

Assembly Lines:

The Complete Book

A Beginner’s Guide to 6502

Programming on the Apple][

by

Roger Wagner

edited by

Chris Torrence

© 2014 Roger R. Wagner

!is work is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 license. You

are free to share and adapt the material in any medium or format under the following terms: (1) Attribution–You

must give appropriate credit, provide a link to the license, and indicate if changes were made; (2) NonCommercial

–You may not use the material for commercial purposes; (3) ShareAlike–If you remix, transform, or build upon

the material, you must distribute your contributions under the same license as the original. For the complete

license see http://creativecommons.org/licenses/by-nc-sa/2.0/.

Assembly Lines: !e Complete Book is an independent publication and has not been authorized, sponsored, or

otherwise approved by Apple Inc.

Apple, the Apple logo, and all Apple hardware and sotware brand names are trademarks of Apple Inc., registered

in the U.S. and other countries.

!e contents of Volume 1 (chapters 1−15, appendices A−E) were originally printed inAssembly Lines: !e Book

(Roger R. Wagner, Sotalk Publishing, North Hollywood, CA, 1982).

!e contents of Volume 2 (chapters 16−33) were originally printed inSo"alk magazine (Sotalk Publishing, North

Hollywood, CA, January 1982−June 1983).

!e cover images of the Apple][Plus and the green bar computer paper were created by Chris Torrence. !e cover

image of Roger Wagner was edited by Doug Sherman. !e “Usage Chart of 6502 Instructions” is adapted from

Fig. 2-1 inInside the Apple //e, by Gary B. Little, and is used by permission. All other images and igures are

© Roger R. Wagner.

While every precaution has been taken in the preparation of this book, the publisher, author, and editor assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained herein or

from the use of programs and source code that may accompany it.

ISBN 978-1-312-08940-2

Table of Contents

Preface..xi

Introduction...xvii

1. Apple’s Architecture...1
6502 Operation 2
Memory Locations 2
Hexadecimal Notation 4
It’s Culture !at Counts 7

2. !e Monitor..9
Exploring the Monitor 9
Disassembly 10

3. Assemblers..13
!e Mini-Assembler 13
Assemblers 15
Load/Store Opcodes 18
Putting it All Together 19
Conclusion 20

4. Loops and Counters..21
Binary Numbers 22
!e Status Register 22
Incrementing and Decrementing 23
Looping with BNE 24

5. Loops, Branches, COUT, and Paddles...27
Looping with BEQ 27
Branch Ofsets and Reverse Branches 28
Screen Output Using COUT 29
Reading a Game Paddle 32
Paddle Program Problems 33
Transfer Commands 34
A Note about BRUN and COUT 35

6. I/O Using Monitor and Keyboards..37
Comparisons; Reading the Keyboard 37
Compare Commands and Carry Flag 38
Using Monitor Programs for I/O Routines 41
Reading Data from the Keyboard 42

7. Addressing Modes..45
Indexed Addressing 46
Sometimes X and Y Aren’t Interchangeable 47
Storing Pure Data 48

8. Sound Generation...53
Delays 54
Delay Value in Memory 56
Delay from the Keyboard or Paddles 58

9. !e Stack...61
Stack Limit 64

Table of Contents vii

10. Addition and Subtraction..65
Binary Numbers 65
Addition with ADC 66
Subtraction 72
Positive and Negative Numbers 72
!e Sign Bit 73
!e Sign Flag 75

11. DOS and Disk Access...77
!e Overview: DOS 77
Diskette Organization 78
DOS Modiications 85
Disk-Volume Modiication 86
Catalog Keypress Modiication 87
Bell Modiication and Drive Access 88

12. Shit Operators and Logical Operators...89
Shit Operators 89
Logical Operators 92
BIT 96
ORA and EOR 97

13. I/O Routines...105
Print Routines 105
Input Routines 108

14. Reading and Writing Files on Disk...113
Reading and Writing Data Files 113
Reading and Writing Text Files 120

15. Special Programming Techniques...127
Relocatable versus Non-relocatable Code 127
JMP Commands 128
Determining Code Location 131
JSR Simulations 134
Self-Modifying Code 137
Indirect Jumps 139

16. Passing Data from Applesot BASIC...143
Simple Interfacing 144
!e Internal Structure of Applesot 145
Passing Variables 147

17. More Applesot Data Passing...151
Applesot Variables 151
Memory Maps 152
Passing Variables to Assembly Language 156
Passing Data from Assembly Language 161
Programming Tip 164
Conclusion 165

18. Applesot Hi-Res Graphics..167
Ground School 167
Landmarks and Entry Points 168
A Test Flight: Hi-Res Demo 169
A Minor Diversion 172
Location 173
Motion 173

viii Assembly Lines

19. Calling Hi-Res Graphics Routines...177
Taking the Opposite of a Signed Number 178
!e Real !ing: Hi-Res in Assembly 179
Table-Driven Graphics 183
Conclusion 187

20. Structure of the Hi-Res Display Screen...189
Loading a Hi-Res Screen: the “Fill” Efect 189
Another Problem: Shiting Colors 192
Other Problems: When Is White Not White? 195
Super Hi-Res Graphics 195

21. Hi-Res Plotting in Assembly..197
Normal Point Plotting 197
Alternate Plotting Modes 200
140-Point Resolution Mode 201
560-Point Resolution Mode 203
A Demonstration Program 206

22. Even Better Hi-Res Plotting...207
Interactions between Adjacent Bytes 208
Some “New and Improved” Routines 209
PLOT.140+ 210
PLOT.560+ 212
PLOT.560-White 213
A Final Demo Program 217
Conclusion 218

23. Hi-Res Graphics SCRN Function..219
An Overview 221
Sample Program 223
Conclusion 224

24. !e Collision Counter, DRAW, XDRAW...225
Some Experiments 225
DRAW versus XDRAW 227
Principles of Animation and Collision 228
!e Scanner 228
!e Possibilities 234

25. Explosions and Special Efects...235
Explosions, Rays, and Other !ings !at Go Bump in the Night 235
A Little More Sophistication 239
Putting it All Together 241
!e Shooter Program 245

26. Passing Floating-Point Data..251
Internalization of Data: Integer versus Real Variables 252
!e Floating-Point Accumulator (FAC) 254
Passing Data from Applesot to the FAC 255
Moving the FAC to a Memory Location 257
Moving Memory into the FAC 258
Passing FAC Data Back to Applesot 259
Putting it All Together 260
Conclusion 262

Table of Contents ix

27. Floating-Point Math Routines...263
More Applesot Internals 265
An Example !at Doesn’t Work 266
Why it Doesn’t Work 267
A Little More Finesse 269
Other Operations: Subtraction, Multiplication, and So On 270
Conclusion 270

28. !e BCD, or Binary Coded Decimal...271
Limitations 273
!e Carry Flag 273
Common Operations 274
Printing BCD Values 276
Conclusion 279
Special Note: Counting Down 280

29. Intercepting Output...281
Output 281
Intercepting Output 283
Other Output Devices 286
Conclusion 290

30. Intercepting Input..291
!e Input Vector: KSW 291
Other Input Sources 294
Interception Routines 295
Something More Useful: Lowercase Input 297
Conclusion 300

31. Hi-Res Character Generator..301
Text and Hi-Res Screen Mapping 301
!e Character Generator 304
A Hi-Res Character Set 309
Conclusion 312

32. Hi-Res Character Editor..313
How it Works 320
And Now with the Magnifying Glass 321
Running the Editor 325
Miscellaneous Notes 326
Conclusion 326

33. !e 65C02...327
New Addressing Modes 328
Indirect Addressing 328
Indexed Absolute Indirect 329
New “Standard” Addressing Modes 330
At Last, the Real Scoop! New Instructions 331
Other Diferences 335

Appendix A: Contest..339

x Assembly Lines

Appendix B: Assembly Commands...344

Appendix C: 6502 Instruction Set...394
6502 Microprocessor Instructions 394
Usage Chart of 6502 Instructions 395
6502 Instruction Codes 398
65C02 Instruction Codes 402
Hex Operation Codes 403

Appendix D: Monitor Subroutines...404
Output Subroutines 404
Input Subroutines 405
Low-Res Graphics Subroutines 406
Hi-Res Graphics Subroutines 407
Floating Point Accumulator 408
Other Subroutines 410

Appendix E: ASCII and Screen Charts..411
You Get What You ASCII For... 411
Text Screen Memory Map 416
Hi-Res Memory Map 417

Appendix F: Zero-Page Memory Usage..418
Special Locations 418
Memory Usage Table 419

Appendix G: Beginner’s Guide to Merlin...420
Control Modes 420
Getting Started 421
Deleting Lines 423
Inserting Lines 423
Editing Lines 424
Assembling the Code 424
Saving and Running Your Program 425

List of Programs...426

Directory Listing for Program Disks..427

Index...428

Quick Reference..432

ADD 344
AND 345
ASL 348
BCC 349
BCS 350
BEQ 351
BIT 351
BMI 353
BNE 354
BPL 355
BRA 356

BRK 356
BVC 357
BVS 358
CLC 358
CLD 359
CLI 359
CLV 360
CMP 360
CPX 362
CPY 362
DEC 363

DEX 364
DEY 365
EOR 365
INC 367
INX 368
INY 369
JMP 370
JSR 371
LDA 371
LDX 372
LDY 373

LSR 373
NOP 374
ORA 375
PHA 376
PHP 376
PHX 377
PHY 378
PLA 378
PLP 379
PLX 379
PLY 380

ROL 380
ROR 381
RTI 381
RTS 382
SBC 382
SEC 384
SED 384
SEI 385
STA 385
STX 386
STY 387

STZ 387
TAX 388
TAY 388
TRB 389
TSB 390
TSX 390
TXA 391
TXS 392
TYA 393

Preface

In October 1980, in the second issue ofSo"alk magazine, a new series of
articles made its debut. Its title was “Assembly Lines” with the subtitle “Every-
one’s Guide to Machine Language.”1 !e author was Roger Wagner, the presi-
dent of Southwestern Data Systems. By then, Roger had already established
himself as a well-respected sotware publisher who cared about the end user. As
Al Tommervik states, “His programs relect concern that the user get more than
utility–he should also gain knowledge–from use of the sotware.”2

Before that issue ofSo"alk, a few brave souls had learned assembly lan-
guage all on their own, using clues from the ROM listings in theApple II Refer-
ence Manual. !ese included developers such as Jordan Mechner (creator of
Karateka), Silas Warner (Castle Wolfenstein), and Dan Bricklin and Bob
Frankston (VisiCalc). But now here was a series of articles that taught the rest of
us how to program the 6502.
I irst became acquainted withAssembly Lines when, as a new Apple II Plus

owner, I received my complimentary issue ofSo"alk magazine in January 1982.
!e series was already on Part 16; it had moved beyond the basics and was
beginning to explore sound and hi-resolution graphics. Despite missing the cru-
cial introductory articles, I eagerly looked forward to receivingSo"alk each
month to see what Roger Wagner had to teach us about the 6502 and assembly
language.
!en, in March 1982, Sotalk announced that it was publishing Roger’s arti-

cles in book form.Assembly Lines: !e Book contained the irst iteen articles
plus an appendix of 6502 assembly-language commands, Monitor subroutines,
and an index.
Roger continued to write his monthly “Assembly Lines” articles until June

1983. Part 33 contained an introduction to the new 65C02 chip and ended with a
farewell:

I want to thank the many readers of this column over the last sev-
eral years for their enthusiastic support and valuable suggestions. I

1Eventually changed to “Everyone’s Guide to Assembly Language.”
2Tommervik, Allan, “Exec SDS: Southwestern Data Systems, Assembling Useful
Utilities,” So"alk, August 1981 (Sotalk Publishing Inc.), pp. 30−32.

xii Assembly Lines

have always believed that the human element to this industry, and
in fact any endeavor, is the truly rewarding part.3

!e article then ended with a note from the Editor, stating:

!e irst year’s columns plus appendixes and revisions have been
available for some time inAssembly Lines: !e Book. Volume 2,
covering the rest of the columns, will be released shortly by Sotalk
Books.

Despite numerous announcements about Volume 2 over the next year,
when Sotalk Publishing Inc. went bankrupt in August 1984, Assembly Lines: !e
Book, Volume 2 remained incomplete and unpublished.
It is therefore a great privilege and a long-overdue honor to presentall of

Roger Wagner’s “Assembly Lines” articles in one complete volume. !is volume
contains all of the originalAssembly Lines: !e Book, including the appendices,
plus the content of the remaining eighteen So"alk articles.
!e complete volume should appeal to long-time readers who may not have

access to the originalSo"alk articles, especially those articles from the missing
Volume 2. I also hope that Roger Wagner’s clear explanations and his subtle but
ever-present humor will encouragenew readers to discover the joys of 6502
assembly-language programming on the Apple II. As David Finnigan notes in
!e New Apple II User’s Guide, “!ere are still so many programs to be written,
experiments to be conducted, and adventures to be had.”4

With Roger Wagner leading the way, and with tractor-feed paper in one
hand andMerlin Assembler at our side, who knows what amazing programs we
can create?

Chris Torrence
Louisville, Colorado
December 1, 2014

3Wagner, Roger, “Assembly Lines, Part 33,”So"alk, June 1983 (Sotalk Publishing Inc.),
pp. 199−204.

4Finnigan, David, !e New Apple II User’s Guide (Mac GUI, Lincoln, IL), p. xi.

Preface xiii

Changes from the Original

In the originalAssembly Lines: !e Book, the irst twoSo"alk articles (Octo-
ber and November 1980) were combined into chapter one, “Apple’s Architec-
ture.” In this edition, that chapter has been re-split into two chapters: the irst on
the Apple’s architecture and the second on the Apple Monitor. By doing this, all
of the chapter numbers now agree with the original So"alk article numbers.
All of the assembly-language programs now include theCHK pseudo-opcode

at the bottom. !eCHK instruction inserts a single-byte checksum at the end.
You can use this checksum to verify that you have typed in the program cor-
rectly. CHK is available in theMerlin Macro Assembler. If your assembler does not
support this pseudo-opcode you can ignore it in the code.
!e original programs included theOBJ pseudo-opcode, which establishes

the address at which the code will be assembled. !eOBJ directive is not usually
necessary and is incompatible with later versions of theMerlin assembler (Mer-
lin Pro andMerlin 8/16). In this edition all of theOBJ lines have been com-
mented out.
Spelling, grammar, and other minor corrections have been quietly made.

More signiicant corrections (such as coding errors) are marked with a footnote
and my initials [CT].
In Appendix B and C, the 65C02 instructions have been added. In Appendix

C, theInstruction Codes table now contains a column with the clock cycles for
each instruction. !eUsage Chart in Appendix C was adapted from the chart in
Inside the Apple //e by Gary B. Little and is used with his permission. I also
added a new Appendix F (Zero-Page Memory Usage) and Appendix G (Begin-
ner’s Guide to Merlin).

Acknowledgements

!is edition was created on a MacBook Pro using OpenOice 4.1.1. !e
assembly code was created using theMerlin Macro Assembler on an Apple //e
computer and the Virtual][emulator (http://www.virtualii.com). !e images
were scanned using the FlipPal Mobile Scanner (http://lip-pal.com). !e cover
image of the green bar computer paper was created using IDL 8.4.
!e text for Volume 1 was taken from the electronic version available from

the Open Library, which is a project of the Internet Archive.
For Volume 2, I would like to acknowledge the generous help of Jim

Salmons, Timlynn Babitsky, and Peter Caylor of the Sotalk Apple Project, who
provided PDF and OCR versions of the Assembly Lines articles. !eir enthusi-
asm and expert advice made this project possible.
Special thanks is given to my fearless proofreaders: John Gruver, Antoine

Vignau, and Shawn Lewis. !rough their dedication and attention to detail they

xiv Assembly Lines

caught many insidious errors. !anks also to the members of6502.org and
comp.sys.apple2, who provided suggestions for chapter 33 on the 65C02.
I could not have completed this book without the help and support of my

wonderful family: my wife Gigi and my daughters Mia and Elyssa. !anks to
Gigi for being a guinea pig on theBeginner’s Guide to Merlin appendix, and to
Mia and Elyssa for reading pages of hex codes out loud while I proofread the
programs.
Finally, I would like to thank Roger Wagner for giving his permission for

the project, for answering innumerable emails aboutAssembly Lines minutiae,
and for all of his contributions to the Apple II community over the years.

Volume 1

Introduction

One oten gets the impression that programming in assembly language is
some very diicult and obscure technique used only bythose advanced program-
mers. As it happens, assembly language is merely diferent, and if you have suc-
cessfully used Integer or Applesot BASIC to do some programming, there’s no
reason why you can’t use assembly language to your advantage in your own pro-
grams.
!is book will take a rather unorthodox approach to explaining assembly

programming. Because you are presumably somewhat familiar with BASIC, we
will draw many parallels between various assembly-language techniques and
their BASIC counterparts. An important factor in learning anything new is a
familiar framework in which to it the new information. Your knowledge of
BASIC will provide that framework.
I will also try to describe initially only those technical details of the micro-

processor operations that are needed to accomplish our immediate goals. !e
rest will be illed in as we move to more involved techniques.
!is book does not attempt to cover every aspect of assembly-language pro-

gramming. It does, however, provide the necessary information and guidance to
allow even a somewhat inexperienced person to learn assembly language in a
minimum of time. You should ind the text and examples quite readable, with-
out being overwhelmed by technical jargon or too much material being pre-
sented at once.
I’d like to take this opportunity to briely mention a few of my own pro-

gramming philosophies. Writing programs to do a given task is essentially an
exercise in problem solving. Problem solving is in fact a subject in itself. No mat-
ter what your programming goal is, it will always involve solving some particular
aspect that, at that moment, you don’t really know how to solve. !e most
important part is that, if you keep at it, you eventually will get the solution.
One of the key elements in this process, I believe, and the particular point to

stress now, is that it is important to be a tool user. Programming in any language
consists of using the various commands and functions available to you in that
language and of putting them all together in a more complex and functioning
unit. If you are not familiar with the options you have at any given moment–
that is, your tools–the problem-solving process is immensely more diicult.

xviii Assembly Lines

My intent in this book is to present in an organized way the various opera-
tions available in assembly language and how they can be combined to accom-
plish simple objectives. !e more familiar you are with these elements, the easier
it will be to solve a particular programming problem.
You may wish to keep your own list of the assembly-language commands

and their functions as we go along. A list of these commands is included in
Appendix C, but I think you’ll agree that by taking the time to write each one
down as you learn it, along with your own personal explanation of what it does,
you will create a much stronger image in your mind of that particular operation.
You may wish to supplement this book with other books on 6502 program-

ming. Recommended books include:

Randy Hyde, Using 6502 Assembly Language (Northridge, CA: DataMost, 1981).

Don Inman and Kurt Inman,Apple Machine Language (Reston, VA: Reston
Publishing, 1981).

Lance A. Leventhal,6502 Assembly Language (Berkeley: Osborne/ McGraw-Hill,
1979).

Rodnay Zaks, Programming the 6502 (Berkeley: Sybex, 1981).

!ere are undoubtedly others that are also available, and you should con-
sider your own tastes when selecting which ones seem most appropriate to your
own learning style.
An additional concern for a book like this is which assembler to use. (An

assembler is an editor-like utility for creating assembly-language programs. If
you’re vague on this check chapter three for more information.) Although I’m
somewhat biased, my favorite assembler is the one available from Southwestern
Data Systems calledMerlin. It not only contains a good assembler, but also a
number of additional utilities and iles of interest.Merlin is not required, how-
ever, as the examples given are written to be compatible with most of the assem-
blers currently available. !ese include theApple DOS Tool Kit,TED II, the
S-C Assembler, and many others.
Also available from Southwestern Data Systems is a utility calledMunch-A-

Bug (MAB) which allows a person to easily trace and de-bug programs, a process
which can be of tremendous help, MAB also includes its own mini-assembler
which can be used for the beginning listings provided in this book.
In terms of hardware, any Apple II or Apple II Plus should be more than

adequate for your needs and no additional hardware is required. Disk access is
discussed in several chapters, but is otherwise not a concern throughout the
remainder of the book.
One warning before you start into the subject of assembly-language pro-

gramming. As with any nontrivial endeavor, many people sell themselves short

Introduction xix

because of what I call the instant expert myth. How many people hear someone
play a piano well, and say, “My, what a beautiful thing. I think I’ll get one and
learn how to play myself!” !ey then spend a substantial amount of money, sit
down, and press a few keys. Surprise! To their great disappointment, the Moon-
light Sonata does not magically low from their ingers! !ey usually then
become immediately discouraged and never pursue the area further, turning
something that could give them tremendous pleasure into an expensive means of
support for a lower vase.
I’ve seen this same efect in almost every area of human activity. If what you

wanted was the Moonlight Sonata, a record will produce the sound you desire.
People know that it takes talent (talent = 99% practice = 99% time) to play well,
but are then disappointed when they can’t sit down and perform like an expert
immediately.
One of the great secrets to learning anything is to be satisied with minor

learning steps. Playing the Apple is in many ways much easier than learning to
play a piano, but you should still not expect to sit down and write the world’s
greatest database in your irst evening.
Set yourself some simple and achievable goals. Can you move one byte from

one memory location to another? If you can you’re well on your way to master-
ing programming. My feeling is that virtually anyone can become better than
eighty to ninety percent of his fellow citizens in any area simply because eighty
to ninety percent of the other people aren’t willing or inclined to spend the nec-
essary time to learn the skill. Reaching the top ninety-nine percent is certainly
diicult, but ninety-ive percent is surprisingly easy.
!is book is written with the intention of providing those simple achievable

steps. And surprisingly enough, by the time you inish this book you will have
written a simple database of sorts, along with some sound routines, some pro-
grams that use paddles and the disk, and a few other nities as well!
So hang in there and don’t expect to be an expert on page ive. I will guaran-

tee that by page one hundred you may even surprise yourself as to how easy
assembly-language programming really is.
One inal note. I’d like to thank Al Tommervik for his tremendous help and

support in this project as both editor and friend, and Greg Voss who provided
many insightful suggestions in transforming the monthly series into the book.
Also Eric Goez for his encouragement to never accept less than the best, and his
attentive (if not enthusiastic) listening to my various plans over the years.
Last but not least my thanks and sincere thoughts of appreciation to the

many people that have shared in my own experiences in computing over the last
few years. Whether they were readers of the column, users of my programs, or
the wealth of new friends that have entered my life via the Apple, they have
made all my eforts more than worthwhile and brought rewards beyond any sim-
ple economic gains of an ordinary job.

xx Assembly Lines

Alas for anyone who thinks that computers lead to a loss of the humanistic
aspects of life. !ey need only look to the amazing community that has been
drawn together from all parts of the world by the Apple to see that friendship
and human creativity will always outshine the simple tools we use to express
ourselves.
My wish for you, dear reader, is that you receive as much enjoyment from

the Apple and programming as I have.

Roger Wagner
Santee, California
December 1, 1981

1. Apple’s Architecture
October 1980

!e irst area to consider is the general structure of the Apple itself. To help
visualize what’s going on in there, why not take a look inside. !at’s right–rip
the cover of and see what’s in there! Don’t be timid–get your nose right down
in there and see what you shelled out all those hard-earned bucks for.
Providing you haven’t gotten carried away in dismembering your Apple, the

inner workings should appear somewhat like those in the photo below.

!e main items of interest are the 6502 microprocessor (A) and the banks of
memory chips (B). If you’re not an electronics whiz, it really doesn’t matter. You
can take it as a device of magic for all it matters. !e memory chips have the
capability of storing thousands of individual number values and the 6502 super-
vises the activities therein. All the rest of the electronic debris within is supplied
only to support the memory and the 6502. !e circuits allow you to see displays
of this data on the screen, and permit the computer to watch the keyboard for
your actions.

]

1

2 Assembly Lines

!e screen and keyboard are rather secondary to the nature of the computer
and are provided only to make you buy the thing. As far as the Apple is con-
cerned, it could talk to itself perfectly well without either the screen or the key-
board.

6502 Operation

So how does it work? !e heart of the system is the 6502 microprocessor.
!is device operates by scanning through a given range of memory addresses. At
each location, it inds some particular value. Depending on what it inds, it exe-
cutes a given operation. !is operation could be adding some numbers, storing a
number somewhere, or any of a variety of other tasks. !ese interpreted values
are oten called opcodes.
In the old days, programmers would ply their trade by loading each opcode,

one at a time, into successive memory locations. Ater a while, someone invented
an easier way, using a sotware device to interpret short abbreviated words called
mnemonics. A mnemonic is any abbreviated command or code word that
sounds somewhat like the word it stands for, such asSTX for STore X. !e com-
puter would then igure out which values to use and supervise the storing of
these values in consecutive memory locations. !is wonder is what is generally
called anassembler. It allows us to interact with the computer in a more natural
way. In fact, BASIC itself can be thought of as an extreme case of the assembler.
We just use words likePRINT and INPUT to describe a whole set of the operations
needed to accomplish our desired action.
In some ways,assembly language is even easier than BASIC. !ere are only

ity-ive commands to learn, as opposed to more than one hundred in BASIC.
Machine code runs very fast and generally is more compact in the amount of
memory needed to carry out a given operation. !ese attributes open up many
possibilities for programs that would either run too slowly or take up too much
room in BASIC.

Memory Locations

Probably the most unfamiliar part of dealing with the Apple in regard to
machine-level operations is the way addresses and numbers in general are
treated. Unless you lead an unusually charmed life, at some point in your deal-
ings with your Apple you have had it abruptly stop what it was doing and show
you something like this:

8BF2- A=03 X=9D Y=00 P=36 S=F2

1. Apple’s Architecture 3

!is occurs when some machine-level process suddenly encounters abreak
in its operation, usually from an unwanted modiication of memory. Believe it or
not, the Apple is actually trying to tell us something here. Unfortunately, it’s
rather like being a tourist and having someone shout, “Alaete quet beideggen!” at
you.1 It doesn’t mean much unless you know the lingo, so to speak...
What has happened is that the Apple has encountered the break we men-

tioned and, in the process of recovering, has provided us with some information
as to where the break occurred and what the status of the computer was at that
crucial moment. !e message is rather like the last cryptic words from the
recently departed.
!e letmost part of the message is of great importance. !is is where the

break in the operation occurred. Just what do we mean by the wordwhere?
Remember all that concern about whether you have a 16K, 32K, or 48K Apple?
!e concern was about the number of usable memory locations in your
machine. !is idea becomes clearer through the use of amemory map, such as
the one shown below.
Inside the Apple are many electronic units that store the numerical values

we enter. By numbering these units, we assign each one a uniqueaddress. !is
way we can specify any particular unit or memory location, either to inquire
about its contents or to alter those contents by storing a new number there.
In the Apple there are a total of 65536 of these memory locations, called

bytes. !e chart gives us a way of graphically representing each possible spot in
the computer.
When the computer shows us an address, it does not do it in a way similar

to the numbers on the let of the memory map, but rather in the fashion of the

1“Watch where you’re stepping you nerd!” (in case you’re not familiar with this particu-
lar dialect.)

]

4 Assembly Lines

ones on the right. You may well remark here: “I didn’t know BFFF was a num-
ber; it sounds more like a wet sneaker...”2

Hexadecimal Notation

To understand this notation, let’s see how the 6502 counts. If we place our
byte at the irst available location, its address is$0. !e dollar sign is used in this
case to show that we are not counting in our familiar decimal notation, but
rather in hexadecimal (base sixteen) notation, usually calledhex, which is how
the computer displays and accepts data at the Monitor level.
Ater byte$0, successive locations are labeled in the usual pattern up to$9.

At this point the computer uses the characters A through F for the next six loca-
tions. !e location right ater$F is$10. !is is not to be confused with ten. It
represents the decimal number sixteen. !e pattern repeats itself as in usual
counting with:

$10, $11, $12, $13... $19, $1A, $1B... $1E, $1F, $20

Try not to let this way of counting upset you. !e pattern in which a person
(or machine) counts is rather arbitrary, and should be judged only on whether it
makes accomplishing a task easier or not. !e biggest problem for most people is
more a matter of having been trained to use names likeone hundred when they
see the numerals 100. How many items this corresponds to really depends more
on the conventions we agree to use than on any cosmic decree. To aid in your
escape from your possibly narrow view of counting, you may wish to read the
diversionary story at the end of this chapter. In any event, it will be suicient for
our purposes to understand that $1F is as legitimate a number as 31.
!e hex number $FF (255) is the largest value a single byte can hold. A block

of 256 bytes (for instance$00 to $FF) is oten called apage of memory. In the ig-
ure at right, all theaddresses from$00 to$FF are shown in block (b). Four of
these blocks together, as in (c), make up 1K of memory. As you can see, there are
actually 1,024 bytes in 1K. !us a 48K machine actually has 49,152 bytes ofRAM
(Random Access Memory).
Block (d) shows the Apple’s entire range again. If you do not have a full 48K

of memory, then the missing range will just appear to hold a constant value
(usually $FF), and you will not be able to store any particular value there.
!e range from$C000 to$FFFF, an additional 16K, is all reserved for hard-

ware. !is means that any data stored in this range is of a permanent nature and
cannot be altered by the user. Some areas are actually a physical connection to
things like the speaker or game switches. Others, like$E000 to$FFFF are illed in
by the chips in the machine called ROMs.

2[John Gruver] Or, these days, maybe “Best Friends For Forever...”

1. Apple’s Architecture 5

ROM stands for Read Only Memory. !ese chips hold the machine-lan-
guage routines that make up eitherApplesot BASIC orInteger BASIC, depend-
ing on whether you have anApple II Plus or the standard model. One of the
chips is the Monitor, which is what initializes the Apple when it is irst turned on
so you can talk to it.
!e Monitor can be thought of as a simple supervisor program that keeps

the Apple functioning at a rather primitive level of intelligence. It handles basic
input and output for the computer, and allows a few simple commands relating
to such things as entering, listing, or moving blocks of memory within the
Apple. Don’t be fooled though. !e amount of code required to do just these
things is not trivial, and in addition provides us with a ready-made mini-library
of routines that we can call from our own programs, as will be shown later in
this book.
Apple provides an excellent discussion of the Monitor and its commands

and operation within theApple II Reference Manual, currently supplied with all
new Apples. You may wish to consult this if you are unsure of the general way in
which the Monitor is accessed and used. Now thatbreak message should have at
least a little meaning.

8BF2- A=03 X=9D Y=00 P=36 S=F2

]

6 Assembly Lines

!e $8BF2 is an address in memory. !e display indicates that the break
actually occurred at the address given minus two ($8BF2 −2 =$8BF0). For rea-
sons that aren’t worth going into here, the Monitor always prints out a break
address in this plus-two fashion. What about the rest of the message? Consider
the next three items:

A=03 X=9D Y=00

!e 6502, in addition to being able to address the various memory locations
in the Apple, has a number of internalregisters. !ese are units inside the 6502
itself that can store a given number value, and they are individually addressable
in much the same way memory is. !e diference is that instead of being given a
hexadecimal address, they are called the Accumulator, the X-Register, and the Y-
Register. In our error message, we are being told the status of these three regis-
ters at the break.3

!e igure below illustrates what we know so far. !e 6502 is a microproces-
sor chip that has the ability to scan through a given range of memory, which we
will generally specify by using hex notation for the addresses. Depending on the
values it inds in each location as it scans through, it will perform various opera-
tions. As an additional feature to its operation, it has a number of internal regis-
ters, speciically the Accumulator, the X-Register, the Y-Register. Memory-
related operations are best done by entering the Monitor level of the Apple (usu-
ally with a CALL -151) and using the various routines available to us.

3[CT] !e inal two items are the Status Register “P” and the Stack Pointer “S”.

1. Apple’s Architecture 7

It’s Culture !at Counts

Many people have remarked that our choice of ten as a number base is
related to the fact that we have ten ingers on our hands. One can only guess how
a diferent set of circumstances would have profoundly changed our lives. Specu-
lating, for instance, on which two commandments would have been omitted had
we only eight ingers is enough to keep one awake at night.
A living example of this arbitrary nature of number bases was recently

brought to light by the discovery of a long-lost tribe living in the remote jungles
of South America. It would seem the tribe had been isolated from the rest of the
world for at least 10,000 years. An interesting aspect of their life was a huge pop-
ulation of dogs living among the people. In fact, dogs so outnumbered the peo-
ple (so to speak) that the people had evolved a counting system based on the
number of legs on a dog, as opposed to our more rational base ten. !ey counted
in the equivalent of base four.
In counting, they would be heard to say, “one, two, three...” Since they had

never developed more than four symbols to count with (0, 1, 2, 3) when they got
to the number ater three, they wrote it as 10 and called it doggy, thus conirm-
ing the quantity in terms of a natural unit in their environment. Continuing to
count they would say, “doggy-one (11), doggy-two (12), doggy-three (13)...”
At this point they would write the next number as 20 and call it twoggy. A

similar procedure was used for 30.
20–twoggy 30–troggy
21–twoggy-one 31–troggy-one
22–twoggy-two 32–troggy-two
23–twoggy-three 33–troggy-three
Now, upon reaching 33, the next number must again force another position

in the number display.
You’re probably wondering what they called it. !e digits are of course 100.

Oh, the name? Why, of course, it’s one houndred.

]

2. !e Monitor
November 1980

Exploring the Monitor

It is possible to program the computer manually by entering numbers one at
a time into successive memory locations. A program of this sort is called a
machine language program because the 6502 can directly run the coded program
steps. Humans, however, ind this type of data diicult to read and are more
likely to make mistakes while working with it.
A more convenient method of programming is to assign some kind of code

word to each value. !e computer will translate this word into the correct num-
ber to store in memory. !is translation is done by anassembler, and programs
entered or displayed in this manner are called assembly-language programs.
As an example, let’s look at some data within your Apple, irst in the

machine-language format and then in the assembly-language format. First we
must enter the Monitor. Type in:

CALL -151

!is should give you an asterisk (*) as a prompt. Now type in:

F800.F825

!is tells the Monitor we want to examine the range of memory from$F800 to
$F825. !e general syntax of the command is:

<start address>.<end address>

the period being used to separate the two values.
Upon hitting <RETURN> you should get the following data:

F800- 4A 08 20 47 F8 28 A9 0F

F808- 90 02 69 E0 85 2E B1 26

F810- 45 30 25 2E 51 26 91 26

F818- 60 20 00 F8 C4 2C B0 11

F820- C8 20 0E F8 90 F6

*

]

2

10 Assembly Lines

!e range I have picked is the very beginning of the Monitor ROM. !e
data here can be directly read by the 6502, but is very diicult for most humans
to make much sense of. !is is machine language.

Disassembly

Now type in:

F800L

!is tells the Monitor to give us adisassembly of the next twenty instructions,
starting at $F800. !e syntax here is:

<start address>L

To disassemble means to reverse the process we talked about earlier, taking
each number value and translating it into the appropriate code word.
Ater hitting <RETURN> you should get:

F800- 4A LSR

F801- 08 PHP

F802- 20 47 F8 JSR $F847

F805- 28 PLP

F806- A9 0F LDA #$0F

F808- 90 02 BCC $F80C

F80A- 69 E0 ADC #$E0

F80C- 85 2E STA $2E

F80E- B1 26 LDA ($26),Y

F810- 45 30 EOR $30

F812- 25 2E AND $2E

F814- 51 26 EOR ($26),Y

F816- 91 26 STA ($26),Y

F818- 60 RTS

F819- 20 00 F8 JSR $F800

F81C- C4 2C CPY $2C

F81E- B0 11 BCS $F831

F820- C8 INY

F821- 20 0E F8 JSR $F80E

F824- 90 F6 BCC $F81C

!is is a disassembled listing. Although it probably doesn’t do a lot for you
right now, I think it’s obvious that it is at least more distinctive.
Let’s look at it a little more closely. InBASIC, line numbers are used to

begin each set of statements. !ey’re particularly handy when you want to do a
GOTO orGOSUB to some other part of the program. In assembly language, the
addresses themselves take the place of the line numbers. In our example, the col-
umn of numbers on the far let are the addresses at which each operation is
found. To the right of each address are one to three hex values, which are num-
ber values stored in successive addresses. !ese are theopcodes with their
accompanying operands.

2. !e Monitor 11

At$F802, for instance, is the opcode$20. Remember, the dollar sign is used
to show we are using base sixteen.$20 is the opcode for the commandJSR. All
mnemonics are made up of three letters. In this case,JSR stands for Jump to
SubRoutine and is rather like aGOSUB in BASIC. !e next two numbers,$47 and
$F8, comprise the operand, that is, the number that the opcode is to use in its
operation. To the right we see that these numbers give$F847 as the object of the,
JSR1. Continuing with our analogy, what would be aGOSUB 1000 in BASIC
appears as aJSR $F847 in assembly language. !e commandJSR $F847 will
jump to the subroutine at $F847 and return when done.
You’ve just learned your irst word of assembly language:JSR! Looking

through the listing, you can see several of these. !e irst one goes to some rou-
tine outside the listing. What about the other twoJSR commands? You should
be able to see that they reference routines within the listing. !e second enters at
$F800, the third at $F80E.
In BASIC, aGOSUB eventually ends with aRETURN. !eJSR has an analogous

counterpart. Looking at the entry point at$F80E and what follows, can you ind
anything that looks like it might be the equivalent of aRETURN? Take the time to
ind it if you can before reading on.
If you picked theRTS, you’re right,RTS stands for return from subroutine.

As with a RETURN, when the program reaches theRTS, it returns to where it origi-
nally came from. Encountering theRTS at$F818, program execution would
resume at $F824, if entry was from the JSR $F80E at $F821.
You might notice that almost all machine code blocks that you may have

used along withBASIC programs, such as tone routines, usually end with a$60
as the last byte. !is is the opcode forRTS. In almost any assembly-language pro-
gram you write, you must end with anRTS. !is is because, to the computer as a
whole, your program is a temporary subroutine of its overall operation.
When your program ends, theRTS lets the Apple return to its original oper-

ations of scanning the keyboard and such. When you do aCALL 768 from
BASIC, for example, you are essentially doing aJSR to that machine routine. !e
768 is the decimal value for the address of the start of the routine, equivalent to
$300 in hexadecimal. At the end of that routine, theRTS returns you to your
BASIC program to let it continue with the next statement.

1Notice that it takes two bytes to store the value for an address. For example, for the
address$F847, the value “F8” is stored in one byte, and “47” in another. Reading an
address is generally a matter of mentally combining the two bytes. !e byte representing
the let-hand portion of the number is oten called thehigh-order byte; the byte repre-
senting the right-hand portion is called the low-order byte. It is important to realize that
the two bytes that make up an address are almost always reversed in regards to what you
might normally expect. !at is to say that in an address byte-pair, the low-order byte
always comes irst, immediately followed by the high-order byte. !is means that when
examining raw memory, you must mentally reverse the byte to determine the address
stored. Fortunately when using the “L” command, the disassembler does this for you.

]

3. Assemblers
December 1980

!e Mini-Assembler

I mentioned earlier that the basic principle of the Apple is its ability to scan
through a range of memory and execute diferent operations depending on what
numeric values it inds at each location, or address. Instead of tediously loading
each location by hand with mundane numbers to create a program, anassembler
is used to translate abbreviated codewords, calledmnemonics, into the proper
number values to be stored in memory.
!e types of assemblers available are quite diverse, and range from the

Mini-Assembler present in an Apple withInteger BASIC (or theMunch-A-Bug
package) to sophisticated editor/assemblers like Merlin.
For now, we’ll use the Mini-Assembler to try a short program. If you have

an Apple II, anApple II Plus with a language card, or anApple //e, the Mini-
Assembler is available provided that you enter the Monitor from Integer BASIC.
In any case, you’ll want to get a more complete assembler to do any real program
writing.
Starting with chapter four, I’ll assume you have an assembler, and have

learned at least enough about operating it to enter a program. Since the only two
commands we have at this point areJSR andRTS, our routine will be very sim-
ple. In the Monitor at$FBDD is a routine that beeps the speaker. Our routine will
do a JSR to that subroutine, then return to BASIC via an RTS at the end.
To enter the program using the Mini-Assembler, follow these steps:1 From

Integer BASIC, enter the Monitor with a CALL -151. !en type in:

F666G

F666 is the address where the Mini-Assembler program starts.G tells theMoni-
tor to execute the program there. You can think ofG as go; its BASIC equivalent
is RUN. !e general syntax is:

1If you do not have the Mini-Assembler available, you can enter the same data into
memory by entering the Monitor and typing in: 300: 20 DD FB 60<RETURN>.
Rejoin us at the 300L mark on the next page.
If you have an Apple with a65C02, the memory addresses have changed. You can enter
the Mini-Assembler by typing “!”, and exit the assembler by hitting <RETURN>.

]

3

14 Assembly Lines

<start address>G

!e prompt should change to an exclamation mark (!). To use the Mini-Assem-
bler, you must follow a basic pattern of input. See page 49 in the newestApple II
Reference Manual for a thorough description of this. For now, though, enter:

!300: JSR FBDD<RETURN>

!e Apple will immediately rewrite this as:

0300- 20 DD FB JSR $FBDD

!e input syntax is to enter the address at which to start the program fol-
lowed by a colon and a space, then enter the mnemonic, another space, and then
the operand, in this case the address for the JSR to jump to. Next type in:

! RTS<RETURN>

which will be rewritten as:

0303- 60 RTS

Be sure to enter one <SPACE> before the RTS. What the assembler has done is
to take our mnemonic input and translate it into the numeric opcodes and oper-
ands of actual machine language.
Now type in:

!$FF59G

!is will exit the Mini-Assembler, giving you back the asterisk prompt (*) of the
Monitor. You can now list your program by typing in:

300L

!e irst two lines of your listing should be:

0300- 20 DD FB JSR $FBDD

0303- 60 RTS

What follows ater$303 is more or less random and does not afect the code we
have typed in. When run, this program will jump to the beep routine at$FBDD.
At the end of that routine is anRTS that will return us to our program at$303.
!eRTS there will then do a inal return from the program back to either the
Monitor or BASIC depending on where we call it from.
From the Monitor type in:

300G

!e speaker should beep and you will get the asterisk prompt back. Now go back
into BASIC with a <CTRL>B. Type in:

CALL 768

3. Assemblers 15

!e speaker should again beep and then give you the BASIC prompt back.CALL
768 should work from Integer or Applesot.
As long as the programs are not very involved, the Mini-Assembler is handy

for writing quick routines. A complete table of routines in the Monitor appears
in Appendix D at the end of the book. Try to write your ownJSRs to one or
more of these routines. You might even try doing several in a row for fun.

Assemblers

Now let’s look at the operation of a more typicalassembler. !is example
assumes you’re using an assembler similar to the ones mentioned in the intro-
duction. If you have a diferent assembler that gives you diferent results, you
may have to consult your operating manual for the proper procedures for enter-
ing source listings.
Before presenting the listing, I’d like to clarify two commonly used terms in

assembly-language programming,source code andobject code. Source code is the
English-like text you enter into the assembler. !is text has the advantage of
being easily readable, and may include whole sentences or paragraphs of com-
ments very similar toREM-type statements found in BASIC. Source code is, how-
ever, not directly executable by the 6502. It simply does not understand English-
like text. As mentioned earlier, the 6502’s preferred (and in fact only acceptable)
diet is one- to three-byte chunks of memory in which simple and unambiguous
numbers are found.
!e assembler takes this text and produces the pure numeric data, called the

object code, which is directly executable by the 6502.
Now the listing:

Object Code Source Code
 1 ********************************

 2 * AL03-SAMPLE PROGRAM *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 BELL EQU $FBDD

 9 *

0300: 20 DD FB 10 START JSR BELL ; RING BELL

0303: 60 11 END RTS ; RETURN

0304: 66 12 CHK

To the right side of the listing is what is generally called the source code.
!is is the program, coded using mnemonics and various names or labels for

]

16 Assembly Lines

diferent parts of your routine. Very few actual addresses or values are used in
the source code.2

To the let is the object code. !is is what is actually put in memory as the
machine language program. !e object code is what the computer actually exe-
cutes; it is obviously rather diicult to understand, at least compared to trying to
understand it when you have the advantage of the source code. Being more read-
ily able to understand the coding places greater importance on having the source
listing for a given program and explains why yourApple II Reference Manual
contains a source listing for the Apple Monitor. Such listings were considered
necessary in documenting a system when the Apple came out.
However, source listings for Applesot BASIC, Integer BASIC, and the Disk

Operating System (DOS) are much harder to come by and are not directly dis-
tributed by Apple Computer Co., Inc. Independently created source listings for
DOS and Applesot BASIC have been prepared by individuals not directly asso-
ciated with Apple Computer Co., Inc. and are commercially available. !e DOS
3.3 source compiled by Randy Hyde is available from Lazer Systems, Inc. An
Applesot BASIC source listing is included in theMerlin Assembler from South-
western Data Systems.
Most assemblers display both the object code and the source code when the

ASM (for ASseMble) command is used. Object and source code are, however,
usually saved to disk as two separate and distinct iles. Initially, let’s consider just
the source listing.
!e irst thing to notice is that, just like in BASIC, we again have line num-

bers. In assembly language, though, the line numbers are solely for use with the
program editor, and are not used at all to reference routines. Inserting a line is
done with a special editor command, and all following lines are automatically
renumbered to accommodate the new line.
Next notice the syntax, or proper ordering of the information. Generally the

syntax consists of three basic elements, orields, to each line. !ese ields are
either deined by their position on the line or, more oten, bydelimiters. A
delimiter is a character used to separate one ield from another. In most assem-
blers, a space is used. Using this convention, you don’t have to tab over to some
speciic position for each ield on the line. Instead you just make sure each ield
is separated from the adjacent one by a space.

2[CT] Line 12 contains theCHK pseudo-opcode that is provided by theMerlin Macro
Assembler.CHK instructs the assembler to insert a single byte containing a “checksum”
for the entire program. If you are usingMerlin, you can use the resulting checksum to
verify that you have typed in the program correctly. For example, for this particular pro-
gram you should get a checksum of$66. If you are not usingMerlin you should ignore
theCHK instruction. In case you are curious, the checksum is computed by performing
an exclusive OR on all of the program bytes.

3. Assemblers 17

!e irst ield is for alabel and is optional. Lines 10 and 11, for example,
each have a label that applies to that point in the routine. In this case, the label
START indicates where we irst begin the program;END is the clever label used for
the inish. You may even recognize this program as the one we used to beep the
speaker earlier. Some assemblers limit the number of characters used in the
label.
As the program becomes more complex, we can do the equivalents ofGOTO

and GOSUB by using theselabels instead of a line number. You’ll notice that to do
this,BELL has to be deined somewhere in the listing. SinceBELL does not occur
as a label within our own program (lines 10 and 11), it is deined at the begin-
ning using theEQU (EQUals) statement. !e statement reads: “BELL EQUals $FBDD.”
!is way, whenever we use the label BELL, the assembler will automatically set up
the JSR or whatever to the address $FBDD.
!e second ield is thecommand ield, which includes theopcode and its

operand. In line 10, theJSR is the opcode and the operand isBELL. Not all
opcodes will have an operand.
!e third ield, to the right, is thecomment ield. Use of the comment ield is

optional and is reserved for any comments about the listing you might wish to
make (for example,RING BELL). !e semicolon in the source code is used as the
delimiter for the comments ield. Comments can also be done at the very begin-
ning of the line by using anasterisk as theREMark character.3 As in BASIC,
everything ater the asterisk is ignored by the assembler.
Assemblers also have what are sometimes calledpseudo opcodes ordirec-

tives, likeEQU. Although directives do not translate into 6502 code, they are
interpreted by the assembler according to assigned deinitions as the object code
is assembled.
!ey are called directives because they direct the assembler to perform a

speciic function at that point such as store a byte, save a ile to disk, etc.
!e sample program uses two directives,OBJ andORG, on lines 6 and 7 of

the source listing.OBJ stands for OBJect and deines where the object code will
be assembled in memory.4 ORG stands for ORiGin and deines thebase address to
be used when creating theJSRs,JMPs, and other functions that reference speciic
addresses within the program. GenerallyOBJ andORG are the same, and for the
time being we’ll leave it at that. Consult your assembler manual for more speciic
information on the use of these commands.

3[CT] A quick tip: If you are using theMerlin assembler, you can automatically ill the
line with asterisks by hitting<CTRL>P. If you type a space and then hit<CTRL>P then
Merlin will insert an asterisk at the beginning and end. See Appendix G for details.

4[CT] !eOBJ directive is not usually necessary, and it is incompatible with later ver-
sions of theMerlin assembler (Merlin Pro andMerlin 8/16). In this book all of theOBJ
lines have been commented out.

]

18 Assembly Lines

Remember, only the actual program is converted into the object code. !e
remarks and theEQU,OBJ, andORG statements are only used in the source code
and are never transferred to the object code.

Load/Store Opcodes

One of the most fundamental operations in machine code is transferring the
number values between diferent locations within the computer. You’ll recall
that in addition to the 64K of actual memory locations, there were registers
inside the 6502 itself. !ese were theAccumulator, theX-Register, and theY-
Register. !ere are a number of opcodes that will load each of these registers
with a particular value and, of course, another set to store these values some-
where in the computer. !e table below summarizes these:

Accumulator X-Register Y-Register

Load: LDA LDX LDY

Store: STA STX STY

!e irst mnemonic,LDA, stands for LoaD Accumulator.LDA is used whenever
you wish to put a value into the Accumulator. Conversely, to store that value
somewhere, you would execute theSTA command, which stands for STore Accu-
mulator. !e opcodes for the X-Register and Y-Register are similar and perform
the identical function with the associated registers.
Now the question is, how do we control what numbers get put into the reg-

ister we’re concerned with? !ere are basically two options. !e irst is to put a
speciic number there. !is is usually indicated in the source listing by preceding
the number we want to be loaded with a “#” character.

 99 LDA #$05 ; LOAD ACC. WITH THE

100 ; VALUE ’$05’

For instance, in this example, we have loaded the Accumulator with the value 5.
How do you think we would load the X-Register or the Y-Register with the value
0?
!e other alternative is to load the register with the contents of another

memory location. To do this, we just leave of the “#” character.

 99 LDA $05 ; LOAD ACC. WITH THE

100 ; CONTENTS OF LOC. $05

In this case, we are loading the Accumulator with whatever location $05 happens
to be holding at the moment.
!ese two options are calledaddressing modes. !e irst example (#$05) we

call theimmediate mode, because it is not necessary to go to a memory location
to get the desired value. !e second case we call theabsolute mode. In this mode,

3. Assemblers 19

we put a given value in the register by irst going to a speciied memory location
that holds the value we want.

Putting it All Together

We now have the ability to transfer numbers about in the computer, to
jump to other subroutines within the Apple via aJSR, and to return safely to the
normal world via anRTS when we’re done. In addition, we have an assembler
that will allow us easily to generate a source listing for our program, which can
also be easily modiied. Let’s put all this together to write a short program to
print some characters on the screen. Appendix E contains two charts (the ASCII
table, and the Text Screen Memory Map) that will supply the necessary informa-
tion to achieve this.
When a character is printed on the screen, what is really happening is that a

number value is being stored in the area of memory reserved for the screen dis-
play. Change a value there and a character on the screen will change. !eText
Screen Memory Map gives the various addresses of each position on the screen.
!e upper let corner corresponds to location $400, the lower right to $7F7.
!e ASCII table shows which number values create which screen characters.

Suppose we want to print the wordAPPLE in normal text. !e table indicates that
we should use the following values:

A: $C1

P: $D0

P: $D0

L: $CC

E: $C5

If we want the word to appear on the seventh line of the screen, we should load
these values into locations$700 to$704. To test this, enter the following pro-
gram using your assembler. If you still don’t have one, the AppleMini-Assem-
bler can be used, although we will soon reach the point where it will not be
suicient for our needs. If you are using the Apple Mini-Assembler, enter only
the program itself, ignoring theOBJ andORG statements. In place ofJSR HOME
enter JSR $FC58.
At the beginning of the program, we deine where it is to be assembled.

!en we deine a routine in the Apple calledHOME, which is part of the Apple
Monitor and is at$FC58. Whenever this routine is called, the screen is cleared
and the cursor put in the upper let corner. !is ensures that only the word
APPLE will be printed on the screen.

 1 ********************************

 2 * AL03-TEST PROGRAM 1 *

 3 ********************************

 4 * OBJ $300

 5 ORG $300

]

20 Assembly Lines

 6 HOME EQU $FC58

 7 *

0300: 20 58 FC 8 START JSR HOME ; CLEAR SCREEN

0303: A9 C1 9 LDA #$C1 ; 'A'

0305: 8D 00 07 10 STA $700

0308: A9 D0 11 LDA #$D0 ; 'P'

030A: 8D 01 07 12 STA $701

030D: 8D 02 07 13 STA $702

0310: A9 CC 14 LDA #$CC ; 'L'

0312: 8D 03 07 15 STA $703

0315: A9 C5 16 LDA #$C5 ; 'E'

0317: 8D 04 07 17 STA $704

031A: 60 18 END RTS

031B: 72 19 CHK

!e routine will begin by doing aJSR to the home routine to clear the
screen. !en the Accumulator will be loaded with an immediate$C1, the value
for the letter A. !is will then be stored at location$700 on the screen, which
will cause the letter A to be visible on the screen. !e next value loaded is for the
letter P, and this is stored at$701 and$702. It is not necessary to reload the
Accumulator, since storing the number does not actually remove it from the
Accumulator. !e number is just duplicated at the indicated spot. !e process
continues in this pattern until all ive letters have been printed, and then anRTS
returns us to normal operation.
Once you have assembled the routine at$300, try calling it both from the

Monitor level with:

300G

and from BASIC (either one) with:

CALL 768

You should also change theLDA/STA to the X-Register and Y-Register equiv-
alents to verify that they work in a similar manner.

Conclusion

You now have at your disposal a total of eight opcodes and a familiarity
with assemblers. !ese few opcodes are probably the most oten used, and with
just these alone you can do quite a number of things. !eJSR allows you to
make use of all the routines already available in the Monitor. I highly recom-
mend getting!e Apple Monitor Peeled by W.M. Dougherty, available exclu-
sively from Apple, for more information on using these routines. His book gives
a lot of detail on what is available.
In the next chapter we’ll look at some more advanced addressing tech-

niques, and how to do counters and loops.

4. Loops and Counters
January 1981

Now we get into not only more mnemonics, but the techniques of using
them to accomplish various overall operations. In particular, we’ll look atcoun-
ters and loops in assembly language. In BASIC, theFOR-NEXT loop is one of the
more essential parts of many programs, and this is no less true in machine pro-
gramming. !e only diference is how the loop/counter combination is actually
carried out.
In BASIC, the testing of counters is done either byIF-THEN statements or,

automatically, in theNEXT statement of theFOR-NEXT loop. In assembly language,
the testing is done by examining lags in theStatus Register. !ese lags indicate
the status of the various registers and memory locations. !e Status Register is a
fourth register of the 6502, one we have not previously mentioned. Before going
on with loops and counters it will be necessary to briely discuss the Status Regis-
ter and, in addition, binary numbers.
Like the other three registers–the Accumulator, the X-Register, and the Y-

Register–the Status Register holds a single byte. You’ll recall that each byte in
the Apple can have a value from 0 to 255 ($00 to $FF).
As it happens, there are many ways of looking at and interpreting numbers.

!e one of common experience is that in which we consider only the magnitude
of the number. Noticing that 255 is larger than 128 gives us only a very simple
form of information–whether a number is either less than, equal to, or greater
than another number.
A second way of looking at numbers is in binary form.Base two allows us to

see more information in a number and hence is that much more useful. We have
already seen how a single byte can be represented either as 0 to 255 or as$00 to
$FF. In binary the range is00000000 to11111111. For instance, 133 (base ten)
was represented as$85. In binary it has the appearance 10000101. In this case,
each 1 or 0 represents the presence or absence of a given condition. !us, eight
distinct pieces of information are conveyed, as well as all the various combina-
tions possible.
Before you run shrieking from the room, remember that this is all done to

make things easier, not harder. Besides, learning base sixteen (hex) wasn’t that
bad back at the beginning of this book, was it? So let’s take a moment to see what
this bits and bytes stuf is all about.

]

4

22 Assembly Lines

Binary Numbers

!e Apple is an electronic device and, actually, in many ways, a simple one
at that. In most parts of its circuitry, the current is either of or on. !at’s it. No
in-between. Having two possible positions is perfect for base two. !e idea of a
number base has to do with how many symbols, or units, you use for counting.
We normally use ten. We have a total of ten possible symbols to write in a single
position before we have to start doubling up and using two positions to repre-
sent a number.You’ll recall inhex that, by using 0 through 9 and A through F,
we had sixteen possibilities; thus, we were in base sixteen. With the on/of nature
of the Apple, we’re limited to two possibilities: 0 or 1.
How high can we count in one position? Not very. We start at 0, then go to

1, and that’s it. !en we have to add another position. !e next number, there-
fore, is 10. As before, remember that, in this case, 10 represents what we usually
call two. If we use three positions, the lowest number is 100 (representing the
quantity four in base ten).
For a given number base, there is a formula for the highestdecimal number

you can represent with a given number of positions:

N = BP − 1

whereN is the largest decimal number,B is the number base, andP is the num-
ber of positions available.
By using eight positions, we can go up to 11111111, which just happens to

equal 255. How handy! !is is the same maximum value of our bytes. And, if the
truth be known, it’s actually the other way around. We use the numbers through
255 because we are using eightbits to make up each byte. Whether each bit is a 0
or a 1 depends on whether the part of the circuit that is responsible for that bit is
of or on.

!e Status Register

Here at last is our representation of a single byte, made up of eight bits. In
particular, the byte we are looking at is theStatus Register of the 6502. !e
important diference between this register and the others is that it is not used to
store number values. Instead it indicates various conditions.
!e bits of the Status Register are numbered from right to let, 0−7. Each bit

in this register indicates the status and/or results of diferent operations and is
called alag. It is by using this register that we can create counters and loops in
our programs. !e lag we will be immediately concerned with is bit one, the
zero lag. In terms of the commands we already know, the zero lag is afected by
an LDA, LDX, or LDY.

4. Loops and Counters 23

If the value loaded into the Accumulator, X-Register, or Y-Register were $00,
the lag would be set to 1. If it were a nonzero number, the lag would be 0.
Seemingly backward perhaps, but remember, each lag is set to show the pres-
ence or absence of a given condition, in this case,$00. !e setting or clearing of
each Status Register lag is done automatically by the 6502 ater each program
step, indicating the results of any particular operation.

Incrementing and Decrementing

To create acounter and then aloop, we will use the Status Register to tell
when a given register or memory location reaches 0. We will also need a way of
changing the value of the counter in a regular fashion. In the 6502, this is done
by incrementing or decrementing by one each time, as indicated.

Accumulator X-Register Y-Register Memory Loc

Increment by 1:Not available INX INY INC

Decrement by 1:Not available DEX DEY DEC

!e table above shows the mnemonics used to increment or decrement a
particular register or memory location.
Note that directly incrementing or decrementing the Accumulator is not

possible. !e increment/decrement commands afect thezero lag, depending on
whether the result of the operation is 0 or not.
!e usual syntax for using these commands in an assembly listing is:

10 INX

11 INY

12 DEX

13 DEY

14 INC $0600

15 DEC $AA53

]

24 Assembly Lines

For the register operations, the command stands alone, with no need of an
operand. In the case ofINC andDEC, the memory locations to be operated on are
given, in hex of course, usually preceded by the dollar sign.
One thing to mention here is thewrap-around nature of the operations. To

understand this, examine the following chart:

Original contents Increment Decrement Z-lag set? Z

$05 $06 $04 no, no 0, 0

$0F $10 $0E no, no 0, 0

$01 $02 $00 no, yes 0, 1

$FF $00 $FE yes, no 1, 0

$00 $01 $FF no, no 0, 0

!e efects of incrementing and decrementing diferent values are shown,
along with the efects on thezero lag ater the operations. !e irst case is sim-
ple, 5 + 1 = 6, 5 − 1 = 4. In both cases, the result is nonzero, so the zero lag is not
set. For$0F, the same holds true. Remember that, in hex, the next number ater
$0F is$10. In the case of$01, incrementing produces$02. When we decrement
$01, the result is $00; the zero lag is set.
Here’s where it gets interesting. When the starting value is$FF, adding one

would normally give$100. However, since a single byte only has a range of$00
to $FF, the 1 is ignored, and the value becomes$00. !is sets the zero lag. In the
case of decrementing, $FF − 1 = $FE, so the zero lag is not set.
If we start with$00, although incrementing produces the expected$01,

decrementing wraps around in the reverse of the previous case, giving$FF. Both
results are nonzero, so Z–short for the zero lag–isclear, that is, not set, for
both operations.

Looping with BNE

!e only procedure remaining to enable you to create a loop is a way of test-
ing the Z-lag and then being able to get back to the top of the loop for another
pass. In BASIC, a simple loop might look like this:

10 HOME

20 X = 255

30 PRINT X

40 X = X - 1

50 IF X <> 0 THEN GOTO 30

60 END

In this program, we start with the counter X set at 255. !en the value is
printed, decremented, and the process repeated until the counter reaches 0. We

4. Loops and Counters 25

can make the loop execute any number of times by properly setting the initial
value of X.
In machine code, the test andGOTO is done with abranch instruction. In this

case, the one we’ll use irst isBNE.BNE stands for Branch Not Equal and is a
branch instruction executed when a register is loaded with “a nonzero value.”
!is can happen either directly with something like aLDA #$01 or as the result
of an arithmetic operation, such as anINX, DEC, orADC. Here is the assembly-lan-
guage equivalent of the BASIC listing:

 1 ********************************

 2 * AL04-LOOP PROGRAM 1 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 HOME EQU $FC58

 8 *

 9 START JSR HOME

 10 LDX #$FF

 11 LOOP STX $700

 12 DEX

 13 BNE LOOP

 14 END RTS

And here is the way Apple’s disassembler would show it:

*300L

0300- 20 58 FC JSR $FC58

0303- A2 FF LDX #$FF

0305- 8E 00 07 STX $0700

0308- CA DEX

0309- D0 FA BNE $0305

030B- 60 RTS

In this program, we irst do aJSR to the clear screen routine in the Monitor
that we used in chapter three. !en we load the X-Register with a starting value
of$FF. Now we start the loop. Storing the X-Register at$700 will make the
loop’s action visible as a character on the screen for each pass through the loop.
Next,DEX subtracts one from the current value of the X-Register. !eBNE will
then continue the loop back up toLOOP until the X-Register reaches$00, at
which point the test will fail and program execution will fall through to theRTS
at the end of the program. People will also refer to the execution of abranch
instruction by saying that the branch is ignored or taken depending on whether
program low falls through the branch instruction or goes to the new address
indicated by the branch instruction.
Try entering this now, and also notice how fast the program runs. You

probably weren’t able to see very much, but all 255 values were put to the screen.
!e inverse A that’s let on the screen is how a$01 at$700 appears. ($00 doesn’t

]

26 Assembly Lines

get printed–why?) To verify that each pass is being executed, replace theSTX
$700 in the source listing with aJSR $FBDD. If you don’t want to hear 255 beeps,
try changing the initial value of the X-Register in line 10. As before, you should
be able to call this program from the Monitor with a300G, or from BASIC with a
CALL 768.
You may also wish to try the equivalent version of the program using the Y-

Register or a memory location as the counter. I would suggest trying to write a
program using INC, INX, or INY to drive the counter as a practice program.

5. Loops, Branches, COUT, and Paddles
February 1981

Looping with BEQ

In the previous chapter we started into the various techniques of creating
and using counters and loops in assembly language. To accomplish the loop, we
used the value in one of the registers as a counter and the branch instruction that
tests for the presence of a nonzero number in the register to actually do the loop-
ing. Recall that this evaluation of zero/nonzero is done via the zero bit, or lag, of
the Status Register of the 6502.
!e complement of theBNE instruction is something calledBEQ, which

obscurely enough stands for Branch EQual. It operates in just the opposite fash-
ion fromBNE; that is, it branches only when the register or memory location
reaches a value of 0.
For example, consider this BASIC listing:

10 HOME

20 X = 255

30 PRINT X

40 X = X - 1

50 IF X = 0 THEN 70

60 GOTO 30

70 END

In this case, the loop continues as long as X is not equal to 0. If it is, the
branch instruction is carried out and the program ends. In assembly language,
this program would be the equivalent:

 1 ********************************

 2 * AL05-LOOP PROGRAM 2 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 HOME EQU $FC58

 8 *

 9 START JSR HOME

 10 LDX #$FF

 11 LOOP STX $700

 12 DEX

 13 BEQ END

]

5

28 Assembly Lines

 14 JMP LOOP

 14 END RTS

Notice that this program requires the addition of a new instruction to our reper-
toire: theJMP command. !is is analogous to aGOTO in BASIC, and in this pro-
gram will cause program execution to jump to the routine starting atLOOP each
time. Only when the X-Register reaches 0 does theBEQ take efect and cause the
program to skip to theRTS atEND. Here is the way this would appear when put
into memory and then listed with the “L” command from the Monitor:

*300L

0300- 20 58 FC JSR $FC58

0303- A2 FF LDX #$FF

0305- 8E 00 07 STX $0700

0308- CA DEX

0309- F0 03 BEQ $030E

030B- 4C 05 03 JMP $0305

030E- 60 RTS

!e assembler automatically translates the positions ofLOOP andEND into
the appropriate addresses to be used by theBEQ andJMP when it assembles the
code.
Remember that to the let are the addresses and the values for each opcode

and its accompanying operand. !e more intelligible translation to the right is
Apple’s interpretation of this data.

Branch Ofsets and Reverse Branches

Notice that theJMPs andJSRs are immediately followed by the addresses
(reversed) that they are to jump to, such as in the irst JSR as $300.
However, branch instructions are handled a little diferently. !e$03 is an

ofset that tells the 6502 to jump three bytes past the next instruction.
Since the next instruction is at$30B, the 6502 will branch to$30E, thus skip-

ping theJMP command and going directly to theRTS, which terminates the rou-
tine.
Branches can also be done in the reverse direction. Here is a rather inei-

cient, but illustrative example:

 1 ********************************

 2 * AL05-LOOP PROGRAM 2A *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 HOME EQU $FC58

 8 *

 9 START JSR HOME

 10 JMP SETX

 11 END RTS

5. Loops, Branches, COUT, and Paddles 29

 12 *

 10 SETX LDX #$FF

 11 LOOP STX $700

 12 DEX

 13 BEQ END

 14 JMP LOOP

!e Monitor listing for this would be:

*300L

0300- 20 58 FC JSR $FC58

0303- 4C 07 03 JMP $0307

0306- 60 RTS

0307- A2 FF LDX #$FF

0309- 8E 00 07 STX $0700

030C- CA DEX

030D- F0 F7 BEQ $0306

030F- 4C 09 03 JMP $0309

In this example, the branch, if taken, will cause the program to move back
up through the listing. To indicate this branch in the opposite direction, the high
bit is set. !is is the same technique that is oten used to show negative numbers
in assembly-language programs. Please note that it is not just a matter of setting
the high bit. If that were the case, the value following the BEQ command might be
expected to be$89. (!e address of the next instruction ($30C) minus where we
want to go to ($303) equals $09. !en with the high bit on, we have $89.)
!is is almost correct. !e actual value is arrived at by subtracting the

branch distance from$100. !us$100 minus$09 equals$F7. !is is so that the
destination address can still be arrived at through addition. Notice that$30C +
$F7 =$403. It is then very easy for the 6502 to correct this back one page to
$303.
If all this seems a bit confusing, try not to let it bother you. In actual prac-

tice, there is not much reason to be concerned about the way in which the ofset
byte is determined since your assembler will determine the proper values for you
when assembling code, and Apple’s disassembler, as well as many others, includ-
ing Sourceror, will give the destination address when reading other code.
!is is also a good time to stress the importance of working through each of

these examples on your own, step by step, to make sure you understand exactly
what happens at each step, and how it relates to the rest of the program. If you’re
not sure, go back over it until that proverbial light comes on!

Screen Output Using COUT

As the X-Register is incremented in this program, we’ll stuf the value into
$700 so we can see something on the screen as the counter advances.

]

30 Assembly Lines

Now you may remark from your experience in chapter four that although
this program is pleasantly simple in its logic, it is not much fun to watch on the
screen because it runs so quickly.
To solve this, we will start to make more extensive use of the routines

already present in the Monitor to do certain tasks and thus make our program-
ming requirements a little simpler. Referring to the Monitor subroutines in
Appendix D, it happens that the irst routine listed is something calledCOUT.
!is is the routine that actually sends a character we want output to whatever
device(s) may currently be in use. Most of the time this just goes directly to the
next routine listed, COUT1 (clever with the names, aren’t they?), which speciically
handles thescreen output. What this means for us is that anytime we want to
output a character, we don’t have to write our own routines to worry about all
the in-depth details about the screen (cursor position, screen size, whether it’s
time to scroll)–we just load the Accumulator with the ASCII value for the char-
acter we want to print and then do a JSR $FDED!
Now comes some programming technique. We would like to have the

counter value in the Accumulator so we can print it viaCOUT, but unfortunately
our increment/decrement commands only work for the X-Register, the Y-Regis-
ter, and given memory locations. To solve this, we’ll have to expand our listing a
little. !is time, we’ll use a memory location as the counter, and then load the
Accumulator, on each pass through, to print out a visible sign of the counter’s
activity. Good locations to use for experimenting are$06 to$09. !ese are not
used by either Integer, Applesot, DOS, or the Monitor. !is is important for
avoiding conlicts with the Apple’s normal activities while running your own
programs.
And now our revised listing:

 1 ********************************

 2 * AL05-LOOP PROGRAM 2B *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 CTR EQU $06

 8 HOME EQU $FC58

 9 COUT EQU $FDED

 10 *

 11 START JSR HOME

 12 LDA #$FF

 13 STA CTR

 14 LOOP LDA CTR

 15 JSR COUT

 16 DEC CTR

 17 BEQ END

 18 JMP LOOP

 19 END RTS

5. Loops, Branches, COUT, and Paddles 31

Apple’s “L” command will give this ater you’ve assembled it in memory:

*300L

0300- 20 58 FC JSR $FC58

0303- A9 FF LDA #$FF

0305- 85 06 STA $06

0307- A5 06 LDA $06

0309- 20 ED FD JSR $FDED

030C- C6 06 DEC $06

030E- F0 03 BEQ $0313

0310- 4C 07 03 JMP $0307

0313- 60 RTS

A call to this routine via our usual300G from the Monitor, or aCALL 768
from BASIC, should clear the screen, then print all the available characters on
your Apple in all three display modes (normal, lashing, and inverse). !e beep
you hear is the<CTRL>G (bell) beingprinted to the screen viaCOUT. !e invisible
control characters account for the blank region between the two main segments
of output characters. You will also see some characters that are not normally
generated by the Apple, such as underscore, reverse slash, and the let square
bracket (_, \, [).
!e alphabet is backward because we started at the highest value and

worked our way down. From chapter four, though, you’ll remember that when a
byte is incremented by one from$FF, the resultwraps around back to$00. !is
will produce an action testable by aBEQ. Using this wrap-around efect of the
increment command, we can rewrite the program to be a little more conven-
tional like so:

 1 ********************************

 2 * AL05-LOOP PROGRAM 3 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 CTR EQU $06

 8 HOME EQU $FC58

 9 COUT EQU $FDED

 10 *

 11 START JSR HOME

 12 LDA #$00

 13 STA CTR

 14 LOOP LDA CTR

 15 JSR COUT

 16 INC CTR

 17 BEQ END

 18 JMP LOOP

 19 END RTS

]

32 Assembly Lines

With the Apple showing:

*300L

0300- 20 58 FC JSR $FC58

0303- A9 00 LDA #$00

0305- 85 06 STA $06

0307- A5 06 LDA $06

0309- 20 ED FD JSR $FDED

030C- E6 06 INC $06

030E- F0 03 BEQ $0313

0310- 4C 07 03 JMP $0307

0313- 60 RTS

A call to this routine should now print out the characters in a more familiar
manner. At last our programs are starting to do something interesting! It gets
better!

Reading a Game Paddle

Let’s try reading a game paddle and use what we get back to print something
to the screen! Granted, I’m not any more sure than you are what good this might
be, but it’s guaranteed to be a new program in your library!
!ePREAD subroutine in Appendix D indicates that a paddle can be read by

loading the X-Register with the value for the number of the paddle you wish to
read, followed by aJSR $FB1E. When the routine returns, the value of the paddle
will be in the Y-Register. All we have to do then is grab this value, stuf it in the
Accumulator, and then do our JSR COUT.

 1 ********************************

 2 * AL05-PADDLE PROGRAM 1 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 TEMP EQU $06

 8 PREAD EQU $FB1E

 9 HOME EQU $FC58

 10 COUT EQU $FDED

 11 *

 12 START JSR HOME

 13 LDX #$00

 14 LOOP JSR PREAD

 15 STY TEMP

 16 LDA TEMP

 17 JSR COUT

 18 JMP LOOP

 19 * INFINITE LOOP

You should get this in memory:

*300L

0300- 20 58 FC JSR $FC58

5. Loops, Branches, COUT, and Paddles 33

0303- A2 00 LDX #$00

0305- 20 1E FB JSR $FB1E

0308- 84 06 STY $06

030A- A5 06 LDA $06

030C- 20 ED FD JSR $FDED

030F- 4C 05 03 JMP $0305

!is routine when called will quickly ill up the screen and then change the
stream of characters output as you turn paddle 0. Since we have no test for an
end, RESET is the only way to stop this ininite loop.
Depending on your propensity toward being hypnotized, you may lose

touch with the world for indeinite periods of time while running this program.
At the inverse and lashing end, it’s also remarkably good at stimulating
migraine headaches in record time. By carefully controlling the paddle, you can
also observe some interesting bits of ASCII trivia. For example, ater the inverse
and lashing range, you should be able to stop the low by moving into the con-
trol character range. With suicient dexterity, you should be able to lock onto
the persistent beep of the bell (<CTRL>G).
Shortly ater this point, the screen will zip into motion when you hit the line

feed character (<CTRL>J) and, of course, also at<CTRL>M (carriage return). What
fun, eh! When normal character output returns as you pass the halfway point,
you can delight in various patterns of screen illing. Why, you may even wish to
try writing your name by det control of the paddle–child’s play!

Paddle Program Problems

Returning to reality here, it is worth mentioning that some problems in
accuracy can arise from repeatedly reading the paddle so quickly. !e analog cir-
cuits don’t have time to return to 0, and various problems creep in.
Also, we have been a bit negligent in looking out for conlicting use of the

registers by the various routines we are calling. !ere is oten no assurance that
the register you’re using for your own routine won’t be clobbered by the Moni-
tor routine you use. In the case of the paddle and output routines, you’ll note
they did mention how the X-Register, the Y-Register, and the Accumulator were
afected by each of the routines.
For the record, here is a reasonable facsimile of our program in Applesot:

10 HOME

20 T = PDL(0)

30 PRINT CHR$(T);

40 GOTO 20

It is also worth mentioning that our assembly-language version takes eigh-
teen bytes, while the Applesot one takes thirty-eight, not counting space used by
the variable T.

]

34 Assembly Lines

Execution speed may seem to be similar, but this is because of the printing
of the characters to the screen. In most cases, machine execution would be
orders of magnitude faster.

Transfer Commands

In our program, we have to go through a rather inelegant way of transfer-
ring the value from the Y-Register to the Accumulator, using a temporary stor-
age byte. Fortunately, there is an easier way. !ere are four commands for
transferring contents of the X-Register or the Y-Register to and from the Accu-
mulator. !ey are as follows:

TXA: Transfers contents of X-Register to Accumulator.
TYA: Transfers contents of Y-Register to Accumulator.
TAX: Transfers contents of Accumulator to X-Register.
TAY: Transfers contents of Accumulator to Y-Register.

Each of these actions conditions the zero lag upon execution, so it is possible to
test what has been transferred. !ere is no command to transfer directly between
the X-Register and the Y-Register.
!is gives us an even shorter program:

 1 ********************************

 2 * AL05-PADDLE PROGRAM 1A *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 PREAD EQU $FB1E

 8 HOME EQU $FC58

 9 COUT EQU $FDED

 10 *

 11 START JSR HOME

 12 LDX #$00

 13 LOOP JSR PREAD

 14 TYA

 15 JSR COUT

 16 JMP LOOP

 17 * INFINITE LOOP

Now it’s only iteen bytes long!

*300L

0300- 20 58 FC JSR $FC58

0303- A2 00 LDX #$00

0305- 20 1E FB JSR $FB1E

0308- 98 TYA

0309- 20 ED FD JSR $FDED

030C- 4C 05 03 JMP $0305

With twenty commands at your disposal, you now know just over a third of
the total vocabulary of the language. Soon, you’ll be dangerous!

5. Loops, Branches, COUT, and Paddles 35

A Note about BRUN and COUT

If you try toBRUN AL05.LOOP2B, rather than use aCALL 768 or300G, strange
things will happen. !is is becauseDOS interferes with any binary program
which uses input or output routines when such a program isBRUN, rather than
called from the Monitor or BASIC. !is is because DOS is always watchingCOUT
for DOS commands, such asPRINT D$;"CATALOG". When youBRUN a ile you
are essentially in a DOS subroutine, and further use ofCOUT makes DOS more or
less forget where to return to when everything is completed. !ere are two solu-
tions to this problem. !e irst is trivial–don’tBRUN iles that useCOUT. Instead,
BLOAD the ile and then call the routine in the usual way.
If, however, you insist onBRUNing a ile, the other choice is to exit via the

warm-reentryvector $3D0. A jump to this address replaces the inalRTS in any
program you wish toBRUN. For example, replacing line 19 inLOOP PROGRAM 2B
withJMP $3D0 will allow you toBRUN the ile with no problems. Please keep this
in mind when attempting to BRUN any other listings throughout this book.

]

6. I/O Using Monitor and Keyboards
March 1981

Comparisons; Reading the Keyboard

Now we’re getting to where we can actually do some interesting things with
what we know so far. !e basic ideas you should be comfortable with at this
point are fairly simple. !e 6502 microprocessor is our main operational unit.
!ere are three main registers: the Accumulator, the X-Register, and the Y-Reg-
ister. Also present is the Status Register, which holds a number of one-bit lags to
indicate various conditions. So far, the only one we’ve considered is the Z-lag,
for indicating whether a zero or nonzero number is present in one of the other
three registers.

Programs are executed by the 6502 scanning through memory. Addresses in
memory are analogous to line numbers in BASIC. AJSR $FC58 in assembly lan-
guage is just as valid as aGOSUB 1000 in BASIC. In using an assembler, we can
give names to routines at given addresses and make things that much simpler by
saying JSR HOME, when HOME has been deined as $FC58.
In chapter ive, we used testing commands likeBEQ andBNE to create simple

loops. We used the X-Register and the Y-Register as counters and incremented
or decremented by one for each cycle of the loop.
Now let’s expand our repertoire of commands by adding some new ones

and, in the process, add some lexibility to what we can do with loops and tests
in general.

]

6

38 Assembly Lines

In our previous programs we relied on our counters reaching 0 and testing
via the Z-lag to take appropriate action. Suppose, however, that we wish to test
for a value other than 0. !is is done using two new ideas.

Compare Commands and Carry Flag

!e irst is thecompare command, the mnemonic for which isCMP. !is
tells the computer to compare the contents of the Accumulator against some
other value. !e other value can be speciied in a variety of ways. A simple test
against a speciic value would look like this:

CMP #$A0

!is would be read, “Compare Accumulator with an immediateA0.” !is would
tell the 6502 to compare the Accumulator to the speciic value$A0. On the other
hand, we may want to compare the Accumulator with the contents of given
memory location. !is would be indicated by:

CMP $A0

In this case, the 6502 would go to location$A0, see what was there, and compare
that to the Accumulator. It is important to understand that the contents of$A0
may be anything from$00 to$FF, and it is against this value that the Accumula-
tor will be compared. In each case, the 6502 does the comparison by internally
subtracting the speciied value from the Accumulator. !e Accumulator remains
unchanged, however, and the result of the comparison is relected elsewhere.
!e second important idea is that of thecarry lag. !ecarry lag enables us

to determine the result of the comparison. Right next to the Z-lag in the Status
Register is the bit called the carry.

!e carry is used during addition and subtraction by the 6502. In our case,
since the compare operation involves subtraction, the carry lag can be used to
test the result. You do this with two newbranch commands,BCC andBCS.BCC
stands for Branch Carry Clear. If the Accumulator is less than the value com-
pared against,BCC will branch appropriately.BCS stands for Branch Carry Set
and is taken whenever the Accumulator is equal to or greater than the value
used. !is means that we can now not only test for speciic values but also test
for ranges. Try this example.

6. I/O Using Monitor and Keyboards 39

 1 ********************************

 2 * AL06-PADDLE PROGRAM 2A *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PREAD EQU $FB1E

 9 HOME EQU $FC58

 10 COUT EQU $FDED

 11 *

 12 START JSR HOME

 13 LDX #$00

 14 LOOP JSR PREAD

 15 TYA

 16 CMP #$C1 ; CMP TO ASCII FOR "A"

 17 BCC LOOP ; TRY AGAIN IF LESS THAN

 18 CMP #$DB ; CMP TO ASCII FOR "["="Z"+1

 19 BCS LOOP

 20 JSR COUT

 21 JMP LOOP

 22 * INFINITE LOOP

When assembled and listed from memory, it should look like this:

*300L

0300- 20 58 FC JSR $FC58

0303- A2 00 LDX #$00

0305- 20 1E FB JSR $FB1E

0308- 98 TYA

0309- C9 C1 CMP #$C1

030B- 90 F8 BCC $0305

030D- C9 DB CMP #$DB

030F- B0 F4 BCS $0305

0311- 20 ED FD JSR $FDED

0314- 4C 05 03 JMP $0305

Let’s step through the program. Ater theJSR to the clear screen routine, we
load X with 0 in preparation for reading a paddle. !e#$00 will tell the routine
that we wish to readpaddle 0. Ater the read, the answer is returned in the Y-
Register, which we transfer to the Accumulator with aTYA. It is at this point that
we use our test section. If the Accumulator is less than the ASCII value for the
letter A, we avoid the printout by going back toLOOP. I have used the ASCII
value for A plus$80 so that we get normal output on the screen. If we test for
$41 instead, lashing characters will be output to the screen.

]

40 Assembly Lines

!e next comparison is for theASCII value for the character “[”. !is com-
parison assures that theBCS will catch all values higher than the one for Z. !e
irst table in Appendix E is useful in seeing where these numbers come from.1

Only numbers from$C1 to$DA will make it through to be printed out using
COUT ($FDED).
Again the loop is ininite, so RESET is required to exit.
!e X-Register and Y-Register can also be compared in a similar manner by

codes CPX and CPY. Can you rewrite this program to use CPY instead of CMP?
BEQ andBNE are also still usable ater a compare operation. Here’s a sum-

mary:

Command Action

CMP

CPX

CPY

BCC

BEQ

BNE

BCS

Compares Accumulator to something
Compares X-Register
Compares Y-Register
Branch if register < value
Branch if register = value
Branch if register <> value
Branch if register >= value

1ASCII (for American Standard Code for Information Interchange) is a coding scheme
for transmitting text. It is also used in the Apple for encoding text in memory, screen
display, disk iles, printer output, and many other areas. Appendix E gives a chart of all
the characters and their ASCII values. One important note: it is possible to encode all
the alphabetic characters (upper and lowercase), numerics, special symbols, and control
codes using only 128 characters. !is means that ASCII is considered a 7-bit code. !is
means that all the information required to determine which character has been sent is
contained in bits 0−6 of the byte. !us$8A is reasonably equivalent to $0A as far as its
ASCII interpretation is concerned. !e matter of the high bit being set or clear can cre-
ate considerable confusion when it is not made clear what the computer expects.
Generally the Apple operates internally with the high bit set on all characters. !at is

to say, characters retrieved from the keyboard via$C000 and characters stored in the
screen area of memory and on disk all usually have the high bit set (i.e. a value equal to
or greater than$80). !is is also the way Applesot stores data within program lines. To
keep you on your toes, though, Apple printer cards usually do not support having the
high bit set when sending output to a printer, and strings within a program (such asA$
=”CAT”) also have the high bit clear. Also, when usingCOUT (the Monitor text output
routine), the high bit should be set (always load the Accumulator with values greater
than $80) before calling COUT.
I wish I could say it was all easier than that, but then again if it were all that easy,

you wouldn’t have to have bought this book, and then where would I be?

6. I/O Using Monitor and Keyboards 41

Using Monitor Programs for I/O Routines

As you may have noticed, I enjoy using the paddles as input devices. !is is
because they’re an easy way of sending values from$00 to$FF into the system in
a very smooth and natural way. We can get similar data from the keyboard,
though. !ere the advantage is that we can jump from one value to another with
no transition between the two values.
A good part of many formal assembly-language courses deals with system

I/O–that is, getting data in and out via diferent devices. Writing such things as
printer drivers, disk or tape access routines, hardware interface sotware, etc., are
the areas that hardcore programmers spend their youths mastering. Using the
Monitor routines on the Apple simpliies this for us greatly because we don’t
have to do a lot of I/O details. You’ve already shown this by using the paddles
($FB1E) for input and the screen ($FDED) for output without having to know
anything about how the actual operation is carried out. !e keyboard is even
easier.
I mentioned earlier that the address range from$C000 to$FFFF is devoted

to hardware–these memory ranges cannot be altered by running programs. (I’m
ignoring the RAM cards for the time being.) !e range from$D000 to$FFFF is
used by ROM routines that we’ve been calling. !e range from$C000 to$CFFF is
assigned to I/O devices. Typically the second digit (or maybe I should call it a
hexit) from the let gives us the slot number of the device. For instance, if you
have a printer in slot one, listing the code at$C100 will reveal the machine lan-
guage code on ROM of the card that makes it work. At$C600 you’ll probably
ind the code that makes the disk drive in slot six boot.

$C000 to$C0FF is reserved not for slot 0, but for doing special things with
the hardware portions of the Apple itself. An attempt to disassemble from$C000
will not produce a recognizable listing, but it will probably cause your Apple to
act a bit odd. !is range is made up of a number of memory locations actually
wired to physical parts of your Apple. If you type in:

*C030

from the Monitor, in addition to getting some random value displayed, the
speaker should click. If it doesn’t click the irst time, try again. Each time you
access $C030, the speaker will click as it moves in response to your action.
!e keyboard is also tied into a speciic location. By looking at the contents

of$C000, you can tell if a key has been pressed. In BASIC, it’s done with aPEEK
-16384. (See page 6 of the 1981Apple II Reference Manual.) In assembly lan-
guage you would usually load a register with the contents of $C000, such as:

LDA $C000

]

42 Assembly Lines

Reading Data from the Keyboard

Because it is diicult to read the keyboard at exactly the instant someone has
pressed the key, the keyboard is designed to hold the last key pressed until either
another key is pressed or until you clear thestrobe, as it’s called, by accessing an
alternate memory location,$C010. !e strobe is wired to clear any characters of
the keyboard that may be hanging around for any number of various reasons.
When you check for a character, you don’t want to pick one up that someone
inadvertently entered prior to your enquiry (perhaps by nervously drumming
their ingers across the keyboard while waiting for one of Apple’s lightning-like
disk accesses!). It is also always a good idea to clear the keyboard when you’re
done with it, otherwise you may similarly have the key pressed for your input
still hanging around for whatever reads the keyboard next, such as an input
statement in BASIC. !e strobe is cleared byeither a read or a write operation. It
is the mere access to$C010 in any manner that accomplishes the clear. !us a
LDA $C010 would work just as well as aSTA $C010.2 !e last point to be aware of
is that the keyboard is set up to tell you when a key is pressed by the value that is
read at$C000. Now, you might think that the logical way would be to keep a$0
in$C000. Perhaps, but that’s not the way they do it. Instead, they add$80 to
whatever the ASCII value is of the key you pressed. If a value less than$80 is at
$C000, it means a key has not been pressed.
So, to illustrate this (and I admit it got a little involved for my tastes), let’s

look at some sample programs to read data from the keyboard.

