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Preface

In October 1980, in the second issue ofSo"alk magazine, a new series of 
articles made its debut. Its title was “Assembly Lines” with the subtitle “Every-
one’s Guide to Machine Language.”1  !e author was Roger Wagner, the presi-
dent of Southwestern Data Systems. By then, Roger had already established 
himself as a well-respected sotware publisher who cared about the end user. As 
Al Tommervik states, “His programs relect concern that the user get more than 
utility–he should also gain knowledge–from use of the sotware.”2

Before that issue ofSo"alk, a few brave souls had learned assembly  lan-
guage all on their own, using clues from the ROM listings in theApple II Refer-
ence Manual. !ese included developers such as Jordan Mechner (creator of 
Karateka), Silas Warner (Castle Wolfenstein), and Dan Bricklin and Bob 
Frankston (VisiCalc). But now here was a series of articles that taught the rest of 
us how to program the 6502.
I irst became acquainted withAssembly Lines when, as a new Apple II Plus 

owner, I received my complimentary issue ofSo"alk magazine in January 1982. 
!e series was already on Part 16; it had moved beyond the basics and was 
beginning to explore sound and hi-resolution graphics. Despite missing the cru-
cial introductory articles, I eagerly looked forward to receivingSo"alk each 
month to see what Roger Wagner had to teach us about the 6502 and assembly 
language.
!en, in March 1982, Sotalk announced that it was publishing Roger’s arti-

cles in book form.Assembly Lines: !e Book contained the irst iteen articles 
plus an appendix of 6502 assembly-language commands, Monitor subroutines, 
and an index.
Roger continued to write his monthly “Assembly Lines” articles until June 

1983. Part 33 contained an introduction to the new 65C02 chip and ended with a 
farewell:

I want to thank the many readers of this column over the last sev-
eral years for their enthusiastic support and valuable suggestions. I 

1Eventually changed to “Everyone’s Guide to Assembly Language.”
2Tommervik, Allan, “Exec SDS: Southwestern Data Systems, Assembling Useful 
Utilities,” So"alk, August 1981 (Sotalk Publishing Inc.), pp. 30−32.
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have always believed that the human element to this industry, and 
in fact any endeavor, is the truly rewarding part.3

!e article then ended with a note from the Editor, stating:

!e irst year’s columns plus appendixes and revisions have been 
available for some time inAssembly Lines: !e Book. Volume 2, 
covering the rest of the columns, will be released shortly by Sotalk 
Books.

Despite numerous announcements about Volume 2 over the next year, 
when Sotalk Publishing Inc. went bankrupt in August 1984, Assembly Lines: !e 
Book, Volume 2 remained incomplete and unpublished.
It is therefore a great privilege and a long-overdue honor to presentall of 

Roger Wagner’s “Assembly Lines” articles in one complete volume. !is volume 
contains all of the originalAssembly Lines: !e Book, including the appendices, 
plus the content of the remaining eighteen So"alk articles.
!e complete volume should appeal to long-time readers who may not have 

access to the originalSo"alk articles, especially those articles from the missing 
Volume 2. I also hope that Roger Wagner’s clear explanations and his subtle but 
ever-present humor will encouragenew readers to discover the joys of 6502 
assembly-language programming on the Apple II. As David Finnigan notes in 
!e New Apple II User’s Guide, “!ere are still so many programs to be written, 
experiments to be conducted, and adventures to be had.”4

With Roger Wagner leading the way, and with tractor-feed paper in one 
hand andMerlin Assembler at our side, who knows what amazing programs we 
can create?

Chris Torrence
Louisville, Colorado
December 1, 2014

3Wagner, Roger, “Assembly Lines, Part 33,”So"alk, June 1983 (Sotalk Publishing Inc.), 
pp. 199−204.

4Finnigan, David, !e New Apple II User’s Guide (Mac GUI, Lincoln, IL), p. xi.
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Changes from the Original

In the originalAssembly Lines: !e Book, the irst twoSo"alk articles (Octo-
ber and November 1980) were combined into chapter one, “Apple’s Architec-
ture.” In this edition, that chapter has been re-split into two chapters: the irst on 
the Apple’s architecture and the second on the Apple Monitor. By doing this, all 
of the chapter numbers now agree with the original So"alk article numbers.
All of the assembly-language programs now include theCHK pseudo-opcode 

at the bottom. !eCHK instruction inserts a single-byte checksum at the end. 
You can use this checksum to verify that you have typed in the program cor-
rectly. CHK is available in theMerlin Macro Assembler. If your assembler does not 
support this pseudo-opcode you can ignore it in the code.
!e original programs included theOBJ pseudo-opcode, which establishes 

the address at which the code will be assembled. !eOBJ directive is not usually 
necessary and is incompatible with later versions of theMerlin assembler (Mer-
lin Pro andMerlin 8/16). In this edition all of theOBJ lines have been com-
mented out.
Spelling, grammar, and other minor corrections have been quietly made. 

More signiicant corrections (such as coding errors) are marked with a footnote 
and my initials [CT].
In Appendix B and C, the 65C02 instructions have been added. In Appendix 

C, theInstruction Codes table now contains a column with the clock cycles for 
each instruction. !eUsage Chart in Appendix C was adapted from the chart in 
Inside the Apple //e by Gary B. Little and is used with his permission. I also 
added a new Appendix F (Zero-Page Memory Usage) and Appendix G (Begin-
ner’s Guide to Merlin).

Acknowledgements

!is edition was created on a MacBook Pro using OpenOice 4.1.1. !e 
assembly code was created using theMerlin Macro Assembler on an Apple //e 
computer and the Virtual ][ emulator (http://www.virtualii.com). !e images 
were scanned using the FlipPal Mobile Scanner (http://lip-pal.com). !e cover 
image of the green bar computer paper was created using IDL 8.4.
!e text for Volume 1 was taken from the electronic version available from 

the Open Library, which is a project of the Internet Archive.
For Volume 2, I would like to acknowledge the generous help of Jim 

Salmons, Timlynn Babitsky, and Peter Caylor of the Sotalk Apple Project, who 
provided PDF and OCR versions of the Assembly Lines articles. !eir enthusi-
asm and expert advice made this project possible.
Special thanks is given to my fearless proofreaders: John Gruver, Antoine 

Vignau, and Shawn Lewis. !rough their dedication and attention to detail they 
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caught many insidious errors. !anks also to the members of6502.org and 
comp.sys.apple2, who provided suggestions for chapter 33 on the 65C02.
I could not have completed this book without the help and support of my 

wonderful family: my wife Gigi and my daughters Mia and Elyssa. !anks to 
Gigi for being a guinea pig on theBeginner’s Guide to Merlin appendix, and to 
Mia and Elyssa for reading pages of hex codes out loud while I proofread the 
programs.
Finally, I would like to thank Roger Wagner for giving his permission for 

the project, for answering innumerable emails aboutAssembly Lines minutiae, 
and for all of his contributions to the Apple II community over the years.
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Introduction

One oten gets the impression that programming in assembly language is 
some very diicult and obscure technique used only bythose advanced program-
mers. As it happens, assembly language is merely diferent, and if you have suc-
cessfully used Integer or Applesot BASIC to do some programming, there’s no 
reason why you can’t use assembly language to your advantage in your own pro-
grams.
!is book will take a rather unorthodox approach to explaining assembly 

programming. Because you are presumably somewhat familiar with BASIC, we 
will draw many parallels between various assembly-language techniques and 
their BASIC counterparts. An important factor in learning anything new is a 
familiar framework in which to it the new information. Your knowledge of 
BASIC will provide that framework.
I will also try to describe initially only those technical details of the micro-

processor operations that are needed to accomplish our immediate goals. !e 
rest will be illed in as we move to more involved techniques.
!is book does not attempt to cover every aspect of assembly-language pro-

gramming. It does, however, provide the necessary information and guidance to 
allow even a somewhat inexperienced person to learn assembly language in a 
minimum of time. You should ind the text and examples quite readable, with-
out being overwhelmed by technical jargon or too much material being pre-
sented at once.
I’d like to take this opportunity to briely mention a few of my own pro-

gramming philosophies. Writing programs to do a given task is essentially an 
exercise in problem solving. Problem solving is in fact a subject in itself. No mat-
ter what your programming goal is, it will always involve solving some particular 
aspect that, at that moment, you don’t really know how to solve. !e most 
important part is that, if you keep at it, you eventually will get the solution.
One of the key elements in this process, I believe, and the particular point to 

stress now, is that it is important to be a tool user. Programming in any language 
consists of using the various commands and functions available to you in that 
language and of putting them all together in a more complex and functioning 
unit. If you are not familiar with the options you have at any given moment–
that is, your tools–the problem-solving process is immensely more diicult.
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My intent in this book is to present in an organized way the various opera-
tions available in assembly language and how they can be combined to accom-
plish simple objectives. !e more familiar you are with these elements, the easier 
it will be to solve a particular programming problem.
You may wish to keep your own list of the assembly-language commands 

and their functions as we go along. A list of these commands is included in 
Appendix C, but I think you’ll agree that by taking the time to write each one 
down as you learn it, along with your own personal explanation of what it does, 
you will create a much stronger image in your mind of that particular operation.
You may wish to supplement this book with other books on 6502 program-

ming. Recommended books include:

Randy Hyde, Using 6502 Assembly Language (Northridge, CA: DataMost, 1981).

Don Inman and Kurt Inman,Apple Machine Language (Reston, VA: Reston 
Publishing, 1981).

Lance A. Leventhal,6502 Assembly Language (Berkeley: Osborne/ McGraw-Hill, 
1979).

Rodnay Zaks, Programming the 6502 (Berkeley: Sybex, 1981).

!ere are undoubtedly others that are also available, and you should con-
sider your own tastes when selecting which ones seem most appropriate to your 
own learning style.
An additional concern for a book like this is which assembler to use. (An 

assembler is an editor-like utility for creating assembly-language programs. If 
you’re vague on this check chapter three for more information.) Although I’m 
somewhat biased, my favorite assembler is the one available from Southwestern 
Data Systems calledMerlin. It not only contains a good assembler, but also a 
number of additional utilities and iles of interest.Merlin is not required, how-
ever, as the examples given are written to be compatible with most of the assem-
blers currently available. !ese include theApple DOS Tool Kit,TED II, the 
S-C Assembler, and many others.
Also available from Southwestern Data Systems is a utility calledMunch-A-

Bug (MAB) which allows a person to easily trace and de-bug programs, a process 
which can be of tremendous help, MAB also includes its own mini-assembler 
which can be used for the beginning listings provided in this book.
In terms of hardware, any Apple II or Apple II Plus should be more than 

adequate for your needs and no additional hardware is required. Disk access is 
discussed in several chapters, but is otherwise not a concern throughout the 
remainder of the book.
One warning before you start into the subject of assembly-language pro-

gramming. As with any nontrivial endeavor, many people sell themselves short 



Introduction xix

because of what I call the instant expert myth. How many people hear someone 
play a piano well, and say, “My, what a beautiful thing. I think I’ll get one and 
learn how to play myself!” !ey then spend a substantial amount of money, sit 
down, and press a few keys. Surprise! To their great disappointment, the Moon-
light Sonata does not magically low from their ingers! !ey usually then 
become immediately discouraged and never pursue the area further, turning 
something that could give them tremendous pleasure into an expensive means of 
support for a lower vase.
I’ve seen this same efect in almost every area of human activity. If what you 

wanted was the Moonlight Sonata, a record will produce the sound you desire. 
People know that it takes talent (talent = 99% practice = 99% time) to play well, 
but are then disappointed when they can’t sit down and perform like an expert 
immediately.
One of the great secrets to learning anything is to be satisied with minor 

learning steps. Playing the Apple is in many ways much easier than learning to 
play a piano, but you should still not expect to sit down and write the world’s 
greatest database in your irst evening.
Set yourself some simple and achievable goals. Can you move one byte from 

one memory location to another? If you can you’re well on your way to master-
ing programming. My feeling is that virtually anyone can become better than 
eighty to ninety percent of his fellow citizens in any area simply because eighty 
to ninety percent of the other people aren’t willing or inclined to spend the nec-
essary time to learn the skill. Reaching the top ninety-nine percent is certainly 
diicult, but ninety-ive percent is surprisingly easy.
!is book is written with the intention of providing those simple achievable 

steps. And surprisingly enough, by the time you inish this book you will have 
written a simple database of sorts, along with some sound routines, some pro-
grams that use paddles and the disk, and a few other nities as well!
So hang in there and don’t expect to be an expert on page ive. I will guaran-

tee that by page one hundred you may even surprise yourself as to how easy 
assembly-language programming really is.
One inal note. I’d like to thank Al Tommervik for his tremendous help and 

support in this project as both editor and friend, and Greg Voss who provided 
many insightful suggestions in transforming the monthly series into the book. 
Also Eric Goez for his encouragement to never accept less than the best, and his 
attentive (if not enthusiastic) listening to my various plans over the years.
Last but not least my thanks and sincere thoughts of appreciation to the 

many people that have shared in my own experiences in computing over the last 
few years. Whether they were readers of the column, users of my programs, or 
the wealth of new friends that have entered my life via the Apple, they have 
made all my eforts more than worthwhile and brought rewards beyond any sim-
ple economic gains of an ordinary job.
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Alas for anyone who thinks that computers lead to a loss of the humanistic 
aspects of life. !ey need only look to the amazing community that has been 
drawn together from all parts of the world by the Apple to see that friendship 
and human creativity will always outshine the simple tools we use to express 
ourselves.
My wish for you, dear reader, is that you receive as much enjoyment from 

the Apple and programming as I have.

Roger Wagner
Santee, California
December 1, 1981



1. Apple’s Architecture
October 1980

!e irst area to consider is the general structure of the Apple itself. To help 
visualize what’s going on in there, why not take a look inside. !at’s right–rip 
the cover of and see what’s in there! Don’t be timid–get your nose right down 
in there and see what you shelled out all those hard-earned bucks for.
Providing you haven’t gotten carried away in dismembering your Apple, the 

inner workings should appear somewhat like those in the photo below.

!e main items of interest are the 6502 microprocessor (A) and the banks of 
memory chips (B). If you’re not an electronics whiz, it really doesn’t matter. You 
can take it as a device of magic for all it matters. !e memory chips have the 
capability of storing thousands of individual number values and the 6502 super-
vises the activities therein. All the rest of the electronic debris within is supplied 
only to support the memory and the 6502. !e circuits allow you to see displays 
of this data on the screen, and permit the computer to watch the keyboard for 
your actions.

]

1
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!e screen and keyboard are rather secondary to the nature of the computer 
and are provided only to make you buy the thing. As far as the Apple is con-
cerned, it could talk to itself perfectly well without either the screen or the key-
board.

6502 Operation

So how does it work? !e heart of the system is the 6502 microprocessor. 
!is device operates by scanning through a given range of memory addresses. At 
each location, it inds some particular value. Depending on what it inds, it exe-
cutes a given operation. !is operation could be adding some numbers, storing a 
number somewhere, or any of a variety of other tasks. !ese interpreted values 
are oten called opcodes.
In the old days, programmers would ply their trade by loading each opcode, 

one at a time, into successive memory locations. Ater a while, someone invented 
an easier way, using a sotware device to interpret short abbreviated words called 
mnemonics. A mnemonic is any abbreviated command or code word that 
sounds somewhat like the word it stands for, such asSTX for STore X. !e com-
puter would then igure out which values to use and supervise the storing of 
these values in consecutive memory locations. !is wonder is what is generally 
called anassembler. It allows us to interact with the computer in a more natural 
way. In fact, BASIC itself can be thought of as an extreme case of the assembler. 
We just use words likePRINT and INPUT to describe a whole set of the operations 
needed to accomplish our desired action.
In some ways,assembly language is even easier than BASIC. !ere are only 

ity-ive commands to learn, as opposed to more than one hundred in BASIC. 
Machine code runs very fast and generally is more compact in the amount of 
memory needed to carry out a given operation. !ese attributes open up many 
possibilities for programs that would either run too slowly or take up too much 
room in BASIC.

Memory Locations

Probably the most unfamiliar part of dealing with the Apple in regard to 
machine-level operations is the way addresses and numbers in general are 
treated. Unless you lead an unusually charmed life, at some point in your deal-
ings with your Apple you have had it abruptly stop what it was doing and show 
you something like this:

8BF2-    A=03 X=9D Y=00 P=36 S=F2
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!is occurs when some machine-level process suddenly encounters abreak 
in its operation, usually from an unwanted modiication of memory. Believe it or 
not, the Apple is actually trying to tell us something here. Unfortunately, it’s 
rather like being a tourist and having someone shout, “Alaete quet beideggen!” at 
you.1 It doesn’t mean much unless you know the lingo, so to speak...
What has happened is that the Apple has encountered the break we men-

tioned and, in the process of recovering, has provided us with some information 
as to where the break occurred and what the status of the computer was at that 
crucial moment. !e message is rather like the last cryptic words from the 
recently departed.
!e letmost part of the message is of great importance. !is is where the 

break in the operation occurred. Just what do we mean by the wordwhere? 
Remember all that concern about whether you have a 16K, 32K, or 48K Apple? 
!e concern was about the number of usable memory locations in your 
machine. !is idea becomes clearer through the use of amemory map, such as 
the one shown below.
Inside the Apple are many electronic units that store the numerical values 

we enter. By numbering these units, we assign each one a uniqueaddress. !is 
way we can specify any particular unit or memory location, either to inquire 
about its contents or to alter those contents by storing a new number there.
In the Apple there are a total of 65536 of these memory locations, called 

bytes. !e chart gives us a way of graphically representing each possible spot in 
the computer.
When the computer shows us an address, it does not do it in a way similar 

to the numbers on the let of the memory map, but rather in the fashion of the 

1“Watch where you’re stepping you nerd!” (in case you’re not familiar with this particu-
lar dialect.)

]
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ones on the right. You may well remark here: “I didn’t know BFFF was a num-
ber; it sounds more like a wet sneaker...”2

Hexadecimal Notation

To understand this notation, let’s see how the 6502 counts. If we place our 
byte at the irst available location, its address is$0. !e dollar sign is used in this 
case to show that we are not counting in our familiar decimal notation, but 
rather in hexadecimal (base sixteen) notation, usually calledhex, which is how 
the computer displays and accepts data at the Monitor level.
Ater byte$0, successive locations are labeled in the usual pattern up to$9. 

At this point the computer uses the characters A through F for the next six loca-
tions. !e location right ater$F is$10. !is is not to be confused with ten. It 
represents the decimal number sixteen. !e pattern repeats itself as in usual 
counting with:

$10, $11, $12, $13... $19, $1A, $1B... $1E, $1F, $20

Try not to let this way of counting upset you. !e pattern in which a person 
(or machine) counts is rather arbitrary, and should be judged only on whether it 
makes accomplishing a task easier or not. !e biggest problem for most people is 
more a matter of having been trained to use names likeone hundred when they 
see the numerals 100. How many items this corresponds to really depends more 
on the conventions we agree to use than on any cosmic decree. To aid in your 
escape from your possibly narrow view of counting, you may wish to read the 
diversionary story at the end of this chapter. In any event, it will be suicient for 
our purposes to understand that $1F is as legitimate a number as 31.
!e hex number $FF (255) is the largest value a single byte can hold. A block 

of 256 bytes (for instance$00 to $FF) is oten called apage of memory. In the ig-
ure at right, all theaddresses from$00 to$FF are shown in block (b). Four of 
these blocks together, as in (c), make up 1K of memory. As you can see, there are 
actually 1,024 bytes in 1K. !us a 48K machine actually has 49,152 bytes ofRAM 
(Random Access Memory).
Block (d) shows the Apple’s entire range again. If you do not have a full 48K 

of memory, then the missing range will just appear to hold a constant value 
(usually $FF), and you will not be able to store any particular value there.
!e range from$C000 to$FFFF, an additional 16K, is all reserved for hard-

ware. !is means that any data stored in this range is of a permanent nature and 
cannot be altered by the user. Some areas are actually a physical connection to 
things like the speaker or game switches. Others, like$E000 to$FFFF are illed in 
by the chips in the machine called ROMs.

2[John Gruver] Or, these days, maybe “Best Friends For Forever...”
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ROM stands for Read Only Memory. !ese chips hold the machine-lan-
guage routines that make up eitherApplesot BASIC orInteger BASIC, depend-
ing on whether you have anApple II Plus or the standard model. One of the 
chips is the Monitor, which is what initializes the Apple when it is irst turned on 
so you can talk to it.
!e Monitor can be thought of as a simple supervisor program that keeps 

the Apple functioning at a rather primitive level of intelligence. It handles basic 
input and output for the computer, and allows a few simple commands relating 
to such things as entering, listing, or moving blocks of memory within the 
Apple. Don’t be fooled though. !e amount of code required to do just these 
things is not trivial, and in addition provides us with a ready-made mini-library 
of routines that we can call from our own programs, as will be shown later in 
this book.
Apple provides an excellent discussion of the Monitor and its commands 

and operation within theApple II Reference Manual, currently supplied with all 
new Apples. You may wish to consult this if you are unsure of the general way in 
which the Monitor is accessed and used. Now thatbreak message should have at 
least a little meaning.

8BF2-    A=03 X=9D Y=00 P=36 S=F2

]
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!e $8BF2 is an address in memory. !e display indicates that the break 
actually occurred at the address given minus two ($8BF2 −2 =$8BF0). For rea-
sons that aren’t worth going into here, the Monitor always prints out a break 
address in this plus-two fashion. What about the rest of the message? Consider 
the next three items:

A=03 X=9D Y=00

!e 6502, in addition to being able to address the various memory locations 
in the Apple, has a number of internalregisters. !ese are units inside the 6502 
itself that can store a given number value, and they are individually addressable 
in much the same way memory is. !e diference is that instead of being given a 
hexadecimal address, they are called the Accumulator, the X-Register, and the Y-
Register. In our error message, we are being told the status of these three regis-
ters at the break.3

!e igure below illustrates what we know so far. !e 6502 is a microproces-
sor chip that has the ability to scan through a given range of memory, which we 
will generally specify by using hex notation for the addresses. Depending on the 
values it inds in each location as it scans through, it will perform various opera-
tions. As an additional feature to its operation, it has a number of internal regis-
ters, speciically the Accumulator, the X-Register, the Y-Register. Memory-
related operations are best done by entering the Monitor level of the Apple (usu-
ally with a CALL -151) and using the various routines available to us.

3[CT] !e inal two items are the Status Register “P” and the Stack Pointer “S”.
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It’s Culture !at Counts

Many people have remarked that our choice of ten as a number base is 
related to the fact that we have ten ingers on our hands. One can only guess how 
a diferent set of circumstances would have profoundly changed our lives. Specu-
lating, for instance, on which two commandments would have been omitted had 
we only eight ingers is enough to keep one awake at night.
A living example of this arbitrary nature of number bases was recently 

brought to light by the discovery of a long-lost tribe living in the remote jungles 
of South America. It would seem the tribe had been isolated from the rest of the 
world for at least 10,000 years. An interesting aspect of their life was a huge pop-
ulation of dogs living among the people. In fact, dogs so outnumbered the peo-
ple (so to speak) that the people had evolved a counting system based on the 
number of legs on a dog, as opposed to our more rational base ten. !ey counted 
in the equivalent of base four.
In counting, they would be heard to say, “one, two, three...” Since they had 

never developed more than four symbols to count with (0, 1, 2, 3) when they got 
to the number ater three, they wrote it as 10 and called it doggy, thus conirm-
ing the quantity in terms of a natural unit in their environment. Continuing to 
count they would say, “doggy-one (11), doggy-two (12), doggy-three (13)...”
At this point they would write the next number as 20 and call it twoggy. A 

similar procedure was used for 30.
20–twoggy 30–troggy
21–twoggy-one 31–troggy-one
22–twoggy-two 32–troggy-two
23–twoggy-three 33–troggy-three
Now, upon reaching 33, the next number must again force another position 

in the number display.
You’re probably wondering what they called it. !e digits are of course 100. 

Oh, the name? Why, of course, it’s one houndred.

]
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Exploring the Monitor

It is possible to program the computer manually by entering numbers one at 
a time into successive memory locations. A program of this sort is called a 
machine language program because the 6502 can directly run the coded program 
steps. Humans, however, ind this type of data diicult to read and are more 
likely to make mistakes while working with it.
A more convenient method of programming is to assign some kind of code 

word to each value. !e computer will translate this word into the correct num-
ber to store in memory. !is translation is done by anassembler, and programs 
entered or displayed in this manner are called assembly-language programs.
As an example, let’s look at some data within your Apple, irst in the 

machine-language format and then in the assembly-language format. First we 
must enter the Monitor. Type in:

CALL -151

!is should give you an asterisk (*) as a prompt. Now type in:

F800.F825

!is tells the Monitor we want to examine the range of memory from$F800 to 
$F825. !e general syntax of the command is:

<start address>.<end address>

the period being used to separate the two values.
Upon hitting <RETURN> you should get the following data:

F800- 4A 08 20 47 F8 28 A9 0F

F808- 90 02 69 E0 85 2E B1 26

F810- 45 30 25 2E 51 26 91 26

F818- 60 20 00 F8 C4 2C B0 11

F820- C8 20 0E F8 90 F6

*

]
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!e range I have picked is the very beginning of the Monitor ROM. !e 
data here can be directly read by the 6502, but is very diicult for most humans 
to make much sense of. !is is machine language.

Disassembly

Now type in:

F800L

!is tells the Monitor to give us adisassembly of the next twenty instructions, 
starting at $F800. !e syntax here is:

<start address>L

To disassemble means to reverse the process we talked about earlier, taking 
each number value and translating it into the appropriate code word.
Ater hitting <RETURN> you should get:

F800-   4A          LSR

F801-   08          PHP

F802-   20 47 F8    JSR   $F847

F805-   28          PLP

F806-   A9 0F       LDA   #$0F

F808-   90 02       BCC   $F80C

F80A-   69 E0       ADC   #$E0

F80C-   85 2E       STA   $2E

F80E-   B1 26       LDA   ($26),Y

F810-   45 30       EOR   $30

F812-   25 2E       AND   $2E

F814-   51 26       EOR   ($26),Y

F816-   91 26       STA   ($26),Y

F818-   60          RTS

F819-   20 00 F8    JSR   $F800

F81C-   C4 2C       CPY   $2C

F81E-   B0 11       BCS   $F831

F820-   C8          INY

F821-   20 0E F8    JSR   $F80E

F824-   90 F6       BCC   $F81C

!is is a disassembled listing. Although it probably doesn’t do a lot for you 
right now, I think it’s obvious that it is at least more distinctive.
Let’s look at it a little more closely. InBASIC, line numbers are used to 

begin each set of statements. !ey’re particularly handy when you want to do a 
GOTO orGOSUB to some other part of the program. In assembly language, the 
addresses themselves take the place of the line numbers. In our example, the col-
umn of numbers on the far let are the addresses at which each operation is 
found. To the right of each address are one to three hex values, which are num-
ber values stored in successive addresses. !ese are theopcodes with their 
accompanying operands.
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At$F802, for instance, is the opcode$20. Remember, the dollar sign is used 
to show we are using base sixteen.$20 is the opcode for the commandJSR. All 
mnemonics are made up of three letters. In this case,JSR stands for Jump to 
SubRoutine and is rather like aGOSUB in BASIC. !e next two numbers,$47 and 
$F8, comprise the operand, that is, the number that the opcode is to use in its 
operation. To the right we see that these numbers give$F847 as the object of the, 
JSR1. Continuing with our analogy, what would be aGOSUB 1000 in BASIC 
appears as aJSR $F847 in assembly language. !e commandJSR $F847 will 
jump to the subroutine at $F847 and return when done.
You’ve just learned your irst word of assembly language:JSR! Looking 

through the listing, you can see several of these. !e irst one goes to some rou-
tine outside the listing. What about the other twoJSR commands? You should 
be able to see that they reference routines within the listing. !e second enters at 
$F800, the third at $F80E.
In BASIC, aGOSUB eventually ends with aRETURN. !eJSR has an analogous 

counterpart. Looking at the entry point at$F80E and what follows, can you ind 
anything that looks like it might be the equivalent of aRETURN? Take the time to 
ind it if you can before reading on.
If you picked theRTS, you’re right,RTS stands for return from subroutine. 

As with a RETURN, when the program reaches theRTS, it returns to where it origi-
nally came from. Encountering theRTS at$F818, program execution would 
resume at $F824, if entry was from the JSR $F80E at $F821.
You might notice that almost all machine code blocks that you may have 

used along withBASIC programs, such as tone routines, usually end with a$60 
as the last byte. !is is the opcode forRTS. In almost any assembly-language pro-
gram you write, you must end with anRTS. !is is because, to the computer as a 
whole, your program is a temporary subroutine of its overall operation.
When your program ends, theRTS lets the Apple return to its original oper-

ations of scanning the keyboard and such. When you do aCALL 768 from 
BASIC, for example, you are essentially doing aJSR to that machine routine. !e 
768 is the decimal value for the address of the start of the routine, equivalent to 
$300 in hexadecimal. At the end of that routine, theRTS returns you to your 
BASIC program to let it continue with the next statement.

1Notice that it takes two bytes to store the value for an address. For example, for the 
address$F847, the value “F8” is stored in one byte, and “47” in another. Reading an 
address is generally a matter of mentally combining the two bytes. !e byte representing 
the let-hand portion of the number is oten called thehigh-order byte; the byte repre-
senting the right-hand portion is called the low-order byte. It is important to realize that 
the two bytes that make up an address are almost always reversed in regards to what you 
might normally expect. !at is to say that in an address byte-pair, the low-order byte 
always comes irst, immediately followed by the high-order byte. !is means that when 
examining raw memory, you must mentally reverse the byte to determine the address 
stored. Fortunately when using the “L” command, the disassembler does this for you.

]
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!e Mini-Assembler

I mentioned earlier that the basic principle of the Apple is its ability to scan 
through a range of memory and execute diferent operations depending on what 
numeric values it inds at each location, or address. Instead of tediously loading 
each location by hand with mundane numbers to create a program, anassembler 
is used to translate abbreviated codewords, calledmnemonics, into the proper 
number values to be stored in memory.
!e types of assemblers available are quite diverse, and range from the 

Mini-Assembler present in an Apple withInteger BASIC (or theMunch-A-Bug 
package) to sophisticated editor/assemblers like Merlin.
For now, we’ll use the Mini-Assembler to try a short program. If you have 

an Apple II, anApple II Plus with a language card, or anApple //e, the Mini-
Assembler is available provided that you enter the Monitor from Integer BASIC. 
In any case, you’ll want to get a more complete assembler to do any real program 
writing.
Starting with chapter four, I’ll assume you have an assembler, and have 

learned at least enough about operating it to enter a program. Since the only two 
commands we have at this point areJSR andRTS, our routine will be very sim-
ple. In the Monitor at$FBDD is a routine that beeps the speaker. Our routine will 
do a JSR to that subroutine, then return to BASIC via an RTS at the end.
To enter the program using the Mini-Assembler, follow these steps:1 From 

Integer BASIC, enter the Monitor with a CALL -151. !en type in:

F666G

F666 is the address where the Mini-Assembler program starts.G tells theMoni-
tor to execute the program there. You can think ofG as go; its BASIC equivalent 
is RUN. !e general syntax is:

1If you do not have the Mini-Assembler available, you can enter the same data into 
memory by entering the Monitor and typing in:  300: 20 DD FB 60<RETURN>.
Rejoin us at the 300L mark on the next page.
If you have an Apple with a65C02, the memory addresses have changed. You can enter 
the Mini-Assembler by typing “!”, and exit the assembler by hitting <RETURN>.

]
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<start address>G

!e prompt should change to an exclamation mark (!). To use the Mini-Assem-
bler, you must follow a basic pattern of input. See page 49 in the newestApple II 
Reference Manual for a thorough description of this. For now, though, enter:

!300: JSR FBDD<RETURN>

!e Apple will immediately rewrite this as:

0300-   20 DD FB    JSR   $FBDD

!e input syntax is to enter the address at which to start the program fol-
lowed by a colon and a space, then enter the mnemonic, another space, and then 
the operand, in this case the address for the JSR to jump to. Next type in:

! RTS<RETURN>

which will be rewritten as:

0303-   60          RTS

Be sure to enter one <SPACE> before the RTS. What the assembler has done is 
to take our mnemonic input and translate it into the numeric opcodes and oper-
ands of actual machine language.
Now type in:

!$FF59G

!is will exit the Mini-Assembler, giving you back the asterisk prompt (*) of the 
Monitor. You can now list your program by typing in:

300L

!e irst two lines of your listing should be:

0300-   20 DD FB    JSR   $FBDD

0303-   60          RTS

What follows ater$303 is more or less random and does not afect the code we 
have typed in. When run, this program will jump to the beep routine at$FBDD. 
At the end of that routine is anRTS that will return us to our program at$303. 
!eRTS there will then do a inal return from the program back to either the 
Monitor or BASIC depending on where we call it from.
From the Monitor type in:

300G

!e speaker should beep and you will get the asterisk prompt back. Now go back 
into BASIC with a <CTRL>B. Type in:

CALL 768
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!e speaker should again beep and then give you the BASIC prompt back.CALL 
768 should work from Integer or Applesot.
As long as the programs are not very involved, the Mini-Assembler is handy 

for writing quick routines. A complete table of routines in the Monitor appears 
in Appendix D at the end of the book. Try to write your ownJSRs to one or 
more of these routines. You might even try doing several in a row for fun.

Assemblers

Now let’s look at the operation of a more typicalassembler. !is example 
assumes you’re using an assembler similar to the ones mentioned in the intro-
duction. If you have a diferent assembler that gives you diferent results, you 
may have to consult your operating manual for the proper procedures for enter-
ing source listings.
Before presenting the listing, I’d like to clarify two commonly used terms in 

assembly-language programming,source code andobject code. Source code is the 
English-like text you enter into the assembler. !is text has the advantage of 
being easily readable, and may include whole sentences or paragraphs of com-
ments very similar toREM-type statements found in BASIC. Source code is, how-
ever, not directly executable by the 6502. It simply does not understand English-
like text. As mentioned earlier, the 6502’s preferred (and in fact only acceptable) 
diet is one- to three-byte chunks of memory in which simple and unambiguous 
numbers are found.
!e assembler takes this text and produces the pure numeric data, called the 

object code, which is directly executable by the 6502.
Now the listing:

Object Code Source Code
                1    ********************************

                2    *     AL03-SAMPLE PROGRAM      *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    BELL     EQU  $FBDD

                9    *

0300: 20 DD FB  10   START    JSR  BELL       ; RING BELL

0303: 60        11   END      RTS             ; RETURN

0304: 66        12            CHK

To the right side of the listing is what is generally called the source code. 
!is is the program, coded using mnemonics and various names or labels for 

]
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diferent parts of your routine. Very few actual addresses or values are used in 
the source code.2

To the let is the object code. !is is what is actually put in memory as the 
machine language program. !e object code is what the computer actually exe-
cutes; it is obviously rather diicult to understand, at least compared to trying to 
understand it when you have the advantage of the source code. Being more read-
ily able to understand the coding places greater importance on having the source 
listing for a given program and explains why yourApple II Reference Manual 
contains a source listing for the Apple Monitor. Such listings were considered 
necessary in documenting a system when the Apple came out.
However, source listings for Applesot BASIC, Integer BASIC, and the Disk 

Operating System (DOS) are much harder to come by and are not directly dis-
tributed by Apple Computer Co., Inc. Independently created source listings for 
DOS and Applesot BASIC have been prepared by individuals not directly asso-
ciated with Apple Computer Co., Inc. and are commercially available. !e DOS 
3.3 source compiled by Randy Hyde is available from Lazer Systems, Inc. An 
Applesot BASIC source listing is included in theMerlin Assembler from South-
western Data Systems.
Most assemblers display both the object code and the source code when the 

ASM (for ASseMble) command is used. Object and source code are, however, 
usually saved to disk as two separate and distinct iles. Initially, let’s consider just 
the source listing.
!e irst thing to notice is that, just like in BASIC, we again have line num-

bers. In assembly language, though, the line numbers are solely for use with the 
program editor, and are not used at all to reference routines. Inserting a line is 
done with a special editor command, and all following lines are automatically 
renumbered to accommodate the new line.
Next notice the syntax, or proper ordering of the information. Generally the 

syntax consists of three basic elements, orields, to each line. !ese ields are 
either deined by their position on the line or, more oten, bydelimiters. A 
delimiter is a character used to separate one ield from another. In most assem-
blers, a space is used. Using this convention, you don’t have to tab over to some 
speciic position for each ield on the line. Instead you just make sure each ield 
is separated from the adjacent one by a space.

2[CT] Line 12 contains theCHK pseudo-opcode that is provided by theMerlin Macro 
Assembler.CHK instructs the assembler to insert a single byte containing a “checksum” 
for the entire program. If you are usingMerlin, you can use the resulting checksum to 
verify that you have typed in the program correctly. For example, for this particular pro-
gram you should get a checksum of$66. If you are not usingMerlin you should ignore 
theCHK instruction. In case you are curious,  the checksum is computed by performing 
an exclusive OR on all of the program bytes.
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!e irst ield is for alabel and is optional. Lines 10 and 11, for example, 
each have a label that applies to that point in the routine. In this case, the label 
START indicates where we irst begin the program;END is the clever label used for 
the inish. You may even recognize this program as the one we used to beep the 
speaker earlier. Some assemblers limit the number of characters used in the 
label.
As the program becomes more complex, we can do the equivalents ofGOTO 

and GOSUB by using theselabels instead of a line number. You’ll notice that to do 
this,BELL has to be deined somewhere in the listing. SinceBELL does not occur 
as a label within our own program (lines 10 and 11), it is deined at the begin-
ning using theEQU (EQUals) statement. !e statement reads: “BELL EQUals $FBDD.” 
!is way, whenever we use the label BELL, the assembler will automatically set up 
the JSR or whatever to the address $FBDD.
!e second ield is thecommand ield, which includes theopcode and its 

operand. In line 10, theJSR is the opcode and the operand isBELL. Not all 
opcodes will have an operand.
!e third ield, to the right, is thecomment ield. Use of the comment ield is 

optional and is reserved for any comments about the listing you might wish to 
make (for example,RING BELL). !e semicolon in the source code is used as the 
delimiter for the comments ield. Comments can also be done at the very begin-
ning of the line by using anasterisk as theREMark character.3 As in BASIC, 
everything ater the asterisk is ignored by the assembler.
Assemblers also have what are sometimes calledpseudo opcodes ordirec-

tives, likeEQU. Although directives do not translate into 6502 code, they are 
interpreted by the assembler according to assigned deinitions as the object code 
is assembled.
!ey are called directives because they direct the assembler to perform a 

speciic function at that point such as store a byte, save a ile to disk, etc.
!e sample program uses two directives,OBJ andORG, on lines 6 and 7 of 

the source listing.OBJ stands for OBJect and deines where the object code will 
be assembled in memory.4 ORG stands for ORiGin and deines thebase address to 
be used when creating theJSRs,JMPs, and other functions that reference speciic 
addresses within the program. GenerallyOBJ andORG are the same, and for the 
time being we’ll leave it at that. Consult your assembler manual for more speciic 
information on the use of these commands.

3[CT] A quick tip: If you are using theMerlin assembler, you can automatically ill the 
line with asterisks by hitting<CTRL>P. If you type a space and then hit<CTRL>P then 
Merlin will insert an asterisk at the beginning and end. See Appendix G for details.

4[CT] !eOBJ directive is not usually necessary, and it is incompatible with later ver-
sions of theMerlin assembler (Merlin Pro andMerlin 8/16). In this book all of theOBJ 
lines have been commented out.

]
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Remember, only the actual program is converted into the object code. !e 
remarks and theEQU,OBJ, andORG statements are only used in the source code 
and are never transferred to the object code.

Load/Store Opcodes

One of the most fundamental operations in machine code is transferring the 
number values between diferent locations within the computer. You’ll recall 
that in addition to the 64K of actual memory locations, there were registers 
inside the 6502 itself. !ese were theAccumulator, theX-Register, and theY-
Register. !ere are a number of opcodes that will load each of these registers 
with a particular value and, of course, another set to store these values some-
where in the computer. !e table below summarizes these:

Accumulator X-Register Y-Register

Load: LDA LDX LDY

Store: STA STX STY

!e irst mnemonic,LDA, stands for LoaD Accumulator.LDA is used whenever 
you wish to put a value into the Accumulator. Conversely, to store that value 
somewhere, you would execute theSTA command, which stands for STore Accu-
mulator. !e opcodes for the X-Register and Y-Register are similar and perform 
the identical function with the associated registers.
Now the question is, how do we control what numbers get put into the reg-

ister we’re concerned with? !ere are basically two options. !e irst is to put a 
speciic number there. !is is usually indicated in the source listing by preceding 
the number we want to be loaded with a “#” character.

 99   LDA #$05    ; LOAD ACC. WITH THE

100               ; VALUE ’$05’

For instance, in this example, we have loaded the Accumulator with the value 5. 
How do you think we would load the X-Register or the Y-Register with the value 
0?
!e other alternative is to load the register with the contents of another 

memory location. To do this, we just leave of the “#” character.

 99   LDA $05     ; LOAD ACC. WITH THE

100               ; CONTENTS OF LOC. $05

In this case, we are loading the Accumulator with whatever location $05 happens 
to be holding at the moment.
!ese two options are calledaddressing modes. !e irst example (#$05) we 

call theimmediate mode, because it is not necessary to go to a memory location 
to get the desired value. !e second case we call theabsolute mode. In this mode, 
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we put a given value in the register by irst going to a speciied memory location 
that holds the value we want.

Putting it All Together

We now have the ability to transfer numbers about in the computer, to 
jump to other subroutines within the Apple via aJSR, and to return safely to the 
normal world via anRTS when we’re done. In addition, we have an assembler 
that will allow us easily to generate a source listing for our program, which can 
also be easily modiied. Let’s put all this together to write a short program to 
print some characters on the screen. Appendix E contains two charts (the ASCII 
table, and the Text Screen Memory Map) that will supply the necessary informa-
tion to achieve this.
When a character is printed on the screen, what is really happening is that a 

number value is being stored in the area of memory reserved for the screen dis-
play. Change a value there and a character on the screen will change. !eText 
Screen Memory Map gives the various addresses of each position on the screen. 
!e upper let corner corresponds to location $400, the lower right to $7F7.
!e ASCII table shows which number values create which screen characters. 

Suppose we want to print the wordAPPLE in normal text. !e table indicates that 
we should use the following values:

A: $C1

P: $D0

P: $D0

L: $CC

E: $C5

If we want the word to appear on the seventh line of the screen, we should load 
these values into locations$700 to$704. To test this, enter the following pro-
gram using your assembler. If you still don’t have one, the AppleMini-Assem-
bler can be used, although we will soon reach the point where it will not be 
suicient for our needs. If you are using the Apple Mini-Assembler, enter only 
the program itself, ignoring theOBJ andORG statements. In place ofJSR HOME 
enter JSR $FC58.
At the beginning of the program, we deine where it is to be assembled. 

!en we deine a routine in the Apple calledHOME, which is part of the Apple 
Monitor and is at$FC58. Whenever this routine is called, the screen is cleared 
and the cursor put in the upper let corner. !is ensures that only the word 
APPLE will be printed on the screen.

                1    ********************************

                2    *     AL03-TEST PROGRAM 1     *

                3    ********************************

                4    *        OBJ  $300

                5             ORG  $300

]
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                6    HOME     EQU  $FC58

                7    *

0300: 20 58 FC  8    START    JSR  HOME       ; CLEAR SCREEN

0303: A9 C1     9             LDA  #$C1       ; 'A'

0305: 8D 00 07  10            STA  $700

0308: A9 D0     11            LDA  #$D0       ; 'P'

030A: 8D 01 07  12            STA  $701

030D: 8D 02 07  13            STA  $702

0310: A9 CC     14            LDA  #$CC       ; 'L'

0312: 8D 03 07  15            STA  $703

0315: A9 C5     16            LDA  #$C5       ; 'E'

0317: 8D 04 07  17            STA  $704

031A: 60        18   END      RTS

031B: 72        19            CHK

!e routine will begin by doing aJSR to the home routine to clear the 
screen. !en the Accumulator will be loaded with an immediate$C1, the value 
for the letter A. !is will then be stored at location$700 on the screen, which 
will cause the letter A to be visible on the screen. !e next value loaded is for the 
letter P, and this is stored at$701 and$702. It is not necessary to reload the 
Accumulator, since storing the number does not actually remove it from the 
Accumulator. !e number is just duplicated at the indicated spot. !e process 
continues in this pattern until all ive letters have been printed, and then anRTS 
returns us to normal operation.
Once you have assembled the routine at$300, try calling it both from the 

Monitor level with:

300G

and from BASIC (either one) with:

CALL 768

You should also change theLDA/STA to the X-Register and Y-Register equiv-
alents to verify that they work in a similar manner.

Conclusion

You now have at your disposal a total of eight opcodes and a familiarity 
with assemblers. !ese few opcodes are probably the most oten used, and with 
just these alone you can do quite a number of things. !eJSR allows you to 
make use of all the routines already available in the Monitor. I highly recom-
mend getting!e Apple Monitor Peeled by W.M. Dougherty, available exclu-
sively from Apple, for more information on using these routines. His book gives 
a lot of detail on what is available.
In the next chapter we’ll look at some more advanced addressing tech-

niques, and how to do counters and loops.
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Now we get into not only more mnemonics, but the techniques of using 
them to accomplish various overall operations. In particular, we’ll look atcoun-
ters and loops in assembly language. In BASIC, theFOR-NEXT loop is one of the 
more essential parts of many programs, and this is no less true in machine pro-
gramming. !e only diference is how the loop/counter combination is actually 
carried out.
In BASIC, the testing of counters is done either byIF-THEN statements or, 

automatically, in theNEXT statement of theFOR-NEXT loop. In assembly language, 
the testing is done by examining lags in theStatus Register. !ese lags indicate 
the status of the various registers and memory locations. !e Status Register is a 
fourth register of the 6502, one we have not previously mentioned. Before going 
on with loops and counters it will be necessary to briely discuss the Status Regis-
ter and, in addition, binary numbers.
Like the other three registers–the Accumulator, the X-Register, and the Y-

Register–the Status Register holds a single byte. You’ll recall that each byte in 
the Apple can have a value from 0 to 255 ($00 to $FF).
As it happens, there are many ways of looking at and interpreting numbers. 

!e one of common experience is that in which we consider only the magnitude 
of the number. Noticing that 255 is larger than 128 gives us only a very simple 
form of information–whether a number is either less than, equal to, or greater 
than another number.
A second way of looking at numbers is in binary form.Base two allows us to 

see more information in a number and hence is that much more useful. We have 
already seen how a single byte can be represented either as 0 to 255 or as$00 to 
$FF. In binary the range is00000000 to11111111. For instance, 133 (base ten) 
was represented as$85. In binary it has the appearance 10000101. In this case, 
each 1 or 0 represents the presence or absence of a given condition. !us, eight 
distinct pieces of information are conveyed, as well as all the various combina-
tions possible.
Before you run shrieking from the room, remember that this is all done to 

make things easier, not harder. Besides, learning base sixteen (hex) wasn’t that 
bad back at the beginning of this book, was it? So let’s take a moment to see what 
this bits and bytes stuf is all about.

]
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Binary Numbers

!e Apple is an electronic device and, actually, in many ways, a simple one 
at that. In most parts of its circuitry, the current is either of or on. !at’s it. No 
in-between. Having two possible positions is perfect for base two. !e idea of a 
number base has to do with how many symbols, or units, you use for counting. 
We normally use ten. We have a total of ten possible symbols to write in a single 
position before we have to start doubling up and using two positions to repre-
sent a number.You’ll recall inhex that, by using 0 through 9 and A through F, 
we had sixteen possibilities; thus, we were in base sixteen. With the on/of nature 
of the Apple, we’re limited to two possibilities: 0 or 1.
How high can we count in one position? Not very. We start at 0, then go to 

1, and that’s it. !en we have to add another position. !e next number, there-
fore, is 10. As before, remember that, in this case, 10 represents what we usually 
call two. If we use three positions, the lowest number is 100 (representing the 
quantity four in base ten).
For a given number base, there is a formula for the highestdecimal number 

you can represent with a given number of positions:

N = BP − 1

whereN is the largest decimal number,B is the number base, andP is the num-
ber of positions available.
By using eight positions, we can go up to 11111111, which just happens to 

equal 255. How handy! !is is the same maximum value of our bytes. And, if the 
truth be known, it’s actually the other way around. We use the numbers through 
255 because we are using eightbits to make up each byte. Whether each bit is a 0 
or a 1 depends on whether the part of the circuit that is responsible for that bit is 
of or on.

!e Status Register

Here at last is our representation of a single byte, made up of eight bits. In 
particular, the byte we are looking at is theStatus Register of the 6502. !e 
important diference between this register and the others is that it is not used to 
store number values. Instead it indicates various conditions.
!e bits of the Status Register are numbered from right to let, 0−7. Each bit 

in this register indicates the status and/or results of diferent operations and is 
called alag. It is by using this register that we can create counters and loops in 
our programs. !e lag we will be immediately concerned with is bit one, the 
zero lag. In terms of the commands we already know, the zero lag is afected by 
an LDA, LDX, or LDY.
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If the value loaded into the Accumulator, X-Register, or Y-Register were $00, 
the lag would be set to 1. If it were a nonzero number, the lag would be 0. 
Seemingly backward perhaps, but remember, each lag is set to show the pres-
ence or absence of a given condition, in this case,$00. !e setting or clearing of 
each Status Register lag is done automatically by the 6502 ater each program 
step, indicating the results of any particular operation.

Incrementing and Decrementing

To create acounter and then aloop, we will use the Status Register to tell 
when a given register or memory location reaches 0. We will also need a way of 
changing the value of the counter in a regular fashion. In the 6502, this is done 
by incrementing or decrementing by one each time, as indicated.

Accumulator X-Register Y-Register Memory Loc

Increment by 1:Not available INX INY INC

Decrement by 1:Not available DEX DEY DEC

!e table above shows the mnemonics used to increment or decrement a 
particular register or memory location.
Note that directly incrementing or decrementing the Accumulator is not 

possible. !e increment/decrement commands afect thezero lag, depending on 
whether the result of the operation is 0 or not.
!e usual syntax for using these commands in an assembly listing is:

10   INX

11   INY

12   DEX

13   DEY

14   INC   $0600

15   DEC   $AA53

]
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For the register operations, the command stands alone, with no need of an 
operand. In the case ofINC andDEC, the memory locations to be operated on are 
given, in hex of course, usually preceded by the dollar sign.
One thing to mention here is thewrap-around nature of the operations. To 

understand this, examine the following chart:

Original contents Increment Decrement Z-lag set? Z

$05 $06 $04 no, no 0, 0

$0F $10 $0E no, no 0, 0

$01 $02 $00 no, yes 0, 1

$FF $00 $FE yes, no 1, 0

$00 $01 $FF no, no 0, 0

!e efects of incrementing and decrementing diferent values are shown, 
along with the efects on thezero lag ater the operations. !e irst case is sim-
ple, 5 + 1 = 6, 5 − 1 = 4. In both cases, the result is nonzero, so the zero lag is not 
set. For$0F, the same holds true. Remember that, in hex, the next number ater 
$0F is$10. In the case of$01, incrementing produces$02. When we decrement 
$01, the result is $00; the zero lag is set.
Here’s where it gets interesting. When the starting value is$FF, adding one 

would normally give$100. However, since a single byte only has a range of$00 
to $FF, the 1 is ignored, and the value becomes$00. !is sets the zero lag. In the 
case of decrementing, $FF − 1 = $FE, so the zero lag is not set.
If we start with$00, although incrementing produces the expected$01, 

decrementing wraps around in the reverse of the previous case, giving$FF. Both 
results are nonzero, so Z–short for the zero lag–isclear, that is, not set, for 
both operations.

Looping with BNE

!e only procedure remaining to enable you to create a loop is a way of test-
ing the Z-lag and then being able to get back to the top of the loop for another 
pass. In BASIC, a simple loop might look like this:

10  HOME

20  X = 255

30  PRINT X

40  X = X - 1

50  IF X <> 0 THEN GOTO 30

60  END

In this program, we start with the counter X set at 255. !en the value is 
printed, decremented, and the process repeated until the counter reaches 0. We 
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can make the loop execute any number of times by properly setting the initial 
value of X.
In machine code, the test andGOTO is done with abranch instruction. In this 

case, the one we’ll use irst isBNE.BNE stands for Branch Not Equal and is a 
branch instruction executed when a register is loaded with “a nonzero value.” 
!is can happen either directly with something like aLDA #$01 or as the result 
of an arithmetic operation, such as anINX, DEC, orADC. Here is the assembly-lan-
guage equivalent of the BASIC listing:

    1 ********************************

    2 *     AL04-LOOP PROGRAM 1      *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 HOME     EQU  $FC58

    8 *

    9 START    JSR  HOME

   10          LDX  #$FF

   11 LOOP     STX  $700

   12          DEX

   13          BNE  LOOP

   14 END      RTS

And here is the way Apple’s disassembler would show it:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   A2 FF       LDX   #$FF

0305-   8E 00 07    STX   $0700

0308-   CA          DEX

0309-   D0 FA       BNE   $0305

030B-   60          RTS

In this program, we irst do aJSR to the clear screen routine in the Monitor 
that we used in chapter three. !en we load the X-Register with a starting value 
of$FF. Now we start the loop. Storing the X-Register at$700 will make the 
loop’s action visible as a character on the screen for each pass through the loop. 
Next,DEX subtracts one from the current value of the X-Register. !eBNE will 
then continue the loop back up toLOOP until the X-Register reaches$00, at 
which point the test will fail and program execution will fall through to theRTS 
at the end of the program. People will also refer to the execution of abranch 
instruction by saying that the branch is ignored or taken depending on whether 
program low falls through the branch instruction or goes to the new address 
indicated by the branch instruction.
Try entering this now, and also notice how fast the program runs. You 

probably weren’t able to see very much, but all 255 values were put to the screen. 
!e inverse A that’s let on the screen is how a$01 at$700 appears. ($00 doesn’t 

]
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get printed–why?) To verify that each pass is being executed, replace theSTX 
$700 in the source listing with aJSR $FBDD. If you don’t want to hear 255 beeps, 
try changing the initial value of the X-Register in line 10. As before, you should 
be able to call this program from the Monitor with a300G, or from BASIC with a 
CALL 768.
You may also wish to try the equivalent version of the program using the Y-

Register or a memory location as the counter. I would suggest trying to write a 
program using INC, INX, or INY to drive the counter as a practice program.
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Looping with BEQ

In the previous chapter we started into the various techniques of creating 
and using counters and loops in assembly language. To accomplish the loop, we 
used the value in one of the registers as a counter and the branch instruction that 
tests for the presence of a nonzero number in the register to actually do the loop-
ing. Recall that this evaluation of zero/nonzero is done via the zero bit, or lag, of 
the Status Register of the 6502.
!e complement of theBNE instruction is something calledBEQ, which 

obscurely enough stands for Branch EQual. It operates in just the opposite fash-
ion fromBNE; that is, it branches only when the register or memory location 
reaches a value of 0.
For example, consider this BASIC listing:

10  HOME

20  X = 255

30  PRINT X

40  X = X - 1

50  IF X = 0 THEN 70

60  GOTO 30

70  END

In this case, the loop continues as long as X is not equal to 0. If it is, the 
branch instruction is carried out and the program ends. In assembly language, 
this program would be the equivalent:

    1 ********************************

    2 *     AL05-LOOP PROGRAM 2      *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 HOME     EQU  $FC58

    8 *

    9 START    JSR  HOME

   10          LDX  #$FF

   11 LOOP     STX  $700

   12          DEX

   13          BEQ  END

]
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   14          JMP  LOOP

   14 END      RTS

Notice that this program requires the addition of a new instruction to our reper-
toire: theJMP command. !is is analogous to aGOTO in BASIC, and in this pro-
gram will cause program execution to jump to the routine starting atLOOP each 
time. Only when the X-Register reaches 0 does theBEQ take efect and cause the 
program to skip to theRTS atEND. Here is the way this would appear when put 
into memory and then listed with the “L” command from the Monitor:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   A2 FF       LDX   #$FF

0305-   8E 00 07    STX   $0700

0308-   CA          DEX

0309-   F0 03       BEQ   $030E

030B-   4C 05 03    JMP   $0305

030E-   60          RTS

!e assembler automatically translates the positions ofLOOP andEND into 
the appropriate addresses to be used by theBEQ andJMP when it assembles the 
code.
Remember that to the let are the addresses and the values for each opcode 

and its accompanying operand. !e more intelligible translation to the right is 
Apple’s interpretation of this data.

Branch Ofsets and Reverse Branches

Notice that theJMPs andJSRs are immediately followed by the addresses 
(reversed) that they are to jump to, such as in the irst JSR as $300.
However, branch instructions are handled a little diferently. !e$03 is an 

ofset that tells the 6502 to jump three bytes past the next instruction.
Since the next instruction is at$30B, the 6502 will branch to$30E, thus skip-

ping theJMP command and going directly to theRTS, which terminates the rou-
tine.
Branches can also be done in the reverse direction. Here is a rather inei-

cient, but illustrative example:

    1 ********************************

    2 *     AL05-LOOP PROGRAM 2A     *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 HOME     EQU  $FC58

    8 *

    9 START    JSR  HOME

   10          JMP  SETX

   11 END      RTS
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   12 *

   10 SETX     LDX  #$FF

   11 LOOP     STX  $700

   12          DEX

   13          BEQ  END

   14          JMP  LOOP

!e Monitor listing for this would be:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   4C 07 03    JMP   $0307

0306-   60          RTS

0307-   A2 FF       LDX   #$FF

0309-   8E 00 07    STX   $0700

030C-   CA          DEX

030D-   F0 F7       BEQ   $0306

030F-   4C 09 03    JMP   $0309

In this example, the branch, if taken, will cause the program to move back 
up through the listing. To indicate this branch in the opposite direction, the high 
bit is set. !is is the same technique that is oten used to show negative numbers 
in assembly-language programs. Please note that it is not just a matter of setting 
the high bit. If that were the case, the value following the BEQ command might be 
expected to be$89. (!e address of the next instruction ($30C) minus where we 
want to go to ($303) equals $09. !en with the high bit on, we have $89.)
!is is almost correct. !e actual value is arrived at by subtracting the 

branch distance from$100. !us$100 minus$09 equals$F7. !is is so that the 
destination address can still be arrived at through addition. Notice that$30C + 
$F7 =$403. It is then very easy for the 6502 to correct this back one page to 
$303.
If all this seems a bit confusing, try not to let it bother you. In actual prac-

tice, there is not much reason to be concerned about the way in which the ofset 
byte is determined since your assembler will determine the proper values for you 
when assembling code, and Apple’s disassembler, as well as many others, includ-
ing Sourceror, will give the destination address when reading other code.
!is is also a good time to stress the importance of working through each of 

these examples on your own, step by step, to make sure you understand exactly 
what happens at each step, and how it relates to the rest of the program. If you’re 
not sure, go back over it until that proverbial light comes on!

Screen Output Using COUT

As the X-Register is incremented in this program, we’ll stuf the value into 
$700 so we can see something on the screen as the counter advances.

]
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Now you may remark from your experience in chapter four that although 
this program is pleasantly simple in its logic, it is not much fun to watch on the 
screen because it runs so quickly.
To solve this, we will start to make more extensive use of the routines 

already present in the Monitor to do certain tasks and thus make our program-
ming requirements a little simpler. Referring to the Monitor subroutines in 
Appendix D, it happens that the irst routine listed is something calledCOUT. 
!is is the routine that actually sends a character we want output to whatever 
device(s) may currently be in use. Most of the time this just goes directly to the 
next routine listed, COUT1 (clever with the names, aren’t they?), which speciically 
handles thescreen output. What this means for us is that anytime we want to 
output a character, we don’t have to write our own routines to worry about all 
the in-depth details about the screen (cursor position, screen size, whether it’s 
time to scroll)–we just load the Accumulator with the ASCII value for the char-
acter we want to print and then do a JSR $FDED!
Now comes some programming technique. We would like to have the 

counter value in the Accumulator so we can print it viaCOUT, but unfortunately 
our increment/decrement commands only work for the X-Register, the Y-Regis-
ter, and given memory locations. To solve this, we’ll have to expand our listing a 
little. !is time, we’ll use a memory location as the counter, and then load the 
Accumulator, on each pass through, to print out a visible sign of the counter’s 
activity. Good locations to use for experimenting are$06 to$09. !ese are not 
used by either Integer, Applesot, DOS, or the Monitor. !is is important for 
avoiding conlicts with the Apple’s normal activities while running your own 
programs.
And now our revised listing:

    1 ********************************

    2 *     AL05-LOOP PROGRAM 2B     *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 CTR      EQU  $06

    8 HOME     EQU  $FC58

    9 COUT     EQU  $FDED

   10 *

   11 START    JSR  HOME

   12          LDA  #$FF

   13          STA  CTR

   14 LOOP     LDA  CTR

   15          JSR  COUT

   16          DEC  CTR

   17          BEQ  END

   18          JMP  LOOP

   19 END      RTS
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Apple’s “L” command will give this ater you’ve assembled it in memory:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   A9 FF       LDA   #$FF

0305-   85 06       STA   $06

0307-   A5 06       LDA   $06

0309-   20 ED FD    JSR   $FDED

030C-   C6 06       DEC   $06

030E-   F0 03       BEQ   $0313

0310-   4C 07 03    JMP   $0307

0313-   60          RTS

A call to this routine via our usual300G from the Monitor, or aCALL 768 
from BASIC, should clear the screen, then print all the available characters on 
your Apple in all three display modes (normal, lashing, and inverse). !e beep 
you hear is the<CTRL>G (bell) beingprinted to the screen viaCOUT. !e invisible 
control characters account for the blank region between the two main segments 
of output characters. You will also see some characters that are not normally 
generated by the Apple, such as underscore, reverse slash, and the let square 
bracket ( _, \, [ ).
!e alphabet is backward because we started at the highest value and 

worked our way down. From chapter four, though, you’ll remember that when a 
byte is incremented by one from$FF, the resultwraps around back to$00. !is 
will produce an action testable by aBEQ. Using this wrap-around efect of the 
increment command, we can rewrite the program to be a little more conven-
tional like so:

    1 ********************************

    2 *     AL05-LOOP PROGRAM 3      *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 CTR      EQU  $06

    8 HOME     EQU  $FC58

    9 COUT     EQU  $FDED

   10 *

   11 START    JSR  HOME

   12          LDA  #$00

   13          STA  CTR

   14 LOOP     LDA  CTR

   15          JSR  COUT

   16          INC  CTR

   17          BEQ  END

   18          JMP  LOOP

   19 END      RTS

]
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With the Apple showing:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   A9 00       LDA   #$00

0305-   85 06       STA   $06

0307-   A5 06       LDA   $06

0309-   20 ED FD    JSR   $FDED

030C-   E6 06       INC   $06

030E-   F0 03       BEQ   $0313

0310-   4C 07 03    JMP   $0307

0313-   60          RTS

A call to this routine should now print out the characters in a more familiar 
manner. At last our programs are starting to do something interesting! It gets 
better!

Reading a Game Paddle

Let’s try reading a game paddle and use what we get back to print something 
to the screen! Granted, I’m not any more sure than you are what good this might 
be, but it’s guaranteed to be a new program in your library!
!ePREAD subroutine in Appendix D indicates that a paddle can be read by 

loading the X-Register with the value for the number of the paddle you wish to 
read, followed by aJSR $FB1E. When the routine returns, the value of the paddle 
will be in the Y-Register. All we have to do then is grab this value, stuf it in the 
Accumulator, and then do our JSR COUT.

    1 ********************************

    2 *    AL05-PADDLE PROGRAM 1     *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 TEMP     EQU  $06

    8 PREAD    EQU  $FB1E

    9 HOME     EQU  $FC58

   10 COUT     EQU  $FDED

   11 *

   12 START    JSR  HOME

   13          LDX  #$00

   14 LOOP     JSR  PREAD

   15          STY  TEMP

   16          LDA  TEMP

   17          JSR  COUT

   18          JMP  LOOP

   19 * INFINITE LOOP

You should get this in memory:

*300L

0300-   20 58 FC    JSR   $FC58
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0303-   A2 00       LDX   #$00

0305-   20 1E FB    JSR   $FB1E

0308-   84 06       STY   $06

030A-   A5 06       LDA   $06

030C-   20 ED FD    JSR   $FDED

030F-   4C 05 03    JMP   $0305

!is routine when called will quickly ill up the screen and then change the 
stream of characters output as you turn paddle 0. Since we have no test for an 
end, RESET is the only way to stop this ininite loop.
Depending on your propensity toward being hypnotized, you may lose 

touch with the world for indeinite periods of time while running this program. 
At the inverse and lashing end, it’s also remarkably good at stimulating 
migraine headaches in record time. By carefully controlling the paddle, you can 
also observe some interesting bits of ASCII trivia. For example, ater the inverse 
and lashing range, you should be able to stop the low by moving into the con-
trol character range. With suicient dexterity, you should be able to lock onto 
the persistent beep of the bell (<CTRL>G).
Shortly ater this point, the screen will zip into motion when you hit the line 

feed character (<CTRL>J) and, of course, also at<CTRL>M (carriage return). What 
fun, eh! When normal character output returns as you pass the halfway point, 
you can delight in various patterns of screen illing. Why, you may even wish to 
try writing your name by det control of the paddle–child’s play!

Paddle Program Problems

Returning to reality here, it is worth mentioning that some problems in 
accuracy can arise from repeatedly reading the paddle so quickly. !e analog cir-
cuits don’t have time to return to 0, and various problems creep in.
Also, we have been a bit negligent in looking out for conlicting use of the 

registers by the various routines we are calling. !ere is oten no assurance that 
the register you’re using for your own routine won’t be clobbered by the Moni-
tor routine you use. In the case of the paddle and output routines, you’ll note 
they did mention how the X-Register, the Y-Register, and the Accumulator were 
afected by each of the routines.
For the record, here is a reasonable facsimile of our program in Applesot:

10  HOME

20  T = PDL(0)

30  PRINT CHR$(T);

40  GOTO 20

It is also worth mentioning that our assembly-language version takes eigh-
teen bytes, while the Applesot one takes thirty-eight, not counting space used by 
the variable T.

]
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Execution speed may seem to be similar, but this is because of the printing 
of the characters to the screen. In most cases, machine execution would be 
orders of magnitude faster.

Transfer Commands

In our program, we have to go through a rather inelegant way of transfer-
ring the value from the Y-Register to the Accumulator, using a temporary stor-
age byte. Fortunately, there is an easier way. !ere are four commands for 
transferring contents of the X-Register or the Y-Register to and from the Accu-
mulator. !ey are as follows:

TXA: Transfers contents of X-Register to Accumulator.
TYA: Transfers contents of Y-Register to Accumulator.
TAX: Transfers contents of Accumulator to X-Register.
TAY: Transfers contents of Accumulator to Y-Register.

Each of these actions conditions the zero lag upon execution, so it is possible to 
test what has been transferred. !ere is no command to transfer directly between 
the X-Register and the Y-Register.
!is gives us an even shorter program:

    1 ********************************

    2 *    AL05-PADDLE PROGRAM 1A    *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 PREAD    EQU  $FB1E

    8 HOME     EQU  $FC58

    9 COUT     EQU  $FDED

   10 *

   11 START    JSR  HOME

   12          LDX  #$00

   13 LOOP     JSR  PREAD

   14          TYA

   15          JSR  COUT

   16          JMP  LOOP

   17 * INFINITE LOOP

Now it’s only iteen bytes long!

*300L

0300-   20 58 FC    JSR   $FC58

0303-   A2 00       LDX   #$00

0305-   20 1E FB    JSR   $FB1E

0308-   98          TYA

0309-   20 ED FD    JSR   $FDED

030C-   4C 05 03    JMP   $0305

With twenty commands at your disposal, you now know just over a third of 
the total vocabulary of the language. Soon, you’ll be dangerous!
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A Note about BRUN and COUT

If you try toBRUN AL05.LOOP2B, rather than use aCALL 768 or300G, strange 
things will happen. !is is becauseDOS interferes with any binary program 
which uses input or output routines when such a program isBRUN, rather than 
called from the Monitor or BASIC. !is is because DOS is always watchingCOUT 
for DOS commands, such asPRINT D$;"CATALOG". When youBRUN a ile you 
are essentially in a DOS subroutine, and further use ofCOUT makes DOS more or 
less forget where to return to when everything is completed. !ere are two solu-
tions to this problem. !e irst is trivial–don’tBRUN iles that useCOUT. Instead, 
BLOAD the ile and then call the routine in the usual way.
If, however, you insist onBRUNing a ile, the other choice is to exit via the 

warm-reentryvector $3D0. A jump to this address replaces the inalRTS in any 
program you wish toBRUN. For example, replacing line 19 inLOOP PROGRAM 2B 
withJMP $3D0 will allow you toBRUN the ile with no problems. Please keep this 
in mind when attempting to BRUN any other listings throughout this book.

]
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Comparisons; Reading the Keyboard

Now we’re getting to where we can actually do some interesting things with 
what we know so far. !e basic ideas you should be comfortable with at this 
point are fairly simple. !e 6502 microprocessor is our main operational unit. 
!ere are three main registers: the Accumulator, the X-Register, and the Y-Reg-
ister. Also present is the Status Register, which holds a number of one-bit lags to 
indicate various conditions. So far, the only one we’ve considered is the Z-lag, 
for indicating whether a zero or nonzero number is present in one of the other 
three registers.

Programs are executed by the 6502 scanning through memory. Addresses in 
memory are analogous to line numbers in BASIC. AJSR $FC58 in assembly lan-
guage is just as valid as aGOSUB 1000 in BASIC. In using an assembler, we can 
give names to routines at given addresses and make things that much simpler by 
saying JSR HOME, when HOME has been deined as $FC58.
In chapter ive, we used testing commands likeBEQ andBNE to create simple 

loops. We used the X-Register and the Y-Register as counters and incremented 
or decremented by one for each cycle of the loop.
Now let’s expand our repertoire of commands by adding some new ones 

and, in the process, add some lexibility to what we can do with loops and tests 
in general.

]
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In our previous programs we relied on our counters reaching 0 and testing 
via the Z-lag to take appropriate action. Suppose, however, that we wish to test 
for a value other than 0. !is is done using two new ideas.

Compare Commands and Carry Flag

!e irst is thecompare command, the mnemonic for which isCMP. !is 
tells the computer to compare the contents of the Accumulator against some 
other value. !e other value can be speciied in a variety of ways. A simple test 
against a speciic value would look like this:

CMP #$A0

!is would be read, “Compare Accumulator with an immediateA0.” !is would 
tell the 6502 to compare the Accumulator to the speciic value$A0. On the other 
hand, we may want to compare the Accumulator with the contents of given 
memory location. !is would be indicated by:

CMP $A0

In this case, the 6502 would go to location$A0, see what was there, and compare 
that to the Accumulator. It is important to understand that the contents of$A0 
may be anything from$00 to$FF, and it is against this value that the Accumula-
tor will be compared. In each case, the 6502 does the comparison by internally 
subtracting the speciied value from the Accumulator. !e Accumulator remains 
unchanged, however, and the result of the comparison is relected elsewhere.
!e second important idea is that of thecarry lag. !ecarry lag enables us 

to determine the result of the comparison. Right next to the Z-lag in the Status 
Register is the bit called the carry.

!e carry is used during addition and subtraction by the 6502. In our case, 
since the compare operation involves subtraction, the carry lag can be used to 
test the result. You do this with two newbranch commands,BCC andBCS.BCC 
stands for Branch Carry Clear. If the Accumulator is less than the value com-
pared against,BCC will branch appropriately.BCS stands for Branch Carry Set 
and is taken whenever the Accumulator is equal to or greater than the value 
used. !is means that we can now not only test for speciic values but also test 
for ranges. Try this example.
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    1 ********************************

    2 *    AL06-PADDLE PROGRAM 2A    *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 *

    8 PREAD    EQU  $FB1E

    9 HOME     EQU  $FC58

   10 COUT     EQU  $FDED

   11 *

   12 START    JSR  HOME

   13          LDX  #$00

   14 LOOP     JSR  PREAD

   15          TYA

   16          CMP  #$C1       ; CMP TO ASCII FOR "A"

   17          BCC  LOOP       ; TRY AGAIN IF LESS THAN

   18          CMP  #$DB       ; CMP TO ASCII FOR "["="Z"+1

   19          BCS  LOOP

   20          JSR  COUT

   21          JMP  LOOP

   22 * INFINITE LOOP

When assembled and listed from memory, it should look like this:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   A2 00       LDX   #$00

0305-   20 1E FB    JSR   $FB1E

0308-   98          TYA

0309-   C9 C1       CMP   #$C1

030B-   90 F8       BCC   $0305

030D-   C9 DB       CMP   #$DB

030F-   B0 F4       BCS   $0305

0311-   20 ED FD    JSR   $FDED

0314-   4C 05 03    JMP   $0305

Let’s step through the program. Ater theJSR to the clear screen routine, we 
load X with 0 in preparation for reading a paddle. !e#$00 will tell the routine 
that we wish to readpaddle 0. Ater the read, the answer is returned in the Y-
Register, which we transfer to the Accumulator with aTYA. It is at this point that 
we use our test section. If the Accumulator is less than the ASCII value for the 
letter A, we avoid the printout by going back toLOOP. I have used the ASCII 
value for A plus$80 so that we get normal output on the screen. If we test for 
$41 instead, lashing characters will be output to the screen.

]
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!e next comparison is for theASCII value for the character “[”. !is com-
parison assures that theBCS will catch all values higher than the one for Z. !e 
irst table in Appendix E is useful in seeing where these numbers come from.1

Only numbers from$C1 to$DA will make it through to be printed out using 
COUT ($FDED).
Again the loop is ininite, so RESET is required to exit.
!e X-Register and Y-Register can also be compared in a similar manner by 

codes CPX and CPY. Can you rewrite this program to use CPY instead of CMP?
BEQ andBNE are also still usable ater a compare operation. Here’s a sum-

mary:

Command Action

CMP

CPX

CPY

BCC

BEQ

BNE

BCS

Compares Accumulator to something
Compares X-Register
Compares Y-Register
Branch if register < value
Branch if register = value
Branch if register <> value
Branch if register >= value

1ASCII (for American Standard Code for Information Interchange) is a coding scheme 
for transmitting text. It is also used in the Apple for encoding text in memory, screen 
display, disk iles, printer output, and many other areas. Appendix E gives a chart of all 
the characters and their ASCII values. One important note: it is possible to encode all 
the alphabetic characters (upper and lowercase), numerics, special symbols, and control 
codes using only 128 characters. !is means that ASCII is considered a 7-bit code. !is 
means that all the information required to determine which character has been sent is 
contained in bits 0−6 of the byte. !us$8A is reasonably equivalent to $0A as far as its 
ASCII interpretation is concerned. !e matter of the high bit being set or clear can cre-
ate considerable confusion when it is not made clear what the computer expects.
Generally the Apple operates internally with the high bit set on all characters. !at is 

to say, characters retrieved from the keyboard via$C000 and characters stored in the 
screen area of memory and on disk all usually have the high bit set (i.e. a value equal to 
or greater than$80). !is is also the way Applesot stores data within program lines. To 
keep you on your toes, though, Apple printer cards usually do not support having the 
high bit set when sending output to a printer, and strings within a program (such asA$ 
=”CAT”) also have the high bit clear. Also, when usingCOUT (the Monitor text output 
routine), the high bit should be set (always load the Accumulator with values greater 
than $80) before calling COUT.
I wish I could say it was all easier than that, but then again if it were all that easy, 

you wouldn’t have to have bought this book, and then where would I be?
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Using Monitor Programs for I/O Routines

As you may have noticed, I enjoy using the paddles as input devices. !is is 
because they’re an easy way of sending values from$00 to$FF into the system in 
a very smooth and natural way. We can get similar data from the keyboard, 
though. !ere the advantage is that we can jump from one value to another with 
no transition between the two values.
A good part of many formal assembly-language courses deals with system 

I/O–that is, getting data in and out via diferent devices. Writing such things as 
printer drivers, disk or tape access routines, hardware interface sotware, etc., are 
the areas that hardcore programmers spend their youths mastering. Using the 
Monitor routines on the Apple simpliies this for us greatly because we don’t 
have to do a lot of I/O details. You’ve already shown this by using the paddles 
($FB1E) for input and the screen ($FDED) for output without having to know 
anything about how the actual operation is carried out. !e keyboard is even 
easier.
I mentioned earlier that the address range from$C000 to$FFFF is devoted 

to hardware–these memory ranges cannot be altered by running programs. (I’m 
ignoring the RAM cards for the time being.) !e range from$D000 to$FFFF is 
used by ROM routines that we’ve been calling. !e range from$C000 to$CFFF is 
assigned to I/O devices. Typically the second digit (or maybe I should call it a 
hexit) from the let gives us the slot number of the device. For instance, if you 
have a printer in slot one, listing the code at$C100 will reveal the machine lan-
guage code on ROM of the card that makes it work. At$C600 you’ll probably 
ind the code that makes the disk drive in slot six boot.

$C000 to$C0FF is reserved not for slot 0, but for doing special things with 
the hardware portions of the Apple itself. An attempt to disassemble from$C000 
will not produce a recognizable listing, but it will probably cause your Apple to 
act a bit odd. !is range is made up of a number of memory locations actually 
wired to physical parts of your Apple. If you type in:

*C030

from the Monitor, in addition to getting some random value displayed, the 
speaker should click. If it doesn’t click the irst time, try again. Each time you 
access $C030, the speaker will click as it moves in response to your action.
!e keyboard is also tied into a speciic location. By looking at the contents 

of$C000, you can tell if a key has been pressed. In BASIC, it’s done with aPEEK 
-16384. (See page 6 of the 1981Apple II Reference Manual.) In assembly lan-
guage you would usually load a register with the contents of $C000, such as:

LDA $C000

]
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Reading Data from the Keyboard

Because it is diicult to read the keyboard at exactly the instant someone has 
pressed the key, the keyboard is designed to hold the last key pressed until either 
another key is pressed or until you clear thestrobe, as it’s called, by accessing an 
alternate memory location,$C010. !e strobe is wired to clear any characters of 
the keyboard that may be hanging around for any number of various reasons. 
When you check for a character, you don’t want to pick one up that someone 
inadvertently entered prior to your enquiry (perhaps by nervously drumming 
their ingers across the keyboard while waiting for one of Apple’s lightning-like 
disk accesses!). It is also always a good idea to clear the keyboard when you’re 
done with it, otherwise you may similarly have the key pressed for your input 
still hanging around for whatever reads the keyboard next, such as an input 
statement in BASIC. !e strobe is cleared byeither a read or a write operation. It 
is the mere access to$C010 in any manner that accomplishes the clear. !us a 
LDA $C010 would work just as well as aSTA $C010.2 !e last point to be aware of 
is that the keyboard is set up to tell you when a key is pressed by the value that is 
read at$C000. Now, you might think that the logical way would be to keep a$0 
in$C000. Perhaps, but that’s not the way they do it. Instead, they add$80 to 
whatever the ASCII value is of the key you pressed. If a value less than$80 is at 
$C000, it means a key has not been pressed.
So, to illustrate this (and I admit it got a little involved for my tastes), let’s 

look at some sample programs to read data from the keyboard.

    1 ********************************

    2 *   AL06-KEYBOARD PROGRAM 1A   *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 *

    8 KYBD     EQU  $C000

    9 STROBE   EQU  $C010

   10 COUT     EQU  $FDED

2Having now just said that read and write operations are essentially equivalent for clear-
ing the strobe, let me cover myself enough to say that there is one slight diference. A 
write operation actually accesses the location twice, whereas a read operation only 
accesses once. Most of the time this doesn’t make any diference. Since most people 
can’t type at 100,000 characters per second, it’s hard to get a character in between the 
two clear operations. However, there are now available for the Applekeyboard bufers 
which will store a whole string of characters entered by the user, instead of the usual one 
normally used for the keyboard. As each character is read in, it is taken out of the bufer 
by clearing the strobe. You guessed it! A write operation–such as aSTA $C010 or a 
POKE -16368,0–will clear two characters out of the bufer: the one you just readand 
the next one in line. !erefore, it is generally good practice to clear the strobe with a 
read operation, such as aLDA $C010,X = PEEK -16368, or the like. Like I said, if it were 
too easy...
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   11 HOME     EQU  $FC58

   12 *

   13 START    JSR  HOME

   14 LOOP     LDA  KYBD

   15          CMP  #$80

   16          BCC  LOOP

   17          JSR  COUT

   18          JMP  LOOP

   19 * INFINITE LOOP

Once entered, this should disassemble as:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   AD 00 C0    LDA   $C000

0306-   C9 80       CMP   #$80

0308-   90 F9       BCC   $0303

030A-   20 ED FD    JSR   $FDED

030D-   4C 03 03    JMP   $0303

Trying this program, you should notice that the program runs on, printing the 
same character until you press another key. !at’s because we never cleared that 
strobe you thought I was rambling on about. Once the key press gets on the 
board, it’s never cleared until it is replaced by a new key.
A better program is:

    1 ********************************

    2 *   AL06-KEYBOARD PROGRAM 1B   *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 *

    8 KYBD     EQU  $C000

    9 STROBE   EQU  $C010

   10 COUT     EQU  $FDED

   11 HOME     EQU  $FC58

   12 *

   13 START    JSR  HOME

   14 LOOP     LDA  KYBD

   15          CMP  #$80

   16          BCC  LOOP

   17          STA  STROBE

   18          JSR  COUT

   19          JMP  LOOP

   20 * INFINITE LOOP

which lists as:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   AD 00 C0    LDA   $C000

0306-   C9 80       CMP   #$80

0308-   90 F9       BCC   $0303

]
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030A-   8D 10 C0    STA   $C010

030D-   20 ED FD    JSR   $FDED

0310-   4C 03 03    JMP   $0303

!is should work better. Here we clear the keyboard whenever we’ve gotten a 
character and printed it. Why not clear it right ater the read on line 15? If we 
did that, we’d be lucky to catch a glimpse of the character at$C000 as the user 
pressed the key. As it is, we can probably get away with it because of the speed of 
the loop. But if we had to go away to another routine for a while, or otherwise 
delay getting back to the LDA $C000, we’d probably miss it.
You should also type in enough to wrap around onto the next line, and also 

try the arrow keys and<RETURN>. You may think this all performs as expected 
(with the exception of the missing cursor), but this all should not be taken for 
granted. Without the screen management ofCOUT, you’d have to do quite a bit 
more programming to keep things straight. Once more, this is the advantage of 
using the routines already present in the Monitor rather than worrying about the 
details yourself.
Also, please notice how theSTA was chosen because we didn’t want to lose 

the contents of the Accumulator in doing the access. !is information concerns 
technique more than actual commands, but is worth mentioning if you’re going 
to get along with your Apple successfully.
On page 130 of the 1981Apple II Reference Manual you’ll ind a listing of 

the sot-switches and other goodies at$C000 toC0FF. !ese can be very useful in 
having your Apple relate to the outside world.
You may wish to experiment with these. Also don’t forget about all the rou-

tines listed in Appendix D. !ese are also fun to experiment with and are pro-
vided to encourage you to write short programs just to test your wings. As I’ve 
mentioned before, they’re also useful in saving you the trouble of writing your 
own I/O and other more involved routines.
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Let’s look at the variousaddressing modes used in assembly-language pro-
gramming. !is concept is rather fundamental in programming and you may 
justiiably wonder why we have not covered it sooner. Well, as it happens, we 
have; I just didn’t call it by name at the time. In chapter one we laid out the basic 
structure of sixty-ive thousand individual memory locations. Since then, we’ve 
worked most of our magic by simply manipulating the contents of those loca-
tions.
Flexibility in the ways in which you can address these locations is the key to 

even greater power in your own programs.
Consider this chart of the addressing modes available on the 6502:

Addressing Modes Example Hex Bytes

Immediate LDA #$A0 A9 A0

Absolute LDA $7FA AD FA 07

Zero Page LDA $80 A5 80

Implicit/Implied TAY A8

Relative BCC $3360 90 0F
Indexed LDA $200,X BD 00 02
Indirect Indexed LDA ($80),Y B1 80
Indexed Indirect LDA ($80,X) A1 80

In looking at the examples, you should ind all but the last three very familiar. 
We have used each of them in previous programs.
Immediate mode was used to load a register with a speciic value. In most 

assemblers, this is indicated by the use of the number sign (#) preceding the 
value to be loaded. !is contrasts with theabsolute mode in which the value is 
retrieved from a given memory location. In this mode, the exact address you’re 
interested in is given.Zero page is just a variation on the absolute mode. !e 
main diference is the number of bytes used in the coding. It takes three in the 
general case; in zero page, only two are required.
Implicit, orimplied, is certainly the most compact instruction in that only 

one byte is used. !eTAY command, Transfer Accumulator to the Y-Register, 

]
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needs no additional address bytes because the source and destination of the data 
are implied by the very instruction itself.
Relative addressing is done in relation to where the irst byte of the instruc-

tion itself is found. Although the example interprets it as a branch to a speciic 
address, you’ll notice that the actual hex code is merely a plus or minus displace-
ment from the branch point. !is too was covered previously.
With these addressing modes, we can create quite a variety of programs. !e 

problem with these modes is that the programs are rather inlexible with data 
from the outside world, such as those in input routines, and also when doing 
things like accessing tables and large blocks of data.

Indexed Addressing

To access such data, we introduce the new idea ofindexed addressing. In the 
pure form, the contents of the X-Register or Y-Register are added to the address 
given in the instruction to determine the inal address. In the example given, if 
the X-Register holds a$0, the Accumulator will be loaded with the contents of 
location$200. If, instead, the X-Register holds a$04, then location$204 will be 
accessed. !e usefulness in accessing tables and the like should be obvious.
!e problem that arises here occurs when you want to access a table that 

grows or shrinks dynamically as the data within it changes. Another problem 
occurs when the table grows larger than 256 bytes. Because the maximum ofset 
possible using the X-Register or Y-Register is 255, we would normally be out of 
luck.
!e solution to the byte limit is to use theindirect indexed mode. Indirect 

indexed is really an elegant method. First, the 6502 goes to the given zero-page 
location (the base address must be on page zero). In the example, it would go to 
$80 and$81 to get the low-order and high-order bytes of the address stored 
there. !en it adds the value of the Y-Register to that address.
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Ottimes, these two-byte zero-page address pairs are calledpointers, and you 
will hear them referred to in dealing with various programs on the Apple. In 
fact, by looking at pages 140 to 141 of theAppleso" II BASIC Programming Ref-
erence Manual, you will observe quite a number of these byte pairs used by 
Applesot to keep track of all sorts of continually changing things, like where the 
program is, the locations of strings and other variables, and many nity items.
If we wanted to simulate theLDA $200,X command with the indirect mode, 

we would irst store a#$00 in$80 and a#$02 in$81, with00 and02 being the 
low-order and high-order bytes of the address$200. !en we’d use the com-
mand LDA ($80),Y.
A much better (but unfortunately rarely used) term ispost-indexing, refer-

ring to the fact that the index is added a"er the base address is determined.

Sometimes X and Y Aren’t Interchangeable

You may have noticed that I used the X-Register in one case and the Y-Reg-
ister in the other. It turns out that the X-Register and the Y-Register cannot 
always be used interchangeably. !e diference shows up depending on which 
addressing mode and what actual command you are using (LDA,STX, or others). 
As it happens, indirect indexed addressing can only be done using the Y-Regis-
ter.
To know which addressing modes can be used with a given command, you 

can refer to either of two appendices provided at the back of this book. Appendix 
B is rather like a dictionary of all the possible 6502 commands and devotes sev-
eral paragraphs to each command. Appendix C, on the other hand, is a more 
condensed form of the irst appendix and may make it easier to compare avail-
able modes between a variety of commands.
I highly recommend making frequent use of Appendix B while you are 

learning assembly-language programming. It is essentially your toolbox of avail-
able commands for solving a particular programming problem. Whenever you 
try to write a particular routine and aren’t sure just how to approach it, skim 
through this section of all possible commands and see if any particular com-
mand inspires a possible approach. Granted, this is likely to happen more when 
you’re working on rather simple goals such as moving a byte from here to there, 
but even the largest programs are made up of just such simple steps as that.
!e last addressing mode,indexed indirect, is probably the most unusual. In 

this case, the contents of the X-Register (the Y-Register cannot be used for this 
mode) are added to the base address before going to get the contents. In a case 
similar to the other one, if the X-Register held$0, anLDA ($80,X) would go to 
$80 and$81 for the two-byte address and then load the Accumulator with the 
contents of the indicated location. If, instead, the X-Register held a$04, the 
memory address would be determined by the contents of $84 and $85!

]
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Usually, then, the X-Register is loaded with multiples of two to access a 
series of continuous pointers in page zero. !is is also calledpre-indexing since 
the index is added to the zero-page location before determining the base address.

Storing Pure Data

Before we can put all this new information to work, we now need to answer 
one more question. How do you store just pure data within a program? All the 
commands we’ve covered so far are actual commands for the 6502. !ere is no 
data command as such. What are available, though, are the Assembler directives 
of your particular assembler. !ese will vary from one assembler to another, so 
you’ll have to consult your own manual to see how your assembler operates.
In general, the theory is to deine a block of one or more bytes of data and 

then to skip over that block with a branch or jump instruction when executing 
your program. Usually, data can be entered either as hex bytes or as the ASCII 
characters you wish to use. In the second case, the assembler will automatically 
translate the ASCII characters into the proper hex numbers.
Most assemblers have hex command for directly entering the hex bytes of a 

data table. !e AppleDOS Tool Kit assembler is one exception. It does not have 
theHEX command (nor many others) and you must use theDFB (“deine byte”) 
command. Using it, line 20 of the following listing should read:20 DATA DFB $C1, 
$D0,$D0,$CC,$C5. A sample program using the indexed address mode is given 
here:

    1 ********************************

    2 *   AL07-SAMPLE DATA PROGRAM   *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 *

    8 COUT     EQU  $FDED

    9 *

   10 START    LDX  #$00
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   11 LOOP     LDA  DATA,X

   12          JSR  COUT

   13          INX

   14          CPX  #$05

   15          BCC  LOOP

   16          LDA  #$8D

   17          JSR  COUT

   18 EXIT     RTS

   19 *

   20 DATA     HEX  C1D0D0CCC5

   21 *

   22 * DATA = 'APPLE'

When looked at in memory, it should appear like this:

*300L

0300-   A2 00       LDX   #$00

0302-   BD 13 03    LDA   $0313,X

0305-   20 ED FD    JSR   $FDED

0308-   E8          INX

0309-   E0 05       CPX   #$05

030B-   90 F5       BCC   $0302

030D-   A9 8D       LDA   #$8D

030F-   20 ED FD    JSR   $FDED

0312-   60          RTS

0313-   C1 D0       CMP   ($D0,X)

0315-   D0 CC       BNE   $02E3

0317-   C5 00       CMP   $00

!is program is an improved version of the one we did earlier to print the word 
APPLE on the screen. It uses the indexed address mode to scan through the data 
table to print the wordAPPLE. Notice that data tables may be wildly interpreted 
to the screen when disassembling. !is is because the Apple has no way of know-
ing what part of the listing is data and tries to list data as a usual assembly-lan-
guage program.
Basically, the idea of the program is to loop through, getting successive 

items from the data table using the ofset of the X-Register. When the X-Register 
reaches05 (the number of items in the table), we are inished printing. Ater 
printing, we terminate with a carriage return. Remember that in assembly lan-
guage we must usually do everything ourselves. !is means we cannot assume an 
automatic carriage return at the end of a printed string.
Note that the hex values in the data table are the ASCII values for each letter 

plus$80. !is sets the high bit of each number, which is what the Apple expects 
in order to have the letter printed out properly when using COUT.
!e indirect addressing modes are used when you want to access memory in 

a very compact and eicient way. Let’s consider the problem of clearing the 
screen, for instance. We want to put a space character in every memory location 
in the screen block ($400−$7FF). Here is one way of doing this:

]
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    1 ********************************

    2 * AL07-SCREEN CLEAR PROGRAM 1A *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 *

    8 PTR      EQU  $06

    9 *

   10 ENTRY    LDA  #$04

   11          STA  PTR+1

   12          LDY  #$00

   13          STY  PTR

   14 * SETS PTR (6,7) TO $400

   15 START    LDA  #$A0

   16 LOOP     STA  (PTR),Y

   17          INY

   18          BNE  LOOP

   19 NXT      INC  PTR+1

   20          LDA  PTR+1

   21          CMP  #$08

   22          BCC  START

   23 EXIT     RTS

Listed from the Monitor, it should appear like this:

*300L

0300-   A9 04       LDA   #$04

0302-   85 07       STA   $07

0304-   A0 00       LDY   #$00

0306-   84 06       STY   $06

0308-   A9 A0       LDA   #$A0

030A-   91 06       STA   ($06),Y

030C-   C8          INY

030D-   D0 FB       BNE   $030A

030F-   E6 07       INC   $07

0311-   A5 07       LDA   $07

0313-   C9 08       CMP   #$08

0315-   90 F1       BCC   $0308

0317-   60          RTS

We start of by initializing locations$06 and$07 to hold the base address of 
$400, the irst byte of the screen memory area. !en we enter a loop that runs the 
Y-Register from$00 to$FF. Since this is added to the base address in$06,$07, 
we then store an$A0 (a space) in every location from$400 to$4FF. When Y is 
incremented from $FF, it goes back to$00, and this is detected by theBNE on line 
18. At$00, it falls through and location$07 is incremented from$04 to$05, giv-
ing a new base address of$500. !is whole process is repeated until location$07 
reaches a value of$08 (corresponding to a base address of$800), at which point 
we return from the routine.
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By changing the value of the#$A0 to some other character, we can clear the 
screen to any character we wish. In fact, you can get the value from the keyboard 
as we’ve done in earlier programs.

    1 ********************************

    2 * AL07-SCREEN CLEAR PROGRAM 1B *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 *

    8 PTR      EQU  $06

    9 CHAR     EQU  $08

   10 KYBD     EQU  $C000

   11 STROBE   EQU  $C010

   12 *

   13 ENTRY    LDA  #$04

   14          STA  PTR+1

   15          LDY  #$00

   16          STY  PTR

   17 * SETS PTR (6,7) TO $400

   18 READ     LDA  KYBD

   19          CMP  #$80       ; KEYPRESS?

   20          BCC  READ       ; NO, TRY AGAIN

   21          STA  STROBE     ; CLEAR KYBD STROBE

   22          STA  CHAR

   23 CLEAR    LDY  #$00

   24          LDA  CHAR

   25 LOOP     STA  (PTR),Y

   26          INY

   27          BNE  LOOP

   28 NXT      INC  PTR+1

   29          LDA  PTR+1

   30          CMP  #$08

   31          BCC  CLEAR

   32 AGAIN    JMP  ENTRY

It should appear like this in listed form:

*300L

0300-   A9 04       LDA   #$04

0302-   85 07       STA   $07

0304-   A0 00       LDY   #$00

0306-   84 06       STY   $06

0308-   AD 00 C0    LDA   $C000

030B-   C9 80       CMP   #$80

030D-   90 F9       BCC   $0308

030F-   8D 10 C0    STA   $C010

0312-   85 08       STA   $08

0314-   A0 00       LDY   #$00

0316-   A5 08       LDA   $08

0318-   91 06       STA   ($06),Y

031A-   C8          INY

031B-   D0 FB       BNE   $0318

031D-   E6 07       INC   $07

]
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031F-   A5 07       LDA   $07

0321-   C9 08       CMP   #$08

0323-   90 EF       BCC   $0314

0325-   4C 00 03    JMP   $0300

Enter this program and run from BASIC with aCALL 768. Each press will clear 
the screen to a diferent character. !e screen should clear to the same character 
as the key you press, including the<SPACE> bar and special characters. In this 
program especially, you can see how fast machine language is. To clear the 
screen requires loading more than one thousand diferent locations with the 
given value. In Applesot, this process would be quite slow by comparison. In 
assembly language, you’ll ind that the screen will clear to diferent characters 
just as fast as you can type them.
An interesting variation on this is to enter the graphics mode by typing in 

GR before calling the routine. !en the screen will clear to various colors and dif-
ferent line patterns.
In this variation on program1A we’ve used the principles from chapter six 

where we read the keyboard until we got a value greater than$80, meaning a key 
has been pressed. !is value is held temporarily in the variableCHAR so that it 
can be retrieved each time ater incrementing the PTR in the NXT section.
See what variations you can make on this, or try the hi-res screen ($2000 

through $3FFF).
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Soundgeneration in assembly language is such a large topic in itself that an 
entire book could be done on that subject alone. However, simple routines are so 
easy that they’re worth at least a brief examination here. !ese routines will not 
only allow you to put the commands you’ve learned to further use, but are also 
just plain fun.
!e irst element of a sound-generating routine is the speaker itself. Recall 

that the speaker is part of the memory range from $C000 to $C0FF that is devoted 
entirely to hardware items of theApple II. In earlier programs, we looked at the 
keyboard by examining memory location$C000. !e speaker can be similarly 
accessed by looking at location$C030. !e exception here is that the value at 
$C000 (the keyboard) varied according to what key was pressed, whereas with 
$C030 (the speaker) there is no logical value returned.
Every time location$C030 is accessed, the speaker will click once. !is is 

easy to demonstrate. Simply enter the Monitor with aCALL -151. EnterC030 and 
press<RETURN>. You’ll have to listen carefully, and you may have to try it several 
times. Each time, the speaker will click once. You can imagine that, if we could 
repeatedly access the speaker at a fast enough rate, the series of clicks would 
become a steady tone. In BASIC this can be done, although poorly, by a simple 
loop such as this:

10  X = PEEK(-16336): GOTO 10

!e pitch of the tone generated depends on the rate at which the speaker is 
accessed. Because Integer BASIC is faster in its execution than Applesot, the 
tone generated will be noticeably higher in pitch in the Integer version.
In assembly language, the program would look like this:

0300-   AD 30 C0    LDA   $C030

0303-   4C 00 03    JMP   $0300

In this case I’m showing it as the Apple would directly disassemble it, as 
opposed to the usual assembly-language source listing. !e program is so short 
that the easiest way to enter it is by typing in the hex code directly. To do this, 
enter the Monitor (CALL -151) and type:

300:   AD 30 C0 4C 00 03

]
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!en run the program by typing 300G.
Disappointed? !e program is working. !e problem is that the routine is 

actually too fast for the speaker to respond. What’s lacking here is some way of 
controlling the rate of execution of the loop. !is is usually accomplished by 
putting a delay of some kind in the loop. We should also be able to specify the 
length of the delay, either before the program is run or, even better, during the 
execution of the program.

Delays

We can do this in any of three ways: (1) physically alter the length of the 
program to increase the execution time of each pass through the loop; (2) store a 
value somewhere in memory before running the program and then use that 
value in a delay loop; or (3) get the delay value on a continual basis from the out-
side world, such as from the keyboard or paddles.
For the irst method, you can use a new and admittedly complex command. 

!e mnemonic for this instruction isNOP and stands for No OPeration. When-
ever the 6502 microprocessor encounters this, it just continues to the next 
instruction without doing anything. !is code is used for just what we need here
–a time delay.
It is more oten used, though, as either a temporary iller when assembling a 

block of code (such as for later data tables) or to cancel out existing operations in 
a previously written section of code. Quite oten, this command ($EA, or 234 in 
decimal) is used in this manner to patch parts of the Apple DOS to cancel out 
various features that you no longer want to have active (such as theNOT DIRECT 
command error that prevents you from doing aGOTO directly to a line that has a 
DOS command on it).
In our sound routine, anNOP will take a certain amount of time even to pass 

over and will thus reduce the number of cycles per second of the tone frequency. 
!e main problem in writing the new version will be determining the number of 
NOPs that will have to be inserted.
!e easiest way to get a large block of memory cleared to a speciic value is 

to use the move routine already present in the Monitor. To clear the block, load 
the irst memory location in the range to be cleared with the desired value. !en 
type in themove command, moving everything from the beginning of the range 
to the end up one byte. For instance, to clear the range from $300 to $3A0 and ill 
it with $EAs, you would, from the Monitor of course, type in:

300: EA

301<300.3A0M

Note that we are clearing everything from$300 to$3A0 to contain the value 
$EA.
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Now type in:

300: AD 30 C0

3A0: 4C 00 03

!en type in300L, followed withL for each additional list section, to view your 
new program.

*300L

0300-   AD 30 C0    LDA   $C030

0303-   EA          NOP

0304-   EA          NOP

0305-   EA          NOP

0306-   EA          NOP

0307-   EA          NOP

0308-   EA          NOP

0309-   EA          NOP

*       *           *

*       *           *

*       *           *

0395-   EA          NOP

0396-   EA          NOP

0397-   EA          NOP

0398-   EA          NOP

0399-   EA          NOP

039A-   EA          NOP

039B-   EA          NOP

039C-   EA          NOP

039D-   EA          NOP

039E-   EA          NOP

039F-   EA          NOP

03A0-   4C 00 03    JMP   $0300

Now run this with the usual 300G.
!e tone produced should be a very nice, pure tone. !e pitch of the tone 

can be controlled by moving theJMP $300 to points of varying distance from the 
LDA $C030. Granted, this is a very clumsy way of controlling the pitch and is 
rather permanent once created, but it does illustrate the basic principle.
For a diferent tone, hit RESET to stop the program, then type in:

350: 4C 00 03

When this is run (300G), the tone will be noticeably higher. !e delay time is 
about half of what it was, and thus the frequency is twice the original value. Try 
typing in the three bytes in separate runs at$320 and$310. At$310 you may not 
be able to hear the tone, because the pitch is now essentially in the ultrasonic 
range.
I think you’ll also notice that all these tones are of a very pure nature and, in 

general, much nicer than those generated by a BASIC program.

]
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Delay Value in Memory

Usually the way tone programs work is to pass apitch value from BASIC by 
putting the value in a memory location. !is program is an example of that tech-
nique.

    1 ********************************

    2 *     AL08-SOUND ROUTINE 2     *

    3 ********************************

    4 *

    5 *

    6 *        OBJ  $300

    7          ORG  $300

    8 *

    9 PITCH    EQU  $06

   10 SPKR     EQU  $C030

   11 *

   12 ENTRY    LDY  PITCH

   13          LDA  SPKR

   14 LOOP     DEY

   15          BNE  LOOP

   16          JMP  ENTRY

   17 * INFINITE LOOP

When assembled, it should look like this:

*300L

0300-   A4 06       LDY   $06

0302-   AD 30 C0    LDA   $C030

0305-   88          DEY

0306-   D0 FD       BNE   $0305

0308-   4C 00 03    JMP   $0300

In this program, we get a value of$00 to$FF from location$06 (labeled 
pitch) and put it in the Y-Register. !e speaker is then clicked. At that point, we 
enter a delay loop that cyclesn times wheren is the number value for pitch held 
in location $06.
To run this program, irst load location$06 with values of your choice (0 to 

255 decimal,$00 to$FF hex) and then run with300G. !is is more compact and 
controllable than the irst example, but it still sufers from being an ininite loop. 
What we need to do is specify aduration for the tone as well. Again you have the 
option of either making the value part of the program or passing it in the same 
way as we’re currently doing the value for pitch. Here’s a listing for the new pro-
gram:

    1 ********************************

    2 *     AL08-SOUND ROUTINE 3     *

    3 ********************************

    4 *

    5 *

    6 *        OBJ  $300
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    7          ORG  $300

    8 *

    9 PITCH    EQU  $06

   10 DURATION EQU  $07

   11 SPKR     EQU  $C030

   12 *

   13 ENTRY    LDX  DURATION

   14 LOOP     LDY  PITCH

   15          LDA  SPKR

   16 DELAY    DEY

   17          BNE  DELAY

   18 DRTN     DEX

   19          BNE  LOOP

   20 EXIT     RTS

Disassembled, it will appear like this:

*300L

0300-   A6 07       LDX   $07

0302-   A4 06       LDY   $06

0304-   AD 30 C0    LDA   $C030

0307-   88          DEY

0308-   D0 FD       BNE   $0307

030A-   CA          DEX

030B-   D0 F5       BNE   $0302

030D-   60          RTS

!is routine is used by loading$06 with a value for the pitch you desire,$07 
with a value for how long you want the tone to last, and then running the rou-
tine with the 300G.
Examining this listing, you’ll see that it is basically an extension of routine 2. 

