
DDA
Documentation Developpeurs Apple.

D.D.A. distribue en France les systemes de developpement Apple ainsi que les documentations
techniques Apple, non disponibles au travers du reseau de revendeurs Apple.
D.D.A. est ouvert a tous, sans adhesion prealable et sans necessite de contrat de developpement Apple.
D.D.A. comporte trois branches se repartissant les activites suivantes :

D.D.A. Informations/Support
Documentation Developpeurs Apple@;
I. Development
"Technopole", rue M.Faraday
78180 Montigny le Bretonneux
(1) 30 45 26 62 : Macintosh
(1) 48 56 89 27 :Apple II

D.D.A. Commandes
Documentation Developpeurs Apple®
Prim'Vert (Etablir les cheques a l'ordre de Prim'Vert)
36 rue des Etats-Generaux
78000 Versailles
(1) 39 02 33 44

En outre, pour tous renseignements techniques relatifs a Ia documentation,
aux orientations et au choix des informations, classeurs ou disquettes a
acquerir dans le domaine Apple IIGS, trois moyens de liaison sont a votre
disposition :

~
Teletel 2
Code APPLE -
ouvert a tous
lnterlocuteur : DDA

~
Calvacom
par abonnement
lnterlocuteur: DDA

~
~
Telephone
Hot-Line et Repondeur
Ouvert a tous
(1) 48 56 89 27

Documentation technique Apple IIGS. Page 1

DCOJcum©ru~©l~~Qru Dce~ce~tDJtPtPx~uu~
A[p[p~® ~ ~GS~ ~~ ~ 1 m~~ ~ ~8S8S

Photocopies des documents originaux americains (ecrits -done en Anglais- par
les constructeurs hardware et les auteurs du firmware eux-memes) classes par
centre d'interet et rassembles en plusieurs classeurs.
Date du prk&dent document : 9 avril1 988..
Mises a jour signalees par •. Nouveaux elements signales par ••.

J:!1 .!!2 V>

0 0 ~ ~ 0
{3. {3. ~ - 0

~ ~ e C/)

3: .c
E E ~

(1) Q. 0..

.E Q. c:: •t:
0 ('$ ('$ -< (1) :::::::; <l> c: 0: L.L I. 0 ::> Q.
....- N M ~ V'> CD r- co

CLASSEURS

o Volume 1 - Les nouveaux outils
Note Synthesizer 00:50
Note Sequencer ~ \. \.?

•• A.C.E -00:"'14 01· I 'L
•• MIDI Tool Set ...-}:7 \.1. 4

o Volume 5- L'environnement APW, ApwA/C
APW : Apple IIGS Pro£:ammer's Workshop Apda Draft
Assembler Reference : APW 1.0 Apda Draft
C reference : APW 1.0 Apda Draft
Workshop Pascal ERS. Compiler conventions 0.01
Debugger reference Apda draft

27.08.87
6.08.87

25.08.87
6.02.86

20.08.87

o Volume 6 - Interface Utilisateur, Bases et 65816
Human lnteriace Guidelines
Technical !nlroduct1on to the Apple IIGS
Programmer's introduction to the Apple IIGS
Programming the 816
Description of 6581 6 control instructions
65816 addressing mode & bank crossing
Preserving stack when changing modes
Numeric Magnitude comp on IIGS

Final Draft
Final Draft
Final Draft

rev 2

1.12.86
20.08.86
09.09.87

1.05.85
5.06.85

19.11.85
24.01.86
20.11.85

588F

Documentation technique Apple IIGS. Page 2

o Volume 7- Utilitaires, TechNoteset Systemes.lQGP'
Finder Demo explanations version 1 21.01.87

• Icon Editor 01.09.87
Compiler conventions for Orca!M 14.01.86
Paint : Load File Source Final 2.03.87
Graphics Image File Format STANDARD Final 26.02.87

• Apple IIGS Sampled Instrument Format 1 .02 05.05.87
FontMunger 2.0 29.08.86
ReadBin User's Guide 29.08.86
Passport User's Guide Preliminary Draft 10.09.86
Memory Mangler; Loader Dumper APDA Draft 27.10.86
TechNote :Window Information Bar Use 3.09.86
TechNote : Changing graphics mode 5.09.86
TechNote: Wmdow titles 17.09.86
TechNote :Cloning strings 22.09.86
TechNote: Pen Pattern Data Structure 15.12.86
TechNote: Halt Mechanism in SANE 15.12.86
TechNote: Elems Functions in SANE
TechNote: lnvaiRgn twist

• TechNote: Ensoniq doc swap-mode anomaly
• TechNote :Toolset Interdependencies

TechNote : Modem Firmware bug
• TechNote : SFile & Grafports
• TechNote: lnstaiiFont and big fonts

TechNote: BackGround printing
• TechNote : User ID

TechNote : SCC Interrupts
TechNote : Muttichanel output

• TechNote : APW Languages Numbers
• TechNote : DMA Compatibility for Exp. RAM

TechNote : 2.0 ROM Revision Summary
•• TechNote: Unload Dynamic Segments
•• TechNote : Note Synthesizer Timer's Use of DOC RAM
•• TechNote: Graphic Images File Formats (NEW)
•• TechNote : REDIRECTing Output from C

System Disk Release 1.1
•• System Disk Release 2.0
•• System Disk Release 3.1
•• System. Disk Re~ease 3.2.

S:..und lools b5F"

,
2.0
3.1
3.2.

~1,<· .. ·(\co ~<" w\nc\oi)Js b"oF"
o VOl'ume 8 : Peripheriques courants

Apple Talk Filing Protocol 1 .0!2
SCSI Card Reference Manual Alpha Draft
LaserWriter Reference Beta

c Apple IIGS BASIC Avec 1 disque
•• Apple IIGS BASIC Apda Draft

2.04.87
2.04.87
1.08.87
2.04.87
1.06.87
1.06.87
1.06.87
1.06.87
1.06.87
1.06.87
1.08.87
1.08.87
1.10.87
1.10.87
1.10.87
1.10.87
1.11.87

19.12.86
10.06.87

1.09.87
~$

12.11.85
1.06.86
7.07.86

11.09.87

o Firmware reference manual Addison-Wesley

o Hardware reference manual Addison-Wesley

o ProDOS 16 reference manual Addison-Wesley
System Loader inclu. (Avec 1 disque :Exerciser).

o ToolBox reference manual
Volume 1.

o ToolBox reference manual
Volume 2.

Addison-Wesley

Addison-Wesley

276F

444F

280F

280F

305F

305F

305F

Documentation technique Apple IIGS. Page 3

' of o~:F4~ [gj ='~ . . ··-. r .. ·. ········ ~ ·.

DISQUES
o 1 Apple IIGS Programmer's WorKshop : 4 disques 296F

/ltfJw 1.0 31.08.87
•• ApwA 65816 1.0 31.08.87
•• ApwC 1.0 31.11.87·
•• ApwU utilities et debugger 1.1.1 du 14.09.87 1.0 31.08.87

Description :
APW est un environnement de programmation coherent et extensible, comprenant un shell, un linker, des
utilitaires, des librairies et uncertain nombre delangages. Sont livres rAssembleur Macro 65816, le
compilateur C, et las librairies associees. Le systeme de developpement Apw s'impose naturellement com me le
standard de programmation sur le II GS, on peut lui adjoindre d'autres langages comme par example le
Compilateur TmiPascal (import& par Plngenierie), ou le Compilateur Orca Pascal (imports par Reseau
Planetaire). La licence d'utilisation du Compilateur Megamax C, de 150F, est comprise dans le prix du package.

o 3 SAMPLES : 6 disques
•• Apple II Demo Sampler (disk)

Apple II Demo Sampler (data)
Apple II Demo Sampler (sources asm)
Samples : DeskAccs, Simp ...

•• Samples MovePic. DemoStuff, Brick ...
Hodge .Podge Asm/CfT m IP as cal

Description :

V1.2
V1.2
V1.2

V1.2
1.0B1

03.04.87
03.04.87
03.04.87
19.12.86
03.04.87
20.08.87

216F

• Une application complete en mode natif (Demo.sys16), en un disque programme, un disque d'images pour le
slide.show et un disque comprenant les sources asm des diverses applications : Daleks. Color Dabbler,
HodgePodge, Slide Show, OuickDraw Sampler, un Paint en mode 640. Brickout et Keyboard Sounds.
-Samples du 19.12: Sources en assembleur at applications stand.alone ; Color, Daleks, HodgePodge, Simp
(synthe), Seq (Sequencer), Clock.Nda, ScreenDump.Cda
• Samples du 03.04 : Sources en assembleur et applications ; Demo, Hp, Color Dabbler, Brick Out, Daleks,
Move.Pic, Simp
• New HodgePodge : Application complete, ecrite et realises par les auteurs memes de Ia Boite a Outils,
decrivant Ia gestion ideale des fenetres, menus, ic6nes, pictures, fonts. Utilise plus de 80% des outils (y
compris Printer Mgr at Font Mgr). Las souces sont livres a Ia fois en c. TmiPascal et Assembleur. sur le meme
disque. Sa description complete se trouve dans le document Programmer's Introduction to the Apple IIGS,
classeur n°6.

o 4 Systemes & Tools : 2 disques
Disque Systeme 3.1, Icon Editor

•• Disque Systeme 3.2
Description :

3.1 Fr
3.2

01.11.88
~.gg

72F

Ce sont las references en matiere d'outils Ram Tools. Le systems 3.1 est le systeme franrrais a jour. Le
systems 3.1 permet d'utiliser le Finder GS. livre sur Ia meme disquette. Una application complementaire, Icon
Editor, est destines a Ia realisation d'ic6nes speciales pour las documents at las applications. ainsi qu'a
donner le lien entre ceux-ci, permettant de lancer un programme en ouvrant l'un de ses fichiers.
Le systeme 3.2411J. outre le support des nouveaux outils 29 et 32, permet une utilisation performante du
reseau AppleShare.

Documentation technique Apple IIGS. Page 4

CJ 5 Utilitaires : 3disques 108F
Macintosh utilities (Passport 1 .OA2, Mac ToGS, Read Bin, FontMunger ...)

•• GS Utilities, Pic Convert, DA, Convert, Exerciser... 1 .06.87
Public Domain et sources 1.06.87

Description :
- Macintosh Utilities fonctionne sur Mac 5121800, Mac+ ou Mac SE. II reunit divers utilitaires
permettant le transfert de documents entre Mac et GS et inversement, Ia conversion d'images
dans les deux sans, Ia transformation de polices de caracteres Mac en Fonts au format d'Apw, de
QuickDraw II ou du Font Manager. Propose aussi deux Editeurs graphiques pour Macintosh.
• GS utilities rassemble plusieurs CDA, plusieurs NDA, des accessoires pour MouseDesk, quelques
sources, des examples SystemSetup, Filer, Convert, Exerciser PS et P16, et une application
Public Domain de conversion d'images HGR, ObHGR, Atari et Mac (ShrConvert)
- Public Domain et sources rassemble de tres nombreux et tres varies examples realises par les
developpeurs fran<iais qui les proposent (Pane!.setup, Cda, Nda, Patches,Astuces, Various
tricks ...) ""

CJ 6 BASIC : 1 disque
•• Apple JIGS BASIC 1.084

Non vendu separement
14.09.87

Description :
Basic 6581 6 ressemblant a l'Applesoft, avec procedures, gestion memoire etendue et appels
toolbox. Accompagne le manuel associe.

Documentation technique Apple IIGS. Page 5

D©ccl\J MlBuu~©l~~©ru D~~®~©[p)[p)®l\J LF~
A[p[p)~® ~ ~ p talU 9) tal\fLI'~~ ~ 900

o ProDOS
ProDOS Tech Reference Manual (+disque)
Basic Programming with ProDOS (+disque}

o SANE Mathematics
Apple Numerics Manual

o Peripheriques
lmageWriter II Technical Reference Manual
PostScript Language Reference Manual
PostScript Language Tutorial and Cookbook

•• Apple CD-ROM Developper Notes

o Apple lie I Apple lie
Apple II Instant Pascal Reference Manual
Applesoft tutorial
Applesoft Basic programmer's Reference Manual

.. Apple II Technical Notes 1985, 86, 87
Apple lie Technical Reference Manual
Apple lie Programmer's guide to the 3.5 ROM
Revised Apple lie Technical Reference Manual

oOo

305Fr
a50Fr

360Fr

3Wr
280Fr
210Fr
100Fr

~r
385Fr
315Fr
144Fr
290Fr
252Fr
2BCFr

L'ensemble de Ia documentation, Apple II, Apple JIGS et Macintosh est disponible
aupres de DDA.

2) J'ai trouve - 52 ~-
De: SUpport Dev. app~e2 APPLE (SDA10) - 24 sep 87 11h27

Rebonjour.

J'ai teste pour vous La fonotion Getcorigin (GetContentOrigin., qui est
oensee donner ~es ooordonnees re~atives (par rapport a La DataArea) du
point de ooordonnees Looa~es 0.,0. Ceoi permet d'optimiser ~a quantite de
texte a tenter d'envoyer vers La !enetre.
Comme je n'y oomprend RIEN en c., voioi ~a soLution en assemb~eur.

; Trouver ~e c origin de ~a Data Area

PushWord #0
PushWord #0
PushLong MyTextWindow
_GetContentOrigin

P~a
Sta 0

P~a
Sta 2

Spaoe for resu~t
idem
HdL donne par _Neu.Mindow

Dans A (integer)., ~es Y
Low

Dans A (integer) ., Les X
Hi

; Faire 2 strings

PushWord 0
PushLong #StrY
PushWord #4
PushWord #0
_Int2Deo

PushWord 2
PushLong #StrX
PushWord #4
PushWord #0
_ _Int2Deo

; Eorire ~es strings

StrX
StrY

PushWord #10
PushWord #10

_Move To

PushLong #StrX
__ DrawString
PushLong #StrY
_DrawString

End

Ds 6
Ds 6

addr de ~a ohaine objet
ohar max
sans signe

addr de ~a ohaine
ohar max
sans signe

un peu de pLaoe pour ~a ohaine
Idem

Apple IIGs System Disk 3.2

Release Notes

Contents
Operating System 2

Setup Files 3

Toolbox 3

Drivers 27

Ctilities 31

Finder 31

Launcher 32

Start 32

System Ctilities 32

AppleTalk Ctilities 32

Chooser 32

~amer 32

System Disk 3.2 Release ~otes Page 1

Operating System

BASIC.SYSTEM v1.2
(The ProDOS AppleSoft Command Interpreter)

Bug fixes&

There were dispcrepancies between TOTENT, the word specifying the number of entries in the
ProDOS directory, and the acrual number of entries. This has been fixed by making me
following changes:

CATALOG in <CMDS2>, B076
B07C
BOAl

changed from BEQ ENDCA T to NOP ~OP
changed from BCS CCA TERR to BCC
changed from BPL to BCC

Control S on a CATALOG prematurely terminated if a subsequent <space> was pressed. This
has been flXed.

ProDOS 8 v1.6 (PS)

Bug fixes:

Previously, on occasion, the rnliactiv flag was left on after flni.shing an mli call. To correct this
problem, and 'as!' has been changed to an 'lsr'.

ProDOS 8 now returns "•POS~""ERR" if the 32MB limit is exceeeded

"ESC" cleared from the keyboard strobe when booting on a Ilc.

Interrupts are turned off during a status calL

ProDOS 16 v1.6

A number of pieces of code have been added to ProDOS 16, making it possible to boot over an
AppleTalk network..

SetUp and DeskAccs will not be loaded if bit 15 of their AUX_1YPE is set

Get_Dir_Entry will refresh its directory buffer if it is precede by any other P16 call.

A call to FORMAT will now cause a switch to emulation mode before calling the SCSI driver.
Previously a call to FORMAT when in native mode caused the system to hang.

In order to be more descriptive, Get_Dir_Entry now returns End-of-File errors ($4C) instead
of End-ofDirectory ($61).

If CREATE is called with an invalid pathname, it now returns Path-Not-Found instead of File­
:o-:ot-Found.

System Loader v1.6

System Disk 3.2 Release Notes Page 2

Bug fixes:

There were several bugs which interfered with proper operation of the Loader. These include:

• A problem in the buffering scheme which ma-de it impossible to load some files with
large segments

• Improper alignment of a load segment with an align of exactly $10000

• Inability to load a segment of exactly one byte

• Incorrea returns from LoaderShutDown, LoaderVersion, and LoaderStatus (carry bit
clear, acrumulator non-zero)

• Subroutine Dispatcher wrote two byteS into random memory

• Loader's buffers moved during Restart without informing the Loader

Setup Files

AppleTal.k INITs vl.O
There are eight AppleTalk C'.TI files with System Disk 3.2. These are:

ATI""1T
information

ATPATCH
Apple Talk
needed to patch
patches in this version

SPLoad

PFILoad

ATStart

ATSetup

ATROM

A TRe3ponder

Tool.Setup v2.3

Contains user configuration

Implemenrs the RPM, PAP, EP, and ZIP
protocols. Also contains the code

the bugs in ROM. A list of
follows.

Implements ASP, which allows up to eight open
network sessions at once

Implements the ProDOS Filing Interface, which
allows ProDOS calls to be made transparently
over the network

Starts AppleTalk

Determines if AppleTalk is active, and loads
appropriate files

Conta..ins new code replacing ROM AppleTalk

Registers user-name on the Apple Talk network

Tile current version ofTool.Setup is aaually three files, while on previous releases it was only
one. The three ftles are TOOL.SETIJP, TSl, and TS2. TOOL.SETL'P examines the version of the
ROM to determine which of the other setup files to load. It loads TSl with the original ROM, and
TS2 with the newer ROM. If it flnds a ROM that is not one of the first two versions, it 'Wi.llload
neither file. This change saves between 8 and 10 seconds of boot time.

System Disk 3.2 Release :'llotes Page 3

TSl and TS2 also contain patches to the SysBeep routine so that if the control panel volume is
zero, a SysBeep will flash the screen border.

System Disk 3.2 Release :'llotes Page 4

Toolbox

Audio Compression and Expansion Tool Set

The A.C.E. Tool Set provides a fast, reliable set of routines for compressing and
decompressing digitized sounds. For detailed information on how to use the A.C.E. Tools, see
the A.C.E. Tools ERS which accompanies these release notes.

Control Manager v2.5
Controls are now drawn in the port of the window in which they appear. This
undoes a change introduced in version 2.1 of the control manager.

This rule has always been true, but needs to be c:Wif.&ed:

Controls are drawn in the grafPort of the window that owns the controls.
This means that the appeareance of the controls is determined by the state
of the window's grafPort.For example, if the grafPort's font is changed to
something other than the system font, then text in controls will be drawn in
the window's font, not in the system font

This also means that the grafPort cannot be left in any old state, because the
state of the grafPort will determine how controls are drawn. For instance, if
the pen mask is changed, then controls will be drawn using the new mask.
Thus, if you are drawing in a window which has controls, make sure the
grafPort is left in the state in which you want your controls drawn

Controls which are created by TaskMaster are drawn in the Wmdow
Manager's port, not in a window's. Therefore, the state of a window's
graiPort will not affect controls drawn by Taslu\1aster.

The font ID is saved and restored when switching to and from the icon font

Colors in control tables now use all four color bits in both modes; they
formerly used only bits 0 and 1 in 640 mode. There shouldn't be any
applications using color controls in 640 mode, but for any that do the effect
v.ill be that controls will be a different color. This change was made so that
dithered colors can be used with controls.

The barArrowBack entry in the scroll bar table was never implemented as flrst
intended, and is now no longer used. It was intended to allow the arrow to be
drawn with three colors: the interior of the arrow, the arrow's outline, and the
surrounding color. Since arrows are drawn as text characters, only two colors
are possible.

The high word of the parameter passed to the draw command is now set to
zero in some cases, to help some code that did not conform to documented
requirements.

The Control Manager will preserve the current port across cUls to the Control
Manager, including those that are passed through other tools, such as the
Dialog Manager.

The Control Manager now calls PenNorrnal before drawing controls in a
window. This may affect the state of the window's grafPort

System Disk 3.2 Release :"Jotes

The Control Manager now saves and restores text mode across calls to the
Control Manager which affect standard controls. Custom controls may still
change text modes without a savwe and restore.

From now on the Control Manager will not change !he following fields in lhe
port of a window that contains controls:

bkPat background pattern
pnLoc penlocation
pnSize pen size
pnMode pen mode
pnPat pn pattern
pn..\1ask pen mask
pnVis pen visibility
fontHandle handle of current font
fontlD lD of current font
fontFlags font flags
rxSize text size
txFace text face
txMode text mode
spExtra value of space extra
chExtra value of char extra

fgColor foreground color
bgColor background color

When a the enclosing RECTs of radio button and check-boxes were larger than
!he icons, !he controls' titles were not vertically centered. This has been fixed

EraseControl expands the bounds RECT of certain controls before erasing.
This is because a simple button has a surrounding border when it is drawn bold
(when it is the default button), and may have a drop shadow. These
characteristics are drawn outside the bounds RECf of the control, so
EraseControl expands the bounds RECT to erase them correctly. Formerly,
EraSeControl was expanding the bounds RECT in cases where it was not
necessary. This has been fuced

The Control Manager will now use the state of the window port to compute lhe
size of control bounds RECTs when creating a control. Previously some of the
state information was saved from startup time.

The SpecialRect call was added to QD AQux to replace calls to FrameRect and
FillRect. The Control Mmager now calls SpecialRect if it is available, instead
of making separate calls to FrameRect and FillRect.

TrackControl now pushes an extra word on the stack before ailing the action
procedure. This word is provided only because some action procedures
return a value where none is expected. and should not be used by an
application.

When drawing simple buttons and when drawing page regions in scroll bars,
the Control Manager was not using the outline color from the controls' color
tables. This has been fLXed

If a radio button was turned on, but was hidden, the Control Manager would
erroneously redraw it if another button in the family was rumed on. This has
been f1Xed so that the hidden button remains hidden instead of being redrawn
as it is rumed off.

System Disk 3.2 Release Notes Page 6

When the Control Manager called application code, such as a custom control
defProc, the call would not work if the code was located at the flrst byte of a
bank. This hu been fuced.

Bug fixes:

TestControl will now return a zero if an invisible or inactive control is
selected.

MoveControl no longer makes invisible controls visible when moving them.

DisposeControl returned an incorrect error code. This hu been ftxed.

SetCtlTitle did not redraw the titles of radio buttons and check-boxes. This has
been ftxed.

The icons for radio bunons, check-boxes, and arrows in saoll bars were not
drawn corree1ly if the item was not as high as the icon to be drawn. This hu
been ftxed.

CtlStarus, CtlVersion, and CtlBootlnit now return zero in the A register.They
formerly returned non-zero values with the carry bit clear.

HiliteControl formerly returned an incorrect error code if it was called with a
control was hilight flag was already set to the given value. This hu been flxed.

GetCtiRefCon and SetCt!RefCon formerly returned an incorrect error code if a
null handle was passed. This hu been ftxed.

HideControl, EraseControl and ShowControl formerly returned an incorrect
error code if the specified control was already visible. This hu been ftxed.

DrawControl formerly returned an incorrect error code if the window a was
visible. This has been futed.

The grow box control now has its own color table. Formerly this control
shared the simple bunon default color table, which had the effect that a
hilighted size box was drawn as a single black box. Tbe hilighted grow box now
appears as a white icon in a black box.

Previous grow box default color table:
$0000 Black outline for box
SOOFO ~ot hilighted: black outline in white interior
$0000 Hilighted btack outline in black interior

~ew grow box default color table:
$0000 Black outline for box
SOOFO Not hilighted black outline in white interior
$000F Hilighted wbU. outline in black interior

The color table for the size box control in the Apple liGSToolbox Rejf!JTMCe is
incorrect. The correct table follows, with information that was omitted from
the reference in boldface:

growOutline WORD Color of size box's outline:
Bits ~15 • zero
Bits 4-7 • outline color

Bits 0-3 • zero

System Disk 3.2 Release Notes Page 7

growN or Back WORD Color of interior when not hilighred

growSelBack WORD

Desk Manager v2.4

Bug fb:esa

Bits er 15 =- zero
Bits 4-7 = background

color Bits 0-.3 .. icon
color

Color of .iruerior when hilighted
Bits S-15 • zero
Bits 4-7

Bits 0-3
• background {:Olor

• icon color

System Task used Cl instead of SEI to access ce1Uio data with interrupts off.

The Get:'lum.'I.;'DAs now works correctly.

The SystemEvent call now allows CDAs to be activared while an :-.IDA window is active on­
screen.

Dialog Manager v2.2

Bug fixes:

Getltext formerly always stored at least 3 bytes of data into the resultPtr passed to it. This was a
problem if the editline item was only one character, because there should only be two byteS
slored: one for the lngth, and one for the character itself. This has been flxed.

GeL~ewMod.alDialog no longer crashes when passed a non-zero refcon value.

IsDi.alogEvent now correctly claims 211 window control events.

HideDITem, ShowDitem, GetDitemValue, EnableDitem and DisableDitem no longer crash
with invalid item IDs.

There was a minor problem with paramtext characters (1\Q through A3). When they were used at
the end of a line, garbage ch.aracters were appended They will now work correctly.

Several Dialog Manager calls failed if given invalid item IDs. This has been f1Xed The calls
affected are:

SetDitemVaJue
GetDltemType
SetDitemType

DialogStatus formerly returned a value of 'active' after the Dialog Manager had been shut down.
This has been f.IXed.

Certain Dialog Manager and l.ineEdit calls assumed that foreground and background colors in
the applicable grafPort were correctly set This .is actually only true if other color controls have
previously been drawn. This problem has been f1.x:ed. The affected calls are:

StatText
LongStatText
LineEd.it drawing routines.

System Disk 3.2 Release Notes Page 8

Font Manager v2.3

The current version of the Font Manager incorporates several changes. In previous verisons,
FMStartUp opened each font me in the FONTS folder, and constructed lists of information for
all avialable fonts. These lists contained font IDs, font names, and so forth for every font in
every me in the FONTS folder.

The present version of the Font Manager does this same work the fust time it starts up, but
caches all the information it compiles in a me called FONT.USTS in the FONTS folder. The next
time the Font Manager starts up, it checks all the font ftles' creation and modification dates and
times against the information in FONT.USTS. Only if it fmds new font ftles or other evidence of
change will it compile new FONT.USTS information. Otherwise, it simply starts up with the
information stored in the USTS ftle. In most cases, since it doesn't have to open every font file,
the Font Manager can start up much more quickly.

~ewc:aD:

SIClB InstallWithStats

returns: none Input parameters:

desired.ID: LONG

scaleWord:WORD

ResultPtr: LONG

Installs a font and returns information about that font When an application requests the
installation of a font, the Font Manager attempts to install the requested font, but it may not be
available. In such cases, the Font Manager will install the closest match it can find to the
requested font.

InstallWithStats installs a font just as if the application had called InstallFont, but it returns a
FonrStalRec in the buffer pointed to by ResultPtr. This record contains the ID of the installed
font, which may be different from the font requested It also contains the purge status the font
had before it was installed Since purge status can be changed by installation, this information
can make it easier to restore a font's purge status. The font's purge staus may not be the same
after installation. If you need to know an installed font's purge status, use Find.FontStats.

Bug fixes:

A handle to the parameter block was not locked down at the correct point during the call to
FixFontMenu. As a result, memory compaction caused the parameter block to move, and
invalidated the handle to the parameter block. This has been f1Xed.

Handles were not being locked down during scaling routines. This has been fu:ed.

Line Edit v2.1

Bug fixes:

LETextBox2 now locks its handles to prevent the allocated blocks from being moved during the
call's execution.

System Disk 3.2 Release ~otes Page 9

List Manager v2.3

The IIGS Toolbox Reference incorrectly states that a disabled item of a list cannot be selected.
In fact, a disabled item can be selected, it simply may not be hilighted The list Manager
provides the ability to selected disabled (un-hilighted) items so that it is possible, for instance,
to allow a user to select a disabled menu choice as part of a help dialog. There may be other
reasons to allow a user to select a disabled item, as well, so the List Manager will allow iL

Further clarification:

Ljst manaaer definitigns·

disabled:

enabled:

selected

hilighted

Bug fixes:

Bit 6 of the list-item's memFalg field is set. Disabled items appear
dimmed and cannot be hilighted.

Bit 6 of the list-item's memFalg field is clear. Enabled items appear
normal and can be hilighted.

Bit 7 of the item's memflag field is set. This bit is set when a user clicks
on the list-item, or the item is within a range of selected items. A
selected item will only appear hilighted if it is also enabled.

A member of a list will only appear hilighted when it is both selected
and enabled This means that bit 7 of the memflag field is 1 and bit 6
is 0. A hilighted member is drawn using the highlight colors.

The list Manager uses a custom control defProc. The Control Manager passes a handle to this
defProc for the 'record size' operation. The List Manager was locking the passed handle, but not
checking to ensure that it was valid before using it As a result, changes were being written to
unknown locations in memory. This has been fiXed

The list Manager now correctly handles member record arrays larger than 64K.

The list Manager was updating lists incorrealy when the thumb was dragged The number of
memebers scrolled times the height of the members was greater than 64K pixels. This has been
fixed.

Member text is now drawn in 16 colors in both 320 and 64o mode.

Mewlist sometimes updated the lisr saoll bar incorrectly. This has been fiXed

Memory Manager v2.1

New Calls

.S2F02 RealFreeMem returns: Long

:'llo inputs

Returns the number of bytes in memory that are free, plus the number that could be made free
by purging. FreeMem only returns the number of bytes which are actually free, ignoring
memory which is occupied by unlocked purgeable blocks, so RealFreeMem provides a more
accurate picture of available memory.

System Disk 3.2 Release :'llotes Page 10

Bug tbc

During the call SetHandleSize, if memory was compacted while ii:S handle was resized, and the
original handle moved before the new memory was found, and if another handle was moved
into the original handle's old location, then the data in the resized handle was incorrect. In
order to correct this problem, the Memory Manager. now dereferences the original handle after
compaction.

Menu Manager v2.1

The :"JewMenuBar call will now automatically set bit 31 of the CtlOwner f~eld in the menu bar
record, if the designated menubar is a window menu bar, and the value passed for the window is
not zero.

The menu manager's justification procedures now adjust for menu bars in windows. Menus will
be moved to the left if rbey would cxherwise appear to the right of the menu bar's right end

The default menu bar has the following coordinates: top • 0; left • 0; height •
13; width • the width of the screen.

The Menu Manager now locks menu and menu bar handles during any call that accesses those
records. This preveni:S the records from being moved during accesses.

Empry menus are now drawn with the QD Aux call SpecialRect. unless it is unavailable. In this
case, the calls FillRect and FrameRect are used.

Some Menu Manager calls to an application did not work if the routine being called was located
at the fJISt byte of a bank. Titis has been flXed.

Menu ShutDown no longer reDJ.rns an error if the Menu Manager has already been shut do~n.

The can Cak'v1enuSize uses the parameters newWidth and newHeight to compute the menu's
size. These parameters may contain the width and height of the menu, or may contain the
values $0000 or SFFFF. A value of $0000 tells CalcMenuSize to calculate the parameter
automatically. A value of SFFFF tells it to calculate the parameter only if the current setting is
zero.

The effect of all three uses:
1) Pass the new value:

2) Pass $()()()()

3) Pass FFFP

The value passed will become the menu's size. L'se this method
when a specific menu size is needed.
The size value will be automatically computed. Titis is useful if
menu items are added or deleted, rendering the menu's size
incorrect The Menu's height and width can be automatically
adjusted by calling CalcMenuSize with newWidth and newHeight
equal to $0000.
The width and height of a menu is zero when it is created.
FixMenuBar calls CalcMenuSize with newWidth and newHeight
equal to SFFFF to calrulate the sin:s of those menus with heighi:S
and widths of zero.

L'sing SetMenuBar to change the menu bar color now changes the dynamic default menu color
table and leaves the static menu color table unchanged If SetMenuBar is called to change the
color of a menu which uses the default color table, then the colors of all menu bars which use the
default color table will be changed. To change the color of a single menu bar without affecting
other menu bars, set the menu bar's CtlColor field to a new color table.

Menu Caching

System Disk 3.2 Release Notes Page 11

This version of the Menu Manager introduces new Menu Caching features. Menu caching is
designed to provide faster display of menus under certain circumstances. When a menu is
drawn on the screen, the area of the screen that it covers is copied into a buffer. Then, when the
menu goes away, the contents of the buffer is simply copied back to the screen.

In the current version of the Menu Manager, when the saved screen image is copied back to the
screen, the menu that goes away is copied into the buffer. In other words, the Menu Manager
swaps the menu image with the screen image. That way, the next time that menu is pulled down,
the Menu Manager can copy it from the buffer instead of drawing a new image.

Of course, if the menu image changes, for example, if an item is disabled, or the items on the
menu change, then the cached image is inaccurate, and the Menu Manager must redraw the
menu. :'llevertheless, in those cases when a menu image does not change, the menu bar will
respond to the user more quickly.

Table 1

Calls that can change a menu image

Calc.l\1enuSize Check.Mitem DeleteMitem DisableMitem

EnableMitem FixMenuBar InserL\1Item Menu.'"liewRes

SetBarColors Set.MenuF!ag SetMitem SeL\1ItemF!ag

SetMitemMark SetMitemName SeL\1ItemStyle

Menu caching should not increase memory requirements, since menu images
are purgeable when not displayed on the screen.

1bis menu caching scheme should work properly with all existing standard
menus. Custom menus, however, will have to be altered to work correctly with
menu caching. Custom menus will still function normally, a.s long as they do
not change the menu record directly, they just will not be able to take
advantage of the menu caching scheme to speed up display.

Caching does not work with menus in windows, so the InsertMenu call
automatically disables caching for such menus.

Caching with custom menus

Bit 7 of the MenuFtag fteld in a menu record indicates whether a menu's
definition procedure_ knows about caching. A value of 1 indicates that the
menu in question works correaly with caching. A custom menu which uses
caching must defme a menu record which sets this flag, and allocates an extra

field, a handle to the cache in which the.me.nu image will be stored. (See Table
2)

Table 2

Fields in a cacheable menu record

MenuiD WORD

Menu Width WORD

System Disk 3.2 Release Notes Page 12

MenuHeight WORD

MenuProc LONG

~1enuflag BYTE ; Bit 7 = 1 to enable caching

MenuRes BYTE

Firstltem BYTE

NumOfltems BYTE

Title Width WORD

Title :-.Tame LONG

MenuCachr LONG ; New field in cacheable menu records

; Handle to cache

The FiJu\1enuBar call will automatically allocate a cache for the defmed menu
if the caching flag is set

Bug fixes:

Calc..MenuSize has been modified so that it takes text styles into account when
calculating the width of a menu.

Display of menu titles has been corrected so they will be arranged properly
relative to the left side of the menu bar RECf.

The Ctl<flroer flag of a menu inside a window must be negative (bit 31 must be
set). This has al'W'<lys been true, but has been undocumented NewMenuBar
now sets that flag if the value passed for the window is not zero, and the menu
bar is a window menu bar.

Menus in windows can now display the Apple character (ASCII $14).

,\1enus now use their outline color for lines which separate menu items.

MIDI Tool Set

The MIDI Tool Set is a set of utilities for use with the Musical Instrument Digital Interface data
transfer protocols. With a MIDI interface and the correct driver, the MIDI Tools enable a
developer to writre appliations which can control MIDI-compatible synthesizers. For a
detailed explanation of how to use the MIDI Tools, see the MIDI Tools ERS which accompanies
these release notes.

Knownbup

If you use the Note Sequencer with the CARD6850.MIDI driver, either the Note Sequencer or the
driver will crash, because they step on each other's memory. This problem will be ftxed with a
patch to the driver which is available from Devdoper Tech Support

System Disk 3.2 Rele2.se Notes Page 13

Miscellaneous Tools v2.1

Bug fixes:

The SetHeattBeat call sometimes allowed heartbeat interrupts to accidentally clear the quarter
second timet interrupL SetHeart.Beat has been patched to install a different heartbeat interrupt
routine, which should prevent this problem.

Note Sequencer vl.l

The Note Sequencer Tool Set provides numerous routines for controlling MIDI -compatible
sequencing in the Apple IIGS. For detailed information on how to use the Note Sequencer, see
the Note Sequencer ERS which accompanies these release notes.

Known bugs:

If the ~ote Sequencer was not started up and Note Sequencer calls are made, no error is
returned.

If the ~I Tools were not started up and a program calls StartSeq specifying that it wants to use
the MIDI Tools, no error is returned, and the carry bit is not set StartSeq will quit, but no error
is posted to explain why.

The same problem occurs if StartSeq is called specifying that MIDI is to be used, but no output
buffer has been allocated for it Once again, St.artSeq quits, but does not return an error or set
the carry bit.

An update which fiXes these bugs is available from Developer Tech Support

Note Synthesizer v1.2

The ~ote Synthesizer is a set of routines which control the generation of musical notes and
sounds on the Apple UGS.For detailed information on how to use the ~ote Synthesizer, see the
:--rote Synthesizer ERS which accompanies these release notes.

System Disk 3.2 Release ~otes Page 14

Print Manager v2.1

The call PrChooser has been completely redesigned It now has a new user interface, and
supports printing over AppleTalk zones.

Printer.Setup now saves separate settings for direa and network connections to printers, and
saves the User Name for use on a network. Old version of the Printer.Setup flle are incompatible
with these changes, so the Print Manager will delete such files and create a new one in the
correct format Unfortunately, the old settings and defauh settings are lost, and the default
settings are used to create the new setup flle.

If the System disk is locked, the Print Manager will not be able to save changes in Chooser
settings, and will display a dialog to warn the user of this fact It will, however, save any changes
to the Chooser settings in RAM, so the new settings will remain in effect until the current
application quits.

If the Print Manager artempts to toad a driver and ftnds that it is missing, it will pass control to a
routine that determines what call was being made to the driver, pops the parameters off the
stack, and returns a Missing Driver error. It will also display an alen asking the user to make sure
a printer and port driver are selected

PMStartup no longer loads any drivers into memory. It does not require that the Drivers folder
be present, and if it is present, does not require that there be any drivers in it

PMSta.rtup checks to see whether the List Manager has been loaded Since PrChooser uses List
Manager calls, PMStartup will load the List Manager if it has not already been loaded.

$3413 PMUnloadDrlver returns:none parameters:driver:WORD

l:nloads the current port driver, printer driver, or both, depending on the input
parameter.The current driver is determined from the settings in the Printer.Setup me. Legal
values for the driver parameter:

0 - unload both drivers

1 '"' unload printer driver

2• unload port driver.

"The a register is zero if the call was successful. If an illegal input parameter is passed then the
error code Bad.Param ($ 1308) is returned Any other value is an error returned by the Loader
call U.serShutDown.

$3513 returns: none parameters: driver: WORD

Loads the current printer driver, port driver, or both, depending on the input parameter. The
current driver is determined by the settings saved in the Printer.Setup me. Legal values for the
driver parameter: 0 • load both drivers

1 • load printer driver

z,.. load port driver.

System Disk 3.2 Release ~otes Page 15

The a register is zero if the call was successful.If an illegal input parameter is passed then the
error code Bad.Pa.ram ($1308) is returned. Any other value is an error returned by the Loader
call InitialLoad.

Bug fixes:

The Chooser will now correctly display more than twelve driver flles.

Alert messages now appear properly in 320 mode.

System Disk 3.2 Release :'-<otes Page 16

Quick.Draw Auxiliary v2.3

$0C12 SpecialRect rerun'lS: none parameters: rectPtr : LONG

FrameColor: WORD

FillColor: WORD

Speda!Rect frames and fJ.lls a rectangle in a single call, making separate calls to FrameRect and
FillRect unnecessary. The single call to SpedalRect is considerably faster than separate calls to
FrameRect and FillRecL

Bug flses:

DrawPicrure was formerly initializing the pen size incorrectly when the specified picrure was
scaled. Titis has been fiXed.

When a picture that contained text was recorded, the recording feature did not work correctly,
and the Font Manager was not used to install the font Titis has been fiXed

When stretching and shrinking images, CopyPixels formerly initialized an internal error term
incorrectly, causing the left side of the image to be adjusted incorrectly, and the right side to the
image to contain garbage. Titis has been fiXed

Formerly, if the source bounds RECT in PPToPort's Loclnfo parameter was smaller than the
SourceRect parameter, then too many bytes would be stored in the picture, and redrawing it
could cause a crash. This has been fiXed.

The QD Aux call DrawPicrure assumed that the Font Manager was available, but the Finder calls
Draw Picture without using the Font Manager. To make this work, the font manager calls must all
look for dispatcher errors, and keep the stack clean. SetPurgeStat failed to do this required
maintenance. Titis has been fiXed.

Quick.Draw n v2.3

Bug fh:

InsetRgn failed to create a valid region when joining two points into one. Titis has been fiXed.

Scrap Manager_ v1.3

The Scrap Manager has been updated, and will now run from ROM.

Sound Tools v2.3

The current version of the Sound Tools is required to support the MIDI Tools, Note Synthesizer,
and Note Sequencer.

The Sound Tools now return the same version number and behave identically whether running
with old or new versions of the Apple IIGS ROM.

System Disk 3.2 Release ~otes Page 17

Further information on the Sound Tools is provided in the Sound Tools ERS wruch accompanies
these release notes. This ERS adds information which was not included in the IIGS Toolbox
Reference.

A patch to FFStopSound, which was in its own fJ..!e, has been incorporated in TS2,the patch flle
for ROM 2.

The Sound Tools' Bootlnit call to initialize the "MidilnitPoll" vector ($E11DD89) has been
changed to an Rn.

Bugb

The Sound Tools set up the data bank register incorrectly, which caused it to write garbage into
bank $00 memory. The offending code has been removed.

The call StopSound was not switching off the sound generators. This has been fu:ed

Standard File v2.2

Standard File now uses the GetDirEntry call instead of reading directories itself.

System Disk 3.2 Release Notes Page 18

Bug fixes:

A common exit routine was calling DisposeHand.le with a random value, which can
occasionally crash the system. Titis has been ftxed

Tool Locator v2.2

The Tool Locator uses a new algorithm to load tools from disk. It will only load tools from disk if
a tool in ROM does not have a high enough version number. The Tool Locator makes no
assumptions about what tools are in ROM and what are on the System disk.

For every tool that is to be loaded, the Locator makes a version call. If the version call returns an
error either because the tool is not present, or because the version number is too low, then the
tool is loaded forrn the System disk.

The Tool Locator no longer unloads all RAM-based tools every time TLShutDown is called.
Instead, it returns the system co a default state, set by a new call in the Tool Locator, in which
tools from ROM and from the System disk may be loaded.

51601 SetDefaultTPT

Sets the default Tool Pointer Table to the current TPT. 'Csed to permanently install a tool
patch.An application should not make this call.

Window Manager v2.2

There are numerous significant changes to the Wmdow Manager, notably in
the defutition of a Window Record For a complete explanation of the Window
\tanager's new support for custom windows, see the Desfginlng Your Own
Windows documentation which accompanies these release notes.

There is one known bug in Window Manager v2.2:

Close Window will leave the top visible window unhilighted if an invisible
window is in front of cwo or more visible windows in the window list When
Close Window clases the top visible window it leaves the next visible window
unhilighted because it thinks that the invisible window is the next visible
window. The problem apparently only occurs if you use invisible windows
and SendBehind.

Titis bug will be fLXed in the future. In the meantime, here is a work-around
that will also work after the bug is fured:

After Close Window, execute the following code:

pea 1 Pass TRUE to hilight

pha Space for result from FrontWmdow

ph a

_Front Window

_HiliteWindow

Pass front visible window to HiliteWmdow

Make sure fomt window is hilighted

Because HiliteWindow does nothing if a window is already hilighted, this
will work after this bug has been ftxed.

System Disk 3.2 Release Notes Page 19

If you discover other situations in which the front visible window remains
un-hilighted, this work-around should work with them as well.

Task.\1aster now brings a window to the front alter dragging is complete. Task.\lfaster previously
brought windows to the front before dragging.

Standard windows will now draw their titles in sixteen colors regardless of mode.

The Grid parameter has been renamed to DragFlag. Its new definition is detailed in Fig. I.

Figure 1

0

Grid valuef: 0. 1. 2. 4. a. 16. 32. 64. 128

Reserved; must be zero

It ftag = 1. bring window to top attar baing dragg•d

It is no longer possible co speofy Grid values of 256 or 512.

System Disk 3 2 Release :'~Totes Page 20

Alert Windows

The new call AlenWindow (see below) can be used to create Alerts for presenting the user with
important messages. The call does all the work of creating and displaying the window and
contents for the Alert, and returns the ID of the button that the user chooses.

AlenWindow accepts a pointer to a string which contains its message, and a pointer to an array
of substitution strings. The substitution strings can be any of seven standard strings (such as
"OK~, "Continue•, and so on) or can be specified by the application and stored in the buffer to
which the substirution-string pointer refers.

Format of Alert Strina

Size Character

Character 1 is the size of the alert window. The character can be 0-9 where:

Chara<ler
0
1
2
3
4
5
6
7
8
9

Approximate max number of characters,
(Character followed by 4 integers that are size and position.)
30
60
110
175
110
150
200
250
300

Since AlenWindow provides a limited number of standard sizes, it is possible to create alerts
which will display properly whether the Apple IlGS is in 320 or 640 mode. It is necessary,
however, to design the text and buttons carefully in order to rru.ke this work.

System Disk 3.2 Release Notes Page 21

The following table shows the dimensions of the standard alert windows. 1b.i.s is to give an idea
of the size of each window. Application code should not rely on the exact widths, heights, or
position of standard windows.

~hara!JC[tk:iitt 3.al WQ.b3al 1-qb~ Width 6~
1 46 152 46 200
2 62 176 54 228
3 62 252 62 300
4 90 252 72. 352
5 54 252 46 400
6 62 300 54 452
7 80 300 62 500
8 108 300 72. 552
9 134 300 8) 600

Icon Number

:\"ext character is the icon number. The icon number can be 0-9 where:
0 ~o icon.
1 custom icon, followed by:

LONG Pointer to image data.
WORD :-.iumber of byteS image data is wide.
WORD ~umber of scan lines image data is high.

2 Stop icon.
3 ~ate icon.
4 Caution icon.
5 Disk icon.
6 Disk swap icon.
7-9 are reserved- DON'T USE THEM.

Separator Character

The next character is a separator charaaer. The separator can be any character you would
like and cannot appear in the message text or button strings. The separator is used to separate
the message from the fust button string and each button string from each other. For purposes of
standardization the I character might be a good choice.

Message Text

Following the separator character comes the message text. Any characters allowed by
LETextBox2 are allowed in the message text. See "Spedal Characters• for additonal functions of
message text. The total size of message text, after substitution of strings is limited to 1000
characters.

Button Strinp

The fust character after the message termination character is the beginning of the fust button's
title. The title can then be followed with either another message termi.rution character and
button tide, or a string termination charaaer (-zero) to end the alert string. A total of three
button titles may be included at the end of the alert string. These buttons will be evenly spaced
and centered at the boaom of the alert window. The width of each button will be the same size
and be set according to the widest button title. The total size of button text, after substitution of
strings is limited to 80 characters.

Termination of Alert Strina

System Disk 3.2 Release ~otes Page 22

After the last button title is a zero (0) to end the alert string.

Special Characters

The following special characters can be embedded in the message text and button strings of an
alert. In order to have a special character appear in the text of a button or message. enter it
twice in the string. For example, if you want'"' to appear in an Alert message, you must enter it
in the message string as'""'·

" If " is the fu:st c:h2racter in a button string lhe button will be rotllidered the default button.
The default button is the the buaon selected if the user pres,es 1he renun key on the keyboard.
This button will also appear bold on the screen. Only one button can be the default button.
After the " character the button title must follow as in any other button. Other special
characters may also appear after the "". A single " character in message text has no affect and is
deleted from the message.

Substitute standard string. The # character must be follo\1~/~ed by m ASCII dedmal number.
:'~:umbers 0-6 can be used. 7-9 are reserved and should not be used. The standard
substitution strings are:
*0 OK
#l Cancel
-z Yes
#3 No
*4 Try Again
#5 Quit
*IS Continue

• Substitute given string. The • character followed by an ASCII decimal number from 0
through 9 denores a substitution string to be inserted at that point. The • character and the
following number will be replaced by the corresponding string in the specified substitution
array. A pointer to the substitution array is passed to AlertWlndow. The substitution array is
defined as an array of LONG pointers where:
LO:"IiG!OI Pointer to string that will substitute for-o.
LONG[l) Pointer to string that will substitute for •1.
LONG[2) Pointer to string that will substitute for •2.
LONG!3J Pointer to string that will substitute for •3.
LONG[41 Pointer to string that will substitute for •4.
LONG! 51 Pointer to string that will substitute for •s.
LONG[6J Pointer to string that will substitute for •6.
LONG[7) Pointer to string that will substitute for •7.
LONG(8J Pointer to string that will substitute for •s.
LONG[9) Poi.ruer to string that will substitute for ~.

Substitution strings can be a C type, Pascal type, or RETIJRN terminated. C type and RETI.JR.""'l
tenninated strings are seleaed by passing 0 to AlertWlndow as the string flag. Pascal strings
are selected by passing 1.

Elements do not need to be defined if they are not referenced in the alert.

Here are some examples of alert strings that can be passed to AlertWlndow in APW 65816
assembler syntax.

System Disk 3. 2 Release Notes Page 23

CAU­
TION

A more complex alert string~

de c'51/This is the •o of *3 alen *2*1 and standard text called "#4".f
de c'"##, Really/*4/Yo!',i1'13'

I SlOP I This is the message text of an alen window and standard
text called "Try Again".

(OK, Really) (Door#2) (Yo!)

Where substitution array =
de i4'subO,subl,sub2,sub3,sub4'

subO de c'message text',il'O'
subl de e'dow',il'O'
sub2 de e'win',il'l3'
sub3 de e'an',il'O'
sub4 de e'Door #2',il'O'

Window Records

1be Window Record data structure has been redefmed The new defutition is
illustrated in Pig. 2.

Figwe2

Offset Field FJeld descripdoo

System Disk 3.2 Release ~otes Page 24

LONG - Poinre:r to next window rec:ord, zero is end of lisL

BYTE[170] - Window's grafPort.

LONG - Address of window's defulition procedure.

LONG- Reserved for application's use.

LONG - Address of routine that will draw window's contenL

LONG - Reserved by Window Manager, do not use.

LONG - Handle of window's structure region.

LONG - Handle of window's content region.

LONG - Handle of window's update region.

LONG - Handle of first control in window's contenL

LONG - Handle of f~nt control in window's frame.

WORD - Flags that defme window.

212 wCustom - BYTE[n] - Additional data space defmed by window's defProc.

The wReserved field is a new data field reserved by Apple for future expansion.

The wframe field is illustrated below. The shaded bits in the diagram are for
use by window defProcs. The values named in the diagram are those used by
the standard document window defProc. L'nshaded bits are reserved bythe
Window Manager and are the same for all windows.

F_HIUTED
..__ __ F _Zoc:.tvED

~-------F_MLOCATED
..__ _________ F _CTL_TIE

~-----------F_NFO

'----------F _VIS
r..---------- F _OCONTENT

~-------------------F_MOVE
~---------------------F_ZOOM

~------------------------F_~
~---------------------------F_~

~------------------------------F_BSCRL
~-------------------------------F_RSCRL

~--------------------------------F_~RT
L-------------------------------------F_~

L-------------------------------------F _TITLE

Bug flzesa

GetFrameColor now works as documented.

SetDataSize was using incorrea minimum values. This has been flXed

System Disk 3.2 Release Notes Page 25

Some call the Window Manager made to application code did not work if the
code was located at the fl!St byte of a bank. For example, the window content­
drawing routine would not work in this situtation. Th.is has been ftxed.

Calling BringToFront and SeleaWindow with an invisible window no longer
erases the contents of windows under the invisible one.

The width of vertical lines in alert window frames has been changed The
vertical lines are now 2 pixels wide instead of 3, so that their dithered color will
be the same as the contenL

The manual's description of SetZoomRea is incorrect. The correct
description is:

SetZoomRea sets the fZoomed bit of the window's wFrame record to zero.
The RECT passed to SetZoomRect then becomes the window's zoom RECT.
The window's size and position when SetZoomRect is called becomes the
window's unzoomed size and position, regardless of what the unzoomed
characteristics were before SetZoomRect was called.

The standard document window positioned the info bar one pixel too high
when created without a title bar. Th.is has been fJ.Xed

Correction to the Toolbox Reference:
Apple IIGS Toolbox Reference page 25-126, third line:

If wmTask.Mask bit tmWo (bit 15) • 1
should read:

If wmTaskMask bit tmWo (bit 15) = 0

GetFirstWindow returned a pointer to the fl!St window's Window Record, and
not to its grafPort as documented. This has been changed so that the call now
behaves as documented

The calls FromDesk, ToDesk, and SetDeskTop have been fJ.Xed so that they will
now recompute the visRgn of every window.

When used with a window which does not have scroll bars, the call
Wind."ewRes will call the window's defproc to recompute window regions. A
call to Size Window is no longer necessary under these circumstances.

DragRea has been ftxed so that when TaskMaster calls DragWindow (and thus,
DragRea) in 640 mode, the x position will remain on the specified Grid

The Window Manager had some problems displaying dose-boxes and Titles,
which have been ftxed. Specifically, a long title sometimes conflicted with the
dose box when a window was resi2led to a narrow shape, and the dose box was
not correctly clipped by the menubar.

Newcallsa

S580E
none

SSAOE

GetWlndowM&r(ilobals returns: LONG parameters:

Returns a pointer to the Window Manager global data area.

Start.FrameDrawfn& returns: none parameters:

windowPtr: LONG

System Disk 3.2 Release ~otes Page 26

SSBOE

SSCOE

Sets up to draw a window frame. Should only be called by
window deflllition procedures. Must be balanced by a call to
EndFrameDrawing when drawing is completed.

EndFrameDrawina returns: none parmaeters: none

Restores Window Manager variables after a call to
StartFrameDrawing.

R.eslze\Vlndow returns: none parameters:

hiddenFlag: WORD

rectPtr: LONG

grafPortPtr: LONG

Moves, re-sizes, and draws the window specified by grafPortPtr.
rectPtr is a pointer to the window's content region. hiddenflag is
a Boolean parameter. A TRUE value specifies that portions of
the window which are covered should not be drawn. If the value
is FALSE, the entire content of the window is drawn.

System Disk 3.2 Release Notes Page 27

$550E

$590E

DrawlnfoBar returns: none parameters:

grafPortPtr: LONG

Redraws the info bar of the window specified by grafPortPtr. The
method used to redraw the info bar 's interior is the routine
specified by me wlnfoDefProc field of the paramList passed to
NewWmdow when the window is aeared The Wtndow Manager
will automatically clip info bar drawing to the dimensions of the
info bar , and to the visible region of 1he window.

AlertWindow returns: Word parameters:

stringType: Word

subStrPtr: Long
'.'!i
alertStrPtr: Long

Creates an alert window which displays a message pointed to by alertStrPtr. The message can be
either a C or Pascal string, as specified by string Type. A value of 0 signifies that the message is a
C string, and a value of 1 that it is a Pascal string. subStrPtr points to an array of substitution
strings for use with substitution characters. See the Wmdow Manager section •Alert Windows•
for a more detailed description of the use of Alert Wmdows.

Drivers
Imag.eWrlter Drivers

ImageWrlter LQ Driver

This is a new flle in System Disk 3.2. It is not a special driver for the Image Writer LQ, but
simply allows the Apple IIGS to fmd the Image Writer LQ on an Apple Talk network. It does not
support the ImageWriter LQ's special features.

ImageWriter Driver v2.1

The Image Writer driver has been completely re-wriaen. It contains faster imaging
routines, determines more quickly when no image is to be printed, and will not clear buffers
which have already been cleared. Low level routines have been modified, restruaured, and
eliminated. Low level routines that were undocumented have been removed

The new driver incorporates faster imaging routinesand faster determination of when no image
is to be printed, and does not clear buffers which have already been cleared

iVres now supports vertical condensed printing.

The procedure PrintCheck and its corresponding routines have been commented out None of
the code was being used, and it caused problems when printing to a spooler.PrintCheck sent a
query on AppleTalk to determine the configuration to the Image Writer it was printing to. The
code then never made a PAP read to retrieve this information (whether the printer had a color
ribbon, the printer's ID, and so forth). A spooler would then wait for the imagewriter to do a
PAP read so that it could do a PAP write of the information form the initial query.

System Disk 3.2 Release Notes Page 28

Bug fhes:

320 mode landscape printing was imaging too high on the page, This has been fiXed

Insertion point and editing now work correctly in the job dialog's FROM IineEdit box.

The driver did not update choices selected in the style dialog and the print dialog due to
internal version number inconsistencies. This has been fiXed.

The printer intermittently skipped print lines when the 'Best Text' quality was selected Th.is has
been fiXed

The portRea of the grafPort is now the page REcr.

Landscape mode with gaps between pages did not work correctly with version 2.0 of the driver.
This has been fiXed.

The driver startup routine now initializes the serial port. This fiXes a problem in which the ftrst
control code was lost when printing in draft mode.

The driver now has added ftltering for the c cedilla character in UDText. This allows it to be
printed in draft mode.

The driver formerly crashed if you attemptyed to print when the printer was off-line or the cable
was disconnected. This has been flxed.

LaserWriter

~o prep me is necessary, making this driver compatible with all Macintosh LaserWriter drivers.

Insertion point and editing now work correctly in the job dialog's FROM I.ineEdit box.

Comm.and-F (Open-Apple-F) redirects PostScript printing to a disk me. The resulting file
contains the PostScript text for the redirected print job. The file will be named
POSTSCRIPT.GS, and is created in the •;SYSTEM/DRIVERS folder.

System Disk 3.2 Release :'ll'otes Page 29

The a.ment version of the LaserWriter me can print LaserWriter Plus fonts, and supports
downloading bitmap fonts. The driver now supports printing with the following LaserWriter Plus
fonts:

Font IDs (all values are decimal)
Zapf Dingbats 13
Bookman 14
Helvetica Narrow 15
Palatine 16
Zapf Chancery 18
Avant Garde 33
New Century Schoolbook 34

The LaserWriter driver can process the following PostScript picComments:

~ K.i..w1 s.w: l:lacah:
PostScriptBegin 190 0 NIL
PostScriptEnd 191 0 ~11

PostScriptliandle 192 PSData
PostScriptFile 193 FileName
TextlsPostScript 194 0 :".11

picComments allow a program to send PostScript commands directly to a l..aserWriter. This
ability gives applications access to the advanced capabilities of PostScript, and allows them to
create needed effects without using more general QuickDraw II routines. A picComment must
begin with PostScriptBegin and end with PostScriptEnd.

There are three different ways to send PostScript commands to a l..aserWriter.

1) The application may pass a PostScriptliandle to the l..aserWriter. This handle
identifies a buffer containing PostScript commands in the form of ASCII data.

2) The application can pass a FileName, which points to the pathname of a file
containing PostScript commands.

3) The application can use the TextlsPostScript command to send PostScript in the
form of QuickDraw StdText calls.

The size fields of the PostScriptHandle md PostScriplfile commands must contain the size oi
the data to be read.

picComments do not take the place of normal Print Manager calls. From the point of view of the
Print Manager, a picComment is simply data sent to the printer, just like any other data. An
application should r!Wte all the Print Manager calls normally whether it uses picComments or
not.

A few rules for the use of PostScript piComments:

The La.serWriter driver does not check for PostScript errors, so the data sent to the
I.aserWriter must be correct.

Always terminate PostScript text with a return character.

The transformation that the driver uses will flip text and print it upside down on the page.
Applications should set up their own transformation matrices to serve their needs.

Never nest PostScript Begins and Ends.

System Disk 3.2 Release Notes Page 30

:--;ever use the LaserWriter's userdict. Instead, define a local dictionary for you
application's use.

See chapter 3 of the LaserWriter Reference Manual for examples of how to use picComments.

The following PostScript commands can alter certain conditions that the driver sets up for the
print job. Applications should therefore not use these calls:

exitserver
initgraphics
grestoreall
erase page
showpage

Bug fixes:

The driver now consistently reports error conditions returned by the printer, such as 'out of
paper', or 'font nO[found'.

Safeguards are now provided against pixel maps whose width is not on a byte boundary.

Printer Port Driver vl.l

Color selection escape code 5 caused problems with the ImageWriter I. 1his has been fLXed.

Modem Port Driver v1.2

Some files could not be printed without initializing the printer. Code has been added to
DevOpen to fLX this problem.

Color selection escape code 5 caused problems with the ImageWriter I. 1his has been fLXed.

AppleTalk Port Driver v2.0

The Apple Talk port driver now supports printing over zones.

DevPrChanged has been modified. It now just checks whether the AppleTalk Port has been
selected in the Control Panel. lf not, it displays an alert box with the message • Apple Talk is not
selected in the Control Panel•.

DevStartup formerly accepted or~e pan.meter, which had to be a correctly formed network
name for a printer on the AppleTalk network. The call now acceptS three parameters:

• pointer to a printer name
• device name
• zone name

The call concatenateS these names, leaving out any unnecessary characters at the end of each
one, to form the correct network name.

Strings, printer names, device names, and zone names may now be up to 31 characters long.

The auxiliary flle type of the AppleTalk Port driver has been changed from 2 to 3.

System Disk 3.2 Release Notes Page 31

AppleTalk IWEM v1.2.1

The IWEM me has been reduced in size by removing comments and white space.

There was a bug which occurred in graphic printing in the ImageWriter Emulator .1.1.2 on
LaserWriters with ROM versions 3.0 or higher. This has been fLXed

Une wrapping has been added to allow for long strings of data.

The ESC-S command, which is the equivalent of an ESC-G command, did not generate
graphics properly in IWEM v1.2. This has been fLXed.

AppleMIDI (drivers) vl.O

This system disk includes MIDI device drivers for the MIDI Tool Set, the Apple MIDI Interface,
and the Passport MIDI interface card (card6850.MID0.

Utilities

Finder 1.1

Bug Fixes:

The Finder has been altered so that its handle remains fixed while another application is
running. Formerly the Finder could be moved during memory compaction, causing crashes.

Program Launcher v2.2

Four new tools have been added to the list of versions retrieved.

029 Audio Compression and Expansion tools (A.C.E.)

0.30 Reserved for future use

031 Reserved for future use

032 MIDI Tools

Start

Start will not run the Finder unless it fmds at least 375K of free memory.

System Utilities v3.1

Numerous bugs have been fl.Xed.

System Disk 3.2 Release Notes Page 32

AppleTalk Utilities

Chooser v1.2

A number of bugs have been fixed

Namer v1.2

A number of bugs have been fiXed

Bug fb:esa

The device type window and the names window no longer scroll simultaneously.

System Disk 3.2 Release Notes Page 33

Documentation Developpeurs
Apple Computer France 1987

Document developpeur numero 87

type d'upgrade de ce ducument : 7
1 Documentation de premiere categorie inchangee
2 Documentation de deuxieme categorie mise a jour
3 Documentation de deuxieme categorie inchangee
4 Mise a jour payante de Ia documentation de premiere categorie
5 Mise a jour gratuite de Ia documentation de premiere categorie
6 Nouveautes payantes non vitales
7 Nouveautes gratuites et vitales

Taille : 65 page(s) environ

Domaine : Dev : System

w~~~~(Q)[N] ~ ~a©[Q)~

[Q)~u~ ~ ~a©~a®7

System Disk Change History by Component
Version 2.0 D3

5 Mar 87

Special Note. All ProDOS 16load files (except ATINIT) on this disk have been compacted. This
includes all tools and drivers.

ProDOS8
1 65C02 instruction removed
1 Disk II reset phase routines changed.

ProDOS16 .

Loader

1 Bug in Format call fixed
1 Erase_Disk Call added
1 Get_Dir_Entry Added
1 New stack based entry point added
1 I/0 handles are all zero on Open calls.
2 Added 0 _Info call
2 Bug in Get_Dir_Entry fixed.

1 Loader suppons compacted files and latest OMF. Suppons all calls in ERS.

Launcher
1 New version reponer.
2 Compacted.

Tool Setup
Fixed
1 Compacted.
ADB:

1 AbsOn, AbsOff and ReadAbs now work.
SANE:

1 Version Call works.
Desk Manager:

1 ShutS down classic desk accessories correctly.
Tool Locator:

1 ProDOS errors are now returned by LoadTools and LoadOneTool.
1 UnloadOneTool read the tool number to unload incorrectly off stack.

QuickDraw
1 PenMasks did not work in 640 mode when origin was not multiple of 8.

Not Yet Fixed or Verified
QuickDraw

1 Painting from the screen does not hide the cursor.

J

1 Lines with end points outside a pon but with pen size large enough to intersect
the pon are over clipped?

1 TextBounds calls do .not adjust to current style?
I QuickDraw is not yet good at drawing across bank boundries.
I New FontFlags Feature.

Desk Manager:
1 RestoreScrcen and SaveScreen Crash

System Disk Change History March 5, 1987

ATINIT
No Changes.

Window Manager
·fixed:
2 Compacted.
2 Grow Window and Size Window were not correcly calculating the content region
2 Grow Window displays the outline of the frame a little differently.
2 V alid.Rgn and InvalRgn change the given regie into global coordinates but for

compatibility reasons this cannot change. Doc will change.
2 New Task..\1aster feature added
2 WindowGlobal call added.
2 Feature added to Desktop call.

Not Yet Fixed or Verified.
None known.

Menu Manager
Fixed:
2 Compacted.
2 MenuNewRes works when switching from 320 to 640 mode.
2 InitPallete in 640 mode works more than once.
2 New MenuGlobal call added.
2 New menu help feature added.
3 MenuNewRes really works when switching from 320 to 640 mode.

Not Yet Fixed:
None known.

Control Manager
Fixed:
2 Compacted.
2 TrackControl returned the wrong pan code for check boxes.
2 HiliteControl and ShowControls no longer change the current pon.
2 Control manager preserves current pon when drawing.

Not Yet Fixed:
None known.

Line Edit
Fixed:
1 New call TextBox2 works like TextBox but handles word wrap and justification.
2 Compacted.
2 Triple clicking an empty linedit item no longer loses· the carret.
2 Changing the text contents when text is selected no longer loses the carret.
3 Inactive empty fields no longer have carrot droppings

Not Yet Fixed:
None known.

J

Steven Glass Page 2

System Disk Change History March 5, 1987

Dialog Manager
Fixed:
1 UpdateDialog does not crash.
1 The dialog items which use custom controls no longer crash randomly (internal def

procs have been changed).
2 Compacted.

Not Yet Fixed or Verified
IsDialogEvent claims all update and activate events.
Tabbing order weird when multiple LE items in dialog

QuickDraw Auxilary
1 Pictures are more solid.
1 CopyPixels is more solid.
1 Draw!con has been added.
2 Compacted.
2 DrawPicture works again.

Print.'Pv!anager
1 New This Time.
2 Compacted.

Scrap Manager
2 Compacted.
No Changes in code.

Standard File
2 Compacted.
No Changes

~ote Svnthesizer
· 2 Compacted.
No Changes

Font Manager
1 Bug setting size field in port is fixed.
1 Font scaling works.
2 Compacted.
3 Call FontNum2ItemiD was added
3 Choose font does not display the sizes of created fonts.

List Manager
1 Bug in pon setting on first drawing is fixed.
1 Amount of scrolling for clicking in the page region is now calculated correctly.
2 Compacted.

Image Writer Driver
1 New.
2 Compacted.

Steven Glass

J

Page 3

System Disk Change History

La.serwriter Driver
1 New.
2 Compacted.

March 5, 1987

2 Can print text in fonts other than Courrier even when Mac is not on the network.

Printer Driver
1 New.
2 Compacted.

Modem Driver
1 New.
2 Compacted.

AppleTalk Driver
1 New.
2 Compacted.

DeskTop II (M:ouseDesk)
No Changes.

AppleTalk Chooser
No Changes.

Apple Talk Narner
No Changes.

Apple Talk IWEM
Fixed
None.

Not Yet Fixed
Cannot handle ascii code zero.

System Utilities
No Changes.

BASIC.SYSTEM
No Changes.

BASIC Launcher
No Changes.

Fonts
No Changes. one addition: Shaston16

Steven Glass

J

Page~

Release Notes for System Disk 2.0 March 4, 1987

Apple Desktop Bus Tool

Changes Since Last Time

The three calls thanlid not work now work:

ABSOn
ABSOff
ReadABS

Latest Documentation

The latest version of the ERS is dated May 15, 1986. The pre-Beta version of the reference
manual is also useful.

Steven G 1 ass Pa!!e 1

J

Release Notes for System Disk 2.0 March 4, 1987

Control Manager

Changes from last release:

1.) The control manager no longer changes the contents of a window's grafpon when drawing
controls.

2.) TrackControl returned a pan code for check box when the control was acrually a radio
button. The Control Manager has been changed to return the proper part code for radio
buttons.

Documentation Issues:

1.) Creating a grow control was overlooked in the documentation. So, here's how it's done:

Call NewControl with the following parameters:

The WindowPtr
BoundsRect
TitlePtr
Flag
Value
Paraml
Param2
DefProc
RefCon
ColorTable

Color Table:

GrowOutline
GrowN or Back

Pointer to the window owner.
Enclosing REcr.
Not used, any value is OK.
Bit 7 clear for visible, set for invisible, bits 0-6 all clear.
Not used, any value is OK. J
Not used, any value is OK. -
Not used, any value is OK.
$08000000.
Any value you wish.
Zero for default, or pointer to a custom color table.

WORD Bits 4-7 = outline color, other bits must be zero.
WORD Color of interior:

Bits 0-3 = icon's foreground color.
Bits 4-7 = background color.
Bits 8-15 =zero.

The grow control should never be highlighted. Track Control should not be called for a grow
control. GrowWindow should be called to track the grow control when FindControl returns a
hit in a grow control. You should use your own tracking routine if you are using the grow control
for a purpose other than resizing windows.

2.) The color tables for controls aren't defined very well. Here's another try:

The simple button color table is defined as:

SirnpOutline = outline color:
Bits 0-3 =zero.
Bits 4-7 =outline color (bold outline and drop shadow if used).
Bits 8-15 =zero.

Steven Glass PaEe 2

Release Notes for System Disk 2.0 March 4, 1987

Si.mpNorBack = interior color when not highlighted:
Bits 0-3 = zero.
Bits 4-7 = background color.
Bits 8-15 = zero.

SimpSelBack = interior color when highlighted:
Bits 0-3 =zero.
Bits 4-7 = background color.
Bits 8-15 =zero.

SimpNorText = text color when not highlighted:
Bits 0-3 =foreground color (only bits 0-1 used in 640 mode).
Bits 4-7 =background color (only bits 4-5 used in 640 mode).
Bits 8-15 =zero.

SimpSelText = text color when highlighted:
Bits 0-3 =foreground color (only bits 0-1 used in 640 mode).
Bits 4-7 =background color (only bits 4-5 used in 640 mode).
Bits 8-15 = zero.

The check box color table is defined as:

Chec.kReserved = reserved, must be zero.
CheckNorColor = color of check box when not highlighted:

Bits 0-3 =foreground color (only bits 0-1 used in 640 mode). J
Bits 4-7 =background color (only bits 4-5 used in 640 mode).
Bits 8-15 =zero.

CheckSelColor = color of check box when highlighted:
Bits 0-3 = iforeground color (only bits 0-1 used in 640 mode).
Bits 4-7 =background color (only bits 4-5 used in 640 mode).
Bits 8-15 =zero.

CheckTitleColor = color of title's text:
Bits 0-3 =foreground color (only bits 0-1 used in 640 mode).
Bits 4-7 =background color (only bits 4-5 used in 640 mode).
Bits 8-15 =zero.

The radio button color table is defined as:

Radio Reserved = reserved, must be -zero.
Rad.ioNorColor = color of radio button when not highlighted:

Bits 0-3 =foreground color (only bits 0-1 used in 640 mode).
Bits 4-7 =background color (only bits 4-5 used in 640 mode).
Bits 8-15 = zero.

Rad.ioSelColor= color of radio button when highlighted:
Bits 0-3 =foreground color (only bits 0-1 used in 640 mode).
Bits 4-7 =background color (only bits 4-5 used in 640 mode).
Bits 8-15 = zero. ·

RadioTitleColor =color of title's text:

Steven Glass

Bits 0-3 =foreground color (only bits 0-1 used in 640 mode).
Bits 4-7 =background color (only bits 4-5 used in 640 mode).
Bits 8-15 = zero.

Pa~e 3

',-'

\.

V~;

~~-- ':•. ·. ,(

Release Notes for System Disk 2.0

The scroll bar color table is defined as:

Scroll Outline = outline color:
tJ> Bits 0-3 = zero.

March 4, 1987

:: Bits 4-7 = outline color for arrow boxes, thumb and page region.
[Bits 8-15 =zero.

ArrowNorColor =color of arrows when not highlighted:
Bits 0-3 =foreground color (only bits 0-1 used in 640 mode).

~. Bits 4-7 =background color (only bits 4-5 used in 640 mode).
~ ~ Bits 8-15 = zero.

ArrowSelCofor = color of arrows when highlighted:
~Bits 0-3 =foreground color (only bits 0-1 used in 640 mode).·
:. Bits 4-7 =background color (only bits 4-5 used in 640 mode).

f! Bits 8-15 = zero.
Arrow Back Color = color of arrow box interior background:

· Bits 0-3 = zero.
Bits 4-7 = background color .
Bits 8-15 =zero.

ThumbNorColor = thumb's interior color when not highlighted:
(Bits 0-3 =zero.
{ Bits 4-7 = background color.
~! Bits 8-15 = zero.

ScrollReserved =reserved, can be any value.
This entry was documented as the color of rhe rhumb w;Jn
selected bur was 111!Ver used by the Control Manager. lr is
not going to be installed because it would mean redrawing
the thumb when selected.

PageRgnColor =page region's interior color:
c Bits 0-3 = second dither color.

;_ Bits 4-7 = flrst dither color and color if solid.
'l Bit 8 = 1 for dither pattern, 0 for solid color.
~Bits 9-15 = zero.

InactiveColor =color of scroll bar's interior when inactive.
Bits 0-3 =zero.
Bits 4-7 = color of interior's background.

· Bits 8-15 = zero.

Steven Glass Pasze 4.

Release Notes for System Disk 2.0

Desk Manager

Changes Since Last Time

CDA shut down calls are now made to all installed CD As.

Latest Documentation

March 4, 1987

The latest ERS is dated August 24, 1986. The pre-Beta reference manual is also useable.

J

Steven Glass Pae:e 5

Release Notes for System Disk 2.0 March 4, 1987

Dialog Manager

Changes Since Last Time

The UpdateDialog now cleans up the stack correctly.

A number of the internal def procs were modified to work correctly when called by the
control manager.

SetDAFont has been fixed.

Documentation Issues:

Not Yet in Documentation: Moda1Dialog2. This call works just like
ModaiDialog but returns both the ID of the item hit and the PartCode of the item hit.

Moda1Dialog2 call #$2Cl5

Stack before call

Previous Contents
Result Space
FilterProc Ptr

Stack after call

Previous Contents
ltemHitlnfo

I
!LONG
!LONG

I
I LONG

J

Where the low word of ItemHitlnfo is the item hit and the high word'of ItemHitlnfo
is the partcode of that item. (The possible partcodes are listed below.)

When a key is pressed and there is an EditLine item in the dialog, the PartCode is
inEditLine, and the itemiD is the ID of the current active EditLine.

Two Call Numbers Changed. Two calls used reserved call numbers that they should
not have used.

ErrorSound was call #$07, it is now call #$09
SetDAFont was call #$08, it is now call #$1C

Calls 7 and 8 are reserved in all tool sets for furure use. These call numbers were assi~rned
by accident and have been changed. Calls 7 and 8 are still entry points to these routines but
may not be supported in the future. Please switch to the new call numbers as soon as
possible.

New Hem Type: UserCtlltem2. For a UserCtlltem2 (value= 21) the ItemDescr
parameter (passed to NewDitem at create time) is a pointer to a parameter block of
additional data.

ItemDescr = pointer to following strucrure:

S rev en Glass Pa~re 6

Release Notes for System Disk 2.0

DefProcParm : LONG

TitleParm: LONG

ParamLong : LONG

._
~arch 4, 1987

Address of definition procedure (same as defProc
for NewControl)

Pointer to title string (same as title for
NewControl)

LoWord = Param2, HiWord = Paraml (same as
Paraml and Param2 for NewControl)

This makes it possible to use a Scroll Bar or any kind of control as a U serCtlitem2. For a
scroll bar, just pass the scroll bar defproc ($06000000) in the DefProcParm, the view size
in Paraml and the total size in Param2. Then you can handle the different pan codes using
Moda1Dialog2.