 1 ********************************

 2 * AL06-KEYBOARD PROGRAM 1A *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 KYBD EQU $C000

 9 STROBE EQU $C010

 10 COUT EQU $FDED

2Having now just said that read and write operations are essentially equivalent for clear-
ing the strobe, let me cover myself enough to say that there is one slight diference. A
write operation actually accesses the location twice, whereas a read operation only
accesses once. Most of the time this doesn’t make any diference. Since most people
can’t type at 100,000 characters per second, it’s hard to get a character in between the
two clear operations. However, there are now available for the Applekeyboard bufers
which will store a whole string of characters entered by the user, instead of the usual one
normally used for the keyboard. As each character is read in, it is taken out of the bufer
by clearing the strobe. You guessed it! A write operation–such as aSTA $C010 or a
POKE -16368,0–will clear two characters out of the bufer: the one you just readand
the next one in line. !erefore, it is generally good practice to clear the strobe with a
read operation, such as aLDA $C010,X = PEEK -16368, or the like. Like I said, if it were
too easy...

6. I/O Using Monitor and Keyboards 43

 11 HOME EQU $FC58

 12 *

 13 START JSR HOME

 14 LOOP LDA KYBD

 15 CMP #$80

 16 BCC LOOP

 17 JSR COUT

 18 JMP LOOP

 19 * INFINITE LOOP

Once entered, this should disassemble as:

*300L

0300- 20 58 FC JSR $FC58

0303- AD 00 C0 LDA $C000

0306- C9 80 CMP #$80

0308- 90 F9 BCC $0303

030A- 20 ED FD JSR $FDED

030D- 4C 03 03 JMP $0303

Trying this program, you should notice that the program runs on, printing the
same character until you press another key. !at’s because we never cleared that
strobe you thought I was rambling on about. Once the key press gets on the
board, it’s never cleared until it is replaced by a new key.
A better program is:

 1 ********************************

 2 * AL06-KEYBOARD PROGRAM 1B *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 KYBD EQU $C000

 9 STROBE EQU $C010

 10 COUT EQU $FDED

 11 HOME EQU $FC58

 12 *

 13 START JSR HOME

 14 LOOP LDA KYBD

 15 CMP #$80

 16 BCC LOOP

 17 STA STROBE

 18 JSR COUT

 19 JMP LOOP

 20 * INFINITE LOOP

which lists as:

*300L

0300- 20 58 FC JSR $FC58

0303- AD 00 C0 LDA $C000

0306- C9 80 CMP #$80

0308- 90 F9 BCC $0303

]

44 Assembly Lines

030A- 8D 10 C0 STA $C010

030D- 20 ED FD JSR $FDED

0310- 4C 03 03 JMP $0303

!is should work better. Here we clear the keyboard whenever we’ve gotten a
character and printed it. Why not clear it right ater the read on line 15? If we
did that, we’d be lucky to catch a glimpse of the character at$C000 as the user
pressed the key. As it is, we can probably get away with it because of the speed of
the loop. But if we had to go away to another routine for a while, or otherwise
delay getting back to the LDA $C000, we’d probably miss it.
You should also type in enough to wrap around onto the next line, and also

try the arrow keys and<RETURN>. You may think this all performs as expected
(with the exception of the missing cursor), but this all should not be taken for
granted. Without the screen management ofCOUT, you’d have to do quite a bit
more programming to keep things straight. Once more, this is the advantage of
using the routines already present in the Monitor rather than worrying about the
details yourself.
Also, please notice how theSTA was chosen because we didn’t want to lose

the contents of the Accumulator in doing the access. !is information concerns
technique more than actual commands, but is worth mentioning if you’re going
to get along with your Apple successfully.
On page 130 of the 1981Apple II Reference Manual you’ll ind a listing of

the sot-switches and other goodies at$C000 toC0FF. !ese can be very useful in
having your Apple relate to the outside world.
You may wish to experiment with these. Also don’t forget about all the rou-

tines listed in Appendix D. !ese are also fun to experiment with and are pro-
vided to encourage you to write short programs just to test your wings. As I’ve
mentioned before, they’re also useful in saving you the trouble of writing your
own I/O and other more involved routines.

7. Addressing Modes
April 1981

Let’s look at the variousaddressing modes used in assembly-language pro-
gramming. !is concept is rather fundamental in programming and you may
justiiably wonder why we have not covered it sooner. Well, as it happens, we
have; I just didn’t call it by name at the time. In chapter one we laid out the basic
structure of sixty-ive thousand individual memory locations. Since then, we’ve
worked most of our magic by simply manipulating the contents of those loca-
tions.
Flexibility in the ways in which you can address these locations is the key to

even greater power in your own programs.
Consider this chart of the addressing modes available on the 6502:

Addressing Modes Example Hex Bytes

Immediate LDA #$A0 A9 A0

Absolute LDA $7FA AD FA 07

Zero Page LDA $80 A5 80

Implicit/Implied TAY A8

Relative BCC $3360 90 0F
Indexed LDA $200,X BD 00 02
Indirect Indexed LDA ($80),Y B1 80
Indexed Indirect LDA ($80,X) A1 80

In looking at the examples, you should ind all but the last three very familiar.
We have used each of them in previous programs.
Immediate mode was used to load a register with a speciic value. In most

assemblers, this is indicated by the use of the number sign (#) preceding the
value to be loaded. !is contrasts with theabsolute mode in which the value is
retrieved from a given memory location. In this mode, the exact address you’re
interested in is given.Zero page is just a variation on the absolute mode. !e
main diference is the number of bytes used in the coding. It takes three in the
general case; in zero page, only two are required.
Implicit, orimplied, is certainly the most compact instruction in that only

one byte is used. !eTAY command, Transfer Accumulator to the Y-Register,

]

7

46 Assembly Lines

needs no additional address bytes because the source and destination of the data
are implied by the very instruction itself.
Relative addressing is done in relation to where the irst byte of the instruc-

tion itself is found. Although the example interprets it as a branch to a speciic
address, you’ll notice that the actual hex code is merely a plus or minus displace-
ment from the branch point. !is too was covered previously.
With these addressing modes, we can create quite a variety of programs. !e

problem with these modes is that the programs are rather inlexible with data
from the outside world, such as those in input routines, and also when doing
things like accessing tables and large blocks of data.

Indexed Addressing

To access such data, we introduce the new idea ofindexed addressing. In the
pure form, the contents of the X-Register or Y-Register are added to the address
given in the instruction to determine the inal address. In the example given, if
the X-Register holds a$0, the Accumulator will be loaded with the contents of
location$200. If, instead, the X-Register holds a$04, then location$204 will be
accessed. !e usefulness in accessing tables and the like should be obvious.
!e problem that arises here occurs when you want to access a table that

grows or shrinks dynamically as the data within it changes. Another problem
occurs when the table grows larger than 256 bytes. Because the maximum ofset
possible using the X-Register or Y-Register is 255, we would normally be out of
luck.
!e solution to the byte limit is to use theindirect indexed mode. Indirect

indexed is really an elegant method. First, the 6502 goes to the given zero-page
location (the base address must be on page zero). In the example, it would go to
$80 and$81 to get the low-order and high-order bytes of the address stored
there. !en it adds the value of the Y-Register to that address.

7. Addressing Modes 47

Ottimes, these two-byte zero-page address pairs are calledpointers, and you
will hear them referred to in dealing with various programs on the Apple. In
fact, by looking at pages 140 to 141 of theAppleso" II BASIC Programming Ref-
erence Manual, you will observe quite a number of these byte pairs used by
Applesot to keep track of all sorts of continually changing things, like where the
program is, the locations of strings and other variables, and many nity items.
If we wanted to simulate theLDA $200,X command with the indirect mode,

we would irst store a#$00 in$80 and a#$02 in$81, with00 and02 being the
low-order and high-order bytes of the address$200. !en we’d use the com-
mand LDA ($80),Y.
A much better (but unfortunately rarely used) term ispost-indexing, refer-

ring to the fact that the index is added a"er the base address is determined.

Sometimes X and Y Aren’t Interchangeable

You may have noticed that I used the X-Register in one case and the Y-Reg-
ister in the other. It turns out that the X-Register and the Y-Register cannot
always be used interchangeably. !e diference shows up depending on which
addressing mode and what actual command you are using (LDA,STX, or others).
As it happens, indirect indexed addressing can only be done using the Y-Regis-
ter.
To know which addressing modes can be used with a given command, you

can refer to either of two appendices provided at the back of this book. Appendix
B is rather like a dictionary of all the possible 6502 commands and devotes sev-
eral paragraphs to each command. Appendix C, on the other hand, is a more
condensed form of the irst appendix and may make it easier to compare avail-
able modes between a variety of commands.
I highly recommend making frequent use of Appendix B while you are

learning assembly-language programming. It is essentially your toolbox of avail-
able commands for solving a particular programming problem. Whenever you
try to write a particular routine and aren’t sure just how to approach it, skim
through this section of all possible commands and see if any particular com-
mand inspires a possible approach. Granted, this is likely to happen more when
you’re working on rather simple goals such as moving a byte from here to there,
but even the largest programs are made up of just such simple steps as that.
!e last addressing mode,indexed indirect, is probably the most unusual. In

this case, the contents of the X-Register (the Y-Register cannot be used for this
mode) are added to the base address before going to get the contents. In a case
similar to the other one, if the X-Register held$0, anLDA ($80,X) would go to
$80 and$81 for the two-byte address and then load the Accumulator with the
contents of the indicated location. If, instead, the X-Register held a$04, the
memory address would be determined by the contents of $84 and $85!

]

48 Assembly Lines

Usually, then, the X-Register is loaded with multiples of two to access a
series of continuous pointers in page zero. !is is also calledpre-indexing since
the index is added to the zero-page location before determining the base address.

Storing Pure Data

Before we can put all this new information to work, we now need to answer
one more question. How do you store just pure data within a program? All the
commands we’ve covered so far are actual commands for the 6502. !ere is no
data command as such. What are available, though, are the Assembler directives
of your particular assembler. !ese will vary from one assembler to another, so
you’ll have to consult your own manual to see how your assembler operates.
In general, the theory is to deine a block of one or more bytes of data and

then to skip over that block with a branch or jump instruction when executing
your program. Usually, data can be entered either as hex bytes or as the ASCII
characters you wish to use. In the second case, the assembler will automatically
translate the ASCII characters into the proper hex numbers.
Most assemblers have hex command for directly entering the hex bytes of a

data table. !e AppleDOS Tool Kit assembler is one exception. It does not have
theHEX command (nor many others) and you must use theDFB (“deine byte”)
command. Using it, line 20 of the following listing should read:20 DATA DFB $C1,
$D0,$D0,$CC,$C5. A sample program using the indexed address mode is given
here:

 1 ********************************

 2 * AL07-SAMPLE DATA PROGRAM *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 COUT EQU $FDED

 9 *

 10 START LDX #$00

7. Addressing Modes 49

 11 LOOP LDA DATA,X

 12 JSR COUT

 13 INX

 14 CPX #$05

 15 BCC LOOP

 16 LDA #$8D

 17 JSR COUT

 18 EXIT RTS

 19 *

 20 DATA HEX C1D0D0CCC5

 21 *

 22 * DATA = 'APPLE'

When looked at in memory, it should appear like this:

*300L

0300- A2 00 LDX #$00

0302- BD 13 03 LDA $0313,X

0305- 20 ED FD JSR $FDED

0308- E8 INX

0309- E0 05 CPX #$05

030B- 90 F5 BCC $0302

030D- A9 8D LDA #$8D

030F- 20 ED FD JSR $FDED

0312- 60 RTS

0313- C1 D0 CMP ($D0,X)

0315- D0 CC BNE $02E3

0317- C5 00 CMP $00

!is program is an improved version of the one we did earlier to print the word
APPLE on the screen. It uses the indexed address mode to scan through the data
table to print the wordAPPLE. Notice that data tables may be wildly interpreted
to the screen when disassembling. !is is because the Apple has no way of know-
ing what part of the listing is data and tries to list data as a usual assembly-lan-
guage program.
Basically, the idea of the program is to loop through, getting successive

items from the data table using the ofset of the X-Register. When the X-Register
reaches05 (the number of items in the table), we are inished printing. Ater
printing, we terminate with a carriage return. Remember that in assembly lan-
guage we must usually do everything ourselves. !is means we cannot assume an
automatic carriage return at the end of a printed string.
Note that the hex values in the data table are the ASCII values for each letter

plus$80. !is sets the high bit of each number, which is what the Apple expects
in order to have the letter printed out properly when using COUT.
!e indirect addressing modes are used when you want to access memory in

a very compact and eicient way. Let’s consider the problem of clearing the
screen, for instance. We want to put a space character in every memory location
in the screen block ($400−$7FF). Here is one way of doing this:

]

50 Assembly Lines

 1 ********************************

 2 * AL07-SCREEN CLEAR PROGRAM 1A *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 *

 10 ENTRY LDA #$04

 11 STA PTR+1

 12 LDY #$00

 13 STY PTR

 14 * SETS PTR (6,7) TO $400

 15 START LDA #$A0

 16 LOOP STA (PTR),Y

 17 INY

 18 BNE LOOP

 19 NXT INC PTR+1

 20 LDA PTR+1

 21 CMP #$08

 22 BCC START

 23 EXIT RTS

Listed from the Monitor, it should appear like this:

*300L

0300- A9 04 LDA #$04

0302- 85 07 STA $07

0304- A0 00 LDY #$00

0306- 84 06 STY $06

0308- A9 A0 LDA #$A0

030A- 91 06 STA ($06),Y

030C- C8 INY

030D- D0 FB BNE $030A

030F- E6 07 INC $07

0311- A5 07 LDA $07

0313- C9 08 CMP #$08

0315- 90 F1 BCC $0308

0317- 60 RTS

We start of by initializing locations$06 and$07 to hold the base address of
$400, the irst byte of the screen memory area. !en we enter a loop that runs the
Y-Register from$00 to$FF. Since this is added to the base address in$06,$07,
we then store an$A0 (a space) in every location from$400 to$4FF. When Y is
incremented from $FF, it goes back to$00, and this is detected by theBNE on line
18. At$00, it falls through and location$07 is incremented from$04 to$05, giv-
ing a new base address of$500. !is whole process is repeated until location$07
reaches a value of$08 (corresponding to a base address of$800), at which point
we return from the routine.

7. Addressing Modes 51

By changing the value of the#$A0 to some other character, we can clear the
screen to any character we wish. In fact, you can get the value from the keyboard
as we’ve done in earlier programs.

 1 ********************************

 2 * AL07-SCREEN CLEAR PROGRAM 1B *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 CHAR EQU $08

 10 KYBD EQU $C000

 11 STROBE EQU $C010

 12 *

 13 ENTRY LDA #$04

 14 STA PTR+1

 15 LDY #$00

 16 STY PTR

 17 * SETS PTR (6,7) TO $400

 18 READ LDA KYBD

 19 CMP #$80 ; KEYPRESS?

 20 BCC READ ; NO, TRY AGAIN

 21 STA STROBE ; CLEAR KYBD STROBE

 22 STA CHAR

 23 CLEAR LDY #$00

 24 LDA CHAR

 25 LOOP STA (PTR),Y

 26 INY

 27 BNE LOOP

 28 NXT INC PTR+1

 29 LDA PTR+1

 30 CMP #$08

 31 BCC CLEAR

 32 AGAIN JMP ENTRY

It should appear like this in listed form:

*300L

0300- A9 04 LDA #$04

0302- 85 07 STA $07

0304- A0 00 LDY #$00

0306- 84 06 STY $06

0308- AD 00 C0 LDA $C000

030B- C9 80 CMP #$80

030D- 90 F9 BCC $0308

030F- 8D 10 C0 STA $C010

0312- 85 08 STA $08

0314- A0 00 LDY #$00

0316- A5 08 LDA $08

0318- 91 06 STA ($06),Y

031A- C8 INY

031B- D0 FB BNE $0318

031D- E6 07 INC $07

]

52 Assembly Lines

031F- A5 07 LDA $07

0321- C9 08 CMP #$08

0323- 90 EF BCC $0314

0325- 4C 00 03 JMP $0300

Enter this program and run from BASIC with aCALL 768. Each press will clear
the screen to a diferent character. !e screen should clear to the same character
as the key you press, including the<SPACE> bar and special characters. In this
program especially, you can see how fast machine language is. To clear the
screen requires loading more than one thousand diferent locations with the
given value. In Applesot, this process would be quite slow by comparison. In
assembly language, you’ll ind that the screen will clear to diferent characters
just as fast as you can type them.
An interesting variation on this is to enter the graphics mode by typing in

GR before calling the routine. !en the screen will clear to various colors and dif-
ferent line patterns.
In this variation on program1A we’ve used the principles from chapter six

where we read the keyboard until we got a value greater than$80, meaning a key
has been pressed. !is value is held temporarily in the variableCHAR so that it
can be retrieved each time ater incrementing the PTR in the NXT section.
See what variations you can make on this, or try the hi-res screen ($2000

through $3FFF).

8. Sound Generation
May 1981

Soundgeneration in assembly language is such a large topic in itself that an
entire book could be done on that subject alone. However, simple routines are so
easy that they’re worth at least a brief examination here. !ese routines will not
only allow you to put the commands you’ve learned to further use, but are also
just plain fun.
!e irst element of a sound-generating routine is the speaker itself. Recall

that the speaker is part of the memory range from $C000 to $C0FF that is devoted
entirely to hardware items of theApple II. In earlier programs, we looked at the
keyboard by examining memory location$C000. !e speaker can be similarly
accessed by looking at location$C030. !e exception here is that the value at
$C000 (the keyboard) varied according to what key was pressed, whereas with
$C030 (the speaker) there is no logical value returned.
Every time location$C030 is accessed, the speaker will click once. !is is

easy to demonstrate. Simply enter the Monitor with aCALL -151. EnterC030 and
press<RETURN>. You’ll have to listen carefully, and you may have to try it several
times. Each time, the speaker will click once. You can imagine that, if we could
repeatedly access the speaker at a fast enough rate, the series of clicks would
become a steady tone. In BASIC this can be done, although poorly, by a simple
loop such as this:

10 X = PEEK(-16336): GOTO 10

!e pitch of the tone generated depends on the rate at which the speaker is
accessed. Because Integer BASIC is faster in its execution than Applesot, the
tone generated will be noticeably higher in pitch in the Integer version.
In assembly language, the program would look like this:

0300- AD 30 C0 LDA $C030

0303- 4C 00 03 JMP $0300

In this case I’m showing it as the Apple would directly disassemble it, as
opposed to the usual assembly-language source listing. !e program is so short
that the easiest way to enter it is by typing in the hex code directly. To do this,
enter the Monitor (CALL -151) and type:

300: AD 30 C0 4C 00 03

]

8

54 Assembly Lines

!en run the program by typing 300G.
Disappointed? !e program is working. !e problem is that the routine is

actually too fast for the speaker to respond. What’s lacking here is some way of
controlling the rate of execution of the loop. !is is usually accomplished by
putting a delay of some kind in the loop. We should also be able to specify the
length of the delay, either before the program is run or, even better, during the
execution of the program.

Delays

We can do this in any of three ways: (1) physically alter the length of the
program to increase the execution time of each pass through the loop; (2) store a
value somewhere in memory before running the program and then use that
value in a delay loop; or (3) get the delay value on a continual basis from the out-
side world, such as from the keyboard or paddles.
For the irst method, you can use a new and admittedly complex command.

!e mnemonic for this instruction isNOP and stands for No OPeration. When-
ever the 6502 microprocessor encounters this, it just continues to the next
instruction without doing anything. !is code is used for just what we need here
–a time delay.
It is more oten used, though, as either a temporary iller when assembling a

block of code (such as for later data tables) or to cancel out existing operations in
a previously written section of code. Quite oten, this command ($EA, or 234 in
decimal) is used in this manner to patch parts of the Apple DOS to cancel out
various features that you no longer want to have active (such as theNOT DIRECT
command error that prevents you from doing aGOTO directly to a line that has a
DOS command on it).
In our sound routine, anNOP will take a certain amount of time even to pass

over and will thus reduce the number of cycles per second of the tone frequency.
!e main problem in writing the new version will be determining the number of
NOPs that will have to be inserted.
!e easiest way to get a large block of memory cleared to a speciic value is

to use the move routine already present in the Monitor. To clear the block, load
the irst memory location in the range to be cleared with the desired value. !en
type in themove command, moving everything from the beginning of the range
to the end up one byte. For instance, to clear the range from $300 to $3A0 and ill
it with $EAs, you would, from the Monitor of course, type in:

300: EA

301<300.3A0M

Note that we are clearing everything from$300 to$3A0 to contain the value
$EA.

8. Sound Generation 55

Now type in:

300: AD 30 C0

3A0: 4C 00 03

!en type in300L, followed withL for each additional list section, to view your
new program.

*300L

0300- AD 30 C0 LDA $C030

0303- EA NOP

0304- EA NOP

0305- EA NOP

0306- EA NOP

0307- EA NOP

0308- EA NOP

0309- EA NOP

* * *

* * *

* * *

0395- EA NOP

0396- EA NOP

0397- EA NOP

0398- EA NOP

0399- EA NOP

039A- EA NOP

039B- EA NOP

039C- EA NOP

039D- EA NOP

039E- EA NOP

039F- EA NOP

03A0- 4C 00 03 JMP $0300

Now run this with the usual 300G.
!e tone produced should be a very nice, pure tone. !e pitch of the tone

can be controlled by moving theJMP $300 to points of varying distance from the
LDA $C030. Granted, this is a very clumsy way of controlling the pitch and is
rather permanent once created, but it does illustrate the basic principle.
For a diferent tone, hit RESET to stop the program, then type in:

350: 4C 00 03

When this is run (300G), the tone will be noticeably higher. !e delay time is
about half of what it was, and thus the frequency is twice the original value. Try
typing in the three bytes in separate runs at$320 and$310. At$310 you may not
be able to hear the tone, because the pitch is now essentially in the ultrasonic
range.
I think you’ll also notice that all these tones are of a very pure nature and, in

general, much nicer than those generated by a BASIC program.

]

56 Assembly Lines

Delay Value in Memory

Usually the way tone programs work is to pass apitch value from BASIC by
putting the value in a memory location. !is program is an example of that tech-
nique.

 1 ********************************

 2 * AL08-SOUND ROUTINE 2 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 PITCH EQU $06

 10 SPKR EQU $C030

 11 *

 12 ENTRY LDY PITCH

 13 LDA SPKR

 14 LOOP DEY

 15 BNE LOOP

 16 JMP ENTRY

 17 * INFINITE LOOP

When assembled, it should look like this:

*300L

0300- A4 06 LDY $06

0302- AD 30 C0 LDA $C030

0305- 88 DEY

0306- D0 FD BNE $0305

0308- 4C 00 03 JMP $0300

In this program, we get a value of$00 to$FF from location$06 (labeled
pitch) and put it in the Y-Register. !e speaker is then clicked. At that point, we
enter a delay loop that cyclesn times wheren is the number value for pitch held
in location $06.
To run this program, irst load location$06 with values of your choice (0 to

255 decimal,$00 to$FF hex) and then run with300G. !is is more compact and
controllable than the irst example, but it still sufers from being an ininite loop.
What we need to do is specify aduration for the tone as well. Again you have the
option of either making the value part of the program or passing it in the same
way as we’re currently doing the value for pitch. Here’s a listing for the new pro-
gram:

 1 ********************************

 2 * AL08-SOUND ROUTINE 3 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

8. Sound Generation 57

 7 ORG $300

 8 *

 9 PITCH EQU $06

 10 DURATION EQU $07

 11 SPKR EQU $C030

 12 *

 13 ENTRY LDX DURATION

 14 LOOP LDY PITCH

 15 LDA SPKR

 16 DELAY DEY

 17 BNE DELAY

 18 DRTN DEX

 19 BNE LOOP

 20 EXIT RTS

Disassembled, it will appear like this:

*300L

0300- A6 07 LDX $07

0302- A4 06 LDY $06

0304- AD 30 C0 LDA $C030

0307- 88 DEY

0308- D0 FD BNE $0307

030A- CA DEX

030B- D0 F5 BNE $0302

030D- 60 RTS

!is routine is used by loading$06 with a value for the pitch you desire,$07
with a value for how long you want the tone to last, and then running the rou-
tine with the 300G.
Examining this listing, you’ll see that it is basically an extension of routine 2.

In this revised version, instead of always jumping back to theLDY of the play
cycle, we decrement a counter (the X-Register). !is counts the number of times
we’re allowed to pass through the loop, and thus the inal length of the play.
!is can be used by BASIC programs, as illustrated by this sample Applesot

listing:

 10 PRINT CHR$ (4);"BLOAD AL08.SOUND3,A$300"

 20 INPUT "PITCH, DURATION?";P,D

 30 POKE 6,P: POKE 7,D

 40 CALL 768

 50 PRINT

 60 GOTO 20

!is makes it very easy to experiment with diferent values for both pitch
and duration. !e main bug in this routine is that even for a ixed value for dura-
tion, the length of the note will vary depending on the pitch speciied. !is is
because less time spent in the delay loop means less overall execution time for
the routine as a whole.

]

58 Assembly Lines

Delay from the Keyboard or Paddles

!e next variation is to get the pitch on a continual basis from an outside
source. In this case, the source will be the keyboard. Type in and assemble this
source listing:

 1 ********************************

 2 * AL08-SOUND ROUTINE 4 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 KYBD EQU $C000

 10 STROBE EQU $C010

 11 SPKR EQU $C030

 12 *

 13 ENTRY LDA KYBD

 14 STA STROBE

 15 CMP #$80

 16 BEQ EXIT

 17 TAY

 18 LOOP LDA SPKR

 19 DELAY DEY

 20 BNE DELAY

 21 JMP ENTRY

 22 EXIT RTS

In memory, it should look like this:

*300L

0300- AD 00 C0 LDA $C000

0303- 8D 10 C0 STA $C010

0306- C9 80 CMP #$80

0308- F0 0A BEQ $0314

030A- A8 TAY

030B- AD 30 C0 LDA $C030

030E- 88 DEY

030F- D0 FD BNE $030E

0311- 4C 00 03 JMP $0300

0314- 60 RTS

Running this will give you a really easy way of passing tone values to the
routine. Characters with low ASCII values will produce higher tones than ones
with higher values. !is means that the control characters will produce unusu-
ally high tones. To exit press <CTRL><SHIFT>P (<CTRL>@).
Let’s review how the routine functions.
At the entry point ($300), the very irst thing done is to get a value from the

keyboard. !e strobe is then cleared, and an immediate check done for#$80.
Remember that$80 is added to the ASCII value for each key pressed when read
at $C000. A value less than$80 means no key has been pressed. Checking specii-

8. Sound Generation 59

cally for $80, the computer looks to see if a <CTRL>@ has been pressed. !is is just
a nice touch to give us a way of exiting the program. Ater the check, we transfer
the Accumulator value (equivalent to pitch in the earlier programs) to the Y-
Register and inish with the same routine used in Sound Routine 2.
Of course, I have to give you at least one program using thepaddles. !is

one gives us an opportunity to use the external routines in the Monitor, too.
Don’t forget that using the routines already present in the Monitor is the real
secret to easy assembly-language programming. It saves you the trouble of hav-
ing to write your own I/O and other sophisticated routines and lets you concen-
trate on those aspects unique to your program.
Now for the program:

 1 ********************************

 2 * AL08-SOUND ROUTINE 5 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 PDL EQU $FB1E

 10 SPKR EQU $C030

 11 *

 12 ENTRY LDX #$00

 13 JSR PDL

 14 LDA SPKR

 15 LDX #$01

 16 JSR PDL

 17 LDA SPKR

 18 JMP ENTRY

 19 * INFINITE LOOP

!e Monitor will list this as:

*300L

0300- A2 00 LDX #$00

0302- 20 1E FB JSR $FB1E

0305- AD 30 C0 LDA $C030

0308- A2 01 LDX #$01

030A- 20 1E FB JSR $FB1E

030D- AD 30 C0 LDA $C030

0310- 4C 00 03 JMP $0300

Running this should produce some really interesting results. !e theory of
this routine is elegantly simple. It turns out that just reading apaddle takes a cer-
tain amount of time, suicient to create our needed delay. !e greater the paddle
reading, the longer the delay to read it.
What happens in this routine is that we actually have two distinct delays

created, one by each paddle. Remember that to read a paddle, you irst have to
load the X-Register with the number of the paddle you wish to read and then do

]

60 Assembly Lines

the JSR to the paddle read routine. !e value is returned in the Y-Register, but in
this case we don’t need to know what the value was.
!e combination of the two diferent periods of delay creates the efect of

two tones at once and a number of other very unique sounds.
!is has been only the most basic discussion of sound generation in assem-

bly language, but I think you’ll ind that it illustrates what can be done with only
a few commands, and that machine language ofers many advantages in terms of
memory use and execution speed.

9. !e Stack
June 1981

One of the more obscure parts of the operation of the Apple is related to
something called thestack. !is is a part of memory reserved for holding return
addresses forGOSUBs andFOR-NEXT loops, and a few other operations in direct
machine code.
If you want to impress your friends with your knowledge of assembly lan-

guage, just throw this term around in a conident manner and they’ll igure you
must be an expert!
!e stack can be thought of like those spring-loaded plate holders they have

in restaurants. Plates are loaded onto the top of a cylinder with a spring-loaded
platform in it. As more plates are added, the rest get pushed down. !e plates
must always be removed in the opposite order from that in which they are put
in. !e catch phrase for this isLIFO, for Last-In, First-Out. !e irst location
loaded in the 6502 stack is$1FF. Rather than pushing everything down toward
$100 each time a new value is put on the stack, the 6502 has aStack Pointer that
is adjusted as new data is added. Successive values are added in descending
order, with the Stack Pointer being reset each time to indicate the position of the
next available location. !us the table is created in reverse order, building down-
ward.
!e technical details of its operation are not required to make good use of

the stack. One of the most convenient things the stack can be used for is to hold
values temporarily while you’re doing something else. Normally in a program,
we’d have to assign a zero-page location to hold a value. For instance, consider
this program:

 1 ********************************

 2 * AL09-BYTE DISPLAY PROGRAM 1 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 CHR EQU $06

 9 PRBYTE EQU $FDDA

 10 COUT EQU $FDED

 11 PREAD EQU $FB1E

 12 HOME EQU $FC58

 13 *

]

9

62 Assembly Lines

 14 START JSR HOME

 15 GETCHR LDX #$00

 16 JSR PREAD

 17 STY CHR

 18 TYA

 19 JSR PRBYTE

 20 LDA #$A0 ; SPACE

 21 JSR COUT

 22 LDA CHR

 23 JSR COUT

 24 LDA #$8D ; RETURN

 25 JSR COUT

 26 JMP GETCHR

!is will be listed by the Monitor as:

*300L

0300- 20 58 FC JSR $FC58

0303- A2 00 LDX #$00

0305- 20 1E FB JSR $FB1E

0308- 84 06 STY $06

030A- 98 TYA

030B- 20 DA FD JSR $FDDA

030E- A9 A0 LDA #$A0

0310- 20 ED FD JSR $FDED

0313- A5 06 LDA $06

0315- 20 ED FD JSR $FDED

0318- A9 8D LDA #$8D

031A- 20 ED FD JSR $FDED

031D- 4C 03 03 JMP $0303

!is program gets a value from$00 to$FF frompaddle 0, and stores it in
location$06. !is is needed because theJSR to$FDDA (a handy routine that
prints the hex number in the Accumulator) scrambles the Accumulator and Y-
Register. We want to keep the value at hand because the ASCII character corre-
sponding to it is then printed out right ater the number usingCOUT. !e cycle
then repeats until you press RESET.
Location$06 is used for only a moment each pass to store the value tempo-

rarily. In addition, it commits that zero-page location to use and thus limits our
choices when we need other places to store something. A better system is to
make use of thestack. !e commands to do this arePHA andPLA.PHA stands for
“PusH Accumulator onto stack.” When this is used in line 17 below, the value
currently in the Accumulator is put onto the stack. !e Accumulator itself goes
unaltered, and none of the status lags, such as the carry or zero lags, are condi-
tioned. !e value is simply copied and stored for us.
Later on, when we want to retrieve the value, thePLA (“PulL Accumulator

from stack”) on line 21 pulls the value back of the stack into the Accumulator. A
PLA command does condition the zero lag, and also the sign bit, which has not
been covered yet.

9. !e Stack 63

Important: For eachPHA there must be aPLA executed before encountering
the next RTS in a program.
Here’s the revised program:

 1 ********************************

 2 * AL09-BYTE DISPLAY PROGRAM 2 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PRBYTE EQU $FDDA

 9 COUT EQU $FDED

 10 PREAD EQU $FB1E

 11 HOME EQU $FC58

 12 *

 13 START JSR HOME

 14 GETCHR LDX #$00

 15 JSR PREAD

 16 TYA

 17 PHA

 18 JSR PRBYTE

 19 LDA #$A0 ; SPACE

 20 JSR COUT

 21 PLA

 22 JSR COUT

 23 LDA #$8D ; RETURN

 24 JSR COUT

 25 JMP GETCHR

!is will list like so:

0300- 20 58 FC JSR $FC58

0303- A2 00 LDX #$00

0305- 20 1E FB JSR $FB1E

0308- 98 TYA

0309- 48 PHA

030A- 20 DA FD JSR $FDDA

030D- A9 A0 LDA #$A0

030F- 20 ED FD JSR $FDED

0312- 68 PLA

0313- 20 ED FD JSR $FDED

0316- A9 8D LDA #$8D

0318- 20 ED FD JSR $FDED

031B- 4C 03 03 JMP $0303

!e stack is also used automatically by the 6502 for storing the return
address for eachJSR as it’s encountered. Each time you do aPHA, this address is
buried one level deeper. You must have done an equivalent number ofPLAs at
some point in the routine before reaching the nextRTS to have things work
properly.
Also remember, if you want to store more than one value, you must retrieve

the values in the opposite order in which they were stored. Once a value is

]

64 Assembly Lines

removed from the stack with thePLA, it is essentially gone forever from the stack
unless you put it back directly.

Stack Limit

!ere is a limit to how much you can put in the stack. !e limit of sixteen
nestedGOSUBs andFOR-NEXT loops in BASIC is related to this. Technically you
can put 256 one-byte values or 128 RTS addresses on the stack, but the Apple also
uses it for its own operations, and many times you have BASIC going, too.
In general, though, the stack rarely ills up unless you’re getting extreme in

its use, and at that point the code probably will be so tangled in nested subrou-
tines that you may want to consider a rewrite anyway!
Try using the stack in some of your own programs; I think you’ll ind it

quite useful.

10. Addition and Subtraction
July 1981

Now let’s look at the simple math operations ofaddition andsubtraction in
assembly language. To an extent, we’ve already done some of this. !e increment
and decrement commands (INC/DEC, and so on) add and subtract for us. Unfor-
tunately, they only do so by one each time (VALUE+1 or VALUE-1).
If you’re really ambitious you could, with the commands you have already,

add or subtract any number by using a loop of repetitive operations, but this
would be a bit tedious, not to mention slow. Fortunately a better method exists.
But irst, a quick review of some binary math facts.
In chapter four we discussed the idea behindbinary numbers and why

they’re so important in computers. I would like to further elaborate on the topic
now and show how the idea of binary numbers applies to basic arithmetic opera-
tions in assembly-language programming.

Binary Numbers

By now you’re certainly comfortable with the idea of a byte being an indi-
vidual memory location which can hold a value from$00 to$FF (0 to 255). !is
number comes about as a direct result of the way the computer is constructed
and the way in which you count in base two.
Each byte can be thought of as being physically made up of eight individual

switches that can be in either an on or of position. We can count by assigning
each possible combination of ons and ofs a unique number value.
In the following diagrams, if a switch is of, it will be represented by a 0 in its

particular position. If it’s on, a 1 will be shown. When all the switches are of,
we’ll call that 0.
In base two, each of the eight positions in the byte is called abit, and the

positions are numbered from right to let: [7 6 5 4 3 2 1 0].
!e pattern for counting is similar to normal decimal orhex notation. !e

value is increased by adding one each time to the digit on the far right,carrying
as necessary. In base ten you’d have to carry every tenth count, and in hex every
sixteenth. In base two, the carry will be done every other time!
So...the irst few numbers look like this:

]

10

66 Assembly Lines

Hex Decimal Binary
$00 0 0000 0000
$01 1 0000 0001
$02 2 0000 0010
$03 3 0000 0011
$04 4 0000 0100

Notice that in going from the value 1 to the value 2, we add a 1 to the 1
already at the irst position (bit 0). !is generates the carry to increment the sec-
ond position (bit 1). Here is the end of the series:

$FD 253 1111 1101
$FE 254 1111 1110
$FF 255 1111 1111

Now the most important part. Observe what happens when the upper limit
of the counter is inally reached. At$FF (255), all positions arefull. When the
next increment is done, we should carry a one to the next position to the let;
unfortunately, that next position doesn’t exist!

Addition with ADC

!is is where thecarry bit of the Status Register is used again. Before, it was
used in the compare operations (CMP, for instance), but, as it happens, it is also
conditioned by the next command,ADC. !is stands for ADd with Carry. When
the $FF is incremented using an ADC command, things will look like this:

Carry
$100 256 0000 0000 1

!e byte has returned to a value of 0 and the carry bit is set to a one.
We discussed the wrap-around to 0 earlier, with the increment/decrement

commands, but we didn’t mention the carry. !at’s because theINC/DEC com-
mands don’t afect the carry lag.
However, theADC command does condition the carry lag. !e carry will be

set whenever the result of the addition is greater than$FF.1 WithADC, you can
make your counters increment by values other than one–rather like theFOR I =
1 TO 10 STEP 5 statement in BASIC. ButADC is used more oten for general math
operations, such as calculating new addresses or screen positions, among a wide
variety of other applications.
WheneverADC is used, the value indicated is added to the contents of the

Accumulator. !e value can be stated either directly by use of an immediate
value or with an indirect value.

1[CT] Similarly, the carry will be cleared when the result is $FF or less.

10. Addition and Subtraction 67

Important Note: Although theADC conditions the carry ater it is executed, it
cannot be assumed that the carry is conveniently standing in a clear condition
when the addition routine is begun.
For example, consider this simple program:

LDA #$05

ADC #$00

STA RESULT

As it stands, there are two possible results. If the carry happened to be clear
when this was executed, the value in result would be$05. If, however, the carry
had been set (perhaps as the result of some other operation), then the carry bit
would be included and the result would be $06.
!e point of all this is that the carry lag must be cleared before the irstADC

operation. !e example above should have been written as:

CLC (CLear Carry)

LDA #$05

ADC #$00

STA RESULT

In this case, result will always end up holding the value$05. Here are some
sample programs for using the ADC. Note the use of the CLC before each ADC.

 1 ********************************

 2 * AL10-ADC SAMPLE PROGRAM 1 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 N2 EQU $08

 10 RSLT EQU $0A

 11 *

0300: A5 06 12 START LDA N1

0302: 18 13 CLC

0303: 65 08 14 ADC N2

0305: 85 0A 15 STA RSLT

0307: 60 16 END RTS

 1 ********************************

 2 * AL10-ADC SAMPLE PROGRAM 2 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 RSLT EQU $0A

 10 *

 11 *

]

68 Assembly Lines

0300: A5 06 12 START LDA N1

0302: 18 13 CLC

0303: 69 80 14 ADC #$80

0305: 85 0A 15 STA RSLT

0307: 60 16 END RTS

 1 ********************************

 2 * AL10-ADC SAMPLE PROGRAM 3 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 INDX EQU $08

 10 RSLT EQU $0A

 11 TBL EQU $300

 12 *

0300: A5 06 13 START LDA N1

0302: A6 08 14 LDX INDX

0304: 18 15 CLC

0305: 7D 00 03 16 ADC TBL,X

0308: 85 0A 17 STA RSLT

030A: 60 18 END RTS

 1 ********************************

 2 * AL10-ADC SAMPLE PROGRAM 4 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 INDX EQU $08

 10 RSLT EQU $0A

 11 PTR EQU $1E

 12 *

0300: A9 00 13 START LDA #$00

0302: 85 1E 14 STA PTR

0304: A9 03 15 LDA #$03

0306: 85 1F 16 STA PTR+1

0308: A5 06 17 LDA N1

030A: A4 08 18 LDY INDX

030C: 18 19 CLC

030D: 71 1E 20 ADC (PTR),Y

030F: 85 0A 21 STA RSLT

0311: 60 22 END RTS

In the irst program, the value inN1 is added to the contents ofN2. In the
second,N1 is added to the immediate value$80. Note theCLC before theADC to
ensure an accurate result. !is result is then returned in location$0A. !is rou-
tine could be used as a subroutine for another assembly-language program, or it
could be called from BASIC ater passing the values to locations $06 and $08.

10. Addition and Subtraction 69

!e latter two programs are more elaborate examples where the indirect
modes are used to ind the value from a table starting at$300. In program 3, an
index value is passed to location$08. !at is used as an ofset via the X-Register.
In program 4, the low-order and high-order bytes for the address$300 are irst
put in a pair of pointer bytes ($1E, $1F) and the ofset is put in the Y-Register.
In all of these programs, however, we are limited to adding two single-byte

values and further restricted to a one-byte result. Not very practical in the real
world.
!e solution is to use the carry lag to create a two-byteaddition routine.

Here’s an example:

 1 ********************************

 2 * AL10-ADC SAMPLE PROGRAM 5A *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 N2 EQU $08

 10 RSLT EQU $0A

 11 *

0300: 18 12 START CLC

0301: A5 06 13 LDA N1

0303: 65 08 14 ADC N2

0305: 85 0A 15 STA RSLT

0307: A5 07 16 LDA N1+1

0309: 65 09 17 ADC N2+1

030B: 85 0B 18 STA RSLT+1

030D: 60 19 END RTS

Notice thatN1,N2, andRSLT are all two-byte numbers, with the second byte
of each pair being used for the high-order byte. (If you’re unsure of the idea of
low- and high-order bytes, refer to chapter two, footnote one). !is allows us to
use values and results from$00 to$FFFF (0 to 65535). !is is suicient for any
address in the Apple II, although by using three or more bytes, we could accom-
modate numbers much larger than $FFFF.
A few words of explanation about this program. First, theCLC has been

moved to the beginning of the routine. Although it need only precede theADC
command, it has no efect on theLDA, so it is put at the beginning of the routine
for aesthetic purposes. Once the two low-order bytes ofN1 andN2 are added and
the partial result stored, the high-order bytes are added. If the result of this irst
addition is greater than 255, the carry will be set and an extra unit added in the
second addition. Note that the carry remains unafected during theLDA N1+1
operation.

]

70 Assembly Lines

!e Monitor listing is given for this one so that you can call it from this
BASIC program:2

 0 REM AL10-ADC 5A ADDITION ROUTINE

 10 HOME

 15 FOR I = 0 TO 13: READ OP: POKE 768 + I,OP: NEXT I

 20 INPUT "N1,N2?";N1,N2

 30 N1 = ABS(N1):N2 = ABS(N2)

 40 POKE 6, N1 - INT (N1 / 256) * 256: POKE 7, INT (N1 / 256)

 50 POKE 8, N2 - INT (N2 / 256) * 256: POKE 9, INT (N2 / 256)

 60 CALL 768

 70 PRINT: PRINT "RESULT IS "; PEEK (10) + 256 * PEEK (11)

 80 PRINT: GOTO 20

 90 DATA 24,165,6,101,8,133,10,165,7,101,9,133,11,96

!e ABS() statements on line 30 eliminate values less than 0. Although there
are conventions for handling negative numbers, this routine is not that sophisti-
cated.
Many times the number being added to a base address is known always to

be$FF or less, so only one byte is needed forN2. A two/one addition routine
looks like this:

 1 ********************************

 2 * AL10-ADC SAMPLE PROGRAM 5B *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 N2 EQU $08

 10 RSLT EQU $0A

 11 *

0300: 18 12 START CLC

0301: A5 06 13 LDA N1

0303: 65 08 14 ADC N2

0305: 85 0A 15 STA RSLT

0307: 90 06 16 BCC END

0309: A5 07 17 LDA N1+1

030B: 69 00 18 ADC #$00

030D: 85 0B 19 STA RSLT+1

030F: 60 20 END RTS

For speed, if a carry isn’t generated on line 14, the program skips directly to
the end. If, however, the carry is set, the value inN1+1 gets incremented by one
even though theADC says an immediate$00. !e$00 acts as a dummy value to
allow the carry to do its job. If speed is not a concern, the BCC can be let out with
no ill efect.

2[CT] !is was changed to include the machine code within the DATA statement.

10. Addition and Subtraction 71

!e following program shows an alternate method using theINC command.
In this case, the BCC is required for proper operation.

 1 ********************************

 2 * AL10-ADC SAMPLE PROGRAM 5C *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 N2 EQU $08

 10 RSLT EQU $0A

 11 *

0300: 18 12 START CLC

0301: A5 06 13 LDA N1

0303: 65 08 14 ADC N2

0305: 85 0A 15 STA RSLT

0307: 90 06 16 BCC END

0309: A5 07 17 LDA N1+1

030B: 85 0B 18 STA RSLT+1

030D: E6 0B 19 INC RSLT+1

030F: 60 20 END RTS

!e reason for bringing up listing 5C is that the most common reason for
adding one to a two-byte number is to increment an address pointer by one. In
that case, the result is usually put right back in the original location rather than
in a separateRESULT. A routine for this is more compact and would look like
this:

 1 ********************************

 2 * AL10-ADC SAMPLE PROGRAM 5D *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 *

0300: 18 10 START CLC

0301: E6 06 11 INC N1

0303: D0 02 12 BNE END

0305: E6 07 13 INC N1+1

0307: 60 14 END RTS

]

72 Assembly Lines

Subtraction

Subtraction is done like addition except that aborrow is required. Rather
than using a separate lag for this operation, the computer recognizes the carry
lag as sort of a reverse borrow.
!at is, aset carry lag will be treated by the subtract command as aclear

borrow (no borrow taken); a clear carry as a set borrow (borrow unit taken).3

!e command for subtraction isSBC, for SuBtract with Carry. !e borrow is
cleared with the commandSEC, for SEt Carry. (Remember, things are backward
here). A subtraction equivalent of program 5A looks like this:

 1 ********************************

 2 * AL10-SBC SAMPLE PROGRAM 6 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 N1 EQU $06

 9 N2 EQU $08

 10 RSLT EQU $0A

 11 *

0300: 38 12 START SEC

0301: A5 06 13 LDA N1

0303: E5 08 14 SBC N2

0305: 85 0A 15 STA RSLT

0307: A5 07 16 LDA N1+1

0309: E5 09 17 SBC N2+1

030B: 85 0B 18 STA RSLT+1

030D: 60 19 END RTS

!e program can be called with the same BASIC program that we used for
the addition routine.

Positive and Negative Numbers

So far we have discussed only how to represent whole numbers greater than
or equal to zero using one or two bytes. A reasonable question then is: “How do
we represent negative numbers?”
Negative numbers can be thought of as a way of handling certain common

arithmetic possibilities, such as when subtracting a larger number from a smaller
one, for instance, 3 − 5 = −2, or when adding a positive number to a negative
number, for instance, 5 + −8 = −3.

3[CT] Just like ADC, SBC also conditions the carry lag. If the result requires a borrow then
the carry iscleared (borrowset, for example$50−$80). If the result does not require a
borrow then the carry is set (borrow clear, for example $50−$30).

10. Addition and Subtraction 73

To be successful, then, we must come up with a system using the eight bits
in each byte that will be consistent with the signed arithmetic that we are cur-
rently familiar with.

!e Sign Bit

!e most immediate solution to the question of signed numbers is to use bit
7 to indicate whether a number is positive or negative. If the bit is clear, the
number is positive. If the bit is set, the number will be regarded as negative.
!us +5 would be represented: 00000101
While −5 would be shown as: 10000101
Note that by sacriicing bit 7 to show the sign, we’re now limited to values

from −127 to +127. When using two bytes to represent a number such as an
address, this means that we’ll be limited to the range of −32767 to +32767.
Sound familiar? If you’ve had any experience with Integer BASIC, then you’ll
recognize this as the maximum range of number values within that language.4

Although this new scheme is very pleasing in terms of simplicity, it does
have one minor drawback–it doesn’t work. If we attempt to add a positive and
negative number using this scheme we get disturbing results:

 5 00000101

 + -8 10001000

 -3 10001101 = -13!

Although we should get −3 as the result, using our signed bit system we get
−13. Tsk, tsk. !ere must be a better way. Well, with the help of what is essen-
tially a little numeric magic we can get something which works, although some
of the conceptual simplicity gets lost in the process.
What we’ll invoke is the idea of numbercomplements. !e simplest comple-

ment is what is called aone’s complement. !e one’s complement of a number is
obtained by reversing each 1 and 0 throughout the original binary number.
For example, the one’s complement to 5 would be:

00000101 = 5

11111010 = -5

For 8, it would be:

00001000 = 8

11110111 = -8

!is process is essentially one ofdeinition: we simply declare to the world
that11110111 will now represent −8 without speciically trying to justify it.

4[CT] Technically, for two’s complement, the minimum should be −32768. However,
Applesot and Integer BASIC restrict the minimum integer to −32767. See chapter 17
for a way to fool Applesot into displaying −32768.

]

74 Assembly Lines

Undoubtedly there are lovely mathematical proofs of such things that present
marvelous ways of spending an aternoon but, for our purpose, a general notion
of what the term means will be suicient. Fortunately computers are very good
at following arbitrary numbering schemes without asking “but why is it that
way?”
Now let’s see if we’re any closer to a working system:

 5 00000101

 + -8 11110111

 -3 11111100 = -3 (00000011 = +3)

Hmmm...Seems to work pretty well. Let’s try another:

 -5 11111010

 + 8 00001000

 3 00000010 = 2 (plus carry)

Well, our answers will be right half the time... It turns out there is a inal
solution, and that is to use what is called the two’s complement system.
!e only diference between this and the one’s complement system is that

ater deriving the negative number by reversing each bit of its corresponding
positive number, we add one.
Sounds mysterious. Let’s see how it looks:

For −5: For −8:
 5 = 00000101 8 = 00001000

↓ one’s complement... ↓

 11111010 11110111

↓ now add one... ↓

-5 = 11111011 -8 = 11111000

Now let’s try the two earlier operations:

 5 00000101

 + -8 11111000

 -3 11111101 = -3

 -5 11111011

 + 8 00001000

 3 00000011 = 3

 (plus carry)

Does 11111101 equal -3?

sample #: 00000011 = 3

one’s comp: 11111100

two’s comp: 11111101 = -3

At last! It works in both cases. It turns out that two’s complement math
works in all cases, with the carry being ignored.
Now that you’ve mastered that, I’ll let you of the hook a bit by saying that

none of this knowledge will be speciically required in any programs in this

10. Addition and Subtraction 75

book. However, it is a good thing to know about and is very useful in under-
standing the next idea, that of the sign and overlow lags in the Status Register.

!e Sign Flag

Since bit 7 of any byte can represent whether the number is positive or neg-
ative, a lag in the Status Register is provided for easy testing of the nature of a
given byte. Whenever a byte is loaded into a register, or when an arithmetic
operation is done, thesign lag will be conditioned according to what the state of
bit 7 is.
For example, LDA #$80 will set the sign lag to 1, whereasLDA #$40 would set

it to 0. !is is tested using the commandsBPL andBMI. BPL stands for Branch on
PLus, and BMI stands for Branch on MInus.
Regardless of whether you are using signed numbers, these instructions can

be very useful for testing bit 7 of a byte. Many times bit 7 is used in various parts
of the Apple to indicate the status of something. For example, the keyboard loca-
tion, $C000, gets the high bit set whenever a key is pressed.
Up until now we’ve always tested by comparing the value returned from

$C000 to #$80, such as in this listing:

 1 ********************************

 2 * AL10-BPL KEYTEST PROGRAM 1 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 KYBD EQU $C000

 10 STROBE EQU $C010

 11 *

0300: AD 00 C0 12 CHECK LDA KYBD

0303: C9 80 13 CMP #$80

0305: 90 F9 14 BCC CHECK ; NO KEYPRESS

 15 *

0307: 8D 10 C0 16 CLR STA STROBE

030A: 60 17 END RTS

!is program will stay in a loop until a key is pressed. !e keypress is
detected by the value returned from $C000 being equal to or greater than #$80. A
more elegant method is to use the BPL command:

 1 ********************************

 2 * AL10-BPL KEYTEST PROGRAM 2 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

]

76 Assembly Lines

 8 *

 9 KYBD EQU $C000

 10 STROBE EQU $C010

 11 *

0300: AD 00 C0 12 CHECK LDA KYBD

0303: 10 FB 13 BPL CHECK ; NO KEYPRESS

 14 *

0305: 8D 10 C0 15 CLR STA STROBE

0308: 60 16 END RTS

In this case, as long as the high bit stays clear (i.e. no keypress), theBPL will
be taken and the loop continued. As soon as a key is pressed, bit 7 will be set to 1
and the BPL will fail. !e strobe is then cleared and the return done.
A similar technique is used for detecting whether apaddle pushbutton has

been pressed.

 1 ********************************

 2 * AL10-BPL BUTTON TEST *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 PB0 EQU $C061

 10 *

 11 *

0300: AD 61 C0 12 CHECK LDA PB0

0303: 10 FB 13 BPL CHECK ; NO BUTTON PUSH

 14 *

0305: 60 15 END RTS

11. DOS and Disk Access
August 1981

One of the more useful applications of assembly language is in accessing the
disk directly to store or retrieve data. You might do this to modify information
already on the disk, such as when you’re making custom modiications toDOS,
or to deal with data within iles on the disk, such as when you’re patching or
repairing damaged or improperly written iles.
To cover DOS well requires more than a few chapters such as this. My

intent here, then, is to supply you with enough information to allow you to
access any portion of a disk and to have enough basic understanding of the over-
all layout of DOS and disks to make some sense of what you ind there.1

Here’s what we’ll cover in this chapter. First, we’ll paint a general overview
of what DOS is and how the data on the diskette is arranged. !en you’ll learn a
general access utility with which you can read and write any single block of data
from a disk. With these, you’ll have a starting point for your own explorations of
this aspect of your Apple computer.

!e Overview: DOS

An Apple without a disk drive has no way of understanding commands like
CATALOG orREAD. !ese new words must enter its vocabulary from somewhere.
When an Apple with a disk drive attached is irst turned on or aPR#6 is done,
this information is loaded into the computer by a process known as booting.
During the booting process, a small amount of machine-language code on

the disk interface card reads in data from a small portion of the disk. !is data
contains the code necessary to read another 10K of machine language referred to
as DOS. !is block of routines is responsible for all disk-related operations in the
computer. It normally resides in the upper 10K or so of memory, from$9600 to
$BFFF.
Ater booting, the organization of the memory used by DOS looks some-

thing like the igure shown on the next page.

1For a detailed look at DOS, I recommend the bookBeneath Apple DOS, by Dan Worth
and Pieter Lechner (Reseda, CA: Quality Sotware, 1981).
[CT] For hints on implementing the code in ProDOS, seeBeneath Apple ProDOS, by
Dan Worth and Pieter Lechner (Quality Sotware, 1984).

]

11

78 Assembly Lines

!e irst area contains the three bufers set aside for the low of data to and
from the disk. A bufer is a block of memory reserved to hold data temporarily
while it’s being transferred. !eMAXFILES command (a legal DOS command; see
your manual if you haven’t encountered it before) can alter the number of buf-
fers reserved and thus change the beginning address from$9600 to other values.
As it happens, three bufers are almost never needed so, in a pinch for memory,
you can usually set MAXFILES to 2, and oten just to 1.
For example, if you had opened a text ile calledTEXTFILE, the data being

read or written would be transferred via bufer 1. If, while this ile was still open,
you did a catalog, bufer 2 would be put in use. If, instead, you opened two other
iles, sayTEXTFILE1 andTEXTFILE2, and then tried to do aCATALOG, you would
get a NO BUFFERS AVAILABLE error (assumingMAXFILES was set at three). Bufer 1
starts at$9AA6, bufer 2 at$9853, and bufer 3 at$9600. IfMAXFILES is set at 3 as
in a normal system, it’s occasionally useful to use the dead space of the unused
bufer 3 for your own routines.
!e main DOS routines starting at$9D00 are the ones responsible for the

interpreting commands such asCATALOG and, in general, for allowing DOS to
talk to BASIC via statements preixed with <CTRL>D.
!e ile manager is a set of routines that actually execute the various com-

mands sent via the main routines and that makes sure iles are stored in a logical
(well, almost) manner on the disk. It takes care of inding a ile you name, check-
ing to see whether it’s unlocked before a write, inding empty space on the disk
for new data, and countless other tasks required to store even the simplest ile.
When the ile manager gets ready to read data from or write data to the disk,

it makes use of the remaining routines, called theRWTS routines. !is stands for
Read/Write Track Sector. To understand fully what this section does, though, it
will be necessary now to look at the general organization of the disk itself.

Diskette Organization

Physically, a diskette is coated with a material very similar to that on mag-
netic-recording tape. Small portions of the surface are individually magnetized
to store the data in the form of ones and zeros.

11. DOS and Disk Access 79

But the diskette is more analogous to a vinyl record than to a continuous strip of
tape. Arranged in concentric circles, there are thirty ive individualtracks, each
of which is divided into sixteen segments called sectors.2

Tracks are numbered from 0 to 34 ($00 to$22), starting with Track 0 at the
outer edge of the diskette and track 34 nearest the center. Sectors are numbered
from 0 to 15 ($00 to$0F) and are interleaved for fastest access. !is means that
sector 1 is not physically next to sector 0 on the diskette. Rather, the order is:

0-D-B-9-7-5-3-1-E-C-A-8-6-4-2-F

By the time DOS has read in and processed one sector, it doesn’t have sui-
cient time to read the next physically-contiguous sector properly. If the sectors
were arranged sequentially, DOS would have to wait for another entire revolu-
tion of the diskette to read the next sector. By examining the sequence you can
see that ater reading sector 0, DOS can let as many as six other sectors go by and
still have time to start looking for sector 1. !is alternation of sectors is some-
times called the skew factor or just sector interleaving.
Looking for a given sector is done with two components. !e irst is a physi-

cal one, wherein the read/write head is positioned at a speciic distance from the
center of the diskette to access a given track. !e sector is located via sotware by
looking for a speciic pattern of identifying bytes. In addition to the 256 bytes of
actual data within a sector, each sector is preceded by a group of identifying and

2!roughout this discussion we will assume you are usingDOS 3.3, which uses sixteen
sectors per track. DOS 3.2 has only thirteen sectors per track but is rapidly becoming
obsolete. If you’re using DOS 3.2, the correction from sixteen to thirteen should be
made in the topics throughout.

]

80 Assembly Lines

error-checking bytes. !ese include, for example, something like$00 $03 $FE for
track$00, sector$03, volume$FE. By continuously reading these identiication
bytes until a match with the desired values occurs, a given sector may be located.
!is sotware method of sector location is usually calledso"-sectoring, and

it’s somewhat unique to the Apple. Most other microcomputers usehard-sector-
ing. Hard-sectoring means that hardware locates the sector as well as the track;
sectors are found by means of indexing holes located around the center hole of a
disk. Even Apple diskettes have this center hole, along with one to sixteen index-
ing holes in the media itself, but these aren’t actually used by the disk drive.
Because the Apple doesn’t need these holes to index, using the second side of a
disk is just a matter of properly notching the edge of the disk jacket to create
another write-enable notch. We’ll not go into the pros and cons of using the sec-
ond side but will leave that to you. It’s one of those topics guaranteed to be
worth twenty to thirty minutes of conversation at any gathering of two or more
Apple owners.
Each sector holds 256 ($100) bytes of data. !is data must always be written

or read as a single block. Large iles are therefore always made up of multiples of
256 bytes. !us a 520-byte ile takes up three entire sectors, even though most of
the third sector is wasted space:

1 2 3

Certain tracks and sectors are reserved for speciic information. Track 17
($11), for example, contains the directory. !is gives each ile a name, and also
tells how to ind out which sectors on the disk contain the data for each ile.
Track 17, sector 0 contains theVolume Table of Contents (VTOC), which is a
master table of which sectors currently hold data, and which are available for
storing new data. If all of track 17 is damaged, it may be nearly impossible to
retrieve any data from the disk even though the iles themselves might still be
intact.
!e other main reserved area is on tracks 0 through 2. !ese tracks hold the

DOS that will be loaded when the disk is booted. If any of these tracks are dam-
aged it will not be possible to boot the diskette...or if the disk does boot, DOS
may not function properly.
As a variation on this theme, by making certain controlled changes to DOS

directly on the disk you can create your own custom version of DOS to enhance
what Apple originally had in mind. !ese enhancements will become part of

11. DOS and Disk Access 81

your system whenever you boot your modiied diskette. Some modiications of
this type are discussed below.
To gain access to a sector to make these changes, however, we need to be

able to interface with the routines already in DOS to do our own operations. !is
is most easily done by using theRWTS routines mentioned earlier. Fortunately,
Apple has made them fairly easy to use from the user’s assembly-language pro-
gram.
To use RWTS, you must do three general operations:

1. Specify the track and sector you wish to access.

2. Specify where the data is to be loaded to or read from (that is, give the bufer
address).

3. Finally, call RWTS to do the read/write operation.

If the operation is to be a read, then we would presumably do something
with the data in the bufer ater the read is complete. If a write is to be done, then
the bufer should be loaded before callingRWTS with the appropriate data. Usu-
ally, the way all this works is to read in a sector irst, then make minor changes to
the bufer, and then write the sector back out to the diskette.
Steps 1 and 2 are actually done in essentially the same operation, by setting

up theIOB table (“Input/Output and control Block”). !is is described in detail
(along with the sector organization) in theApple DOS Manual, but here’s
enough information to “make you dangerous,” as the saying goes.
!eIOB table is a table you make up and place at a location of your choice.

(You can also make use of the one already in memory that is used in DOS opera-
tions.) Most people I know seem to prefer to make up their own, but my per-
sonal preference is to use the one in DOS. Since most people I know aren’t at
this keyboard right now, I’ll explain how to use the table already set up in DOS.
!e table is made up of seventeen bytes and starts at$B7E8. It’s organized

like this:

Location Code Purpose

$B7E8 $01 IOB type indicator, must be $01
B7E9 $60 Slot number times sixteen3

B7EA $01 Drive number
B7EB $00 Expected volume number
B7EC $12 Track number
B7ED $06 Sector number
B7EE $FB Low-order byte of device characteristic table (DCT)
B7EF $B7 High-order byte of DCT

3Notice that this calculation, like multiplying by ten in decimal, means just moving the
hex digit to the let one place.

]

82 Assembly Lines

Location Code Purpose

B7F0 $00 Low-order byte of data bufer starting address
B7F1 $20 High-order byte of data bufer starting address
B7F2 $00 Unused
B7F3 $00 Unused
B7F4 $02 Command code; $02 = write
B7F5 $00 Error code (or last byte of bufer read in)
B7F6 $00 Actual volume number
B7F7 $60 Previous slot number accessed
B7F8 $01 Previous drive number accessed

Because DOS has already set this table up for you, it isn’t necessary to load
every location with the appropriate values. In fact, if you’re willing to continue
using the last accessed disk drive, you need only specify the track and sector, set
the command code, and then clear the error and volume values to#$00. How-
ever, for complete accuracy, the slot and drive values should also be set so you
know for sure what the entry conditions are.
Once theIOB table has been set up, the Y-Register and Accumulator must

be loaded with the low- and high-order bytes of theIOB table, and then theJSR
toRWTS must be done. AlthoughRWTS actually starts at$B7B5, the call is usually
done asJSR $3D9 when DOS irst boots. !e advantage of calling here is that if
Apple ever changes the location ofRWTS, only the vector address at$3D9 will be
changed and a call to $3D9 will still work.
A vector is the general term used for a memory location that holds the infor-

mation for a second memory address. A vector is used so that a jump to a single
place in memory can be routed to a number of other memory locations, usually
the beginnings of various subroutines. A vector is rather like a telephone switch-
board: even though the user always calls the same address, the program low can
be directed to any number of diferent places simply by changing two bytes at
the vector location.
For example, suppose at location $3F5 we were to put these three bytes:

3F5: 4C 00 03

Listed from the Monitor, this would disassemble as:

03F5- 4C 00 03 JMP $0300

Now whenever you do a call to$3F5, either by aCALL 1013 or 3F5G, the pro-
gram will end up calling a routine at$300. It would now be a simple matter to
write a switching program that would rewrite the two bytes at$3F6 and$3F7 so
that a call to $3F5 would go anywhere we wanted.

11. DOS and Disk Access 83

As it happens,$3F5 is used in just such a fashion by the ampersand (&)
function of Applesot. !eAppleso" II BASIC Programming Reference Manual
provides more information on this feature.
!e best way to inish explaining how to use theIOB table andRWTS is to

present the following utility to access a given track and sector usingRWTS. We’ll
then step through the program and learn why the various steps are done to use
RWTS successfully.

 1 ********************************

 2 * *

 3 * AL11-GENERAL PURPOSE RWTS *

 4 * DOS UTILITY *

 5 * *

 6 ********************************

 7 *

 8 *

 9 * OBJ $300

 10 ORG $300

 11 *

 12 CTRK EQU $06

 13 CSCT EQU $07

 14 UDRIV EQU $08

 15 USLOT EQU $09

 16 BP EQU $0A ; BUFFER PTR.

 17 UERR EQU $0C

 18 UCMD EQU $E3

 19 * USER SETS THIS TO HIS CMD

 20 *

 21 RWTS EQU $3D9

 22 *

 23 * BELOW ARE LOCS IN IOB

 24 SLOT EQU $B7E9

 25 DRIV EQU $B7EA

 26 VOL EQU $B7EB

 27 TRACK EQU $B7EC

 28 SECTOR EQU $B7ED

 29 BUFR EQU $B7F0

 30 CMD EQU $B7F4

 31 ERR EQU $B7F5

 32 OSLOT EQU $B7F7

 33 ODRIV EQU $B7F8

 34 *

 35 READ EQU $01

 36 WRITE EQU $02

 37 *

 38 *

 39 *

 40 ********************************

 41 * ENTRY CONDITIONS: SET *

 42 * TRACK, SECTOR, SLOT, DRIVE, *

 43 * BUFFER, AND COMMAND. *

 44 ********************************

 45 *

 46 *

]

84 Assembly Lines

 47 *

0300: A9 00 48 CLEAR LDA #$00

0302: 8D EB B7 49 STA VOL

 50 *

0305: A5 09 51 LDA USLOT

0307: 8D E9 B7 52 STA SLOT

 53 *

030A: A5 08 54 LDA UDRIV

030C: 8D EA B7 55 STA DRIV

 56 *

030F: A5 06 57 LDA CTRK

0311: 8D EC B7 58 STA TRACK

 59 *

0314: A5 07 60 LDA CSCT

0316: 8D ED B7 61 STA SECTOR

 62 *

0319: A5 E3 63 LDA UCMD

031B: 8D F4 B7 64 STA CMD

 65 *

031E: A5 0A 66 LDA BP

0320: 8D F0 B7 67 STA BUFR

0323: A5 0B 68 LDA BP+1

0325: 8D F1 B7 69 STA BUFR+1

 70 *

0328: A9 B7 71 LDA #$B7

032A: A0 E8 72 LDY #$E8

032C: 20 D9 03 73 JSR RWTS

032F: 90 05 74 BCC EXIT

 75 *

0331: AD F5 B7 76 ERRHAND LDA ERR

0334: 85 0C 77 STA UERR

 78 *

0336: 60 79 EXIT RTS

 80 *

0337: CD 81 CHK

When this program runs, it assumes the user has set the desired values for
the track and sector wanted, which slot and drive to use, where the bufer is, and
whether to read or write.
Starting with the irst functional line, line 48, the byte for the volume num-

ber in theIOB table (VOL) is stufed with a 0. A value of 0 here tellsRWTS any vol-
ume number is acceptable during the access. If we wanted to access only a
particular volume number, a value from$01 to$FE would be used instead of
$00.4

In the next four sets of operations, the user values for the slot, drive, track,
and sector numbers are put into theIOB table. Notice that, to have this work
properly, you must setUSLOT ($09) to sixteen times the value for the slot you
wish to use. For example, to access slot 5 you would store a#$50 (80 decimal) in
location $09 just before calling this routine.

4[CT] $FF is not a valid DOS volume number.

11. DOS and Disk Access 85

!e next pair of statements take the user commandUCMD and put that in the
table. If you want to read a sector, setUCMD =$01. A write isUCMD =$02. A few
other options are seldom used. !ese are described in more detail in the DOS 3.3
manual in the section on RWTS.
Next, thebufer pointer is set to the value given by the user in locations$0A

and$0B. !e required space is 256 bytes ($100) and can be put anywhere that
won’t conlict with data already in the computer. Convenient places are the
number three DOS ile bufer ($9600), the input bufer itself ($200), or an area of
memory below$9600 protected by settingHIMEM to an appropriate value.5 In the
examples that follow, I’ll use the area from$1000 to$10FF because no BASIC
program will be running and$1000 is a nice number. In this case,$0A and$0B
will be loaded with #$00 and #$10, respectively.
Last of all, the Y-Register is loaded with#$E8 and the Accumulator is loaded

with #$B7, the low-order and high-order bytes of the IOB table address.
Ater the call toRWTS via the vector at$3D9, the carry lag is checked for an

error. If the carry is clear, there was no error and the routine returns via theRTS.
If an error is encountered, the code will be transferred from theIOB table to the
user location. !e possible error codes are:

Code Condition

$10 Disk write-protected, and cannot be written to.

$20 Volume mismatch error. Volume number found was diferent than
speciied.

$40 Drive error. An error other than the three described here is happening
(I/O error, for example).

$80 Read error. RWTS will try forty-eight times to get to a good read; if it
still fails, it will return with this error code.

DOS Modiications

!e ERR byte of theIOB table is somewhat unusual in that it does not remain
at 0 even if the read/write operation was successful. In actual operation, if an
error does not occur, theERR byte will contain the last byte of the sector just
accessed.
It is important therefore to always use the carry lag to detect whether an

error has occurred. In fact, as your experience grows, you will notice that a great
many subroutines use the carry lag as an indicator of the results of the opera-
tion. In the case ofRWTS, the carry will be cleared if the access was successful and

5Note: !e input bufer can be used only temporarily during your own routine. If you
return to BASIC, or do any input or DOS commands, data in this area will be destroyed.
Other than that, it’s a handy place to use.

]

86 Assembly Lines

set if an error occurred. It is not necessary to condition the carry before calling
RWTS.
One of the best ways to grasp this routine is to use it to modify the DOS on

a sample disk and observe the diferences. Before proceeding with the examples,
boot an Apple master disk, thenINIT a blank disk. !is will be our test piece, so
to speak. Do not try these experiments on a disk already containing important
data. If done correctly the changes won’t hurt, but if an error were to occur you
could lose a good deal of work!

Disk-Volume Modiication

First install the sector-access routine at$300. Now insert the sample
diskette. Enter the Monitor with CALL -151 and type in:

*06: 02 02 01 60 00 10

*E3: 0

!is assumes your diskette is in drive 1, slot 6. Now enter:

*300G

!e disk drive motor should come on. When it stops type in:

*10AFL

You should get something like this:

10AF- A0 C5 LDY #$C5

10B1- CD D5 CC CMP $CCD5

10B4- CF ???

10B5- D6 A0 DEC $A0,X

10B7- CB ???

10B8- D3 ???

10B9- C9 C4 CMP #$C4

!is apparent nonsense is the ASCII data for the words “DISK VOLUME”
in reverse order. !is is loaded in when the disk is booted and is used in all sub-
sequent catalog operations.
!e data was retrieved from track 2, sector 2, and put in a bufer starting at

$1000. !e sequence we’re interested in starts at byte$AF in that sector. To mod-
ify that, type in:

*10AF: A0 D4 D3 C5 D4 A0 AD

*E3: 02

*300G

!e irst line rewrites the ASCII data there, theE3:02 changes the command
to “write,” and the 300G puts it back on the disk.

11. DOS and Disk Access 87

Now reboot the disk and then type inCATALOG. When the catalog prints to
the screen, the new characters “DISK - TEST 254” should appear.6 By using the
ASCII character chart in Appendix E, you can modify this part of the diskette to
say anything you wish within the twelve-character limit.

Catalog Keypress Modiication

Reinstall the sector access utility, put the sample disk in the drive again, and
type in:

*06: 01 0D 01 60 00

*E3: 01

*300G

!is will read track 1, sector $0D, into the bufer. Type in:

*1039L

!e irst line listed should be:

1039- 20 0C FD JSR $FD0C

Change this to:

*1039: 4C DF BC (JMP $BCDF)

And rewrite to the disk:

*E3: 02

$300G

Now read in the section corresponding to$BCDF (track 0, sector 6) by typ-
ing:

*06: 00 06

*E3: 01

*300G

And alter this section with:7

*10DF: 20 0C FD C9 8D D0 03 4C 2C AE 4C 3C AE

*E3: 02

*

*300G

6[CT] !e disk volume number (254) is still printed.
7[CT] !e Monitor listing looks like this:

 10DF- 20 0C FD JSR $FD0C

 10E2- C9 8D CMP #$8D

 10E4- D0 03 BNE $10E9

 10E6- 4C 2C AE JMP $AE2C

 10E9- 4C 3C AE JMP $AE3C

]

88 Assembly Lines

As it happens, this part of the disk isn’t used and provides a nice place to put
this new modiication.
When you reboot ater making this change, place a disk with a long catalog

on it in the drive and type inCATALOG. When the listing pauses ater the irst
group of names, press<RETURN>. !e listing should stop, leaving the names just
shown on the screen. If instead of pressing<RETURN> you press any other key,
the catalog will continue just as it normally would, going on to the next group of
names.
Both of these modiications will go into efect whenever you boot the sample

disk. !ese features can also be propagated to other disks by booting the sample
disk and using the new DOS to INIT fresh disks.
Many modiications to the existing DOS can be made this way, and we

haven’t even started to talk about storing binary data in general.

Bell Modiication and Drive Access

(1) !e irst time you call the access utility from the Monitor, it will return
with just the asterisk prompt. Ater that, unless you hitRESET or do aCATALOG, it
will return with the asterisk and a beep. !is is because the status storage byte for
the Monitor ($48) gets set to a nonzero value byRWTS. If the beep annoys you,
modify the access utility to set $48 back to #$00 before returning.
(2) If you set the slot/drive values to something other than your active drive,

the active drive will still be the one accessed when you do, for example, the next
CATALOG. !is is because DOS doesn’t actually look at the last-slot/drive-accessed
values when doing aCATALOG. Instead, it looks at$AA66 for the volume number
(usually#$00), at$AA68 for the drive number, and at$AA6A for the slot number
(times sixteen). If you have BASIC or assembly-language programs where you
want to change the active drive values without having to do aCATALOG or give
another command, then justPOKE orSTA the desired values in these three loca-
tions.
Have fun!

12. Shit Operators and Logical Operators
September 1981

Shit Operators

Here I’d like to cover two main groups of assembly-language commands:
shi" operators andlogical operators. Shits are easier to understand, so we’ll do
them irst.
You’ll recall that the Accumulator holds a single eight-bit value, and that in

previous programs it has been possible to test individual bits by examining lags
in the Status Register. An example of this was used in testing bit 7 ater anLDA
operation. If the Accumulator is loaded with a value from$00 to$7F, bit 7 is
clear and onlyBPL tests will succeed, since the sign lag remains clear. If, how-
ever, a value from$80 to$FF is loaded,BMI will succeed since bit 7 would be set;
hence the sign lag will also be a one.
!eshit commands greatly extend our ability to test individual bits by giv-

ing us the option of shiting each bit in the Accumulator one position to the let
or right. !ere are two direct shit commands,ASL (Arithmetic Shit Let) and
LSR (Logical Shit Right).

ASL − Arithmetic Shit Let

In the case ofASL, each bit is moved to the let one position, with bit 7 going
into the carry and bit 0 being forced to 0. In addition to the carry, the sign and
zero lags are also afected. Some examples appear in the following table.

Value Binary Result Binary (C) Carry (N) Sign (Z) Zero
$00 0000 0000 $00 0000 0000 0 0 1
$01 0000 0001 $02 0000 0010 0 0 0
$80 1000 0000 $00 0000 0000 1 0 1
$81 1000 0001 $02 0000 0010 1 0 0
$FF 1111 1111 $FE 1111 1110 1 1 0

]

12

90 Assembly Lines

In the irst case, there’s no net change to the Accumulator, although the
carry and sign lags are cleared and thezero lag is set. !e 0 at each bit position
was replaced by a 0 to its right.
However, in the case of$01, the value in the Accumulator doubles to

become$02 as the 1 in bit 0 moves to the bit 1 position. In this case, all three
lags will be cleared.
When the starting value is$80 or greater, the carry will be set. In the case of

$80 itself, the Accumulator returns to 0 ater the shit, since the only 1 in the pat-
tern, bit 7, is pushed out into the carry.
Notice that in the case of$FF, thesign lag gets set as bit 6 in the Accumula-

tor moves into position 7. Remember that in some schemes, bit 7 is used to indi-
cate a negative number.

ASL has the efect of doubling the byte being operated on. !is can be used
as an easy way to multiply by two. In fact, by using multipleASLs, you can multi-
ply by two, four, eight, sixteen, and so on, depending on how many you use. In
the discussion of DOS andRWTS in chapter 11, you might remember that theIOB
table required the slot number byte in the table to be sixteen times the true value.
If you didn’t want to do themultiplication ahead of time, you could do it in your
access program, as below.

 *

 *

 *

A5 09 LDA USLOT

0A ASL

0A ASL

0A ASL

0A ASL

8D E9 B7 STA SLOT

 *

 *

 *

USLOT holds the value from one to seven that you pass to the routine and
SLOT is the location in theIOB table in which the value forUSLOT*16 should be
placed. Even though the fourASLs look a bit redundant, notice that they only
took four bytes. In fact, theLDA/STA steps consumed more bytes (ive) than the
four ASLs.
In general, then, ASL is used for these types of operations:

1. Multiply by two, four, eight, and so on.

2. Set or clear the carry for free while shiting for some other reason.

3. Test bits through 6. Note: !is can be done, but it’s usually done this way
only for bit 6; there are, in general, better ways of testing speciic bits, which we’ll
describe shortly.

12. Shit Operators and Logical Operators 91

!e complement of theASL command isLSR. It behaves identically except
that the bits all shit to the right and bit 7 becomes a 0.

LSR − Logical Shit Right

LSR can be used to divide by multiples of two. It’s also a nice way to test
whether a number is even or odd. Even numbers always have bit 0 clear. Odd
always have it set. By doing anLSR followed byBCC orBCS, you can test for this.
Whether a number is odd or even is sometimes called itsparity. An even num-
ber has a parity of 0, and an odd number a parity of 1.

LSR also conditions the sign and zero lags.
In bothLSR andASL, one end or the other always gets forced to a 0. Some-

times this is not desirable. !e solution to this is therotate commands,ROL and
ROR (ROtate Let, ROtate Right).

ROL − Rotate One Bit Let ROR − Rotate One Bit Right

In these commands, the carry not only receives thepushed bit, but its previ-
ous contents are used to load the now available end position.

ROL andROR are used rather infrequently but do turn up occasionally in
math functions such as multiply and divide routines.
So far, all the examples have used the Accumulator as the byte to be shited.

As it happens, either the Accumulator or a memory location may be shited.
Addressing modes also include Zero Page,X and Absolute,X. !e Y-Register
cannot be used as an index in any of the shit operations.

]

92 Assembly Lines

Logical Operators

Logical operators are, to the uninitiated, some of the more esoteric of the
assembly-language commands. As with everything we’ve done before, though,
with a little explanation they’ll become quite useful.
Let’s start with one of the most commonly used commands,AND. You’re

already familiar with the basic idea of this one from your daily speech. If this
and that are a certain way, then I’ll do something. !is same way of thinking can
be applied to your computer.
As we’ve seen, each byte is made up of eight bits. Let’s take just the let-most

bit, bit 7, and see what kind of ideas can be played with. Normal text output on
the Apple is always done with the high bit set. !at is, all characters going out
throughCOUT ($FDED) should be equal to or greater than#$80 (1000 0000
binary). Likewise, when watching the keyboard for a keypress, we wait until
$C000 has a value equal to or greater than #$80.
Suppose we had a program wherein we would print characters to the screen

only when a key was pressed and a standard character was being sent through
the system. What we’re saying is to print characters on the screenonly when
both the character and the keyboard bufer show bit 7 set to 1.
We can draw a simple chart that illustrates all the possibilities (and you

know how fond computer people are of charts).

Character Bit 7

0 1

Keyboard0 0 0

Bit 71 0 1

!e chart shows four possibilities. If the character’s bit 7 is 0 (a non-stan-
dard character) and the keyboard bit is 0 (no keypress), then the character is not
printed (a 0 result). Likewise, if only one of the conditions is being met but not
the other, then the result is still 0, and the character is still not printed. Only
when both desired conditions exist will we be allowed to print, as shown by the
one as the result.
Taken to its extreme, what we end up with is a new mathematical function,

AND. In the case of a single binary digit (or perhaps we should call it a bigit), the
possibilities are few, and the answers are given as a simple 0 or 1.
What about larger numbers? Does the term5 AND 3 have meaning? It turns

out that it does, although the answer in this case will not be 8, and it is now that
we must be cautious not to let our daily use of the word “addition” be confused
with our new meaning.

12. Shit Operators and Logical Operators 93

As we look at these numbers on a binary level, how to get the result of5 AND
3 will be more obvious.

 x = 5 0 1 0 1

 y = 3 0 0 1 1

 x AND y 0 0 0 1 = 1

If we take the chart created earlier and apply it to each set of matching bits
in x and y, we obtain the result shown. Starting on the let, two 0s give 0 as a
result. For the next two bits, only a single 1 is present in each case, still giving 0
as a result. Only in the last position do we get the necessary 1s in bit 0 ofboth
numbers to yield a 1 in the result.
!us 5 AND 3 does have meaning, and the answer is 1. (Try that at parties!)
Don’t be discouraged if you don’t see the immediate value in this operation;

you should guess by now that everything is good for something!
AND is used for a variety of purposes. !ese include:
(1) To force zeros in certain bit positions.
(2) As a mask to let through only ones in certain positions.
When anAND operation is done, the contents of the Accumulator areAND’d

with another speciied value. !e result of this operation is then put back in the
Accumulator. !e other value may be either given by way of the immediate
mode or held in a memory location. !ese are some possible ways of using AND:

LDA #$80

AND #$7F

AND $06

AND $300,X

AND ($06),Y

To understand better howAND is used, we should clarify some other ideas.
One of these is the nature of assembly-language programs in general. I believe
that, at any given point in a program, one of two kinds of work will be going on.
One is theoperational mode, where some speciic task, such as clicking a speaker
or reading a paddle, is taking place. At these moments, data as such does not
exist. In the other case, theprocessing mode, data has been obtained from an
operational mode and the information is processed and/or passed to some other
routine or location in memory.
A given routine rarely is entirely in just one mode or the other, but any

given step usually falls more into one category than the other.
!ese ideas are important because, in general, all of the logical operators are

used during the processing phases of a program. At those times, some kind of
data is being carried along in a register or memory location. Part of the process-
ing that occurs is oten done with the logical operators.

]

94 Assembly Lines

In the case of the two modes of use, operational and processing, we are
really just talking about two diferent ways of looking at the same operation. To
illustrate this, examine this partial disassembly of the Monitor starting at $FDED:1

*FDEDL

FDED- 6C 36 00 JMP ($0036)

FDF0- C9 A0 CMP #$A0

FDF2- 90 02 BCC $FDF6

FDF4- 25 32 AND $32

FDF6- 84 35 STY $35

FDF8- 48 PHA

FDF9- 20 78 FB JSR $FB78

FDFC- 68 PLA

FDFD- A4 35 LDY $35

FDFF- 60 RTS

For normal text output on the Apple, the Accumulator is loaded with the
ASCII value for the character to be printed, the high bit is set, and aJMP toCOUT
($FDED) is done. From looking at the listing, you can see that at$FDED there is an
indirect jump based on the contents of $36, $37 (called a vector).
If this seems a little vague, then consider for a moment what I call thelow

of control in the computer. !is means that the computer is always executing a
program somewhere. Even when there’s nothing but a lashing cursor on the
screen, the computer is still in a loop programmed to get a character from the
keyboard. When you call your own routines, the computer is just temporarily
leaving its own activities to do your tasks until it hits that lastRTS. It then goes
back to what it was doing before; usually, that’s waiting for your next command.
When characters are printed to the screen, disk, printer, or anywhere else,

there’s a low of control that carries along the character to be printed. For virtu-
ally every character printed, the 6502 scans through this region as it executes the
code necessary to print the character.
Normally,$36,$37 points to$FDF0 (at least before DOS is booted). !is

may seem a little absurd until you realize that a great deal of lexibility is created
by the vector. For instance, aPR#1, such as you do when turning on a printer,
redirects$36,$37 to point to the card, which in turn, ater printing a character,
usually returns to where $36, $37 used to print.
!e card thus borrows the low of control long enough to print the charac-

ter, ater which it gives control back to the screen print routine. Likewise, when
DOS is booted,$36,$37 gets redirected from$FDF0 to$9EBD, which is where
phrases preceded by a<CTRL>D are detected. If no<CTRL>D is found, the output
is returned to $FDF0.
Now, back to whatAND is used for. Normally when the routine enters at

$FDF0, the Accumulator will hold a value between$80 and$DF2. !e characters

1[CT] !is is for the Apple II Plus. Results on the Apple II or Apple //e will be diferent.
2[CT] Between $80 and $FF for computers with lowercase support.

12. Shit Operators and Logical Operators 95

from$80 to$9F are all control characters and are passed through by theBCC fol-
lowing the irstCMP. Characters passing this test will be the usual alphabetic,
numeric, and special characters shown in Appendix E. You’ll notice at this point
anAND with the contents of$32 is done. Location$32 is calledINVFLG and usu-
ally holds either$FF,$7F, or$3F depending on whether the computer is in the
NORMAL,FLASHING, orINVERSE text mode. Let’s assume that the Accumulator is
holding the value for a normal A. Look at the following table to see what hap-
pens when an AND is done with each of these values.