In this revised version, instead of always jumping back to theLDY of the play 
cycle, we decrement a counter (the X-Register). !is counts the number of times 
we’re allowed to pass through the loop, and thus the inal length of the play.
!is can be used by BASIC programs, as illustrated by this sample Applesot 

listing:

 10  PRINT  CHR$ (4);"BLOAD AL08.SOUND3,A$300"

 20  INPUT "PITCH, DURATION?";P,D

 30  POKE 6,P: POKE 7,D

 40  CALL 768

 50  PRINT

 60  GOTO 20

!is makes it very easy to experiment with diferent values for both pitch 
and duration. !e main bug in this routine is that even for a ixed value for dura-
tion, the length of the note will vary depending on the pitch speciied. !is is 
because less time spent in the delay loop means less overall execution time for 
the routine as a whole.

]
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Delay from the Keyboard or Paddles

!e next variation is to get the pitch on a continual basis from an outside 
source. In this case, the source will be the keyboard. Type in and assemble this 
source listing:

    1 ********************************

    2 *     AL08-SOUND ROUTINE 4     *

    3 ********************************

    4 *

    5 *

    6 *        OBJ  $300

    7          ORG  $300

    8 *

    9 KYBD     EQU  $C000

   10 STROBE   EQU  $C010

   11 SPKR     EQU  $C030

   12 *

   13 ENTRY    LDA  KYBD

   14          STA  STROBE

   15          CMP  #$80

   16          BEQ  EXIT

   17          TAY

   18 LOOP     LDA  SPKR

   19 DELAY    DEY

   20          BNE  DELAY

   21          JMP  ENTRY

   22 EXIT     RTS

In memory, it should look like this:

*300L

0300-   AD 00 C0    LDA   $C000

0303-   8D 10 C0    STA   $C010

0306-   C9 80       CMP   #$80

0308-   F0 0A       BEQ   $0314

030A-   A8          TAY

030B-   AD 30 C0    LDA   $C030

030E-   88          DEY

030F-   D0 FD       BNE   $030E

0311-   4C 00 03    JMP   $0300

0314-   60          RTS

Running this will give you a really easy way of passing tone values to the 
routine. Characters with low ASCII values will produce higher tones than ones 
with higher values. !is means that the control characters will produce unusu-
ally high tones. To exit press <CTRL><SHIFT>P (<CTRL>@).
Let’s review how the routine functions.
At the entry point ($300), the very irst thing done is to get a value from the 

keyboard. !e strobe is then cleared, and an immediate check done for#$80. 
Remember that$80 is added to the ASCII value for each key pressed when read 
at $C000. A value less than$80 means no key has been pressed. Checking specii-
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cally for $80, the computer looks to see if a <CTRL>@ has been pressed. !is is just 
a nice touch to give us a way of exiting the program. Ater the check, we transfer 
the Accumulator value (equivalent to pitch in the earlier programs) to the Y-
Register and inish with the same routine used in Sound Routine 2.
Of course, I have to give you at least one program using thepaddles. !is 

one gives us an opportunity to use the external routines in the Monitor, too. 
Don’t forget that using the routines already present in the Monitor is the real 
secret to easy assembly-language programming. It saves you the trouble of hav-
ing to write your own I/O and other sophisticated routines and lets you concen-
trate on those aspects unique to your program.
Now for the program:

    1 ********************************

    2 *     AL08-SOUND ROUTINE 5     *

    3 ********************************

    4 *

    5 *

    6 *        OBJ  $300

    7          ORG  $300

    8 *

    9 PDL      EQU  $FB1E

   10 SPKR     EQU  $C030

   11 *

   12 ENTRY    LDX  #$00

   13          JSR  PDL

   14          LDA  SPKR

   15          LDX  #$01

   16          JSR  PDL

   17          LDA  SPKR

   18          JMP  ENTRY

   19 * INFINITE LOOP

!e Monitor will list this as:

*300L

0300-   A2 00       LDX   #$00

0302-   20 1E FB    JSR   $FB1E

0305-   AD 30 C0    LDA   $C030

0308-   A2 01       LDX   #$01

030A-   20 1E FB    JSR   $FB1E

030D-   AD 30 C0    LDA   $C030

0310-   4C 00 03    JMP   $0300

Running this should produce some really interesting results. !e theory of 
this routine is elegantly simple. It turns out that just reading apaddle takes a cer-
tain amount of time, suicient to create our needed delay. !e greater the paddle 
reading, the longer the delay to read it.
What happens in this routine is that we actually have two distinct delays 

created, one by each paddle. Remember that to read a paddle, you irst have to 
load the X-Register with the number of the paddle you wish to read and then do 

]
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the JSR to the paddle read routine. !e value is returned in the Y-Register, but in 
this case we don’t need to know what the value was.
!e combination of the two diferent periods of delay creates the efect of 

two tones at once and a number of other very unique sounds.
!is has been only the most basic discussion of sound generation in assem-

bly language, but I think you’ll ind that it illustrates what can be done with only 
a few commands, and that machine language ofers many advantages in terms of 
memory use and execution speed.
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One of the more obscure parts of the operation of the Apple is related to 
something called thestack. !is is a part of memory reserved for holding return 
addresses forGOSUBs andFOR-NEXT loops, and a few other operations in direct 
machine code.
If you want to impress your friends with your knowledge of assembly lan-

guage, just throw this term around in a conident manner and they’ll igure you 
must be an expert!
!e stack can be thought of like those spring-loaded plate holders they have 

in restaurants. Plates are loaded onto the top of a cylinder with a spring-loaded 
platform in it. As more plates are added, the rest get pushed down. !e plates 
must always be removed in the opposite order from that in which they are put 
in. !e catch phrase for this isLIFO, for Last-In, First-Out. !e irst location 
loaded in the 6502 stack is$1FF. Rather than pushing everything down toward 
$100 each time a new value is put on the stack, the 6502 has aStack Pointer that 
is adjusted as new data is added. Successive values are added in descending 
order, with the Stack Pointer being reset each time to indicate the position of the 
next available location. !us the table is created in reverse order, building down-
ward.
!e technical details of its operation are not required to make good use of 

the stack. One of the most convenient things the stack can be used for is to hold 
values temporarily while you’re doing something else. Normally in a program, 
we’d have to assign a zero-page location to hold a value. For instance, consider 
this program:

    1 ********************************

    2 *  AL09-BYTE DISPLAY PROGRAM 1 *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 *

    8 CHR      EQU  $06

    9 PRBYTE   EQU  $FDDA

   10 COUT     EQU  $FDED

   11 PREAD    EQU  $FB1E

   12 HOME     EQU  $FC58

   13 *

]
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   14 START    JSR  HOME

   15 GETCHR   LDX  #$00

   16          JSR  PREAD

   17          STY  CHR

   18          TYA

   19          JSR  PRBYTE

   20          LDA  #$A0       ; SPACE

   21          JSR  COUT

   22          LDA  CHR

   23          JSR  COUT

   24          LDA  #$8D       ; RETURN

   25          JSR  COUT

   26          JMP  GETCHR

!is will be listed by the Monitor as:

*300L

0300-   20 58 FC    JSR   $FC58

0303-   A2 00       LDX   #$00

0305-   20 1E FB    JSR   $FB1E

0308-   84 06       STY   $06

030A-   98          TYA

030B-   20 DA FD    JSR   $FDDA

030E-   A9 A0       LDA   #$A0

0310-   20 ED FD    JSR   $FDED

0313-   A5 06       LDA   $06

0315-   20 ED FD    JSR   $FDED

0318-   A9 8D       LDA   #$8D

031A-   20 ED FD    JSR   $FDED

031D-   4C 03 03    JMP   $0303

!is program gets a value from$00 to$FF frompaddle 0, and stores it in 
location$06. !is is needed because theJSR to$FDDA (a handy routine that 
prints the hex number in the Accumulator) scrambles the Accumulator and Y-
Register. We want to keep the value at hand because the ASCII character corre-
sponding to it is then printed out right ater the number usingCOUT. !e cycle 
then repeats until you press RESET.
Location$06 is used for only a moment each pass to store the value tempo-

rarily. In addition, it commits that zero-page location to use and thus limits our 
choices when we need other places to store something. A better system is to 
make use of thestack. !e commands to do this arePHA andPLA.PHA stands for 
“PusH Accumulator onto stack.” When this is used in line 17 below, the value 
currently in the Accumulator is put onto the stack. !e Accumulator itself goes 
unaltered, and none of the status lags, such as the carry or zero lags, are condi-
tioned. !e value is simply copied and stored for us.
Later on, when we want to retrieve the value, thePLA (“PulL Accumulator 

from stack”) on line 21 pulls the value back of the stack into the Accumulator. A 
PLA command does condition the zero lag, and also the sign bit, which has not 
been covered yet.
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Important: For eachPHA there must be aPLA executed before encountering 
the next RTS in a program.
Here’s the revised program:

    1 ********************************

    2 *  AL09-BYTE DISPLAY PROGRAM 2 *

    3 ********************************

    4 *

    5 *        OBJ  $300

    6          ORG  $300

    7 *

    8 PRBYTE   EQU  $FDDA

    9 COUT     EQU  $FDED

   10 PREAD    EQU  $FB1E

   11 HOME     EQU  $FC58

   12 *

   13 START    JSR  HOME

   14 GETCHR   LDX  #$00

   15          JSR  PREAD

   16          TYA

   17          PHA

   18          JSR  PRBYTE

   19          LDA  #$A0       ; SPACE

   20          JSR  COUT

   21          PLA

   22          JSR  COUT

   23          LDA  #$8D       ; RETURN

   24          JSR  COUT

   25          JMP  GETCHR

!is will list like so:

0300-   20 58 FC    JSR   $FC58

0303-   A2 00       LDX   #$00

0305-   20 1E FB    JSR   $FB1E

0308-   98          TYA

0309-   48          PHA

030A-   20 DA FD    JSR   $FDDA

030D-   A9 A0       LDA   #$A0

030F-   20 ED FD    JSR   $FDED

0312-   68          PLA

0313-   20 ED FD    JSR   $FDED

0316-   A9 8D       LDA   #$8D

0318-   20 ED FD    JSR   $FDED

031B-   4C 03 03    JMP   $0303

!e stack is also used automatically by the 6502 for storing the return 
address for eachJSR as it’s encountered. Each time you do aPHA, this address is 
buried one level deeper. You must have done an equivalent number ofPLAs at 
some point in the routine before reaching the nextRTS to have things work 
properly.
Also remember, if you want to store more than one value, you must retrieve 

the values in the opposite order in which they were stored. Once a value is 

]
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removed from the stack with thePLA, it is essentially gone forever from the stack 
unless you put it back directly.

Stack Limit

!ere is a limit to how much you can put in the stack. !e limit of sixteen 
nestedGOSUBs andFOR-NEXT loops in BASIC is related to this. Technically you 
can put 256 one-byte values or 128 RTS addresses on the stack, but the Apple also 
uses it for its own operations, and many times you have BASIC going, too.
In general, though, the stack rarely ills up unless you’re getting extreme in 

its use, and at that point the code probably will be so tangled in nested subrou-
tines that you may want to consider a rewrite anyway!
Try using the stack in some of your own programs; I think you’ll ind it 

quite useful.
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Now let’s look at the simple math operations ofaddition andsubtraction in 
assembly language. To an extent, we’ve already done some of this. !e increment 
and decrement commands (INC/DEC, and so on) add and subtract for us. Unfor-
tunately, they only do so by one each time (VALUE+1 or VALUE-1).
If you’re really ambitious you could, with the commands you have already, 

add or subtract any number by using a loop of repetitive operations, but this 
would be a bit tedious, not to mention slow. Fortunately a better method exists. 
But irst, a quick review of some binary math facts.
In chapter four we discussed the idea behindbinary numbers and why 

they’re so important in computers. I would like to further elaborate on the topic 
now and show how the idea of binary numbers applies to basic arithmetic opera-
tions in assembly-language programming.

Binary Numbers

By now you’re certainly comfortable with the idea of a byte being an indi-
vidual memory location which can hold a value from$00 to$FF (0 to 255). !is 
number comes about as a direct result of the way the computer is constructed 
and the way in which you count in base two.
Each byte can be thought of as being physically made up of eight individual 

switches that can be in either an on or of position. We can count by assigning 
each possible combination of ons and ofs a unique number value.
In the following diagrams, if a switch is of, it will be represented by a 0 in its 

particular position. If it’s on, a 1 will be shown. When all the switches are of, 
we’ll call that 0.
In base two, each of the eight positions in the byte is called abit, and the 

positions are numbered from right to let: [ 7 6 5 4 3 2 1 0 ].
!e pattern for counting is similar to normal decimal orhex notation. !e 

value is increased by adding one each time to the digit on the far right,carrying 
as necessary. In base ten you’d have to carry every tenth count, and in hex every 
sixteenth. In base two, the carry will be done every other time!
So...the irst few numbers look like this:

]

10
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Hex Decimal Binary
$00 0 0000 0000
$01 1 0000 0001
$02 2 0000 0010
$03 3 0000 0011
$04 4 0000 0100

Notice that in going from the value 1 to the value 2, we add a 1 to the 1 
already at the irst position (bit 0). !is generates the carry to increment the sec-
ond position (bit 1). Here is the end of the series:

$FD 253 1111 1101
$FE 254 1111 1110
$FF 255 1111 1111

Now the most important part. Observe what happens when the upper limit 
of the counter is inally reached. At$FF (255), all positions arefull. When the 
next increment is done, we should carry a one to the next position to the let; 
unfortunately, that next position doesn’t exist!

Addition with ADC

!is is where thecarry bit of the Status Register is used again. Before, it was 
used in the compare operations (CMP, for instance), but, as it happens, it is also 
conditioned by the next command,ADC. !is stands for ADd with Carry. When 
the $FF is incremented using an ADC command, things will look like this:

Carry
$100 256 0000 0000 1

!e byte has returned to a value of 0 and the carry bit is set to a one.
We discussed the wrap-around to 0 earlier, with the increment/decrement 

commands, but we didn’t mention the carry. !at’s because theINC/DEC com-
mands don’t afect the carry lag.
However, theADC command does condition the carry lag. !e carry will be 

set whenever the result of the addition is greater than$FF.1 WithADC, you can 
make your counters increment by values other than one–rather like theFOR I = 
1 TO 10 STEP 5 statement in BASIC. ButADC is used more oten for general math 
operations, such as calculating new addresses or screen positions, among a wide 
variety of other applications.
WheneverADC is used, the value indicated is added to the contents of the 

Accumulator. !e value can be stated either directly by use of an immediate 
value or with an indirect value.

1[CT] Similarly, the carry will be cleared when the result is $FF or less.
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Important Note: Although theADC conditions the carry ater it is executed, it 
cannot be assumed that the carry is conveniently standing in a clear condition 
when the addition routine is begun.
For example, consider this simple program:

LDA #$05

ADC #$00

STA RESULT

As it stands, there are two possible results. If the carry happened to be clear 
when this was executed, the value in result would be$05. If, however, the carry 
had been set (perhaps as the result of some other operation), then the carry bit 
would be included and the result would be $06.
!e point of all this is that the carry lag must be cleared before the irstADC 

operation. !e example above should have been written as:

CLC (CLear Carry)

LDA #$05

ADC #$00

STA RESULT

In this case, result will always end up holding the value$05. Here are some 
sample programs for using the ADC. Note the use of the CLC before each ADC.

                1    ********************************

                2    *  AL10-ADC SAMPLE PROGRAM 1   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    N2       EQU  $08

                10   RSLT     EQU  $0A

                11   *

0300: A5 06     12   START    LDA  N1

0302: 18        13            CLC

0303: 65 08     14            ADC  N2

0305: 85 0A     15            STA  RSLT

0307: 60        16   END      RTS

                1    ********************************

                2    *  AL10-ADC SAMPLE PROGRAM 2   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    RSLT     EQU  $0A

                10   *

                11   *

]
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0300: A5 06     12   START    LDA  N1

0302: 18        13            CLC

0303: 69 80     14            ADC  #$80

0305: 85 0A     15            STA  RSLT

0307: 60        16   END      RTS

                1    ********************************

                2    *  AL10-ADC SAMPLE PROGRAM 3   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    INDX     EQU  $08

                10   RSLT     EQU  $0A

                11   TBL      EQU  $300

                12   *

0300: A5 06     13   START    LDA  N1

0302: A6 08     14            LDX  INDX

0304: 18        15            CLC

0305: 7D 00 03  16            ADC  TBL,X

0308: 85 0A     17            STA  RSLT

030A: 60        18   END      RTS

                1    ********************************

                2    *  AL10-ADC SAMPLE PROGRAM 4   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    INDX     EQU  $08

                10   RSLT     EQU  $0A

                11   PTR      EQU  $1E

                12   *

0300: A9 00     13   START    LDA  #$00

0302: 85 1E     14            STA  PTR

0304: A9 03     15            LDA  #$03

0306: 85 1F     16            STA  PTR+1

0308: A5 06     17            LDA  N1

030A: A4 08     18            LDY  INDX

030C: 18        19            CLC

030D: 71 1E     20            ADC  (PTR),Y

030F: 85 0A     21            STA  RSLT

0311: 60        22   END      RTS

In the irst program, the value inN1 is added to the contents ofN2. In the 
second,N1 is added to the immediate value$80. Note theCLC before theADC to 
ensure an accurate result. !is result is then returned in location$0A. !is rou-
tine could be used as a subroutine for another assembly-language program, or it 
could be called from BASIC ater passing the values to locations $06 and $08.
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!e latter two programs are more elaborate examples where the indirect 
modes are used to ind the value from a table starting at$300. In program 3, an 
index value is passed to location$08. !at is used as an ofset via the X-Register. 
In program 4, the low-order and high-order bytes for the address$300 are irst 
put in a pair of pointer bytes ($1E, $1F) and the ofset is put in the Y-Register.
In all of these programs, however, we are limited to adding two single-byte 

values and further restricted to a one-byte result. Not very practical in the real 
world.
!e solution is to use the carry lag to create a two-byteaddition routine. 

Here’s an example:

                1    ********************************

                2    *  AL10-ADC SAMPLE PROGRAM 5A  *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    N2       EQU  $08

                10   RSLT     EQU  $0A

                11   *

0300: 18        12   START    CLC

0301: A5 06     13            LDA  N1

0303: 65 08     14            ADC  N2

0305: 85 0A     15            STA  RSLT

0307: A5 07     16            LDA  N1+1

0309: 65 09     17            ADC  N2+1

030B: 85 0B     18            STA  RSLT+1

030D: 60        19   END      RTS

Notice thatN1,N2, andRSLT are all two-byte numbers, with the second byte 
of each pair being used for the high-order byte. (If you’re unsure of the idea of 
low- and high-order bytes, refer to chapter two, footnote one). !is allows us to 
use values and results from$00 to$FFFF (0 to 65535). !is is suicient for any 
address in the Apple II, although by using three or more bytes, we could accom-
modate numbers much larger than $FFFF.
A few words of explanation about this program. First, theCLC has been 

moved to the beginning of the routine. Although it need only precede theADC 
command, it has no efect on theLDA, so it is put at the beginning of the routine 
for aesthetic purposes. Once the two low-order bytes ofN1 andN2 are added and 
the partial result stored, the high-order bytes are added. If the result of this irst 
addition is greater than 255, the carry will be set and an extra unit added in the 
second addition. Note that the carry remains unafected during theLDA N1+1 
operation.

]
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!e Monitor listing is given for this one so that you can call it from this 
BASIC program:2

 0  REM  AL10-ADC 5A ADDITION ROUTINE

 10  HOME

 15  FOR I = 0 TO 13: READ OP: POKE 768 + I,OP: NEXT I

 20  INPUT "N1,N2?";N1,N2

 30  N1 = ABS(N1):N2 = ABS(N2)

 40  POKE 6, N1 - INT (N1 / 256) * 256: POKE 7, INT (N1 / 256)

 50  POKE 8, N2 - INT (N2 / 256) * 256: POKE 9, INT (N2 / 256)

 60  CALL 768

 70  PRINT: PRINT "RESULT IS "; PEEK (10) + 256 *  PEEK (11)

 80  PRINT: GOTO 20

 90  DATA 24,165,6,101,8,133,10,165,7,101,9,133,11,96

!e ABS() statements on line 30 eliminate values less than 0. Although there 
are conventions for handling negative numbers, this routine is not that sophisti-
cated.
Many times the number being added to a base address is known always to 

be$FF or less, so only one byte is needed forN2. A two/one addition routine 
looks like this:

                1    ********************************

                2    *  AL10-ADC SAMPLE PROGRAM 5B  *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    N2       EQU  $08

                10   RSLT     EQU  $0A

                11   *

0300: 18        12   START    CLC

0301: A5 06     13            LDA  N1

0303: 65 08     14            ADC  N2

0305: 85 0A     15            STA  RSLT

0307: 90 06     16            BCC  END

0309: A5 07     17            LDA  N1+1

030B: 69 00     18            ADC  #$00

030D: 85 0B     19            STA  RSLT+1

030F: 60        20   END      RTS

For speed, if a carry isn’t generated on line 14, the program skips directly to 
the end. If, however, the carry is set, the value inN1+1 gets incremented by one 
even though theADC says an immediate$00. !e$00 acts as a dummy value to 
allow the carry to do its job. If speed is not a concern, the BCC can be let out with 
no ill efect.

2[CT] !is was changed to include the machine code within the DATA statement.
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!e following program shows an alternate method using theINC command. 
In this case, the BCC is required for proper operation.

                1    ********************************

                2    *  AL10-ADC SAMPLE PROGRAM 5C  *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    N2       EQU  $08

                10   RSLT     EQU  $0A

                11   *

0300: 18        12   START    CLC

0301: A5 06     13            LDA  N1

0303: 65 08     14            ADC  N2

0305: 85 0A     15            STA  RSLT

0307: 90 06     16            BCC  END

0309: A5 07     17            LDA  N1+1

030B: 85 0B     18            STA  RSLT+1

030D: E6 0B     19            INC  RSLT+1

030F: 60        20   END      RTS

!e reason for bringing up listing 5C is that the most common reason for 
adding one to a two-byte number is to increment an address pointer by one. In 
that case, the result is usually put right back in the original location rather than 
in a separateRESULT. A routine for this is more compact and would look like 
this:

                1    ********************************

                2    *  AL10-ADC SAMPLE PROGRAM 5D  *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    *

0300: 18        10   START    CLC

0301: E6 06     11            INC  N1

0303: D0 02     12            BNE  END

0305: E6 07     13            INC  N1+1

0307: 60        14   END      RTS

]
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Subtraction

Subtraction is done like addition except that aborrow is required. Rather 
than using a separate lag for this operation, the computer recognizes the carry 
lag as sort of a reverse borrow.
!at is, aset carry lag will be treated by the subtract command as aclear 

borrow (no borrow taken); a clear carry as a set borrow (borrow unit taken).3

!e command for subtraction isSBC, for SuBtract with Carry. !e borrow is 
cleared with the commandSEC, for SEt Carry. (Remember, things are backward 
here). A subtraction equivalent of program 5A looks like this:

                1    ********************************

                2    *  AL10-SBC SAMPLE PROGRAM 6   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    N1       EQU  $06

                9    N2       EQU  $08

                10   RSLT     EQU  $0A

                11   *

0300: 38        12   START    SEC

0301: A5 06     13            LDA  N1

0303: E5 08     14            SBC  N2

0305: 85 0A     15            STA  RSLT

0307: A5 07     16            LDA  N1+1

0309: E5 09     17            SBC  N2+1

030B: 85 0B     18            STA  RSLT+1

030D: 60        19   END      RTS

!e program can be called with the same BASIC program that we used for 
the addition routine.

Positive and Negative Numbers

So far we have discussed only how to represent whole numbers greater than 
or equal to zero using one or two bytes. A reasonable question then is: “How do 
we represent negative numbers?”
Negative numbers can be thought of as a way of handling certain common 

arithmetic possibilities, such as when subtracting a larger number from a smaller 
one, for instance, 3 − 5 = −2, or when adding a positive number to a negative 
number, for instance, 5 + −8 = −3.

3[CT] Just like ADC, SBC also conditions the carry lag. If the result requires a borrow then 
the carry iscleared (borrowset, for example$50−$80). If the result does not require a 
borrow then the carry is set (borrow clear, for example $50−$30).
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To be successful, then, we must come up with a system using the eight bits 
in each byte that will be consistent with the signed arithmetic that we are cur-
rently familiar with.

!e Sign Bit

!e most immediate solution to the question of signed numbers is to use bit 
7 to indicate whether a number is positive or negative. If the bit is clear, the 
number is positive. If the bit is set, the number will be regarded as negative.
!us +5 would be represented: 00000101
While −5 would be shown as: 10000101
Note that by sacriicing bit 7 to show the sign, we’re now limited to values 

from −127 to +127. When using two bytes to represent a number such as an 
address, this means that we’ll be limited to the range of −32767 to +32767. 
Sound familiar? If you’ve had any experience with Integer BASIC, then you’ll 
recognize this as the maximum range of number values within that language.4

Although this new scheme is very pleasing in terms of simplicity, it does 
have one minor drawback–it doesn’t work. If we attempt to add a positive and 
negative number using this scheme we get disturbing results:

     5  00000101

  + -8  10001000

    -3  10001101 = -13!

Although we should get −3 as the result, using our signed bit system we get 
−13. Tsk, tsk. !ere must be a better way. Well, with the help of what is essen-
tially a little numeric magic we can get something which works, although some 
of the conceptual simplicity gets lost in the process.
What we’ll invoke is the idea of numbercomplements. !e simplest comple-

ment is what is called aone’s complement. !e one’s complement of a number is 
obtained by reversing each 1 and 0 throughout the original binary number.
For example, the one’s complement to 5 would be:

00000101 = 5

11111010 = -5

For 8, it would be:

00001000 = 8

11110111 = -8

!is process is essentially one ofdeinition: we simply declare to the world 
that11110111 will now represent −8 without speciically trying to justify it. 

4[CT] Technically, for two’s complement, the minimum should be −32768. However, 
Applesot and Integer BASIC restrict the minimum integer to −32767. See chapter 17 
for a way to fool Applesot into displaying −32768.

]
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Undoubtedly there are lovely mathematical proofs of such things that present 
marvelous ways of spending an aternoon but, for our purpose, a general notion 
of what the term means will be suicient. Fortunately computers are very good 
at following arbitrary numbering schemes without asking “but why is it that 
way?”
Now let’s see if we’re any closer to a working system:

     5  00000101

  + -8  11110111

    -3  11111100 = -3       (00000011 = +3)

Hmmm...Seems to work pretty well. Let’s try another:

    -5  11111010

  +  8  00001000

     3  00000010 = 2 (plus carry)

Well, our answers will be right half the time... It turns out there is a inal 
solution, and that is to use what is called the two’s complement system.
!e only diference between this and the one’s complement system is that 

ater deriving the negative number by reversing each bit of its corresponding 
positive number, we add one.
Sounds mysterious. Let’s see how it looks:

For −5: For −8:
 5 = 00000101  8 = 00001000

↓ one’s complement... ↓

     11111010      11110111

↓ now add one... ↓

-5 = 11111011 -8 = 11111000

Now let’s try the two earlier operations:

     5  00000101

  + -8  11111000

    -3  11111101 = -3

    -5  11111011

  +  8  00001000

     3  00000011 = 3

    (plus carry)

Does 11111101 equal -3?

sample #:   00000011 = 3

one’s comp: 11111100

two’s comp: 11111101 = -3

At last! It works in both cases. It turns out that two’s complement math 
works in all cases, with the carry being ignored.
Now that you’ve mastered that, I’ll let you of the hook a bit by saying that 

none of this knowledge will be speciically required in any programs in this 
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book. However, it is a good thing to know about and is very useful in under-
standing the next idea, that of the sign and overlow lags in the Status Register.

!e Sign Flag

Since bit 7 of any byte can represent whether the number is positive or neg-
ative, a lag in the Status Register is provided for easy testing of the nature of a 
given byte. Whenever a byte is loaded into a register, or when an arithmetic 
operation is done, thesign lag will be conditioned according to what the state of 
bit 7 is.
For example, LDA #$80 will set the sign lag to 1, whereasLDA #$40 would set 

it to 0. !is is tested using the commandsBPL andBMI. BPL stands for Branch on 
PLus, and BMI stands for Branch on MInus.
Regardless of whether you are using signed numbers, these instructions can 

be very useful for testing bit 7 of a byte. Many times bit 7 is used in various parts 
of the Apple to indicate the status of something. For example, the keyboard loca-
tion, $C000, gets the high bit set whenever a key is pressed.
Up until now we’ve always tested by comparing the value returned from 

$C000 to #$80, such as in this listing:

                1    ********************************

                2    *  AL10-BPL KEYTEST PROGRAM 1  *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    *

                9    KYBD     EQU  $C000

                10   STROBE   EQU  $C010

                11   *

0300: AD 00 C0  12   CHECK    LDA  KYBD

0303: C9 80     13            CMP  #$80

0305: 90 F9     14            BCC  CHECK           ; NO KEYPRESS

                15   *

0307: 8D 10 C0  16   CLR      STA  STROBE

030A: 60        17   END      RTS

!is program will stay in a loop until a key is pressed. !e keypress is 
detected by the value returned from $C000 being equal to or greater than #$80. A 
more elegant method is to use the BPL command:

                1    ********************************

                2    *  AL10-BPL KEYTEST PROGRAM 2  *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

]
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                8    *

                9    KYBD     EQU  $C000

                10   STROBE   EQU  $C010

                11   *

0300: AD 00 C0  12   CHECK    LDA  KYBD

0303: 10 FB     13            BPL  CHECK           ; NO KEYPRESS

                14   *

0305: 8D 10 C0  15   CLR      STA  STROBE

0308: 60        16   END      RTS

In this case, as long as the high bit stays clear (i.e. no keypress), theBPL will 
be taken and the loop continued. As soon as a key is pressed, bit 7 will be set to 1 
and the BPL will fail. !e strobe is then cleared and the return done.
A similar technique is used for detecting whether apaddle pushbutton has 

been pressed.

                1    ********************************

                2    *     AL10-BPL BUTTON TEST     *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    *

                9    PB0      EQU  $C061

                10   *

                11   *

0300: AD 61 C0  12   CHECK    LDA  PB0

0303: 10 FB     13            BPL  CHECK           ; NO BUTTON PUSH

                14   *

0305: 60        15   END      RTS
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One of the more useful applications of assembly language is in accessing the 
disk directly to store or retrieve data. You might do this to modify information 
already on the disk, such as when you’re making custom modiications toDOS, 
or to deal with data within iles on the disk, such as when you’re patching or 
repairing damaged or improperly written iles.
To cover DOS well requires more than a few chapters such as this. My 

intent here, then, is to supply you with enough information to allow you to 
access any portion of a disk and to have enough basic understanding of the over-
all layout of DOS and disks to make some sense of what you ind there.1

Here’s what we’ll cover in this chapter. First, we’ll paint a general overview 
of what DOS is and how the data on the diskette is arranged. !en you’ll learn a 
general access utility with which you can read and write any single block of data 
from a disk. With these, you’ll have a starting point for your own explorations of 
this aspect of your Apple computer.

!e Overview: DOS

An Apple without a disk drive has no way of understanding commands like 
CATALOG orREAD. !ese new words must enter its vocabulary from somewhere. 
When an Apple with a disk drive attached is irst turned on or aPR#6 is done, 
this information is loaded into the computer by a process known as booting.
During the booting process, a small amount of machine-language code on 

the disk interface card reads in data from a small portion of the disk. !is data 
contains the code necessary to read another 10K of machine language referred to 
as DOS. !is block of routines is responsible for all disk-related operations in the 
computer. It normally resides in the upper 10K or so of memory, from$9600 to 
$BFFF.
Ater booting, the organization of the memory used by DOS looks some-

thing like the igure shown on the next page.

1For a detailed look at DOS, I recommend the bookBeneath Apple DOS, by Dan Worth 
and Pieter Lechner (Reseda, CA: Quality Sotware, 1981).
[CT] For hints on implementing the code in ProDOS, seeBeneath Apple ProDOS, by 
Dan Worth and Pieter Lechner (Quality Sotware, 1984).

]
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!e irst area contains the three bufers set aside for the low of data to and 
from the disk. A bufer is a block of memory reserved to hold data temporarily 
while it’s being transferred. !eMAXFILES command (a legal DOS command; see 
your manual if you haven’t encountered it before) can alter the number of buf-
fers reserved and thus change the beginning address from$9600 to other values. 
As it happens, three bufers are almost never needed so, in a pinch for memory, 
you can usually set MAXFILES to 2, and oten just to 1.
For example, if you had opened a text ile calledTEXTFILE, the data being 

read or written would be transferred via bufer 1. If, while this ile was still open, 
you did a catalog, bufer 2 would be put in use. If, instead, you opened two other 
iles, sayTEXTFILE1 andTEXTFILE2, and then tried to do aCATALOG, you would 
get a NO BUFFERS AVAILABLE error (assumingMAXFILES was set at three). Bufer 1 
starts at$9AA6, bufer 2 at$9853, and bufer 3 at$9600. IfMAXFILES is set at 3 as 
in a normal system, it’s occasionally useful to use the dead space of the unused 
bufer 3 for your own routines.
!e main DOS routines starting at$9D00 are the ones responsible for the 

interpreting commands such asCATALOG and, in general, for allowing DOS to 
talk to BASIC via statements preixed with <CTRL>D.
!e ile manager is a set of routines that actually execute the various com-

mands sent via the main routines and that makes sure iles are stored in a logical 
(well, almost) manner on the disk. It takes care of inding a ile you name, check-
ing to see whether it’s unlocked before a write, inding empty space on the disk 
for new data, and countless other tasks required to store even the simplest ile.
When the ile manager gets ready to read data from or write data to the disk, 

it makes use of the remaining routines, called theRWTS routines. !is stands for 
Read/Write Track Sector. To understand fully what this section does, though, it 
will be necessary now to look at the general organization of the disk itself.

Diskette Organization

Physically, a diskette is coated with a material very similar to that on mag-
netic-recording tape. Small portions of the surface are individually magnetized 
to store the data in the form of ones and zeros.
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But the diskette is more analogous to a vinyl record than to a continuous strip of 
tape. Arranged in concentric circles, there are thirty ive individualtracks, each 
of which is divided into sixteen segments called sectors.2

Tracks are numbered from 0 to 34 ($00 to$22), starting with Track 0 at the 
outer edge of the diskette and track 34 nearest the center. Sectors are numbered 
from 0 to 15 ($00 to$0F) and are interleaved for fastest access. !is means that 
sector 1 is not physically next to sector 0 on the diskette. Rather, the order is:

0-D-B-9-7-5-3-1-E-C-A-8-6-4-2-F

By the time DOS has read in and processed one sector, it doesn’t have sui-
cient time to read the next physically-contiguous sector properly. If the sectors 
were arranged sequentially, DOS would have to wait for another entire revolu-
tion of the diskette to read the next sector. By examining the sequence you can 
see that ater reading sector 0, DOS can let as many as six other sectors go by and 
still have time to start looking for sector 1. !is alternation of sectors is some-
times called the skew factor or just sector interleaving.
Looking for a given sector is done with two components. !e irst is a physi-

cal one, wherein the read/write head is positioned at a speciic distance from the 
center of the diskette to access a given track. !e sector is located via sotware by 
looking for a speciic pattern of identifying bytes. In addition to the 256 bytes of 
actual data within a sector, each sector is preceded by a group of identifying and 

2!roughout this discussion we will assume you are usingDOS 3.3, which uses sixteen 
sectors per track. DOS 3.2 has only thirteen sectors per track but is rapidly becoming 
obsolete. If you’re using DOS 3.2, the correction from sixteen to thirteen should be 
made in the topics throughout.

]
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error-checking bytes. !ese include, for example, something like$00 $03 $FE for 
track$00, sector$03, volume$FE. By continuously reading these identiication 
bytes until a match with the desired values occurs, a given sector may be located.
!is sotware method of sector location is usually calledso"-sectoring, and 

it’s somewhat unique to the Apple. Most other microcomputers usehard-sector-
ing. Hard-sectoring means that hardware locates the sector as well as the track; 
sectors are found by means of indexing holes located around the center hole of a 
disk. Even Apple diskettes have this center hole, along with one to sixteen index-
ing holes in the media itself, but these aren’t actually used by the disk drive. 
Because the Apple doesn’t need these holes to index, using the second side of a 
disk is just a matter of properly notching the edge of the disk jacket to create 
another write-enable notch. We’ll not go into the pros and cons of using the sec-
ond side but will leave that to you. It’s one of those topics guaranteed to be 
worth twenty to thirty minutes of conversation at any gathering of two or more 
Apple owners.
Each sector holds 256 ($100) bytes of data. !is data must always be written 

or read as a single block. Large iles are therefore always made up of multiples of 
256 bytes. !us a 520-byte ile takes up three entire sectors, even though most of 
the third sector is wasted space:

1 2 3
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************

********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************

********

Certain tracks and sectors are reserved for speciic information. Track 17 
($11), for example, contains the directory. !is gives each ile a name, and also 
tells how to ind out which sectors on the disk contain the data for each ile. 
Track 17, sector 0 contains theVolume Table of Contents (VTOC), which is a 
master table of which sectors currently hold data, and which are available for 
storing new data. If all of track 17 is damaged, it may be nearly impossible to 
retrieve any data from the disk even though the iles themselves might still be 
intact.
!e other main reserved area is on tracks 0 through 2. !ese tracks hold the 

DOS that will be loaded when the disk is booted. If any of these tracks are dam-
aged it will not be possible to boot the diskette...or if the disk does boot, DOS 
may not function properly.
As a variation on this theme, by making certain controlled changes to DOS 

directly on the disk you can create your own custom version of DOS to enhance 
what Apple originally had in mind. !ese enhancements will become part of 
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your system whenever you boot your modiied diskette. Some modiications of 
this type are discussed below.
To gain access to a sector to make these changes, however, we need to be 

able to interface with the routines already in DOS to do our own operations. !is 
is most easily done by using theRWTS routines mentioned earlier. Fortunately, 
Apple has made them fairly easy to use from the user’s assembly-language pro-
gram.
To use RWTS, you must do three general operations:

1. Specify the track and sector you wish to access.

2. Specify where the data is to be loaded to or read from (that is, give the bufer 
address).

3. Finally, call RWTS to do the read/write operation.

If the operation is to be a read, then we would presumably do something 
with the data in the bufer ater the read is complete. If a write is to be done, then 
the bufer should be loaded before callingRWTS with the appropriate data. Usu-
ally, the way all this works is to read in a sector irst, then make minor changes to 
the bufer, and then write the sector back out to the diskette.
Steps 1 and 2 are actually done in essentially the same operation, by setting 

up theIOB table (“Input/Output and control Block”). !is is described in detail 
(along with the sector organization) in theApple DOS Manual, but here’s 
enough information to “make you dangerous,” as the saying goes.
!eIOB table is a table you make up and place at a location of your choice. 

(You can also make use of the one already in memory that is used in DOS opera-
tions.) Most people I know seem to prefer to make up their own, but my per-
sonal preference is to use the one in DOS. Since most people I know aren’t at 
this keyboard right now, I’ll explain how to use the table already set up in DOS.
!e table is made up of seventeen bytes and starts at$B7E8. It’s organized 

like this:

Location Code Purpose

$B7E8 $01 IOB type indicator, must be $01
B7E9 $60 Slot number times sixteen3

B7EA $01 Drive number
B7EB $00 Expected volume number
B7EC $12 Track number
B7ED $06 Sector number
B7EE $FB Low-order byte of device characteristic table (DCT)
B7EF $B7 High-order byte of DCT

3Notice that this calculation, like multiplying by ten in decimal, means just moving the 
hex digit to the let one place.

]
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Location Code Purpose

B7F0 $00 Low-order byte of data bufer starting address
B7F1 $20 High-order byte of data bufer starting address
B7F2 $00 Unused
B7F3 $00 Unused
B7F4 $02 Command code; $02 = write
B7F5 $00 Error code (or last byte of bufer read in)
B7F6 $00 Actual volume number
B7F7 $60 Previous slot number accessed
B7F8 $01 Previous drive number accessed

Because DOS has already set this table up for you, it isn’t necessary to load 
every location with the appropriate values. In fact, if you’re willing to continue 
using the last accessed disk drive, you need only specify the track and sector, set 
the command code, and then clear the error and volume values to#$00. How-
ever, for complete accuracy, the slot and drive values should also be set so you 
know for sure what the entry conditions are.
Once theIOB table has been set up, the Y-Register and Accumulator must 

be loaded with the low- and high-order bytes of theIOB table, and then theJSR 
toRWTS must be done. AlthoughRWTS actually starts at$B7B5, the call is usually 
done asJSR $3D9 when DOS irst boots. !e advantage of calling here is that if 
Apple ever changes the location ofRWTS, only the vector address at$3D9 will be 
changed and a call to $3D9 will still work.
A vector is the general term used for a memory location that holds the infor-

mation for a second memory address. A vector is used so that a jump to a single 
place in memory can be routed to a number of other memory locations, usually 
the beginnings of various subroutines. A vector is rather like a telephone switch-
board: even though the user always calls the same address, the program low can 
be directed to any number of diferent places simply by changing two bytes at 
the vector location.
For example, suppose at location $3F5 we were to put these three bytes:

3F5: 4C 00 03

Listed from the Monitor, this would disassemble as:

03F5-   4C 00 03    JMP   $0300

Now whenever you do a call to$3F5, either by aCALL 1013 or 3F5G, the pro-
gram will end up calling a routine at$300. It would now be a simple matter to 
write a switching program that would rewrite the two bytes at$3F6 and$3F7 so 
that a call to $3F5 would go anywhere we wanted.
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As it happens,$3F5 is used in just such a fashion by the ampersand (&) 
function of Applesot. !eAppleso" II BASIC Programming Reference Manual 
provides more information on this feature.
!e best way to inish explaining how to use theIOB table andRWTS is to 

present the following utility to access a given track and sector usingRWTS. We’ll 
then step through the program and learn why the various steps are done to use 
RWTS successfully.

                1    ********************************

                2    *                              *

                3    *  AL11-GENERAL PURPOSE RWTS   *

                4    *        DOS UTILITY           *

                5    *                              *

                6    ********************************

                7    *

                8    *

                9    *        OBJ  $300

                10            ORG  $300

                11   *

                12   CTRK     EQU  $06

                13   CSCT     EQU  $07

                14   UDRIV    EQU  $08

                15   USLOT    EQU  $09

                16   BP       EQU  $0A        ; BUFFER PTR.

                17   UERR     EQU  $0C

                18   UCMD     EQU  $E3

                19   * USER SETS THIS TO HIS CMD

                20   *

                21   RWTS     EQU  $3D9

                22   *

                23   * BELOW ARE LOCS IN IOB

                24   SLOT     EQU  $B7E9

                25   DRIV     EQU  $B7EA

                26   VOL      EQU  $B7EB

                27   TRACK    EQU  $B7EC

                28   SECTOR   EQU  $B7ED

                29   BUFR     EQU  $B7F0

                30   CMD      EQU  $B7F4

                31   ERR      EQU  $B7F5

                32   OSLOT    EQU  $B7F7

                33   ODRIV    EQU  $B7F8

                34   *

                35   READ     EQU  $01

                36   WRITE    EQU  $02

                37   *

                38   *

                39   *

                40   ********************************

                41   *  ENTRY CONDITIONS: SET       *

                42   *  TRACK, SECTOR, SLOT, DRIVE, *

                43   *  BUFFER, AND COMMAND.        *

                44   ********************************

                45   *

                46   *

]
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                47   *

0300: A9 00     48   CLEAR    LDA  #$00

0302: 8D EB B7  49            STA  VOL

                50   *

0305: A5 09     51            LDA  USLOT

0307: 8D E9 B7  52            STA  SLOT

                53   *

030A: A5 08     54            LDA  UDRIV

030C: 8D EA B7  55            STA  DRIV

                56   *

030F: A5 06     57            LDA  CTRK

0311: 8D EC B7  58            STA  TRACK

                59   *

0314: A5 07     60            LDA  CSCT

0316: 8D ED B7  61            STA  SECTOR

                62   *

0319: A5 E3     63            LDA  UCMD

031B: 8D F4 B7  64            STA  CMD

                65   *

031E: A5 0A     66            LDA  BP

0320: 8D F0 B7  67            STA  BUFR

0323: A5 0B     68            LDA  BP+1

0325: 8D F1 B7  69            STA  BUFR+1

                70   *

0328: A9 B7     71            LDA  #$B7

032A: A0 E8     72            LDY  #$E8

032C: 20 D9 03  73            JSR  RWTS

032F: 90 05     74            BCC  EXIT

                75   *

0331: AD F5 B7  76   ERRHAND  LDA  ERR

0334: 85 0C     77            STA  UERR

                78   *

0336: 60        79   EXIT     RTS

                80   *

0337: CD        81            CHK

When this program runs, it assumes the user has set the desired values for 
the track and sector wanted, which slot and drive to use, where the bufer is, and 
whether to read or write.
Starting with the irst functional line, line 48, the byte for the volume num-

ber in theIOB table (VOL) is stufed with a 0. A value of 0 here tellsRWTS any vol-
ume number is acceptable during the access. If we wanted to access only a 
particular volume number, a value from$01 to$FE would be used instead of 
$00.4

In the next four sets of operations, the user values for the slot, drive, track, 
and sector numbers are put into theIOB table. Notice that, to have this work 
properly, you must setUSLOT ($09) to sixteen times the value for the slot you 
wish to use. For example, to access slot 5 you would store a#$50 (80 decimal) in 
location $09 just before calling this routine.

4[CT] $FF is not a valid DOS volume number.
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!e next pair of statements take the user commandUCMD and put that in the 
table. If you want to read a sector, setUCMD =$01. A write isUCMD =$02. A few 
other options are seldom used. !ese are described in more detail in the DOS 3.3 
manual in the section on RWTS.
Next, thebufer pointer is set to the value given by the user in locations$0A 

and$0B. !e required space is 256 bytes ($100) and can be put anywhere that 
won’t conlict with data already in the computer. Convenient places are the 
number three DOS ile bufer ($9600), the input bufer itself ($200), or an area of 
memory below$9600 protected by settingHIMEM to an appropriate value.5 In the 
examples that follow, I’ll use the area from$1000 to$10FF because no BASIC 
program will be running and$1000 is a nice number. In this case,$0A and$0B 
will be loaded with #$00 and #$10, respectively.
Last of all, the Y-Register is loaded with#$E8 and the Accumulator is loaded 

with #$B7, the low-order and high-order bytes of the IOB table address.
Ater the call toRWTS via the vector at$3D9, the carry lag is checked for an 

error. If the carry is clear, there was no error and the routine returns via theRTS. 
If an error is encountered, the code will be transferred from theIOB table to the 
user location. !e possible error codes are:

Code Condition

$10 Disk write-protected, and cannot be written to.

$20 Volume mismatch error. Volume number found was diferent than 
speciied.

$40 Drive error. An error other than the three described here is happening 
(I/O error, for example).

$80 Read error. RWTS will try forty-eight times to get to a good read; if it 
still fails, it will return with this error code.

DOS Modiications

!e ERR byte of theIOB table is somewhat unusual in that it does not remain 
at 0 even if the read/write operation was successful. In actual operation, if an 
error does not occur, theERR byte will contain the last byte of the sector just 
accessed.
It is important therefore to always use the carry lag to detect whether an 

error has occurred. In fact, as your experience grows, you will notice that a great 
many subroutines use the carry lag as an indicator of the results of the opera-
tion. In the case ofRWTS, the carry will be cleared if the access was successful and 

5Note: !e input bufer can be used only temporarily during your own routine. If you 
return to BASIC, or do any input or DOS commands, data in this area will be destroyed. 
Other than that, it’s a handy place to use.

]
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set if an error occurred. It is not necessary to condition the carry before calling 
RWTS.
One of the best ways to grasp this routine is to use it to modify the DOS on 

a sample disk and observe the diferences. Before proceeding with the examples, 
boot an Apple master disk, thenINIT a blank disk. !is will be our test piece, so 
to speak. Do not try these experiments on a disk already containing important 
data. If done correctly the changes won’t hurt, but if an error were to occur you 
could lose a good deal of work!

Disk-Volume Modiication

First install the sector-access routine at$300. Now insert the sample 
diskette. Enter the Monitor with CALL -151 and type in:

*06: 02 02 01 60 00 10

*E3: 0

!is assumes your diskette is in drive 1, slot 6. Now enter:

*300G

!e disk drive motor should come on. When it stops type in:

*10AFL

You should get something like this:

10AF-   A0 C5       LDY   #$C5

10B1-   CD D5 CC    CMP   $CCD5

10B4-   CF          ???

10B5-   D6 A0       DEC   $A0,X

10B7-   CB          ???

10B8-   D3          ???

10B9-   C9 C4       CMP   #$C4

!is apparent nonsense is the ASCII data for the words “DISK VOLUME” 
in reverse order. !is is loaded in when the disk is booted and is used in all sub-
sequent catalog operations.
!e data was retrieved from track 2, sector 2, and put in a bufer starting at 

$1000. !e sequence we’re interested in starts at byte$AF in that sector. To mod-
ify that, type in:

*10AF: A0 D4 D3 C5 D4 A0 AD

*E3:   02

*300G

!e irst line rewrites the ASCII data there, theE3:02 changes the command 
to “write,” and the 300G puts it back on the disk.
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Now reboot the disk and then type inCATALOG. When the catalog prints to 
the screen, the new characters “DISK - TEST 254” should appear.6 By using the 
ASCII character chart in Appendix E, you can modify this part of the diskette to 
say anything you wish within the twelve-character limit.

Catalog Keypress Modiication

Reinstall the sector access utility, put the sample disk in the drive again, and 
type in:

*06: 01 0D 01 60 00

*E3: 01

*300G

!is will read track 1, sector $0D, into the bufer. Type in:

*1039L

!e irst line listed should be:

1039-   20 0C FD    JSR   $FD0C

Change this to:

*1039: 4C DF BC    (JMP $BCDF)

And rewrite to the disk:

*E3: 02

$300G

Now read in the section corresponding to$BCDF (track 0, sector 6) by typ-
ing:

*06: 00 06

*E3: 01

*300G

And alter this section with:7

*10DF: 20 0C FD C9 8D D0 03 4C 2C AE 4C 3C AE

*E3:   02

*

*300G

6[CT] !e disk volume number (254) is still printed.
7[CT] !e Monitor listing looks like this:

   10DF-   20 0C FD    JSR   $FD0C

   10E2-   C9 8D       CMP   #$8D

   10E4-   D0 03       BNE   $10E9

   10E6-   4C 2C AE    JMP   $AE2C

   10E9-   4C 3C AE    JMP   $AE3C

]
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As it happens, this part of the disk isn’t used and provides a nice place to put 
this new modiication.
When you reboot ater making this change, place a disk with a long catalog 

on it in the drive and type inCATALOG. When the listing pauses ater the irst 
group of names, press<RETURN>. !e listing should stop, leaving the names just 
shown on the screen. If instead of pressing<RETURN> you press any other key, 
the catalog will continue just as it normally would, going on to the next group of 
names.
Both of these modiications will go into efect whenever you boot the sample 

disk. !ese features can also be propagated to other disks by booting the sample 
disk and using the new DOS to INIT fresh disks.
Many modiications to the existing DOS can be made this way, and we 

haven’t even started to talk about storing binary data in general.

Bell Modiication and Drive Access

(1) !e irst time you call the access utility from the Monitor, it will return 
with just the asterisk prompt. Ater that, unless you hitRESET or do aCATALOG, it 
will return with the asterisk and a beep. !is is because the status storage byte for 
the Monitor ($48) gets set to a nonzero value byRWTS. If the beep annoys you, 
modify the access utility to set $48 back to #$00 before returning.
(2) If you set the slot/drive values to something other than your active drive, 

the active drive will still be the one accessed when you do, for example, the next 
CATALOG. !is is because DOS doesn’t actually look at the last-slot/drive-accessed 
values when doing aCATALOG. Instead, it looks at$AA66 for the volume number 
(usually#$00), at$AA68 for the drive number, and at$AA6A for the slot number 
(times sixteen). If you have BASIC or assembly-language programs where you 
want to change the active drive values without having to do aCATALOG or give 
another command, then justPOKE orSTA the desired values in these three loca-
tions.
Have fun!
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Shit Operators

Here I’d like to cover two main groups of assembly-language commands: 
shi" operators andlogical operators. Shits are easier to understand, so we’ll do 
them irst.
You’ll recall that the Accumulator holds a single eight-bit value, and that in 

previous programs it has been possible to test individual bits by examining lags 
in the Status Register. An example of this was used in testing bit 7 ater anLDA 
operation. If the Accumulator is loaded with a value from$00 to$7F, bit 7 is 
clear and onlyBPL tests will succeed, since the sign lag remains clear. If, how-
ever, a value from$80 to$FF is loaded,BMI will succeed since bit 7 would be set; 
hence the sign lag will also be a one.
!eshit commands greatly extend our ability to test individual bits by giv-

ing us the option of shiting each bit in the Accumulator one position to the let 
or right. !ere are two direct shit commands,ASL (Arithmetic Shit Let) and 
LSR (Logical Shit Right).

ASL − Arithmetic Shit Let

In the case ofASL, each bit is moved to the let one position, with bit 7 going 
into the carry and bit 0 being forced to 0. In addition to the carry, the sign and 
zero lags are also afected. Some examples appear in the following table.

Value Binary Result Binary (C) Carry (N) Sign (Z) Zero
$00 0000 0000 $00 0000 0000 0 0 1
$01 0000 0001 $02 0000 0010 0 0 0
$80 1000 0000 $00 0000 0000 1 0 1
$81 1000 0001 $02 0000 0010 1 0 0
$FF 1111 1111 $FE 1111 1110 1 1 0

]
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In the irst case, there’s no net change to the Accumulator, although the 
carry and sign lags are cleared and thezero lag is set. !e 0 at each bit position 
was replaced by a 0 to its right.
However, in the case of$01, the value in the Accumulator doubles to 

become$02 as the 1 in bit 0 moves to the bit 1 position. In this case, all three 
lags will be cleared.
When the starting value is$80 or greater, the carry will be set. In the case of 

$80 itself, the Accumulator returns to 0 ater the shit, since the only 1 in the pat-
tern, bit 7, is pushed out into the carry.
Notice that in the case of$FF, thesign lag gets set as bit 6 in the Accumula-

tor moves into position 7. Remember that in some schemes, bit 7 is used to indi-
cate a negative number.

ASL has the efect of doubling the byte being operated on. !is can be used 
as an easy way to multiply by two. In fact, by using multipleASLs, you can multi-
ply by two, four, eight, sixteen, and so on, depending on how many you use. In 
the discussion of DOS andRWTS in chapter 11, you might remember that theIOB 
table required the slot number byte in the table to be sixteen times the true value. 
If you didn’t want to do themultiplication ahead of time, you could do it in your 
access program, as below.

            *

            *

            *

A5 09       LDA  USLOT

0A          ASL

0A          ASL

0A          ASL

0A          ASL

8D E9 B7    STA  SLOT

            *

            *

            *

USLOT holds the value from one to seven that you pass to the routine and 
SLOT is the location in theIOB table in which the value forUSLOT*16 should be 
placed. Even though the fourASLs look a bit redundant, notice that they only 
took four bytes. In fact, theLDA/STA steps consumed more bytes (ive) than the 
four ASLs.
In general, then, ASL is used for these types of operations:

1. Multiply by two, four, eight, and so on.

2. Set or clear the carry for free while shiting for some other reason.

3. Test bits through 6. Note: !is can be done, but it’s usually done this way 
only for bit 6; there are, in general, better ways of testing speciic bits, which we’ll 
describe shortly.
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!e complement of theASL command isLSR. It behaves identically except 
that the bits all shit to the right and bit 7 becomes a 0.

LSR − Logical Shit Right

LSR can be used to divide by multiples of two. It’s also a nice way to test 
whether a number is even or odd. Even numbers always have bit 0 clear. Odd 
always have it set. By doing anLSR followed byBCC orBCS, you can test for this. 
Whether a number is odd or even is sometimes called itsparity. An even num-
ber has a parity of 0, and an odd number a parity of 1.

LSR also conditions the sign and zero lags.
In bothLSR andASL, one end or the other always gets forced to a 0. Some-

times this is not desirable. !e solution to this is therotate commands,ROL and 
ROR (ROtate Let, ROtate Right).

ROL − Rotate One Bit Let ROR − Rotate One Bit Right

In these commands, the carry not only receives thepushed bit, but its previ-
ous contents are used to load the now available end position.

ROL andROR are used rather infrequently but do turn up occasionally in 
math functions such as multiply and divide routines.
So far, all the examples have used the Accumulator as the byte to be shited. 

As it happens, either the Accumulator or a memory location may be shited. 
Addressing modes also include Zero Page,X and Absolute,X. !e Y-Register 
cannot be used as an index in any of the shit operations.

]
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Logical Operators

Logical operators are, to the uninitiated, some of the more esoteric of the 
assembly-language commands. As with everything we’ve done before, though, 
with a little explanation they’ll become quite useful.
Let’s start with one of the most commonly used commands,AND. You’re 

already familiar with the basic idea of this one from your daily speech. If this 
and that are a certain way, then I’ll do something. !is same way of thinking can 
be applied to your computer.
As we’ve seen, each byte is made up of eight bits. Let’s take just the let-most 

bit, bit 7, and see what kind of ideas can be played with. Normal text output on 
the Apple is always done with the high bit set. !at is, all characters going out 
throughCOUT ($FDED) should be equal to or greater than#$80 (1000 0000 
binary). Likewise, when watching the keyboard for a keypress, we wait until 
$C000 has a value equal to or greater than #$80.
Suppose we had a program wherein we would print characters to the screen 

only when a key was pressed and a standard character was being sent through 
the system. What we’re saying is to print characters on the screenonly when 
both the character and the keyboard bufer show bit 7 set to 1.
We can draw a simple chart that illustrates all the possibilities (and you 

know how fond computer people are of charts).

Character Bit 7

0 1

Keyboard0 0 0

Bit 71 0 1

!e chart shows four possibilities. If the character’s bit 7 is 0 (a non-stan-
dard character) and the keyboard bit is 0 (no keypress), then the character is not 
printed (a 0 result). Likewise, if only one of the conditions is being met but not 
the other, then the result is still 0, and the character is still not printed. Only 
when both desired conditions exist will we be allowed to print, as shown by the 
one as the result.
Taken to its extreme, what we end up with is a new mathematical function, 

AND. In the case of a single binary digit (or perhaps we should call it a bigit), the 
possibilities are few, and the answers are given as a simple 0 or 1.
What about larger numbers? Does the term5 AND 3 have meaning? It turns 

out that it does, although the answer in this case will not be 8, and it is now that 
we must be cautious not to let our daily use of the word “addition” be confused 
with our new meaning.
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As we look at these numbers on a binary level, how to get the result of5 AND 
3 will be more obvious.

             x  =  5     0 1 0 1

             y  =  3     0 0 1 1

             x AND y     0 0 0 1 = 1

If we take the chart created earlier and apply it to each set of matching bits 
in x and y, we obtain the result shown. Starting on the let, two 0s give 0 as a 
result. For the next two bits, only a single 1 is present in each case, still giving 0 
as a result. Only in the last position do we get the necessary 1s in bit 0 ofboth 
numbers to yield a 1 in the result.
!us 5 AND 3 does have meaning, and the answer is 1. (Try that at parties!)
Don’t be discouraged if you don’t see the immediate value in this operation; 

you should guess by now that everything is good for something!
AND is used for a variety of purposes. !ese include:
(1) To force zeros in certain bit positions.
(2) As a mask to let through only ones in certain positions.
When anAND operation is done, the contents of the Accumulator areAND’d 

with another speciied value. !e result of this operation is then put back in the 
Accumulator. !e other value may be either given by way of the immediate 
mode or held in a memory location. !ese are some possible ways of using AND:

LDA #$80

AND #$7F

AND $06

AND $300,X

AND ($06),Y

To understand better howAND is used, we should clarify some other ideas. 
One of these is the nature of assembly-language programs in general. I believe 
that, at any given point in a program, one of two kinds of work will be going on. 
One is theoperational mode, where some speciic task, such as clicking a speaker 
or reading a paddle, is taking place. At these moments, data as such does not 
exist. In the other case, theprocessing mode, data has been obtained from an 
operational mode and the information is processed and/or passed to some other 
routine or location in memory.
A given routine rarely is entirely in just one mode or the other, but any 

given step usually falls more into one category than the other.
!ese ideas are important because, in general, all of the logical operators are 

used during the processing phases of a program. At those times, some kind of 
data is being carried along in a register or memory location. Part of the process-
ing that occurs is oten done with the logical operators.

]
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In the case of the two modes of use, operational and processing, we are 
really just talking about two diferent ways of looking at the same operation. To 
illustrate this, examine this partial disassembly of the Monitor starting at $FDED:1

*FDEDL

FDED-   6C 36 00    JMP   ($0036)

FDF0-   C9 A0       CMP   #$A0

FDF2-   90 02       BCC   $FDF6

FDF4-   25 32       AND   $32

FDF6-   84 35       STY   $35

FDF8-   48          PHA

FDF9-   20 78 FB    JSR   $FB78

FDFC-   68          PLA

FDFD-   A4 35       LDY   $35

FDFF-   60          RTS

For normal text output on the Apple, the Accumulator is loaded with the 
ASCII value for the character to be printed, the high bit is set, and aJMP toCOUT 
($FDED) is done. From looking at the listing, you can see that at$FDED there is an 
indirect jump based on the contents of $36, $37 (called a vector).
If this seems a little vague, then consider for a moment what I call thelow 

of control in the computer. !is means that the computer is always executing a 
program somewhere. Even when there’s nothing but a lashing cursor on the 
screen, the computer is still in a loop programmed to get a character from the 
keyboard. When you call your own routines, the computer is just temporarily 
leaving its own activities to do your tasks until it hits that lastRTS. It then goes 
back to what it was doing before; usually, that’s waiting for your next command.
When characters are printed to the screen, disk, printer, or anywhere else, 

there’s a low of control that carries along the character to be printed. For virtu-
ally every character printed, the 6502 scans through this region as it executes the 
code necessary to print the character.
Normally,$36,$37 points to$FDF0 (at least before DOS is booted). !is 

may seem a little absurd until you realize that a great deal of lexibility is created 
by the vector. For instance, aPR#1, such as you do when turning on a printer, 
redirects$36,$37 to point to the card, which in turn, ater printing a character, 
usually returns to where $36, $37 used to print.
!e card thus borrows the low of control long enough to print the charac-

ter, ater which it gives control back to the screen print routine. Likewise, when 
DOS is booted,$36,$37 gets redirected from$FDF0 to$9EBD, which is where 
phrases preceded by a<CTRL>D are detected. If no<CTRL>D is found, the output 
is returned to $FDF0.
Now, back to whatAND is used for. Normally when the routine enters at 

$FDF0, the Accumulator will hold a value between$80 and$DF2. !e characters 

1[CT] !is is for the Apple II Plus. Results on the Apple II or Apple //e will be diferent.
2[CT] Between $80 and $FF for computers with lowercase support.
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from$80 to$9F are all control characters and are passed through by theBCC fol-
lowing the irstCMP. Characters passing this test will be the usual alphabetic, 
numeric, and special characters shown in Appendix E. You’ll notice at this point 
anAND with the contents of$32 is done. Location$32 is calledINVFLG and usu-
ally holds either$FF,$7F, or$3F depending on whether the computer is in the 
NORMAL,FLASHING, orINVERSE text mode. Let’s assume that the Accumulator is 
holding the value for a normal A. Look at the following table to see what hap-
pens when an AND is done with each of these values.

Example 1: Hex Binary ASCII

Accumulator: $C1 1100 0001 A

INVFLAG: $FF 1111 1111 −

Result: $C1 1100 0001 A

Example 2:

Accumulator: $C1 1100 0001 A

INVFLAG: $7F 0111 1111 −

Result: $41 0100 0001 A (flashing)

Example 3:

Accumulator: $C1 1100 0001 A

INVFLAG: $3F 0011 1111 −

Result: $01 0000 0001 A (inverse)

In the irst example,ANDing with$FF yields a result identical to the original 
value. !e result is identical because, with each bit set to 1, the resulting bit will 
always come out the same as the corresponding bit in the Accumulator. (Can 
you guess what the result of ANDing with$00 would always yield?) !is means 
that the character comes out in its original form.
In the second case,ANDing with$7F has the efect of forcing a 0 in bit 7 of 

the result. Examining the chart in Appendix E, we can see that$41 corresponds 
to a lashing A.
!e Apple uses the leading two bits to determine how to print the character. 

If the leading two bits areof, then the character will be in inverse. If bit 7 is 0 
and bit 6 is 1, then the character will be printed in lashing mode. If bit 7 is set, 
then the character will be displayed in normal text.
Using theAND operator forces a 0 in the desired positions and lets the 

remaining bit pattern through.
In general, then, the way to useAND is to set a memory location (or the 

immediate value) equal to a value whose bits are all set to 1 except for those that 
you wish to force to 0 in the Accumulator.

]
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You can also think ofAND as acting rather like a screen that lets only certain 
parts of the image through. WhenINVFLG is set to$3F, the leading bits will 
always be 0, regardless of whether they were set at entry; hence, the expression 
mask.
Sometimes iguring exactly what value you should use for the desired result 

is tricky. As a general formula, irst decide what bits you want to force to 0 and 
then calculate the number with all other positions set to ones. !is will give the 
proper value to use in the mask. For example, to derive the inverse display mask 
value:

1. Determine which bits to force to 0:

00xxxxxx

2. Calculate with the remaining positions set to ones:

00111111 = $3F (63)

Try this with the desired result of forcing only bit 7 to 0 and see if you get 
the proper value for INVFLG of $7F.
Apple DOS Tool Kit users should note that when shiting the Accumulator, 

Apple’s assembler requires the addition of the A operand (Example:LSR A). !is 
applies toASL,LSR,ROR, andROL. Most other assemblers do not require the A 
operand, and that is the syntax used in this book.

BIT

!e command somewhat related toAND isBIT. !is is provided to allow the 
user to determine easily the status of speciic bits in a given byte. WhenBIT is 
executed, quite a number of things happen. First of all, bits 6 and 7 of the mem-
ory location are transferred directly to the sign and overlow bits of the Status 
Register. Since we’ve not discussed theoverlow lag, let me say briely that its 
related commands,BVC andBVS, may be used just asBPL andBMI are used to test 
the status of the sign lag. If V (the overlow lag) is clear,BVC will succeed. If V is 
set, BVS will work.
Most important, though, is the conditioning of the zero lag. If one or more 

bits in the memory location match bits set in the Accumulator, the zero lag will 
be cleared (Z = 0). If no match is made, Z will be set (Z = 1). !is is done byAND-
ing the Accumulator and the memory location and conditioning Z appropri-
ately. !e confusing part is that this may seem somewhat backward. Alas, it’s 
unavoidable; it’s just one of those notes to scribble in your book so as to remem-
ber the quirk each time you use it.
Note that one of the main advantages ofBIT is that the Accumulator is 

unafected by the test.
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Here are examples of how BIT might be used:
Example 1: To test for bits 0 and 2, set:

      LDA   #$05    ; 0000 0101

      BIT   MEM

      BNE   OK      ; (1 OR MORE BITS MATCH)

Example 2: To test for bit 7, set in memory:

CHECK BIT   $C000   ; (KEYBOARD)

      BPL   CHECK   ; (BIT 7 CLR, NO KEY PRESSED)

      BIT   $C010   ; (ACCESS $C010 TO CLR STROBE)

If you want to test forall of a speciic set of bits being on, theAND command 
must be used directly.
Example 3: To test for both bits 6 and 7 being on:

      LDA   CHAR

      AND   #$C0    ; 1100 0000

      CMP   #$C0

      BEQ   MATCH   ; BOTH BITS “ON”

!is last example is somewhat subtle, in that the result in the Accumulator 
will only equal the value with which it wasAND’d if each bit set to 1 in the test 
value has an equivalent bit on the Accumulator.

ORA and EOR

!ese last two commands bring up an interesting error of sorts in the Eng-
lish language, and that is the diference between aninclusive OR and theexclu-
sive OR. What all this is about is the phenomenon that saying something like “I’ll 
go to the store if it stops rainingor if a bus comes by” has two possible interpre-
tations. !e irst is that if either event happens, and even if both events occur, 
then the result will happen. !is is called an inclusive OR statement.
!e other possibility is that the conditions to be met must be one or the 

other but not both. !is might be called the purest form of anOR statement. It is 
either night or day, but never both. !is is called an exclusive OR statement.
In assembly language, theinclusive OR function is calledORA for OR Accu-

mulator. !e other is calledEOR for Exclusive OR. !e table below shows the 
charts for both functions.

ORA Accumulator EOR Accumulator

0 1 0 1

Memory
0 0 1

Memory
0 0 1

1 1 1 1 1 0

]
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First, consider the table forORA. If either or both corresponding bits in the 
Accumulator and the test value match, then the result will be a one. Only when 
neither bit is 1 does a 0 value result for that bit. !e main use forORA is to force a 
one at a given bit position. In this manner, it’s something of the complement to 
the use of the AND operator to force zeros.
!e following table presents some examples of the efect of theORA com-

mand.

Example 1: Example 2:

Accumulator: $80  1000 0000 $83  1000 0011

Value: $03  0000 0011 $0A  0000 1010

Result: $83  1000 0011 $8B  1000 1011

Use ofORA conditions the sign and zero lags, depending on the result, 
which is automatically put into the Accumulator.
!eEOR command is somewhat diferent in that the bits in the result are set 

to 1 only if one or the other of the corresponding bits in the Accumulator and 
test value is set to 1, but not both.

EOR has a number of uses. !e most common is in encoding data. An inter-
esting efect of the table is that, for any given test value, the Accumulator will lip 
back and forth between the original value and the result each time theEOR is 
done. See the examples in the table below.

Accumulator: $80  1000 0000 $83  1000 0011

Value: $03  0000 0011 $0A  0000 1010

Result: $83  1000 0011 $89  1000 1001

Accumulator: $83  1000 0011 $89  1000 1001

Value: $03  0000 0011 $0A  0000 1010

Result: $80  1000 0000 $83  1000 0011

!is lipping phenomenon is used extensively in hi-res graphics to allow one 
image to overlay another without destroying the image below.EOR also can be 
used to reverse speciic bits: Simply place ones in the positions you wish to 
reverse.
You might ind it quite rewarding to write your own experimental routine 

that willEOR certain ranges of memory with given values. !en make the second 
pass to verify that the data has been restored. !is is especially interesting when 
done either on the hi-res screen or blocks of ASCII data such as on the text 
screen.
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It would be a shame if you’ve stayed with this chapter long enough to read 
through all this and didn’t get a program for your eforts, so I ofer the demon-
stration program that follows. It provides a way of visually experimenting with 
the diferent shits and logical operators. Assemble the assembly-language pro-
gram listed and save it to disk under the name AL12.OPERATOR.

                1    ********************************

                2    * AL12-BINARY FUNCTION DISPLAY *

                3    *          UTILITY             *

                4    ********************************

                5    *

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   NUM      EQU  $06

                11   MEM      EQU  $07

                12   RSLT     EQU  $08

                13   STAT     EQU  $09

                14   *

                15   YSAV1    EQU  $35

                16   COUT1    EQU  $FDF0

                17   CVID     EQU  $FDF9

                18   COUT     EQU  $FDED

                19   PRBYTE   EQU  $FDDA

                20   *

                21   *

0300: A9 00     22   OPERATOR LDA  #$00

0302: 48        23            PHA

0303: 28        24            PLP

0304: A5 06     25            LDA  NUM

0306: 25 07     26            AND  MEM        ; <= ALTER THIS

0308: 85 08     27            STA  RSLT

030A: 08        28            PHP

030B: 68        29            PLA

030C: 85 09     30            STA  STAT

030E: 60        31            RTS

                32   *

030F: A9 A4     33   PRHEX    LDA  #$A4       ; ’$’

0311: 20 ED FD  34            JSR  COUT

0314: A5 06     35            LDA  NUM

0316: 4C DA FD  36            JMP  PRBYTE

                37   *

0319: A5 06     38   PRBIT    LDA  NUM

031B: A2 08     39            LDX  #$08

031D: 0A        40   TEST     ASL

031E: 90 0D     41            BCC  PZ

0320: 48        42   P0       PHA

0321: A9 B1     43            LDA  #$B1       ; '1'

0323: 20 ED FD  44            JSR  COUT

0326: A9 A0     45            LDA  #$A0       ; 'SPC'

0328: 20 ED FD  46            JSR  COUT

032B: B0 0B     47            BCS  NXT

                48   *

]
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032D: 48        49   PZ       PHA

032E: A9 B0     50            LDA  #$B0       ; '0'

0330: 20 ED FD  51            JSR  COUT

0333: A9 A0     52            LDA  #$A0       ; 'SPC'

0335: 20 ED FD  53            JSR  COUT

                54   *

0338: 68        55   NXT      PLA

0339: CA        56            DEX

033A: D0 E1     57            BNE  TEST

                58   *

033C: 60        59   EXIT     RTS

                60   *

033D: EA        61            NOP

033E: EA        62            NOP

033F: EA        63            NOP

                64   *

0340: C9 80     65   CSHOW    CMP  #$80       ; STAND CHAR?

0342: 90 10     66            BCC  CONT

0344: C9 8D     67            CMP  #$8D       ; <C/R>

0346: F0 0C     68            BEQ  CONT

0348: C9 A0     69            CMP  #$A0       ; 'SPC'

034A: B0 08     70            BCS  CONT

                71   *

034C: 48        72            PHA

034D: 84 35     73            STY  YSAV1

034F: 29 7F     74            AND  #$7F       ; FORCE '0' IN BIT 7

0351: 4C F9 FD  75            JMP  CVID

                76   *

0354: 4C F0 FD  77   CONT     JMP  COUT1

                78   *

0357: 00        79   EOF      BRK

                80   *

                81   *

0358: 87        82            CHK

!en enter the accompanying Apple program and save it under the name 
AL12.OPERATOR.A.3

 1  IF PEEK (768) <> 169 THEN PRINT CHR$ (4);"BLOAD AL12.OPERATOR,A$300"

 2  REM IF DOS 3.3 THEN SET UP CSW VECTOR

 3  IF PEEK(1002) = 76 THEN POKE 54,64: POKE 55,3: CALL 1002: GOTO 10

 4  REM IF PRODOS, SET UP OUTPUT LINK AT $BE30,31

 5  POKE 48688,64: POKE 48689,3

 10  REM  LOGICAL OPERATOR PROGRAM

 15 OP = 774: F = 768: PH = 783: PB = 793

 20  TEXT: HOME: GOTO 1000

 100  KEY = PEEK ( -16384): IF KEY > 127 THEN 1000

 110  A = PDL(0):A = PDL(0)

 120  M = PDL(1):M = PDL(1)

 125  POKE 6,A: POKE 7,M

 130  CALL F: REM  EVALUATE FUNCTION

3[CT] Spaces and dashes were cleaned up to make the screen display more readable. In 
addition, forProDOS we manually change the output vector at$BE30,$BE31 to point 
to CSHOW ($340). See footnote 1 in chapter 29 for more discussion.
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 140  R =  PEEK (8): S =  PEEK (9)

 200  VTAB 11: HTAB 1: PRINT "OPCODE:";: POKE 6,OC: GOSUB 500: VTAB 11: HTAB 

32: PRINT "'";O$;"'"

 210  VTAB 14: PRINT "ACC:";: POKE 6,A: GOSUB 500: HTAB 30: PRINT " ";: HTAB 

30: PRINT  CHR$ (A);: VTAB 14: HTAB 33: PRINT "(P0)": POKE 1742,A: IF 

A = 13 OR A = 141 THEN  VTAB 14: HTAB 30: INVERSE : PRINT "M": NORMAL

 215  IF O1 = 7 THEN VTAB 16: PRINT "MEMORY:";: POKE 6,M: GOSUB 500: HTAB 

30: PRINT " ";: HTAB 30: PRINT CHR$ (M);: VTAB 16: HTAB 33: PRINT 

"(P1)": POKE 1998,M: IF M = 13 OR M = 141 THEN VTAB 16: HTAB 30: 

INVERSE : PRINT "M": NORMAL

 220  IF O$ <  > "BIT" THEN  VTAB 18: PRINT "RESULT:";: POKE 6,R: GOSUB 500: 

HTAB 30: PRINT " ";: HTAB 30: PRINT  CHR$ (R): POKE 1270,R: IF R = 13 

OR R = 141 THEN  VTAB 18: HTAB 30: INVERSE : PRINT "M": NORMAL

 230  VTAB 20: PRINT "STATUS:";: POKE 6,S: GOSUB 500: PRINT

 240  VTAB 22: HTAB 10: PRINT "N V - B D I Z C"

 250  GOTO 100

 499  END

 500  REM  PRINT BITS & HEX

 510  HTAB 10: CALL PB: HTAB 26: CALL PH: RETURN

 1000  REM  SELECT FUNCTION

 1010  T = PEEK(-16368):FC = FC + 1 -(KEY = 136) * 2: IF FC > 8 THEN FC = 1

 1011  IF KEY = 193 THEN FC = 1: REM  'A'=AND

 1012  IF KEY = 194 THEN FC = 3: REM  'B'=BIT

 1013  IF KEY = 197 THEN FC = 4: REM  'E'=EOR

 1014  IF KEY = 204 THEN FC = 5: REM  'L'=LSR

 1015  IF KEY = 207 THEN FC = 6: REM  'O'=ORA

 1016  IF KEY = 210 THEN FC = 7: REM  'R'=ROL

 1019  IF FC < 1 THEN FC = 8

 1020  FOR I = 1 TO FC: READ O$,OC,O1: NEXT I: RESTORE

 1025  IF KEY = 155 THEN  PRINT  CHR$ (4);"PR#0": END : REM  <ESC>

 1030  POKE OP,OC: POKE OP + 1,O1: HOME

 1050  ON FC GOSUB 1100,1200,1300,1400,1500,1600,1700,1800

 1055  POKE 32,0

 1060  A =  -1: GOTO 100

 1100  REM  'AND'

 1110  POKE 32,9

 1140  VTAB 2

 1145  PRINT "  AND    0     1   "

 1150  PRINT "      -------------"

 1155  PRINT "   0  !  0  !  0  !"

 1160  PRINT "      -------------"

 1165  PRINT "   1  !  0  !  1  !"

 1170  PRINT "      -------------"

 1175  PRINT : HTAB 7: PRINT "'AND'"

 1180  VTAB 23: PRINT "̂           ̂"

 1185  RETURN

 1200  REM  'ASL'

 1220  VTAB 1: HTAB 9: PRINT "-------<==-------"

 1225  HTAB 4: PRINT "----- 7 6 5 4 3 2 1 0 <-- '0'"

 1230  HTAB 4: PRINT "!    -----------------"

 1235  HTAB 3: PRINT "---"

 1240  HTAB 3: PRINT "!C!"

 1245  HTAB 3: PRINT "---"

 1250  VTAB 7:HTAB 16:PRINT "'ASL'": HTAB 8: PRINT "(ARITHMETIC SHIFT LEFT)"

 1280  VTAB 23: HTAB 10: PRINT "̂           ̂ ̂"

 1285  RETURN

]
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 1300  REM  'BIT'

 1310  POKE 32,9

 1340  VTAB 2

 1345  PRINT "AND/BIT  0     1   "

 1350  PRINT "      -------------"

 1355  PRINT "   0  !  0  !  0  !"

 1360  PRINT "      -------------"

 1365  PRINT "   1  !  0  !  1  !"

 1370  PRINT "      -------------"

 1375  PRINT : HTAB 7: PRINT "'BIT'"

 1380  VTAB 23: PRINT "M M         ̂": PRINT "7 6";

 1385  RETURN

 1400  REM  'EOR'

 1410  POKE 32,9

 1440  VTAB 2

 1445  PRINT "  EOR    0     1   "

 1450  PRINT "      -------------"

 1455  PRINT "   0  !  0  !  1  !"

 1460  PRINT "      -------------"

 1465  PRINT "   1  !  1  !  0  !"

 1470  PRINT "      -------------"

 1475  PRINT : HTAB 7: PRINT "'EOR'"

 1480  VTAB 23: PRINT "̂           ̂"

 1485  RETURN

 1500  REM  'LSR'

 1520  VTAB 1: HTAB 9: PRINT "-------==>-------"

 1525  HTAB 2: PRINT "'0' --> 7 6 5 4 3 2 1 0 -----"

 1530  VTAB 3: HTAB 9: PRINT "-----------------    !"

 1535  HTAB 29: PRINT "---"

 1540  HTAB 29: PRINT "!C!"

 1545  HTAB 29: PRINT "---"

 1550  VTAB 7: HTAB 15: PRINT "'LSR'": HTAB 8: PRINT "(LOGICAL SHIFT RIGHT)"

 1580  VTAB 23: HTAB 10: PRINT "0           ̂ ̂"

 1585  RETURN

 1600  REM  'ORA'

 1610  POKE 32,9

 1640  VTAB 2

 1645  PRINT "  ORA    0     1   "

 1650  PRINT "      -------------"

 1655  PRINT "   0  !  0  !  1  !"

 1660  PRINT "      -------------"

 1665  PRINT "   1  !  1  !  1  !"

 1670  PRINT "      -------------"

 1675  PRINT : HTAB 7: PRINT "'ORA'"

 1680  VTAB 23: PRINT "̂           ̂"

 1685  RETURN

 1700  REM  'ROL'

 1720  VTAB 1: HTAB 9: PRINT "-------<==-------"

 1725  HTAB 4: PRINT "<---- 7 6 5 4 3 2 1 0 <----"

 1730  HTAB 4: PRINT "!    -----------------    !"

 1735  HTAB 4: PRINT "!           ---           !"

 1740  HTAB 4: PRINT "----------->!C!------------"

 1745  HTAB 16: PRINT "---"

 1750  VTAB 8: HTAB 15: PRINT "'ROL'": HTAB 9: PRINT "(ROTATE ONE BIT LEFT)"

 1780  VTAB 23: HTAB 10: PRINT "̂           ̂ ̂"

 1785  RETURN
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 1800  REM  'ROR'

 1820  VTAB 1: HTAB 9: PRINT "-------==>-------"

 1825  HTAB 4: PRINT "----> 7 6 5 4 3 2 1 0 ---->"

 1830  HTAB 4: PRINT "!    -----------------    !"

 1835  HTAB 4: PRINT "!           ---           !"

 1840  HTAB 4: PRINT "------------ C <-----------"

 1845  HTAB 16: PRINT "---"

 1850  VTAB 8:HTAB 15: PRINT "'ROR'": HTAB 9: PRINT "(ROTATE ONE BIT RIGHT)"

 1880  VTAB 23: HTAB 10: PRINT "̂           ̂ ̂"

 1885  RETURN

 2000  DATA AND,37,7, ASL,10,234, BIT,36,7, EOR,69,7, LSR,74,234, ORA,5,7, 

ROL,42,234, ROR,106,234

 32000  REM  COPYRIGHT (C) 1981

 32010  REM  ROGER R. WAGNER

!e basic theory of operation for the program is to rewrite locations$306 
and$307 with the appropriate values to create the diferent operators. !ese val-
ues are contained in the data statement on line 2000 of the Applesot program. 
In addition, there are routines to print the value in location$06 in both binary 
and hex formats. Also, there is a routine to show control characters in inverse. 
You may wish to examine each of these to determine the logic, if any, behind 
their operation.
!e Applesot program itself operates by getting a value for the Accumula-

tor and the memory location frompaddles 0 and 1. !e double reads in lines 110 
and 120 minimize theinteraction between the two paddles. Pressing any key 
advances the display to the next function; the let arrow backs up. Pressing A, B, E, 
L, O, or R will jump to the selected function.
!e screen display shows the hex and binary values for each number and 

also what character would be printed via aPRINT CHR$(X) statement (control 

]

           EOR    0     1
               -------------
            0  !  0  !  1  !
               -------------
            1  !  1  !  0  !
               -------------

               'EOR'

OPCODE:  0 1 0 0 0 1 0 1 $45   'EOR'

ACC:     1 1 0 0 0 0 0 1 $C1 A  (P0)  A 

MEMORY:  1 1 0 1 1 0 1 1 $DB [  (P1)  [

RESULT:  0 0 0 1 1 0 1 0 $1A Z        Z

STATUS:  0 0 1 0 0 0 0 0 $20

         N V – B D I Z C
         ^           ^



104 Assembly Lines

characters are shown in inverse). To the far right is the character obtained when 
the value is poked into the screen display part of memory.
I suppose if I were a purist the entire thing would have been written in 

assembly language. Oh well, maybe next time.
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In chapter 11 I discussed how to access the disk using theRWTS routine. 
!ere is another way to read the disk that is more similar to the procedure used 
in BASIC. !e advantage of this system is that we need not be concerned about 
what track and sector we’re using, since DOS will handle the iles just as it does 
in anormal program. !e disadvantage is that we must have the equivalent of 
PRINT and INPUT statements to use in our programs to send and receive the data. 
So, before going any further, let’s digress to input/output routines.

Print Routines

I have two favorite ways of simulating thePRINT statement. !e irst was 
described in earlier chapters and looks like this:

                1    ********************************

                2    *    AL13-DATA-TYPE PRINT 1    *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    *

                9    COUT     EQU  $FDED

                10   *

0300: A2 00     11   ENTRY    LDX  #$00

0302: BD 0E 03  12   LOOP     LDA  DATA,X

0305: F0 06     13            BEQ  DONE

0307: 20 ED FD  14            JSR  COUT

030A: E8        15            INX

030B: D0 F5     16            BNE  LOOP

                17   * (ALWAYS UP TO 255 CHRS)

                18   *

030D: 60        19   DONE     RTS

                20   *

030E: 84        21   DATA     HEX  84

030F: C3 C1 D4  22            ASC  "CATALOG"

0312: C1 CC CF C7

0316: 8D 00     23            HEX  8D00

                24   *

0318: 00        25   EOF      BRK

]

13
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!is type of routine uses a deined data block to hold theASCII values for 
the characters we wish to print. !e printing is accomplished by loading the X-
Register with $00 and stepping through the data table until a$00 is encountered. 
Each byte loaded is put into the Accumulator and printed via theJSR toCOUT 
($FDED). When the$00 is inally reached, theBEQ on line 13 is taken and we 
return from the routine via the RTS at DONE.
!e new item of interest in this listing is the use of the$84 as the irst char-

acter printed. !is will be printed as a<CTRL>D, and the wordCATALOG that fol-
lows will be executed as a DOS command.
!e essence of this chapter’s message, along with the routines, is that any 

DOS command can be executed from assembly language exactly the same way 
it’s done from BASIC. One need only precede the command with a<CTRL>D and 
terminate the command with a carriage return. Because DOS looks at all charac-
ters being output, it will see the<CTRL>D character and behave accordingly. 
(READ andWRITE are something of an exception to this technique but can still be 
done with only minor adjustments.)
You’ll also notice the new assembler directive:ASC. !is directive allows you 

to put an ASCII string directly into a listing without having to use theHEX com-
mand, which would necessitate a lot of mental conversions.
Try entering this program and then calling it with either a300G from the 

Monitor or a CALL 768 from BASIC. Remember, the routine cannot be BRUN.
When running this program, you may notice a diference between aCALL 

768 and the300G. When called from the Monitor with the300G, strange charac-
ters are printed out ater theCATALOG is done. It is important to note here that 
any DOS command will overwrite the input bufer ($200+) when executed. 
Because the Monitor expects to look for commands ater your300G, it maintains 
an internal pointer to which character in the input bufer it is currently evaluat-
ing. For example, it normally would be perfectly legal to execute the command: 
300G 200.210.

!e problem is, it wouldn’t work with this program. Let’s see why. When 
you enter300G<RETURN>, the input bufer holds ive characters:3-0-0-G-<C/R>. 
When$300 is called, the character pointer is at the<RETURN> character. When 
the DOS commandCATALOG, is issued, the input bufer is overwritten with the 
characterŝD-C-A-T-A-L-O-G-<C/R>, where âD represents the<CTRL>D char-
acter. Ater theCATALOG, the Monitor will resume its interpretation of the input 
bufer on the ith character, which now instead of the carriage return, is the sec-
ond A of the wordCATALOG. !us, ater theCATALOG command is done and con-
trol returns from the routine at$300, you get the same result as if you had typed 
inALOG, which would be to disassemble the code starting at location$0A (AL), 
followed by a beep for a syntax error forOG<C/R>. To avoid this problem, rou-
tines that involve DOS commands should be called only from a running BASIC 
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program, or should exit via aJMP $3D0, as mentioned earlier in the section on 
the COUT routine.
!is next print routine is more involved but does ofer some advantages. 

One advantage is that theHEX orASC data for what you want to print can imme-
diately follow the JSR print statement, which parallels BASIC a little more closely 
and avoids construction of the various data blocks. !e disadvantage is that the 
overall code is longer for short programs such as this. !e general rule of thumb 
is to use the data-type print routine when you have only to print once or twice 
during the program, and to use the following type of routine when printing 
many times.
!e logic behind the operation of this second method is slightly more com-

plex than the previous routine, but I think you’ll ind it quite interesting.
Here’s the new method:

                1    ********************************

                2    *     AL13-SPECIAL PRINT 2     *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    PTR      EQU  $06

                9    COUT     EQU  $FDED

                10   *

0300: 20 0E 03  11   ENTRY    JSR  PRINT

0303: 84        12   E0       HEX  84

0304: C3 C1 D4  13            ASC  "CATALOG"

0307: C1 CC CF C7

030B: 8D 00     14            HEX  8D00

030D: 60        15   DONE     RTS

                16   *

030E: 68        17   PRINT    PLA

030F: 85 06     18            STA  PTR

0311: 68        19            PLA

0312: 85 07     20            STA  PTR+1

0314: A0 01     21            LDY  #$01       ; PTR HOLDS E0-1 HERE

                22   *

0316: B1 06     23   P0       LDA  (PTR),Y

0318: F0 06     24            BEQ  FNSH

031A: 20 ED FD  25            JSR  COUT

031D: C8        26            INY

031E: D0 F6     27            BNE  P0         ; (MOST ALWAYS)

                28   *

0320: 18        29   FNSH     CLC

0321: 98        30            TYA

0322: 65 06     31            ADC  PTR

0324: 85 06     32            STA  PTR

0326: A5 07     33            LDA  PTR+1

0328: 69 00     34            ADC  #$00

032A: 48        35            PHA

032B: A5 06     36            LDA  PTR

032D: 48        37            PHA

]
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032E: 60        38   EXIT     RTS

                39   * WILL RTS TO DONE INSTEAD OF

                40   * E0!

                41   *

!is one is rather interesting in that it uses the stack to determine where to 
start reading the data. You’ll recall that when aJSR is done, the return address 
minus one is put on the stack. Upon entry to thePRINT routine, we use this fact 
to put that address inPTR,PTR+1. By loading the Y-Register with#$01 and 
indexing PTR to fetch the data, we can scan through the string to be printed until 
we encounter $00, which indicates the end of the string.
When the end is reached, theBEQ FNSH will be taken. Ater that happens, the 

Y-Register (the length of the string printed) is transferred to the Accumulator 
and added to the address inPTR,PTR+1, and the result pushed back onto the 
stack. Remember that the old return address was E0-1 until it was pulled of.
Now when theRTS is encountered, the program will be fooled into return-

ing to DONE instead of to E0 as it otherwise would have done.
To summarize, then:

1. Any DOS command can be executed from assembly language just as it is 
done in BASIC by doing the equivalent of printing a<CTRL>D followed by the 
command and a <RETURN>.

2. A data-type print routine uses ASCII characters in a labeled block, which is 
then called by name using the X-Register in a direct indexed addressing mode. 
!e string to be printed should have the high bit set (ASCII value + $80), and the 
string must be terminated by a 0 (at least when using the routine given here).

3. A JSR to a special print routine can also be done. In this case the ASCII data 
should immediately follow theJSR. Again, have the high bit set and end with 
$00.

Input Routines

!e other side of the coin is, of course, theINPUT routine. You might be sur-
prised by the number of times I get calls from people saying, “If only the input in 
such-and-such program would accept quotes, commas, etc.” !e solution is 
actually quite simple and is presented here.
In its simplest form, the routine looks like this:

                1    ********************************

                2    * AL13-INPUT ROUTINE FOR BINARY*

                3    ********************************

                4    *

                5    * STORES STRING AT PTR LOC

                6    *

                7    *        OBJ  $300
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                8             ORG  $300

                9    *

                10   GETLN    EQU  $FD6F

                11   BUFF     EQU  $200

                12   PTR      EQU  $06

                13   *

                14   *

0300: A2 00     15   ENTRY    LDX  #$00

0302: 20 6F FD  16            JSR  GETLN

                17   *

0305: 8A        18   CLEAR    TXA             ; X=LEN OF STRING

0306: A8        19            TAY

0307: A9 00     20            LDA  #$00

0309: 91 06     21            STA  (PTR),Y    ; PUT END-OF-STRING MARKER

030B: 88        22            DEY             ; Y-1 FOR PROPER INDEXING

030C: B9 00 02  23   C2       LDA  BUFF,Y

030F: 29 7F     24            AND  #$7F       ; CLEAR HIGH BIT

0311: 91 06     25            STA  (PTR),Y    ; PUT IN NEW LOC

0313: 88        26            DEY

0314: C0 FF     27            CPY  #$FF

0316: D0 F4     28            BNE  C2

                29   *

0318: 60        30   DONE     RTS

!e heart of this routine is a call to the Monitor’sGETLN routine, which gets 
a line of text from the keyboard or current input device and puts it in the key-
board bufer ($200−$2FF).
!is saves our having to write a routine ourselves. !e beauty of this 

method is also that all the<ESCAPE> and let/right arrow keys are recognized. 
When the routine returns fromGETLN, the entered line is sitting at$200+. !e 
length is held in the X-Register.
At this point we presumably could just return from our routine as well but, 

as it happens, all the data now in the bufer has the high bit set–that is,#$80 has 
been added to the ASCII value of each character. Because Applesot in particu-
lar, and many other routines in general, don’t expect this, the high bit should be 
cleared before returning. Also$200+ will hold only one string at a time, so there 
should be some provision for relocating the string to some inal destination.
Both are accomplished in theCLEAR section of this routine. First the length 

of the string is transferred via theTXA,TAY to the Y-Register. My preference is 
then to mark the end of the string. !e subtle part here is that even though the 
Y-Register holds the length value, this actually points to the position immedi-
ately ater the last character entered into the input bufer. For example, if you 
entered the wordTEST, X would be returned as$04. Now the charactersTEST 
occupy bytes$200−$203. !us when the length ($04) is put in the Y-Register, 
STA $200,Y will put a 0 in the ith character position. !us aDEY is then needed 
to get ready for the continuation to C2.

]
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Next,C2 begins a loop that loads each character into the bufer, does anAND 
with#$7F, and then stores the result at a location pointed to byPTR,PTR+1 plus 
the Y-Register ofset.
!e AND #$7F has the efect of clearing the high bit by forcing bit 7 to 0.
!e Y-Register is then decremented and the loop repeated until theDEY 

forces Y to an$FF. !is will indicate that the last value was$00, and we have 
thus completed scanning the bufer.
!is routine will work ine as long as you’re willing to manage the string 

entirely by yourself once it gets to thePTR,PTR+1 location. As noble as it might 
be to write programs entirely in assembly language, I usually prefer to write in 
bothApplesot and assembly language. !is is because unless speed is required, 
Applesot does ofer some advantages in terms of program clarity and ease of 
modiication. Ater all, if there were no advantage to Applesot, why would 
somebody have written it in the irst place?
So, to that end, here are two new listings, the irst in Applesot:

5  PRINT CHR$(4);"BLOAD AL13.INPUTFP"

10  IN$ = "X"

20  PRINT "ENTER THE STRING: ";

30  CALL 768: IN$ = MID$(IN$,1)

40  IF IN$ = "END" THEN END

50  PRINT IN$: PRINT: GOTO 20

and the second in assembly language:

                1    ********************************

                2    * AL13-INPUT ROUTINE FP BASIC  *

                3    ********************************

                4    *

                5    * IN$="" MUST BE FIRST VARIABLE

                6    * DEFINED IN PROGRAM!

                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   GETLN    EQU  $FD6F

                12   VARTAB   EQU  $69

                13   BUFF     EQU  $200

                14   *

                15   *

0300: A2 00     16   ENTRY    LDX  #$00

0302: 20 6F FD  17            JSR  GETLN

0305: A0 02     18            LDY  #$02

0307: 8A        19            TXA

0308: 91 69     20            STA  (VARTAB),Y

                21   * STORE ’X-REG = LEN OF IN$’

                22   * IN LEN BYTE OF IN$

                23   *

030A: C8        24            INY             ; Y = 3

030B: A9 00     25            LDA  #$00

030D: 91 69     26            STA  (VARTAB),Y
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030F: C8        27            INY             ; Y = 4

0310: A9 02     28            LDA  #$02

0312: 91 69     29            STA  (VARTAB),Y

                30   * SET LOCATION PTR OF IN$ TO

                31   * $200 (INPUT BUFFER)

                32   *

0314: 8A        33   XFER     TXA

0315: A8        34            TAY             ; Y-REG = LEN NOW

0316: B9 00 02  35   X2       LDA  BUFF,Y

0319: 29 7F     36            AND  #$7F

031B: 99 00 02  37            STA  BUFF,Y

031E: 88        38            DEY

031F: C0 FF     39            CPY  #$FF

0321: D0 F3     40            BNE  X2

                41   *

0323: 60        42   DONE     RTS

0324: 62        43            CHK

!e important diference to notice here is thatIN$ has been deined as the 
irst variable in the Applesot program, and that the assembly-language routine 
uses this fact to transfer the string to Applesot.
!e way this is done begins atXFER. When an Applesot string variable is 

stored, the name, length, and location of the string are put in a table whose 
beginning is pointed to by locations $69, $6A (VARTAB, VARTAB+1).
SinceIN$ was the irst variable deined, we know that its name and pointer 

will start at whereverVARTAB points. !e name is held in positions$00 and$01, 
the length in $02, and the location in $03 and $04.

By loading the Y-Register with#$02, we can store the length of the entered 
string in the proper place. !e location ofIN$ is then set to$200 by putting the 
appropriate bytes into positions$03 and$04. Now Applesot is temporarily 
fooled into thinking that IN$ is at $200–right where our input string is held!
!e routine inishes by clearing the high bit, as before, and then returning 

with the RTS.

]
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When the RTS is done, line 30 of the Applesot program immediately assigns 
IN$ to itself in such a way as to force Applesot to moveIN$ from where it was in 
the input bufer to a new location up in its usual variable storage area. !e net 
result can be obtained in various other ways besides theMID$ statement, but the 
way shown is the least intrusive in terms of afecting other variables. (You could 
useA$=IN$: IN$=A$, but then you’d need a second variable in your program–
no problem, just more names to keep track of.)
Make sure the input routine is loaded at$300 before running the Applesot 

program. Note that you can enter commas, quotes,<CTRL>C’s, etc. Only entering 
END or pressing RESET should be able to exit this routine.



14. Reading and Writing Files on Disk
November 1981

Reading and Writing Data Files

!is chapter will challenge your devotion to the cause of learning assem-
bly-language programming. Up until now the source listings have been very 
short and easily typed in a few minutes’ time. Unfortunately, the listings for this 
chapter are a bit longer than usual. But chin up! !e result will be worth it! I’ve 
received quite a number of requests for information on how to read and write 
iles on the disk. !e programs listed will combine many of the techniques and 
routines you’ve learned so far into a single mini-database program.1

!e irst program saves and loads the data by means of a simple 
BSAVE/BLOAD operation. !is is fast and very straightforward. Here’s the listing:

                1    ********************************

                2    * AL14-NAME FILE DEMO PROGRAM  *

                3    ********************************

                4    *

                5    *

                6             ORG  $6000

                7    *

                8    HOME     EQU  $FC58

                9    COUT     EQU  $FDED

                10   RDKEY    EQU  $FD0C

                11   GETLN    EQU  $FD75

                12   BUFF     EQU  $200

                13   VTAB     EQU  $FC22

                14   CH       EQU  $24

                15   CV       EQU  $25

                16   CTR      EQU  $08

                17   PTR      EQU  $06

                18   REENTRY  EQU  $3D0

                19   *

                20   *

6000: A9 00     21   ENTRY    LDA  #$00

6002: 85 06     22            STA  PTR

1[CT] !ese two programs will work only in DOS, not ProDOS. According toBeneath 
Apple ProDOS (Don Worth and Pieter Lechner, Quality Sotware, 1984, p. 6-61), 
<CTRL>D  does not work with ProDOS commands from assembly code. Instead, you 
must place the command string in theGETLN input bufer at$200 and then call the 
BASIC Interpreter (BI) at $BE03. !is is let as an exercise for the reader.