Non-item Controls. If you want to put a control in a dialog, but you don't want it to be
handled by the Dialog Manager, just give it a Refcon = 0. You can temporarily prevent
the Dialog Manager from handling an item by getting its Ref con, saving it and clearing it.
Then when you change your mind, you can just restore it The calls to use for this are
GetControiitem, GetCURefCon and SetCtlRefCon.

Latest Documentation

' The latest ERS is dated August 28, 1986. The pre-Beta reference manual is also useatlle.

Important Information

Possible PartCodes

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15-31
32-127
128
129
130-159
160-253

Steven Glass

inBunon
in CheckBox
inRadioButton
in UpArrow
inDownArrow
inPageUp
inPageDown
inStatText
in Grow
inEditLine
inUseritem
inLongSwText
inlconltcm

in Thumb

No pan.
Reserved for internal use.
Simple button.
Check box.
Radio button.
Up arrow.
Down arrow.
Page up.
Page down.
Static Text
Grow box icon.
Editable line.
User item.
Long static text.
Icon.
Reserved for internal use.
Reserved for application's use.
Reserved for internal use.
Thumb.
Reserved for internal use.
Reserved for application's use.

Pae:e 7

Release Notes for System Disk 2.0 ~arch 4, 1987

254-255 Reserved for internal use.

Dialog Equates.

; Dialog Manager Errors
:

Error .Base DLGERR
.BaditemType
NewitemFailed
ItemNotFound
NotModalDialog

equ $1500
equ 10
equ 11
equ 12
equ 13

error number is DLGERR+ErrorNum

; Item Types

.Button Item
Checkitem
Radio Item
Scroll.Baritem
UserCtlitem
Stat: Text
LongStatText
Edit Line
Iconitem
Pic Item
User Item
UserCtlitem2

MinitemType
MaxitemType

equ 10
equ 11
equ 12
equ 13
equ 14
equ 15
equ 16
equ 17
equ 18
equ 19
equ 20
equ 21

equ But:ton!tem
equ UserCtl!tem2

not implemented yet.

Part Code numbers for non-standard control item

inStatText equ 9
inEditLine equ ll
in Useritem equ 12
inLongStat:Text equ 13
iniconitem equ 14

To disable an item for the dialog manager, add ItemDisable t:o
; the ItemType

ItemDisable equ $8000

Icon structure

- An Icon Handle is a handle to an IconRecord
: - The definition of an Icon Record follows.

iconRect
icon Image

Steven Glass

equ 0
equ iconRect•B

width must be multiple of 8
pixel image for t:he icon

Pa2:e 8

J

Release Notes for System Disk 2.0 March 4, 1987

Command Number for the Dialog Scroll Bar Action Procedure

qetinitview
qetinittotal
getinitvalue
scrolllineup
scrolllinedown
scrollpaqeup
scrollpaqedown
scroll thumb

;

; Item Template
;

ititemiD
ititemRect
ititemType
ititemDescr
ititemValue
ititemFlaq
ititemColor

equ l
equ 2
equ 3
equ 4
equ 5
equ 6
equ 7
equ 8

equ 0
equ ititemiD+2
equ ititemRect+8
equ ititemType+2
equ ititemDescr+4
equ ititemValue+2
equ ititemFlag+2

Modal Dialog Template
;
dtBoundsRect
dtVisible
dtRefCon
dtitemList

equ 0
equ dtBoundsRect+8
equ dtVisible+2
equ dtRefCont+4

dtitemList is a list of pointers to item templates terminated by
a NIL pointer.

; Alert Template
;

atBoundsRect
atAlertiD
atStaqel
atStaqe2
atStaqe3
atStaqe4
atitemList

:

equ 0
equ atBoundsRect+8
equ atAlertiD+2
equ atStagel+l
equ atStage2+l
equ atStage3+1
equ atStage4+l

Additional Parameter Block for UserCtlitem2
;

DefProcParm
TitleParm
Param.Long

Steven Glass

equ 0
equ 4
equ 8

; custom control defproc
pointer to.control title
equivalent to Paraml, Param2

Pa11:e 9 ·

J

Rele:ise Notes for System Disk 2.0

Changes Since Last Time

None.

Latest Documentation

March 4, 1987

Event Manager

The latest version of the ERS is dated June 2, 1986. The pre-Beta reference manual is also
usable.

J

Steven Glass Paee 10

Release ~otes for System Disk 2.0 March 4, 1987

Font Manager

Changes Since Last Time

Font Scaling is implemented. If a program asks for a font in a size that is not available, a
font is created in the correct size.

Latest Documentation

The latest version of the ERS is dated November 21, 1986. The pre-Beta reference manual
is also usable except for the FMStanup call and the ChooseFont call.

J

Steven Glass Pae:e 11

Release Notes for System Disk 2.0 March 4. 1987

Integer Math

Changes Since Last Time

None.

Latest Documentation

The latest version of the ERS is dated August 7, 1986. The pre-Beta version of the
reference manual is also useful.

Steven r'1ss PaE:e 12

J

Release Notes for System Disk 2.0 March 4, 1987

Line Edit

Changes Since Last Time

A new call has been added: LETextBox2. LETextBox2 takes the same inputs as
LETextBox but handles word wrap and justification. Future changes will allow it to
suppon imbedded style, font, size and color changes. A special escape code will be used
to signal non-text information. We are currently planning to use ASCII code $01 for this.
If you have any objections, let us know quickly.

Triple Oick:ing on an empty line edit time does not freeze the carrot.

Setting the text in a line edit record with SelStart <>to SelEnd does not freeze the carrot.

Not Yet In Documentation

LETextBox2 Call Number $2014

Draws the text in the rectangle specified by BoxPtr with the specified justification.
LETextBox2 is not limited to one line of text; it suppons word wrap, and wraps on
specified carriage returns. The rectangle pointed to by BoxPtr is specified in local J
coordinates of the current GrafPort

Stack Before Call
I Previous Contents
I TextPtr
I Length
I BoxPtr
I Just
I

Stack After Call
I Previous Contents
I

LONG - POINTER to the text
WORD -integer, length of text including carriage returns
LONG - POINTER to a rectangle
WORD- INTEGER
<- SP

<- SP

The Ju.sr can be one of four values:

0 = left justified
1 = center justified
-1 = right justified
2 = fill justified

LETextBox2 is compatible with LETextBox. It erases the rectangle in BoxPtr before
drawing in it. LETextBox2 does not create a line edit record and the text is not editable.
No copies are made, nor space allocated for the text string.

Text should not contain ascii code 1. Any text with ascii code 1 in it will be irnpatable with
future versions of LETextBox2.

Steven Glass Pa2:e 13

Release Notes for System Disk 2.0 March 4. 1987

Latest Documentation

The latest version of the ERS is dated August 12. 1986. The pre-Beta version of the
reference manual is also useful.

Steven Glass Pasze 1-+

J

Release Notes for System Disk 2.0 March 4, 1987

List Manager

Changes Since Last Time

Bug in routine that first draws the list has been fixed. (The list was not always drawn
correctly the first time.)

How far to scroll up and down when user clicks in page region is no longer fixed at 13. It
is calculated from data in list record.

Latest Documentation

The latest version of the ERS is dated November 11. 1986. The pre-Beta reference manual
does not contain any information on this tool.

' -

Steven Glass Pae:e 15

Release Notes for System Disk 2.0 March 4, 1987

Changes Since Last Time

None.

Latest Documentation

Memory Manager

The latest version of the ERS is dated July 29, 1986. The information in the Pre-Beta
reference manual is also accurate.

Steven Glass Pa~e 16

J

Release Notes for System Disk 2.0 March 4, 1987

Menu Release Notes

Changes from last release:

1. MNewRes now works if you start in 320 mode and switch to 640 mode.
2. InitPallete in 640 mode works more than once.
3. CountMitems now works.
4. New call MenuGlobal has been added.

MenuGlobal Call# $230F

input: chgAag:WORD Negative to clear bits, positive to set bit, zero for
nothing.

output: newAag:WORD Current global menu flag after changed.

MenuGlobal is used to set and clear bits that effect how the Menu Manager performs
tasks. If chgAag has bit 15 set, it is ANDed with the global flag. If chgAag has bit 15
clear, it is ORed with the global flag. Therefore if chgAag is zero, the global flag will
not change. MenuGlobal will always return the state of the global flag after changing
the desired bit. J
Only bit 0 of the menu global flag is defined. Bit 0 is defined as a help bit and is
detmed in the "Menu Help" section. The only values passed to MenuGlobal are:

$0000
$0001
SFFFE

Aag does not change, used to get the current state of the flag.
Turn menu help on.
Turn menu help off.

The values returned by MenuGlobal are:

$0000
$0001

Menu help off.
Menu help on.

5. A new feature has been added to the Menu Manager to enable applications to let users
choose inactive (dimmed) menu items. The application can use the information to tell the
user how the item can be made active. The following section describes how to initiate the
help feature.

Menu Help

Generally, there is no way for a user to choose a dimmed menu item. Actually, the
purpose of dimmed items is to show it cannot be chosen. However, the user does not
have a way of knowing ~hat it take to undim a dimmed item. This can be frustrating
for the user. However there is a way of letting the user choose a dimmed item for the
purpose of getting more information about the item.

Steven Glass Paee 17

Release Notes for System Disk 2.0 March 4, 1987

The first step in initiating help is to pass $QC()l to MenuGlobal. This tells the :\1enu
Manager that your application knows about the help feature and will display a help
message when the user does choose a dimmed item.

Once bit 0 of the menu global flag is set the Menu Manager will do the following
things:

dimmed items will appear dimly highlighted when the user moves the cursor
over them

MenuSelect will return the ID number of a selected dimmed item in the high
word of the TaskData field of the Task record passed to MenuS elect.

Using TaskMaster require the setting of some additional parameters. Bit 14 of the the
Task.\1ask field of the Task record passed to Task.\1aster must be set. Task.\1aster will then
return the flag winactMenu ($001C) when the user chooses a dimmed menu item. The
dimmed item's ID number is returned in the high word of the Task record's TaskData field.

Clarification in documentation

There is a term used in the menu definition procedure, under custom menus, that could be
confusing. The term item number and item ID number refer to two different things. Itrm
number is the slot in the menu that an item occupies. One would be the first item in thi
menu and zero means not in the menu. Item ID number is a value given by the application
to uniquely identify an item from all the other items in the menu bar. There could be a
conflict if the ID number is returned by the mChoose function in a custom menu definition
procedure. ID numbers can be greater than $7FFF and mChoose must set bit 15.

Steven Glass Pae:e 18

Release Notes for System Disk 2.0 March 4, 1987

Mise Tools

Changes Since Last Time

None.

Latest Documentation

The latest version of the ERS is dated October 29, 1986. The pre-Beta version of the
reference manual is also useful.

Steven Glass Pae:e 19

J

Release Notes for System Disk 2.0

Changes Since Last Time

None.

Latest Documentation

March 4, 1987

Note Synthesizer

The latest version of the ERS is dated September 25, 1986. The pre-Beta version of the
reference manual does not include a chapter on this tool.

J

Steven Glass Pa2:e 20

Release Notes for System Disk 2.0 March 4, 1987

ProD OS

Changes Since Last Time

Three new system calls have been added: Get_Dir_Entry ($1C), Erase_Disk ($25) and
D_Info ($2C).

There is also a new stack based method for making system calls.

ProDOS 16 no longer provides access to the I/0 buffer when opening files.

Latest Documentation

The reference manual describes everything but these new features. The new fearures are
described below.

Not Yet In Documentation

When making the stack based system call, instead of the usual JSL $ElOOA8 followed by
the call number and parameter pointer, push the pointer to the parameter block, push the
call number and JSL $ElOOBO. After the call returns, control returns to the instruction
after the JSL. The pointer to the parameter block and the call number will be removed tom
the stack. -

Previous versions of ProDOS/16 returned a handle to the I/0 buffer when opening files,
this version of ProDOS/16 will now return a handle value of $0000. Do not try to
dereference a handle of $0000.

The Erase_Disk call works logically like the Format ($24) call except that Erase_Disk does
not format the disk. It only writes out the boot blocks, the empty directory and the bit map.
The remaining blocks on the disk are left alone. The input and output parameters are the
same as the Format call.

S2S ERASE_DISK

Pointer (0 1)
to Device Name

Pointer (02)
to Volume Name

File System ID (03)

The D_Info call has two parameters, a 2-byte device number that is inputted and a 4-byte
pointer to a buffer that is also inputted. ProDOS/16 rerurns the device name into that
buffer.

Steven Glass Pa!!e 21

Release Notes for System Disk 2.0

$2CD_INFO

Device # (01)

Pointer to (02)
Device Name

March 4, 1987

The Get_Dir _Entry will return the pertinent infonnation of active files from the file's
directory. The old days of reading from the directory and interpreting the results are over~
In addition to absolute retrieval, Get_Dir_Entry also allows relative return of file
information from the last mark within the directory. For example, to simply catalog a
directory, the caller supplies a valid file reference number, a value of $0001 in the base
field and a value of $0001 in the displacement field. This will rerum the first active flle
entry going in the forward direction. Put this into a loop while incrementing the
displacement field and presto! you can catalog a directory.

A value of $0000 in the base field signifies absolute entry. A value of $0002 in the base
field signifies backwards direction, in case you ever wanted previous file entries. The
displacement value tells the system which file entry to return based on the base field. If for
example, the base value is $0001 and the displacement value is $0002, then every time you
make the Get_Dir_Entry call, the system will return every other active flle entry going in
the fonvard direction.

J

Steven Glass Pa~e 22

Release Notes for System Disk 2.0

Steven Gl:'

SIC GET_DIR_ENTRY
(Directory Call)

Pointer (05)
to Name
Buffer

Entry # (06)

File Type (07)

EOF (08)

Block (09)
Count

Create (OA)
Date &
Time

Mod (OB)
Date &
Time

Access (OC)

March 4, 1987

J

Pasze 23

Release Notes for System Disk 2.0 March 4, i 987

QuickDraw II

Changes Since Last Time

Pen Masks work when the origin is not a multiple of 8.

Latest Documentation

The latest ERS is dated August 11, 1986. The Pre-Beta version of the reference manual
accurately describes the calls as well.

Important Information

Quick.Draw requires three (3) consecutive pages of bank zero memory for direct page (not
two as described in early verions of the ERS and parts of the reference manual).

Not Yet In Documentation

InflateTextBuffer Call Number $0704 J
This call uses the inputs to see if the text buffer is at least as big as indicated, making it
larger only if necessary

Stack Before Call
I Previous Contents
I NewWidth
I NewHeighl
I

Stack After Call
I Previous Contents
I

I
I INTEGER
I INTEGER
1<- SP

I
1<- SP

This call was added specifically for the Font Manager, but may be useful for programs
which deal with fonts without the Font Manager's help. It allows you to make sure the
internal text buffer is large enough resizing only when necessary.

You pass the newheight and Max Width of a font you want to use. Quick.Draw checks the
current text buffer to see if it is large enough to accomodate these sizes and if it is not large
enough, it is resized.

Steven Glass Pa12:e 24

Release Notes for System Disk 2.0 March 4, 1987

GetRomFont · Call Number $D804

This call fills a record describing information about the font in ROM.

Stack Before Call
I Previous Contents
I PrrToRecord
I

Stack After Call
I Previous Contents
I

I
I POINTER
1<-SP

I
1<- SP

The record has the following fonn:

Family Number
Style
Size
HandleToFont
NarnePtr
fbrExtent

for a total of 16 bytes.

GetFontLore

integer
word
1::·~eger

handle
pointer
integer

Call Number $D904

This call is very similar to the GetFontGlobals call except that you can specify the
maximum number of bytes it will return.

Stack Before Call
I Previous Contents
I Space For Result
I Prr to Record
I Record Size
I

Stack Arter Call
I Previous Conzen:s
I Nwn bytes Xjered
I

I
I WORD
I LONG
I LONG
1<- SP

I
I integer
1<- SP

Today's record has the following format:

Steven Glass

Font!D
Style
Size
Version
WidMax
FBRExtent

:integer
:word
:integer
:word
:integer
:integer

Paee 25

J

Release Notes for System Disk 2.0 March 4, 1987

The GetFontGlobals call returns infonnation about the current font lfwe want to chan2:e
the font format to include more infonnation in the future, we will have to return more -
information in the GetFontGlobals call. To make this possible, we have a call which
returns the size of the record filled in by GetFontGlobals. Unfonunately, this makes it
very hard on programs wanting to set aside a fixed amount of space.

The GetFontLore makes it possible to set aside a fixed amount of space. It allows the
program to specify the maximum number of bytes it can handle. GetFontLore will never
rerum more.

A program can specify a number equal to the number of bytes being returned in the version
of QuickDraw running on the day the program is written. Future versions of Quick.Draw
will not cause this program any problems.

J

Steven Glass Pa!!e 26

Release Notes for System Disk 2.0

QuickDraw Auxiliary

Changes Since Last Time

A number of bugs have been removed from the picture code

A new Drawlcon call has been added.

Latest Documentation

March 4, 1987

The latest version of the ERS is dated February 11, 1987. There is no information in the pre- Beta
version of the reference manual about this tool set

J

Steven Glass Pa£e 27

Release Notes for System Disk 2.0 March 4, 1987

SANE

Changes Since Last Time

The SANEVersion call returns a reasonable result

Latest Documentation

The latest version of the ERS is dated June 24, 1986. The pre-Beta version of the
reference manual is also useable, but the most useful documentation for SANE is the
manual for the Standard Apple Numeric Environment It describes how SANE works on
all Apple Machines.

J

Steven Glass Pa~e 28

Release Notes for System Disk 2.0 March 4, 1987

Changes Since Last Time

None.

Latest Documentation

Scheduler

The latest version of the ERS is dated April 15, 1986. The pre-Beta version of the
reference manual is also useable.

Steven Glass Pasze 29

J

Release Notes for System Disk 2.0 March 4, 1987

Changes Since Last Time

None.

Latest Documentation

Scrap Manager

The latest version of the ERS is dated June 26, 1986. The pre-Beta version of the
reference manual is also useful.

Steven Glass Pa~:te 30

J

Release Notes for System Disk 2.0 March 4, 1987

Sound Manager

Changes Since Last Time

None.

Latest Documentation

The latest version of the ERS is dated June 26, 1986. The pre-Beta version of the
reference manual is also useful.

Steven Glass Pae:e 31

J

Release Notes for System Disk 2.0

Changes Since Last Time

None.

Latest Documentation

March 4, 1987

Standard File

The latest version of the ERS is dated September 22, 1986. The pre-Beta version of the
reference manual is also useful but not complete. It does not yet include information about
the SF All Caps calls and does not include the templates for the standard calls.

J

Steven Glass Paee 32

Release Notes for System Disk 2.0 March 4, 1987

Changes Since Last Time

None.

Latest Documentation

Text Tools

The latest version of the ERS is dated June 26, 1986. The pre-Beta version of the
reference manual is also useful.

Steven Glass Pasre 33

J

Release Notes for System Disk 2.0 March 4, 1987

Tool Locator

Changes Since Last Time

A bug in UnloadOneTool was flxed.

Latest Documentation

The latest version of the ERS is dated February 19, 1986 and is out of date in that it does
not include all the calls. The pre-Beta version of the reference manual is much more useful.

Not Yet In Documentation

Tools Not in the ERS. RAM-based tools are only loaded on request of the application.
There are flve Tool Locator calls to handle this: LoadTools, LoadOneTool,
UnloadOneTool. TLMountVolume and TLTextMountVolume.

The Load Tools call allows the application to load a number of tools in a single call. Tools
loaded in this way stay in memory until the applicaiton makes the TLShutdown call (or are
unloaded individually). The LoadOneTool and UnloadOneTool calls lets the applicatiop
load tools one at a time. These are used for tools you do not want to have in memory all
the time. You can load the tool just before you use it and unload it just after you are done.

Th mount volume calls are used to inform the user that volumes needed to load tools or
other important software are not available.

Where Tools Are Kept. Tools are kept in the Tools subdirectory of the system directory of
the boot volume. They are load flles of type SBA and each tool starts with its function
pointer table. Tools are named after their tool number: Tool 23 is in a fl.le named
TOOL023, Tool 24 is in a file named TOOL024, etc.

Findin& The Svstem Disk. Since tools are kept on the boot disk. the user must have the
boot disk around to load the tools. A problem arises when the boot disk is not on line.
The user would be prompted to insen the disk. But how? There are many display modes
on the Apple n. Which one is this application using now? Has it been intialized? What
should the message say? Because of all these issues the tool locator will not automatically
prompt the user to insen the boot disk when a load tool call is issued. It is the application's
responsiblitiy to recover from a volume not found error after a load tools call is issued.

A Little Bit of Help. For desktop and text based applications the tool locator will provide a
little help. One mount volume call uses the super hi-res display and prompts the user with
program supplied messages. This call displays what looks like a dialog box but is not,
since the dialog manager is a RAM based tool and may not be loaded. The other mount
volume call uses the 40 column text display to prompt the user with program supplied
messages.

S rev en Glass PaEe 34

Release Notes for System Disk 2.0

Summary of Tool Set Numbers Now Assigned

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Steven Glass

Tool Locator
Memory Manager
Miscellaneous Tools
QuickDrawll
Desk Manager
Event Manager
Scheduler
Sound
Apple Desktop Bus
SANE
Integer Math Tools
Text Tools
Used Internally
Window Manager
Menu Manager
Control Manager
Loader
Quick:Draw Auxilary Routines
Printing Manager
Line Edit
Dialog Manager
Scrap Manager
Standard File
Disk Utilities
Note Synthesizer
Note Sequencer
Font Manger
List Manager

March 4, 1987

J

Pa~:re 35

Release Notes for System Disk 2.0

The New Calls

LoadTools Call Number $0E01

Loads the requested tools from the boot disk.

Stack Before Call
I Pr~u.s Collleftls I
I Prr to Toori"able I LONG
I k- SP

Stack After Call
I Pr~u.s Col'llents I
I k- SP

where ToolTable is

de i'NumToolsRequired'
de i'ToolNum1, MinVersion'
de i'ToolNum2, MinVersion'

de i'ToolNumN, MinVersion'

March 4, 1987

Tools are loaded from the TOOLS subdirectory of the SYSTEM directory of the boot J
volume. An application must give the load tools call before it makes a call to any R..A.W
based tools.

R..A.\1 flXes and enhancements to the tools in ROM are not loaded this way. They are
laoded automatically at boot time. However, you can use the LoadTools call to check the
version of a ROM based tool. ·

Possible Errors

$0110
$XXXX

Version Error
Any Loader/ProDOS error is rerumed unchanged.

Load One Tool Call Number $0F01

Loads the requested tool from the boot disk.

Stack
I
I
I
I

Bdore Call
Pr~u.s Collle1tlS

Tool Nlllf'lber
MinifiWM Version

Stack After Call
I Pr~u.s CoiUents

integer
word

1<- SP

I 1<- SP

Possible Errors

Steven Glass Pae:e 36

~elease Notes for System Disk 2.0 March 4, 1987

Version Error $0110
sxxxx Any Loader/ProDOS error is returned unchanged.

UnloadOneTool Call Number $10()1

Unloads the requested tool from memory.

Stack Before Call

' Pr~u.s Co1Ue1US I
I Tool NUII'Iber I integer
I k- SP

Stack At'ter Call
I Pr~u.s Co111ents I
I k- SP

Possible Errors

None.

J
TI..MountVolume Call Number $1101

Stack Before Call
I Pr~u.s Co111ents I
I Space For Resuit I word
I Whe1'd I integer
I Wh.ertY I integer
I Lin.elPtr I pointer to suing
I l...iMlPtr I pointer to suing
I BullPtr I pointer to saing
I Bui1Ptr I pointer to saing
I k- SP

Stack Arter Call
I P~IIS Colllel'US I
I BilliOn NUII'Iber I integer
I k- SP

This routine displays a dialog box which asks the user to mount a volume. It has two
buttons: OK and Cancel.

The pseudo dialog box is displayed at the location specified by where X and where Y. Th~
contents of the screen under the dialog are saved before the dialog is drawn and restored
after the user responds.

All of the text displayed is passed by the application. This way the message can be
localized along with the application. LinelPtr points to a string that will appear at the top or'
the "dialog". The application could put a message like "Please insen the disk'' in this line.

Steven Glass Pa2e 37

Release Notes for System Disk 2.0 March 4, 1987

Line2Ptr points to a string that will appear just below line 2. The application could put tht!
volume name on this line. ButlPtr points to a string that will appear in button 1. But2Ptr
points to a string that will appear in button 2. The application could put "OK" and "Cancel"
in these strings.

When the call returns, it returns the button number chosen by the user. The user can push
a button with the mouse or s/he can press RETtJ'&"'' for button 1 or ESC for button 2.

Because the application passes all the text displayed, this call can be used for other kinds of
messages. But the application must take care that the keyboard equivalents for the buttons
make sense in whatever other use is planned for the dialog box. In addition, the application
should take care in selecting text so that it is sure to tit in the space provided.

Note: both QuickDraw and the Event Manager must be initialized for this call to work.
The cursor should also be visible. ·

1L TextM:oumVolume

Stack Before Call
I Previou.s Con~ents
I SpauForResuit
I WhertX
I WhertY
I LiNJPtr
I Li.n.e2Ptr
I BullPrr
I BUI2.Prr
I

Stack Arter Call
I Previou.s Contents
I 8 Ulton Number
I

Call Number $1201

word
integer
integer
pointer to stting
pointer to stting
pointer to stting
pointer to stting

1<- SP

I
I integer
k- SP

J

This routine displays messages on the 40 column text screen and waits for the user to press
RETURN or ESC.

All of the text displayed is passed by the application. This way the message can be
localized along with the application. Line lPtr points to a string that will appear at the top of
the display. Ths application could put a message like "Please insen the disk" in this line.
Line2Ptr points to a string that will appear just below line 2. The application could put the
volume name on this line. But1Ptr points to a string that will appear right justified on the
bottom line. But2Ptr points to a string that will appear left justified on the bottom line. Tht!
application could put "OK" and "Cancel" in these strings.

When the call returns, it returns the button number chosen by the user. The user must
press RETURN for button 1 or ESC for button 2.

Because the application passes all the text displayed, this call can be used for other kinds of
messages. But the application must take care that the keyboard equivalents for the buttons

Steven Glass Paee 38

Release Notes for System Disk 2.0 March 4, 1987

make sense in whatever other use is planned for the dialog box. In addition, the application
should take care in selecting text so that it is sure to fit in the space provided.

J

Steven Glass Pa~e 39

Release Notes for System Disk 2.0 March 4, 1987

Window Release Notes

Changes from last release:

1. Change to Grow Window and Size Window. Both routines were not correctly
calculating the the width and height of content regions. The result was a larger content than
actually specified by the user. The error was one or two pixels. The problem has been
fixed.

2. Grow Window had been expanding the content region by 1 pixel for the inner xor
outline when resizing a window. However, if the content is only one pixel inside the
structRgn (no scroll bars in the window frame) the xor line from the content and structRgn
overlap and cancel each other out So, I no longer expand the content to get the inner xor
RECT for resizing.

3. ValidRgn and InvalRgn change the given region to global coordinates. This is not
desired, but will have to remain this way for compatibility.

4. There is a change in TaskMaster to take advantage of a new fearure in the Menu
Manager. The Menu Manger is now able to return a selection of a dimmed menu item See
the Menu Manager release notes for a description of the new "Menu Help" feature. Thf
change to TaskMaster is: _

Bit 14 of the Task..\1ask field of the Task record should be set to use the new
Menu Manager help feature.

TaskMaster will return a result of winactMenu (value SOOlC) if the user
chooses a dimmed item. The high order word of the Task record's TaskData
field will contain the ID number of the chosen dimmed menu item.

5. New call added:

WindowGlobal Call# S560E

input: chgflag:WORD

output: newFlag:WORD

Negative to clear bits, positive to set bit, zero for
nothing.

CUITent global window flag after changed.

WindowGlobal is used to set and clear bits that effect how the Window Manager
performs tasks. If chgAag has bit 15 set, it is ANDed with the global flag. If chgFlag
has bit 15 clear, it is ORed with the global flag. Therefore if chgAag is zero, the global
flag will not change. WindowGlobal will always return the state of the global flag after
changing the desired bit

Only bit 0 of the window global flag is defined. Bit 0 is defined as a global way to tum
window highlighting off and on. The only possible values passed to WindowGlobal
are:

Steven Glass Pae:e 40

Release Notes for System Disk 2.0 March 4, 1987

$0000
$0001

$FFFE

Flag does not change, used to get the current state of the flag.
Stop the Window Manager from highlighting and unhighlighting
windows when NewWindow and CloseWindow. This function is
intended to be used to speed up window drawing in some
circumstances. See the example below.
Returns the Window Manager to normal highlighting operation.

Here is a possible sequence that could use WindowGlobal:

NewWindow(Param)

WindowGlobal($000 1)

doAiertO

WindowGlobal($FFFE)

Put up a document window. It is now hili ted.

Turn hiliring off.

Put up an alert window, let the user choose
something, close the alert. The document window,
although under the alert window, is never unhilited
or hilited. It remains hilited.

Return Window Manager to normal operations. The
docwnent window is now back on top and is hilited.

6. Added an operation to the Desktop call to make it easier to draw objects on the desklop
at any time, not just when called by the Window Manager. -

Desktop

input:

output:

operation: WORD
param:LONG

result:LONG

Values 0-7. .
Different parameter for each operation.

Defined by each operation.

Operations 0-6 are defined in the current Tools manual.

Operation 7 has been added and is defined:

Steven Glass

Operation Description

BackGroundRgn 7 param = handle of a region.

The region passed will be set to the Desktop's region less any windows. The
region is automatically updated when windows are added, removed, sized, and
moved.

Operation BackGroundRgn is provided to applications an easy way of drawing
objects di.rectly on the desktop. A possible sequence for drawing objects on the
desktop might be:

ph a
pha
pea SetDeskPat

;Space for result (not used).

;Operation number 5.

PaEe 41

Release Notes for System Disk 2.0 March 4, 1987

Steven Glass

pea MyDeskDrawl-16
pea MyDes.kDraw
_Desktop
pla
pla

pea MyDeskPonl-16
pea My DeskPon
_OpenPort

pha
pha
pea BackGroundRgn
lda MyDeskPon+VisRgn+2
ph a
Ida MyDeskPon+VisRgn
pha
_Desktop
pla
pla

;Pass address of mv routine
;that will draw the desktop.

;Result not used.

;Open a pon for my desktop.

;Space for result (not used).

;Operation number 7.
;Pass handle of my desktop port's visRgn.

;Result not used.

After the above ccxie is executed, the routine MyDesk.Draw will be called by thef
Window Manager whenever the desktop needs to be drawn. This part of Desk!op
and the Window Manager has not changed and does provide a way of drawing the
desktop. However, there was not a nice way to draw something on the desktop
when the application wanted, without making the Window Manager redraw the
entire desktop.

That's where operation number 7 comes in. The code above passed a visRgn of a
pon to the Window Manager. The Window Manager will then use that region to
compute the visible desktop. Now when an application wants to draw an object on
the desktop, it can switch to MyDeskPon and draw. All drawing will be clipped to
the cUITent visible desktop.

Note: The address of the routine passed to Desktop for operation SetDeskPat
(number 5) is still a routine that is called with the CUITent port being the Window
Manager's with its clip region set to the visible desktop. To draw whenever you
want, you'll have to use your own port and your own visRgn.

Pa2:e 42

Apple DGS System Disk Change History by Component
Version 3.2d8

January 25, 1988

Summary. This is a history of the changes made to the System Disk since version 3.1.

Finder vl.ldl
m When the Finder quits to another application, its handle is unlocked and therefore

can move. Because of this, running a program which compacts memory and then
quits back into the Finder causes the Finder to crash. This has been fixed by
setting the fiXed block attribute for the handle to the Finder.

ProOOS 8 vl.SdlO
Dl Fixed write overrun problem. A write past the 32 MByte boundary now returns

the ... ,.POSNERR" enw rather than modulo wrapping the mark on the me.

Code auncbed and moved to establish patch areas .

. D2 When a status call is made, interrupts are now turned off, which of necessity
moves around PS code. ,

,D4 Clanged Apple Talk Virtual Disk Driver for correct Language card switching.

Removed Apple Talk boot check by-pass.

Made sun: OS_Boot flag is set correctly booting into P16. (When the OS_Boot
flag -.u set incorrectl;·, dW caused the Chooser and Namer from finding the file
AlTh'lT .in dle /Sytstem.Disk/SystelllfSystem.setup subdirectory. This flle holds
the user's settings of the Chooser and Namer screens). · · -

;ProDQS 16
The last version number assigned to ProDOS 16 was v1.3. This new ProDOS 16 is
only compatible with the latest ProDOS 8 vi.S therefore the version number of
Pro.DOS 16 has been bumped up to vl.S also.

ProDOS VI.SdlO
Dl Added special case checking for booting over Apple Talk (PLOADER)

Added RAM Disk Driver for use in booting over AppleTallc (PLOADER)

Added byte of nop to READ BLOCK routine in PLOADER for patching by
RAM Disk Driver.

Dl PQuit has changed to book into newly arranged P8 (CALLDISP).

D3 SetUp and DeskAa:s files will not be loaded it bit lS of their AUX_1YPE
is SCL

A good deal of additional code is enabled if booting over the Apple Talk
network. Some of these changes to PLoader include:

System Disk v3.2 Change History Page 1 1/25/88

a) At the beJ!nnin& of MAIN. memory is examined to see if ProOOS was
loaded wtth the Apple Talk "Fizzy" booL If so, a special fla&
"AT_Boot_flaa" 1s set to a non-zero value so that all the exceptions to
normal readlwritin& can be applied.

b) Just after the AT_Boot_flag is set, a patch is applied to PLOADER so
that all block reads from PQUIT's READ BLOCK routine are now
routed to a specially written RAM disk driver whose RAM disk contains
P16 and AppleTalk init flies.

c) When START is looked for, a "file not found" enor is avoided if
bootin& over the network.

d) After P16 (and PS) is loaded, P8 is patched to perform its
READBLOCKs through the same RAM disk as PQUITs
READ BLOCK.

e) The Lo&()n init file re-patches PS to point to its nonnal device dispatch
table.

f) An additional patch is made to READBLOCK in PLOADER so that self­
modifying dispatch is never executing (if it di~ it would ruin the RAM
disk driver patch).

&) Permanent space allocated for a four-byte handle to viJtual RAM disk is
made at $E1DFF8.

h) Patch is made in El/PQUIT so switchin& from PS to Pl6 will reload
P16 from virtual disk.

AppleTaDc and Serial Card interrupts are disabled ~th itc:ft-·s ~ Scxxx
space upon bootinJ.

D4 Upper cased .SYSTEM sbinJ. (Not having .SYSTEM strin& in upper case
prevented user from booting into ProOOS 8 applications)

DS Broke out AppleTalk Vinual Disk Driver as separasc build file.

F1Xed SCC bu& by re-enablin& the oscillator after reseL

D6 Changed error message "Unable to load Tool. Setup file" to a ~ generic
messaae, "Unable to load System Setup File."

Pl6 vl.SdlO
Dl Faxed null pathname problem in <MOVENAME>.

Fixed absolute addressing mode problem in <MOVE>.

D2 RENAME changed to work on a network volume. ·

Chan&ed how OPEN checks to see if P8 has allocated a buffer.

System Disk v3.2 Chanae History _ Paae 2 1/25/88

CREATE has been moved to bank zero alt language card bank to free up
space in bank 1.

Other changes were necessary to hook into newly arranged P8
(CHANGEP A Til, TOTENT and PRODOS l6.ENTRY ISITOPEN)

D3 Forced Get_Dir_Entry to refresh its directory buffer if preceded by any Pl6
call, other than itself.

DS Put Get_Dir_Entry refresh flag in proper language card bank.

D6 Changed CHANGEPA rn to recognize $88 "Network Device" rather than
$28 "Device Not Connected."

Loader v1.4d1
Dl A bug in the buffering scheme which caused some flles with large segments

not ro be loadable has been fixed.

A load segment with an align of exactly S 10000 did not get bank aligned
when loaded.

A load segment containg 1 byte could not be loaded Ooad crashed).

Launcher v2.2d 1
D6 Changes were made to the Version Reporter part of the launcher. Four new tools

were added to the list of versions retrieved. Tool029 is the Audio Compression
and Expansion Tool (A.C.E.). Tool030 and Tool031 are reserved. so cannot be
used by anyone internally, and Tool032 is the Midi Tool set

Tooi.Setup v2.2d4
This version ofTool.setup has now been broken up into three smaller files:
TOOL.SE11JP, TSl, and TS2. · TOOL.SETIJP is a small flle that looks at the ROM
and decides which of the other files to load. TS 1 is loaded with the original ROM and
TS2 is loaded with the new ROM. Nothing is loaded for a ROM that is not one of the
fast two. This change saves 8 to 10 seconds during boot.

Tool Locator v2.3d2
Dl Algorithm for loading and unloading tools has been changed. See ERS for

more details.

New Call Added: SetDefaultTPT, call number $1601.
This call makes default Tool Pointer Table (TPT) equal to the cWTent TPT.
NormaDy, this call would only be made by system software; an application
would not need to make this call. It would be used to install a tool patch
permanently in the system.

D2 Fixed problem with the tool setup file (TS l) for old ROMS that caused
system disk not to boot on old ROM machines. Things were being
initialized in lhe wrong mier.

1LMo1mtVolume and 1LTextMountVolume have been rewritten to run out
of ROM.

System Disk v3.2 Change History Page 3 1/15/88

D4 In the patch for old ROMs (TS 1) the new caD SetDcfaultTPT was not added
to the call table. Therefore ProDOS 8 applications run from the rmdcr would
not work on old ROM machines. This has been fixed.

Memory Manager v2.1 d2
D2 New Call added RealFreeMem ($2F02)

This call returns the number of bytes that are free and the number of
bytes that could be made !tee by purging. It is different from FrccMem
in that it also includes the memory used by purgeable blocks that are not
locked. This call gives a program a better idea of how much memory
might be available.

Stack before call:

Space for Result LONG

Top of Stack

Stack after call:

Total Memory LONG

Top of Stack

D4 Fixed bug in SetHandleSizc. If memory is compacted while the handle is
resized and the original handle moves before the new memory is found, and
some other handle is moved into where the original handle is, the resized
handle will not have the correct data in it. The problem was that the
memory manager did not re-dcreferenc:e the handle after the compaction.

Desk Manager v2.3d2 _ . ____ . __ _. ____ .
Dl No longer uses in-line data storap: All NDA calls changed somewhat to

reflect this.

System Task did a ru instead of a SEI to access cenain data with intenupts
off.

D8 Call OetNumNDA now works correctly.

Sound Manager v2.2dl

ATINIT

Dl Fixed a bug where memory was getting trashed in bank $00 because the
data bank register was not set up properly. That piece of code has been
removed-

Patch to fFStopSound that was in its o\vn file has now been incorporated
inro TS2 (the patch to ROM 2)

D2 This file contains the code to register the users name onto the network at system
stanup time. It also contains thc data that is used by RPM to select which printer
is to be chosen when printing. as well as other data structures described in the
developer's notes .

.
System Disk v3.2 Change History Page 4 1/25/88

DS A TINlT now checks for debugger ROMs in addition to the enhanced ROMs.

When the message is displayed that you need the proper ne system, you must
reboot It no longer runs the Selector Application on the workstation disk.

ATPatch (New flle for System Disk v3.2.)
This file implements the RPM, PAP, EP, and ZIP appletalk protocals. This file also
contains all the patches that were needed to correct bugs in the ROM. A list of patches
made for this version follows.

D2 Laplnit ·changes the Laplnit vector so that any calls that are made to Laplnit after
it is patched will call the old Lapinit, and then install RAM based quaner second
and packet IRQ vectors.

PacketPatch- this patch is needed to fix a problem in the ROM where the
PacketiRQ routine was returning without clearing the NEEDDATA flag if there
was no room in the packet buffer. It needs to clear this flag before dispatching
packets via PDispatch and before exiting. The patch we installed clears the flag
after the interrupt routine, the other patch which clears the flag before dispatching
packets is done by the PDispatch patch.

DoAuxFix (PDispatch) • sets up a new vector for dispatching packets. This new
vector takes care of making sure that if a packet is to be dispatched, the machine
will be in a known state before dispatching the actual data This state is the same
-as when the quaner second interrupts are handled.

We have also implemented a stack saving routine that determines if the stack is
too low, and if so, saves off the required amount of stack space, then sets the
stack pointer back up 10 a higher location to ens~ that enough stack will be
available to go through all the protocol layers. The limit at which the stack will be
saved is currently at $lAO. If the stack gets below this level the save will take
place.

Another fix implemented by the new PDispatch is to be comparable with the
scheduler. Basically what this means is that Apple Talk will tell the scheduler
when it is busy, and therefore you should be able to make Apple Talk calls from
.other intenupt sources as long as you obey the rules set down by the task
scheduler. The main reason for doing this was to allow things such as desk
accessories that can make Apple Talk calls. If we did not suppon the scheduler
you might interrupt an Apple Talk in progress and re~nter it when it was not
expecting it.

JnstallPatcb - the Apple Talk dispatcher was patched out to support scheduler
compatibility on the 'front end' of Apple Talk. We also (LXed a bug related to the
calling of completion routines where the value at the YSA VE location was not
being saved. and was getting changed when calls got nested, thereby destroying
the original value.

OetlnfoPatch- patched the Getlnfo call to change the parameters that were
returned. It is now consistent with the documentation.

GetGlobalPatch -fixes bug where GetGlobal would crash upon being called.

System Disk w3.2 Change History Page 5 1/25/88

QttPatch - patched the quarter second interrupt vector to support the StackSave
call and to suppon the scheduler.

NBPPatch - fixes buc in ver. 1.0 ROMs where NBP was beinc case sensitive
instead of case insensitive. This flX has been incorporated in ROMs later than 1.0
therefore this patch is only installed in ROMs 1.0 and before.

DDPPatch - fixed buc where DDPWrites would tell you the amount of data you
were sendinc was too much when it really wasn'L

DS F1Xed bug in GetZoneList call where it would not return the proper count for the
number of zones found, if it took more than one packet to cet the needed
information.

D6 Flletype chanced from STR to SBC

SPLoad (New file tor System Disk v3.2)
D2 This file implements ASP which cunently allows up to 8 open sessions at one

time.

D6 Filetype changed from STR to SBC

PFILoad (New file for System Disk v3.2)
D2 This file implements the ProDOS Filing Interface which allows ProDOS calls to

be made transparently over the network.

DS Added new pfi command number $35 (FIUSERBUF). This call has the same
parameters as the FINAME call and is almost identical with two execeptions. The
first is that we allow the user to set or &et a buffer of 256 bytes in lenp, and the
second is that this buffer can be used for whatever purpose the use wants, not just
setting of a name field.

Added new ProDOS 8 command number $45 (ChangePath). This call was
installed so that ProDOS 16 could suppon its own chancepath using network
volumes. It is not clear whether we want ProOOS 8 users to make this call.
(We might want it to be reserved for ProDOS 16's use only.)

Added code to brinc PFI up to the level of the BullWinkle ROMs as of 11/19/87.

D6 Flletype changed from STR to SBC

A TStan (New file for System Disk v3.2)
D2 This file is responsible for startinc Apple Talk and attachinc it to the ProDOS

MLI.

D6 Flletype chanced from STR to SBC

A TSetup (New file for System Disk v3.2) ·
D6 This is a new file included for the first time in the D6 release. A TSetup detennines

if Apple Talk is active, and if so will load all of the other Apple Talk related files.
The other files that were of rlletype STR are now of type SBC.

Logon vi.OblO (added in 3.2d6)

System Disk v3.2 Change History Page 6 1125/88

..

Logoff vl.Ob7 (added in 3.2d6)

Access vl.Ob8 (added in 3.2d6)

Window Manager v2.1 (TOOL014) No Changes

Menu Manager v2.0 (TOOL015) No Changes

Control Manager v2.3 (d6) (TOOL016)
Dl Code was changed so that control manager could now be put into ROM.

Controls are once again drawn in their window's pon. This undoes what was
once done in v2.1 (7/1/87) of the control manager.

D3 'The dither pattern in the~ bar page region is drawn correctly. This fixes a
problem introduced in Dl.

When you set pen mode to COPY before drawing boxes, the original mode is
first saved and then restored after the drawing. This fixes a problem introduced
inDl.

11le font m is saved and restored when switching to and from the icon font

Here is a rule that has always been uue but needs to be made clear:

Controls are drawn in the grafPon of the window that owns the controls.
This means that the state of the grafPon can be set to have some extra
control over how controls appear. An example is to change a window's
grafPon font to a font other than the system font. When controls with text
are drawn in that window, the text will be in the new font The bad side is
that a window's grafPort cannot be left in any old state. For example, if the
pen mask is changed then controls will be drawn using the mask which may
not be wanted.

If you are drawing in a window that also has controls, always make sure the
gra.fPon is in the state you want controls to be drawn. This does not apply
to controls auted by TaskMaster because those controls are in the Window
Manager's pon not the window's.

DragControl now works correctly.

DS DisposeControl returned an incorrect error code. Fixed

SetCOTitle did DOt :draw title for radio buttons and check boxes. Fixed

Font flags changed by Control Manager affected other text calls in application.
Flags are now saved and restored. This corrects a problem introduced in
11/30/87.

}tadio buttons, check boxes, and arrows in scroll bars did not draw-correctly

System Disk v3.2 Change History Page 7 1/25/88

when the height of the item was not as high as the icon. Faxed.

Grow box control no longer shares the simple button default color table as its
own default table. Its new table is below. Hiliting the size box had resulted in a
solid black boxt now it is a white icon in a black box.

Previous grow box default color table:
$0000 Black outline for box.
SOOFO Black icon in a white interior when no« hililed.
$0000 Black icon in a black interior when hilited.

New grow box default color table:
$0000 Black outline for box.
SOOFO Black icon in a white interior when no« hili ted.
SOOOF White icon in a black interior when hilited.

The color table for the size box control in the manual is not com:cL The correct
table follows:

growOutline WORD Color of size box's outline:
Bits 8-lS =zero.
Bits 4-7 = outline color.
Bits 0-3 = zero.

growNorBack WORD Color of interior when not hilited.
Bits 8-IS -= zero.
Bits 4-7 = baclcground color.
Bits 0-3 =icon color.

Information omitted from manual:
grow SetBack WORD ···· Color of interior when bilited.

Bits 8-IS =zero.
Bits 4-7 = background color.
Bits 0-3 = icon color.

Colors in control tables use all four bits of the color in both 640 and 320 modes.
Previously only bits 0-1 were used in 640 mode. This could affect existing
applications that use color tables in 640 mode. Howevert there are not any
known applications that use color controls in 640 so there should'nt be a
problem. The worst case is that a control would be a different color. The benefit
of the change is that dithered colors can now be used with controls. .

The bar Arrow Back entry (4th word in the table (offset of 6)) in the scroll bar table
is no longer used. The reason it is no longer used is because it was never
implemented as it was intended. The color was intended to be the color inside the
outline of arrows. Howevert because anows are drawn as text characterst only 2
colors can be applied when 3 are needed. The 3 colon would be the arrow box
interiort the mow's outline and the anow's interior.

The parameter passed to the draw command has its high word zeroed in some
_.cases. This change is to help some code that did not follow the documentation.

System Disk v3.2 Change History Page 8 1/25/88

Test Control returned a pan code even if the control was invisible or inactive.
Now if the control is invisible or inactive, TestControl will return zero (no part).
(Bug M24328)

MoveControJ made invisible controls visible when they were moved. Now
MovcCont:roJ will move the control but invisible controls will remain invisible.
(Bug 124329)

D6 Prototype bit taken OUL The version number for the control manager now just
reads 2.3.

QuickDraw Auxiliary v2.3d2 (TOOLO 18)
Dl Fixed bug in picture drav.1ng routines that handled the chextra opcodc.

DS Earlier versions of Draw Picture did not preserve the PurgcStatus of fonts it used:
any font used was made nonpurgeable. Now, DrawPicture uses the new font
manager call (lnstallWithStats) to detennine what the PurgcStatus of the font was
before it is used and makes it the same when it is done.

'PrintManager v2.0d6 (TOOL019)
D3 The call PlChooser has been totally revamped. There is a new user interface and

this version of Choose Printer now supports printing over zones.

The Choose Printer dialog now consists of two screens: 1) if direct coMect is
selected and 2) if Apple Talk is selected. The default is direct COMCCt with the
first driver in each of the Printer Drivers and Pon Drivers lists selected. Because
there are now two different screens that hold settings the user has selected the
Printer.Setup file. which saves these changes, has also been slightly modified.
Printer.Setup now keeps 1raek of 1) settings for the direct connect screen: Printer
Driver and Pon Driver selections, 2) settings for the Apple Talk screen: Printer
Driver, Zone Name, and Printer Name selections. Also User Name is still saved
as well as a flag which tells Chooser Printer what screen to initially put when it is
called. Because of this change to the Printer.Setup file, printer.setup files created
from previous versions of the print manager will not be compatible and is
ignored .

. PMStartup no longer requires that any drivers be present or loaded when it is
alled. This makes stanup time for running an application a little faster. Now the
drivers are loaded. or checked to sec if they need to be loaded. whenever a call is
made that needs to be passed on to one of the port or printer drivers.

D4 1be print manager no longer crashes when it ttys to read an old printcr.setup flle
created by earlier versions of the print manager (v 1.2 and earlier). If an old
printer.setup file is read the print manager deletes this file and creates a new
printer.~tup flle using the new format and with the new default settings.

If the. system disk is locked and you go into Choose Printer and change the
ament settings, these changes would always get revencd back to whatever the
last saved settings in the printer.setup file were once you left the Choose Printer
dialog (or changed back to the default settings if no printer.setup file was found) .
. Now any changes you make arc saved temporarily until you quit ~ application.

System Disk v3.2 Change History Page 9 1/25/88

If you II)' to save any changes made in the Oloose Printer dialoa while the disk is
locked an alen box will come up saying "Disk is locked, so any changes made to
the Choose Printer dialog will not be saved.".

DS The print manager will now stan up even if no drivers are found. (The call
PMStanup was modified.) .

When a call is made to a driver that is not present the call will be passed to a
"dummy driver" location which will detennine what the call number is and pop
off the requin:d parameters and set the A register with the "Missing Driver" error
number. An alen will also come up saying to "Make sure that a printer and a pon
driver is selected in the Choose Printer dialog." (In the Print Manager vl.O.
whenever the last selected driver was not found, the next driver in the drivers list
would be selected and loaded for the user.)

FIXed bug in the Dispatch and DPon routines which was not setting the data bank
register to the cumnt data bank.

In the Choose Printer dialog you could onlr see the first twelve files in the drivers
folder (if the first twelve were not valid drivers, then you would see less) ·
Problem was current code did not cross block boundaries C:OITCCtly so now the
ProDOS call Get_Dir_Entry is used which solves this problem.

Optimized driver dispatch routine to speed check for driver being in memory.

If not at least one pon driver and one printer driver is present in the
*/system/drivers subdirectory the Choose Printer dialog will put up an alen
saying so, and no dialog will appear.

D6 FIXed bug introduced in Printer Manager v2.0d3 where you go from the
Apple Talk screen, in the Choose Printer dialog, to the Direct Connect screen and
the number of members in the printer names list is greater than the number of
members in the Pon Drivers lisL You get garbage for those members in the Pon
Drivers list that were in excess.

FIXed problem where the PrinterDriveriD flag was not being set correctly in
cenain insrances. This flag tells the print manager whether or not a print driver is
loaded in memory or not. (Problems arose when a missing driver error occurred,
setting the dispatch address to a dummy location. When you selected a driver that
was actually present it would not get loaded because this flag still read that a
driver was already loaded.)

Put up watch cursor when user selected "Print" or "Page Setup" and no drivers
had been loaded yet. Previously the anow cursor remained throughout the whole
process even though there was a noticeable delay before the print or page setup
dialog would come up ..

IY1 Alen messages now appear properly in 320 mode.

When switching from Apple Talk screen to Direct Connect screen or vice versa, I
now blank out the Printer Names/Pons list before displaying any new
.information. This is also done when changing zones in the AppleTallc mode.

System Disk v3.2 Change History Page 10 1/25/88

Line Edit · v2.0 (1001..020) No Changes

Dialog Manager v2.1dl (TOOL021)
D3 A bug in GetNewModalDialog with a refcon value of non-zero would cause a

aash or unpredictable ~sult. has been fixed

A bug in lsDialogEvent, which didn't allow it to claim the following events
WlnDrag, WlnGrow, WlnGoAway, WlnZoom, Wlnlnfo, WinVerScrl,
WinHorScrl, WlnFrame, and WlnDrop, is now fixed.

Scrap Manager v1.2 (TOOL022) No Change

Standard File v2.1dl (TOOL023)
Dl Ftxed bug in a common exit routine which was calling DisposeHandle with a

random value. On occasion this could trash the entire system.

Note Synthesizer vt.tdl (TOOL025)
Dl Ftxed bug in AllocGen which caused AJiocGen to return invalid generator

numbers. It is now guaranteed that AUocGen will return a generator number in
the range $00 .. $0F.

Note Sequencer v0.99 (TOOL026) New for System Disk v3.2
Dl AllocGen was retrieving garbage in the high word. It now only returns values in

the range $0-SE.

D2 Multiple phrases are now supported.

Ftxed problem with ~turning errors. WrongTypeEIT is no longer returned.

Ftxed bug of not being able to startup and shutdown and play a sequence multiple
times.

Clanged order of stan sound call in SeqAppst calL

Caller's pointer in Setlnst is not being changed anymore. Instnum now adds two
to offset into inst table instead. This fixed the problem of multiple SetlnstTable
calls.

Ftxed problem with the Regesters by aligning the Regester info to the right.

D3 Clanged ppan and chkoff so that if tick count and duration are equal the note will
be tmned off and the delay will not continue.

It inaaDcnt is zero. note sequencer doesn't continue parsing but synthesizer
does.

Fixed bug dealing with when tick count wraps.

Put in tables for Midi.

D4 LSB now sets mode 0 = interrupts and mode 1 • step mode.
MSB of mode sets midi. 1• midi use enabled.

System Disk v3.2 Change History Page 11 1/25/88

MSB of Duration means that the note is awaiting a NoteOff. is not being used, or
bas wrapped around. If it bas wrapped around. the MSB of Track won't be seL
OtheJ'Wlse it will be seL

The high bit of the channel parameter acts the same as the track parameter in the
above note.

The high byte of arack in set track sets the channel if used with midi.

SETTRKINFO sets up the midi scratch ~gister in teh TRKINFO table to
determine if midi is on or off.

All midi info should be working correctly now.

D6 Midi only control command structure has been set up.

Put in midi3bytes, midi2bytes, and midilbyte routines.

Program change and pitch bend have had midi capability added to them.

FlXed wrap bug, if tickcount wraps.

Put in AllNotesOff and FlushBuffer calL

r:J7 SeqStanUp now shuts SoundTools if an em>r occured on NoteSynthStanUp.

Clanged error checking to match .99P documentation with the exception of:
NoMIDIErr which the sequencer does not use, instead it returns
miNoBufE.Jr.

This version of sequencer is now compatible with the latest version (0.3P) of the
MIDI Tool.

Added caller error vector error handling for errors in sequence.

Note: The~ is no check to see if the sequencer is staned or noL

Font Manager v2.2d4 (T001..027)
D2 Major change to FMStanUp call. In previous versions, FMStanUp opened every

font rue in the FONTS folder in order to construct a number of lists containing
infonnation on available fonts - their font ID's, names, etc. This was done every
time FMStanUp was called.

FMStanUp now caches these lists, along with some other information, in a rue
called FONTS.LISTS in the FONTS folder. Subsequent calls to FMStanUp
make use of the infonnation in FONTS.LIST, as long as no fonts in the FONTS
folder have been added, ~moved, or altered. In this case the individual font files
do not have to be opened by FMStanUp, so the call is much faster.

If FMStanUp detects that fonts have been added, removed, or altered since
FONT .LISTS was last updated, then it gets its font infonnation "the old­
fashioned was", by opening every font file. When this is done, FMStanUp

·updates FONT.USTS. Similarly, if FONT.LISTS does not exist (either because

System Disk v3.2 Cbanae History Page 12 1/25/88

a user bas deleted it, or because the new FMStanUp is being run for the first time
on the system in question), then FMStanUp will create it. and then cache the font
information on it.

1be "validity check" to see if any fonts have been added. removed. or altered
since the last update ofFONT.LISTS is done by comparing font file names,
create dates &. times, and last modification dates &. times. This information is
also cached in FONT .USTS so that the validity check can be done.

D4 Several changes were made to the implementation in order to enable the code to
run from ROM. In particular, all ProOOS 16 calls were made stack-based, and
some data areas that had been included in-line with the code were moved into a
block of RAM. These changes should be invisible to the calling application and
user.

DS New font manager call: lnstallWithStats Call Number: SICIB

Stack before call:
previous contents

desirediD

scale Word

ResultPtr

Stack after call:

previous contents

LONG

WORD

LONG

Top of Stack

Top of Stack

lnstallWithStats combines lnstallFont with a variant of FindFontStats.
lnstallWithStats does a nonnallnstallFont, using desired.ID and scale Word. It
also returns (in the buffer pointed to by resultPtr) infonnation about the font it
actually installed (which can be different than the font asked for), in the fonn of a
FontStatRec that reflects the stats that the now-installed font had before this call
was made.

The call was designed for the use of high-level tools that wish to use the Font
Manager in a way that is transparent to the application. In particular, it allows the
calling routine to remember the prior purge status of the installed fonL lnstallFont
(and InstalJWithStats, as well) can chang~ the purge status of a font it installs; this
makes it hard to later restore the purge status, particularly since you don't always
know in advance what font an lnstallFont call will install (due to the best-fit
algorithm. scaling, etc.) lnstallWithStats supplies this information.

InstaltWithStats is also useful when you just want to know what font the
installing call put in; it saves the ttouble of an FMGetCurFID call. In this case it
is imponant to note that, even though the fontiD pan of the retumed-FontStatRec
is the fontiD of lbe cwre.ntly installed font, the FontStatBits word contained in the

System Disk v3.2 Cbange History Page 13 1/25/88

FontStatRec reflects the recent status or the font. but not necessarily the current
status. If you need to know the cunent status, you'll have to make a
FindFontStats call.

D6 Olanges to the Font Manager were made to hande the following problem: at
FMStanUp time, if the system disk was locked, and FONT.LISTS was either
non-existent or not up to date, then when FMStanUp tried to create and/or update
FONT.LJSTS, it would pass the enor up to the application, and abon itself; the
Font Manager would not be intialimi,

This version pretty much ignores any errors encountered in creating, reading
and/or updating the FONT.LISTS file. They do not cause FMStartUp to abort.
and no error condition or error code is reported to the application. In the case of
bad openings or bad reads, FMStartUp acts as thou~h FONT.LISTS is simply
invalid; it ignores FONT.LISTS and Dies to get the information it needs from
each individual font rue. This cure is considerably broader than the disease,
because the specific error "Disk Write-Protected" is not special cased- all
ProDOS errors concerning FONT .LISTS are handled in this same new way.
Since there are so many different ProDOS errors to consider, we should keep an
eye out for any bugs that may inadvenently result from this change.

List Manager v2.1 (TOOL028) No Change

A.C.E. v0.2 (TOOL029) Audio Compression and Expansion Toolkit
D6 This is a new tool for system disk 3.2. A.C.E. is a set of utilities used to

minimi.z.e the amount of storage space or data transfer time necessary to work with
digitized audio samples of reasonable fidelity and length. A.C.E. compresses
eight-bit digital audio data to half its original size or less, or to expand previously
compressed data to its original size (in preparation for playback). By
compressing audio data, you expedite its storage and retrieval: not only will any
storage medium be able _to hold at least twice as much compressed as
uncompressed audio, but the effective data transfer speed between the computer's
CPU and secondary storage devices, such as floppy disk or hard disk, is twice as
fast for compressed as for uncompressed data.

Refer to the A.C.E. ERS for more information.

Midi Tools v0.3 (TOOL032)
r:n This is a new tool for system disk 3.2. The MIDI tool set provides a software

interface that allows developers to communicate with external musical
synthesizers and other equipment that accepts the MIDI (Musical Instrument
Digital Interface) communication protocol.

Refer to the Midi Tool Set ERS for more information.

Image Writer Driver v2.0d3
D2 This is a major rewrite of the driver. Low level routines were modified,

restructured, or even eliminated. Low level routines that were never published
but accessible by the user have now been eliminated.

The following speed enhancements have been incorporated:
L Faster imaginJ routines

' b. Faster detemunation that no image is to be printed.

.
System Disk v3.2 Change History Page 14 1/25/88

c. Not clearing buffers that were already clear.

iVres DOW reflects venical condensed printing.

320 mode landscape with vertical condensed was fixed. It was imaging too high
on the page .

The job dialog's FROM line edit box was fixed so that the insertion point and
editing is correcL

D3 Oloices selected in the style dialog and print dialog would not be updated due to
internal version number inconsistency.

When the quality of printing selected is "Best Text" the image writer driver would
inrcnnittently skip lines. This has been fixed.

1be call PrChanged has been renamed to GetDeviceName. The PrChanged call
used to get the address of the printer device suing ("Image Writer") and then make
a call to the pan driver that was currently loaded and pass this address to that pon
10 handle. GetDeviceN arne now just gets the address of the printer device string
and returns back to the calling program with this infonnation.

D4 1be call GetDeviceName which was first implemented in the previous version has
aow been changed back to PrChanged. The functionality of this call is the same
as it was in vl.3 of the image \\'Titer driver. This call was changed back to the
way it has always been to insure compatibility with the old print manager and
appletalk port driver.

LaserWriter v2.0d7
Dl This driver will eventually replace the existing LaserWriter driver. The main

feature of GSLaser is its independence from a resident Laser Prep file. This
feature wDI eliminate tbe need to reinitialize the printer whenever printing is done
from machines running different versions of drivers and prep flies.

Currently, GSLaser only supports text printing and minimal font style suppon.
Those font styles not supponed are: underline, outline, and shadow.
Downloading of bitmap fonts are also not supponed. Until these features are
supponcd the original LaserWriter driver will continue to be included in the
release.

D2 The font styles: underline, outline, and shadow are now supponed.

03 ~I map printing has been added, but the call PrPixelMap is still not working.

Tbe job dialog's FROM line edit box was fixed so that the insertion point and
editing is COITCCt.

DS 1be following are now functional:
1. QuickDraw objects: Rects, RoundRects, Ovals, Arcs, Polygons, Lines
2. Panems
3. GreyScale/Color Text

. Ja &be prevjou.s version of GSLaser, fonts other than Helvetica, Shaston, Courier,

System Disk v3.2 Change History Page 15 1/25/88

and Monaco wouldn't prinL Now all fonts are printable.

No outline and shadow styles for Courier. (You can select these styles but they
just won't do anything while you have Courier selected.) Also, no outline and
shadow styles for Monaco if font substitution is on.

D6 Clanged name from GSLaser to LaserWritcr as all features in the old·
LaserWritcr driver are now implemented.

Status update bug fixed.

This version can now print using LaserWritcr Plus fonts.
FontiD: (Decimal values, not hex.)

ZaptDingbat = 13
Bookman= 14
Helvetica Narrow = IS
Palatino = 16
ZapfChancery = 18
A vantGarde = 33
New~nturySchoolbook = 34

f11 picComments processed by the LaserWriter driver:

~
PostScriptBegin
PostScriptEnd
PostScriptHandle
PostScriptFlle
TextlsPostScript

Kind
190
191
192
193
194

~
0
0

0

Handle
ND..
NIL
PSData
FileName
NIL

These picComments allow the application to bypass Quic:kDraw U and send
PostScript commands directly to the LaserWritcr. The application can use these
picComments to take advantage of the advance capabilities of PostScript that is
not available through QuickDraw n. The application can also optimize its
LaserWritcr printing code to aeatc the effects it needs without going through the
more generalized QuickDraw n procedures.

There are three ways to send the PostScript commands: the comment handle can
point to the actual ASCD data (PostScriptHandle) or point to the pathname of the
file which contains the commands (PostScriptFile); or the commands can be sent
via QuickDraw StdText calls (TestlsPostScript). The data size of the
picComments PostScriptHandle and PostScriptFile should contain the length of
the data. Be sure to bracket all Postscript picComments with matching
PostScriptBegin and PostScriptEnd to notify the driver of the mode switch.

Warnjnes;

Unexpected results will occur if these guidelines are not foilowed:

• Make sure the PostScript commands are syntactically correct since no
error checking is perfonned by the driver on the PostScript texL .
• These comments operate within the framework of a single print job.

System Disk v3.2 Change History . Page 1 6 1/25/88

Normal Print Manager calls should still be used to set up the printing loop.

•lbe following PostScript operators should not be used since they can alter
some print job related conditions set up by the driver:

exitserver
initgraphics
arestoreall
erasepage
showpage

• Tenninate the PostScript text with a return character.

• The current transformation matrix has been set by the driver to correspond
to the coordinate system and navigational needs of QuickDraw D. Any text
·printed in this matrix will be flipped vertically across the center of the page,
i. e. upside down. The application will have to set the current
ttansfonnation matrix according to its own needs.

• Be "Good PostScript Citizens" as defined by Adobe, e. g. defme a local
dictionary mther than using userdict; leave the persistent parameters alone;
etc.

• NEVER nest PostScriptBegin and PostScriptEnds.

Examples of use of these comments can be found in Chapter 3 of the LaserWritcr
,Reference Manual.

Printer Driver vl.O No Changes

ModemDriver 'Vl.ldl
Dl Code added in DevOpen to initialize printer. Somes files could not be printed

without this iDid.alization. ' ·--~ - '- -·-- - '

AppleTalk Driver v2.0d2
D3 Several new calls have been added to suppon printing over zones.

GetZoneList - call number $3113
This call goes out on the net and returns the number of zones found and a
list of all the zone names.

CietMy7.Dne - call number $3213
This c:alJ returns the name of the zone that your computer is physically
hooked up 10.

GetPrinterList - call number $3313
This call "'QU~s as input a zone name and device name (i.e. LaserWriter,
Image Writer, etc ..) and returns a list of all printers of the type you specify
-and in the zone that you specify.

The can DevPIOlanged has been modified so that an it does is check to see if the
Apple Talk pon has been selected in the conrrol panel. If AppleTallc is not selected
an alen box comes up saying. "AppleTalk is not selected in the Control Panel".

'Before establishing c:onnecdon to a device out on the net (i.e. LaserWriter,

System Disk v3.2 Chance History · Page 1 7 1/25/88

Image Writer, etc ...) a network name must be formed which describes what and
where this device is that you are looking for. The networlc name consists of:
"PrinterName:DeviceName:ZoneName". The call DevStanup used to accept only
one paramter from the calling program which was this network name. Now
DevStanup accepts three parameters, a pointer to the Printer Name, Device Name,
and Zone Name, which it takes and appends together Oeaving out any unnecesary
characters at the end of each name) fonning the network name.

11le strings, printer name, device name, and zone name have been increased from
a limit of 16 characters long to 32.

The auxiliary file type of the Apple Talk driver has been changed from 2 to 3.

D4 The paramter block for the appletalk call Getlnfo has been changed. In the
prev1ous version this parameter block did not reserve space for an extra 2 bytes of
data returned from the Getlnfo call. This extra 2 bytes of data was spilling over
onto the parameter block of the next call, which was GetZoneLisL Therefore no
zones were found

Several changes were also made due to changes to the print drivers changing the
call GetDeviceName back to PrChanged.

AppleTalk Olooser vl.2b4,
D2 Corrected the device type for the "Business Writer" printer so the program now

recognizes them.

Created some new overlays.

Selecting "Serial Port" now causes the names window to clear out and also
displays a message confirming that the serial port was selected.

A founh window has been added to handle ports (there are no longer radio
buttons to toggle) .

If the Chooser is launched from a local volume, the A TINJT file in the root
directory of that volume is the one that is used. If the Chooser is launched from a
network volume, the A TINIT file used is the one found in the following folder:
/User Volume Name/USERS/User Name/. For example: if a user named "FRED"
launches the Chooser from the network volume "JUNK", and the fmt User
volume mounted is called "SYSTEM. USERS', the ATINIT file will be found in
the following folder: /SYSTEM.USERS/USERT/FRED/.

The User name is now stored on the card by the Chooser program.

The User name is non-editable if the Chooser is launched from a network
volume.·

Hitting the <ESC> key while in the edit box no longer causes a ·-·character to
appear.

The Chooser program now conforms to the new ERS (August 11, I ?87) in terms
of window and button placement, button codes, help text, etc .•

System Disk v3.2 Change History Page 18 1/25/88

The word" Apple Talk" is now spelled correctly in all places

The Chooser now locates teh correct A TINJT file if launched from ProOOS 16 on
a DGS using built-in Apple Talk (not a workstation or server card).

Added another device type - "Apple Talk Image Writer I". Changed device type
"AppleTalk Image Writer" to "AppleTalk ImageWriter D".

If the Olooser is run off the network by "<Any User>" and the serial pon is
selected, this configuration will not be saved in the "<Any User>" A TINIT file.

If the serial pan is selected by a user and saved, the next time the Chooser is run
the pon window will initially show "Serial" highlighted.

FIXed bug where two printers with similar but different names (for example: "aaa"
and 'Uax") would confuse the program as to which one to highlight as the
selected printer.

Expanded the names window to display names 31 cbaracacrs long.

D4 If a new printer is selected or a new user name is typed. the program will bring up
a dialog window asking whether to save the changes or noL

"'be "Apple Talk" pon bas been renamed the "LocaiTalk" pen

DS The chooser now looks for the A TINIT file in the . ./USERS/user name/Setup/
i:llder when launched off a network volume.

AppleTalk Namer vl.2b2
m A keyboard interface now bas been added.

.

'The LQ Apple Talk Image Writer device was added.

Hitting the <ESC> key while in the edit box no longer causes a •_• character to
appear.

'The Namer now conforms to the new ERS (August 13. 1987). The "Rename"
button has been removed and an "Accept" button put in it's place. Also, the
various windows have been moved around slightly.

1be pogram now displays up to 32 different names per device.

Clanged device type :_Apple Talk Image Writer" to" Apple Talk Image Writer ll".
Clanged device type "LQ AppleTalk Image Writer" to" AppleTallc Image Writer
LQ".

FDcd bug wbere both lhe device type window and the names window would·
scroll simultaneously.

Program now checks if an enor occured while renaming the printer.
--rhe user can no longer enter illegal characters (•. :. @. *). The Namer will now

beep and aot display the character •

System Disk •3.2 Cbange History Page 19 1/25/88

Expanded the names window so it will display 31 characters.

Added a delay when confinning renamed LaserWriters so an error wouldn't be
irK:omctly reponed.

AppleTalk IWEM v1.2 No Olanges

System Utilities v3.1d9
Dl Before deleting all the files in a subdirectory, system utilities asks the user for

permission to delete all locked files in the subdirectory without prompting for
each one. No matter which way the user replied, system utilities would prompt
for each locked file. Now if the user selects "delete ALL locked files", they are
all deleted with no funher prompts.

System utiliites did not return an error when the user tried to save the serial port
settings on a write-protected disk. It now checks for an enor when saving the
settings file and displays the appropriate error message should one arise.

When "Copy Files" copied a file, it would not detect the end~f-file properly and
would perform about 60 writes of zero bytes (doing nothing). "Copy Files" now
detects the correct end-of-file and stops there.

On the "Rocky and Bull winkle" network, deleting a list of files that was nested
several subdirectories deep would not work (It would delete every other rue, then
give an V0 error). All files can now be deleted correctly across the network.

D2 1be tree walldng routines used in "Delete Files" and in "Copy Files" were
rewritten for speed. The new ones are about 2.5 times as fast as 3.1dl and about
20% faster than System Utilities 3.0.

Network devices are removed from fhe device table on startup and iestored on · -
exit This allows System Utilities to work with the newest version of the Rocky
&. Bullwinlcle firmware and software.

Saving serial pon settings on a write protected disk did not generate an enor.
Now it does.

Copying files from an unformatted disk or a Macintosh formatted disk use to
hang. Now it generates a read/write error.

Renaming a file to a duplicate name aborted the entire rename process. -It now
brings up the screen "Enter New Name".

When duplicating or formatting a disk. the fifteenth character of the default name
was dropped. This no longer happens.

megal volume names were accepted when duplicating disks. Now a "Bad
Volume Name" error is returned.

Copying a large number of files resulted in an endless repetition cl copying the
first file. System Utilities now copies all the files and only once. -

System Disk v3.2 Cbange History Page 20 1/25/88

When copying or deleting flles, if the names did not fit in memory an enor is
~turned. However, if the names were such that the buffer would be exactly fllled
at one point, the error would not be detected and System Utilities would crash.

When asked to insen a source or destination disk on single drive operations,
System Utilities aboned the operation if you did not insen a disk. Now it
prompts the user to insen a fonnatted disk.

System Utilities now remembers the last choice the user makes between "Slot &
Drive" and "ProOOS Pathname" and uses this as the default

No error message was put up when trying to copy subdirectories that were nested
too deeply. Now an error message is put up and then the process is aboned.

Duplicating a ProOOS disk onto a Pascal one now works.

For the operations Fonnat, Verify, and Rename Volumes the user was prompted
with having to enter "Slot and Drive". Before being able to actually enter a slot
and drive nwnber the user had to press return. This unnecessary step has now
been eliminated. ·

The user was unable to a bon from the "Renaming Files" process. Now when the
<ESC> key is hit the renaming process is aboned.

The word "Done" is now displayed in the correct place after a single drive
duplication.

When duplicating a DOS 3.3 disk, System Utilities would prompt for a DOS 3.3
volume name, and thus produce garbage on. the scr=n. Utilities no longer
prompts for a DOS 3.3 volwne name.

Listing volumes and then cataloging a DOS 3.3 disk no longer cra.Shcs.

"'Rename Files" now skips the rename call and continues to the next name if the
original file name and the new file name are the same. This fixed a duplicate
name error when renaming pascal files.

A breakpoint was left in the program in version 3.1d3. This caused System
Utilities to crash after deleting or copying files. This has been taken out for
v3.ld4.

Some minor code crunching was done and some obsolete strings were removed.
1bis was done to provide space for the bug fiXes and enhancements.

D4 When loading System Utilities from BASIC on an enhanced nc, mousetext was
JK>t turned on. Now it is. (Bug AOI002RBU)

When translating files between operating systems, one dialog box had "cannot"
misspelled as "can not". (Bug DAC034RBU)

System Utilities trashed memory whenever the "Please insen a disk dialog" was
, displayed. This caused several problems, all of which are now flied. (Bug
ELCUil.006)

System Disk v3.2 Change History Page 21 1/15/88

. · .

When an enoroccurred in "Duplicate a Disk", trying to duplicate another disk
would not work properly. This has been fiXed. (Bug DAC026RBU)

System Utilities no longer prints "Done!" when you escape out of "Duplicate a
Disk". (Bug DAC027RBU)

Copy files aboned after 198 subdirectories had been copied. Copy files will now
copy as many su~tories as needed. (Bug DAC011RBU)

Fonnat a disk now allows 1 fifteen character volume name. (Bug DAC032RBU)

Copying files with 1 single drive would not work when copying subdirectories.
(Bug DAC002RBU)

ESC now returns user to the main menu when it finishes from setting serial pons.
(Bug DAC024RBU)

The "About System Utilities" function left two bytes on the stack. This would
cause a crash after about 130 accesses. This has been fiXed. (Bug DAC025RBU)

System Utilities lost serial pon settings if you exited the "Set Serial Port" section.
Now it will retain these settings until the next time you launch System Utilities
and reenter the "Set Serial Pon" section. (Bug WMP004WMP)

When copying files to network volumes, System Utilities would think the disk
was full before it rully was. Now System Utilities does not do any size checking
on network volumes, so if the files won't fit the user doesn't get a message until
the disk is already full.

In v3.1d1 of System Utilities 1 bug was introduced when copying large files
(>513 blocks). The bug would cause large files to be trunCated to 257 bloCks
when copied. This has now been fixed.

For the operations Format, Verify, and Rename Volumes the user was prompted
with having to enter "Slot and Drive". Before being able to actually enter a slot
and drive number the user had to press return. This unnecessary step has now
been put back in. (Undoes a change made back in v3.2d2 of the system disk.)

