APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Apple][Computer Family
Technical Documentation

Technical Notes

Apple Computer -- Developer CD -- March 1993

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 1 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHH AR R R R R R R R R
FILE: ATN.ABOUT.92.06
HHAHHHH AR R R R R R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

#0: About Apple 11 Technical Notes June 1992

Technical Note #0 (this document) accompanies each release of Apple 11
Technical Notes. This release includes new Notes for the Apple llgs #105,
106, 107 & 108, new ProDOS Note #30, new GS/0S Note #14, revised Notes for the
ligs #12, 14, 24, 25, 51, 52, 53, 66, 67, 71, 72, 74, 75, 76, 78, 83, 91, 93,
94, 98, 99, 100, 101, 102 and 103, ProDOS #23 and 24, Miscellaneous #14 and
15, and GS/0S #1, 9, 10 and 13 as well as an index to all released Apple 11
Technical Notes, File Type Notes, and Sample Code. If there are any subjects
which you would like to see treated in a Technical Note (or if you have any
questions about existing Technical Notes), please contact us at one of the
following addresses:

Apple 11 Technical Notes

Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014

AppleLink: DEVSUPPORT

Internet: DEVSUPPORT@AppleLink.Apple.com

We want Technical Notes to be distributed as widely as possible, so they are
sent to all Partners and Associates at no charge; they are also posted on
AppleLink in the Developer Services bulletin board and other electronic
sources, including the Apple FTP site (IP 130.43.2.3). You can also order
them through Resource Central. As a Resource Central customer, you have
access to the tools and documentation necessary to develop Apple Il-compatible
products. For more information about Resource Central, contact:

Resource Central, Inc.

P.O. Box 11250

Overland Park, KS 66207

(913) 469-6502

Fax: (913) 469-6507

AppleLink: A2_CENTRAL

Internet: A2.CENTRAL@AppleLink.Apple.com
GEnie: RC.ELLEN

We place no restrictions on copying Technical Notes, with the exception that

you cannot resell them, so read, enjoy, and share. We hope Apple 1l Technical
Notes will provide you with lots of valuable information while you are
developing Apple 11 hardware and software. The following pages list all Apple

Il Technical Notes that have been released.

This Technical Note batch was originally released in May 1992. Since that
time, many of the contact addresses have changed and some typographical errors
have been fixed. To note these changes, this document now bears the date June

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 2 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

1992. No content of any Notes has changed since May 1992.

Released Apple 11 Technical Notes June 1992
NeW **kx
Revised *R*
Apple llc
1 Mouse Differences On lle and llc 11/88
2 40-Column and Double High-Resolution Graphics 11/88
3 Foreign Language Keyboard Layouts 11/88
4 Dvorak Keyboard Layout 11/88
5 Memory Expansion on the Apple llc 11/88
6 Buffering Blues 11/88
7 Existing Versions 11/88
8 Single-Sided 3.5" Media and the Apple llc Plus 5/89
9 Detecting VBL 11/90
Apple lle
1 Overview of the Apple lle 11/88
2 Hardware Protocol for Doing DMA 11/88
3 Double High-Resolution Graphics 11/88
4 RDY line 11/88
5 /INH line 11/88
6 The Apple 11 Paddle Circuits 11/88
7 Interfaces--Serial, Parallel, and IEEE-488 11/88
8 Known Anomalies of Enhanced Ile ROMs 11/88
9 Switch Input Changes 11/88
10 The Apple Ile Card for the Macintosh LC 07/91
Apple llgs
1 How to Install Custom BRK and /NMI Handlers 11/88
2 Transforming 1/0 Subroutines for Use in "Native™ Mode 11/88
3 Window Information Bar Use 1/91
4 Changing Graphics Modes in Mid-Application 1/91
5 Window and Menu Titles 11/90
6 QuickDraw 11 Pattern Data Structure 7/89
7 Halt Mechanism in llgs SANE 11/88
8 Elems Functions in llgs SANE 11/88
9 I1gs Sound Expansion Connector:
Analog Input/Output Impedances 11/88
10 InvalRgn Twist 11/88
11 Ensoniq DOC Swap-Mode Anomaly 11/88
R 12 Tool Set Interdependencies 5/92
13 ROM 1.0 Modem Firmware Bug 11/88
R 14 Standard File Screwiness 5/92
15 InstallFont and Big Fonts 7/89
16 Notes on Background Printing 11/88
17 Application Memory Management and MMStartUp User ID 11/88
18 Do-1t-Yourself SCC Access 7/90
19 Multichanel Out. with the Apple Ilgs Note Synthesizer 11/88
20 Catalog of APW Language Numbers 3790
21 DMA Compatibility for Expansion RAM 11/88
22 Proper Use of Dynamic Segments 9/90
23 Toolbox Use of DOC RAM 11/88
R 24 Apple 1lgs Toolbox Reference Updates 5/92
R 25 Apple l1lgs Firmware Reference Updates 5/92

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 3 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

R
R
R

R

R

R
R
R
R

R

R

R

26 ROM Revision Summary 9/89
27 Graphics Image File Formats 11/88
28 Interface Card Design Guidelines 11/88
29 Monochrome High-Resolution Mode 11/88
30 Apple llgs Hardware Reference Updates 9/90
31 Redirecting Output in APW C 11/88
32 /INH Line Anomaly 11/88
33 ERRORDEATH Macro 11/88
34 Low-Level QuickDraw Il Routines 1/91
35 Printer Driver Specifications 9/90
36 Port Driver Specifications 9/89
37 Free-Form Synthesizer Tips 11/88
38 List Controls in Dialog Boxes 9/90
39 Mega 11 Video Counters 7/89
40 VBL Signal 7/89
41 Font Family Numbers 11/90
42 Custom Windows 11/88
43 Undocumented Feature of CalcMenuSize 11/88
44 GetPenState and SetPenState Record Error 11/88
45 Parameters for GetFrameColor 9/89
46 DrawPicture Data Format 11/88
47 What SetDataSize Does 11/88
48 All About AlertWindow obsolete 11/90
49 Rebooting (Really) 1/89
50 Extended Serial Interface Error Handling 1/89
51 How to Avoid Running Out of Memory 5/92
52 Loading and Special Memory 5/92
53 Desk Accessories and Tools 5/92
54 MIDI Drivers 11/90
55 Avoiding ClrHeartBeat 7/89
56 Managing Dynamic Segments obsolete 11/90
57 The Memory Manager and Interrupts 12/791
58 Keyboard Modifiers Register Anomaly 7/89
59 Do Not Create Zero-Length Text Scraps obsolete 1/91
60 Menu Manager Memorabilia 11/90
61 Window Title Handles 7/89
62 No Non-Solid Window Background Patterns 7/89
63 Master Color Values 7/89
64 Apple 1lIgs Installer and Installer Scripts 9/89
65 Control-~ is Harder Than It Looks 9/89
66 ExpressLoad Philosophy 5/92
67 LaserWriter Font Mapping 5/92
68 Tips for 1/0 Expansion Slot Card Design 9/89
69 The Ins and Outs of Slot Arbitration 5/90
70 Fast Graphics Hints 9/89
71 DA Tips and Techniques 5/92
72 QuickDraw Il Quirks 5/92
73 Using User Tool Sets 1/91
74 A Faster List Manager Draw Routine 5/92
75 BeginUpdate Anomaly 5/92
76 Miscellaneous Resource Formats 5/92
77 Print Manager & AppleTalk Configuration Files 1/90
78 Bank Alignment and Memory Management 5/92
79 Integer Math Data Types 5/90
80 QuickDraw 11 Clipping 3790
81 Extended Control Ecstasy 11/90
82 Controlling the Control Manager obsolete 11/90
83 Resource Manager Stuff 5/92

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 4 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

84 TaskMaster Madness 7/90
85 Moving the Mouse 7/90
86 Risking Resourceful Code 9/90
87 Patching the Tool Dispatcher 9/90
88 The Page One Stack in a 16-Bit World 9/90
89 MessageByName--Catchy Messages 9/90
90 65816 Tips and Pitfalls 11/90
R 91 The Wonderful World of Universal Access 5/92
92 Twisted Tales of TextEdit 11/90
R 93 Compatible Printing 5/92
R 94 Packing It In (and Out) 5/92
95 ROM Diagnostic Errors 9/90
96 Standard File Customization 11/90
97 Picture Comments and Printing 11/90
R 08 Aren®t Windows A Pane 5/92
R 99 Supplemental Scrap Types 5/92
R 100 VersionVille 5/92
R 101 Patching the Toolbox 5/92
R 102 Various Vectors 5/92
R 103 Inline Procedure Names Format 5/92
104 Font Manager Fundamentals 12/91
*** 105 We Interrupt This CPU. .. 5/92
*** 106 ADB Addendum 5/92
*** 107 Tool Locator Tribulations 5/92
*** 108 Finder Funkiness 5/92
Apple 11 Miscellaneous
1 80-Column Screen Dump 11/88
2 Apple 11 Family ldentification Routines 2.1 11/88
3 Super Serial Card Firmware Bug 11/88
4 AppleWorks Keys 5/89
5 AppleWorks File Formats 5/89
6 IWM Port Description 11/88
7 Apple 11 Family ldentification 11/88
8 Pascal 1.1 Firmware Protocol 1D Bytes 11/88
9 AppleSoft Real Variable Storage 11/88
10 80-Column GetChar Routine 9/89
11 Examining the $C800 Space from AppleSoft 5/89
12 Apple 11 Firmware WAIT Routine 11/88
13 not used
R 14 Guidelines for Telecommunication Programs 5/92
R 15 Compatibility Across Apple 11 Models 5/92
16 Apple 11 Parallel Interface Card Firmware 7/90
17 Buried Treasures of the Video Overlay Card 9/90
AppleTalk
1 Identifying AppleTalk 3790
2 ProDOS 8 Compatibility on the Ile and llgs 11/88
3 Avoiding Remote Printer Time-Outs 9/89
4 Printing Through the Firmware 9/90
5 SPCommand Calls and Error $0702 7/89
6 Apple lle Workstation Card Anomalies 7/89
7 MLIACTV Flag and the lle Workstation Card 11/89
8 Using the @ Prefix 9/90
9 The PAP Status Buffer 11/90

HyperCard 11GS

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 5 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

1 Corrections to the Script Language Guide 3/791
R 2 Known HyperCard Bugs 5/92
3 Pitching Sampled Sounds 3/91
GS/0S
R 1 Contents of System Software Distribution Disks 5/92
2 GS/0S and the 80-Column Firmware 11/88
3 Pointers on Caching 11/88
4 A GS/0S State of Mind 7/89
5 Resource Fork Formats 7/89
6 Drivers and GS/0S Direct Page 11/90
7 Behavior of SET_DISKSW 7/89
8 Filenames With More Than CAPS and Numerals 7/89
R 9O Interrupt Handling Anomalies 5/92
R 10 How Applications Find Their Files 5/92
11 About EraseDisk and Format 11/90
12 All About Notify Procs 9/90
R 13 GS/0S Reference Update 5/92
*xEx 14 The Console Driver Technical Note 5/92
ImageWriter
1 Custom Font Selection 11/88

Memory Expansion Card

1 Questions and Answers 11/88
Mouse
1 Interrupt Environment with the Mouse 11/88
2 Varying VBL Interrupt Rate 11/88
3 Mode Byte of the SetMouse Routine 11/88
4 Mouse Firmware Bug Affecting ServeMouse 11/88
5 Check on Mouse Firmware Card 11/90
6 MouseText Characters 1/89
7 Mouse Clamping 11/88
Pascal
4 Pascal Declarations and the Directory Structure
of a Blocked Volume 11/88
10 Configuration and Use of the Apple 11 Pascal
Run-Time Systems 11/88
12 Disk Formatter Routine 11/88
14 Apple Pascal 1.3 TREESEARCH and IDSEARCH 11/88
15 Apple 11 Pascal SHORTGRAPHICS Module 11/88
16 Driver to Have Two Volumes on One 3.5" Disk 11/88
17 SYSTEM.APPLE Patch V2.0 3790
ProDOS 8
1 The GETLN Buffer and a ProDOS Clock Card 11/88
2 Porting DOS 3.3 Programs to ProDOS and BASIC.SYSTEM 11/88
3 Device Search, ldentification, and Driver Conventions 11/88
4 1/0 Redirection in DOS and ProDOS 11/88
5 ProDOS Block Device Formatting 11/88

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 6 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

6 Attaching External Commands to BASIC.SYSTEM 11/88
7 Starting and Quitting Interpreter Conventions 11/88
8 Dealing with /RAM 11/88
9 Buffer Management Using BASIC.SYSTEM 11/88
10 Installing Clock Driver Routines 11/88
11 The ProDOS 8 MACHID Byte 11/88
12 Interrupt Handling 11/88
13 Double High-Resolution Graphics Files 11/88
14 Selector and Dispatcher Conventions 11/88
15 How ProDOS 8 Treats Slot 3 11/88
16 How to Format a ProDOS Disk Device 11/88
17 Recursive ProDOS Catalog Routine 11/89
18 /RAM Memory Map 11/88
19 File Auxiliary Type Assignment 11/88
20 Mirrored Devices and SmartPort 11/88
21 Identifying ProDOS Devices 3790
22 Don"t Put Parameter Blocks on Zero Page 7/89
R 23 ProDOS 8 Changes and Minutia 5/92
R 24 BASIC.SYSTEM Revisions 5/92
25 Non-Standard Storage Types 12/791
26 Polite Use of Auxiliary Memory 1/90
27 Hybrid Applications 1/90
28 ProDOS Dates--2000 and Beyond 9/90
29 Clearing the Backup Needed Bit 9/90
*** 30 Sparse Station 5/92
SmartPort
1 SmartPort Introduction 11/88
2 SmartPort Calls Updated 9/89
3 SmartPort Bus Architecture 11/88
4 SmartPort Device Types 11/88
5 SCSI SmartPort Call Changes 11/90
6 Apple l1lgs SmartPort Errata 11/90
7 SmartPort Subtype Codes 11/88
8 SmartPort Packets 5/89
9 Apple 11 SCSI Errata 7/90
UniDisk 3.5
1 UniDisk 3.5 Internals 11/88
2 UniDisk 3.5 ID Bytes 11/88
3 STATUS Call Bug 11/88
4 Accessing Macintosh Disks 11/88
5 Architectural Differences Between 3.5" Drives 11/88

END OF FILE ATN.ABOUT.92.06

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 7 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: ATN.INDEX.92.06
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Index June 1992

This index encompasses all Apple Il Technical Notes, File Type Notes, and
Sample Code. Technical Notes are denoted by a four-letter category (e.g-,
I1gs for Apple llgs Notes), File Type Notes by the letters FTN, and Sample

Code by the letters SC.

$C800 space
$E100CB
/RAM volume

Misc 11
I1gs 57

GSOS 2, PDOS 15, 18, 21, 23, 24, 26, 8

3.5 drive differences UDsk 5
3.5 ROM llc lic 7
5.0.x I1gs 51
5.25 drives Pasc 17, PDOS 21
40/80-column switch Iilc 7
40 columns Ilc 2
switching to Ile 8
40COL (soft switch) I1gs 29
48K run-time system (Pascal) Pasc 15
50 Hertz Mous 2
7415244 Ile 2
7415245 Ile 2
74L.S251 Ile 9
80-column card PDOS 11, 15
80-column Firmware GSOS 2, Ilgs 25
80-column GETCHAR routine Misc 10
80-column text page 2 Ile 3

80COL (soft switch)
80STORE (soft switch)

Iilc 2, lle 8, lle 10
Ile 3, I1lgs 68, lle 10

320 mode ligs 4

640 mode ligs 4

3200-color picture FTN $C0/0002, $C1/0002
65816 microprocessor I1gs 90

@ prefix ATLK 8, GSOS 10, SC 16
A/D input Iigs 9

acceleration Ile 10

access privileges ATLK 8, GSOS 4
AccessPriv SC 18

ActionNDA SC 19

ADB Ilgs 25, 26, 30, 91, 106
AddResource Ilgs 83

address tables I1gs 90

AddToQueue ligs 24

AddToRunQ ligs 24

AIFF FTN $D8/0000

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 8 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

AIFF-C
AlertWindow
ALLOC_INT
ALLOC_INTERRUPT
Allow Removal
ALTCHARSET (softswitches)
ALTZP (soft switch)
AN3 (soft switch)
AN3OFF (soft switch)
analog output impedence, sound
animation
AnimDemo
annunciators
APPEND (BASIC.SYSTEM)
Apple /// emulation
Apple 3.5 drive
Apple Bowl
Apple Desktop Bus
Apple 11 High-Speed SCSI Card
Apple llc
Apple lle Card (Macintosh LC)
Apple lle
Apple lle Workstation Card
Apple llgs
Apple 1lgs Programmers Workshop
Apple Preferred Format
Apple Sampled Instrument Format
AppleDouble
AppleShare activity arrows
AppleShare
volumes

AppleSingle
AppleSoft

MouseText

real variable storage
AppleTalk

drivers
AppleTalk Session Protocol
AppleWorks GS word processor
AppleWorks

data base

spreadsheet

word processor
application directory
application, GS/0S
application, sample
APW C
APW
arcRot
ASIF
ASP
ATINIT file format
ATINIT file
ATLK ROM signature

Audio Compression and Expansion (ACE)

Audio IFF

FTN $D8/0001

Ilgs 48, 75, SC 5, 7
GSOS 9

Ilgs 18, 105

SmPt 9

Ile 10

I1gs 30, 68

Ile 3

I1gs 29

Ilgs 9

Ilgs 70, SC 3

SC 3

Ile 10

PDOS 24

Misc 2

UDsk 5

GSOS 1

see ADB

PDOS 23, SmPt 5

Iic all

Ile 10, Misc 2, Misc 7
Ile all

ATLK 2, 4, 6, 7, PDOS 23
Iigs all

I1gs 20

FTN $C0/0002, llgs 27
FTN $D5/0007

FTN $E0/0002-3

IIgs 5

FTN $B6, $C7, $E2/FFFF
ATLK 8,

pDOS 17, 21, 22, 23, 30, SC 16, 18, 22

FTN $E0/0001

Misc 11

Mous 6

Misc 9

ATLK all, Ile 10, Ilgs 105,
FTN $E2/FFFF

FTN $BB, llgs 18, 26, 77
see ASP

FTN $50/8010

Misc 4

FTN $19

FTN $1B

FTN $1A, 5

GSOS 10

FTN $B3

SC 1

I1gs 30

FTN $BO, $B5, Ilgs 20, 33
Ilgs 6

FTN $D5/0007, $D8/0002
ATLK 5

Ilgs 77

PDOS 23

ATLK 1, 2

FTN $D8/0001

FTN $D8/0000, $D8/0001

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 9 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

auto repeat

AutoLaunch

auxiliary ID

auxiliary memory

auxiliary types

AUXMOVE routine

Aware

background color

background patterns, window

background printing

backup bit

Bad blocks file

BADCTL error

BADCTLPARM

bank aligned memory

bank-switched memory

BASIC.SYSTEM
buffers

battery RAM

BeginUpdate

BELL (firmware routine)

BELL1 (Ffirmware routine)

Binary I1

Binary Library Utility (BLU)

BindInt

bit-encoded slot configuration

BLOAD (BASIC.SYSTEM)

block device formatting

block size

boot disk (minimal)

boot disks, Pascal run-time

booting

Bootlnit functions

border color

bottleneck procedures (QuickDraw I1)

boundsRect

BRK instruction

BRKVECTOR

BSAVE (BASIC.SYSTEM)

BSAVE

BUBIT

buffer
QuickDraw 11
UnPackBytes

buffering

keyboard

serial

buffering, keyboard

buffers, BASIC.SYSTEM

bug
UniDisk 3.5
ProDOS 8
HyperCard llIgs

bus contention

bus, SmartPort

busy flag, system

BusyBox

cache

location

I1gs 58
SC 22
I1gs 17
ATLK 2,
PDOS 19
Ile 3
SC 16
I1gs 63
I1gs 62
I1gs 16
PDOS 29
FTN $01
SmPt 7
SmPt 7
Ilgs 78
see language card
PDOS 24

PDOS 9

FTN $5A/0002

I1gs 75

Ile 10

Ile 10

FTN $E0/8000, Misc 14
Misc 14
GSOS 9,
I1gs 69
PDOS 24
PDOS 5
UDsk 4
GSOS 1
Pasc 10
UDsk 2
I1gs 73
I1gs 63
I1gs 34, 97
I1gs 80
I1gs 1, 105
ligs 1

PDOS 24
PDOS 24
PDOS 29

PDOS 26

I1gs 18, 105

I1gs 72
I1gs 94

Ilc 6

Ilc 6, l1lgs 25
I1gs 106

PDOS 9

UDsk 3

PDOS 23

HCGS 2

Ilgs 68, Misc 3
SmPt 3

Ilgs 57, 71

SC 2

GSOS 7

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 10 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

cache priority

caching
windows

CalcMenuSize

callbacks, HyperCard 11GS

cards
DMA
physical dimensions
Carta
CASSIN (softswitch)
CASSO (softswitch)
CATALOG (BASIC.SYSTEM)
recursive
CD-ROM disks
CDAs
CDev.Data file
CDevs
CHAIN (BASIC.SYSTEM)
ChangePath
changing resolution
channels, SCC
character devices
status
character 1/0
character sets
characteristics, device
characters, waiting
checksum
chExtra
clamping (mouse)
ClampMouse
Claris
Classic Desk Accessories
CLD instruction
clearModes
ClearMouse
ClearScreen
CL1 instruction
clicks, multiple
clipboard
clipping buffer
clipping
clipRgn
clock driver
clock
Close
CloseAlINDAs
CloseNDAByWiInPtr
CloseResourceFile
CloseView
ClrHeartBeat
CLRVBLINT (soft switch)
CMReleaseResource
code resources
attributes
color table
color table scrap
color tables

GSOS 3

GSOS 3

SC 7

I1gs 43
HCGS 1

I1gs 68

Ile 2

I1gs 28
I1gs 67

Ile 10

Ile 10

PDOS 24
PDOS 17
SmPt 9

FTN $B9, llgs 71
FTN $C7

FTN $C7, Ilgs 100, 86, SC 15
PDOS 24
GSOS 13
Ilgs 4

I1gs 18
GSOS 4

GSOS 13
GSOS 14

Ile 10

GSOS 13
GSOS 13

FTN $E0/0005
llgs 72
Mous 7

Mous 1

FTN $19, $1A, $1B, $50/8010, Misc 4, 5
see CDAs
PDOS 12, 22
I1gs 106
Mous 3

I1gs 72
PDOS 12
I1gs 84
I1gs 99
llgs 72
I1gs 80
I1gs 80
PDOS 23
PDOS 1, 11, Ile 10
I1gs 53
Ilgs 4, 53
llgs 71
Ilgs 71
I1gs 91
I1gs 55
I1gs 49
I1gs 60
I1gs 86
I1gs 81

FTN $C7
I1gs 99
I1gs 63, 97

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 11 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

window
color values (RGB)
command keys, NDAs
Command-W and desk accessories
comment, resource type
CompactMem
configuration files
configuration
Console driver
CONTROL
Control ~
Control key
Control Manager
Control N Monitor command
Control Panel CDA
Control Panel control jumper
Control Panel NDA
control init message
control panel devices
control panel
control record
control template
controls, custom
controls, extended
controls, inactive
controls, tracking
convert (resource attribute)
ConvSeconds
Cool Cursor
cool math (quadratic)
COP instruction
copying files
CopyPixels
COUT routine
COUT1 routine
CPU cycle
CREATE (ProDOS 8)
CROWO and CROW1 signals
CtINewRes
current resource application
cursor
QuickDraw 11
resource format
shielding
text
cursor manipulation
cursors
custom controls, extended
Custom.Control
Custom_Window
CYA
cycle timings, 65816
Darts
data base, AppleWorks
data bus
dates, ProDOS
Davex archived volume
DCE devices

I1gs 98
I1gs 63
llgs 71
Ilgs 71
Ilgs 76
llgs 71
ATLK 8

FTN $5A
GSOS 14
SmPt 6

Ilgs 65
I1gs 58
I1gs 26, 81
I1gs 25
I1gs 26
I1gs 30

FTN $C7
lI1gs 81

see CDevs
I1gs 106
lI1gs 81
I1gs 81
Ilgs 81, 86, SC 4, 9
lI1gs 81
ligs 24
I1gs 84
I1gs 86

FTN $D8/0000
FTN $5A/802F
Misc 12
I1gs 105
PDOS 30
l1gs 72
Mous 6

Ilgs 25

Ile 2

UDsk 3

Iigs 21
Ilgs 4

I1gs 83

I1gs 39, 76, 85
I1gs 76

I1gs 24

I1gs 65

I1gs 85

FTN $5A/802F
I1gs 81

SC 4

SC 5

I1gs 21

Ilgs 70

SC 17

FTN $19

Ile 2

PDOS 28

FTN $E0/8004
I1gs 30

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 12 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

DEALLOC_INTERRUPT
debugger (custom)
DebugSymbols
defProc, window
Deityship, Certificate of
DeleteFromQueue
DeleteMltem
dereferencing handles
Desk Manager
desk accessories
DeskShutDown
desktop pattern
DESTROY (ProDOS 8)
detune (sound)
DEVCNT location
development tool (8 bit)
DEVICE SELECT signal
device names
device remapping
device status, character
device types (SmartPort)
devices
character
identifying
ProDOS
DEVLST table
DEVSEL signal
Dialog Manager
DInfo
direct memory access
direct page (GS/0S)
directory structure
Disk 11
disk image
disk port soft switches
disk sector format (3.5)
DiskCopy
disks
3.5, Pascal
3.5, single-sided
Macintosh
switching
display screens
DisposeAll
DisposeHandle
DLog
DMA bank register
DMA
DMA register ($C037)
DOC chip
DOC mode
DOC RAM (sound)
DOS 3.3
DOSCMD (BASIC.SYSTEM)
double hi-res page 2
double high-resolution graphics

packed

Ilgs 18, PDOS 12
ligs 1

I1gs 103

I1gs 42

FTN $B6

I1gs 24

ligs 24

I1gs 90

I1gs 26, 101

FTN $B8, $B9, Ilgs 53, 71, SC 19
I1gs 53

I1gs 98

FTN $01, PDOS 23
HCGS 3

PDOS 20, 21

SC 21

Ile 4

GSOS 4

PDOS 23

GSOS 13

SmPt 4

GSOS 4, 13

PDOS 21

PDOS 20

PDOS 20, 21

I1gs 68

I1gs 26, 38, 91, SC 6
ATLK 1, GSOS 12, llIgs 69
see DMA

GSOS 6, 7

GSOS 4

PDOS 21, 23

FTN $E0/0005, $EO/800A
I1gs 30

I1gs 25

FTN $E0/0005

Pasc 16

Ilc 8

UDsk 4

UDsk 4

Ile 10

Iigs 17

I1gs 17

SC 6

I1gs 30

Ile 2, Ilgs 21, 68
Iigs 21

I1gs 11, 9

I1gs 19

I1gs 23, 53

PDOS 3

PDOS 2

Ile 3

FTN $08/0-3FFF

Iic 2, Ile 3, 10
FTN $08/74001, Illc 2, lle 3

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 13 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

DOWNLOAD
DragWindow
DrawMenuBar
DrawPicture
DRename
drive, Apple 3.5
drivers
GS/0S
port
printer
DTE devices
DTS Tools and Libraries
Dvorak keyboard
dynamic segments
Dynamo
DYN_SLOT_ARBITER
Easy Access
EasyMount
editLine (dialog item)
Eh?
EJECT
Elems (SANE)
EMStatus
emulation mode (65816)
EndFrameDrawing
EndInfoDrawing
EndOfPicture
EndUpdate
enhanced Ile ROMs
ENVBL (soft switch)
EraseDisk
error codes, QD Aux
ERRORDEATH macro
errors
Pascal booting
ProDOS devices
SmartPort
escape key
Event Manager
events, menu
ExpandPath
ExpressLoad
extended controls
extended file
extended serial port firmware
external commands and functions
EZ Backup
fakeModalDialog
FakeMouse
FamNum2ltemlD
fastPort (QuickDraw 11)
Fatal System Error, $0512
FFGeneratorStatus
FFStartSound
FFStopSound
File System Translators
File Type Descriptors
file level

UDsk 4

Iigs 71

I1gs 60

I1gs 46, 72

GSOS 12

see Apple 3.5 drive
FTN $BB

Ilgs 69, 100, GSOS 6
I1gs 36

I1gs 93, see printer drivers
I1gs 30

SC 20

lic 4

I1gs 22, 56

SC 21

GSOS 4, llgs 69, 102
Ilgs 91

FTN $E2/FFFF

ligs 24

I1gs 83

SmPt 2

Ilgs 8

llgs 71

I1gs 90

SC 5

Ilgs 3

I1gs 46

Ilgs 75

Ile 8

Iic 9

GSOS 11

l1gs 24

I1gs 33

Pasc 10

PDOS 21

I1gs 25

Misc 10

Ilgs 24, 26, 71, 91
I1gs 24

GSOS 10

I1gs 66

see controls, extended
PDOS 25

I1gs 50

see XCMD

FTN $E0/8006

SC 20, 22, 9
I1gs 85

I1gs 104

l1gs 72

I1gs 24

Ilgs 37

I1gs 11, 37

I1gs 37

see FSTs

FTN $42

GSOS 13, Ilgs 71

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 14 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

file transfer Misc 14
file types PDOS 19
filenames GSOS 8
files, sparse PDOS 30
fileSyslID GSOS 11
FIListSessions PDOS 21
FilterProc I1gs 38
FindControl I1gs 84
Finder llgs 76, 108, FTN $42, $CA
Finder information, HFS PDOS 25
finderSaysMItemSelected I1gs 108
FInfo PDOS 25
fInWindowOnly (flag bit) FTN $C7
Firmware Reference Updates l1gs 25
firmware

80-column I1gs 25

ID bytes I1gs 25

mouse I1gs 25

serial port Ilgs 16, 25, 26, 50
FixAppleMenu I1gs 24, 71
Fixed data type I1gs 79
FixFontMenu I1gs 104
FixMenuBar I1gs 43
floating point numerics SC 21, see SANE
Floyd Misc 14
Flush GSOS 13
fNotControl (flag bit) I1gs 92
folder selection I1gs 96
Font Manager Ilgs 15, 26, 46, 53, 104, SC 14
font families I1gs 41, 67
FontReport SC 14
fonts FTN $C8

custom ImWr 1

large Ilgs 15, GSOS 1, Ilgs 4, 41, 67, SC 14
FORMAT SmPt 9, UDsk 4
Format (GS/0S call) GSOS 11
formatter
Pascal Pasc 12
ProDOS PDOS 5
formatting

Macintosh disks UDsk 4

ProDOS disks PDOS 16
FotoFile FTN $08/0-3FFF
FPI I1gs 21
Frac data type I1gs 79
fractions (cool diagrams) I1gs 79
FrameRgn Ilgs 24
free-form synthesizer Iigs 37
FREEBUFR routine (BASIC.SYSTEM) PDOS 9
FreeMem I1gs 51
FrontWindow I1gs 91
FSTs (versions) I1gs 100
FSTs FTN $BD
function pointer table (FPT) I1gs 101
FWENntry I1gs 69
fZoomed (Flag bit) ligs 24
game 1/0 Ile 10
GETBUFR routine (BASIC.SYSTEM) PDOS 9

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 15 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

GetDirEntry
GetFamNum
GetFirstDltem
GetFormatOptions
GetFrameColor
GetFSTInfo
GetiInfo
GetlnterruptState
GetlIntinfo
GetLevel
GETLN (firmware routine)
GETLN buffer
GETLN1 (firmware routine)
GETLNZ (firmware routine)
GetLoadSeglnfo
GetMenuFlag
GetMenuTitle
GetMItem
GetMItemName
GetModeBits
GetNewlD
GetNextEvent
GetPenState
GetPortRect
GetPrefix
GetPrivileges
GetUserPath
GetVector
GetVectors
GetWaitStatus
GetWAP
GetWTitle
GET_FILE_INFO (ProDOS 8)
GET_NAME, GetNameGS
Golden NDA Guideline (ask Matt)
GPIB (General-Purpose interface bus)
GR (soft switch)
GrafOff
GrafOn
grafPort
current
printing
grafProcs
Graphic Disk Labeler document
graphics
ground noise
GS/0S application
GS/0S
versions

GS/0S aware

GS/0S drivers

GS/0S

GS/0S shell application
GSBug

half-dot shift

HALT (SANE)

handles, dereferencing

GSOS 4, 13
I1gs 41
I1gs 38
GSOS 13
I1gs 45
ATLK 1

ATLK 1, 2, 4
l1gs 24
I1gs 25
GSOS 13,
Ile 10,
PDOS 1
Ile 10
Ile 10
I1gs 66
I1gs 24
I1gs 60
I1gs 24, 60

ligs 24

I1gs 18

llgs 71

Ilgs 71, 91

Ilgs 44

I1gs 80

GSOS 10

SC 18

ATLK 8, GSOS 10, FTN $5A

llgs 1

GSOS 14

GSOS 13

ligs 73

I1gs 61

UDsk 3

FTN $B6, $B7

I1gs 53

e 7

Ile 3, llgs 29

llgs 72, FTN $B3, $B5

l1gs 72

I1gs 35

I1gs 24, 82

I1lgs 35, 80, 91, 93

l1gs 34

FTN $53/8002

I1gs 70

I1gs 68

FTN $B3

ATLK 8

ligs 49, 69, 93, 100, FTN $BD,

GSOS all, PDOS 23, 27, SC 16, 18, 22
FTN $B3, $B5

FTN $BB, llgs 100

Misc 14

FTN $B5

I1gs 103

Ile 3

llgs 7

I1gs 90

I1gs 53
Ilgs 65

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 16 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

hardware access

hardware reference updates

hardware, serial port

heartbeat tasks

HFS (Hierarchical File System)

HideCursor

high-resolution graphics
packed

HiliteMenu

HIRES (soft switch)

HPIB (Hewlett-Packard interface bus)

hybrid applications
HyperCard 11GS
bugs

HyperCard 11GS Script Language Guide

HyperStudio sound
1/0 redirection (BASIC.SYSTEM)
1/0 SELECT signal
1/0 STROBE signal
1/0 subroutines
icon scrap
icons, Finder
ID bytes

mouse

UniDisk
ID nibble
identification of CPUs
identifying devices
iDev values
idle events
IDROUTINE routine
IDSEARCH routine
IEEE-488 card
IFF
lic

slots

versions
Ilc Plus
lle
l11gs
ImageWriter 11
ImageWriter
ImageWriter LQ
index
information bar
INH line
INIT
initialization files
InitiallLoad
InitialLoad2
InitMouse
inline procedure names
Installer
InstallFont
Instal INDA
InstallTimer
INSTALL _DRIVER

Ile 10

I1gs 30

I1gs 30

llgs 57, FTN $B6, SC 3
UDsk 4

I1gs 107

FTN $08/0-3FFF

FTN $08/4000, Ilgs 29
I1gs 24, 60

Ile 3, llgs 29

e 7

PDOS 27

HCGS 2

HCGS 1

FTN $D8/8001
PDOS 4

Ile 4

Ile 4

llgs 2

I1gs 99

I1gs 108, FTN $CA
Misc 2

Mous 5

Ubsk 2, 7
PDOS 21

Misc 2

PDOS 21

I1gs 35, 93
I1gs 84

Misc 7

Pasc 14

Ile 7

FTN $D8/0001
Iic all

Iic 7

Iic 7

Ilc 7, SmPt 7
Ile all

Iigs all
ATLK 9

ImWwr 1, SC 9
ATLK 9

TN O

llgs 24, 3
Ile 5, Ilgs 32
SmPt 2, 9, UDsk 4
FTN $B6, $B7
Ilgs 66, 73
I1gs 86

Mous 2

I1gs 103
I1gs 64

I1gs 15

ligs 71

ATLK 5

GSOS 6

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 17 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

instruction timing, 65816
instrument
Integer Math
Integrated Woz Machine
INTEN (soft switch)
interchange formats
interfaces
interlace mode
interleave
international country codes
interrupt state record
interrupt status, SmartPort
interrupt, non-maskable
interrupts

SCcC

serial

unclaimed

IntSource
InvalRect
InvalRgn
Invisible bit
I0SEL signal
IOSTRB signal
IOUDIS (softswitch)
IRQ signal
IRQ. vectors
item draw routine (List Manager)
ItemID2FamNum
WM
J (middle initial)
Jiffy_Windows
joystick connector
joystick
jJumper, Control Panel (S1)
keyboard buffering
keyboard
keyboard layout
keyboard modifiers register
keyboard mouse
keyboard, Dvorak
keyboard, foreign
keyboard, reading

from CDAs
KEYMODREG (soft switch)
Krunching
KVERSION location
language card
LaserWriter
LaserWriter font mapping
LCBNK2 (soft switch)
LEFromScrap
LEIdle
LEKey
level
level _mode
LGetPathname?2
Line Edit controls

ligs 2

FTN $D6

I1gs 26, 79, SC 13
see IWM

Ilgs 49

FTN $D8/0000

e 7

Misc 17

UDsk 4

Ilgs 76

lIlgs 24

SmPt 2

llgs 1

I1gs 57, ATLK 2
I1gs 18, 71, 91, 105, Misc 14
Ilc 6

Ile 8, Ilgs 25, 70, GSOS 9,
Mous 1, 4, PDOS 12
Ilgs 71

Ilgs 24, 75

I1gs 10, 75

ATLK 6

Ilgs 68

I1gs 68

Ile 10

lI1gs 68

I1gs 105

Ilgs 74

I1gs 104

Ilgs 30, Misc 6, UDsk 5
I1gs 91

SC 7

Ile 10

Ile 6

I1gs 30

Ilc 6, Ilgs 106
I1gs 106

Ile 10

I1gs 58

remove

Ilc 4

Iilc 3

I1gs 91

ligs 71

I1gs 58

Pasc 10

PDOS 23

PDOS 12

ATLK 9, Ilgs 41, 67, SC 9
I1gs 67

I1gs 30

I1gs 59

Ilgs 84

I1gs 84

see file level
GSOS 13

llgs 71

I1gs 81

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 18 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Line Edit
List Manager
list controls
list members, inactive
List.Line_Edit
Lister
lists in dialogs
load files
loaders
LoadOneTool
LoadResource
LoadSegName
LoadTools
locinfo
longStatText2 (dialog item type)
lowercase
M2BO signal
M2SEL signal
MACHID location
Macintosh Audio Compression and
Expansion (MACE)
Macintosh disks
Manners, Missed
MarkResourceChanged
mask scrap
Math
MaxBlock
maxWidth
Media Control drivers (versions)
Media Control
Medley document
Mega 11
Mega 11 video counters
memFlag (List Manager)
Memory Expansion Card
Memory Manager
Memory Peeker desk accessory
memory compaction
memory expansion
memory expansion slot
memory 1D
memory management

and interrupts

memory purging
Menu Manager
menu bars, system vs. window
menu caching
menu events
menu strings
menu titles
menu, custom
MenuGlobal
MenuNewRes
Menus
MenuSelect
MenuStartUp
MessageByName

I1gs 26, 81, SC 8
Ilgs 24, 26, 38, 74, SC 17, 8
I1gs 38

I1gs 24

SC 8

SC 9

I1gs 38

FTN $BC

I1gs 22, 52, 66
Ilgs 100, 53

I1gs 83

I1gs 22

I1gs 100

I1gs 6, 80

I1gs 91

GSOS 8

Ilgs 68

I1gs 68

PDOS 11, 15

FTN $D8/0001
UDsk 4

PDOS 26

I1gs 83

I1gs 99

SC 13

I1gs 51

I1gs 72

I1gs 100

I1gs 12, GSOS 1
FTN $54/DD3E
I1gs 32, 68
I1gs 39

Ilgs 74

Ile 10, MemX 1
Ilgs 17, 26, 57, 107
I1gs 25

I1gs 57

Ilc 5, llgs 21
I1gs 21

see User ID
GSOS 3

Iigs 4, 17, 22, 51, 52, 57, 78, 91,
PDOS 26, 27
I1gs 57

Ilgs 26, 43, 60, 81, SC 12
I1gs 60

I1gs 24

ligs 24

I1gs 60

Ilgs 5

SC 12

I1gs 60

llgs 4

SC 12

I1gs 60

I1gs 60

I1gs 89

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 19 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

MessageCenter
MFS (Macintosh File System)
MIDI data
MIDI drivers
MIDI
MIDI Synth
MIDI Tools drivers
MIDI tools
Miscellaneous Tools
MIXED (soft switch)
MLIACTV location
MMStartUp
modal dialog
modal windows in NDAs
ModalDialog
mode switching (320/640)
mode, mouse
modeless dialog
modifiers
MoMan
Money, It"s Only
Monitor
monochrome hi-res graphics
Moof!I*
moreFlags
motherboard
Mouse Keys
mouse button status
mouse card
mouse Ffirmware
mouse
behavior
clamping
identification
positioning
scaling
mouse mode
MouseText
mouseUp events
MOVE__ INFO
MPW T1lgs
MSLOT location
MTR (BASIC.SYSTEM)
multimedia drivers
Music Construction Set
music sequence
name (macro)
named resources
names, inline procedure
NDAs
network volumes
New Desk Accessories
NewControl2
NewHandle
NewMenu
NewMenuBar?2
NEWVIDEO (soft switch)
NewWindow

FTN $B3, $B5, Ilgs 89, 98
UDsk 4

FTN $D7

I1gs 54

I1gs 105

I1gs 12, 54, GSOS 1
FTN $BB

I1gs 23, 54

I1gs 26, 94

Ile 3

ATLK 7, PDOS 23
I1lgs 17, 53, PDOS 27
Ilgs 91, SC 6
ligs 71

I1gs 38

Ilgs 4

Mous 3

SC 6

I1gs 58, 106

SC 22

Misc 13

I1gs 25, 26

Ilgs 29

SC 10

I1gs 81

Ile 9

I1gs 91

Ilgs 25

Ilc 1, Mous 5
I1gs 25

Ile 10, mous all
Iic 1

Mous 7

Mous 5

Ilgs 85

Iic 1

Mous 3

Mous 6

llgs 71

I1gs 102, GSOS 6
I1gs 33

Ilgs 16, Misc 3, 15, PDOS 23
PDOS 24

FTN $BB

FTN $D5, $D6

FTN $D5

I1gs 103

HCGS 2

I1gs 103

FTN $B8, llgs 71, SC 19
ATLK 8

see NDAs

lIlgs 81

Ilgs 17

I1gs 60

I1gs 60

I1gs 70

I1gs 24, 47

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 20 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

NewWindow?2

NextMember2

Nifty, Mr.