]

14
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6004: A9 10     23            LDA  #$10

6006: 85 07     24            STA  PTR+1

6008: A9 B1     25            LDA  #$B1

600A: 85 08     26            STA  CTR

                27   *

600C: A0 00     28   CLR      LDY  #$00

600E: 91 06     29            STA  (PTR),Y

6010: C8        30            INY

6011: A9 A0     31            LDA  #$A0

6013: 91 06     32            STA  (PTR),Y

6015: A9 00     33            LDA  #$00

6017: C8        34            INY

6018: 91 06     35            STA  (PTR),Y

601A: E6 07     36            INC  PTR+1

601C: E6 08     37            INC  CTR

601E: A5 08     38            LDA  CTR

6020: C9 B6     39            CMP  #$B6

6022: 90 E8     40            BCC  CLR

                41   *

                42   * PUTS ’#1-5,SPC,00’ IN BUFFER

                43   *

6024: 20 58 FC  44   MENU     JSR  HOME

6027: A9 02     45   P1       LDA  #$02

6029: 85 25     46            STA  CV         ; VTAB 3

602B: 20 22 FC  47            JSR  VTAB

602E: 20 C2 61  48            JSR  PRINT

6031: B1 A9 A0  49            ASC  "1) INPUT NAMES"

6034: C9 CE D0 D5 D4 A0 CE C1

603C: CD C5 D3

603F: 8D 00     50            HEX  8D00

                51   *

6041: A9 04     52   P2       LDA  #$04

6043: 85 25     53            STA  CV

6045: 20 22 FC  54            JSR  VTAB       ; VTAB 5

6048: 20 C2 61  55            JSR  PRINT

604B: B2 A9 A0  56            ASC  "2) PRINT NAMES"

604E: D0 D2 C9 CE D4 A0 CE C1

6056: CD C5 D3

6059: 8D 00     57            HEX  8D00

                58   *

605B: A9 06     59   P3       LDA  #$06

605D: 85 25     60            STA  CV

605F: 20 22 FC  61            JSR  VTAB       ; VTAB 7

6062: 20 C2 61  62            JSR  PRINT

6065: B3 A9 A0  63            ASC  "3) SAVE NAMES"

6068: D3 C1 D6 C5 A0 CE C1 CD

6070: C5 D3

6072: 8D 00     64            HEX  8D00

                65   *

6074: A9 08     66   P4       LDA  #$08

6076: 85 25     67            STA  CV

6078: 20 22 FC  68            JSR  VTAB       ; VTAB 9

607B: 20 C2 61  69            JSR  PRINT

607E: B4 A9 A0  70            ASC  "4) LOAD NAMES"

6081: CC CF C1 C4 A0 CE C1 CD

6089: C5 D3



14. Reading and Writing Files on Disk 115

608B: 8D 00     71            HEX  8D00

                72   *

608D: A9 0A     73   P5       LDA  #$0A

608F: 85 25     74            STA  CV

6091: 20 22 FC  75            JSR  VTAB       ; VTAB 11

6094: 20 C2 61  76            JSR  PRINT

6097: B5 A9 A0  77            ASC  "5) END PROGRAM"

609A: C5 CE C4 A0 D0 D2 CF C7

60A2: D2 C1 CD

60A5: 8D 00     78            HEX  8D00

                79   *

60A7: A9 0C     80   P6       LDA  #$0C

60A9: 85 25     81            STA  CV

60AB: 20 22 FC  82            JSR  VTAB       ; VTAB 13

60AE: 20 C2 61  83            JSR  PRINT

60B1: D7 C8 C9  84            ASC  "WHICH DO YOU WANT? "

60B4: C3 C8 A0 C4 CF A0 D9 CF

60BC: D5 A0 D7 C1 CE D4 BF A0

60C4: 00        85            HEX  00

                86   *

60C5: 20 0C FD  87   M1       JSR  RDKEY

60C8: C9 B1     88            CMP  #$B1       ; '1'

60CA: D0 06     89            BNE  M2

60CC: 20 FD 60  90            JSR  INPUT

60CF: 4C 24 60  91            JMP  MENU

60D2: C9 B2     92   M2       CMP  #$B2       ; '2'

60D4: D0 09     93            BNE  M3

60D6: 20 42 61  94            JSR  DSPLY

60D9: 20 0C FD  95            JSR  RDKEY

60DC: 4C 24 60  96            JMP  MENU

60DF: C9 B3     97   M3       CMP  #$B3       ; '3'

60E1: D0 06     98            BNE  M4

60E3: 20 78 61  99            JSR  SAVE

60E6: 4C 24 60  100           JMP  MENU

60E9: C9 B4     101  M4       CMP  #$B4       ; '4'

60EB: D0 06     102           BNE  M5

60ED: 20 A0 61  103           JSR  LOAD

60F0: 4C 24 60  104           JMP  MENU

60F3: C9 B5     105  M5       CMP  #$B5       ; '5'

60F5: D0 03     106           BNE  M6

60F7: 4C D0 03  107           JMP  REENTRY

60FA: 4C 24 60  108  M6       JMP  MENU

                109  *

                110  *

60FD: 20 42 61  111  INPUT    JSR  DSPLY      ; SHOW WHAT’S THERE

                112  *

6100: A9 00     113  I0       LDA  #$00

6102: 85 06     114           STA  PTR

6104: A9 10     115           LDA  #$10

6106: 85 07     116           STA  PTR+1      ; SET PTR=$1000

                117  *

6108: A9 00     118           LDA  #$00

610A: 85 08     119           STA  CTR

610C: 18        120  ILOOP    CLC

610D: A5 08     121           LDA  CTR

610F: 65 08     122           ADC  CTR

]
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6111: 85 25     123           STA  CV

6113: 20 22 FC  124           JSR  VTAB

6116: A9 00     125           LDA  #$00

6118: 85 24     126           STA  CH

611A: A8        127           TAY

611B: 20 29 61  128           JSR  IP

611E: E6 07     129           INC  PTR+1

6120: E6 08     130           INC  CTR

6122: A9 04     131           LDA  #$04

6124: C5 08     132           CMP  CTR

6126: B0 E4     133           BCS  ILOOP      ; GET 5 NAMES

                134  *

6128: 60        135  IFIN     RTS

                136  *

6129: A2 00     137  IP       LDX  #$00

612B: 20 75 FD  138           JSR  GETLN

612E: 8A        139           TXA

612F: F0 10     140           BEQ  IPFIN      ; EXIT IF <CR> ONLY

6131: A8        141           TAY

6132: A9 00     142           LDA  #$00

6134: 99 00 02  143           STA  BUFF,Y

6137: B9 00 02  144  IPLOOP   LDA  BUFF,Y

613A: 91 06     145           STA  (PTR),Y    ; MOVE DATA TO PTR

                146  *                        ; BLOCK

613C: 88        147           DEY

613D: C0 FF     148           CPY  #$FF

613F: D0 F6     149           BNE  IPLOOP

6141: 60        150  IPFIN    RTS

                151  *

6142: 20 58 FC  152  DSPLY    JSR  HOME

6145: A9 00     153           LDA  #$00

6147: 85 08     154           STA  CTR

                155  *

6149: 85 06     156           STA  PTR

614B: A9 10     157           LDA  #$10

614D: 85 07     158           STA  PTR+1

614F: 18        159  D0       CLC

6150: A5 08     160           LDA  CTR

6152: 65 08     161           ADC  CTR

6154: 85 25     162           STA  CV         ; VTAB (2*CTR)+1

6156: 20 22 FC  163           JSR  VTAB

6159: A9 00     164           LDA  #$00

615B: 85 24     165           STA  CH         ; HTAB 1

615D: A8        166           TAY

                167  *

615E: B1 06     168  D1       LDA  (PTR),Y

6160: F0 06     169           BEQ  D1FIN

6162: 20 ED FD  170           JSR  COUT

6165: C8        171           INY

6166: D0 F6     172           BNE  D1         ; (ALWAYS)

                173  *

6168: A9 8D     174  D1FIN    LDA  #$8D

616A: 20 ED FD  175           JSR  COUT       ; END WITH <CR>

616D: E6 07     176           INC  PTR+1

616F: E6 08     177           INC  CTR

6171: A9 04     178           LDA  #$04
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6173: C5 08     179           CMP  CTR

6175: B0 D8     180           BCS  D0         ; PRINT 5 NAMES

                181  *

6177: 60        182  DSFIN    RTS

                183  *

                184  *

6178: A9 8D     185  SAVE     LDA  #$8D

617A: 20 ED FD  186           JSR  COUT       ; CLEAR OUTPUT BUFFER

617D: 20 C2 61  187  OPEN     JSR  PRINT

6180: 84        188           HEX  84

6181: C2 D3 C1  189           ASC  "BSAVE DEMOFILE,A$1000,L$500"

6184: D6 C5 A0 C4 C5 CD CF C6

618C: C9 CC C5 AC C1 A4 B1 B0

6194: B0 B0 AC CC A4 B5 B0 B0

619C: 8D 00     190           HEX  8D00

                191  *

619E: 60        192  SFIN     RTS

                193  *

                194  *

619F: A9 8D     195  LOAD     LDA  #$8D

61A1: 20 ED FD  196           JSR  COUT

                197  *

61A4: 20 C0 61  198           JSR  PRINT

61A7: 84        199           HEX  84

61A8: C2 CC CF  200           ASC  "BLOAD DEMOFILE,A$1000"

61AB: C1 C4 A0 C4 C5 CD CF C6

61B3: C9 CC C5 AC C1 A4 B1 B0

61BB: B0 B0

61BD: 8D 00     201           HEX  8D00

                202  *

61BF: 60        203           RTS

                204  *

                205  *

                206  *

61C0: 68        207  PRINT    PLA

61C1: 85 06     208           STA  PTR

61C3: 68        209           PLA

61C4: 85 07     210           STA  PTR+1

61C6: A0 01     211           LDY  #$01

61C8: B1 06     212  P0       LDA  (PTR),Y

61CA: F0 06     213           BEQ  PFIN

61CC: 20 ED FD  214           JSR  COUT

61CF: C8        215           INY

61D0: D0 F6     216           BNE  P0         ; (ALWAYS)

                217  *

61D2: 18        218  PFIN     CLC

61D3: 98        219           TYA

61D4: 65 06     220           ADC  PTR

61D6: 85 06     221           STA  PTR

61D8: A5 07     222           LDA  PTR+1

61DA: 69 00     223           ADC  #$00

61DC: 48        224           PHA

61DD: A5 06     225           LDA  PTR

61DF: 48        226           PHA

61E0: 60        227  EXIT     RTS

                228  *

]
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                229  *

61E1: 00        230  EOF      BRK

                231  *

                232  *

61E2: 89        233           CHK

To understand how it works, consider these conditions:
Data will be stored in the area from$1000-$14FF. !is area is called abufer. 

A total of ive strings will be stored, each beginning at an exact page boundary 
($1000,$1100,$1200, etc.). It is assumed that no string will be longer than 255 
bytes–a fairly safe assumption since the INPUT routine won’t allow this either.
A zero-page pointer (cleverly labeledPTR) will be used to control which 

range in the bufer is currently being accessed for a particular string.
!e basic routines used to make the overall idea work are as follows:

1. An INPUT routine using the Monitor ($FD6F=GETLN).2

2. A PRINT routine using a JSR and a stack manipulation. (Not the DATA type.)

3. A single-key input routine present in the Monitor used to get the command 
key ($FD0C=RDKEY).

4. !e execution of DOS commands from assembly language by preceding 
phrases with a <CTRL>D.

To use the program, call it directly from BASIC with aCALL 24576. A menu 
will appear with these choices:

1) INPUT NAMES

2) PRINT NAMES

3) SAVE NAMES

4) LOAD NAMES

5) END PROGRAM

To try the routine out, use option 1 to enter ive sample names. !en use 
option 2 to view the data you’ve entered. You may then use option 3 to save the 
data as a binary ile on a diskette. !en rerun the program, and verify that only 
the numbers 1 through 5 exist in the bufer (option 2). !en retrieve your data 
by using theLOAD command (option 4), and view again to conirm a successful 
load.
In detail, this is how the program works:
At entry,PTR is set to point to$1000, where the name bufer begins. !e 

Accumulator is then loaded with the ASCII value for the character 1, and the CLR 
routine entered.

2[CT] Technically, our program is usingNXTCHAR ($FD75) instead of GETLN ($FD6A), to 
avoid printing out the prompt character.
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CLR puts the characters 1 through 5 into each of the string spaces. Each digit 
is followed by a<SPACE>, and then a$00. I used$00 as an end-of-string marker, 
but the choice is somewhat arbitrary.

MENU clears the screen and presents the user with the available choices. 
Points of interest here are theVTAB operation and thePRINT routine. ToVTAB to 
a given line from assembly language, one of the easiest ways is to loadCV with 
the line you wish to go to, and thenJSR to the Monitor’sVTAB routine ($FC22). 
Normally, we might also wish to either print a carriage return, or setCH to 0. 
Note thatCV andCH are the computer’s vertical and horizontal cursor position 
bytes, as used by the Monitor. You can always tell the cursor position by examin-
ing these bytes, andCH may be forced to a desired value to accomplish the same 
as an HTAB in BASIC.
!ePRINT routine is the one described in chapter 13, and is useful because 

theJSR PRINT can be followed immediately with the data to print. !is is more 
similar to the BASICPRINT statement, and also avoids setting up a lot of speciic 
data tables to do the printing.
Once the menu is printed on the screen, line 87 of the source ile does the 

JSR toRDKEY. !is gets the command key from the user, which is then tested by 
the M1 to M6 series of checks.
Ater callingRDKEY the keyboard value was returned in the Accumulator, 

and we can directly test to see which key was pressed. !e key is then compared 
with each of the ive desired responses. If no match is found, the program jumps 
back toMENU to repeat the display and command input. Other thanRESET, 
option 5 is the only way to exit the program.
Let’s examine the menu options:
If you enter 1, control is directed to the section labeledINPUT. !e irst thing 

done there is toJSR toDSPLY. At this point, it’s necessary only to understand 
that DSPLY just clears the screen and shows the ive strings currently in memory.
AterDSPLY,PTR is initialized to point to the beginning of the bufer 

($1000), and the counter is set to 0. !e mainINPUT loop comes next. HereCTR 
is used to calculate what line (vertical position) to put the cursor on. (DSPLY used 
the same algorithm to display the current data.) AterVTAB, the equivalent of 
HTAB is done, followed by the jump to the actual input routine, here labeledIP. 
!is is the routine from the previous chapter that gets a line and then moves it to 
a location indicated by PTR.
!ere are a few subtle items in theIP routine that should be noted. !e irst 

is line 140. If<RETURN> alone is entered (i.e. no new data), the routine immedi-
ately returns without rewriting the old string. !is is to allow editing of a single 
entry by skipping the entries not of interest. Try it to see how it works.
!e second item is the characteristic of this particular input routine to put 

the trailing zero at the end of the line. !is is done on lines 141−143.

]
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When it returns fromIP, the counter is incremented and checked to see if it 
exceeds#$04. If not,ILOOP repeats until ive strings have been input. Ater the 
ith string is entered, the program returns to the menu.
If option 2 is entered, theDSPLY routine is called. !e sole purpose of this 

section is to clear the screen and print the ive names in memory. At entry to 
DSPLY, aJSR $FC58 does aHOME and theCTR is initialized to 0. As in theINPUT 
section, CTR is then used to calculate the VTAB position to print each line.

D1 is the part that actually prints each line by scanning (and outputting 
throughCOUT) all of the bytes at each range indicated byPTR. Note that as a 
safety check, if a 0 did not happen to be present due to some other error, eventu-
ally the Y-Register will pass #$FF and the program will fall through to DIFIN.

DIFIN provides an ending carriage return to the string and then increments 
CTR until all ive strings have been printed.
!e load/save operations are quite simple. Knowing where the bufer is 

located, the entire block is accessed by doing either aBLOAD or BSAVE. Remember 
that disk commands are done from assembly language just as they would be 
done from BASIC. !e program need only output a<CTRL>D followed by a legal 
DOS command and a<RETURN>. Again thePRINT routine is used to facilitate 
this.
If option 5 is entered, then theJMP to the DOS BASIC entry vector is exe-

cuted to end the program.

Reading and Writing Text Files

!is second listing is basically a modiication of the irst program. If you 
wish, rather than retype the entire ile, you can just edit the irst listing to add 
lines 20−29 and 194−228.

                1    ********************************

                2    * AL14-NAME FILE DEMO PROGRAM 2*

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $6000

                7             ORG  $6000

                8    *

                9    HOME     EQU  $FC58

                10   COUT     EQU  $FDED

                11   RDKEY    EQU  $FD0C

                12   GETLN    EQU  $FD75

                13   BUFF     EQU  $200

                14   VTAB     EQU  $FC22

                15   CH       EQU  $24

                16   CV       EQU  $25

                17   CTR      EQU  $08

                18   PTR      EQU  $06

                19   *

                20   PROMPT   EQU  $33
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                21   CURLIN   EQU  $75

                22   LANG     EQU  $AAB6

                23   REENTRY  EQU  $3D0

                24   *

6000: A9 40     25   ENTRY    LDA  #$40

6002: 8D B6 AA  26            STA  LANG       ; LANG = FP

6005: 85 76     27            STA  CURLIN+1   ; RUNNING PROG

6007: A9 06     28            LDA  #$06

6009: 85 33     29            STA  PROMPT     ; NOT DIRECT MODE

600B: A9 00     30            LDA  #$00

600D: 85 06     31            STA  PTR

600F: A9 10     32            LDA  #$10

6011: 85 07     33            STA  PTR+1

6013: A9 B1     34            LDA  #$B1

6015: 85 08     35            STA  CTR

                36   *

6017: A0 00     37   CLR      LDY  #$00

6019: 91 06     38            STA  (PTR),Y

601B: C8        39            INY

601C: A9 A0     40            LDA  #$A0

601E: 91 06     41            STA  (PTR),Y

6020: A9 00     42            LDA  #$00

6022: C8        43            INY

6023: 91 06     44            STA  (PTR),Y

6025: E6 07     45            INC  PTR+1

6027: E6 08     46            INC  CTR

6029: A5 08     47            LDA  CTR

602B: C9 B6     48            CMP  #$B6

602D: 90 E8     49            BCC  CLR

                50   *

                51   * PUTS ’#1-5,SPC,00’ IN BUFFER

                52   *

602F: 20 58 FC  53   MENU     JSR  HOME

6032: A9 02     54   P1       LDA  #$02

6034: 85 25     55            STA  CV         ; VTAB 3

6036: 20 22 FC  56            JSR  VTAB

6039: 20 0A 62  57            JSR  PRINT

603C: B1 A9 A0  58            ASC  "1) INPUT NAMES"

603F: C9 CE D0 D5 D4 A0 CE C1

6047: CD C5 D3

604A: 8D 00     59            HEX  8D00

                60   *

604C: A9 04     61   P2       LDA  #$04

604E: 85 25     62            STA  CV

6050: 20 22 FC  63            JSR  VTAB       ; VTAB 5

6053: 20 0A 62  64            JSR  PRINT

6056: B2 A9 A0  65            ASC  "2) PRINT NAMES"

6059: D0 D2 C9 CE D4 A0 CE C1

6061: CD C5 D3

6064: 8D 00     66            HEX  8D00

                67   *

6066: A9 06     68   P3       LDA  #$06

6068: 85 25     69            STA  CV

606A: 20 22 FC  70            JSR  VTAB       ; VTAB 7

606D: 20 0A 62  71            JSR  PRINT

6070: B3 A9 A0  72            ASC  "3) SAVE NAMES"

]



122 Assembly Lines

6073: D3 C1 D6 C5 A0 CE C1 CD

607B: C5 D3

607D: 8D 00     73            HEX  8D00

                74   *

607F: A9 08     75   P4       LDA  #$08

6081: 85 25     76            STA  CV

6083: 20 22 FC  77            JSR  VTAB       ; VTAB 9

6086: 20 0A 62  78            JSR  PRINT

6089: B4 A9 A0  79            ASC  "4) LOAD NAMES"

608C: CC CF C1 C4 A0 CE C1 CD

6094: C5 D3

6096: 8D 00     80            HEX  8D00

                81   *

6098: A9 0A     82   P5       LDA  #$0A

609A: 85 25     83            STA  CV

609C: 20 22 FC  84            JSR  VTAB       ; VTAB 11

609F: 20 0A 62  85            JSR  PRINT

60A2: B5 A9 A0  86            ASC  "5) END PROGRAM"

60A5: C5 CE C4 A0 D0 D2 CF C7

60AD: D2 C1 CD

60B0: 8D 00     87            HEX  8D00

                88   *

60B2: A9 0C     89   P6       LDA  #$0C

60B4: 85 25     90            STA  CV

60B6: 20 22 FC  91            JSR  VTAB       ; VTAB 13

60B9: 20 0A 62  92            JSR  PRINT

60BC: D7 C8 C9  93            ASC  "WHICH DO YOU WANT? "

60BF: C3 C8 A0 C4 CF A0 D9 CF

60C7: D5 A0 D7 C1 CE D4 BF A0

60CF: 00        94            HEX  00

                95   *

60D0: 20 0C FD  96   M1       JSR  RDKEY

60D3: C9 B1     97            CMP  #$B1       ; '1'

60D5: D0 06     98            BNE  M2

60D7: 20 08 61  99            JSR  INPUT

60DA: 4C 2F 60  100           JMP  MENU

60DD: C9 B2     101  M2       CMP  #$B2       ; '2'

60DF: D0 09     102           BNE  M3

60E1: 20 4D 61  103           JSR  DSPLY

60E4: 20 0C FD  104           JSR  RDKEY

60E7: 4C 2F 60  105           JMP  MENU

60EA: C9 B3     106  M3       CMP  #$B3       ; '3'

60EC: D0 06     107           BNE  M4

60EE: 20 83 61  108           JSR  SAVE

60F1: 4C 2F 60  109           JMP  MENU

60F4: C9 B4     110  M4       CMP  #$B4       ; '4'

60F6: D0 06     111           BNE  M5

60F8: 20 C7 61  112           JSR  LOAD

60FB: 4C 2F 60  113           JMP  MENU

60FE: C9 B5     114  M5       CMP  #$B5       ; '5'

6100: D0 03     115           BNE  M6

6102: 4C D0 03  116           JMP  REENTRY

6105: 4C 2F 60  117  M6       JMP  MENU

                118  *

                119  *

6108: 20 4D 61  120  INPUT    JSR  DSPLY      ; SHOW WHAT’S THERE
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                121  *

610B: A9 00     122  I0       LDA  #$00

610D: 85 06     123           STA  PTR

610F: A9 10     124           LDA  #$10

6111: 85 07     125           STA  PTR+1      ; SET PTR=$1000

                126  *

6113: A9 00     127           LDA  #$00

6115: 85 08     128           STA  CTR

6117: 18        129  ILOOP    CLC

6118: A5 08     130           LDA  CTR

611A: 65 08     131           ADC  CTR

611C: 85 25     132           STA  CV

611E: 20 22 FC  133           JSR  VTAB

6121: A9 00     134           LDA  #$00

6123: 85 24     135           STA  CH

6125: A8        136           TAY

6126: 20 34 61  137           JSR  IP

6129: E6 07     138           INC  PTR+1

612B: E6 08     139           INC  CTR

612D: A9 04     140           LDA  #$04

612F: C5 08     141           CMP  CTR

6131: B0 E4     142           BCS  ILOOP      ; GET 5 NAMES

                143  *

6133: 60        144  IFIN     RTS

                145  *

6134: A2 00     146  IP       LDX  #$00

6136: 20 75 FD  147           JSR  GETLN

6139: 8A        148           TXA

613A: F0 10     149           BEQ  IPFIN      ; EXIT IF <CR> ONLY

613C: A8        150           TAY

613D: A9 00     151           LDA  #$00

613F: 99 00 02  152           STA  BUFF,Y

6142: B9 00 02  153  IPLOOP   LDA  BUFF,Y

6145: 91 06     154           STA  (PTR),Y    ; MOVE DATA TO PTR

                155  *                        ; BLOCK

6147: 88        156           DEY

6148: C0 FF     157           CPY  #$FF

614A: D0 F6     158           BNE  IPLOOP

614C: 60        159  IPFIN    RTS

                160  *

614D: 20 58 FC  161  DSPLY    JSR  HOME

6150: A9 00     162           LDA  #$00

6152: 85 08     163           STA  CTR

                164  *

6154: 85 06     165           STA  PTR

6156: A9 10     166           LDA  #$10

6158: 85 07     167           STA  PTR+1

615A: 18        168  D0       CLC

615B: A5 08     169           LDA  CTR

615D: 65 08     170           ADC  CTR

615F: 85 25     171           STA  CV         ; VTAB (2*CTR)+1

6161: 20 22 FC  172           JSR  VTAB

6164: A9 00     173           LDA  #$00

6166: 85 24     174           STA  CH         ; HTAB 1

6168: A8        175           TAY

                176  *

]
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6169: B1 06     177  D1       LDA  (PTR),Y

616B: F0 06     178           BEQ  D1FIN

616D: 20 ED FD  179           JSR  COUT

6170: C8        180           INY

6171: D0 F6     181           BNE  D1         ; (ALWAYS)

                182  *

6173: A9 8D     183  D1FIN    LDA  #$8D

6175: 20 ED FD  184           JSR  COUT       ; END WITH <CR>

6178: E6 07     185           INC  PTR+1

617A: E6 08     186           INC  CTR

617C: A9 04     187           LDA  #$04

617E: C5 08     188           CMP  CTR

6180: B0 D8     189           BCS  D0         ; PRINT 5 NAMES

                190  *

6182: 60        191  DSFIN    RTS

                192  *

                193  *

6183: A9 8D     194  SAVE     LDA  #$8D

6185: 20 ED FD  195           JSR  COUT       ; CLEAR OUTPUT BUFFER

6188: 20 0A 62  196  OPENW    JSR  PRINT

618B: 84        197           HEX  84         ; <CTRL>D

618C: CF D0 C5  198           ASC  "OPEN DEMOTEXTFILE"

618F: CE A0 C4 C5 CD CF D4 C5

6197: D8 D4 C6 C9 CC C5

619D: 8D 84     199           HEX  8D84

619F: D7 D2 C9  200  WRITE    ASC  "WRITE DEMOTEXTFILE"

61A2: D4 C5 A0 C4 C5 CD CF D4

61AA: C5 D8 D4 C6 C9 CC C5

61B1: 8D 00     201           HEX  8D00

                202  *

61B3: 20 4D 61  203  SVLOOP   JSR  DSPLY      ; PRINT NAMES TO DISK

                204  *

61B6: 20 02 62  205  CLOSEW   JSR  PRINT

61B9: 8D 84     206           HEX  8D84

61BB: C3 CC CF  207           ASC  "CLOSE"

61BE: D3 C5

61C0: 8D 00     208           HEX  8D00

61C2: 60        209  SVFIN    RTS

                210  *

                211  *

61C3: A9 8D     212  LOAD     LDA  #$8D

61C5: 20 ED FD  213           JSR  COUT

                214  *

61C8: 20 02 62  215  OPENR    JSR  PRINT

61CB: 84        216           HEX  84

61CC: CF D0 C5  217           ASC  "OPEN DEMOTEXTFILE"

61CF: CE A0 C4 C5 CD CF D4 C5

61D7: D8 D4 C6 C9 CC C5

61DD: 8D 84     218           HEX  8D84

61DF: D2 C5 C1  219  READ     ASC  "READ DEMOTEXTFILE"

61E2: C4 A0 C4 C5 CD CF D4 C5

61EA: D8 D4 C6 C9 CC C5

61F0: 8D 00     220           HEX  8D00

                221  *

61F2: 20 0B 61  222  RDLOOP   JSR  I0         ; GET NAMES FROM DISK

                223  *



14. Reading and Writing Files on Disk 125

61F5: 20 02 62  224  CLOSER   JSR  PRINT

61F8: 8D 84     225           HEX  8D84

61FA: C3 CC CF  226           ASC  "CLOSE"

61FD: D3 C5

61FF: 8D 00     227           HEX  8D00

6201: 60        228  RDFIN    RTS

                229  *

                230  *

                231  *

6202: 68        232  PRINT    PLA

6203: 85 06     233           STA  PTR

6205: 68        234           PLA

6206: 85 07     235           STA  PTR+1

6208: A0 01     236           LDY  #$01

620A: B1 06     237  P0       LDA  (PTR),Y

620C: F0 06     238           BEQ  PFIN

620E: 20 ED FD  239           JSR  COUT

6211: C8        240           INY

6212: D0 F6     241           BNE  P0         ; (ALWAYS)

                242  *

6214: 18        243  PFIN     CLC

6215: 98        244           TYA

6216: 65 06     245           ADC  PTR

6218: 85 06     246           STA  PTR

621A: A5 07     247           LDA  PTR+1

621C: 69 00     248           ADC  #$00

621E: 48        249           PHA

621F: A5 06     250           LDA  PTR

6221: 48        251           PHA

6222: 60        252  EXIT     RTS

                253  *

                254  *

6223: 00        255  EOF      BRK

                256  *

                257  *

6224: A1        258           CHK

!e theory to this second program is fairly simple. If you think about it, the 
INPUT andDSPLY sections are essentially equivalent to aFOR I=1 TO 5/NEXT I 
type loop that respectively inputs and prints ive strings. In a BASIC program, all 
that would be required to access a text ile would be to precede the execution of 
those routines with theOPEN,READ and theOPEN,WRITE commands. (I’m assum-
ing you’re familiar with the normal access of Apple DOS text iles. If not, read 
your manual!)
If you examine the new save and load routines you’ll notice two changes. 

First, rather than printingBSAVE orBLOAD, the iles areOPENed and theREAD or 
WRITE command output. Notice that each command begins with a<CTRL>D and 
ends with a carriage return. Second, ater the command is printed, aJSR is done 
to theIP orDSPLY routine as is appropriate. Last of all, aCLOSE is output before 
returning to the menu.

]
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According to what we know so far, these should be the only changes neces-
sary to access text iles. !ere is one last catch though.
Apple DOS complicates things by not allowing the user toOPEN text iles 

from the immediate mode. When a machine language program is running, DOS 
thinks we’re still in the immediate mode and won’t let us access the text iles. 
What’s needed is a way to fool DOS into thinking we’re running a program.
!is is done by using three internal management locations in the Apple. 

LANG ($AAB6) is what DOS uses to keep track of which language is currently run-
ning.CURLIN ($75,$76) is Applesot’s register for the bytes of the program line 
number currently being executed. In the immediate mode, the high-order byte 
($76) defaults to#$FF. Applesot can tell if a program is running by looking for a 
non-#$FF value in this location. !e other way it knows a program is running is 
to check location$33, which holds the ASCII value for the prompt character. In 
the immediate mode of Applesot, this is#$DD, equivalent to the ‘]’ character. In 
a running program, this changes to #$06.
To fool DOS, all we need to do is load these three locations appropriately at 

the beginning of the routine. Finally, when exiting the program, rather than 
using a simpleRTS, theJMP $3D0 is executed to do a sot reentry to BASIC. !is 
will restore the bytes we’ve altered to fool DOS and also return us to the current 
language.3

Try these programs out. You’ll ind they make an excellent summary of 
many of the ideas and routines discussed so far, and they also provide a valuable 
model for your own programs.

3Some people have also inquired as to whether the check for a write-protect label can be 
defeated by modifying DOS. !e answer is yes and no. Yes, the part of the code that 
generates the error can be eliminated, but because the write-protect switch is physically 
wired into the recording head’s write system, you cannot defeat it without actually 
removing or altering the switch itself.
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It has long been my feeling that it is not enough just to know an arbitrary 
selection of options or commands when using any tool, program, or program-
ming language. Equally important are the techniques with which the options are 
combined to achieve the desired results.
With time and practice you will develop your own skills at creating eicient 

assembly-language routines, but that process can be assisted by examining the 
techniques that others have developed in previous programming eforts.
I have tried in this book to provide a reasonable mix of programming tech-

niques, along with the usual ration of new commands.

Relocatable versus Non-relocatable Code

In chapter 13 I presented two print subroutines for the output of text to the 
screen or disk text ile. !e disadvantage of both routines is that they are not 
relocatable. To see what this means, consider the following program:

                1    ********************************

                2    *AL15-NON-RELOCATABLE PRINT DEMO

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    COUT     EQU  $FDED

                9    *

                10   *

0300: 20 0D 03  11   ENTRY    JSR  PRNT

                12   *

0303: 4C 0C 03  13   DONE     JMP  EXIT

                14   *

0306: D4 C5 D3  15   DATA     ASC  "TEST"

0309: D4

030A: 8D 00     16            HEX  8D00

                17   *

030C: 60        18   EXIT     RTS

                19   *

030D: A2 00     20   PRNT     LDX  #$00

030F: BD 06 03  21   LOOP     LDA  DATA,X

0312: F0 EF     22            BEQ  DONE

0314: 20 ED FD  23            JSR  COUT

0317: E8        24            INX

]
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0318: D0 F5     25            BNE  LOOP

031A: 60        26   FIN      RTS

!is program, as written, can run only at the location speciied by theORG 
statement, in this case$300. !us it is callednon-relocatable code. Machine code 
becomes non-relocatable through the use of any statements which involve abso-
lute addressing. !e most common examples are theJMP andJSR commands, 
and the use of data statements, usually in print routines.
!e irst statement of this type occurs on line 11. !e JSR to PRNT ($30D) will 

work only so long asPRNT is at$30D. If the routine were to be loaded into mem-
ory at$400 (instead of$300), the routine would take theJSR to a block of 
nonexistent code at $30D.
Likewise, the JMP on line 13 has the same diiculty, as does the DATA,X state-

ment on line 21. Any attempt to run the code at an address other than$300 will 
result in disaster.
It should be noted, however, that not allJSRs andJMPs are universally trou-

blesome. !eJSR COUT ($FDED) will execute properly no matter where the object 
code is located since the reference is to a location outside of the object code 
block.
!e general rule then is that any code which makes reference to absolute 

addresses within itself will not be relocatable, whereas code that does not sufer 
from this limitation can be run anywhere in memory.
!e problem of relocatability may seem slight since any given routine is 

usually designed to be put at a deinite location (usually either at$300 or at the 
top of memory) and then protected via theApplesotHIMEM: statement. How-
ever, as the number of routines you use increases, you will encounter more and 
more conlicts between routines originally written to occupy the same memory 
ranges. In addition, it also is occasionally desirable to directly append machine 
code to the end of Applesot programs, where they will loat up and down in 
memory at the end of the BASIC portion of the listing, being automatically 
moved as lines are added or deleted.
For these reasons, it is better in the long run to write code to run anywhere 

in memory when possible, thus avoiding future headaches about where to put 
everything.
!e remainder of this chapter will discuss the various ways of avoiding the 

use ofabsolute addressing, thus creating code that can be used anywhere in 
memory regardless of the ORG statement used at assembly time.

JMP Commands

!is is an example of a common use of theJMP command to jump over a 
range of memory, here represented by the ill section. At the destination,EXPT, 
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theBELL routine is called as a trivial example of where a subroutine might be 
executed.

                1    ********************************

                2    * AL15-NON-RELOCATABLE JMP DEMO*

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    BELL     EQU  $FF3A

                9    *

                10   *

0300: 4C 04 03  11   ENTRY    JMP  EXPT

                12   *

0303: EA        13   FILL     NOP

                14   *

0304: 20 3A FF  15   EXPT     JSR  BELL

                16   *

0307: 60        17   DONE     RTS

An alternative to this is the use of aforced branch statement, as shown in 
this example:

                1    ********************************

                2    *    AL15-RELOCATABLE JMP 1    *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    BELL     EQU  $FF3A

                9    *

                10   *

0300: 18        11   ENTRY    CLC

0301: 90 01     12            BCC  EXPT

                13   *

0303: EA        14   FILL     NOP

                15   *

0304: 20 3A FF  16   EXPT     JSR  BELL

                17   *

0307: 60        18   DONE     RTS

Notice that by clearing the carry and then immediately executing theBCC, 
the same result is obtained as when theJMP command was used in the earlier 
listing.
!e main caution to observe is that the forced branch cannot be made over 

a distance of greater than 127 bytes, although most assemblers will give an error 
at assembly time if this is attempted. In addition, since the carry is cleared to 
force the branch, routines that set or clear the carry to indicate certain condi-
tions may have compatibility problems with this approach.

]
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Both limitations can be solved by slight modiications to this listing. !e 
irst is by using theoverlow lag, oten represented by a V. You should remem-
ber that theStatus Register of the 6502 contains certain lags that are condi-
tioned by various operations. !ese lags can be checked and appropriate 
responses can be made depending on their status. Examples of lags already cov-
ered are the carry (C) and zero (Z) lags.
!e overlow lag is another bit in the Status Register which is set either by 

the BIT command (the overlow lag is set to bit 6 of the memory location), or by 
an ADC command. !e overlow will be set whenever there is a carry from bit 6 to 
bit 7 as a result of an ADC operation.
!ese details are mentioned only in passing at this point, and you need not 

be concerned if it is not entirely clear. !e main reason for bringing it up is that 
the overlow lag is used much more infrequently than the carry, and thus it is a 
slightly more desirable lag to use when creating a forced branch.
To make jumps over distances greater than 127 bytes, astepping technique 

can be used. !is is done by creating a series of the branch commands through-
out the code to facilitate the program low from one part to another. It is gener-
ally not too diicult to ind breaks between routines to insert the branch 
statements required for the stepping action. Both techniques are illustrated here:

                1    ********************************

                2    *    AL15-RELOCATABLE JMP 2    *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    BELL     EQU  $FF3A

                9    *

                10   *

0300: B8        11   ENTRY    CLV

0301: 50 01     12            BVC  STEP

                13   *

0303: EA        14   FILL1    NOP

                15   *

0304: 50 01     16   STEP     BVC  EXPT

                17   *

0306: EA        18   FILL2    NOP

                19   *

0307: 20 3A FF  20   EXPT     JSR  BELL

                21   *

030A: 60        22   DONE     RTS

Although only one step is shown here, any number may be used, depending 
on what is needed to span the required distance.
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Determining Code Location

Solving theJMP problem is only the beginning of the task. Very oten it is 
important to know just where in memory the code is currently being run. One 
example of this is the code present on the disk controller cards. Since the card 
can be put in one of seven slots, and since each slot occupies a unique memory 
range, some technique is required to answer the question, “Where are we?”

                1    ********************************

                2    *       AL15-LOCATOR 1         *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    PTR      EQU  $06

                9    RTRN     EQU  $FF58

                10   STCK     EQU  $100

                11   *

0300: 20 58 FF  12   ENTRY    JSR  RTRN

0303: BA        13            TSX

0304: BD 00 01  14            LDA  STCK,X

0307: 85 07     15            STA  PTR+1

0309: CA        16            DEX

030A: BD 00 01  17            LDA  STCK,X

030D: 85 06     18            STA  PTR

030F: 60        19   DONE     RTS

!e success of this routine is based entirely on both the predictable nature 
of the stack and its function when a JSR is executed.
!e stack was briely described in chapter nine. At this point a little greater 

detail is necessary. !e stack is a reserved part of memory from$100 to$1FF. It 
is used as a temporary holding bufer for various kinds of information required 
by the 6502 microprocessor. Information put on the stack is always retrieved in 
the opposite order from which it was deposited. !is is oten calledLIFO (“Last-
In First-Out”). !e analogy of a stack of plates was used earlier, but the time has 
come to examine what actually occurs.
Whenever aJSR is done, the stack is used to hold the address to which the 

return should be made when the expectedRTS is encountered. !e diagrams on 
the next page illustrate this. Location$FF58 is a simpleRTS in the Monitor ROM 
which will be used to set up adummy return address. Before theJSR, the Stack 
Pointer is set to some arbitrary position in the stack. Upon executing the JSR, the 
return address of$302 is put on the stack and the Stack Pointer is decremented 
two bytes. Note that the stack stores the data from the top down, advancing the 
pointer as new data is added. When theRTS is encountered (immediately in the 
case of$FF58), the Stack Pointer is returned to its original position and the 
return made.

]
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Before JSR $FF58 During JSR $FF58 Ater RTS from $FF58

!e arrow points to the current Stack 

Pointer S, which is a one-byte pointer 

to the next available position on the 

stack (not the last stored byte).

Note that the address stored,$302, is the last byte of theJSR command–or, 
put another way, one byte less than the address of the next immediate command 
following the JSR.
Upon return from theJSR, the Stack Pointer is transferred to the X-Register 

with theTSX command on line 13. Because the Stack Pointer is at the next avail-
able byte on the stack, this will also point at the high-order byte of the return 
address still let in memory there. !is is retrieved with theLDA STCK,X on line 
15 and put in a temporary pointer locationPTR+1 ($07). !e X-Register is then 
decremented and the low-order byte retrieved and put in PTR ($06).
!e inalRTS of the routine returns control to the caller, at which point$06, 

$07 may be examined to verify the successful determination of the address$302. 
You may wish to run this routine at several diferent locations in memory to ver-
ify that in each case PTR is properly set to ENTRY+2. What you have then is a short 
routine which can determine where in memory it is currently being run. !e 
only disadvantage to this routine is that the high-order byte is retrieved irst, 
thus complicating things if we want to add some ofset value to the return 
address. !e desirability of this will be shown shortly. In the meantime, consider 
this altered version of the Locator 1 routine:

                1    ********************************

                2    *       AL15-LOCATOR 2         *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    PTR      EQU  $06

                9    RTRN     EQU  $FF58

                10   STCK     EQU  $100
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                11   *

0300: 20 58 FF  12   ENTRY    JSR  RTRN

0303: BA        13            TSX

0304: CA        14            DEX

0305: BD 00 01  15            LDA  STCK,X

0308: 85 06     16            STA  PTR

030A: E8        17            INX

030B: BD 00 01  18            LDA  STCK,X

030E: 85 07     19            STA  PTR+1

0310: 60        20   DONE     RTS

What I’ve done here is decrement the X-Register (line 14) immediately ater 
theTSX statement so that the low-order byte of the address can be retrieved irst. 
!eINX is then later used to go back and get the high-order byte. !e advantage 
of this system is that it makes adding an ofset much easier.
To show what we can now do, look at this revised print routine:

                1    ********************************

                2    *   AL15-RELOCATABLE PRINT 1   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    PTR      EQU  $06

                9    COUT     EQU  $FDED

                10   RTRN     EQU  $FF58

                11   STCK     EQU  $100

                12   *

                13   *

0300: 20 58 FF  14   ENTRY    JSR  RTRN

0303: B8        15            CLV

0304: 50 06     16            BVC  CONT

                17   *

0306: D4 C5 D3  18   DATA     ASC  "TEST"

0309: D4

030A: 8D 00     19            HEX  8D00

                20   *

030C: BA        21   CONT     TSX

030D: CA        22            DEX

030E: 18        23            CLC

030F: BD 00 01  24            LDA  STCK,X

0312: 69 04     25            ADC  #$04

0314: 85 06     26            STA  PTR

0316: E8        27            INX

0317: BD 00 01  28            LDA  STCK,X

031A: 69 00     29            ADC  #$00

031C: 85 07     30            STA  PTR+1

                31   *

031E: A0 00     32   PRNT     LDY  #$00

0320: B1 06     33   LOOP     LDA  (PTR),Y

0322: F0 06     34            BEQ  FIN

0324: 20 ED FD  35            JSR  COUT

0327: C8        36            INY

]
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0328: D0 F6     37            BNE  LOOP       ; ALWAYS UNTIL 255

                38   *

032A: 60        39   FIN      RTS

032B: 28        40            CHK

Ater calling the dummy return statement, aforced branch over the data 
section is done. !is will have no efect on the address remaining on the stack. 
AtCONT, we take the general procedure used in Locator 2 and add theCLC and 
ADC statements needed to add an ofset to the address on the stack. What we 
need is the starting address of the ASCII data to be printed. Since the data starts 
at$306 and the address on the stack is$302 (see earlier examples) the ofset 
needed is #$04.
!is may seem arbitrary but the value to add will always be#$04 if you 

always do theCLV,BVC $XXXX branch immediately ater the return. !en follow 
that with the data to be printed.
Once the actual address of the ASCII data has been calculated, it is printed 

in the PRNT section by use of the indexed pointer at LOOP.

JSR Simulations

You might get the impression from the above example that a tremendous 
code expansion takes place to accomplish the relocatability of a program. !is is 
somewhat true, but it depends on how you write the program. !e use ofCLV, 
BVC $XXXX takes only three bytes where theJMP $XXXX it was replacing also used 
three bytes.
!e stack operations just discussed take a small number of bytes to imple-

ment but could become rather large if used many times. What is needed is a way 
to put the stack operations in a subroutine. Unfortunately,JSR is one of the non-
relocatable commands.

                1    ********************************

                2    * AL15-NON-RELOCATABLE JSR DEMO*

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    BELL     EQU  $FF3A

                9    *

                10   *

0300: 20 04 03  11   ENTRY    JSR  TEST

                12   *

0303: 60        13   DONE     RTS

                14   *

0304: EA        15   TEST     NOP

                16   *

0305: 20 3A FF  17   EXPT     JSR  BELL

                18   *

0308: 60        19   FIN      RTS
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                20   *

                21   * WILL RETURN TO DONE

                22   *

!is routine is very similar to the non-relocatableJMP demo presented ear-
lier, with the exception that the call to theBELL routine has been made a subrou-
tine itself, headed by the labelTEST. In this listing,TEST is followed by a dummy 
NOP statement, but we’ll ill that in shortly.
!is program, as written, can run only at the address speciied in theORG 

statement. Here is an improved version, using a simulation of the JSR command:

                1    ********************************

                2    *AL15-RELOCATABLE JSR SIMULATION

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    PTR      EQU  $06

                9    BELL     EQU  $FF3A

                10   RTRN     EQU  $FF58

                11   STCK     EQU  $100

                12   *

                13   *

0300: 20 58 FF  14   ENTRY    JSR  RTRN

0303: B8        15            CLV

0304: 50 01     16            BVC  TEST

                17   *

0306: 60        18   DONE     RTS

                19   *

0307: BA        20   TEST     TSX

0308: CA        21            DEX

0309: 18        22            CLC

030A: BD 00 01  23            LDA  STCK,X

030D: 69 03     24            ADC  #$03

030F: 85 06     25            STA  PTR

0311: E8        26            INX

0312: BD 00 01  27            LDA  STCK,X

0315: 69 00     28            ADC  #$00

0317: 85 07     29            STA  PTR+1

                30   *

0319: 20 3A FF  31   EXPT     JSR  BELL

                32   *

031C: A5 07     33   FIX      LDA  PTR+1

031E: 48        34            PHA

031F: A5 06     35            LDA  PTR

0321: 48        36            PHA

0322: 60        37   FIN      RTS

                38   *

                39   * WILL RETURN TO DONE

                40   *

!is program is very similar to the Print 1 program, with two exceptions. 
First,#$03 is added instead of#$04 to the address on the stack. !is is a subtle 

]
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point worth mentioning, and you should review the listings until you feel com-
fortable with what is being done. Remember that the return address for a 
JSR/RTS is alwaysone less than the address you want to return to. In the case of 
theDATA statement, we needed to know the exact address of the irst character of 
the string to be printed. Hence the diference in the ofset value used in each 
case.
Once the ofset has been added and the proper return address calculated, the 

FIX section uses thePHA commands to put these on the stack. !us when theRTS 
is encountered, the program returns toDONE. Notice that we have seemingly vio-
lated two general rules of assembly-language programming. !e irst is using the 
PHA commands without correspondingPLA statements, and the second is the use 
of an RTS without a calling JSR.
Upon further thought, however, it should become apparent that the two 

counteracted each other, and that an RTS is really equivalent to two PLAs.
!e converse of this is using twoPLAs within a routine called by aJSR to 

avoid returning to the calling address. !is is equivalent to using aPOP com-
mand in a BASIC subroutine called by a GOSUB.
Having thus simulated theJSR command, let’s put it all together into a 

rewrite of the Print 1 routine that uses calls to subroutines to minimize the extra 
code required to make the routine relocatable:

                1    ********************************

                2    *   AL15-RELOCATABLE PRINT 2   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    PTR      EQU  $06

                9    COUT     EQU  $FDED

                10   RTRN     EQU  $FF58

                11   STCK     EQU  $100

                12   *

                13   *

0300: 20 58 FF  14   ENTRY    JSR  RTRN

0303: B8        15            CLV

0304: 50 15     16            BVC  PRINT

                17   *

0306: D4 C5 D3  18   DATA1    ASC  "TEST1"

0309: D4 B1

030B: 8D 00     19            HEX  8D00

                20   *

030D: 20 58 FF  21   L2       JSR  RTRN

0310: B8        22            CLV

0311: 50 08     23            BVC  PRINT

                24   *

0313: D4 C5 D3  25   DATA2    ASC  "TEST2"

0316: D4 B2

0318: 8D 00     26            HEX  8D00



15. Special Programming Techniques 137

                27   *

031A: 60        28   DONE     RTS

                29   *

031B: BA        30   PRINT    TSX

031C: CA        31            DEX

031D: 18        32            CLC

031E: BD 00 01  33            LDA  STCK,X

0321: 69 04     34            ADC  #$04

0323: 85 06     35            STA  PTR

0325: E8        36            INX

0326: BD 00 01  37            LDA  STCK,X

0329: 69 00     38            ADC  #$00

032B: 85 07     39            STA  PTR+1

                40   *

032D: A0 00     41   PRNT     LDY  #$00

032F: B1 06     42   LOOP     LDA  (PTR),Y

0331: F0 06     43            BEQ  FIX

0333: 20 ED FD  44            JSR  COUT

0336: C8        45            INY

0337: D0 F6     46            BNE  LOOP       ; ALWAYS UNTIL 255

                47   *

0339: 18        48   FIX      CLC

033A: 98        49            TYA

033B: 65 06     50            ADC  PTR

033D: 85 06     51            STA  PTR

033F: A5 07     52            LDA  PTR+1

0341: 69 00     53            ADC  #$00

0343: 48        54            PHA

0344: A5 06     55            LDA  PTR

0346: 48        56            PHA

0347: 60        57   FIN      RTS

                58   *

                59   * WILL RTS TO L2/DONE

                60   *

0348: AC        61            CHK

!is routine has the advantage of allowing thePRINT statements to be used 
very much as though they were in the non-relocatable version given in chapter 
13. !e extra bytes required for the stack calculations are conined to one place, 
and there are only three extra bytes per line to be printed, compared to the chap-
ter 13 routine.
!e return to the end of each printed string is accomplished by using the Y-

Register inFIX. At entry toFIX, the Y-Register will hold the length of the string 
printed, which is then added toPTR to calculate the proper address to return to. 
Again we use the two PHAs followed by an RTS to accomplish the return.

Self-Modifying Code

Ah, here is an area to make the strongest heart quiver–the idea that a pro-
gram rewrites itself to accomplish its given task. !e possibilities are endless, but 
for now we’ll just look at a way of coping with statements likeLDA $ADDR,X. It 

]
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was this type of statement in the very irst program of this chapter that contrib-
uted to its non-relocatability. Here’s the new mystery program:

                1    ********************************

                2    *   AL15-RELOCATABLE PRINT 3   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    PTR      EQU  $06

                9    COUT     EQU  $FDED

                10   RTRN     EQU  $FF58

                11   STCK     EQU  $100

                12   *

                13   *

0300: 20 58 FF  14   ENTRY    JSR  RTRN

0303: B8        15            CLV

0304: 50 14     16            BVC  PRINT

                17   *

0306: D4 C5 D3  18   DATA     ASC  "TEST"

0309: D4

030A: 8D 00     19            HEX  8D00

                20   *

030C: A2 00     21   PRNT     LDX  #$00

030E: BD 06 03  22   LOOP     LDA  DATA,X

0311: F0 06     23            BEQ  DONE

0313: 20 ED FD  24            JSR  COUT

0316: E8        25            INX

0317: D0 F5     26            BNE  LOOP       ; ALWAYS UNTIL 255

                27   *

0319: 60        28   DONE     RTS

                29   *

031A: BA        30   PRINT    TSX

031B: CA        31            DEX

031C: 18        32            CLC

031D: BD 00 01  33            LDA  STCK,X

0320: 69 04     34            ADC  #$04

0322: 85 06     35            STA  PTR

0324: E8        36            INX

0325: BD 00 01  37            LDA  STCK,X

0328: 69 00     38            ADC  #$00

032A: 85 07     39            STA  PTR+1

                40   *

                41   *

032C: A0 09     42   FIX      LDY  #$09       ; LEN OF $ + 5

032E: A5 06     43            LDA  PTR

0330: 91 06     44            STA  (PTR),Y

0332: C8        45            INY

0333: A5 07     46            LDA  PTR+1

0335: 91 06     47            STA  (PTR),Y    ; REWRITE DATA ADDR

0337: B8        48            CLV

0338: 50 D2     49            BVC  PRNT

                50   *

033A: 4E        51            CHK
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!is program will actually rewrite the address present on line 22 for theLDA 
DATA,X statement. !e method uses the address on the stack to calculate the 
address for the beginning of the ASCII string to be printed. It is this address that 
we will want eventually to put into the code at$30F,$310 to rewrite the data 
statement.
Ater calculating the address in lines 30−39, the result is stored inPTR. !e 

FIX section then adds the length of the printed string plus ive and uses this as 
the Y-Register ofset to inally point to$30F. !e low- and high-order bytes are 
then written to the code and a return done to the actual PRNT routine.
!is example comes with many cautions. !e value on line 42 must be 

appropriate to the length of the string being printed. Also, the order of the 
ENTRY,DATA, andPRNT routines was deliberately chosen to make the rewrite as 
easy as possible. Extreme care must be taken whenever constructing a program 
that alters itself, but the results can be very powerful.
If you are inclined to pursue this, study this example well until you are very 

sure why each step was done. To verify its versatility, you should assemble the 
code for this example and then run it at several diferent memory locations. 
Ater each run, list the code from the Monitor and see how the statement on line 
22 has been rewritten. It’s really quite fascinating!

Indirect Jumps

To round out this chapter, one more technique will be discussed. Although 
the stepping method using forced branching can be used to span large distances, 
it can get rather inconvenient to have to keep inserting stepping points through-
out your code. An alternate technique is to use the indirect JMP command.
In the indirect jump, a two-byte pointer is created which indicates where the 

jump should be made to. !e added advantage of this command is that the 
pointer need not be created on the zero page, which already is in high demand 
for numerous other uses.1 !e basic syntax for the indirect jump is:

0300: 6C FF FF  99   J1       JMP  ($FFFF)

Here is a sample program showing how this can be combined with the stack 
operation to create a relocatable jump command:

                1    ********************************

                2    *    AL15-RELOCATABLE JMP 3    *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    PTR      EQU  $06

                9    BELL     EQU  $FF3A

1[CT] See Appendix F for the list of available zero-page locations.

]
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                10   RTRN     EQU  $FF58

                11   STCK     EQU  $100

                12   *

                13   *

0300: 20 58 FF  14   ENTRY    JSR  RTRN

                15   *

0303: BA        16   CALC     TSX

0304: CA        17            DEX

0305: 18        18            CLC

0306: BD 00 01  19            LDA  STCK,X

0309: 69 17     20            ADC  #$17

030B: 85 06     21            STA  PTR

030D: E8        22            INX

030E: BD 00 01  23            LDA  STCK,X

0311: 69 00     24            ADC  #$00

0313: 85 07     25            STA  PTR+1

0315: 6C 06 00  26            JMP  (PTR)      ; TO 'EXPT'

                27   *

0318: EA        28   FILL     NOP

                29   *

0319: 20 3A FF  30   EXPT     JSR  BELL

                31   *

031C: 60        32   DONE     RTS

!e system is fairly simple, basically just using the stack to get a base address 
and then adding whatever the distance is between the end of theJSR RTRN state-
ment and the destination of theJMP(). As with some of the other systems, 
though, this distance will change as code is added or deleted between the two 
points. You may thus have to change the values on lines 20 and 24 rather fre-
quently to keep up with your code changes.
However, it does avoid the problems associated with many stepping points 

sprinkled throughout your code, as would be necessary using the other alterna-
tive.
!ere is one bug in the use of the indirect jump that should be mentioned. It 

is present in the 6502 microprocessor itself, and occurs whenever the indirect 
pointer straddles a page boundary.2 For example, if you used the statementJMP 
($06), the destination would be retrieved from locations$06 and$07. However, 
if you were to useJMP ($3FF), the destination would be retrieved from$3FF and 
$300. !e high-order byte is not properly incremented by the 6502. !is is usu-
ally not a concern, though, since there are generally many alternate locations for 
the destination pointer.
In conclusion then, certain techniques can be used to produce code which is 

not restricted to running at a particular address in memory. Although a bit 
harder to construct initially, and slightly larger in terms of inal memory require-
ments, the product is generally much more versatile in its applications.

2[CT] !is bug was ixed in the 65C02.
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One useful application of assembly-language programming is in the 
enhancement of your existing Applesot programs. Some people are inclined to 
write all their programs in assembly language, but it may be more eicient on 
occasion to write “hybrids”–programs that are a combination of Applesot and 
assembly language. In this way, particular functions can be done by the language 
best suited to the particular task.
If you had to write a short program to store ten names, it would be best to 

do it in Applesot:

10  FOR I = 1 TO 10

20  INPUT N$(I)

30  NEXT I

!is is much simpler than the equivalent program in assembly language. In 
cases where neither speed nor program size is a concern, Applesot is a com-
pletely acceptable solution.
However, if you had to sort a thousand names, speed would become a con-

cern and it would be worth considering whether the job could best be done in 
assembly language.
If you have ever done aCALL in one of your BASIC programs, then you have 

already combined Applesot with machine code. For example:

10  HOME

20  PRINT "THIS IS A TEST"

30  PRINT “THIS IS STILL A TEST”

40  GET A$

50  VTAB 1: HTAB 5: CALL -958

In this program, a line of text is printed on the screen. Ater you press a key, 
all text on the screen ater the irst word “THIS” is cleared.
Now although it might be possible to accomplish the same efect in Apple-

sot by printing many blank lines, it would not be as fast or as eicient in terms 
of code as the CALL -958.
In executing the above program, the Applesot interpreter goes along carry-

ing out your instructions until it reaches theCALL statement. At that point aJSR 
is done to the address indicated by theCALL. When the inalRTS is encountered, 

]
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control returns to the BASIC program. In between, however, you can do any-
thing you’d like!

CALLing routines is hardly complicated enough to warrant an entire chapter 
on the subject. !e real questions are, how do you pass data back and forth 
between the two programs, and how can the problem of handling that data be 
made easier for the assembly-language program?

Simple Interfacing

!e easiest way to pass data to an assembly-language routine is simply to 
POKE the appropriate values into unused memory locations and then retrieve 
them when you get to your assembly-language routine. To illustrate this, let’s 
resurrect the tone routine from chapter eight.
To use this, assemble the code and place the inal object code at$300. !en 

enter the accompanying Applesot program.

                1    ********************************

                2    *    AL16-SOUND ROUTINE 3A     *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    *

                9    PITCH    EQU  $06

                10   DURATION EQU  $07

                11   SPKR     EQU  $C030

                12   *

0300: A6 07     13   ENTRY    LDX  DURATION

0302: A4 06     14   LOOP     LDY  PITCH

0304: AD 30 C0  15            LDA  SPKR

0307: 88        16   DELAY    DEY

0308: D0 FD     17            BNE  DELAY

030A: CA        18   DRTN     DEX

030B: D0 F5     19            BNE  LOOP

030D: 60        20   EXIT     RTS

!is Applesot program is used to call it:

10  INPUT "PITCH, DURATION? ";P,D

20  POKE 6,P: POKE 7,D

30  CALL 768

40  PRINT

50  GOTO 10

!e Applesot program works by irst requesting values for the pitch and 
duration of the tone from the user. !ese values are thenPOKEd into locations 6 
and 7 and the tone routineCALLed. !e tone routine uses these values to pro-
duce the desired sound and then returns to theCALLing program for another 
round.
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!is technique works ine for limited applications. Having toPOKE all of the 
desired parameters into various corners of memory is not lexible, however, and 
strings are nearly impossible. !ere must be an alternative.

!e Internal Structure of Applesot

If you’ve been following along, you’ve no doubt igured out by now that I’m 
a great believer in using routines already present in the Apple, where possible, to 
accomplish a particular task. Since routines already exist in Applesot for pro-
cessing variables directly, why not use them?
To answer this, we must take a brief detour to outline how Applesot actu-

ally “runs” a program. Consider this simple program:

10  HOME: PRINT "HELLO"

20  END

Ater you’ve entered this into the computer, typingLIST should reproduce 
the listing given here. An interesting question arises: “How does the computer 
actually store, and then later execute, this program?”
To answer that, we’ll have to go to the Monitor and examine the program 

data directly.
!e irst question to answer is, exactly where in the computer is the pro-

gram stored? !is can be found by entering the Monitor and typing in: 67 68 
AF B0 and pressing <RETURN>.
!e computer should respond with:

0067- 01

0068- 08

00AF- 18

00B0- 08

!e irst pair of numbers is the pointer for the program beginning–bytes 
reversed of course. !ey indicate that the program starts at$801. !e second 
pair is the program end pointer, and they show that it ends at$818. Using this 
information let’s examine the program data by typing in:

801L

You should get:

0801-   10 08       BPL   $080B

0803-   0A          ASL

0804-   00          BRK

0805-   97          ???

0806-   3A          ???

0807-   BA          TSX

0808-   22          ???

0809-   48          PHA

080A-   45 4C       EOR   $4C

]
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080C-   4C 4F 22    JMP   $224F

080F-   00          BRK

0810-   16 08       ASL   $08,X

0812-   14          ???

0813-   00          BRK

0814-   80          ???

0815-   00          BRK

0816-   00          BRK

0817-   00          BRK

0818-   F9 A2 00    SBC   $00A2,Y

081B-   86 FE       STX   $FE

!is obviously is not directly executable code. Now type in:

801.818

!is will give:

0801- 10 08 0A 00 97 3A BA

0808- 22 48 45 4C 4C 4F 22 00

0810- 16 08 14 00 80 00 00 00

0818- 8C

To understand this, let’s break it down one section at a time. When the 
Apple stores a line of BASIC, it encodes each keyword as a single-bytetoken. 
!us the wordPRINT is stored as a$BA. !is does wonders for conserving mem-
ory. In addition, there is some overhead associated with packaging the line: a 
byte to signify the end of the line, a few bytes at the beginning of each line to 
hold information related to its length, and the line number itself.
To be more speciic:

0801- 10 08 0A 00 97 3A BA

0808- 22 48 45 4C 4C 4F 22 00

0810- 16 08 14 00 80 00 00 00

0818- 8C

!e irst two bytes of every line of an Applesot program are anindex to the 
address of the beginning of the next line. At$801, $802 we ind the address$810 
(bytes reversed). !is is where line 20 starts. At$810 we ind the address$816. 
!is is where the next line would start if there were one. !e double$00 at$816 
tells Applesot that this is the end of the BASIC listing. It is important to realize 
that the$00 00 end of the Applesot program usually,but not always, corre-
sponds to the contents of$AF,$B0. It is possible to hide machine-language code 
between the end of the line data and the actual end as indicated by $AF, $B0–but 
more on that later.
!e next information within a line is the line number itself:

0801- 10 08 0A 00 97 3A BA

0808- 22 48 45 4C 4C 4F 22 00

0810- 16 08 14 00 80 00 00 00

0818- 8C
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!e$0A 00 is the two-byte form of the decimal number 10, the line number 
of the irst line of the Applesot program. Likewise, the$14 00 is the data for the 
line number 20. !e bytes are again reversed. Ater these four bytes we see the 
actual tokens for each line.

0801- 10 08 0A 00 97 3A BA

0808- 22 48 45 4C 4C 4F 22 00

0810- 16 08 14 00 80 00 00 00

0818- 8C

All bytes with a value of$80 or greater are Applesot keywords in token 
form. Bytes less than$80 represent normal ASCII data (letters of the alphabet, 
for example). Examining the data here we see a$97 followed by$3A.$97 is the 
token forHOME, and$3A the colon. Next,$BA is the token forPRINT. !is is fol-
lowed by the quote ($22), the text forHELLO ($48 45 4C 4C 4F), and the closing 
quote ($22). Last of all, the $00 indicates the end of the line.
In line number twenty, the $80 is the token for END. As before, the line is ter-

minated with a 00.
When a program is executed, the interpreter scans through the data. Each 

time it encounters a token, such as thePRINT token, it looks up the value in a 
table to see what action should be taken. In the case ofPRINT, this would be to 
output the characters following the token, namely HELLO.
!is constant translation is the reason for the use of the terminterpreter for 

Applesot BASIC.
Machine code, on the other hand, is directly executable by the 6502 micro-

processor and hence is much faster, since no table lookups are required.
In Applesot, a syntax error is generated whenever a series of tokens is 

encountered that is not consistent with what the interpreter expects to ind.

Passing Variables

So, back to the point of all this. !e key to passing variables to your own 
assembly-language routines is to work with Applesot in terms of routines 
already present in the machine. One of the simplest methods was described in 
chapter 13, wherein a given variable is the very irst one deined in your program 
(see the input routine). !is is okay, but rather restrictive. A better way is to 
name the variable you’re dealing with right in the CALL statement.
!e important points here are two components of the Applesot interpreter: 

TXTPTR and CHRGET (and related routines).
TXTPTR is the two-byte pointer ($B8, $B9) that points to the next token to be 

analyzed.CHRGET ($B1) is a very short routine that resides on the zero page and 
that reads a given token into the Accumulator. In addition to its occasionally 
being called directly, many other routines useCHRGET to process a string of data 
in an Applesot program line.

]



148 Assembly Lines

Here then is the revised tone routine :

                1    ********************************

                2    *    AL16-SOUND ROUTINE 3B     *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    *

                9    PITCH    EQU  $06

                10   DURATION EQU  $07

                11   SPKR     EQU  $C030

                12   *

                13   COMBYTE  EQU  $E74C

                14   *

0300: 20 4C E7  15   ENTRY    JSR  COMBYTE

0303: 86 06     16            STX  PITCH

0305: 20 4C E7  17            JSR  COMBYTE

0308: 86 07     18            STX  DURATION

                19   *

030A: A6 07     20   BEGIN    LDX  DURATION

030C: A4 06     21   LOOP     LDY  PITCH

030E: AD 30 C0  22            LDA  SPKR

0311: 88        23   DELAY    DEY

0312: D0 FD     24            BNE  DELAY

0314: CA        25   DRTN     DEX

0315: D0 F5     26            BNE  LOOP

0317: 60        27   EXIT     RTS

!e Applesot calling program would then be revised to read:

10  INPUT “PITCH DURATION? “;P,D

20  CALL 768,P,D

30  PRINT

40  GOTO 10

!is is a much more elegant way of passing the values and also requires no 
miscellaneous memory locations as such (although for purposes of simplicity the 
tone routine itself still uses the same zero-page locations.)
!e secret to the new technique is the use of the routineCOMBYTE ($E74C). 

!is is an Applesot routine which checks for a comma and then returns a value 
between $00 and $FF (0−255) in the X-Register.
It is normally used for evaluatingPOKEs,HCOLOR=, and so forth, but does the 

job very nicely here. It also leavesTXTPTR pointing to the end of the line (or to a 
colon if there was one) by usingCHRGET to advanceTXTPTR by the number of 
characters following each comma. Note also that any legal expression–such as 
(X − 5)/2–can be used to pass the data.
To verify the importance of managing TXTPTR, try putting a simple RTS ($60) 

at$300. Calling this you will get aSYNTAX ERROR, since upon return Applesot’s 
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TXTPTR will be on the irst comma ater theCALL, and the phrase “,P,D” is not a 
legal Applesot expression.
What about two-byte quantities? To deal with them, a number of other rou-

tines are used. For example, this routine will do the equivalent of a two-byte 
pointerPOKE. Suppose for instance you wanted to store the bytes for the address 
$9600 at locations $1000, $1001. Normally in Applesot you would do it like this:

*

*

50 POKE 4096,0: POKE 4097,150

*

*

where 4096 and 4097 are the decimal equivalents of$1000 and$1001 and 0 and 
150 are the low-order and high-order bytes for the address$9600 ($96 = 150, 
$00 = 0).
A more convenient approach might be like this:

*

*

50 CALL 768, 4096, 38400

*

*

or perhaps:

*

*

50 CALL 768, A, V

*

*

!e routine for this would be:

                1    ********************************

                2    *  AL16-POINTER SETUP ROUTINE  *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $300

                7             ORG  $300

                8    *

                9    CHKCOM   EQU  $DEBE

                10   FRMNUM   EQU  $DD67

                11   GETADR   EQU  $E752

                12   LINNUM   EQU  $50        ; ($50,$51)

                13   *

                14   PTR      EQU  $3C

                15   *

0300: 20 BE DE  16   ENTRY    JSR  CHKCOM

0303: 20 67 DD  17            JSR  FRMNUM     ; EVAL FORMULA

0306: 20 52 E7  18            JSR  GETADR     ; PUT FAC INTO LINNUM

0309: A5 50     19            LDA  LINNUM

]
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030B: 85 3C     20            STA  PTR

030D: A5 51     21            LDA  LINNUM+1

030F: 85 3D     22            STA  PTR+1

                23   *

0311: 20 BE DE  24            JSR  CHKCOM

0314: 20 67 DD  25            JSR  FRMNUM

0317: 20 52 E7  26            JSR  GETADR

                27   *

031A: A0 00     28            LDY  #$00

031C: A5 50     29            LDA  LINNUM

031E: 91 3C     30            STA  (PTR),Y

0320: C8        31            INY

0321: A5 51     32            LDA  LINNUM+1

0323: 91 3C     33            STA  (PTR),Y

                34   *

0325: 60        35   DONE     RTS

0326: 09        36            CHK

!e special items in this routine includeCHKCOM, a syntax-checking routine 
that serves two purposes. First it veriies that a command follows theCALL 
address, and secondly it advancesTXTPTR to point to the irst byte of the expres-
sion immediately following the comma. If a comma is not found, aSYNTAX 
ERROR is generated.

FRMNUM is a routine that evaluates any expression and puts the real loat-
ing-point number result into Applesot’sloating-point Accumulator, usually 
calledFAC. !is is a six-byte pseudo register ($97−$9C) used to hold the loating-
point representation of a number. It includes such niceties as the exponential 
magnitude of the number and the equivalent of the digits of the logarithm of the 
number stored.
At this stage you’d have to be something of a masochist to want to deal with 

the number in its current form, so the next step is used to convert it into a two-
byte integer.

GETADR does this by putting the two-byte result intoLINNUM, LINNUM+1 ($50, 
$51).
Even if this is not exactly an in-depth explanation of all the most precise 

details of the operation, the bottom line is that the threeJSRs (CHKCOM,FRMNUM, 
and GETADR) will always result in the low-order and high-order bytes of whatever 
expression follows a comma being stored in LINNUM and LINNUM+1.
!ese simple subroutines should be quite adequate for many applications. 

Next chapter, however, we’ll look at string passing, some other useful routines, 
and how to pass data back to the CALLing Applesot program.
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In the previous chapter we began a discussion of how to pass variables back 
and forth between Applesot and assembly-language programs. !is chapter 
we’ll complete the discussion with more information about how all types of vari-
ables are handled and how data can be passed back to the calling Applesot pro-
gram.

Applesot Variables

!ere are six types of variables in Applesot BASIC. !ese arereal,integer, 
andstring variables, and their array counterparts. To understand fully how to 
use these variables we must irst take a moment to examine the diferences 
between them as well as how the variables are actually stored in the computer.
Real variables are number values between 1038 and −1038, which are very 

large positive and negative numbers. In addition, the values need not be whole 
numbers; a value such as 1.25 is allowed.Integer variables, on the other hand, are 
limited in magnitude to the range of −32767 to +32767. !ey are also limited to 
whole number values, such as 1, 2, 3, and so on. Values such as 1.25 are not 
allowed.
Real variables are indicated in BASIC by an alphabetic character (A toZ) fol-

lowed by a letter or number (A toZ or0 to9). Any characters ater the irst two 
are ignored when Applesot looks up the value for the variable. Integer variables 
are similar, but the name is suixed by a percent sign (%). !us A would repre-
sent the real variable, whereas A% would represent an integer variable.
When passing data such as a memory address or a single-byte value to put 

in memory, integer variables would be quite adequate and, additionally, would 
require no conversion in the assembly-language routine. However, it is generally 
more convenient to the BASIC programmer not to have to put the% sign in the 
variable name and, instead, to convert the value using the Applesot routine 
FRMNUM ($DD67) as described in the previous chapter. For the record, though, I 
will present an example shortly on how to retrieve an integer variable from a 
calling BASIC program.
String variables consist of a series of any legal ASCII characters, with a max-

imum length of 255 characters. Strings are indicated by a$ suix to the variable 
name.

]
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Any of these variables may be present either singly or in an array. Arrays are 
groupings of variables that use a common name and then a delimitingsubscript 
to identify each individual element. Array variables are indicated by a pair of 
parentheses following the variable name between which a number or expression 
may be used to specify the desired element.
You probably are already somewhat familiar with the general points men-

tioned so far; they’re raised not so much to teach you about Applesot variable 
types as such but rather to set the stage for what is to follow, namely how each of 
these variable types is stored within the memory of the Apple computer.

Memory Maps

In chapter one we presented a graphic representation of the memory usage 
of the computer. We’d like to revive the topic in the interest of our current sub-
ject.
Amemory map is used to show the relative placement of data within the 

available memory locations in the computer. Recall that there are a total of 
65536 locations available, which we identify with hexadecimal addresses of 
$0000 to $FFFF.
!e chart in Table 17-1 shows a typical Apple memory map, with DOS 

booted and an arbitrary Applesot program in memory.
In previous chapters, the areas shown have been described in varying 

degrees of detail. You’ll recall that the area from$C000 to$CFFF is reserved for 
the interface card addressing, and that Applesot BASIC is stored in ROM begin-
ning at $D000. !e Monitor ROM begins at $F800.
A normal Applesot program starts at$800, with the highest available 

address usually just below$9600, which is identiied with the lower boundary of 
the Disk Operating System (DOS).
!e area from$300 to$3CF is available for user assembly-language pro-

grams.$3D0 to$3FF is reserved for Apple system vectors, such as the DOS entry 
vectors. Zero page, the stack, and the input bufer also have been discussed in 
some detail.
Since our main concern is in the area of Applesot variables, let’s consider a 

revised map emphasizing Applesot programs.
Table 17-2 shows that when an Applesot program isRUN, simple (non-ar-

ray) variables are placed immediately ater the end of the BASIC program, fol-

$00 $100 $200 $300 $400 $800 ... $9600 $C000 $D000 $D800

Zero

Page
Stack

Input

Bufer

User

Page

Screen

Display

FP

Program
Free DOS Slots

FP

BASIC

F8

ROM

Table 17-1: Apple Memory Map
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lowed by the array variables. Because the data for each string variable is ever-
changing in length, string data is stored dynamically at the top of memory, 
working down. !e space in between these converging areas is the so-called free 
space of the system.

HIMEM: and LOMEM: are used by the BASIC programmer to set the upper and 
lower bounds of variable storage. If not speciically declared within the program, 
these default to the bottom of DOS and the end of the Applesot program, 
respectively. !eydo not, however, always have to be restricted to these loca-
tions. It is possible to moveLOMEM: up, orHIMEM: down, so as to set aside a por-
tion of memory in the computer that won’t be afected by the running program. 
!is is done for one or both of two reasons: irst to protect either or both of the 
hi-res display pages from variable table encroachment; or, second, to provide a 
protected area for a user’s assembly-language program.
Now that we know where the information for each variable is stored in the 

computer, let’s examine the format of the information for each variable. Within 
the areas indicated, a variable table is constructed that contains both the name of 
the given variable and its value if the variable is a real or integer. If the variable is 
a string, a pointer is stored that indicates the string’s starting location at the top 
of memory and its corresponding length (0 to 255 characters).
Figure 17-3 summarizes the details of the format for these tables.
Each time a variable is irst encountered in a running Applesot program, an 

entry is made for it in the variable table. For simple variables, Applesot looks to 
the pointer at$6B,$6C to see where the end of the current simple variable table 
is. It then opens up seven bytes for the new variable and puts a block of data sim-
ilar to that shown in Figure 17-3, as is appropriate to the type of variable deined.
Real variables store the value in alogarithmic form, where each value is 

indicated by the exponent and four mantissas. Integer variables require only that 
the high- and low-order bytes of the value be stored. !e remaining three posi-
tions are unused, with dummy 0 values placed in the table. It’s important to note 
here that for integer variables, the two-byte representation of the value is 
reversed from what we would normally expect. !at is, the high-order byte is 
placed irst, followed by the low-order byte.

]

$00 $800 $XX $XX $XX $XX $9600

FP

Program

Simple

Variables

Array

Variables
Free

String

Data
DOS

$67,$68−

$AF,$B0

$69,$6A

LOMEM:

$6B,$6C $6D,$6E $6F,$70 $73,$74

HIMEM:

Table 17-2: Applesot Memory Layout
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For strings only three bytes of information are required, namely the length 
and address data mentioned earlier. Again, the last two positions are illed with 
dummy zeros.
It should be evident from this table that the same amount of memory is allo-

cated for all simple variable types: there is no advantage in specifying integer 
variables versus reals to save memory. !is will not be the case with arrays.
Notice that there are two distinct parts to each seven-byte variable entry. 

!e irst two bytes deine the name, where, incidentally, the high-order byte is 
used in each character to indicate to which of the three variable types (real, inte-
ger, or string) that entry corresponds. !e last ive bytes make up the actual data 
for each variable and consist of either the required numeric information or, in 
the case of a string, the length and address information.
!e reason to stress this distinction is that, in examiningarrays, we notice 

that it is this ive-byte block that gets repeated a large number of times, depend-
ing on the total number of elements in the array. For arrays, a much larger table 
needs to be constructed, and this is created starting at the address indicated by 
$6B,$6C. Whenever a new array is deined, the pointer at$6D,$6E is examined 
to determine the end of the current array table and a new entry is made accord-
ing to the format shown in Figure 17-4.
In this format, the entry is given a header that lists the variable name, fol-

lowed by an ofset value used to determine the address of the next array entry if 
one is present. !e ofset is encoded in the usual two-byte manner. Following the 
ofset is a byte indicating the number of dimensions in the array, ater which is 
listed a byte for each dimension stating its size. Although not shown in the dia-
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gram, each size indicator is a two-byte pair, although in this case the high byte is 
always given irst.
Immediately ater the header are the actual data blocks, each block consist-

ing of ive, two, or three bytes per array element, depending on which variable 
type is involved. Note that, in this case, integer variable arrays do take much less 
memory than an equivalent real array.
As an example, if you were to dimension an array with this statement:

DIM A$(10,10)

the header block would look like this:

where$41,$80 are the ASCII values for an A followed by a null. !e high bit is 
of in the irst character, and on in the second–indicating a string. !e next 
array variable would be found at the address of the irst name character plus 
$174. !ere are two dimensions to the array, as indicated by the$02. !e$00 
$0B indicateseleven elements in each dimension of the array. !is should not be 
surprising when you recall that ten plus the zeroth position makes eleven ele-
ments.
Following this header we would ind 121 three-byte blocks, each indicating 

the length and address of a string array element, if present. 11 × 11 = 121; 
(121 × 3) + 9 [for the header] = 372 = $174.

]



156 Assembly Lines

Passing Variables to Assembly Language

At this point you may well think that we have strayed very far from the topic 
of assembly-language programming and have become overly involved with the 
structure of Applesot. Upon a little relection, however, it should become appar-
ent that we must have some familiarity with how these variables are stored if we 
are to interact successfully with them.
In either reading or creating Applesot variables, clearly we must handle 

efectively each component of the data. We must be able to identify the name 
and location of the variable we are interested in, and also to modify that infor-
mation if necessary.
!e temptation at this point might be to take this new-found knowledge and 

write our own routines to accomplish the needed operations, but such an under-
taking would be quite unnecessary–not to mention likely to have you mind-
lessly babbling to yourself in no time. Fortunately, Applesot already contains 
the routines necessary to do almost anything we wish. !e main trick will be to 
properly identify and use the appropriate ones.
In the previous chapter I made use of a few of these to accomplish a certain 

degree of lexibility in passing numeric data to an assembly-language routine. 
Let’s complete the study by formalizing the possible operations.
!e irst general category is passing data to a routine. We can pass any of six 

variable types. To minimize the confusion, let us establish a fairly simple goal: to 
pass the data successfully and prove so by storing the data in a non-Applesot 
location.

Integer Variables

For integer variables the calling Applesot program looks like this:1

10  A% = 258

20  CALL 768, A%

30  PRINT PEEK(896), PEEK(897)

40  REM 896,897 = $380,$381

50  END

!e machine-language routine should be assembled from this listing:

                1    ********************************

                2    *     AL17-INTEGER VARIABLE    *

                3    *           READER             *

                4    *           2/1/82             *

                5    ********************************

1[CT] For a more interactive program, replace lines 10−30 with the following:

    5  PRINT CHR$(4); "BLOAD AL17.READINT"

   10  INPUT "INPUT INTEGER: "; A%

   20  CALL 768,A%

   30  PRINT "LO: "; PEEK (896); "   HI: "; PEEK (897)

!en try values such as 258, 1, −1, 32767, and −32767. Try −32768.
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                6    *

                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE

                12   PTRGET   EQU  $DFE3

                13   VARPNT   EQU  $83

                14   MOVFM    EQU  $EAF9

                15   CHKNUM   EQU  $DD6A

                16   DATA     EQU  $380

                17   *

0300: 20 BE DE  18   ENTRY    JSR  CHKCOM     ; CHK SYNTAX

0303: 20 E3 DF  19            JSR  PTRGET     ; FIND VARIABLE

                20   * Y,A = ADDRESS OF VALUE

0306: 20 F9 EA  21            JSR  MOVFM      ; MOV VAL -> FAC

0309: 20 6A DD  22            JSR  CHKNUM     ; FAC = NUM?

030C: A0 00     23            LDY  #$00

030E: B1 83     24            LDA  (VARPNT),Y

0310: 8D 81 03  25            STA  DATA+1

0313: C8        26            INY

0314: B1 83     27            LDA  (VARPNT),Y

0316: 8D 80 03  28            STA  DATA

                29   *

                30   * NOTE! HIGH BYTE FIRST!

                31   *

0319: 60        32   DONE     RTS

031A: F1        33            CHK

In this routine,CHKCOM ($DEBE = CHecK for COMma) is used to make sure 
the syntax is correct (that is, a comma), and to advanceTXTPTR ($B8 = TeXT 
PoinTeR) to the irst byte of the variable name being evaluated. Refer to the pre-
vious chapter for a discussion of these two routines.

PTRGET ($DFE3 = PoinTeR GET) is now called, which is a subroutine that 
reads in a variable name and then locates it in the variable table. As a bonus, if 
the variable named does not already exist in the table, PTRGET will create an entry 
for it. !is applies to variables of all six types. Ater returning fromPTRGET, the 
address of the value for the variable is held in the Y-Register and the Accumula-
tor (low byte, high byte). !is thus indicates the location in memory of the two-
to-ive byte data block discussed earlier. !e data in the Y-Register and the 
Accumulator is also duplicated inVARPNT,VARPNT+1 ($83,$84 = VARiable 
PoiNTer), which will be used later in the program.
At this stage it would be a simple matter to use indirect addressing to 

retrieve the two bytes, but a little more efort will result in a much more thor-
ough routine. It is possible that the user might have called the routine with an 
improper variable type following theCALL statement, such as a string. !is can 
be checked for by the next two program steps.

MOVFM ($EAF9 = MOVe to FAC from Memory) will move whatever data is 
pointed to by the Y-Register and the Accumulator into the loating-point Accu-

]
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mulator ($F9−A2 =FAC). !e contents then can be checked for variable type by 
the call toCHKNUM ($DD6A = CHecK NUMber). !e presence of a string here 
would yield aTYPE MISMATCH error.2 Unfortunately, it is not particularly easy to 
test for a real variable having been mistakenly used here.
Presuming no error occurs, we will now make use of the data saved in 

VARPNT (since the Y-Register and Accumulator no doubt have been altered by 
MOVFM andCHKNUM) to actually retrieve the two-byte value passed. !e indirect 
addressing mode is used to move the variable data into our two data bytes. !e 
address of $380, $381 was arbitrarily chosen for this example.
It is important to note that special care is used in lines 25 and 28, since inte-

ger variables store the two data bytes high-order irst, as mentioned earlier. !is 
is opposite to the normal 6502 convention.
!is routine will work equally well for retrieving data from simple integer 

variables and from integer array variables.
When you run this example, the numbers 2 and 1 should be printed out, 

these being the low- and high-order bytes of the number passed to the routine 
(258 = $102).

Real Variables

Once in assembly language, the handling of loating-point numbers, such as 
represented by real variables, is somewhat involved. Additionally, the majority of 
the time you will be concerned only with passing an integer between 0 and 
65535. !erefore, we will consider here how to use a real variable to pass a num-
ber in this range to a given subroutine.
!is revision of our earlier Applesot program will do the trick:

10  A = 258

20  CALL 768, A

30  PRINT PEEK(896), PEEK(897)

40  REM 896,897 = $380,$381

50  END

!e assembly-language program for this is:

                1    ********************************

                2    *     AL17-REAL VARIABLE       *

                3    *           READER             *

                4    *           2/1/82             *

                5    ********************************

                6    *

                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE

                12   FRMNUM   EQU  $DD67

2[CT] Actually, typing a string will give a ?REENTER warning message.
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                13   GETADR   EQU  $E752

                14   LINNUM   EQU  $50

                15   DATA     EQU  $380

                16   *

0300: 20 BE DE  17   ENTRY    JSR  CHKCOM     ; CHK SYNTAX

0303: 20 67 DD  18            JSR  FRMNUM     ; EVALUATE NUM

0306: 20 52 E7  19            JSR  GETADR     ; FAC -> INT

0309: A5 50     20            LDA  LINNUM

030B: 8D 80 03  21            STA  DATA

030E: A5 51     22            LDA  LINNUM+1

0310: 8D 81 03  23            STA  DATA+1

0313: 60        24   DONE     RTS

0314: 2F        25            CHK

!is is basically a repeat of the previous chapter’s Pointer Setup routine, 
with the results being put intoDATA,DATA+1. !e advantage of this routine com-
pared to the Integer Variable Reader is that not only is it shorter, but also that it 
will accept either integer or real variables (simple or array) and still do the string 
error check. !is, then, is usually the preferred method.

String Variables

!e goal here is to read some string data from the calling Applesot program 
and then put it somewhere in memory where it presumably will be available to 
other portions of the assembly-language program. To illustrate this, enter the 
following two programs:

10  A$ = "TEST"

20  CALL 768, A$

30  END

                1    ********************************

                2    *     AL17-STRING VARIABLE     *

                3    *           READER             *

                4    *           2/1/82             *

                5    ********************************

                6    *

                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE

                12   FRMEVL   EQU  $DD7B

                13   CHKSTR   EQU  $DD6C

                14   FACMO    EQU  $A0

                15   FACLO    EQU  $A1        ; FAC+5

                16   VARPNT   EQU  $83

                17   DATA     EQU  $380

                18   *

0300: 20 BE DE  19   ENTRY    JSR  CHKCOM     ; CHK SYNTAX

0303: 20 7B DD  20            JSR  FRMEVL     ; EVALUATE

                21   * (FACMO,LO) -> DESCRIPTOR

0306: 20 6C DD  22            JSR  CHKSTR     ; VAR = $?

                23   *

]
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0309: A0 00     24            LDY  #$00

030B: B1 A0     25            LDA  (FACMO),Y  ; LEN OF $

030D: AA        26            TAX             ; SAVE LEN

030E: C8        27            INY             ; Y = 1

030F: B1 A0     28            LDA  (FACMO),Y  ; ADDR LO BYTE

0311: 85 83     29            STA  VARPNT

0313: C8        30            INY             ; Y = 2

0314: B1 A0     31            LDA  (FACMO),Y  ; ADDR HI BYTE

0316: 85 84     32            STA  VARPNT+1

0318: 8A        33            TXA             ; RETRIEVE LEN

0319: A8        34            TAY

                35   *

031A: 88        36   LOOP     DEY

031B: B1 83     37            LDA  (VARPNT),Y ; GET CHR

031D: 99 80 03  38            STA  DATA,Y

0320: C0 00     39            CPY  #$00

0322: D0 F6     40            BNE  LOOP

                41   *

0324: 60        42   DONE     RTS

0325: 4F        43            CHK

Ater running the calling program, enter the Monitor and list out theDATA 
region of memory with:

*380.383 <RETURN>

!is should print out the following data:

0380- 54 45 53 54

!is shows that the hex values for the characters “TEST” have been success-
fully transferred. Let’s see how it was accomplished.
!e routine starts of rather like the previous ones by usingCHKCOM to make 

sure a comma was used ater theCALL and to prepareTXTPTR for reading in the 
data.FRMEVL ($DD78 = FoRMula EVaLuation) is a very nice general-purpose 
routine that takes in virtually any numeric or string expression or literal, and 
places the inal result inFAC. It is related toFRMNUM but is much more omnivo-
rous. Upon returning fromFRMEVL,FACMO andFACLO ($A0,$A1 = “...sorry, 
couldn’t ind out where they got the names...”3) hold the address of the string’s 
descriptor, that is, the three-byte group giving the length and address of the 
actual string data.
Our routine usesFACMO,FACLO in the indirect addressing mode to retrieve 

the irst byte of the descriptor, which is the length of the string. !is is put into 
the X-Register for temporary storage. Some people prefer to push it onto the 
stack with aPHA command; it’s a matter of choice. Next, the address of the string 
data is retrieved from the descriptor and put into VARPNT, which is assumed to be 

3[CT]FACMO andFACLO are the Middle-Order and Low-Order bytes of the four-byte 
mantissa for the loating-point Accumulator.
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not in use at the time. Last of all, we copy the data from its location, indicated by 
the VARPNT pointer, to our DATA address.
In experimenting, notice that the area from$380 to$3CF is open, but that 

the area starting at$3D0 is reserved for DOS. Entering very long strings in the 
example may lead to some problems. In your own programs, it would be neces-
sary to set aside a one-page area ($100 = 256 bytes) to put the data, unless of 
course you can limit the length of the string before doing the call.
You may also wish to try variations in the Applesot program by deleting 

line 10 and rewriting line 20 as:

20  CALL 768, "ABC" + "DEF"

or

20  CALL 768, LEFT$("ABCDEF")

or

10  A$(5,5) = "TEST"

20  CALL 768, A$(5,5)

Passing Data from Assembly Language

!e converse of the techniques we’ve discussed so far actually is fairly sim-
ple. !e key to much of it is thePTRGET routine used earlier. Because this routine 
will even create a variable when it’s not already present, we can simply more or 
less reverse the process of the previous routines to pass data back to a calling 
Applesot program.
Again, I’ll illustrate an example for each variable type.

Integer Variables

!e Applesot program:4

10  POKE 896,2: POKE 897,1

20  CALL 768, A%

30  PRINT A%

40  END

4[CT] For an interactive program, replace line 10 with:

   5  PRINT CHR$ (4); "BLOAD AL17.SENDINT"

   6  INPUT "ENTER INTEGER LO,HI BYTES: "; A%,B%

  10  POKE 896,A%: POKE 897,B%

Try entering “2,1”, “255,127”, or “1,128”. Now try “0,128”. Is this a legal integer value?

]
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!e assembly subroutine to be called is:

                1    ********************************

                2    *    AL17-INTEGER VARIABLE     *

                3    *           SENDER             *

                4    *           2/1/82             *

                5    ********************************

                6    *

                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE

                12   PTRGET   EQU  $DFE3

                13   VARPNT   EQU  $83

                14   MOVFM    EQU  $EAF9

                15   CHKNUM   EQU  $DD6A

                16   DATA     EQU  $380

                17   *

0300: 20 BE DE  18   ENTRY    JSR  CHKCOM     ; CHK SYNTAX

0303: 20 E3 DF  19            JSR  PTRGET     ; FIND VARIABLE

                20   * Y,A = ADDRESS OF VALUE

0306: 20 F9 EA  21            JSR  MOVFM      ; MOV VAL -> FAC

0309: 20 6A DD  22            JSR  CHKNUM     ; FAC = NUM?

030C: A0 00     23            LDY  #$00

030E: AD 81 03  24            LDA  DATA+1

0311: 91 83     25            STA  (VARPNT),Y

0313: C8        26            INY

0314: AD 80 03  27            LDA  DATA

0317: 91 83     28            STA  (VARPNT),Y

                29   *

                30   * NOTE! HIGH BYTE FIRST!

                31   *

0319: 60        32   DONE     RTS

031A: F1        33            CHK

!is program is a rather trivial exercise in that all that needs to be done is to 
reverse the operands of lines 24, 25 and 27, 28 from the irst Integer Variable 
Reader program. Again, the only caution is to make sure that the bytes are trans-
ferred in the proper order, since integer data is reversed.

Real Variables

Real variables require the introduction of a few new routines. !e same 
Applesot calling program is used with only a minor modiication.

10  POKE 896,2: POKE 897,1

20  CALL 768,A

30  PRINT A

40  END



17. More Applesot Data Passing 163

!e subroutine is entered as:

                1    ********************************

                2    *      AL17-REAL VARIABLE      *

                3    *           SENDER             *

                4    *           2/1/82             *

                5    ********************************

                6    *

                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE

                12   PTRGET   EQU  $DFE3

                13   CHKNUM   EQU  $DD6A

                14   GIVAYF   EQU  $E2F2

                15   MOVMF    EQU  $EB2B

                16   DATA     EQU  $380

                17   *

0300: 20 BE DE  18   ENTRY    JSR  CHKCOM     ; CHK SYNTAX

0303: AD 80 03  19            LDY  DATA

0306: AC 81 03  20            LDA  DATA+1

0309: 20 F2 E2  21            JSR  GIVAYF     ; DATA -> FAC

030C: 20 E3 DF  22            JSR  PTRGET     ; FIND VARIABLE

030F: 20 6A DD  23            JSR  CHKNUM     ; VAR = NUM?

                24   * Y,A = ADDRESS OF VARIABLE DATA

0312: AA        25            TAX

0313: 20 2B EB  26            JSR  MOVMF      ; FAC -> MEMORY

0316: 60        27   DONE     RTS

0317: D1        28            CHK

!e technique here is to use the routineGIVAYF ($E2F2 = GIVe Accumula-
tor and Y-Register toFAC) to put the two bytes of our integer number into the 
FAC.GIVAYF requires that the Accumulator and Y-Register be loaded with the 
high- and low-order bytes, respectively, for the integer number to be transferred5. 
As a bonus, the number may even be signed–that is, positive or negative. Signed 
binary numbers were covered in great detail in chapter 10.
Lines 19 and 20 load the appropriate registers, then, ater callingGIVAYF, 

PTRGET andCHKNUM are used to determine the name of the variable to use in 
returning the data. Recall that ater returning fromPTRGET, the Y-Register and 
Accumulator will hold the low- and high-order bytes of the address of the data 
for the new variable digested by PTRGET.

MOVMF ($EB2B = MOVe to Memory fromFAC) is the routine we’ll use to 
complete the process. It requires that the Y-Register and X-Register be loaded 
with the address of the memory location to which the contents of theFAC will be 
moved. SincePTRGET has just determined that for us, the only hitch is thatPTR-
GET let the high-order byte in the Accumulator instead of in the X-Register as 

5[CT] !e original article switched the meaning of theGIVAYF high and low bytes. !e 
code above has been corrected and produces a value of 258.

]
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we require. A simpleTAX solves that problem, and the routine is concluded with 
the call to MOVMF and an RTS.

Programming Tip

Whenever a routine ends with aJSR to another routine, immediately fol-
lowed by the endingRTS of the main routine, the line can be shortened one byte 
by changing the lastJSR to aJMP. When theRTS in the last called subroutine is 
encountered, theRTS will cause an exit from the main routine instead. An exam-
ple of this would be to rewrite the end of the program just listed as:

*

*

*

030F: 20 6A DD  23            JSR  CHKNUM     ; VAR = NUM?

                24   * Y,A = ADDRESS OF VARIABLE DATA

0312: AA        25            TAX

0313: 4C 2B EB  26   DONE     JMP  MOVMF      ; FAC -> MEMORY

                                                AND RETURN!

String Variables

String variables are not much diferent but will require a slightly clumsy 
calling Applesot program to demonstrate. Line 10 is a series ofPOKEs that will 
put the ASCII data for the string “TEST” into memory at our usualDATA ($380) 
location. Additionally, a delimiter will be placed at the end of the string so that 
the routines we will be calling can determine the string’s length. Use of a delim-
iter is more practical, especially in situations where you don’t know the length of 
an incoming string until the carriage return or other delimiter shows up. !e 
Applesot routine we’ll use will automatically determine the length by scanning 
the string for the delimiter.

10  POKE 896,84: POKE 897,69: POKE 898,83: POKE 899,84: POKE 900,0

20  REM "TEST" + NULL DELIMITER

30  CALL 768, A$

40  PRINT A$

50  END

!e subroutine for this is:

                1    ********************************

                2    *  AL17-STR$ VARIABLE SENDER   *

                3    *           2/1/82             *

                4    *         R. WAGNER            *

                5    ********************************

                6    *

                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE
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                12   PTRGET   EQU  $DFE3

                13   CHKSTR   EQU  $DD6C

                14   FORPNT   EQU  $85

                15   MAKSTR   EQU  $E3E9

                16   SAVD     EQU  $DA9A

                17   DATA     EQU  $380

                18   *

                19   *

0300: 20 BE DE  20   ENTRY    JSR  CHKCOM     ; CHK SYNTAX

0303: 20 E3 DF  21            JSR  PTRGET     ; FIND VAR

0306: 20 6C DD  22            JSR  CHKSTR     ; VAR = $?

0309: 85 85     23            STA  FORPNT

030B: 84 86     24            STY  FORPNT+1   ; ADDR OF DESCR

030D: A9 80     25            LDA  #$80

030F: A0 03     26            LDY  #$03       ; A,Y = $380

0311: A2 00     27            LDX  #$00       ; DELIMITER='00'

0313: 20 E9 E3  28            JSR  MAKSTR     ; DATA -> MEMORY

0316: 20 9A DA  29            JSR  SAVD       ; VARPNT = NEW $

0319: 60        30   DONE     RTS

031A: CD        31            CHK

!e new routines here areMAKSTR ($E3E9 = MAKe STRing) andSAVD 
($DA9A = SAVe Descriptor).MAKSTR requires that the Accumulator and the Y-
Register hold the address (low, high) of the string to be scanned and that the X-
Register hold the value for the delimiting character. !is example uses$00, but 
another common variation would be to use a carriage return ($8D) or a comma 
($2C). (Note that<RETURN> is almost always found in the input bufer with the 
high bit set, that is, $8D versus $0D).
Ater scanning for the delimiter,MAKSTR moves the data up to the string 

storage area at the top of memory.
SAVD is a companion routine which will take whatever string descriptor is 

currently pointed to byFORPNT ($85,$86 = FORmula PoiNTer) and match it to 
the data just moved by MAKSTR.
Looking at the listing, we can see that the only creative work to be done is 

moving the contents of the Accumulator and Y-Register toFORPNT. !e Accu-
mulator, Y-Register, and X-Registers are then prepared as was just described, 
and the remaining calls are done. Voila! Instant strings!

Conclusion

You’ll notice that all of the routines handle arrays as well as simple variables. 
Additionally, certain more subtle points become apparent as you study the list-
ings. For example, each of the last three Applesot listings was done without 
deining the returned variable prior to theCALL. !is was to demonstrate that 
PTRGET does a very nice job of creating the variable for us. In addition, in each 
case the data that was put into a variable and then later retrieved atDATA (and 
vice versa) should be consistent, thus demonstrating the accuracy of the meth-
ods.

]
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You may also wish to experiment with using formulas or string calculations 
ater the CALL statement to conirm that all legal Applesot operations are accept-
able.
Last but not least, I would like to give credit and thanks to Craig Peterson 

for his help in providing some of the information used in preparing this chapter.
Next chapter we’ll look at some other applications of internal Applesot rou-

tines within custom assembly-language programs.
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In the previous chapter we examined the techniques for passing data back 
and forth between Applesot and assembly language in the form of standard 
Applesot variables. !is was greatly facilitated by the use of existing internal 
Applesot routines. A natural extension of this idea is to use other internal 
Applesot routines as may be appropriate to our given task. One of the most 
interesting applications of this is in the area of hi-res graphics.
!ere are two main reasons for doing hi-res graphics from assembly lan-

guage. !e irst and most obvious is speed. By doing many of the operations 
directly in assembly language, the basic overhead (so to speak) of Applesot is 
avoided, thus producing a noticeable speed increase in the overall program. Be 
aware however, that since we are ultimately still calling Applesot routines, the 
speed increase has a certain limit. Greater speeds are obtained only by creating 
specialized and dedicated routines that perform only a speciic function. !e 
normal Applesot routines are designed to be lexible and to occupy a minimum 
of space. Faster routines will do less and possibly be larger in terms of memory 
use. !e trade-of must be weighed.
!e second reason is simply the convenience of being able to do the same 

things, including graphics, from assembly language that you are able to do from 
BASIC. To this end, the techniques presented in this chapter should be quite 
adequate. In future chapters, we’ll explore the creation of specialized routines 
that give higher speed and greater independence from the Applesot routines.

Ground School

Before jumping into the intricate details of the various routines, we’ll 
impose upon your patience long enough to describe briely the model of Apple 
hi-res graphics used for the current discussion. !is may seem unnecessary, but 
it will provide the common ground for the points to be made in this particular 
presentation. As you’ll see in later chapters, there are a number of ways of look-
ing at the total screen environment.
For the time being, we’ll use an approximation of what is usually viewed as 

the “classical” explanation of the hi-res screen in Figure 18-1.
!e array of possible points to be plotted consists of a ield of 192 lines, each 

of which is made up of 280 points. If a mixed mode of graphics plus text is 

]
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selected, only 160 graphics lines are displayed. On the majority of Apples, six 
colors are available: black, white, green, violet, orange, and blue.
!ese colors have been assigned to eight numeric values, as follows:

Set 1 Set 2

0 = Black1
1 = Green
2 = Violet
3 = White1

4 = Black2
5 = Orange
6 = Blue
7 = White2

White is created by plotting two color points right next to each other 
(green/violet or orange/blue). Black, when speciically plotted, is produced by 
turning of two adjacent color dots.
!e model gets shaky when we have to tell you that things like “odd colors” 

(green or orange) can be plotted only at odd x-coordinates (1, 3, 5...), and that 
"even colors” (blue or violet) can be plotted only at even x-coordinates (0, 2, 4...). 
It gets even worse, but we’ll save the horror stories for chapter 20. For the time 
being, you’ll have many fewer headaches if you limit yourself to using the colors 
from only Set 1 or Set 2. Even better, stick to black and white for now, and fewer 
mysterious things will happen.

Landmarks and Entry Points

A number of the fundamental hi-res routine entry points are documented in 
various publications relating to the Apple. A brief summary is given in the fol-
lowing table.
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Routine Address Description

HGR $F3E2 Initializes to hi-res page 1, clears screen.
HGR2 $F3D8 Initializes to hi-res page 2, clears screen.
HCLR $F3F2 Clears current screen to black1.
BKGND $F3F6 Clears current screen to last plotted HCOLOR.
HCOLOR $F6F0 Sets HCOLOR to contents of X-Register (0−7).
HPOSN $F411 Positions hi-res “cursor” without plotting. Enter with 

X, Y (low, high) = horizontal position, Accumulator = 
vertical position.

HPLOT $F457 Identical toHPOSN, but plots currentHCOLOR at coordi-
nates given.

HFIND $F5CB Returns current “cursor” position. Useful ater aDRAW 
to ind where you’ve been let. Coordinates returned in: 
$E0, $E1 = horizontal (low,high), $E2 = vertical.

HLIN $F53A Draws a line from last plot to point given. Accumula-
tor, X (low, high) = horizontal, Y = vertical position.

SHNUM $F730 Puts address of shape number indicated by X-Register 
into$1A,$1B; returns with X, Y (low, high) also set to 
address of that shape-table entry.

DRAW $F601 Draw shape pointed to by X, Y (low, high) in current 
HCOLOR. Note: X, Y point to speciic entry,not the 
beginning of the table. Call SHNUM irst.

XDRAW $F65D Erases shape just drawn (if there) by doing anexclusive 
OR with the screen data. Load X, Y (low, high) with 
address of shape toXDRAW or callSHNUM irst with X-
Register = shape number.

