Apple 2 Technical Manual + ProgrammersAid#1 « 1978

<
Apple 2
Technical Manual

Apple 2
Programmer’s Aid
#1

Document 030-0026-01
1978

Author:
Apple Computer, Inc.

Printed by: Macintosh Picture Printer 0.0.5 1999-01-11 Printed: 2001-07-22 19:21:35

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0000 of 0113 |

Apple 2 Technical Manual <« ProgrammersAid#1 « 1978

PROGRAMMER’S AID #1

INSTALLATION AND OPERATING MANUAL

2

™

Apple U’rlll‘ry Progrc:ms

00h x 600V pix: 2446h x 3487v

| Author: Apple Computer, Inc. e Document # 030 0026 01 Page 0001 of 0113)

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PROGRAMMER’S AID #1

INSTALLATION AND OPERATING MANUAL

™

Apple Utility Programs

DAVID T. CRAIG

“A2MAN 030-0026-01 1 2-COV.PICT” 165 KB 2001-07-22 dpi: 600h x 600v pix: 3120h x 4591v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0002 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

Published by
APPLE COMPUTER INC.
1026@ Bandley Drive

Cupertino, California 95014
(408) 996-1¢1¢

All rights reserved. No part of this publication
may be reproduced without the prior written
permission of APPLE COMPUTER INC. Please

call (40¥8) 996-101¢ for more information.

©1978 by APPLE COMPUTER INC. Reorder APPLE Product #A2L@@11

(930-0026)

“A2MAN 030-0026-01 1 3-COV.PICT” 63 KB 2001-07-22 d

pi: 600h x 600V pix: 2643h x 1362v
| Author: Apple Computer, Inc. « Document # 030-0026-01

Page 0003 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

TABLE OF CONTENTS

INTRODUCTION

Features of Programmer’s Aid #1

XIL How to install the Programmer’s Aid ROM

CHAPTER 1
RENUMBER

2 Renumbering an entire BASIC program
2 Renumbering a portion of a BASIC program
4 Comments

“A2MAN 030-0026-01 2-01i.PICT” 117 KB 2001-07-22 dpi: 600h x 600V pix: 2742h x 3896v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0004 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER 2
APPEND

6 Appending one BASIC program to another

6 Comments

“A2MAN 030-0026-01 2-02ii.PICT” 60 KB 2001-07-22 dpi: 600h x 600v pix: 2715h x 3887v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0005 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER 3
TAPE VERIFY (BASIC)

8 Verifying a BASIC program SAVEd on tape

8 Comments

“A2MAN 030-0026-01 2-03iii.PICT” 72 KB 2001-07-22 dpi: 600h x 600v pix: 2697h x 3869v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0006 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER 4

TAPE VERIFY
(Machine Code or Data)

1¢ Verifying a portion of memory saved on tape

10 Comments

v

“A2MAN 030-0026-01 2-04iv.PICT” 85 KB 2001-07-22 dpi: 600h x 600v pix: 2759h x 3869v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0007 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

RELOCATE

CHAPTER

12 Part A: Theory of operation
12 Relocating machine-language code
13 Program model
14 Blocks and Segments
15 Code and Data Segments
16 How to use the Code-Relocation feature
18 Part B: Examples of Code relocation
18 Example 1. Straightforward relocation
19 Example 2. Index into Block
2¢ Example 3. Immediate address reference
2@ Example 4. Unusable Block ranges
21 Example 5. Changing the page zero variable allocation
22 Example 6. Split Blocks with cross-referencing
23 Example 7. Code deletion
24 Example 8. Relocating the APPLE II Monitor ($F8Q@-SFFFF)
to run in RAM ($8Q@-SFFF)
25 Part C: Further details
25 Technical Information
26 Algorithm used by the Code-Relocation feature
27 Comments

\'

“A2MAN 030-0026-01 2-05v.PICT” 144 KB 2001-07-22 dpi: 600h x 600v pix: 2751h x 3878v

| Author: Apple Computer, Inc.

Document # 030-0026-01 Page 0008 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER 6
RAM TEST

Testing APPLE’s memory
31 Address ranges for standard memory configurations
32 Error messages

Type I - Simple error
Type I1 - Dynamic error

33 Testing for intermittent failure

34 Comments

Vi

“A2MAN 030-0026-01 2-06vi.PICT” 79 KB 2001-07-22 dpi: 600h x 600v pix: 2732h x 3905v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0009 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER 7
MUSIC

36 Generating musical tones

37 Comments

Vil

“A2MAN 030-0026-01 2-07vii.PICT” 62 KB 2001-07-22 dpi: 600h x 600v pix: 2742h x 3896v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0010 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER
HIGH RESOLUTION GRAPHICS

Part A: Setting up parameters, subroutines, and colors

4@ Positioning the High-Resolution parameters
41 Defining subroutine names
41 Defining color names

42 Speeding up your program
43 Part B: Preparing the screen for graphics

43 The INITialization subroutine
43 Changing the graphics screen
44 CLEARing the screen to BLACK
44 Coloring the BacKGrouND

45 Part C: PLOTting points and LINEs
46 Part D: Creating, saving and loading shapes

46 Introduction

47 Creating a Shape Table
53 Saving a Shape Table

54 Loading a Shape Table

55 First use of Shape Table

56 Part E: Drawing shapes from a prepared Shape Table

55 Assigning parameter values: SHAPE, SCALE and ROTation
57 DRAWing shapes

58 Linking shapes: DRAWI

59 Collisions

60 Part F: Technical information
60 Locations of the High-Resolution parameters
61 Variables used within the High-Resolution subroutines
62 Shape Table information

63 Integer BASIC memory map

64 Part G: Comments

Viii

“A2MAN 030-0026-01 2-08viii.PICT” 201 KB 2001-07-22 dpi: 600h x 600V pix: 2723h x 3896v

Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0011 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

APPENDIX “
SOURCE ASSEMBLY LISTINGS

h=Resolution Graphics SNPPR-SDTE
RISEAY LB R Y

/6 enunber
S Append SDABC=SD AR
S Polocate ShabDC=sDH"D
8 Pape Veritfy (BASTO) S5 35-8DH03
S Fape Verity (b P2 Code & Data) SDHHSH=SDHAA
N PALY Test SHOBC =YD HY
8/ U SHh717=-SDh718

IX
“A2MAN 030-0026-01 2-09ix.PICT” 92 KB 2001-07-22 dpi: 600h x 600v pix: 2706h x 3860v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0012 of 0113 |

Apple 2 Technical Manual + Programmers Aid#1 -«

1978

APPENDIX I

SUMMARY OF PROGRAM
AID COMMANDS MER

'S

92 Renumber
42 Append
ul Fape Verity (hanio)
43 Tape Verity (Machine Code and Data)
Y3 Relocate (Mactiine Code and Data)
44 RAN Test
4 Tis i
an Bisah=Ueaotatton Crophi
96 Quick Redorence o Hich=-Resolat jon Craphics Toformation
X
“A2MAN 030-0026-01 2-10x.PICT” 102 KB 2001-07-22 dpi: 600h x 600v pix: 2687h x 3797v
* Document # 030-0026-01 Page 0013 of 0113 |

| Author: Apple Computer, Inc.

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

INTRODUCTION

FEATURES OF PROGRAMMER'’S AID #1

Programmer’s Aid #1 combines several APPLE II programs that Integer BASIC
prograrmers need quite frequently. To avoid having to load them from a
cassette tape or diskette each time they are used, these programs have been
combined in a special read-only memory (ROM) integrated circuit (IC). When
this circuit is plugged into one of the empty sockets left on the APPLE’s
printed-circuit board for this purpose, these programs become a built-in
part of the computer the same way Integer BASIC and the Monitor routines
are built in. Programmer’s Aid #1 allows you to do the following, on your
APPLE II:

Chapter 1. Renumber an entire Integer BASIC program,
or a portion of the progranm.

Chapter 2. Load an Integer BASIC program from tape without
erasing the Integer BASIC program that was already
in memory, in order to combine the two programs.

Chapter 3. Verify that an Integer BASIC program has been
saved correctly on tape, before the program
is deleted from APPLE’s memory.

Chapter 4. Verify that a machine-language program or data area
has been saved correctly on tape from the Monitor.

Chapter 5. Relocate 6502 machine-language programs.
Chapter 6. Test the memory of the APPLE.

Chapter 7. Generate musical notes of variable duration over
four chromatic octaves, in five (slightly)
different timbres, from Integer BASIC.

Chapter 8. Do convenient High-Resolution graphics from Integer BASIC.

Note: 1if your APPLE has the firmware APPLESOFT card installed, its switch
must be down (in the Integer BASIC position) for Programmer’s Aid #1
to operate.

X

“A2MAN 030-0026-01 2-11xi.PICT” 266 KB 2001-07-22 dpi: 600h x 600v pix: 2724h x 3942v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0014 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

HOW TO INSTALL THE PROGRAMMER'S AID ROM

The Programmer’s Aid ROM is an IC that has to be plugged into a socket on
the inside of the APPLE II computer.

l. Turn off the power switch on the back of the APPLE II. This is
important to prevent damage to the computer.

2. Remove the cover from the APPLE II. This is done by pulling up on the
cover at the rear edge until the two corner fasteners pop apart. Do not
continue to lift the rear edge, but slide cover backward until it comes
free.

3. 1Inside the APPLE, toward the right center of the main printed-circuit
board, locate the large empty socket in Row F, marked "ROM-D@".

4. Make sure that the Programmer’s Aid ROM IC is oriented correctly. The
small semicircular notch should be toward the keyboard. The Programmer ‘s
Aid ROM IC must match the orientation of the other ROM ICs that are already
installed in that row.

5. Align all the pins on the Programmer’s Aid ROM IC with the holes in
socket D@, and gently press the IC into place. If a pin bends, remove the
IC from its socket using an "IC puller" (or, less optimally, by prying up
gently with a screwdriver). Do not attempt to pull the socket off the
board. Straighten any bent pins with a needlenose pliers, and press the IC
into its socket again, even more carefully.

6. Replace the cover of the APPLE, remembering to start by sliding the
front edge of the cover into position. Press down on the two rear corners
until they pop into place.

7. Programmer’s Aid #1 is installed; the APPLE II may now be turned on.

Xil

“A2MAN 030-0026-01 2-12xii.PICT” 292 KB 2001-07-22 dpi: 600h x 600v pix: 2696h x 4022v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0015 of 0113 |

r: Apple Computer, Inc. Page 0016 of 0113

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER 1
RENUMBER

2 Renumbering an entire BASIC program
Renumbering a portion of a BASIC program

4 Comments

1

“A2MAN 030-0026-01 3 01.PICT" 65 KB 2001-07-22 dpi: 600h x 600V pix: 2697h x 3950v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0017 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

RENUMBERING AN ENTIRE BASIC PROGRAM

After loading your program into the APPLE, type the

CLR

command. This clears the BASIC variable table, so that the Renumber
feature’s parameters will be the first variables: in the table. The
Renumber feature looks for its parameters by location in the variable
table. For the parameters to appear in the table in their correct
locations, they must be specified in the correct order and they must have
names of the correct length.

Now, choose the number you wish assigned to the first line in your

renumbered program. Suppose you want your renumbered program to start at
line number 10¢@¢. Type

START = 10@¢

Any valid variable name will do, but it must have the correct number of
characters. Next choose the amount by which you want succeeding line
numbers to increase. For example, to renumber in increments of 10, type

STEP = 1¢
Finally, type the this command:

CALL -1¢531

As each line of the program is renumbered, its old line number is displayed
with an "arrow" pointing to the new line number. A possible example might
appear like this on the APPLE’s screen:

7->100¢
213->1¢1¢
527->1¢2¢
698->10@30¢
13000->1040
13233->10¢5¢

RENUMBERING PORTIONS OF A PROGRAM

You do not have to renumber your entire program. You can renumber Just the
lines numbered from, say, 30@ to 50¢ by assigning values to four variables.
Again, you must first type the command

CLR

to clear the BASIC variable table.

2

“A2MAN 030-0026-01 3 02.PICT” 250 KB 2001-07-22 dpi: 600h x 600v pix: 2733h x 3986v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0018 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

The first two variables for partial renumbering are the same as those for
renumbering the whole program. They specify that the program portion,
after renumbering, will begin with line number 20¢@#, say, and that each
line’s number thereafter will be 2¢ greater than the previous line’s:

START = 200
STEP = 290

The next two variables specify the program portion’s range of line numbers
before renumbering:

The final command is also different. For renumbering a portion of a
program, use the command:

CALL -1¢521

If the program was previously numbered

19¢
120
399
319
492
509
2099
2922

then after the renumbering specified above, the APPLE will show this list of
changes:

309->209
31¢9->22¢
4B2->240
5¢@->260

and the new program line numbers will be

190
129
200
22¢
240
260

2009

2@22

3

“A2MAN 030-0026-01 3 03.PICT” 145 KB 2001-07-22 dpi: 600h x 600v pix: 2751h x 3978v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0019 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

You cannot renumber in such a way that the renumbered lines would replace,
be inserted between or be intermixed with un-renumbered lines. Thus, you
cannot change the order of the program lines. If you try, the message

%% RANGE ERR

is displayed after the list of proposed line changes, and the line numbers
themselves are left unchanged. If you type the commands in the wrong order,
nothing happens, usually.

COMMENTS:

1. If you do not CLR before renumbering, unexpected line numbers may
result. It may or may not be possible to renumber the program again and
save your work.

2. 1If you omit the START or STEP values, the computer will choose them
unpredictably. This may result in loss of the program.

3. If an arithmetic expression or variable is used in a GOTO or GOSUB, that
GOTO or GOSUB will generally not be renumbered correctly. For example, GOTO
TEST or GOSUB 10420 will not be renumbered correctly.

4. Nonsense values for STEP, such as @ or a negative number, can render
your program unusable. A negative START value can renumber your program
with line numbers above 32767, for what it’s worth. Such line numbers are
difficult to deal with. For example, an attempt to LIST one of them will
result in a >32767 érror. Line numbers greater than 32767 can be corrected
by renumbering the entire program to lower line numbers.

5. The display of line number changes can appear correct even though the
line numbers themselves have not been changed correctly. After the ***

RANGE ERR message, for instance, the line numbers are left with their
original numbering. LIST your program and check it before using it.

6. The Renumber feature applies only to Integer BASIC programs.

7. Occasionally, what seems to be a '"reasonable" renumbering does not work.
Try the renumbering again, with a different START and STEP value.

4

“A2MAN 030-0026-01 3 04.PICT” 287 KB 2001-07-22 dpi: 600h x 600v pix: 2742h x 3968v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0020 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER
APPEND

6 Appending one BASIC program to another

f Comments

5

“A2MAN 030-0026-01 3 05.PICT” 57 KB 2001-07-22 dpi: 600h x 600V pix: 2697h x 3969v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0021 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

APPENDING ONE BASIC PROGRAM TO ANOTHER

If you have one program or program portion stored in your APPLE’s memory,
and another saved on tape, it is possible to combine them into one program.

This feature is especially useful when a subroutine has been developed for

one program, and you wish to use it in another program without retyping the
subroutine. '

For the Append feature to function correctly, all the line nﬁmbers of the
program in memory must be greater thanm all the line numbers of the
program to be appended from tape. In this discussion, we will call the

program saved on tape '"Programl," and the program in APPLE’s memory
"Program2."

If Program2 is not in APPLE’s memory already, use the usual command

LOAD

to put Program2 (with high line numbers) into the APPLE. Using the Renumber

feature, if necessary, make sure that all the line numbers in Program2 are
greater than the highest line number in Programl.

Now place the tape for Programl in the tape recorder. Use the usual loading
procedure, except that instead of the LOAD command use this command:

CALL -11¢76

This will give the normal beeps, and when the second beep has sounded, the
two programs will both be in memory. If this step causes the message

% MEM FULL ERR

to appear, neither Program2 nor Programl will be accessible. 1In this case,
use the command

CALL -11@59

to recover Program2, the program which was already in APPLE’s memory.

COMMENTS:

1. The Append feature operates only with APPLE II Integer BASIC programs.

2. 1If the line numbers of the two progams are not as described, expect
unpredictable results.

6

“A2MAN 030-0026-01 3 06.PICT” 259 KB 2001-07-22 dpi: 600h x 600v pix: 2778h x 3977v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0022 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER
TAPE VERIFY (BASIC)

8 Verifyving a BASIC program SAVEd on tape

8 Comments

7

“A2MAN 030-0026-01 3 07.PICT” 74 KB 2001-07-22 dpi: 600h x 600v pix: 2679h x 3914v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0023 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

VERIFYING A BASIC PROGRAM SAVED ON TAPE

Normally, it is impossible (unless you have two APPLEs) to know whether or
not you have successfully saved your current program on tape, in time to do
something about a defective recording. The reason is this: when you SAVE a
program on tape, the only way to discover whether it has been recorded
correctly is to LOAD it back in to the APPLE. But, when you LOAD a

program, the first thing the APPLE does is erase whatever current program is
stored. So, if the tape is bad, you only find out after your current
program has been lost.

The Tape Verify feature solves this problem. Save your current program in
the usual way:

SAVE

Rewind the tape, and (without modifying your current program in any way)
type the command

CALL -1¢955

Do not press the RETURN key until after you start the tape playing. If the
tape reads in normally (with the usual two beeps), then it is correct. If
there 1s any error on the tape, you will get a beep and the ERR message. If
this happens, you will probably want to try re-recording the tape, although
you don”t know for sure whether the Tape Verify error means that the tape
wasn’t recorded right or if it just didn’t play back properly. In any case,
if it does verify, you know that it is good.

COMMENTS:

1. This works only with Integer BASIC programs.

2. Any change in the program, however slight, between the time the program
is SAVEd on tape and the time the tape is verified, will cause the
verification to fail.

“A2MAN 030-0026-01 3 08.PICT” 248 KB 2001-07-22 dpi: 600h x 600v pix: 2778h x 4013v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0024 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER 4

TAPE VERIFY
(Machine Code or Data)

1y Verifying a portion of memory saved on tape

1 Conmments

9

“A2MAN 030-0026-01 3 09.PICT” 88 KB 2001-07-22 dpi: 600h x 600v pix: 2733h x 3987v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0025 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

VERIFYING A PORTION OF MEMORY SAVED ON TAPE

Users of machine-language routines will find that this version of the Tape
Verify feature meets their needs. Save the desired portion of memory, from
addressl to address2, in the usual way:

addressl . address2 W return

Note: the example instructions in this chapter often include spaces for
easier reading; do not type these spaces.

Rewind the tape, and type (after the asterisk prompt)
D52EG return

This initializes the Tape Verify feature by preparing locations $3F8 through
$3FA for the ctrl Y vector. Now type (do not type the spaces)

addressl . address2 ctrl Y return

and re-play the tape. The first error encountered stops the program and is
reported with a beep and the word ERR. If it is not a checksum error, then
the Tape Verify feature will print out the location where the tape and
memory disagreed and the data that it expected on the tape.

Note: type "ctrl Y" by typing Y while holding down the CTRL key; ctrl Y is
not displayed on the TV screen. Type "return" by pressing the RETURN key.

COMMENTS:

Any change in the specified memory area, however slight, between the time
the program is saved on tape and the time the tape is verified, will cause
the verification to fail.

10

“A2MAN 030-0026-01 3 10.PICT” 218 KB 2001-07-22 dpi: 600h x 600v pix: 2751h x 4013v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0026 of 0113 |

r , .)
Apple 2 Technical Manual + ProgrammersAid#1 « 1978
12 Part A: Theory of operation
12 Relocatiing machine-language code
13 Program model
14 Blocks and Segments
15 Code and Data Segments
16 How to use the Code-Relocation feature
18 Part B: Examples
18 Example 1. Straighttorward relocation
19 Example 2. 1Index into Block
2 Example 3. Immediate address reference
2 Example 4. Unusable Block ranges
21 Example 5. Changing the page zero variable allocation
22 Example 6. Split Blocks with cross-referencing
23 Example 7. Code deletion
24 Fxample 8. Relocating the APPLE LI Monitor (SF8Q@-SFFFF)
to run in BAM (S8¢@-SFFF)
25 bPart C: Further details
25 Technical information
26 Algorithm used by the Code-Relocation feature
2 Comments
"
“A2MAN 030-0026-01 3 11.PICT” 129 KB 2001-07-22 dpi: 600h x 600v pix: 2706h x 3986v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0027 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PART A: THEORY OF OPERATION

RELOCATING MACHINE-LANGUAGE CODE

Quite frequently, programmers encounter situations that call for relocating
machine~language (not BASIC) programs on the 65@2-based APPLE II computer.
Relocation implies creating a new version of the program, a version that
runs properly in an area of memory different from that in which the original
program ran.

If they rely on the relative branch instruction, certain small 65@¢2 programs
can simply be moved without alteration, using the existing Monitor Move
commands. Other programs will require only minor hand-modification after
Monitor Moving. These modifications are simplified on the APPLE II by the
built-in disassembler, which pinpoints absolute memory-reference
instructions such as JMP’s and JSR’s.

However, sometimes it is necessary to relocate lengthy programs containing
multiple data segments interspersed with code. Using this Machine-Code
Relocation feature can save you hours of work on such a move, with improved
reliability and accuracy.

The following situations call for program relocation:

1. Two different programs, which were originally written to run in
identical memory locations, must now reside and run in memory concurrently.

2. A program currently runs from ROM. In order to modify its operation

experimentally, a version must be generated which runs from a different set
of addresses in RAM.

3. A program currently running in RAM must be converted to run from EPROM
or ROM addresses.

4. A program currently running on a 16K machine must be relocated in order
to run on a 4K machine. Furthermore, the relocation may have to be
performed on the smaller machine.

5. Because of memory-mapping differences, a program that ran on an APPLE I
(or other 65@2-based computer) falls into unusable address space on an APPLE
II.

6. Because different operating systems assign variables differently, either
page-zero or non-page-zero variable allocation for a specific program may
have to modified when moving the program from one make of computer to
another.

12

“A2MAN 030-0026-01 3 12.PICT” 345 KB 2001-07-22 dpi: 600h x 600v pix: 2751h x 3986v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0028 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

7. A program, which exists as several chunks strewn about memory, must be
combined in a single, contiguous block.

8. A program has outgrown the available memory space and must be relocated
to a larger, "free" memory space.

9. A program insertion or deletion requires a portion of the program to
move a few bytes up or down.

1¢. On a whim, the user wishes to move a program.

PROGRAM MODEL

Here is one simple way to visualize program relocation: starting with a
program which resides and runs in a "Source Block" of memory, relocation
creates a modified version of that program which resides and runs properly
in a "Destination Block" of memory.

However, this model does not sufficiently describe situations where the
"Source Block" and the 'Destination Block" are the same locations in memory.
For example, a program written to begin at location $4@@ on an APPLE I (the
$ indicates a hexadecimal number) falls in the APPLE II screen-memory range.
It must be loaded to some other area of memory in the APPLE II. But the
program will not run properly in its new memory locations, because various
absolute memory references, etc., are now wrong. This program can then be
"relocated" right back into the same new memory locations, a process which
modifies it to runm properly in its new location.

A more versatile program model is as follows. A program or section of a
program written to run in a memory range termed the "Source Block"
actually resides currently in a range termed the "Source Segments". Thus
a program written to run from location $40¢ may currently reside beginning
at location $80@. After relocation, the new version of the program must be
written to run correctly in a range termed the "Destination Block"
although it will actually reside currently in a range termed the
"Destination Segments'. Thus a program may be relocated such that it will
run correctly from location $D8@#@ (a ROM address) yet reside beginning at
location $C@#@ prior to being saved on tape or used to burn EPROMs
(obviously, the relocated program cannot immediately reside at locations
reserved for ROM). In some cases, the Source and Destination Segments may
overlap.

13

“A2MAN 030-0026-01 3 13.PICT” 337 KB 2001-07-22 dpi: 600h x 600v pix: 2742h x 4005v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0029 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

Segments:
Locations in APPLE 11
where Programs Reside

During Relocation

BLOCKS AND SEGMENTS EXAMPLE

Blocks:
Locations where
Programs Run

$80¢ >
Original program
runs from location (Source)
$400 on APPLE 1
$B87 -
Relocation
$Cog —p
Relocated version
runs from location (Destination)
$D8@P on APPLE I
$F87 —>
SOURCE BLOCK: $40@-$787 DESTINATION BLOCK: $D8@@-$SDB87
SOURCE SEGMENTS: $80@~SB87 DESTINATION SEGMENTS: S$C@@-$F87

14

“A2MAN 030-0026-01 3 14.PICT” 119 KB 2001-07-22 dpi: 600h x 600v pix: 2651h x 3977v

| Author: Apple Computer, Inc.