NIL in resource maps
NMI

NMI signal
no-special-memory attribute
no-wait mode and console driver
no-wait mode
non-maskable interrupt
Note Sequencer

Note Synthesizer
notification procedures
NOTRACE

NTSC color

NuFX

Object Module Format
offscreen ports

OMF

OMF KIND field
onlyGetSelection
ON_LINE (ProDOS 8)

OOM Queue routines

Open

OpenNDA

OpenPicture

OpenPoly

OpenPort

OpenRgn

optionalCloseAction (NDA Action code)

option_list

0SShutbown

0S_BOOT location

out-of-memory queue, corrupted
out-of-memory routine
P-Machine

PackBytes format

PackBytes

packed super-hires image
packets, SmartPort
paddles
PAGE2 (soft switch)
PaintWorks packed picture
PAL timing chip
PAP
PAPOpen
PAPStatus
Parallel Interface Card
parameter blocks, controls
parameter blocks, ProDOS
ParamText
Pascal 1.1 firmware protocol
Pascal and MouseText
Pascal area (on ProDOS volume)
Pascal

48K run-time system

Patch

Ilgs 24, 3, 82, SC 2, 9
l1gs 24

FTN $B9

I1gs 83

ligs 1

I1gs 68

I1gs 52

GSOS 14

GSOS 13

llgs 1

I1gs 23

I1gs 19, 23

FTN $B6, GSOS 12, 7
PDOS 24

Ile 3

FTN $E0/8002, Misc 14
FTN $BC, llgs 66

SC 20

FTN $BC, llgs 66
Ilgs 52, 78

I1gs 92

Ilc 5, PDOS 8, 21, 23
Ilgs 51

SC 16

Ilgs 71

I1gs 72

l1gs 72

I1gs 91

llgs 72

llgs 71

FTN $BD, GSOS 4, 13
GSOS 2, Ilgs 49
PDOS 27

I1gs 24

Ilgs 51, 78

Pasc 10

I1gs 27

FTN $08/0-3FFF, $08/4000, $08/4001,
$C0/0001, $CO/0002, Ilgs 94
FTN $C0/0001

SmPt 8

Ile 6

Ile 3, llgs 68

FTN $C0/0000

Ile 2

ATLK 3

ATLK 9

ATLK 9

Ile 7, Misc 16

I1gs 81

PDOS 22

I1gs 91

Ilgs 16, Misc 8
Mous 6

PDOS 25

Pasc all

Pasc 15

Pasc 17

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 21 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

run-time boot disks
Pascal Profile manager
Pascal run-time system
Pascal volumes
Patch (Pascal)
patching, tool dispatcher
patching, tools
pathnames
pattern, desktop
patterns
window backgrounds
list
PDLTRIG (softswitch)
PEEK (Applesoft function)
pen pattern
pen state record
permanent initialization files
PFI1
PHO signal
PH1 signal
PH2 signal
PicComments
PICT
picture (QuickDraw 11)
Macintosh
picture comments
picture data format
Picture, QuickDraw 11
PINIT entry
pinouts
PinRect
pitch (sound)
Pixel Map Tools
pixelMap2Rgn
PlaySound
PMCloseSession
PMLoadDriver
PMSetPrinter
PMUnloadDriver
polygons
Pop-Up Menu controls
port drivers
ports, offscreen
portSCB
PosMouse
PostScript
power consumption, cards
power-up byte
POWERUP location
PPToPort
PREAD (Ffirmware routine)
preferences
prefixes and Standard File
prefixes
preload (resource attribute)
Prevent Removal
PrGetUserName
Print Manager drivers

Pasc 10

PDOS 25

Pasc 10

Pasc 16

Pasc 17

I1gs 87

I1gs 101

GSOS 4

I1gs 98

FTN $C0/0002
Ilgs 62

I1gs 76

Ile 10

Misc 11

Ilgs 6

l1gs 44

FTN $B6, $B7
PDOS 21

Ile 4, 1l1gs 68
Ile 4

Ile 4, llgs 21, 68
Ilgs 97, SC 9
FTN $C1/0001, llgs 27, 46
llgs 72, FTN $C1/0001
I1gs 46

I1gs 97

I1gs 46

I1gs 27

Ilgs 16

e 7

ligs 24

HCGS 3

SC 13, 20

SC 20

SC 10

ATLK 3

Ilgs 77, SC 11
ATLK 3

I1gs 77

I1gs 72

lIlgs 81

I1gs 36

SC 20

I1gs 80

Ilgs 85, Mous 1, 3
I1gs 67, 97
I1gs 68

MemX 1

I1gs 49

I1gs 80

Ile 6, 10

FTN $5A

Ilgs 14

I1gs 14, GSOS 10
I1gs 86

SmPt 9

l1gs 77

FTN $BB

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 22 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Print Manager
print loop
print record
resource
Printer Access Protocol
printer driver
printer drivers (versions)
Printer.Setup file
printing
background
transparent
printing text
printX subrecord
procedure names, inline
procname (macro)
ProDOS 8

bugs
ProDOS file system limitations
ProDOS Filing Interface
ProDOS FSM (Macintosh)
ProDOS
PrRecord.Spy
Prvalidate
ptrCheck
PTRIG (soft switch)
ptrToPixImage
ptrToPixImage
purgeable memory
purging memory
PWRITE entry
Q Monitor command
Q6 and Q7 (1wWMm)
QDStartUp
QDStartUp
QDStatus
QDVersion
QuickDraw Il Aux, error codes
QuickDraw 11 Auxiliary
QuickDraw 11

tutorial
QuickDraw 11 picture
QUIT code
R/W line
R/W* line
RAM Disk
RAMRD (soft switch)
RAMWRT (soft switch)
rComment
rCursor resources
RDALTZP (soft switch)
RDCARDRAM (softswitch)
RDDHIRES (softswitch)
RDIOUDIS (soft switch)
RDY line
RDY signal
READ (BASIC.SYSTEM)

Ilgs 35, 77, 93, SC 11, 9
I1gs 93

I1gs 35, 93, SC 11
Ilgs 76

see PAP

Ilgs 35, 93, 97, SC 11
I1gs 100

ligs 77

I1gs 35

I1gs 16

ATLK 4, 97

I1gs 93

I1gs 93

I1gs 103

I1gs 103

ATLK 2, PDOS 4, FTN $01, GSOS 2, 8,
SC 21

PDOS 23

GSOS 4

see PFI

PDOS 25

PDOS all

SC 11

I1gs 93

SC 9

Ilc 9

I1gs 80, 91

Ilgs 91

lIlgs 51

I1gs 78

I1gs 16

I1gs 25

I1gs 30

llgs 72

lIgs 72

I1gs 72

l1gs 72

I1gs 24

I1gs 24, 46, 53, 75, 104
Ilgs 4, 10, 26, 34, 44, 6, 72, 80, 91
I1gs 80

FTN $C1/0001

PDOS 23, 23

Ile 4

Ile 2

GSOS 2, PDOS 8

Ile 3, llgs 68, Misc 15
Ile 3, llgs 68, Misc 15
I1gs 76

FTN $5A/802F

Ilgs 25

Misc 15

Ile 10

Ile 10, Ilc 9

Ile 4

I1gs 68

PDOS 24

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 23 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

READ (Ffirmware routine)
ReadAsciiTime
ReadMouse
RealFreeMem
rebooting
recharge routine
rectangle list resource format
REDIRECT, shell call
refCon, list control
regions
registers, SCC
relPitch
remapping devices
Remote Print Manager
RemoveFromRunQ
Replicator
Replicator
requests, system
resChanged (resource attribute)
RESET routine
Reset (system)
reset key
ResetHook
ResetMember2
resolution, changing
Resource File
Resource Manager
resource application
resource application, current
resource converters
resource files
resource forks
resource formats
resource reference scrap
resource search depth
resource search order
resource search path, CDevs
resource, sound
resourceBlocks,
resources
as templates
resources, named
ResourceStartUp
Restart
ReturnStat (HyperCard I11GS parameter)
Revision B motherboard
rFont resources
rListRef resources
RMFindNamedResource
RMLoadNamedResource
ROM Disk
ROM revisions
ROMs, Ile enhanced
rowBytes
RS-232-C
RS-422
RSHIMEM routine (BASIC.SYSTEM)
rSoundSample

resourceEOF

Ile 10
l1gs 24
Iic 1,
I1gs 51
Ilgs 49
I1gs 16
I1gs 76
I1gs 30
I1gs 38
I1gs 10, 72
Ilgs 18
HCGS 3

PDOS 23
ATLK 3, 4,
I1gs 24

FTN $5A/8031

FTN $EO0/800A

FTN $C7, I1lgs 108

I1gs 83

I1gs 49

I1gs 91

Ile 5

Ilgs 25, SmPt 6

I1gs 24

Ilgs 4

FTN $5E/0001, PDOS 25
Ilgs 53, 76, 83, 86, 107
Ilgs 3, 83

I1gs 83

I1gs 83, 86

GSOS 13
GSOS 5,
Ilgs 76
I1gs 99
I1gs 83
I1gs 83
FTN $C7
FTN $D8/0003
GSOS 13

SC 2

I1gs 83

HCGS 2

Ilgs 53, 71
Ilgs 52, 73
HCGS 1

Ile 3
11gs
11gs
I1gs
I1gs
I1gs
l1gs
Ile 8
11gs
I1gs 30
I1gs 30
PDOS 9
HCGS 3,

Ilgs 85, Mous 1, 3

Ilgs 77, 93

13, Ilgs 71

76
74
83
83
25
26

80

ligs 76, FTN $D8/0003

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 24 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

RST signal
rStyleBlock

rTextForLETextBox2 (resource type)

RTI1 instruction
rTwoRects resources
run queue
run-time system, Pascal
rversion
sampled sound
sampling frequency
SANE
sapling files
scan line control bytes
scanline counter
SCC (chip)
SCC AREG soft switch
SchAddTask
scheduler
Scrap Manager
scrap types
screen dump

80 columns
screen holes
screen image

packed
scripts, Installer
ScrollRect
SCSI
seedling files
segments

dynamic
selection (Text Edit)
selector/dispatcher (ProDOS 8)
self test
SendInfo
SendQueue
separators
SerFlag
serial buffering
serial communication
serial connection
serial controller chip
serial interrupts
serial port firmware
serial port hardware
serial ports
ServeMouse
SetArcRot
SetAutoKeyLimit
SetBufDims
SetContentOrigin
SetCtIMoreFlags
SetCtiTitle
SetCurResourceFile
SetDataSize
SetDefaul tTPT
SetDTR example
SetFrameColor

I1gs 68

I1gs 99, FTN $50/5445
I1gs 24

PDOS 12

lIlgs 24

llgs 24, 57, FTN $B6
Pasc 10

I1gs 76

FTN $D8

I1gs 37

FTN $1B, llgs 26, 7, 8, PDOS 26, SC 13
PDOS 30

I1gs 97

I1gs 39

I1gs 18

I1gs 49

llgs 71

I1gs 16, 26, 71
I1gs 26, 53
I1gs 99

I1gs 27

Misc 1

Ile 10

FTN $C1/0000
FTN $C0/0001, Ilgs 27
l1gs 64

l1gs 72

SmPt 5, 9

PDOS 30

I1gs 66

I1gs 22, 86
I1gs 92

see QUIT code
Ile 9, llgs 95
I1gs 106

I1gs 16

GSOS 4

I1gs 18

Ilc 6, llgs 25
I1gs 105

Misc 14

I1gs 18

Ilc 6

I1gs 16, 25, 26, 50
I1gs 30

Ile 10

Mous 1, 4

IlIgs 6

ligs 24

l1gs 72

I1gs 47

I1gs 81

lIlgs 81

I1gs 83

Ilgs 47

I1gs 101

I1gs 50

I1gs 98

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 25 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

SetGrafProcs
SetInfoDraw
SETINTC3ROM (soft switch)
Setlnterleave
SetinterruptState
Setintinfo

SetlLevel

SetMenuFlag
SetModeBits

setModes

SetMouse
SetMTitleStart
SetOrigin

SetOutBuff

SetPenState

SetPort

SetPrefix
SetPrivileges
SetReslLoad
SetResourceAttr
SetResourceFileDepth
SETSLOTC3ROM (soft switch)
SetStdProcs

SetSysBar

settings, Sound control panel
SetTSPtr

SetVector

SetWAP

SetWTitle

SetZoomRect

SET_DISKSW
SET_DOWN_ADDR

SET_EOF

SET_FILE_INFO

SET_MARK

SET_SYS_SPEED (vector)
SFMultiGet2
SFPGetFile2
SFPMultiGet2

SHADOW (soft switch)
shadowing, super-hires
sheet feeder

Shell

shell application, GS/0S
shell programs and resources
ShieldCursor

Shift key

shift key modification
Sholes keyboard
Shortcuts (File)
SHORTGRAPHICS unit
ShowBootInfo

ShowPen

Shrinklt

ShutDownTools

SIGNAL

signals, GS/0S
SizeWindow

I1gs 34, 35
Ilgs 3

GSOS 2

Ilgs 25
lIlgs 24
I1gs 25
GSOS 13, 1lgs 53
I1gs 24, 60
I1gs 25
I1gs 106
Ilc 1, Mous 3, 4
IIgs 5

I1gs 80
I1gs 16
l1gs 44
I1gs 24
GSOS 10

SC 18

I1gs 83
I1gs 83
I1gs 83
GSOS 2

I1gs 34, 35
I1gs 60

FTN $5A/Sound.Settings
I1gs 24, 73
llgs 1

I1gs 73
Ilgs 61
I1gs 24
GSOS 12, 7
UDsk 4

PDOS 30
PDOS 29
PDOS 30
GSOS 6, 102
I1gs 14, SC 18
I1gs 96
Ilgs 14
Ilgs 70
llgs 72
ATLK 9

SC1

FTN $B5
I1gs 83
I1gs 34
I1gs 58

Ile 9, 10
lic 4

GSOS 1

Pasc 15

FTN $B6, $B7
llgs 72
Misc 14
I1gs 107
GSOS 6

I1gs 57
Ilgs 4

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 26 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

slot 3
slot arbitration
slot mapping (ProDOS devices)
slot ROM space
SLOTC3ROM (soft switch)
SLTROMSEL soft switch
Small Computer Systems Interface
SmartPort errors
SmartPort
SmPt all
SmartPort version
soft switches
disk port
Sonata
Sound settings
Sound Tools
sound
multi-channel
resource format
sampled
sound clicks
sound connector
sound RAM
sound resource
sound scrap
sound, compressed
sound, pitching
SoundEx
SoundSmith
source code file
sparse files
SPCommand
special memory
SpExtra
SPGetStatus
spreadsheet, AppleWorks
SPWrite
stack pointer
stack space, CDAs
stack, page one
Standard Apple Numerics Environment
Standard File
StartFrameDrawing
StartinfoDrawing
startup order
StartUpTools
STATUS bug in UniDisk 3.5
STATUS
SmartPort
status
status string
status, Pascal protocol
statusBits
stereo sound
Sticky Keys
storage types
STORE (BASIC.SYSTEM)
strings, tagged

PDOS 15
GSOS 4, 6,
PDOS 3
ATLK 4
GSOS 2
I1gs 69
see SCSI
I1gs 25
Ile 10,

I1gs 69

I1gs 100

Ile 10, Misc 15

I1gs 30

I1gs 67

FTN $5A/Sound.Settings
ligs 26, 37, SC 10, 23

I1gs 19

I1gs 76

FTN $D8

Ilgs 11

Ilgs 9

see DOC RAM
FTN $D8/0003
I1gs 99

FTN $D8/0001
HCGS 3

SC 23

FTN $D5/0007
FTN $BO

PDOS 30
ATLK 5

I1gs 52, 53
I1gs 72
ATLK 1
FTN $1B
ATLK 5
ATLK 2,
llgs 71
Ilgs 71, 88

see SANE

Ilgs 14, 96, SC 18

SC 5

Ilgs 3

I1gs 12

I1lgs 100, 12, 24, 53, 83, 107
UDsk 3

SmPt 7

PDOS 20, SmPt 2, 9, UDsk 2, 4
GSOS 13

ATLK 9

ATLK 6

ATLK 9

I1gs 19

I1gs 91

PDOS 25

PDOS 24

Il1gs 76

I1gs 25, 70, 88

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 27 of 714

I1gs 25, 26, PDOS 20, 21, 23,

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

STROBE®" (signal)
styled fonts
StyleWriter
subtype, SmartPort
Super Serial Card
super hi-res graphics
super hi-res screen
super hi-res screen location
super-hires screen image
SuperInfo modules
SWO (soft switch)
SW1 (soft switch)
SW2 (soft switch)
swap mode (sound)
synthLAB
SysBeep2
SysFai IMgr
system Monitor
system software
SYSTEM.APPLE
SystemEvent
systemOrUser (flag)
SystemTask
tables of addresses
tagged strings
Tangent, Mr.
TaskMaster

task mask

TaskMasterDA
Teach document
Teach
TEClick
TEFormat
TEFormat structure
TEGetRuler
TEGetText
TEldle
TEInsert
TEKey
telecommunications
TENew
TEPaintText
TERuler
TESetRuler
TESetText
TestControl
Text Tools
text buffer, QuickDraw 11
text color
text cursor bug
text printing
TextEdit controls
TextEdit
TextEdit style scrap
TimeData
timing

65816 cycle

Ile 10

I1gs 104
I1gs 93

SmPt 7

Ile 7, Misc 3
Misc 17

FTN $B3, $B5
I1gs 91

FTN $C1/0000
FTN $BC/4002
Ile 9

Ile 9

Ile 9

Iigs 11

GSOS 1

FTN $5A/Sound.Settings
I1gs 33

I1gs 25

GSOS 1

Pasc 17

I1gs 24

I1gs 101
I1gs 53, 91
I1gs 90

I1gs 76

ligs 71

I1gs 42

Ilgs 84, 47, 53, 75, 80, 81, 84, 91,

SC 2, 9

I1gs 84

FTN $50/5445
SC 24

I1gs 92

FTN $50/5445
Ilgs 99

I1gs 92

I1gs 92

I1gs 84

I1gs 92

I1gs 84

Misc 14

I1gs 92

I1gs 92

I1gs 92

I1gs 92

I1gs 92

Ilgs 92

GSOS 4, llgs 26, 69, 71, 93
Ilgs 4

I1gs 63

I1gs 65

I1gs 93

lIlgs 81

FTN $50/5445, 1lgs 92, SC 24
I1gs 99

Mous 2

Ilgs 70

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 28 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

65816 instruction ligs 2
timing I1gs 105
titles, window and menu I1gs 5
TLMountVolume l1gs 24
TLShutDown FTN $B6, $B7, llgs 53, 73, 101
TLStartUp FTN $B6, $B7, llgs 53
TLTextMountVolume I1gs 24
TOBRAMSETUP llgs 25, 102
ToBusyStrip, vector I1gs 73
Tool Locator Ilgs 26, 89, 101, 107
tool dispatcher, patching Ilgs 87
tool patching I1gs 101
tool set interdependencies I1gs 12
tool set pointer table (TPT) I1gs 101
tool sets FTN $BA

user Ilgs 73, SC 20
tool sets versions, system I1gs 100
Toolbox Reference updates ligs 24
toolbox

and desk accessories I1gs 53

memory usage lI1gs 51
TOPRINTMSG8 I1gs 25
ToStrip, vector Iigs 73
TOWR I TEBRAM Ilgs 25
TrackControl I1gs 84
TrackGoAway I1gs 42
transparent network printing ATLK 4
tree files PDOS 30
TREESEARCH routine Pasc 14
trust and verification FTN $B8
TURTLEGRAPHICS unit Pasc 15
type-ahead buffer Ilc 6
typeless files FTN $00
UCSD Pascal Pasc all
UnBindInt GSOS 9
UNBIND_INT_VECTOR GSOS 9
UniDisk 3.5 drive PDOS 23
UniDisk 3.5 UDsk all
UniDiskStat I1gs 25
UnionRgn l1gs 24
UniqueResourcelD Ilgs 83
UnitStatus (Pascal) Pasc 17
UnitStatus Ilc 5
unit_number PDOS 20, 21
Universal Access I1gs 91
unknown files FTN $00
UnloadOneTool Ilgs 53
UnloadSeg ligs 22
UnloadSegNum I1gs 22
unlocked memory I1gs 57
UnPackBytes FTN $08/4000, $08/4001,

$C0/0001, $CO/0002, Ilgs 94

unpacked picture Iigs 27
UnshieldCursor ligs 34
up, shut (you peoplel) Misc 13
update routines, dialogs I1gs 91
updateRgn l1gs 75
updating windows SC 7

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 29 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

User 1D llgs 66, 71, PDOS 27

user input routine GSOS 14

user names I1gs 77

user tool sets I1gs 53, 73, SC 20

UserCtlltem Ilgs 38

UserliInfo ATLK 8, SC 18

Userltem I1gs 38

userltems in dialogs I1gs 91

VBL (softswitch) Ile 10

VBL interrupts I1gs 39, 40, Mous 2
rate Mous 2

VBL signal Ilc 9, Ilgs 40

VCB PDOS 23, 8

vectors I1gs 105, Misc 14

vectors, various I1gs 102

vendor 1D, SmartPort SmPt 2

version Ilgs 76

version number, SmartPort SmPt 2

version, resource type I1gs 76

versions I1gs 100

vertical blanking see VBL

Video Keyboard I1gs 91

Video Overlay Card Misc 17

video counters Iigs 70

Visit Monitor desk accessory ligs 25

VvisRgn Ilgs 75, 80, 91

Volume Control Block see VCB

volume control Iilc 7

volumes (Pascal) Pasc 16

WAIT (Firmware routine) Ile 10

WAIT routine Misc 12

wait mode GSOS 13

wFrame Ilgs 3, 42

WindNewRes llgs 4

Window Manager Ilgs 26, 47, 61, 62, 75

window background patterns I1gs 62

window defProc I1gs 42

window information bar Ilgs 24, 3

window record I1gs 24, 42

window titles Ilgs 5, 61

windows, color tables I1gs 98

windows, custom Ilgs 42, SC 5

windows, updating Ilgs 83, SC 7

WindStatus l1gs 75

wilnfoDefProc Ilgs 3

winfoHeight Ilgs 3

wlnSpecial (TaskMaster result) ligs 24

word processor
AppleWorks FTN $1A
AppleWorks GS FTN $50/8010
Medley FTN $54/DD3E
Text Edit FTN $50/5445
WordPerfect FTN $A0/0000

WordPerfect file FTN $A0/0000

work area pointer I1gs 73

WRCARDRAM (soft switch) Ilgs 70, Misc 15

WRITE (firmware routine) Ile 10

WRITE (SmartPort) UDsk 4

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 30 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

write-protect bug (UniDisk 3.5) UDsk 3

XCMD/XFCN (HyperCard 11GS) I1gs 86, HCGS 1

xFInfo PDOS 25

XorRgn I1gs 24

years, ProDOS PDOS 28

Z8530 serial chip ligs 18

zero page PDOS 22
SmartPort use of SmPt 6

zero-crossing byte ligs 1

END OF FILE ATN.INDEX.92.06

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 31 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: ATN.Thanks
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support
Text File Thanks and Credit

Developer Technical Support (DTS) has always written Apple 11 Technical Notes
and File Type Notes to be read on paper, where typographical conventions,
formatting and diagrams can often make points much, much clearer than simple
ASCI1 text can. However, for internal reasons of author convenience this makes
the source material in a format unusable on the Apple 11, and the lowest-common
denominator for conversion to a native format is ASCII text files.

Converting these files to text is hard, tedious and thankless, and DTS wishes
to thank those people who have spent their own time and effort to provide this
service for the Apple 11 development community.

For June/July 1992:

Developer Technical Support wishes to thank Eileen Crawford and Tammy Dimas in
Apple®s Engineering Support group for working to make the tools for text Ffile
conversion of these Notes available quickly.

We also thank Softdisk Publishing for the preliminary use of a program that
makes converting Apple llgs/Macintosh high-ASCIl characters to standard ASCII a
lot more painless than it used to be.

But the biggest thanks go to Steve Gunn of New Castle, Indiana, who"s worked
long and hard (and given up part of his summer) to make these Notes available
before the big conference in Kansas City. Now Steve"s agreed to reconvert the
existing Technical Notes and File Type Notes so they"re all consistent and
accurate. Thanks, Steve!

Apple 11 Technical Note and File Type Note Text File Hall of Fame

Mark B. Johnson
Jim Luther

Matt Deatherage
Eric Mueller
Dave Ely

Tim Swihart
Steve Gunn

END OF FILE ATN.Thanks

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 32 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.O0O1
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk

#1: Identifying AppleTalk

Revised by: Jim Luther March 1990
Written by: Dan Strnad November 1988

This Technical Note describes the correct methods for identifying AppleTalk
under ProDOS 8 and GS/0S, as the ATLK ROM signature is no longer used.
Changes since July 1989: Added warning concerning ProDOS 8, version 1.4.

To determine if an application has been launched over the network, refer to
the NetLaunch code fragment found in the AppleShare Programmer®s Guide for the
Apple 1I1GS.

Under ProDOS, to identify both AppleTalk and the slot with which it is
associated for printing, refer to Apple 11 AppleTalk Technical Note #4,
Printing Through the Firmware.

To identify AppleTalk under ProDOS 8:

1. Issue an AppleShare Getlnfo call.
2. If there is no error result, AppleTalk is installed.
InfoParams DB $00 ;Synchronous only
DB $02 ;GetInfo call number
InfoResult DS 13 ;<- results returned here

CheckATalk JSR $BF0O
DB $42 ;$42 command # for AppleTalk calls
DW InfoParams ;Parameter list address
BCS NoATalk ;handle the error

IsATalk - ;AppleTalk installed when here

NoATalk - ;AppleTalk not installed when here

Warning: Due to a bug in ProDOS 8, version 1.4, using the $42 call
crashes ProDOS 8 if AppleTalk is not installed.
Applications that use this routine to check for AppleTalk
should ship with ProDOS 8 version 1.5 or greater, thus
avoiding this bug. (ProDOS 8 Technical Note #21,
Identifying ProDOS Devices contains a routine which
correctly identifies the presence AppleTalk under all
versions of ProDOS 8.)

To identify AppleTalk protocols and AppleShare file system under System
Software 5.0:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 33 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

1. Set up the parameter block for a GS/0S GetFSTInfo call using
fstNum = 1.

2. Issue the GetFSTInfo call.

3. If the FileSysID is $0D the AppleShare FST and AppleShare are
present.

4. If a parameter out of range error ($53) results, the AppleShare
file system is not present.

5. Otherwise, if steps 3 and 4 are inconclusive, increment the fstNum

and loop back to step 2.

To identify AppleTalk protocols, including LAP through PFI but excluding the
file system, under System Software 5.0:

1. Set up the parameter block for a GS/0S DInfo call using device
number one.

2. Issue the DInfo call.

3. If the devicelD is $1D, the AppleTalk main driver and AppleTalk
are present.

4. If a parameter out of range error ($53) results, the AppleTalk
protocols are not present.

5. Otherwise, if steps 3 and 4 are inconclusive, increment the device
number and loop back to step 2.

To identify AppleTalk protocols, including LAP through ASP but excluding the
file system, under System Software 4.0:

1. Issue an an SPGetStatus call
2. IT the call returns without error, AppleTalk is present.

Note: With the release of System Software 5.0, earlier versions are not
supported.

Further Reference

Inside AppleTalk

AppleShare Programmer®s Guide for the Apple I11GS

GS/0S Reference

Apple 11 AppleTalk Technical Note #4, Printing Through the Firmware
ProDOS 8 Technical Note #21, ldentifying ProDOS Devices

O0Oo0OO0O0OO0

END OF FILE TN.ATLK.OO1

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 34 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.002
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk
#2: ProDOS 8 Compatibility on the Ile and IIGS
Written by: Mark Day November 1988

This Technical Note describes areas which could cause an application to run
under the AppleShare Apple Ile workstation software, but fail under the Apple
11GS workstation software.

o] IT code is running in auxiliary memory in emulation mode (e.g-,
ProDOS 8 programs that run code from auxiliary memory), make sure
$0100 in auxiliary memory is set to the normal stack pointer and
$0101 in auxiliary memory is set to the auxiliary (alternate)
stack pointer. (See page 93 of the Apple Ile Technical Reference

Manual.)

o] Make sure ProDOS calls are not made from auxiliary memory; Apple
has never recommended doing this, and it is not supported.

o] Make sure interrupts are enabled when making ProDOS 8 calls.

o] Make sure interrupts are not disabled for long periods of time,

nor for a high percentage of time. Whenever interrupts are
disabled, there is a chance that an AppleTalk packet will be
missed (which could cause AppleShare volumes to be unmounted).
The more interrupts are disabled, the more likely that packets
will be missed. This risk is inherent for any application that
disables interrupts (directly or indirectly), therefore,
interrupts should be disabled with discretion and only when
absolutely necessary.

o] Make sure programs get the completion routine return address from
the GetInfo call when they are started.

o] Make sure to identify AppleTalk by calling GetInfo and checking
for an invalid call number error (which means AppleTalk is not
present). Do not use the ATLK signature bytes for identification.
See Apple 11 AppleTalk Technical Note #1, ldentifying AppleTalk.

Further Reference
o] Apple lle Technical Reference Manual
o Apple 11 AppleTalk Technical Note #1, ldentifying AppleTalk

END OF FILE TN.ATLK.002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 35 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.O0O03
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk

#3: Avoiding Remote Printer Time-Outs

Revised by: Jim Luther September 1989
Written by: Jim Luther May 1989

This Technical Note discusses how to avoid time-outs when printing to remote
printers.

Changes since May 1989: Updated to reflect System Software 5.0 changes

and to clarify the results of changing the time-out interval.

The Apple Il AppleTalk firmware®s Remote Print Manager (RPM), which supports
AppleTalk®"s Super Serial Card (SSC) entry points, maintains a time-out
interval value. The time-out interval is usually set to 30 seconds. When an
application quits writing to the AppleTalk firmware, the RPM waits this time
interval before sending the last block of data to the printer and closing the
Printer Access Protocol (PAP) connection.

What does this mean? If an application waits longer than the time-out
interval (e.g., 30 seconds) between any write accesses to the AppleTalk
firmware (i.e., a pause between initialization and printing or a pause during
printing), the PAP connection closes, the current page may be ejected from the
printer (this is printer dependent--the ImageWriter 1l and ImageWriter LQ do
not automatically eject the page, the Apple LaserWriter does), and the rest of
the application®s output to the printer is lost. |If you initialize the
AppleTalk SSC firmware, you must print immediately or a time-out may occur and
reinitialization is necessary to print again. Applications should not
initialize the firmware and expect it still to be initialized at a later point
in time.

What You Can Do

The RPM®"s PMSetPrinter call may be used to change the time-out interval to a
different value. However, the time-out interval should be kept as short as
possible because other users cannot open another PAP connection with the
printer until your machine has timed-out. In other words, if you set the
time-out interval for five minutes, the RPM keeps the PAP connection open with
the printer for five minutes after the last character is written to the RPM,
thus blocking other machines from using that printer for five extra minutes;
this delay is unacceptable in a shared printer environment.

With an Apple 11GS using System Software 5.0, the RPM®"s PMSetPrinter call may
be used to set the time-out interval to zero. When the time-out interval is
set to zero, the session never times out and must be closed with the Apple
11GS-specific PMCloseSession RPM call.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 36 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Further Reference

o AppleShare Programmer®s Guide for the Apple 1IGS

END OF FILE TN.ATLK.O003

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 37 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.004
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk

#4: Printing Through the Firmware

Revised by: Jim Luther September 1990
Written by: Matt Deatherage & Jim Luther July 1989

This Technical Note discusses considerations of printing through the
AppleTalk Remote Print Manager (RPM) interface from ProDOS 8 applications.
Changes since March 1990: Revised code sample to simplify finding the
transparent network printing slot with the ROM 03 Apple llgs. Please note
that the method of finding the transparent network printing slot shown in the
March 1990 revision of this Note does work correctly, the new method is just
simpler. In addition, revised the wording of the Note to clarify that
transparent network printing is the RPM interface.

The AppleShare Programmer®s Guide to the Apple llgs stated that the Remote
Print Manager (RPM) interface allowed transparent network printing through
Super Serial Card entry points in slot 7. This statement is pretty short-
sighted. 1t"s much like saying printing to an ImageWriter 1l is initiated
when you do a PR#1 command--it"s only true if what you want is where you think
it is--and usually it isn"t.

Note: The AppleShare Programmer®s Guide to the Apple llgs has been
superseded by the AppleShare Programmer®s Guide to the Apple 11
Family.

An Apple lle Workstation Card, although recommended for slot 7, can work in
almost any slot (Just like an ImageWriter Il with a Super Serial Card can be
connected to nearly any slot, except maybe slot 3 when the 80-column firmware
is active). An Apple llgs with ROM versions 00 or 01 may only have the
firmware used by the RPM interface in slot 7. An Apple llgs with ROM version
03 may only have the firmware used by the RPM interface in either slot 1 or 2.

Before printing through the RPM interface slot, take the same precautions you
would take before printing to any slot--check to make sure you see the
requested slot is a Pascal device before using Pascal entry points, and try to
look for the signature bytes that indicate the features you want are present.
In general, avoid hard-coding slot numbers for anything.

ProDOS 8 applications which offer network printing through the RPM interface
should give users the choice of printing to any of the seven slots as well as
the Network Printer. When Network Printer is selected, the application can
find the slot used by the RPM interface by using the 6502 code sample included
in this Note. Allowing the selection of Network Printer is especially
important for applications that keep a configuration file containing a user-s
default printer setup. |If an application keeps only the slot number in the
configuration file, users may need to change the printer selection often if

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 38 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

they print from several different machines.
Warning: Printing to a slot with no firmware generally results in a crash.

The code sample uses two methods to determine the slot the RPM interface is
using. The first method works with the Apple lle Workstation card and the ROM
01 Apple Ilgs. It looks at the AppleTalk completion routine address returned
by the AppleTalk GetInfo call, and if that address is in the slot ROM space,
then that slot is the slot used by the RPM interface. In other words, if the
completion routine points to $0000CnXX, where n is between 1 and 7, then n is
the slot to be used when printing through the RPM interface. |If the
completion routine address is not in the slot ROM space, then the application
cannot determine what slot the RPM interface is using and must query the user.
The second method works only with the ROM 03 Apple llgs. It retrieves the
slot the RPM interface is using from location $E101C2.

This technique applies only to ProDOS 8 programs. Apple Ilgs applications
running under GS/0S should do text printing over the network through the
Remote Print Manager (.RPM) driver, which can be identified by a devicelD of
$001F as returned from the DInfo call.

; This routine will identify AppleTalk and the RPM interface slot
; (if possible).
; This routine is for ProDOS 8 applications only.

keep FindRPMSIlot
longa off
longi off

FindRPMSIot start
Ida #$00
sta RPMSIlot default to no RPM interface slot

; Check for AppleTalk (see AppleTalk Technical Note #1)

Jsr $BFOO ProDOS 8 MLI
dc h"42* $42 command for network calls
dc a"InfoParams* Parameter list address
bcs NoATalk no AppleTalk; handle the error
; Get machine type & ROM version (see Apple Il Miscellaneous Tech Note #7)
sec
Jsr $FE1F What kind of machine are we on?
bcs CheckCom Not a I1GS, check completion address
cpy #$03
bcc CheckCom Earlier than ROM 03 11GS, check
; completion address
ROMO3 anop ROM 03 or greater 11GS" use location
; $E101C2 to find the RPM interface slot
Ida $E101C2 Get the RPM interface slot

sta RPMSlot

beqg AskForSlot
bra HaveSlot

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 39 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

CheckCom

HaveSlot

AskForSlot

NoATalk

RPMSIot
InfoParams

ComReturn

anop
lda
ora
bne
lda
cmp
bcs
cmp
bcc
and
sta

anop

anop

anop

rts

Further Reference

ComReturn+2
ComReturn+3
AskForSlot
ComReturn+1
#$C8
AskForSlot
#$C1
AskForSlot
#$S0F
RPMSIot

use completion address to find slot
bank $007?

high byte = 0?

no, so slot can"t be determined

get the address page

greater or equal to $C8 is bad

less than $C1 is bad

$Cn = $0n

AppleTalk is installed and RPM is
using slot #RPMSlot

AppleTalk is installed but RPM
interface slot cannot be determined

AppleTalk is not installed

so this sample returns

Slot RPM interface is using

Synchronous only

GetInfo call number

result code

completion return address
space for other result info

O0Oo0oo0Oo

Identification Bytes

END OF FILE TN.ATLK.O004

AppleShare Programmer®s Guide for the Apple Il Family
Apple 11 AppleTalk Technical Note #1,
Apple 11 Miscellaneous Technical Note #7, Apple 11 Family ldentification
Apple 11 Miscellaneous Technical Note #8, Pascal 1.1

Identifying AppleTalk

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 40 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.O0O05
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk
#5: SPCommand Calls and Error $0702
Written by: Mark Day July 1989

The system now uses SPCommand calls asynchronously. Applications that have
AppleShare volumes mounted under System Software 5.0 and also make SPCommand
calls themselves should now handle the "Too many ASP calls" error, $0702.

AppleShare uses a protocol called AppleTalk Session Protocol (ASP) to maintain
a connection (session) with all servers that you are logged on to. All
commands and data transfer to the server are sent using ASP.

The implementation of ASP on the Apple I1GS has a limit of one command
outstanding (waiting to complete) per session. This means that if one command
has been sent, its reply must be received before you can send the next
command. Remember, the SPCommand call is used to send commands over a
session. |If you try to issue an SPCommand before another (asynchronous)
SPCommand on the same session has completed, your call will return with a "Too
many ASP calls" error, $0702.

Before System Software 5.0 on the Apple 1IGS, no system software made
asynchronous SPCommand calls, and therefore this error would only occur if the
developer was making the asynchronous calls. As of System Software 5.0, the
AppleShare FST uses asynchronous calls to help prevent the loss of a
connection with servers and to assist the Finder in dynamically updating
windows when a change is made to a network volume. Therefore, this error may
be returned even though the developer is not making asynchronous calls.

The error is easy to handle if you are making synchronous SPCommand calls.
Simply make the call, and if it completes with error $0702, loop back and make
the call again until you can do so without error $0702. This technique forces
your program to wait until ASP is free again to make the call.

IT you are making asynchronous SPCommand calls, and you receive the $0702
error, you might want to install a short (i.e., 1/4 second) timer using the
InstallTimer call, and make the SPCommand call again when the timer completes.
Remember, the InstallTimer has to be asynchronous, since you are making it
from the completion routine of an asynchronous call.

The SPWrite call also has a limit of one outstanding call per session. System
software does not currently use asynchronous SPWrite calls, but looping until
ASP returns something other than $0702 would be a good precaution for SPWrite,
too.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 41 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Note: When using the AppleShare FST under GS/0S, there is little
reason to make SPCommand calls yourself, since most of the calls
you can make are available through the FST as normal file system
calls or as FST-specific calls.

Further Reference

o] AppleShare Programmer®s Guide for the Apple I11GS
o] Inside AppleTalk
o] System Software 5.0 documentation (APDA)

END OF FILE TN.ATLK.O0O05

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 42 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.O0O06
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk
#6: Apple lle Workstation Card Anomalies
Written by: Dan Strnad July 1989

This Technical Note describes known anomalies when using the Apple lle
Workstation Card.

o Pascal Protocol Serial STATUS call returns incorrect results.
When using the Workstation card, the Pascal STATUS call (normally
used for printing) does not properly indicate whether the card is
ready to receive characters. Applications should avoid this call, as
the Pascal WRITE call in the Ffirmware will perform this function
automatically.

o ProDOS 8 invisible bit is not respected.
The invisible bit In the ProDOS 8 access byte was defined after the
release of the Apple Ile Workstation Card, so the ProDOS Filing
Interface present on the card treats this bit as reserved.

Further Reference

o] AppleShare Programmer®s Guide for the Apple I11GS
o] Apple lle Technical Reference Manual

END OF FILE TN.ATLK.OO06

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 43 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.O0O7
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk
#7: MLIACTV Flag and the lle Workstation Card
Written by: Mark Day & Dan Strnad November 1989

This Technical Note describes a problem using the MLIACTV flag with the lle
Workstation Card.

When using the Apple lle Workstation Card, the MLIACTV flag does not always
show that the MLI (or PFIl) is active. This inconsistency can cause programs
that use the MLIACTV flag to fail when making MLI calls from interrupt
routines. Programs can correct for this problem by making all MLl calls
through the NewMLI routine listed in this Note and checking the NewMLIActv
flag instead of the MLIACTV flag. This approach solves the problem only if
all MLI calls, including those made by any interrupt routines, are made
through this routine.

The following routine is a replacement for the MLI entry point at $BF0O.
Programs using this routine can perform a JSR to NewMLl instead, which fixes
the problem. Section 6.2.1 of the ProDOS 8 Technical Reference Manual details
how programs can cause the MLI to return the their routine rather than the
routine that originally called it. For programs using this technique that are
also using the routine below, the location below labeled NewCmdAddr replaces
CmdAdr ($BF9C). The steps involved in patching the MLI return location still
apply, as specified in Section 6.2.1 of the ProDOS 8 Technical Reference.

ML1 patch for Apple 11 Workstation Card
by Mark Day

code shown is compatible with MPW 1IGS cross-assembler
Your program should use the NewMLIActv flag instead of

MLIACTV ($BF9B), and should JSR NewMLI instead of
JSR ML1 ($BF00).

machine M6502 ; 6502 code for //e
longa off
longi off
parmptr equ 0 ; two bytes on zero page
ML equ $BFOO ; entry to the real MLI
NewML1 proc
php ; save old interrupt status to

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 44 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

pla ; temporarily disable interrupts

sta oldp ; so that NewCmdAddr is always valid

sei ; when an interrupting routine sees
; NewMLI active.

sec

ror NewML 1Actv ; NewMLI is now active!

We need to get the return address from the stack so we can
get the command number and parameter block address which
follow the JSR NewMLI, and so we can save NewCmdAddr.

clc

pla ; get low byte of parm address - 1
sta parmptr

adc #4 ; get real return address

sta NewCmdAddr

pla

sta parmptr+1 ; save high byte of parm address - 1
adc #0

sta NewCmdAddr+1 ; save real return address

lda oldp

pha

plp ; reinstate old interrupt status

Now, we copy the call number and parameter list pointer that followed
the JSR NewMLI, and copy them after a JSR to the real MLI.

tya ; save Y on stack

pha

ldy #1 ; offset to command number
lda (parmptr),y ; get command number

sta NewCmdNum

iny ; point to parm list ptr (low)
lda (parmptr),y

sta NewParmPtr

iny

lda (parmptr),y

sta NewParmPtr+1

pla ; unstack value of y register
tay

Now, call the real MLI with the user®s command and parameter list
and jump back to our caller.

call the real MLI
command number
parameter list pointer

jsr MLI
NewCmdNum dc.b 0
NewParmPtr dc.w 0

php ; save C because LSR changes it!
Isr NewML 1Actv ; MLI is no longer active

plp ; restore C

dc.b $4C ; JMP absolute instruction

NewCmdAddr dc.w O target of jump, caller®s return address

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 45 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

NewMLIActv dc.b O ; $80 bit set if MLI active

oldp ds.b 1 ; used to preserve processor status
endp
end

Note that this routine also works on the Apple 11GS, even though the problem
with the MLIACTV flag only affects Apple lle Workstation Cards.

Further Reference

o] AppleShare Programmer®s Guide for the Apple 11GS
o] ProDOS 8 Technical Reference Manual

END OF FILE TN.ATLK.O0O7

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 46 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.O0OS8
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk
#8: Using The @ Prefix
Written by: Jim Luther & Dan Strnad September 1990

This Technical Note discusses use the @ prefix with multiple users.

Apple 11 computers on AppleShare networks feature a unique folder for each
user on the server volume, called the user"s folder. Server volumes
containing these user®s folders are called user volumes. User®s folders exist
on user volumes so that the system and applications have a standard place to
store user-specific data on the network. All network volumes an Apple Il can
boot from are user volumes.

Under GS/0S, the @ prefix allows applications to automatically work with the
user"s folder. |If a user launches your application from a server volume with
a user volume mounted, GS/0S sets the @ prefix to the user®s folder; otherwise
it sets it to the application folder. The @ prefix can reduce design and
coding effort for multilaunch features by providing the application with the
system™s best guess at where user-specific information should be stored. To
safely use the user®"s folder feature, programmers need only remember to use
the @ prefix with the GS/0S class 1 Open call (requestAccess = 1, 2, or 3).
Using the @ prefix with the class 1 Open provides safe access to the file for
as long as i1t remains open, without requiring any network-specific code.

Using the @ prefix is appropriate for applications that want to avoid network-
specific programming while being reasonably well-behaved in a network
environment. For example, applications may store printer defaults in the @
directory or use it as a default when prompting the user to choose a
directory.

There are situations writing data to a file In the @ directory could result in
other users overwriting the data; however, applications may reasonably require
that users not allow these situations to occur In Table 1, the third through
fifth cases are all situations in which this problem could occur. For best
results, when opening a file for writing with the @ prefix, use access
privileges that deny write access to other users. The GS/0S class one Open
call always does this when requestAccess is non-zero. Without this precaution
of denying write access to other users, the user"s data is not protected from
being overwritten while it is In use.

Application Is a

launched user volume @ prefix Is this case
from... present? User name set to... detectable?
local maybe any name application prefix vyes

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 47 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

net yes (not guest) user folder yes
net no any name application prefix vyes
net yes guest guest folder yes
net yes same as user folder special
another user programming
required

Table 1-Possible @ Prefix Configurations

Consider the third case. Although the application was launched from a server,
the server does not contain a user®s folder, nor is there any other mounted
server containing a user®"s folder. |In this case, if multiple users launch a
single copy of the application from the same folder at the same time, each
user"s @ prefix would point to the same folder from which they all had
launched the application. By denying other users write access when opening
the file, you prevent users from overwriting each other®"s data. However, the
other users are no longer prevented from overwriting the data when the user
with write access closes the file, at which point a different user can write
to the file. Therefore, using access privileges in combination with the @
prefix deters one user®s data from being overwritten by another, but only so
long as the file remains opened by the user with write access. This approach
may provide sufficient protection for saving certain user configuration and
preference information.

When saving work the user plans to resume later, this approach may not provide
sufficient protection. In this situation, conflicts can also arise if the @
prefix is set to the application prefix rather than to the user®s folder. It
is up to the programmer to determine whether to use the @ prefix, how to use
it, and whether this level of protection is sufficient for the particular data
involved.

In addition to using the @ prefix (or the user path to which it attempts to
refer) with access that denies other users permission to write to the file,
applications can check to see if the user path could point to the same folder
for multiple users at the same time. To do this, the application first checks
to see if it was launched across the network. This is the case when class one
GetFilelnfo on the user path returns fileSysID = $0D. |If the application was
launched across the network, the user path could be set the same for multiple
users if the user has logged on as a guest (UseriInfo returns a null userName,
the fourth case in Table 1) or if you are using the @ prefix and the system
has set it to the application prefix on a non-user network volume (error $60
from GetUserPath, the third case in Table 1). [If the application determines
that the user prefix may be set the same for multiple users, then it could use
an alternate approach to determine where the data is to be stored, by
prompting the user for example.

Although it would be comparatively difficult for an application to determine
whether multiple users with the same name were running the application from
the same server (the fifth case in Table 1), the documentation for the
application could warn against this. The system does not provide any specific
information about when this condition occurs.

One More Caution

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 48 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

One other caution to observe when using the @ prefix: since other
applications are also storing data in the same user®s folder, each application
should be careful to reference distinct files. Regardless of how the
application chooses to do this--by checking that the file being created does
not already exist, by choosing a distinct name for the file, or by some other
method--it should usually operate only on files of its own creation.

Programmers should keep in mind that the @ prefix is provided as a programming
convenience. The AppleShare FST also provides the GetUserPath and UserlInfo
calls. In combination with GetFilelnfo, these calls allow programmers to
devise other, more customized approaches for determining where to save the
user"s data.

Further Reference

o AppleShare Programmer®s Guide for the Apple Il Family
0 GS/0S Reference
0 GS/0S Technical Note #10, How Applications Find Their Files

END OF FILE TN.ATLK.OO08

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 49 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.ATLK.009
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

AppleTalk
#9: The PAP Status Buffer
Written by: Jim Luther November 1990

This Technical Note shows the format of the status data returned into the
application-supplied status buffer by the PAPStatus and PAPOpen Printer Access
Protocol (PAP) AppleTalk commands. The status buffer format is shown for both
LaserWriter and ImageWriter (with the ImageWriter 11/LQ LocalTalk Option card
installed) printers.

The PAPStatus and PAPOpen AppleTalk commands must supply a pointer to a 260-byte
status buffer. When the PAPStatus or PAPOpen commands complete, the status
buffer contains the ATP data portion of a Status (TResp) packet. The first four
bytes of that data are unused, so the actual status data starts at offset $04 in
the status buffer.

The LaserWriter printer returns its status data in the form of a Pascal string.
That string is usually something suitable to display on the screen (e.g.,
"status: idle"™ or "job: Fred; document: My LaserWriter is on fire; status: busy;
source: AppleTalk™). In fact, the status text displayed in the Print Manager
LaserWriter dialog boxes i1s usually the statusString returned by PAPStatus or
PAPOpen. Figure 1 shows the contents of the status buffer returned by a
LaserWriter.

Sy +
$00 |_ N Longword Unused
I_ unused 1
I_ _
| |
S +
$04 |_ (string length) _|
I_ _l
I_ _l
status string . String The PAP status string
. . (Pascal string, ASCII,
l_ 1 high-bit clear)
I_ _l
|
$103 +--————— +

Figure 1-PAP Status Buffer from a LaserWriter

The ImageWriter 11/LQ LocalTalk Option card does not return a status string for

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 50 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

display. Instead, it returns a statusBits word where each bit within that word
has a specific meaning. Your application can interpret the statusBits word and
generate an appropriate message to display. Figure 2 shows the contents of the
status buffer returned by the ImageWriter 11/LQ LocalTalk Option card and the
individual bit definitions of the statusBits word.

ey +
$00 |_ 1 Longword Unused
l_ unused |
I_ _l
| |
S +
$04 |string data length| Byte Always = 2
Sy +
$05 |_ statusBits | Word Status bits returned by
| | LocalTalk ImageWriter
o + Option card (see following
$07 |_ 1 definition)
l_ _l
I_ |
253 Bytes Unused
I_ _l
l_ _l
| |
$103 +-——————m +

ottt -ttt ——F——F——F——F——F——F——F——F+——+
|15114113]12111]10] 9] 8] 7| 6] 5] 4] 3] 2| 1] O]
Foto ottt bbb+
I I<-- Reserved --—-—>] | | 1 1
= Printer is busy ----————-- + 11 1

=
|

I

I
Color ribbon installed -~-———-—-—--—---------———————— S |
Sheet feeder installed -------—--——-------------———— +
Paper out error ---—-—-———————————— +
Cover open error ———————— +
Printer off line -----———----——o e +
Paper jam error ———————— - +
Printer fault -——————————— e +
Printer active (head is moving) ---------————————————— +

RPRRRRRRR

Figure 2-PAP Status Buffer from an ImageWriter 11/LQ LocalTalk Option Card

There are two additional things to note when interpreting the statusBits word
returned by a ImageWriter 11/LQ LocalTalk Option card:

o] IT a sheet feeder is installed (bit 6 = 1), running out of paper results
in a "Paper jam error'™ (bit 2 = 1) instead of a "Paper out error” (bit 5).
0 The ImageWriter 11/LQ LocalTalk Option card has been known to randomly

return all ones in the low byte (bits 0-7) of the statusBits word. When
this happens, the statusBits word is invalid and an application should
repeat the PAPStatus call to get valid information.

Further Reference

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 51 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

o] Inside AppleTalk, Second Edition
o] AppleShare Programmer®s Guide for the Apple Il Family

END OF FILE TN.ATLK.O009

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 52 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.001
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S

#1: Contents of System Software Distribution Disks

Revised by: Matt Deatherage June 1992
Written by: Matt Deatherage November 1988

This Technical Note describes the contents of the disks System.Disk and
System.Tools and the minimum Ffiles necessary to boot GS/0S starting with
System Software 5.0.

CHANGES SINCE JANUARY 1991: Now describes System Software 6.0. Changed the
title to not reflect disk names.

This Note gives a description of each of the files in the Apple llgs System
Software 6.0 package. This package includes six disks: Install,
SystemToolsl, SystemTools2, Fonts, synthLAB and System.Disk. System Software
6.0 requires at least 1 MB of memory, one 3.5" drive and another storage
device (either a second 3.5" drive or a larger capacity device). 2 MB of
memory and a hard disk are highly recommended.

System._Disk is a pre-configured boot disk for floppy-based users. Because all
the files on System.Disk appear on other disks in the 6.0 set, they are only
listed and not described a second time.

Contents of Install

ProDOS Every file system boots differently; the boot
blocks for ProDOS disks look for a file name
ProDOS. This is that file. It is the GS/0S
file system stub necessary to start the boot
process.
System The directory containing most of the GS/0S
files.
CDevs The directory containing all Apple llgs Control
Panel Devices (CDevs) required for installing
6.0.
General Allows setting of general system parameters.
RAM Controls the size of the RAM disk and the GS/0S
Disk Cache.
SetStart Lets you choose which application to boot into.
Desk.Accs The directory containing all the classic and
new desk accessory files to be loaded at boot
time.
ControlPanel The New Desk Accessory which allows users to
control almost all system parameters and choose
printers and file servers.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 53 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Drivers

AppleDisk3.5

AppleDisk5.25

Console.Driver

SCSI1 _Manager

SCSIHD.Driver

UniDisk3.5

Error._Msg

Fonts

FastFont
FSTs

Char.FST

Pro.FST
GS.0S
GS.0S.Dev

P8

SetStart.data

Start

Start.GS.0S

System.Setup

Resource.Mgr

The directory containing all device drivers
needed by GS/0S and the Toolbox (including the
Print Manager and MIDI Tools).

The Apple 3.5 Drive device driver for GS/0S.
Also drives SuperDrives connected to the Apple

11 SuperDrive interface card.

The driver for Apple 5.25" disk drives,

including Disk Il drives and Apple UniDisk 5.25
drives. This driver is required for GS/0S to
recognize 5.25" disk drives. 1In 6.0, it is up
to 300% faster than in earlier versions of
system software.

The text screen and keyboard device driver for
GS/0S.

The GS/0S SCSI Manager, the supervisory driver
that arbitrates hardware-level usage of Apple~s
Apple 11 SCSI cards.

The GS/0S driver for SCSI hard disks. This
driver is required for GS/0S to recognize SCSI
hard disks.

The GS/0S driver for UniDisk 3.5 drives. This
driver is required for proper operation of
UniDisk 3.5 drives. Using the UniDisk with
GS/0S without this driver eventually corrupts
media.

A compiled file containing all error messages
required by GS/0S. This file is separate from
the GS.0S file to provide easier support for
localization.

The directory containing all system fonts to be
used.

This makes Shaston 8 text drawing much faster.
The directory containing the file system
translators to be loaded at boot time.

The character device FST.

The ProDOS FST.

The remainder of GS/0S.

The GS/0S Device Manager and associated core
routines. Separate from GS.0S for speed
reasons.

The ProDOS 8 operating system.

An invisible file created by the SetStart
Control Panel, indicating which application the
system should boot into. On this disk, this
points to the Installer.

The boot program. If this file exists, GS/0S
always launches it upon booting. Under 6.0,
this program usually reads the SetStart.data
file and launches the indicated application.
The file containing the GLoader and GQuit
routines. It loads the files GS.0S and
GS.0S.Dev, which contain the rest of the
operating system.

The directory containing all the
initialization files to be executed at boot
time.

The Resource Manager. This is an
initialization file; the design of the Resource

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 54 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Manager requires it to be present even when an
application has not specifically loaded it.
The system does not boot if this file is not

present.
Sys.Resources A file containing system resources, available
to the system software and to applications.
Tool .Setup A required file that loads files which contain

all the patches to tools in ROM for ROM levels
01 (TS2) and 03 (TS3). Tool.Setup would attempt
to load TS1 if executed on a machine with ROM
level 00, but GS/0S does not boot on such a
machine, therefore, TS1 is not included.

Tool .Setup also contains patches common to both
ROM 1 and ROM 3.

TS2 Patches to ROM tools for ROM 1.
TS3 Patches to ROM tools for ROM 3.
Tools The directory containing tool files for all

tools not in ROM.

Tool014 Window Manager .

Tool015 Menu Manager .

Tool016 Control Manager.

Tool018 QuickDraw Auxiliary.

Tool019 Print Manager.

Tool020 LineEdit.

Tool021 Dialog Manager.

Tool022 Scrap Manager.