A Test Flight: Hi-Res Demo

To illustrate how these are actually put to use, assemble and run the follow-
ing program:

                1    ********************************

                2    *     AL18-HIRES DEMO 1       *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $6000

                7             ORG  $6000

                8    *

                9    PREAD    EQU  $FB1E

                10   WAIT     EQU  $FCA8

                11   PB0      EQU  $C061

                12   HCOLOR   EQU  $F6F0

                13   HGR      EQU  $F3E2

]
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                14   HPLOT    EQU  $F457

                15   HPOSN    EQU  $F411

                16   HLIN     EQU  $F53A

                17   ROT      EQU  $F9

                18   SCALE    EQU  $E7

                19   SHNUM    EQU  $F730

                20   DRAW     EQU  $F601

                21   PTR      EQU  $E8

                22   *

6000: 4C 11 60  23   ENTRY    JMP  E2

6003: 01 00 04  24   TABLE    HEX  010004

6006: 00 12 3F  25            HEX  00123F

6009: 20 64 2D  26            HEX  20642D

600C: 15 36 1E  27            HEX  15361E

600F: 07 00     28            HEX  0700

                29   *

6011: 20 E2 F3  30   E2       JSR  HGR        ; CLR SCRN

6014: A2 03     31            LDX  #$03       ; WHITE = 3

6016: 20 F0 F6  32            JSR  HCOLOR

                33   *

6019: A9 00     34   BORDER   LDA  #$00       ; Y = 0

601B: A8        35            TAY

601C: AA        36            TAX             ; X = 0

601D: 20 57 F4  37            JSR  HPLOT      ; PLOT 0,0

6020: A9 17     38            LDA  #$17       ;

6022: A2 01     39            LDX  #$01       ; X = $117

6024: 20 3A F5  40            JSR  HLIN       ; HLIN TO 279,0

                41   *

                42   *

6027: A9 17     43            LDA  #$17

6029: A2 01     44            LDX  #$01       ; X = 279

602B: A0 9F     45            LDY  #$9F       ; Y = 159

602D: 20 3A F5  46            JSR  HLIN       ; HLIN TO 279,159

                47   *

6030: A9 00     48            LDA  #$00

6032: A2 00     49            LDX  #$00       ; X = 0

6034: A0 9F     50            LDY  #$9F       ; Y = 159

6036: 20 3A F5  51            JSR  HLIN       ; HLIN TO 0,159

                52   *

6039: A9 00     53            LDA  #$00

603B: A2 00     54            LDX  #$00       ; X = 0

603D: A0 00     55            LDY  #$00       ; Y = 0

603F: 20 3A F5  56            JSR  HLIN       ; HLIN TO 0,0

                57   *

6042: A9 03     58   SET      LDA  #$03

6044: 85 E8     59            STA  PTR

6046: A9 60     60            LDA  #$60

6048: 85 E9     61            STA  PTR+1      ; SET TABLE TO $6003

                62   *

604A: A2 00     63   READ     LDX  #$00       ; PDL(0)

604C: 20 1E FB  64            JSR  PREAD

604F: 98        65            TYA

6050: D0 02     66            BNE  R1

6052: A9 01     67            LDA  #$01       ; FIX 0 -> 1

6054: 85 E7     68   R1       STA  SCALE

6056: A9 18     69            LDA  #$18
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6058: 20 A8 FC  70            JSR  WAIT

605B: A2 01     71            LDX  #$01       ; PDL(1)

605D: 20 1E FB  72            JSR  PREAD

6060: 84 F9     73            STY  ROT

6062: A9 18     74            LDA  #$18

6064: 20 A8 FC  75            JSR  WAIT

                76   *

6067: A2 8B     77   DSPLY    LDX  #$8B

6069: A0 00     78            LDY  #$00       ; X = 139

606B: A9 4F     79            LDA  #$4F       ; Y = 79

606D: 20 11 F4  80            JSR  HPOSN

6070: A2 01     81            LDX  #$01       ; SHAPE #1

6072: 20 30 F7  82            JSR  SHNUM      ; FIND SHP ADDR

6075: A5 F9     83            LDA  ROT

6077: 20 05 F6  84            JSR  DRAW+4     ; USE SHNUM ENTRY PT

                85   *

607A: AD 61 C0  86   CHK      LDA  PB0

607D: 30 92     87            BMI  E2         ; BUTTON PUSHED

607F: 10 C9     88            BPL  READ       ; NO PUSH

                89   *

6081: F0        90            CHK

When run, this routine will draw a border around the hi-res screen, and 
then draw in the center of the screen the shape deined by the table. Scale and 
rotation values may be changed by adjustingpaddles 0 and 1, respectively. Push-
ing button 0 will re-clear the hi-res screen of the accumulated images.
!e routine starts with a jump over a data table toE2. !e table is a simple 

shape table taken from page 95 of the Appleso" II BASIC Programming Reference 
Manual. It is a table to draw something resembling a square. !e table could 
have been put at the beginning of the routine, but it would not then have been 
able to be BRUN.
Line 30 clears and displays the hi-res display page (page 1); lines 31, 32 use 

HCOLOR to set the color to be used to white1.
A border is then drawn in lines 34−50.HPLOT (line 37) is used to plot the 

starting point (a requirement for subsequent use ofHLIN, unlessHPOSN is used 
for a “no-plot”).
Lines are drawn between the four corner points of the mixed-mode display. 

See Figure 18-1 to conirm the coordinates.
Once the border is done, preparation is made to use the shape table. Loca-

tions$E8,$E9 are used by Applesot to point to the beginning of a shape table. 
SET initializes this pointer to our example table at$6003. !e table need not be 
part of the actual code, however, and could have been located virtually anywhere 
in memory. (Obvious exceptions would be the hi-res page area,$2000−$3FFF, 
and other reserved system areas.)

READ loads the X-Register with 0 to tellPREAD that we want to read paddle 0 
and then puts the results (found in the Y-Register) into theSCALE parameter 
location ($E7). Line 66 tests for aSCALE value of 0. Because Applesot treats 0 as 

]
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the largest scale, this is shited back to 1 to make the paddles more usable from a 
human standpoint.
Lines 69, 70 use theWAIT routine to wait a rather arbitrary amount of time 

before reading paddle 1. !e value#$18 was used as the delay value for very 
unscientiic reasons. !e larger the value, the more accurate the subsequentpad-
dle readings, but the paddles will seem less responsive. Shorter delays give fast 
paddle response, but less accuracy. !is efect is due to the fact that the Monitor 
reads the paddles by measuring the time it takes to charge a capacitor within the 
system. !e higher the paddle setting, the longer it takes. !e same capacitor is 
used for all paddles. When two or more paddles are read in rapid succession, the 
capacitor does not have time to return to its 0 value before the next read starts, 
and hence a false value is returned. !e delay allows the system to make a better 
return to the desired states.
!e interaction between the two paddles is most apparent when paddle 1 is 

set to 255 (full right). When paddle 0 is then increased from 0, the square is seen 
to rotate, as the scale parameter is increased. !is does not happen when paddle 
1 is at a low setting. One technique for minimizing paddle interaction is to read 
the same paddle twice when getting a reading (as we saw in chapter 12). If line 
64 and 72 were duplicated in the listing, the result would be more stable. Try 
altering the listing and reassembling with the new technique. You’ll ind the dis-
tortion of paddle 0 much less pronounced than before.
!eDSPLY section sets the coordinates to draw the shape at$8B,$4F (139, 

79). It then callsHPOSN to position the imaginary hi-res cursor at that point with-
out actually plotting a point.SHNUM is then called, which inds the address of the 
irst shape-table entry.SHNUM returns with the X- and Y-Registers holding the 
low- and high-order bytes for the entry. !e Accumulator is then loaded with 
the ROTation value, and DRAW called.1

Before repeating the cycle, pushbutton 0 is checked for a button press, 
which indicates the user wants to clear the hi-res screen.

A Minor Diversion

High-resolution graphics are generally used for two main purposes. !e irst 
is the presentation of graphical data, such as sales charts and equations. !e rou-
tines presented here are adequate for that, but overall the task is probably better 
done directly in Applesot anyway. Applesot is oten given a worse reputation 
than it deserves. It is quite versatile and, when combined with assembly-lan-
guage subroutines, can perform quite admirably.

1[CT] Line 84 was corrected in the July 1982So"alk: !eDRAW routine ($F601) is nor-
mally called with the X- and Y-Registers set to the address of the individual shape to be 
drawn. !is can be automated, however, by irst callingSHNUM ($F730). WhenSHNUM is 
called, however, a later entry point toDRAW is used. Speciically, this should beDRAW+4 
($F605). Entering at $F601 by mistake can produce rather unpredictable results.
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!e other main area of concern is the production of screen animation, as is 
commonly seen in arcade-type games. !is area brings up some new require-
ments in our expertise, because depictions of motion on the screen are really a 
matter of creating a computer simulation of motion, using the laws of physics to 
mimic the real world. (Next time somebody bugs you about writing or playing 
games, just tell them you’re busy doing computer simulations.)
It would be impossible to present many more ideas in the area of graphics 

without relying on an underlying understanding of some of the principles used 
in creating a simulation program. Although we’ll certainly not try to present a 
comprehensive tutorial on basic physics and computer graphics, we can get quite 
a bit of mileage out of one or two rather simple concepts.

Location

It should be fairly obvious that when specifying the coordinates of a point 
on the screen, we are giving information about the relative location of some-
thing. About the only thing diferent about the Apple screen is that the number 
system used is laid out somewhat difer-
ently from the Cartesian system described 
in junior high school math classes.
In the usual system, the point with 

the coordinates 0, 0 (the origin) is at the 
center of the display, and all possible 
combinations of positive and negative 
numbers are shown in the four quadrants.
!is is more than we need to do 

Apple graphics though, because the screen 
uses only positive values, with the origin 
(0, 0) in the upper-let corner.
!e location of objects always can be 

given by the number pair associated with 
the X and Y (horizontal and vertical) axes.

Motion

So much for discussions of elementary graphing. If you understood the irst 
example of drawing the border on the screen, all this is already known to you. 
!e reason we mention it is to prepare you for the next idea, the one of motion.
When something is moving, we say it has a velocity. Velocity has only two 

components: direction and magnitude. !at is to say that the only things we 
have to worry about when simulating a moving object are its speed and its direc-
tion of travel. Speed is measured in units of distance per unit of time.

]
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In the case of our screen display as shown to the 
right, something moving from point A to point B in 
one second would have a speed of +5 units per second. 
Likewise for something moving from point A to C. 
Negative values are used to indicate something mov-
ing in a direction opposite the given coordinate sys-
tem. An object moving from point B to A in one 
second would have a speed of −5 units per second.
Now at this point you may ind yourself tempted to throw up your hands 

and say, “I can tell where he’s going and it doesn’t sound fun!” You might think 
you’re going to plunge deeper into the esoteric and rather uninteresting ram-
blings of a physics teacher and end up who-knows-where and for what good rea-
son anyway?
Well, irst of all, you’re only going to have to wade in a very little bit deeper 

(the scary part comes when we try to do negative numbers in binary!). And sec-
ond of all, the point of all this will be the simple goal of bouncing a little ball 
around on the screen. As it happens, we must know a bit about how the universe 
works if we are going to simulate it on our TV screen. And if you really intend to 
end up with spaceships careening wildly about, you’ll have to show a little deter-
mination now to get the basics under your belt. So much for the haltime pep 
talk.
!e sticky question is how to handle objects that are moving from, say, 

point C to A. As a case of extremely good fortune, it turns out we can consider 
thecomponents of the motion quite easily and achieve our end result, without 
having to know the object’s real diagonal speed.
What this means is that we can give an object both a horizontal and vertical 

component to its motion, and then do the appropriate calculations separately.
Speed can be rephrased as “a change in position with respect to time." On 

the screen, what this means is that something will appear to move consistent 
with the real world as long as we keep re-plotting its position in a regular man-
ner. !e timebase of the operations ends up depending on how fast we cycle 
through the re-plotting pattern. Since an example can work wonders, let’s take a 
moment to examine a program in (oh no!) Applesot:

10  HGR

20  X = 0: Y = 80

30  V = 1

100  REM DRAW LOOP

110  HCOLOR = 3: REM WHITE

120  HPLOT X,Y : REM DRAW OBJECT

130  HCOLOR = 0: REM BLACK

140  HPLOT X,Y : REM ERASE IT

200  REM MAKE IT MOVE!

210  X = X + V

220  IF X > 278 THEN V = V*(-1)
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230  IF X < 1 THEN V = V*(-1)

240  GOTO 100

!is program will bounce a tiny spot of the let and right sides of the 
screen. !e important things to note are that (1) motion is simulated by adding a 
constant velocity factor V to the position of each cycle; (2) the object is erased 
from its old position before being redrawn at the new one; and (3) a bounce is 
basically a complete reversal of the velocity factor, that is, the value is multiplied 
by minus one. !e speed with which everything is executed depends on the 
inherent speed of the programming language and how fast we can cycle through 
the service loop. If for some reason the loop shown was too fast, you could put a 
FOR-NEXT delay loop in anywhere along the line. If it was too slow, you could 
increase the speed factor,V, from 1 to a larger number. Larger numbers produce 
more jerky motion, however. !e other option would be to write it in assembly 
language!
Before doing that, though, let’s make it two-dimensional by giving theball 

both horizontal and vertical components to its motion:

10  HGR

20  X = 140 : Y = 80

30  XV = 1 : YV = 1

100  REM DRAW LOOP

110  HCOLOR = 3: REM WHITE

120  HPLOT X,Y : REM DRAW OBJECT

130  HCOLOR = 0: REM BLACK

140  HPLOT X,Y : REM ERASE IT

200  REM MAKE IT MOVE!

210  X = X + XV : Y = Y + YV

220  IF X > 278 THEN XV = XV*(-1)

230  IF X < 1 THEN XV = XV*(-1)

240  IF Y > 158 THEN YV = YV*(-1)

250  IF Y < 1 THEN YV = YV*(-1)

260  GOTO 100

In this program we see both components of motion, vertical and horizontal. 
Again, a bounce consists of taking the negative value of the component we are 
reversing. !e licker is caused by erasing the dot so soon ater we draw it, and 
also by the scanning nature of the TV or monitor. It can be smoothed out by 
adding a line:

125  FOR I = 1 TO 5: NEXT I

!is also will slow down the speed of the ball a bit, but it does help the over-
all screen appearance. You are advised to watch this fascinating program run for 
a while, meditating on the nature of the programming steps occurring through-
out the travel, and particularly at each bounce. !is concept is essential to any 
further animation eforts on your Apple.

]
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In the previous chapter we discussed hi-res graphics and how to plot a 
bouncing hi-res ball. We constructed a simple Appleso! program to illustrate 
the principles involved:

10  HGR

20  X = 140 : Y = 80

30  XV = 1 : YV = 1

100  REM DRAW LOOP

110  HCOLOR = 3: REM WHITE

120  HPLOT X,Y : REM DRAW OBJECT

130  HCOLOR = 0: REM BLACK

140  HPLOT X,Y : REM ERASE IT

200  REM MAKE IT MOVE!

210  X = X + XV : Y = Y + YV

220  IF X > 278 THEN XV = XV*(-1)

230  IF X < 1 THEN XV = XV*(-1)

240  IF Y > 158 THEN YV = YV*(-1)

250  IF Y < 1 THEN YV = YV*(-1)

260  GOTO 100

Note that this loop has a basic pattern of: draw → erase → calculate → check → (do 
it again...).
For the Appleso! program shown, this works fairly well and is very under-

standable. here is one problem, however: very little time passes between the 
draw and erase stages, compared to the amount of time spent in the calculate 
and test sections. he result on the screen is a large amount of licker, resulting 
from the dot spending more of its time black than white.
One solution to this is to make a small modiication to the originalApple-

so! program, so that it appears as follows:

0  REM FP DOT DEMO PROGRAM

10  HGR

15  HCOLOR = 3 : HPLOT 0,0 TO 279,0 TO 279,159 TO 0,159 TO 0,0

20  X = 140 : Y = 80

30  XV = 1 : YV = 1

100  REM CALC NEW POSN

110  TX = X + XV : TY = Y + YV

200  REM CHECK POSN

210  IF TX > 277 THEN XV = XV*(-1) : GOTO 110

220  IF TX < 2 THEN XV = XV*(-1) : GOTO 110

]
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230  IF TY > 157 THEN YV = YV*(-1) : GOTO 110

240  IF TY < 2 THEN YV = YV*(-1) : GOTO 110

300  REM ERASE OLD POSN

310  HCOLOR = 0: REM BLACK

320  HPLOT X,Y

400  REM DRAW NEW POSN

410  X = TX : Y = TY

420  HCOLOR = 3: REM WHITE

430  HPLOT X,Y

440  GOTO 100

his routine not only draws a nice border around the screen, but also fol-
lows this general pattern: calculate → check → erase → draw → (start over).
he advantage of this technique is that relatively little time is spent between 

the erase and redraw stages. hus the dot is on the screen the majority of the 
time and very little licker is apparent.
Another new detail is the use of a set of temporary variables,TX andTY. 

hese store the new position while the old one is being erased. he new one is 
then drawn andTX,TY are made “oicial” by being passed to the “real”X,Y vari-
ables.
As a minor point, also note that we have reduced the boundary test points 

in lines 200−240 so that the dot reverses direction before actually contacting the 
boundary we have drawn. Otherwise, the boundary would be erased by the dot 
passing through it on each bounce.
Now let’s look at how to implement this program in assembly language.

Taking the Opposite of a Signed Number

In chapter 10 we discussed the sign bit and how to represent negative num-
bers.1 Recall that negative numbers are deined using thetwo’s complement sys-
tem: reverse each bit of the positive number, then add one.
All that we need now is a routine that will produce the opposite of a number 

given it–that is produce thetwo’s complement of a positive number and also 
the positive equivalent when given anegative value. To do this, we’ll use theEOR 
command.

EOR is useful in creating a routine to convert between signed numbers 
because of its ability to reverse all of the bits in a given byte. he conversion is 
done with two individual routines. In the examples below, the routines convert a 
constant value,#$34, back and forth. In a working version of this program, the 
value would be passed via a register or a memory location, as will be shown later.

1[CT] he originalSo!alk article #19 (April 1982) contained a section on “signed binary 
numbers.” InAssembly Lines: "e Book (and in this book), this material is presented in 
chapter 10.
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                           Positive to Negative

ENTRY    LDA  #$34       ; %00110100 = +52

                         ; TO BE CONVERTED TO -52

         EOR  #$FF       ; %11111111 TO REVERSE BITS

                         ; RESULT = %11001011

         CLC

         ADC  #$01       ; RESULT = RESULT + 1

                                  = %11001100 = $CC

         STA  MEM        ; STORE RESULT

DONE     RTS

                           Negative to Positive

ENTRY    LDA  #$CC       ; %11001100 = $CC = -52

                         ; TO BE CONVERTED BACK

         SEC

         SBC  #$01       ; ACCUM = ACCUM - 1

                         ;       = %11001011 = $CB

         EOR  #$FF       ; REVERSE ALL BITS

                         ; RESULT = %00110100 = $34 = +52

         STA  MEM        ; STORE RESULT

DONE     RTS

Note that in this example the percent sign is used to indicate the binary 
form of the number. Some assemblers (such as Merlin) support this notation.

!e Real !ing: Hi-Res in Assembly

We now have the tools necessary to construct the assembly-language ver-
sion of the last Appleso! listing. Assemble and run this listing:

                1    ********************************

                2    *  AL19-HIRES ONE DOT PROGRAM  *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $6000

                7             ORG  $6000

                8    *

                9    X        EQU  $E0        ; $E0,$E1

                10   Y        EQU  $E2

                11   XV       EQU  $06        ; $06,$07

                12   YV       EQU  $08

                13   TX       EQU  $09        ; $09,$0A

                14   TY       EQU  $0B

                15   *

                16   PREAD    EQU  $FB1E

                17   WAIT     EQU  $FCA8

                18   HCOLOR   EQU  $F6F0

                19   HGR      EQU  $F3E2

                20   HPLOT    EQU  $F457

                21   HPOSN    EQU  $F411

                22   HLIN     EQU  $F53A

                23   *

6000: 20 E2 F3  24   ENTRY    JSR  HGR

]
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6003: A2 03     25            LDX  #$03       ; WHITE

6005: 20 F0 F6  26            JSR  HCOLOR

                27   *

6008: A9 00     28   BOX      LDA  #$00       ; Y = 0

600A: A8        29            TAY

600B: AA        30            TAX

600C: 20 57 F4  31            JSR  HPLOT      ; PLOT 0,0

600F: A9 17     32            LDA  #23        ; 279 MOD 256

6011: A2 01     33            LDX  #01        ; 279/256

6013: 20 3A F5  34            JSR  HLIN       ; FROM 0,0 TO 279,0

                35   *

6016: A9 17     36            LDA  #23

6018: A2 01     37            LDX  #01

601A: A0 9F     38            LDY  #$9F       ; Y = 159

601C: 20 3A F5  39            JSR  HLIN       ; 279,0 TO 279,159

                40   *

601F: A9 00     41            LDA  #$00

6021: A2 00     42            LDX  #$00

6023: A0 9F     43            LDY  #$9F

6025: 20 3A F5  44            JSR  HLIN       ; 279,159 TO 0,159

                45   *

6028: A9 00     46            LDA  #$00

602A: A2 00     47            LDX  #$00

602C: A0 00     48            LDY  #$00

602E: 20 3A F5  49            JSR  HLIN       ; 0,159 TO 0,0

                50   *

6031: A9 00     51   SET      LDA  #$00

6033: 85 07     52            STA  XV+1

6035: A9 01     53            LDA  #$01

6037: 85 06     54            STA  XV         ; XV = 1

6039: 85 08     55            STA  YV         ; YV = 1

                56   *

603B: A2 8C     57   POSN     LDX  #$8C

603D: A0 00     58            LDY  #$00       ; X = 140

603F: A9 50     59            LDA  #$50       ; Y = 80

6041: 20 11 F4  60            JSR  HPOSN      ; SET CURSOR AT X,Y

                61   *

6044: 18        62   CALC     CLC

6045: A5 E0     63            LDA  X

6047: 65 06     64            ADC  XV

6049: 85 09     65            STA  TX

604B: A5 E1     66            LDA  X+1

604D: 65 07     67            ADC  XV+1

604F: 85 0A     68            STA  TX+1       ; TX = X + XV

                69   *

6051: 18        70            CLC

6052: A5 E2     71            LDA  Y

6054: 65 08     72            ADC  YV

6056: 85 0B     73            STA  TY         ; TY = Y + YV

                74   *

6058: A5 0A     75   CHK      LDA  TX+1

605A: D0 09     76            BNE  CHK2

605C: A5 09     77            LDA  TX

605E: C9 02     78            CMP  #$02

6060: B0 03     79            BCS  CHK2

6062: 20 AE 60  80            JSR  RVRSX      ; TX < 2
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                81   *

6065: A5 0A     82   CHK2     LDA  TX+1

6067: C9 01     83            CMP  #$01

6069: 90 09     84            BCC  CHK3

606B: A5 09     85            LDA  TX

606D: C9 16     86            CMP  #$16

606F: 90 03     87            BCC  CHK3

6071: 20 AE 60  88            JSR  RVRSX      ; TX >= $116 (278)

                89   *

6074: A5 0B     90   CHK3     LDA  TY

6076: C9 02     91            CMP  #$02

6078: B0 03     92            BCS  CHK4

607A: 20 D6 60  93            JSR  RVRSY      ; TY < 2

                94   *

607D: A5 0B     95   CHK4     LDA  TY

607F: C9 9E     96            CMP  #$9E

6081: 90 03     97            BCC  ERASE

6083: 20 D6 60  98            JSR  RVRSY      ; TY >= $9E (158)

                99   *

6086: A2 00     100  ERASE    LDX  #$00       ; BLACK = 0

6088: 20 F0 F6  101           JSR  HCOLOR

608B: A6 E0     102           LDX  X

608D: A4 E1     103           LDY  X+1        ; GET X,X+1

608F: A5 E2     104           LDA  Y          ; GET Y

6091: 20 57 F4  105           JSR  HPLOT      ; ERASE POINT

                106  *

6094: A2 03     107  PLOT     LDX  #$03       ; WHITE1 = 3

6096: 20 F0 F6  108           JSR  HCOLOR

6099: A6 09     109           LDX  TX

609B: A4 0A     110           LDY  TX+1       ; GET TX,TX+1

609D: A5 0B     111           LDA  TY         ; GET TY

609F: 20 57 F4  112           JSR  HPLOT      ; PLOT POINT

                113  *

60A2: A2 00     114  DELAY    LDX  #$00       ; PDL0

60A4: 20 1E FB  115           JSR  PREAD

60A7: 98        116           TYA

60A8: 20 A8 FC  117           JSR  WAIT

                118  *

                119  *

60AB: 4C 44 60  120  GOBACK   JMP  CALC

                121  *

                122  *

60AE: A5 07     123  RVRSX    LDA  XV+1

60B0: 30 12     124           BMI  NEGPOSX

                125  *

60B2: A5 06     126  POSNEGX  LDA  XV

60B4: 49 FF     127           EOR  #$FF

60B6: 18        128           CLC

60B7: 69 01     129           ADC  #$01

60B9: 85 06     130           STA  XV

60BB: A5 07     131           LDA  XV+1

60BD: 49 FF     132           EOR  #$FF

60BF: 69 00     133           ADC  #$00

60C1: 85 07     134           STA  XV+1

60C3: 60        135           RTS             ; XV -> -XV

                136  *

]
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60C4: A5 06     137  NEGPOSX  LDA  XV

60C6: 38        138           SEC

60C7: E9 01     139           SBC  #$01

60C9: 49 FF     140           EOR  #$FF

60CB: 85 06     141           STA  XV

60CD: A5 07     142           LDA  XV+1

60CF: E9 00     143           SBC  #$00

60D1: 49 FF     144           EOR  #$FF

60D3: 85 07     145           STA  XV+1

60D5: 60        146  DONEX    RTS             ; -XV -> XV

                147  *

                148  *

                149  *

60D6: A5 08     150  RVRSY    LDA  YV

60D8: 30 0A     151           BMI  NEGPOSY

                152  *

60DA: A5 08     153  POSNEGY  LDA  YV

60DC: 49 FF     154           EOR  #$FF

60DE: 18        155           CLC

60DF: 69 01     156           ADC  #$01

60E1: 85 08     157           STA  YV

60E3: 60        158           RTS             ; YV -> -YV

                159  *

60E4: A5 08     160  NEGPOSY  LDA  YV

60E6: 38        161           SEC

60E7: E9 01     162           SBC  #$01

60E9: 49 FF     163           EOR  #$FF

60EB: 85 08     164           STA  YV

60ED: 60        165  DONEY    RTS             ; -YV -> YV

                166  *

60EE: 3A        167           CHK

When you run this routine, notice how much faster it executes and how the 
speed of the dot can be varied using paddle 0.
his routine essentially parallels the Appleso! routine shown earlier. Lines 

24−50 clear the hi-res screen and draw the border. Lines 51−55 set the velocity 
components to 1; lines 57−61 position the hi-res cursor in the center of the 
screen. his also conveniently loads$E0-E2 with the desired X and Y coordi-
nates of the dot. Remember that$E0,$E1, and$E2 are the zero-page locations 
used by the Appleso! hi-res routines for the X and Y coordinates of its cursor.
Lines 62−73 calculate the new position of the dot by adding the respective 

velocity components to the X and Y coordinates. Lines 75−98 check to see 
whether this new position is still within the speciied screen boundaries. If it has 
reached the edge, the appropriate velocity components are reversed for the next 
go-round’s calculation.
Line 100 starts the erasing of the current dot position, immediately followed 

by a drawing of the new position. Note that the equivalent of theX=TX:Y=TY 
statement is apparently missing. In actuality, it is automatically accomplished by 
theJSRHPLOT on line 112. Remember that the contents of the Accumulator, X- 
and Y-Registers are automatically assigned to$E0−E2 byHPLOT. Line 114 does a 
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short delay by getting a value from paddle 0 to be used by theWAIT ($FCA8) rou-
tine. A!er the delay, a JMP CALC restarts the entire process.
Lines 126−165 are applications of the sign-reversal routines shown earlier. 

Notice thatRVRSY is a one-byte reversal, whileRVRSX illustrates the reversal of a 
two-byte value. Similarly,CALC shows that the same addition routine is used for 
both signed binary (our current condition) and unsigned binary (as in previous 
chapters).

Table-Driven Graphics

Forgraphics of any complexity–anything involving more than one dot–a 
little improvement on this routine is needed. One of the most common ways of 
doing this is to use a table of all the current points on the screen and their corre-
sponding velocities. Motion is then managed by sequentially scanning through 
the table and using the entire calculation, check and erase/plot section as a sub-
routine.
To convert the routine presented earlier, make the following changes to the 

source code (the hex data from the assembly is included to assist in error check-
ing):2

1. Add these lines to the end of the listing (new line numbers shown):

                237  *

                238  *

                239  *

                240  *

6154: A2 00     241  SETUP    LDX  #$00

6156: BD 62 61  242  LOOP     LDA  DATA,X

6159: 9D 00 10  243           STA  TABLE,X

615C: E8        244           INX

615D: E0 28     245           CPX  #40        ; 8 BYTES * NUM DOTS

615F: 90 F5     246           BCC  LOOP

6161: 60        247  DONE     RTS

                248  *

6162: 8C 00 50  249  DATA     HEX  8C005000   ; X,Y(1) = 8C,50

6166: 01 00 01  250           HEX  01000100   ; XV,YV(1) = 1,1

                251  *

616A: 8E 00 52  252           HEX  8E005200   ; X,Y(2) = 8E,52

616E: 01 00 01  253           HEX  01000100   ; XV,YV(2) = 1,1

                254  *

6172: 90 00 54  255           HEX  90005400   ; X,Y(3) = 90,54

6176: 01 00 01  256           HEX  01000100   ; XV,YV(3) = 1,1

                257  *

617A: 92 00 56  258           HEX  92005600   ; X,Y(4) = 92,56

617E: 01 00 01  259           HEX  01000100   ; XV,YV(4) = 1,1

                260  *

6182: 94 00 58  261           HEX  94005800   ; X,Y(5) = 94,58

6186: 01 00 01  262           HEX  01000100   ; XV,YV(5) = 1,1

2[CT] he checksum for the new program is $06.

]
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                263  *

618A: 06        264           CHK

2. Rewrite line 120 (will end up as 190) as:

6113: 60        190  GOBACK   RTS

3. Rewrite the beginning of the source as:

                1    ********************************

                2    *     AL19-HIRES LOTS DOTS     *

                3    ********************************

                4    *

                5    *

                6    *        OBJ  $6000

                7             ORG  $6000

                8    *

                9    TABLE    EQU  $1000

                10   CTR      EQU  $0C

                11   NUM      EQU  $05        ; FIVE DOTS

                12   *

                13   X        EQU  $E0        ; $E0,$E1

                14   Y        EQU  $E2

                15   XV       EQU  $06        ; $06,$07

                16   YV       EQU  $08

                17   TX       EQU  $09        ; $09,$0A

                18   TY       EQU  $0B

                19   *

                20   PREAD    EQU  $FB1E

                21   WAIT     EQU  $FCA8

                22   HCOLOR   EQU  $F6F0

                23   HGR      EQU  $F3E2

                24   HPLOT    EQU  $F457

                25   HPOSN    EQU  $F411

                26   HLIN     EQU  $F53A

                27   *

6000: 20 E2 F3  28   ENTRY    JSR  HGR

6003: A2 03     29            LDX  #$03       ; WHITE

6005: 20 F0 F6  30            JSR  HCOLOR

                31   *

6008: 20 54 61  32   TABLESET JSR  SETUP

                33   *

600B: A9 00     34   BOX      LDA  #$00       ; Y = 0

600D: A8        35            TAY

600E: AA        36            TAX

600F: 20 57 F4  37            JSR  HPLOT      ; PLOT 0,0

4. Insert the code for the table lookup starting at new line 68:

6047: A9 00     68   LOOKUP   LDA  #$00

6049: 85 0C     69            STA  CTR

604B: A5 0C     70   GET      LDA  CTR

604D: 0A        71            ASL

604E: 0A        72            ASL

604F: 0A        73            ASL             ; X = CTR*8
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                74   *

6050: AA        75            TAX

6051: BD 00 10  76            LDA  TABLE,X

6054: 85 E0     77            STA  X

6056: E8        78            INX

6057: BD 00 10  79            LDA  TABLE,X

605A: 85 E1     80            STA  X+1

605C: E8        81            INX

605D: BD 00 10  82            LDA  TABLE,X

6060: 85 E2     83            STA  Y

6062: E8        84            INX

6063: E8        85            INX             ; Y + 1 NOT USED

                86   *

6064: BD 00 10  87            LDA  TABLE,X

6067: 85 06     88            STA  XV

6069: E8        89            INX

606A: BD 00 10  90            LDA  TABLE,X

606D: 85 07     91            STA  XV+1

606F: E8        92            INX

6070: BD 00 10  93            LDA  TABLE,X

6073: 85 08     94            STA  YV

                95   *

6075: 20 AC 60  96   SERVICE  JSR  CALC

                97   *

6078: A5 0C     98   PUT      LDA  CTR

607A: 0A        99            ASL

607B: 0A        100           ASL

607C: 0A        101           ASL

607D: AA        102           TAX

                103  *

607E: A5 E0     104           LDA  X

6080: 9D 00 10  105           STA  TABLE,X

6083: E8        106           INX

6084: A5 E1     107           LDA  X+1

6086: 9D 00 10  108           STA  TABLE,X

6089: E8        109           INX

608A: A5 E2     110           LDA  Y

608C: 9D 00 10  111           STA  TABLE,X

608F: E8        112           INX

6090: E8        113           INX             ; SKIP BYTE

                114  *

6091: A5 06     115           LDA  XV

6093: 9D 00 10  116           STA  TABLE,X

6096: E8        117           INX

6097: A5 07     118           LDA  XV+1

6099: 9D 00 10  119           STA  TABLE,X

609C: E8        120           INX

609D: A5 08     121           LDA  YV

609F: 9D 00 10  122           STA  TABLE,X

                123  *

60A2: E6 0C     124           INC  CTR

60A4: A5 0C     125           LDA  CTR

60A6: C9 05     126           CMP  #NUM       ; NUMBER OF DOTS

60A8: 90 A1     127           BCC  GET

60AA: B0 9B     128           BCS  LOOKUP

                129  *

]
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                130  *

                131  *

60AC: 18        132  CALC     CLC

60AD: A5 E0     133           LDA  X

60AF: 65 06     134           ADC  XV

Run this routine from the Monitor with a6000G or from Appleso! with a 
CALL 24576. If calling from the Monitor, make sure you have entered the Moni-
tor from Appleso! when you do theCALL -151 to ensure that the Appleso! 
ROM or RAM card bank is selected. Note that although the entire routine is in 
assembly language, it does require the presence of the Appleso! hi-res routines 
in the$D0000-$F7FF range. By using paddle 0 you can vary the speed of execu-
tion considerably. One drawback of using theWAIT routine is that 0 will be just 
as slow as 255 when adjusting the paddle. Otherwise, it should behave quite 
nicely. To speed things up further,NOP out theJSR toWAIT on line 187. An even 
greater speed increase is achieved by similarly disabling theJSR PREAD on line 
185, although withPREAD gone there is no longer any control over the speed. H 
However, this will give you an idea of the maximum speed possible for the ive 
dots using standard Appleso! hi-res routines.
he main points to note in the new listing are theJSR toSETUP on line 32, 

theLOOKUP section in lines 68−128, and the table generator at the end in lines 
241−263.

SETUP creates a data table starting at location$1000 that contains a number 
of eight-byte blocks, each of which contains the information necessary for a 
given dot. he block is made up of two four-byte subunits. he irst four bytes 
give the location data for the X and Y coordinates. Notice that the fourth byte is 
not used. Space in the table could have been saved by omitting this byte, but the 
eight byte length per entry allows us to use a few simpleASLs, as will be 
explained momentarily.
he second four bytes hold the velocity data, again in an X, Y format, with 

byte four being unused.
LOOKUP basically does three things. First it retrieves the data for a dot and 

puts it in the currentX,Y,XV,YV bytes. Second, it feeds these to theCALC and 
PLOT routines. hird, when CALC/PLOT returns, the new location and velocity val-
ues are stored back in the table.
Examining the code starting atGET, you can see thatCTR is used to keep 

track of which dot we’re currently processing. his is multiplied by 8 to get the 
base address of the data for that dot. Remember thatASL can be used to multiply 
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easily by a power of two depending on the number ofASLs you use. EachASL is 
equivalent to multiplying by 2.
Once the base address ofset is determined, this is put in the X-Register and 

the data retrieved via a series ofLDA/STA operations. A!er returning from 
CALC/PLOT, the process is reversed to store the new data.

Conclusion

Hi-res is an involved topic, and it’s challenging to try to present the right 
mix of clarity and in-depth explanation. My goal is to provide enough of the 
basics to give you the springboard to pursue your own interests.
In general, the principles provided in this chapter and the one before it are 

the foundation of most animated graphics programs. Tables are especially worth 
your consideration as they provide a straightforward way of managing a larger 
number of screen points.
By now it also should be evident that even in assembly language, the Apple-

so! routines themselves are still the most restraining portion in terms of speed 
and execution. In all fairness to Appleso!, though, realize that their speed is sac-
riiced for simplicity and convenience of operation.
Next chapter’s topic will be the layout of the hi-res screen itself, and how 

certain dedicated routines can be created to get a little more out of the ol’ Apple.

]



20. Structure of the Hi-Res Display Screen
May 1982

In the preceding discussions of hi-res graphics we’ve relied on the existing 
Appleso! BASIC routines to do the necessary plotting of points from assembly 
language. From your previous experience with Appleso! and even from the 
most recent hi-res moving-dot programs presented, you may have noticed cer-
tain peculiarities about hi-res graphics. he problems lie in certain intrinsic 
shortcomings in the explanation of hi-res graphics ofered so far.
To explore this area further let’s examine, one by one, a number of prob-

lems that can occur–and thus discover the underlying structure of the hi-res 
display screen.

Loading a Hi-Res Screen: the “Fill” Efect

he fundamental question to be answered in this discussion is, “How are 
individual points plotted on the screen?” It should be relatively easy to accept the 
notion that to display a screen whose appearance can be arbitrarily changed, the 
RAM portion of the computer must be used. he area used is the range of memory 
from$2000 to$3FFF (8192 to 16383 decimal). his is called the page one hi-res 
display. he Apple II is also capable of displaying an alternate memory range 
called, cleverly enough, the page twohi-res display. his display is derived from 
the data contained in the memory range $4000 to $5FFF.
his chapter will focus primarily on page one, although for the most part 

page two can be considered to be just a simple ofset from page one.
It also should be intuitively obvious that the display must in some way be 

linked to the actual contents of each byte in the ranges mentioned. his can eas-
ily be investigated by doing the following:
From Appleso! BASIC, select and clear the page one hi-res display by typ-

ing inHGR<RETURN>. If the cursor is not still visible, press<RETURN> until it reap-
pears at the bottom of the screen.
Now enter the Monitor with aCALL -151. he irst thing to do is toill 

memory with a sample value. Do this by entering the following:

2000:FF

2001<2000.3FFFM

]
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When you press<RETURN>, the screen should rapidly ill to white. Enter 
<CTRL>C to return to BASIC. Let’s save the screen now by placing a convenient 
disk in the drive and entering:

BSAVE TESTPIC,A$2000,L$2000

Besides providing the information on how to save a hi-res image, the pur-
pose of this instruction was to allow you to watch the screen ill at a little slower 
pace. You may have noticed when you illed the screen just now that it did not 
ill in an exactly continuous pattern, line-by-line from top to bottom. It did hap-
pen rather quickly, though.
Clear the screen by typingHGR<RETURN> again, and now load the data from 

disk back into memory by entering:

BLOAD TESTPIC

his time the screen should ill more slowly, and the somewhat strange pat-
tern this generates will be more apparent. So now our problem is: “How is a ver-
tical screen position (line) selected in terms of its memory address?” (Or: "Why 
does the screen load in such a funny way?”)
Your irst impulse might be to say “Well, if I were designing the computer, 

I’d just multiply the number of the line I wanted by the number of bytes per line 
to get the base address (the address of the irst byte of the line) for the line. For 
example, if each line took forty bytes (which, by the way, it does), line 0 would 
have a base address of$2000. Line 1 would be$2000 +1 × $28 ($28 =40 deci-
mal) = $2028. Line 2 would be $2000 + 2 × $28 = $2060, and so on.
An additional beneit would show up in the form of some unused bytes on 

the hi-res page. For 192 lines, the last address used would be$2000 +(192 × 
$28) −1 =$3DFF. Since we’ve allotted the area from$2000 to$3FFF for page 
one, this would leave $200 (512 decimal) bytes le! over!
Unfortunately, that’s not the way the Apple was set up. It turns out that 

multiplication routines are kind of a drag in terms of speed and memory usage, 
unless you’re using exact multiples of two. A much more compact (and faster) 
algorithm is:

                1    ********************************

                2    *    AL20-HIRES BASE ADDRESS   *

                3    *      CALCULATOR ROUTINE      *

                4    ********************************

                5    *        OBJ  $300

                6             ORG  $300

                7    GBAS     EQU  $26

                8    HPAG     EQU  $E6        ; HGR=$20, HGR2=$40

                9    *

                10   * CALC BASE ADDRESS FOR Y-COORD IN ACCUM.

                11   * GBAS = ADDR OF 1ST BYTE OF LINE SPECIFIED.

                12   * ASSUME ACCUM HAS BITS abcdefgh, C=carry

0300: 48        13   ENTRY    PHA             ; abcdefgh
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0301: 29 C0     14            AND  #$C0       ; ab000000

0303: 85 26     15            STA  GBAS

0305: 4A        16            LSR             ; 0ab00000

0306: 4A        17            LSR             ; 00ab0000

0307: 05 26     18            ORA  GBAS       ; abab0000

0309: 85 26     19            STA  GBAS

030B: 68        20            PLA             ; abcdefgh

030C: 85 27     21            STA  GBAS+1

030E: 0A        22            ASL             ; bcdefgh0 C=a

030F: 0A        23            ASL             ; cdefgh00 C=b

0310: 0A        24            ASL             ; defgh000 C=c

0311: 26 27     25            ROL  GBAS+1     ; bcdefghc C=a

0313: 0A        26            ASL             ; efgh0000 C=d

0314: 26 27     27            ROL  GBAS+1     ; cdefghcd C=b

0316: 0A        28            ASL             ; fgh00000 C=e

0317: 66 26     29            ROR  GBAS       ; eabab000

                30   *

0319: A5 27     31            LDA  GBAS+1     ; cdefghcd

031B: 29 1F     32            AND  #$1F       ; 000fghcd

031D: 05 E6     33            ORA  HPAG       ; 001fghcd (PAGE 1)

031F: 85 27     34            STA  GBAS+1     ; 001fghcd

                35   *

0321: 60        36   DONE     RTS

Although it’s perhaps not obvious how this works, the routine does take any 
value in the Accumulator, from 0 to 191, and return the appropriate base 
address of the corresponding line in locations$26,$27 (GBAS). his code is 
“stolen” from a similar routine in the Appleso! hi-res routineHPOSN ($F411) 
mentioned in the previous chapter.1

he overall pattern to the screen-illing operation is as follows. he irst 
forty bytes of memory correspond to line 0 of the screen display. he next forty 
bytes form line 63, and the next forty bytes line 127. At the end of the line 127 is 
a block of eight unused bytes. (3× 40 + 8 = 128 bytes). his pattern is repeated 
sixty-three more times to create all 192 screen lines.2 (3× 64 = 192 lines; 64× 
128 bytes = 8,192 bytes per hi-res page.)
When hi-res page 1 is loaded from disk, the range of memory is illed 

sequentially from$2000 to$3FFF. What you see on the screen are twenty-four 
screen blocks, each consisting of eight lines gradually being illed. he twen-
ty-four blocks also can be viewed as eight triplets, with each triplet made up of 
three lines, one line each at the top, middle, and bottom portions of the screen. 
he general screen ill pattern then is: 0, 63, 127; 8, 71, 135; 16, 79, 143; … 62, 
126, 191.

1[CT] Corrections to this code were taken from the June 1982Assembly Lines article. 
Additional comments were added, following those from Bob Sander-Cederlof’s Apple-
so! disassembly at http://www.txbobsc.com/scsc/scdocumentor/.

2[CT] he next 128 bytes ($2080−$20FF) correspond to screen lines 8, 71, and 135. he 
128 bytes a!er that map to lines 16, 79, 143, and so forth. he irst eight lines start at: 
$2000, $2400, $2800, $2C00, $3000, $3400, $3800, $3C00. See chapter 31 for details.

]
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It is not essential at this point that you be entirely luent in terms of which 
line corresponds to which memory range; only that you realize that the screen 
does not ill in quite the pattern that might otherwise be expected. Fortunately, 
the routine just given can calculate the base address of any horizontal line we 
wish to access.

Another Problem: Shiting Colors

Enter the following:

HGR

HCOLOR = 1

HPLOT 0,0

CALL 62454

HCOLOR = 5

HPLOT 0,0 TO 100,100

he irst two steps are fairly innocent; they merely select and clear the hi-res 
page, then set thecolor to green. Trying toHPLOT 0,0 gives the irst problem: it 
doesn’t seem to work. his is consistent with the warning given earlier, that 
even-numbered colors plot only even coordinates, and odd-numbered colors 
plot only odd coordinates. Green, being an odd-value color, is not plotted at 
X = 0.
heCALL 62454 is a call to a routine that clears the screen to the last color 

plotted (whether or not the result was visible). A!er you set the color to orange 
(HCOLOR =5), an attempt to draw a diagonal line produces a series of rectangles. 
What accounts for both of these efects?
You’ll recall that 40 bytes per line are used to hold the data to display the 

280 dot positions on each line. here are eight bits in a byte, giving us a total of 
320 bits to work with. As it happens, only seven of each eight are used in map-
ping the displayed screen dots (7 × 40 = 280 dots).
Consider the illustration below:

Address: $2000 $2001 $2002

Bit:0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Color:
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B

G

O

V
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O
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1

X coordinate:0 1 2 3 4 5 6 − 7 8 910111213−14151617181920−

Figure 20-1: Bit Positions and Screen Colors
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What Figure 20-1 shows is the color and position assignment of each bit 
within the irst three bytes of memory for page one of the hi-res screen display. 
Although only the irst three bytes of line 0 are shown, the pattern holds for the 
entire display.
Note the following major points:

1. Not every color can be displayed at every X coordinate. Speciically, even 
colors (violet = 2, blue = 4) are available only on even X coordinates. Odd colors 
(green = 1, orange = 5) are available only at odd X coordinates.

2. Within any byte, bit 7 is used to determine which row–top or bottom–is 
selected. his means that for any particular group of seven dot positions, repre-
sented by a single byte, only the colors ineither the top or bottom rows can be 
shown at one time. For example, it isnot possible to have green and orange dots 
displayed simultaneously within the same seven-dot group.

3. he order of the colors within every other byte is reversed with respect to its 
neighbors. his is to ensure that the individual colors properly alternate with 
successive X positions, such as between bytes 0 and 1, 1 and 2, and so on.

he color chart is shown below:
Now perhaps it will make a little more 

sense. Set 1 colors are all those selected when 
the high-order bit is of (bit 7 = 0). Set 2 are 
all those selected when the high-order bit is 
on (bit 7 = 1). Any attempt to plot a point 
from one set will convert any existing dots 
from the other set, provided all dots are 
deined within a common byte. Obviously, 

plotting a dot at X coordinate 7 (byte$2001) will not have any efect on dot posi-
tions 0 to 6, since they are stored in a separate byte ($2000).
White is drawn by turning on two adjacent dots, either a violet-green pair 

for white1, or a blue-orange pair for white2. Conversely, black is formally done 
by turning of two dots at once, the pair of which would correspond to the ones 
used for a white plot as just described.
Within a particular byte, bit 7 will always be le! in a state determined by the 

nature of the last color plot, regardless of how many dots were previously in 
some other particular condition. his is why the earlier diagonal line plot acted 
so strangely. By clearing the screen to green, every screen byte was set so as to 
have the green bits on and the violet bits of (bit 7 = 0). See Figure 20-2.

]

Set 1    Set 2  

0 = Black1
1 = Green
2 = Violet
3 = White1

4 = Black2
5 = Orange
6 = Blue
7 = White2
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Address: $2000 $2001 $2002

Bit:0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Value:0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0

Color: G G G −G G G G − G G G −

X coordinate:0 1 2 3 4 5 6 − 7 8 910111213−14151617181920−

Figure 20-2: Bit Values for Green Pixels

Location$2000, for example, would hold the value$2A. Since the pattern is 
shi!ed for$2001, an all-green dot group would correspond to the value$55. To 
add to the confusion, remember that Figure 20-1 shows the bits in the reverse 
order from the notation normally used in this book. Ordinarily we’d show loca-
tion$2000 holding a$2A in binary notation as:00101010. Since the screen dots 
are displayed by least-signiicant position irst, though, this is reversed when 
showing a screen display to make it easier to interpret:

$2A = 00101010 → (reverse to match Figure 20-1) → 01010100

and for the other bytes:

$5A = 01010101 → (reversed) → 10101010

When HPLOT tried to draw an orange dot at 0, 0 we would ordinarily
expect no efect. However, the high bit was reversed, and this converted the dis-
play of all current green dots to orange.
At all odd coordinates the direct plot is successful, but all remaining dots in 

the particular byte still converted to their high-bit-on equivalents.
Figure 20-3 shows the contents of $2000 to $2002 a!er the orange HPLOT.

Address: $2000 $2001 $2002

Bit:0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Value:0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1

Color: O O O −O O O O − O O O −

X coordinate:0 1 2 3 4 5 6 − 7 8 910111213−14151617181920−

Figure 20-3: Bit Values for Orange Pixels
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Another smaller but equally annoying example is shown by this simple pro-
cedure:

HGR

HCOLOR = 1: HPLOT 1,0

HCOLOR = 5: HPLOT 5,0

HGR

HCOLOR = 1: HPLOT 1,0

HCOLOR = 5: HPLOT 6,0

HGR

HCOLOR = 1: HPLOT 1,0

HCOLOR = 5: HPLOT 7,0

Step through each statement carefully, noting what happens a!er the 
attempt to plot the orange dot. In the irst case, the irst green dot is converted 
even though the dots are visually separated. his is because they are both deter-
mined within the same byte. In the second case, even though the second dot is 
not plotted, the conversion still occurs. In the third case, the second plot uses a 
second and distinct byte, so the irst dot is unafected regardless of the color of 
the second plot.

Other Problems: When Is White Not White?

Answer: when you’re plotting only one dot at a time.
In the last few programs involving the movement of hi-res dots, you may 

have noticed that at slow speeds the color of the dot alternated between violet 
and green depending on its position. Similarly, even though we speciiedwhite 
as the color to be used in the box frame drawn at the beginning of each program, 
the le! vertical line was violet while the right one was green.
his is because white does not actually turn on two dots at once. What it 

really does is let either dot (violet/green or orange/blue) be acceptable for a given 
HPLOT. White appears only when two adjacent dots are drawn, usually as a result 
of a line being drawn with some degree of horizontal tilt to it.
In the moving-dot programs, the dot appears white when moving at higher 

speeds because the alternation between colors occurs quickly enough that your 
eye tends to do the blending on a time basis, rather than the usual positional one.

Super Hi-Res Graphics

he last topic for this chapter is not a problem, but rather an unheralded 
beneit of this crazy system of screen displays. You may have noticed in the pre-
vious example that when the second dot was plotted, the green dot moved 
slightly to the right when it changed to orange. Up until now, you’ve been led to 
believe that the violet/blue or green/orange options for each bit represented a 

]
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unique screen position–a single dot. For the 280-point model of the screen, they 
do. For example, either violet or blue can be plotted with anHPLOT 0,0 state-
ment.
In reality, however, a more accurate representation can be constructed as in 

Figure 20-4.

Address: $2000

Bit: 0 1 2 3 4 5 6 7

Color:
V

B

G

O

V

B

G

O

V

B

G

O

V

B

0

1

X coordinate:0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 20-4: Bit Positions and Colors for 560-dot Mode

In this model, you can see that the high-bit-on colors are shi!ed a half posi-
tion to the right of the high-bit-of colors. What this means is that you can plot 
points in a 560-dot mode, giving a much better resolution than the usual 280-
point mode. his involves enough calculation that it’s best done in assembly lan-
guage. In the next chapter we’ll investigate the techniques for plotting in all of 
these various modes using some new routines.



21. Hi-Res Plotting in Assembly
June 1982

In the previous chapter we looked at how the Apple hi-res screen is set up 
and at how each dot on the screen is linked to a bit position of a byte in memory.
In this chapter we’ll present a more detailed explanation of plotting a point 

and, more speciically, provide routines for some new ways of plotting to the hi-
res screen.

Normal Point Plotting

In Figure 20-1 (Chapter 20) we saw how the hi-res screen colors are mapped 
out in memory.
You’ll remember that we could access either the violet/green or blue/orange 

dot pairs depending on whether the high-order bit (bit 7) of the byte in question 
was set. To plot a color dot on the screen we need to carry out the following 
steps:

1. Use the Y coordinate to determine on which horizontal screen line to plot. 
Because the lines are not mapped continuously, a special routine is used to cal-
culate the base address. In this case the term refers to the address associated with 
the irst byte on the line given by Y.

In normal Appleso!, this base address is calledGBAS (“Graphics Base 
address”) and is stored in the byte pair$26,$27. LocationHPAG ($E6 = Hi-res 
PAGe) is used to indicate whether the plot is to be on page 1 or page 2 of the hi-
res screen.
As it happens, we can use the HPOSN ($F411) routine in Appleso! to do this 

calculation for us, but the listing in chapter 20 (HIRES BASE ADDRESS CALCULA-
TOR) is provided for your entertainment, and for possible use if you should 
decide to write an Appleso!-independent routine.

2. Once the base address of the horizontal line has been determined, the posi-
tion of the byte relative to the le! edge needs to be established. Because seven 
dots are stored in each byte, the byte we need to access can be determined by 
dividing the X coordinate by 7. his result is stored in locationHNDX ($E5 = Hor-
izontal iNDeX). It is used by putting the contents of$E5 into the Y-Register for 
an LDA ($26),Y operation–but more on that later.

]

21
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3. he color mask needs to be set up. he color mask is a bit pattern that shows 
which bits in a byte are acceptable possibilities for a plot. he color mask is 
stored in location$E4 (COLBYTE). Rather than literally calculating, Appleso! 
stores all of the possible color masks starting at location $F6F6 (see Figure 21-1).

Ones and zeros are used to indicate which dots are on and which are of for 
the color indicated. Black1 is the simplest: it is achieved by turning every dot of. 
White1 is its converse, achieved by turning every dot on. Note that bit 7 does not 
correspond to a displayed dot and is le! a 0 (high bit of).
If you compare the color masks for green and violet to the chart in Figure 

20-1, you’ll note that the ones match the available dots for the given color in a 
byte. Remember, the order of the bits is reversed when mapping to the screen, so 
that bits 0 to 6 are mapped le! to right on the screen.
he second set of masks in Figure 21-1 are the colors with the high-bit set 

(bit 7 = 1). he same pattern as before is used, except that the high bit is set for 
all four colors.
Looking at Figure 20-1 again, you’ll note that the masks shown on the le! 

will work for all even-addressed bytes, that is, bytes such as$2000, $2002, and so 
on. For the odd-addressed bytes ($2001, $2003, and so on), the colors are shi!ed 
one bit position. WhenHPOSN is called, along with determiningGBAS, it checks 
the HNDX calculated and, if that is an odd address, shi!s the color byte. he result, 
whether shi!ed or not, is always put in location$1C (HCOLOR1). he results of 
such a possible shi! are shown on the right side of Figure 21-1.
(An interesting result of this process is that you cannot clear the entire 

screen to an actual color [green, violet, blue, or orange] by illing memory with a 
single value. Try it. Clear the hi-res screen with anHGR, then enter the Monitor 
with CALL -151. hen type in:

*2000:2A

*2001<2000.3FFFM

For X = Even For X = Odd

$F6F6:  $00 = 0000 0000 Black1 (0)

$F6F7:  $2A = 0010 1010 Green  (1)

$F6F8:  $55 = 0101 0101 Violet (2)

$F6F9:  $7F = 0111 1111 White1 (3)

$F6FA:  $80 = 1000 0000 Black2 (4)

$F6FB:  $AA = 1010 1010 Orange (5)

$F6FC:  $D5 = 1101 0101 Blue   (6)

$F6FD:  $FF = 1111 1111 White2 (7)

$00 = 0000 0000

$55 = 0101 0101

$2A = 0010 1010

$7F = 0111 1111

$80 = 1000 0000

$D5 = 1101 0101

$AA = 1010 1010

$FF = 1111 1111

Figure 21-1: Applesot Color Masks
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he screen should clear to alternating vertical bars of green and violet.)

4. Now the actual bit position of interest needs to be selected. his actually has 
already been done byHPOSN. he result of the X coordinate divided by seven was 
put inHNDX, and the remainder of that division 
just happens to correspond to the actual bit posi-
tion within the byte we want. he only remaining 
problem is that the result is a number from 0 to 
6, and what we need is a byte with only that par-
ticular bit turned on. his is again derived from a 
table within Appleso! (in this case starting at 
$F5B2–see Figure 21-1). he result from this 
table is then put in location $30 (HMASK).

Now at last we’re ready to do the actual plot. 
he plotting sequence (normally found at $F45A) looks like this:

F45A-   A5 1C       LDA   $1C         ; HCOLOR1

F45C-   51 26       EOR   ($26),Y     ; (GBAS),Y

F45E-   25 30       AND   $30         ; HMASK

F460-   51 26       EOR   ($26),Y     ; (GBAS),Y

F462-   91 26       STA   ($26),Y     ; (GBAS),Y

F464-   60          RTS

his last operation is probably best clariied with an actual example.
Given:

HGR

HCOLOR = 1

HPLOT 15,0

Procedure:

1. JSR $F3E2 (HGR). Clears the hi-res screen. Sets HPAG ($E6) to #$20.

2. LDX #$01

JSR $F6F0 (HCOLOR)
his puts the mask value %00101010 in HCOLOR1 ($E4).

3. LDX X (low-order byte of the X coordinate)
LDY X+1 (high-order byte of X)
LDA Y (Y coordinate)
JSR HPOSN

Note that the percent sign (%) in the mask value is used to indicate the binary 
form of a number. his form is used in the remark portions of many of the 
source listings in this book as an added aid to the explanations. Although some 
assemblers allow binary numbers in the operand, we have limited their use here 
to the remark ield to reduce compatibility problems.

]

$F5B2: $81 = 1000 0001

$F5B3: $82 = 1000 0010

$F5B4: $84 = 1000 0100

$F5B5: $88 = 1000 1000

$F5B6: $90 = 1001 0000

$F5B7: $A0 = 1010 0000

$F5B8: $C0 = 1100 0000

Figure 21-2: Bit Mask
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he procedure given above will:

a) Calculate the base address using the page index at$E6 (usually$20). In this 
case the result will be $2000. he result is stored in GBAS, GBAS+1 ($26, $27)

b)Divide 15 (the X coordinate) by 7. he result (2) is put inHNDX ($E5). he 
remainder of the division (1) is used to access the bit mask table. he result of 
this table lookup (%10000010 found at $F5B2,X where X=1) is put in HMASK ($30).

c) CheckHNDX to see if the byte ofset is odd. If so, shi! the color byte mask. 
Since in this case$E5 holds a 2, no shi! is required. hus the color mask%0010 
1010 is put in HCOLOR1 ($1C) in preparation for the plot.

4. JSR $F45A (HPLOT). his completes the process with:

   LDY  HNDX         ($E5)    =   '2'

   LDA  HCOLOR1      ($1C)    =   %0010 1010

   EOR  (GBAS),Y     ($2002)  =   %0000 0000

                                  %0010 1010  (EOR’d)

   AND  HMASK        ($30)    =   %1000 0010

                                  %0000 0010  (AND’d)

   EOR  (GBAS),Y     ($2002)  =   %0000 0000

                                  %0000 0010  (EOR’d)

   STA  (GBAS),Y     ($2002)  =   %0000 0010

   screen looks like:              0100 000-  Green dot lights!

he net efect of step 4 is to say: “Look at the bit mask pattern and compare it to 
the color mask. If there is a one in the color mask at the given dot position, turn 
that dot on (set the bit to 1) If there’s a 0 at that position, turn the dot of (clear 
bit to 0).”

Alternate Plotting Modes

So far, all we have really done is to explain further something we were 
already using. his new explanation makes possible some alternative ways of 
plotting to the hi-res screen. In fact, by using the existing Appleso! routines, the 
new routines are rather short and, best of all, easy to explain. If you are unsettled 
right now about the iner details of the masking operations, don’t worry. he real 
point of all that is to give you some feel for the general processes involved.
For starters, let’s review some basic problems encountered so far with the 

normal Appleso!HPLOT. he irst arises when you try to plot using just one 
color. By settingHCOLOR equal to 1, 2, 5, or 6, we limit the possible dots which 
can be plotted to every other dot on the normal screen. his can be disconcerting 
when you have a statement like:

HCOLOR = 1: HPLOT 100,100
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and nothing happens. he reasons for this were discussed in earlier chapters, but 
now it should be even more obvious that the color mask speciies only odd-dot 
positions for HCOLOR = 1, making it impossible to plot at X = 100.
he second problem occurs when you’re plotting withHCOLOR =3 or HCOLOR 

=7. Even though we have speciiedwhite, an attempt to plot a single point 
always comes out as a colored dot. It is only when drawing more than one point 
(such as in a line) that white appears. Let’s examine possible solutions to these 
problems.

140-Point Resolution Mode

For the irst problem of invisible points, one solution is to accept that there 
are only140 points available for a given color and to alter our frame of reference 
to recognize that reality. An easy way of doing this is to always work with an X 
coordinate value in the range of 0 to 139, and then to double the value when 
actually doing theHPLOT. he main drawback to this approach is the speed loss 
due to the multiplications, and the fact that odd color values must also be shi!ed 
by one (since odd colors can only plot at odd X positions). he situation now 
would look like this:

HCOLOR = 2                HCOLOR = 1

X = 15: Y = 30     or     X = 20: Y = 30

HPLOT X*2, Y              HPLOT X*2 + 1, Y

Another approach is to create an assembly-language routine to do this for 
us automatically. Here’s the source listing for such a routine.

                1    ********************************

                2    *     AL21-HIRES PLOT.140      *

                3    *                              *

                4    ********************************

                5    *

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   CHKCOM   EQU  $DEBE

                11   FRMNUM   EQU  $DD67

                12   GETADR   EQU  $E752

                13   LINNUM   EQU  $50

                14   COMBYTE  EQU  $E74C

                15   *

                16   X        EQU  $E0

                17   Y        EQU  $E2

                18   *

                19   HCOLOR   EQU  $F6F0

                20   HGR      EQU  $F3E2

                21   HPLOT    EQU  $F457

                22   HPLOT2   EQU  $F45A

                23   COLBYTE  EQU  $E4

]
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                24   *

0300: 20 BE DE  25   ENTRY    JSR  CHKCOM

0303: 20 67 DD  26            JSR  FRMNUM

0306: 20 52 E7  27            JSR  GETADR

                28   *

0309: 06 50     29   CALC     ASL  LINNUM

030B: 26 51     30            ROL  LINNUM+1   ; X*2

                31   *

030D: A9 02     32            LDA  #$02       ; %0000 0010

030F: 24 E4     33            BIT  COLBYTE

0311: F0 06     34            BEQ  C1         ; NO MATCH COLOR EVEN

0313: E6 50     35            INC  LINNUM

0315: D0 02     36            BNE  C1

0317: E6 51     37            INC  LINNUM+1

                38   *

0319: A5 50     39   C1       LDA  LINNUM

031B: 85 E0     40            STA  X

031D: A5 51     41            LDA  LINNUM+1

031F: 85 E1     42            STA  X+1

                43   *

0321: 20 4C E7  44   GETY     JSR  COMBYTE

0324: 8A        45            TXA             ; PUT Y-COORD IN ACC

0325: A6 E0     46   PLOT     LDX  X

0327: A4 E1     47            LDY  X+1

0329: 20 57 F4  48            JSR  HPLOT

                49   *

032C: 60        50   DONE     RTS

032D: C1        51            CHK

his program is designed to be called from Appleso!, serving as a subrou-
tine for an undeined overall program. he advantage of the routine is that 
HCOLOR may be set to any value, although white will still plot only one color. Val-
ues for the X coordinate may range from 0 to 139.
Assuming that the routine is loaded starting at location$300 (768 decimal), 

the syntax for calling it would be:

CALL 768, X, Y

where X and Y are the coordinates for the desired plot.
Examining the listing, you will see that the irst step is to use the calls to 

Appleso! on lines 25 through 27 to retrieve the X coordinate from Appleso!. 
he resulting two-byte representation for the value will end up inLINNUM ($50, 
$51).
Once we have the value for X, the remaining process is very straightforward. 

he X coordinate is doubled by the pair of le! shi!s on lines 29 and 30. Next, the 
color byte is checked to see if theHCOLOR previously selected was an odd or even 
color value. A brief look at the color mask chart in Figure 21-1 shows that bit 1 
(rather than bit 0) is the key to whether a color is odd or even. If the color is odd, 
LINNUM is incremented by one to select the next odd X-coordinate position.
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he Y coordinate is then retrieved usingCOMBYTE. Since Y cannot be larger 
than 191, the one-byte retrieval routine can be used.
At that point, the usual call to HPLOT is done with the new X coordinate.
A little rumination on this routine should convince you that it is function-

ally identical to this BASIC algorithm:

0  HGR: HOME: VTAB22

10  INPUT “HCOLOR”;C : HCOLOR = C

20  INPUT “COORDINATES:”; X,Y

30  X = X * 2

40  IF C / 2 <> INT (C / 2) THEN X = X + 1

50 HPLOT X,Y

he assembly-language routine given can always be used directly from other 
assembly-language programs by deleting lines 25 through 27 and changing 44 
and 45 to readLDY Y. he routine would then be called by putting the desired X 
coordinate in LINNUM ($50, $51), and the Y coordinate in Y ($E2).

560-Point Resolution Mode

he disadvantage of the 140-point method just shown is that the resolution 
of the graphics is obviously limited. his is particularly apparent in attempts to 
draw near-vertical lines; it’s easy to observe the degree of stair-stepping that 
occurs. Low-resolution plotting modes produce very broken near-vertical lines.
If color is not a concern (such as when using a black-and-white monitor), 

then why not just plot using white? Since we won’t know that the colors are 
actually varying depending on the X coordinate speciied, a black-and-white dis-
play will look ine.
Well, if that’s the case, then you might as well go for all you can get and use 

the560-point mode. he theory to this mode is that the high-order bit of each 
screen byte can be used to choose between dots shi!ed one-half of a position 
with respect to the usual 280-point mode. he argument against this method is 
that the plotting of dots within the same byte can distort the irst byte plotted.
For example, if the irst dot plotted is on the farthest le! position possible 

(high bit of), then a successive plot of anyHCOLOR with the high bit set (HCOLOR 
= 4 through 7) will change the color of the dot andshi! it to the right. As it hap-
pens, this is not much of an argument since the same holds true for the normal 
280-point mode, and even for the 140-point mode. he inescapable fact is that 
plotting two colors with conlicting high-bit conditions within the same byte will 
always afect the irst dot plotted. If the distortion is unavoidable then you might 
as well enjoy the beneits of the higher resolution, especially if you’re going to 
have to cope with the distortion problem anyway.
Without further introduction, here then is a routine implementing the 560-

point plotting mode.

]
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Like thePLOT.140 routine, this is assumed to be loaded at$300 and would 
be called in a manner identical to that for the previous routine:

CALL 768, X, Y

he main diference here is that X can now have a range of 0 to 559, and that 
HCOLOR is always set to white. As with normal Appleso!, what this really means 
is that we’ll take any color we can get for a given plot, and that true white will 
result only when dots are plotted adjacent to each other. Here’s the listing for 
this routine:

                1    ********************************

                2    *     AL21-HIRES PLOT.560      *

                3    *                              *

                4    ********************************

                5    *

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   CHKCOM   EQU  $DEBE

                11   FRMNUM   EQU  $DD67

                12   GETADR   EQU  $E752

                13   LINNUM   EQU  $50

                14   COMBYTE  EQU  $E74C

                15   *

                16   X        EQU  $E0

                17   Y        EQU  $E2

                18   *

                19   HPLOT    EQU  $F457

                20   COLBYTE  EQU  $E4

                21   *

0300: 20 BE DE  22   ENTRY    JSR  CHKCOM

0303: 20 67 DD  23            JSR  FRMNUM

0306: 20 52 E7  24            JSR  GETADR

                25   *

0309: 46 51     26   CALC     LSR  LINNUM+1

030B: 66 50     27            ROR  LINNUM     ; X/2

030D: A9 7F     28   C0       LDA  #$7F       ; %0111 1111

030F: 85 E4     29            STA  COLBYTE

0311: 90 04     30            BCC  C1         ; X=EVEN

0313: A9 FF     31            LDA  #$FF       ; %1111 1111

0315: 85 E4     32            STA  COLBYTE

                33   *

0317: A5 50     34   C1       LDA  LINNUM

0319: 85 E0     35            STA  X

031B: A5 51     36            LDA  LINNUM+1

031D: 85 E1     37            STA  X+1

                38   *

031F: 20 4C E7  39   GETY     JSR  COMBYTE

0322: 8A        40            TXA             ; PUT Y-COORD IN ACC

0323: A6 E0     41   PLOT     LDX  X

0325: A4 E1     42            LDY  X+1

0327: 20 57 F4  43            JSR  HPLOT
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                44   *

032A: 60        45   DONE     RTS

032B: 9B        46            CHK

he operation of this routine is also fairly simple. As with thePLOT.140 pro-
gram, the value for X is retrieved from the calling program. In this case, though, 
CALC divides the passed value by two. Note that a le!-shi! operation is used, not 
the right shi!s (for a multiply) that were used in the 140-mode.
You’ll recall thatLSR LINNUM+1 (LSR = Logical Shi! Right) will shi! all bits 

inLINNUM+1 (the high-order byte) to the right one position, forcing a 0 at the 
rightmost position and putting the old bit 0 in the carry. his is immediately fol-
lowed by theROR (“rotate right”) instruction which again shi!s all the bits in 
LINNUM (the low-order byte), puts the carry into bit 7, and drops the last bit 0 
into the carry, thus replacing the old value. For example:

   X-COORD = 289 = $121 = %0000 0001   0010 0001

                           LINNUM+1     LINNUM

   LSR LINNUM+1:   %0000 0001  →  %0000 0000 (Carry=1)

   ROR LINNUM:     %0010 0001  →  %1001 0000 (Carry=1)

he rather coincidental beauty of this is that the carry lag will end up being 
set or cleared depending on whether the original value for X was odd or even. 
his is needed because in the 560-point mode, we’ll use the odd or even nature 
of X to determine whether to set the high bit.

X (560) X (280) Color mask to use

0 0 White1 (bit 7 = 0)
10 5 White1 (bit 7 = 0)
201 100 White2 (bit 7 = 1)
501 250 White2 (bit 7 = 1)

Basically what we do is to divide the X coordinate by two to get a value 
acceptable to normal Appleso!, and then force the color to be either white1 or 
white2 depending on how we want the high bit set in the inal plot.
Lines 28 through 32 set the color mask to the appropriate value by checking 

the carry lag to see if the original value of X was odd or even. henLINNUM is 
transferred to our actual X-coordinate bytes. he routine is then completed with 
the usual call to HPLOT, as was done in the PLOT.140 routine.
his process could be simulated from Appleso! with the following routine:

0  HGR: HOME: VTAB 22

10  INPUT "COORDINATES? "; X, Y

20  HCOLOR = 3 : REM WHITE1

30  IF X / 2 <> INT(X / 2) THEN HCOLOR = 7 : REM WHITE2 FOR X=ODD

40  X = X / 2

50  HPLOT X, Y

]
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It’s likely, however, that you’ll ind the assembly-language routine consider-
ably faster, and certainly much easier to implement.

A Demonstration Program

To give you something to show of these routines, here’s a program in 
Appleso! that calls both routines and shows the diferences in their appearance.

10  D$ = CHR$(4): REM AL21.PLOTLINE.A

100  REM NORMAL TEST

110  HGR : HCOLOR = 3

120  FOR I = 0 TO 100

130  HPLOT I,I

140  NEXT I

200  REM PLOT.140 TEST

205  PRINT D$;"BLOAD AL21.PLOT140,A$300"

210  FOR I = 0 TO 100

220  CALL 768,I,I

230  NEXT I

300  REM PLOT.560 TEST

305  PRINT D$;"BLOAD AL21.PLOT560,A$300"

310  FOR I = 0 TO 100

320  CALL 768,I,I

330  NEXT I

Notice that this program loads each routine from a disk ile as it’s needed. 
Basically this illustrates the steepest vertical angle at which a line can be drawn 
without any noticeable stair-stepping, or breaking, in the line. It also conve-
niently shows a perhaps unexpected change in the actual visual result of the plot, 
even though all three lines were done with similar FOR-NEXT loops.
Normally, the 280-point mode is conveniently proportional. hat is to say, a 

move of ive points horizontally on the screen is about the same actual distance 
on the screen as a move of ive points vertically. his ensures that a square will in 
fact look “square” when drawn on the screen. hus the irst plot is at the 
“proper” 45 degrees when drawn using HPLOT 1,1.
When the number of screen points is halved, as in the case of thePLOT.140 

routine, the result will be to “stretch” the screen horizontally by a factor of two. 
Similarly, packing in twice as many points (namely 560 versus 280) across has 
the efect of compressing the screen. hese efects must be considered when 
doing geometric designs on the screen.
We’ll leave it as an exercise for you to draw three parallel lines using each of 

the three modes.
By now, you’ve probably also noticed some minor laws in the clarity of the 

560-point line. In the next chapter we’ll explore the matter further, discovering 
why the faint spots occur and how to ix them.
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he previous chapter concluded with a demonstration program that showed 
the relative appearances of a line drawn with the normalHPLOT command as well 
as with special 140- and 560-point mode plotting routines.
he entire plotting process was based on a model of point display in which 

each point on the screen corresponds to the status of a particular bit within a 
memory byte. For general plotting, Figure 20-1 (in Chapter 20) illustrates the 
corresponding color points.
he140-point mode was created to ensure that for anyHPLOT-type action, a 

consistent color dot would always be plotted. his consistency is not ordinarily 
available in the Apple’s usual 280-point mode.
For instances in which color is not a concern, an alternate scheme was 

devised that would be indiferent to the color of the dot illuminated (as the 
viewer would be when using a black-and-white monitor). An added feature of 
this scheme allows a resolution of 560 points per line. his was done by using the 
high-order bit of each byte to shi! a given dot one-half of a position.
When the inal demonstration program was run, the last line was drawn in 

the 560-point mode. You may have noticed, though, that certain points on the 
line were rather faint. his brings us to the discussion of one of the last (?) bugs 
in the hi-res graphics routines.
Change the previous chapter’s test program to appear as follows:

10  D$ = CHR$(4)

40  HOME: INPUT "BLACK1 OR BLACK2? (1 OR 2)"; I

100  REM NORMAL TEST

110  HGR: HCOLOR = I*4 - 4: HPLOT 0,0: CALL 62454: HCOLOR = 11 - I*4

120  FOR I = 0 TO 100

130  HPLOT I,I

140  NEXT I

200  REM PLOT.140 TEST

205  PRINT D$;"BLOAD AL21.PLOT140,A$300"

210  FOR I = 0 TO 100

220  CALL 768,I,I

230  NEXT I

300  REM PLOT.560 TEST

305  PRINT D$;"BLOAD AL21.PLOT560,A$300"

310  FOR I = 0 TO 100

320  CALL 768,I,I

330  NEXT I

]
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When you run this program, enter either 1 or 2 to specify which “lavor” of 
black you want for the background. Under normal circumstances, anHGR state-
ment clears the background to black1, (high bit of on each byte) and plots are 
done using white1. his program changes that by using the alternate white for 
the background selected; that is to say, if you select black1 for the background, 
white2 will be used to plot. If you select black2, white1 will be used.
Examining the listing, then, you’ll notice that line 110 setsHCOLOR to black1 

or black2, does the required plot, and then clears the background to that color. A 
CALL 62454 will always clear the current hi-res screen to the last color plotted 
(see page 134 of yourAppleso! II BASIC Programming Reference Manual for a 
description of this).
Following the screen clear, white is set in the alternate mode described ear-

lier.
Lines 100−140 draw a diagonal line point-by-point as was done in the previ-

ous chapter, but now the line should appear to have a few faint spots in it. If you 
choose black2 as the background, the line will have places where the dots appear 
slightly larger than you’d have expected.
Similar efects can be observed in the 140- and 560-mode lines.

Interactions between Adjacent Bytes

he entire premise of the 560-point mode was that the high-order bit of 
each byte afected the inal display position of each other bit within it. We have 
seen how changing the status of bit 7 (the high-order bit) mayshi! a given dot 
one-half of a position, depending on whether the bit is set.
Now for the new wrinkle. It turns out that for dots associated with bit 6 of a 

byte, the high-order bit of thenext byte in memoryalso afects the display of the 
irst byte.
As an example, irst clear the hi-res screen with anHGR and then enter the 

Monitor via the usual CALL -151.
Now enter the following values into memory. You should see an efect simi-

lar to the description at the right of each statement.

*2138: 40  (Dot is plotted; width = 1 unit)

*2139: 80  (The dot extends; new width = 1.5 units)

*2139: 00  (The dot is back to normal; width = 1 unit)

*2138: C0  (The dot grows fainter; width = 0.5 units)

*2139: 80  (The dot is back to normal; width = 1 unit)

he references to awidth are an approach to explaining what happens. If 
you have a black-and-white monitor, the relative visual strengths of the dots can 
be related to an apparent width of the dots when illuminated on the monitor 
screen. On a color television or monitor the widths aren’t discernible, but difer-
ences in color and brightness can be seen.
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Before any further explanations, let’s re-examine the 560-point model.
You’ll recall that although the violet and blue dots oicially occupy the same 

screen position horizontally, in actuality a half-position shi! may happen, 
depending on whether the high bit is set. When $2138 was set to $40, we were, as 
such, plotting position 12 on the display. When$2138 was set to$C0, position 13 
was illuminated. he law can be explained by imagining that the high-order bit 
of$2139 (the next byte a!er$2138) can also produce a slight shi! on a dot pro-
duced by bit 6 of$2138. he general rule is that for any dot produced by bit 6, 
the succeeding byte of memory must have a high-order bit (bit 7) set to the same 
value as bit 7 of the byte being plotted.
If this rule is not observed, one of two things will happen:

1. If bit 7 of the displayed byte is clear and the next byte is set, the dot will be 
extended or enlarged–slightly.

2. If bit 7 of the displayed byte is set and the next byte is clear, the dot will be 
reduced slightly, resulting in a fainter image.

An interesting result is the conclusion that even the “normal”method of 
plotting (that is, white) will give ragged displays when adjacent bytes have con-
trary high-bit settings!

Some “New and Improved” Routines

Well, then...that has been a lot to digest. In fact, at this point you might just 
want to take a break to let everything sink in, maybe ix yourself a nice cup of tea 
and meditate on it for a while.
Glad to see you again! One of the diiculties in presenting the material in 

the last few chapters has resulted from the discovery that hi-res graphics is not 
all that logical. Much of hi-res graphics seems to be very empirical in nature. 
hat is, it’s more a matter of accepting that things are a certain way as derived 
from experimentation, than of trying to account for the innermost workings of a 
seemingly random event. (In this case, the innermost workings are related to the 
purely electronic world of wires, video protocols, and so forth, which is mostly 
incidental to the programmer!)
he worst is probably over, though. At this point you should have at least a 

general feel for how the dots are mapped on the screen. Let’s now create some 
inal routines that encompass the various quirks of the hi-res system as it 
presently exists.

]
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PLOT.140+

he irst one to ix is the 140-point mode routine. For all routines the 
approach will be very direct:

1. Determine whether the dot being plotted involves bit 6 of the byte of mem-
ory in question. If not, don’t worry.

2. If bit 6 is used, check the status of the high-order bit (bit 7) of the byte.

3. Fix the high-order bit of the next byte in memory, if needed, to match that 
of the irst byte. Here’s the new routine to do just that:

                1    ********************************

                2    *     AL22-HIRES PLOT.140+     *

                3    *                              *

                4    ********************************

                5    *

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   CHKCOM   EQU  $DEBE

                11   FRMNUM   EQU  $DD67

                12   GETADR   EQU  $E752

                13   LINNUM   EQU  $50

                14   COMBYTE  EQU  $E74C

                15   *

                16   X        EQU  $E0

                17   *

                18   HPLOT    EQU  $F457

                19   COLBYTE  EQU  $E4

                20   HMASK    EQU  $30

                21   HNDX     EQU  $E5

                22   GBAS     EQU  $26

                23   *

0300: 20 BE DE  24   ENTRY    JSR  CHKCOM

0303: 20 67 DD  25            JSR  FRMNUM

0306: 20 52 E7  26            JSR  GETADR

                27   *

0309: 06 50     28   CALC     ASL  LINNUM

030B: 26 51     29            ROL  LINNUM+1   ; X*2

                30   *

030D: A9 08     31            LDA  #$08       ; %00001000

030F: 24 E4     32            BIT  COLBYTE

0311: F0 06     33            BEQ  C1         ; NO MATCH COLOR EVEN

0313: E6 50     34            INC  LINNUM

0315: D0 02     35            BNE  C1

0317: E6 51     36            INC  LINNUM+1

                37   *

0319: A5 50     38   C1       LDA  LINNUM

031B: 85 E0     39            STA  X

031D: A5 51     40            LDA  LINNUM+1

031F: 85 E1     41            STA  X+1

                42   *
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0321: 20 4C E7  43   GETY     JSR  COMBYTE

0324: 8A        44            TXA             ; PUT Y-COORD IN ACC

0325: A6 E0     45   PLOT     LDX  X

0327: A4 E1     46            LDY  X+1

0329: 20 57 F4  47            JSR  HPLOT

                48   *

032C: A5 30     49   CHK      LDA  HMASK

032E: C9 C0     50            CMP  #$C0       ; %11000000

0330: D0 11     51            BNE  DONE

                52   *

0332: A4 E5     53   FIX      LDY  HNDX

0334: C8        54            INY

0335: B1 26     55            LDA  (GBAS),Y

0337: 24 E4     56            BIT  COLBYTE

0339: 30 04     57            BMI  HISET

033B: 29 7F     58   HICLR    AND  #$7F       ; %01111111

033D: 10 02     59            BPL  STORE      ; ALWAYS

033F: 09 80     60   HISET    ORA  #$80       ; %10000000

0341: 91 26     61   STORE    STA  (GBAS),Y

0343: 60        62   DONE     RTS

0344: 06        63            CHK

he listing through line 47 should appear similar to the previous chapter’s 
routine. Lines 48 through 62 add a check to see whether the next byte in memory 
needs to be adjusted according to the three-step procedure just described.
he irst step is to examine location$30 (HMASK). You’ll remember from the 

previous chapter that this is amask used to indicate which bit position is to be 
set to plot the point. If bit 6 were set, this location will hold the value$C0 (binary 
%11000000). Lines 49 through 51 check for this.
If a match is found, we know bit 6 was set by the plot. We must now access 

the next byte in memory and either set or clear bit 7 of that to match our original 
byte. SinceHNDX ($E5) holds the ofset of the current byte (usually used by com-
bining withGBAS ($26) in the formLDA (GBAS,Y)), we can load the Y-Register 
withHNDX and then increment using theINY on line 54 to shi! our attention to 
the next byte. he data for that byte is then loaded into the Accumulator on line 
55. Now for the sleight of hand. We want to check the status of the irst byte, but 
if we load the Accumulator we’ll lose the data currently held there. To solve the 
problem, consider this: he color mask byteCOLBYTE ($E4) holds the mask used 
only moments before to do the plot. We can check the high-order bit of this 
value to determine the status of bit 6 in the byte accessed by the plot. Since it’s 
bit 7 we’re interested in, we can also use the BIT command to do the check.
Line 56 does aBIT COLBYTE. his will move bit 7 ofCOLBYTE into the Status 

Register, a!er which aBMI (Branch on MInus) or aBPL (Branch on PLus) can be 
used to check how the bit was set.
In this case, theBMI is used to detect bit 7 being set. If this branch is taken, 

the program will skip to line 60. If not, theHICLR (“high-bit clear”) section will 
be entered. In this section, theAND operator is used to force the clearing of the 

]
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high bit in the Accumulator. Since this will also clear the sign bit of the Status 
Register, the BPL following this operation is always taken.
IfHISET (“high-bit set”) is entered, theORA #$80 will force the setting of bit 

7 of the Accumulator. (If you need more information on the logical operators, 
you may wish to consult chapter 12.) Line 61 (STORE) puts the contents of the 
Accumulator back into memory, immediately followed by theRTS which ends 
the routine.

PLOT.560+

his routine is also a variation on a program presented in the previous chap-
ter and again uses a check system identical to that used in PLOT.140.

                1    ********************************

                2    *     AL22-HIRES PLOT.560+     *

                3    *                              *

                4    ********************************

                5    *

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   CHKCOM   EQU  $DEBE

                11   FRMNUM   EQU  $DD67

                12   GETADR   EQU  $E752

                13   LINNUM   EQU  $50

                14   COMBYTE  EQU  $E74C

                15   *

                16   X        EQU  $E0

                17   *

                18   HPLOT    EQU  $F457

                19   COLBYTE  EQU  $E4

                20   HNDX     EQU  $E5

                21   HBIT     EQU  $30

                22   GBAS     EQU  $26

                23   *

0300: 20 BE DE  24   ENTRY    JSR  CHKCOM

0303: 20 67 DD  25            JSR  FRMNUM

0306: 20 52 E7  26            JSR  GETADR

                27   *

0309: 46 51     28   CALC     LSR  LINNUM+1

030B: 66 50     29            ROR  LINNUM     ; X/2

030D: A9 7F     30   C0       LDA  #$7F       ; %0111 1111

030F: 85 E4     31            STA  COLBYTE

0311: 90 04     32            BCC  C1         ; X=EVEN FROM ROR

0313: A9 FF     33            LDA  #$FF       ; %1111 1111

0315: 85 E4     34            STA  COLBYTE

                35   *

0317: A5 50     36   C1       LDA  LINNUM

0319: 85 E0     37            STA  X

031B: A5 51     38            LDA  LINNUM+1

031D: 85 E1     39            STA  X+1

                40   *
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031F: 20 4C E7  41   GETY     JSR  COMBYTE

0322: 8A        42            TXA             ; PUT Y-COORD IN ACC

0323: A6 E0     43   PLOT     LDX  X

0325: A4 E1     44            LDY  X+1

0327: 20 57 F4  45            JSR  HPLOT

                46   *

032A: A5 30     47   CHK      LDA  HBIT

032C: C9 C0     48            CMP  #$C0       ; %11000000

032E: D0 11     49            BNE  DONE

0330: A4 E5     50   FIX      LDY  HNDX

0332: C8        51            INY

0333: B1 26     52            LDA  (GBAS),Y

0335: 24 E4     53            BIT  COLBYTE

0337: 30 04     54            BMI  HISET

0339: 29 7F     55   HICLR    AND  #$7F       ; CLEAR BIT 7

033B: 10 02     56            BPL  STORE

033D: 09 80     57   HISET    ORA  #$80       ; SET BIT 7

033F: 91 26     58   STORE    STA  (GBAS),Y

                59   *

0341: 60        60   DONE     RTS

0342: 56        61            CHK

Ordinarily this would be a ine place to end this chapter, but there’s one 
more routine worth presenting. So far what you’ve got is a choice between plot-
ting a single color (PLOT.140) or taking whatever color you get in exchange for 
the capacity for greater horizontal resolution.
Well, with just a little more efort we can create a routine that will ofer the 

same degree of horizontal accuracyand guarantee that any dot plotted will be 
white.

PLOT.560-White

Normally when you specify white when using Apple graphics, you’re really 
saying, “I don’t care what color,” because any attempt to plot a single point will 
illuminate only a colored dot, not a true white dot. his is because white is really 
formed by plotting two adjacent dots. his is consistent with the examination of 
theCOLBYTE bit pattern for acceptable bits to set combined with the givenHMASK 
bit pattern for a speciied horizontal position within the byte. his process of 
plotting was described in greater detail in the previous chapter but, as a quick 
refresher, remember that this combination would successfully do the equivalent 
of:

Statement: HCOLOR = 3 : HPLOT 3,0

Mask Patterns: COLBYTE: %0111 1111  (HCOLOR bit mask)
HMASK:   %1000 1000  (bit 3 set; ignore high bit)
RESULT:  %0000 1000  (position 3 is set green)

You might imagine that if theHMASK could have been set up to have two 
adjacent bits set, the result might have been a true white dot:

]
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Statement: HCOLOR = 3 : HPLOT 3,0

Mask Patterns: COLBYTE: %0111 1111  (HCOLOR bit mask)
HMASK:   %1001 1000  (bits 3 and 4 set)
RESULT:  %0001 1000  (positions 3 and 4–white)

As it happens, this can be done, and here’s the new routine to do it!

                1    ********************************

                2    *     AL22-HIRES PLOT.560W     *

                3    *                              *

                4    ********************************

                5    *

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   CHKCOM   EQU  $DEBE

                11   FRMNUM   EQU  $DD67

                12   GETADR   EQU  $E752

                13   LINNUM   EQU  $50

                14   COMBYTE  EQU  $E74C

                15   *

                16   X        EQU  $E0

                17   *

                18   HPOSN    EQU  $F411

                19   HPLOT    EQU  $F457

                20   COLBYTE  EQU  $E4

                21   HCOLOR1  EQU  $1C

                22   HMASK    EQU  $30

                23   *

0300: 20 BE DE  24   ENTRY    JSR  CHKCOM

0303: 20 67 DD  25            JSR  FRMNUM

0306: 20 52 E7  26            JSR  GETADR

                27   *

0309: 46 51     28   CALC     LSR  LINNUM+1

030B: 66 50     29            ROR  LINNUM     ; X/2

030D: A9 7F     30            LDA  #$7F       ; %01111111 WHITE1

030F: 85 E4     31            STA  COLBYTE

0311: 90 04     32            BCC  C1         ; X=EVEN

0313: A9 FF     33            LDA  #$FF       ; %11111111 WHITE2

0315: 85 E4     34            STA  COLBYTE

                35   *

0317: A5 50     36   C1       LDA  LINNUM

0319: 85 E0     37            STA  X

031B: A5 51     38            LDA  LINNUM+1

031D: 85 E1     39            STA  X+1

                40   *

031F: 20 4C E7  41   GETY     JSR  COMBYTE

0322: 8A        42            TXA             ; PUT Y-COORD IN ACC

0323: A6 E0     43   PLOT     LDX  X

0325: A4 E1     44            LDY  X+1

0327: 20 11 F4  45            JSR  HPOSN

032A: A5 30     46            LDA  HMASK

032C: 0A        47            ASL

032D: 05 30     48            ORA  HMASK
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032F: 85 30     49            STA  HMASK

0331: 20 5A F4  50            JSR  HPLOT+3

                51   *

0334: 24 30     52   CHK      BIT  HMASK

0336: 50 22     53            BVC  DONE       ; BIT 6 CLEAR

                54   * BIT 6 CLEAR: POSITION = 0-9

                55   * BIT 6 SET: POSITION = 10-13

                56   *

0338: 24 1C     57   CHK2     BIT  HCOLOR1

033A: 10 06     58            BPL  HICLR      ; BIT 7 TEST

033C: A9 FF     59   HISET    LDA  #$FF       ; WHITE2

033E: 85 1C     60            STA  HCOLOR1

0340: D0 04     61            BNE  CHK3       ; ALWAYS

0342: A9 7F     62   HICLR    LDA  #$7F       ; WHITE1

0344: 85 1C     63            STA  HCOLOR1

                64   *

0346: A9 20     65   CHK3     LDA  #$20       ; %00100000

                66   *

                67   * HMASK: %11100000 IF POSITION = 10,11

                68   * HMASK: %11000000 IF POSITION = 12,13

                69   *

0348: 24 30     70            BIT  HMASK

034A: D0 06     71            BNE  NOPLOT     ; BIT 5 SET

034C: A9 81     72   PLT      LDA  #$81       ; %10000001

034E: 85 30     73            STA  HMASK

0350: D0 04     74            BNE  FIX        ; ALWAYS

0352: A9 80     75   NOPLOT   LDA  #$80       ; %10000000

0354: 85 30     76            STA  HMASK

                77   *

0356: C8        78   FIX      INY

0357: 20 5A F4  79            JSR  HPLOT+3

                80   *

035A: 60        81   DONE     RTS

035B: 88        82            CHK

his routine starts out much like the otherPLOT.560 routine. Lines 24 
through 44 are identical and perform the same function of calculating which X 
value to hand to the normal Appleso! routine. he irst diference appears at line 
50, where aJSR HPOSN is performed instead of aJSR HPLOT. his is done to allow 
Appleso! to go through its usual preparation for a plot. his sets up the color 
mask and position mask bytes and also the base address calculation.
At this point, we step into the usual process to tamper with theHMASK ($30) 

value. As in the earlier example, this ordinarily would have just a single bit posi-
tion “marked” for the upcomingPLOT. However, by using theASL,ORA HMASK 
combination on lines 47 and 48, we can shi! the original pattern and then super-
impose the new pattern on the old.

Example: For X = 3
Original HMASK:       %1000 1000
ASL:              %0001 0000

ORA HMASK:        %1001 1000

]
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he address usually given for theHPLOT routine,$F457, includes aJSR to 
HPOSN. Because we’ve already done this, aJSR HPLOT+3 accomplishes the irst 
stage of our operation; namely, the plotting of a pure white dot.
Now the remaining problem is to take care of end-of-the-byte laws. his 

can occur for four possible plots. For each byte, there are fourteen possible posi-
tions which can be plotted, numbered 0 through 13 (see Figure 20-4 in chapter 
20). For positions 10 and 11, bits 5 and 6 will be set. Because bit 6 can be afected 
by bit 7 of the next byte in memory, a check for bit agreement must be made.
Stranger still, if positions 12 and 13 are plotted, only bit 6 is available, which 

would normally put us back to having plotted only a colored dot. To ix this, we 
have to go again to the next byte in memory and do another plot to illuminate 
just the very irst dot of that byte.
In general then, the process will be:

1. Fix HMASK to turn on two adjacent bits where possible.

2. HPLOT with altered HMASK.

3. Check for bit 6 usage. If none, exit routine.

4. Set bit 7 of the next byte to agree with bit 7 of the current byte. Check 
whether bit 5 is being used. If not, go directly to HPLOT+3.

5. If bit 5 is set, set HMASK to plot only the irst dot of the next byte.

6. Make a second pass toHPLOT to plot the X + 1 screen coordinate, single dot 
only. IfHMASK set to#$81, only the high-order bit will be set, with no actual plot 
done.

 If you now examine line 52 of the listing, you’ll see theBIT command is 
again used, this time to check bit 8 ofHMASK. heBIT command forces bit 6 of 
the Status Register (the overlow lag) to the same value as bit 6 ofHMASK. hus 
BVS (Branch oVerlow Set) andBVC (Branch oVerlow Clear) can be used to 
check for bit 6 set or clear, respectively. In our case,BVC will branch to the exit 
point, DONE, if bit 6 is clear.
If bit 6 is set, lines 57−63 set the high bit of the other color mask byte, 

HCOLOR ($1C), to agree with the previous plot. his color mask byte is used later 
byHPLOT. Because we’ll be skipping the usual entry point ($F457),we have to set 
this byte speciically.
Once the color byte is set, another check is done to see if bit 5 is set. his is 

done by again using theBIT command. Since only bits 6 and 7 can be checked 
via the Status Register, we must load the Accumulator with a numeric image of 
the bit we wish to test for. In this case, the value used is#$20 (%00100000). A!er 
theBIT command, aBNE (Branch Not Equal) will be taken if bit 5 is set. Yes, it 
sounds backward, but then BIT is a rather strange command.
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Given the appropriate result of the BIT test, HMASK is loaded with either #$81 
or #$80 depending on whether we wanted an actual plot to take place.
At line 78 (FIX),we take advantage of the fact that the Y-Register is still set 

to the correct value to access the current memory byte. By doing theINY, we 
advance the pointer to the next byte so that theJSR HPLOT+3 will make the 
appropriate corrections to the next byte in memory.

A Final Demo Program

To inish things of, let’s try one lastAppleso! program to make use of the 
new routines. his is an extension of the irst listing presented at the beginning 
of this chapter, and it will give you an opportunity to compare the relative screen 
appearances of diferent routines.

10  D$ = CHR$(4)

40  HOME: INPUT "BLACK1 OR BLACK2? (1 OR 2)"; I : I = I - 1

100  REM NORMAL TEST

110  HGR: HCOLOR = I*4: HPLOT 0,0: CALL 62454: HCOLOR = 7 - 4*I

120  S = 1: REM SCALE FACTOR

130  K = 20: REM OFFSET VALUE

140  GOSUB 900

200  REM PLOT.140 TEST

205  PRINT D$;"BLOAD AL22.PLOT140,A$300"

210  S = 0.5: K = 40

220  F = 1: REM FUNCTION FLAG

230  GOSUB 900

300  REM PLOT.560 TEST

305  PRINT D$;"BLOAD AL21.PLOT560,A$300"

310  S = 2: K = 60

320  GOSUB 900

400  REM PLOT.560+ TEST

405  PRINT D$;"BLOAD AL22.PLOT560,A$300"

410  K = 80

420  GOSUB 900

500  REM PLOT.560W TEST

505  PRINT D$;"BLOAD AL22.PLOT560W,A$300"

510  K = 100

520  GOSUB 900

600  END

900  REM PLOTTER

930  FOR I = 0 TO 100

940  X = (I + K)*S : Y = I

950  X = X / 2

960  IF F = 0 THEN HPLOT X,Y

965  IF F THEN CALL 768, X, Y

970  NEXT I

980  RETURN

You’ll also notice that this has the scaling factors built into it to make each 
line slant at the same angle. he ofset factor K is used to move each plot to the 
right a little for appearance’s sake.

]
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By adding line 955 like so:

955  X = X / 2

you can slant the lines even further to show of the maximum slant possible for 
the 560-point modes. You might also want to try this program with the 140- and 
560-point routines from the previous chapter to see how they perform in place 
of the new ones.

Conclusion

hese routines are best used in mathematical charts rather than in pure 
graphics such as pictures. he main argument against the 560-point mode is that 
you can’t be assured that plotting one point will not afect nearby points. As 
we’ve demonstrated here, there apparently is no approach that can guarantee 
this will not happen. It would seem, then, a matter of your own preference as to 
which to use. Our hope is that these routines will widen your options for your 
own programming goals and that they’ve taught you a little along the way.
he usual approach in this book has been to simplify any idea when irst 

presenting it. In the area of graphics, though, simplicity has not been easy. For 
the most part, hi-res graphics gives the impression of being only marginally logi-
cal. In any event, though, now you’re probably starting to get a feel for how the 
contents of memory afect what is displayed on the screen. In the inal analysis, 
the real challenge of hi-res graphics is manipulating the contents of memory to 
produce the visual efects you want.
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In lo-res graphics, theSCRN(X,Y) function returns the value of the color of 
the screen at the X, Y coordinate speciied. Unfortunately, no equivalent func-
tion exists for use with hi-res graphics in Appleso! BASIC.
In the last few chapters we’ve seen how to plot points in a variety of ways. 

Now, here is a routine for doing a hi-res equivalent of theSCRN(X,Y) function. 
One conceivable use for this might be in a game program in which it’s important 
to know when one object is touching another. Using the SCRN routine given here, 
you can test to see whether any points have already been plotted at the coordi-
nates a presumably moving object is about to use.

                1    ********************************

                2    *   AL23-HI-RES SCRN FNCTN     *

                3    *           6/22/82            *

                4    ********************************

                5    *

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   CHKCOM   EQU  $DEBE

                11   FRMNUM   EQU  $DD67

                12   GETADR   EQU  $E752

                13   LINNUM   EQU  $50

                14   COMBYTE  EQU  $E74C

                15   PTRGET   EQU  $DFE3

                16   CHKNUM   EQU  $DD6A

                17   GIVAYF   EQU  $E2F2

                18   MOVMF    EQU  $EB2B

                19   *

                20   X        EQU  $E0

                21   Y        EQU  $E2

                22   *

                23   HPOSN    EQU  $F411

                24   HNDX     EQU  $E5

                25   HBIT     EQU  $30

                26   GBAS     EQU  $26

                27   *

0300: 20 BE DE  28   ENTRY    JSR  CHKCOM

0303: 20 67 DD  29            JSR  FRMNUM

0306: 20 52 E7  30            JSR  GETADR

                31   *

0309: A5 50     32   SET      LDA  LINNUM

]
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030B: 85 E0     33            STA  X

030D: A5 51     34            LDA  LINNUM+1

030F: 85 E1     35            STA  X+1

                36   *

0311: 20 4C E7  37   GETY     JSR  COMBYTE

0314: 86 E2     38            STX  Y

                39   *

0316: A5 50     40   CHKX     LDA  LINNUM

0318: 4A        41            LSR             ; PUT BIT 0 IN CARRY

0319: A9 01     42            LDA  #$01       ; SET BIT 0

031B: 85 50     43            STA  LINNUM     ; %0000 0001

031D: B0 02     44            BCS  CHKHI      ; X='ODD'

031F: 06 50     45            ASL  LINNUM     ; SHIFT LEFT ONE POSN

                46                            ; %0000 0010

                47   *

0321: A6 E0     48   CHKHI    LDX  X

0323: A4 E1     49            LDY  X+1

0325: A5 E2     50            LDA  Y

0327: 20 11 F4  51            JSR  HPOSN

                52   *

032A: A4 E5     53            LDY  HNDX

032C: B1 26     54            LDA  (GBAS),Y

032E: 48        55            PHA             ; SAVE DATA

032F: 10 08     56            BPL  HICLR      ; BIT 7 CLR

0331: A5 50     57   HISET    LDA  LINNUM

0333: 09 04     58            ORA  #$04       ; SET BIT 2

0335: 85 50     59            STA  LINNUM     ; BIT 'ON'

0337: D0 06     60            BNE  CHKBIT     ; ALWAYS

0339: A5 50     61   HICLR    LDA  LINNUM

033B: 29 8B     62            AND  #$8B       ; CLR BIT 2

033D: 85 50     63            STA  LINNUM

                64   *

033F: 68        65   CHKBIT   PLA             ; RETRIEVE SCREEN BYTE

0340: 25 30     66            AND  HBIT       ; SELECT BITS OF INTEREST

0342: 29 7F     67            AND  #$7F       ; CLR BIT 7

0344: D0 06     68            BNE  SEND       ; BIT IS "ON"

                69   *

0346: A5 50     70   OFF      LDA  LINNUM

0348: 29 8C     71            AND  #$8C       ; CLR BITS 0,1

034A: 85 50     72            STA  LINNUM

                73   *

                74   *

034C: 20 BE DE  75   SEND     JSR  CHKCOM

034F: A4 50     76            LDY  LINNUM

0351: A9 00     77            LDA  #$00

0353: 20 F2 E2  78            JSR  GIVAYF

0356: 20 E3 DF  79            JSR  PTRGET

0359: 20 6A DD  80            JSR  CHKNUM

035C: AA        81            TAX

035D: 20 2B EB  82            JSR  MOVMF

                83   *

0360: 60        84   DONE     RTS

0361: 0C        85            CHK
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An Overview

You’ll remember that in the previous chapter we used the Appleso!HPLOT 
routine to plot a point. he X and Y coordinates for the point were passed to the 
routine via normal Appleso! variables.
he inal plot was accomplished by setting a particular bit within a byte of 

memory. he bit to be set is determined by creating a “mask” for the bit position 
within the byte.
Figure 20-1 (our old friend from chapter 20) was used as a guide to which 

bits are set for any given color and X coordinate.
For our hi-resSCRN function we 

need to identify whether the bit cor-
responding to a given X, Y coordi-
nate has been set, to take into 
account the high-order bit (bit 7) 
where necessary, and then return a 
value between 0 and 7 corresponding 
to the color of the dot. Before going 
any further, take a look at Figure 23-
1, which shows the bit patterns for 
the color values that might be 
returned.
What the SCRN routine does is establish a temporary register in which the bit 

pattern for the color value to be returned to the user will be constructed. Notice 
that for any of the possible color values we need concern ourselves only with the 
last three bit positions. his greatly simpliies our task.
Note also that when a dot is “of” (either black1 or black2), the routine 

returns a number with bits 0 and 1 cleared. Bit 2 will still have to be speciically 
conditioned, however, since Black2 sets the high-order bit of a byte even though 
no dot is illuminated.
Because neither white is directly plotted, the routine will never return a 

value of 3 or 7. Remember that when white is speciied, Appleso! normally plots 
only one color. hus ourSCRN routine has no way of determining whether a 
given dot is a pure color or part of a larger dot pattern creating a white line or 
area.
To determine a dot’s color from among the four remaining colors, we look 

at the X position of the dot. Since you can plot only even color values at even 
coordinates, and odd color values at odd coordinates, the two inal bit positions 
of the color register value will be 01 or 10 depending on whether X is odd or 
even. he status of the third bit depends on whether the dot’s high-order bit is 
set.

]

Color Value Binary

Black1 0 0000 0000

Green 1 0000 0001

Violet 2 0000 0010

White1 3 0000 0011

Black2 4 0000 0100

Orange 5 0000 0101

Blue 6 0000 0110

White2 7 0000 0111

Figure 23-1: Color Bit Patterns
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When all of these checks are collected into a routine, we have the following 
procedure.