DS When 1 copy from one directory to another on the same disk was made, System
Utilities thought this was a single drive copy where the disks needed to be
swapped. This has been fixed. (Bug DAC047RBU and DAC048RBU)

Clanged the "Duplicate Volume" error message to be more specific.

System Utilities crashed after ruMing out of memory when deleting files. This
problem has been fiXed. (Bug JGMOOIRBU)

XON/XOFF were not being set correctly. System Utilities now sets these
correctly, but the fumware does not use the default settings properly. This means
there is no easy way to verify System Utilities is setting this byte camcdy.
!

Copying DOS 3.3 files cleared the high bit of the file names, making the copies

..... System Disk v3.2 Change History Page 22 1/25/88

inaccessable. This has been fixed.

1be message that a file is locked. would sometimes overlap the boundaries of the
box when DOS 3.3 files were being deleted. This box has been expanded and the
message is now centered in the box.

When copying subdirectories from ProDOS pathname to ProDOS pathname,
System Utilities needlessly prompted for the source and destination disks. Now it
doesn't.

D6 When duplicating a disk, System Utilities gave an error if there was a slash on the
end of the name. Now it longer does.

XOn/XOff has now been fixed. System Utilities now sets the correct byte in the
screen holes, so the fmnware will enable XOn!XOff.

When deleting files from the network, System Utilities got confused if it tried to
delete a file inside a folder that had "make changes" disabled. Now utilities puts
up a message saying the disk is write-protected and cancels that particular file.

More raes to "Copy Files". Now Pascal and DOS 3.3 files are handled corTeCtly,
that is, they have the high bit set and cleared respectively.

Faed DOS 3.3 renaming problems. Now the new DOS 3.3 name can contain up
to 30 characters instead of being prematurely truncated at 16. Also, they can now
contain slashes and spaces.

FIXed ProDOS to Pascal file transfers. If the source file was an odd number of
blocks, the destination file used to be padded with about 32,000 blocks of zeroes.
This would produce either a disk full error or an 110 error.

FIXed Pascal file copy bug. When copying over an already existing pascal file,
System Utilities displayed a read/write error. This was due to improper deletion
of the already existing file.

Copying over particular DOS 3.3 rues generated an endless loop. This was due
to improper error reporting from DOS 3.3 delete flles. (Bug IDAC061RBU)

FIXed Pascal to ProDOS copy files problem. When System Utilities transferred
files from Pascal to ProDOS, it would cut out pieces of the file at semi-random
intervals. Now you can transfer a file from ProDOS to Pascal and back, compare
the two files and get an identical resulL

BASIC.SYSTEM (ProDOS AppleSoft Command Interpreter) vl.2b3
m Olange CATALOG in <CMDS2>, 8076 from 8EQ ENDCAT to NOPINOP,

B07C from BCS CCA TERR ($80 $3A), and 80Al from BPL ($10) to BCC
($90). The net effect of these changes is to ra a bug reponed by Paramus
(Apple Talk) in which a conflict occurs between TOTENT, the word specifying
the number of entries in the ProDOS directory and the actual enumerated entries.

Splash screen changed to "1.2" and "COPYRIGHT APPLE,t983-J7"

DS ContiOI Son a CATALOG prematurely aenninated if a subsequent "space" is

System Disk v3.2 Change History · Page 2 3 1/25/88

pressed. This has been fixed.

BASIC.Launcher v2.0 No Changes

Fonts vl.O
Courier, Geneva, Helvetica, Shaston, Times, Venice No Changes

D6 All the 12 point fonts have been removed.

System Disk v3.2 Change History Page 24 1/25/88

Graphics Ima~e File Format Standard for
APPLE II GS

February 18. 1987

Unpacked format

PROPOS FILETIPE: AuxiXPe: SQQQQ

This type will contain a file with a full 32K Picture image - unpacked form. So far, this is
the only one established and supponed by APPLE. Currently, it is being used in
PAINTWORKS from ACTIVISION also. Note: The flrst release ofPA.INT\VORKS
assumes the pallets colors have been ordered from highest to lowest luminence.

AuxType: $0001 -> SFFFF

These have not been defined as of yet and their assignment and administration will be set
up by APPLE.

Packed format

PROPOS FILETIPE: Auxiype: SQQQQ

ACITVISION ftle format. This has been assigned to ACI1V1SION and is used as a special
format for their fli'St release of PA.INT\VORKS. Its format is as follows:

Bvtes S000-$01F:
B~tes $020-$021:
B~tes $022-$221:
Bytes $222-..• :

PROPOS ALETIPE:

Pallet
Background color
16 Patterns, 32 bytes each
Packed Picture

Auxiype: SQQQl

PACKBYTES type packed flle format. This type of file is created by passing the full 32K
image (including SCB's and Color tables) to the _PACKBYTES ROM routine of the
~tiscellaneous tools toolset. N.B. it can be passed as sequential smaller buffers as deflned
in the _p ACKBYTES routine.

J

Graphics File Format February 18, 1987

PROPOS FILEIYPE: AuxType:

APPLE Prefered standard interface format (This is what we recommend all developers to
use - and be able to suppon). The file is composed of a series of blocks. Each block has
the same format:

Length
Kind

Block Specific Data

Longlnt (includes the size of longint too)
string with length byte (this string is case
sensitive - upper case is recommend to avoid
confusion.)
Variable amount of data

Below we define some standard blocks that most applications will want to put in the f:tle.
Other blocks can be defined by individual applications. Using this scheme, the format is
extensible. Applications with differing needs can store everything they need about a
document in a fl.le, in a way· that will allow other applications to ignore the information it
cannot deal with.

The predefined blocks are MAIN, PATS, and SCIB. The 'MAIN block should be in every
file of this format and every application which suppons this format should be able to read a
MAIN info block. The PATS block contains patterns which may be associated with the
picture. The SCIB block contains information relating to the cUITent drawing pattern for
the "document." These are used by paint programs that want to save the foreground _J
pattern, a background pattern and a frame pattern with the image.

The Pallets in the Mainlnfo block are numbered from 0 and correspond to the modes in
scan line directory. If there are more than 16 palletes, the remaining ones are dealt with
arbitrarily by the application.

The MAIN info block:

SizeOfBlock
IDString
Master Mode

PixelsPerScanLine
NumPallets
PalletArray
NumScanLines
ScanLineDirectory
PackedScanlines

The PATS info block:

S izeOfB lock
IDString
NumPats
PatternArray

Steven Glass

Longlnt
str 'MAIN'
Mode Word (This comes from Quick.Draw's

MasterSCB)
~teger (Must not be zero)
mteger (May be zero)
[O .. N umPallets-1] of Pallet
integer (Must not be zero)
[O .. NumScanLines-1] of DirEntry
[O .. N umScanLines-1] of Packed.Data

Longlnt
str 'PATS'
integer
[O ... N umPats-1] of Pattern Data

Page 2

Graphics File Format February 18, 1987

The SCIB info block:

SizeOfBlock
IDString
Foreground Pattern
Background Pattern
Frame Pattern

Data Types:

Integer

Longlnt

ColorEntty

word

LONG

word

Longlnt
Str 'SCIB'
PattemData
PattemData
PanemData

16 bit signed quantity

32 bit signed quantity

The nibbles in the word are interpreted as
RGB values as follows: $0RGB. The high
nibble of the high byte must be 0. The low
nibble of the high byte is the value for red.
The high nibble of the low byte is the value
for green, the low nibble of the low byte is
the value for red.

Pallet array [0 .. 15] of ColorEntry

Mode Word

DirEntry:

PattemData:

Steven Glass

word if high byte = 0 then low byte is the mode bit
portion of the SCB for the scanline.
Specifically, the low four bits which
determine the pallete number and bit 7 which
determines the mode are valide. Other bits
are not valid and must be zero.
Other modes not yet defined.

Number of bytes to unpack
Mode

:integer
: ModeWord

32 bytes of pattern information

J

PaS!e 3

Version 1.0 86

February 17, 1987

This utility will compact a Load File to make it smaller and load faster.
It does this by converting Load Files which use Version 1 Object
Module Format (OMF) to Version 2 and by compressing Version 2
OMF files through the use of SUPER compressed Load records.

WARN~NGU! Files converted with COMPACT can only be run on
systems using System Loader version 1.2 which has not been
released yet. The System Loader version is displayed under the
Pro DOS version dunng the boot prqcess.

COM PACT will also create certain Load Segment types that are not J
available under Version 1 OMF:

Reload Segments
No Special Memory Segments.

One use for Reload Segments is to make applications written in C
restartable from memory. For example, if a Shell utility is written in C.
it can be run through COMPACT wh1ch will convert it and mark the
-globals and -arrays segments as Reload Segments. When this
utility is "installed" into APW, it could be marked as "restartable" from
memory. Restarting will work because the System Loader will restart
the program segments of the utility from memory but will reload the
data segments from the file so that all the utility's data is reinitialized.

Currently, COMPACT will perform these operations:

• RELOC records will be converted to cRELOC records if eligible.
• INTERSEG records will be converted to ciNTERSEG records if

eligible.
• SUPER compressed records will be created replacing all

aligible INTERSEG, ciNTERSEG and cRELOC records.
• Version 1 Segment Headers will be converted to Ver~ion 2 format:

• Old KIND field converted to new KIND field .
• Old KIND=$1 E will cause No Special Memory bit to be set

• Old KIND=$1 F will cause Reload Segment bit to be set
• BLKCNT will be converted to BYTECNT
• VERSION will be changed from 1 to 2

• Version 1 Segments which are on block boundaries will be
packed one after the other as defined in Version 2

• Data segments -globals and -arrays will be made into "reload"
segments

Here is an example of the impact of a compaction:

C Compiler before compac!iQn C Compiler after compaction

Size: 319 blocks 225 blocks (29°/o smaller)
Load Time: 18 sees (from SCSI HD20) 14 sees (22o/o faster}

Calling Sequence:

COMPACT inputfile [outputfile]

Parameters:

inputfile - Load File to compact (may contain wildcards)
outputfile - New Load File to create

If only the "inputfile" is specified, the file will be converted in place. If
a wildcard is specified in "inputfile", all files that satisfy the wildcard
will be converted. Note: the wildcard facility can only be used in the
"inputfile" with no "outputfile" specified. For example:

COMPACT /x/yl=

will convert all files in subdirectory "/xly" that are Load Files (i.e. File
Types $B3-$BE). Files which are not Load Files will be ignored.

J

December 18, 1986
February 11, 1987

QuickDraw Auxiliary Tool
External Reference Specification

Steven Glass
February 11, 1987

Initial Release.
Added Drawicon.

J

QuickDraw Auxiliary Tool Set

The QuickDraw Auxiliary Tool Set contains functions and features that did not appear in the
QuickDraw Tool Set for time and/or space reasons. These include:

Copy Pixels

WaitCursor

Pictures

Text Styling

Draw leon

February 11, 1987

A call similar to the Macitosh QuickDraw call Copy Bits which
stretches or compresses images to make them fit in the indicated
destination rectangle.

This call changes the cursor from whatever it is to the watch
cursor.

These are the routines that record and play back drawing
commands. The entry points to these routines are part of the
QuicDraw tool set but through various forms of black magic, the
code which does the work is part of this tool set.

The QuickDraw Tool Set knows how to make a font bold and tf
underline it· Macintosh Quick.Draw suppons outline, shadow.­
italics. With the QDAux toolset loaded you Quick.Draw II can
outline text and in the future will be able to shadow and italicize
too.

This routine is used to draw an icon in the current pon.

QuickDraw Aux ERS Page 2

QuickDraw Auxiliary Housekeeping Routines

QDAuxBootlnit Call Number $0112

Internal routine called at load time to initialize the QuickDraw Auxiliary Tool Set.

No Stack Parameters

QDAuxStanup Call Number $0212

Call made by an application if it wants to use the QuickDraw Auxiliary routines.

No Stack Parameters

QuickDraw must already be initialized when this call is made. This call links the QDAux tool
set into QuickDraw by intercepting many of QuickDraw's low level vectors. The shutdown
call unlinks the tool set restoring QuickDraws original vectors.

The QuickDraw Auxiliary Tool Set does not need any additional direct page. When it needs
space it shares the three pages already assigned to QuickDraw.

QDAuxShutdown Call Number $0312

Call made by an application to shutdown the QDAux tool set.

No Stack Parameters

J

This routine unlinks the QDAux tool set with QuickDraw putting back the original QuickDraw
low level vectors.

QDAuxVersion Call Number $0412

Returns the version number of the tool set.

Stack Before Call
I pri!Viow.s COfllenlS I
I space for wnion I
I I<·SP

Stack After Call
I pri!Viow.s COfllelllS I
I wrsion IIU1f'lber I
I I<·SP

QDAuxReset

Resets the Tool Set.

Call Number $0512

No Stack Parameters

This is called when the system is reset (CONTROL-RESET is pressed).

February 11. 1987 QuickDraw Aux ERS Page 3

QDAux.Active Call Number $0512

Returns true if the tool set is active, false otherwise.

Stack Before Call
I previous col'llellls I
I space for boolean I
I k·SP

Stack After· Call
I previous col'llel'lls I
I boolean resull I
I k·SP

J

February 11, 1987 QuickDraw Aux ERS Page 4

QuickDraw Auxiliary Useful Routines

Copy Pixels Call Number $0912

Copies a pixel map from one place to another stretching and/or compressing as necessary to
make the source pixels fit in the destination rectangle

Stack Before Call
I prmou.s col'llel'lls
I Srcl.«Ptr
I DestLocPtr
I SrcRect
I DeszRect
I XferMode
I MaskRgn
I

Stack Arter Call
I pr~u.s col'llents
I

I
I POINTER
I POINTER
I POINTER
I POINTER
I Pen Mode (WORD)
I HANDLE
lc·SP

I
I<·SP

If the destination Loclnfo record is the same as the Loclnfo record of the current pon. the
,pixels are also clipped to the current port's VisRgn and ClipRgn.

WaitCursor Call Number $0Al2

Changes the cursor to the watch cursor. You can restore it to the Airow cursor with an
InitCursor call.

No Stack Parameters

A desk accessory or tool can make this call even if it does not know if this tool set is loaded
or active. Since the call has no stack inputs. making the call an not checking for errors will
not cause any trouble. If the tool is not installed. the dispatcher will return an error and
nothing will happen.

February 11. 1987 QuickDraw Aux ERS Page 5

J

QuickDraw Routines Available because the QDAux Tool Set is Active.

The picture routines are routines in QuickDraw, but do not do anything unless the QDAux
tool set is active.

Picture OvelYiew. A picture is a record of drawing commands. To begin recording
commands you use the OpenPicrure call. OpenPicture returns to you a handle to the picture
being created. It also establishes the picture frame which is used in conjunction with the
destination rectangle to map objects from one space to another when the picture is drawn.

The mapping occurs as follows. If the picture frame is [0,0,100,100] and the destination
rectangle is [50,50,60,60], a line recorded from (10,10) to (90,90) would appear from
(51,51) to (59,59) when the picture is drawn.

The size of any text drawn is also scaled according to the picture frame to the destination
rectangle. Using the example above, a text size of 60 would appear as 6 when the picture is
drawn. When the horizontal and vertical coordinates are not scaled an equal amount, a
question arrises of how to choose an appropirate scaling factor for the fonL We just use the
vertical change to select the correct sized fonL

The font manager handles all the font scaling so must be loaded and intialized before any
Draw Picture command is issued.

One of the most common uses of pictures is for printing. The Print Manager uses pictures _J
to record what you want to put on a page. Then it plays back the picture over and over
again into a band buffer that is then printed. This way your application only has to record
the drawing commands once and the print driver can use the picture for the specific band
buffer it needs to deal with.

Another cotnmon use for pictures is data interchange between applications. Pictures are one
of the most common ways applications pass information back and fonh between one
another. It is one of the two standard types defmded by the scrap manager for the
clipboard.

The Picture Calls.

OpenPicture Call Number $B704

OpenPicture allocates memory for recording of quickdraw calls. It returns a handle to the
picture that is opened.

Stack Before Call
I pr~us COIIUIIlS

I Spactfor HallliU
I Pid'rame

Stack After Call
I pr~v.s COIIltlllS
I PicliiTt Handl4
I

February 11, 1987

I
I LONG
I POINTER

I
I HANDLE
I<·SP

QuickDraw Aux ERS . Page 6

OpenPicrure also calls HidePen, so no drawing occurs on the screen while the picture is
open (unless you call Show Pen just after OpenPicture, O"' .,-ou called Show Pen previously
without balancing it by a call to HidePen).

When a picture is open, the cutTent grafPon's PicSave field contains a handle to information
related to the picrure definition. If you want to temporarily disable the collection of routine
calls and picrure comments, you can save the current value of this field, set the field to NlL,
and later restore the saved value to resume the picture definition.

You cannot call OpenPicrure when a picture is already open.

Warning: A gra.fPon's ClipRgn is initialized to an arbitrarily large region. You
should always chang~ the clipRgx1 to a smaller region before calling OpenPicrure to
gt;.arentee that when drawing occurs and the OipRgn is mapped from the PicFrame
to the DestRect, it is still valid.

Close Picture Call Number $B904

ClosePicture tells QuickDraw to stop saving drawing calls and picture comments into the
currently opened picture.

No Stack Parameters

You should perform one and only one ClosePicture for every OpenPicrure. ClosePicrure
calls ShowPen, balancing the HidePen call made by OpenPicrure.

Pic Comment Call Number $B804

Stack
I
I
I
I

Before Call
previous co111e111s

Kind
DaJaSiu

DazaHandJe

Stack After Call

I
I integer
I integer
I HANDLE to data

I previous collll!flts I
I 1<-SP

PicComment insens the specified comment into the currently open picrure. The kind
parameter identifies the type of comment. DataHandle is a handle to additional data if
desired and DataSize is the size of the data in bytes.

If there's no additional data for the commant, DataHandle should be Nil.. and DataSize
should be 0. An application that process the comments must inlcude a procedure to do the
processing and store a pointer to it in the data structure pin ted to by the GrafProcs field of
the GrafPon.

Note: The standard low-level procedure for processing picture comments simply
ignores all comments.

Draw Picture Call Number $BA04

Stack Before Call

February 11, 1987 QuickDraw Aux ERS Page 7

J

prevwus contents
PicHONile
DesrREcr

Stack After Call
I previous contents
I

I
I HANDLE
I POINTER

I
I<·SP

Draw Picture takes the recorded drawing commands and maps them from the picture frame
into the destination rectangle (specified here) and draws them.

Draw Picture passes any picruer comments to a low-level procedure accessed indirectly
through the GrafProcs field of the GrafPon (see PicComment above).

Warning: If you call Draw Picture with the intial arbitraily large clip Rgn and the
destination rectangle is offset, or larger from the picture frame, you may end up with
an empty ClipRgn and no drawing will be done.

KillPicture Call Number $BB04

KillPicrure releases all the memory occupied by the given pcirure. Use this only when
you're completely through with a picture.

Stack Before Call
I previous contents I
I PicHON:ik I HANDLE

Stack After Call
I previous contents I
I I<·SP

February 11, 1987 QuickDraw Aux ERS Page 8

Draw Icon Call Number$0B12

Draws the specified icon in the specified mode at the specified location clipping tot the
current clip and vis regions. This routine will not contribute to a picture nor get printed.

Stack Before Call
I pr~us cofllenls I
I lconPtr
I D.isplayModJ!
I XPosirion
I YPosition

Stack Arter Call

I POINTER
I WORD
I integer
I integer

I pr~us coments
I

I
lc-SP

The icon data structure is as follows:

Icon Type

IconSize

IconHeight
Icon Width
Iconlmage

Icon Mask

word

integer

integer
integer
bytes[IconSize]

bytes [IconS ize]

Bit 15 is used to indicate whether the
icon image has color or black and
white information in it. Setting bit 15
to one implies that it is a color icon
and cannot be colored otherwise.
This is the number of bytes in the icon
image and mask.
This is the height of the icon in pixels.
This is the width of the icon in pixels. J
This is the icon image. It is IconSize -
bytes long. Each row of pixels is
1 +(Icon Width-1)(). bytes wide.
This is the mask. It is IconSize bytes
long. Each row of pixels is
1+(IconWidth-1)(2. bytes wide·.

The display mode word has the following fields.

BitO
Bit 1
Bit 2

Bits 3 thru 7

Bits 8 thru 11

Bits 12 thru 15

Set implies the icon is SELEcrED.
Set implies the icon is OPEN.
Set implies the icon is OFF LINE.

are reserved.

are the foreground color to be applied to the black pan of
black and white icons.

are the background color to be applied to the white pan of
black and white icons.

When the mode word is zero, the icon is copied to the destination through the specified
mask. When bit 0 is set, it image is invened before copying. When bit 1 is set, a light grey
pattern is copied instead of the specified image. When bit 2 is set, the light grey pattern is
ANDed to the image being copied. All three of these operations can occur at once and the
order the testing occ~ in is

bit 1 (is it open)
bit 2 (is it off line)

February 11. 1987 QuickDraw Awe: ERS Page 9

bit 0 (is it selected)

Color is only applied to the black and white icons if bits 8 thru 15 are not all zero.

Color inversion. Colored pixels in an icon are invered as follows:

Black Pixels become white
Any other color becomes black

February 11. 1987 QuickDraw Aux ERS

J

Page 10

Documentation Developpeurs
Apple Computer France 1987

Document developpeur numero 51

type d'upgrade de ce ducument : 5
1 Documentation de premiere categorie inchangee
2 Documentation de deuxieme categorie mise a jour
3 Documentation de deuxieme categorie inchangee
4 Mise a jour payante de Ia documentation de premiere categorie
5 Mise a jour gratuite de Ia documentation de premiere categorie
6 Nouveautes payantes non vitales
7 Nouveautes gratuites et vitales

Taille : 41 page(s) environ

Domaine :Tool 03

W'~(PJ~~@[N] ~ ©©~®~

[Q)~u~ ~ ~®o~©o®®

0 Cortland Miscellaneous Tools

October 29,1986
Written by Ray Montagne & Eagle Berns

Revision History •••••

March 10, 1986 Ver. 0.81 R. Montagne Major revisions to the Miscellaneous Tool Set have occured.
The Integer Math functions have been removed, and now comprise the
INTEGER MATH TOOL SET. The Pascal and Basic I/0 functions
have also been removed, and are now found in the TEXT TOOL SET.
A stack pointer indicator (sp->) has been added to the parameter lists
for clarity. Basic functionality of most tool functions remaining in
the 1\tfiSCELLANEOUS TOOL SET has not changed. However, all
of the function numbers have changed. Many of the functional
descriptions have been rewritten for clarity. Functions that have
changed are: (1) INTERRUPT CONTROL TOOLS

(2) FIRMWARE FLAG TOOLS
(3) INTERRUPT ENABLE ST A TIJS TOOLS

March 12, 1986 Ver. 0.82 R. Montagne System Death Manager. Additional information on interrupts source
control (Keyboard interrupts). Additional information on .the
environment when using Firmware Enrry. Additional information on
installing ROM based rasks into the HeanBeat queue.

April18, 1986 Ver. 0.83 R. Montagne ID Manager Type 8. System Death Error Codes. Additional Vectors.

April23, 1986 Ver. 0.84 R. Montagne Added vectors for STEP and TRACE. Additional parameters in the
GET ADDRESS function. This is the BET A 2.0 Implementation.

April29, 1986 Ver. 0.85 R. Montagne Added functions to set and get clamps for absolute devices. Mouse
calls will return an error if the card is not switched in rather than call
the system death manager.

May 9, 1986 Ver. 0.86 R. Montagne ID Manager ID assignments. Read ASCII time (state of MSB).
Set/Get Vectors.

June 11, 1986 Ver. 0.87 R. Montagne Added SETUP FILE ID to ID Manager.

June 26, 1986 V er. 0.88 R. Montagne No functional change, just added examples.

July 9, 1986 Ver. 0.89 Montagne/Bems Added SCRAP MANAGER ID tag. Eagle's Examples!!

July 16. 1986 Ver. 0.90 Montagne

System Death Syntax. System Death messages and Language
Card. More descriptive death codes. Stack example in MUNGER
w~ corrected.

Corrected tool number in death codes.

Cortland Miscellaneous Tools

Aug 20. 1986 Ver. 0.91 Montagne

Oct 20. 1986 Ver. 0.92 Berm

Oct 29, 1986 Ver. 0.93 Montagne

R. Montagne, E. Berns

Oct 29, 1986

WriteHexTime example. One Second interrupt handler example.
1/4 Second interrupt handler example. HeanBeat examples.

Fix example in Pack/Unpack bytes.

Added a function called SysBeep.

ti COl'."FIDEl\llAL ti Page 2

Cortland Miscellaneous Tools Oct 29, 1986

Miscellaneous Tools. So far the tools we have specified fall into broad catagories and each
deserve their own tool set. Unfonunately, ther are a number of routines in the flnnware that do not
fall into any of these categories but still must be accessed from nativ~ mode. These routines
include:

APPLE][entry points
Battery ram suppon
VBL or HeanBeat managment

Standard Tool Set Calls.

Mouse suppon
Interrupt suppon
System Death managment

MTBootlnit Function number = $01

Clock suppon
ID Tag managment

This tool call clears the TickCounter and the HeartBeat task link pointer. It
also sets the Mouse flag to 'NOT FOUND'. A block of memory with a
length of NIL is requested from the memory manager for use by the ID tag
manager.

Example:
_MTBOOTINIT

MrS tart Up Function number = $02

This does nothing.

Example:
_MTSTARTUP

'MTShutDown Function number = $03

This does nothing.

Example:

:MTVersion

Output
~>

_MTSHUTDOWN

Function number = $04

Word Space for result

Word Version number

This tool returns the version number of the Miscellaneous Tool Set.

Example:
PEA $0000 ; SPACE FOR RESULT
_MTBOOTINIT

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 3

Cortland Miscellaneous Tools Oct 29, 1986

.MTR.eset Function number = $05

This tool call clears the HeartBeat queue link pointer and sets the Mouse flag
to 'NOT FOUND'.

Example:

MTStatus

Input
sp->

Output
sp->

_MTRESET

Function number = $06

Word Space for result

Word Status ($0000=Inactive, $FFFF=Active)

This tool returns a status that indicates that the Miscellaneous Tool Set is
active.

Example:
PEA $0000
_MTSTATUS

MTSparel Function number = $07

This does nothing.

Example:
_MTSPAREl

MTSpare2 Function number = $08

This does nothing.

Example:
_MTSPARE2

; SPACE FOR RESULT

R. Montagne, E. Berns tt COI'i"FIDEJ'.'TL\L tt Page 4

Cortland Miscellaneous Tools Oct 29, 1986

Battery Ram Tools. These routines allow the non volatile battery backed up ram to be read or
written.

WriteBRam

Input
sp->

Function number= $09

Long Word Buffer Address

The 252 bytes of data at the memory location specified by the Buffer
Address plus four bytes of checksum data is written to the battery ram.

Example:

ReadBRam

Input
sp->

PUSHLONG #LABEL
_WRITEBRAM

Function number = $0A

Long Word Buffer Address

; BUFFER ADDRESS

The 252 bytes of data plus four bytes of checksum data is read from the
battery ram and stored at the memory location specified by the Buffer
Address.

Example:

WriteBParam

Input
Input

sp->

PUSHLONG #LABEL
_READBRAM

Function number = SOB

; BUFFER ADDRESS

Word
Word

Data (low byte only)
Parameter Reference Number (0-255)

Data is written to the battery ram location specified by the Parameter
Reference Number.

Example:
PEA $0005 ; DATA IN LOW BYTE
PEA $0028 ; REF= STARTUP SLOT
_ WRITEBPARAM

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 5

Cortland Miscellaneous Tools Oct 29,1986

ReadBParam

Input
Input

sp->

Output
sp->

Example:

Function number = $0C

Space for result Word
Word Parameter Reference Number (0-255)

Word Data (low byte only)

PEA $0000
PEA $0028
_READBPARAM ..

; SPACE FOR RESULT
;REF= STARTUP SLOT

Data is read from the battery ram location specified by the Parameter
Reference Number.

R. Montagne, E. Berns ti CONFIDE1'11IAL ti Page 6

Cortland Miscellaneous Tools Oct 29, 1986

Battery Ram Parameter Reference Numbers:

$00 Port 1 Printer I Modem
$01 Port 1 Line Length
$02 Port 1 Delete line feed after carriage return
$03 Port 1 Add line feed after carriage return
$04 Port 1 Echo
$05 Port 1 Buffer
$06 Port 1 Baud
$07 Pon 1 Data I Stop Bits
$08 Port 1 Parity
$09 Port 1 DCD Handshake
$0A Port 1 DSR Handshake
SOB Port 1 Xon I Xoff Handshake

soc Pon 2 Printer I Modem
SOD Port 2 Line Length
$0E Port 2 Delete line feed after carriage return
$OF Port 2 Add line feed after carriage return
$10 Pon2Echo
$11 Port 2 Buffer
$12 Pon2 Baud
$13 Port 2 Data I Stop Bits
$14 Port 2 Parity
$15 Pon 2 DCD Handshake
$16 Port 2 DSR Handshake
$17 Port 2 Xon I Xoff Handshake

$18 Display Color I Monochrome
$19 Display 40 I 80 column
$1A Display Text Color
$1B Display Background Color
$1C Display Border Color
$10 50/60Henz

$1E User Volume
$1F Bell Volume

$20 System Speed

$21 Slot 1 Internal/ External
$22 Slot 2 Internal/ External
$23 Slot 3 Internal/ External
$24 Slot 4 Internal/ External
$25 Slot 5 Internal/ External
$26 Slot 6 Internal/ External
$27 Slot 7 Internal/ External
$28 Stanup Slot

$29 Text Display Language
$2A Keyboard Language
$2B Keyboard Buffering
$2C Keyboard Repeat Speed
$20 Keyboard Repeat Delay

$2E Double Click Trme

R. Montagne, E. Berns c CONFIDENTIAL ti Page 7

Cortland Miscellaneous Tools Oct 29, 1986

$2F Flash Rate

$30 ShUtcapsiLower~e
$31 Fast Space I Delete Keys
$32 Dual Speed

$33 High Mouse Resolution

$34 Month I Day I Year Format
$35 24 Hour I AM-PM Format

$36 Minimum Ram for RAMDISK
$37 Maximum Ram for RAMDISK

$38-40 Count I Languages
$41-51 Count I Layouts

$52-7F Reserved

$80 AppleTalk Node Number

$81-A1 Operating system variables

$A2-FB Reserved

$FC-FF Checksum

R. Montagne, E. Berns tl CO!'IriDE:l'.'TIAL tl Page 8

Cortland Miscellaneous Tools Oct 29,1986

Clock Tools. These routines allow the clock to be set or read. Setting the clock requires that the ·
time be passed as an input paramter in a hex format. Two tools are provided for reading the clocl.
One returns time in a hex format, while the other returns time in an ASCII format.

ReadTuneHex

Input
Input
Input
Input

sp->

Output
Output
Output
Output
Output
Output
Output
Output

sp->

Function number = $0D

Word
Word
Word
Word

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

Space for result
Space for result
Space for result
Space for result

Day of Week (0-6 where 0 = Sunday)
null
Month (0-11 where 0 =January)
Day (0-30)
Current Year minus 1900
Hour (0-23)
Minute (0-59)

·second (0-59)

Returns current time in Hex format.

Example:
PEA $0000
PEA $0000
PEA $0000
PEA $0000
_READTIMEHEX

WriteTuneHex Function number = $0E

; SPACE FOR RESULT
; SPACE FOR RESULT
; SPACE FOR RESULT
; SPACE FOR RESULT

Input
Input
Input
Input
Input
Input

Byte
Byte·
Byte
Byte
Byte
Byte

Month (0-11 where 0 =January)

sp->

Day (0-30)
Current Year minus 1900
Hour (0-23)
Minute (0-59)
Second (0-59)

Sets the current time using Hex format.

Example:
PEA $0104
PEA $560A

; FEBRUARY, 5TH
; 1986, lOTii HOUR

PEA $1900 ; 25Tii MINUTE, 0 SEC.

- WRITETIMEHEX

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 9

Cortland Miscellaneous Tools Oct 29,1986

ReadAsciJ.Time Function number = $OF

Input
sp->

Long Word AS CIT buffer address

Reads elapsed time since January 1, 00:00:00 1904, and converts to ASCII
time output which is placed in the applications buffer. Note that ASCIT time
always outputs twenty characters with the MSB of each character set to a
one. AS CIT time format is defmed by the format set up in the battery ram
by the control panel. Format versus the battery ram parameter value is
shown below:

Date Format
0
1
2
0
1
2

Where:

Example:

Time Fonnat
0
0
0
1
1
1

HH =Hour
MM=Minute
SS =Second
mm=Month
dd=Day
yy =Year

ASCIT Time Format
mm/dd/yy HH:MM:SS AM or PM
ddlmm/yy HH:MM:SS AM or PM
yy/rmn/dd HH:MM:SS AM or PM
mm/dd/yy HH:MM:SS
dd/mm/yy HH:MM:SS
yy/rmn/dd HH:MM:SS

PUSHLONG #LABEL
_READASCITTIME

; BUFFER ADDRESS

R. Montagne, E. Berns ti CONFIDE!\'TIAL • Page 10

_Cortland Miscellaneous Tools Oct 29,1986

Vector Initialization Tools. These tools allow the application to set or get the current vector
for the interrupt handlers.

Set Vector

Input
Input

sp-->

Function number = $10

Word
Long Word

Vector Reference Number
Address

Sets the vector address for the interrupt manager or handler specified by the
vecotr reference number.

Example:

Get Vector

Input
Input

sp-->

Output
sp->

PEA $000E
PUSHLONG #LABEL
_SETVECTOR

Function number = $11

Space for result

; REF. = 1/4 SEC. IRQ
; HANDLER ADDRESS

Long Word
Word Vector Reference Number

LongWord Address

Returns with the vector address for the interrupt manager or handler
specified by the vector reference number.

Example:
PEA $0000
PEA $0000
PEA $0015
_GETVECTOR

; SPACE FOR RESULT

; REF. = 1 SEC. IRQ

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 11

Cortland Miscellaneous Tools

Vector Reference Numbers:

$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$000A
$000B
$000C
$000D
$000E
$000F
$0010
$0011
$0012
$0013
$0014
$0015
$0016
$0017
$0018
$0019
$001A
$001B
$001C
$001D
$001E
$001F
$0020
$0021
$0022
$0023
$0024
$0025
$0026
$0027
$0028
$0029
$002A
$002B
$002C

Tool Locator #1
Tool Locator #2
User's Tool Locator #1
User's Tool Locator #2
Interrupt Manager
COP Manager
A bon Manager
System Death Manager
Apple Talk Interrupt Handler
Serial Communications Controller Interrupt Handler
Scan Line Interrupt Handler
Sound Interrupt Handler
Vertical Blanking Interrupt Handler
Mouse Interrupt Handler
Quarter Second Interrupt Handler
Keyboard Interrupt Handler
Front Desk Bus Response Byte Interrupt Handler
Front Desk Bus SRQ Interrupt Handler
Desk Accessory Manager
F1ush Buffer Handler
Keyboard Micro Interrupt Handler
One Second Interrupt Handler
External VGC Interrupt Handler
Other Unspecified Interrupt Handler
Cursor Update Handler
Increment Busy Flag (for Scheduler)
Decrement Busy Flag (for Scheduler)
Bell Vector (for Sound Tools)
Break Vector (for Debuggers)
Trace Vector
Step Vector
Reserved Vector
Reserved Vector
Reserved Vector
Reserved Vector
Reserved Vector
Reserved Vector
Reserved Vector
Reserved Vector
Reserved Vector
Control Y Vector
Reserved Vector
ProDOS'16 MLI Vector
OS Vector
Message Pointer Vector

R. 1\lontagne, E. Berns ti CONFIDENTIAL ti

Oct 29, 1986

Page 12

(

(

Cortland Miscellaneous Tools Oct 29,1986

HeartBeat Tools.· These tools allow the application to insert or delete tasks
from the HeartBeat queue.

SetHeartBeat

Input
sp->

Function number = $12

Long Word Pointer

Installs the task specified by the pointer into the HeartBeat queue. The
pointer must be set to the address of a task header that precedes the task.
The task header area consists of a longword link pointer, count word, and
signature word. The link pointer is maintained by the tool, and is set to a
value of $00000000 if the task is the last task in the queue. When a task is
installed, the link pointer of the previous task is set to point at the task
header for the task currently being installed. The count word is set by the
application prior to installing the task, and must be maintained by either the
task or the application. The count word indicates the number of VBL
interrupts that must occur before the associated task is executed. For
recurring tasks, the task should reset the count word. For tasks that are run
as a software one-shot, the application should reset the count word. The
tool will decrement a non zero count word each VBL interrupt. If the
decrement results in a count word of zero, the task will be executed. A
count word with a value of zero will not be decremented during VBL
interrupt, and effectively sets the task inactive until a non zero value is
stored to the count word. Tasks are executed in native mode with 8 bit 'm'
and 'x'. Task execution should terminate with an 'RTL' instruction. The
signature word must be set prior to installing a task, and is used by the tool
and the HeartBeat Interrupt Handler to check the integrity of the HeartBeat
queue. An example of a HeartBeat task that increments a location in
memory everty tenth VBL is shown below:

TasklHdr Start
de 4i'O' ; Space for Link Pointer

TasklCnt de i'10' ; Count word preset to 10
de h'5AA5' ; Signarure Word $A55A

Task1 anop
rep #$20 ; 16 bit 'm'
longa on
phk ; daia bank = program bank
plb
Ida #10 ; reset the task count
sta Task1Cnt
sep #$20 ; 8 bit 'm'
longa off
Ida >TestLoc ; and increment an address
inc a
sta >TestLoc
nl

The following code will install the task shown above.

Install anop
PUSHLONG #LABEL
_SETHEARTBEAT

; BUFFER ADDRESS
; INSTALL TASK

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 13

Cortland Miscellaneous Tools Oct 29, 1986

Note that when a task is installed into the HeartBeat queue, the HeartBeat
Interrupt Handler will automatically be installed into the VBL Interrupt
Handler vector. Any handler previously installed in the VBL Interrupt
Handler vector will be displaced. Installing a task in the HeartBeat queue
~ 1lQ! automatically enable VBL interrupts. It is left to the application to
enable VBL interrupts. Also, since tasks are linked with simple pointers,
the tasks should reside in 'LOCKED' memory. Tasks that make use of
system resources should conform to the protocol set down in the
SCHEDULER ERS.

It may be desirable to have a ROM based task executing from a peripheral
card. In order to install a ROM based task, twelve bytes of ram must be
allocated fer use by the task header, with the task executing a jump absolute
long to the rom based task. An example of this is shown below:

TasklHdr de 4i'O' ; Space for Link Pointer
TasklCnt de i'lO' ; Count word preset to 10
TasklSig de h'5AA5' ; Signature Word $A55A
TasklJmp anop

jmp >RomTaskl ; jump to ROM based task

An example that shows how a program can construct the task header area in
RAM for a ROM based task is shown below. Note that this program is run
in full native mode (16 bit 'm' and 'x').

InstallTl entry
Ida #$0001 ; initialize task count
Sta >TasklCnt
Ida #$A55A ; initialize task signature
sta >TasklSig
Ida #RomTaskl ; now install 'JM.P' to task
ph a
xba
and #$FFOO
ora #$005C
sta >TasklJrnp
pla
and #$FFOO
ora #ARomTaskl
xba
sta >Task1Jmp+2
PushLong #Label ; now install the task
_SetHeartBeat

Errors that may occur when installing a task in the HeartBeat queue include:

Task already installed in queue
No signature in task header

$0303
$0304
$0305 Queue has been damaged-task signature missing during search

R. Montagne, E. Berns tl CONFIDEI'c'TIAL tl Page 14

Cortland Miscellaneous Tools Oct 29, 1986

DeiHeartBeat

Input
sp->

Function number = $13

Long Word Pointer

Deletes the task specified by the link address from the HeanBeat Interrupt
service queue.

Errors that may occur when deleting a task in the HeartBeat queue include:

$0305
$0306

Example:

OrHeanBeat

Queue has been damaged-task signature missing during search
Task was not found in queue

PUSHLONG #LABEL
_DELHEARTBEAT

Function number= $14

; TASK ADDRESS

Clears the HeanBeat queue root link pointer, affectively removing all tasks
from the queue.

Example:
_CLRHEARTBEA T

R. Montagne, E. Berns • CONFIDENTIAL • Page 15

Cortland Miscellaneous Tools Oct 29,1986

System Death Manager. This tool call jumps through the system death vector. At system
power-up time, a default system death manager is installed into the system death manager vector.
The default system death manager will display either a default system death message followed by
an error code, or a user defmed system death message followed by an error code. The default
system death message will display a sliding Apple below a centered default message as shown
below:

FATAL SYSTEM ERROR-> X:XXX

------------------------·
If a system death call is made with a user defined message, the user detmed message will be
displayed starting at the upper left hand corner fo the screen. The user defined message may
contain up to 254 characters. The text may be moved down by imbedding carriage return
characters in the text. Any desired delimiters between the text string and the error code should be
included in the text string.

USER DEFINED MESSAGE OF UP TO 255 CHARACTERS :XXXX

---------------------------·
SysDeathMgr

Input
Input

sp-->

Function number= $15

Word
Long Word

Error code
Pointer

If the longword pointer is set to zero, the default system death message and
the error code passed as the tool input are displayed. If pointer is set to
point to an ASCII string, the ASCII string will be displayed with the error
code. The first byte of the ASCII string should contain a count equal to the
number of characters to be displayed. The ASCII string should have the
MSB turned off. Note that this tool call will not return! Death Messages
cannot reside in the Language Card address space.

Example:
PEA $0004
PUSHLONG #LABEL
_SYSDEA THMGR

;YOURERRORCODE
; STRING POINTER

R. Montagne, E. Berns • CO~riDEl\'TIAL tl Page 16

Cortland Miscellaneous Tools

Reserved System Death Error Codes:

$0001
$0004
$000A
$000B
$000C
$0000
$0015
$0017-24
$0025
$0026
$0027
$0028
$0030
$0032-53
$0100

ProDOS'16- Unclaimed interrupt
Divide by zero
ProDOS'16- Volume Control Block unusable
ProDOS'16- File Control Block unusable
ProDOS'16- Block zero allocated illegally
ProDOS'16- Interrupt with I/0 shadowing off
Segment Loader error
Can't load a package
Out of memory
Segment Loader error
File map trashed
Stack overt1ow error
Please insen disk (flle manager alen)
Memory manager error
Can't mount system stanup volume

Oct 29, 1986

System death error codes above $0100 will be tools specific.
The high byte of the error code will contain the tool number
reporting the error. The low byte of the error code is defined
by the tool set reporting the error. No tool will report an error
with the low byte set to a value of $00.

Death Cod~
$01XX
$02XX
$03:XX
$04XX
$05XX
$06XX
$07XX
$08XX
$09XX
$0AXX
$0BXX
$0CXX
$0DXX
soE.XX
$0FXX
$10:XX
$11XX
$12XX
$13XX
$14XX
$15:XX
$16XX

R. Montagne, E. Berns

Related ToolSet
Tool Locator
Memory Manager
:Miscellaneous Tools
Quick Draw
Desk Manager
Event Manager
Scheduler
Sound Manager
Apple Desktop Bus Tools
SANE
Integer Math Tools
Text Tools
Ram Disk
Menu Manager
Window Manager
Control Manager
Loader
Printer 1
Printer 2
Line Edit
Pick Manager
Dialog Manager

ti CONFIDENTIAL ti Page 17

Cortland Miscellaneous Tools Oct 29, 1986

GET ADDRESS Tools. These tools are provide to allow an application to determine the
address of a parameter used by the system firmware.

GetAddr

Input
Input

sp->

Output
sp->

Function number= $16

Long Word
Word

Long Word

Space for result
Reference number

Pointer to parameter

Parameter reference numbers and parameter size are defined below:

Ref.#
$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$000A
$000B
$000C
$000D

Len~h
Byte
Byte
Byte
Byte
Byte
Long Word
Byte
Byte
Byte
20 Bytes
12 Bytes
Byte
8 Bytes
8 Bytes

Parameter
IRQ Interrupt Flag (IRQ.INTFLAG)
IRQ Data Flag (IRQ.DATAREG)
IRQ Serial Port 1 Flag (IRQ.SERIAL1)
IRQ Serial Port 2 Flag (IRQ.SERIAL2)
IRQ AppleTalk Flag (IRQ.APL TLKHI)
Tick Counter (TICKCNT)
IRQ Volume (IRQ. VOLUME)
IRQ Active (IRQ.ACITVE)
IRQ Sound Data (IRQ.SOUNDDA TA)
Variables after a 'BRK' (BRK.V AR)
Event Manager Data (EVMGRDA TA)
Mouse Location/Flag (MouseSlot)
Mouse Clamps (MOUSECLA.i\1PS)
Absolute device clamps (ABSCLAMPS)

Note that parameters with reference numbers from $0000 through $0004
should not be used by applications. These parameters are only valid while
servicing an interrupt.

Example:
PEA
PEA
PEA
_GETADDR

R. Montagne, E. Berns

; SPACE FOR RESULT $0000
$0000
$000C ; REF. = MOUSE CLAMPS

ti CONFIDENTIAL ti Page 18

Cortland Miscellaneous Tools Oct 29, 1986

Further definition of some parameters is provided below:

IRQ.INTfl..AG D7 1 = Mouse button down
D6 1 = Mouse button down on last read
DS Status of AN3
D4 1 = 1/4 second interrupted
D3 1 = VBL interrupted
D2 1 = Mega// Mouse switch interrupted
D1 1 =Mega// Mouse movement interrupted
DO 1 = System IRQ line is asserted

IRQDATAREG D7 1 = Response byte, 0 = Status byte
D6 1 =Abon
DS 1 = Desktop manager sequence pressed
D4 1 = Flush buffer sequence pressed
D3 1=SRQ
D0-2 0 = No FDB data, 0 ~ number of valid bytes -1

BRK.VAR Word A Register
Word X Register
Word YRegister
Word Stack Pointer
Word Direct Register
Byte Processor Status
Byte Data Bank Register
Byte Emulation Flag
Byte Program Bank Register
Word Program Counter
Byte State
Byte Shadow
Byte CYA
Byte MSlot

EVMGRDATA Word Joumaling flag (J ournalFlag)
Long Word Pointer to journal driver (JournalPtr)

MouseS lot Byte Location of the Mouse (MouseS lot)
This is a flag used by the Mouse Tools. If
MouseSlot contains a positive value, then it
indicates what slot the mouse resides in. If
MouseSlot contains a negative value, the
Mouse has not been initialized by the Mouse
Tools.

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 19

Cortland Miscellaneous Tools Oct 29, 1986

MouseClamps Word Low X axis mouse clamp
Word Low Y axis mouse clamp
Word High X axis mouse clamp
Word High Y axis mouse clamp

(Note that setting the mouse clamp values directly is not a viable method of
setting the mouse clamps. Setting mouse clamps correctly can only be
guaranteed using the mouse tools.)

AbsClamps Word Low X axis absolute device clamp
Word Low Y axis absolute device clamp
Word High X axis absolute device clamp
Word High Y axis absolute device clamp

(There is no built in finnware to clamp absolute device position within the
absolute device clamp bounds. Absolute device drivers must be responsible
for clamping position within the clamp bounds.)

R. Montagne, E. Berns • CONFIDE1'11IAL • Page 20

Cortland Miscellaneous Tools Oct 29, 1986

Mouse Tools. These tools are provide to interface with the Mouse. These tools will work with
both the built in Front Desk Bus Mouse or the Apple][Mouse. Note that the 'Initivlouse' call must
be executed first. An error will be returned if a dispatch to the mouse is executed with the mouse
firmware switched out.

Read.Mouse

sp->

Input
Input
Input

Output
Output
Output
Output
Output
Output

sp->

Function number = $17

Word
Word
Word

Byte
Byte
Byte
Byte
Byte
Byte

Space for result
Space for result
Space for result

High Byte X Position
Low Byte X Position
High Byte Y Position
Low Byte Y Position
Mouse Status
Mouse Mode

Returns Mouse position, status and mode.

Example:

InitMouse

Input

sp->

PEA $0000 ; SPACE FOR RESULT
PEA $0000
PEA $0000
_READ MOUSE

Function number = $18

Word Mouse slot
$0000 = Search slots for Mouse
$0001-7 =Slot Mouse resides in

Initializes the mouse clamp values to $0000 minimum and $03FF
maximum. Mouse mode and status are cleared.

Example:
PEA $0000 ;REQUEST SEARCH
_INITMOUSE

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 21

Cortland Miscellaneous Tools

SetMouse Function number = $19

Input
sp->

Word Mode (in low byte)

Mode is set to new value as follows:

$00 Tum off Mouse
$01 Set transparent mode
$03 Set movement interrupt mode
$05 Set button interrupt mode
$07 Set button or movement interrupt mode
$08 Turn mouse off, VBL IRQ active
$09 Set transparent mode, VBL IRQ active
$0B Set movement interrupt mode, VBL IRQ active
$0D Set button interrupt mode, VBL IRQ active

Oct 29, 1986

$OF Set button or movement interrupt mode, VBL IRQ active

Example:
PEA $0001 ; TRANSP ARE~'r'f MODE
_SETMOUSE

HomeMouse Function number= $1A

Positions the Mouse at the minimum clamp position.

Example:
_HO:rv!EMOUSE

Clear Mouse Function number= $1B

Sets both the X and Y axis position to $0000 if minimum clamps are
negative (delta or relative mode), or to the minimum clamp position if the
clamps are positive (absolute mode).

Example:
_CLEA&\10USE

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 22

Cortland Miscellaneous Tools

OampMouse

Input
Input
Input
Input

sp-->

Function number= $1 C

Word
Word
Word
Word

X axis minimum clamp value
X axis maximum clamp value
Y axis minimum clamp value
Y axis maximum clamp value

Oct 29, 1986

Sets the clamp values to new values, and then sets the Mouse position to the
miminum clamp values.

Example:
PEA $0000
PEA $03FF
PEA $0000
PEA $03FF
_CLAMPMOUSE

; X :MINIMUM
;X :MAXIMUM
; y :MINTh1UM
;Y:MAXIMUM

GetMouseClamp Function number= $10

sp->

sp-->

Input
Input
Input
Input

Output
Output
Output
Output

Word
Word
Word
Word

Word
Word
Word
Word

Space for result
Space for result
Space for result
Space for result

X axis minimum clamp value
X axis maximum clamp value
Y axis minimum clamp value
Y axis maximum clamp value

Returns the current values of the Mouse clamps.

Example:
PEA $0000 ; SPACE FOR RESULT
PEA $0000
PEA $0000
PEA $0000
_GETMOUSECLAMP

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 23

Cortland Miscellaneous Tools

PosMouse Function number = $1E

Input
Input

sp->

Word
Word

X axis position
Y axis position

•
Positions the Mouse to the coordinates specified.

Example:

ServeMouse

Input
sp-->

Output
sp-->

PEA $013C
PEA $028F
_POSMOUSE

Function number= $1F

Word Space for result

;XPOSmON
;YPOSffiON

Word Interrupt status (in low byte)

Returns mouse interrupt status.

Example:

Oct 29, 1986

PEA $0000 ; SPACE FOR RESULT
_SERVEMOVSE

R. Montagne, E. Berns tl CONFIDE~TIAL tl Page 24

Cortland Miscellaneous Tools Oct 29,1986

ID Tag Manager. These tools are used to create, delete and inquire status of an ID Tag. The ID
Tag is used to mark memory segments as belonging to a specific application or desk accessory. ID
tags are made up of three fields encoded in a word parameter. These are the TYPE field, A UX ID
field, and MAIN ID field. The type field is encoded in bits 12-14, Aux ID in bits 8-11, and the
Main ID in bits 0-7. The AUX ID field is defmed by the caller. The Main ID field is generated by
the ID Tag manager. The ID Tag will always be assigned with a non zero value in the Main ID
field. The Type field has fixed assignments as shown in the table below:

I F
<

O•MEMORYMANAGER 0- SF Defined by User 0 =Reserved
l•APPUCATION 1-FF Assigned by ID Manager
2=0DNTROLPROGRAM
3 • ProDOS
4•TOOLKITS------(ID S41XX.,. Miscellaneous Tools)
S = DESK ACCESSORIES (S42XX = Sc:rap Manager)
6 = RUN TIME l.IBRARlES
7 • SYSTEM LOADER
8 • FIRMWARE I SYSTEM FUNCTION
9 •lOOL LOCATOR
A • SETUP FILE
B =UNDEFINED
C =UNDEFINED
D =UNDEFINED
E"" UNDEFINED
F =UNDEFINED

GetNewiD Function number = $20

Input
Input

sp-->

Output
sp-->

Word
Word

Word

Space for result
IDTag

IDTag

Caller passes a full16 bit ID tag as input with the TYPE defined as the only
relevant parameter. The AUX ID field is specified by the caller, and will
not be reassigned by the ID manager. The next available MAIN ID will be
concatenated to the TYPE and AUX ID fields, and the resulting ID Tag will
be returned to the caller. Note that the TYPE field must be non zero. Note
that only 255 ID tags can be assigned for any TYPE ID. If an ID cannot be
assigned because all the ID tags for that TYPE have been assigned, then an
error will be returned indicating that the ID is not available.

Example:
PEA
PEA
_GETNEWID

R. Montagne, E. Berns

$0000
$5100

; SPACE FOR RESULT
; ITS A DESK ACC.

ti CONFIDENTIAL ti Page 25

Cortland Miscellaneous Tools

DeleteiD

Input
sp-->

Function number = $21

Word IDTag

Oct 29, 1986

The caller passes the tool a full 16 bit ID tag as input with the TYPE and
MAIN ID fields defmed as the only relevant parameters. Any ID tags with
the same MAIN ID and TYPE are deleted from the current ID tag list. This
tool call will not report an error if the tag is not found. It assumes that if its

. not there, that is what you wanted anyway.

Example:

StatusiD

Input
sp-->

PEA $5101
_DELETEID

Function number = $22

Word IDTag

; DELETE DESK ACC TAG

The caller passes the tool a full 16 bit ID tag as input with the TYPE and
MAIN ID fields defined as the only relevant parameters. If the ID tag is
active, no error will be returned. If the ID tag is inactive, an error will be
returned indicating that the ID tag is not available.

Example:
PEA $5101 ; DELETE DESK ACC TAG
_STATUSID

R. Montagne, E. Berns ti COI\TFIDENTIAL ti Page 26

Cortland MiscellaneOus Tools Oct 29, 1986

Interrupt Control Tools. This tool allows certain interrupt sources to be enabled or disabled.

IntSource

Input
sp-->

Function number = $23

Word Source Reference Number

This tool call enables or disables the interrupt source specified by the source
reference number. Source reference numbers are shown below:

Ref.#
$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$000A
$000B
$000C
$000D
$000E
$000F

Source and Action
Enable Keyboard Interrupts
Disable Keyboard Interrupts
Enable Vertical Blanking Interrupts
Disable Vertical Blanking Interrupts
Enable Quarter Second Interrupts
Disable Quaner Second Interrupts
Enable One Second Interrupts
Disable One Second Interrupts
THIS DOES NOTIITNG ·
THIS DOES NOTIITNG
Enable FOB Data Interrupts
Disable FOB Data Interrupts
Enable Scan Line Interrupts
Disable Scan Line Interrupts
Enable External VGC Interrupts
Disable External VGC Interrupts

Example - Installing and enabling a one second intenupt handler:

PEA
PUSHLONG
_SETVECfOR
BCS
PEA
_INTSOURCE
BCS

R. Montagne, E. Berns

$0015 ; SET ONE SEC VECfOR
#ONEHANDLER ; POINTER TO HANDLER

ERROR
$0006

ERROR

; IF TOOL ERROR OCCURED
; ENABLE ONE SEC IRQ

; IF TOOL ERROR OCCURED

tl CONFIDENTIAL tl Page 27

Cortland Miscellaneous Tools Oct 29,1986

ABOUT KEYBOARD INTERRUPTS •••••

When keyboard interrupts are enabled, there is no hardware enable of the
keyboard interrupt. The fli'IIlware installs a task into the HeartBeat queue
and enables VBL interrupts. This causes the HeartBeat interrupt handler to
be installed into the VBL interrupt vector. This task will check the status of
the keyboard register during each VBL interrupt. If a key is pending, the
task will dispatch to the KeyBoard interrupt handler via the keyboard
interrupt vector (as installed by the tool 'SETVECTOR'). Since the
HeartBeat handler will be installed into the VBL interrupt vector, this
precludes the application from installing it's own VBL interrupt handler if
keyboard interrupts are to be used. If keyboard interrupts are disabled, the
keyboard task is removed from the HeartBeat queue. however the VBL
interrupt will not be disabled. If the application wishes to disable keyboard
interrupts, and does not wish to have the additional overhead of the VBL
interrupts running in the background, the application must disable VBL
interrupts also. If no other tasks have been installed into the HeartBeat
queue, the additional interrupt overhead is minimal (Interrupt dispatcher and
HeartBeat interrupt handler which only increments the tick count before
returning).

ABOUT ONE SECOND INTERRUPTS •••••

The vector initialization tools are used to install a one second interrupt
handler into the one second interrupt vector. Then the interrupt source tool
call is used to enable the one second interrupt. The one second interrupt
handler will be called by the interrupt manager in 8 bit native mode ('m' =
'x' = 1). The one second interrupt handler must clear the hardware source
of the interrupt before executing an 'RTL' to the interrupt manager. Note
that an interrupt handler must return to the interrupt manager with the carry
cleared if the interrupt source was serviced. An example of a one second
interrupt handler that increments a memory location is shown below:

ONEHANDLER Sl'ART
LONGA
LONG!
PHB
PHA
PHK
PLB
INC
lDA
TSB
PLA
PLB
CLC
RTL
END

R. Montagne, E. Berns

OFF
OFF

LOCATION
#%00000010
SC032

; SAVE ENVIRONMENT

; SET DATA BANK TO PROGRAM

; CLEAR 1 SEC IRQ SOURCE

; RESl'ORE ENVIRONMENT

; INDICATE IRQ WAS SERVICED

ti CONFIDENTIAL ti Page 28

Cortland Miscellaneous Tools Oct 29,1986

ABOUT ONE QUARTER SECOND INTERRUPTS •••••

The vector initialization tools are used to install a one quarter second
interrupt handler into the one quarter second interrupt vector. Then the
interrupt source tool call is used to enable the one quarter second interrupt.
The one quarter second interrupt handler will be called by the interrupt
manager in 8 bit native mode ('m' = 'x' = 1). The one quarter second
interrupt handler must clear the hardware source of the interrupt before
executing an 'RTL' to the interrupt manager. Note that an interrupt handler
must return to the interrupt manager with the carry cleared if the interrupt
source was serviced. An example of a one second interrupt handler that
increments a memory location is shown below:

QTRHANDLER START
lDNGA
LONGI
PHB
PHA
PHK.
PL.B
JNC
STA
PI..A
PL.B
CLC
RTI..
END

R. Montagne, E. Berns

OFF
OFF

LOCATION
SC047

; SAVE ENVIRONMENT

; SET DATA BANK TO PROGRAM

; RESTORE ENVIRONME.NT

; INDICATE IRQ WAS SERVICED

ti CONFIDENTIAL ti Page 29

Cortland Miscellaneous Tools Oct 29,1986

Firmware Entry Tools. This tool allows the Apple][emulation mode entry points to be
supponed from full native mode. This tool will preserve the state of the data bank and direct page
registers prior to dispatching to the firmware entry point. During the execution of the firmware
task, the data bank and direct page registers are set to a value of zero. The data bank and direct
page registers are restored on return from the fnmware entry point.

F\Ventry

Input
Input
Input
Input
Input
Input
Input
Input

sp-->

sp-->

Output
Output
Output
Output

Function number = $24

Word
Word
Word
Word
Word
Word
Word
Word

Word
Word
Word
Word

Space for result
Space for result
Space for result
Space for result
Accumulator at entry Oow byte only)
X Register at entry Oow byte only)
Y Register at entry Oow byte only)
Emulation mode entry point (16 bits)

Processor status at exit
Accumulator at exit
X register at exit
Y register at exit

Oow byte only)
Oow byte only)
(low byte only)
(low byte only)

This call dispatches to the specified emulation mode entry point with the
registers set to the values passed to the tool as input. On return, the register
contents resulting from the entry point dispatch will be passed on the stack. ·
Note that only the least significant byte is relevant on the register input and
output

Example:
PEA
PEA
PEA
PEA
PEA
PEA
PEA
PEA
_FWENTRY
BCS
PLY
PLX
PLA
PLP
PLP

R. Montagne, E. Berns

$0000
$0000
$0000
$0000
$0000
$0000
$0000
$fDDA

FWERR

; SPACE FOR RESULT
; SPACE FOR RESULT
; SPACE FOR RESULT
; SPACE FOR RESULT
;AREG
;XREG
;YREG
; ENTRY POINT

; BRANCH IF ERROR
; GET FW REGISTERS

ti CONFIDENTIAL ti Page 30

Cortland Miscellaneous Tools Oct 29, 1986

Tick Count Tool. This tool allows caller to read the current value of the tick counter.

Get Tick

Input
sp->

Output
sp->

Function number = $25

Long Word Space for result

Long Word Current value of Tick Counter

Note that the tick count is only incremented by the heanbeat interrupt
handler. This means that the heanbeat interrupt handler must be installed,
and VBL interrupts must be enabled in ord.:r to get an incrementing tick
count. Please see the section on heanbeat tasks.

Example:
PEA
PEA
_GETTICK

R. Montagne, E. Berns

$0000
$0000

; SPACE FOR RESULT
; SPACE FOR RESULT

• CONFIDENTIAL. Page 31

Cortland Miscellaneous Tools Oct 29,1986

PackBytes and UnPackBytes Tools. PackBytes and UnPackBytes provide for the packing
and unpacking of any data, but is ususally used for graphic images.

PackBytes

Input
Input
Input
Input
Input

Function number = $26

sp-->

Output
sp-->

Word
Long Word
Long Word
Long Word
Word

. Word

Space for result
Pointer to pointer to start of area to be packed
Pointer to a word containing size of the area
Pointer to start of the ouput buffer area
Size of the output buffer area

Number of packed bytes generated

Upon completion of the call, the pointer to the area to be packed is moved
forward to the next packable byte, and the size of area pointed to by the
second input parameter is reduced by the number of bytes traversed. An
assembly language example follows:

•
• PACKBYTES example: Pack a screen image and "WT'ite it to flle "f'
•
PB

loop

PicPtr
PicSize
BufPtr
BufSize

START
lda
sta
lda
sta
Ida
sta
lda
sta
lda
Sta

PUSHWORD
PUSHLONG
PUSHLONG
PUSHLONG
PUSHWORD
_PACKBYTES
pla
Sta

CAll

lda
bne
ns

ds
ds
ds
de

HowMuch ds
Buffer ds

END

R. Montagne, E. Berns

#$7000
PicSiz.e
#SE12000
PicPtt
#$11El2000
PicPtr+2
#buffer
BufPtr
*"Buffer
BufPtr+2

#()

#PicPtt
#PicSize
BufPtr
BufSize

How Much

;size of area to pack

;addr of screen image

;pointer to loca buffer

;Space for result
;Pointer to data to pack
;Pointer to word with size of area
;Pointer to start of output area
;size of output buffer area

;get howmuch we did pack this pass

WRITE(f.BufPtr,HowMuch) ;do J/0 to write "HowMuch" bytes from ''BufPtr" to flle "f'

PicSize
loop

4
2
4
i2'$400'
2
$400

;see if more to pack;
;there is, go back for more

;set to Sel2000 on entry (screen area)
;size of a picture: set to S7d00 on entry
;set to point to "Buffer" on entry
;local buffer for storing packed stuff
;local storage for value from packbytes
;actual buffer

'* CONFIDENTIAL • Page 32

Cortland Miscellaneous Tools Oct 29, 1986

An equivalent example in PASCAL follows:

.
Function packbyres (V AR

VAR
bufptr
bufsize

:INTEGER; EXTERNAL;

picsize := $7DOO;

P~t: : POL'lTER;
p:cs:ze : POL'lTER;
:POINTER;
: POINTER;

bufsize := $400; {note: if large enough, could require but one call}
REPEAT

howmuch := PackBytes (picptr,picsize,bufptr,bufsize);
write (j,bufptr,howmuch);

UNTIL picsize=O

R. Montagne, E. Berns • CONFIDENTIAL • Page 33

Cortland Miscellaneous Tools Oct 29,1986

UnPackBytes

Input
Input
Input
Input
Input

Function number = $27

Word
Long Word
Word
Long Word
Long Word

Space for result
Pointer to the buffer containing packed data
Buffer size

sp-->

Pointer to pointer to area to unpack data into
Pointer to word containing the size of the area
to contain the unpacked data

Output
sp-->

Word Number of bytes unpacked

Upon completion, the pointer to the unpacked data is positioned one past the
last upacked byte and the size fo the area is reduced by the amount
unpacked. An assembly language example follows:

•
• UNP ACKB YTES example: UnPack a me "f' onto the screen
•
PB START

Stz Mark ; marlc is the file mark we position to
Ida #$7000 ;size of area to unpack into
sta PicSize
Ida #SE12000 ;addr of sCTeen image
Sta PicPtr
Ida #S"El2000
Sta PicPtr+2

loop CAll. SETFll..EMARK(f,.\1arl.:) ;position flle 'T' to position "Mark"

CAll. READ(f,BufPtr ,BufSize) ;Read BufSize" bytes" into ''BufPtr"

PUSH\VORD NO ;Space for result
PUSHLONG BufPtr ;Pointer to start of output area
PUSH\VORD bufsize ;size of output buffer area
PUSHLONG #PicPtr ;Pointer to data to pack
PUSHLONG #PicSize ;Pointer to word with size of area

_UNP ACKBYTES

pia ;get how much we did unpack this pass
clc ;add to previous mark pes.
adc Mark
sta Mark
lda picsize ;see if more to unpack;
beq done ;there isn't, so we're done

CAll. EOF(f) ;did we get to end of file (safety check)
bne loop ;no, go back for more

Done rts

BufPtr de i4'Buffer' ;pointer to buffer area
bufsize de i2'S400' ;local buffer for storing packed stuff
PicPtr ds 4 ;set to Sel2000 on entry (screen area)
PicSize ds 2 ;size of a picrure: set to $7d00 on entry
Mark ds 2 ;flle mark position
Buffer ds $400 ;acrual buffer

E-."D

R. Montagne, E. Berns • CONFIDENTIAL • Page 34

Cortland Miscellaneous Tools Oct 29, 1986

An equivalent example in PASCAL follows:

.
Function unpackbytes (

VAR
VAR

: INTEGER; EXTERNAL;

.
marie:= 0,· [i.e. stan of file)
picsize := $7DOO

bufpttr
bufsize
picptr
picsize

: POL~TER;
:POINTER;
: POL~TER;
:POINTER;

bufsize := $400,· {note: if large enough, could require but one call}
REPEAT

setjilemark(nu:zrk);
readlj,bufptr,bufsize);
howmuch := UnPackBytes (bufptr,bufsize,picptr,picsize);
nu:zrk := mark+howmuch;

UNTD.. ((picsize=O) or eof(f)),· [eoftest in case of bad data}

The packed data is in the form of 1 byte containing a flag in the first 2 bits
and a count in the remaining 6 bits, followed by one or more data bytes
depending on the flags. Their description is as follows:

OOXXXXX:X : (XXXXXX : 0 -> 63)
OlXXXXXX : (XXXXXX : 2,4,5 or 6)
lOXXXXX:X: (XXXXXX: 0 -> 63)
llXXXXX:X : (XXXXXX : 0 -> 63)

= 1 to 64 bytes follow- unique
= 3,5,6 or 7 repeats of next byte
= 1 to 64 repeats of next 4 bytes
= 1 to 64 repeates of next 1 byte
taken as 4 bytes (as in '10' case)

R. Montagne, E. Berns c COl'~IDENTIAL c Page 35

Cortland Miscellaneous Tools Oct 29, 1986

Munger. Munger lets you manipulate bytes in a string of bytes. The basic operation is that of
searching a destination string for a target string and if found, replacing it with a replacement string.
The end of the destination string, if the string is shonened, is padded with a pad character. If the
string is elongated, Characters are truncated off of the end. Special cases to allow various other
functions are defined below.

Munger

Input
Input
Input
Input
Input
Input
Input
Input

sp-->

Output
sp-->

Where input is:

destptr:
destlen:
targptr:
targlen:
replptr:
rep lien:
pad:

And output is:

destptr:
destlen:
pad:

Munger:

Special cases:

Function number = $28

Word
Long Word
Long Word
Long Word
Word
Long Word
Word
Long Word

Word

Space for result
Pointer (destptr)
Pointer (destlen)
Pointer (targptr)
Integer (targlen)
Pointer (replptr)
Integer (repllen)
Pointer (pad)

Amount of Pad I Truncations

Pointer to pointer to the text to be manipulated
Pointer to number of bytes to manipulate
Pointer to string to be searched for from destptr
Number of bytes for targptr
Pointer to string to replace when targptr found
Number of bytes for replptr
Character value to pad shortened input with

Updated to one past end of any replacement
Old value reduced by bytes scanned across
Number of bytes padded (or truncated)

Zero if target found, negative if not

If targptr is 0, the substring of length targlen is replaced by the replptr string.

If targlen is 0, replptrS string is insened at destptr.

If replptr is 0, destptr is updated to past the end of the match of the targptr string.

If rep lien is 0, (and replptr is not) the targptr string is deleted rather than replaced
(since the replacement string is empty).

There is one case in which munger performs a replacement even if it doesn't flnd
all for the target string. If the destptr string in ints entirety is at the beginning of
the targptr string, then the destptr string is totally replaced by the replptr string .

R. Montagne, E. Berns • CONFIDE!'.TTIAL. Page 36

Cortland Miscellaneous Tools

•
• MUNGER example : editing a line of text
•
• Changes "robert irwin eagle toranaga marcia houdini bems"
• into "robert irwin EAGLE toranaga marcia houdini bems"
•
MG START

DestPtr
DestL:n

PAD

eagleLC
eagleUC

Ida
sta

Ida
sta

lda
sta

PUSHWORD
PUSffi.ONG
PUSffi.ONG
PUSHLONG
PUSHWORD
PUSHLONG
PUSHWORD
PUSHI..ONG

_MUNGER

pla

ns

ds
ds

ds

de
de

*Name
DestPtr
#A Name
DestPtr+2

#48
Destl.en

NO
DestPtr
l#Destl.en
l#eagleLC
;;s
l#eagleUC
;;s
#PAD

2
2

2

c'eagle'
c'EAGLE'

Oct 29, 1986

;set pointer to name

;get length

;space for result
;pointer to textstring to manipulate
;Pointer to word with number bytes to change
;Points to "eagle" (lower case)
; "eagle" has S letters
;Pointer to "EAGLE" (upper case)
;"EAGLE" has S letters
;Pad char (don't care for this example)

;[THIS Wll.l. BE ZERO, AS WILL PAD)

;on entry, will point to name
;on entry will be set to "NLen"

;pad value

name de c'robert irwin eagle toranaga marcia houdini berns'

R. Montagne, E. Berns tl CONFIDENTIAL tl Page 37

Cortland Miscellaneous Tools

An equivalent example in Pascal follows:

Function munger (VAR
VAR

VAR
:INTEGER; EXTERNAL;

.

destptr
desrlen
targprr
targ/en
replptr
rep lien
PAD

:POINTER;
:INTEGER;
:POINTER;
:INTEGER;
:POINTER;
:INTEGER;
:INTEGER;

Oct 29,1986

{segment to replace a word in lower case with it's upper case equivalent}

name := 'roben irwin eagle toranoga marcia houdini bems';
1:= LEN (name);
i := munger(name, /,'eagle',5,'EAGLE',5,p);

{upon completion, i is 0, p is 0, and name is 'roben irwin EAGLE
toranaga marcia houdini berns'}

Interrupt Enable State Tool. This function returns with the state of hardware interrupt enable
states for interrupt sources that can be controlled by the miscellaneous tool set.

Get!R.Qenbl

Input
sp-->

Output
sp-->

Function number = $29

Word Space for result

Word Status of hardware interrupt enables

Status in returned word is defined below:

D8-15
D7
D6
D5
D4
D3
D2
D1
DO

Example:

Undefined
1 = Keyboard interrupts enabled
1 = Vertical blanking interrupts enabled
1 = Quaner second interrupts enabled
1 = One second interrupts enabled
Reserved
1 =Front Desk Bus data interrupts enabled
1 = Scan line interrupts enabled
1 = External VGC interrupts enabled

PEA $0000 ; SPACE FOR RESULT
_GETIRQENBL

R. Montagne, E. Berns 4i CONFIDENTIAL 4i Page 38

Cortland Miscellaneous Tools Oct 29,1986

. · SetAbsClamp

Input
Input
Input
Input

sp->

Function number = $2A

Word
Word
Word
Word

X axis minimum clamp value
X axis maximum clamp value
Y axis minimum clamp value
Y axis maximum clamp value

Sets the clamp values for absolute devices to new values.

Example:

GetAbsQamp

Input
Input
Input
Input

sp-->

sp-->

Output
Output
Output
Output

PEA $0000
PEA $03FF
PEA $0000
PEA $03FF
_SETABSCLAMP

Function number = $2B

Word
Word
Word
Word

Space for result
Space for result
Space for result
Space for result

; X :MINIMUM CLAMP
; X MAXIMUM CL~W'
; Y MlNIMUM ~\1P
; Y MAXIMUM CLAlW'

Word
Word
Word
Word

X axis minimum clamp value
X axis maximum clamp value
Y axis minimum clamp value
Y axis maximum clamp value

Returns the current values of the absolute device clamps.

Example:
PEA $0000 ; SPACE FOR RESULT
PEA $0000
PEA $0000
PEA $0000
_GETABSCIAW'

R. Montagne, E. Berns ti CONFIDENTIAL tt Page 39

Cortland Miscellaneous Tools Oct 29,1986

System Beep Call. This function calls the Apple][monitor entry point 'BELLI'. The bell
routine can be patched out using the SetVector function to patch out the bell vector. Note that any
bell routine installed into the bell vector will be called in native mode with 8 bit 'm' and 'x', and
must rerum with the carry flag cleared via an RTL instruction.

SysBeep Function number = $2C

sp->

Calls the system bell routine.