Document # 030-0026-01 Page 0030 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

DATA SEGMENTS

The problem with relocating a large program all at once 1s that blocks of
data (tables, text, etc.) may be interspersed throughout the code. During
relocation, this data may be treated as if it were code, causing the data to
be changed or causing code to be altered incorrectly because of boundary
uncertainties introduced when the data takes on the multi-byte attribute of
code. This problem is circumvented by dividing the program into code

segments and data segments, and then treating the two types of segment
differently.

CODE AND DATA SEGMENTS EXAMPLE

$B87 »
Code Segment

$80¢-5892

Data Segment
$893-5$992

Code Segment
$993-$ABF

Data Segment
$AC@-SACE

Code Segment
$SACF-$B87

$80¢ >

The Source Code Segments are relocated (using the 65¢2 Code-Relocation
feature), while the Source Data Segments are moved (using the Monitor
Move command).

16

“A2MAN 030-0026-01 3 15.PICT” 185 KB 2001-07-22 dpi: 600h x 600v pix: 2760h x 3942v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0031 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

HOW TO USE THE CODE-RELOCATION FEATURE

1. To initialize the 65@2 Code-Relocation feature, press the RESET key to
invoke the Monitor, and then type

D4D5G return

The Monitor user function ctrl Y will now call the Code-Relocation feature
as a subroutine at location $3FS8.

Note: To type "ctrl Y", type Y while holding down the CTRL key. To type
"return", press the RETURN key. In the remainder of this discussion, all
instructions are typed to the right of the Monitor prompt character (*).
The example instructions in this chapter often include spaces for easier
reading; do not type these spaces.

2. Load the source program into the "Source Segments' area of memory (if it
is not already there). Note that this need not be where the program
normally runs.

3. Specify the Destination and Source Block parameters. Remember that a
Block refers to locations from which the program will rum, not the
locations at which the Source and Destination Segments actually reside
during the relocation. If only a portion of a program is to be relocated,
then that portion alone is specified as the Block.

DEST BLOCK BEG < SOURCE BLOCK BEG . SOURCE BLOCK END ctrl Y * return

Notes: the syntax of this command closely resembles that of the Monitor Move
command. Type "ctrl Y" by pressing the Y key while holding down the CTRL
key. Then type an asterisk (*); and finally, type 'return" by pressing
the RETURN key. Do not type any spaces within the command.

16
“A2MAN 030-0026-01 3 16.PICT” 246 KB 2001-07-22 dpi: 600h x 600v pix: 2760h x 4041v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0032 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

4, Move all Data Segments and relocate all Code Segments in sequential
(increasing address) order. It is wise to prepare a list of segments,

specifying beginning and ending addresses, and whether each segment is code
or data.

If First Segment is Code:

DEST SEGMENT BEG < SOURCE SEGMENT BEG . SOURCE SEGMENT END ctrl Y return

If First Segment is Data:

DEST SEGMENT BEG < SOURCE SEGMENT BEG . SOURCE SEGMENT END M return

After the first segment has been either relocated (if Code) or Moved (if
data), subsequent segments can be relocated or Moved using a shortened form
of the command.

Subsequent Code Segments:

. SOURCE SEGMENT END ctrl Y return (Relocation)

Subsequent Data Segments:

. SOURCE SEGMENT END M return (Move)

Note: the shortened form of the command can only be used if each
"subsequent" segment is contiguous to the segment previously relocated or
Moved. If a "subsequent" segment is in a part of memory that does not begin
exactly where the previous segment ended, it must be Moved or relocated
using the full "First Segment" format.

If the relocation is performed "in place" (SOURCE and DEST SEGMENTs reside
in identical locations) then the SOURCE SEGMENT BEG parameter may be omitted
from the First Segment relocate or Move command.

17
“A2MAN 030-0026-01 3 17.PICT” 217 KB 2001-07-22 dpi: 600h x 600v pix: 2787h x 3959v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0033 of 0113 |

Apple 2 Technical Manual + Programmers Aid#1 -«

1978

PART B: CODE-RELOCATION EXAMPLES

EXAMPLE 1. Straightforward Relocation

Program A resides and runs in locations $8¢@-$97F.
will reside and run in locations $A@@-$B7F.

The relocated version

SOURCE SEGMENTS

DEST SEGMENTS

$80¢ —» $AQQ >
CODE CODE
$800-$88F SAQ@-SASF
DATA DATA
$89@-$8AF $SA9(-SAAF
CODE CODE
$8B@-$90F SAB@-$B@F
DATA DATA
$91¢-$93F $B1@-$B3F
CODE CODE
$940-S97F $B4@-SBTF
$97F —p $SB7F >
SOURCE BLOCK: $8@0¢-$97F DEST BLOCK: $A@@-SB7F

SOURCE SEGMENTS:

(a)

reset D4D5G return

(b)

AP < 8¢9 .

(c)

AP@ < 8¢¢ . 88F

97F

$800-$97F

ctrl Y

DEST SEGMENTS: SAQ@@-SB7F

Initialize Code-Relocation feature:

Specify Destination and Source Block parameters (locations from which
the program will run):

* return

Relocate first segment (code):

ctrl Y return

18

“A2MAN 030-0026-01 3 18.PICT” 197 KB 2001-07-22 d

pi: 600h x 600V pix: 2705h x 4005v

| Author: Apple Computer, Inc.

e Document # 030-0026-01

Page 0034 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

(d) Move subsequent Data Segments and relocate subsequent Code Segments, in
ascending address sequence:

. 8AF M return (data)
. 90F ctrl Y return (code)
. 93F M return (data)
. 97F ctrl Y return (code)

Note that step (d) illustrates abbreviated versions of the following

commands:

A9¢ < 89¢ . 8AF M return (data)
AB@ < 8B@ . 99F ctrl Y return (code)
Bl < 91¢ . 93F M return (data)
B4@ < 94¢ . 97F ctrl Y return (code)

EXAMPLE 2. Index into Block

Suppose that the program of Example l uses an indexed reference into the
Data Segment at $89¢ as follows:

LpA 7B@,X

where the X-REG is presumed to contain a number in the range $E@ to $FF.
Because address $7B@ is outside the Source Block, it will not be relocated.
This may be handled in one of two ways.

(a) You may fix the exception by hand; or

(b) You may begin the Block specifications one page lower than the
addresses at which the original and relocated programs begin to use all such
"early references.” One lower page is enough, since FF (the number of bytes

in one page) is the largest offset number that the X-REG can contain. In
EXAMPLE 1, change step (b) to:

9¢@ < 7¢0@¢ . 97F ctrl Y * return

Note: with this Block specification, all program references to the "prior
page”" (in this case the $70@ page) will be relocated.

19
“A2MAN 030-0026-01 3 19.PICT” 216 KB 2001-07-22 dpi: 600h x 600v pix: 2778h x 3987v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0035 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

EXAMPLE 3. Immediate Address References

Suppose that the program of EXAMPLE 1 has an immediate reference which is an
address. For example,

LDA #S3F
STA LOC@
LDA #$¢8
STA LocCl
JMP (LOCH)

In this example, the LDA #$@#8 will not be changed during relocation and the
user will have to hand-modify it to $@A.

EXAMPLE 4. Unusable Block Ranges

Suppose a program was written to run from locations $40@-$78F on an APPLE I.
A version which will run in ROM locations $D8@@#-SDBSF must be generated.

The Source (and Destination) Segments will reside in locations $8¢@-$BSF on
the APPLE II during relocation.

Source Source
Addresses And And
during Destination Destination
relocation Segments Blocks
idd CODE
$800-$97F
Runs from locations $40@-$78F on
DATA an APPLE I, but must be relocated
$98@-$9FF to run from locations $D8@@-SDBSF
on the APPLE II.
CODE
$B8F > 7A09-3B8F
SOURCE BLOCK: $4@@~S78F DEST BLOCK: $D8@@-S$SDBSF
SOURCE SEGMENTS: $80@-$BSF DEST SEGMENTS: $8¢@-$BSF

(a) Initialize the Code-Relocation feature:

reset D4D5G return

(b) Load original program into locations $8@@-$B8F (despite the fact that
it doesn’t run there):

800 . B8F R return

20

“A2MAN 030-0026-01 3 20.PICT” 222 KB 2001-07-22 dpi: 600h x 600v pix: 2769h x 3986v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0036 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

(c) Specify Destination and Source Block parameters (locations from which
the original and relocated versions will run):

D8P@ < 4P@F . 78F ctrl Y return

(d) Move Data Segments and relocate Code Segments, in ascending address

sequence:

800 < 8¢9¢ . 97F ctrl Y return (first segment, code)
. 9FF M return (data)

. B8F ctrl Y return (code)

Note that because the relocation is done "in place", the SOURCE SEGMENT BEG
parameter is the same as the DEST SEGMENT BEG parameter ($8¢@#) and need not
be specified. The initial segment relocation command may be abbreviated as
follows:

8¢ < . 97F ctrl Y return

EXAMPLE 5. Changing the Page Zero Variable Allocation

Suppose the program of EXAMPLE 1 need not be relocated, but the page zero
variable allocation is from $2¢ to $3F. Because these locations are
reserved for the APPLE 1I system monitor, the allocation must be changed to
locations $8@¢-$9F. The Source and Destination Blocks are thus not the
program but rather the variable area.

SOURCE BLOCK: $2@-$3F DEST BLOCK: $8@-$9F
SOURCE SEGMENTS: $8¢@-$97F DEST SEGMENTS: $8¢@-$97F

(a) Initialize the Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Blocks:

84 < 2¢ . 3F ctrl Y * return

(c) Relocate Code Segments and Move Data Segments, in place:

80¢ < . 88F ctrl Y return (first segment, code)
. 8AF M return (data)
. 9¢F ctrl Y return (code)
. 93F M return (data)
. 97F ctrl Y return (code)
21

“A2MAN 030-0026-01 3 21.PICT” 245 KB 2001-07-22 dpi: 600h x 600v pix: 2805h x 4014v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0037 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

EXAMPLE 6. Split Blocks with Cross-Referencing

Program A resides and runs in locations $8@@#-$8A6. Program B resides and
runs in locations $9¢@#-$9F1. A single, contiguous program is to be
generated by moving Program B so that it immediately follows Program A.
Each of the programs contains references to memory locations within the
other. It is assumed that the programs contain no Data Segments.

SOURCE SEGMENTS DEST SEGMENTS
$80¢ —» $80¢ —»
Program A Program A
$800-$8A6 $800-$8A6
$8A6 —p $8A6 —p
$8A7 —p
Unused Program B
$8A7-$998
$90¢ —» $998 —»
Program B
$90¢-$9F1
$9F1 —P»
SOURCE BLOCK: $90¢-$9F1 DEST BLOCK: $8A7-$998
SOURCE SEGMENTS: $8¢@-S$8A6 (A) DEST SEGMENTS: $8@@-$8A6 (A)
$909-$9F1 (B) $8A7-$998 (B)

(a) Initialize the Code-Relocation feature:

D4D5G return

(b) Specify Destination and Source Blocks (Program B only):

8A7 < 90 . 9F1 ctrl Y * return

(¢) Relocate each of the two programs individually. Program A must be
relocated even though it does not move.

830 < . 8A6 ctrl Y return (program A, "in place")
8A7 < 9¢@ . 9F1 ctrl Y return (program B, not "in place")

Note that any Data Segments within the two programs would necessitate
additional relocation and Move commands.

22

“A2MAN 030-0026-01 3 22.PICT” 221 KB 2001-07-22 dpi: 600h x 600v pix: 2652h x 3986v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0038 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

EXAMPLE 7. Code Deletion

Four bytes of code are to be removed from within a program, and the program
is to contract accordingly.

SOURCE SEGMENTS

DEST SEGMENTS

$800 —» —copE $800 —» —cong
$8¢@-$88F $80@-$88F
DATA DATA
$890@-$8AF $890-$8AF
Remove 4 CODE CODE
bytes here | $8Bg-$9¢F $8B@-$9¢B
($8C@#-$8C3)
DATA DATA
$91¢-$93F $90C-$93B
CODE CODE
$940-$97F $93C-$97B
$97F —p $97B —p
SOURCE BLOCK: $8C4-$97F DEST BLOCK: $8C@-$97B
SOURCE SEGMENTS: $8@@-$88F (code) DEST SEGMENTS: $80@-$88F (code)
$89@-$8AF (data) $89@-$8AF (data)
$8B@-$8BF (code) $8B@~-$8BF (code)
$8C4=-$90F (code) $8C@E-$90B (code)
$91@-$93F (data) $90C~$93B (data)
$94@-$97F (code) $33C-$97B (code)

(a)

Initialize Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Blocks:

8CP < 8C4 . 97F ctrl Y * return

(c) Relocate Code Segments and Move Data Segments, in ascending address

sequence:

803 <. 88F «ctrl Y return (first segment, code, "in place")

« 8AF M return (data)

. 8BF ctrl Y return (code)

8CP < 8C4 . 90F ctrl Y return (first segment, code, not "in place'")
« 93F M return (data)

« 97F ctrl Y return (code)

(d) Relative branches crossing the deletion boundary will be incorrect,
since the relocation process does not modify them (only zero-page and

absolute memory references). The user must patch these by hand.

23

“A2MAN 030-0026-01 3 23.PICT” 257 KB 2001-07-22 dpi: 600h x 600v pix: 2760h x 4032v
Document # 030-0026-01 Page 0039 of 0113 |

| Author: Apple Computer, Inc. e

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

EXAMPLE 8. Relocating the APPLE Il Monitor
($F800— $FFFF) to Run In RAM ($800— $FFF)

SOURCE BLOCK: S$F70@-S$SFFFF DEST BLOCK: $7@0@~SFFF
(see EXAMPLE 2)

SOURCE SEGMENTS: $F8¢@-$F961 (code) DEST SEGMENTS: $8@@-$961 (code)

$F962~-SFA42 (data) $962-$A42 (data)
$FA43-$FB18 (code) $A43-$B18 (code)
$FB19-$FB1D (data) $B19-$B1D (data)
$FB1E-SFFCB (code) $B1E-SFCB (code)
$FFCC-$FFFF (data) $FCC-S$FFF (data)

IMMEDIATE ADDRESS REFERENCES (see EXAMPLE 3): $FFBF
SFEA8
(more if not relocating
to page boundary)
(a) Initialize the Code-Relocation feature:

reset D4D5G return

(b) Specify Destination and Source Block parameters:

700 < F7¢¢ . FFFF ctrl Y * return

(¢) Relocate Code Segments and move Data Segments, in ascending-address
sequence:

80@ < F80@P . F961 ctrl Y return (first segment, code)
. FA42 M return (data)
. FB18 ctrl Y return (code)
. FBID M return (data)
« FFCB ctrl Y return (code)
. FFFF M return (data)

(d) Change immediate address references:

FBF : E return (was SFE)
EA8 : E return (was SFE)
24

“A2MAN 030-0026-01 3 24.PICT” 204 KB 2001-07-22 dpi: 600h x 600v pix: 2643h x 4085v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0040 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PART C: PLOTTING POINTS AND LINES

TECHNICAL INFORMATION

The following details illustrate special technical features of the APPLE II
which are used by the Code-Relocation feature.

l. The APPLE II Monitor command

Addr4 < Addrl . Addr2 ctrl Y return (Addrl, Addr2, and Addré4
are addresses)

vectors to location $3F8 with the value Addrl in locations $3C (low) and $3D
(high), Addr2 in locations $3E (low) and $3F (high), and Addr4 in locations
$42 (low) and $43 (high). Location $34 (YSAV) holds an index to the next
character of the command buffer (after the ctrl Y). The command buffer (IN)
begins at $20@.

2, If ctrl Y is followed by * , then the Block parameters are simply
preserved as follows:

Parameter Preserved at SWEET16 Reg Name
DEST BLOCK BEG $8, $9 TOBEG
SOURCE BLOCK BEG $2, $3 FRMBEG
SOURCE BLOCK END $4, $5 FRMEND

3. If ctrl Y is not followed by * , then a segment relocation is initiated
at RELOC2 ($3BB). Throughout, Addrl ($3C, $3D) is the Source Segment
pointer and Addr4 ($42, $43) is the Destination Segment pointer.

4. INSDS2 is an APPLE II Monitor subroutine which determines the length of
a 6502 instruction, given the opcode in the A-REG, and stores that opcode’s
instruction length in the variable LENGTH (location $2F) .

Instruction Type LENGTH

in A-REG (in $2F)

Invalid @

1 byte)

2 byte 1

3 byte 2
25

“A2MAN 030-0026-01 3 25.PICT” 258 KB 2001-07-22 dpi: 600h x 600v pix: 2841h x 4059v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0041 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

5. The code from XLATE to SW16RT ($3D9-$3E6) uses the APPLE II 16-bit
interpretive machine, SWEET16. The target address of the 65¢2 instruction
being relocated (locations $C low and $D high) occupies the SWEET16 register
named ADR. If ADR is between FRMBEG and FRMEND (inclusive) then it is
replaced by

ADR - FRMBEG + TOBEG
6. NXTA4 is an APPLE II Monitor subroutine which increments Addrl (Source

Segment index) and Addr4 (Destination Segment index). If Addrl exceeds
Addr2 (Source Segment end), then the carry is set; otherwise, it is cleared.

ALGORITHM USED BY THE CODE-RELOCATION FEATURE

l. Set SOURCE PIR to beginning of Source Segment
and DEST PIR to beginning of Destination Segment.

2. Copy 3 bytes from Source Segment (using SOURCE PTR) to temp INST area.
3. Determine instruction length from opcode (1, 2 or 3 bytes).

4. 1If two-byte instruction with non-zero-page addressing mode
(immediate or relative) then go to step 7.

5. If two-byte instruction then clear 3rd byte
so address field is @-255 (zero page).

6. If address field (2nd and 3rd bytes of INST area)
falls within Source Block, then substitute

ADR - SOURCE BLOCK BEG + DEST BLOCK BEG

7. Move "length" bytes from INST area to Destination Segment
(using DEST PTR). Update SOURCE and DEST PTR’s by length.

8. If SOURCE PIR is less than or equal to SOURCE SEGMENT END
then goto step 2., else done.

26

“A2MAN 030-0026-01 3 26.PICT” 250 KB 2001-07-22 dpi: 600h x 600v pix: 2851h x 4121v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0042 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

COMMENTS:

Each Move or relocation is carried out sequentially, one byte at a time,
beginning with the byte at the smallest source address. As each source byte
is Moved or relocated, it overwrites any information that was in the
destination location. This 1is usually acceptable in these kinds of Moves

and relocations:

l. Source Segments and Destination Segments do not share any common
locations (no source location is overwritten).

2. Source Segments are in locations identical to the locations of
the Destination Segments (each source byte overwrites itself).

3. Source Segments are in locations whose addresses are larger
than the addresses of the Destination Segments’ locations (any
overwritten source bytes have already been Moved or relocated).
This is a move toward smaller addresses.

If, however, the Source Segments and the Destination Segments share some
common locations, and the Source Segments occupy locations whose addresses
are smaller than the addresses of the Destination Segments’ locations,

then the source bytes occupying the common locations will be overwritten
before they are Moved or relocated. If you attempt such a relocation, you
will lose your program and data in the memory area common to both Source
Segments and Destination Segments. To accomplish a small Move or relocation
toward larger addresses, you must Move or relocate to an area of memory

well away from the Source Segments (no address in common); then Move the
entire relocated program back to its final resting place.

Note: the example instructions in this chapter often include spaces for
easier reading; do not type these spaces.

27

“A2MAN 030-0026-01 3 27.PICT” 260 KB 2001-07-22 dpi: 600h x 600v pix: 2805h x 4068v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0043 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

28

“A2MAN 030-0026-01 3 28.PICT” 33 KB 2001-07-22 d

pi: 600h x 600V pix: 2679h x 4050v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0044 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

3

31

34

CHAPTER
RAM TEST

Testing APPLE s memory
Address ranges tor standard menory configurations
Frror messages

Type I - Simple error
Tvpe 1l = Dynamic error

Testing for intermittent failure

Comments

29

“A2MAN 030-0026-01 3 29.PICT” 75 KB 2001-07-22 dpi: 600h x 600v pix: 2724h x 4050v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0045 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

TESTING THE APPLE'S MEMORY

With this program, you can easily discover any problems in the RAM (for
Random Access Memory) chips in your APPLE. This is especially useful when
adding new memory. While a failure is a rare occurrence, memory chips are
both quite complex and relatively expensive. This program will point out
the exact memory chip or chips, if any, that have malfunctioned.

Memory chips are made in two types: one type can store 4K (4§96) bits of
information, the other can store 16K (16384) bits of information. Odd as it
seems, the two types look alike, except for a code number printed on them.

The APPLE has provisions for inserting as many as 24 memory chips of either
type into its main printed-circuit board, in three rows of eight sockets
each. An eight-bit byte of information consists of one bit taken from each
of the eight memory chips in a given row. For this reason, memory can be
added only in units of eight identical memory chips at a time, fi11ling an
entire row. Eight 4K memory chips together in one row can store 4K bytes
of information. Eight 16K memory chips in one row can store 16K bytes of
information.

Inside the APPLE II, the three rows of sockets for memory chips are row "C",
row '"D" and row "E". The rows are lettered along the left edge of the
printed-circuit board, as viewed from the front of the APPLE. The memory
chips are installed in the third through the tenth sockets (counting from
the left) of rows C, D and E. These sockets are labelled "RAM". Row C must
be filled; and row E may be filled only if row D is filled. Depending on
the configuration of your APPLE’s memory, the eight RAM sockets in a given
row of memory must be filled entirely with 4K memory chips, entirely with
16K memory chips, or all eight RAM sockets may be empty.

To test the memory chips in your computer, you must first initialize the RAM
Test program. Press the RESET key to invoke the Monitor, and then type

D5BCG return

Next, specify the hexadecimal starting address for the portion of memory
that you wish to test. You must also specify the hexadecimal number of
"pages" of memory that you wish tested, beginning at the given starting
address. A page of memory is 256 bytes ($1@@ Hex). Representing the
address by "a" and the number of pages by "p" (both in hexadecimal), start-
the RAM test by typing

a . p ctrl Y return

Note 1: to type "ctrl Y", type Y while holding down the CTRL key; ctrl Y is
not displayed on the TV screen. Type "return" by pressing the RETURN key.
The example instructions in this chapter often include spaces for easier
reading; do not type these spaces.

Note 2: test length p*10f must not be greater than starting address a.

30

“A2MAN 030-0026-01 3 30.PICT” 423 KB 2001-07-22 dpi: 600h x 600v pix: 2814h x 4068v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0046 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

For example,
2009.1¢ ctrl Y return

tests hexadecimal 1000 bytes of memory (4096, or "4K" bytes, in decimal),
starting at hexadecimal address 2@¢¢@ (8192, or "8K", in decimal).

If the asterisk returns (after a delay that may be a half minute or so)

without an error message (see ERROR MESSAGES discussion), then the specified
portion of memory has tested successfully.

TABLE OF ADDRESS RANGES FOR STANDARD RAM

CONFIGURATIONS
If the 3 Memory Contains this And the total
Configuration Then Range of System Memory,
Blocks Row of Hexadecimal If this is last
Look like this: Memory RAM Addresses Row filled, is
(© 4K C ¢@0dg-@FFF 4K
4K D 190@-1FFF 8K
4K E 200@-2FFF 12K
616K | c p@dg-3FFF 16K
4K D 4@P@@-4FFF 20K
4K E 5¢@@-SFFF 24K
(O16K c P@0@-3FFF 16K
16K D 4UP@-TFFF 32K
16K E 800@-BFFF 48K

A 4K RAM Row contains 1@ Hex pages (hex 10¢@ bytes, or decimal 4@96 bytes).
A 16K RAM Row contains 4@ Hex pages (hex 40@@ bytes, or decimal 16384
bytes).

A complete test for a 48K system would be as follows:

40@.4 ctrl Y returny@¢———This tests the screen area of memory

8¢@#.8 ctrl Y return These first four tests examine

100@3.10 ctrl Y return ¢ the first 16K row of memory (Row C)
20003.23 ctrl Y return
4000.40 ctrl Y return 4&4———This tests the second 16K row of memory (Row D)
8003.40 ctrl Y return 4——=This tests the third 16K row of memory (Row E)

Systems containing more than 16K of memory should also receive the following
special test that looks for problems at the boundary between rows of memory:

3008.20 ctrl Y return

Systems containing more than 32K of memory should receive the previous
special test, plus the following:

78000.2¢ ctrl Y return 3

“A2MAN 030-0026-01 3 31.PICT” 297 KB 2001-07-22 dpi: 600h x 600v pix: 2823h x 4059v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0047 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

Tests may be run separately or they may be combined into one instruction.
For instance, for a 48K system you can type:

400.4 ctrl Y 80@.8 ctrl Y 1009.10 ctrl Y- 2000.20 ctrl Y 3090.20 ctrl Y
400P. 40 ctrl Y 700P.20 ctrl Y 80PP.4¢ ctrl Y return

Remember, ctrl Y will not print on the screen, but it must be typed. With
the single exception noted in the section TESTING FOR INTERMITTENT FAILURE,
spaces are shown for easier reading but should not be typed.