1. Lines 28−38 retrieve the values of the X and Y coordinates from the Apple-
so! call command. hese are transferred to the hi-res registers ($E0−$E2).

2. he value for the X coordinate is returned inLINNUM ($50, $51) and, as such, 
can be checked for whether it is odd or even. To do this we need only check the 
low-order byte to see whether the last bit (bit 0) is set. he easiest way to do this 
is to use theLSR (Logical Shi! Right) command on line 41 to shi! the last bit 
into the carry lag, which will be tested almost immediately.

Let’s talk a bit (pardon the pun) of programming style here. We could test 
for all six possible color conditions individually, but it turns out that it is easier 
to set up the inal color value more subtly. We’ll start by assuming that some 
color will be present. Line 42 puts a possible value (#$01) intoLINNUM as a start-
ing point. (Since we’re done withLINNUM from lines 28−38 we can now use it as 
our working register for the color value. Also note that we no longer need to 
worry about LINNUM+1 since the color value will never exceed 255.)
Now we can do the carry test,BCS (Branch on Carry Set), to see whether the 

coordinate was odd or even. If the carry bit is set, X was odd andLINNUM already 
contains the bit pattern for all of the colors that could be plotted at an odd coor-
dinate. If the carry is clear, line 45 will be executed and will shi! the pattern to 
the le! one position to correspond to the “even” colors.

3. Lines 48−51 do theJSR HPOSN which will calculate the address of the byte in 
memory that corresponds to the coordinates given. See the plot routines from 
previous chapters if you need refreshing on this. Lines 53−55 load the byte into 
the Accumulator and push it onto the stack to be retrieved later.

he test on line 56 checks for whether the high-order bit was set. ABPL 
(Branch PLus) is done if the bit was clear. If the bit was set, we need to set bit 2 
of LINNUM (our color register). Note that bit 2 is clear forHCOLORS 0−3 and set for 
HCOLORS 4−7. Bit 2 is set using theORA (logical OR with Accumulator). If the 
high-order bit was clear, the logical AND command is used to clear bit 2.

4. Final check. Now we need to see whether the dot was actually turned on. 
he memory byte is retrieved from the stack using thePLA (PulL Accumulator) 
and masked withHBIT ($30).HBIT is a mask created by theHPOSN routine to 
show which bit corresponds to the given X coordinate. By maskingHBIT with 
the memory byte we can isolate the bit we’re interested in. As a further step, the 
AND #$7F clears the high-order bit (which we’ve already tested for anyway). As 
an example, suppose that the memory location had held the value#$9B and the 
value for X was 4:

Note the inal result will only be nonzero if the dot is on.
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5. If the dot is on, everything is already set up, and we can proceed to the inal 
exit phase. If the dot is of, theAND #$8C on line 71 will clear only bits 0 and 1. 
his allows us to determine the status of the high-order bit, even if a dot is not 
actually plotted at the position given.

6. SEND (lines 75−84) is identical to theREAL VARIABLE SEND routine given in 
chapter 17 and is used to send our resulting value back to Appleso!. he only 
thing diferent in this case is that the routine loads a 0 into the Accumulator 
instead of the high-order byte ofLINNUM (LINNUM+1) since, as mentioned previ-
ously, the value for color will never exceed 255.

Sample Program

To test this routine, BLOAD it at $300 and call it using the syntax:

CALL 768, X, Y, C

whereX andY are the screen coordinates to examine, andC is the variable 
into which the routine will return the resulting color value from LINNUM.
As an example of using theSCRN routine from BASIC, this program will 

return all the possible values forC and illustrate the dependence of those values 
on HCOLOR and the X position:

0  HOME: VTAB 22: X = 0: Y = 0

5  PRINT CHR$ (4);"BLOAD AL23.HGRSCRN"

10  FOR I = 0 TO 7

20  HGR: HCOLOR = I

30  HPLOT X, Y

40  CALL 768, X, Y, C

50  PRINT "X = ";X;"   COLOR = ";I;"   RESULT = ";C

60  NEXT I

70  X = X + 1: IF X = 1 THEN 10

80  TEXT: END

he program goes through two passes, the irst plotting all eight colors at 
X = 0, and the second with all eight colors at X = 1. A!er doing the plot, the pro-
gram calls theSCRN routine to verify that it reads the color we think we plotted. 
It will do so except in the following cases:

1. White will always read as either 1, 2, 5, or 61. his is because when white is 
speciied, a single HPLOT illuminates only one color dot.

2. An attempt to plot an “odd”HCOLOR (1 or 5) on an even X coordinate or an 
“even’’HCOLOR (2 or 6) on an odd X coordinate returns 0 or 4 as the result 
because of the plotting restrictions described in several of the previous chapters.

1[CT] originally read 2, 3, 5, 6

]
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Conclusion

heSCRN routine can be applied in a variety of ways. In general, you can use 
this routine whenever you want to examine the screen to determine what color 
has been drawn. Possible applications might include graphics printing routines 
and games in which it is necessary to determine the existence of lines that repre-
sent walls or obstacles.
If you wish to use the routine directly from assembly language without call-

ing it from Appleso!, simply delete the entry routines and loadLINNUM with the 
X coordinate and $E2 with the Y coordinate.
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In the previous chapter we looked at a routine to simulate theSCRN(X,Y) 
function of BASIC. he notion of inquiring about points on the screen is closely 
related to this chapter’s topic, the collision counter.
hecollision counter is a one-byte memory location on page zero of the 

Apple’s memory. Its value is a function of the Appleso! hi-res graphics routines 
speciically related to shape tables. he purpose of the collision counter is to keep 
track of any “collisions” between a shape being drawn on the screen and any pre-
viously drawn screen images. he collision counter is located at$EA (decimal 
234) and is afected only by the commands DRAW and XDRAW.

Some Experiments

To illustrate the behavior of the collision counter, we’ll irst need a shape 
table to experiment with. he one given here is probably the simplest one possi-
ble–a single dot.
To enter the shape into memory, go into the Apple’s Monitor by typing in 

CALL -151<RETURN>, and then enter:

300: 01 00 04 00 04 00

E8: 00 03

his will place the table in memory at location$300 and set the pointer at 
$E8, $E9 to point to the table.
he irst two bytes of the table ($01 00) indicate the number of shapes in the 

table, which in our case is just one. he next two bytes ($04 00) give the ofset 
from the beginning of the table ($300) to the start of the actual shape data 
($304). he next two bytes ($04 00) are the actual bytes of data for the shape 
itself. In this example the shape table is a single “move” of one position up the 
screen.
You may wish to review the information on shape tables in your Appleso! II 

BASIC Programming Reference Manual (1978), pages 92−96.
he irst experiment is to verify that we have in fact installed a usable shape 

table. his is most easily tested by putting your Apple into Appleso! BASIC and 
typing in:

HGR: HCOLOR = 3: ROT = 0: SCALE = 1

]
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he screen should clear. You can now type in:

DRAW 1 AT 100,100

A single dot should appear on the screen. You can change the scale to three by 
typing in:

SCALE = 3

Test this by typing in:

DRAW 1 AT 100,100

A vertical line of three pixels should appear. If all has gone well so far, you 
can now try a third experiment. he purpose of the experiment will be to see 
how the collision counter reacts with various combinations of drawing colors, 
background colors, shape-drawing commands, and the previous condition of the 
collision counter.
Clear the screen withHGR again and try this sequence of commands, noting 

for each one what the conditions of the screen and collision counter are before 
and a!er the command is executed. (Note that references to “color” in this chap-
ter will be in terms of “black” and “white” as would be seen on a black-and-white 
monitor. If you have a color display, the dots will appear as single-color dots–as 
explained in previous chapters.)

HCOLOR = 3: SCALE = 1: POKE 234,0: DRAW 1 AT 100,100: PRINT PEEK(234)

(0 should be printed along with a white dot on the screen)

DRAW 1 AT 100,100: PRINT PEEK(234)

(1, with a white dot)

DRAW 1 AT 100,100: PRINT PEEK(234)

(1, with a white dot)

HCOLOR = 0: DRAW 1 AT 100,100: PRINT PEEK(234)

(0, the dot is erased)

DRAW 1 AT 100,100: PRINT PEEK(234)

(1, with no dot)

If you try all the various combinations, you should be able to replicate a 
chart something like the one on the next page.
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HCOLOR Command Background C = 0 C = 1 Result

White
White
Black
Black
White
White
Black
Black

DRAW

DRAW

DRAW

DRAW

XDRAW

XDRAW

XDRAW

XDRAW

Black
White
Black
White
Black
White
Black
White

0
1
1
0
1
0
1
0

0
1
1
0
1
0
1
0

White
White
Black
Black
Black
Black
White
Black

he irst column shows the value ofHCOLOR for theDRAW orXDRAW com-
mand. he second column shows which command we used. he third column 
shows which background color was present when the shape table was drawn.
he headings C = 0 and C = 1 refer to the status of the collision counter 

before theDRAW orXDRAW. he entries in each column show the value a!er the 
command is executed. he inal column shows whether the resulting dot is white 
(“on”) or black (“of”).
he conclusions to be “drawn” from this chart are:

1. If aDRAW is done, the resulting dot will be consistent with theHCOLOR used. 
he collision counter will increment one unit for each dot on the screen that is 
already at the same “color” as the dot being drawn. hat is, if white is your 
HCOLOR, the collision counter will count the number of white dots the shape hits. 
If yourHCOLOR is black, the collision counter will return the number of black 
dots the shape draws over. his allows you to use a light background and dark 
shapes and still have everything work!

2. IfXDRAW is used, the currentHCOLOR has no efect.XDRAW always reverses the 
background dots. For a black background,XDRAW will increment the collision 
counter only for those dots turned “on.” If the background is white, the collision 
counter will be set to 0 only if all of the dots are turned “of.”

3. he previous state of the collision counter has no efect on the inal value 
a!er theDRAW orXDRAW. his means that no preconditioning or initializing is 
necessary in a given routine.

DRAW versus XDRAW

Before proceeding further with the collision counter, it is important to take 
a moment to clarify the distinction between the two shape-table commandsDRAW 
and XDRAW.

DRAW is very direct in that it basically does anHPLOT in whatever the current 
HCOLOR is, using the speciied shape. As mentioned earlier, the collision counter 
simply adds up the total number of collisions with existing dots in the same “on” 

]
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or “of” state as theHCOLOR being used. Moving shapes withDRAW is done irst by 
drawing the igure, and then either reversing the color by settingHCOLOR to black 
and then doing anotherDRAW, or usingXDRAW to accomplish approximately the 
same thing.

XDRAW, on the other hand, uses theEOR (Exclusive OR) function to actually 
reverse the bits on the screen where the shape is to be drawn. What this means is 
that a ixed color as such is not used. Rather, each bit on the screen in the desired 
shape pattern is reversed from its current status. By following this with another 
XDRAW, the screen is restored and existing background igures are not erased.

Principles of Animation and Collision

Any hi-res game or simulation is basically just a simulation of reality in 
which a screen image successfully mimics the behavior of an object in the real 
world. he primary things to be simulated generally are motion and collisions. 
Both of these have been discussed in earlier chapters, particularly with regard to 
the idea of simulating convincing motions.
In our previous programs, the positions of an object was used to determine 

whether it was time to bounce the object of of a wall or some other object. In 
this sense, we can say that collisions were predicted rather than detected. he 
collision counter gives us a way of detecting collisions with objects on the screen 
whose current position may not be known. his takes on practical signiicance 
when you may not want to keep track of all the things lying about the screen, as 
is quite possible in many game scenarios.
Putting all of this together, we come up with the following general 

approaches:

1. DRAW a igure. Check the collision counter for nonzero values to detect a col-
lision.DRAW with black, orXDRAW, to erase for the next movement. Background 
igures will be erased when using this technique.

2. XDRAW a igure. he value in the collision counter should equal the number 
of dots in the igure (that is, a constant value) if there is no collision with existing 
images.XDRAW again to erase. he value in the collision counter should return to 
0 if no previous collision was made. his will leave background images intact, 
but igures drawn will have a “harlequin” appearance as they pass over back-
ground images. See the following demonstration program for an example of this.

!e Scanner

he following two demonstration programs are called"e Scanner because 
they are reminiscent of the classic radar screen sweep pattern.
he irst program uses theXDRAW,XDRAW system of redrawing the image and 

thus, is nondestructive to other images on the screen.
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                1    ********************************

                2    *   AL24-SCANNER-XDRAW,XDRAW   *

                3    ********************************

                4    *

                5    *        OBJ  $7000

                6             ORG  $7000

                7    *

                8    FLAG     EQU  $06

                9    RT       EQU  $07

                10   SCL      EQU  $08

                11   *

                12   *

                13   PREAD    EQU  $FB1E

                14   WAIT     EQU  $FCA8

                15   HCOLOR   EQU  $F6F0

                16   HGR      EQU  $F3E2

                17   HPLOT    EQU  $F457

                18   HPOSN    EQU  $F411

                19   SPKR     EQU  $C030

                20   *

                21   ROT      EQU  $F9

                22   SCALE    EQU  $E7

                23   PTR      EQU  $E8

                24   SHNUM    EQU  $F730

                25   DRAW     EQU  $F605

                26   XDRAW    EQU  $F661

                27   CTR      EQU  $EA

                28   *

7000: 4C 09 70  29   ENTRY    JMP  E2

                30   *

7003: 01 00 04  31   TBL      HEX  010004

7006: 00 04 00  32            HEX  000400

                33   *

7009: A2 03     34   E2       LDX  #$03       ; WHITE

700B: 20 F0 F6  35            JSR  HCOLOR

700E: A2 00     36            LDX  #$00

7010: 86 07     37            STX  RT

7012: A2 03     38            LDX  #$03

7014: 86 E8     39            STX  PTR

7016: A2 70     40            LDX  #$70

7018: 86 E9     41            STX  PTR+1

                42   *

701A: A9 01     43   SET      LDA  #$01

701C: 85 06     44            STA  FLAG

                45   *

701E: A2 8C     46   POSN     LDX  #$8C

7020: A0 00     47            LDY  #$00       ; X = 140

7022: A9 50     48            LDA  #$50       ; Y = 80

7024: 20 11 F4  49            JSR  HPOSN      ; SET CURSOR X,Y

                50   *

7027: E6 07     51   CALC     INC  RT

7029: A2 00     52            LDX  #$00       ; PDL 0

702B: 20 1E FB  53            JSR  PREAD

702E: 98        54            TYA

702F: D0 01     55            BNE  STORE

7031: C8        56            INY             ; SCALE = 1

]
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7032: 84 08     57   STORE    STY  SCL

                58   *

7034: A5 06     59   CHKFLG   LDA  FLAG

7036: F0 04     60            BEQ  ERASE

7038: C6 06     61            DEC  FLAG

703A: F0 14     62            BEQ  PLOT       ; ONLY ONCE

                63   *

703C: A2 01     64   ERASE    LDX  #$01

703E: 20 30 F7  65            JSR  SHNUM

7041: A5 F9     66            LDA  ROT

7043: 20 61 F6  67            JSR  XDRAW

                68   *

7046: A6 EA     69   SOUND    LDX  CTR

7048: F0 06     70            BEQ  PLOT

704A: AD 30 C0  71   CLK      LDA  SPKR

704D: CA        72            DEX

704E: D0 FA     73            BNE  CLK

                74   *

7050: A2 8C     75   PLOT     LDX  #$8C

7052: A0 00     76            LDY  #$00

7054: A9 50     77            LDA  #$50

7056: 20 11 F4  78            JSR  HPOSN

7059: A2 01     79            LDX  #$01

705B: 20 30 F7  80            JSR  SHNUM

705E: A5 08     81            LDA  SCL

7060: 85 E7     82            STA  SCALE

7062: A5 07     83            LDA  RT

7064: 85 F9     84            STA  ROT

7066: 20 61 F6  85            JSR  XDRAW

                86   *

7069: A2 01     87   DELAY    LDX  #$01       ; PDL 1

706B: 20 1E FB  88            JSR  PREAD

706E: 98        89            TYA

706F: 20 A8 FC  90            JSR  WAIT

                91   *

7072: 4C 1E 70  92   GOBACK   JMP  POSN

                93   *

7075: D3        94            CHK

A!er assembling the code at $7000, enter the following from Appleso!:

HGR: HCOLOR = 3: HPLOT 100,0 TO 100,160

Presetpaddle 0 to the minimum (0 = far le!) and paddle 1 to the maximum 
(255 = far right).
Now activate the routine by entering:

CALL 28672

Experiment with diferent paddle values, slowly increasing the radius with 
paddle 0 until the scanner intersects the vertical line. At that point you should 
hear a number of clicks from the speaker as the lines cross each other.
Let’s see how the program works. Line 27 starts the actual code by jumping 

over the data for the shape table. his is the same one-dot shape table you 
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entered earlier in this chapter. Lines 32 and 33 initialize theHCOLOR to 3 (white), 
although for this program that actually is not necessary. Lines 34 through 39 set 
our value for rotation to 0 (to be used later), and set the pointer $E8, $E9 to point 
at our table at $7003.
Now here’s the tricky part. In general we want to store two positions for the 

line we’ll draw. he irst is the old position (where it was last drawn) and the sec-
ond is the new position where the new line will be drawn. You’ll recall that we 
developed this technique in earlier chapters as a way of moving dots while mini-
mizing the screen licker.
For the simple dots, it didn’t really matter if on the irst pass through the 

program we erased a dot that wasn’t really there. In this case, though, it does 
matter because usingXDRAW will cause an image to appear if one wasn’t already 
there to erase.
his is solved by using a one-pass lag that will tell the program to skip over 

theERASE routine on the irst time through. Lines 41 and 42 initialize this lag 
to 1.
Lines 44 through 47 useHPOSN to prepare for the later use of the shape 

tables. Line 49 increments the value for rotation on each pass through the loop. 
his causes the line to revolve. Wrap-around happens automatically whenRT 
reaches 255, so no checking for ILLEGAL QUANTITY errors is required.
Lines 50 through 55 get the scale value from paddle 0, which corresponds to 

the eventual length of the plotted line. Note that a special check is done to avoid 
scale being set to#$00, since Appleso! treats this the same way it treats 255. his 
makes the paddles a little more friendly to the user.
On the irst pass through,FLAG will equal 1, so the test on line 58 will fail. It 

will then be decremented to 0 to clear the lag, and the forced branch to PLOT will 
be executed.
he routine for drawing the shape is very similar to routines in programs 

presented in earlier chapters. he main diference in this routine is our use of the 
routineXDRAW ($F661), which is used the same way theDRAW routine was used 
before.
Once thePLOT section is completed, a wait is done at lines 85 through 88 by 

using the WAIT ($FCA8) routine as a function of paddle 1.
Notice that on successive passes through the loop,FLAG will equal 0, and so 

ERASE will always erase the old position before PLOT creates the new one. RT ($07) 
andSCL ($08) are used to hold the new values for rotation and scale, respec-
tively.
Because we are using theXDRAW,XDRAW method for the actual collision 

detection, we will use method 2, which says that the collision counter should 
return to 0 a!er the igure is erased. We use this fact to check on lines 67 and 68 
for a zero-value collision counter. If the counter is not 0, the speaker is clicked 
that number of times before the program does the next plot.

]
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In practice the speaker is a little undependable because the frequency of the 
clicks is so high. You may wish to experiment with diferent delays in theCLK 
loop, as is done in the sound routines. You may prefer the current method for 
this demo because of the intuitive nature of the clicks, but musical sounds can 
also provide some interesting insights into the process.
he usualHGR equivalent from this routine has purposely been le! out to 

allow you to alter the screen withHPLOT and other Appleso! commands before 
running the scanner. Another interesting variation is to type in:

HGR: HCOLOR = 3: HPLOT 0,0: CALL 62454

he screen should clear to all white. Now activate the scanner by typing in:

CALL 28672

Now the clicking will depend more directly on the length of the line, 
although some interesting variation can be observed depending on the angle of 
the line as well. While you’re reading along you might ponder why that would 
be, considering that the screen would seem to be clearly uniform in the number 
of dots the line is intersecting.
Once you’ve entertained yourself suiciently with the irst program, try this 

second variation, one that uses theDRAW,XDRAW method. Here the point of inter-
est is that the scanning line erases anything it touches and so leaves a visible trail 
of where it has been when activated against a solid white background.

                1    ********************************

                2    *   AL24-SCANNER-DRAW,XDRAW   *

                3    ********************************

                4    *

                5    *        OBJ  $7000

                6             ORG  $7000

                7    *

                8    FLAG     EQU  $06

                9    RT       EQU  $07

                10   SCL      EQU  $08

                11   PREAD    EQU  $FB1E

                12   WAIT     EQU  $FCA8

                13   HCOLOR   EQU  $F6F0

                14   HGR      EQU  $F3E2

                15   HPLOT    EQU  $F457

                16   HPOSN    EQU  $F411

                17   SPKR     EQU  $C030

                18   *

                19   ROT      EQU  $F9

                20   SCALE    EQU  $E7

                21   PTR      EQU  $E8

                22   SHNUM    EQU  $F730

                23   DRAW     EQU  $F605

                24   XDRAW    EQU  $F661

                25   CTR      EQU  $EA

                26   *
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7000: 4C 09 70  27   ENTRY    JMP  E2

                28   *

7003: 01 00 04  29   TBL      HEX  010004

7006: 00 04 00  30            HEX  000400

                31   *

7009: A2 03     32   E2       LDX  #$03       ; WHITE

700B: 20 F0 F6  33            JSR  HCOLOR

700E: A2 00     34            LDX  #$00

7010: 86 07     35            STX  RT

7012: A2 03     36            LDX  #$03

7014: 86 E8     37            STX  PTR

7016: A2 70     38            LDX  #$70

7018: 86 E9     39            STX  PTR+1

                40   *

701A: A9 01     41   SET      LDA  #$01

701C: 85 06     42            STA  FLAG

                43   *

701E: A2 8C     44   POSN     LDX  #$8C

7020: A0 00     45            LDY  #$00       ; X = 140

7022: A9 50     46            LDA  #$50       ; Y = 80

7024: 20 11 F4  47            JSR  HPOSN      ; SET CURSOR X,Y

                48   *

7027: E6 07     49   CALC     INC  RT

7029: A2 00     50            LDX  #$00       ; PDL 0

702B: 20 1E FB  51            JSR  PREAD

702E: 98        52            TYA

702F: D0 01     53            BNE  STORE

7031: C8        54            INY             ; SCALE = 1

7032: 84 08     55   STORE    STY  SCL

                56   *

7034: A5 06     57   CHKFLG   LDA  FLAG

7036: F0 04     58            BEQ  ERASE

7038: C6 06     59            DEC  FLAG

703A: F0 0A     60            BEQ  PLOT       ; ONLY ONCE

                61   *

703C: A2 01     62   ERASE    LDX  #$01

703E: 20 30 F7  63            JSR  SHNUM

7041: A5 F9     64            LDA  ROT

7043: 20 61 F6  65            JSR  XDRAW

                66   *

7046: A2 8C     67   PLOT     LDX  #$8C

7048: A0 00     68            LDY  #$00

704A: A9 50     69            LDA  #$50

704C: 20 11 F4  70            JSR  HPOSN

704F: A2 01     71            LDX  #$01

7051: 20 30 F7  72            JSR  SHNUM

7054: A5 08     73            LDA  SCL

7056: 85 E7     74            STA  SCALE

7058: A5 07     75            LDA  RT

705A: 85 F9     76            STA  ROT

705C: 20 05 F6  77            JSR  DRAW

                78   *

705F: A6 EA     79   SOUND    LDX  CTR

7061: F0 06     80            BEQ  DELAY

7063: AD 30 C0  81   CLK      LDA  SPKR

7066: CA        82            DEX

]
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7067: D0 FA     83            BNE  CLK

                84   *

7069: A2 01     85   DELAY    LDX  #$01       ; PDL 1

706B: 20 1E FB  86            JSR  PREAD

706E: 98        87            TYA

706F: 20 A8 FC  88            JSR  WAIT

                89   *

7072: 4C 1E 70  90   GOBACK   JMP  POSN

                91   *

7075: A9        92            CHK

In this routine, the irst variation is in the use ofDRAW (versusXDRAW) on line 
77. In addition, because we are now using theDRAW,XDRAW method, the collision 
counter detection now goes a!er the initial creation of the image as is done by 
PLOT. In terms of programming then, the changes are minor. It is interesting to 
note, though, how diferently the screen behaves.
It is most instructive to start by typing in:

HGR: HCOLOR = 3: HPLOT 0,0: CALL 62454

heCALL 62454 is the routine that clears the hi-res screen to the lastHCOLOR 
plotted, so we’ll take advantage of it to ill the screen with dots for ourDRAW, 
XDRAW scanner to detect. Make sure the paddles are set to 0 for paddle 0 and 255 
for paddle 1. hen activate the routine by typing in:

CALL 28672

As you eventually sweep out all possible angles and radii, you’ll notice that 
not all screen locations can be reached from a ixed point. his is because of a 
limited number of rotation positions (as opposed to a continuous 360-degree 
motion) and also because of the line nature of the screen display.
By looking carefully you can see that there are more point interceptions, and 

thus collisions and clicks, at the near-vertical, -horizontal, and 45-degree posi-
tions than at the angles in between. his tends to give a modulated sound to the 
clicks as the “beam” scans when running the irst program against a white back-
ground.

!e Possibilities

Once you understand the idea behind the collision counter, it can be very 
useful in both arcade game-type so!ware and other simulations. You’ll probably 
be able to imagine all sorts of novel ways of applying this technique in your own 
programs.
In the next chapter, we’ll give non-graphics enthusiasts a break and look a 

little more into some areas of assembly-language programming that we haven’t 
yet covered.
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In the previous chapter we looked at the collision counter and at how it 
could be used in hi-res graphics programs in which collisions might have to be 
detected. his chapter we’ll see some further uses of the collision counter, along 
with simple examples of how an explosion might be simulated. In a way, this 
chapter could be considered a brief introduction to some special efects.

Explosions, Rays, and Other !ings !at Go Bump in the Night

he basic principles behind writing simpletone routines in assembly lan-
guage were presented in chapter eight. As you’ll recall, sound of any kind is gen-
erated by accessing memory location$C030. Each time this location is accessed 
by either a read or write operation (such as anLDA or STA command) the speaker 
clicks once. A tone or other noise is produced by doing a large number of very 
fast accesses. Consider, for example, this sample listing:

                1    ********************************

                2    *                              *

                3    *  AL25-SIMPLE NOISE ROUTINE   *

                4    *                              *

                5    ********************************

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   DRTN     EQU  $06

                11   NUM      EQU  $07

                12   SPKR     EQU  $C030

                13   *

                14   COMBYTE  EQU  $E74C

                15   RND      EQU  $EFAE

                16   FAC      EQU  $9D

                17   *

0300: 20 4C E7  18   ENTRY    JSR  COMBYTE

0303: 86 06     19            STX  DRTN       ; SET LEN OF 'NOTES'

0305: 20 4C E7  20            JSR  COMBYTE

0308: 86 07     21            STX  NUM        ; SET # OF 'NOTES'

                22   *

030A: 20 AE EF  23   LOOP     JSR  RND        ; CREATE A RND VALUE

030D: A6 06     24            LDX  DRTN       ; SET A COUNTER

030F: AD 30 C0  25   TICK     LDA  SPKR       ; TOGGLE SPEAKER

0312: A4 9F     26            LDY  FAC+2      ; PITCH=RANDOM VALUE

]
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0314: 88        27   DELAY    DEY

0315: D0 FD     28            BNE  DELAY      ; WAIT AWHILE

0317: CA        29   CYCLE    DEX

0318: D0 F5     30            BNE  TICK       ; KEEP PLAYING

                31   *

031A: C6 07     32   NUMBR    DEC  NUM

031C: D0 EC     33            BNE  LOOP       ; PLAY ANOTHER NOTE

031E: 60        34   EXIT     RTS

031F: 71        35            CHK

his routine is intended to be called from Appleso! BASIC by a program 
such as this one:

10  INPUT "DURATION,NUMBER:";D,N

20  CALL 768,D,N

30  GOTO 10

When the routine is called, lines 18 through 21 use the routineCOMBYTE 
($E74C) in Appleso! to read the values being passed by the calling program and 
store these values in DRTN ($06) and NUM ($07).

DRTN is then used to determine the length of a tone to be generated, andNUM 
determines how many tones will be played. You could think of this program as a 
random melody generator.
At line 23, aJSR is done to Appleso!’s random-number function. his ills 

theloating-point Accumulator (usually calledFAC:$9D−$A2) with a random 
number in loating-point form. For our purposes we need only a single byte, 
which we’ll get from$9F. Very shortly we’ll retrieve this byte fromFAC for use in 
our routine. You might think that any of the six bytes in theFAC would be sui-
ciently random, but it turns out that the irst two bytes,FAC andFAC+1 ($9D, 
$9E), don’t vary suiciently to generate good random numbers.
Line 24 retrieves the value forDRTN to prepare for entering the main tone 

service loop.TICK clicks the speaker once and then loads the Y-Register with our 
random value. Because this value is then used in theDELAY loop, the interval 
between clicks varies each time a new random number is used. his is equivalent 
to a diferent frequency being produced each time, and thus gives us random-
ly-pitched notes.

CYCLE is a secondary loop that executes theTICK/DELAY loop a certain num-
ber of times, determined in this case by the value given toDRTN by the calling 
program. he number ofCYCLEs determines the overall apparent length of a par-
ticular tone unit.

NUMBR is a larger loop that determines how many notes the sound routine 
will generate, according to the value given for NUM.
Run the Appleso! program with this routine assembled at$300 and try dif-

ferent combinations for DRTN and NUM. If DRTN is a large value (greater than 20), a 
random melody ofNUM notes is generated. AsDRTN gets smaller, you have to 
increaseNUM to get sounds that last equivalent lengths of time. he value pair 10, 
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50 forDRTN andNUM creates sort of a ray-gun sound, and the pair 3, 20 produces 
a reasonable explosion efect. In the latter case, the amount of time each note is 
played becomes so short that the notes tend to blend together into what’s essen-
tially just a random noise pattern.
A random tonal pattern is, in fact, the key to any deinition of noise, and 

noise is what an explosion is all about. What we need is a way of generating a lot 
of high-speed random data for a good noise routine. heRND function helps us 
to create the random data, but it takes so long to execute the routine for each 
note that there is a limit to the number of notes we can generate in a short 
period of time.
One technique we used earlier when speed was a problem was table look-

ups. Let’s apply this technique to sound generation and see what we can pro-
duce.

                1    ********************************

                2    *                              *

                3    * AL25-SIMPLE NOISE ROUTINE 2  *

                4    *                              *

                5    ********************************

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   CTR      EQU  $06

                11   DRTN     EQU  $07

                12   PTCH     EQU  $08

                13   SPKR     EQU  $C030

                14   *

                15   COMBYTE  EQU  $E74C

                16   RND      EQU  $EFAE

                17   FAC      EQU  $9D

                18   *

0300: A9 00     19   INIT     LDA  #$00

0302: 85 06     20            STA  CTR

0304: 20 AE EF  21   LOOP     JSR  RND

0307: A5 9F     22            LDA  FAC+2

0309: A4 06     23            LDY  CTR

030B: 99 00 10  24            STA  $1000,Y

030E: E6 06     25            INC  CTR

0310: D0 F2     26            BNE  LOOP

0312: 60        27   DONE     RTS

                28   *

0313: 20 4C E7  29   ENTRY    JSR  COMBYTE

0316: 86 08     30            STX  PTCH

0318: 20 4C E7  31            JSR  COMBYTE

031B: 86 07     32            STX  DRTN

                33   *

031D: A0 00     34   READ     LDY  #$00

031F: B9 00 10  35   BYTE     LDA  $1000,Y

0322: A2 08     36            LDX  #$08

0324: 4A        37   SHIFT    LSR

0325: 90 03     38            BCC  NEXTBIT

]
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0327: 8D 30 C0  39   TICK     STA  SPKR

                40   *

032A: CA        41   NEXTBIT  DEX

032B: D0 F7     42            BNE  SHIFT

032D: A6 08     43            LDX  PTCH

032F: CA        44   DELAY    DEX

0330: D0 FD     45            BNE  DELAY

0332: C8        46   NEXTBYTE INY

0333: D0 EA     47            BNE  BYTE

0335: C6 07     48            DEC  DRTN

0337: D0 E4     49            BNE  READ

0339: 60        50   EXIT     RTS

033A: 33        51            CHK

his routine has twoentry points. his means that the routine has to be 
called twice. he irst time, a call to$300 (768 decimal) generates the table of 
data to be used. his need be done only once. he noise pattern is generated by 
calling$313 (787 decimal) whenever a sound is desired. his routine is also 
designed to be called from an Appleso! BASIC program such as:1

10  CALL 768: REM CREATE TABLE

20  INPUT "PITCH,DURATION";P,D

30  CALL 787,P,D : REM CALL NOISE ROUTINE

40  GOTO 20

In this case the two parameters passed to the noise routine are pitch (PTCH) 
and duration of the noise period (DRTN). At irst thought, pitch may seem to be a 
contradictory notion when applied to noise, particularly in light of our previous 
deinition of noise as a random mix of frequencies. he pitch, however, does not 
need to be an entirely homogeneous mixture of frequencies.
It’s possible to favor either high or low frequencies in the mix and thus to 

inluence the suggestive nature of the noise. High-frequency mixes sound like 
rays or fast-moving rockets. Low-frequency mixes remind the listener of the low 
roar of a slow-moving rocket or a garden-variety explosion.
Examining the new routine, then, let’s see how this noise generator works. 

he irst call to INIT creates the table of random values. Lines 19 and 20 initialize 
to$00 a counter we’ll be using shortly. A call to the random function is then 
made to generate a random byte. Next, the Y-Register is loaded with the value 
held inCTR. his value is used as an index to the location in the range from 
$1000 through$10FF where we will store the random byte.CTR is then incre-
mented to the next position andLOOP is executed untilCTR wraps back around to 
$00 a!er cycling 256 times.
You may wonder why this code was not used instead:

        LDY #$00

LOOP    JSR RND

        LDA FAC+2

1[CT] Line 20 incorrectly had INPUT “D,P”; P,D
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        STA $1000,Y

        INY

        BNE LOOP

Although it’s much shorter and more direct, the routine fails becauseRND 
scrambles the Y-Register, thus losing any running value for our position in the 
table being created. his fact necessitates the use of a back-up counter (CTR) to 
remember the current value that Y should be set to.
he INIT routine, then, will ill 256 bytes of memory starting at$1000 with a 

random pattern of bytes. More important, this also results in a random pattern 
of bits, which will be used very soon by the noise routine.
When$313 (787 decimal) is called,COMBYTE is used to read the values for 

PTCH and DRTN from the calling Appleso! program.
READ then starts the process of scanning the data table for the random data 

to be used in generating the noise pattern. he trick in this program comes in 
using the actual bit status of the data rather than entire bytes.
A!er each byte is loaded into the Accumulator on line 35, a bit-shi!ing rou-

tine is executed eight times to determine the on or of status of each bit. Line 36 
initializes the X-Register to act as our counter in this eight-step loop.
Line 37 uses the LSR command (Logical Shi! Right) to move all of the bits in 

the Accumulator one position to the right. he end-position bit, bit 0, falls into 
the carry.
Line 38 then tests the carry lag and, if the lag is clear (bit not set), skips the 

speaker-toggling step found at line 39.
NEXTBIT decrements our counter in the X-Register, and ifX hasn’t reached 

0, loops back toSHIFT. IfX has reached 0,X is reset with thePTCH value and a 
delay loop is entered.
When the delay loop is inished, the Y-Register is incremented in prepara-

tion for reading the next byte in the data table.
As it happens, reading each bit of 256 bytes does not take that long. Our 

sound would be over rather soon if we didn’t do just one extra step. Although we 
could generate and read larger tables, another approach is to reread the table a 
set number of times. his is where theDRTN value is used, and the table read is 
repeated the number of times speciied by DRTN.
he main area of experimentation in this routine is with diferent values for 

PTCH. Smaller values produce higher-sounding noise patterns; larger values gen-
erate more of a roar.

A Little More Sophistication

his last routine probably sounds more like an explosion to you than the 
irst one did. his is due to the higher noise content of the sound as compared to 
the more musical irst routine. Something is still missing, though. A classical 

]
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explosion doesn’t sound the same from start to inish. It usually starts at a higher 
or lower pitch and works its way up or down, depending on the nature of the 
explosion. What we need is a way to modulate the frequency mix as a function of 
time.
By linking the delay value to our position in the table, we can accomplish 

this goal. Here’s the new listing:

                1    ********************************

                2    *                              *

                3    *AL25-SIMPLE RAMP NOISE ROUTINE*

                4    *                              *

                5    ********************************

                6    *

                7    *        OBJ  $300

                8             ORG  $300

                9    *

                10   CTR      EQU  $06

                11   DRTN     EQU  $07

                12   PTCH     EQU  $08

                13   SPKR     EQU  $C030

                14   *

                15   COMBYTE  EQU  $E74C

                16   RND      EQU  $EFAE

                17   FAC      EQU  $9D

                18   *

0300: A9 00     19   INIT     LDA  #$00

0302: 85 06     20            STA  CTR

0304: 20 AE EF  21   LOOP     JSR  RND

0307: A5 9F     22            LDA  FAC+2

0309: A4 06     23            LDY  CTR

030B: 99 00 10  24            STA  $1000,Y

030E: E6 06     25            INC  CTR

0310: D0 F2     26            BNE  LOOP

0312: 60        27   DONE     RTS

                28   *

0313: 20 4C E7  29   ENTRY    JSR  COMBYTE

0316: 86 07     30            STX  DRTN

0318: A0 00     31   READ     LDY  #$00

031A: B9 00 10  32   BYTE     LDA  $1000,Y

031D: A2 08     33            LDX  #$08

031F: 4A        34   SHIFT    LSR

0320: 90 03     35            BCC  NEXTBIT

0322: 8D 30 C0  36   TICK     STA  SPKR

                37   *

0325: CA        38   NEXTBIT  DEX

0326: D0 F7     39            BNE  SHIFT

0328: A6 07     40            LDX  DRTN

032A: CA        41   DELAY    DEX

032B: D0 FD     42            BNE  DELAY

032D: C8        43   NEXTBYTE INY

032E: D0 EA     44            BNE  BYTE

0330: C6 07     45            DEC  DRTN

0332: D0 E4     46            BNE  READ

0334: 60        47   EXIT     RTS
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0335: 39        48            CHK

his program is designed to be called from an Appleso! program that looks 
like this:

10  CALL 768: REM GENERATE TABLE

20  INPUT "START?";S

30  CALL 787, S

40  GOTO 20

he main diference between this routine and the previous one is that just 
prior to the delay loop, the X-Register is loaded with the currentDRTN counter 
value, as opposed to a user-deined pitch value. hus, noPTCH is speciied in the 
calling program and you may select only a starting point on the ramp, as it is 
sometimes called.
Entering a value of 255 results in the longest sound possible. It is rather 

interesting to have your Apple sound like a 727 ready to take of through your 
ceiling.

Putting it All Together

Now that we’ve got some sound efects to add to our knowledge of hi-res 
graphics, let’s put everything together into a simple demonstration of how an 
explosion might be simulated in a game program.
Assemble the following listing and run it either withBRUN orCALL 4096 

(from BASIC), or 1000G (from the Monitor).

                1    ********************************

                2    *                              *

                3    *AL25-SIMPLE EXPLOSION ROUTINE *

                4    *                              *

                5    ********************************

                6    *

                7             ORG  $1000

                8    *

                9    NUM      EQU  $06

                10   SPKR     EQU  $C030

                11   *

                12   RND      EQU  $EFAE

                13   FAC      EQU  $9D

                14   KYBD     EQU  $C000

                15   STROBE   EQU  $C010

                16   *

                17   HGR      EQU  $F3E2

                18   HCOLOR   EQU  $F6F0

                19   SHNUM    EQU  $F730

                20   XDRAW    EQU  $F661

                21   HPOSN    EQU  $F411

                22   SHTBL    EQU  $E8

                23   SCALE    EQU  $E7

                24   *

]
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1000: 4C 63 10  25   ENTRY    JMP  START

                26   *

1003: 03 00 55  27   TABLE    HEX  0300550033000800

1006: 00 33 00 08 00

100B: 2C 24 2D  28            HEX  2C242D242DE4DB93

100E: 24 2D E4 DB 93

1013: 3E 36 37  29            HEX  3E36372E362D3635

1016: 2E 36 2D 36 35

101B: 36 2D C6  30            HEX  362DC6DBDB23272C

101E: DB DB 23 27 2C

1023: 25 2C 3C  31            HEX  252C3C3F363F373E

1026: 3F 36 3F 37 3E

102B: 36 40 C0  32            HEX  3640C040C028352E

102E: 40 C0 28 35 2E

1033: 35 2D 00  33            HEX  352D00243F3CBC12

1036: 24 3F 3C BC 12

103B: 0E 96 09  34            HEX  0E9609C04C493C2C

103E: C0 4C 49 3C 2C

1043: 2C 2D 24  35            HEX  2C2D2494921A352D

1046: 94 92 1A 35 2D

104B: 36 EE DB  36            HEX  36EEDB233C27941B

104E: 23 3C 27 94 1B

1053: 3E 36 3F  37            HEX  3E363F06001B282D

1056: 06 00 1B 28 2D

105B: 2D F8 DB  38            HEX  2DF8DB636DE52300

105E: 63 6D E5 23 00

                39   *

1063: 20 E2 F3  40   START    JSR  HGR

1066: A2 03     41            LDX  #$03       ; WHITE

1068: 20 F0 F6  42            JSR  HCOLOR

106B: A9 03     43            LDA  #$03

106D: 85 E8     44            STA  SHTBL

106F: A9 10     45            LDA  #$10

1071: 85 E9     46            STA  SHTBL+1    ; TABLE AT $1003

1073: A9 01     47            LDA  #$01

1075: 85 E7     48            STA  SCALE      ; SCALE = 1

1077: A9 0A     49            LDA  #$0A

1079: 85 06     50            STA  NUM        ; # OF CYCLES

                51   *

107B: A2 8C     52   SHIP     LDX  #$8C

107D: A0 00     53            LDY  #$00       ; X = 140

107F: A9 50     54            LDA  #$50       ; Y = 80

1081: 20 11 F4  55            JSR  HPOSN      ; POSITION 'CURSOR'

1084: A2 01     56            LDX  #$01       ; #1 = SHIP

1086: 20 30 F7  57            JSR  SHNUM

1089: A9 00     58            LDA  #$00       ; ROT = 0

108B: 20 61 F6  59            JSR  XDRAW

                60   *

108E: AD 00 C0  61   KEY?     LDA  KYBD

1091: 10 FB     62            BPL  KEY?       ; NO KEYPRESS

1093: 8D 10 C0  63            STA  STROBE     ; CLEAR STROBE

                64   *

1096: A2 8C     65   ERASE1   LDX  #$8C

1098: A0 00     66            LDY  #$00

109A: A9 50     67            LDA  #$50

109C: 20 11 F4  68            JSR  HPOSN



25. Explosions and Special Efects 243

109F: A2 01     69            LDX  #$01

10A1: 20 30 F7  70            JSR  SHNUM

10A4: A9 00     71            LDA  #$00

10A6: 20 61 F6  72            JSR  XDRAW      ; ERASE SHIP

                73   *

10A9: A2 8C     74   LOOP     LDX  #$8C

10AB: A0 00     75            LDY  #$00

10AD: A9 50     76            LDA  #$50

10AF: 20 11 F4  77            JSR  HPOSN

10B2: A2 02     78            LDX  #$02       ; 1ST EXPL SHAPE

10B4: A5 06     79            LDA  NUM

10B6: 6A        80            ROR

10B7: B0 01     81            BCS  SET        ; IF 'ODD'

10B9: E8        82            INX             ; 2ND EXPL SHAPE

10BA: 20 30 F7  83   SET      JSR  SHNUM

10BD: A9 00     84            LDA  #$00

10BF: 20 61 F6  85            JSR  XDRAW      ; DRAW EXPLOSION

                86   *

10C2: 20 AE EF  87   GETPTCH  JSR  RND

10C5: A2 10     88            LDX  #$10

10C7: AD 30 C0  89   TICK     LDA  SPKR       ; CLICK SPEAKER

10CA: A4 9F     90            LDY  FAC+2      ; PITCH = RND

10CC: 88        91   DELAY    DEY

10CD: D0 FD     92            BNE  DELAY

10CF: CA        93   CYCLE    DEX

10D0: D0 F5     94            BNE  TICK

                95   *

10D2: A2 8C     96   ERASE2   LDX  #$8C

10D4: A0 00     97            LDY  #$00

10D6: A9 50     98            LDA  #$50

10D8: 20 11 F4  99            JSR  HPOSN

10DB: A2 02     100           LDX  #$02

10DD: A5 06     101           LDA  NUM

10DF: 6A        102           ROR

10E0: B0 01     103           BCS  SET2       ; IF 'ODD'

10E2: E8        104           INX             ; 2ND EXPLOSION FIG.

10E3: 20 30 F7  105  SET2     JSR  SHNUM

10E6: A9 00     106           LDA  #$00

10E8: 20 61 F6  107           JSR  XDRAW      ; ERASE FIGURE

                108  *

10EB: C6 06     109  DRTN     DEC  NUM

10ED: D0 BA     110           BNE  LOOP

10EF: 60        111  EXIT     RTS

10F0: 28        112           CHK

When the program is run, the hi-res screen should clear and a lying-saucer-
like ship should appear in the middle of the screen. Pressing any key will blow 
up the spaceship. Let’s see how this is done.
Lines 27 through 38 contain the data for a three-element shape table. his 

table is jumped over when the program is irst run.START clears the hi-res screen 
in the usual manner and initializes the shape-table pointers and theHCOLOR and 
SCALE values. Lines 49 and 50 setNUM to 10, to be used later as the number of 
cycles the explosion routine will go through.

]
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SHIP draws the spaceship in the center of the screen.KEY? waits for a key-
press. When a key is pressed, the code moves on toERASE, which erases the ship 
prior to starting the explosion sequence.
he explosion sequence itself consists of a three-part loop. hese parts con-

sist of: (1) drawing one of two explosion shapes, (2) creating a little noise with 
the speaker, and (3) erasing the explosion shape drawn in step 1.
his sequence is then repeated a number of times depending on how long 

you want the explosion to last. In detail, here’s how this sequence is carried out.
Lines 74−77 position the hi-res cursor at the ship’s old position. Lines 78−82 

then select one of the two explosion shapes included in the table based on 
whether NUM (the current loop counter) is odd or even.
his is done by irst loading the X-Register with what might be called a 

default value of$02 for the irst explosion shape (which is the second item in the 
table).NUM is then loaded into the Accumulator and aROR (ROtate Right) com-
mand is done to shi! all of the bits to the right one position. Bit 0 will then be 
forced into the carry, where we can test with theBCS (Branch Carry Set) com-
mand. (his is similar to the technique used earlier for the noise routine. In fact, 
theLSR command would have worked just as well here, but a little variety can 
sometimes be nice.)
If the carry was set, thenNUM was odd and we’ll go right to the next phase. If 

the carry was clear, thenNUM was even and theINX (INcrement X) will be exe-
cuted. Remember that the X-Register is always loaded with the shape number 
you want toDRAW orXDRAW prior to callingSHNUM. If theINX is done,X goes from 
$02 to$03, thus indicating shape number 3, which corresponds to the second 
explosion shape in the table.
Once an explosion shape has been drawn, the irst noise routine presented 

earlier is used to generate a short burst of quick random notes. his passes for 
some background noise for an explosion. A!er a few quick sounds,ERASE2 again 
XDRAWs the shape selected inLOOP. his has the efect of erasing the previous 
image. Finally, lines 109 and 110 checkNUM to see if the loop is inished. As writ-
ten, line 49 sets the loop counter to ten passes, but you may want to try diferent 
values to suit your own tastes.
Because all imaging is done withXDRAW, theHCOLOR setting actually is irrele-

vant; this routine would work on any screen background. You may want to try 
clearing the screen to diferent backgrounds as described in the previous chapter 
and see how the routine given here behaves.
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!e Shooter Program

What we need now is some sort of collective example of how all of this can 
be put together as it might be done in an actual game. Although it’s not necessar-
ily your deinitive hi-res arcade game, the following is ofered for your general 
interest and amusement.2

                1    ********************************

                2    *     AL25-SHOOTER PROGRAM     *

                3    ********************************

                4    *

                5    *

                6             ORG  $1000

                7    *

                8    FLAG     EQU  $E3

                9    X        EQU  $E0

                10   Y        EQU  $E2

                11   X0       EQU  $06

                12   Y0       EQU  $08

                13   NUM      EQU  $0C

                14   *

                15   PREAD    EQU  $FB1E

                16   WAIT     EQU  $FCA8

                17   PB0      EQU  $C061

                18   HCOLOR   EQU  $F6F0

                19   HGR      EQU  $F3E2

                20   HPLOT    EQU  $F457

                21   HPOSN    EQU  $F411

                22   HLIN     EQU  $F53A

                23   ROT      EQU  $F9

                24   SCALE    EQU  $E7

                25   SHNUM    EQU  $F730

                26   DRAW     EQU  $F605

                27   XDRAW    EQU  $F661

                28   HFIND    EQU  $F5CB

                29   CTR      EQU  $EA

                30   PTR      EQU  $E8

                31   SPKR     EQU  $C030

                32   RND      EQU  $EFAE

                33   FAC      EQU  $9D

                34   *

1000: 4C 67 10  35   ENTRY    JMP  E2

                36   *

1003: 04 00 59  37            HEX  0400590037000C00

1006: 00 37 00 0C 00

100B: 0A 00 04  38            HEX  0A0004002C242D24

100E: 00 2C 24 2D 24

1013: 2D E4 DB  39            HEX  2DE4DB933E36372E

1016: 93 3E 36 37 2E

101B: 36 2D 36  40            HEX  362D3635362DC6DB

101E: 35 36 2D C6 DB

1023: DB 23 27  41            HEX  DB23272C252C3C3F

2[CT] Lines 94−98 were changed to divide the paddle value by 4 to convert the rotation 
into the allowed range of 0−63.

]
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1026: 2C 25 2C 3C 3F

102B: 36 3F 37  42            HEX  363F373E3640C040

102E: 3E 36 40 C0 40

1033: C0 28 35  43            HEX  C028352E352D0024

1036: 2E 35 2D 00 24

103B: 3F 3C BC  44            HEX  3F3CBC120E9609C0

103E: 12 0E 96 09 C0

1043: 4C 49 3C  45            HEX  4C493C2C2C2D2494

1046: 2C 2C 2D 24 94

104B: 92 1A 35  46            HEX  921A352D36EEDB23

104E: 2D 36 EE DB 23

1053: 3C 27 94  47            HEX  3C27941B3E363F06

1056: 1B 3E 36 3F 06

105B: 00 1B 28  48            HEX  001B282D2DF8DB63

105E: 2D 2D F8 DB 63

1063: 6D E5 23  49            HEX  6DE52300

1066: 00

                50   *

1067: 20 E2 F3  51   E2       JSR  HGR        ; CLR SCRN

106A: A2 03     52            LDX  #$03

106C: 20 F0 F6  53            JSR  HCOLOR

                54   *

106F: A2 00     55   WALL     LDX  #$00

1071: A0 00     56            LDY  #$00       ; X = 0

1073: A9 05     57            LDA  #$05       ; Y = 5

1075: 20 57 F4  58            JSR  HPLOT      ; PLOT 0,5

1078: A9 17     59            LDA  #23        ; 279 MOD 256

107A: A2 01     60            LDX  #01        ; 279/256

107C: A0 05     61            LDY  #$05       ; Y = 5

107E: 20 3A F5  62            JSR  HLIN       ; 0,5 TO 279,5

                63   *

1081: A9 17     64            LDA  #$17

1083: A2 01     65   LDX      LDX  #$01       ; X = 279

1085: A0 06     66            LDY  #$06       ; Y = 6

1087: 20 3A F5  67            JSR  HLIN       ; 279,5 TO 279,6

                68   *

108A: A9 00     69            LDA  #$00

108C: A2 00     70            LDX  #$00       ; X = 0

108E: A0 06     71            LDY  #$06       ; Y = 6

1090: 20 3A F5  72            JSR  HLIN       ; 279,6 TO 0,6

                73   *

1093: A9 03     74   SET      LDA  #$03

1095: 85 E8     75            STA  PTR

1097: A9 10     76            LDA  #$10

1099: 85 E9     77            STA  PTR+1      ; SET TBL = $1003

109B: A9 01     78            LDA  #$01

109D: 85 E7     79            STA  SCALE

109F: 85 E3     80            STA  FLAG

10A1: A9 0A     81            LDA  #$0A

10A3: 85 0C     82            STA  NUM        ; # OF EXPLOSIONS

10A5: A2 8C     83   SHIP     LDX  #$8C

10A7: A0 00     84            LDY  #$00

10A9: A9 50     85            LDA  #$50

10AB: 20 11 F4  86            JSR  HPOSN

10AE: A2 01     87            LDX  #$01       ; #1 = SHIP

10B0: 20 30 F7  88            JSR  SHNUM
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10B3: A9 00     89            LDA  #$00       ; ROT = 0

10B5: 20 05 F6  90            JSR  DRAW

                91   *

10B8: A2 00     92   CALC     LDX  #$00

10BA: 20 1E FB  93            JSR  PREAD

10BD: 84 F9     94            STY  ROT        ; [CT] NEED TO SCALE TO 0-63

10BF: 46 F9     95            LSR  ROT        ; [CT] DIVIDE BY 2

10C1: 46 F9     96            LSR  ROT        ; [CT] DIVIDE BY 2

10C3: A9 48     97   PAUSE    LDA  #$48

10C5: 20 A8 FC  98            JSR  WAIT

10C8: AD 61 C0  99   SHOOT?   LDA  PB0

10CB: 30 03     100           BMI  YES

10CD: 4C B8 10  101           JMP  CALC       ; (NOPE)

                102  *

10D0: A2 8C     103  YES      LDX  #$8C

10D2: A0 00     104           LDY  #$00

10D4: A9 4E     105           LDA  #$4E       ; Y = INSIDE SHIP

10D6: 20 11 F4  106           JSR  HPOSN

10D9: A2 04     107           LDX  #$04       ; #4 = SINGLE DOT

10DB: 20 30 F7  108           JSR  SHNUM

10DE: A5 F9     109           LDA  ROT

10E0: 20 61 F6  110           JSR  XDRAW      ; DRAW RAY

                111  *

10E3: A2 05     112  SOUND    LDX  #$05       ; # OF CYCLES

10E5: AD 30 C0  113  TICK     LDA  SPKR

10E8: A4 E7     114           LDY  SCALE

10EA: 88        115  DELAY    DEY

10EB: D0 FD     116           BNE  DELAY

10ED: CA        117  CYCLE    DEX

10EE: D0 F5     118           BNE  TICK

                119  *

10F0: A2 8C     120  ERASE1   LDX  #$8C

10F2: A0 00     121           LDY  #$00

10F4: A9 4E     122           LDA  #$4E

10F6: 20 11 F4  123           JSR  HPOSN

10F9: A2 04     124           LDX  #$04

10FB: 20 30 F7  125           JSR  SHNUM

10FE: A5 F9     126           LDA  ROT

1100: 20 61 F6  127           JSR  XDRAW      ; ERASE RAY

1103: A5 EA     128           LDA  CTR

1105: C9 02     129           CMP  #$02

1107: B0 0F     130           BCS  HIT

                131  *

1109: E6 E7     132  NEXT     INC  SCALE

110B: E6 E7     133           INC  SCALE

110D: E6 E7     134           INC  SCALE

110F: A5 E7     135           LDA  SCALE

1111: C9 90     136           CMP  #$90

1113: 90 BB     137           BCC  YES

1115: 4C 7B 11  138           JMP  MISS

                139  *

1118: 20 CB F5  140  HIT      JSR  HFIND      ; GET CURSOR POSN

111B: A5 E0     141           LDA  X

111D: 85 06     142           STA  X0

111F: A5 E1     143           LDA  X+1

1121: 85 07     144           STA  X0+1

]
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1123: A5 E2     145           LDA  Y

1125: 85 08     146           STA  Y0         ; SAVE CURSOR POSN

1127: A9 01     147           LDA  #$01

1129: 85 E7     148           STA  SCALE      ; RESET SCALE

                149  *

112B: A2 03     150  EXPLOS   LDX  #$03       ; WHITE

112D: 20 F0 F6  151           JSR  HCOLOR

1130: A6 06     152           LDX  X0

1132: A4 07     153           LDY  X0+1

1134: A5 08     154           LDA  Y0

1136: 20 11 F4  155           JSR  HPOSN

1139: A2 02     156           LDX  #$02       ; 1ST EXPLOSION

113B: A5 0C     157           LDA  NUM

113D: 6A        158           ROR

113E: B0 01     159           BCS  BOOM       ; IF 'ODD'

1140: E8        160           INX

1141: 20 30 F7  161  BOOM     JSR  SHNUM

1144: A9 00     162           LDA  #$00

1146: 20 05 F6  163           JSR  DRAW       ; DRAW 1ST EXPLOSION

                164  *

1149: 20 AE EF  165  GETPTCH  JSR  RND

114C: A2 10     166           LDX  #$10       ; # OF CYCLES

114E: AD 30 C0  167  TICK2    LDA  SPKR

1151: A4 9F     168           LDY  FAC+2      ; PITCH = RND

1153: 88        169  DELAY2   DEY

1154: D0 FD     170           BNE  DELAY2

1156: CA        171  CYCLE2   DEX

1157: D0 F5     172           BNE  TICK2

                173  *

1159: A2 00     174  ERASE2   LDX  #$00       ; BLACK

115B: 20 F0 F6  175           JSR  HCOLOR

115E: A6 06     176           LDX  X0

1160: A4 07     177           LDY  X0+1

1162: A5 E2     178           LDA  Y

1164: 20 11 F4  179           JSR  HPOSN

1167: A2 02     180           LDX  #$02

1169: A5 0C     181           LDA  NUM

116B: 6A        182           ROR

116C: B0 01     183           BCS  BOOM2      ; IF 'ODD'

116E: E8        184           INX

116F: 20 30 F7  185  BOOM2    JSR  SHNUM

1172: A9 00     186           LDA  #$00       ; ROT = 0

1174: 20 05 F6  187           JSR  DRAW       ; ERASE FIGURE

1177: C6 0C     188  DRTN     DEC  NUM

1179: D0 B0     189           BNE  EXPLOS

                190  *

117B: A9 01     191  MISS     LDA  #$01

117D: 85 E7     192           STA  SCALE      ; RESET SCALE

117F: A9 0A     193           LDA  #$0A

1181: 85 0C     194           STA  NUM        ; RESET NUM

                195  *

1183: 4C B8 10  196  AGAIN    JMP  CALC

                197  *

1186: 66        198           CHK
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his is an independent program that can be called from Appleso! BASIC by 
typing inCALL 4096 or from the Monitor by typing in1000G. You can also 
directly BRUN the assembled object ile.
When the program is run, a spaceship-like form similar to the one drawn in 

the explosion routine is drawn in the center of the screen. At the top of the 
screen, a wall made up of two horizontal lines is also drawn. Turningpaddle 0 
and pressing the correspondingpushbutton will ire a ray from the ship. If the 
ray hits the wall, an explosion occurs and the wall is le! suitably damaged. You 
must press RESET to terminate the program.
he program combines many of the techniques described in this chapter 

and the previous one. It can be summarized as follows:

1. Initialize a shape table containing four shapes: a spaceship, two explosions, 
and a one-dot shape for the ray efect.

2. HPLOT a wall of two horizontal lines at top of screen.

3. DRAW shape 1 (the spaceship) at the center of the screen.

4. Read paddle 0. Store the value in the rotation register.

5. Pause to encourage paddle reliability.

6. Read pushbutton 0. If it is not pressed, go back to step 4.

7. Button pushed: Start the ire sequence.

8. Draw a dot shape starting inside the ship. he rotation value set in step 4 
determines the angle of the shot.

9. Make some noise with the simple noise routine.

10.Erase the dot shape.

11.Check the collision counter to see if anything was hit.

12.If nothing was hit, add 3 to theSCALE value. If it is still less than#$90, go 
back to step 8.

13.If there was no impact, restoreSCALE to 1 and the explosion counter to 
#$0A. hen go back to step 4.

14.If something was hit, ind the end of the ray by calling the Appleso!HFIND 
routine. Save this position value.

15.DRAW one of the explosion shapes in white.

16.Make some noise.

17.DRAW the same explosion shape in black to erase not only the shape, but also 
the parts of the wall that were hit.

]
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18.Go back to step 15 ten times for an exciting (?) explosion.

19.Restore SCALE and the explosion counter. Go back to step 4.

Because this program is made up of the various routines used earlier, this 
summary should be suicient to explain the overall method of operation.
he use of the single-dot shape to create the ray is similar to the technique 

used in chapter 24’sScanner programs. he new things presented inShooter are 
the incrementing by three (lines 132−134) to create a faster iring appearance 
and the use of HFIND if an impact is detected.
Remember that the HFIND ($F5CB) routine in Appleso! is used a!er drawing 

any shape to ind out where we’ve been le!. We usedHFIND in this program to 
determine where the impact occurred.
Also note thatDRAW rather thanXDRAW is used in this program to ensure that 

portions of the wall are destroyed by the impact. In contrast to the explosion 
program, this program cannot be run on any hi-res screen background without 
changing the colors used by the ray and the explosion routines.
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In chapters 16 and 17 we discussed how Appleso! variable data could be 
passed from BASIC to assembly language and back again. he rationale was that 
in many cases a program created by combining Appleso! and assembly language 
is an efective approach to a problem. Successive chapters on hi-res graphics 
included these techniques so as to have a convenient way of experimenting with 
the various routines.
It is highly recommended that you review the appropriate chapters if you’re 

not entirely familiar with the nature of Appleso! variable storage. Pages 127 and 
137 in theAppleso! II BASIC Programming Reference Manual also provide very 
valuable information well worth referring to in the course of reading the mate-
rial presented here.
For the most part, however, all of the past discussions were limited to deal-

ing with two-byte integer data. hat is to say, the possibility of dealing with true 
loating-point data was not considered. In many cases, integer values from 0 to 
65535 or −32767 to 32767 are more than adequate for our purposes, as was the 
case when passing tone routines or X and Y coordinates for plotting.1 However, 
there are times when greater precision, or fractional values, are required.
Dealing with loating-point numbers from a pure assembly-language pro-

gram is a fairly complex topic, and our intent here is not to explain completely 
the inner workings of loating-point operations. Rather, let’s explore the options 
made available by taking advantage of the existing routines in the Appleso! 
BASIC interpreter. hese generally can be considered to be always present in the 
background of an operating assembly-language program.
For those of you who hope to speed up loating-point operations in Apple-

so!, writing your own routines may not be that efective. his is because the rou-
tines in Appleso! are already written in machine language. We can, however, 
gain important speed improvements just by calling the routines directly. his is 
because we can eliminate the normal process of interpreting BASIC statements 
that otherwise would occur in Appleso!. his is what the currently available 
compilers do, and we can expect similar speed improvements to a BASIC pro-

1[CT] Recall from chapter 10 that the minimum technically should be −32768. However, 
Appleso! and Integer BASIC restrict the minimum integer to −32767.

]
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gram by using routines directly from assembly language (two to ive times faster 
than in straight Appleso!).

Internalization of Data: Integer versus Real Variables

he irst step in our inquiry is to investigate how Appleso! stores numeric 
data and to look at the diferences in how integer variables andreal variables are 
stored.
Start by initializing your Apple’s memory with an FP statement. hen enter:

A% = 10: A = 10

he result is that two variables and their values have been set up in memory. 
Now to ind them!
Enter the Monitor with the usual CALL -151. hen enter:

67 68 AF B0

You should get:

0067- 01

0068- 08

00AF- 03

00B0- 08

You may recall from chapter 16 that these four memory locations ($67,$68 
and$AF,$B0) are used to store the beginning and the end of the current Apple-
so! program. We can see from the display that the program resides from$801 to 
$803. A very short program, indeed, but that’s understandable since we haven’t 
entered any program lines.
Now let’s examine the pointer at $69, $6A and $6B, $6C. Do this by typing

69.6C

and pressing return. You should get:

0069- 03 08 11 08

his tells us that all simple (that is, non-array) variables are stored from 
$803 to $810.2 Examine this area by entering:

803.810

You should get:

0803- C1 80 00 0A 00

0808- 00 00 41 00 84 20 00 00

0810- 00

2[CT] One less than $811.
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You’ll recall from our discussions in previous chapters that integer and real 
variables are stored in the following format:
Integer: C1 80 00 0A 00 00 00

“A” “ ” “0” “10” – – –
Name

char1

(bit 7 set)

Name

char2

(bit 7 set)

High

Byte

Low

Byte

Unused Unused Unused

Real: 41 00 84 20 00 00 00

“A” “ ” 1000

0100

0010

0000

0000

0000

0000

0000

0000

0000

Name

char1

(bit 7 clear)

Name

char2

(bit 7 clear)

ExponentMantissa

m.s.b.

Mantissa Mantissa Mantissa

l.s.b.

Starting at$803, we ind the variableA% stored from$803 to$809. he irst 
two bytes are the name characters. Two bytes are always used. If the variable 
name is only one character then a null ($00 for real or$80 for integer) is stored 
in the second position. Note that integer, real, and string variable names are dif-
ferentiated by the combination of high bit settings in the two name-character 
bytes. Since only bits 0 through 6 are used for the character (ASCII is only a sev-
en-bit code), bit 7 (the high-order bit) is available for encoding the variable type.
Integer variables always have both high bits set. Real variables always have 

both high bits clear. String variables always have the irst name character clear 
and the second character set. (he notation for string variable names to the 
opposite efect on page 137 of theAppleso! II BASIC Programming Reference 
Manual is in error in this regard.)
he next two bytes,$00 and$0A, are the high- and low-order bytes for the 

value 10. You have probably noticed that integer variables are stored in a very 
simple way, with the value being broken down into the low- and high-order 
bytes. About the only peculiar item is the fact that the two bytes are stored high-
order byte irst, which is backward from the way we normally see them paired in 
most assembly-language code.
he three remaining bytes are unused.
$80A to$810 is where the real variableA is stored. You can see that the irst 

two bytes again are the name characters, this time with the high bits clear. he 
remaining bytes make up the value for the variable A.
It should be obvious that although the values of the integer and real vari-

ables are stored as equal, the manner in which they are stored is not. he real 
variable has been encoded into a ive-byte sequence, the logic behind which is 
not readily apparent. Well, don’t despair; it is not actually necessary for us to 
understand the exact details of the conversion routine.

]
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In general, it will suice to say that an exponential notation is used to store 
the number. his is how numbers of such large magnitudes (±1038) are accom-
modated by Appleso!. If you rouse some of your more ancient high-school 
memories, you’ll recall that the basic idea to exponents is that any number can 
be expressed with two numbers, the exponent and the mantissa.
For example, the number 10 is equal to 101, he number 100 is equal to 102. 

It is reasonable to assume, then, that a number like 50 might just happen to be 
equal to 101.5. As it happens, that’s not quite right, but the basic idea is there. In 
fact, 50 is really equal to 101.69897 (or thereabouts). he 1 part of the number is 
called theexponent (or occasionally the order of magnitude) of the number. he 
69897 is called themantissa. You may have fond memories of spending pleasant 
hours in math classes looking through books with lookup tables to ind these 
values for given numbers.
In any event, it’s precisely this type of technique that is used to encode the 

values of real variables.3 Fortunately for us, it will not be necessary to create our 
own routines to handle numbers in this format; a wealth of such routines already 
exist in Appleso!.
he remainder of this chapter will concentrate on some brief exercises in 

passing loating-point numbers back and forth between Appleso! and assembly 
language. hen in upcoming chapters we’ll explore how to perform various 
mathematical operations once your assembly-language program has possession 
of the data.

!e Floating-Point Accumulator (FAC)

Appleso! has its own internal set of registers that it uses during its various 
calculations. he most important of these by far is theloating-point Accumula-
tor. his is usually labeled FAC in source listings that access this register.
he wordregister is used in a slightly diferent way here than it is when 

referring to 6502 registers such as the Accumulator or the X- or Y-Registers. 
Because a loating-point number is represented by a series of bytes, theFAC 
occupies the bytes from $9D through $A2.
You may be puzzled as to why theFAC uses six bytes when variable storage 

uses only ive. his is because theFAC uses$A2 as the sign byte to indicate the 
positive or negative status of the value. When inally encoded, the sign is 
included in the exponent and mantissa bytes and thus is no longer needed. 
Floating point numbers in the ive-byte format are said to be “packed.” he six-

3[CT] From theApple II Technical Notes: for the exponent, the top bit is the sign (with 0 
for negative). he remainder of the byte minus one is the value of the exponent (for 
example,$84 is a positive exponent of 3). he mantissa is a binary fraction, with an 
implied starting value of 1. he irst bit is the sign bit (this time with 0 for positive). he 
remaining bits are fractional values starting with 0.5, 0.25, 0.125, etc. For example,$20 
gives a mantissa of 1 + 0.25. So $84 $20 equals 1.25 × 2³ = 10.



26. Passing Floating-Point Data 255

byte format is “unpacked.” he unpacked format is faster for calculations. he 
packed format is used to minimize storage space.
In general, whenever any type of calculation is done by Appleso! theFAC is 

the primary register used to hold the result. A second register,ARG (ARGument), 
is used for two-value calculations, such as 1.5× 17. heARG register uses the 
bytes$A5 through$AA. For the time being, though, we need only concern our-
selves with FAC.

Passing Data from Applesot to the FAC

he irst area to investigate is how to get a loating-point number passed 
from Appleso! to an assembly-language routine. he easiest way is by means of 
theUSR function. heUSR is a rather neglected part of Appleso!, probably 
because of the lack of documentation on its nature and applications. A program 
statement using USR might look something like this:

10  X = USR(Y)

When this statement is executed, three things happen:

1. he expression or variable within the parentheses is evaluated and the result 
put in the FAC.

2. A call to location$0A (decimal 10) is done. his is equivalent to aCALL 10 in 
Appleso!. here is a three-byte jump instruction at location$0A. It is assumed 
that the user has inserted the location of an existing assembly-language routine. 
For example, the codeJMP $300 might be found at$0A. he program would then 
jump to $300 to execute whatever routine the user might have put there.

3. When the user routine eventually does anRTS, the contents of theFAC are 
assigned to the variable to the le! of the equal sign.

For example, type in and run this program:

10  POKE 10,0

20  Y = 10

30  X = USR(Y)

When run, the program should fall into the Monitor. hen type in:

9D.A2 (return)

You should get:

009D- 84 A0 00

00A0- 00 00 20

]
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his is the data for the value 10, which theFAC stores in unpacked form.4 
Here’s what happened: Line 10 set location$0A to aBRK. When theUSR function 
was called, it put the sequence for 10 in theFAC and then called$0A as expected. 
Since this was a break, we went into the Monitor and could then immediately 
examine the FAC.
Note that it is not possible to set theFAC from Appleso! and then to verify 

the status of theFAC by entering the Monitor with the usualCALL -151. Since the 
FAC will be used in calculating the value of-151, any prior data would be over-
written.
While you’re in the Monitor, let’s set up $0A for our next experiment. Enter:

0A: 4C 00 03

his will set the vector to point at location$300. Now create a trivial pro-
gram (in this case, an immediate RTS) at $300 by entering:

300: 60

Now return to Appleso! and enter and run this program:

10  Y = 10

20  X = USR(Y)

30  PRINT X

You should get the number 10 printed out. If you consider what we’ve dis-
cussed so far, it should be apparent why. he value 10 held by Y was passed to the 
FAC by theUSR function. When our “routine” at$300 was called, theFAC 
remained unchanged. Upon return from our routine, theFAC (still equal to 10) 
was assigned to the variable X.
Although theUSR function is a convenient way of passing data, it is rather 

limited in terms of syntax. If you wanted to pass a number of parameters to a 
routine, another technique would be required. You may recall from previous 
chapters a routine calledFRMNUM ($DD67 = FoRMula NUMeric evaluator) that we 
used to evaluate variables being passed to assembly-language routines. A!er call-
ingFRMNUM,GETADR ($E752 = GET AdDRess) was used to convert the number to 
a two-byte integer LINNUM ($51, $52 = LINe NUMber).
Well, since what we want is the FAC, we’ve already got the solution:

                1    ********************************

                2    *                              *

                3    *      AL26-BASIC TO FAC       *

                4    *                              *

                5    *      SYNTAX: CALL 768,Y      *

                6    ********************************

                7    *

                8    *        OBJ  $300

                9             ORG  $300

4[CT] Corrected from the original article, which presented the result in packed form.
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                10   *

                11   CHKCOM   EQU  $DEBE

                12   FRMNUM   EQU  $DD67

                13   *

0300: 20 BE DE  14   ENTRY    JSR  CHKCOM

0303: 20 67 DD  15            JSR  FRMNUM

0306: 00        16            BRK

his code should be assembled at$300 and called with the following Apple-
so! program:

10  Y = 10

20  CALL 768,Y

When this program is run, you should fall into the Monitor. hen enter:

9D.A2

You should get:

009D- 84 A0 00

00A0- 00 00 20

his should verify that the FAC was properly loaded with the value 10.5

In reviewing the listing, you’ll see that line 14 callsCHKCOM ($DEBE = CHecK 
for COMma) to advance Appleso!’sTXTPTR ($B8,$B9 = TeXT PoinTeR) past 
the comma following the 768. Line 15 then callsFRMNUM, which evaluates the 
variable or expression following the comma and puts the result in theFAC. Line 
16 then does theBRK to leave us in the Monitor, from which we can check the 
FAC to verify that the correct value has been stored.
We have now, then, two techniques for passing data from Appleso! to the 

FAC. he irst is to use theUSR function (being sure, of course, to set up the vec-
tor at$0A). he second is to useFRMNUM ($DD67) to evaluate the expression or 
variable as part of a parameter list following a CALL statement.

Moving the FAC to a Memory Location

Since theFAC is so heavily used, it is sometimes helpful to move the data in 
it to another location for later use. In Appleso!, this is most o!en a temporary 
register or an actual variable. For now, let’s see if we can move the data to an 
arbitrary location.

                1    ********************************

                2    *                              *

                3    *      AL26-FAC TO MEMORY      *

                4    *                              *

                5    *      SYNTAX: CALL 768,Y      *

                6    ********************************

5[CT] Again, the FAC stores the value in unpacked form.

]
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                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE

                12   FRMNUM   EQU  $DD67

                13   MOVMF    EQU  $EB2B

                14   *

0300: 20 BE DE  15   ENTRY    JSR  CHKCOM

0303: 20 67 DD  16            JSR  FRMNUM     ; BASIC->FAC

0306: A0 03     17            LDY  #$03       ; HI BYTE

0308: A2 80     18            LDX  #$80       ; LO BYTE

030A: 20 2B EB  19            JSR  MOVMF      ; FAC->MEMORY

030D: 60        20   DONE     RTS

                21   *

he key to this technique is a routine in Appleso! calledMOVMF ($EB2B = 
MOVe to Memory fromFAC), which takes the value inFAC and moves it to the 
location pointed to by the X- and Y-Registers (X, Y = low byte, high byte).
he listing given here uses our previousFRMNUM technique to get a pre-

dictable number into theFAC. he X- and Y-Registers are then loaded to point to 
$380. When MOVMF is called, the contents of the FAC will be deposited there.
To see this, run the same Appleso! program, then enter the Monitor and 

enter:

380.384

You should get:

380- 84 20 00 00 00

his proves that we have successfully moved the data fromFAC to an arbi-
trary place in memory.6

Moving Memory into the FAC

he converse of this operation is accomplished in much the same way. In 
this case, the Appleso! routineMOVFM ($EAF9 = MOVe toFAC from Memory) is 
used. It requires that the Y-Register and Accumulator be loaded with the high- 
and low-order bytes of the address to be used as the data source for theFAC. 
(Note that there is a diference here: MOVMF uses X and Y; MOVFM uses X and A!)

                1    ********************************

                2    *                              *

                3    *      AL26-MEMORY TO FAC      *

                4    *                              *

                5    *       SYNTAX: CALL 768       *

                6    ********************************

6[CT]MOVMF irst converts from unpackedFAC form to packed form, then moves the 
data. Similarly, MOVFM converts from packed form back to the unpacked FAC form.
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                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   MOVFM    EQU  $EAF9

                12   *

0300: A0 03     13   ENTRY    LDY  #$03       ; HI BYTE

0302: A9 80     14            LDA  #$80       ; LO BYTE

0304: 20 F9 EA  15            JSR  MOVFM      ; MEMORY->FAC

0307: 00        16            BRK

Assuming that the previous routine has already been executed and that$380 
is loaded with the data appropriate to the value 10, type in CALL 768.
You should end up in the Monitor, at which point you can verify the con-

tents of the FAC by entering:

9D.A2

You should get:

9D- 84 A0 00

A0- 00 00 20

Again, theBRK was used to end the routine so that we could immediately 
examine the contents of theFAC. his routine shows that we can move data from 
a section of memory back into the FAC.

Passing FAC Data Back to Applesot

If the FAC does contain the result of an operation, how can we pass it back to 
a calling Appleso! program, preferably into the variable of our choice? Again, 
the answer is to useMOVMF. In this case, rather than moving the contents of the 
FAC into an arbitrary memory location, we’ll ind the location of the data bytes of 
a given real variable and then move theFAC into them. his has the efect of set-
ting the variable equal to the contents of the FAC.
Consider this listing:

                1    ********************************

                2    *                              *

                3    *      AL26-FAC TO BASIC       *

                4    *                              *

                5    *      SYNTAX: CALL 768,Y      *

                6    ********************************

                7    *

                8    *        OBJ  $300

                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE

                12   PTRGET   EQU  $DFE3

                13   MOVMF    EQU  $EB2B

                14   MOVFM    EQU  $EAF9

]



260 Assembly Lines

                15   *

0300: A0 03     16   ENTRY    LDY  #$03       ; HI BYTE

0302: A9 80     17            LDA  #$80       ; LO BYTE

0304: 20 F9 EA  18            JSR  MOVFM      ; MEMORY->FAC

                19   *

0307: 20 BE DE  20            JSR  CHKCOM

030A: 20 E3 DF  21            JSR  PTRGET

030D: AA        22            TAX

030E: 20 2B EB  23            JSR  MOVMF      ; FAC->VARIABLE

0311: 60        24   DONE     RTS

his routine again assumes that the loating-point data for the number 10 
still exists at$380. When this routine is run, lines 16 through 18 duplicate the 
previous listing to move the loating-point data from$380 through$384 into the 
FAC.
Line 20 usesCHKCOM to check the comma and moveTXTPTR to the irst char-

acter past the comma. Line 21 uses thePTRGET ($DFE3 = PoinTeR GET routine) 
to locate the variable currently pointed to byTXTPTR.PTRGET is handy also in 
that it will create the variable in the variable table if it does not already exist. 
PTRGET returns with the Y-Register and Accumulator pointing to the data bytes 
of the speciied variable. his will be precisely where we want the data in theFAC 
to be moved to. he only correction to be made is in regard to the fact that MOVMF 
requires that the Y- and X-Registers (rather than Y and the Accumulator as was 
le! byPTRGET) hold the destination address. Line 22 solves this by using theTAX 
command, at which pointMOVMF is called. We’re now done, and theRTS will 
return to the calling program.
Test this routine with the following listing:

10  CALL 768,X

20  PRINT X

X gets set to 10 by having our routine transfer the loating-point data from 
$380 through $384 to the data bytes for the variable X.

Putting it All Together

For a real test of these combined techniques, let’s see if we can successfully 
pass data from Appleso! to theFAC to a memory block and then back to theFAC 
and back to Appleso!. he following routine should demonstrate the entire 
operation as an overall example of the ideas presented thus far.

                1    ********************************

                2    *                              *

                3    *  AL26-BASIC.FAC.MEM.FAC.BAS  *

                4    *                              *

                5    *     SYNTAX: CALL 768,Y,X     *

                6    ********************************

                7    *

                8    *        OBJ  $300
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                9             ORG  $300

                10   *

                11   CHKCOM   EQU  $DEBE

                12   PTRGET   EQU  $DFE3

                13   FRMNUM   EQU  $DD67

                14   MOVFM    EQU  $EAF9

                15   MOVMF    EQU  $EB2B

                16   *

0300: 20 BE DE  17   ENTRY    JSR  CHKCOM

0303: 20 67 DD  18            JSR  FRMNUM     ; FP->FAC

                19   *-------------------------------------

0306: A0 03     20            LDY  #$03       ; HI BYTE

0308: A2 80     21            LDX  #$80       ; LO BYTE

030A: 20 2B EB  22            JSR  MOVMF      ; FAC->MEMORY

                23   *-------------------------------------

030D: A0 03     24            LDY  #$03

030F: A9 80     25            LDA  #$80

0311: 20 F9 EA  26            JSR  MOVFM      ; MEMORY->FAC

                27   *-------------------------------------

0314: 20 BE DE  28            JSR  CHKCOM

0317: 20 E3 DF  29            JSR  PTRGET

031A: AA        30            TAX             ; MOVE LO BYTE->X

031B: 20 2B EB  31            JSR  MOVMF      ; FAC->FP

                32   *-------------------------------------

031E: 60        33   DONE     RTS

Try this Appleso! program to call the routine:

10  Y = 10

20  CALL 768,Y,X

30  PRINT X

he value 10 should be printed forX. Dashed lines have been used to sepa-
rate the four major sections of the routine. When you compare each section with 
the four routines presented, the net operation of the example should become 
clear.
heUSR routine also could have been used and would eliminate two of the 

sections:

                1    ********************************

                2    *                              *

                3    *  AL26-BASIC.FAC.MEM.FAC.BAS  *

                4    *        VIA THE 'USR'         *

                5    *                              *

                6    *     SYNTAX: X = USR(Y)       *

                7    ********************************

                8    *

                9    *        OBJ  $300

                10            ORG  $300

                11   *

                12   CHKCOM   EQU  $DEBE

                13   PTRGET   EQU  $DFE3

                14   FRMNUM   EQU  $DD67

                15   MOVFM    EQU  $EAF9

]
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                16   MOVMF    EQU  $EB2B

                17   *

0300: A0 03     18   ENTRY    LDY  #$03       ; HI BYTE

0302: A2 80     19            LDX  #$80       ; LO BYTE

0304: 20 2B EB  20            JSR  MOVMF      ; FAC->MEMORY

                21   *-------------------------------------

0307: A0 03     22            LDY  #$03

0309: A9 80     23            LDA  #$80

030B: 20 F9 EA  24            JSR  MOVFM      ; MEMORY->FAC

                25   *-------------------------------------

030E: 60        26   DONE     RTS

Notice that since theUSR function calls the routine with theFAC already 
loaded with the value forY, the irst section of the previous routine is not 
needed. Also, since theUSR function will automatically assign the contents of the 
FAC to the variable X, the last section of the previous routine is not needed.
he calling program for the routine would look like this:

10  POKE 11,0: POKE 12,3: REM SET UP USR VECTOR

20  Y = 10

30  X = USR(Y)

40  PRINT X: REM SHOULD PRINT '10'

Conclusion

By now you probably feel fairly comfortable with the idea of the loat-
ing-point Accumulator (FAC) and how data can be moved about between Apple-
so! and assembly language. In the next chapter we’ll begin looking at some of 
the more sophisticated routines Appleso! uses to perform various arithmetic 
functions.
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In this chapter, we’ll continue with our discussion of loating-point number 
operations. In the previous chapter we looked at how Appleso! uses the loat-
ing-point Accumulator (FAC) as the main register for most of its numeric opera-
tions. Routines were presented that demonstrated how data can be passed back 
and forth between a running Appleso! program and an assembly-language sub-
routine and also how numeric data can be moved in and out of block memory 
storage.
Using this foundation, we can now examine how to use Appleso!’s routines 

for such basicmath functions as addition, subtraction, multiplication, and divi-
sion.
A word of advice is in order, however, before proceeding. Your irst inclina-

tion may be to think that the routines given here will enable you to do simple 
math operations with greater speed in an Appleso! program. As it happens, this 
will not directly produce the speed increase you want. Remember, Appleso! is 
already using these very same routines; given that, no speed increase should be 
expected for such simple operations as X = 5 × 10.
Our new syntax will be:

CALL 768,5,10,X

and as such involves just about as much overhead in the calling of the routine 
and the passing of data as would be involved in Appleso!.
You may ask then, “Why use an assembly-language call for these opera-

tions?”
here are a number of reasons, two of the more important of which follow.
First, when dealing with programs that require a high degree of accuracy, 

integer data may not be suicient.
Suppose, for example, you have a program that simulates the motion of an 

object traveling in an elliptical (or other mathematically complex) path.
If the current position of the object is continually maintained by using inte-

ger coordinates in the range of the normal screen coordinates, errors will begin 
to creep in with successive recalculations of position. his might be evidenced by 
the igure failing to retrace itself. Although in theory the object should always 
return to its starting point when following an elliptical path, multiple rounding 
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errors may cause the object to “miss” its original starting point by a few screen 
units.
A more reliable approach would be to maintain the current position in a 

true loating-point format and round the number to the nearest integer prior to 
each plot.
Second, calculations dealing with a large number of variables or, more 

speciically, with arrays of real variables, will be executed faster by an assem-
bly-language routine.
If, for example, you wanted to multiply an entire array by 5, it would in fact 

be faster to employ a routine that used this syntax:

CALL 768, A(0), 5

than to use:

FOR I = 1 TO 100: A(I) = A(I) * 5: NEXT I

hese ideas and others are put to use in a number of commercial so!ware 
products for the Apple. Many programs that require both speed and a high 
degree of accuracy use loating-point representations of numbers in assem-
bly-language routines. Another common technique is to use theBCD (“Binary 
Coded Decimal”) format for the data.
here are also programming utilities that provide machine-language rou-

tines to be called directly from Appleso!.Routine Machine,AmperMagic, 
Amperware,Apple Spice, and"e Linker (published by Southwestern Data Sys-
tems, Anthro-Digital So!ware, Scientiic So!ware Products, Adventure Interna-
tional, and Micro Lab, respectively) are all designed to allow the programmer 
access to useful routines written entirely in machine language. One product in 
particular,Amperso! Program Library Vol. 1 (aRoutine Machine-related pack-
age), deals almost entirely with array-related routines that use the advantages of 
the second principle mentioned to speed up array-related programs.
In general, all of these products are based on making use of theampersand 

vector to call specialized routines, the way we’ve discussed in past chapters. And 
regardless of which package you prefer, it’s safe to say that the overall idea of a 
user-selectable library of prewritten machine-language routines easily called 
from BASIC is one of the most powerful and exciting ideas to come along in 
Appleso! programming in the last few years. In fact, virtually all of the routines 
presented over the last year are compatible with many of these ampersand utility 
packages.
As a matter of reference, it also should be noted that techniques are avail-

able for faster numeric operations without having to call Appleso! routines. 
hese range from arithmetic processor boards, such as those manufactured by 
California Computer Systems and others, to so!ware subsystems such asSpeed/ 
ASM (published by Sierra On-Line). A combination of both hardware and so!-
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ware is also available from Applied Analytics in the form ofMicro-Speed, a 
Forth-like language combined with an arithmetic processor board. ALF Prod-
ucts ofers an 8088 processor card that includes so!ware that speeds up Apple-
so! math functions. It also allows the calling of dedicated math functions from a 
recurring machine-language program, independent of Appleso!.

More Applesot Internals

Well, then, just how does a person use the existing routines in Appleso!? As 
with most things we’ve covered, the important thing to know is the addresses of 
the entry points to the Appleso! routines for the basic math operations that 
interest us. We also need to revive the discussion of theARG (“argument”) regis-
ter, which we mentioned briely in the previous chapter.
heARG register is identical in format to theFAC and is used to hold the sec-

ond number in loating-point format when doing two-value functions such as 
addition, subtraction, multiplication, and division. heARG register uses bytes 
$A5 through $AA.
To see howARG is used, consider these important entry points to Appleso! 

math routines:

Function ARG <func> FAC MEM <func> FAC

Addition FADDT ($E7C1) FADD ($E7BE)
Subtraction FSUBT ($E7AA) FSUB ($E7A7)
Multiplication FMULTT ($E982) FMULT ($E97F)
Division FDIVT ($EA69) FDIV ($EA66)

For the irst column of labels, the associated addresses show the entry point 
for the routines that will perform the given function between theARG register 
and theFAC. For example, a call toFSUBT ($E7AA) would subtract the contents of 
the FAC from the contents of the ARG. he result would be le! in the FAC.
Prior to calling any of these four routines, the Accumulator must be loaded 

with the exponent value of theFAC (FACEXP =$9D). his also serves to condition 
the zero lag. For example, to multiplyFAC timesARG, the following code could 
be used;

LDA $9D

JSR $E982

he second column of labels refers to the routines used to perform the indi-
cated function between theFAC and data stored in memory (such as in a real 
variable) or in a data block set up by the programmer.
To use these, the Y-Register and Accumulator must be set up with the 

address of the memory location holding the numeric data (Y, A = high byte, low 

]



266 Assembly Lines

byte). When a routine is called, the data pointed to by Y, A will then be trans-
ferred into ARG and the direct function routine (irst column) then called.

An Example !at Doesn’t Work

You may wonder why a sample listing that doesn’t work is included here. 
he reason is that this listing does present, in a clear way, an overall example of 
what we’ve been discussing in this chapter and the previous one. It will also help 
you understand the changes we’ll be making later on in order to create a routine 
that does work!
From Appleso!, the routine would be called from a program like this:

10  INPUT “X1, X2:"; X1, X2

20  CALL 768, X1, X2, RSLT

30  PRINT XI; " + "; X2; “ = ”; RSLT

WhereX1 andX2 are the two arguments for the addition routine, that routine 
will be called. he result of the calculation will be sent back to the Appleso! pro-
gram into the variable RSLT.
Here’s the listing for the addition routine:

                1    ********************************

                2    *                              *

                3    *  AL27-M.L. ADDITION SUBR 1   *

                4    *        (DOESN’T WORK)        *

                5    *                              *

                6    *  SYNTAX: CALL 768,X1,X2,RSLT *

                7    *        RSLT = X1 + X2        *

                8    ********************************

                9    *

                10   *        OBJ  $300

                11            ORG  $300

                12   *

                13   CHKCOM   EQU  $DEBE

                14   PTRGET   EQU  $DFE3

                15   FRMNUM   EQU  $DD67

                16   FACEXP   EQU  $9D

                17   MOVMF    EQU  $EB2B

                18   MOVAF    EQU  $EB63

                19   FADDT    EQU  $E7C1

                20   *

0300: 20 BE DE  21   ENTRY    JSR  CHKCOM

0303: 20 67 DD  22   X1       JSR  FRMNUM     ; FP -> FAC

0306: 20 63 EB  23            JSR  MOVAF      ; FAC -> ARG

                24   *

0309: 20 BE DE  25   X2       JSR  CHKCOM

030C: 20 67 DD  26            JSR  FRMNUM     ; FP -> FAC

                27   *

030F: A5 9D     28   ADD      LDA  FACEXP

0311: 20 C1 E7  29            JSR  FADDT      ; X1 + X2

                30   *

0314: 20 BE DE  31   RSLT     JSR  CHKCOM
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0317: 20 E3 DF  32            JSR  PTRGET

031A: AA        33            TAX             ; MOVE LO BYTE TO X

031B: 20 2B EB  34            JSR  MOVMF      ; FAC -> FP

                35   *

031E: 60        36            RTS

Line 21 begins the routine by irst taking care of the comma following the 
768 in theCALL statement.FRMNUM ($DD67) is then used to evaluate the irst 
expression.FRMNUM conveniently leaves the result in theFAC. Since we will want 
the irst argument in theARG register,MOVAF ($EB63 = MOVe toARG fromFAC) is 
then used to move the data.
Line 25 again callsCHKCOM to “gobble” the next comma, a!er whichFRMNUM 

is again used to evaluate the next value and place it in the FAC.
We would now expect the result to be in theFAC. Line 31 takes care of the 

third comma, a!er whichPTRGET ($DFE3) inds (or creates) the variable in which 
we want the result returned.
At this point, everything has been properly placed for the use of theFADDT 

routine to add theFAC andARG registers together. Line 28 loads the Accumulator 
with FACEXP ($9D) as the entry requirement for the next instruction, which is the 
actual execution of the FADDT routine.
heTAX on line 33 is used a!erPTRGET to move the low-order byte of the 

variable data address into the X-Register, a!er whichMOVMF ($EB2B = MOVe to 
Memory from FAC) is used to complete the data transfer.
Note: If you’re unfamiliar with the fundamental move routines, you may 

wish to go back to the previous chapter, which covered these supporting rou-
tines.
he nice part about this routine is how easily the setup for the addition rou-

tine was accomplished. With a little thought, though, you may realize this is to 
be expected. A!er all, the internal routines were created in the irst place to 
process data easily within an Appleso! program.

Why it Doesn’t Work

he routine fails because ofFRMNUM. Although it was mentioned thatFRMNUM 
leaves its result inFAC, what you weren’t let in on was the fact that it also uses 
ARG during its calculations. his means that when we callFRMNUM a second time 
on line 26, we are unknowingly destroying the value we set up inARG in lines 22 
and 23.
he solution, then, is to save theFAC contents from the irst value calcula-

tion in memory at a place other than ARG.
here are two alternatives. he irst is to use some of Appleso!’s owntem-

porary numeric registers, which are called, cleverly enough,TEMP1 ($93−$97), 
TEMP2 ($98−$9C), andTEMP3 ($8A−$8E). he only risk here is in the destruction 
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of data later on by other temporary calculations byFRMNUM ($DD67) andFRMEVL 
($DD7B).
Another possibility would be to set aside our own temporary storage area. 

For this next example we’ll do just that, using the last half of the input bufer, 
$280−$284.
Here’s the revised listing, called using the same Appleso! program as 

before:

                1    ********************************

                2    *                              *

                3    *  AL27-M.L. ADDITION SUBR 2   *

                4    *                              *

                5    *  SYNTAX: CALL 768,X1,X2,RSLT *

                6    *        RSLT = X1 + X2        *

                7    ********************************

                8    *

                9    *        OBJ  $300

                10            ORG  $300

                11   *

                12   CHKCOM   EQU  $DEBE

                13   PTRGET   EQU  $DFE3

                14   FRMNUM   EQU  $DD67

                15   FACEXP   EQU  $9D

                16   MOVMF    EQU  $EB2B

                17   CONUPK   EQU  $E9E3

                18   FADDT    EQU  $E7C1

                19   *

0300: 20 BE DE  20   ENTRY    JSR  CHKCOM

0303: 20 67 DD  21   X1       JSR  FRMNUM     ; FP -> FAC

                22   *

0306: A0 02     23            LDY  #$02

0308: A2 80     24            LDX  #$80       ; $280

030A: 20 2B EB  25            JSR  MOVMF      ; FAC -> MEMORY

                26   *

030D: 20 BE DE  27   X2       JSR  CHKCOM

0310: 20 67 DD  28            JSR  FRMNUM     ; FP -> FAC

                29   *

0313: A0 02     30   ADD      LDY  #$02

0315: A9 80     31            LDA  #$80       ; $280

0317: 20 E3 E9  32            JSR  CONUPK     ; MEMORY -> ARG

031A: A5 9D     33            LDA  FACEXP

031C: 20 C1 E7  34            JSR  FADDT      ; X1 + X2

                35   *

031F: 20 BE DE  36   RSLT     JSR  CHKCOM

0322: 20 E3 DF  37            JSR  PTRGET

0325: AA        38            TAX             ; MOVE LO BYTE TO X

0326: 20 2B EB  39            JSR  MOVMF      ; FAC -> FP

                40   *

0329: 60        41            RTS

You’ll notice in this listing that lines 23 and 24 set up the Y- and X-Registers 
for the subsequent call toMOVMF. his stores the data for the irst value safely in 
memory.
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he word “safely” is used with certain caveats. he input bufer is a useful 
area in which to store temporary data, but you should be aware of the kinds of 
conditions that will overwrite data placed there. DOS commands and input 
statements are the most likely threats. Also, commands executed from the 
immediate mode can overwrite the input bufer. his is in fact why we used 
$280−$284 for the temporary register. his allows you to try the routine from 
the immediate mode, since you are unlikely to use more than 127 characters as 
your command line when testing the routine.
Once the data is stored safely in memory, line 28 evaluates the next value, 

leaving the result in the FAC. At this point we use another routine, CONUPK ($E9E3 
= CONvert (?) and UnPacK), to move the data from$280−$284 back toARG. 
Remember, this is necessary becauseFRMNUM on line 28 makes it impossible to 
store the value for X1 in ARG.
A!er CONUPK puts the data back in ARG, FADDT ($E7C1) adds FAC to ARG.

A Little More Finesse

In the chart showing the various math routine entry points, you’ll remem-
ber that there was a set of routines that allow for dealing with data in memory 
directly. We can use these to create a slightly smaller version of the previous pro-
gram which will eliminate our having to loadARG directly prior to callingFADDT. 
Here’s the improved listing:

                1    ********************************

                2    *                              *

                3    *  AL27-M.L. ADDITION SUBR 3   *

                4    *                              *

                5    *  SYNTAX: CALL 768,X1,X2,RSLT *

                6    *        RSLT = X1 + X2        *

                7    ********************************

                8    *

                9    *        OBJ  $300

                10            ORG  $300

                11   *

                12   CHKCOM   EQU  $DEBE

                13   PTRGET   EQU  $DFE3

                14   FRMNUM   EQU  $DD67

                15   FACEXP   EQU  $9D

                16   MOVMF    EQU  $EB2B

                17   CONUPK   EQU  $E9E3

                18   FADD     EQU  $E7BE

                19   *

0300: 20 BE DE  20   ENTRY    JSR  CHKCOM

0303: 20 67 DD  21   X1       JSR  FRMNUM     ; FP -> FAC

                22   *

0306: A0 02     23            LDY  #$02

0308: A2 80     24            LDX  #$80       ; $280

030A: 20 2B EB  25            JSR  MOVMF      ; FAC -> MEMORY

                26   *
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030D: 20 BE DE  27   X2       JSR  CHKCOM

0310: 20 67 DD  28            JSR  FRMNUM     ; FP -> FAC

                29   *

0313: A0 02     30   ADD      LDY  #$02

0315: A9 80     31            LDA  #$80       ; $280

0317: 20 BE E7  32            JSR  FADD       ; X1 + X2

                33   *

031A: 20 BE DE  34   RSLT     JSR  CHKCOM

031D: 20 E3 DF  35            JSR  PTRGET

0320: AA        36            TAX             ; MOVE LO BYTE TO X

0321: 20 2B EB  37            JSR  MOVMF      ; FAC -> FP

                38   *

0324: 60        39            RTS

he only diference between this routine and the previous one is that line 30 
now sets up the Y-Register and Accumulator for a direct call toFADD ($E7BE). 
his entry point automatically transfers the contents of$280−$284 toARG and 
then “falls into” FADDT ($E7C1).

Other Operations: Subtraction, Multiplication, and So On

Creating routines to do the other three functions is very simple. Rewriting 
lines 18 and 32 of the improved listing to useFSUB ($E7A7),FMULT ($E97F), and 
FDIV ($EA66) will create the routines to perform the corresponding functions.
As it happens, there’s also a variety of other simple functions that can be 

performed on theFAC with a singleJSR. A brief list is presented in Appendix D 
(Monitor Subroutines).
Information like what’s given in that list is quite valuable, if not indispens-

able, when you’re writing your own assembly-language routines that use Apple-
so!. here are a few notable sources for such information. he irst is in an 
article by John Crossley of Apple Computer called “Appleso! Internal Entry 
Points,” which has been reprinted in a number of places includingApple 
Orchard, Call-A.P.P.L.E., and Call-A.P.P.L.E. In Depth #1.
here is also a book calledWhat’s Where in the Apple? by William F. Lueb-

bert that lists many of the entry points to not only Appleso! but also to the 
Monitor, DOS, Integer BASIC, and more.

Conclusion

We have seen how theFAC and ARG registers are used as the central points in 
almost all of Appleso!’s numeric calculations. In addition (no pun intended), we 
have seen how the individual math routines are called to perform the desired 
functions.
hese new routines should be very useful in creating your own loat-

ing-point utilities. You may wish to try to create a routine to perform a simple 
function on an entire array as an exercise in using these new techniques.
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his chapter’s discussion centers on a little-mentioned operational mode of 
the 6502 microprocessor known as BCD, which stands forBinary Coded Deci-
mal. In previous chapters we’ve looked at arithmetic operations that use binary 
and hexadecimal representations of the numbers involved. Such operations o!en 
require a certain degree of mental translation to produce a decimal equivalent. 
In terms of printing a number in ASCII form, even more diiculty is to be 
expected if you’re using your own conversion routines rather than the built-in 
functions of DOS, Appleso!, and Integer BASIC.
he BCD mode greatly simpliies this process by storing numbers in one or 

more byte registers (either memory, X, Y, or the Accumulator) in a decimal-ori-
ented manner. It does this by using two four-bit groups in each byte to represent 
a digit in base ten. In this way two digits per byte can be stored, thus giving a 
total value range of 0 to 99, versus 0 to 255 using binary.
his table provides an example of how the BCD counting scheme goes:

BCD Hex Binary “Real Value”
0

1

2

3

.

.

.

9

10

11

.

.

.

14

15

16

17

18

19

20

$00

$01

$02

$03

$09

$10

$11

$14

$15

$16

$17

$18

$19

$20

0000 0000

0000 0001

0000 0010

0000 0011

0000 1001

0001 0000

0001 0001

0001 0100

0001 0101

0001 0110

0001 0111

0001 1000

0001 1001

0010 0000

0

1

2

3

9

16

17

20

21

22

23

24

25

32

One of the nice things abouthexadecimal notation is that each digit of the 
hex number represents one-half (four bits) of the binary number. his is a great 
help when you must mentally convert from hex to binary and back again. BCD is 
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a variation on this theme in which the hex number really can be said to equal the 
decimal value (that is, the decimal and hex columns will always match).
About this time you may be thinking, “Well, that’s all very nice, but where 

does the 6502 come into the picture?”
So far, all we have here is a possible system for storing decimal numbers via 

our usual hex bytes. he good news is that the 6502 actually supports this mode 
in the addition and subtraction operations.
hat’s right. he secret to making it work is to tell the 6502 that you wish to 

operate in this mode. his is done by means of the instructionSED, which stands 
for SEt Decimal mode. Once this instruction has been executed, all future add 
and subtract operations will be done in the BCD mode. When you’re done, be 
sure to clear everything back to normal with theCLD, for CLear Decimal mode, 
instruction.
Special note: Inadvertent setting of the decimal mode can cause the Apple to 

behave rather strangely and can be most puzzling when you’re trying to debug 
programs.RESET does not clear the decimal lag (bit 3 of the Status Register).1 
When in doubt do aCALL -155, orFF65G from the Monitor, to clear the decimal 
mode.
Let’s verify that this mode actually works with a sample program:2

                1    ********************************

                2    *                              *

                3    *   AL28-BCD DEMO ROUTINE 1   *

                4    *                              *

                5    ********************************

                6    *

8000: F8        7    START    SED             ; SET BCD MODE

8001: 18        8             CLC

8002: A9 46     9             LDA  #$46

8004: 69 38     10            ADC  #$38

8006: D8        11            CLD

8007: 00        12   DONE     BRK             ; BRK TO DISPLAY

Using the BRK command is an easy way both to end the program and display 
the result of the addition in the Accumulator. When this routine is called with 
either an8000G or aCALL 32768 from BASIC, you should get the Monitor break 
response with a display something like this:

8009-    A=84 X=90 Y=00 P=34 S=DE

Ignoring the rest of the line, when we see theA=84 we know that the Accu-
mulator holds 84, the correct result of the addition operation. You can substitute 
other numbers to verify that it works correctly with all legal values.