Example:
_SYSBEEP

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 40

Cortland Miscellaneous Tools

Miscellaneous Tool Set Error Codes

No Error
Bad Input Parameter
No Device for Input Parameter
Task is already in Heanbeat queue

Oct 29, 1986

$0000
$0301
$0302
$0303
$0304
$0305
$0306
$0307
$0308
$0309
$030A
$030B

No signature in task header was detected during insert or delete
Damaged queue was detected during insert or delete
Task was not found during delete
Firmware task was unsuccessful
Detected damaged HeartBeat Queue
Attempted dispatch to a device that is not connected
Undefined
ID tag not available

R. Montagne, E. Berns ti CONFIDENTIAL ti Page 41

Cortland Miscellaneous Tools

Summary of functions within the Miscellaneous Tool Set

Function Number
$01 1
$02 2
$03 3
$04 4
$05 5
$06 6
$07 7
$08 8
$09 9
$0A 10
$0B 11
soc 12
$00 13
$0E 14
$OF 15
$10 16
$11 17
$12 18
$13 19
$14 20
$15 21
$16 22
$17 23
$18 24
$19 25
$1A 26
$1B 27
$1C 28
$10 29
$1E 30
$1F 31
$20 32
$21 33
$22 34
$23 35
$24 36
$25 37
$26 38
$27 39
$28 40
$29 41
$2A 42
$2B 43
$2C 44

R. 1\Iontagne, E. Berns

Description
MTBootlnit
MTStanUp
MTShutDown
MTVersion
MTR.eset
MTStatus
MTSpare1
MTSpare2
WriteBRam
ReadBRam
WriteBParam
ReadBParam
ReadTi.meHex
WriteTi.meHex
ReadAsciiTliD.e
Set Vector
Get Vector
SetHeanBeat
Del.HeanBeat
ClrHeanBeat
SysDeathMgr
GetAddr
Read.Mouse
InitMouse
SetMouse
HomeMouse
C1earMouse
C1ampMouse
GetMouseQamp
PosMouse
ServeMouse
GetNewiD
DeleteiD
StatusiD
IntSource
FWentry
Get Tick
PackBytes
UnPackBytes
Munger
GetiRQenbl
SetAbsClamp
GetAbsClamp
SysBeep

• CO!'."FIDEr..,-IAL •

Oct 29,1986

Page 42

Documentation Developpeurs
Apple Computer France 1987

Document developpeur numero 50

type d'upgrade de ce ducument : 5
1 Documentation de premiere categorie inchangee
2 Documentation de deuxieme categorie mise a jour
3 Documentation de deuxieme categorie inchangee
4 Mise a jour payante de Ia documentation de premiere categorie
5 Mise a jour gratuite de Ia documentation de premiere categorie
6 Nouveautes payantes non vitales
7 Nouveautes gratuites et vitales

Taille : 15 page(s) environ

Domaine :Tool 05

~~~~~@eN] ~ ~~~ 

[Q)£u~ ~ ~~o©®o®® 





Desk Manager 
External Reference Specification 
· Steven Glass 

November 26, 1985 
January 9, 1986 
June 18, 1986 
July 11, 1986 
August 24, 1986 

John Worthington 
August 24, 1986 · 

Initial Release. 
Major Changes to the Data Structures 
Additional changes reflecting code actually in ROM 
Changes reflect code implemented for NDAs 
Structure of CDAs changed slightly. ID section now contains 
a pointer to a shutdown routine. The INIT routine of an NDA 
is passed a variable indicating whether this is a startup or 
shutdown call. The description of the NDA ID routine 
incorporates the last round of changes to the Menu Manager. 
SetDAStrPtr & GetDAStrPtr are now correctly documented. 
Rules for supporting NDAs more solid. Requirements for 
making DeskStartup and DeskShut.down calls are given. 
SystemMenu Call no longer supponed. Description of 
FixAppleMenu corrected. 



Summary 

The Desk Manager provides the user access to desk accessories. A desk accessory is a 
"mini-application" that can be run at the same time as a Conland application. 

The Desk Manager provides suppon for two types of desk accessory's: Classic Desk 
Accessories (CDA) and New Desk Accessories (NDA). · 

Classic Desk Accessories are desk accessories that are designed to execute in a non­
desktop, non-event based environment. Unlike NDAs, a classic accessory gets full control 
of the machine during what is basically an intemipt state (generated by a keypress). The 
desk accessory is responsible for saving any of the application's memory that it uses as 
well as handling all I/0. 

New Desk Accessories are Macintosh Style desk accessories that are designed to execute in 
a desktop, event based environment. NDAs run in a window and get "control" when that 
window is the topmost window. Just what kind of control a NDA has is described below. 

How CDA's are Used 

A user activates a CDA from the CDA menu. The CDA menu is displayed by pressing 
OPEN APPLE-CONTROL-ESCAPE. Two CDA's are built into the system: 

Control Panel 
Alternate Display Mode 

Any others (up to eleven) are loaded from disk. From the CDA menu, a user can select any 
of the DA's currently in the system. The desk accessory is activated and retains control 
until it shuts down. When it shuts down, the Desk Manager re-displays the CDA Menu. 
Only when the user selects Quit from the CDA menu does the original application resume 
operation. 

When can the CDA Menu be displayed? 

The Desk manager gets control whenever the user presses OPEN-APPLE CONTROL­
ESC. Before it displays the CDA Menu, it checks the system busy flag. If something in 
the system is busy, the Desk Manager schedules a wake-up with the scheduler. The next 
time the system flag is free, the scheduler will wake up the Desk Manager which then can 
display the CDA menu. This guarentees that CD A's have all system resources available to 
them when they are called. 

Execution Environment 

Classic Desk Accessories have a single entry (activation) point. When the CDA gets 
control, the processor is in full native mode (l(,_bit m and x registers). The desk accessory 
menu is still displayed on the screen in whatever was mode requested by the user (in the 
control panel). The CDA must execme the RTL in full native mode for the Desk Manager 
to work correctly. 

When the desk manager displays the CDA menu, it saves the text pages in bank 0 and 1, 
$EO and $E1 along with pages 0 and 1 of bank 0 (system direct page and stack). (Only the 
screen holes used by the Desk Manager are preserved.) These pans of memory are 
restored by the Desk Manager when the user selects Quit from the CDA menu. Thus a 

August 24, 1986 Desk Manager ERS Page 2 



CDA can feel free to use almost all of this memory as it sees fit The exception is the stack. 
Since, the Desk Manager's return address is on the stack (along with other Desk Manager 
variables), the CDA cannot cut the stack back any farther than it is when it gets control. 

A CDA must take care using any other memory in the system that it does not already own. 
A CDA can use the Memory Manager to obtain additional memory outside "special 
memory", but it cannot rely on being able to obtain any more of bank 0 and 1. 

Form In Memory and On Disk 

Cassie Desk Accessories have a simple form. They are load files kept on the system disk 
in the DESK.ACCS subdirectory of the SYSTEM directory and have a file type $B9. The 
CDA starts with ar; idetification section as follows. · 

StanOfDA de il 'NameLength' 
de c'Name of DA' 

; this combined with the characters that 
; follow make a ProDOS string 

de i4'StartOfDACode' 
de i4'ShutDownRoutine' 

; This is a pointer to the start of the code 
; This is a pointer to a shutdown routine 

The identification strucrure contains the name of the desk accessory and two pointers. The 
first pointer is the address of the main entry point to the CDA. The second pointer is the 
address of a termination routine that is called whenever the DeskShutdown call is made. 
(Usually by a ProDOS 16 application before it quits but also by ProDOS 16 itself whenever 
the OS is switched from 16 to 8 or 8 to 16. 

How NDAs are Used 

New Desk Accessories are loaded by the operating system at boot time. An application that 
wants to make NDA's available to the user does not have to do a lot of work. If the 
Application uses TaskMaster, it need only make three calls: 

DeskStartup 
FixAppleMenu 
Des.kShutdown 

to initialize the Desk Manager 
to put the list of NDAs in the Apple Menu 
to shut down the Desk Manager 

TaskMaster will handle opening NDAs in response to menu selections, calling SystemTask 
and SystemClick when appropriate. Calling SystemEdit when a selection is made from the 
Edit Menu, and closing a desk accessory in response to the Close item of the File Menu. 

Applications that do not use TaskMaster must do the following to support new desk 
accessories. · 

call DeskStanup 
call FlXA.ppleMenu 
call OpenNDA 
call SystemTask 
call SystemClick 
call SystemEdit 

closeanNDA 

Des.kShutdown 

August 24, 1986 

To initialize the Desk Manager. 
To put the list of NDAs in the Apple Menu 
When the user selects an NDA from the Apple Menu 
Frequently (at least every time through the event loop). 
When a MouseDown event occurs in a system window. 
When a desk accessory is active and the user selects undo, 
cut, copy, paste or clear from the edit menu. 
When the user selects close from the file menu. You can use 
CloseNDA or CloseNDAbyWinPtr to do this. 
To shut down the Desk Manager 

Desk Manager ERS Page 3 



.. 

Execution Environment 

NDAs have four entry points: open, close, action and init. For each of these entry points 
the processor is in Full Native Mcx:le. There is no <llrect page available so the NDA must 
obtain it from the stack. The open routine returns a long word on the stack. The action 
routine is passed information in all three registers. 

A NDA can assume that the following tools are loaded and initialized: 

QuickDraw 
Event Manager 
Window Manager 
Menu Manager 
Control Manager 
Scrap Manager 
LineEdit 
Dialog Manager 

An NDA can also assume that the PrintManager is available but not necessarily loaded. 

The NDA is responsible for saving and restoring important globals like the cUITent graf pon 
(other i.mponant globals will be added to this list as we think of them). 

Form In Memory and On Disk 

New Desk Accessories have a different form than CD As. They are still load files kept on 
the system disk in the DESK.ACCS subdirectory of the SYSTEM directory but they have a 
file type $B8 and The NDA stans with an identification section as follows.· 

StanOfDA de i4'PtrTo0pen' 
de i4'PtrToClose' 
de i4'PtrToAction' 
de i4'PtrToinit' 
de i2'Period' 
de i2'EventMask' 
de c' LMenuLine \H**' 

; Pointer to the open routine 
; Pointer to the close routine 
; Pointer to the action routine 
; Pointer to the init routine 
; How often the NDA gets run codes 
; Describes what events it wants 
; The text which describes the menu item 

The open routine must return a pointer to its window on the stack. When it calls the open 
routine, the desk accessory manager puts 4 bytes of zero on the stack before it pushes the 
RTL address. · 

The close routine has no inputs and no outputs. It should however be able to work even if 
it is called when the desk accessory is not open. 

The action routine is passed the action code in the a register. The possible action codes 
are: 

Event 1 

August 24, 1986 

The pointer to the event is pased in the x & y registers. 
The only events that can be passed to aDA are 
ButtonDown, ButtonUp, KeyDown, AutoKeyDown, 
Update and Activate. Update and Activate events for a 
desk accessory are always passed on. The first three 

Desk Manager ERS Page 4 



Run 
Cursor 

Menu 

Undo 
Cut 
Copy 
Paste 
Oear 

2 
3 

4 

5 
6 
7 
8 
9 

are passed on only if the EventMask indicates they 
should be passed on. 
The time period specified has passed. 
This is passed to a desk accessory if it is the front 
window each time SystemTask is called. The purpose 
is to allow the desk accessory to change the cursor 
when it is over the NDA's window. 
This is passed to a desk accessory if an item from a 
system menu is selected. The Menuld is passed in the 
X register, the Menultemid is passed in the Y register. 
This is passed to a desk accessory if the application 
determines that the user has selected one of these edit 
commands from Edit menu. The action call should 
return a boolean in the A-register indicating whether 
or not the the command was handled. 

The InitRouti.ne is a routine that is called every time DeskS tartup or DeskShutdown is 
called. The desk manager passes a variable in the a-register to indicate which call is being 
made (startup or shutdown). A zero indicates that this is a shutdown call; a nonzero 
number indicates this is a startUp call. 

The Period field describes how often the DA should be called with the "Run" action code. 
A period of 1 is every 60th of a second. A period of 2 is every 30th of a second. A period 
of 60 is every second. A period of $FFFF is never. A period of 0 is as often as possible. 
The action routine is called with the "run" code from SystemTask. The application should 
be calling SystemTask every time through its event loop. 

The MenuLine is a line of text that will be passed to the Menu Manager to appear in the 
Apple Menu. The line must start with two waste characters since the MenuManager puts 
something here. The line must also have a back slash in it (\) and an H followed by two 
place holder characters. These characters will be replaced with the menu item ID for the 
desk accessory when FixAppleMenu is called. 

.. 

August 24, 1986 Desk Manager ERS Page 5 



Desk Manager Routines 

The desk manager has a number of calls but very few that a user would make. These are 
described below. 

Initialization <)Us 

Desk.Bootlnit Internal routine called at boot time to initialize the DA 
manager. 

Stack Before Call 
I previous contents I 
I I<·SP 

Stack After Call 
I previous contents I 
I 1<-SP 

DeskStanup Call made by an application before it makes any other desk 
manager calls. 

Stack Before Call 
I previous contents I 
I I<·SP 

Stack After Call 
I previous contents I 
I 1<-SP 

An application should only make this call if it is supporting new desk accessories. This 
means that all the conditions for supporting new desk accessories have been met: required 
tools are loaded; tools are initialized; menu bar is in place and has edit menu. When the 
application makes this call the Desk Manager initializes all the NDAs that are installed. 

DeskShutdown Call made by an application before shutdown if it has made 
any desk manager calls. 

Stack Before Call 
I previous contents l 
I I<·SP 

Stack After Call 
I previous contents I 
I I<·SP 

This call is made by applications which make the DeskStanup call and by the ProDOS 16 
when it switches from one OS to another. The desk manager makes a call to every desk 
accessory installed in the system to let it no that this call has been made. New desk 
accessories are passed an initialization call with the a register set to zero. Classic desk 
accessories are called via their shutdown entry point 

Every application which supports new desk accessories must make this call before shutting 
down. It must also be careful to make the call before it shuts down any of the tools a new 
desk accessory may require. 

August 24, 1986 Desk Manager ERS Page 6 



Desk Version Returns the version number of the Desk Manager. 

Stack Before Call 
I previous contenlS I 
I space for version I 
I k·SP 

Stack Arter Call 
I previous contents I 
I wr;)1on n.umber I 
I I<·SP 

DeskReset Resets the Desk Manager. 

Stack Before Call 
I previous contenlS I 
I k-SP 

Stack After Call 
I previous contents I 
I k-SP 

This call should not be made by an application. It is made by the Reset handler built into 
ROM. It is only called when a user presses CONTROL-RESET. 

DeskStatus Returns whether or not the Desk Manager's startup call has 
been issued. 

Stack Before Call 
I previous contents I 
I space for boolean I 
I k·SP 

Stack After Call 
I previous contents I 
I boolean ruuil I 
I k·SP 

State Save Cans 

The state saving calls are internal routines used by the desk manager to preserve the 
machine state. Careless use of any of these calls could prevent an application being 
interrupted from running when the current interrupt is over. 

SaveS em 

Stack Before Call 

SaveSC"een will save the 80-column text screens in bank 00, 
01, EO and El. This new image of the screen will be used 
for subsequent calls to RestScreen. 

I previous contents I 
I I<·SP 

August 24, 1986 · Desk Manager ERS Page 7 



• 

Stack After Call 
I previous contents I 
I k-SP 

An important thing to note is that only the screen holes used by the Desk Manager are 
preserved. 

RestS em RestoreScreen will restore the screen area saved by the Desk 
Manager. 

Stack Before Call 
I previous contents I 
I k-SP 

Stack After Call 
I previous contents I 
I I<·SP 

An important thing to note is that only the screen holes used by the Desk Manager are 
preserved. 

SaveAll Saves all the variables that the Desk Manager preserves 
when the CDA menu is activated. 

Stack Before Call 
I previous conte1'1ls I 
I k·SP 

Stack After Call 
I previous co1'1le1'1ls I 
I k·SP 

RestAll Restores all the variables that the Desk Manager preserves 
when the CDA menu is activated. 

Stack Before Call 
I previous conzents I 
I I<·SP 

Stack After Call 
I previous co1'1le1'1ls I 
I 1<-SP 

August 24, 1986 Desk Manager ERS Page 8 



HouseKeepin& 

InstallNDA Installs the new desk accessory in the system. 

Stack Before Call 
I pr~us contents 
I htJN:JJe to 1D 
I 

Stack After Call 
I pr~us contents 
I 

I 
I handle pointing to ID structure of DA 
lc-SP 

I 
lc-SP 

Install CDA Installs the classic desk accessory in the system 

Stack Before Call 
I pr~us contents 
I htJN:JJe to 1D 
I 

Stack After Call 
I pr~us contents 
I 

Classic Desk Accessory Routines 

ChooseCDA 

Stack Before Call 
I pr~us contents 
I 

Stack After Call 
I pr~us contents 
I 

I 
I handle pointing to ID structure of DA 
lc·SP 

I 
lc-SP 

Activates the Desk Manager and displays the CDA · 
menu. 

I 
lc·SP 

I 
k·SP 

ChooseCDA causes the Desk Manager to display the CDA Menu as if the user key stroke 
interupt has occured. rm not sure there is any valid reason for a program to make this call. 

SetDASttPtr Lets a program change the the Cassie Desk Accessories built 
into ROM. 

Stack Before Call 
I previous con.len.ls 
I Handle to Aft Disp DA 
I Pointer to New Strings 

August 24, 1986 

I 
I Handle to new Alternate display desk accessory 
I POINTER to table of strings 

Desk Manager ERS Page 9 



• 

1<-SP 

Stack After Call 
I previous contents I 
I I<·SP 

This routine is used to localize the desk accessories in ROM. It allows the built-in desk 
accessories to have different names. · 

The alternate display mode desk accessory should contain the following: 

AltDispDA anop 
de i1 'StrEnd-StrStart' ; length of string 

StrStart de c'Altemate Display Mode' ; any name you want (within reason) 
i4'0pen' StrEnd de 

de i4'ShutDown' 

Open setmode8 ; 8 bit m and x 
phb 
Ida #$00 
pha 
plb 
jsl $El00A4 
plb 
setmodel6 

; save data bank register 
; set db reg to $00 

; Vectored ROM routine to call 
; restore data bank reg 
; 16 bit m and x 

ShutDownnl 

The table of strings must be in the following form: 

SttingTable de i4'titlestr' 
i4'contrlstr' 
i4'quitstr' 
i4'selectstr' 

; title line 
de 
de 
de 

; control panel 
; quit 
; select string 

The strings cum:ntly used are: 

titlestr de 
de 
de 
de 

h'5A AO 41 AO' 
c'Desk Accessories' ; note space after str 
18h'20' 
h'5F 00' 

This string must be exactly 39 characters long. If the title ("Desk 
Accessories" in the above example) changes size then the number 18 in the 
next line should be changed as appropriate. This number tells the number of 
inverse spaces to display. It should also be noted that the strings used by the 
desk manager for titles are C style (zero terminated) strings. Thus there is 
no length byte to change. 

cntrlstr de c'Control Panel' 
de h'OO' 

This string has no length requirement other than it must be less than 34 
characters. 

August 24, 1986 Desk Manager ERS Page 10 



quitstr de C1QUit1 

de h 100 1 

This string has no length requirement other than it must be less than 34 
characters. 

selectstr de h 15 A I 
de C1 Select: I ; note spaces before and after str 
de h14A AO 4B 1 

de 17h 1A0 1 

de c'Open: 1 
; note space after str 

de h'4D AO AO 5F 001 

This string must be exactly 39 characters long. If the length of the words 
"Select" or "Open:" changes, the easiest way to modify things is by 
changing the number 17 in the 4th line above. This will alter the number of 
spaces drawn between "Select" and "Open". 

GetDAStrPtr Returns the pointer to the table of strings described in the 
SetDAStrPtr routine. 

Stack Before Call 
I pr~u.s col!lellls 
I space for result 
I DA id nwn 
I 

Stack After Call 
I pr~u.s colllellls 
I poimer table of strings 
I 

New Desk Accessory Routines 

I 
I LONG 
I 
1<-SP 

1 
I POINTER 
1<-SP 

OpenNDA Opens the specified DA by ID number. 

I word 

Stack 
I 
I 
I 
I 

Before Call 
pr~U.S COf!.UIIlS 

Space for RqNum 
JDNum I ID number returned from Menu Manager (word) 

I<·SP 

Stack Arter Call 
I pr~u.s colllellls I 
1 RejNum I 
I 1<-SP 

This call is made when an application discovers that the user has selected an NDA from the 
Apple Menu. The ID Nwn passed is the same ID returned by the Menu Manager and set up 
by the FixAppleMenu call. 

August 24, 1986 Desk Manager ERS Page 11 



.. 

OoseNDA Closes the specified DA. 

Stack Before Call 
I prwious conunts I 
I RejNum I 
I lc-SP 

Stack After Call 
I prwious contents I 
I lc-SP 

The RefNum is the RefNum returned by the open call This call is very similar to the call 
on the Macintosh. Like the Macintosh, it is unlikely to be used by an application since 
NDAs are closed when the mouse goes down in the CloseBox and SystemClick handles 
this. 

OoseNDAbyWinPtr Closes the NDA whose window pointer is equal to the one 
that is passed. 

Stack Before Call 
I prwious conunts 
I WinPtr 
I 

Stack After Call 
I prwious contents 
I 

I 
I POINTER 
lc-SP 

I 
lc-SP 

This call is handy when trying to close a desk accessory because the user chose close from 
the file menu. When the user chooses close, the application uses the Front Window call to 
see what window is to be closed. If the front window is not an application window, the 
application can pass the pointer to CloseNDAbyWinPtr. 

Possible Errors 

NotSysWindow This is returned when the window pointer is not the 
pointer to a window owned by a NDA. 

OoseAllNDAs Qoses all open NDAs. 

No stack parameters. 

FlXAppleMenu Adds the names of the NDAs to the specified menu. 

Stack Before Call 
I prwious conunts 
I MenJJ/D 
I 

Stack After Call 
I prwious contents 
I 

August 24, 1986 

I 
I ID of menu to add DA's to 
:c-SP 

I 
lc-SP 

Desk Manager ERS Page 12 



This call is used to put the names of the currently installed NDAs in a menu (usually the 
AppleMenu). They are appended to the menu with the first NDA given ID one, the second 
NDA given ID two and so on. · 

GetNumNDAs Returns the number of NDAs currently installed. 

Stack Before Call 
I previous contenls 
I S~for inleger 
I 

Stack After Call 
I previous con.ten.ts 
I Number of NDAs 
I 

I word 
I<·SP 

I 
I integer 
1<-SP 

SystemClick Called when application detects mouse down in a system 
window. 

Stack Before Call 
I previous con.tenls I 
t Ptr to EvtR.ecord I 
I Window Ptr I 
I FindWindow Result I 
I k-SP 

Stack Arter Call 
I previous con.ten.ts I 
I I<·SP 

This call is slightly different than the equivalent Macintosh call. One additional input is 
passed on the stack. This additional input is the result of the FindWindow call (that is 
where in the system window the mouse when down). This is different because the Desk 
Manager has no way to find out this information unless it is passed by the application. 

Note: If the application is using TaskMaster, it never needs to make this call. TaskMaster 
does the work for iL 

SystemEdit Passes standard menu edits to system windows. 

Stack Before Call 
I previous COnlenlS 
I Space for result 
I EdilType 
I 

Stack After Call 
I previous conlenls 
I Processed Flag 
I 

The valid Edit Types are 

August 24, 1986 

I 
I 
I Word 
1<-SP 

I 
I BOOLEAN 
k·SP 

Desk Manager ERS Page 13 



( 
( 

( 

L. 

( 

( 

~- c 
Ct 

0 
c. 

( c -
C:t 

r 
0 -

Lt 

1 
2 
3 
4 
5 

Undo 
Cut 
Copy 
Paste 
Clear 

The processed flag returns true if the top window is a system window and false otherwise. 

System Task Called periodically by an application to suppon Desk 
Accessories doing periodic actions. 

Stack Before Call 
I previous conlellls I 
I 1<-SP 

Stack After Call 
I previous colllellls I 
I 1<-SP 

For eack open desk accessory, System Task causes the accessory to perform the periodic 
action deflned for it, if any such action was defined and if the proper time period has 
passed since the action was last performed. For example, a clock accessory can be defined 
such that the second hand is to move once every second; the periodic action for the 
accessory will be to move the second hand to the next position, and SystemTask will alen 
the accessory every second to perform that action. 

Note: If the application is using Task..\1aster, it never needs to make this call. TaskMaster 
does the work for it. 

SystemEvent This is the entry point the Event Manger uses to the Desk 
Manager. 

Stack Before Call 
I previous colllellls 
I space for boo~an I word 
I Evt:nl What I word 
I Evelll Message I long 
I Evelll WMn I long 
I Evelll Whue I point (long) 
I Evt:lll Mod.r I word 
I 1<-SP 

Stack After Call 
I previous colllellls I 
I boolean I 
I lc-SP 

System Event returns true if the event is processed by a DA and false if it is to be sent on t< 
the application. The CDA activation keystroke is processed in this way. 

Note: An application would never make this call. 

August 24, 1986 Desk Manager ERS Page 14 



Required Iool Calls 

DeskBootinit 
DeskStartup 
DeskShutdown 
DeskV ersion 
DeskReset 
DeskStatus 

State Savin~ Calls 

SaveS em 
RestS em 
SaveAll 
RestAll 

HouseKeepjn~ Calls 

Install CDA 
InstallNDA 

Classic Desk Accessmy Calls 

ChooseCDA 
SetDAStrPtr 
GetDAStrPtr 

New Desk Accessory Calls 

OpenNDA 
CloseNDA 
CloseNDAbyWinPtr 
OoseAllNDAs 
FlX.AppleMenu 
GetNumNDAs 
SystemClick 
SystemEdit 
SystemTask . 
System Event 

August 24, 1986 

Summary of Calls 

Desk Manager ERS Page 15 





Documentation Developpeurs 
Apple Computer France 1987 

Document developpeur numero 56 

type d'upgrade de ce ducument : 5 
1 Documentation de premiere categorie inchangee 
2 Documentation de deuxieme categorie mise a jour 
3 Documentation de deuxieme categorie inchangee 
4 Mise a jour payante de Ia documentation de premiere categorie 
5 Mise a jour gratuite de Ia documentation de premiere categorie 
6 Nouveautes payantes non vitales 
7 Nouveautes gratuites et vitales 

Taille : 80 page(s) environ 

Domaine :Tool 14 

'¥7~[Fd®~@[NJ ~ ~ c© 
[Q)~u~ ~ ~©c©®c®® 





Dan Oliver 

This ERS corresponds to the Beta release of the Window Manager, version 
1.0. There will be no further changes to the Window Manager that will 
compromise applications written for this version. However, document errors 
will be changed to conform to actual code. Over the next few months I will 
be fixing bugs and releasing appendixes that detail Window Manager 
functions. If you have areas you would like clarified please let me know and 
I will try to publish an appendix. Send comments to: 

September 25, 1986 

Apple Computer, Inc. 
20525 Mariani Ave, MS: 22X 

Cupertino, CA 95014 

A TIN: Dan Oliver 



01/30/86 

06/05/86 

06/10/86 

06/14/86 

06/18/86 

07/15/86 

07!16/86 

08/13/86 

08/27/86 

09/02/86 

Initial release 

Revised release. Note the removal of direct access to window records by applications 
·and additional calls to compensate. The inputs to New Window has become more 
Mac like, and Dispose Window is folded into Close Window. 

Updates to page 4, and page 6 in the appendix. 

Updates to pages 15-20. 

Name changes to BootWmgr, InitWindows, TermWindows, and 
WmgrVersion. Addition ofWindReset and WindStatus, although not 
completed. Additional parameter, user ID, passed to Wind.Startup (formerly 
InitWindows). TaskMaster uses an extended event record. 

Expanded SetFrameColor. WNewRes doesn't redraw the screen anymore. 
Changes to color table in "\VVNDOW FRAME COLORS MTD P A TIER..~S ". New 
input to NewWindow. New calls; GetCOrgin, SetCOrigin, GetDataSize, 
SetDataSize, GetMaxGrow, SetMaxGrow, GetScroll, SetScroll, 
GetPage, SetPage, GetCDraw, SetCDraw, GetlnfoDraw, SetinfoDraw, 
StartDrawing. New sections DRAW CONTENT ROUTINE and DRAW 
INFORMATION BAR ROUTINE. New input parameters to Move Window. 
Defaults added to DragWindow. Parameters expressed as ''POINT' are now broken 
down into two WORDs. 

Replacement for pages 6-8 in the appendix which labels New Window parameter list. 
Insert pages 15.a-15.c between pages 15 and 16. These pages define DRAW 
CONTENT ROUTINE and DRAW INFORMATION BAR ROUTINE as promised in 
the last release. 

Two bits added to wframe field of window record (see New Window). 
SetOrgnMask call added for scrollable windows that use color dithering in 640 
mode. Parameter length field added to parameter list passed to NewWindow. 
SetWMgricons call added along with a WINDOW ?YiANAGER ICON FONT 
section. TaskMaster returns window pointer in Task:Data field rather than the 
message field. 

Version 81.9. DragRect removed (implemented in Control Manager): Document 
correction to SendBehind. Changed names of GetinfoText to GetinfoRefCon, 
SetinfoText to SetlnfoRefCon. Added wlnfoHeight to input parameter to 
New Window, you can now select the height of window information bars. Added 
functions; GetRectinfo, StartlnfoDrawing, EndlnfoDrawing. Parameter 
change to Refresh. Added F _ALERT to wframe. Tasldv1ask field in the TaskRec is 
expanded from a WORD to a LONG and another bit is defmed. ERS corrections to 
GetCOrigin, SetPage, PinRect and CheckUpdate. 

PinRect theRect is a pointer to a REcr, not a REcr. 

September 25, 1986 r8J 
~ 



Tool Number: 

Tools needed installed: 

Stack requirement: 

14 

Quick Draw 
Memory Manager 
Event Manager 

512 bytes, when also using the Menu and Control 
Managers. 

ABOUT THE WINDOW MANAGER 

The Wmdow Manager is a tool for dealing with windows on the Cortland screen. The screen 
represents a working SUiface or desktop; graphic objects appear on the desktop and can be 
manipulated with a mouse. A window is a.n object on the desktop that presents information, such 
as a document or a message. Wmdows can be any size or shape, and there can be one or many of 
them, depending an the application. 

There are two kinds of predefined window frames, document and alert. 

· Document Alert 

The alen window is used by the Dialog Manager and is explamed in that ERS. 

Inside the document window can be standard window controls, which are; title bar, close box, 
zoom box, right scroll bar, bottom scroll bar, grow box, and information bar. The title bar 
displays the window's title, can hold the close and zoom boxes, and can be a drag region for 
moving the window. The close box is selected by the user to remove the window from the screen. 
The zoom box is selected by the user to make the window its maximum size and to return it to its 
previous size and position. The right scroll bar is used to scroll vertically through the data in the 
window. The bottom scroll bar is used to scroll horizontally through the data in the window. The 
grow box is dragged by the user to change the size of the window. The information bar is a place 
an application can display some information that won't be effected by the scroll bars. 

September 25, 1986 



'ntleBar 

Close box-. 
In!ox::rna ticn B ar 

£J 'WindoW' e) 
ol"' 
~ 

T 
.. . 
~ 

.-zoom box 

Con1!nt 
~ 1 "it 

<:lt :- :- :- : .; ;.;.;.;. t> Q:l. 

B oncm scmn bar Orovbox 

A document window may have any or all of the standard window conii'Ols. The only restriction is 
that if there is a close or zoom box there must also be a title bar. Common sense would dictate that 
there only be a zoom box if there is a grow box. although this is not a requirement. 

No standard conii'Ols may be added to a alert window. Here are some possible document window 
combinations: 

=~.._t,_e: ~lt1.e= 

-•.t1.~ 

0 

Your application can easily use standard window types, or create your own window types (see 
DEFINING YOUR OWN WINDOWS). Some windows may be created indirectly for you when 
you use other pans of the Toolbox; an example is the window the Dialog Manager creates to 

. display an alert. Windows created either directly or indirectly by an application are collectively 
called application windows. There's also a class of windows called system windows; these 
are the windows in which desk accessories are displayed. 

The Window Manager's main function is to keep track of overlapping windows. You can draw in 
any window without running over onto windows in front of it. You can move windows to 
different places on the screen, change their plane (front-to-hack order}, or change their size, all 
without concern for how the various windows overlap. The Wmdow Manager keeps track of any 
newly exposed areas and provides a convenient mechanism for you to ensure that they are properly 
redrawn. 

Finally, you can easily set up your application so mouse actions cause these standard responses 
inside a document window, or similar responses inside other windows: 

September 25, 1986 



- Oicking anywhere in an inactive window makes it the active window by bring it to the 
front and highlighting it. 

- Oicking inside the close box of the active window closes the window. Depending on 
the application, this may mean that the window disappears altogether, or a representation 
of the window (such as an icon) may be left on the desktop. 

- Dragging anywhere inside the title bar of a window (except in the close or zoom boxes, 
if any) pulls an outline of the window across the screen, and releasing the mouse button 
moves the window to the new location. If the window isn't the active window, it 
becomes the active window unless the Command key was also held down. A window 
can never be moved completely off the screen; by convention, it can't be moved such 
that the visible area of the title bar is less than four pixels square. 

- Dragging inside the size box of the active window changes the size of the window. 

WINDOW REGIONS 

Every window has the following two regions: . 

- The content region: the area that your application draw in 

- The frame region: the outline of the entire window plus any standard window controls. 

Together, the content and frame regions makeup the structure region. 

The content region is bounded by the rectangle you specify when you create the window (that is, 
the ponRect of the window's grafPort) The content region is where your application presents 
information to the user. · . 

A window may also have any of the regions listed below within the window frame. 

- A go-away region, a close box in the active window. Oick:ing in this region closes 
the window. 

- A drag region, the title bar. Dragging in this region pulls an outline of the window 
across the screen, moves the window to a new location, and makes it the active window 
(if it isn't already) unless the Command key was held down. 

- A grow regiori, the grow box. Dragging in this region pulls the lower right corner of 
an outline of the window across the screen with the window's origin fixed, resizes the 
window, and makes it the active window (if it isn't already) unless the Command key 
was held down. 

- A zoom region, the zoom box in the active window. Oick:ing in this region toggles 
between the current position and size to a maximum size, and back again. 

Clicking in any region of an inactive window simply makes it the active -· .. indow. 

September 25, 1986 



Note: The results of clicking and dragging that arc discussed here don't happen 
automatically, unless you are calling TaskMaster; you have to make the right Window 
Manager calls to cause them to happen. 

September 25, 1986 



CONTENT REGION AND WORK AREA 

What is the purpose of windows any way? Windows are used to present more information than the 
hardware (screen) can display at one time, and do it in a standard way. The name window is used 
because the user sees through the window into a larger area. The power of windows is their ability 
to give the user a standard device far accessing large amounts of data. Wmdows act like a 
microfiche viewer. What is seen on the viewer is like what is seen in the window's content region. 
And the window's data area is what the microfiche is to the viewer. Through the content region 
the user can see part of the data area. unless the content region is large enough to view the entire 
data area. Scroll bars are used to saoll the data area through the content region. The grow box and 
zoom box are used to display more, or less, of the data area at one time. When the window is 
moved, the data area is moved with it, so the view in the content remains the same. 

September 25, 1986 



WINDOW SCROLL BARS 

Window scroll bars are the devices used for scrolling the data area through the content region and 
showing the relationship between the data area and content region. The Control Manager must be 
installed in order to use scroll bars in windows. Scroll bars are handled by the Control Manager 
but this document will go over how standard window scroll bars act relating to windows. 

The scroll bar is like a reduced cross section of the work area. The scroll thumb is the same ratio to 
the page region as the content region is to the data area. 

•. 

Area seen in 
the content 
region. 

September 25, 1986 

Bottom Scroll Bar 

Right Scroll Bar 

[81 
JbbJ 



Origin Movement 

This section goes into detail on how the origin of a window can change and what the effectS arc. 
You should already be fammar with QuickDraw's explanation of pons and bound.Rect. 

The origin of a window is what allows data to be scrolled and drawing to occur in the proper place 
after a scroll PonRects, BoundRects and origins are not intnitive concepts so the following 
diagrams will walk through what might happen with an origin and point out some places of 
possible misunderstanding. 

We will start with a case that everyone should understand with little explanation. The gray area is a 
screen with the pixel in its upper left comer being 0,0 (coordinates are shown here as y,x). The 
window port appears on the screen at 65,50 to 85,80. These points are called global coordinates. 
To draw the house the x coordinate of the left side would be 60, that is 10 pixels inside the window 
pon. 

0 50 

0 

65 

85 

n 

a a n 

September 25, 1 986 



However, a window port is almost a screen in that it has its own coordinate system. called the local 
coordinate system. The following diagram shows what really happens when a window is created. 
Although the window is still at 65,50 to 85,80 on the screen the local coordinates of the window 
are 0,0 to 20,30. Notice that its height and width are the same. Also notice that rm now referring 
to the window as PortRect and the screen as BoundsRect. These are termS used by QuickDraw. 
At this point you don't really have to understand BoundsRects and PortRects other than some 
simple relationships. FliSt I will only refer to the horizontal axis, although the same thing happen 
with vertical axis. To draw the left wall of this house you would pass the x coordinate of 10 to 
Quick draw to draw a single ve:rticalline. QuickDraw would then subtract the x origin of the 
BoundsRect to determine where on the screen to actUally draw the line. So, 10 less -50 is 60. 60 is 
the global coordinate, 10 was the local. You always work with local coordinates. The reason 
applications work in local coordinates is so where ever the window is moved, its coordinate system 
is the same. The Window Manager will change the BoundsRect when the window is moved. If 
the window is moved one pixel to the left the BoundsRect would become -65,-49. 'When the 
coordinate of 10 is passed to Quic.kDraw it would compute the global coordinate of 59 (1 0 less 
-49). So, the house would be drawn in other place on the screen, but the same place in the 
window, and the application doesn't have to make any changes. 

BounasRect 

20 

30 

In the previous examples all had origins of 0,0 and reqtrire almost no understanding on the pan of 
th~ programmer to write an application. However, one the powerl'ul features of windows is their 
ab1lity to scroll to show more data than the screen allows. In the next example the window has not 
moved, but the user has scrolled the picture using the bottom scroll bar. When the user moved the 
thumb on the scroll bar the rectangle from 0,10 to 20,30 was scrolled (moved) to 0,0 to 20,20. 
Then the.origin of the window was changed to 0,10 the exposed rectangle on the right side was 
redrawn man update evenL 

September 25, 1986 B 
~ 



After the scroll the application would pass the coordinate of 10 to draw the left side of the house 
and Quic.kDraw would compute 10 less -40 to get the global coordinate of 50. Things would not 
be to bad at this point except for a problem the Window Manager has. The Wmdow Manager 
needs every window to have an origin of 0,0 in order for it to move, grow and overlap windows. 
This is an inefficiency in the Window Manager which will hopefully be fixed in the far future. For 
now, whenever the Window Manager is called. the origin of every window must be 0,0. 

-40 lO 

BouncisRee1: 

20 

40 

Here's the plan. Vlhenever TaskMaster calls your update routine its will switch to the window's 
pen and set its origin, in this example it would be SetOrigin( 0,10). Then you can draw in the 
window's local coordinates. Vlhen you are finished drawing and return back to TaskMaster it will 
perform a SetOrigin(O,O). Here's where the weirdness creeps in. Changing the origin does not 
change the screen, however any drawing outside of your update routine without setting the origin 
would have undesirable results. Drawing your house with the origin still at 0,0 would produce two 
houses, one 10 pixels to the right of the other. To draw outside of your update routine you need to 
flrst set the origin either yourself or through StartDrawing and then perform a SetOrigin(O,O) to 
put it back. 

In shon. when drawing outside of your update routine you must perform a StartDrawing before 
drawing and a SetOrigin(O,O) when you are finished drawing. This is also true for when you are 
performing a hit test in your content region, the event position must be convened to local 
coordinates. 

September 25, 1986 



USING THE WINDOW MANAGER 

To use the Window Manager, you must have previously initialized QuickDraw and the Event 
Manager. The first Window Manager routine to call is the init:ial.ization routine, Wind.Startup. 

Where appropriate in your program, use New Window to create any windows you need. 

Now you have a choice to make. There are two ways to handle user input in relation to windows. 
You can poll the user via GetNextEvent. and decide what to do with events, or poll via 
TaskMaster, which will handle most events dealing with standard user interfaces (see USmG 
TASKMASTER). 

If you are not using TaskMaster, you must poll for events by calling GetNextEvent in the 
Event Manager. For button down events, call FindWindow, to see if the button was pressed 
inside a window. The following are results from FindWindow and the standard actions to take: 

winMenuBar Button passed somewhere outside of the desktop. If you have not subtracted 
any area from the desktop, there is a good chance it was pressed in the system 
menu bar. Call MenuSelect in the Menu Manager. 

wlnDrag Button pressed in a window's drag region, in may not be the active window 
however. Call DragWindow. 

win Content Button pressed in window's content region. Call Select Window if the 
window is not the active window. Otherwise, handle the event according to 
your application. 

wlnGoAway Button pressed in active window's close region. Call TrackGoAway. If 
TrackClose returns TRUE, call Close Window, or Hide Window, 
perhaps after saving whatever the user was worlcing on inside the window. 

wlnZoom Button pressed in active window's zoom region. Call TrackZoom. If 
TrackZoom returns TRUE, call Zoom Window. 

winGrow Button pressed in active window's grow region. Call GrowWindow. 

September 25, 1986 f8l 
~ 



USING TASKMASTER 

TaskMaster is a procedure that can handle many standard functions. TaskMaster is called 
instead of GetNextEvent and the first thing TaskMaster does, is call GetNextEvent. If there 
isn't an event ready, TaskMaster will rerum zero. If an event is ready, TaskMaster will look at 
the event and try to handle it. If the event can not be handled at all, the event code is returned and 
the application can handle the event just like returning from GetNextEvent. If Task. '\'laster can 
handle the event, it will call standard functions to try and complete the task. For example, if the 
user presses the mouse button in an active window's zoom region, TaskMaster will detect it and 
call T rackZoom, then call Zoom Window if the user actually selects the zoom region, and return 
no event. However, sometimes TaskMaster can handle an event only up to a point. If the user 
presses the mouse in the active window's content region, TaskMaster will detect it, but won't be 
able to go any funhcr, so it returns win Content, which tells the application the mouse button is 
down the active window's content region. 

TaskMaster is provided for two reasons. The first is to make it easier for a programmer to get an 
application up and running as quickly as possible, and still take advantage of all the standard user 
interfaces. Although TaskMaster was tailored for beginning programmers, advanced 
programmers may find it useful when writing small, inhouse, applications. The second reason for 
TaskMaster is aimed at applications that are sold and will hopefully be around for years, if not 
weeks, to come. In the future, applications might have to be modified to take advantage of some 
new, as yet unknown, feature. If an application is using TaskMaster, it may be possible to make 
the modification to Task.'\1aster, without adversely affecting past applications, so your application 
will be using the new feature without any modification on your part. 

TaskMaster is one of the steps taken to remove the user interface duties from the application, as 
most operating system have done in the past. Task.'\1aster should be usable by even the most 
advanced ;ipplications, although some alternate algorithms may have to be used in order to get the 
desired results. 

When calling TaskMaster you pass a pointer to a Task.\1aster record, TaskRec. The beginning of 
the record is the same as an event record. 'When TaskMaster calls GetNextEvent, it will pass 
the pointer given, so the event record part ofTaskRec is set by GetNextEvent. The structure of 
TaskRec is: 

what 
message 
when 
where 
modifiers 
TaskData 
TaskMask 

WORD 
LONG 
LONG 
LONG 
WORD 
LONG 
LONG 

September 25, 1986 

Event record portion, unchanged from GetNextEv.ent. 

Extended portion for TaskMaster. 



The TaskMask is used by your application to tell TaskMaster about functions you would not like 
it to perform. To perform everything TaskMaster is capable of Task...\1ask should b~ 
$00001FFF. Bits are clear in TaskMask to disable features. See TaskMaster funcnon call for an 
outline of TaskMaster features and places Tas.kMask would cause a break. Task.Mask is defmed 
as: 

r;:;, ... I15I14I13I12I,I10l9JSI7I6ISI4I3I21 11 Ol 
~ I I L 0. no ManuKey. 

L- 0 • no update handling . 
..._ __ o. no FindWindow. 

'----- 0 • no MenuSelec:t 
'----- 0 • no OpenNDA. 

..._ ____ 0. no SystamCiick. 

'-------- 0. no Drag Window. 
'--------- 0. no Sel&dWindow if wlnContent 

'---------- 0 • no TrackGoAway . .__ ________ 0 • no Track.Zoom. 

'----------- 0. no GrowWindow. 
'------------ 0 • no scrolling. 

'-------------- 0. handle special manu items. 
'----------------- Bits 13-31 must be clear. 

It is 1mponant that bits 13-31 be clear. In fact, TaskMaster will return an error if they are not. 
The bits are for future features which will continue to run with predated applications because bits 
13-31 will mask off the new, unknown to cum:nt applications, features. 

Window type return codes from TaskMaster are: 

in Update - The window, who's pointer is stored in the TaskData field of TaskRec, needs 
to be redrawn. Call Begin Update, draw the visRgn or the entire content region, and 
call EndUpdate. 

wlnMenuBar- The user made a selection from the system menu bar and the ID of the item 
selected is stored in the low-order WORD TaskData, the menu ID is in high-order 
WORD of TaskData. Handle the menu selection and unhighlight the menu's title when 
you have completed the requested action. 

win Content- This means the mouse button has been pressed inside the content region of 
the active window. The window's pointer is in the TaskData field ofTaskRec. 
Because the event happen inside an area your application controls, it is up to you to 
handle this event in the manner you chose. -

winGoAway- User has selected the window's go-away region. Do what's needed and 
call Close Window with the window pointer in the TaskData field of TaskRec. 

September 25, 1986 



WINDOW MANAGER ICON FONT 

The standard document window definition uses a font to draw the close and zoom boxes, and their 
highlighted states, in a window's tide. If you would like to use different icons you can replace the 
default font. To replace the icon font, or just get the handle to the current font, call 
SetWMgrlcons. The format of the font is as follows: 

Close box. 
Highlighted close and zoom boxes. 
Zoom box. 

WINDOW RECORDS 

The Wmdow Manager keeps all the information it requires for its operations on a particular window 
in a window record. The record contains the window's grafPort, tide pointer, position, size of 
work area, a reserved long for the application, and other flags the Wmdow Manager needs to 
manage windows. The complete window record is accessed directly only by the Wmdow 
Manager. Application access to record information is restricted to calls through the Window 
Manager and directly to the first part of the window record. 

Not allowing direct access to the entire window record has good and bad sides. Access to window · 
information will be slower if calls to the Wmdow Manager have to be made. However, the delay 
would have to be measured in millisecon~ and the delay never seen on the screen. On the plus 
side, future Window Managers would not be tied to an older, possibly inadequate, record structure. 
The chances of improving the current Wmd.ow Manager, and maintaining compatibility across 
future hardware, is greatly improved by allowing records to change. 

Many Window Manager calls require a window pointer that is returned from NewWindow. That 
pointer is the pointer to the window's grafPort. 

September 25, 1 986 



The part of the window record that is defined is: 

wnext 
wpon 
wstrucRgn 
wcontRgn 
wupdateRgn 
wcontrol 
wFrameCtrl 
wframe 

F_HILITED 
F_ZOOMED 

LONG 
BYTE(186] 
LONG 
LONG 
LONG 
LONG 
LONG 
WORD 

Pointer to the next window in the window list. 
Wmdow's port. Returned window pointers rerum a pointer to here. 
Handle of window's entire region, the frame plus content. 
Handle of window's content region. . 
Handle of region that is the pan of the content that needs redrawmg. 
Handle of application's first control in content region. 
Handle of frame's first controL 
Bit vector that describes window. 

I1Sj14t13j12J11j1oj9Jsi7I6ISI4I3I2l 110J 

L.:: F_HILITED 
F_ZOOMED 
F_AUOCATED 
F _C"ffiL_TlE 
F_INFO 
F_VIS 
F_OCONTENT 
F_MOVE 
F_ZOOM 
F_FLEX 
F_GP.OW 
F_BSCRL 
F_RSCRL 
F_ALERT 
F_CLOSE 
F_TTTLE 

1 =frame is highlighted, 0 = unhighlighted. 
1 =currently zoomed, 0 =not zoomed. 

F _ALLOCATED 
F_CTRL_TIE 
F_INFO 

1 = record was allocated, 0 = record was provided by application. 
1 = control's state is independent, 0 = inactive window has inactive controls. 
1 =information bar, 0 =no information bar. 

F_VIS 
F_MOVE 
F_ZOOM 
F_FLEX 
F_GROW 
F_BSCRL 
F_RSCRL 
F_ALERT 
F_CLOSE 
F_TITLE 

1 = currently visible, 0 = window is invisible. 
1 = title bar is a drag region, 0 = no drag region. 
1 =zoom box on title bar, 0 =no zoom box. (Zoom box must have title bar.) 
1 = GrowWindow and Zoom Window won't change the origin. 
1 =grow box, 0 =no grow box. (Grow box must have at least one scroll bar.) 
1 = window frame horizontal scroll bar, 0 = no horizontal scroll bar. 
1 = window frame vertical scroll bar, 0 = no vertical scroll bar. 
1 = alen type fram~ (don't set grow, close, infobar, title bar, or scrolls). 
1 =close box, 0 =no close box. (Qose box must have title bar.) 
1 = title bar, 0 = no title bar. 

(The remainder ofrhe record is undefined) 

September 25, 1986 



WINDOWS AND GRAFPORTS 

It's easy for applications to use windows: To the application, a window is a grafPon that it can 
draw into with Quic.kDraw routines. \Vhen you create a window, you specify a rectangle that 
becomes the ponRect of the grafPort in which the window contents will be drawn. The bit map for 
this grafPort, its pen pattern. and other characteristics are the same as the default values set by 
QuickDraw. These characteristics will apply whenever the application draws in the window, and 
they can easily be changed with QuickDraw routines. 

There is. however, more to a window than just the grafPort that the application draws in. The 
other part of a window is called the window frame, since it usually sm:rounds the rest of the 
window. For drawing window frames, the Wmdow Manager creates a grafPort that has the entire 
screen as its ponRect; this grafPon is called the Window Manager port. 

September 25, 1986 8 
~ 



WINDOW FRAME COLORS AND PATTERNS 

In addition the to the standard window types and controls, the color of the window and controls 
can be selected. Colors are selected from a color table which you either pass when creating a 
window, or a default table. The color table for a document window is: 

FrameColor 
Title Color 
TBarColor 
GrowColor 
lnfoColor 

WORD 
WORD 
WORD 
WORD 
WORD 

Color of window frame. 
Color of inactive bar, inact:i.ve title, and active title. 
Color and pattern of active title bar. 
Color of grow box. 
Color information bar background. 

Use SetFrameColor to set the color table a window should use, and GetFrameColor to get a 
pointer to the window's CUITCnt color table. 

The following diagrams show how these colors are used. 

FrameColor: 

Title Color: 

. ..... 
::-··· .. .. 
~··· : ' 

~·-· . . ..... , ..... ,,,,,,, ....................... .._ ........... .. . . . . :Q] : : : : . 
' . 

I I I 

Zero Outline 
Color 

0 

Unsed 

f.·.·:.·.·:.-.·.·.·.·.·.·.·.·-~.t~·~·-·.·.·.·.·.·.·.·.·.·.·.-.·.·.~ .... F-·. __ Ti_Jt_le_C_o_lo_r_ Inactive Title Bar Color . . . . . . . ............................................................ , ...... , . . . . . . . . . . . . . . . . . . . . . . . . . . 
: : . . . . . . . . . . . : ........................................ ~ .... : . . . . . . . . . , ................................................... , .... ~ 

September 25, 1986 

15 0 

I I I I U:®11i;JPJ f( ll 'I .ll/l< I 
yyyl, 

Zero Inactive 
title bar 
color. 

Inactive Color of title, 
title color. close, and 

zoom boxes. 



TBarColor: 

Grow Color. 

lnfoColor. 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
' " : . . -····· , ....... , 

~ ' ' ~ ~ ......... 
. . 
~-·-..: . . . . . . . !····-...-···•-'''''············---.. ···-~::.··: ' " " ' . .. , .. 

~ ....... t ..... ~,,,,,~ ..................... J .... !j:~~: 

, ......................................... , 

Uf :·:~~~=~=~=~=~=~=~=~3~ •• -•••••••••• %=~=~=~=~=~=~=~=~~T~~l . . . . . , ........................................... , ...... . . . . . . . . . . . . 
: . . . . 
' . . 
: . . . . , ......... ,,,,,, ................ , .... ~ : : : . . QJ 

' . .. .. ' 
flo • ' ... • ............. ,,,,,, ........................ . 

. : 
~--·, , ... '\ . ' 
' ' ~ .... : ... . . 
: : . ....... . : . . . , ........... ,,,,,, ......................... , ..... . 

' " . . ' ,.... .. 
' ' 1lo • ' "' ••• ' ' .. ' ' , ...... : ....... : ... ;,,,,,, •...••......•.. ~ .... ~~::: 

September 25, 1986 

15 

Pattern Number 
0 • solid 
1 • dither 
2 • lined 

Grow Box Color 

Pattern 
Color 

0 

Background 
Color 

15 0 

Color of alert 
frame's middle 
outline. 

Zero Interior 
Color 
When Not 
Selected 

Information Bar Color 

Interior 
Color 
When 
Selected 

15 0 

Color of alert Zero Interior Unused 
frame's inside Color 
outline. When Not 

Selected 



HOW A WINDOW IS DRAWN 

When a window is drawn or redrawn, the following two-step process usually takes places: the 
window frame is drawn, then the window contents. 

To perform the first step of this process, the Wmdow Manager manipulates regions of the Wmdow 
Manager port as necessary to ensure that only what should be drawn is drawn. It then calls the 
window definition function with a request that the window frame be drawn. The window 
definition function is either within the Wmdow Manager or in the application for custom windows 
(see DEFlNING YOUR OWN WINDOWS). 

For the second step the Window Manager generates an update event to get the application to 
draw the window contentS. It does this by accumulating, in the update region, the areas of the 
window's content region that need updating. The Event Manager periodically calls 
Check Update to see if there's any window whose update region is not empty; if it fmds one, it 
reports (via the GetNextEvent function) that an update event has occm:red. and passes along the 
window pointer in the event message. Update eventS will be issued to the front most window first 
and the bottom most last. The application should respond as follows: 

1. Call Begin Update. This procedure temporarily replaces the visRgn of the window's 
grafPon with the intersection of the visRgn and the update region. It then clears the 
update region for that window. 

2. Draw the window contentS. 

3. Call EndUpd.ate to restore the actual visRgn. 

September 25, 1986 



DRAW CONTENT ROUTINE 

If wContDefProc is non-zero, the value will be considered the address of a routine in your 
application that will draw the window's content region. WContDefProc must be set if you want to 
use window frame scroll bars. TaskMaster will scroll the content and call wContDefProc to 
update the uncovered area when the use performs a scrolling action. WContDefProc could be 
"'-onsidered a control action procedure. 

WContDetProc might be useful even if you are not using window frame scroll bars. TaskMaster 
will be able to handle you update events if wContDefProc is set. TaskMaster will call 
Begin Update, wContDefProc and EndUpdate. (TaskMaster does take some shon cuts in 
calling Begin Update and EndUpdate because its part of the Window Manager.) Along these 
lines, if you are using window frame scroll bars, and therefore TaskMaster, you will not get 
update events, because they are handled by TaskMaster. 

There are no inputs or outputs to your draw content routine. Simple draw what is needed in the 
content and perform a RTL to exit. Remember that the content will have already been erased using 
the window pen's background pattern, and the visRgn is set to the area needing to be redrawn. 

Warning: Do not change ports or perform a SetOrigin call while in your draw 
content routine. 

DRAW INFORMATION BAR ROUTINE 

If bit 4 in wFrame of the New Window parameter list is set, the window will have an information 
bar. An information bar is the width of window aPd a height pass in the parameter list to 
New Window. It will appear just above the content region. 

The Window Manager draws the empty information bar, but it is up to the application to draw any 
information inside. Your application can do this by storing the address of an information bar draw 
routine in winfoDefProc of the New Window parameter list (also set bit 4 of wFrame). \\Then the 
standard window frame defProc draws the empty information bar, it will also call winfoDefProc. 
The inputs to your routine will be: 

InfoBar.LONG 
InfoData:LONG 
the Window:LONG 

September 25, 1986 

Pointer to information bar enclosing REcr. 
winfoRefCon value from NewWindow parameter list. 
Pointer to window's port. 



An information bar draw routine that just prints a string might look like this: 

lnfoDefProc START 

' the Window 
Info Data 
Info Bar 

. , 

equ 6 
equ theWmdow+4 
equ InfoData+4 

phd 

tsc 
ted 

Save the cmrcnt clirect page. 

Switch to direct page in staek. 

; - Position the pen at the text starting point------------

' 

. , 

ldy #left_side 
Ida [InfoBar],y 
clc 
adc #20 
pha 

ldy #top_side 
lda [InfoBar],y 
clc 
adc #10 
pha 

_Move To 

(\Vhe:re left_side equals 2.) 
Get the left side of the information bar, 

plus a tab over, 
to get a starting x position. (Pass to _Move To.) 

(\Vhe:re top_side equals 0.) 
Get the top side of the information bar, 

plus enough to vertically center the text, 
to get a starting y position. (Pass to _Move To.) 

Move the pen to the starting point. 

; -Print the text on the information bar--------------. , 
pea infoStrgl-16 
pea infoStrg 
_DrawString 

September 25, 1986 

Pass high word of string. 
Pass low word of string. 
Print the string. 



. 
~ - All done, now clean-up stack and rerum to Wmdow Manager-------

ply 

Ida 
Sta 
Ida 
sta 

tsc 
clc 
adc 
tcs 

tya 
ted 

rtl 

END 

2,s 
<14 
O,s 
<12 

#12 

Get original direct page back. 

Move rerum down over input parameters. 
W arks because stack and direct page are equal. 

.. 
Now move stack pointer over input parameters. 

Number of bytes of input parameters. 
New stack. 

Restore original direct page. 

Back to Window Manager. 

I have taken some liberties here, such as taking for granted the color and writing mode of the pen 
when the text is written. When entered, the current pen is the Wmdow Manager's. It is 
permissible to change the pen location, color, and 'Writing mode without saving the original pen 
state. However, that's as much as you should do without first saving the pen state, and then 
restoring it on exiL 

Warning: Do not change the current port's clip or vis regions, unless you save 
and restcre the original. 

Another liberty taken is when the text is centered vertically. You should make QuickDraw calls to 
find font height, find the InfoBax height, and then actually center the text. You should always use 
InfoBar as offsets into the information bar interior, they could be different from time to time. 

And of course 'infoStrg' would have to be defined. 

September 25, i 986 8 
~ 



MAKING A WINDOW ACTIVE: ACTIVATE EVENTS 

A number of Wmdow Manager routines change the swe of a window from inactive to active or 
from active to inactive. For each such change, the Window Manager generates an activate event, 
passing along the window pointer in the event message. The activeF1ag bit in the modifiers field of 
the event record is set jf the window has become active, or cleared jf it has become inactive. 

When the Event Manager finds out from the Wmdow Manager that an activate event has been 
generated, it passes the event on to the application (via the GetNextEvent function). Activate 
events have the highest priority of any type of event. .. 
Usually when one window becomes active another becomes inactive, and vice versa. so activate 
events are most commonly generated in pairs. When this happens, the Wmdow Manager generates 
first the event for the window becoming inactive, and then the event for the window becoming 
active. Sometimes only a single activate event is generated, such as when there's only one window 
in the window list, or when the active window is permanently disposed of (since it no longer 
exists). 

Activate events for dialog and alen windows are handled by the Dialog Manager. In response to 
activate or inactivate events for windows created directly by your application, you might take 
actions such as the following: 

- Inactivate controls in inactive window, and activate controls in active windows. 

- In a window that contains text being edited, remove the highlighting or blinking cursor 
from the text when the window becomes inactive and restore it when the window 
becomes active. 

- Enable or disable a menu or crnai.n menu items as appropriate to match what the user 
can do when windows become active or inactive. 

September 25, 1986 f8l 
~ 



DEFINING YOUR OWN WINDOWS 

You may want to define your own type of window - maybe a round or hexagonal window, or even 
a window shaped like an apple. QuickDraw and the Wmdow Manager make it possible for you to 
do this. 

To define your own type of window, you write a routine that can will duplicate some Wmdow 
Manager functions. When the Window Manager needs to do something it will call your routine and 
not its own. The address of the routine is passed to CrcateWmdow. The inputs to your routine 
will be: 

varCode:WORD - operation needed to be performed. 
theWindow:LONG - pointer to the window's port. 
Param:LONG - flag used by some messages. 

Output will be: 
outCome:LONG - returned flag. 

Offsets into the stack are: 

Param 
the Window 
varCode 
outCome 

=4 
=Param+4 
= the Window+4 
=varCode+2 

Your routine must strip off the three input parameters and return via RTI... So, the shell of your 
defProc routine might be: 

September 25, 1986 



MyWindow START 
Ida 12.s 
asl a 
tax 

actions 

lda >actions.x 
pha 
ns 

de i2'draw_wind-1' 
de i2'test_hit-1' 
de i2'eale_rgns-1' 
de i2'init_ wind-1' 
de i2'kill_ wind-1' 
END 

draw_wind START 

test_ hit 

. 
Draw window frame . . 

jmp exit 
E.ND 

START . 

Get varCode. 

Go to action handler. 

Routine to draw the window's frame. 
Routine that find a window region at a given point. 
Compute the window's sttuctRgn and eontRgn. 
Do additional initialization. 
Do additional disposal. 

Find what area of the window the point in Param is located. 

cale_rgns 

. 
jmp exit 
£1'.<1) 

START 
. 

Compute the window's struetRgn and contRgn. 

jmp exit 
END 

init_wind START . 
Perfonn additional initialization . . 

jmp exit 
END 

kill_wind START . 
Perform additional disposal. 

jmp exit 
END 

September 25, 1986 f8l 
~ 

·' 



exit START 

Ida 2.s 
sta 12.s 
Ida l.s 
sta ll.s 

tsc 
sec 
s~ #10 
tcs 

nl 
END 

varCode will be: 
wDraw =0 
wHit = 1 
wCalcRgns = 2 
wNew =3 
wDispose =4 

Move rerum address. 

Strip off input parameters. 

Rerum to Wmdow Manager. 

Draw window frame. 
Tell what region mouse button was pressed in. 
Calculate wstrucRgn and wcontRgn. 
Do any additional window init:ialization. 
Take any additional disposal actions. 

The following sections tell you what is expected is response to the varCode. 

wDraw -Draw Window Frame 

Param: 
wDrawFrame = 0 
winGoAway = 1 
wlnZoom =2 

Bit 31 =1 
=0 

Draw the window's entire frame. 
Draw go-away region. 
Draw zoom region. 

Highlight. 
Unhighlighted. 

Your routine should draw in the current grafPon. which will be the Wmdow Managerpon. The 
Window Manager will request this operation only if the window is visible. 

Param 
$00000000 
$80000000 
$00000001 
$80000001 
$00000002 
$80000002 

The entire window frame should be drawn as an inactive window. 
The entire window frame should be drawn as an active window. 
The go-away region should be drawn as unhighlighted. 
The go-away region should be drawn as highlighted. 
The zoom region should be drawn as unhighlighted. 
The zoom region should be drawn as highlighted. 

September 25, 1986 8 
~ 



wHit- Find What Region a Point Is In 

Pararn equals the point to check. The vertical coordinate is in the low-order WORD and the 
horizontal coordinate in the high-order WORD. The Window Manager will request this operation 
only if the window is visible. Your routine should determine where the point is in your window 
and then return: · 

.. 

wNoHit 
win Content 
wlnDrag 
win Grow 
winGoAway 
winZoom 
wlnlnfo 
wlnFrame 

=0 
= 19 
=20 
=21 
=22 
=23 
=24 
=27 

Not on the window at all. 
In window's content region. 
In window's drag (tide bar) region. 
In window's grow (size box) region. 
In window's go-away (close box) region. 
In window's zoom (zoom box) region. 
In window's information bar. 
In window, but not any of the above areas. 

Usually, wNoHit means the given point isn't anywhere within the window, but this is not 
necessarily so. 

September 25, 1986 rs 
~ 



wCalcRgns ·Calculate Window's Regions 

Your routine should calculate the window's entire region and its content region based on the current 
grafPon's ponRect. The Window Manager will request this operation only if the window is 
visible. When you calculate regions for your window, do not alter the clipRgn or visRgn of the 
window's grafPort. The Window :Manager and QuickDraw take care of this for you. Altering the 
clipRgn or visRgn may result in damage to other windows. 

wNew - Initialization .. 

After initializing fields as appropriate when creating a new window, the Wmdow Manager sends 
the message wNew to your routine. This gives your routine a chance to perform any initialization it 
may require. For example, because the structure of the window record is not documented you 
made want to allocate your own record structure, initialize it, and store its pointer via Set\VRefCon. 

w Dispose - Remove Window 

The Window Manager's Close Window and DisposeWmdow procedures send this message so your 
routine can carry out any additional actions required when disposing of the window. The routine 
might .. for example, release space that was allocated by the initialize routine. 

wGrow • Draw the Outline of the Window 

Param is a pointer to a REcr (rectangle). Your routine should draw an outline image of your 
window that would fit the given rectangle. The Wmdow Manager requests this operation 
repeated! y as the user drags inside the grow region. Your routine should use the grafF on's current 
pen pattern and pen mode, which are set up so one call will draw the outline and next will erase it 
(XOR mode). 

September 25, 1986 . 



Definitions 

highlighted 

un highlighted 

active 

inactive 

The frame of the window is drawn in full detail Generally the front most 
window is the only highlighted window on the screen. However, any window 
could be highlighted, even all the windows. 

Opposite of highlighted. Generally all the windows behind the front most 
window are unhighlighted. However, even the front most window can be 
unhighlighted. ,. 

In this document it only means the front most window on the screen. But 
generally it also means it is highlighted. This should also be the window your 
application acts on when the user types, gives commands, or whatever is 
appropriate to the application. 

AIJ.y windows behind the front most (active) window. Generally these 
window will be unhighlighted. 

Title 

Inactive and 
unhighlighted. 

Title 

window list 

Active and 
highlighted. 

or list Ail internal linked list of all the window records created by NewW'mdow and 
not removed by a Qose Window or Dispose Window call. The first visible 
window in this list is the active window. 

top window 
or top The first window in the window list. However, the top window is not the 

active window unless it is visible. 

bottom window 
or bottom The last window in the window list. 

September 25, 1986 



C©rr~~@l.cru@ wa~©l©w rMlrm~@l@~rr 

~~~~~©la~ ~ 
wart]@©w c~~~®

WINDOW MANAGER ROUTINES

Initjalizatjon and Iermjnatjon

WindBootlnit

input: None.

output: None.

Called only by SetTSPtr.

WindStartup

input: useriD:WORD- user's ID that Wmdow Manager can use.

output: None

WindStartup initializes the Wmdow Manager. Calls the Event Manager for zero page to
use, clears the window list. and setS the default desktop pattern and color. It creates the
Window Manager port; you can get a pointer to this port with the Getwrv!grPort
procedure. The desktop is the entire screen until the Menu Manager, if used, subtracts any
area needed for a system menu bar. Call this procedure once before all other Window
Manager routines. WindStartup does not draw the desktop, see Refresh.

WindShutDown

input: None.

output: None.

Closes all windows and frees any memory allocated by the Window Manager.

September 25, i 986
~

RppendiH R~

Wind Version

input: None.

output: wVersion:WORD- Wmdow Manager's version number.

WindReset

.. input: None .

output: None.

WindStatus

input: None.

output: status: WORD-

Status is TRUE if the Wmdow Manager is initialized, else FALSE.

WNewRes

input: None.

output: None.

Called after the screen resolution has been changed. The Wmdow Manager will close its
pon and open a new one (in the new resolution). Then the screen is not redra\VIl by the
Window Manager in the new resolution. Call Refresh when all resolution changes are
done. such as desktop pattern and window colors.

September 25, 1986
[81

AppendiH A JYd!,

Desktop

inputs: Operation: WORD- operation to perform/
Param:LONG - parameter needed for operation.

output: RetParam:LONG - possible return parameter.

Possible Operation numbers:

FromDesk =0 Subtract region from desktop region.
Add region to desktop region.
Return handle of desktop region.

ToDesk = 1
GetDesktop = 2
SetDesktop == 3 Set handle of dektop region.
GetDeskPat = 4 Return CUITCnt desktop pattern.
SetDeskPat = S Set new desktop pattern.
GetVisDesktop = 6 Return desktop, less any windows.

Expected inputs and outputs:

Operation
Param
RetParam

Operation
Param
RetParam

Operation
Param
RetParam

Operation
Param
RetParam

=FromDesk
= Handle of region to be subtracted from desktop region.
= Not used (not even necessary to push room on stack).

=ToDesk
= Handle of region to be added to desktop region.
= Not used (not even necessary to push room on stack).

= GetDesk:top
=Not used.
== Handle of desktop region.

= SetDesktop
= Handle of new desktop region.
= Same as Param.

f8
September 25, 1986 AppendiH A~

Operation
Panun
RetParam

= GetDeskPat
=Not used.
= CUII"ent desktop pattern where:

$00xxxxxx Where xxxxxx is the address of your routine that will
be called to draw the desktop. There are no inputs or
outputs,the cmrcnt port will be the Wmdow
Manager'~ and the clipping region will be set to the
area needing to be drawn. Your routine should exit via
aRTL.

Warning: The CUil'Cilt direct page and data bank is not
defined on entry to your routine. If you
need to reference you own direct page you
will have to save the original and switch to
yours. The same is true with the data
bank, except here you can use long
addressing. When you exit your routine
the direct page and data bank must be the
same as it was on entry.

$80xxxxxx Where xxxxxx is the address of the pattern to be used
for the desktop.

$4000xxxx The default desktop pattern where xxxx is:
OOxx • solid desktop pattern.
0 lxx • dithered desktop pattern.
02xx • horizontal stripped desktop pattern.
xxNx • N is the pattern's foreground color.
xxxN • N is the pattern's background color.

Operation = SetDes.kPat
Param = New desktop pattern (see GetDeskPat for definition).
RetParam = Not used (not even necessuy to push room on stack).

Desktop is redrawn with new pattern.

Operation = GetVisDesktop
Param = Handle of region that will be set to the visible desktop.
RetParam = Not used (not even necessuy to push room on stack).

The desktop region is copied into the given region, and all visible windows are
subtracted from it.

September 25, 1986
rml

AppendiH A~

New Window

input: paramList:LONG -pointer to a parameter list

output: theWindow:LONG- pointer to window pan. zero if error.

Possible crors:
1 • incorrect parameter list length.
2 =unable to locate memory for window record.

New Window creates a window as specified by its parameters, adds it to the window list,
and returns a pointer to the new window's port. It allocates space for the strUcture and
content regions of the window and asks the window definition function to calculate those
regions.

The parameter list is:

param_length
wFrame
wTitle
wRefCon
wZoom
wColor
wYOrigin
wXOrigin
wDataH
wData.W
wMaxH
wMaxW
wScrollVer
wScrollHor
wPageVer
wPageHor
winfoRefCon
winfoHeight
wFrameDefProc
winfoDefProc
wContDefProc
wPosition
wPlane
wStorage

WORD
WORD
LONG
LONG
REcr
LONG
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
LONG
WORD
LONG
LONG
LONG
REcr
LONG
LONG

Number of bytes in parameter table.
Bit vector that descibes the window.
Pointer to window's title.
Reserved for application's use only.
Size and position of content when zoomed.
Pointer to window's color table.
Content's vertical origin.
Content's horizontal origin.
Height of entire document.
Width of entire document.
Maximum height of content allowed by GrowWindow.
Maximum width of content allowed by Grow Window.
Number of pixels to scroll content vertically for arrows.
Number of pixels to scroll content horizontally for arrows.
Number of pixels to scroll content vertically for·page.
Number of pixels to scroll content horizontally for page.
Value passed to information bar draw routine.
Height of information bar.
Address of standard window definition procedure.
Address of routine that draw's the information bar interior.
Address of routine that draw's the content region interior.
Window's starting position and size.
Window's starting plane.
Address of memory to use for window record.

Each parameter is covered in more detail below.

September 25, 1986
rmJ

AppendiH A~

param_length

wFrame

Total number of bytes in parameter table, including param_length. Use labels
in code to come up with the value (that's why I don't give it here). The value·
is used mainly for error checking. Most eirors with New Window occur
because of typing errors when creating the parameter list. The problem can be
compounded further by the assembler or complier skipping field because of
typing errors but not generating an error.

Wmdow frame type:

I1SI14l13l12I11I10I9ISI7I6l 5141312111 Ol

F_Hn..ITED

F_ZOOMED

F _ALLOCATED

F_CTRL_TIE

F_INFO

F_VIS

~

-

F_HIUTEO
F_ZOOMED
F _All.OCA TED
F_CTRL_TIE
F_INFO
F_VIS
F_QCONTENT
F_MOVE
F_ZOOM
F_FLEX
F_GROW
F_BSCRL
F_RSCRL
F_At.ERT
F_CLOSE
F_TTT'l.E

1 = window is highlited. 0 = not highlighted. This flag
will be set by NewWindow, so whatever you pass will
be ignored.

1 ,. window is currently in a zoomed state, 0 = window is
not zoomed. This flag is not used is F _ZOOM is zero.

1 =window record was allocated by the NewWindow, 0
=window record was not allocated by the NewWindow.
If this flag is set when Close Window is called, the
window record will be freed.

1 = the state of the window's controls is not tied to the
window's state. 0 = when the window is inactive
(unhlghlighted), its controls are also considered inactive
without regard for the active state of the controL

1 = window has an information bar as part of the
window's frame, 0 =no information bar.

1 = window is visible, 0 = window is invisible.

fBl
September 25, 1986 AppendiH A~

F_QCONTENT 1 = if there is a button down event inside an inactive
window's content. the window will be selected and a

F_MOVE

F_ZOOM

F_FLEX

F_GROW

F_BSCRL

F_RSCRL

F_ALERT

F_O..OSE

F_1TI'LE

win Content message will be returned by TaskMaster.
This featUre is use if you would like to act on any button
down in the content, even if it was also used to activate the
window.

If this bit is zero TaskMaster will act in the same way,
except it will return an inNull message. This feature is use
if you would like to button down in an inactive content to
activate the window and then not use the same button
down event again.

1 =window can be dragged by its title bar, 0 =the
window's title bar is not considered a drag region and can
not. therefore, be moved.

1 = window has a zoom box in its title bar, 0 = window
does not have a zoom box in its title bar. The window
must have a title bar in order to have a zoom box.

1 = data height and width is flexible, which means that
Grow Window and Zoom Window will not change the
window's origin as needed. See Origin Movement for
more information.

1 = window bas a grow box, 0 = window does not have a
grow box.

1 = window bas a bottom (horizontal) scroll bar as pan of
the window frame, 0 = no bottom scroll bar.

1 =window bas a right (vertical) scroll bar as part of the
window frame, 0 = no right scroll bar.

1 = alert type window frame. This is used by the Dialog
Manager to draw an alert window. F _COSE. F _TITLE,
F _RSCRL, F _BSCRL, F _GROW, F _FLEX, F _ZOOM
and F _INFO should all be set to zero.

1 = window has a close box in its title bar, 0 = window
does not have a close box in its title bar. The window
must have a title bar in order to have a close box.

1 = window has a title bar as pan of the window's frame,
0 = no title bar.

Warning: IfF _GROW is set. F _BSCRL or F _RSCRL must also be set.

September 25, 1986

That is to say, to have a window frame grow box, you must have at
least one window frame scroll bar.

ml
RppendiH R~

wTitle

wRefCon

Pointer to ride of window. If window does not have a title bar this value can
be zero. The first byte in the string should be the length of the string,
followed byte the ASCI characters of the title.

Applicarion defined reference value. This value is reserved for the
application's use only, and can be any value desired.

reJ
September 25, 1986 AppendiH A~

wZoom

wColor

wYOrigin

wXOrigin

wDataH

wDataW

wMaxH

wMaxW

wScrollVer

wScrollHor

wPageVer

wPageHor

Rectangle of the content region when the window is zoomed. If the bott'?m
side of the rectangle is zero, a default REcr will be used. The default will be
set so that the window will use the entire screen.

Pointer to window's color table. This is the color table used to draw the
window's frame. Zero to use the default color table.

Vertical offset of content region. This value is the vertical value passed to
SetOrgin when TaskMaster is used to draw inside the content region. It is
also used to compute the right (or vertical) scroll bar. Zero if not using
window frame scroll bars.

Horizontal offset of content region. This value is the horizontal value passed
to SetOrgin when TaskMaster is used to draw inside the content region. It
is also used to compute the bottom (or horizontal) scroll bar. Zero if not using
window frame scroll bars.

Height of entire data area. Used to compute the right scroll bar. Zero if not
using window frame scroll bars.

Width of entire data area. Used to compute the bottom scroll bar. Zero if not
using window frame scroll bars.

Maximum content height allowed when growing the window. This value is
passed to GrowWindow when called by TaskMaster. If set to zero, a
default value will be used, so that the window will take up the height of the
desktop. Zero if not using window frame grow box.

Maximum content width allowed when growing the window. This value is
passed to Grow Window when called by TaskMaster. If set to zero, a
default value will be used, so that the window will take up the width of the
desktop. Zero if not using window frame grow box.

Number of pixels to scroll the content region when the up or down mows are
selected in the right scroll bar. Used only if the scroll bar is part of the frame
and TaskMaster is used. Zero if not using window frame scroll bars.

Number of pixels to scroll the content region when the left or right arrows are
selected in the bottom scroll bar. Used only if the scroll bar is part of the
frame and TaskMaster is used. Zero if not using window frame scroll bars.

Number of pixels to scroll the content region when the up or down page
regions axe selected in the right scroll bar. Used only if the scroll bar is part
of the frame and TaskMaster is used. Zero will default to whatever the
content region's height is at the time less 10.

Number of pixels to scroll the content region when the left or right page
regions axe selected in the bottom scroll bar. Used only if the scroll bar is pan
of the frame and TaskMaster is used. Zero will default to whatever the
content region's width is at the time less 10.

f8J
September 25, 1986 RppendiH A~

wlnfoRefCon

w InfoHeight

Value passed to Information Bar draw routine. The value can be anything the
application would like, such as a pointer to a string to be printed in the
information bar. Zero if not using window frame information bar.