Example 1: Hex Binary ASCII

Accumulator: $C1 1100 0001 A

INVFLAG: $FF 1111 1111 −

Result: $C1 1100 0001 A

Example 2:

Accumulator: $C1 1100 0001 A

INVFLAG: $7F 0111 1111 −

Result: $41 0100 0001 A (flashing)

Example 3:

Accumulator: $C1 1100 0001 A

INVFLAG: $3F 0011 1111 −

Result: $01 0000 0001 A (inverse)

In the irst example,ANDing with$FF yields a result identical to the original
value. !e result is identical because, with each bit set to 1, the resulting bit will
always come out the same as the corresponding bit in the Accumulator. (Can
you guess what the result of ANDing with$00 would always yield?) !is means
that the character comes out in its original form.
In the second case,ANDing with$7F has the efect of forcing a 0 in bit 7 of

the result. Examining the chart in Appendix E, we can see that$41 corresponds
to a lashing A.
!e Apple uses the leading two bits to determine how to print the character.

If the leading two bits areof, then the character will be in inverse. If bit 7 is 0
and bit 6 is 1, then the character will be printed in lashing mode. If bit 7 is set,
then the character will be displayed in normal text.
Using theAND operator forces a 0 in the desired positions and lets the

remaining bit pattern through.
In general, then, the way to useAND is to set a memory location (or the

immediate value) equal to a value whose bits are all set to 1 except for those that
you wish to force to 0 in the Accumulator.

]

96 Assembly Lines

You can also think ofAND as acting rather like a screen that lets only certain
parts of the image through. WhenINVFLG is set to$3F, the leading bits will
always be 0, regardless of whether they were set at entry; hence, the expression
mask.
Sometimes iguring exactly what value you should use for the desired result

is tricky. As a general formula, irst decide what bits you want to force to 0 and
then calculate the number with all other positions set to ones. !is will give the
proper value to use in the mask. For example, to derive the inverse display mask
value:

1. Determine which bits to force to 0:

00xxxxxx

2. Calculate with the remaining positions set to ones:

00111111 = $3F (63)

Try this with the desired result of forcing only bit 7 to 0 and see if you get
the proper value for INVFLG of $7F.
Apple DOS Tool Kit users should note that when shiting the Accumulator,

Apple’s assembler requires the addition of the A operand (Example:LSR A). !is
applies toASL,LSR,ROR, andROL. Most other assemblers do not require the A
operand, and that is the syntax used in this book.

BIT

!e command somewhat related toAND isBIT. !is is provided to allow the
user to determine easily the status of speciic bits in a given byte. WhenBIT is
executed, quite a number of things happen. First of all, bits 6 and 7 of the mem-
ory location are transferred directly to the sign and overlow bits of the Status
Register. Since we’ve not discussed theoverlow lag, let me say briely that its
related commands,BVC andBVS, may be used just asBPL andBMI are used to test
the status of the sign lag. If V (the overlow lag) is clear,BVC will succeed. If V is
set, BVS will work.
Most important, though, is the conditioning of the zero lag. If one or more

bits in the memory location match bits set in the Accumulator, the zero lag will
be cleared (Z = 0). If no match is made, Z will be set (Z = 1). !is is done byAND-
ing the Accumulator and the memory location and conditioning Z appropri-
ately. !e confusing part is that this may seem somewhat backward. Alas, it’s
unavoidable; it’s just one of those notes to scribble in your book so as to remem-
ber the quirk each time you use it.
Note that one of the main advantages ofBIT is that the Accumulator is

unafected by the test.

12. Shit Operators and Logical Operators 97

Here are examples of how BIT might be used:
Example 1: To test for bits 0 and 2, set:

 LDA #$05 ; 0000 0101

 BIT MEM

 BNE OK ; (1 OR MORE BITS MATCH)

Example 2: To test for bit 7, set in memory:

CHECK BIT $C000 ; (KEYBOARD)

 BPL CHECK ; (BIT 7 CLR, NO KEY PRESSED)

 BIT $C010 ; (ACCESS $C010 TO CLR STROBE)

If you want to test forall of a speciic set of bits being on, theAND command
must be used directly.
Example 3: To test for both bits 6 and 7 being on:

 LDA CHAR

 AND #$C0 ; 1100 0000

 CMP #$C0

 BEQ MATCH ; BOTH BITS “ON”

!is last example is somewhat subtle, in that the result in the Accumulator
will only equal the value with which it wasAND’d if each bit set to 1 in the test
value has an equivalent bit on the Accumulator.

ORA and EOR

!ese last two commands bring up an interesting error of sorts in the Eng-
lish language, and that is the diference between aninclusive OR and theexclu-
sive OR. What all this is about is the phenomenon that saying something like “I’ll
go to the store if it stops rainingor if a bus comes by” has two possible interpre-
tations. !e irst is that if either event happens, and even if both events occur,
then the result will happen. !is is called an inclusive OR statement.
!e other possibility is that the conditions to be met must be one or the

other but not both. !is might be called the purest form of anOR statement. It is
either night or day, but never both. !is is called an exclusive OR statement.
In assembly language, theinclusive OR function is calledORA for OR Accu-

mulator. !e other is calledEOR for Exclusive OR. !e table below shows the
charts for both functions.

ORA Accumulator EOR Accumulator

0 1 0 1

Memory
0 0 1

Memory
0 0 1

1 1 1 1 1 0

]

98 Assembly Lines

First, consider the table forORA. If either or both corresponding bits in the
Accumulator and the test value match, then the result will be a one. Only when
neither bit is 1 does a 0 value result for that bit. !e main use forORA is to force a
one at a given bit position. In this manner, it’s something of the complement to
the use of the AND operator to force zeros.
!e following table presents some examples of the efect of theORA com-

mand.

Example 1: Example 2:

Accumulator: $80 1000 0000 $83 1000 0011

Value: $03 0000 0011 $0A 0000 1010

Result: $83 1000 0011 $8B 1000 1011

Use ofORA conditions the sign and zero lags, depending on the result,
which is automatically put into the Accumulator.
!eEOR command is somewhat diferent in that the bits in the result are set

to 1 only if one or the other of the corresponding bits in the Accumulator and
test value is set to 1, but not both.

EOR has a number of uses. !e most common is in encoding data. An inter-
esting efect of the table is that, for any given test value, the Accumulator will lip
back and forth between the original value and the result each time theEOR is
done. See the examples in the table below.

Accumulator: $80 1000 0000 $83 1000 0011

Value: $03 0000 0011 $0A 0000 1010

Result: $83 1000 0011 $89 1000 1001

Accumulator: $83 1000 0011 $89 1000 1001

Value: $03 0000 0011 $0A 0000 1010

Result: $80 1000 0000 $83 1000 0011

!is lipping phenomenon is used extensively in hi-res graphics to allow one
image to overlay another without destroying the image below.EOR also can be
used to reverse speciic bits: Simply place ones in the positions you wish to
reverse.
You might ind it quite rewarding to write your own experimental routine

that willEOR certain ranges of memory with given values. !en make the second
pass to verify that the data has been restored. !is is especially interesting when
done either on the hi-res screen or blocks of ASCII data such as on the text
screen.

12. Shit Operators and Logical Operators 99

It would be a shame if you’ve stayed with this chapter long enough to read
through all this and didn’t get a program for your eforts, so I ofer the demon-
stration program that follows. It provides a way of visually experimenting with
the diferent shits and logical operators. Assemble the assembly-language pro-
gram listed and save it to disk under the name AL12.OPERATOR.

 1 ********************************

 2 * AL12-BINARY FUNCTION DISPLAY *

 3 * UTILITY *

 4 ********************************

 5 *

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 NUM EQU $06

 11 MEM EQU $07

 12 RSLT EQU $08

 13 STAT EQU $09

 14 *

 15 YSAV1 EQU $35

 16 COUT1 EQU $FDF0

 17 CVID EQU $FDF9

 18 COUT EQU $FDED

 19 PRBYTE EQU $FDDA

 20 *

 21 *

0300: A9 00 22 OPERATOR LDA #$00

0302: 48 23 PHA

0303: 28 24 PLP

0304: A5 06 25 LDA NUM

0306: 25 07 26 AND MEM ; <= ALTER THIS

0308: 85 08 27 STA RSLT

030A: 08 28 PHP

030B: 68 29 PLA

030C: 85 09 30 STA STAT

030E: 60 31 RTS

 32 *

030F: A9 A4 33 PRHEX LDA #$A4 ; ’$’

0311: 20 ED FD 34 JSR COUT

0314: A5 06 35 LDA NUM

0316: 4C DA FD 36 JMP PRBYTE

 37 *

0319: A5 06 38 PRBIT LDA NUM

031B: A2 08 39 LDX #$08

031D: 0A 40 TEST ASL

031E: 90 0D 41 BCC PZ

0320: 48 42 P0 PHA

0321: A9 B1 43 LDA #$B1 ; '1'

0323: 20 ED FD 44 JSR COUT

0326: A9 A0 45 LDA #$A0 ; 'SPC'

0328: 20 ED FD 46 JSR COUT

032B: B0 0B 47 BCS NXT

 48 *

]

100 Assembly Lines

032D: 48 49 PZ PHA

032E: A9 B0 50 LDA #$B0 ; '0'

0330: 20 ED FD 51 JSR COUT

0333: A9 A0 52 LDA #$A0 ; 'SPC'

0335: 20 ED FD 53 JSR COUT

 54 *

0338: 68 55 NXT PLA

0339: CA 56 DEX

033A: D0 E1 57 BNE TEST

 58 *

033C: 60 59 EXIT RTS

 60 *

033D: EA 61 NOP

033E: EA 62 NOP

033F: EA 63 NOP

 64 *

0340: C9 80 65 CSHOW CMP #$80 ; STAND CHAR?

0342: 90 10 66 BCC CONT

0344: C9 8D 67 CMP #$8D ; <C/R>

0346: F0 0C 68 BEQ CONT

0348: C9 A0 69 CMP #$A0 ; 'SPC'

034A: B0 08 70 BCS CONT

 71 *

034C: 48 72 PHA

034D: 84 35 73 STY YSAV1

034F: 29 7F 74 AND #$7F ; FORCE '0' IN BIT 7

0351: 4C F9 FD 75 JMP CVID

 76 *

0354: 4C F0 FD 77 CONT JMP COUT1

 78 *

0357: 00 79 EOF BRK

 80 *

 81 *

0358: 87 82 CHK

!en enter the accompanying Apple program and save it under the name
AL12.OPERATOR.A.3

 1 IF PEEK (768) <> 169 THEN PRINT CHR$ (4);"BLOAD AL12.OPERATOR,A$300"

 2 REM IF DOS 3.3 THEN SET UP CSW VECTOR

 3 IF PEEK(1002) = 76 THEN POKE 54,64: POKE 55,3: CALL 1002: GOTO 10

 4 REM IF PRODOS, SET UP OUTPUT LINK AT $BE30,31

 5 POKE 48688,64: POKE 48689,3

 10 REM LOGICAL OPERATOR PROGRAM

 15 OP = 774: F = 768: PH = 783: PB = 793

 20 TEXT: HOME: GOTO 1000

 100 KEY = PEEK (-16384): IF KEY > 127 THEN 1000

 110 A = PDL(0):A = PDL(0)

 120 M = PDL(1):M = PDL(1)

 125 POKE 6,A: POKE 7,M

 130 CALL F: REM EVALUATE FUNCTION

3[CT] Spaces and dashes were cleaned up to make the screen display more readable. In
addition, forProDOS we manually change the output vector at$BE30,$BE31 to point
to CSHOW ($340). See footnote 1 in chapter 29 for more discussion.

12. Shit Operators and Logical Operators 101

 140 R = PEEK (8): S = PEEK (9)

 200 VTAB 11: HTAB 1: PRINT "OPCODE:";: POKE 6,OC: GOSUB 500: VTAB 11: HTAB

32: PRINT "'";O$;"'"

 210 VTAB 14: PRINT "ACC:";: POKE 6,A: GOSUB 500: HTAB 30: PRINT " ";: HTAB

30: PRINT CHR$ (A);: VTAB 14: HTAB 33: PRINT "(P0)": POKE 1742,A: IF

A = 13 OR A = 141 THEN VTAB 14: HTAB 30: INVERSE : PRINT "M": NORMAL

 215 IF O1 = 7 THEN VTAB 16: PRINT "MEMORY:";: POKE 6,M: GOSUB 500: HTAB

30: PRINT " ";: HTAB 30: PRINT CHR$ (M);: VTAB 16: HTAB 33: PRINT

"(P1)": POKE 1998,M: IF M = 13 OR M = 141 THEN VTAB 16: HTAB 30:

INVERSE : PRINT "M": NORMAL

 220 IF O$ < > "BIT" THEN VTAB 18: PRINT "RESULT:";: POKE 6,R: GOSUB 500:

HTAB 30: PRINT " ";: HTAB 30: PRINT CHR$ (R): POKE 1270,R: IF R = 13

OR R = 141 THEN VTAB 18: HTAB 30: INVERSE : PRINT "M": NORMAL

 230 VTAB 20: PRINT "STATUS:";: POKE 6,S: GOSUB 500: PRINT

 240 VTAB 22: HTAB 10: PRINT "N V - B D I Z C"

 250 GOTO 100

 499 END

 500 REM PRINT BITS & HEX

 510 HTAB 10: CALL PB: HTAB 26: CALL PH: RETURN

 1000 REM SELECT FUNCTION

 1010 T = PEEK(-16368):FC = FC + 1 -(KEY = 136) * 2: IF FC > 8 THEN FC = 1

 1011 IF KEY = 193 THEN FC = 1: REM 'A'=AND

 1012 IF KEY = 194 THEN FC = 3: REM 'B'=BIT

 1013 IF KEY = 197 THEN FC = 4: REM 'E'=EOR

 1014 IF KEY = 204 THEN FC = 5: REM 'L'=LSR

 1015 IF KEY = 207 THEN FC = 6: REM 'O'=ORA

 1016 IF KEY = 210 THEN FC = 7: REM 'R'=ROL

 1019 IF FC < 1 THEN FC = 8

 1020 FOR I = 1 TO FC: READ O$,OC,O1: NEXT I: RESTORE

 1025 IF KEY = 155 THEN PRINT CHR$ (4);"PR#0": END : REM <ESC>

 1030 POKE OP,OC: POKE OP + 1,O1: HOME

 1050 ON FC GOSUB 1100,1200,1300,1400,1500,1600,1700,1800

 1055 POKE 32,0

 1060 A = -1: GOTO 100

 1100 REM 'AND'

 1110 POKE 32,9

 1140 VTAB 2

 1145 PRINT " AND 0 1 "

 1150 PRINT " -------------"

 1155 PRINT " 0 ! 0 ! 0 !"

 1160 PRINT " -------------"

 1165 PRINT " 1 ! 0 ! 1 !"

 1170 PRINT " -------------"

 1175 PRINT : HTAB 7: PRINT "'AND'"

 1180 VTAB 23: PRINT "̂ ̂"

 1185 RETURN

 1200 REM 'ASL'

 1220 VTAB 1: HTAB 9: PRINT "-------<==-------"

 1225 HTAB 4: PRINT "----- 7 6 5 4 3 2 1 0 <-- '0'"

 1230 HTAB 4: PRINT "! -----------------"

 1235 HTAB 3: PRINT "---"

 1240 HTAB 3: PRINT "!C!"

 1245 HTAB 3: PRINT "---"

 1250 VTAB 7:HTAB 16:PRINT "'ASL'": HTAB 8: PRINT "(ARITHMETIC SHIFT LEFT)"

 1280 VTAB 23: HTAB 10: PRINT "̂ ̂ ̂"

 1285 RETURN

]

102 Assembly Lines

 1300 REM 'BIT'

 1310 POKE 32,9

 1340 VTAB 2

 1345 PRINT "AND/BIT 0 1 "

 1350 PRINT " -------------"

 1355 PRINT " 0 ! 0 ! 0 !"

 1360 PRINT " -------------"

 1365 PRINT " 1 ! 0 ! 1 !"

 1370 PRINT " -------------"

 1375 PRINT : HTAB 7: PRINT "'BIT'"

 1380 VTAB 23: PRINT "M M ̂": PRINT "7 6";

 1385 RETURN

 1400 REM 'EOR'

 1410 POKE 32,9

 1440 VTAB 2

 1445 PRINT " EOR 0 1 "

 1450 PRINT " -------------"

 1455 PRINT " 0 ! 0 ! 1 !"

 1460 PRINT " -------------"

 1465 PRINT " 1 ! 1 ! 0 !"

 1470 PRINT " -------------"

 1475 PRINT : HTAB 7: PRINT "'EOR'"

 1480 VTAB 23: PRINT "̂ ̂"

 1485 RETURN

 1500 REM 'LSR'

 1520 VTAB 1: HTAB 9: PRINT "-------==>-------"

 1525 HTAB 2: PRINT "'0' --> 7 6 5 4 3 2 1 0 -----"

 1530 VTAB 3: HTAB 9: PRINT "----------------- !"

 1535 HTAB 29: PRINT "---"

 1540 HTAB 29: PRINT "!C!"

 1545 HTAB 29: PRINT "---"

 1550 VTAB 7: HTAB 15: PRINT "'LSR'": HTAB 8: PRINT "(LOGICAL SHIFT RIGHT)"

 1580 VTAB 23: HTAB 10: PRINT "0 ̂ ̂"

 1585 RETURN

 1600 REM 'ORA'

 1610 POKE 32,9

 1640 VTAB 2

 1645 PRINT " ORA 0 1 "

 1650 PRINT " -------------"

 1655 PRINT " 0 ! 0 ! 1 !"

 1660 PRINT " -------------"

 1665 PRINT " 1 ! 1 ! 1 !"

 1670 PRINT " -------------"

 1675 PRINT : HTAB 7: PRINT "'ORA'"

 1680 VTAB 23: PRINT "̂ ̂"

 1685 RETURN

 1700 REM 'ROL'

 1720 VTAB 1: HTAB 9: PRINT "-------<==-------"

 1725 HTAB 4: PRINT "<---- 7 6 5 4 3 2 1 0 <----"

 1730 HTAB 4: PRINT "! ----------------- !"

 1735 HTAB 4: PRINT "! --- !"

 1740 HTAB 4: PRINT "----------->!C!------------"

 1745 HTAB 16: PRINT "---"

 1750 VTAB 8: HTAB 15: PRINT "'ROL'": HTAB 9: PRINT "(ROTATE ONE BIT LEFT)"

 1780 VTAB 23: HTAB 10: PRINT "̂ ̂ ̂"

 1785 RETURN

12. Shit Operators and Logical Operators 103

 1800 REM 'ROR'

 1820 VTAB 1: HTAB 9: PRINT "-------==>-------"

 1825 HTAB 4: PRINT "----> 7 6 5 4 3 2 1 0 ---->"

 1830 HTAB 4: PRINT "! ----------------- !"

 1835 HTAB 4: PRINT "! --- !"

 1840 HTAB 4: PRINT "------------ C <-----------"

 1845 HTAB 16: PRINT "---"

 1850 VTAB 8:HTAB 15: PRINT "'ROR'": HTAB 9: PRINT "(ROTATE ONE BIT RIGHT)"

 1880 VTAB 23: HTAB 10: PRINT "̂ ̂ ̂"

 1885 RETURN

 2000 DATA AND,37,7, ASL,10,234, BIT,36,7, EOR,69,7, LSR,74,234, ORA,5,7,

ROL,42,234, ROR,106,234

 32000 REM COPYRIGHT (C) 1981

 32010 REM ROGER R. WAGNER

!e basic theory of operation for the program is to rewrite locations$306
and$307 with the appropriate values to create the diferent operators. !ese val-
ues are contained in the data statement on line 2000 of the Applesot program.
In addition, there are routines to print the value in location$06 in both binary
and hex formats. Also, there is a routine to show control characters in inverse.
You may wish to examine each of these to determine the logic, if any, behind
their operation.
!e Applesot program itself operates by getting a value for the Accumula-

tor and the memory location frompaddles 0 and 1. !e double reads in lines 110
and 120 minimize theinteraction between the two paddles. Pressing any key
advances the display to the next function; the let arrow backs up. Pressing A, B, E,
L, O, or R will jump to the selected function.
!e screen display shows the hex and binary values for each number and

also what character would be printed via aPRINT CHR$(X) statement (control

]

 EOR 0 1

 0 ! 0 ! 1 !

 1 ! 1 ! 0 !

 'EOR'

OPCODE: 0 1 0 0 0 1 0 1 $45 'EOR'

ACC: 1 1 0 0 0 0 0 1 $C1 A (P0) A

MEMORY: 1 1 0 1 1 0 1 1 $DB [(P1) [

RESULT: 0 0 0 1 1 0 1 0 $1A Z Z

STATUS: 0 0 1 0 0 0 0 0 $20

 N V – B D I Z C
 ^ ^

104 Assembly Lines

characters are shown in inverse). To the far right is the character obtained when
the value is poked into the screen display part of memory.
I suppose if I were a purist the entire thing would have been written in

assembly language. Oh well, maybe next time.

13. I/O Routines
October 1981

In chapter 11 I discussed how to access the disk using theRWTS routine.
!ere is another way to read the disk that is more similar to the procedure used
in BASIC. !e advantage of this system is that we need not be concerned about
what track and sector we’re using, since DOS will handle the iles just as it does
in anormal program. !e disadvantage is that we must have the equivalent of
PRINT and INPUT statements to use in our programs to send and receive the data.
So, before going any further, let’s digress to input/output routines.

Print Routines

I have two favorite ways of simulating thePRINT statement. !e irst was
described in earlier chapters and looks like this:

 1 ********************************

 2 * AL13-DATA-TYPE PRINT 1 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 COUT EQU $FDED

 10 *

0300: A2 00 11 ENTRY LDX #$00

0302: BD 0E 03 12 LOOP LDA DATA,X

0305: F0 06 13 BEQ DONE

0307: 20 ED FD 14 JSR COUT

030A: E8 15 INX

030B: D0 F5 16 BNE LOOP

 17 * (ALWAYS UP TO 255 CHRS)

 18 *

030D: 60 19 DONE RTS

 20 *

030E: 84 21 DATA HEX 84

030F: C3 C1 D4 22 ASC "CATALOG"

0312: C1 CC CF C7

0316: 8D 00 23 HEX 8D00

 24 *

0318: 00 25 EOF BRK

]

13

106 Assembly Lines

!is type of routine uses a deined data block to hold theASCII values for
the characters we wish to print. !e printing is accomplished by loading the X-
Register with $00 and stepping through the data table until a$00 is encountered.
Each byte loaded is put into the Accumulator and printed via theJSR toCOUT
($FDED). When the$00 is inally reached, theBEQ on line 13 is taken and we
return from the routine via the RTS at DONE.
!e new item of interest in this listing is the use of the$84 as the irst char-

acter printed. !is will be printed as a<CTRL>D, and the wordCATALOG that fol-
lows will be executed as a DOS command.
!e essence of this chapter’s message, along with the routines, is that any

DOS command can be executed from assembly language exactly the same way
it’s done from BASIC. One need only precede the command with a<CTRL>D and
terminate the command with a carriage return. Because DOS looks at all charac-
ters being output, it will see the<CTRL>D character and behave accordingly.
(READ andWRITE are something of an exception to this technique but can still be
done with only minor adjustments.)
You’ll also notice the new assembler directive:ASC. !is directive allows you

to put an ASCII string directly into a listing without having to use theHEX com-
mand, which would necessitate a lot of mental conversions.
Try entering this program and then calling it with either a300G from the

Monitor or a CALL 768 from BASIC. Remember, the routine cannot be BRUN.
When running this program, you may notice a diference between aCALL

768 and the300G. When called from the Monitor with the300G, strange charac-
ters are printed out ater theCATALOG is done. It is important to note here that
any DOS command will overwrite the input bufer ($200+) when executed.
Because the Monitor expects to look for commands ater your300G, it maintains
an internal pointer to which character in the input bufer it is currently evaluat-
ing. For example, it normally would be perfectly legal to execute the command:
300G 200.210.

!e problem is, it wouldn’t work with this program. Let’s see why. When
you enter300G<RETURN>, the input bufer holds ive characters:3-0-0-G-<C/R>.
When$300 is called, the character pointer is at the<RETURN> character. When
the DOS commandCATALOG, is issued, the input bufer is overwritten with the
characterŝD-C-A-T-A-L-O-G-<C/R>, where âD represents the<CTRL>D char-
acter. Ater theCATALOG, the Monitor will resume its interpretation of the input
bufer on the ith character, which now instead of the carriage return, is the sec-
ond A of the wordCATALOG. !us, ater theCATALOG command is done and con-
trol returns from the routine at$300, you get the same result as if you had typed
inALOG, which would be to disassemble the code starting at location$0A (AL),
followed by a beep for a syntax error forOG<C/R>. To avoid this problem, rou-
tines that involve DOS commands should be called only from a running BASIC

13. I/O Routines 107

program, or should exit via aJMP $3D0, as mentioned earlier in the section on
the COUT routine.
!is next print routine is more involved but does ofer some advantages.

One advantage is that theHEX orASC data for what you want to print can imme-
diately follow the JSR print statement, which parallels BASIC a little more closely
and avoids construction of the various data blocks. !e disadvantage is that the
overall code is longer for short programs such as this. !e general rule of thumb
is to use the data-type print routine when you have only to print once or twice
during the program, and to use the following type of routine when printing
many times.
!e logic behind the operation of this second method is slightly more com-

plex than the previous routine, but I think you’ll ind it quite interesting.
Here’s the new method:

 1 ********************************

 2 * AL13-SPECIAL PRINT 2 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 COUT EQU $FDED

 10 *

0300: 20 0E 03 11 ENTRY JSR PRINT

0303: 84 12 E0 HEX 84

0304: C3 C1 D4 13 ASC "CATALOG"

0307: C1 CC CF C7

030B: 8D 00 14 HEX 8D00

030D: 60 15 DONE RTS

 16 *

030E: 68 17 PRINT PLA

030F: 85 06 18 STA PTR

0311: 68 19 PLA

0312: 85 07 20 STA PTR+1

0314: A0 01 21 LDY #$01 ; PTR HOLDS E0-1 HERE

 22 *

0316: B1 06 23 P0 LDA (PTR),Y

0318: F0 06 24 BEQ FNSH

031A: 20 ED FD 25 JSR COUT

031D: C8 26 INY

031E: D0 F6 27 BNE P0 ; (MOST ALWAYS)

 28 *

0320: 18 29 FNSH CLC

0321: 98 30 TYA

0322: 65 06 31 ADC PTR

0324: 85 06 32 STA PTR

0326: A5 07 33 LDA PTR+1

0328: 69 00 34 ADC #$00

032A: 48 35 PHA

032B: A5 06 36 LDA PTR

032D: 48 37 PHA

]

108 Assembly Lines

032E: 60 38 EXIT RTS

 39 * WILL RTS TO DONE INSTEAD OF

 40 * E0!

 41 *

!is one is rather interesting in that it uses the stack to determine where to
start reading the data. You’ll recall that when aJSR is done, the return address
minus one is put on the stack. Upon entry to thePRINT routine, we use this fact
to put that address inPTR,PTR+1. By loading the Y-Register with#$01 and
indexing PTR to fetch the data, we can scan through the string to be printed until
we encounter $00, which indicates the end of the string.
When the end is reached, theBEQ FNSH will be taken. Ater that happens, the

Y-Register (the length of the string printed) is transferred to the Accumulator
and added to the address inPTR,PTR+1, and the result pushed back onto the
stack. Remember that the old return address was E0-1 until it was pulled of.
Now when theRTS is encountered, the program will be fooled into return-

ing to DONE instead of to E0 as it otherwise would have done.
To summarize, then:

1. Any DOS command can be executed from assembly language just as it is
done in BASIC by doing the equivalent of printing a<CTRL>D followed by the
command and a <RETURN>.

2. A data-type print routine uses ASCII characters in a labeled block, which is
then called by name using the X-Register in a direct indexed addressing mode.
!e string to be printed should have the high bit set (ASCII value + $80), and the
string must be terminated by a 0 (at least when using the routine given here).

3. A JSR to a special print routine can also be done. In this case the ASCII data
should immediately follow theJSR. Again, have the high bit set and end with
$00.

Input Routines

!e other side of the coin is, of course, theINPUT routine. You might be sur-
prised by the number of times I get calls from people saying, “If only the input in
such-and-such program would accept quotes, commas, etc.” !e solution is
actually quite simple and is presented here.
In its simplest form, the routine looks like this:

 1 ********************************

 2 * AL13-INPUT ROUTINE FOR BINARY*

 3 ********************************

 4 *

 5 * STORES STRING AT PTR LOC

 6 *

 7 * OBJ $300

13. I/O Routines 109

 8 ORG $300

 9 *

 10 GETLN EQU $FD6F

 11 BUFF EQU $200

 12 PTR EQU $06

 13 *

 14 *

0300: A2 00 15 ENTRY LDX #$00

0302: 20 6F FD 16 JSR GETLN

 17 *

0305: 8A 18 CLEAR TXA ; X=LEN OF STRING

0306: A8 19 TAY

0307: A9 00 20 LDA #$00

0309: 91 06 21 STA (PTR),Y ; PUT END-OF-STRING MARKER

030B: 88 22 DEY ; Y-1 FOR PROPER INDEXING

030C: B9 00 02 23 C2 LDA BUFF,Y

030F: 29 7F 24 AND #$7F ; CLEAR HIGH BIT

0311: 91 06 25 STA (PTR),Y ; PUT IN NEW LOC

0313: 88 26 DEY

0314: C0 FF 27 CPY #$FF

0316: D0 F4 28 BNE C2

 29 *

0318: 60 30 DONE RTS

!e heart of this routine is a call to the Monitor’sGETLN routine, which gets
a line of text from the keyboard or current input device and puts it in the key-
board bufer ($200−$2FF).
!is saves our having to write a routine ourselves. !e beauty of this

method is also that all the<ESCAPE> and let/right arrow keys are recognized.
When the routine returns fromGETLN, the entered line is sitting at$200+. !e
length is held in the X-Register.
At this point we presumably could just return from our routine as well but,

as it happens, all the data now in the bufer has the high bit set–that is,#$80 has
been added to the ASCII value of each character. Because Applesot in particu-
lar, and many other routines in general, don’t expect this, the high bit should be
cleared before returning. Also$200+ will hold only one string at a time, so there
should be some provision for relocating the string to some inal destination.
Both are accomplished in theCLEAR section of this routine. First the length

of the string is transferred via theTXA,TAY to the Y-Register. My preference is
then to mark the end of the string. !e subtle part here is that even though the
Y-Register holds the length value, this actually points to the position immedi-
ately ater the last character entered into the input bufer. For example, if you
entered the wordTEST, X would be returned as$04. Now the charactersTEST
occupy bytes$200−$203. !us when the length ($04) is put in the Y-Register,
STA $200,Y will put a 0 in the ith character position. !us aDEY is then needed
to get ready for the continuation to C2.

]

110 Assembly Lines

Next,C2 begins a loop that loads each character into the bufer, does anAND
with#$7F, and then stores the result at a location pointed to byPTR,PTR+1 plus
the Y-Register ofset.
!e AND #$7F has the efect of clearing the high bit by forcing bit 7 to 0.
!e Y-Register is then decremented and the loop repeated until theDEY

forces Y to an$FF. !is will indicate that the last value was$00, and we have
thus completed scanning the bufer.
!is routine will work ine as long as you’re willing to manage the string

entirely by yourself once it gets to thePTR,PTR+1 location. As noble as it might
be to write programs entirely in assembly language, I usually prefer to write in
bothApplesot and assembly language. !is is because unless speed is required,
Applesot does ofer some advantages in terms of program clarity and ease of
modiication. Ater all, if there were no advantage to Applesot, why would
somebody have written it in the irst place?
So, to that end, here are two new listings, the irst in Applesot:

5 PRINT CHR$(4);"BLOAD AL13.INPUTFP"

10 IN$ = "X"

20 PRINT "ENTER THE STRING: ";

30 CALL 768: IN$ = MID$(IN$,1)

40 IF IN$ = "END" THEN END

50 PRINT IN$: PRINT: GOTO 20

and the second in assembly language:

 1 ********************************

 2 * AL13-INPUT ROUTINE FP BASIC *

 3 ********************************

 4 *

 5 * IN$="" MUST BE FIRST VARIABLE

 6 * DEFINED IN PROGRAM!

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 GETLN EQU $FD6F

 12 VARTAB EQU $69

 13 BUFF EQU $200

 14 *

 15 *

0300: A2 00 16 ENTRY LDX #$00

0302: 20 6F FD 17 JSR GETLN

0305: A0 02 18 LDY #$02

0307: 8A 19 TXA

0308: 91 69 20 STA (VARTAB),Y

 21 * STORE ’X-REG = LEN OF IN$’

 22 * IN LEN BYTE OF IN$

 23 *

030A: C8 24 INY ; Y = 3

030B: A9 00 25 LDA #$00

030D: 91 69 26 STA (VARTAB),Y

13. I/O Routines 111

030F: C8 27 INY ; Y = 4

0310: A9 02 28 LDA #$02

0312: 91 69 29 STA (VARTAB),Y

 30 * SET LOCATION PTR OF IN$ TO

 31 * $200 (INPUT BUFFER)

 32 *

0314: 8A 33 XFER TXA

0315: A8 34 TAY ; Y-REG = LEN NOW

0316: B9 00 02 35 X2 LDA BUFF,Y

0319: 29 7F 36 AND #$7F

031B: 99 00 02 37 STA BUFF,Y

031E: 88 38 DEY

031F: C0 FF 39 CPY #$FF

0321: D0 F3 40 BNE X2

 41 *

0323: 60 42 DONE RTS

0324: 62 43 CHK

!e important diference to notice here is thatIN$ has been deined as the
irst variable in the Applesot program, and that the assembly-language routine
uses this fact to transfer the string to Applesot.
!e way this is done begins atXFER. When an Applesot string variable is

stored, the name, length, and location of the string are put in a table whose
beginning is pointed to by locations $69, $6A (VARTAB, VARTAB+1).
SinceIN$ was the irst variable deined, we know that its name and pointer

will start at whereverVARTAB points. !e name is held in positions$00 and$01,
the length in $02, and the location in $03 and $04.

By loading the Y-Register with#$02, we can store the length of the entered
string in the proper place. !e location ofIN$ is then set to$200 by putting the
appropriate bytes into positions$03 and$04. Now Applesot is temporarily
fooled into thinking that IN$ is at $200–right where our input string is held!
!e routine inishes by clearing the high bit, as before, and then returning

with the RTS.

]

112 Assembly Lines

When the RTS is done, line 30 of the Applesot program immediately assigns
IN$ to itself in such a way as to force Applesot to moveIN$ from where it was in
the input bufer to a new location up in its usual variable storage area. !e net
result can be obtained in various other ways besides theMID$ statement, but the
way shown is the least intrusive in terms of afecting other variables. (You could
useA$=IN$: IN$=A$, but then you’d need a second variable in your program–
no problem, just more names to keep track of.)
Make sure the input routine is loaded at$300 before running the Applesot

program. Note that you can enter commas, quotes,<CTRL>C’s, etc. Only entering
END or pressing RESET should be able to exit this routine.

14. Reading and Writing Files on Disk
November 1981

Reading and Writing Data Files

!is chapter will challenge your devotion to the cause of learning assem-
bly-language programming. Up until now the source listings have been very
short and easily typed in a few minutes’ time. Unfortunately, the listings for this
chapter are a bit longer than usual. But chin up! !e result will be worth it! I’ve
received quite a number of requests for information on how to read and write
iles on the disk. !e programs listed will combine many of the techniques and
routines you’ve learned so far into a single mini-database program.1

!e irst program saves and loads the data by means of a simple
BSAVE/BLOAD operation. !is is fast and very straightforward. Here’s the listing:

 1 ********************************

 2 * AL14-NAME FILE DEMO PROGRAM *

 3 ********************************

 4 *

 5 *

 6 ORG $6000

 7 *

 8 HOME EQU $FC58

 9 COUT EQU $FDED

 10 RDKEY EQU $FD0C

 11 GETLN EQU $FD75

 12 BUFF EQU $200

 13 VTAB EQU $FC22

 14 CH EQU $24

 15 CV EQU $25

 16 CTR EQU $08

 17 PTR EQU $06

 18 REENTRY EQU $3D0

 19 *

 20 *

6000: A9 00 21 ENTRY LDA #$00

6002: 85 06 22 STA PTR

1[CT] !ese two programs will work only in DOS, not ProDOS. According toBeneath
Apple ProDOS (Don Worth and Pieter Lechner, Quality Sotware, 1984, p. 6-61),
<CTRL>D does not work with ProDOS commands from assembly code. Instead, you
must place the command string in theGETLN input bufer at$200 and then call the
BASIC Interpreter (BI) at $BE03. !is is let as an exercise for the reader.

]

14

114 Assembly Lines

6004: A9 10 23 LDA #$10

6006: 85 07 24 STA PTR+1

6008: A9 B1 25 LDA #$B1

600A: 85 08 26 STA CTR

 27 *

600C: A0 00 28 CLR LDY #$00

600E: 91 06 29 STA (PTR),Y

6010: C8 30 INY

6011: A9 A0 31 LDA #$A0

6013: 91 06 32 STA (PTR),Y

6015: A9 00 33 LDA #$00

6017: C8 34 INY

6018: 91 06 35 STA (PTR),Y

601A: E6 07 36 INC PTR+1

601C: E6 08 37 INC CTR

601E: A5 08 38 LDA CTR

6020: C9 B6 39 CMP #$B6

6022: 90 E8 40 BCC CLR

 41 *

 42 * PUTS ’#1-5,SPC,00’ IN BUFFER

 43 *

6024: 20 58 FC 44 MENU JSR HOME

6027: A9 02 45 P1 LDA #$02

6029: 85 25 46 STA CV ; VTAB 3

602B: 20 22 FC 47 JSR VTAB

602E: 20 C2 61 48 JSR PRINT

6031: B1 A9 A0 49 ASC "1) INPUT NAMES"

6034: C9 CE D0 D5 D4 A0 CE C1

603C: CD C5 D3

603F: 8D 00 50 HEX 8D00

 51 *

6041: A9 04 52 P2 LDA #$04

6043: 85 25 53 STA CV

6045: 20 22 FC 54 JSR VTAB ; VTAB 5

6048: 20 C2 61 55 JSR PRINT

604B: B2 A9 A0 56 ASC "2) PRINT NAMES"

604E: D0 D2 C9 CE D4 A0 CE C1

6056: CD C5 D3

6059: 8D 00 57 HEX 8D00

 58 *

605B: A9 06 59 P3 LDA #$06

605D: 85 25 60 STA CV

605F: 20 22 FC 61 JSR VTAB ; VTAB 7

6062: 20 C2 61 62 JSR PRINT

6065: B3 A9 A0 63 ASC "3) SAVE NAMES"

6068: D3 C1 D6 C5 A0 CE C1 CD

6070: C5 D3

6072: 8D 00 64 HEX 8D00

 65 *

6074: A9 08 66 P4 LDA #$08

6076: 85 25 67 STA CV

6078: 20 22 FC 68 JSR VTAB ; VTAB 9

607B: 20 C2 61 69 JSR PRINT

607E: B4 A9 A0 70 ASC "4) LOAD NAMES"

6081: CC CF C1 C4 A0 CE C1 CD

6089: C5 D3

14. Reading and Writing Files on Disk 115

608B: 8D 00 71 HEX 8D00

 72 *

608D: A9 0A 73 P5 LDA #$0A

608F: 85 25 74 STA CV

6091: 20 22 FC 75 JSR VTAB ; VTAB 11

6094: 20 C2 61 76 JSR PRINT

6097: B5 A9 A0 77 ASC "5) END PROGRAM"

609A: C5 CE C4 A0 D0 D2 CF C7

60A2: D2 C1 CD

60A5: 8D 00 78 HEX 8D00

 79 *

60A7: A9 0C 80 P6 LDA #$0C

60A9: 85 25 81 STA CV

60AB: 20 22 FC 82 JSR VTAB ; VTAB 13

60AE: 20 C2 61 83 JSR PRINT

60B1: D7 C8 C9 84 ASC "WHICH DO YOU WANT? "

60B4: C3 C8 A0 C4 CF A0 D9 CF

60BC: D5 A0 D7 C1 CE D4 BF A0

60C4: 00 85 HEX 00

 86 *

60C5: 20 0C FD 87 M1 JSR RDKEY

60C8: C9 B1 88 CMP #$B1 ; '1'

60CA: D0 06 89 BNE M2

60CC: 20 FD 60 90 JSR INPUT

60CF: 4C 24 60 91 JMP MENU

60D2: C9 B2 92 M2 CMP #$B2 ; '2'

60D4: D0 09 93 BNE M3

60D6: 20 42 61 94 JSR DSPLY

60D9: 20 0C FD 95 JSR RDKEY

60DC: 4C 24 60 96 JMP MENU

60DF: C9 B3 97 M3 CMP #$B3 ; '3'

60E1: D0 06 98 BNE M4

60E3: 20 78 61 99 JSR SAVE

60E6: 4C 24 60 100 JMP MENU

60E9: C9 B4 101 M4 CMP #$B4 ; '4'

60EB: D0 06 102 BNE M5

60ED: 20 A0 61 103 JSR LOAD

60F0: 4C 24 60 104 JMP MENU

60F3: C9 B5 105 M5 CMP #$B5 ; '5'

60F5: D0 03 106 BNE M6

60F7: 4C D0 03 107 JMP REENTRY

60FA: 4C 24 60 108 M6 JMP MENU

 109 *

 110 *

60FD: 20 42 61 111 INPUT JSR DSPLY ; SHOW WHAT’S THERE

 112 *

6100: A9 00 113 I0 LDA #$00

6102: 85 06 114 STA PTR

6104: A9 10 115 LDA #$10

6106: 85 07 116 STA PTR+1 ; SET PTR=$1000

 117 *

6108: A9 00 118 LDA #$00

610A: 85 08 119 STA CTR

610C: 18 120 ILOOP CLC

610D: A5 08 121 LDA CTR

610F: 65 08 122 ADC CTR

]

116 Assembly Lines

6111: 85 25 123 STA CV

6113: 20 22 FC 124 JSR VTAB

6116: A9 00 125 LDA #$00

6118: 85 24 126 STA CH

611A: A8 127 TAY

611B: 20 29 61 128 JSR IP

611E: E6 07 129 INC PTR+1

6120: E6 08 130 INC CTR

6122: A9 04 131 LDA #$04

6124: C5 08 132 CMP CTR

6126: B0 E4 133 BCS ILOOP ; GET 5 NAMES

 134 *

6128: 60 135 IFIN RTS

 136 *

6129: A2 00 137 IP LDX #$00

612B: 20 75 FD 138 JSR GETLN

612E: 8A 139 TXA

612F: F0 10 140 BEQ IPFIN ; EXIT IF <CR> ONLY

6131: A8 141 TAY

6132: A9 00 142 LDA #$00

6134: 99 00 02 143 STA BUFF,Y

6137: B9 00 02 144 IPLOOP LDA BUFF,Y

613A: 91 06 145 STA (PTR),Y ; MOVE DATA TO PTR

 146 * ; BLOCK

613C: 88 147 DEY

613D: C0 FF 148 CPY #$FF

613F: D0 F6 149 BNE IPLOOP

6141: 60 150 IPFIN RTS

 151 *

6142: 20 58 FC 152 DSPLY JSR HOME

6145: A9 00 153 LDA #$00

6147: 85 08 154 STA CTR

 155 *

6149: 85 06 156 STA PTR

614B: A9 10 157 LDA #$10

614D: 85 07 158 STA PTR+1

614F: 18 159 D0 CLC

6150: A5 08 160 LDA CTR

6152: 65 08 161 ADC CTR

6154: 85 25 162 STA CV ; VTAB (2*CTR)+1

6156: 20 22 FC 163 JSR VTAB

6159: A9 00 164 LDA #$00

615B: 85 24 165 STA CH ; HTAB 1

615D: A8 166 TAY

 167 *

615E: B1 06 168 D1 LDA (PTR),Y

6160: F0 06 169 BEQ D1FIN

6162: 20 ED FD 170 JSR COUT

6165: C8 171 INY

6166: D0 F6 172 BNE D1 ; (ALWAYS)

 173 *

6168: A9 8D 174 D1FIN LDA #$8D

616A: 20 ED FD 175 JSR COUT ; END WITH <CR>

616D: E6 07 176 INC PTR+1

616F: E6 08 177 INC CTR

6171: A9 04 178 LDA #$04

14. Reading and Writing Files on Disk 117

6173: C5 08 179 CMP CTR

6175: B0 D8 180 BCS D0 ; PRINT 5 NAMES

 181 *

6177: 60 182 DSFIN RTS

 183 *

 184 *

6178: A9 8D 185 SAVE LDA #$8D

617A: 20 ED FD 186 JSR COUT ; CLEAR OUTPUT BUFFER

617D: 20 C2 61 187 OPEN JSR PRINT

6180: 84 188 HEX 84

6181: C2 D3 C1 189 ASC "BSAVE DEMOFILE,A$1000,L$500"

6184: D6 C5 A0 C4 C5 CD CF C6

618C: C9 CC C5 AC C1 A4 B1 B0

6194: B0 B0 AC CC A4 B5 B0 B0

619C: 8D 00 190 HEX 8D00

 191 *

619E: 60 192 SFIN RTS

 193 *

 194 *

619F: A9 8D 195 LOAD LDA #$8D

61A1: 20 ED FD 196 JSR COUT

 197 *

61A4: 20 C0 61 198 JSR PRINT

61A7: 84 199 HEX 84

61A8: C2 CC CF 200 ASC "BLOAD DEMOFILE,A$1000"

61AB: C1 C4 A0 C4 C5 CD CF C6

61B3: C9 CC C5 AC C1 A4 B1 B0

61BB: B0 B0

61BD: 8D 00 201 HEX 8D00

 202 *

61BF: 60 203 RTS

 204 *

 205 *

 206 *

61C0: 68 207 PRINT PLA

61C1: 85 06 208 STA PTR

61C3: 68 209 PLA

61C4: 85 07 210 STA PTR+1

61C6: A0 01 211 LDY #$01

61C8: B1 06 212 P0 LDA (PTR),Y

61CA: F0 06 213 BEQ PFIN

61CC: 20 ED FD 214 JSR COUT

61CF: C8 215 INY

61D0: D0 F6 216 BNE P0 ; (ALWAYS)

 217 *

61D2: 18 218 PFIN CLC

61D3: 98 219 TYA

61D4: 65 06 220 ADC PTR

61D6: 85 06 221 STA PTR

61D8: A5 07 222 LDA PTR+1

61DA: 69 00 223 ADC #$00

61DC: 48 224 PHA

61DD: A5 06 225 LDA PTR

61DF: 48 226 PHA

61E0: 60 227 EXIT RTS

 228 *

]

118 Assembly Lines

 229 *

61E1: 00 230 EOF BRK

 231 *

 232 *

61E2: 89 233 CHK

To understand how it works, consider these conditions:
Data will be stored in the area from$1000-$14FF. !is area is called abufer.

A total of ive strings will be stored, each beginning at an exact page boundary
($1000,$1100,$1200, etc.). It is assumed that no string will be longer than 255
bytes–a fairly safe assumption since the INPUT routine won’t allow this either.
A zero-page pointer (cleverly labeledPTR) will be used to control which

range in the bufer is currently being accessed for a particular string.
!e basic routines used to make the overall idea work are as follows:

1. An INPUT routine using the Monitor ($FD6F=GETLN).2

2. A PRINT routine using a JSR and a stack manipulation. (Not the DATA type.)

3. A single-key input routine present in the Monitor used to get the command
key ($FD0C=RDKEY).

4. !e execution of DOS commands from assembly language by preceding
phrases with a <CTRL>D.

To use the program, call it directly from BASIC with aCALL 24576. A menu
will appear with these choices:

1) INPUT NAMES

2) PRINT NAMES

3) SAVE NAMES

4) LOAD NAMES

5) END PROGRAM

To try the routine out, use option 1 to enter ive sample names. !en use
option 2 to view the data you’ve entered. You may then use option 3 to save the
data as a binary ile on a diskette. !en rerun the program, and verify that only
the numbers 1 through 5 exist in the bufer (option 2). !en retrieve your data
by using theLOAD command (option 4), and view again to conirm a successful
load.
In detail, this is how the program works:
At entry,PTR is set to point to$1000, where the name bufer begins. !e

Accumulator is then loaded with the ASCII value for the character 1, and the CLR
routine entered.

2[CT] Technically, our program is usingNXTCHAR ($FD75) instead of GETLN ($FD6A), to
avoid printing out the prompt character.

14. Reading and Writing Files on Disk 119

CLR puts the characters 1 through 5 into each of the string spaces. Each digit
is followed by a<SPACE>, and then a$00. I used$00 as an end-of-string marker,
but the choice is somewhat arbitrary.

MENU clears the screen and presents the user with the available choices.
Points of interest here are theVTAB operation and thePRINT routine. ToVTAB to
a given line from assembly language, one of the easiest ways is to loadCV with
the line you wish to go to, and thenJSR to the Monitor’sVTAB routine ($FC22).
Normally, we might also wish to either print a carriage return, or setCH to 0.
Note thatCV andCH are the computer’s vertical and horizontal cursor position
bytes, as used by the Monitor. You can always tell the cursor position by examin-
ing these bytes, andCH may be forced to a desired value to accomplish the same
as an HTAB in BASIC.
!ePRINT routine is the one described in chapter 13, and is useful because

theJSR PRINT can be followed immediately with the data to print. !is is more
similar to the BASICPRINT statement, and also avoids setting up a lot of speciic
data tables to do the printing.
Once the menu is printed on the screen, line 87 of the source ile does the

JSR toRDKEY. !is gets the command key from the user, which is then tested by
the M1 to M6 series of checks.
Ater callingRDKEY the keyboard value was returned in the Accumulator,

and we can directly test to see which key was pressed. !e key is then compared
with each of the ive desired responses. If no match is found, the program jumps
back toMENU to repeat the display and command input. Other thanRESET,
option 5 is the only way to exit the program.
Let’s examine the menu options:
If you enter 1, control is directed to the section labeledINPUT. !e irst thing

done there is toJSR toDSPLY. At this point, it’s necessary only to understand
that DSPLY just clears the screen and shows the ive strings currently in memory.
AterDSPLY,PTR is initialized to point to the beginning of the bufer

($1000), and the counter is set to 0. !e mainINPUT loop comes next. HereCTR
is used to calculate what line (vertical position) to put the cursor on. (DSPLY used
the same algorithm to display the current data.) AterVTAB, the equivalent of
HTAB is done, followed by the jump to the actual input routine, here labeledIP.
!is is the routine from the previous chapter that gets a line and then moves it to
a location indicated by PTR.
!ere are a few subtle items in theIP routine that should be noted. !e irst

is line 140. If<RETURN> alone is entered (i.e. no new data), the routine immedi-
ately returns without rewriting the old string. !is is to allow editing of a single
entry by skipping the entries not of interest. Try it to see how it works.
!e second item is the characteristic of this particular input routine to put

the trailing zero at the end of the line. !is is done on lines 141−143.

]

120 Assembly Lines

When it returns fromIP, the counter is incremented and checked to see if it
exceeds#$04. If not,ILOOP repeats until ive strings have been input. Ater the
ith string is entered, the program returns to the menu.
If option 2 is entered, theDSPLY routine is called. !e sole purpose of this

section is to clear the screen and print the ive names in memory. At entry to
DSPLY, aJSR $FC58 does aHOME and theCTR is initialized to 0. As in theINPUT
section, CTR is then used to calculate the VTAB position to print each line.

D1 is the part that actually prints each line by scanning (and outputting
throughCOUT) all of the bytes at each range indicated byPTR. Note that as a
safety check, if a 0 did not happen to be present due to some other error, eventu-
ally the Y-Register will pass #$FF and the program will fall through to DIFIN.

DIFIN provides an ending carriage return to the string and then increments
CTR until all ive strings have been printed.
!e load/save operations are quite simple. Knowing where the bufer is

located, the entire block is accessed by doing either aBLOAD or BSAVE. Remember
that disk commands are done from assembly language just as they would be
done from BASIC. !e program need only output a<CTRL>D followed by a legal
DOS command and a<RETURN>. Again thePRINT routine is used to facilitate
this.
If option 5 is entered, then theJMP to the DOS BASIC entry vector is exe-

cuted to end the program.

Reading and Writing Text Files

!is second listing is basically a modiication of the irst program. If you
wish, rather than retype the entire ile, you can just edit the irst listing to add
lines 20−29 and 194−228.

 1 ********************************

 2 * AL14-NAME FILE DEMO PROGRAM 2*

 3 ********************************

 4 *

 5 *

 6 * OBJ $6000

 7 ORG $6000

 8 *

 9 HOME EQU $FC58

 10 COUT EQU $FDED

 11 RDKEY EQU $FD0C

 12 GETLN EQU $FD75

 13 BUFF EQU $200

 14 VTAB EQU $FC22

 15 CH EQU $24

 16 CV EQU $25

 17 CTR EQU $08

 18 PTR EQU $06

 19 *

 20 PROMPT EQU $33

14. Reading and Writing Files on Disk 121

 21 CURLIN EQU $75

 22 LANG EQU $AAB6

 23 REENTRY EQU $3D0

 24 *

6000: A9 40 25 ENTRY LDA #$40

6002: 8D B6 AA 26 STA LANG ; LANG = FP

6005: 85 76 27 STA CURLIN+1 ; RUNNING PROG

6007: A9 06 28 LDA #$06

6009: 85 33 29 STA PROMPT ; NOT DIRECT MODE

600B: A9 00 30 LDA #$00

600D: 85 06 31 STA PTR

600F: A9 10 32 LDA #$10

6011: 85 07 33 STA PTR+1

6013: A9 B1 34 LDA #$B1

6015: 85 08 35 STA CTR

 36 *

6017: A0 00 37 CLR LDY #$00

6019: 91 06 38 STA (PTR),Y

601B: C8 39 INY

601C: A9 A0 40 LDA #$A0

601E: 91 06 41 STA (PTR),Y

6020: A9 00 42 LDA #$00

6022: C8 43 INY

6023: 91 06 44 STA (PTR),Y

6025: E6 07 45 INC PTR+1

6027: E6 08 46 INC CTR

6029: A5 08 47 LDA CTR

602B: C9 B6 48 CMP #$B6

602D: 90 E8 49 BCC CLR

 50 *

 51 * PUTS ’#1-5,SPC,00’ IN BUFFER

 52 *

602F: 20 58 FC 53 MENU JSR HOME

6032: A9 02 54 P1 LDA #$02

6034: 85 25 55 STA CV ; VTAB 3

6036: 20 22 FC 56 JSR VTAB

6039: 20 0A 62 57 JSR PRINT

603C: B1 A9 A0 58 ASC "1) INPUT NAMES"

603F: C9 CE D0 D5 D4 A0 CE C1

6047: CD C5 D3

604A: 8D 00 59 HEX 8D00

 60 *

604C: A9 04 61 P2 LDA #$04

604E: 85 25 62 STA CV

6050: 20 22 FC 63 JSR VTAB ; VTAB 5

6053: 20 0A 62 64 JSR PRINT

6056: B2 A9 A0 65 ASC "2) PRINT NAMES"

6059: D0 D2 C9 CE D4 A0 CE C1

6061: CD C5 D3

6064: 8D 00 66 HEX 8D00

 67 *

6066: A9 06 68 P3 LDA #$06

6068: 85 25 69 STA CV

606A: 20 22 FC 70 JSR VTAB ; VTAB 7

606D: 20 0A 62 71 JSR PRINT

6070: B3 A9 A0 72 ASC "3) SAVE NAMES"

]

122 Assembly Lines

6073: D3 C1 D6 C5 A0 CE C1 CD

607B: C5 D3

607D: 8D 00 73 HEX 8D00

 74 *

607F: A9 08 75 P4 LDA #$08

6081: 85 25 76 STA CV

6083: 20 22 FC 77 JSR VTAB ; VTAB 9

6086: 20 0A 62 78 JSR PRINT

6089: B4 A9 A0 79 ASC "4) LOAD NAMES"

608C: CC CF C1 C4 A0 CE C1 CD

6094: C5 D3

6096: 8D 00 80 HEX 8D00

 81 *

6098: A9 0A 82 P5 LDA #$0A

609A: 85 25 83 STA CV

609C: 20 22 FC 84 JSR VTAB ; VTAB 11

609F: 20 0A 62 85 JSR PRINT

60A2: B5 A9 A0 86 ASC "5) END PROGRAM"

60A5: C5 CE C4 A0 D0 D2 CF C7

60AD: D2 C1 CD

60B0: 8D 00 87 HEX 8D00

 88 *

60B2: A9 0C 89 P6 LDA #$0C

60B4: 85 25 90 STA CV

60B6: 20 22 FC 91 JSR VTAB ; VTAB 13

60B9: 20 0A 62 92 JSR PRINT

60BC: D7 C8 C9 93 ASC "WHICH DO YOU WANT? "

60BF: C3 C8 A0 C4 CF A0 D9 CF

60C7: D5 A0 D7 C1 CE D4 BF A0

60CF: 00 94 HEX 00

 95 *

60D0: 20 0C FD 96 M1 JSR RDKEY

60D3: C9 B1 97 CMP #$B1 ; '1'

60D5: D0 06 98 BNE M2

60D7: 20 08 61 99 JSR INPUT

60DA: 4C 2F 60 100 JMP MENU

60DD: C9 B2 101 M2 CMP #$B2 ; '2'

60DF: D0 09 102 BNE M3

60E1: 20 4D 61 103 JSR DSPLY

60E4: 20 0C FD 104 JSR RDKEY

60E7: 4C 2F 60 105 JMP MENU

60EA: C9 B3 106 M3 CMP #$B3 ; '3'

60EC: D0 06 107 BNE M4

60EE: 20 83 61 108 JSR SAVE

60F1: 4C 2F 60 109 JMP MENU

60F4: C9 B4 110 M4 CMP #$B4 ; '4'

60F6: D0 06 111 BNE M5

60F8: 20 C7 61 112 JSR LOAD

60FB: 4C 2F 60 113 JMP MENU

60FE: C9 B5 114 M5 CMP #$B5 ; '5'

6100: D0 03 115 BNE M6

6102: 4C D0 03 116 JMP REENTRY

6105: 4C 2F 60 117 M6 JMP MENU

 118 *

 119 *

6108: 20 4D 61 120 INPUT JSR DSPLY ; SHOW WHAT’S THERE

14. Reading and Writing Files on Disk 123

 121 *

610B: A9 00 122 I0 LDA #$00

610D: 85 06 123 STA PTR

610F: A9 10 124 LDA #$10

6111: 85 07 125 STA PTR+1 ; SET PTR=$1000

 126 *

6113: A9 00 127 LDA #$00

6115: 85 08 128 STA CTR

6117: 18 129 ILOOP CLC

6118: A5 08 130 LDA CTR

611A: 65 08 131 ADC CTR

611C: 85 25 132 STA CV

611E: 20 22 FC 133 JSR VTAB

6121: A9 00 134 LDA #$00

6123: 85 24 135 STA CH

6125: A8 136 TAY

6126: 20 34 61 137 JSR IP

6129: E6 07 138 INC PTR+1

612B: E6 08 139 INC CTR

612D: A9 04 140 LDA #$04

612F: C5 08 141 CMP CTR

6131: B0 E4 142 BCS ILOOP ; GET 5 NAMES

 143 *

6133: 60 144 IFIN RTS

 145 *

6134: A2 00 146 IP LDX #$00

6136: 20 75 FD 147 JSR GETLN

6139: 8A 148 TXA

613A: F0 10 149 BEQ IPFIN ; EXIT IF <CR> ONLY

613C: A8 150 TAY

613D: A9 00 151 LDA #$00

613F: 99 00 02 152 STA BUFF,Y

6142: B9 00 02 153 IPLOOP LDA BUFF,Y

6145: 91 06 154 STA (PTR),Y ; MOVE DATA TO PTR

 155 * ; BLOCK

6147: 88 156 DEY

6148: C0 FF 157 CPY #$FF

614A: D0 F6 158 BNE IPLOOP

614C: 60 159 IPFIN RTS

 160 *

614D: 20 58 FC 161 DSPLY JSR HOME

6150: A9 00 162 LDA #$00

6152: 85 08 163 STA CTR

 164 *

6154: 85 06 165 STA PTR

6156: A9 10 166 LDA #$10

6158: 85 07 167 STA PTR+1

615A: 18 168 D0 CLC

615B: A5 08 169 LDA CTR

615D: 65 08 170 ADC CTR

615F: 85 25 171 STA CV ; VTAB (2*CTR)+1

6161: 20 22 FC 172 JSR VTAB

6164: A9 00 173 LDA #$00

6166: 85 24 174 STA CH ; HTAB 1

6168: A8 175 TAY

 176 *

]

124 Assembly Lines

6169: B1 06 177 D1 LDA (PTR),Y

616B: F0 06 178 BEQ D1FIN

616D: 20 ED FD 179 JSR COUT

6170: C8 180 INY

6171: D0 F6 181 BNE D1 ; (ALWAYS)

 182 *

6173: A9 8D 183 D1FIN LDA #$8D

6175: 20 ED FD 184 JSR COUT ; END WITH <CR>

6178: E6 07 185 INC PTR+1

617A: E6 08 186 INC CTR

617C: A9 04 187 LDA #$04

617E: C5 08 188 CMP CTR

6180: B0 D8 189 BCS D0 ; PRINT 5 NAMES

 190 *

6182: 60 191 DSFIN RTS

 192 *

 193 *

6183: A9 8D 194 SAVE LDA #$8D

6185: 20 ED FD 195 JSR COUT ; CLEAR OUTPUT BUFFER

6188: 20 0A 62 196 OPENW JSR PRINT

618B: 84 197 HEX 84 ; <CTRL>D

618C: CF D0 C5 198 ASC "OPEN DEMOTEXTFILE"

618F: CE A0 C4 C5 CD CF D4 C5

6197: D8 D4 C6 C9 CC C5

619D: 8D 84 199 HEX 8D84

619F: D7 D2 C9 200 WRITE ASC "WRITE DEMOTEXTFILE"

61A2: D4 C5 A0 C4 C5 CD CF D4

61AA: C5 D8 D4 C6 C9 CC C5

61B1: 8D 00 201 HEX 8D00

 202 *

61B3: 20 4D 61 203 SVLOOP JSR DSPLY ; PRINT NAMES TO DISK

 204 *

61B6: 20 02 62 205 CLOSEW JSR PRINT

61B9: 8D 84 206 HEX 8D84

61BB: C3 CC CF 207 ASC "CLOSE"

61BE: D3 C5

61C0: 8D 00 208 HEX 8D00

61C2: 60 209 SVFIN RTS

 210 *

 211 *

61C3: A9 8D 212 LOAD LDA #$8D

61C5: 20 ED FD 213 JSR COUT

 214 *

61C8: 20 02 62 215 OPENR JSR PRINT

61CB: 84 216 HEX 84

61CC: CF D0 C5 217 ASC "OPEN DEMOTEXTFILE"

61CF: CE A0 C4 C5 CD CF D4 C5

61D7: D8 D4 C6 C9 CC C5

61DD: 8D 84 218 HEX 8D84

61DF: D2 C5 C1 219 READ ASC "READ DEMOTEXTFILE"

61E2: C4 A0 C4 C5 CD CF D4 C5

61EA: D8 D4 C6 C9 CC C5

61F0: 8D 00 220 HEX 8D00

 221 *

61F2: 20 0B 61 222 RDLOOP JSR I0 ; GET NAMES FROM DISK

 223 *

14. Reading and Writing Files on Disk 125

61F5: 20 02 62 224 CLOSER JSR PRINT

61F8: 8D 84 225 HEX 8D84

61FA: C3 CC CF 226 ASC "CLOSE"

61FD: D3 C5

61FF: 8D 00 227 HEX 8D00

6201: 60 228 RDFIN RTS

 229 *

 230 *

 231 *

6202: 68 232 PRINT PLA

6203: 85 06 233 STA PTR

6205: 68 234 PLA

6206: 85 07 235 STA PTR+1

6208: A0 01 236 LDY #$01

620A: B1 06 237 P0 LDA (PTR),Y

620C: F0 06 238 BEQ PFIN

620E: 20 ED FD 239 JSR COUT

6211: C8 240 INY

6212: D0 F6 241 BNE P0 ; (ALWAYS)

 242 *

6214: 18 243 PFIN CLC

6215: 98 244 TYA

6216: 65 06 245 ADC PTR

6218: 85 06 246 STA PTR

621A: A5 07 247 LDA PTR+1

621C: 69 00 248 ADC #$00

621E: 48 249 PHA

621F: A5 06 250 LDA PTR

6221: 48 251 PHA

6222: 60 252 EXIT RTS

 253 *

 254 *

6223: 00 255 EOF BRK

 256 *

 257 *

6224: A1 258 CHK

!e theory to this second program is fairly simple. If you think about it, the
INPUT andDSPLY sections are essentially equivalent to aFOR I=1 TO 5/NEXT I
type loop that respectively inputs and prints ive strings. In a BASIC program, all
that would be required to access a text ile would be to precede the execution of
those routines with theOPEN,READ and theOPEN,WRITE commands. (I’m assum-
ing you’re familiar with the normal access of Apple DOS text iles. If not, read
your manual!)
If you examine the new save and load routines you’ll notice two changes.

First, rather than printingBSAVE orBLOAD, the iles areOPENed and theREAD or
WRITE command output. Notice that each command begins with a<CTRL>D and
ends with a carriage return. Second, ater the command is printed, aJSR is done
to theIP orDSPLY routine as is appropriate. Last of all, aCLOSE is output before
returning to the menu.

]

126 Assembly Lines

According to what we know so far, these should be the only changes neces-
sary to access text iles. !ere is one last catch though.
Apple DOS complicates things by not allowing the user toOPEN text iles

from the immediate mode. When a machine language program is running, DOS
thinks we’re still in the immediate mode and won’t let us access the text iles.
What’s needed is a way to fool DOS into thinking we’re running a program.
!is is done by using three internal management locations in the Apple.

LANG ($AAB6) is what DOS uses to keep track of which language is currently run-
ning.CURLIN ($75,$76) is Applesot’s register for the bytes of the program line
number currently being executed. In the immediate mode, the high-order byte
($76) defaults to#$FF. Applesot can tell if a program is running by looking for a
non-#$FF value in this location. !e other way it knows a program is running is
to check location$33, which holds the ASCII value for the prompt character. In
the immediate mode of Applesot, this is#$DD, equivalent to the ‘]’ character. In
a running program, this changes to #$06.
To fool DOS, all we need to do is load these three locations appropriately at

the beginning of the routine. Finally, when exiting the program, rather than
using a simpleRTS, theJMP $3D0 is executed to do a sot reentry to BASIC. !is
will restore the bytes we’ve altered to fool DOS and also return us to the current
language.3

Try these programs out. You’ll ind they make an excellent summary of
many of the ideas and routines discussed so far, and they also provide a valuable
model for your own programs.

3Some people have also inquired as to whether the check for a write-protect label can be
defeated by modifying DOS. !e answer is yes and no. Yes, the part of the code that
generates the error can be eliminated, but because the write-protect switch is physically
wired into the recording head’s write system, you cannot defeat it without actually
removing or altering the switch itself.

15. Special Programming Techniques
December 1981

It has long been my feeling that it is not enough just to know an arbitrary
selection of options or commands when using any tool, program, or program-
ming language. Equally important are the techniques with which the options are
combined to achieve the desired results.
With time and practice you will develop your own skills at creating eicient

assembly-language routines, but that process can be assisted by examining the
techniques that others have developed in previous programming eforts.
I have tried in this book to provide a reasonable mix of programming tech-

niques, along with the usual ration of new commands.

Relocatable versus Non-relocatable Code

In chapter 13 I presented two print subroutines for the output of text to the
screen or disk text ile. !e disadvantage of both routines is that they are not
relocatable. To see what this means, consider the following program:

 1 ********************************

 2 *AL15-NON-RELOCATABLE PRINT DEMO

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 COUT EQU $FDED

 9 *

 10 *

0300: 20 0D 03 11 ENTRY JSR PRNT

 12 *

0303: 4C 0C 03 13 DONE JMP EXIT

 14 *

0306: D4 C5 D3 15 DATA ASC "TEST"

0309: D4

030A: 8D 00 16 HEX 8D00

 17 *

030C: 60 18 EXIT RTS

 19 *

030D: A2 00 20 PRNT LDX #$00

030F: BD 06 03 21 LOOP LDA DATA,X

0312: F0 EF 22 BEQ DONE

0314: 20 ED FD 23 JSR COUT

0317: E8 24 INX

]

15

128 Assembly Lines

0318: D0 F5 25 BNE LOOP

031A: 60 26 FIN RTS

!is program, as written, can run only at the location speciied by theORG
statement, in this case$300. !us it is callednon-relocatable code. Machine code
becomes non-relocatable through the use of any statements which involve abso-
lute addressing. !e most common examples are theJMP andJSR commands,
and the use of data statements, usually in print routines.
!e irst statement of this type occurs on line 11. !e JSR to PRNT ($30D) will

work only so long asPRNT is at$30D. If the routine were to be loaded into mem-
ory at$400 (instead of$300), the routine would take theJSR to a block of
nonexistent code at $30D.
Likewise, the JMP on line 13 has the same diiculty, as does the DATA,X state-

ment on line 21. Any attempt to run the code at an address other than$300 will
result in disaster.
It should be noted, however, that not allJSRs andJMPs are universally trou-

blesome. !eJSR COUT ($FDED) will execute properly no matter where the object
code is located since the reference is to a location outside of the object code
block.
!e general rule then is that any code which makes reference to absolute

addresses within itself will not be relocatable, whereas code that does not sufer
from this limitation can be run anywhere in memory.
!e problem of relocatability may seem slight since any given routine is

usually designed to be put at a deinite location (usually either at$300 or at the
top of memory) and then protected via theApplesotHIMEM: statement. How-
ever, as the number of routines you use increases, you will encounter more and
more conlicts between routines originally written to occupy the same memory
ranges. In addition, it also is occasionally desirable to directly append machine
code to the end of Applesot programs, where they will loat up and down in
memory at the end of the BASIC portion of the listing, being automatically
moved as lines are added or deleted.
For these reasons, it is better in the long run to write code to run anywhere

in memory when possible, thus avoiding future headaches about where to put
everything.
!e remainder of this chapter will discuss the various ways of avoiding the

use ofabsolute addressing, thus creating code that can be used anywhere in
memory regardless of the ORG statement used at assembly time.

JMP Commands

!is is an example of a common use of theJMP command to jump over a
range of memory, here represented by the ill section. At the destination,EXPT,

15. Special Programming Techniques 129

theBELL routine is called as a trivial example of where a subroutine might be
executed.

 1 ********************************

 2 * AL15-NON-RELOCATABLE JMP DEMO*

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 BELL EQU $FF3A

 9 *

 10 *

0300: 4C 04 03 11 ENTRY JMP EXPT

 12 *

0303: EA 13 FILL NOP

 14 *

0304: 20 3A FF 15 EXPT JSR BELL

 16 *

0307: 60 17 DONE RTS

An alternative to this is the use of aforced branch statement, as shown in
this example:

 1 ********************************

 2 * AL15-RELOCATABLE JMP 1 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 BELL EQU $FF3A

 9 *

 10 *

0300: 18 11 ENTRY CLC

0301: 90 01 12 BCC EXPT

 13 *

0303: EA 14 FILL NOP

 15 *

0304: 20 3A FF 16 EXPT JSR BELL

 17 *

0307: 60 18 DONE RTS

Notice that by clearing the carry and then immediately executing theBCC,
the same result is obtained as when theJMP command was used in the earlier
listing.
!e main caution to observe is that the forced branch cannot be made over

a distance of greater than 127 bytes, although most assemblers will give an error
at assembly time if this is attempted. In addition, since the carry is cleared to
force the branch, routines that set or clear the carry to indicate certain condi-
tions may have compatibility problems with this approach.

]

130 Assembly Lines

Both limitations can be solved by slight modiications to this listing. !e
irst is by using theoverlow lag, oten represented by a V. You should remem-
ber that theStatus Register of the 6502 contains certain lags that are condi-
tioned by various operations. !ese lags can be checked and appropriate
responses can be made depending on their status. Examples of lags already cov-
ered are the carry (C) and zero (Z) lags.
!e overlow lag is another bit in the Status Register which is set either by

the BIT command (the overlow lag is set to bit 6 of the memory location), or by
an ADC command. !e overlow will be set whenever there is a carry from bit 6 to
bit 7 as a result of an ADC operation.
!ese details are mentioned only in passing at this point, and you need not

be concerned if it is not entirely clear. !e main reason for bringing it up is that
the overlow lag is used much more infrequently than the carry, and thus it is a
slightly more desirable lag to use when creating a forced branch.
To make jumps over distances greater than 127 bytes, astepping technique

can be used. !is is done by creating a series of the branch commands through-
out the code to facilitate the program low from one part to another. It is gener-
ally not too diicult to ind breaks between routines to insert the branch
statements required for the stepping action. Both techniques are illustrated here:

 1 ********************************

 2 * AL15-RELOCATABLE JMP 2 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 BELL EQU $FF3A

 9 *

 10 *

0300: B8 11 ENTRY CLV

0301: 50 01 12 BVC STEP

 13 *

0303: EA 14 FILL1 NOP

 15 *

0304: 50 01 16 STEP BVC EXPT

 17 *

0306: EA 18 FILL2 NOP

 19 *

0307: 20 3A FF 20 EXPT JSR BELL

 21 *

030A: 60 22 DONE RTS

Although only one step is shown here, any number may be used, depending
on what is needed to span the required distance.

15. Special Programming Techniques 131

Determining Code Location

Solving theJMP problem is only the beginning of the task. Very oten it is
important to know just where in memory the code is currently being run. One
example of this is the code present on the disk controller cards. Since the card
can be put in one of seven slots, and since each slot occupies a unique memory
range, some technique is required to answer the question, “Where are we?”

 1 ********************************

 2 * AL15-LOCATOR 1 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 RTRN EQU $FF58

 10 STCK EQU $100

 11 *

0300: 20 58 FF 12 ENTRY JSR RTRN

0303: BA 13 TSX

0304: BD 00 01 14 LDA STCK,X

0307: 85 07 15 STA PTR+1

0309: CA 16 DEX

030A: BD 00 01 17 LDA STCK,X

030D: 85 06 18 STA PTR

030F: 60 19 DONE RTS

!e success of this routine is based entirely on both the predictable nature
of the stack and its function when a JSR is executed.
!e stack was briely described in chapter nine. At this point a little greater

detail is necessary. !e stack is a reserved part of memory from$100 to$1FF. It
is used as a temporary holding bufer for various kinds of information required
by the 6502 microprocessor. Information put on the stack is always retrieved in
the opposite order from which it was deposited. !is is oten calledLIFO (“Last-
In First-Out”). !e analogy of a stack of plates was used earlier, but the time has
come to examine what actually occurs.
Whenever aJSR is done, the stack is used to hold the address to which the

return should be made when the expectedRTS is encountered. !e diagrams on
the next page illustrate this. Location$FF58 is a simpleRTS in the Monitor ROM
which will be used to set up adummy return address. Before theJSR, the Stack
Pointer is set to some arbitrary position in the stack. Upon executing the JSR, the
return address of$302 is put on the stack and the Stack Pointer is decremented
two bytes. Note that the stack stores the data from the top down, advancing the
pointer as new data is added. When theRTS is encountered (immediately in the
case of$FF58), the Stack Pointer is returned to its original position and the
return made.

]

132 Assembly Lines

Before JSR $FF58 During JSR $FF58 Ater RTS from $FF58

!e arrow points to the current Stack

Pointer S, which is a one-byte pointer

to the next available position on the

stack (not the last stored byte).

Note that the address stored,$302, is the last byte of theJSR command–or,
put another way, one byte less than the address of the next immediate command
following the JSR.
Upon return from theJSR, the Stack Pointer is transferred to the X-Register

with theTSX command on line 13. Because the Stack Pointer is at the next avail-
able byte on the stack, this will also point at the high-order byte of the return
address still let in memory there. !is is retrieved with theLDA STCK,X on line
15 and put in a temporary pointer locationPTR+1 ($07). !e X-Register is then
decremented and the low-order byte retrieved and put in PTR ($06).
!e inalRTS of the routine returns control to the caller, at which point$06,

$07 may be examined to verify the successful determination of the address$302.
You may wish to run this routine at several diferent locations in memory to ver-
ify that in each case PTR is properly set to ENTRY+2. What you have then is a short
routine which can determine where in memory it is currently being run. !e
only disadvantage to this routine is that the high-order byte is retrieved irst,
thus complicating things if we want to add some ofset value to the return
address. !e desirability of this will be shown shortly. In the meantime, consider
this altered version of the Locator 1 routine:

 1 ********************************

 2 * AL15-LOCATOR 2 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 RTRN EQU $FF58

 10 STCK EQU $100

15. Special Programming Techniques 133

 11 *

0300: 20 58 FF 12 ENTRY JSR RTRN

0303: BA 13 TSX

0304: CA 14 DEX

0305: BD 00 01 15 LDA STCK,X

0308: 85 06 16 STA PTR

030A: E8 17 INX

030B: BD 00 01 18 LDA STCK,X

030E: 85 07 19 STA PTR+1

0310: 60 20 DONE RTS

What I’ve done here is decrement the X-Register (line 14) immediately ater
theTSX statement so that the low-order byte of the address can be retrieved irst.
!eINX is then later used to go back and get the high-order byte. !e advantage
of this system is that it makes adding an ofset much easier.
To show what we can now do, look at this revised print routine:

 1 ********************************

 2 * AL15-RELOCATABLE PRINT 1 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 COUT EQU $FDED

 10 RTRN EQU $FF58

 11 STCK EQU $100

 12 *

 13 *

0300: 20 58 FF 14 ENTRY JSR RTRN

0303: B8 15 CLV

0304: 50 06 16 BVC CONT

 17 *

0306: D4 C5 D3 18 DATA ASC "TEST"

0309: D4

030A: 8D 00 19 HEX 8D00

 20 *

030C: BA 21 CONT TSX

030D: CA 22 DEX

030E: 18 23 CLC

030F: BD 00 01 24 LDA STCK,X

0312: 69 04 25 ADC #$04

0314: 85 06 26 STA PTR

0316: E8 27 INX

0317: BD 00 01 28 LDA STCK,X

031A: 69 00 29 ADC #$00

031C: 85 07 30 STA PTR+1

 31 *

031E: A0 00 32 PRNT LDY #$00

0320: B1 06 33 LOOP LDA (PTR),Y

0322: F0 06 34 BEQ FIN

0324: 20 ED FD 35 JSR COUT

0327: C8 36 INY

]

134 Assembly Lines

0328: D0 F6 37 BNE LOOP ; ALWAYS UNTIL 255

 38 *

032A: 60 39 FIN RTS

032B: 28 40 CHK

Ater calling the dummy return statement, aforced branch over the data
section is done. !is will have no efect on the address remaining on the stack.
AtCONT, we take the general procedure used in Locator 2 and add theCLC and
ADC statements needed to add an ofset to the address on the stack. What we
need is the starting address of the ASCII data to be printed. Since the data starts
at$306 and the address on the stack is$302 (see earlier examples) the ofset
needed is #$04.
!is may seem arbitrary but the value to add will always be#$04 if you

always do theCLV,BVC $XXXX branch immediately ater the return. !en follow
that with the data to be printed.
Once the actual address of the ASCII data has been calculated, it is printed

in the PRNT section by use of the indexed pointer at LOOP.

JSR Simulations

You might get the impression from the above example that a tremendous
code expansion takes place to accomplish the relocatability of a program. !is is
somewhat true, but it depends on how you write the program. !e use ofCLV,
BVC $XXXX takes only three bytes where theJMP $XXXX it was replacing also used
three bytes.
!e stack operations just discussed take a small number of bytes to imple-

ment but could become rather large if used many times. What is needed is a way
to put the stack operations in a subroutine. Unfortunately,JSR is one of the non-
relocatable commands.

 1 ********************************

 2 * AL15-NON-RELOCATABLE JSR DEMO*

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 BELL EQU $FF3A

 9 *

 10 *

0300: 20 04 03 11 ENTRY JSR TEST

 12 *

0303: 60 13 DONE RTS

 14 *

0304: EA 15 TEST NOP

 16 *

0305: 20 3A FF 17 EXPT JSR BELL

 18 *

0308: 60 19 FIN RTS

15. Special Programming Techniques 135

 20 *

 21 * WILL RETURN TO DONE

 22 *

!is routine is very similar to the non-relocatableJMP demo presented ear-
lier, with the exception that the call to theBELL routine has been made a subrou-
tine itself, headed by the labelTEST. In this listing,TEST is followed by a dummy
NOP statement, but we’ll ill that in shortly.
!is program, as written, can run only at the address speciied in theORG

statement. Here is an improved version, using a simulation of the JSR command:

 1 ********************************

 2 *AL15-RELOCATABLE JSR SIMULATION

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 BELL EQU $FF3A

 10 RTRN EQU $FF58

 11 STCK EQU $100

 12 *

 13 *

0300: 20 58 FF 14 ENTRY JSR RTRN

0303: B8 15 CLV

0304: 50 01 16 BVC TEST

 17 *

0306: 60 18 DONE RTS

 19 *

0307: BA 20 TEST TSX

0308: CA 21 DEX

0309: 18 22 CLC

030A: BD 00 01 23 LDA STCK,X

030D: 69 03 24 ADC #$03

030F: 85 06 25 STA PTR

0311: E8 26 INX

0312: BD 00 01 27 LDA STCK,X

0315: 69 00 28 ADC #$00

0317: 85 07 29 STA PTR+1

 30 *

0319: 20 3A FF 31 EXPT JSR BELL

 32 *

031C: A5 07 33 FIX LDA PTR+1

031E: 48 34 PHA

031F: A5 06 35 LDA PTR

0321: 48 36 PHA

0322: 60 37 FIN RTS

 38 *

 39 * WILL RETURN TO DONE

 40 *

!is program is very similar to the Print 1 program, with two exceptions.
First,#$03 is added instead of#$04 to the address on the stack. !is is a subtle

]

136 Assembly Lines

point worth mentioning, and you should review the listings until you feel com-
fortable with what is being done. Remember that the return address for a
JSR/RTS is alwaysone less than the address you want to return to. In the case of
theDATA statement, we needed to know the exact address of the irst character of
the string to be printed. Hence the diference in the ofset value used in each
case.
Once the ofset has been added and the proper return address calculated, the

FIX section uses thePHA commands to put these on the stack. !us when theRTS
is encountered, the program returns toDONE. Notice that we have seemingly vio-
lated two general rules of assembly-language programming. !e irst is using the
PHA commands without correspondingPLA statements, and the second is the use
of an RTS without a calling JSR.
Upon further thought, however, it should become apparent that the two

counteracted each other, and that an RTS is really equivalent to two PLAs.
!e converse of this is using twoPLAs within a routine called by aJSR to

avoid returning to the calling address. !is is equivalent to using aPOP com-
mand in a BASIC subroutine called by a GOSUB.
Having thus simulated theJSR command, let’s put it all together into a

rewrite of the Print 1 routine that uses calls to subroutines to minimize the extra
code required to make the routine relocatable:

 1 ********************************

 2 * AL15-RELOCATABLE PRINT 2 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 COUT EQU $FDED

 10 RTRN EQU $FF58

 11 STCK EQU $100

 12 *

 13 *

0300: 20 58 FF 14 ENTRY JSR RTRN

0303: B8 15 CLV

0304: 50 15 16 BVC PRINT

 17 *

0306: D4 C5 D3 18 DATA1 ASC "TEST1"

0309: D4 B1

030B: 8D 00 19 HEX 8D00

 20 *

030D: 20 58 FF 21 L2 JSR RTRN

0310: B8 22 CLV

0311: 50 08 23 BVC PRINT

 24 *

0313: D4 C5 D3 25 DATA2 ASC "TEST2"

0316: D4 B2

0318: 8D 00 26 HEX 8D00

15. Special Programming Techniques 137

 27 *

031A: 60 28 DONE RTS

 29 *

031B: BA 30 PRINT TSX

031C: CA 31 DEX

031D: 18 32 CLC

031E: BD 00 01 33 LDA STCK,X

0321: 69 04 34 ADC #$04

0323: 85 06 35 STA PTR

0325: E8 36 INX

0326: BD 00 01 37 LDA STCK,X

0329: 69 00 38 ADC #$00

032B: 85 07 39 STA PTR+1

 40 *

032D: A0 00 41 PRNT LDY #$00

032F: B1 06 42 LOOP LDA (PTR),Y

0331: F0 06 43 BEQ FIX

0333: 20 ED FD 44 JSR COUT

0336: C8 45 INY

0337: D0 F6 46 BNE LOOP ; ALWAYS UNTIL 255

 47 *

0339: 18 48 FIX CLC

033A: 98 49 TYA

033B: 65 06 50 ADC PTR

033D: 85 06 51 STA PTR

033F: A5 07 52 LDA PTR+1

0341: 69 00 53 ADC #$00

0343: 48 54 PHA

0344: A5 06 55 LDA PTR

0346: 48 56 PHA

0347: 60 57 FIN RTS

 58 *

 59 * WILL RTS TO L2/DONE

 60 *

0348: AC 61 CHK

!is routine has the advantage of allowing thePRINT statements to be used
very much as though they were in the non-relocatable version given in chapter
13. !e extra bytes required for the stack calculations are conined to one place,
and there are only three extra bytes per line to be printed, compared to the chap-
ter 13 routine.
!e return to the end of each printed string is accomplished by using the Y-

Register inFIX. At entry toFIX, the Y-Register will hold the length of the string
printed, which is then added toPTR to calculate the proper address to return to.
Again we use the two PHAs followed by an RTS to accomplish the return.

Self-Modifying Code

Ah, here is an area to make the strongest heart quiver–the idea that a pro-
gram rewrites itself to accomplish its given task. !e possibilities are endless, but
for now we’ll just look at a way of coping with statements likeLDA $ADDR,X. It

]

138 Assembly Lines

was this type of statement in the very irst program of this chapter that contrib-
uted to its non-relocatability. Here’s the new mystery program:

 1 ********************************

 2 * AL15-RELOCATABLE PRINT 3 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 COUT EQU $FDED

 10 RTRN EQU $FF58

 11 STCK EQU $100

 12 *

 13 *

0300: 20 58 FF 14 ENTRY JSR RTRN

0303: B8 15 CLV

0304: 50 14 16 BVC PRINT

 17 *

0306: D4 C5 D3 18 DATA ASC "TEST"

0309: D4

030A: 8D 00 19 HEX 8D00

 20 *

030C: A2 00 21 PRNT LDX #$00

030E: BD 06 03 22 LOOP LDA DATA,X

0311: F0 06 23 BEQ DONE

0313: 20 ED FD 24 JSR COUT

0316: E8 25 INX

0317: D0 F5 26 BNE LOOP ; ALWAYS UNTIL 255

 27 *

0319: 60 28 DONE RTS

 29 *

031A: BA 30 PRINT TSX

031B: CA 31 DEX

031C: 18 32 CLC

031D: BD 00 01 33 LDA STCK,X

0320: 69 04 34 ADC #$04

0322: 85 06 35 STA PTR

0324: E8 36 INX

0325: BD 00 01 37 LDA STCK,X

0328: 69 00 38 ADC #$00

032A: 85 07 39 STA PTR+1

 40 *

 41 *

032C: A0 09 42 FIX LDY #$09 ; LEN OF $ + 5

032E: A5 06 43 LDA PTR

0330: 91 06 44 STA (PTR),Y

0332: C8 45 INY

0333: A5 07 46 LDA PTR+1

0335: 91 06 47 STA (PTR),Y ; REWRITE DATA ADDR

0337: B8 48 CLV

0338: 50 D2 49 BVC PRNT

 50 *

033A: 4E 51 CHK

15. Special Programming Techniques 139

!is program will actually rewrite the address present on line 22 for theLDA
DATA,X statement. !e method uses the address on the stack to calculate the
address for the beginning of the ASCII string to be printed. It is this address that
we will want eventually to put into the code at$30F,$310 to rewrite the data
statement.
Ater calculating the address in lines 30−39, the result is stored inPTR. !e

FIX section then adds the length of the printed string plus ive and uses this as
the Y-Register ofset to inally point to$30F. !e low- and high-order bytes are
then written to the code and a return done to the actual PRNT routine.
!is example comes with many cautions. !e value on line 42 must be

appropriate to the length of the string being printed. Also, the order of the
ENTRY,DATA, andPRNT routines was deliberately chosen to make the rewrite as
easy as possible. Extreme care must be taken whenever constructing a program
that alters itself, but the results can be very powerful.
If you are inclined to pursue this, study this example well until you are very

sure why each step was done. To verify its versatility, you should assemble the
code for this example and then run it at several diferent memory locations.
Ater each run, list the code from the Monitor and see how the statement on line
22 has been rewritten. It’s really quite fascinating!