During a full test such as the one shown above, the computer will beep at
the completion of each sub-test (each sub-test ends with a ctrl Y). At the
end of the full test, if no errors have been found the APPLE will beep and
the blinking cursor will return with the Monitor prompt character (*). It
takes approximately 5@ seconds for the computer to test the RAM memory in a
16K system; larger systems will take proportionately longer.

ERROR MESSAGES

TYPE I - Simple Error

During testing, each memory address in the test range is checked by writing
a particular number to it, then reading the number actually stored at that
address and comparing the two.

A simple error occurs when the number written to a particular memory address
differs from the number which is then read back from that same address.
Simple errors are reported in the following format:

Xxxx yy zz ERR r-c

where xxxx 1s the hexadecimal address at which the error was detected;
yy 1s the hexadecimal data written to that address;
zz 1s the hexadecimal data read back from that address; and
r-c 1is the row and column where the defective memory chip was
found. Count from the left, as viewed from the front of
the APPLE: the leftmost memory chip is in column 3, the
rightmost is in column 1.

Example:

201F @@ 10 ERR D-7

32

“A2MAN 030-0026-01 3 32.PICT” 281 KB 2001-07-22 dpi: 600h x 600v pix: 2823h x 4121v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0048 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

TYPE I1 - Dynamic Error

This type of error occurs when the act of writing a number to one memory
address causes the number read from a different address to change. If no
simple error is detected at a tested address, all the addresses that differ
from the tested address by one bit are read for changes indicating dynamic
errors. Dynamic errors are reported in the following format:

XXXX yy zz vvvv qq ERR r-c

where xxxx is the hexadecimal address at which the error was detected;
yy 1s the hexadecimal data written earlier to address xxxx;
2z 1s the hexadecimal data now read back from address xxxx;
vvvv is the current hexadecimal address to which data qq was

successfully written;

qq 1s the hexadecimal data successfully written to, and
read back from, address vvvv; and

r-c 1is the row and column where the defective memory chip was
found. Count from the left, as viewed from the front of
the APPLE: the leftmost memory chip is in column 3, the
rightmost is in column 1. In this type of error, the
indicated row (but not the column) may be incorrect.

This is similar to Type I, except that the appearance of vvvv and qq
indicates an error was detected at address xxxx after data was successfully
written at address vvvv.

Example:

5@51 ¢@ @8 5451 @@ ERR E-6

After a dynamic error, the indicated row (but not the column) may be
incorrect. Determine exactly which tests check each row of chips (according
to the range of memory addresses corresponding to each row), and run those
tests by themselves. Confirm your diagnosis by replacing the suspected
memory chip with a known good memory chip (you can use either a 4K or a 16K
memory chip, for this replacement). Remember to turn off the APPLE’s power
switch and to discharge yourself before handling the memory chips.

TESTING FOR INTERMITTENT FAILURE
(Automatically Repeating Test)

This provides a way to test memory over and over again, indefinitely. You
will type a complete series of tests, just as you did before, except that
you will:

a. precede the complete test with the letter N
b. follow the complete test with 34:¢
C. type at least one space before pressing the RETURN key.

33

“A2MAN 030-0026-01 3 33.PICT” 347 KB 2001-07-22 dpi: 600h x 600v pix: 2832h x 4050v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0049 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

Here is the format:
N (memory test to be repeated) 34:0 (type one space) return

NOTE: You must type at least one space at the end of the line, prior to
pressing the RETURN key. This is the only space that should be typed (all
other spaces shown within instructions in this chapter are for easier
reading only; they should not be typed).

Example (for a 48K system):

N 40@.4 ctrl Y 800.8 ctrl Y 1008.10 ctrl Y 2000.20 ctrl Y 3009.2¢ ctrl Y
4OPD.40 ctrl Y 7000.20 ctrl Y 8PPP.40 ctrl Y 34:9¢ return

Run this test for at least one hour (preferably overnight) with the APPLE’s
1id in place. " This allows the system and the memory chips to reach maximum
operating temperature.

Only i1f a failure occurs will the APPLE display an error message and rapidly
beep three times; otherwise, the APPLE will beep once at the successful end
of each sub-test. To stop this repeating test, you must press the RESET
key.

COMMENTS:

l. You cannot test the APPLE’s memory below the address of 4@@ (Hex), since
various pointers and other system necessities are there. In any case, if
that region of memory has problems, the APPLE won’t function.

2. For any subtest, the number of pages tested cannot be greater than the
starting address divided by 109 Hex. 2¢@@.30 ctrl Y will not work, but
5000.30 ctrl Y will.

3. Before changing anything inside the APPLE, make sure the APPLE is
plugged into a grounded, 3-wire power outlet, and that the power switch on
the back of the computer is turned off. Always touch the outside metal
bottom plate of the APPLE I1I, prior to handling any memory chips. This is
done to remove any static charge that you may have acquired.

EVEN A SMALL STATIC CHARGE CAN DESTROY MEMORY CHIPS

4. Besides the eight memory chips, some additions of memory require
changing three other chip-like devices called Memory Configuration Blocks.
The Memory Configuration Blocks tell the APPLE which type of memory chip (4K
or 16K) is to be plugged into each row of memory. A complete package for
adding memory to your computer, containing all necessary parts and detailed
instructions, can be purchased from APPLE Computer Inc. To add 4K of
memory, order the 4K Memory Expansion Module (P/N AM@Pl4). To add 16K of
memory, order the 16K Memory Expansion Module (P/N A2M@@16).

34

“A2MAN 030-0026-01 3 34.PICT” 367 KB 2001-07-22 dpi: 600h x 600v pix: 2833h x 4104v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0050 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

CHAPTER 7

MUSIC

36 Generating musical tones

37 Comments

35
“A2MAN 030-0026-01 3 35.PICT” 57 KB 2001-07-22 dpi: 600h x 600v pix: 2769h x 4058v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0051 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

GENERATING MUSICAL TONES

The Music feature is most easily used from within an Integer BASIC program.

It greatly simplifies the task of making the APPLE II into a music-playing
device.

There are three things the computer needs to know before playing a note:
pitch (how high or low a note), duration (how long a time it 18 to sound),
and timbre. Timbre is the quality of a sound that allows you to distinguish
one instrument from another even if they are playing at the same pitch and
loudness. This Music feature does not permit control of loudness.

It is convenient to set up a few constants early in the program:

MUSIC = ~1@473

PITCH = 767 Ao TE $8Gc
TIME = 766 Lonve $Bys
TIMBRE = 765 VolLLE 35¢4

There are 5@ notes available, numbered from 1 to 5@¢. The statement

POKE PITCH, 32

will set up the Music feature to produce (approximately) the note middle C.
Increasing the pitch value by one increases the pitch by a semitone. Thus

POKE PITCH, 33

would set up the Music feature to produce the note C sharp. Just over four

chromatic octaves are available. The note number @ indicates a rest (a
silence) rather than a pitch.

The duration of the note is set by
POKE TIME, t

Where t is a number from 1 to 255. The higher the number, the longer the
note. A choice of t = 17¢ gives notes that are approximately one second
long. To get notes at a metronome marking of MM, use a duration of
102¢¢/MM. For example, to get 204 notes per minute (approximately) use the
command

POKE TIME, 10200/204

36

“A2MAN 030-0026-01 3 36.PICT” 255 KB 2001-07-22 dpi: 600h x 600v pix: 2814h x 4067v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0052 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 e

1978

not very different from one another.
not have this problem.

POKE TIMBRE, 32

CALL MUSIC

will cause the specified note to sound.

1¢ MUSIC = -1¢473: PITCH = 767: TIME =
2¢ POKE TIME, 4@: POKE TIMBRE, 32

30 FOR I = 1 TO 49

4¢ POKE PITCH, I

5¢ CALL MUSIC

6¢ NEXT I: END

Where X is a number from 51 through 255,

POKE PITCH, X

will specify various notes, in odd sequences.
line 40 to

4@ POKE PITCH, 86

for a demonstration.

COMMENTS:

certain timbres.

37

There are five timbres, coded by the numbers 2, 8, 16, 32 and 64.

766: TIMBRE =

They are

With certain timbres, a few of the
extremely low or high notes do not give the correct pitch.

Timbre 32 does

When the pitch, time, and timbre have been set, the statement

The following program plays a chromatic scale of four octaves:

765

In the program above, change

Some extremely high or low notes will come out at the wrong pitch wWith

“A2MAN 030-0026-01 3 37.PICT” 163 KB 2001-07-22 dpi: 600h x 600v pix: 2832h x 4149v

| Author: Apple Computer, Inc. e

Document # 030-0026-01

Page 0053 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

38

“A2MAN 030-0026-01 3 38.PICT” 34 KB 2001-07-22 d

pi: 600h x 600V pix: 2724h x 4122v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0054 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

40 Part

o~

S~ 8

‘_\
B o — &

o~
(O]

Part

43
43
44

44

45 Part
46 Part

46
47
53
54

55

56 Part

56
57
58
59

60 Part
69
61
62
63

64 Part

Az

B:

CHAPTER 8

HIGH-RESOLUTION
GRAPHICS

Setting up parameters, subroutines, and colors

Positioning the High-Resolution parameters
Defining subroutine names

Defining color names

Speceding up your program

Preparing the screen for graphics

The INITialization subroutine
Changing the graphics screen
CLEARIing the screen to black
Coloring the BacKGroulD

PLOTting points and LINEs
Creating, saving and loading shapes

Introduction

Creating a Shape Table
Saving a Shape Table
Loading a Shape Table
First use of Shape Table

Drawing shapes from a prepared Shape Table

Assigning parameter values: SHAPE, SCALE AND ROTation
DRAWing shapes

Linking shapes: DRAWI

Collisions

Technical information

Locations of the High-Resolution parameters

Variables used within the High-Resolution subroutines
Shape Table information

Integer BASIC memory map for graphics

Comments

39

“A2MAN 030-0026-01 3 39.PICT” 206 KB 2001-07-22 dpi: 600h x 600v pix: 2995h x 4212v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0055 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PART A: SETTING UP PARAMETERS, SUBROUTINES,
AND COLORS

Programmer‘s Aid #1 provides your APPLE with the ability to do
high-resolution color graphics from Integer BASIC. You may plot dots, lines
and shapes in a wide variety of detailed forms, in 6 different colors (4
colors on systems below S/N 6@f@), displayed from two different "pages" of
memory. The standard low-resolution graphics allowed you to plot 4@ squares
across the screen by 47 squares_from top to bottom of the screen. This
high-resolution graphics display mode lets you plot in much smaller dots,
280 horizontally by 192 vertically. Because 8K bytes of memory (in
locations from 8K to 16K, for Page 1) are dedicated solely to maintaining
the high-resolution display, your APPLE must contain at least 16K bytes of
memory. To use the Page 2 display (in locations from 16K to 24K), a system
with at least 24K bytes of memory is needed. If your system is using the
Disk Operating System (DOS), that occupies the top 1@.5K of memory: you will
need a minimum 32K system for Page 1, or 36K for Page 1 and Page 2. See the
MEMORY MAP on page 63 for more details.

POSITIONING THE HIGH-RESOLUTION PARAMETERS

The first statement of an Integer BASIC program intending to use the
Programmer’s Aid High-Resolution subroutines should be:

XO = YP = COLR = SHAPE = ROT = SCALE

The purpose of this statement 1s simply to place the six BASIC variable
names used by the High-Resolution feature (with space for their values) into
APPLE’s 'variable table" in specific, known locations. When line @ is
executed, the six High-Resolution graphics parameters will be assigned
storage space at the very beginning of the variable table, in the exact
order specified in line @. Your BASIC program then uses those parameter
names to change the six parameter values in the variable table. However,
the High-Resolution subroutines ignore the parameter names, and look for

the parameter values in specific variable-table locations. That is why

the program’s first line must place the six High-Resolution graphics
parameters in known variable-table locations. Different parameter names may
be used, provided that they contain the same number of characters. Fixed
parameter-name lengths are also necessary to insure that the
paraneter-value storage locations in the variable table do not change. For

example, the name HI could be used in place of X@, but X or XCOORD could
not.

40

“A2MAN 030-0026-01 3 40.PICT” 427 KB 2001-07-22 dpi: 600h x 600v pix: 2949h x 4240v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0056 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

The parameters SHAPE, ROT, and SCALE are used only by the subroutines that
draw shapes (DRAW and DRAW1, see PART E). These parameters may be omitted
from programs using only the PLOT and LINE features:

§ XP = YP = COLR

Omitting unnecessary parameter definitions speeds up the program during
execution. However, you can omit only those unused parameters to the right
of the last parameter which is used. Each parameter that is used must

be in its proper place, relative to the first parameter in the definition
list.

DEFINING SUBROUTINE NAMES

After the six parameters have been defined, the twelve High-Resolution
subroutines should be given names, and these names should be assigned
corresponding subroutine entry addresses as values. Once defined in this
way, the various subroutines can be called by name each time they are used,
rather than by numeric address. When subroutines are called by name, the

program is easier to type, more likely to be error-free, and easier to
follow and to debug.

5 INIT = -12288 : CLEAR = -12274 : BKGND = -11471
6 POSN = -11527 : PLOT = -115¢6 : LINE = -1150¢
7 DRAW = -11465 : DRAWI = -~11462
8 FIND = -1178¢ : SHLOAD = -11335

Any variable names of any iength may be used to call these subroutines. If

you want maximum speed, do not define names for subroutines that you will
not use in your program.

DEFINING COLOR NAMES

Colors may also be specified by name, if a defining statement is added to

the program. Note that GREEN is preceded by LET to avoid a SYNTAX ERROR,
due to conflict with the GR command.

1§ BLACK = @ : LET GREEN = 42 : VIOLET = 85
11 WHITE 127 : ORANGE = 170 : BLUE = 213
12 BLACK2 = 128 : WHITE2 = 255

Any integer from @ through 255 may be used to specify a color, but most of
the numbers not named above give rather unsatisfactory '"colors'". On systems
below S/N 60@@, 17@ will appear as green and 213 will appear as violet.

41
“A2MAN 030-0026-01 3 41.PICT” 327 KB 2001-07-22 dpi: 600h x 600v pix: 2986h x 4212v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0057 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

Once again, unnecessary variable definitions should be omitted, as they will
slow some programs. Therefore, a program should not define VIOLET = 85
unless it uses the color VIOLET.

The following example illustrates condensed initialization for a program

using only the INIT, PLOT, and DRAW subroutines, and the colors GREEN and
WHITE.

§ X@ = Y@ = COLR = SHAPE = ROT = SCALE
5 INIT = -12288 : PLOT = -115¢6 : DRAW = -11465
1¢ LET GREEN = 42 : WHITE = 127

(Body of program would go here)

SPEEDING UP YOUR PROGRAM

Where maximum speed of execution is necessary, any of the following
techniques will help:

l. Omit the name definitions of colors and subroutines, and refer to colors
and subroutines by numeric value, not by name.

2. Define the most frequently used program variable names before defining
the subroutine and color names (lines 5 through 12 in the previous

examples). The example below illustrates how to speed up a program that
makes very frequent use of program variables I, J, and K:

@ X@ = Y§ = COLR = SHAPE = ROT = SCALE
2 I =J-=K

5 INIT = -12288 : CLEAR = ~12274

6 BKGND = -11471 : POSN = -11527

1§ BLACK = ¢ : VIOLET = 85

3. Use the High-Resolution graphics parameter names as program variables

when possible. Because they are defined first, these parameters are the
BASIC variables which your program can find fastest.

42

“A2MAN 030-0026-01 3 42.PICT” 241 KB 2001-07-22 dpi: 600h x 600v pix: 2949h x 4213v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0058 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PART B: PREPARING THE SCREEN FOR GRAPHICS

THE INITIALIZATION SUBROUTINE

In order to use CLEAR, BKGND, POSN, PLOT, or any of the other
High-Resolution subroutine CALLs, the INITialization subroutine itself must
first be CALLed:

CALL INIT

The INITialization subroutine turns on the high-resolution display and
clears the high-resolution screen to black. INIT also sets up certain
variables necessary for using the other High-Resolution subroutines. The
display consists of a graphics area that is 28§ x-positions wide (Xg=¢
through X@=279) by 16¢ y-positions high (Y#=@ through Y@#=159), with an area
for four lines of text at the bottom of the screen. Y§ values from §
through 191 may be used, but values greater than 159 will not be displayed
on the screen. The graphics origin (X@#=@, Y@=@) is at the top left cormer
of the screen.

CHANGING THE GRAPHICS SCREEN

If you wish to devote the entire display to graphics (28(x-positions wide
by 192 y-positions high), use

POKE -163¢2, @

The split graphics-plus-text mode may be restored at any time with
POKE -163¢1, @

or another

CALL INIT

When the High-Resolution subroutines are first initialized, all graphics are
done in Page 1 of memory ($2¢@¢-3FFF), and only that page of memory is

displayed. If you wish to use memory Page 2 ($4(¥@@-5FFF), two POKEs allow
you to do so:

POKE 806, 64

causes subsequent graphics instructions to be executed in Page 2, unless
those instructions attempt to continue an instruction from Page 1 (for
instance, a LINE is always drawn on the same memory page where the last
previous point was plotted). After this POKE, the display will still show
memory Page 1.

43
“A2MAN 030-0026-01 3 43.PICT” 316 KB 2001-07-22 dpi: 600h x 600v pix: 2959 x 4221v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0059 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

To see what you are plotting on Page 2,

POKE -16299, ¢

will cause Page 2 to be displayed on the screen. You can switch the screen
display back to memory Page 1 at any time, with

POKE -163¢¢, @
while
POKE 8@6, 32

will return you to Page 1 plotting. This last POKE 1s executed
automatically by INIT.

CLEARING THE SCREEN

If at any time during your program you wish to clear the current plotting
page to black, use

CALL CLEAR

This immediately erases anything plotted on the current plotting page.
INIT first resets the current plotting page to memory Page 1, and then
clears Page 1 to black.

The entire current plotting page can be set to any solid background color
with the BKGND subroutine. After you have INITialized the High-Resolution
subroutines, set COLR to the background color you desire, and then

CALL BKGND
The following program turns the entire display violet:

@ X0 = Y@ = COLR : REM SET PARAMETERS

5 INIT = -12288 : BKGND = =-11471 : REM DEFINE SUBROUTINES
1§ VIOLET = 85 : REM DEFINE COLOR

2¢0 CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES
3¢ COLR = VIOLET : REM ASSIGN COLOR VALUE

49 CALL BKGND : REM MAKE ALL OF DISPLAY VIOLET

5¢ END

44

“A2MAN 030-0026-01 3 44.PICT” 225 KB 2001-07-22 dpi: 600h x 600v pix: 2868h x 4212v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0060 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PART C: PLOTTING POINTS AND LINES

Points can be plotted anywhere on the high-resolution display, in any valid
color, with the use of the PLOT subroutine. The PLOT subroutine can only be
used after a CALL INIT has been executed, and after you have assigned
appropriate values to the parameters X@#, Y@ and COLR. X@# must in the range
from @ through 279, Y§ must be in the range from @ through 191, and COLR
must be in the range from @ through 255, or a

%% RANGE ERR

message will be displayed and the program will halt.

The program below plots a white dot at X-coordinate 35, Y-coordinate 55, and
a violet dot at X-coordinate 85, Y-coordinate 9¢:

@ X@ = Y@ = COLR : REM SET PARAMETERS

5 INIT = -12288 : PLOT = -115¢6 : REM DEFINE SUBROUTINES
1 WHITE = 127 : VIOLET = 85 : REM DEFINE COLORS

2¢ CALL INIT : REM INITIALIZE SUBROUTINES

30 COLR = WHITE : REM ASSIGN PARAMETER VALUES

4@ X@ = 35 : Y@ = 55

50 CALL PLOT : REM PLOT WITH ASSIGNED PARAMETER VALUES
64 COLR = VIOLET : REM ASSIGN NEW PARAMETER VALUES

70 X0 =85 : Y@ = 9¢

8¢ CALL PLOT : REM PLOT WITH NEW PARAMETER VALUES

9¢ END

The subroutine POSN is exactly like PLOT, except that nothing is placed on

the screen. COLR must be specified, however, and a subsequent DRAWl (see
PART E) will take its color from the color used by POSN. This subroutine is

often used when establishing the origin-point for a LINE.

Connecting any two points with a straight line is done with the LINE
subroutine. As with the PLOT subroutine, a CALL INIT must be executed, and
Xd, YP, and COLR must be specified. In addition, before the LINE subroutine
can be CALLed, the line’s point of origin must have been plotted with a CALL
PLOT or as the end point of a previous line or shape. Do not attempt to use
CALL LINE without first plotting a point for the line’s origin, or the line
may be drawn in random memory locations, not necessarily restricted to the
current memory page. Once again, X# and Y@ (the coordinates of the
termination point for the line), and COLR must be assigned legitimate
values, or an error may occur.

45

“A2MAN 030-0026-01 3 45.PICT” 359 KB 2001-07-22 dpi: 600h x 600v pix: 2931h x 4230v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0061 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

The following program draws a grid of green lines vertically and violet
lines horizontally, on a white background:

@ X@ = Y@ = COLR : REM SET PARAMETERS, THEN DEFINE SUBROUTINES

5 INIT = -12288 : BKGND = -11471 : PLOT = -115¢6 : LINE = -115@¢

1§ LET GREEN = 42 : VIOLET = 85 : WHITE = 127 : REM DEFINE COLORS

2¢ CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES

3¢ POKE -163¢2, @ : REM SET FULL-SCREEN GRAPHICS

49 COLR = WHITE : CALL BKGND : REM MAKE THE DISPLAY ALL WHITE

5§ COLR = GREEN : REM ASSIGN PARAMETER VALUES

63 FOR X@ = ¢ TO 27¢ STEP 1@ :

76 Y@ = ¢ : CALL PLOT : REM PLOT A STARTING-POINT AT TOP OF SCREEN

8¢ Y@ = 199 : CALL LINE : REM DRAW A VERTICAL LINE TO BOTTOM OF SCREEN
9¢ NEXT X¢ : REM MOVE RIGHT AND DO IT AGAIN

1§¢ COLR = VIOLET : REM ASSIGN NEW PARAMETER VALUES

11§ FOR Y@ = @ TO 19@ STEP 10

120 X@ = @ : CALL PLOT : REM PLOT A STARTING-POINT AT LEFT EDGE OF SCREEN
130 X@¢ = 27¢ : CALL LINE : REM PLOT A HORIZONTAL LINE TO RIGHT EDGE
14§ NEXT Y@ : REM MOVE DOWN AND DO IT AGAIN

15¢ END

PART D: CREATING, SAVING AND LOADING SHAPES

INTRODUCTION

The High-Resolution feature’s subroutines provide the ability to do a wide
range of high-resolution graphics "shape" drawing. A "shape'" is considered
to be any figure or drawing (such as an outline of a rocket ship) that the
user wishes to draw on the display many times, perhaps in different sizes,
locations and orientations. Up to 255 different shapes may be created,
used, and saved in a "Shape Table", through the use of the High-Resolution
subroutines DRAW, DRAWI and SHLOAD, in cenjunction with parameters SHAPE,
ROT and SCALE.

In this section, PART D, yod will be shown how to create, save and load a
Shape Table. The following section, PART E, demonstrates the use of the
shape-drawing subroutines with a predefined Shape Table.

46

“A2MAN 030-0026-01 3 46.PICT” 326 KB 2001-07-22 dpi: 600h x 600v pix: 2886h x 4194v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0062 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

HOW TO CREATE A SHAPE TABLE

Before the High-Resolution shape-drawing subroutines can be used, a shape
must be defined by a "shape definition." This shape definition consists of
a sequence of plotting vectors that are stored in a series of bytes in
APPLE’s memory. One or more such shape definitions, with their index, make
up a "Shape Table" that can be created from the keyboard and saved on disk
or cassette tape for future use.

Each byte in a shape definition is divided into three sections, and each
section can specify a "plotting vector": whether or not to plot a point, and
also a direction to move (up, down, left, or right). The shape-drawing
subroutines DRAW and DRAW1 (see PART E) step through each byte in the shape
definition section by section, from the definition’s first byte through its
last byte. When a byte that contains all zeros is reached, the shape
definition is complete.

This is how the three sections A, B and C are arranged within one of the
bytes that make up a shape definition:

Section: c B

e, — .,
Bit Number: (7 6|5 4 3
Specifies: D D P D D

}>

l

g
D

(=2 o

2
P

Each bit pair DD specifies a direction to move, and each bit P specifies
whether or not to plot a point before moving, as follows:

If DD = @@ move up
= ¢l move right If P=¢ don’t plot
= 1§ move down = 1 do plot
= 11 move left

Notice that the last section, C (the two most significant bits), does not
have a P field (by default, P=@f), so section C can only specify a move
without plotting.