Height of the information bar, if bit #4 of w Frame is set.

wFrameDefProc Pointer to window's definition procedure. Zero for a standard document
window.

w InfoDefProc Address of routine that will be called to draw in the information bar. Zero if
not using window frame information bar.

wContDefProc Address of routine that will be called to draw the window's content region. If
you are using window frame scroll bars this value must be set. If you are not
using window frame scroll bars this value can be zero. However, if you are
not using window frame scroll bars, but you would like TaskMaster to
handle update events, set this value. The routine will be called when the
content region needs to be drawn. On entry, the current port will be the
window's, the visible region region will be set to the update area, and the
origin set. There are no input or output parameters. Exit the routine via RTL.

wPosition A rectangle given in global coordinates, determines the window's size and
location, and becomes the ponRect of the window's grafPort; note, however,
that the ponRect is in local coordinates. New Window sets the top left
corner of the ponRect to (0,0). For the standard types of windows, this
REcr defines the content region of the window.

wPlane Pointer to window port this window should appear behlnd. Zero for bottom
most, SFFFFFFFF for top most.

w Storage Address of memory to use for window's record. If set to zero, the record will
be allocated. Because window records are not completely defined, the size
needed for a window record is unknow. Therefore, you must allow 325
bytes for a window record. Actually, it is best to have the record allocated bv
the Wmdow Manager. Being able to use your own memory for a window •
record is provided for in case you need to put up a window to say there is no
memory left, and therefore the Wmdow Manager could not allocate one.

Note: The bit map, pen pattern, and other characteristics of the window's
grafPon are the same as the default value~ set by the OpenPort
procedure in QuickDraw. (NewWindow actually calls OpenPort to
initialize the window's grafPort.) Note, however, that the coordinates of
the grafPon's portBits.bounds and visRgn are changed along with its
portRect.

NewWindow also sets the window class in the window record to indicate that the
window was created directly by the application.

September 25, 1986
[91

RppendiH R Jbdd!

Close Window

input: theWindow:LONG- pointer to window's pon.

output: None.

Close Window removes the given window from the screen and deletes it from the
window list. It releases the memory occupied by all data stmctmes associated with the
window, including the memory taken up by the window record if it was allocated by
NewWindow. Call this procedure when you're done with a window.

Any update events for the window are discarded. If the window was the frontmost
window and there was another window behind it, the latter window is highlighted and an
appropriate activate event is generated.

Warning: If you allocated memory yourself and stored a handle to it in the refCon
field. Close Window won't know about it-you must release the
memory before calling Close Window.

September 25, 1986
rs

AppendiH A~

Window Record and Global Access

GetWMgrPort

input: None.

output: wPon:LONG -pointer to Wmdow Manager's pan.

SetWMgrlcons

input: NewFont:LONG - handle of new icon font to use, negative to not replace font.

output: OldFont:LONG - handle of icon font before replacement, if any.

See Vv1NDOW MANAGER ICON FONT for more information about the font.

SetWRefCon

inputs: refCon:LONG - reserved LONG for application's use
theWindow:LONG- pointer to window's pen.

output: None.

SetWRefCon is used to set a LONG value that is inside the window record and is
reservered for the application's use.

GetWRefCon

input: theWindow:LONG- pointer to window's port.

output: refCon:LONG- reserved LONG for application's use

GetWRefCon is used to retrieve a LONG value from a window's record that was passed
to either NewWindow or Set~efCon by the application sometime before this call.

SetWTitle

inputs: title:LONG - pointer to string for new title.
the Window:LONG - pointer to window's port.

output: None.

September 25, 1986
lSl

AppendiH A~

Updates window's record with new tide pointer

September 25, 1986 AppendiK A~

GetWTitle

input: the Window:LONG - pointer to window's port.

output: title:LONG - pointer to string of window's title.

SetFrameColor

inputs: newColor:LONG - pointer to 8 word pattern/color table, zero for system.
tbeWindow:LONG- pointer to window's port, zero to set default.

output: None.

See WINDOW FRAME COLORS AND PA TI"ERNS for a definition of the color table.
Does not redraw the window. Do a Hide Window and ShowWmdow before and after this
call to redraw the window in its new colors.

If newColor is zero, the pointer to the system default color table will be used. If
the Window is zero, the default window color table will be set. To understand defaults,
system, and all this, it necessary to understand how the Wmdow Manager finds a color
table to use for drawing. First, a field in the window record is checked for a pointer to a
color table. The field iS zero after allocated by NewWindow, and remains zero until a
SetFrameColor. If a pointer is found in the window's record, that is the table used. If a
zero is found, the defalJlt table is used. Now comes the tricky part, the default table stans
out as the system table, but can be changed by SetFrameColor when the Window is
zero.

GetFrameColor

inputs: newColor:LONG - pointer to 8 word table that will be set with the color table.
theWindow:LONG- pointer to window's port.

output: None.

See WINDOW FRA..\1E COLORS AND PA TI'ERNS for a definition of the color table.

Front Window

input: None.

output: theWindow:LONG- pointer to the active window's port.

Front Window returns a pointer to first visible window in the window list (that is, the
active window). If there arc no visible windows, it returns zero.

September 25, 1986
f8l

AppendiH A~

GetN ext Window

input: the Window:LONG - pointer to window's pon.

output: NextWindow:LONG -pointer to next window's port in list. zero is last.

GetNextWindow returns a pointer the next window after the Window in the window list,
or zero if the Window is the last window in the window list.

GetWKind

input: theWindow:LONG- pointer to window's pon.

output: Window Kind: WORD- TRUE if system window, FALSE if application window.

GetWKind returns the kind of window theWmdow is.

GetWFrame

input: theWindow:LONG- pointer to window's pon.

output: wFlag:WORD- bit vector of window's frame type.

GetWFrame returns the same type of bit vector passed to New Window. See
New Window for the definition of the bits of wFlag.

SetWFrame

input: wFlag:WORD - bit vector of window's frame type.
theWindow:LONG- pointer to window's pon.

output: None.

SetWFrame sets the same type of bit vector passed to New Window. See
New Window for the definition of the bits of wFlag. The window frame is not redrawn.

September 25, i 986
[5]J

AppendiH A~

GetStructRgn

input: the Window:LONG - pointer to window's port.

output: WStructRgn:LONG- handle of window's structure region.

See WINDOW REGIONS for a definition of what the structure region is.

GetContRgn

input: theWmdow:LONG- pointer to window's port.

output: WContRgn:LONG - handle of window's content region.

See WINDOW REGIONS for a definition of what the content region is.

GetU pdateRgn

input: theWmdow:LONG- pointer to window's port.

output: WUpdateRgn:LONG - handle of window's structure region.

See Begin Update for an explaination of how the update region is used.

GetDef'Proc

input: theWindow:LONG- pointer to window's port.

output: \VDefProc:LONG- pointer theWmdow's definition procedure.

GetDefProc returnS the address of the routine that is called to draw, hit test, and
otherwise define, a window's frame and behavior.

September 25, 1986
~

AppendiH A~

SetDefProc

input: \VDefProc:LONG- pointer the Window's definition procedure.
the Window:LONG - pointer to window's port.

output: None.

SetDefProc sets the address of the routine that is called to draw,bit test, and otherwise
define, a window's frame and behavior. See DEFINING YOUR OWN WINDOWS for
an explaination of what a definition procedure does.

GetWControls

input: the Window:LONG - pointer to window's port.

output: ControlList:LONG - address of first control in window's control list, zero = none.

GetWControl returns the address of the first control in the window's control list. The
window's control list is the list of controls created by the application with calls to
NewControl in the Control Manager. The window's control list is separate from the
window frame's control list, explained in GetFControl.

GetFullRect

input: the Window:LONG - pointer to window's pon.

output: wFullSize:LONG -pointer to RECI' to be used as content's zoomed size.

If the zoom flag is set in the frame flag, see GetWFrame, then wFullSize will equal
the Window's last size and position. Otherwise, wFullSize will equal the size and position
of the Window's content region (pon) the next time the window is zoomed via a call to
ZoomWindow. ·

SetFullRect

input: wFullSize:LONG- pointer to REcr to be used as content's zoomed size.
theWindow:LONG -pointer to window's port.

output: None.

If the zoom flag is set in the frame flag, see GetWFrame, then wFullSize will equal
the Window's last size and position. Otherwise, wFullSize will equal the size and position
of the Window's content region (pon) the next time the window is zoomed via a call to
Zoom Window.

September 25, 1986
fBl

AppendiH A~

GetSysWFlag

input: theWmdow:LONG- pointer to window.

output: sysFlag:WORD- TRUE if system window, FALSE if application window.

SetSysWindow

input: theWmdow:LONG- pointer to window.

output: None.

The Window is marked as a system window.

September 25, 1986 RppendiH A~

GetCOrigin

inputs: theWindow:LONG- pointer to window's pon.

output: LONG - low WORD = y origin, high WORD = x origin.

These values arc used by TaskMaster for setting the origin of the windo"Y's pon y.rhen
handling an update event. The values arc also used to compute scroll bars m the wmdow
frame.

y

SetCOrigin

inputs: xOrigin:WORD -content region's horizontal offset into the data area.
yOrigin:WORD- content region's vertical offset into the data area.
the Window:LONG - pointer to window's port.

output: None.

See GetCOrigin for a description of origins. Setting these values will not generate any
update event, although the entire content will probably needed to be redrawn.

SetOrgnMask

inputs: originMask:WORD- mask used to put horizontal origin on a grid.
theWindow:LONG- pointer to window's port.

output: None.

SetOrgnMask is useful when you arc using a scrollable window in 640 mode with
dithered colors. The video hardware of the Cortland is such that different pixel position
get their color from different color tables. By using the effect it is possible to produce
many more colors than the two bits per pixels might suggest. However, the pixels are then
horizontally position dependent to keep the same color. Scrolling windows can change the
color by putting the pixels in the wrong horizontal position. That's where SetOrgnMask
comes in. OriginMask will be ANDed by TaskMaster with any new horizontal origin that
is created to force the origin to cenain boundaries. The default is SFFFF, single pixel.

September 25, 1986
rtEEl

AppendiH A~

StartDrawing

input: the Window:LONG - pointer to window's port.

output: None.

StartDrawing can be used for drawing in a window's content region outside of update
events. StartDrawing will make the window the Clm"ent port, and set its origin. After
the call any drawing, outside of update events, will ocet1r inside theWmdow's content and
in the proper coordinate system.

Note: StartDrawing is only of use with standard document window's with
frame scroll bars. Otherwise, only a SetPort would be needed to make the
proper port cmrent.

GetDataSize

inputs: theWmdow:LONG- pointer to window's port.

output: d.ata.Size:LONG - low WORD is the height. high WORD is the width.

The height and width of the data area is returned. The data area is the total amount of data
that can be viewed in a window, either through.resizingor scrolling.

SetDataSize

inputs: data Width: WORD- width of data area.
dataHeight:WORD- height of data area.
theWindow:LONG- pointer to window's port.

output: None.

See GetDataSize. Setting these values will not change the scroll bars or generate update
events.

September 25, 1 986
[8

AppendiH A~

GetMaxGrow

inputs: theWindow:LONG- pointer to window's pon.

output: maxGrow:LONG - low WORD is the max heigh~ high WORD is the max width.

These values are pasted to Grow Window by TaskMaster. The content region will not
be allowed to be sized to exceed these values.

SetMaxGrow

inputs: maxWidth:WORD- maximum content width allowed when resizing.
maxHeight:WORD- maximum content height allowed when resizing.
theWmdow:LONG- pointer to window's pon.

output: None.

See GetMaxGrow.

GetScroll

inputs: theWmdow:LONG- pointer to window's pon.

output: scroll:LONG - low WORD is the vertical amoun~ high WORD the horizontal.

Returns the number of pixels that TaskMaster will scroll the content region when the
user selects the arrows on window frame scroll bars.

SetS croll

inputs: hScroll:WORD- number of pixels to scroll horizontally.
vScroll:WORD- numberofpixels to scroll vertically.
theWindow:LONG- pointer to window's pon.

output: None.

See GetScroll.

[5!]
September 25, 1986 RppendiH R~

inputs: theWindow:LONG- pointer to window's port.

output: page:LONG -low WORD is the vc:n:ical amount, high WORD the horizontal.

Returns the number of pixels that TaskMaster will scroll the content region when the
user selects the page regions on window frame scroll bars.

SetPage

inputs: hPage:WORD- number of pixels to page horizontally.
vPage:WORD- number of pixels to page vertically.
theWindow:LONG- pointer to window's port.

output: None.

See GetPage.

GetCDraw

inputs: theWmdow:LONG- pointe:- to window's port.

output: contDraw:LONG- address of routine that is called to draw the content region.

TaskMaster will call this routine when it gets an update event for that window. See
CONTENT DRAW ROUTINE for more infomation about the draw routine.

SetCDraw

inputs: contDraw:LONG - address of routine to draw content region.
theWindow:LONG- pointer to window's port.

output: None.

See GetCDraw.

8
September 25, , 986 · AppendiH A~

Information Bar Routines

GetlnfoDraw

inputs: theWmdow:LONG ·pointer to window's pan.

output: InfoDraw:LONG- address ofTheWmdow's infomation bar definition procedure.

The standard window definition procedure will call TheWmdow's information bar
definition procedure whenever the window's frame needs to be drawn, if the window has
an infomation bar. See INFORMATION BAR DEFINITION PROCEDURE for more
infomation.

SetlnfoDraw

inputs: InfoDraw:LONG :-address ofTheWmdow's infomation bar definition procedure.
the Window:LONG - pointer to window's port.

output: None.

See GetinfoDraw.

GetlnfoRefCon

input: theWindow:LONG -pointer to window's port.

output: InfoRefCon:LONG - value associated to the information bar.

GetlnfoRefCon will return the value that is passed to TheWmdow's information bar
definition procedure.

SetlnfoRefCon

input: InfoRefCon:LONG - value passed to the information bar defintion procedure.
theWindow:LONG ·pointer to window's port.

output: None.

SetlnfoRefCon will set the value that is passed to TheWmdow's information bar
definition procedure. ·See ~r0&\1A TION BAR DEFINlTION PROCEDURE.

September 25, 1986
~

nppendiH A~

"

GetRectlnfo

input: InfoRect:LONG- pointer to destination REcr where the REcr will be stored.
theWmdow:LONG- pointer to window's port.

output: None.

InfoRect will be set to the coordinates of the information bar rectangle (excluding the
outline frame). If there is no information bar in the window the coordinates of InfoRect
will all be zero. The coordinate system will be local to the window's frame, that is, 0,0
will be the upper left comer of the window. The coordinates can be used to set the
position of objects that will be drawn in the information bar.

September 25, 1986
~

AppendiH A~

Startln foDrawing

input: InfoRect:LONG - pointer to destination REcr where the REcr will be stored.
theWindow:LONG- pointer to window's pon.

output: None.

Call StartinfoDrawing anytime you need to draw or hit test outside of your information
bar definition procedure.

InfoRect will be set to the coordinates of the information bar rectangle (excluding the
outline frame). If there is no information bar in the window the coordinates of InfoRect
will all be zero. The coordinate system will be local to the window's frame, that is, 0,0
will be the upper left corner of the window and the cun-e.n~ pon will be the Window
Manager's.

It is ok to set the clip region after a StartinfoDrawing and before EndinfoDrawing
calls, this is not true from within the information bar definition procedure.

Warning: You must call EndlnfoDrawing when you have completed interaction
with the information bar and before you make any other calls to the
Wmdow Manager.

EndlnfoDrawing

input: None.

output: None.

Call EndinfoDrawing after StartlnfoDrawing and before any other calls to the
Window Manager. EndinfoDrawing will put the Wmdow Manager back into a global
coorid.nate system.

Warning: Calling any Wmdow Manager function between a StartlnfoDrawing
and EndinfoDrawing may result in window system failure.

September 25, 1986
~

AppendiH A~

Window Shuffiin~

Select Window

input: theWindow:LONG- pointer to window's port.

output: None.

SeJectWindow makes theW"ulCiow the active window as follows: It unhighlights the
previously active window, brings theWmdow in front of all other windows, highlights
the Window, and generates the appropriate activate events. Call this procedure if you are
not using Taskl\1aster and there's a mouse-down event in the content region of an
inactive window.

Hide Window

input: theWindow:LONG- pointer to window's port.

ouput: None.

HideWindow makes theWmdow invisible. IftheW"mdow is the frontmost window and
there's a window behind it, HideWindow also unhighlights the Window, brings the
window behind it to the front, highlights that window, and gencrn.tes appropriate activate
events. If the Window is already invisible, Hide Window has no no effect.

Show Window

inputs: theWmdow:LONG- pointer to window's port.

output: None.

Makes theWmdow visible and draws it if it was invisible. It does not change the
front-to-back ordering of the windows. Remember that if you previously hid the
frontmost window with Hide Window, Hide Window will have brought the window
behind it to the front; so if you then do a Show Window of the window you hid, it will
no longer be frontmost. If theWmdow is already visible, SbowWindow has no effect.

September 25, 1986
mm

AppendiH A~

Show Hide

input: showAag:WORD- TRUE to show, FALSE to hide.
theWindow:LONG- pointer to the window's pon.

ouput: None.

If showAag is TRUE, ShowHide makes theWmdow visible if it's not already visible
and has no efect if it is already visible. If showAag is FALSE, Show Hide makes
the Window invisible if it's not already invisible and has no effect if it is already invisible.
Unlike Hide Window and Show Window, Show Hide never changes the highlighting
or front-to-back ordering of windows or generateS activate events.

Warning: Use this procedure carefully, and only in special circumstances where
you need more control than allowed by ShowWindow and .
Hide Window. You could end up with an active window that isn't
highlighted.

BringToFront

input: theWmdow:LONG- pointer to window's pon.

output: None.

BringToFront brings theWmdow to the front of all other windows and redraws the
windows as necessary, but does not do any highlighting or unhighlighting. Normally you
won't have to call this procedure, since you should call Select Window to make a
window active, and SeledWindow takes care of bringing the window to the front. If
you do call BringToFront, however, remember to call HiliteWindow to make the
necessary highlighting changes.

SendBehind

inputs: behindWmdow:LONG- pointer to window port, -1 to top or -2 to bottom.
theWindow:LONG- pointer to window's port.

output: None.

SendBehind sends theWindow behind behindWindow, redrawing any exposed
windows. If behindWindow is -2 ($FFFFFFFE), it sends the Window behind all other
windows. If behindWmdow is -1 ($FFFFFFFF), it puts theWmdow in front of all other

· windows (same as Select Window). If theWmdow is the active window, it unhighlights
the Window, highlights the new active window, and generates the appropriate activate
events.

September 25, 1986
~

AppendiH A~

Window Drawing

HiliteWindow

input: fHilite:WORD- TRUE to highlight window frame, FALSE to unhighlight.
theWindow:LONG- pointer to window's port.

output: None.

If fHilite is TRUE, this procedure highlights the Wmdow. If fHllite is FALSE.
HiliteWindow unhighlights theWmdow. The exact way a window is highlighted and
unhighlighted depends on its window definition procedure.

Refresh

Normally you won't have to call this procedure, since you should call SelectWindow to
make a window active, and Select Window takes care of the necessary highlighting
changes. Highlighting a window that isn't the active window should never be done.

input: Qobbered.Rect:LONG- pointer to RECI' needing redraw, zero for entire screen.

output: None.

Redraws the ent:ire deslaop and all the windows inside of OobberedR.ect, or ent:ire screen
if the pointer is zero. Useful when the entire screen was clobblered by some application
specific, non-Wmdow Manager, operation.

8
September 25, 1986 AppendiH A~

User Interaction

Find Window

inputs: whichWmdow:LONG- a.ddress of where to store pointer of window.
pointX- x coordinate to check (global).
pointY - y coordinate to check (global).

outputs: Location: WORD:
wNoHit = $0000
winDesk = $0010
wlnMenuBar = $0011
wlnContent = $0013
wlnDrag = $0014
wlnGrow =$0015
wlnGoAway = $0016
w InZoom = $0017
wlnlnfo = $0018
w InFrame = $00 1B
wlnSysWindow = $8x:xx

Not on the window at all.
On the desktop area.
On the system menu bar.
In window's content region.
In window's drag (title bar) region.
In window's grow (size box) region.
In window's go-away (close box) region.
In window's zoom (zoom box) region.
In window's information bar.
In window, but not any of the above areas.
In a system window, lower part is one of the above.

\Vhen a mouse-down event occurs, the application should. if not using TaskMaster, call
FindWindow with pointY,pointX equal to the point where the mouse button was pressed
(in global coordinates, as stored in the where field of the event record). FindWindow
tells which part of which window, if any, the mouse button was pressed in. If it was
pressed in a window, the pointer to the window is stored in your variable at the address
passed to FindWindow in the Window parameter.

September 25, 1986
rm

AppendiH A~

Drag Window

inputs: grid: WORD - drag resolution. zero for default.
startX - starting x coordinate of CUl'Sor (global).
startY - starting y coordinate of CU1'Sor (global).
grace: WORD- grace buffer around Bounds.
BoundsRectLONG- pointer to REcr to use as cursor boundary, zero for default.
theWmdow:LONG- pointer to window's port.

output: None.

When there is a mouse-down event in the drag region of theWmdow, and TaskMaster is
not being used, the application should call Drag Window with startY,startX equal to the
point where the mouse button was pressed (in global coordinates, as stored in the where
field of the event record). Drag Window pulls a dotted outline of theWmdow around,
following the movements of the mouse until the button is released. When the mouse
button is released, DragW"mdow ·call Move Window to move theWmdow to the
location to which it was dragged. The window will be dragged and moved in its current
plane.

grid Allowed horizontal resolution movement. If grid is one, the window can
be positioned at any horizontal position. If grid is two, the window can
only be moved a multiple of 2 pixels horizontally. If grid is four, the
window can only be moved a multiple of 4 pixels horizontally. The only
allowed values are; 1, 2, 4, 8, 16, 32, 64, 128 .•• The grid parameter is
provided to speed up window moves by eliminating the need for bit
shifting, if the grid value is the correct value. If grid is passed as zero, a
default value will be used. The defaults are; 4 for 320 mode and 8 for
640mode.

startY ,startX The point where the mouse button was pressed, in global coordinates, as
stored in the where field of the event record. This point is used with the
tracked cursor position to compute the movement delta.

grace Grace is the distance. in pixels, that you will allow the cursor to move
away from BoundsRect before the dragged outline should be snapped
back to its starting position. TaskMaster uses 8 for this value. The
BoundsR.ect is expanded by the value of grace to compute the slopRect
passed to DragRect. S~e DragRect for more information.

BoundsRect . Pointer to a REcr, in global coordinates, that is passed to DragRect as
the limitRect parameter. See DragRect for more information. If zero is
passed for the pointer, the bounds of the desktop, less 4 all around, will
be used.

September 25, 1986
~

AppendiH A~

Grow Window

inputs: min Width: WORD - minimum width of content region to allow.
minHeight:WORD- minimum height of content region to allow.
stanX - starting x coordinate of cursor (global).
stanY- starting y coordinate of cursor (global).
theWmdow:LONG- pointer to window's port.

output: newSize:LONG - high WORD • new height. low WORD = new width.

When there's a mouse-down event in the grow region of theWmdow, the application
should call Grow Window with stanY ,startX equal to the point where the mouse button
was pressed (in global coordinates, as stored in the where field of the event record).
GrowWindow pulls a grow image of the window around. following the movements of
the mouse until the button is released. The grow image for a document window is a dotted
outline of the entire window and also the lines delimiting the title bar, size box. and scroll
bar areas. The diagram below illustrates this for a document window containing both
scroll bars. In general. the grow image is defined in the window definition function and is
whatever is appropriate to show that the window's size will change.

Title

'--...... ----..,..,.-----'.)
Size returned in lew-order WORO.

~ Size returned in
high-order WORD.

The application should subsequently call Size Wmdow to change the portR.ect of the
window's grafPort to the new one outlined by the grow image. The sizeRect parameter
specifies limits, in pixels, on the vertical and horizontal measurements of what will be the
new ponRect. SizeRect.top is the urinimnm vertical measurement, sizeRect.left is the
minimum horizontal measurement. sizeRect.bottom is the maximum vertical measurement,
and sizeRect.right is the maximum horizontal measurement.

Grow Window returns the actual size for the new portRect as outlined by the grow image
when the mouse button is released. The high-order WORD of the LONG is the vertical

September 25, 1986
f8J

Appendhc A~

measurement in pixels and the low-order WORD is the horizontal measurement. A rerum
value of zero indicates that the size is the same as that of the cum:nt ponRect.

Track GoA way

inputs: stanX - starting x coordinate of cursor (global).
stanY- starting y coordinate of cursor (global).
theWmdow:LONG- pointer to window's pott.

output: GoA way: WORD- TRUE if go away selected when button released, else FALSE.

When there's a mouse-down event in the go-away region of theWmdow, and the
application is not using TaskMaster, the application should call TrackGoAway with
theFT equal to the point where the mouse button was pressed (in global coordinates, as
stored in the where field of the event record). TrackGoAway keeps control until the
mouse button is released, highlighting the go-away region as long as the mouse location
remains inside it. and unhighlighting it when the mouse moves outside it. The exact way a
window's go-away region is highlighted depends on its window definition procedure. If
the mouse button is released inside the go-away regie~ Track GoA way unhighlights the
go-away region and rerums TRUE (the application should then eventually perform a
Close Window). If the mouse button is released outside the go-away region,
Track GoA way returns FALSE (in which case the application should do nothing).

TrackZoom

inputs: stanX- starting x coordinate of cursor (global)._
startY - starting y coordinate of cursor (global).
theWmdow:LONG- pointer to window's port.

output: Zoom:WORD- TRUE if zoom region was selected, else FALSE.

When there's a mouse-down event in the zoom region of the Wmdow, and the application
is not using TaskMaster, the application should call TrackZoom with theFT equal to
the point where the mouse button was pressed (in global coordinates, as stored in the
where field of the event record). TrackZoom keeps control until the mouse button is
released, highlighting the zoom region as long as the mouse location remains inside it, and
unhighlighting it when the mouse moves outside it. The exact way a window's zoom
region is highlighted depends on its window definition procedure. If the mouse button is
released inside the zoom region, TrackZoom unhighlights the zoom region and rerums
TRUE (the application should then eventually perlorm a Zoom Window). If the mouse
button is released outside the zoom region, TrackZoom returns FALSE (in which case
the application should do nothing).

September 25, 1986 . Y".ll AppendiH A Q])

TaskMaster

input: EventM.ask:WORD- used to call GetNextEvent.
TaskR.ec:LONG - pointer to an extended event record to use.

output: TaskCode:WORD- task code, zero equal no further task to perform.

Possible error: 3 =bits 13-31 are not clear in TaskMask: field ofTaskRec.

See Constants for TaskCode definitions.

See USING TASKMASTER for more infonna.tion.

TaskMaster uses TaskRec and EventMask to pass to GetNextEvent. An outline of
TaskMaster follows:

Call SystemTask for possible desk accessories.
Call GetNextEvent with a TaskRec and EventMask.
If GetNextEvent returns 'no event' TaskMaster will exit and return inNull.
The message field of the TaskRec is duplicated into the Task:Data field.

If event code is key down event:
IfTask.\1ask bit #0 = 0:

TaskMaster exits and returns inKey.
Call MenuKey for the system menu bar with the key from TaskRec.
If MenuKey returnS 'no selection made' Tas~\1aster exits and returns in.Key.
IfTask.\1a.sk bit#4 = 0:

TaskMaster exits and returns winMenuBar.
If the item selected has an ID number greater than 255:

TaskMaster exits and returnS wlnMenuBar.
Else the item belongs to a desk accessory and=

Call OpenNDA to open the desk accessory selected.
Call HiliteMenu to unhighlight the selected menu.
TaskMaster exits and returns inNull.

If event code is update event:
If TaskMask bit #1 = 0:

TaskMaster exits and returns in Update.
If the window with the update has an update draw routine (see NewWindow):

Switch to window's port.
Window's origin is set according to the origin values in its record.
The window's update draw routine is called (routine in application).
Window's origin is returned to zcro,zcro.
The previous pon is restored.
TaskMaster exits and returns inNull.

Else TaskMaster is unable to process the event:
TaskMaster exits and returns in Update.

rmJ
September 25, 1986 ·RppendiH R~

If event code is button down event:
If TaskMask bit #2 = 0:

TaskMaster exits and returns inButtDwn.
Call Find Window which place any found window pointer in the TaskData field.

If Find Window returns w InMenuBar:
If TaskMask bit #3 =- 0:

Low-order WORD of TaskData field in TaskRec =zero.
Ta.sk.\1aster exits and retums winMenuBar.

Call MenuSelect.
If MenuSelect returns 'no selection made':

TaskMaster exits and rerums inNull.
Else if the item ID > 2SS OR TaskMask bit #12 = 0:

Low-order WORD of TaskData field in Task:Rcc = selected item's ID.
High-order WORD ofTaskData field in TaskRcc =selected menu's ID.
TaskMaster exits and returns winMenuBar.

Else if the item ID < 2SO
if TaskMask bit #4 • 0

Low-order WORD ofTaskData field in TaskRcc =selected item's ID.
High-order WORD ofTaskData field in TaskRec =selected menu's ID.
Task.\1aster exits and rerums winDeskitem.

Else
Call OpenNDA to open the desk accessory selected.
Call HiliteMenu to unhighlight the selected menu.
TaskMaster exits and returns inNull.

Else (item is between 250 and 255)
If Task.Mask bit #12 = 0 or top window is an application window.

Low-order WORD ofTaskData field in TaskRec = selected item's ID.
High-order WORD ofTaskData.fieldin TaskRec =selected menu's ID.
TaskMaster exits and returns winSpccial.

Else if item ID = 2SS (Oose item).
Call CJ<>SeJ."'DAbyWinPtr with top window pointer (system window).
TaskMaster exits and returns inNull.

Else (item must be an Undo, Cut, Copy, Paste or Oear).
Call SystemEdit.
If SystemEdit returns FALSE.

Low-order WORD ofTaskData =selected item's ID.
High-order WORD 9fTaskData =selected menu's ID.
TaskMaster exits and returns winSpecial.

Else
TaskMaster exits and returns inNull.

Else if FindWindow returns a value that is negative:
If Tas.ldv1ask: bit #S = 0:

TaskData = window pointer returned from FmdWindow.
TaskMaster exits and returns value returned by FindWindow.

Find Window found something in a system window.
Call System Click with the window and result from FindWindow.
NOTE: This is as far as system windows can go in TaskMaster.
TaskMaster exits and returns inNull.

8
September 25, 1986 RppendiH A~

Else if FindWindow returns winDrag:
If TaskMask bit #6 = 0:

TaskData = window pointer returned from Find Window.
TaskMaster exits and returns winDrag.

If the command key is not down and the window is not active:
Call Select Window to make the window active.

Call DragWindow.
TaskMaster exits and returns inNull

Else if FmdWindow returns winContent:
If Task.Mask bit #7 = 0:

Task:Data = window pointer returned from FindWindow.
TaskMaster exits and returns winContent.

If the window is not active:
Call Select Window to make the window active.
TaskMaster exits and returns inNull

Else:
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winContent.

Else if FindWindow returns winGoAway:
If TaskM.ask bit #8 = 0:

TaskData = window pointer returned from FindWindow.
TaskMaster exits and retums winGoAway.

Call TrackGoAway.
If Track GoA way rerurns TRUE:

TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winGoAway.

TaskMaster exits and returns inNull.

Else if FindWindow returns wlnZoom:
If TaskM.ask bit #9 = 0:

TaskData =window pointerretuined from FindWmdow.
TaskMaster exits and returns wln.Zoom.

Call TrackZoom.
If TrackZoom returns TRUE:

Call Zoom Window.
TaskMaster exits and returns inNull.

Else if FindWindow returns winOrow:
If Task.Mask bit #10 = 0:

TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winOrow.

Call GrowWindow.
Call Size Window with results from GrowWindow.
TaskMaster exits and returns inNull.

fml
September 25, 1986 RppendiH A~

Else if FindWindow returns winFrame:
If Ta.sk.Mask bit #11 = 0:

Ta.skData = window pointer returned from FindWindow.
TaskMaster exits and returns winFrame.

If the window is not active:
Call Select Window to make the window active.
TaskMaster exits and returns inNull.

Else if button down event OCCUII'Cd in a window frame scroll bars:
TaskMaster does some unonhodox window and port manipulation.
Calls Track Control with an action procedure within TaskMaster.
NOTE: The window owner of frame scroll bar is the Wmdow Manager's.
The action procedure in TrackMaster performs scrolling and updates.
TaskMaster exits and returns inNull.

Else:
TaskMaster exits and rerums winFrame.

Else:

Else:

TaskData = window pointer returned from FindWindow.
TaskMaster exits and returnS value returned from FindWindow.

TaskMaster exitS and rerums event code.

[S]l
September 25, 1986 AppendiH A~

Window Sizin2 and Positioning

Move Window

inputs: new X- new x coordinate of content region's upper left comer (global).
newY- new y coordinate of content region's upper left comer (global).
theWmdow:LONG -pointer to window's port.

output: None.

Move Window moves the Window to another part of the screen, without affecting its size.
The top left corner of the window's ponRect is moved to the screen point newY .new X.
The local coordinates of the window's top left comer remain the same.

Size Window

inputs: newWldth:WORD- new width of window.
newHcight:WORD- new height of window.
theWindow:LONG- pointer to window's port.

output: None.

Size Window enlarges or shrinks the ponRect of theWmdow's grafPort to the width and
height specified by new Width and new Height, or does nothing if new Width and
newHeight are zero. The window's position on the screen does not change. The new
window frame is drawn; if the width of a document window changes, the title is again
centered in the title bar, or is truncated if it no longer fits.

September 25, 1986
8

RppendiH A~

Zoom Window

input: theWmdow:LONG- pointer to window's port.

output: None.

Zoom Window will flip the size and position of theWmdow between its current size and
position, to its maximum size, passed to New Window. If called again, before
theW mdow is moved or resized, theW mdow will be resize and positioned to the size and
position before the last Zoom Window was performed. When a Size Window or
Move Window is performed, while a window is zoomed, the last size becomes the new
size and position.

September 25, 1986
~

AppendiH A~

Update Region Maintenance

lnvalRect

input: badRect:LONG - pointer to REcr to be added to the update region.

output: None.

Inval.Rect accumulates the given rectangle into the update region of the window whose
grafPort is the c:m:rent port. This tells the Window Manager that the rectangle has changed
and must be updated. The rectangle is given in local coordinaies and is clipped to the
window's content region.

For example, this procedure is useful when you're calling Size Window for a document
window that contains a size box or scroll bars that arc not inside the window's frame.
Suppose you're going to call Size Window with fUpdate=TRUE. If the window is
enlarged, you'll want not only the newly created part of the content region to be updated,
but also the two rectangular areas containing the (former) size box and scroll bars; before
calling Size Window, you can call lnvalRect twice to accumulate those areas into the
update region. In case the window is made smaller, you'll want the new size box and
scroll bar areas to be updated, and so can similarly call InvalRect for those areas after
calling Size Window. As another example, suppose your application scrolls up text in a
document window and wants to show new text added at the bottom of the window. You
can cause the added text to be redrawn by accumulating that area into the update region
with InvalRect.

InvalRgn

input: badRgn:LONG - handle of region to be added to the update region.

output: None.

InvaiRgn is the same as InvaiRect but for a region that has changed rather than a
rectangle.

September 25, 1986
fml

RppendiH R~

ValidRect

input: goodRectLONG - pointer to a REcr to be removed from the update region.

output: None.

ValidRect removes good.Rect from the update region of the window whose grafPon is
the current pon. This tells the Wmdow :Manager that the application has already drawn the
rectangle and to cancel any updates a.ccumulaied for that area. The rectangle is clipped to
the window's content region and is given in local coordinates. Using ValidRect results
in benc:r performance and less redundant redrawing in the window.

For example, suppose you've called Size Window with £Update= TRUE for a document
window that contains a size box or scroll bars not part of the window frame. Depending
on the dimensions of the newly sized window, the new size box and scroll bar areas may
or may not have been accumulated into the window's update region. After calling
Size Window, you can redraw the size box or scroll bars immediately and then call
V alidRect for the areas they occupy in case they were in fact accumulated into the update
region; this will avoid redundant drawing.

ValidRgn

input: goodRgn:LONG - handle of a region to be subtracted from the update region.

output: None.

V alidRgn is the same as V alidRect but for a region that has been drawn rather than a
rectangle. ·

Begin Update

input: theWindow:LONG- pointer to window's port.

output: None.

Call Begin Update when an update event occurs for the Window. BeginUpdate
replaces the visRgn of the window's gra±Pon with the intersection of the visRgn and the
update region and then sets the window's update region to an empty region. You would
then usually draw the entire content region, though it suffices to draw only the visRgn; in
either case, only the pans of the window that require updating will actually be drawn on
the screen. Every call to Begin Update must be balanced by a call to EndUpdate. (See
"HOW A \VINDOW IS DRAWN".) Begin Update calls can be nested (that is
Begin Update may be called several times, for several different windows, before
End Update is called for each window).

September 25, 1986
[8]

AppendiH A~

End Update

input: theWindow:LONG- pointer to window's port.

output: None.

Call EndUpdate to restore the normal visRgn of the Window's grafPort, which was
changed by Begin Update as described above.

September 25, 1986
rmJ

RppendiH R~

Miscellaneous Routines

PinRect

inputs: theXPt: WORD - the x coordinate of the point to be pinned.
theYPt:WORD- they coordinate of the point to be pinned.
theRect:LONG - pointer to REcr that is the boundary of the given point.

output: pinnedPt:LONG - point inside theRcct nearest to thePt.

PinRect "pins" thePt inside theRect: If thePt is inside theRect, thePt is returned;
othCIWise, the point associated with the nearest pixel within theRect is returned. (The
high-order WORD of the pinnedPt is the vertical coordinate; the low-order WORD is the
horizontal coordinate.) More precisely, for theRect (left,top) (right,bottom) and thePt
(h,v), PinRect docs the following:

- If h < left, it returns left.

- If v < top, it returns top.

- If h >right, it returns right-1.

- Ifv >bottom, it returns bottom-1.

Note: The 1 is subtracted when thePt is below or to the right of theRect so that a
pixel drawn at that point will lie within theRect.

Check Update

input: theEvent:LONG - pointer to an event record.

output: Flag: WORD- '!'RUE if update event foun~ else FALSE.

Check Update is called by the Event Manager. From the top to the bottom in the window
list, it looks for a visible window that needs updating (that is, whose update region is not
empty). If a window with something in its update region is found, an update event for that
window is stored in theEevnt and returns TRUE. If it doesn't find such a window, it
returns FALSE.

September 25, 1986
[9]

AppendiH A~

Constants

Bit masks for wframe field of window record and NewWindow parameter list:

F HILITED
F-ZOOMED
F-ALLOCATED
F-CTRL TIE
F-INFO­
F-VIS
F-MOVE
F ZOOM
F GROW
F-BSCROLL
F RSCROLL
F CLOSE
F TITLE

$0001
$0002
$0004
$0008
$0010
$0020
$0080
$0100
$0400
$0800
$1000
$4000
$8000

Number of bytes in a window record:

WIND SIZE 325

Window is highlighted.
Window is zoomed.
Window record was allocated.
Window state tied to controls.
Window has an information bar.
W~dow is visible.
Window is movable.
Window is zoomable.
Window has grow box.
Window has horizontal scroll bar.
Window has vertical scroll bar.
Window has a close box.
Window has a title bar.

Size of WindRec.

Command messages sent to window definrion procedures:

wDraw
wHit
wCalcRgns
wNew
wDispose

0
1
2
3
4

Draw window frame command.
Hit test command.
Compute regions co~~d.
Initialization command.
Dispose command.

Return vales from TaskMaster, FindWindow, and definition procedures wHit command:

wNoHit 0
winDesk 16
winMenuBar 17
winSysWindow 18
winContent 19
winDrag 20
winGrow 21
winGoAway 22
winZoom 23
wininfo 24
winSpecial 25
winDeskitem 26
winFrame 27

September 25, 1986
f8J

AppendiH A~

Value passed to SendBehind:

BOTTOM MOST
TOP MOST
TO BOTTOM -

Data Ivpes

0
-1
-2

TaskRec (passed to TaskMaster):

what
message
when
where
modifiers
TaskData
TaskMask

Integer
Longint
Longint
Longint
Integer
Longint
Integer

Defined part of window record:

wnext
wport
wstrucRgn
wcontRgn
wupdateRgn
wcontrol
wFrameCtrl
wframe

Pointer
Port
Handle
Handle
Handle
Handle
Handle
Integer

Number of bytes in a window record:

WINO SIZE 325

Window frame color table:

FrameColor
Tit.leColor
TBarColor
GrowColor
InfoColor

Integer
Integer
Integer
Integer
Integer

September 25, 1986

To make window bottom.
To make window top.
To send window to bottom.

Same as event record.
Same as event record.
Same as event record.
Same as event record.
Same as event record.
TaskMaster return value.
TaskMaster feature mask.

Pointer to next window Record.
Window's port .
Region of frame plus content.
Content region.
Update region.
Window's control list.
Window frame's control list.
Bit flags.

Size of WindRec.

Color of window frame.
Color of title and bar.
Color/pattern of title bar.
Color of grow box.
Color of information bar.

mEl
AppendiH A~

Parameter list passed to NewWindow:

param_length
wFrame
wTitle
wRefCon
wZoom
wColor
wYOrigin
wXOrigin
wDataH
wDataW
wMaxH
wMaxW
wScrollVer
wScrollHor
wPageVer
wPageHor
winfoRefCon
wFrameDefProc
winfoDefP roc
wContDefProc
wPosition
wPlane
wStorage

Error Codes

ParamLenErr l
AllocateErr 2
TaskMaskErr 3

Integer
Integer
Pointer
Longint
REC'X
Pointer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Longint
Pointer
Pointer
Pointer
RECT
Longint
Pointer

New Window
New Window
TaskMaster

September 25, 1986

Fust word of parameter list is the wrong size.
Unable to allocate window record.
Bits 12-15 arc not clear in TaskMask field ofTask.Rec.

~
RppendiH R~

INDEX

ABOUTniE EndlnroDrawin& app. 26

WINDOW MANAGER 3 End Update app.42

AcrTV ATE EVENTS 24 Error Codes app. 46

Be&inUpdate app. 41
FindWindow app. 30

Brin&ToFront app. 28
Front Window app. 15

Check Update app. 43 Get CD raw app. 23

Close Window app. 12
GetContR~n app. 17

Constants app. 44 GetCOri&in app. 20

CONTENT REGION
7 GetDataSize app. 21 AND WORK AREA

GetDerProc app. 17
,, Om Types app. 45 GetFControls app. 18 -

DEFINING YOUR
25-29 GetFrameColor app. 15 OWN \VINDOWS

wCalcRgns 29 GetFuiiRect app. 18 wDispose 29
wDraw 27 GetinroDraw app. 24 wGrow 29
wHit 28 GetlnfoRefCon app. 24
wNew 29

OEFINTriONS 30 GetMaxGrow app. 22

Desktop app. 4-5 GetNextWindow app. 16

Dra&Window app. 31 GetPa&e app. 23

ORA W CONTENI"
GetRectln ro app. 2S

ROU1'INE. 21 GetScroll app. 22

ORA W INFOR.MA TION
21-23 GetStructRp~ app. 17 BAR ROUTINE

GetUpdateRgn app. 17

August 27, 1986 RppendiH A ~

CetWControls app. 18 SetDerProc app. 18

CetWFrame app. 16 SetFrameColor app. 15

CetWKind app. 16 SetFuiJRect app. 19

CetWMgrPort app. 13 SetinfoDraw app.24

GetWRetCon app. 13 SetlnloRdCon app.24

CetWTitle app. 15 SetMaxGrow app.22

Grow Window app. 32 SetOrgnMask app.20

Hide Window app.27
SetPage app. 23

HiliteWindow app.29
SetS croll app. 22

HOW A WINDOW
SetWFrame app. 16

IS DRAWN 20 SetWMgricons app. 13

SetWRerCon app. 13
InvaiRect app.40

SetWTitle app. 13
"InvaiRgn app.40

Show Hide app. 28

MAKING A W'INDOW ShowWindow app. 27
ACilVE 24

Size Window app. 38
Move Window app. 38

StartDrawing app. 21

NewWindow app. 6-11 StartlnloDrawing app. 26

PinRect app. 43 TaskMaster app. 34-3"

Refresh app. 29
Track GoA way app. 33

TrackZoom app. 33

SelectWindow app.27
USn-JG T ASKMAS1'ER 13-14

SendBehind app.28
USINGTiiE

SetCDraw app.23 WINDOW MANAGER 12

SetCOrigin app.20
ValidRect app. 41

SetDataSize app. 21
ValidRgn app. 41

August 27, 1986 flppendiK A m

WindBootinit app. 2

WINDOW FRAME COLORS
AND PATTERNS 18-19

WINDOW MANAGER
ICON FONT 15

WINDOW RECORDS. 15-16

WJNDOW REGIONS 5

WINDOW SCROU.. BARS 8

WINDOWS AND
GRAFPORTS 17

WindReset app. 3

WindSbutDown app. 2

WinclStartup app. 2

WindStatus app. 3

WindVersion app. 3

\
WNewRes app. 3

WORXAREA 7

Zoom Window app.39

August 27, 1986
8

Appendhc R~

Documentation Developpeurs
Apple Computer France 1987

Document developpeur numero 55

type d'upgrade de ce ducument: 5
1 Documentation de premiere categorie inchangee
2 Documentation de deuxieme categorie mise a jour
3 Documentation de deuxieme categorie inchangee
4 Mise a jour payante de Ia documentation de premiere categorie
5 Mise a jour gratuite de Ia documentation de premiere categorie
6 Nouveautes payantes non vitales
7 Nouveautes gratuites et vitales

Taille :50 page(s) environ

Domaine : Tool 15

\W~~~~@[NJ ~ ~ o© .
[Q)~u~ ~ ~©o©®o®®

Dan Oliver

This ERS corresponds to the Beta release of the Menu Manager, version
1 .0. There will be no further changes to the Menu Manager that will
compromise applications written for this version. However, document errors
will be changed to conform to actual code. Over the next few months I will
be fixing bugs and releasing appendixes that detail Menu Manager
functions. If you have areas you would like clarified please let me know and
I will try to publish an appendix. Send comments to:

Apple Computer, Inc.
20525 Mariani Ave, MS: 22X

Cupertino, CA 95014

ATIN: Dan Oliver

02/18/86 Initial release.

05/08/86 Many parameter changes to accommodate menu speedups. Menu record changes and an
alternative method of defining menus, see ME.~ STRINGS. Additional Mac type calls
to help portability. Many unnecessary features that slowed things down have gone
away. New calls Checkltem, SetltemMark, GetltemMark, Enableltem,
Disableltem, NewMenu, DisposeMenu, SetMenuiD, SetltemiD, SetSysBar,
GetSysBar, and InitPalette.

06/18/86 Fall Down menus removed. InitMenus, BootMmgr, MmgrReset, MmgrVersion
names changed. Additional parameter, user ID, passed to MenuStartup (formerly
InitMenus). Direct access to menu record no longer supponed. Custom menus being
rethought, and not currently complete. GetMenuPtr and Getltem.Ptr removed.
InsertMenu and lnsertltem are being redesigned, and are not complete. Now using
standard eiTOr rerum code, although it is always 'No enor'.

07/15/86 Changed the tenn Menu String to menu/item line list. New Menu now allocates only
one menu at a time. Special cb.aracters in menu/item lines changes; X is now color
replace highlighting, ID numbers must be included. lnsertMen~ lnsertltem,
DeleteMenu, Deleteltem are complete. Custom menus are defined.

07/16/86 Replacements for pages 8 and 9, I wasn't using proper ID numbers in my examples.

08/13/86 Removed standard color menus. One character has been added to the front of menu and
item lines. Added Getl\1Handle and GetMenuMgrPort calls. Changed inputs to
SetMenuFI;:tg. Menu/Item strings may terminate with a zero in addition to a rerum.
Change to menu records.

08!27 /86 Added more information about CalcMenuSize. Corrected GetltemFlag in ERS.

September 25, 1986

·-

This ERS describes the Menu Manager, the pan of the Cortland Toolbox that allows you to create
sets of menus, and allows the user to choose from the commands in those menus.

Tool Number.

Tools needed installed:

Stack requirement:

15

Quick Draw
Memory Manager
Event Manager

512 bytes.

About the Menu Manager

The Menu Manager supportS the use of menus which can be part of the Cortland user interface.
Menus allow usen to examine all choices available to them at any time without being forced to
choose one of them, and without having to remember command words or special keys. The
Conland user simply positions the cursor in the menu bar and presses the mouse button over a
menu title. The application then calls the Menu Manager, which highlights the selected title and
"pulls down" the menu below it. As long as the mouse button is held do~ the menu is
displayed. Dragging through the menu causes each of the menu items (commands) in it to be
highlighted in tum. If the mouse button is released over an item. that item is "chosen". The item
blinks briefly to confirm the choice, and the menu disappears.

When the user chooses an item, the Menu Manager tells the application which item was chosen,
and the application performs a cOITesponding action. When the application completes the action, it
removes the highlighting from the menu title, indicating to the user that the operation is complete.

If the user moves the cursor out of the menu with the mouse button held do~ the menu remains
visible, though no menu items are highlighted. II the mouse button is released outside the menu,
no choice is made: The menu just disappears and the application takes no action. The user can
always look at a menu without causing any changes in the document or on the screen.

September 25, 1 986

Menu Bars

A menu bar is an outlined rectangle that holds the titles of all the menus associated with the bar. A
menu may be enabled or temporarily disabled. A disabled menu can still be pulled down, but its
title and all the items in it are dimmed and not selectable.

Keep in mind that if your program is likely to be translated into other languages, the menu titles
may take up more space. If you're having trouble fitting your menus into the menu bar, you
should review your menu organization and menu titles.

The Svstem Menu Bar

There can be one special type of menu bar which is called the System Menu Bar. There can only be
one system menu bar on the screen at one time. The system menu bar always appears at the top of
the Cortland screen; nothing but the cursor ever appears in front of it. In applications that suppon
desk accessories, the first menu should be the desk accessory menu (the menu whose title is a
colored apple symbol). The desk accessory menu contains the names of all available desk
accessories. When the user chooses a desk accessory from the men~ the title of a menu belonging
to the desk accessory may appear in the menu bar, for as long as the accessory is active, or the
entire menu bar may be replaced by menus belonging to the desk accessory.

Color number 1 is reserved for drawing the Apple logo as the title for the desk accessory menu.
Thex=efore, color number 1 should not be used as the normal, hilite, or outline color. The color can
be used for menus, items, nonsystem menu bars, and the rest of the screen.

M•nur/~~~=;==============~~============~--------~
Ber

Figure 1. The System Menu Bar

September 25, 1 986

Window Menu Bars

In addition to the System Menu Bar your application can have various window menu bars. These
can appear anywhere in windows. Window menu bars are provided to give you more flexibility
and to address the limited resolution in 320 mode. Wmdow menu bars should be used moderately,
if at all Wmdow menu bars pexform in the same manner as the System Menu Bar.

System Menu Bar

This is my memo that I want to send to
everyone.

September 25, 1986

ADcearance of Menus

A standard menu consists of a number of menu items listed vertically inside a shadowed rectangle.
A menu item may be the text of a command or just a line dividing groups of choices (see Figure 2).
Menus always appear in front of everything else, except the cursor. The menu in figure 2 is a
menu with 6 items including one dividing line.

Figure 2. A Standard Menu.

File Edit 1 1 1 • ·• Font Fon1Si:z~ Stqf~

M.nu 'v/idth

Each item can have a few visual variations from the standard appearance:

- A mark (any charcter) may appear on the left side of the item. to denote the status of the item
or of the mode it controls. See SetitemMark, GetitemMark, and Checkltem.

- A apple symbol on the right side of the item, to show that the item may be invoked from the
keyboard (that is, it has a keyboard equivalent), followed by a character. Pressing indicated
character while holding down the Command key invokes the item just as if it had been
chosen from the menu. See MenuKey .

- Each item's text may have its own text style. See SetltemStyle and GetltemStyle.

- A dimmed appearance, to indicate that the item is disabled, and can't be chosen (dividing
lines should always be disabled). See Disableltem and Enableltem.

- Any menu may be drawn directly by the application and might contain anything (see
DEFINING YOUR OWN MENUS).

If the standard menu doesn't suit your needs-for example, if you want more graphics, or perhaps
a nonlinear text arrangement-you can define a custom menu that, although visibly different to the
user, responds to your application's Menu Manager calls just like a standard menu (see DEF'Th1NG
YOUR OWN MENUS).

September 25, 1986

KevboarcfEguivalents for Commands

Your program can set up a keyboard equivalent for any of its menu commands so the command can
be invoked from the keyboard with the Command key (apple key). You can assign one or two
keyboard equivalents per item. One equivalent is the primary, and is displayed to the right of the
item. The other equivalent is the alternate and is not displayed. The alternate equivalent should be
the lower case equal to the primary equivalent (which should be upper case). See MenuKey for a
discussion on how items are searched.

Note: For consistency between applications, you should specify an upper case letter as the
promary keyboard equivalent.

Usjn2 the Meny Mana2er

To use the Menu Manager, you must have previously initialized Quic.kDraw. For user interaction
you must use the Event Manager. If you are going to be using the Wmdow Manager, it must be
initialized before the Menu Manager.

Initialize Menu Manager.

L) lda
pi\ a
lea
ph a

MyiO

MenuZPaqe

_MenuSeareOp

!0 number reeurned by Memory Manaqer sea~up.
Pass ID eo Henusea~up.
Zero ~or Menu Manaqer use, vh~ek can be alloeaeed.
Pass Zero Paqe ehae Menu Hanaqer ean use.
Will creaee and drav an empey menu bar.
No ouepue.

You now have a system menu bar that contains no menus. It is the CUITCnt menu bar. The Menu
Manager can handle several menu bars by changing the 'current menu bar' (see SetSysBar). But
if you are only using one menu. most cases. don't even worry about it. the system menu bar will
always be CUII'ent.

September 25, 1 986 l 7

Your program then must define menus and items by provicii.Dg a list of menu and item lines to
New Menu for each menu (see MENU LINES AND ITEM LINES) and lnsertMenu to add them
to the system menu bar. FixMenuBar may be of use in setting default sizes.

2.) pha
ph a
pea Menull-lfi
pea Menul

NewHenu -
p~a

·~a menu!iancile
p~a

st. a menu!iancile+2
ora menu!iancl~e

l:leq error

lela menu!iancile+2
ph a
lela menu.liancile
ph&
pea 0

Inser<:Menu -

Space tor reeurned handle.

Pass pointer to .. nu/item linea.

Allocaee a menu record and inieialize it.
Ge~ reeurned menu handle
and save it.

Check tor bacl handle.
Unable to alloca~e handle or bad menu/item lines.

Pass handle or manu to insert (just allocated).

Insert menu as tirst menu tlaq.
Insert menu in C.ea structures, not drawn.

In the above example, the menu/item line data might look like:

OA'l'A:

Me nul c'>>Title\Nl',il'O' Menu title.
c'--Item l\N2S6',il'0' Item text.
c • • • Termination character.

After all the menus you would like have been created and inserted you must set the sizes of the
menu bar and menus (New Menu does not set the menu's size).

3.) pha
_FixMenuBar
pla

Space tor returned bar heiqht.
Initialize menu bar/menus sizes.
Get the heiqht or the menu bar. Generally or no use.

After created and initialized the new menu bar should be drawn. If you would like, change the
color of the menu bar and menus with SetBarColors before drawing the menu.

4.) _crawMenuBar Craws the menu bar and the menu-titles.

The menu bar is up and initialization is complete.

September 25, , 986

Now you are ready to accept input from the user and you have a choice. The first choice is to use
Task Master. Task Master is part of the Window Manager and is defined in that document. As you
will see section A describes how to interact with menu not using Task Master and is more to
understand and debug than section B that uses Task Master.