1[CT] Actually, even though the 6502 CPU RESET does not clear the decimal lag, in the 
Apple ROM the RESET code does issue a CLD.

2[CT] he original sample numbers were 12 and 34, which actually have the same sum in 
BCD and normal mode. With 46 and 38, the sum is 84 in BCD but $7E in normal mode.
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A similar experiment works with subtraction:3

                1    ********************************

                2    *                              *

                3    *   AL28-BCD DEMO ROUTINE 2   *

                4    *                              *

                5    ********************************

                6    *

8000: F8        7    START    SED             ; SET BCD MODE

8001: 38        8             SEC

8002: A9 46     9             LDA  #$46

8004: E9 38     10            SBC  #$38

8006: D8        11            CLD

8007: 00        12   DONE     BRK             ; BRK TO DISPLAY

In this case, the result should be 8. Again, you may wish to substitute difer-
ent values to verify its operation.
For both addition and subtraction, results of the operations “wrap ground” 

in a manner similar to the way hexadecimal calculations do. hat is to say that 99 
+ 1 will give a result of 00 (100 less the leading 1) and 0 − 1 will give 9.

Limitations

Like everything else in life, BCD has its tradeofs and failings. he irst 
involves that vague reference made earlier to everything working with “legal val-
ues.” “What’s legal?” you may ask. You’ll note that certain hex values, such as 
$0A, never appear. his is because in the BCD mode such a value is “illegal” 
because it uses a digit out of the range of 0 to 9. If you attempt to use such a 
value in the BCD mode, you’ll get inaccurate results.
To add to the fun, note also that theBEQ,BNE andINC,DEC families of 

instructions don’t work as expected either. he N-lag (sign/negative lag) and Z-
lag (zero lag) are all linked to binary operations and not to BCD. hus 01 + 99 
will yield 00, but N and Z remain unafected, since the “true” binary result 
should have been$9A. Also, no provision is made for negative numbers (signed 
arithmetic). How, then, do we test for special conditions?

!e Carry Flag

hecarry lag is the only direct indication of arithmetic results in BCD. In 
addition operations, the carry will be set if the result exceeds 99 (overlow). In 
subtraction, the carry will be cleared if the result is less than 0 (underlow).
In multiple-byte operations the carry is used in the same way as it is in “nor-

mal” hexadecimal arithmetic.

3[CT] he original code incorrectly hadCLC instead ofSEC. In addition, the original 
sample numbers were 34 and 12, which actually give the same result in BCD and nor-
mal mode. With 46 and 38, subtraction gives 8 in BCD but $0E in normal mode.
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Common Operations

Since INC andDEC don’t perform properly in the BCD mode, their functions 
must be implemented by using the ADC and SBC instructions:

                1    ********************************

                2    *                              *

                3    *  AL28-BCD DEMO 'INC' ROUTINE *

                4    *                              *

                5    ********************************

                6    *

                7    MEM      EQU  $06

                8    BEEP     EQU  $FBDD

                9    *

8000: F8        10   START    SED             ; SET BCD MODE

8001: 18        11            CLC

8002: A5 06     12            LDA  MEM

8004: 69 01     13            ADC  #$01

8006: B0 04     14            BCS  ERR        ; OVERFLOW

8008: 85 06     15            STA  MEM        ; MEM = MEM + 1

800A: D8        16            CLD

800B: 60        17   DONE     RTS

800C: 4C DD FB  18   ERR      JMP  BEEP

                1    ********************************

                2    *                              *

                3    *  AL28-BCD DEMO 'DEC' ROUTINE *

                4    *                              *

                5    ********************************

                6    *

                7    MEM      EQU  $06

                8    BEEP     EQU  $FBDD

                9    *

8000: F8        10   START    SED             ; SET BCD MODE

8001: 18        11            SEC

8002: A5 06     12            LDA  MEM

8004: E9 01     13            SBC  #$01

8006: 90 04     14            BCC  ERR        ; UNDERFLOW

8008: 85 06     15            STA  MEM        ; MEM = MEM - 1

800A: D8        16            CLD

800B: 60        17   DONE     RTS

800C: 4C DD FB  18   ERR      JMP  BEEP

Notice how the carry status is checked to detect overlow (result > 99) or 
underlow (result < 0) in the addition and subtraction routines, respectively.MEM 
is a memory location presumed to hold a legal BCD value.4

4[CT] here is one problem with all of these routines: In the case of an error, theCLD is 
never reached. If you run these routines with a value in$06 that causes an overlow (or 
underlow), your Apple will issue a strange “bah-beep”. Luckily, theBEEP subroutine 
clears the decimal mode before returning. However, in your own programs, you should 
be sure to issue a CLD for all code paths.
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Multiple-byte operations are done in a manner similar to the way their 
hexadecimal equivalents are handled:

                1    ********************************

                2    *                              *

                3    *  AL28-BCD ADDITION ROUTINE   *

                4    *                              *

                5    ********************************

                6    *

                7    *

                8    MEM1     EQU  $06        ; 6,7

                9    MEM2     EQU  $08        ; 8,9

                10   RSLT     EQU  $0A        ; A,B

                11   BEEP     EQU  $FBDD

                12   *

8000: F8        13   ENTRY    SED

8001: 18        14            CLC

8002: A5 06     15            LDA  MEM1

8004: 65 08     16            ADC  MEM2

8006: 85 0A     17            STA  RSLT

8008: A5 07     18            LDA  MEM1+1

800A: 65 09     19            ADC  MEM2+1

800C: 85 0B     20            STA  RSLT+1     ; RSLT = MEM1 + MEM2

800E: B0 02     21            BCS  ERR        ; OVERFLOW

8010: D8        22            CLD

8011: 60        23   DONE     RTS

8012: 4C DD FB  24   ERR      JMP  BEEP

                1    ********************************

                2    *                              *

                3    *  AL28-BCD SUBTRACT ROUTINE   *

                4    *                              *

                5    ********************************

                6    *

                7    *

                8    MEM1     EQU  $06        ; 6,7

                9    MEM2     EQU  $08        ; 8,9

                10   RSLT     EQU  $0A        ; A,B

                11   BEEP     EQU  $FBDD

                12   *

8000: F8        13   ENTRY    SED

8001: 38        14            SEC

8002: A5 06     15            LDA  MEM1

8004: E5 08     16            SBC  MEM2

8006: 85 0A     17            STA  RSLT

8008: A5 07     18            LDA  MEM1+1

800A: E5 09     19            SBC  MEM2+1

800C: 85 0B     20            STA  RSLT+1     ; RSLT = MEM1 - MEM2

800E: 90 02     21            BCC  ERR        ; UNDERFLOW

8010: D8        22            CLD

8011: 60        23   DONE     RTS

8012: 4C DD FB  24   ERR      JMP  BEEP

]
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Printing BCD Values

One of the biggest advantages of BCD is that the values are easily printed to 
the screen or disk. When using hexadecimal math, some sort of hex-to-ASCII 
string decimal conversion routine is required. his is then followed by the print-
ing of the digits via some string print routine. In BCD, only a minimal conver-
sion is needed, and the printing is done fairly easily.
he easiest way to print a number is to use one of the Monitor routines. 

PRBYTE ($FDDA = PRint BYTE), for example, prints the contents of the Accumu-
lator as a hex byte. Here’s a routine that takes two BCD values from memory and 
prints the sum:

                1    ********************************

                2    *                              *

                3    *   AL28-BCD PRINT ROUTINE 1   *

                4    *                              *

                5    ********************************

                6    *

                7    *

                8    MEM1     EQU  $06

                9    MEM2     EQU  $07

                10   PRBYTE   EQU  $FDDA

                11   BEEP     EQU  $FBDD

                12   *

8000: F8        13   ENTRY    SED

8001: 18        14            CLC

8002: A5 06     15            LDA  MEM1

8004: 65 07     16            ADC  MEM2       ; ACC = MEM1 + MEM2

8006: B0 05     17            BCS  ERR        ; OVERFLOW

8008: D8        18            CLD

8009: 20 DA FD  19            JSR  PRBYTE

800C: 60        20   DONE     RTS

800D: 4C DD FB  21   ERR      JMP  BEEP

You can experiment by putting diferent values in$06 and$07 and calling 
the routine. For two-byte values (0 to 9999) one can usePRNTAX ($F941 = PRiNT 
Accumulator and X-Register), which expects the Accumulator and X-Register to 
be loaded with the bytes to be printed prior to the call:

                1    ********************************

                2    *                              *

                3    *  AL28-BCD PRINT ROUTINE 2   *

                4    *                              *

                5    ********************************

                6    *

                7    *

                8    MEM1     EQU  $06        ; 6,7

                9    MEM2     EQU  $08        ; 8,9

                10   PRNTAX   EQU  $F941

                11   BEEP     EQU  $FBDD

                12   *

8000: F8        13   ENTRY    SED
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8001: 18        14            CLC

8002: A5 06     15            LDA  MEM1

8004: 65 08     16            ADC  MEM2

8006: AA        17            TAX             ; STORE RSLT IN X

8007: A5 07     18            LDA  MEM1+1

8009: 65 09     19            ADC  MEM2+1     ; RSLT+1 IN ACC

800B: B0 05     20            BCS  ERR        ; OVERFLOW

800D: D8        21            CLD             ; CLR FOR PRNTAX

800E: 20 41 F9  22            JSR  PRNTAX

8011: 60        23   DONE     RTS

8012: 4C DD FB  24   ERR      JMP  BEEP

It is important to notice that in each routine theCLD is used to clear the dec-
imal modebefore callingPRBYTE orPRNTAX. his is because the Monitor needs 
the normal binary mode to calculate screen addresses and positions properly. If 
you call the Monitor with the BCD mode set, strange things will happen when 
the text reaches the end of the line or the screen needs to be scrolled and the 
Monitor routines attempt to calculate where to put the next line of text.
If you don’t want to use the Monitor byte print routines or, for whatever 

reason, just want to create the ASCII characters yourself, the conversions are 
straightforward andCOUT ($FDED = Character OUTput–usually pronounced 
“C-out”) can be used directly.
he only real obstacle is how 

to convert the BCD digits to their 
ASCII equivalents. As it happens, 
this is even easier to do than you 
might at irst suppose. Consider 
the table at the right.
From looking at the table, we 

can see that the lower digit of the 
ASCII value corresponds to the 
digit encoded in the BCD format 
and, coincidentally enough, to the 
number itself to be printed. If 
there was a way of adding$B0 to 
the value for the digit to be printed, we’d have just the value we needed to send 
to COUT to print the appropriate character.
To add$B0 to the BCD values shown would normally require the usualCLC, 

ADC instructions. here is a more elegant (that is, shorter) way, however. You 
may remember that theORA (logical OR with Accumulator) can be used as a 
mask to perform an overlay-like operation.
Here’s how a possible ORA operation would appear:

Accumulator:  0000 0110    ($06 BCD)

ORA #$B0:     1011 0000

Result:       1011 0110    ($B6 = ASCII "6”)

]

Letter ASCII Value* BCD Value

0

1

2

3

4

5

6

7

8

9

$B0

$B1

$B2

$B3

$B4

$B5

$B6

$B7

$B8

$B9

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

*high bit set
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What if the upper BCD digit is involved? he procedure then is irst to shi! 
the upper four bits “down” to the lower nibble position:

BCD value:    0101 0000    ($50 BCD)

LSR           0010 1000

LSR           0001 0100

LSR           0000 1010

LSR           0000 0101

Result:       0000 0101    ($05 BCD)

Ah, you ask, what if both digits possible are indicated by the BCD value? 
he answer here is irst to shi! the upper nibble down to the lower nibble, as was 
just shown, and to print the ASCII character arrived at. hen the original value is 
reloaded into the Accumulator and the upper nibble is masked out. his can be 
done using theAND instruction, which has the ability to clear a designated por-
tion of a byte to zeros. For example:

Accumulator:  0101 0110    ($56 BCD)

AND #$0F:     0000 1111

Result #1:    0000 0110    ($06)

ORA #$B0:     1011 0000

Result #2:    1011 0110    ($B6 = ASCII “6”)

Here, then, is the complete routine:

                1    ********************************

                2    *                              *

                3    *  AL28-BCD PRINT ROUTINE 3   *

                4    *                              *

                5    ********************************

                6    *

                7    *

                8    MEM      EQU  $06

                9    COUT     EQU  $FDED

                10   *

8000: D8        11   ENTRY    CLD             ; BCD MODE NOT NECC

8001: A5 06     12            LDA  MEM        ; GET BCD NUMBER

8003: 4A        13            LSR             ; SHIFT UPPER NIBBLE

8004: 4A        14            LSR             ; TO BOTTOM POSITION

8005: 4A        15            LSR

8006: 4A        16            LSR

8007: 09 B0     17            ORA  #$B0       ; %1011 0000

8009: 20 ED FD  18            JSR  COUT       ; PRINT DIGIT

800C: A5 06     19            LDA  MEM        ; RETRIEVE ORIG BCD

800E: 29 0F     20            AND  #$0F       ; %0000 1111

8010: 09 B0     21            ORA  #$B0       ; %1011 0000

8012: 20 ED FD  22            JSR  COUT

8015: 60        23   DONE     RTS

heCLD is done at the beginning just to emphasize that the BCD mode is 
not required here since the digit is presumed to exist already in MEM and no arith-
metic operations are anticipated. Remember that the BCD mode is required only 
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during the actual addition or subtraction operations. Although the BCD mode 
would have no harmful efect on theAND andORA operations,COUT would cer-
tainly take ofense at being called while the BCD mode was still in efect.
Lines 12 through 16 get the original BCD value from memory and then shi! 

it le! four times to move the upper nibble to the lower position. At this point the 
ORA #$B0 is done to convert the value in the Accumulator to the proper ASCII 
value, at which point theJSR COUT on line 18 prints the irst digit. Line 19 
retrieves the original value again, a!er which theAND #$0F clears the upper digit 
to 0 and the ASCII conversion is completed and printed as before.
he remainder of the routine is identical to the previous example program.

Conclusion

he Binary Coded Decimal mode of the 6502 can be convenient for a variety 
of reasons. Its most frequent use is to facilitate input and output, particularly for 
scientiic instrumentation.
A number of points should be kept in mind when using the BCD mode:

1. he mode should be set only for arithmetic processes that use BCD values, 
such as addition and subtraction.

2. Only legal values are allowed: 0−9 for each digit. Values outside the 
expected range will generate inaccurate results.

3. he BCD mode should be cleared as soon as possible when arithmetic oper-
ations are completed so as to avoid possible complications with other so!ware in 
the Apple that neither expects, nor checks for, the BCD mode.

4. RESET does not clear the decimal mode of the 6502.5 Only theCLD instruc-
tion does. You can also clear the mode by means of aCALL -155 from BASIC or 
an FF59G from the Monitor.

5. he N and Z-lags are unreliable as a means of detecting the results of com-
parisons or of increment/decrement operations. Only the carry lag should be 
used to detect the results of such operations.

6. he carry lag will be set for results greater than 99 (overlow) and cleared 
for results less than 0 (underlow).

7. BCD operations do “wrap around.” hat is, 99 + 01 = 00 and 00 − 01 = 99.

5[CT] See footnote 1 earlier in the chapter.

]
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Special Note: Counting Down

hese are some general rules to help in programs using the BCD mode of 
the 6502. here is only one notable exception that may on occasion prove useful. 
he test for 0 (BNE, BEQ) can be used when countingdown in the BCD mode. For 
example:

SED

SEC

LDA #$01

SBC #$01

BEQ DONE

would work, whereas

SED

CLC

LDA #$99

ADC #$01

BEQ DONE

would not.
It might be an interesting challenge for you to use the information given in 

this chapter and in previous chapters to try to write a routine that would add two 
Appleso! strings together using the BCD mode and return the result in a third 
string. his would provide a way of extending the normal precision of Appleso! 
for mathematical operations requiring more than nine digits, a problem that 
unfortunately does not hinder my personal checkbook program.
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I/O routines are responsible for handling the computer’s communications 
with the outside world. heir design is also one of the more interesting aspects of 
assembly-language programming. We’ll spend this chapter and the next learning 
how to intercept the I/O vectors of the Apple and implement our own routines.
It will make the next few demonstrations much easier if you disconnect 

DOS from the I/O system. hat’s most easily done by running this short Apple-
so! BASIC program:

10  IN#0: PR#0: END

hat will keep DOS out of the way for the upcoming exercises.

Output

In earlier chapters we discussed howCOUT ($FDED) could be used to print 
characters to the screen, to disk, or to other output devices. he general proce-
dure was to load the Accumulator with the ASCII value for the character you 
wanted to print and then to do a JSR COUT.
To see what happens at$FDED when you do this, enter the Monitor by 

means of the usual CALL -151. hen type in: FDEDL<RETURN>.
he irst instruction listed should be aJMP ($0036). his is anindirect jump 

to a location pointed to by the byte pair$36,$37. To see where these bytes are 
currently pointing, type in: 36.37<RETURN>.
You should get:

0036- F0 FD

his tells you that the jump will be made to$FDF0, which in this case hap-
pens to be the next instruction a!er theJMP ($0036).$FDF0 is calledCOUT1 and 
is used only to print characters to the Apple’s screen. When output is going to 
the disk, to the printer, or to some other device,$36,$37 will point somewhere 
other than $FDF0.
If you are sending characters to a printer, for example,$36,$37 might point 

to$C102.CSW (Characteroutput SWitch) is the name given to the byte pair$36, 
$37. A pointer such as this is usually called avector, in that it directs the low of 

]
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program control to whatever routine (that is, whatever address in memory) is 
appropriate at the moment.
he changing of theCSW vector is what happens when you execute aPR#n 

command.CSW is pointed to the addressCn00, wheren is the slot number given 
in thePR#n statement. If no device is present in the slot, then no program will be 
found at$Cn00. his explains why a BASIC program hangs when an improper 
PR# command is given: the computer is waiting for the inalRTS from a nonexis-
tent routine. To verify for yourself that the lockup doesn’t occur until a character 
is output, run this program in Appleso! BASIC:

10  HOME

20  PR#5: REM OR SOME OTHER EMPTY SLOT

30  FOR I = 1 TO 20

40  POKE 1024 + I, 192 + I

50  NEXT I

60  PRINT "YOU WON’T SEE THIS”

When you run this program, you should see the letters A through T printed 
on the screen, but the phrase on line 60 should not appear. hings happen this 
way because the loop on lines 20 through 40 puts the data directly into the 
screen memory without going throughCOUT. Remember that all this timeCSW is 
pointing to$C500. It’s only when the Y character gets sent toCOUT that the com-
puter hangs.
If DOS were installed and line 20 saidPRINT CHR$(4);"PR#5", the program 

would hang on that statement because of the carriage return sent at the end of 
the print statement. It’s instructive to note that the carriage return is not actually 
needed for thePR# to work. Adding a semicolon to the print statement would 
restore the program to its original semi-functional state.
One would think from the preceding thoughts that hooking up a routine to 

the output hooks would be fairly simple. he problem is that most of the time 
you’ll want to have DOS active, and DOS has been cleverly designed to do every-
thing possible to keep itself connected. When DOS is installed,CSW actually 
points to$9EBD, a portion of DOS, and it’s very diicult to get it to point else-
where.
Speciically, whenever either input or output is done, both vectors are 

checked to make sure DOS is still hooked up. his means that, even though you 
could temporarily changeCSW, any input-type action would cause DOS to 
restore itself to the output low. Here’s a program to show this. You’ll need to 
reconnect DOS (pressing RESET will do that) to try it:

10  HOME

20  PR#0

30  PRINT CHR$(4);"CATALOG”

40  INPUT "TURN THINGS BACK ON"; I$

50  PRINT CHR$(4);“CATALOG"
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he theory here is that thePR#0 setsCSW to point directly to$FD0C rather 
than to DOS. his is why theCATALOG doesn’t work in line 30. However, when 
the input is done, DOS is still hooked up to the input vector. Realizing that the 
output connection has been lost, DOS thus reconnects itself. Line 40 then per-
forms as expected.
In general, DOS can be disconnected by executing both anIN#0 and aPR#0 

within a BASIC program, provided that one is done immediately a!er the other 
with no input or output in between. he one-line BASIC program used at the 
beginning of this chapter to disconnect DOS employs this principle.
PressingRESET will hook things back up anytime you want. Notice that 

these are not done as DOS commands such as:

10  PRINT CHR$(4);“IN#0": PRINT CHR$(4);“PR#0”

AnIN#0 orPR#0 as a direct BASIC command redirects I/O to the Monitor. 
he same commands done as DOS commands set the I/O to DOS.
Let’s see just how DOS does handle the output vectors. With DOS installed 

and active, enter the Monitor and type in:

36.37 AA53.AA54

You should get:

0036- BD 9E

AA53- F0 FD

With DOS active,CSW points to a main output entry point at$9EBD. his is 
the beginning of the section that watches the output for DOS commands. Even-
tually it does its own indirect jump via the vector at$AA53,$AA54, which com-
pletes the path toCOUT1 ($FDF0), When you do aJSR COUT ($FDED), then, here’s 
the general low of things:

1. With the appropriate value in the Accumulator, a JSR COUT ($FDED) is done.

2. At$FDED is aJMP to the address speciied inCSW ($36,$37). With DOS 
installed, CSW points to DOS at $9EBD.

3. When DOS is through looking at the character, it does a jump to the address 
held at $AA53, $AA54. his normally points to $FDF0.

4. Eventually an RTS returns control to the calling program.

Intercepting Output

An obvious question now arises. How do we hook our routine to DOS? his 
basically depends on whether a slot is used. If you happened to be writing 
irmware for an interface card, for example, thePR# command when executed 
would automatically handle the setting up ofCSW to make everything work. If, 

]
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however, you want to put a routine at a location other than the$C000 space, 
another approach is needed.
he procedure actually is fairly simple. All you need to do is setCSW to 

where you want the output to be eventually sent and then call $3EA.1

For example, let’s put a trivial routine at$300 that merely jumps toCOUT1 
($FDF0). Go into the Monitor and enter:

300: 4C F0 FD

If you list this routine you should get:

300L

0300-   4C F0 FD    JMP   $FDF0

0303-   00          BRK

0304-   00          BRK

To hook it up, type in the following from the immediate mode of Appleso!

POKE 54,0: POKE 55,3: CALL 1002

his setsCSW to point to$300 and then calls$3EA. he same thing can be 
done from within an assembly-language program with:

LDA #$00

STA $36

LDA #$03

STA $37

JSR $3EA

RTS

Once connected in this way, everything will still look the same on the 
screen. In reality, however, every character going to the screen is now going 
through $300. You can check the new routing by entering the Monitor while this 
routine is installed and typing in:

36.37 AA53.AA54

You should get:

0036-   BD 9E

AA53-   00 03

he Monitor, DOS, and BASIC all send output via the jump atCOUT. his 
still points to DOS, but now DOS points not toCOUT1 ($FDF0), but to$300. 
here, our routine does a jump to COUT1 to complete the low.

1[CT] he technique would be diferent forProDOS, which doesn’t have a hookup rou-
tine. Instead, you can manually change the output vector at$BE30,$BE31 to point to 
your output routine. See chapter seven of Inside the Apple //e, by Gary B. Little.
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To verify that characters are going through$300, just type inPOKE 768,0. 
Or, from the Monitor, type: 300:0.
he computer will immediately hang as program low hits the00 (BRK 

instruction) at$300. heBRK routine in the Monitor will then try to send the 
break error message throughCOUT, at which point$300 will be called again and 
the process will repeat itself indeinitely.
An interesting point here is that whenCOUT is turned of (for instance, a 

simpleRTS at$300 will do the trick), nothing appears on the screen despite the 
fact that the computer is still fully functional. Even though you can’t see what 
you’re typing, you could type inCATALOG and the disk drive would come on. he 
lashing cursor would remain on the screen sinceRDKEY (part of the input rou-
tine at $FD1B) addresses the screen directly for the cursor.
To experiment withCOUT some more, let’s try a routine that’s a little more 

interesting. Control characters are normally “invisible” in that they’re not sent to 
the screen byCOUT1. If we could detect the control character before it got to 
COUT1 and could change it to a diferent value, we could have it display as inverse 
or as some other visible character.
Normally all characters going throughCSW have the high bit set. hat is, all 

values are greater than$80. Inverse and lashing characters are created by send-
ing characters with a value less than$80 toCOUT. All characters in the range of 
$00 to$3F come out inverse, and all those from$40 to$7F are lashing. In gen-
eral what this means is that, if the high bit is cleared, control characters will 
come out in inverse and “standard” characters in lashing.
his is, in fact, how theFLASH andINVERSE commands of Appleso! work. 

he routine atCOUT1 includes a portion that does anAND operation on the value 
about to be stored on the screen and amask value stored at location$32 (called 
INVFLG, short for “INVerse FLaG”).INVFLG normally holds an$FF, so no change 
takes place. However, the BASIC commands INVERSE and FLASH set the values to 
$3F and $7F, respectively, which produces the desired results.
he following diagram illustrates the INVFLG mask’s efect on outgoing char-

acters sent to COUT:

Hex Binary Character
Character:  $C1  %1100 0001 A (Normal)

INVFLG:  $FF  %1111 1111 –

AND result:  $C1  %1100 0001 A (Normal)

Character:  $C1  %1100 0001 A (Normal)

INVFLG:  $7F  %0111 1111 –

AND result:  $41  %0100 0001 A (Flashing)

Character:  $C1  %1100 0001 A (Normal)

INVFLG:  $3F  %0011 1111 –

AND result:  $01  %0000 0001 A (Inverse)

]
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We can do our own specialized processing, though, so as to highlight just 
control characters. Here’s the listing:2

                1    ********************************

                2    *AL29-CONTROL CHARACTER DISPLAY*

                3    ********************************

                4    *

                5             ORG  $300

                6    *

                7    COUT1    EQU  $FDF0

                8    *

0300: C9 A0     9    ENTRY    CMP  #$A0       ; FIRST NON-CTRL CHAR

0302: B0 06     10            BCS  PRINT      ; CHAR OKAY

0304: C9 8D     11            CMP  #$8D       ; LET 'CR' THRU

0306: F0 02     12            BEQ  PRINT

0308: 29 3F     13   MASK     AND  #$3F       ; CLEAR TOP 2 BITS

030A: 4C F0 FD  14   PRINT    JMP  COUT1      ; PRINT IT

his routine’s operation is very straightforward. A comparison is done as 
each character reaches the routine at$300. All “usual” characters are sent 
through toCOUT1 unaltered. If a character is found to be a control character, 
though, a test is done to see if it’s a carriage return. If so, that too is passed to 
COUT1. A!er all, we do want the screen to look somewhat normal. If a control 
character (other than a<RETURN>) is found, however, anAND #$3F converts the 
character to an inverse character, at which point it will be forwarded to COUT1.
Any control characters generated by a program, with the exception of 

<RETURN> (<CTRL>M), will now be shown in inverse. When typed from the key-
board,<ESCAPE>, the right-arrow key (<CTRL>U), and<CTRL>X won’t show up 
since they are intercepted by the Monitor input routine and never make it to 
COUT.

Other Output Devices

So far, all we’ve done is interceptCOUT, ilter the characters going through, 
and eventually return control to the Monitor screen routineCOUT1. If we had our 
own output device, this would not be necessary. he point here is to demonstrate 
the possibility of alternate output devices. Ultimately this could include printer 
cards, terminals, analog devices such as motors, and more. Such projects are 
rather involved, however, so for now let’s just see if we can write our own primi-
tive screen routine.

2[CT] When running under DOS 3.3, you can hook up your routine by executing:

POKE 54,0: POKE 55,3: CALL 1002

UnderProDOS, you can directly modify the output vector at$BE30,$BE31 by running 
the following Appleso! program (do not run this as a direct command):

10  POKE 48688,0: POKE 48689,3
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he basic model will be to set aside one line of the screen as our display win-
dow and to attempt to control text output within that window. To avoid having 
to create vertical scrolling routines and cursor management routines, we’ll limit 
all output to the single line and scroll text only to the le! as each new character is 
displayed on the right.
If this sounds suspiciously similar to a calculator display, you’re right. It 

should be easy now to see why, with limited resources of display hardware and, 
more signiicantly, limited memory for management routines, such a display 
would be desirable.
Here’s the summary of the design points:

1. Display will be limited to one line.

2. Characters will be output on the rightmost position.

3. he remainder of the line will scroll to the le! to make room for each new 
character.

4. No control characters will be displayed.

5. he le!-arrow key,<CTRL>H, will be designated as a “clear display” charac-
ter.

6. No editing capabilities (that is, backspace, forward copy, and so on) will be 
provided for, except for number 5 above.

Before proceeding, let’s digress for a moment to mention the value of the list 
as a programming technique. If you can’t bring yourself to lowchart, at least 
make a list to clarify exactly what your program will do. his helps to organize 
your thoughts in a general way before you have to leap in and code the detailed 
parts. Even if you amend it as the coding progresses, such a list is helpful. Now 
back to our regularly scheduled program...

                1    ********************************

                2    * AL29-SPECIAL DISPLAY ROUTINE *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    LINE     EQU  $700       ; $700-727

                9    YSAV1    EQU  $35

                10   *

0300: 84 35     11   ENTRY    STY  YSAV1      ; SAVE Y-REGISTER

0302: C9 A0     12            CMP  #$A0       ; FIRST NON-CTRL CHAR

0304: B0 11     13            BCS  SCROLL     ; DISPLAY THE CHAR

0306: C9 88     14   CHK      CMP  #$88       ; BACKSPACE

0308: D0 0A     15            BNE  DONE1

030A: A0 27     16   CLEAR    LDY  #$27

030C: A9 A0     17            LDA  #$A0       ; SPACE

030E: 99 00 07  18   LOOP1    STA  LINE,Y     ; ERASE A CHAR

]
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0311: 88        19            DEY

0312: 10 FA     20            BPL  LOOP1      ; UNTIL Y=$FF

0314: A4 35     21   DONE1    LDY  YSAV1      ; RESTORE Y

0316: 60        22   OUT1     RTS             ; DON’T SHOW

                23   *

0317: 48        24   SCROLL   PHA             ; SAVE THE CHAR

0318: A0 01     25            LDY  #$01

031A: B9 00 07  26   LOOP2    LDA  LINE,Y

031D: 99 FF 06  27            STA  LINE-1,Y

0320: C8        28            INY

0321: C0 28     29            CPY  #$28

0323: 90 F5     30            BCC  LOOP2      ; UNTIL Y=$28

0325: 68        31   PRINT    PLA             ; RETRIEVE CHAR

0326: 8D 27 07  32            STA  LINE+$27

0329: A4 35     33   DONE2    LDY  YSAV1      ; RESTORE Y

032B: 60        34   OUT2     RTS

032C: 27        35            CHK

A!er the listing has been assembled, the routine is hooked up toCOUT, just 
like the other routine. You will probably want to type inHOME to give you a clear 
screen for your display. Once your routine is installed, everything you type 
should scroll across a line in the upper half of the screen. Notice that all expected 
output from the Apple is now done on its own custom display. You can list pro-
grams, catalog a disk, or do any of the usual operations. Try typing in this com-
mand line in Appleso!:

FOR I = 1 TO 127: PRINT CHR$(I);: NEXT I

When you press return, you should see a whole series of characters go 
whizzing through the window, ending with the lowercase letters (although they 
may not look quite right if you don’t have a lowercase display device). Remem-
ber, the le! arrow will clear the display window.
he routine itself is fairly simple. he only memory locations deined are the 

memory range for the screen line at$700, a temporary storage byte used by 
COUT1, and our routine to preserve the contents of the Y-Register. he program 
also contains some instructive points of style.
On entry, the Y-Register is saved. his is because the “oicial” output rou-

tine,COUT1, returns with all registers (A, X, and Y) intact when called. Many 
other routines in BASIC and DOS assume that all output will be done as safely, 
so we must honor that convention as well.
Once Y is saved, the value passed to this routine from the Accumulator is 

appropriate to the ASCII value for the character to be printed. As was done in 
the control-character display routine, a check is done for control characters. 
Remember that in this program all control characters, even<RETURN>, will be il-
tered out. If a control character is detected, the comparison on line 12 will fail 
and a check will be made for the le! arrow (<CTRL>H). If the character is not a 
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<CTRL>H, we will immediately exit viaDONE1, where the Y-Register will be 
restored and no character will be displayed.
If a<CTRL>H is detected, theCLEAR routine clears the display window to spa-

ces. A note here about theBPL on line 20 to determine when the loop is done: 
You might think that we would want to use aBNE to ind out when Y reached 0. 
he problem is that, when Y reached 0, the branch would fall through and we 
would not store a space at$700, so the leading character could not be cleared 
from the display window.
Because we know that Y is started at$27, we can test for Y reaching the 

value of$FF as it “wraps around” a!er reaching 0. An alternate approach would 
have been to make line 18 saySTA LINE-1,Y and to start Y with a value of$28 on 
line 16.LINE-1 would evaluate to$6FF, and thus we could use theBNE test. 
Either way works, but this second approach provides a way of showing another 
programming technique. A!er clearing the window, the routine returns via 
DONE1, again without displaying any new character.
If a legitimate character is detected on lines 12 and 13, control lows to 

SCROLL, which makes room for the new character to be displayed. Because we’ll 
need to use the Accumulator for the scrolling, the character to be printed is 
pushed onto the stack to save it for future use.
At that point, the Y-Register is set to$01 in preparation for the memory 

move to follow. Line 26 loads a character from one position, a!er which line 27 
will store the character in the position immediately to the le!. For example, on 
the irst pass through, the value will be loaded from$701 ($700,Y whereY = 1) 
and stored at $700 ($6FF,Y where Y still equals 1).
Notice the use of two diferent base addresses for the indexed addressing. 

his allows us to use the same value in the Y-Register to load and store at two 
diferent addresses. he loop is repeated until we have moved all the characters 
one position to the le!. he routine then falls into PRINT.

PRINT irst retrieves the character to be printed from the stack by means of 
thePLA on line 31. It then stores the character at$727. he code is written this 
way (LINE +$27) to show that you can, in most assemblers, add any amount to 
an address. You aren’t limited to the usualADDR,ADDR+1 that’s most o!en seen. 
A!er the character has been stored at$727, the Y-Register is restored and the 
routine returns via DONE2.
You should verify for yourself that the Accumulator and Y-Registers are 

always le! in their original conditions regardless of whether theRTS is done 
throughDONE1 orDONE2. Since we didn’t use the X-Register, it also will be pre-
served.

]
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Conclusion

Here are the main points of our discussion on the output vector.

1. he main output vector is calledCSW, which stands for Character output 
SWitch. CSW is the byte pair $36, $37.

2. DOS maintains its own output vector at $AA53, $AA54.

3. DOS can be disconnected by executing the BASIC statementIN#0:PR#0 
(not as a DOS command).

4. DOS can be reconnected by pressing RESET.

5. Any attempt to alterCSW directly with DOS active will be undone by DOS 
on the irst input statement following the attempt.

6. To hook a routine into the output vectors, execute the equivalent of

POKE 54,LB: POKE 55,HB: CALL 1002

whereLB andHB are the low- and high-order bytes of the address you wish out-
put to be directed to.3

7. If you’re handling all of the inal output, end the routine with the usualRTS. 
If you’re merely iltering or watching the output, you must eventually pass con-
trol on to where the inal output will be done, usually COUT1 ($FDF0).

In the next chapter we’ll look at the input hooks and at how to use your own 
routines on the listening side of the Apple.

3[CT] he equivalent for ProDOS would be:

10  POKE 48688,LB: POKE 48689,HB
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It’s time to examine the input system of the Apple. Many parallels can be 
drawn between it and the output system, discussed in the previous chapter. 
hough not required, some familiarity with that chapter’s major points will help 
you understand our current topic.
he main demo routines in this installment involvelowercase text; there-

fore, it’s strongly recommended that you acquire lowercase display hardware if 
you don’t have it already. Lowercase chips for Apples with revision numbers 
greater than 7 can be purchased for $20 to $30. Earlier Apples require more than 
a single chip.Apple //e doesn’t require any additional so!ware or hardware; the 
lowercase display capability is built in. For serious study and exploration of text 
input/output methods, lowercase capability is essentially required.

!e Input Vector: KSW

he byte pair$38,$39 constitutes the maininput vector and is generally 
labeled KSW forKeyboard input SWitch. LikeCSW (the Character output SWitch), 
KSW is used to switch input to BASIC and the Monitor from diferent sources. As 
is evident from the fact that anINPUT statement will read a DOS text ile and the 
action of theEXEC command on text iles, the keyboard isn’t the only place from 
which the Apple can obtain ASCII data.
When you’re writing an assembly-language program that needs a sin-

gle-character input from the outside world, the usual procedure is to do aJSR 
RDKEY ($FD0C) and then use the value that is returned in the Accumulator.
As we did withCOUT ($FDED), let’s see whatRDKEY does to get that character. 

To examine the routine, enter the Monitor with the usualCALL -151 and list the 
code by typing $FD0C<RETURN>.
Here, shown with labels and comments, is the code at that location:1

FD0C-   A4 24     RDKEY   LDY   CH        ; Get horizontal cursor

FD0E-   B1 28             LDA   (BASL),Y  ; Get character from screen

FD10-   48                PHA             ; Store it

FD11-   29 3F             AND   #$3F      ; Clear bits 6,7

FD13-   09 40             ORA   #$40      ; Set bit 6 (flash)

FD15-   91 28             STA   (BASL),Y  ; Put on screen

1[CT] he code shown is for an Apple II orApple II Plus. he code for an Apple //e is 
quite a bit diferent, but the entry points at RDKEY and KEYIN are the same.

]

30



292 Assembly Lines

FD17-   68                PLA             ; Get the original character

FD18-   6C 38 00          JMP   (KSW)     ; To ‘real’ input

FD1B-   E6 4E     KEYIN   INC   RND       ; RND = RND + 1

FD1D-   D0 02             BNE   KEYIN2

FD1F-   E6 4F             INC   RND+1

FD21-   2C 00 C0  KEYIN2  BIT   KBD       ; Check for key

FD24-   10 F5             BPL   KEYIN     ; No, again

FD26-   91 28             STA   (BASL),Y  ; Restore old character

FD28-   AD 00 C0          LDA   KBD       ; Get input character

FD2B-   2C 10 C0          BIT   KBDSTRB   ; Clear strobe

FD2E-   60                RTS             ; Return with character

On entry toRDKEY the irst three instructions read the character on the 
Apple screen and put it onto the stack. Remember that what you see on-screen is 
the representation of a byte stored in the memory range of$400 to$7FF. To 
determine what byte corresponds to a screen position, you need only load the Y-
Register with the horizontal cursor position (CH =$24) and add this ofset to the 
base address for the current line. his base address is always stored in$28,$29 
(BASL, BASH).
Once the existing character on-screen has been read and stored (so we can 

put it back on-screen a!er the input), the next three instructions have the net 
efect of putting a lashing character on the screen equivalent to the character 
that was on-screen in the current cursor position.
he action of theANDs andORAs may not be intuitively obvious. Let’s con-

sider this example:

Hex Binary Character

Original character: $C1 %1100 0001 A (Normal)
AND: $3F %0011 1111 clear bits 6, 7

First result: $01 %0000 0001 A (Inverse)

ORA: $40 %0100 0000 set bit 6
Final result: $41 %0100 0001 A (Flashing)

Remember that the action of theAND is to clear any bits in the Accumulator 
that are matched by a 0 in themask value. Bits in the Accumulator matched by 
1s in the mask are le! unchanged, whether they are 0s or 1s.
AnORA, on the other hand, sets to 1 any bits in the Accumulator that are 

matched by a 1 in themask value. Bits in the Accumulator matched by 0s in the 
mask are le! unchanged.
You might wonder at irst why two instructions–theAND followed by the 

ORA–were needed. A!er all, in the previous chapter didn’t we change control 
characters to inverse in just one step? Why not just use a diferent mask value to 
get lashing characters? he answer lies in the diferences between the bit pat-
terns for inverse and lashing characters. All inverse characters have the top two 
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bits clear (bits 6 and 7). Flashing characters, on the other hand, have one bit 
clear (bit 7 = 0) and the other set (bit 6 = 1).
When the cursor is on a character and the character is to be converted to 

lashing temporarily, we must not only clear the high bit (at least for all “normal” 
text), but also must on occasion set bit 6. his combination of a set and a clear 
requires two operations.
OnceRDKEY has thus put a lashing character on-screen to show the cursor’s 

location, the character originally on the screen is retrieved from the stack in 
preparation for the jump toKEYIN (or to any other input routine that will want 
to restore the original character if no new character is entered). Finally, the 
actual indirect jump via KSW is done.
InCOUT ($FDED), the jump viaCSW was made immediately. his extra por-

tion inRDKEY preceding the actual jump explains the presence of the cursor on-
screen during a text-ile read. Although DOS is handling the input at that point, 
the call is still done viaRDKEY, and thus the presence of the cursor is still some-
what unavoidable.
If DOS is not active,KSW ordinarily points toKEYIN ($FD1B).KEYIN is the 

routine responsible for getting characters from the keyboard; it thus involves the 
keyboard memory hardware ($C000 and$C010) directly. If input was from a 
modem or some other external device installed in a peripheral slot,KSW would 
point to$Cnxx, wheren is the slot number andxx is the input routine entry 
point. Before considering the unusual situations, let’s see what happens most of 
the time, when KSW points to KEYIN.

KEYIN irst increments the random-number byte pair, $4E, $4F. his is a part 
of the loop that will be repeated until a key is pressed. he theory is that the pas-
sage of time between key presses is random. his byte pair is used primarily by 
Integer BASIC. Appleso! has its own random-number registers and routines.
A!er incrementing the random byte pair,KEYIN2 then does the actual key-

board check, repeating the process by going back toKEYIN if no key has been 
pressed. Remember that theBIT instruction makes the test possible by setting 
the sign lag of the Status Register equal to bit 7 of the character value detected at 
the keyboard ($C000).BPL thus can be used to detect (by failing) when bit 7 goes 
high (bit 7 = 1), indicating a keypress.
Once a key has been pressed, the value in the Accumulator is put back into 

screen memory. Remember that this is the value of the old character presumably 
there,not the new character input. If the character entered is a right arrow, this 
signiies that we want to move the cursor over the displayed character without 
changing that character. heLDA KBD is what puts the input character into the 
Accumulator, at which point thestrobe is cleared by accessing$C010 and the 
inal return is done. he calling program then has the option of printing the 
input character to the screen.

]
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Other Input Sources

KSW does not always point toRDKEY. In fact, it doesn’t point there whenDOS 
is installed. With DOS booted and active, enter the Monitor and type in:

38.39 AA55.AA56<RETURN>

You should get:

0036- 81 9E

AA55- 1B FD

You’ll see thatKSW actually points to DOS at$9E81, which then eventually 
points toRDKEY ($FD1B) at$AA55,$AA56. Like the output system, DOS is rather 
permanently made part of the input path. Any attempts to disconnect DOS by 
modifying KSW directly will be undone by DOS if any output is done. DOS has its 
own internal input vector at$AA55,$AA56. It alters this vector, notKSW, as 
needed to gain access to various slots (or to disk iles, as appropriate).
You can install your own routine into the input path by means of a proce-

dure similar to the one used in the previous chapter to intercept the output path. 
Put the low- and high-order bytes of the destination address into KSW ($38, $39 = 
56, 57 decimal) and do a call to$3EA (1002 decimal). his causes DOS to change 
its own vectors at$AA55,$AA56 to the address speciied, and then to restoreKSW 
so that it points to DOS again, usually at $9E81.2

In Appleso! this would take the form:

10  POKE 56, LB: POKE 57, HB: CALL 1002

In this example,LB andHB are the low- and high-order bytes of the destina-
tion address. In assembly language, it would look like this:

LDA  #LB

STA  $38

LDA  #HB

STA  $39

JSR  $3EA

Just as output has two basic classes of routines, there are two main types of 
input routines–those that intercept incoming characters and do some sort of 
processing, and those that entirely replace the input routines already being used. 
If you are doing the latter, things are fairly simple. Once installed, your routine is 
entirely in charge of getting the input character; when that character is “got,” 
your routine ends with anRTS to pass control back to the calling program. his 
approach is similar to our custom output routines from the previous chapter.

2[CT] Just like the output vector (described in chapter 29), when usingProDOS you can 
directly change the input vector at$BE32,$BE33 to point to your input routine. See 
chapter six of Inside the Apple //e, by Gary B. Little.
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he irst class of input routines, in which incoming characters are to be 
intercepted, must be handled slightly diferently than our output experiments 
were.

Interception Routines

When we were dealing with the output process, the point at which we inter-
cepted the data low really didn’t matter. Because the calling program loads the 
Accumulator with the character to be output, the character can be examined at 
any point along the way. With input, the character input is not available until the 
very end of the procedure, when theRTS returns control to the calling program. 
Fortunately, there is a relatively easy way around this limitation.
In both the input and output systems, the links in the process are done by 

means of a series ofJMPs (as opposed toJSRs). You’ll recall from our output 
interception from the previous chapter that the inal exit from the routine was a 
JMP $FDF0 (or wherever) a!er the processing was done.
With input, the secret is to do a JSR to KEYIN (or wherever) irst and then do 

your processing, followed by an eventualRTS to the calling program. For our 
irst experiment, we’ll try writing a routine to convert all incoming characters to 
lowercase:

                1    ********************************

                2    *  AL30-SIMPLE CASE CONVERTER  *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

                8    KEYIN    EQU  $FD1B

                9    *

0300: 20 1B FD  10   ENTRY    JSR  KEYIN

0303: C9 C1     11            CMP  #$C1       ; ASCII 'A'

0305: 90 02     12            BCC  DONE

0307: 09 20     13   MASK     ORA  #$20       ; %0010 0000

0309: 60        14   DONE     RTS

In theory, anything you type in now should be displayed in lowercase. 
Numeric and control characters should be unafected. he routine works by irst 
callingKEYIN, which gets a character from the keyboard and puts it in the Accu-
mulator. At that point our routine ensures that we’ve got a capital letter, rather 
than a numeric or control character. If we don’t have an alphabetic character 
value less than $C1, then the routine skips to DONE.
If what we have is an alphabetic character, the conversion to lowercase is 

done by forcing bit 5 of the ASCII value to 1. he values of all lowercase charac-
ters are equal to the values of the corresponding uppercase letters plus 32. his 
means, as an ASCII chart showing bit values reveals, that capital letters have bit 5 

]
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clear and lowercase letters have bit 5 set. Line 13 of our routine sets bit 5, thus 
converting the character to lowercase. Finally, line 14 returns us to the calling 
program.
Our routine should work from within Appleso!. Try this:3

6  INPUT “ENTER A STRING:”

10  POKE 56,0: POKE 57,3: CALL 1002

20  INPUT I$

30  PRINT I$

40  PRINT CHR$(4); "IN#0": REM DISCONNECT ROUTINE

Don’t be surprised if this program doesn’t work.4

Try changing line 20 to look like this:

 20  GET A$: PRINT A$;: IF A$ <> CHR$(13) THEN I$ = I$ + A$: GOTO 20

Now run the program. he results this time should be more like you 
expected. Line 30 is used to conirm the fact that the lowercase data we typed in 
on line 20 actually made it to Appleso!.
he question now is, why didn’t the irst program work? In a sense it did. If 

you like, go back and run the irst program without line 40. When the program 
ends, go into the Monitor and check the DOS input vector at$AA55,$AA56. It 
should indicate that our routine at $300 is being used.
he problem lies in Appleso!’s use of theGETLN (GET LiNe) routine for the 

INPUT statement. his routine is used to input entire lines at a time. Although 
GETLN does use theRDKEY routine to get individual characters, it unfortunately 
tampers with the characters entered before it returns the data to Appleso!, DOS, 
or the Monitor.
Speciically,GETLN converts any lowercase characters coming in to upper-

case. hus, even though our routine converts the uppercase characters coming in 
through the keyboard to lowercase,GETLN undoes every thing by converting 
them back before they’re even echoed to the screen.
Another annoyance ofGETLN is that it converts characters that you copy 

from the screen using the right arrow.
he reason the program works with the new version of line 20 is that the 

Appleso! GET statement uses a direct call to RDKEY and does not use GETLN.
One way to solve the problem of theINPUT statement not working is by 

writing your own input routine instead of using theGET sequence. he easiest 
thing to do here would probably be to copy theGETLN routine and eliminate the 
conversion portion starting at $FD7E.5

3[CT] Under ProDOS, you should change line 10 to  POKE 48690,0: POKE 48691,3
4[CT] On an Apple //e (under DOS) this program actually will work.
5[CT] In theApple II andApple II Plus the code at$FD7E checks whether the character 
is≥ $E0 and if so, does anAND #$DF, which converts from lowercase to uppercase. In 
the Apple //e this has been replaced with AND #$FF, which does nothing.
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Instead, let’s see if we can improve on the simple input routine just shown, 
making it a little more lexible, without rewriting the GETLN routine.

Something More Useful: Lowercase Input

Although the routine just given illustrates the concept of intercepting input, 
it’s not really that useful because it provides no way of switching between upper-
case and lowercase letters at will. Why not create an input routine that allows us 
to shi! between uppercase and lowercase letters as we input them? As we did for 
the output routine in the previous chapter, we’ll irst make a list of what we want 
the routine to do:

1. he routine should allow numeric and control characters to pass through 
unaltered.

2. he routine should be set up such that pressing<ESCAPE> once when in the 
lowercase mode will shi! only the next letter to uppercase.

3. Pressing<ESCAPE> twice when in the lowercase mode should shi! all suc-
cessive input to the uppercase mode (this is sometimes called “caps lock”).

4. Pressing<ESCAPE> once when in the uppercase mode should return the sys-
tem to the lowercase mode.

he system of using<ESCAPE> as a shi! key is somewhat standard. Before 
going on to the listing, though, let’s think a little more about what is needed to 
implement this system. First of, we’ll need some way to remember which mode 
(lowercase or uppercase) we’re in. he most direct way of doing this is to use a 
lag, which we’ll callCSFLG (CaSe FLaG). To avoid a zero-page conlict, we’ll 
reserve a place for the lag at the end of the routine.
In order to fulill the requirement stated in item three on our list, we need to 

store the value of the last character input–that is, the character just before the 
one currently being input, in another storage location. his will allow us to tell 
when <ESCAPE> has been hit twice in a row. We’ll call this locationLSTCHR (LaST 
CHaRacter).
he general pattern will be to do some brief tests each time a character is 

input and, if no conversion is necessary, to pass the uppercase letter through 
unaltered. Only when an<ESCAPE> sequence is coming through or when we’re 
in the lowercase mode will we ever alter the input character. Here, then, is the 
improved listing:

                1    ********************************

                2    * AL30-LOWERCASE INPUT ROUTINE *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

]
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                7    *

                8    KEYIN    EQU  $FD1B

                9    ESC      EQU  $9B

                10   *

0300: 20 1B FD  11   ENTRY    JSR  KEYIN      ; GET KEY

0303: 48        12            PHA             ; SAVE CHAR

0304: C9 9B     13            CMP  #ESC

0306: F0 19     14            BEQ  ESC1

                15   *

0308: AD 3F 03  16   CHAR     LDA  LSTCHR

030B: C9 9B     17            CMP  #ESC

030D: F0 0D     18            BEQ  XFER       ; CAP THIS CHAR

                19   *

030F: 2C 40 03  20   CASE     BIT  CSFLG

0312: 30 08     21            BMI  XFER       ; CAPS

                22   *

0314: 68        23   CVERT    PLA             ; RETRIEVE CHAR

0315: C9 C1     24            CMP  #$C1       ; ASCII 'A'

0317: 90 02     25            BCC  X2         ; DON’T CHANGE

0319: 09 20     26            ORA  #$20       ; SET BIT 5

031B: 48        27   X2       PHA             ; PUT CHAR BACK

                28   *

031C: 68        29   XFER     PLA             ; RETRIEVE CHAR

031D: 8D 3F 03  30            STA  LSTCHR     ; LSTCHR = CHR

                31   *

0320: 60        32   DONE     RTS

                33   *

0321: AD 3F 03  34   ESC1     LDA  LSTCHR

0324: C9 9B     35            CMP  #ESC

0326: D0 10     36            BNE  CASE2

                37   *

0328: A9 80     38   LOCK     LDA  #$80       ; BIT 7 = 1

032A: 8D 40 03  39            STA  CSFLG      ; UC

032D: D0 ED     40            BNE  XFER       ; ALWAYS

                41   *

032F: 68        42   UNLOCK   PLA             ; PULL CHAR

0330: A9 00     43            LDA  #$00

0332: 48        44            PHA             ; CHR = NULL

0333: 8D 40 03  45            STA  CSFLG      ; 0 = LC

0336: F0 E4     46            BEQ  XFER       ; ALWAYS

                47   *

0338: 2C 40 03  48   CASE2    BIT  CSFLG

033B: 10 DF     49            BPL  XFER       ; LC NEEDS NO ACTION

033D: 30 F0     50            BMI  UNLOCK     ; UNLOCK UC

                51   *

033F: 00        52   LSTCHR   DFB  $00

0340: 00        53   CSFLG    DFB  $00        ; DEF = LC; #$80 = UC

                54   *

0341: 9C        55            CHK

A!er assembling and installing this routine at$300, try the Appleso! pro-
gram with the altered line 20 again. his time you should be able to enter a string 
containing both uppercase and lowercase letters, with the<ESCAPE> key func-
tioning as described in the requirements list.
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Note the use ofEQU to deineESC in line 9. he labelESC is used as a value 
rather than a location. his way you can change the key used for shi! by chang-
ing the value equated in line 9.
A look at the source listing reveals what’s going on. First, aJSR KEYIN is 

done to get a character from the keyboard. KEYIN handles the lashing cursor and 
keyboard hardware for us. Next, the input character is pushed on the stack so 
we’ll be free to use the Accumulator if necessary without losing the input charac-
ter.
Next, a test is done to see whether the current character is an<ESCAPE> 

character. If so, a branch is done to the<ESCAPE>-handling routine,ESC1 (line 
34). he irst thing done atESC1 is to see if the last character was an<ESCAPE> as 
well, in which caseLOCK (line 38) sets caps-lock mode by putting a$80 inCSFLG. 
If not, thenCASE2 (line 48) checksCSFLG to see whether we’re currently in low-
ercase or uppercase.
To simplify this test, we’ve used a value of$00 forCSFLG to signify the low-

ercase mode. A value of$80 signiies the uppercase mode in our example. hese 
values were chosen to allow the use of theBIT command. Because theBIT 
instruction conditions the sign lag (bit 7) of the Status Register according to bit 
7 of the memory location referenced, we can test the status ofCSFLG without 
actually having to load the Accumulator with anything to do the test.

CASE2 uses theBIT instruction to test bit 7 ofCSFLG. If bit 7 is clear, we’re in 
lowercase mode and all that needs to be done is to pass this irst<ESCAPE> char-
acter through toXFER, where it will be stored inLSTCHR. hat way the<ESCAPE> 
can be used to signify a shi! to uppercase if the next character is a letter.
If bit 7 is set, then we’re in uppercase, and we need to “unlock” the upper-

case mode.UNLOCK does this by putting a 0 value inCSFLG. You’ll also notice that 
the current character is changed from an<ESCAPE> to a null. his is done so that 
a!er down-shi!ing, we can still press<ESCAPE> once more to capitalize the next 
letter. If we hadn’t changed that<ESCAPE> to a null when we down-shi!ed, we’d 
be back in caps-lock mode.
For the next pass through, let’s see what happens with a non-<ESCAPE> 

character. We’ll resume tracing the routine right a!erENTRY has decided that the 
current character is not an <ESCAPE> character.
he next section isCHAR, which checks to see whether the last character 

through was an<ESCAPE> character. If so, we need to make sure the current let-
ter is capitalized, even though we’re presumably in the lowercase mode. his is 
easily done, though: program low proceeds directly toXFER. Remember,XFER 
simply stores the current input character inLSTCHR and then returns to the call-
ing program. In this case, because all characters generated byKEYIN are always 
uppercase (except on the Apple //e), we’ll just leave the capital letter input “as is” 
and pass it through.

]
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If the last character was not an<ESCAPE>, program low continues to the 
CASE section, which decides whether to convert the character coming through by 
checking to see whether we’re in uppercase or lowercase mode.

CASE uses theBIT instruction to do this test. If we’re in the uppercase mode 
(bit 7 = 1, thereforeBMI works), no conversion of the incoming uppercase letter 
is needed and the program branches directly to theXFER routine.XFER retrieves 
the original input character stored on the stack, updatesLSTCHR (since this will 
now be the "last character” on the next pass through), and then returns to the 
main calling program via the RTS.
If theCSFLG was set to 0, line 21 would not branch, and theCVERT (Con-

VERT) routine would be entered.CVERT irst retrieves the input character from 
the stack and then checks to see if the character has an ASCII value less than that 
of the letter A. If so, the character coming through is a number or a control char-
acter and, as such, should not be converted to lowercase. If such a character is 
detected, the routine jumps over the conversion routine to line 27, which puts 
the character back on the stack (whereXFER expects to ind it) and goes through 
to the XFER section.
If the character has an ASCII value equal to or greater than that of the letter 

A, then theORA #$20 sets bit 5, thus converting the letter to lowercase. At that 
point the new character is put on the stack for the XFER routine.

Conclusion

his is deinitely one of those programs that take a low chart to design, so 
don’t feel discouraged if everything’s not immediately clear. Considering all the 
possible situations of<ESCAPE> sequences and current case, it may take a little 
time before you feel comfortable with it.
Even if the program never makes complete sense, remember that the impor-

tant thing here is to understand the workings of the input system in general, 
rather than this particular little routine.
Of course, the best way to understand what’s going on is to experiment with 

your own routines. Doing this always helps bring out the right and wrong 
assumptions about the way we think things work. You might want to try writing 
the generalized input routine suggested earlier, or perhaps you’re one of those 
people who’ve hooked up a wire from the<SHIFT> key to pushbutton 2. If so, see 
whether you can improve the input routine to allow yourself to use the<SHIFT> 
key as well. Another interesting project would be to write your ownKEYIN rou-
tine to be used by the input routine, then see if you can generate a diferent kind 
of cursor–or solve the problem of the cursor not looking quite right when it’s 
on a lowercase letter.
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his chapter starts a discussion about how to write your own hi-res charac-
ter generator, and thus how to use text on the hi-res screen in your own assem-
bly-language programs.
he discussion will cover a number of points. First, we’ll look at the memory 

mapping of the hi-res screen to see what considerations must be made to put the 
data for the appropriate characters on the screen.
Next, we’ll look at the code needed to intercept the characters being output 

to the normal text screen, and how this information can be used to actually 
implement the hi-res character generator.
Last of all, a listing for a character editor will be presented, so you can make 

up your own character sets or even produce special characters for unusual 
graphics efects.

Text and Hi-Res Screen Mapping

he irst consideration in creating our character generator is the topic of 
what actually will be required to put a character on the hi-res screen. In previous 
chapters we have seen how each dot on the graphics screen is related to an indi-
vidual bit within a byte of memory assigned to the hi-res display. In earlier rou-
tines we created graphics by plotting dots using the routines built into Appleso! 
BASIC. his time the approach will be somewhat diferent.
To create a character on the hi-res screen, an entire array of dots will have to 

be turned on. Although theHPLOT routines of Appleso! could be used, it turns 
out there is a much simpler way to achieve the desired result. his method is 
based on similarities between the normal text display page and the hi-res graph-
ics display page. To fully understand this technique, though, a brief overview of 
the screen memory mapping will be required.
On the Apple, text display is normally conined to what is called text display 

page 1. his display corresponds to a block of memory in the address range$400 
to$7FF (1024 to 2047 decimal). A character is printed on the screen by storing a 
single byte in this memory range. he computer hardware then takes care of 
converting this stored character into a video image on your monitor or televi-
sion set.

]
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he memory for thescreen display is not 
mapped in a simple, continuous pattern. hat 
is to say, if you were to ill memory sequen-
tially with a certain value, the screen image 
would not be changed in a line-by-line, char-
acter-by-character pattern. Instead, a rather 
unusual pattern would be followed. he table 
at le! gives the address of the irst character 
on each line of the normal text display page. 
You may also wish to look at page 16 of the 
Apple II Reference Manual for a more com-
plete chart.
You may recall from earlier chapters that 

it was not necessary to calculate the beginning 
address (sometimes called thebase address) of 
each line ourselves. Instead, we can use a 
Monitor routine called VTAB ($FC22).
When this routine is called, it takes the 

value stored in location $24 (called CV for Cur-
sor Vertical position) and calculates the base address of the line corresponding 
to that vertical position.CV is assumed to be in the range of$0 to$17 (0 to 23 
decimal) when VTAB is called.
his is whatCOUT ($FDED) does whenever the cursor moves to a new line, 

such as when<RETURN> is pressed, or when aVTAB command is done in BASIC. 
he base address is returned in a zero-page pointer calledBASL, BASH ($28, $29 = 
Base AddresS Low byte and High byte).
At irst glance, there may seem to be too few horizontal rows to represent all 

192 lines. However, if you look at the igure on the next page, in the middle 
you’ll see a blow-up of one box of the map. Each of eight lines within the box is 
labeled with one of eight values. What this means is that each box on the main 
chart actually represents eight screen lines on the display. Twenty-four boxes 
times eight lines in each box gives us the total of 192 screen lines. To ind the 
base address of the third screen line, for instance, you would add the correction 
for the third line within a box ($800) to the base address for the primary box 
($2000) to get the actual base address ($2800).
Looking at the horizontal rows, you’ll notice that there are 40 bytes that 

make up the 280 horizontal dot positions. Seven bits in each byte are used to 
map the screen dots (7 × 40 = 280).
At this point you may be getting discouraged thinking that a lot of compli-

cated calculations are going to be required to even begin to know where to start 
drawing our character on-screen. Take heart, though! If you give it a little 

Line #Address (hex) Address (dec)
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

400

480

500

580

600

680

700

780

428

4A8

528

5A8

628

6A8

728

7A8

450

4D0

550

5D0

650

6D0

750

7D0

1024

1152

1280

1408

1536

1664

1792

1920

1064

1192

1320

1448

1576

1704

1832

1960

1104

1232

1360

1488

1616

1744

1872

2000
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thought, you should be able to see a remarkable similarity between the hi-res 
page and the text page in regard to their memory mapping.
he irst similarity is in the number of bytes used for each horizontal line on 

the screen. In each case, 40 bytes are used for an entire line. Could there be even 
more similarity? Read on!
If you look at the irst four lines of the text page, the base addresses are the 

values$400,$480,$500, and$580. If you examine the irst four blocks of eight 
lines each on the hi-res screen, the base addresses are$2000,$2080,$2100, and 
$2180.
You’ll notice that if you add the value$1C00 to each of the text-screen val-

ues, you’ll get the corresponding base address for the hi-res screen. his pattern 
continues throughout all twenty-four text screen lines.
What about the eight lines for each block? Each successive line within a 

block can be calculated by adding the value $400 to the address for the line above 
it. his will turn out to be just perfect for creating a character.
As it happens, a character on the normal text screen is made up of dots in a 

matrix seven dots high by ive dots wide. Around this matrix there is a boundary 

]
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of one dot position on either side and one dot position along the bottom. his 
permanently empty region is set up to provide a guaranteed separation between 
characters when printed on-screen. hus, the inal matrix is actually seven dots 
wide by eight dots high. he igure below, for example, shows the matrix pattern 
for the letter A.
A column of dot positions on each side of the character and a row on the 

bottom are le! open. At this point, a little light in your mind is probably starting 
to glow. he seven dot positions across each character can correspond to seven 
bits in each of the 40 hi-res screen bytes used on each line. he eight horizontal 
rows will correspond to the eight bytes assigned to each primary box described 
earlier.
All this, then, brings us to the precipice. It is time to make the mental leap to 

understanding the concept of how a hi-res character can be created.
In a block of eight sequential bytes of memory, we can store all of the infor-

mation needed to create a single character on the screen. Each byte will corre-
spond to one of the eight rows in the matrix. Each bit within a byte will 
correspond to one possible dot position within a given row.
For example, to encode the letter 

A, we might store the following bytes: 
$08, $14, $22, $22, $3E, $22, $22, $00.
To illustrate how this really forms 

the letter A, take a look at the table to 
the right of the igure, which shows 
these same numbers in a diferent way.
In the right-hand column is the 

binary form of each number. You can 
see which bits are on and which are of. his relates directly to how the character 
is displayed on-screen. he bits are plotted in reverse order–that is, with bit 0 in 
the le!most position. Bit 7 (the high bit) is never displayed on-screen. At most, 
bit 7 can be used only to shi! the other dots one-half position. See the earlier 
chapters on hi-res plotting if you need a little refresher in this area.

!e Character Generator

Now to actually describe the character generator that will be used to put the 
appropriate ASCII character on the hi-res screen.
he process it will use is as follows:

1. A routine will be hooked up to the output vector to intercept each character 
to be printed to the normal text screen.

2. If the character is a control character, no special processing will be done and 
the character will be passed on to COUT1 ($FDF0).

Dot Matrix for A Hex Binary
$08 %0000 1000

$14 %0001 0100

$22 %0010 0010

$22 %0010 0010

$3E %0011 1110

$22 %0010 0010

$22 %0010 0010

$00 %0000 0000
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3. If the character is not a control character, an examination ofCV ($23 = Cur-
sor Vertical position) and the current text-page address will be made. A value of 
$1C00 will be added toBASL,BASH ($28,$29) to calculate the base address of the 
primary hi-res screen line. he contents ofCH ($22 = Cursor Horizontal posi-
tion) will then be added to this base address to calculate the actual hi-res screen 
byte to be modiied.

4. heASCII value of the character to be printed will be used to determine the 
position in a character data table from which the eight bytes containing the data 
for the character will be retrieved. he position can be determined by irst sub-
tracting 32 from the ASCII value (to make up for the missing control characters 
in the table). he resulting value is then multiplied by eight (for eight bytes per 
character) to determine the correct starting position of the data for that particu-
lar character. he general formula, then, is:

Position = (ASCII value − 32) × 8

5. he character will actually be produced by storing the irst byte in the calcu-
lated base address. he next seven bytes will then be stored at the addresses 
determined by successively adding the value $400 to the base address.

6. At that point the printing to the hi-res screen will be complete. he original 
character to be printed will then be sent toCOUT1 ($FDF0) so that the Monitor 
routines can handle carriage returns, backspaces, and so on. his action by the 
Monitor will automatically ensure that theBASL,BASH pair is maintained prop-
erly so that we can always rely on its accuracy in positioning the text output on 
the screen.

his last point may need a bit of explanation. If we never sent a character to 
COUT1, we would have to handle the entire screen management ourselves. his 
means that when we got to the end of the line, we would have to detect it and 
then advanceCV and recalculateBASL, BASH accordingly. By passing each charac-
ter toCOUT1 (even though technically we never see the text screen), the Monitor 
will keepBASL,BASH,CH, andCV all maintained in a way consistent with the data 
printed to the screen.
hus all we need to do is look atBASL,BASH,CH, andCV for each character 

printed to have the hi-res screen properly mimic what is going on with the text 
display page.
Here, then, is the listing for the hi-res character generator:

                1    ********************************

                2    *   AL31-CHARACTER GENERATOR   *

                3    ********************************

                4    *

                5    *        OBJ  $300

                6             ORG  $300

                7    *

]
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                8    CSW      EQU  $36

                9    BASL     EQU  $28

                10   CH       EQU  $24

                11   TABLE    EQU  $9000

                12   POSN     EQU  $3C        ; (BAS2)

                13   SCRN     EQU  $3E        ; (A4)

                14   VECT     EQU  $3EA

                15   COUT1    EQU  $FDF0

                16   *

0300: A9 0B     17   HOOK     LDA  #ENTRY     ; PRODUCES LOW BYTE

0302: 85 36     18            STA  CSW

0304: A9 03     19            LDA  #>ENTRY    ; #> PRODUCES HIGH BYTE

0306: 85 37     20            STA  CSW+1

0308: 4C 3A FF  21            JMP  VECT

                22   *

030B: C9 A0     23   ENTRY    CMP  #$A0

030D: 90 51     24            BCC  OUT        ; CTRL CHARACTER

030F: 48        25            PHA             ; STORE CHAR

0310: 29 7F     26            AND  #$7F       ; CLEAR HI BIT

0312: 85 3C     27            STA  POSN

0314: A9 00     28            LDA  #$00

0316: 85 3D     29            STA  POSN+1

0318: 98        30            TYA

0319: 48        31            PHA             ; SAVE Y

                32   *

031A: 38        33   CALC1    SEC

031B: A5 3C     34            LDA  POSN

031D: E9 20     35            SBC  #$20

031F: 85 3C     36            STA  POSN       ; CHAR < 96

0321: 06 3C     37            ASL  POSN       ; *2 = CHAR < 192

0323: 06 3C     38            ASL  POSN       ; *4 < 384

0325: 26 3D     39            ROL  POSN+1

0327: 06 3C     40            ASL  POSN       ; *8 < 768

0329: 26 3D     41            ROL  POSN+1

                42   *

                43   * POSN = (ASC - $20)*8 BYTES PER CHAR

                44   *

032B: 18        45            CLC

032C: A9 00     46            LDA  #TABLE     ; LOW BYTE

032E: 65 3C     47            ADC  POSN

0330: 85 3C     48            STA  POSN

0332: A9 90     49            LDA  #>TABLE    ; HIGH BYTE

0334: 65 3D     50            ADC  POSN+1

0336: 85 3D     51            STA  POSN+1     ; POSN = POSN + TABLE ADDR

                52   *

0338: 18        53   CALC2    CLC

0339: A5 28     54            LDA  BASL

033B: 65 24     55            ADC  CH

033D: 85 3E     56            STA  SCRN

033F: A5 29     57            LDA  BASL+1

0341: 69 1C     58            ADC  #$1C

0343: 85 3F     59            STA  SCRN+1     ; SCRN = BASL + CH + $1C00

                60   *

0345: A0 00     61   GETBYTE  LDY  #$00

0347: B1 3C     62   G1       LDA  (POSN),Y

0349: 91 3E     63            STA  (SCRN),Y



31. Hi-Res Character Generator 307

034B: C8        64   INC      INY

034C: 18        65            CLC

034D: A5 3E     66            LDA  SCRN

034F: 69 FF     67            ADC  #$FF

0351: 85 3E     68            STA  SCRN

0353: A5 3F     69            LDA  SCRN+1

0355: 69 03     70            ADC  #$03

0357: 85 3F     71            STA  SCRN+1     ; SCRN = SCRN + $3FF

                72   *

                73   * $3FF TO MAKE UP FOR GROWING VALUE OF 'Y'

                74   *

0359: C0 08     75   DONE?    CPY  #$08

035B: 90 EA     76            BCC  G1

                77   *

035D: 68        78   YES      PLA

035E: A8        79            TAY             ; RESTORE Y

035F: 68        80            PLA             ; RESTORE CHAR

0360: 4C F0 FD  81   OUT      JMP  COUT1

0363: D8        82            CHK

he routine is relatively short and is placed at location$300 (768 decimal). 
When a call to$300 is done by either a300G from the Monitor or aCALL 768 
from BASIC, the routine will set the output vectors to point toENTRY and then 
call the DOS hookup routine described in earlier chapters. At this point, all 
future character output will pass through this routine, until it is disconnected 
either by a PR#0 or by pressing RESET.
AtENTRY, the irst thing that is checked for is to see whether the character 

being output is a control character. Remember that at this point the high bit will 
be set on all text going to the screen. herefore, even though$20 is the more 
normal ASCII value for a space character, with the high bit set it will be sent 
through COUT as an $A0.
If a control character is detected here, theCMP andBCC will pass control to 

the exit point of the routine,OUT. Remember thatBCC is used to detect all values 
in the Accumulator less than the value used in theCMP instruction. All control 
characters will have an ASCII value less than that of the space character.
If the character is a non-control character, it’s then pushed onto the stack in 

line 25. his is to save the character to be printed so that it eventually can be 
passed on toCOUT1. he next line, 26, then clears the high bit of the character 
and stores the resulting value in POSN.
his resulting true ASCII value will be used shortly to calculate the needed 

position in our character table, so lines 28 and 29 store a 0 in the high-order-byte 
position ofPOSN. Because 96 characters times 8 bytes each will require a table 
768 ($300) bytes long, POSN will have to be able to include a two-byte value. hus 
lines 28 and 29 take this opportunity to set the high byte ofPOSN to 0 now in 
anticipation of future calculations.
Another bit of programming technique appears on lines 30 and 31. Because 

the Apple assumes that all output routines will leave all of the registers (X, Y, 

]
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and A) unaltered, we must save the Y-Register so as to be able to restore it to its 
original condition later on exit. To avoid having to use another zero-page loca-
tion for this, we’ve delayed saving the Y-Register until now so that its value can 
be put in the Accumulator and then pushed onto the stack. Prior to saving the 
character value inPOSN, any attempt to put Y in the Accumulator would have 
erased the value for the character we wanted to print.
Now for the calculation phase. he irst step is to subtract 32 from the ASCII 

value in preparation for calculating the table position. Lines 33 through 36 do 
this. he next step is to multiply by 8 to get the relative position in the table. For-
tunately, 8 is an easy number by which to multiply. You may remember from 
earlier chapters that a le!-shi! operation is equivalent to multiplying by 2. 
herefore, all we need do is shi! le! three times to get the efect of multiplying 
by 8 (2 × 2 × 2 = 8).
Normally, because POSN is a two-byte value, each shi! would have to be a set 

ofASLs andROLs. However, because we know we’re starting with a value less 
than 96, we know the irst shi! cannot possibly give a result greater than 256. In 
looking at lines 37 through 41, you can see that line 37 does the irst multiply by 
2. It is then lines 38 through 41 that do the two-byte shi!s to get the inal result. 
Remember also that anASL puts the bit pushed out the end into the carry lag. 
hat allows ROL to pick up the carry when shi!ing the high-order byte.
Consider the example in the table below to see how the shi!s work. he let-

ter A has an ASCII value of$41 (65 decimal). A!er subtracting$20 (32 decimal) 
we’ll have a result of$21 (33 decimal). A!er multiplying by 8, we should get a 
result of $108 (264 decimal).

Program Command POSN+1 (hex)POSN (hex) POSN+1 Carry POSN
36: Start

37: ASL POSN

38: ASL POSN

39: ROL POSN+1

40: ASL POSN

41: ROL POSN+1

$00

$00

$00

$00

$00

$01

$21

$42

$84

$84

$08

$08

%0000 0000

%0000 0000

%0000 0000

%0000 0000

%0000 0000

%0000 0001

0

0

0

0

1

0

%0010 0001

%0100 0010

%1000 0100

%1000 0100

%0000 1000

%0000 1000

Once the multiplication by 8 has been done, the only thing remaining is to 
take the relative ofset position determined and add that to the base address of 
the table. In this case, we will assume that the table has been loaded at$9000 
(and presumably protected by setting HIMEM: 36864).
Once the table position is calculated, the screen byte to be modiied must be 

calculated as well. his is done byCALC2. Lines 53 through 59 take the contents 
ofBASL,BASH and add$1Cxx to that, wherexx is the value ofCH at that point. 
Adding$1C00 gives the base address of the hi-res screen line corresponding to 
the current text-page line. We could have used the Y-Register forCH, but that 
would have prevented us from easily using the Y-Register to index the character 
table data. herefore, we addCH to make BASL, BASH the address of the irst hi-res 
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screen byte to be modiied. Note that an added advantage of this approach is that 
HTAB andVTAB commands will continue to work on the hi-res page. Scrolling, 
however, will not be available.

GETBYTE (line 61) is the section responsible for putting the character on the 
hi-res screen. his is done in a number of stages. he irst step is to set the Y-
Register to#$00 to prepare to retrieve the data bytes from the table.G1 then 
starts the retrieval loop by getting the irst byte of the character from the table 
and storing it on the hi-res screen.
Now here’s where it gets interesting. Normally, the next steps would be to 

increment Y to get the next character from the table, and to also add$400 to the 
POSN value to access the next horizontal line on the screen. he problem is that, 
if Y changes, we won’t access the line directly below the one we just modiied, 
but rather one byte to the right of where we want to be.
he solution is to add$3FF, rather than$400, toPOSN. hat way the value of 

POSN will grow in a way compatible with the increased value of the Y-Register. 
his part of the listing is worth studying until you understand the concept. It 
saves a lot of needless storing of the Y-Register and hence needless extra time 
and memory usage. he technique can be applied to many other situations as 
well.
Once the entire eight bytes have been put on the hi-res screen, lines 78 

through 81 restore the Accumulator to the value of the original character to be 
printed and the Y-Register to its original value. he jump toCOUT1 ($FDF0) is 
then done to complete the printing to the normal text screen. he advantages of 
this were discussed earlier (maintenance of BASL, BASH, CV, and so on).

A Hi-Res Character Set

he way to use the character generator is to load the assembled binary rou-
tine at$300 (768 decimal). In an Appleso! program, you would then execute an 
HGR command, followed by a CALL 768 to activate the routine.
If you were to use the routine entirely from assembly language, you would 

have to callHGR directly. See chapter 19 for more information on calling the hi-
res subroutines.
here is, however, one minor detail still missing. hat is the table that we 

assumed existed at$9000. Since you don’t yet have a means of easily creating 
your own character set, you’ll need a table to use.
his data, although lengthy, will provide you with a complete character set 

to be loaded at$9000. Although it will take a while to enter the data, it will prob-
ably be a little easier than creating each character with an editor, although you 
will have that opportunity in the next chapter.

]
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                                1    ********************************

                                2    *   AL31-ASCII CHARACTER SET   *

                                3    ********************************

                                4    *

                                5             ORG  $9000

                                6    *

9000: 00 00 00 00 00 00 00 00   7    HEX  0000000000000000 ; SPACE

9008: 08 08 08 08 08 00 08 00   8    HEX  0808080808000800 ; !

9010: 14 14 14 00 00 00 00 00   9    HEX  1414140000000000 ; "

9018: 14 14 3E 14 3E 14 14 00   10   HEX  14143E143E141400 ; #

9020: 08 3C 0A 1C 28 1E 00 00   11   HEX  083C0A1C281E0800 ; $

9028: 06 26 10 08 04 32 30 00   12   HEX  0626100804323000 ; %

9030: 04 0A 0A 04 2A 12 2C 00   13   HEX  040A0A042A122C00 ; &

9038: 0B 00 06 00 00 00 00 00   14   HEX  0808080000000000 ; ’

9040: 08 04 02 02 02 04 08 00   15   HEX  0804020202040800 ; (

9048: 08 10 20 20 20 10 08 00   16   HEX  0810202020100800 ; )

9050: 08 2A 1C 08 1C 2A 08 00   17   HEX  082A1C081C2A0800 ; *

9058: 00 08 08 3E 08 08 00 00   18   HEX  0008083E08080000 ; +

9060: 00 00 00 00 00 00 08 04   19   HEX  0000000000000804 ; ,

9068: 00 00 00 3E 00 00 00 00   20   HEX  0000003E00000000 ; -

9070: 00 00 00 00 00 00 08 00   21   HEX  0000000000000800 ; .

9078: 00 20 10 08 04 02 00 00   22   HEX  0020100804020000 ; /

9080: 1C 22 32 2A 26 22 1C 00   23   HEX  1C22322A26221C00 ; 0

9088: 08 0C 08 00 08 08 1C 00   24   HEX  080C080808081C00 ; 1

9090: 1C 22 20 18 04 02 3E 00   25   HEX  1C22201804023E00 ; 2

9098: 3E 20 10 18 20 22 1C 00   26   HEX  3E20101820221C00 ; 3

90A0: 10 18 14 12 3E 10 10 00   27   HEX  101814123E101000 ; 4

90A8: 3E 02 1E 20 20 22 1C 00   28   HEX  3E021E2020221C00 ; 5

90B0: 18 04 02 1E 22 22 1C 00   29   HEX  1804021E22221C00 ; 6

90B8: 3E 20 10 08 04 04 04 00   30   HEX  3E20100804040400 ; 7

90C0: 1C 22 22 1C 22 22 1C 00   31   HEX  1C22221C22221C00 ; 8

90C8: 1C 22 22 3C 20 10 0C 00   32   HEX  1C22223C20100C00 ; 9

90D0: 00 00 08 00 08 00 00 00   33   HEX  0000080008000000 ; :

90D8: 00 00 08 00 08 08 04 00   34   HEX  0000080008080400 ; ;

90E0: 10 08 04 02 04 08 10 00   35   HEX  1008040204081000 ; <

90E8: 00 00 3E 00 3E 00 00 00   36   HEX  00003E003E000000 ; =

90F0: 04 08 10 20 10 08 04 00   37   HEX  0408102010080400 ; >

90F8: 10 22 10 08 08 00 08 00   38   HEX  1C22100808000800 ; ?

9100: 1C 22 2A 3A 1A 02 3C D0   39   HEX  1C222A3A1A023CD0 ; @

9108: 08 14 22 22 3E 22 22 00   40   HEX  081422223E222200 ; A

9110: 10 22 22 1E 22 22 1E 00   41   HEX  1E22221E22221E00 ; B

9118: 1C 22 02 02 02 22 1C 00   42   HEX  1C22020202221C00 ; C

9120: 1E 22 22 22 22 22 1E 00   43   HEX  1E22222222221E00 ; D

9128: 3E 02 02 1E 02 02 3E D0   44   HEX  3E02021E02023E00 ; E

9130: 3E 02 02 1E 02 02 02 00   45   HEX  3E02021E02020200 ; F

9138: 3C 02 02 02 32 22 3C 00   46   HEX  3C02020232223C00 ; G

9140: 22 22 22 3E 22 22 22 00   47   HEX  2222223E22222200 ; H

9148: 1C 08 06 08 08 08 1C 00   48   HEX  1C08080808081C00 ; I

9150: 20 20 20 20 20 22 1C 00   49   HEX  2020202020221C00 ; J

9158: 22 12 0A 06 0A 12 22 00   50   HEX  22120A060A122200 ; K

9160: 02 02 02 02 02 02 3E 00   51   HEX  0202020202023E00 ; L

9168: 22 36 2A 2A 22 22 22 00   52   HEX  22362A2A22222200 ; M

9170: 22 22 26 2A 32 22 22 00   53   HEX  2222262A32222200 ; N

9178: 1C 22 22 22 22 22 1C 00   54   HEX  1C22222222221C00 ; O

9180: 1E 22 22 1E 02 02 02 00   55   HEX  1E22221E02020200 ; P

9188: 1C 22 22 22 2A 12 2C 00   56   HEX  1C2222222A122C00 ; Q
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9190: 1E 22 22 1E 0A 12 22 00   57   HEX  1E22221E0A122200 ; R

9198: 1C 22 02 1C 20 22 10 00   58   HEX  1C22021C20221C00 ; S

91A0: 3E 08 03 08 03 08 08 00   59   HEX  3E08080808080800 ; T

91A8: 22 22 22 22 22 22 1C 00   60   HEX  2222222222221C00 ; U

91B0: 22 22 22 22 22 14 06 00   61   HEX  2222222222140800 ; V

91B8: 22 22 22 2A 2A 36 22 00   62   HEX  2222222A2A362200 ; W

91C0: 22 22 14 08 14 22 22 00   63   HEX  2222140814222200 ; X

91C8: 22 22 22 14 03 08 03 00   64   HEX  2222221408080800 ; Y

91D0: 3E 20 10 08 04 02 3E 00   65   HEX  3E20100804023E00 ; Z

91D8: 3E 06 06 0E 06 06 3E 00   66   HEX  3E06060606063E00 ; [

91E0: 00 02 04 06 10 20 00 00   67   HEX  0002040810200000 ; \

91E8: 3E 30 30 30 3D 30 3E 00   68   HEX  3E30303030303E00 ; ]

91F0: 00 00 08 14 22 00 00 00   69   HEX  0000081422000000 ; ̂

91F8: 00 00 00 00 00 00 00 7F   70   HEX  000000000000007F ; _

9200: 04 08 10 00 00 00 00 00   71   HEX  0408100000000000 ; ’

9208: 00 00 1C 20 3C 22 3C 00   72   HEX  00001C203C223C00 ; a

9210: 02 02 1E 22 22 22 1E 00   73   HEX  02021E2222221E00 ; b

9218: 00 00 3C 02 02 02 3C 00   74   HEX  00003C0202023C00 ; c

9220: 20 20 3C 22 22 22 3C 00   75   HEX  20203C2222223C00 ; d

9228: 00 00 1C 22 3E 02 3C 00   76   HEX  00001C223E023C00 ; e

9230: 18 24 04 1E 04 04 04 00   77   HEX  1824041E04040400 ; f

9238: 00 00 1C 22 22 3C 20 1C   78   HEX  00001C22223C201C ; g

9240: 02 02 1E 22 22 22 22 00   79   HEX  02021E2222222200 ; h

9248: 08 00 0C 08 08 08 1C 00   80   HEX  08000C0808081C00 ; i

9250: 10 00 18 10 10 10 12 00   81   HEX  100018101010120C ; j

9258: 02 02 22 12 0E 12 22 00   82   HEX  020222120E122200 ; k

9260: 0C 03 08 0B 08 08 1C 00   83   HEX  0C08080808081C00 ; l

9268: 00 00 36 2A 2A 2A 22 00   84   HEX  0000362A2A2A2200 ; m

9270: 00 00 1E 22 22 22 22 00   85   HEX  00001E2222222200 ; n

9278: 00 00 1C 22 22 22 1C 00   86   HEX  00001C2222221C00 ; o

9280: 00 00 1E 22 22 1E 02 02   87   HEX  00001E22221E0202 ; p

9288: 00 00 3C 22 22 3C 20 20   88   HEX  00003C22223C2020 ; q

9290: 00 00 3A 06 02 02 02 00   89   HEX  00003A0602020200 ; r

9298: 00 00 3C 02 1C 20 1E 00   90   HEX  00003C021C201E00 ; s

92A0: 04 04 1E 04 04 24 18 00   91   HEX  04041E0404241800 ; t

92A8: 00 00 22 22 22 32 2C 00   92   HEX  0000222222322C00 ; u

92B0: 00 00 22 22 22 14 08 00   93   HEX  0000222222140800 ; v

92B8: 00 00 22 22 2A 2A 36 00   94   HEX  000022222A2A3600 ; w

92C0: 00 00 22 14 08 14 22 00   95   HEX  0000221408142200 ; x

92C8: 00 00 22 22 14 08 08 06   96   HEX  0000222214080806 ; y

92D0: C0 00 3E 10 08 04 3E 00   97   HEX  00003E1008043E00 ; z

92D8: 38 0C 0C 06 0C 0C 30 00   98   HEX  380C0C060C0C3800 ; {

92E0: 08 0B 03 08 08 08 08 08   99   HEX  0808080808080808 ; |

92E8: 0E 18 1B 30 18 18 0E 00   100  HEX  0E18183018180E00 ; }

92F0: 2C 1A 00 00 00 00 00 00   101  HEX  2C1A000000000000 ; ~

92F8: 7F 7F 7F 7F 7F 7F 7F 7F   102  HEX  7F7F7F7F7F7F7F7F ; CURSOR

9300: 6F                        103           CHK

As a side note, this is an odd program in that it doesn’t actually do anything. 
It just creates a data table. Assemble it anyway and save the object code under 
the name AL31.ASCII.

]
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To test all of this out, you can use this simple Appleso! program.1 You 
probably should verify that you can at least get this much to work before diving 
in and trying to use the routines from within your own assembly-language pro-
grams.

10  PRINT CHR$(21): REM 40-COLUMN

20  PRINT "CHAR TABLE FILE, <RETURN> FOR DEFAULT": INPUT A$

30  IF LEN(A$) = 0 THEN A$ = "AL31.ASCII"

40  PRINT CHR$(4); "BLOAD "; A$

50  PRINT CHR$(4); "BLOAD AL31.CHARGEN,A$300

60  HGR: HCOLOR= 3

70  HPLOT 0,0 TO 279,0

80  HPLOT TO 279,159

90  HPLOT TO 0,159

100  HPLOT TO 0,0: REM  DRAW FRAME

110  REM IF DOS 3.3 THEN SET UP CSW VECTOR

120  IF PEEK(1002) = 76 THEN  CALL 768: GOTO 150

130  REM IF PRODOS, SET UP OUTPUT LINK AT $BE30,31

140  POKE 48688,11: POKE 48689,3

150  VTAB 1: HTAB 10

160  PRINT "HI-RES CHARACTER GENERATOR"

170  END

180  REM USE RESET OR PR#0 TO TURN OFF

Conclusion

At this point you should feel fairly comfortable with the idea of how a hi-res 
character generator works. he ideas presented here rely heavily on a general 
degree of familiarity with a variety of techniques discussed in earlier chapters, 
speciically, output vector use and interception, memory mapping of the hi-res 
and text screens, and of course general techniques of assembly-language pro-
gramming. If you are having diiculty in any of these areas, you may wish to 
review previous chapters.
All in all, you should ind the approach shown here to be much easier than 

you irst thought. he similarities between the text and hi-res screens greatly 
reduce the amount of diiculty in creating a character generator.
In the next chapter, we’ll develop a character editor to create your own hi-

res character fonts (the term used for the character design), and also take a brief 
look at how hi-res graphics in arcade-style games can take advantage of these 
same techniques to create a wide variety of efects.

1[CT] ForProDOS, we manually change the output vector at$BE30,$BE31 to point to 
ENTRY ($30B). See footnote 1 in chapter 29 for more discussion.
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In the previous chapter we presented a listing for a hi-res character genera-
tor along with the theory behind its operation. he generator used an existing 
character set, loaded at location$9000 in memory, and contained the data for 96 
ASCII characters.
To create your own character set, all that is needed is a utility for editing the 

existing character set and creating the new font, or character design, that you 
desire.
Before presenting the listing for the character editor, consider for a moment 

the information and techniques that must be provided for. his is a very impor-
tant part of solving any problem, programming or otherwise, and is instrumen-
tal in directing and clarifying one’s thought processes.
In discussing the character set, you’ll recall that each character is repre-

sented by a series of eight bytes in the table, and that each dot in the character 
image is represented by a bit within one of those bytes. he irst two considera-
tions, therefore, are how to address the series of bytes that correspond to a given 
ASCII character and how to identify and alter the bit corresponding to the par-
ticular dot in the character image that we wish to modify.
In editing each character, we will want to be able to turn a given bit on or of 

(set it to 1 or 0) and to move a cursor from one bit to another. You’ll also recall 
from the previous chapter that each byte of the character’s data corresponds to 
one line of its image on the screen. Within each byte, seven bits are used to map 
the seven screen dots used to generate a given line of a character.
When we edit the individual screen dots, it would be nice if we could use the 

standard arrow keys to move the cursor around in a box containing the charac-
ter image.
Speaking of the character box, some thought will have to be given to how 

the entire character itself will be displayed. We could just print the character on-
screen each time a modiication is done, but because of the small size this would 
become tedious a!er a while, A better approach would be to display a magniied 
image of the character, upon which our cursor can be positioned to edit any par-
ticular bit in the overall image.
To use the editor, we’ll also have to be able to specify which character we 

want to edit, and then later to signify that we are done. To keep things simple, 

]
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we’ll select a character by pressing the equivalent key and store the completed 
image back in the character table when <RETURN> is pressed.
Loading and saving of the complete table is not provided for in the editor 

but can be accomplished easily from the immediate mode with BLOAD and BSAVE. 
More on that later.
Here, then, is the complete listing, which will be explained in detail.1 See 

you at the bottom!

                1    ********************************

                2    *     AL32-CHARACTER EDITOR    *

                3    *            2/7/1983          *

                4    ********************************

                5             ORG  $8000

                6    CSW      EQU  $36

                7    BASL     EQU  $28

                8    CV       EQU  $25

                9    CH       EQU  $24

                10   CR       EQU  $06

                11   CC       EQU  $07

                12   MASK     EQU  $08

                13   CHR      EQU  $09

                14   TABLE    EQU  $9000

                15   POSN     EQU  $3C        ; (BAS2)

                16   SCRN     EQU  $3E        ; (A4)

                17   VECT     EQU  $3EA

                18   COUT     EQU  $FDED

                19   COUT1    EQU  $FDF0

                20   HGR      EQU  $F3E2

                21   HCOLOR   EQU  $F6F0

                22   HPLOT    EQU  $F457

                23   HLIN     EQU  $F53A

                24   X1       EQU  $22        ; 34

                25   X2       EQU  $54        ; 84

                26   Y1       EQU  $17        ; 23

                27   Y2       EQU  $58        ; 88

                28   VTAB     EQU  $FC22

                29   RDKEY    EQU  $FD0C

                30   BELL     EQU  $FBDD

                31   B1       EQU  %10101010

                32   B2       EQU  %01010101

                33   *

                34   CURDAT   EQU  $FFFF

                35   *

8000: A9 81     36   HOOK     LDA  #HCOUT     ; PRODUCES LOW BYTE

8002: 85 36     37            STA  CSW

8004: A9 81     38            LDA  #>HCOUT    ; #> PRODUCES HIGH BYTE

8006: 85 37     39            STA  CSW+1

8008: 4C DD FB  40            JSR  VECT

                41   *

800B: 20 E2 F3  42   ENTRY    JSR  HGR

800E: A9 00     43            LDA  #$00

8010: 85 06     44            STA  CR         ; CR=0

1[CT] Lines 210 and 218−222 were modiied to allow you to press <CTRL>Q to quit.
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8012: 85 07     45            STA  CC         ; CC=0

8014: EA        46   TITLE    NOP

                47   *

8015: A9 03     48   CHRLIST  LDA  #$03

8017: 85 25     49            STA  CV

8019: 20 22 FC  50            JSR  VTAB

801C: A2 20     51   START    LDX  #$20

801E: 8A        52   CH2      TXA

801F: 29 0F     53            AND  #%00001111 ; 2̂4 - 1

                54   * RESULT = VALUE MOD 16

8021: D0 09     55            BNE  CONT       ; NOT MULT OF 16

8023: A9 8D     56            LDA  #$8D

8025: 20 ED FD  57            JSR  COUT       ; PRINT RETURN

8028: A9 14     58            LDA  #$14       ; MARGIN FOR NEW LINE

802A: 85 24     59            STA  CH

802C: 8A        60   CONT     TXA             ; RESTORE CHAR

802D: 09 80     61            ORA  #$80       ; SET HI BIT

802F: 20 ED FD  62            JSR  COUT       ; PRINT CHAR

8032: E8        63   NEXTC    INX

8033: E0 80     64            CPX  #$80

8035: 90 E7     65            BCC  CH2

                66   *

8037: A2 03     67   MATDSP   LDX  #$03

8039: 20 F0 F6  68            JSR  HCOLOR

803C: A2 22     69   BOX      LDX  #X1        ; LOW BYTE

803E: A0 00     70            LDY  #>X1       ; HIGH BYTE

8040: A9 17     71            LDA  #Y1

8042: 20 57 F4  72            JSR  HPLOT      ; PLOT X1,Y1

8045: A9 54     73            LDA  #X2

8047: A2 00     74            LDX  #>X2

8049: A0 17     75            LDY  #Y1

804B: 20 3A F5  76            JSR  HLIN       ; TO X2,Y1

804E: A9 54     77            LDA  #X2

8050: A2 00     78            LDX  #>X2

8052: A0 58     79            LDY  #Y2

8054: 20 3A F5  80            JSR  HLIN       ; TO X2,Y2

8057: A9 22     81            LDA  #X1

8059: A2 00     82            LDX  #>X1

805B: A0 58     83            LDY  #Y2

805D: 20 3A F5  84            JSR  HLIN       ; TO X1,Y2

8060: A9 22     85            LDA  #X1

8062: A2 00     86            LDX  #>X1

8064: A0 17     87            LDY  #Y1

8066: 20 3A F5  88            JSR  HLIN       ; TO X1,Y1

8069: A9 03     89   MATD2    LDA  #$03

806B: 85 25     90            STA  CV

806D: 20 22 FC  91            JSR  VTAB

8070: A0 00     92   GETROW   LDY  #$00

8072: A9 05     93   GR1      LDA  #$05

8074: 85 24     94            STA  CH

8076: B9 69 81  95            LDA  MAT,Y

8079: A2 00     96   SCAN     LDX  #$00

807B: 4A        97   S1       LSR

807C: 48        98            PHA             ; SAVE RESULT

807D: A9 A0     99            LDA  #$A0       ; SPACE

807F: 90 02     100           BCC  PRINTM

]
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8081: A9 FF     101           LDA  #$FF

8083: 20 ED FD  102  PRINTM   JSR  COUT

8086: 68        103           PLA             ; RESTORE ACCUM

8087: E8        104  NXTBIT   INX

8088: E0 07     105           CPX  #$07

808A: 90 EF     106           BCC  S1

808C: A9 8D     107           LDA  #$8D       ; RETURN

808E: 20 ED FD  108           JSR  COUT

8091: C8        109  NXTROW   INY

8092: C0 08     110           CPY  #$08

8094: 90 DC     111           BCC  GR1

                112  *

8096: 18        113  CURSOR   CLC

8097: A5 06     114           LDA  CR         ; CURSOR ROW

8099: 69 03     115           ADC  #$03

809B: 85 25     116           STA  CV

809D: 20 22 FC  117           JSR  VTAB

80A0: 18        118           CLC

80A1: A5 07     119           LDA  CC         ; CURSOR COLUMN

80A3: 69 05     120           ADC  #$05

80A5: 85 24     121           STA  CH

                122  *

80A7: 20 C2 81  123  CURCALC  JSR  SCRNCALC

80AA: A4 06     124  STATUS   LDY  CR

80AC: B9 69 81  125           LDA  MAT,Y

80AF: A6 07     126           LDX  CC

80B1: 4A        127  ST1      LSR

80B2: CA        128           DEX

80B3: 10 FC     129           BPL  ST1

80B5: 90 02     130           BCC  CLEAR

80B7: B0 04     131           BCS  SET

80B9: A9 00     132  CLEAR    LDA  #$00

80BB: F0 02     133           BEQ  PRNTCURS

80BD: A9 08     134  SET      LDA  #$08

                135  *

80BF: 18        136  PRNTCURS CLC

80C0: 69 71     137           ADC  #CURSDATA  ; LOW BYTE

80C2: 85 3C     138           STA  POSN

80C4: A9 00     139           LDA  #$00

80C6: 69 81     140           ADC  #>CURSDATA ; HIGH BYTE

80C8: 85 3D     141           STA  POSN+1

                142  *

80CA: 20 D0 81  143           JSR  PUTBYTE

80CD: 20 0C FD  144  CMD?     JSR  RDKEY

80D0: C9 A0     145           CMP  #$A0

80D2: 90 12     146           BCC  EDIT       ; CTRL CHAR

80D4: 85 09     147  CHAR     STA  CHR

80D6: 20 9B 81  148           JSR  POSNCALC

80D9: A0 07     149           LDY  #$07

80DB: B1 3C     150  MOVE     LDA  (POSN),Y

80DD: 99 69 81  151           STA  MAT,Y

80E0: 88        152           DEY

80E1: 10 F8     153           BPL  MOVE

80E3: 4C 37 80  154  CHRX     JMP  MATDSP

                155  *

80E6: C9 8D     156  EDIT     CMP  #$8D       ; RETURN
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80E8: D0 14     157           BNE  E1

80EA: A5 09     158  ACCEPT   LDA  CHR

80EC: 20 9B 81  159           JSR  POSNCALC

80EF: A0 07     160           LDY  #$07

80F1: B9 69 81  161  XFER     LDA  MAT,Y

80F4: 29 7F     162           AND  #$7F       ; CLEAR BIT 7

80F6: 91 3C     163           STA  (POSN),Y

80F8: 88        164           DEY

80F9: 10 F6     165           BPL  XFER

80FB: 4C 15 80  166  XFX      JMP  CHRLIST

                167  *

80FE: C9 9B     168  E1       CMP  #$9B       ; ESCAPE

8100: D0 18     169           BNE  E2

8102: 38        170  TOGGLE   SEC

8103: A6 07     171           LDX  CC

8105: A9 00     172           LDA  #$00

8107: 2A        173  SHFT     ROL

8108: CA        174           DEX

8109: 10 FC     175           BPL  SHFT

810B: 85 08     176           STA  MASK

810D: A4 06     177           LDY  CR

810F: B9 69 81  178           LDA  MAT,Y

8112: 45 08     179           EOR  MASK

8114: 99 69 81  180           STA  MAT,Y

8117: 4C 37 80  181  TGX      JMP  MATDSP

                182  *

811A: C9 8B     183  E2       CMP  #$8B       ; <CTRL>K

811C: D0 0B     184           BNE  E3

811E: C6 06     185  UP       DEC  CR

8120: 10 04     186           BPL  UPX

8122: A9 07     187           LDA  #$07

8124: 85 06     188           STA  CR

8126: 4C 37 80  189  UPX      JMP  MATDSP

                190  *

8129: C9 8A     191  E3       CMP  #$8A       ; <CTRL>J

812B: D0 0F     192           BNE  E4

812D: E6 06     193  DOWN     INC  CR

812F: A5 06     194           LDA  CR

8131: C9 08     195           CMP  #$08

8133: 90 04     196           BCC  DX

8135: A9 00     197           LDA  #$00

8137: 85 06     198           STA  CR

8139: 4C 37 80  199  DX       JMP  MATDSP

                200  *

813C: C9 88     201  E4       CMP  #$88       ; <CTRL>H

813E: D0 0B     202           BNE  E5

8140: C6 07     203  LEFT     DEC  CC

8142: 10 04     204           BPL  LX

8144: A9 06     205           LDA  #$06

8146: 85 07     206           STA  CC

8148: 4C 37 80  207  LX       JMP  MATDSP

                208  *

814B: C9 95     209  E5       CMP  #$95       ; <CTRL>U

814D: D0 0F     210           BNE  E6         ; [CT] CHECK FOR QUIT

814F: E6 07     211  RIGHT    INC  CC

8151: A5 07     212           LDA  CC

]
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8153: C9 07     213           CMP  #$07

8155: 90 04     214           BCC  RX

8157: A9 00     215           LDA  #$00

8159: 85 07     216           STA  CC

815B: 4C 37 80  217  RX       JMP  MATDSP

815E: C9 91     218  E6       CMP  #$91       ; [CT] <CTRL>Q TO QUIT

8160: D0 01     219           BNE  ERR        ; UNKNOWN CTRL CHAR

8162: 60        220  QUIT     RTS             ; [CT] QUIT PROGRAM

8163: 20 DD FB  221  ERR      JSR  BELL

8166: 4C CD 80  222           JMP  CMD?