Each byte can represent up to three plotting vectors, one in section A, one
in section B, and a third (a move only) in section C.

DRAW and DRAW! process the sections from right to left (least significant
bit to most significant bit: section A, then B, then C). At any section in
the byte, IF ALL THE REMAINING SECTIONS OF THE BYTE CONTAIN ONLY ZEROS, THEN
THOSE SECTIONS ARE IGNORED. Thus, the byte cannot end with a move in
section C of @@ (a move up, without plotting) because that section,
containing only zeros, will be ignored. Similarly, if section C is @@
(ignored), then section B cannot be a move of @@ as that will also be
ignored. And a move of @@¥@ in section A will end your shape definition
unless there is a 1-bit somewhere in section B or C.

47

“A2MAN 030-0026-01 3 47.PICT” 377 KB 2001-07-22 dpi: 600h x 600v pix: 2905h x 4221v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0063 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

Suppose you want to draw a shape like this:

First, draw it on graph paper, one
dot per square. Then decide where [
to start drawing the shape. Let’s q
start this one at the center. Next,
draw a path through each point in LB <
the shape, using only 9@ degree p
angles on the turns:

[]
®
®

8- O-

-

Next, re-draw the shape as a series
of plotting vectors, each one moving
one place up, down, right, or left,
and distinguish the vectors that
plot a point before moving (a dot
marks vectors that plot points).

-0

Now "unwrap' those vectors and write them in a straight line:

Rl R F ¥ Sndiiadiiadiios RR R Ralie

Next draw a table like the one in Figure 1, below:

Section C B A C B A Vector Code

Byte @) 1 219| w1 4 009
1 “o || <o 111 111 - (81 or @1 ||Move
2 sl ¢ 10¢| pog { @1¢ or 1¢ |{Only
3= 8] $ g1 |roe| Lo «~ @11l or 11
4 Lodl | Rad 191} {101
5 { || > glg| 101 3 100
6 (Y 119] 119 - 101 Plot
7 - gi1| 19 T 119 & Move
8 e 111 v } 111
9 99| 1099 IWN <+—Denotes End

L J of Shape
This Vector Definition
Cannot Plot

or Move Up Figure 1

For each vector in the line, determine the bit code and place it in the next
available section in the table. If the code will not fit (for example, the

vector in section C can’t plot a point), or is a @@ (or @@@) at the end of a
byte, then skip that section and go on to the next. When you have finished

coding all your vectors, check your work to make sure it is accurate.

48

“A2MAN 030-0026-01 3 48.PICT” 325 KB 2001-07-22 dpi: 600h x 600v pix: 2931h x 4392v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0064 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

Now make another table, as shown in Figure 2, below, and re-copy the vector
codes from the first table. Recode the vector information into a series of
hexadecimal bytes, using the hexadecimal codes from Figure 3.

Bytes Codes
Recoded

in Hex Binary H
2 @000
F gog1
¢ go1¢
4 go11
D 9100
5 g1g1
6
E
7
¢

-]

}
l
| >

Section: C

L]

X

- <]
<
(ad
m
2D

@119

g111

1009

< Denotes End 1991
of Shape 1¢1¢
Hex: Digit 1 Digit 2 Definition 1411
1109

1101

1119

Figure 2 1111

W OoONAWU & WK -
AR -R-~R -8~ - -% -R~§ ~1
AR R ~0 -8 -~ ~W i~ ~§ -~
A~ -~ Wl SRR Y
SV~~~ aea — =
SeYE-Faaa-aa—a
W e Q) Q)
AN I -~ S~ ~ W
AN SR BB SR =W)
nanN N n N NN
|| =W« NN W -

|
|

HEOOWP>PO0VOoONoOUMESEWND -~

w

Figure

The series of hexadecimal bytes that you arrived at in Figure 2 is the shape
definition. There is still a little more information you need to provide
before you have a complete Shape Table. The form of the Shape Table,
complete with its index, is shown in Figure 4 on the next page.

For this example, your index is easy: there is only one shape definition.
The Shape Table’s starting location, whose address we have called S, must
contain the number of shape definitions (between @ and 255) in hexadecimal.
In this case, that number is just one. We will place our shape definition
immediately below the index, for simplicity. That means, in this case, the
shape definition will start in byte S+4: the address of shape definition #1,
relative to S, is 4 (@0 @4, in hexadecimal). Therefore, index byte S+2 must
contain the value @4 and index byte S+3 must contain the value @@. The
completed Shape Table for this example is shown in Figure 5 on the next

page.

49

“A2MAN 030-0026-01 3 49.PICT” 285 KB 2001-07-22 dpi: 600h x 600v pix: 2877h x 4240v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0065 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978
Start=S - Byte S+¢ n (§ to FF) <« Total Number of
+1 Unused Shape Definitions
+2 |Lower 2 Digitg ’_Dlz Index to First Byte of Shape
+3 |Upper 2 Digitg} Definition #1, Relative to S
+4 |[Lower 2 Digitg} D2: Index to First Byte of Shape
Index ¢ +5 [Upper 2 Digitg Definition #2, Relative to S
o L[] * * l
L] ' L) . L] I
L] l . L]
+2n Lower 2 Digita} Dn: Index to First Byte of Shape
\ 42n+1 [Upper 2 Digitq Definition #n, Relative to S
(S+D1 First Byte
. . . } <+ Shape Definition #1
. Last Byte=@(
|
S+D2 First Byte
. . . l < Shape Definition #2
Shape . Last Byte=0§
Definitions | |
. I . . I
Do i
L] : . Ll l
| |
S+Dn First Byte
L . . . }4¢-Shape Definition #n
. Last Byte=0@
Figure 4
Start —p Byte @ | #1 | <« Number of Shapes
(Store this address ‘ 1 | @@
in $328 and $329) 2 @4 }‘_Index to Shape Definition #1,
3] 09 Relative to Start
4 12) <« First Byte
5 3F
6 2¢
7 64
8 | 2D | Y«-Shape Definition #1
9 15
A | 36
B 1E
c | @7
D | 9@ |/ = Last Byte
Figure 5
50

“A2MAN 030-0026-01 3 50.PICT” 204 KB 2001-07-22 d

pi: 600h x 600V pix: 2760h x 4257v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0066 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

You are now ready to type the Shape Table into APPLE’s memory. First,
choose a starting address. For this example, we”ll use hexadecimal address

p8ga.

Note: this address must be less than the highest memory address available

in your system (HIMEM), and not in an area that will be cleared when you use
memory Page 1 (hexadecimal locations $20@¢ to $400@) or Page 2 (hexadecimal
locations $4@P¢ to $600@) for high-resolution graphics. Furthermore, it
must not be in an area of memory used by your BASIC program. Hexadecimal
@800 (2048, in decimal) is the lowest memory address normally available to a
BASIC program. This lowest address is called LOMEM. Later on, we will move
the LOMEM pointer higher, to the end of our Shape Table, in order to protect
our table from BASIC program variables.

Press the RESET key to enter the Monitor program, and type the Starting
address for your Shape Table:

9809

If you press the RETURN key now, APPLE will show you the address and the
contents of that address. That is how you examine an address to see if
you have a put the correct number there. If instead you type a colon (:)
followed by a two-digit hexadecimal number, that number will be stored at
the specified address when you press the RETURN key. Try this:

#80¢ return

(type "return" by pressing the RETURN key). What does APPLE say the
contents of location #8¢@ are? Now try this:

P8¢@:91 return
#8¢0 return
p8gg- g1

The APPLE now says that the value @1 (hexadecimal) is stored in the location
whose address is $80¢@. To store more two-digit hexadecimal numbers in
successive bytes in memory, just open the first address:

980@:
and then type the numbers, separated by spaces:

@803:01 ¢ @4 9@ 12 3F 20 64 2D 15 36 1E @7 @@ return

51

“A2MAN 030-0026-01 3 51.PICT” 279 KB 2001-07-22 dpi: 600h x 600v pix: 2832h x 4158v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0067 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

You have just typed your first complete Shape Table...not so bad, was it?
To check the information in your Shape Table, you can examine each byte
separately or simply press the RETURN key repeatedly until all the bytes of
interest (and a few extra, probably) have been displayed:

#80F return

98¢9- 01

return

0% @4 9@ 12 3F 20 64

return
@#8@8- 2D 15 36 LE @7 @@ FF FF

If your Shape Table looks correct, all that remains is to store the starting
address of the Shape Table where the shape-drawing subroutines can find it
(this is done automatically when you use the SHLOAD subroutine to get a
table from cassette tape). Your APPLE looks for the four hexadecimal digits
of the table’s starting address in hexadecimal locations 328 (lower two
digits) and 329 (upper two digits). For our table’s starting address of

98 @@, this would do the trick:

328:00 @8

To protect this Shape Table from being erased by the variables in your BASIC
program, you must also set LOMEM (the lowest memory address available to

your program) to the address that is one byte beyond the Shape Table’s last,
or largest, address.

It is best to set LOMEM from BASIC, as an immediate-execution command issued
before the BASIC program is RUN. LOMEM is automatically set when you invoke
BASIC (reset ctrl B return) to decimal 2¢48 (¥#8¢@, in hexadecimal). You
must then change LOMEM to 2(48 plus the number of bytes in your Shape Table
plus one. Our Shape Table was decimal 14 bytes long, so our
immediate-execution BASIC command would be:

LOMEM: 2¢48 + 15

Fortunately, all of this (entering the Shape Table at LOMEM, resetting LOMEM
to protect the table, and putting the table’s starting address in $328-$329)
is taken care of automatically when you use the High-Resolution feature’s
SHLOAD subroutine to get the table from cassette tape.

52

“A2MAN 030-0026-01 3 52.PICT” 295 KB 2001-07-22 dpi: 600h x 600v pix: 2868h x 4158v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0068 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

SAVING A SHAPE TABLE

Saving on Cassette Tape

To save your Shape Table on tape, you must be in the Monitor and you must
know three hexadecimal numbers:

1) Starting Address of the table (#8@@, in our example)
2) Last Address of the table (P8¢D, in our example)
3) Difference between 2) and 1) (@@PD, in our example)

Item 3, the difference between the last address and the first address of the
table, must be stored in hexadecimal locations @ (lower two digits) and 1
(upper two digits):

@:0D ¢p return

Now you can "Write" (store on cassette) first the table length that is
stored in locations @ and 1, and then the Shape Table itself that is stored
in locations Starting Address through Last Address:

g.1w @8@@.p8eDW
Don’t press the RETURN key until you have put a cassette in your tape

recorder, rewound it, and started it recording (press PLAY and RECORD
simultaneously). Now press the computer’s RETURN key.

Saving on Disk

To save your Shape Table on disk, use a command of this form:
BSAVE filename, A$ startingaddress, L$ tablelength

For our example, you might type

BSAVE MYSHAPEL, AS @800, LS $@gD

Note: the Disk Operating System (DOS) occupies the top 10.5K of memory
(19752 bytes decimal, or $2A@Q hex); make sure your Shape Table is not in
that portion of memory when you "boot" the disk system.

53

“A2MAN 030-0026-01 3 53.PICT” 231 KB 2001-07-22 dpi: 600h x 600v pix: 2796h x 4104v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0069 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

LOADING A SHAPE TABLE

Loading from Cassette Tape

To load a Shape Table from cassette tape, rewind the tape, start it playing
(press PLAY), and (in BASIC, now) type

CALL -11335 return
or (if you have previously assigned the value -11335 to the variable SHLOAD)
CALL SHLOAD return

You should hear one "beep" when the table’s length has been read
successfully, and another "beep" when the table itself has been read. When
loaded this way, your Shape Table will load into memory, beginning at
hexadecimal address (@#8@¢@. LOMEM is automatically changed to the address of
the location immediately following the last Shape-Table byte. Hexadecimal
locations 328 and 329 are automatically set to contain the starting address
of the Shape Table.

Loading from Disk

To load a Shape Table from disk, use a command of the form
BLOAD filename
From our previously-saved example, you would type

BLOAD MYSHAPEL

This will load your Shape Table into memory, beginning at the address you
specified after "A$" when you BSAVEd the Shape Table earlier. In our
example, MYSHAPEl would BLOAD beginning at address @8@@. You must store the
Shape Table’s starting address in hexadecimal locations 328 and 329,
yourself, from the Monitor:

328:939% @8 return

If your Shape Table is in an area of memory that may be used by your BASIC
program (as our example is), you must protect the Shape Table from your
program. Our example lies at the low end of memory, so we can protect it by
raising LOMEM to just above the last byte of the Shape Table. This must be
done after invoking BASIC (reset ctrl B return) and before RUNning our

BASIC program. We could do this with the immediate-execution BASIC command

LOMEM: 2¢48 + 15

54

“A2MAN 030-0026-01 3 54.PICT” 278 KB 2001-07-22 dpi: 600h x 600v pix: 2796h x 4077v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0070 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

FIRST USE OF A SHAPE TABLE

You are now ready to write a BASIC program using Shape-Table subroutines
such as DRAW and DRAWl. For a full discussion of these High-Resolution
subroutines, see the following section, PART E.

Remember that Page 1 graphics uses memory locations 8192 through 16383 (8K
to 16K), and Page 2 graphics uses memory locations 16384 through 24575 (16K
to 24K). Integer BASIC puts your program right at the top of available
memory; so if your APPLE contains less than 32K of memory, you should
protect your program by setting HIMEM to 8192. This must be done after you
invoke BASIC (reset ctrl B return) and before RUNning your program, with the
immediate-execution command

HIMEM: 8192

Here’s a sample program that assumes our Shape Table has already been loaded
from tape, using CALL SHLOAD. This program will print our defined shape,
rotate it 5.6 degrees if that rotation is recognized (see ROT discussion,
next section) and then repeat, each repetition larger than the one before.

1§ X = Y§ = COLR = SHAPE = ROT = SCALE : REM SET PARAMETERS
2¢ INIT = -12288 : DRAW = -11465 : REM DEFINE SUBROUTINES

3¢ WHITE = 127 : BLACK = ¢ : REM DEFINE COLORS

4@ CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES

5¢ SHAPE = 1

60 X@ = 139 : Y@ = 79 : REM ASSIGN PARAMETER VALUES

78 FOR R = 1 TO 48
8¢ ROT =R

9% SCALE = R

1¢¢ COLR = WHITE

119 CALL DRAW : REM DRAW SHAPE 1 WITH AROVE PARAMETERS
12¢ NEXT R : REM NEW PARAMETERS
13¢ END

To pause, and then erase each square after it is drawn, add these lines:

114 FOR PAUSE = 1 TO 2¢¢ : NEXT PAUSE
116 COLR = BLACK : REM CHANGE COLOR
118 CALL DRAW : REM RE-DRAW SAME SHAPE, IN NEW COLOR

55

“A2MAN 030-0026-01 3 55.PICT” 270 KB 2001-07-22 dpi: 600h x 600v pix: 2778h x 4077v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0071 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PART E: DRAWING SHAPES FROM A PREPARED
SHAPE TABLE

Before either of the two shape-drawing subroutines DRAW or DRAWl can be
used, a "Shape Table" must be defined and stored in memory (see PART E:
CREATING A SHAPE TABLE), the Shape Table’s starting address must be
specified in hexadecimal locations 328 and 329 (808 and 8¢9, in decimal),
and the High-Resolution subroutines themselves must have been initialized by
a CALL INIT.

ASSIGNING PARAMETER VALUES

The DRAW subroutine is used to display any of the shapes defined in the
current Shape Table. The origin or ‘beginning point’ for DRAWing the shape
1s specified by the values assigned to X@# and Y@, and the rest of the shape
continues from that point. The color of the shape to be DRAWn is specified
by the value of COLR.

The shape number (the Shape Table’s particular shape definition that you
wish to have DRAWn) is specified by the value of SHAPE. For example,

SHAPE = 3

specifies that the next shape-drawing command will use the third shape
definition in the Shape Table. SHAPE may be assigned any value (from 1
through 255) that corresponds to one of the shape definitions in the current
Shape Table. An attempt to DRAW a shape that does not exist (by executing a
shape-drawing command after setting SHAPE = 4, when there are only two shape
definitions in your Shape Table, for instance) will result in a *** RANGE
ERR message being displayed, and the program will halt.

The relative size of the shape to be DRAWn is specified by the value
assigned to SCALE. For example,

SCALE = 4

specifies that the next shape DRAWn will be four times the size that is
described by the appropriate shape definition. That is, each "plotting
vector" (either a plot and a move, or just a move) will be repeated four
times. SCALE may be assigned any value from @ through 255, but SCALE = ¢ is
interpreted as SCALE = 256, the largest size for a given shape definition.

56

“A2MAN 030-0026-01 3 56.PICT” 326 KB 2001-07-22 dpi: 600h x 600v pix: 2778h x 4068v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0072 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

You can also specify the orientation or angle of the shape to be DRAWn, by
assigning the proper value to ROT. For example,

ROT = @

will cause the next shape to be DRAWn oriented just as it was defined, while

ROT = 16

will cause the next shape to be DRAWn rotated 9¢ degrees clockwise. The
value assigned to ROT must be within the range # to 255 (although ROT=64,
specifying a rotation of 360 degrees clockwise, is the equivalent of ROT=@),
For SCALE=1, only four of the 63 different rotations are recognized
(¢,16,32,48); for SCALE=2, eight different rotations are recognized; etc.

ROT values specifying unrecognized rotations will usually cause the shape to
be DRAWn with the next smaller recognized rotation.

ORIENTATIONS OF SHAPE DEFINITION

ROT = @ (no rotation
from shape definition)

ROT = 48 (270 degrees ‘ » ROT = 16 (90 degrees

clockwise rotation) clockwise rotation)

ROT = 32 (180 degrees
clockwise rotation)

DRAWING SHAPES

The following example program DRAWs shape definition number three, in white,

at a 135 degree clockwise rotation. Its starting point, or origin, is at
(14¢,80).

@ X@ = Y@ = COLR = SHAPE = ROT = SCALE : REM SET PARAMETERS

5 INIT = -12288 : DRAW = -11465 : REM DEFINE SUBROUTINES

1¢ WHITE = 127 : REM DEFINE COLOR

2¢ CALL INIT : REM INITIALIZE HIGH-RESOLUTION SUBROUTINES

30 X@ = 140 : Y@ = 80 : COLR = WHITE : REM ASSIGN PARAMETER VALUES
4@ SHAPE = 3 : ROT = 24 : SCALE = 2

50 CALL DRAW : REM DRAW SHAPE 3, DOUBLE SIZE, TURNED 135 DEGREES
6@ END

57

“A2MAN 030-0026-01 3 57.PICT” 261 KB 2001-07-22 dpi: 600h x 600v pix: 2787h x 4086v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0073 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

LINKING SHAPES

DRAW1 is identical to DRAW, except that the last point previously DRAWn,
PLOTted or POSNed determines the color and the starting point for the new
shape. X@, Y@, and COLR, need not be specified, as they will have no effect
on DRAWl. However, some point must have been plotted before CALLing

DRAWLl, or this CALL will have no effect.

The following example program draws "squiggles" by DRAWing a small shape
whose orientation is given by game control #@, then linking a new shape to
the old one, each time the game control gives a new orientation. To clear
the screen of "squiggles," press the game-control button.

1§ X@ = YP = COLR = SHAPE = ROT = SCALE : REM SET PARAMETERS

20 INIT = -12288 : DRAW = -11465 : DRAWL = -11462

22 CLEAR = -12274 : WHITE = 127 : REM NAME SUBROUTINES AND COLOR

39 FULLSCREEN = -163(2 : BUTN = -16287 : REM NAME LOCATIONS

4@ CALL INIT : REM IMITIALIZE HIGH-RESOLUTION SUBROUTINES

5¢ POKE FULLSCREEN, @ : REM SET FULL-SCREEN GRAPHICS

6¢ COLR = WHITE : SHAPE =1 : SCALE = 5

70 X@ = 140 : Y@ = 8@ : REM ASSIGN PARAMETER VALUES

8@ CALL CLEAR : ROT = PDL(@) : CALL DRAW : REM DRAW FIRST SHAPE

9¢ IF PEEK(BUTN) > 127 THEN GOTO 8@ : REM PRESS BUTTON TO CLEAR SCREEN

1¢¢ R = PDL(¥) : IF (R < ROT+2) AND (R > ROT-2) THEN GOTO 9¢ :
REM WAIT FOR CHANGE IN GAME CONTROL

11§ ROT = R : CALL DRAWL : REM ADD TO '"SQUIGGLE"

12¢ GOTO 9¢ : REM LOOK FOR ANOTHER CHANGE

After DRAWing a shape, you may wish to draw a LINE from the last plotted
point of the shape to another fixed point on the screen. To do this, once
the shape is DRAWn, you must first use

CALL FIND

prior to CALLing LINE. The FIND subroutine determines the X and Y
coordinates of the final point in the shape that was DRAWn, and uses it as
the beginning point for the subsequent CALL LINE.

58

“A2MAN 030-0026-01 3 58.PICT” 282 KB 2001-07-22 dpi: 600h x 600v pix: 2787h x 4059v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0074 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

The following example DRAWs a white shape, and then draws a violet LINE from
the final plot position of the shape to the point (1¢, 25).

$ X@ = Y@ = COLR = SHAPE = ROT = SCALE : REM SET PARAMETERS

5 INIT = -12288 : LINE = -115¢f¢ : DRAW = -114@2 : FIND = -1178¢

1¢ VIOLET = 85 : WHITE = 127 : REM DEFINE SUBROUTINES AND COLORS

20 X@ = 140 : Y§ = 8¢ : COLR = WHITE : REM ASSIGN PARAMETER VALUES

3¢ SHAPE = 3 : ROT = @ : SCALE = 2

4@ CALL DRAW : REM DRAW SHAPE WITH ABOVE PARAMETERS

5¢ CALL FIND : REM FIND COORDINATES OF LAST SHAPE POINT

60 X@ =16 : Y@ = 25 : COLR = VIOLET : REM NEW PARAMETER VALUES, FOR LINE
7¢ CALL LINE : REM DRAW LINE WITH ABOVE PARAMETERS

8¢ END

COLLISIONS

Any time two or more shapes intersect or overlap, the new shape has points
in common with the previous shapes. These common points are called points
of "collision."

The DRAW and DRAV1 subroutines return a "collision count” in the hexadecimal
memory location $32A (81¢, in decimal). The collision count will be
constant for a fixed shape, rotation, scale, and background, provided that
no collisions with other shapes are detected. The difference between the
"standard" collision value and the value encountered while DRAWing a shape
is a true collision counter. For example, the collision counter is useful
for determining whether or not two constantly moving shapes ever touch each
other.

11¢ CALL DRAW : REM DRAW THE SHAPE
12¢ COUNT = PEEK(81¢) : REM FIND THE COLLISION COUNT

59

“A2MAN 030-0026-01 3 59.PICT” 236 KB 2001-07-22 dpi: 600h x 600v pix: 2796h x 4059v

| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0075 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PART F: TECHNICAL INFORMATION

LOCATIONS OF THE HIGH-RESOLUTION PARAMETERS

When the high-resolution parameters are entered (line @, say), they are
stored -- with space for their values -~ in the BASIC variable table, just
above LOMEM (the LOwest MEMory location used for BASIC variable storage).
These parameters appear in the variable table in the exact order of their
first mention in the BASIC program. That order must be as shown below,
because the High-Resolution subroutines look for the parameter values by
location only. Each parameter value is two bytes in length. The low-order
byte is stored in the lesser of the two locations assigned.