Indirect Jumps

To round out this chapter, one more technique will be discussed. Although
the stepping method using forced branching can be used to span large distances,
it can get rather inconvenient to have to keep inserting stepping points through-
out your code. An alternate technique is to use the indirect JMP command.
In the indirect jump, a two-byte pointer is created which indicates where the

jump should be made to. !e added advantage of this command is that the
pointer need not be created on the zero page, which already is in high demand
for numerous other uses.1 !e basic syntax for the indirect jump is:

0300: 6C FF FF 99 J1 JMP ($FFFF)

Here is a sample program showing how this can be combined with the stack
operation to create a relocatable jump command:

 1 ********************************

 2 * AL15-RELOCATABLE JMP 3 *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 PTR EQU $06

 9 BELL EQU $FF3A

1[CT] See Appendix F for the list of available zero-page locations.

]

140 Assembly Lines

 10 RTRN EQU $FF58

 11 STCK EQU $100

 12 *

 13 *

0300: 20 58 FF 14 ENTRY JSR RTRN

 15 *

0303: BA 16 CALC TSX

0304: CA 17 DEX

0305: 18 18 CLC

0306: BD 00 01 19 LDA STCK,X

0309: 69 17 20 ADC #$17

030B: 85 06 21 STA PTR

030D: E8 22 INX

030E: BD 00 01 23 LDA STCK,X

0311: 69 00 24 ADC #$00

0313: 85 07 25 STA PTR+1

0315: 6C 06 00 26 JMP (PTR) ; TO 'EXPT'

 27 *

0318: EA 28 FILL NOP

 29 *

0319: 20 3A FF 30 EXPT JSR BELL

 31 *

031C: 60 32 DONE RTS

!e system is fairly simple, basically just using the stack to get a base address
and then adding whatever the distance is between the end of theJSR RTRN state-
ment and the destination of theJMP(). As with some of the other systems,
though, this distance will change as code is added or deleted between the two
points. You may thus have to change the values on lines 20 and 24 rather fre-
quently to keep up with your code changes.
However, it does avoid the problems associated with many stepping points

sprinkled throughout your code, as would be necessary using the other alterna-
tive.
!ere is one bug in the use of the indirect jump that should be mentioned. It

is present in the 6502 microprocessor itself, and occurs whenever the indirect
pointer straddles a page boundary.2 For example, if you used the statementJMP
($06), the destination would be retrieved from locations$06 and$07. However,
if you were to useJMP ($3FF), the destination would be retrieved from$3FF and
$300. !e high-order byte is not properly incremented by the 6502. !is is usu-
ally not a concern, though, since there are generally many alternate locations for
the destination pointer.
In conclusion then, certain techniques can be used to produce code which is

not restricted to running at a particular address in memory. Although a bit
harder to construct initially, and slightly larger in terms of inal memory require-
ments, the product is generally much more versatile in its applications.

2[CT] !is bug was ixed in the 65C02.

Volume 2

]

16. Passing Data from Applesot BASIC
January 1982

One useful application of assembly-language programming is in the
enhancement of your existing Applesot programs. Some people are inclined to
write all their programs in assembly language, but it may be more eicient on
occasion to write “hybrids”–programs that are a combination of Applesot and
assembly language. In this way, particular functions can be done by the language
best suited to the particular task.
If you had to write a short program to store ten names, it would be best to

do it in Applesot:

10 FOR I = 1 TO 10

20 INPUT N$(I)

30 NEXT I

!is is much simpler than the equivalent program in assembly language. In
cases where neither speed nor program size is a concern, Applesot is a com-
pletely acceptable solution.
However, if you had to sort a thousand names, speed would become a con-

cern and it would be worth considering whether the job could best be done in
assembly language.
If you have ever done aCALL in one of your BASIC programs, then you have

already combined Applesot with machine code. For example:

10 HOME

20 PRINT "THIS IS A TEST"

30 PRINT “THIS IS STILL A TEST”

40 GET A$

50 VTAB 1: HTAB 5: CALL -958

In this program, a line of text is printed on the screen. Ater you press a key,
all text on the screen ater the irst word “THIS” is cleared.
Now although it might be possible to accomplish the same efect in Apple-

sot by printing many blank lines, it would not be as fast or as eicient in terms
of code as the CALL -958.
In executing the above program, the Applesot interpreter goes along carry-

ing out your instructions until it reaches theCALL statement. At that point aJSR
is done to the address indicated by theCALL. When the inalRTS is encountered,

]

16

144 Assembly Lines

control returns to the BASIC program. In between, however, you can do any-
thing you’d like!

CALLing routines is hardly complicated enough to warrant an entire chapter
on the subject. !e real questions are, how do you pass data back and forth
between the two programs, and how can the problem of handling that data be
made easier for the assembly-language program?

Simple Interfacing

!e easiest way to pass data to an assembly-language routine is simply to
POKE the appropriate values into unused memory locations and then retrieve
them when you get to your assembly-language routine. To illustrate this, let’s
resurrect the tone routine from chapter eight.
To use this, assemble the code and place the inal object code at$300. !en

enter the accompanying Applesot program.

 1 ********************************

 2 * AL16-SOUND ROUTINE 3A *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 PITCH EQU $06

 10 DURATION EQU $07

 11 SPKR EQU $C030

 12 *

0300: A6 07 13 ENTRY LDX DURATION

0302: A4 06 14 LOOP LDY PITCH

0304: AD 30 C0 15 LDA SPKR

0307: 88 16 DELAY DEY

0308: D0 FD 17 BNE DELAY

030A: CA 18 DRTN DEX

030B: D0 F5 19 BNE LOOP

030D: 60 20 EXIT RTS

!is Applesot program is used to call it:

10 INPUT "PITCH, DURATION? ";P,D

20 POKE 6,P: POKE 7,D

30 CALL 768

40 PRINT

50 GOTO 10

!e Applesot program works by irst requesting values for the pitch and
duration of the tone from the user. !ese values are thenPOKEd into locations 6
and 7 and the tone routineCALLed. !e tone routine uses these values to pro-
duce the desired sound and then returns to theCALLing program for another
round.

16. Passing Data from Applesot BASIC 145

!is technique works ine for limited applications. Having toPOKE all of the
desired parameters into various corners of memory is not lexible, however, and
strings are nearly impossible. !ere must be an alternative.

!e Internal Structure of Applesot

If you’ve been following along, you’ve no doubt igured out by now that I’m
a great believer in using routines already present in the Apple, where possible, to
accomplish a particular task. Since routines already exist in Applesot for pro-
cessing variables directly, why not use them?
To answer this, we must take a brief detour to outline how Applesot actu-

ally “runs” a program. Consider this simple program:

10 HOME: PRINT "HELLO"

20 END

Ater you’ve entered this into the computer, typingLIST should reproduce
the listing given here. An interesting question arises: “How does the computer
actually store, and then later execute, this program?”
To answer that, we’ll have to go to the Monitor and examine the program

data directly.
!e irst question to answer is, exactly where in the computer is the pro-

gram stored? !is can be found by entering the Monitor and typing in: 67 68
AF B0 and pressing <RETURN>.
!e computer should respond with:

0067- 01

0068- 08

00AF- 18

00B0- 08

!e irst pair of numbers is the pointer for the program beginning–bytes
reversed of course. !ey indicate that the program starts at$801. !e second
pair is the program end pointer, and they show that it ends at$818. Using this
information let’s examine the program data by typing in:

801L

You should get:

0801- 10 08 BPL $080B

0803- 0A ASL

0804- 00 BRK

0805- 97 ???

0806- 3A ???

0807- BA TSX

0808- 22 ???

0809- 48 PHA

080A- 45 4C EOR $4C

]

146 Assembly Lines

080C- 4C 4F 22 JMP $224F

080F- 00 BRK

0810- 16 08 ASL $08,X

0812- 14 ???

0813- 00 BRK

0814- 80 ???

0815- 00 BRK

0816- 00 BRK

0817- 00 BRK

0818- F9 A2 00 SBC $00A2,Y

081B- 86 FE STX $FE

!is obviously is not directly executable code. Now type in:

801.818

!is will give:

0801- 10 08 0A 00 97 3A BA

0808- 22 48 45 4C 4C 4F 22 00

0810- 16 08 14 00 80 00 00 00

0818- 8C

To understand this, let’s break it down one section at a time. When the
Apple stores a line of BASIC, it encodes each keyword as a single-bytetoken.
!us the wordPRINT is stored as a$BA. !is does wonders for conserving mem-
ory. In addition, there is some overhead associated with packaging the line: a
byte to signify the end of the line, a few bytes at the beginning of each line to
hold information related to its length, and the line number itself.
To be more speciic:

0801- 10 08 0A 00 97 3A BA

0808- 22 48 45 4C 4C 4F 22 00

0810- 16 08 14 00 80 00 00 00

0818- 8C

!e irst two bytes of every line of an Applesot program are anindex to the
address of the beginning of the next line. At$801, $802 we ind the address$810
(bytes reversed). !is is where line 20 starts. At$810 we ind the address$816.
!is is where the next line would start if there were one. !e double$00 at$816
tells Applesot that this is the end of the BASIC listing. It is important to realize
that the$00 00 end of the Applesot program usually,but not always, corre-
sponds to the contents of$AF,$B0. It is possible to hide machine-language code
between the end of the line data and the actual end as indicated by $AF, $B0–but
more on that later.
!e next information within a line is the line number itself:

0801- 10 08 0A 00 97 3A BA

0808- 22 48 45 4C 4C 4F 22 00

0810- 16 08 14 00 80 00 00 00

0818- 8C

16. Passing Data from Applesot BASIC 147

!e$0A 00 is the two-byte form of the decimal number 10, the line number
of the irst line of the Applesot program. Likewise, the$14 00 is the data for the
line number 20. !e bytes are again reversed. Ater these four bytes we see the
actual tokens for each line.

0801- 10 08 0A 00 97 3A BA

0808- 22 48 45 4C 4C 4F 22 00

0810- 16 08 14 00 80 00 00 00

0818- 8C

All bytes with a value of$80 or greater are Applesot keywords in token
form. Bytes less than$80 represent normal ASCII data (letters of the alphabet,
for example). Examining the data here we see a$97 followed by$3A.$97 is the
token forHOME, and$3A the colon. Next,$BA is the token forPRINT. !is is fol-
lowed by the quote ($22), the text forHELLO ($48 45 4C 4C 4F), and the closing
quote ($22). Last of all, the $00 indicates the end of the line.
In line number twenty, the $80 is the token for END. As before, the line is ter-

minated with a 00.
When a program is executed, the interpreter scans through the data. Each

time it encounters a token, such as thePRINT token, it looks up the value in a
table to see what action should be taken. In the case ofPRINT, this would be to
output the characters following the token, namely HELLO.
!is constant translation is the reason for the use of the terminterpreter for

Applesot BASIC.
Machine code, on the other hand, is directly executable by the 6502 micro-

processor and hence is much faster, since no table lookups are required.
In Applesot, a syntax error is generated whenever a series of tokens is

encountered that is not consistent with what the interpreter expects to ind.

Passing Variables

So, back to the point of all this. !e key to passing variables to your own
assembly-language routines is to work with Applesot in terms of routines
already present in the machine. One of the simplest methods was described in
chapter 13, wherein a given variable is the very irst one deined in your program
(see the input routine). !is is okay, but rather restrictive. A better way is to
name the variable you’re dealing with right in the CALL statement.
!e important points here are two components of the Applesot interpreter:

TXTPTR and CHRGET (and related routines).
TXTPTR is the two-byte pointer ($B8, $B9) that points to the next token to be

analyzed.CHRGET ($B1) is a very short routine that resides on the zero page and
that reads a given token into the Accumulator. In addition to its occasionally
being called directly, many other routines useCHRGET to process a string of data
in an Applesot program line.

]

148 Assembly Lines

Here then is the revised tone routine :

 1 ********************************

 2 * AL16-SOUND ROUTINE 3B *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 PITCH EQU $06

 10 DURATION EQU $07

 11 SPKR EQU $C030

 12 *

 13 COMBYTE EQU $E74C

 14 *

0300: 20 4C E7 15 ENTRY JSR COMBYTE

0303: 86 06 16 STX PITCH

0305: 20 4C E7 17 JSR COMBYTE

0308: 86 07 18 STX DURATION

 19 *

030A: A6 07 20 BEGIN LDX DURATION

030C: A4 06 21 LOOP LDY PITCH

030E: AD 30 C0 22 LDA SPKR

0311: 88 23 DELAY DEY

0312: D0 FD 24 BNE DELAY

0314: CA 25 DRTN DEX

0315: D0 F5 26 BNE LOOP

0317: 60 27 EXIT RTS

!e Applesot calling program would then be revised to read:

10 INPUT “PITCH DURATION? “;P,D

20 CALL 768,P,D

30 PRINT

40 GOTO 10

!is is a much more elegant way of passing the values and also requires no
miscellaneous memory locations as such (although for purposes of simplicity the
tone routine itself still uses the same zero-page locations.)
!e secret to the new technique is the use of the routineCOMBYTE ($E74C).

!is is an Applesot routine which checks for a comma and then returns a value
between $00 and $FF (0−255) in the X-Register.
It is normally used for evaluatingPOKEs,HCOLOR=, and so forth, but does the

job very nicely here. It also leavesTXTPTR pointing to the end of the line (or to a
colon if there was one) by usingCHRGET to advanceTXTPTR by the number of
characters following each comma. Note also that any legal expression–such as
(X − 5)/2–can be used to pass the data.
To verify the importance of managing TXTPTR, try putting a simple RTS ($60)

at$300. Calling this you will get aSYNTAX ERROR, since upon return Applesot’s

16. Passing Data from Applesot BASIC 149

TXTPTR will be on the irst comma ater theCALL, and the phrase “,P,D” is not a
legal Applesot expression.
What about two-byte quantities? To deal with them, a number of other rou-

tines are used. For example, this routine will do the equivalent of a two-byte
pointerPOKE. Suppose for instance you wanted to store the bytes for the address
$9600 at locations $1000, $1001. Normally in Applesot you would do it like this:

*

*

50 POKE 4096,0: POKE 4097,150

*

*

where 4096 and 4097 are the decimal equivalents of$1000 and$1001 and 0 and
150 are the low-order and high-order bytes for the address$9600 ($96 = 150,
$00 = 0).
A more convenient approach might be like this:

*

*

50 CALL 768, 4096, 38400

*

*

or perhaps:

*

*

50 CALL 768, A, V

*

*

!e routine for this would be:

 1 ********************************

 2 * AL16-POINTER SETUP ROUTINE *

 3 ********************************

 4 *

 5 *

 6 * OBJ $300

 7 ORG $300

 8 *

 9 CHKCOM EQU $DEBE

 10 FRMNUM EQU $DD67

 11 GETADR EQU $E752

 12 LINNUM EQU $50 ; ($50,$51)

 13 *

 14 PTR EQU $3C

 15 *

0300: 20 BE DE 16 ENTRY JSR CHKCOM

0303: 20 67 DD 17 JSR FRMNUM ; EVAL FORMULA

0306: 20 52 E7 18 JSR GETADR ; PUT FAC INTO LINNUM

0309: A5 50 19 LDA LINNUM

]

150 Assembly Lines

030B: 85 3C 20 STA PTR

030D: A5 51 21 LDA LINNUM+1

030F: 85 3D 22 STA PTR+1

 23 *

0311: 20 BE DE 24 JSR CHKCOM

0314: 20 67 DD 25 JSR FRMNUM

0317: 20 52 E7 26 JSR GETADR

 27 *

031A: A0 00 28 LDY #$00

031C: A5 50 29 LDA LINNUM

031E: 91 3C 30 STA (PTR),Y

0320: C8 31 INY

0321: A5 51 32 LDA LINNUM+1

0323: 91 3C 33 STA (PTR),Y

 34 *

0325: 60 35 DONE RTS

0326: 09 36 CHK

!e special items in this routine includeCHKCOM, a syntax-checking routine
that serves two purposes. First it veriies that a command follows theCALL
address, and secondly it advancesTXTPTR to point to the irst byte of the expres-
sion immediately following the comma. If a comma is not found, aSYNTAX
ERROR is generated.

FRMNUM is a routine that evaluates any expression and puts the real loat-
ing-point number result into Applesot’sloating-point Accumulator, usually
calledFAC. !is is a six-byte pseudo register ($97−$9C) used to hold the loating-
point representation of a number. It includes such niceties as the exponential
magnitude of the number and the equivalent of the digits of the logarithm of the
number stored.
At this stage you’d have to be something of a masochist to want to deal with

the number in its current form, so the next step is used to convert it into a two-
byte integer.

GETADR does this by putting the two-byte result intoLINNUM, LINNUM+1 ($50,
$51).
Even if this is not exactly an in-depth explanation of all the most precise

details of the operation, the bottom line is that the threeJSRs (CHKCOM,FRMNUM,
and GETADR) will always result in the low-order and high-order bytes of whatever
expression follows a comma being stored in LINNUM and LINNUM+1.
!ese simple subroutines should be quite adequate for many applications.

Next chapter, however, we’ll look at string passing, some other useful routines,
and how to pass data back to the CALLing Applesot program.

17. More Applesot Data Passing
February 1982

In the previous chapter we began a discussion of how to pass variables back
and forth between Applesot and assembly-language programs. !is chapter
we’ll complete the discussion with more information about how all types of vari-
ables are handled and how data can be passed back to the calling Applesot pro-
gram.

Applesot Variables

!ere are six types of variables in Applesot BASIC. !ese arereal,integer,
andstring variables, and their array counterparts. To understand fully how to
use these variables we must irst take a moment to examine the diferences
between them as well as how the variables are actually stored in the computer.
Real variables are number values between 1038 and −1038, which are very

large positive and negative numbers. In addition, the values need not be whole
numbers; a value such as 1.25 is allowed.Integer variables, on the other hand, are
limited in magnitude to the range of −32767 to +32767. !ey are also limited to
whole number values, such as 1, 2, 3, and so on. Values such as 1.25 are not
allowed.
Real variables are indicated in BASIC by an alphabetic character (A toZ) fol-

lowed by a letter or number (A toZ or0 to9). Any characters ater the irst two
are ignored when Applesot looks up the value for the variable. Integer variables
are similar, but the name is suixed by a percent sign (%). !us A would repre-
sent the real variable, whereas A% would represent an integer variable.
When passing data such as a memory address or a single-byte value to put

in memory, integer variables would be quite adequate and, additionally, would
require no conversion in the assembly-language routine. However, it is generally
more convenient to the BASIC programmer not to have to put the% sign in the
variable name and, instead, to convert the value using the Applesot routine
FRMNUM ($DD67) as described in the previous chapter. For the record, though, I
will present an example shortly on how to retrieve an integer variable from a
calling BASIC program.
String variables consist of a series of any legal ASCII characters, with a max-

imum length of 255 characters. Strings are indicated by a$ suix to the variable
name.

]

17

152 Assembly Lines

Any of these variables may be present either singly or in an array. Arrays are
groupings of variables that use a common name and then a delimitingsubscript
to identify each individual element. Array variables are indicated by a pair of
parentheses following the variable name between which a number or expression
may be used to specify the desired element.
You probably are already somewhat familiar with the general points men-

tioned so far; they’re raised not so much to teach you about Applesot variable
types as such but rather to set the stage for what is to follow, namely how each of
these variable types is stored within the memory of the Apple computer.

Memory Maps

In chapter one we presented a graphic representation of the memory usage
of the computer. We’d like to revive the topic in the interest of our current sub-
ject.
Amemory map is used to show the relative placement of data within the

available memory locations in the computer. Recall that there are a total of
65536 locations available, which we identify with hexadecimal addresses of
$0000 to $FFFF.
!e chart in Table 17-1 shows a typical Apple memory map, with DOS

booted and an arbitrary Applesot program in memory.
In previous chapters, the areas shown have been described in varying

degrees of detail. You’ll recall that the area from$C000 to$CFFF is reserved for
the interface card addressing, and that Applesot BASIC is stored in ROM begin-
ning at $D000. !e Monitor ROM begins at $F800.
A normal Applesot program starts at$800, with the highest available

address usually just below$9600, which is identiied with the lower boundary of
the Disk Operating System (DOS).
!e area from$300 to$3CF is available for user assembly-language pro-

grams.$3D0 to$3FF is reserved for Apple system vectors, such as the DOS entry
vectors. Zero page, the stack, and the input bufer also have been discussed in
some detail.
Since our main concern is in the area of Applesot variables, let’s consider a

revised map emphasizing Applesot programs.
Table 17-2 shows that when an Applesot program isRUN, simple (non-ar-

ray) variables are placed immediately ater the end of the BASIC program, fol-

$00 $100 $200 $300 $400 $800 ... $9600 $C000 $D000 $D800

Zero

Page
Stack

Input

Bufer

User

Page

Screen

Display

FP

Program
Free DOS Slots

FP

BASIC

F8

ROM

Table 17-1: Apple Memory Map

17. More Applesot Data Passing 153

lowed by the array variables. Because the data for each string variable is ever-
changing in length, string data is stored dynamically at the top of memory,
working down. !e space in between these converging areas is the so-called free
space of the system.

HIMEM: and LOMEM: are used by the BASIC programmer to set the upper and
lower bounds of variable storage. If not speciically declared within the program,
these default to the bottom of DOS and the end of the Applesot program,
respectively. !eydo not, however, always have to be restricted to these loca-
tions. It is possible to moveLOMEM: up, orHIMEM: down, so as to set aside a por-
tion of memory in the computer that won’t be afected by the running program.
!is is done for one or both of two reasons: irst to protect either or both of the
hi-res display pages from variable table encroachment; or, second, to provide a
protected area for a user’s assembly-language program.
Now that we know where the information for each variable is stored in the

computer, let’s examine the format of the information for each variable. Within
the areas indicated, a variable table is constructed that contains both the name of
the given variable and its value if the variable is a real or integer. If the variable is
a string, a pointer is stored that indicates the string’s starting location at the top
of memory and its corresponding length (0 to 255 characters).
Figure 17-3 summarizes the details of the format for these tables.
Each time a variable is irst encountered in a running Applesot program, an

entry is made for it in the variable table. For simple variables, Applesot looks to
the pointer at$6B,$6C to see where the end of the current simple variable table
is. It then opens up seven bytes for the new variable and puts a block of data sim-
ilar to that shown in Figure 17-3, as is appropriate to the type of variable deined.
Real variables store the value in alogarithmic form, where each value is

indicated by the exponent and four mantissas. Integer variables require only that
the high- and low-order bytes of the value be stored. !e remaining three posi-
tions are unused, with dummy 0 values placed in the table. It’s important to note
here that for integer variables, the two-byte representation of the value is
reversed from what we would normally expect. !at is, the high-order byte is
placed irst, followed by the low-order byte.

]

$00 $800 $XX $XX $XX $XX $9600

FP

Program

Simple

Variables

Array

Variables
Free

String

Data
DOS

$67,$68−

$AF,$B0

$69,$6A

LOMEM:

$6B,$6C $6D,$6E $6F,$70 $73,$74

HIMEM:

Table 17-2: Applesot Memory Layout

154 Assembly Lines

For strings only three bytes of information are required, namely the length
and address data mentioned earlier. Again, the last two positions are illed with
dummy zeros.
It should be evident from this table that the same amount of memory is allo-

cated for all simple variable types: there is no advantage in specifying integer
variables versus reals to save memory. !is will not be the case with arrays.
Notice that there are two distinct parts to each seven-byte variable entry.

!e irst two bytes deine the name, where, incidentally, the high-order byte is
used in each character to indicate to which of the three variable types (real, inte-
ger, or string) that entry corresponds. !e last ive bytes make up the actual data
for each variable and consist of either the required numeric information or, in
the case of a string, the length and address information.
!e reason to stress this distinction is that, in examiningarrays, we notice

that it is this ive-byte block that gets repeated a large number of times, depend-
ing on the total number of elements in the array. For arrays, a much larger table
needs to be constructed, and this is created starting at the address indicated by
$6B,$6C. Whenever a new array is deined, the pointer at$6D,$6E is examined
to determine the end of the current array table and a new entry is made accord-
ing to the format shown in Figure 17-4.
In this format, the entry is given a header that lists the variable name, fol-

lowed by an ofset value used to determine the address of the next array entry if
one is present. !e ofset is encoded in the usual two-byte manner. Following the
ofset is a byte indicating the number of dimensions in the array, ater which is
listed a byte for each dimension stating its size. Although not shown in the dia-

17. More Applesot Data Passing 155

gram, each size indicator is a two-byte pair, although in this case the high byte is
always given irst.
Immediately ater the header are the actual data blocks, each block consist-

ing of ive, two, or three bytes per array element, depending on which variable
type is involved. Note that, in this case, integer variable arrays do take much less
memory than an equivalent real array.
As an example, if you were to dimension an array with this statement:

DIM A$(10,10)

the header block would look like this:

where$41,$80 are the ASCII values for an A followed by a null. !e high bit is
of in the irst character, and on in the second–indicating a string. !e next
array variable would be found at the address of the irst name character plus
$174. !ere are two dimensions to the array, as indicated by the$02. !e$00
$0B indicateseleven elements in each dimension of the array. !is should not be
surprising when you recall that ten plus the zeroth position makes eleven ele-
ments.
Following this header we would ind 121 three-byte blocks, each indicating

the length and address of a string array element, if present. 11 × 11 = 121;
(121 × 3) + 9 [for the header] = 372 = $174.

]

156 Assembly Lines

Passing Variables to Assembly Language

At this point you may well think that we have strayed very far from the topic
of assembly-language programming and have become overly involved with the
structure of Applesot. Upon a little relection, however, it should become appar-
ent that we must have some familiarity with how these variables are stored if we
are to interact successfully with them.
In either reading or creating Applesot variables, clearly we must handle

efectively each component of the data. We must be able to identify the name
and location of the variable we are interested in, and also to modify that infor-
mation if necessary.
!e temptation at this point might be to take this new-found knowledge and

write our own routines to accomplish the needed operations, but such an under-
taking would be quite unnecessary–not to mention likely to have you mind-
lessly babbling to yourself in no time. Fortunately, Applesot already contains
the routines necessary to do almost anything we wish. !e main trick will be to
properly identify and use the appropriate ones.
In the previous chapter I made use of a few of these to accomplish a certain

degree of lexibility in passing numeric data to an assembly-language routine.
Let’s complete the study by formalizing the possible operations.
!e irst general category is passing data to a routine. We can pass any of six

variable types. To minimize the confusion, let us establish a fairly simple goal: to
pass the data successfully and prove so by storing the data in a non-Applesot
location.

Integer Variables

For integer variables the calling Applesot program looks like this:1

10 A% = 258

20 CALL 768, A%

30 PRINT PEEK(896), PEEK(897)

40 REM 896,897 = $380,$381

50 END

!e machine-language routine should be assembled from this listing:

 1 ********************************

 2 * AL17-INTEGER VARIABLE *

 3 * READER *

 4 * 2/1/82 *

 5 ********************************

1[CT] For a more interactive program, replace lines 10−30 with the following:

 5 PRINT CHR$(4); "BLOAD AL17.READINT"

 10 INPUT "INPUT INTEGER: "; A%

 20 CALL 768,A%

 30 PRINT "LO: "; PEEK (896); " HI: "; PEEK (897)

!en try values such as 258, 1, −1, 32767, and −32767. Try −32768.

17. More Applesot Data Passing 157

 6 *

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

 12 PTRGET EQU $DFE3

 13 VARPNT EQU $83

 14 MOVFM EQU $EAF9

 15 CHKNUM EQU $DD6A

 16 DATA EQU $380

 17 *

0300: 20 BE DE 18 ENTRY JSR CHKCOM ; CHK SYNTAX

0303: 20 E3 DF 19 JSR PTRGET ; FIND VARIABLE

 20 * Y,A = ADDRESS OF VALUE

0306: 20 F9 EA 21 JSR MOVFM ; MOV VAL -> FAC

0309: 20 6A DD 22 JSR CHKNUM ; FAC = NUM?

030C: A0 00 23 LDY #$00

030E: B1 83 24 LDA (VARPNT),Y

0310: 8D 81 03 25 STA DATA+1

0313: C8 26 INY

0314: B1 83 27 LDA (VARPNT),Y

0316: 8D 80 03 28 STA DATA

 29 *

 30 * NOTE! HIGH BYTE FIRST!

 31 *

0319: 60 32 DONE RTS

031A: F1 33 CHK

In this routine,CHKCOM ($DEBE = CHecK for COMma) is used to make sure
the syntax is correct (that is, a comma), and to advanceTXTPTR ($B8 = TeXT
PoinTeR) to the irst byte of the variable name being evaluated. Refer to the pre-
vious chapter for a discussion of these two routines.

PTRGET ($DFE3 = PoinTeR GET) is now called, which is a subroutine that
reads in a variable name and then locates it in the variable table. As a bonus, if
the variable named does not already exist in the table, PTRGET will create an entry
for it. !is applies to variables of all six types. Ater returning fromPTRGET, the
address of the value for the variable is held in the Y-Register and the Accumula-
tor (low byte, high byte). !is thus indicates the location in memory of the two-
to-ive byte data block discussed earlier. !e data in the Y-Register and the
Accumulator is also duplicated inVARPNT,VARPNT+1 ($83,$84 = VARiable
PoiNTer), which will be used later in the program.
At this stage it would be a simple matter to use indirect addressing to

retrieve the two bytes, but a little more efort will result in a much more thor-
ough routine. It is possible that the user might have called the routine with an
improper variable type following theCALL statement, such as a string. !is can
be checked for by the next two program steps.

MOVFM ($EAF9 = MOVe to FAC from Memory) will move whatever data is
pointed to by the Y-Register and the Accumulator into the loating-point Accu-

]

158 Assembly Lines

mulator ($F9−A2 =FAC). !e contents then can be checked for variable type by
the call toCHKNUM ($DD6A = CHecK NUMber). !e presence of a string here
would yield aTYPE MISMATCH error.2 Unfortunately, it is not particularly easy to
test for a real variable having been mistakenly used here.
Presuming no error occurs, we will now make use of the data saved in

VARPNT (since the Y-Register and Accumulator no doubt have been altered by
MOVFM andCHKNUM) to actually retrieve the two-byte value passed. !e indirect
addressing mode is used to move the variable data into our two data bytes. !e
address of $380, $381 was arbitrarily chosen for this example.
It is important to note that special care is used in lines 25 and 28, since inte-

ger variables store the two data bytes high-order irst, as mentioned earlier. !is
is opposite to the normal 6502 convention.
!is routine will work equally well for retrieving data from simple integer

variables and from integer array variables.
When you run this example, the numbers 2 and 1 should be printed out,

these being the low- and high-order bytes of the number passed to the routine
(258 = $102).

Real Variables

Once in assembly language, the handling of loating-point numbers, such as
represented by real variables, is somewhat involved. Additionally, the majority of
the time you will be concerned only with passing an integer between 0 and
65535. !erefore, we will consider here how to use a real variable to pass a num-
ber in this range to a given subroutine.
!is revision of our earlier Applesot program will do the trick:

10 A = 258

20 CALL 768, A

30 PRINT PEEK(896), PEEK(897)

40 REM 896,897 = $380,$381

50 END

!e assembly-language program for this is:

 1 ********************************

 2 * AL17-REAL VARIABLE *

 3 * READER *

 4 * 2/1/82 *

 5 ********************************

 6 *

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

 12 FRMNUM EQU $DD67

2[CT] Actually, typing a string will give a ?REENTER warning message.

17. More Applesot Data Passing 159

 13 GETADR EQU $E752

 14 LINNUM EQU $50

 15 DATA EQU $380

 16 *

0300: 20 BE DE 17 ENTRY JSR CHKCOM ; CHK SYNTAX

0303: 20 67 DD 18 JSR FRMNUM ; EVALUATE NUM

0306: 20 52 E7 19 JSR GETADR ; FAC -> INT

0309: A5 50 20 LDA LINNUM

030B: 8D 80 03 21 STA DATA

030E: A5 51 22 LDA LINNUM+1

0310: 8D 81 03 23 STA DATA+1

0313: 60 24 DONE RTS

0314: 2F 25 CHK

!is is basically a repeat of the previous chapter’s Pointer Setup routine,
with the results being put intoDATA,DATA+1. !e advantage of this routine com-
pared to the Integer Variable Reader is that not only is it shorter, but also that it
will accept either integer or real variables (simple or array) and still do the string
error check. !is, then, is usually the preferred method.

String Variables

!e goal here is to read some string data from the calling Applesot program
and then put it somewhere in memory where it presumably will be available to
other portions of the assembly-language program. To illustrate this, enter the
following two programs:

10 A$ = "TEST"

20 CALL 768, A$

30 END

 1 ********************************

 2 * AL17-STRING VARIABLE *

 3 * READER *

 4 * 2/1/82 *

 5 ********************************

 6 *

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

 12 FRMEVL EQU $DD7B

 13 CHKSTR EQU $DD6C

 14 FACMO EQU $A0

 15 FACLO EQU $A1 ; FAC+5

 16 VARPNT EQU $83

 17 DATA EQU $380

 18 *

0300: 20 BE DE 19 ENTRY JSR CHKCOM ; CHK SYNTAX

0303: 20 7B DD 20 JSR FRMEVL ; EVALUATE

 21 * (FACMO,LO) -> DESCRIPTOR

0306: 20 6C DD 22 JSR CHKSTR ; VAR = $?

 23 *

]

160 Assembly Lines

0309: A0 00 24 LDY #$00

030B: B1 A0 25 LDA (FACMO),Y ; LEN OF $

030D: AA 26 TAX ; SAVE LEN

030E: C8 27 INY ; Y = 1

030F: B1 A0 28 LDA (FACMO),Y ; ADDR LO BYTE

0311: 85 83 29 STA VARPNT

0313: C8 30 INY ; Y = 2

0314: B1 A0 31 LDA (FACMO),Y ; ADDR HI BYTE

0316: 85 84 32 STA VARPNT+1

0318: 8A 33 TXA ; RETRIEVE LEN

0319: A8 34 TAY

 35 *

031A: 88 36 LOOP DEY

031B: B1 83 37 LDA (VARPNT),Y ; GET CHR

031D: 99 80 03 38 STA DATA,Y

0320: C0 00 39 CPY #$00

0322: D0 F6 40 BNE LOOP

 41 *

0324: 60 42 DONE RTS

0325: 4F 43 CHK

Ater running the calling program, enter the Monitor and list out theDATA
region of memory with:

*380.383 <RETURN>

!is should print out the following data:

0380- 54 45 53 54

!is shows that the hex values for the characters “TEST” have been success-
fully transferred. Let’s see how it was accomplished.
!e routine starts of rather like the previous ones by usingCHKCOM to make

sure a comma was used ater theCALL and to prepareTXTPTR for reading in the
data.FRMEVL ($DD78 = FoRMula EVaLuation) is a very nice general-purpose
routine that takes in virtually any numeric or string expression or literal, and
places the inal result inFAC. It is related toFRMNUM but is much more omnivo-
rous. Upon returning fromFRMEVL,FACMO andFACLO ($A0,$A1 = “...sorry,
couldn’t ind out where they got the names...”3) hold the address of the string’s
descriptor, that is, the three-byte group giving the length and address of the
actual string data.
Our routine usesFACMO,FACLO in the indirect addressing mode to retrieve

the irst byte of the descriptor, which is the length of the string. !is is put into
the X-Register for temporary storage. Some people prefer to push it onto the
stack with aPHA command; it’s a matter of choice. Next, the address of the string
data is retrieved from the descriptor and put into VARPNT, which is assumed to be

3[CT]FACMO andFACLO are the Middle-Order and Low-Order bytes of the four-byte
mantissa for the loating-point Accumulator.

17. More Applesot Data Passing 161

not in use at the time. Last of all, we copy the data from its location, indicated by
the VARPNT pointer, to our DATA address.
In experimenting, notice that the area from$380 to$3CF is open, but that

the area starting at$3D0 is reserved for DOS. Entering very long strings in the
example may lead to some problems. In your own programs, it would be neces-
sary to set aside a one-page area ($100 = 256 bytes) to put the data, unless of
course you can limit the length of the string before doing the call.
You may also wish to try variations in the Applesot program by deleting

line 10 and rewriting line 20 as:

20 CALL 768, "ABC" + "DEF"

or

20 CALL 768, LEFT$("ABCDEF")

or

10 A$(5,5) = "TEST"

20 CALL 768, A$(5,5)

Passing Data from Assembly Language

!e converse of the techniques we’ve discussed so far actually is fairly sim-
ple. !e key to much of it is thePTRGET routine used earlier. Because this routine
will even create a variable when it’s not already present, we can simply more or
less reverse the process of the previous routines to pass data back to a calling
Applesot program.
Again, I’ll illustrate an example for each variable type.

Integer Variables

!e Applesot program:4

10 POKE 896,2: POKE 897,1

20 CALL 768, A%

30 PRINT A%

40 END

4[CT] For an interactive program, replace line 10 with:

 5 PRINT CHR$ (4); "BLOAD AL17.SENDINT"

 6 INPUT "ENTER INTEGER LO,HI BYTES: "; A%,B%

 10 POKE 896,A%: POKE 897,B%

Try entering “2,1”, “255,127”, or “1,128”. Now try “0,128”. Is this a legal integer value?

]

162 Assembly Lines

!e assembly subroutine to be called is:

 1 ********************************

 2 * AL17-INTEGER VARIABLE *

 3 * SENDER *

 4 * 2/1/82 *

 5 ********************************

 6 *

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

 12 PTRGET EQU $DFE3

 13 VARPNT EQU $83

 14 MOVFM EQU $EAF9

 15 CHKNUM EQU $DD6A

 16 DATA EQU $380

 17 *

0300: 20 BE DE 18 ENTRY JSR CHKCOM ; CHK SYNTAX

0303: 20 E3 DF 19 JSR PTRGET ; FIND VARIABLE

 20 * Y,A = ADDRESS OF VALUE

0306: 20 F9 EA 21 JSR MOVFM ; MOV VAL -> FAC

0309: 20 6A DD 22 JSR CHKNUM ; FAC = NUM?

030C: A0 00 23 LDY #$00

030E: AD 81 03 24 LDA DATA+1

0311: 91 83 25 STA (VARPNT),Y

0313: C8 26 INY

0314: AD 80 03 27 LDA DATA

0317: 91 83 28 STA (VARPNT),Y

 29 *

 30 * NOTE! HIGH BYTE FIRST!

 31 *

0319: 60 32 DONE RTS

031A: F1 33 CHK

!is program is a rather trivial exercise in that all that needs to be done is to
reverse the operands of lines 24, 25 and 27, 28 from the irst Integer Variable
Reader program. Again, the only caution is to make sure that the bytes are trans-
ferred in the proper order, since integer data is reversed.

Real Variables

Real variables require the introduction of a few new routines. !e same
Applesot calling program is used with only a minor modiication.

10 POKE 896,2: POKE 897,1

20 CALL 768,A

30 PRINT A

40 END

17. More Applesot Data Passing 163

!e subroutine is entered as:

 1 ********************************

 2 * AL17-REAL VARIABLE *

 3 * SENDER *

 4 * 2/1/82 *

 5 ********************************

 6 *

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

 12 PTRGET EQU $DFE3

 13 CHKNUM EQU $DD6A

 14 GIVAYF EQU $E2F2

 15 MOVMF EQU $EB2B

 16 DATA EQU $380

 17 *

0300: 20 BE DE 18 ENTRY JSR CHKCOM ; CHK SYNTAX

0303: AD 80 03 19 LDY DATA

0306: AC 81 03 20 LDA DATA+1

0309: 20 F2 E2 21 JSR GIVAYF ; DATA -> FAC

030C: 20 E3 DF 22 JSR PTRGET ; FIND VARIABLE

030F: 20 6A DD 23 JSR CHKNUM ; VAR = NUM?

 24 * Y,A = ADDRESS OF VARIABLE DATA

0312: AA 25 TAX

0313: 20 2B EB 26 JSR MOVMF ; FAC -> MEMORY

0316: 60 27 DONE RTS

0317: D1 28 CHK

!e technique here is to use the routineGIVAYF ($E2F2 = GIVe Accumula-
tor and Y-Register toFAC) to put the two bytes of our integer number into the
FAC.GIVAYF requires that the Accumulator and Y-Register be loaded with the
high- and low-order bytes, respectively, for the integer number to be transferred5.
As a bonus, the number may even be signed–that is, positive or negative. Signed
binary numbers were covered in great detail in chapter 10.
Lines 19 and 20 load the appropriate registers, then, ater callingGIVAYF,

PTRGET andCHKNUM are used to determine the name of the variable to use in
returning the data. Recall that ater returning fromPTRGET, the Y-Register and
Accumulator will hold the low- and high-order bytes of the address of the data
for the new variable digested by PTRGET.

MOVMF ($EB2B = MOVe to Memory fromFAC) is the routine we’ll use to
complete the process. It requires that the Y-Register and X-Register be loaded
with the address of the memory location to which the contents of theFAC will be
moved. SincePTRGET has just determined that for us, the only hitch is thatPTR-
GET let the high-order byte in the Accumulator instead of in the X-Register as

5[CT] !e original article switched the meaning of theGIVAYF high and low bytes. !e
code above has been corrected and produces a value of 258.

]

164 Assembly Lines

we require. A simpleTAX solves that problem, and the routine is concluded with
the call to MOVMF and an RTS.

Programming Tip

Whenever a routine ends with aJSR to another routine, immediately fol-
lowed by the endingRTS of the main routine, the line can be shortened one byte
by changing the lastJSR to aJMP. When theRTS in the last called subroutine is
encountered, theRTS will cause an exit from the main routine instead. An exam-
ple of this would be to rewrite the end of the program just listed as:

*

*

*

030F: 20 6A DD 23 JSR CHKNUM ; VAR = NUM?

 24 * Y,A = ADDRESS OF VARIABLE DATA

0312: AA 25 TAX

0313: 4C 2B EB 26 DONE JMP MOVMF ; FAC -> MEMORY

 AND RETURN!

String Variables

String variables are not much diferent but will require a slightly clumsy
calling Applesot program to demonstrate. Line 10 is a series ofPOKEs that will
put the ASCII data for the string “TEST” into memory at our usualDATA ($380)
location. Additionally, a delimiter will be placed at the end of the string so that
the routines we will be calling can determine the string’s length. Use of a delim-
iter is more practical, especially in situations where you don’t know the length of
an incoming string until the carriage return or other delimiter shows up. !e
Applesot routine we’ll use will automatically determine the length by scanning
the string for the delimiter.

10 POKE 896,84: POKE 897,69: POKE 898,83: POKE 899,84: POKE 900,0

20 REM "TEST" + NULL DELIMITER

30 CALL 768, A$

40 PRINT A$

50 END

!e subroutine for this is:

 1 ********************************

 2 * AL17-STR$ VARIABLE SENDER *

 3 * 2/1/82 *

 4 * R. WAGNER *

 5 ********************************

 6 *

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

17. More Applesot Data Passing 165

 12 PTRGET EQU $DFE3

 13 CHKSTR EQU $DD6C

 14 FORPNT EQU $85

 15 MAKSTR EQU $E3E9

 16 SAVD EQU $DA9A

 17 DATA EQU $380

 18 *

 19 *

0300: 20 BE DE 20 ENTRY JSR CHKCOM ; CHK SYNTAX

0303: 20 E3 DF 21 JSR PTRGET ; FIND VAR

0306: 20 6C DD 22 JSR CHKSTR ; VAR = $?

0309: 85 85 23 STA FORPNT

030B: 84 86 24 STY FORPNT+1 ; ADDR OF DESCR

030D: A9 80 25 LDA #$80

030F: A0 03 26 LDY #$03 ; A,Y = $380

0311: A2 00 27 LDX #$00 ; DELIMITER='00'

0313: 20 E9 E3 28 JSR MAKSTR ; DATA -> MEMORY

0316: 20 9A DA 29 JSR SAVD ; VARPNT = NEW $

0319: 60 30 DONE RTS

031A: CD 31 CHK

!e new routines here areMAKSTR ($E3E9 = MAKe STRing) andSAVD
($DA9A = SAVe Descriptor).MAKSTR requires that the Accumulator and the Y-
Register hold the address (low, high) of the string to be scanned and that the X-
Register hold the value for the delimiting character. !is example uses$00, but
another common variation would be to use a carriage return ($8D) or a comma
($2C). (Note that<RETURN> is almost always found in the input bufer with the
high bit set, that is, $8D versus $0D).
Ater scanning for the delimiter,MAKSTR moves the data up to the string

storage area at the top of memory.
SAVD is a companion routine which will take whatever string descriptor is

currently pointed to byFORPNT ($85,$86 = FORmula PoiNTer) and match it to
the data just moved by MAKSTR.
Looking at the listing, we can see that the only creative work to be done is

moving the contents of the Accumulator and Y-Register toFORPNT. !e Accu-
mulator, Y-Register, and X-Registers are then prepared as was just described,
and the remaining calls are done. Voila! Instant strings!

Conclusion

You’ll notice that all of the routines handle arrays as well as simple variables.
Additionally, certain more subtle points become apparent as you study the list-
ings. For example, each of the last three Applesot listings was done without
deining the returned variable prior to theCALL. !is was to demonstrate that
PTRGET does a very nice job of creating the variable for us. In addition, in each
case the data that was put into a variable and then later retrieved atDATA (and
vice versa) should be consistent, thus demonstrating the accuracy of the meth-
ods.

]

166 Assembly Lines

You may also wish to experiment with using formulas or string calculations
ater the CALL statement to conirm that all legal Applesot operations are accept-
able.
Last but not least, I would like to give credit and thanks to Craig Peterson

for his help in providing some of the information used in preparing this chapter.
Next chapter we’ll look at some other applications of internal Applesot rou-

tines within custom assembly-language programs.

18. Applesot Hi-Res Graphics
March 1982

In the previous chapter we examined the techniques for passing data back
and forth between Applesot and assembly language in the form of standard
Applesot variables. !is was greatly facilitated by the use of existing internal
Applesot routines. A natural extension of this idea is to use other internal
Applesot routines as may be appropriate to our given task. One of the most
interesting applications of this is in the area of hi-res graphics.
!ere are two main reasons for doing hi-res graphics from assembly lan-

guage. !e irst and most obvious is speed. By doing many of the operations
directly in assembly language, the basic overhead (so to speak) of Applesot is
avoided, thus producing a noticeable speed increase in the overall program. Be
aware however, that since we are ultimately still calling Applesot routines, the
speed increase has a certain limit. Greater speeds are obtained only by creating
specialized and dedicated routines that perform only a speciic function. !e
normal Applesot routines are designed to be lexible and to occupy a minimum
of space. Faster routines will do less and possibly be larger in terms of memory
use. !e trade-of must be weighed.
!e second reason is simply the convenience of being able to do the same

things, including graphics, from assembly language that you are able to do from
BASIC. To this end, the techniques presented in this chapter should be quite
adequate. In future chapters, we’ll explore the creation of specialized routines
that give higher speed and greater independence from the Applesot routines.

Ground School

Before jumping into the intricate details of the various routines, we’ll
impose upon your patience long enough to describe briely the model of Apple
hi-res graphics used for the current discussion. !is may seem unnecessary, but
it will provide the common ground for the points to be made in this particular
presentation. As you’ll see in later chapters, there are a number of ways of look-
ing at the total screen environment.
For the time being, we’ll use an approximation of what is usually viewed as

the “classical” explanation of the hi-res screen in Figure 18-1.
!e array of possible points to be plotted consists of a ield of 192 lines, each

of which is made up of 280 points. If a mixed mode of graphics plus text is

]

18

168 Assembly Lines

selected, only 160 graphics lines are displayed. On the majority of Apples, six
colors are available: black, white, green, violet, orange, and blue.
!ese colors have been assigned to eight numeric values, as follows:

Set 1 Set 2

0 = Black1
1 = Green
2 = Violet
3 = White1

4 = Black2
5 = Orange
6 = Blue
7 = White2

White is created by plotting two color points right next to each other
(green/violet or orange/blue). Black, when speciically plotted, is produced by
turning of two adjacent color dots.
!e model gets shaky when we have to tell you that things like “odd colors”

(green or orange) can be plotted only at odd x-coordinates (1, 3, 5...), and that
"even colors” (blue or violet) can be plotted only at even x-coordinates (0, 2, 4...).
It gets even worse, but we’ll save the horror stories for chapter 20. For the time
being, you’ll have many fewer headaches if you limit yourself to using the colors
from only Set 1 or Set 2. Even better, stick to black and white for now, and fewer
mysterious things will happen.

Landmarks and Entry Points

A number of the fundamental hi-res routine entry points are documented in
various publications relating to the Apple. A brief summary is given in the fol-
lowing table.

18. Applesot Hi-Res Graphics 169

Routine Address Description

HGR $F3E2 Initializes to hi-res page 1, clears screen.
HGR2 $F3D8 Initializes to hi-res page 2, clears screen.
HCLR $F3F2 Clears current screen to black1.
BKGND $F3F6 Clears current screen to last plotted HCOLOR.
HCOLOR $F6F0 Sets HCOLOR to contents of X-Register (0−7).
HPOSN $F411 Positions hi-res “cursor” without plotting. Enter with

X, Y (low, high) = horizontal position, Accumulator =
vertical position.

HPLOT $F457 Identical toHPOSN, but plots currentHCOLOR at coordi-
nates given.

HFIND $F5CB Returns current “cursor” position. Useful ater aDRAW
to ind where you’ve been let. Coordinates returned in:
$E0, $E1 = horizontal (low,high), $E2 = vertical.

HLIN $F53A Draws a line from last plot to point given. Accumula-
tor, X (low, high) = horizontal, Y = vertical position.

SHNUM $F730 Puts address of shape number indicated by X-Register
into$1A,$1B; returns with X, Y (low, high) also set to
address of that shape-table entry.

DRAW $F601 Draw shape pointed to by X, Y (low, high) in current
HCOLOR. Note: X, Y point to speciic entry,not the
beginning of the table. Call SHNUM irst.

XDRAW $F65D Erases shape just drawn (if there) by doing anexclusive
OR with the screen data. Load X, Y (low, high) with
address of shape toXDRAW or callSHNUM irst with X-
Register = shape number.

A Test Flight: Hi-Res Demo

To illustrate how these are actually put to use, assemble and run the follow-
ing program:

 1 ********************************

 2 * AL18-HIRES DEMO 1 *

 3 ********************************

 4 *

 5 *

 6 * OBJ $6000

 7 ORG $6000

 8 *

 9 PREAD EQU $FB1E

 10 WAIT EQU $FCA8

 11 PB0 EQU $C061

 12 HCOLOR EQU $F6F0

 13 HGR EQU $F3E2

]

170 Assembly Lines

 14 HPLOT EQU $F457

 15 HPOSN EQU $F411

 16 HLIN EQU $F53A

 17 ROT EQU $F9

 18 SCALE EQU $E7

 19 SHNUM EQU $F730

 20 DRAW EQU $F601

 21 PTR EQU $E8

 22 *

6000: 4C 11 60 23 ENTRY JMP E2

6003: 01 00 04 24 TABLE HEX 010004

6006: 00 12 3F 25 HEX 00123F

6009: 20 64 2D 26 HEX 20642D

600C: 15 36 1E 27 HEX 15361E

600F: 07 00 28 HEX 0700

 29 *

6011: 20 E2 F3 30 E2 JSR HGR ; CLR SCRN

6014: A2 03 31 LDX #$03 ; WHITE = 3

6016: 20 F0 F6 32 JSR HCOLOR

 33 *

6019: A9 00 34 BORDER LDA #$00 ; Y = 0

601B: A8 35 TAY

601C: AA 36 TAX ; X = 0

601D: 20 57 F4 37 JSR HPLOT ; PLOT 0,0

6020: A9 17 38 LDA #$17 ;

6022: A2 01 39 LDX #$01 ; X = $117

6024: 20 3A F5 40 JSR HLIN ; HLIN TO 279,0

 41 *

 42 *

6027: A9 17 43 LDA #$17

6029: A2 01 44 LDX #$01 ; X = 279

602B: A0 9F 45 LDY #$9F ; Y = 159

602D: 20 3A F5 46 JSR HLIN ; HLIN TO 279,159

 47 *

6030: A9 00 48 LDA #$00

6032: A2 00 49 LDX #$00 ; X = 0

6034: A0 9F 50 LDY #$9F ; Y = 159

6036: 20 3A F5 51 JSR HLIN ; HLIN TO 0,159

 52 *

6039: A9 00 53 LDA #$00

603B: A2 00 54 LDX #$00 ; X = 0

603D: A0 00 55 LDY #$00 ; Y = 0

603F: 20 3A F5 56 JSR HLIN ; HLIN TO 0,0

 57 *

6042: A9 03 58 SET LDA #$03

6044: 85 E8 59 STA PTR

6046: A9 60 60 LDA #$60

6048: 85 E9 61 STA PTR+1 ; SET TABLE TO $6003

 62 *

604A: A2 00 63 READ LDX #$00 ; PDL(0)

604C: 20 1E FB 64 JSR PREAD

604F: 98 65 TYA

6050: D0 02 66 BNE R1

6052: A9 01 67 LDA #$01 ; FIX 0 -> 1

6054: 85 E7 68 R1 STA SCALE

6056: A9 18 69 LDA #$18

18. Applesot Hi-Res Graphics 171

6058: 20 A8 FC 70 JSR WAIT

605B: A2 01 71 LDX #$01 ; PDL(1)

605D: 20 1E FB 72 JSR PREAD

6060: 84 F9 73 STY ROT

6062: A9 18 74 LDA #$18

6064: 20 A8 FC 75 JSR WAIT

 76 *

6067: A2 8B 77 DSPLY LDX #$8B

6069: A0 00 78 LDY #$00 ; X = 139

606B: A9 4F 79 LDA #$4F ; Y = 79

606D: 20 11 F4 80 JSR HPOSN

6070: A2 01 81 LDX #$01 ; SHAPE #1

6072: 20 30 F7 82 JSR SHNUM ; FIND SHP ADDR

6075: A5 F9 83 LDA ROT

6077: 20 05 F6 84 JSR DRAW+4 ; USE SHNUM ENTRY PT

 85 *

607A: AD 61 C0 86 CHK LDA PB0

607D: 30 92 87 BMI E2 ; BUTTON PUSHED

607F: 10 C9 88 BPL READ ; NO PUSH

 89 *

6081: F0 90 CHK

When run, this routine will draw a border around the hi-res screen, and
then draw in the center of the screen the shape deined by the table. Scale and
rotation values may be changed by adjustingpaddles 0 and 1, respectively. Push-
ing button 0 will re-clear the hi-res screen of the accumulated images.
!e routine starts with a jump over a data table toE2. !e table is a simple

shape table taken from page 95 of the Appleso" II BASIC Programming Reference
Manual. It is a table to draw something resembling a square. !e table could
have been put at the beginning of the routine, but it would not then have been
able to be BRUN.
Line 30 clears and displays the hi-res display page (page 1); lines 31, 32 use

HCOLOR to set the color to be used to white1.
A border is then drawn in lines 34−50.HPLOT (line 37) is used to plot the

starting point (a requirement for subsequent use ofHLIN, unlessHPOSN is used
for a “no-plot”).
Lines are drawn between the four corner points of the mixed-mode display.

See Figure 18-1 to conirm the coordinates.
Once the border is done, preparation is made to use the shape table. Loca-

tions$E8,$E9 are used by Applesot to point to the beginning of a shape table.
SET initializes this pointer to our example table at$6003. !e table need not be
part of the actual code, however, and could have been located virtually anywhere
in memory. (Obvious exceptions would be the hi-res page area,$2000−$3FFF,
and other reserved system areas.)

READ loads the X-Register with 0 to tellPREAD that we want to read paddle 0
and then puts the results (found in the Y-Register) into theSCALE parameter
location ($E7). Line 66 tests for aSCALE value of 0. Because Applesot treats 0 as

]

172 Assembly Lines

the largest scale, this is shited back to 1 to make the paddles more usable from a
human standpoint.
Lines 69, 70 use theWAIT routine to wait a rather arbitrary amount of time

before reading paddle 1. !e value#$18 was used as the delay value for very
unscientiic reasons. !e larger the value, the more accurate the subsequentpad-
dle readings, but the paddles will seem less responsive. Shorter delays give fast
paddle response, but less accuracy. !is efect is due to the fact that the Monitor
reads the paddles by measuring the time it takes to charge a capacitor within the
system. !e higher the paddle setting, the longer it takes. !e same capacitor is
used for all paddles. When two or more paddles are read in rapid succession, the
capacitor does not have time to return to its 0 value before the next read starts,
and hence a false value is returned. !e delay allows the system to make a better
return to the desired states.
!e interaction between the two paddles is most apparent when paddle 1 is

set to 255 (full right). When paddle 0 is then increased from 0, the square is seen
to rotate, as the scale parameter is increased. !is does not happen when paddle
1 is at a low setting. One technique for minimizing paddle interaction is to read
the same paddle twice when getting a reading (as we saw in chapter 12). If line
64 and 72 were duplicated in the listing, the result would be more stable. Try
altering the listing and reassembling with the new technique. You’ll ind the dis-
tortion of paddle 0 much less pronounced than before.
!eDSPLY section sets the coordinates to draw the shape at$8B,$4F (139,

79). It then callsHPOSN to position the imaginary hi-res cursor at that point with-
out actually plotting a point.SHNUM is then called, which inds the address of the
irst shape-table entry.SHNUM returns with the X- and Y-Registers holding the
low- and high-order bytes for the entry. !e Accumulator is then loaded with
the ROTation value, and DRAW called.1

Before repeating the cycle, pushbutton 0 is checked for a button press,
which indicates the user wants to clear the hi-res screen.

A Minor Diversion

High-resolution graphics are generally used for two main purposes. !e irst
is the presentation of graphical data, such as sales charts and equations. !e rou-
tines presented here are adequate for that, but overall the task is probably better
done directly in Applesot anyway. Applesot is oten given a worse reputation
than it deserves. It is quite versatile and, when combined with assembly-lan-
guage subroutines, can perform quite admirably.

1[CT] Line 84 was corrected in the July 1982So"alk: !eDRAW routine ($F601) is nor-
mally called with the X- and Y-Registers set to the address of the individual shape to be
drawn. !is can be automated, however, by irst callingSHNUM ($F730). WhenSHNUM is
called, however, a later entry point toDRAW is used. Speciically, this should beDRAW+4
($F605). Entering at $F601 by mistake can produce rather unpredictable results.

18. Applesot Hi-Res Graphics 173

!e other main area of concern is the production of screen animation, as is
commonly seen in arcade-type games. !is area brings up some new require-
ments in our expertise, because depictions of motion on the screen are really a
matter of creating a computer simulation of motion, using the laws of physics to
mimic the real world. (Next time somebody bugs you about writing or playing
games, just tell them you’re busy doing computer simulations.)
It would be impossible to present many more ideas in the area of graphics

without relying on an underlying understanding of some of the principles used
in creating a simulation program. Although we’ll certainly not try to present a
comprehensive tutorial on basic physics and computer graphics, we can get quite
a bit of mileage out of one or two rather simple concepts.

Location

It should be fairly obvious that when specifying the coordinates of a point
on the screen, we are giving information about the relative location of some-
thing. About the only thing diferent about the Apple screen is that the number
system used is laid out somewhat difer-
ently from the Cartesian system described
in junior high school math classes.
In the usual system, the point with

the coordinates 0, 0 (the origin) is at the
center of the display, and all possible
combinations of positive and negative
numbers are shown in the four quadrants.
!is is more than we need to do

Apple graphics though, because the screen
uses only positive values, with the origin
(0, 0) in the upper-let corner.
!e location of objects always can be

given by the number pair associated with
the X and Y (horizontal and vertical) axes.

Motion

So much for discussions of elementary graphing. If you understood the irst
example of drawing the border on the screen, all this is already known to you.
!e reason we mention it is to prepare you for the next idea, the one of motion.
When something is moving, we say it has a velocity. Velocity has only two

components: direction and magnitude. !at is to say that the only things we
have to worry about when simulating a moving object are its speed and its direc-
tion of travel. Speed is measured in units of distance per unit of time.

]

174 Assembly Lines

In the case of our screen display as shown to the
right, something moving from point A to point B in
one second would have a speed of +5 units per second.
Likewise for something moving from point A to C.
Negative values are used to indicate something mov-
ing in a direction opposite the given coordinate sys-
tem. An object moving from point B to A in one
second would have a speed of −5 units per second.
Now at this point you may ind yourself tempted to throw up your hands

and say, “I can tell where he’s going and it doesn’t sound fun!” You might think
you’re going to plunge deeper into the esoteric and rather uninteresting ram-
blings of a physics teacher and end up who-knows-where and for what good rea-
son anyway?
Well, irst of all, you’re only going to have to wade in a very little bit deeper

(the scary part comes when we try to do negative numbers in binary!). And sec-
ond of all, the point of all this will be the simple goal of bouncing a little ball
around on the screen. As it happens, we must know a bit about how the universe
works if we are going to simulate it on our TV screen. And if you really intend to
end up with spaceships careening wildly about, you’ll have to show a little deter-
mination now to get the basics under your belt. So much for the haltime pep
talk.
!e sticky question is how to handle objects that are moving from, say,

point C to A. As a case of extremely good fortune, it turns out we can consider
thecomponents of the motion quite easily and achieve our end result, without
having to know the object’s real diagonal speed.
What this means is that we can give an object both a horizontal and vertical

component to its motion, and then do the appropriate calculations separately.
Speed can be rephrased as “a change in position with respect to time." On

the screen, what this means is that something will appear to move consistent
with the real world as long as we keep re-plotting its position in a regular man-
ner. !e timebase of the operations ends up depending on how fast we cycle
through the re-plotting pattern. Since an example can work wonders, let’s take a
moment to examine a program in (oh no!) Applesot:

10 HGR

20 X = 0: Y = 80

30 V = 1

100 REM DRAW LOOP

110 HCOLOR = 3: REM WHITE

120 HPLOT X,Y : REM DRAW OBJECT

130 HCOLOR = 0: REM BLACK

140 HPLOT X,Y : REM ERASE IT

200 REM MAKE IT MOVE!

210 X = X + V

220 IF X > 278 THEN V = V*(-1)

18. Applesot Hi-Res Graphics 175

230 IF X < 1 THEN V = V*(-1)

240 GOTO 100

!is program will bounce a tiny spot of the let and right sides of the
screen. !e important things to note are that (1) motion is simulated by adding a
constant velocity factor V to the position of each cycle; (2) the object is erased
from its old position before being redrawn at the new one; and (3) a bounce is
basically a complete reversal of the velocity factor, that is, the value is multiplied
by minus one. !e speed with which everything is executed depends on the
inherent speed of the programming language and how fast we can cycle through
the service loop. If for some reason the loop shown was too fast, you could put a
FOR-NEXT delay loop in anywhere along the line. If it was too slow, you could
increase the speed factor,V, from 1 to a larger number. Larger numbers produce
more jerky motion, however. !e other option would be to write it in assembly
language!
Before doing that, though, let’s make it two-dimensional by giving theball

both horizontal and vertical components to its motion:

10 HGR

20 X = 140 : Y = 80

30 XV = 1 : YV = 1

100 REM DRAW LOOP

110 HCOLOR = 3: REM WHITE

120 HPLOT X,Y : REM DRAW OBJECT

130 HCOLOR = 0: REM BLACK

140 HPLOT X,Y : REM ERASE IT

200 REM MAKE IT MOVE!

210 X = X + XV : Y = Y + YV

220 IF X > 278 THEN XV = XV*(-1)

230 IF X < 1 THEN XV = XV*(-1)

240 IF Y > 158 THEN YV = YV*(-1)

250 IF Y < 1 THEN YV = YV*(-1)

260 GOTO 100

In this program we see both components of motion, vertical and horizontal.
Again, a bounce consists of taking the negative value of the component we are
reversing. !e licker is caused by erasing the dot so soon ater we draw it, and
also by the scanning nature of the TV or monitor. It can be smoothed out by
adding a line:

125 FOR I = 1 TO 5: NEXT I

!is also will slow down the speed of the ball a bit, but it does help the over-
all screen appearance. You are advised to watch this fascinating program run for
a while, meditating on the nature of the programming steps occurring through-
out the travel, and particularly at each bounce. !is concept is essential to any
further animation eforts on your Apple.

]

19. Calling Hi-Res Graphics Routines
April 1982

In the previous chapter we discussed hi-res graphics and how to plot a
bouncing hi-res ball. We constructed a simple Appleso! program to illustrate
the principles involved:

10 HGR

20 X = 140 : Y = 80

30 XV = 1 : YV = 1

100 REM DRAW LOOP

110 HCOLOR = 3: REM WHITE

120 HPLOT X,Y : REM DRAW OBJECT

130 HCOLOR = 0: REM BLACK

140 HPLOT X,Y : REM ERASE IT

200 REM MAKE IT MOVE!

210 X = X + XV : Y = Y + YV

220 IF X > 278 THEN XV = XV*(-1)

230 IF X < 1 THEN XV = XV*(-1)

240 IF Y > 158 THEN YV = YV*(-1)

250 IF Y < 1 THEN YV = YV*(-1)

260 GOTO 100

Note that this loop has a basic pattern of: draw → erase → calculate → check → (do
it again...).
For the Appleso! program shown, this works fairly well and is very under-

standable. here is one problem, however: very little time passes between the
draw and erase stages, compared to the amount of time spent in the calculate
and test sections. he result on the screen is a large amount of licker, resulting
from the dot spending more of its time black than white.
One solution to this is to make a small modiication to the originalApple-

so! program, so that it appears as follows:

0 REM FP DOT DEMO PROGRAM

10 HGR

15 HCOLOR = 3 : HPLOT 0,0 TO 279,0 TO 279,159 TO 0,159 TO 0,0

20 X = 140 : Y = 80

30 XV = 1 : YV = 1

100 REM CALC NEW POSN

110 TX = X + XV : TY = Y + YV

200 REM CHECK POSN

210 IF TX > 277 THEN XV = XV*(-1) : GOTO 110

220 IF TX < 2 THEN XV = XV*(-1) : GOTO 110

]

19

178 Assembly Lines

230 IF TY > 157 THEN YV = YV*(-1) : GOTO 110

240 IF TY < 2 THEN YV = YV*(-1) : GOTO 110

300 REM ERASE OLD POSN

310 HCOLOR = 0: REM BLACK

320 HPLOT X,Y

400 REM DRAW NEW POSN

410 X = TX : Y = TY

420 HCOLOR = 3: REM WHITE

430 HPLOT X,Y

440 GOTO 100

his routine not only draws a nice border around the screen, but also fol-
lows this general pattern: calculate → check → erase → draw → (start over).
he advantage of this technique is that relatively little time is spent between

the erase and redraw stages. hus the dot is on the screen the majority of the
time and very little licker is apparent.
Another new detail is the use of a set of temporary variables,TX andTY.

hese store the new position while the old one is being erased. he new one is
then drawn andTX,TY are made “oicial” by being passed to the “real”X,Y vari-
ables.
As a minor point, also note that we have reduced the boundary test points

in lines 200−240 so that the dot reverses direction before actually contacting the
boundary we have drawn. Otherwise, the boundary would be erased by the dot
passing through it on each bounce.
Now let’s look at how to implement this program in assembly language.

Taking the Opposite of a Signed Number

In chapter 10 we discussed the sign bit and how to represent negative num-
bers.1 Recall that negative numbers are deined using thetwo’s complement sys-
tem: reverse each bit of the positive number, then add one.
All that we need now is a routine that will produce the opposite of a number

given it–that is produce thetwo’s complement of a positive number and also
the positive equivalent when given anegative value. To do this, we’ll use theEOR
command.

EOR is useful in creating a routine to convert between signed numbers
because of its ability to reverse all of the bits in a given byte. he conversion is
done with two individual routines. In the examples below, the routines convert a
constant value,#$34, back and forth. In a working version of this program, the
value would be passed via a register or a memory location, as will be shown later.

1[CT] he originalSo!alk article #19 (April 1982) contained a section on “signed binary
numbers.” InAssembly Lines: "e Book (and in this book), this material is presented in
chapter 10.

19. Calling Hi-Res Graphics Routines 179

 Positive to Negative

ENTRY LDA #$34 ; %00110100 = +52

 ; TO BE CONVERTED TO -52

 EOR #$FF ; %11111111 TO REVERSE BITS

 ; RESULT = %11001011

 CLC

 ADC #$01 ; RESULT = RESULT + 1

 = %11001100 = $CC

 STA MEM ; STORE RESULT

DONE RTS

 Negative to Positive

ENTRY LDA #$CC ; %11001100 = $CC = -52

 ; TO BE CONVERTED BACK

 SEC

 SBC #$01 ; ACCUM = ACCUM - 1

 ; = %11001011 = $CB

 EOR #$FF ; REVERSE ALL BITS

 ; RESULT = %00110100 = $34 = +52

 STA MEM ; STORE RESULT

DONE RTS

Note that in this example the percent sign is used to indicate the binary
form of the number. Some assemblers (such as Merlin) support this notation.

!e Real !ing: Hi-Res in Assembly

We now have the tools necessary to construct the assembly-language ver-
sion of the last Appleso! listing. Assemble and run this listing:

 1 ********************************

 2 * AL19-HIRES ONE DOT PROGRAM *

 3 ********************************

 4 *

 5 *

 6 * OBJ $6000

 7 ORG $6000

 8 *

 9 X EQU $E0 ; $E0,$E1

 10 Y EQU $E2

 11 XV EQU $06 ; $06,$07

 12 YV EQU $08

 13 TX EQU $09 ; $09,$0A

 14 TY EQU $0B

 15 *

 16 PREAD EQU $FB1E

 17 WAIT EQU $FCA8

 18 HCOLOR EQU $F6F0

 19 HGR EQU $F3E2

 20 HPLOT EQU $F457

 21 HPOSN EQU $F411

 22 HLIN EQU $F53A

 23 *

6000: 20 E2 F3 24 ENTRY JSR HGR

]

180 Assembly Lines

6003: A2 03 25 LDX #$03 ; WHITE

6005: 20 F0 F6 26 JSR HCOLOR

 27 *

6008: A9 00 28 BOX LDA #$00 ; Y = 0

600A: A8 29 TAY

600B: AA 30 TAX

600C: 20 57 F4 31 JSR HPLOT ; PLOT 0,0

600F: A9 17 32 LDA #23 ; 279 MOD 256

6011: A2 01 33 LDX #01 ; 279/256

6013: 20 3A F5 34 JSR HLIN ; FROM 0,0 TO 279,0

 35 *

6016: A9 17 36 LDA #23

6018: A2 01 37 LDX #01

601A: A0 9F 38 LDY #$9F ; Y = 159

601C: 20 3A F5 39 JSR HLIN ; 279,0 TO 279,159

 40 *

601F: A9 00 41 LDA #$00

6021: A2 00 42 LDX #$00

6023: A0 9F 43 LDY #$9F

6025: 20 3A F5 44 JSR HLIN ; 279,159 TO 0,159

 45 *

6028: A9 00 46 LDA #$00

602A: A2 00 47 LDX #$00

602C: A0 00 48 LDY #$00

602E: 20 3A F5 49 JSR HLIN ; 0,159 TO 0,0

 50 *

6031: A9 00 51 SET LDA #$00

6033: 85 07 52 STA XV+1

6035: A9 01 53 LDA #$01

6037: 85 06 54 STA XV ; XV = 1

6039: 85 08 55 STA YV ; YV = 1

 56 *

603B: A2 8C 57 POSN LDX #$8C

603D: A0 00 58 LDY #$00 ; X = 140

603F: A9 50 59 LDA #$50 ; Y = 80

6041: 20 11 F4 60 JSR HPOSN ; SET CURSOR AT X,Y

 61 *

6044: 18 62 CALC CLC

6045: A5 E0 63 LDA X

6047: 65 06 64 ADC XV

6049: 85 09 65 STA TX

604B: A5 E1 66 LDA X+1

604D: 65 07 67 ADC XV+1

604F: 85 0A 68 STA TX+1 ; TX = X + XV

 69 *

6051: 18 70 CLC

6052: A5 E2 71 LDA Y

6054: 65 08 72 ADC YV

6056: 85 0B 73 STA TY ; TY = Y + YV

 74 *

6058: A5 0A 75 CHK LDA TX+1

605A: D0 09 76 BNE CHK2

605C: A5 09 77 LDA TX

605E: C9 02 78 CMP #$02

6060: B0 03 79 BCS CHK2

6062: 20 AE 60 80 JSR RVRSX ; TX < 2

19. Calling Hi-Res Graphics Routines 181

 81 *

6065: A5 0A 82 CHK2 LDA TX+1

6067: C9 01 83 CMP #$01

6069: 90 09 84 BCC CHK3

606B: A5 09 85 LDA TX

606D: C9 16 86 CMP #$16

606F: 90 03 87 BCC CHK3

6071: 20 AE 60 88 JSR RVRSX ; TX >= $116 (278)

 89 *

6074: A5 0B 90 CHK3 LDA TY

6076: C9 02 91 CMP #$02

6078: B0 03 92 BCS CHK4

607A: 20 D6 60 93 JSR RVRSY ; TY < 2

 94 *

607D: A5 0B 95 CHK4 LDA TY

607F: C9 9E 96 CMP #$9E

6081: 90 03 97 BCC ERASE

6083: 20 D6 60 98 JSR RVRSY ; TY >= $9E (158)

 99 *

6086: A2 00 100 ERASE LDX #$00 ; BLACK = 0

6088: 20 F0 F6 101 JSR HCOLOR

608B: A6 E0 102 LDX X

608D: A4 E1 103 LDY X+1 ; GET X,X+1

608F: A5 E2 104 LDA Y ; GET Y

6091: 20 57 F4 105 JSR HPLOT ; ERASE POINT

 106 *

6094: A2 03 107 PLOT LDX #$03 ; WHITE1 = 3

6096: 20 F0 F6 108 JSR HCOLOR

6099: A6 09 109 LDX TX

609B: A4 0A 110 LDY TX+1 ; GET TX,TX+1

609D: A5 0B 111 LDA TY ; GET TY

609F: 20 57 F4 112 JSR HPLOT ; PLOT POINT

 113 *

60A2: A2 00 114 DELAY LDX #$00 ; PDL0

60A4: 20 1E FB 115 JSR PREAD

60A7: 98 116 TYA

60A8: 20 A8 FC 117 JSR WAIT

 118 *

 119 *

60AB: 4C 44 60 120 GOBACK JMP CALC

 121 *

 122 *

60AE: A5 07 123 RVRSX LDA XV+1

60B0: 30 12 124 BMI NEGPOSX

 125 *

60B2: A5 06 126 POSNEGX LDA XV

60B4: 49 FF 127 EOR #$FF

60B6: 18 128 CLC

60B7: 69 01 129 ADC #$01

60B9: 85 06 130 STA XV

60BB: A5 07 131 LDA XV+1

60BD: 49 FF 132 EOR #$FF

60BF: 69 00 133 ADC #$00

60C1: 85 07 134 STA XV+1

60C3: 60 135 RTS ; XV -> -XV

 136 *

]

182 Assembly Lines

60C4: A5 06 137 NEGPOSX LDA XV

60C6: 38 138 SEC

60C7: E9 01 139 SBC #$01

60C9: 49 FF 140 EOR #$FF

60CB: 85 06 141 STA XV

60CD: A5 07 142 LDA XV+1

60CF: E9 00 143 SBC #$00

60D1: 49 FF 144 EOR #$FF

60D3: 85 07 145 STA XV+1

60D5: 60 146 DONEX RTS ; -XV -> XV

 147 *

 148 *

 149 *

60D6: A5 08 150 RVRSY LDA YV

60D8: 30 0A 151 BMI NEGPOSY

 152 *

60DA: A5 08 153 POSNEGY LDA YV

60DC: 49 FF 154 EOR #$FF

60DE: 18 155 CLC

60DF: 69 01 156 ADC #$01

60E1: 85 08 157 STA YV

60E3: 60 158 RTS ; YV -> -YV

 159 *

60E4: A5 08 160 NEGPOSY LDA YV

60E6: 38 161 SEC

60E7: E9 01 162 SBC #$01

60E9: 49 FF 163 EOR #$FF

60EB: 85 08 164 STA YV

60ED: 60 165 DONEY RTS ; -YV -> YV

 166 *

60EE: 3A 167 CHK

When you run this routine, notice how much faster it executes and how the
speed of the dot can be varied using paddle 0.
his routine essentially parallels the Appleso! routine shown earlier. Lines

24−50 clear the hi-res screen and draw the border. Lines 51−55 set the velocity
components to 1; lines 57−61 position the hi-res cursor in the center of the
screen. his also conveniently loads$E0-E2 with the desired X and Y coordi-
nates of the dot. Remember that$E0,$E1, and$E2 are the zero-page locations
used by the Appleso! hi-res routines for the X and Y coordinates of its cursor.
Lines 62−73 calculate the new position of the dot by adding the respective

velocity components to the X and Y coordinates. Lines 75−98 check to see
whether this new position is still within the speciied screen boundaries. If it has
reached the edge, the appropriate velocity components are reversed for the next
go-round’s calculation.
Line 100 starts the erasing of the current dot position, immediately followed

by a drawing of the new position. Note that the equivalent of theX=TX:Y=TY
statement is apparently missing. In actuality, it is automatically accomplished by
theJSRHPLOT on line 112. Remember that the contents of the Accumulator, X-
and Y-Registers are automatically assigned to$E0−E2 byHPLOT. Line 114 does a

19. Calling Hi-Res Graphics Routines 183

short delay by getting a value from paddle 0 to be used by theWAIT ($FCA8) rou-
tine. A!er the delay, a JMP CALC restarts the entire process.
Lines 126−165 are applications of the sign-reversal routines shown earlier.

Notice thatRVRSY is a one-byte reversal, whileRVRSX illustrates the reversal of a
two-byte value. Similarly,CALC shows that the same addition routine is used for
both signed binary (our current condition) and unsigned binary (as in previous
chapters).

Table-Driven Graphics

Forgraphics of any complexity–anything involving more than one dot–a
little improvement on this routine is needed. One of the most common ways of
doing this is to use a table of all the current points on the screen and their corre-
sponding velocities. Motion is then managed by sequentially scanning through
the table and using the entire calculation, check and erase/plot section as a sub-
routine.
To convert the routine presented earlier, make the following changes to the

source code (the hex data from the assembly is included to assist in error check-
ing):2

1. Add these lines to the end of the listing (new line numbers shown):

 237 *

 238 *

 239 *

 240 *

6154: A2 00 241 SETUP LDX #$00

6156: BD 62 61 242 LOOP LDA DATA,X

6159: 9D 00 10 243 STA TABLE,X

615C: E8 244 INX

615D: E0 28 245 CPX #40 ; 8 BYTES * NUM DOTS

615F: 90 F5 246 BCC LOOP

6161: 60 247 DONE RTS

 248 *

6162: 8C 00 50 249 DATA HEX 8C005000 ; X,Y(1) = 8C,50

6166: 01 00 01 250 HEX 01000100 ; XV,YV(1) = 1,1

 251 *

616A: 8E 00 52 252 HEX 8E005200 ; X,Y(2) = 8E,52

616E: 01 00 01 253 HEX 01000100 ; XV,YV(2) = 1,1

 254 *

6172: 90 00 54 255 HEX 90005400 ; X,Y(3) = 90,54

6176: 01 00 01 256 HEX 01000100 ; XV,YV(3) = 1,1

 257 *

617A: 92 00 56 258 HEX 92005600 ; X,Y(4) = 92,56

617E: 01 00 01 259 HEX 01000100 ; XV,YV(4) = 1,1

 260 *

6182: 94 00 58 261 HEX 94005800 ; X,Y(5) = 94,58

6186: 01 00 01 262 HEX 01000100 ; XV,YV(5) = 1,1

2[CT] he checksum for the new program is $06.

]

184 Assembly Lines

 263 *

618A: 06 264 CHK

2. Rewrite line 120 (will end up as 190) as:

6113: 60 190 GOBACK RTS

3. Rewrite the beginning of the source as:

 1 ********************************

 2 * AL19-HIRES LOTS DOTS *

 3 ********************************

 4 *

 5 *

 6 * OBJ $6000

 7 ORG $6000

 8 *

 9 TABLE EQU $1000

 10 CTR EQU $0C

 11 NUM EQU $05 ; FIVE DOTS

 12 *

 13 X EQU $E0 ; $E0,$E1

 14 Y EQU $E2

 15 XV EQU $06 ; $06,$07

 16 YV EQU $08

 17 TX EQU $09 ; $09,$0A

 18 TY EQU $0B

 19 *

 20 PREAD EQU $FB1E

 21 WAIT EQU $FCA8

 22 HCOLOR EQU $F6F0

 23 HGR EQU $F3E2

 24 HPLOT EQU $F457

 25 HPOSN EQU $F411

 26 HLIN EQU $F53A

 27 *

6000: 20 E2 F3 28 ENTRY JSR HGR

6003: A2 03 29 LDX #$03 ; WHITE

6005: 20 F0 F6 30 JSR HCOLOR

 31 *

6008: 20 54 61 32 TABLESET JSR SETUP

 33 *

600B: A9 00 34 BOX LDA #$00 ; Y = 0

600D: A8 35 TAY

600E: AA 36 TAX

600F: 20 57 F4 37 JSR HPLOT ; PLOT 0,0

4. Insert the code for the table lookup starting at new line 68:

6047: A9 00 68 LOOKUP LDA #$00

6049: 85 0C 69 STA CTR

604B: A5 0C 70 GET LDA CTR

604D: 0A 71 ASL

604E: 0A 72 ASL

604F: 0A 73 ASL ; X = CTR*8

19. Calling Hi-Res Graphics Routines 185

 74 *

6050: AA 75 TAX

6051: BD 00 10 76 LDA TABLE,X

6054: 85 E0 77 STA X

6056: E8 78 INX

6057: BD 00 10 79 LDA TABLE,X

605A: 85 E1 80 STA X+1

605C: E8 81 INX

605D: BD 00 10 82 LDA TABLE,X

6060: 85 E2 83 STA Y

6062: E8 84 INX

6063: E8 85 INX ; Y + 1 NOT USED

 86 *

6064: BD 00 10 87 LDA TABLE,X

6067: 85 06 88 STA XV

6069: E8 89 INX

606A: BD 00 10 90 LDA TABLE,X

606D: 85 07 91 STA XV+1

606F: E8 92 INX

6070: BD 00 10 93 LDA TABLE,X

6073: 85 08 94 STA YV

 95 *

6075: 20 AC 60 96 SERVICE JSR CALC

 97 *

6078: A5 0C 98 PUT LDA CTR

607A: 0A 99 ASL

607B: 0A 100 ASL

607C: 0A 101 ASL

607D: AA 102 TAX

 103 *

607E: A5 E0 104 LDA X

6080: 9D 00 10 105 STA TABLE,X

6083: E8 106 INX

6084: A5 E1 107 LDA X+1

6086: 9D 00 10 108 STA TABLE,X

6089: E8 109 INX

608A: A5 E2 110 LDA Y

608C: 9D 00 10 111 STA TABLE,X

608F: E8 112 INX

6090: E8 113 INX ; SKIP BYTE

 114 *

6091: A5 06 115 LDA XV

6093: 9D 00 10 116 STA TABLE,X

6096: E8 117 INX

6097: A5 07 118 LDA XV+1

6099: 9D 00 10 119 STA TABLE,X

609C: E8 120 INX

609D: A5 08 121 LDA YV

609F: 9D 00 10 122 STA TABLE,X

 123 *

60A2: E6 0C 124 INC CTR

60A4: A5 0C 125 LDA CTR

60A6: C9 05 126 CMP #NUM ; NUMBER OF DOTS

60A8: 90 A1 127 BCC GET

60AA: B0 9B 128 BCS LOOKUP

 129 *

]

186 Assembly Lines

 130 *

 131 *

60AC: 18 132 CALC CLC

60AD: A5 E0 133 LDA X

60AF: 65 06 134 ADC XV

Run this routine from the Monitor with a6000G or from Appleso! with a
CALL 24576. If calling from the Monitor, make sure you have entered the Moni-
tor from Appleso! when you do theCALL -151 to ensure that the Appleso!
ROM or RAM card bank is selected. Note that although the entire routine is in
assembly language, it does require the presence of the Appleso! hi-res routines
in the$D0000-$F7FF range. By using paddle 0 you can vary the speed of execu-
tion considerably. One drawback of using theWAIT routine is that 0 will be just
as slow as 255 when adjusting the paddle. Otherwise, it should behave quite
nicely. To speed things up further,NOP out theJSR toWAIT on line 187. An even
greater speed increase is achieved by similarly disabling theJSR PREAD on line
185, although withPREAD gone there is no longer any control over the speed. H
However, this will give you an idea of the maximum speed possible for the ive
dots using standard Appleso! hi-res routines.
he main points to note in the new listing are theJSR toSETUP on line 32,

theLOOKUP section in lines 68−128, and the table generator at the end in lines
241−263.

SETUP creates a data table starting at location$1000 that contains a number
of eight-byte blocks, each of which contains the information necessary for a
given dot. he block is made up of two four-byte subunits. he irst four bytes
give the location data for the X and Y coordinates. Notice that the fourth byte is
not used. Space in the table could have been saved by omitting this byte, but the
eight byte length per entry allows us to use a few simpleASLs, as will be
explained momentarily.
he second four bytes hold the velocity data, again in an X, Y format, with

byte four being unused.
LOOKUP basically does three things. First it retrieves the data for a dot and

puts it in the currentX,Y,XV,YV bytes. Second, it feeds these to theCALC and
PLOT routines. hird, when CALC/PLOT returns, the new location and velocity val-
ues are stored back in the table.
Examining the code starting atGET, you can see thatCTR is used to keep

track of which dot we’re currently processing. his is multiplied by 8 to get the
base address of the data for that dot. Remember thatASL can be used to multiply

19. Calling Hi-Res Graphics Routines 187

easily by a power of two depending on the number ofASLs you use. EachASL is
equivalent to multiplying by 2.
Once the base address ofset is determined, this is put in the X-Register and

the data retrieved via a series ofLDA/STA operations. A!er returning from
CALC/PLOT, the process is reversed to store the new data.