Tool023 Standard File.

Tool027 Font Manager.

Tool028 List Manager.

Tool034 TextEdit.

Icons The directory containing all the Finder"s

old-style icon Tiles as well as new Desktop
database files and file type descriptors.

FType.Apple The file type names used by the Finder (on all
systems).
Installer The Apple Ilgs Installer program. This program

makes use of scripts found in the Scripts
directory on this disk to install parts of the
system, as well as third-party applications,
without the user needing to copy individual
files.

Scripts This directory contains all the scripts for the
Installer. On launch, the Installer looks in
its parent directory for the Scripts directory
and the scripts it contains. It also reads
MessageCenter message #1.

A2 .RAMCard Script to install the driver for the Apple I1
Memory Expansion Card (the slot-based, or
"slinky" card).

Adv._Disk._Util Script to install the Advanced Disk Utility
program.

Apple.Bowl Script to install the Apple Bowl game.

Apple.MIDI Script to install the Apple MIDI Interface
driver and tool set.

AppleDisk5.25 Script to install the 5.25" disk driver for
GS/0S.

AppleShare Script to install AppleShare.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 55 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

AppleShare3.5
Archiver
Aristotle.Patch

ATImageWriter

ATImageWriterLQ

Calculator
Card6850.MIDI

CDROM

CloseView

DCImageWriter

DCImageWriterLQ

DOS3.3.FST

Easy.Access

Epson

Fonts
Fonts.Max
Fonts.Std
HFS.FST

Inst.Sys.Min

Inst.SysF._NoFin

Instal .Sys.File

LaserWriter

Local .Net.Boot

Script that creates an 800K or 1440K GS/0S
startup disk which contains AppleShare.

Script to install Archiver, the new GS/0S-based
backup program.

Script to install a change to Aristotle for
easier class transition.

Script to install the ImageWriter printer
driver for the Print Manager, as well as the
files necessary to work with AppleTalk.

Script to install the ImageWriter LQ printer
driver for the Print Manager, as well as the
files necessary to work with AppleTalk.

Script to install the Calculator new desk
accessory.

Script to install the 6850-based MIDI Interface
card driver.

Script to install the High Sierra FST as well
as the SCSI Manager and SCS1 CD-ROM driver for
GS/0S.

Script to install the CloseView NDA, which
makes the screen more legible to some
visually-impaired users.

Script to install the ImageWriter printer
driver for the Print Manager, as well as the
files necessary to connect it to a serial port.
Script to install the ImageWriter LQ printer
driver for the Print Manager, as well as the
files necessary to connect it to a serial port.
Script to install the read-only DOS 3.3 file
system translator.

Script to install the EasyAccess init, which
provides sticky keys and keyboard mouse to ROM
1 users.

Script to install the Epson printer driver for
the Print Manager, as well as the parallel card
driver.

Script to install the minimum suggested font
set.

Script to install all fonts provided with
System 6.0.

Script to install the standard font set.

Script to install the Hierarchical File System
(HFS, used on the Macintosh) Ffile system
translator.

Script to install a minimal GS/0S system on an
800K volume. Note that this is different than
5.0.x"s "Inst.Sys.Min" script, the 6.0 version
of which is in the file named "AppleShare3.5".
Script to install a minimal GS/0S
system,without the Finder, on a given
destination volume.

Script to install a complete System Software
6.0 configuration, including new features, on a
given destination volume.

Script to install the LaserWriter printer
driver for the Print Manager, as well as the
files necessary to work with AppleTalk.

Script to create a 3.5" floppy disk with

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 56 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

MediaControl

MediaCtrl .CDSC

MediaCtrl .P2000

MediaCtrl .P4000

Namer

Pascal .FST
Quick.Logoff
SCSI .Hard.Disk
SCS1.Scanner
SCSI1 .Tape
Server._Sys._File

Sounds.All

StyleWriter

Teach

UniDisk3.5

VideoKeyboard

VideoMix

Contents of SystemToolsl
Icons

System

Finder
CDevs

DirectConnect

minimal system software that boots into a
server selection program (the network "'Start"
program from SystemTools2).

Script to install the Media Control toolset and
all Media Control drivers supplied with System
6.0.

Script to install the Media Control toolset and
the drivers to work with the Apple CD SC drive.
Script to install the Media Control toolset and
the drivers to work with the Pioneer 2000
series laserdisc players.

Script to install the Media Control toolset and
the drivers to work with the Pioneer 4000
series laserdisc players.

Script to install the printer Namer Control
Panel. Namer 1l (a ProDOS 8 application) is
not included with System 6.0.

Script to install the read-only Apple Il Pascal
file system translator.

Script to add a quick logoff feature to
AppleShare.

Script to install the SCSI Manager and SCSI
hard disk driver for GS/0S.

Script to install the SCSI Manager and SCSI
scanner driver for GS/0S.

Script to install the SCSI Manager and SCSI
tape driver for GS/0S.

Script to install System Software 6.0 on an
AppleShare File Server.

Script to install all sounds provided with
System Software 6.0 into the '"System:Sounds"
folder of the designated volume.

Script to install the StyleWriter printer
driver for the Print Manager, as well as the
files necessary to connect it to a serial port.
Script to install the application Teach, which
displays and edits Teach Ffiles, text files,
AppleWorks files, MacWrite files and Installer
scripts.

cript to install the UniDisk 3.5 driver for
GS/0S.

Script to install the Video Keyboard new desk
accessory, which allows users to type by using
the pointing device instead of the keyboard.
Script to install the latest versions of the
Apple 11 VideoMix software and tools.

Additional icons for the Finder. This

folder is currently empty.

A directory containing additional parts of the
system software.

The Apple llgs Finder, version 6.0.

Directory with additional Control Panel
Devices.

Allows selection of direct-connected printers.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 57 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Desk.

Keyboard
Modem
Monitor

Printer
Slots

Sound

Accs
CDRemote

FindFile

Calculator

Drivers

A2 _RAMCard

Apple_MIDI
Card6850.MIDI
Epson

ImageWriter
ImageWriter.LQ

Modem
Parallel .Card

Printer
SCSI1 _Manager

SCSICD.Driver

SCSI1Scan.Driver

SCSITape.Driver

StyleWriter

Sets keyboard parameters.

Controls modem port settings.

Sets 40-column or 80-column mode, monochrome or
color mode, and the color of text, text
background, and borders.

Controls printer port settings.

Allows selection of slot settings and startup
slot.

Sets user preference for sound pitch and
volume. Also allows the user to assign
digitized sounds to events that happen while
using the computer.

Sets the internal clock®s time and display
format and optionally tracks Daylight Savings
Time.

Directory with additional desk accessories.
An updated version of the CD Remote new desk
accessory which ships with the AppleCD SC.

A new desk accessory that finds files on
volumes GS/0S can read.

A calculator new desk accessory.

Directory with additional device drivers for
GS/0S and the Toolbox.

The GS/0S driver for slot-based memory
expansion cards. This driver is not required
to use these cards with GS/0S, but it does
provide a substantial speed improvement.

The Apple MIDI Interface driver for the MIDI

Tools.

The driver for 6850-based MIDI interface cards
for the MIDI Tools.

The Epson(R) printer driver for the Print
Manager .

The ImageWriter driver for the Print Manager.
The ImageWriter LQ driver for the Print
Manager. Starting with System Software 5.0.3,
this driver uses all the capabilities of the
ImageWriter LQ.

The modem port driver for the Print Manager.

A driver for some parallel printer interface
cards for the Print Manager. This driver works
with the Apple Parallel Interface Card, as well
as several other parallel interface cards.

The printer port driver for the Print Manager.
The GS/0S SCSI Manager, the supervisory driver
that arbitrates hardware-level usage of Apple~s
Apple 11 SCSI cards.

The GS/0S driver for the AppleCD SC drive.

This driver is required for GS/0S to recognize
CD-ROM drives.

The GS/0S driver for the Apple Scanner or
OneScanner. This driver is required for GS/0S
to recognize Apple®s scanners.

The GS/0S driver for the Apple Tape Backup
40SC. This driver is required for GS/0S to
recognize Apple®s now-discontinued Tape Backup
40 SC.

The StyleWriter driver for the Print Manager.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 58 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Fonts
Courier.09
Courier.10
Courier.12
Courier.14
Courier.18
Courier.20

Directory with additional fonts
9-point Courier font.
10-point Courier font.
12-point Courier font.
1l4-point Courier font.
18-point Courier font.
20-point Courier font.

Courier.24 24-point Courier font.

Geneva.10 10-point Geneva font.

Geneva.12 12-point Geneva font.

Geneva.14 14-point Geneva font.

Geneva.16 16-point Geneva font.

Geneva.18 18-point Geneva font.

Geneva.20 20-point Geneva font.

Geneva.24 24-point Geneva font.

Helvetica.9 9-point Helvetica font.

Helvetica.10 10-point Helvetica font.

Helvetica.12 12-point Helvetica font.

Helvetica.14 14-point Helvetica font.

Helvetica.18 18-point Helvetica font.

Helvetica.20 20-point Helvetica font.

Helvetica.24 24-point Helvetica font.

Shaston.16 16-point Shaston font.

Times.09 9-point Times font.

Times.10 10-point Times font.

Times.12 12-point Times font.

Times.14 14-point Times font.

Times.18 18-point Times font.

Times.20 20-point Times font.

Times.24 24-point Times font.

Venice.12 12-point Venice font.

Venice.14 14-point Venice font.

Venice.24 24-point Venice font.

FSTs Directory with additional File System

Translators.

DOS.3.3.FST The DOS 3.3 FST, which allows GS/0S to access
5.25" disks formatted in DOS 3.3 format. This
FST is read-only; it only performs read
operations.

HS_FST The High Sierra FST, which allows GS/0S to
access CD-ROM discs formatted in the
international standard High Sierra or ISO 9660
formats. This FST is read-only; it only
performs read operations.

HFS_FST The HFS FST, which allows GS/0S to read and
write any disk in the Macintosh"s HFS format.

Pascal .FST The Apple Il Pascal FST, which allows GS/0S to
access any disk formatted in Apple 11 Pascal
format. This FST is read-only; it only
performs read operations.

Tools Directory with additional tools.

Tool025 Note Synthesizer.

Tool026 Note Sequencer.

Tool029 ACE Tools.

Tool032 MIDI Tools.

Adv._Disk._Util The Advanced Disk Utility program which allows
for partitioning of SCSI hard disks, as well as

erasing, initializing, and zeroing volumes or

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 59 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

partitions.

BASIC.System The ProDOS 8 BASIC command interpreter.

Contents of SystemTools2

Icons Additional icons for the Finder. This
folder is currently empty.

AppleTalk This directory contains additional AppleTalk
files and utilities for AppleShare and
AppleTalk.

Boot.Driver A driver for AppleShare that GS/0S loads before

the other drivers are loaded and which remains
resident in memory after the boot process is

finished. Installed on servers by the
Installer script Server.Sys.File.

Display.0 An update to the Aristotle program installed by
the "Aristotle.Patch" script.

QuickLogoff An initialization file used to add a quick
logoff feature to AppleShare.

Start The AppleShare startup program which is
installed instead of the standard Start program
on AppleShare volumes. It allows the user to

log on and then launches the server startup
program for the user®"s machine.
System A directory containing additional parts of the
system software.
CDevs Directory with additional Control Panel
Devices.

AppleShare Allows users to choose and log onto AppleShare
file servers.

FolderPriv Allows users to set default folder privileges
on AppleShare file server volumes.

MediaControl Allows users to set up the Media Control tool
set and the drivers they wish to use.

Namer Allows users to rename AppleTalk-based
ImageWriter, ImageWriter LQ and LaserWriter
printers.

NetPrinter Allows users to choose AppleTalk-based
ImageWriter, ImageWriter LQ and LaserWriter
printers.

Desk.Accs Directory with additional desk accessories.

MediaControl A new desk accessory that®"s like a "'super"
remote control for all devices the Media
Control toolset can control.

VideoKeyboard A new desk accessory that allows users to type
with the pointing device instead of with the
keyboard.

VideoMix An updated version of the VideoMix new desk
accessory which ships with the Apple 11 Video
Overlay Card.

Drivers Directory with additional device drivers for
GS/0S and the Toolbox.
AppleTalk The AppleTalk port driver for the Print

Manager. It works with either serial port when
configured for AppleTalk.

ATalk The main AppleTalk GS/0S driver.

ATP1_ATROM AppleTalk protocols to patch the 1lgs ROM.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 60 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

ATP2 _ATRAM
IWEM

LaserWriter

Media.Control
AppleCDSC
Pioneer2000
Pioneer4000

SCC.Manager

AppleShare.FST

Sounds

Ahh
Doorbell
Droplet
Eastern
Frog
PipeOrgan
Quack
SimpleBeep
Sosumi
Swish
Trumpets
Whoosh

System.Setup

Applel IVOC. INIT

ATInit
ATResponder

CloseView

EasyAccess

AppleTalk protocols not in ROM.
PostScript(R) program which allows a
LaserWriter emulate an ImageWriter.
load it into the LaserWriter with the
LaserWriter Control Panel, and it is
automatically invoked when printing through the
slot associated with AppleTalk.

The LaserWriter driver for the Print Manager.
This driver works with any LaserWriter with
PostScript. It does not work with the
LaserWriter llsc or Personal LaserWriter LS.
This driver doesn"t always print color patterns
correctly to PostScript Level 2 printers, such
as the LaserWriter 11f, LaserWriter llg or
Personal LaserWriter NTR.

Drivers for the Media Control toolset

Media Control driver for the Apple CD SC drive.
Media Control driver for the Pioneer 2000
series of laserdisc players.

Media Control driver for the Pioneer 4000
series of laserdisc players.

The GS/0S supervisory driver that arbitrates
hardware-level usage of the serial
communications controller in the Apple llgs.
Directory with additional fonts.

Currently, this directory on this disk is
empty.

Directory with additional file system
translators.

The AppleShare FST which allows GS/0S to access
AppleShare file servers.

A folder with sounds provided for the new Sound
Control Panel. The file names are fairly
self-explanatory; the sounds are not described
here.

A user can

Directory with additional initialization
files.

An initialization file used by the Apple llgs
Video Overlay Card tool set.

The AppleTalk initialization file.

The AppleTalk Responder, used for AppleTalk
network management.

A new desk accessory (installed by an init)
that magnifies the screen to make it more
visible to some users with visual impairments.
An initialization file that brings Sticky Keys

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 61 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

EasyMount
Tools
Tool033
Tool038
Archiver
Teach
Read.Me

Shortcuts

Contents of Fonts

Goodies
Apple.Bowl
Read.Me

Icons

AppleBowl . 1con
System

Fonts
Courier.27
Courier.28
Courier.30
Courier.36
Courier.42
Helvetica.
Helvetica.
Helvetica.
Helvetica.
Helvetica.
Helvetica.
Helvetica.
Helvetica.
Helvetica.
Times.27
Times.28
Times.30
Times.36
Times.42
Times.48
Times.60
Times.72
Times.96

Contents of synthLAB
synthLAB

Tool035

27

30
36

48
60
72
96

and Keyboard Mouse to ROM 1 users.

An initialization Ffile that creates file server
aliases in the Finder.

Directory with additional tools.

VideoMix toolset (for the Video Overlay Card).
Media Control toolset.

A GS/0S based backup and restore program.

A simple editor that uses TextEdit to display
and edit text files, Teach files, Installer
scripts and AppleWorks and MacWrite documents.
Last-minute news and information about the
System Software. Read with Teach.

A Teach file with time-saving system tips and
information.

A directory with files that are only related to
system software In the vaguest sense.
A GS/0S conversion of an old Apple 11 bowling
game.

Documentation on Apple Bowl.
Additional icons for the Finder.

The icon for the Apple Bowl game.

A directory containing additional parts of the
system software.

Additional fonts.

27-point Courier font.

28-point Courier font.

30-point Courier font.

36-point Courier font.

42-point Courier font.

27-point Helvetica font.

28-point Helvetica font.

30-point Helvetica font.

36-point Helvetica font.

42-point Helvetica font.

48-point Helvetica font.

60-point Helvetica font.

72-point Helvetica font.

96-point Helvetica font.

27-point Times font.

28-point Times font.

30-point Times font.

36-point Times font.

42-point Times font.

48-point Times font.

60-point Times font.

72-point Times font.

96-point Times font.

The synthLAB application, a demonstration
sequencer for the MIDI Synth toolset.
MIDI Synth toolset.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 62 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

MIDI

Seq.and. Instr

Synth_bnk
Synth._seq
Synth.wav
Bee.seq
Capri.seq
Combo . bnk
Combo.wav
Demo.bnk
Demo .wav
Fugue.seq
Midsummer.seq
Orch.bnk
Orch.wav
Piano.bnk
Piano.wav
Rhythm.seq
Sonata.seq
Reference

Contents of System.Disk

The MIDI Control Panel. Lets you choose a MIDI
driver.

A directory containing demonstration sequences
(files that end in "_.seq™), wave forms (files
that end in ".wav') and sound banks (Ffiles that
end in ".bnk') for use with synthLAB and MIDI
Synth. The files are only listed; their sound
is not described here.

A Teach document with the electronic manual for
synthLAB.

Files are only listed here; they are described earlier in this Note where they

first appeared.

ProDOS
System

Start.GS.0S

GS.0S

Error_Msg

GS.0S.Dev

FSTs
Pro.FST
Char.FST

Drivers
AppleDisk3.5
AppleDisk5.25
Console.Driver

System.Setup
Tool .Setup
TS2
TS3
Resource.Mgr
Sys.Resources

Desk.Accs
ControlPanel

CDevs
Printer

Time

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 63 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Start This is the Finder, not the SetStart program
or the AppleShare program.

Tools
Tool014
Tool015
Tool016
Tool018
Tool019
Tool020
Tool021
Tool022
Tool023
Tool025
Tool027
Tool028
Tool034

Fonts

P8

Icons
Ftype.Apple
BASIC.System

Minimum GS/0S System Disk Requirements

The following files are required for GS/0S to boot from a local disk. This
list does not address files needed by the Finder or the Ilgs Toolbox. Those
files only required in certain circumstances are noted as such. Those files
that may be excluded only when disk space or memory limitations make it
absolutely necessary are marked with asterisks (¥).

ProDOS
System

Start.GS.0S

GS.0S

GS.0S.Dev

Error._Msg

FSTs
Pro.FST
*HS.FST Required for High Sierra or 1SO 9660 discs.
Char.FST
*AppleShare.FST Required to use AppleShare file servers
*DOS3.3.FST Required to use DOS 3.3 disks
*Pascal .FST Required to use Apple Il Pascal disks
*HFS._FST Required to use HFS disks

Drivers
*AppleDisk3.5 Required for Apple 3.5 Drives or SuperDrives.
*AppleDisk5.25 Required for 5.25" drives.
*UniDisk3.5 Required for UniDisk 3.5 drives.
*SCSI1 .Manager Required for SCSI devices.
*SCSIHD.Driver Required for SCSI hard disks.
*SCSICD.Driver Required for AppleCD SC drives.
*SCS1Scan.Driver Required for Apple scanners.

*SCSI1Tape.Driver Required for Apple Tape backup.
Console.Driver

*ATalk Required for AppleTalk (including AppleShare).
*ATP1_.ATROM Required for AppleTalk (including AppleShare).
*ATP2 .ATRAM Required for AppleTalk (including AppleShare).

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 64 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

*SCC.Manager
System.Setup

Tool .Setup

TS2

TS3

Resource .Mgr

Sys.Resources
CDevs

*AppleShare

*NetPrinter

*DirectConnect

*General

*RAM

Desk.Accs

*ControlPanel
*Start

Tools

Fonts
*FastFont

*P8
*BASIC.System

Further Reference

Required for AppleTalk (including AppleShare).

Required for selecting AppleShare file servers.
Required for choosing printers.
Required for choosing printers.

Should always be included if space allows.
Provides the only way to set the size of the
GS/0S Disk Cache.

Required for desk accessories; any desk
accessories should be installed in this
directory.

Required if you ship any Control Panels (CDevs).
Must be present for GS/0S to boot or some
other file that GS/0S can boot into must be
present in its place.

Required for any of the RAM-based tools; any
RAM-based tools should be installed in this
directory.

Required for the Font Manager.

This makes Shaston 8 text drawing much faster
and should be included unless absolutely
impossible.

Required for ProDOS 8.

Required for AppleSoft BASIC.

o GS/0S Reference

o] Apple l1lgs Technical Note #100, VersionVille

Epson is a registered trademark of Seiko Epson Corporation.
PostScript is a registered trademark of Adobe Systems, Incorporated.

END OF FILE TN.GS0S.001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 65 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.002
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S
#2: GS/0S and the 80-Column Firmware
Written by: Matt Deatherage November 1988

This Technical Note discusses the changes in handling the 80-column firmware
between GS/0S and ProDOS 16.

For compatibility with the Apple Ile, the Apple 1IGS does not treat slot 3
like it treats other slots. Instead of using a bit in the Slot Register
($C02D) to control the mapping of ROM in slot 3 between the built-in 80-column
firmware and any peripheral card physically in slot 3, the soft switches
SETINTC3ROM ($C00A) and SETSLOTC3ROM ($CO0B) are used instead. On the Apple
Ile, these soft switches (referred to by the single label SLOTC3ROM)
respectively map the ROM at $C300 to the internal 80-column firmware (which
works with the auxiliary-slot 80-column card in most lle computers) or to a
peripheral card in slot 3. Note that writing to SETSLOTC3ROM on a Ile or I1IGS
with no card in slot 3 results in floating bus addresses in the $C300 space.

ProDOS 8 will not allow an Apple Ile or later model computer to have a card
other than an 80-column card in slot 3. ProDOS 8 needs the 80-column firmware
on a 128K machine for use in the /RAM driver, and the enhanced Apple lle has
some of the interrupt firmware in the $C300 space. When ProDOS 8 is loaded in
an Apple lle or later, it writes to SETSLOTC3ROM and looks at five
identification bytes. |If all five of these bytes do not match, ProDOS 8 will
write to SETINTC3ROM to use the internal firmware. |If all five bytes match,
the external slot 3 ROM is left mapped in.

ProDOS 16 fell victim to a bug in ProDOS 8 versions 1.2 through 1.6 which
always switched in the internal 80-column firmware, regardless of the user's
Control Panel setting. GS/0S does not have this bug; a card in slot 3 of a
11GS other than an 80-column card will not be mapped out by GS/0S.

Application programmers who require the 80-column firmware should be familiar
of the following points:

o] IT your program contains a routine to insure that the 80-column
firmware is indeed available, it could be buggy. Since ProDOS 16
always made the 80-column firmware available, your routine to
check that condition may never have been executed.

o] IT your program requires the 80-column firmware and it iIs not
available, your program should display a message on the screen
informing the user that he must set Slot 3 in the Control Panel to
Built-in Text Display for your program to execute, then gracefully
exit. Switching the $C300 ROM space, even with the user"s
permission, is not recommended. Slot 3 could contain an operating

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 66 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

GS/0S device, perhaps even the one your program was launched from.
Remember, it is possible to boot GS/0S from slot 3.

Do not try to be clever in a situation like this. For example, do
not go looking at ID bytes in slot 3 to try to determine the type

of device present so that you can switch it out if you identify it
as a non-disk device. Slot 3 could contain an active device being
operated by a loaded GS/0S driver.

Your program should not ask the user®s permission to switch ROM
space between ports and slots (or in this case, the internal
firmware versus the external card). That is why there is a
Control Panel. Simply display a message informing the user that
he must set Slot 3 in the Control Panel to Built-in Text Display
for your program to execute. You may offer to change the battery
RAM parameter for the user and restart the system (using the
0SShutdown call), but under no circumstances should you hit the
soft switch yourself, even with the user®s permission.

Further Reference
o GS/0S Reference, Volume 1
o ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3

END OF FILE TN.GS0S.002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 67 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.003
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S
#3: Pointers on Caching
Written by: Matt Deatherage November 1988

This Technical Note discusses effective use of the GS/0S cache.

Introduction

GS/0S is the first Apple 11 operating system to offer a sophisticated caching
mechanism. However, using the cache and using it wisely are two different
things. This Note presents some concepts which should lead to higher
performance for your application If it uses the cache.

What"s Cached Automatically?

All blocks on a GS/0S readable disk could be classified into one of two
categories. "Application blocks" are all blocks on the disk contained in any
file (except a directory file), while "system blocks"™ are other blocks on the
disk. System blocks belong to the file system and include directory blocks,
bitmap blocks, and other housekeeping blocks specific to the file system.

GS/0S always maintains at least a 16K cache, even if the user has set the disk
cache size to OK with the Disk Cache new desk accessory. When the system
(usually an FST) goes to read a system block, the block is identified as a
candidate for caching and is cached if possible. Applications define blocks
as candidates for caching by using the cachePriority field of many class 1
GS/0S calls. Note that class 0 calls do not have this field, thus
applications using exclusively class 0 calls will not be able to cache any
application blocks.

Although this difference may seem like a limitation, it in fact improves
performance. On the Macintosh, most applications that work with files (like
database managers) leave the file with which they are working open while they
need it; the file is only closed when the window containing it is closed.
Apple 11 programs historically are quite different--they usually read an
entire file at the beginning, modify It in memory, and write it when the save
function is selected. A moment®s thought will show that if GS/0S arbitrarily
cached most or all application blocks, system blocks that would be used again
(such as directory blocks) will be kicked out to make room for them. We will
see that this is probably a bad thing to do.

How to Cache Effectively

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 68 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

The first tendency of many programmers is to attempt to completely cache any
given File, but this usually leads to a degradation in performance, not an
improvement. In small caches such strategies can slow the system to a crawl,
and large caches offer no significant improvement. Remember that until the
cache memory is needed, it is available to the system. The cache size for
GS/0S as set by the user is the maximum to be allotted, not the minimum.

Suppose you are attempting to cache a 40K file (80 512-byte blocks). If the
cache i1s set to less than 40K, the entire cache will be written through,
kicking out all system blocks currently cached. A cache of this size slows
system performance for little gain, since the entire file could not be cached
anyway. Even if the cache is large enough to hold the entire file, you are
needlessly taking twice the amount of memory with the same file (by reading it
into memory you have obtained from the Memory Manager and by asking GS/0S to
keep a copy In the cache).

It is evident that the system makes the best use of the cache automatically,
freeing your application from the duty of caching system blocks, but there are
certain instances where caching application data can improve system
performance.

An application which does not limit document size to available memory will
often only keep a portion of the document in memory at any given time.
Suppose that the beginning of such an application®s document file contains a
header which to various parts of the document file. (These parts could be
chapters for a word processor, report formats for a database manager, or
individual pictures for an animation program.) This document header is
probably not very long, but the application will likely need to read it quite
often to quickly access various portions of the document file.

This header is a prime candidate for caching since it is a part of the file
which will definitely be read many times during the life of the application.
Contrast this with arbitrarily caching the entire file, which needlessly
wastes both cache space and available memory to keep a duplicate copy of
something that may or may not be read from disk again.

Although caching provides enormous benefits to GS/0S, indiscriminate use of
the cache will waste memory and degrade overall system performance. Be
prudent and limit your use of the cache to those portions of your document
files which will be read from disk many times.

Further Reference
o GS/0S Reference, Volume 1

END OF FILE TN.GSO0S.003

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 69 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.004
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S

#4: A GS/0S State of Mind

Revised by: Matt Deatherage March 1991
Written by: Matt Deatherage January 1989

This Technical Note discusses GS/0S concepts and practices.

Changes singe July 1989: Includes more information about thinking for
non-ProDOS file systems.

Although GS/0S bears many similarities to ProDOS, GS/0S is a much
wider-reaching operating system, working not only with multiple file systems
but also with character devices. Some things which work under ProDOS cause
problems under GS/0S, and application programmers need to be aware of the
differences, particularly those developing text-based programs.

GS/0S Hints

Be aware of character devices. A legal GS/0S pathname, perhaps entered by a
user in response to a prompt, could map to a character device, with
potentially disastrous results. Error $58, Not a Block Device, can protect
you against this on many calls, including Create, but you must still take
precaution. DInfo tells you if a device is a character device or block
device; bit seven of the characteristics word is set if the device is a block
device.

Don"t preprocess pathnames. A user input routine which prevents users from
entering pathnames that don®"t follow ProDOS syntax may help prevent Illegal
Pathname Syntax errors, but it also keeps users from creating files on
non-ProDOS disks with anything but ProDOS pathname syntax, and it could keep
them from accessing files on non-ProDOS disks which they created with another
GS/0S application. Since the only FST which allowed you to write to a device
under System Software 4.0 was ProDOS, you didn"t see this problem right away.
However, System Software 5.0 includes an AppleShare FST which, compared to
ProDOS, is fast and loose with pathnames. '"How about an anti-ProDOS name?"
is a legal AppleShare filename. To allow compatibility with present and
future non-ProDOS FSTs, Apple suggests you pass user-entered pathnames
directly to GS/0S, with no application preprocessing.

Remember that under GS/0S both colons and slashes are valid separators, and
colons can only be separators. In addition, all eight bits of each byte of a
pathname are significant. Refer to GS/0S Reference, Volume 1 for more
information on GS/0S pathname syntax. Using all eight bits of each byte may

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 70 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

be particularly difficult for text-based applications, which have no way to
force the standard Apple 1l character set to display characters such as sigma
or the copyright symbol; they can fiddle to get characters like the sterling
pound sign and an Apple. Some programs may wish to adopt special
typographical conventions for these special characters while others may
choose not to create files with such characters in their names. These
programs could present the user with a list of existing filenames (with some
substitution for the characters which are unavailable), while providing a
method of choosing one, to retrieve such files. Any way around this problem
for a text-based program will be less than optimal.

Avoid the Text Tools and all slot dependencies. Preliminary GS/0S
documentation points to a System Service call named DYN_SLOT_ARBITER. This
mechanism, which is not fully implemented in System Software 5.0, eventually
will allow the operating system to use internal ports and external slots for
the same "slot™ iIn the same session, instead of requiring the user to reboot
the system to safely change between ports and slots. Applications which have
hard-coded slot dependencies (as the Text Tools unfortunately require) make
this transition very difficult, both for GS/0S and for the applications and
users. We recommend that applications use the GS/0S loaded and generated
character device drivers for text output. A DInfo call will tell you what
slot or port a driver controls, and whether or not it is a character device.

Avoid other file system dependencies. Many of the things ProDOS programmers
are used to as facts of life just are not true any longer. For example,
filenames don"t have to be 15 characters or less under GS/0S. When making
class one calls, GS/0S will tell you if you don®"t have enough room for the
pathname by returning a Buffer Too Small error ($4F). Avoiding file system
dependencies means handling this error intelligently: 1if you receive it,
allocate more space for the buffer and try the call again. GS/0S will tell
you how much space is needed. If you absolutely must hard code pathnames,
suchas volume names, be sure to use the colon as the separator, because if
you donot, filenames with slashes will cause problems. Similarly, don"t
assume any ofthefollowing:

There can only be 51 files in the volume directory

All devices are named ".Dn," where n is the device number
All blocks are 512 bytes long

All devices are block devices

Any other ProDOS-specific characteristics

O0Oo0OO0O0OO0

Your application may have hidden file system assumptions as well. For
example, while a directory behaves like a directory under all GS/0S
filesystem translators, reading from a directory is not always as fast as it
isfor ProDOS disks. ProDOS directories are fairly linear and can be searched
quickly; but other file systems may have more complicated directory
structures (HFS and AppleShare, for example, have B-trees that store
directory entries in alphabetical order). To get optimal speed, try to do as
many GetDirEntry calls as you can in succession without other GS/0S calls
intervening this allows Apple to optimize file system translators for fast
directory reading.

Also remember that other file systems may not support the concept oforderable
directories, so don"t depend on directory order in your application.

Don*"t hog all of the memory. While this is never a good idea on the lligs,
it"s even worse under GS/0S. To process things like pathnames, GS/0S
allocates memory through the Memory Manager. If you®ve allocated all of

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 71 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

available memory (i.e., for a disk copy procedure), GS/0S will be forced to
return an Out of Memory error ($54). |If the condition is so severe that
GS/0S can no longer function, it will return a fatal GS/0S error with an ID =
2, and the user will be asked to restart the system.

(A common cause of fatal GS/0S error 2 during development is using a length
byte instead of a length word on a class one string. Doing so almost always
causes the first word to be greater than 8K, which is the maximum length of
pathnames under GS/0S. GS/0S then dies for your enjoyment, as it is unableto
allocate the memory for the pathname because it"s too big, even if more than
8K is available.)

Hard code as little as possible. Even seemingly static things like device
names should not be hard coded, since a new loaded driver could change the
name of the same device at any time. Also, it may be possible in the future
for users to rename devices.

Only ask for the access you need. |If you®"re just going to read a Ffile, make
a call to Open the file with read permission only. In Ffile systems where
access privileges mean more than they traditionally have in ProDOS (where
things are usually "Locked" or "Unlocked™), this could save some trouble.

For example, AppleShare allows the same file to be opened multiple times as
long as each open is with read-only access. |If your program is only going to
read a file, opening it with read and write access needlessly denies others
on the server access to the file.

Copy all GS/0S information with Ffiles. Applications that copy files need
todo more than copy the data fork of the file. |If the file is extended, the
resource fork of the file should be copied as well. In addition, when
requested, each FST returns an option_list that contains information specific
to the host file system that GS/0S does not use (i.e., AppleShare®s
option_list includes Finder information and access privileges). Calls to
GetFilelnfo and Open can return the option_list, while a call to SetFilelnfo
can set it. An FST will not set parameters in the option_list which should
not be altered (Just as SetFilelnfo skips the EOF fields in GetFilelnfo
records). To ensure that the duplicate has as much host file system
information from the original as can reasonably be transferred, always copy
the option_list.

However, 1If you want to change something in an existing file"s GetFilelnfo

list, do not use an option_list. The option_list could override the other
parameters to SetFilelnfo without your knowledge.

Further Reference

o0 GS/0S Reference, Volumes 1 and 2

END OF FILE TN.GS0S.004

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 72 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.005
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S

#5: Resource Fork Formats

Revised by: Matt Deatherage July 1989
Written by: Matt Deatherage January 1989

This Technical Note discusses the resource fork format of GS/0S extended
Ffiles.

Changes since January 1989: Documented the location of resource fork
format information.

Due to an omission in GS/0S Reference, Volume 1, some developers are not aware
that the format of the resource fork of any file is reserved by Apple
Computer, Inc. With the release of System Software 5.0 for the Apple 1IGS, a
Resource Manager is available to manipulate discrete chunks of data stored in
the resource forks of files. To prevent corruption of media, information
should only be stored in any resource fork in this format.

The Resource Manager should always be used to manipulate the data in resource
forks. Some utilities may find this impossible and will require direct
manipulation of resources without the Resource Manager. Information on the
format of the resource forks is included with the Resource Manager
documentation in the System Software 5.0 documentation.

Further Reference

o] GS/0S Reference, Volume 1
o] System Software 5.0 documentation (APDA)

END OF FILE TN.GSOS.005

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 73 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.006
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S

#6: Drivers and GS/0S Direct Page

Revised by: Matt Deatherage January 1991
Written by: Matt Deatherage March 1989

This Technical Note corrects an error in the preliminary GS/0S documentation
and provides an alternate suggestion for developers who are writing GS/0S
drivers.

Changes since September 1990: Updated the list of calls which do not require
the GS/0S direct page and updated the documentation references.

Preliminary GS/0S documentation, including the beta draft of GS/0S Reference,
Volume 2, incorrectly states that locations $5A through $5F are available for
device drivers, and that locations $66 through $6B are shared by device
drivers and supervisory drivers (and may be corrupted by either a driver or
supervisory driver call).

This is not correct. The locations in question are used by GS/0S; destroying
these locations can cause system failure and media corruption.

Drivers which require direct page space of their own should request it from
the Memory Manager when they are started. Upon receiving a call, a driver can
save the value of the D register (containing the GS/0S direct page) and switch
to its own direct page. The driver may keep the value of its direct page
inside the driver itself; no space on GS/0S direct page is available for this
purpose. The driver must restore the D register to point to the GS/0S direct
page before returning from the call, and it should also dispose of its direct
page space when it shuts down.

The driver must also set the D register to point to the GS/0S direct page
before making any system service call other than SET_SPEED, DYN_SLOT_ARBITER,
MOVE_INFO, SIGNAL, and INSTALL_DRIVER.
Note: The location of the GS/0S direct page is guaranteed to

remain the same between Driver_StartUp and Driver_ShutDown calls.

Further Reference

o GS/0S Device Driver Reference

END OF FILE TN.GSO0S.006

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 74 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.007
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S
H#HT: Behavior of SET_DISKSW
Written by: Matt Deatherage July 1989

This Technical Note discusses changes to the documented behavior of SET_DISKSW
in System Software 5.0. This Note is primarily of interest to device driver
authors.

GS/0S Reference, Volume 2, states that the system service call SET_DISKSW
($01FC90) will remove a device"s blocks from the cache and place its volumes
off line.

With System Software 5.0, this behavior is slightly changed. SET _DISKSW also
posts insertion and ejection notices to the GS/0S Notify Procedure queue, so
that notification procedures may be called. This requires SET_DISKSW to check
the current status of the device to know If the disk switched condition
indicates an insertion or an ejection (by comparing the current device status
against the device-dispatcher maintained status).

A GS/0S driver may have an interrupt handler present to handle interrupts
generated by its device on insertion or ejection (if the hardware is capable
of generating such interrupts). Such an interrupt handler will probably want
to call SET _DISKSW when an insertion or ejection is detected to make the rest
of the operating system aware of it. However, SET DISKSW obtains the device"s
status based on the deviceNum and callNum on the GS/0S direct page.

Any driver or interrupt handler calling SET_DISKSW must first save the values
for deviceNum and callNum on the GS/0S direct page, replacing callNum with the
number of a driver call that accesses media (Apple suggests Driver_Read,
$0002) and replacing deviceNum with the number of the device for which
SET_DISKSW is being called. The caller must restore the original values after
SET _DISKSW returns.

Although SET DISKSW saves and restores the GS/0S direct page, the caller must
know where the GS/0S direct page is located so it can place the proper
parameters there. The value used for the GS/0S direct page should be the
value of the D register when the driver receives its Driver_StartUp call. The
GS/0S direct page is now guaranteed to remain constant between Driver_StartUp
and Driver_ShutDown calls.

Further Reference

o GS/0S Reference, Volume 2

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 75 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

END OF FILE TN.GSOS.007

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 76 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.008
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S
#8: Filenames With More Than CAPS and Numerals
Written by: Matt Deatherage July 1989

This Technical Note discusses the problems some applications may have when
dealing with filenames containing lowercase letters for the first time.

With System Software 5.0, lowercase filenames enter GS/0S en masse for the
first time. Lowercase filenames are inherent to the AppleShare filing system
and have been added to the ProDOS filing system through the ProDOS FST.
However, since Apple 1l filing systems never had lowercase characters in
filenames before, this change undoubtedly causes problems for some
applications. This Note gives general guidelines to help developers avoid
such problems.

How the ProDOS FST Does It

"Wait," you say (not for any particular reason, other than a general fondness
for monosyllables). "If you put lowercase characters in the ProDOS directory
entry, it"s going to cause all kinds of problems. What"s gonna® happen on][+
machines?"

Two previously unused bytes in each file"s directory entry are now used to
indicate the case of a filename. The bytes are at relative locations +$1C and
+$1D in each directory entry, and were previously labeled version and
min_version. Since ProDOS 8 never actually used these bytes for version
checking (except in one case, discussed below), they are now used to store
lowercase information. (In the Volume header, bytes +$1A and +$1B are used
instead.)

IT version is read as a word value, bit 7 of min_version would be the highest
bit (bit 15) of the word. |If that bit is set, the remaining 15 bits of the
word are interpreted as flags that indicate whether the corresponding
character in the filename is uppercase or lowercase, with set indicating
lowercase. For example, the filename Desk.Accs has a value in this word of
$B9CO, or binary 1011 1001 1100 0000. The following illustration shows the
relationship between the bits and the filename:

Bits in WORD: 1011100111000000
Filename: Desk.Accs
Uppercase or Lowercase: ULLLUULLL

Note that the period (.) is considered an uppercase character.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 77 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

What it Means

Because no lowercase ASCII characters are actually stored in the filename
fields of the directory entries, all ProDOS 8 software should continue to work
correctly with disks containing files with lowercase characters in the
filenames. Neither ProDOS 8 nor the ProDOS FST are case sensitive when
searching for filenames: ProDOS is the same file as PRODOS is the same file
as prodos.

The main trouble applications have is when a filename has been "processed" by
the application before passing it to GS/0S. For example, if a command shell
automatically converts filenames to all uppercase characters before passing
them to ProDOS 16, the chosen uppercase and lowercase combination for the
filename will never be seen by the user without any apparent reason. Some
developers have considered it okay to ignore lowercase considerations,
thinking that they would only apply to file systems other than ProDOS (and
file systems which would not be available on the Apple Il for a long time, if
ever). These developers were mistaken.

A more pressing problem is that of an application that is looking for a
specific file, perhaps a data file or a configuration file. If the
application simply passes a pathname to GS/0S and asks for that file to be
opened, it will be opened if it exists. The case of the filename is
irrelevant since file systems are not case sensitive. However, if the
application makes GetDirEntry calls on a specific directory, looking for the
filename in question, there could be trouble: the application won"t find the
file unless its string comparison routine is not case sensitive. If the user
has renamed the file MyApp.Config, and the string comparison is looking for
MYAPP.CONFIG, then the application will report that the file does not exist.

It is repeated here that when dealing with normal OS considerations, it"s
almost always better to ask for something and respond intelligently if it"s
not there than it is to go looking for it yourself. The OS already has a lot
of code to look for things (or expand pathnames, or examine access privileges,
etc.), and reinventing the wheel is not only tedious, it can be detrimental to
future compatibility.

The One Exception

In the past, ProDOS 8 did look at the version bytes when opening a
subdirectory. The code to do this has been removed from ProDOS 8 V1.8.
Please be aware that earlier versions of ProDOS 8 will be unable to scan
subdirectories with lowercase characters in the directory name, even to find
files iIn those directories.

Conclusion

Most user-input routines (including the Standard File tool set) return
filenames or pathnames that can be passed directly to GS/0S without
preprocessing. Doing so may return "pathname syntax errors' more often than
not doing so, but it also enables applications to take advantage of future
versions of the System Software that loosen the restrictions on syntax (or new
file systems that never had such restrictions). Under GS/0S, even ProDOS
disks aren”t what they used to be.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 78 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Further Reference

o GS/0S Reference

END OF FILE TN.GSO0S.008

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 79 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.009
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S

#9: Interrupt Handling Anomalies

Revised by: Matt Deatherage May 1992
Written by: Dave Lyons January 1990

This Technical Note discusses anomalies in the way GS/0S handles interrupts.

CHANGES SINCE MAY 1990: Added discussions about changes to GS/0S interrupt
handling since System Software 5.0.2.

PROBLEMS INSTALLING INTERRUPT HANDLERS

IT your application calls ALLOC_INT to install an interrupt handler for an
external interrupt source, it works fine unless the SCSI Manager (GS/0S file
SCSI .Manager) is installed, in which case the system eventually grinds to a
halt with a message about 65536 unclaimed interrupts.

THE PROBLEMS

IT any interrupt handlers are bound (using BindInt) to reference number $17
(IRQ.OTHER), the unclaimed interrupt count gets incremented if none of the
BindInt routines claims the interrupt, even though any handlers installed with
ALLOC_INT routines still need a chance to claim it. The 5.0.2 SCSI.Manager
triggers this problem because it calls BindInt with vector reference number
$17.

In addition, iIf one or more interrupt handlers are bound to the IRQ.OTHER
vector (VRN $17), the interrupt is passed to the ALLOC_INT handler even if it
was already claimed by a BindInt routine. |If no ALLOC _ INT routine claims the
interrupt, the unclaimed-interrupt count is incremented. As documented in
Apple 1lgs Technical Note #18, Do-lt-Yourself SCC Interrupts, you cannot
successfully call BindInt with vector reference number $0009.

THE SOLUTION

An application may install both a BindInt routine and an ALLOC_ INT routine.

IT they both claim the external interrupt, the unclaimed count does not get
incremented. The solution is compatible with future System Software releases,
since it does not depend upon the ALLOC_INT routine ever getting called.

Your application®s BindInt routine sees the interrupt before your ALLOC INT
routine does, so the BindInt routine should figure out whether the interrupt
was caused by your external device, and claim it if so. Your ALLOC_ INT
routine should claim an interrupt it sees if and only if your BindInt routine
claimed the last interrupt It saw.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 80 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Starting with GS/0S version 3.2 (released with the Apple Il High-Speed SCSI
Card), the system no longer treats too many unclaimed interrupts as a fatal
error. However, before version 6.0, it still counts the unclaimed interrupts
so It can do something like display a dialog asking you to restart even though
choosing "'restart” returns you to the application unharmed (GS/0S version
3.2), or sometimes display a dialog box sending you to your dealer and
sometimes not (version 3.3), or do nothing about it at all (version 4.0 and
later). This is obviously as confusing to most of us as it was to the system
itself, so fortunately GS/0S now ignores unclaimed interrupts and doesn®t even
bother counting them.

PROBLEMS REMOVING INTERRUPTS HANDLERS

The GS/0S Reference suite says that device drivers may make BindInt and
UnbindInt calls, noting this as an exception to the general rule that drivers
may not make GS/0S system calls. What the references fail to note is that
these calls may fail for an incredibly annoying reason--the 0S may be busy.

GS/0S takes special pains to avoid this while starting and while switching to
ProDOS 8, but it does not avoid this condition during an OSShutDown--a real
shutdown of the 0S, not a switch to ProDOS 8.

Driver authors can work around this problem by using a new system service call
provided in GS/0S version 3.2 and later. The call, named UNBIND_INT_VECTOR,
provides the functionality of UnbindInt to FSTs and drivers only to avoid the
0S reentrancy issue. The vector is at $01/FCD8 and takes an interrupt
identification number (as returned from BindInt) in the accumulator.

Further Reference

o] GS/0S Reference
o Apple llgs Technical Note #18, Do-lt-Yourself SCC Interrupts

END OF FILE TN.GSOS.009

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 81 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.010
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S

#10: How Applications Find Their Files

Revised by: Matt Deatherage May 1992
Written by: Dave Lyons January 1990

This Technical Note explains how applications should find configuration and
other application-related files.

CHANGES SINCE SEPTEMBER 1990: Lists new ways to access the @ prefix under
System Software 6.0 and later.

When an application is launched, GS/0S sets prefix 9 to the application®s
parent directory. It also sets prefix 1 to the same directory if the length
of the pathname is within a 64-character limit. It does not set prefix O to
any special value.

IT your application uses a partial pathname and depends upon prefix 0 to find
files at the same directory level, it may be working by accident (prefix O is
accidently set to the right directory), and sooner or later it won"t work.

IT your application needs to load a file named TitleScreen, the best way iIs to
use the pathname 9:TitleScreen. If you just use TitleScreen, you are using
prefix 0, and you may or may not be looking in the right directory.

Files storing user-specific data should be stored in the at sign (@)
prefix--this is just like prefix 9, except that it is set to the user"s user
folder on an AppleShare server if the application was launched from a server.
Use @:MySettings rather than 9:MySettings or MySettings. (If you want to
retrieve the value of the @ prefix, you can call ExpandPath on the pathname
"@:"".) Note that the @ prefix was introduced in System Software 5.0.

The @ prefix is useful only for applications, not for Desk Accessories, CDevs,
initialization files, or anything else; this type of code can get the path of
the user®s folder by using the AppleShare FST"s FST-Specific call GetUserPath.

Starting with System Software 6.0, you can also retrieve the value of the @
prefix by passing $FFFF (-1) to GetPrefix. You may also set the value of the
@ prefix by passing $FFFF to SetPrefix, but only applications or system-wide
utilities should ever change the @ prefix. Specifically, any DAs, CDevs,
initialization files or others should not mess with the @ prefix to make their
own File handling simpler.

Further Reference

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 82 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

0 (GS/0S Reference
o] AppleTalk Technical Note #8, Using the @ Prefix

END OF FILE TN.GS0S.010

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 83 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.011
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S

#11: About EraseDisk and Format

Revised by: Matt Deatherage November 1990
Written by: Dave Lyons & Matt Deatherage July 1990

This Technical Note explains how an application can tell when a user chooses
Cancel from an EraseDisk or Format dialog box and explains why thefile _sys ID
field is ignored in class-zero calls.

Changes since July 1990: Noted that System Software 5.0.3 fixes some of these
anomalies.

Detecting a Canceled Erase or Format Dialog Box

GS/0S Reference says that EraseDisk and Format return with the carry flag set
and A equal to zero when the user cancels the operation. This iIs great, except
that the calls actually return with the carry clear, making a Cancel hard to
distinguish from a successful EraseDisk or Format operation. This happens in
System Software 5.0.2 and earlier; it works as documented in GS/0S Reference in
System Software 5.0.3 and later.

IT you must use 5.0.2 or earlier versions of the system software, this Note
presents a safe way around the problem, which works with all versions of the
System Software:

1. In the parameter block for class-one EraseDisk or Format, set the
fileSysID field to 0. (See note below.)

2. Make the call.

3. If the error code is non-zero, there was an error. Handle it.

4. Otherwise, the error code is zero. Check the fileSyslID field in
the parameter block. If it is still zero, the user chose to
cancel the operation.

Note that this method only works for class-one calls. For the class-zero
ERASE_DISK and FORMAT calls, the file_sys ID word is only an input parameter and
always remains unchanged.

About the Class-Zero file_sys_ID Parameter

Even though fileSysID is an input parameter for the class-zero calls ERASE DISK
and FORMAT, all versions of the system software ignore thesupplied value and
always give the user a dialog for selecting a file system. This means no

functionality is lost by putting a zero there.