VARIABLE-TABLE PARAMETER LOCATIONS

Parameter Locations beyond LOMEM
X¢ $05, $@6
Y@ $¢c, $@p
COLR $15, $16
SHAPE $1F, $2¢
ROT $27, $28
SCALE $31, $32
60

“A2MAN 030-0026-01 3 60.PICT” 179 KB 2001-07-22 dpi: 600h x 600v pix: 2778h x 4086v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0076 of 0113 |

N
Apple 2 Technical Manual + ProgrammersAid#1 « 1978
Variable Hexadecimal
Name Location Description
SHAPEL, SHAPEH 1A, 1B On-the-fly shape pointer.
HCOLOR! 1C On-the-fly color byte.
COUNTH 1D High-order byte of step count for LINE.
HBASL, HBASH 26, 27 On-the-fly BASE ADDRESS
HMASK 3¢ On-the~fly BIT MASK
QDRNT 53 2 LSB’s are rotation quadrant for DRAW.
XOL, XOH 32¢, 321 Most recent X-coordinate. Used for
initial endpoint of LINE. Updated
by PLOT, POSN, LINE and FIND, not DRAW.
YO 322 Most recent Y-coordinate (see XOL,
XO0H).
BXSAV 323 Saves 6502 X-register during high-
resolution CALLs from BASIC.
HCOLOR 324 Color specification for PLOT, POSN.
HNDX 325 On-the-fly byte index from BASE
ADDRESS.
HPAG 326 Memory page for plotting graphics.
Normally $2¢ for plotting in Page 1
of high-resolution display memory
($2000-$3FFF).
SCALE 327 On-the~-fly scale factor for DRAW.
SHAPXL, SHAPXH 328, 329 Start of Shape Table pointer.
COLLSN 32A Collision count from DRAW, DRAWI.
o
“A2MAN 030-0026-01 3 61.PICT” 197 KB 2001-07-22 dpi: 600h x 600v pix: 2642h x 4077v
Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0077 of 0113 |
\,

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

SHAPE TABLE INFORMATION

Shape Tape Description
Record #1 A two-byte-long record that contains the length
of record #2, Low-order first.
Record Gap Minumum of .7 seconds in length.
Record #2 The Shape Table (see below).
SHAPE TABLE EXAMPLE
Start of Table @#-255 4— Number of Shapes —p |@2
(Address Stored Unused (111
in $328-$329) Low ¢ Beginning of Shape #1, > [11)
High } Relative to Start. { 11)
Low ¢—bBeginning of Shape #2, > @5
High } Relative to Start. { 1)
First Byte |, (37
. 8A
. , ¢———— Shape #1l —————p { | A6
. EE
Last Byte=§ J ‘| 90
First Byte |, 32
. (FF
. , ¢————— Shape #2 ——— { | BB
. 1D
Last Byte=@ |/ g9

LOMEM —— BASIC Variablesq— (if Table SHLOADed) —pBASIC Variables

R L

The address of the Shape Table’s Start should be stored in locations $328
and $329. If the SHLOAD subroutine is used to load the table, Start will be
set to LOMEM (normally this is at $¢80¢) and then LOMEM will be moved to one
byte after the end of the Shape Table, automatically.

If you wish to load a Shape Table named MYSHAPES2 from disk, beginning at
decimal location 2048 (#80¢ hex), and ending at decimal location 2048 plus

decimal 15 bytes (as in the example above), you may wish to begin your BASIC
program as follows:

D$ = "'" : REM QUOTES CONTAIN CTRL D (D$ WILL BE ERASED BY SHAPE TABLE)
PRINT D$; 'BLOAD MYSHAPES2 , A 2¢48" : REM LOADS SHAPE TABLE

POKE 8(8, 2¢48 MOD 256 : POKE 8(@9, 2¢48 / 256 : REM SETS TABLE START
POKE 74, (2948 + 15 + 1) MOD 256 : POKE 75, (2¢J48 + 15 + 1) / 256

POKE 2@4, PEEK(74) : POKE 2@5, PEEK(75) : REM SETS LOMEM TO TABLE END+l1
X@# = Y@ = COLR = SHAPE = ROT = SCALE : REM SETS PARAMETERS

(VPN S

62
“A2MAN 030-0026-01 3 62.PICT” 307 KB 2001-07-22 dpi: 600h x 600v pix: 2778h x 4068v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0078 of 0113 |

Apple 2 Technical Manual

Programmer’s Aid # 1

« 1978

Highest RAM
Memory address:

This 1s 49151 ($BFFF)”
on a 48K system

Booting DOS

I
16752

Disk
($2A09) Operating
Bytes System
¢ (if booted)

User’s BASIC program
Starts at HIMEM
and builds down

High-Resolution Graphics
Page 2

High-Resolution Graphics
Page 1

BASIC Variables

Start at LOMEM
and build up

End + 1
Shape Table
(if SHLOADed)
Start

Integer BASIC System use:

Low-resolution graphics
and Text screen, etc.

Sets HIMEM here —>
24576 >
(56000)
16384
($4000)
8192)
($2090)
CALL SHLOAD
Sets LOMEM here
2048
(so8gg) >
Lowest RAM
Memory address:
0000 (S0000) N

bottom.

Unfortunately, there is no convention for mapping memory.

the highest (largest) address at the top, lowest (smallest) address at the
The maps of Shape Tables that appear on other pages show the
Starting address (lowest and smallest) at the top, the Ending address
(highest and largest) at the bottom.

63

<4—

APPLE Il MEMORY MAP FOR USING HIGH-RESOLUTION
GRAPHICS WITH INTEGER BASIC

Invoking BASIC
Sets HIMEM here

HIMEM’s value in
Locations 76-77
($4C-5$4D)

Invoking BASIC
Sets LOMEM here

LOMEM’s value in
Locations 74-75
($4A-$4B)

This map shows

“A2MAN 030-0026-01 3 63.PICT” 257 KB 2001-07-22 dpi: 600h x 600v pix: 2787h x 4104v

| Author: Apple Computer, Inc. e

Document # 030-0026-01

Page 0079 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

PART G: COMMENTS

l. Using memory Page 1l for high-resolution graphics erases everything in
memory from location 8192 ($2¢@@ hex) to location 16383 ($3FFF). If the top
of your system’s memory is in this range (as it will be, if you have a 16K
system), Integer BASIC will normally put your BASIC program exactly where it
will be erased by INIT. You must protect your program by setting HIMEM
below memory Page 1, after invoking BASIC (reset ctrl B return) and before
RUNning your program: use this immediate-execution command:

HIMEM: 8192 return

2. Using memory Page 2 for high-resolution graphics erases memory from
location 16384 ($40@@) to location 24575 ($5FFF). If yours is a 24K system,
this will erase your BASIC program unless you do one of the following:

a) never use Page 2 for graphics; or
b) change HIMEM to 8192, as described above.

3. The picture 18 further confused if you are also using an APPLE disk with
your system. The Disk Operating System (DOS), when booted, occupies the
highest 1@.5K ($2A¢@) bytes of memory. HIMEM is moved to just below the
DOS. Therefore, if your system contains less than 32K of memory, the DOS
will occupy memory Page 1 and Page 2. In that case, you cannot use the
High-Resolution graphics with the DOS intact. An attempt to do so will
erase all or part of the DOS. A 32K system can use only Page 1 for graphics
without destroying the DOS, but HIMEM must be moved to location 8192 as
described above. 48K systems can usually use the DOS and both
high-resolution memory pages without problems.

4. 1If you loaded your Shape Table starting at LOMEM in location 2048
($08¢d), from disk or from tape without using SHLOAD, Integer BASIC will
erase the Shape Table when it stores the program variables. To protect your
Shape Table, you must move LOMEM to one byte beyond the last byte of the
Shape Table, after invoking BASIC and before using any variables. SHLOAD
does this automatically, but you can use this immediate-execution command:

LOMEM: 2(48 + tablelength + 1

where tablelength must be a number, not a variable name. Some programmers
load their Shape Tables beginning in location 3¢48 ($@BE8). That leaves a
safe margin of 10@¢ bytes for variables below the Shape Table, and at least
500@ bytes (if HIMEM:8192) above the table for their BASIC program.

5. CALLing an undefined or accidentally misspelled variable name is usually
a CALL to location zero (the default value of any undefined variable). This
CALL may cause unpredictable and unwelcome results, depending on the
contents of location zero. However, after you execute this BASIC command:

POKE @, 96

an accidental CALL to location zero will cause a simple jump back to your
BASIC program, with no damage.
64

“A2MAN 030-0026-01 3 64.PICT” 431 KB 2001-07-22 dpi: 600h x 600v pix: 2796h x 4050v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0080 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

APPENDIXI
SOURCE ASSEMBLY

LISTINGS

64 High-Resolution Craphics SHPPP-SD 3FF
76 Penumber SDAPP-SHALLR
79 Append SDABC-SDah 4
0 Relocate SDADC=-SDS2D
82 Tape Verify (BASIC) SDH535-SD5S53
83 Tape Verify (65¢2 Code & Dhata) SN S554-SD5AA
REA RAM Test SDS5KC=SD6YI
87 Music Sh717-SD7F¢
65

“A2MAN 030-0026-01 3 65.PICT” 110 KB 2001-07-22 dpi: 600h x 600v pix: 2706h x 4032v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0081 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 e

1978

LCO0 A9 20
LCco2 8D 26 03

PR T Z T T Y ET YT EEEITEE EYEYY

2 » »

3 # APPLE-I1 HI-RESOLUTICN #

4 » GRAPHICS SUBROUTINES »

S » *

& » BY HOZ /13/77 »

7 » »

8 » ALL RIGHTS RESERVED *

9 » »*

10 #3030 3043890 303015 3 90903 3045 38 0090 1 9 00 2 4 34
12 » HI-RES EQUATES
13 SHAPEL EQU $1A POINTER TO
14 SHAPEH EQU $1B SHAPE LIST -
13 HCOLOR! EQU $1C RUNNING COLOR MASK
16 COUNTH EQU $1D
17 HBASL EGQU $26 BASE ADR FOR CURRENT
18 HBASH EqU $27 HI-RES PLOT LINE. A
19 HMASK EQU $30
20 AtL EQU $3C MONITOR AtL.
21 AlH EQU $3D
22 A2L EQU $3E MONITOR A2.
23 A2H EGU $3F
24 LOMEML EQU $4A BASIC '‘START OF VARS’.
25 LOMEMH EQU $4B
26 DXL EQU $50 DELTA-X FOR HL IN, SHAPE.
27 DXH EQU $51
28 SHAPEX EQU $51 SHAPE TEMP.
29 DY EQU $52 DELTA-Y FOR HLIN, SHAPE.
30 GDRNT EQU $53 ROT QUADRANT (SHAPE).
3t EL EQU $54 ERROR FOR HLIN.
32 EH EQU $35
33 PPL EQU $CA BASIC START OF PROG PTR.
34 PPH EQU $CB
3% PVL EQU $CC BASIC END OF VARS PTR.
36 PVH EGU $CD
37 ACL EQY $CE BASIC ACC.
38 ACH EGU $CF
39 XOL EGU $320 PRIOR X~-COORD SAVE
40 XOH EQU $321 AFTER HLIN OR HPLOT.
41 YO EQU $322 HLIN, HPLOT Y-COORD SAVE.
42 BXSAV EQU $323 X-REC SAVE FOR BASIC.
43 HCOLOR EQU $324 COLOR FOR HPLOT, HPOSN
44 HNDX EQU $325 HORIZ OFFSET SAVE.
43 HPAG EQU $326 HI-RES PACE ($20 NORMAL)
456 SCALE EQU $327 SCALE FOR SHAPE, MOVE.
47 SHAPXL EGU $328 START OF
48 SHAPXH EQU $329 SHAPE TABLE.
49 COLLSN EQU $32A COLI.ISION COUNT.
30 HIRES EGQU $C0S7 SWITCH TO HI-RES VIDEO
51 MIXSET EQU $C0S3 SELECT TEXT/GRAPHICS MIX
52 TXTCLR EQU $CO030 SELECT GRAPHICS MODE.
53 MEMFUL EQU $E36D BASIC MEM FULL ERROR.
54 RNGERR EQU $EEL8 BASIC RANGE ERROR.
393 ACADR EQU $F11E 2-BYTE TAPE READ SETUP.
S6 RD2BIT EQU $FCFA TWO-EDGE TAPE SENSE.
57 READ EQU SFEFD TAPE READ (Al.A2).
58 READX1 EQU $FFO02 READ WITHOUY HEADER.
40 » HIGH RESOLUTION GRAPHICS INITS
b1 »
42 # ROM VERGION $DOOO TO $D3FF
&3 »
&4 OrRG $D00O
&5 0BJ $A000
64 SETHRL LDA #$20 INIT FOR $2000-3FFF
&7 STA HPAG HI-RES SCREEN MEMORY.

66

“A2MAN 030-0026-01 3 66.PICT” 263 KB 2001-07-22 d

pi: 600h x 600V pix: 2065h x 4032v

| Author: Apple Computer, Inc. e

Document # 030-0026-01

Page 0082 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

B0OS AD $57 €O 68 LDA HIRES SET HIRES DISPLAY MODE
D028 AD 53 CO 69 LDA MIXSET WITH TEXT AT BOTTOM.
LOOB AD S0 CO 70 LDA TXTCLR SET GRAPHICS DISPLAY MODE
DOOE A9 00 71 HCLR LDA #%$0

L0110 85 1C 72 BKGNDO STA HCOLOR1 SET FOR BLACK BKGND
D012 AD 26 03 73 BKOND LD~ HPAG

D015 85 1B 74 STA SHAPEH INIT HI-RES' SCREEN MEM
D017 A0 0O 75 LDY #$0 FOR CURRENT PAGE, NORMALLY
D019 84 1A 76 sTY SHAPEL. $2000-3FFF OR $4000~-SFFF
CO1B AS 1C 77 BKGND1 LDA HCOLOR1

LOiD 91 1A 78 STA (SHAPEL). Y

DO1F 20 A2 DO 79 JER CSHFT2 (SHAPEL, H) WILL SPECIFY
Do22 C8 8o INY 32 SEPARATE PAGES

D023 DO Fé e1 BrF BKGND1 THROUGHOUT THE INIT.
D025 E6 1B a2 INC SHAPEH

D027 AS 1B 83 LDA SHAPEH

D0O29 29 IF 84 AND #$1F TEST FOR DONE.

LCO2B DO EE 85 BNE BKGND1

DO2D &0 86 RTS

88 # HI-RES GRAPHICS POSITION AND PLOT SUBRS
CORE 8D 22 03 89 HPOSN STA YO ENTER WITH Y IN A-REG,

D031 BE 20 03 90 §TX XOL XL IN X-REG,
LO34 8C 21 03 91 sTY XOH AND XH IN Y-REGC.
LD37 48 G2 PHA
Do38 29 Co 93 AN #$CO
LO3A 85 26 94 8TA HBASL FOR Y-COORD = OOABCDEF.
DO3C 4A 95 LSR i CALCULATES BASE ADDRESS
DO3D 4A & LSR i IN HBASL. HBASH FOR
DO3E 05 26 97 ORA HBASL ACCESSING SCREEN MEM
D040 85 26 98 STA HB3ASL VIA (HBASL),Y ADDRESSING MODE
CO42 &8 99 PLA
D043 85 27 100 8TA HBASH
D045 OA 101 ASL i CALCULATES
LO46 0A 102 ASL i HRASH = PPPFQHCD,
D047 0OA 103 ABL i HRASL = EABABOOO
Do18 26 27 104 ROL HBASH
DO%A 0A 105 ASL i WHERE PPP=001 FOR $2000-3FFF
DO41B 26 27 106 ROL HBASH SCREEN MEM RANGE AND
DO1D 0OA 107 ASL i PPP=010 FOR $4000-7FFF
DO4E 66 24 108 ROR HBASL (GIVEN Y~-COORD=ABCDEFGH)
BOSC AS 27 109 LDA HBASH
poS2 29 1F 110 AND #S$1F
DO%4 OD 26 03 111 ORA HrAG
D057 85 27 112 STA HBASH
DOS9 B8A 113 TXA DIVIDE X0 BY 7 FOR
COSA CO 00 114 cPy #$0 INDEX FROM BASE ADR
DOSC FO 0S 115 BEG HPOSN2 (QUOTIENT) AND BIT
DOSE A0 23 116 LDY #$23 WITHIN SCREEN MEM BYTE
DO&O &9 04 117 ADC #84 (MASK SPEC ‘D BY REMAINDER)
Los2 C8 118 HPOSN1 INY
D0O&3 E9 07 119 HPOSN? SBC #87 SUBTRACT OUT SEVENS.
D049 BO FB 120 BCS HPOSNI
DOsS7 BC 25 03 121 STY {iNDX WORKS FOR X0 FROM
DOsSA AA 122 TAX 0 TO 279, LOW-ORDER
DO&B BD EA DO 123 LDA MSKTBL-249, X BYTE IN X-REO,
COSE 835 30 124 STA HMASK HIGH IN Y-REC ON ENTRY
£070 98 123 TYA'
D071 4A 126 LER i IF ON ODD BYTE (CARRY SET)
D072 AD 24 03 127 LDA HCOLOR THEN ROTATE HCOLOR ONE
DO7S 85 1C 128 HPOSN3 STA HCOLOR{ BIT FOR 180 DECREE SHIFT
D077 BO 29 129 BCS CSHFT2 PRIOR TO COPYING TO HCOLOR1.
D079 &0 130 RTS
DO7A 20 2E DO 131 HPLOT JUSR HPOSN
DO7D AS i1C 132 HPLOT1 LDA HCOLOR1 CALC BIT POSN IN HBASL,H
DO7F 51 2¢& 133 EOR (HBASL)., Y HNDX, AND HMASK FROM
D031 25 30 134 AND HMASK Y-COORD IN A-REG,
D033 51 26 135 EOR (HBASL), Y X-COORD IN X, Y-REGS.
D035 91 26 136 8TA (HBASL), Y FOR ANY ‘L’ BITS OF HMASK
D037 60 137 RTS8 SUBSTITUTE CORRESPONDING

138 » BIT OF HCOLORY.

67

“A2MAN 030-0026-01 3 67.PICT” 357 KB 2001-07-22 dpi: 600h x 600v pix: 2309h x 3968v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0083 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 « 1978

D238
DO3A
DO3C
03D
DO3F
DO?1
po?73
0o74
olo p2-]
DO?7
D079
D078
DO7D
poAO
Doz
D023
DOAS
DOA7
DoAY
poAB
DOAD
DOAE
DOBO
DOt
DOB3
DOBS
poB7
poae
DOBA
DOBC
DOBE

10
AS
4A
Bo
49
as
&0
a8
10
A0
A9
a3
8c
AS
0A
(44
10
AS
49
a3
&0
AS
oA
49
30
A9
c8
co
90
AO
BO

24
30

oS
co
30

o2
27
co
30
a3
iC

03

co
06
1C
7F
ic

30

80
DC
a1

28
DF
00
DB

Loco
DoCt
DOC3
pocs
0OC7
oo fol
DOCB
coCo
DOCF
DoD2
DOD4
DOD&
cons
DOD9
DODB
DODD
DODF
DOE1
DOZ3
DOES
DOz7
DOZA
LOEC
DOFE
DOFO
DOF2

18
AS
a9
FO
A9
23
a
DO
EE
A9
a3
10
18
AS
29
FO
Bl
43
23
DO
EE
S1
91
AS
63
29

31
04
27
7F
30
26
18
2A
7F
30
12

03

S1
04
oF
26
1C
30
03
2A
26
26
51
33
03

03

DO~ 4
DOF &
DOF7
DOF9
DOFB
DOFC
DOFE
D101
D103

ce
bA
BO
30
i8
AS
2C
DO
06

0]

8F
30

27
€A
22
26

D1

140
141
142
143
144
143
146
147
148
149
150
181
192
133
134
133
156
1%7
158
199
160
161
162
163
164
163
166
147
1468
169
170
171

173
174
173
176
177
17e
179
180
181
182
183
184
188
186
187
180
189
190
191
192
193
194
198
196
197
198
199
200
201
202
203
204
205
206
207
208
209

HI-RES ORAPHICS L.R,U,D SUBRS
LFTRT BPL RIGHT USE SIGN FOR LFT/RT SELECT
LEFT LDA HMASK
LSR i SHIFT LOW-ORDER
EC8 LEFTL 7 BITS OF HMASK
EOR #$CO ONE BIT TO LSB.
LR1 8TA HMASK
RTS
LEFT1T DEY DECR HORIZ INDEX.
BPL LEFT2
LDY #827 WRAP AROUND SCREEN.
LEFT2 LDA #8CO NEW HMAEK, RIOHTMOST
NEWNDX STA HMASK DOT OF BYTE.
8TY HNuX UPDATE HORIZ INDEX
CSHIFT LDA HCOLOR1 ’
CEHFT2 ASL i ROTATE LOW-ORDER
CMP #8CO 7 BITS OF HCOLOR1
BPL RTS1 ONE BIT POSN.
LDA HCOLOR1
EOR #87F ZXYXYXYX => ZYXYXYXY
8TA HCOLOR1
RTS1 RTS8
RIGHT LDA HMASK
ASL i SHIFT LOW-ORDER
EOR #880 7 BITS OF HMASK
EMI LR1 ONE BIT TO MSB.
LDA #981
INY NEXT BYTE.
CPY #828
BCC NEWNDX
LDY #80 WRAP AROUND SCREEN IF >279
BCS NEWNDX ALWAYS TAKEN.
L,R,U,D, SUBROUTINES.
LRUDX1 CLC NO 90 DEG ROT (X-OR).
LRUDX2 LDA SHAPEX
AND #84 IF B2=0 THEN NO PLOT.
BEQ LRUD4
LDA #87F FOR EX-OR INV'OQ SCREEN MEM
AND HMASK
AND (HBASL.), Y SCREEN BIT SET?
BNE LRUD3
InNC COLLSN
LDA #87F
AND HMASK
BPL LRUD3 ALWAYS TAKEN.
LRUD1 CuLC NO 90 DEG ROT.
LRUD2 LDA SHAPEX
AND #84 IF B2=0 THEN NO PLOT.
BE6 LRUD4
LDA (HBASL)., Y
EOR HCOLOR1 SET HI-RES SCREEN BIT
AND HMASK TO CORRESPONDING HCOLOR1
BNE LRUDI IF BIT OF SCREEN CHANGES
INC COLLSN THEN INCR COLLSN DETECT
LRUD3 EOR (HHASL), ¥
8TA (HBASL), Y
LRUD4 (DA SHAPEX ADD GDRNT TO
ADC GDRNT SPECIFIED VECTOR
ANU #83 AND MOVE LFT, RT,
EQ3 EQU #-1 UP, OR DWN BASED
cHp #82 ON SION AND CARRY.
ROR
LRUD BCS LFTRT
UPDWN BMI . DOWN4 SIGN FOR UP/CWN SELECT
up cLe
LDA HBASH CALC BASE ADDRESS
BI1 EQ1C (ADR OF LEFTMOST BYTE)
BNE UP4 FOR NEXT LINE UP
ASL HBASL IN (HBASL. HBASH)

68

“A2MAN 030-0026-01 3 68.PICT” 337 KB 2001-07-22 dpi: 600h x 600v pix: 2110h x 3996v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0084 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 « 1978

D10S BO
D107 2C
D10A FO
D10C &%
D10E 38
D1OF BO
D111 69
D113 48
D114 AS
D116 69
D118 BO
Di1A &9
D11C 8%
D11E &8
D11F BO
D121 69
D123 46
D12S &9
D127 &%
D129 &0
D12A 18
D12B AS
D12D &%

D12F 2C
D132 DO

D134 06
D136 90
D138 &9
D13A 18
D13B 2C
D13E FO
D140 AS
D142 6%
D144 49
D14& FO
D148 4%
D14A 8%
D14C AD
D14F 90
D151 &9
D153 66
D1%% 90

D157 48
Dis8 a9
D1%A 8D
DiSD 8D
D160 8D
D163 &8
D164 48
D143 38
D146 ED
D169 48
DisA BA
D16B ED
D14E 85
D170 BO

1A
F3
0S5
iF

12
23

26
BO
o2
FO
26

o2
iF
26
FC
27

27
04

EA
F3

26
19
EO

<€
13
26
S0
Fo
o2
FO
26
26
o
EO
26
DO

00
20
21
22

20

21
53
OA

Do

Di

D1

03

03
03
03

03

03

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
223
226
227
228
229
230
231
232
233
234
23%

236
237
238
239
240
241
242
243
244
2435
246
247
248
249
as0
251
2%2

254
255
256
257
258
239
260
261
262
263
264
265
266
2467
268

UP1

UPS

UP2
UP3
UP4
UPDWN1

DOWN
DOWN4

EQ4

DOWN3

DOWN1
DOWNZ

HI-RES GRAPHICS LINE DRAW SUBRS

BCE
BIT
BEG
ADC
6EC
BCS
ADC
PHA
LDA
ADC
BCS
ADC
ETA
PLA
BCS
ADC
ROR
ADC
8TA
RTS
C.C
LDPA
ADC
EQY
BIT
BNE

ASL
BCC
ADC
CLC
BIT
BER
LDA
ADC
EOR
BEG
EOR
8TA
LDA
BCC
ADC
ROR
BCC

HLINRL PHA

HLIN

LDA
8TA
STA
87A
PLA
PHA
S8EC
§BC
PHA
TXA
§BC
8TA
BCS

“A2MAN 030-0026-01 3 69.PICT” 241 KB 2001-07-22 dpi: 600h x 600v pix: 2110h x 3986v

Y: Y-REC

UP2 WITH 192-LINE WRAPAROUND
EQ3

uP1

#S$1F #xun BIT MAP #sus

UP3 FOR ROW = ABCDEFGH,
“$23

HBASL HBASL = EABABOOO

#8BO HBASH = PPPFGHCD

UPS

#8F0 WHERE PPP=001 FOR PRIMARY
HBASL HI-RES PAGE ($2000-$3FFF)

UP3
#S1F
HBASL
#$FC
HBASH

HBASH

#82 CALC BASE ADR FOR NEXT LINE
#=-1 DOWN TO (HBASL,HBASH)

EQiC

UPDUN1

HBASL WITH 192-LINE WRAPAROUND
DOWN1
#SEO

EQ4
DOWN2
HBASL
#3350
#8$FO
DOWN3
#8FO
HBASL
HPAG
DOWN2
#$EO
HBASL
UPDWN1

#80 SET (XOL. XOH) AND
XOL YO TO ZERO FOR
XCH REL LINE DRAW

YO (DX. DY).