8169: 55 AA 55  223  MAT      DFB  B2,B1,B2,B1,B2,B1,B2,B1 ; WORKAREA

816C: AA 55 AA 55 AA

                224  *

8171: 7F        225  CURSDATA DFB  %01111111

8172: 41        226           DFB  %01000001

8173: 41        227           DFB  %01000001

8174: 41        228           DFB  %01000001

8175: 41        229           DFB  %01000001

8176: 41        230           DFB  %01000001

8177: 41        231           DFB  %01000001

8178: 7F        232           DFB  %01111111

                233  *

8179: 00        234           DFB  %00000000

817A: 3E        235           DFB  %00111110

817B: 3E        236           DFB  %00111110

817C: 3E        237           DFB  %00111110

817D: 3E        238           DFB  %00111110

817E: 3E        239           DFB  %00111110

817F: 3E        240           DFB  %00111110

8180: 00        241           DFB  %00000000

                242  *

8181: C9 A0     243  HCOUT    CMP  #$A0

8183: 90 13     244           BCC  OUT        ; DON’T PRINT CTRL CHARS

8185: 48        245           PHA             ; STORE CHAR

8186: 85 3C     246           STA  POSN

8188: 98        247           TYA

8189: 48        248           PHA             ; SAVE Y

                249  *

818A: A5 3C     250  CALC1    LDA  POSN       ; GET CHAR

818C: 20 9B 81  251           JSR  POSNCALC

                252  *

818F: 20 C2 81  253  CALC2    JSR  SCRNCALC

                254  *

8192: 20 D0 81  255  PRINT    JSR  PUTBYTE

                256  *

8195: 68        257           PLA

8196: A8        258           TAY             ; RESTORE Y

8197: 68        259           PLA             ; RESTORE CHAR

8198: 4C F0 FD  260  OUT      JMP  COUT1

                261  *

819B: 29 7F     262  POSNCALC AND  #$7F       ; CLEAR HI BIT

819D: 85 3C     263           STA  POSN

819F: A9 00     264           LDA  #$00

81A1: 85 3D     265           STA  POSN+1

81A3: 38        266           SEC

81A4: A5 3C     267           LDA  POSN
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81A6: E9 20     268           SBC  #$20

81A8: 85 3C     269           STA  POSN       ; CHR < 96

81AA: 06 3C     270           ASL  POSN       ; *2 = CHR < 192

81AC: 06 3C     271           ASL  POSN       ; *4 < 384

81AE: 26 3D     272           ROL  POSN+1

81B0: 06 3C     273           ASL  POSN       ; *8 < 768

81B2: 26 3D     274           ROL  POSN+1

                275  *

                276  * POSN = (ASC - $20) * 8 BYTES PER CHAR

                277  *

81B4: 18        278           CLC

81B5: A9 00     279           LDA  #TABLE     ; LOW BYTE

81B7: 65 3C     280           ADC  POSN

81B9: 85 3C     281           STA  POSN

81BB: A9 90     282           LDA  #>TABLE    ; HIGH BYTE

81BD: 65 3D     283           ADC  POSN+1

81BF: 85 3D     284           STA  POSN+1     ; POSN = POSN + TABLE ADDR

81C1: 60        285           RTS

                286  *

81C2: 18        287  SCRNCALC CLC             ; ENTER WITH BASL,CH SET UP

81C3: A5 28     288           LDA  BASL

81C5: 65 24     289           ADC  CH

81C7: 85 3E     290           STA  SCRN

81C9: A5 29     291           LDA  BASL+1

81CB: 69 1C     292           ADC  #$1C

81CD: 85 3F     293           STA  SCRN+1     ; SCRN = BASL + CH + $1C00

81CF: 60        294           RTS

                295  *

81D0: A0 00     296  PUTBYTE  LDY  #$00       ; ENTER WITH POSN,SCRN SET UP

81D2: B1 3C     297  G1       LDA  (POSN),Y

81D4: 91 3E     298           STA  (SCRN),Y

81D6: C8        299  INC      INY

81D7: 18        300           CLC

81D8: A5 3E     301           LDA  SCRN

81DA: 69 FF     302           ADC  #$FF

81DC: 85 3E     303           STA  SCRN

81DE: A5 3F     304           LDA  SCRN+1

81E0: 69 03     305           ADC  #$03

81E2: 85 3F     306           STA  SCRN+1     ; SCRN = SCRN + $3FF

                307  *  $3FF TO MAKE UP FOR GROWING VALUE

                308  *  OF 'Y'

                309  *

81E4: C0 08     310  DONE?    CPY  #$08

81E6: 90 EA     311           BCC  G1         ; NO

81E8: 60        312  YES      RTS

81E9: E7        313           CHK

A!er assembling the listing,BLOAD the character set from chapter 31 at loca-
tion$9000. henBLOAD the character editor at$8000 (do notBRUN) and type 
CALL 32768 from Appleso! or8000G from the Monitor (Appleso! must be the 
selected language).2

2[CT] An example BASIC program is given at the end of the chapter.

]
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When the program is called, the screen will clear and a box with a matrix 
pattern inside it will appear, along with the complete character set loaded at 
$9000. If the characters appear scrambled, recheck to make sure you have loaded 
the character set properly at $9000.
To select a character to edit, simply press any non-control key. An enlarged 

image of that character should appear in the box. To move the editing cursor 
around, use the le! and right arrows to move le! and right, and<CTRL>J and 
<CTRL>K to move up and down. If you have anApple //e, the four directional 
arrows will also work. Even on a standard Apple II, you may ind it easier to hold 
down the <CTRL> key with the little inger of your le! hand and then press the H, 
U, J, and K keys with your right hand to move around.
Pressing<ESCAPE> will toggle bits in the character on and of. To save a 

character back to the table, press<RETURN>. If you want to start over with a char-
acter, simply press the original letter key again.
To save the altered table back to disk, simply press <CTRL>Q, and then type:

BSAVE TABLENAME, A$9000, L$300

You can replaceTABLENAME with any name you wish to give the new charac-
ter set.

How it Works

Although the listing looks rather long, don’t be discouraged. As it happens, 
much of the listing consists of routines that were presented in earlier chapters. 
For example, lines 243 through 313 (HCOUT) are the character generator that was 
described in chapter 31.
To see how the editor works, let’s irst consider this overview of the pro-

gram:

HOOK: Hooks up the character generator,HCOUT, to the output vectors so that the 
hi-res characters can be printed.

ENTRY: Clears the hi-res screen and initializes the column and row counters to 0.

CHRLIST: Prints all 96 ASCII characters to the screen. We’ll examine part of the 
process in detail shortly.

MATDSP: Draws the matrix pattern to indicate where the character will be edited. 
his is also the entry point for the editing loop for each character. his sec-
tion can be broken down as follows:

BOX: he Appleso! hi-res routines are used to draw a box with four straight 
lines. his forms the boundary of the matrix area.
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GETROW: Each byte of the matrix pattern is retrieved here, a!er whichSCAN 
will process and display the individual bits.

SCAN: his section shi!s each bit of the row into the carry and, depending on 
whether it’s set, displays a solid or an empty block.

NXTROW : Increments the row counter (the Y-Register) until all eight rows 
have been displayed.

CURSOR: Calculates the current cursor position usingCC (Cursor Column) 
and CR (Cursor Row).

CURCALC: his part, along withPRNTCURS, determines whether the bit at the 
cursor position is set. If it is set, a white cursor is printed; if not, an outline 
of the cursor is displayed.

CMD?: At this point we are ready to get a command from the keyboard. he gen-
eral theory is to refresh the screen with the routines inMATDSP each time a 
command is entered. hat way we don’t have to update only part of the 
screen speciically.

If a control character is entered, it is assumed that it will either be a direc-
tional key or <RETURN>, so control is passed to EDIT.

If a non-control character is entered, it is assumed that this is a character to 
be edited.MOVE then retrieves the eight bytes for that character and moves 
them to the work area (MAT).

EDIT: If the user presses<RETURN>,ACCEPT will store the character data back in 
the table. If<ESCAPE> is pressed, the selected bit within the byte for that row 
will be toggled.

If one of the directional keys is pressed, the position countersCC andCR are 
adjusted accordingly.

Pressing a control key other than the legal command characters will gener-
ate aBELL sound. In any case, a!er a key is entered, a jump is made back to 
MATDSP to start the process over again.

And Now with the Magnifying Glass

he preceding overview showed in general how the editor works. Now we’ll 
spend a little more time examining the particular techniques used in each rou-
tine. Some of the routines taken from earlier chapters will not be described in as 
much detail as those presented here for the irst time. You may wish to refer to 
previous sections if some parts seem diicult. To help you scan through to just 
the parts that interest you, each section is keyed to the preceding overview.

]
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HOOK

By storing the address of theHCOUT routine inCSW and then callingVECT 
($3EA), all future output will pass through the HCOUT routine, allowing us to print 
the hi-res characters on the screen.

ENTRY

his is the main entry point to the editor; it serves to clear the hi-res screen 
and initialize the column and row position of the cursor to 0, 0 (upper-le! cor-
ner of the matrix).

CHRLIST

To display all of the existing characters,CHRLIST loops through the values 
$20 through$7F (32 through 127 = 96 characters). Because we can’t print 96 
characters on one line, some sort of aesthetic placement is desirable. he format 
chosen was a group of 6 lines of 16 characters each.

START is the beginning of this loop (X-Register set to$20), andCH2 is the 
top of the printing loop. An interesting problem here is how to determine each 
time we have printed 16 characters. A separate counter could have been kept, 
but if it were possible to do a modulo function we could just test for our current 
character counter for multiples of 16. Because modulo returns the remainder of 
a division, we would expect a result of 0 each time the counter was at a multiple 
of 16 or, in other words, had just inished another line of 16 characters.
As it happens, the AND instruction can be used to perform the equivalent of a 

modulo for any power of 2. he technique is to do anAND with the value you 
want minus 1. Because 16 is a power of 2 (24 = 16), we need only do anAND #$0F 
followed by a BNE to test for each completed line of 16 characters.
If a line has been inished, a carriage return is printed, followed by the 

equivalent of an HTAB 20.
Notice that as each character is printed the high bit is set with anORA #$80. 

his is to makeCOUT happy, as it always expects the high bit to be set on charac-
ters to be printed.

MATDSP

his section begins the part that creates the matrix display used in editing 
the individual characters. his section will be executed each time a command 
character is entered.
he irst part,BOX, draws a box outlining the character image using the 

Appleso! HLIN routines.
Once the box is drawn, the individual bytes must be displayed with the sta-

tus of each bit indicated. he algorithm is to scan through each bit position, 
printing a space if the bit is clear and printing a rubout ($FF) if the bit is set. In 
the previous chapter’s character table, a rubout was a solid block, so this 
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approach should work. (Note that if you edit the space or the rubout character, 
the matrix pattern will be altered accordingly.)
here are a total of eight bytes to be retrieved and displayed for each charac-

ter.GR1 is the section that does the equivalent of anHTAB 5 (for proper screen 
placement) and then loads a byte from the work areaMAT (see line 225). Once a 
byte is retrieved,SCAN uses theLSR instruction to shi! a bit into the carry lag. If 
the carry is set, a rubout ($FF) is printed; otherwise a space ($A0) is printed.
Because the Accumulator will be used to print a character viaCOUT, the 

shi!ed byte is preserved by pushing it onto the stack on line 98 and later pulling 
it back of on line 103.
A!er each seven bits are “printed,” a carriage return is printed on lines 107 

and 108 and the loop is repeated until all eight bytes have been displayed.

CURSOR

Once the character matrix has been displayed, we need to display the cursor. 
Lines 115 through 123 use the cursor row and column (CR andCC) to calculate 
theHTAB, VTAB position. Remember that since we are mirroring actions taken on 
the text page we can also use the text page as a frame of reference for hi-res 
screen operations.

STATUS is used to read the particular bit that corresponds to the current cur-
sor position. Note thatCR (Cursor Row) conveniently is equal to whichever byte 
in the individual character deinition we will need to read, and thatCC (Cursor 
Column) determines how many bits need to be shi!ed out to put the one of 
interest into the carry lag. Depending on whether the bit is clear or set, the 
Accumulator will be loaded with a$00 or$08, the purpose of which will become 
immediately obvious.

PRNTCURS

Since CH and CV ($24, $25) have been set up, we can use a special form of the 
HCOUT routine, called PRNTCURS, to print a smaller block or a block outline. You’ll 
notice that the hi-res character generator atHCOUT has been modiied slightly to 
use the pointerPOSN ($3C,$3D) to point to the data table. Our original character 
generator always assumed that the table would be at$9000. NormallyHCOUT sets 
POSN to point at $9000 on lines 278 through 285.
WithPOSN set up to point at a special two-character deinition table on lines 

227 through 243, thePUTBYTE routine will do the equivalent of printing one of 
the two necessary special characters at the cursor position.
You may wish to compare theHCOUT routine contained in the editor with 

the previous chapter’s character generator to see what changes have been made 
to facilitate the calling by the PRNTCURS routine.
An interesting digression: By avoidingCOUT and writing to the screen 

directly, we are on the verge of being able to do block shapes, a technique used in 
many hi-res arcade-type games.

]
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CMD?

he processing of the command characters is done in this section. he char-
acter is read from the keyboard using the Monitor routineRDKEY ($FD0C). his 
routine will place the ASCII value for the key pressed into the Accumulator.
he irst major distinction to be made is whether a control character has 

been pressed. Lines 145 and 146 do this, forwarding any control characters to the 
EDIT section.
If a non-control character has been pressed, the user wants to edit that char-

acter. CHAR andMOVE use the ASCII value of the key pressed to calculate the posi-
tion of the data of that character in the table, then move that data into the work 
area,MAT. A!er the move, a jump is made back toMATDSP to refresh the display 
with the new character and to get the next command key.

EDIT

If a control key is pressed, one of a number of functions must be performed. 
We will consider these in the order they are executed.
Return: his implies that the user wants to accept the character as displayed 

and copy it back into the character table. his is done by essentially reversing the 
process used by CHAR and MOVE (lines 147 through 153).
Toggle: If <ESCAPE> is pressed, the appropriate bit position must be switched 

to its opposite condition–of to on or on to of. his is done by creating a mask 
byte with the proper bit set. To do this, the carry lag is set and the Accumulator 
loaded with a 0. When anROL is done, this set bit will be shi!ed through the 
Accumulator. By doing theROL a given number of times (determined byCC) we 
can set a given bit in the MASK byte ($08).
Once the mask has been created, we need only retrieve the proper byte from 

the work area (determined byCR) and then mask it with theMASK byte (lines 178 
through 180). Once this is done, we again jump back toMATDSP to refresh the 
display and get the next character.
Cursor control: To move the cursor around, well use the four directional 

keys on the Apple //e keyboard. Even if you don’t have a //e, you can generate 
the same characters in the manner mentioned earlier in this chapter. To refresh 
your memory, the keys we’ll use will be<CTRL>H,<CTRL>U,<CTRL>J, and 
<CTRL>K, for le!, right, down, and up respectively.
he code on lines 185 through 219 is fairly straightforward. he up and 

down motions are done by incrementing or decrementing the cursor row 
counter; le! and right motions are done by incrementing or decrementing the 
cursor column counter. All motions wrap around.
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Running the Editor

he following Appleso! program can be used to load a character set, run the 
character editor, and then save the character set a!er exiting.3

10  PRINT CHR$(21): REM 40-COLUMN

20  PRINT "CHAR TABLE FILE, <RETURN> FOR DEFAULT": INPUT A$

30  IF LEN (A$) = 0 THEN A$ = "AL31.ASCII"

40  PRINT CHR$ (4);"BLOAD ";A$

50  PRINT CHR$(4);"BLOAD AL32.CHAREDIT,A$8000"

60  VTAB 21

70  PRINT "PRESS A KEY TO EDIT THAT CHARACTER"

80  PRINT "<CTRL>H,U,J,K OR ARROW KEYS TO MOVE"

90  PRINT "<ESC> TO TOGGLE A BIT, <RETURN> TO SAVE"

100  PRINT "<CTRL>Q TO QUIT AND SAVE TO A FILE";

110  REM IF DOS 3.3 THEN SET UP CSW VECTOR

120  IF PEEK(1002) = 76 THEN  CALL 32768: GOTO 150

130  REM IF PRODOS, SET UP OUTPUT LINK AT $BE30,31

140  POKE 48688,129: POKE 48689,129: CALL 32779

150  TEXT: PRINT: PRINT

160  PRINT "FILENAME TO SAVE, OR <RETURN> TO EXIT": INPUT A$

170  IF LEN(A$) > 0 THEN PRINT CHR$ (4);"BSAVE ";A$;",A$9000,L$300"

180  END

3[CT] he Appleso! program is new to this edition. Similar to chapter 31, forProDOS 
the output vector at$BE30,$BE31 is directly changed to point to the routine atHCOUT 
($8181). he main program at $800B is then run.

]
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Miscellaneous Notes

Although they can be displayed, lower-case characters may not be easy to 
edit because they are not easily generated from the Apple II keyboard. Apple //e 
owners will have no trouble. It is possible to use the lowercase input routine 
described in an earlier chapter to generate lowercase characters from a standard 
Apple II keyboard. Simply activate the routine prior to calling the character edi-
tor. he<ESCAPE> and<SHIFT> functions will continue to work properly, pre-
sumably with no ill efects on the editor routines.
It is worth noting that the character sets used and created by this editor are 

identical in format to theDOS Tool Kit Animatrix character sets, although the 
character editor provided with that package does have one or two minor, though 
not inconsequential, features not available in this editor.

Conclusion

his concludes our discussion of hi-res character generation and editing; it 
should provide you with the basic principles of these techniques. he idea can be 
extended into block graphics for arcade-style games or as improvements to the 
art of hi-res character generation. You might, for example, want to experiment 
with oversize letters, colored text, or simple animation.



33. he 65C02
June 1983

his last chapter deals with a new version of our beloved 6502 microproces-
sor known as the65C02. Although the chip has just been released within the last 
few months and has yet to ind its way into the mainstream of computers, it 
seems likely that we’ll be hearing more about this item in the upcoming year.
Before jumping right into its new functions, though, let’s irst get a little 

background information out of the way.
he 6502 was designed by Chuck Peddle and Bill Mensch of MOS Technol-

ogy (now owned by Commodore Business Machines) and, as of the present, 70 
percent of its use is by Apple, Atari, and Commodore.1 he current manufactur-
ers of the 6502 are Rockwell International, MOS Technology, and Synertek. As 
sometimes happens with these things, though, some of the key persons involved 
with the 6502 went to work at a new company, Western Design Center.2 his 
company, then, is the original source of the new 65C02 chip. But the story 
doesn’t end there. Western Design Center has licensed the design to at least 
three independent manufacturers: Rockwell International, GTE, and NCR. 
hese companies took the initial 65C02 design and added their own enhance-
ments.
he picture at this point is that each of these companies will be marketing its 

own version of the 65C02. he chips are more or less the same, but the Rockwell 
chip has the largest instruction set.
“Largest instruction set,” you ask? Yes! he new 65C02 has had the old 6502 

instruction set appended with a variety of new instructions. Because the Rock-
well chip appears to be a superset of all of the other chips, the bulk of this chap-
ter will assume that it’s the one that’s being used. At the end of this chapter we’ll 
describe diferences among the three chips.
he Rockwell chip has a total of twelve new instructions and two new 

addressing modes. In addition, a number of addressing modes not previously 
available to an instruction (such as the immediate mode for theBIT instruction) 
are now available. here are a total of 59 actual new opcodes. he meaning of all 
of these numbers will become clear shortly.

1[CT] Corrected from the original article, which listed Commodore Business Machines 
as the original designer.

2[CT] Speciically, Bill Mensch, the designer of the 65C02.

]
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New Addressing Modes

Since this is one of the smaller numbers, let’s start here. You’ll recall from 
many earlier discussions that each6502 instruction has up to sixaddressing 
modes. hat number is arrived at by counting some modes as mere variations of 
others and not including the value (relative addressing) associated with branch 
instructions (BEQ,BNE,BCC,BCS, and so on) as an addressing mode here. To 
refresh your memory, a list of modes and variations is provided in the table 
below for the LDA (LoaD Accumulator) instruction.

Addressing Mode Common Syntax

1.Absolute LDA $1234

Zero Page LDA $12

2.Immediate LDA #$12

3.Absolute,X LDA $1234,X

Zero Page,X LDA $12,X

4.Absolute,Y LDA $1234,Y

5.(Indirect,X) LDA ($12,X)

6.(Indirect),Y LDA ($12),Y

Indirect Addressing

he irst of the two new addressing modes is quite easy to explain because it 
is essentially another variation of an existing mode. he new mode isindirect 
addressing. his may sound very familiar because this is similar to the instruc-
tions used to access memory locations via a zero-page pointer. Usually, though, 
the Y-Register is set to 0 or some other value, which is then added to the address 
indicated by the zero-page pointer to determine the address of interest.
his is ine for addressing a large table of data, but many times we are inter-

ested in only one byte of memory and must then go through the obligatoryLDY 
#$00 to properly condition the Y-Register. (See entries 5 and 6 in the table 
above.)
he new instruction allows us to ignore the contents of the Y-Register and 

gain access to the memory location directly. his conserves two bytes of code for 
each reference, because the Y-Register does not have to be loaded. If you want to 
scan a block of memory, such as for a table, this instruction still can be used if 
you are willing to INC or DEC the zero-page pointer accordingly.

Addressing Mode Common Syntax

7.Indirect LDA ($12)

his new addressing mode is available for the instructions listed below.
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Instructions with 
Indirect Addressing Opcode

ADC ($12)

AND ($12)

CMP ($12)

EOR ($12)

LDA ($12)

ORA ($12)

SBC ($12)

STA ($12)

72

32

D2

52

B2

12

F2

92

Indexed Absolute Indirect

he second new addressing mode has a name that obviously was not 
designed with easy recall in mind. Fortunately, this too is a variation on an exist-
ing theme and as such should be easy to remember. In the past, we hadindexed 
indirect addressing. We called this modepre-indexed for clarity’s sake. An 
example would beLDA ($22,X). Pre-indexing means that the contents of the X-
Register are added to the address of the zero-page reference before using the 
sum of those numbers to determine which zero-page pair to use. For example, 
the instructionLDA ($22,X), where the X-Register held the value 4, would actu-
ally use bytes $26, $27 to get the inal destination address.
his difers from indirect indexed, which we referred to aspost-indexing. In 

post-indexing, the value of the Y-Register is added a!er the base address is 
determined. For example, in the instructionLDA ($22),Y, where the Y-Register 
holds the value 4 and$22,$23 point to location$1000, the memory location 
accessed would be $1004.
You’ll recall also that pre- and post-indexing were limited in their use of the 

X- and Y-Registers. Pre-indexing could use only the X-Register and post-index-
ing only the Y-Register. Before you get too excited in anticipating the possibili-
ties of the new instruction, restrain yourself: his much has not changed.
What has changed is that pre-indexing is no longer limited to zero-page 

pointers. he new mode allows any two-byte value to be used. his means that 
the X-Register can be added to the base address of a table of memory pointers 
that previously could have been located only on the zero page of memory.

Addressing Mode Common Syntax

8.Indexed Absolute Indirect JMP ($1234,X)

For example, suppose you had a command interpreter that accepted a com-
mand value between 0 and 2. With the65C02, such an interpreter can now be 
used in conjunction with aJMP table located anywhere in memory, constructed 
as in the following example:

]
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JMP DATA TABLE:

1200: 80 10

1202: A0 10

1204: CO 11

                1    ********************************

                2    * AL33-SAMPLE COMMAND PROCESSOR*

                3    ********************************

                4             XC              ; MERLIN: ALLOW 65C02 OPCODES

                5             ORG  $1000

                6    TABLE    EQU  $1200

                7    *

1000: 20 00 40  8    ENTRY    JSR  GETCMD     ; GET VALUE FROM 0-2

1003: 0A        9             ASL             ; MULTIPLY BY 2

1004: AA        10            TAX             ; PUT IN X-REGISTER

1005: 7C 00 12  11   GO       JMP  (TABLE,X)  ; EXECUTE PROPER ROUTINE

                12   *

                13   * ...MORE CODE HERE...

1080: EA        50   CMD1     NOP             ; FIRST ROUTINE

                51   * ...MORE CODE HERE...

10A0: EA        100  CMD2     NOP             ; SECOND ROUTINE

                101  * ...MORE CODE HERE...

11C0: EA        150  CMD3     NOP             ; THIRD ROUTINE

                151  * ...MORE CODE HERE...

his is a very fast and efective technique. he following table shows the one 
instruction that can use this new mode.3

Indexed Absolute Indirect Addressing Opcode

JMP ($1234,X) 7C

New “Standard” Addressing Modes

here are a few instructions that have addressing modes that are new just to 
them. For example, two of the most exciting ones are INC and DEC.
Previously, any uses ofINC andDEC were limited to memory locations. In 

addition (so to speak), using the X- and Y-Registers was the only way to main-
tain a simple loop counter without using a dedicated memory location. he sur-
prise here is thatINC andDEC will now work on the Accumulator. his is nice 
because you can now maintain a counter in the Accumulator, or even do fudging 
of lag values as they are being handled in the Accumulator.
Some future assemblers may require the “somewhat usual” (if not inconve-

nient) use ofDEC A orINC A as they seem to prefer forLSR,ASL, and other opera-
tions on the Accumulator.
heBIT instruction also allows some additional addressing modes that may 

prove useful. Previously, theBIT instruction supported only absolute addressing. 

3[CT] he original article incorrectly listed eight other instructions:ADC,AND,CMP,EOR, 
LDA, ORA, SBC, STA. In addition, the code example has been corrected to use the new JMP 
instruction.
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hat is to say that a directly referenced memory location was used as the value 
against which the Accumulator was operated on.

Addressing Mode Common Syntax

Absolute BIT $1234

Zero Page BIT $12

his is useful for testing a memory location for a given bit pattern, but not 
directly suitable for testing the bit pattern of the Accumulator. For many opera-
tions, this means you have to rather artiicially load some memory location with 
the value you wanted to compare to the Accumulator.
he new 65C02 supports three new addressing modes for the BIT instruc-

tion:

Addressing Mode Common Syntax Opcode

Immediate BIT #$12 89

Absolute,X BIT $1234,X 3C

Zero Page BIT $12,X 34

At Last, the Real Scoop! New Instructions

Of course, the real question lurking in everyone’s mind is: “But what are the 
new instructions?”
he great thing about the 65C02 is that not only are many of the old instruc-

tions enhanced, but there also are a number of absolutely terriic new instruc-
tions–twelve, to be exact. he new instructions are shown in the table below.

Instruction4 Description Opcode

BBR Branch on Bit Reset (clear)0F 1F 2F 3F 4F 5F 6F 7F
BBS Branch on Bit Set 8F 9F AF BF CF DF EF FF

BRA BRanch Always 80

PHX PusH X onto stack DA

PHY PusH Y onto stack 5A

PLX PulL X from stack FA

PLY PulL Y from stack 7A

RMB Reset (clear) Memory Bit 07 17 27 37 47 57 67 77

SMB Set Memory Bit 87 97 A7 B7 C7 D7 E7 F7

STZ STore Zero 64 74 9C 9E

TRB Test and Reset (clear) Bit 14 1C

TSB Test and Set Bit 04 0C

4[CT] heBBR,BBS,RMB, andSMB instructions apparently were never available on any 
65C02 chips used by Apple.

]
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So what exactly do these instructions do? Well, let’s examine some of the 
easy ones irst...

PHX, PHY, PLX, and PLY
Commands for pushing a byte onto the stack and pulling a byte of of the 

stack exist for the Accumulator but not for the X- and Y-Registers in the 6502. 
One of the more common uses for the stack is to save all of the registers prior to 
going into a routine so that everything can be restored just prior to exiting. 
Ordinarily, to save the Accumulator, X-Register, and Y-Register, we’d have to do 
something like this:

ENTRY    PHA             ; SAVE A

         TXA             ; PUT X IN A

         PHA             ; SAVE IT

         TYA             ; PUT Y IN A

         PHA             ; SAVE IT

WORK     NOP             ; YOUR PROGRAM HERE

DONE     PLA             ; GET Y

         TAY             ; PUT IT BACK

         PLA             ; GET X

         TAX             ; PUT IT BACK

         PLA             ; GET A

EXIT     RTS

he problem is complicated even further in programs like the character gen-
erator listed in chapter 31. here we had to refer to the original value of the 
Accumulator several times, and this interfered with any simple way to push all of 
the register data onto the stack.
With the new 65C02, this could all be resolved with the following:

ENTRY    PHX             ; SAVE X

         PHY             ; SAVE Y

         PHA             ; SAVE A

WORK     NOP             ; YOUR PROGRAM HERE

DONE     PLA             ; GET A

         PLY             ; GET Y

         PLX             ; GET X

EXIT     RTS

All four are one-byte commands, addressing only the indicated register.

BRA

BRA (branch always) is one of those instructions that will thrill writers of 
relocatable code. One of the techniques for writing code that is location-inde-
pendent involves the use of a forced branch instruction, such as:

         CLC             ; CLEAR CARRY

         BCC  LABEL      ; ALWAYS
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Unfortunately, this means we must force some lag of the Status Register, 
which may not be convenient at the time. In addition, the process takes up an 
extra byte on most occasions.

BRA alleviates both of these problems by always branching to the desired 
address, subject of course to the usual limitations of plus or minus 128 bytes as 
the maximum branching distance.
It is worth mentioning, in the interest of programming style, that many peo-

ple indiscriminately use aJMP to go back to the top of a loop when a branch 
instruction would do the trick; this only adds one more limitation to the inal 
code in the process. Hopefully, this new branch instruction will encourage peo-
ple to make their code more location-independent.BRA, like the rest of the 
branch instructions on the 65C02, uses only relative addressing.

STZ

STZ (STore Zero) is used for zeroing out memory bytes without changing 
the contents of any of the registers.
Many times it is necessary to set a number of internal program registers to 0 

before proceeding with the routine. his is especially needed in mathematical 
routines such as multiplication and division.
Ordinarily this is done by loading the Accumulator with 0 and then storing 

that value in the appropriate memory locations. his is easy to do when you have 
to load the Accumulator, X-Register, or Y-Register with 0 anyway. he problem 
is that on occasion the only reason one of the registers is loaded with 0 is because 
of the need to zero a memory location.

STZ allows us to zero out any memory byte without altering current register 
contents. Not all of the addressing modes usually available to theSTA,STX, or 
STY instructions are available withSTZ, though. he following table shows what 
modes are available.

STZ Addressing Modes Common Syntax

Absolute STZ $1234

Zero Page STZ $12

Absolute,X STZ $1234,X

Zero Page,X STZ $12,X

SMB and RMB
SMB andRMB (Set/Reset Memory Bit) will allow you to set or clear a given bit 

of a byte in memory. Previously this would have required three separate instruc-
tions to achieve the same result. For example:

         LDA  MEMORY     ; LOAD VALUE FROM MEMORY

         AND  #$7F       ; %0111 1111 IS PATTERN NEEDED TO CLEAR BIT 7

         STA  MEMORY     ; PUT IT BACK

]
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With the new instruction, we can accomplish the same thing with:

         RMB7 MEMORY     ; RESET (CLEAR) BIT 7 OF MEMORY

or set the bit again with:

         SMB7 MEMORY     ; SET BIT 7 OF MEMORY

here are two interesting things to note here. he irst is that for some rea-
son the term “reset” is used instead of “clear” to indicate the zeroing of a given 
bit. he second item is that we now have four-character instruction codes 
(mnemonics), the last character being the number of the bit being acted on. 
What problems this may cause in some assemblers remains to be seen, but this 
new species of instruction seems to have arrived.5 hese instructions are limited 
to zero-page addressing only.

BBS and BBR
BBS andBBR (Branch on Bit Set/Reset) are two new branch instructions that 

make it possible to test any bit of a zero-page location and then branch depend-
ing on its condition. his instruction will be very useful for testing lags in pro-
grams that need to pack lag-type data into as few bytes as possible. By 
transferring I/O device registers to zero page, it is also possible to test bits in 
these registers directly for status-bit conditions.
hese instructions are very similar in both appearance and usage to theSMB 

andRMB instructions just discussed. hey, too, use four-character mnemonics. 
he diference, of course, is that we are testing bit status rather than changing it. 
hese are three-byte instructions, the irst byte being the opcode, the second 
being the byte to test, and the third being a relative branch value. In assembly, 
these commands actually will require two labels!6

One of the irst applications is the testing of whether a number is odd or 
even. Previously, this had to be done with anLSR orROR instruction, followed by 
a test of the carry lag, such as:

         LDA  MEMORY     ; LOAD A WITH VALUE

         LSR             ; SHIFT BIT 0 INTO CARRY

         BCS  ODD        ; SET IF ODD

         BCC  EVEN       ; CLEAR IF EVEN

he equivalent can now be done without afecting the carry lag or the 
Accumulator:

         BBR0  MEMORY,EVEN   ; BRANCH IF BIT 0 = 0 = EVEN

         BBS0  MEMORY,ODD    ; BRANCH IF BIT 0 = 1 = ODD

5[CT] he problem is moot since SMB and RMB are not available on most Apple machines.
6[CT] Again moot since BBS and BBR are not available.
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his also could be useful in creating drivers for the newApple //e 80-col-
umn extended memory board since this card uses one bank of memory or the 
other for the text screen, depending on whether the screen column position is 
odd or even.

TSB and TRB
TSB andTRB (Test and Set/Reset Bit) are the most complex of the new 

instructions. hese instructions are rather like a combination of theBIT and 
AND/ORA instructions of the6502. hey seem primarily designed for controlling 
I/O devices but may have other interesting applications as things develop.
he action of these two instructions is to use a mask stored in the Accumu-

lator to condition a memory location. he mask in the Accumulator is unaltered, 
but the Z-lag of the Status Register is conditioned based on the memory con-
tents prior to the operation.
For example, to set both bits 0 and 7 of a memory location we could use the 

following set of instructions:

LDA  #$81       ; %1000 0001 = MASK PATTERN

TSB  MEM1       ; SET BITS 0,7 OF MEMORY

BNE  PRSET      ; ONE OF THESE WAS 'ON' ALREADY

BEQ  PRCLR      ; NEITHER OF THESE WAS 'ON' ALREADY

his would clear the bits:

LDA  #$81       ; %1000 0001 = MASK PATTERN

TRB  MEM2       ; CLR BIT 0,7 OF MEMORY

BNE  PRSET      ; ONE OF THESE WAS 'ON' ALREADY

BEQ  PRCLR      ; NEITHER OF THESE WAS 'ON' ALREADY

hese instructions use only absolute and zero-page addressing.

Other Diferences

here are a number of other diferences between the 6502 and 65C02, most 
notably the power consumption. he power use of the65C02 is one-tenth that of 
the 6502, so the chip runs considerably cooler. he lower power requirement 
opens new possibilities for portable computers and terminals.
One point of interest is that the old6502 indirect jump problem has been 

ixed. If you’re not aware of it, the 6502 has a well-documented problem with 
indirect jumps that use a pair of bytes that straddle a page boundary.
For example, consider these three instructions:

Instruction Pointers Wanted Pointers Used

JMP ($36)

JMP ($380)

JMP ($3FF)

$36,$37

$380,$381

$3FF,$400

$36,$37

$380,$381

$3FF,$300

]
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Notice that, in the third instance, the pointers used are not those antici-
pated. his is because the high byte of the pointer address is not properly incre-
mented by the standard 6502.
his problem has been ixed in the 65C02. he only possible problem here is 

“clever” protection schemes that use this bug to throw of people trying to 
decode the protection method. Otherwise, this should not present any problems 
to existing so!ware.
Are there any problems to be anticipated? In theory, no. he new 65C02 is 

compatible pin for pin with the old one, and also upwardly compatible in terms 
of so!ware. So!ware for the Apple, PET, Atari, or other 6502-based microcom-
puters should work without problems with the new chip. Are there any excep-
tions? Unfortunately, yes.
he irst big problem concerns internal microprocessor timing on theApple 

II andII Plus computers. he Apple II and II Plus do not handle the micropro-
cessor clock cycles in the same way the Apple //e does. On the surface, the 65C02 
should directly replace the 6502; however, because the 650C2 is a faster chip, 
data is not available for as long and bits can get lost. What this means for now is 
that the 65C02 can be used only in the Apple //e andApple /// machines. None 
of the manufacturers at this time produce a chip that works on the Apple II or II 
Plus. It can be expected, though, that revisions will be made in the near future 
that will allow the 65C02 to be implemented in the older machines.
here also is a possibility of problems with some existing so!ware. A small 

percentage of so!ware may be using undocumented bugs or “features” of the old 
6502 chip, and these might not function as anticipated with the 65C02.
For example, a reasonable question might be, “Where did all the new 

opcodes come from? A!er all, wasn’t the chip full?” To answer this, consider 
how the instructions we use now are structured. he 6502 operates by scanning 
memory and performing speciic operations based on the values that it inds in 
each memory location. You would then expect a total of 256 possible opcodes. 
As it happens, all 256 possible values are not used. It is this group of unused 
opcodes that allows for the new instructions and also creates the possibility of a 
small percentage of diiculties with existing programs.
Although rarely documented, the previously “unused” values in the 6502 

will cause certain things to happen, much the same way that a legal value would. 
For instance, the code$FF on a 6502 is labeled as an alternateNOP. his is one of 
the codes that have been converted to a new function in the65C02, namelyBBS7 
(Branch on Bit 7 Set).
here are other unused codes, though, that have combination efects–usu-

ally of little use–such as loading the Accumulator and decrementing a register 
at the same time. heir main application is similar to the indirect jump problem: 
creating code that cannot be casually interpreted. If these instructions have been 
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used in existing so!ware, problems could arise when that so!ware is run on the 
65C02.
With such diiculties, then, why bother to substitute the new 65C02 into an 

existing Apple? he answers are varied.
First of all, the 65C02 is likely to appear in upcoming releases of existing 

computers (in a new release of the Apple //e, perhaps?), and as such you can 
experiment now with the newest version of this versatile device.
Second, there likely will be speciic applications where the advantages of the 

chip will make it worth supplying with the so!ware, since the disadvantages are 
practically nonexistent for theApple //e andApple ///. Code rewritten to take 
advantage of the new instructions can be expected to be 10 to 15 percent smaller 
and run proportionally faster. In certain applications, even greater improve-
ments could be expected.
At this writing, the Rockwell chip seems to have the largest set of instruc-

tions of the three varieties available. he GTE and NCR chips lack the bit-ma-
nipulation instructions but are otherwise identical.
As to assemblers supporting the instructions, the current version ofMerlin 

supports all the new opcodes in both the assembly andSourceror portions of the 
product. S-C So!ware is ofering a 65C02 cross-assembler to registered owners 
of theS-C Assembler at a reduced rate. Hayden will be ofering an update to 
ORCA to support the GTE version of the chip. Any assembler that supports 
macro capabilities should be able to be used immediately by deining the proper 
hex codes.

]
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A note from Roger Wagner, June 1983:

his installment marks the last in this series. I want to thank the 
many readers of this column over the last several years for their 
enthusiastic support and valuable suggestions. I have always 
believed that the human element to this industry, and in fact any 
endeavor, is the truly rewarding part. I would also like to thank 
So!alk for giving me the opportunity to share the excitement of 
programming with its readers, and also thank Brian Britt for his 
help in researching this month’s article.

For better or worse, though, you’re not likely to be completely rid 
of me. here are rumors of other columns and projects, and I look 
forward to being a small part of theSo!alk family for some years 
to come.

A note from So!alk editor Margot Comstock Tommervik, June 1983:

It was nearly three years ago that Roger Wagner’sAssembly Lines 
began appearing inSo!alk; the magazine was only one month old. 
In that irst year, Wagner’s column elicited more mail fromSo!-
alk’s readers than any other feature, and properly so: It was the 
irst time assembly language had been explained from step one. In 
fact, in his irst column, Wagner didn’t even introduce a com-
mand.

With this issue, Roger Wagner’sAssembly Lines ends. he irst 
year’s columns plus appendixes and revisions have been available 
for some time inAssembly Lines: "e Book. Volume 2, covering 
the rest of the columns, will be released shortly by So!alk Books.

Roger Wagner will not fade away. He’s planning occasional fea-
ture articles forSo!alk and he’s promised to remain available to 
answer questions from So!alk readers.
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In the March 1981 edition ofSo!alk magazine, we challenged the readers of 
the “Assembly Lines” column to a contest. Using the commands discussed in the 
column from October 1980 through March 1981 (all material covered through 
chapter six in this book), contestants were asked to submit programs which 
would be judged by the staf, the shortest and most interesting program being 
the winner. Contest rules are reprinted here as they originally appeared in the 
March issue of So!alk.

Contest Rules

Create the shortest possible program using all and only the com-
mands presented thus far in this series that does something inter-
esting. he program must be entirely in machine language, and 
may not call any routines in Integer or Appleso!. It may call any 
of the Monitor routines from $F800−$FFFF.

he person who submits the shortest program of the most interest 
will be awarded $50 worth of product from any advertiser in this 
issue of So!alk and the program will be published in So!alk.

Judging will be based on the opinions of a rather subjectively 
selected panel made up of people atSo!alk, myself, and any other 
hapless passersby we can rope into this thing. Members of the 
stafs ofSo!alk and Southwestern Data Systems and professional 
programmers are not eligible to win. Entries should be submitted 
no later than April 15, 1981. Ties will be settled by Apple’s random 
number generator. (I promise not to seed it!)

Contest results were announced in the June 1981 edition ofSo!alk. he 
winning program for the contest is listed below. he commentary accompanies 
the listing.

Contest Results

With the usual comments in mind about how hard it was to decide on a 
winner, I hereby announce the winner of the contest as Steven Morris, of 
Queens, New York. His program combines a number of the principles we’ve dis-
cussed so far and also shows some nice touches in programming. It’s an elegant 
use of all the given codes. Of particular interest is a self-modifying part wherein 
the program actually rewrites a small portion of itself upon user command.

]
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I think it will be of interest, and also a good review, to go through Morris’s 
listing to see what’s been done. Before doing that, however, a little background 
on one more kind of tone routine is in order. his will make Morris’s program 
that much more understandable.
In chapter eight, I discussed simple tone routines in which the speaker was 

accessed at a constant rate for a given length of time. hese two factors deter-
mined the pitch and duration of the tone played. A variation on this is to have 
the pitch decrease or increase as the tone is played, creating efects rather like the 

sound usually associated with a 
falling bomb or a rising siren, 
respectively. his requires three 
variables, and without getting too 
technical, let me take a moment to 
illustrate with the chart at le!.
he vertical axis represents 

the frequency of the tone being 
played. Putting several tones 
together into a series over a period 
of time creates, in this case, a ris-
ing scale. As each tone is played, 

the pitch is increased. Each individual tone lasts some arbitrary time, T, and put 
together, the series lasts an overall time period, labeled here as DURATION.
If the pitch is decreased by a certain amount each time, the pattern is 

reversed. his is sometimes called aramp tone pattern. In parentheses, I have 
indicated how each of these values is determined in Morris’s program.
Here is a listing of the program:

                1    ********************************

                2    * ASSEMBLY LINES CONTEST WINNER*

                3    *      BY STEVEN MORRIS        *

                4    ********************************

                5    *        OBJ  $302

                6             ORG  $302

                7    *

                8    PTCH     EQU  $300

                9    DRTN     EQU  $301

                10   SPKR     EQU  $C030

                11   PREAD    EQU  $FB1E

                12   PB0      EQU  $C061

                13   PB1      EQU  $C062

                14   GRSW     EQU  $C050

                15   TXTSW    EQU  $C051

                16   CLRSCR   EQU  $F832

                17   *

0302: CA        18   LOOP     DEX             ; DEC THIS DELAY

0303: D0 06     19            BNE  CYCLE      ; DONE? NO = SKIP CLK

                20   *
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0305: AE 00 03  21   CLK      LDX  PTCH       ; REFRESH X-REG

0308: AD 30 C0  22            LDA  SPKR       ; CLK SPKR

                23   * SPKR CLKS ONLY ONCE

                24   * FOR EVERY ($300) PASSES

                25   *

030B: 88        26   CYCLE    DEY             ; # OF CYCLE CTR.

030C: D0 F4     27            BNE  LOOP       ; DONE?

                28   *                          NO = KEEP GOING

030E: CE 01 03  29            DEC  DRTN

0311: F0 06     30            BEQ  CHKPDL     ; DONE W/ RAMP?

                31   *                          YES = CHK PDLS

0313: EE 00 03  32   RAMP     INC  PTCH

0316: 4C 02 03  33            JMP  LOOP

                34   *

0319: A2 00     35   CHKPDL   LDX  #$00

031B: 20 1E FB  36            JSR  PREAD      ; READ PDL(0)

031E: 8C 00 03  37            STY  PTCH       ; SET PTCH

0321: E8        38            INX

0322: 20 1E FB  39            JSR  PREAD      ; READ PDL(1)

0325: 8C 01 03  40            STY  DRTN       ; SET DRTN

0328: A0 7F     41            LDY  #$7F

032A: CC 62 C0  42            CPY  PB1        ; #1 PRESSED?

032D: 90 27     43            BCC  TOGGLE     ; BRCH IF YES

                44   *

032F: C8        45            INY             ; #$7F -> #$80; AN EXCUSE

0330: 98        46            TYA             ; TO USE THESE

0331: AA        47            TAX             ; COMMANDS.

0332: EC 61 C0  48            CPX  PB0        ; #0 PRESSED?

0335: B0 CB     49            BCS  LOOP       ; BRCH IF NO

                50   *

0337: 20 32 F8  51   SCREEN   JSR  CLRSCR     ; CLR TOBLK

033A: 8D 50 C0  52   S1       STA  GRSW       ; SHOW GRAPHICS MODE

033D: 8D 51 C0  53            STA  TXTSW      ; SHOW TEXT MODE

0340: 4C 3A 03  54            JMP  S1

                55   *

0343: A8        56   SETDEC   TAY             ; USE UP THIS CODE

0344: A2 CE     57            LDX  #$CE       ; OPCODE FOR 'DEC'

0346: 8A        58            TXA

0347: CD 13 03  59            CMP  RAMP       ; IS IT 'DEC' NOW?

034A: F0 04     60            BEQ  SETINC     ; BRCH IF YES.

034C: 8D 13 03  61            STA  RAMP       ; NO. MAKE IT 'DEC'

034F: 60        62            RTS

                63   *

0350: A2 EE     64   SETINC   LDX  #$EE       ; OPCODE FOR 'INC'

0352: 8E 13 03  65            STX  RAMP

0355: 60        66            RTS

                67   *

0356: 20 43 03  68   TOGGLE   JSR  SETDEC

0359: 4C 02 03  69            JMP  LOOP

                70   *

035C: C0        71            CHK

I’ll try to explain each part of the program, hopefully with a proper balance 
of enough detail to jog your memory and enough brevity to keep things reason-
ably short.

]
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If all of this seems overwhelming, you’re trying to read through it too fast. 
Go back through it slowly, taking your time. Have a nice cup of tea while you’re 
at it.
Remember, we’re packing six chapters’ worth of subject matter into one 

program. Don’t worry if the ine details of the tone routine escape you. he 
important part is to make sure that you at least recall the existence and general 
nature of each individual command used in the program.
To explain the program, the easiest place to start is actually at CHKPDL, where 

the paddles are checked for new values at the end of each ramp series (line 35 at 
address$319). he X-Register is loaded with a$00 to tell the computer we want 
to readpaddle 0 in the next step, thenJSR to$FB1E. hat returns with the Y-
Register holding the value of the paddle ($00 to$FF), which is then stored in 
location$300, labeledPTCH (“pitch”). he X-Register value is then incremented 
from$00 to$01 on line 38, and paddle 1 read. he returned value is stored at 
$301 for the duration value.
If paddle pushbutton 1 is pressed, location$C062 will hold a number greater 

than$7F. To check for this, the Y-Register is loaded with$7F and compared 
against$C062. If$C062 holds a value greater than$7F, the Branch Carry Clear 
(BCC) will be taken (Y-Register < memory location = carry clear). We’ll see what 
that does later.
If the value is less than$7F, program execution will fall through to line 45. 

Here the$7F is increased to$80 and that value passed to the X-Register via the 
Accumulator. hese steps are here to exercise theINY,TYA,TAX commands, and 
to allow us to use theCPX command next to fulill the contest requirements. At 
line 48 the comparison is done. If the X-Register is greater (remember it holds a 
$80 here), the button is not pressed and the Branch Carry Set (BCS) will be taken 
(X-Register > memory location = carry set) that sends us to the main tone loop.
At entry to this loop, the X-Register and the Y-Register hold rather arbitrary 

values, but the overall theory is that, starting atCLK on line 21, the X-Register is 
loaded with the pitch value and the speaker clicked once. At line 26 the Y-Regis-
ter is decremented; this is a counter for the length of that pitch value. Jumping 
back to loop, the net efect is that the program will maken passes through before 
clicking the speaker once, wheren is the pitch value held in$300. his creates 
the delay between clicks needed for a given tone.
he length of that particular tone is determined by the Y-Register. When it 

reaches a value of$00, theBNE (Branch Not Equal) fails and the counter for the 
overall duration is decremented. As long as there’s time le! (that is,DRTN >$00), 
the next test fails (BEQ = Branch if Equal to Zero) and the pitch value is incre-
mented.
Going back toLOOP plays this next note until all of the notes in the series 

have been played. Incrementing pitch gives a descending note pattern. (Recall 
that the greater the pitch value, the lower the tone played.)
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WhenDRTN does reach 0, the program branches to the paddle check routine 
that we started in. Let’s see what happens when a button is pressed. If button 1 is 
pressed, the program goes viaTOGGLE toSETDEC. his clever section (ignore the 
TAY) loads the X-Register with the value$CE. his is the opcode forDEC (DECre-
ment a memory location).
If the comparison fails, that is, there is not a$CE currently there, the$CE is 

stored atRAMP, the RTS (ReTurn from Subroutine) returns toTOGGLE and theJMP 
loop sends everything back into the tone loop, this time with aDEC PTCH there 
instead. his gives an ascending pitch series.
If the comparison is true, it means that a$CE was put there earlier, and the 

BEQ goes toSETINC, which restores the code forINC atRAMP ($313), and then 
returns with the RTS, JMP LOOP as in the previous case.
hese two options give the program the ability to rewrite itself, an interest-

ing and powerful idea.
If paddle button 0 is pressed, the branch at line 49 fails and the program falls 

into an ininite loop atSCREEN ($337). In this loop, the screen is cleared to the 
color black by the Monitor routine at $F832.
Locations$C050 and$C051 areso!-switches: accessing these changes the 

display mode of the Apple. he screen can be viewed either in a text mode or in a 
graphics mode. Accessing$C050 on line 52 sets the graphics mode, so the screen 
appears black. Accessing$C051 sets the display to text, which appears as inverse 
“@” signs.
heJMP S1 repeats this cycle back and forth so fast that you don’t actually 

see the licker, just an interesting pattern created by the screens switching faster 
than your screen monitor can display them.
At this point you have to hit RESET to end.
here were a number of other excellent entries. Honorable mention should 

be made of Steve Hawley, Ray Ransom, Stephen Gagola, Jr., and Matt Brookover 
for their eforts.

]
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his section may well serve as the most o!en-used portion of this book. I 
have mentioned elsewhere that learning programming can be looked upon as 
merely familiarizing yourself with the available tools to accomplish a speciied 
task. he following section summarizes the tools available to an assembly-lan-
guage programmer.
When you are irst learning to program, much can be gained simply by 

browsing through the following pages and casually noting the variety of instruc-
tions available when writing a routine. Each entry provides the usual technical 
data on the instruction and o!en a brief example of its use as well.
Please note that in some examples a percent sign (%) is used to indicate a 

binary form of a number. Some assemblers support this delimiter which can be 
very convenient, particularly when working with the logical operators and shi! 
instructions. For example, the following representations are all equivalent: 
100 = $64 = %0110 0100.
When looking at addressing modes, it’s easy to forget the subtleties of the 

diferences between the X- and Y-Register as used with indirect addressing. 
Remember that the syntax($FF,X) indicatespre-indexing, while($FF),Y indi-
cates post-indexing. See chapter seven for the “oicial” explanation of addressing 
modes.

ADC: ADd with Carry

Description: his instruction adds the contents of a memory location or imme-
diate value to the contents of the Accumulator, plus the carry bit, if it was set. 
he result is put back in the Accumulator.ADC works for both binary andBCD 
(Binary Coded Decimal) modes.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate ADC #$12 69 12

Zero Page ADC $12 65 12

Zero Page,X ADC $12,X 75 12

Absolute ADC $1234 6D 34 12

Absolute,X ADC $1234,X 7D 34 12

Absolute,Y ADC $1234,Y 79 34 12
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Addressing Modes Common Syntax Hex Coding

(Indirect,X) ADC ($12,X) 61 12

(Indirect),Y ADC ($12),Y 71 12

(Indirect) [65C02]1 ADC ($12) 72 12

Uses: Peculiarly enough,ADC is most o!en used to add numbers together. Here 
are some common examples:

1. Adding a constant to a register or memory location:

         CLC

         LDA  MEM

         ADC  #$80

         STA  MEM       ; MEM = MEM + #$80

2. Adding a constant (such as an ofset) to a two-byte memory pointer:

         CLC

         LDA  MEM

         ADC  #$80

         STA  MEM

         LDA  MEM+1

         ADC  #$00

         STA  MEM+1     ; MEM,MEM+1 = MEM,MEM+1 + #$80

3. Adding two (2) two-byte values together:

         CLC

         LDA  MEM

         ADC  MEM2

         STA  MEM

         LDA  MEM+1

         ADC  MEM2+1

         STA  MEM+1     ; MEM,MEM+1 = MEM,MEM+1 + MEM2,MEM2+1

AND: Logical AND

Description: his instruction takes each bit of the Accumulator and performs a 
logical AND with each corresponding bit of the speciied memory location or 
immediate value. he result is put back in the Accumulator. he memory loca-
tion speciied is unafected. (See also ORA.)

AND means that if both bits are 1 then the result will be 1, otherwise the result 
will be 0.

1[CT] Opcodes in gray are only available on the 65C02.

]



346 Assembly Lines

Truth Table 0 1

0 0 0

1 0 1

Example

Accumulator: 0 0 1 1 0 0 1 1

Memory:  0 1 0 1 0 1 0 1

Result:  0 0 0 1 0 0 0 1

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate AND #$12 29 12

Zero Page AND $12 25 12

Zero Page,X AND $12,X 35 12

Absolute AND $1234 2D 34 12

Absolute,X AND $1234,X 3D 34 12

Absolute,Y AND $1234,Y 39 34 12

(Indirect,X) AND ($12,X) 21 12

(Indirect),Y AND ($12),Y 31 12

(Indirect) [65C02] AND ($12) 32 12

Uses:AND is used primarily as amask, that is, to let only certain bit patterns 
through a section of a program. he mask is created by putting 1s in each bit 
position where data is to be allowed through, and 0s where data is to be sup-
pressed. For example, it is frequently desirable to mask out the high-order bit of 
ASCII data, such as would come from the keyboard or another input device 
(perhaps a disk ile). he routine shown assures that no matter what value is got-
ten from the device, the high-order bit of the value  in MEM will always be clear:

Code Example 1 Example 2
LDA DEVICE

AND  #7F

STA  MEM

01010111

01111111

01010111

11010111

01111111

01010111

AND is also used when you know the high bit will be set and you want it 
cleared. his is the case when getting ASCII characters from the keyboard. A 
common routine to get a character from the keyboard is:

WATCH    LDA  KYBD     ; $C000

         BPL  WATCH    ; AGAIN IF < #$80

         BIT  STROBE   ; CLEAR STROBE: $C010

         AND  #$7F     ; CLR HIGH BIT

         STA  MEM
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Another way of looking at this same efect is to say thatAND can be used to 
force a 0 in any desired position in a byte’s bit pattern. (SeeORA to force 1s). A 0 
is put in the mask value at the positions to be forced to 0, and all remaining posi-
tions are set to 1. Whenever a data byte isAND’d with this mask, a 0 will be forced 
at each position marked with a 0 in the mask, while all other positions will be 
unafected, remaining 0s or 1s, as in their original condition.
he Monitor uses theAND instruction in theGETLN routine ($FD6A) to con-

vert lowercase letters to uppercase:

FD7C-   B1 28     807         LDA   (BASL),Y ; GET CHARACTER

FD7E-   C9 E0     808 CAPTST  CMP   #$E0     ; ALPHA?

FD80-   90 02     809         BCC   ADDINP   ; NO, DON’T XVERT

FD82-   29 DF     810         AND   #$DF     ; XVERT TO CAPS

FD84-   9D 00 02  811 ADDINP  STA   IN,X     ; PUT CHAR BACK

here are also at least two other rather obscure uses for theAND instruction. 
he irst of these is to do the equivalent of aMOD function, involving a piece of 
data and a power of two. You’ll recall that theMOD function produces the 
remainder of a division operation. For example: 12 MOD 4 = 0; 14MOD 4 = 2; 18 
MOD 4 = 2; 17 MOD 2 = 1; etc.
he general formula is: Accumulator MOD 2n = RESULT
he actual operation is carried out by using a value of (2n− 1) as the mask 

value. he theory of operation is that only the lastn bits of the data byte are let 
through, thus producing the result corresponding to a MOD function.

Example:
         LDA  MEM

         AND  #$07    ; %00000111 = 2̂3-1

         STA  MEM     ; MEM = MEM MOD 8

his technique provides one of several ways of testing for the odd/even 
attribute of a number:

         LDA  MEM

         AND  #$01    ; %00000001 = 2̂1-1

         BEQ  EVEN

         BNE  ODD

he result of theAND of any number and$01 will always be either 0 or 1 
depending on whether the number was odd or even.
he third application is in determining if a given bit pattern is present 

among the other data in a number. For example, to test if bits 0, 3 and 7 are on:

         LDA  MEM

         AND  #$89    ; %10001001

         CMP  #$89

         BEQ  MATCH

         BNE  NOMATCH

]
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he general technique is to irstAND the data against the value for the byte 
with just the desired bits set to 1 (all others 0), and then immediately do aCMP to 
the same value. If all the speciied bits match, a BEQ will succeed.

Note:BIT (described later) can be used to test for one or more matches, but the 
AND technique described here conirms that all of the bits of interest match.

ASL: Arithmetic Shit Let

Description: his instruction moves each bit of the Accumulator or speciied 
memory location one position to the le!. A 0 is forced at the bit 0 position, and 
bit 7 (the high-order bit) falls into the carry. he result is le! in the Accumulator 
or memory location. (See also LSR , ROL, and ROR.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Accumulator ASL 0A

Zero Page ASL $12 06 12

Zero Page,X ASL $12,X 16 12

Absolute ASL $1234 0E 34 12

Absolute,X ASL $1234,X 1E 34 12

Uses: he most common use of ASL is for multiplying by a power of two. You are 
already familiar with the efect in base ten:123 × 10 = 1230 (shi! le!). For 
example:

         LDA   MEM

         ASL        ; TIMES 2

         ASL        ; TIMES 2 AGAIN

         STA   MEM  ; MEM = MEM*4 (4 = 2̂2)

he other use is to check a given bit position by conditioning the carry lag. 
For example, checking bit 4 would look like this:

         LDA MEM

         ASL

         ASL
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         ASL

         ASL BIT 4 NOW IN CARRY

         BCS SET

         BCC NOTSET

NOTE: his technique destroys the contents of the Accumulator in the 
process of checking the bit.AND orBIT instructions are generally preferred 
instead of this technique.
If testing bits 0 through 3,LSR orROR may be more appropriate (fewer shi!s 

needed). ROL also can be used instead ofASL depending on whether the data is to 
be preserved.

BCC: Branch Carry Clear

Description: Executes a branch if the carry lag is clear. Ignored if carry is set. 
Many assemblers have an equivalent pseudo-op calledBLT (Branch Less han, 
not to be confused with the sandwich), sinceBCC is o!en used immediately fol-
lowing a comparison to see whether the Accumulator is less than the speciied 
value.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BCC Address 90 FF

Note: he carry lag, upon which this depends, is conditioned byADC,ASL,CLC, 
CMP, CPX, CPY, LSR, PLP ROL, RTI, SBC, and SEC.

Uses: As mentioned,BCC is used to detect when the Accumulator holds a value 
that is less than a speciied value. he usual appearance of the code is listed 
below. Note that in a two-byte comparison the high-order bytes are checked 
irst.

One-Byte Comparison:

ENTRY   LDA  MEM

        CMP  MEM2

        BCC  LESS     ; Goes to LESS if MEM < MEM2

        BCS  EQ/GRTR

Two-Byte Comparison :

ENTRY   LDA  MEM+1

        CMP  MEM2+1

        BCC  LESS     ; MEM,MEM+1 < MEM2,MEM2+1

        BEQ  CHK2     ; MEM+1 = MEM2+1

]
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        BCS  GRTR     ; MEM,MEM+1 > MEM2,MEM2+1

CHK2    LDA  MEM

        CMP  MEM2

        BCC  LESS     ; MEM,MEM+1 < MEM2,MEM2+1

        BCS  EQ/GRTR  ; MEM,MEM+1 >= MEM2,MEM2+1

BCS: Branch Carry Set

Description: Executes a branch only if the carry lag is set. Some assemblers sup-
port the pseudo-opBGT (“Branch Greater han”), since this command is used to 
test whether the Accumulator is equal to or greater than the speciied value.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BCS Address B0 FF

Note: he carry lag, upon which this depends, is conditioned byADC,ASL,CLC, 
CMP, CPX, CPY, LSR, PLP ROL, RTI, SBC, and SEC.

Uses: BCS is used to detect whether the Accumulator is greater than or equal to a 
speciied value.BCS can be combined withBEQ to detect a greater-than relation-
ship. Note that in the two-byte comparison, the high-order bytes are checked 
irst.

One-Byte Comparison:

ENTRY   LDA  MEM

        CMP  MEM2

        BCC  LESS     ; Goes to LESS if MEM < MEM2

        BEQ  EQUAL    ; Goes to EQUAL if MEM = MEM2

        BCS  GREATER  ; Goes to GREATER if MEM > MEM2

Two-Byte Comparison:

ENTRY   LDA  MEM+1

        CMP  MEM2+1

        BCC  LESS     ; MEM+1 < MEM2+1

        BEQ  CHK2     ; MEM+1 = MEM2+1

        BCS  GRTR     ; MEM+1 > MEM2+1

CHK2    LDA  MEM

        CMP  MEM2

        BCC  LESS     ; MEM,MEM+1 < MEM2,MEM2+1

        BEQ  EQUAL    ; MEM,MEM+1 = MEM2,MEM2+1

        BCS  GRTR     ; MEM,MEM+1 > MEM2,MEM2+1
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BEQ: Branch if EQual

Description: Executes a branch if the Z-lag (zero lag) is set, indicating that the 
result of a previous operation was 0. SeeBCS to see how a comparison for the 
Accumulator equal to a given value is done.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BEQ Address F0 FF

Note: he zero lag, upon which this depends, is conditioned by:ADC,AND,ASL, 
BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, 
PLP, ROL, RTS, SBC, TAX, TAY, TXA, and TYA.

Uses: In addition to being used in conjunction with compare operations,BEQ is 
used to test whether the result of a variety of other operations was 0. he com-
mon classes of these operations are increment and decrement, logical operators, 
shi!s, and register loads. Even easier to remember is the general principle that 
whenever you’ve done something that results in 0, chances are good that the Z-
lag has been set. Likewise, any nonzero result of an operation is likely to clear 
the Z-lag. One of the most common instances is when checking an input string 
for a 0, usually used as a delimiter:

Example:

ENTRY   LDA   DEVICE

        BEQ   DONE     ; DATA = 0

WORK   (...)

        JMP   ENTRY

DONE    RTS

BIT: compare Accumulator BITs with memory

Description: Performs a logical AND on the bits of the Accumulator and the 
contents of the memory location. he opposite of the result is stored in the Z-
lag. What this means is that if any bits set in the Accumulator happen to match 
any set in the value speciied, the Z-lag will be cleared. If no match is found, it 
will be set. BNE is used to detect a match, BEQ detects a no-match condition.
Fully understanding the function and various applications of this instruc-

tion is a sign of having arrived as an assembly-language programmer and sug-
gests you are probably the hit of parties, thrilling your friends by doing hex 
arithmetic in your head and reciting ASCII codes on command.

]
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Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

M7 M6 ✓

Addressing Modes Common Syntax Hex Coding

Zero Page BIT $12 24 12

Absolute BIT $1234 2C 34 12

Immediate [65C02] BIT #$12 89 12

Zero Page,X [65C02] BIT $12,X 34 12

Absolute,X [65C02] BIT $1234,X 3C 34 12

Uses: BIT provides a means of testing whether a given bit is on in a byte of data.

Important:BIT will indicate only that at least one of the bits in question match. 
It does not indicate how many actually do match. See the AND instruction on how 
to do a check for all matching.
he test mask can be held either in the Accumulator (if testing a memory 

location), or in a memory location (when testing the Accumulator). he mask is 
created by setting a 1 in each bit position you are interested in, and leaving all 
remaining positions set to 0.

Examples:
1.  Showing the results of the bit operation:

Acc: 10011011

Mem: 01010101

Result: 00010001 → 1 → (opposite) → 0  BNE works, BEQ not taken

Status Register:

N V – B D I Z C

0 1 0

2. Acc: 10011011

Mem: 01000100

Result: 00000000 → 0 → (opposite) → 1  BEQ works, BNE not taken

Status Register:

N V – B D I Z C

0 1 1
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3.  Sample routines:

Test Accumulator for bit 4 on Test memory for bit 4 on

ENTRY LDA   #$10     ; %00010000

      STA   MEM

      LDA   DEVICE

      BIT   MEM

      BNE   MATCH

      BEQ   NOMATCH

ENTRY LDA   #$10     ; %00010000

      BIT   MEM

      BNE   MATCH

      BEQ   NOMATCH

BIT also sets the N- and V-lags, and thus provides a very fast way of testing 
bits 6 and 7. Since bit 7 is the high-order bit and is frequently used to indicate 
certain conditions, this can be quite handy. Here is an example of how to watch 
for a keypress:

LOOP    BIT   KYBD     ; $C000

        BPL   LOOP     ; VAL < 128 = NOT PRESS

        BIT   STROBE   ; $C010

DONE    RTS

Note that in this example, no data is actually retrieved from the keyboard. 
Only a wait is done until the keypress. heBIT STROBE step in the example also 
provides an illustration of a second application ofBIT, which is to access a hard-
ware location (o!en called aso!-switch) without damaging the contents of the 
Accumulator.

BMI: Branch on MInus

Description: Executes the branch only if the N-lag (sign lag) is set. he N-lag 
is set by any operation producing a result in the range$80 to$FF (i.e. high bit 
set).

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BMI Address 30 FF

Note: he sign lag, upon which this depends, is conditioned by:ADC,AND,ASL, 
BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, 
PLP, ROL, TAX, TAY, TXS, TXA, and TYA.

Uses:BMI is most commonly used to detect negative numbers when signed 
binary math is used, but is also equally common in testing for a set high bit, such 
as in watching the keyboard for a keypress. (See also BIT.) For example:

]
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LOOP    LDA   KYBD

        BMI   PRESS     ; DATA > $7F

        BPL   LOOP      ; DATA < $80

BMI is also useful for terminating a loop that you want to reach 0 and which 
otherwise will stay out of the $80 to $FF range:

ENTRY   LDX   $20       ; TO LOOP 33 TIMES

LOOP    DEX

        BMI   DONE      ; WHEN X = $FF

        BPL   LOOP      ; WHILE X > $FF

DONE    RTS

BNE: Branch Not Equal

Description: Executes the branch if the Z-lag (zero lag) is clear, that is to say, if 
the result of an operation was a nonzero value.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BNE Address D0 FF

Note: he zero lag, upon which this depends, is conditioned by:ADC,AND,ASL, 
BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, 
PLP, ROL, RTS, SBC, TAX, TAY, TXA, and TYA.

Uses: O!en used in loops to branch until the counter reaches 0. Also used in 
data input loops to verify the nonzero nature of the last byte in, as when check-
ing for the end-of-data delimiter.

Examples:
1. Simple loop

ENTRY    LDX   #$20     ; WILL COUNT 32 TIMES

LOOP     DEX

         BNE   LOOP     ; UNTIL X = 0

DONE     RTS

2. Data input routine

ENTRY    LDA   DEVICE

         BNE   CONTINUE

DONE     RTS
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3. As used in a two-byte increment routine

ENTRY    LDA   MEM

         ADC   #$01

         STA   MEM

         BNE   DONE     ; UNLESS MEM = 0

         LDA   MEM+1

         ADC   #$00     ; MEM+1 = MEM+1 + 1

         STA   MEM+1

DONE     RTS

BPL: Branch on PLus

Description: Executes the branch only if the N-lag (sign lag) is clear, as would 
be the case when the result of an operation is in the range of$00 to$7F (high bit 
clear). See also BMI.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BPL Address 10 FF

Note: he sign lag, upon which this depends, is conditioned by:ADC,AND,ASL, 
BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, 
PLP, ROL, TAX, TAY, TXS, TXA, and TYA.

Uses:BPL is an easy way of staying in a loop until the high bit is set. It is also 
used in general to detect the status of the high bit. Here’s our familiar keypress 
check using BPL:

LOOP    LDA   KYBD

        BMI   PRESS     ; DATA > $7F

        BPL   LOOP      ; DATA < $80

BPL is also useful for terminating a loop that you want to reach 0 and which 
otherwise will stay out of the $80 to $FF range:

ENTRY   LDX   $20       ; TO LOOP 33 TIMES

LOOP    DEX

        BMI   DONE      ; WHEN X = $FF

        BPL   LOOP      ; WHILE X > $FF

DONE    RTS

]
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BRA: BRanch Always [65C02]

Description: Always executes the branch (65C02 only).

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only [65C02] BRA Address 80 FF

Uses: BRA (branch always) is useful for writing relocatable code. Normally, if you 
had a loop with aJMP back to the top you would make this relocatable by forcing 
a branch. his would involve setting or clearing a Status Register lag and then 
issuing the appropriate branch instruction. Instead, you can simply issueBRA 
without changing the Status Register lags. he only limitation is the maximum 
branching distance of plus or minus 128 bytes.

Example:

8000: A9 12     2    LOOP     LDA   #$12

8002: EA        3             NOP              ; MORE CODE HERE

8003: 80 FB     4             BRA   LOOP

BRK: BReaK (sotware interrupt)

Description: When aBRK is encountered in a program, program execution halts 
and the user generally sees something like the following:

0302-    A=A0 X=00 Y=01 P=36 S=E7

What actually happens is that theProgram Counter, plus two, is saved on 
the stack, immediately followed by the Status Register, in which theBRK bit has 
been set. he processor then jumps to the address at$FFFE, $FFFF. On the Apple 
II Plus and Apple //e this routine (at$FA40) jumps to a vector at$3F0,$3F1 
which points to the BRK handler routine (at $FA59) which produces the output.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Implied only BRK 00
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Uses: BRK can be very useful indebugging assembly-language programs. ABRK is 
simply inserted into the code at strategic points in the routine. When the pro-
gram comes to a screeching halt, one can examine the status of various memory 
locations and registers to see if everything is as you think it should be. his 
process can be formalized, and hence considerably improved on, by using a so!-
ware utility called a debugger which allows you to step through a program one 
instruction at a time.Munch-A-Bug, along with others, provides this option. On 
Integer Apples, a primitive Step and Trace function is provided as part of the 
Monitor.

BVC: Branch on oVerlow Clear

Description: Executes the branch only if the V-lag (overlow lag) is clear. he 
overlow lag is cleared whenever the result of an operation did not entail the 
carry of a bit from position 6 to position 7. he overlow lag also can be cleared 
with a CLV command.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BVC Address 50 FF

Note: he overlow lag, upon which this depends, is conditioned by:ADC,BIT, 
CLV, PLP, RTI, and SBC.

Uses:BVC is used primarily in detecting a possible overlow from the data por-
tion of the byte into the sign bit when using signed binary numbers. For exam-
ple:

ENTRY   CLC

        LDA   #$64      ; %01100100 = +100

        ADC   #$40      ; %01000000 = + 64

        BVC   STORE     ; NOT TAKEN HERE

ERR     RTS             ; RESULT = +164 =

                        ; %10100100 > $7F

STORE   STA   MEM

BVC can also be used as a forced branch when writing relocatable code. he 
advantage is that the carry remains unafected, thus allowing it to be tested later 
in the conventional manner.

        CLV             ; CLEAR V FLAG

        BVC   LABEL     ; (ALWAYS)

]
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BVS: Branch oVerlow Set

Description: Executes the branch only when the V-lag (overlow lag) is set. he 
overlow lag is set only when the result of an operation causes a carry of a bit 
from position 6 to position 7. Note that there is not a command to speciically 
set the overlow lag (as would correspond to aSEC command for the carry) but, 
in the Apple, the instruction BIT $FF58 is o!en used to set the overlow lag.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BVS Address 70 FF

Note: he overlow lag, upon which this depends, is conditioned by:ADC,BIT, 
CLV, PLP, RTI, and SBC.

Uses:BVS is used primarily in detecting a possible overlow from the data por-
tion of the byte into the sign bit when using signed binary numbers. For exam-
ple:

ENTRY   CLC

        LDA   #$64      ; %01100100 = +100

        ADC   #$40      ; %01000000 = + 64

        BVS   ERR       ; RESULT = +164 =

                        ; %10100100 > $7F

STORE   STA   MEM

DONE    RTS

ERR     JSR   BELL      ; ALERT TO OVERFLOW

CLC: CLear Carry

Description: Clears the carry bit of the Status Register.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0

Addressing Modes Common Syntax Hex Coding

Implied only CLC 18

Uses: CLC is usually required before the irstADC instruction of an addition oper-
ation, to make sure the carry hasn’t inadvertently been set somewhere else in the 
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program and thus incorrectly added to the values used in the routine itself. A 
CLC also can be used to force a branch when writing relocatable code, such as:

        CLC

        BCC   LABEL     ; (ALWAYS)

CLD: CLear Decimal mode

Description:CLD is used to enter the binary mode (which the Apple is usually in 
by default) so as to properly use theADC andSBC instructions. (SeeSED for set-
ting decimal mode.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0

Addressing Modes Common Syntax Hex Coding

Implied only CLD D8

Uses: he arithmetic mode of the 6502 is an important point to keep in mind 
when using theADC andSBC instructions. If you are in the wrong mode from 
what you might assume, rather unpredictable results can occur. See theSED 
instruction entry for more details on the other mode.

CLI: CLear Interrupt mask

Description: his instruction enables interrupts.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0

Addressing Modes Common Syntax Hex Coding

Implied only CLI 58

Uses:CLI tells the 6502 to recognize incomingIRQ (Interrupt ReQuest) signals. 
he Apple’s default is to have interrupts enabled but, a!er the irst interrupt, all 
succeeding interrupts are disabled by the 6502 until aCLI is re-issued. As a mat-
ter of interest, timing-dependent routines like the DOSRWTS (Read/Write Track 
Sector) routine disable interrupts while on and then allow them again with aCLI 
at exit.

]
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CLV: CLear oVerlow lag

Description: his clears the V-lag (overlow lag) by setting the V bit of the Sta-
tus Register to 0.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0

Addressing Modes Common Syntax Hex Coding

Implied only CLV B8

Uses: Because the overlow lag is, in fact, cleared by a non-overlow result of an 
ADC instruction, it usually is not necessary to clear the lag prior to an addition. It 
is, however, occasionally used as a relatively unobtrusive way of forcing a branch 
when writing relocatable code.
his is done in a manner similar to theCLC,BCC orSEC,BCS pairs discussed 

in chapter 15. he general form is:

        CLV

        BVC   ADDRESS

his technique has the advantage of not afecting the carry lag, should the 
user want to test the carry a!er the forced break.

CMP: CoMPare to Accumulator

Description:CMP compares the Accumulator to a speciied value or memory 
location. he N-lag (sign lag), Z-lag (zero lag), and C-lag (carry lag) are con-
ditioned. A conditional branch is usually then done to determine whether the 
Accumulator was less than, equal to, or greater than the data.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓
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Addressing Modes Common Syntax Hex Coding

Immediate CMP #$12 C9 12

Zero Page CMP $12 C5 12

Zero Page,X CMP $12,X D5 12

Absolute CMP $1234 CD 34 12

Absolute,X CMP $1234,X DD 34 12

Absolute,Y CMP $1234,Y D9 34 12

(Indirect,X) CMP ($12,X) C1 12

(Indirect),Y CMP ($12),Y D1 12

(Indirect) [65C02] CMP ($12) D2 12

Uses:CMP is used to check the value of a byte against certain values such as 
would be done in loops or in data-processing routines. he routine typically 
decides whether the result is less than, equal to, or greater than a critical value. 
he usual pattern is:

BCC: Accumulator < value
BCS: Accumulator ≥ value
BEQ, BCS: Accumulator > value

See the section on BCC through BCS for speciic examples.

Important: A CMP #$00 should never be done.2 Consider this example:

LOOP    DEC   MEM

        LDA   MEM

        CMP   #$00

        BCS   LOOP      ; (ALWAYS TAKEN!)

        BCC   DONE

DONE    RTS

Because$01 through$FF are greater than$0, the branch will be taken while 
MEM is in this range. Since$0 =$0, whenMEM reaches$0 the branch will still be 
taken. herefore, the example creates an endless loop which will never terminate.
Similarly, if theBCC is done irst it will never be taken because there is no 

value less than 0 to trigger it.

2[CT] his should probably state “it should not be used withBCS orBCC.” It is ine to use 
CMP #$00 with BEQ and BNE.

]
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CPX: ComPare data to the X-Register

Description:CPX compares the contents of the X-Register against a speciied 
value or memory location. See also CMP.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate CPX #$12 E0 12

Zero Page CPX $12 E4 12

Absolute CPX $1234 EC 34 12

Uses:CPX is used primarily in loops which read data tables, with the X-Register 
being used as the ofset in the Absolute,X addressing mode. he X-Register is 
usually loaded with 0 and then incremented until it reaches the length of the 
data stream to be read. For example:

ENTRY   LDX   #$00

LOOP    LDA   DATA,X

        JSR   PRINT

        INX

        CPX   #$05

        BCC   LOOP

DONE    RTS

DATA    ASC   "TEST!"

For the same reasons discussed under CMP, a CPX #$00 should not be used.3

CPY: ComPare data to the Y-Register

Description:CPY compares the contents of the Y-Register against a speciied 
value or memory location. See also CMP.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

3[CT] Similar to CMP, it is ine to use CPX #$00 with BEQ and BNE.
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Addressing Modes Common Syntax Hex Coding

Immediate CPY #$12 C0 12

Zero Page CPY $12 C4 12

Absolute CPY $1234 CC 34 12

Uses: he Y-Register usually is used when reading a stream of data from a zero-
page pointer.CPY allows for checking the current value of the Y-Register against 
a critical value. In this example, the Y-Register is used to retrieve the irst ive 
bytes of an Appleso! program line:

ENTRY   LDY   #$00

LOOP    LDA   ($67),Y     ; PROG BEG + Y

        STA   ($06),Y     ; TEMP STORAGE AREA

        INY

        CPY   #$05

        BCC   LOOP        ; LOOP FOR 5 BYTES

DONE    RTS

For the same reasons discussed under CMP, a CPY #$00 should not be used.4

DEC: DECrement a memory location

Description: he contents of the speciied memory location are decremented by 
one. If the original contents were equal to$00, then the result willwrap around 
and give a result of $FF.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Zero Page DEC $12 C6 12

Zero Page,X DEC $12,X D6 12

Absolute DEC $1234 CE 34 12

Absolute,X DEC $1234,X DE 34 12

Accumulator [65C02] DEC A 3A

Uses:DEC usually is used when decrementing a one-byte memory value (such as 
an ofset) or a two-byte memory pointer. Here are the common examples:

4[CT] Similar to CMP, it is ine to use CPY #$00 with BEQ and BNE.

]
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One-Byte Value:

ENTRY   DEC   MEM

DONE    RTS

Two-Byte Pointer:

ENTRY   DEC   MEM

        LDA   MEM

        CMP   #$FF        ; WRAP-AROUND?

        BNE   DONE        ; NO

        DEC   MEM+1       ; YES: DEC MEM+1

DONE    RTS

A!er theDEC operation, the N- and/or Z-lags o!en are checked to see if the 
result was negative or a zero/nonzero value, respectively.
he technique shown for the two-byteDEC operation is not necessarily the 

most eicient. See the SBC entry for an alternative method.

DEX: DEcrement the X-Register

Description: he X-Register is decremented by one. When the original value is 
$00, the result will wrap around to give a result of $FF. See also DEC.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only DEX CA

Uses:DEX o!en is used in reading a data block via indexed addressing, i.e. Abso-
lute,X. Here is a simple example:

ENTRY   LDX   #$05

LOOP    LDA   DATA-1,X

        JSR   PRINT

        DEX

        BNE  LOOP

DONE    RTS

DATA    ASC "!TSET"

Note: here are several points of interest in this example. Besides the general use 
of the X-Register in the indexed addressing mode, notice that the loop runs 
backwards from$05 to$01. he loop is terminated when the X-Register reaches 
0. Because the loop runs from high memory down, the ASCII string is put in 
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memory in reverse order, as evidenced in the listing. Also note that the base 
address of the loop isDATA-1. his allows the use of the$05 to$01 values of the 
X-Register.

DEY: DEcrement the Y-Register

Description: he Y-Register is decremented by one. When the original value is 
$00, the result will wrap around to give a result of $FF. See also DEC.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only DEY 88

Uses:DEY usually is used when decrementing a reverse scan of a data block, 
using a zero-page pointer via indirect indexed addressing (such asLDA 
($FF),Y). Reverse scans o!en are used because it’s so easy to use aBEQ instruc-
tion to detect when you’re done.DEY is also used when making a counter for a 
small number of cycles. Here’s a routine which outputs a variable number of car-
riage returns, as indicated by the contents of MEM.

ENTRY   LDY   MEM

LOOP    LDA   #$8D        ; <RETURN>

        JSR   COUT        ; $FDED

        DEY

        BNE   LOOP        ; UNTIL Y=0

DONE    RTS

EOR: Exclusive OR with Accumulator

Description: he value in the Accumulator is exclusive OR’d with the speciied 
data. he N-lag (sign lag) and Z-lag (zero lag) are also conditioned depending 
on the result. he result is put back in the Accumulator. he memory location (if 
speciied) is unafected.

EOR means that if either bit, butnot both, is 1 then the result will be 1, other-
wise the result will be 0.

]
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Truth Table 0 1

0 0 1

1 1 0

Example

Accumulator: 0 0 1 1 0 0 1 1

Memory:  0 1 0 1 0 1 0 1

Result:  0 1 1 0 0 1 1 0

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate EOR #$12 49 12

Zero Page EOR $12 45 12

Zero Page,X EOR $12,X 55 12

Absolute EOR $1234 4D 34 12

Absolute,X EOR $1234,X 5D 34 12

Absolute,Y EOR $1234,Y 59 34 12

(Indirect,X) EOR ($12,X) 41 12

(Indirect),Y EOR ($12),Y 51 12

(Indirect) [65C02] EOR ($12) 52 12

Uses: EOR has a wide variety of uses:
(1) he most common is to encode data by doing anEOR with an arbitrary one-
bytekey. he data may then be decoded later by again doing anEOR of each data 
byte with the same key.

CODE     LDX  #$05

LOOP     LDA  DATA1,X

         EOR  #$7D       ; ARBITRARY "KEY"

         STA  $300,X     ; REWRITE TABLE

         DEX

         BNE  LOOP       ; UNTIL X=0

DONE     RTS

DATA     ASC  "TEST!"

DECODE   LDX  #$05

LOOP     LDA  $300,X     ; RETRIEVE CODED DATA

         EOR  #$7D

         STA  $380,X     ; PUT IN NEW LOC

         DEX

         BNE  LOOP

DONE     RTS

(2) Another application is to reverse any given bit or bits of a data byte. he 
mask is created by putting a one in the positions which you wish to have 
reversed. A 0 is put in all remaining positions. When theEOR with themask is 



Appendix B: Assembly Commands 367

done, bits in the speciied positions willreverse, i.e. ones will become zeros, and 
vice versa. See the irst example in this entry to verify this efect.
(3) he N-lag (sign lag) can be used to detect if both memory and the Accumu-
lator have bit 7 set:

ENTRY    LDA  MEM

         EOR  MEM2

         BMI  MATCH      ; BOTH SET

         BPL  NOMATCH    ; BOTH NOT SET

(4) he Z-lag (zero lag) lag will be set if either the Accumulator or memory, or 
both, equal 0:

ENTRY    LDA  MEM

         EOR  MEM2

         BEQ  ZERO       ; MEM=0 AND/OR MEM2=0

         BNE  NOTZ       ; NEITHER MEM NOR MEM2 = 0

(5)EOR is also useful in producing thetwo’s complement of a number for use in 
signed binary arithmetic.

ENTRY    LDA  #$34       ; %00110100 = +52

                         ; TO BE CONVERTED TO -52

         EOR  #$FF       ; %11111111 = $FF

                         ; RESULT = %11001011

         CLC

         ADC  #$01       ; RESULT = RESULT + 1

                         ;  = %11001100 = $CC

         STA  MEM        ; STORE RESULT

DONE     RTS

(5a) And to convert signed negative numbers back:

ENTRY    LDA  #$CC       ; %11001100 = $CC = -52

                         ; TO BE CONVERTED BACK

         SEC

         SBC  #$01       ; ACC = ACC - 1

                         ;  = %11001011 = $CB

         EOR  #$FF       ; REVERSE ALL BITS

                         ; RESULT = %00110100 = $34 = +52

         STA  MEM        ; STORE RESULT

DONE     RTS

INC: INCrement memory

Description: he contents of a speciied memory location are incremented by 
one. If the original value is$FF, then incrementing will result in awrap around 
giving a result of$00. he N-lag (sign lag) and Z-lag (zero lag) are condi-
tioned depending on the result.

]
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Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Zero Page INC $12 E6 12

Zero Page,X INC $12,X F6 12

Absolute INC $1234 EE 34 12

Absolute,X INC $1234,X FE 34 12

Accumulator [65C02] INC A 1A

Uses:INC is used most o!en for incrementing a one-byte value (such as an of-
set) or a two-byte pointer. Here are the most common forms:

One-Byte Value:

ENTRY    INC   MEM

DONE     RTS

Two-Byte Pointer:

ENTRY    INC   MEM

         BNE   DONE

         INC   MEM+1

DONE     RTS

A!er theINC operation, the N- and/or Z-lags o!en are checked to see 
whether the result was negative or a zero/nonzero value, respectively.

INX: INcrement the X-Register

Description: he contents of the X-Register are incremented by one. If the origi-
nal value is$FF, then incrementing will result in awrap around giving a result of 
$00. he N-lag (sign lag) and Z-lag (zero lag) are conditioned depending on 
the result.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only INX E8
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Uses: INX is used in forward-scanning loops which digest a data stream as shown 
here:

ENTRY    LDX  #$00

LOOP     LDA  DATA,X

         BEQ  DONE       ; DELIMITER?

         JSR  COUT       ; $FDED

         INX

         JMP  LOOP       ; NEXT CHAR

DONE     RTS

DATA     ASC  "TEST!"

         HEX  00         ; END OF DATA

Note that in forward-scanning loops, the base address can beDATA itself (see 
DEX for another situation).

INX also can be used as a general-purpose counter for miscellaneous rou-
tines:

ENTRY    LDX  #$00

         LDA  #$8D       ; <RETURN>

LOOP     JSR  COUT       ; $FDED

         INX

         CPX  #$05

         BCC  LOOP       ; UNTIL X = 5

DONE     RTS             ; PRINTS 5 <CR>S

INY: INcrement the Y-Register

Description: he contents of the Y-Register are incremented by one. If the origi-
nal value is$FF, then incrementing will result in awrap around giving a result of 
$00. he N-lag (sign lag) and Z-lag (zero lag) are conditioned depending on 
the result.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only INY CB

Uses:INY is used in forward-scanning loops which use the indirect indexed 
addressing mode, for exampleLDA ($FF),Y. his is quite common in routines 
which process strings for certain characters, search routines, etc. Here is a rou-
tine which scans the input bufer for the irst carriage return:

]
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ENTRY    LDY  #$00

         STA  PTR

         LDA  #$02

         STA  PTR        ;  PTR,PTR+1 = $200

         LDY  #$00

LOOP     LDA  (PTR),Y

         CMP  #$8D       ; CHR = <CR>?

         BEQ  FOUND

         INY

         BNE  LOOP       ; UNTIL Y = $00

DONE     RTS

FOUND    STY  MEM

         BEQ  DONE       ; (ALWAYS)

JMP: JuMP to address

Description: Causes program execution to jump to the address speciied.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Absolute JMP $1234 4C 34 12

Indirect JMP ($1234) 6C 34 12

(Absolute Indirect,X) [65C02] JMP ($1234,X) 7C 34 12

Note: he6502 has a well-documentedbug regarding the indirect jump.5 If the 
jump speciied uses pointers which do not cross a page boundary (for example, 
$3C0,$3C1), then all will go as predicted. If, however, the pointers cross a 
boundary (such as$3FF,$400), then the assumed byteswill not be used. Instead, 
the address data will be retrieved (in our example) from locations $3FF and $300. 
hat is to say that the high-order byte is not properly incremented and both 
bytes are retrieved from the same page of memory. his should be taken into 
account if such a situation can possibly arise in your routine.

Uses: Besides the obvious application of the usual absolute addressedJMP 
instruction, the indirectJMP is used when creating vectored jumps. he Apple 
uses many such indirect jumps, the most notable of which are:

Function Routine Jumps to Address at Vector Location

Interrupt Vector IRQ ($FA40) IRQLOC ($3FE,$3FF)

Break Vector BREAK ($FA4C) BRKV ($3F0,$3F1)

Input Vector RDKEY ($FD0C) KSWL ($38,$39)

Output Vector COUT ($FDED) CSWL ($36,$37)

5[CT] his bug is ixed in the 65C02.
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An indirectJMP also can be used when writingrelocatable code. If the cur-
rent location of the code can be determined, then an ofset can be calculated and 
the vectors set up so that theJMP will be relative to the current location of the 
code. See chapter 15 for more information about these techniques.

JSR: Jump to SubRoutine

Description: he address of the instruction following theJSR is pushed onto the 
stack. he address following theJSR is then jumped to. When anRTS in the 
called subroutine is encountered, a return to the location on the stack (the one 
a!er the JSR) is done. his is analogous to a GOSUB in BASIC.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Absolute only JSR $1234 20 34 12

Uses:JSR is one of the most commonly used instructions, being used to call 
o!en-needed subroutines. he disadvantage of the instruction is that if theJSR 
references an address within the code (as opposed to routines external to the 
program, such as in the Monitor ROM), the code can be executed only at the 
location for which the code was originally assembled.
Because the calling address is saved on the stack, aJSR to a knownRTS can 

be done, and the data can be retrieved to determine where in memory the rou-
tine is currently being executed.
See chapter 15 for more details about both of these topics.

LDA: LoaD Accumulator

Description: Loads the Accumulator with either the speciied value or the con-
tents of the designated memory location. he N-lag (sign lag) and Z-lag (zero 
lag) are conditioned when a value with the high bit set is loaded, or when a 0 
value is loaded.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

]
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Addressing Modes Common Syntax Hex Coding

Immediate LDA #$12 A9 12

Zero Page LDA $12 A5 12

Zero Page,X LDA $12,X B5 12

Absolute LDA $1234 AD 34 12

Absolute,X LDA $1234,X BD 34 12

Absolute,Y LDA $1234,Y B9 34 12

(Indirect,X) LDA ($12,X) A1 12

(Indirect),Y LDA ($12),Y B1 12

(Indirect) [65C02] LDA ($12) B2 12

Uses:LDA is probablythe most used instruction. he vast majority of operations 
center around the Accumulator, and this instruction is used to get data into this 
important register.

LDX: LoaD the X-Register

Description: Loads the X-Register with either the speciied value or the contents 
of the designated memory location. he N-lag (sign lag) and Z-lag (zero lag) 
are conditioned when a value is loaded that has the high bit set, or when a 0 
value is loaded.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate LDX #$12 A2 12

Zero Page LDX $12 A6 12

Zero Page,Y LDX $12,Y B6 12

Absolute LDX $1234 AE 34 12

Absolute,Y LDX $1234,Y BE 34 12

Uses: his is the primary way in which data is placed into the X-Register. What 
more can I say?
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LDY: LoaD the Y-Register

Description: Loads the Y-Register with either the speciied value or the contents 
of the designated memory location. he N-lag (sign lag) and Z-lag (zero lag) 
are conditioned when a value with the high bit set is loaded, or when a 0 value is 
loaded.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate LDY #$12 A0 12

Zero Page LDY $12 A4 12

Zero Page,X LDY $12,X B4 12

Absolute LDY $1234 AC 34 12

Absolute,X LDY $1234,X BC 34 12

Uses: his is the primary way in which data is placed into the Y-Register. See LDX 
for additional comments.

LSR: Logical Shit Right

Description: his instruction moves each bit of the Accumulator or speciied 
memory location one position to the right. A 0 is forced at the bit 7 position (the 
high-order bit), and bit 0 falls into the carry. he result is le! in the Accumulator 
or memory location. (See also ASL, ROL, and ROR.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0 ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Accumulator LSR 4A

Zero Page LSR $12 46 12

]
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Addressing Modes Common Syntax Hex Coding

Zero Page,X LSR $12,X 56 12

Absolute LSR $1234 4E 34 12

Absolute,X LSR $1234,X 5E 34 12

Uses:LSR provides an easy way of dividing by two. he corresponding efect in 
decimal arithmetic is well known: 123/10 = 12.3 (shi! right). As an example:

ENTRY    LDA  MEM

         LSR             ; DIV BY 2

         LSR             ; DIV BY 2 AGAIN

         STA  MEM        ; MEM = MEM / 4

LSR also provides a fast way of detecting whether a number is odd or even:

ENTRY    LDA  MEM

         LSR

         BCS  ODD

         BCC  EVEN

Because bit 0 determines the odd/even nature of a number, this is easily trans-
ferred to the carry via the LSR and then checked via the BCS/BCC instructions.

NOP: No OPeration

Description: Does nothing for one instruction (two cycles). May remind you of 
some people you know.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only NOP EA

Uses: NOP is used primarily to disable portions of code written by other program-
mers that you have decided you can live without. A classic example of this is the 
placing of threeNOPs at bytes$D3,$D4, and$D5 on Track 0, Sector 9, of a stan-
dard DOS 3.3 diskette. By the strategic placement of theseNOPs, a boot will not 
force a clear of the language card, thus avoiding the rather monotonousLOADING 
LANGUAGE CARD message on every boot.6

Additionally,NOPs may be used duringdebugging to disable certain steps or 
to create certain timing periods.

6[CT] You can accomplish the same task by adding three NOPs at $BFD3:

POKE -16427,234: POKE -16428,234: POKE -16429,234

and then initializing a disk. When the disk is booted it will not erase the language card.
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ORA: Inclusive OR with the Accumulator

Description: his instruction takes each bit of the Accumulator and performs a 
logical inclusive OR with each corresponding bit of the speciied memory loca-
tion or immediate value. he result is put back in the Accumulator. he memory 
location, if speciied, is unafected. Conditions the N-lag (sign lag) and Z-lag 
(zero lag) depending on the result. (See alsoAND and EOR.) ORA means if either or 
both bits are 1 then the result is 1. Only when both bits are 0 is the result 0.

Truth Table 0 1

0 0 1

1 1 1

Example

Accumulator: 0 0 1 1 0 0 1 1

Memory:  0 1 0 1 0 1 0 1

Result:  0 1 1 1 0 1 1 1

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate ORA #$12 09 12

Zero Page ORA $12 05 12

Zero Page,X ORA $12,X 15 12

Absolute ORA $1234 0D 34 12

Absolute,X ORA $1234,X 1D 34 12

Absolute,Y ORA $1234,Y 19 34 12

(Indirect,X) ORA ($12,X) 01 12

(Indirect),Y ORA ($12),Y 11 12

(Indirect) [65C02] ORA ($12) 12 12

Uses:ORA is used primarily as amask to force 1s in speciied bit positions. (See 
AND to force 0s.) To create the mask, a 1 is put in each bit position which is to be 
forced. All other positions are set to 0. For example, here is a routine which will 
set the high bit on any ASCII data going out through COUT:

ENTRY    LDA  DEVICE

         ORA  #$80       ; %10000000, SET HIGH BIT

         JSR  COUT       ; $FDED

ORA also can be used to convert uppercase characters to lowercase:

ENTRY    LDA  CHAR       ; GET CHARACTER

         CMP  #$C1       ; (A) IS IT ALPHABETIC?

         BCC  DONE       ; NO, DON’T CONVERT

         CMP  #$E0       ; IS IT ALREADY LOWERCASE?

         BCS  DONE       ; YES, DON’T CONVERT

         ORA  #$20       ; UPPERCASE TO LOWERCASE

         STA  CHAR       ; PUT CHARACTER BACK

]



376 Assembly Lines

PHA: PusH Accumulator

Description: his pushes the contents of the Accumulator onto the stack. he 
Accumulator and Status Register are unafected. (See also PLA.)

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only PHA 48

Uses: his is one of the most common ways of temporarily storing a byte or two. 
It is combined withPLA to retrieve the data. Generally speaking, eachPHA must 
be matched by aPLA later in the routine. Otherwise the inalRTS of your routine 
will deliver you, not back to the calling BASIC program or immediate mode, but 
rather of into the weeds, as the saying goes.
Here is an example of a simple store/retrieve operation:

ENTRY    LDA  #$80       ; TEST VALUE

         PHA             ; STORE IT

         LDA  #$FF       ; DESTROY ACC.

         PLA             ; RETRIEVE VALUE

         STA  MEM        ; SAVE IT TO LOOK AT

DONE     RTS

Another more obscure use ofPHA is to set up an artiicialJMP by executing 
anRTS for which aJSR was never done. Providing that two PHAs have been 
done prior to the RTS, the pseudo-jump will be executed. See chapter 15 for more 
details about this.

PHP: PusH Processor status

Description: his pushes the Status Register onto the stack for later retrieval. 
he Status Register itself is unchanged and none of the registers are afected.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only PHP 08

Uses:PHP is done to preserve the Status Register for later testing for a speciic 
condition. his is handy if you don’t want to test a lag right then, but the next 
instruction would ruin what you want to test for. By putting the Status Register 
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on the stack and then later retrieving it, you can test things like the sign lag or 
carry when it’s most convenient.

ENTRY    CLC             ; CLR CARRY

         PHP             ; SAVE REG

         SEC             ; SET CARRY

         PLP             ; RETRIEVE REG

         BCC  DONE       ; (ALWAYS!)

         BRK             ; (NEVER)

DONE RTS

ENTRY    LDA  #$00       ; SET Z-FLAG

         PHP             ; SAVE REG

         LDA  #$FF       ; DESTROY

         PLP             ; RETRIEVE

         BEQ  DONE       ; (ALWAYS!)

         BRK             ; (NEVER)

DONE RTS

As with thePHA instruction,PHP always should be accompanied by an equal 
number ofPLP instructions to keep the Apple happy. Remember: It’s not nice to 
fool the stack!

PHX: PusH X-Register [65C02]

Description: his pushes the contents of the X-Register onto the stack (65C02 
only). he X-Register and Status Register are unafected. (See also PLX.)

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only [65C02] PHX DA

Uses:PHX is useful for temporarily storing the X-Register without having to 
transfer it to the Accumulator irst. It is combined withPLX to retrieve the data. 
Just likePHA/PLA, eachPHX should normally be matched by aPLX (or another 
pull instruction) later in the routine.

Example: With the 65C02, you can easily save and restore all of the registers 
using code similar to the following:

ENTRY    PHX             ; SAVE X

         PHY             ; SAVE Y

         PHA             ; SAVE A

WORK     NOP             ; YOUR PROGRAM HERE

DONE     PLA             ; GET A

         PLY             ; GET Y

         PLX             ; GET X

]
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PHY: PusH Y-Register [65C02]

Description: his pushes the contents of the Y-Register onto the stack (65C02 
only). he Y-Register and Status Register are unafected. (See also PLY.)

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only [65C02] PHY 5A

Uses: Just likePHX,PHY is useful for temporarily storing the Y-Register without 
having to transfer it to the Accumulator irst. It is combined withPLY (or 
another pull instruction) to retrieve the data. See PHX for a usage example.

PLA: PulL Accumulator

Description: his is the converse of thePHA instruction.PLA retrieves one byte 
from the stack and places it in the Accumulator. his accordingly conditions the 
N-lag (sign lag) and Z-lag (zero lag), just as though anLDA instruction had 
been done.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only PLA 68

Uses: his is combined withPHA to retrieve data from the stack. SeePHA for an 
example of this.
Additionally,PLA can be used to cancel a currentRTS, much like aPOP in 

Appleso! BASIC. To cancel the most recent RTS, two PLAs are required:

ENTRY    JSR  LEVEL1

         RTS             ; WOULD EXIT HERE NORMALLY

LEVEL1   LDA  #$00       ; ARBITRARY OPERATION

         PLA

         PLA             ; 'POP' RTS

EXIT     RTS             ; WILL EXIT ENTIRELY HERE
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PLP: PulL Processor Status

Description: his is used a!er aPHP to retrieve the Status Register data from the 
stack. he byte is put in the Status Register and all of the lags are conditioned 
corresponding to the status of each bit in the byte placed there. he Accumulator 
and other registers are unafected. (See PHP.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only PLP 28

Uses: PLP is used to retrieve the Status Registera"er aPHP has stored the lags on 
the stack. See PHP for an example.
As with thePHA/PLA set,PLPs always should be matched with a correspond-

ing number ofPHP instructions in a one-to-one relationship. Failure to observe 
this requirement can result in some very strange results!

PLX: PulL X-Register [65C02]

Description: PLX retrieves one byte from the stack and places it in the X-Register 
(65C02 only). his conditions the N-lag (sign lag) and Z-lag (zero lag), just as 
though a LDX instruction had been done.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only [65C02] PLX FA

Uses: his is combined withPHX to retrieve data from the stack. SeePHX for a 
usage example.

]
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PLY: PulL Y-Register [65C02]

Description: PLY retrieves one byte from the stack and places it in the Y-Register 
(65C02 only). his conditions the N-lag (sign lag) and Z-lag (zero lag), just as 
though a LDY instruction had been done.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only [65C02] PLY 7A

Uses: his is combined withPHY to retrieve data from the stack. SeePHY for 
details.

ROL: ROtate Let

Description: his instruction moves each bit of the Accumulator or the speciied 
memory location one position to the le!. he carry bit is pushed into position 0 
and is replaced by bit 7 (the high-order bit). he N-lag (sign lag) and Z-lag 
(zero lag) are conditioned depending on the result of the shi!. (See also ASL, LSR, 
and  ROR.)

ROL − Rotate One Bit Let    ROR − Rotate One Bit Right

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Accumulator ROL 2A

Zero Page ROL $12 26 12

Zero Page,X ROL $12,X 36 12

Absolute ROL $1234 2E 34 12

Absolute,X ROL $1234,X 3E 34 12
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Uses: ROL can be used as one of the various methods to test for a set high bit. he 
disadvantage to testing for the high bit in this way is that the contents must then 
be restored with a corresponding ROR instruction.

ROL is used more o!en in combination withASL inmultiply and divide rou-
tines.

ROR: ROtate Right

Description: his instruction moves each bit of the Accumulator or the speciied 
memory location one position to the right. he carry bit is pushed into position 
7 (the high-order bit), and is replaced by bit 0. he N-lag (sign lag) and Z-lag 
(zero lag) are also conditioned depending on the result of the shi!. (See also 
ASL, LSR, and ROL.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Accumulator ROR 6A

Zero Page ROR $12 66 12

Zero Page,X ROR $12,X 76 12

Absolute ROR $1234 6E 34 12

Absolute,X ROR $1234,X 7E 34 12

Uses: ROR provides an alternate way of testing for the odd/even nature of a num-
ber. he carry is tested a!er the shi! to detect whether the number was odd or 
even.

ROR inds greater use when combined with the shi! operations in creating 
multiply and divide routines.

RTI: ReTurn from Interrupt

Description: his restores both theProgram Counter and the Status Register in 
preparation to resuming the routine being executed at the time of theinterrupt. 
All lags of the Status Register are reset to their original values.

]
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Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only RTI 40

Uses:RTI is used in much the same way that anRTS would be used in returning 
from aJSR. A!er an interrupt has been handled and the background operation 
performed, the return is done via theRTI command. Usually the user will want 
to restore the Accumulator, the X-Register, and the Y-Register prior to return-
ing.

RTI also is equivalent to aPLP RTS in that the Status Register is restored 
from the stack and a return is done to the address on the stack.

RTS: ReTurn from Subroutine

Description: his restores theProgram Counter to the address stored on the 
stack, usually the address of the next instruction a!er theJSR that called the rou-
tine. Analogous to a RETURN to a GOSUB in BASIC. (See also JSR.)

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only RTS 60

Uses:RTS is, surprisingly enough, most o!en used to return from subroutines. 
On occasion it can be used tosimulate aJMP instruction by using twoPHA 
instructions to put a false return address on the stack and then executing the RTS. 
See the section on PHA, and also chapter 15 for more details.
An RTS can be POP’d one level by the execution of two PLA instructions.