Conclusion

Hi-res is an involved topic, and it’s challenging to try to present the right
mix of clarity and in-depth explanation. My goal is to provide enough of the
basics to give you the springboard to pursue your own interests.
In general, the principles provided in this chapter and the one before it are

the foundation of most animated graphics programs. Tables are especially worth
your consideration as they provide a straightforward way of managing a larger
number of screen points.
By now it also should be evident that even in assembly language, the Apple-

so! routines themselves are still the most restraining portion in terms of speed
and execution. In all fairness to Appleso!, though, realize that their speed is sac-
riiced for simplicity and convenience of operation.
Next chapter’s topic will be the layout of the hi-res screen itself, and how

certain dedicated routines can be created to get a little more out of the ol’ Apple.

]

20. Structure of the Hi-Res Display Screen
May 1982

In the preceding discussions of hi-res graphics we’ve relied on the existing
Appleso! BASIC routines to do the necessary plotting of points from assembly
language. From your previous experience with Appleso! and even from the
most recent hi-res moving-dot programs presented, you may have noticed cer-
tain peculiarities about hi-res graphics. he problems lie in certain intrinsic
shortcomings in the explanation of hi-res graphics ofered so far.
To explore this area further let’s examine, one by one, a number of prob-

lems that can occur–and thus discover the underlying structure of the hi-res
display screen.

Loading a Hi-Res Screen: the “Fill” Efect

he fundamental question to be answered in this discussion is, “How are
individual points plotted on the screen?” It should be relatively easy to accept the
notion that to display a screen whose appearance can be arbitrarily changed, the
RAM portion of the computer must be used. he area used is the range of memory
from$2000 to$3FFF (8192 to 16383 decimal). his is called the page one hi-res
display. he Apple II is also capable of displaying an alternate memory range
called, cleverly enough, the page twohi-res display. his display is derived from
the data contained in the memory range $4000 to $5FFF.
his chapter will focus primarily on page one, although for the most part

page two can be considered to be just a simple ofset from page one.
It also should be intuitively obvious that the display must in some way be

linked to the actual contents of each byte in the ranges mentioned. his can eas-
ily be investigated by doing the following:
From Appleso! BASIC, select and clear the page one hi-res display by typ-

ing inHGR<RETURN>. If the cursor is not still visible, press<RETURN> until it reap-
pears at the bottom of the screen.
Now enter the Monitor with aCALL -151. he irst thing to do is toill

memory with a sample value. Do this by entering the following:

2000:FF

2001<2000.3FFFM

]

20

190 Assembly Lines

When you press<RETURN>, the screen should rapidly ill to white. Enter
<CTRL>C to return to BASIC. Let’s save the screen now by placing a convenient
disk in the drive and entering:

BSAVE TESTPIC,A$2000,L$2000

Besides providing the information on how to save a hi-res image, the pur-
pose of this instruction was to allow you to watch the screen ill at a little slower
pace. You may have noticed when you illed the screen just now that it did not
ill in an exactly continuous pattern, line-by-line from top to bottom. It did hap-
pen rather quickly, though.
Clear the screen by typingHGR<RETURN> again, and now load the data from

disk back into memory by entering:

BLOAD TESTPIC

his time the screen should ill more slowly, and the somewhat strange pat-
tern this generates will be more apparent. So now our problem is: “How is a ver-
tical screen position (line) selected in terms of its memory address?” (Or: "Why
does the screen load in such a funny way?”)
Your irst impulse might be to say “Well, if I were designing the computer,

I’d just multiply the number of the line I wanted by the number of bytes per line
to get the base address (the address of the irst byte of the line) for the line. For
example, if each line took forty bytes (which, by the way, it does), line 0 would
have a base address of$2000. Line 1 would be$2000 +1 × $28 ($28 =40 deci-
mal) = $2028. Line 2 would be $2000 + 2 × $28 = $2060, and so on.
An additional beneit would show up in the form of some unused bytes on

the hi-res page. For 192 lines, the last address used would be$2000 +(192 ×
$28) −1 =$3DFF. Since we’ve allotted the area from$2000 to$3FFF for page
one, this would leave $200 (512 decimal) bytes le! over!
Unfortunately, that’s not the way the Apple was set up. It turns out that

multiplication routines are kind of a drag in terms of speed and memory usage,
unless you’re using exact multiples of two. A much more compact (and faster)
algorithm is:

 1 ********************************

 2 * AL20-HIRES BASE ADDRESS *

 3 * CALCULATOR ROUTINE *

 4 ********************************

 5 * OBJ $300

 6 ORG $300

 7 GBAS EQU $26

 8 HPAG EQU $E6 ; HGR=$20, HGR2=$40

 9 *

 10 * CALC BASE ADDRESS FOR Y-COORD IN ACCUM.

 11 * GBAS = ADDR OF 1ST BYTE OF LINE SPECIFIED.

 12 * ASSUME ACCUM HAS BITS abcdefgh, C=carry

0300: 48 13 ENTRY PHA ; abcdefgh

20. Structure of the Hi-Res Display Screen 191

0301: 29 C0 14 AND #$C0 ; ab000000

0303: 85 26 15 STA GBAS

0305: 4A 16 LSR ; 0ab00000

0306: 4A 17 LSR ; 00ab0000

0307: 05 26 18 ORA GBAS ; abab0000

0309: 85 26 19 STA GBAS

030B: 68 20 PLA ; abcdefgh

030C: 85 27 21 STA GBAS+1

030E: 0A 22 ASL ; bcdefgh0 C=a

030F: 0A 23 ASL ; cdefgh00 C=b

0310: 0A 24 ASL ; defgh000 C=c

0311: 26 27 25 ROL GBAS+1 ; bcdefghc C=a

0313: 0A 26 ASL ; efgh0000 C=d

0314: 26 27 27 ROL GBAS+1 ; cdefghcd C=b

0316: 0A 28 ASL ; fgh00000 C=e

0317: 66 26 29 ROR GBAS ; eabab000

 30 *

0319: A5 27 31 LDA GBAS+1 ; cdefghcd

031B: 29 1F 32 AND #$1F ; 000fghcd

031D: 05 E6 33 ORA HPAG ; 001fghcd (PAGE 1)

031F: 85 27 34 STA GBAS+1 ; 001fghcd

 35 *

0321: 60 36 DONE RTS

Although it’s perhaps not obvious how this works, the routine does take any
value in the Accumulator, from 0 to 191, and return the appropriate base
address of the corresponding line in locations$26,$27 (GBAS). his code is
“stolen” from a similar routine in the Appleso! hi-res routineHPOSN ($F411)
mentioned in the previous chapter.1

he overall pattern to the screen-illing operation is as follows. he irst
forty bytes of memory correspond to line 0 of the screen display. he next forty
bytes form line 63, and the next forty bytes line 127. At the end of the line 127 is
a block of eight unused bytes. (3× 40 + 8 = 128 bytes). his pattern is repeated
sixty-three more times to create all 192 screen lines.2 (3× 64 = 192 lines; 64×
128 bytes = 8,192 bytes per hi-res page.)
When hi-res page 1 is loaded from disk, the range of memory is illed

sequentially from$2000 to$3FFF. What you see on the screen are twenty-four
screen blocks, each consisting of eight lines gradually being illed. he twen-
ty-four blocks also can be viewed as eight triplets, with each triplet made up of
three lines, one line each at the top, middle, and bottom portions of the screen.
he general screen ill pattern then is: 0, 63, 127; 8, 71, 135; 16, 79, 143; … 62,
126, 191.

1[CT] Corrections to this code were taken from the June 1982Assembly Lines article.
Additional comments were added, following those from Bob Sander-Cederlof’s Apple-
so! disassembly at http://www.txbobsc.com/scsc/scdocumentor/.

2[CT] he next 128 bytes ($2080−$20FF) correspond to screen lines 8, 71, and 135. he
128 bytes a!er that map to lines 16, 79, 143, and so forth. he irst eight lines start at:
$2000, $2400, $2800, $2C00, $3000, $3400, $3800, $3C00. See chapter 31 for details.

]

192 Assembly Lines

It is not essential at this point that you be entirely luent in terms of which
line corresponds to which memory range; only that you realize that the screen
does not ill in quite the pattern that might otherwise be expected. Fortunately,
the routine just given can calculate the base address of any horizontal line we
wish to access.

Another Problem: Shiting Colors

Enter the following:

HGR

HCOLOR = 1

HPLOT 0,0

CALL 62454

HCOLOR = 5

HPLOT 0,0 TO 100,100

he irst two steps are fairly innocent; they merely select and clear the hi-res
page, then set thecolor to green. Trying toHPLOT 0,0 gives the irst problem: it
doesn’t seem to work. his is consistent with the warning given earlier, that
even-numbered colors plot only even coordinates, and odd-numbered colors
plot only odd coordinates. Green, being an odd-value color, is not plotted at
X = 0.
heCALL 62454 is a call to a routine that clears the screen to the last color

plotted (whether or not the result was visible). A!er you set the color to orange
(HCOLOR =5), an attempt to draw a diagonal line produces a series of rectangles.
What accounts for both of these efects?
You’ll recall that 40 bytes per line are used to hold the data to display the

280 dot positions on each line. here are eight bits in a byte, giving us a total of
320 bits to work with. As it happens, only seven of each eight are used in map-
ping the displayed screen dots (7 × 40 = 280 dots).
Consider the illustration below:

Address: $2000 $2001 $2002

Bit:0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Color:
V

B

G

O

V

B

G

O

V

B

G

O

V

B

0

1

G

O

V

B

G

O

V

B

G

O

V

B

G

O

0

1

V

B

G

O

V

B

G

O

V

B

G

O

V

B

0

1

X coordinate:0 1 2 3 4 5 6 − 7 8 910111213−14151617181920−

Figure 20-1: Bit Positions and Screen Colors

20. Structure of the Hi-Res Display Screen 193

What Figure 20-1 shows is the color and position assignment of each bit
within the irst three bytes of memory for page one of the hi-res screen display.
Although only the irst three bytes of line 0 are shown, the pattern holds for the
entire display.
Note the following major points:

1. Not every color can be displayed at every X coordinate. Speciically, even
colors (violet = 2, blue = 4) are available only on even X coordinates. Odd colors
(green = 1, orange = 5) are available only at odd X coordinates.

2. Within any byte, bit 7 is used to determine which row–top or bottom–is
selected. his means that for any particular group of seven dot positions, repre-
sented by a single byte, only the colors ineither the top or bottom rows can be
shown at one time. For example, it isnot possible to have green and orange dots
displayed simultaneously within the same seven-dot group.

3. he order of the colors within every other byte is reversed with respect to its
neighbors. his is to ensure that the individual colors properly alternate with
successive X positions, such as between bytes 0 and 1, 1 and 2, and so on.

he color chart is shown below:
Now perhaps it will make a little more

sense. Set 1 colors are all those selected when
the high-order bit is of (bit 7 = 0). Set 2 are
all those selected when the high-order bit is
on (bit 7 = 1). Any attempt to plot a point
from one set will convert any existing dots
from the other set, provided all dots are
deined within a common byte. Obviously,

plotting a dot at X coordinate 7 (byte$2001) will not have any efect on dot posi-
tions 0 to 6, since they are stored in a separate byte ($2000).
White is drawn by turning on two adjacent dots, either a violet-green pair

for white1, or a blue-orange pair for white2. Conversely, black is formally done
by turning of two dots at once, the pair of which would correspond to the ones
used for a white plot as just described.
Within a particular byte, bit 7 will always be le! in a state determined by the

nature of the last color plot, regardless of how many dots were previously in
some other particular condition. his is why the earlier diagonal line plot acted
so strangely. By clearing the screen to green, every screen byte was set so as to
have the green bits on and the violet bits of (bit 7 = 0). See Figure 20-2.

]

Set 1 Set 2

0 = Black1
1 = Green
2 = Violet
3 = White1

4 = Black2
5 = Orange
6 = Blue
7 = White2

194 Assembly Lines

Address: $2000 $2001 $2002

Bit:0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Value:0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0

Color: G G G −G G G G − G G G −

X coordinate:0 1 2 3 4 5 6 − 7 8 910111213−14151617181920−

Figure 20-2: Bit Values for Green Pixels

Location$2000, for example, would hold the value$2A. Since the pattern is
shi!ed for$2001, an all-green dot group would correspond to the value$55. To
add to the confusion, remember that Figure 20-1 shows the bits in the reverse
order from the notation normally used in this book. Ordinarily we’d show loca-
tion$2000 holding a$2A in binary notation as:00101010. Since the screen dots
are displayed by least-signiicant position irst, though, this is reversed when
showing a screen display to make it easier to interpret:

$2A = 00101010 → (reverse to match Figure 20-1) → 01010100

and for the other bytes:

$5A = 01010101 → (reversed) → 10101010

When HPLOT tried to draw an orange dot at 0, 0 we would ordinarily
expect no efect. However, the high bit was reversed, and this converted the dis-
play of all current green dots to orange.
At all odd coordinates the direct plot is successful, but all remaining dots in

the particular byte still converted to their high-bit-on equivalents.
Figure 20-3 shows the contents of $2000 to $2002 a!er the orange HPLOT.

Address: $2000 $2001 $2002

Bit:0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Value:0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1

Color: O O O −O O O O − O O O −

X coordinate:0 1 2 3 4 5 6 − 7 8 910111213−14151617181920−

Figure 20-3: Bit Values for Orange Pixels

20. Structure of the Hi-Res Display Screen 195

Another smaller but equally annoying example is shown by this simple pro-
cedure:

HGR

HCOLOR = 1: HPLOT 1,0

HCOLOR = 5: HPLOT 5,0

HGR

HCOLOR = 1: HPLOT 1,0

HCOLOR = 5: HPLOT 6,0

HGR

HCOLOR = 1: HPLOT 1,0

HCOLOR = 5: HPLOT 7,0

Step through each statement carefully, noting what happens a!er the
attempt to plot the orange dot. In the irst case, the irst green dot is converted
even though the dots are visually separated. his is because they are both deter-
mined within the same byte. In the second case, even though the second dot is
not plotted, the conversion still occurs. In the third case, the second plot uses a
second and distinct byte, so the irst dot is unafected regardless of the color of
the second plot.

Other Problems: When Is White Not White?

Answer: when you’re plotting only one dot at a time.
In the last few programs involving the movement of hi-res dots, you may

have noticed that at slow speeds the color of the dot alternated between violet
and green depending on its position. Similarly, even though we speciiedwhite
as the color to be used in the box frame drawn at the beginning of each program,
the le! vertical line was violet while the right one was green.
his is because white does not actually turn on two dots at once. What it

really does is let either dot (violet/green or orange/blue) be acceptable for a given
HPLOT. White appears only when two adjacent dots are drawn, usually as a result
of a line being drawn with some degree of horizontal tilt to it.
In the moving-dot programs, the dot appears white when moving at higher

speeds because the alternation between colors occurs quickly enough that your
eye tends to do the blending on a time basis, rather than the usual positional one.

Super Hi-Res Graphics

he last topic for this chapter is not a problem, but rather an unheralded
beneit of this crazy system of screen displays. You may have noticed in the pre-
vious example that when the second dot was plotted, the green dot moved
slightly to the right when it changed to orange. Up until now, you’ve been led to
believe that the violet/blue or green/orange options for each bit represented a

]

196 Assembly Lines

unique screen position–a single dot. For the 280-point model of the screen, they
do. For example, either violet or blue can be plotted with anHPLOT 0,0 state-
ment.
In reality, however, a more accurate representation can be constructed as in

Figure 20-4.

Address: $2000

Bit: 0 1 2 3 4 5 6 7

Color:
V

B

G

O

V

B

G

O

V

B

G

O

V

B

0

1

X coordinate:0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 20-4: Bit Positions and Colors for 560-dot Mode

In this model, you can see that the high-bit-on colors are shi!ed a half posi-
tion to the right of the high-bit-of colors. What this means is that you can plot
points in a 560-dot mode, giving a much better resolution than the usual 280-
point mode. his involves enough calculation that it’s best done in assembly lan-
guage. In the next chapter we’ll investigate the techniques for plotting in all of
these various modes using some new routines.

21. Hi-Res Plotting in Assembly
June 1982

In the previous chapter we looked at how the Apple hi-res screen is set up
and at how each dot on the screen is linked to a bit position of a byte in memory.
In this chapter we’ll present a more detailed explanation of plotting a point

and, more speciically, provide routines for some new ways of plotting to the hi-
res screen.

Normal Point Plotting

In Figure 20-1 (Chapter 20) we saw how the hi-res screen colors are mapped
out in memory.
You’ll remember that we could access either the violet/green or blue/orange

dot pairs depending on whether the high-order bit (bit 7) of the byte in question
was set. To plot a color dot on the screen we need to carry out the following
steps:

1. Use the Y coordinate to determine on which horizontal screen line to plot.
Because the lines are not mapped continuously, a special routine is used to cal-
culate the base address. In this case the term refers to the address associated with
the irst byte on the line given by Y.

In normal Appleso!, this base address is calledGBAS (“Graphics Base
address”) and is stored in the byte pair$26,$27. LocationHPAG ($E6 = Hi-res
PAGe) is used to indicate whether the plot is to be on page 1 or page 2 of the hi-
res screen.
As it happens, we can use the HPOSN ($F411) routine in Appleso! to do this

calculation for us, but the listing in chapter 20 (HIRES BASE ADDRESS CALCULA-
TOR) is provided for your entertainment, and for possible use if you should
decide to write an Appleso!-independent routine.

2. Once the base address of the horizontal line has been determined, the posi-
tion of the byte relative to the le! edge needs to be established. Because seven
dots are stored in each byte, the byte we need to access can be determined by
dividing the X coordinate by 7. his result is stored in locationHNDX ($E5 = Hor-
izontal iNDeX). It is used by putting the contents of$E5 into the Y-Register for
an LDA ($26),Y operation–but more on that later.

]

21

198 Assembly Lines

3. he color mask needs to be set up. he color mask is a bit pattern that shows
which bits in a byte are acceptable possibilities for a plot. he color mask is
stored in location$E4 (COLBYTE). Rather than literally calculating, Appleso!
stores all of the possible color masks starting at location $F6F6 (see Figure 21-1).

Ones and zeros are used to indicate which dots are on and which are of for
the color indicated. Black1 is the simplest: it is achieved by turning every dot of.
White1 is its converse, achieved by turning every dot on. Note that bit 7 does not
correspond to a displayed dot and is le! a 0 (high bit of).
If you compare the color masks for green and violet to the chart in Figure

20-1, you’ll note that the ones match the available dots for the given color in a
byte. Remember, the order of the bits is reversed when mapping to the screen, so
that bits 0 to 6 are mapped le! to right on the screen.
he second set of masks in Figure 21-1 are the colors with the high-bit set

(bit 7 = 1). he same pattern as before is used, except that the high bit is set for
all four colors.
Looking at Figure 20-1 again, you’ll note that the masks shown on the le!

will work for all even-addressed bytes, that is, bytes such as$2000, $2002, and so
on. For the odd-addressed bytes ($2001, $2003, and so on), the colors are shi!ed
one bit position. WhenHPOSN is called, along with determiningGBAS, it checks
the HNDX calculated and, if that is an odd address, shi!s the color byte. he result,
whether shi!ed or not, is always put in location$1C (HCOLOR1). he results of
such a possible shi! are shown on the right side of Figure 21-1.
(An interesting result of this process is that you cannot clear the entire

screen to an actual color [green, violet, blue, or orange] by illing memory with a
single value. Try it. Clear the hi-res screen with anHGR, then enter the Monitor
with CALL -151. hen type in:

*2000:2A

*2001<2000.3FFFM

For X = Even For X = Odd

$F6F6: $00 = 0000 0000 Black1 (0)

$F6F7: $2A = 0010 1010 Green (1)

$F6F8: $55 = 0101 0101 Violet (2)

$F6F9: $7F = 0111 1111 White1 (3)

$F6FA: $80 = 1000 0000 Black2 (4)

$F6FB: $AA = 1010 1010 Orange (5)

$F6FC: $D5 = 1101 0101 Blue (6)

$F6FD: $FF = 1111 1111 White2 (7)

$00 = 0000 0000

$55 = 0101 0101

$2A = 0010 1010

$7F = 0111 1111

$80 = 1000 0000

$D5 = 1101 0101

$AA = 1010 1010

$FF = 1111 1111

Figure 21-1: Applesot Color Masks

21. Hi-Res Plotting in Assembly 199

he screen should clear to alternating vertical bars of green and violet.)

4. Now the actual bit position of interest needs to be selected. his actually has
already been done byHPOSN. he result of the X coordinate divided by seven was
put inHNDX, and the remainder of that division
just happens to correspond to the actual bit posi-
tion within the byte we want. he only remaining
problem is that the result is a number from 0 to
6, and what we need is a byte with only that par-
ticular bit turned on. his is again derived from a
table within Appleso! (in this case starting at
$F5B2–see Figure 21-1). he result from this
table is then put in location $30 (HMASK).

Now at last we’re ready to do the actual plot.
he plotting sequence (normally found at $F45A) looks like this:

F45A- A5 1C LDA $1C ; HCOLOR1

F45C- 51 26 EOR ($26),Y ; (GBAS),Y

F45E- 25 30 AND $30 ; HMASK

F460- 51 26 EOR ($26),Y ; (GBAS),Y

F462- 91 26 STA ($26),Y ; (GBAS),Y

F464- 60 RTS

his last operation is probably best clariied with an actual example.
Given:

HGR

HCOLOR = 1

HPLOT 15,0

Procedure:

1. JSR $F3E2 (HGR). Clears the hi-res screen. Sets HPAG ($E6) to #$20.

2. LDX #$01

JSR $F6F0 (HCOLOR)
his puts the mask value %00101010 in HCOLOR1 ($E4).

3. LDX X (low-order byte of the X coordinate)
LDY X+1 (high-order byte of X)
LDA Y (Y coordinate)
JSR HPOSN

Note that the percent sign (%) in the mask value is used to indicate the binary
form of a number. his form is used in the remark portions of many of the
source listings in this book as an added aid to the explanations. Although some
assemblers allow binary numbers in the operand, we have limited their use here
to the remark ield to reduce compatibility problems.

]

$F5B2: $81 = 1000 0001

$F5B3: $82 = 1000 0010

$F5B4: $84 = 1000 0100

$F5B5: $88 = 1000 1000

$F5B6: $90 = 1001 0000

$F5B7: $A0 = 1010 0000

$F5B8: $C0 = 1100 0000

Figure 21-2: Bit Mask

200 Assembly Lines

he procedure given above will:

a) Calculate the base address using the page index at$E6 (usually$20). In this
case the result will be $2000. he result is stored in GBAS, GBAS+1 ($26, $27)

b)Divide 15 (the X coordinate) by 7. he result (2) is put inHNDX ($E5). he
remainder of the division (1) is used to access the bit mask table. he result of
this table lookup (%10000010 found at $F5B2,X where X=1) is put in HMASK ($30).

c) CheckHNDX to see if the byte ofset is odd. If so, shi! the color byte mask.
Since in this case$E5 holds a 2, no shi! is required. hus the color mask%0010
1010 is put in HCOLOR1 ($1C) in preparation for the plot.

4. JSR $F45A (HPLOT). his completes the process with:

 LDY HNDX ($E5) = '2'

 LDA HCOLOR1 ($1C) = %0010 1010

 EOR (GBAS),Y ($2002) = %0000 0000

 %0010 1010 (EOR’d)

 AND HMASK ($30) = %1000 0010

 %0000 0010 (AND’d)

 EOR (GBAS),Y ($2002) = %0000 0000

 %0000 0010 (EOR’d)

 STA (GBAS),Y ($2002) = %0000 0010

 screen looks like: 0100 000- Green dot lights!

he net efect of step 4 is to say: “Look at the bit mask pattern and compare it to
the color mask. If there is a one in the color mask at the given dot position, turn
that dot on (set the bit to 1) If there’s a 0 at that position, turn the dot of (clear
bit to 0).”

Alternate Plotting Modes

So far, all we have really done is to explain further something we were
already using. his new explanation makes possible some alternative ways of
plotting to the hi-res screen. In fact, by using the existing Appleso! routines, the
new routines are rather short and, best of all, easy to explain. If you are unsettled
right now about the iner details of the masking operations, don’t worry. he real
point of all that is to give you some feel for the general processes involved.
For starters, let’s review some basic problems encountered so far with the

normal Appleso!HPLOT. he irst arises when you try to plot using just one
color. By settingHCOLOR equal to 1, 2, 5, or 6, we limit the possible dots which
can be plotted to every other dot on the normal screen. his can be disconcerting
when you have a statement like:

HCOLOR = 1: HPLOT 100,100

21. Hi-Res Plotting in Assembly 201

and nothing happens. he reasons for this were discussed in earlier chapters, but
now it should be even more obvious that the color mask speciies only odd-dot
positions for HCOLOR = 1, making it impossible to plot at X = 100.
he second problem occurs when you’re plotting withHCOLOR =3 or HCOLOR

=7. Even though we have speciiedwhite, an attempt to plot a single point
always comes out as a colored dot. It is only when drawing more than one point
(such as in a line) that white appears. Let’s examine possible solutions to these
problems.

140-Point Resolution Mode

For the irst problem of invisible points, one solution is to accept that there
are only140 points available for a given color and to alter our frame of reference
to recognize that reality. An easy way of doing this is to always work with an X
coordinate value in the range of 0 to 139, and then to double the value when
actually doing theHPLOT. he main drawback to this approach is the speed loss
due to the multiplications, and the fact that odd color values must also be shi!ed
by one (since odd colors can only plot at odd X positions). he situation now
would look like this:

HCOLOR = 2 HCOLOR = 1

X = 15: Y = 30 or X = 20: Y = 30

HPLOT X*2, Y HPLOT X*2 + 1, Y

Another approach is to create an assembly-language routine to do this for
us automatically. Here’s the source listing for such a routine.

 1 ********************************

 2 * AL21-HIRES PLOT.140 *

 3 * *

 4 ********************************

 5 *

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 CHKCOM EQU $DEBE

 11 FRMNUM EQU $DD67

 12 GETADR EQU $E752

 13 LINNUM EQU $50

 14 COMBYTE EQU $E74C

 15 *

 16 X EQU $E0

 17 Y EQU $E2

 18 *

 19 HCOLOR EQU $F6F0

 20 HGR EQU $F3E2

 21 HPLOT EQU $F457

 22 HPLOT2 EQU $F45A

 23 COLBYTE EQU $E4

]

202 Assembly Lines

 24 *

0300: 20 BE DE 25 ENTRY JSR CHKCOM

0303: 20 67 DD 26 JSR FRMNUM

0306: 20 52 E7 27 JSR GETADR

 28 *

0309: 06 50 29 CALC ASL LINNUM

030B: 26 51 30 ROL LINNUM+1 ; X*2

 31 *

030D: A9 02 32 LDA #$02 ; %0000 0010

030F: 24 E4 33 BIT COLBYTE

0311: F0 06 34 BEQ C1 ; NO MATCH COLOR EVEN

0313: E6 50 35 INC LINNUM

0315: D0 02 36 BNE C1

0317: E6 51 37 INC LINNUM+1

 38 *

0319: A5 50 39 C1 LDA LINNUM

031B: 85 E0 40 STA X

031D: A5 51 41 LDA LINNUM+1

031F: 85 E1 42 STA X+1

 43 *

0321: 20 4C E7 44 GETY JSR COMBYTE

0324: 8A 45 TXA ; PUT Y-COORD IN ACC

0325: A6 E0 46 PLOT LDX X

0327: A4 E1 47 LDY X+1

0329: 20 57 F4 48 JSR HPLOT

 49 *

032C: 60 50 DONE RTS

032D: C1 51 CHK

his program is designed to be called from Appleso!, serving as a subrou-
tine for an undeined overall program. he advantage of the routine is that
HCOLOR may be set to any value, although white will still plot only one color. Val-
ues for the X coordinate may range from 0 to 139.
Assuming that the routine is loaded starting at location$300 (768 decimal),

the syntax for calling it would be:

CALL 768, X, Y

where X and Y are the coordinates for the desired plot.
Examining the listing, you will see that the irst step is to use the calls to

Appleso! on lines 25 through 27 to retrieve the X coordinate from Appleso!.
he resulting two-byte representation for the value will end up inLINNUM ($50,
$51).
Once we have the value for X, the remaining process is very straightforward.

he X coordinate is doubled by the pair of le! shi!s on lines 29 and 30. Next, the
color byte is checked to see if theHCOLOR previously selected was an odd or even
color value. A brief look at the color mask chart in Figure 21-1 shows that bit 1
(rather than bit 0) is the key to whether a color is odd or even. If the color is odd,
LINNUM is incremented by one to select the next odd X-coordinate position.

21. Hi-Res Plotting in Assembly 203

he Y coordinate is then retrieved usingCOMBYTE. Since Y cannot be larger
than 191, the one-byte retrieval routine can be used.
At that point, the usual call to HPLOT is done with the new X coordinate.
A little rumination on this routine should convince you that it is function-

ally identical to this BASIC algorithm:

0 HGR: HOME: VTAB22

10 INPUT “HCOLOR”;C : HCOLOR = C

20 INPUT “COORDINATES:”; X,Y

30 X = X * 2

40 IF C / 2 <> INT (C / 2) THEN X = X + 1

50 HPLOT X,Y

he assembly-language routine given can always be used directly from other
assembly-language programs by deleting lines 25 through 27 and changing 44
and 45 to readLDY Y. he routine would then be called by putting the desired X
coordinate in LINNUM ($50, $51), and the Y coordinate in Y ($E2).

560-Point Resolution Mode

he disadvantage of the 140-point method just shown is that the resolution
of the graphics is obviously limited. his is particularly apparent in attempts to
draw near-vertical lines; it’s easy to observe the degree of stair-stepping that
occurs. Low-resolution plotting modes produce very broken near-vertical lines.
If color is not a concern (such as when using a black-and-white monitor),

then why not just plot using white? Since we won’t know that the colors are
actually varying depending on the X coordinate speciied, a black-and-white dis-
play will look ine.
Well, if that’s the case, then you might as well go for all you can get and use

the560-point mode. he theory to this mode is that the high-order bit of each
screen byte can be used to choose between dots shi!ed one-half of a position
with respect to the usual 280-point mode. he argument against this method is
that the plotting of dots within the same byte can distort the irst byte plotted.
For example, if the irst dot plotted is on the farthest le! position possible

(high bit of), then a successive plot of anyHCOLOR with the high bit set (HCOLOR
= 4 through 7) will change the color of the dot andshi! it to the right. As it hap-
pens, this is not much of an argument since the same holds true for the normal
280-point mode, and even for the 140-point mode. he inescapable fact is that
plotting two colors with conlicting high-bit conditions within the same byte will
always afect the irst dot plotted. If the distortion is unavoidable then you might
as well enjoy the beneits of the higher resolution, especially if you’re going to
have to cope with the distortion problem anyway.
Without further introduction, here then is a routine implementing the 560-

point plotting mode.

]

204 Assembly Lines

Like thePLOT.140 routine, this is assumed to be loaded at$300 and would
be called in a manner identical to that for the previous routine:

CALL 768, X, Y

he main diference here is that X can now have a range of 0 to 559, and that
HCOLOR is always set to white. As with normal Appleso!, what this really means
is that we’ll take any color we can get for a given plot, and that true white will
result only when dots are plotted adjacent to each other. Here’s the listing for
this routine:

 1 ********************************

 2 * AL21-HIRES PLOT.560 *

 3 * *

 4 ********************************

 5 *

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 CHKCOM EQU $DEBE

 11 FRMNUM EQU $DD67

 12 GETADR EQU $E752

 13 LINNUM EQU $50

 14 COMBYTE EQU $E74C

 15 *

 16 X EQU $E0

 17 Y EQU $E2

 18 *

 19 HPLOT EQU $F457

 20 COLBYTE EQU $E4

 21 *

0300: 20 BE DE 22 ENTRY JSR CHKCOM

0303: 20 67 DD 23 JSR FRMNUM

0306: 20 52 E7 24 JSR GETADR

 25 *

0309: 46 51 26 CALC LSR LINNUM+1

030B: 66 50 27 ROR LINNUM ; X/2

030D: A9 7F 28 C0 LDA #$7F ; %0111 1111

030F: 85 E4 29 STA COLBYTE

0311: 90 04 30 BCC C1 ; X=EVEN

0313: A9 FF 31 LDA #$FF ; %1111 1111

0315: 85 E4 32 STA COLBYTE

 33 *

0317: A5 50 34 C1 LDA LINNUM

0319: 85 E0 35 STA X

031B: A5 51 36 LDA LINNUM+1

031D: 85 E1 37 STA X+1

 38 *

031F: 20 4C E7 39 GETY JSR COMBYTE

0322: 8A 40 TXA ; PUT Y-COORD IN ACC

0323: A6 E0 41 PLOT LDX X

0325: A4 E1 42 LDY X+1

0327: 20 57 F4 43 JSR HPLOT

21. Hi-Res Plotting in Assembly 205

 44 *

032A: 60 45 DONE RTS

032B: 9B 46 CHK

he operation of this routine is also fairly simple. As with thePLOT.140 pro-
gram, the value for X is retrieved from the calling program. In this case, though,
CALC divides the passed value by two. Note that a le!-shi! operation is used, not
the right shi!s (for a multiply) that were used in the 140-mode.
You’ll recall thatLSR LINNUM+1 (LSR = Logical Shi! Right) will shi! all bits

inLINNUM+1 (the high-order byte) to the right one position, forcing a 0 at the
rightmost position and putting the old bit 0 in the carry. his is immediately fol-
lowed by theROR (“rotate right”) instruction which again shi!s all the bits in
LINNUM (the low-order byte), puts the carry into bit 7, and drops the last bit 0
into the carry, thus replacing the old value. For example:

 X-COORD = 289 = $121 = %0000 0001 0010 0001

 LINNUM+1 LINNUM

 LSR LINNUM+1: %0000 0001 → %0000 0000 (Carry=1)

 ROR LINNUM: %0010 0001 → %1001 0000 (Carry=1)

he rather coincidental beauty of this is that the carry lag will end up being
set or cleared depending on whether the original value for X was odd or even.
his is needed because in the 560-point mode, we’ll use the odd or even nature
of X to determine whether to set the high bit.

X (560) X (280) Color mask to use

0 0 White1 (bit 7 = 0)
10 5 White1 (bit 7 = 0)
201 100 White2 (bit 7 = 1)
501 250 White2 (bit 7 = 1)

Basically what we do is to divide the X coordinate by two to get a value
acceptable to normal Appleso!, and then force the color to be either white1 or
white2 depending on how we want the high bit set in the inal plot.
Lines 28 through 32 set the color mask to the appropriate value by checking

the carry lag to see if the original value of X was odd or even. henLINNUM is
transferred to our actual X-coordinate bytes. he routine is then completed with
the usual call to HPLOT, as was done in the PLOT.140 routine.
his process could be simulated from Appleso! with the following routine:

0 HGR: HOME: VTAB 22

10 INPUT "COORDINATES? "; X, Y

20 HCOLOR = 3 : REM WHITE1

30 IF X / 2 <> INT(X / 2) THEN HCOLOR = 7 : REM WHITE2 FOR X=ODD

40 X = X / 2

50 HPLOT X, Y

]

206 Assembly Lines

It’s likely, however, that you’ll ind the assembly-language routine consider-
ably faster, and certainly much easier to implement.

A Demonstration Program

To give you something to show of these routines, here’s a program in
Appleso! that calls both routines and shows the diferences in their appearance.

10 D$ = CHR$(4): REM AL21.PLOTLINE.A

100 REM NORMAL TEST

110 HGR : HCOLOR = 3

120 FOR I = 0 TO 100

130 HPLOT I,I

140 NEXT I

200 REM PLOT.140 TEST

205 PRINT D$;"BLOAD AL21.PLOT140,A$300"

210 FOR I = 0 TO 100

220 CALL 768,I,I

230 NEXT I

300 REM PLOT.560 TEST

305 PRINT D$;"BLOAD AL21.PLOT560,A$300"

310 FOR I = 0 TO 100

320 CALL 768,I,I

330 NEXT I

Notice that this program loads each routine from a disk ile as it’s needed.
Basically this illustrates the steepest vertical angle at which a line can be drawn
without any noticeable stair-stepping, or breaking, in the line. It also conve-
niently shows a perhaps unexpected change in the actual visual result of the plot,
even though all three lines were done with similar FOR-NEXT loops.
Normally, the 280-point mode is conveniently proportional. hat is to say, a

move of ive points horizontally on the screen is about the same actual distance
on the screen as a move of ive points vertically. his ensures that a square will in
fact look “square” when drawn on the screen. hus the irst plot is at the
“proper” 45 degrees when drawn using HPLOT 1,1.
When the number of screen points is halved, as in the case of thePLOT.140

routine, the result will be to “stretch” the screen horizontally by a factor of two.
Similarly, packing in twice as many points (namely 560 versus 280) across has
the efect of compressing the screen. hese efects must be considered when
doing geometric designs on the screen.
We’ll leave it as an exercise for you to draw three parallel lines using each of

the three modes.
By now, you’ve probably also noticed some minor laws in the clarity of the

560-point line. In the next chapter we’ll explore the matter further, discovering
why the faint spots occur and how to ix them.

22. Even Better Hi-Res Plotting
July 1982

he previous chapter concluded with a demonstration program that showed
the relative appearances of a line drawn with the normalHPLOT command as well
as with special 140- and 560-point mode plotting routines.
he entire plotting process was based on a model of point display in which

each point on the screen corresponds to the status of a particular bit within a
memory byte. For general plotting, Figure 20-1 (in Chapter 20) illustrates the
corresponding color points.
he140-point mode was created to ensure that for anyHPLOT-type action, a

consistent color dot would always be plotted. his consistency is not ordinarily
available in the Apple’s usual 280-point mode.
For instances in which color is not a concern, an alternate scheme was

devised that would be indiferent to the color of the dot illuminated (as the
viewer would be when using a black-and-white monitor). An added feature of
this scheme allows a resolution of 560 points per line. his was done by using the
high-order bit of each byte to shi! a given dot one-half of a position.
When the inal demonstration program was run, the last line was drawn in

the 560-point mode. You may have noticed, though, that certain points on the
line were rather faint. his brings us to the discussion of one of the last (?) bugs
in the hi-res graphics routines.
Change the previous chapter’s test program to appear as follows:

10 D$ = CHR$(4)

40 HOME: INPUT "BLACK1 OR BLACK2? (1 OR 2)"; I

100 REM NORMAL TEST

110 HGR: HCOLOR = I*4 - 4: HPLOT 0,0: CALL 62454: HCOLOR = 11 - I*4

120 FOR I = 0 TO 100

130 HPLOT I,I

140 NEXT I

200 REM PLOT.140 TEST

205 PRINT D$;"BLOAD AL21.PLOT140,A$300"

210 FOR I = 0 TO 100

220 CALL 768,I,I

230 NEXT I

300 REM PLOT.560 TEST

305 PRINT D$;"BLOAD AL21.PLOT560,A$300"

310 FOR I = 0 TO 100

320 CALL 768,I,I

330 NEXT I

]

22

208 Assembly Lines

When you run this program, enter either 1 or 2 to specify which “lavor” of
black you want for the background. Under normal circumstances, anHGR state-
ment clears the background to black1, (high bit of on each byte) and plots are
done using white1. his program changes that by using the alternate white for
the background selected; that is to say, if you select black1 for the background,
white2 will be used to plot. If you select black2, white1 will be used.
Examining the listing, then, you’ll notice that line 110 setsHCOLOR to black1

or black2, does the required plot, and then clears the background to that color. A
CALL 62454 will always clear the current hi-res screen to the last color plotted
(see page 134 of yourAppleso! II BASIC Programming Reference Manual for a
description of this).
Following the screen clear, white is set in the alternate mode described ear-

lier.
Lines 100−140 draw a diagonal line point-by-point as was done in the previ-

ous chapter, but now the line should appear to have a few faint spots in it. If you
choose black2 as the background, the line will have places where the dots appear
slightly larger than you’d have expected.
Similar efects can be observed in the 140- and 560-mode lines.

Interactions between Adjacent Bytes

he entire premise of the 560-point mode was that the high-order bit of
each byte afected the inal display position of each other bit within it. We have
seen how changing the status of bit 7 (the high-order bit) mayshi! a given dot
one-half of a position, depending on whether the bit is set.
Now for the new wrinkle. It turns out that for dots associated with bit 6 of a

byte, the high-order bit of thenext byte in memoryalso afects the display of the
irst byte.
As an example, irst clear the hi-res screen with anHGR and then enter the

Monitor via the usual CALL -151.
Now enter the following values into memory. You should see an efect simi-

lar to the description at the right of each statement.

*2138: 40 (Dot is plotted; width = 1 unit)

*2139: 80 (The dot extends; new width = 1.5 units)

*2139: 00 (The dot is back to normal; width = 1 unit)

*2138: C0 (The dot grows fainter; width = 0.5 units)

*2139: 80 (The dot is back to normal; width = 1 unit)

he references to awidth are an approach to explaining what happens. If
you have a black-and-white monitor, the relative visual strengths of the dots can
be related to an apparent width of the dots when illuminated on the monitor
screen. On a color television or monitor the widths aren’t discernible, but difer-
ences in color and brightness can be seen.

22. Even Better Hi-Res Plotting 209

Before any further explanations, let’s re-examine the 560-point model.
You’ll recall that although the violet and blue dots oicially occupy the same

screen position horizontally, in actuality a half-position shi! may happen,
depending on whether the high bit is set. When $2138 was set to $40, we were, as
such, plotting position 12 on the display. When$2138 was set to$C0, position 13
was illuminated. he law can be explained by imagining that the high-order bit
of$2139 (the next byte a!er$2138) can also produce a slight shi! on a dot pro-
duced by bit 6 of$2138. he general rule is that for any dot produced by bit 6,
the succeeding byte of memory must have a high-order bit (bit 7) set to the same
value as bit 7 of the byte being plotted.
If this rule is not observed, one of two things will happen:

1. If bit 7 of the displayed byte is clear and the next byte is set, the dot will be
extended or enlarged–slightly.

2. If bit 7 of the displayed byte is set and the next byte is clear, the dot will be
reduced slightly, resulting in a fainter image.

An interesting result is the conclusion that even the “normal”method of
plotting (that is, white) will give ragged displays when adjacent bytes have con-
trary high-bit settings!

Some “New and Improved” Routines

Well, then...that has been a lot to digest. In fact, at this point you might just
want to take a break to let everything sink in, maybe ix yourself a nice cup of tea
and meditate on it for a while.
Glad to see you again! One of the diiculties in presenting the material in

the last few chapters has resulted from the discovery that hi-res graphics is not
all that logical. Much of hi-res graphics seems to be very empirical in nature.
hat is, it’s more a matter of accepting that things are a certain way as derived
from experimentation, than of trying to account for the innermost workings of a
seemingly random event. (In this case, the innermost workings are related to the
purely electronic world of wires, video protocols, and so forth, which is mostly
incidental to the programmer!)
he worst is probably over, though. At this point you should have at least a

general feel for how the dots are mapped on the screen. Let’s now create some
inal routines that encompass the various quirks of the hi-res system as it
presently exists.

]

210 Assembly Lines

PLOT.140+

he irst one to ix is the 140-point mode routine. For all routines the
approach will be very direct:

1. Determine whether the dot being plotted involves bit 6 of the byte of mem-
ory in question. If not, don’t worry.

2. If bit 6 is used, check the status of the high-order bit (bit 7) of the byte.

3. Fix the high-order bit of the next byte in memory, if needed, to match that
of the irst byte. Here’s the new routine to do just that:

 1 ********************************

 2 * AL22-HIRES PLOT.140+ *

 3 * *

 4 ********************************

 5 *

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 CHKCOM EQU $DEBE

 11 FRMNUM EQU $DD67

 12 GETADR EQU $E752

 13 LINNUM EQU $50

 14 COMBYTE EQU $E74C

 15 *

 16 X EQU $E0

 17 *

 18 HPLOT EQU $F457

 19 COLBYTE EQU $E4

 20 HMASK EQU $30

 21 HNDX EQU $E5

 22 GBAS EQU $26

 23 *

0300: 20 BE DE 24 ENTRY JSR CHKCOM

0303: 20 67 DD 25 JSR FRMNUM

0306: 20 52 E7 26 JSR GETADR

 27 *

0309: 06 50 28 CALC ASL LINNUM

030B: 26 51 29 ROL LINNUM+1 ; X*2

 30 *

030D: A9 08 31 LDA #$08 ; %00001000

030F: 24 E4 32 BIT COLBYTE

0311: F0 06 33 BEQ C1 ; NO MATCH COLOR EVEN

0313: E6 50 34 INC LINNUM

0315: D0 02 35 BNE C1

0317: E6 51 36 INC LINNUM+1

 37 *

0319: A5 50 38 C1 LDA LINNUM

031B: 85 E0 39 STA X

031D: A5 51 40 LDA LINNUM+1

031F: 85 E1 41 STA X+1

 42 *

22. Even Better Hi-Res Plotting 211

0321: 20 4C E7 43 GETY JSR COMBYTE

0324: 8A 44 TXA ; PUT Y-COORD IN ACC

0325: A6 E0 45 PLOT LDX X

0327: A4 E1 46 LDY X+1

0329: 20 57 F4 47 JSR HPLOT

 48 *

032C: A5 30 49 CHK LDA HMASK

032E: C9 C0 50 CMP #$C0 ; %11000000

0330: D0 11 51 BNE DONE

 52 *

0332: A4 E5 53 FIX LDY HNDX

0334: C8 54 INY

0335: B1 26 55 LDA (GBAS),Y

0337: 24 E4 56 BIT COLBYTE

0339: 30 04 57 BMI HISET

033B: 29 7F 58 HICLR AND #$7F ; %01111111

033D: 10 02 59 BPL STORE ; ALWAYS

033F: 09 80 60 HISET ORA #$80 ; %10000000

0341: 91 26 61 STORE STA (GBAS),Y

0343: 60 62 DONE RTS

0344: 06 63 CHK

he listing through line 47 should appear similar to the previous chapter’s
routine. Lines 48 through 62 add a check to see whether the next byte in memory
needs to be adjusted according to the three-step procedure just described.
he irst step is to examine location$30 (HMASK). You’ll remember from the

previous chapter that this is amask used to indicate which bit position is to be
set to plot the point. If bit 6 were set, this location will hold the value$C0 (binary
%11000000). Lines 49 through 51 check for this.
If a match is found, we know bit 6 was set by the plot. We must now access

the next byte in memory and either set or clear bit 7 of that to match our original
byte. SinceHNDX ($E5) holds the ofset of the current byte (usually used by com-
bining withGBAS ($26) in the formLDA (GBAS,Y)), we can load the Y-Register
withHNDX and then increment using theINY on line 54 to shi! our attention to
the next byte. he data for that byte is then loaded into the Accumulator on line
55. Now for the sleight of hand. We want to check the status of the irst byte, but
if we load the Accumulator we’ll lose the data currently held there. To solve the
problem, consider this: he color mask byteCOLBYTE ($E4) holds the mask used
only moments before to do the plot. We can check the high-order bit of this
value to determine the status of bit 6 in the byte accessed by the plot. Since it’s
bit 7 we’re interested in, we can also use the BIT command to do the check.
Line 56 does aBIT COLBYTE. his will move bit 7 ofCOLBYTE into the Status

Register, a!er which aBMI (Branch on MInus) or aBPL (Branch on PLus) can be
used to check how the bit was set.
In this case, theBMI is used to detect bit 7 being set. If this branch is taken,

the program will skip to line 60. If not, theHICLR (“high-bit clear”) section will
be entered. In this section, theAND operator is used to force the clearing of the

]

212 Assembly Lines

high bit in the Accumulator. Since this will also clear the sign bit of the Status
Register, the BPL following this operation is always taken.
IfHISET (“high-bit set”) is entered, theORA #$80 will force the setting of bit

7 of the Accumulator. (If you need more information on the logical operators,
you may wish to consult chapter 12.) Line 61 (STORE) puts the contents of the
Accumulator back into memory, immediately followed by theRTS which ends
the routine.

PLOT.560+

his routine is also a variation on a program presented in the previous chap-
ter and again uses a check system identical to that used in PLOT.140.

 1 ********************************

 2 * AL22-HIRES PLOT.560+ *

 3 * *

 4 ********************************

 5 *

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 CHKCOM EQU $DEBE

 11 FRMNUM EQU $DD67

 12 GETADR EQU $E752

 13 LINNUM EQU $50

 14 COMBYTE EQU $E74C

 15 *

 16 X EQU $E0

 17 *

 18 HPLOT EQU $F457

 19 COLBYTE EQU $E4

 20 HNDX EQU $E5

 21 HBIT EQU $30

 22 GBAS EQU $26

 23 *

0300: 20 BE DE 24 ENTRY JSR CHKCOM

0303: 20 67 DD 25 JSR FRMNUM

0306: 20 52 E7 26 JSR GETADR

 27 *

0309: 46 51 28 CALC LSR LINNUM+1

030B: 66 50 29 ROR LINNUM ; X/2

030D: A9 7F 30 C0 LDA #$7F ; %0111 1111

030F: 85 E4 31 STA COLBYTE

0311: 90 04 32 BCC C1 ; X=EVEN FROM ROR

0313: A9 FF 33 LDA #$FF ; %1111 1111

0315: 85 E4 34 STA COLBYTE

 35 *

0317: A5 50 36 C1 LDA LINNUM

0319: 85 E0 37 STA X

031B: A5 51 38 LDA LINNUM+1

031D: 85 E1 39 STA X+1

 40 *

22. Even Better Hi-Res Plotting 213

031F: 20 4C E7 41 GETY JSR COMBYTE

0322: 8A 42 TXA ; PUT Y-COORD IN ACC

0323: A6 E0 43 PLOT LDX X

0325: A4 E1 44 LDY X+1

0327: 20 57 F4 45 JSR HPLOT

 46 *

032A: A5 30 47 CHK LDA HBIT

032C: C9 C0 48 CMP #$C0 ; %11000000

032E: D0 11 49 BNE DONE

0330: A4 E5 50 FIX LDY HNDX

0332: C8 51 INY

0333: B1 26 52 LDA (GBAS),Y

0335: 24 E4 53 BIT COLBYTE

0337: 30 04 54 BMI HISET

0339: 29 7F 55 HICLR AND #$7F ; CLEAR BIT 7

033B: 10 02 56 BPL STORE

033D: 09 80 57 HISET ORA #$80 ; SET BIT 7

033F: 91 26 58 STORE STA (GBAS),Y

 59 *

0341: 60 60 DONE RTS

0342: 56 61 CHK

Ordinarily this would be a ine place to end this chapter, but there’s one
more routine worth presenting. So far what you’ve got is a choice between plot-
ting a single color (PLOT.140) or taking whatever color you get in exchange for
the capacity for greater horizontal resolution.
Well, with just a little more efort we can create a routine that will ofer the

same degree of horizontal accuracyand guarantee that any dot plotted will be
white.

PLOT.560-White

Normally when you specify white when using Apple graphics, you’re really
saying, “I don’t care what color,” because any attempt to plot a single point will
illuminate only a colored dot, not a true white dot. his is because white is really
formed by plotting two adjacent dots. his is consistent with the examination of
theCOLBYTE bit pattern for acceptable bits to set combined with the givenHMASK
bit pattern for a speciied horizontal position within the byte. his process of
plotting was described in greater detail in the previous chapter but, as a quick
refresher, remember that this combination would successfully do the equivalent
of:

Statement: HCOLOR = 3 : HPLOT 3,0

Mask Patterns: COLBYTE: %0111 1111 (HCOLOR bit mask)
HMASK: %1000 1000 (bit 3 set; ignore high bit)
RESULT: %0000 1000 (position 3 is set green)

You might imagine that if theHMASK could have been set up to have two
adjacent bits set, the result might have been a true white dot:

]

214 Assembly Lines

Statement: HCOLOR = 3 : HPLOT 3,0

Mask Patterns: COLBYTE: %0111 1111 (HCOLOR bit mask)
HMASK: %1001 1000 (bits 3 and 4 set)
RESULT: %0001 1000 (positions 3 and 4–white)

As it happens, this can be done, and here’s the new routine to do it!

 1 ********************************

 2 * AL22-HIRES PLOT.560W *

 3 * *

 4 ********************************

 5 *

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 CHKCOM EQU $DEBE

 11 FRMNUM EQU $DD67

 12 GETADR EQU $E752

 13 LINNUM EQU $50

 14 COMBYTE EQU $E74C

 15 *

 16 X EQU $E0

 17 *

 18 HPOSN EQU $F411

 19 HPLOT EQU $F457

 20 COLBYTE EQU $E4

 21 HCOLOR1 EQU $1C

 22 HMASK EQU $30

 23 *

0300: 20 BE DE 24 ENTRY JSR CHKCOM

0303: 20 67 DD 25 JSR FRMNUM

0306: 20 52 E7 26 JSR GETADR

 27 *

0309: 46 51 28 CALC LSR LINNUM+1

030B: 66 50 29 ROR LINNUM ; X/2

030D: A9 7F 30 LDA #$7F ; %01111111 WHITE1

030F: 85 E4 31 STA COLBYTE

0311: 90 04 32 BCC C1 ; X=EVEN

0313: A9 FF 33 LDA #$FF ; %11111111 WHITE2

0315: 85 E4 34 STA COLBYTE

 35 *

0317: A5 50 36 C1 LDA LINNUM

0319: 85 E0 37 STA X

031B: A5 51 38 LDA LINNUM+1

031D: 85 E1 39 STA X+1

 40 *

031F: 20 4C E7 41 GETY JSR COMBYTE

0322: 8A 42 TXA ; PUT Y-COORD IN ACC

0323: A6 E0 43 PLOT LDX X

0325: A4 E1 44 LDY X+1

0327: 20 11 F4 45 JSR HPOSN

032A: A5 30 46 LDA HMASK

032C: 0A 47 ASL

032D: 05 30 48 ORA HMASK

22. Even Better Hi-Res Plotting 215

032F: 85 30 49 STA HMASK

0331: 20 5A F4 50 JSR HPLOT+3

 51 *

0334: 24 30 52 CHK BIT HMASK

0336: 50 22 53 BVC DONE ; BIT 6 CLEAR

 54 * BIT 6 CLEAR: POSITION = 0-9

 55 * BIT 6 SET: POSITION = 10-13

 56 *

0338: 24 1C 57 CHK2 BIT HCOLOR1

033A: 10 06 58 BPL HICLR ; BIT 7 TEST

033C: A9 FF 59 HISET LDA #$FF ; WHITE2

033E: 85 1C 60 STA HCOLOR1

0340: D0 04 61 BNE CHK3 ; ALWAYS

0342: A9 7F 62 HICLR LDA #$7F ; WHITE1

0344: 85 1C 63 STA HCOLOR1

 64 *

0346: A9 20 65 CHK3 LDA #$20 ; %00100000

 66 *

 67 * HMASK: %11100000 IF POSITION = 10,11

 68 * HMASK: %11000000 IF POSITION = 12,13

 69 *

0348: 24 30 70 BIT HMASK

034A: D0 06 71 BNE NOPLOT ; BIT 5 SET

034C: A9 81 72 PLT LDA #$81 ; %10000001

034E: 85 30 73 STA HMASK

0350: D0 04 74 BNE FIX ; ALWAYS

0352: A9 80 75 NOPLOT LDA #$80 ; %10000000

0354: 85 30 76 STA HMASK

 77 *

0356: C8 78 FIX INY

0357: 20 5A F4 79 JSR HPLOT+3

 80 *

035A: 60 81 DONE RTS

035B: 88 82 CHK

his routine starts out much like the otherPLOT.560 routine. Lines 24
through 44 are identical and perform the same function of calculating which X
value to hand to the normal Appleso! routine. he irst diference appears at line
50, where aJSR HPOSN is performed instead of aJSR HPLOT. his is done to allow
Appleso! to go through its usual preparation for a plot. his sets up the color
mask and position mask bytes and also the base address calculation.
At this point, we step into the usual process to tamper with theHMASK ($30)

value. As in the earlier example, this ordinarily would have just a single bit posi-
tion “marked” for the upcomingPLOT. However, by using theASL,ORA HMASK
combination on lines 47 and 48, we can shi! the original pattern and then super-
impose the new pattern on the old.

Example: For X = 3
Original HMASK: %1000 1000
ASL: %0001 0000

ORA HMASK: %1001 1000

]

216 Assembly Lines

he address usually given for theHPLOT routine,$F457, includes aJSR to
HPOSN. Because we’ve already done this, aJSR HPLOT+3 accomplishes the irst
stage of our operation; namely, the plotting of a pure white dot.
Now the remaining problem is to take care of end-of-the-byte laws. his

can occur for four possible plots. For each byte, there are fourteen possible posi-
tions which can be plotted, numbered 0 through 13 (see Figure 20-4 in chapter
20). For positions 10 and 11, bits 5 and 6 will be set. Because bit 6 can be afected
by bit 7 of the next byte in memory, a check for bit agreement must be made.
Stranger still, if positions 12 and 13 are plotted, only bit 6 is available, which

would normally put us back to having plotted only a colored dot. To ix this, we
have to go again to the next byte in memory and do another plot to illuminate
just the very irst dot of that byte.
In general then, the process will be:

1. Fix HMASK to turn on two adjacent bits where possible.

2. HPLOT with altered HMASK.

3. Check for bit 6 usage. If none, exit routine.

4. Set bit 7 of the next byte to agree with bit 7 of the current byte. Check
whether bit 5 is being used. If not, go directly to HPLOT+3.

5. If bit 5 is set, set HMASK to plot only the irst dot of the next byte.

6. Make a second pass toHPLOT to plot the X + 1 screen coordinate, single dot
only. IfHMASK set to#$81, only the high-order bit will be set, with no actual plot
done.

 If you now examine line 52 of the listing, you’ll see theBIT command is
again used, this time to check bit 8 ofHMASK. heBIT command forces bit 6 of
the Status Register (the overlow lag) to the same value as bit 6 ofHMASK. hus
BVS (Branch oVerlow Set) andBVC (Branch oVerlow Clear) can be used to
check for bit 6 set or clear, respectively. In our case,BVC will branch to the exit
point, DONE, if bit 6 is clear.
If bit 6 is set, lines 57−63 set the high bit of the other color mask byte,

HCOLOR ($1C), to agree with the previous plot. his color mask byte is used later
byHPLOT. Because we’ll be skipping the usual entry point ($F457),we have to set
this byte speciically.
Once the color byte is set, another check is done to see if bit 5 is set. his is

done by again using theBIT command. Since only bits 6 and 7 can be checked
via the Status Register, we must load the Accumulator with a numeric image of
the bit we wish to test for. In this case, the value used is#$20 (%00100000). A!er
theBIT command, aBNE (Branch Not Equal) will be taken if bit 5 is set. Yes, it
sounds backward, but then BIT is a rather strange command.

22. Even Better Hi-Res Plotting 217

Given the appropriate result of the BIT test, HMASK is loaded with either #$81
or #$80 depending on whether we wanted an actual plot to take place.
At line 78 (FIX),we take advantage of the fact that the Y-Register is still set

to the correct value to access the current memory byte. By doing theINY, we
advance the pointer to the next byte so that theJSR HPLOT+3 will make the
appropriate corrections to the next byte in memory.

A Final Demo Program

To inish things of, let’s try one lastAppleso! program to make use of the
new routines. his is an extension of the irst listing presented at the beginning
of this chapter, and it will give you an opportunity to compare the relative screen
appearances of diferent routines.

10 D$ = CHR$(4)

40 HOME: INPUT "BLACK1 OR BLACK2? (1 OR 2)"; I : I = I - 1

100 REM NORMAL TEST

110 HGR: HCOLOR = I*4: HPLOT 0,0: CALL 62454: HCOLOR = 7 - 4*I

120 S = 1: REM SCALE FACTOR

130 K = 20: REM OFFSET VALUE

140 GOSUB 900

200 REM PLOT.140 TEST

205 PRINT D$;"BLOAD AL22.PLOT140,A$300"

210 S = 0.5: K = 40

220 F = 1: REM FUNCTION FLAG

230 GOSUB 900

300 REM PLOT.560 TEST

305 PRINT D$;"BLOAD AL21.PLOT560,A$300"

310 S = 2: K = 60

320 GOSUB 900

400 REM PLOT.560+ TEST

405 PRINT D$;"BLOAD AL22.PLOT560,A$300"

410 K = 80

420 GOSUB 900

500 REM PLOT.560W TEST

505 PRINT D$;"BLOAD AL22.PLOT560W,A$300"

510 K = 100

520 GOSUB 900

600 END

900 REM PLOTTER

930 FOR I = 0 TO 100

940 X = (I + K)*S : Y = I

950 X = X / 2

960 IF F = 0 THEN HPLOT X,Y

965 IF F THEN CALL 768, X, Y

970 NEXT I

980 RETURN

You’ll also notice that this has the scaling factors built into it to make each
line slant at the same angle. he ofset factor K is used to move each plot to the
right a little for appearance’s sake.

]

218 Assembly Lines

By adding line 955 like so:

955 X = X / 2

you can slant the lines even further to show of the maximum slant possible for
the 560-point modes. You might also want to try this program with the 140- and
560-point routines from the previous chapter to see how they perform in place
of the new ones.

Conclusion

hese routines are best used in mathematical charts rather than in pure
graphics such as pictures. he main argument against the 560-point mode is that
you can’t be assured that plotting one point will not afect nearby points. As
we’ve demonstrated here, there apparently is no approach that can guarantee
this will not happen. It would seem, then, a matter of your own preference as to
which to use. Our hope is that these routines will widen your options for your
own programming goals and that they’ve taught you a little along the way.
he usual approach in this book has been to simplify any idea when irst

presenting it. In the area of graphics, though, simplicity has not been easy. For
the most part, hi-res graphics gives the impression of being only marginally logi-
cal. In any event, though, now you’re probably starting to get a feel for how the
contents of memory afect what is displayed on the screen. In the inal analysis,
the real challenge of hi-res graphics is manipulating the contents of memory to
produce the visual efects you want.

23. Hi-Res Graphics SCRN Function
August 1982

In lo-res graphics, theSCRN(X,Y) function returns the value of the color of
the screen at the X, Y coordinate speciied. Unfortunately, no equivalent func-
tion exists for use with hi-res graphics in Appleso! BASIC.
In the last few chapters we’ve seen how to plot points in a variety of ways.

Now, here is a routine for doing a hi-res equivalent of theSCRN(X,Y) function.
One conceivable use for this might be in a game program in which it’s important
to know when one object is touching another. Using the SCRN routine given here,
you can test to see whether any points have already been plotted at the coordi-
nates a presumably moving object is about to use.

 1 ********************************

 2 * AL23-HI-RES SCRN FNCTN *

 3 * 6/22/82 *

 4 ********************************

 5 *

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 CHKCOM EQU $DEBE

 11 FRMNUM EQU $DD67

 12 GETADR EQU $E752

 13 LINNUM EQU $50

 14 COMBYTE EQU $E74C

 15 PTRGET EQU $DFE3

 16 CHKNUM EQU $DD6A

 17 GIVAYF EQU $E2F2

 18 MOVMF EQU $EB2B

 19 *

 20 X EQU $E0

 21 Y EQU $E2

 22 *

 23 HPOSN EQU $F411

 24 HNDX EQU $E5

 25 HBIT EQU $30

 26 GBAS EQU $26

 27 *

0300: 20 BE DE 28 ENTRY JSR CHKCOM

0303: 20 67 DD 29 JSR FRMNUM

0306: 20 52 E7 30 JSR GETADR

 31 *

0309: A5 50 32 SET LDA LINNUM

]

23

220 Assembly Lines

030B: 85 E0 33 STA X

030D: A5 51 34 LDA LINNUM+1

030F: 85 E1 35 STA X+1

 36 *

0311: 20 4C E7 37 GETY JSR COMBYTE

0314: 86 E2 38 STX Y

 39 *

0316: A5 50 40 CHKX LDA LINNUM

0318: 4A 41 LSR ; PUT BIT 0 IN CARRY

0319: A9 01 42 LDA #$01 ; SET BIT 0

031B: 85 50 43 STA LINNUM ; %0000 0001

031D: B0 02 44 BCS CHKHI ; X='ODD'

031F: 06 50 45 ASL LINNUM ; SHIFT LEFT ONE POSN

 46 ; %0000 0010

 47 *

0321: A6 E0 48 CHKHI LDX X

0323: A4 E1 49 LDY X+1

0325: A5 E2 50 LDA Y

0327: 20 11 F4 51 JSR HPOSN

 52 *

032A: A4 E5 53 LDY HNDX

032C: B1 26 54 LDA (GBAS),Y

032E: 48 55 PHA ; SAVE DATA

032F: 10 08 56 BPL HICLR ; BIT 7 CLR

0331: A5 50 57 HISET LDA LINNUM

0333: 09 04 58 ORA #$04 ; SET BIT 2

0335: 85 50 59 STA LINNUM ; BIT 'ON'

0337: D0 06 60 BNE CHKBIT ; ALWAYS

0339: A5 50 61 HICLR LDA LINNUM

033B: 29 8B 62 AND #$8B ; CLR BIT 2

033D: 85 50 63 STA LINNUM

 64 *

033F: 68 65 CHKBIT PLA ; RETRIEVE SCREEN BYTE

0340: 25 30 66 AND HBIT ; SELECT BITS OF INTEREST

0342: 29 7F 67 AND #$7F ; CLR BIT 7

0344: D0 06 68 BNE SEND ; BIT IS "ON"

 69 *

0346: A5 50 70 OFF LDA LINNUM

0348: 29 8C 71 AND #$8C ; CLR BITS 0,1

034A: 85 50 72 STA LINNUM

 73 *

 74 *

034C: 20 BE DE 75 SEND JSR CHKCOM

034F: A4 50 76 LDY LINNUM

0351: A9 00 77 LDA #$00

0353: 20 F2 E2 78 JSR GIVAYF

0356: 20 E3 DF 79 JSR PTRGET

0359: 20 6A DD 80 JSR CHKNUM

035C: AA 81 TAX

035D: 20 2B EB 82 JSR MOVMF

 83 *

0360: 60 84 DONE RTS

0361: 0C 85 CHK

23. Hi-Res Graphics SCRN Function 221

An Overview

You’ll remember that in the previous chapter we used the Appleso!HPLOT
routine to plot a point. he X and Y coordinates for the point were passed to the
routine via normal Appleso! variables.
he inal plot was accomplished by setting a particular bit within a byte of

memory. he bit to be set is determined by creating a “mask” for the bit position
within the byte.
Figure 20-1 (our old friend from chapter 20) was used as a guide to which

bits are set for any given color and X coordinate.
For our hi-resSCRN function we

need to identify whether the bit cor-
responding to a given X, Y coordi-
nate has been set, to take into
account the high-order bit (bit 7)
where necessary, and then return a
value between 0 and 7 corresponding
to the color of the dot. Before going
any further, take a look at Figure 23-
1, which shows the bit patterns for
the color values that might be
returned.
What the SCRN routine does is establish a temporary register in which the bit

pattern for the color value to be returned to the user will be constructed. Notice
that for any of the possible color values we need concern ourselves only with the
last three bit positions. his greatly simpliies our task.
Note also that when a dot is “of” (either black1 or black2), the routine

returns a number with bits 0 and 1 cleared. Bit 2 will still have to be speciically
conditioned, however, since Black2 sets the high-order bit of a byte even though
no dot is illuminated.
Because neither white is directly plotted, the routine will never return a

value of 3 or 7. Remember that when white is speciied, Appleso! normally plots
only one color. hus ourSCRN routine has no way of determining whether a
given dot is a pure color or part of a larger dot pattern creating a white line or
area.
To determine a dot’s color from among the four remaining colors, we look

at the X position of the dot. Since you can plot only even color values at even
coordinates, and odd color values at odd coordinates, the two inal bit positions
of the color register value will be 01 or 10 depending on whether X is odd or
even. he status of the third bit depends on whether the dot’s high-order bit is
set.

]

Color Value Binary

Black1 0 0000 0000

Green 1 0000 0001

Violet 2 0000 0010

White1 3 0000 0011

Black2 4 0000 0100

Orange 5 0000 0101

Blue 6 0000 0110

White2 7 0000 0111

Figure 23-1: Color Bit Patterns

222 Assembly Lines

When all of these checks are collected into a routine, we have the following
procedure.

1. Lines 28−38 retrieve the values of the X and Y coordinates from the Apple-
so! call command. hese are transferred to the hi-res registers ($E0−$E2).

2. he value for the X coordinate is returned inLINNUM ($50, $51) and, as such,
can be checked for whether it is odd or even. To do this we need only check the
low-order byte to see whether the last bit (bit 0) is set. he easiest way to do this
is to use theLSR (Logical Shi! Right) command on line 41 to shi! the last bit
into the carry lag, which will be tested almost immediately.

Let’s talk a bit (pardon the pun) of programming style here. We could test
for all six possible color conditions individually, but it turns out that it is easier
to set up the inal color value more subtly. We’ll start by assuming that some
color will be present. Line 42 puts a possible value (#$01) intoLINNUM as a start-
ing point. (Since we’re done withLINNUM from lines 28−38 we can now use it as
our working register for the color value. Also note that we no longer need to
worry about LINNUM+1 since the color value will never exceed 255.)
Now we can do the carry test,BCS (Branch on Carry Set), to see whether the

coordinate was odd or even. If the carry bit is set, X was odd andLINNUM already
contains the bit pattern for all of the colors that could be plotted at an odd coor-
dinate. If the carry is clear, line 45 will be executed and will shi! the pattern to
the le! one position to correspond to the “even” colors.

3. Lines 48−51 do theJSR HPOSN which will calculate the address of the byte in
memory that corresponds to the coordinates given. See the plot routines from
previous chapters if you need refreshing on this. Lines 53−55 load the byte into
the Accumulator and push it onto the stack to be retrieved later.

he test on line 56 checks for whether the high-order bit was set. ABPL
(Branch PLus) is done if the bit was clear. If the bit was set, we need to set bit 2
of LINNUM (our color register). Note that bit 2 is clear forHCOLORS 0−3 and set for
HCOLORS 4−7. Bit 2 is set using theORA (logical OR with Accumulator). If the
high-order bit was clear, the logical AND command is used to clear bit 2.

4. Final check. Now we need to see whether the dot was actually turned on.
he memory byte is retrieved from the stack using thePLA (PulL Accumulator)
and masked withHBIT ($30).HBIT is a mask created by theHPOSN routine to
show which bit corresponds to the given X coordinate. By maskingHBIT with
the memory byte we can isolate the bit we’re interested in. As a further step, the
AND #$7F clears the high-order bit (which we’ve already tested for anyway). As
an example, suppose that the memory location had held the value#$9B and the
value for X was 4:

Note the inal result will only be nonzero if the dot is on.

23. Hi-Res Graphics SCRN Function 223

5. If the dot is on, everything is already set up, and we can proceed to the inal
exit phase. If the dot is of, theAND #$8C on line 71 will clear only bits 0 and 1.
his allows us to determine the status of the high-order bit, even if a dot is not
actually plotted at the position given.

6. SEND (lines 75−84) is identical to theREAL VARIABLE SEND routine given in
chapter 17 and is used to send our resulting value back to Appleso!. he only
thing diferent in this case is that the routine loads a 0 into the Accumulator
instead of the high-order byte ofLINNUM (LINNUM+1) since, as mentioned previ-
ously, the value for color will never exceed 255.

Sample Program

To test this routine, BLOAD it at $300 and call it using the syntax:

CALL 768, X, Y, C

whereX andY are the screen coordinates to examine, andC is the variable
into which the routine will return the resulting color value from LINNUM.
As an example of using theSCRN routine from BASIC, this program will

return all the possible values forC and illustrate the dependence of those values
on HCOLOR and the X position:

0 HOME: VTAB 22: X = 0: Y = 0

5 PRINT CHR$ (4);"BLOAD AL23.HGRSCRN"

10 FOR I = 0 TO 7

20 HGR: HCOLOR = I

30 HPLOT X, Y

40 CALL 768, X, Y, C

50 PRINT "X = ";X;" COLOR = ";I;" RESULT = ";C

60 NEXT I

70 X = X + 1: IF X = 1 THEN 10

80 TEXT: END

he program goes through two passes, the irst plotting all eight colors at
X = 0, and the second with all eight colors at X = 1. A!er doing the plot, the pro-
gram calls theSCRN routine to verify that it reads the color we think we plotted.
It will do so except in the following cases:

1. White will always read as either 1, 2, 5, or 61. his is because when white is
speciied, a single HPLOT illuminates only one color dot.

2. An attempt to plot an “odd”HCOLOR (1 or 5) on an even X coordinate or an
“even’’HCOLOR (2 or 6) on an odd X coordinate returns 0 or 4 as the result
because of the plotting restrictions described in several of the previous chapters.

1[CT] originally read 2, 3, 5, 6

]

224 Assembly Lines

Conclusion

heSCRN routine can be applied in a variety of ways. In general, you can use
this routine whenever you want to examine the screen to determine what color
has been drawn. Possible applications might include graphics printing routines
and games in which it is necessary to determine the existence of lines that repre-
sent walls or obstacles.
If you wish to use the routine directly from assembly language without call-

ing it from Appleso!, simply delete the entry routines and loadLINNUM with the
X coordinate and $E2 with the Y coordinate.

24. he Collision Counter, DRAW, XDRAW
September 1982

In the previous chapter we looked at a routine to simulate theSCRN(X,Y)
function of BASIC. he notion of inquiring about points on the screen is closely
related to this chapter’s topic, the collision counter.
hecollision counter is a one-byte memory location on page zero of the

Apple’s memory. Its value is a function of the Appleso! hi-res graphics routines
speciically related to shape tables. he purpose of the collision counter is to keep
track of any “collisions” between a shape being drawn on the screen and any pre-
viously drawn screen images. he collision counter is located at$EA (decimal
234) and is afected only by the commands DRAW and XDRAW.

Some Experiments

To illustrate the behavior of the collision counter, we’ll irst need a shape
table to experiment with. he one given here is probably the simplest one possi-
ble–a single dot.
To enter the shape into memory, go into the Apple’s Monitor by typing in

CALL -151<RETURN>, and then enter:

300: 01 00 04 00 04 00

E8: 00 03

his will place the table in memory at location$300 and set the pointer at
$E8, $E9 to point to the table.
he irst two bytes of the table ($01 00) indicate the number of shapes in the

table, which in our case is just one. he next two bytes ($04 00) give the ofset
from the beginning of the table ($300) to the start of the actual shape data
($304). he next two bytes ($04 00) are the actual bytes of data for the shape
itself. In this example the shape table is a single “move” of one position up the
screen.
You may wish to review the information on shape tables in your Appleso! II

BASIC Programming Reference Manual (1978), pages 92−96.
he irst experiment is to verify that we have in fact installed a usable shape

table. his is most easily tested by putting your Apple into Appleso! BASIC and
typing in:

HGR: HCOLOR = 3: ROT = 0: SCALE = 1

]

24

226 Assembly Lines

he screen should clear. You can now type in:

DRAW 1 AT 100,100

A single dot should appear on the screen. You can change the scale to three by
typing in:

SCALE = 3

Test this by typing in:

DRAW 1 AT 100,100

A vertical line of three pixels should appear. If all has gone well so far, you
can now try a third experiment. he purpose of the experiment will be to see
how the collision counter reacts with various combinations of drawing colors,
background colors, shape-drawing commands, and the previous condition of the
collision counter.
Clear the screen withHGR again and try this sequence of commands, noting

for each one what the conditions of the screen and collision counter are before
and a!er the command is executed. (Note that references to “color” in this chap-
ter will be in terms of “black” and “white” as would be seen on a black-and-white
monitor. If you have a color display, the dots will appear as single-color dots–as
explained in previous chapters.)

HCOLOR = 3: SCALE = 1: POKE 234,0: DRAW 1 AT 100,100: PRINT PEEK(234)

(0 should be printed along with a white dot on the screen)

DRAW 1 AT 100,100: PRINT PEEK(234)

(1, with a white dot)

DRAW 1 AT 100,100: PRINT PEEK(234)

(1, with a white dot)

HCOLOR = 0: DRAW 1 AT 100,100: PRINT PEEK(234)

(0, the dot is erased)

DRAW 1 AT 100,100: PRINT PEEK(234)

(1, with no dot)

If you try all the various combinations, you should be able to replicate a
chart something like the one on the next page.

24. he Collision Counter, DRAW, XDRAW 227

HCOLOR Command Background C = 0 C = 1 Result

White
White
Black
Black
White
White
Black
Black

DRAW

DRAW

DRAW

DRAW

XDRAW

XDRAW

XDRAW

XDRAW

Black
White
Black
White
Black
White
Black
White

0
1
1
0
1
0
1
0

0
1
1
0
1
0
1
0

White
White
Black
Black
Black
Black
White
Black

he irst column shows the value ofHCOLOR for theDRAW orXDRAW com-
mand. he second column shows which command we used. he third column
shows which background color was present when the shape table was drawn.
he headings C = 0 and C = 1 refer to the status of the collision counter

before theDRAW orXDRAW. he entries in each column show the value a!er the
command is executed. he inal column shows whether the resulting dot is white
(“on”) or black (“of”).
he conclusions to be “drawn” from this chart are:

1. If aDRAW is done, the resulting dot will be consistent with theHCOLOR used.
he collision counter will increment one unit for each dot on the screen that is
already at the same “color” as the dot being drawn. hat is, if white is your
HCOLOR, the collision counter will count the number of white dots the shape hits.
If yourHCOLOR is black, the collision counter will return the number of black
dots the shape draws over. his allows you to use a light background and dark
shapes and still have everything work!

2. IfXDRAW is used, the currentHCOLOR has no efect.XDRAW always reverses the
background dots. For a black background,XDRAW will increment the collision
counter only for those dots turned “on.” If the background is white, the collision
counter will be set to 0 only if all of the dots are turned “of.”

3. he previous state of the collision counter has no efect on the inal value
a!er theDRAW orXDRAW. his means that no preconditioning or initializing is
necessary in a given routine.

DRAW versus XDRAW

Before proceeding further with the collision counter, it is important to take
a moment to clarify the distinction between the two shape-table commandsDRAW
and XDRAW.

DRAW is very direct in that it basically does anHPLOT in whatever the current
HCOLOR is, using the speciied shape. As mentioned earlier, the collision counter
simply adds up the total number of collisions with existing dots in the same “on”

]

228 Assembly Lines

or “of” state as theHCOLOR being used. Moving shapes withDRAW is done irst by
drawing the igure, and then either reversing the color by settingHCOLOR to black
and then doing anotherDRAW, or usingXDRAW to accomplish approximately the
same thing.

XDRAW, on the other hand, uses theEOR (Exclusive OR) function to actually
reverse the bits on the screen where the shape is to be drawn. What this means is
that a ixed color as such is not used. Rather, each bit on the screen in the desired
shape pattern is reversed from its current status. By following this with another
XDRAW, the screen is restored and existing background igures are not erased.

Principles of Animation and Collision

Any hi-res game or simulation is basically just a simulation of reality in
which a screen image successfully mimics the behavior of an object in the real
world. he primary things to be simulated generally are motion and collisions.
Both of these have been discussed in earlier chapters, particularly with regard to
the idea of simulating convincing motions.
In our previous programs, the positions of an object was used to determine

whether it was time to bounce the object of of a wall or some other object. In
this sense, we can say that collisions were predicted rather than detected. he
collision counter gives us a way of detecting collisions with objects on the screen
whose current position may not be known. his takes on practical signiicance
when you may not want to keep track of all the things lying about the screen, as
is quite possible in many game scenarios.
Putting all of this together, we come up with the following general

approaches:

1. DRAW a igure. Check the collision counter for nonzero values to detect a col-
lision.DRAW with black, orXDRAW, to erase for the next movement. Background
igures will be erased when using this technique.

2. XDRAW a igure. he value in the collision counter should equal the number
of dots in the igure (that is, a constant value) if there is no collision with existing
images.XDRAW again to erase. he value in the collision counter should return to
0 if no previous collision was made. his will leave background images intact,
but igures drawn will have a “harlequin” appearance as they pass over back-
ground images. See the following demonstration program for an example of this.

!e Scanner

he following two demonstration programs are called"e Scanner because
they are reminiscent of the classic radar screen sweep pattern.
he irst program uses theXDRAW,XDRAW system of redrawing the image and

thus, is nondestructive to other images on the screen.

24. he Collision Counter, DRAW, XDRAW 229

 1 ********************************

 2 * AL24-SCANNER-XDRAW,XDRAW *

 3 ********************************

 4 *

 5 * OBJ $7000

 6 ORG $7000

 7 *

 8 FLAG EQU $06

 9 RT EQU $07

 10 SCL EQU $08

 11 *

 12 *

 13 PREAD EQU $FB1E

 14 WAIT EQU $FCA8

 15 HCOLOR EQU $F6F0

 16 HGR EQU $F3E2

 17 HPLOT EQU $F457

 18 HPOSN EQU $F411

 19 SPKR EQU $C030

 20 *

 21 ROT EQU $F9

 22 SCALE EQU $E7

 23 PTR EQU $E8

 24 SHNUM EQU $F730

 25 DRAW EQU $F605

 26 XDRAW EQU $F661

 27 CTR EQU $EA

 28 *

7000: 4C 09 70 29 ENTRY JMP E2

 30 *

7003: 01 00 04 31 TBL HEX 010004

7006: 00 04 00 32 HEX 000400

 33 *

7009: A2 03 34 E2 LDX #$03 ; WHITE

700B: 20 F0 F6 35 JSR HCOLOR

700E: A2 00 36 LDX #$00

7010: 86 07 37 STX RT

7012: A2 03 38 LDX #$03

7014: 86 E8 39 STX PTR

7016: A2 70 40 LDX #$70

7018: 86 E9 41 STX PTR+1

 42 *

701A: A9 01 43 SET LDA #$01

701C: 85 06 44 STA FLAG

 45 *

701E: A2 8C 46 POSN LDX #$8C

7020: A0 00 47 LDY #$00 ; X = 140

7022: A9 50 48 LDA #$50 ; Y = 80

7024: 20 11 F4 49 JSR HPOSN ; SET CURSOR X,Y

 50 *

7027: E6 07 51 CALC INC RT

7029: A2 00 52 LDX #$00 ; PDL 0

702B: 20 1E FB 53 JSR PREAD

702E: 98 54 TYA

702F: D0 01 55 BNE STORE

7031: C8 56 INY ; SCALE = 1

]

230 Assembly Lines

7032: 84 08 57 STORE STY SCL

 58 *

7034: A5 06 59 CHKFLG LDA FLAG

7036: F0 04 60 BEQ ERASE

7038: C6 06 61 DEC FLAG

703A: F0 14 62 BEQ PLOT ; ONLY ONCE

 63 *

703C: A2 01 64 ERASE LDX #$01

703E: 20 30 F7 65 JSR SHNUM

7041: A5 F9 66 LDA ROT

7043: 20 61 F6 67 JSR XDRAW

 68 *

7046: A6 EA 69 SOUND LDX CTR

7048: F0 06 70 BEQ PLOT

704A: AD 30 C0 71 CLK LDA SPKR

704D: CA 72 DEX

704E: D0 FA 73 BNE CLK

 74 *

7050: A2 8C 75 PLOT LDX #$8C

7052: A0 00 76 LDY #$00

7054: A9 50 77 LDA #$50

7056: 20 11 F4 78 JSR HPOSN

7059: A2 01 79 LDX #$01

705B: 20 30 F7 80 JSR SHNUM

705E: A5 08 81 LDA SCL

7060: 85 E7 82 STA SCALE

7062: A5 07 83 LDA RT

7064: 85 F9 84 STA ROT

7066: 20 61 F6 85 JSR XDRAW

 86 *

7069: A2 01 87 DELAY LDX #$01 ; PDL 1

706B: 20 1E FB 88 JSR PREAD

706E: 98 89 TYA

706F: 20 A8 FC 90 JSR WAIT

 91 *

7072: 4C 1E 70 92 GOBACK JMP POSN

 93 *

7075: D3 94 CHK

A!er assembling the code at $7000, enter the following from Appleso!:

HGR: HCOLOR = 3: HPLOT 100,0 TO 100,160

Presetpaddle 0 to the minimum (0 = far le!) and paddle 1 to the maximum
(255 = far right).
Now activate the routine by entering:

CALL 28672

Experiment with diferent paddle values, slowly increasing the radius with
paddle 0 until the scanner intersects the vertical line. At that point you should
hear a number of clicks from the speaker as the lines cross each other.
Let’s see how the program works. Line 27 starts the actual code by jumping

over the data for the shape table. his is the same one-dot shape table you

24. he Collision Counter, DRAW, XDRAW 231

entered earlier in this chapter. Lines 32 and 33 initialize theHCOLOR to 3 (white),
although for this program that actually is not necessary. Lines 34 through 39 set
our value for rotation to 0 (to be used later), and set the pointer $E8, $E9 to point
at our table at $7003.
Now here’s the tricky part. In general we want to store two positions for the

line we’ll draw. he irst is the old position (where it was last drawn) and the sec-
ond is the new position where the new line will be drawn. You’ll recall that we
developed this technique in earlier chapters as a way of moving dots while mini-
mizing the screen licker.
For the simple dots, it didn’t really matter if on the irst pass through the

program we erased a dot that wasn’t really there. In this case, though, it does
matter because usingXDRAW will cause an image to appear if one wasn’t already
there to erase.
his is solved by using a one-pass lag that will tell the program to skip over

theERASE routine on the irst time through. Lines 41 and 42 initialize this lag
to 1.
Lines 44 through 47 useHPOSN to prepare for the later use of the shape

tables. Line 49 increments the value for rotation on each pass through the loop.
his causes the line to revolve. Wrap-around happens automatically whenRT
reaches 255, so no checking for ILLEGAL QUANTITY errors is required.
Lines 50 through 55 get the scale value from paddle 0, which corresponds to

the eventual length of the plotted line. Note that a special check is done to avoid
scale being set to#$00, since Appleso! treats this the same way it treats 255. his
makes the paddles a little more friendly to the user.
On the irst pass through,FLAG will equal 1, so the test on line 58 will fail. It

will then be decremented to 0 to clear the lag, and the forced branch to PLOT will
be executed.
he routine for drawing the shape is very similar to routines in programs

presented in earlier chapters. he main diference in this routine is our use of the
routineXDRAW ($F661), which is used the same way theDRAW routine was used
before.
Once thePLOT section is completed, a wait is done at lines 85 through 88 by

using the WAIT ($FCA8) routine as a function of paddle 1.
Notice that on successive passes through the loop,FLAG will equal 0, and so

ERASE will always erase the old position before PLOT creates the new one. RT ($07)
andSCL ($08) are used to hold the new values for rotation and scale, respec-
tively.
Because we are using theXDRAW,XDRAW method for the actual collision

detection, we will use method 2, which says that the collision counter should
return to 0 a!er the igure is erased. We use this fact to check on lines 67 and 68
for a zero-value collision counter. If the counter is not 0, the speaker is clicked
that number of times before the program does the next plot.

