $71 and
$72.

Lines 1390-1460 store the length and address of the input line into
the string variable. The address is of the slot GETSPA just reserved.

Lines 1470-1500 call on MOVSTR to copy the input line from the
monitor®s input buffer (at $0200) into the slot reserved by GETSPA.

Now if you want to read some data off the disk which might have commas
and colons in it, you can do it like this:

100 PRINT CHR$(4) "OPEN MY.FILE"
110 PRINT CHR$(4) "READ MY.FILE"

120 FOR I = 1 TO 10
130 & GET A$(1)
140 NEXT 1

Applesoft Internal Entry Points

An excellent article appeared just over a year ago (by the same title)
in The Apple Orchard, Volume 1, Number 1, March/April 1980. John
Crossley of Apple Computer, Inc. wrote it. He revealed most of the
usable entry points within the Applesoft ROM, and many details on how
they work and how to use them. If you don"t have that magazine, go
get one right away. They are available at some stores, through some
local Apple clubs, and directly from the publisher (the Internatioal
Apple Corps). There are a few typographical errors, but you should be
able to figure them out by comparing with a disassembly.

To get you started, I have made up a list of my own which includes the
starting addresses for all the keyword routines.

I got these from the ROM itself. The keyword list starts at $D0ODO,
and a parallel list of addresses starts at $D000. The addresses in
the list are all low-byte-first, and are all pointing to one byte
before the actual start. That is because Applesoft branches to the
appropriate routine by placing the address from this list on the stack
and then using RTS (see AAL issue #1, page 11, for an explanation of
this technique).

This chart shows all the token values for Applesoft, and the address
where the token is processed.

token keyword addr

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 192 of 2550

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
AO
Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

END
FOR
NEXT
DATA
INPUT
DEL
DIM
READ
GR
TEXT
PR#
IN#
CALL
PLOT
HLIN
VLIN
HGR2
HGR
HCOLOR=
HPLOT
DRAW
XDRAW
HTAB
HOME
ROT=
SCALE=
SHLOAD
TRACE
NOTRACE
NORMAL
INVERSE
FLASH
COLOR=
POP
VTAB
HIMEM:
LOMEM:
ONERR
RESUME
RECALL
STORE
SPEED=
LET
GOTO
RUN

IF
RESTORE
&
GOSuUB
RETURN
REM
STOP
ON
WAIT

D870
D766
DCF9
D995
DBB2
F331
DFD9
DBEZ2
F390
F399
F1ES5
F1DE
F1D5
F225
F232
F241
F3D8
F3E2
F6E9
FG6FD
F769
F76F
F7E7
FC58
F721
Fr727
F775
F26D
F26F
F273
F277
F280
F24F
DO6B
F256
F286
F2A6
F2CB
F318
F3BC
F39F
F262
DA46
DO3E
D912
DOC9
D849
O3F5
D921
DO6B
DODC
D86E
DOEC
E784

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 193 of 2550

t

B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Cco
C1
C2
C3
C4
CS5
C6
C7
C8
Cc9
CA
CB
cC
CD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
E1l
E2
E3
E4
ES
E6
E7
E8

oken

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

keyword

LOAD
SAVE
DEF
POKE
PRINT
CONT
LIST
CLEAR
GET
NEW
TAB(
TO

FN
SPC(
THEN
AT
NOT
STEP
+

O

II'VvOoOX» >\ *
o =

N

SGN
INT
ABS
USR
FRE
SCRN(
PDL
POS
SQR
RND
LOG
EXP
COS
SIN
TAN
ATN
PEEK
LEN
STR$
VAL
ASC
CHR$
LEFTS$

addr

D8CY
D8BO
E313
E77B
DAD5
D896
D6AS
D66A
DBAO
D649

EB91
EC24
EBBO
O00A
E2DF
D413
DFCE
E300
EESE
EFAF
E942
EFOA
EFEB
EFF2
FO3B
FO9F
E765
E6D7
E3C6
E708
EGEG
E647
E65B

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 194 of 2550

Apple 11 Computer Info

E9 233 RIGHTS$ E687
EA 234 MID$ E691

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 195 of 2550

Apple 11 Computer Info

Text File 1/0 in Assembly Language Programs

A surprisingly large number of people have written or called to ask
the same question:

"How can I read or write a text file from my program? 1 know 1 can
issue OPEN, READ, WRITE, and CLOSE commands just like in Applesoft --
by outputting a control-D and the command string. But after that,
where is the data?"