ON ENTRY
XL: A-REC
XOL XH; X-REG

XOH
QDRNT CALC ABS(X-X0)
HLIN2 IN (DXL, DXH).

69

| Author: Apple Computer, Inc.

e Document # 030-0026-01

Page 0085 of 0113 |

-
Apple 2 Technical Manual + ProgrammersAid#1 « 1978
D172 &8 269 PLA
D173 49 FF 270 EOR #$FF X DIR TO SIGN BIT
D173 &9 01 271 ADC #81 OF QDRNT.

D177 48 272 FPHA O=RIGHT (DX PO8)
D178 A9 00 273 LDA #80 1=sLEFT (DX NEQ)
D17A ES 33 274 SBC QDRNT
D17C 83 51 273 HLIN2 STA DXH
D17E 83 33 276 STA EH INIT (EL.EH) TQ
D180 48 277 PLA ARS8 (X-X0)
D181 835 30 278 S§TA DXL
D183 83 34 279 8TA EL
D183 68 280 PLA
D186 8D 20 03 281 STA XoL
D189 BE 21 03 282 8TX XOH
pigaC 98 283 TYA
D18D 18 284 cLe
D18E ED 22 03 283 €8c YO CALC -ABS(Y-0)-1
D191 90 04 286 BCC HUINI IN DY.
D193 49 FF 287 EOR WSFF
D193 &9 FE 288 ADC #SFE
D197 83 32 289 HLIN3 S8TA DY ROTATE Y DIR INTO
D199 8C 22 03 290 sTY YO GDRNT SIGN BIT
D19C 66 33 291 ROR QDRNT (O=UP, 1=DOWN)
D19€ 38 292 SEC
D19F ES S0 293 8BC DXL INIT (COUNTL, COUNTH).
Di1Al AA 294 TAX TO -(DEL TX+DELTY+1)
D142 A9 FF 293 LDA $SFF
D144 ES 51 296 €8C DXH
D144 83 1D 297 STA COUNTH
D1AB AC 25 03 298 Loy HNDX HORIZ INDEX
D14B BO 0S 299 BCS MOVEX2 ALWAYS TAKEN.
D14D OA 300 MOVEX ASL i MOVE IN X-DIR. USE
D14AE 20 88 DO 301 JSR LFTRT GDRNT B&6 FOR LFT/RT SBELECT
D1B1 38 302 SEC
D1B2 AS 54 303 MOVEX2 LDA EL ASSUME CARRY SET.
D1B4 43 92 304 ADC DY (EL,EH)-DELTY TO (EL,EH)
DiBé6 83 34 303 S8TA EL NOTE: DY IS (-DELTY)-1i
DiB8 AS 53 306 LDA EH CARRY CLR IF (EL.,EH)
D1BA E? 00 307 88C #80 COES NEO.
D1BC 8% S5S 308 HCOUNT 8TA EH
D1BE Bl 26 309 LDA (HRASL), Y SCREEN BYTE.
D1CO 435 1C 310 EOR HCOLOR1 PLOT DOT OF HCOLOR1.
D1C2 23 30 311 AND HMASK CURRENT BIT MASK.
D1C4 31 26 312 EOR (HRASL), Y
D1C& 91 26 313 STA (HBASL)., Y
DiCe E8 314 INX DONE (DE).TX+DELTY)
D1C? DO 04 313 Bt HLIN4 DOTS?
D1CB E&6 1D 316 INC COUNTH
D1CD FO 6B 317 BEQG RTS2 YES, RETURN.
D1CF AS 33 318 HLIN4 LDA QDRNT FOR DIRECTION TEST
D1D1 BO DA aie BCS MOVEX IF CAR SET. (EL. EH) POS
DID3 20 F9 DO 320 JSR UPDWN IF CLR, NEG, MOVE YDIR
D1Dé 18 371 cLe
D1D7 AS 34 322 LDA EL (EL,EH)+DELTX
D1D? 435 380 323 ADC DXL TO (EL.EH).
DiDB 83 54 324 sTA EL
D1DD AS SS 3238 LDA EH CAR SET IF (EL,EH) GOES POS
D1DF 63 51 26 ADC DXH
D1EL S0 D9 327 BVC HCOUNT ALWAYS TAKEN.
D1€3 8t 328 MSKTBL HEX 81 LEFTMOST BIT OF BYTE.
Di1E4 82 84 88 29 HEX 82, 84, 88
DIE7 90 AO 330 HEX 90, A0
D1E9 CO 331 HEX CO RIQGHTMOST BIT OF BYTE.
DIEA 1C 332 EG1C HEX 1€
D1EB FF FE FA 333 Cos HEX FF,FE, FA, F4,.EC,E1,D4,C3, B4
D1F4 A1 8D 78 334 HEX Al, 8D, 78, 61, 49. 31, 18, FF
70
“A2MAN 030-0026-01 3 70.PICT” 302 KB 2001-07-22 dpi: 600h x 600v pix: 2147h x 3986v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0086 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 e

1978

DI1FC
D1FE
DIFF
D201
D203
D204
D206
D207
D208
D209
D20C
D20E
D20F
D210
D212
D218
D218
D21B
D21C
D21F
D220
pz21
Doe2
D224
D276
D257
D228
D22A
D&2D
D22€E
D2oF
D32
D234
D237
D23A

AS
0A
AS
a9
2A
03
OA
0A
0A
ap
AS
4A
4A
a9
oD
ab
AD
0A
&D
0A
AA
CA
AS
29
Ee
4A
DO
ep
8A
18
4D
90
EE
ap
&0

25

a7
03

26

22
a7

03

07
22
22
25

03
03
03

a% 03

30
7F

FC

21 03

as
03
21
20

03

03
03

DZ3B
D23D
Do3F
D240
D241
D242
D243
D244
D246
D247
D249
D24A
D24D
D24F
D41
DR%2
D25S
D2%6
D258
D258
D2SD
D240

846 1A
84 1B
AA
4A
4A
4A
4A
as
aa
29
AA
BC
84
49

83
OoF

EB D1
S0
OF

BC
ce
a4
AC

EC D1

52
a3
00
8E 2A
Al 1A

03
03

336 # HI-RES ORAPHICS COORDINATE RESTORE SUBR

337 HFIND LDA

338
339
340
341
342
343
344
345
346
347
348
349
3so
351
3%2
383
354
3ss
396
387
3se
359
360
361
362
363
364
363
66
367
368
369
370
371

373
374
<rd-}
376
77
378
379
380
3et
382
383
3684
38%
386
387
366
389
390
391
392
393
394
395
394
397
398
399
400

HF IND

HF IND2

RTS2

ASL
LDA
AND
ROL
ORA
ASL
ASL
ASL
STA
LDA
LER
LSR
AND
ORA
8TA
LDA
ABL
ADC
ASL
TAX
DEX
LDA
AND
1 INX
LR
BNE
8TA
TXA
e
ADC
BCC
INC
8TA
RTS8

HBASL

i CONVERTS BASE ADR
HBASH TO Y-COORD.

"3

i FOR HBASL = EABABOOO
HBASL HBASH = PPPFGHCD

i OENERATE

i Y-COORD = ABCDEFOGH
Yo

HBASH (PPP=SCREEN PAGE,
i NORMALLY 001 FOR

i $2000-$3FFF

%87 HI-RES SCREEN)

Yo

YO CONVEKTS HNDX (INDEX
HNDX FROM BASE ADR)

i AND HMASK (BIT

HNDX MASK) TO X-COORD

i IN (XOL., XOH)

(RANGE $0-8133)

HMASK
#87F

HFIND1
XOH

CALC HNDX#7 +

HNDX LOG (BASE 2) HMASK.
HFIND2

XOH

XOL

HI-RES GRAPHICS SHAPE DRAW SUBR

SHAPE DRAW

»

]

R =0 TO &3

SCALF FACTOR USED (1=NORMAL)

*
DRAW

DRAW1

DRAW2

87X
8Ty
TAX
LSR
LSR
LSR
LER
§TA
TXA
AND
TAK
LDY
8TY
ECR
TAX
Loy
- INY
sTY
Loy
LDX
8TX
LDA

“A2MAN 030-0026-01 3 71.PICT” 261 KB 2001-07-22 d

SHAPE). DRAW DEFINITION
SHAPEH POINTER.

i ROT ($0-83F)
i GDRNT 0O=UP,

i @=DWN,
QDRNT

1=RT,
3=LFT.
WeF

€08, X S8AVE COS8 AND SIN
DXL VALS IN DXL AND DY

T #SF

CO8+1, X

DY
HNDX BYTE INDEX FROM
#80 HI-RES BASE ADR.

COLLSN CLEAR COLLISION COUNT.
(SHAPEL. X) 18T SHAPE DEF BYTE.

"

pi: 600h x 600V pix: 2047h x 3959v

| Author: Apple Computer, Inc. e

Document # 030-0026-01

Page 0087 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

D262 85 S1 401 DRAW3 STA SHAPEX
D244 A2 80 402 LDX #$80
D246 86 94 403 STX El. EL, EH FOR FRACTIONAL
D258 86 $9 404 8TX EH L.R,U,D VECTORS.
D2éA AE 27 03 40S LDX SCALE SCALE FACTOR.
D25D AS S4 406 DRAWA LDA EL
D2&F 38 407 SEC IF FRAC COS OVFL
D270 65 S0 408 ADC DXL THEN MOVE IN
D272 85 54 409 STA El SPECIFIED VECTOR
D274 90 04 . 410 BCC DRAWS DIRECTION.
D276 20 DB DO 41t JSR LRUD1
D2/9 18 412 cLe
D27A AS 39 413 DRAWS LDA EH IF FRAC SIN OVFL
D27C 63 S2 414 ADC DY THEN MOVE IN
D27E 85 59 413 STA EM SPECIFIED VECTOR
D230 90 03 416 BCC DRAW&6 DIRECTION +90 DEG.
D232 20 D? DO 417 JSR LRUD2
DZ3% CA 418 DRAWS DEX LOOP ON SCALE
D236 DO ES 419 BNE DRAWA FACTOR.
DZ38 AS S1 420 LDA SHAPEX
D23A 4A 421 LSR + NEXT 3-BIT VECTOR
DZ2B 4A 422 LSR i OF SHAPE DEF.
DzYC 4A 423 LSR
D23D DO D3 424 BNE DRAW3 NOT DONE THIS BYTE.
DZaF Eb 1A 425 INC SHAPEL
D271 DO 02 426 BNE DCRAW7 NEXT BYTE OF
D2v3 E& 1B 427 INC SHAPEH SHAPE DEFINITION.
D273 Al 1A 428 DRAW? LDA (SHAPEL, X)
D277 DO C% 429 BNe DRAW3 DONE IF ZERO.
Dz79 &40 430 RTS
432 » HI-RES ORAPHICS SHAPE EX~-OR SUBR
433 »
434 » EX-OR SHAPE INTO SCREEN.
433 »
435 » ROT = 0 TO 3 (QUADRANT ONLY)
437 » SCALE I8 USED
438 »
D29A 86 1A 439 XDRAW STX SHAPEL SHAPE DEFINITION
D27C 84 1B 440 STY SHAPEH POINTER.
DZ7E AA 441 XDRAW1 TAX
D29F 4A 442 LSR i ROT ($0-83F)
D240 4A 443 LSR
D2A1 4A 444 LSR i GDRNT O=UP, 1sRT,
D2A2 4A 448 LSR ; 2=DWN, 3=LFT.
D243 85 53 446 STA GDRNT
D245 8A 447 TXA
D2A& 29 OF 448 AND WSF
D2A8 AA 449 TAX
D2A9 BC EB D1 450 LDY COS, X SAVE COS AND SIN
D2AC 84 %0 451 STY DXL VALS IN DXL AND DY,
D2AE 49 OF 4352 EOR #SF
DZBO AA 453 TAX
D2B1 BC EC D1 454 LDY COS+1,X
D284 C8 433 INY
D285 84 %2 456 sTY DY
D?B7 AC 25 03 437 XDRAW2 LDY HNDX INDEX FROM HI-RES
D2RA A2 00 438 LDX #$0 BASE ADR.
D25C 8E 2A 03 459 STX COLLSN CLEAR COLLISION DETECT
D2BF Al 1A 4560 LDA (SHAPEL. X) 1ST SHAPE DEF BYTE.

72

“A2MAN 030-0026-01 3 72.PICT” 254 KB 2001-07-22 dpi: 600h x 600v pix: 2056h x 3977v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0088 of 0113 |

Apple 2 Technical Manual

D2C1
D2C3
D23
D2C?7
DaCe
bacc
D2CE
DaCF
D2D1
DeD3
D2DS
D2D8
D2D9
D2DB
D2DD
D2NhF
Doe.t
D2e4
DRES
D@c7
DaE?
D2eA

cB
D2zC
D¥EE
Daro
Dar2
DeF 4
De2F &6
DaFe

as
AQ
8é
86
AE
AS
38
&%
es
90
20
18
AS
65
as
90
20
CA
DO
AS
4A
4A
4A
DO
Eé
Do
Eé6
Al
DO
60

S1
a0
S4
S3S
a7
54

S0
54
04
€O Do
35
S
S5
03
D? DO
ES

S1

D3
1A
o2
1B
1A
ce

DaFe
D2FC
DarF
D302
D303
D306
D307
D30A
D30D
D30E
D311
D314
D317
D318
D31B
D31E
D321
DG22
D323
DG24
D32%
D328
D9
DE2A
D32D
D330
D331
D334

20
aD
20
48
20
&8
20
AE
60
20
4C
AD
4A
20
20
20
B8A
48
98
AA
20
AB
é8
20
AE
&0
20
4C

90
24
AF

D3
03
D3
9A D3

2E
23

DO
03

Fo
7D
23

D2
DO
03

90
75
FA

D3
DO
D3

AF D3

64
23

D1
03

90
10

D3
DO

03 -

461
462
443
464
463
466
467
4458
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
4846
487
488
489
490

492
493
494
495
495
497
498
499
300
501
502
503
804
sos
506
507
s08
509
510
s11
512
513
s14
519
816
517
518
519
$20

Programmers Aid#1 « 1978
XDRAW3 8TA SHAPEX
LDX #$80
sTX Et EL,EH FOR FRACTIONAL
87X EH L,R, U, D, VECTORS.
LDX SCALEF SCALE FACTOR.
XDRAW4 LDA EL :
SEC IF FRAC CO0S OVFL
ADC DXL THEN MOVE IN
STA EL SPECIFIED VECTOR
BCC XDRAWS DIRECTION
JSR LRUDX1
cLc
XDRAWS LDA EH IF FRAC SIN OVFL
ADC DY THEN MOVE IN
8TA EH SPECIFIED VECTOR
BCC XDRAW& DIRECTION +90 DEG.
JSR LRUD2
XDRAWS DEX LOOP ON SCALE
BNE XDRAW4 FACTOR.
LDA SHAPEX
LSR i NEXT 3-BIT VECTOR
LSR i OF SHAPE DEF.
LSR
BNE XDRAW3
INC SHAPEL
BNE XDRAW7 NEXT BYTE OF
INC SHAPEH SHAPE DEF.
XDRAW?7 LDA (SHAPEL., X}
BHNE XDRAW3 DONE IF ZERO.
RTS
ENTRY POINTS FROM APPLE-11 BASIC
BPOSN JSR PCOLR POSN CALL, COLR FROM BASIC
STA HCOLOR
JSER CGETYO YO FROM BASIC.
PHA
JSR GETXO XO FROM BASIC.
PLA
JSR HPOSN
LDX BXSAV
RTS
BPLOT JSR BPOSN PLOT CALL (BASIC).
JMP HPLOT1
BLIN1 LDA HNDX
LSR ; SET HCOLOR1 FROM
JSR PCOLR BASIC VAR COLR.
JSR HPOSN3
BLINE JSR GEVXO LINE CALL, GET XO FROM BASIC
TXA
PHA
TYA
TAX
JSR GETYO YO FROM BASIC
TAY
PLA
JSR HLIN
LDX = BXSAV
RTS
BOND JSR PCOLR BACKGROUND CALL
JMP BKONDO

73

“A2MAN 030-0026-01 3 73.PICT” 262 KB 2001-07-22 d

pi: 600h x 600V pix: 2200h x 4032v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0089 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 e

D337
D33A
D33D
D340
D343
D344
D347
D34A
D31D
D3%0
D3%1
D354
D356
D3Se
D3%C
D3%E
D361
D3&2
D3sS
D3s7
D3sA
D3sC
D3SE
D371
D373
D373
D377
D3/9
D378
D37C
D3I7E
D30
D33t
D332
D334
D336
DEa7
D388
D33A
D330
DG3E
DE3F

D590
D392
D394
D376
D377
D379
D37A
D37D
D39F
D3A1
D3

D3AI
D3AS
D326
D348
DI’.A
D3AC
D3AF
D3R1
D3u4
DEBé
D388

20
20
20
AE
60
20
20
20

60
8E
AO
20
8D
AQ
20
48
AD
as
AD
as
AO
20
FO
A2
Cct
FO
BO
0A
90
ES
18
AB
Bt
63
AA
ca
B1
&D
AB
é8
60

AO
B
Do
ge
- 31
60
8E
AC
Bi
AA
c8
Bi
AB
EO
E9
90
4C
AQ
20
Cc9
BO
60

F9
S1
38
23

F9
i
9A
a3

23
3
92
27
28
92

28
1A
29
18
20
92
39
00
1A
o2
3t

03
1B

1A
1A

1A
29

16
4A
16

4A

23
03
4A

4A

18
ot
ED
68
oD
92
co
F4

D2
D3
D2
03
DR
D3
D2
03
o3

D3
03

D3
03
03

D3

03

03

EE
D3

%22
323
9524
923
326
27
528
929
330
531
332
333
334
338
336
837
338
339
340
541
542
543
344
343
S44
S47
S48
549
350
951
852
333
354
353
336
387
358
599
360
S61
362
863
364

S6é
367
3468
369
870
371
372
873
S74
973
376
877
378
379
seo
J81
see
se3
sa4
383
386
se7
sas

#+ DRAW ROUTINES

BDRAW1 JSR
3DRAW JSR
JSR
LDX
RTS
JER
JSR
JSR
LoX
RTS8
8TX
Loy
JER
STA
Loy
JSR
PHA
LDA
STA
LDA
STA
Loy
JER
BEG
LDX
cMP
BEG
BCS
ASL
BCC
InG
cLe
TAY
LDA
ADC
TAX
INY
LDA
ADC
TAY
PLA
RTS

BXDRW1
BXDRAW

BDRAWX

BDRWX1

BDRWX2

BPOSN
BDRAWX DRAW CALL FROM BASIC.
DRAW
BXSAV

BPOSN
BDRAWX EX-OR DRAW
XDRAW FROM BASIC.
BXSAV

BXSAV SAVE FOR BASIC.

#4832

PBYTE SCALE FROM BASIC.
SCALE .

#9208

PBYTE ROT FROM BASIC.

SAVE ON STACK.

SHAPXL

SHAPEL START OF

SHAPXH SHAPE TABLE.

SHAPEH

#8320

PBYTE SHAPE FROM BASIC.
RERR1

#40 -

(SHAPEL, X} > NUM OF SHAPES?
BDRWX1
RERR1 YES. RANGE ERR.
BDRWX2

SHAPEH

SHAPE NO. » 2.
(SHAPEL), Y

SHAPEL

ADD 2-BYTE INDEX

TO SHAPE TABLE
(SHAPEL). Y START ADR
SHAPXH (X LOW, Y HI).

ROT FROM STACK.

DBASIC PARAM FEICH SUBR’S

PCOLR LDY
PBYTE LDA
BHE
DEY
LDA
RTS
STX
Loy
LDA
TAX
INY
LDA
TAY
cPX
§BC
BCC
JMe
Loy
JSR
crP
BCS
RTS

RTSB
GETXO

RERR1
GETYO

“A2MAN 030-0026-01 3 74.PICT” 282 KB 2001-07-22 d

#8146

(LOMEML), Y

RERR1 QET BASIC PARAM.
(ERR IF >23%)
(LOMEML) ., ¥

BXSAV SAVE FOR BASIC.
#$3
(LOMEML)., Y XO LOW-ORDER BYIE.

(LOMEML), Y HI-ORDER BYTE.

#si0

#81 RANGE ERR IF >279

RTSH

RNGERR

#8D OFFSET TO YO FROM LOMEM
PBYTE GEY1 BASIC PARAM YO.
#9CO (ERR IF >191)

RERR1

74

| Author: Apple Computer, Inc.

Document # 030-0026-01

1978

pi: 600h x 600V pix: 2011h x 3978v
Page 0090 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 « 1978

D3R? BE 23 03
D3RC 20 1E F1
D3RF 20 FD FE
D3c2 A9 00
D3C4 8% 3C
D3C6 8D 28 03
D3CY 18

D3CA &5 CE
D3CC A8

DACD A9 08
D3CF 85 3D
Dani 8D 29 03
D3D4 &5 CF
D3ne BO 29
D3D8 C4 CA
D3DA 48

D3DB ES CB
D3DD 68

D3DE BO 1D
D320 B4 3E
D3E2 85 3F
D3:4 C8

D3zS DO 02
DIE7 &% O1
D3E? 84 4A
D3EB 85 4B
DED 84 CC
DO:F 85 CD
D3:1 20 FA FC
D3F4 A9 03
D376 20 02 FF
D379 AE 23 03
D3FC &0

DD 4C &B E3

SHAPE TAPE LOAD SUBROUTINE

SS90 »

9591 SHLOAD STX
992 JER
993 JER
994 LDA
999 8TA
996 8TA
597 cLC
998 ADC
599 TAY
600 LDA
601 STA
602 8TA
603 ADC
604 BCS
609 CPY
606 PHA
607 SEC
608 PLA
609 BCS
610 8sTY
b11 STA
612 INY
613 BHE
614 ADC
6135 SHLOD1 8TY
616 STA
617 8TY
618 STA
619 J8R
&20 LD
621 JSR
622 LDX
623 RTS

624 MFULLL JiP

==~ END ASSEMBLY —--

TOTAL ERRORS: 00

BXSAV SAVE FOR BASIC.

ACADR READ 2-BYTE LENGTH INTO

READ BASIC ACC

#800 ; START OF SHAPE TABLE IS $0800
AlL

SHAP XL

ACL

#8308 ; HIGH BYTE OF SHAPE TABLE POINTER.
AlH

SHAP XH

ACH

MFULL1 NOT ENOUGH MEMORY.

PPL

PPH

MFULL1L
AL
A2H

SHI 0Dt

e

LOMEML

LOMEMH

PVL

PVH

RDQBIT

#83 . 5 SECOND HEADER.
READX1

BXSAV

MEMFUL

75

“A2MAN 030-0026-01 3 75.PICT” 170 KB 2001-07-22 dpi: 600h x 600v pix: 2309h x 3995v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0091 of 0113 |

Apple 2 Technical Manual

* Programmer’s Aid # 1

1978

VDN G &WUR -

EAA 2RSSR L PR 2SR R 2 st il aR e RSt s]]

ki d
*
*
*
#*
*
*
*
*
*
»*
*
*
*
*
#*
*
*
*
*
3

APPLE-]1C BASIC RENUMBER / APPEND SUDROUTINES

VERSION TWO
RENUMBER
>CLR
23TART=
>STEP=
»CALL —-1033t
OPTIONAL

>FROM=

>TO=

>CALL ~-10521

* % k k ¥ % %k X &£ b ¥ ¥ X K K X X ¥ x &

USE RENX ENTRY
FOR RENUMBER ALL
WOz APRIL 12, 1%78
APPLE COMPUTER INC.
L e Iy R eI ey T e 2

*
*
* 6502 EQUATES
*
ROL EQU $0 LOW-ORDER SW16 RO BYTE
ROH EQU $1 HI-CRDER.
ONE EQU $01
R11L EQU $16 LOW-ORDER SW146 Ril BYTE.
R11H EQU $17 HI-ORDER.
HIMEM EQU $4C BASIC HIMEM POINTER
PPL EQU $CA BASIC PRUG POINTER
PVL EQU $CC BASIC VAR POINTER.
MEMFULL EQU $E36B BASIC MEM FULL ERROR.
PRDEC EQU $ES1B BASIC DECIMAL PRINT SUBR.
RANGERR EQU $EESS BASIC RANGE ERROR.
LoaAD EQU $FODF BASIC LMOAD SUBR.
SW16 EQU $F&89 SWFET 16 ENTRY
CROUT EGU $FDBE CAR RET SUBR.
cout EQU $FDED CHAR QUT SUBR.
*
* SWEET 16 EQUATES
*
ACC EQU $0 SWEET 16 ACCUMULATOR.
NEW.OW EQU $1 NEW INITIAL LNO.
NEWINCR EQU 2 NEW LNO INCR.
LNLOW EQU $3 LOW LNO OF RENUM RANGE
LNHI EQU $4 HI LNO OF RENUM RANGE.
TBLSTRT EQU o8 LNO TABLE START
TBLNDX1 EQU $6 PASS 1 LNO TBL INDEX.
TBLIM EQU 7 LNO TABLE LIMIT
SCR8 EQU $8 SCRATCH REG.
HMEM EQU $8 HIMEM (END OF PRGM).
SCR9 EQU L 54 SCRATCH REG.
PRGNDX EQU $9 PASS 1 PROG INDEX
PRGNDX1 EQU $A ALSO PROG INDEX.
NEWLN EQU B NEXT "NEW LNO".
NEWLN1 EQU sC PRIOR "NEW LNO" ASSIGN
TBLND EQU $6 PASS 2 LNO TABLE END
PRGNDX2 EQU $7 PASS 2 PROG INDEX
CHRO EQU %9 ASCII "O"
CHRA EQU $A ASCII "A",

76

“A2MAN 030-0026-01 3 76.PICT” 204 KB 2001-07-22 dpi: 600h x 600v pix: 1759h x 4041v

| Author: Apple Computer,

Inc.