The reasons for this decision are historical. Although the Apple llgs ProDOS 16

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 84 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Reference indicates that the input parameter file_sys ID would be used in future
versions to choose destination file systems, ProDOS 16 always returned an error
if the file system specified was not $0001 (ProDOS).

Since this effectively means no ERASE DISK or FORMAT call can be made under
ProDOS 16 with any Ffile_Sys_ID other than $0001, the GS/0S team chose to ignore
the parameter and always give users the choice when using class zero calls.
Otherwise, no program that existed when GS/0S was released would ever allow
users to choose interleaves or file systems (they would always format for
ProDOS, file system $0001). (Note that the class-one Format andEraseDisk calls
have a new regFileSyslID parameter; if this field is present, the dialog box is
bypassed.)

Further Reference

0 GS/0S Reference
o Apple llgs ProDOS 16 Reference

END OF FILE TN.GS0S.011

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 85 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.012
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S
#12: All About Notify Procs
Written by: Matt Deatherage September 1990

This Technical Note discusses the GS/0S notification procedure new to System
Software 5.0 and enhances the discussion of these procedures in the
Addison-Wesley GS/0S Reference.

Why Do I Want To Be Notified?

GS/0S notification procedures (or "notify procs') are handy ways to let the
operating system tell you when interesting things are happening. As
documented in GS/0S Reference, they can tell you when you®"re switching to
ProDOS 8 (and back), when disks are inserted or ejected, when GS/0S is shut
down, and even when a change occurs to a volume.

However, getting these notifications is not as simple as installing a
procedure. Some behaviors are due to the way device drivers are designed and
some are due to the design of GS/0S or device hardware. This Note discusses a
few slightly unusual situations you can encounter when dealing with
notification procedures.

I Get "Parameter out of range," and There"s Only One Parameter

It seems incongruous to get error $0053 ('Parameter out of range') when
there®s only one parameter, a pointer to the notification procedure. However,
GS/0S checks the procedure header to ensure consistency. In particular, the
flags field must not have any of the reserved bits set. Having any bits other
than one through six set results in error $53; it ensures you do not get
strange behavior or are not passed values you cannot comprehend.

I"m Not Getting Notified

You"ve written your notification procedure correctly and tested it, but when
you run your application you can eject and insert disks until your arm falls
off and your code is never called.

This iIs a side effect of the design of most Apple 11 peripherals--no hardware
interrupt is generated when you eject a disk. Without an interrupt to grab
the CPU"s attention, the drive just sits there until someone actually asks the
drive if a disk is present.

Well-designed GS/0S drivers look to see if a disk has been switched every time

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 86 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

they get control and call the System Service routine SET_DISKSW, which in turn
causes the notification procedures to be told the disk has been switched.
However, the driver cannot set this chain in motion until it gets control.

The easiest way to do this is to loop through all on-line devices, issuing a
device call to each in turn. When the driver gets control, it starts the ball
rolling. Note that you must make a device call that actually causes driver
code to be executed. This includes all the application level device calls
with less than two parameters, except DRename and DInfo (the third parameter
is a block count, which causes a Driver_Status call to the driver). These
calls are handled entirely by the Device Manager without actually transferring
control to any driver code. DStatus with a transferCount = 2 is a good
choice.

I Get Notified About Insertion at Weird Times

When coming back to GS/0S from ProDOS 8, you get "insertion" notification even
though no disks have actually been inserted. This is done for you by most
drivers, which pretend that any media in the device has just come online at
driver startup time--which is true as far as any application is concerned.

General Truths

Be careful when installing notification procedures from an application.
Applications either go away or are made purgeable when they quit, and that
means your notification procedure can get disposed. GS/0S tries to call the
address anyway, and this is generally a bad idea. Make sure you remove all
notification procedures before their code goes away.

Even though you have to poll to ensure you get disk insertion and ejection
events, i1t"s still useful to install notification procedures. The
notification queue allows everyone who"s iInterested in GS/0S events to be
notified about them. Check the "disk has been switched" bit of the status
word is not suitable, because this bit is only set once. |If a desk accessory
makes a status call to a switched device, it sees the "disk has been switched"”
bit and your application does not, so use the notification queue.

Operating system calls (i.e., Write) can generate volume changed events during
execution; therefore, GS/0S could be busy when it calls your notification
procedure. Volume changed events are not necessarily generated immediately.
The AppleShare FST checks for volume changes approximately every 10 seconds,
but it only generates these events for a given volume if it contains an open
folder.

GS/0S can call your notification procedure from inside an interrupt, so make
it short and sweet. One approach is setting a flag which you can check
periodically from your main code; when the flag is set, you can process the
event and clear the flag.

Further Reference

o GS/0S Reference

END OF FILE TN.GS0S.012

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 87 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.013
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

GS/0S

#13: GS/0S Reference Update

Revised by: Matt Deatherage May 1992
Written by: Matt Deatherage & Dave Lyons November 1990

This Technical Note corrects and updates the Addison-Wesley Apple llgs GS/0S
Reference. Previous versions from APDA labeled Volume 1 or 2 are obsolete,
and should no longer be used.

CHANGES SINCE DECEMBER 1991: Added new information about resource_eof and
resource_blocks parameters.

CHAPTER 4, "ACCESSING GS/0S FILES"

PAGE 72: THE SYSTEM FILE LEVEL: HOW TO PROTECT AN OPEN FILE FROM THE
APPLICATION

The class 1 SetLevel and GetLevel calls have a special option that allows you
to open a file at an "internal™ file level, so that it cannot be closed by an
application making a Close call with reference number zero at any application
level.

GetLevel and SetLevel actually accept two parameters, not just the one
parameter (level) documented in Chapter 7. The second parameter, level _mode,
is a Word that controls the internal range of the file level.

Only two values for level_mode are supported. A value of $8000 is the same
as 1T the parameter wasn"t present at all--the level calls behave just as
documented in GS/0S Reference. A value of $0000 sets a special '"'system" or
"internal" level--all files opened with an internal level are unaffected by
any non-internal level.

The steps to open a file at an internal file level are:

1. Call GetLevel with pCount=2, level mode=$0000. Save the returned level.

2. Call SetLevel with pCount=2, level = $0080 and level_mode = $0000.

3. Open a file or files with a class 0 or 1 Open call, or with
OpenResourceFile (OpenResourceFile on System Software 5.0.4 and earlier
does not try to protect your resource files from being accidentally
closed by a Close(0)).

4. Call SetLevel with pCount=2, level_mode=$0000, and level = saved level.

You can use two parameters in all your level calls and set the second
level_mode parameter to $8000 instead of omitting it if it will make writing
your program easier.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 88 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

To close your protected file, simply do a Close with the reference number.
There is no need to fiddle with the Ffile level when closing by reference
number .

NDAs should close all their files at or before DeskShutDown time.

CHAPTER 6, "WORKING WITH SYSTEM INFORMATION"
PAGE 92: USING THE OPTIONLIST PARAMETER

The optionList parameter resembles a GS/0S output buffer in most important
respects--it starts with a word indicating the size of the buffer, and each
FST fills in the size of the actual data placed in the buffer in the second
word. IT the buffer is too small to hold the data, the necessary size is
placed in the second word and the FST returns the "buffer too small™ error
($004F) .

Usually, GS/0S input buffers only have one length word, because if you know
how large the data is (and you do if you"re the one passing it to GS/0S), you

don"t need another word telling you the same thing. However, if you"re
trying to copy something like an optionList, you can wind up in a bit of a
pickle. Just because the buffer you®ve allocated is big enough to hold Ffile

system-specific information, that doesn"t mean the information is necessarily
present.

A good example of this problem is found in the System Software 6.0 ProDOS FST.
In 6.0 and later, the ProDOS FST will take HFS Finder information (as returned
by the AppleShare and HFS FSTs) in the optionList and place that information
in an extended file"s extended key block, so the file can be copied to and
from ProDOS disks with no loss of Macintosh-specific information (such as the
longer file types and creator types necessary to identify Macintosh files).
The FST returns the same information (if present) in the output optionList.

However, previous versions of the ProDOS FST returned no information in the
optionList. Suppose you archived a file and stored the optionList with the
file"s information under 5.0, and attempt to restore the file under 6.0 using
a nice, large optionList buffer. The FST can"t know whether the large buffer
contains any information or not.

To remedy this problem, the second word of the optionList structure (regSize
in the figure on page 92) is now defined on input as well as output. On
input, the word must contain the actual size of the data in the optionList;
the first word continues to indicate the size of the entire buffer. If the
buffer size and the actual data size are too small to make sense, any affected
FSTs will ignore the input, knowing that it must be garbage.

Further details on how the ProDOS FST stores HFS Finder information can be
found in ProDOS 8 Technical Note #25, "Non-Standard Storage Types."

CHAPTER 7, "GS/0S CALL REFERENCE"

PAGES 98-99: CHANGEPATH

On page 98, the Reference states that a subdirectory may not be moved into
itself or into a directory the first subdirectory already contains. For

example, you may not change /v to /v/w or /v/w to /v/w/Xx. Although this is
correct, the System Software 5.0.x implementations of the ProDOS FST trash

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 89 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

your disk if you try this with ChangePath. Do not try it on disks you want
to keep.

On page 99, error $4E is described as "file not destroy-enabled.” No,
ChangePath doesn"t destroy the file. The error should read "file not
rename-enabled."

PAGE 120: DINFO CHARACTERISTICS WORD

The diagram for the characteristics word in the DInfo parameters has incorrect
descriptions for bits 14 and 13. The diagram says bit 14 is set if the
device is a linked device; in fact, bit 13 is set if the device is a linked
device. Bit 14 is set if the device In question has a generated driver; the
bit is clear for loaded drivers.

PAGE 129: THE CHARACTER DEVICE STATUS WORD

The diagram on the top of page 129 says that if bit 5 is set, the device is in
no-wait mode. This is incorrect. To determine if a device is in no-wait
mode, make the GetWaitStatus subcall described on page 130.

Bit 5 of the character device status word is set if there are one or more
characters waiting to be read from the device. This Is an assistance for
developers, since generated character drivers don"t support no-wait mode.

PAGE 132: GETFORMATOPTIONS FLAGS WORD

The diagram describing the flags word of GetFormatOptions is incorrect. Bits
0 and 1 are actually the format type, while bits 2 and 3 are the size
multiplier. In other words, the two labels are backwards.

PAGE 142: FLUSH

The Flush call, under System Software 5.0.3 and later (GS/0S version 3.3)
accepts a maximum of two parameters. IT the second parameter is present, it
is the flushType. The flushType Word specifies the type of flush to be
performed. A flushType of $0000 is the standard flush, where all dirty
blocks are written to disk. IT flushType is $8000, however, only dirty data
blocks are written to disk. Certain dirty system blocks (blocks that don"t
hold file data) may not be flushed in this fast flush, but volume and file
integrity is maintained.

PAGE 151: GETDIRENTRY
PAGE 156: GETFILEINFO
PAGE 176: OPEN

Each of the above calls has optional resourceEOF and resourceBlocks paramters
that are listed as "undefined" if the file has no resource fork. In System
Software 6.0 and later, these fields are guaranteed to be zero if a given file
has no resource fork.

APPENDIX A, "GS/0S PRODOS 16 CALLS™

PAGE 386: GETDIRENTRY BUFFER DESCRIPTION INCORRECT

On page 386, nameBuffer is described as a pointer to a buffer in which GS/0S
returns a Pascal string containing the name of the file or directory entry (in

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 90 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

GetDirEntry). This is incorrect; all versions of GetDirEntry return GS/0S
(word-length) strings for the directory entry.

Further Reference

o0 GS/0S Reference
o Apple llgs Technical Note #71, DA Tips and Techniques
o] ProDOS 8 Technical Note #25, Non-Standard Storage Types

END OF FILE TN.GS0S.013

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 91 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.GS0S.014
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support
GS/0S
#14: The Console Driver Technical Note
Written by: Matt Deatherage May 1992

This Technical Note discusses the GS/0S Console Driver and related issues.

NEW 6.0 CHARACTER FEATURES DON"T WORK IN VERSION 3.2

The System Software 6.0 documentation (as of this writing, the GS/0S ERS)
refers to a new Console Driver feature. The Console Driver now has the
capability to return direct character-in and character-out vectors for
improved throughput (gained by bypassing most of GS/0S"s overhead). The
vectors are obtained through new DStatus device-specific call $8007,
GetVectors.

Unfortunately, in version 3.2 of the Console Driver (which ships with System
Software 6.0), this call returns addresses which are almost the correct ones
(in other words, they"re wrong). |If DInfo says the Console Driver is version
3.2 or earlier, don"t try to use the GetVectors feature.

NO-WAIT MODE AND USER INPUT MODE CONFLICT

When you read from a GS/0S driver in no-wait mode, the driver is supposed to
return as quickly as possible, reading as much information as possible and
returning as soon as the request is filled or no more information is instantly
available. This is the opposite of wait mode, where the driver waits until
the read can be finished even if it takes forever.

This philosophy directly conflicts with the Console Driver®s user input
routine (UIR) mode, where standard human interface editing functions are
available. For example, if you want to read seven characters from the Console
Driver in UIR mode, the user should be able to type four characters and hit
three backspaces and not worry that the read request will end since he pressed
seven keys. The entire concept of UIR mode is that the user can take his time
and edit his input until he"s happy with it, then press a terminator key to
end editing.

This is how the Console Driver works, in fact, even In no-wait mode. If you
ask for even one character in UIR mode and no-wait mode, the Console Driver
will let the user edit the one character until he presses a terminator.

IT you want instant feedback, you must use raw input mode.

Further Reference

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 92 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

o] GS/0S Reference
o System 6.0 Documentation for GS/0S

END OF FILE TN.GS0S.014

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 93 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.HCGS.001
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support
HyperCard 11GS
#1: Corrections to the Script Language Guide
Written by: Dan Strnad & Matt Deatherage March 1991

This Technical Note corrects the HyperCard llgs Script Language Guide from
Addison-Wesley.

Appendix A: External Commands and Functions
Page 317: ReturnStat

Developers who worked with the beta version of HyperCard llgs on Volume V of
the Developer CD (or volume 4 of Developer Essentials) should pay special
attention to the use of the returnStat parameter documented on page 317 ofthe
manual, as this method for using HyperCard®"s error-reporting facilities
wasnot present in beta versions of HyperCard.

Page 318: HyperCard 1lgs callbacks

Before describing the callbacks, the Script Language Guide says that thefirst
parameter to each callback is the parameter block pointer that HyperCard llgs
passes to the XCMD or XFCN. This is not correct; the XCMD/XFCN
parameterblock is not passed to callback routines. Each callback uses only
the parameters supplied with its description.

Pages 318-324: Callback descriptions

The numbers listed for each callback are actually decimal numbers, not
hexadecimal. There should not be a "$" in front of each number.

Pages 325-330: Beep, an example XCMD

Although there are "beep'" sample XCMDs provided with the HyperCard IlgsScript
Language Guide, they do not necessarily build and execute unmodified.
Specifically, depending on your compiler, there could be a linking
problemwith the Pascal and C XCMDs as given in the manual.

XCMDs and XFCNs are code resources, and are therefore subject to the
limitations listed in Apple Ilgs Technical Note #86, Risking ResourcefulCode.
The specific problem here is that most Pascal and C compilers will create at
least three segments: ~globals, ~arrays, and main. An XCMD or XFCN can only
have one segment and the entry point must come first. Not only must you link
all the object segments into one segment, but you must specifically

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 94 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

extractthe entry point and link it first. HyperCard will pass control to the
first byte of the loaded XCMD or XFCN, and therefore this must be the entry
point. The samples in Appendix A point this out in the code.

Actual buildable sample source for the "beep”™ XCMDs is available in APW
andMPW 1lgs format on Volume VI or later of the Developer CD Series (or

volume 5 or later of Developer Essentials).
included below.

An APW Sample XCMD: ™"CBeep'

CBeep.c

file CBeep.c

This XCMD has the following syntax:

CBeep beep once

CBeep ## beep n times

CBeep ? display usage information
CBeep ! display version information

Copyright Apple Computer, Inc. 1989-1991

All Rights Reserved.

#include <types.h>
#include <MiscTool.h>
#include <GSO0S.h>
#include <HyperXCMD.h>

/*
Globals
*/

int _toolErr;
XCMDPtr gParamPtr;

/*
Forwards
*/
pascal void CBeep();

/* We place the entry point function in its

extract it and ensure that it"s first in the

segment "EntrySeg”

/*
This is the entry point to the program.

comes first in the final OMF resource because

A complete APW C sample is

segment, so the linker can
load Tile. */

sure this procedure
this is where HyperTalk

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 95 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

will be jumping in.

For a really simple XCMD you could just put the code all in here, but
for cleanliness® sake this example calls another routine from here.

pascal void EntryPoint(paramPtr)
XCMDPtr paramPtr;

CBeep(paramPtr);

All other code & data is placed in the ""Main" segment */

segment *‘Main™

The actual CBeep function. Interpret parameters and beep the speaker

pascal void CBeep(paramPtr)
XCMDPtr paramPtr;

short beepCount;
short counter;
Str255 str;

char *formStr
char *versionStr

"\pAnswer \"FORM: CBeep {count}\""’;
"\pAnswer \"CBeep XCMD v1.0\" & return & \'"(c) 1991

Apple Computer, Inc_-\"";

gParamPtr = paramPtr; /* put in a global for easy access in other funcs

if (paramPtr->paramCount > 0) {
ZeroToPas(*(paramPtr->params[0]), &str);

beepCount = 0;

if (str.text[0] == "?%) /* test for special characters */
SendCardMessage (formStr);

else if (str.text[0] == "I17)

SendCardMessage(versionStr);

else beepCount = StrToNum(&str); /* not a special - take as # of
beeps */

else beepCount = 1; /* no count, assume one */

beepCount = (beepCount <= 15) ? beepCount : 15; /* limit 15 beeps */

for (counter = 0; counter < beepCount; counter++) SysBeep();

CBeep.r

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 96 of 714

APPLE][COMPUTER FAMILY TECHNICAL

INFORMAT ION]|

/***/
/*

/* CBeep.r

/*

/* Copyright (C) 1991

/* Apple Computer, Inc.

/* All Rights Reserved

/*

/* Rez source for building XCMDs.

/*

/ /

#include "types.rez"
read $801E (1, convert) '"CBeep.omf";
resource rResName ($0001801E) {

11
{ 1, "CBeep";

}
}:
Make File
N
* This makefile will build C XCMDs for HyperTalk
*
* Copyright Apple Computer, Inc. 1991
* All Rights Reserved.
* Builds: CBeep
* This makefile depends on a .r file called CBeep.r to act
*

as a source for the resource compiler.

compile +t +e CBeep.c keep=CBeep

and ~globals and ~arrays containing data. This line ensures that
everything gets put back into the main segment.

In addition, it specifically links the EntryPoint procedure FIRST,
ahead of any globals or data structures.

ok ok X b X ok X

*

The linker line is very long - make sure you use all of it

linkiigs -x -Iseg main CBeep.root(@EntrySeg) CBeep.root(@Main)

The compilers will output 3 or more segments: main, containing code;

CBeep.root(@~arrays) CBeep.root(@~globals) 2/CLib -lib 2/CLib -o CBeep.omf

compile CBeep.r keep=CBeep.rsrc

* now use your favorite resource utility to copy the XCMD from CBeep.rsrc

* into your stack

Further Reference

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 97 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

0 HyperCard llgs Script Language Guide
o Apple llgs Technical Note #86, Risking Resourceful Code
0 HyperCard Ilgs Technical Note #2, Known HyperCard Bugs

END OF FILE TN.HCGS.001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 98 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.HCGS.002
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support
HyperCard 11GS
#2: Known HyperCard Bugs

Revised by: Matt Deatherage May 1992
Written by: Dan Strnad & Matt Deatherage March 1991

This Technical Note documents known bugs in the released version of HyperCard
I1gs that may affect developers.

CHANGES SINCE MARCH 1991: Revised to list version 1.1 bugs (sigh) as well as
version 1.0 bugs.

HYPERCARD EXTERNALS AND NAMED RESOURCES

HyperCard®"s XCMD and XFCN callbacks documented in Appendix A of the HyperCard
I1gs Script Language Guide include callbacks that find named resources. In
versions 1.0 and 1.1, these routines don"t compare the lengths of the resource
name strings, which makes HyperCard return the wrong named resource from time
to time.

A more precise description of this problem is in Apple llgs Technical Note
#83, ""Resource Manager Stuff." Note that HyperCard llgs does not use the
Resource Manager®s named resource routines, but the code in the Resource
Manager suffers from the same problem the HyperCard code has.

PREVIOUS BUGS FIXED
The two bugs previously listed In this Note--improper handling of desk
accessories and crashing when using objects or properties of different stacks

to externals--are both fixed in HyperCard Ilgs version 1.1.

Further Reference

o] HyperCard llgs Script Language Guide
o] HyperCard llgs standard documentation (included with HyperCard 11gs)

END OF FILE TN.HCGS.002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 99 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN_.HCGS.003
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support
HyperCard 11GS
#3: Pitching Sampled Sounds
Written by: Mark Cecys & Matt Deatherage March 1991
This Technical Note describes the "relative pitch” field used in sound

resources played by HyperCard (and sound scraps that HyperCard doesn®t
use)--what it does and what to put in it.

What is this relative pitch thing?

There are basically two ways to use a sound sample, iIn HyperCard or anywhere
else: as a sample of a wave of definite pitch, or as a miniature "tape
recording” of some sound that is not intended to be used as a sample of
indefinite pitch.

Definite Pitch

To play a sample at the correct pitch, HyperCard assumes two things about the
sample: it was sampled at a rate of 26.32 KHz, and the associated wave was
playing a pitch of 261.63 Hz, when 1t was sampled.

In the real world, where most of us live, this is not very practical. To
help compensate for reality, the sample sound format includes a "relative
pitch™ field, which can tell HyperCard (or anyone else playing the sound) how
to compensate for the difference in pitch between the sample®s actual pitch
and a pitch of 261.63 Hz.

Follow these steps to calculate the relative pitch parameter for a given
sampled sound resource. If the wave is of definite pitch, you must know the
frequency of the source wave and the sampling rate for the sample in
question.

1. Calculate the difference ratio r. In the equation below, Fw is the
frequency of the sample (in Hz) and Fs is the sampling rate for the
sample.

261.63 Fs
r = - X ===
Fw 26,320
2. Extract an offset to the pitch:
offset = 3072 X log (r)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 100 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

2

(Remember that you can substitute (In(r)/In(2)) if your calculator
doesn®t provide the log in base 2.)

3. IT offset is negative, make it positive and set bit 15 to tell sound
players to lower the pitch instead of raise it. |If offset is
negative:

relative = |offset|] + $8000

IT offset is positive:
relative = offset

That"s all. Store the value of tuning in the sampled sound for the
"relative pitch” field and HyperCard will take care of the rest.

Indefinite pitch

Sounds which are not samples of definite pitch (for example, a thunder clap
or the sound of your mother saying "hello™) should not need to be made to
match pitch. Only sounds produced using optional parameters of HyperCard"s
Play command need to go through the same process outlined for "Definite

pitch”. In these cases, however, you don"t need to worry about the frequency
of the sample. Instead of using the equation provided in step 1 above, use
this instead:
Fs
r = -—-—-
26,320

(or just use 261.63 for Fw.) Take the value of r and use it for steps two
and three above.

A HyperTalk sample

The following simple button script will calculate the correct value of
relativefor you, given the other values in card fields named Fw, Fs and card
fields named offset and relativeto use as containers:

on mouseUp

lock screen

set numberFormat to 0"

put the value of card field Fs * 261.63 into r

put the value of card field Fw into denominator -- the bottom of the fraction
multiply denominator by 26320

divide r by denominator

put log2(r) into card field offset
multiply card field offset by 3072

if card field offset <0 then
put abs(the value of card field offset) into card field tuning
add 32768 to card field relative

end if

unlock screen

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 101 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

end mouseUp

Further Reference

o] HyperCard 1lgs Script Language Guide
0 Apple llgs Technical Note #76, Miscellaneous Resource Formats
o Apple llgs Technical Note #99, Supplemental Scrap Types

END OF FILE TN.HCGS.003

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 102 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.001
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#1: How to Install Custom BRK and /NMI Handlers

Revised by: Jim Mensch & Jim Merritt November 1988
Written by: Jim Merritt October 1986

This Technical Note discusses a method to install a custom debugger or
debugging stub within the Apple 11GS system.

Introduction

This Technical Note discusses a particular method that you may use to install
a custom debugger or debugging stub within the Apple 11GS system. The
strategy and techniques described here should be of special interest to those
who wish to operate the Apple 1IGS as a slave to a debugger that resides on
another machine.

Typically, an interrupt handler should pass control to a debugger or debugging
stub whenever the processor executes a BRK instruction, or when an interface
card triggers a non-maskable interrupt (/NMI). To simplify the design of the
debugger, the Apple 11GS Monitor should be responsible for the following:

o saving all machine state information in locations that the
debugger can access

0 setting the machine to a known state

0 passing control to an arbitrary debugger

0 restoring the remembered machine state upon regaining control from
the debugger

0 resurrecting the interrupted process

The Monitor is designed to provide all of the services above for the BRK
instruction, but only the third for /NMI interrupts. In addition, Apple 11
family systems are generally intolerant of /NMI interrupts. In this Technical
Note we concentrate on the means by which you can install your own custom BRK
handler, although we also briefly examine /NMI considerations.

Dealing With BRK

A BRK interrupt handler may reside at any address in memory. The Monitor
passes control to your code by executing a JSL instruction; consequently, your
routine must terminate with an RTL instruction. To install your BRK handler,
simply load it into memory, call the Miscellaneous Tool Set GetVector routine
to fetch the address of the current BRK handler, put that address in a safe
place, then supply the address of your handler to the Miscellaneous Tool Set
SetVector routine. To deactivate your handler, restore the previous handler

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 103 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

address using SetVector as follows:

NOTE: All Listings are in APW assembler format.

INSTMYBRK anop ;Example code to install user®s BREAK handler.
PushLong #0 ;Space for function call result.
PushWord #$1C ;We want BREAK vector address.
_GetVector ;Make the call using standard macro.

: The stack now holds address of the current break handler.

PLA ;Get and save low word of address...

STA SBRKADR

PLA ; ---and now high word.

STA SBRKADR+2

PushWord #$1C ;We want to change BREAK vector address.
PushLong #MYHANDLR ;Address of user®s BRK handler.
_SetVector ;Make the call using standard macro.

; Custom handler is in place, now go off and do whatever we like. ..

DEACMYBRK anop ;Example code to deactivate the BRK handler.
PushWord #$1C ;We want to change BREAK vector address.
PushLong SBRKADR ;The previous BRK handler address.
_SetVector ;Make the call using standard macro.

Upon entry to your code, the machine will be in eight-bit native mode.
Specifically, the m and x bits will be set (forcing eight-bit accumulator,
memory access, and index registers), the processor will be running at the
normal (1 MHz) speed, all memory shadowing will be enabled, and both the
direct page and data bank registers will be reset to zero. The same
conditions must hold when your BRK handler returns control to the Monitor.
While your code is active, however, it is free to affect the machine state in
arbitrary ways, including (but not limited to) widening the registers,
increasing the clock rate, and disabling shadowing. Before returning control
to the Monitor, your break handler must also clear the processor®s carry flag,
as an indication that the BRK was indeed serviced by an external handler.
(Note: The default BREAKVECTOR points to a ""no-op"™ handler that simply sets
the carry flag to indicate that there is no external handler available, and it
then executes an RTL.)

When a BRK occurs, the processor saves the machine"s state in the BRK.VAR
area, and you may obtain this address with the Miscellaneous Tool Set GetAddr
routine as follows:

PushLong #0
PushWord #9
_GetAddr

space for result
we want BRK.VAR address
make the call using standard macro

; The stack now holds the address of the BRK.VAR area, expressed as a long
word (four bytes).

Coping With /NMI

Handling /NMI interrupts is, by far, a trickier proposition than fielding BRK
instructions. For example, the user-definable /NMI jump-vector, /NMI

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 104 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

($0003FB), only has room in its three-byte JMP-absolute instruction for a two-
byte address. Because of this size limitation, at least the "front end" of
any /NMI handler must reside in bank $00. In addition, the Monitor does not
"condition™ the system in any way before transferring control through the /NMI
hook, so the system could be in native mode, emulation mode, or any hybrid
mode (with any screen condition) upon entry to your handler. (Note: Although
the 65816 processor provides for separate /NMI vector addresses in native and
emulation modes, the Apple 11GS implementation of these two vectors pass
control to the same user hook at $0003FB.) The processor only saves minimal
machine state information when an /NMI occurs; if the handler needs to
preserve more than the program counter and status register (which are saved
automatically), then it must do so explicitly. Because the 65816 assumes any
program running in emulation mode has its program bank register in bank zero,
it will not save the program bank register for any program running in
emulation mode outside of bank zero. Code which runs in this manner will
always crash if It makes any attempt to return from the interrupt. Finally,
/NMI interrupts can create havoc with disk access and other aspects of the
system; consequently, the only way you can safely use /NMI interrupts is as a
one-way '‘escape hatch" to emergency debugging code.

Here are some ground rules for /NMI interrupt handlers.

o On entry, store any interesting registers or machine state in RAM
space owned by the handler.

o0 Determine whether the processor is in emulation mode or native
mode.

o Take appropriate action, depending upon the processor mode.

o Under no circumstances try to return from the interrupt! Restart
the system iInstead.

To install an /NMI handler, load it into some free RAM in bank $00, put the
two-byte address currently at location /NMI+1 in a safe place, then replace it
with the address of your handler. To deactivate your handler (assuming
nothing has yet invoked it), simply restore the previous handler address to
/NMI+1.

END OF FILE TN.11GS.001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 105 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.002
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#2: Transforming 1/0 Subroutines for Use in "Native'" Mode

Revised by: Pete McDonald November 1988
Written by: Pete McDonald October 1986

This Technical Note outlines a number of techniques useful when transforming
Apple 11 1/0 subroutines for use in the "native"™ Apple 1IGS environment.

The Apple I11GS execution environment represents quite a departure from the
environment to which the average Apple Il developer is accustomed. This fact
results in a number of unique problems when one attempts to convert existing
Apple 11 applications for use in the "native"™ Apple I11GS environment. (Note:
IT you intend to let your application remain an eight-bit "classic" Apple 11
application, then you can ignore the information this Technical Note
presents.)

1/0 subroutines which depend upon critically timed code present some of the
biggest conversion problems due to two major issues. In the native llgs
environment, you cannot guarantee that there will be memory available in a
given bank, and 1/0 locations are not available in every bank.

There are a number of possible solutions to this problem. Which ones you
should use depend upon what the program in question is doing. This Note
attempts to describe some of the problem situations and possible solutions.

Examine the 6502 code segment below. It serves no useful purpose, other than
to 1llustrate a simple manifestation of the problem. Assume loLoc is a
location in the $C000 - $CFFF range of memory.

Loop LDA loLoc
DEY
BPL Loop

Because the $C000 - $CFFF range of memory in bank 2 or higher contains RAM
instead of 1/0 circuitry unless hardware shadowing is enabled, if you place
the fragment above in one of these banks, it will have no effect on the 1/0
device you intend it to control.

There are two possible solutions in this case. Either change the instruction
LDA loLoc so it uses long addressing, thereby forcing the CPU to reference the
the proper bank. (Note: The problem with this is the long version of LDA
requires an extra CPU cycle to execute. If the code segment is timing
critical, then this method is likely to be unacceptable.) Alternately, in the
timing-critical case, we could set the data bank register before entering the
loop which would mean the LDA loLoc would take the same number of cycles as it

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 106 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

did previously, thus leaving the timing loop unchanged.

These solutions seem pretty easy; therefore, you know there is a catch. The
catch, unfortunately, is that most code is not isolated as in the example.
Specifically, code commonly tries to load from or store to some location in
memory other than the 1/0 location at the same time it is trying to access the
1/0 location.

Take, for example, the following fragment:

Loop LDA Data,y

STA loLoc
DEY
BPL Loop

In this example, we assume that the label Data refers to some kind of table
which normally resides iIn the same bank as the program. Now if you set the
data bank register to access 1/0 locations, then the reference to Data will
also reference the same bank as the 1/0; this solution is likely not
acceptable. One thing you can do is move the data table to the direct page
(zero page for 6502 programmers), but now the LDA Data,y instruction will take
one less cycle to execute. There is a solution, although it is a little
complicated. If we set the direct page register to a non page-aligned
location, then we effectively apply a one-cycle penalty to all direct page
references and solve our problem.

Of course, nothing is ever as simple as it seems. What happens to references
to other direct page locations that expect to operate without the one-cycle

penalty? To properly address this question, 1 would need much more space than
I have here, so in lieu of further examples, 1 offer some general information.

(As an aside, 1 used these techniques to transform the old "Apple 11 Disk 11
formatter module'™ for use in any bank of memory in the native 11GS
environment. 1 accomplished this using, almost exclusively, editor find and

replace commands, and 1 finished in hours instead of the days which would have
been required to completely rewrite the program.)

In addition to the techniques already covered, there are a few other things
which may be necessary to complete a transformation (they were necessary in
the case of the formatter module).

As 1 already mentioned, one problem is what to do in the case where a program
references 1/0, local program-bank data, and the zero-page. In this case,
significant rewrites could be required, but not necessarily.

In the case of the disk formatter, it turned out that some modules used both
normal zero-page addressing and normal 16-bit absolute indexed addressing.
Since the transformation process dictates that we change 16-bit absolute
addressing to direct-page addressing with a non page-aligned direct page,
there could have been a problem had both uses of the direct page been timing
critical. Fortunately, by treating each module of the program separately,
when 1 needed both types of addressing, only one was critical. The solution
was to set the direct page to a non page-aligned value in some modules and to
a page-aligned value in others. There are some minor logistical issues when a
direct page®"s base address can be at either $xxx0 or $xxx1, the biggest of
which is keeping track of which is in effect at a given point and knowing to
reference the label as label, label+l, or label-1, depending upon the
particular case.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 107 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

With the formatter transformation, there was one other major issue: there are
not direct-page versions of all the 16-bit absolute addressing modes (i.e.,
one cannot convert l16bitaddress,x to 8bitaddress,x). In the case of the
formatter, | was able to solve this by reversing all the register use (i.e.,
all LDY instructions became LDX instructions, all STY instructions became STX
instructions, etc.).

There are still a number of other ways in which one can approach these issues;
one that comes to mind would be using some form of the new stack-relative
addressing modes to yield yet another range of semi-independently accessible
addresses.

The real point of this Technical Note is that with a little thought and
effort, one can successfully convert a large subset of likely configurations
for use iIn the native 11GS environment without major rewrites. The bottom
line is to be creative!

Further Reference
o] Programming the 65816 Including the 6502, 65C02, and 65802 (Eyes/Lichty)
o] Apple 11GS Firmware Reference

END OF FILE TN.11GS.002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 108 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.003
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#3: Window Information Bar Use

Revised by: Dave Lyons January 1991
Written by: Dan Oliver October 1986

This Technical Note details the use of a window"s information bar, includinga
code sample which places a menu in an information bar.

Changes since November 1988: Added a note about the current Resource
Application when inside an InfoDefProc procedure, and information about
information bars and NewWindow?2.

Apple 11GS window information bars are not as straightforward as other window
features, and one reason for this is the small amount of space originally
allocated for their processing. |If you feel your application can benefitfrom
the use of information bars, you can implement them, and this Technical Note
explains how to do it and includes some suggestions for their use. The code
samples below demonstrate how to place a menu bar in an information bar, but
your use of information bars is not limited to those described here.

Information Bar Initialization

You can create an information bar in a window when you create the window by
setting the following fields in the parameter list you pass to NewWindow:

wFrame Set bit 4.

winfoHeight Set to the height of the information bar (should not exceed
window height).

winfoDefProc Set to the address of the information bar definition
procedure (see below).

IT you create a window as visible, the Window Manager will call your
information bar definition procedure (InfoDefProc) before returning from
NewWindow. If you have to create the contents of the information bar after
the window, you will have a problem since the Window Manager will expect your
InfoDefProc to draw things which do not yet exist. You can solve this problem
by creating the window as invisible, creating the contents of the information
bar, then showing the window. Another solution would be to detect, in the
InfoDefProc, that the contents of the information bar do not yet exist.

NewWindow2, however, does not let you override the information bar drawing
procedure in the template. If you pass a window template in a resource,

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 109 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

creating the window as visible crashes (since the address of your information
bar drawing procedure cannot possibly be in the window template resource).
Instead, create the window as invisible and call SetInfoDraw to set the address
of the information bar drawing procedure before calling ShowWindow.

Below is an example of initializing a window"s information bar to contain a
menu bar. The three key fields of the parameter list which you pass to
NewWindow are as follows:

wFrame Set bit 4 = 1 and bit 5 = 0 for an invisible window; the
other bits do not affect the information bar, so you can set
them as you wish.

winfoHeight Assuming you are using a system menu bar and initializing it
before the window, set to the height FixMenuBar returned
when you created the system menu bar. If you would rather
use an absolute value, which we do not advise, you could use
14 which should be about right for the current system font.

winfoDefProc Set to the address of the InfoDefProc, in this case
draw_info.

After you create the window, but before you show it, you can create the menu
bar to place in the information bar. The code to create the menu bar might
look like the following:

indow Direct page location that contains pointer to window"s port.

.

-—— Create a menu bar

pha Space for result.

pha

pea $FFFF Set "use current port” flag.
pea $FFFF

_NewMenuBar Create a menu bar.

pla Get returned menu bar handle.
sta <menuBar Remember menu bar handle.

pla

sta <menuBar+2

-—-— Store menu bar®s handle in the window"s InfoRefCon

pei <menuBar+2 Pass menu bar handle.

pei <menuBar

pei <window+2 Window to set refCon.

pei <window

_SetInfoRefCon Store menu bar handle in window"s
nfoRefCon.

-—-- Make the window"s menu bar the current menu bar

pei <menuBar+2 Pass menu bar handle.
pei <menuBar

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 110 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

_SetMenuBar

-—- Get the RECT of the window"s

Make new menu bar the current menu bar.

information bar

pea
pea
pei
pei

tempRect]-16
tempRect
<window+2
<window

_GetRectlInfo
Info Bar.

Pass pointer of RECT.
Pass pointer of window.

tempRect = interior RECT of window"s

--- Dereference menu bar handle

1dy
lda
tay
lIda
sta

sty

--- Set size

#2
[menuBar],y

[menuBar]
<menuBar

<menuBar+2

of menu bar

Now menuBar is the pointer to the Menu

lda
dec
ldy
sta

lda
dec
ldy
sta

lda
inc
Idy
sta

--- Set flag

ldy
lda
ora
sta

<tempRect+yl
a
#CtlRect+yl
[menuBar],y

<tempRect+x1
a
#CtlRect+x1
[menuBar],y

<rect+y2

a
#CtlRect+y2
[menuBar],y

Overlap top side.

Overlap left side.

Overlap bottom side.

to tell Menu Manager to draw menu in current port

#CtlOwner+2
[menuBar],y
#$8000

[menuBar],y

Set high bit in CtlOwner.

--- Create the menus and add them to the window"s menu bar

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 111 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Ida #4
loop pha Save index into menu list.
tay Switch index to Y.
pha Space for return value.
pha
lda menu_list+2,y Pass address of menu/item lines.
pha
lda menu_list,y
pha
_NewMenu
: Menu handle already on stack.
pea 0 Insert menu list at front of list.
_InsertMenu Add my menus to the system menu bar.
pla
sec
sbc #4
bpl loop

-—— Initialize the size of the menu bar and menus

pha Space for returned bar height.
_FixMenuBar Fix up positions in the menu bar.
pla Discard height of menu bar.

--- Restore the system menu bar as the current menu

pea 0 Pass flag for system menu bar.
pea 0
_SetMenuBar Make system menu bar current.

The window™s menu bar is now initialized, and you can make the window visible
with a call to ShowWindow; the InfoDefProc will draw the menu bar.

Information Bar Definition Procedure (InfoDefProc)

The InfoDefProc is slightly misleading; it is only responsible for drawing the
interior, above the background, of the information bar. The InfoDefProc is not
responsible for defining the information bar, drawing the frame and background,
testing for hits, or tracking the user. The InfoDefProc is located inside your
application, and the Window Manager calls it whenever it needs to draw the part
of the window frame that contains the information bar.

Each window with an information bar can have its own InfoDefProc, or they can
all share a common InfoDefProc. When the Window Manager calls your InfoDefProc,
it sets the proper port, the Window Manager®s port, and the proper state, an
origin local to the window frame and clipped to any windows above it. The
direct page and data bank are not defined and should be considered unknown.

The Window Manager passes your InfoDefProc the following information:

o Pointer to the information bar®s interior rectangle (less frame), local

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 112 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

coordinates.
o Value of the window"s winfoRefCon, set and used only by your application.
o0 Pointer to the window"s port (do not switch to this port for drawing).

A window that has an information bar containing a menu bar (handle stored in the
window"s InfoRefCon) might have a InfoDefProc as follows:

draw_info START

iheWindow equ 6 Offset to the information bar owner window
infoRefCon equ theWindow+4 Offset to the window"s information bar RefCon
infoRect equ infoRefCon+4 Offset to the information bar®s enclosing RECT
' phd Save original direct page.

tsc Switch to direct page in stack.

tcd

-—— Draw the window"s menu bar in the window®"s information bar

pei infoRefCon+2 Pass handle of window®s menu bar handle.
pei infoRefCon
_SetMenuBar Make the window"s menu bar the current menu
bar.

' _DrawMenuBar Draw the window"s menu bar, as requested.

' lda #0 Zero is the flag for the system menu bar.
pha
pha
_SetMenuBar Make the system menu bar current again.

--- Remove input parameters from the stack

; 1dx #12
ply Pull original direct page, save in Y.
' tsc Move direct page point to stack.
tcd
lda 2,s Move return address over input parameters.
sta 2,X
Ida 0,s
sta 0,x
' tsc Adjust stack for stripped input parameters.
phx Number of bytes of input parameters.
clc
adc 1,s Add number of input parameters to stack
pointer.
tcs And reset stack.
tya Restore original direct page.
tcd
' rtl Return to Window Manager .
END

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 113 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Information Bar Environment

An information bar is part of a window"s frame, that is, not part of the
window"s content region. Because it is part of the frame, an information bar
is in the Window Manager®s port, so before an interaction (drawing or mouse
selecting), the proper port (Window Manager®s) must be in the proper state.
The proper state means the origin must be at the window®s upper-left corner
and clipped to any windows above.

When the Window Manager calls the InfoDefProc it sets the proper port to the
proper state; however, to interact with the information bar outside the
InfoDefProc, you must set the proper port the the proper state. You can
accomplish this with a call to StartlnfoDrawing. When the interaction is
completed, you must allow the Window Manager to return its port to a general
state via a call to EndInfoDrawing. You are iIn a special state that requires
some constraints (discussed later) between the calls to StartinfoDrawing and
EndInfoDrawing.

Here is an example of interacting with our window"s menu bar.

poll pha Space for return value.
pea %0000111101101110 Pass event mask to use.
pea TaskRec|-16 Pass pointer to Task record.
pea TaskRec
_TaskMaster
pla Get returned value.
beq poll Does event need further processing?

--- Handle button down in window"s information bar

cmp #Inlnfo In Information bar?

bne poll

pha Space for result.

pha

lda TaskRec+TaskData+2 Pass pointer of window.

pha

lda TaskRec+TaskData

pha

_GetlInfoRefCon Get menu bar handle from window"s
InfoRefCon.

pla

sta menuBar

pla

sta menuBar+2

-—-— Switch to proper port in proper coordinate system

pea tempRect]-16 Pass pointer to RECT to store info
bar RECT.
pea tempRect

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 114 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Ida TaskRec+TaskData+2 Pass pointer of window.
pha

lda TaskRec+TaskData

pha

_StartiInfoDrawing

--—- Handle menu selection from window"s menu bar

pea TaskRec|-16 Pass pointer to Task record for
MenuSelect.

pea TaskRec

pei menuBar+2 Pass handle of menu bar.

pei menuBar

_MenuSelect Let user make selection.

lda event+TaskData Get the item"s 1D number.

beq exit Was a selection made?

_EndInfoDrawing Switch back to original port.

(Handle the menu selection.)

The EndInfoDrawing followed by the StartinfoDrawing call is only
needed when code between them calls the Window Manager.

pea tempRect]-16 Pass pointer to RECT to store info
bar RECT.

pea tempRect

Ida TaskRec+TaskData+2 Pass pointer of window.

pha

lda TaskRec+TaskData

pha

_StartiInfoDrawing Switch to the proper port in the
proper state.

' pea 0 Pass unhilite flag.

lda TaskRec+TaskData+2 Pass menu®s ID number.

pha

_HiliteMenu Unhilite menu®s title.

--- Clean up and return to polling

exit _EndInfoDrawing Switch back to original port.
pea 0 Make system menu bar current.
pea 0
_SetMenuBar
Jjmp poll Return to polling user.

Information Bar Shutdown

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 115 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

When the Window Manager closes the window, it is up to you to resolve any

shutdown necessities associated with the

information bar. Using our window

menu bar example, the close window might look like the following:

pei menuBar+2 Pass handle of menu bar
pei menuBar
_SetMenuBar
' pha Space for returned menu handle.
pha
pea 2 ID number of second menu.
_GetMHandle Get the menu®s handle.
_DisposeMenu Free menu record and associated data.
' pha Space for returned menu handle.
pha
pea 1 ID number of First menu.
_GetMHandle Get the menu®s handle.
_DisposeMenu Free menu record and associated data.
' pea 0 Make system menu bar current.
pea 0
_SetMenuBar
' pha Space for menu bar®s handle.
pha
pei <window+2 Pass pointer of window to close.
pei <window
_GetInfoRefCon Get the InfoRefCon from the window.
_DisposeHandle Free menu bar record.
' pei <window+2 Pass pointer of window to close.
pei <window
_CloseWindow Now the window can be closed.

The type of shutdown you use depends upon the contents of the informationbar.

Why didn"t 1 put a DisposeMenuBar call in the Menu Manager? 1 didn"t thinkof it
until a week too late. Sorry.

Other Information Bar Uses
The following suggestions are only theories and have not been tested.

o Display text information, as in Macintosh Finder windows.

o Split window. Like the content region, the information bar could be large
enough to hold data.

0 Hold controls. You could scroll data in the content region while keeping
the controls which affect the display in place and within the user®s reach.
(Note: The Control Manager currently will not allow controls it creates in
an information bar. In this case, NewControl would be using a port that is
not in your window®s port, namely the Window Manager®s port.)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 116 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Further Reference

o Apple 11GS Toolbox Reference, Volumes 1 & 2

END OF FILE TN.I11GS.003

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 117 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHHHH R R R R R R R R R R R R R R R R R R
FILE: TN.11GS.004

W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llgs

#4: Changing Graphics Modes in Mid-Application

Revised by: Dave '"Dave’ Lyons, C.K. Haun & Dan Oliver January 1991
Written by: Dan Oliver October 1986

This Technical Note discusses how to switch between the two graphics modes, 320
and 640 horizontal resolution, while running an application which usesthe
Window, Control, and Menu Managers.

Changes since May 1990: Added information about reinstalling fonts after
restarting QuickDraw I1.

Why Change Resolution?

Why not? There are certain applications where the ability to run in both modes
is essential; most graphics applications fall into this category.Other
applications might switch modes to provide features which their competitors
lack; a financial application might display figures in 640 mode and charts in
320 mode. Still other applications may want to give the user the choice. A
word processor might seem useful only in 640 mode, but what if the user wants to
print greeting cards with pictures? The user does not need the linelength
provided in 640 mode but does need the added color of 320 mode for the pictures.

Let me preach a little. | have worked on other machines with different graphic
modes and learned some things that might be of use to application programmers.
Many application programmers fight mode switching with either rhetoric or
apathy, then when users expect their software to run in either mode, they become
frustrated when it does not allow switching. To avoid the problem of
frustrating the user, you can provide mode switching (which is not as hard as
you might think).

How To Change Modes

First, assume you are in an application which is running with a system menu bar,
a few visible windows with scroll bars, and one window with somestandard
controls. At some point, the user decides to change modes, possibly via a menu
item thoughtfully provided by the application programmer. Your change mode
handler might look like the following:

; --— This step is necessary if QuickDraw Auxiliary is started ~————-——-——————-—
__QDAuxShutbDown ;Shut down QDAux First
' _QDShutdown ;Shut down QuickDraw.

;This will turn graphics off so you will see
;the text screen for a second (a advertisement

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 118 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

;might go here).

Ida <mode ;Variable that holds current resolution.

eor #$0080 ;Flip the mode bit, $0000 = 320, $0080 = 640.

sta <mode ;New value will be used to start the new mode

pei <QDzpage ;Pass the direct pages allocated for
;QuickDraw.

pei <mode ;New mode.

pei <QDwidth ;0 for screen width; other numbers for
;printing

pei <MyID ;Pass my ID number.

_QDStartup ;Restart QuickDraw in the new mode.

_GrafOoff ;Turn screen off because changing mode
;may not be pretty.

; ———- This step is necessary if you need QuickDraw Auxiliary -----——-—--————-
_QDAuxStartUp ;Start QDAux again

--- Fix up the cursor for the new mode ---------———————————————

pea 0O ;Pass minimum cursor X position.

lda #319 ;Maximum X position for 320 mode.

Idx <mode ;320 or 640 mode?

beq store

lda #639 ;Maximum X position for 640 mode.
store pha ;Pass maximum cursor X position.

pea 0O ;Pass minimum Y cursor position.

pea 199 ;Pass maximum Y cursor position.