:·.Jsor.i{~tc anop
~~•t. da 2 First part is an event recora. aetinea in Event Manac;er.
~ssac;e da 4
-.r.a~ da 4

~~~~~~=-· da 4 
~:,c ~! =.ers as 2 
·:·,uKOar.a ds 4 Place tor raturnea values. 
~dSKMaslt d.s 4 Osea by Winaow Manaqer calls. not really neeaaa here. 

Section A, not using Task Master: 

poll 

cl<_l:lur.-:on 

pl\a 
pea S002C 
pea 'faalcbc 1-16 
pea 'fulcbc 
_GetNaX1:£vant 
pl& 
beq poll 

lC.. what 
c::ap tJ 
bna c.lc_button 
c::ap ts 
bna clc_button 

pea TulcRac 1-16 
pea TaslcRac 
pea 0 
pea 0 
_Menu!<ey 
bra clc_Hanu 

c:np tl 
bne poll 

Space tor returned value. 
Accept kay ana mouse aown events Cat least these events> . 
Pass pointer to avant record. 

Get return tl&q. 
Was there an event? 

Get avant code. 
Key press event? 

Auto-kay evant? 

Pass TaakRac which contains the kay pressed in •messaqe'. 

Osa currant manu bar tl&q. 

Executa common menu selection routine. 

House down avant? 
If net kay or button, continua to poll. 

You should first determine~ but it's absolutely necessary, if the button was pressed in 
the menu bar. If you are using the Window Manager, call FindWindow. It will 
rerum a value that states in point is in the system menu bar. If you are not using the 
Wmdow Manager it is application specific as to how to detemtine this. Using the 
height of the menu bar, returned from FixMenuBar, could be of use. 

Continue if you find the point is in the menu bar. 

September 25, 1 986 I 9 



pea TasltReel-16 
pea TaskRec: 
pea 0 

pea 0 

_MenuSelec:t 

c:K_Menu lea TaskOata 
beq poll 

Clllp 1256 
bee e&ll_desltmqr 

and UOOFF 
Sll. 

asl a 
tax 
jmp titemProc:s,xl 

ir.emPrccs de i'iteml' 

Pass TasltRec: which contains the key pressed in 'message'. 

Ose current menu bar !laq. 

Menu select will wait for a button up before returning. 

Get IO o! item selected. 
Was an item selected. I! not, return ~o po11inq. 

Item IDs 1-2SS are reserved !or desk accessory items. 
Do what is necessary !or desk accessories. 

Short cut !or t&ble, i! &11 item IDs are between 256 and 

Jump to item handler. 

Adaress !or item handler (we only have one iteml . 

iteml (perform whatever action the item ciictatesl 

pea 0 

lda TaskData+2 
ph a 
_RiliteMenu 

jmp poll 

September 25, 1986 

Pass FALSE to unhiqhliqht the menu title. 
Get menu's IO, returned !rom HenuKey or HenuSelect. 
Pass the menu's IO number. 
Onhiqhliqht the menu's title, a!ter item action. 

Return to pollinq. 

I 1 o 



Section B, using TaskMaster: 

pol.l ph a 
pea 
pea 

~· 

S002C 
TaskRecl-16 
Tasx.Rec 

_TaslcM&ster 
pla 
beq poll 

cmp tll 
bne poll 

ld& TaskData 
&nc1 tsOOFF 
asl a 
tax 
jmp litamProcs.xl 

Space for returned va~ua. 
Accept kay and mouse down events (at lease these events) . 
Pass pointer eo Task racorQ. 

Task Master will call GetNexe£vant for you. 
Gat return flaq. 
Was there an evant? 

Was there a menu evant? 
If not. continue to poll (or check other events). 

Gat IO of item selected. 
Short cut tor table. if all item IDs must be 256 to 511. 

Jump to item hanQ.lar. 

i~eii!Procs c1c i'iteml' Adaress for item hanQ.ler (we only h&va one iteml • 

leeml !perform whatever action the item dictates) 

pea 
ld& 

0 
Tasx0ata+2 

ph a 
_l!ilitaMenu 

jmp poll 

Pass FALSE to unhiq~iqht the menu title. 
Gat menu's IO. raturnec1 from MenuKey or MenuSelect. 
Pass the menu's IO number. 
Onhiq~qht the menu's title. attar item task action. 

Return to pollinq. 

Note: The Menu Manager will try to automatically save and restore the screen behind the 
menu, or tell the Wmdow Manager to update the screen. However, if you are not 
using the Wmdow Manager and the Menu Manager can not allocate a buffer large 
enough to save the screen behind the menu, your application will have to update 
the screen area after a menu has been pulled down. See CheckRedraw. 

If your menu bar, or items in a menu, are going to change while on the screen you can use 
SetMenuTitle, InsertMenu, DeleteMenu, Setltem, Insertitem. and Deleteltem to 
rearrange the menus and items. 

There are several miscellaneous Menu Manager routines that may be of use to applications. 
CalcMenuSize calculates the dimensions of a menu and is called by FixMenuBar. 
CountMltems counts the number of items in a menu. FlashMenuBar inverts the menu bar, or 
just a menu title. SetltemBlink controls the number of times a menu item blinks when it's 
chosen. 

September 25, 1986 



Menu Lines and Item Lines 

Menus may be created by passing a pointer to a list of menu and item ~i~~ t~ New Menu which 
will parse them and allocate enough memory for necessary records, and ~tialize ~ose re~ords. 
The list can be edited using a word processor, thus ~owmg users to easily custonuze theli' own 
menus. An example of a list is: 

>>Title 1\Nl 
-Item string l\N256 
-Item string 2\N257 
-Item string 3\N2S8 

This is a simple list of one menu line and 3 item lines. The flrst character on a line denotes the stan 
of a menu or an item in a menu. Each line is terminated by a return (decimal 13) or a null byte (0). 
The character to denote a title is whatever the very first character is in the first line. The character to 
denote items is the first character on subsequent lines that is different from the title character. And 
lastly, a character different from the item character, and after the title, denotes the end of the list. In 
the example, the'>' character is the title charcter, '-'is the item character, and'.' is the terminating 
character. However, any characters may be used. as long as the title and item characters are 
different, and the termination character is different from the item character. So, the title and 
tennination character may be the same. 

The second character on each line (other than the u:rmination line) is a place holder for the length of 
the string. New Menu will replace the second character with the string's length. Therefore, after a 
New Menu call the string data will have been altered. 

Note: The menu/item string must stay in their original memory. New Menu sets 
pointers in the menu record to the address of the strings. 

In the example you'll notice a backslash, \',followed by a 'N' and a number. The bac.kslash 
denotes the end of a title's text and the beginning of special characters. The 'N' is a special 
character that precedes an ID number. A decimal, unsigned. ASCII ID number immediately 
follows. Every menu title and item must have an ID number, even dividing lines. The ID number 
for each menu titl~ should be different from every other menu on a menu bar. The ID of an item 
should be different from every other item on a menu bar. Items that are dividing lines, and always 
disabled, can have the same ID number. 

September 25, 1986 



Special characters are: 

\ 
* 

B 
c 
D 
H 
I 
N 
u 
v 
X 

Beginning of special characters. 
Followed by a primary, then an alternate character to be used as a 
keyboard equivalents. Use a space for no alternate character. 
Bold the text. 
Followed by a character to be used to mark the item. 
To dim (disable). 
Hexidecmal, nonAScn, ID number follows, low byte/high byte. 
Italize the text. 
Decimal ASCII ID number follows, any length, between 1 and 65535. 
Underscore the text. 
Places a dividing line under the item without using a separate item. 
Use color replace, and not X OR, highlighting. 

All the special characters pertain to items. Special characters*, B, C, I, U, and V do not penain to 
menu titles. 

An example of a menu and item lines using mulitple special charactc:s and different title, item, and 
terminating characters: 

$$Title 1\Nl Title character is '$', ID = 1, can be same as an item's. 
-Item string l'N2S6*Xx 
-Item string 2\Bc:/UN2S7 

Item character is a dash, ID = 2S6, key eqivalents X and x. 
Item character is a das~ bold. checked, underscored. ID = 257. 
Item character is a dash, text will appear italized, ID = 2S8. 
Terminating character, can be the same as the title character. 

--Item string 3\IN258 
$ 

Some more special stuff. Using just the@ symbol in a title will give you the Apple logo. An 
example of an Apple logo menu title: 

$$@\NIX Apple logo title, ID = 1, color replace highlighting. 

Note: The X special character (color replace highlighting) should always 
be used with the Apple logo. 

Note: To get the Apple logo the @ must follow the character denoting a 
menu title, and then be followed by a special character begin mark 
or an end of line mark (rerum). Do not place a space before or after 
the @, like you should for other menu titles. 

There is no way to include a '\ in a title's string. It will always be seen as the beginning of special 
characters. 

A single dash,·-·. for an item's text will denote a dividing line. Special characters apply to 
dividing lines. Dividing lines should always be marked as dimmed, 'D'. It would look like: 

If the '>' character denotes an item line. 

September 25, 1 986 I 13 



ID Number Assignment 

ID numbers are not assigned automatically, it must be assigned in the menu/item line list. Item ID 
numbers are allocated accordingly: 

$0000 
$0001 - $00F9 
$00FA 
$00FB 
$00FC 
$00FD 
$00FE 
SOOFF 
$0100 - $FFFE 
$FFFF 

0 
1-249 
250 
251 
252 
253 
254 
255 
256-65534 
65535 

Internal use, gencnilly means front, or first item in menu. 
Reserved for desk accessory items. 
Undo edit item. 
Cut edit item. 
Copy edit item. 
Paste edit item. 
Clear edit item. 
Close command item. 
Reserved for application use. 
Internal use, geneially means end, or last item in menu. 

Menu ID numbers are allocated acaodingly: 

$0000 
$000 1-SFFFE 
SFFFF 

0 
1-65534 
65535 

Internal use, generally means front, or first menu in bar. 
Reserved for application use. 
Internal usc, g~nc:rally means end, or last menu in bar. 

What ID numbers to use? Here are two suggestions for schemes in ID number assignment. The 
flrst is to number menus from 1 to n, and items from 256 to 256+n. The item ID can then be used 
to index into a table of selection handling routines when a selection is made. The other scheme is to 
use the lower WORD of the handling routine's a.ddrcss as the ID. Different items still must have 
different ID numbers, so NOPs at the head of the routine could be used for different entry pointS 
and ID numbers. 

ID numbers can later be changed to anything you would like with calls to, SetltemiD, 
GetltemiD, SetMenuiD, and GetMenulD. 

September 25, 1986 



Menu Records 

The Menu Manager keeps all the information it requires for its operations on a particular menu bar 
in a menu bar record. The record contains the menu's position, color, menu lists, item lists, and 
other flags the Menu Manager needs to manage menus. The menu bar record is the same as a 
contrOl record. 

NextCtrl 
CtrlOwner 
CtrlRect 
CtrlAag 
CtriValue 
CtrlProc 
CtrlData 
CtrlRefCon 
CtrlColor 
MenuList 

LONG 
LONG 
REcr 
WORD 
WORD 
LONG 
LONG 
LONG 
LONG 
LONGO 

Handle of next control 
Window menu belongs to, zero for system menu bars. 
Coordinates of menu bar. 
Defined below. 
Not used. should be zero. 
$0AOOOOOO. 
TRUE if system window's menu, FALSE if application's. 
Reserved for application's use. 
Pointer to color table, defined below. 
Array of menu handles, zero terminates list. 

Menu Bar - CtrtFiag: 

Number of hilited menu. 
---------- Starting position of titles. 

1 • system window menu bar . 
....._ ______________ 1 =invisible. 

* Invisible flag is not yet implemented. 

September 25, 1 986 l 15 



Menu Bar Color Table: 

Color 0 - unhighlighted color of text and background: 

Unsed 

Unsed. 

Color 2 - color of outline: 

Unsed. 

September 25, 1986 . 
( . Fil• 

Background color. 

Background color. 

Unsed. 
Outline color. 

Vi•'*' ljfdj 
l 16 



The MenuList is an array of menu handles in the menu bar. Menus records are only partially 
defined. Only the first half of the record is definded. 

MenuiD WORD Menu's ID number. 
Menu Width WORD Width of menu. 
MenuHeig.tu WORD Height of menu. 
MenuProc LONG Pointer to menu definition procedure, zero for standard menu. 
MenuFlag BYTE Defined below. 
MenuRes BYI'E Reserved. 
rU"Stltem BYTE Reserved. 
NumOtltems BYI'E Reserved. 
TideWldth WORD Width of tide. 
TideName LONG Pointer to tide text, first byte equals length. 
(the rest of record is not defined) 

MenuiD See ID Number Assignment. . 

MenuWldth The width of the menu is generally set by Calc:M:enuSize. However, the value can 
be changed by the application. Text will be drawn outside of the menu, and traSh 
othere things on the screen, if the width is set to narrow. 

MenuHeight The height of the menu is generally set by CalcMenuSize. However, the value 
can be changed by the application. Text will be drawn outside of the menu, and 
trash othere things on the screen, if the width is set to short. 

MenuProc This field contains the address of the menu's definition procedure, unless it is a 
standard menu definition procedure. Standard definition procedures put a value 
between 0 and 255. Values greater than 255 are considered to be the address of a 
custom menu definition procedure and are called accordingly. See Defining Your 
Own Menus for more information about custom menus. 

September 25, 1986 I 17 



MenuAag 

MenuRes 

Ffrstltem 

This is a bit vector that flag various menu attributes. The grayed bits are undefined 
and may contain information internally used by Menu Manager, their values should 
never be changed by an application. 

Menu Flag 

I 1 I s I 5 I 4 f:;:ziJ"~ 2 r:;={f\::J:!'l&\1:1 

I 0 • visible, 1 = invisible menu 

..._ _____ 0 = standard, 1 =custom menu 

..._------0 =redraw, 1 = XOR highlighting 

'---------- 0 = normal, 1 = selected 

'----------- 0 • enabled, 1 = disabled 

* Invisible flag is not yet implemented. 

This BYTE is resevered and should not be relied on far information or modified by 
an application. 

Resevered for the future implementation of scrollable menus. This field should not 
be relied on far information or modified by applications written before the 
implementation is defined. 

NumOfltems Resevered far the fumre implementation of scrollable menus. This field should not 
be relied on far information or modified by applications written before the 
implementation is defined. 

Title Width The width of the title can be set to any value between 1 and SFFFF (unsigned). The 
value is used to highlight the title and compute where the next menu title should 
start. The title's text is left justified. 

TitleName Pointer to the string to be used for the menu's title. The first byte of the string 
should be the length of the string followed by the AS CIT text. Custom menus may 
store any type of value desired as long as the title is drawn by the custom definition 
procedure. 

September 25, 1986 



Not defining menu records completely has good and bad sides. Access to menu information will 
be slower if calls to the Menu Manager have to be made. However, the delay would have to be 
measured in miliseconds, and the delay never seen on the screen. On the plus side, future Menu 
Managers would not be tied to an older, possibly inadequate, record structure. The chances of 
improving the current Menu Manager, and maintaining compatibility accross future hardware, is 
greatly improved by allowing records to change. 

Item records not defined at all for standard menus. 

September 25, 1986 



Definim~ Your Own Menus 

The standard type of menu is predefined for you. However, you may want to defme your own 
type of menu--one with more graphics, or perhaps a nonlinear text arrangement. QuickDraw and 
the Menu Manager make it possible for you to do this. 

To define your own type of menu, you write a menu definition procedure. The Menu Manager 
calls the menu definition procedure to pe:rform basic operations such as drawing the menu. 

To create a custom menu record you will have to allocate a block of memory large enough for your 
menu record. Only the defined part (see MENU RECORDS) of the menu record has to follow 
Menu Manager foi'IIl. the rest of the record is up to you. Another way is to pass a menu line with 
no items to New Menu and then resize the allocated block to your needs. Fields in the menu 
record that need to be initialized are: · 

Menu.ID 
Menu Width 
MenuHeight 
Menu.Proc 
MenuF1ag 
TitleWJ.Cith 
TitleName 

Menu's ID number. 
Width of menu, or you can wait for the mSize. 
Height of menu, or you can wait for the mSize. 
Pointer tc' menu definition procedure. 
In addition to other flags, bit 4 must be set. 
W ldth of title. 
Pointer to title text, first byte equals length. Or some other data you wish. 

The Menu Definition Procedure 

You may choose any name you wish for the menu definition procedure. The inputs and outputs 
are: 

inputs: message:WORD 
theMenu:LONG 
RectPtr:LONG 
xHitPt:WORD 
yHitPt: WORD 
param:WORD 

output: Result:WORD 

Operation to perfrom. 
Handle of menu. 
Pointer to REcr enclosing menu. 
X coordinate of point to check. 
Y coordinate of point to check. 
Addition parameter for each operation. 

Depends on operation. 

Warning: Do not change the REcr pointed to by RectPtr. If you need to change it 
make a copy of the REcr and then change the copy. 

Warning: Do not call the Menu Manager from within a CUStom definition procedure. 

September 25, 1 986 



Note: The term 'item number' referred to in the following sections of this document is 
not the same thing as an 'item ID number'. Item number can be any value, 
although zero and bit 15 have specific meanings. The Menu Manager only uses 
the value to pass back to the definition procedure and comparing it to other item 
numbers returned by the same definition procedure during a previous call. The 
definition procedure can use any numbering system desired, but it should be the 
same system for each definition procedure function. 

The message parariletcr identifies the operation to be perl'onned. It has one of the following values: 

mDrawMenu = 0 
mChoosc = 1 
mSize = 2 
mDrawTitle = 3 
mDrawitem = 4 
mGetitemiD = S 

Draw the menu. 
Tell which item was chosen and highlight it. 
Calculate the menu's dimensions. 
Draw the menu's title. 
Highlight or unhighlight an item. 
Return item's ID number. 

mDrawMenu 

inputS: 

output: 

message: WORD 
theMenu:LONG 
RectPtr:LONG 
xHitPt:WORD 
yHitPt: WORD 
param:WORD 

Result: WORD. 

mDrawMenu. 0. 
Handle of menu. 
Pointer to REcr that defines the menu's interior. 
Not defined. 
Not defined. 
Not defined. 

Not used, any value. 

The message mDrawMenu tells the menu definition procedure to draw the menu inside the REcr 
pointed to by RectPtr. The REcr passed is the coordinates of the menu's interior, that is, the 
menu less itS frame. The current gratPort will be the Menu Manager pon. The standard menu 
definition procedure figures out how to draw the menu items by looking in the menu record at the 
data that defmes them. For menus of your own definition, you may set up the data defining the 
menu items any way you like. You should also check the enableFlags field of the menu record to 
see whether the menu is disabled (or whether any of the menu items are disabled, if you're using all 
the flags), and if so, draw it in gray. You may even print the items in a different font, as long as 
you restore the original when you finish. Returned value is not used. 

September 25, , 986 



mChoose 

inputs: 

output: 

message: WORD 
theMenu:LONG 
RectPtr:LONG 
xHitPt:WORD 
yHitPt:WORD 
param:WORD 

Result: WORD 

mChoose, 1. 
Handle of menu. 
Pointer to REcr enclosing menu. 
X coordinate of point to check. 
Y coordinate of point to check. 
Not defined. 

Zero if point is not over any item. else the item number 
of the item the point is over. 

When the menu definition procedure receives the message mChoose, the yHitPt/xHitPt parameter is 
the mouse location (in global coordinates). The procedure should detemline whether the given 
point is within an enabled menu item. Before call this function the Menu Manager checkes that the 
point is within the given REcr and that the menu is enabled. 

- If the mo~e location is in an enabled menu item. return the item number, with the high bit 
set, of the item. 

- If the mouse location isn't in an enabled item return zero. 

inputs: 

output: 

message: WORD 
the.\1enu:LONG 
RectPtr:LONG 
xHitPt:WORD 
yHitPt:WORD 
param:WORD 

Result: WORD 

mSize, 2. 
Handle of menu. 
Not defined. 
Not defined. 
Not defined. 
Not defined. 

Not defined. not used. 

The message m.Size tells the menu definition procedure to calculate the horizontal and vertical 
dimensions of the menu. The menu width should be computed and stored in the Menu Width field 
of the menu record.ifMenuWidth was zero on entry, the same is true for MenuHeight. Do not 
replace the value in the Menu Width field if it is nonzero on entry. Do not replace the value in the 
MenuHeight field if it is nonzero on entry. · 

September 25, 1986 



mDrawTitle 

inputs: 

output: 

message: WORD 
theMenu:LONG 
RectPtr:LONG 
xHirPt:WORD 
yHitPtWORD 
pmm:WORD 

Result: WORD 

mDrawTitle, 3. 
Handle of menu. 
Pointer to REcr enclosing title area. 
Not defined. 
Not defined. 
0 =draw n~ l=dra.w inverted, bit 15 set to invert. 

FALSE to draw default text title, TRUE if your 
definition procedure drew the title. 

When the menu definition procedure receives the message mDrawTitle when the title of the menu 
must be drawn. Param is: 

$0000 -if the title should be completely drawn. called this way from DrawMenuBar. 
$0001 -if the title should be drawn as lrighlighted without special highlighting. 
S800x -negative to use speciallrighlighting. 

If the menu's MenuFlag indicates that XOR lrighlighting is not to be done, param will never be 
negative. It is left to your definition procedure to define what special highlighting is. In the 
standard definition procedure the title RECf is XORed. 

The REcr pointed to by RectPtr encloses the title area. Retum FALSE to have the Menu Manager 
draw the title (the Tltle..l'\l'ame field of the menu record must contain a pointer to a text string for the 
title), otherwise rerum TRUE. 

mDrawitem 

inputs: 

OUtpUt: 

message: WORD 
theMenu:LONG 
RectPtr:LONG 
xHirPt:WORD 
yHitPt:WORD 
param:WORD 

Result: WORD 

mDrawite~ 4. 
Handle of menu. 
Pointer to RECf enclosing menu. 
Not defined. 
Not defined. 
Item number, lrigh bit set to highlight, 
clear for unhighlighted. 

. Not defined, not used. 

The mDrawitem command is a request to draw an item in its highlighted or unhighlighted state. If 
param is positive it is the item number and should be draw draw as unhighlighted. If param is 
negative it should be drawn as highlighted. Bits 0-14 of param are the same as the item number 
returned at one time by mChoose function of your definition procedure. 

September 25, ~ 986 



mGetltemJD 

inputs: 

output: 

message: WORD 
theMenu:LONG 
RectPtr:LONG 
xHitPt: WORD 
yHiiPt:WORD 
pmm:WORD 

Result: WORD 

mGetltemiD, 5. 
Handle of menu. 
Not defined. 
Not defined. 
Not defined. 
Item number. 

Item's ID number. 

Param equals the item's number and the definition procedure is asked to return the item's ID 
number. ·The item number is the value returned by mChoose with the high bit masked off. 

September 25, 1986 



Dividine lines vs. Underlines 

Di'<ridin g Lines 

There are two staDdard ways to partition groups of items from one another. The first is a dividing 
line, selected by an item title which is a single dash. It uses the space of an entire item and a whole 
item record. The second way is a underline, set either in the menu line. or SetltemF1ag. This 
will diaw a solid line on the bottom most line of the item. The underline doesn't use any more 
space. on the screen or in memory, than the item would without it.. · 

The disadvantage with an underline is there isn't as much space separating items. which is the 
dividing line's function. 

The advantage of an underline is you can get more items in the menu and still have dividing lines. 
Also, the user would have a shoner distance to go from the menu's title to the last item in the menu, 
it would save a little memory, and the menu would draw faster. 

In the example below are two menus. both showing the same information. Menu A uses dividing 
lines and has 9 items. Menu B uses underlines and has 7 items. Menu B looks alittle crowded and 
would look even worse if one of the uderlined items had descending lower case letters. 

Menu A - Dividing Lines Menu B - Underlines 
Undo Undo 

Cut 
Cut 
Copy 

Copy 
Paste 

Paste Clear 
Clear lnuert 

Fill 
lnuert 
Fill 

September 25, 1 985 l 25 





A]p!FJe]]l~X A 
Memllll CC!ill[s 



'· 

INITIALIZATION AND TER:MIN A TION ROUTINES 

MenuBootinit 

input: None. 
output: None. 

Called when SetTSPtr is called. 

MenuStartup 

input: useriD:WORD -user ID that the Menu Manager can use, mainly to allocate memory. 
zeropg:WORD - zero page Menu Manager can use, must be on page boundary. 

output: None. 

Initializes system menu bar with no menus, and makes it the current menu bar. 
Calls Desktop in the Window Manager to reserve space for the ba:r. 
Menu Manager opens a grafPon. 
Calls DrawMenuBar to draw an empty system menu bar. 

MenuShutDown 

input: None. 
output: None. 

Closes the Menu Manager's port and frees any allocated menus. 

Menu Version 

input: None .. 

output: version: WORD- Menu 

Manager's version number. 

MenuReset 

input: None. 
output: None. 

Does nothing. 

September 25, 1986 AppendiH A l 2 



MenuStatus 

inputs: None. 

output: swus:WORD- TRUE if Menu Manageris initiali"'ed. else FALSE. 

NewMenuBar 

inputs: theWindow:LONG- pointer to window's port, owner of menu bar, zero for system. 

output: BarHandle:LONG - handle of menu bar. 

NewMenuBar will create a default menu bar with no menus. MenuStartup calls 
NewMenuBar to create a default system menu bar. If you are only going to use one 
system menu bar, NewMenuBar will not have to be called. The default size of the menu 
bar is, upper left corner matches the pon, and the width is the width is the width of the 
screen. The height of the bar is 13. The menu bar is visible and has default colors of black 
text on a white background. 

New Menu 

input: MenuStting:LONG -pointer to a menu/item line list. 

output: MenuHandle:LONG - handle of menu, zero if e:r.ror. 

NewMenu allocates space for a menu and its items. You pass a pointer to a menu/item line 
list which is a text string that describes the menu tide and its items. See MENU LINES A~l) 
ITE..\1 LINES for the format needed. The MenuHandle returned can then be inserted in a 
menu bar via an InsertMenu call. 

Call DisposeMenu to deallocate the menu when finished. 

September 25, 1986 AppendiH A I 3 
( Fil~ Vi~w lji}!\ii 



DisposeMenu 

input: MenuHandle:LONG:-~1' ~via New Menu. 

output: None. 

Frees the memory used by~ 'De:l:D:Ilu will no lon~ be usable. 

FixMenuBar 

Warning: The menu is notukcml!!latdf the menu list, call DeleteMenu to do 
that. T.ll> delel:e :a %llCllJj!. I:EOm the menu list and free it's memory you 
could do mmetbin:g llk1: !his: 

ph a 
ph a 
pea l!IenuD 
_GetMHanOJe 

pea MenuiD 
Dele"t.eMenu 

_DispcseMeJlu 

s,p~ for returned handle. 

~ ~z menu to delete. 
Set the ~dle of the menu. 
~~ menu handl.e on stack . 

~ c£ menu to delete from list. 
~~te menu from list. 

:Ea:m:tile still on stack. 
~ocate menu record. 

input: None. 

output: McnuHeight:WORD- heigbtufanma:::rm bar. 

This routine will compute standard sizeE far~ menu bar and menus. 

FixMenuBar will search an ibe menu ii:t1efmms and use the tallest one to compute the 
height of the menu bar, add it 10 Bar.tc;J., zm:l :store it in Bar.bottom. It will set the 
Title Width width for every menu TitleWJidth that .is given as zero. Fmally it will call 
CalcMenuSize for each me.m1 in the lili:Im 2with new Width and new Height as negative 
values. 

September 25, 1986 



·, 

CalcMenuSize 

input: newWidth:WORD - width, zero or negative. 
new Height: WORD -height, zero or negative. 
MenuNum:WORD -menu ID number. 

output: None. 

11tis call lets you set menu dimensio~ or have the Menu Manager do it. 

newWjdth 
Zero 
Negative 
$000 l-S7FFF 

new Height 
Zero 
Negative 
S0001-$7FFF 

function 
Default width will be computed no matter what Menu Width is. 
Defalut width will only be computed if Menu Width is zero. 
Menu Width will be set to new Width and default width not computed. 

Function 
Default height will be computed no matter what MenuHeight is. 
Defalut height will only be computed if MenuHeight is zero. 
Menu.Height will be set to newHeight and default height not computed. 

To compute the width the Menu Manager will find the widthest item in the menu plus room 
for a mark and command key. A default width will be used if the menu does not contain any 
item text. 

To compute the height, the Menu Manager will add up the font height of each item plus four, 
or use the value found in the font index of ItemFlag if bit 14 of ItemFla.g is set. 

This routine is called for each menu by the Menu Manager with new Width and newHeight 
negative when FixMenuBar is called. 

September 25, 1986 Appendix A I 5 



USER INTERACTION ROUTINES 

MenuSelect 

input: TaskR.ec:LONG -pointer to Task record which contains point of button down. 
BarHandle:LONG - handle of menu bar, zero for system menu bar. 

output: None ('TaskData' field of Task record contains rerum IDs). 

Called when the a button goes down on a menu bar (see FindWindow if using the Window 
Manager). The routine will take care of drawing highlighted titles, pulling down menus, and 
user interaction. This is handled automatically for the system menu bar when using 
TaskMaster in Window Manager. 

If a selection is made the low order WORD of the !askData' element in the Task record will 
contain the ID number of the item selected, and the high order WORD will contain the 
menu's ID number. If there is a selection. the menu's title will be left highlighted. See 
HiliteMenu to redraw the title as normal 

If no selection is made by the user the low order WORD of the !askData' element in the 
Task record will be zero. 

BarHandle becomes the ~nt menu bar. 

The structure of TaskRec is: 

what 
message 
when 
where 
modifiers 
TaskData 

WORD 
LONG 
LONG 
LONG 
WORD 
LONG 

September 25, 1986 

Event record portion, unchanged from GetNextEvent. 

Extended portion for TaskMaster. 



MenuKey 

input: TaskRec:LONG - pointer to Task record which contains the character to check. 
BarHandle:LONG - handle of menu bar, zero for system menu bar. 

output: None ('TaskData' field of Task record contains rerum IDs). 

Maps the given character to the associated menu and item for that character. When you get a 
key-down event with the Command key held down-or auto-key event, if the command 
being invoked is repeatable-call Menu.Key with a pointer to a Task record that contains the 
character and the state of the modifier keys (the format is the same as an Event record. see 
Event Manager). The match will only occur if it is indicated in the Task record that the 
command key was down. MenuKey highlights the appropriate menu title if the key 
matches, and returns Selection. 

The items are searched starting with the first menu in the menu list and all the items in the 
menu starting with the first. Then the second menu. and so on. The given key is compare 
with every item's primary keyboard equivalent of every item. If no match is found, the cycle 
is repeated, this time comparing to each item's alte:matc keyboard equivalent. 

There generally there should never be more than one item in the menu list with the same 
keyboard equivalent. but if there is, MenuKey retums the first one it encounters. 

Menu Key will not conven lower case characters to upper case. If you want to match on 
either upper or lower case, set the primary character to the upper case character and the 
alternate to the lower case character. 

If a selection is made the low order WORD of the 'TaskDam' element in the Task record will 
contain the ID number of the item selected, and the high order WORD will contain the 
menu's ID number. If there is a selection, the menu's title will be left highlighted. See 
HiliteMenu to redraw the title as normal. 

If no selection is made by the user the low order WORD of the 'TaskData' element in the 
Task record will be zero. 

BarHandle becomes the current menu bar. 

See MenuSelect for a description of TaskR.ec. · 

September 25, 1986 



MenuRefresh 

input: RedrawRoutine:LONG- address of routine in your application. 

output: None. 

Note: This is called only when using the Menu Manager without the 
Wmdow Manager. 

Redraw Routine is called when the Menu Manager can not restore the screen under a menu. 
FliSt the Menu Manager will try to allocate a buffer large enough to save the screen pan 
before it draws the menu. If the buffer is allocated the screen will be restored from it and 
then deallocate the memory buffer. If the buffer can not be allocated the Menu Manager will 
tty to call the Wmdow Manager (via the call the Wmdow Manager made to MenuRefresh 
during initialization) to refresh the screen when the menu goes away. If no buffer can be 
allocated and the Window Manager isn't installed, the Menu Manager will call 
Redraw Routine to refresh the screen under the menu. 

The RedrawRoutine should look something like this: 

Refresh START . 
rect_addr equ 6 Offset down stack to REC'r pointer. 

. 
' 

. 
Needed operations to redraw the 
screen inside the given REC'r • . . 

; Remove the given pointer from the stack: 

' 

address down 

the return 

Manager. 

September 25, 1986 

Ida 

sta 
Ida 
Sta 

pla 

pla 

rtl 

O,s 

4,s 
2,s 
6,s 

Move the return 

the stack. 

Move the stack back to 

address. 

Return to the Menu 



DRAWING 

DrawMenuBar 

input: None. 

output: None. 

Draws the current menu bar, along with any menu titles on the bar. 

HiliteMenu 

input: Hilite:WORD- FALSE to draw norma.4 TRUE to highlight the title. 
MenuNum:WORD- menu's ID. 

output: None. 

MenuNum is the the menu's ID. Its title is drawn using the menu bar's normal color ifHilite 
is FALSE, or hilite color if TRUE. HiliteMenu should be called with Hilite FALSE, and 
the menu ID of the selected menu. after the application has finished acting on a menu 
selection. 

FlashMenuBar 

input: None. 

output: None. 

This will redraw the entire cUITent menu bar using the bar's hilite color and then again using 
its normal color. 

September 25, 1986 



MENU AND ITEM SHUFFLING 

lnsertMenu 

input: AddMenu:LONG - handle of menu to insert. 
InsenAfter.WORD -menu ID, zero to insert at front. 

output: None. 

Inserts Add:Menu into the current menu bar after InscrtAfte:r, or at the front of the list if 
InsenAfter is zero. DrawMenuBar should be called to rednw the new menu bar after 
lnsertMenu. 

DeleteMenu 

input: MenuNum:WORD- menu ID of menu to delete. 

output: None. 

Men uNum is take out of current menu bar. DrawMenuBar should be called to redraw the 
new menu bar after DeleteMenu. The menu is not deallocated, call DisposeMenu to do 
that. 

lnsertltem 

input: Additem:LONG - address of item line to insert. 
InscnA.fter.WORD -item ID, zero to add to front, $FFFF to append to end of menu. 
MenuNum:WORD- menu ID number to add item to, zero for first menu. 

output: None. 

Insens an item into the ItemList after Insen.After. If InsenAfter is zero, the item will be 
insened at the front of Men uNum. If Insen.After is $FFFF, the item will be appended at the 
end of MenuNum. If MenuNum is zero, the menu will be considered the first menu. Call 
CalcMenuSize to resize the menu if needed afterWard. See MENU LINES AND ITEM 
LINES for the definition of an item line. 

September 25, 1986 



Deleteltem 

input: ItemNum:WORD -item ID of item to delete. 

output: None. 

ltemNum is taken out of ltemList of its menu in the current menu bar. Call CaJcMenuSize 
to resize the menu if needed afterward. 

September 25, 1986 AppendiH A L 11 



MENU BAR ACCESS 

SetSysBar 

input: BarHandle:LONG - handle of new system menu bar. 

output: None. 

Handle of new system menu bar is given. The system menu bar becomes the current menu 
bar. 

GetSysBar 

input: None. 

output: BarHandle:LONG - handle of the system menu bar. 

Returns the handle of the system menu bar. 

SetMenuBar 

input: BarHandle:LONG - handle of cmrent menu bar. 

output: None. 

Handle of menu bar to make current is given. If you want the system menu bar to be the 
current menu bar, pass zero for Bar Handle. 

GetMenuBar 

input: None. 

output: BarHandle:LONG - handle of current menu bar. 

Returns the handle of the current menu bar. 

September 25, 1986 



SetBarColors 

input: NewBarColor.WORD - normal bar color. 
NewinvenColor.WORD- selected bar color. 
NewOutColor:WORD- Outline color in bits 7-4. 

output: None. 

NewBarColor: bits 0-3 = text color when not selected. 
bits 4-7 = background color when not selected. 
bits 8-lS = zero. 
Negative to not change normal color. 

NewlnvenColor. bits 0-3 =text color when selected. 
biG 4-7 = background color when selected. 
bits 8-15 = 'ZCI'O. 

Negative to not change hilite color. 

NewOutColor: bits 0-3 =zero. 
bits 4-7 = color of menu bar outline, menu outline, underlines, and 

dividing lines 
bits 8-lS = zero. 
Negative to not change outline color. 

Color of cmrent menu bar is set to given values that are not negative. Call DrawMenuBar 
to draw menu bar in new colors. 

GetBarColors 

input: None. 

output: Colors:LONG - colors of menu bar. 

Returned menu bar colors are retmned in one LONG of which: 

bitS 24-31 
bitS 20-23 
bits 16-19 
bitS 12-lS 
bitS 8-11 
bits 4-7 
bitS 0-3 

=zero. 
= cola' of menu bar outline, menu outline, underlines, and dividing lines 
=ze:rca.. 
= backg:roulld color when sel~ 
= teXI colm ·when selected. 
= background color when not selected. 
= text eo lor when not selected. 

September 25, 1986 



SetTitleStart 

input: XStart:WORD- menu bar title starting position. 

output: None. 

XS tan is the number of pixels from the left side of the menu bar that the titles should stan. 
Xstan should be at least 1. Zero will over write the left side outline of the menu bar. 127 is 
the maximum value allowed. 

GetTitleStart 

input: None. 

output: XStan:WORD- menu bar title starting position. 

XS tart is the number of pixels from the left side of the menu bar that the titles stan from. 

CountMitems 

input: MenuNum:WORD -menu's ID. 

output: NumOfltems:WORD- number of items in menu. 

Returns the number of items, including any dividing lines, in the menu. 

September 25, 1986 AppendiH A I 14 



MENU RECORD ACCESS ROUTINES 

GetMHandle 

input: MenuNum:WORD- menu ID. 

output: MenuHandle:LONG - handle of menu., zero if error. 

Handle of menu with an ID number that matches menuNum is returned, or zero if the menu 
is not found. 

SetTitleWidth 

input: NewWidth:WORD- new width of tide. 
MenuNum:WORD -menu ID. 

output: None. 

Sets the width of a tide. This is the area where the user can select a menu and the area that is 
invened when the tide is highlighted. 

GetTitle Width 

input: MenuNum:WORD- menu ID. 

output: The Width.: WORD- width of tide, zero if error. 

Returns the width of a tide. This is the area where the user can select a menu and the area 
that is inverted when the title is highlighted. 

• 

September 25, 1986 AppendiH A I 1 5 



SetMenuFlag 

input: NewValue:WORD- new bit value to set or clear. 
MenuNum:WORD- menu ID. 

output: None. 

Possible NewValues: 

EnableMenu 
DisableMenu 
Color Replace 
XORhilite 
Standard.Menu 
CustomMenu 

$FF7F 
$0080 
$FFDF 
$0020 
$FFE7 
$0010 

Menu will not be djmmed and will be selectable. 
Menu will be dimmed and not selectable. 
The menu's title and background will be redrawn to hilite. 
The menu's title area will be XORed to hilite. 
The menu will be considered a standard menu. 
The menu will be considered a custom menu. 

If you change a flag that affects the appearance of a menu title you should also call 
DrawMenuBar after SetMenuFlag to redraw the titles in their new state. 

GetMenuFlag 

input: MenuNum:WORD- menu ID. 

output: MenuState:WORD- desired bits from Menu.Flag. 

Returns MenuNum.MenuFlag (see MENU RECORDS for definition). 

SetMenuTitle 

input: NewStrg:LONG -Address of string to replace ItemName. 
MenuNum:WORD- menu ID. 

output: None. 

The value in NewStrg is moved into the menu's TitleName. 

September 25, 1986 Appendix A L 1 6 



GetMenuTitle 

input: MenuNum:WORD- menu ID. 

output: TheTitle:LONG - pointer to TitleName. 

Returns a pointer to the title of a menu. 

SetMenuiD 

input: NewiD:WORD -new ID to be assigned. 
MenuNum:WORD - CUITeilt menu ID. 

output: None. 

The menu is assigned the given ID number. 

. 
September 25, 1986 AppendiH A I 17 



'--

ITEM RECORD ACCESS ROUTINES 

Set Item 

input: NewSrrg:LONG- Address of string to replace ItemName. 
ItemNum:WORD -item ID. 

output: None. 

The item's ItemName pointer is replaced with NewStrg. 

Getltem 

input: ItemNum:WORD- item ID. 

output: ItemSrrg-.LONG- pointer to ItemName. 

Returns a pointer to an item's text string. 

Enableltem 

input: ItemNum:WORD- item ID. 

output: None. 

Item will appear as normal and selectable. 

Disableltem 

input: ItemNum:WORD- item ID. 

output: None. 

Item will appear dimmed and will not be selectable. 

September 25, 1986 



Checkltem 

input: Checked: WORD- TRUE to check item, FALSE to uncheck item 
ltemNum:WORD- item ID. 

output: None. 

Item will appear with· a check marlc to the left of the item's text, or nothing will appear if 
Checked is zero. 

SetltemMark 

input: Mark: WORD- character to mark item with, zero for no mark. 
ItemNum:WORD- item ID. 

output: None. 

Item will appear with the character given to the left of the item's text, or the mark will not 
appear if Mark is zero. 

GetltemMark 

input: ItemNum:WORD- item ID. 

output: Mark: WORD- character that marks item. zero= no marlc. 

SetltemStyle 

input: ChStyle:WORD- text style to use on item's text. 
ItemNum:WORD- item ID. 

output: None. 

Bits in ChScyle are set to enable special text drawing. Bits affected are: 

Bit 0 
Bit 1 
Bit 2 
Bits 3-15 

- set = bold, clear = no bold. 
- set = iralic, clear = no italic. 
-set= underscore. clear= no underscore. 
-zero. 

Bits 0-2 of chScyle are all used to set the item's text style. You can not set only bold without 
affecting italic and underscore. If you need to change only one, perform a GetltemStyle 
first and use the current states for the attributes that should stay the same. 

September 25, 1986 AppendiH A L 1 9 



Note: Italic is not implemented in QuickDraw at the time of this document. Any menu items 
using the italic style will be italicized when using a new version of QuickDraw that 
has italic support. 

Note: Underscore will only work with fonts that have a descent of two or mare. The 
system fon~ that the time of this documen~ only has a descent of one and therefore 
will not be underscored. · 

GetltemStyle 

input: ltemNum:WORD- item ID. 

output: ChStyle:WORD- text style to use on item's text. 

Bits in ChStyle are set to enable special text diawing. Bits affected are: 

SetltemFlag 

BitO 
Bit 1 
Bit2 
Bits 3-15 

- set = bold. clear = no bold. 
- set = italic, clear = no italic. 
- set = underscore. clear = no underscore. 
- undefined. 

input: NewValue:WORD- new bits to set. 
ltemNum:WORD- item ID. 

output: None. 

This call is used to set desire states of an item. Input flags are: 

Function 

Underline item. 
Not underline an item. 
Use XOR highlighting. 
Use rediaw highlighting. 

September 25, 1986 

New Value 

$0040 
SFFBF 
$0020 
SFFDF 



GetltemFiag 

input: ItemNum:WORD- item ID. 

output: itcmFlag:WORD -item flag. 

Bits in the low-order byte ofitemFlag are: 

I7Jsjs~l1l3l2111oJ 

I 1 • bold text 
1 • italic text 
1 = underscore text 
1 =invisible 

1 = XOR highlighting 
1 = underline (divider) 

1 • disabled 

The high-order byte of itemFlag is not defined and could be any value. 

SetltemlD 

input: NewiD:WORD- new ID to be assigned. 
ItemNum:WORD- cmrent item ID. 

output: None. 

The item is assigned the given ID number. 

SetltemBlink 

input: Count: WORD -number of times item should blink when selected. 

output: None. 

This call affects all menu bars, system and window. When an enabled item is selected by the 
user the item blinks briefly to conform the chioce. Normally, your application shouldn't be 
concerned with this blinking; the user sets it with the Control Panel desk accessory. If 
you're writing a desk accessory like the Control Panel. though, SetitemBiink allows you 
to control the duration of the blinking. The Count parameter is the number of times menu 
items will blink. 

September 25, 1986 AppendiH A l 21 



MISCELLANEOUS ROUTINES 

GetMenuMgrPort 

input: None. 

output: MenuMgrLONG -pointer to Menu Manager's pon. 

Getting the Menu Manager's pon might be useful if you would like to change its font. 

MNewRes 

input: None. 

output: None. 

Called when the screen resolution changes. Menu Manager makes needed adjustments for 
the new resolution and redraws the current system menu bar. 

lnitPalette 

input: None. 
output: None. 

Call when you've changed the color palattes. This will reinitize the palettes needed 
for the color Apple logo in the system menu bar. 

September 25, 1986 AppendiH A l 22 
( Fi1• Vi•'K lib@ 



Constants 

Masks for MenuFlag: 

M INVIS -M_S'l'ANOARD 
M_NO_XOR 
M NORMAL 
M_ENABLEO 

$04 
$10 
$20 
$40 
$80 

FASLE if menu is visible (not completed). 
FALSE if menu is a standard (not custom) menu. 
TRUE if menu title is highlighted using X OR. 
TRUE if menu title is highlighted. 
FALSE if menu is disabled. 

Commands to menu definition procedures: 

mDrawMsq 
mChooseMsq 
mSizeMsq 
mOraw'l'ile 

0 
l 
2 
3 

Posiible inputs to SetMenuFlag: 

Ena.bleMenu 
OisableMenu 
ColorReplace 
XORhilite 
StandardMenu 
CustomMenu 

$FF7F 
$0080 
$FFOF 
$0020 
$FFE7 
$0010 

Draw menu command. 
Hit test item command. 
Compute menu size command. 
Draw menu's title command. 

Menu will not be dimmed and will be selectable. 
Menu will be dimmed and not selectable. 
The menu's title and background will be redrawn to hilite. 
The menu's title area. will be XORed to hilite. 
The menu will be considered a standard menu. 
The menu will be considered a custom menu. 

Possible New Value input to SetitemFlag: 

Onder Item 
NoOnderitem 
XORHilite 
NoXORHilite 

$0040 
$FFBF 
$0020 
$FFOF 

September 25, 1986 

Underline item. 
Do not underline item. 
Usc XOR highlighting on item. 
Use redraw highlighting on item. 



Data Tvpes 

TaskRec (TaskMaster record): 

what 0 Integer Same as event record. 
message 2 Longint Same as event record. 
when 6 Longint Same as event record. 
where 10 Longint Same as event record. 
modifiers 14 Integer Same as event record. 
TaskData 16 Longint Return for ID numbers. 
TaskMask 20 Longint Not used by the Menu Manager. 
TASKREC SIZE 22 Size of TaskRec. 

ME:NUBAR (Menu Bar Record): 

CtlNext 0 Randle Not used. 
CtlOwner 4 Pointer Pointer to menu bar's window. 
CtlRec:t 8 RECT Enclosing rectangle. 
CtlFlag 16 Byte Bit flags. 
CtlHilite 17 Byte Not used. 
CtlValue 18 Integer Not used. 
CtlProc: 20 Pointer Not used. 
CtlAc:tion 24 Pointer Not used. 
CtlData 28 Longint Reserired for CtlProc's use. 
CtlRefCon 32 Longint Reserved for application's use. 
CtlColor 36 Pointer Menu bar's color table. 
MenuList 40 Handle (] Menu bar's color table. 

MENU (Menu record): 

MenuiD 0 Integer Menu's ID number. 
Menu Width 2 Integer Wldth of menu. 
MenuHeight 4 Integer Height of menu. 
Men uP roc: 6 Pointer Menu's definition procedure. 
MenuFlag 10 Byte Bit flags. 
TitleWidth 11 Integer Width of menu's title. 
TitleName 13 Pointer Menu's title. 
(remainder is not defined) 

September 25, 1 986 



INDEX 

About the Menu Manager 3 GetBarColors app. 14 

Appearm:e ~MCDUS 6 Getltem app. 18 

CalcMenuS'aze app.5 GetitemFia1 app. 21 

Checkltem app. 19 GetltemMark app. 19 

Ommnts app. 23 GetltemStyle app. 20 

CountMlteml app. 13 GetMenuBar app. 12 

GetMenuFlac app. 16 
DuaTypes app. 24 

GetMenuM~Port app.22 
Defining Your Own Menus lO 

GetMmuTitJe Menu Ocfinitico Proc::dure lO app. 17 
mDrawMc:nu 21 
mQoose 22 G«MHandle app. 15 
mSize 22 

·- m0raw1ide 23 GasysBar app. 12 
mOrawltem 23 
mOeW.emiD 24 eetnueStart app. 14 

Deleteitem app. 11 Getnue Width app. IS 

DeJeteMenu app. 10 
HiliteMenu app. 9 

Disableltem app. 19 

DisposeMenu app.4 ID Number Assignment 14 

DMdin&liDc vs Underlines 25 Init.Palette app. 22 

DrawMmuBar app.9. Insertltem app. 19 

InsertMenu app. 10 
Enableltem app. 18 

Keyboard Equivalents 
FlxMenuBar app.4 for Commands 7 

FlashMenuBar app.9 

August 27, 1986 



SetBarColors app. 13 
Menu Bars 

. Setltem app. 
Menu L.ines 

and hem Lines 12-13 SetltemBlink app.21 

Mcmt Rc:cords 15-19 SetltemFla& app.20 

MmuBootiDit app.l Setttemm app. 21 

MmuiCeJ . lpp. 7 SetitemMark app. 19 

MmuRefresla app.l SetltemStyle app.lO 

MmuReset app.l SetMmuBar app. 12 

Mmu.Select app.6 SetMeauFiac app. 16 

MmuShutDown app.2 SetMmum app. r, 

MmuStartup app.l SetMmuntJe app. 16 

MmuVersioa app.2 SetS)'SBar app. 12 

:MNewRes app.22 Set'ntJeStart app. 14 

Set'ntle Width app. 1!11 
NewMeauBar app.3 

Sysa:m Mc:Du Bar 4 
NewMmu app.3 

Usin& me Menu Manager 7-11 

W"mdow Menu Bm 

August 27. 1986 



Documentation Developpeurs 
Apple Computer France 1987 

Document developpeur numero 57 

type d'upgrade de ce ducument : 5 
1 Documentation de premiere categorie inchangee 
2 Documentation de deuxieme categorie mise a jour 
3 Documentation de deuxieme categorie inchangee 
4 Mise a jour payante de Ia documentation de premiere categorie 
5 Mise a jour gratuite de Ia documentation de premiere categorie 
6 Nouveautes payantes non vitales 
7 Nouveautes gratuites et vitales 

Taille : 50 page(s) environ 

Domaine : Tool16 

'W~~~~@[NJ ~ U o© 
[Q)~u~ ~ ~@o©®o®® 





Dan Oliver 

This ERS corresponds to the Beta release of the Control Manager, version 
1.0. There will be no further changes to the Control Manager that will 
compromise applications written for this version. However, document errors 
wilt be changed to conform to actual code. Over the next few months I will 
be fixing bugs and releasing appendixes that detail Control Manager 
functions. If you have areas you would like clarified please let me know and 
I will try to publish an appendix. Send comments to: 

Apple Computer, Inc. 
20525 Mariani Ave, MS: 22X 

Cupertino, CA 95014 

ATTN: Dan Oliver 



02/20/86 

06/14/86 

07/1586 

07/16/86 

08/13/86 

08127/86 

Initial release. 

Revised release. 

Names changes; BootCtrl, InitCtriMgr, TermCtriMgr, to; CtrlBootlnit, 
CtriStartup, CtriShutDown. Addition of CtrlReset, CtriStatus and 
GetCtrlzpage. 

Replacement for page 27. values for tcstCnlt and calcCR.ect were swapped. 

Control record changed, CtrlAction added and CtrlHilitc removed from CtrlRag. 
The path to calling an action routine now includes CtrlAction. Color table colors 
corrected. SetCMgricons call added along with a CONTROL MANAGER ICON 
FONT section. 

SizeControl removed. Calls added; SetCtlAction, GetCtlAction, 
SetCtlRefCon, GetCtlRefCon, GrowSize. Square corner added as an outline 
type for simple buttons, see simple button record. 

Name changes: 

Emm 
CtrlBootlnit 
CtrlVersion 
CtrlReset 
CtrlStatus 
CtrlStartup 
CtrlShutDown 
CtrlNewRes 
GetCtrlzpage 
SetCTitle 
GetCTitle 
SetCMgricons 

IQ 
CtlBootlnit 
CtrVersion 
CtlReset 
CtlStatus 
CtlStartup 
CtlSbutDown 
CtlNewRes 
GetCtlzpage 
SetCtlTitle 
GetCtlTitle 
SetCtlicons 

mm 
C'l'RL_VIS 
·drawCtrl 
testCtrl 
initCtrl 
dispCtrl 
posCtrl 
thumbCtrl 
draqCtrl 
moveCtrl 
drawCntl 
testCntl 
initCntl 
dispCntl 
posCntl 
thumbCntl 
draqCntl 
moveCntl 

'Ctl' will be the control abbreviation used in Cortland documents. 

Is2 
C'l'L_VIS 
drawCtl 
testCtl 
initCtl 
dispCtl 
posCtl 
thumbCtl 
draqCtl 
moveCtl 
drawCtl 
testCtl 
initCtl 
dispCtl 
posCtl 
thumbCtl 
draqCtl 
moveCtl 

September 25, 1986 



Tool Number: 

Tools needed installed: 

Stack requirement: 

16 

Quick Draw 
Memory Manager 
Event Manager 

512 bytes. 

The Control Manager is the part of the Cortland User Interface Toolbox that deals with controls. A 
control is an object on the Cortland screen with which the user, using the mouse, can cause instant 
action with graphic results or change settings to modify a future action. Using the Control 
Manager, your application can: 

- display or hide controls 

- monitor the user's operation of a control with the mouse and respond accordingly 

- read or change the setting or other properties of a control 

-·change the size, location, or appearance of a control 

Your application performs these actions by calling the a.ppropri.ate Control Manager routines. The 
Control Manager cames out the actUal operations, but it's up to you to decide when. where, and 
how. 

Controls may be of various types. each with its own characteristic appearance on the screen and 
responses to the mouse. Each individual control has its own specific properties-such as its 
location, size, and setting-but controls of the same type behave in the same general way. 

September 25, 1986 



( Button 1 J 

( Button 2 J 

181 Check BOH 1 

181 Check BoH 2 

0 Check BoH 3 

0 Redio Button 1 

@ Redio Button 2 

0 Redio Button 3 

dials 

Certain standard types of controls are predefined for you. Your application can easily use controls 
of these standard types, and can also define its own "custom" control types. The predefined 
control types are the following: 

- Bunons cause an ;mmer.iiate or continuous action when clicked or pressed with the mouse. 
They appear on the screen as rounded-comer rectangles with a title centered inside. 

- Check boxes retain and display a setting, either checked (on) or unchecked (off); clicking 
with the mouse reverses the setting. On the screen, a check box appears as a small square 
with a title to the left of it; the box is either filled in with an ''X" (checked) or empty 
(unchecked). Check boxes are frequently used to control or modify some future action, 
instead of causing an immediate action of their own. 

- Radio buttons also retain and display an on-or-off setting. They're organized into families, 
with the property that only one button in the family can be on at a time: clicking any button 
on rums off all the others in the family,like the buttons on a cartadio. Radio buttons are 
used to offer a choice among several alternatives. On the screen, they look like round 
check boxes; the radio button that's on is filled with a small black circle instead of an "X". 

Note: The Control Manager knows which radio buttons belong in each family 
· from the flag value passed to NewCoritrol. Bits 8-14 of flag is the family 

number. Assign the same number for every member of a family, and 
different numbers for different families. Zero is an acceptable family 
number. 

- Scroll bars are predefined dials. A dial displays a quantitative setting or value, typically in 
some pseudonanalog form such as the position of a sliding switch, the reading on a 
thennometer scale, or the angle of a needle on a gauge; the setting may be displayed 
digitally as well. The control's moving part that displays the current setting is called the 

September 25, 1986 



indicator. The user may be able to change a dial's setting by dragging its indicator with the 
mouse. or the dial may simply display a value not under the user's direct control (such as 
the amount of free space remaining on a disk). 

The following diagram shows the parts of the vertical and horizontal scroll bars. 

up arrow------------
-page up• region --------

thumb 

•page down• region---

down arrow 
I 

The parts of the scroll bars can be generalized into three regions; arrows, paging, and 
thumb (or thumber). The mows scroll data a line at a time, paging regions scroll a "page" 
at a time, and the thumb can be dragged to any position within the scroll area. Although 
they may seem to behave like individual controls, these are all parts of a single control, the 
scroll bar type of dial. You can define other dials of any shape or complexity for yourself 
if your application needs them. 

Standard scroll bars are proportional, that is they show the relationship between the total 
amount of data and the amount viewed, and where the view is in the data. 

September 25, 1986 



September 25, 1986 



HIGHLIGHTING AND ACTIVE CONTROLS 

When clicked or pressed. a control is usually highlighted It's also possible for just a pan of a 
control to be highlighted: for example, when the user presses the mouse button inside a scroll 
arrow in a scroll bar, the arrow, not the whole scroll bar, becomes highlighted. 

:putton.:-~~ 

~Check BoH 

~Radio Button 

Highlighted Active Controls 

( Bu11on ) 

0 Check Bon 

lei lol 
or 

Inactive Controls 

A control may be active or inactive. Active controls respond to the user's mouse actions; inactive 
controls don'L A control is made inactive when it has no meaning or effect in the CUII"ent context, 
such as an "Open" button when no document has been selected to open, or a scroll bar when 
there's cum:ntly nothing to scroll to. An inactive is highlighted in some special way, depending on 
its control type. For example, the title of an inactive button, check box, or radio button is dimmed. 

There are two ways a scroll bar can be made inactive. In the diagram above the top scroll is made 
inactive by maldng the data size equal to or smaller than the view size. This type of inactive state 
happens automatically when the data size equals or exceeds the view size. The bottom inactive 
scroll bar is made by passing 255 to HiliteControl and is inactive in the same sense that the other 
controls are inactive. 

There is one more way in which controls can be made inactive, make them invisible. Invisible 
controls arc inactive in the sense that it can not be selected. However its 'highlighting in some 
special way' is an extreme. 

September 25, 1986 



CONTROLS AND 'WINDOWS 

Every control "belongs" to a window: When displayed, the control appears within that window's 
content region; when manipulated with the mouse, it acts on that window. All coordinates 
pertaining to the control (such as those describing its loc~ti.on) are given in its ~dow's loc~. 
coordinate system. Even the state of the control can be ned to the state of the wmdow. A bit m 
wFrame of the window's record can be set so the controls in the window will be considered 
inactive if the the window is inactive. See the Wmdow Manager ERS. 

Warning: In order for the Control Manager to draw a control properly, the control's 
window must have the top left comer of its grafPort's portR.ect as coordinates 
(0,0). If you change a window's local coordinate system for any any reason 
(with the QuickDraw procedure Set Origin), be sure to change it back-so that 
the top left comer is again at (0,0)-before drawing any controls. Since almost 
all of the Control Manager routines can (at least potentially) redraw a control, the 
safest policy is simply to change the coordinate system back before calling any 
Control Manager routine. 

However: If you would like to have controls in a window scroll with the content region 
there is a way. Before call the Control Manager make sure the origin of the 
control's window is set to its scrolled value 

PARI CODES 

Some controls, such as buttons, are simple and straightfonvard. Others can be complex objects _ 
with many parts: for example, a scroll bar may have two scroll arrows, two paging regions, and a 
thumb. To allow different parts of a control to respond to the mouse in different ways, many of the 
Control Manager routines accept a part code as a parameter or return one as a result. 

A part code is a number between 1 and 253 that stands for a particular part of a control. Each type 
of control has its set of part codes. Some of the Control Manager routines need to give special 
treatment to the indicator of a dial (such as the thumb of a scroll bar). To allow the Control 
Manager to recognize such indicators, they always have part codes greater than 127. 

The part codes are ·assigned as follows: 

September 25, 1986 



0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11-31 

32·127 

No part. 

Reserved for intemaJ use. 

Simple button. 

Check box. 

Radio button. 

Uparrow. 

Down arrow. 
Page up. 

Page down. 

Reserved for internal use. 

Gtow box icon. 

Reserved for intemaJ use. 

Reserved for application's use. 

128 Reserved for intemaJ use. 

129 Thumb. 

130-159 Reserved for intemaJ use. 

160-253 Reserved for application's use. 

254-255 Reserved for intemaJ use. 

USING THE CONTROL MANAGER 

This section discusses how ;he Control Manager routines fit into the gencal flow of an application 
and gives you an idea of which routines you'll need to use. The routines themselves are described 
in detail in CONTROL MANAGER ROUTINES, and examples are found in PROGRA.i.'\1MING 
EXAMPLES. 

To use the Control Manager, you must have previously caJ.1ed InitGraf to initialize QuickDraw and 
lnitFontS to initialize the Font Manager if you are going to use controls with text in them. 

Note: For controls in dialogs oral~ the Dialog Manager makes some of the basic 
Control Manager calls for you. Also, the Window Manager will make Control 
Manager calls concerning standard window controls. 

Where appropriate in your program. use NewControl to add any controls you need. 
NewControl will set the control's owner to the window pointer passed and add the control to the 
head of the window's control list. When you no longer need a control, call DisposeControl to 
remove it from its window's control list and erase it from the screen. To dispose of all a window's 
controls at once, use Kill Controls. 

Note: The W"mdow Manager procedure Close Window will automatically dispose 
of all the controls associated with the given window. 

When the Event Manager function GetNextEvent reports that an update event has occurred for a 
window, the application should call DrawControls to redraw the window's controls as part of 
the process of updating the window. 

September 25, 1986 · 9 H:lol 



After receiving a mouse-down event from GetNextEvent, do the following: 

1. Fli'St call FindWindow to determine which part of which window the mouse button was 
pressed in. If it was in the content region of the active window, use that window's control 
list. 

2. If the event did occur in a content area call Find Control with the pointer to the window to 
find out whether the event occurred on an active control 

3. Fmally, if Find Control returnS a control handle, call TrackControl to handle user 
interaction with the controL TrackControl will handle the highlighting of the control and 
detennines whether the mouse is still in the control when the mouse button is released. It 
also handles the dragging of the thumb in a scroll bar and responds to presses or clicks in 
the other pans of a scroll bar. When TrackControl returns the part code for valid control, 
the application must do whatever is appropriate as a response. 

The application's exact response to mouse activity in a control that retains a setting will depend on 
the current setting of the control, which is available from the GetCtJValue function. For controls 
whose values can be set by the user, the SetCtiValue procedure may be called to change the 
control's setting and redraw the control accordingly. You'll call SetCtiValue, for example, when 
a check box or radio button is clicked. to change the setting and draw or clear the mark inside the 
control. 

Wherever needed in your program, you can call Hi deControl to make a control invisible or 
ShowControl to make it visible. Similarly, MoveControl, which simply changes a control's 
location without pulling around an outline of it, can be called at any time, as can SizeControl, 
which changes its size. For example, when the user changes the size of a document window that 
contains a scroll bar, you'll call HideControl to remove the old scroll bar, MoveControl and 
SizeControl to change its location and size, and ShowControl to display it as changed. 
Whenever necessary, you can read various attributes of a control with GetCTitle, 
GetCtlParams, or GetCtlState; you can change them with SetCTitle, SetCtlParams, or 
SetCtlState. 

September 25, 1986 10 !>lol 



CONTROL MANAGER ICON FONT 

The standard conttol definition procedures use a font to draw some control parts and their 
highlighted states. If you would like to use different icons you can replace the default font. To 
replace the icon font, or just get the handle to the CUll'Cnt font, call SetCMgrlcons. The format of 
the font is as follows: 

CharactcrO 
Character 1 
Character 2 
Character3 
Character4 
CharacterS 
Charactcr6 
Character7 
CharacterS 
Character9 
Character 10 
Character 11 
Character 12 
Chalacter 13 
Character 14 
Character 15 
Character 16 

Check box that is off and not highlighted. 
Check box that is off and is highlighted. 
Check box that is on and not highlighted. 
Check box that is on and not highlighted. 
Radio button that is off and not highlighted. 
Radio button that is off and is highlighted. 
Radio button that is on and not highlighted. 
Radio button that is on and is highlighted. 
Right arrow that is not highlighted. 
Right arrow that is highlighted. 
Left arrow that is not highlighted. 
Left arrow that is highlighted. 
Up arrow that is not highlighted. 
Up arrow that is highlighted. 
Down arrow that is not highlighted. 
Down mow that is highlighted. 
Grow icon. 

September 25, 1986 



CONTROL RECORDS 

Every control has the same front end to its control record. Additional data can then be ~ppend~~ to 
the end of the general control record. For example, NewControl will call the control s defimnon 
procedure to find out the size of the record to allocate. before the record is acmally allocated. The 
General Control Record follows: 

CtlNext 
CtlOwner 
CtlRect 
CtlFlag 
CtlHilite 
CtlValue 
CtlProc 
CtlAction 
CtlDam 
CtlRefCon 
CtlColor 

LONG 
LONG 
REcr 
BYTE 
BYTE 
WORD 
LONG 
LONG 
LONG 
LONG 
LONG 

Handle to next control, zero •last control 
Pointer to window the control belongs to. 
Enclosing teetangle. 
Flags that define the control, bit 7 • 0 if visible, 1 if invisible. 
CUITently highlighted part. 
CUIT"ent value. 
Address of control's definition procedure. 
Address of control's default action procedure. 
Dam used by definition procedure. 
Reserved for application's usc only. 
Pointer to control's color table, zero for default table. 

CtlNext is a handle to the next control associated with this control's window. All the controls 
belonging to a given window are kept in a linked list, beginning in the wcontrol field of the 
window record and chained together through the CtlNext fields of the individual control records. 
The end of the list is marked by a zero value; as new controls are created, they're added to the 
beginning of the list. 

CtlOwner is a pointer to the window pon that this control belongs to. 

CtlRect is the rectangle that completely encloses the control, in the local coordinates of the control's 
window. 

CtlFlag is a bit vector that further describes the control. The only bit that is used for all controls is 
bit 7. Bit 7 is 0 if the control is visible, and 1 if invisible. Bits 0-6 are reserved for the control's 
defmirion procedure. 

CtlHilite specifies whether and how the control is to be highlighted. indicating whether it's active or 
inactive. The value is zero if the control is active and has no highlighted pans. The value is 255 if 
the control is inactive. If the value is between 1 and 254, it's th~ part code of a highlighted part of 
the control. Therefore, only one part on a control can be highlighted at any one time, and no part 
can be highlighted on an inactive controL See HiliteControl for more information. 

CtlValue is the control's cmrent setting. For check boxes and radio buttons, 0 means the control is 
off and non-zero means it's on. For scroll bars, the value is between 0 and data size less view size. 
Custom controls can use the field as they see fit. 

September 25, 1986 



CtlProc is the adc:lress of the control definition procedure for this type of controL Standard. controls 
do not use an address in this field. Instead, bits 0-23 are zero and only the high-order byte is used 
to determine which standard control the control is. Values for standard controls are: 

$00000000 
$02000000 
$04000000 
$06000000 

Simple button. 
Checkbox. 
Radio button. 
Sc:oll bar. 

CtlData is reseiVed for use by the control definition procedure, typically to hold additional 
information specific to a particular control type. For example, the standard definition procedure for 
scroll bars uses the low-order word as view size, and the high-order word as data size. The 
standard. definition procedures for simple buttons, check boxes, and radio buttons store the address 
of the control's title here. 

CtlAction is a address of the control's default action procedure, if any. The procedure 
TrackControl may call the default action procedure to respond to the user's dragging the mouse 
inside the control. See Track Control for more information. 

CtlRefCon is the control's reference value fie~ which the application may store into and access for 
any purpose. 

CtlColor is a pointer to the control's color table, which is used by the control's definition procedure 
to draw the controL 

More fields can be added to the end of the control record to further define the controL See the 
control record of a standard sc:oll bar as an example. 

September 25, 1986 13 H:lol 



The following are how control record fields are used by standard controls: 

Simple Button: 

CtlFlag bits 0-1 0 =single, round corner, outline. 
1 =bold, round corner, outline. 
2 =single, square corner, outline. 
3 =single, square corner, outline with drop shadow. 

CtlValue is always zero. 

CtlProc equals $00000000. 

CtlDara is a pointer to the button's title string. 

CtlColor is a pointer to control's color table, or zero for default table. The simple button color 
table is defined as: 

color! =outline color when normal, in high nibble. 
color2 = interior color when normal. 
color3 = interior color when selected. 
color4 = text color when normal. 
color5 = text color when selected. 
color6 =special highlight color. 
color7 = thick outline color. 

A simple button can be drawn with one of two outlines. The thick outline should be used with 
buttons that would be selected by the user pressing Return on the keyboard. This would be a 
default key and should never cause a the destruction of something, like a default bunon "Delete 
File". The thin outline should be used for all other simple bunons. 

September 25, 1986 14 ~>lol 



Check Box: 

CtlValue is 0 if not checked, non-zero if checked. 

CtlProc equals $02000000. 

CtlData is a pointer to the check box's title string. 

CtlColor is a pointer to control's color table, or zero for default table. The check box color 
table is defined as: 

Radio Button: 

CtlFlag is: 

color!= not used. 
color2 = color of check box when not highlighted. 
color3 a color of check box when highlighted. 
color4 = color of title. 

Family number. 
0 • visible, 1 • invisible. 

CtlValue is 0 if off, non-zero if on. 

CtlProc equals $04000000. 

CtlData is a pointer to the radio button's title string. 

CtlColor is a pointer to control's color table, or zero for default table. The radio button color 
table is defined as: 

color!= not used. 
color2 = color of radio button when not highlighted. 
color3 = color of radio button when highlighted. 
color4 = color of title. 

September 25, 1986 15 H:lol 



Scroll Bar: 

Ctlflag is defined as: 

1 • up arrow on scroll bar. 
1 • down arrow on scrcll bar. 

'---- 1 • left arrow on scrcll bar. 
'----- 1 • right arrow on scrcll bar. 

'------ 0 • vertical scroll bar, 1 • horizontal. 
'--------- 0. visible, 1 • invisible. 

CtlValue equals a number between zero and da.ta size less view size. 

CtlProc equals $06000000. 

CtlData low-order WORD equals view size, and high-order word equals data size. 

CtlColor is a pointer to control's color table, or zero for default table. The radio button color 
table is defined as: 

color! =outline color. 
color2 = m"OW color when normal 
color3 = m"OW color when selected. 
color4 = arrow box interior color. 
colorS = thumber interior color when normal. 
color6 = thumber interior color when selected. 
color7 =page region's color, low nibble= background. 
colorS = inactive color. 

Additional data fields appended to the end of the control record: 

Thumb 
PageRegion 

September 25, 1986 

REcr 
REcr 

Thumber rectangle. 
Page region, thumb's bounds. 

1,/1-,1•:•:·:·:·:·:·:-:·:·:·:·:<j 
"-r-l :-:·:·:·:·:·:·:·:·:·:·:·:· ............. 16 h:lol 



CONTROL MANAGER ROUTINES 

INITIALIZATION AND TERMINATION 

CtiBootlnit 

input: None. 

outpUt: None. 

Called only by the loader when loaded. 

CtJVersion 

input: 

OutpUt: 

CtiReset 

None. 

Version: WORD 

input: None. 

ourput: None. 

Called on system reset. 

None. 

Version number of the Control Manager. 

CtiStatus 

input: 

output: status: WORD- TRUE if Control Manageris active, FALSE if not. 

September 25, 1986 



CtlStartup 

input: 

output: 

youriD:WORD 
zcroPage:WORD 

None. r .. <:. 
\ 

Your ID number, used for memory allocation. 
Zero page Control Manager can use. 

CtlStartup allows the Control Manager to perform start up initialization. YouriD will be 
used by the Control Manager when it allocates memory. ZeroPage is an address of a page 
(256 bytes) in bank zero that your application makes available to the Control Manager for its 
use. The page does not have to be page aligned, but the Control Manager will operate faster 
if it is. 

CtJShutDown 

input: None. 

output: None. 

Deactivates the Control Manager. No controls are disposed of, Close Window in the 
Window Manager disposes of all controls in a window. Therefore, the Control Manager 
should not be shutdown until after the Wmdow Manager has been shutdown. 

CtiNewRes 

input: None. 

output: None. 

Call CtiNewRes after you have changed the video mode. This routine will reinitialize 
resolution and mode dependencies. 

September 25, 1986 , 8 !>lc:>l 



NewControl 

input: 

output: 

theWindow:LONG 
boundsRect:LONG 
title :LONG 
tlag:WORD 
value: WORD 
paraml:WORD 
param2:WORD 
defProc:LONG 
refCon:LONG 
colorTable:LONG 

ControiHandle:LONG 

Pointer to window owner. 
Pointer to enclosing REC!. 
Pointer to title string (CtlData). 
Bit vector of flags. 
Control's starting value. 
Additional pamneter (view size for scroll bars). 
Additional parameter (date size for scroll bars). 
Address of definition proced~ or standard. 
Any value you want, application reserved. 
Pointer to control's color table. 

Control's handle, zero if error. 

NewControl creates a control, adds it to the beginning of theWmdow's control list, and 
returns a handle to the new controL The values passed as parameters are stored in the 
corresponding fields of the control record. as described below. The field that determines 
highlighting is set to 0 (no highlighting). 

Note: The control definition function may do additional initialization, including 
changing any of the fields of the control record. The only standard 
control for which additional initialization is done is the scroll bar, its 
control definition procedure computes the thumber and page region from 
boundsRect and flag. 

The Window is the window the new control will belong to. All coordinates pertaining to the 
control will be interpreted in this window's local coordinate system. 

BoundsRect, given in theWmdow's local coordinates, is the rectangle that encloses the 
control and thus determines its size and location. Note the following about the enclosing 
rectangle for the standard controls: 

- Simple buttons are drawn to fit the rectangle exactly. (The control definition 
function calls the QuickDraw procedure FrameRoundRect.) To allow for the 
tallest characters in the system font, there should be at least a 20-point 
difference between the top and bottom coordinates of the rectangle. 

- For check boxes and radio buttons, there should be at least a 16-point 
difference between the top and bottom coordinates. 

- A standard scroll bar should be at least 48 pixels long, to allow room for the 
scroll arrows and thumb. 

Title is the control's title, if any (if none, you can just pass the empty string as the title). Be 
sure the title will fit in the control's enclosing rectangle; if it won't it may not be completely 
erase with HideControl, along with other possible side effects. 

September 25, 1986 



Aag is a bit vector that further defines the control. Bit 7 is a visible{mvisible flag for every 
kind of control. Bits 8-15 can be set to $FFxx to make the control inactive, but should be 
normally set to zero for an active controL Bits 0-6 are defined by each type of control. The 
bit vectors are defmed below for standard controls. 

1 • bold outline • 
....._ _______ 0 • visible, 1 • invisible. 

Check box flag: 

Radio button flag: 

I}IE#lf.J#Ij:i.fr:;r%utflim 1! sl sl 41 31 2! , I o I I I I 

Scroll bar flag: 

September 25, 1986 

1 Family number. 

'--------- 0 • visible, 1 • invisible. 

1 • up atTOW on scroll bar. 
1 • down atTOW on scroll bar. 

'----- 1 • left atTOW on scroll bar • 
......, ___ 1 • right atTOW on scroll bar. 

'------ 0 • vertical scroll bar, 1 • horizontal . 
....._ _______ 0 • visible, 1 • invisible. 



The value parameter gives the control an initial setting. 

The paraml and param2 parameters are defined by the control's definition procedure. For 
standard scroll bars paraml is the size of the view, and param2 is the total data size. The 
standard scroll bar definition procedure will store the value of paraml in the CtlData field, 
and param2 in Ct1Data+2 field. 

DefProc is the address of the control's definition procedure. DefProcs for custom control 
types are discussed later under "Defining Your Own Controls". The values for the standard 
control types are: 

$00000000 
$02000000 
$04000000 
$06000000 

- Simple button. 
-Check box. 
- Radio button. 
- Scroll bar. 

RefCon is the control's reference value, set and used only by your application. 

DisposeControl 

input: 
output: 

theControl:LONG 
None. 

Haildle of controL 

DisposeControl removes theControl from the screen. deletes it from its window's control 
list, and releases the memory occupied by the control record and any data str1.1CtU:reS 
associated with the control. DisposeControl does not erase the control, call 
Hi deControl prior to DisposeControl if the control must be erased. 

Kill Controls 

input: 
output: 

theWmdow:LONG 
None. 

Pointer to window. 

Kill Controls disposes of all controls associated with theWmdow by calling 
DisposeControl (above) for each control in the Window's control list. KiliControls does 
not erase the controls, call Hi deControl for each control in the list prior to Kill Controls 
if the they must be erased. 

Note: Remember that the Wmdow Manager procedures Close Window 
automatically dispose of all controls associated with the given window. 

September 25,- 1986 



CONTROL DTSPLA Y 

These procedures affect the appearance of a control but not its size or location. 

SetCtiTitle 

input: 

output: 

title :LONG 
theControl:LONG 

None. 

Address of new title. 
Handle of controL 

SetCTitle sets theControl's title to the given string and redraws the control. 

GetCtlTitle 

input: 

output: 

theControl:LONG 

title :LONG 

Handle of control. 

Pointer to control's title. 

GetCTitle returns the value in theControl's Ctl.Data field, which, for controls with titles, is 
the pointer to the control's title string. 

Hi deControl 

input: theControl:LONG Handle of controL 

output: None. 

HideControl makes theControl invisible. It fills the region the control occupies within its 
window with the background pattern of the window's grafPon. It also adds the control's 
enclosing rectangle to the window's update region, so that anything else that was previously 
obscured by the control will reappear on the screen. If the control is already invisible, 
HideControl has no effect. 

ShowControl 

input: theControl:LONG Handle of controL 

output: None. 

ShowControl makes theControl visible. The control is drawn in its window but may be 
completely or partially obscured by overlapping windows or other objects. If the control is 
already visible, ShowControl has no effect. 

September 25, 1986 22 !>1~1 



DrawControls 

in puc theWmdow:LONG Pointer to window, of which the control list is drawn. 

output: None. 

n·rawControls draws all controls currently visible in theWmdow. The controls are drawn 
in reverse order of creation; thus in case of overlap the earliest-created controls appear front 
most in the window. ' 

HiliteControl 

input: 

Note: Wmdow Manager routines such as SelectWindow, ShowWindow, 
and BringToFront do not automatically call DrawControls to 
display the window's controls. They just add the appxopiiate regions to 
the window's update region. generating an update event. Your program 
should always call DrawControls explicitly upon receiving an update 
event for a window that contains contrOls. 

hilia:S tate: WORD 
theControl:LONG 

Operation to peifOim. 
Handle of controL 

output: None. 

HiliteControl changes the way theControl is highlighted. HiliteState has one of the 
following values: 

• The value 0 means no highlighting and the control is active. Any highlighted 
part of the control is unhighlightcd. If the control is inactive, it's changed to 
active and redrawn. 

• A value between 1 and 253 is interpreted as a part code designating the part of 
the (active) conttol to be highlighted. 

• The value 255 means that the conttol is to be made inactive and redrawn 
accordingly. 

Note: The value 254 should not be used; this value is reserved for future use. 

HiliteControl calls the control definition function to redraw the control with its new 
highlighting. 

September 25, 1986 



MOUSE LOCATION 

Find Control 

input: 

output: 

FoundCtl:LONG 
xPoint:WORD 
yPoint:WORD 
theWmdow:LONG 

FoundPart:WORD 

Address of when: to store control handle. 
X coordinate, in global coordinates, to check. 
Y coordinate, in global coordinates, to check. 
Pointer of Window to check. 

Part code of found part on control. 

When the Wmdow Manager function FindWindow reports that the mouse button was 
pressed in the content region of a window, and the window contains controls, the application 
should call FindControl with theWmdow equal to the window pointer and thePoint equal 
to the point where the mouse button was pressed (in the window's global coordinates). 
Find Control tells which of the window's controls, if any, the mouse button was pressed 
in: 

· If it was pressed in a visible, active control, Find Control sets the 
whichControl parameter to the control handle and retums a part code 
identifying the part of the control that it was pressed in. 

· If it was pressed in an invisible or inactive control, or not in any control, 
FindControl sets whichControl to NIL and returns 0 as its result. 

Note: Find Control also remms zero for whichControl and zero as its result if 
the window is invisible or doesn't contain the given point. In these 
cases, however, Find Window wouldn't have returned this window in 
the first place, so the situation should never arise. 

September 25, 1986 



' 

TestControl 

input: 

output: 

xPoint:WORD 
yPoint:WORD 
theContro~ONG 

PartCode:WORD 

X coordinate, in local coordinates, to check. 
Y coordinate, in local coordinates, to check. 
Handle of controL 

Part thePoint is over. 

If theControl is visible and active, TestControl tests which part of the control contains 
thePoint (in the local coordinates of the control's window); it returns the cmresponding pan 
code, or zero if the point is outside the controL If the control is invisible or inactive, 
TestControl returnS zero. TestControl is called by FindControl and Track Control; 
normally you won't need to call it yourself. 

Track Control 

input: 

output: 

stanX:WORD 
stanY:WORD 
actionProc:LONG 
theConttol:LONG 

PanCode:WORD 

X coordinate, in global coordinates, of stan:i.ng point. 
Y coordinate, in global coordinates, of starting point. 
Address of routine, zero, or a negative number. 
Handle of controL . 

Selected pan when button was released. 

When the mouse button is pressed in a visible, active control, the application should call 
TrackControl with theControl equal to the conttol handle and stanY and SWtX are equal to 
the point where the mouse button was pressed (in the global coordinates). Track Control 
follows the movements of the mouse and responds in whatever way is appropriate until the 
mouse button is released; the exact response depends on the type of control and the pan of 
the control in which the mouse button was pressed. If highlighting is appropriate, 
Track Control does the highlighting, and will undo it before returning. When the mouse 
bunon is released, Track Control returnS with the part code if the mouse is in the same pan 
of the control that it was originally in, or with zero if not (in which case the application 
should do nothing). 

If the mouse button was pressed in an indicator, TrackControl drags a dotted outline of it · 
to follow the mouse. When the mouse button is released, TrackControl calls the control 
definition procedure to reposition the control's indicator. The control definition function for 
scroll bars responds by redrawing the thumb, calculating the control's current setting based 
on the new relative position of the thumb, and storing the current setting in the control 
record. The application must then scroll to the COITCsponding relative position in the 
document. 

September 25, i 986 



Track Control may take additional actions beyond highlighting the control or dragging the 
indicator, depending on the value passed in the action.Proc parameter, as described below. 
The following tells you what to pass for the standard control types; for a custom control, 
what you pass will depend on how the control is defined. 

- If actionProc is zero, TrackControl performs no additional actions. This is 
appropriate for simple buttons, check boxes, radio buttons, and the thumb of 
a scroll bar. 

- ActionProc may be a pointer to an action procedure that defines some action to 
be performed repeatedly for as long as the user holds down the mouse button. 
(See below for details.) 

- If actionProc is a negative number, TrackControl will check the CtlAction 
field of the control's record. No additional actions will be perl'ormed if 
CtlActi.on is zero. If CtlActi.on is negative, the control's definition procedure 
will be called with an auto Track message. If CtlActi.on is neither zero or 
negative, it will be considc:red a valid address of an action routine and be 
called. 

The action procedure in the control definition procedure is described in the section "Defining 
Your Own Controls". The action procedure should be of the form: 

MyActicn 

inputs: partCode:WORD Selected part. 
theControl:LONG Handle of control. 

outputs : None. 

In this case, TrackControl passes the control handle and the part code to the action 
procedure. (It passes zero in the partCode parameter if the mouse has moved outside the 
original control pan.) As an example of this type of action procedure, consider what should 
happen when the mouse button is pressed in a scroll mow or paging region in a scroll bar. 
For these cases, your action procedure should e,Yamine the part code to determine exactly 
where the mouse button was pressed. scroll up or down a line or page as appropriate, and 
call SetCtlValue to change the control's setting and redraw the thumb. 

September 25, 1986 



CONTROL MOVING ANI) SIZING 

MoveControl 

input: 

output: 

New X: WORD 
NewY:WORD 
theControl:LONG 

None. 

New X origin of control 
New Y origin of control 
Handle of control 

MoveControl moves theControl to a new location within its window. The top left corner 
. of the control's enclosing rectangle is moved to the horizontal and vertical coordinates h and 
v (given in the local coordinates of the control's window); the bottom right corner is adjusted 
accordingly, to keep the size of the rectangle the same as before. If the control is CUIIently 
visible. it's hidden and then redrawn at its new location. 

DragControl 

input: startX: WORD 
startY:WORD 
limitRect:LONG 
slopRect:LONG 

· axis:WORD 
theControl:LONG 

X coordinate. in local coordinates. of starting point. 
Y coordinate. in local coordinates. of starting point. 
Pointer to bounds rectangle. 
Pointer to slop rectangle. 
Movement constraint. 
Handle of control 

output: None. 

Called with the mouse button down inside theControl. DragControl pulls a dotted outline 
of the control around the screen. following the movements of the mouse unti.l the button is 
released. When the mouse button is released. DragControl calls MoveControl to move 
the control to the location to which it was dragged. 

Note: Before beginning to follow the mouse. DragControl calls the control 
definition function to allow it to do its own "custom dragging" if it 
chooses. If the definition function doesn't choose to do any custom 
dragging, DragControl uses the default method of dragging described 
here. 

September 25, 1986 



The stanX, stanY, limitRect, slopRect, and axis parameters have the same meaning as for 
the procedure DragRect., see DragRect 

September 25, 1986 lol<·:-:-:·:·:-:-:-:-:-:·:·:1 ·.·.·.·.·.·.·.·.·.·.·.·.·. ·.·.·.·.·.·.·.·.·.·.·.·.·. 28 l>lc:>l 



CONTROL RECORD ACCESS 

SetCUValue 

input: 

output: 

CurValuc:WORD 
theControl:LONG 

None. 

Cummt value of control. 
Handle of controL 

SetCtlValue sets theControl's CUITent setting to the Value and redraws the control to reflect 
the new setting. For check boxes and radio buttons, the value 1 fills the control with the 
appropriate mark, and zero clears it. For scroll bars, SetCtlV alue redraws the thumb 
where appropriate. 

If the specified value is out of range, it's forced to the nearest endpoint of the cunent range. 

GetCUValue 

input: 

output: 

theControl:LONG 

CurValuc:WORD 

Handle of controL 

Control's cunent value. 

GetCUValue returns theControl's cu:m:nt setting. 

SetCtJAction 

input: 

output: 

new Action:LONG 
theControl:LONG 

None. 

Pointer to control's action procedure. 
Handle of control. 

SetCUAction set theControl's Ctl.Acti.on field to new Action. 

GetCtlAction 

input: 

output: 

theControl:LONG 

Action:LONG 

September 25, 1986 

Handle of controL 

Value in theConttol's CtlActi.on field. 



SetCtlRefCon 

input: newRefCon:LONG 
theConttol;LONG 

output: None. 

Value to store in theControl's CtlRefCon field. 
Handle of controL 

SetCURefCon set theConttol's Ctl.RefCon field to newRefCon. This field is reserved for 
the application's use only and will not be used or changed (except for this call) by the 
Control ?vianager. 

GetCtlRefCon 

input: 

output: 

theConttol;LONG 

refCon:LONG 

Handle of controL 

Value in theControl's CtlRefCon field. 

GetCtlRefCon set theControl's CtlRefCon field to newRefCon. This field is reserved for 
the application's use only and will not be used or changed by the Control Manager. 

GetCtlParams 

input: 

output: 

theControlLONG 

pa.ramsLONG 

Handle of controL· 

TheConttol's CtlData field value. 

GetCtlParams returns the off theConttol's CtlData field. 

September 25, 1986 



SetCtlParams 

input: pmm2:WORD 
paraml:WORD 
theControl:LONG 

Additional control parameter, defined by controL 
Additional control parameter, defined by controL 
Handle of controL 

outpUt: None. 

SetCtlParams is a way of setting new parameters to the control's definition procedure, 
which will set the values and redraw the control if necessary. Simple buttons, check boxes, 
and radio buttons, do not use paraml ar param2, and no action is performed. 

Of the predefined controls, only scroll bars usc the parameters. Paraml is used as the scroll 
bar's view, and param2 the data size. If, far either paraml or param2, a -1 is passed, that 
parameter will not be changed (this only applicable to predefined scroll bars, custom controls 
may not support this feature). Example: 

You want to show am editable text document, with a single vertical scroll bar to the 
right of the text. The text document has 300 lines, of which 30 can be displayed at 
one time. To set the scroll bar you would pass 30 far paraml and 300 for param2. 

If the user enters a line you would want to update the scroll bar. So, you pass -1 for 
paraml because there was no change in the view (although for predefined scroll bar 
there is no advantage to passing the view size again rather than -1), and 301 far 
param2 to show the increased data size. 

For this same document there is another approach you could take. You could pass 
the view and data sizes as pixels. If every line is 10 pixels high, counting leading, 
and there were 300 lin~ of which 30 can be displayed, you would pass 300 for 
param1 and 3000 for param2. After the line was entered. you'd pass -1 for param 1 
(or 300 again), and 3010 for param2. Because passing the number of pixels, rather 
than the number of lines, is proportionally equivalent, the scroll bar will be identical 
far either method. 

September 25, 1986 



Miscellaneous Routines 

DragRect 

input: actionProc:LONG 
dragPanem:LONG 
start.X:WORD 

· stanY:WORD 
dragRect:LONG 
limitRect:LONG 
slopRect:LONG 
axis: WORD 

Address of routine, zero, or a negative number. 
Address of pattern to use for drag outline. 
X coordinate, in local coordinates, of starting point. 
Y coordinate, in local coordinates, of starting point. 
Pointer to rectangle to be dragged. 
Pointer to bounds rectangle. 
Pointer to slop rectangle. 
Movement constraint. 

output: MoveDelta:LONG Low WORD is the amount Y changed, 
High WORD is the amount X changed. 

Called when the mouse button is down inside dragRect, DragRect drags a dotted (gray) 
outline of the REC!"s bounds, which should be in global coordinates, following the 
movements of the mouse until the button is released. 

The start Y ,startX parameters are assumed to be the point where the mouse button was 
originally pressed, in the global coordinateS. 

LimitRect and slopRect ·are also in global coordinates. To explain these parameters, the 
concept of "offset point" must be introduced: This is initially the point whose vertical and 
horizontal offsets from the top left comer of the region's enclosing rectangle are the same as 
those of stanY ,startX. The offset point follows the mouse location, except that DragRect 
will never move the offset point outside limitRect; this limits the travel of the region's outline 
(but not the movements of the mouse). SlopRect, which should completely enclose 
limitRect, allows the user some "slop" in moving the mouse. DragRect's behavior while 
tracking the mouse depends on the location of the mouse with respect to these two rectangles: 

- When the mouse is inside limitReet, the REC!"s outline follows it normally. If the 
mouse button is released there, the RECI' should be moved to the mouse location. 

- When the mouse is outside limitRect but inside slopReet, DragRect "pins" the 
offset point to the edge of limitRect. If the mouse button is released there, the region 
should be moved to this pinned location. 

- When the mouse is outside slopRect, the outline disappears from the screen, but 
DragRect continues to follow the mouse; if it moves back into slopRect, the outline 
reappears. If the mouse button is released outside slopRect, the region should not 
be moved from its original position. 

September 25, 1986 



The diagrams below illustrates what happens when the mouse is moved outside limitRect 
but inside slopRect. and outside the slopRect. 

• • ... • • . • • • • • 
\ • • • • • • • • • • • • • • • • • • • • • ' • • ' • • • ' • ~· • • • • • • • • • ' ' • • • • • . • • • ' ' • ' • • • • 

Offset Point 
--- limitRact 

:.. slopRac:t 

Region's Bounds 

TI . . . . . . . • . . . • . • • • 

Outside limitRect. 
but inside slopRact. 

. • . . • • • . • . • • . . • • • • . • • • ' • • 
' • • • • • • 

:~--·~---~ • • • • . • • • • • • . • • • • • • • • • • • • • • • • • • 

D 
Outside both the limitRact 
and the slopRact. 

The top diagram shows the starting position. As the cursor is moved. an outline of the 
window is dragged with it. The outline will seem to be glued to the cursor at the offset 
point. However, if the cursor moves outside of the limitRect. the outline will be left 
behind. as shown in the lower left diagram. As the cursor is moved outside of the 
limitRect. but within the slopRect. the outline will get as close to the cursor as possible 
without letting the offset point leave the limitRect. And finally, if the cursor moves outside 
the slopRect. the outline will snap back to its starting position. If the cursor moves back 
into the slopRect. the outline will snap out to get as close as it can. 

If the mouse button is released within slopRect. the high-order word of the value returned 
by Ora gReet contains the vertical coordinate of the ending mouse location minus that of 
stanY,startX and the low-order word contains the difference between the horizontal 
coordinates. If the mouse button is released outside slopRect. both words are zero. 

September 25, 1986 · 33 H:lc:>l 



The axis pararrieter allows you to constrain the region's motion to only one axis. It has 
one of the following values: 

CONST noConstraint - 0 
hAxisOnly - l 
vAxisOnly • 2 

{no constraint} 
{horizontal axis only} 
{vertical axis only} 

If an axis constraint is in effect, the outline will follow the mouse's movements along the 
specified axis only, ignoring motion along the other axis. 

The actionProc parameter is a pointer to a procedure that defines some action to be 
performed repeatedly for as long as the user holds down the mouse bunon; the procedure 
should has·no parameters. If actionProc is NIL, DragRect simply retains control until the 
mouse button is released. 

GetCtlzpage 

input: None. 

output: CtlZPage:WORD- Control Manger's direct (zero) page. 

This call will normally only be made by the Dialog Manager. The Dialog Manager makes 
this call because the Control and Dialog Managers share a single direct page. 

GrowSize 

input: None. 

output: SizeOfGrow:LONG - low-order word is height, high-order word is width. 

GrowSize returns the height and width, using the Control Manager's current icon font, of 
the grow box control. The height of the grow box is rerurned in the low-order word of 
SizeOfGrow, and the width in the high-order word. 

September 25, 1986 34 !}lol 



SetCtllcons 

input: newFont:LONG - handle of new icon font. negative to not set new font. 

output: oldFont:LONG - handle of Clln'ent icon font (before new Font is set). 

See CONTROL MANAGER ICON FONT for more information about the icon font. 

September 25, 1986 



DEFINING YOUR OWN CONIROLS 

In addition to predefined controls, you can also define "custom" controls of your own. Maybe you 
need a three-way selector switch, a memory-space indicator that looks like a thermometer, or a 
thruster control for a spaceaaft simulator-whatever your application needs. Controls and their 
indicators may occupy regions of any shape. 

To define your own type of control, you write a control definition procedure in your application. 
The Control Manager stores this address in the CtlProc field of the control record. Later, when it 
needs to perform a type-dependent action on the control, it calls the control definition procedure. 

The Control Definition Procedure 

The inputs and output of the definition procedure are: 

input: 

output: 

message: WORD 
panm:LONG 
theControl:LONG 

RetValue:LONG 

Desired operation. 
Depends on operation. 
Handle of control. 

Depends on operation. 

The message parameter defines the operation. It has one of the following values: 

drawCtl 
calcCRect 
testCtl 
initCtl 
dispCtl 
posCtl 
thumbCtl 
dragCtl 
auto Track 
new Value 
setParams 
moveCtl 
recSize 

=0 
=1 
=2 
=3 
=4 
=S 
=6 
=7 
=8 
=9 
=10 
=11 
= 12 

Draw the control (or control pan). 
Compute the rectangle to drag. 
Test where mouse button was pressed. 
Do any additional control in.irlalizarlon. 
Take any additional disposal actions. 
Move the control's indicator. 
Compute the parameters for dragging an indicator. 
Drag either a control's indicator, or the whole control. 
Called while dragging if -1 passed to Track Control. 
Called when control gets new value. 
Called when control gets new additional parameters. 
Called control moves, compute new position for pans. 
Return record size of control (in bytes). 

As described below in the discussions of the routines that perform these operations, the value 
passed for param, depends on the operation. Similarly, the control definition procedure is expected 
to return a function result only where indicated; in other cases, the function should return zero. 

September 25, , 986 



The Draw Routine 

message = drawCtl. 
param =part code - draw part. 

=zero- draw entire controL 
(Only the low WORD is used. high WORD is undefined.) 

RetValue = undefined. 

The message dra.wCtl asks the control definition function to draw all ar part of the control within its 
enclosing rectangle. The low-order WORD of param is a part code specifying which part of the 
control to draw, or zero for the entire control. If the control is invisible, there's nothing to do; if 
it's visible, the definition procedure should draw it (ar the requested part), taking into account the 
current highlighting and value. 

If param is the part code of the control's indicator, the draw routine can assume that the indicator 
hasn't moved; it might be called, far example, to highlight the indicator. 

The Test Routjne 

message = testCtl. 
param = low-order WORD = y point to check. in window's local coordinates. 

=high-order WORD= x point to check, in window's local coordinates. 
Ret Value = undefined. 

The Control Manager function TestControl sends the IDCSsage testCtl to the control definition 
function when the mouse button is pressed in a visible controL This message asks in which part of 
the control, if any, a given point lies. The point is passed as the value of param, in the local 
coordinates of the control's window; the vertical coordinate is in the low-order word of the long 
integer and the horizontal coordinate is in the high-order word. The control definition function 
should return the part code for the pan of the control that contains the point; it should return zero if 
the point is outside the control or if the control is inactive. 

September 25, 1986 



The Routine to Calculate Indicator Rectangle 

message • calcCRect. 
param • address of REcr. 
Ret Value • zero for default REcr, non-zero ifREcr is set. 

Just before the Control Manager starts to drag a control, or its indicator, it will call the control's 
definition procedure to determine the coordinates of the control, or its indicator. The highest bit of 
param will be clear if the whole control is to be dragged, or set if its indicator is to be dragged. 

If the defmition procedure returns zero, and the whole control is to be dragged, the REcr is set to 
the control's enclosing rectangle. If the definition procedure returns zero, and the control's 
indicator is to be dragged. the REcr is set to the thumb rectangle (see Scroll Bar Control Record) . 

The InjtjaUze Roytjne 

message • initCtl. 
param = low-order WORD is the paraml value passed to NewControl. 

• high-order WORD is the param2 value passed to NewControl. 
RetValue =undefined. 

After allocating and initializing the control record as appropriate when creating a new control, the 
Control Manager sends the message initCtl to the control definition procedure. This gives the 
definition procedure a chance to pciform any type-specific initialization it may require. For 
example, the control definition procedure for scroll bars initializes the thumb and page REcrs, and 
also stores paraml and param2 in the CtlData. fielci The initialize routine for standard buttons, 
check boxes, and radio buttons does nothing. 

The Dispose Routine 

message = dispCtl. 
param • undefined. 
Ret Value :-zero to continue disposal, non-zero to abon disposal. 

The Control Manager's DisposeControl procedure sends the message dispCtl to the control 
definition function, telling it to cmy out any additional actions required when disposing of the 
controL The predefined controls always return zero. If the definition procedure returns zero for 
Ret Value, the control will be erased, taken out of the control list, and its record deallocated. 

By returning a non-zero number for Ret Value, the definition procedure has a chance to abon the 
disposal. This feature is provided even though I am unable to provide an example of when this 
fearure might be useful. 

September 25, 1986 



The Position Routine 

message • posCtl. 
param · =low-order WORD is the vertical offset (delta y). 

high-order WORD is the horizontal offset (delta x) 
RetV alue • zero for default reposition. non-zero if reposition completed. 

When dragging a control's indicator to completed. Track:Control calls the control definition 
procedure with the message posCtl to reposition the jndjc:uor and update the control's setting 
accordlllgly. The value ofparam is a point giving the vertical and horizontal offset. in pixels, by 
which the indicator is to be moved relative to its current position. (Typically, this is the offset 
between the points where the user pressed and released the mouse button while dragging the 
indicator.) The vertical offset is given in the low-order word of param and the horizontal offset in 
the high-order word. The definition procedure should calculate the control's new setting based on 
the given offset. update the Ctl.Value field. and redraw the control within its window to reflect the 
new setting. 

Note: The Control Manager procedures SetCtlV alue and SetCtlParams do not 
call the control definition procedure with this message; instead, they pass the 
new Value and setParams message (see below). 

September 25, 1986 



The Thumb Routine 

message = thumbCtl. 
param = pointer to parameter block for dragging an indicator. 
RetV alue = zero for default reposition, non-zero if reposition completed. 

Before the Control Manger begins to drag a control's indicator, it will call the control's definition 
procedure with the message thumbCtl. The control definition procedure should respond by 
calculating the limiting rectangle. slop rectangle, axis constraint, and outline pattcm to use for 
dragging the control's indicator. Param is a pointer to the following data structure: 

limit blk 
bound rect : RECT 
slop rect:RECT 
axis_param:WORD 
draq_patt:LONG 

L~it of draq (not a pointer) . 
Limit of cursor (not a pointer) . 
Movement constrain. 
Pointer to pattern for draq outline. 

If the definition procedure returns zero, default parameters will be used. The defaults are computed 
thus: 

bound_rect 
slop_rect 
axis_param 
draq_patt 

PageRegion (see "Scroll Bar Control Record"). 
PageR.egion plus 16 all around. 
2 if bit 12 of CtlFlag is ct=, 1 if set. 
Pancm generated from color7 in control's color table. 

See DragRect for more information about the parameters in the limit_blk. The parameters in 
limit_blk will be passed to DragRect. 

September 25, 1986 



The Dra2 Roytine 

message = dragCtl. 
param = pan code to drag, zero to drag the entire control. 
Ret Value =zero to use default dragging, non-zero if dragging is completed. 

The message dragCtl a.sks the control definition procedure to drag the control or its indicator around 
on the screen to follow the mouse until the user releases the mouse button. Param specifies 
whether to drag a pan or the whole control: zero means drag the whole control. while a non-zero 
value is the pan code of the control pan to drag. 

The control definition procedure need not implement any form of "custom dragging"; if it returns a 
result of zero, the Control Manager will use its own default method of dragging (calling 
DragControl to drag the control or DragRect to drag its indicator). Conversely, if the control 
definition procedure chooses to do its -own custom tira~g. it should signal the Control Manager 
not to use the default method by returning a non-zero result. · 

If the whole control is being dragg~ the definition function should call MoveControl to 
reposition the control to its new location after the user releases the mouse button. If just the 
indicator is being dragged. the definition function should execute its own position routine (see 
below) to update the control's setting and rednw it in its window. 

The Track Roytjne 

message = autoTrack. 
param = pan c~ zero if not cum:ntly in pan. 
Ret Value = undefined. 

You can design a control to have its action procedure in the control definition procedure. To do 
this, pass -1 for actionProc parameter to TrackControl. TrackControl will respond by calling 
the control definition procedure with the message auto Track. The definition function should 
respond like an action procedure, as discussed in detail in the description of TrackControl. It can 
tell which pan of the control the mouse button was pressed in from param, which contains the pan 
code. The track routine for each of the standard control types does nothing. 

September 25, 1986 41 !>le-I 



The New Value Routine 

message = newValue. 
param =low WORD is the new value, high WORD is the previous value*. 
Ret Value = undefined. 

Note: *Param is undefine.d in Control Manager versions 1.01 and lower. 

The Control Manager will call the control's definition procedure with the message new Value 
whenever a control's value changes. Fli'St, the Control Manager will store the new value in the 
CtlValue field of the control's record. The definition should compute any new parameters affected 
by the change, like a new thumb position for scroll bars, and then redraw the control (if visible). 
The previous and new values are passed in param to make delta computation easier*. The 
deflnition procedure can assume that control is already drawn is the window, so, in the case of 
scroll bars, only the thumb has to be erased. and redrawn. Actually, the definition procedure for 
standard scroll bars only erases the part of the thumb that uncovered the page region, rather than the 
entire thumb. 

The New Parameters Routine 

message = setParams. 
param = new parameters. 
Ret Value = undefined. 

The Control Manager will call the control's definition procedure with the message setParams 
whenever a control's additional parameters change. The term 'additional parameters' is defined by 
the control. The values could be anything, even a pointer to more parameters. The definition 
should the perform necessary actions the new parameters cause, including redrawing the control if 
needed. The definition procedure can assume that control is already drawn is the window, unlike 
when new parameters are sent with the message initCtl (see '"The Initialize Routine"). 

The only predefined control that uses additional parameters is the scroll bar. The low-order WORD 
is the view value, and the high-order WORD is the data size. Simple buttons, check boxes, and . 
radio button do nothing with addition parameters. The standard scroll bar definition procedure will 
store the values in the CtlData field of the control's record, compute a new thumb, and draw the 
new thumb in the scroll bar (if visible). 

September 25, 1986 



The Move Routine 

message = moveCtl. 
param = low-order WORD is the change in the vertical axis (delta y), 

high-order WORD is the change in the horizontal axis (delta x). 
RctV alue • undefined. 

The Control Manager will call the control's definition procedure with the message moveCtl from 
MoveControl. The Control Manager will first hide the contro4 with Hi deControl, if it was 
visible and move the control's enclosing rectangle (CtlRect field). The definition procedure should 
compute any other parameters necessary and rerum. For example, the standard definition 
procedure for scroll bars will also move the Thumb and PageRegion fields in the control record. 
Upon return, the Control Manager will do a ShowControl if the control was visible on entry, to 
draw the control at its new position. The definition procedure should not redraw the control here, 
but should do everything necessary to ensure the control will be drawn_ properly at its new position. 

The Record Size Routine 

message = recSize. 
param = undefined. . 
RctV alue = number of bytes needed for control's record. 

The Control Manager call the cont:rril's definition procedure the message recSize from 
NewControl before it allocates memory for the control's record. NewControl will then 
allocate how ever many bytes is returned in RetV alue for the control's record. 

If your control only needs the standard control record, like buttons, check boxes. and radio 
buttons, return the size of the standard record. If your control needs additional data fields, like a 
scroll bar, rerum the size of the standard record, plus the additional size. You should never rerum a 
number less than the number of bytes in a standard record. 

Note: TheControl, the handle of the contro4 passed to the definition procedure is not 
valid in this case. Because the control's record has not been allocated, no 
access to the record should be performed during this call. After the record has 
been allocated and initialized by the Control Manager, the definition procedure 
will be called again with the message initCtl. see "The Initialize Routine" 
below. 

September 25, 1986 



Constants 

NoPart 0 
SimpleButt 2 
CheckBox 3 
RadioButt 4 
UpArrow 5 
DownA.rrow 6 
Page Up 7 
Page Down 8 
GrowBox 10 
Thumb 129 

SimpleProc $00000000 
CheckProc $02000000 
RadioProc $04000000 
ScrollProc $06000000 

CTL VIS $0080 
UP FLAG $0001 
DOWN FLAG $0002 
LEFT-FLAG $0004 
RIGHT FLAG $0008 
DIR SCROLL $0010 
FAMILY $007F 
BOLD EOTT $0001 

noConstraint 0 
hAxisOnly 1 
vA.xisOnly 2 

drawCtl 0 
calcCRect 1 
testCtl 2 
initCtl 3 
dispCtl 4 
posCtl 5 
thumbCtl 6 
dragCtl 7 
autoTrack 8 
newValue 9 
setParams 10 
moveCtl 11 
recSize 12 

September 25, 1986 

No constraint on movement. 
Horizontal axis only. 
Vertical axis only. 

Draw control command. 
Compute drag REcr command. 
Hit test command 
Initialize command. 
Dispose command. 
Move indicator command. 
Compute drag parameters command. 
Drag command. 
Action command 
Set new value command. 
Set new parameters command. 
Move command. 
Return record size command. 

44 f>lol 



Data Ivpes 

CtlNext 0 Handle Handle of next control. 
CtlOwner 4 Pointer Pointer to control's window. 
Ctl.Rect 8 RE:CT Enclosing rectangle. 
CtlFlag 16 Byte Bit flags. 
CtlHilite 17 Byte Highlighted pan. 
CtlValue 18 Integer Control's value. 
CtlProc 20 Pointer Control's definition procedure. 
CtlAction 24 Pointer Control's action procedure. 
CtlOata 28 Longint Reserved for CtlProc's use. 
Ctl.RefCon 32 Longint Reserved for application's use. 
CtlColor 36 Pointer Control's color table. 

color1 0 Integer· 
color2 2 Integer 
color3 4 Integer 
color4 6 Integer 
colorS 8 Integer 
color6 lO Integer 
color7 12 Integer 

bound rect 0 RECT Drag bounds. 
slog_rect 8 RECT Cursor bounds. 
axis_param l6 Integer Movement constrains. 
drag_patt 18 Pointer Pattern for drag outline. 

September 25, 1986 



INDEX 

Active controls 7 Data Types 45 

Check Box Record 15 
DisposeControl 21 

Constants 44 
Dra~:Control 27 

C01\7'ROLS AND \VINDOWS 8 
DraeRect 32· 

DrawControls 23 
CONTROL RECORD 12·16 

CtrlBootlnit 17 FindControl 24 

CtriNe"·Res 18 

CtriReset 17 GetCtlAction 2S 

CtrlShutDown 18 GetCtlParams 3( 

CtriStartup 18 GetCtlRetCon 3( 

CtrlStatus 17 GetCtJTitle 

CtriVersion 17 GetCtJValue 2~ 

CUSTOM CONTROLS 36 GetCtrlzpage 3.: 

Control Defmition Proc~urc 36 GrowSize auto Track 41 
3.: 

calcCRcct 38 
dispCntl 38 HideControl dragCntl 41 

l: 

drawCntl 37 
initCntl .38 Highlighting controls 7 

moveCntl 43 
new Value 42 HiliteControl :t 
posCntl 39 
rcc:Cntl 43 
setParams 42 JCONFONT 1 

testCntl 37 
thumbCntl 40 

Inactive controls i 

August 27, 1986 



Kill Controls 21 

MoveControl 27 

NewControl 19-21 

PART CODES 8-9 

Radio Buaon Record 1.5 

RECORD. COm-ROL 12-16 

Scroll Bat Rec:ard 16 

SetCUAction 29 

Set CUI cons 3.5 

SetCUParams 31 

SetCURefCon 30 

SetCliTiUe 22 

SetCUValue 29 

SbowControl 22 

Simple: Bunon Rc:cord 14 

Standard control definitions 3-6 

Test Control 2S 

Track Control 2.5-26 

USING THE 
COm"ROL MANAGER 9-10 

August 27. 1986 





Documentation Developpeurs 
Apple Computer France 1987 

Document developpeur numero 48 

type d'upgrade de ce ducument: 5 
1 Documentation de premiere categorie inchangee 
2 Documentation de deuxieme categorie mise a jour 
3 Documentation de deuxieme categorie inchangee 
4 Mise a jour payante de Ia documentation de premiere categorie 
5 Mise a jour gratuite de Ia documentation de premiere categorie 
6 Nouveautes payantes non vitales 
7 Nouveautes gratuites et vitales 

Taille : 40 page(s) environ 

Domaine : Tool17 