Document # 030-0026-01

Page 0092 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 e

1978

b6

&7

é8

69

70

71

72

73

74

75

77

78

79

80
D400 20 89 F6 a1
D403 BO 82
D404 33 83
D405 34 84
D406 F4 85
N407 00 86
DA08 Q0 B89 Fé& 87
D408 18 4C 00 88
D3I0E 68 89
DAOF 38 90
D410 19 CE 00 91
D413 C¥ 92
D414 35 93
D415 36 94
D416 21 5
D417 3B ?6
Da18 3C 97
D419 C9 98
D4L1A 37 99
D41B 39 100
N4ic 29 101
D4iD D8 102
D41E 03 46 103
D420 3A 104
D421 26 105
D422 EO 106
D423 D7 107
D424 03 38 108
D426 4A 109
D427 A9 110
0A28 39 111
D429 4A 112
D42A D3 113
Da2B 02 2A 114
D42D D4 113
D42E 02 02 116
D430 07 30 117
D432 76 118
D433 00 119
Da34 AS 01 120
D436 A6 00 121
D428 20 1B ES 122
D43B A% AD 123
D43D 20 ED FD 124
D440 49 BE 125
D442 20 ED FD 126
D445 AS 17 127
D447 AL 16 128
D449 20 1B ES 129
DA4C 20 BE FD 130

131
D14F 20 8C Fé 132

MODE EQU $C
TBLNDX2 EQU B
OLDLN EGQU sD
STRCON EQU B

REM EQU sC

R13 EGU $D

THEN EGU D

LIST EQU $D

DEL EGU $D

SCRC EQU sC

*

» APPLE-11 BASIC
ORG D400
0BJ $A400

REMX ~JSR SW16
SUB ACC
sT LNLOW
ST LNHI
DCR LNHI
RTN .

RENUM JSR SW16
SET HMEM, HIMEM
LDD @HMEM
sT HMEM

RNUM3 SET SCR9, PVL+2
POPD @SCR9
sT TBLSTRT
ST TBLNDX1
LD NEWLOW
ST NEWLN
sT NEWLN1
POPD @SCR9
ST TBLIM
ST PRGNDX

PASS1 LD PRGNDX
CPR HMEM
BC PASS2
ST PRGNDX 1
LD TBLNDX1
INR ACC
CPR TBLIM
BC MERR
LD @PRGNDX1
40D PRGNDX
ST PRGNDX
LDD @PRGNDX1
CPR LNLOW
BNC P1B
CPR LNHI
BNC P1A
BNZ PiIC

P1A STD @TBLNDX1
RTN
LDA ROH
LDX ROL
JSR PRDEC
LDA #$AD
JSR COUT
LDA #$BE
JSR couT
LDA R11H
LDX R1iIL
JSR PRDEC
JSR CROUT

*

JSR SW14+3

77

“A2MAN 030-0026-01 3 77.PICT” 270 KB 2001-07-22 dpi: 600h x 600v pix: 2408h x 3977v

CONST/LNO MODE.

LNO TBL IDX FOR UPDATE.
OLD LNO FOR UPDATE.

BASIC STR CON TOKEN

BASIC REM TOKEN

SWEET 16 REG 13 (CPR REG).
BASIC THEN TOKEN.

BASIC LIST TOKEN

SCRATCH REG FOR APPEND.

RENUMBER SUBROUTINE - PASS 1

OPTIONAL RANGE ENTRY

SET LNLOW=0, LNHI=0

BASIC VAR PNT TO
TBLSTRT AND TBLNDX1.

COPY NEWLOW (INITIAL)
TO NEWLN.

BASIC PROG PNTR
TO TOL.IM AND PRGNDX.

IF PRGNDX D>= HMEM
THEN DONE PASS 1.

IF < TWO BYTES AVAIL IN

LNQO TABLE THEN RETURN

WITH "MEM FULL" MESSAGE.
ADD LENTH BYTE TO PROG INDEX

LINE HUMBER.
IF < LNLOW THEN €OTO P13.

IF > LNHI THEN 6OTO P1IC

ADD TO L.NO TABLE.
#iux 6502 CODE %%

PRINT OLD LNO "-2" NEW LNOD
(RO, R11) IN DECIMAL.

#4us END 6502 CODE ##ux

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0093 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

133 #
D452 2B 134 LD NEWLN
D453 3C 135 ST NEWLN1 COPY NEWLN 1O NEWLN1 AND INCR
DA54 A2 138 ADD NEWINCR NEWLN BY NEWINCR.
D453 3B 137 ST NEWLN
D456 OD 138 HEX oD ‘NUL Y (WILL SKIP NEXT INSTRUCTION)
D457 D1 139 P1B CPR NEWLOW IF LOW LNO < NEW LOW THEN RANGE ERR.
0438 02 C2 140 BNC PASS1
D45SA Q0 141 RERR RTHN PRINT "RANGE ERR" MESSAGE AND RETURN.
D19B 4C A8 EE 142 JiP RANGERR
DA5SE 00 1432 MERR RTN PRINT "MEM FULL" MESSAGE AND RETURN.
D49F 4C 4B E3 144 JmP MEMFULL
D442 EC 145 P1C INR NEWLNE IF HI LNQO <= MOST RECENT MEwWLN THEN
D453 DC 144 CPR NEWLN1 RANGE LERROR.
D144 02 F4 147 BNC RERR
147 #
150 = APPLE 1{ BASIC RENUMBFR / APPEND SUBROUTINE - PAGS 2
151 «
D156 t9 30 00 152 PASS2 EET CHRO, $00BO ASCII "O"
n4s9 1A CG 00 193 SET CHRA, $00CO ASCIL "A".
nasc 27 134 PaaA LD PRGNDX2
D14D D08 1959 CPR HMEM IF PROG INDEX = HIMEM THEN DONE PASS 2
DASE 03 63 1546 BC DONE
0170 E7 157 IN] PRGNDX2 SKIP LENTH BYTE.
NA71 &7 1353 LDD QPRGHDX2 LINE NUMBER.
0472 30 137 UPDATE ST OI.DLN SAVE OLD LNO.
D473 2! 1460 LD TBLSTRT
D474 3B 141 ST TBLNDX2 INIT LNO TABLE INDEX
na7s 21 1462 L.D NEWLOW INIT NEWLN TO NEWL.GW
o476 1C 1473 HEX 1C (WILL SKIP NEXT INSTR)
carsz7 20 144 UD2 LD NEWLNL
D478 A2 1465 ADD NEWINCR ADD INCR TO NEWLN1L
naze 3¢ 166 ST NFWLN1L
DA7A 23 167 LD TBLLNDX2 IF LN TRBL IDX = TBLND THEN DUONE
D478 B4 168 SuB T3LND SCANNING LNO TABLE
pD47C 03 07 169 BC uD3
D47E 6B 170 L.DD @TBLNOX2 NEXT LMO FROM TABLE
D47F 3D 171 Sv3 OLDLN LOOP TQO UD2 (F NOT SAME AS (LDLN
D430 Q7 FS 172 BNZ ub2
DA22 C7 173 PGPD QFRGNDX2 REPLACE OLD LNO WITH CORRESPONDING
D4ag3 2C 174 LD NEWLNL NEW LINE
Dad4 77 179 STD QRPRGNDX2
L4239 1B 28 00 176 wWD3 SET STRCON, $0028 STR CON TOKEN.
o488 1C 177 HEX 1C (SKIPS NEXT TWAO INSTRUCTIONS)
D4R &7 178 GOTCON LDD @PRGNDX2
CA8A FC 179 CCR 1ODE IF MODE = O THEN UPDATE LNO REF.
D4aBB 08 ES 180 BM1 UPDATE
D43D 47 181 [TEM L.D @PRGNDX2 BASIC TOKEN
D4dE D9 182 CPR CHRO
DIBF Q2 ©9 133 BNC CHATOK CHECK TOKEN FCR SPECIAL.
D471 DA 134 CPR CHRA IF >= "0" AND < "A" THEN SKIP CONST
D422 02 FS 189 BNC GOTCON OR UPDATE.
D494 F7 186 SKPASC DCR PRGNDX2
D493 &7 187 LoD @PRGNDX2 SKIP ALIL. NEG. BYTES OF STR CON: REM,
0136 QS FC 1838 3mM SAPASC OR NAME
D48 F7 189 BCR PRGNDX2
D499 47 190 L0 RPRGNDX2

78

“A2MAN 030-0026-01 3 78.PICT” 271 KB 2001-07-22 dpi: 600h x 600v pix: 2688h x 3986v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0094 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

C4%A LB 191 CHKTOUK CPR STRCON STR CON TOKEN?
D49B 06 F7 192 Bz SKPASC YES, CSKIP SUBSEQUENT BYTES
L4?D 1C SD 00 193 SET REM, $005D
D1A0 DC 194 CPR REM REM TOKEN?
LtAal 06 F1 1995 Bz SAPASC YES, SYIP SUBSEQUENT LINE.
DYA3 08 13) 194 Bi11 CONTST G03UB, LOOK FOR LINE NUMBER.
D4AS FD 197 LCR R13 .
D1A4 FD 198 LCR R13 (TOKEN #5F IS GOTO)
DAn7 06 GF 192 BZ CONTST
D1A%® 1D 24 0O 200 SET THEN. $0024
DAAC DD 201 CPR THEN
D4AD 06 09 202 BZ CONTST ‘THEN’ INO, LOOK FGOR LNO
D4AF FO 203 CCR ACC
D4RO 06 BA 204 B2 P2A EOL (TOKEN 01)7?
D4R2 1D 74 0O 205 SET LIST, $0074
D4BS BD 206 SUB LIST SET MODEIF LIST OR LIST COMMA.
D484 09 Of 207 Bl CONTS2 (TOKENS $74, $75)
D183 30 208 CONTST sus ACC CLEAR MODE FOR LNO
D489 3C 209 CONTS2 8T MODE UPDATE CHECK
D4aeAa O1 D1 210 BR ITEM
212
213 =
214 = APPLE 1L BASIC AFPEND SUBNOUTINE
215 «
D4BC 20 89 F& 214 AFMPEND .iSR Slié
DAUF 1C 4E 00 217 SET SCRC, HIMEM+R
042 CC 218 POPD @SCRC SAVE HIMEM
D4C3 28 219 ST HMEM
D4C4 19 CaA OO 220 SET SCR9, PPL
DAC7 6% 221 L.OD @SCRY
D4ca 7¢ 222 sSTD RSCRC SET HIMEM 10 PRESERVE PROGFAM
D4c9® 00 223 RTH
DACA 20 DF FO 224 WS8R LOAD LOAD FROM TAPE
DACD 20 89 Fé 223 wESR SWié
D4LO CC 22& POPD @SCRC RESTORE HIMEM TO CHOW BOTH PRIGRAMS
D401 23 227 LD HMEM (QLD AND NEW)
D4D2 7¢C 223 STD @SCRC
D403 00 =29 LONE RTH RETURN.
D4G4 &0 2390 RTS

=== END ASSEMBLY -

TOTAL ERRORS: 00

79

“A2MAN 030-0026-01 3 79.PICT” 185 KB 2001-07-22 dpi: 600h x 600v pix: 2615h x 4013v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0095 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 « 1978

. ASM

1 R AR 01040 20 00 30 30 300 08 300 3 310 2 R B BN

2+ *

e IR 4 4302 RELOCATION -

4 » SUBROUTINE *

S » »

b » 1. DEFINE BLOCKS *

7 % #A4CAL. A2 Y »

8 » (~Y I8 CTRL-Y) *

9 » *

10 » 2. FIRST SEGCMENT *

11 » #A4CAL. AQ Y »

12 # (IF CODE) *

13 » *

14 » #A4<AL. ARM *

135 » (IF MOQVE) »

16 » »

17 » 3. SUBSEQUENT SEGMENTS #

18 = *. A2 ~Y OR » A2M *

19 » *

20 » woz 111-10-77 *

21 » APPLE COMPUTER. INC. *

22 *

PR IITTITEITEIILI SIS L AL 2

25 =

26 # RELOCATION SUBROUTINE EQUATES
27 »

28 RiL EQU $02 SWEET 146 REG 1.
29 INST EQU $0B 3-BYTE INST FIELD.
30 LENGTH EQU $2F LENGTH CODE
31 YSAV EQU $34 CMND BUF POINTER
32 AlL EQU $3C APPLE-II MON PARAM AREA.
33 A4L EQU $42 APPLE-I1 MON PARAM REQC 4
34 IN EQU $0200
35 SWié EQU $F689 ; SWEET 16 ENTRY
36 INSDSQ EQU SFB8E) DISASSEMBLER ENTRY
37 NXTA4 EQU $FCB4 POINTER INCR SUBR

38 FRMBEG EQU
39 FRMEND EQU
40 TOBEG EQU
41 ADR EQU

$01 SOURCE BLOCK BEGIN
$02 SOURCE BLOCK END
804 DEST BLOCK BEGQIN
$06 ADR PART OF INST.

80

“A2MAN 030-0026-01 3 80.PICT” 141 KB 2001-07-22 dpi: 600h x 600v pix: 2002h x 3941v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0096 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 « 1978

D4DC
D4DE
D4F1
D4E3
D4ES
D4E7
D4E?
D4EB
D4ED
D4EE
D4FO
DaF1t
D4F3
D4FS
D4F8
D4F9
D4FB
D4FE
DS00
DS01
DS03
DSOS
D507
DS0%
DS0B
DS0D
DSOF
D512
D513
D514
D516
D517
D518
DS51A
D51B
DS1C
DS1D
DS1F
D521
D523
D524
DS27
D529
DS2B
DS2D

A4
BY
ce
Do
Eb
A2
BS
95
CA
10
&0
AO
B1
99
=1-]
10
20
Ab
CA
Do
AS
a9
FO
29
DO
as
20
22
D6
02
26
Bi
02
A4
36
00
A2
BS
91
EB
20
Cé
10
90
&0

34
00 o2
AA
oC
34
07
ac
02

Fo

o2
3C
0B 00

FB8
8E F8
2F

oc
0B
oD
14
o8
10
oD
89 Fé

06

(*]

00
0B
42

B4 FC
2F
F4
Cc4

TOTAL ERRORS: 00

43
44
45
46
47
48
49
S50
S1
S2
53
54
$5
S6
97
S8
39
60
61
62
43
&4
65
&6
&7
68
69
70
71
72
73
74
75
76
77
78
79
80
81
a2
83
84
8s
86
a7
as
a9
90
91
92

—-= END ASSEMBLY ---

*

6502 RELOCATION SUBROUTINE

*
ORG
OBJ
RELOC LDY
LDA
CMP
BNE
INC
LDX
INIT LDA
6TA
DEX
BPL
RTS
RELOC2 LDY
GETINS LDA
8TA
DEY
BPL
JER
LDX
DEX
BNE
LDA
AND
BEQ
AND
BNE
STA
XLATE JSR
LD
CPR
BNC
LD
suB
BNC
ADD
8T
SW14RT RTN
STINST LDX
STINS2 LDA
8TA
INX
JER
DEC
BPL
BCC
RTS

“A2MAN 030-0026-01 3 81.PICT” 247 KB 2001-07-22 d

$D4DC

$A4DC

YSAV CMND BUF POINTER
IN, Y NEXT CMD CHAR -
#SAA ‘%7

RELOC2 NO. RELOC CODE SEGC.
YSAV ADVANCE POINTER.
#$07

AlL, X MOVE BLOCK PARAMS
RIL, X FROM APPLE-II MON
AREA TO SW16 AREA

INIT R1=SQURCE BEC, R2=
SOURCE END. R4=DEST BEG.
#802

(A1L), Y COPY 3 BYTES TO
INST, Y SW14 AREA

GETINS

INSDS2 CALCULATE LENGTH OF
LENGTH INST FROM OPCODE.
O=1 BYTE, 1=2 BYTES,

XLATE 2=3 BYTES.

INST

#30D WEED OUT NON-ZERO-PAGE
STINST 2 BYTE INSTS (IMM).
#$08 IF ZERO PAGE ADR
STINST THEN CLEAR HIGH BYTE
INST+2

SW1é6 IF ADR OF ZERO PAGE
FRMEND OR ABS IS IN SOURCE
ADR (FRM) BLOCK THEN
SWI16RT SUBSTITUTE

ADR ADR-SOURCE BEQ+DEST BEGC
FRMBEG

SW16RT

TOBEG

ADR

#$00

INST, X

(A4L), Y COPY LENGTH BYTES

OF INST FROM SW1é& AREA TO

NXTA4

LENGTH DEST SEGMENT. UPDATE
STINS2 SOURCE, DEST SEGMENT
RELOC2 POINTERS. LOOP IF NOT
BEYOND SOURCE SEG END.

81

| Author: Apple Computer, Inc. e

Document # 030-0026-01

pi: 600h x 600v pix: 2083h x 4004v
Page 0097 of 0113 |

Apple 2 Technical Manual

* Programmers Aid#1 « 1978

D53%
D537
DS3s
DS3A
D33C
DS3E
D540
D541
D543
D346
D549
D348
DS4E
D351
DSS3

86
38
A2
AS

935
€S
FO
20
20
A2
20
20
Ab
60

D8

FF
4D
cB
CF

F7
1E
54
o1
2C
54
D8

F1
DS

Fi
DS

VONCAPLWAN -

LA a2 a2t e R sl el ldssddd s

*
*
*»
*
*
*
*
*

*
*
*

CHKSUM

XSAVE
HDRSET
PRGSET
NXTA1
HEADR
RDBYTE
RD2BIT
RDBIT
PRA1
PRBYTE
couT
FINISH
PRERR

*
*
*

VFYBSC

GETLEN

»

TAPE VERIFY »
»

JAN 78 »
BY WOz »

.

*

EGQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQV
EQU
EGQU
EQU
EQU
EQU
EQU
EQU

TAPE

ORG
0BJ
8TX
SEC
LDX
LDA
SBC
STA
INX
BEQ
JSR
JER
LDX
JSR
JSR
LDX
RTS

HRBHREBRERRRRRRRRRRRRBERRRBHR

TAPE VERIFY EQUATES

$2E

$3C ’

$4C ; BASIC HIMEM POINTER

$CA i BASIC BEGIN OF PROGRAM

$CE i BASIC PROGRAM LENGTH

$D8 PRESERVE X-REC FOR BASIC

$F11E i SETS TAPE POINTERS TO $CE.CF
$F12C i SETS TAPE POINTERS FOR PROCRAM
SFCBA ; INCREMENTS (A1) AND COMPARES TO (A2)
$FCC9

$FCEC

$FCFA

$FCFD

$FD92 i PRINT (A1)~

$FDDA

$FDED

$FF26 ;1 CHECK CHECKSUM, RING@ BELL
$FF2D

VERIFY ROUTINE

$DS3%
$A535

' XSAVE i PRESERVE X-REG FOR BASIC

WSFF

HIMEM+1 ; CALCULATE PROGRAM LENGTH
PP+1, X i INTO PRLEN

PRLEN+1, X

GETLEN

HDRSET ; SET UP POINTERS

TAPEVFY ;DO A VERIFY ON HEADER

#$01 ; PREPARE FOR PRGSET

PRGSET ; SET POINTERS FOR PROGRAM VERIFY
TAPEVFY

XSAVE ;i RESTORE X-REC

82

“A2MAN 030-0026-01 3 82.PICT” 197 KB 2001-07-22 dpi: 600h x 600v pix: 2453h x 3941v

| Author: Apple Computer, Inc.

e Document # 030-0026-01

Page 0098 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

53 »
54 » TAPE VERIFY RAM IMAGE (Al. A2)
S5
D554 20 FA FC 56 TAPEVFY JUSR RD2BIT
D557 A9 16 57 LDA “s$16
D559 20 C9 FC S8 JSR HEADR ; SYNCHRONIZE ON HEADER
DSSC 85 2E 59 §TA CHKSUM ; INITIALIZE CHKSUM
DSSE 20 FA FC 60 JSR RD2BIT
D561 AO 24 61 VRFY2 LDY #$24
D563 20 FD FC 62 JSR RDBIT
D566 BO F9 63 BCS VRFY2 i CARRY SET IF READ A ‘1’ BIT
D568 20 FD FC 64 JER RDBIT
D56B AO 3B &5 LDY #$3B
DS5&D 20 EC FC 66 VRFY3 JUSR RDBYTE ; READ A BYTE
D570 FO OE &7 BEQ EXTDEL : ALWAYS TAKEN
D572 45 2E 68 VFYLOOP EOR CHKSUM ; UPDATE CHECKSUM
D574 85 2E 69 8TA CHKSUM
D576 20 BA FC 70 JSR NXTA1 ; INCREMENT Ai, SET CARRY IF A1>A2
D579 A0 34 71 LDY #8$34 ;ONE LESS THAN USED IN READ FOR EXTRA 12
DS7B 90 FO 72 BCC VRFY3 iLOOP UNTIL A1>A2
D57D 4C 26 FF 73 JMP FINISH ; VERIFY CHECKSUM&RING BELL
D580 EA 74 EXTDEL NOP i EXTRA DELAY TO EQUALIZE TIMING
D581 EA ' 75 NOP i (+12 USEC)
D582 EA 76 NOP
D583 C1 3C 77 cMP (A1, X) iBYTE THE SAME?
D585 FO EB 78 BEQ VFYLOOP ; IT MATCHES, LOOP BACK
D587 48 79 PHA i SAVE WRONG BYTE FROM TAPE
D588 20 2D FF 80 JSR PRERR ; PRINT "ERR"
D58B 20 92 FD 81 JER PRA1 ; OUTPUT (AL)"-"®
DS8E B1 3C 82 LDA (A1), Y
D590 20 DA FD a3 JSR PRBYTE : OUTPUT CONTENTS OF A1
D593 A9 A0 84 LDA #8A0 ; PRINT A BLANK
D595 20 ED FD 85 JER couT
D598 A9 A8 86 LDA #SA8B ; (’
DS9A 20 ED FD 87 JER couT
D5S9D 68 g8 PLA i OUTPUT BAD BYTE FROM TAPE
DS9E 20 DA FD a9 JSR PRBYTE
D5A1 A9 A9 ?0 LDA #$A9 ;.)’
DSA3 20 ED FD 91 JSR couT
D526 A9 8D 92 LDA #$8D ; CARRIAGE RETURN, AND RETURN TO CALLER
DSAB 4C ED FD 93 JMP cout

-—=- END ASSEMBLY ---
TOTAL ERRORS: 00

83

“A2MAN 030-0026-01 3 83.PICT” 215 KB 2001-07-22 dpi: 600h x 600v pix: 2525h x 3968v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0099 of 0113 |

Apple 2 Technical Manual

Programmer’s Aid # 1

1978

. ASM

1 FYTYYYYZTTYYIRIZITETIS L2222 2 2 4

2 » »

3 » RAMTEST: »

4 » *

S » BY WOZ *

b » &/77 »

7 . »

8 » COPYRIGHT 1978 BY: »

L 2R 4 APPLE COMPUTER INC »

10 » *

L1 0000000000 00 00 00 0000 000 000 00 30 00 S A

13 »

14 » EQUATES:

19 »