_ClampMouse ;Clamp the cursor to the new screen size.

_HomeMouse ;Move the cursor to 0,0 to make sure

;it Is on screen.
_ShowCursor ;Make cursor visible.

--- Tell tools about the change ------—-——-----—- -~

_WindNewRes ;Tell Window Manager about the change.
_MenuNewRes ;Tell Menu Manager about the change.
_CtlINewRes ;Tell Control Manager about the change.

--- Fix the screen to look good -----------———————————

Here you might want to change the color of the desktop, windows, menus ;
r controls to look good for the new mode.

See example below.

--- Redraw the screen in the new mode ----——————-———————————————————————————

Wiwrturur s Qurururur s

pea O ;Pass flag to draw entire screen.
pea O

_RefreshDesktop ;Draw entire screen.

_GrafOn ;Now show the new screen.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 119 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

That is not too bad, but 1 left out the fun part. Before the RefreshDesktop
there is a section named "Fix up the screen to look good.”™ This section is
where you might want to put some color into windows, controls, and menus iIf
you are switching to 320 mode; changing colors is not required, but there are
some things which are.

When switching from 640 mode to 320 mode, some windows (both visible and
invisible) might be positioned off the screen in 320 mode. The first way to
handle this problem is easy for you, the programmer, but not so great for the
user: close all the windows before changing modes, then position them
correctly when the user opens them in the new mode. The second way to handle
the problem is to walk the window list and move all the windows, maybe even
change their sizes. You could double each window"s horizontal starting
position and width when switching from 320 mode to 640 mode and halve it when
changing from 640 mode to 320 mode. The vertical position and height are
okay. An example of the second method is given below.

Windows with vertical scroll bars in the window frame are the same width when
you change modes, so switching from 320 mode to 640 mode results In anarrower
bar while changing from 640 mode to 320 mode produces a wider bar. The bars
change to the correct size as soon as the user resizes the window, since
SizeWindow deletes the old scroll bars and allocates new ones according tothe
current mode. If, as suggested above, you resize all the windows after the mode
change and before calling RefreshDesktop, you should be in good shape. If you
choose not the follow this recommendation, you should call SizeWindow for every
window with scroll bars and change the size of each window at least one pixel
since SizeWindow does not do anything if the passed size is not different than
the current size.

You should dispose of scroll bars in a window"s content region and recreate
them; this is not nice, but very few applications have scroll bars in a window"s
content region.

You should not resize any open new desk accessory (NDA) windows. NDAs may be
dependent on screen mode, or their current position, or other such things which
may change with resolution. To be kind to the NDAs, you should issue a
CloseAlINDAs call. This call allows the NDAs to go through their normalclose
procedures. If a user wants an NDA open in the new screen resolution he must
reopen it. This assures that the NDA always knows its own position and the
current screen resolution.

WindNewRes resets the desktop shape and pattern and the Window Manager®s icon
font to their defaults for the new mode, so if you changed any of these, you

must add to or subtract from the desktop again and reinitialize to yourcustom
pattern or icon font again.

CtINewRes resets the Control Manager®s icon font to the default for the new
mode, so If you changed the Control Manager®"s icon font, you mustreinitialize to
your icon font again.

Reinstalling Large Fonts
After restarting QuickDraw 11, you should call InstallFont again on the

fontsyour application is using. This causes the Font Manager to
callinflateTextBuffer so that QuickDraw can draw text correctly in large

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 120 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

fontsizes.

Repositioning and Resizing Windows in the New Mode
Here is an example of how to reposition and resize windows in the new mode.

; QuickDraw and the tools have already been reinitialized in the new mode.
; mode = $0000 if in 320 mode, $0080 if in 640 mode.

BoundsRect equ 8 ;Offsets in port record from QuickDraw document
PortRect equ 16
_CloseAlINDAs ; close all open NDA windows
pha ;Space for result.
pha
_FrontWindow ;Start with the top most window, this assumes
bra enter ;there are no invisible windows ahead of the

;active window in the window list.
ldy #BoundsRect+2

lda [window],y ;Get window"s starting horizontal position.

eor #$FFFF ;Convert to screen coordinate (negate it).

inc a

asl a ;Double it if we"re going to 640 mode.

ldx <mode ;Going to 320 or 640 mode?

bne storel ;Ready if we"re going to 640.

Isr a ;Otherwise, undo the doubling,

Isr a ;and halve the starting horizontal position.
storel pha ;Pass window®"s new X starting position.

Idy #BoundsRect

lda [window],y ;Get window"s starting vertical position.

eor #$FFFF ;Convert to screen coordinate.

inc a

pha ;Pass window"s current Y starting position.

pei <window+2 ;Pass window to move.

pei <window

_MoveWindow ;Move the window to its new position.

ldy #PortRect+6 ;Get window™s current width.

lda [window],y ;(This assumes the window"s origin is 0,0.)

asl a ;Double the window®"s width if going to 640 mode

ldx <mode ;Going to 320 or 640 mode?

bne store2 ;Ready if we"re going to 640.

Isr a ;Otherwise, undo the doubling,

Isr a ;and halve the window®s width.
store2 pha ;Pass window"s new width.

ldy #PortRect+4

lda [window],y ;Get window"s height.

pha ;Pass window"s current height.

pei <window+2 ;Pass window to resize.

pei <window

_SizeWindow ;Resize the window.

pha ;Space for result.

pha

pei <window+2 ;Pass pointer to window we just processed.

pei <window

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 121 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

_GetNextWindow ;Get the pointer to the next window.

enter pla ;Remember the pointer to this window.
sta <window
pla
sta <window+2

ora <window ;Are there any more windows?
bne loop

WindNewRes
Generally, WindNewRes does the following:

closes its port

opens its port again, now in the new mode

reinitializes the desktop size

chooses the proper icon font for close and zoom boxes
reinitializes the desktop pattern

changes the SCB byte of each window"s port to the new mode
recomputes the VisRgn for each window

OO0OO0OO0O0OO0OO0

MenuNewRes
Generally, MenuNewRes does the following:

o closes its port

0 opens its port again, now in the new mode

o reinitializes internal parameters, like vertical line width, for the new
mode

o vreinitializes the color palette via InitPalette

0 subtracts the system menu bar from the desktop (this is why you must
call WindNewRes first)

0 draws the system menu bar

CtINewRes
Generally, CtINewRes does the following:
o0 chooses the proper icon font for radio button, check box, grow box and
scroll bar arrows

o reinitializes internal parameters, like vertical line width, for the new
mode

END OF FILE TN.11GS.004

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 122 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.005
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#5: Window and Menu Titles

Revised by: Matt Deatherage November 1990
Written by: Dan Oliver October 1986

This Technical Note discusses spacing for both window and menu titles.
Changes since November 1988: Revised to include new information on the default
placement of the Apple menu.

Strings used for window titles should always have a space as the first and last
characters. This spacing is especially important for windows that use a lined
window title bar since, without the beginning and ending space, theline pattern
in the title bar runs against the title. Since there will be window editor desk
accessories which allow the user to change the title bar pattern without the
application knowing, you should pad your window titles withspaces even if you
are using black window title bars.

The Window Manager does not force spaces on either side of titles to optimize
the window frame drawing speed; it is much faster to let the text punch ahole in
the title bar pattern than to compute the rectangle, fill 1t, and draw the text.

To provide the user with a consistent visual interface, you should also pad your
menu titles with spaces. |If you use either one or two spaces (the Apple 1IGS
Finder has used two) before and after each menu title, your menu titles will be
consistent and balanced (two spaces work well in 640 mode where one space
usually suffices for 320 mode). Although it is true that a menu bar will look
about the same if the first menu title has two spaces before it and no space
following it and all the other menu titles have four spaces before them, when
the user pulls down the menu, the Menu Manager®s highlighting will clearly (and
embarrassingly) show the spaces in the menu titles.

IT you would like to place the Apple menu differently, you must use Menu Manager
calls since you cannot place spaces around the at sign (@) which the Menu
Manager uses to represent the Apple logo in a menu title. The easiest way to
accomplish this is calling SetMTitleStart to set the starting position for the
leftmost title (usually the Apple menu) within the current menu bar. The Apple
11GS Finder has used a value of 10 ($0A) pixels.

Beginning with System Software 5.0, the Apple menu is placed at a default of 10
pixels from the left edge of the menu bar in 640 mode or Ffive pixels in 320
mode. If you use SetMTitleStart to change the default, the value is still
interpreted as an absolute placement from the left edge of the menu bar. For
example, SetMTitleStart(6) moves the Apple menu one pixel to the right of the
default in 320 mode and four pixels to the left of the default in 640 mode. Be
sure not to use SetMTitleStart to set the Apple menu starting place to the left

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 123 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

of the default, as doing so interferes with the AppleShare activity arrows.

END OF FILE TN.11GS.005

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 124 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.006
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#6: QuickDraw 1l Pattern Data Structure

Revised by: Dave Lyons July 1989
Written by: Guillermo Ortiz December 1986
Some QuickDraw Il calls require a pen pattern as input or return one as

output; regardless of the drawing mode (320 mode or 640 mode), a pen pattern
takes 32 bytes.

Changed since November 1988: Starting with System Software 5.0, all 32
bytes are significant if bit 15 of the current port"s arcRot field is set.
Changed wording to cover QuickDraw 11 patterns in general, instead of pen
patterns only.

Early QuickDraw 11 documentation described the pattern data structure as
follows:
TYPE

nibble = 0..15;

twobit = 0..3;

Pattern = RECORD CASE MODE OF
mode320: (PACKED ARRAY [0..63] OF nibble); { 32 bytes }
mode640: (PACKED ARRAY [0..63] OF twobit); { 16 bytes }
END;

This declaration could lead one to believe that 16 bytes are enough when
making calls to QuickDraw 1l in 640 mode. This is not true. A pattern

always takes 32 bytes; QuickDraw 11 calls that copy or construct patterns
access all 32 bytes. That means it is never safe to pass the address of a
16-byte area as a pattern. Toolbox calls that return data into your buffer
overwrite 16 bytes immediately following your buffer. Calls that copy data
from your buffer access those extra 16 bytes, possibly including soft switches
or reserved space in the memory map.

The difference between modes is that QuickDraw Il normally ignores the second
16 bytes if the current port"s locInfo indicates 640 mode. Starting with
System Software 5.0, all 32 bytes of patterns are significant in 640 mode when
bit 15 of the current port®s arcRot field has been set with SetArcRot. In
this case, patterns are 16 pixels wide and 8 pixels high.

Further Reference

o] Apple 11GS Toolbox Reference, Volume 2
o] System Software 5.0 documentation (APDA)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 125 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

END OF FILE TN.11GS.006

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 126 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.007
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

H#HT: Halt Mechanism in 11GS SANE

Revised by: Guillermo Ortiz & Matt Deatherage November 1988
Written by: Guillermo Ortiz December 1986

This Technical Note formerly described a bug of SANE on the Apple 11GS which
caused it to jump through location $00/0018 instead of through the HALT vector
in the SANE direct page.

The bug which caused SANE on the Apple 1IGS to jump through location $00/0018
instead of through the HALT vector in the SANE direct page was fixed in the
Apple 11GS ROM 2.0. You should not have to write a special case to handle
this bug since it is reasonable to expect users to have the updated ROM which
is offered as a free upgrade from Apple.

END OF FILE TN.11GS.007

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 127 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.008
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#8: Elems Functions in 11GS SANE

Revised by: Matt Deatherage November 1988
Written by: Guillermo Ortiz December 1986

This Technical Note discusses a problem which existed with the Elems functions
in the I11GS SANE Tool Set 1.0. Current 1IGS System Disks contain a patch
which corrects this problem.

Calls to any of the Elems functions in version 1.0 of the I11GS SANE Tool Set
may return an invalid result unless you are evaluating data which resides in
bank $00 due to a problem with the Elems parameter passing mechanism. These
results are random because when SANE checks the validity of its input, it uses
values that have no relations to the actual ones, and once it completes the
validation, it uses the real operands.

All System Disks released on or after December 1, 1986 include a RAM patch
which fixes the Elems parameter passing mechanism; therefore, you should not
have to write a special case to handle this problem if you are shipping your
application with the most recent Apple 11GS System Disk. You should contact
Apple Software Licensing at Apple Computer, Inc.; 20525 Mariani Avenue, M/S
38-1; Cupertino, CA 95014 or (408) 974-4667 to obtain the most recent version
of the Apple I11GS System Disk.

Further Reference
o] Apple Numerics Manual

END OF FILE TN.11GS.008

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 128 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.009
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS
#9: 11GS Sound Expansion Connector:
Analog Input/Output Impedances

Revised by: Jim Merritt & Jim Mensch November 1988
Written by: Jim Merritt December 1986

This Technical Note discusses the impedances of the analog signal pins on the
11GS sound expansion connector since an interface to this connector must take
the impedance of the pins into account to function properly.

The analog output impedance of pin 3 depends upon the characteristics of the
5503 sound synthesis chip in any particular 11GS machine. Across systems,
this impedance may range from 4.5 K ohms to 9 K ohms.

Pin 1, the A/D input, presents a dynamic load to the source, drawing at 10 K
ohms for approximately 500 ns during every sample period. It is reasonable,
however, to treat the input pin as if it presents a continuous load of 10 K
ohms without compromising the interface or the fidelity of the input sample.

Consult the Apple 1IGS Hardware Reference for further technical information
about the Ensoniq 5503 sound synthesis chip used in the 1IGS.

Further Reference
o] Apple 11GS Hardware Reference

END OF FILE TN.11GS.009

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 129 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.010
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#10: InvalRgn Twist

Revised by: Steven Glass November 1988
Written by: Guillermo Ortiz April 1987

InvalRgn(RgnHandle) accumulates the region to which RgnHandle points into the
update region of the current window"s port; in the process, it makes the
region global, thus causing problems if later calls expect the region to still
be local.

The region you pass to InvalRgn is local to the window to which it is related;
however, InvalRgn returns the region in global coordinates. To preserve the
original region for your use after the call to InvalRgn, you should duplicate
it and use the copy to make the call then dispose of the copy when InvalRgn
returns. The following example demonstrates the process:

void MylnvalReg(RegHandle)
handle RegHandle;
{

handle AuxHandle;

AuxHandle = NewRgn(Q); /* create room */
CopyRgn(RegHandle,AuxHandle) ; /* make a copy */
InvalRgn(AuxHandle); /* do it with the copy */
DisposeRgn(AuxHandle); /* now get rid of it! */

Further Reference
o] Apple 11GS Toolbox Reference, Volume 2

END OF FILE TN.11GS.010

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 130 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.011
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#11: Ensoniq DOC Swap-Mode Anomaly

Revised by: Jim Mensch November 1988
Written by: Jim Merritt April 1987

Under certain conditions, the I1GS Ensoniq Digital Oscillator Chip (DOC)
inserts a spurious zero-crossing byte into the output sample stream. The
output sample waveform may mask the anomaly, but if it does not, the user may
hear intermittent clicks or even a more pervasive 'static.” This Technical
Note discusses the situations in which the DOC produces this spurious zero
crossing, as well as strategies to avoid or mask this undesirable behavior.

Background

The Ensoniq DOC in the Apple 1IGS is actually a microprocessor dedicated to
producing sound. Like a time-sharing computer, the DOC continually scans
through its array of sound oscillators, proceeding from lower-numbered
oscillators to higher-numbered ones, and updates the signal output level of
each active one to match that indicated by the oscillator®s current sample
byte.

An oscillator can operate in any one of several functional modes, as described
in the Apple 11GS Hardware Reference. Here, however, we are concerned only
with swap mode, where two consecutive oscillators are considered as a single
generator. The low-numbered oscillator in the pair is always even. For

example, the pairs of oscillators 0 & 1, 2 & 3, ... , 12 & 13, and 14 & 15
constitute generators. The 11GS Sound Tool Set - the FFStartSound call in
particular - configures the oscillators it uses to operate in swap mode. In

swap mode, the even-numbered oscillator plays its waveform first, halts its
own playback, then starts its partner which also plays its waveform, halts its
own playback upon exhausting its waveform, and restarts the even-numbered
oscillator. At any time between the start of any particular FFStartSound call
and the time the oscillator finishes playing a wave, the Sound Tool Set
interrupt handler may be busy transferring waveform information from the 11GS
main RAM to the dormant oscillator®s buffer in DOC RAM. Since one oscillator
is producing sound while the Sound Tool Set interrupt handler is transferring
waveform information to the other oscillator, you can use a generator pair to
produce continuous sound of arbitrary length, and you are limited only by the
amount of memory you can devote to the waveform in the main RAM.

Each oscillator draws its output samples from a dedicated buffer in DOC RAM,
the size and location of which are specified by parameters to the FFStartSound
call. The maximum size for an oscillator buffer is 32K, but since buffers may
neither coincide nor overlap, the practical maximum may be lower when more

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 131 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

than one generator is active. For instance, if four generators (eight paired
oscillators) are active simultaneously, the maximum buffer size is 8K, since
eight non-overlapping buffers of 8K each would occupy the entire 64K available
in the DOC RAM.

The Problem

Whenever a swap occurs from a higher-numbered oscillator to a lower-numbered
one, the output signal from the corresponding generator temporarily falls to
the zero-crossing level (silence); this anomaly does not occur during swaps
from lower-numbered oscillators to higher-numbered ones. The spurious level
change lasts no longer than a single sample period, at which time the
interrupted waveform resumes. However, even this tiny glitch in the output
can be audible as a pop or click; the further away the waveform is from the
zero crossing when the swap interrupts it, the louder the ear will perceive
the pop or click. When high-to-low swaps occur with great frequency, the pops
and clicks happen so often that they are perceived as gentle, but pervasive,
static.

Several Workarounds

There is no ideal solution to the problem of signal interruption in swap mode.
This problem is an anomaly of the DOC design, which may or may not be
addressed in later versions of the chip. However, we have found three general
strategies for mitigating the audible damage to the output waveform caused by
the chip®s undesirable behavior.

Minimize Oscillator Swaps per Unit Time

The more often swaps from high-numbered oscillators to low-numbered ones
occur, the more obtrusive the brief signal interruptions will seem. To
minimize the interruptions, you must make the oscillators play for a longer
period of time before swapping to their partners. This means that they must
play at slower output sample rates, use larger buffers in DOC RAM, or use the
two in tandem. Commensurate with the number of active generators you wish to
use and the level of output signal fidelity that you desire, always specify
the largest DOC buffer size and the lowest output sample rate that you
possibly can. Remember that a large number of active generators implies a
very small maximum buffer size for any particular oscillator, so you should
always try to minimize the number of generators that are active at any one
time. As a rough benchmark, the clicks of signal interruption begin to blend
into highly audible static when you specify buffers smaller than 8K for use at
the maximum-fidelity output sample rate of about 26 kHz. (Note: The DOC
supports greater sample rates, but these rates are limited by the output
filtering on the 11GS which permits no greater signal fidelity than that
possible using the 26 kHz rate.) Our figures suggest that output fidelity
must suffer, or signal noise must increase, when more than four generators
(eight oscillators in swap mode) are operating simultaneously.

Avoid Silent or Quiet Passages

The signal content of your waveform can hide the additional noise caused by
the "swap-mode anomaly.' The more complex and louder a waveform, the less

your ear will perceive the brief interruption that occurs whenever a higher-
numbered oscillator swaps to a lower-numbered one; pop and rock music is far
less susceptible to this problem than classical, folk, or jazz pieces, which

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 132 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

typically include many quiet passages. In addition, a signal that naturally
contains a large amount of "pink noise," such as recordings of rainstorms or
the surf at the beach, can mask the anomalous noise altogether.

Arrange for Swaps to Occur at or Near Zero Crossings

IT the high-to-low swap occurs at a time when the normal output signal level
sits at or near the zero crossing, the swap will cause little or no audible
damage to the waveform. When reproducing arbitrary sampled sound, it is
almost impossible to insure that the output signal level is near the zero
crossing. However, when constructing long waveforms for playback, you may be
able to sidestep the chip®"s anomalous behavior by ensuring that the waveform
values lie at or near $80 at the end of every waveform segment, where a
waveform segment spans twice the length of one oscillator buffer. For
example, if you specify a buffer size of 4K, make sure that your constructed
waveform crosses the baseline after every 8,192 samples, and for 16K buffers,
make sure that the waveform makes a zero crossing after every 32K.

The length of the waveform segment should be twice the buffer length only if
you are going to reproduce the waveform exactly once per FFStartSound call.

It may be necessary to shorten the length of the waveform segment to exactly
the specified DOC buffer length if you use the nextwave start parameter in the
FFStartSound parameter block to invoke automatic looping of the waveform. In
other words, you may need to arrange for twice as many zero crossings in your
constructed waveform in the looping case as you would under normal
circumstances since subsequent repetitions of the waveform during the single
FFStartSound call may begin with either the even or odd oscillator, depending
upon which member of the pailr was active when the previous repetition ended.
IT the playback of a waveform starts with the odd oscillator, then the odd-to-
even swaps will occur at different points in the waveform than they would when
the playback starts with the even oscillator.

Also note that the use of larger buffers causes a progressively longer
disabling of interrupts while the Sound Tool Set moves the waveform into the
DOC RAM.

Further Reference
o] Apple 11GS Toolbox Reference, Volume 2
o] Apple 11GS Hardware Reference

END OF FILE TN.11GS.011

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 133 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.012
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llIgs

#12: Tool Set Interdependencies

Revised by: Matt Deatherage & Dave Lyons May 1992
Written by: Jim Merritt April 1987

This Technical Note lists all known interdependencies between system tool sets
on the Apple llgs.

CHANGES SINCE JANUARY 1990: Added new and changed dependencies for System
Software 6.0.

A tool set is dependent upon another if you must start the latter before
starting the former. You should start tool sets in the order listed below.
Names marked with an asterisk (*) indicate a recommendation to start the
corresponding tool set, but the order is not required for operation of the
dependent tool. Apple recommends using StartUpTools to start up all the tool
sets your application needs. See the Apple llgs Toolbox Reference, Volume 3
for more details.

TOOL SET INTERDEPENDENCIES

Tool Locator Tool #1 ($01)
No dependencies. Always start this tool set before any others.
Memory Manager Tool #2 ($02)
Tool Locator #D)
Miscel laneous Tools Tool #3 ($03)
Tool Locator #D)
Memory Manager (#2)
QuickDraw 11 Tool #4 ($04)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
Desk Manager Tool #5 ($05)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 (#4)
Event Manager (#6)
Window Manager #14)
Control Manager (#16)
Menu Manager (#15)
Line Edit (#20)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 134 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Dialog Manager (#21)
Scrap Manager (#22)

Event Manager Tool #6 ($06)
Tool Locator #HD
Memory Manager (#2)
Miscellaneous Tools (#3)

Scheduler Tool #7 ($07)
Tool Locator (#D)
Memory Manager (#2)
Miscellaneous Tools (#3)

Sound Tools Set Tool #8 ($08)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)

Apple Desktop Bus (ADB) Tool #9 ($09)
Tool Locator #D)

SANE (Standard Apple Numeric Environment) Tool #10 ($0A)
Tool Locator #D)
Memory Manager (#2)

Integer Math Tools Tool #11 ($0B)
Tool Locator #D)

Text Tools Tool #12 ($0C)
Tool Locator #D

Window Manager Tool #14 ($0E)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 #4)
Event Manager (#6)

* QuickDraw Aux (#18) Required in 6.0 and later,

and the window manager loads
and starts it for you.

Control Manager (#16)

Menu Manager (#15)

* Line Edit (#20) For AlertWindow call only

* Font Manager #27) For AlertWindow call only

* Resource Manager (#30) For using resources in Window

Manager calls.

Menu Manager Tool #15 ($0F)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 (#4)
Event Manager (#6)
Window Manager #14)
Control Manager (#16)
* Resource Manager (#30) For using resources in Menu

Manager calls.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 135 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Control Manager Tool #16 ($10)

Tool Locator (#D)

Memory Manager (#2)

Miscellaneous Tools (#3)

QuickDraw 11 #4)

Event Manager (#6)

Window Manager (#14)

Menu Manager (#15)
* QuickDraw Auxiliary (#18) For statText controls.
* Line Edit (#20) For editLine controls.
* Font Manager #27) For statText controls.
* List Manager (#28) For list controls.
* Resource Manager (#30) For using resources in Control

Manager calls.

* Text Edit (#34) For editText controls.

NOTE: You should consider the Window, Control, and Menu
Managers as one unit and start them in the given order.

System Loader Tool #17 ($11)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw Auxiliary Routines Tool #18 ($12)
Tool Locator (#D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 #4)
* Font Manager #27)

NOTE : QuickDraw Auxiliary uses the Font Manager in the picture
drawing routines. For proper operation, you should
start the Font Manager before using the QuickDraw
Auxiliary picture routines; however, the picture
routines do not fail if the Font Manager is not present.

Print Manager Tool #19 ($13)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 (#4)
QuickDraw Auxiliary (#18)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
Line Edit (#20)
Dialog Manager (#21)
List Manager (#28)
Font Manager (#27)
Line Edit Tool #20 ($14)
Tool Locator #D)
Memory Manager (#2)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 136 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Miscellaneous Tools (#3)

QuickDraw 11 #4)
Event Manager (#6)
* QuickDraw Auxiliary (#18) For Text2 items; see below.
Scrap Manager (#22)
* Font Manager (#27) For Text2 items; see below.
Dialog Manager Tool #21 ($15)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 #4)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
* QuickDraw Auxiliary (#18) For Text2 items; see below.
Line Edit (#20)
* Font Manager #27) For Text2 items; see below.

NOTE : Line Edit, the Dialog Manager, and the Control Manager
require the presence of the Font Manager and QuickDraw
Auxiliary if you use LETextBox2, statText controls, or
LongStatText2 items which require any font styling
(e.g., outline, boldface, etc.).

Scrap Manager Tool #22 ($16)
Tool Locator (#D)
Memory Manager (#2)

Standard File Operations Tool #23 ($17)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 (#4)
Event Manager (#6)
Window Manager #14)
Control Manager (#16)
Menu Manager (#15)

* QuickDraw Auxiliary (#18) Required in 6.0 and later,

and the Window Manager loads
and starts it for you.

Line Edit (#20)
Dialog Manager (#21)
* List Manager (#28)
* Resource Manager (#30) For using resources in
Standard File Operations
calls.

NOTE : Standard File 3.0 and later use the List Manager for
displaying a list of file names. Although Standard File
functions properly if the application has not started
the List Manager, it saves time if the application does

SO.
Note Synthesizer Tool #25 ($19)
Tool Locator #D)
Memory Manager (#2)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 137 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|
Sound Tools (#8)
Note Sequencer Tool #26 ($1A)
Tool Locator (#D)
Memory Manager (#2)
Sound Tools (#8)
Note Synthesizer (#25)
Note : The Note Sequencer automatically handles the start and
shutdown of the Free-Form Sound Tools (#8) and the Note
Synthesizer (#25), so programs that use the Note
Sequencer must not execute start or shutdown calls for
those tools. Automatic start does not imply automatic
loading. |If you plan to use the Note Sequencer, you
must still load the Free-Form Sound Tool and the
Synthesizer Tool explicitly through calls to the Tool
Locator routines LoadTools or LoadOneTool or by calling
the System Loader and Tool Locator directly in
appropriate cases.
Font Manager Tool #27 ($1B)
Tool Locator (#D)
Memory Manager (#2)
* Miscellaneous Tools (#3) For ChooseFont call only.
QuickDraw 11 #4)
* Integer Math Tools (#11) For ChooseFont call only.
* Window Manager (#14) For ChooseFont call only.
* Control Manager (#16) For ChooseFont call only.
* Menu Manager (#15) For FixFontMenu call only.
* List Manager (#28) For FixFontMenu
and ChooseFont calls.
* Line Edit (#20) For ChooseFont call only.
* Dialog Manager (#21) For ChooseFont call only.
List Manager Tool #28 ($10)
Tool Locator #D
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 #4)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
Audio Compression and Expansion (ACE) Tool #29 ($1D)
Tool Locator (#D)
Memory Manager (#2)
Resource Manager Tool #30 ($1E)
Tool Locator #D)
Memory Manager (#2)
MIDI Tools Tool #32 ($20)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
Sound Manager (#8)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 138 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

* Note Synthesizer (#25)

NOTE : The MIDI Tools require the Note Synthesizer if you

intend to use the MIDI clock feature. |If you are not
using the MIDI clock, the Note Synthesizer is not
required.
Text Edit Tool #34 ($22)
Tool Locator (#D)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw 11 #4)
Event Manager (#6)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)
QuickDraw Auxiliary (#18)
Scrap Manager (#22)
Font Manager #27)
* Resource Manager (#30) For using resources iIn Text
Edit calls.
MIDI Synth Tool #35 ($23)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
Sound Tools (#8)
Media Control Tool Tool #38 ($26)
Tool Locator #D)
Memory Manager (#2)
Miscellaneous Tools (#3)
Integer Math (#11)
Resource Manager (#30)

Recommended Start Order

A close look at the preceding information will reveal apparent *‘circular
dependencies’ between various tool sets (i.e., two or more tool sets may
depend upon each other). To resolve the issue of which tool set to start
first in such a situation, here is a list of the most commonly used tool sets,
given in the order in which an application should start them. You may start
those tools which are indented at a specific level at that time or any time
thereafter.

Tool Locator #D)
ADB Tools (#9)
Integer Math Tools (#11)
Text Tools (#12)
Memory Manager (#2)
SANE (#10)
ACE (#29)
Resource Manager (#30)
Miscellaneous Tools (#3)
Scheduler #7)
System Loader (#17) LoaderStartup does

nothing.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 139 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Media Control (#38)
QuickDraw 11 #4)
QuickDraw 11 Auxiliary (#18)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
Line Edit (#20)
Dialog Manager (#21)
either
Sound Tools then (#8)
Note Synthesizer (#25)
or
Note Sequencer (#26)
MIDI Tools (#32)
MIDI Synth (#35)
Standard File (#23)
Scrap Manager (#22)
List Manager (#28)
Font Manager #27)
Print Manager (#19)
Text Edit (#34)
Desk Manager (#5)

NOTE : Although you may start the sound-related tools any time
after the Miscellaneous Tools, we recommend you start
them after most of the Desktop-related tools. We also
recommend you start the Desk Manager last and shut it
down First.

Further Reference

o Apple llgs Toolbox Reference

END OF FILE TN.11GS.012

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 140 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.013
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#13: ROM 1.0 Modem Firmware Bug

Revised by: Matt Deatherage November 1988
Written by: Mike Askins April 1986

This Technical Note formerly discussed a bug involving buffering and serial
port setting commands in the modem firmware in ROM 1.0.

Apple 11IGS ROM 2.0 fixes a bug involving buffering and serial port setting
commands In the modem firmware. You should not have to write a special case
to handle this bug since it is reasonable to expect users to have the updated
ROM which is offered as a free upgrade from Apple.

END OF FILE TN.11GS.013

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 141 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.014
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llIgs

#14: Standard File Screwiness

Revised by: Dave Lyons May 1992
Written by: Guillermo Ortiz, Matt Deatherage, & Dave Lyons June 1987

This Technical Note describes known anomalies In Standard File.

CHANGES SINCE DECEMBER 1991: Updated for System 6.0. Problems with the
infinite loop and SFMultiGet2 reply record are fixed.

PREFIX CHECK 1S CASE SENSITIVE

When you advance to the next volume using Command-Tab (or just Tab, before
6.0), Standard File checks your prefix against the name of the volume now in
the same device you were just using, to see if you switched disks (this is
possible on a 5.25 drive, for example). If the name doesn”t match, you stay
at the same device.

Unfortunately, the comparison in 6.0 and earlier is case sensitive. |If you
have a volume called ""MyDisk™ and prefix zero is set to ":MYDISK", advancing
to the next volume doesn"t get you anywhere the first time (but the prefix
changes from ":MYDISK"™ to ':MyDisk™).

The following two problems are fixed in System 6.0:
INFINITE LOOP WITH EMPTY PREFIXES

In System Software versions 5.0 through 5.0.4, all Standard File dialogs can
hang if both prefixes 0 and 8 are empty (GS/0S uses prefix 8 to expand partial
pathnames if prefix 0 is empty).

IT this affects your software, use GetPrefix to check for empty prefixes
before calling Standard File. 1f O and 8 are both empty, set prefix 0 to "*:"
(or any other convenient pathname).

SFMultiGet2 (AND SFPMultiGet2) REPLY RECORD

SFMultiGet2 and SFPMultiGet2 in System 5.0.4 and earlier accidentally validate
the multi-file reply record as if it were a regular new-style reply record (as
for SFGetFile2, for example). The validation is a check that the words at
offsets $08 and $OE in the record are not $0002 (these are nameRefDesc and
pathRefDesc in a new-style reply record).

To ensure that Standard File does not erroneously reject your multi-file reply
record (and return error $1704), you may include ten bytes of $00 following
the six-byte record.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 142 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Further Reference

o Apple llgs Toolbox Reference, Volumes 2 & 3

END OF FILE TN.11GS.014

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 143 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.015
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#15: InstallFont and Big Fonts

Revised by: Eric Soldan & Matt Deatherage July 1989
Written by: Guillermo Ortiz June 1987

When the Font Manager executes InstallFont, it may try to scale the selected
font if bit 15 of the ScaleWord is clear; a font larger than 32K causes this
call to fail.

Changes since November 1988: Noted System Software 5.0 enhancements.

The Font Manager cannot scale a font which is larger than 32K, so InstallFont
will fail if scaling is required and the desired font exceeds this limit. |IFf
the call fails for this reason, it will report an FMScaleSizeErr ($1B0C)
error.

This 1s not the same situation as when there is not enough memory available to
hold a newly scaled font. The situation will generate Memory Manager errors.

System Software 5.0 can scale fonts to be larger than 32K, so there is no
longer the limit imposed by System Disk 4.0 and earlier. |In addition, System
Software 5.0 can handle font sizes up to 255 points, if memory is available.
Note that this is a different situation than trying to scale a font which was
originally larger than 32K, but both work under 5.0.

END OF FILE TN.11GS.015

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 144 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.016
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#16: Notes on Background Printing

Revised by: Mike Askins November 1988
Written by: Mike Askins June 1987

This Technical Note attempts to pinpoint some of the common problems people
encounter when using background printing as available through the serial
firmware.

Calling Sequence

Init call Starts the serial firmware

SetOutBuff Specifies a buffer to place data to be printed
Places data in buffer (amount < buffer size)

SendQueue Starts the background printing process

Correctly Making the SendQueue Call

The Apple I11GS Firmware Reference incorrectly documents the parameters you
pass to SendQueue. The correct specification of the recharge address does not
correspond to the standard method of passing a full 32-bit address. Set the
parameters as follows:

SendQueue
Launches background printing.

CmdList DFB $04 ;Parameter Count
DFB$18 ;Command Code
DW $00 ;Result Code (output)

DW DatalLength

DFB RechargeAddress (bank)
DFB RechargeAddress (high)
DFB RechargeAddress (low)
DFB $00

Using the Default Buffer

You can use the area which the firmware reserves for transparent buffering to
place data for background printing. This is advantageous since the firmware
calls the Memory Manager to allocate space for the buffer (you must allocate
the space from the Memory Manager if you use the SetOutBuff call to set up a
buffer).

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 145 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

To use the serial firmware®s buffer, you must first enable buffering by
initializing the port with PINIT and sending it the string "~IBE" with PWRITE.
Once you enable buffering, call GetOutBuff to find the size and location of
the buffer, then place your data (buffersize - 1) in the buffer and call
SendQueue.

Data Size

Make sure that the amount of data you place in the buffer is at least one byte
less than the size of the buffer since the firmware uses one byte of the
buffer for bookkeeping purposes; if you place too much data in the buffer, it
will continually print the buffer®s contents and never call your recharge
routine.

The Recharge Routine

You should treat the recharge routine as an interrupt handler and execute it
at interrupt time. Interrupts are disabled at this time, and it is illegal to
enable them within the recharge routine. Like all interrupt handlers, the
recharge routine should take care of its business as quickly as possible then
exit; any excessive delays cause interrupt dependent processes (e.g.,
AppleTalk) to fail. You should also remember that most of the system code is
non-reentrant; you should use the Scheduler when calling system code which may
have been running when the serial interrupt that invoked the recharge routine
occurred.

The serial firmware is not generally reentrant and does not interact with the
Scheduler. If you want to make serial firmware calls (through $Clxx, $C2xx)
from your recharge routine, you must preserve MSLOT (the byte at $0007F8)
across those calls. Be aware that any non-recharge code must not make calls
to the serial firmware that will disrupt the background printing process;
sending the string "~BD" (disable buffering command), for example, is
guaranteed to confuse a running background printing process.

Further Reference
o] Apple 11GS Firmware Reference

END OF FILE TN.11GS.016

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 146 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.017
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#17: Application Memory Management and the MMStartUp User 1D

Revised by: Steven Glass & Rich Williams November 1988
Written by: Jim Merritt June 1987

This Technical Note describes a technique which permits an application to
dispose of any memory it has used with a single Memory Manager call without
clobbering other system components or itself.

Ground Rules for Application Memory Usage

Apple 1IGS programs must be responsible for allocating and disposing of any
memory they use, over and above that which the operating system itself gives
them. In general, no 11GS program should use any memory except that which the
Memory Manager has explicitly granted to it. A program may request additional
memory for its own use at any time with one or more calls to the NewHandle
routine. At program termination, the application is responsible for
explicitly disposing of any memory that it explicitly acquired, and if it
fails to do so, it could leave the 11GS memory management system in a
corrupted state.

You may dispose of memory on a handle-by-handle basis, or you may dispose of
it en masse by calling DisposeAll, but you should never use DisposeAll with
the user ID that the MMStartUp routine provides. This user ID is the "master
user ID" for the application, and it tags the memory space which the operating
system reserves for the program®s code and static data at load time. Calling
DisposeAll with this user ID results in immediate deallocation of the memory
in which the calling program resides; therefore, an application which
allocates dynamic data space using only the user ID that MMStartUp gives it
should not use DisposeAll to deallocate that space, but rather use
DisposeHandle to deallocate it handle by handle.

Cleaning Up With DisposeAll

It is possible, however, for a program to use a different, unique user ID when
allocating its own RAM, then pass that user ID to DisposeAll when it
terminates to deallocate all of its private memory at once without endangering
itself or other parts of the 1IGS system. With this technique, the guestion
is how best to acquire a new user ID? One method to acquire a new user ID is
to request a completely new one of the appropriate type from the User ID
Manager in the Miscellaneous Tools. In this case, when the application
terminates, it must not only deallocate the memory it used, but also the
additional user ID which it requested from the User ID Manager.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 147 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Actually, i1t is not necessary for a program to acquire a completely new user
ID to use DisposeAll without clobbering itself. Instead, the application may
modify the auxID field of the master user ID which MMStartUp assigns to create
a unique user ID for allocating its own memory. The 16-bit user ID contains
the auxID field in bits $8 - $B. The value of this field, which may range
from $0 to $F, is always zero in the application®s master user ID, but you can
fill it with any non-zero value to create up to 15 new and distinct user IDs,
each of which you can pass to NewHandle to allocate memory.and to DisposeAll
to deallocate memory without endangering the memory tagged by the master user
ID. The following assembly code fragment illustrates this technique:

; assumes full native mode

pushword #0 ; room for user ID
_MMStartUp

pla ; master user 1D
sta MasterlID

ora #%$0100 ; auxID:= 1

; (COULD HAVE BEEN ANYTHING FROM $1 to $F)

sta MylID ; use this to allocate private memory

etc.

; ready to exit program
pushword MyID
_DisposeAll ; dumps only my own RAM

; now do any remaining processing related to termination

You do not need to explicitly deallocate any user ID that you derive by
changing the auxID field of a valid master user ID. When the system (usually
the one to deallocate the master) deallocates the master user ID, it also
deallocates its derivatives.

One Word of Caution

Several of the Memory Manager®s "All" calls (e.g., DisposeAll) treat a zeroed
auxID field as a wildcard which matches any value that the field may contain,
thus if you call DisposeAll with the application®s master user ID (where the
auxID Ffield is zero), the Memory Manager will not only deallocate all memory
belonging to the master user 1D, but also all handles and memory segments that
are associated with user IDs which are derived from that master. The
operating system™s QUIT mechanism typically executes such a call when cleaning
up after a normal (i.e., non-restartable) application to keep the memory
management system from clogging. This action is purely a defensive measure,
and well-behaved applications - particularly restartable ones - should dispose
of their own memory and never rely upon the operating system to clean up after
them.

Further Reference
o] Apple 11GS Toolbox Reference, Volume 1

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 148 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

END OF FILE TN.11GS.017

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 149 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.018
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llgs
#18: Do-I1t-Yourself SCC Access
Revised by: Jim Luther July 1990

Written by: Jim Luther, Mike Askins, Matt Deatherage & Jim Mensch June 1987

This Technical Note describes how to install and remove a interrupt handler
routine for the Z8530 Serial Communications Controller (SCC) on the Apple llgs
without breaking other parts of the system. This Note includes many
suggestions that, if unheeded, could come back to haunt you in the form of bug
fixes to your program.

Changes since March 1990: Added a method for finding which serial port
AppleTalk is using under GS/0S.

Free Serial Routines Inside

The 78530 SCC has 2 serial channels, supports several synchronous and
asynchronous data communications protocols, and has 9 read registers and 16
write registers per channel. (Compare this to the 5 registers of the 6551
Asynchronous Communications Interface Adapter.) To program the SCC correctly,
you must understand Ffive things: the SCC, the Apple llgs hardware environment
in which the SCC lives, the Apple lIgs interrupt handler firmware, the
interrupt support provided by the operating system, and the data communication
protocol you want to use. |If you don"t understand all of these components,
stick to the serial firmware.

The Apple llgs serial firmware is a robust environment for almost every
asynchronous serial programming application. If you want to handle all SCC
operations and SCC interrupts on the llgs without using the serial firmware,
then you must really know the firmware won"t do the job for you or you
wouldn®"t be going to a lot of trouble to recreate the services the firmware
routines already provide.

Don"t Eat Your Serial with Your Mouth Open

Your mother has rules and so does Apple. On many systems, your application
may be sharing the SCC chip with System Software such as AppleTalk or the
serial firmware. |If you want to access the SCC chip directly without breaking
the system (or the system breaking you), then follow these simple rules.

Rule #1: Before using a serial port, make sure AppleTalk is not already
using it.

IT AppleTalk is active, it uses one of the serial ports. The user selects
which serial port AppleTalk uses with the Control Panel. Before using one of
the serial ports, you should always check to make sure AppleTalk is not using

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 150 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

that port. |If AppleTalk is using the serial port your application wants to

use, toug
port.

Under Pro

h luck; tell the user about it, but don"t even think about using that

DOS 8, use the method shown in the following sample code to determine

if AppleTalk is using a serial port:

This ro
The rou
which p
$00
$01
$02
Note:

Enter r

WhichPort

IDROUTINE

ondlIGS

utine checks to see which serial port, if any, AppleTalk is using.
tine sets a flag byte, ApTalkPort, and the accumulator to indicate
ort (if any) AppleTalk is using.

AppleTalk is not using a serial port

AppleTalk is using serial port 1 (printer port)

AppleTalk is using serial port 2 (modem port)

This method should be used under ProDOS 8 only. Under GS/0S, use the
-AppleTalk driver®s GetPort DStatus subcall.

outine in emulation mode
longa off
longi off
mcopy 2/AlInclude/M16 _MiscTool
start
equ $FE1F returns system ID information
stz ApTalkPort default to not AppleTalk
jJjsr IDROUTINE call to the system ID routine
cpy #$03
bcs Newl1GS
anop this is a pre-ROM 03 I11GS
clc to native mode
xce
rep #$30 16 bit m and x
longa on
longi on
pea $0000 space for result
pea $0021 Slot 1 setting
_ReadBParam read battery RAM parameter
(2 byte result left on stack)
pea $0000 space for result
pea $0027 Slot 7 setting
_ReadBParam read battery RAM parameter
pla get slot 7 setting (2 bytes)
sec emulation mode
xce
longa off
longi off

beq FindYourCard AppleTalk is active
pla remove slot 1 setting LSB (1 byte)
bra OldExit

Human Interface Notes -- Developer CD March 1993 -- 151 of 714

Apple][Computer Family Technical Documentation

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

FindYourCard inc ApTalkPort default to port 1
pla is slot 1 "your card"? (1 byte)
beq ItsPort2 no, must be port 2
bra OldExit
ItsPort2 inc ApTalkPort port 2 is AppleTalk
OldExit pla remove slot 1 setting MSB (1 byte)
lda ApTalkPort
rts return to caller
Newl I1GS anop ROM 03 or greater 11GS
clc to native mode
xce
rep #$30 16 bit m and x
longa on
longi on
pea $0000 space for result
pea $000C port 2 type
_ReadBParam read battery RAM parameter
; (2 byte result left on stack)
pea $0000 space for result
pea $0000 port 1 type
_ReadBParam read battery RAM parameter
pla get port 1 setting (2 bytes)
sec emulation mode
xce
longa off
longi off
cmp #$02 is port 1 AppleTalk?
bne TryPort2 no
inc ApTalkPort yes
pla then remove port 2 setting LSB (1 byte)
bra NewExit and exit
TryPort2 pla get port 2 setting LSB (1 byte)
cmp #$02 is port 2 AppleTalk?
bne NewExit no
Ida #$02 yes
sta ApTalkPort
NewEXit pla remove port 2 setting MSB (1 byte)
lda ApTalkPort
rts return to caller
ApTalkPort entry
ds 1 will be 0, 1, or 2
end

Under GS/0S, use the method shown in the following sample code to determine if
AppleTalk is using a serial port:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 152 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

$0000
$0001
$0002

Enter routi

CheckPort

GetPort

FindATDriver

ATDriverFound

DIError

NotFound

Exit

AppleTalk 1
AppleTalk 1
AppleTalk 1

ne in nativ

This routine checks to see which serial port, if any, AppleTalk is using.
The routine sets a flag byte, ApTalkPort, and the accumulator to indicate
which port (if any) AppleTalk is using.

s not using a serial port
s using serial port 1 (printer port)
s using serial port 2 (modem port)

Note: This method should be used under GS/0S only.

e 16 bit mode

longa on

longi on

mcopy 2/Alnclude/M16.GSOS

Start

equ $8001 The .AppleTalk DStatus subcall to get
the port number AppleTalk is currently
using.

phb save data bank

phk data bank = code bank

plb

Ida #$0001 start with device #1

sta DIdevNum

anop

_DInfoGS DInfoParms ;call Dinfo

bcs DIError stop searching if error

lIda DldevicelDNum

cmp #3$001D is It the AppleTalk main driver?

beq ATDriverFound vyes

inc DIldevNum check the

bra FindATDriver next device number

anop

lIda DIldevNum store device number

sta DSdevNum in the DStatus parm list

_DStatusGS DStatusParms ;call DStatus

lda portNum get the port number

sta ApTalkPort

bra Exit

anop

cmp #$0011 invalid device number, so the

beq NotFound AppleTalk main driver wasn"t found

stz
bra

anop
lda
plb
rtl

Add your code to handle any other errors from DInfo here, because the
end of the device list was not found.

ApTalkPort neither port is in use
Exit
ApTalkPort
restore data bank
return to caller

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 153 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

ApTalkPort entry
ds 2 will be 0, 1, or 2
DInfoParms anop
dc 128" pCount = 8 parameters
DIldevNum dc 12°1" devNum
dc a4"NameBuffer* devName
ds 2 characteristics
ds 4 totalBlocks
ds 2 slotNum
ds 2 unitNum
ds 2 version
Dldevicel DNum ds 2 devicelDNum
NameBuffer anop
dc 12°31" Class 1 input string. Max Length=31
ds 33
DStatusParms anop
dc 12°5" pCount = 5 parameters
DSdevNum ds 2 devNum
dc 12°GetPort” statusCode = GetPort
dc a4"GetPortSList" statusList = GetPortSList
dc 1472" requestCount = 2
ds 4 transferCount
GetPortSList anop the GetPort subcall®s statusList
portNum ds 2 $0001 = AppleTalk is using port 1 (printer port)

; $0002 = AppleTalk is using port 2
(modem port)

dc i1270"

end
Rule #2: Don"t use the SCC Interrupt Handler Vector.

Contrary to what you may have read in a previous version of this Note, you
cannot reliably attach your SCC interrupt handler to the SCC Interrupt Handler
Vector (vector reference number $0009). The Apple llgs serial firmware owns
the SCC Interrupt Handler Vector (or at least it thinks it does). Anytime the
serial firmware is used, there is a chance that the serial firmware can grab
the SCC Interrupt Handler Vector for its use. CDAs and NDAs that print, the
Print Manager tool set, the Text tool set, and the generated GS/0S character
drivers associated with the serial ports are examples of code that can and do
use the serial firmware.

The only safe place to connect into the interrupt chain is through the
operating system. The ProDOS 8 and GS/0S ProDOS 16 call, ALLOC INTERRUPT is
the correct place to attach your interrupt handler. The GS/0S BindInt call
cannot be used to attach your interrupt handler to the SCC Interrupt Handler
Vector (VRN $0009) for the same reason that you cannot use the SCC Interrupt
Handler Vector directly.

Rule #3: Be very, very careful with SCC Write Register 9 (WR9).

The 78530 SCC has four registers which are shared by both channels (ports).
Of those four, only two are commonly used in the Apple Ilgs, RR3 and WR9.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 154 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

RR3, which only exists in channel A, lets you check the interrupt pending bits
for both SCC channels. WR9 is the Master Interrupt Control register for both
SCC channels and contains the Reset command bits.