]

232 Assembly Lines

In practice the speaker is a little undependable because the frequency of the
clicks is so high. You may wish to experiment with diferent delays in theCLK
loop, as is done in the sound routines. You may prefer the current method for
this demo because of the intuitive nature of the clicks, but musical sounds can
also provide some interesting insights into the process.
he usualHGR equivalent from this routine has purposely been le! out to

allow you to alter the screen withHPLOT and other Appleso! commands before
running the scanner. Another interesting variation is to type in:

HGR: HCOLOR = 3: HPLOT 0,0: CALL 62454

he screen should clear to all white. Now activate the scanner by typing in:

CALL 28672

Now the clicking will depend more directly on the length of the line,
although some interesting variation can be observed depending on the angle of
the line as well. While you’re reading along you might ponder why that would
be, considering that the screen would seem to be clearly uniform in the number
of dots the line is intersecting.
Once you’ve entertained yourself suiciently with the irst program, try this

second variation, one that uses theDRAW,XDRAW method. Here the point of inter-
est is that the scanning line erases anything it touches and so leaves a visible trail
of where it has been when activated against a solid white background.

 1 ********************************

 2 * AL24-SCANNER-DRAW,XDRAW *

 3 ********************************

 4 *

 5 * OBJ $7000

 6 ORG $7000

 7 *

 8 FLAG EQU $06

 9 RT EQU $07

 10 SCL EQU $08

 11 PREAD EQU $FB1E

 12 WAIT EQU $FCA8

 13 HCOLOR EQU $F6F0

 14 HGR EQU $F3E2

 15 HPLOT EQU $F457

 16 HPOSN EQU $F411

 17 SPKR EQU $C030

 18 *

 19 ROT EQU $F9

 20 SCALE EQU $E7

 21 PTR EQU $E8

 22 SHNUM EQU $F730

 23 DRAW EQU $F605

 24 XDRAW EQU $F661

 25 CTR EQU $EA

 26 *

24. he Collision Counter, DRAW, XDRAW 233

7000: 4C 09 70 27 ENTRY JMP E2

 28 *

7003: 01 00 04 29 TBL HEX 010004

7006: 00 04 00 30 HEX 000400

 31 *

7009: A2 03 32 E2 LDX #$03 ; WHITE

700B: 20 F0 F6 33 JSR HCOLOR

700E: A2 00 34 LDX #$00

7010: 86 07 35 STX RT

7012: A2 03 36 LDX #$03

7014: 86 E8 37 STX PTR

7016: A2 70 38 LDX #$70

7018: 86 E9 39 STX PTR+1

 40 *

701A: A9 01 41 SET LDA #$01

701C: 85 06 42 STA FLAG

 43 *

701E: A2 8C 44 POSN LDX #$8C

7020: A0 00 45 LDY #$00 ; X = 140

7022: A9 50 46 LDA #$50 ; Y = 80

7024: 20 11 F4 47 JSR HPOSN ; SET CURSOR X,Y

 48 *

7027: E6 07 49 CALC INC RT

7029: A2 00 50 LDX #$00 ; PDL 0

702B: 20 1E FB 51 JSR PREAD

702E: 98 52 TYA

702F: D0 01 53 BNE STORE

7031: C8 54 INY ; SCALE = 1

7032: 84 08 55 STORE STY SCL

 56 *

7034: A5 06 57 CHKFLG LDA FLAG

7036: F0 04 58 BEQ ERASE

7038: C6 06 59 DEC FLAG

703A: F0 0A 60 BEQ PLOT ; ONLY ONCE

 61 *

703C: A2 01 62 ERASE LDX #$01

703E: 20 30 F7 63 JSR SHNUM

7041: A5 F9 64 LDA ROT

7043: 20 61 F6 65 JSR XDRAW

 66 *

7046: A2 8C 67 PLOT LDX #$8C

7048: A0 00 68 LDY #$00

704A: A9 50 69 LDA #$50

704C: 20 11 F4 70 JSR HPOSN

704F: A2 01 71 LDX #$01

7051: 20 30 F7 72 JSR SHNUM

7054: A5 08 73 LDA SCL

7056: 85 E7 74 STA SCALE

7058: A5 07 75 LDA RT

705A: 85 F9 76 STA ROT

705C: 20 05 F6 77 JSR DRAW

 78 *

705F: A6 EA 79 SOUND LDX CTR

7061: F0 06 80 BEQ DELAY

7063: AD 30 C0 81 CLK LDA SPKR

7066: CA 82 DEX

]

234 Assembly Lines

7067: D0 FA 83 BNE CLK

 84 *

7069: A2 01 85 DELAY LDX #$01 ; PDL 1

706B: 20 1E FB 86 JSR PREAD

706E: 98 87 TYA

706F: 20 A8 FC 88 JSR WAIT

 89 *

7072: 4C 1E 70 90 GOBACK JMP POSN

 91 *

7075: A9 92 CHK

In this routine, the irst variation is in the use ofDRAW (versusXDRAW) on line
77. In addition, because we are now using theDRAW,XDRAW method, the collision
counter detection now goes a!er the initial creation of the image as is done by
PLOT. In terms of programming then, the changes are minor. It is interesting to
note, though, how diferently the screen behaves.
It is most instructive to start by typing in:

HGR: HCOLOR = 3: HPLOT 0,0: CALL 62454

heCALL 62454 is the routine that clears the hi-res screen to the lastHCOLOR
plotted, so we’ll take advantage of it to ill the screen with dots for ourDRAW,
XDRAW scanner to detect. Make sure the paddles are set to 0 for paddle 0 and 255
for paddle 1. hen activate the routine by typing in:

CALL 28672

As you eventually sweep out all possible angles and radii, you’ll notice that
not all screen locations can be reached from a ixed point. his is because of a
limited number of rotation positions (as opposed to a continuous 360-degree
motion) and also because of the line nature of the screen display.
By looking carefully you can see that there are more point interceptions, and

thus collisions and clicks, at the near-vertical, -horizontal, and 45-degree posi-
tions than at the angles in between. his tends to give a modulated sound to the
clicks as the “beam” scans when running the irst program against a white back-
ground.

!e Possibilities

Once you understand the idea behind the collision counter, it can be very
useful in both arcade game-type so!ware and other simulations. You’ll probably
be able to imagine all sorts of novel ways of applying this technique in your own
programs.
In the next chapter, we’ll give non-graphics enthusiasts a break and look a

little more into some areas of assembly-language programming that we haven’t
yet covered.

25. Explosions and Special Efects
October 1982

In the previous chapter we looked at the collision counter and at how it
could be used in hi-res graphics programs in which collisions might have to be
detected. his chapter we’ll see some further uses of the collision counter, along
with simple examples of how an explosion might be simulated. In a way, this
chapter could be considered a brief introduction to some special efects.

Explosions, Rays, and Other !ings !at Go Bump in the Night

he basic principles behind writing simpletone routines in assembly lan-
guage were presented in chapter eight. As you’ll recall, sound of any kind is gen-
erated by accessing memory location$C030. Each time this location is accessed
by either a read or write operation (such as anLDA or STA command) the speaker
clicks once. A tone or other noise is produced by doing a large number of very
fast accesses. Consider, for example, this sample listing:

 1 ********************************

 2 * *

 3 * AL25-SIMPLE NOISE ROUTINE *

 4 * *

 5 ********************************

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 DRTN EQU $06

 11 NUM EQU $07

 12 SPKR EQU $C030

 13 *

 14 COMBYTE EQU $E74C

 15 RND EQU $EFAE

 16 FAC EQU $9D

 17 *

0300: 20 4C E7 18 ENTRY JSR COMBYTE

0303: 86 06 19 STX DRTN ; SET LEN OF 'NOTES'

0305: 20 4C E7 20 JSR COMBYTE

0308: 86 07 21 STX NUM ; SET # OF 'NOTES'

 22 *

030A: 20 AE EF 23 LOOP JSR RND ; CREATE A RND VALUE

030D: A6 06 24 LDX DRTN ; SET A COUNTER

030F: AD 30 C0 25 TICK LDA SPKR ; TOGGLE SPEAKER

0312: A4 9F 26 LDY FAC+2 ; PITCH=RANDOM VALUE

]

25

236 Assembly Lines

0314: 88 27 DELAY DEY

0315: D0 FD 28 BNE DELAY ; WAIT AWHILE

0317: CA 29 CYCLE DEX

0318: D0 F5 30 BNE TICK ; KEEP PLAYING

 31 *

031A: C6 07 32 NUMBR DEC NUM

031C: D0 EC 33 BNE LOOP ; PLAY ANOTHER NOTE

031E: 60 34 EXIT RTS

031F: 71 35 CHK

his routine is intended to be called from Appleso! BASIC by a program
such as this one:

10 INPUT "DURATION,NUMBER:";D,N

20 CALL 768,D,N

30 GOTO 10

When the routine is called, lines 18 through 21 use the routineCOMBYTE
($E74C) in Appleso! to read the values being passed by the calling program and
store these values in DRTN ($06) and NUM ($07).

DRTN is then used to determine the length of a tone to be generated, andNUM
determines how many tones will be played. You could think of this program as a
random melody generator.
At line 23, aJSR is done to Appleso!’s random-number function. his ills

theloating-point Accumulator (usually calledFAC:$9D−$A2) with a random
number in loating-point form. For our purposes we need only a single byte,
which we’ll get from$9F. Very shortly we’ll retrieve this byte fromFAC for use in
our routine. You might think that any of the six bytes in theFAC would be sui-
ciently random, but it turns out that the irst two bytes,FAC andFAC+1 ($9D,
$9E), don’t vary suiciently to generate good random numbers.
Line 24 retrieves the value forDRTN to prepare for entering the main tone

service loop.TICK clicks the speaker once and then loads the Y-Register with our
random value. Because this value is then used in theDELAY loop, the interval
between clicks varies each time a new random number is used. his is equivalent
to a diferent frequency being produced each time, and thus gives us random-
ly-pitched notes.

CYCLE is a secondary loop that executes theTICK/DELAY loop a certain num-
ber of times, determined in this case by the value given toDRTN by the calling
program. he number ofCYCLEs determines the overall apparent length of a par-
ticular tone unit.

NUMBR is a larger loop that determines how many notes the sound routine
will generate, according to the value given for NUM.
Run the Appleso! program with this routine assembled at$300 and try dif-

ferent combinations for DRTN and NUM. If DRTN is a large value (greater than 20), a
random melody ofNUM notes is generated. AsDRTN gets smaller, you have to
increaseNUM to get sounds that last equivalent lengths of time. he value pair 10,

25. Explosions and Special Efects 237

50 forDRTN andNUM creates sort of a ray-gun sound, and the pair 3, 20 produces
a reasonable explosion efect. In the latter case, the amount of time each note is
played becomes so short that the notes tend to blend together into what’s essen-
tially just a random noise pattern.
A random tonal pattern is, in fact, the key to any deinition of noise, and

noise is what an explosion is all about. What we need is a way of generating a lot
of high-speed random data for a good noise routine. heRND function helps us
to create the random data, but it takes so long to execute the routine for each
note that there is a limit to the number of notes we can generate in a short
period of time.
One technique we used earlier when speed was a problem was table look-

ups. Let’s apply this technique to sound generation and see what we can pro-
duce.

 1 ********************************

 2 * *

 3 * AL25-SIMPLE NOISE ROUTINE 2 *

 4 * *

 5 ********************************

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 CTR EQU $06

 11 DRTN EQU $07

 12 PTCH EQU $08

 13 SPKR EQU $C030

 14 *

 15 COMBYTE EQU $E74C

 16 RND EQU $EFAE

 17 FAC EQU $9D

 18 *

0300: A9 00 19 INIT LDA #$00

0302: 85 06 20 STA CTR

0304: 20 AE EF 21 LOOP JSR RND

0307: A5 9F 22 LDA FAC+2

0309: A4 06 23 LDY CTR

030B: 99 00 10 24 STA $1000,Y

030E: E6 06 25 INC CTR

0310: D0 F2 26 BNE LOOP

0312: 60 27 DONE RTS

 28 *

0313: 20 4C E7 29 ENTRY JSR COMBYTE

0316: 86 08 30 STX PTCH

0318: 20 4C E7 31 JSR COMBYTE

031B: 86 07 32 STX DRTN

 33 *

031D: A0 00 34 READ LDY #$00

031F: B9 00 10 35 BYTE LDA $1000,Y

0322: A2 08 36 LDX #$08

0324: 4A 37 SHIFT LSR

0325: 90 03 38 BCC NEXTBIT

]

238 Assembly Lines

0327: 8D 30 C0 39 TICK STA SPKR

 40 *

032A: CA 41 NEXTBIT DEX

032B: D0 F7 42 BNE SHIFT

032D: A6 08 43 LDX PTCH

032F: CA 44 DELAY DEX

0330: D0 FD 45 BNE DELAY

0332: C8 46 NEXTBYTE INY

0333: D0 EA 47 BNE BYTE

0335: C6 07 48 DEC DRTN

0337: D0 E4 49 BNE READ

0339: 60 50 EXIT RTS

033A: 33 51 CHK

his routine has twoentry points. his means that the routine has to be
called twice. he irst time, a call to$300 (768 decimal) generates the table of
data to be used. his need be done only once. he noise pattern is generated by
calling$313 (787 decimal) whenever a sound is desired. his routine is also
designed to be called from an Appleso! BASIC program such as:1

10 CALL 768: REM CREATE TABLE

20 INPUT "PITCH,DURATION";P,D

30 CALL 787,P,D : REM CALL NOISE ROUTINE

40 GOTO 20

In this case the two parameters passed to the noise routine are pitch (PTCH)
and duration of the noise period (DRTN). At irst thought, pitch may seem to be a
contradictory notion when applied to noise, particularly in light of our previous
deinition of noise as a random mix of frequencies. he pitch, however, does not
need to be an entirely homogeneous mixture of frequencies.
It’s possible to favor either high or low frequencies in the mix and thus to

inluence the suggestive nature of the noise. High-frequency mixes sound like
rays or fast-moving rockets. Low-frequency mixes remind the listener of the low
roar of a slow-moving rocket or a garden-variety explosion.
Examining the new routine, then, let’s see how this noise generator works.

he irst call to INIT creates the table of random values. Lines 19 and 20 initialize
to$00 a counter we’ll be using shortly. A call to the random function is then
made to generate a random byte. Next, the Y-Register is loaded with the value
held inCTR. his value is used as an index to the location in the range from
$1000 through$10FF where we will store the random byte.CTR is then incre-
mented to the next position andLOOP is executed untilCTR wraps back around to
$00 a!er cycling 256 times.
You may wonder why this code was not used instead:

 LDY #$00

LOOP JSR RND

 LDA FAC+2

1[CT] Line 20 incorrectly had INPUT “D,P”; P,D

25. Explosions and Special Efects 239

 STA $1000,Y

 INY

 BNE LOOP

Although it’s much shorter and more direct, the routine fails becauseRND
scrambles the Y-Register, thus losing any running value for our position in the
table being created. his fact necessitates the use of a back-up counter (CTR) to
remember the current value that Y should be set to.
he INIT routine, then, will ill 256 bytes of memory starting at$1000 with a

random pattern of bytes. More important, this also results in a random pattern
of bits, which will be used very soon by the noise routine.
When$313 (787 decimal) is called,COMBYTE is used to read the values for

PTCH and DRTN from the calling Appleso! program.
READ then starts the process of scanning the data table for the random data

to be used in generating the noise pattern. he trick in this program comes in
using the actual bit status of the data rather than entire bytes.
A!er each byte is loaded into the Accumulator on line 35, a bit-shi!ing rou-

tine is executed eight times to determine the on or of status of each bit. Line 36
initializes the X-Register to act as our counter in this eight-step loop.
Line 37 uses the LSR command (Logical Shi! Right) to move all of the bits in

the Accumulator one position to the right. he end-position bit, bit 0, falls into
the carry.
Line 38 then tests the carry lag and, if the lag is clear (bit not set), skips the

speaker-toggling step found at line 39.
NEXTBIT decrements our counter in the X-Register, and ifX hasn’t reached

0, loops back toSHIFT. IfX has reached 0,X is reset with thePTCH value and a
delay loop is entered.
When the delay loop is inished, the Y-Register is incremented in prepara-

tion for reading the next byte in the data table.
As it happens, reading each bit of 256 bytes does not take that long. Our

sound would be over rather soon if we didn’t do just one extra step. Although we
could generate and read larger tables, another approach is to reread the table a
set number of times. his is where theDRTN value is used, and the table read is
repeated the number of times speciied by DRTN.
he main area of experimentation in this routine is with diferent values for

PTCH. Smaller values produce higher-sounding noise patterns; larger values gen-
erate more of a roar.

A Little More Sophistication

his last routine probably sounds more like an explosion to you than the
irst one did. his is due to the higher noise content of the sound as compared to
the more musical irst routine. Something is still missing, though. A classical

]

240 Assembly Lines

explosion doesn’t sound the same from start to inish. It usually starts at a higher
or lower pitch and works its way up or down, depending on the nature of the
explosion. What we need is a way to modulate the frequency mix as a function of
time.
By linking the delay value to our position in the table, we can accomplish

this goal. Here’s the new listing:

 1 ********************************

 2 * *

 3 *AL25-SIMPLE RAMP NOISE ROUTINE*

 4 * *

 5 ********************************

 6 *

 7 * OBJ $300

 8 ORG $300

 9 *

 10 CTR EQU $06

 11 DRTN EQU $07

 12 PTCH EQU $08

 13 SPKR EQU $C030

 14 *

 15 COMBYTE EQU $E74C

 16 RND EQU $EFAE

 17 FAC EQU $9D

 18 *

0300: A9 00 19 INIT LDA #$00

0302: 85 06 20 STA CTR

0304: 20 AE EF 21 LOOP JSR RND

0307: A5 9F 22 LDA FAC+2

0309: A4 06 23 LDY CTR

030B: 99 00 10 24 STA $1000,Y

030E: E6 06 25 INC CTR

0310: D0 F2 26 BNE LOOP

0312: 60 27 DONE RTS

 28 *

0313: 20 4C E7 29 ENTRY JSR COMBYTE

0316: 86 07 30 STX DRTN

0318: A0 00 31 READ LDY #$00

031A: B9 00 10 32 BYTE LDA $1000,Y

031D: A2 08 33 LDX #$08

031F: 4A 34 SHIFT LSR

0320: 90 03 35 BCC NEXTBIT

0322: 8D 30 C0 36 TICK STA SPKR

 37 *

0325: CA 38 NEXTBIT DEX

0326: D0 F7 39 BNE SHIFT

0328: A6 07 40 LDX DRTN

032A: CA 41 DELAY DEX

032B: D0 FD 42 BNE DELAY

032D: C8 43 NEXTBYTE INY

032E: D0 EA 44 BNE BYTE

0330: C6 07 45 DEC DRTN

0332: D0 E4 46 BNE READ

0334: 60 47 EXIT RTS

25. Explosions and Special Efects 241

0335: 39 48 CHK

his program is designed to be called from an Appleso! program that looks
like this:

10 CALL 768: REM GENERATE TABLE

20 INPUT "START?";S

30 CALL 787, S

40 GOTO 20

he main diference between this routine and the previous one is that just
prior to the delay loop, the X-Register is loaded with the currentDRTN counter
value, as opposed to a user-deined pitch value. hus, noPTCH is speciied in the
calling program and you may select only a starting point on the ramp, as it is
sometimes called.
Entering a value of 255 results in the longest sound possible. It is rather

interesting to have your Apple sound like a 727 ready to take of through your
ceiling.

Putting it All Together

Now that we’ve got some sound efects to add to our knowledge of hi-res
graphics, let’s put everything together into a simple demonstration of how an
explosion might be simulated in a game program.
Assemble the following listing and run it either withBRUN orCALL 4096

(from BASIC), or 1000G (from the Monitor).

 1 ********************************

 2 * *

 3 *AL25-SIMPLE EXPLOSION ROUTINE *

 4 * *

 5 ********************************

 6 *

 7 ORG $1000

 8 *

 9 NUM EQU $06

 10 SPKR EQU $C030

 11 *

 12 RND EQU $EFAE

 13 FAC EQU $9D

 14 KYBD EQU $C000

 15 STROBE EQU $C010

 16 *

 17 HGR EQU $F3E2

 18 HCOLOR EQU $F6F0

 19 SHNUM EQU $F730

 20 XDRAW EQU $F661

 21 HPOSN EQU $F411

 22 SHTBL EQU $E8

 23 SCALE EQU $E7

 24 *

]

242 Assembly Lines

1000: 4C 63 10 25 ENTRY JMP START

 26 *

1003: 03 00 55 27 TABLE HEX 0300550033000800

1006: 00 33 00 08 00

100B: 2C 24 2D 28 HEX 2C242D242DE4DB93

100E: 24 2D E4 DB 93

1013: 3E 36 37 29 HEX 3E36372E362D3635

1016: 2E 36 2D 36 35

101B: 36 2D C6 30 HEX 362DC6DBDB23272C

101E: DB DB 23 27 2C

1023: 25 2C 3C 31 HEX 252C3C3F363F373E

1026: 3F 36 3F 37 3E

102B: 36 40 C0 32 HEX 3640C040C028352E

102E: 40 C0 28 35 2E

1033: 35 2D 00 33 HEX 352D00243F3CBC12

1036: 24 3F 3C BC 12

103B: 0E 96 09 34 HEX 0E9609C04C493C2C

103E: C0 4C 49 3C 2C

1043: 2C 2D 24 35 HEX 2C2D2494921A352D

1046: 94 92 1A 35 2D

104B: 36 EE DB 36 HEX 36EEDB233C27941B

104E: 23 3C 27 94 1B

1053: 3E 36 3F 37 HEX 3E363F06001B282D

1056: 06 00 1B 28 2D

105B: 2D F8 DB 38 HEX 2DF8DB636DE52300

105E: 63 6D E5 23 00

 39 *

1063: 20 E2 F3 40 START JSR HGR

1066: A2 03 41 LDX #$03 ; WHITE

1068: 20 F0 F6 42 JSR HCOLOR

106B: A9 03 43 LDA #$03

106D: 85 E8 44 STA SHTBL

106F: A9 10 45 LDA #$10

1071: 85 E9 46 STA SHTBL+1 ; TABLE AT $1003

1073: A9 01 47 LDA #$01

1075: 85 E7 48 STA SCALE ; SCALE = 1

1077: A9 0A 49 LDA #$0A

1079: 85 06 50 STA NUM ; # OF CYCLES

 51 *

107B: A2 8C 52 SHIP LDX #$8C

107D: A0 00 53 LDY #$00 ; X = 140

107F: A9 50 54 LDA #$50 ; Y = 80

1081: 20 11 F4 55 JSR HPOSN ; POSITION 'CURSOR'

1084: A2 01 56 LDX #$01 ; #1 = SHIP

1086: 20 30 F7 57 JSR SHNUM

1089: A9 00 58 LDA #$00 ; ROT = 0

108B: 20 61 F6 59 JSR XDRAW

 60 *

108E: AD 00 C0 61 KEY? LDA KYBD

1091: 10 FB 62 BPL KEY? ; NO KEYPRESS

1093: 8D 10 C0 63 STA STROBE ; CLEAR STROBE

 64 *

1096: A2 8C 65 ERASE1 LDX #$8C

1098: A0 00 66 LDY #$00

109A: A9 50 67 LDA #$50

109C: 20 11 F4 68 JSR HPOSN

25. Explosions and Special Efects 243

109F: A2 01 69 LDX #$01

10A1: 20 30 F7 70 JSR SHNUM

10A4: A9 00 71 LDA #$00

10A6: 20 61 F6 72 JSR XDRAW ; ERASE SHIP

 73 *

10A9: A2 8C 74 LOOP LDX #$8C

10AB: A0 00 75 LDY #$00

10AD: A9 50 76 LDA #$50

10AF: 20 11 F4 77 JSR HPOSN

10B2: A2 02 78 LDX #$02 ; 1ST EXPL SHAPE

10B4: A5 06 79 LDA NUM

10B6: 6A 80 ROR

10B7: B0 01 81 BCS SET ; IF 'ODD'

10B9: E8 82 INX ; 2ND EXPL SHAPE

10BA: 20 30 F7 83 SET JSR SHNUM

10BD: A9 00 84 LDA #$00

10BF: 20 61 F6 85 JSR XDRAW ; DRAW EXPLOSION

 86 *

10C2: 20 AE EF 87 GETPTCH JSR RND

10C5: A2 10 88 LDX #$10

10C7: AD 30 C0 89 TICK LDA SPKR ; CLICK SPEAKER

10CA: A4 9F 90 LDY FAC+2 ; PITCH = RND

10CC: 88 91 DELAY DEY

10CD: D0 FD 92 BNE DELAY

10CF: CA 93 CYCLE DEX

10D0: D0 F5 94 BNE TICK

 95 *

10D2: A2 8C 96 ERASE2 LDX #$8C

10D4: A0 00 97 LDY #$00

10D6: A9 50 98 LDA #$50

10D8: 20 11 F4 99 JSR HPOSN

10DB: A2 02 100 LDX #$02

10DD: A5 06 101 LDA NUM

10DF: 6A 102 ROR

10E0: B0 01 103 BCS SET2 ; IF 'ODD'

10E2: E8 104 INX ; 2ND EXPLOSION FIG.

10E3: 20 30 F7 105 SET2 JSR SHNUM

10E6: A9 00 106 LDA #$00

10E8: 20 61 F6 107 JSR XDRAW ; ERASE FIGURE

 108 *

10EB: C6 06 109 DRTN DEC NUM

10ED: D0 BA 110 BNE LOOP

10EF: 60 111 EXIT RTS

10F0: 28 112 CHK

When the program is run, the hi-res screen should clear and a lying-saucer-
like ship should appear in the middle of the screen. Pressing any key will blow
up the spaceship. Let’s see how this is done.
Lines 27 through 38 contain the data for a three-element shape table. his

table is jumped over when the program is irst run.START clears the hi-res screen
in the usual manner and initializes the shape-table pointers and theHCOLOR and
SCALE values. Lines 49 and 50 setNUM to 10, to be used later as the number of
cycles the explosion routine will go through.

]

244 Assembly Lines

SHIP draws the spaceship in the center of the screen.KEY? waits for a key-
press. When a key is pressed, the code moves on toERASE, which erases the ship
prior to starting the explosion sequence.
he explosion sequence itself consists of a three-part loop. hese parts con-

sist of: (1) drawing one of two explosion shapes, (2) creating a little noise with
the speaker, and (3) erasing the explosion shape drawn in step 1.
his sequence is then repeated a number of times depending on how long

you want the explosion to last. In detail, here’s how this sequence is carried out.
Lines 74−77 position the hi-res cursor at the ship’s old position. Lines 78−82

then select one of the two explosion shapes included in the table based on
whether NUM (the current loop counter) is odd or even.
his is done by irst loading the X-Register with what might be called a

default value of$02 for the irst explosion shape (which is the second item in the
table).NUM is then loaded into the Accumulator and aROR (ROtate Right) com-
mand is done to shi! all of the bits to the right one position. Bit 0 will then be
forced into the carry, where we can test with theBCS (Branch Carry Set) com-
mand. (his is similar to the technique used earlier for the noise routine. In fact,
theLSR command would have worked just as well here, but a little variety can
sometimes be nice.)
If the carry was set, thenNUM was odd and we’ll go right to the next phase. If

the carry was clear, thenNUM was even and theINX (INcrement X) will be exe-
cuted. Remember that the X-Register is always loaded with the shape number
you want toDRAW orXDRAW prior to callingSHNUM. If theINX is done,X goes from
$02 to$03, thus indicating shape number 3, which corresponds to the second
explosion shape in the table.
Once an explosion shape has been drawn, the irst noise routine presented

earlier is used to generate a short burst of quick random notes. his passes for
some background noise for an explosion. A!er a few quick sounds,ERASE2 again
XDRAWs the shape selected inLOOP. his has the efect of erasing the previous
image. Finally, lines 109 and 110 checkNUM to see if the loop is inished. As writ-
ten, line 49 sets the loop counter to ten passes, but you may want to try diferent
values to suit your own tastes.
Because all imaging is done withXDRAW, theHCOLOR setting actually is irrele-

vant; this routine would work on any screen background. You may want to try
clearing the screen to diferent backgrounds as described in the previous chapter
and see how the routine given here behaves.

25. Explosions and Special Efects 245

!e Shooter Program

What we need now is some sort of collective example of how all of this can
be put together as it might be done in an actual game. Although it’s not necessar-
ily your deinitive hi-res arcade game, the following is ofered for your general
interest and amusement.2

 1 ********************************

 2 * AL25-SHOOTER PROGRAM *

 3 ********************************

 4 *

 5 *

 6 ORG $1000

 7 *

 8 FLAG EQU $E3

 9 X EQU $E0

 10 Y EQU $E2

 11 X0 EQU $06

 12 Y0 EQU $08

 13 NUM EQU $0C

 14 *

 15 PREAD EQU $FB1E

 16 WAIT EQU $FCA8

 17 PB0 EQU $C061

 18 HCOLOR EQU $F6F0

 19 HGR EQU $F3E2

 20 HPLOT EQU $F457

 21 HPOSN EQU $F411

 22 HLIN EQU $F53A

 23 ROT EQU $F9

 24 SCALE EQU $E7

 25 SHNUM EQU $F730

 26 DRAW EQU $F605

 27 XDRAW EQU $F661

 28 HFIND EQU $F5CB

 29 CTR EQU $EA

 30 PTR EQU $E8

 31 SPKR EQU $C030

 32 RND EQU $EFAE

 33 FAC EQU $9D

 34 *

1000: 4C 67 10 35 ENTRY JMP E2

 36 *

1003: 04 00 59 37 HEX 0400590037000C00

1006: 00 37 00 0C 00

100B: 0A 00 04 38 HEX 0A0004002C242D24

100E: 00 2C 24 2D 24

1013: 2D E4 DB 39 HEX 2DE4DB933E36372E

1016: 93 3E 36 37 2E

101B: 36 2D 36 40 HEX 362D3635362DC6DB

101E: 35 36 2D C6 DB

1023: DB 23 27 41 HEX DB23272C252C3C3F

2[CT] Lines 94−98 were changed to divide the paddle value by 4 to convert the rotation
into the allowed range of 0−63.

]

246 Assembly Lines

1026: 2C 25 2C 3C 3F

102B: 36 3F 37 42 HEX 363F373E3640C040

102E: 3E 36 40 C0 40

1033: C0 28 35 43 HEX C028352E352D0024

1036: 2E 35 2D 00 24

103B: 3F 3C BC 44 HEX 3F3CBC120E9609C0

103E: 12 0E 96 09 C0

1043: 4C 49 3C 45 HEX 4C493C2C2C2D2494

1046: 2C 2C 2D 24 94

104B: 92 1A 35 46 HEX 921A352D36EEDB23

104E: 2D 36 EE DB 23

1053: 3C 27 94 47 HEX 3C27941B3E363F06

1056: 1B 3E 36 3F 06

105B: 00 1B 28 48 HEX 001B282D2DF8DB63

105E: 2D 2D F8 DB 63

1063: 6D E5 23 49 HEX 6DE52300

1066: 00

 50 *

1067: 20 E2 F3 51 E2 JSR HGR ; CLR SCRN

106A: A2 03 52 LDX #$03

106C: 20 F0 F6 53 JSR HCOLOR

 54 *

106F: A2 00 55 WALL LDX #$00

1071: A0 00 56 LDY #$00 ; X = 0

1073: A9 05 57 LDA #$05 ; Y = 5

1075: 20 57 F4 58 JSR HPLOT ; PLOT 0,5

1078: A9 17 59 LDA #23 ; 279 MOD 256

107A: A2 01 60 LDX #01 ; 279/256

107C: A0 05 61 LDY #$05 ; Y = 5

107E: 20 3A F5 62 JSR HLIN ; 0,5 TO 279,5

 63 *

1081: A9 17 64 LDA #$17

1083: A2 01 65 LDX LDX #$01 ; X = 279

1085: A0 06 66 LDY #$06 ; Y = 6

1087: 20 3A F5 67 JSR HLIN ; 279,5 TO 279,6

 68 *

108A: A9 00 69 LDA #$00

108C: A2 00 70 LDX #$00 ; X = 0

108E: A0 06 71 LDY #$06 ; Y = 6

1090: 20 3A F5 72 JSR HLIN ; 279,6 TO 0,6

 73 *

1093: A9 03 74 SET LDA #$03

1095: 85 E8 75 STA PTR

1097: A9 10 76 LDA #$10

1099: 85 E9 77 STA PTR+1 ; SET TBL = $1003

109B: A9 01 78 LDA #$01

109D: 85 E7 79 STA SCALE

109F: 85 E3 80 STA FLAG

10A1: A9 0A 81 LDA #$0A

10A3: 85 0C 82 STA NUM ; # OF EXPLOSIONS

10A5: A2 8C 83 SHIP LDX #$8C

10A7: A0 00 84 LDY #$00

10A9: A9 50 85 LDA #$50

10AB: 20 11 F4 86 JSR HPOSN

10AE: A2 01 87 LDX #$01 ; #1 = SHIP

10B0: 20 30 F7 88 JSR SHNUM

25. Explosions and Special Efects 247

10B3: A9 00 89 LDA #$00 ; ROT = 0

10B5: 20 05 F6 90 JSR DRAW

 91 *

10B8: A2 00 92 CALC LDX #$00

10BA: 20 1E FB 93 JSR PREAD

10BD: 84 F9 94 STY ROT ; [CT] NEED TO SCALE TO 0-63

10BF: 46 F9 95 LSR ROT ; [CT] DIVIDE BY 2

10C1: 46 F9 96 LSR ROT ; [CT] DIVIDE BY 2

10C3: A9 48 97 PAUSE LDA #$48

10C5: 20 A8 FC 98 JSR WAIT

10C8: AD 61 C0 99 SHOOT? LDA PB0

10CB: 30 03 100 BMI YES

10CD: 4C B8 10 101 JMP CALC ; (NOPE)

 102 *

10D0: A2 8C 103 YES LDX #$8C

10D2: A0 00 104 LDY #$00

10D4: A9 4E 105 LDA #$4E ; Y = INSIDE SHIP

10D6: 20 11 F4 106 JSR HPOSN

10D9: A2 04 107 LDX #$04 ; #4 = SINGLE DOT

10DB: 20 30 F7 108 JSR SHNUM

10DE: A5 F9 109 LDA ROT

10E0: 20 61 F6 110 JSR XDRAW ; DRAW RAY

 111 *

10E3: A2 05 112 SOUND LDX #$05 ; # OF CYCLES

10E5: AD 30 C0 113 TICK LDA SPKR

10E8: A4 E7 114 LDY SCALE

10EA: 88 115 DELAY DEY

10EB: D0 FD 116 BNE DELAY

10ED: CA 117 CYCLE DEX

10EE: D0 F5 118 BNE TICK

 119 *

10F0: A2 8C 120 ERASE1 LDX #$8C

10F2: A0 00 121 LDY #$00

10F4: A9 4E 122 LDA #$4E

10F6: 20 11 F4 123 JSR HPOSN

10F9: A2 04 124 LDX #$04

10FB: 20 30 F7 125 JSR SHNUM

10FE: A5 F9 126 LDA ROT

1100: 20 61 F6 127 JSR XDRAW ; ERASE RAY

1103: A5 EA 128 LDA CTR

1105: C9 02 129 CMP #$02

1107: B0 0F 130 BCS HIT

 131 *

1109: E6 E7 132 NEXT INC SCALE

110B: E6 E7 133 INC SCALE

110D: E6 E7 134 INC SCALE

110F: A5 E7 135 LDA SCALE

1111: C9 90 136 CMP #$90

1113: 90 BB 137 BCC YES

1115: 4C 7B 11 138 JMP MISS

 139 *

1118: 20 CB F5 140 HIT JSR HFIND ; GET CURSOR POSN

111B: A5 E0 141 LDA X

111D: 85 06 142 STA X0

111F: A5 E1 143 LDA X+1

1121: 85 07 144 STA X0+1

]

248 Assembly Lines

1123: A5 E2 145 LDA Y

1125: 85 08 146 STA Y0 ; SAVE CURSOR POSN

1127: A9 01 147 LDA #$01

1129: 85 E7 148 STA SCALE ; RESET SCALE

 149 *

112B: A2 03 150 EXPLOS LDX #$03 ; WHITE

112D: 20 F0 F6 151 JSR HCOLOR

1130: A6 06 152 LDX X0

1132: A4 07 153 LDY X0+1

1134: A5 08 154 LDA Y0

1136: 20 11 F4 155 JSR HPOSN

1139: A2 02 156 LDX #$02 ; 1ST EXPLOSION

113B: A5 0C 157 LDA NUM

113D: 6A 158 ROR

113E: B0 01 159 BCS BOOM ; IF 'ODD'

1140: E8 160 INX

1141: 20 30 F7 161 BOOM JSR SHNUM

1144: A9 00 162 LDA #$00

1146: 20 05 F6 163 JSR DRAW ; DRAW 1ST EXPLOSION

 164 *

1149: 20 AE EF 165 GETPTCH JSR RND

114C: A2 10 166 LDX #$10 ; # OF CYCLES

114E: AD 30 C0 167 TICK2 LDA SPKR

1151: A4 9F 168 LDY FAC+2 ; PITCH = RND

1153: 88 169 DELAY2 DEY

1154: D0 FD 170 BNE DELAY2

1156: CA 171 CYCLE2 DEX

1157: D0 F5 172 BNE TICK2

 173 *

1159: A2 00 174 ERASE2 LDX #$00 ; BLACK

115B: 20 F0 F6 175 JSR HCOLOR

115E: A6 06 176 LDX X0

1160: A4 07 177 LDY X0+1

1162: A5 E2 178 LDA Y

1164: 20 11 F4 179 JSR HPOSN

1167: A2 02 180 LDX #$02

1169: A5 0C 181 LDA NUM

116B: 6A 182 ROR

116C: B0 01 183 BCS BOOM2 ; IF 'ODD'

116E: E8 184 INX

116F: 20 30 F7 185 BOOM2 JSR SHNUM

1172: A9 00 186 LDA #$00 ; ROT = 0

1174: 20 05 F6 187 JSR DRAW ; ERASE FIGURE

1177: C6 0C 188 DRTN DEC NUM

1179: D0 B0 189 BNE EXPLOS

 190 *

117B: A9 01 191 MISS LDA #$01

117D: 85 E7 192 STA SCALE ; RESET SCALE

117F: A9 0A 193 LDA #$0A

1181: 85 0C 194 STA NUM ; RESET NUM

 195 *

1183: 4C B8 10 196 AGAIN JMP CALC

 197 *

1186: 66 198 CHK

25. Explosions and Special Efects 249

his is an independent program that can be called from Appleso! BASIC by
typing inCALL 4096 or from the Monitor by typing in1000G. You can also
directly BRUN the assembled object ile.
When the program is run, a spaceship-like form similar to the one drawn in

the explosion routine is drawn in the center of the screen. At the top of the
screen, a wall made up of two horizontal lines is also drawn. Turningpaddle 0
and pressing the correspondingpushbutton will ire a ray from the ship. If the
ray hits the wall, an explosion occurs and the wall is le! suitably damaged. You
must press RESET to terminate the program.
he program combines many of the techniques described in this chapter

and the previous one. It can be summarized as follows:

1. Initialize a shape table containing four shapes: a spaceship, two explosions,
and a one-dot shape for the ray efect.

2. HPLOT a wall of two horizontal lines at top of screen.

3. DRAW shape 1 (the spaceship) at the center of the screen.

4. Read paddle 0. Store the value in the rotation register.

5. Pause to encourage paddle reliability.

6. Read pushbutton 0. If it is not pressed, go back to step 4.

7. Button pushed: Start the ire sequence.

8. Draw a dot shape starting inside the ship. he rotation value set in step 4
determines the angle of the shot.

9. Make some noise with the simple noise routine.

10.Erase the dot shape.

11.Check the collision counter to see if anything was hit.

12.If nothing was hit, add 3 to theSCALE value. If it is still less than#$90, go
back to step 8.

13.If there was no impact, restoreSCALE to 1 and the explosion counter to
#$0A. hen go back to step 4.

14.If something was hit, ind the end of the ray by calling the Appleso!HFIND
routine. Save this position value.

15.DRAW one of the explosion shapes in white.

16.Make some noise.

17.DRAW the same explosion shape in black to erase not only the shape, but also
the parts of the wall that were hit.

]

250 Assembly Lines

18.Go back to step 15 ten times for an exciting (?) explosion.

19.Restore SCALE and the explosion counter. Go back to step 4.

Because this program is made up of the various routines used earlier, this
summary should be suicient to explain the overall method of operation.
he use of the single-dot shape to create the ray is similar to the technique

used in chapter 24’sScanner programs. he new things presented inShooter are
the incrementing by three (lines 132−134) to create a faster iring appearance
and the use of HFIND if an impact is detected.
Remember that the HFIND ($F5CB) routine in Appleso! is used a!er drawing

any shape to ind out where we’ve been le!. We usedHFIND in this program to
determine where the impact occurred.
Also note thatDRAW rather thanXDRAW is used in this program to ensure that

portions of the wall are destroyed by the impact. In contrast to the explosion
program, this program cannot be run on any hi-res screen background without
changing the colors used by the ray and the explosion routines.

26. Passing Floating-Point Data
November 1982

In chapters 16 and 17 we discussed how Appleso! variable data could be
passed from BASIC to assembly language and back again. he rationale was that
in many cases a program created by combining Appleso! and assembly language
is an efective approach to a problem. Successive chapters on hi-res graphics
included these techniques so as to have a convenient way of experimenting with
the various routines.
It is highly recommended that you review the appropriate chapters if you’re

not entirely familiar with the nature of Appleso! variable storage. Pages 127 and
137 in theAppleso! II BASIC Programming Reference Manual also provide very
valuable information well worth referring to in the course of reading the mate-
rial presented here.
For the most part, however, all of the past discussions were limited to deal-

ing with two-byte integer data. hat is to say, the possibility of dealing with true
loating-point data was not considered. In many cases, integer values from 0 to
65535 or −32767 to 32767 are more than adequate for our purposes, as was the
case when passing tone routines or X and Y coordinates for plotting.1 However,
there are times when greater precision, or fractional values, are required.
Dealing with loating-point numbers from a pure assembly-language pro-

gram is a fairly complex topic, and our intent here is not to explain completely
the inner workings of loating-point operations. Rather, let’s explore the options
made available by taking advantage of the existing routines in the Appleso!
BASIC interpreter. hese generally can be considered to be always present in the
background of an operating assembly-language program.
For those of you who hope to speed up loating-point operations in Apple-

so!, writing your own routines may not be that efective. his is because the rou-
tines in Appleso! are already written in machine language. We can, however,
gain important speed improvements just by calling the routines directly. his is
because we can eliminate the normal process of interpreting BASIC statements
that otherwise would occur in Appleso!. his is what the currently available
compilers do, and we can expect similar speed improvements to a BASIC pro-

1[CT] Recall from chapter 10 that the minimum technically should be −32768. However,
Appleso! and Integer BASIC restrict the minimum integer to −32767.

]

26

252 Assembly Lines

gram by using routines directly from assembly language (two to ive times faster
than in straight Appleso!).

Internalization of Data: Integer versus Real Variables

he irst step in our inquiry is to investigate how Appleso! stores numeric
data and to look at the diferences in how integer variables andreal variables are
stored.
Start by initializing your Apple’s memory with an FP statement. hen enter:

A% = 10: A = 10

he result is that two variables and their values have been set up in memory.
Now to ind them!
Enter the Monitor with the usual CALL -151. hen enter:

67 68 AF B0

You should get:

0067- 01

0068- 08

00AF- 03

00B0- 08

You may recall from chapter 16 that these four memory locations ($67,$68
and$AF,$B0) are used to store the beginning and the end of the current Apple-
so! program. We can see from the display that the program resides from$801 to
$803. A very short program, indeed, but that’s understandable since we haven’t
entered any program lines.
Now let’s examine the pointer at $69, $6A and $6B, $6C. Do this by typing

69.6C

and pressing return. You should get:

0069- 03 08 11 08

his tells us that all simple (that is, non-array) variables are stored from
$803 to $810.2 Examine this area by entering:

803.810

You should get:

0803- C1 80 00 0A 00

0808- 00 00 41 00 84 20 00 00

0810- 00

2[CT] One less than $811.

26. Passing Floating-Point Data 253

You’ll recall from our discussions in previous chapters that integer and real
variables are stored in the following format:
Integer: C1 80 00 0A 00 00 00

“A” “ ” “0” “10” – – –
Name

char1

(bit 7 set)

Name

char2

(bit 7 set)

High

Byte

Low

Byte

Unused Unused Unused

Real: 41 00 84 20 00 00 00

“A” “ ” 1000

0100

0010

0000

0000

0000

0000

0000

0000

0000

Name

char1

(bit 7 clear)

Name

char2

(bit 7 clear)

ExponentMantissa

m.s.b.

Mantissa Mantissa Mantissa

l.s.b.

Starting at$803, we ind the variableA% stored from$803 to$809. he irst
two bytes are the name characters. Two bytes are always used. If the variable
name is only one character then a null ($00 for real or$80 for integer) is stored
in the second position. Note that integer, real, and string variable names are dif-
ferentiated by the combination of high bit settings in the two name-character
bytes. Since only bits 0 through 6 are used for the character (ASCII is only a sev-
en-bit code), bit 7 (the high-order bit) is available for encoding the variable type.
Integer variables always have both high bits set. Real variables always have

both high bits clear. String variables always have the irst name character clear
and the second character set. (he notation for string variable names to the
opposite efect on page 137 of theAppleso! II BASIC Programming Reference
Manual is in error in this regard.)
he next two bytes,$00 and$0A, are the high- and low-order bytes for the

value 10. You have probably noticed that integer variables are stored in a very
simple way, with the value being broken down into the low- and high-order
bytes. About the only peculiar item is the fact that the two bytes are stored high-
order byte irst, which is backward from the way we normally see them paired in
most assembly-language code.
he three remaining bytes are unused.
$80A to$810 is where the real variableA is stored. You can see that the irst

two bytes again are the name characters, this time with the high bits clear. he
remaining bytes make up the value for the variable A.
It should be obvious that although the values of the integer and real vari-

ables are stored as equal, the manner in which they are stored is not. he real
variable has been encoded into a ive-byte sequence, the logic behind which is
not readily apparent. Well, don’t despair; it is not actually necessary for us to
understand the exact details of the conversion routine.

]

254 Assembly Lines

In general, it will suice to say that an exponential notation is used to store
the number. his is how numbers of such large magnitudes (±1038) are accom-
modated by Appleso!. If you rouse some of your more ancient high-school
memories, you’ll recall that the basic idea to exponents is that any number can
be expressed with two numbers, the exponent and the mantissa.
For example, the number 10 is equal to 101, he number 100 is equal to 102.

It is reasonable to assume, then, that a number like 50 might just happen to be
equal to 101.5. As it happens, that’s not quite right, but the basic idea is there. In
fact, 50 is really equal to 101.69897 (or thereabouts). he 1 part of the number is
called theexponent (or occasionally the order of magnitude) of the number. he
69897 is called themantissa. You may have fond memories of spending pleasant
hours in math classes looking through books with lookup tables to ind these
values for given numbers.
In any event, it’s precisely this type of technique that is used to encode the

values of real variables.3 Fortunately for us, it will not be necessary to create our
own routines to handle numbers in this format; a wealth of such routines already
exist in Appleso!.
he remainder of this chapter will concentrate on some brief exercises in

passing loating-point numbers back and forth between Appleso! and assembly
language. hen in upcoming chapters we’ll explore how to perform various
mathematical operations once your assembly-language program has possession
of the data.

!e Floating-Point Accumulator (FAC)

Appleso! has its own internal set of registers that it uses during its various
calculations. he most important of these by far is theloating-point Accumula-
tor. his is usually labeled FAC in source listings that access this register.
he wordregister is used in a slightly diferent way here than it is when

referring to 6502 registers such as the Accumulator or the X- or Y-Registers.
Because a loating-point number is represented by a series of bytes, theFAC
occupies the bytes from $9D through $A2.
You may be puzzled as to why theFAC uses six bytes when variable storage

uses only ive. his is because theFAC uses$A2 as the sign byte to indicate the
positive or negative status of the value. When inally encoded, the sign is
included in the exponent and mantissa bytes and thus is no longer needed.
Floating point numbers in the ive-byte format are said to be “packed.” he six-

3[CT] From theApple II Technical Notes: for the exponent, the top bit is the sign (with 0
for negative). he remainder of the byte minus one is the value of the exponent (for
example,$84 is a positive exponent of 3). he mantissa is a binary fraction, with an
implied starting value of 1. he irst bit is the sign bit (this time with 0 for positive). he
remaining bits are fractional values starting with 0.5, 0.25, 0.125, etc. For example,$20
gives a mantissa of 1 + 0.25. So $84 $20 equals 1.25 × 2³ = 10.

26. Passing Floating-Point Data 255

byte format is “unpacked.” he unpacked format is faster for calculations. he
packed format is used to minimize storage space.
In general, whenever any type of calculation is done by Appleso! theFAC is

the primary register used to hold the result. A second register,ARG (ARGument),
is used for two-value calculations, such as 1.5× 17. heARG register uses the
bytes$A5 through$AA. For the time being, though, we need only concern our-
selves with FAC.

Passing Data from Applesot to the FAC

he irst area to investigate is how to get a loating-point number passed
from Appleso! to an assembly-language routine. he easiest way is by means of
theUSR function. heUSR is a rather neglected part of Appleso!, probably
because of the lack of documentation on its nature and applications. A program
statement using USR might look something like this:

10 X = USR(Y)

When this statement is executed, three things happen:

1. he expression or variable within the parentheses is evaluated and the result
put in the FAC.

2. A call to location$0A (decimal 10) is done. his is equivalent to aCALL 10 in
Appleso!. here is a three-byte jump instruction at location$0A. It is assumed
that the user has inserted the location of an existing assembly-language routine.
For example, the codeJMP $300 might be found at$0A. he program would then
jump to $300 to execute whatever routine the user might have put there.

3. When the user routine eventually does anRTS, the contents of theFAC are
assigned to the variable to the le! of the equal sign.

For example, type in and run this program:

10 POKE 10,0

20 Y = 10

30 X = USR(Y)

When run, the program should fall into the Monitor. hen type in:

9D.A2 (return)

You should get:

009D- 84 A0 00

00A0- 00 00 20

]

256 Assembly Lines

his is the data for the value 10, which theFAC stores in unpacked form.4
Here’s what happened: Line 10 set location$0A to aBRK. When theUSR function
was called, it put the sequence for 10 in theFAC and then called$0A as expected.
Since this was a break, we went into the Monitor and could then immediately
examine the FAC.
Note that it is not possible to set theFAC from Appleso! and then to verify

the status of theFAC by entering the Monitor with the usualCALL -151. Since the
FAC will be used in calculating the value of-151, any prior data would be over-
written.
While you’re in the Monitor, let’s set up $0A for our next experiment. Enter:

0A: 4C 00 03

his will set the vector to point at location$300. Now create a trivial pro-
gram (in this case, an immediate RTS) at $300 by entering:

300: 60

Now return to Appleso! and enter and run this program:

10 Y = 10

20 X = USR(Y)

30 PRINT X

You should get the number 10 printed out. If you consider what we’ve dis-
cussed so far, it should be apparent why. he value 10 held by Y was passed to the
FAC by theUSR function. When our “routine” at$300 was called, theFAC
remained unchanged. Upon return from our routine, theFAC (still equal to 10)
was assigned to the variable X.
Although theUSR function is a convenient way of passing data, it is rather

limited in terms of syntax. If you wanted to pass a number of parameters to a
routine, another technique would be required. You may recall from previous
chapters a routine calledFRMNUM ($DD67 = FoRMula NUMeric evaluator) that we
used to evaluate variables being passed to assembly-language routines. A!er call-
ingFRMNUM,GETADR ($E752 = GET AdDRess) was used to convert the number to
a two-byte integer LINNUM ($51, $52 = LINe NUMber).
Well, since what we want is the FAC, we’ve already got the solution:

 1 ********************************

 2 * *

 3 * AL26-BASIC TO FAC *

 4 * *

 5 * SYNTAX: CALL 768,Y *

 6 ********************************

 7 *

 8 * OBJ $300

 9 ORG $300

4[CT] Corrected from the original article, which presented the result in packed form.

26. Passing Floating-Point Data 257

 10 *

 11 CHKCOM EQU $DEBE

 12 FRMNUM EQU $DD67

 13 *

0300: 20 BE DE 14 ENTRY JSR CHKCOM

0303: 20 67 DD 15 JSR FRMNUM

0306: 00 16 BRK

his code should be assembled at$300 and called with the following Apple-
so! program:

10 Y = 10

20 CALL 768,Y

When this program is run, you should fall into the Monitor. hen enter:

9D.A2

You should get:

009D- 84 A0 00

00A0- 00 00 20

his should verify that the FAC was properly loaded with the value 10.5

In reviewing the listing, you’ll see that line 14 callsCHKCOM ($DEBE = CHecK
for COMma) to advance Appleso!’sTXTPTR ($B8,$B9 = TeXT PoinTeR) past
the comma following the 768. Line 15 then callsFRMNUM, which evaluates the
variable or expression following the comma and puts the result in theFAC. Line
16 then does theBRK to leave us in the Monitor, from which we can check the
FAC to verify that the correct value has been stored.
We have now, then, two techniques for passing data from Appleso! to the

FAC. he irst is to use theUSR function (being sure, of course, to set up the vec-
tor at$0A). he second is to useFRMNUM ($DD67) to evaluate the expression or
variable as part of a parameter list following a CALL statement.

Moving the FAC to a Memory Location

Since theFAC is so heavily used, it is sometimes helpful to move the data in
it to another location for later use. In Appleso!, this is most o!en a temporary
register or an actual variable. For now, let’s see if we can move the data to an
arbitrary location.

 1 ********************************

 2 * *

 3 * AL26-FAC TO MEMORY *

 4 * *

 5 * SYNTAX: CALL 768,Y *

 6 ********************************

5[CT] Again, the FAC stores the value in unpacked form.

]

258 Assembly Lines

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

 12 FRMNUM EQU $DD67

 13 MOVMF EQU $EB2B

 14 *

0300: 20 BE DE 15 ENTRY JSR CHKCOM

0303: 20 67 DD 16 JSR FRMNUM ; BASIC->FAC

0306: A0 03 17 LDY #$03 ; HI BYTE

0308: A2 80 18 LDX #$80 ; LO BYTE

030A: 20 2B EB 19 JSR MOVMF ; FAC->MEMORY

030D: 60 20 DONE RTS

 21 *

he key to this technique is a routine in Appleso! calledMOVMF ($EB2B =
MOVe to Memory fromFAC), which takes the value inFAC and moves it to the
location pointed to by the X- and Y-Registers (X, Y = low byte, high byte).
he listing given here uses our previousFRMNUM technique to get a pre-

dictable number into theFAC. he X- and Y-Registers are then loaded to point to
$380. When MOVMF is called, the contents of the FAC will be deposited there.
To see this, run the same Appleso! program, then enter the Monitor and

enter:

380.384

You should get:

380- 84 20 00 00 00

his proves that we have successfully moved the data fromFAC to an arbi-
trary place in memory.6

Moving Memory into the FAC

he converse of this operation is accomplished in much the same way. In
this case, the Appleso! routineMOVFM ($EAF9 = MOVe toFAC from Memory) is
used. It requires that the Y-Register and Accumulator be loaded with the high-
and low-order bytes of the address to be used as the data source for theFAC.
(Note that there is a diference here: MOVMF uses X and Y; MOVFM uses X and A!)

 1 ********************************

 2 * *

 3 * AL26-MEMORY TO FAC *

 4 * *

 5 * SYNTAX: CALL 768 *

 6 ********************************

6[CT]MOVMF irst converts from unpackedFAC form to packed form, then moves the
data. Similarly, MOVFM converts from packed form back to the unpacked FAC form.

26. Passing Floating-Point Data 259

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 MOVFM EQU $EAF9

 12 *

0300: A0 03 13 ENTRY LDY #$03 ; HI BYTE

0302: A9 80 14 LDA #$80 ; LO BYTE

0304: 20 F9 EA 15 JSR MOVFM ; MEMORY->FAC

0307: 00 16 BRK

Assuming that the previous routine has already been executed and that$380
is loaded with the data appropriate to the value 10, type in CALL 768.
You should end up in the Monitor, at which point you can verify the con-

tents of the FAC by entering:

9D.A2

You should get:

9D- 84 A0 00

A0- 00 00 20

Again, theBRK was used to end the routine so that we could immediately
examine the contents of theFAC. his routine shows that we can move data from
a section of memory back into the FAC.

Passing FAC Data Back to Applesot

If the FAC does contain the result of an operation, how can we pass it back to
a calling Appleso! program, preferably into the variable of our choice? Again,
the answer is to useMOVMF. In this case, rather than moving the contents of the
FAC into an arbitrary memory location, we’ll ind the location of the data bytes of
a given real variable and then move theFAC into them. his has the efect of set-
ting the variable equal to the contents of the FAC.
Consider this listing:

 1 ********************************

 2 * *

 3 * AL26-FAC TO BASIC *

 4 * *

 5 * SYNTAX: CALL 768,Y *

 6 ********************************

 7 *

 8 * OBJ $300

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

 12 PTRGET EQU $DFE3

 13 MOVMF EQU $EB2B

 14 MOVFM EQU $EAF9

]

260 Assembly Lines

 15 *

0300: A0 03 16 ENTRY LDY #$03 ; HI BYTE

0302: A9 80 17 LDA #$80 ; LO BYTE

0304: 20 F9 EA 18 JSR MOVFM ; MEMORY->FAC

 19 *

0307: 20 BE DE 20 JSR CHKCOM

030A: 20 E3 DF 21 JSR PTRGET

030D: AA 22 TAX

030E: 20 2B EB 23 JSR MOVMF ; FAC->VARIABLE

0311: 60 24 DONE RTS

his routine again assumes that the loating-point data for the number 10
still exists at$380. When this routine is run, lines 16 through 18 duplicate the
previous listing to move the loating-point data from$380 through$384 into the
FAC.
Line 20 usesCHKCOM to check the comma and moveTXTPTR to the irst char-

acter past the comma. Line 21 uses thePTRGET ($DFE3 = PoinTeR GET routine)
to locate the variable currently pointed to byTXTPTR.PTRGET is handy also in
that it will create the variable in the variable table if it does not already exist.
PTRGET returns with the Y-Register and Accumulator pointing to the data bytes
of the speciied variable. his will be precisely where we want the data in theFAC
to be moved to. he only correction to be made is in regard to the fact that MOVMF
requires that the Y- and X-Registers (rather than Y and the Accumulator as was
le! byPTRGET) hold the destination address. Line 22 solves this by using theTAX
command, at which pointMOVMF is called. We’re now done, and theRTS will
return to the calling program.
Test this routine with the following listing:

10 CALL 768,X

20 PRINT X

X gets set to 10 by having our routine transfer the loating-point data from
$380 through $384 to the data bytes for the variable X.

Putting it All Together

For a real test of these combined techniques, let’s see if we can successfully
pass data from Appleso! to theFAC to a memory block and then back to theFAC
and back to Appleso!. he following routine should demonstrate the entire
operation as an overall example of the ideas presented thus far.

 1 ********************************

 2 * *

 3 * AL26-BASIC.FAC.MEM.FAC.BAS *

 4 * *

 5 * SYNTAX: CALL 768,Y,X *

 6 ********************************

 7 *

 8 * OBJ $300

26. Passing Floating-Point Data 261

 9 ORG $300

 10 *

 11 CHKCOM EQU $DEBE

 12 PTRGET EQU $DFE3

 13 FRMNUM EQU $DD67

 14 MOVFM EQU $EAF9

 15 MOVMF EQU $EB2B

 16 *

0300: 20 BE DE 17 ENTRY JSR CHKCOM

0303: 20 67 DD 18 JSR FRMNUM ; FP->FAC

 19 *-------------------------------------

0306: A0 03 20 LDY #$03 ; HI BYTE

0308: A2 80 21 LDX #$80 ; LO BYTE

030A: 20 2B EB 22 JSR MOVMF ; FAC->MEMORY

 23 *-------------------------------------

030D: A0 03 24 LDY #$03

030F: A9 80 25 LDA #$80

0311: 20 F9 EA 26 JSR MOVFM ; MEMORY->FAC

 27 *-------------------------------------

0314: 20 BE DE 28 JSR CHKCOM

0317: 20 E3 DF 29 JSR PTRGET

031A: AA 30 TAX ; MOVE LO BYTE->X

031B: 20 2B EB 31 JSR MOVMF ; FAC->FP

 32 *-------------------------------------

031E: 60 33 DONE RTS

Try this Appleso! program to call the routine:

10 Y = 10

20 CALL 768,Y,X

30 PRINT X

he value 10 should be printed forX. Dashed lines have been used to sepa-
rate the four major sections of the routine. When you compare each section with
the four routines presented, the net operation of the example should become
clear.
heUSR routine also could have been used and would eliminate two of the

sections:

 1 ********************************

 2 * *

 3 * AL26-BASIC.FAC.MEM.FAC.BAS *

 4 * VIA THE 'USR' *

 5 * *

 6 * SYNTAX: X = USR(Y) *

 7 ********************************

 8 *

 9 * OBJ $300

 10 ORG $300

 11 *

 12 CHKCOM EQU $DEBE

 13 PTRGET EQU $DFE3

 14 FRMNUM EQU $DD67

 15 MOVFM EQU $EAF9

]

262 Assembly Lines

 16 MOVMF EQU $EB2B

 17 *

0300: A0 03 18 ENTRY LDY #$03 ; HI BYTE

0302: A2 80 19 LDX #$80 ; LO BYTE

0304: 20 2B EB 20 JSR MOVMF ; FAC->MEMORY

 21 *-------------------------------------

0307: A0 03 22 LDY #$03

0309: A9 80 23 LDA #$80

030B: 20 F9 EA 24 JSR MOVFM ; MEMORY->FAC

 25 *-------------------------------------

030E: 60 26 DONE RTS

Notice that since theUSR function calls the routine with theFAC already
loaded with the value forY, the irst section of the previous routine is not
needed. Also, since theUSR function will automatically assign the contents of the
FAC to the variable X, the last section of the previous routine is not needed.
he calling program for the routine would look like this:

10 POKE 11,0: POKE 12,3: REM SET UP USR VECTOR

20 Y = 10

30 X = USR(Y)

40 PRINT X: REM SHOULD PRINT '10'

Conclusion

By now you probably feel fairly comfortable with the idea of the loat-
ing-point Accumulator (FAC) and how data can be moved about between Apple-
so! and assembly language. In the next chapter we’ll begin looking at some of
the more sophisticated routines Appleso! uses to perform various arithmetic
functions.

27. Floating-Point Math Routines
December 1982

In this chapter, we’ll continue with our discussion of loating-point number
operations. In the previous chapter we looked at how Appleso! uses the loat-
ing-point Accumulator (FAC) as the main register for most of its numeric opera-
tions. Routines were presented that demonstrated how data can be passed back
and forth between a running Appleso! program and an assembly-language sub-
routine and also how numeric data can be moved in and out of block memory
storage.
Using this foundation, we can now examine how to use Appleso!’s routines

for such basicmath functions as addition, subtraction, multiplication, and divi-
sion.
A word of advice is in order, however, before proceeding. Your irst inclina-

tion may be to think that the routines given here will enable you to do simple
math operations with greater speed in an Appleso! program. As it happens, this
will not directly produce the speed increase you want. Remember, Appleso! is
already using these very same routines; given that, no speed increase should be
expected for such simple operations as X = 5 × 10.
Our new syntax will be:

CALL 768,5,10,X

and as such involves just about as much overhead in the calling of the routine
and the passing of data as would be involved in Appleso!.
You may ask then, “Why use an assembly-language call for these opera-

tions?”
here are a number of reasons, two of the more important of which follow.
First, when dealing with programs that require a high degree of accuracy,

integer data may not be suicient.
Suppose, for example, you have a program that simulates the motion of an

object traveling in an elliptical (or other mathematically complex) path.
If the current position of the object is continually maintained by using inte-

ger coordinates in the range of the normal screen coordinates, errors will begin
to creep in with successive recalculations of position. his might be evidenced by
the igure failing to retrace itself. Although in theory the object should always
return to its starting point when following an elliptical path, multiple rounding

]

27

264 Assembly Lines

errors may cause the object to “miss” its original starting point by a few screen
units.
A more reliable approach would be to maintain the current position in a

true loating-point format and round the number to the nearest integer prior to
each plot.
Second, calculations dealing with a large number of variables or, more

speciically, with arrays of real variables, will be executed faster by an assem-
bly-language routine.
If, for example, you wanted to multiply an entire array by 5, it would in fact

be faster to employ a routine that used this syntax:

CALL 768, A(0), 5

than to use:

FOR I = 1 TO 100: A(I) = A(I) * 5: NEXT I

hese ideas and others are put to use in a number of commercial so!ware
products for the Apple. Many programs that require both speed and a high
degree of accuracy use loating-point representations of numbers in assem-
bly-language routines. Another common technique is to use theBCD (“Binary
Coded Decimal”) format for the data.
here are also programming utilities that provide machine-language rou-

tines to be called directly from Appleso!.Routine Machine,AmperMagic,
Amperware,Apple Spice, and"e Linker (published by Southwestern Data Sys-
tems, Anthro-Digital So!ware, Scientiic So!ware Products, Adventure Interna-
tional, and Micro Lab, respectively) are all designed to allow the programmer
access to useful routines written entirely in machine language. One product in
particular,Amperso! Program Library Vol. 1 (aRoutine Machine-related pack-
age), deals almost entirely with array-related routines that use the advantages of
the second principle mentioned to speed up array-related programs.
In general, all of these products are based on making use of theampersand

vector to call specialized routines, the way we’ve discussed in past chapters. And
regardless of which package you prefer, it’s safe to say that the overall idea of a
user-selectable library of prewritten machine-language routines easily called
from BASIC is one of the most powerful and exciting ideas to come along in
Appleso! programming in the last few years. In fact, virtually all of the routines
presented over the last year are compatible with many of these ampersand utility
packages.
As a matter of reference, it also should be noted that techniques are avail-

able for faster numeric operations without having to call Appleso! routines.
hese range from arithmetic processor boards, such as those manufactured by
California Computer Systems and others, to so!ware subsystems such asSpeed/
ASM (published by Sierra On-Line). A combination of both hardware and so!-

27. Floating-Point Math Routines 265

ware is also available from Applied Analytics in the form ofMicro-Speed, a
Forth-like language combined with an arithmetic processor board. ALF Prod-
ucts ofers an 8088 processor card that includes so!ware that speeds up Apple-
so! math functions. It also allows the calling of dedicated math functions from a
recurring machine-language program, independent of Appleso!.

More Applesot Internals

Well, then, just how does a person use the existing routines in Appleso!? As
with most things we’ve covered, the important thing to know is the addresses of
the entry points to the Appleso! routines for the basic math operations that
interest us. We also need to revive the discussion of theARG (“argument”) regis-
ter, which we mentioned briely in the previous chapter.
heARG register is identical in format to theFAC and is used to hold the sec-

ond number in loating-point format when doing two-value functions such as
addition, subtraction, multiplication, and division. heARG register uses bytes
$A5 through $AA.
To see howARG is used, consider these important entry points to Appleso!

math routines:

Function ARG <func> FAC MEM <func> FAC

Addition FADDT ($E7C1) FADD ($E7BE)
Subtraction FSUBT ($E7AA) FSUB ($E7A7)
Multiplication FMULTT ($E982) FMULT ($E97F)
Division FDIVT ($EA69) FDIV ($EA66)

For the irst column of labels, the associated addresses show the entry point
for the routines that will perform the given function between theARG register
and theFAC. For example, a call toFSUBT ($E7AA) would subtract the contents of
the FAC from the contents of the ARG. he result would be le! in the FAC.
Prior to calling any of these four routines, the Accumulator must be loaded

with the exponent value of theFAC (FACEXP =$9D). his also serves to condition
the zero lag. For example, to multiplyFAC timesARG, the following code could
be used;

LDA $9D

JSR $E982

he second column of labels refers to the routines used to perform the indi-
cated function between theFAC and data stored in memory (such as in a real
variable) or in a data block set up by the programmer.
To use these, the Y-Register and Accumulator must be set up with the

address of the memory location holding the numeric data (Y, A = high byte, low

]

266 Assembly Lines

byte). When a routine is called, the data pointed to by Y, A will then be trans-
ferred into ARG and the direct function routine (irst column) then called.

An Example !at Doesn’t Work

You may wonder why a sample listing that doesn’t work is included here.
he reason is that this listing does present, in a clear way, an overall example of
what we’ve been discussing in this chapter and the previous one. It will also help
you understand the changes we’ll be making later on in order to create a routine
that does work!
From Appleso!, the routine would be called from a program like this:

10 INPUT “X1, X2:"; X1, X2

20 CALL 768, X1, X2, RSLT

30 PRINT XI; " + "; X2; “ = ”; RSLT

WhereX1 andX2 are the two arguments for the addition routine, that routine
will be called. he result of the calculation will be sent back to the Appleso! pro-
gram into the variable RSLT.
Here’s the listing for the addition routine:

 1 ********************************

 2 * *

 3 * AL27-M.L. ADDITION SUBR 1 *

 4 * (DOESN’T WORK) *

 5 * *

 6 * SYNTAX: CALL 768,X1,X2,RSLT *

 7 * RSLT = X1 + X2 *

 8 ********************************

 9 *

 10 * OBJ $300

 11 ORG $300

 12 *

 13 CHKCOM EQU $DEBE

 14 PTRGET EQU $DFE3

 15 FRMNUM EQU $DD67

 16 FACEXP EQU $9D

 17 MOVMF EQU $EB2B

 18 MOVAF EQU $EB63

 19 FADDT EQU $E7C1

 20 *

0300: 20 BE DE 21 ENTRY JSR CHKCOM

0303: 20 67 DD 22 X1 JSR FRMNUM ; FP -> FAC

0306: 20 63 EB 23 JSR MOVAF ; FAC -> ARG

 24 *

0309: 20 BE DE 25 X2 JSR CHKCOM

030C: 20 67 DD 26 JSR FRMNUM ; FP -> FAC

 27 *

030F: A5 9D 28 ADD LDA FACEXP

0311: 20 C1 E7 29 JSR FADDT ; X1 + X2

 30 *

0314: 20 BE DE 31 RSLT JSR CHKCOM

27. Floating-Point Math Routines 267

0317: 20 E3 DF 32 JSR PTRGET

031A: AA 33 TAX ; MOVE LO BYTE TO X

031B: 20 2B EB 34 JSR MOVMF ; FAC -> FP

 35 *

031E: 60 36 RTS

Line 21 begins the routine by irst taking care of the comma following the
768 in theCALL statement.FRMNUM ($DD67) is then used to evaluate the irst
expression.FRMNUM conveniently leaves the result in theFAC. Since we will want
the irst argument in theARG register,MOVAF ($EB63 = MOVe toARG fromFAC) is
then used to move the data.
Line 25 again callsCHKCOM to “gobble” the next comma, a!er whichFRMNUM

is again used to evaluate the next value and place it in the FAC.
We would now expect the result to be in theFAC. Line 31 takes care of the

third comma, a!er whichPTRGET ($DFE3) inds (or creates) the variable in which
we want the result returned.
At this point, everything has been properly placed for the use of theFADDT

routine to add theFAC andARG registers together. Line 28 loads the Accumulator
with FACEXP ($9D) as the entry requirement for the next instruction, which is the
actual execution of the FADDT routine.
heTAX on line 33 is used a!erPTRGET to move the low-order byte of the

variable data address into the X-Register, a!er whichMOVMF ($EB2B = MOVe to
Memory from FAC) is used to complete the data transfer.
Note: If you’re unfamiliar with the fundamental move routines, you may

wish to go back to the previous chapter, which covered these supporting rou-
tines.
he nice part about this routine is how easily the setup for the addition rou-

tine was accomplished. With a little thought, though, you may realize this is to
be expected. A!er all, the internal routines were created in the irst place to
process data easily within an Appleso! program.

Why it Doesn’t Work

he routine fails because ofFRMNUM. Although it was mentioned thatFRMNUM
leaves its result inFAC, what you weren’t let in on was the fact that it also uses
ARG during its calculations. his means that when we callFRMNUM a second time
on line 26, we are unknowingly destroying the value we set up inARG in lines 22
and 23.
he solution, then, is to save theFAC contents from the irst value calcula-

tion in memory at a place other than ARG.
here are two alternatives. he irst is to use some of Appleso!’s owntem-

porary numeric registers, which are called, cleverly enough,TEMP1 ($93−$97),
TEMP2 ($98−$9C), andTEMP3 ($8A−$8E). he only risk here is in the destruction

]

268 Assembly Lines

of data later on by other temporary calculations byFRMNUM ($DD67) andFRMEVL
($DD7B).
Another possibility would be to set aside our own temporary storage area.

For this next example we’ll do just that, using the last half of the input bufer,
$280−$284.
Here’s the revised listing, called using the same Appleso! program as

before:

 1 ********************************

 2 * *

 3 * AL27-M.L. ADDITION SUBR 2 *

 4 * *

 5 * SYNTAX: CALL 768,X1,X2,RSLT *

 6 * RSLT = X1 + X2 *

 7 ********************************

 8 *

 9 * OBJ $300

 10 ORG $300

 11 *

 12 CHKCOM EQU $DEBE

 13 PTRGET EQU $DFE3

 14 FRMNUM EQU $DD67

 15 FACEXP EQU $9D

 16 MOVMF EQU $EB2B

 17 CONUPK EQU $E9E3

 18 FADDT EQU $E7C1

 19 *

0300: 20 BE DE 20 ENTRY JSR CHKCOM

0303: 20 67 DD 21 X1 JSR FRMNUM ; FP -> FAC

 22 *

0306: A0 02 23 LDY #$02

0308: A2 80 24 LDX #$80 ; $280

030A: 20 2B EB 25 JSR MOVMF ; FAC -> MEMORY

 26 *

030D: 20 BE DE 27 X2 JSR CHKCOM

0310: 20 67 DD 28 JSR FRMNUM ; FP -> FAC

 29 *

0313: A0 02 30 ADD LDY #$02

0315: A9 80 31 LDA #$80 ; $280

0317: 20 E3 E9 32 JSR CONUPK ; MEMORY -> ARG

031A: A5 9D 33 LDA FACEXP

031C: 20 C1 E7 34 JSR FADDT ; X1 + X2

 35 *

031F: 20 BE DE 36 RSLT JSR CHKCOM

0322: 20 E3 DF 37 JSR PTRGET

0325: AA 38 TAX ; MOVE LO BYTE TO X

0326: 20 2B EB 39 JSR MOVMF ; FAC -> FP

 40 *

0329: 60 41 RTS

You’ll notice in this listing that lines 23 and 24 set up the Y- and X-Registers
for the subsequent call toMOVMF. his stores the data for the irst value safely in
memory.

27. Floating-Point Math Routines 269

he word “safely” is used with certain caveats. he input bufer is a useful
area in which to store temporary data, but you should be aware of the kinds of
conditions that will overwrite data placed there. DOS commands and input
statements are the most likely threats. Also, commands executed from the
immediate mode can overwrite the input bufer. his is in fact why we used
$280−$284 for the temporary register. his allows you to try the routine from
the immediate mode, since you are unlikely to use more than 127 characters as
your command line when testing the routine.
Once the data is stored safely in memory, line 28 evaluates the next value,

leaving the result in the FAC. At this point we use another routine, CONUPK ($E9E3
= CONvert (?) and UnPacK), to move the data from$280−$284 back toARG.
Remember, this is necessary becauseFRMNUM on line 28 makes it impossible to
store the value for X1 in ARG.
A!er CONUPK puts the data back in ARG, FADDT ($E7C1) adds FAC to ARG.

A Little More Finesse

In the chart showing the various math routine entry points, you’ll remem-
ber that there was a set of routines that allow for dealing with data in memory
directly. We can use these to create a slightly smaller version of the previous pro-
gram which will eliminate our having to loadARG directly prior to callingFADDT.
Here’s the improved listing:

 1 ********************************

 2 * *

 3 * AL27-M.L. ADDITION SUBR 3 *

 4 * *

 5 * SYNTAX: CALL 768,X1,X2,RSLT *

 6 * RSLT = X1 + X2 *

 7 ********************************

 8 *

 9 * OBJ $300

 10 ORG $300

 11 *

 12 CHKCOM EQU $DEBE

 13 PTRGET EQU $DFE3

 14 FRMNUM EQU $DD67

 15 FACEXP EQU $9D

 16 MOVMF EQU $EB2B

 17 CONUPK EQU $E9E3

 18 FADD EQU $E7BE

 19 *

0300: 20 BE DE 20 ENTRY JSR CHKCOM

0303: 20 67 DD 21 X1 JSR FRMNUM ; FP -> FAC

 22 *

0306: A0 02 23 LDY #$02

0308: A2 80 24 LDX #$80 ; $280

030A: 20 2B EB 25 JSR MOVMF ; FAC -> MEMORY

 26 *

]

270 Assembly Lines

030D: 20 BE DE 27 X2 JSR CHKCOM

0310: 20 67 DD 28 JSR FRMNUM ; FP -> FAC

 29 *

0313: A0 02 30 ADD LDY #$02

0315: A9 80 31 LDA #$80 ; $280

0317: 20 BE E7 32 JSR FADD ; X1 + X2

 33 *

031A: 20 BE DE 34 RSLT JSR CHKCOM

031D: 20 E3 DF 35 JSR PTRGET

0320: AA 36 TAX ; MOVE LO BYTE TO X

0321: 20 2B EB 37 JSR MOVMF ; FAC -> FP

 38 *

0324: 60 39 RTS

he only diference between this routine and the previous one is that line 30
now sets up the Y-Register and Accumulator for a direct call toFADD ($E7BE).
his entry point automatically transfers the contents of$280−$284 toARG and
then “falls into” FADDT ($E7C1).

Other Operations: Subtraction, Multiplication, and So On

Creating routines to do the other three functions is very simple. Rewriting
lines 18 and 32 of the improved listing to useFSUB ($E7A7),FMULT ($E97F), and
FDIV ($EA66) will create the routines to perform the corresponding functions.
As it happens, there’s also a variety of other simple functions that can be

performed on theFAC with a singleJSR. A brief list is presented in Appendix D
(Monitor Subroutines).
Information like what’s given in that list is quite valuable, if not indispens-

able, when you’re writing your own assembly-language routines that use Apple-
so!. here are a few notable sources for such information. he irst is in an
article by John Crossley of Apple Computer called “Appleso! Internal Entry
Points,” which has been reprinted in a number of places includingApple
Orchard, Call-A.P.P.L.E., and Call-A.P.P.L.E. In Depth #1.
here is also a book calledWhat’s Where in the Apple? by William F. Lueb-

bert that lists many of the entry points to not only Appleso! but also to the
Monitor, DOS, Integer BASIC, and more.

Conclusion

We have seen how theFAC and ARG registers are used as the central points in
almost all of Appleso!’s numeric calculations. In addition (no pun intended), we
have seen how the individual math routines are called to perform the desired
functions.
hese new routines should be very useful in creating your own loat-

ing-point utilities. You may wish to try to create a routine to perform a simple
function on an entire array as an exercise in using these new techniques.

28. he BCD, or Binary Coded Decimal
January 1983

his chapter’s discussion centers on a little-mentioned operational mode of
the 6502 microprocessor known as BCD, which stands forBinary Coded Deci-
mal. In previous chapters we’ve looked at arithmetic operations that use binary
and hexadecimal representations of the numbers involved. Such operations o!en
require a certain degree of mental translation to produce a decimal equivalent.
In terms of printing a number in ASCII form, even more diiculty is to be
expected if you’re using your own conversion routines rather than the built-in
functions of DOS, Appleso!, and Integer BASIC.
he BCD mode greatly simpliies this process by storing numbers in one or

more byte registers (either memory, X, Y, or the Accumulator) in a decimal-ori-
ented manner. It does this by using two four-bit groups in each byte to represent
a digit in base ten. In this way two digits per byte can be stored, thus giving a
total value range of 0 to 99, versus 0 to 255 using binary.
his table provides an example of how the BCD counting scheme goes:

BCD Hex Binary “Real Value”
0

1

2

3

.

.

.

9

10

11

.

.

.

14

15

16

17

18

19

20

$00

$01

$02

$03

$09

$10

$11

$14

$15

$16

$17

$18

$19

$20

0000 0000

0000 0001

0000 0010

0000 0011

0000 1001

0001 0000

0001 0001

0001 0100

0001 0101

0001 0110

0001 0111

0001 1000

0001 1001

0010 0000

0

1

2

3

9

16

17

20

21

22

23

24

25

32

One of the nice things abouthexadecimal notation is that each digit of the
hex number represents one-half (four bits) of the binary number. his is a great
help when you must mentally convert from hex to binary and back again. BCD is

]

28

272 Assembly Lines

a variation on this theme in which the hex number really can be said to equal the
decimal value (that is, the decimal and hex columns will always match).
About this time you may be thinking, “Well, that’s all very nice, but where

does the 6502 come into the picture?”
So far, all we have here is a possible system for storing decimal numbers via

our usual hex bytes. he good news is that the 6502 actually supports this mode
in the addition and subtraction operations.
hat’s right. he secret to making it work is to tell the 6502 that you wish to

operate in this mode. his is done by means of the instructionSED, which stands
for SEt Decimal mode. Once this instruction has been executed, all future add
and subtract operations will be done in the BCD mode. When you’re done, be
sure to clear everything back to normal with theCLD, for CLear Decimal mode,
instruction.
Special note: Inadvertent setting of the decimal mode can cause the Apple to

behave rather strangely and can be most puzzling when you’re trying to debug
programs.RESET does not clear the decimal lag (bit 3 of the Status Register).1
When in doubt do aCALL -155, orFF65G from the Monitor, to clear the decimal
mode.
Let’s verify that this mode actually works with a sample program:2

 1 ********************************

 2 * *

 3 * AL28-BCD DEMO ROUTINE 1 *

 4 * *

 5 ********************************

 6 *

8000: F8 7 START SED ; SET BCD MODE

8001: 18 8 CLC

8002: A9 46 9 LDA #$46

8004: 69 38 10 ADC #$38

8006: D8 11 CLD

8007: 00 12 DONE BRK ; BRK TO DISPLAY

Using the BRK command is an easy way both to end the program and display
the result of the addition in the Accumulator. When this routine is called with
either an8000G or aCALL 32768 from BASIC, you should get the Monitor break
response with a display something like this:

8009- A=84 X=90 Y=00 P=34 S=DE

Ignoring the rest of the line, when we see theA=84 we know that the Accu-
mulator holds 84, the correct result of the addition operation. You can substitute
other numbers to verify that it works correctly with all legal values.

1[CT] Actually, even though the 6502 CPU RESET does not clear the decimal lag, in the
Apple ROM the RESET code does issue a CLD.

2[CT] he original sample numbers were 12 and 34, which actually have the same sum in
BCD and normal mode. With 46 and 38, the sum is 84 in BCD but $7E in normal mode.

28. he BCD, or Binary Coded Decimal 273

A similar experiment works with subtraction:3

 1 ********************************

 2 * *

 3 * AL28-BCD DEMO ROUTINE 2 *

 4 * *

 5 ********************************

 6 *

8000: F8 7 START SED ; SET BCD MODE

8001: 38 8 SEC

8002: A9 46 9 LDA #$46

8004: E9 38 10 SBC #$38

8006: D8 11 CLD

8007: 00 12 DONE BRK ; BRK TO DISPLAY

In this case, the result should be 8. Again, you may wish to substitute difer-
ent values to verify its operation.
For both addition and subtraction, results of the operations “wrap ground”

in a manner similar to the way hexadecimal calculations do. hat is to say that 99
+ 1 will give a result of 00 (100 less the leading 1) and 0 − 1 will give 9.

Limitations

Like everything else in life, BCD has its tradeofs and failings. he irst
involves that vague reference made earlier to everything working with “legal val-
ues.” “What’s legal?” you may ask. You’ll note that certain hex values, such as
$0A, never appear. his is because in the BCD mode such a value is “illegal”
because it uses a digit out of the range of 0 to 9. If you attempt to use such a
value in the BCD mode, you’ll get inaccurate results.
To add to the fun, note also that theBEQ,BNE andINC,DEC families of

instructions don’t work as expected either. he N-lag (sign/negative lag) and Z-
lag (zero lag) are all linked to binary operations and not to BCD. hus 01 + 99
will yield 00, but N and Z remain unafected, since the “true” binary result
should have been$9A. Also, no provision is made for negative numbers (signed
arithmetic). How, then, do we test for special conditions?

!e Carry Flag

hecarry lag is the only direct indication of arithmetic results in BCD. In
addition operations, the carry will be set if the result exceeds 99 (overlow). In
subtraction, the carry will be cleared if the result is less than 0 (underlow).
In multiple-byte operations the carry is used in the same way as it is in “nor-

mal” hexadecimal arithmetic.

3[CT] he original code incorrectly hadCLC instead ofSEC. In addition, the original
sample numbers were 34 and 12, which actually give the same result in BCD and nor-
mal mode. With 46 and 38, subtraction gives 8 in BCD but $0E in normal mode.

]

274 Assembly Lines

Common Operations

Since INC andDEC don’t perform properly in the BCD mode, their functions
must be implemented by using the ADC and SBC instructions:

 1 ********************************

 2 * *

 3 * AL28-BCD DEMO 'INC' ROUTINE *

 4 * *

 5 ********************************

 6 *

 7 MEM EQU $06

 8 BEEP EQU $FBDD

 9 *

8000: F8 10 START SED ; SET BCD MODE

8001: 18 11 CLC

8002: A5 06 12 LDA MEM

8004: 69 01 13 ADC #$01

8006: B0 04 14 BCS ERR ; OVERFLOW

8008: 85 06 15 STA MEM ; MEM = MEM + 1

800A: D8 16 CLD

800B: 60 17 DONE RTS

800C: 4C DD FB 18 ERR JMP BEEP

 1 ********************************

 2 * *

 3 * AL28-BCD DEMO 'DEC' ROUTINE *

 4 * *

 5 ********************************

 6 *

 7 MEM EQU $06

 8 BEEP EQU $FBDD

 9 *

8000: F8 10 START SED ; SET BCD MODE

8001: 18 11 SEC

8002: A5 06 12 LDA MEM

8004: E9 01 13 SBC #$01

8006: 90 04 14 BCC ERR ; UNDERFLOW

8008: 85 06 15 STA MEM ; MEM = MEM - 1

800A: D8 16 CLD

800B: 60 17 DONE RTS

800C: 4C DD FB 18 ERR JMP BEEP

Notice how the carry status is checked to detect overlow (result > 99) or
underlow (result < 0) in the addition and subtraction routines, respectively.MEM
is a memory location presumed to hold a legal BCD value.4

4[CT] here is one problem with all of these routines: In the case of an error, theCLD is
never reached. If you run these routines with a value in$06 that causes an overlow (or
underlow), your Apple will issue a strange “bah-beep”. Luckily, theBEEP subroutine
clears the decimal mode before returning. However, in your own programs, you should
be sure to issue a CLD for all code paths.