16 DATA EQU $0 TEST DATA $00 OR $FF
17 NDATA EGQU 81 INVERSE TEST DATA.
18 TESTD EGQU $2 GALLOP DATA.

19 R3L EQU 86 AUX ADR POINTER.
20 R3H EGQU 7
21 RAL EQU $8 AUX ADR POINTER.
22 R4H EQU $9
23 RSL EQU $A AUX ADR POINTER.
24 RSH EQU 4B
25 Ré6L EQU $C GALLOP BIT MASK.
26 R&H EGQU $D (80001 TO 2*N)
27 YSAV EQU $34 MONITOR SCAN INDEX.
28 AlH EQU $3D BEGIN TEST BLOCK ADR.
29 AL EQU $3E LEN (PAGES) FROM MON.
30 SETCTLY EQU $DSBO ; SET UP CNTRL-Y LOCATION
31 PRBYTE EQU $FDDA BYTE PRINT SUBR.
32 cout EQU S$FDED CHAR OQUT SUBR.
33 PRERR EGU SFF2D PRINTS ‘ERR-BELL.’
34 BELL EQU $SFF3A

“A2MAN 030-0026-01 3 84.PICT” 125 KB 2001-07-22 d

84

pi: 600h x 600V pix: 2092h x 3968v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0100 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 e

1978

DSEC
DSBE
DSCO
DSC3
DSCS
DSCe
DSCA
DSCD
DSDO
DSD2
D3D4
DSDé
DSD8
DSDA
DSDC
DSDE
DSEOC
DSE2
DSE4
DSES
DSES
DSEA
DSEC
DSED
DSEF
DSF1
DSF2
DSF4
DOFé6
DSF8
DSFA
DSFC
DSFD
DSFF
D&02
D603
D&06
Ds08
D&0B
D&0C
D&OF
D&10
D612
D&14
D&1S
D&17
D619
D618
D&1D
D&LF
Dé21
D&23
D625
D&28
D62A
D&2D
D&F
D&31

A9

4C
A%
20
A9
20
4C
a3
49
as
AS
es
8s
8%
AO
84
84
84
Ab
AS
91
ce
DO
Eé
CA
DO
Ab
Bl
cs
FO
48
AS
20
98
20
AS
20
68
20
c8
DO
Eé
CA
DO
Ab
AS
91
84
84
Eé
AS
20
AS
20
06
26
AS

ca
DS
BO DS
00
DO DS
FF
DO DS
3A FF
00
FF
o1
ap
07
09
0B
00
06
08
0A
3
00
08

FB
09

Fé
3E
06
00
13

07
DA FD

8A
00
8A

Dé
Dé

7F Dé
E4
07

DF
3E
01
0A
oD
oc
oc
01
4% D&
00
435
ocC
oD
oD

D6

36 »

37 » RAMTEST:

38 «

39 ORG $DSBC
40 OBJ $ASBC
41 SETUP LDA #$C3 ,
42 LDY #sDS
43 JMP BETCTL
44 RAMTST LDA #80 TE
45 JSR TEST
46 LDA #S$FF T
47 JSR TEST
48 JMP BELL
49 TEST STA DATA
S0 EOR #SFF
S1 STA NDATA
82 LDA AlH
93 8TA R3M IN
S4 8TA R4H

88 8TA RSH

36 LDY %80

87 8TY R3L

S8 8TY R4L

S 8TY RSL

&0 LDX A2L LE
61 LDA DATA
é2 TESTO1 8TA (R4L),
63 INY BLOCK
64 BNE TESTO1
&S INC R4H

66 DEX

&7 BNE TESTO1
68 LDX AL

69 TESTO2 LDA (R3L),
70 CMP DATA
71 BEQ TESTO3
72 PHA PRESER
73 LDA R3H

74 J8R PRBYTE
75 TYA

76 JSR PRBYSP
77 LDA DATA T
78 JSR PRBYSP
79 PLA THEN B
80 J8R PRBYCR
81 TESTO3 INY

82 BNE TESTO2
83 INC R3H

84 DEX

83 BNE TESTO2
86 LDX AL LE
87 TESTO4 LDA NDATA
a8 STA (RSL),
ae 8TY RéH
90 8TY RéL

91 INC RéL

92 TESTOS LDA NDATA
93 JBR TESTS
94 LDA DATA
93 JSR TESTé
96 ASL Ré6L
97 ROL R&H SH
98 LDA Ré&H

“A2MAN 030-0026-01 3 85.PICT” 261 KB 2001-07-22 d

S8ET UP CNTRL-Y LOCATION

Y
ST FOR 800,

HEN $FF.

IT (R3L,R3H),

(R4L, R4H), (RSL,RSH)
TO TEST BLOCK BEGIN
ADDRESS.

NOTH (PAGES).

Y S8ET ENTIRE TEST
TO DATA.

Y VERIFY ENTIRE
TEST BLOCK.

VE BAD DATA.
PRINT ADDRESS,

HEN EXPECTED DATA,

AD DATA,

THEN ‘ERR-BELL’.

NGTH.

Y S8ET TEST CELL TO
NDATA AND Ré
(GALLOP BIT MASK)
TO $0001.

GALLOP WITH NDATA.
THEN WITH DATA.

IFT GALLOP BIT
MASK FOR NEXT

85

| Author: Apple Computer, Inc.

Document # 030-0026-01

pi: 600h x 600V pix: 2020h x 3986v
Page 0101 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 « 1978

D633
D&33
D&37
D&39
D&38B
D&3D
D63F
D641
D642
D&44
D643
D647
D649
D&4B
D&4D
D&4F
D&S1
D453
D&5S
D&S7
D659
D&65SB
D&65SD
D&63E
D&&0
D&53
D643
D468
D&sSA
D&SC
D&SF
D&70
D&73
D&73%
D&78
D&7A
D&7D
D&7F
D&82
D&as
D&87
Dé6BA
D&8D
D&BF

o3F8

c3
90
AS
?1
Eé
Do
Eé
CA
DO
&0
83
AS
43
as
AS
43
8s
AS
1
B1
CcS
FoO
48
AS
20
AS
20
AS
91
20
48
20
AS
20
AS
20
AS
20
20
A9
4C
20
A9
4Cc

4C

3€
EC
00
0A
0A
DA
oB

o2
0A
ocC
o8
oB
oD
o9
o
o8
0A
01
E7

0B
DA
0A
8A
01
OA
8A

B8A
09
DA
08
8A
02
9A
2D
aD
ED
DA
AOQ
ED

c3

FD
D&

D6
Dé
FD
D6

D&
FF

FD
FD

FD
D3

99 cMP
100 BCC
101 LDA
102 STA
103 INC
104 BNE
103 INC
106 DEX
107 BNE

108 RTS!1 RTS
109 TESTé STA

110 LDA
111 EOR
112 STA
113 LDA
114 EOR
119 STA
116 LDA
117 STA
118 LDA
119 cMpP
120 BEG
121 PHA
122 LDA
123 JSR
124 LDA
1239 JSR
126 LDA
127 STA
128 JSR
129 PLA
130 JER
131 LDA
132 JSR
133 LDA
134 JER
1338 LDA
136 PRBYCR JSR
137 JSR
138 LDA
139 JMP
140 PRBYSP JSR
141 LDA
142 JMP
143 ORG

144 USRLOC vMP

-—- END ASSEMBLY ---
TOTAL ERRORS: 00

“A2MAN 030-0026-01 3 86.PICT” 241 KB 2001-07-22 d

A2L NEIGHBOR. DONE
TESTOS IF > LENGTH.

DATA

(RSL), Y RESTORE TEST CELL.
RSL

TESTO4

RSH INCR TEST CELL
POINTER AND DECR

TESTO4 LENGTH COUNT.

TESTD SAVE GALLOP DATA.

R3L

R&L SET R4 TO RS

R4L. EX-OR Ré&

RSH FOR NEIGHBOR

R&6H ADDRESS (1 BIT

R4H DIFFERENCE).

TESTD

(R4L)., Y QALLOP TEST DATA.
(R3L)., Y CHECK TEST CELL
NDATA FOR CHANGE.

RT81 (OK).

PRESERVE FAIL DATA.

RSH

PRBYTE PRINT TEST CELL

R3L ADDRESS.

PRBYSP

NDATA

(R3L), Y (REPLACE CORRECT DATA)
PRBYSP THEN TEST DATA BYTE,

PRBYSP THEN FAIL DATA,
R4H

PRBYTE

R4L THEN NEIGHBOR ADR,
PRBYSP

TESTD THEN GALLOP DATA.
PRBYSP OQUTPUT BYTE. SPACE.
PRERR THEN ‘ERR-BELL’.
#88D ASCII CAR. RETURN.
couTt

PRBYTE

#$A0 OQUTPUT BYTE, THEN
COUT SPACE.

$3F8

RAMTST ENTRY FROM MON (CTRL-Y)

86

| Author: Apple Computer, Inc.

e Document # 030-0026-01

pi: 600h x 600v pix: 2083h x 3996v
Page 0102 of 0113 |

Apple 2 Technical Manual

Programmer’s Aid # 1

1978

FRAENFAXSRET AR P a4 83t 38546353014 F

4 «
5 # MUSIC SUBROUTINE
b #
7+ GARY 4. SHANNON
8 <
LR PR e P IR T T By R R
10 ORG $D717
11 =
12 % ZERO PAGE WNRK AREAS
13 # PARAMETER PASSING AREAS
14 %
15 DOWNTIME EQU $0
16 UPTIME EQU $1
17 LENGTH EQU $2
18 VOICE EQU $2FD
19 LONG EQU $2FE
20 NOTE EQU $2FF
21 SPEAKER EQU $C030
D717 4C 4E D7 22 ENTRY JMP LOOKUP
23 #
24 # PLAY ONE NOTE
25 #
26 * DUTY CYCLE DATA IN ‘UPTIME‘ AND
27 # ‘DOWNTIME’, DURATION IN ‘LENGTH’
28 #
29 *
30 # CYCLE IS DIVIDED INTO ‘UP’‘ HALF
31 % AND ‘DOWNN’ HALF
32 #
D71A A4 01 33 PLAY LDY UPTIME ; GET POSITIVE PULSE WI
D71C AD 30 CO 34 LDA SPEAKER : TOGGLE SPEAKER
D71F E& 02 35 PLAY2 INC LLENGTH ; DURATION
D721 DO 05 36 BHE PATH1 ;i NOT EXPINED
D723 €& 03 37 INC LENGTH+1
D725 DO 0OS 38 BNE PATH2
D727 &0 39 RTS i DURATION EXPIRED
D728 EA 40 PATH1 NOP i DUMMY
D729 4C 2C D7 41 JMP PATHZ2 i TIME ADJUSTHMENTS
D72C 88 42 PATH2 DEY i DECREMENT WIDTH
D72D FO 05 42 BEQ DOWN ; WIDTH EXPIRED
D72F 4C 32 D7 44 «JMP FATH3 i IF NOT, USE UP
45 #
46 + DOWN HALF OF CYCLE
47 #
D732 DO EB 48 PATH3 BHNE PLAY2 ; SAME # CYCLES
D734 A4 Q0 49 DOWN LDY DOWNTIME i GET NWEGATIVE PULSE
D736 AD 30 CO 20 LDA SPEAKER i TOGGLE SPELAREN
D739 E& 02 51 PLAY3 INC LENGTH i DURATIDN
D73B DO 05 52 BNE PATH4 ; NOT EXPIRED
D73D E& 03 93 INC LENGTH+1
D73F DO 05 54 BNE PATHS
D741 60 55 RTS ; DURATION EXPIRED
D742 EA 56 PATH4 NOP i DUMMY
D743 4C 446 D7 37 viP PATHS i TIME ADJUSTMENTS
D746 88 58 PATHS DEY i DECREMENT WIDTH
D747 FO D1 59 BEQ PLAY ;i BACK 10 UP-ST1DE
D749 4C 4C D7 60 JMP PATH6 i USE UP SOME CYCILES
D74C DO EB 61 PATHé BNE PLAY3 i REPEAT
87

“A2MAN 030-0026-01 3 87.PICT” 210 KB 2001-07-22 d

DTH

WIDTH

pi: 600h x 600V pix: 2209h x 4005v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0103 of 0113 |

Apple 2 Technical Manual

D74E
D751
D752
D793
D756
D758
D758
D73C
D7SE
D760
D762
D763
D766
D748
D76&6A
D748
D74E
D770
D772
D774
D773
D778
D77A
D77¢C
D77€
D780

D782
D783
D784
D787
D789
D78B
D78D
D76F
D790
D791
D794

a7
02
03
03
05

?4
EC

02

D7

02

D7

D7

o

D7

D7

Programmers Aid#1 « 1978
62 %
63 * NOTE TAGBLE LOOKUP SUBROUTINE
64 =
4% # GIVEN NOTE NUMBER IN 'NOTE’
&6 » DURATION COUNT IN ‘LONG’
&7 » FIND ‘UPTIME’ AND ‘DOWNTIME’
48 # ACCORDING TO DUTY CYCLE CALLED
&9 « FOR BY 'VOICE’.
70 »
71 LOOKUP LDA NOTE ; GET NOTE NUMBER
72 ASL ; DOUBLE IT
73 TAY
74 LDA NOTES, Y i GET UPTIME
75 STA DOWNTIME ; SAVE IT
76 LDA VDICE i GET DUTY CYCLE
77 SHIFT LSR
78 BEQ DONE ; SHIFT WIDTH COUNT
79 LSR DOWNTIME i ACCORDING TO VOICE
80 BNE SHIFT
81 DONE LDA NOTES., Y i GET ORIGINAL
82 SEC
83 SBC DOWNTIME ; COMPUTE DIFFERENCE
84 sTA UPTIME ; SAVE IT
8% INY' i NEXT ENTRY
86 LDA NOTES.,Y i GET DOWNTIME
87 ADC DOWNTIME ; ADD DIFFERENCE
es STA DOWNTIME
89 LDA #0
90 SEC
91 SBC LONG ; GET COMPLIMENT OF DURATION
92 STA LENGTH+1 MOST SIGNIFICANT BYTE
93 LDA #0
?4 STA LENGTH
93 LDA UPTIME
?6 BNE PLAY i IF NOT NOTE #0, PLAY IT
7 »
98 » ‘REST’ SUBROUTINE’ PLAYS MOTE #0
99 = SILENTLY, FOR SAME DURATION AS
100 * A REGULAR NOTE.
101 »
102 REST NOP i DUMMY
103 NOP i CYCLE VUSERS
104 JMP REST2 i TO ADJUST TIME
105 REST2 INC LENGTH
106 BNE REST3
107 INC LENGTH+1
108 BNE REST4
109 RTS i IF DURATION EXPIRED
110 REST3 NOP i USE UP 'INC’ CYCLES
111 JMP REST4
112 REST4 BNE REST i ALWAYS TAKEN

“A2MAN 030-0026-01 3 88.PICT” 217 KB 2001-07-22 d

88

| Author: Apple Computer, Inc.

e Document # 030-0026-01

pi: 600h x 600V pix: 2165h x 3950v
Page 0104 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 e

1978

114 » NOTE TABLES

116 NOTES HEX

113 »

115 »
D796 00 00 Fé
D79E CF CF €3 117
D7A6 A4 A4 9B 118
D7AE 82 82 7B 119
D7B6 67 68 61 120
D7BE 52 52 4D 121
D7C6 41 41 3D 122
D7CE 33 34 30 123
D7D6 29 29 26 124
D7DE 20 21 1E 125
D7E6 1A 1A 18 126
D7EE 14 15 13 127
D7F6 10 10 OF 128
--- END ASSEMBLY ---

TOTAL ERRORS: 00

“A2MAN 030-0026-01 3 89.PICT” 107 KB 2001-07-22 d

HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX

00, 00, F&, Fb, EB, ES, DB, DB
CF, CF, C3, C3, BB, BB, AE, AE
A4, A4, 9B, 9B, 92, 92, BA, BA
82,82, 73, 7B, 74, 74, 6D, 4E
67, 68, 61, 62, 5C, 5C, 57, 57
52, 52, 4D, 4E, 49, 49, 45, 45
41,41, 3D, 3E, 3A, 3A, 36, 37
33, 34, 30, 31. 2E, 2E, 2B, 2C
29, 29, 26, 27, 24, 25, 22, 23
20,21, 1€, 1F, 1D, 1D, 1B, 1C
1A, 1A, 18, 19,17, 17, 135, 16
14,15,13, 14,12, 12, 11, 11
10, 10, OF, 10, OE, OF

89

pi: 600h x 600V pix: 1876h x 4014v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0105 of 0113 |

Apple 2 Technical Manual

* Programmers Aid#1 « 1978

90

“A2MAN 030-0026-01 3 90.PICT” 32 KB 2001-07-22 d

pi: 600h x 600V pix: 2552h x 3932v

| Author: Apple Computer, Inc.

Document # 030-0026-01

Page 0106 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

APPENDIX II
SUMMARY OF
PROGRAMMER’S
AID COMMANDS

92 Kenumber

9. Append

92 Tape Verify (BASTC)

93 Tape Verity (Machine Code and bata)

Yy Relocate (MMachine Code and Data)

94 RAM Test

94 Music

95 lHigh-Resolution Graphics

9h Quick Reference to High-Pesolution Graphics Information

91
“A2MAN 030-0026-01 3 91.PICT” 128 KB 2001-07-22 dpi: 600h x 600v pix: 2687h x 3897v
Page 0107 of 0113 |

| Author: Apple Computer, Inc. « Document # 030-0026-01

Apple 2 Technical Manual + Programmers Aid#1 -«

1978

Chapter 4: RENUMBER

(a) To renumber an entire BASIC program:

CLR

START = 1000
STEP = 10
CALL -1@531

(b) To renumber a program portion:

CLR

START = 200

STEP = 2§

FROM = 30@ (program portion
TO = 5¢¢@ to be renumbered)
CALL -1@521

Chapter 2: APPEND

LOAD

CALL -11¢76

Chapter 3: TAPE VERIFY (BASIC)

(a) Save current BASIC program on tape:
SAVE
(b) Replay the tape, after:

CALL -1¢955

92

“A2MAN 030-0026-01 3 92.PICT” 126 KB 2001-07-22 d

(a) Load the second BASIC program, with high line numbers:

(b) Load and append the first BASIC program, with low line numbers:

pi: 600h x 600V pix: 2616h x 3995v

| Author: Apple Computer, Inc. « Document # 030-0026-01

Page 0108 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

Chapter 4: TAPE VERIFY (Machine Code and Data)

(a) From the Monitor, save the portion of memory on tape:
addressl . address2 W return

(b) Initialize Tape Verify feature:
D52EG return

(c) Replay the tape, after:
addressl . address2 ctrl Y return

Note: spaces shown within the above commands are for easier
reading only; they should not be typed.

Chapter 5: RELOCATE (Machine Code and Data)

(a) From the Monitor, initialize Code-Relocation feature:
D4D5G return

(b) Blocks are memory locations from which program runs.
Specify Destination and Source Block parameters:

Dest Blk Beg < Source Blk Beg . Source Blk End ctrl Y * return

(c) Segments are memory locations where parts of program
reside. If first program Segment is code, Relocate:

Dest Seg Beg < Source Seg Beg . Source Seg End ctrl Y return
I1f first program Segment is data, Move:
Dest Seg Beg < Source Seg Beg . Source Seg End return

(d) In order of increasing address, Move subsequent
contiguous data Segments:

. Source Segment End ctrl Y return
and Relocate subsequent contiguous code Segments:
. Source Segment End M return

Note: spaces shown within the above commands are for easier
reading only; they should not be typed.

93

“A2MAN 030-0026-01 3 93.PICT” 225 KB 2001-07-22 dpi: 600h x 600v pix: 2705h x 4022v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0109 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978
Chapter 6: RAM TEST

(a) From the Monitor, initialize RAM Test program:
D5BCG return
(b) To test a portion of memory:

address . pages ctrl Y return (test begins at address,
continues for length pages.

Note: test length, pages*1$@, must not be greater than
starting address. One page = 256 bytes ($10@ bytes, in Hex).

(c) To test more memory, do individual tests or concatenate:
addrl.pagesl ctrl Y addr2.pages2 ctrl Y addr3.pages3 ctrl Y return
Example, for a 48K system:
4OP.4 ctrl Y 8¢9.8 ctrl Y 100P.10 ctrl Y 20¢P.20 ctrl Y
3000.20 ctrl Y 4998.40 ctrl Y 7099.20 ctrl Y 800@.40
ctrl Y return
(d) To repeat test indefinitely:

N complete test 34:0 type one space return

Note: except where specified in step (d), spaces shown within the above
commands are for easier reading only; they should not be typed.

Chapter 7: MUSIC

(a) Assign appropriate variable names to CALL
and POKE locations (optional):

MUSIC = -1§473
PITCH = 767
TIME = 766

TIMBRE = 765

(b) Set parameters for next note:

POKE PITCH, p (p =1 to 5@; 32 = middle C)
POKE TIME, m (m =1 to 255; 17¢ = 1 second)
POKE TIMBRE, t (t =2, 8, 16, 32 or 64)

(c) Sound the note:

CALL MUSIC

94
“A2MAN 030-0026-01 3 94.PICT” 198 KB 2001-07-22 dpi: 600h x 600v pix: 2742h x 4032v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0110 of 0113 |

Apple 2 Technical Manual

Programmers Aid#1 e

1978

Chapter 8: HIGH-RESOLUTION GRAPHICS

(a)

(b)

(c)

(d)

(e)

Set order of parameters (first lines of program):

1 X@ = Y@ = COLR
2 SHAPE 0T =

L~

SCALE

Assign appropriate variable names to subroutine
calling addresses (optional; omit any subroutines

not used in program):

1¢ INIT = -12288 : CLEAR = -12274 : BKGND = -11471
11 POSN = -11527 : PLOT = -115@6 : LINE = -115¢¢
12 DRAW = -11465 : DRAWIl = -11462

13 FIND = -1178@ : SHLOAD = -11335

Assign appropriate variable names to color values
(optional; omit any colors not used in program):
\

2¢ BLACK = ¢ : LET GREEN = 42 : VIOLET = 85
21 WHITE = 127 : ORANGE = 17¢ : BLUE = 213
22 BLACK2 = 128 : WHITE2 = 255

Initialize:

3¢ CALL INIT

Change screen conditions, if desired. Set appropria

parameter values, and CALL desired subroutines by name.

Example:

4@ COLR = VIOLET : CALL BKGND : REM TURN BACKGROUN
5¢ FOR I = ¢ TO 279 STEP 5

6@ X@ = 140 : Y§ = 150 : COLR = WHITE : REM

CALL POSN : REM MARK THE "CENTER"

8J XP =1 : Y0 =¢ : REM SET NEW PARAMETERS
9¢ CALL LINE : REM DRAW LINE TO EDGE

14¢ NEXT I : END -

70

95

“A2MAN 030-0026-01 3 95.PICT” 195 KB 2001-07-22 d

(if shapes are used)

SET PARAMETERS

te

D VIOLET

pi: 600h x 600V pix: 2552h x 4067v

| Author: Apple Computer, Inc. e

Document # 030-0026-01

Page 0111 of 0113 |

Apple 2 Technical Manual

Programmer’s Aid # 1

1978

Full-S
Page 2

Page 1
Page 2

(Note:

Subroutine CALLing
Name Address
INIT -12288
CLEAR ~12274
BKGND -11471
POSN -11527
PLOT -115¢6
LINE ~-115¢9
DRAW -11465
DRAW1 -11462
FIND -1178¢
SHLOAD -11335

Color COLR
Name Value
BLACK @
GREEN 42
VIOLET 85
WHITE 127

Parameters
Needed

COLR

X@, Y@, COLR
X@#, Y@, COLR
X@, Y@, COLR
X@, Y@, COLR, SHAPE, ROT, SCALE
SHAPE, ROT, SCALE

Color
Name

BLACK2
ORANGE
BLUE

WHITE2

QUICK REFERENCE TO HIGH-RESOLUTION INFORMATION

COLR

Value

128
179
213
255

(Note: on systems below S/N 6@@@, colors in the second
column appear identical to those in the first column)

creen Graphics

Mixed Graphics-Plus-Text (Default)

Display

Display (Normal)
Plotting

Page 1 Plotting (Default)

CALL INIT sets mixed graphics-plus-text, and
but does not reset to Page 1 display.)

Collision Count for Shapes

CHANGING THE HIGH-RESOLUTION GRAPHICS DISPLAY

POKE
POKE
POKE
POKE
POKE
POKE

-16302,
-16301,
-16299,
-16309,
806, 64
8¢6, 32

AW 8§ -

PEEK (819)

96

(Note: the change in PEEKed value indicates collision.)

“A2MAN 030-0026-01 3 96.PICT” 206 KB 2001-07-22 d

Page 1 plotting,

pi: 600h x 600V pix: 2643h x 3995v

| Author: Apple Computer, Inc. « Document # 030-0026-01

Page 0112 of 0113 |

Apple 2 Technical Manual + ProgrammersAid#1 « 1978

"clpple computear Inc:

10260 Bandiey Drive
Cupertino, California 95014
(408) 9961010

“A2MAN 030-0026-01 9 BACK.PICT” 23 KB 2001-07-22 dpi: 600h x 600v pix: 1543h x 505v
| Author: Apple Computer, Inc. « Document # 030-0026-01 Page 0113 of 0113 |