You must never reset the channel AppleTalk is using (resetting the channel
AppleTalk is using kills AppleTalk). This means you should never perform a
Force Hardware Reset command (1lxxxxxx to WR9) even though the Z8530 Serial
Communications Controller Technical Manual tells you to in the SCC
initialization procedure. A hardware reset is performed at system startup, so
you shouldn®t need to perform a channel reset, even to the channel you are
using.

The interrupt control bits (bits D5 - DO) in WR9 should not be modified (an
exception is when you are installing your own SCC interrupt handler).
AppleTalk expects the interrupt control bits to always be 001010. If you find
the need to perform a channel reset on your channel, remember that the
interrupt control bits are programmed at the same time as a channel reset.

Hints for the Serial Adventure

Next are a few hints for those who would like to explore the world of knocking
on the registers of the Z8530 SCC.

Hint #1: Synchronize your code with the SCC logic.

Before writing to the SCC chip for the first time, you should make an attempt
to ensure your code is synchronized with the SCC*"s logic. This needs to be
done only once when you are initializing the SCC. This can be accomplished
with a single read of SCC Read Register 0 (RRO). For example, if you"re using
serial port 2 (the modem port), the following code reads RRO of SCC channel B:

longa off must be using 8-bit accumulator
Ida $C038 read RRO of SCC Channel B
Hint #2: Watch out for interrupts from the other SCC channel.

Except for RRO, WRO, and the two SCC data registers, all SCC registers are
accessed in a two-step process. First, the register number you want to select
is written to WRO. After the register number is set, the next read from or
write to the command register accesses the register selected in the first
step. Because several of the SCC registers are shared between the two SCC
channels and because code accessing them may not always be yours (i.e.,
AppleTalk), interrupts should be disabled during the two steps. The following
code shows two quick subroutines to access the SCC"s Read and Write registers
while preventing interrupts between the register number set and the register
read or write steps:

longa off must be using 8-bit accumulator
longi off and index registers

; Write to a SCC command register - channel A or B.

; Input: A = value to store

; X = SCC register number ($0-%$F)

; Y = $01 channel A

; $00 channel B

WriteSCC php save the current interrupt status

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 155 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

sei disable interrupts

pha save value to write

txa get SCC register number from X
sta $C038,y set the register number

pla restore value to write

sta $C038,y write the value

plp restore the interrupt status
rts

; Read from a SCC command register - channel A or B.
; Input: A = SCC register number ($0-$F)
; Y = $01 channel A
; $00 channel B
; Output: A = register value
ReadSCC php save the current interrupt status
sei disable interrupts
sta $C038,y set the SCC register number
Ida $C038,y get the value from the SCC register
Xba look ahead 2 lines...
plp restore the interrupt status
Xba set N and Z flags for exit
rts

Just to be complete, here"s how RRO, WRO, the receive buffer, and the transmit
buffer SCC registers are accessed on the Apple llgs:

longa off must be using 8-bit accumulator
longi off and index registers

; Read RRO - channel A or B

; Input: Y = $01 channel A

; $00 channel B

; Output: A = RRO register value

éeadRRO Ida $C038,y get the value from RRO
rts

; Write WRO - channel A or B

; Input: A = value to store at WRO

; Y = $01 channel A

; $00 channel B

WriteWRO sta $C038,y write the value to WRO
rts

; Read from SCC receive buffer - channel A or B

; Input: Y = $01 channel A

; $00 channel B

; Output: A = value of data received

éeadData Ida $CO3A,y get the value from SCC data register
rts

Input: A = value of data to transmit

; Write to SCC transmit buffer - channel A or B
. Y

$01 channel A

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 156 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

$00 channel B

WriteData sta $CO03A,y write the value to SCC data register
rts
Hint #3: All SCC channels are not created equal.

In the llgs, the SCC"s receive and transmit clocks for both channels are
driven by a single crystal oscillator circuit. This is accomplished by
connecting a 3.6864 MHz crystal between the /RTxC and /SYNC pins of channel A.
Channel B"s /RTxC pin is connected to Channel A"s /SYNC pin to drive

channel B"s clocks from channel A"s oscillator circuit.

Because of this single circuit, Write Register 11 (WR11l) bit 7 must be set to
1 for SCC channel A and must be set to 0O for SCC channel B.

Hint #4: RR3 is available only in SCC channel A.

When your interrupt handler is checking to see if the interrupt condition was
caused by your SCC channel, remember to always look at RR3 in SCC channel A.
RR3 in channel A contains the interrupt pending bits for both SCC channels.
RR3 in channel B always returns all zeros, which doesn®t tell you a lot about
what"s happening.

Don*"t be a Serial Killer
How to Install and Remove your SCC Interrupt Handler

IT you"re going to handle serial 1/0 and don"t want your application to have
to poll the SCC chip all the time to see if something has happened, you
probably want to install an interrupt handling routine that is called every
time a SCC chip condition you want to know about occurs. This section of the
Note shows how to install and remove your own SCC interrupt handler.

The steps for installing your SCC interrupt handler are:

1. Ensure the serial firmware"s Input and Output buffering is
disabled. The state of 1/0 buffering can be checked by looking at
bit 14 of the ModeBitlmage parameter returned by the GetModeBits
extended interface call. 1/0 buffering can be disabled with the
firmware®s BD control command.

2. Disable the SCC Master Interrupt Enable (WR9, bit 3) briefly while
performing the next six steps. The value you should write to WR9
is 00000010.

3. Get the address of the system interrupt flag byte, SerFlag. The
ROM version determines the method of finding the address of
SerFlag. In ROM version 01 and later, you can get the address
with a call to the Miscellaneous Tools GetAddr using a reference
number of $000E. With ROM version 00 (the original llgs ROM), the
address of SerFlag is $E10104. Refer to the Apple 11
Miscellaneous Technical Note #7, Apple 11 Family ldentification
for information on identifying Apple Ilgs ROM versions.

4. Once you have the correct address of SerFlag, preserve the byte"s
current value, then turn on the bits in the byte which reflect the
port from which you are handling interrupts. The bits for the
different ports are as follows (nhote the relationship of the bits
of RR3 to SerFlag):

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 157 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Port 1: ORA #%00111000
Port 2: ORA #%00000111
5. Initialize the SCC modes. The Z8530 Serial Communications

Controller Technical Manual shows the order the SCC registers
must be programmed. However, you must stray from the manual
slightly due to the hardware implementation of the SCC in the
I1gs. A typical initialization sequence to set the SCC up for
asynchronous serial communications through channel B (the modem
port) would look similar to the following:

SCC Register Value Comment
RRO - ensure synchronization with SCC
WR4 01000100 x16 clock, 1 stop, no parity
WR3 11000000 8 bit receive data, auto enables off,
receiver disabled
WR5 01100010 DTR is active, 8 bit transmit data, no break,
transmit disabled, RTS is inactive
WR11 01010000 no Xtal on channel B, receive and
transmit clock = baud rate generator output
WR12 01011110 1low byte of baud rate generator
time constant = $5E - 1200 baud
WR13 00000000 high byte of baud rate generator
time constant = $00 - 1200 baud
WR14 00000000 no local loopback or auto echo, /DTR follows

inverted DTR bit in WR5, use /RTxC for
baud rate generator clock,
disable baud rate generator

WR14 00000001 enable the baud rate generator

WR3 11000001 receiver enabled

WR5 01101010 transmit enabled

WR15 00000000 no interrupts on this channel for now. ..

6. Tell the SCC which external and status conditions can cause an
interrupt by setting the appropriate bits in WR15. This step is
not needed unless you are setting bit 0 of WR1 (External/Status
Master Interrupt Enable) in the next step.

7. Enable the interrupts modes you want by setting the appropriate
bits in WR1 (00010011 for all SCC interrupt conditions).

8. Use ALLOC_ INTERRUPT to add your interrupt handler to the operating
system®"s interrupt vector table. The interrupt identification
number returned by ALLOC_INTERRUPT is needed when you remove your
interrupt handler.

9. Reenable the SCC Master Interrupt flag (WR9, bit 3). The value
you should write to WR9 is 00001010.

The interrupt handling routine must conform to the rules listed in the
ProDOS 8 Technical Reference Manual and GS/0S Reference, Volume 2.

When you get ready to shut down your application, you need to remove your
interrupt handler. The steps for removing the SCC interrupt handler you
installed are as follows:

1. Disable the SCC Master Interrupt Enable (WR9, bit 3) briefly while
performing the next six steps. The value you should write to WR9
is 00000010.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 158 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

2. Disable all interrupts modes for your port by writing a $00 to WR1.

3. Remove any character that might be left in the receive data
register by reading it once.

4. Clear any pending transmit overrun and external and status
interrupts by writing 11010000 to WRO.

5. Clear any pending transmit interrupt by writing 00101000 to WRO.

6. Use DEALLOC_INTERRUPT to remove your interrupt handler from the
operating system"s interrupt vector table.

7. Restore SerFlag to its original value.

8. Reenable the SCC Master Interrupt flag (WR9, bit 3). The value

you should write to WR9 is 00001010.

Further Reference

o Apple llgs Toolbox Reference Manual, Volume 1
o Apple llgs Firmware Reference Manual
o Apple llgs Hardware Reference Manual, Second Edition
0 GS/0S Reference, Volumes 1 and 2
o0 ProDOS 8 Technical Reference Manual
o Apple 11 Miscellaneous Technical Note #7, Apple 11 Family ldentification
0 GS/0S Technical Note #9, Interrupt Handling Anomalies
0 278530 Serial Communications Controller Technical Manual
(Zilog Corporation)
0 Z85C30 Serial Communications Controller Technical Manual

(Advanced Micro Devices, Inc.)

END OF FILE TN.11GS.018

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 159 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.019
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#19: Multichannel Output with the Apple 11GS Note Synthesizer

Revised by: Jim Mensch November 1988
Written by: John Worthington & Jim Merritt June 1987

This Technical Note discusses multichannel sound with the I11GS Note
Synthesizer.

It is possible to play multichannel sound using the I1GS Note Synthesizer Tool
Set. The Ensoniq Digital Oscillator Chip (DOC) supports 16 independent output
channels. Since only the low three bits of the output channel number are
available through the 11GS sound expansion connector, multichannel circuitry
may only decode eight output channels (zero through seven). Output channel
eight maps onto channel zero, channel nine onto channel one, etc., and this
mapping continues through all 16 channels.

The setting of the high nibble of the DOCMode byte in a waveform of the
wavelList portion of the instrument definition determines the routing of output
from a Note Synthesizer instrument to a particular channel (the actual DOCMode
information is in the low nibble of the DOCMode byte). You may assign each
separate element in a wavelList to a different output channel to create
multisampled instruments in which some samples play on the left speaker and
others on the right.

Apple standards require stereo expansion cards to map all even output channels
to the right and odd channels to the left. To be compatible with cards that
decode more than two of the chip"s output channels, software should use
channel zero for right and channel one for left. This convention ensures that
output is always positioned properly in the stereo space with channel zero
information going to the right front and channel one information going to the
left front.

Further Reference
o] Apple 11GS Toolbox Reference, Volume 2
o] Apple 11GS Toolbox Reference Update

END OF FILE TN.11GS.019

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 160 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.020
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#20: Catalog of APW Language Numbers

Revised by: Matt Deatherage March 1990
Written by: Jim Merritt August 1987

This Technical Note formerly listed APW Language Number assignments, which
correspond to auxiliary type values of file type $BO.

Changes since November 1988: This information is now documented in Apple 11
File Type Notes, specifically Notes of file type $BO.

The correspondence between APW Language Numbers and auxiliary type values for
$BO files is no longer one-to-one. Although all APW Language Numbers are
stored with their source files in the auxiliary type field, there now exist
assignments of auxiliary type values for file type $B0 which are not APW
languages.

Therefore, the contents of this Note can now be found in the File Type Note
for file type $BO, where all such assignments of either kind are still called
"APW Language Numbers.'

Further Reference

o File Type Note for file type $BO, Apple I1GS source code files

END OF FILE TN.11GS.020

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 161 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.021
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#21: DMA Compatibility for Expansion RAM

Revised by: Glenn A. Baxter November 1988
Written by: Jim Merritt August 1987

This Technical Note discusses the Apple 11GS Extended Memory Slot
specification.

The Apple 11GS Extended Memory Slot specification provides for DMA access to
no more than four rows of RAM on a single board through the CROWO and CROW1
signals. Expansion board designs that involve more than four rows of RAM are
not compatible with DMA accesses. Each of the four rows can hold either 256K
or 1 MB of data. The design of the Fast Processor Interface (FPl) imposes
this limit. Each row can be organized in any of the following configurations
to yield the respective board capacities assuming there are no more than four
rows:

Chips Configuration Board Capacity
8 256K x 1 DRAM 1 MB
8 1 MB x 1 DRAM 4 MB
2 256K x 4 DRAM 1 MB
2 1 MB x 4 DRAM 4 MB

The CROWO and CROW1 signals properly decode the row addresses for both normal
and DMA cycles. The Extended Memory Slot interface does not support the
latching of bank address information off the data bus during a DMA cycle, and
a card which attempts to latch the bank address will likely get the last CPU
cycle®s bank address. Getting the last address is not a problem if it
accidently happens to be the bank to which you wish to talk, but this is
rarely the case. The card gets the last CPU cycle"s bank address because DMA
essentially shuts off the CPU, so it cannot emit the bank address. The FPI,
which contains the DMA bank address register ($C037), does not emit the DMA
bank address either, thus preventing bus contention with the processor as it
is being removed from that bus. The DMA bank address register inside the FPI
affects the addressing and control information that the Extended Memory Slot
sees; it does not affect the data bus. Therefore, during DMA, the bank
address time is filled with what is essentially random bank address
information. Using this random information could result in damaging the
contents of the memory (destroying little things like the operating system).

Suppose a card were designed to latch the bank address directly from the data
bus with the rising edge of the PH2 clock signal. It could use the bank
address to derive the proper RAM row address and never bother with CROWO and
CROW1 at all. Directly latching the bank address would permit the card to
accommodate any desired RAM arrangement in 64K increments, including an odd

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 162 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

number of rows. Although the technique is valid during CPU cycles, it does
not work during DMA cycles since the FPI never emits the DMA bank address onto
the data bus. During DMA cycles, any card that tries to latch the bank
address directly, instead latches the bank address that was put on the data
bus during the last CPU cycle, which is probably the wrong value.

Currently, there does not seem to be a solution for the DMA situation. There
the possibility of "limited DMA compatibility.” An example of a limited-
compatibility card would be one with six banks of memory. It"s lower four
banks are DMA compatible since they use the CROWO and CROW1 lines, but the
upper two banks do not work properly with DMA. This limited approach should
be safe, but it is not guaranteed since DMA cards are sometimes aware of the
total system memory and may expect, quite reasonably, to have access to all
of the memory when in fact it does not. There are currently no "memory
intelligent” DMA cards, but that could change at any point. The best we can
suggest at this time is for hardware developers to build only four-row cards
allowing up to 4 MB of memory, which is sufficient for most current
applications.

Further Reference
o] Apple 11GS Hardware Reference

END OF FILE TN.11GS.021

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 163 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.022
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llgs

#22: Proper Use of Dynamic Segments

Rewritten by: Eric Soldan & Andy Stadler September 1990
Written by: Guillermo Ortiz October 1987

This Technical Note discusses strategies that applications can use to deal
with dynamic segments.

Changes since November 1988: Rewrote from scratch to address current
problems.

When reading the documentation on dynamic segments, It initially appears that
they are even better than sliced bread. While they are incredibly useful,
there are two issues that make dealing with them somewhat tricky. The Ffirst
involves loading a dynamic segment; the second involves unloading a dynamic
segment. Everything else works fine.

Loading Dynamic Segments

Loading dynamic segments s supposed to happen automatically. You are
supposed to be able to call the code iIn the dynamic segment, and the system
automatically loads it. As long as there is enough RAM to load the segment,
this is exactly what happens.

The problem arises when there isn"t enough memory. Immediately you have a
number of questions, such as "How do 1 know if it didn"t load?" and "How is
the not-enough-memory error returned?” Unfortunately, neither of these
questions is applicable. Instead, you get a Fatal System Error, which is not
the most useful thing that could happen.

However, there are some reasons for this error. For example, in the Pascal or
Toolbox stack frame system, the called function is responsible for removing
the parameters pushed onto the stack. [If the dynamic segment did not load,
these parameters cannot be pulled from the stack, and if they are not pulled
from the stack, the operating system cannot return to the caller.

Due to this problem, the best thing to do is to try to load the dynamic
segment with LoadSegName. |If it loads, then there is (obviously) enough RAM
for it. If it does not load, then there was not enough RAM; it"s that simple.
So, to call a function named dynFN in a dynamic segment called dynSeg, you
would do the following:

LoadSegName (*"\pDynSeg") ;

it (1_toolErr) {
dynFN(some, number, of, parameters);
UnLoadSeg(dynFN) ;

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 164 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

}
else ErrorAlert(""\pOut of RAM.™);

Unloading Dynamic Segments

UnLoadSeg used to have a problem, so the above technique would not have
worked. As of System Software 5.0.3, this problem has been fixed. In the
example, the code UnLoadSeg(dynFN) does not pass the address of the dynFN that
was loaded into RAM. Instead, that address represents the entry iIn the
dynamic segment jump table for that particular function. The jump table is
always in RAM. So, you are not actually passing an address of the segment to
be unloaded, but an address in the jump table.

The loader is responsible for figuring out that the address is actually an
address in the jump table, and it is supposed to unload the segment to which
the jump table entry refers. The loader did not handle this case properly
until 5.0.3. So, for system disks prior to System Disk 5.0.3, you can
preserve the segment number returned by the LoadSegName call to issue an
UnLoadSegNum call to dispose of the dynamic segment. Due to UnLoadSeg not
doing the job prior to 5.0.3, you could use UnLoadSegNum. This also has
problems. ExpressLoad changes the segment numbers, so it is difficult to
maintain the segment numbers if you change the link script. For these
reasons, the below technique should be used for system disks prior to 5.0.3:

void sample()

{
struct LoadSegNameOut dynSeginfo;

dynSeglInfo = LoadSegName(""\pDynSeg');

if (1_toolErr) {
dynFN(some, number, of, parameters);
UnLoadSegNum(dynSegInfo.segNum);

}
else ErrorAlert(""\pOut of RAM.™);

Dynamic Segment Interdependencies: Just Say No

Dynamic Segments calling each other almost always lead to unloading conflicts,
and more importantly, they defeat the purpose (if they both have to be in
simultaneously then they might as well be static). Figure 1 is a sample
program layout you may want to consider when designing your application
dynamic segment usage:

Main Program
Dispatcher & User Interface <-- static

/ | \

/ | \
Mode 1 Mode 2 Mode 3 <-- dynamic
Code Code Code

\ | /

\ | /

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 165 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Shared Utility Code <-- static
Figure 1-Sample Program Layout

Also, if one of the dynamic segments described is much more than, say, 32K or
40K, you may wish to load a pair (or more) of dynamic segments. These dynamic
segment pairs would always be loaded and unloaded simultaneously. Why?
Because loading two 25K segments is more likely to succeed than loading one
50K segment.

A Final Warning:

Data in a dynamic segment is a tricky issue. When you call a dynamic segment,
you are not sure if it got loaded, or if it was already in RAM, and therefore
you cannot be sure of the values in your global data. For example, say that
you have a global variable that represents the number of times that you call
the dynamic segment. Every time you call the segment, you would increment
this variable. This technique works great until the dynamic segment gets
purged. Once it is purged, the next time you call it, the variable area would
be loaded from disk again, with its original initial value. The count is no
longer valid. To fix this, you can place the global could variable in the
static globals space for the main code. Then the variable would not get
purged, and your count would be valid. OFf course, if you have global data
that does not ever change, then it is okay for the data to be in the global
segment.

Further Reference

0 GS/0S Reference
o Apple Ilgs Programmer®s Workshop Assembler Reference

END OF FILE TN.11GS.022

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 166 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.023
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#23: Toolbox Use of DOC RAM

Revised by: Matthew Denman & Matt Deatherage November 1988
Written by: Jim Merritt October 1987

This Technical Note explains why you must be careful about which values you
store in the Ffirst page of the Ensoniq Digital Oscillator Chip (DOC) RAM when
using Note Synthesizer and MIDI Tool Sets on the Apple 11GS.

The Apple 11GS Note Synthesizer uses an oscillator as a free-running timer to
clock the update of waveform envelopes when the DOC sounds notes. To act as a
timer, the oscillator "plays'" the contents of bytes $00 - $FF in DOC RAM at
zero volume. Once it scans through the entire "waveform buffer,”™ the
oscillator generates an interrupt, which the appropriate Note Synthesizer
routines service.

When using the Note Synthesizer or the Note Sequencer without the MIDI Tool
Set, there is no need to avoid using DOC RAM locations $00 - $FF for general
waveform storage. More than one oscillator can play from the same waveform
buffer at the same time, so the function of the timer oscillator does not
affect normal use of the DOC for sound generation purposes in any way.
However, you should not fill the first page of DOC RAM with waveforms that are
delimited by zero bytes (as is sometimes appropriate in special situations,
discussion of which is beyond the scope of this Note). The presence of zero
bytes in the first page of DOC RAM can cause serious system performance
degradation and can even cause the system to hang. In particular, it is
always inappropriate to store arbitrary, non-waveform data in the first page
of DOC RAM since such data often includes zero bytes (which would be corrupted
were you to remove or modify them).

The Apple 11GS MIDI Tool Set also uses bytes $00 - $FF of DOC RAM for timing
purposes, but it uses a different oscillator than the Note Synthesizer. |If
you want MIDI time stamping, you may not use the First page (bytes $00 - $FF)
of DOC RAM for your own purposes since the MIDI Tool Set uses the contents of
those bytes for time-stamping purposes.

You may use the MIDI, Note Synthesizer, and Note Sequencer Tool Sets together,
but you must not use bytes $00 - $FF of DOC RAM for any purpose if using MIDI
time stamping, nor store zero bytes in this area when using the Note
Synthesizer. You might consider it appropriate to avoid using the first page
of DOC RAM, if possible, to facilitate adding MIDI support to your application
at a later date.

END OF FILE TN.11GS.023

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 167 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.024
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llIgs

#24: Apple llgs Toolbox Reference Updates

Revised by: Dave Lyons May 1992
Written by: Rilla Reynolds, Matt Deatherage, Dave Lyons, October 1987

C. K. Haun & Eric Soldan

This Technical Note documents changes to the Apple llgs Toolbox Reference
manuals. Please contact Apple 11 Developer Technical Support at the address
listed in Apple 11 Technical Note #0 if you have additional corrections or
suggestions for any of the Apple llgs Toolbox documentation.

CHANGES SINCE DECEMBER 1991: Added corrections to Dialog Manager, Menu
Manager, Tool Locator, Window Manager, and Appendix E.

The current Apple Ilgs Toolbox reference material is Apple llgs Toolbox
Reference, volumes 1 to 3 as well as this Technical Note. (The Apple llIgs
Toolbox Reference Update beta draft from APDA is obsolete and should not be
used.)

CORRECTIONS TO VOLUME 1
DESK MANAGER--FIXAPPLEMENU CAN DIE WITH ERROR $0512

Fatal system error $0512 comes from FixAppleMenu (in the Desk Manager). It
means that one of your installed New Desk Accessories does not have a
well-formed menu title string. In particular, the required backslash (\)
character was not found (make sure bit seven is off).

DIALOG MANAGER--EDITLINE ITEM VALUE

On page 6-12, the description of an editLine item value should read "Maximum
length of the item text (0 to 255 characters)."

THE LIST MANAGER WANTS THE PORT SET PROPERLY

The List Manager expects the current grafPort to be set properly before you
make most List Manager calls; drawing can occur in funny places if the
grafPort is not set properly before calls that draw (like SelectMember?2).

Most List Manager calls, and many other toolbox calls, require that the
current grafPort be explicitly set. Before you call List Manager routines
that draw, set the current port to your window with a SetPort call. Remember
the note in Volume 2 under the NewWindow call--"Important: NewWindow does not
set the current port, but many routines require that a current port exist.

Use the QuickDraw 11 routine SetPort to set the current port." Using SetPort
can prevent toolbox confusion and reduce your debugging time.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 168 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

DELETEMITEM OPERATES ON THE CURRENT MENU BAR

Page 13-37 says DeleteMltem removes the specified item from the current menu.
It means the item is removed from the current menu bar.

ERROR $0F02 FROM GETMITEM
GetMItem returns error $0F02 if the specified menu item is not found.

On page 13-45, the return value from GetMenuFlag should read "Word--menuFlag
value for the specified menu."

On page 13-56, in the description of the hiliteFlag parameter to HiliteMenu,
no particular value of "TRUE" is specified. $0001 is a good value ($8000 does
not work; bit 15 is special).

On page 13-72, SetMenuFlag doesn"t bother to actually explain what it does.
IT bit 15 of newvalue is zero, each set bit set forces the corresponding bit
in the menu"s flag value to be set. If bit 15 of newvalue is one, each clear
bit forces the corresponding bit in the menu®s flag value to be clear.
Knowing this, you can set or clear more than one bit at a time, if you want.

SETVECTOR REFERENCE NUMBERS
On page 14-62, vector reference number $002C is listed as "Message pointer

vector." $002C is actually the stack-based GS/0S call vector. (The real
message pointer vector is not accessible through GetVector and SetVector.)

GETTING A CLEAN MOUSE MODE FROM READMOUSE

On ROM 3 computers, the mouse mode byte returned from ReadMouse sometimes has
extra bits set in the high nibble. Before feeding a ReadMouse value to
SetMouse, mask off all but the low nibble (AND #$000F).

READASCIITIME RESULT BUFFER

The description of ReadAsciiTime (in the Miscellaneous Tools) on page 14-16
should say the most significant bit (nhot byte) of each character is set to
one.

SYSTEMEVENT IS ALL BACKWARDS

Although applications still should not call SystemEvent, we should note for
completeness that the iInput parameters listed in Volume 1 are exactly
backwards in the stack diagram.

CORRECTIONS TO VOLUME 2

QUICKDRAW AUXILIARY ERROR CODES

Following are some error codes from QuickDraw Auxiliary that are not listed in
volume 2.

$1210: picEmpty
$1211: picAlreadyOpen
$1212: pictureError

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 169 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

$1221: badRect
$1222: badMode

FRAMERGN DOES NOT CONTRIBUTE TO AN OPEN REGION

The description of the FrameRgn routine on page 16-105 in the Apple llgs
Toolbox Reference, Volume 2 states that FrameRgn will contribute to a region
definition if a region is open when FrameRgn is called. This is incorrect;
FrameRgn does not contribute to the region being defined. To add a region to
another region, use XorRgn or UnionRgn.

TOOL LOCATOR, TLMOUNTVOLUME
On page 24-21, the description of TLMountVolume does not bother to mention

that QuickDraw 11 and Event Manager must be active. If they are not, you
should use TLTextMountVolume instead.

TOOL LOCATOR, SETTSPTR
When using SetTSPtr to patch a system tool set, the Tool Locator and Desk

Manager are special. See Apple llgs Technical Note #101, Patching the
Toolbox.

WINDOW MANAGER, "DRAW INFORMATION BAR ROUTINE™

On page 25-23, the code to clean up the stack is incorrect. On the sta <14,
the comment "Works because stack and direct page are equal™ is no longer
true--they were equal until the PLY two lines earlier. One way to correct the
code is to replace sta <14 with sta 14,s and sta <12 with sta 12,s.

WINDOW MANAGER, INVALRECT

The description of InvalRect on page 25-80 claims that InvalRect modifies the
input rectangle; the rectangle is actually not modified.

WINDOW MANAGER, PINRECT

On page 25-89, in the description of PinRect, the two greater-than comparisons
should be greater-than-or-equal.

WINDOW MANAGER, SETZOOMRECT

The description of SetZoomRect on page 25-112 refers to fZoomed as bit 2 in
the window frame. fZoomed is actually bit 1, with value $0002.

WINDOW RECORD OFFSETS

On page 25-142, note that the offsets given into the window record refer to
the record as the Window Manager treats it internally, with a wNext field at
the beginning. When dealing with a window pointer as seen by an application,
you need to subtract four from the offsets shown. For example, wPort is $00
(not $04), and wControls is $C6 (not $CA).

APPENDIX A, "WRITING YOUR OWN TOOL SETS"

At the bottom of page A-8, "lda #$90" should read "lda #$8100" for version 1.0
prototype.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 170 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

On page A-10, the figure should show two RTL addresses (6 bytes) on the stack.

CORRECTIONS TO VOLUME 3
CONTROL MANAGER: MENU EVENTS

On page 28-15, note that a Menu Event is identified by the value wlnSpecial
($0019) in the what field of the task record. The menu item ID is in the low
word of the wmTaskData field.

CONTROL MANAGER: DIMMED CUSTOM CONTROLS

In the Draw routine for both extended and non-extended controls, the high word
of ctlParam (which was previously undocumented) contains a flag which the
definition procedure can use to draw a normal or dimmed control. The value is
$0000 normally, but it is $FFFF when the control is inactive (hilite value
equals $00FF), or when the control®s state is tied to the window"s state and
the window is inactive.

CONTROL MANAGER: SIZE BOX CONTROLS

The part code for an extended Size Box control is normally 10. |If the
fCallWindowMgr bit is set in ctlFlag, the part code is $80; and if the size
box is managed by a Text Edit control, the part code is $84.

When a Size Box control®s fCallWindowMgr bit is set, the control needs to pass
a minimum window size to GrowWindow. It gets this value from its ctlData
field, which you can get with GetCtlTitle and set with SetCtiTitle (the low
word s the minimum height, and the high word is the minimum width). A height
of zero defaults to 50, and a width of zero defaults to 130.

DESK MANAGER: ERRORS FROM ADDTORUNQ AND REMOVEFROMRUNQ

The Desk Manager chapter, page 29-6, states no errors are possible for
AddToRunQ, but any errors from the Miscellaneous Tools routine AddToQueue are
returned unchanged.

Page 29-8 states no errors are possible from RemoveFromRunQ, but any errors
from DeleteFromQueue are returned unchanged.

EVENT MANAGER: WHAT SETAUTOKEYLIMIT REALLY DOES

Page 31-6 says that PostEvent will add up to the new auto-key limit number of
auto-key events before reverting to the rule that auto-key events are only to
be posted if the event queue is empty. This is not quite right. Actually,
the parameter to SetAutoKeyLimit is used in a size comparison on the event
queue--if there are newLimit or more events in the queue, auto-key events will
not be posted. Volume 3 incorrectly states that up to newLimit auto-key
events will be posted; this is only true if you assume the event queue is
empty before the first auto-key event comes in.

LIST MANAGER
On page 35-9, the description of ResetMember2 does not point out an important

difference between ResetMember2 and NextMember2. ResetMember2 deselects the
member found, but NextMember2 does not change the member®s status.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 171 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

On page 35-3, bit 5 of the memFlag field is defined--it makes an item
inactive. To make use of this bit, you must also set bit 6 of the List
control*s ctlFlag field; if you don"t set this bit, the user will still be
able to select members using the mouse.

MEMORY MANAGER

IT the Memory Manager detects a corrupted entry in the Out OF Memory Queue,
fatal system error $0209 occurs.

MENU MANAGER

On page 28-65, the description of the initialValue field is misleading. Cross
out the text "that is, its relative position within the array of items for the
menu.' initialValue is simply a menu item ID, not an offset Into an array.

Page 37-7 states ''Because caching does not work with menus in windows, the
InsertMenu call automatically disabled caching for such menus." Actually,
InsertMenu doesn®"t do that. You should not set the allowCache bit for a menu
in a window.

MISCELLANEOUS TOOLS: INTERRUPT STATE RECORD NOT ALWAYS COMPLETE

The interrupt state record returned from GetlnterruptState (and passed to
SetinterruptState) is not always completely filled in. The Interrupt Manager,
in the iInterest of serving AppleTalk and serial interrupts as rapidly as
possible, does not take the time to save all the items in the record until
those timing-critical interrupt handlers have been called. Some items are not
saved at all unless the interrupt is determined to be a BRK instruction.

Table 1 shows all items in the current interrupt state record and when they
become valid:

Record variable When valid

always

after serial

always

only on break
B after serial

after serial

only on break
C only on break
state after serial
irg_shadow always
irg_mslot after serial

QQ.Q.QQPQQ_Q_QQ
TAXRXOOUTOW<LKX>

Table 1--Validity of Interrupt Record

STANDARD FILE

On page 48-39, the description of origNameRef reads "On output, this string
contains the string confirmed by the user, which may not be the same length as
the default value.”™ This sentence is confused; ignore it. The string is not
changed at all; Standard File doesn"t even know how long the buffer is.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 172 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

TOOL LOCATOR: NOTES ON STARTUPTOOLS

StartUpTools in System Software 5.0.4 and earlier is intended to be used from
applications only, not from NDAs.

The order of the toolArray entries in the StartStop record is not important.
StartUpTools and ShutDownTools always start up and shut down tools in a
correct order.

StartUpTools in System Software 5.0.4 and earlier fails to open your
application®™s resource fork if the application®s filename contains a slash (/)
or 1T the application directory path is longer than 64 characters.

For maximum compatibility, pass your application®s master user ID with any
auxID to StartUpTools instead of allocating a new user ID.

WINDOW MANAGER:NEWWINDOW2 PARAMETERS OVERRIDE TEMPLATE EVEN WHEN YOU PASS NIL

The description of the NewWindow2 call on page 52-32 is in error. The
description of the titlePtr, refCon, contentDrawPtr, and defProcPtr says, "'To
prevent NewWindow2 from replacing the template values, supply NIL pointers..."
This i1s only true for the titlePtr parameter--if you pass NIL for any of the
other parameters then the value of that parameter in your window record is
also NIL, no matter what the template value was. In other words, if you have
the value $99 stored in your template refCon field, and you pass NIL for the
refCon value in a NewWindow2 call, the value of the refCon in the returned
grafPortPtr is NIL.

APPENDIX E: RTEXTFORLETEXTBOX2 RESOURCES

Page E-68 of Volume 3 shows a length field at the beginning of an
rTextForLETextBox2 resource. This field is not actually present. The length
is simply the size of the resource--it is not stored redundantly.

APPENDIX E: RTWORECTS RESOURCES

When the two rectangles are for 320- and 640-mode, by convention the rectangle

for 320 mode comes first.

Further Reference:

o Apple llgs Toolbox Reference, Volumes 1-3
o Apple llgs Technical Note #101, Patching the Toolbox

END OF FILE TN.11GS.024

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 173 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.025
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llIgs

#25: Apple llgs Firmware Reference Updates

Revised by: Dave Lyons May 1992
Written by: Rilla Reynolds, Dave Lyons October 1987 to September 1990

& Jim Luther

This Technical Note includes updates to the May 1987 edition of the Apple llgs
Firmware Reference, published by Addison-Wesley (Part Number 030-3121-A). The
new Monitor commands require an Apple lIlgs revised ROM (Part Number
342-0077-B), which is available without charge from an authorized Apple
dealer. Please contact Apple 11 Developer Technical Support at the address
listed in Apple 1l Technical Note #0 if you have additional corrections or
suggestions for this manual.

CHANGES SINCE SEPTEMBER 1990: Added a reference to Apple Ilgs Technical Note
#102 for TOBRAMSETUP.

CONTENTS
Page vii, Chapter 7 SmartPort Firmware: Change "'Generic SmartPort calls
121" to "Standard and Extended SmartPort calls 121."

CHAPTER 2: NOTES FOR PROGRAMMERS
Page 11, Environment for the Firmware Routines: Refer to Apple llgs

Technical Note #88, The Page One Stack in a 16-Bit World for more
information on manipulating the stack pointer.

CHAPTER 3: SYSTEM MONITOR FIRMWARE

Page 24, Table 3-1 (continued), Monitor commands grouped by type: Add a
miscellaneous-type and a debugging-type Monitor command to the table, as

follows:
Command type Command format
éﬁit Monitor Q

Install Visit Monitor and MemoryPeeker desk accessories #

éﬁfer mini-assembler 1
Set flags (e, m, x) for full-native mode Control-N

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 174 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Page 43, Back to BASIC: The last paragraph should read: "If you are
using DOS 3.3 or ProDOS(R), use the Monitor Q (Quit) command to return to
the language you were using with your program and variables intact."”

Page 48, Table 3-6, Commands for program execution and debugging: Add a
Monitor command to the table:

Command type Command format

éﬁfer mini-assembler 1
Set flags (e, m, x) for full-native mode Control-N

Page 66, after final paragraph: Add a new Monitor instruction heading and
description:

NATIVE MODE SET CONTROL-N (NATIVE MODE)

Control-N sets the m, x, e flags to 0 for full-native mode. All other
registers are unchanged.

Page 67, after final paragraph: Add a new Monitor instruction heading and
description:

TURN ON ROM DESK ACCESSORIES, #

Enables the currently available ROM desk accessories, Visit Monitor and
Memory Peeker. These desk accessories remain active in the desk
accessory menu until power is shut off. Control-Open Apple-Reset has
no affect on these items. To exit the Visit Monitor desk accessory,
press Control-Y then press Return. To exit the Memory Peeker desk
accessory, press Q.

CHAPTER 4: VIDEO FIRMWARE

Page 77, Table 4-4, Control characters with 80-column firmware on: Change
the actions taken by Control-E and Control-F to read (they were reversed):

Control character Action taken by C3COUT1
Control-E Turns cursor on
Control-F Turns cursor off

CHAPTER 5: SERIAL-PORT FIRMWARE

Page 82, Compatibility: The second half of the third sentence in the
first paragraph should read: "...the Apple llgs hardware is different
from that used on the SSC.*

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 175 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Page 91, Input buffering, BE and BD: This heading should be "Input/Output
buffering, BE and BD."

Page 94, Table 5-6: The Extended Interface footnote which states, "If the
function call returns with the carry bit set..." is incorrect. For Apple
I1gs ROM 01, the Extended Serial Interface does not return the error
condition in the carry bit. Programs using the Extended Serial Interface
should check for a non-zero result value iIn the result code rather than
the carry bit to determine if an error has occurred. For additional error
handling information using the Extended Interface, see Apple llgs
Technical Note #50, Extended Serial Interface Error Handling.

Page 95, Error handling: The second sentence should read: "If the
character has a framing or parity error (assuming that the parity option
is not set to None), the character is deleted from the input stream and
the appropriate mode bit is set.”

Page 96, Note: The Note should read: "The InQStatus elapsed-time counter
functions correctly only if a heartbeat interrupt task has been started.

A heartbeat interrupt task is a set of functions called by interrupt code
that run automatically at one-thirtieth of a second intervals.

Page 96, Interrupt notification: The fourth sentence in the first
paragraph should be: '"The system interrupt handler will transfer control
to the user®s interrupt vector at $03FE in bank $00."

Page 97, Interrupt notification: The last three paragraphs should be
replaced with this paragraph: '"The interrupt completion routine executes
as part of the firmware interrupt handler and must be run in that
environment. The interrupt completion routine must preserve the DBR,
speed, 8-bit native mode, D register, stack pointer (or just use the
current stack), and MSLOT for proper operation. A/X/Y need not be
preserved."

Page 100, SetModeBits: The first sentence in the paragraph following the
CMDLIST should read: "Use this call to alter any of the mode bits whose
function is described below."

Page 105, GetIntInfo: The command list should read:

CMDLIST DFB $03 ;Parameter count
DFB $0C ;Command code
DW $00 ;result code (output)
DW $00 ;interrupt setting (output)
DL Completion address ; (output)

The following should be added after the command list: "“Note: The

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 176 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Parameter count of $03 is correct even though there are four parameters.™

The following should be added after the last paragraph: ™"Note: Before
making this call from an interrupt completion routine, you must set the
operating environment to look and act exactly like a 6502 in all respects.
During interrupt completion routines, you must preserve the DBR, speed,
8-bit native mode, D register, stack pointer (or just use the current
stack), and MSLOT for proper operation. A/X/Y need not be preserved. See
"Environments for the Firmware Routines™ iIn chapter 2, Notes for
Programmers for details about setting and restoring the operating
environment.

Page 106, SetIntinfo: The command list should read:

CMDLIST DFB $03 ;Parameter count
DFB $0D ;Command code
DW $00 ;result code (output)
DW Interrupt setting ; (input)
DL Completion address ; (input)

The following should be added after the command list, 'Note: The
Parameter count of $03 is correct even though there are four parameters."

CHAPTER 7: SMARTPORT FIRMWARE

Page 120, Issuing a call to SmartPort: The standard and extended
SmartPort call examples should be:

This is an example of a standard SmartPort call:

SP_CALL JSR DISPATCH ;Call SmartPort command dispatcher
DC i1"CMDNUM* ;This specifies the command type
DC i2"CMDLIST" ;Word ptr to param list in bnk $00
BCS ERROR ;Carry is set on an error

This is an example of an extended SmartPort call:

SP_EXT_CALL JSR DISPATCH ;Call SmartPort command dispatcher
DC i1"CMDNUM+$40" ;This specifies the ext cmd type
DC i4"CMDLIST™ ;Pointer to the parameter list
BCS ERROR ;Carry is set on an error

Page 121, Generic SmartPort calls: Change occurrences of "Generic
SmartPort Calls"™ to "Standard and Extended SmartPort Calls"™ in the header
and the first sentence. Refer to SmartPort Technical Note #2, SmartPort
Calls Updated, for updated information on the SmartPort STATUS call.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 177 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Page 122, Statcode = $00: Change the function of bit 0 of the first
device status byte to: "1 = Device currently open (character devices
only) or disk switched (block device only)."

Page 124: SmartPort device types should be same as those documented in
SmartPort Technical Note #4, SmartPort Device Types.

Page 125, SmartPort driver status: See SmartPort Technical Note #2,
SmartPort Calls Updated, for the correct format of the status list for
unit O, status code O.

Vendors must request a Vendor ID Assignment from Developer Technical
Support before using a specific value in bytes two and three.

Page 125, Possible errors: Add the following:

$1F No interrupt. Interrupts not supported.

$2B No write. Disk write-protected.

$2F Offline. Disk off-line or no disk in drive.
Page 126, ReadBlock: Add a sentence at the end of the Ffirst paragraph
which reads, ""On return, the X and Y registers indicate the number of
bytes transferred.”
Page 131, Open: The following changes apply for the CMDNUM:

Standard call Extended call
CMDNUM $06 $46

Page 132, Read: Add a sentence at the end of the first paragraph which
reads, "On return, the X and Y registers indicate the number of bytes
transferred."”

Page 140, Figure 7-8, Disk-sector format: Change to the following:

113 IFIDIAIOITISISIFIAID|A]F]1 IFIDJA]A]S]699 14|DJA|F]
I5-Nibble|F|5]Al6]r|e|i|old|EJA]F|5-Nibble|F|5|A|D]e|GCR I IEIAIF]
Isetfsync]l | | | lalcldlrir] | | ISelfsync] | | | IcINibbles |C| | | |
IFields | | | | lIcltlelmls] | | IFields | | | | ItIFields |h] | | |
I I 111 Iklol lalL] | 1 | 1111 Ilol lel 111
I I T I e 3 A 111l flcl 111
I frrrrrrricrtnld 11t Ikl 111
I rrrrrrrrrrnnl 1t Ist 111
I rrrrrrrrrrrnl Lt ful 111
I frrrrrrrrrrrnl (N B Iml 111

A SelfSync Field is four 20 microsecond selfsync nibbles written as
a sequence of five 16 microsecond nibbles.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 178 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Page 140, ResetHook: The Control code and Control list should be:

Control Code Control list
$06 Count low byte $04
Count high byte $00

Hook reference number $xx, $00, $00, $00

Page 141, SetlInterleave: The Control code and Control list should be:

Control Code Control list

$0A Count low byte $01
Count high byte $00
Interleave $01 to $0C

Page 143, UniDiskStat: The Status code and Status list should be:

Status Code Status list

$05 Byte $04
Soft error $00
Retries $xx

A register after execute $xx
Y register after execute $xx
P register after execute $xx
Byte $xx

Page 152, Passing parameters to a ROM disk: Add a sentence to the end of
the second paragraph which reads: "These locations will not be preserved
between SmartPort calls."

Page 156, Table 7-6, SmartPort error codes: Add the following error code:

Acc value Error type Description

Page 166, Table 7-8, Standard command packet contents':

Byte 3 descriptions should read "Byte 2 of param list."

Byte 4 descriptions should read "Byte 3 of param list."

Byte 5 descriptions should read "Byte 4 of param list.”

Byte 6 descriptions should read "Byte 5 of param list."

Byte 7 descriptions should read "Byte 6 of param list."

Byte 8 descriptions should read "Byte 7 of param list."
9 8

descriptions should read "Byte 8 of param list."

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 179 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

CHAPTER 8: INTERRUPT-HANDLER FIRMWARE

Page 184, Serial-port interrupt notification: The last three paragraphs
should be replaced with this paragraph: *"The interrupt completion routine
executes as part of the firmware interrupt handler and must be run in that
environment. The interrupt completion routine must preserve the DBR,
speed, 8-bit native mode, D register, stack pointer (or just use the
current stack), and MSLOT for proper operation. A/X/Y need not be
preserved."

CHAPTER 9: APPLE DESKTOP BUS MICROCONTROLLER

Page 191, Sync, $07: The first sentence should read: "This command
performs the three preceding commands in sequence."

Page 194, Receive Bytes, $48: The fourth sentence should read: "The
second byte value is a combination of the device address in the high
nibble and the ADB command in the low nibble (see the Apple llgs Hardware
Reference) ."

CHAPTER 10: MOUSE FIRMWARE
Page 201: Mouse button positions should be changed as follows:
0 X data byte

If bit 7
IT bit 7

0, then mouse button 1 is down.
1, then mouse button 1 is up.

0 Y data byte
If bit 7
If bit 7

0, then mouse button 0 iIs down.
1, then mouse button O is up.

Page 205, Figure 10-1, Position and status information:
Bit 7 description should be: '"Currently, button O is up/down (0/1)."
Bit 6 description should be: 'Previously, button 0 was up/down (0/1)."

APPENDIX B: FIRMWARE 1D BYTES

Page 223, Table B-2, Register bit information: Change the table to show
that Bits 7-0 of the Y register hold the ROM version number, and the X
register is reserved. In addition, the table description should read:
"The Y register contains the machine ID and the ROM version number. The X
register is reserved."

Page 249, COUT1: In the third sentence, change the value of line feed
from $8C to $8A.

Page 277, RDALTZP: Change the comment to read: "Bit 7 =1 if alt zp
enabled."

APPENDIX D: VECTORS

Page 272: At the end of the introductory paragraph, add "The vectors
TOWRITEBRAM through TOPRINTMSG8 must be called in eight-bit native mode.™

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 180 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

See Apple llgs Technical Note #102, Various Vectors, for more information
about the TOBRAMSETUP vector.

Further Reference:

Apple 1lgs Firmware Reference

Apple l1lgs Firmware Reference 1MB Apple 1lgs Update

Apple llgs Technical Note #50, Extended Serial Interface Handling
Apple llgs Technical Note #102, Various Vectors

SmartPort Technical Note #2, SmartPort Calls Updated

OO0OO0OO0O0

END OF FILE TN.11GS.025

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 181 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.026
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#26: ROM Revision Summary

Revised by: Matt Deatherage September 1989
Written by: Rilla Reynolds October 1987

This Technical Note summarizes revisions to the Apple 11GS ROM.
Changes since November 1988: Revised to cover ROM 3.

Apple currently supports two configurations of the Apple I1GS ROM, ROM 1 and
ROM 3. In August 1989, Apple 11GS computers began shipping with a 256K ROM,
referred to as version 3 or ROM 3 (ROM 2 was skipped since there was already
enough confusion about the first version, ROM 0, and the second version, ROM
1). System Software continues to support ROM 1, but it no longer supports ROM
0. Authorized Apple dealers can upgrade older systems (i.e., machines with
serial numbers lower than E704...) to ROM 1 upon request.

ROM 1 requires System Software 2.0 or later, while ROM 3 requires System
Software 5.0 or later. Although applications may work using older system
software releases, they may not function properly due to the coordination of
system software and ROM revisions.

Changes from ROM O to ROM 1
ADB

0 Absolute ADB devices are now supported correctly.

o ADB fatal system error code is now $0911 instead of $0400.

0 ADBReset routine now delays about 160 microseconds before reading
the buttons.

0 ADBStatus TRUE is now $FFFF instead of $0001.

o All ADB error codes now include the tool number.

o SRQrmv no longer crashes when you make the call with a command
pending.

AppleDisk 3.5

o AppleDisk 3.5 Macintosh block reads and writes now work as
documented.

0 Extended status call now returns bit 0 = 1 if AppleDisk 3.5 media
has been switched since the last READ, WRITE, or FORMAT.

o New AppleDisk 3.5 status calls have been implemented to get
internal variable and work buffer starting addresses.

AppleTalk

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 182 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

0 Link Access Protocol (LAP) inter-packet gap now handles added SCC
delay.

o Name Binding Protocol (NBP) now considers uppercase and lowercase
characters identical.

0 A nonexistent protocol no longer hangs the dispatcher.

Desk Manager
0o SaveScreen and RestoreScreen now work.
Event Manager

o Now auto-key events are not posted in the queue unless the queue
is empty.

o EMStartUp and EMShutDown code has been optimized.

o Event Manager now returns an error instead of crashing when there
is an attempt to post an invalid event.

Integer Math

New Changes:
0 Optimized the multiply routine.
RAM patches moved to ROM:
o Changes to FixMul, FixRatio, and SDivide.
o SDivide recovers from a divide by zero operation.
o New calls: FracMul, FixDiv, FracDiv, FixRound, FracSqgrt, FracCos,
FracSin, FixATan2, HiWord, LoWord, Long2Fix, Fix2Long, Fix2Frac,
Frac2Fix, Fix2X, Frac2X, X2Fix, X2Frac.