It is really very simple, and after I tell you, you may be just as
embarrassed as they were!

Remember that in Applesoft, after opening a file and setting it up to
read with the OPEN and READ commands, you actually read it with normal
INPUT statements. In assembly language you do the same thing. You
can either input a line by calling the monitor routine at $FD6F, or
you can read character-by-character by calling the character input
routine at $FDOC. After a JSR $FDOC, the input character will be in
the A-register. After a JSR $FD6F, the input line will be in the
monitors buffer starting at $0200, and the X-register will contain the
number of characters in the line (nhot counting the carriage return).

Also remember that after using the OPEN and WRITE commands, all you do
in Applesoft to write on a text file is use the normal PRINT
statement. In the same way, from assembly language, you just call the
monitor print character routine at $FDED. The character to be written
should be in the A-register, and then use JSR $FDED.

Here is a little program which opens a text file and reads it into a
buffer at $4000. 1t demonstrates a few more tricks you might need to
know, as well.

Lines 1180-1270 patch DOS so that it thinks you are executing an
Applesoft program. (If you really are calling this from a RUNning
Applesoft program, you can skip lines 1190 and 1200.) We want to be
able to issue DOS commands by printing control-D and the command
string, so we have to be RUNning. We want to be able to tell when the
end-of-file comes without getting an "OUT OF DATA"™ error, so we turn
on the Applesoft ON ERR flag and set it up to branch to our own
END.OF.DATA routine.

Lines 1310-1350 print the DOS OPEN and READ commands. The message
printer is a very simple loop at lines 1630-1690.

Lines 1380-1500 read the characters from the file and store them in a
buffer at $4000. |1 save the stack pointer before the loop so | can
restore i1t after the end-of-file occurs. Lines 1530-1570 restore the
stack pointer, close the file, and return to DOS.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 196 of 2550

Apple 11 Computer Info

I really should clean up the mess | created with lines 1180-1270, but
I will leave that as an exercise for the reader.

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 197 of 2550

Apple 11 Computer Info

1010
1010 * DEMONSTRATION OF READING A TEXT FILE
1020 Fom oo
1030 PROMPT.CHAR _EQ $33

1040 CURRENT.LINE.NO _EQ $75,76

1050 BUF.PNTR _EQ $9D,9E

1060 DOS.LANGUAGE.FLAG .EQ $AAB6

1070 ONERR.FLAG _EQ $D8

1080 DOS.ONERR.PNTR _EQ $9D5A,9D5B
1090 DOS.REENTRY _EQ $3D0

1100 MON.RDKEY _EQ $FDOC

1110 MON.COUT _EQ $FDED

1120 F oo
1130 TEXT.READER

T
1150 * PATCH DOS SO END OF FILE WILL
1160 * BRANCH TO MY "END.OF.DATA"
1170 F oo
1180 LDA #1 TELL DOS WE ARE IN APPLESOFT
1190 STA DOS.LANGUAGE .FLAG

1200 STA CURRENT.LINE.NO+1 NOT IN DIRECT MODE
1210 STA PROMPT.CHAR NOT DIRECT MODE
1220 LDA #$FF TURN ON "ON ERR"
1230 STA ONERR.FLAG