~~~~O©[N] ~ ©u o~© 
[Q)~u~ ~ u?o u~o®®

Date: December 17, 1986

Author: Lou lnfeld

Subject: System Loader ERS

Document Version Number: 01 :20

Revision History

01 :00 (09/09/86) Definition of System Loader version 1.0
01 :10 (11/14/86) Changes made in support of OMF Version 2

Function name changes to correspond to macros
OMF Version check logic added
Error $11 02 added
UseriD removed at UserShutdown in certain cases

01 :20 (12/17/86) Jump Table Segment Processed Flag added to Pathname Table
Description of initial loading of Direct Page/Stack Segments

changed
Support of Reload and Initialization Segments added to Restart
Example of finding a Load Segment changed
Output from LoadSegName changed and support for Jump

Table Segment Processed Flag added
Description of UserShutDown changed

o;tem Loader ERS 01 :20 Apple Confidential
L,u lnfeld December 17, 1986

1

IQ.QlQ

History
Overview
Definitions
General
Memory Manager Interface
Restrictions
Data Structures

Functions

Error Codes
References

Globals
Memory Segment Table
Jump Table List
Pathname Table
Mark Ust

General
Loaderlnitialization
LoaderStartUp
LoaderShutDown
LoaderVersion
Loader Reset
LoaderStatus
Initial Load
Restart
LoadSegNum
UnloadSegNum
LoadSeg Name
UnloadSeg
GetLoadSeglnfo
Get Use riD
LGetPathname
UserShutDown
Jump Table Load
Cleanup

"";ystem Loader ERS 01 :20
1..0u lnfeld

Index

2

($01)
($02)
($03)
($04)
($05)
($06)
($09)
($0A)
($08)
($0C)
($00)
($0E)
($OF)
($1 0)
($11)
($12)

3
4
5
6
8

10
11
11
11
12
13
14
15

·16
17
18
19
20
21
22
23
25
26
29
30
31
32
33
34
35
36
37
38
39

Apple Confidential
December 17, 1986

History

The Apple II under ProDOS has a very basic System Loader. It is the part of the boot
code that searches the boot disk for the first System file (any file of type $FF whose
name ends with ".SYSTEM") and loads it into location $2000. If a System program
wants to load another System program, it has to do all the work by making ProDOS
calls.

Some programming environments such as Apple II Pascal and AppleSoft Basic
provide loaders for programs running under them. The Apple Soft loader loads either
System files, Basic files or binary code files. All these files are loaded either at a
fixed address in memory or at an address specified in the file.

Since Cortland will have a large amount of "clean" memory, a more dynamic load
facility is needed. Programs should be able to be loaded anywhere that is available
in memory. The burden of determining where to load a program should be on a
loader and not on the applications programmer. Also programs should be able to be
broken into smaller program segments which can be loaded independently.

Therefore on Cortland, there will be a relocating System Loader. Files generated by
the Linker will be loadable by the System Loader. The System Loader will provide a
very powerful and flexible facility not currently available on the Apple II.

:;tern Loader ERS 01 :20
L u lnteld

3

Apple Confidential
December 17, 1986

Overview

Th€ System loader will load programs or program segments by first calling the
Memory Manager to find available memory. It will perform relocation during the load
as necessary and will load each segment independently. Therefore, a large
program can be broken up into smaller program segments each of which is loaded at
separate locations in memory. Program segments can also be loaded dynamically
as they are referenced rather than at program boot time. Additionally, the System
loader can be called by the program itself to load and unload program (or data)
segments.

~ystem Loader ERS 01:20
Lou lnfeld

4

Apple Confidential
December 17, 1986

)

Definitions

The Linker is the program that combines files generated by compilers and
assemblers, resolves all symbolic references and generates a file that can be loaded
into memory and executed.

The System Loader is the part of the Operating System that reads the files
generated by the Linker and loads them into memory (performing relocation if
necessary}.

Object Files are the output from an assembler or compiler and the input to the
linker.

library Files are files containing general program Segments that the Linker can
search.

load Files are the output of the Linker and contain memory images which the
System Loader will load into memory. Shell Load Files and Startup Load Files
are special Load Files used by the Shell and ProDOS16 respectively.

Run Time Library Files are Load Files that contain general program Segments
which can be loaded as needed by the System Loader and shared between
applications.

Object Module Format is the general format used in Object Files, Library Files
and Load Files.

An OMF File is a file in Object Module Format (i.e. an Object File, Library File or
Load File}.

A Segment is a individual component of an OMF file. Each file contains one or
more Segments.

A Code Segment is a Segment in an Object File that contains program code.

A Data Segment is a Segment in an Object File that contains program data.

A Load Segment is a Segment in a Load File.

The Controlling Program is the program that requests the System Loader to
initially load and run other programs and is responsible for shutting these programs
down when they exit. A Finder is an example of a Controlling Program.

·stem Loader ERS 01 :20
l..vU lnfeld ·

5

Apple Confidential
December 17. 1986

..

General

The System Loader processes files which conform to the Cortland Development
Environment's definition of a Load File (see Cortland Object Module Format ERS). A
Load File consists of Load Segments, each of which can be loaded independently.
The Load Segments are numbered sequentially from 1.

Certain Load Segments are Static Load Segments. These Segments are meant to
be loaded into memory at initial program load time and must stay in memory until
program completion.

Another general type of Load Segments is the Dynamic Load Segment. These
Segments are LlQlloaded at boot time. They are loaded dynamically during program
execution. This can happen automatically by means of the Jump Table
mechanism or manually at the specific request of the application. When these
Segments are not being referenced, they can be purged by the Memory Manager.

There are several other attributes that Load Segments can have (see OMF ERS for a
complete list of attributes).

There are several special types of Load Segments. The Jump Table Segment
(KIND=$02), when loaded into memory, provides a mechanism whereby Segments
in memory can trigger the loading of other Segments not yet in memory.

The Pathname Segment (KIND=$04). It contains information about the Load
Files that are referenced.

The Initialization Segment (KIND=$1 0). It is used for code that is to be executed
before all the rest of the Load Segments are loaded.

The Direct Page/Stack Segment (KIND=$12) defines the application's Direct
Page and stack requirements. This segment will be loaded into Bank 0 and its
starting address and length are passed to the Controlling Program who will set
the Direct Register and Stack Pointer to the start and end of this segment before
transferrring control to the program.

During the initial load, the System Loader has all the information needed to
resolve all inter-segment references between the Static Load Segments. But during
the dynamic loading of Dynamic Load Segments, it can only resolve references in
the Dynamic Load Segment to the already loaded Static Load Segments. Therefore,
the general rule is that Static Segments can be referenced by any type of segment
but Dynamic Segments can only be referenced through JSL calls through the Jump
Table.

If the System Loader is called to perform the initial load of a program, it will load
all the Static Load Segments and the Segment Jump and Pathname Tables (if they
exist). A RAM based Memory Segment Table will be constructed during this
process.

System Loader ERS 01 :20
Lc.u lnfeld

Apple Confidential
December 17. 1986

6

If the System Loader is called during an interrupt and it is already processing a
request, a BUSY error ($11 05) will result.

stem Loader ERS 01 :20
,_ou lnfeld

7

Apple Confidential
December 17, 1986

Memory Manager Interface

The System Loader and the Memory Manager work closely together.

When the System Loader loads Static Segments, it calls the Memory Manager
to allocate corresponding memory blocks which are marked as unpurgeable and
unmoveable. Dynamic Segments are marked as purgeable but locked. Position
Independent Segments are marked as moveable.

When the System Loader unloads a specific segment, it calls the Memory
Manager to purge the corresponding memory blocks. However, if the Controlling
Program wishes to unload all segments associated with a UseriD (application shut­
down), it calls the System Loader Application Shutdown function which calls the
Memory Manager to first purge all Dynamic Segments for the UseriD and then
make all the Static Segments purgeable. The purpose of this is to keep an
application in memory, if possible, in case it needs to be re-loaded in the near future.
This will greatly speed up a Finder or Switcher. The complication occurs when the
Memory Manager has to actually purge one of the segments of a User. The
System Loader must then purge all the remaining segments. Otherwise, the
program will not have all its static segments in memory when it is re-loaded and
executed.

The relationship between a Load Segment in a Load File and the corresponding
memory block is very close. The average Load Segment will be loaded into a
memory block having the attributes:

Locked
Fixed
Purge Levei=O (for Static)
Purge Level=1 (for Dynamic)

Depending on the ORG, KIND, BANKSIZE and ALIGN fields in the Segment Header,
other memory attributes will be used: ·

if ORG>O, the "Fixed Address" attribute is set.
if BANKSIZE=$1 0000, the "May not cross bank boundry" attribute is set.
if O<BANKSIZE<$1 0000 then use Align factor=MAX(BANKSIZE,ALIGN)

otherwise use Align factor=ALIGN:
if O<Aiign Factor<=$1 00, the "Page Aligned" attribute is set.
if Align Factor>$1 00, Bank Alignment is forced (not an attribute).
if bit 13 of KIND=1, the "Fixed" attribute is removed.
if bit 11 of KIND=1, the "Fixed Address" attribute is removed and the "Fixed

Bank" attribute is set.
if KIND indicates Direct Page/Stack Segment, the "Fixed Bank" and "Page

Aligned" attributes are set.

3ystem Loader ERS 01 :20
Lou lnfeld

8

Apple Confidential
December 17, 1986

A memory block can be made purgeable ("unloaded") by a call to the System
loader. However, the other attributes must be changed through Memory
Manager calls. Since the Memory Handle for a memory block is stored in the
Memory Segment Table, Memory Manager information is accessible. Other
memory block information that may be useful to a program are:

Start location
Size of segment
Use riD
Purge Level (0 - UnPurgeable

1 -Least Purgeable
3- Most Purgeable)

Also, if the Memory Handle is NIL (i.e the Memory Address is 0), the memory block
has been purged.

- ·stem Loader ERS 01 :20
~ _.; lnfeld

9

Apple Confidential
December 17, 1986

0
_- .
c ,:· c
c

. · If!
c
:c

c• c Oc
(C.

(_ () (
(_ c ,.
c () (

l c. _.'

Restrictions

The Object Module Format and the Linker have general capabilities above what ,.,
needed or desired for the Cortland computer. The System Loader, on the other
hand, is designed specifically for the Cortland computer. Therefore, there are certair
abilities that are not supported or are restricted. This section will list these
differences.

The NUMSEX field of the Segment Header must be 0.
The NUMLEN field of the Segment Header must be 4.
The BANKSIZE field of the Segment Header must be <=$1 0000 .
The ALIGN field of the Segment Header must be <=$1 0000.

If any of the above is not true, the System Loader will return with a "Segment is
foreign" error ($11 08). The BANKSIZE and ALIGN restrictions will be enforced by
the Linker and should not make it to the Load File.

ALIGN and BANKSIZE can be any multiple of 2. The Memory Manager. and
therefore the System Loader, can not handle so general a requirement. The
Memory Manager can currently only be told that a memory block be page aligne
or not cross a bank boundary. The Memory Manager may handle Bank Alignme
in the near future. All is not lost, however, because the System Loader will fulfill
the general requirements in the following, somewhat inefficient, way:

Any value of BANKSIZE other than 0 and $10000 will result in a memory blc
that is either page aligned (if BANKSIZE<=$1 00) or bank aligned (if
BANKSIZE>$1 00). Since the Linker will make sure that the segment
smaller than BANKSIZE, the requirement that the segment not extend past 1
BANKSIZE boundary will be met (there will be wasted space in the memory
block however).

Any value of ALIGN will be bumped to either page alignment or bank
alignment.

If there is a BANKSIZE other than 0 and $10000 and a non-zero ALIGN, thE
maximum of the two will be used to determine the alignment to be used.

System Leader ERS 01 :20
Lou lnfeld

10

Apple Confident.
December 17, 19oo

Globals

SEGTBL
JMPTBL
PATHTBL
USE RIO

Data Structures

Absolute address of Memory Segment Table
Absolute address of Jump Table List
Absolute address of Pathname Table
UseriO of current application

Memory Segment Table

The Memory Segment Table is a linked list. Each entry corresponds to one
memory block known to the System Loader. These memory blocks were the result
of loading Load Segments from a Load File. The format of each entry in the
Memory Segment Table is:

where:

Next entry handle
Previous entry handle
Use riO
Memory Handle
Load File Number
Load Segment Number
Load Segment Kind

-- 4 bytes
-- 4 bytes
-- 2 bytes
-- 4 bytes
-- 2 byte
-- 2 bytes
-- 2 bytes

"Next entry handle" is the memory handle of the next entry in the Memory Segment
Table. This handle is 0 in the last entry.

"Previous entry handle" is the memory handle of the previous entry in the Memory
Segment Table. This handle is 0 in the first entry.

"UseriD" is the UseriD associated with this segment. It is needed in case the
"Memory Handle" is NIL and the UsertD can therefore not be determined directly
from the Memory Manager.

"Memory Handle" is the handle of the memory block obtained from the Memory
Manager. More information about the segment is available through this handle
(e.g. UseriD, Purge Priority).

"Load File Number" corresponds to the Load File or Run Time Library File from which
the segment was obtained. If this number is 1, this segment is in the initial Load File.

"Load Segment Number" is the segment number of the Load Segment in the Load
File.

"Load Segment Kind" is the KIND field from the Segment Header of this segment.

·stem Loader ERS 01 :20
... uu lnfeld

1 ,

Apple Confidential
December 17, 1986

Jump Table List

The Jump Table List (or Jump Table) is the mechanism that allows programs to
reference segments that are loaded into memory only when they are needed. The
Jump Table is a linked list containing the UseriD and Handle to each Jump Table
Segment (KIND=$02) that the System Loader has encountered. Any Load File
and Run Time Library File may contain a Jump Table Segment. The format of
each entry in the Jump Table List is:

where:

Next entry handle
Previous entry handle
Use riD
Memory Handle

-- 4 bytes
-4 bytes
- 2 bytes
- 4 bytes

"Next entry handle" is the memory handle of the next entry in the Jump Table List.
This handle is 0 in the la?t entry.

"Previous entry handle" is the memory handle of the previous entry in the Jump
Table List. This handle is 0 in the first entry.

"UseriD" is the UseriD associated with this Jump Table Segment.

"Memory Handle" is the handle of the memory block associated with this Jump Table
Segment.

When the Linker encounters a JSL to an external Dynamic Segment, it creates an
entry in the Jump Table Segment. It then links the JSL to the Jump Table
Segment entry it just created. The format of this entry in the Jump Table
Segment is:

UseriD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Load Segment Offset (4 bytes)
jsl Jump Table Load Function

where ihe Load File Number, Segment Number and Offset refer to the location of the
external reference. The rest of the entry is a call to the System Loader Jump Table
Load function. The UseriD and the actual address of the System Loader function
will be patched by the System Loader during Initial Load. This format is
considered the "unloaded" state of the entry.

When the JSL instruction actually executes, control is transferred to the Jump
Table entry which in turn transfers to the System Loader. The System Loader

System Loader ERS 01:20
Lou lnfeld

12

Apple Confidential
December 17, 1986

extracts the segment information from the Jump Table entry. the file information
from the Pathname Table and loads the Dynamic Segment, changes the entry in
the Jump Table to its "loaded" state and transfers to the location in the just loaded
segment. Typica11y, the 1ocation in the loaded segment is a subroutine and when it
exits with a RTL, control is eventually transferred to the location following the original
JSL instruction.

The loaded state of a Jump Table entry is very similar to the unloaded state except
that the JSL to the System Loader Jump Table Load function is replaced by a JML
to the external reference. A typical loaded entry would look like this:

UseriD (2 bytes)
Load File Number (2 bytes)
load Segment Number (2 bytes)
Load Segment Offset (4 bytes)
jml external reference

Pathname Table

The Pathname Table is created by System Loader to remember the pathnames
associated with each Load File it comes across. At initial load, the System loader
creates the first entry in the Pathname Table from the pathname specified in the
Initial Load function call. During the load, if the System Loader comes across a
Pathname Segment {KIND=$04), it adds all the pathname entries to the Pathname
Table. If Run Time library Files are referenced during program execution, other
Pathname Segments may be added.

Each entry in the Pathname Table is in the following format:

Next entry handle (4 bytes)
Previous entry handle (4 bytes)
UseriD (2 bytes)
File Number (2 bytes)
File Date (2 bytes)
File Time (2 bytes)
Direct Page/Stack Address (2 bytes)
Direct Page/Stack Size (2 bytes)
Jump Table Segment Processed Flag (2 bytes)
File Pathname (Pascal string)

where:

"Next ~ntry handle" is the memory handle of the next entry in the Pathname Table.
This handle is 0 in the last entry.

c-.,stem Loader ERS 01:20
u lnfeld

13

Apple Confidential
December 17, 1986

"Previous entry handle" is the memory handle of the previous entry in the
Pathname Table. This handle is 0 in the first entry.

"UseriD" is the UseriD associated with this entry. In general, each Load File and
each Run Time Library will have a different UseriD and one entry in the Pathname
Table. When a Run Time Library is first encountered during an Application
execution, the System Loader will have a Run Time Library type of UseriD
assigned to it.

"File Number" is a number assigned by the Linker or System Loader for a specific
Load File. File number 1 is reserved for the initial Load File.

The "File Date" and "File Time" are ProDOS directory items that the Linker retrieved
during the link process. The System Loader will compare these values with the
ProDOS directory of the Run Time Library File at run time. If they don't compare, the
System Loader will not load the requested Load Segment. This facility
guarantees that the Run Time Ubrary File used at link time is the~ Run Time
Library File loaded at execution time.

The "Direct Page/Stack" Address and Size is the information about the Direct Page
and Stack buffer that was allocated during the Initial Load of this Load File (not
applicable to Run Time Library Load Files). This allows the Restart function to
resurrect an application without performing a Get File Info call on the Load File.

The "Jump Table Segment Processed Flag" indicates whether the Jump Table
Segment (if any) in the Load File has been loaded yet. This flag will always be set
for Initial Load Files but will be clear for Run Time Library Files. The first time a
Segment in a Run Time Library File is requested, the System Loader will first load
the Jump Table Segment if this flag is clear.

The "File Path name" is the pathname of this entry. ProDOS 16 supports 8 prefixes,
three of which have fixed definitions:

01 - Boot volume
1/ - Application subdirectory (out of which the application is running)
21 - System Library subdirectory (initially /BOOT/SYSTEM/LIBS)

The path name must be a complete pathname except if either prefix 1 I or 21 are used.

'Mark list

The Mark List is created by System Loader to remember the file locations of the
relocation dictionary of each Load Segment. The format of the Mark List is:

Next Available Slot (4 bytes)
End of Table (4 bytes)
Segment Number (2 bytes)

Syst-em Loader ERS 01 :20
lou lnfeld

14

Apple Confidential
December 17, 1986

where:

File Mark (4 bytes}
Segment Number (2 bytes)
File Mark (4 bytes}
Segment Number (2 bytes)
File Mark (4 bytes)

Segment Number (2 bytes)
File Mark (4 bytes)

"Next Available Slot" is the relative offset of the next empty entry in the Mark List.

"End of List" is the relative offset to the end of the Mark List.

The Mark List is initially large enough for 100 Marks and grows larger as needed.

·stem Loader ERS 01 :20
LuU lnfeld

15

Apple Confidential
December 17, 1986

Functions

General

Since the System Loader is a Cortland Tool, its functions are called by making
calls through the Cortland Tool mechanism. The calling sequence for System
Loader functions is the standard Tool calling sequence. Space for the output
parameter (if any) is pushed on the stack followed by each input parameter in the
order specified in the function descr_iption. This is followed by:

ldx #$11 +FuncNumjS
jsl Dispatcher

where "FuncNum" is the System Loader function number and the "$11" is the Tool
Number for the System Loader. Upon return, the A register will contain the status
and the Carry will be set if an error occurred. If there is output, each output
parameter must be pulled off the stack in the order specified in the function
description.

The Jump Table Load function does .!lQ1 use the above calling sequence. It can not
be called by an application directly but is called indirectly by a Jump Table entry. In
this case the absolute address of the function is patched by the System Loader.

System Loader ERS 01:20
Lou lnfeld

16

Apple Confidential
December 17, 1986

Loader Initialization

Function Number: $01
Input: none
Output: none
Errors: none

This function will initialize the System Loader. It should only be called at system
initialization time. All System Loader tables are cleared and no assumptions are
made about the current or previous state of the system.

, · ·tern Loader ERS 01 :20
L~.~u lnfeld

17

Apple Confidential
December 17, 1986

LoaderStartup

Function Number: $02
Input: none
Output: none
Errors: none

This function does nothing and need not be called.

System loader ERS 01 :20
lou lnfeld

18

Apple Confidential
December 17, 1986

LoaderShutOown

Function Number: $03
Input: none
Output: none
Errors: none

This function does nothing and need not be called.

· ":tern Loader ERS 01 :20
L lnfeld

19

Apple Confidential
December 17, 1986

LoaderVersion

Function Number:
Input:
Output:
Errors:

$04
none
Loader Version (2 bytes)
none

This function will return the Version Number of the System Loader.

System Loader ERS 01 :20
Lo.u lnfeld

20

Apple Confidential
December 17, 1986

loaderReset

Function Number: $05
Input: none
Output: none
Errors: none

This function does nothing and need not be called.

· ·c;tem Loader ERS 01:20
lnfeld

21

Apple Confidential
December 17, 1986

LoaderStatus

Function Number: $06
Input: none
Output: Status (TRUE or FALSE 2 bytes)
Errors: none

This function will always return TRUE since the System Loader will always be in
the initialized state.

System Loader ERS 01 :20
Lou lnield

22

Apple Confidential
December 17, 1986

Initial Load

Function Number:
Input:

Output:

Errors:

$09
UseriD (2 bytes)
Address of Load File Pathname (4 bytes)
Don't Use Special Memory Flag (2 bytes)
UseriD (2 bytes)
Starting Address (4 bytes)
Address of Direct Page/Stack buffer (2 bytes)
Size of Direct Page/Stack buffer (2 bytes)
$0000 - Operation succcessful
$1102 - OMF Version error
$1104- File not Load File
$1105- System Loader is busy
$1109- SegNum out of sequence
$11 OA- Illegal load record found
$11 OS- Load Segment is foreign
$00xx- Pro DOS error
$02xx c Memory Manager error

A Controlling Program (such as ProDOS, Basic, Switcher, etc.) will call the
System Loader to perform an "Initial Load".

If a complete UseriD is specified, the System Loader will use that when allocating
memory for the Load Segments. If the Main 10 portion of the Use riD is 0, a new
UseriD is obtained from the UseriD Manager based on the Type portion of the
UseriD. If the Type portion is 0, an Application type Use riD is requested from the
UseriD Manager.

If the Don't Use Special Memory Flag is TRUE (i.e. not 0), the System Loader will
NOT load any static load segments into Special Memory. However, dynamic load
segments will be loaded into any memory.

ProDOS is called to open the specified Load File using the input pathname. If any
ProDOS errors occurred or if the file is not a Load File type ($83-$BE), the System
Loader will return the appropriate error.

If the Load File was successfully opened, the System Loader, adds the Load File
information to the Pathname Table, and calls the Load Segment by Number
function for each Static Load Segment in the Load File.

If an Initialization Segment (KIND=$1 0) is loaded, the System Loader will
immediately transfer control to that segment in memory. When the System Loader
regains control, the rest of the static segments are loaded normally.

If the Direct Page/Stack Segment (KIND=$12) is loaded, its starting address and
length are returned as output.

·stem Loader ERS 01:20
J...uu lnfeld

23

Apple Confidential
December 17, 1986

If any of the static segments could not be loaded, the System Loader will abort the
load and return the error.

After all the Static Load Segments have been loaded, return is made to the
Controlling Program with the starting address of the first Load Segment (not an
Initialization Segment) of File Number 1. Note that the Controlling Program is
responsible for setting up the stack and Direct Page registers and actually
transferring control to the loaded program.

System Loader ERS 01 :20
Lou lnfeld

24

Apple Confidential
December 17, 1986

Restart

Function Number:
Input:
Output:

Errors:

$0A
UseriD (2 bytes)
UseriD (2 bytes)
Starting Address (4 bytes)
Address of Direct Page/Stack buffer (2 bytes)
Size of Direct Page/Stack buffer (2 bytes)
$0000 - Operation succcessful
$11 01 - Application not found
$1105- System Loader is busy
$1108- UseriD error
$00xx - ProDOS error
$02xx - Memory Manager error

A Controlling Program (such as ProDOS, Basic, Switcher, etc.) can call the
System Loader to perform a "restart" of an application still in memory. Only
software that is "reentrant" can be successfully restarted. For a program to be
"reentrant", it must initialize its variables and not assume that they will be preset at
Load time. A Reload Segment can be used for initializing data because it is
reloaded from the file during a Restart. The Controlling Program must determine
whether a given program can be restarted.

An existing UseriD (ignoring the Aux ID) must be specified, otherwise the System
Loader will return error $1108. If the UseriD is not known to the System Loader,
error $1101 will be returned.

Applications can be "restarted" only if all the segments in the Memory Segment table
with the specified UseriD are in memory. Note these segments are the application's
static segments. If this is the case, the System Loader resurrects the application
by calling the Memory Manager to lock and make all its segments unpurgeable. The
UseriD and the starting address obtained from the first segment are returned as wen
as the Direct Page/Stack information from the Pathname Table. After all the static
segments are resurrected, the System Loader looks for Initialization and Reload
Segments and executes the ~ormer and reloads the latter.

If there is a Path name Table entry for the UseriD but not all the segments are in
memory, the System Loader will call its Cleanup Routine to purge the UseriD from
all its tables and then perform an Initial Load instead of a Restart. ~

.·· ·C3tem Loader ERS 01 :20
~-u lnfeld

25

Apple Confidential
December 17, 1986

loadSegNum (load Segment by Number)

Function Number:
Input:

Output:
Errors:

$09
UseriD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Address of segment (4 bytes)
$0000 - Operation succcessful
$1101 - Segment not found
$1102 - OMF Version error
$1104- File not Load File
$1105- System Loader is busy
$1107- File Version error
$1109- SegNum out of sequence
$11 OA - Illegal load record found
$11 OB- Segment is foreign
$00xx - ProDOS error
$02xx - Memory Manager error

This function will load a specific Load Segment into memory. This is the workhorse
function of the System Loader. Normally, a program will call this function to
manually load a Dynamic Load Segment. If a program calls this function to load a
Static Load Segment, the System loader willllQl patch any existing references to
the newly loaded segment.

First the Memory Segment Table is searched to see if there is an entry for the
requested Load Segment. If there is already an entry, the handle to the memory
block is checked to verify it is still in memory. If it is still in memory, this function does
nothing further and returns without an error. If the memory block has been purged,
the Memory Segment Table entry is deleted.

Next the "Load File Number" is looked up in the Pathname Table to get the Load
File pathname. ·

Next the Load File type is checked. If it is not a Load File (types $B3-$BE), error
$11 04 is returned.

Next the Load File's "last_mod" value is compared to File Date and File Time values
in the Pathname Table. If these values do not match, error $1107 is returned.
This indicates that the Run Time Library File at the specified path name is .!1Q1 the Run
Time Library File that was scanned when the application was linked together.

ProDOS is then called to open the specified Load File. If ProDOS has a problem, its
error code is returned.

Next the Load File is searched for a Load Segment corresponding to the specified
"Load Segment Number". If there is no segment corresponding to the "Load
Segment Number", error $1101 is returned. If the VERSION field contains a value
which is not supported by the System Loader, error $1102 is returned. If the

::system loader ERS 01 :20
..Lou lnfeld

26

Apple Confidential
December 17, 1986

SEGNUM field does not correspond to the "Load Segment Number", error $1109 is
returned. If the NUMSEX and NUMLEN fields are not "0" and "4", error $11 OB is
returned.

If the Load Segment is found and its Segment Header is correct, a memory block is
requested from the Memory Manager of size specified in the LENGTH field in the
Segment Header. If the ORG field in the Segment Header is not 0, a memory block
starting at that address is requested. Other attributes are set according to Segment
Header fields {see Memory Manager Interface section}.

If the UseriD specified is not 0, it is used as the UseriD of the memory block. If the
UseriD specified is 0, the memory block will be marked as belonging to the UseriD of
the current User (in USERID).

If the requested memory is not available, the Memory Manager and the System
Loader will try several techniques to free up memory:

The Memory Manager will purge memory blocks that are marked purgeable

The Memory Manager will move moveable segments to enlarge contiguous
memory

The System Loader will call its Cleanup routine to free its own unused
internal memory

If all these techniques fail, the System Loader will return with the last Memory
Manager error.

Once enough memory is available, the Load Segment is loaded into memory and
the relocation dictionary (if any) is processed. Note only the following Object Module
Format records are supported by the System Loader:

LCONST ($F2)
OS ($F1)
RELOC ($E2)
INTERSEG ($E3)
cRELOC ($F5)
ciNTERSEG ($F6)
SUPER ($F7)
END ($00)

Any other records encountered will result in a $11 OA error.

A new entry is added to the Memory Segment Table.

Finally, the System Loader returns with the Memory Handle of the memory block.

Note that since Load Segments in a Load File are numbered sequentially starting at
1, to find Load Segment 5, the System Loader must scan through the first 4 Load

~ystem Loader ERS 01 :20
_ou lnfeld

27

Apple Confidential
December 17, 1986

Segments before finding Load Segment 5. Each Load Segment Header must be
processed because Load Segments as well as Load Segment Header are variab_le
length. It is simpler than it sounds because Load Segments start on block
boundaries and the number of blocks in each Load Segment is the first field in the
Segment Header. The following logic sample will find and read the specified Load
Segment:

System Loader E RS 01 :20
Lou lnield

segnum:=Load Segment number;
fileid:=Load File;
open(fileid);
file_mark:=O;
for i:=1 to segnum do

begin
seek(fileid,file_mark); {find next header}
get(fileid); {read}
file_mark:=file_mark+fileid".BYTECNT;

end;

28

Apple Confidential
December 17, 1986

UnloadSegNum (Unload Segment b:r Number)

Function Number:
Input:

Output:
Errors:

soc
UseriD (2 bytes)
Load FHe Number I2 bytes)
Load Segment Number (2 bytes)
none
$0000 - Operation succcessful
$11 01 - Segment not found
$1 105- System Loader is busy
$00xx - ProDOS error
$02xx - Memory Manager error

This function will unload a specific Load Segment that is currently in memory.

The System Loader searches the Memory Segment Table for the "Load File
Number" and '1.oad S.sgmarn N.umbef'. lfthere is no such entry, error $1101 is
returned.

Next the Memory Manager is called to make the memory block purgeable using
the Memory Handle in the table entry.

All entries in the Jump Table referencing, the unloaded segment are changed to
their '"unloaded" states.

If the input UseriD is 0, the UseriD of the C~.Jrrent user (in USERID) is assumed.

If both the Load File Numl!-er and the Load Segment Number are specified, the
specific Load Segment is made purge able whether it is static Q.! dynamic. Note , if a
static. segment is unloaded. the applicatoo can not be ReStarted. If either input is 0,
only dynamic segments will be made p:;!r.g.eable.

If the input Load Segment !Number is 0, air dynamic segments in the specified Load
File are unloaded.

If the input Load File Number is 0, aU DJt.l!'.arrnic segments for the UseriD are
unloaded.

:;tem Loader ERS 01 :20
'.ou lnfeld

Apple Confidential
December 17, 1986

loadSegName <Load Segment by Name)

Function Number:
Input:

Output:

Errors:

$00
UseriD (2 bytes)
Address of Load File Name (4 bytes)
Address of Load Segment Name (4 bytes)
Address of segment (4 bytes)
UseriD (2 bytes)
Load File Number
Load Segment Number
$0000 - Operation succcessful
$1101 - Segment not found
$1104- File not Load File
$11 05 - System Loader is busy
$1107- File Version error
$1109- SegNum out of sequence
$11 OA- Illegal load record found
$1108- Load Segment is foreign
$00xx- ProDOS error
$02xx - Memory Manager error

This function will load a named Load Segment into memory.

The Load File type is checked. If it is not a Load File (types $83-$BE), error $1104 is
returned.

ProDOS is then called to open the specified Load File. If ProDOS has a problem, its
error code is returned.

Next the Load File is searched for a Load Segment corresponding to the specified
"Load Segment Name". If there is no segment with Segment Name requested, error
$1 101 is returned.

Now that the System Loader has located the requested Load Segment (and
knows the Load Segment Number), it checks the Pathname Table to see whether
the Load File is represented. If so, it uses the File Number from the table. Otherwise,
the System Loader adds a new entry to the Pathname Table with an unused
File Number. If the Jump Table Segment Processed Flag in the Pathname Table
is clear, the System Loader loads the Jump Table Segment (if any) from the Load
File and sets the Flag.

Next the System Loader attempts to load this Load Segment by calling the Load
Segment by Number function. If the Load Segment by Number function returns an
error, the Load Segment by Name function, in turn, returns this error. If the Load
Segment by Number function is successful, the Load Segment by Name function
returns the Load File Number, the Load Segment Number and the Memory Address
of the segment in memory.

System Load€r ERS 01:20
Lou lnfeld

30

Apple Confidential
December 17, 1986

UnloadSeg

Function Number:
Input:
Output:

Errors:

$0E
Address in Segment (4 bytes)
UseriD (2 bytes)
Load File Number {2 bytes)
Load Segment Number (2 bytes)
$0000 - Operation succcessful
$1101 - Segment not found
$11 OS - System Loader is busy
$00xx - ProDOS error
$02xx - Memory Manager error

This function will unload the Load Segment which contains the specified address.

The Memory Manager is called to locate the memory block containing the
specified address. If no memory block contains the address, error $1101 is returned.
The Use riD associated with the Handle of the memory block returned by the
Memory Manager is extracted (from the Memory Manager's internal table). The
Memory Segment Table is scanned looking for the UseriD and Handle. If an
entry is not found, error $1101 is returned.

If the entry in the Memory Segment Table is for a Jump Table Segment, the
specified address should be pointing to the Jump Table entry for a dynamic
segment reference. The Load File Number and Segment Number of the Jump
Table entry are extra:~:ed.

If the entry in the Memory Segment Table is not for a Jump Table Segment, the
Load File Number and Segment Number of the Memory Segment Table entry
are extracted.

The UnloadSegNum function is now called to actually unload the segment. The
outputs of this function can be used as input to other System Loader functions.

-;tem Loader ERS 01 :20
Lou lnfeld

31

Apple Confidential
December 1 7, 1986

GetLoadSeglnfo

Function Number:
Input

Output:
Errors:

$OF
UseriD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Address of User Buffer (4 bytes)
filled User Buffer
$0000 - Operation succcessful
$1101 - Entry not found ·
$1105- System Loader is busy
$00xx - ProDOS error
$02xx- Memory Manager error

This function will return the Memory Segment Table entry corresponding to the
specified Load Segment.

The Memory Segment Table is searched for the specified entry. If the entry is not
found, error $1101 is returned. If the entry is found, the contents except for the link
pointers are moved into the User Buffer.

System Loader ERS 0120
Lou lnfeld

32

Apple Confidential
December 17, 1986

GetUserJD

Function Number:
Input:
Output:
Errors:

$10
Address of Pathname (4 bytes)
UseriD (2 bytes)
$0000 - Operation succcessful
$1101 -Entry not found
$1105 - System Loader is busy
$00xx- ProDOS error
$02xx - Memory Manager error

This function will search the Path name Table for the specified Path name. If a match
is found, the corresponding UseriD is returned. If the input Pathname does not start
with prefix 1 I or 21, it is first expanded to a full path name before the search. A
Controlling Program can use this function to determine whether to perform a
Restart of an application or an Initial Load.

·stem Loader ERS 01:20
.J lnfeld

33

Apple Confidential
December 17, 1986

LGetPathname

Function Number:
Input:

Output:
Errors:

$11
UseriD (2 bytes)
File Number (2 bytes)
Address of Pathname (4 bytes}
$0000 - Operation succcessful
$1101 -Entry not found
$1105 - System Loader is busy
$00xx - ProOOS error
$02xx - Memory Manager error

This function will search the Path name Table for the specified Use riO and File
Number. If a match is found, the address of the Pathname in the Pathname Table is
returned. ProOOS uses this call to get the pathname of an existing application so
that it can set the Application prefix before restarting it.

Sys1em Loader ERS 01 :20
Lou lnfeld

34

Apple Confidential
December 17, 1986

UserShutDown

Function Number:
Input:

Output:
Errors:

$12
UseriD (2 bytes)
Quit Flag (2 bytes)
UseriD (2 bytes)
$0000 - Operation succcessful
$1105- System Loader is busy
$00xx - ProDOS error
$02xx - Memory Manager error

This function is called by the Controlling Program to close down an application
which has just terminated. If the UseriD specified is 0, the current UseriD (USERID)
is assumed.

The Quit Flag corresponds to the Quit Flag used in the ProDOS 16 Quit call.

If the Quit Flag is 0, all Memory Blocks for the UseriD (with the AuxiD set to 0) are
disposed and the Cleanup Routine is called to purge the System Loader's internal
tables of the User! D. The application can not be Restarted. The UseriD is also
removed from the system so that it can be reused.

if the Quit Flag is $8000, all Memory Blocks for the Use riD are purged (not disposed).
All the System Loader's internal tables for the UseriD remain intact. The
application can be reloaded but not Restarted (i.e. the pathname for the application is
remembered).

If the Quit Flag is any other value, the memory blocks associated with the specified
User!D (with Aux ID cleared) are processed as follows:

all memory blocks corresponding to Dynamic Load Segments are disposed
all memory blocks corresponding to Static Load Segments are made purgeable
all other memory blocks are purged

In addition, all dynamic segment entries in the Memory Segment Table and all
entries in the Jump Table List for the specified UseriD are removed. The
application is now in a "zombie" state and can be resurrected by the System
Loader very quickly because all the static segments are still in memory. However,
as soon as any one static segment is purged by the Memory Manager for whatever
reason, the System Loader must reload the application from its original Load File.

..:5ystem Loader ERS 01 :20
l_ou lnfeld

35

Apple Confidential
December 17, 1986

Jump Table Load

Function Number:
Input:

Output
Errors:

none
UseriD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Load Segment Offset (4 bytes)
none
$0000 - Operation succcessful
$1101 - Segment not found
$1104- File not Load File
$11 OS- System Loader is busy
$00xx - ProDOS error
$02xx - Memory Manager error

This function is called by an "unloaded" Jump Table entry to load a Dynamic Load
Segment.

This function calls the Load Segment by Number function with the the Load File
Number and Load Segment Number. If any errors occurred, the System Loader
will report a System Death.

If the Load Segment by Number function has sucessfully loaded the segment, the
Jump Table entry is made "loaded" by replacement of the JSL to the Jump Table
.I...Q.rul function with a JML to the absolute address of the reference in the Dynamic
Load Segment.

The System Loader will now transfer control to the absolute address.

System Loader ERS 01 :20
Lou lnfeld

36

Apple Confidential
December 17, 1986

Cleanup Routine

Function Number: none
Input: UseriD
Output: none
Errors: none

This function is internal to the System loader. Its function is to cleanup the
System loader's internal tables in order to free memory.

If the UseriD is 0, the Memory Segment Table is scanned and all dynamic
segments for .all UseriD's will be purged.

If the UseriD is not 0, all Load Segments (both dynamic .a.n.d. static} for that UseriD will
be disposed. In addition, all entries for the UseriD in the Memory Segment
Table, Jump Table list and Pathname Table will be removed.

·tern Loader ERS 01 :20
t_uu lnfeld

37

Apple Confidential
December 17, 1986

$0000
$1101
$1102
$1103
$1104
$1105
$1106
$1107
$1108
$1109
$110A
$1108

SystBm Loader ERS 01 :20
Lou lniBid

Error Codes

Operation successful
Segment /Application/Entry not found
OMF Version error
not used
File is not a Load File
Loader is busy
not used
File version error
UseriD error
SegNum out of sequence
Illegal load record iound
Segment is foreign

38

Apple Confidential
December 17, 1986

References

"Object Module Format ERS" by Lou lnfeld --Apple Computer
"ProDOS ORCA/M User's Guide" -- The Byte Works
"Cortland Development Environment Core"-- The Byte Works
"The Tool Locator ERS", by Steve Glass -- Apple Computer

stem Loader ERS 01:20
• ..~u lnfeld

39

Apple Confidential
December 17, 1986

Documentation Developpeurs
Apple Computer France 1987

Document developpeur numero 54

type d'upgrade de ce ducument : 5
1 Documentation de premiere categorie inchangee
2 Documentation de deuxieme categorie mise a jour
3 Documentation de deuxieme categorie inchangee
4 Mise a jour payante de Ia documentation de premiere categorie
5 Mise a jour gratuite de Ia documentation de premiere categorie
6 Nouveautes payantes non vitales
7 Nouveautes gratuites et vitales