Memory Manager

0 Optimized Purge and Compact for banks O and 1 and moved from RAM
to ROM.

0 RAM patches and enhancements moved to ROM.

0 RAMdisk now returns bytes transferred count on DIB call.

0 SetHandleSize makes a handle temporarily unpurgeable while
changing handle size.

Miscellaneous Tools

RAM patches and enhancements moved to ROM:

o0 AbsClamp fixes.

0 Battery RAM routines work if data bank is set to a bank other than
bank data is in.

o Firmware entry calls now return processor status in high byte
instead of low byte.

0 GetAddr with ref number $000E returns SerFlag address for SCC
interrupts (useful if not using serial firmware).

o ID manager can reuse discarded IDs.

0 Keyboard interrupts now enable VBL interrupts.

0 Munger now works with 1-char strings and returns with A=0.

o New SysBeep call.

o0 PackBytes and UnpackBytes return with A=0.

0 ReadBParam and ReadBRAM error codes corrected.

0 WriteBParam and WriteBRAM do not return error codes (this is a
documentation change).

o WriteTimeHex Bad Parameter error code is now $31.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 183 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Monitor

0 80-column screens maintained iIf break occurs and Pascal protocol

in effect.

AppleSoft tabbing in 80-column mode now works correctly.

Control Panel"s Maximum RAM Disk Size increased to 8128K instead

of 4096K.

Firmware version number returned is $1 instead of $0.

Interrupts now disabled during paddle read routines.

Interrupts re-enabled after fatal system error (for debug DAs).

Mouse clamps with positive minimum and negative maximum works

(e.g., $6000 min, $8000 max).

o New monitor command, pound sign (#), installs monitor entry and
memory peeker classic desk accessories (unless already installed),
accessible via the Control Panel. Reinstalled automatically on
reset; disabled by power off only.

o New monitor command, Control-N, clears m, e, and x bits for native
mode. (Control-R still switches to 8-bit, emulation mode.)

0 RESET entry point at $00FA62 sets state register to $0C and shadow
register to $08.

o Shadowing of the Super Hi-Res area in Bank 1 is no longer enabled
automatically.

o WAIT routine now always exits with C=1.

[e}ye]

OO0OO0O0

QuickDraw 11

RAM patches and enhancements moved to ROM:
0 640-mode pen masks now work when portRect origin not a multiple of 8.
o0 Arcs, ovals, and round rects can be drawn across bank boundaries.
o0 Changes to round drawing routines: PPToPort, GetFontLore,
GetROMFont, and InflateTextBuffer.
0 Current bank bytes 100...106 no longer modified by scaling and
mapping calls.

o0 FontFlags 1 and 2 added for pen width and color control.

o0 FramePoly returns with A=0.

0 GetPort returns all four bytes of GrafPort.

0 HideCursor and ShowCursor work correctly with obscured cursor.

0 MapRgn now works on rectangular regions.

o Pixel painting routines support QuickDraw Auxiliary Tool Set
stretching and shrinking.

0 PPToPort now clips correctly to the current portRect.

0 QDStartUp and QDShutDown save and restore the scan line interrupt
vector.

0 RectlnRgn bug fixed.

o ScrollRect works when the ClipRgn and VisRgn are not rectangular.

0 SetSysFont works.

o0 StdPixels now returns with A=0 if the pen is not visible.

0 Text underline bug fixed.

0 TextBounds works.

New QuickDraw changes:

Busy flag now maintained correctly by ClosePort, OffsetRgn,

InsetRgn, KillPoly, FillRect, FrameOval, PaintOval, EraseOval,

InvertOval, FillOval, FrameArc, PaintArc, EraseArc, InvertArc,

FillArc, FrameRRect, PaintRRect, EraseRRect, InvertRRect, and

FillRRect.

0 Cursor appears in correct Super Hi-Res mode as determined by the
low byte"s bit 7 (320/640) of the MasterSCB.

(@]

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 184 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

SANE

Elems now can be called from any part of memory.

HALT exception jumping through the incorrect vector fixed.
Integer overflow during conversion reported.

STATUS call moved to ROM.

OO0OO0O0

Scheduler

0 Scheduler now accepts a flush function call.
o Task-handling RAM patch (on System Disk 1.0 and later) moved to
ROM.

Serial 1/0

o0 First character after an XON is no longer trashed when buffering
is not enabled.

o |If serial mode bit 17 = 1, parity and framing error suppression
are defeated.

o Parity, baud, and data format commands work with buffering.

o0 STATUS call will not report that a character is ready if the
character arrives with a parity or framing error.

0 STATUS call works correctly with XON/XOFF protocol.

SmartPort

o PR#5, following a PR#5 with 1/0 error (i.e., no disk in drive),
now boots as expected.

0 SmartPort manipulates only Slot 6 motor on detect so the IWM can
run in fast mode.

Sound
o Fixed bug in FFStopSound call.
o Fixed low-level RAM read/write bug.
o Interrupts are disabled when the internal bell is active.
o Interrupts no longer need to be disabled when accessing sound RAM.
o New sound diagnostics with the following error codes: $0C001 =

failed RAM data test, $0C002 = RAM address test, $0C003 = register
data test, and $0C004 = control register test.
0 Sound Manager RAM patches and enhancements moved to ROM.
Text Tools
RAM patches moved to ROM:
0 RAM patches moved to ROM for Writing and ErrorWriting routines.
o Textlnit lllegal device error now is in 16-bit mode instead of 8.
Tool Locator
o Optimized tool dispatcher.
0 ROM tools present on a memory expansion card are installed.

Changes from ROM 1 to ROM 3

ROM 3 is 256K (double the size of ROM 1) and contains several tools which do

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 185 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

not exist in ROM 1. The patch file TS3 fixes known bugs in ROM 3 which were
discovered after it was frozen. ROM 3 tools are basically System Software 5.0
tools, and the System Software 5.0 documentation covers these tools in detail.
This Note only documents non-tool changes.

AppleDisk 3.5 and SmartPort

0 Use new routines for all block reads to fast RAM to eliminate
double buffering.

0 The extended DIB status call returns the device subtype byte $C1.

o0 Fixed anomalies described in SmartPort Technical Note #6, Apple
11GS SmartPort Errata.

o0 Fixed a ROM 1 bug that caused Write Protected to be returned with
higher priority than Device Offline for the ProDOS STATUS call.

AppleTalk
o AppleTalk moved to slots 1 and 2 from slot 7.
Control Panel CDA

o The original Options menu is now the Keyboard menu and does not
contain mouse parameters.

0 A new Mouse menu is present. The new keyboard microcontroller
allows finer control of mouse tracking, so a selection procedure
better than yes or no is present. Parameters are also available
to set the keyboard mouse feature, which allows the numeric keypad
to emulate a mouse.

0 Added an option to resize the RAM disk on the next reset in the
RAM Disk menu. This option resets to No after one reboot and
resizing so the RAM disk is not accidently reformatted on every
boot thereafter.

o |If slot 7 is set to AppleTalk, the Control Panel displays a
warning if neither slot 1 nor slot 2 is similarly set.

0 The Printer Port and Modem Port menus now display only those
parameters that may be changed if AppleTalk is the selection for
those ports.

0 The RAM disk no longer has minimum and maximum settings, but
rather one RAM disk size setting.

Monitor

o0 Enhanced memory searching commands to automatically cross bank
boundaries.

0 Added Step and Trace debugging functions.

o Now provide vectors for the same functionality as the GS/0S System
Service calls MEMORY_MOVER, DYN_SLOT_ARBITER and SET_SYS_SPEED in
bank $E1.

0 Now resize the RAM disk when the system is rebooted with the
Control-Open Apple-Shift-Reset key combination.

0 Handle text page 2 shadowing and power-up bits In the new CYA
chip.

o0 Flash the border if the sound volume is set to zero and a beep is
necessary.

o In ROM 1 and earlier, the Miscellaneous Tools mouse firmware
called the 8-bit mouse routines in the $C400 space to do the work.
In ROM 3, the 8-bit routines call the 16-bit routines to read the
hardware. This change effectively means those programs which use

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 186 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

16-bit mouse calls (including desktop applications through the
Event Manager) may use the mouse when slot 4 is set to Your Card.

o Slots 1 and 2 may now be set to Printer, Modem, AppleTalk, or Your
Card. With System Software 5.0, slot 7 does not need to be set to
AppleTalk to use an AppleTalk network, although one can do it for
compatibility. There is no transparent printing firmware in slot 7.

0 The Alternate Display Mode CDA no longer sets the system to fast
speed when normal speed is selected in the Control Panel.

0 Added a new command, {val}=V, to set the video screen display 1/0
switches when resuming a program.

0 Control-T command now works as a toggle--executing it once changes
to text mode, but now executing it again switches back to the
previous video mode You may change this saved video mode with
the =V command.

o0 Battery RAM value $59 now controls the presence of the Visit
Monitor and Memory Peeker CDAs. If this byte has the high bit set
at boot time, the CDAs are automatically installed.

0 The Monitor and Memory Peeker both allow the use of Control-X to
terminate a long display (i.e., a handle list or memory dump).

Serial 1/0

0 XON and XOFF are no longer sent with the high bit set when
buffering is enabled.

o Terminal mode cursor is more consistent with the rest of the
system.

0 Extended Interface calls now return errors in the carry and the
accumulator.

Toolbox
The following tools are now in ROM:

o Window Manager

o Menu Manager

o Control Manager

0 Line Edit

o Dialog Manager

o Scrap Manager

o Font Manager

o0 List Manager

Further Reference

OO0OO0O0

H#HH#

Apple 11GS Firmware Reference
Apple 11GS Toolbox Reference
Apple 11GS Technical Note #52, Loading and Special Memory
SmartPort Technical Note #6, Apple I11GS SmartPort Errata

END OF FILE TN.11GS.026

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 187 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.027
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#27: Graphics Image File Formats

Revised by: Matt Deatherage November 1988
Written by: Steve Glass, Eagle Berns, Art Cabral,

Pete McDonald & Rilla Reynolds October 1987

This Technical Note formerly described the file formats for Apple 1IGS
graphics image files. File formats are now documented in Apple 11 File Type
Notes under corresponding file types and auxiliary types:

File Type $CO

Auxiliary Type $0000 "PaintWorks" Packed Format
Auxiliary Type $0001 PackBytes Packed Format
Auxiliary Type $0002 "Apple Preferred" Packed Format

File Type $Ci1
Auxiliary Type $0000 32K unpacked picture image
Auxiliary Type $0001 Unpacked QuickDraw Il picture

Further Reference
o] Apple 11 File Type Notes

END OF FILE TN.11GS.027

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 188 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.028
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#28: Interface Card Design Guidelines

Revised by: Matt Deatherage November 1988
Written by: Cameron Birse October 1987

This Technical Note describes suggested dimensions for interface cards for the
Apple 11GS and Apple lle upgraded sytems.

The 7' dimension is specified for slots
1-3 because of the optional fan which
mounts on the power supply.

|
|
|
|
|2.75"
I 1
1 1 3.05"
SLOTS 1 - 3 111
(I
N
| I_1
[— 2.950"-————|-]-.375"
------------------------- 0T o o |
|--——- 225" o | s m oo Ay I
| .
| _ - (I
| _ - (I
- (I
(| 111
I | 12.75"|
| 111
2.20"| | 3.05"
T SLOTS 4 - 7 111
| (I
1 N
| 1_I
[— 2.950"-————|-]-.375"

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 189 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

J—m oo 10.00" —m oo |
|----- 3 S T 43— I
| _
| _ = 1
| _ - |1
- 11
| 11
11 12.75"
(I ||
2.20"| 1
T SLOTS 4 - 7 11
(I 11
| |
.35 |-.750-] I] 630" -
| | | 1| l__
[-—-—--- 3.02"-———-—=- | I | |
| ST o — |-]--———————- P 1R — I
40"

END OF FILE TN.11GS.028

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 190 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.029
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#29: Monochrome High-Resolution Mode

Revised by: Rilla Reynolds November 1988
Written by: Rilla Reynolds October 1987

This Technical Note discusses a 280 x 192 monochrome high-resolution mode
available on the Apple 11GS and useful for clarifying some graphics.

You can select a 280 x 192 monochrome high-resolution mode on the Apple 1IGS
with the following steps:

1. Select Monochrome and 40-column from the Control Panel (which sets
the 40-column soft switch and bit 5 in $C029).

2. Select Hi-Res graphics mode (which sets GR and HIRES soft
switches).

3. Read from to write to $CO5E (AN3).

To deselect the mode, read from or write to $CO5F.

A monochrome double high-resolution mode also exists on the 11GS, and you
follow the same procedure outlined above to access it.

You can use the monochrome mode to display sharper graphics-mode text and fine
lines for applications which do not require color. Note that Applesoft BASIC
also supports the monochrome video mode.

The soft switches you must access in software to enable the monochrome high-
resolution mode are as follows:

GR $C050
HIRES $C057
40COL $CO0C (for monochrome double hi-res, use 80COL at $COOD)

AN3 OFF $CO5E

In addition, you must set bit 5 of the register at $C029, and you must use a
read-modify-write sequence since $C029 is a multi-function register.

You can manipulate all of the soft switches listed above from the I11GS
Monitor, except 40COL.

END OF FILE TN.11GS.029

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 191 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.030
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llgs

#30: Apple llgs Hardware Reference Updates

Revised by: Jim Luther September 1990
Written by: Rilla Reynolds & Jim Luther October 1987

This Technical Note includes updates to the Apple llgs Hardware Reference,
published by Addison-Wesley. Please contact Apple Il Developer Technical
Support at the address listed in Apple 1l Technical Note #0 if you have
additional corrections or suggestions for these manuals.

Changes since July 1990: Changed the description in "'Signals at the Serial
Ports and the Serial Communications Controller™ to correctly note that the SCC
can support a maximum asynchronous transmission rate of 57,600 bits per second
(bps) in X16 clock mode.

There are two editions of the Apple llgs Hardware Reference, the first edition
(July 1987) which covers the original Apple Ilgs only, and the second edition
(1989) which covers both original Apple llgs and the 1 MB Apple llgs. Because
page numbers have changed between the two editions and because an update to
one edition may not be needed in both editions, this Note organizes
corrections by chapter, always noting corrections to the Second Edition
followed by corrections to the First Edition.

Chapter 3: Memory

Second Edition--Page 40, Table 3-2, Bits in the State register
First Edition--Page 36, Table 3-2, Bits in the State register

Switch the given values and descriptions for bits 7 and 2 as follows:

Bit Value Description

7 1 ALTZP: If this bit is 1, then bank-switched memory, stack,
and direct page are in auxiliary memory.
0 IT this bit is 0, then bank-switched memory, stack, and
direct page are in main memory.
2 1 LCBNK2: IFf this bit is 1, language-card RAM bank 2 is
selected.
0 IT this bit is 0, language-card RAM bank 1 is selected.

Chapter 6: The Apple Desktop Bus

Second Edition--Page 148, after final paragraph

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 192 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Add a new heading and description:
Control Panel Control Jumper

The ADB microcontroller provided with the 1 MB Apple llgs includes an
input that disables the text Control Panel (normally available via the
Classic Desk Accessory menu). This feature allows the system parameters
to be set and then protected from changes made via the text Control
Panel. A jumper across the pins of connector S1 removes the text Control
Panel from the Classic Desk Accessory menu. All other installed classic
desk accessories are still available in the Classic Desk Accessory menu
when the S1 jumper is installed. The S1 connector is located near the
ADB microcontroller at motherboard location F12.

Note: The S1 jumper does not prevent the system parameters from being
changed with the graphic Control Panel (a new desk accessory
normally available from the Apple menu of the Finder or of any
other application that includes the Apple menu).

First Edition--Page 130, Table 6-9, Command byte syntax
The first row in the table should read:
X X X X 0 0 0 0 Send Reset
and not
A3 A2 Al AO 0 0 0 0 Device Reset
First Edition--Page 131, Device Reset
Replace "Device Reset" with "Send Reset.'" The paragraph should be: "When
a device receives a Send Reset command, it will clear all pending
operations and data, and will initialize to the power-on state. The Send
Reset command is not device-specific; it is sent to all devices
simultaneously."
First Edition--Pages 138-139, Collision detection
The fourth sentence in the last paragraph should be: ™"By using the Listen

register 3 command, the host can move the device with the activator
pressed."

Chapter 7: Built-In 1/0 Ports and Clock

Second Edition--Page 154, Table 7-3, Disk-port soft switches
First Edition--Page 146, Table 7-3, Disk-port soft switches

$COE8 Drive disabled
$COE9 Drive enabled

$COEA Drive 1 select
$COEB Drive 2 select

In addition to the corrections listed for Table 7-3, the reference to '"spindle
motor switches'"™ in the paragraph following the table should be replaced with
"drive enable switches."

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 193 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Second Edition--Page 155, Table 7-4, IWM states
First Edition--Page 146, Table 7-4, IWM states

Change the table to the following:

Q7 Q6 Drive Operation

0 0 enabled Read Data register

0 1 - Read Status register

1 0 - Read Handshake register
1 1 disabled Write Mode register

1 1 enabled Write Data register

1 = asserted state 0 = negated state - = do not care
First Edition--Page 146, after Table 7-4, IWM states
The following text and table should also be added:
"The drive enable switches and the drive select switches control the state
of the disk port signals DR1 and DR2. The following table shows the

relationship between these.™

Soft Switches Disk Port Signals

|
$COE8 $COE9 $COEA $COEB | DR1 DR2
|
1 - - - | 0 0
- 1 1 - | 1 0
- 1 - 1 | 0 1
|
1 = asserted state 0 = negated state - = do not care

First Edition--Page 147, The Mode register

The IWM Mode register is a write-only register, so disregard the advice to
use only a read-modify-write instruction sequence when manipulating bits.

Second Edition--Pages 156-7, Table 7-5, Bits in the Mode register
First Edition--Pages 147-8, Table 7-5, Bits in the Mode register

For Second Edition, change the description for bit 2, value 0 as shown. For
First Edition, switch the given values and descriptions for bits 1, 2, and 4
as shown.

Bit Value Description

4 1 8-MHz read-clock speed selected.

0 7-MHz read-clock speed selected. Set to O for all Apple llgs
disk accesses.

2 1 1-second timer is not selected.

0 1-second timer selected. When the current disk drive is
deselected, the drive will remain enabled for 1 second if
this bit is clear.

1 1 Asynchronous handshake protocol selected; for all except
5.25-inch Apple disk drives.

0 Synchronous handshake protocol selected; for 5.25-inch Apple

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 194 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

disk drives.

Second Edition--Page 159, The serial ports
First Edition--Page 150, The serial ports

The first sentence should read: '"The Apple Ilgs has two serial ports
located at the back of the computer, which may provide synchronous and
asynchronous serial communications.™

Second Edition--Page 160, Table 7-9, Pins on a serial-port connector
First Edition--Page 151, Table 7-8, Pins on a serial-port connector

Replace the table title and table with this table title, table and note:
Table 7-x Signal assignments for the mini 8-pin serial port connectors

Pin Number Signal name Signal Description

1 HSKo Handshake output. Driven uninverted from the
SCC"s /DTR output.
Voh = 3.6V; Vol = -3.6V; RI - 450 ohms

2 HSK1i Handshake input or external clock. Received
inverted at SCC"s /CTS and /TRxC inputs.
Vih = 0.2V; Vil = -0.2V; Ri = 12K ohms

3 TxD- Transmit data (inverted). Driven inverted
from SCC"s TxD output; tri-stated when SCC"s
/RTS 1s not asserted.
Voh = 3.6V; Vol = -3.6V; RI = 450 ohms

4 GND Signal ground. Connected to logic and
chassis ground.
5 RxD- Receive data (inverted). Received inverted

at SCC"s RxD input.
Vih = 0.2V; Vil = -0.2V; Ri = 12K ohms

6 TxD+ Transmit data. Driven uninverted from SCC"s
TxD output; tri-stated when SCC"s /RTS is not
asserted.

Voh = 3.6V; Vol = -3.6V; Rl = 450 ohms
7 GPi General-purpose input. Received inverted at

SCC"s /DCD inputs.
Vih = 0.2Vv; Vil = -0.2V; Ri = 12K ohms
8 RxD+ Receive data. Received uninverted at SCC"s
RxD input.
Vih = 0.2V; Vil = -0.2V; Ri = 12K ohms

Note: Absolute values of specified voltages are minimums;
Ri is a minimum, RI s a maximum.

Second Edition--Page 164, after Figure 7-9
First Edition--Page 155, after Figure 7-9

Add a new heading and description:
Signals at the Serial Ports and the Serial Communications Controller
The Apple llgs has two serial ports which are compatible with most RS-232-C
devices. This section describes the input and output signals provided at

the serial ports. This section also discusses some input signals to the
8530 Serial Communications Controller (SCC) chip that are not described in

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 195 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

the Apple llgs Hardware Reference.

The transmit-data and receive-data lines of the Apple llgs serial interface
conform to the EIA standard RS-422, which differs from the more commonly
used RS-232-C standard in that, whereas an RS-232-C transmitter modulates a
signal with respect to a common ground, an RS-422 transmitter modulates the
signal against an inverted copy of the same signal (to generate a
differential signal). The RS-232-C receiver senses whether the received
signal is sufficiently negative with respect to ground to be logical 1,
whereas the RS-422 receiver simply senses which line is more negative than
the other. An RS-422 signal is therefore more immune to noise and
interference, and degrades less over distance, than an RS-232-C signal. If
you ground the positive side of each RS-422 receiver and leave unconnected
the positive side of each transmitter, you have essentially converted to
EIA standard RS-423, which can be used to communicate with most RS-232-C
devices over distances up to fifty feet, as illustrated in Figures 7-x1

and 7-x2.

8530 26LS32 Receivers [11GS Mini 8-pin . RS-232-C DTE Device
SCC & 26LS30 Drivers Serial Connector . DB-25 Connector
	/					
	/		8			
	/ +		RxD+			
RxD	/			-		
	AN	5	-			
	\ -]	RxD-			TXD pin 2	
I IN N\			-			
	I\ O\	6	-			
	I\	TxD+		_NC		
™D		\		-		
		7/	3	-		
		/0	TxXD-			RxD pin 3
I 17 71		-				
	7 71	4	-			
	/ +] o	GND	()	GND pin 7		
7/CTS	_o_7/					
[I N			2			
/7TRxC	__	\ -]		HSKi		DTR pin 20
I IN N\						
	I\ O\		1			
	I \		HSKo		DSR pin 6	
/DR	__	\				
		7/		7	1	
		/0 1 GP1] o	RTS pin 4			
I 17 71 1	1			1		
	7 71			1		
	/ +]l_	_ o		CTS pin 5		
/DCD	/					
	AN					
	N -] [
	\	signal				
	\| ground					

Figure 7-x1-Apple llgs Connection to an RS-232-C DTE Device

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 196 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

8530 26LS32 Receivers 1IGS Mini 8-pin . RS-232-C DCE Device
SCC & 26LS30 Drivers Serial Connector . DB-25 Connector
	/						
	/		8				
	/7 +		RxD+				
RxD	/			-			
	AN		5	-			
	AN		RxD-			RxD pin 3	
I IN \			-				
I 1\ \]	6	-					
I 1 \	TxD+		I_ NC				
™D	_	\		-			
I 1 7/	3	-					
		/0	TxXD-			TXD pin 2	
	17 7]		-				
	17 7]	4	-				
	/ +] o	GND	()	GND pin 7			
/CTS	_o_7/						
[A			2				
/7TRxC	__	AN			HSKi		DSR pin 6
I IN \							
I 1\ \]		1					
	I \		HSKo		DTR pin 20		
/DTR	_	N\					
I 1 7/		7					
		/0 1 GPi]	DCD pin 8				
I 17 71 1							
	17 71 1						
	/ +	__	_o				
/DCD	/7 1 1						
	N						
	N -l						
	\	signal					
	\| ground						

Figure 7-x2-Apple llgs Connection to an RS-232-C DCE Device

The serial inputs and outputs of the SCC are connected to the external
connectors through differential line drivers (26LS30) and receivers
(26LS32). The output line drivers are tri-state devices and can be put in
the high-impedance mode between transmissions to allow other devices (i.e.,
AppleTalk devices) to transmit over those lines. A line driver is
activated by lowering the SCC"s Request To Send (/RTS) output for that
port.

The Handshake Output signal (HSKo, pin 1) for each Apple llgs serial port
originates at the SCC"s /DTR output for that port and is driven uninverted
by an RS-422 line driver (26LS30). Each port®s Handshake Input signal
(HSKi, pin 2) is received and inverted through a differential receiver
(26LS32). The output of the differential receiver is connected to the
SCC"s Clear To Send (/CTS) and Transmit/Receive Clock (/TRxC) inputs for
that port. HSKi is designed to accept an external device®s Data Terminal
Ready (DTR) handshake signal through the /CTS input. The /CTS input to the
SCC can be polled by software or can be used to generate an interrupt. The

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 197 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HSKi line is connected to the SCC"s Transmit/Receive Clock (/TRxC) input
for that port, so that an external device can perform high-speed
synchronous data exchange. Note that you can"t use the HSKi line for
receiving DTR if you®re using it to receive a high-speed data clock.

Each port®s General-Purpose input (GPi, pin 7) is received and inverted
through a differential receiver (26LS32). The output of the differential
receiver is connected to the SCC"s Data Carrier Detect (/DCD) input for
that port. This input can be used to provide a handshake signal from an
external device to the computer. The /DCD input to the SCC can be polled
by software or can be used to generate an interrupt.

Note: Because a 26LS32 differential receiver is used for the external
handshake or clock signals to the SCC, the signals must be
bipolar, alternating between a positive voltage and a negative
voltage with respect to the internally grounded input. If a
device uses ground (0 volts) as one of its handshake logic
levels, the receiver interprets that level as an indeterminate
state, with unpredictable results.

The SCC"s Receive/Transmit Clock (/RTxC) inputs for both ports are driven
by a single crystal oscillator circuit. This is accomplished by connecting
a 3.6864 MHz crystal between the /RTxC and Synchronization (/SYNC) input of
port A. Port B"s /RTXC pin is connected to port A®"s /SYNC pin to drive
port B"s clocks from port A"s oscillator circuit. Because of this single
circuit, Write Register 11 (WR11l) bit 7 must be set to 1 for SCC port A and
must be set to O for SCC port B. The SCC itself is clocked at 3.58 MHz by
the Apple llgs® Color-Reference clock (CREF) at the SCC"s PCLK clock input.
The maximum asynchronous transmission rate supported by the SCC is 57,600
bits per second (bps) in X16 clock mode (WR4=01XXXXXX) .

The SCC"s Interrupt Enable In (IEI) and Interrupt Acknowledge (/INTACK)
inputs are both tied to logical high in the Apple llgs. Keeping the SCC"s
IEI input high enables the SCC to always generate interrupts if interrupt
modes are enabled through software. Keeping the SCC"s /INTACK input high
leaves the SCC in Interrupt Without Acknowledge interrupt mode.

Chapter 8: 1/0 Expansion Slots

First Edition--Page 167, Direct memory access

DMA bank register location is $C037.

Further Reference:

o Apple llgs Hardware Reference, both editions

END OF FILE TN.11GS.030

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 198 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.031
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#31: Redirecting Output in APW C

Revised by: Guillermo Ortiz November 1988
Written by: Guillermo Ortiz November 1987

This Technical Note presents a sample program which shows how to send output
to different devices under the Apple Programmer®s Workshop (APW) shell.

Many programmers find the ability to redirect output an expecially useful
feature. The following is a sample C program which allows this redirection
through an APW shell command. Note that this is not applicable to MPW I1GS C
since it is not part of the APW environment.

/*

redirect.c

Testing the shell REDIRECT command within APW C
Demonstrates how to send the output to different devices,
a disk file, the printer, and then back to the screen
last modified by Guillermo Ortiz 09/21/87

NOTE: This program checks no errors whatsoever. It expects to
be able to open the file with no problems and expects the
printer to be readily available.

Also remember that for this test to work the file has to be of
the type "EXE" (executable from the shell only.)
*/

#include <types.h>
#include <misctool.h>
#include <stdio.h>
#include <shell_h>
#include <string.h>

char timestrg[20]; /* string to store the ascii time */

char myfile[80]; /* string to store the filename */

char str[80]; /* dummy string */

int dev=0x0001; /* standard output */

int app=0x0000; /* app=0 file is deleted, other will append */

PrintToFile()

printf("'Please enter the output filename: \n");
gets(myfile);
if (strlen(myfile)==0)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 199 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

{

printf("Error in entering the filename, quit.\n");
exit(0);
}

/* REDIRECT call requires pascal string */
c2pstr(myfile);

/* use the REDIRECT shell command to redirect the output to the file */
REDIRECT(dev, app, myfile);

/* now print a few lines of text */

printf("'This is my First line of text.\n");
printf("'And this is the second line.\n");
printf(""Finally the third and last line of text.\n");

}

PrintToPrinter()

/* now redirect to output to the _PRINTER. */
REDIRECT(dev, app, '™\010.PRINTER.™);

printf("'We should now be going to the printer.\n");
ReadAsciiTime(timestrg);
printf ('The time now is %s\n",timestrg);

}

BackToScreen()

/* Last REDIRECT the output back to the screen. */
REDIRECT(dev, app, '"\O10.CONSOLE.");

printf("'The testing of REDIRECTing the output is done.\n");
ReadAsciiTime(timestrg);
printf (""The time now is %s\n",timestrg);

main()

ReadAsciiTime(timestrg);
printf (""The starting time is %s\n",timestrg);

PrintToFile();

PrintToPrinter();
BackToScreen();
>
Further Reference
o] Apple 11GS Programmer®s Workshop Reference
o] Apple 11GS Programmer®s Workshop C Reference

END OF FILE TN.11GS.031

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 200 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.032
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#32: /INH Line Anomaly

Revised by: Glenn A. Baxter & Rob Moore November 1988
Written by: Glenn A. Baxter December 1986

This Technical Note describes a hardware anomaly which affects the use of the
/INH line on the Apple I1GS.

The Apple 11GS maps logical addresses in main and auxiliary RAM spaces to
physical RAM devices in such a way that using the /INH line can cause bus
contention under certain conditions. This Note describes the problem and
suggests a solution strategy.

In the Apple 11GS, main memory resides within four physical 64 x 4 DRAMs.
Memory is logically mapped into two separate banks of 64K x 8. The logical
map of main memory is slightly different than what one might expect. Owing to
the demands of new video modes on the 11GS, the DRAMs need a greater amount of
time to perform their function. The easiest way to allocate time in a fixed,
time-based system is to use a memory interleaving mechanism, and the 11GS
implements its video in this fashion.

As a result of this interleaving scheme, the logical map of main and auxiliary
memory does not correspond directly to physical DRAMs, but are split in three
places. The split looks like the following:

First Physical 64K Second Physical 64K

Main Memory $0000 - $5FFF Auxiliary Memory $0000 - $5FFF
Auxiliary Memory $6000 - $9FFF Main Memory $6000 - $9FFF
Main Memory $A000 - $FFFF Auxiliary Memory $A000 - $FFFF

Only part of the first physical bank of RAM is inhibited when /INH is brought
low; therefore, the /INH function only works between $0000 - $5FFF and $A000 -
$FFFF in main memory and $6000 - $6FFF in auxiliary memory. If a card
attempts to inhibit main memory in the range of $6000 - $9FFF or auxiliary
memory in the ranges $0000 - $5FFF or $A000 - $FFFF, bus contention results as
both the Mega Il and the 74HCT245 buffer device attempt to drive the bus
simultaneously (which can damage the Mega 11).

Because earlier Apple Il systems do not arrange their physical memory as
described above, cards which use the /INH line may be compatible with the
Apple][+ and lle, but not with the I1GS. To be compatible with all Apple I1
systems, a card should include an address mask that will prevent /INH from
going low when the address in in the sensitive ranges of main or auxiliary
memory. The following logic equation represents an appropriate blocking
signal for main memory inhibition:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 201 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

BLOCK /A15 * Al4 * Al13 ;BLOCK $6000-$7FFF

+ Al15 * /A14 * /A13 ;BLOCK $8000-$9FFF

END OF FILE TN.11GS.032

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 202 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.033
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#33: ERRORDEATH Macro

Revised by: Jim Mensch & Matt Deatherage November 1988
Written by: Allan Bell, Apple Australia & Jim Merritt December 1987

This Technical Note presents a short macro which an assembly language program
can invoke to handle fatal error conditions.

Early versions of Apple-approved sample assembly language code for the Apple
11GS often invoked an APW macro named ERRORDEATH. This macro generated code
that was appropriate for handling situations where program execution simply
could not proceed due to "fatal" errors, such as a failure to load one or more
tools that are required to display more sophisticated error dialogs or the
inability to allocate sufficient direct page space for essential tool sets.
The macro libraries of prototype APW systems included ERRORDEATH, but the
release version does not to promote the use of more sophisticated error
handling techniques in commercial software packages. The MPW I1GS release
never included ERRORDEATH.

Below are two versions of ERRORDEATH; one is compatible with official standard
releases of APW and the other with MPW 1IGS. While Apple recommends avoiding
the use of ERRORDEATH in software intended for commercial release, we feel the
code is still useful for providing minimal error handling capability in
prototype code and a brief, yet sophisticated, example of macro construction.

APW Assembler version: MPW 11GS Assembler version:
MACRO MACRO
&lab ERRORDEATH &text ErrorDeath &text
&lab bcc endé&syscnt bcc @EDeathEnd
pha pha
pea xé&syscnt]-16 pea @Message>>16
pea x&syscnt pea @Message
ldx #$1503 ldx #$1503
Jsl $E10000 Jsl $E10000
x&syscnt dc 1l"end&syscnt-x&syscnt-1" (@Message dc.B @EDeathEnd-@Message-1
dc c'&text" dc.B &text
dc 11713",i1713" dc.B 13
dc c"Error was $* dc.B “Error Was $-
end&syscnt anop @EDeathEnd
MEND MEnd

The "active ingredient"” in the ERRORDEATH macro is the call to SysFailMgr
($1503), which is made if carry is set at the time control passes to the
beginning of the expanded macro code sequence. The APW and MPW 11GS assembler
macro expansion mechanisms insert the value represented by the character

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 203 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

string argument marker, &text, into the generated code stream and provide
SysFailMgr with a pointer to that string. The pseudo-argument, &syscnt,
generates unique labels iIn the positions occupied by the expressions x&syscnt
and endé&syscnt, which makes it possible to invoke ERRORDEATH more than once
during any particular source assembly. 1In the MPW 1IGS version of the macro,
the MPW I11GS assembler creates a unique label for any label beginning with the
at sign (@), effectively doing the equivalent of the &syscnt in the APW
version.

To use ERRORDEATH, simply invoke it after any code sequence or subroutine call
that sets the carry when it encounters an error (clears it, otherwise) and
leaves an appropriate error code in the accumulator. Note that all ProDOS and
Toolbox calls observe this convention. When control passes to the beginning
of the ERRORDEATH code sequence, the CPU should be in full-native mode, which
means the emulation bit should be clear and the accumulator and index
registers should be 16-bits wide). Here is a small code segment which
demonstrates invoking the macro:

pushword #21 ; Dialog Manager
pushword #0 ; Use any version
_LoadOneTool

; I¥ carry is now SET, following macro terminates program execution
; with the "sliding Apple" error screen.

I fWeGoofed ERRORDEATH “Cannot load Dialog Manager!*

; *** If no error, normal execution continues here ***

END OF FILE TN.11GS.033

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 204 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.034
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS
#34: Low-Level QuickDraw Il Routines
Revised by: Dave "Evad Snoyl'" Lyons, Keith Rollin,

Steven Glass, Matt Deatherage & Eric Soldan January 1991
Written by: Steven Glass May 1988
This Technical Note describes the low-level routines which QuickDraw Il uses

to do much of the work in standard calls and mechanisms for calling these
routines and accessing their data.

Changed since November 1990: Added a Note on custom bottleneck procedures and
updated information on ShieldCursor and UnShieldCursor.

QuickDraw 11 lets you customize low-level drawing operations by intercepting the
"bottleneck procedures.”™ QuickDraw Il calls an appropriate "bottleneck proc"
every time It receives a call to draw an object, measure text, or deal with
pictures. For example, if an application calls PaintOval, QuickDraw Il calls
StdOval to do the real work, and if an application calls InvertRgn, QuickDraw 11
calls StdRgn to do the work.

Installing your own bottleneck procedures is a little bit tricky. The QuickDraw
Il SetStdProcs call accepts a pointer to a 56-byte ($38 hex) record and fills
that record with the addresses of the standard bottleneckprocedures of QuickDraw
I1. You may modify this record by replacing those addresseswith the addresses
of your own custom bottleneck procedures minus one. (QuickDraw 11 pushes the
address on the stack and executes an RTL to it, so the address in the record
must point to the byte before the routine.)

Note: A custom bottleneck procedure must not begin at the first byte of a
segment. |If it does, then the segment could load at the beginning of a
bank, and the address minus one would be in the wrong bank and RTL would
transfer control to the wrong location. (See Apple llgs Technical Note
#90, 65816 Tips and Pitfalls.)

After installing your own procedures, you use SetGrafProcs to tell QuickDraw 11
about them. The format of this call is as follows (taken from the E16.QUICKDRAW
file in APW):

ostdText GEQU $00 ; Pointer - QDProcs -
ostdLine GEQU $04 ; Pointer - QDProcs -
ostdRect GEQU $08 ; Pointer - QDProcs -
ostdRRect GEQU $0C ; Pointer - QDProcs -
ostdOval GEQU $10 ; Pointer - QDProcs -
ostdArc GEQU $14 ; Pointer - QDProcs -
ostdPoly GEQU $18 ; Pointer - QDProcs -
ostdRgn GEQU $1C ; Pointer - QDProcs -

ostdPixels GEQU $20 ; Pointer - QDProcs -

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 205 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

ostdComment GEQU $24 ; Pointer - QDProcs -
ostdTxMeas GEQU $28 ; Pointer - QDProcs -
ostdTxBnds GEQU $2C ; Pointer - QDProcs -
ostdGetPic GEQU $30 ; Pointer - QDProcs -
ostdPutPic GEQU $34 ; Pointer - QDProcs -

The following code fragment shows how you might replace the StdRect procedure
with your own for a given window:

pha ; open a test window

pha

PushLong #MWindData ; standard setup for NewWindow
_NewWindow

_SetPort

PushLong #MyProcs ; get a record to modify
_SetStdProcs

Idy #ostdRect
lIda #myRect-1
sta myProcs,y
lda #"myRect ; do the same for the high word
sta myProcs+2,y

get the low word of my rectangle routine
(minus one) and patch it in to the record

PushLong #MyProcs ; install the procs
_SetGrafProcs

The interface to bottleneck procedures is different from the interface to other
QuickDraw 11 routines; you do not make calls via the tool dispatcherand you pass
most parameters on the direct page and in registers (rather than on the stack).
To write your own bottleneck procedures, you have to know where the inputs to
each call are kept and how to call the standard procedures from inside your own
procedures.

The standard bottleneck procedures are accessed through vectors in bank $EO.

StdText $EO01EO04
StdLine $EO1EOS8
StdRect $EO1EOC
StdRRect $EO1E10
Stdoval $EO1E14
StdArc $EO1E18
StdPoly $EO1EILC
StdRgn $EO1E20
StdPixels $EO01E24
StdComment $EO01E28
StdTxMeas $EO1E2C
StdTxBnds $EO1E30
StdGetPic $EO01E34
StdPutPic $EO1E38

When you call any of the standard procedures, the first direct page of QuickDraw
Il is active. |If you pass variables on any direct page other than the first
(direct page locations greater than $FF), you can use a simpletrick to access
them. For example, to access TheFillPat ($10E) without changingthe direct page
register:

1dx #$100 ;offset to second DP

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 206 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Ida >$0E, X ;gets "DP" location $10E

Certain locations on the direct page are always valid:

PortRef $24
MaxWidth $20
MasterSCB $08
UserlID $0A

DrawVerb is usually valid, but not always:
DrawVerb $38

Each of the bottleneck procedures uses the direct page differently.

QuickDraw Il has an interesting bug relating to the standard conic bottleneck
procedures. |If you replace any of the standard procedures with your own,
QuickDraw Il does not perform some of the setups it normally would before

calling the standard conic procedures (stdRRect, stdOval, stdArc). For example,
it you replace StdRect with a custom rectangle routine, but leavethe other conic
pointers alone (as shown in the code fragment above), QuickDrawll will not do
all of the normal setups when calling the standard conicroutines. To deal with
this bug of QuickDraw 11, you must patch out the additional bottleneck
procedures and set up those direct pages locations yourself, orthe results will
not be what you expect. The QuickDraw 11 direct-page variables you must
initialize yourself iIn this instance are bulleted (0) below.

StdText

DrawVerb $38 Describes the kind of text to draw. There

are three possible values:
DrawCharVerb 0
DrawTextVerb 1
DrawCStrVerb 2

TextPtr $DA If the draw verb is DrawTextVerb or
DrawCStrVerb, TextPtr points to the text
buffer or C string to draw.

TextLength $D8 IT the draw verb is DrawTextVerb,
TextLength contains the number of bytes in
the text buffer.

CharToDraw $D6 If the draw verb is DrawCharVerb,
CharToDraw contains the character to draw.

StdLine
Y1 $A6 Starting Y value for the line to draw
X1 $A8 Starting X value for the line to draw
Y2 $AA Ending Y value for the line to draw
X2 $AB Ending X value for the line to draw
Rect2 $AE Exactly the same thing as Y1, X1, Y2 and
X2 in the top, left, bottom, and right of
the rectangle
StdRect
DrawVerb $38 One of the following Ffive drawing verbs:
Frame 0
Paint 1
Erase 2
Invert 3
Fill 4

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 207 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Rectl $A6 The rectangle to draw in standard form
(top, left, bottom, right)
TheFillPat $10E The pattern to use for the rectangle if
the verb is Fill
Note: The QuickDraw 11 Auxiliary SpecialRect call does not use the
rectangle bottleneck procedures.
StdRRect
DrawVerb $38 One of the following five drawing verbs:
Frame 0
Paint 1
Erase 2
Invert 3
Fill 4
Rectl $A6 The boundary rectangle for the round
rectangle
OvalRect $295 A copy of the boundary rectangle for the
round rectangle
OvalHeight $208 The oval height for the rounded part of
the round rectangle
OvalWidth $20A The oval width for the rounded part of the
round rectangle
o ArcAngle $D2 Must be 360
o StartAngle $D4 Must be zero
TheFillPat $10E The pattern to use for the round rectangle
if the verb is Fill
StdoOval
DrawVerb $38 One of the following Ffive drawing verbs:
Frame 0
Paint 1
Erase 2
Invert 3
Fill 4
Rectl $A6 The boundary rectangle for the oval
OvalRect $295 A copy of the boundary rectangle for the
oval
o OvalHeight $208 Must be the height of the oval
o OvalWidth $20A Must be the width of the oval
o ArcAngle $D2 Must be 360
o0 StartAngle 3$D4 Must be zero
TheFillPat $10E The pattern to use for the oval if the
verb is Fill
StdArc
DrawVerb $38 One of the following Ffive drawing verbs:
Frame 0
Paint 1
Erase 2
Invert 3
Fill 4
Rectl $A6 The boundary rectangle for the arc
o Ovalwidth $20A Must be the width of the boundary
rectangle for the arc
ArcAngle $D2 The number of degrees the arc will sweep
StartAngle $D4 The starting position of the arc
TheFillPat $10E The pattern to use for the arc if the verb

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 208 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

is Fill

StdPoly

DrawVerb $38 One of the following five drawing verbs:
Frame
Paint
Erase
Invert
Fill

RgnHandleA $50 The handle to the polygon data structure

TheFillPat $10E The pattern to use for the polygon if the

verb is Fill

AWNEFO

StdRgn
DrawVerb $38 One of the following five drawing verbs:
Frame 0
Paint 1
Erase 2
Invert 3
Fill 4

RgnHandleC $70 The handle to the region to draw
TheFillPat $10E The pattern to use for the region if the
verb is Fill

StdPixels

SrcLoclInfo $CC The Loclnfo record for the source pixel
map

DestLocinfo $0C The LoclInfo record for the destination
pixel map

SrcRect $DC The source rectangle for the operation in
local coordinates for the source pixel map
(as described in the source Loclnfo
record)

DestRect $1C The destination rectangle for the

operation in local coordinates for the
destination pixel map (as described in the
destination LoclInfo record)

XferMode $E4 The mode to use for data transfer

RgnHandleA $50 The handle to the Tirst region to which
drawing is clipped (usually the ClipRgn
from the GrafPort) A NIL handle is not
allowed. To signify no clipping, pass a
handle to the WideOpen region, which is
defined as 10 bytes:

Length $A (word)
-MaxInt -$3FFF (word)
-MaxInt -$3FFF (word)

+MaxInt +$3FFF (word)
+MaxInt +$3FFF (word)

RgnHandleB $60 The handle to the second region to which
drawing is clipped (usually the VisRgn
from the GrafPort) A NIL handle is not
allowed. To signify no clipping, pass a
handle to the WideOpen region.

RgnHandleC $70 The handle to the second region to which
drawing is clipped (usually the mask

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 209 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

region from the CopyPixels or the
PaintPixels call) A NIL handle is not
allowed. To signify no clipping, pass a
handle to the WideOpen region.

StdComment
TheKind $A6 The kind of input for the comment
TheSize $A8 The number of bytes to put into the
picture
TheHandle $AA The data to put into the picture
StdTxMeas
DrawVerb $38 Describes the kind of text to draw. There

are three possible values:
DrawCharVerb 0
DrawTextVerb 1
DrawCStrVerb 2
TextPtr $DA IT the draw verb is DrawTextVerb or
DrawCStrVerb, TextPtr points to the text
buffer or C string to draw.
TextLength $D8 IT the draw verb is DrawTextVerb,
TextLength contains the number of bytes in
the text buffer.

CharToDraw $D6 If the draw verb is DrawCharVerb,
CharToDraw contains the character to
measure.

TheWidth $DE The resulting width should be put here.

StdTxBnds
DrawVerb $38 Describes the kind of text to draw. There

are three possible values:
DrawCharVerb 0
DrawTextVerb 1
DrawCStrVerb 2
TextPtr $DA IT the draw verb is DrawTextVerb or
DrawCStrVerb, TextPtr points to the text
buffer or C string to draw.
TextLength $D8 IT the draw verb is DrawTextVerb,
TextLength contains the number of bytes in
the text buffer.

CharToDraw $D6 If the draw verb is DrawCharVerb,
CharToDraw contains the character to draw.
RectPtr $D2 Indicates the address to put the resulting
rectangle.
StdGetPic

This call takes input on the stack rather than the direct page. This is
the one standard bottleneck procedure which you call with the direct
page register set to something other than the direct page of QuickDraw
I1; it is set to a part of the stack.

Stack Diagram on Entrance to StdGetPic
Previous Contents

DataPtr Pointer to destination buffer
Count Integer (unsigned) (bytes to read)
RTL Address 3 bytes

_________________ Top of Stack

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 210 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Stack Diagram just before exit from StdGetPic
Previous Contents
RTL Address 3 bytes
————————————————— Top of Stack

StdPutPic
This call takes input on the stack rather than the direct page; however,
unlike StdGetPic, the direct page for QuickDraw Il is active when you

call this routine.
Stack Diagram on Entrance to StdPutPic

Previous Contents

DataPtr Pointer to source buffer
Count Integer (unsigned) (bytes to read)
RTL Address 3 bytes

————————————————— Top of Stack
Stack Diagram just before exit from StdPutPic

Previous Contents
RTL Address 3 bytes
_________________ Top of Stack

Dealing with the Cursor

The cursor can get in your way when you want to draw directly to the screen.
QuickDraw Il has two low-level routines which help you avoid this problem:
ShieldCursor and UnshieldCursor. ShieldCursor tells QuickDraw Il to hide the
cursor if it intersects the MinRect and to prevent the cursor from moving until
you call UnshieldCursor.

There is a bug in ShieldCursor for System Disks 4.0 and earlier. This bug is
related to the routine ObscureCursor. When the cursor is obscured, ShieldCursor
does not prevent the cursor from moving; therefore, the user is able to move the
cursor during a QuickDraw 1l operation, and this movementmay disturb the screen
image.

Calls to ShieldCursor must be balanced by calls to UnshieldCursor. You may not
call ShieldCursor successively without calling UnshieldCursor after each call to
ShieldCursor. There is no error checking, so careless use of these routines
will result in an unusable system.

MinRect is the smallest possible rectangle which encloses all the pixels that
may be affected by a drawing call. You keep MinRect on the direct page and
usually calculate it by intersecting the rectangle of the object you are drawing
with the BoundsRect, PortRect, boundary box of the VisRgn, and the boundary box
of the ClipRgn. You must set up MinRect yourself.

ShieldCursor also looks at two other fields on the direct page of QuickDraw I1.
ImageRef is a long word located at $0E. If ImageRef does not point to $E12000

or $012000, QuickDraw Il assumes you are not drawing to the screen, so it does
not have to shield the cursor. BoundsRect is a rectangle located at $14, and
QuickDraw 11 uses it to translate MinRect into global coordinates. These values

are generally correct, but under the following known circumstance,they are not
and ShieldCursor will not function properly:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 211 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

1. You have just drawn to an off-screen GrafPort with QuickDraw 1I1.

2. You switch to a GrafPort on the screen.

3. You call ShieldCursor.

ImageRef and BoundsRect are not updated until QuickDraw Il is actually committed

to drawing, thus, these values are still for the off-screenGrafPort in this
case, even though you switched to a GrafPort on the screen. Therefore, when you
call ShieldCursor, you have to make sure that thesevalues are current. (IFf
these values are current, ShieldCursor will work correctly, no matter what the
circumstances.)