SBC: SuBtract with Carry

Description: Subtracts the contents of the memory location or the speciied 
value from the Accumulator. he opposite of the carry is also subtracted, and in 
this instance the carry is called a borrow. he N-lag (sign lag), V-lag (overlow 
lag), Z-lag (zero lag), and C-lag (carry lag) are all conditioned by this opera-
tion, and they o!en are used to detect the nature of the result of the subtraction. 
he result of the subtraction is put back in the Accumulator. he memory loca-
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tion, if speciied, is unchanged.SBC works for both the binary and theBCD arith-
metic modes.

Important: AnSEC should always be done before the irstSBC operation. his is 
equivalent to clearing the borrow and is analogous to theCLC done before anADC 
instruction.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate SBC #$12 E9 12

Zero Page SBC $12 E5 12

Zero Page,X SBC $12,X F5 12

Absolute SBC $1234 ED 34 12

Absolute,X SBC $1234,X FD 34 12

Absolute,Y SBC $1234,Y F9 34 12

(Indirect,X) SBC ($12,X) E1 12

(Indirect),Y SBC ($12),Y F1 12

(Indirect) [65C02] SBC ($12) F2 12

Uses:SBC is used most o!en for subtracting a constant or memory value from 
either a one-byte memory location or a two-byte memory location.

One-byte subtraction:

ENTRY    SEC

         LDA  MEM

         SBC  #$80

         STA  MEM       ; MEM = MEM - #$80

DONE     RTS

Two-byte subtraction:

ENTRY    SEC

         LDA  MEM

         SBC  #$80

         STA  MEM

         LDA  MEM+1

         SBC  #$00

         STA  MEM+1     ; MEM,MEM+1 = MEM,MEM+1 - #$80

DONE     RTS

]
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SEC: SEt Carry

Description: his sets the carry lag of the Status Register.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Implied only SEC 38

Uses:SEC usually is used just prior to aSBC operation. he carry is occasionally 
used though to indicate error (or other) conditions, as is done byRWTS 
(Read/Write Track Sector) in DOS. In these instancesSEC is used to set the carry 
to indicate an error. his would be detected sometime later in program execu-
tion, a!er a return from RWTS has already been made.

SEC is also sometimes used to force a branch. For example:

         SEC

         BCS  ADDRESS   ; (ALWAYS)

SED: SEt Decimal mode

Description:SED sets the 6502 to theBinary Coded Decimal (BCD) mode, in 
preparation for an ADC or SBC operation.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Implied only SED F8

Uses:BCD math is used when a greater degree of precision is required. In this 
mode each four bits of a byte represent one digit of a base-ten number. Here is a 
brief example of a BCD addition operation:

ENTRY    SED             ; SET DEC MODE

         CLC

         LDA  #$25       ; %00101001 = DECIMAL 25

         ADC  #$18       ; %00011000 = DECIMAL 18
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         STA  MEM        ; RSLT = %01000011 = DECIMAL 43

         CLD             ; CLR DEC MODE

DONE     RTS

SEI: SEt Interrupt disable

Description:SEI is used to disable theinterrupt response to anIRQ (a maskable 
interrupt). his does not disable the response to anNMI (Non-Maskable Inter-
rupt = RESET).

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Implied only SEI 78

Uses:SEI is automatically set whenever an interrupt occurs so that no further 
interrupts can disturb the system while it is going through the vector path from 
$FFFE,$FFFF to$3FE,$3FF. he user is expected to useCLI to re-enable inter-
rupts upon entry to his or her own interrupt routine. DOS typically does a 
SEI/CLI operation upon entrance to and exit fromRWTS so that interrupts do not 
interfere with the highly timing-dependent disk read/write routines.

STA: STore Accumulator

Description: Stores the contents of the Accumulator in the speciied memory 
location. he contents of the Accumulator are not changed, nor are any of the 
Status Register lags.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

]
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Addressing Modes Common Syntax Hex Coding

Zero Page STA $12 85 12

Zero Page,X STA $12,X 95 12

Absolute STA $1234 8D 34 12

Absolute,X STA $1234,X 9D 34 12

Absolute,Y STA $1234,Y 99 34 12

(Indirect,X) STA ($12,X) 81 12

(Indirect),Y STA ($12),Y 91 12

(Indirect) [65C02] STA ($12) 92 12

Uses:STA is another frequently used instruction, being employed at the end of 
many operations to put the inal result into a speciied memory location.

In general, theLDA/STA combination is used to transfer bytes from one location 
to another.

STX: STore the X-Register

Description:STX stores the contents of the X-Register in the speciied memory 
location. he X-Register is unchanged and none of the Status Register lags are 
afected.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Zero Page STX $12 86 12

Zero Page,Y STX $12,Y 96 12

Absolute STX $1234 8E 34 12

Uses: It is occasionally useful to be able to store the contents of the X-Register 
for later reference. Another fairly common use ofSTX is in Appleso!’s determi-
nation of string lengths. A!er getting data from the input bufer ($200 to$2FF) 
the length of the input string is held in the X-Register and is saved to astring 
descriptor for later use. See chapter 13 for a listing of a simple input routine.
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STY: STore the Y-Register

Description:STY stores the contents of the Y-Register in the speciied memory 
location. he Y-Register is unchanged and none of the Status Register lags are 
afected.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Zero Page STY $12 84 12

Zero Page,X STY $12,X 94 12

Absolute STY $1234 8C 34 12

Uses:STY is used to store the value of the Y-Register, usually from within string 
or data-scanning loops. For example, here is a routine which returns the position 
of the irst control character in a block of data:

ENTRY    LDY  #$00       ; ZERO COUNTER

LOOP     LDA  DATA,Y     ; GET CHARACTER

         BEQ  NOTF       ; CHR = 0 = END

         CMP  #$20       ; 'SPC'

         BCS  NXT        ; CHR > CTRL’S

FOUND    STY  POS        ; SAVE Y-REG

DONE     RTS

NXT      INY             ; Y = Y + 1

         BNE  LOOP       ; UNTIL Y = 0 AGAIN

         BEQ  DONE

NOTF     LDY  #$FF       ; FLAG NOT FOUND

         BNE  FOUND

STZ: STore Zero in memory [65C02]

Description:STZ stores a 0 in a zero-page memory location (65C02 only). None 
of the Status Register lags are afected.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

]
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Addressing Modes Common Syntax Hex Coding

Zero Page [65C02] STZ $12 64 12

Zero Page,X [65C02] STZ $12,X 74 12

Absolute [65C02] STZ $1234 9C 34 12

Absolute,X [65C02] STZ $1234,X 9E 34 12

Uses:STZ is used to store a 0 in a memory location. UsingSTZ avoids having to 
load a 0 in the Accumulator just to set a memory location.

TAX: Transfer Accumulator to X-Register

Description: Puts the contents of the Accumulator into the X-Register.TAX does 
not afect the Accumulator.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only TAX AA

Uses: Most simply, TAX is used for transferring data from the Accumulator to the 
X-Register. Equally important, however, is its combination withTYA to transfer 
data from the Y-Register to the X-Register:

ENTRY    LDY  #$00       ; LOAD Y

         TYA             ; PUT IN A

         TAX             ; PUT IN X

TAY: Transfer Accumulator to Y-Register

Description: Puts the contents of the Accumulator into the Y-Register.TAY does 
not afect the Accumulator.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓
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Addressing Modes Common Syntax Hex Coding

Implied only TAY A8

Uses: Most simply, TAY is used for transferring data from the Accumulator to the 
Y-Register. Equally important, however, is its combination withTXA to transfer 
data from the X-Register to the Y-Register:

ENTRY    LDX  #$00       ; LOAD X

         TXA             ; PUT IN A

         TAY             ; PUT IN Y

TRB: Test and Reset Bits [65C02]

Description:TRB uses the Accumulator as a mask to clear bits in a speciied 
memory location (65C02 only). he Accumulator is unchanged, but the Z-lag 
(zero lag) lag is conditioned based on the value of those memory bits prior to 
the operation.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓

Addressing Modes Common Syntax Hex Coding

Zero Page [65C02] TRB $12 14 12

Absolute [65C02] TRB $1234 1C 34 12

Uses:TRB is like a combination ofBIT andAND, with the added bonus that the 
new value is stored back in the memory location.
For example, to set both bits 0 and 7 of a memory location, we could use the 

following set of instructions:

LDA  #$81       ; %1000 0001 = MASK PATTERN

TSB  MEM1       ; SET BITS 0,7 OF MEMORY

BNE  PRSET      ; ONE OF THESE WAS 'ON' ALREADY

BEQ  PRCLR      ; NEITHER OF THESE WAS 'ON' ALREADY

his would clear the bits:

LDA  #$81       ; %1000 0001 = MASK PATTERN

TRB  MEM2       ; CLR BIT 0,7 OF MEMORY

BNE  PRSET      ; ONE OF THESE WAS 'ON' ALREADY

BEQ  PRCLR      ; NEITHER OF THESE WAS 'ON' ALREADY

]
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TSB: Test and Set Bits [65C02]

Description:TSB uses the Accumulator as a mask to set bits in a speciied mem-
ory location (65C02 only). he Accumulator is unchanged, but the Z-lag (zero 
lag) lag is conditioned based on the value of those memory bits prior to the 
operation.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓

Addressing Modes Common Syntax Hex Coding

Zero Page [65C02] TSB $12 04 12

Absolute [65C02] TSB $1234 0C 34 12

Uses:TSB is like a combination ofBIT andORA, with the added bonus that the 
new value is stored back in the memory location. See TRB for an example.

TSX: Transfer Stack to X-Register

Description: his puts the contents of the Stack Pointer into the X-Register. he 
N-lag (sign lag) and Z-lag (zero lag) are conditioned. he Stack Pointer is 
unchanged.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only TSX BA

Uses: he most obvious use ofTSX is in preserving the value of the stack at a cer-
tain point. Similar to the use ofPLAs withRTS, this could be used to duplicate 
BASIC’sPOP command–that is to say, a direct return to a diferent level than 
the one which had actually called a subroutine. For example:

ENTRY    LDA  #$00       ; DUMMY OPERATION

         TSX             ; SAVE CURRENT RETURN PTR

         JSR  LEVEL1

         RTS             ; NORMAL EXIT, BUT IT WILL NEVER BE CALLED

LEVEL1   TXS             ; PUT PTR TO 1ST RETURN BACK

DONE     RTS             ; EXIT TO MAIN CALLING PROGR
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Note that this is somewhat dangerous in that you must be very certain as to 
the actual contents of the stack, and in the knowledge that the data has not been 
changed by intermediatePHAs andPLAs for instance. Remember that the Stack 
Pointer is only apointer to the stack and does not preserve the return address as 
such, but only its position in the stack.
Another use for TSX is in retrieving data from the stack without having to do 

a PLA instruction. Although aPLA/PHA/TAX sequence would be transparent to the 
stack, and accomplish the same results,TSX can be used to retrieve information 
that isoicially lost at that point. What I am alluding to is retrieving data that is 
lower in memory than the current Stack Pointer, and that would be overwritten 
by the nextPHA instruction. One of the prime examples of this is in using aJSR 
to a knownRTS in the Monitor for no other purpose than to be able to immedi-
ately retrieve the otherwise transparent return address. his is done so that relo-
catable code has a way of inding out where it’s currently located. See chapter 15 
for a thorough explanation of the technique. For quick reference, here’s the basic 
routine:

ENTRY    JSR  RETURN     ; $FF58

         TSX

         LDA  STACK,X    ; $100,X

         STA  PTR+1

         DEX

         LDA  STACK,X    ; $100,X+1

         STA  PTR        ; PTR,PTR+1 = ENTRY+2

DONE     RTS

Caution: Most Step and Trace utilities will not properly trace code like this 
because of the somewhatillegal use of the stack. Strictly speaking, good pro-
gramming principles dictate that once data is oicially of the stack, it is counted 
as being efectively lost. his is especially true in the case of interrupts, where an 
interrupt in the middle of the dummyJSR,RTS and retrieval process could pro-
duce a completely invalid result in PTR, PTR+1. Caveat emptor!

TXA: Transfer X to Accumulator

Description: his puts the contents of the X-Register into the Accumulator, and 
thus conditions the Status Register just as if anLDA had been executed. he X-
Register is unafected by the operation. (See also TAX.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

]
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Addressing Modes Common Syntax Hex Coding

Implied only TXA 8A

Uses: TXA provides a way of retrieving the value in the X-Register for appropriate 
processing by the program. In the case of string-related routines, this is o!en the 
length of the string just entered or scanned. he Accumulator can then go about 
the things it does so well in terms of putting the value into the most useful part 
of memory. Notice that there are more addressing modes available to theSTA 
command, not to mention the overall powers granted the Accumulator in terms 
of logical operators.
As discussed underTAY,TXA can be combined withTAY to form aTXY-like 

(transfer X to Y) function like so:

ENTRY    LDX  MEM        ; GET DATA

         TXA             ; PUT IN A

         TAY             ; MOVE TO Y

TXS: Transfer X to Stack

Description: his puts the contents of the X-Register into the Stack Pointer. 
None of the Status Register lags are afected, nor is the X-Register itself changed.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only TXS 9A

Uses:TXS is used to put data directly into the Stack Pointer. Because there is no 
TAS (Accumulator to Stack) or evenTYS (Y-Register to Stack), this is the only 
way to get a speciic byte into the Stack Pointer. his usually is used in conjunc-
tion withTSX to restore previously saved data. In the case of the Appleso! stack-
ix program, it is used to avoid problems that otherwise would occur if aRESUME 
were not used a!er an error had occurred within a FOR-NEXT loop or a GOSUB:

ENTRY    PLA             ; GET LOW BYTE OF CURRENT RETURN ADDR.

         TAY             ; SAVE INTO Y

         PLA             ; GET HIGH BYTE OF RETURN ADDR.

         LDX  ERRSTK     ; $DF = S PTR BEFORE ERROR

         TXS             ; PUT BEFORE-ERR PTR BACK

         PHA             ; PUT HIGH BYTE BACK

         TYA             ; GET LOW BYTE IN ACC.

         PHA             ; PUT LOW BYTE BACK.

DONE     RTS             ; RETURN TO APPLESOFT WITH STACK FIXED

See also TSX for other applications of TXS.
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TYA: Transfer Y to Accumulator

Description: his puts the contents of the Y-Register into the Accumulator, and 
thus conditions the Status Register just as if anLDA had been executed. he Y-
Register is unafected by the operation. (See also TAY.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only TYA 98

Uses: TYA provides a way of retrieving the value in the Y-Register for appropriate 
processing by the program. his comes in handy in scanning a data block when 
information regarding certain locations is to be processed. As mentioned under 
TXA, the Accumulator has far greater lexibility than the Y-Register in terms of 
addressing modes and logical operators available.

TYA also is combined withTAX to form the equivalent of aTYX (Transfer Y to 
X). he operation has the form of:

ENTRY    LDY  MEM        ; GET DATA

         TYA             ; PUT IN A

         TAX             ; MOVE TO X

]
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Portions of Appendices C, D, and E are reprinted from theApple II Reference 
Manual, courtesy Apple Computer, Inc.

6502 Microprocessor Instructions

ADC Add memory to Accumulator with 

carry

AND AND memory with Accumulator

ASL Shi! le! one bit (memory or Accu-
mulator)

BCC Branch on carry clear

BCS Branch on carry set

BEQ Branch on result = zero

BIT Test bits in memory with Accumu-

lator

BMI Branch on result = minus

BNE Branch on result = not zero

BPL Branch on result = plus

BRA Branch always1

BRK Force break

BVC Branch on overlow clear
BVS Branch on overlow set
CLC Clear carry lag
CLD Clear decimal mode

CLI Clear interrupt disable bit

CLV Clear overlow lag
CMP Compare memory and Accumula-

tor

CPX Compare memory and X-Register

CPY Compare memory and Y-Register

DEC Decrement memory by one

DEX Decrement X-Register by one

DEY Decrement Y-Register by one

EOR Exclusive OR Accumulator with 

memory

INC Increment memory by one

INX Increment X-Register by one

INY Increment Y-Register by one

JMP Jump to new location

JSR Jump to new location saving return 

address on Stack

LDA Load Accumulator with memory

1[CT] Opcodes in gray are for the 65C02.

LDX Load X-Register with memory

LDY Load Y-Register with memory

LSR Shi! right one bit (memory or 
Accumulator)

NOP No operation

ORA OR Accumulator with memory

PHA Push Accumulator onto stack

PHP Push processor status onto stack

PHX Push X-Register onto stack

PHY Push Y-Register onto stack

PLA Pull Accumulator from stack

PLP Pull processor status from stack

PLX Pull X-Register from stack

PLY Pull Y-Register from stack

ROL Rotate le! one bit (memory or 
Accumulator)

ROR Rotate right one bit (memory or 

Accumulator)

RTI Return from interrupt

RTS Return from subroutine

SBC Subtract memory from Accumula-

tor with borrow

SEC Set carry lag
SED Set decimal mode

SEI Set interrupt disable status

STA Store Accumulator in memory

STX Store X-Register in memory

STY Store Y-Register in memory

STZ Store zero in memory

TAX Transfer Accumulator to X

TAY Transfer Accumulator to Y

TRB Test and reset bits

TSB Test and set bits

TSX Transfer Stack Pointer to X

TXA Transfer X to Accumulator

TXS Transfer X to Stack Pointer

TYA Transfer Y to Accumulator
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Usage Chart of 6502 Instructions

]



396 Assembly Lines

Programming Model

Processor Status Register
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Notation

he following notation applies to the 6502 Instruction Codes table:

 A
 X, Y
 M
 C
 C
 P
 S
 ∧
∨

 v

Accumulator
Index Register
Memory
Carry
Borrow
Processor Status Register
Stack Pointer
Logical AND
Logical inclusive OR
Logical exclusive OR

 ↑
 ↓
→

←

PC
PCH
PCL
#$FF

$FF

$FFff

Transfer from Stack
Transfer to Stack
Transfer to
Transfer to
Program Counter
Program Counter High
Program Counter Low
Immediate Addressing Mode
Two-byte (zero page) operand
Four-byte (absolute) operand

Figure C-1: ASL (shit one bit let) and LSR (shit one bit right)

Figure C-2: ROL − Rotate one bit let 

(memory or Accumulator)

Figure C-3: ROR − Rotate one bit 

right (memory or Accumulator)

]



398 Assembly Lines

6502 Instruction Codes

he Time is given in clock cycles (1μs at 1 MHz). For times with a “+”, add 1 if a page 
boundary is crossed. For branch instructions with a “*”, add 1 if the branch is taken, and 
add 1 more if the branch crosses a page boundary. For times with a “d”, add 1 if in deci-
mal mode on the 65C02 (but not on the 6502).

Name

Description Operation

Addressing 

Mode

Assembly 

Language

Op-

codeBytesTime

P status

NZCIDV

ADC

Add Accumulator  to 

memory with carry

A+M+C→
A, C

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

ADC #$FF

ADC $FF

ADC $FF,X

ADC $FFff

ADC $FFff,X

ADC $FFff,Y

ADC ($FF,X)

ADC ($FF),Y

69

65

75

6D

7D

79

61

71

2

2

2

3

3

3

2

2

2d

3d

4d

4d

4d+

4d+

6d

5d+

NZC---

AND

AND Accumulator with 

memory

A∧M → A Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

AND #$FF

AND $FF

AND $FF,X

AND $FFff

AND $FFff,X

AND $FFff,Y

AND ($FF,X)

AND ($FF),Y

29

25

35

2D

3D

39

21

31

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZ----

ASL

Shi! le! one bit (memory or 
Accumulator)

see Fig C-1 Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

ASL

ASL $FF

ASL $FF,X

ASL $FFff

ASL $FFff,X

0A

06

16

0E

1E

1

2

2

3

3

2

5

6

6

72

NZC---

BCC  Branch on carry clear Branch C=0 Relative BCC $FF 90 2 2* ------

BCS  Branch on carry set Branch C=1 Relative BCS $FF B0 2 2* ------

BEQ  Branch on result zero Branch Z=1 Relative BEQ $FF F0 2 2* ------

BIT

Test with Accumulator3 with 

bits in memory

A∧M
M7 → N
M6 → V

Zero Page

Absolute

BIT $FF

BIT $FFff

24

2C

2

3

3

4

NZ---V

BMI  Branch on result minusBranch N=1 Relative BMI $FF 30 2 2* ------

BNE  Branch on result not 

zero

Branch Z=0 Relative BNE $FF D0 2 2* ------

BPL  Branch on result plus Branch N=0 Relative BPL $FF 10 2 2* ------

BRK Force break interrupt4 PC+2↓ P↓ Implied BRK 00 1 7 ---I--

2[CT] On the 65C02, ASL Abs,X takes 6 cycles if a page boundary is not crossed.
3Bits 6 and 7 are transferred to the Status Register. If the result ofA∧M is 0, then Z = 1; 
otherwise Z = 0.

4A BRK command cannot be masked by setting interrupt disable I.
[CT] On the 6502, BRK does not clear the decimal lag; on the 65C02, it does.
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Name

Description Operation

Addressing 

Mode

Assembly 

Language

Op-

codeBytesTime

P status

NZCIDV

BVC  Branch on overlow 
clear

Branch V=0 Relative BVC $FF 50 2 2* ------

BVS  Branch on overlow setBranch V=1 Relative BVS $FF 70 2 2* ------

CLC  Clear carry lag5 0 → C Implied CLC 18 1 2 --C---

CLD  Clear decimal mode 0 → D Implied CLD D8 1 2 ----D-

CLI  Clear interrupt disable 0 → I Implied CLI 58 1 2 ---I--

CLV  Clear overlow lag 0 → V Implied CLV B8 1 2 -----V

CMP

Compare memory and 

Accumulator 

A←→M Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

CMP #$FF

CMP $FF

CMP $FF,X

CMP $FFff

CMP $FFff,X

CMP $FFff,Y

CMP ($FF,X)

CMP ($FF),Y

C9

C5

D5

CD

DD

D9

C1

D1

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZC---

CPX

Compare memory and X-

Register

X←→M Immediate

Zero Page

Absolute

CPX #$FF

CPX $FF

CPX $FFff

E0

E4

EC

2

2

3

2

3

4

NZC---

CPY

Compare memory and Y-

Register

Y←→M Immediate

Zero Page

Absolute

CPY #$FF

CPY $FF

CPY $FFff

C0

C4

CC

2

2

3

2

3

4

NZC---

DEC

Decrement memory by one

M−1 → M Zero Page

Zero Page,X

Absolute

Absolute,X

DEC $FF

DEC $FF,X

DEC $FFff

DEC $FFff,X

C6

D6

CE

DE

2

2

3

3

5

6

6

7

NZ----

DEX  Decrement X by 1 X−1 → X Implied DEX CA 1 2 NZ----

DEY  Decrement Y by 1 Y−1 → Y Implied DEY 88 1 2 NZ----

EOR

Exclusive OR Accumulator 

with memory

AvM → A Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

EOR #$FF

EOR $FF

EOR $FF,X

EOR $FFff

EOR $FFff,X

EOR $FFff,Y

EOR ($FF,X)

EOR ($FF),Y

49

45

55

4D

5D

59

41

51

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZ----

INC

Increment memory by one

M+1 → M Zero Page

Zero Page,X

Absolute

Absolute,X

INC $FF

INC $FF,X

INC $FFff

INC $FFff,X

E6

F6

EE

FE

2

2

3

3

5

6

6

7

NZ----

INX  Increment X by 1 X+1 → X Implied INX E8 1 2 NZ----

INY  Increment Y by 1 Y+1 → Y Implied INY C8 1 2 NZ----

JMP

Jump to new location

PC+1 → PCL
PC+2 → PCH

Absolute

(Indirect)

JMP $FFff

JMP ($FFff)

4C

6C

3

3

3

5/66
------

5[CT] CLC, CLD, and CLV had the wrong Status Register lags.
6[CT] Indirect JMP takes 5 cycles on the 6502 and 6 cycles on the 65C02.

]



400 Assembly Lines

Name

Description Operation

Addressing 

Mode

Assembly 

Language

Op-

codeBytesTime

P status

NZCIDV

JSR

Jump to new location saving 

return address

PC+2↓

PC+1 → PCL
PC+2 → PCH

Absolute JSR $FFff 20 3 6 ------

LDA

Load memory into 

Accumulator

M → A Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

LDA #$FF

LDA $FF

LDA $FF,X

LDA $FFff

LDA $FFff,X

LDA $FFff,Y

LDA ($FF,X)

LDA ($FF),Y

A9

A5

B5

AD

BD

B9

A1

B1

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZ----

LDX

Load memory into

X-Register

M → X Immediate

Zero Page

Zero Page,Y

Absolute

Absolute,Y

LDX #$FF

LDX $FF

LDX $FF,Y

LDX $FFff

LDX $FFff,Y

A2

A6

B6

AE

BE

2

2

2

3

3

2

3

4

4

4+

NZ----

LDY

Load memory into

Y-Register

M → Y Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

LDY #$FF

LDY $FF

LDY $FF,X

LDY $FFff

LDY $FFff,X

A0

A4

B4

AC

BC

2

2

2

3

3

2

3

4

4

4+

NZ----

LSR

Shi! right one bit (memory 
or Accumulator)

see Fig C-1 Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

LSR

LSR $FF

LSR $FF,X

LSR $FFff

LSR $FFff,X

4A

46

56

4E

5E

1

2

2

3

3

2

5

6

6

77

NZC---

NOP  No operation Implied NOP EA 1 2 ------

ORA

Logical OR Accumulator 

with memory

A∨M → A Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

ORA #$FF

ORA $FF

ORA $FF,X

ORA $FFff

ORA $FFff,X

ORA $FFff,Y

ORA ($FF,X)

ORA ($FF),Y

09

05

15

0D

1D

19

01

11

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZ----

PHA  Push Accumulator 

onto stack

A↓ Implied PHA 48 1 3 ------

PHP  Push processor status 

onto stack

P↓ Implied PHP 08 1 3 ------

PLA  Pull Accumulator from 

stack

A↑ Implied PLA 68 1 4 NZ----

PLP  Pull processor status 

from stack

P↑ Implied PLP 28 1 4 from Stack

7[CT] On the 65C02, LSR Abs,X takes 6 cycles if a page boundary is not crossed.
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Name

Description Operation

Addressing 

Mode

Assembly 

Language

Op-

codeBytesTime

P status

NZCIDV

ROL

Rotate one bit le! (memory 
or Accumulator)

see Fig C-2 Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

ROL

ROL $FF

ROL $FF,X

ROL $FFff

ROL $FFff,X

2A

26

36

2E

3E

1

2

2

3

3

2

5

6

6

78

NZC---

ROR

Rotate one bit right (memory 

or Accumulator)

see Fig C-3 Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

ROR

ROR $FF

ROR $FF,X

ROR $FFff

ROR $FFff,X

6A

66

76

6E

7E

1

2

2

3

3

2

5

6

6

78

NZC---

RTI

Return from interrupt
P↑  PC↑ Implied RTI 40 1 6 from Stack

RTS

Return from subroutine

PC↑

PC+1 → PC
Implied RTS 60 1 6 ------

SBC

Subtract memory from 

Accumulator with borrow

A−M−C → A Immediate
Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

SBC #$FF

SBC $FF

SBC $FF,X

SBC $FFff

SBC $FFff,X

SBC $FFff,Y

SBC ($FF,X)

SBC ($FF),Y

E9

E5

F5

ED

FD

F9

E1

F1

2

2

2

3

3

3

2

2

2d

3d

4d

4d

4d+

4d+

6d

5d+

NZC--V

SEC  Set carry lag 1 → C Implied SEC 38 1 2 --C---

SED  Set decimal mode 1 → D Implied SED F8 1 2 ----D-

SEI  Set interrupt disable 1 → I Implied SEI 78 1 2 ---I--

STA

Store Accumulator in 

memory

A → M Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

STA $FF

STA $FF,X

STA $FFff

STA $FFff,X

STA $FFff,Y

STA ($FF,X)

STA ($FF),Y

85

95

8D

9D

99

81

91

2

2

3

3

3

2

2

3

4

4

5

5

6

6

------

STX

Store X-Register in memory

X → M Zero Page

Zero Page,Y

Absolute

STX $FF

STX $FF,Y

STX $FFff

86

96

8E

2

2

3

3

4

4

------

STY

Store Y-Register in memory

Y → M Zero Page

Zero Page,X

Absolute

STY $FF

STY $FF,X

STY $FFff

84

94

8C

2

2

3

3

4

4

------

TAX  Transfer A to X A → X Implied TAX AA 1 2 NZ----

TAY  Transfer A to Y A → Y Implied TAY A8 1 2 NZ----

TSX  Transfer stack to X S → X Implied TSX BA 1 2 NZ----

TXA  Transfer X to A X → A Implied TXA 8A 1 2 NZ----

TXS  Transfer X to stack X → S Implied TXS 9A 1 2 ------

TYA  Transfer Y to A Y → A Implied TYA 98 1 2 NZ----

8[CT] On the 65C02, ROL/ROR Abs,X take 6 cycles if a page boundary is not crossed.

]



402 Assembly Lines

65C02 Instruction Codes

he Time is given in clock cycles (1μs at 1 MHz). For times with a “+”, add 1 if a page 
boundary is crossed. For times with a “d”, add 1 if in decimal mode. his table does not 
include the bit-manipulation instructionsBBR,BBS,RMB, andSMB, which are only avail-
able on the Rockwell and WDC chips.

Name

Description Operation

Addressing 

Mode

Assembly 

Language

Op-

codeBytesTime

“P” status

NZCIDV

ADC  Add Accumulator  to 

memory with carry

A+M+C→A,C(Indirect) ADC ($FF) 72 2 5d NZC---

AND  AND Accumulator 

with memory
A∧M → A (Indirect) AND ($FF) 32 2 5 NZ----

BIT  Test Accumulator with 

bits in memory
A∧M
M7 → N
M6 → V

Immediate

Zero Page,X

Absolute,X

BIT #$FF

BIT $FF,X

BIT $FFff,X

89

34

3C

2

2

3

2

4

4+

-Z----

NZ---V

NZ---V

BRA  Branch always Branch Relative BRA $FF 80 2 3+ ------

CMP  Compare memory 

and Accumulator

A←→M (Indirect) CMP ($FF) D2 2 5 NZC---

DEC  Decrement A M−1 → M Accumulator DEC 3A 1 2 NZ----

EOR  Exclusive OR 

Accumulator with memory
AvM → A (Indirect) EOR ($FF) 52 2 5 NZ----

INC  Increment A M+1 → M Accumulator INC 1A 1 2 NZ----

JMP  Jump to new location PC+1 → PCL
PC+2 → PCH

(Absolute 

Indirect,X)

JMP ($FFff,X) 7C 3 6 ------

LDA  Load Accumulator 

with memory

M → A (Indirect) LDA ($FF) B2 2 5 NZ----

ORA  Logical OR 

Accumulator with memory
A∨M → A (Indirect) ORA ($FF) 12 2 5 NZ----

PHX  Push X onto stack X↓ Implied PHX DA 1 3 ------

PHY  Push Y onto stack Y↓ Implied PHY 5A 1 3 ------

PLX  Pull X from stack X↑ Implied PLX FA 1 4 NZ----

PLY  Pull Y from stack Y↑ Implied PLY 7A 1 4 NZ----

SBC  Subtract memory 

from A with borrow
A−M−C → A (Indirect) SBC ($FF) F2 2 5d NZC--V

STA  Store Accumulator in 

memory

A → M (Indirect) STA ($FF) 92 2 5 ------

STZ  Store zero in memory 0 → M Zero Page

Zero Page,X

Absolute

Absolute,X

STZ $FF

STZ $FF,X

STZ $FFff

STZ $FFff,X

64

74

9C

9E

2

2

3

3

3

4

4

5

------

TRB  Test and reset bits Ā∧M → M Zero Page

Absolute

TRB $FF

TRB $FFff

14

1C

2

3

5

6

-Z----

TSB  Test and set bits A∨M → M Zero Page

Absolute

TSB $FF

TSB $FFff

04

0C

2

3

5

6

-Z----
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Hex Operation Codes

Note: Table entries in gray are opcodes for the 65C02.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x BRK
ORA
(zp,x)

TSB
zp

ORA
zp

ASL
zp

PHP
ORA
#

ASL
A

TSB
abs

ORA
abs

ASL
abs

1x
BPL
rel

ORA
(zp),y

ORA
(zp)

TRB
zp

ORA
zp,x

ASL
zp,x

CLC
ORA
abs,y

INC
A

TRB
abs

ORA
abs,x

ASL
abs,x

2x
JSR
abs

AND
(zp,x)

BIT
zp

AND
zp

ROL
zp

PLP
AND
#

ROL
A

BIT
abs

AND
abs

ROL
abs

3x
BMI
rel

AND
(zp),y

AND
(zp)

BIT
zp,x

AND
zp,x

ROL
zp,x

SEC
AND
abs,y

DEC
A

BIT
abs,x

AND
abs,x

ROL
abs,x

4x RTI
EOR
(zp,x)

EOR
zp

LSR
zp

PHA
EOR
#

LSR
A

JMP
abs

EOR
abs

LSR
abs

5x
BVC
rel

EOR
(zp),y

EOR
(zp)

EOR
zp,x

LSR
zp,x

CLI
EOR
abs,y

PHY
EOR
abs,x

LSR
abs,x

6x RTS
ADC
(zp,x)

STZ
zp

ADC
zp

ROR
zp

PLA
ADC
#

ROR
A

JMP
(ind)

ADC
abs

ROR
abs

7x
BVS
rel

ADC
(zp),y

ADC
(zp)

STZ
zp,x

ADC
zp,x

ROR
zp,x

SEI
ADC
abs,y

PLY
JMP
(abs,x)

ADC
abs,x

ROR
abs,x

8x
BRA
rel

STA
(zp,x)

STY
zp

STA
zp

STX
zp

DEY
BIT
#

TXA
STY
abs

STA
abs

STX
abs

9x
BCC
rel

STA
(zp),y

STA
(zp)

STY
zp,x

STA
zp,x

STX
zp,y

TYA
STA
abs,y

TXS
STZ
abs

STA
abs,x

STZ
abs,x

Ax
LDY
#

LDA
(zp,x)

LDX
#

LDY
zp

LDA
zp

LDX
zp

TAY
LDA
#

TAX
LDY
abs

LDA
abs

LDX
abs

Bx
BCS
rel

LDA
(zp),y

LDA
(zp)

LDY
zp,x

LDA
zp,x

LDX
zp,y

CLV
LDA
abs,y

TSX
LDY
abs,x

LDA
abs,x

LDX
abs,y

Cx
CPY
#

CMP
(zp,x)

CPY
zp

CMP
zp

DEC
zp

INY
CMP
#

DEX
CPY
abs

CMP
abs

DEC
abs

Dx
BNE
rel

CMP
(zp),y

CMP
(zp)

CMP
zp,x

DEC
zp,x

CLD
CMP
abs,y

PHX
CMP
abs,x

DEC
abs,x

Ex
CPX
#

SBC
(zp,x)

CPX
zp

SBC
zp

INC
zp

INX
SBC
#

NOP
CPX
abs

SBC
abs

INC
abs

Fx
BEQ
rel

SBC
(zp),y

SBC
(zp)

SBC
zp,x

INC
zp,x

SED
SBC
abs,y

PLX
SBC
abs,x

INC
abs,x

Abbreviations Addressing Modes
# = immediate

A = Accumulator

abs = absolute

rel = relative

zp = zero page

x = X-Register

y = Y-Register

abs,x = indexed by X

abs,y = indexed by Y

(abs) = indirect

(abs,x) = indexed absolute indirect

zp,x = indexed by X

zp,y = indexed by Y

(zp) = indirect

(zp,x) = indexed indirect (pre-indexed)

(zp),y = indirect indexed (post-indexed)

]



Appendix D: Monitor Subroutines

Here is a list of some useful subroutines in the Apple’s Monitor and 
Autostart ROMs. To use these subroutines from assembly-language programs, 
load the proper memory locations or 6502 registers as required by the subrou-
tine and execute aJSR to the subroutine’s starting address. It will perform the 
function and return with the 6502’s registers set as described.

Output Subroutines

$FDED COUT Output a character

COUT is the standard character output subroutine. he character to be output 
should be in the Accumulator.COUT calls the current character output subrou-
tine whose address is stored inCSW (locations$36 and$37), usuallyCOUT1 (see 
below).

$FDF0 COUT1 Output to screen

COUT1 displays the character in the Accumulator on the Apple’s screen at the 
current output cursor position and advances the output cursor. It handles the 
control characters,<RETURN>, linefeed, and bell. It returns with all registers 
intact. Characters in the range of$00 to$3F come out inverse; characters from 
$40 to $7F are lashing; characters from $80 to $FF are normal.

$FE80 SETINV Set Inverse mode

Sets Inverse video mode forCOUT1. All output characters will be displayed as 
black dots on a white background. he Y-Register is set to$3F; all others are 
unchanged.

$FE84 SETNORM Set Normal Mode

Sets Normal video mode forCOUT1. All output characters will be displayed as 
white dots on a black background. he Y-Register is set to$FF; all others are 
unchanged.

$FD8E CROUT Generate a <RETURN>

CROUT sends a <RETURN> character to the current output device.

$FD8B CROUT1 <RETURN> with clear

CROUT1 clears the screen from the current cursor position to the edge of the text 
window, then calls CROUT.

$FDDA PRBYTE Print a hexadecimal byte

his subroutine outputs the contents of the Accumulator in hexadecimal on the 
current output device. he contents of the Accumulator are scrambled.
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$FDE3 PRHEX Print a hexadecimal digit

his subroutine outputs the lower nibble of the Accumulator as a single hexa-
decimal digit. he contents of the Accumulator are scrambled.

$F941 PRNTAX Print A and X in hexadecimal

his outputs the contents of the Accumulator and X-Register as a four-digit 
hexadecimal value. he Accumulator contains the irst byte output; the X-Regis-
ter contains the second. he contents of the Accumulator are usually scrambled.

$F948 PRBLNK Print 3 spaces

Outputs three space characters to the standard output device. Upon exit, the 
Accumulator usually contains $A0, the X-Register contains 0.

$F94A PRBL2 Print many spaces

Outputs from 1 to 256 space characters to the standard output device. Upon 
entry, the X-Register should contain the number of spaces to be output. If the X-
Register is $00, then PRBL2 will output 256 blanks.

$FF3A BELL Output a “bell” character

Sends a bell (<CTRL>G) character to the current output device. It leaves the Accu-
mulator holding $87.

$FBDD BELL1 Beep the Apple’s speaker

Beeps the Apple’s speaker for 0.1 second at 1KHz. It scrambles the Accumulator 
and Y-Register.

Input Subroutines

$FD0C RDKEY Get an input character

his is the standard character input subroutine. It places a lashing input cursor 
on the screen at the current cursor position and jumps to the input subroutine 
whose address is stored in KSW ($38, $39), usually KEYIN (see below).

$FD35 RDCHAR Get an input character or escape code

RDCHAR is an alternate input subroutine which gets characters from the standard 
input but also is capable of interpreting the eleven escape codes.

$FD1B KEYIN Read the Apple’s keyboard

his is the keyboard input subroutine. It reads the Apple’s keyboard, waits for a 
keypress, and randomizes the random-number seed. When it gets a keypress, it 
removes the lashing cursor and returns with the key code in the Accumulator.

$FD6A GETLN Get an input line with prompt

GETLN is the subroutine which gathers input lines. Your programs can callGETLN 
with the proper prompt character in location$33;GETLN will return with the 

]
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input line in the input bufer (beginning at location$200) and the X-Register 
holding the length of the input line.

$FD67 GETLNZ Get an input line

GETLNZ is an alternate entry point forGETLN which issues a<RETURN> to the stan-
dard output before falling into GETLN (see above).

$FD6F GETLN1 Get an input line, no prompt

GETLN1 is an alternate entry point forGETLN which does not issue a prompt 
before it gathers the input line. If, however, the user cancels the input line (either 
with too many backspaces or with a<CTRL>X), thenGETLN1 will issue the con-
tents of location $33 as a prompt when it gets another line.

Low-Res Graphics Subroutines

$F864 SETCOL Set low-res graphics color

his subroutine sets the color used for plotting on the low-res screen to the color 
passed in the Accumulator.

$F85F NEXTCOL Increment color by 3

his adds 3 to the current color used for low-res graphics.

$F800 PLOT Plot a block on the Low-Res Screen

his subroutine plots a single block on the low-res screen of the pre-speciied 
color. he block’s vertical position is passed in the Accumulator and its horizon-
tal position in the Y-Register.PLOT returns with the Accumulator scrambled, but 
the X-Register and Y-Register are unmolested.

$F819 HLINE Draw a horizontal line of blocks

his subroutine draws a horizontal line of blocks of the pre-speciied color on 
the low-res screen. You should callHLINE with the vertical coordinate of the line 
in the Accumulator, the le!most horizontal coordinate in the Y-Register, and 
the rightmost horizontal coordinate in location$2C.HLINE returns with the 
Accumulator and Y-Register scrambled, but with the X-Register intact.

$F828 VLINE Draw a vertical line of blocks

his subroutine draws a vertical line of blocks of the pre-speciied color on the 
low-res screen. You should callVLINE with the horizontal coordinate of the line 
in the Y-Register, the top vertical coordinate in the Accumulator, and the bot-
tom vertical coordinate in location$2D.VLINE returns with the Accumulator 
scrambled.
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$F832 CLRSCR Clear the entire low-res screen

CLRSCR clears the entire low-res graphics screen. If you callCLRSCR while the 
video display is in Text mode, it will ill the screen with inverse-mode “@” char-
acters. CLRSCR destroys the contents of the Accumulator and Y-Register.

$F836 CLRTOP Clear the top of the low-res Screen

CLRTOP is the same asCLRSCR (above), except that it clears only the top 40 rows 
of the screen.

$F871 SCRN Read the low-res screen

his subroutine returns the color of a single block on the low-res screen. Call it 
as you would callPLOT (above). he block’s color value will be returned in the 
Accumulator. No other registers are changed.

Hi-Res Graphics Subroutines

$F3E2 HGR Hi-res page 1

his is the entry point for theHGR command. It initializes hi-res page 1, then 
clears and displays the screen.

$F3D8 HGR2 Hi-res page 2

his is the entry point for theHGR2 command. It initializes hi-res page 2, then 
clears and displays the screen.

$F3F2 HCLR Clear to black

Clears the current screen to black1.

$F3F6 BKGND Clear to color

Clears the current screen to the last plotted HCOLOR.

$F6F0 HCOLOR Set color

Sets the current HCOLOR to the contents of the X-Register (0−7).

$F411 HPOSN Position the cursor

Positions the hi-res “cursor” without plotting. Enter with X, Y (low, high) equal 
to the horizontal position, and the Accumulator equal to the vertical position.

$F457 HPLOT Plot at cursor

Identical to HPOSN, but plots current HCOLOR at coordinates given.

$F5CB HFIND Return the cursor position

Returns the current “cursor” position. his is useful a!er aDRAW to ind where 
you’ve been le!. he coordinates are returned in:$E0,$E1 = horizontal (low, 
high), $E2 = vertical.

]
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$F53A HLIN Draw a line

his subroutine draws a line from the previous plot to the point given. On input, 
set A, X (low, high) to the horizontal position, and Y equal to the vertical posi-
tion.

$F730 SHNUM Load shape number

his routine puts the address of the shape number indicated by X-Register into 
$1A,$1B.SHNUM returns with X, Y (low, high) also set to address of that shape 
table entry.

$F601 DRAW Draw a shape

Draw the shape pointed to by X, Y (low, high) in the currentHCOLOR. Note: X, Y 
point to the speciic entry, not the beginning of the table. Be sure to callSHNUM 
irst.

$F65D XDRAW Erase a shape (draw XOR)

Erases a shape that was just drawn (if there) by doing anexclusive OR with the 
screen data. On input, load X, Y (low, high) with the address of the shape to 
XDRAW or call SHNUM irst with the X-Register equal to the shape number.

Floating Point Accumulator

$EBAF ABS Absolute value

his subroutine takes the absolute value of the Floating Point Accumulator (FAC 
= $9D−$A2).

$EC23 INT INT function

heINT function usesQINT ($EBF2) to convert theFAC to integer form and then 
back to a loating-point number in FAC.

$EFAE RND Random number

his is the same as theRND command. Produces a (poor quality) pseudo-random 
number in the FAC.

$EB82 SIGN Sign of FAC (in Accumulator)

Sets the Accumulator to $01, $00, or $FF if the FAC is positive, zero, or negative.

$EB90 SGN Sign of FAC (in FAC)

Calls SIGN irst, then sets FAC based upon the Accumulator value.

$EE8D SQR Square root

his is theSQR command. It computes the square root ofFAC using a slow expo-
nentiation method: X0.5.

$EF09 EXP Exponentiation

his routine raises e to the FAC power and leaves the result in FAC.
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$E941 LOG Logarithm base e

his computes the logarithm (base e) of FAC.

$EE97 FPWRT Raise ARG to the FAC power (base e)

his computesARG to theFAC power using the formulaEXP(LOG(ARG)*FAC). 
Before calling, you should load the Accumulator with FACEXP ($9D).

$EBB2 FCOMP Compare FAC to memory

Before calling, load the memory location in the Y-Register and Accumulator. On 
exit, A =$01 if the value at the memory location is less thanFAC; A =$00 if the 
memory equals FAC; A = $FF if the memory is greater than FAC.

$EED0 NEGOP Multiply by −1

his routine toggles the sign of FAC.

$E7A0 FADDH Add 0.5

his routine adds 0.5 to FAC.

$EA55 DIV10 Divide by 10

his routine divides FAC by 10. It returns positive values only.

$EA39 MUL10 Multiply by 10

his routine multipliesFAC by 10. It works on both positive and negative num-
bers.

$EFEA COS Cosine

he cosine function of FAC.

$EFFA SIN Sine

he sine function of FAC.

$EFF1 TAN Tangent

he tangent function of FAC.

$F09E ATN Arctangent

he arctangent of FAC.

$ED34 FOUT Create a string

Create a string at the start of the stack ($100−$110) equivalent to theFAC value. 
On exit the Y-Register and Accumulator point to the string. he string is termi-
nated by a $00.

]
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Other Subroutines

$FCA8 WAIT Delay

his subroutine delays for a speciic amount of time, then returns to the program 
which called it. he amount of delay is speciied by the contents of the Accumu-
lator A. he delay is given by 0.5102×(26 + 27A + 5A2) microseconds.WAIT 
returns with the Accumulator zeroed and the X- and Y-Registers undisturbed.

$FB1E PREAD Read a game controller

PREAD returns a number representing the position of a game controller. You 
should irst pass the number of the game controller (0 to 3) in the X-Register. If 
this number is not valid, strange things may happen.PREAD returns with a num-
ber from $00 to $FF in the Y-Register. he Accumulator is scrambled.

$FF2D PRERR Print “ERR”

Sends the word “ERR”, followed by a bell character, to the standard output 
device. he Accumulator is scrambled.

$FF4A IOSAVE Save all registers

he contents of the 6502’s internal registers are saved in locations$45 through 
$49 in the order A-X-Y-P-S. he contents of the Accumulator and the X-Regis-
ter are changed; the decimal mode is cleared.

$FF3F IOREST Restore all registers

he contents of the 6502’s internal registers are loaded from locations$45 
through $49.
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You Get What You ASCII For...

his chart shows many of the possible interpretations of a byte value in 
memory. he irst three columns show the hex value and its decimal and binary 
equivalents. his can be handy when conversions are needed. he next column 
shows what key on an Apple II keyboard generates that character, if any.
Although the standard Apple II does not have a lowercase keyboard, lower-

case keys are shown to allow for machines with special adapters, external key-
boards, etc.
he screen column shows what character is to be expected if that value is 

stored in the screen memory area, $400−$7FF. Inverse characters are surrounded 
by square brackets[A], while lashing characters are surrounded by angle brack-
ets >A<.
he Appleso! column indicates how Appleso! BASIC interprets that byte 

when tokenizing programs.
Note that for control characters, the “̂” symbol is used. hus a Control-A 

would be indicated ̂A.

Hex Dec Binary Key Screen Applesot
$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D

$0E

$0F

$10

$11

$12

$13

$14

$15

$16

$17

$18

$19

$1A

$1B

$1C

$1D

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

0000 0000

0000 0001

0000 0010

0000 0011

0000 0100

0000 0101

0000 0110

0000 0111

0000 1000

0000 1001

0000 1010

0000 1011

0000 1100

0000 1101

0000 1110

0000 1111

0001 0000

0001 0001

0001 0010

0001 0011

0001 0100

0001 0101

0001 0110

0001 0111

0001 1000

0001 1001

0001 1010

0001 1011

0001 1100

0001 1101

[ @ ]

[ A ]

[ B ]

[ C ]

[ D ]

[ E ]

[ F ]

[ G ]

[ H ]

[ I ]

[ J ]

[ K ]

[ L ]

[ M ]

[ N ]

[ O ]

[ P ]

[ Q ]

[ R ]

[ S ]

[ T ]

[ U ]

[ V ]

[ W ]

[ X ]

[ Y ]

[ Z ]

[ [ ]

[ \ ]

[ ] ]

@̂

Â

B̂

Ĉ

D̂

Ê

F̂

Ĝ

Ĥ

Î

Ĵ

K̂

L̂

M̂

N̂

Ô

P̂

Q̂

R̂

Ŝ

T̂

Û

V̂

Ŵ

X̂

Ŷ

Ẑ

[̂

\̂

]̂

]
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Hex Dec Binary Key Screen Applesot
$1E

$1F

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$2A

$2B

$2C

$2D

$2E

$2F

$30

$31

$32

$33

$34

$35

$36

$37

$38

$39

$3A

$3B

$3C

$3D

$3E

$3F

$40

$41

$42

$43

$44

$45

$46

$47

$48

$49

$4A

$4B

$4C

$4D

$4E

$4F

$50

$51

$52

$53

$54

$55

$56

$57

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

0001 1110

0001 1111

0010 0000

0010 0001

0010 0010

0010 0011

0010 0100

0010 0101

0010 0110

0010 0111

0010 1000

0010 1001

0010 1010

0010 1011

0010 1100

0010 1101

0010 1110

0010 1111

0011 0000

0011 0001

0011 0010

0011 0011

0011 0100

0011 0101

0011 0110

0011 0111

0011 1000

0011 1001

0011 1010

0011 1011

0011 1100

0011 1101

0011 1110

0011 1111

0100 0000

0100 0001

0100 0010

0100 0011

0100 0100

0100 0101

0100 0110

0100 0111

0100 1000

0100 1001

0100 1010

0100 1011

0100 1100

0100 1101

0100 1110

0100 1111

0101 0000

0101 0001

0101 0010

0101 0011

0101 0100

0101 0101

0101 0110

0101 0111

[ ̂ ]

[ _ ]

[   ]

[ ! ]

[ " ]

[ # ]

[ $ ]

[ % ]

[ & ]

[ ' ]

[ ( ]

[ ) ]

[ * ]

[ + ]

[ , ]

[ - ]

[ . ]

[ / ]

[ 0 ]

[ 1 ]

[ 2 ]

[ 3 ]

[ 4 ]

[ 5 ]

[ 6 ]

[ 7 ]

[ 8 ]

[ 9 ]

[ : ]

[ ; ]

[ < ]

[ = ]

[ > ]

[ ? ]

> @ <

> A <

> B <

> C <

> D <

> E <

> F <

> G <

> H <

> I <

> J <

> K <

> L <

> M <

> N <

> O <

> P <

> Q <

> R <

> S <

> T <

> U <

> V <

> W <

^̂

_̂

Space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W
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Hex Dec Binary Key Screen Applesot
$58

$59

$5A

$5B

$5C

$5D

$5E

$5F

$60

$61

$62

$63

$64

$65

$66

$67

$68

$69

$6A

$6B

$6C

$6D

$6E

$6F

$70

$71

$72

$73

$74

$75

$76

$77

$78

$79

$7A

$7B

$7C

$7D

$7E

$7F

$80

$81

$82

$83

$84

$85

$86

$87

$88

$89

$8A

$8B

$8C

$8D

$8E

$8F

$90

$91

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

0101 1000

0101 1001

0101 1010

0101 1011

0101 1100

0101 1101

0101 1110

0101 1111

0110 0000

0110 0001

0110 0010

0110 0011

0110 0100

0110 0101

0110 0110

0110 0111

0110 1000

0110 1001

0110 1010

0110 1011

0110 1100

0110 1101

0110 1110

0110 1111

0111 0000

0111 0001

0111 0010

0111 0011

0111 0100

0111 0101

0111 0110

0111 0111

0111 1000

0111 1001

0111 1010

0111 1011

0111 1100

0111 1101

0111 1110

0111 1111

1000 0000

1000 0001

1000 0010

1000 0011

1000 0100

1000 0101

1000 0110

1000 0111

1000 1000

1000 1001

1000 1010

1000 1011

1000 1100

1000 1101

1000 1110

1000 1111

1001 0000

1001 0001

@̂

Â

B̂

Ĉ

D̂

Ê

F̂

Ĝ

Ĥ

Î

Ĵ

K̂

L̂

M̂

N̂

Ô

P̂

Q̂

> X <

> Y <

> Z <

> [ <

> \ <

> ] <

> ̂ <

> _ <

>   <

> ! <

> " <

> # <

> $ <

> % <

> & <

> ' <

> ( <

> ) <

> * <

> + <

> , <

> - <

> . <

> / <

> 0 <

> 1 <

> 2 <

> 3 <

> 4 <

> 5 <

> 6 <

> 7 <

> 8 <

> 9 <

> : <

> ; <

> < <

> = <

> > <

> ? <

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Rubout

END

FOR

NEXT

DATA

INPUT

DEL

DIM

READ

GR

TEXT

PR #

IN #

CALL

PLOT

HLIN

VLIN

HGR2

HGR

]
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Hex Dec Binary Key Screen Applesot
$92

$93

$94

$95

$96

$97

$98

$99

$9A

$9B

$9C

$9D

$9E

$9F

$A0

$A1

$A2

$A3

$A4

$A5

$A6

$A7

$A8

$A9

$AA

$AB

$AC

$AD

$AE

$AF

$B0

$B1

$B2

$B3

$B4

$B5

$B6

$B7

$B8

$B9

$BA

$BB

$BC

$BD

$BE

$BF

$C0

$C1

$C2

$C3

$C4

$C5

$C6

$C7

$C8

$C9

$CA

$CB

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

1001 0010

1001 0011

1001 0100

1001 0101

1001 0110

1001 0111

1001 1000

1001 1001

1001 1010

1001 1011

1001 1100

1001 1101

1001 1110

1001 1111

1010 0000

1010 0001

1010 0010

1010 0011

1010 0100

1010 0101

1010 0110

1010 0111

1010 1000

1010 1001

1010 1010

1010 1011

1010 1100

1010 1101

1010 1110

1010 1111

1011 0000

1011 0001

1011 0010

1011 0011

1011 0100

1011 0101

1011 0110

1011 0111

1011 1000

1011 1001

1011 1010

1011 1011

1011 1100

1011 1101

1011 1110

1011 1111

1100 0000

1100 0001

1100 0010

1100 0011

1100 0100

1100 0101

1100 0110

1100 0111

1100 1000

1100 1001

1100 1010

1100 1011

R̂

Ŝ

T̂

Û

V̂

Ŵ

X̂

Ŷ

Ẑ

[̂

\̂

]̂

^̂

_̂

Space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

Space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

HCOLOR=

HPLOT

DRAW

XDRAW

HTAB

HOME

ROT=

SCALE=

SHLOAD

TRACE

NOTRACE

NORMAL

INVERSE

FLASH

COLOR=

POP

VTAB

HIMEM:

LOMEM:

ONERR

RESUME

RECALL

STORE

SPEED=

LET

GOTO

RUN

IF

RESTORE

&

GOSUB

RETURN

REM

STOP

ON

WAIT

LOAD

SAVE

DEF FN

POKE

PRINT

CONT

LIST

CLEAR

GET

NEW

TAB

TO

FN

SPC(

THEN

AT

NOT

STEP

+

-

*

/
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Hex Dec Binary Key Screen Applesot
$CC

$CD

$CE

$CF

$D0

$D1

$D2

$D3

$D4

$D5

$D6

$D7

$D8

$D9

$DA

$DB

$DC

$DD

$DE

$DF

$E0

$E1

$E2

$E3

$E4

$E5

$E6

$E7

$E8

$E9

$EA

$EB

$EC

$ED

$EE

$EF

$F0

$F1

$F2

$F3

$F4

$F5

$F6

$F7

$F8

$F9

$FA

$FB

$FC

$FD

$FE

$FF

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

1100 1100

1100 1101

1100 1110

1100 1111

1101 0000

1101 0001

1101 0010

1101 0011

1101 0100

1101 0101

1101 0110

1101 0111

1101 1000

1101 1001

1101 1010

1101 1011

1101 1100

1101 1101

1101 1110

1101 1111

1110 0000

1110 0001

1110 0010

1110 0011

1110 0100

1110 0101

1110 0110

1110 0111

1110 1000

1110 1001

1110 1010

1110 1011

1110 1100

1110 1101

1110 1110

1110 1111

1111 0000

1111 0001

1111 0010

1111 0011

1111 0100

1111 0101

1111 0110

1111 0111

1111 1000

1111 1001

1111 1010

1111 1011

1111 1100

1111 1101

1111 1110

1111 1111

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Rubout

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Rubout

;

AND

OR

>

=

<

SGN

INT

ABS

USR

FRE

SCRN(

PDL

POS

SQR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STR$

VAL

ASC

CHR$

LEFT$

RIGHT$

MID$

]
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Text Screen Memory Map
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Hi-Res Memory Map

]



Appendix F: Zero-Page Memory Usage

Special Locations

his table was adapted from Jon Bettencourt’sApple II Info Archives, the 
Appleso! II BASIC Programming Reference Manual, andBeneath Apple DOS 
(Worth and Lechner).

$0A−$0C JMP to USR routine
$18 First data track

$19 First data sector

$1A,$1B Shape pointer for DRAW

$1C Last COLOR used

$20 Le! edge (0−39/79, default 0)
$21 Width (1−40 or 80, default 40, 

0 crashes Appleso!)
$22 Top margin (0−23, default 0, or 

20 for graphics)

$23 Bottom edge (0−24, default 24)
$24 Horizontal cursor position (0−39/79)
$25 Vertical cursor position (0−23)
$26,$27 Address of byte containing X,Y

$28,$29 Base address of cursor position

$2B BOOT slot × 16
$2C Lo-res HLIN/VLIN endpoint

$30 COLOR × 17

$32 Text mask ($FF = Normal, $3F = 

Inverse, $7F = Flashing)

$33 Prompt character

$36,$37 Address of output routine

$38,$39 Address of input routine

$48,$49 IOB address

$50,$51 Result of the conversion of the 

FAC to a 16-bit integer

$67,$68 Address of beginning of BASIC 

program (default is $0801)

$69,$6A Address of beginning of BASIC 

variables

$6B,$6C Address of beginning of BASIC 

arrays

$6D,$6E Address of end of BASIC vari-

ables

$6F,$70 Address of start of string data

$73,$74 Address of highest BASIC 

memory + 1

$75,$76 Current execution line number

$77,$78 Line number where END or STOP 

or BREAK occurred

$79,$7A Address of line number being 

executed

$7B,$7C Current line # of DATA

$7D,$7E Next address of DATA

$7F,$80 Address of INPUT or DATA

$81,$82 Name of last used variable

$83,$84 Address of last used variable

$9B,$9C Pointer for FNDLIN ($D61A) 

and GETARYPT ($F7D9)

$9D−$A3 Floating-point accumulator FAC
$A5−$AB Floating-point argument ARG
$AF,$B0 BASIC program end address

$B1−$B6 Subroutine to increase the 
string data pointer

$B7−$BE Subroutine to return the string 
data pointer’s character

$C9−$CD Random number
$D4 Error-code lag
$D8−$DE ONERR pointers/scratch
$DF ERRSTK stack pointer

$E0,$E1 Horizontal HPLOT coordinate

$E2 Vertical HPLOT coordinate

$E4 HCOLOR (0=0, 1=42, 2=85, 3=127, 

4=128, 5=170, 6=213, 7=255)

$E6 HGR page: HGR=$20, HGR2=$40

$E7 SCALE value (0 = 256)

$E8,$E9 Address of start of shape table

$EA DRAW/XDRAW collision counter

$F1 SPEED value (subtracted from 256)

$F3 Text OR mask for lashing text
$F4−$F8 ONERR pointers
$F9 ROT value

$FF Used by STR$ function
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Memory Usage Table

his table comes from thecomp.sys.apple2 FAQ. he information is drawn 
from the Apple II technical manuals,Beneath Apple DOS (Don Worth and 
Pieter Lechner), and Exploring Apple GS/OS and ProDOS 8 (Gary B. Little).

Low Nibble of Address
Hi| 0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F
0 | AP  AP  A   A   A   A   −   −   −   −   A   A   A   A   A   A
1 | A   A   A   A   A   A   A   A   A   −   −   −   −   −   −   *
2 | M   M   M   M   M   M   MA3 MA3 M   M   M3  M3  MA3 MA3 M3  MA3
3 | M   M   M   M   M   M3  M3B M3B M3B M3B MP  MP  MP  MP  M3P M3P
4 | M3P M3P M3P M3P M3P M3P M3P M3P M3P MP  I3P I3P I3P I3P MP  M
5 | MA  MA  MA  MA  MA  MAI AI  AI  AI  AI  AI  AI  AI  AI  AI  AI
6 | AI  AI  AI  AI  AI  AI  AI  AI3 AI3 AI3 AI3 AI  AI  AI  AI  AI3
7 | AI3 AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI
8 | AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI
9 | AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI
A | AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI3
B | AI3 AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI
C | AI  AI  AI  AI  AI  AI  AI  AI  AI  AI  AI3 AI3 AI3 AI3 I   I
D | AI  AI  AI  AI  AI  AI  I   I   AI3 AI  AI  AI  AI  AI  AI  AI
E | A   A   A   −   A   A   A   A   A   A   A   −   −   −   −   −
F | A   A   A   A   A   A   A   A   A   A   −   −   −   −   −   −

M  Monitor;
*  used in early Apple //e ROMs, now free
A  Appleso! BASIC
I  Integer BASIC
3  DOS 3.3
P  ProDOS ($40−$4E is saved before and restored a!er use)
B  ProDOS BASIC.SYSTEM (also uses all Appleso! locations)
−  Free; not used

]



Appendix G: Beginner’s Guide to Merlin

his section is adapted from T. Petersen’s “Beginner’s Guide to UsingMer-
lin,” in theMerlin Pro User’s Manual, Roger Wagner Publishing, 1984. he 
instructions should work on both the originalMerlin Macro Assembler and the 
Merlin Pro Macro Assembler.
he purpose of an assembler is to translate human-readable code into 

machine instructions which then can be executed by the computer. For 6502 
assembly language the code consists of a series of three-letter commands (the 
“opcodes”) along with their associated data (the “operands”). With an assembler 
such asMerlin you can also use optional labels and macros to make your code 
easier to read and debug.

Control Modes

Merlin has two main modes of operation: Executive Control Mode and Edi-
tor Control Mode.
he Executive Control Mode is the main menu which appears when you 

start the program (see the image below). he prompt is indicated by the “%” 
character. he Executive Control Mode lets you perform disk actions such as 
loading and saving source code or object code, quitting to BASIC, or switching 
to the Editor/Assembler.
he Editor Control Mode consists of the Editor, the Assembler, and the 

Linker. he prompt is indicated by the “:” character. he Editor Control Mode 
lets you enter and modify code, deine macros, assemble your code, and link in 
external iles.

             MERLIN-PRO  2.43

              By Glen Bredon

      C :Catalog
      L :Load source
      S :Save source
      A :Append file
      R :Read text file
      W :Write text file
      D :Drive change
      E :Enter ED/ASM
      O :Save object code
      Q :Quit

                 Source: A$0901,L$0000
      Drive: 2

      %
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Getting Started

As discussed in chapter three, assembly code typically has the following 
form:

    7  START    JSR  BELL       ; RING THE BELL

Each line consists of several ields: the line number, an optionallabel 
(START), thecommand (JSR), theoperand (using a label such asBELL or a num-
ber such as$FBDD), and an optionalcomment. InMerlin, the line numbers are 
added automatically and cannot be edited. When listing or assembling the pro-
gram, all of those ields are separated by tab characters to produce nicely format-
ted output. When inputting code, you need type only a single<SPACE> to 
advance from one ield to the next–you do not need to insert tabs yourself.
To get started, try creating a short program that will make your Apple beep 

once:

1. Boot your Merlin or Merlin Pro disk.

2. A!er the main Executive Control Mode menu appears, type “E” at the “%” 
prompt to enter the Editor Control Mode.

3. To enter a new program, at the “:” prompt type “A” (for Add) and press 
<RETURN>. You should see a “1” appear and the cursor should be placed one 
space to the right of that line number. As you enter code the line numbers will 
advance automatically. hese line numbers are used only while editing code in 
the Editor and are not part of your actual program.

4. On line 1, hit<CTRL>P. A line ofasterisks should appear. An asterisk as the 
irst character indicates a comment line. Anything a!er the irst asterisk will be 
ignored by the assembler. Hit <RETURN> to accept the line and advance to line 2.

5. On line 2, type a single<SPACE> and then hit<CTRL>P. You should now see 
an asterisk at either end of the line. Space over a few characters and then type 
“DEMO PROGRAM 1”. Hit<RETURN> to accept the line. You do not need to have the 
cursor at the end of the line when you hit<RETURN>–the entire line will be 
accepted, regardless of where the cursor is located.

6. On line 3, again hit<CTRL>P and then<RETURN> to inish making a nicely 
formatted box of asterisks containing your program name.

7. On line 4, type a single asterisk and hit<RETURN>. From this point on, it will 
be assumed that you hit <RETURN> to complete each line.

8. On line 5, hit the<SPACE> bar once to advance to the command ield, type 
ORG, hit<SPACE> again to advance to the operand ield, then type$8000. So far 
your program should look like this:

]
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       1 ********************************

       2 *        DEMO PROGRAM 1        *

       3 ********************************

       4 *

       5          ORG  $8000

heORG deines the origin, the memory location from which the program is 
designed to run.

Quick tip: If you make a mistake, don’t panic. Hit<RETURN> on a blank line to 
exit from Add mode. Type “L” to list your program. Type “Dn” to delete linen. 
Type “A” to re-enter Editor Control Mode and add to your current program.

9. Now we will use our irst label. Type:

BELL<SPACE>EQU<SPACE>$FBDD

his deines the labelBELL to be equal to the hex valueFBDD. Wherever you use 
the labelBELL in an expression, the assembler will automatically replace it with 
$FBDD. Why not simply use the address$FBDD everywhere? Well, using a label 
makes the code easier to read and also makes it easier to change the location in 
the future.

10.Now we need to ring our bell. On line 7, type:

START<SPACE>JSR<SPACE>BELL<SPACE>; RING THE BELL

Notice that we started our comment with a semicolon. Any characters within the 
comment ield will be ignored; using the semicolon just makes it clear that this is 
a comment.

11.We’re almost done! On line 8, type:

DONE<SPACE>RTS

12.On line 9 press<RETURN> to exit from Add mode. Because line 9 was empty, 
it will not be added to your program.

Type “L” to get a listing of your program. It should look like this:

    1 ********************************

    2 *        DEMO PROGRAM 1        *

    3 ********************************

    4 *

    5          ORG  $8000

    6 BELL     EQU  $FBDD

    7 START    JSR  BELL       ; RING THE BELL

    8 DONE     RTS
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Note that each string of characters has been moved to the correct ield: 
labels, commands, operands, and comments. In summary, when adding code, 
space once to advance to the next ield.

Deleting Lines

If you make a mistake or no longer need certain lines, you can delete lines 
while in the Editor Control Mode. For example:

1. While you are at the “:” prompt, typeD6<RETURN>. Nothing changes on the 
screen.

2. Type “L” to list your program. Notice that the original line 6 (with theBELL) 
is now gone and the remaining lines have moved up.

3. Type D5,6<RETURN> to delete the range of lines from 5−6.

4. Typing “L” reveals that our poor program now has only one line of code le!, 
just the RTS.

Caution: Notice that the automatic renumbering caused the line numbers to 
shi! upward. If you intend to delete several lines in succession, be sure to start 
by deleting the highest desired line number and working backwards to the low-
est.

Inserting Lines

We now need to restore our deleted lines.

1. At the “:” prompt, typeI5<RETURN> to insert new lines starting just before 
line 5.

2. Type our missing three lines, making sure to use spaces to separate the 
ields:

         ORG  $8000

BELL     EQU  $FBDD

START    JSR  BELL       ; RING THE BELL

3. Again, hit<RETURN> on the next empty line to return to Editor Control 
Mode.

4. Type “L” to conirm that the code has been restored.

]
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Editing Lines

While editing a line you can use certain keyboard shortcuts to insert or 
delete characters. Try this:

1. At the “:” prompt, type “E8” to edit line 8. Line 8 should appear with the 
cursor over the D in DONE.

2. Press<CTRL>D to delete the character under the cursor. Press<CTRL>D three 
more times.

3. Hit<RETURN> to accept the changes and inish editing the line. Type “L” to 
list your program and conirm that the last line now has just theRTS command 
but no label.

4. Type “E8” to re-edit line 8. Now, press <CTRL>I to go into insert mode. Type 
the wordDONE and press<RETURN>. What do you think happens if you forget to 
press <CTRL>I? If you’d like, go back and repeat steps 1−4 but skip the <CTRL>I.

Notice that when we did “E8” and inished editing our line, we returned to Edi-
tor Control Mode. You can also type a range of lines, such as “E3,6”. his will 
call up each line from 3−6 in succession. Pressing<RETURN> will take you to the 
next line to edit, until you’ve reached the end of your range.

Tip: If you have completely botched your line, you can press<CTRL>C to cancel 
the changes for the current line and return to Editor Control Mode.

Assembling the Code

he next step is to assemble and run our code. At the “:” prompt, type 
ASM<RETURN>. On your screen should appear the following:

UPDATE SOURCE (Y/N)?

Type “N” and you should then see:

                1    ********************************

                2    *        DEMO PROGRAM 1        *

                3    ********************************

                4    *

                5             ORG  $8000

                6    BELL     EQU  $FBDD

8000: 20 DD FB  7    START    JSR  BELL

8003: 60        8    DONE     RTS

--End assembly, 4 bytes, Errors: 0

Symbol table - alphabetical order:

   BELL    =$FBDD   ?  DONE    =$8003   ?  START   =$8000

Symbol table - numerical order:

?  START   =$8000   ?  DONE    =$8003      BELL    =$FBDD
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If the system beeps and displays an error message, remember the line num-
ber that was referenced and press<RETURN> until the assembly completes. hen 
go back through your program and compare it with the listing above. Use your 
new-found editing skills to correct the line, then re-assemble by typing ASM.
To the le! of the line numbers we now see the assembled machine code. For 

example, theJSR BELL has been converted to20 DD FB, where the20 is the hexa-
decimal code forJSR andDD FB is theBELL address in reverse byte order. he 
next line contains a single opcode, the60 for theRTS, to return from our subrou-
tine. Notice that none of the labels or comments are within the machine-lan-
guage code on the le!-hand side. Finally, we see that the code has been 
assembled at address $8000, as we instructed with the ORG command.

Saving and Running Your Program

Assuming that your code assembled with no errors, you can now save and 
run your program.

1. At the “:” prompt, type “Q” to return to the Executive Control Mode. Your 
source code and object code are safe in memory. If you wish, you could return to 
the Editor and continue editing your code.

2. At the “%” prompt, hit “S” to save your source code. Type a ilename such as 
DEMO1. he ile will be saved with “.S” appended to indicate that it is a source ile.

3. Now hit “O” to save your object code.Merlin will display the same ilename 
with a “?” at the end. Hit “Y” to acceptDEMO1 as the object ile name. Because the 
source code ile had the “.S” appended to it, the two iles will not conlict.

4. Now hit “Q” to quitMerlin. TypeCATALOG to verify that your program was 
saved. hen type BRUN DEMO1 to run your program. You should hear a BEEP!

Congratulations! You’ve just written your irst 6502 assembly-language pro-
gram!

]



List of Programs

AL03-SAMPLE PROGRAM.........................................15

AL03-TEST PROGRAM 1.............................................19

AL04-LOOP PROGRAM 1...........................................25

AL05-LOOP PROGRAM 2...........................................27

AL05-LOOP PROGRAM 2A........................................28

AL05-LOOP PROGRAM 2B.........................................30

AL05-LOOP PROGRAM 3...........................................31

AL05-PADDLE PROGRAM 1......................................32

AL05-PADDLE PROGRAM 1A...................................34

AL06-PADDLE PROGRAM 2A...................................39

AL06-KEYBOARD PROGRAM 1A............................42

AL06-KEYBOARD PROGRAM 1B.............................43

AL07-SAMPLE DATA PROGRAM............................48

AL07-SCREEN CLEAR PROGRAM 1A.....................50

AL07-SCREEN CLEAR PROGRAM 1B......................51

AL08-SOUND ROUTINE 2..........................................56

AL08-SOUND ROUTINE 3..........................................56

AL08-SOUND ROUTINE 4..........................................58

AL08-SOUND ROUTINE 5..........................................59

AL09-BYTE DISPLAY PROGRAM 1..........................61

AL09-BYTE DISPLAY PROGRAM 2..........................63

AL10-ADC SAMPLE PROGRAM 1............................67

AL10-ADC SAMPLE PROGRAM 2............................67

AL10-ADC SAMPLE PROGRAM 3............................68

AL10-ADC SAMPLE PROGRAM 4............................68

AL10-ADC SAMPLE PROGRAM 5A.........................69

AL10-ADC SAMPLE PROGRAM 5B..........................70

AL10-ADC SAMPLE PROGRAM 5C.........................71

AL10-ADC SAMPLE PROGRAM 5D.........................71

AL10-SBC SAMPLE PROGRAM 6..............................72

AL10-BPL KEYTEST PROGRAM 1............................75

AL10-BPL KEYTEST PROGRAM 2............................75

AL10-BPL BUTTON TEST...........................................76

AL11-GENERAL PURPOSE RWTS............................83

AL12-BINARY FUNCTION DISPLAY......................99

AL13-DATA-TYPE PRINT 1.....................................105

AL13-SPECIAL PRINT 2............................................107

AL13-INPUT ROUTINE FOR BINARY..................108

AL13-INPUT ROUTINE FP BASIC..........................110

AL14-NAME FILE DEMO PROGRAM...................113

AL14-NAME FILE DEMO PROGRAM 2................120

AL15-NON-RELOCATABLE PRINT DEMO.........127

AL15-NON-RELOCATABLE JMP DEMO..............129

AL15-RELOCATABLE JMP 1....................................129

AL15-RELOCATABLE JMP 2....................................130

AL15-LOCATOR 1......................................................131

AL15-LOCATOR 2......................................................132

AL15-RELOCATABLE PRINT 1...............................133

AL15-NON-RELOCATABLE JSR DEMO...............134

AL15-RELOCATABLE JSR SIMULATION.............135

AL15-RELOCATABLE PRINT 2...............................136

AL15-RELOCATABLE PRINT 3...............................138

AL15-RELOCATABLE JMP 3....................................139

AL16-SOUND ROUTINE 3A....................................144

AL16-SOUND ROUTINE 3B.....................................148

AL16-POINTER SETUP ROUTINE.........................149

AL17-INTEGER VARIABLE READER....................156

AL17-REAL VARIABLE READER............................158

AL17-STRING VARIABLE READER.......................159

AL17-INTEGER VARIABLE SENDER....................162

AL17-REAL VARIABLE SENDER............................163

AL17-STR$ VARIABLE SENDER.............................164

AL18-HIRES DEMO 1.................................................169

AL18-BALL...................................................................175

AL19-HIRES DOT.......................................................177

AL19-HIRES ONE DOT PROGRAM.......................179

AL19-HIRES LOTS DOTS..........................................184

AL20-HIRES BASE ADDRESS...................................190

AL21-HIRES PLOT.140..............................................201

AL21-HIRES PLOT.560..............................................204

AL21-PLOTLINES.......................................................206

AL22-HIRES PLOT.140+............................................210

AL22-HIRES PLOT.560+............................................212

AL22-HIRES PLOT.560W..........................................214

AL22-PLOTLINES.......................................................217

AL23-HI-RES SCRN FNCTN.....................................219

AL24-SCANNER-XDRAW,XDRAW.......................229

AL24-SCANNER-DRAW,XDRAW..........................232

AL25-SIMPLE NOISE ROUTINE.............................235

AL25-SIMPLE NOISE ROUTINE 2..........................237

AL25-SIMPLE RAMP NOISE ROUTINE................240

AL25-SIMPLE EXPLOSION ROUTINE..................241

AL25-SHOOTER PROGRAM....................................245

AL26-BASIC TO FAC.................................................256

AL26-FAC TO MEMORY..........................................257

AL26-MEMORY TO FAC..........................................258

AL26-FAC TO BASIC.................................................259

AL26-BASIC.FAC.MEM.FAC.BAS...........................260

AL26-BASIC.FAC.MEM.FAC.BAS USR..................261

AL27-M.L. ADDITION SUBR 1................................266

AL27-M.L. ADDITION SUBR 2................................268

AL27-M.L. ADDITION SUBR 3................................269

AL28-BCD DEMO ROUTINE 1................................272

AL28-BCD DEMO ROUTINE 2................................273

AL28-BCD DEMO 'INC' ROUTINE.........................274

AL28-BCD DEMO 'DEC' ROUTINE........................274

AL28-BCD ADDITION ROUTINE..........................275

AL28-BCD SUBTRACT ROUTINE..........................275

AL28-BCD PRINT ROUTINE 1................................276

AL28-BCD PRINT ROUTINE 2................................276

AL28-BCD PRINT ROUTINE 3................................278

AL29-CONTROL CHARACTER DISPLAY............286

AL29-SPECIAL DISPLAY ROUTINE......................287

AL30-SIMPLE CASE CONVERTER.........................295

AL30-LOWERCASE INPUT ROUTINE..................297

AL31-CHARACTER GENERATOR.........................305

AL31-ASCII CHARACTER SET................................310

AL32-CHARACTER EDITOR...................................314

ASSEMBLY LINES CONTEST WINNER................340



Directory Listing for Program Disks
he programs are contained on two loppy disks. For ProDOS the iles are contained in a 
folder namedCODE. he.S suix indicates a Merlin source ile. he.A suix indicates an 
Applescript ile. Names without a suix are compiled object iles.

/ALDISK1/CODE /ALDISK2/CODE

AL03.SAMPLE.S

AL03.TEST1

AL03.TEST1.S

AL04.LOOP1.S

AL05.LOOP2.S

AL05.LOOP2A.S

AL05.LOOP2B.S

AL05.LOOP3.S

AL05.PADDLE1.S

AL05.PADDLE1A.S

AL06.KBRD1A

AL06.KBRD1A.S

AL06.KBRD1B

AL06.KBRD1B.S

AL06.PADDLE2A

AL06.PADDLE2A.S

AL07.HGR

AL07.HGR.S

AL07.SAMPLE

AL07.SAMPLE.S

AL07.SCREEN1A

AL07.SCREEN1A.S

AL07.SCREEN1B

AL07.SCREEN1B.S

AL08.SOUND2

AL08.SOUND2.S

AL08.SOUND3

AL08.SOUND3.A

AL08.SOUND3.S

AL08.SOUND4

AL08.SOUND4.S

AL08.SOUND5

AL08.SOUND5.S

AL09.BYTE1

AL09.BYTE1.S

AL09.BYTE2

AL09.BYTE2.S

AL10.ADC1.S

AL10.ADC2.S

AL10.ADC3.S

AL10.ADC4.S

AL10.ADC5A.S

AL10.ADC5B.S

AL10.ADC5C.S

AL10.ADC5D.S

AL10.BPLKEY1.S

AL10.BPLKEY2.S

AL10.BPLPB.S

AL10.SBC6.S

AL11.RWTS

AL11.RWTS.S

AL12.OPERATOR

AL12.OPERATOR.A

AL12.OPERATOR.S

AL13.INPUTBIN.S

AL13.INPUTFP

AL13.INPUTFP.A

AL13.INPUTFP.S

AL13.PRINT1.S

AL13.PRINT2.S

AL14.FILE1

AL14.FILE1.S

AL14.FILE2

AL14.FILE2.S

AL15.LOCATE1.S

AL15.LOCATE2.S

AL15.NRJMP.S

AL15.NRJSR.S

AL15.NRPRINT.S

AL15.PRINT1

AL15.PRINT1.S

AL15.PRINT2

AL15.PRINT2.S

AL15.PRINT3

AL15.PRINT3.S

AL15.RELJMP1.S

AL15.RELJMP2.S

AL15.RELJMP3.S

AL15.RELJSR.S

AL16.POINTER

AL16.POINTER.S

AL16.SOUND3A.S

AL16.SOUND3B

AL16.SOUND3B.A

AL16.SOUND3B.S

AL17.READINT

AL17.READINT.A

AL17.READINT.S

AL17.READREAL

AL17.READREAL.S

AL17.READSTR

AL17.READSTR.S

AL17.SENDINT

AL17.SENDINT.A

AL17.SENDINT.S

AL17.SENDREAL

AL17.SENDREAL.S

AL17.SENDSTR

AL17.SENDSTR.S

AL18.BALL.A

AL18.HIRES1

AL18.HIRES1.S

AL19.HIRESDOT

AL19.HIRESDOT.A

AL19.HIRESDOT.S

AL19.LOTSDOTS

AL19.LOTSDOTS.S

AL20.HGRADDR

AL20.HGRADDR.S

AL21.PLOT140

AL21.PLOT140.S

AL21.PLOT560

AL21.PLOT560.S

AL21.PLOTLINE.A

AL22.PLOT140

AL22.PLOT140.S

AL22.PLOT560

AL22.PLOT560.S

AL22.PLOT560W

AL22.PLOT560W.S

AL22.PLOTLINE.A

AL23.HGRSCRN

AL23.HGRSCRN.A

AL23.HGRSCRN.S

AL24.SCAN1

AL24.SCAN1.S

AL24.SCAN2

AL24.SCAN2.S

AL25.EXPLODE

AL25.EXPLODE.S

AL25.NOISE

AL25.NOISE.A

AL25.NOISE.S

AL25.NOISE2

AL25.NOISE2.A

AL25.NOISE2.S

AL25.RAMP

AL25.RAMP.A

AL25.RAMP.S

AL25.SHOOTER

AL25.SHOOTER.S

AL26.BASICFAC.S

AL26.BFMFB

AL26.BFMFB.S

AL26.BFMFBUSR

AL26.BFMFBUSR.S

AL26.FACBASIC.S

AL26.FACMEM.S

AL26.MEMFAC.S

AL27.MLADD.A

AL27.MLADD1.S

AL27.MLADD2.S

AL27.MLADD3

AL27.MLADD3.S

AL28.BCDADD.S

AL28.BCDDEC.S

AL28.BCDDEMO1.S

AL28.BCDDEMO2.S

AL28.BCDINC.S

AL28.BCDPRNT1.S

AL28.BCDPRNT2.S

AL28.BCDPRNT3.S

AL28.BCDSUB.S

AL29.CTRLCHAR

AL29.CTRLCHAR.S

AL29.DISPLAY

AL29.DISPLAY.S

AL30.CASECVRT

AL30.CASECVRT.A

AL30.CASECVRT.S

AL30.LCINPUT

AL30.LCINPUT.A

AL30.LCINPUT.S

AL31.ASCII

AL31.ASCII.S

AL31.CHARGEN

AL31.CHARGEN.A

AL31.CHARGEN.S

AL32.CHAREDIT

AL32.CHAREDIT.A

AL32.CHAREDIT.S

AL32.PIGFONT

ALAPP.CONTEST

ALAPP.CONTEST.S

]
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6
6502 bug.....................................................140, 335, 370

65C02..........13, 140, 327-336, 345, 356, 370, 377-380, 

387-390, 394, 398-403

A
ABS subroutine..........................................................408

absolute addressing...............................18, 45, 128, 328

Accumulator.............................................................6, 18

ADC..............................................................66, 274, 344

addition in assembly...........................................65, 265

addition, two-byte........................................................69

address.........................................................................3, 4

addressing modes..........................................18, 45, 328

ampersand vector.......................................................264

AND......................................................92, 278, 322, 345

Apple ///..............................................................336, 337

Apple //e.........................13, 94, 291, 296, 320, 335-337

Apple II....................................13, 53, 94, 296, 336, 411

Apple II Plus..............................5, 13, 94, 291, 296, 336

Appleso! array variables..........................................154
Appleso! BASIC...............................5, 10, 11, 110, 128
Appleso! variables.....................................................151
ARG register...............................................................265

ASC directive..............................................................106

ASCII...............................19, 40, 94, 106, 305, 313, 411

ASL................................................................89, 186, 348

ASM command............................................................16

assembler........................................................2, 9, 13, 15

assembly language......................................................2, 9

asterisks for comments.......................................17, 421

ATN subroutine.........................................................409

B
base 16 numbers.......................................................4, 22

base 2 numbers.......................................................21, 65

base address..................................................................17

BASL location....................................................292, 302

BBR..............................................................................331

BBS...............................................................................331

BCC.................................................................38, 70, 349

BCS........................................................................38, 350

BELL subroutine.........................17, 135, 321, 405, 422

BELL1 subroutine......................................................405

BEQ.........................................................27, 40, 280, 351

Binary Coded Decimal....264, 271, 344, 359, 383, 384

binary numbers......................................................22, 65

BIT.......................96, 130, 211, 216, 293, 299, 330, 351

bits...........................................................................22, 65

BKGND subroutine..........................................169, 407

BLOAD command..............................................35, 113

BMI........................................................................75, 353

BNE...................................................24, 25, 40, 280, 354

borrow, for subtraction...............................................72

BPL........................................................................75, 355

BRA..............................................................................331

branch commands.......................................................38

branch instruction.................................................25, 27

branch ofsets................................................................28
branch tests for ranges................................................38

branch, reverse.............................................................28

break message.....................................................3, 5, 356

BREAK subroutine....................................................370

BRK.....................................................................256, 356

BRK vector location..........................................356, 370

BRUN command.........................................................35

BSAVE command......................................................113

bufer, memory...........................................................118
BVC.......................................................................96, 357

BVS........................................................................96, 358

C
CALL command..............................................6, 15, 143

carry lag...................................................38, 66, 90, 273
CATALOG command...............................................106

CH location................................................................305

CHK directive.......................................................xiii, 16

CHKCOM subroutine.....150, 157, 160, 219, 257, 267

CHKNUM subroutine..............................158, 163, 219

CHKSTR subroutine.........................................159, 165

CHRGET subroutine.................................................147

CLC........................................................................67, 358

CLD.....................................................................272, 359

CLI...............................................................................359

CLRSCR subroutine..................................................407

CLRTOP subroutine.................................................407

CLV..............................................................................360

CMP......................................................................38, 360

code location, determining.......................................131

COLBYTE location...................................198, 211, 213

COMBYTE subroutine.............................148, 219, 236

command ield in assembly................................17, 421
comment ield in assembly.................................17, 421
compare commands....................................................38

complements, number................................................73

CONUPK subroutine................................................269

COS subroutine..........................................................409

counters.........................................................................21

COUT subroutine......29, 120, 277, 281, 323, 370, 404

COUT1 subroutine...................................281, 304, 404

CPX........................................................................40, 362

CPY........................................................................40, 362

CROUT subroutine...................................................404

CROUT1 subroutine.................................................404

CSW location.....................................281, 291, 322, 370

CURLIN location.......................................................126

CV location.................................................................302

D
debugging...........................................................357, 374

DEC...............................................................23, 330, 363

decimal number formula............................................22

decrementing................................................................23

delays in execution.......................................................54

delimiters......................................................................16

DEX.......................................................................23, 364
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DEY.......................................................................23, 365

DFB directive................................................................48

directives, assembler....................................................17

disassembly...................................................................10

diskette hard-sectoring................................................80

diskette organization...................................................78

diskette sector interleaving.........................................79

diskette so!-sectoring.................................................80
DIV10 subroutine......................................................409

DOS....................................16, 35, 77, 79, 281, 290, 294

DOS bell modiication.................................................88
DOS bufer pointer......................................................85
DOS catalog key modiication....................................87
DOS disk-volume modiication.................................86
DOS input/output vector.........................284, 294, 322

DOS IOB table.................................................81, 83, 84

DRAW command......................................................225

DRAW subroutine............................169, 172, 229, 408

dummy return address..............................................131

E
EOR.......................................................................97, 365

EQU directive.......................................................17, 422

exclusive OR.................................................................97

EXP subroutine..........................................................408

exponent, real number..............................................254

F
FAC register.......................................................254, 265

FACEXP location.......................................................267

FADD subroutine......................................................270

FADDH subroutine...................................................409

FADDT subroutine...........................................267, 269

FCOMP subroutine...................................................409

FDIV subroutine........................................................270

lags, Status Register....................................................22
FLASH command......................................................285

loating-point accumulator (FAC)..........150, 236, 254
low of control, machine language............................94
FMULT subroutine...................................................270

forced branch statement...................................129, 134

FOUT subroutine......................................................409

FPWRT subroutine...................................................409

FRMEVL subroutine.........................................160, 268

FRMNUM subroutine.....150, 159, 219, 256, 257, 267

FSUB subroutine........................................................270

G
GBAS location....................................................197, 211

GETADR subroutine........................150, 159, 219, 256

GETLN subroutine...........................109, 118, 296, 405

GETLN1 subroutine..................................................406

GETLNZ subroutine.................................................406

GIVAYF subroutine..........................................163, 219

GOSUB command........................11, 17, 136, 371, 382

graphics, table driven................................................183

H
HCLR subroutine..............................................169, 407

HCOLOR subroutine........................................169, 407

HCOLOR1 location...................................................198

HEX directive...............................................................48

hexadecimal...............................................4, 22, 65, 271

HFIND subroutine............................................169, 407

HGR subroutine................................................169, 407

HGR2 subroutine..............................................169, 407

hi-res 140-point mode......................................201, 207

hi-res 560-point mode......................................203, 207

hi-res collision counter.............................................225

hi-res color mask...............................................198, 211

hi-res color shi!.........................................192, 203, 208
hi-res color table................................................168, 193

hi-res entry points......................................................168

hi-res ill efect............................................................189
hi-res memory map...................................189, 303, 417

hi-res object velocity..................................................173

hi-res screen coordinates..........................................168

hi-res screen locations...............................................173

hi-res screen motion..................................................173

hi-res white color problem...............................195, 201

high bit..........................................................................29

high-order byte.............................................................11

HIMEM command.....................................85, 128, 153

HLIN subroutine.......................................169, 322, 408

HLINE subroutine.....................................................406

HMASK location.......................................199, 211, 213

HNDX location..........................................................197

HOME subroutine.......................................................19

HPAG location...........................................................197

HPLOT subroutine...........................169, 182, 221, 407

HPOSN subroutine..................169, 172, 197, 219, 407

HTAB subroutine......................................................119

I
immediate addressing...................................18, 45, 328

implicit addressing.......................................................45

implied addressing.......................................................45

INC................................................................23, 330, 367

inclusive OR..................................................................97

incrementing................................................................23

indexed absolute indirect addressing......................329

indexed addressing..............................................46, 328

indexed indirect addressing...............................47, 329

indirect addressing....................................................328

indirect indexed addressing...............................46, 328

indirect jump......................................................139, 281

input routines.............................................................108

input vector........................................................291, 370

INT subroutine..........................................................408

Integer BASIC..........................................................5, 13

integer variables.................................................156, 161

interrupt vector..........................................................370

interrupts...................................356, 359, 370, 381, 385

INVERSE command.................................................285

INVFLG location.................................................95, 285

INX........................................................................23, 368

INY........................................................................23, 369

IOREST subroutine...................................................410

IOSAVE subroutine..................................................410

IRQ maskable interrupt....................................359, 385

IRQ subroutine..........................................................370
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IRQ vector location...................................................370

J
JMP.......................................................28, 139, 281, 370

JMP simulation..................................................376, 382

JSR.............................................................11, 13, 63, 371

JSR simulation............................................................134

JSR to JMP trick.........................................................164

K
keyboard bufer............................................................42
keyboard input.............................................................42

keyboard input switch...............................................291

keyboard strobe....................................................42, 293

KEYIN subroutine.............................................293, 405

KSW location.............................................291, 370, 405

L
label ield in assembly.........................................17, 421
LANG location...........................................................126

LDA.......................................................................18, 371

LDX.......................................................................18, 372

LDY.......................................................................18, 373

LIFO (Last-In First-Out)....................................61, 131

LINNUM location.....................................219, 222, 256

LOG subroutine.........................................................409

logarithmic form........................................................153

logical operators...........................................................92

LOMEM command...................................................153

low-order byte..............................................................11

lowercase text.............................................................291

LSR.........................................................................89, 373

M
machine language..........................................................9

MAKSTR subroutine................................................165

mantissa, real number...............................................254

mask, AND.............................................93, 96, 292, 346

mask, EOR..................................................................366

mask, inverse lag.......................................................285
mask, ORA.................................................277, 292, 375

math subroutines.......................................................263

MAXFILES command.................................................78

memory map..........................................................3, 152

memory page..................................................................4

Merlin Assembler..................................13, 16, 337, 420

Mini-Assembler.....................................................13, 19

mnemonics...............................................................2, 13

Monitor.................................................................5, 9, 13

Monitor subroutines...................................................41

MOVAF subroutine..................................................267

move command...........................................................54

MOVFM subroutine.........................................157, 258

MOVMF subroutine.........................163, 219, 258, 267

MUL10 subroutine....................................................409

multiplication and division........................90, 265, 381

Munch-A-Bug......................................................13, 357

N
negative numbers.................................................72, 178

NEGOP subroutine...................................................409

NEXTCOL subroutine..............................................406

NMI (non-maskable interrupt)...............................385

non-relocatable code.................................................128

NOP.......................................................................54, 374

numeric registers, temporary...................................267

O
OBJ directive.........................................................xiii, 17

object code....................................................................15

one’s complement........................................................73

opcodes...............................................................2, 10, 17

OPEN command........................................................125

operand ield in assembly...................................17, 421
operands................................................................10, 421

operational mode, machine language.......................93

ORA..............................................................97, 277, 375

ORG directive......................................................17, 422

output routines...........................................................105

output vector................................................94, 281, 370

overlow lag.........................................................96, 130

P
paddle input.....32, 39, 59, 62, 103, 171, 182, 230, 249, 

342

paddle interactions....................................103, 172, 249

paddle pushbutton..............................76, 171, 249, 342

parity, number..............................................................91

PHA...............................................................62, 136, 376

PHP..............................................................................376

PHX.....................................................................331, 377

PHY.....................................................................331, 378

PLA................................................................62, 136, 378

PLOT subroutine.......................................................406

PLP...............................................................................379

PLX......................................................................331, 379

PLY......................................................................331, 380

pointers (vectors).........................................................47

POKE command........................................................144

POP command...................................................136, 378

POSN location............................................................323

post-indexed addressing.............................47, 329, 344

PRBL2 subroutine......................................................405

PRBLNK subroutine..................................................405

PRBYTE subroutine..........................................276, 404

pre-indexed addressing..............................48, 329, 344

PREAD subroutine.....................................32, 171, 410

PRERR subroutine.....................................................410

PRHEX subroutine....................................................405

PRNTAX subroutine.........................................276, 405

processing mode, machine language.........................93

ProDOS..............................100, 284, 286, 294, 312, 325

Program Counter..............................356, 381, 382, 396

pseudo opcodes............................................................17

pseudo-jump......................................................376, 382

PTRGET subroutine........157, 161, 163, 219, 260, 267

R
RAM (random access memory)...................................4

random number generator.......................................293

RDCHAR subroutine................................................405

RDKEY subroutine...................118, 291, 324, 370, 405
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READ command........................................................125

reading/writing data iles..........................................113
reading/writing text iles...........................................120
real variables..............................................158, 162, 252

registers, 6502.........................................................6, 396

relative addressing...............................................46, 328

relocatable code.................................................127, 371

REM command............................................................17

RESET.........................................................................385

RMB.............................................................................331

RND subroutine.........................................................408

ROL.......................................................................91, 380

ROM (read-only memory)...........................................4

ROR.......................................................................91, 381

rotate commands.........................................................91

RTI...............................................................................381

RTS..................................................................11, 13, 382

RWTS error codes........................................................85

RWTS subroutines.................78, 81, 83, 359, 384, 385

S
S-C Assembler..................................................xviii, 337

SAVD subroutine......................................................165

SBC................................................................72, 274, 382

screen output................................................................30

SCRN subroutine...............................................219, 407

SEC........................................................................72, 384

SED......................................................................272, 384

SEI................................................................................385

self-modifying code...................................................137

SEND subroutine.......................................................223

SETCOL subroutine..................................................406

SETINV subroutine...................................................404

SETNORM subroutine.............................................404

SGN subroutine.........................................................408

shape tables.........................................................171, 225

shi! operators...............................................................89
SHNUM subroutine.................................169, 172, 408

sign bit...........................................................................73

sign lag...................................................................75, 90
SIGN subroutine........................................................408

SIN subroutine...........................................................409

SMB.............................................................................331

sneaker, wet.....................................................................4

so!-switch hardware location...................41, 343, 353
sound duration.............................................................56

sound from paddle input............................................59

sound generation.........................................................53

sound pitch...................................................................56

sound routines.....................................................53, 235

source code...................................................................15

Sourceror..............................................................29, 337

speaker so!-switch......................................................53
SQR subroutine..........................................................408

STA........................................................................18, 385

stack.................................................................61, 62, 131

Stack Pointer................................................61, 131, 396

Status Register.................................21, 22, 37, 130, 396

string variables...........................................159, 164, 386

STX........................................................................18, 386

STY........................................................................18, 387

STZ......................................................................331, 387

subtraction in assembly......................................65, 265

super hi-res graphics.................................................195

T
TAN subroutine.........................................................409

TAX.......................................................................34, 388

TAY.......................................................................34, 388

text screen memory map............................19, 302, 416

transfer commands......................................................34

TRB.............................................................331, 335, 389

TSB..............................................................331, 335, 390

TSX..............................................................131, 132, 390

two’s complement.......................................74, 178, 367

TXA.......................................................................34, 391

TXS..............................................................................392

TXTPTR location..............................................147, 257

TYA.......................................................................34, 393

U
UCMD location............................................................85

USLOT location.....................................................84, 90

USR command...........................................................255

V
vector........................................35, 82, 94, 281, 291, 370

VLINE subroutine.....................................................406

VTAB subroutine..............................................119, 302

VTOC (Volume Table of Contents)..........................80

W
WAIT subroutine......................................172, 183, 410

warm-reentry vector....................................................35

wrap around of numbers............24, 363-365, 367-369

WRITE command.....................................................125

X
X-Register.........................................................6, 18, 396

XDRAW command...................................................225

XDRAW subroutine.................................169, 229, 408

Y
Y-Register.........................................................6, 18, 396

Z
zero lag.............................................................22-24, 90
zero page addressing...........................................45, 328



Quick Reference

Merlin Assembler

Editor Control Mode

A − Add mode, <RETURN> to exit
E − Edit all lines
E m or E m,n − Edit line or line range
E “string” − Edit lines containing string
I m − Insert lines starting at m
D m or D m,n − Delete line or line range
R m or R m,n − Replace line or line range
L − List source
L m or L m,n − List speciic line or range
. (period) − List from previous range
P, P n, P m,n − List without line numbers
F “string” − Find the given string
C “str1” “str2” − Change str1 to str2
FW “word” − Find the given word
CW “str1” “str2” − Change str1 to str2
EW “word” − Edit lines containing word
COPY m TO n − Copy line
COPY l,m TO n − Copy lines
MOVE m TO n − Move line
MOVE l,m TO n − Move lines
123 or $123 − Hex/Decimal conversion

ASM − Assemble the source code
LEN − Source length and bytes remaining
MON − Exit to the Monitor
NEW − Clear the current source code
PR#1 − Send output to printer in slot 1
VAL “expression” − Compute expression
VID 3 or VID 0 − Turn 80-columns on/of
Q − Quit Editor, return to Executive

Expressions

2*LABEL1-LABEL2+$231

1234+%10111

“K”-“A”+1

“0”!LABEL (“0” EOR LABEL)

LABEL&$7F (LABEL AND $7F)

LABEL.$FFFF (LABEL OR $FFFF)

*-2 (current address minus 2)

Editing Commands

<CTRL>B − Beginning of line
<CTRL>C or X − Abort Edit mode
<CTRL>D − Delete character
<CTRL>F c − Find character
<CTRL>I − Insert; <RETURN> to exit
<CTRL>L − Toggle lowercase/uppercase
<CTRL>N − End of line
<CTRL>O − Insert special characters
<CTRL>P − Fill line with *****
<SPACE><CTRL>P − Border with *  *
<CTRL>Q − Delete rest of the line
<CTRL>R − Restore line to original
<RETURN> − Next line or exit

Merlin Pro Full Screen Editor

N − Go to beginning/end of source
R − Delete or replace the current line

E − Exchange (ind and replace)
F − Find text
I − Insert a blank line
L − Locate label, marker, or line number
Q − Return to Editor Control Mode
V − Clipboard cut and paste

Y − Select all text to the end
8 − Create a line of asterisks
9 − Create a box of asterisks

Pseudo Opcodes

label EQU expression

label KBD − Deine label during assembly
ASC “string” − Deine ASCII text
CHK − Add a checksum byte
ERR expression − Force error if nonzero
HEX data − Deine hex data
LST ON or OFF − Enable/disable listing
LUP ... --̂ − Loop and repeat opcodes
OBJ expression − Assembly address
ORG expression − Run address
PUT ilename − Insert T.ilename
SAV ilename − Save current code
DUM/DEND − Dummy section of code
DO expression ... ELSE ... FIN

IF char,]var ... ELSE ... FIN



Monitor Commands1

Command Syntax Description

Enter CALL -151 Enter the Monitor from BASIC.

Display 300

300.320
Display the byte at $300.
Display the bytes from $300 to $320.

Store 300:00 01 02...

:03 04 05
Store byte values starting at $300.
Type “:” to continue adding values.

Move 2001<2000.2FFFM Copy memory from $2000 to $2FFF into 
location starting at $2001.

Verify 800<400.7FFV Display diferences in memory from $400 
to $7FF with bytes starting at $800.

Examine <CTRL>E

:01 02 03 04 05
Display the 6502 registers.
Type “:” and the new values to modify.

Go 300G Run the program at $300.

List 300L

L
Disassemble 20 lines, starting at $300.
Type L to continue the list.

Add bytes 2F+3B Add two bytes, display the result.

Subtract 3B-2F Subtract two bytes, display the result.

Normal N Set normal video mode.

Inverse I Set inverse video mode.

User <CTRL>Y Jump to the user routine at $3F8-3FA.

Keyboard 2<CTRL>K Cause slot 2 to become the input source.

Printer 1<CTRL>P Cause slot 1 to become the output device.

Exit <CTRL>C Exit Monitor and enter BASIC.

Addressing Modes

Mode Example Bytes Time (μs)

Implied RTS 1 2−7
Immediate LDA #$FF 2 2
Zero Page LDA $06 2 3−5
Zero Page Indexed, X LDA $06,X 2 4−6
Absolute LDA $C000 3 3−6
Absolute Indexed, X LDA $2000,X 3 4−7
Absolute Indexed, Y LDA $2000,Y 3 4−5
Indirect Indexed (post-indexed) LDA ($06),Y 2 5−6
Indexed Indirect (pre-indexed) LDA ($06,X) 2 6
Relative BCC $300 2 2−4
Indirect Jump JMP ($0036) 3 5−6
Zero Page Indirect [65C02] LDA ($06) 2 5
Indexed Absolute Indirect [65C02] JMP ($1234,X) 3 6

1[CT] Adapted from Table 3-1 in Inside the Apple //e, by Gary B. Little.
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