28. he BCD, or Binary Coded Decimal 275

Multiple-byte operations are done in a manner similar to the way their
hexadecimal equivalents are handled:

 1 ********************************

 2 * *

 3 * AL28-BCD ADDITION ROUTINE *

 4 * *

 5 ********************************

 6 *

 7 *

 8 MEM1 EQU $06 ; 6,7

 9 MEM2 EQU $08 ; 8,9

 10 RSLT EQU $0A ; A,B

 11 BEEP EQU $FBDD

 12 *

8000: F8 13 ENTRY SED

8001: 18 14 CLC

8002: A5 06 15 LDA MEM1

8004: 65 08 16 ADC MEM2

8006: 85 0A 17 STA RSLT

8008: A5 07 18 LDA MEM1+1

800A: 65 09 19 ADC MEM2+1

800C: 85 0B 20 STA RSLT+1 ; RSLT = MEM1 + MEM2

800E: B0 02 21 BCS ERR ; OVERFLOW

8010: D8 22 CLD

8011: 60 23 DONE RTS

8012: 4C DD FB 24 ERR JMP BEEP

 1 ********************************

 2 * *

 3 * AL28-BCD SUBTRACT ROUTINE *

 4 * *

 5 ********************************

 6 *

 7 *

 8 MEM1 EQU $06 ; 6,7

 9 MEM2 EQU $08 ; 8,9

 10 RSLT EQU $0A ; A,B

 11 BEEP EQU $FBDD

 12 *

8000: F8 13 ENTRY SED

8001: 38 14 SEC

8002: A5 06 15 LDA MEM1

8004: E5 08 16 SBC MEM2

8006: 85 0A 17 STA RSLT

8008: A5 07 18 LDA MEM1+1

800A: E5 09 19 SBC MEM2+1

800C: 85 0B 20 STA RSLT+1 ; RSLT = MEM1 - MEM2

800E: 90 02 21 BCC ERR ; UNDERFLOW

8010: D8 22 CLD

8011: 60 23 DONE RTS

8012: 4C DD FB 24 ERR JMP BEEP

]

276 Assembly Lines

Printing BCD Values

One of the biggest advantages of BCD is that the values are easily printed to
the screen or disk. When using hexadecimal math, some sort of hex-to-ASCII
string decimal conversion routine is required. his is then followed by the print-
ing of the digits via some string print routine. In BCD, only a minimal conver-
sion is needed, and the printing is done fairly easily.
he easiest way to print a number is to use one of the Monitor routines.

PRBYTE ($FDDA = PRint BYTE), for example, prints the contents of the Accumu-
lator as a hex byte. Here’s a routine that takes two BCD values from memory and
prints the sum:

 1 ********************************

 2 * *

 3 * AL28-BCD PRINT ROUTINE 1 *

 4 * *

 5 ********************************

 6 *

 7 *

 8 MEM1 EQU $06

 9 MEM2 EQU $07

 10 PRBYTE EQU $FDDA

 11 BEEP EQU $FBDD

 12 *

8000: F8 13 ENTRY SED

8001: 18 14 CLC

8002: A5 06 15 LDA MEM1

8004: 65 07 16 ADC MEM2 ; ACC = MEM1 + MEM2

8006: B0 05 17 BCS ERR ; OVERFLOW

8008: D8 18 CLD

8009: 20 DA FD 19 JSR PRBYTE

800C: 60 20 DONE RTS

800D: 4C DD FB 21 ERR JMP BEEP

You can experiment by putting diferent values in$06 and$07 and calling
the routine. For two-byte values (0 to 9999) one can usePRNTAX ($F941 = PRiNT
Accumulator and X-Register), which expects the Accumulator and X-Register to
be loaded with the bytes to be printed prior to the call:

 1 ********************************

 2 * *

 3 * AL28-BCD PRINT ROUTINE 2 *

 4 * *

 5 ********************************

 6 *

 7 *

 8 MEM1 EQU $06 ; 6,7

 9 MEM2 EQU $08 ; 8,9

 10 PRNTAX EQU $F941

 11 BEEP EQU $FBDD

 12 *

8000: F8 13 ENTRY SED

28. he BCD, or Binary Coded Decimal 277

8001: 18 14 CLC

8002: A5 06 15 LDA MEM1

8004: 65 08 16 ADC MEM2

8006: AA 17 TAX ; STORE RSLT IN X

8007: A5 07 18 LDA MEM1+1

8009: 65 09 19 ADC MEM2+1 ; RSLT+1 IN ACC

800B: B0 05 20 BCS ERR ; OVERFLOW

800D: D8 21 CLD ; CLR FOR PRNTAX

800E: 20 41 F9 22 JSR PRNTAX

8011: 60 23 DONE RTS

8012: 4C DD FB 24 ERR JMP BEEP

It is important to notice that in each routine theCLD is used to clear the dec-
imal modebefore callingPRBYTE orPRNTAX. his is because the Monitor needs
the normal binary mode to calculate screen addresses and positions properly. If
you call the Monitor with the BCD mode set, strange things will happen when
the text reaches the end of the line or the screen needs to be scrolled and the
Monitor routines attempt to calculate where to put the next line of text.
If you don’t want to use the Monitor byte print routines or, for whatever

reason, just want to create the ASCII characters yourself, the conversions are
straightforward andCOUT ($FDED = Character OUTput–usually pronounced
“C-out”) can be used directly.
he only real obstacle is how

to convert the BCD digits to their
ASCII equivalents. As it happens,
this is even easier to do than you
might at irst suppose. Consider
the table at the right.
From looking at the table, we

can see that the lower digit of the
ASCII value corresponds to the
digit encoded in the BCD format
and, coincidentally enough, to the
number itself to be printed. If
there was a way of adding$B0 to
the value for the digit to be printed, we’d have just the value we needed to send
to COUT to print the appropriate character.
To add$B0 to the BCD values shown would normally require the usualCLC,

ADC instructions. here is a more elegant (that is, shorter) way, however. You
may remember that theORA (logical OR with Accumulator) can be used as a
mask to perform an overlay-like operation.
Here’s how a possible ORA operation would appear:

Accumulator: 0000 0110 ($06 BCD)

ORA #$B0: 1011 0000

Result: 1011 0110 ($B6 = ASCII "6”)

]

Letter ASCII Value* BCD Value

0

1

2

3

4

5

6

7

8

9

$B0

$B1

$B2

$B3

$B4

$B5

$B6

$B7

$B8

$B9

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

*high bit set

278 Assembly Lines

What if the upper BCD digit is involved? he procedure then is irst to shi!
the upper four bits “down” to the lower nibble position:

BCD value: 0101 0000 ($50 BCD)

LSR 0010 1000

LSR 0001 0100

LSR 0000 1010

LSR 0000 0101

Result: 0000 0101 ($05 BCD)

Ah, you ask, what if both digits possible are indicated by the BCD value?
he answer here is irst to shi! the upper nibble down to the lower nibble, as was
just shown, and to print the ASCII character arrived at. hen the original value is
reloaded into the Accumulator and the upper nibble is masked out. his can be
done using theAND instruction, which has the ability to clear a designated por-
tion of a byte to zeros. For example:

Accumulator: 0101 0110 ($56 BCD)

AND #$0F: 0000 1111

Result #1: 0000 0110 ($06)

ORA #$B0: 1011 0000

Result #2: 1011 0110 ($B6 = ASCII “6”)

Here, then, is the complete routine:

 1 ********************************

 2 * *

 3 * AL28-BCD PRINT ROUTINE 3 *

 4 * *

 5 ********************************

 6 *

 7 *

 8 MEM EQU $06

 9 COUT EQU $FDED

 10 *

8000: D8 11 ENTRY CLD ; BCD MODE NOT NECC

8001: A5 06 12 LDA MEM ; GET BCD NUMBER

8003: 4A 13 LSR ; SHIFT UPPER NIBBLE

8004: 4A 14 LSR ; TO BOTTOM POSITION

8005: 4A 15 LSR

8006: 4A 16 LSR

8007: 09 B0 17 ORA #$B0 ; %1011 0000

8009: 20 ED FD 18 JSR COUT ; PRINT DIGIT

800C: A5 06 19 LDA MEM ; RETRIEVE ORIG BCD

800E: 29 0F 20 AND #$0F ; %0000 1111

8010: 09 B0 21 ORA #$B0 ; %1011 0000

8012: 20 ED FD 22 JSR COUT

8015: 60 23 DONE RTS

heCLD is done at the beginning just to emphasize that the BCD mode is
not required here since the digit is presumed to exist already in MEM and no arith-
metic operations are anticipated. Remember that the BCD mode is required only

28. he BCD, or Binary Coded Decimal 279

during the actual addition or subtraction operations. Although the BCD mode
would have no harmful efect on theAND andORA operations,COUT would cer-
tainly take ofense at being called while the BCD mode was still in efect.
Lines 12 through 16 get the original BCD value from memory and then shi!

it le! four times to move the upper nibble to the lower position. At this point the
ORA #$B0 is done to convert the value in the Accumulator to the proper ASCII
value, at which point theJSR COUT on line 18 prints the irst digit. Line 19
retrieves the original value again, a!er which theAND #$0F clears the upper digit
to 0 and the ASCII conversion is completed and printed as before.
he remainder of the routine is identical to the previous example program.

Conclusion

he Binary Coded Decimal mode of the 6502 can be convenient for a variety
of reasons. Its most frequent use is to facilitate input and output, particularly for
scientiic instrumentation.
A number of points should be kept in mind when using the BCD mode:

1. he mode should be set only for arithmetic processes that use BCD values,
such as addition and subtraction.

2. Only legal values are allowed: 0−9 for each digit. Values outside the
expected range will generate inaccurate results.

3. he BCD mode should be cleared as soon as possible when arithmetic oper-
ations are completed so as to avoid possible complications with other so!ware in
the Apple that neither expects, nor checks for, the BCD mode.

4. RESET does not clear the decimal mode of the 6502.5 Only theCLD instruc-
tion does. You can also clear the mode by means of aCALL -155 from BASIC or
an FF59G from the Monitor.

5. he N and Z-lags are unreliable as a means of detecting the results of com-
parisons or of increment/decrement operations. Only the carry lag should be
used to detect the results of such operations.

6. he carry lag will be set for results greater than 99 (overlow) and cleared
for results less than 0 (underlow).

7. BCD operations do “wrap around.” hat is, 99 + 01 = 00 and 00 − 01 = 99.

5[CT] See footnote 1 earlier in the chapter.

]

280 Assembly Lines

Special Note: Counting Down

hese are some general rules to help in programs using the BCD mode of
the 6502. here is only one notable exception that may on occasion prove useful.
he test for 0 (BNE, BEQ) can be used when countingdown in the BCD mode. For
example:

SED

SEC

LDA #$01

SBC #$01

BEQ DONE

would work, whereas

SED

CLC

LDA #$99

ADC #$01

BEQ DONE

would not.
It might be an interesting challenge for you to use the information given in

this chapter and in previous chapters to try to write a routine that would add two
Appleso! strings together using the BCD mode and return the result in a third
string. his would provide a way of extending the normal precision of Appleso!
for mathematical operations requiring more than nine digits, a problem that
unfortunately does not hinder my personal checkbook program.

29. Intercepting Output
February 1983

I/O routines are responsible for handling the computer’s communications
with the outside world. heir design is also one of the more interesting aspects of
assembly-language programming. We’ll spend this chapter and the next learning
how to intercept the I/O vectors of the Apple and implement our own routines.
It will make the next few demonstrations much easier if you disconnect

DOS from the I/O system. hat’s most easily done by running this short Apple-
so! BASIC program:

10 IN#0: PR#0: END

hat will keep DOS out of the way for the upcoming exercises.

Output

In earlier chapters we discussed howCOUT ($FDED) could be used to print
characters to the screen, to disk, or to other output devices. he general proce-
dure was to load the Accumulator with the ASCII value for the character you
wanted to print and then to do a JSR COUT.
To see what happens at$FDED when you do this, enter the Monitor by

means of the usual CALL -151. hen type in: FDEDL<RETURN>.
he irst instruction listed should be aJMP ($0036). his is anindirect jump

to a location pointed to by the byte pair$36,$37. To see where these bytes are
currently pointing, type in: 36.37<RETURN>.
You should get:

0036- F0 FD

his tells you that the jump will be made to$FDF0, which in this case hap-
pens to be the next instruction a!er theJMP ($0036).$FDF0 is calledCOUT1 and
is used only to print characters to the Apple’s screen. When output is going to
the disk, to the printer, or to some other device,$36,$37 will point somewhere
other than $FDF0.
If you are sending characters to a printer, for example,$36,$37 might point

to$C102.CSW (Characteroutput SWitch) is the name given to the byte pair$36,
$37. A pointer such as this is usually called avector, in that it directs the low of

]

29

282 Assembly Lines

program control to whatever routine (that is, whatever address in memory) is
appropriate at the moment.
he changing of theCSW vector is what happens when you execute aPR#n

command.CSW is pointed to the addressCn00, wheren is the slot number given
in thePR#n statement. If no device is present in the slot, then no program will be
found at$Cn00. his explains why a BASIC program hangs when an improper
PR# command is given: the computer is waiting for the inalRTS from a nonexis-
tent routine. To verify for yourself that the lockup doesn’t occur until a character
is output, run this program in Appleso! BASIC:

10 HOME

20 PR#5: REM OR SOME OTHER EMPTY SLOT

30 FOR I = 1 TO 20

40 POKE 1024 + I, 192 + I

50 NEXT I

60 PRINT "YOU WON’T SEE THIS”

When you run this program, you should see the letters A through T printed
on the screen, but the phrase on line 60 should not appear. hings happen this
way because the loop on lines 20 through 40 puts the data directly into the
screen memory without going throughCOUT. Remember that all this timeCSW is
pointing to$C500. It’s only when the Y character gets sent toCOUT that the com-
puter hangs.
If DOS were installed and line 20 saidPRINT CHR$(4);"PR#5", the program

would hang on that statement because of the carriage return sent at the end of
the print statement. It’s instructive to note that the carriage return is not actually
needed for thePR# to work. Adding a semicolon to the print statement would
restore the program to its original semi-functional state.
One would think from the preceding thoughts that hooking up a routine to

the output hooks would be fairly simple. he problem is that most of the time
you’ll want to have DOS active, and DOS has been cleverly designed to do every-
thing possible to keep itself connected. When DOS is installed,CSW actually
points to$9EBD, a portion of DOS, and it’s very diicult to get it to point else-
where.
Speciically, whenever either input or output is done, both vectors are

checked to make sure DOS is still hooked up. his means that, even though you
could temporarily changeCSW, any input-type action would cause DOS to
restore itself to the output low. Here’s a program to show this. You’ll need to
reconnect DOS (pressing RESET will do that) to try it:

10 HOME

20 PR#0

30 PRINT CHR$(4);"CATALOG”

40 INPUT "TURN THINGS BACK ON"; I$

50 PRINT CHR$(4);“CATALOG"

29. Intercepting Output 283

he theory here is that thePR#0 setsCSW to point directly to$FD0C rather
than to DOS. his is why theCATALOG doesn’t work in line 30. However, when
the input is done, DOS is still hooked up to the input vector. Realizing that the
output connection has been lost, DOS thus reconnects itself. Line 40 then per-
forms as expected.
In general, DOS can be disconnected by executing both anIN#0 and aPR#0

within a BASIC program, provided that one is done immediately a!er the other
with no input or output in between. he one-line BASIC program used at the
beginning of this chapter to disconnect DOS employs this principle.
PressingRESET will hook things back up anytime you want. Notice that

these are not done as DOS commands such as:

10 PRINT CHR$(4);“IN#0": PRINT CHR$(4);“PR#0”

AnIN#0 orPR#0 as a direct BASIC command redirects I/O to the Monitor.
he same commands done as DOS commands set the I/O to DOS.
Let’s see just how DOS does handle the output vectors. With DOS installed

and active, enter the Monitor and type in:

36.37 AA53.AA54

You should get:

0036- BD 9E

AA53- F0 FD

With DOS active,CSW points to a main output entry point at$9EBD. his is
the beginning of the section that watches the output for DOS commands. Even-
tually it does its own indirect jump via the vector at$AA53,$AA54, which com-
pletes the path toCOUT1 ($FDF0), When you do aJSR COUT ($FDED), then, here’s
the general low of things:

1. With the appropriate value in the Accumulator, a JSR COUT ($FDED) is done.

2. At$FDED is aJMP to the address speciied inCSW ($36,$37). With DOS
installed, CSW points to DOS at $9EBD.

3. When DOS is through looking at the character, it does a jump to the address
held at $AA53, $AA54. his normally points to $FDF0.

4. Eventually an RTS returns control to the calling program.

Intercepting Output

An obvious question now arises. How do we hook our routine to DOS? his
basically depends on whether a slot is used. If you happened to be writing
irmware for an interface card, for example, thePR# command when executed
would automatically handle the setting up ofCSW to make everything work. If,

]

284 Assembly Lines

however, you want to put a routine at a location other than the$C000 space,
another approach is needed.
he procedure actually is fairly simple. All you need to do is setCSW to

where you want the output to be eventually sent and then call $3EA.1

For example, let’s put a trivial routine at$300 that merely jumps toCOUT1
($FDF0). Go into the Monitor and enter:

300: 4C F0 FD

If you list this routine you should get:

300L

0300- 4C F0 FD JMP $FDF0

0303- 00 BRK

0304- 00 BRK

To hook it up, type in the following from the immediate mode of Appleso!

POKE 54,0: POKE 55,3: CALL 1002

his setsCSW to point to$300 and then calls$3EA. he same thing can be
done from within an assembly-language program with:

LDA #$00

STA $36

LDA #$03

STA $37

JSR $3EA

RTS

Once connected in this way, everything will still look the same on the
screen. In reality, however, every character going to the screen is now going
through $300. You can check the new routing by entering the Monitor while this
routine is installed and typing in:

36.37 AA53.AA54

You should get:

0036- BD 9E

AA53- 00 03

he Monitor, DOS, and BASIC all send output via the jump atCOUT. his
still points to DOS, but now DOS points not toCOUT1 ($FDF0), but to$300.
here, our routine does a jump to COUT1 to complete the low.

1[CT] he technique would be diferent forProDOS, which doesn’t have a hookup rou-
tine. Instead, you can manually change the output vector at$BE30,$BE31 to point to
your output routine. See chapter seven of Inside the Apple //e, by Gary B. Little.

29. Intercepting Output 285

To verify that characters are going through$300, just type inPOKE 768,0.
Or, from the Monitor, type: 300:0.
he computer will immediately hang as program low hits the00 (BRK

instruction) at$300. heBRK routine in the Monitor will then try to send the
break error message throughCOUT, at which point$300 will be called again and
the process will repeat itself indeinitely.
An interesting point here is that whenCOUT is turned of (for instance, a

simpleRTS at$300 will do the trick), nothing appears on the screen despite the
fact that the computer is still fully functional. Even though you can’t see what
you’re typing, you could type inCATALOG and the disk drive would come on. he
lashing cursor would remain on the screen sinceRDKEY (part of the input rou-
tine at $FD1B) addresses the screen directly for the cursor.
To experiment withCOUT some more, let’s try a routine that’s a little more

interesting. Control characters are normally “invisible” in that they’re not sent to
the screen byCOUT1. If we could detect the control character before it got to
COUT1 and could change it to a diferent value, we could have it display as inverse
or as some other visible character.
Normally all characters going throughCSW have the high bit set. hat is, all

values are greater than$80. Inverse and lashing characters are created by send-
ing characters with a value less than$80 toCOUT. All characters in the range of
$00 to$3F come out inverse, and all those from$40 to$7F are lashing. In gen-
eral what this means is that, if the high bit is cleared, control characters will
come out in inverse and “standard” characters in lashing.
his is, in fact, how theFLASH andINVERSE commands of Appleso! work.

he routine atCOUT1 includes a portion that does anAND operation on the value
about to be stored on the screen and amask value stored at location$32 (called
INVFLG, short for “INVerse FLaG”).INVFLG normally holds an$FF, so no change
takes place. However, the BASIC commands INVERSE and FLASH set the values to
$3F and $7F, respectively, which produces the desired results.
he following diagram illustrates the INVFLG mask’s efect on outgoing char-

acters sent to COUT:

Hex Binary Character
Character: $C1 %1100 0001 A (Normal)

INVFLG: $FF %1111 1111 –

AND result: $C1 %1100 0001 A (Normal)

Character: $C1 %1100 0001 A (Normal)

INVFLG: $7F %0111 1111 –

AND result: $41 %0100 0001 A (Flashing)

Character: $C1 %1100 0001 A (Normal)

INVFLG: $3F %0011 1111 –

AND result: $01 %0000 0001 A (Inverse)

]

286 Assembly Lines

We can do our own specialized processing, though, so as to highlight just
control characters. Here’s the listing:2

 1 ********************************

 2 *AL29-CONTROL CHARACTER DISPLAY*

 3 ********************************

 4 *

 5 ORG $300

 6 *

 7 COUT1 EQU $FDF0

 8 *

0300: C9 A0 9 ENTRY CMP #$A0 ; FIRST NON-CTRL CHAR

0302: B0 06 10 BCS PRINT ; CHAR OKAY

0304: C9 8D 11 CMP #$8D ; LET 'CR' THRU

0306: F0 02 12 BEQ PRINT

0308: 29 3F 13 MASK AND #$3F ; CLEAR TOP 2 BITS

030A: 4C F0 FD 14 PRINT JMP COUT1 ; PRINT IT

his routine’s operation is very straightforward. A comparison is done as
each character reaches the routine at$300. All “usual” characters are sent
through toCOUT1 unaltered. If a character is found to be a control character,
though, a test is done to see if it’s a carriage return. If so, that too is passed to
COUT1. A!er all, we do want the screen to look somewhat normal. If a control
character (other than a<RETURN>) is found, however, anAND #$3F converts the
character to an inverse character, at which point it will be forwarded to COUT1.
Any control characters generated by a program, with the exception of

<RETURN> (<CTRL>M), will now be shown in inverse. When typed from the key-
board,<ESCAPE>, the right-arrow key (<CTRL>U), and<CTRL>X won’t show up
since they are intercepted by the Monitor input routine and never make it to
COUT.

Other Output Devices

So far, all we’ve done is interceptCOUT, ilter the characters going through,
and eventually return control to the Monitor screen routineCOUT1. If we had our
own output device, this would not be necessary. he point here is to demonstrate
the possibility of alternate output devices. Ultimately this could include printer
cards, terminals, analog devices such as motors, and more. Such projects are
rather involved, however, so for now let’s just see if we can write our own primi-
tive screen routine.

2[CT] When running under DOS 3.3, you can hook up your routine by executing:

POKE 54,0: POKE 55,3: CALL 1002

UnderProDOS, you can directly modify the output vector at$BE30,$BE31 by running
the following Appleso! program (do not run this as a direct command):

10 POKE 48688,0: POKE 48689,3

29. Intercepting Output 287

he basic model will be to set aside one line of the screen as our display win-
dow and to attempt to control text output within that window. To avoid having
to create vertical scrolling routines and cursor management routines, we’ll limit
all output to the single line and scroll text only to the le! as each new character is
displayed on the right.
If this sounds suspiciously similar to a calculator display, you’re right. It

should be easy now to see why, with limited resources of display hardware and,
more signiicantly, limited memory for management routines, such a display
would be desirable.
Here’s the summary of the design points:

1. Display will be limited to one line.

2. Characters will be output on the rightmost position.

3. he remainder of the line will scroll to the le! to make room for each new
character.

4. No control characters will be displayed.

5. he le!-arrow key,<CTRL>H, will be designated as a “clear display” charac-
ter.

6. No editing capabilities (that is, backspace, forward copy, and so on) will be
provided for, except for number 5 above.

Before proceeding, let’s digress for a moment to mention the value of the list
as a programming technique. If you can’t bring yourself to lowchart, at least
make a list to clarify exactly what your program will do. his helps to organize
your thoughts in a general way before you have to leap in and code the detailed
parts. Even if you amend it as the coding progresses, such a list is helpful. Now
back to our regularly scheduled program...

 1 ********************************

 2 * AL29-SPECIAL DISPLAY ROUTINE *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 LINE EQU $700 ; $700-727

 9 YSAV1 EQU $35

 10 *

0300: 84 35 11 ENTRY STY YSAV1 ; SAVE Y-REGISTER

0302: C9 A0 12 CMP #$A0 ; FIRST NON-CTRL CHAR

0304: B0 11 13 BCS SCROLL ; DISPLAY THE CHAR

0306: C9 88 14 CHK CMP #$88 ; BACKSPACE

0308: D0 0A 15 BNE DONE1

030A: A0 27 16 CLEAR LDY #$27

030C: A9 A0 17 LDA #$A0 ; SPACE

030E: 99 00 07 18 LOOP1 STA LINE,Y ; ERASE A CHAR

]

288 Assembly Lines

0311: 88 19 DEY

0312: 10 FA 20 BPL LOOP1 ; UNTIL Y=$FF

0314: A4 35 21 DONE1 LDY YSAV1 ; RESTORE Y

0316: 60 22 OUT1 RTS ; DON’T SHOW

 23 *

0317: 48 24 SCROLL PHA ; SAVE THE CHAR

0318: A0 01 25 LDY #$01

031A: B9 00 07 26 LOOP2 LDA LINE,Y

031D: 99 FF 06 27 STA LINE-1,Y

0320: C8 28 INY

0321: C0 28 29 CPY #$28

0323: 90 F5 30 BCC LOOP2 ; UNTIL Y=$28

0325: 68 31 PRINT PLA ; RETRIEVE CHAR

0326: 8D 27 07 32 STA LINE+$27

0329: A4 35 33 DONE2 LDY YSAV1 ; RESTORE Y

032B: 60 34 OUT2 RTS

032C: 27 35 CHK

A!er the listing has been assembled, the routine is hooked up toCOUT, just
like the other routine. You will probably want to type inHOME to give you a clear
screen for your display. Once your routine is installed, everything you type
should scroll across a line in the upper half of the screen. Notice that all expected
output from the Apple is now done on its own custom display. You can list pro-
grams, catalog a disk, or do any of the usual operations. Try typing in this com-
mand line in Appleso!:

FOR I = 1 TO 127: PRINT CHR$(I);: NEXT I

When you press return, you should see a whole series of characters go
whizzing through the window, ending with the lowercase letters (although they
may not look quite right if you don’t have a lowercase display device). Remem-
ber, the le! arrow will clear the display window.
he routine itself is fairly simple. he only memory locations deined are the

memory range for the screen line at$700, a temporary storage byte used by
COUT1, and our routine to preserve the contents of the Y-Register. he program
also contains some instructive points of style.
On entry, the Y-Register is saved. his is because the “oicial” output rou-

tine,COUT1, returns with all registers (A, X, and Y) intact when called. Many
other routines in BASIC and DOS assume that all output will be done as safely,
so we must honor that convention as well.
Once Y is saved, the value passed to this routine from the Accumulator is

appropriate to the ASCII value for the character to be printed. As was done in
the control-character display routine, a check is done for control characters.
Remember that in this program all control characters, even<RETURN>, will be il-
tered out. If a control character is detected, the comparison on line 12 will fail
and a check will be made for the le! arrow (<CTRL>H). If the character is not a

29. Intercepting Output 289

<CTRL>H, we will immediately exit viaDONE1, where the Y-Register will be
restored and no character will be displayed.
If a<CTRL>H is detected, theCLEAR routine clears the display window to spa-

ces. A note here about theBPL on line 20 to determine when the loop is done:
You might think that we would want to use aBNE to ind out when Y reached 0.
he problem is that, when Y reached 0, the branch would fall through and we
would not store a space at$700, so the leading character could not be cleared
from the display window.
Because we know that Y is started at$27, we can test for Y reaching the

value of$FF as it “wraps around” a!er reaching 0. An alternate approach would
have been to make line 18 saySTA LINE-1,Y and to start Y with a value of$28 on
line 16.LINE-1 would evaluate to$6FF, and thus we could use theBNE test.
Either way works, but this second approach provides a way of showing another
programming technique. A!er clearing the window, the routine returns via
DONE1, again without displaying any new character.
If a legitimate character is detected on lines 12 and 13, control lows to

SCROLL, which makes room for the new character to be displayed. Because we’ll
need to use the Accumulator for the scrolling, the character to be printed is
pushed onto the stack to save it for future use.
At that point, the Y-Register is set to$01 in preparation for the memory

move to follow. Line 26 loads a character from one position, a!er which line 27
will store the character in the position immediately to the le!. For example, on
the irst pass through, the value will be loaded from$701 ($700,Y whereY = 1)
and stored at $700 ($6FF,Y where Y still equals 1).
Notice the use of two diferent base addresses for the indexed addressing.

his allows us to use the same value in the Y-Register to load and store at two
diferent addresses. he loop is repeated until we have moved all the characters
one position to the le!. he routine then falls into PRINT.

PRINT irst retrieves the character to be printed from the stack by means of
thePLA on line 31. It then stores the character at$727. he code is written this
way (LINE +$27) to show that you can, in most assemblers, add any amount to
an address. You aren’t limited to the usualADDR,ADDR+1 that’s most o!en seen.
A!er the character has been stored at$727, the Y-Register is restored and the
routine returns via DONE2.
You should verify for yourself that the Accumulator and Y-Registers are

always le! in their original conditions regardless of whether theRTS is done
throughDONE1 orDONE2. Since we didn’t use the X-Register, it also will be pre-
served.

]

290 Assembly Lines

Conclusion

Here are the main points of our discussion on the output vector.

1. he main output vector is calledCSW, which stands for Character output
SWitch. CSW is the byte pair $36, $37.

2. DOS maintains its own output vector at $AA53, $AA54.

3. DOS can be disconnected by executing the BASIC statementIN#0:PR#0
(not as a DOS command).

4. DOS can be reconnected by pressing RESET.

5. Any attempt to alterCSW directly with DOS active will be undone by DOS
on the irst input statement following the attempt.

6. To hook a routine into the output vectors, execute the equivalent of

POKE 54,LB: POKE 55,HB: CALL 1002

whereLB andHB are the low- and high-order bytes of the address you wish out-
put to be directed to.3

7. If you’re handling all of the inal output, end the routine with the usualRTS.
If you’re merely iltering or watching the output, you must eventually pass con-
trol on to where the inal output will be done, usually COUT1 ($FDF0).

In the next chapter we’ll look at the input hooks and at how to use your own
routines on the listening side of the Apple.

3[CT] he equivalent for ProDOS would be:

10 POKE 48688,LB: POKE 48689,HB

30. Intercepting Input
March 1983

It’s time to examine the input system of the Apple. Many parallels can be
drawn between it and the output system, discussed in the previous chapter.
hough not required, some familiarity with that chapter’s major points will help
you understand our current topic.
he main demo routines in this installment involvelowercase text; there-

fore, it’s strongly recommended that you acquire lowercase display hardware if
you don’t have it already. Lowercase chips for Apples with revision numbers
greater than 7 can be purchased for $20 to $30. Earlier Apples require more than
a single chip.Apple //e doesn’t require any additional so!ware or hardware; the
lowercase display capability is built in. For serious study and exploration of text
input/output methods, lowercase capability is essentially required.

!e Input Vector: KSW

he byte pair$38,$39 constitutes the maininput vector and is generally
labeled KSW forKeyboard input SWitch. LikeCSW (the Character output SWitch),
KSW is used to switch input to BASIC and the Monitor from diferent sources. As
is evident from the fact that anINPUT statement will read a DOS text ile and the
action of theEXEC command on text iles, the keyboard isn’t the only place from
which the Apple can obtain ASCII data.
When you’re writing an assembly-language program that needs a sin-

gle-character input from the outside world, the usual procedure is to do aJSR
RDKEY ($FD0C) and then use the value that is returned in the Accumulator.
As we did withCOUT ($FDED), let’s see whatRDKEY does to get that character.

To examine the routine, enter the Monitor with the usualCALL -151 and list the
code by typing $FD0C<RETURN>.
Here, shown with labels and comments, is the code at that location:1

FD0C- A4 24 RDKEY LDY CH ; Get horizontal cursor

FD0E- B1 28 LDA (BASL),Y ; Get character from screen

FD10- 48 PHA ; Store it

FD11- 29 3F AND #$3F ; Clear bits 6,7

FD13- 09 40 ORA #$40 ; Set bit 6 (flash)

FD15- 91 28 STA (BASL),Y ; Put on screen

1[CT] he code shown is for an Apple II orApple II Plus. he code for an Apple //e is
quite a bit diferent, but the entry points at RDKEY and KEYIN are the same.

]

30

292 Assembly Lines

FD17- 68 PLA ; Get the original character

FD18- 6C 38 00 JMP (KSW) ; To ‘real’ input

FD1B- E6 4E KEYIN INC RND ; RND = RND + 1

FD1D- D0 02 BNE KEYIN2

FD1F- E6 4F INC RND+1

FD21- 2C 00 C0 KEYIN2 BIT KBD ; Check for key

FD24- 10 F5 BPL KEYIN ; No, again

FD26- 91 28 STA (BASL),Y ; Restore old character

FD28- AD 00 C0 LDA KBD ; Get input character

FD2B- 2C 10 C0 BIT KBDSTRB ; Clear strobe

FD2E- 60 RTS ; Return with character

On entry toRDKEY the irst three instructions read the character on the
Apple screen and put it onto the stack. Remember that what you see on-screen is
the representation of a byte stored in the memory range of$400 to$7FF. To
determine what byte corresponds to a screen position, you need only load the Y-
Register with the horizontal cursor position (CH =$24) and add this ofset to the
base address for the current line. his base address is always stored in$28,$29
(BASL, BASH).
Once the existing character on-screen has been read and stored (so we can

put it back on-screen a!er the input), the next three instructions have the net
efect of putting a lashing character on the screen equivalent to the character
that was on-screen in the current cursor position.
he action of theANDs andORAs may not be intuitively obvious. Let’s con-

sider this example:

Hex Binary Character

Original character: $C1 %1100 0001 A (Normal)
AND: $3F %0011 1111 clear bits 6, 7

First result: $01 %0000 0001 A (Inverse)

ORA: $40 %0100 0000 set bit 6
Final result: $41 %0100 0001 A (Flashing)

Remember that the action of theAND is to clear any bits in the Accumulator
that are matched by a 0 in themask value. Bits in the Accumulator matched by
1s in the mask are le! unchanged, whether they are 0s or 1s.
AnORA, on the other hand, sets to 1 any bits in the Accumulator that are

matched by a 1 in themask value. Bits in the Accumulator matched by 0s in the
mask are le! unchanged.
You might wonder at irst why two instructions–theAND followed by the

ORA–were needed. A!er all, in the previous chapter didn’t we change control
characters to inverse in just one step? Why not just use a diferent mask value to
get lashing characters? he answer lies in the diferences between the bit pat-
terns for inverse and lashing characters. All inverse characters have the top two

30. Intercepting Input 293

bits clear (bits 6 and 7). Flashing characters, on the other hand, have one bit
clear (bit 7 = 0) and the other set (bit 6 = 1).
When the cursor is on a character and the character is to be converted to

lashing temporarily, we must not only clear the high bit (at least for all “normal”
text), but also must on occasion set bit 6. his combination of a set and a clear
requires two operations.
OnceRDKEY has thus put a lashing character on-screen to show the cursor’s

location, the character originally on the screen is retrieved from the stack in
preparation for the jump toKEYIN (or to any other input routine that will want
to restore the original character if no new character is entered). Finally, the
actual indirect jump via KSW is done.
InCOUT ($FDED), the jump viaCSW was made immediately. his extra por-

tion inRDKEY preceding the actual jump explains the presence of the cursor on-
screen during a text-ile read. Although DOS is handling the input at that point,
the call is still done viaRDKEY, and thus the presence of the cursor is still some-
what unavoidable.
If DOS is not active,KSW ordinarily points toKEYIN ($FD1B).KEYIN is the

routine responsible for getting characters from the keyboard; it thus involves the
keyboard memory hardware ($C000 and$C010) directly. If input was from a
modem or some other external device installed in a peripheral slot,KSW would
point to$Cnxx, wheren is the slot number andxx is the input routine entry
point. Before considering the unusual situations, let’s see what happens most of
the time, when KSW points to KEYIN.

KEYIN irst increments the random-number byte pair, $4E, $4F. his is a part
of the loop that will be repeated until a key is pressed. he theory is that the pas-
sage of time between key presses is random. his byte pair is used primarily by
Integer BASIC. Appleso! has its own random-number registers and routines.
A!er incrementing the random byte pair,KEYIN2 then does the actual key-

board check, repeating the process by going back toKEYIN if no key has been
pressed. Remember that theBIT instruction makes the test possible by setting
the sign lag of the Status Register equal to bit 7 of the character value detected at
the keyboard ($C000).BPL thus can be used to detect (by failing) when bit 7 goes
high (bit 7 = 1), indicating a keypress.
Once a key has been pressed, the value in the Accumulator is put back into

screen memory. Remember that this is the value of the old character presumably
there,not the new character input. If the character entered is a right arrow, this
signiies that we want to move the cursor over the displayed character without
changing that character. heLDA KBD is what puts the input character into the
Accumulator, at which point thestrobe is cleared by accessing$C010 and the
inal return is done. he calling program then has the option of printing the
input character to the screen.

]

294 Assembly Lines

Other Input Sources

KSW does not always point toRDKEY. In fact, it doesn’t point there whenDOS
is installed. With DOS booted and active, enter the Monitor and type in:

38.39 AA55.AA56<RETURN>

You should get:

0036- 81 9E

AA55- 1B FD

You’ll see thatKSW actually points to DOS at$9E81, which then eventually
points toRDKEY ($FD1B) at$AA55,$AA56. Like the output system, DOS is rather
permanently made part of the input path. Any attempts to disconnect DOS by
modifying KSW directly will be undone by DOS if any output is done. DOS has its
own internal input vector at$AA55,$AA56. It alters this vector, notKSW, as
needed to gain access to various slots (or to disk iles, as appropriate).
You can install your own routine into the input path by means of a proce-

dure similar to the one used in the previous chapter to intercept the output path.
Put the low- and high-order bytes of the destination address into KSW ($38, $39 =
56, 57 decimal) and do a call to$3EA (1002 decimal). his causes DOS to change
its own vectors at$AA55,$AA56 to the address speciied, and then to restoreKSW
so that it points to DOS again, usually at $9E81.2

In Appleso! this would take the form:

10 POKE 56, LB: POKE 57, HB: CALL 1002

In this example,LB andHB are the low- and high-order bytes of the destina-
tion address. In assembly language, it would look like this:

LDA #LB

STA $38

LDA #HB

STA $39

JSR $3EA

Just as output has two basic classes of routines, there are two main types of
input routines–those that intercept incoming characters and do some sort of
processing, and those that entirely replace the input routines already being used.
If you are doing the latter, things are fairly simple. Once installed, your routine is
entirely in charge of getting the input character; when that character is “got,”
your routine ends with anRTS to pass control back to the calling program. his
approach is similar to our custom output routines from the previous chapter.

2[CT] Just like the output vector (described in chapter 29), when usingProDOS you can
directly change the input vector at$BE32,$BE33 to point to your input routine. See
chapter six of Inside the Apple //e, by Gary B. Little.

30. Intercepting Input 295

he irst class of input routines, in which incoming characters are to be
intercepted, must be handled slightly diferently than our output experiments
were.

Interception Routines

When we were dealing with the output process, the point at which we inter-
cepted the data low really didn’t matter. Because the calling program loads the
Accumulator with the character to be output, the character can be examined at
any point along the way. With input, the character input is not available until the
very end of the procedure, when theRTS returns control to the calling program.
Fortunately, there is a relatively easy way around this limitation.
In both the input and output systems, the links in the process are done by

means of a series ofJMPs (as opposed toJSRs). You’ll recall from our output
interception from the previous chapter that the inal exit from the routine was a
JMP $FDF0 (or wherever) a!er the processing was done.
With input, the secret is to do a JSR to KEYIN (or wherever) irst and then do

your processing, followed by an eventualRTS to the calling program. For our
irst experiment, we’ll try writing a routine to convert all incoming characters to
lowercase:

 1 ********************************

 2 * AL30-SIMPLE CASE CONVERTER *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

 8 KEYIN EQU $FD1B

 9 *

0300: 20 1B FD 10 ENTRY JSR KEYIN

0303: C9 C1 11 CMP #$C1 ; ASCII 'A'

0305: 90 02 12 BCC DONE

0307: 09 20 13 MASK ORA #$20 ; %0010 0000

0309: 60 14 DONE RTS

In theory, anything you type in now should be displayed in lowercase.
Numeric and control characters should be unafected. he routine works by irst
callingKEYIN, which gets a character from the keyboard and puts it in the Accu-
mulator. At that point our routine ensures that we’ve got a capital letter, rather
than a numeric or control character. If we don’t have an alphabetic character
value less than $C1, then the routine skips to DONE.
If what we have is an alphabetic character, the conversion to lowercase is

done by forcing bit 5 of the ASCII value to 1. he values of all lowercase charac-
ters are equal to the values of the corresponding uppercase letters plus 32. his
means, as an ASCII chart showing bit values reveals, that capital letters have bit 5

]

296 Assembly Lines

clear and lowercase letters have bit 5 set. Line 13 of our routine sets bit 5, thus
converting the character to lowercase. Finally, line 14 returns us to the calling
program.
Our routine should work from within Appleso!. Try this:3

6 INPUT “ENTER A STRING:”

10 POKE 56,0: POKE 57,3: CALL 1002

20 INPUT I$

30 PRINT I$

40 PRINT CHR$(4); "IN#0": REM DISCONNECT ROUTINE

Don’t be surprised if this program doesn’t work.4

Try changing line 20 to look like this:

 20 GET A$: PRINT A$;: IF A$ <> CHR$(13) THEN I$ = I$ + A$: GOTO 20

Now run the program. he results this time should be more like you
expected. Line 30 is used to conirm the fact that the lowercase data we typed in
on line 20 actually made it to Appleso!.
he question now is, why didn’t the irst program work? In a sense it did. If

you like, go back and run the irst program without line 40. When the program
ends, go into the Monitor and check the DOS input vector at$AA55,$AA56. It
should indicate that our routine at $300 is being used.
he problem lies in Appleso!’s use of theGETLN (GET LiNe) routine for the

INPUT statement. his routine is used to input entire lines at a time. Although
GETLN does use theRDKEY routine to get individual characters, it unfortunately
tampers with the characters entered before it returns the data to Appleso!, DOS,
or the Monitor.
Speciically,GETLN converts any lowercase characters coming in to upper-

case. hus, even though our routine converts the uppercase characters coming in
through the keyboard to lowercase,GETLN undoes every thing by converting
them back before they’re even echoed to the screen.
Another annoyance ofGETLN is that it converts characters that you copy

from the screen using the right arrow.
he reason the program works with the new version of line 20 is that the

Appleso! GET statement uses a direct call to RDKEY and does not use GETLN.
One way to solve the problem of theINPUT statement not working is by

writing your own input routine instead of using theGET sequence. he easiest
thing to do here would probably be to copy theGETLN routine and eliminate the
conversion portion starting at $FD7E.5

3[CT] Under ProDOS, you should change line 10 to POKE 48690,0: POKE 48691,3
4[CT] On an Apple //e (under DOS) this program actually will work.
5[CT] In theApple II andApple II Plus the code at$FD7E checks whether the character
is≥ $E0 and if so, does anAND #$DF, which converts from lowercase to uppercase. In
the Apple //e this has been replaced with AND #$FF, which does nothing.

30. Intercepting Input 297

Instead, let’s see if we can improve on the simple input routine just shown,
making it a little more lexible, without rewriting the GETLN routine.

Something More Useful: Lowercase Input

Although the routine just given illustrates the concept of intercepting input,
it’s not really that useful because it provides no way of switching between upper-
case and lowercase letters at will. Why not create an input routine that allows us
to shi! between uppercase and lowercase letters as we input them? As we did for
the output routine in the previous chapter, we’ll irst make a list of what we want
the routine to do:

1. he routine should allow numeric and control characters to pass through
unaltered.

2. he routine should be set up such that pressing<ESCAPE> once when in the
lowercase mode will shi! only the next letter to uppercase.

3. Pressing<ESCAPE> twice when in the lowercase mode should shi! all suc-
cessive input to the uppercase mode (this is sometimes called “caps lock”).

4. Pressing<ESCAPE> once when in the uppercase mode should return the sys-
tem to the lowercase mode.

he system of using<ESCAPE> as a shi! key is somewhat standard. Before
going on to the listing, though, let’s think a little more about what is needed to
implement this system. First of, we’ll need some way to remember which mode
(lowercase or uppercase) we’re in. he most direct way of doing this is to use a
lag, which we’ll callCSFLG (CaSe FLaG). To avoid a zero-page conlict, we’ll
reserve a place for the lag at the end of the routine.
In order to fulill the requirement stated in item three on our list, we need to

store the value of the last character input–that is, the character just before the
one currently being input, in another storage location. his will allow us to tell
when <ESCAPE> has been hit twice in a row. We’ll call this locationLSTCHR (LaST
CHaRacter).
he general pattern will be to do some brief tests each time a character is

input and, if no conversion is necessary, to pass the uppercase letter through
unaltered. Only when an<ESCAPE> sequence is coming through or when we’re
in the lowercase mode will we ever alter the input character. Here, then, is the
improved listing:

 1 ********************************

 2 * AL30-LOWERCASE INPUT ROUTINE *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

]

298 Assembly Lines

 7 *

 8 KEYIN EQU $FD1B

 9 ESC EQU $9B

 10 *

0300: 20 1B FD 11 ENTRY JSR KEYIN ; GET KEY

0303: 48 12 PHA ; SAVE CHAR

0304: C9 9B 13 CMP #ESC

0306: F0 19 14 BEQ ESC1

 15 *

0308: AD 3F 03 16 CHAR LDA LSTCHR

030B: C9 9B 17 CMP #ESC

030D: F0 0D 18 BEQ XFER ; CAP THIS CHAR

 19 *

030F: 2C 40 03 20 CASE BIT CSFLG

0312: 30 08 21 BMI XFER ; CAPS

 22 *

0314: 68 23 CVERT PLA ; RETRIEVE CHAR

0315: C9 C1 24 CMP #$C1 ; ASCII 'A'

0317: 90 02 25 BCC X2 ; DON’T CHANGE

0319: 09 20 26 ORA #$20 ; SET BIT 5

031B: 48 27 X2 PHA ; PUT CHAR BACK

 28 *

031C: 68 29 XFER PLA ; RETRIEVE CHAR

031D: 8D 3F 03 30 STA LSTCHR ; LSTCHR = CHR

 31 *

0320: 60 32 DONE RTS

 33 *

0321: AD 3F 03 34 ESC1 LDA LSTCHR

0324: C9 9B 35 CMP #ESC

0326: D0 10 36 BNE CASE2

 37 *

0328: A9 80 38 LOCK LDA #$80 ; BIT 7 = 1

032A: 8D 40 03 39 STA CSFLG ; UC

032D: D0 ED 40 BNE XFER ; ALWAYS

 41 *

032F: 68 42 UNLOCK PLA ; PULL CHAR

0330: A9 00 43 LDA #$00

0332: 48 44 PHA ; CHR = NULL

0333: 8D 40 03 45 STA CSFLG ; 0 = LC

0336: F0 E4 46 BEQ XFER ; ALWAYS

 47 *

0338: 2C 40 03 48 CASE2 BIT CSFLG

033B: 10 DF 49 BPL XFER ; LC NEEDS NO ACTION

033D: 30 F0 50 BMI UNLOCK ; UNLOCK UC

 51 *

033F: 00 52 LSTCHR DFB $00

0340: 00 53 CSFLG DFB $00 ; DEF = LC; #$80 = UC

 54 *

0341: 9C 55 CHK

A!er assembling and installing this routine at$300, try the Appleso! pro-
gram with the altered line 20 again. his time you should be able to enter a string
containing both uppercase and lowercase letters, with the<ESCAPE> key func-
tioning as described in the requirements list.

30. Intercepting Input 299

Note the use ofEQU to deineESC in line 9. he labelESC is used as a value
rather than a location. his way you can change the key used for shi! by chang-
ing the value equated in line 9.
A look at the source listing reveals what’s going on. First, aJSR KEYIN is

done to get a character from the keyboard. KEYIN handles the lashing cursor and
keyboard hardware for us. Next, the input character is pushed on the stack so
we’ll be free to use the Accumulator if necessary without losing the input charac-
ter.
Next, a test is done to see whether the current character is an<ESCAPE>

character. If so, a branch is done to the<ESCAPE>-handling routine,ESC1 (line
34). he irst thing done atESC1 is to see if the last character was an<ESCAPE> as
well, in which caseLOCK (line 38) sets caps-lock mode by putting a$80 inCSFLG.
If not, thenCASE2 (line 48) checksCSFLG to see whether we’re currently in low-
ercase or uppercase.
To simplify this test, we’ve used a value of$00 forCSFLG to signify the low-

ercase mode. A value of$80 signiies the uppercase mode in our example. hese
values were chosen to allow the use of theBIT command. Because theBIT
instruction conditions the sign lag (bit 7) of the Status Register according to bit
7 of the memory location referenced, we can test the status ofCSFLG without
actually having to load the Accumulator with anything to do the test.

CASE2 uses theBIT instruction to test bit 7 ofCSFLG. If bit 7 is clear, we’re in
lowercase mode and all that needs to be done is to pass this irst<ESCAPE> char-
acter through toXFER, where it will be stored inLSTCHR. hat way the<ESCAPE>
can be used to signify a shi! to uppercase if the next character is a letter.
If bit 7 is set, then we’re in uppercase, and we need to “unlock” the upper-

case mode.UNLOCK does this by putting a 0 value inCSFLG. You’ll also notice that
the current character is changed from an<ESCAPE> to a null. his is done so that
a!er down-shi!ing, we can still press<ESCAPE> once more to capitalize the next
letter. If we hadn’t changed that<ESCAPE> to a null when we down-shi!ed, we’d
be back in caps-lock mode.
For the next pass through, let’s see what happens with a non-<ESCAPE>

character. We’ll resume tracing the routine right a!erENTRY has decided that the
current character is not an <ESCAPE> character.
he next section isCHAR, which checks to see whether the last character

through was an<ESCAPE> character. If so, we need to make sure the current let-
ter is capitalized, even though we’re presumably in the lowercase mode. his is
easily done, though: program low proceeds directly toXFER. Remember,XFER
simply stores the current input character inLSTCHR and then returns to the call-
ing program. In this case, because all characters generated byKEYIN are always
uppercase (except on the Apple //e), we’ll just leave the capital letter input “as is”
and pass it through.

]

300 Assembly Lines

If the last character was not an<ESCAPE>, program low continues to the
CASE section, which decides whether to convert the character coming through by
checking to see whether we’re in uppercase or lowercase mode.

CASE uses theBIT instruction to do this test. If we’re in the uppercase mode
(bit 7 = 1, thereforeBMI works), no conversion of the incoming uppercase letter
is needed and the program branches directly to theXFER routine.XFER retrieves
the original input character stored on the stack, updatesLSTCHR (since this will
now be the "last character” on the next pass through), and then returns to the
main calling program via the RTS.
If theCSFLG was set to 0, line 21 would not branch, and theCVERT (Con-

VERT) routine would be entered.CVERT irst retrieves the input character from
the stack and then checks to see if the character has an ASCII value less than that
of the letter A. If so, the character coming through is a number or a control char-
acter and, as such, should not be converted to lowercase. If such a character is
detected, the routine jumps over the conversion routine to line 27, which puts
the character back on the stack (whereXFER expects to ind it) and goes through
to the XFER section.
If the character has an ASCII value equal to or greater than that of the letter

A, then theORA #$20 sets bit 5, thus converting the letter to lowercase. At that
point the new character is put on the stack for the XFER routine.

Conclusion

his is deinitely one of those programs that take a low chart to design, so
don’t feel discouraged if everything’s not immediately clear. Considering all the
possible situations of<ESCAPE> sequences and current case, it may take a little
time before you feel comfortable with it.
Even if the program never makes complete sense, remember that the impor-

tant thing here is to understand the workings of the input system in general,
rather than this particular little routine.
Of course, the best way to understand what’s going on is to experiment with

your own routines. Doing this always helps bring out the right and wrong
assumptions about the way we think things work. You might want to try writing
the generalized input routine suggested earlier, or perhaps you’re one of those
people who’ve hooked up a wire from the<SHIFT> key to pushbutton 2. If so, see
whether you can improve the input routine to allow yourself to use the<SHIFT>
key as well. Another interesting project would be to write your ownKEYIN rou-
tine to be used by the input routine, then see if you can generate a diferent kind
of cursor–or solve the problem of the cursor not looking quite right when it’s
on a lowercase letter.

31. Hi-Res Character Generator
April 1983

his chapter starts a discussion about how to write your own hi-res charac-
ter generator, and thus how to use text on the hi-res screen in your own assem-
bly-language programs.
he discussion will cover a number of points. First, we’ll look at the memory

mapping of the hi-res screen to see what considerations must be made to put the
data for the appropriate characters on the screen.
Next, we’ll look at the code needed to intercept the characters being output

to the normal text screen, and how this information can be used to actually
implement the hi-res character generator.
Last of all, a listing for a character editor will be presented, so you can make

up your own character sets or even produce special characters for unusual
graphics efects.

Text and Hi-Res Screen Mapping

he irst consideration in creating our character generator is the topic of
what actually will be required to put a character on the hi-res screen. In previous
chapters we have seen how each dot on the graphics screen is related to an indi-
vidual bit within a byte of memory assigned to the hi-res display. In earlier rou-
tines we created graphics by plotting dots using the routines built into Appleso!
BASIC. his time the approach will be somewhat diferent.
To create a character on the hi-res screen, an entire array of dots will have to

be turned on. Although theHPLOT routines of Appleso! could be used, it turns
out there is a much simpler way to achieve the desired result. his method is
based on similarities between the normal text display page and the hi-res graph-
ics display page. To fully understand this technique, though, a brief overview of
the screen memory mapping will be required.
On the Apple, text display is normally conined to what is called text display

page 1. his display corresponds to a block of memory in the address range$400
to$7FF (1024 to 2047 decimal). A character is printed on the screen by storing a
single byte in this memory range. he computer hardware then takes care of
converting this stored character into a video image on your monitor or televi-
sion set.

]

31

302 Assembly Lines

he memory for thescreen display is not
mapped in a simple, continuous pattern. hat
is to say, if you were to ill memory sequen-
tially with a certain value, the screen image
would not be changed in a line-by-line, char-
acter-by-character pattern. Instead, a rather
unusual pattern would be followed. he table
at le! gives the address of the irst character
on each line of the normal text display page.
You may also wish to look at page 16 of the
Apple II Reference Manual for a more com-
plete chart.
You may recall from earlier chapters that

it was not necessary to calculate the beginning
address (sometimes called thebase address) of
each line ourselves. Instead, we can use a
Monitor routine called VTAB ($FC22).
When this routine is called, it takes the

value stored in location $24 (called CV for Cur-
sor Vertical position) and calculates the base address of the line corresponding
to that vertical position.CV is assumed to be in the range of$0 to$17 (0 to 23
decimal) when VTAB is called.
his is whatCOUT ($FDED) does whenever the cursor moves to a new line,

such as when<RETURN> is pressed, or when aVTAB command is done in BASIC.
he base address is returned in a zero-page pointer calledBASL, BASH ($28, $29 =
Base AddresS Low byte and High byte).
At irst glance, there may seem to be too few horizontal rows to represent all

192 lines. However, if you look at the igure on the next page, in the middle
you’ll see a blow-up of one box of the map. Each of eight lines within the box is
labeled with one of eight values. What this means is that each box on the main
chart actually represents eight screen lines on the display. Twenty-four boxes
times eight lines in each box gives us the total of 192 screen lines. To ind the
base address of the third screen line, for instance, you would add the correction
for the third line within a box ($800) to the base address for the primary box
($2000) to get the actual base address ($2800).
Looking at the horizontal rows, you’ll notice that there are 40 bytes that

make up the 280 horizontal dot positions. Seven bits in each byte are used to
map the screen dots (7 × 40 = 280).
At this point you may be getting discouraged thinking that a lot of compli-

cated calculations are going to be required to even begin to know where to start
drawing our character on-screen. Take heart, though! If you give it a little

Line #Address (hex) Address (dec)
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

400

480

500

580

600

680

700

780

428

4A8

528

5A8

628

6A8

728

7A8

450

4D0

550

5D0

650

6D0

750

7D0

1024

1152

1280

1408

1536

1664

1792

1920

1064

1192

1320

1448

1576

1704

1832

1960

1104

1232

1360

1488

1616

1744

1872

2000

31. Hi-Res Character Generator 303

thought, you should be able to see a remarkable similarity between the hi-res
page and the text page in regard to their memory mapping.
he irst similarity is in the number of bytes used for each horizontal line on

the screen. In each case, 40 bytes are used for an entire line. Could there be even
more similarity? Read on!
If you look at the irst four lines of the text page, the base addresses are the

values$400,$480,$500, and$580. If you examine the irst four blocks of eight
lines each on the hi-res screen, the base addresses are$2000,$2080,$2100, and
$2180.
You’ll notice that if you add the value$1C00 to each of the text-screen val-

ues, you’ll get the corresponding base address for the hi-res screen. his pattern
continues throughout all twenty-four text screen lines.
What about the eight lines for each block? Each successive line within a

block can be calculated by adding the value $400 to the address for the line above
it. his will turn out to be just perfect for creating a character.
As it happens, a character on the normal text screen is made up of dots in a

matrix seven dots high by ive dots wide. Around this matrix there is a boundary

]

304 Assembly Lines

of one dot position on either side and one dot position along the bottom. his
permanently empty region is set up to provide a guaranteed separation between
characters when printed on-screen. hus, the inal matrix is actually seven dots
wide by eight dots high. he igure below, for example, shows the matrix pattern
for the letter A.
A column of dot positions on each side of the character and a row on the

bottom are le! open. At this point, a little light in your mind is probably starting
to glow. he seven dot positions across each character can correspond to seven
bits in each of the 40 hi-res screen bytes used on each line. he eight horizontal
rows will correspond to the eight bytes assigned to each primary box described
earlier.
All this, then, brings us to the precipice. It is time to make the mental leap to

understanding the concept of how a hi-res character can be created.
In a block of eight sequential bytes of memory, we can store all of the infor-

mation needed to create a single character on the screen. Each byte will corre-
spond to one of the eight rows in the matrix. Each bit within a byte will
correspond to one possible dot position within a given row.
For example, to encode the letter

A, we might store the following bytes:
$08, $14, $22, $22, $3E, $22, $22, $00.
To illustrate how this really forms

the letter A, take a look at the table to
the right of the igure, which shows
these same numbers in a diferent way.
In the right-hand column is the

binary form of each number. You can
see which bits are on and which are of. his relates directly to how the character
is displayed on-screen. he bits are plotted in reverse order–that is, with bit 0 in
the le!most position. Bit 7 (the high bit) is never displayed on-screen. At most,
bit 7 can be used only to shi! the other dots one-half position. See the earlier
chapters on hi-res plotting if you need a little refresher in this area.

!e Character Generator

Now to actually describe the character generator that will be used to put the
appropriate ASCII character on the hi-res screen.
he process it will use is as follows:

1. A routine will be hooked up to the output vector to intercept each character
to be printed to the normal text screen.

2. If the character is a control character, no special processing will be done and
the character will be passed on to COUT1 ($FDF0).

Dot Matrix for A Hex Binary
$08 %0000 1000

$14 %0001 0100

$22 %0010 0010

$22 %0010 0010

$3E %0011 1110

$22 %0010 0010

$22 %0010 0010

$00 %0000 0000

31. Hi-Res Character Generator 305

3. If the character is not a control character, an examination ofCV ($23 = Cur-
sor Vertical position) and the current text-page address will be made. A value of
$1C00 will be added toBASL,BASH ($28,$29) to calculate the base address of the
primary hi-res screen line. he contents ofCH ($22 = Cursor Horizontal posi-
tion) will then be added to this base address to calculate the actual hi-res screen
byte to be modiied.

4. heASCII value of the character to be printed will be used to determine the
position in a character data table from which the eight bytes containing the data
for the character will be retrieved. he position can be determined by irst sub-
tracting 32 from the ASCII value (to make up for the missing control characters
in the table). he resulting value is then multiplied by eight (for eight bytes per
character) to determine the correct starting position of the data for that particu-
lar character. he general formula, then, is:

Position = (ASCII value − 32) × 8

5. he character will actually be produced by storing the irst byte in the calcu-
lated base address. he next seven bytes will then be stored at the addresses
determined by successively adding the value $400 to the base address.

6. At that point the printing to the hi-res screen will be complete. he original
character to be printed will then be sent toCOUT1 ($FDF0) so that the Monitor
routines can handle carriage returns, backspaces, and so on. his action by the
Monitor will automatically ensure that theBASL,BASH pair is maintained prop-
erly so that we can always rely on its accuracy in positioning the text output on
the screen.

his last point may need a bit of explanation. If we never sent a character to
COUT1, we would have to handle the entire screen management ourselves. his
means that when we got to the end of the line, we would have to detect it and
then advanceCV and recalculateBASL, BASH accordingly. By passing each charac-
ter toCOUT1 (even though technically we never see the text screen), the Monitor
will keepBASL,BASH,CH, andCV all maintained in a way consistent with the data
printed to the screen.
hus all we need to do is look atBASL,BASH,CH, andCV for each character

printed to have the hi-res screen properly mimic what is going on with the text
display page.
Here, then, is the listing for the hi-res character generator:

 1 ********************************

 2 * AL31-CHARACTER GENERATOR *

 3 ********************************

 4 *

 5 * OBJ $300

 6 ORG $300

 7 *

]

306 Assembly Lines

 8 CSW EQU $36

 9 BASL EQU $28

 10 CH EQU $24

 11 TABLE EQU $9000

 12 POSN EQU $3C ; (BAS2)

 13 SCRN EQU $3E ; (A4)

 14 VECT EQU $3EA

 15 COUT1 EQU $FDF0

 16 *

0300: A9 0B 17 HOOK LDA #ENTRY ; PRODUCES LOW BYTE

0302: 85 36 18 STA CSW

0304: A9 03 19 LDA #>ENTRY ; #> PRODUCES HIGH BYTE

0306: 85 37 20 STA CSW+1

0308: 4C 3A FF 21 JMP VECT

 22 *

030B: C9 A0 23 ENTRY CMP #$A0

030D: 90 51 24 BCC OUT ; CTRL CHARACTER

030F: 48 25 PHA ; STORE CHAR

0310: 29 7F 26 AND #$7F ; CLEAR HI BIT

0312: 85 3C 27 STA POSN

0314: A9 00 28 LDA #$00

0316: 85 3D 29 STA POSN+1

0318: 98 30 TYA

0319: 48 31 PHA ; SAVE Y

 32 *

031A: 38 33 CALC1 SEC

031B: A5 3C 34 LDA POSN

031D: E9 20 35 SBC #$20

031F: 85 3C 36 STA POSN ; CHAR < 96

0321: 06 3C 37 ASL POSN ; *2 = CHAR < 192

0323: 06 3C 38 ASL POSN ; *4 < 384

0325: 26 3D 39 ROL POSN+1

0327: 06 3C 40 ASL POSN ; *8 < 768

0329: 26 3D 41 ROL POSN+1

 42 *

 43 * POSN = (ASC - $20)*8 BYTES PER CHAR

 44 *

032B: 18 45 CLC

032C: A9 00 46 LDA #TABLE ; LOW BYTE

032E: 65 3C 47 ADC POSN

0330: 85 3C 48 STA POSN

0332: A9 90 49 LDA #>TABLE ; HIGH BYTE

0334: 65 3D 50 ADC POSN+1

0336: 85 3D 51 STA POSN+1 ; POSN = POSN + TABLE ADDR

 52 *

0338: 18 53 CALC2 CLC

0339: A5 28 54 LDA BASL

033B: 65 24 55 ADC CH

033D: 85 3E 56 STA SCRN

033F: A5 29 57 LDA BASL+1

0341: 69 1C 58 ADC #$1C

0343: 85 3F 59 STA SCRN+1 ; SCRN = BASL + CH + $1C00

 60 *

0345: A0 00 61 GETBYTE LDY #$00

0347: B1 3C 62 G1 LDA (POSN),Y

0349: 91 3E 63 STA (SCRN),Y

31. Hi-Res Character Generator 307

034B: C8 64 INC INY

034C: 18 65 CLC

034D: A5 3E 66 LDA SCRN

034F: 69 FF 67 ADC #$FF

0351: 85 3E 68 STA SCRN

0353: A5 3F 69 LDA SCRN+1

0355: 69 03 70 ADC #$03

0357: 85 3F 71 STA SCRN+1 ; SCRN = SCRN + $3FF

 72 *

 73 * $3FF TO MAKE UP FOR GROWING VALUE OF 'Y'

 74 *

0359: C0 08 75 DONE? CPY #$08

035B: 90 EA 76 BCC G1

 77 *

035D: 68 78 YES PLA

035E: A8 79 TAY ; RESTORE Y

035F: 68 80 PLA ; RESTORE CHAR

0360: 4C F0 FD 81 OUT JMP COUT1

0363: D8 82 CHK

he routine is relatively short and is placed at location$300 (768 decimal).
When a call to$300 is done by either a300G from the Monitor or aCALL 768
from BASIC, the routine will set the output vectors to point toENTRY and then
call the DOS hookup routine described in earlier chapters. At this point, all
future character output will pass through this routine, until it is disconnected
either by a PR#0 or by pressing RESET.
AtENTRY, the irst thing that is checked for is to see whether the character

being output is a control character. Remember that at this point the high bit will
be set on all text going to the screen. herefore, even though$20 is the more
normal ASCII value for a space character, with the high bit set it will be sent
through COUT as an $A0.
If a control character is detected here, theCMP andBCC will pass control to

the exit point of the routine,OUT. Remember thatBCC is used to detect all values
in the Accumulator less than the value used in theCMP instruction. All control
characters will have an ASCII value less than that of the space character.
If the character is a non-control character, it’s then pushed onto the stack in

line 25. his is to save the character to be printed so that it eventually can be
passed on toCOUT1. he next line, 26, then clears the high bit of the character
and stores the resulting value in POSN.
his resulting true ASCII value will be used shortly to calculate the needed

position in our character table, so lines 28 and 29 store a 0 in the high-order-byte
position ofPOSN. Because 96 characters times 8 bytes each will require a table
768 ($300) bytes long, POSN will have to be able to include a two-byte value. hus
lines 28 and 29 take this opportunity to set the high byte ofPOSN to 0 now in
anticipation of future calculations.
Another bit of programming technique appears on lines 30 and 31. Because

the Apple assumes that all output routines will leave all of the registers (X, Y,

]

308 Assembly Lines

and A) unaltered, we must save the Y-Register so as to be able to restore it to its
original condition later on exit. To avoid having to use another zero-page loca-
tion for this, we’ve delayed saving the Y-Register until now so that its value can
be put in the Accumulator and then pushed onto the stack. Prior to saving the
character value inPOSN, any attempt to put Y in the Accumulator would have
erased the value for the character we wanted to print.
Now for the calculation phase. he irst step is to subtract 32 from the ASCII

value in preparation for calculating the table position. Lines 33 through 36 do
this. he next step is to multiply by 8 to get the relative position in the table. For-
tunately, 8 is an easy number by which to multiply. You may remember from
earlier chapters that a le!-shi! operation is equivalent to multiplying by 2.
herefore, all we need do is shi! le! three times to get the efect of multiplying
by 8 (2 × 2 × 2 = 8).
Normally, because POSN is a two-byte value, each shi! would have to be a set

ofASLs andROLs. However, because we know we’re starting with a value less
than 96, we know the irst shi! cannot possibly give a result greater than 256. In
looking at lines 37 through 41, you can see that line 37 does the irst multiply by
2. It is then lines 38 through 41 that do the two-byte shi!s to get the inal result.
Remember also that anASL puts the bit pushed out the end into the carry lag.
hat allows ROL to pick up the carry when shi!ing the high-order byte.
Consider the example in the table below to see how the shi!s work. he let-

ter A has an ASCII value of$41 (65 decimal). A!er subtracting$20 (32 decimal)
we’ll have a result of$21 (33 decimal). A!er multiplying by 8, we should get a
result of $108 (264 decimal).

Program Command POSN+1 (hex)POSN (hex) POSN+1 Carry POSN
36: Start

37: ASL POSN

38: ASL POSN

39: ROL POSN+1

40: ASL POSN

41: ROL POSN+1

$00

$00

$00

$00

$00

$01

$21

$42

$84

$84

$08

$08

%0000 0000

%0000 0000

%0000 0000

%0000 0000

%0000 0000

%0000 0001

0

0

0

0

1

0

%0010 0001

%0100 0010

%1000 0100

%1000 0100

%0000 1000

%0000 1000

Once the multiplication by 8 has been done, the only thing remaining is to
take the relative ofset position determined and add that to the base address of
the table. In this case, we will assume that the table has been loaded at$9000
(and presumably protected by setting HIMEM: 36864).
Once the table position is calculated, the screen byte to be modiied must be

calculated as well. his is done byCALC2. Lines 53 through 59 take the contents
ofBASL,BASH and add$1Cxx to that, wherexx is the value ofCH at that point.
Adding$1C00 gives the base address of the hi-res screen line corresponding to
the current text-page line. We could have used the Y-Register forCH, but that
would have prevented us from easily using the Y-Register to index the character
table data. herefore, we addCH to make BASL, BASH the address of the irst hi-res

31. Hi-Res Character Generator 309

screen byte to be modiied. Note that an added advantage of this approach is that
HTAB andVTAB commands will continue to work on the hi-res page. Scrolling,
however, will not be available.

GETBYTE (line 61) is the section responsible for putting the character on the
hi-res screen. his is done in a number of stages. he irst step is to set the Y-
Register to#$00 to prepare to retrieve the data bytes from the table.G1 then
starts the retrieval loop by getting the irst byte of the character from the table
and storing it on the hi-res screen.
Now here’s where it gets interesting. Normally, the next steps would be to

increment Y to get the next character from the table, and to also add$400 to the
POSN value to access the next horizontal line on the screen. he problem is that,
if Y changes, we won’t access the line directly below the one we just modiied,
but rather one byte to the right of where we want to be.
he solution is to add$3FF, rather than$400, toPOSN. hat way the value of

POSN will grow in a way compatible with the increased value of the Y-Register.
his part of the listing is worth studying until you understand the concept. It
saves a lot of needless storing of the Y-Register and hence needless extra time
and memory usage. he technique can be applied to many other situations as
well.
Once the entire eight bytes have been put on the hi-res screen, lines 78

through 81 restore the Accumulator to the value of the original character to be
printed and the Y-Register to its original value. he jump toCOUT1 ($FDF0) is
then done to complete the printing to the normal text screen. he advantages of
this were discussed earlier (maintenance of BASL, BASH, CV, and so on).

A Hi-Res Character Set

he way to use the character generator is to load the assembled binary rou-
tine at$300 (768 decimal). In an Appleso! program, you would then execute an
HGR command, followed by a CALL 768 to activate the routine.
If you were to use the routine entirely from assembly language, you would

have to callHGR directly. See chapter 19 for more information on calling the hi-
res subroutines.
here is, however, one minor detail still missing. hat is the table that we

assumed existed at$9000. Since you don’t yet have a means of easily creating
your own character set, you’ll need a table to use.
his data, although lengthy, will provide you with a complete character set

to be loaded at$9000. Although it will take a while to enter the data, it will prob-
ably be a little easier than creating each character with an editor, although you
will have that opportunity in the next chapter.

]

310 Assembly Lines

 1 ********************************

 2 * AL31-ASCII CHARACTER SET *

 3 ********************************

 4 *

 5 ORG $9000

 6 *

9000: 00 00 00 00 00 00 00 00 7 HEX 0000000000000000 ; SPACE

9008: 08 08 08 08 08 00 08 00 8 HEX 0808080808000800 ; !

9010: 14 14 14 00 00 00 00 00 9 HEX 1414140000000000 ; "

9018: 14 14 3E 14 3E 14 14 00 10 HEX 14143E143E141400 ; #

9020: 08 3C 0A 1C 28 1E 00 00 11 HEX 083C0A1C281E0800 ; $

9028: 06 26 10 08 04 32 30 00 12 HEX 0626100804323000 ; %

9030: 04 0A 0A 04 2A 12 2C 00 13 HEX 040A0A042A122C00 ; &

9038: 0B 00 06 00 00 00 00 00 14 HEX 0808080000000000 ; ’

9040: 08 04 02 02 02 04 08 00 15 HEX 0804020202040800 ; (

9048: 08 10 20 20 20 10 08 00 16 HEX 0810202020100800 ;)

9050: 08 2A 1C 08 1C 2A 08 00 17 HEX 082A1C081C2A0800 ; *

9058: 00 08 08 3E 08 08 00 00 18 HEX 0008083E08080000 ; +

9060: 00 00 00 00 00 00 08 04 19 HEX 0000000000000804 ; ,

9068: 00 00 00 3E 00 00 00 00 20 HEX 0000003E00000000 ; -

9070: 00 00 00 00 00 00 08 00 21 HEX 0000000000000800 ; .

9078: 00 20 10 08 04 02 00 00 22 HEX 0020100804020000 ; /

9080: 1C 22 32 2A 26 22 1C 00 23 HEX 1C22322A26221C00 ; 0

9088: 08 0C 08 00 08 08 1C 00 24 HEX 080C080808081C00 ; 1

9090: 1C 22 20 18 04 02 3E 00 25 HEX 1C22201804023E00 ; 2

9098: 3E 20 10 18 20 22 1C 00 26 HEX 3E20101820221C00 ; 3

90A0: 10 18 14 12 3E 10 10 00 27 HEX 101814123E101000 ; 4

90A8: 3E 02 1E 20 20 22 1C 00 28 HEX 3E021E2020221C00 ; 5

90B0: 18 04 02 1E 22 22 1C 00 29 HEX 1804021E22221C00 ; 6

90B8: 3E 20 10 08 04 04 04 00 30 HEX 3E20100804040400 ; 7

90C0: 1C 22 22 1C 22 22 1C 00 31 HEX 1C22221C22221C00 ; 8

90C8: 1C 22 22 3C 20 10 0C 00 32 HEX 1C22223C20100C00 ; 9

90D0: 00 00 08 00 08 00 00 00 33 HEX 0000080008000000 ; :

90D8: 00 00 08 00 08 08 04 00 34 HEX 0000080008080400 ; ;

90E0: 10 08 04 02 04 08 10 00 35 HEX 1008040204081000 ; <

90E8: 00 00 3E 00 3E 00 00 00 36 HEX 00003E003E000000 ; =

90F0: 04 08 10 20 10 08 04 00 37 HEX 0408102010080400 ; >

90F8: 10 22 10 08 08 00 08 00 38 HEX 1C22100808000800 ; ?

9100: 1C 22 2A 3A 1A 02 3C D0 39 HEX 1C222A3A1A023CD0 ; @

9108: 08 14 22 22 3E 22 22 00 40 HEX 081422223E222200 ; A

9110: 10 22 22 1E 22 22 1E 00 41 HEX 1E22221E22221E00 ; B

9118: 1C 22 02 02 02 22 1C 00 42 HEX 1C22020202221C00 ; C

9120: 1E 22 22 22 22 22 1E 00 43 HEX 1E22222222221E00 ; D

9128: 3E 02 02 1E 02 02 3E D0 44 HEX 3E02021E02023E00 ; E

9130: 3E 02 02 1E 02 02 02 00 45 HEX 3E02021E02020200 ; F

9138: 3C 02 02 02 32 22 3C 00 46 HEX 3C02020232223C00 ; G

9140: 22 22 22 3E 22 22 22 00 47 HEX 2222223E22222200 ; H

9148: 1C 08 06 08 08 08 1C 00 48 HEX 1C08080808081C00 ; I

9150: 20 20 20 20 20 22 1C 00 49 HEX 2020202020221C00 ; J

9158: 22 12 0A 06 0A 12 22 00 50 HEX 22120A060A122200 ; K

9160: 02 02 02 02 02 02 3E 00 51 HEX 0202020202023E00 ; L

9168: 22 36 2A 2A 22 22 22 00 52 HEX 22362A2A22222200 ; M

9170: 22 22 26 2A 32 22 22 00 53 HEX 2222262A32222200 ; N

9178: 1C 22 22 22 22 22 1C 00 54 HEX 1C22222222221C00 ; O

9180: 1E 22 22 1E 02 02 02 00 55 HEX 1E22221E02020200 ; P

9188: 1C 22 22 22 2A 12 2C 00 56 HEX 1C2222222A122C00 ; Q

31. Hi-Res Character Generator 311

9190: 1E 22 22 1E 0A 12 22 00 57 HEX 1E22221E0A122200 ; R

9198: 1C 22 02 1C 20 22 10 00 58 HEX 1C22021C20221C00 ; S

91A0: 3E 08 03 08 03 08 08 00 59 HEX 3E08080808080800 ; T

91A8: 22 22 22 22 22 22 1C 00 60 HEX 2222222222221C00 ; U

91B0: 22 22 22 22 22 14 06 00 61 HEX 2222222222140800 ; V

91B8: 22 22 22 2A 2A 36 22 00 62 HEX 2222222A2A362200 ; W

91C0: 22 22 14 08 14 22 22 00 63 HEX 2222140814222200 ; X

91C8: 22 22 22 14 03 08 03 00 64 HEX 2222221408080800 ; Y

91D0: 3E 20 10 08 04 02 3E 00 65 HEX 3E20100804023E00 ; Z

91D8: 3E 06 06 0E 06 06 3E 00 66 HEX 3E06060606063E00 ; [

91E0: 00 02 04 06 10 20 00 00 67 HEX 0002040810200000 ; \

91E8: 3E 30 30 30 3D 30 3E 00 68 HEX 3E30303030303E00 ;]

91F0: 00 00 08 14 22 00 00 00 69 HEX 0000081422000000 ; ̂

91F8: 00 00 00 00 00 00 00 7F 70 HEX 000000000000007F ; _

9200: 04 08 10 00 00 00 00 00 71 HEX 0408100000000000 ; ’

9208: 00 00 1C 20 3C 22 3C 00 72 HEX 00001C203C223C00 ; a

9210: 02 02 1E 22 22 22 1E 00 73 HEX 02021E2222221E00 ; b

9218: 00 00 3C 02 02 02 3C 00 74 HEX 00003C0202023C00 ; c

9220: 20 20 3C 22 22 22 3C 00 75 HEX 20203C2222223C00 ; d

9228: 00 00 1C 22 3E 02 3C 00 76 HEX 00001C223E023C00 ; e

9230: 18 24 04 1E 04 04 04 00 77 HEX 1824041E04040400 ; f

9238: 00 00 1C 22 22 3C 20 1C 78 HEX 00001C22223C201C ; g

9240: 02 02 1E 22 22 22 22 00 79 HEX 02021E2222222200 ; h

9248: 08 00 0C 08 08 08 1C 00 80 HEX 08000C0808081C00 ; i

9250: 10 00 18 10 10 10 12 00 81 HEX 100018101010120C ; j

9258: 02 02 22 12 0E 12 22 00 82 HEX 020222120E122200 ; k

9260: 0C 03 08 0B 08 08 1C 00 83 HEX 0C08080808081C00 ; l

9268: 00 00 36 2A 2A 2A 22 00 84 HEX 0000362A2A2A2200 ; m

9270: 00 00 1E 22 22 22 22 00 85 HEX 00001E2222222200 ; n

9278: 00 00 1C 22 22 22 1C 00 86 HEX 00001C2222221C00 ; o

9280: 00 00 1E 22 22 1E 02 02 87 HEX 00001E22221E0202 ; p

9288: 00 00 3C 22 22 3C 20 20 88 HEX 00003C22223C2020 ; q

9290: 00 00 3A 06 02 02 02 00 89 HEX 00003A0602020200 ; r

9298: 00 00 3C 02 1C 20 1E 00 90 HEX 00003C021C201E00 ; s

92A0: 04 04 1E 04 04 24 18 00 91 HEX 04041E0404241800 ; t

92A8: 00 00 22 22 22 32 2C 00 92 HEX 0000222222322C00 ; u

92B0: 00 00 22 22 22 14 08 00 93 HEX 0000222222140800 ; v

92B8: 00 00 22 22 2A 2A 36 00 94 HEX 000022222A2A3600 ; w

92C0: 00 00 22 14 08 14 22 00 95 HEX 0000221408142200 ; x

92C8: 00 00 22 22 14 08 08 06 96 HEX 0000222214080806 ; y

92D0: C0 00 3E 10 08 04 3E 00 97 HEX 00003E1008043E00 ; z

92D8: 38 0C 0C 06 0C 0C 30 00 98 HEX 380C0C060C0C3800 ; {

92E0: 08 0B 03 08 08 08 08 08 99 HEX 0808080808080808 ; |

92E8: 0E 18 1B 30 18 18 0E 00 100 HEX 0E18183018180E00 ; }

92F0: 2C 1A 00 00 00 00 00 00 101 HEX 2C1A000000000000 ; ~

92F8: 7F 7F 7F 7F 7F 7F 7F 7F 102 HEX 7F7F7F7F7F7F7F7F ; CURSOR

9300: 6F 103 CHK

As a side note, this is an odd program in that it doesn’t actually do anything.
It just creates a data table. Assemble it anyway and save the object code under
the name AL31.ASCII.

]

312 Assembly Lines

To test all of this out, you can use this simple Appleso! program.1 You
probably should verify that you can at least get this much to work before diving
in and trying to use the routines from within your own assembly-language pro-
grams.

10 PRINT CHR$(21): REM 40-COLUMN

20 PRINT "CHAR TABLE FILE, <RETURN> FOR DEFAULT": INPUT A$

30 IF LEN(A$) = 0 THEN A$ = "AL31.ASCII"

40 PRINT CHR$(4); "BLOAD "; A$

50 PRINT CHR$(4); "BLOAD AL31.CHARGEN,A$300

60 HGR: HCOLOR= 3

70 HPLOT 0,0 TO 279,0

80 HPLOT TO 279,159

90 HPLOT TO 0,159

100 HPLOT TO 0,0: REM DRAW FRAME

110 REM IF DOS 3.3 THEN SET UP CSW VECTOR

120 IF PEEK(1002) = 76 THEN CALL 768: GOTO 150

130 REM IF PRODOS, SET UP OUTPUT LINK AT $BE30,31

140 POKE 48688,11: POKE 48689,3

150 VTAB 1: HTAB 10

160 PRINT "HI-RES CHARACTER GENERATOR"

170 END

180 REM USE RESET OR PR#0 TO TURN OFF

Conclusion

At this point you should feel fairly comfortable with the idea of how a hi-res
character generator works. he ideas presented here rely heavily on a general
degree of familiarity with a variety of techniques discussed in earlier chapters,
speciically, output vector use and interception, memory mapping of the hi-res
and text screens, and of course general techniques of assembly-language pro-
gramming. If you are having diiculty in any of these areas, you may wish to
review previous chapters.
All in all, you should ind the approach shown here to be much easier than

you irst thought. he similarities between the text and hi-res screens greatly
reduce the amount of diiculty in creating a character generator.
In the next chapter, we’ll develop a character editor to create your own hi-

res character fonts (the term used for the character design), and also take a brief
look at how hi-res graphics in arcade-style games can take advantage of these
same techniques to create a wide variety of efects.

1[CT] ForProDOS, we manually change the output vector at$BE30,$BE31 to point to
ENTRY ($30B). See footnote 1 in chapter 29 for more discussion.

32. Hi-Res Character Editor
May 1983

In the previous chapter we presented a listing for a hi-res character genera-
tor along with the theory behind its operation. he generator used an existing
character set, loaded at location$9000 in memory, and contained the data for 96
ASCII characters.
To create your own character set, all that is needed is a utility for editing the

existing character set and creating the new font, or character design, that you
desire.
Before presenting the listing for the character editor, consider for a moment

the information and techniques that must be provided for. his is a very impor-
tant part of solving any problem, programming or otherwise, and is instrumen-
tal in directing and clarifying one’s thought processes.
In discussing the character set, you’ll recall that each character is repre-

sented by a series of eight bytes in the table, and that each dot in the character
image is represented by a bit within one of those bytes. he irst two considera-
tions, therefore, are how to address the series of bytes that correspond to a given
ASCII character and how to identify and alter the bit corresponding to the par-
ticular dot in the character image that we wish to modify.
In editing each character, we will want to be able to turn a given bit on or of

(set it to 1 or 0) and to move a cursor from one bit to another. You’ll also recall
from the previous chapter that each byte of the character’s data corresponds to
one line of its image on the screen. Within each byte, seven bits are used to map
the seven screen dots used to generate a given line of a character.
When we edit the individual screen dots, it would be nice if we could use the

standard arrow keys to move the cursor around in a box containing the charac-
ter image.
Speaking of the character box, some thought will have to be given to how

the entire character itself will be displayed. We could just print the character on-
screen each time a modiication is done, but because of the small size this would
become tedious a!er a while, A better approach would be to display a magniied
image of the character, upon which our cursor can be positioned to edit any par-
ticular bit in the overall image.
To use the editor, we’ll also have to be able to specify which character we

want to edit, and then later to signify that we are done. To keep things simple,

]

32

314 Assembly Lines

we’ll select a character by pressing the equivalent key and store the completed
image back in the character table when <RETURN> is pressed.
Loading and saving of the complete table is not provided for in the editor

but can be accomplished easily from the immediate mode with BLOAD and BSAVE.
More on that later.
Here, then, is the complete listing, which will be explained in detail.1 See

you at the bottom!

 1 ********************************

 2 * AL32-CHARACTER EDITOR *

 3 * 2/7/1983 *

 4 ********************************

 5 ORG $8000

 6 CSW EQU $36

 7 BASL EQU $28

 8 CV EQU $25

 9 CH EQU $24

 10 CR EQU $06

 11 CC EQU $07

 12 MASK EQU $08

 13 CHR EQU $09

 14 TABLE EQU $9000

 15 POSN EQU $3C ; (BAS2)

 16 SCRN EQU $3E ; (A4)

 17 VECT EQU $3EA

 18 COUT EQU $FDED

 19 COUT1 EQU $FDF0

 20 HGR EQU $F3E2

 21 HCOLOR EQU $F6F0

 22 HPLOT EQU $F457

 23 HLIN EQU $F53A

 24 X1 EQU $22 ; 34

 25 X2 EQU $54 ; 84

 26 Y1 EQU $17 ; 23

 27 Y2 EQU $58 ; 88

 28 VTAB EQU $FC22

 29 RDKEY EQU $FD0C

 30 BELL EQU $FBDD

 31 B1 EQU %10101010

 32 B2 EQU %01010101

 33 *

 34 CURDAT EQU $FFFF

 35 *

8000: A9 81 36 HOOK LDA #HCOUT ; PRODUCES LOW BYTE

8002: 85 36 37 STA CSW

8004: A9 81 38 LDA #>HCOUT ; #> PRODUCES HIGH BYTE

8006: 85 37 39 STA CSW+1

8008: 4C DD FB 40 JSR VECT

 41 *

800B: 20 E2 F3 42 ENTRY JSR HGR

800E: A9 00 43 LDA #$00

8010: 85 06 44 STA CR ; CR=0

1[CT] Lines 210 and 218−222 were modiied to allow you to press <CTRL>Q to quit.