You can find the location of the QuickDraw 11 direct page with the GetWAP call.
For speed reasons, you may not want to make the GetWAP call for each
ShieldCursor call. You may wish to get the work area pointer value after
starting QuickDraw Il and store it for future reference.

Calling ShieldCursor:

Set direct page for QuickDraw 11.

Save the existing values of MinRect, ImageRef, and BoundsRect.

Set MinRect, ImageRef, and BoundsRect.

Let QuickDraw Il know you"ve changed the contents of its direct page by
clearing the "dirty" flags bits 14 to O:

A WNPF

DirtyFlags equ $EC

1dx #$200 ;index to QD"s third page of work
lda DirtyFlags,x ;Space

and #$8000

sta DirtyFlags,x

5. JSL to ShieldCursor.
6. Restore the previous values of MinRect, ImageRef, and BoundsRect.

Note: Saving and restoring these values was not previously mentioned in this
Note and In most circumstances it is not necessary. Saving and restoring
is now recommended. In particular, if ShieldCursor is called inside a
QuickDraw 11 bottleneck procedure, the system can crash if you fail to
restore the contents of direct page.

Calling UnshieldCursor:

1. Set direct page for QuickDraw 1I1.
2. JSL to UnshieldCursor.
ShieldCursor $EO1E98

MinRect $00

ImageRef $0E

BoundsRect $14

UnshieldCursor $EO1EOC

Further Reference

o] Apple 11GS Toolbox Reference, Volume 2

END OF FILE TN.11GS.034

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 212 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
#H## FILE: TN.11GS.035
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llgs

#35: Printer Driver Specifications

Revised by: Matt Deatherage September 1990
Written by: Dan Hitchens, Matt Deatherage & Suki Lee May 1988

This Technical Note describes the routines and internal structures needed to
design a printer driver for the Apple llgs system, and you should use this
Note with the Apple llgs Toolbox Reference manuals. An overview and
associated parameters for each of the printer driver routines are in the Print
Manager chapter, and you should refer to these for a complete picture.

Changed since March 1990: Added corrections and further descriptions.

Printing Modes
There are two printing modes: i1mmediate and deferred.

o In immediate mode, pages are printed as they are drawn into the
printing grafPort. As the application makes QuickDraw Il calls,
the printer driver immediately generates commands, transferring
ink to page when the page is closed. This is the fastest form of
printing, but only produces high-quality images on printers that
can translate QuickDraw Il commands to other graphic commands.
For example, the LaserWriter driver translates the QuickDraw 11
calls into PostScript(R) calls which can produce high-quality
images.

o In deferred mode (sometimes referred to as spool mode), pages are
captured to memory or disk and printed after all pages have been
defined. Most printer drivers use deferred mode to create high-
quality images. Since most drivers cannot obtain enough memory to
image an entire page at once, they redraw page in several pieces,
or bands. The printer driver creates a grafPort whose boundsRect,
portRect, clipRgn, and visRgn correspond to the band and plays the
picture back, thus causing the saved commands to draw only the
images which fall within the band. Once the pixel image for the
band is created, the printer driver converts the image to printer
codes and sends the codes to the printer through the port driver.

File Structure

The user can install new printer drivers into the system by copying a printer
driver file into a subdirectory called DRIVERS within the SYSTEM subdirectory.
The printer driver file must be of type $BB and have an auxiliary type of
$0001.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 213 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Print Driver Calls

A printer driver must support the following calls:

PrDefault $0913 Sets print record to default
Prvalidate $0A13 Validates print record
PrStiDialog $0B13 Performs a style dialog
PrJobDialog $0C13 Performs a job dialog
PrPixelMap $0D13 Prints a pixel map

PrOpenDoc $0E13 Opens the document
PrCloseDoc $0F13 Closes the document
PrOpenPage $1013 Opens a page

PrClosePage $1113 Closes a page

PrPicFile $1213 Prints a picture file
--RESERVED-- $1313

PrError $1413 Gets the error value
PrSetError $1513 Sets the error value
GetDeviceName $1713 Gets device"s name
PrDriverVer $2313 Gets installed driver version

Printer drivers may support the following calls if they use the new driver
structure outlined below:

PrGetPrinterSpecs $1813 Returns printer type and characteristics
PrGetPgOrientation $3813 Returns page orientation

Print Driver Entry

o For older drivers, entry is at the first byte (no offset). For newer
(Print Manager 3.0 and later) drivers, the first word is $0000, indicating
a new style driver. The next word is a count of how many calls this driver
supports. All drivers must support the minimum call set. Additional calls
must be supported in the sequence listed (for example, if a driver supports
PrGetPgOrientation, It must also support PrGetPrinterSpecs).

o The Print Manager places an index to the correct routine in the X register
(see the example and note the specific ordering of the routines) .

o0 There are two long return addresses (six bytes) that have been pushed onto
the stack. (You must take these addresses into account to access the
parameters and to return correctly.)

Example
StartOfNewDriver START

dc 1270"
dc 12" (ListEnd-PrDriverList)/4"

new style driver
count

Jmp (PrDriverList,x)

PrDriverList dc a4"PrDefault”
dc a4"Prvalidate”
dc a4"PrStiDialog”
dc a4"PrJobDialog”

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 214 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

dc a4"PrDriverVer-”

dc a4"PrOpenDoc*

dc a4"PrCloseDoc*”

dc a4"PrOpenPage*

dc a4"PrClosePage”

dc a4"PrPicFile”

dc a4"InvalidRoutine”

dc a4"PrError-

dc a4"PrSetError”

dc a4"GetDeviceName~

dc a4"PrPixelMap*

dc a4"PrGetPrinterSpecs”

dc a4"PrGetPgOrientation”
ListEnd anop

In previous versions of this Note, the PrPixelMap and PrDriverVer entries were
reversed.

Note that when using the above technique, you"re using a 16-bit jump into a
table of 24-bit addresses. |If all your entry points are in the same segment,
this is not a problem.

IT your routines™ entry points are not all in the same segment, you need a
dispatching routine like the following:

StartOfNewDriver START

dc 12 "0~ ; new style driver
dc 12 "(ListEnd-PrDriverList)/4" ; count
lda PrDriverList+2,x
sep #3$20
pha ; push high byte of
; address
rep #%$20
lda PrDriverList,x
dec a ; decrement low 2
; bytes only
pha ; push modified low
; word of address
rtl ; transfer to the
; routine

See Apple llgs Technical Note #90, 65816 Tips and Pitfalls, for a discussion
of dispatching with RTL.

Print Driver Exit

When one of your routines is ready to exit, It needs to remove the input
parameters from the stack, leaving the result space (if any) and the two RTL
addresses. Set the accumulator and the carry flag to reflect any error you
are returning, then perform an RTL.

Example

IT there are N bytes of input parameters to remove, use something like the

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 215 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

following. This code assumes that the error code is in the accumulator.

tay ; keep error code iIn Y
; temporarily

Ida 5

sta N

Ida 3,

sta N

lda 1

sta N

tsc

clc

adc #N

tcs

tya get error code

cmp #1 set carry if error
; is not zero

rtl

Figure 1 diagrams the stack just before exiting the print driver:

Previous Contents

Results (if any)

RTL2 (3 bytes)

RTL1 (3 bytes)

<-- Stack Pointer
Figure 1-Stack Prior to Exiting the Print Driver

You should do an RTL with the contents of the flags and registers set
appropriately. (See the Return from Call section of the "Using The Apple
Tools" chapter of the Apple Ilgs Toolbox Reference.)

Print Record Structure

Since application programs often need to fiddle with parts of the print record
(i.e., the values iIn the style subrecord), we have defined ways for
applications to interpret the print record, and specifically the style
subrecord.

iDev, the First word of the printer information subrecord, has two defined
values for third-party printer drivers. A value of $8001 indicates a dot-
matrix printer while a value of $8003 indicates a laser printer.

A value of $8001 indicates that fields of the style subrecord should be
interpreted as they are by the ImageWriter driver, as documented in the Apple
I1gs Toolbox Reference. The First seven bits (0-6) of wDev are defined as for
the ImageWriter driver. Bits 7-11 are reserved for Apple®s use and must be

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 216 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

set to zero. Bits 12-15 may be used by third-party printer drivers as
necessary; these bits are set to zero in Apple”s drivers.

A value of $8003 indicates that fields of the style subrecord should be
interpreted as they are by the LaserWriter driver. The first four bits (0-3)
of wDev are defined as for the LaserWriter driver. Bits 4-11 are reserved for
Apple®"s use and must be set to zero. Bits 12-15 may be used by third-party
printer drivers as necessary; these bits are set to zero in Apple"s drivers.

IT an application wishes to take advantages of specific features of a third-
party printer driver, it has to know that it is dealing with that driver.
Since all drivers look pretty much alike, the Print Manager allows you to ask
for the name of the currently selected printer driver. An application may
make the Print Manager call PMGetPrinterName, which is documented in Volume 3
of the Toolbox Reference. The Print Manager returns the name of the currently
selected printer in a Pascal (length byte) string. The name returned is the
name of the file from which the driver was loaded. |If you intend to use this
method to identify a driver, you must inform users not to rename the Printer
Driver file on the boot disk.

For alternate driver identification, Developer Technical Support assigns new
iDev values 1T you feel it is absolutely necessary for your driver. Please
keep in mind, however, that no application knows how to interpret style
records for non-standard iDev values, and that Apple does not publish such
interpretations.

Print Driver Calls
Your printer driver handles the following calls:
PrDefault ($0913)

Description:
Fills the fields of the specified print record with default values for the
printer.

Passed:
PrintRecordHandle LONG Handle to the print record

Returned:
None

Performs the following:

o Validates that PrintRecordHandle is a handle and does nothing if not.

o0 Determines the default values for the print record either through tables or
calculations. The default values should take into account such things as
paper size and orientation, print mode, printer type, etc.

0 Copies the default values to the print record specified by the
PrintRecordHandle parameter.

Prvalidate ($0A13)
Description:
Checks the print record to see that it is valid for the currently installed

printer driver.

Passed:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 217 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

PrintRecordHandle LONG Handle to the print record
Returned:
ChangeFlag WORD Boolean; TRUE if the record is
adjusted

Performs the following:

0 Checks to see if the print record is from this particular driver.

o |If the print record is not from this driver, it uses the default values for
this driver.

o |If the print record is from this driver, it makes any changes that might be
needed (i.e., style, paper size, etc.).

PrStiDialog ($0B13)

Description:
Performs a style dialog with the user.

Passed:

PrintRecordHandle LONG Handle to the print record
Returned:

ConfirmFlag WORD Boolean; TRUE if the dialog is

confirmed

Performs the following:

0 Conducts a style dialog with the user to determine the page dimensions and
other information needed for page setup (the initial settings of the dialog
are derived from the print record).

o |If the user confirms the dialog, the information from the dialog is saved
in the specified print record, PrValidate is called, and the routine
returns TRUE.

o If the user cancels the dialog, the print record is left unchanged, and the
routine returns FALSE.

Note: The following are items typically found in printer style dialogs:

o Paper Size (US Letter, US Legal, A4 Letter, B5 Letter, International
Fanfold)
o Printing Orientation (Landscape, Portrait)
Vertical Sizing (Normal, Intermediate, Condensed)
o Special Effects:
Font Effects (Font Substitution, Smoothing)
Reduction or Enlargement
Gaps or No Gaps between pages

o

Every printer style dialog should have an OK button (default) and a Cancel
button.

Note: When calling other routines in your printer driver (like
Prvalidate), be sure to do so through the Tool Dispatcher ($E10000
or $E10004) so any necessary patches have an opportunity to execute.

PrJobDialog ($0C13)

Description:
Performs a job dialog with the user.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 218 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Passed:

PrintRecordHandle LONG Handle to the print record
Returned:

ConfirmFlag WORD Boolean; True if the dialog is

confirmed

Performs the following:

0 Conducts a job dialog with the user to determine the print quality, range
of pages to print, and other specifications. The iInitial settings are
derived from the previous PrJobDialog call (or initial default values)
except the page range which is set to ALL, and the number of copies which
is set to ONE.

o If the user confirms the dialog, PrValidate is called, the print record is
updated, and the routine returns TRUE.

o If the user cancels the dialog, the print record is left unchanged, and the
routine returns FALSE.

Note: The following are items typically found in printer job dialogs:

Print Quality (Best, Faster, Draft, etc.)
Color option

Pages (All, Range)

Copies

Paper Source (paper cassette, manual feed)

OO0OO0OO0O0

Every printer job dialog should have an OK button (default) and a Cancel
button.

Note: When calling other routines in your printer driver (like
Prvalidate), be sure to do so through the Tool Dispatcher ($E10000
or $E10004) so any necessary patches have an opportunity to
execute.

PrPixelMap ($0D13)

Description:
Prints all or part of the specified pixel map.

Passed:
srcLocPtr LONG Pointer to the source Loclnfo
which contains the pointer to
the pixel map.
srcRectPtr LONG Pointer to the rectangle which
encloses the pixel map to be

printed.
colorFlag WORD Boolean; FALSE if black and white,
TRUE if color.
Returned:
None

Performs the following:

o Calls DevisltSafe (port driver call) to verify that the port it functioning
and it is safe to proceed. |If it is not functioning, set the internal
error code to $1302 (Port Not On) and return with an error status.

0 Saves the current grafPort.

Turns on the watch cursor to signal the user that it will take some time.

o Clears the internal error code (default, if no errors occur).

(@]

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 219 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

You can choose to print the pixel map in any convenient fashion; one
convenient way is to allocate a new print record and call your normal printing
routines. This method is outlined below.

0 Gets a new handle for a print record and set it to the defaults by calling
PrDefault.

o |If colorFlag is set, change the style subrecord of the print record to
reflect color printing.

o Do any initialization that might be needed by the driver.

o Determine the intersection of the two rectangles (rectangle pointed to by
srcRectPtr and the pixel map®"s boundary rectangle from srcLocPtr) and if
there is no intersection, then nothing is to be printed.

o Print the pixel image which is within the intersection of the two
rectangles.

o Cause a page eject to occur on the printer.

o0 Do any clean up that is needed.

0 Turn off the watch cursor by calling InitCursor (or restore the previous
cursor using SetCursor).

0 Restore the grafPort by calling SetPort.

PrOpenDoc ($0E13)
Description:
This routine initializes the things needed to open a document. In deferred

mode, it establishes a grafPort and makes it the current port for printing.

Passed:
PrintRecordHandle LONG Handle to the print record
PrinterPortPtr LONG Pointer to the grafPort, if
desired, zero to allocate a new
grafPort
Returned:
PrinterPortPtrRet LONG Pointer to the grafPort if the

PrinterPortPtr was zero

Performs the following:
o Calls DevisltSafe (port driver call) to verify that the port is functioning
and it is safe to proceed.

0 Turns on the watch cursor to signal the user that it will take some time.

o Validates the print record passed by calling Prvalidate.

0 Clears the internal error code (default, if nothing happens).

0 Puts up a dialog indicating that printing is occurring (or preparing to
print).

o |If the user needs a grafPort, create one and internally note that one was

created (PrCloseDoc needs to know that one was created here).

o Initializes parameters (i.e., page number, document number, etc.).

o |If deferred mode, create an initial page list (an array of handles to
pictures) for recording pages. You can pick an arbitrary number to start
with (like 20). This assumes spooling to memory; spooling to disk will
obviously be different.

o Do other initialization that might be needed to start a print job.

Possible errors:
portNotOn $1302 Indicates Port Not On

PrCloseDoc ($0F13)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 220 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Description:
Closes the grafPort being used for printing. For immediate mode, this
routine ends the printing job. For deferred mode, this routine ends the
recording of the document to be printed.

Passed:
PrintGrafPortPtr LONG Pointer to the grafPort used for
printing
Returned:
None

Performs the following:

0 Checks that the last print driver call did not cause a Port Not On error.
IT the error occurred, do nothing and return.

Call ClosePort to close the printing grafPort.

IT the driver allocated a grafPort in PrOpenDoc, disposes of it.

IT in immediate mode, does what is needed to shut things down.

Takes down the information dialog box from PrOpenDoc.

OO0OO0O0

Possible errors:
portNotOn $1302 Indicates Port Not On
prBozo $13FF Someone unloaded the driver in
the middle of the print loop

PrOpenPage ($1013)
Description:

Begins a new page only if the page falls within the page range specified in
the job subrecord.

Passed:
PrintGrafPortPtr LONG Pointer to the grafPort used for
printing
PageFramePtr LONG Pointer to the scaling parameter,
zero for none.
Returned:
None

Performs the following:
0 Looks at the driver®s internal error value, and if an error has occurred,
it returns without doing anything.
o Increments the page number.
Calls SetPort to make the specified port the current port.
o Initializes the port and zeroes the boundary rectangle so no actual drawing
OoCCurs.
o If immediate mode, then do the following:
IT this page is to be printed, install immediate mode procedures by
doing the following:
0 Create a procedure table (get the standard procedures from

(@]

SetStdProcs) .
0 Put pointers to your procedures into the table and call the
QuickDraw Il routine SetGrafProcs. This causes QuickDraw Il calls

to call your routines instead of drawing to the pixel map
associated with the grafPort.
o |If deferred mode, then do the following:
o If the current page is out of the page range, then return without

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 221 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

doing anything further.

o |If the user passes his own PageFramePtr , then get it.

0 Open a picture by calling OpenPicture and adding its handle to the
page list array described in PrOpenDoc.

0 Set the ClipRgn and VisRgn to the sizing framing rectangle specified
by PageFramePtr , or if none was specified, to the default of rPage.

Possible errors:
portNotOn $1302 Indicates Port Not On
prBozo $13FF Someone unloaded the driver in
the middle of the print loop

PrClosePage ($1113)

Description:
This signals the end of a page.

Passed:
PrintGrafPortPtr LONG Pointer to the grafPort used for
printing
Returned:
None

Performs the following:

0 Looks at the driver®s internal error value and if a Port Not On error has
occurred, it returns without doing anything.

o If immediate mode, do the following:

IT the current page is within the range of pages to be printed, then

cause a form feed (unless no gap was specified).

IT deferred mode, do the following:

IT there was no picture generated, then do nothing and just return.

Restore the grafPort to the port saved in PrOpenPage.

Do a ClosePicture to close the picture.

o

O0Oo0oo0Oo

Possible errors:
portNotOn $1302 Indicates Port Not On
prBozo $13FF Someone unloaded the driver in
the middle of the print loop

PrPicFile ($1213)

Description:
Prints a picture file generated in deferred mode.

Passed:
PrintRecordHandle LONG Handle to the print record
PrintGrafPortPtr LONG Pointer to the grafPort used for
printing
StatusRecPtr LONG Pointer to the printer status
record
Returned:
None

Performs the following:
0o Looks at the driver®s internal error value and if a Port Not On error has
occurred, it returns without doing anything.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 222 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

o If immediate mode, return without doing anything.
o |If deferred mode, then do the following:
o |If the error code is not zero (errors) then dispose of all the recorded
page images.

0 Put up an information dialog indicating that printing is occurring.

o Display a watch cursor (saving the current cursor Ffirst if you like).

o |If PrintGrafPortPtr is NIL, create one and make a note of it.

o Call OpenPort to make the grafPort the current port.

o |If StatusRecPtr is NIL, use an internal one. This is to simplify your
code; i1f the StatusRecPtr is NIL, you can reasonably choose not to use a
status record at all, but this requires an extra code path.

o |Initialize the status record and the number of copies counter.

o If the idle procedure pointer in the print record is NIL, point to an
internal one. Again, as with the StatusRecPtr, you can choose to ignore
idle procedures if no pointer is provided, but this requires an extra
code path.

o Do The Following For Each Copy:

o Calculate the number of bands to print one page and initialize the
page counter.

o Do The Following For Each Page:
o Call the idle procedure routine and initialize the band counter.

Get the handle to the picture associated with the current page.

Set the dirty flag in the status record to FALSE.

IT manual paper feed, put up a dialog and wait for a response.

Do The Following For Each Band:

o Call the idle procedure.

o Calculate the band rectangle and update iCurBand with the
current band number.

OO0OO0O0

o Call the idle procedure again.

0 Set the imaging flag in the status record to TRUE.

o Call InitPort to reinitialize the port.

0 Adjust fields in the port to cause drawing into the band
buffer.

0 Adjust fields in the location information field of the status

record and calculate the sizing rectangle.
o Calculate the boundary rectangle for the band and set the port
rectangle to it.
0 Set the ClipRgn and the VisRgn to the sizing rectangle.
o Initialize the band by filling 1t with white space.
o Call DrawPicture to draw the picture into the band®s
rectangle.
o0 Do whatever is needed to print the pixel image in the band"s
rectangle.
o Clear the imaging flag.
o Calculate the next band®"s position.
o Increment the band®"s counter and loop back if not done.
o |If a vertical gap was specified, cause a form feed.
o Increment the page count to the next page and loop back if not
done.
o Increment the number of copies counter and loop back if not done.
Free any buffers that you own and close the port.
Dispose of the information dialog that you put up.
Dispose of each picture in the picture list by calling KillPicture.
Dispose of the picture list itself.
Restore the cursor.

OO0OO0OO0O0

Possible errors:
portNotOn $1302 Indicates Port Not On

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 223 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

prBozo $13FF Someone unloaded the driver in
the middle of the print loop
PrError ($1413)
Description:

Gets the error code from the last Print Manager call.

Passed:
None

Returned:
LastError WORD Result code from last Print
Manager call

Performs the following:
0 Gets the driver”s internal error value (which was determined by the last
driver call) and sets the return parameter LastError to it.

Possible Errors:

noError $0000
PrAbort $0080 Indicates print job was aborted
$1301 Indicates missing drivers
$1302 Indicates Port Not On
$1303 Indicates No Print Record
$1306 Indicates PAP Connection Not
Made
$1307 Indicates Read/Write PAP Error
$1308 Indicates Printer Connection
Failed
prBozo $13FF Someone unloaded the driver in
the middle of the print loop
PrSetError ($1513)
Description:

Sets the error value.

Passed:
ErrorNumber WORD Error number to be set

Returned:
None

Performs the following:
0 Sets the driver®s internal error value to the value of the passed
ErrorNumber parameter.

GetDeviceName ($1713)
(also known as PrChanged)

Description:
Used as a communications tool between the printer driver and port driver.

Passed:
None

Returned:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 224 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

None

Performs the following:

o Calls the port driver routine PrDevPrChanged with the printer name as
input. This is necessary for drivers that work over AppleTalk. The name
passed as the parameter to PrDevPrChanged should be what AppleTalk uses in
an NBPLookup situation; for AppleTalk, such a name should follow Name
Binding Protocol conventions.

This routine will be called by the Print Manager when your driver is first
loaded so a network port driver can find devices of your type.
Applications should not make this call. When this routine will be called
is not guaranteed; you can"t use this as a substitute for a startup call.

PrDriverVer ($2313)

Description:
Returns the version number of the currently installed printer driver.

Passed:
Wordspace WORD Space for results
Returned:
versioninfo WORD Printer driver®s version number

Performs the following:
0 Gets the internal version number of the printer driver and returns it on
the stack at versionlnfo.

Note: The internal version number is stored major byte, minor byte
(i.e., $0103 represents version 1.3)

PrGetPrinterSpecs ($1813)

Description:
Returns the type of printer and the printer"s characteristics.

Passed:
Wordspace WORD Space for results
Wordspace WORD Space for results
Returned:
PrinterType WORD 0 = undefined
1 = ImageWriter or ImageWriter 11
2 = ImageWriter LQ
3 = LaserWriter family
(except l11sc)
4 = Epson
$8001 = generic dot matrix printer

$8003 = generic laser printer
PrCharacteristics WORD Bits 15-2 = reserved, must be zero
Bits 1-0: 00 = cannot determine
01 = black and white
only
color capable

10

Performs the following:
o] Returns characteristics intrinsic for the printer being supported.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 225 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

The value returned for PrinterType should be the driver®s iDev value.
PrGetPgOrientation ($3813)

Description:
Returns the page orientation from a print record.

Passed:
Wordspace WORD Space for result
PrintRecordHandle LONG Handle to the print record
Returned:
PgOrientation WORD Current page orientation:
0 = portrait
1 = landscape

Performs the following:
0 Returns the page orientation from the current page setup information in the
print record.

Immediate Mode Procedures
To print in the immediate mode, you need to install procedures which cause

printing when you make QuickDraw Il calls (as noted in PrOpenPage). This
section describes the structure and parameters for these routines.

The basic idea is that your driver replaces low-level QuickDraw Il routines
with pointers to your own routines. For example, when someone wants QuickDraw
Il to draw some text (say with DrawString), QuickDraw Il calls your low-level

routine to draw the text. You can then print the text instead.

To install the immediate mode procedures, FTirst create a procedure table for
sixteen entries (16*4 bytes) and fill it with the standard procedures by
calling SetStdProcs. Once you have the standard procedures, install the
addresses of your replacement procedures into it and call SetGrafProcs.
Installing your procedure addresses causes the appropriate QuickDraw 11 calls
to call your procedures, which, in turn, perform the actual printing.

The routines that need to be written are known as QuickDraw Il "bottleneck
procedures." For most dot-matrix printer drivers, the one of most concern
when writing immediate mode procedures is StdText. |If your target device has
an alternate page imaging language, you may wish to print entirely in
immediate mode. In this case, you want to intercept most of the bottleneck
procedures. Apple Ilgs Technical Note #34, Low-Level QuickDraw 11 Routines,
contains information on how to install these procedures. The sample code
which follows shows how to replace StdPixels and StdText.

Example:

;** Example of Immediate Mode Printer Procedures. *x
Immedprocs Start

SrcRect equ $DC

SrcLoclInfo equ $CC

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 226 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

DrawVerb
TextPtr
TextLength
CharToDraw

Duervrwrurun

Continue
;This gets the

MoveSrc

;This gets the

MovelLl

Ida iIPrErr
beq Continue
brl ExitPixel

anop

;save data bank reg on stack
;get program bank reg.
;use as data bank reg.

;get errors
:branch if none
;branch if errors

source rectangle and stores it at PixelRect

ldx #6

lda SrcRect,Xx

sta PixelRect,x

dex
dex
bpl MoveSrc

source LocInfo and stores it at PixellLoc

ldx #16-2

Ida SrcLoclnfo,x

sta PixellLoc,x

dex

dex

bpl MovelLl

pushlong #PixellLoc ;push pointer to Loclnfo
pushlong #PixelRect ;push pointer to rectangle

S

INPUT:

SP->

Exitpixel

PixellLoc
PixelRect

Insert code here to print a pixel map

PixellLoc LONG, Pointer to pixel Loclnfo
PixelRect LONG, Pointer to pixels BoundsRect

L O o

Ida #0
clc
plb
rtli

ds 16
ds 8

;return with no errors

;restore data bank
;return with long

;pixel Loclnfo
;pixel rectangle

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 227 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

; StdText Procedure (Prints Standard Text)

éthext Entry
phb ;save data bank reg on stack
phk ;get program bank reg.
plb ;use as data bank reg.

pushlong #PenPos
_GetPen ;current pen pos. -> PenPos

R A et o o
Insert Code Here to move the printers head to the corresponding

; PenPos position (if needed).

o ot e

pushword #0 ;space for textwidth

;(for call to _TextWidth)
lda DrawVerb ;get DrawVerb
beq DoCar ;if DrawVerb=0 then DoCar
cmp #1
beq Dotext2 ;if DrawVerb=1 then Dotext2

;We get here if it"s a "C" string (DrawVerb=2)

DoCstring anop
sep #3$20
longa off
;Search down through string looking for terminator to calc. length
ldy #0
KeepLooking lda [TextPtr],y
beq TheEnd
iny
bra KeepLooking
TheEnd rep #$20
longa on
Ida TextPtr+2
pha ;push the pointer to string
lda Textptr
pha
phy ;push the length of sting
bra Common

;We get here if it"s just one character (DrawVerb=0)

DoCar anop
pushword #0
tdc
clc
adc #CharToDraw ;calculate addr. of char.
pha ;push addr. of character
pushword #1 ;push length of one char.
bra Common

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 228 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

;We get here if it"s a string of text (DrawVerb=1)

DoText2 anop
lIda TextPtr+2
pha ;push pointer to the string
lda Textptr
pha
lda TextLength
pha ;push the strings length
Common lda 5,s ;Dup the last 3 words of
pha ;the stack (for _TextWidth)
Ida 5,s
pha
lda 5,s
pha
o e o I U
Insert code here to print the text

; INPUT: TextPointer LONG, Pointer to text to print
; TextLength WORD, No. of bytes to print
; SP-—>
L o o
_TextWidth ;get the texts width (DH)
pushword #0 ;set (DV)=0
_Move ;move current pen location
ExitText Ida #0 ;return with no errors
clc
plb ;restore data bank
rtl ;returnith long
PenPos ds 4 ;pen position
end

Further Reference

o Apple llgs Toolbox Reference, Volumes 1-3
o Apple llgs Technical Note #36, Port Driver Specifications
o Apple llgs Technical Note #90, 65816 Tips and Pitfalls

PostScript is a registered trademark of Adobe Systems Incorporated.

END OF FILE TN.11GS.035

Apple][Computer Family Technical Documentation

Human Interface Notes -- Developer CD March 1993 -- 229 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.036
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#36: Port Driver Specifications

Revised by: Matt Deatherage & Suki Lee September 1989
Written by: Dan Hitchens May 1988

This Technical Note describes how to write your own drivers for Apple I1GS
ports.

Changed since January 1989: Added description of new port driver
structure.

Introduction

A port driver handles certain hardware-specific duties for the Print Manager,
such as initializing firmware and handling low-level hardware handshaking
protocols, if any are implemented. The port driver structure, like the
printer driver structure, insulates the Print Manager from low-level details
of printers and interface cards (or ports) so that the same calls work across
various hardware configurations, provided drivers are installed on the boot
disk.

Note that a port driver could also easily be called a card driver; the term
port is used because the first ones written were for the internal ports of the
Apple 11GS. A port driver could interface any printer (for which there is a
printer driver) with any kind of port or peripheral card that can handle it.

A familiar example would be a parallel printer interface card--a port driver
for a parallel card would enable the Print Manager to print graphics to any
parallel printer connected to it (provided, again, there was a printer driver
for the particular printer installed).

In general, you need a port driver for each port or interface card through
which you intend to print, and a printer driver for each printer to which you
intend to print. On System Disk 4.0, Apple provides port driver files for the
printer port (PRINTER), the modem port (MODEM), a port connected to the
AppleTalk network (APPLETALK), and a parallel printer interface card
(PARALLEL.CARD). Apple also provides printer drivers for the ImageWriter and
ImageWriter Il (IMAGEWRITER), the ImageWriter LQ (IMAGEWRITER.LQ), the
LaserWriter family.(LASERWRITER), and an Epson (EPSON). With this
configuration, you can print to any of the printer types above through any of
the ports, cards, or over AppleTalk. Other printer drivers and port drivers
would extend the user®s selection of available configurations.

What®"s iIn a Port Driver

File Structure

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 230 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Users can install new port drivers into the system by copying a port driver
file into a subdirectory called DRIVERS within the SYSTEM subdirectory or by
running the Installer if the driver is supplied with a script to install it.
The port driver file must be of type $BB. There are two kinds of port
drivers: local drivers, intended to drive a printer connected locally, and
network drivers, which handle printers connected over an AppleTalk network.
Local drivers have an auxiliary type of $0002, and AppleTalk drivers (there
should be only one) have an auxiliary type of $0003.

Port Driver Calls

A port driver must support the following calls:

PrDevPrChanged $1913
PrDevStartup $1A13
PrDevShutDown $1B13
PrDevOpen $1C13
PrDevRead $1D13
PrDevWrite $1E13
PrDevClose $1F13
PrDevStatus $2013
PrDevAsyncRead $2113 (alias PrDevinitBack)
PrDevWriteBackground $2213 (alias PrDevFillBack)
PrPortVer $2413
PrDevisltSafe $3013

Note that a network port driver has much more work to do than a regular
(local) port or card driver. A local driver only has to worry about one
printer, whereas a network port driver may find that there is not even a
printer available on a running network. The information on network drivers is
provided mostly for informational purposes; you should never find it necessary
to write your own AppleTalk port driver.

Entering and Exiting a Port Driver

Entering and exiting is the same as described for the printer driver calls in
Apple 11GS Technical Note #35, Printer Driver Specifications. The new driver
structure described there applies as well. As of this writing, there are no
optional calls a port driver may support. The documented list must be
supported in its entirety.

PrDevPrChanged $1913

Description:
The Print Manager makes this call every time the user accepts this port
driver in the Choose Printer dialog.

Input: LONG printer name pointer

Direct Connect:

0 Makes sure that this port has been set up correctly in the Control Panel
(parity, baud rate, etc.), and puts up an alert for the user if it has not
been. Remember that if you change settings, even at the user®s request,
you should change the Battery RAM parameters as well, so the setting
changes will be reflected when the user enters the Control Panel.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 231 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Network:

0 Copies the printer name to local storage for use in the NBPLookup function
of the AppleTalk PAPopen and PAPstatus calls, usually by placing it in the
AppleTalk parameter block. This function is similar to that performed by
PrStartUp, except that PrDevPrChanged is called whenever the printer is
changed by the user with the Choose Printer dialog.

PrDevStartUp $1A13

Description:
This call is not required to do anything. However, if your driver needs to
initialize itself by allocating memory or other setup tasks, this is the
place to do it. Network drivers should copy the printer name to a local
storage area for later use.

Input: LONG printer name pointer
LONG zone name pointer

Direct Connect:
0 Required to do nothing. This is a good place to do your own set-up tasks,
if you have any.

Network:
0 Copies the printer name and the zone name to local storage for use in the
NBPLookup function of the AppleTalk PAPopen and PAPstatus calls, usually by
placing it in the AppleTalk parameter block.

PrDevShutDown $1B13

Description:
This call, like PrDevStartUp, is not required to do anything. However, if
your driver performs other tasks when it starts, from the normal
(allocating memory) to the obscure (installing heartbeat tasks), it should
undo them here. |If you allocate anything when you start, you should
deallocate it when you shutdown. Note that this call may be made without a
balancing PrDevStartUp, so be prepared for this instance. For example, do
not try to blindly deallocate a handle that your PrDevStartUp routine
allocates and stores in local storage; if you have not called PrDevStartUp,
there is no telling what will be in your local storage area.

Input: none

PrDevOpen $1C13

Description:
This call basically prepares the firmware for printing. It must initialize
the firmware for both input and output. Input is required so the connected

printer may be polled for its status.

A network driver has considerably more work to do, including the
possibility of asynchronous communications. Details are provided below.

Input: LONG completion routine pointer
LONG reserved long

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 232 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Direct Connect:
o Initializes the firmware for input and output, preparing for reading from
or writing to the printer.
o If the completion pointer is NIL, then RTL. |If it is not NIL, then perform
a JSL to the completion routine.

Network:

o Initializes the End-Of-Write parameter in the AppleTalk PAPWrite parameter
block to zero. Never call AppleTalk INIT to initialize the firmware.

o If the completion pointer is NIL, then prepares for synchronous
communications. |If it is not NIL, prepares for asynchronous printing.

o Calls AppleTalk PAPopen to make connection, returning an error if one is
returned to you.

0 Stores the AppleTalk Session number in the PAPRead, PAPWrite and PAPClose
parameter blocks.

0 Executes an RTL if there is no completion routine (pointer is NIL),
otherwise perform a JSL to the completion routine.

PrDevRead $1D13
Description:
This call reads input from the printer.
Input: WORD space for result
LONG buffer pointer
WORD number of bytes to transfer
Output: WORD number of bytes transferred

Direct Connect:
0 Reads a specified number of bytes from the printer into the buffer.

Network:
o Calls AppleTalk PAPRead to read synchronously. Since there is no
completion pointer, reading from a network device must always be done
synchronously. To read asynchronously, use PrDevAsyncRead.

PrDevWrite $1E13

Description:
Writes the data in the buffer to the printer and calls the completion
routine.

Input: LONG write completion pointer

LONG buffer pointer
WORD buffer length

Direct Connect:
0 Writes the contents of the buffer to the printer.
o If the completion pointer is NIL, then RTL. If it is not, then perform a
JSL to the completion routine.

Network:
o If the completion pointer is NIL, then writing will occur synchronously.
Otherwise, writing will occur asynchronously.
o Calls AppleTalk PAPWrite to transfer the contents of the buffer.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 233 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

o |If the completion pointer is NIL, then RTL to the caller. Otherwise,
perform a JSL to the completion routine first, with the error code iIn the
accumulator.

PrDevClose $1F13

Description:
This call i1s not required to do anything. However, If you allocate any
system resources with PrDevOpen, you should deallocate them at this time.
As with start and shutdown, note that PrDevClose could be called without a
balancing PrDevOpen (the reverse is not true), and you must be prepared for
this if you try to deallocate resources which were never allocated.

Input: none

Direct Connect:
o No required function.

Network:
0 Sets End-Of-Write parameter in AppleTalk PAPWrite parameter block to one.
o Calls PAPWrite with no data.
o Calls PAPClose.

PrDevStatus $2013

Description:
This call performs differently for direct connect and network drivers. For
direct connect drivers, it currently has no required function, although it
may return the status of the port in the future. For network drivers, it
calls an AppleTalk status routine, which returns a status string in the
buffer (normally a string like "Status: The print server is spooling your
document™).

Input: LONG status buffer pointer

Direct Connect:
o Does nothing.

Network:
o Calls AppleTalk PAPStatus.

PrDevAsyncRead $2113

Description:
Since PrDevRead cannot read asynchronously, this call is provided for that
task. Note that this does nothing for direct connect drivers, and if the
completion pointer is NIL, it behaves for network drivers exactly as
PrDevRead does.

Input: WORD space for result
LONG completion pointer
WORD buffer length
LONG buffer pointer
Output: WORD number of bytes transferred

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 234 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

Direct Connect:
o Does nothing.

Network:

o |If the completion pointer is NIL, then performs exactly as PrDevRead.

o Calls AppleTalk PAPRead; the actual length read is passed back in the
PAPRead parameter block.

0 Perform a JSL to the completion routine, which returns the length read in
the X register and an EOF flag in the Y register. As usual, the
accumulator contains the error code and the carry is set if an error
occurs.

o In the case of a synchronous call, it performs a JSL to the completion
routine, which pushes the length read onto the stack.

PrDevWriteBackground $2213

Description:
This routine is not implemented at this time.

Input: LONG completion procedure pointer
WORD buffer length
LONG buffer pointer

PrPortVer $2413

Description:

Returns the version number of the currently installed port driver.
Input: WORD space for result
Output: WORD Port driver®s version number
Direct Connect and Network:
0 Gets the internal version number of the port driver and returns it on the
stack.
Note: The internal version number is stored as a major byte and a
minor byte (i.e., $0103 represents version 1.3)
PrDevisltSafe $3013
Description:
This call checks to see if the port or card which your driver controls is

enabled. It should check at least the corresponding bit of $E0C02D, and
checking the Battery RAM settings wouldn®"t hurt any either.

Input: WORD space for result
Output: WORD Boolean indicating if port is
enabled

Direct Connect and Network:
0 Checks the system to see if the hardware and/or firmware for the card or
port this driver controls is enabled, and returns TRUE if i1t is safe to

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 235 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

proceed and FALSE if not. Note that for a port driver that controls an
interface card, this call should return FALSE if the card is disabled and
the port is enabled, while for a port driver which controls an Apple 11GS
internal port, the returned value should be TRUE if the port is enabled and
FALSE if not.

Further Reference

o Apple 11GS Toolbox Reference, Volumes 1 & 2
o Apple 11GS Technical Note #35, Printer Driver Specifications

END OF FILE TN.11GS.036

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 236 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.037
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple 11GS

#37: Free-Form Synthesizer Tips

Revised by: Jim Mensch November 1988
Written by: Jim Mensch May 1988

This Technical Note is intended to help a person who is unfamiliar with the
Apple 11GS Sound Tool Set use the Free-Form Synthesizer effectively.

The primary function of the Free-Form Synthesizer is to allow an application
program to start one or more complex digitized or computed waveforms playing
on the Apple I11GS without further intervention from the application. The
waveform is a series of bytes, each representing the amplitude of your
outgoing sound at a particular moment in time (defined by the sampling
frequency you set). After a call to FFStartSound, the Sound Tool Set takes
care of all chores involved in loading the DOC RAM, setting up registers, and
actually playing your sound. Once playing, your sound will continue until
either the Sound Tool Set encounters a NIL pointer in the waveform list, or
until you call FFStopSound.

FFStartSound Parameters

FFStartSound has only two parameters: the first a Word containing channel,
generator, and mode information, and the second a Pointer to a parameter
block.

115 114 |13 |12 |11 J10] 9 | 8 | 716 151413121110 |
I I I I

| |

| | | |

DOC channel number ($0-$1) | Reserved must be set to O |
|

top 3 bits should be set to O |
Free-Form Synthesizer = $01
Generator number ($0-$E) Note Synthesizer = $02

Reserved = $03-$07
Application defined = $08-$0F

Figure 1 - Channel-Generator-Mode Word

The Channel-Generator-Mode Word is broken down into 4 nibbles. The low-order
nibble specifies the particular synthesizer you are using. (Because this Note
is only about the Free-Form Synthesizer, we will be using only a 1 in this
nibble.) The adjacent nibble must be set to O for now. The next nibble
specifies which generator to use. The I1IGS has 15 generators from which to
choose, and as the application designer, it is up to you to decide which one

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 237 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

to use. It might be appropriate, however, to call FFGeneratorStatus first to
ensure that the generator currently is available. (It could be in use already
by a desk accessory or previously started sound.) The high-order nibble
specifies which channel to use. The I1GS supports two separate sound channels
for output. |If you are using a stereo adapter, you could start up many sounds
and route them to either channel 0 or channel 1 to get a full stereo effect.
(The channel is ignored if you are not using a special piece of multi-channel
hardware.)

The parameter block contains parameters describing the sound and how it should
be played. Here is a sample Pascal definition of that parameter block:

FFParmBlock = record

waveStart:Ptr;

waveSize: Integer;

freqOffset:Integer;

DOCBuffer: Integer; { High order byte significant }
bufferSize: Integer; { Low order byte significant }
nextWave:~FFParmBlock;

volSetting: Integer;
end;

The first parameter is a 4-byte address telling the Free-Form Synthesizer
where in memory it can locate your sample data. The next parameter is a word
specifying the number of 256-byte pages of sound you wish to play. The
waveform data should be a series of bytes, each representing one sample. Wave
tables must be exact multiples of 256 bytes.

Note: A zero value iIn the waveform can cause a sound to stop, so
be sure to check your data to ensure that this does not happen.

The frequency offset parameter specifies the sampling frequency that the Free-
Form Synthesizer should use during playback. This number can be computed by
the following formula:

freqOffset = ((32*Sample rate in Hertz)/1645)

The frequency offset parameter is the most often misunderstood parameter, so |
will explain a little about sampling rates. The sampling rate is how many
samples (bytes) per second to play. If you have a digitized wave that
represents 2 seconds of sound, and it takes up 44K of memory, then it was
sampled at 22 kHz (which, by the way, is good for full sound reproduction).
The sampling rate must be at least twice that of the maximum fundamental
frequency you want to sample. However, for good sound reproduction, you may
want to sample at least eight times the fundamental frequency in order to
capture the higher harmonics of musical instruments and the human voice.

The DOC starting address and buffer size tell the Free-Form Synthesizer which
portion of the 64K sound RAM to use as a buffer during playback. The wave is
taken from your waveform in chunks and placed in sound RAM for playback. Each
time the buffer nears empty, it will need to be reloaded with more sound. The
size of the buffer specified determines how often the Free-Form Synthesizer
must interrupt the 65816 to reload the buffer. The buffer size must be a
power of two because of the way the sound General Logic Unit (GLU) specifies
addresses. (The value for this parameter must also be a power of two.) A
good length to use would be at least 1/10 second of sound. For example, if
you were using a sampling rate of 16 kHz (16,000 samples per second), you
would want a buffer at least 2,048 bytes long, or about 8 pages. It does not

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 238 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

hurt to round this number up. You manage the DOC RAM, so you should decide
what memory to use. It is usually a good idea to have multiple buffers if you
have a chain of waves. (I like leaving page zero free, as the Note
Synthesizer uses the data in the first 256 bytes, and accidentally placing a
zero in that page could cause it to fail.)

The next wave pointer is a 4-byte pointer to the next parameter block. With
this parameter you can string together many waveforms for more continuous
sound, or you can make your sounds infinitely recursive by pointing back to
the original wave form.

The volume setting is a word which represents the relative playback volume.
It can range from 0 to 255.

Other Tips

When you shut down the Sound Tool Set, it will stop all pending sounds, so be
sure to leave ample time between starting and ending a sound. If you have a
series of wave forms strung together, you can change their parameters on the
fly. Changes take effect as soon as the waveform is started. (You could use
this to find the correct sampling frequency of a wave, by having the next wave
pointer point back to the start of your parameter block. This would cause the
sound to play indefinitely. You then could change the freqOffset value, and
the sound would change each time it is restarted.)

Here is a sample code segment (in APW Assembler format) that creates a 1-kHz
wave In memory sampled at 16 kHz and plays it:

FFSound DATA
theSound ds $2000 ; FFSound wave. ..
MyFFRecord dc A4*theSound* ; address of wave
dc i"$20" ; size of wave in pages..
Rate dc i"311° ; 16-kHz sample rate
dc i"l" ; DOC starting address
dc i "$0800*" ; DOC buffer size
dc a4=0- ; nho next wave
Vol1l dc i "$007F* ; kinda medium..
; 1-kHz triangle wave sampled at 16 kHz one full segment
oneAngle dc i11°$40,%$50,%$60,%$70,%$80,%$90,$A0,%$B0"
dc i1"$C0,$B0,$A0,$90,%$80,%$70,%$60,%$50"
End
TestFF Start
Using FFSound
MakeWave ANop
1dx #3$0000
MWO010 txa get index
and #$000F use just low nibble as index

tay
lda oneAngle,y
sta theSound, X
inx

inx

cpx #$2000

blt MWO010

into triangle wave table

and store it into sound buf

we Done?
nope better finish

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 239 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

PushWord #$0001
PushLong #MyFFRecord
_FFStartSound

rts

end

Further Reference
o] Apple 11GS Toolbox Reference, Volume 2

END OF FILE TN.11GS.037

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 240 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

HHAHHHH AR AR R R R R R R R R AR R R
FILE: TN.11GS.038
W R R R R R R R R

Apple 11
Technical Notes

Developer Technical Support

Apple llgs

#38: List Controls in Dialog Boxes

Revised by: C.K. Haun September 1990
Written by: Keith Rollin, Dave Lyons & Eric Soldan May 1988

This Technical Note describes how to include a list control into a dialog box.
Sample APW C source code is included.

Changes since March 1990: Changed input parameter definition for myFilterProc
from long pointer to word pointer.

The need to put a list control into a dialog box is obvious. The Print
Manager does it. The Font Manager does it. You may want to use one in your
own application to manage a list of data base fields or spreadsheet functions.
However, performing the task is not as obvious as the need.

Given the features of TaskMaster in System Software 5.0, it is now much easier

to emulate a modal dialog in a normal window. [If you need to add a list
control to a modal dialog, you should seriously consider emulating a modal
dialog with a normal window instead of using the Dialog Manager. |If you use

the Dialog Manager, the following procedure and sample C fragment illustrate
the technique necessary for adding a list control.

Note that only one list control is allowed in a modal dialog. |If you need
more than one, the Dialog Manager cannot help you--create a normal window
instead.

Individual Steps

Basically, there are three check-off items for putting a list control into a
dialog box:

1. You must install the list explicitly into the dialog box yourself.
This should be done after you have created the dialog box with a
call to NewModalDialog or GetNewModalDialog. Do not install it as
a Userltem or UserCtlltem. Installing it as a Userltem would
cause the Dialog Manager to place an invisible custom control over
the list, preventing later use of FindControl to manage it.
Installing the list as a UserCtlltem does not allow the list
control to be properly initialized.

Note: After you add the list control, you must not add any more
dialog items.

Initvalues(Q

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 241 of 714

APPLE J[COMPUTER FAMILY TECHNICAL INFORMATION]|

/* Get a Full Screen, invisible dialog window with only
a Quit button in 1t*/
myDialog = GetNewModalDialog(&PrintDialog);

/* Add this List Control ourselves */
myListHndl = CreateList(myDialog,&myList);

/* Get the handle for the Scrollbar Control */
listScrollHandle = (**myListHndl).ctlListBar;

/* Save and Zero out the RefCons */

listRefCons = GetCtlRefCon(myListHndl);

scrol IRefCons = GetCtlRefCon(listScrollHandle);
ZeroRefCons(); /* This is explained below In item #3 */

/* Now show the dialog box */
ShowWindow(myDialog);
by

Because the list control is not a dialog item, a custom FilterProc
must be installed for ModalDialog to test for mouse-down events.
Pass the address of this routine (with the high bit set so that
default handling of items is in effect) when you call ModalDialog.

pascal Word myFilterProc(theDialog, theEvent, theltem)
GrafPortPtr theDialog;
EventRecord *theEvent;
word *theltem;

CtlRecHndl tHandle;

it ((*theEvent) .what == mouseDownEvt) {
FindControl (&tHandle, (*theEvent) .where, theDialog);
if ((tHandle == myListHndl) || (tHandle == listScrollHandle)) {

/* Set the RefCons back to the way the list manager likes
them */

RestoreRefCons();

TrackControl ((*theEvent) .where, (LongProcPtr) -1, tHandle);

ZeroRefCons();

/* Tell the Dialog Manager that we handled this event */
return(true);

}

/* We didn"t do anything, so return false to get Dialog Manager
to handle this event */
return(false);

}

The Dialog Manager uses the RefCon field of its items (all of
which are i