Taille : 16 page(s) environ

Domaine :Tool 20

~~~~~©[N] ~ @@~~@ 

[Q)& lJ~ ~ ~ ~o©®o®® 





Date - August 12, 1986 

Author - Cheryl Ewy 

Subject - Line Edit ERS 

Document Version Number- 00:30 

Revision History 

00:00 (06-17-86} Initial Release 

00:10 (07-14-86) LEFromScrap routine added 
LEToScrap routine added 
Call numbers changed for some routines 
Support for controi-F, controi-Y and controi-X 

added to LEKe~ 
Su~port for trifcle-clic . ·.:dded to LECiick 
LE extBox in ormation updated 
Error codes updated 

00:20 (08-07-86) LETextBox no longer requires the text to 
end with a CR 

Minor clarifications have been added 

00:30 (08-12-86} Input parameters to LEStartUp reversed 



OVERVIEW 

LineEdit is a set of routines that provide basic line editing capabilities. These 
capabilities include: 

- Inserting new text. 

-Deleting characters that are backspaced over. 

- Translating mouse activity or arrow keys into text selection. 

- Deleting selected text and possibly inserting it elsewhere, or copying text 
without deleting it. 

The LineEdit routines follow the Apple Human Interface Guidelines and support 
these standard features: 

- Positioning the insertion point by clicking the mouse. 

- Moving the insertion point 1 character at a time by using the left and right 
arrow keys. 

- Moving the insertion point 1 word at time by using Option-LeftArrow or 
Option-Rig htArrow. 

- Moving the insertion point to the beginning or end of the line by using 
OpenApple-LeftArrow or OpenApple-RightArrow. 

- Selecting text by clicking and dragging with the mouse. 

- Selecting text by using Shift-LeftArrow and Shift-RightArrow. 

- Selecting words by double-clicking the mouse. 

- Selecting words by using Shift-Option-LeftArrow or Shift-Option-RightArrow. 

- Selecting the whole line by triple-clicking the mouse. 

- Selecting from the insertion point to the beginning or end of the line by 
using Shift-OpenApple-LeftArrow or Shift-OpenApple-RightArrow. 

- Extending or shortening the selection by clicking the mouse while holding 
down the Shift key. 

- Deleting the selection or the character to the left of the insertion point by 
using Backspace. 

• Deleting the selection or the character to the right of the insertion point by 
using Control-F. 

• Deleting the selection or the whole line by using Controi-X. 

• Deleting the selection or from the insertion point to the end of the line using 
Controi-Y. 

- Inverse highlighting of the current text selection, or display of a blinking 
vertical bar at the insertion point. 

LineEdit ERS Apple Confidential Page 2 



- Cutting (or copying) and pasting. LineEdit puts text you cut or copy into the 
LineEdit scrap. 

LineEdit does not support: 

-more than 256 characters per line (except when using LETextBox) 

-centered or right-justified text (except when using LETextBox) 

- fully justified text (text aligned with both the left and right margins) 

- automatic line wrap 

- scrolling 

- the use of more than one font or stylistic variation per line 

-fonts which kern 

-"intelligent" cut and paste (adjusting spaces between words during cutting 
and pasting) 

-tabs 

EDIT RECORDS 

To edit a line of text on the screen, LineEdit needs to know where and how to 
display the text, where to store the text, and other information related to editing. 
This display, storage, and editing information is contained in an edit record that 
defines the complete editing environment. 

You prepare to edit text by specifying a destination rectangle in which to draw 
the text and a view rectangle in which the text will be visible. LineEdit 
incorporates the rectangles and the drawing environment of the current grafPort 
into an edit record, and returns a handle to the record. Most of the Line Edit 
routines require you to pass this handle as a parameter. 

In addition to the two rectangles and a description of the drawing environment, 
the edit record also contains: 

- a handle to the text to be edited 

- a pointer to the grafPort in which the text is displayed 

-the current selection range, which determines which characters will be 
affected by the next editing operation 

For most operations, you don't need to know the exact structure of an edit 
record since the Line Edit routines access the record for you. The structure of an 
edit record is given below. 

LineEdit ERS .Awle Confidential Page3 



Text Handle 
Length 
MaxLength 
DestRect 
ViewRect 
PortPtr 
LineHite 
BaseHite 
SelStart 
SelEnd 
ActFlg 
CarAct 
CarOn 
CarTime 
HiliteHook 
CaretHook 

HANDLE 
INTEGER 
INTEGER 
Rect 
Rect 
POINTER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
LONGINT 
POINTER 
POINTER 

{hndl to text to be edited} 
{current length of text} 
{maximum text length} 
{destination rectangle} 
{view rectangle} 
{ptr to grafPort} 
{used for highlighting} 
{used for drawing the text} 
{start of selection range} 
{end of selection range} 
{used internally} 
{used internally} 
{used internally} 
{used internally} 
{ptr to highlight routine} 
{ptr to caret routine} 

Warning: Never change any of the fields in the edit record directly. 
The fields can only be changed by calling LineEdit routines. 

The DestRect and ViewRect Fields 

The destination rectangle is the rectangle in which the text is drawn. The view 
rectangle is the rectangle within which the text is actually visible. In other 
words, the view of the text drawn in the destination rectangle is clipped to the 
view rectangle. The view rectangle also determines the area in which mouse 
activity affects the text. Clicking or dragging the mouse outside the view 
rectangle does not affect the insertion point or selection range. In most cases, 
the view rectangle should be a few pixels larger than the destination rectangle 
on all sides. This provides some slop area around the text in which the mouse 
activity will still have an effect on the text. 

:···········--················--·····--··-··-·· .. -·: I This! llne is not fully visjble. 
. . :---···-·--··-·············-·----··-·-·: 

DestRect ~ c::::J 
Vi ewRect----+ f"=::] 

You specify both rectangles in the local coordinates of the grafPort. To ensure 
that the first and last characters in each line are legible in a document window, 
you may want to inset the destination rectangle at least four pixels from the lett 
and right edges of the grafPort's portRect. 

LineEdit ERS Apple Confidential Pa;;le4 



Edit operations may of course lengthen or shorten the text. If the text becomes 
too long to be enclosed by the destination rectangle, it's simply drawn beyond 
the right edge. Line Edit doesn't support scrolling or wrapping to the next line. 

The llneHite and BaseHite Fields 

The BaseHite field has to do with where the the text is drawn relative to the top 
of the DestRect. The LineHite field has to do with where the caret or 
highlighting of the selection range is drawn relative to the text. The BaseHite 
field specifies the distance between the top of the DestRect and the base line 
(leading + ascent). The LineHite field specifies the height of the line (leading + 
ascent + descent). 

. -·······1(···1"----·· esc en t9 
top of DestRect-+---·--···- -··I leedin 

Bese Llne-+ -··J.··----~-- descent 

The SeiStart and SeiEnd Fields 

In the text editing environment, a character position is an index into the text, with 
position 0 corresponding to the first character. The edit record includes fields 
for character positions that specify the beginning and end of the current 
selection range, which is the series of characters where the next editing 
operation will occur. For example, the procedures that cut or copy from the text 
of an edit record do so to the current selection range. 

The selection range, which is inversely highlighted when the window is active, 
extends from the beginning character position to the end character position. 
The figure below shows a selection range between positions 3 and 8, 
consisting of five characters (the character at position 8 isn't included). The 
end position of a selection range may be 1 greater than the position of the last 
character of the text, so that the selection range can include the last character. 

Note - Highlighting of the selection range is done by calling the 
QuickDraw routine lnvertRect, not by swapping the text and 
background colors. 

If the selection range is empty -that is, its beginning and end positions are the 
same- that position is the text's insertion point, the position where cha,racters 
will be inserted. By default, it's marked with a blinking caret (actually a vertical 
bar). 

LineEdit ERS Apple Confidential Page 5 



selection range 
beginning et position 3 
end ending et position 8 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 

[!he~ Ji:n:s:e:r:t:(o:n: :p:o:i:n:tl 
insertion point 
et position 4 

If you call a procedure to insert characters when there's a selection range of 
one or more characters rather than an insertion point, the editing procedure 
automatically deletes the selection range and replaces it with an insertion point 
before inserting the characters. 

The HiliteHook and CaretHook Fields 

The HiliteHook and CaretHook fields are used for text highlighting and drawing 
the caret. These fields are initialized to $00000000. You can set the contents 
of these fields by calling the LESetHilite and LESetCaret routines. 

If you store the address of a routine in HiliteHook, that routine will be used 
instead of the QuickDraw procedure lnvertRect whenever a selection range is to 
be highlighted or unhighlighted. For example, you can write a routine which 
underlines selection ranges instead of highlighting them. The routine will be 
called with the stack containing a pointer to the rectangle enclosing the text 
being highlighted or unhighlighted. The routine must remove the pointer from 
the stack and return with an RTL. 

The routine whdse address is stored in CaretHook acts exactly the same way as 
the HiliteHook routine, but on the caret instead of the selection highlighting, 
allowing you to change the appearance of the caret. The routine will be called 
with the stack containing a pointer to the rectangle that encloses the caret. The 
routine must remove the pointer from the stack and return with an RTL. 

LineEdit ERS Apple Confidential P~6 



USING LINE EDIT 

Before using LineEdit, you must initialize the Memory Manager, QuickDraw, the 
Event Manager and the Window Manager, in that order. 

The first LineEdit routine to call is the initialization routine LEStartUp. The other 
LineEdit routines do not check to see if LineEdit is active when they are called. 

Call LENew to allocate an edit record; it returns a handle to the record. Most of 
the text editing routines require you to pass this handle as a parameter. 

'" " 

When you're completely done with an edit record and want to dispose of it, call 
LEDispose. 

To make a blinking caret appear at the insertion point, calf the LEidle routine as 
often as possible (at least once each time through the main event loop}; if it's 
not called often enough, the caret will.blink irregularly. 

When a mouse-down event occurs in the view rectangle (and the window is 
active} call the LECiick routine. LECiick controls the placement and highlighting 
of the selection range in response to mouse activity, including supporting use of 
Shift-Click to make extended selections. 

Key-down, auto-key, and mouse events that pertain to text editing can be 
handled by several LineEdit routines: 

- LEKey inserts characters, deletes characters backspaced over, controls the 
placement and highlighting of the selection range in response to the 
LeftArrow and RightArrow keys, and handles the Control-F. Controi-X and 
Controi-Y commands. 

- LECut transfers the selection range to the UneEdit scrap, removing the 
selection range from the text. 

- LEPaste inserts the contents of the LineEdit scrap. By calling LECut, 
changing the insertion point, and then calling LEPaste, you can perform a 
•cut and paste" operation, moving text from one place to another. 

- LECopy copies the selection range to the UneEdit scrap. By calling 
LECopy, changing the insertion point, and then calling LEPaste, you can 
make multiple copies of text. 

- LEDelete removes the selection range (without transferring it to the scrap). 
You can use LEDelete to implement the Clear command. 

- LEinsert inserts specified text. Since LEDelete and LEinsert do not modify 
the scrap, they're useful for implementing the Undo command. 

LineEdit ERS Apple Confidential Page 7 



After each editing procedure, LineEdit redraws the text if necessary from the 
insertion point to the end of the text. You never have to set the selection range 
or insertion point yourself; LECiick and the editing routines leave it where it 
should be. If you want to modify the selection range directly, however· to 
highlight an initial default name or value, for example· you can use the 
LESetSelect routine. 

To implement cutting and pasting of text between different applications, or 
between applications and desk accessories, you need to transfer the text 
between the LineEdit scrap (which is a private scrap used only by LineEdit) and 
the Scrap Manager's desk scrap. To do this, use the LEFromScrap and 
LEToScrap routines. 

When an update event is reported for a text editing window, call LEUpdate 
(along with the Window Manager routines BeginUpdate, EraseRect and 
End Update) to redraw the text. 

Note: After changing any fields of the edit record that affect the 
appearance of the text, you should call the Window Manager 
routine lnvaiRect so that the text will be updated. 

The LEActivate and LEDeactivate routines must be called each time 
GetNextEvent reports an activate event for a text editing window. LEActivate 
simply highlights the selection range or displays a caret at the insertion point; 
LEDeactivate unhighlights the selection range or removes the caret. 

The LESetText routine lets you change the text being edited. For example, if 
your application has several separate pieces of text that must be edited one at a 
time, you don't have to allocate an edit record for each of them. Allocate a 
single edit record, and then use LESetText to change the text. 

If you want to draw noneditable text in any given rectangle, you can use the 
LETextBox routine. 

LINE EDIT ROUTINES 

HouseKeeping 

LEBootinit Call t $01 

LEBootlnit is called at boot time. It does nothing. 

LineEdit ERS Apple Confidential Page 8 



LESt art Up 

input 
input 

Call 4t $02 

ProgramiD 
ZeroPageAdrs 

INTEGER 
INTEGER 

LEStartUp initializes Line Edit and allocates a handle for the Line Edit scrap. 
The scrap is initially empty. ProgramiD is the ID LineEdit will use when getting 
memory from the Memory Manager. ZeroPageAdrs is the starting address in 
Bank 0 of a 1-page work area assigned to LineEdit. Duplicate LEStartUp calls 
will cause an error to be returned. 

Note: You should call LEStartUp even if your application doesn't 
use LineEdit, so that desk accessories and dialog and alert boxes 
will work correctly. 

LEShutDown Call 4t $03 

LEShutDown shuts down LineEdit and releases any workspace allocated to it. 
If LineEdit is not active, LEShutDown will return an error. 

LEVers ion 

input 
output 

Call 4t $04 

Result space 
Versioninfo 

WORD 
INTEGER 

LEVersion returns identifying information for LlneEdit. 

LEReset Call 4t $05 

LEReset returns an error if LineEdit is active, otherwise it does nothing. 

LEActive 

input 
output 

Call :It $06 

Result space 
ActiveFlag 

WORD 
INTEGER 

LEActive returns a non-zero value if LineEdit is active, otherwise it returns a 0. 

LineEdit ERS Apple Confidential P~9 



Edit Record Allocation 

LENew 

input 
input 
input 
input 
output 

Call # $09 

Result space 
DestRectPtr 
ViewRectPtr 
MaxTextLen 
hLE 

LONG WORD 
POINTER to Rect 
POINTER to Rect 
INTEGER 
HANDLE 

LENew allocates space for the text, creates and initializes an edit record, and 
returns a handle to the new edit record. DestRect and ViewRect are the 
destination and view rectangles, respectively. Both rectangles are specified in 
the current grafPort's coordinates. The view rectangle must not be empty. For 
example, don't make its right edge less than its left edge. If you don't want any 
text visible - specify a rectangle off the screen instead. MaxTextLen specifies 
how many bytes to allocate for the text. It should be a value from 1 to 256. The 
text will be limited to this length. 

Call LENew once for every edit record you want allocated. The edit record 
incorporates the drawing environment of the grafPort, and is initialized with an 
insertion point at character position 0. 

Note: The caret won't appear until you call LEActivate. 

LEDispose Call # SOA 

input hLE HANDLE 

LEDispose releases the memory allocated for the edit record and text specified 
by hLE. Call this procedure when you're completely through with an edit 
record. 

Changing the Text of an Edit Record 

LESetText 

input 
input 
input 

Call # SOB 

TextPtr 
Length 
hLE 

POINTER 
INTEGER 
HANDLE 

LESetText incorporates a copy of the specified text into the edit record specified 
by hLE. The TextPtr parameter points to the text, and the Length parameter 
indicates the number of characters in the text. If Length is greater than the 
maximum text length allowed for the edit record, only the maximum number of 
characters allowed will be copied into the edit record. The selection range is 
set to an insertion point at the end of the text. LESetText doesn't affect the text 
currently drawn in the destination rectangle, so call lnvaiRect afterward if 
necessary. 

LineEdit ERS Awle Confidential Page 10 



Insertion Point and Selection Bange 

LEidle 

input 

Call t SOC 

hLE HANDLE 

LEidle should be called repeatedly to make a blinking caret appear at the 
insertion point (if any) in the text specified by hLE. (The caret appears only 
when the window containing that text is active.) LineEdit observes a minimum 
blink interval: No matter how often LEldle is called, the time between blinks will 
never be less than the minimum interval. The user C£' ~ adjust the minimum 
blink interval with the Control Panel desk accessory. 

To provide a constant frequency of blinking, LEidle should be called as often as 
possible - at least once each time through the main event loop. Call it more 
than once if your application does an unusually large amount of processing 
each time through the loop. 

Note: LEidle actually only needs to be called when the window 
containing the text is active. 

LEClick 

input 
input 

Call i SOD 

EventPtr 
hLE 

POINTER to event record 
HANDLE 

LECiick controls the p!acement and highlighting of the selection range as 
determined by mouse events. Call LECiick whenever a mouse-down event 
occurs in the view rectangle of the edit record specified by hLE, and the window 
associated with that edit record is active. The EventPtr parameter should be a 
pointer to the mouse-down event record. 

LECiick unhighlights the old selection range unless the selection range is being 
extended. If the mouse moves, meaning that a drag is occurring, LECiick 
expands or shortens the selection range accordingly. In the case of a double­
click, the word under the cursor becomes the selection range; dragging 
expands or shortens the selection a word at a time. In the case of a triple-click, 
the entire line becomes the selection range. LECiick keeps control until the 
mouse button is released. 

LESetSelect 

input 
input 
input 

LineEdit ERS 

Call f SOE 

SelStart 
SelEnd 
hLE 

INTEGER 
INTEGER 
HANDLE 

Apple Confidential Page ,, 



LESetSelect sets the selection range to the text between SeiStart and SeiEnd 
in the text specified by hLE. The old selection range is unhighlighted, and the 
new one is highlighted. If SeiStart equals SeiEnd, the selection range is an 
insertion point, and a caret is displayed. 

SeiEnd and Se!Start can range from 0 to 256. SeiStart must be <= Se!End. If 
SeiEnd is anywhere beyond the last character of the text, the position just past 
the last character is used. 

LEActivate Call t SOF 

input hLE HANDLE 

LEActivate highlights the selection range in the view rectangle of the edit record 
specified by hLE. If the selection range is an insertion point, it displays a caret 
there. This procedure should be called every time the Event Manager routine 
GetNextEvent reports that the window containing the edit record has become 
active. 

LEDeactivate Call * $10 

input hLE HANDLE 

LEDeactivate unhighlights the selection range in the view rectangle of the edit 
record specified by hLE. If the selection range is an insertion point, it removes 
the caret. This procedure should be called every time the Event Manager 
routine GetNextEvent reports that the window containing the edit record has 
become inactive. 

Editing 

LEKey 

input 
input 
input 

Call t Sll 

Key 
Modifiers 
hLE 

WORD 
WORD 
HANDLE 

LEKey replaces the selection range in the text specified by hLE with the 
character given by the Key parameter, and leaves an insertion point just past 
the inserted character. If the selection range is an insertion point, LEKey just 
inserts the character there. 

If the Key parameter contains a Backspace character, the selection range or the 
character immediately to the left of the insertion point is deleted. If the Key 
parameter contains a Controi-F character, the selection range or the character 
immediately to the right of the insertion point is deleted. If the Key parameter 

LineEdit ERS Apple Confidential Page 12 



contains .a Controi-X character, the selection range or the entire line is deleted. 
If the Key parameter contains a Control-Y character, the selection range or the 
text from the insertion point to the end of the line is deleted. 

If the Key parameter contains a LeftArrow or RightArrow character, LEKey will 
move the insertion point or extend the selection range depending on the 
contents of the Modifiers parameter. 

LEKey redraws the text as necessary. 

Call LEKey every time the Event Manager routine GetNextEvent reports a 
keyboard event that your application decides should be handled by LineEdit. 
The Key parameter should be the key reported by the event record. The 
Modifie1s parameter should be a copy of the Modifiers field in the event record. 

LECut 

Note: LEKey inserts every character passed in the Key parameter 
(except for Backspace, Control-F. Controi-X, Controi-Y, LeftArrow 
and RightArrow), so it's up to the application to filter out all 
characters that aren't actual text (such as Command keys and 
other Control characters). 

Call # $12 

input hLE HANDLE 

LECut removes the selection range from the text specified by hLE and places it 
in the LineEdit scrap. The text is redrawn as necessary. Anything previously in 
the scrap is deleted. If the selection range is an insertion point, the scrap is 
emptied. 

LECopy Call I $13 

input hLE HANDLE 

LECopy copies the selection range from the text specified by hLE into the 
LineEdit scrap. Anything previously in the scrap is deleted. The selection 
range is not deleted. If the selection range is an insertion point, the scrap is 
emptied. 

LEPaste Call # $14 

input hLE HANDLE 

LEPaste replaces the selection range in the text specified by hLE with the 
contents of the UneEdit scrap, and leaves an insertion point just past the 
inserted text. The text is redrawn as necessary. If the scrap is empty, the 

LineEdit ERS Apple Confidential Page 13 



selection range is deleted. If the selection range is an insertion point, LEPaste 
just inserts the scrap there. 

LEDelete Call t $15 

input hLE HANDLE 

LEDelete removes the selection range from the text specified by hLE, and 
redraws the text as necessary. LEDelete is the same as LECut (above) except 
that it doesn't transfer the selection range to the scrap. If the selection range is 
an insertion point, nothing happens. 

LEinsert 

input 
input 
input 

Call t $16 

TextPtr 
Length 
hLE 

POINTE_R 
INTEGER 
HANDLE 

LEinsert takes the specified text and inserts it just before the selection range 
into the text indicated by hLE, redrawing the text as necessary. The TextPtr 
parameter points to the text to be inserted, and the Length parameter indicates 
the number of characters to be inserted. LEinsert doesn't affect either the 
current selection range or the scrap. 

Text Display 

LEUpdate Call t $17 

input hLE HANDLE 

LEUpdate redraws the text specified by hLE. Call LEUpdate every time the 
Event Manager routine GetNextEvent reports an update event for a text editing 
window - after you call the Window Manager routines BeginUpdate and 
EraseRect, and before you call the Window Manager routine EndUpdate. If you 
don't include the EraseRect call, the caret may sometimes remain visible when 
the window is deactivated. 

LETextBox 

input 
input 
input 
input 

Call i $18 

TextPtr 
Length 
BoxPtr 
Just 

POINTER 
INTEGER 
POINTER to a Rect 
INTEGER 

LETextBox draws the specified text in the rectangle indicated by the BoxPtr 
parameter, with justification Just. LETextBox does an EraseRect on the 
rectangle before drawing the text and clips the text to the rectangle. LETextBox 

LineEdit ERS Apple Confidential Page 14 



is not limited to a single line on the screen as the other LineEdit routines are. 
LETextBox will wrap to the next line whenever a CR (ASCII $00) character 
occurs in the text string. 

The TextPtr parameter points to the text, and the Length parameter indicates the 
length of the text including the CR characters. The Length parameter can range 
from 0 to 32,767. The rectangle is specified in local coordinates. The Just 
parameter should be set to 0 for left justified text, 1 for centered text , and -1 for 
right justified text. 

LETextBox creates its own edit record, which it deletes when it's finished, so the 
text it draws cannot be edited. LETextBox does not allocate space for the text 
string or make any copies of the text string. 

Scrap Handling 

LEFromScrap Call # $19 

LEFromScrap copies the desk scrap to the Line Edit scrap. If the number of 
characters in the desk scrap is > 256, an error is returned and the scrap is not 
copied. 

LEToScrap Call # $1A 

LEToScrap copies the LineEdit scrap to the desk scrap. 

LEScrapHandle 

input 
output 

Call # $1B 

Result space 
ScrapHndl 

LONG WORD 
HANDLE 

LEScrapHandle returns a handle to the LineEdit scrap. 

LEGetScrapLen 

input 
output 

Call # $1C 

Result space 
ScrapLength 

WORD 
INTEGER 

LEGetScrapLen returns the size of the LineEdit scrap in bytes. 

LineEdit ERS Apple Confidential Page 15 



LESe-:.ScrapLen Call # $1D 

input NewLength INTEGER 

LESetScraplen sets the size of the LineEdit scrap to the given number of bytes. 
Newlength should be a value from 0 to 256. If Newlength is > 256, it is set to 
256. 

Setting HiliteHook and CaretHook 

LESetHilite 

input 
input 

Call t $1E 

HiliteAdrs 
hLE 

POINTER 
HANDLE 

LESetHilite sets the HiliteHook field to HiliteAdrs which should be the address 
of a routine which will be used to do highlighting and unhighlighting of the 
selection range. 

LESetCaret 

input 
input 

Call :If $1F 

CaretAdrs 
hLE 

POINTER 
HANDLE 

LESetCaret sets the CaretHook field to CaretAdrs which should be the address 
of a routine which will be used to draw the caret. 

LINE EDIT ERROR CODES 

$1401 
$1402 
$1403 
$1404 

LineEdit ERS 

Duplicate LEStartUp call 
Reset error 
LineEdit not active 
Desk scrap too big to copy 

Apple Confidential Page 16 



RICTc > -- -- -- - - - - -- - ·-- - -- ----- --- -·-- - ·-

Chapter 15 

Print Manager 

1he 'Print Manager aDows you to use standard QuickDraw U routines to print text or 
pphic::s on a printer. "The Print Mana~r calls a printer driver to perform the 
specific printing tasks, so that your application doesn't need to know what kind of 
printer is connected to the computer. 

You should already be familiar with QuickDraw U. 

An application that suppons printing must have three items in its File menu: Choose 
Printer, Page &tup, and Print. 1be following aaions OCXllr when the user aeleas one 
d these items: 

• Choose Prinu:r: When the user .eleas the Choose Printer item, a dialog is 
displayed that allows the user to select a destination device from the printer 
·drivea on ibe system disk. The 01ocse Printer dialog also lets the user pick the 
port or slot to which the cit' -e is conneaed from the port drivels on the system 
disk. If AppleTalk is instalh :he network is scanned for the names of all printers 
_of the specified prinler typt. . 

+ MadnlOSh /J'Ogf"ttmmers: On the Apple DGS, the Choose Printer funaion is part 
of the Print Manager, rather than being implemented as part of the Chooser desk 
accessory. 

• Page Setup: When the user seleas the Page Setup item, the style dialog is 
displayed. The style dialog allows the user to specify formatting information, such 
as the page size and printing orientation. This information is not changed 
frequently and is usually saved with the dOOJment. 

,. •Print: When the user selects the Print item, the job dialog is displayed. The job 
dialog lets the user selea print quality, page range, number of copies, and 
printer-specific featwes. such as color printing. 

·-- - ·- - :- - - -. .-t-1- --- ,_ 
I i 

: i j 

-------- -!--~4...~-----

15·1 

,. 

• 

-- -- --~ 



• I 

1 I 
I I 

I I 
I I 
I ; 

1 i 
: I 
I i 
I I 

I j 

I I 
I ! 

Addi~o;1- \\'e$!cy Case bound Edition 

Your application defines the image to be printed by using either the GrafPort that the 
Print Manager automaticaDy lives you when you open a document for printing, or by 
supplying its own GrafPort. 

+ No~ 1be Print Manager does not automatically aave the current GrafPort when 
it initializes the new GrafPon. If the application will Deed that GrafPort's 
information for later use, il must save the information itself. 

Your application then prints text and graphics by drawing into the GrafPort with 
QuickDraw n, just as if it was drawing on the screen. The Print Manager installs irs own 
-versions of QuickDraw D's low-level drawing routines in this GrafPort, causing your 
tigher-level QuickDnw n calls to drive lhe printer instead of drawing on the screen. 

Important 
Don•t customize the QulckOrow II routines In the GrafPort being used for pr1nflng 
U'lless you·re sure of what you·re doing. 

A preview of the Print Manager routines 
To inUoduc:e you to the capabilities of the Integer Math Tool Set, all Print Manager 
JOUtines are grouped by function and briefly descn'bed in Table 15-1. 1bese routines 
,are described in detail later in this chapter. where they are sepanted into 
·housekeeping routines (discussed in routine number order) and the rest of the Print 
Manager routines (discussed in alphabetical order) . 

15-2 Chapter 15: Print Manager 

I 
I 

' ...... _-
' I I 

I 
' I 

i I 

- --- - - - __ I_ 

--l-+ 
I 
I 

I 

II 
I I 

I I 
I 

I 
I 

I 



.. . . ~ . - .. 

Table 15-1 
print Manager routines and their functions 

Routine Description 

lloulelceeplng IDUiinel 
PMBoodnit Initiali7J"$ the Print Manager; c:alled only by the Tool Locator~ust not be called 

PMStartUp 
PMShutOown 
PMVersion 
PMReset 

by an application 
Starts up the Print Manager for use by an application 
Shuts down the Print Manager 
lletums the version number of the Print Manager 
1esets the Print Manager; caDed only when the sysrem is reset-must not be c:alled 
by an application 
Indicates whether the Print Manager is aaive 

... feCOid and dialog routines 
PrDefauh Fills the f.elds of a specified print record with default values for lhe appropriate 

printer 
PrValidate Checks the contents of the specified print record for compatibility with the Olrrent 

~ion number of lhe Print Manager and the Olrrendy installed printer 
PrStlDialog Conducts a style dialog wilh the user to determine the page dimensions and other 

information needed for page setup 
Pr.fobDialog Conduas a job dialog wilh lhe user 10 determine the print quality, n.nge of pages 

ro print, and so on 
PzChoosePrinter Conduas a Choose Printer dialog with the user 10 determine the printer and port 

driver 10 use 

Pltntlng routines 
P.rOpenDoc 

PrCloseDoc 
PrOpenPage 
PrClosePage 
PrPicFile 
PrPiRlMap 

£nOf handting routines 

Initializes a Grai'Port for use in printing a document, makes it the current port, and 
lelllrns a pointer 10 the port 
Closes the Grai'Port being used for printing 
Begins a new page 
Ends the printing of the Dlrrent page 
Prints a spooled document 
Prints all or part of a specified pixel map 

PrError Returns the Jast printer error code left during the printing loop by Print Manager 
routines 

PrSelError Sr.ores a specified value into the global variable where the Print Manager keeps its 
printer error code 

llrlnter drtver and port driver IOUflnes 
PrDriYerVer Relums the version number of lhe Dlrrendy installed printer driver 
PtPonVer ktums dle version number of the Dlrrently installed port driver 

A preview of the Print Manager rOutines 15-3 

-------···-- .. ------···-· .. - ·--- -- . ·- ··--------·· ... 
~ ---:_ ......... __ _ 

: l 

I 
. ' . ' 

: ! 

·!l ,. 
,.,. 

- r'· 
·v 



\"[i{SI) 

-: -------.. -------~ ----------------- ----------- --

I l 
1 1 Print dialog boxes 

l 
I 
I . 
I ; 

I j 
I I 

I j 
I I 
1 I 

o: 
,.j 

-.1 

...1 
~ 

·'The dialog boxes seen by d.e user when he or she chooses an ilem from lhe File menu 
are lhe Choose Printer dialog. the styJe dialog. and the job dialog. These dialogs 
allow the user to spedfy information needed by the Print Manager to process the 
print job. This information is stored in the appropriate print record fieJds . . 

Choose Printer dialog box 
'The Oloose Printer ciJalog box anows the user to choose the printer to be used for 
printing and the port that conneas that printer to the system, as illustrated in 
Figure 15-1. 

I I I I I 

Choose Printer v1.2 

( Cance 1 ) ( OK ) 

Flgure15-1 
Choose Printer dialog box 

I 
I 
I 

I II . I ! 
I 

I 
I 

I : I 
I 
I 

i I:. i L' I II 
: _j -- -- l- - - .! rr -
I I I I I 

--LI ___ J_ . I 
--: ~--

I I I j 
l I I I 

I I I 

i I 
15-4 ·Chapter 15: Print Manager 

i 
I 
I 
I 
I I 

- -L-r 

- ~-- --- -----------· ----------- --------'---------
LI_ -----=-- ------------- -:S~tLD--

---.--------------- - -

Trim: 7 '/Jr," X'-)" 
~!.~r::in~: ·r,,;': ~ .... ··. Fl'''t: Ji:", 
(~t;ti.:L _-: .:··. f \.;:-i.!,·· ~ ~-· 



. . ~ . 
. ·":., .... 

RECTO 

If the printer chosen is cxxmeaed 10 the system via AppleTalk, then an additional 
dialog box appears, showing all available printeiS of the specified type on the 
network. as illusrrared in Figure 15-2. 

I I ! 1 I 1 

Printtra•t: 
Old.Dill - m 
SwtttJicklt 

.. t!lt!]ft 

I I I 

Flgure15-2 
Printer names dialog box 

S1yle dia1og box 

t 
I 

1 j 

- I 

• t t I I 1 , • 

'The style dJaloa box presents the user with a choice of paper size and orientation. 

Both the Image'Writere and the LaserWrite.a printers interpret lbe paper options as 
shown in Table 15-2. ahhough each printer does not offer all of the options. 

Table 15-2 
Printer paper sizes 

Opflon 

US Letter 
US Legal 
A4 Leuer 
85 Letter 
'International 
·fanfold 

Dimensions 

.8112 by 11 inches 
8 1/l by 14 inches 
210 by 297 millimeters 
176 by 250 millimeters 

210 millimeters by 12 inches 

Print dloloO boxes 15-5 

, -
------ ------- ------- -- =- _ .... ~. --·· - -- - --· ··- --- .. - -- . 

;• 



Both printers also use the same defmitions of vertical sizes, although the Image Writer 
cannot print intermediate text. 1be vertical-size defmitions are 

• Normal, which prints for 64o mode at 80 ppi (pixels per inch), and for 320 mode 
at 40 ppi horizontally and 36 ppi vertically 

• Intermediate, which prints at 54 ppi vertically 

• Condensed, which prints at 72 ppi 'Vertically 

+ Macintosh programmers: 1be condensed vertical size resembles the screen size of 
Madntosh texL 

Both· printers also allow the user to choose between printing in portrait mode (in 
which text prints from left to righO and landscape mode (in which text prints from 
top to bottom). 

Other options differ on the two printers, so the style dialog boxes also differ. The 
dialog box that appears if the user chooses an ImageWriter is shown in Figure 15-3. 

IHAGFWRITERIPRIHTER 
Paper: ®US lttttr 

OUSltgal 
OA~ lttttr 

c; 0 International fanfold 
Printtr Effects: 

v1.2 

Vertical Sizing: 
@Nor~~al 

0 Ctndtnnd 
Orientation: 

0 SA Rtduction 
0 Mo 6aps Bttwttn 

Pages 

lim~ (Cancel)(D 

Figure 15·3 
Style dialog box for lmageWrlter 

1be printer efTeas choices for the Image Writer allow the user to print at half size as 
well as with no gaps between pages (that is, the printer uses the full verticalll inches). 

15-6 Chapter 15: Print Manager 

-L·=--~·=·=--~:._ ___ - ---- __ --- -:?:....iL2:--- -I Trim: 7 -:/16 .. X y·· 
\~.tr~;n-< ·rl';': ~ ·s" .. r-,,lll: 1··~ ... 
(:~::: ... r: .~ ~-·. t \llt"i,J,;: .~. "''' 

' I ' --

---·-· -··-··· ·-· ---· 



. . .. . . . . 
. \ l :, :::-\ '~> .:. '• .. 

·!be dialog box that appears if the user chooses a I.aserWriter is shown in Figure 15-4. 

LASERWRITEI/APPLETILK v1.0 
Paprr: @)IS letter Ol'lletter 

OIS legal 015 Letter 
Orientation: Vertical Sizing: 

@llo,.al lm~ 
·~~ 0 late,.ediate 

Otendensed 

Printer Efftcts: ltduce er r;;;;J 
~ S.oothing? &Iartt: ~\ 
[21 foAt Suftstitutiu? 

(.-::t-cm-~~1) QD 

FlgurelS-A 
Style dialog box for Loserwrtter 

"Jbeeoe a~e .two plinting options available on the LaserWriter that don't exist on the 
lmageWrirer_ 

Smoothing asks the system to smooth out any bit-mapped fonts with jagged edges. 
Font substitution tens lhe system to make the following substitutions if the specified 
font is not in the LaserWriter: Helvetica for Geneva, Courier for Monaco, Tunes for 
New York. Any other font is downloaded as a bit map to the LaserWriter. · 

+ Note: At the time of publication, the Print Manager did not support downloading 
bit-mapped fonts to lhe LaserWriter; that is, Courier will be substituted for all 
fonts other than those listed above. However, on the Laserwriter Plus, the Zapf 
Chancery font will be substituted for the Venice font 

nae printed representation or lhe document can range from 25 to 400 percent of the 
original siz_ with 100 percent representing normal size. 

I I i : 

Print dialog boxes 15-7 

- - - - - - - - - - - - - - - - - - - - -- ~ - '- ... :· - ·- -· - ·-- --·· - .. ·-- -- - -- . -

. 
' 



Job dialog box 
1be job dlalog box allows the user to communic:ate,the page n.nge, lbe number of 
copies, and the paper source to the Print Manager. In addition, rhe ImageWriter job 
dialog offers print-quality choices and the option to print in color. 

In most cases, your application doesn't need to know what choices the user makes for 
rhis dialog; rhat is, the application will simply use QuickDraw n calls to draw into the 
GrafPort being used for printing,· and the Print Manager will handle the user's 

1 selections. 
I 

1 1be lmageWriter job dialog box is shown in Figure 15-5. 

.. , 

I 

.• I 

IHAG~RITERIPRIHTER 

Quality: 0 Betur Tnt 
@ Betttr Color 
0Draft 

Page range: 
@All 

v1.2 

0Fr•:D To: D 
Copies:rn=J 
Paper feed:@ Automatic 0 Manual 

Otolor ( Cance 1 ) (!) 

ffgurelS-5 
Job dialog box for lmageWrlter 

The Better Text option doubles the resolution, but halves the color choices 
available; therefore, if your application isn't printing color graphics, this choice by 
the user will. produce the highest quality. 

The Better Color option prints the document at the same resolution as the screen, 
with the same number of screen colors available. 1be option is most appropriate 

1 when printing color graphics. 

1be Draft option is useful only when the user wants to quickly print text without any 
formatting information. 

If the user clicks the Color box, the Image Writer driver WI11 print using a color nbbon 
if the nbbon is available on the specified lmageWriter. If the ribbon is not available, 
or if the user does not dick the Color box, the Image Writer will print in black and 
while. 

15-8 Chapter 15: Print Manager 

-"j-r~rin:?'tlf>:-;9~- -----
~-1:1r:_:;n~: l"•lp: ~ s·. F.)lll: :,o.:::··. 
(~u!:~"T: -~~~·· .. <)u:,!,h.-: ~.,-s .. 

- -- -- -~L..iLD-- -



i{f:C J: .i 

--------------

The LaserWriter job dialog box is shown in Figure 15-6. 

lRSERWRITERIAPPL£UUC vl.O 
Pasts: @All 

0Fr•:D To: D 
Copies: I[] 
Paptr Sourct: 

'Figure 15-6 

@Paper Casuttt 
0Haoual Fttd 

( CeDCtl) (!) 

Job dialog box for LaserWrfter 

'Print records 

. '· .... 

To format and print a document, the Print Manager checks the information 
contained in a data atruawe called a print record. The Print Manager fills in the 
entire print record for you by using information specifred by the user during the job 
and style dialogs. 

+ Note: 'Whenever your application saves a document, it should write an 
appropriate print record into the document This sets up the printing parameters 
so that the document retains and uses . those parameters the next time the 
document is printed. 

Information contained in the print record includes the following: 

• Dimensions of rbe prinW>le area of the page 

• Whether the application must calculate the margins, the size of the physical sheet 
of paper, and the printer's vertical and horizontal resolution 

• Whether draft or spool printing is being used 

·t.mportant 

Yoas application doesn•t need to change much of the data In 1he print record: 
•usuc.'~.1he my fields you'll need to set directly ore those containing optional 
1nformotlon In 1he jcb IUbrecord. You should use use standard dialog routines for 
contronlng the print JeCOrd Information. If you want to directly change values In 
the print record. be .. e you know what you are doing. · 

-
Print records 15-9 

- - - ·- - - - - - - - - - - - - - - - -· - ~ - ... ~ :: - ··- - - -- -- --- - -

I 



Addison-\Vesley Casehound Edition 

VERSCJ 

Print .ecords are referred to by handles. The suuaure of a print record is shown in 
. Yasure 1s-1. 

Offset Field 1Awood-v__,...,_.,...,_. 
10 
t-=J " bytes-Printer Information subrecord <see Fig\6e 15-8) 

I lfllaper I Four Wordi-RECT defining paper rectangle . . . . 
17H. · 
18 ::. H 11 ___ ILtlnlco<d_ ...... 1~ 

~R1·--~.,-­

:H :..--~.,- ... 
:! H 20 ___ ILtlnlco<d _ ...... 15-11) 

! pr.rx ! 31 bytes-Reserved for future use 

=B WOid-10<-... 

!figure 15-7 
!Print record 

The prvemcm faeld identifies the version of the printer driver that initialized this 
print record. If you try to use a print record that is invalid for the current version of 
lhe Print Manager or for the cunently installed printer, the Print Manager will 
eotrea the record by filling it with default wlues. 

lbe Olher faelds of the print record are discussed in the following seaions. 

1:5-10 Chapter 15: Print Mcnoger 

~ -· I ..... • t \" 
; • ll. .\ J 

~~··!~-~ •• ,,. ' 
. - . 

. ' 

ilJ 
f. 



Printer Information subrecord 
1be printer Information subrecord (the print 1ee0rd faeld pr!nfo) gives you 1he 
information needed for page composition. 1be ltNaute or the printer information 
IUbreccxd is shown in Figure 15-8. 

'Oftlet Field 
'SOr-----, 

1 Word-Printer type; 1 •lmogeWrtter. 3 • LaserWrtter 

2 Word-Vertical resolution of printer 3....,_ ___ -1 

• WOld I lcrlzolltal resolution of ptnter 
51-----f 
6 

: IA:IQe ! Feu WOidi-RECT defining page rectangle 

00 l-~.--___,-i 
Flgure15·8 
Printer Jnformatlon abreeord 

The Wev field identifaes which type of printer the user selec:red in lhe Oloose Printer 
dialog. 

The rl'age field is the page teetangle, representing the boundaries of the printable 
page. The Gra&ort's boundsRea, potlRea, and dipRgn are set to this rectangle. Its 
top-left comer alW2ys has coordinates (0,0); the coordinates of the bottom-right 
comer give the maximum page height and width attainable on the given printer, in 
pixels. Typically these are slightly Jess than the physical dimensions of the paper, 
because of the printer's mechanical limitations. 1be value of rPase is set as a result of 
lhe style dialog. 

The rl'age rectangle is inside the paper reaangle, specified by the print record 
t'P~field. The rPaperfield gives the physical paper size, defmed in the same 
coordinate system as rPase. Thus, the top-left coordinates of the paper rectangle are 
typically negative, and the bottom-right coordinates are greater than those of the 
pge~le. 

The fVRes and IHRes faelds contain the printer's vertical and horizontal resolution in 
pixels per inch. Thus, if you divide the width of rl'age by UIRes, you get the width of 
lhe page rectangle in inches. 

Print records 15-11 

I 



I Addison-We<ley Casebound Edition 

VERSO -----------------

Style subrecord 
'lbe ~le subrecord (the print record field prStl> contains information~ 
liom the user via the style dialog as well as the job dialog. Some of the fields ill :this 
aubrecord have different meanings for difTerent prinlels. The suuaure oLEbe :a.f.1'e 
aabrecord is shown in Figure 15-9. 

Offset Field 

so Word-INTEGER; output quoll1y Information 
1 
2 

Word-~ reserved fcrt'ltemol use 
3 I' 

• ;I 

5 
Word-INTEGER; reserved for lntemol use 

6 
Word-INTEGER; reserved tor lntemal use 7 

8 
Word-INTEGER; type ot feeding 

9 
OA 

Word-INTEGER; type of paper 
DB ' 
DC 

Word-INTEGER; corrioge width ~Writer. 
i, 

00 I 
vertical siZe It riter ,. 

DE 
Word-INTEGER; reserved ~riter. OF percent r · It LoserWrtter 

1 0 
1 1 Word-INTEGER; reserved fer lntemol use 

Flgure15-9 
Printer :style IUbrecord 

'The possible values for these fields are shown in the following seaions. 

15-1:2 Chapter 15: 'Print Manager 

Tr:m: - 1 , It :\ •1· 

~•l.trL;:., ·~·,·~· .. :.:-\ . "''"'': 
{:t•n.:· ·~ . .: ·. (!;.~ : .. : ... !:\ .. 

. ·'"'"' I·- • 

.. - ~ .. __ -



lmogeWrler style subrecord values 

tiiDeu Bit 6 0 • DO pp, 1 • pp 

feed 

/JIZPe1"'YPe 

Bit S 0 • black and white. 1 • mlor 
Bit -1 reserved 
Bit ~ 0 • 5096 !eduction, 1 • JWl size 
Bit 2 0 • condensed, 1 • normal 
Bit 1 0 • landscape, 1 • portrait 
Bit 0 0 • normal quality, 1 • best quality 

feedManual• 0, feedAuto • 1 

tJsiener• o 
tJslepl •1 
.A4Leaer• 2 
lm!FanFold - 3 

960 for aU paper types 

laserWriler style subrecord values 

wDev Bit ~ 0 • substib.lte fonts, 1 • don't substitute fonts 
Bit 2 -o • smoothing; 1 • no smoothing 

fud 

paper7Ype 

Bit 1 0 • pottrait. 1 • landscape 
Bit 0 Reserved 

leedManua1 - 0, feedAuto - 1 

Usteuer•O 
Uslegal• 1 
A4Leaer• 2 
BSLeuer• ~ 

Normal • 0 
Intermediate - 1 
Condensed - 2 

-. -. - _.. - -. -- -- -- -- -- -- -· ........ '· " -~ .. 

.L 
.. ---·--·-- ----

Print records 15-13 



I \'f.> 

I Addi~on-\\'csley Casebound Edition 
\"[RSO 

--------------------

Job aubrecord 
1be Job subrecord (the print record fteld J11job) oontains information about a 
particular printing job. Its coruents are set as a result of the job dialog. The job 
IUbrecord is defined as shown in Figure 15-10. 

Offset Field 
$0 

1 
2 
3 
A 
5 
6 
7 
8 
9 

OA 
OB 
oc 
00 
OE 
OF 
10 
11 
12 
13 tiRe VetS 

J: ~ v· \, ., l> 

\~..ll 

14 bJcCX 

Figure 15-10 
Job IUbrecord 

I 

Word-MEGER; first page to print 

Word-INTEGER; lost page to print 

Word-INTEGER; number of copies 

lyte-Prtntlng method; 0 • draft printing, 128 • spool printing 

.ward-BOOLEAN; reserved for lntemol use 

b~-

lcng-POINTER to bockground procedure 

Word-INTEGER; spool ftle volume reference I'U'nber 

lyte-Spool file version IU'T\ber 
lyte-Reserved for lntemol use 

The tFstPage and fl.stPage ftelds designate the fust and last pages to be printed 
11lese page numbers are relative to the f&rSt page counted by the Print Manager. The 
Print Manager cannot use any page n~mbering placed within a document by an 
application. 

The fCopfes field is the number of copies to print The Print Manager automatically 
handles multiple copies for spool printing or for printing on the LaserWriter. Your 
application needs this number only for draft printing on the ImageWriter. 

15-14 Chapter 15: Print Manager 

': .. L '\. . ., 

: ' . - . 



R l.<"l' > 

1be bjDoclDop field designates the printing method, either draft or spool, that the 
Print Manager will use. Dtaft printing means dw the document will be printed 
Immediately. Spool priDling means that printing may be deferred: The Print 
Manager writes a .tepraentation of the document's prirued image ro a disk file (or 
possibly ro memory); this information is then CXXlvelted into a bit image and 
pinred. Your application can check this faeld to delennine which type of printing the 
U8ef seleaed. 

1'be pldleProc f"lleld is a pointer ro the background procedure (explained later) for 
Ibis printing operation. In a newly initialized print record this field' is aetto NIL, 
designating the default background procedure, which just polls the keyboard and 
cancels further printing if the user types Apple-period. You can install your own 
;bac:kground proc::edu.te by storin& a pointer to that procedure direaly into the 
JlldleProc fieJd.. 

For spool pinting. your application may optionally provide a spool me pathname, 
YOiume Jeferenoe mu:nber, and version number, as follows: 

• pFI/eNarM is the full pathname of the spool me as a ProDOS string. 1his field is 
initialized to NIL and is seneraJiy DOl changed by the application. NIL denotes the 
default mename. 

• fFiillVol is the unit DUmber of spool file volume, initialized to 0. 

• IFIIeV..S is lbe veiSiao DUmber of the spool file, initjali'ed to 0. 

Printing modes and resolutions 
'The Print Mana&er suppons the 'Various display modes available on the Apple DGS. 
'The DGS is capable of both color and gray scale in either 320 or 640 modes. When the 
user JeqUests color printing via the job dialog, the Print Manager prints the 
document in color on a printer that is capable of color printing, such as the 
JmageWriler D; Olherwise it will print it in black and white. 

1bis next seaion presents an overview of the algorilhm for printing the Super Hi-Res 
color saeen to lhe ImageWriler pinier. It desaibes both the transformation from 
the color screen to a color printer and the method used to print the color screen in 
black and while (&ray sc:ale). 

The DGS screen has two resolution modes: 

• 320 horizontal by 200 vertical pixels, 16 colors per line 

• 640 horizontal by 200 vertical pixels, 4 colors per line 

Par more deWl ~ &he caa implememation of the color, see Chapter 16, 
' ~c:kDraw n: in Volume 2. 

Printing modes and resolutions 15-15 

I 



I 

"'be ImageWriter n can print horizontally at 160 dots per inch and vertically at 144. 
With a color nbbon, which consists of bands of cyan, magenta, yellow, and black, 
&he ImageWriter ll suppons eight possible colors per dot. These color dot 
combinations, except for black, are composed of all the different mixtures of the 
colors cyan, magenta, ~d yellow. Black is represented by the black ribbon, and no 
other color dots include black and another color. 

"'be color screen is initially converted into color pixels before the screen-to-printer 
transformation occurs. Each pixel consists of a total of 12 bits: 4 bits each for red, 
blue, and green (RGB). Thus, each color has 16 possible levels, and each pixel has 
.f096 possible colors (or levels). 1be fust part of the algorithm must convert these 
ltGB pixels into color pixels that the printer understands. These pixels consist of 
three colors: cyan. magenta, and yellow (CMY). 

This conversion routine perfonns a straightforward matrix multiplication to achieve 
&he translation from RGB to CMY space. All level information is retained, which 
means that the CMY result is also 4 bits per color. The matrix values used for Ibis 
uanslation are described at the end of this section. 

After the algorithm has calculated the CMY levels, it enters the second translation 
phase: converting from 16 levels of each color to a number of color levels supported 
by the printer. The number of color levels and the resolution (color pixels per inch) 
can be traded off by the higher-level software routines. For example, at 160 color 
pixels per inch (ppi), each pixel can represent one of 8 possible colors, but if the 
JeSolution is cut in half (80 ppO, then each pixel has 27 possible colors. Table 15-3 
mustrates the possible tradeoffs allowed by the low-level driver. 

Table 15-3 
Resolution. colors. and gray scales 

Average Colors Levels per Clay-scale 

.. aoautton (ppl) per pixel llbbon color levels 

16o 8 2 2 

8) 7:1 3 3 
4() 125 5 5 

20 729 9 9 

The gray-scale column in Table 15-3 helps clarify how the colors-per-pixel value is 
determined. For example, when thete are only 40 pixels per inch, there can be 4 
posstble dots for each pixel (as determined by the 160-dots-per-inch capability of 
&he printer). These 4 possible dots represent five different levels of brightness: 0 
dots, 1 dot, 2 dots, 3 dots, and 4 dots can be printed at a time. Regardless of which 3 
dots are printed, the eye will perceive the same amount of brightness and color from 
lhat pixel. Since there are 3 possible colors (CMY) that can be printed at each dot, 
Ibis means lhallhere are 5', or 125, possible colors. 

15-16 Chapter 15: Print Manager 



Table 15-3 specifies average n::solution because the dots for each pixel don't always 
fall on the aame printing line. At 40 pixels per inch. each pixel is aaually comprised 
of two horizontal by two vertical dots. At 20 pixels per inch, the pixel consists of four 
horizonlal by two wertical dOIS. 1be concepts are illustrated in Figure 15-11. 

1 pixel 1 pixel 1 pixel 
at lliO ppl at 80 ppl at 40 ppl 

. o··· ··= CXJ... ..... ··= EE=·· ..... ··= =·· 
. . . . . . . . . . .. . . . --- ------ -- ----~- --- -·----. : : 

. . . 
!. .••.• 6.: ~--

Figure 15·11 
Pixels and print lnes 

1 pixel 
at20ppi 

·:-} 2 print lnes 

... 

The second phase of d1e color transformation consists of a simple linear translation 
of the old color-level value (16 possible levels per color) to a new color-level value 
'(either 2. 3, 5, or 9 possible levels, depending on the mode). 

At this point, the color data information is defined for printing on the color printer. 
However, for a black-and-white printer, there must be one more transformation that 
changes the pixels from color space to black-and-white space. This transformation is 
performed by another matrix multiplication that converts the lhree color values 
(CMY) into a single black-~ value. 

"'lbe resultant black-and-white value is aaually a gray-scale value that is sent to the 
printer in the same manner as the color values. 1he only difference is that each pixel 
is a specifaed number of black dots instead of color dots. The level information is 
zetained in the li2.DSiation from color to black and white. 

~ horizontal and vertical resolutions, the pixel size, and the page reaangle size of 
the various modes. and the print quality for the ImageWriter U an: summarized in 
Figure 15-12. 

+ Note: The terms portrait and landscape refers to the page orientation, 
representing vertical and horizontal orientations, respectively. The printing 
area for a page wilh a pp is 8 x 10 1/2 inches, and that for a page without a gap is 
8 X 11 incbes.. 

Printing modes and reso!utlons 15-17 



I 

I 

I 

J·:.l,,;q,.., _, .... \. ... 

----------------------·------- - -· -- --·---- ----------

I • : ! ' I . ' I 

Dots per pixel I Horizontal resolution I Vertical resolution I Page rectangle 

ftoltrall. 320 mode 
------------~------------~-------------~------------CIIIJ Ax2• : ' ' CIIIJ : : with gop: 0.0.378.320 

8 dots : 4) ppl/160 dpl 1 36 ppl/72 dpl o W/0 gop: 0.0.396.320 
NorTnal quality • • • 
------------·------------~-------------~------------
CD 
Best quollty 

• 2x 1 • • 
2 dots : 80 ppl/160 dpl 

Portrait, 640 mode 

npp~mdpl : Some as above 

------------~------------~-------------r------------: 83 ~ ~; : 80 ppl/160 dpl : 36 ppl/72 dpi : with gop: 0.0.378.640 
. : , w/o gap: OD.396,640 

~~----~------------~-------------~------------
0 
Best quality 

1 dot : 
I . 
I 

Lanctscape, 320 mode 

160 ppi/160 dpl npp~tndpi 
I 

' Some OS above • • 

------------,------------~-------------r------------
CIIIJ 4x2= : ' ' CIIIJ 8 dots I 36 ppl/n dpi : 40 ppl/160 dpi : with gop: 0.0.320.378 
Normal quality : : : W/0 gop: 0.0.320.396 

------------~----------~-~-------------~------------
CD 
Best quality 

2x 1• : 
2 dots • . . 

1andscope, 640 mode 

72 ppl/72 dpl 80 ppi/160 dpi : Some as above 

------------~------------~-------------~------------

I I I I I : ~~; : 72 ppi/72 dpi : 41 pp11160 dpi : with gop: 0.0.320.756 
Normal quality : : : W/0 gap: 0.0.320,792 

------------·--------------------------~------------
[I] 2x1c • 

2dots : : 
I• 

80 ppi/160 dpl : Some as above 144 ppl/144 dpi 

i. 
! 

Best quality • • • i 
~--~~~--~--.~-------.--~--~----~-----,--~------._--,--,--------~, I 
figure 15-12 
Resolution. pixel size. page size. and print quality 

-J----l--- Ill-
15-18 Chapter 15: Print Manager 

I rim: 7 7/Ht X 9" 
"\'LIT .gins: Tnp: 5/S". Foot: I;~··. 
G~t:~:r: 3/:. ··• Oui,id.:: y~:· 

I : 
I I 

! I 
--r-!--

I II 

~t-1-- -~~--
i 
I 

--l~ 
. i 



~ . . . 
• · •. : \ ~ . > •. : • ~ . : . • • . . • \ : i .. : .. · ...... : ·. ·. 

Using the Print Manager 
1bis section discusses how the Print Manager routines fit into the general flow of an 
application and gives you an idea of which routines you11 need to use under normal 
c::ira1msta.nc:. Each routine is described in detail later in this chapter. 

1be Print Manager depends upon the presence of the tool sets shown in Table 1 s-4 
and JeqUires that at least the indicated version of the tool set be present 

Table 15-4 
Print Manager-other tool sets reqtked 

1oo1Mf 1oo1Mf Minimum version 
number name nMded 

$01 #01 Tool Locator 1.0 
$02 #{)2 Memory Manager 2.0 
$03 #03 Miscellaneous Tool Set 2.0 
$04 #04 QuickOrawn 2.0 
$05 #05 Desk Manager 1.0 
SOE #14 Window Manager 1.3 
$OF #15 Menu Manager 1.3 
$10 •16 Control Manager 1.3 
$12 #18 QuickDraw n Auxiliary Routines 1.0 
$14 •20 LineEdit Tool Set 1.0 
$15 •21 Dialog Manager 1.1 
$1B 427 Font Manager 1.0 
SIC #28 llst Manager 1.0 

Your application must make a PMStartUp call once before making any other Print 
Manager calls. Conversely, if the application makes a PMStartUP call, the 
application must make a PMShutDown call before it quits or before it unloads the 
Print Manager. 

Before you can print a document. you need a valid print record You can use an 
existing print record (for instance, one saved with a documenO, or you can initialize 
one by calling PrDefaulL If you use an existing print record, be sure to call PrValidate 
to make sure it's valid for the cunent \lel'Sion number of the Print Manager and for the 
mrrently installed printer. 

To create a new print record, you must first create a handle to it with the Memory 
Manager NewHandle routine. A print record is 140 bytes long. 

I . I 

Using the Prtnt Manager 15-19 

. -
I • 
. ' 



I :\Jl:i,;P:1- \',"l· ... L:y C:l:O:('bl':!;,,: Et.!itinn 

--------- --·----- -- ------------------

~I 

I 
I 

1 

Prinler and print record information is obtained via the style and job dialogs: 

• Call PrChoosePrinter when the user chooses the Select Printer command from the 
Fale menu. No print record is required for Ibis calL 

• Call PIStlDialog to get the page dimensions when the user chooses the Page Selup 
command. From the rPage fseld of the printer information subrecord, you can 
lben determine where page breaks will be in the cloc:umenL You can show rulers 
and margins corre.ctly by using the information in the print record lYRes. IHRes. 
and rPaper fselds. 

• Call PrJobDialog to get the specific information about that printing job (such as 
lhe page range and number of copies) when the user chooses the Print command 

When the user chooses the Print .command, your application normally should 
immediately start its printing loop in order 10 conform 10 the Humt~n Interface 
Guidelines: 7he Apple Desklop h'llerface. 

~ lim step of the printing loop is using the PrOpenDoc routine to obtain a pointer 
to the Gza&ort to be used for printing. 1bis must be done only once for each print 
job. 

~ next step calls for beginning the inner loop of printing the pages one by one, as 
detailed in the next section. 

Printing loop 
To priot a document. you call the following routines: 

1. PtOpenDoc. which returns a pointer to the GrafPort to be used for printing 

2. PrOpenPage, which starts each new page (reinitiallzing the GrafPon) 

·: 3. QuidcDraw routines, for c:bwing the page into the GmPort whose poinrer was 

I 
1 
,J 
I 

I 

:1 
'I 
I 

l 
I I 

___! J 

~l 

teturnedbyPrOpenDoc 

-4. PIClosePage, which terminates the page 

5. PlCloseDoc. atlhe end of the entire document. to dose the GrafPort being used 
for printing 

Each page is either printed immediately (draft printing) or wriaen to the disk or to 
memory ($pool printing). You should test to see whether spooling was done and, if 
so. print the spooled documenL Fust. your application should use the Memory 
Nanager routine MaxBlock to ensure that a lOK block of memory is available. If it 
Un\ you should swap out enough memory 10 alJow for that lOK block and then call 

. PrPicFile. 

15-20 Chapter 15: Print Manager 

:rrim: i i /Ht x 9" 
~br~in.;: Tt~p: 5/'S". F''"t: )/~". 
Cillth:r: 3.:.:". Oubid.:: ~,x" 

• 



' ...... 

l{i·.~· j I) 

You should check for errors after each Print Manager call. If an error occurs, you 
should abort printing by selling the error to prAbort using the PrSetError routine. Be 
sure that your application exits the printing loop normally so lhat aU allocated 
memory is dea11ocated JccordingJy; that is, be sure that PIOpenDoc is matched by 
PaOoseDoc and that every P.rOpenPage is matched by a PIClosePage. 

+ Note: Tbe maximum number of pages in a spool rate is 16,382. If you need to 
print lllOI'C lhan 16,382 pages at one lime, just repeat the printing loop (without 
c:a11ina PrValidate, PrStlDialo& or PrjobDialog). 

Printing a speclfied range of pages 
Your appUcation can try to print an entire doalment even when lhe user wants to 
pint only a seteaed subrange of pages. 'Ole Print Manager processes each page but 
aauaUy prints only the pages from 1FstP118e to UstPage. 

However, if tbe applic:alion knows abe pase boundaries in the document, it is much 
faster to loop through only the specified pages. The application can do this by saving 
the ·values of IFstPage and flstPII8e after the PrjobDialog call, recalculating the page 
range using 1 as the starting page and storing these values into the appropriate fields 
in the print record For example, to print pages 20 to 25 of a document, you would set IFsiP• to 1 and l/.si.PQ&e to 6 and then begin the printing loop at the doaJment's 
page 20. 

Remember that IFstPa,ge and ILsiPa,ge are relative to the fust page counted by the 
Prinl Manager. 1be Print Manager counts one page each time PIOpenPage is called; 
lhe count begins at 1. 

Using QuickDraw II for printing 
When drawing into the QuickDraw n GrafPort being used for printing, you should 
note the following: 

• With each new page, you set a completely reinitialized GrafPort, so you'll need to 
aeset font infonnation and ocher GrafPort charaaeristia as you want them. 

• Don't use dipping to selea text to be printed 1bere are a number of subde 
differences between how text appears on the saeen and how it appears on lhe 
printer; you can't count on knowing the exaa dimensions of the reaangle 
occupied by the text. 

• Doa'l use fixed-widlh fonts 10 align columns. Since spacing is adjusted by lhe 
· pinier, you should explic:idy move the pen to wheJe you want iL 

• Don't make caDs that don't do anylhing on lbe printer. For example, erase 
operalions are time consuming and normally aren't needed on the printer. 

Using the Print Mc::lnager 15-21 

---------=-~ .... :"::'-

,.. 

I 



' -
I 
I 

' I I 
J I 

\'ERSO 

- For printing to the LaserWriter, you'll need to observe the following limitations: 

• Regions aren't supported; uy to simulate them with polygons. 

• Clipping regions should bt:. limited to reaangles. 

• Invert routines, such as the QuickDraw n routines InvertRect and JnvertRgn, aren't 
supported. 

• Copy is the only transfer mode supported for aU objeas except text and bit 
images. For text, Bic is also supported For bit images, the only transfer mode not 
supported is XOR. 

• Don't change the GrafPort's local coordinate system (with SetOrigin) within the 
printing l90p (between P.rOpenPage and PrClosePage). 

Sequence of events 
The following pseudocode wiD help you understand the entire sequence of calls 
necessary to print a documenl Your application should take the following steps: 

1. Call PrChoosePrinter, if user selects Choose Printer menu item. 

2. Call PrStlDialog, if user seleas Page Setup menu item. 

3. Call PrJobDialog, when user seleas Print menu item. 

4. Call either 

PrDefault, if no existing print record 

~ or 
..J 
~ PrValidate, if there is an existing print record. 

I i 

5. Call PrOpenDoc. 

If tool call error, then PrSetError to prAbort. 

6. Enter printing loop: 

Call PrOpenPage. 

If tool call error, then PrSeiEnor to prAbort. 

Ca11 appropriate QuickDraw n routines, including those that reset font 
information. 

Call PtClosePage. 

If tool call error, then PrSetError to prAbort. 

7. Repeat loop for each page printed. 

8. Call PtCioseDoc. 

9. Call PrError; if error not zero, lhen skip PrPicfile call. 

10. Call Memory Manager routine MaxBlock to cbeck for a lOK block, if none, swap 
out parts of application to make room. 

o I I I I 
11. CaD PrPicfile. 

15-22 Chapter 15: Print Manager 

.. . .... 
-.: -L'-.J--

• 



Methods of printing 
1bere are two basic methods of printing documents: drUt and spool. 

• Dna." prlatiDg: Your QuickDraw D calls are converted direaly into command 
mcles rhe prinler understands, which are then immediately used to drive the 
prinler. The J.aser'Wriler always uses draft printing, since the QuickDraw D calls are 
lranslated immediately into PostScript commands. 1be ImageWriter and other 
unintelligent dot matrix printers are written to in draft mode for text only. High­
quality pixel-map images are produced only during spool printing. 

a Spool printing: 1be Print Manager proc::esses your printing requests in two steps. 
First it wrires (spools) a representation of your document's printed image to a disk 
file or to memory. Second, this information is convened into a bit image and 
prinred 1his medlod is used to print paphic:s on the ImageWriter. 

Printer and port driver$ 
Both the ImageWriter and I.aserWriter printers are fully supported Other printers 
should work so long as drivers are written for them; these drivers may be developed 
by Apple or lhird-party developers. 

Printer drivers 
Apple provides the printer drivers for lhe JmageWriter and LaserWriter. 

ibe user can install new printer drivers into the system by saving a printer driver file 
into the DRIVERS subditeaory within the SYSTEM subdireaory. The printer driver 
file must be of file type SBB and have an aux type of $0()()1. 

At the time of publication, no m01e information about printer driver formats was 
2vailabJe. 

- ·-· ····-----
: I ' . 
-~ . 
Printer and port drivers 15-23 

-- ·-·- -- -- - -·- ···- -- ·-- - -·- -- -- - -- ~- '-"- :· ·-



\"ERSO 

Printer peripheral cords and printer ports 
Pon drivers are used to support the various methods of conneaing a printer to the 
Apple UGS. A port driver can be written to work with a built-in port or with a 
peripheral card in a sloL Currently, the following three types of drivers are defmed, 
all of which support the inlema1 pons: 

• Printer.Pon 

• Modem.Port 

• Appletalk.Port 

1be user can install new port drivers into the system by saving a port driver file into 
the DRIVERS subdireaory within the SYSTEM subdirectory. 1be port driver flle·must 
be of file type $BB and have an aux type of $0002. 

At the time of publication, no more information about port driver formats was 
available. 

Background processing 
As already mentioned, the job subrecord includes a pointer, pldleProc, to an 
optional background procedure run whenever the Print Manager has directed 
output to the printer and is waiting for the printer to fmish. 1be background 
procedure has no parameters and returns no result; the Print Manager simply runs it 
at every opportunity. 

If you don't designate a background procedure, the Print Manager uses a default 
procedure for canceling printing. 1be default procedure polls the keyboard and sets 
a Print Manager error code if the user types Apple-period. If you use this option. you 
should display a dialog box during printing to inform the user that the Apple-period 
option is available. 

If you do designate a background procedure, you must set pidleProc after presenting 
the dialogs, validating the print record, and initializing the GrafPort. 1be routines 
lhat perform these operations reset pldleProc to NIL. 

1 I I ~ I I I I : I I 
Important 
If you write your own bockgroi.Xld procedi.Xe. you must be careful to avoid a 
number of subtte concurrency problems 1hat can arise. For Instance. If the 

1 backgrOI.Xld procedu'e uses QulckDraw II. It must be ue to restore the GrafPort 
1 1 being used for pr1nflng as the current port before retuming. It's partlcular1y 
1 1 - · Important not to attempt any printing from within the background procedure: 

1he Print Manager Is not reentrant. If you use a background procedure that runs 
you- application concurrently wt1h printing. It should disable an menu Items 
having to do wl1h printing. such as Page Setup and Print. 

I 
15-24 

I I I I I 

Chapter 15: Print Manager 

I t I I I • I 



• ' .. ':\!::-I '~:- \\ • t" ·': ~ • 'l 

---·----- --------- -------------·-·· -- ... 

$0113 PMBootlnit 
Initializes the Print Manager; called only by lhe Tool Locator. 

Wamlng 
An application must never make this call. 

Parameters 1be stack is not affected by this call. 1bere are no input or output parameters. 

Errors None 

C CaD must not be made by an application. 

·' 

I I 

Print Manager housekeeping routines 15-25 

---------- -------·-·-------------------···--···--···-·-· -··-- -- -:- '-"" ~ --

I 



.... 

$0213 

Parameters 

PMStartUp 
Starts up the Print Manager for use by an application. 

Important 
You application must make this can before tt makes any other Print Manager 
calls. 

Stack before call 

p1Wiou.s contents 

user/D 'Word-ID number of the application 

dPageA.ddr Word-Bank $0 starting address for 2 pages of direct-page space 

+-SP 

Stadt after call 

I previous contents 1+- SP 

$1301 missingDriver 

System Loader errors 

Tool Locator errors 

Memory Manager errors 

Specified driver not in DRIVERS subdirectory of 
SYSTEM subdirectory 

Returned unchanged 

Returned unchanged 

Returned unchanged 

c extern pascal void PHStartUpCuseriD,dPageAddrl 

Word useriD; 

Word dPageAddr; 

• 

I I i I I 1 I I I I 

15-26 Print Manager housekeeping routines 

I I 

~----- -- =-~~=-:_-=-~=--- ·-_: --~--~ .:..:··:_-~ :~·L-~- -.:_-:_-·:.-:...---:·-..=-=-=-:...-=--=--.:-~-=.- -:_-
1 "lrim: 7 -; /H,·· X 9" 

~T~1r;in~: Tc•p: ~ ·s··. F.'l\ll: 1:':". 
G.~~n~·r~ :..;.:.··. c· >L;i .. i,~, .. : ~ ... ~·· 



$0313 PMShutDown 
Slmts down the Print Manager. 

Important 
If VOll' appUcatlon has started up the Print Manager. the application m.JSt make 
this call before tt quits. · 

~Parameters 1be stack is not affeaed by this call. 1here are no input or output parameters. 

Errors None 

'C extern pascal void PHShutDown 0 

$0413 PMVersion 
ltetums the version number of the Print Manager. 

Parameters 

Stack before caD 

I Word-Space for result . 
•-------- +- SP 

wordspace 

prw;ou.s contents 

Stack after call 

l Word-Version number of the Print Manager 
•--------- +- SP 

verstonlnfo 
,pn!Vtou.s contents 

-Errors None 

c extern pascal Word PMVersion() 

: I 
+--t-------t-1""·-------

Print Manager housekeeping routines 15-27 

- - : - .._ '- ·-· -- - - - - - ·-.. - ···- -

i-

I 



~0513 PM Reset 
Resets the Print Manager; called only when the system is reset. 

Warning 
An appllcaflon must never make this can. 

Parameters 1be stack is not affeaed by this call. There are no input or output parameters. 

Errors None 

c Call must not be made by an application. 

$0613 PM Status 
Indicates whether the Print Manager is aaive. 

Parameters 

SUlek before call 

•J. previous contents 
words pace 

Stack after caD 

, pn!VIous contents 

I 4CIIveFiag 

Errors None 

Word-Space for result 

~SP 

Word-BOOLEAN; TRUE if Print Manager active, FAlSE if inactive 

~SP 

C: extern pascal Boolean PMStatus() 

15-28 Prtnt Manager housekeeping rouHnes 

.. - --- .J .,..L~-· . 

Trim: 7 '116" X l)'' 
'MarJ!in-:: TC\T": ~;~". f'1'1(\t· 1 .'"~". 



Print Manager routines 

$1613 PrChoosePrinter 
Conduas a chooser dialog with the user to determine what printer and port driver to 
use. The tlrlt.JeTOumgedFJa& if TRUE, signals that lhe user has selected a different 
driver dw1 the one currently being used 

Parameters 

Stack before call 

previouS contents 

&IJOrdspace l Word-Space for result 
~--------------+-SP 

Stack after call 

I previous contents 
drlverChangedFlag I Word-BOOLEAN; TRUE if driver changed, FAlSE if no change 

+-SP 

Errors None 

c extern pascal Boolean PrChoosePrinter() 

Print Manager rouflnes 15-29 

---------------- - - - - - • - '· 'L. .• -· 

-~ 

~-



--------------------

tJ .., 
..... 
.,J 

$0F13 

Parameters 

---------------

PrCioseDoc 
Oases the Gra&ort being used for printing. For draft priruing, P.OoseDoc ends the 
printing job. 

For spool printing, PrOoseDoc ends the spooling process; the spooled document 
must now be printed Before printing it, your application should call the PrError 
routine to fmd out whether spooling succeeded If spooling did succeed, the 
application must make sure that a lOK block of memory is available to allow for the 
printing buffer and then call the PrPicFUe routine. 

+ Note: Your application can use the Memory Manager routine MaxBlock to ensure 
that a lOK block is available. 'See the section •MaxBtock• in Chapter 12, •Memory 
Manager.• 

Stack before call 

1-prev1ous contents F prinJGraft'oriPtr Long-POINTER to GrafPort to be used for printing 

+-SP 

·\!:! Stack after caD 

I --, 

I previous contents I 
+-SP 

Errors $1302 portNotOn Specified port not selected in Control Panel 

c extern pascal void PrCloseOoc(printGrafPortPtr) 

GrafPortPtr 

I I I ! 

15-30 . Print Manager routines 

Tnm: 7 -::/lh •. x LJ" 
~~~!:~:~i·< ·r,':': ~·s··. F~--~,:: J.·~··. 
r~.J!·,·r· ~ .:··. ('~:: .. :.: ... ·: _-:.,··

printGrafPortPtr;

I I . I I I I

$1113

Parameters

RECTC>

PrCiosePage
Ends the printing of 1he ament page. 1be routine signals 1he Print Manager that your
application is finished with this page, so that the Print Manager can perform whatever
dose operations are required for the rurrent printer and printing method.

Stack before call

prwtous etmlents

, - prlr'llGrajPoriPtr long--POIN'IER to GrafPort to be used for printing

tt--------------I~SP

. Stack after caD

I prwtous contents I~ SP

Errors $1302 portNotOn Specified port not selecred in Control Panel

c extern pascal void PrClosePa9e(printGrafPortPtr)

GrafPortPtr printGrafPortPtr;

•

Print Manager I'QUtlnes 15-31

------- - ---------: -~-...::--

i.-

l

\'ERSU

-- --- ------------ -----

$0913 PrDefault
P.ills the fields of 1he specif~ed print JeCOrd with default values for the ament printer.
1be record with the prlnlRecordHandle may be a new or an existing print record.

• I

Parameters

Stack before call

pnnnous contents

--PrlntRecordHandle- J.ona--HANI)LE to print record

+-SP

Stack after call

I prevtous contents I
+-SP

Enors $1303 noPrintRecord

Memory Manager errors

No print record was sped.fied

Returned unchanged

·C extern pascal void PrDefaultCprintRecordHandle)

PrRecHndl printRecordBandle; .

I I I I I I I I I I

15-32 Print Manager routines

-L ,- -- _________ - - --- -- -- - -- - -- -:; :...i ~D- - -- --

.1 Trim: 7 ;/16"' X~, ..
\:.u :!ith: T11p: ':/S". F~li->1: 11:··.
', :!tt~"r: ~ : ··. Oui:"·i,! ... ·: ·"'-';t\ ·•

II

RI:.CTO

------ --- --- --- ----- -.

$2313 PrDriverVer
letums lbe version number or the cunently illiW1ed printer driver.

Parameters

Stack before call

I Word-Space for result 1--------+- SP

previous contents

fliOrdspace

Stack after caD

·1 '"7e:o:;e;u I Word-Version number or the printer driver
I--------+- SP

Errors Noue

c extern pascal Word PrDriverVer(l

Print Manager roUttnes 15-33

. . ' ·.
. ..
~ :

$1413 PrError
Returns rhe last printer error code left during the printing loop by Print Manager
routines. In addition to the tool set error codes~ Table 15-7 in lhe seaion -pfint
Manager Summary• at the end of this chapter), other posstble error codes are as
follows:

No error $00
prAbort $80

Parameters

Stack before call

prevtous contents

IIJOrdspace Word-Space for result

~SP

I Word-Last printer error code left by Print Manager ~tine 1--------~ SP

previous contents

last Error

Errors None

C extern pascal Word PrError 0

15-34 . Prtnt Manager routines

~1- •! =--~- .:
. . -

.·· --
. - - -- . - ·-- :: ···'· ~--

I_---
r--
1

L

$0C13 PrJobDialog
Concluas a job dialog with the user to detennine the print quality, range of pages to
print, and so on. The initial settings displayed in the dialog box are taken from the
printer driver, where they were retained from the previous job (with the exception of
lhe page range, which is set to All, and the number of copies, which is set to 1).

If the user confmns the dialog, the print record is updated, the PrValidate routine is
automatically called, and the routine returns TRUE. O!herwise, the print record is left
unchanged, and the routine te!Ums FALSE.

tmportant . ~

Never call PrJobOialog between 1he PrOpenPage and PrCiosePage catls.

+ Nole: Since the job dialog is associated with the Print command, you should
proceed with the requested printing operation if cmVlrmFiag is TRUE.

'Parameters

Stack before ca1l

1Jf'W'OU5 contents
WJOrdspace Word-Space for result

r oL. IRecordHandle- Long-HANDLE of print record

-f-SP

Stack after call

previous contents

Errors

c

conftrmFlag Word-BOOLEAN; TRUE if user confarms dialog, FALSE if not

+-SP

Memory Manager errors Returned unchanged

. extern pascal Boolean PrJobDialog(printRecordBandle)

l'rRecHndl printRecordHandle;

Print Manager routines 15-35

--4 ·:- •.c. -_ •

I
~

""'·

1

~ i
. I
I i

!

$0E13

Parameters

PrOpenOoc
Jniriali;res a Gn.fPort for use in printing a doalment, makes it che .aurent port, and
mums a poirUer ro che port.

Important
You must balance every can to PrOpenDoc with a can to PrCioseOoc.

Saac:k before call

prwtous contents

- longspace - Long-Space for result

--PrlntRecordHandle- Long-HANDLE to print record

- prlntGrajPortPlr - Long-POINTER to GrafPort, if desired; NIL to allocate new GrafPort

~SP

Slack after call

. - previous contents

r- prlntGrajPortPlr Long-POINTER to GrafPort

~SP

I

$1302 portNotOn Specified port not seleaed in Conuol Panel

$1304 badLaserPrep 1he version of the laserPrep flle in the
laserWriter is not compabble with this version of
the Print Manager

$1305 badLPFile The version of the laserPrep flle in the DRIVERS
subdirectory or the SYS1EM subdireaory is not
compatible with this version of the Pnnt Manager

$1306 papConnNotOpen Connection can't be established with the
LaserWriter

$1307 papReadWriteErr Read-write error on the laserWriter
I I I ' ••

1 · Memory Manager errors

~--· P DOS . ro errors

Returned unchanged

Returned unchanged

Flrlnt Manager routines -- -·-· -- ··------·---------

- - - -- .. : -L<;_::- --

·•· I

·• • • • ~ • •· •' I ·-

c extern pascal CrafPortPtr PrOpenDoeCprintRecordHandle,printCrafPortPtrl

PrReeBndl printRecordHandle;

CrafPortPtr printCrafPortPtr;

More about PrOpenDoc parameters.
'the print record with the prlnlRet:OrdHandle will be used for this printing operation;
you should alteady have validated this print record.

Depending on the setting of the bjDocLoqJ faeld in the job subrecord, the GrafPon
to be used for printing will be set up for draft or spool printing. Por spool printing,
.the spool me oame, volume reference rwmber, and wrsion number are taken from
:tbt job asbteconi

1he prinlGrtzjPortPtr parameter is normally NIL. If the application passes a pointer
to ils own Grafpon. the Print Manager will use it; otherwise, the routine allocates a
·new GrafPon and returns a pointer to that GrafPort.

Print Manager rOutines 15-37

••

>"'

$1013 PrOpenPage
Begins a new page. The page is printed only if it &Us within the page range given in
lhe job subreco:d.

Important
You must balance every can to PrOpenPoge wHh a ccin to PrCiosePoge.

For spool printing, pageFramePtr poinrs to a rectangle to be used as lhe QuickDraw II
piaure frame for this page. nus ledangle can be used for scaling. When you print
the spooled document, this rectangle will be scaled (with the QuiclcDraw n Auxniary
DrawPiaure routine) 10 coincide with lhe rl'age rectangle in the printer information
subrecord. Unless you want the printout to be scaled, you should setpageFramePtrto
NIL 1bis uses the rPage reaangte as the piaure frame, so that the page wilt be
printed with no scaling.

Important
Don't call the QulekDrow II Al.Dclllory routine OpenPief\xe while a page Is open
(offer a PrOpenPoge eoll and before the following PrCiosePage call). You con.
however. call the QulekOrow II Auxiliary routine OrowPicture at any ttme.

Also. the GrafPort Is completely relnltlallzed by PrOpenPage. lherefore. after a
PrOpenPage call. you must set GrafPort features such as the font and font size
for every page that you draw.

Parameters

Stack before call

previOuS contents

~ pnntGrajPortPtr

1- pageFramePtr ..

stack af\er can

Long-POINTER to Graf'Pon being used for printing

Long-POINTER to scaling reaangle; NIL for none

~SP

I previous CDI'llnlts 1+-SP

--- ---+-~· --- ----...---.- _ _.._ ------ ··----~-~----.--"-1------1"-!----~i--

,Print Manager routines

-· -

il .' .'" .: : ::; "

·. ·- : -~·--

.. "". ,•.•

. ::' -·"'
. •.• ... • ot: . ••• , •• .. :. - .

.. I''" • • • :. ...: • • ' I •: ,. • ._ •

I .
. !

~ .

• I

; I

' .
. I

I

Errors

·C

$1302 portNotOn

Memory Manager errors

Specified port not seleaed in Control Panel

Returned unchanged

extern pascal void Pr0penP•9•CprintGrafPortPtr.pa9eFr ... Ptr)

GrafPortPtr printGrafPortPtr;

Print Manager routines 15-39

. $1213

Parameters

PrPicfile
Prints a spooled document. If spool printing is hcing llSed, your application should
normally call PrPicFile after it calls the PrCloseDoc routine.

The print record should be the printer ~ord already used for this job. The spool file
name IUld version number are taken from the job subrecord of this print record.
After printing is successfully completed, the Print Manager deletes the spool me from
the disk.

You'll normallr pus l'lc1L for the prlntfJra.J'Po11PI.r; The Print Manager will then
allocate the memory block~ !1 needs from tlle Memory Manager.

lmport~n!

Be ue not to pass a pointer to the same GrafPort you received from
PrOpenDoc. If that port was allocated by the PrOpenDoc routine Itself (that Is,
If the prtntGrafPortPtr to PrOpenDoc was NIL). then the PrCioseDoc routine will
have disposed of the port. making your pointer to It Invalid. If you provided your
own memory for PrOpenDoc, you can 1..-M the ~!Tift memory again for PrPicFile.

Stack before call

previous contents

-prlntRecordHandle- Long-HANDLE to print record

- prlntGrajPortPtr - Long-POINTER to printing GrafPort; NIL for default allocation

- statusRecPtr - Long-POINn:R to printer ~.t1~1.~ ~c?rd (see Figure 15-13)

f-SP

Stack after call

I previous contents 1+- SP

Errors $1302 portNotOn

Memory Manager errors

Specified port not selected in Control Panel

Returned unchanged

j

c extern pascal YOid PrP1cf1le·cpr1ntRecordBandle,pr1ntGrafPortPtr,
atatusRecPtr)

Pra.cBndl ~intRecordBandle;

GrafPortPtr printGrafPortPtr;

PrStatusl'ecPtr •tatusRecPtr;

Printer status record
The PrPicPiJe routine uses the printer status record pointed to by statusRecPtr to
teport on ils progress. 1be record is 28 bytes long and is shown in Figure lSo-13.
Your background procedures Gf any) can use this record to monitor the state of the
printing operation.

The fPBDirty raeld is 1'1tUE if anything hu already been printed on the current page;
otherwise, the field is FAlSE.

Offset Field
$0

1
Word-Number of pages In spool file

2
3

Word-Poge being printed

•
5

Word-Number of copies being reQUeSted

6
7
I
9

OA
08
oc
00

Word-BOOLEAN; lRUE If started printing page

OE
OF
10
11
12
13
1A

l.clng-POINIBl to GrafPort being used for printing

Figure 15-13
Printer status record

15-41 .

••
....

l

._; ·.

' .. '.: .'

as::z::_,._,.-..... · ··-·...,.nnm ..

$0013 PrPixeiMap
Prints Nl « ~ Qf 3 ~Jed ~ t'll'.!tp.

Parameters

Stack before caU

previous contents

~ srcLocPtr

- srcReciPtr

colorFJag

-
- Long-POINTER to reaangle enclosing portion of pixel map to print

Word-BOOLEAN; lRUE if printing in color, FAlSE if in black and white
r-sP

Stack after caD

I previous contents lr- SP

Errors

c

$1302

$1304

$1305

$1306

$1307

portNotOn

bad.LaserPrep

Specifaed port not selected in Control Panel

The version of the LaserPrep fale in the LaserWriter is
not compabble with this version of the Print
Manager

bad.LPF ile The version of lhe LaserPrep fale in lhe DRIVERS
subdireaory of the SYSTEM subdireaory is not
mmpabble with this version of the Print Manager

papConnNotOpen Conneaion can't be established with the LaserWriter

papReadWriteErr Read-wrile error on the LaserWriter

Memory Manager errors

QuickDraw U errors

Returned unchanged

Returned unchanged

extern pascal void PrPiaelMaptsrcLocPtr.srcRectPtr,colorFlaq)

LocinfoPtr srcLocPtr;

RectPtr srcRectPtr;

Boolean colorFlaq;

- -- - - ·- : -:.__ ...

l~ I:CTO

$2413 PrPortVer
Jtetums the version number or d.c amend)' mscailed pOn driver.

Parameters

Stack before call

previous contents

VJOrdspace I Word-Space for result
I--------+-SP

sed::.J:dler .call

I previous content.!.

IJentonlnfo

Errors None

Word-Version number of the port driver

+-SP

c extern pascal Word PrPortVer()

Print Mar.ag11r I'Cl4:rtines

-· -- '! - ''- ' :- -

I

15-43. '

tJ
,.J

.;..., .
~

,. -_:_ .• : .. !

- -

Parameters

Stack after call

PrSetError
~re.s ... ~v~U.l':td '~'Cf1t-w ~lT-t:· 1t?! !~c~,~1 ... -r ... :t\bl~ ,..~JC the PriN Manager keeps its
p:'.in!f!! ~~o• ~cl.;e_

For t>ntnpJe, you~~~ u.c;e this proc::edwe .:.o abort& piaa&1·•6 ~pc1~tion in progress by
JJet:t'ng r.he e-.rror a>de to prA.bo~t.

~ previous contents 1+- SP

Errors None

c
Word errorNumber;

--- ---.....J,-----~

: -'- ~--

! .. ~ - • ..• \~ : ! ..

-- - __ I

$0813

Parameters

PrStiDialog
Conduas a style cfialog with the user to determine the page dimensions and other
information needed for page serup. 1be initial settings displayed .in the dialog box
are taken from the print record. U' the. user confums the dialog, the leSUlts of the
dialog are saved in the specified print record, the PrValidate routine is automatically
called, and the routine rerums TRUE. Otherwise, the print record is ldt unchanged,
and the routine returns FAlSE.

Important

Never coli PrSHOialog between PrOpenPage and PrCiosePage calls.

+ Note: If the print record wa..o; . taken from 2 dCJCUment, you should update its
contents in the document if confirmFlag is TRUE. This causes the results oLthe
style dialog to remain with the doa.ament

Stack before call

previous contents
words pace Word-Space for result

-printRecordHandle- Long-HANDLE 'to pz::int record ..

f-SP

Stack after call

I previous contents

, confinnFlag Word-BOOLEAN; TRUE if user confums dialog, FAlSE if not

f-SP

£rrors MemocyMa~gererroB Returned unchanged

c extern pascal Boolean PrStlDialog(printRecordHandle)

PrRecHndl printRecordHandle;

! : t - --· __ .,. ____ -

I

r

....

-- -··· ..
0 •o•o' I

$0A13 PrVaildate
Checks ~ ax'~!lt d tbe !pedfled pirrl record fa ~mp.t.ib!!ity with the current
~ion number of the Print Manager and lhe curr.:.~dy lr.~!!!!ed printer. If the record
is valid, the routine returns PAISE (no change). If the record is invalid, the record is
adju$ti:d tO ~ derau!t va.iues for che ~~~ p-W~..t" ,. . .-1!1 :he nlUtme returns TRUE.

-------~-:-~ ____ ~ ~.......,.---=.:r.~--=t"-----------
Important··
Never can PrValldate (or PrStiOialog or PrJobDialog. which call It) between
PrOpenPage and PrCiosePage calls.

If the ament print record is set for an Image 'Writer ~'h'~\c: :t \NerWriler is seleaed or
vice vetSa, PrValldate calls PrDefault to set the prh~i ~"l~o:l (pr lhe appropriate
printer.

PrValidate also makes sure all the infonnation ln. !he pdn~ ~e·t~rd is internally self­
consistent and updates the print record as necessary.· 1bese changes do not affect the
routine's Boolean result

Parameters

Stack before call

previous contents
.···: .. ,;:·' .- :_ . f

wordspace

~SP -·- ·.:

Stack after caD

Memory Manager enors letumed unchanged

c extern pascal Boolean PrValidateCprintRecordBandle)

PrRecHndl printRecordaandle;

I i I

. Print iMcitlt;og~::'n rooftnes

. .

... -
: -1.~- _ ... -

Print Manager summary
nus seaion briefly SUJIUnallzes the constants, daa J.truerures, and .tooltet error
axSes contained in the Print Manage!'.

-----------------:------·-.-~......_~~-----
Important

1hese deflnlflons ore provided In the appropriate Interface file.

Table15-5
Print Manager constonfs

Name Vatu.

Printer error codes
prAbort $80 Abert printing

Table 15-6
Print Manager data structures

Name Offaet Type

Print record (Prlec)
prVersion so Word
prlnfo $2 PrlnfoRec
!Paper $10 Rect
pStl $18 PrStyleRec
prinfoPT $2A J.(bytes
prXInfo $38 24 bytes
prJob $50 Pr]obRec
printX $64 38 bytes
iReserved $8A Word

Printer Information subrecord (Prlnfolec)
iDev SO Word
1iVRes $2 Word
iHRes $4 ~ord
rPage $6 .Rect

Delfnlflon

Version number of the printer driver­
Printer information subrecord
Paper rectangle .
Style sob record ·. · · · ·· ··
Rese1Ved for internal use ·
Resetved ior' intemal. use
Job subrecord ·:, .. : ,
Reserved for internal use·
.Reserved for internal use

Printer type .
Vcrtial.·re..~lution o(primer __ · · .

· Horizontal reSolution· of printer·· .. ·· ·.
Page rectangle 1 · • ··· ····-· · •

15-47
•• >.

-

-
.. . "' . ~

\'E.RSO
"""'t- -· - -·--- - -- ·- - - - - --,- - --- - -- -· - - - -- - - . _j ----- --------'-'--

Table 1_5-6 (continued)
Print Manager data atrue1ures

.. _,Definition

MHr· ~·IUbrec:~i)Piltytelic) • _. ·· .. ·
WDev ' . · ·> - -._ SO· .. --~--~ .:.word-·- OUtput-qualitt:L.."llor,;maion
intemA $2 5 Words lteserveci for ~niJ w:e
feed $8 .;r "i . .., Word · • · · hper feed t~
paperType SA Word . l?tpet;.type;. ' .-
aWidth ::::$cf· ·c:,·.>-word· -,:· · ; ~se wid.ih fo.:·tmJ.geWriter
~izing SC - n'· Wold · ·· · ·.:veniw ~b:Utg fof ~Writer
reduction_ ··:i:'Y SE-T ·· ""'Word Peftent reduwon. WU«'riter only
internB _;flO · Word ~ b~~i.il ~J.&e

Job lnfonnatlon ~-~bh:e~
ifstPage so · · Word .·
illtPage $2 Word·
iCopies $4 Word
b]D~oup $6 Byte .
fFromUser $7 Byte
pidleProc H. ~ Pointer
pPileName $ll :.:, Pointer
iPileVol $11 ' . .,::. Word
bfileVers $13 i ::.. Byte
bJobX $14. \~ Byte

Printer ·llatua aubreeord CPIStalualec)
iTotPages so Word
iCurPage -. S2 Word
iTotCopies $4 Word
iCurCopy $6 ·word
iTo~Bands $8 Word
iCurBand SA Word
fPgDirty sc Boolean
fimaging SE Word

, .." :. f~-~~se. ,tc/~.: · ·'·
l,ast page ·10 pd;1l .•
Nu.-r .Qf ~pieS' _
Printina method
Jteserved for intemal use
Pointer 10 bac:k&round procedure
Spool rale pathname
Spool fale volume reference number
Spool fale Version number
Reserved for inlemal use

Number of pages in spool fale
Page being printed
Number or copies requested
Copy being printed
leselved for internal use
Jteserved for intemal use
TRUE if swu:d printing page
leserved for inlemal use

hPrint $10 'PrRecHndl Handleofprintn=cord
pPrPort Sl<f GnfPonPu Poinrer 10 GralPon bema use for

printina
hPic $18 Long ttese.rwd for iDiema1 use

NOM: The actual ueembly-laftsuase equaieS bave a lowerc:Ue- o (the hiuer) In front of aU of
the names Biven in tbis table.

I' ,·~ .. ·.--.... _-',.··_li''
'; "' ~ •<I _,

.. : ;. t·' . • ~ . ,.,. "' . . .,. :. ' . •.
~a ~.af-;. • • . t ·' • , ".,. & • •• •

(;i.:! ~·. -:_.: .. ·. ~ '~;·;·1\h:· ~~~··

-·~__.:.

Table 15·7
Print Manager error codas

Code

$1301

$1302
$1303
$1304

$1305

$13o6
$1307
$1321
$1322

Name

missingDriver

portNotOn
noPrintRecord
badLaserPrep

badLPFile

papConnNotOpen
papReadWriteErr
startUpA1read~de

invalidCtlVal

~--, n:·.---1_~ ...

'i -~' I /
a\,:,:i·\':~-\\'c,:~\· ~ ... ·· ...

.'" ·: -,'.' ~,-~·:'{J. ~:ir!J '"~" -~-~-- ~- ' ·. ,'<;;;-~ ~--~~-t~i---.·~1_
SpedfJed ~..r. not in the DRIVERS ~aciry; of dle SYS'I'E\f . • ::
S!Jbdirectocy· · ... r · " . ··.·

·' , .. ·'- --·-·- ·~---~ ::.
Specifaed port not selected in the r;:onuol panel .. ;,
No print record:specifaed .··· 1. ,.

. ·"fhe versioo of the·LuerPrep ftle in tbe.J.aserWriter-r:is not
· compal!ble :with tb!s version of the Print Manag~r ,;: ;;;c • . ,

.. nae vettion of:dle l.a!erPrep flle il:l the D~·fUbdirectory o(r· ·;:

·::~~=rectory is not compatible with: !~:Us version of , ~~~:~:.

.,.; ..,..

Connection can't be established with the •l.UerWnter ·· v:; , .• ···: .. ,. ··•"

Read-wn:te error'On-:lhe Laserwnu:r· · ~~ -~ :\-·
llDStanUp'~falrea"y made · .. ,
Invalid control ~u~ specified ·' . . 1!l·:i• •.

- < ":i,):'';,~.i~~J()--... --~:;·:

; ..• ,Jr•• l•, ; >, ; .. ; .. ; ..
; .•. "·-; -;--·s: ·•. ·--. -t,':.·~ .. ,. t.:,-

. ~­'•;" "•.;~··:

. '.':'.> •

··,. ,!:

~ ..

~ .. '!'.-··~· .•• :." _ .. _-__ ·_~L\ .• -~;(""'.::~: . :. " ··:,.-~Fr'"

Print Manager ammory

- -- :- . -.... - --· -- - ··- -

•·. ; ?

1""'''

" ,. ~ , .. ~ ·t
·-.-·--1-...

.,.,

.... J
. :'}

-..--- --·- ----· - •. r~

.LA~~~·::·$~)~-~~:\~w•: Edi•l"" __ _

"•'-4<':' ,. -~I - .. •- ••·· .. ••• ------ --·-·· /!'"· ...

·.

<THE APJII.E PUBJJSij!fllG•SV$TEMj -

1bis 'Apple manuaLYIU,·~
edi~ and compQ,Sed.ioit-a ·.
desklO u : m"'"''"ft . . p ...,......_.. ... "6 ~10>V>ii' . --o
the Af>ple Macmt~h.·'~;·and ·
Microso~ Worc1. ,J»:r()()f and
&nal pages ~-·~'C)ft1liw:
Apple . I.aserWri~rtt Pl"' ...
POSTSCRIP~, 11\e ,~Wfiter
·page--desaipt!Qn ia~ge; was
developed by Adobe. SYstems
Incorporated. JJne dJ'a~ ..
were .aeated with A4obe · ·
mus~tot111 •

Text type is m:·.G:~n~
(a dcrwnloaqable font ,distributed
by .AdQbe S~). DiSplay: type
is rrc Avant Garde Gothic:ID.
Bullets -.re .ITC Zapf Dingbats•.
Pr9gram l~tings az:e set· in Apple
CoUrier, a monospaced fonL

'·
'

-~ . -~ '_-

.-> .
,.r

~· '... ~ .. • ~ ~'· . !
~~~;:.·:!· ..... 

~~~~:-c~~ct &r~.e.-(f- .7~~-t.· 7 /~- ~-~ 
.--~·CL ,,~)