1240 LDA #END.OF .DATA

1250 STA DOS.ONERR.PNTR

1260 LDA /END.OF.DATA

1270 STA DOS.ONERR.PNTR+1

1280 Fom oo
1290 * OPEN THE FILE

1300 Fom oo
1310 LDY #QOPEN-QTS

1320 JSR QUOTE.PRINT

1330 LDY #QREAD-QTS

1340 JSR QUOTE.PRINT

1350 Fom oo
1360 * READ THE FILE

1370 Fom oo
1380 TSX

1390 STX OLD.STACK.PNTR

1400 LDA #BUFFER

1410 STA BUF.PNTR

1420 LDA /BUFFER

1430 STA BUF_PNTR+1

1440 .1 JSR MON.RDKEY READ CHARACTER
1450 LDY #0

1460 STA (BUF.PNTR),Y

1470 INC BUF.PNTR

1480 BNE .1

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 198 of 2550

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850

INC BUF.PNTR+1

BNE .1 - - -ALWAYS
A e e e e e e e e e
END.OF.DATA

LDX OLD.STACK.PNTR

TXS

LDY #QCLOSE-QTS
JSR QUOTE.PRINT
JMP DOS.REENTRY
PRINT A MESSAGE
MESSAGE STARTS AT QTS,Y
MESSAGE ENDS WITH 00 BYTE
QUOTE.PRINT
21 LDA QTS,Y
BEQ .2
JSR MON.COUT
INY
BNE .1 .. .ALWAYS
.2 RTS

¥ o X %

QOPEN .HS 84 CONTROL-D
.AS -/0PEN TESTFILE/
.HS 8DO00

QREAD .HS 84 CONTROL-D
.AS -/READ TESTFILE/
.HS 8DO00

QCLOSE .HS 84 CONTROL-D
.AS -/CLOSE/
.HS 8DO00

Apple 11 Computer Info

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/Zaal/ -- 199 of 2550

Apple 11 Computer Info

* .LIST OFF
* DOS 3.2.1 DISASSEMBLY $BEAO-BFFF
* BOB SANDER-CEDERLOF 3-26-81
CURRENT.TRACK EQ $478

PHASE . OFF .EQ $co080

PHASE . ON .EQ $co081

MOTOR.OFF .EQ $cos8s8

MOTOR . ON .EQ $co089
ENABLE.DRIVE. 1 .EQ $CO8A

ENABLE .DRIVE.?2 .EQ $cos8B

Q6L .EQ $coscC

Q6H .EQ $co08D

Q7L .EQ $COS8E

Q7H .EQ $CO8F

SECTOR .EQ $2D

VOLUME .EQ $2F

TRACK.CNTR .EQ $41
DATA.CNTR .EQ $46
SYNC.CNT .EQ $47
CONST.AA .EQ $4A
FILL.CNTR .EQ $4B
FMT_.SECTOR .EQ $4B

READ . ADDRESS -.EQ $B965
SEEK.TRACK.ABSOLUTE .EQ $BA1E
RWTS.EXIT .EQ $BE37
ERROR.HANDLER .EQ $BE39
ERR.BAD.DRIVE EQ $40
OR $BEAO
TA $800
FORMAT LDA #128 SET CURRENT TRACK REAL HIGH

STA CURRENT.TRACK SO DRIVE WILL HOME

LDA #0 TO TRACK O
STA TRACK.CNTR INIT COUNTER FOR
JSR SEEK.TRACK.ABSOLUTE

INIT ROUTINE

LDA #3$AA SAVE $AA IN PAGE ZERO FOR TIMING

STA CONST.AA

*
n
—
—
m
=
3
ZY)
m
—
X
>
O
2
=
—
T
()]
<
=
(@]
o
<
—
m
(0]

LDY #80 START WITH 80 SYNC-BYTES

Apple 2 "Apple Assembly Line"™ Article Archive -- Bob Sander-Cederlof
Oct 1980 - June 1986 -- http://salfter.dyndns.org/aal/ -- 200 of 2550

Apple 11 Computer Info

1490 FILL.TRACK.WITH.SYNC

1500 STY SYNC.CNT # OF SYNC BYTES BETWEEN SECTORS
1510 LDA #39 WRITE SYNC"S OVER ENTIRE TRACK
1520 STA FILL.CNTR

1530 LDA Q6H,X GET READY TO WRITE

1540 LDA Q7L,X

1550 LDA #$FF WRITE $FF EVERYWHERE

1560 STA Q7H,X ALL SET TO WRITE. ...

1570 CMP Q6L,X

1580 BIT $00 DELAY 3 CYCLES

1590 .1 DEY

1600 BEQ .3

1610 PHA

1620 PLA THESE ARE JUST FOR TIMING
1630 NOP NEED 27 CYCLES BTWN WRITES
1640 .2 PHA

1650 PL