32. Hi-Res Character Editor 315

8012: 85 07 45 STA CC ; CC=0

8014: EA 46 TITLE NOP

 47 *

8015: A9 03 48 CHRLIST LDA #$03

8017: 85 25 49 STA CV

8019: 20 22 FC 50 JSR VTAB

801C: A2 20 51 START LDX #$20

801E: 8A 52 CH2 TXA

801F: 29 0F 53 AND #%00001111 ; 2̂4 - 1

 54 * RESULT = VALUE MOD 16

8021: D0 09 55 BNE CONT ; NOT MULT OF 16

8023: A9 8D 56 LDA #$8D

8025: 20 ED FD 57 JSR COUT ; PRINT RETURN

8028: A9 14 58 LDA #$14 ; MARGIN FOR NEW LINE

802A: 85 24 59 STA CH

802C: 8A 60 CONT TXA ; RESTORE CHAR

802D: 09 80 61 ORA #$80 ; SET HI BIT

802F: 20 ED FD 62 JSR COUT ; PRINT CHAR

8032: E8 63 NEXTC INX

8033: E0 80 64 CPX #$80

8035: 90 E7 65 BCC CH2

 66 *

8037: A2 03 67 MATDSP LDX #$03

8039: 20 F0 F6 68 JSR HCOLOR

803C: A2 22 69 BOX LDX #X1 ; LOW BYTE

803E: A0 00 70 LDY #>X1 ; HIGH BYTE

8040: A9 17 71 LDA #Y1

8042: 20 57 F4 72 JSR HPLOT ; PLOT X1,Y1

8045: A9 54 73 LDA #X2

8047: A2 00 74 LDX #>X2

8049: A0 17 75 LDY #Y1

804B: 20 3A F5 76 JSR HLIN ; TO X2,Y1

804E: A9 54 77 LDA #X2

8050: A2 00 78 LDX #>X2

8052: A0 58 79 LDY #Y2

8054: 20 3A F5 80 JSR HLIN ; TO X2,Y2

8057: A9 22 81 LDA #X1

8059: A2 00 82 LDX #>X1

805B: A0 58 83 LDY #Y2

805D: 20 3A F5 84 JSR HLIN ; TO X1,Y2

8060: A9 22 85 LDA #X1

8062: A2 00 86 LDX #>X1

8064: A0 17 87 LDY #Y1

8066: 20 3A F5 88 JSR HLIN ; TO X1,Y1

8069: A9 03 89 MATD2 LDA #$03

806B: 85 25 90 STA CV

806D: 20 22 FC 91 JSR VTAB

8070: A0 00 92 GETROW LDY #$00

8072: A9 05 93 GR1 LDA #$05

8074: 85 24 94 STA CH

8076: B9 69 81 95 LDA MAT,Y

8079: A2 00 96 SCAN LDX #$00

807B: 4A 97 S1 LSR

807C: 48 98 PHA ; SAVE RESULT

807D: A9 A0 99 LDA #$A0 ; SPACE

807F: 90 02 100 BCC PRINTM

]

316 Assembly Lines

8081: A9 FF 101 LDA #$FF

8083: 20 ED FD 102 PRINTM JSR COUT

8086: 68 103 PLA ; RESTORE ACCUM

8087: E8 104 NXTBIT INX

8088: E0 07 105 CPX #$07

808A: 90 EF 106 BCC S1

808C: A9 8D 107 LDA #$8D ; RETURN

808E: 20 ED FD 108 JSR COUT

8091: C8 109 NXTROW INY

8092: C0 08 110 CPY #$08

8094: 90 DC 111 BCC GR1

 112 *

8096: 18 113 CURSOR CLC

8097: A5 06 114 LDA CR ; CURSOR ROW

8099: 69 03 115 ADC #$03

809B: 85 25 116 STA CV

809D: 20 22 FC 117 JSR VTAB

80A0: 18 118 CLC

80A1: A5 07 119 LDA CC ; CURSOR COLUMN

80A3: 69 05 120 ADC #$05

80A5: 85 24 121 STA CH

 122 *

80A7: 20 C2 81 123 CURCALC JSR SCRNCALC

80AA: A4 06 124 STATUS LDY CR

80AC: B9 69 81 125 LDA MAT,Y

80AF: A6 07 126 LDX CC

80B1: 4A 127 ST1 LSR

80B2: CA 128 DEX

80B3: 10 FC 129 BPL ST1

80B5: 90 02 130 BCC CLEAR

80B7: B0 04 131 BCS SET

80B9: A9 00 132 CLEAR LDA #$00

80BB: F0 02 133 BEQ PRNTCURS

80BD: A9 08 134 SET LDA #$08

 135 *

80BF: 18 136 PRNTCURS CLC

80C0: 69 71 137 ADC #CURSDATA ; LOW BYTE

80C2: 85 3C 138 STA POSN

80C4: A9 00 139 LDA #$00

80C6: 69 81 140 ADC #>CURSDATA ; HIGH BYTE

80C8: 85 3D 141 STA POSN+1

 142 *

80CA: 20 D0 81 143 JSR PUTBYTE

80CD: 20 0C FD 144 CMD? JSR RDKEY

80D0: C9 A0 145 CMP #$A0

80D2: 90 12 146 BCC EDIT ; CTRL CHAR

80D4: 85 09 147 CHAR STA CHR

80D6: 20 9B 81 148 JSR POSNCALC

80D9: A0 07 149 LDY #$07

80DB: B1 3C 150 MOVE LDA (POSN),Y

80DD: 99 69 81 151 STA MAT,Y

80E0: 88 152 DEY

80E1: 10 F8 153 BPL MOVE

80E3: 4C 37 80 154 CHRX JMP MATDSP

 155 *

80E6: C9 8D 156 EDIT CMP #$8D ; RETURN

32. Hi-Res Character Editor 317

80E8: D0 14 157 BNE E1

80EA: A5 09 158 ACCEPT LDA CHR

80EC: 20 9B 81 159 JSR POSNCALC

80EF: A0 07 160 LDY #$07

80F1: B9 69 81 161 XFER LDA MAT,Y

80F4: 29 7F 162 AND #$7F ; CLEAR BIT 7

80F6: 91 3C 163 STA (POSN),Y

80F8: 88 164 DEY

80F9: 10 F6 165 BPL XFER

80FB: 4C 15 80 166 XFX JMP CHRLIST

 167 *

80FE: C9 9B 168 E1 CMP #$9B ; ESCAPE

8100: D0 18 169 BNE E2

8102: 38 170 TOGGLE SEC

8103: A6 07 171 LDX CC

8105: A9 00 172 LDA #$00

8107: 2A 173 SHFT ROL

8108: CA 174 DEX

8109: 10 FC 175 BPL SHFT

810B: 85 08 176 STA MASK

810D: A4 06 177 LDY CR

810F: B9 69 81 178 LDA MAT,Y

8112: 45 08 179 EOR MASK

8114: 99 69 81 180 STA MAT,Y

8117: 4C 37 80 181 TGX JMP MATDSP

 182 *

811A: C9 8B 183 E2 CMP #$8B ; <CTRL>K

811C: D0 0B 184 BNE E3

811E: C6 06 185 UP DEC CR

8120: 10 04 186 BPL UPX

8122: A9 07 187 LDA #$07

8124: 85 06 188 STA CR

8126: 4C 37 80 189 UPX JMP MATDSP

 190 *

8129: C9 8A 191 E3 CMP #$8A ; <CTRL>J

812B: D0 0F 192 BNE E4

812D: E6 06 193 DOWN INC CR

812F: A5 06 194 LDA CR

8131: C9 08 195 CMP #$08

8133: 90 04 196 BCC DX

8135: A9 00 197 LDA #$00

8137: 85 06 198 STA CR

8139: 4C 37 80 199 DX JMP MATDSP

 200 *

813C: C9 88 201 E4 CMP #$88 ; <CTRL>H

813E: D0 0B 202 BNE E5

8140: C6 07 203 LEFT DEC CC

8142: 10 04 204 BPL LX

8144: A9 06 205 LDA #$06

8146: 85 07 206 STA CC

8148: 4C 37 80 207 LX JMP MATDSP

 208 *

814B: C9 95 209 E5 CMP #$95 ; <CTRL>U

814D: D0 0F 210 BNE E6 ; [CT] CHECK FOR QUIT

814F: E6 07 211 RIGHT INC CC

8151: A5 07 212 LDA CC

]

318 Assembly Lines

8153: C9 07 213 CMP #$07

8155: 90 04 214 BCC RX

8157: A9 00 215 LDA #$00

8159: 85 07 216 STA CC

815B: 4C 37 80 217 RX JMP MATDSP

815E: C9 91 218 E6 CMP #$91 ; [CT] <CTRL>Q TO QUIT

8160: D0 01 219 BNE ERR ; UNKNOWN CTRL CHAR

8162: 60 220 QUIT RTS ; [CT] QUIT PROGRAM

8163: 20 DD FB 221 ERR JSR BELL

8166: 4C CD 80 222 JMP CMD?

8169: 55 AA 55 223 MAT DFB B2,B1,B2,B1,B2,B1,B2,B1 ; WORKAREA

816C: AA 55 AA 55 AA

 224 *

8171: 7F 225 CURSDATA DFB %01111111

8172: 41 226 DFB %01000001

8173: 41 227 DFB %01000001

8174: 41 228 DFB %01000001

8175: 41 229 DFB %01000001

8176: 41 230 DFB %01000001

8177: 41 231 DFB %01000001

8178: 7F 232 DFB %01111111

 233 *

8179: 00 234 DFB %00000000

817A: 3E 235 DFB %00111110

817B: 3E 236 DFB %00111110

817C: 3E 237 DFB %00111110

817D: 3E 238 DFB %00111110

817E: 3E 239 DFB %00111110

817F: 3E 240 DFB %00111110

8180: 00 241 DFB %00000000

 242 *

8181: C9 A0 243 HCOUT CMP #$A0

8183: 90 13 244 BCC OUT ; DON’T PRINT CTRL CHARS

8185: 48 245 PHA ; STORE CHAR

8186: 85 3C 246 STA POSN

8188: 98 247 TYA

8189: 48 248 PHA ; SAVE Y

 249 *

818A: A5 3C 250 CALC1 LDA POSN ; GET CHAR

818C: 20 9B 81 251 JSR POSNCALC

 252 *

818F: 20 C2 81 253 CALC2 JSR SCRNCALC

 254 *

8192: 20 D0 81 255 PRINT JSR PUTBYTE

 256 *

8195: 68 257 PLA

8196: A8 258 TAY ; RESTORE Y

8197: 68 259 PLA ; RESTORE CHAR

8198: 4C F0 FD 260 OUT JMP COUT1

 261 *

819B: 29 7F 262 POSNCALC AND #$7F ; CLEAR HI BIT

819D: 85 3C 263 STA POSN

819F: A9 00 264 LDA #$00

81A1: 85 3D 265 STA POSN+1

81A3: 38 266 SEC

81A4: A5 3C 267 LDA POSN

32. Hi-Res Character Editor 319

81A6: E9 20 268 SBC #$20

81A8: 85 3C 269 STA POSN ; CHR < 96

81AA: 06 3C 270 ASL POSN ; *2 = CHR < 192

81AC: 06 3C 271 ASL POSN ; *4 < 384

81AE: 26 3D 272 ROL POSN+1

81B0: 06 3C 273 ASL POSN ; *8 < 768

81B2: 26 3D 274 ROL POSN+1

 275 *

 276 * POSN = (ASC - $20) * 8 BYTES PER CHAR

 277 *

81B4: 18 278 CLC

81B5: A9 00 279 LDA #TABLE ; LOW BYTE

81B7: 65 3C 280 ADC POSN

81B9: 85 3C 281 STA POSN

81BB: A9 90 282 LDA #>TABLE ; HIGH BYTE

81BD: 65 3D 283 ADC POSN+1

81BF: 85 3D 284 STA POSN+1 ; POSN = POSN + TABLE ADDR

81C1: 60 285 RTS

 286 *

81C2: 18 287 SCRNCALC CLC ; ENTER WITH BASL,CH SET UP

81C3: A5 28 288 LDA BASL

81C5: 65 24 289 ADC CH

81C7: 85 3E 290 STA SCRN

81C9: A5 29 291 LDA BASL+1

81CB: 69 1C 292 ADC #$1C

81CD: 85 3F 293 STA SCRN+1 ; SCRN = BASL + CH + $1C00

81CF: 60 294 RTS

 295 *

81D0: A0 00 296 PUTBYTE LDY #$00 ; ENTER WITH POSN,SCRN SET UP

81D2: B1 3C 297 G1 LDA (POSN),Y

81D4: 91 3E 298 STA (SCRN),Y

81D6: C8 299 INC INY

81D7: 18 300 CLC

81D8: A5 3E 301 LDA SCRN

81DA: 69 FF 302 ADC #$FF

81DC: 85 3E 303 STA SCRN

81DE: A5 3F 304 LDA SCRN+1

81E0: 69 03 305 ADC #$03

81E2: 85 3F 306 STA SCRN+1 ; SCRN = SCRN + $3FF

 307 * $3FF TO MAKE UP FOR GROWING VALUE

 308 * OF 'Y'

 309 *

81E4: C0 08 310 DONE? CPY #$08

81E6: 90 EA 311 BCC G1 ; NO

81E8: 60 312 YES RTS

81E9: E7 313 CHK

A!er assembling the listing,BLOAD the character set from chapter 31 at loca-
tion$9000. henBLOAD the character editor at$8000 (do notBRUN) and type
CALL 32768 from Appleso! or8000G from the Monitor (Appleso! must be the
selected language).2

2[CT] An example BASIC program is given at the end of the chapter.

]

320 Assembly Lines

When the program is called, the screen will clear and a box with a matrix
pattern inside it will appear, along with the complete character set loaded at
$9000. If the characters appear scrambled, recheck to make sure you have loaded
the character set properly at $9000.
To select a character to edit, simply press any non-control key. An enlarged

image of that character should appear in the box. To move the editing cursor
around, use the le! and right arrows to move le! and right, and<CTRL>J and
<CTRL>K to move up and down. If you have anApple //e, the four directional
arrows will also work. Even on a standard Apple II, you may ind it easier to hold
down the <CTRL> key with the little inger of your le! hand and then press the H,
U, J, and K keys with your right hand to move around.
Pressing<ESCAPE> will toggle bits in the character on and of. To save a

character back to the table, press<RETURN>. If you want to start over with a char-
acter, simply press the original letter key again.
To save the altered table back to disk, simply press <CTRL>Q, and then type:

BSAVE TABLENAME, A$9000, L$300

You can replaceTABLENAME with any name you wish to give the new charac-
ter set.

How it Works

Although the listing looks rather long, don’t be discouraged. As it happens,
much of the listing consists of routines that were presented in earlier chapters.
For example, lines 243 through 313 (HCOUT) are the character generator that was
described in chapter 31.
To see how the editor works, let’s irst consider this overview of the pro-

gram:

HOOK: Hooks up the character generator,HCOUT, to the output vectors so that the
hi-res characters can be printed.

ENTRY: Clears the hi-res screen and initializes the column and row counters to 0.

CHRLIST: Prints all 96 ASCII characters to the screen. We’ll examine part of the
process in detail shortly.

MATDSP: Draws the matrix pattern to indicate where the character will be edited.
his is also the entry point for the editing loop for each character. his sec-
tion can be broken down as follows:

BOX: he Appleso! hi-res routines are used to draw a box with four straight
lines. his forms the boundary of the matrix area.

32. Hi-Res Character Editor 321

GETROW: Each byte of the matrix pattern is retrieved here, a!er whichSCAN
will process and display the individual bits.

SCAN: his section shi!s each bit of the row into the carry and, depending on
whether it’s set, displays a solid or an empty block.

NXTROW : Increments the row counter (the Y-Register) until all eight rows
have been displayed.

CURSOR: Calculates the current cursor position usingCC (Cursor Column)
and CR (Cursor Row).

CURCALC: his part, along withPRNTCURS, determines whether the bit at the
cursor position is set. If it is set, a white cursor is printed; if not, an outline
of the cursor is displayed.

CMD?: At this point we are ready to get a command from the keyboard. he gen-
eral theory is to refresh the screen with the routines inMATDSP each time a
command is entered. hat way we don’t have to update only part of the
screen speciically.

If a control character is entered, it is assumed that it will either be a direc-
tional key or <RETURN>, so control is passed to EDIT.

If a non-control character is entered, it is assumed that this is a character to
be edited.MOVE then retrieves the eight bytes for that character and moves
them to the work area (MAT).

EDIT: If the user presses<RETURN>,ACCEPT will store the character data back in
the table. If<ESCAPE> is pressed, the selected bit within the byte for that row
will be toggled.

If one of the directional keys is pressed, the position countersCC andCR are
adjusted accordingly.

Pressing a control key other than the legal command characters will gener-
ate aBELL sound. In any case, a!er a key is entered, a jump is made back to
MATDSP to start the process over again.

And Now with the Magnifying Glass

he preceding overview showed in general how the editor works. Now we’ll
spend a little more time examining the particular techniques used in each rou-
tine. Some of the routines taken from earlier chapters will not be described in as
much detail as those presented here for the irst time. You may wish to refer to
previous sections if some parts seem diicult. To help you scan through to just
the parts that interest you, each section is keyed to the preceding overview.

]

322 Assembly Lines

HOOK

By storing the address of theHCOUT routine inCSW and then callingVECT
($3EA), all future output will pass through the HCOUT routine, allowing us to print
the hi-res characters on the screen.

ENTRY

his is the main entry point to the editor; it serves to clear the hi-res screen
and initialize the column and row position of the cursor to 0, 0 (upper-le! cor-
ner of the matrix).

CHRLIST

To display all of the existing characters,CHRLIST loops through the values
$20 through$7F (32 through 127 = 96 characters). Because we can’t print 96
characters on one line, some sort of aesthetic placement is desirable. he format
chosen was a group of 6 lines of 16 characters each.

START is the beginning of this loop (X-Register set to$20), andCH2 is the
top of the printing loop. An interesting problem here is how to determine each
time we have printed 16 characters. A separate counter could have been kept,
but if it were possible to do a modulo function we could just test for our current
character counter for multiples of 16. Because modulo returns the remainder of
a division, we would expect a result of 0 each time the counter was at a multiple
of 16 or, in other words, had just inished another line of 16 characters.
As it happens, the AND instruction can be used to perform the equivalent of a

modulo for any power of 2. he technique is to do anAND with the value you
want minus 1. Because 16 is a power of 2 (24 = 16), we need only do anAND #$0F
followed by a BNE to test for each completed line of 16 characters.
If a line has been inished, a carriage return is printed, followed by the

equivalent of an HTAB 20.
Notice that as each character is printed the high bit is set with anORA #$80.

his is to makeCOUT happy, as it always expects the high bit to be set on charac-
ters to be printed.

MATDSP

his section begins the part that creates the matrix display used in editing
the individual characters. his section will be executed each time a command
character is entered.
he irst part,BOX, draws a box outlining the character image using the

Appleso! HLIN routines.
Once the box is drawn, the individual bytes must be displayed with the sta-

tus of each bit indicated. he algorithm is to scan through each bit position,
printing a space if the bit is clear and printing a rubout ($FF) if the bit is set. In
the previous chapter’s character table, a rubout was a solid block, so this

32. Hi-Res Character Editor 323

approach should work. (Note that if you edit the space or the rubout character,
the matrix pattern will be altered accordingly.)
here are a total of eight bytes to be retrieved and displayed for each charac-

ter.GR1 is the section that does the equivalent of anHTAB 5 (for proper screen
placement) and then loads a byte from the work areaMAT (see line 225). Once a
byte is retrieved,SCAN uses theLSR instruction to shi! a bit into the carry lag. If
the carry is set, a rubout ($FF) is printed; otherwise a space ($A0) is printed.
Because the Accumulator will be used to print a character viaCOUT, the

shi!ed byte is preserved by pushing it onto the stack on line 98 and later pulling
it back of on line 103.
A!er each seven bits are “printed,” a carriage return is printed on lines 107

and 108 and the loop is repeated until all eight bytes have been displayed.

CURSOR

Once the character matrix has been displayed, we need to display the cursor.
Lines 115 through 123 use the cursor row and column (CR andCC) to calculate
theHTAB, VTAB position. Remember that since we are mirroring actions taken on
the text page we can also use the text page as a frame of reference for hi-res
screen operations.

STATUS is used to read the particular bit that corresponds to the current cur-
sor position. Note thatCR (Cursor Row) conveniently is equal to whichever byte
in the individual character deinition we will need to read, and thatCC (Cursor
Column) determines how many bits need to be shi!ed out to put the one of
interest into the carry lag. Depending on whether the bit is clear or set, the
Accumulator will be loaded with a$00 or$08, the purpose of which will become
immediately obvious.

PRNTCURS

Since CH and CV ($24, $25) have been set up, we can use a special form of the
HCOUT routine, called PRNTCURS, to print a smaller block or a block outline. You’ll
notice that the hi-res character generator atHCOUT has been modiied slightly to
use the pointerPOSN ($3C,$3D) to point to the data table. Our original character
generator always assumed that the table would be at$9000. NormallyHCOUT sets
POSN to point at $9000 on lines 278 through 285.
WithPOSN set up to point at a special two-character deinition table on lines

227 through 243, thePUTBYTE routine will do the equivalent of printing one of
the two necessary special characters at the cursor position.
You may wish to compare theHCOUT routine contained in the editor with

the previous chapter’s character generator to see what changes have been made
to facilitate the calling by the PRNTCURS routine.
An interesting digression: By avoidingCOUT and writing to the screen

directly, we are on the verge of being able to do block shapes, a technique used in
many hi-res arcade-type games.

]

324 Assembly Lines

CMD?

he processing of the command characters is done in this section. he char-
acter is read from the keyboard using the Monitor routineRDKEY ($FD0C). his
routine will place the ASCII value for the key pressed into the Accumulator.
he irst major distinction to be made is whether a control character has

been pressed. Lines 145 and 146 do this, forwarding any control characters to the
EDIT section.
If a non-control character has been pressed, the user wants to edit that char-

acter. CHAR andMOVE use the ASCII value of the key pressed to calculate the posi-
tion of the data of that character in the table, then move that data into the work
area,MAT. A!er the move, a jump is made back toMATDSP to refresh the display
with the new character and to get the next command key.

EDIT

If a control key is pressed, one of a number of functions must be performed.
We will consider these in the order they are executed.
Return: his implies that the user wants to accept the character as displayed

and copy it back into the character table. his is done by essentially reversing the
process used by CHAR and MOVE (lines 147 through 153).
Toggle: If <ESCAPE> is pressed, the appropriate bit position must be switched

to its opposite condition–of to on or on to of. his is done by creating a mask
byte with the proper bit set. To do this, the carry lag is set and the Accumulator
loaded with a 0. When anROL is done, this set bit will be shi!ed through the
Accumulator. By doing theROL a given number of times (determined byCC) we
can set a given bit in the MASK byte ($08).
Once the mask has been created, we need only retrieve the proper byte from

the work area (determined byCR) and then mask it with theMASK byte (lines 178
through 180). Once this is done, we again jump back toMATDSP to refresh the
display and get the next character.
Cursor control: To move the cursor around, well use the four directional

keys on the Apple //e keyboard. Even if you don’t have a //e, you can generate
the same characters in the manner mentioned earlier in this chapter. To refresh
your memory, the keys we’ll use will be<CTRL>H,<CTRL>U,<CTRL>J, and
<CTRL>K, for le!, right, down, and up respectively.
he code on lines 185 through 219 is fairly straightforward. he up and

down motions are done by incrementing or decrementing the cursor row
counter; le! and right motions are done by incrementing or decrementing the
cursor column counter. All motions wrap around.

32. Hi-Res Character Editor 325

Running the Editor

he following Appleso! program can be used to load a character set, run the
character editor, and then save the character set a!er exiting.3

10 PRINT CHR$(21): REM 40-COLUMN

20 PRINT "CHAR TABLE FILE, <RETURN> FOR DEFAULT": INPUT A$

30 IF LEN (A$) = 0 THEN A$ = "AL31.ASCII"

40 PRINT CHR$ (4);"BLOAD ";A$

50 PRINT CHR$(4);"BLOAD AL32.CHAREDIT,A$8000"

60 VTAB 21

70 PRINT "PRESS A KEY TO EDIT THAT CHARACTER"

80 PRINT "<CTRL>H,U,J,K OR ARROW KEYS TO MOVE"

90 PRINT "<ESC> TO TOGGLE A BIT, <RETURN> TO SAVE"

100 PRINT "<CTRL>Q TO QUIT AND SAVE TO A FILE";

110 REM IF DOS 3.3 THEN SET UP CSW VECTOR

120 IF PEEK(1002) = 76 THEN CALL 32768: GOTO 150

130 REM IF PRODOS, SET UP OUTPUT LINK AT $BE30,31

140 POKE 48688,129: POKE 48689,129: CALL 32779

150 TEXT: PRINT: PRINT

160 PRINT "FILENAME TO SAVE, OR <RETURN> TO EXIT": INPUT A$

170 IF LEN(A$) > 0 THEN PRINT CHR$ (4);"BSAVE ";A$;",A$9000,L$300"

180 END

3[CT] he Appleso! program is new to this edition. Similar to chapter 31, forProDOS
the output vector at$BE30,$BE31 is directly changed to point to the routine atHCOUT
($8181). he main program at $800B is then run.

]

326 Assembly Lines

Miscellaneous Notes

Although they can be displayed, lower-case characters may not be easy to
edit because they are not easily generated from the Apple II keyboard. Apple //e
owners will have no trouble. It is possible to use the lowercase input routine
described in an earlier chapter to generate lowercase characters from a standard
Apple II keyboard. Simply activate the routine prior to calling the character edi-
tor. he<ESCAPE> and<SHIFT> functions will continue to work properly, pre-
sumably with no ill efects on the editor routines.
It is worth noting that the character sets used and created by this editor are

identical in format to theDOS Tool Kit Animatrix character sets, although the
character editor provided with that package does have one or two minor, though
not inconsequential, features not available in this editor.

Conclusion

his concludes our discussion of hi-res character generation and editing; it
should provide you with the basic principles of these techniques. he idea can be
extended into block graphics for arcade-style games or as improvements to the
art of hi-res character generation. You might, for example, want to experiment
with oversize letters, colored text, or simple animation.

33. he 65C02
June 1983

his last chapter deals with a new version of our beloved 6502 microproces-
sor known as the65C02. Although the chip has just been released within the last
few months and has yet to ind its way into the mainstream of computers, it
seems likely that we’ll be hearing more about this item in the upcoming year.
Before jumping right into its new functions, though, let’s irst get a little

background information out of the way.
he 6502 was designed by Chuck Peddle and Bill Mensch of MOS Technol-

ogy (now owned by Commodore Business Machines) and, as of the present, 70
percent of its use is by Apple, Atari, and Commodore.1 he current manufactur-
ers of the 6502 are Rockwell International, MOS Technology, and Synertek. As
sometimes happens with these things, though, some of the key persons involved
with the 6502 went to work at a new company, Western Design Center.2 his
company, then, is the original source of the new 65C02 chip. But the story
doesn’t end there. Western Design Center has licensed the design to at least
three independent manufacturers: Rockwell International, GTE, and NCR.
hese companies took the initial 65C02 design and added their own enhance-
ments.
he picture at this point is that each of these companies will be marketing its

own version of the 65C02. he chips are more or less the same, but the Rockwell
chip has the largest instruction set.
“Largest instruction set,” you ask? Yes! he new 65C02 has had the old 6502

instruction set appended with a variety of new instructions. Because the Rock-
well chip appears to be a superset of all of the other chips, the bulk of this chap-
ter will assume that it’s the one that’s being used. At the end of this chapter we’ll
describe diferences among the three chips.
he Rockwell chip has a total of twelve new instructions and two new

addressing modes. In addition, a number of addressing modes not previously
available to an instruction (such as the immediate mode for theBIT instruction)
are now available. here are a total of 59 actual new opcodes. he meaning of all
of these numbers will become clear shortly.

1[CT] Corrected from the original article, which listed Commodore Business Machines
as the original designer.

2[CT] Speciically, Bill Mensch, the designer of the 65C02.

]

33

328 Assembly Lines

New Addressing Modes

Since this is one of the smaller numbers, let’s start here. You’ll recall from
many earlier discussions that each6502 instruction has up to sixaddressing
modes. hat number is arrived at by counting some modes as mere variations of
others and not including the value (relative addressing) associated with branch
instructions (BEQ,BNE,BCC,BCS, and so on) as an addressing mode here. To
refresh your memory, a list of modes and variations is provided in the table
below for the LDA (LoaD Accumulator) instruction.

Addressing Mode Common Syntax

1.Absolute LDA $1234

Zero Page LDA $12

2.Immediate LDA #$12

3.Absolute,X LDA $1234,X

Zero Page,X LDA $12,X

4.Absolute,Y LDA $1234,Y

5.(Indirect,X) LDA ($12,X)

6.(Indirect),Y LDA ($12),Y

Indirect Addressing

he irst of the two new addressing modes is quite easy to explain because it
is essentially another variation of an existing mode. he new mode isindirect
addressing. his may sound very familiar because this is similar to the instruc-
tions used to access memory locations via a zero-page pointer. Usually, though,
the Y-Register is set to 0 or some other value, which is then added to the address
indicated by the zero-page pointer to determine the address of interest.
his is ine for addressing a large table of data, but many times we are inter-

ested in only one byte of memory and must then go through the obligatoryLDY
#$00 to properly condition the Y-Register. (See entries 5 and 6 in the table
above.)
he new instruction allows us to ignore the contents of the Y-Register and

gain access to the memory location directly. his conserves two bytes of code for
each reference, because the Y-Register does not have to be loaded. If you want to
scan a block of memory, such as for a table, this instruction still can be used if
you are willing to INC or DEC the zero-page pointer accordingly.

Addressing Mode Common Syntax

7.Indirect LDA ($12)

his new addressing mode is available for the instructions listed below.

33. he 65C02 329

Instructions with
Indirect Addressing Opcode

ADC ($12)

AND ($12)

CMP ($12)

EOR ($12)

LDA ($12)

ORA ($12)

SBC ($12)

STA ($12)

72

32

D2

52

B2

12

F2

92

Indexed Absolute Indirect

he second new addressing mode has a name that obviously was not
designed with easy recall in mind. Fortunately, this too is a variation on an exist-
ing theme and as such should be easy to remember. In the past, we hadindexed
indirect addressing. We called this modepre-indexed for clarity’s sake. An
example would beLDA ($22,X). Pre-indexing means that the contents of the X-
Register are added to the address of the zero-page reference before using the
sum of those numbers to determine which zero-page pair to use. For example,
the instructionLDA ($22,X), where the X-Register held the value 4, would actu-
ally use bytes $26, $27 to get the inal destination address.
his difers from indirect indexed, which we referred to aspost-indexing. In

post-indexing, the value of the Y-Register is added a!er the base address is
determined. For example, in the instructionLDA ($22),Y, where the Y-Register
holds the value 4 and$22,$23 point to location$1000, the memory location
accessed would be $1004.
You’ll recall also that pre- and post-indexing were limited in their use of the

X- and Y-Registers. Pre-indexing could use only the X-Register and post-index-
ing only the Y-Register. Before you get too excited in anticipating the possibili-
ties of the new instruction, restrain yourself: his much has not changed.
What has changed is that pre-indexing is no longer limited to zero-page

pointers. he new mode allows any two-byte value to be used. his means that
the X-Register can be added to the base address of a table of memory pointers
that previously could have been located only on the zero page of memory.

Addressing Mode Common Syntax

8.Indexed Absolute Indirect JMP ($1234,X)

For example, suppose you had a command interpreter that accepted a com-
mand value between 0 and 2. With the65C02, such an interpreter can now be
used in conjunction with aJMP table located anywhere in memory, constructed
as in the following example:

]

330 Assembly Lines

JMP DATA TABLE:

1200: 80 10

1202: A0 10

1204: CO 11

 1 ********************************

 2 * AL33-SAMPLE COMMAND PROCESSOR*

 3 ********************************

 4 XC ; MERLIN: ALLOW 65C02 OPCODES

 5 ORG $1000

 6 TABLE EQU $1200

 7 *

1000: 20 00 40 8 ENTRY JSR GETCMD ; GET VALUE FROM 0-2

1003: 0A 9 ASL ; MULTIPLY BY 2

1004: AA 10 TAX ; PUT IN X-REGISTER

1005: 7C 00 12 11 GO JMP (TABLE,X) ; EXECUTE PROPER ROUTINE

 12 *

 13 * ...MORE CODE HERE...

1080: EA 50 CMD1 NOP ; FIRST ROUTINE

 51 * ...MORE CODE HERE...

10A0: EA 100 CMD2 NOP ; SECOND ROUTINE

 101 * ...MORE CODE HERE...

11C0: EA 150 CMD3 NOP ; THIRD ROUTINE

 151 * ...MORE CODE HERE...

his is a very fast and efective technique. he following table shows the one
instruction that can use this new mode.3

Indexed Absolute Indirect Addressing Opcode

JMP ($1234,X) 7C

New “Standard” Addressing Modes

here are a few instructions that have addressing modes that are new just to
them. For example, two of the most exciting ones are INC and DEC.
Previously, any uses ofINC andDEC were limited to memory locations. In

addition (so to speak), using the X- and Y-Registers was the only way to main-
tain a simple loop counter without using a dedicated memory location. he sur-
prise here is thatINC andDEC will now work on the Accumulator. his is nice
because you can now maintain a counter in the Accumulator, or even do fudging
of lag values as they are being handled in the Accumulator.
Some future assemblers may require the “somewhat usual” (if not inconve-

nient) use ofDEC A orINC A as they seem to prefer forLSR,ASL, and other opera-
tions on the Accumulator.
heBIT instruction also allows some additional addressing modes that may

prove useful. Previously, theBIT instruction supported only absolute addressing.

3[CT] he original article incorrectly listed eight other instructions:ADC,AND,CMP,EOR,
LDA, ORA, SBC, STA. In addition, the code example has been corrected to use the new JMP
instruction.

33. he 65C02 331

hat is to say that a directly referenced memory location was used as the value
against which the Accumulator was operated on.

Addressing Mode Common Syntax

Absolute BIT $1234

Zero Page BIT $12

his is useful for testing a memory location for a given bit pattern, but not
directly suitable for testing the bit pattern of the Accumulator. For many opera-
tions, this means you have to rather artiicially load some memory location with
the value you wanted to compare to the Accumulator.
he new 65C02 supports three new addressing modes for the BIT instruc-

tion:

Addressing Mode Common Syntax Opcode

Immediate BIT #$12 89

Absolute,X BIT $1234,X 3C

Zero Page BIT $12,X 34

At Last, the Real Scoop! New Instructions

Of course, the real question lurking in everyone’s mind is: “But what are the
new instructions?”
he great thing about the 65C02 is that not only are many of the old instruc-

tions enhanced, but there also are a number of absolutely terriic new instruc-
tions–twelve, to be exact. he new instructions are shown in the table below.

Instruction4 Description Opcode

BBR Branch on Bit Reset (clear)0F 1F 2F 3F 4F 5F 6F 7F
BBS Branch on Bit Set 8F 9F AF BF CF DF EF FF

BRA BRanch Always 80

PHX PusH X onto stack DA

PHY PusH Y onto stack 5A

PLX PulL X from stack FA

PLY PulL Y from stack 7A

RMB Reset (clear) Memory Bit 07 17 27 37 47 57 67 77

SMB Set Memory Bit 87 97 A7 B7 C7 D7 E7 F7

STZ STore Zero 64 74 9C 9E

TRB Test and Reset (clear) Bit 14 1C

TSB Test and Set Bit 04 0C

4[CT] heBBR,BBS,RMB, andSMB instructions apparently were never available on any
65C02 chips used by Apple.

]

332 Assembly Lines

So what exactly do these instructions do? Well, let’s examine some of the
easy ones irst...

PHX, PHY, PLX, and PLY
Commands for pushing a byte onto the stack and pulling a byte of of the

stack exist for the Accumulator but not for the X- and Y-Registers in the 6502.
One of the more common uses for the stack is to save all of the registers prior to
going into a routine so that everything can be restored just prior to exiting.
Ordinarily, to save the Accumulator, X-Register, and Y-Register, we’d have to do
something like this:

ENTRY PHA ; SAVE A

 TXA ; PUT X IN A

 PHA ; SAVE IT

 TYA ; PUT Y IN A

 PHA ; SAVE IT

WORK NOP ; YOUR PROGRAM HERE

DONE PLA ; GET Y

 TAY ; PUT IT BACK

 PLA ; GET X

 TAX ; PUT IT BACK

 PLA ; GET A

EXIT RTS

he problem is complicated even further in programs like the character gen-
erator listed in chapter 31. here we had to refer to the original value of the
Accumulator several times, and this interfered with any simple way to push all of
the register data onto the stack.
With the new 65C02, this could all be resolved with the following:

ENTRY PHX ; SAVE X

 PHY ; SAVE Y

 PHA ; SAVE A

WORK NOP ; YOUR PROGRAM HERE

DONE PLA ; GET A

 PLY ; GET Y

 PLX ; GET X

EXIT RTS

All four are one-byte commands, addressing only the indicated register.

BRA

BRA (branch always) is one of those instructions that will thrill writers of
relocatable code. One of the techniques for writing code that is location-inde-
pendent involves the use of a forced branch instruction, such as:

 CLC ; CLEAR CARRY

 BCC LABEL ; ALWAYS

33. he 65C02 333

Unfortunately, this means we must force some lag of the Status Register,
which may not be convenient at the time. In addition, the process takes up an
extra byte on most occasions.

BRA alleviates both of these problems by always branching to the desired
address, subject of course to the usual limitations of plus or minus 128 bytes as
the maximum branching distance.
It is worth mentioning, in the interest of programming style, that many peo-

ple indiscriminately use aJMP to go back to the top of a loop when a branch
instruction would do the trick; this only adds one more limitation to the inal
code in the process. Hopefully, this new branch instruction will encourage peo-
ple to make their code more location-independent.BRA, like the rest of the
branch instructions on the 65C02, uses only relative addressing.

STZ

STZ (STore Zero) is used for zeroing out memory bytes without changing
the contents of any of the registers.
Many times it is necessary to set a number of internal program registers to 0

before proceeding with the routine. his is especially needed in mathematical
routines such as multiplication and division.
Ordinarily this is done by loading the Accumulator with 0 and then storing

that value in the appropriate memory locations. his is easy to do when you have
to load the Accumulator, X-Register, or Y-Register with 0 anyway. he problem
is that on occasion the only reason one of the registers is loaded with 0 is because
of the need to zero a memory location.

STZ allows us to zero out any memory byte without altering current register
contents. Not all of the addressing modes usually available to theSTA,STX, or
STY instructions are available withSTZ, though. he following table shows what
modes are available.

STZ Addressing Modes Common Syntax

Absolute STZ $1234

Zero Page STZ $12

Absolute,X STZ $1234,X

Zero Page,X STZ $12,X

SMB and RMB
SMB andRMB (Set/Reset Memory Bit) will allow you to set or clear a given bit

of a byte in memory. Previously this would have required three separate instruc-
tions to achieve the same result. For example:

 LDA MEMORY ; LOAD VALUE FROM MEMORY

 AND #$7F ; %0111 1111 IS PATTERN NEEDED TO CLEAR BIT 7

 STA MEMORY ; PUT IT BACK

]

334 Assembly Lines

With the new instruction, we can accomplish the same thing with:

 RMB7 MEMORY ; RESET (CLEAR) BIT 7 OF MEMORY

or set the bit again with:

 SMB7 MEMORY ; SET BIT 7 OF MEMORY

here are two interesting things to note here. he irst is that for some rea-
son the term “reset” is used instead of “clear” to indicate the zeroing of a given
bit. he second item is that we now have four-character instruction codes
(mnemonics), the last character being the number of the bit being acted on.
What problems this may cause in some assemblers remains to be seen, but this
new species of instruction seems to have arrived.5 hese instructions are limited
to zero-page addressing only.

BBS and BBR
BBS andBBR (Branch on Bit Set/Reset) are two new branch instructions that

make it possible to test any bit of a zero-page location and then branch depend-
ing on its condition. his instruction will be very useful for testing lags in pro-
grams that need to pack lag-type data into as few bytes as possible. By
transferring I/O device registers to zero page, it is also possible to test bits in
these registers directly for status-bit conditions.
hese instructions are very similar in both appearance and usage to theSMB

andRMB instructions just discussed. hey, too, use four-character mnemonics.
he diference, of course, is that we are testing bit status rather than changing it.
hese are three-byte instructions, the irst byte being the opcode, the second
being the byte to test, and the third being a relative branch value. In assembly,
these commands actually will require two labels!6

One of the irst applications is the testing of whether a number is odd or
even. Previously, this had to be done with anLSR orROR instruction, followed by
a test of the carry lag, such as:

 LDA MEMORY ; LOAD A WITH VALUE

 LSR ; SHIFT BIT 0 INTO CARRY

 BCS ODD ; SET IF ODD

 BCC EVEN ; CLEAR IF EVEN

he equivalent can now be done without afecting the carry lag or the
Accumulator:

 BBR0 MEMORY,EVEN ; BRANCH IF BIT 0 = 0 = EVEN

 BBS0 MEMORY,ODD ; BRANCH IF BIT 0 = 1 = ODD

5[CT] he problem is moot since SMB and RMB are not available on most Apple machines.
6[CT] Again moot since BBS and BBR are not available.

33. he 65C02 335

his also could be useful in creating drivers for the newApple //e 80-col-
umn extended memory board since this card uses one bank of memory or the
other for the text screen, depending on whether the screen column position is
odd or even.

TSB and TRB
TSB andTRB (Test and Set/Reset Bit) are the most complex of the new

instructions. hese instructions are rather like a combination of theBIT and
AND/ORA instructions of the6502. hey seem primarily designed for controlling
I/O devices but may have other interesting applications as things develop.
he action of these two instructions is to use a mask stored in the Accumu-

lator to condition a memory location. he mask in the Accumulator is unaltered,
but the Z-lag of the Status Register is conditioned based on the memory con-
tents prior to the operation.
For example, to set both bits 0 and 7 of a memory location we could use the

following set of instructions:

LDA #$81 ; %1000 0001 = MASK PATTERN

TSB MEM1 ; SET BITS 0,7 OF MEMORY

BNE PRSET ; ONE OF THESE WAS 'ON' ALREADY

BEQ PRCLR ; NEITHER OF THESE WAS 'ON' ALREADY

his would clear the bits:

LDA #$81 ; %1000 0001 = MASK PATTERN

TRB MEM2 ; CLR BIT 0,7 OF MEMORY

BNE PRSET ; ONE OF THESE WAS 'ON' ALREADY

BEQ PRCLR ; NEITHER OF THESE WAS 'ON' ALREADY

hese instructions use only absolute and zero-page addressing.

Other Diferences

here are a number of other diferences between the 6502 and 65C02, most
notably the power consumption. he power use of the65C02 is one-tenth that of
the 6502, so the chip runs considerably cooler. he lower power requirement
opens new possibilities for portable computers and terminals.
One point of interest is that the old6502 indirect jump problem has been

ixed. If you’re not aware of it, the 6502 has a well-documented problem with
indirect jumps that use a pair of bytes that straddle a page boundary.
For example, consider these three instructions:

Instruction Pointers Wanted Pointers Used

JMP ($36)

JMP ($380)

JMP ($3FF)

$36,$37

$380,$381

$3FF,$400

$36,$37

$380,$381

$3FF,$300

]

336 Assembly Lines

Notice that, in the third instance, the pointers used are not those antici-
pated. his is because the high byte of the pointer address is not properly incre-
mented by the standard 6502.
his problem has been ixed in the 65C02. he only possible problem here is

“clever” protection schemes that use this bug to throw of people trying to
decode the protection method. Otherwise, this should not present any problems
to existing so!ware.
Are there any problems to be anticipated? In theory, no. he new 65C02 is

compatible pin for pin with the old one, and also upwardly compatible in terms
of so!ware. So!ware for the Apple, PET, Atari, or other 6502-based microcom-
puters should work without problems with the new chip. Are there any excep-
tions? Unfortunately, yes.
he irst big problem concerns internal microprocessor timing on theApple

II andII Plus computers. he Apple II and II Plus do not handle the micropro-
cessor clock cycles in the same way the Apple //e does. On the surface, the 65C02
should directly replace the 6502; however, because the 650C2 is a faster chip,
data is not available for as long and bits can get lost. What this means for now is
that the 65C02 can be used only in the Apple //e andApple /// machines. None
of the manufacturers at this time produce a chip that works on the Apple II or II
Plus. It can be expected, though, that revisions will be made in the near future
that will allow the 65C02 to be implemented in the older machines.
here also is a possibility of problems with some existing so!ware. A small

percentage of so!ware may be using undocumented bugs or “features” of the old
6502 chip, and these might not function as anticipated with the 65C02.
For example, a reasonable question might be, “Where did all the new

opcodes come from? A!er all, wasn’t the chip full?” To answer this, consider
how the instructions we use now are structured. he 6502 operates by scanning
memory and performing speciic operations based on the values that it inds in
each memory location. You would then expect a total of 256 possible opcodes.
As it happens, all 256 possible values are not used. It is this group of unused
opcodes that allows for the new instructions and also creates the possibility of a
small percentage of diiculties with existing programs.
Although rarely documented, the previously “unused” values in the 6502

will cause certain things to happen, much the same way that a legal value would.
For instance, the code$FF on a 6502 is labeled as an alternateNOP. his is one of
the codes that have been converted to a new function in the65C02, namelyBBS7
(Branch on Bit 7 Set).
here are other unused codes, though, that have combination efects–usu-

ally of little use–such as loading the Accumulator and decrementing a register
at the same time. heir main application is similar to the indirect jump problem:
creating code that cannot be casually interpreted. If these instructions have been

33. he 65C02 337

used in existing so!ware, problems could arise when that so!ware is run on the
65C02.
With such diiculties, then, why bother to substitute the new 65C02 into an

existing Apple? he answers are varied.
First of all, the 65C02 is likely to appear in upcoming releases of existing

computers (in a new release of the Apple //e, perhaps?), and as such you can
experiment now with the newest version of this versatile device.
Second, there likely will be speciic applications where the advantages of the

chip will make it worth supplying with the so!ware, since the disadvantages are
practically nonexistent for theApple //e andApple ///. Code rewritten to take
advantage of the new instructions can be expected to be 10 to 15 percent smaller
and run proportionally faster. In certain applications, even greater improve-
ments could be expected.
At this writing, the Rockwell chip seems to have the largest set of instruc-

tions of the three varieties available. he GTE and NCR chips lack the bit-ma-
nipulation instructions but are otherwise identical.
As to assemblers supporting the instructions, the current version ofMerlin

supports all the new opcodes in both the assembly andSourceror portions of the
product. S-C So!ware is ofering a 65C02 cross-assembler to registered owners
of theS-C Assembler at a reduced rate. Hayden will be ofering an update to
ORCA to support the GTE version of the chip. Any assembler that supports
macro capabilities should be able to be used immediately by deining the proper
hex codes.

]

338 Assembly Lines

A note from Roger Wagner, June 1983:

his installment marks the last in this series. I want to thank the
many readers of this column over the last several years for their
enthusiastic support and valuable suggestions. I have always
believed that the human element to this industry, and in fact any
endeavor, is the truly rewarding part. I would also like to thank
So!alk for giving me the opportunity to share the excitement of
programming with its readers, and also thank Brian Britt for his
help in researching this month’s article.

For better or worse, though, you’re not likely to be completely rid
of me. here are rumors of other columns and projects, and I look
forward to being a small part of theSo!alk family for some years
to come.

A note from So!alk editor Margot Comstock Tommervik, June 1983:

It was nearly three years ago that Roger Wagner’sAssembly Lines
began appearing inSo!alk; the magazine was only one month old.
In that irst year, Wagner’s column elicited more mail fromSo!-
alk’s readers than any other feature, and properly so: It was the
irst time assembly language had been explained from step one. In
fact, in his irst column, Wagner didn’t even introduce a com-
mand.

With this issue, Roger Wagner’sAssembly Lines ends. he irst
year’s columns plus appendixes and revisions have been available
for some time inAssembly Lines: "e Book. Volume 2, covering
the rest of the columns, will be released shortly by So!alk Books.

Roger Wagner will not fade away. He’s planning occasional fea-
ture articles forSo!alk and he’s promised to remain available to
answer questions from So!alk readers.

Appendix A: Contest

In the March 1981 edition ofSo!alk magazine, we challenged the readers of
the “Assembly Lines” column to a contest. Using the commands discussed in the
column from October 1980 through March 1981 (all material covered through
chapter six in this book), contestants were asked to submit programs which
would be judged by the staf, the shortest and most interesting program being
the winner. Contest rules are reprinted here as they originally appeared in the
March issue of So!alk.

Contest Rules

Create the shortest possible program using all and only the com-
mands presented thus far in this series that does something inter-
esting. he program must be entirely in machine language, and
may not call any routines in Integer or Appleso!. It may call any
of the Monitor routines from $F800−$FFFF.

he person who submits the shortest program of the most interest
will be awarded $50 worth of product from any advertiser in this
issue of So!alk and the program will be published in So!alk.

Judging will be based on the opinions of a rather subjectively
selected panel made up of people atSo!alk, myself, and any other
hapless passersby we can rope into this thing. Members of the
stafs ofSo!alk and Southwestern Data Systems and professional
programmers are not eligible to win. Entries should be submitted
no later than April 15, 1981. Ties will be settled by Apple’s random
number generator. (I promise not to seed it!)

Contest results were announced in the June 1981 edition ofSo!alk. he
winning program for the contest is listed below. he commentary accompanies
the listing.

Contest Results

With the usual comments in mind about how hard it was to decide on a
winner, I hereby announce the winner of the contest as Steven Morris, of
Queens, New York. His program combines a number of the principles we’ve dis-
cussed so far and also shows some nice touches in programming. It’s an elegant
use of all the given codes. Of particular interest is a self-modifying part wherein
the program actually rewrites a small portion of itself upon user command.

]

340 Assembly Lines

I think it will be of interest, and also a good review, to go through Morris’s
listing to see what’s been done. Before doing that, however, a little background
on one more kind of tone routine is in order. his will make Morris’s program
that much more understandable.
In chapter eight, I discussed simple tone routines in which the speaker was

accessed at a constant rate for a given length of time. hese two factors deter-
mined the pitch and duration of the tone played. A variation on this is to have
the pitch decrease or increase as the tone is played, creating efects rather like the

sound usually associated with a
falling bomb or a rising siren,
respectively. his requires three
variables, and without getting too
technical, let me take a moment to
illustrate with the chart at le!.
he vertical axis represents

the frequency of the tone being
played. Putting several tones
together into a series over a period
of time creates, in this case, a ris-
ing scale. As each tone is played,

the pitch is increased. Each individual tone lasts some arbitrary time, T, and put
together, the series lasts an overall time period, labeled here as DURATION.
If the pitch is decreased by a certain amount each time, the pattern is

reversed. his is sometimes called aramp tone pattern. In parentheses, I have
indicated how each of these values is determined in Morris’s program.
Here is a listing of the program:

 1 ********************************

 2 * ASSEMBLY LINES CONTEST WINNER*

 3 * BY STEVEN MORRIS *

 4 ********************************

 5 * OBJ $302

 6 ORG $302

 7 *

 8 PTCH EQU $300

 9 DRTN EQU $301

 10 SPKR EQU $C030

 11 PREAD EQU $FB1E

 12 PB0 EQU $C061

 13 PB1 EQU $C062

 14 GRSW EQU $C050

 15 TXTSW EQU $C051

 16 CLRSCR EQU $F832

 17 *

0302: CA 18 LOOP DEX ; DEC THIS DELAY

0303: D0 06 19 BNE CYCLE ; DONE? NO = SKIP CLK

 20 *

Appendix A: Contest 341

0305: AE 00 03 21 CLK LDX PTCH ; REFRESH X-REG

0308: AD 30 C0 22 LDA SPKR ; CLK SPKR

 23 * SPKR CLKS ONLY ONCE

 24 * FOR EVERY ($300) PASSES

 25 *

030B: 88 26 CYCLE DEY ; # OF CYCLE CTR.

030C: D0 F4 27 BNE LOOP ; DONE?

 28 * NO = KEEP GOING

030E: CE 01 03 29 DEC DRTN

0311: F0 06 30 BEQ CHKPDL ; DONE W/ RAMP?

 31 * YES = CHK PDLS

0313: EE 00 03 32 RAMP INC PTCH

0316: 4C 02 03 33 JMP LOOP

 34 *

0319: A2 00 35 CHKPDL LDX #$00

031B: 20 1E FB 36 JSR PREAD ; READ PDL(0)

031E: 8C 00 03 37 STY PTCH ; SET PTCH

0321: E8 38 INX

0322: 20 1E FB 39 JSR PREAD ; READ PDL(1)

0325: 8C 01 03 40 STY DRTN ; SET DRTN

0328: A0 7F 41 LDY #$7F

032A: CC 62 C0 42 CPY PB1 ; #1 PRESSED?

032D: 90 27 43 BCC TOGGLE ; BRCH IF YES

 44 *

032F: C8 45 INY ; #$7F -> #$80; AN EXCUSE

0330: 98 46 TYA ; TO USE THESE

0331: AA 47 TAX ; COMMANDS.

0332: EC 61 C0 48 CPX PB0 ; #0 PRESSED?

0335: B0 CB 49 BCS LOOP ; BRCH IF NO

 50 *

0337: 20 32 F8 51 SCREEN JSR CLRSCR ; CLR TOBLK

033A: 8D 50 C0 52 S1 STA GRSW ; SHOW GRAPHICS MODE

033D: 8D 51 C0 53 STA TXTSW ; SHOW TEXT MODE

0340: 4C 3A 03 54 JMP S1

 55 *

0343: A8 56 SETDEC TAY ; USE UP THIS CODE

0344: A2 CE 57 LDX #$CE ; OPCODE FOR 'DEC'

0346: 8A 58 TXA

0347: CD 13 03 59 CMP RAMP ; IS IT 'DEC' NOW?

034A: F0 04 60 BEQ SETINC ; BRCH IF YES.

034C: 8D 13 03 61 STA RAMP ; NO. MAKE IT 'DEC'

034F: 60 62 RTS

 63 *

0350: A2 EE 64 SETINC LDX #$EE ; OPCODE FOR 'INC'

0352: 8E 13 03 65 STX RAMP

0355: 60 66 RTS

 67 *

0356: 20 43 03 68 TOGGLE JSR SETDEC

0359: 4C 02 03 69 JMP LOOP

 70 *

035C: C0 71 CHK

I’ll try to explain each part of the program, hopefully with a proper balance
of enough detail to jog your memory and enough brevity to keep things reason-
ably short.

]

342 Assembly Lines

If all of this seems overwhelming, you’re trying to read through it too fast.
Go back through it slowly, taking your time. Have a nice cup of tea while you’re
at it.
Remember, we’re packing six chapters’ worth of subject matter into one

program. Don’t worry if the ine details of the tone routine escape you. he
important part is to make sure that you at least recall the existence and general
nature of each individual command used in the program.
To explain the program, the easiest place to start is actually at CHKPDL, where

the paddles are checked for new values at the end of each ramp series (line 35 at
address$319). he X-Register is loaded with a$00 to tell the computer we want
to readpaddle 0 in the next step, thenJSR to$FB1E. hat returns with the Y-
Register holding the value of the paddle ($00 to$FF), which is then stored in
location$300, labeledPTCH (“pitch”). he X-Register value is then incremented
from$00 to$01 on line 38, and paddle 1 read. he returned value is stored at
$301 for the duration value.
If paddle pushbutton 1 is pressed, location$C062 will hold a number greater

than$7F. To check for this, the Y-Register is loaded with$7F and compared
against$C062. If$C062 holds a value greater than$7F, the Branch Carry Clear
(BCC) will be taken (Y-Register < memory location = carry clear). We’ll see what
that does later.
If the value is less than$7F, program execution will fall through to line 45.

Here the$7F is increased to$80 and that value passed to the X-Register via the
Accumulator. hese steps are here to exercise theINY,TYA,TAX commands, and
to allow us to use theCPX command next to fulill the contest requirements. At
line 48 the comparison is done. If the X-Register is greater (remember it holds a
$80 here), the button is not pressed and the Branch Carry Set (BCS) will be taken
(X-Register > memory location = carry set) that sends us to the main tone loop.
At entry to this loop, the X-Register and the Y-Register hold rather arbitrary

values, but the overall theory is that, starting atCLK on line 21, the X-Register is
loaded with the pitch value and the speaker clicked once. At line 26 the Y-Regis-
ter is decremented; this is a counter for the length of that pitch value. Jumping
back to loop, the net efect is that the program will maken passes through before
clicking the speaker once, wheren is the pitch value held in$300. his creates
the delay between clicks needed for a given tone.
he length of that particular tone is determined by the Y-Register. When it

reaches a value of$00, theBNE (Branch Not Equal) fails and the counter for the
overall duration is decremented. As long as there’s time le! (that is,DRTN >$00),
the next test fails (BEQ = Branch if Equal to Zero) and the pitch value is incre-
mented.
Going back toLOOP plays this next note until all of the notes in the series

have been played. Incrementing pitch gives a descending note pattern. (Recall
that the greater the pitch value, the lower the tone played.)

Appendix A: Contest 343

WhenDRTN does reach 0, the program branches to the paddle check routine
that we started in. Let’s see what happens when a button is pressed. If button 1 is
pressed, the program goes viaTOGGLE toSETDEC. his clever section (ignore the
TAY) loads the X-Register with the value$CE. his is the opcode forDEC (DECre-
ment a memory location).
If the comparison fails, that is, there is not a$CE currently there, the$CE is

stored atRAMP, the RTS (ReTurn from Subroutine) returns toTOGGLE and theJMP
loop sends everything back into the tone loop, this time with aDEC PTCH there
instead. his gives an ascending pitch series.
If the comparison is true, it means that a$CE was put there earlier, and the

BEQ goes toSETINC, which restores the code forINC atRAMP ($313), and then
returns with the RTS, JMP LOOP as in the previous case.
hese two options give the program the ability to rewrite itself, an interest-

ing and powerful idea.
If paddle button 0 is pressed, the branch at line 49 fails and the program falls

into an ininite loop atSCREEN ($337). In this loop, the screen is cleared to the
color black by the Monitor routine at $F832.
Locations$C050 and$C051 areso!-switches: accessing these changes the

display mode of the Apple. he screen can be viewed either in a text mode or in a
graphics mode. Accessing$C050 on line 52 sets the graphics mode, so the screen
appears black. Accessing$C051 sets the display to text, which appears as inverse
“@” signs.
heJMP S1 repeats this cycle back and forth so fast that you don’t actually

see the licker, just an interesting pattern created by the screens switching faster
than your screen monitor can display them.
At this point you have to hit RESET to end.
here were a number of other excellent entries. Honorable mention should

be made of Steve Hawley, Ray Ransom, Stephen Gagola, Jr., and Matt Brookover
for their eforts.

]

Appendix B: Assembly Commands

his section may well serve as the most o!en-used portion of this book. I
have mentioned elsewhere that learning programming can be looked upon as
merely familiarizing yourself with the available tools to accomplish a speciied
task. he following section summarizes the tools available to an assembly-lan-
guage programmer.
When you are irst learning to program, much can be gained simply by

browsing through the following pages and casually noting the variety of instruc-
tions available when writing a routine. Each entry provides the usual technical
data on the instruction and o!en a brief example of its use as well.
Please note that in some examples a percent sign (%) is used to indicate a

binary form of a number. Some assemblers support this delimiter which can be
very convenient, particularly when working with the logical operators and shi!
instructions. For example, the following representations are all equivalent:
100 = $64 = %0110 0100.
When looking at addressing modes, it’s easy to forget the subtleties of the

diferences between the X- and Y-Register as used with indirect addressing.
Remember that the syntax($FF,X) indicatespre-indexing, while($FF),Y indi-
cates post-indexing. See chapter seven for the “oicial” explanation of addressing
modes.

ADC: ADd with Carry

Description: his instruction adds the contents of a memory location or imme-
diate value to the contents of the Accumulator, plus the carry bit, if it was set.
he result is put back in the Accumulator.ADC works for both binary andBCD
(Binary Coded Decimal) modes.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate ADC #$12 69 12

Zero Page ADC $12 65 12

Zero Page,X ADC $12,X 75 12

Absolute ADC $1234 6D 34 12

Absolute,X ADC $1234,X 7D 34 12

Absolute,Y ADC $1234,Y 79 34 12

Appendix B: Assembly Commands 345

Addressing Modes Common Syntax Hex Coding

(Indirect,X) ADC ($12,X) 61 12

(Indirect),Y ADC ($12),Y 71 12

(Indirect) [65C02]1 ADC ($12) 72 12

Uses: Peculiarly enough,ADC is most o!en used to add numbers together. Here
are some common examples:

1. Adding a constant to a register or memory location:

 CLC

 LDA MEM

 ADC #$80

 STA MEM ; MEM = MEM + #$80

2. Adding a constant (such as an ofset) to a two-byte memory pointer:

 CLC

 LDA MEM

 ADC #$80

 STA MEM

 LDA MEM+1

 ADC #$00

 STA MEM+1 ; MEM,MEM+1 = MEM,MEM+1 + #$80

3. Adding two (2) two-byte values together:

 CLC

 LDA MEM

 ADC MEM2

 STA MEM

 LDA MEM+1

 ADC MEM2+1

 STA MEM+1 ; MEM,MEM+1 = MEM,MEM+1 + MEM2,MEM2+1

AND: Logical AND

Description: his instruction takes each bit of the Accumulator and performs a
logical AND with each corresponding bit of the speciied memory location or
immediate value. he result is put back in the Accumulator. he memory loca-
tion speciied is unafected. (See also ORA.)

AND means that if both bits are 1 then the result will be 1, otherwise the result
will be 0.

1[CT] Opcodes in gray are only available on the 65C02.

]

346 Assembly Lines

Truth Table 0 1

0 0 0

1 0 1

Example

Accumulator: 0 0 1 1 0 0 1 1

Memory: 0 1 0 1 0 1 0 1

Result: 0 0 0 1 0 0 0 1

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate AND #$12 29 12

Zero Page AND $12 25 12

Zero Page,X AND $12,X 35 12

Absolute AND $1234 2D 34 12

Absolute,X AND $1234,X 3D 34 12

Absolute,Y AND $1234,Y 39 34 12

(Indirect,X) AND ($12,X) 21 12

(Indirect),Y AND ($12),Y 31 12

(Indirect) [65C02] AND ($12) 32 12

Uses:AND is used primarily as amask, that is, to let only certain bit patterns
through a section of a program. he mask is created by putting 1s in each bit
position where data is to be allowed through, and 0s where data is to be sup-
pressed. For example, it is frequently desirable to mask out the high-order bit of
ASCII data, such as would come from the keyboard or another input device
(perhaps a disk ile). he routine shown assures that no matter what value is got-
ten from the device, the high-order bit of the value in MEM will always be clear:

Code Example 1 Example 2
LDA DEVICE

AND #7F

STA MEM

01010111

01111111

01010111

11010111

01111111

01010111

AND is also used when you know the high bit will be set and you want it
cleared. his is the case when getting ASCII characters from the keyboard. A
common routine to get a character from the keyboard is:

WATCH LDA KYBD ; $C000

 BPL WATCH ; AGAIN IF < #$80

 BIT STROBE ; CLEAR STROBE: $C010

 AND #$7F ; CLR HIGH BIT

 STA MEM

Appendix B: Assembly Commands 347

Another way of looking at this same efect is to say thatAND can be used to
force a 0 in any desired position in a byte’s bit pattern. (SeeORA to force 1s). A 0
is put in the mask value at the positions to be forced to 0, and all remaining posi-
tions are set to 1. Whenever a data byte isAND’d with this mask, a 0 will be forced
at each position marked with a 0 in the mask, while all other positions will be
unafected, remaining 0s or 1s, as in their original condition.
he Monitor uses theAND instruction in theGETLN routine ($FD6A) to con-

vert lowercase letters to uppercase:

FD7C- B1 28 807 LDA (BASL),Y ; GET CHARACTER

FD7E- C9 E0 808 CAPTST CMP #$E0 ; ALPHA?

FD80- 90 02 809 BCC ADDINP ; NO, DON’T XVERT

FD82- 29 DF 810 AND #$DF ; XVERT TO CAPS

FD84- 9D 00 02 811 ADDINP STA IN,X ; PUT CHAR BACK

here are also at least two other rather obscure uses for theAND instruction.
he irst of these is to do the equivalent of aMOD function, involving a piece of
data and a power of two. You’ll recall that theMOD function produces the
remainder of a division operation. For example: 12 MOD 4 = 0; 14MOD 4 = 2; 18
MOD 4 = 2; 17 MOD 2 = 1; etc.
he general formula is: Accumulator MOD 2n = RESULT
he actual operation is carried out by using a value of (2n− 1) as the mask

value. he theory of operation is that only the lastn bits of the data byte are let
through, thus producing the result corresponding to a MOD function.

Example:
 LDA MEM

 AND #$07 ; %00000111 = 2̂3-1

 STA MEM ; MEM = MEM MOD 8

his technique provides one of several ways of testing for the odd/even
attribute of a number:

 LDA MEM

 AND #$01 ; %00000001 = 2̂1-1

 BEQ EVEN

 BNE ODD

he result of theAND of any number and$01 will always be either 0 or 1
depending on whether the number was odd or even.
he third application is in determining if a given bit pattern is present

among the other data in a number. For example, to test if bits 0, 3 and 7 are on:

 LDA MEM

 AND #$89 ; %10001001

 CMP #$89

 BEQ MATCH

 BNE NOMATCH

]

348 Assembly Lines

he general technique is to irstAND the data against the value for the byte
with just the desired bits set to 1 (all others 0), and then immediately do aCMP to
the same value. If all the speciied bits match, a BEQ will succeed.

Note:BIT (described later) can be used to test for one or more matches, but the
AND technique described here conirms that all of the bits of interest match.

ASL: Arithmetic Shit Let

Description: his instruction moves each bit of the Accumulator or speciied
memory location one position to the le!. A 0 is forced at the bit 0 position, and
bit 7 (the high-order bit) falls into the carry. he result is le! in the Accumulator
or memory location. (See also LSR , ROL, and ROR.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Accumulator ASL 0A

Zero Page ASL $12 06 12

Zero Page,X ASL $12,X 16 12

Absolute ASL $1234 0E 34 12

Absolute,X ASL $1234,X 1E 34 12

Uses: he most common use of ASL is for multiplying by a power of two. You are
already familiar with the efect in base ten:123 × 10 = 1230 (shi! le!). For
example:

 LDA MEM

 ASL ; TIMES 2

 ASL ; TIMES 2 AGAIN

 STA MEM ; MEM = MEM*4 (4 = 2̂2)

he other use is to check a given bit position by conditioning the carry lag.
For example, checking bit 4 would look like this:

 LDA MEM

 ASL

 ASL

Appendix B: Assembly Commands 349

 ASL

 ASL BIT 4 NOW IN CARRY

 BCS SET

 BCC NOTSET

NOTE: his technique destroys the contents of the Accumulator in the
process of checking the bit.AND orBIT instructions are generally preferred
instead of this technique.
If testing bits 0 through 3,LSR orROR may be more appropriate (fewer shi!s

needed). ROL also can be used instead ofASL depending on whether the data is to
be preserved.

BCC: Branch Carry Clear

Description: Executes a branch if the carry lag is clear. Ignored if carry is set.
Many assemblers have an equivalent pseudo-op calledBLT (Branch Less han,
not to be confused with the sandwich), sinceBCC is o!en used immediately fol-
lowing a comparison to see whether the Accumulator is less than the speciied
value.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BCC Address 90 FF

Note: he carry lag, upon which this depends, is conditioned byADC,ASL,CLC,
CMP, CPX, CPY, LSR, PLP ROL, RTI, SBC, and SEC.

Uses: As mentioned,BCC is used to detect when the Accumulator holds a value
that is less than a speciied value. he usual appearance of the code is listed
below. Note that in a two-byte comparison the high-order bytes are checked
irst.

One-Byte Comparison:

ENTRY LDA MEM

 CMP MEM2

 BCC LESS ; Goes to LESS if MEM < MEM2

 BCS EQ/GRTR

Two-Byte Comparison :

ENTRY LDA MEM+1

 CMP MEM2+1

 BCC LESS ; MEM,MEM+1 < MEM2,MEM2+1

 BEQ CHK2 ; MEM+1 = MEM2+1

]

350 Assembly Lines

 BCS GRTR ; MEM,MEM+1 > MEM2,MEM2+1

CHK2 LDA MEM

 CMP MEM2

 BCC LESS ; MEM,MEM+1 < MEM2,MEM2+1

 BCS EQ/GRTR ; MEM,MEM+1 >= MEM2,MEM2+1

BCS: Branch Carry Set

Description: Executes a branch only if the carry lag is set. Some assemblers sup-
port the pseudo-opBGT (“Branch Greater han”), since this command is used to
test whether the Accumulator is equal to or greater than the speciied value.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BCS Address B0 FF

Note: he carry lag, upon which this depends, is conditioned byADC,ASL,CLC,
CMP, CPX, CPY, LSR, PLP ROL, RTI, SBC, and SEC.

Uses: BCS is used to detect whether the Accumulator is greater than or equal to a
speciied value.BCS can be combined withBEQ to detect a greater-than relation-
ship. Note that in the two-byte comparison, the high-order bytes are checked
irst.

One-Byte Comparison:

ENTRY LDA MEM

 CMP MEM2

 BCC LESS ; Goes to LESS if MEM < MEM2

 BEQ EQUAL ; Goes to EQUAL if MEM = MEM2

 BCS GREATER ; Goes to GREATER if MEM > MEM2

Two-Byte Comparison:

ENTRY LDA MEM+1

 CMP MEM2+1

 BCC LESS ; MEM+1 < MEM2+1

 BEQ CHK2 ; MEM+1 = MEM2+1

 BCS GRTR ; MEM+1 > MEM2+1

CHK2 LDA MEM

 CMP MEM2

 BCC LESS ; MEM,MEM+1 < MEM2,MEM2+1

 BEQ EQUAL ; MEM,MEM+1 = MEM2,MEM2+1

 BCS GRTR ; MEM,MEM+1 > MEM2,MEM2+1

Appendix B: Assembly Commands 351

BEQ: Branch if EQual

Description: Executes a branch if the Z-lag (zero lag) is set, indicating that the
result of a previous operation was 0. SeeBCS to see how a comparison for the
Accumulator equal to a given value is done.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BEQ Address F0 FF

Note: he zero lag, upon which this depends, is conditioned by:ADC,AND,ASL,
BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,
PLP, ROL, RTS, SBC, TAX, TAY, TXA, and TYA.

Uses: In addition to being used in conjunction with compare operations,BEQ is
used to test whether the result of a variety of other operations was 0. he com-
mon classes of these operations are increment and decrement, logical operators,
shi!s, and register loads. Even easier to remember is the general principle that
whenever you’ve done something that results in 0, chances are good that the Z-
lag has been set. Likewise, any nonzero result of an operation is likely to clear
the Z-lag. One of the most common instances is when checking an input string
for a 0, usually used as a delimiter:

Example:

ENTRY LDA DEVICE

 BEQ DONE ; DATA = 0

WORK (...)

 JMP ENTRY

DONE RTS

BIT: compare Accumulator BITs with memory

Description: Performs a logical AND on the bits of the Accumulator and the
contents of the memory location. he opposite of the result is stored in the Z-
lag. What this means is that if any bits set in the Accumulator happen to match
any set in the value speciied, the Z-lag will be cleared. If no match is found, it
will be set. BNE is used to detect a match, BEQ detects a no-match condition.
Fully understanding the function and various applications of this instruc-

tion is a sign of having arrived as an assembly-language programmer and sug-
gests you are probably the hit of parties, thrilling your friends by doing hex
arithmetic in your head and reciting ASCII codes on command.

]

352 Assembly Lines

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

M7 M6 ✓

Addressing Modes Common Syntax Hex Coding

Zero Page BIT $12 24 12

Absolute BIT $1234 2C 34 12

Immediate [65C02] BIT #$12 89 12

Zero Page,X [65C02] BIT $12,X 34 12

Absolute,X [65C02] BIT $1234,X 3C 34 12

Uses: BIT provides a means of testing whether a given bit is on in a byte of data.

Important:BIT will indicate only that at least one of the bits in question match.
It does not indicate how many actually do match. See the AND instruction on how
to do a check for all matching.
he test mask can be held either in the Accumulator (if testing a memory

location), or in a memory location (when testing the Accumulator). he mask is
created by setting a 1 in each bit position you are interested in, and leaving all
remaining positions set to 0.

Examples:
1. Showing the results of the bit operation:

Acc: 10011011

Mem: 01010101

Result: 00010001 → 1 → (opposite) → 0 BNE works, BEQ not taken

Status Register:

N V – B D I Z C

0 1 0

2. Acc: 10011011

Mem: 01000100

Result: 00000000 → 0 → (opposite) → 1 BEQ works, BNE not taken

Status Register:

N V – B D I Z C

0 1 1

Appendix B: Assembly Commands 353

3. Sample routines:

Test Accumulator for bit 4 on Test memory for bit 4 on

ENTRY LDA #$10 ; %00010000

 STA MEM

 LDA DEVICE

 BIT MEM

 BNE MATCH

 BEQ NOMATCH

ENTRY LDA #$10 ; %00010000

 BIT MEM

 BNE MATCH

 BEQ NOMATCH

BIT also sets the N- and V-lags, and thus provides a very fast way of testing
bits 6 and 7. Since bit 7 is the high-order bit and is frequently used to indicate
certain conditions, this can be quite handy. Here is an example of how to watch
for a keypress:

LOOP BIT KYBD ; $C000

 BPL LOOP ; VAL < 128 = NOT PRESS

 BIT STROBE ; $C010

DONE RTS

Note that in this example, no data is actually retrieved from the keyboard.
Only a wait is done until the keypress. heBIT STROBE step in the example also
provides an illustration of a second application ofBIT, which is to access a hard-
ware location (o!en called aso!-switch) without damaging the contents of the
Accumulator.

BMI: Branch on MInus

Description: Executes the branch only if the N-lag (sign lag) is set. he N-lag
is set by any operation producing a result in the range$80 to$FF (i.e. high bit
set).

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BMI Address 30 FF

Note: he sign lag, upon which this depends, is conditioned by:ADC,AND,ASL,
BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,
PLP, ROL, TAX, TAY, TXS, TXA, and TYA.

Uses:BMI is most commonly used to detect negative numbers when signed
binary math is used, but is also equally common in testing for a set high bit, such
as in watching the keyboard for a keypress. (See also BIT.) For example:

]

354 Assembly Lines

LOOP LDA KYBD

 BMI PRESS ; DATA > $7F

 BPL LOOP ; DATA < $80

BMI is also useful for terminating a loop that you want to reach 0 and which
otherwise will stay out of the $80 to $FF range:

ENTRY LDX $20 ; TO LOOP 33 TIMES

LOOP DEX

 BMI DONE ; WHEN X = $FF

 BPL LOOP ; WHILE X > $FF

DONE RTS

BNE: Branch Not Equal

Description: Executes the branch if the Z-lag (zero lag) is clear, that is to say, if
the result of an operation was a nonzero value.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BNE Address D0 FF

Note: he zero lag, upon which this depends, is conditioned by:ADC,AND,ASL,
BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,
PLP, ROL, RTS, SBC, TAX, TAY, TXA, and TYA.

Uses: O!en used in loops to branch until the counter reaches 0. Also used in
data input loops to verify the nonzero nature of the last byte in, as when check-
ing for the end-of-data delimiter.

Examples:
1. Simple loop

ENTRY LDX #$20 ; WILL COUNT 32 TIMES

LOOP DEX

 BNE LOOP ; UNTIL X = 0

DONE RTS

2. Data input routine

ENTRY LDA DEVICE

 BNE CONTINUE

DONE RTS

Appendix B: Assembly Commands 355

3. As used in a two-byte increment routine

ENTRY LDA MEM

 ADC #$01

 STA MEM

 BNE DONE ; UNLESS MEM = 0

 LDA MEM+1

 ADC #$00 ; MEM+1 = MEM+1 + 1

 STA MEM+1

DONE RTS

BPL: Branch on PLus

Description: Executes the branch only if the N-lag (sign lag) is clear, as would
be the case when the result of an operation is in the range of$00 to$7F (high bit
clear). See also BMI.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BPL Address 10 FF

Note: he sign lag, upon which this depends, is conditioned by:ADC,AND,ASL,
BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,
PLP, ROL, TAX, TAY, TXS, TXA, and TYA.

Uses:BPL is an easy way of staying in a loop until the high bit is set. It is also
used in general to detect the status of the high bit. Here’s our familiar keypress
check using BPL:

LOOP LDA KYBD

 BMI PRESS ; DATA > $7F

 BPL LOOP ; DATA < $80

BPL is also useful for terminating a loop that you want to reach 0 and which
otherwise will stay out of the $80 to $FF range:

ENTRY LDX $20 ; TO LOOP 33 TIMES

LOOP DEX

 BMI DONE ; WHEN X = $FF

 BPL LOOP ; WHILE X > $FF

DONE RTS

]

356 Assembly Lines

BRA: BRanch Always [65C02]

Description: Always executes the branch (65C02 only).

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only [65C02] BRA Address 80 FF

Uses: BRA (branch always) is useful for writing relocatable code. Normally, if you
had a loop with aJMP back to the top you would make this relocatable by forcing
a branch. his would involve setting or clearing a Status Register lag and then
issuing the appropriate branch instruction. Instead, you can simply issueBRA
without changing the Status Register lags. he only limitation is the maximum
branching distance of plus or minus 128 bytes.

Example:

8000: A9 12 2 LOOP LDA #$12

8002: EA 3 NOP ; MORE CODE HERE

8003: 80 FB 4 BRA LOOP

BRK: BReaK (sotware interrupt)

Description: When aBRK is encountered in a program, program execution halts
and the user generally sees something like the following:

0302- A=A0 X=00 Y=01 P=36 S=E7

What actually happens is that theProgram Counter, plus two, is saved on
the stack, immediately followed by the Status Register, in which theBRK bit has
been set. he processor then jumps to the address at$FFFE, $FFFF. On the Apple
II Plus and Apple //e this routine (at$FA40) jumps to a vector at$3F0,$3F1
which points to the BRK handler routine (at $FA59) which produces the output.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Implied only BRK 00

Appendix B: Assembly Commands 357

Uses: BRK can be very useful indebugging assembly-language programs. ABRK is
simply inserted into the code at strategic points in the routine. When the pro-
gram comes to a screeching halt, one can examine the status of various memory
locations and registers to see if everything is as you think it should be. his
process can be formalized, and hence considerably improved on, by using a so!-
ware utility called a debugger which allows you to step through a program one
instruction at a time.Munch-A-Bug, along with others, provides this option. On
Integer Apples, a primitive Step and Trace function is provided as part of the
Monitor.

BVC: Branch on oVerlow Clear

Description: Executes the branch only if the V-lag (overlow lag) is clear. he
overlow lag is cleared whenever the result of an operation did not entail the
carry of a bit from position 6 to position 7. he overlow lag also can be cleared
with a CLV command.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BVC Address 50 FF

Note: he overlow lag, upon which this depends, is conditioned by:ADC,BIT,
CLV, PLP, RTI, and SBC.

Uses:BVC is used primarily in detecting a possible overlow from the data por-
tion of the byte into the sign bit when using signed binary numbers. For exam-
ple:

ENTRY CLC

 LDA #$64 ; %01100100 = +100

 ADC #$40 ; %01000000 = + 64

 BVC STORE ; NOT TAKEN HERE

ERR RTS ; RESULT = +164 =

 ; %10100100 > $7F

STORE STA MEM

BVC can also be used as a forced branch when writing relocatable code. he
advantage is that the carry remains unafected, thus allowing it to be tested later
in the conventional manner.

 CLV ; CLEAR V FLAG

 BVC LABEL ; (ALWAYS)

]

358 Assembly Lines

BVS: Branch oVerlow Set

Description: Executes the branch only when the V-lag (overlow lag) is set. he
overlow lag is set only when the result of an operation causes a carry of a bit
from position 6 to position 7. Note that there is not a command to speciically
set the overlow lag (as would correspond to aSEC command for the carry) but,
in the Apple, the instruction BIT $FF58 is o!en used to set the overlow lag.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Relative only BVS Address 70 FF

Note: he overlow lag, upon which this depends, is conditioned by:ADC,BIT,
CLV, PLP, RTI, and SBC.

Uses:BVS is used primarily in detecting a possible overlow from the data por-
tion of the byte into the sign bit when using signed binary numbers. For exam-
ple:

ENTRY CLC

 LDA #$64 ; %01100100 = +100

 ADC #$40 ; %01000000 = + 64

 BVS ERR ; RESULT = +164 =

 ; %10100100 > $7F

STORE STA MEM

DONE RTS

ERR JSR BELL ; ALERT TO OVERFLOW

CLC: CLear Carry

Description: Clears the carry bit of the Status Register.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0

Addressing Modes Common Syntax Hex Coding

Implied only CLC 18

Uses: CLC is usually required before the irstADC instruction of an addition oper-
ation, to make sure the carry hasn’t inadvertently been set somewhere else in the

Appendix B: Assembly Commands 359

program and thus incorrectly added to the values used in the routine itself. A
CLC also can be used to force a branch when writing relocatable code, such as:

 CLC

 BCC LABEL ; (ALWAYS)

CLD: CLear Decimal mode

Description:CLD is used to enter the binary mode (which the Apple is usually in
by default) so as to properly use theADC andSBC instructions. (SeeSED for set-
ting decimal mode.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0

Addressing Modes Common Syntax Hex Coding

Implied only CLD D8

Uses: he arithmetic mode of the 6502 is an important point to keep in mind
when using theADC andSBC instructions. If you are in the wrong mode from
what you might assume, rather unpredictable results can occur. See theSED
instruction entry for more details on the other mode.

CLI: CLear Interrupt mask

Description: his instruction enables interrupts.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0

Addressing Modes Common Syntax Hex Coding

Implied only CLI 58

Uses:CLI tells the 6502 to recognize incomingIRQ (Interrupt ReQuest) signals.
he Apple’s default is to have interrupts enabled but, a!er the irst interrupt, all
succeeding interrupts are disabled by the 6502 until aCLI is re-issued. As a mat-
ter of interest, timing-dependent routines like the DOSRWTS (Read/Write Track
Sector) routine disable interrupts while on and then allow them again with aCLI
at exit.

]

360 Assembly Lines

CLV: CLear oVerlow lag

Description: his clears the V-lag (overlow lag) by setting the V bit of the Sta-
tus Register to 0.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0

Addressing Modes Common Syntax Hex Coding

Implied only CLV B8

Uses: Because the overlow lag is, in fact, cleared by a non-overlow result of an
ADC instruction, it usually is not necessary to clear the lag prior to an addition. It
is, however, occasionally used as a relatively unobtrusive way of forcing a branch
when writing relocatable code.
his is done in a manner similar to theCLC,BCC orSEC,BCS pairs discussed

in chapter 15. he general form is:

 CLV

 BVC ADDRESS

his technique has the advantage of not afecting the carry lag, should the
user want to test the carry a!er the forced break.

CMP: CoMPare to Accumulator

Description:CMP compares the Accumulator to a speciied value or memory
location. he N-lag (sign lag), Z-lag (zero lag), and C-lag (carry lag) are con-
ditioned. A conditional branch is usually then done to determine whether the
Accumulator was less than, equal to, or greater than the data.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Appendix B: Assembly Commands 361

Addressing Modes Common Syntax Hex Coding

Immediate CMP #$12 C9 12

Zero Page CMP $12 C5 12

Zero Page,X CMP $12,X D5 12

Absolute CMP $1234 CD 34 12

Absolute,X CMP $1234,X DD 34 12

Absolute,Y CMP $1234,Y D9 34 12

(Indirect,X) CMP ($12,X) C1 12

(Indirect),Y CMP ($12),Y D1 12

(Indirect) [65C02] CMP ($12) D2 12

Uses:CMP is used to check the value of a byte against certain values such as
would be done in loops or in data-processing routines. he routine typically
decides whether the result is less than, equal to, or greater than a critical value.
he usual pattern is:

BCC: Accumulator < value
BCS: Accumulator ≥ value
BEQ, BCS: Accumulator > value

See the section on BCC through BCS for speciic examples.

Important: A CMP #$00 should never be done.2 Consider this example:

LOOP DEC MEM

 LDA MEM

 CMP #$00

 BCS LOOP ; (ALWAYS TAKEN!)

 BCC DONE

DONE RTS

Because$01 through$FF are greater than$0, the branch will be taken while
MEM is in this range. Since$0 =$0, whenMEM reaches$0 the branch will still be
taken. herefore, the example creates an endless loop which will never terminate.
Similarly, if theBCC is done irst it will never be taken because there is no

value less than 0 to trigger it.

2[CT] his should probably state “it should not be used withBCS orBCC.” It is ine to use
CMP #$00 with BEQ and BNE.

]

362 Assembly Lines

CPX: ComPare data to the X-Register

Description:CPX compares the contents of the X-Register against a speciied
value or memory location. See also CMP.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate CPX #$12 E0 12

Zero Page CPX $12 E4 12

Absolute CPX $1234 EC 34 12

Uses:CPX is used primarily in loops which read data tables, with the X-Register
being used as the ofset in the Absolute,X addressing mode. he X-Register is
usually loaded with 0 and then incremented until it reaches the length of the
data stream to be read. For example:

ENTRY LDX #$00

LOOP LDA DATA,X

 JSR PRINT

 INX

 CPX #$05

 BCC LOOP

DONE RTS

DATA ASC "TEST!"

For the same reasons discussed under CMP, a CPX #$00 should not be used.3

CPY: ComPare data to the Y-Register

Description:CPY compares the contents of the Y-Register against a speciied
value or memory location. See also CMP.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

3[CT] Similar to CMP, it is ine to use CPX #$00 with BEQ and BNE.

Appendix B: Assembly Commands 363

Addressing Modes Common Syntax Hex Coding

Immediate CPY #$12 C0 12

Zero Page CPY $12 C4 12

Absolute CPY $1234 CC 34 12

Uses: he Y-Register usually is used when reading a stream of data from a zero-
page pointer.CPY allows for checking the current value of the Y-Register against
a critical value. In this example, the Y-Register is used to retrieve the irst ive
bytes of an Appleso! program line:

ENTRY LDY #$00

LOOP LDA ($67),Y ; PROG BEG + Y

 STA ($06),Y ; TEMP STORAGE AREA

 INY

 CPY #$05

 BCC LOOP ; LOOP FOR 5 BYTES

DONE RTS

For the same reasons discussed under CMP, a CPY #$00 should not be used.4

DEC: DECrement a memory location

Description: he contents of the speciied memory location are decremented by
one. If the original contents were equal to$00, then the result willwrap around
and give a result of $FF.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Zero Page DEC $12 C6 12

Zero Page,X DEC $12,X D6 12

Absolute DEC $1234 CE 34 12

Absolute,X DEC $1234,X DE 34 12

Accumulator [65C02] DEC A 3A

Uses:DEC usually is used when decrementing a one-byte memory value (such as
an ofset) or a two-byte memory pointer. Here are the common examples:

4[CT] Similar to CMP, it is ine to use CPY #$00 with BEQ and BNE.

]

364 Assembly Lines

One-Byte Value:

ENTRY DEC MEM

DONE RTS

Two-Byte Pointer:

ENTRY DEC MEM

 LDA MEM

 CMP #$FF ; WRAP-AROUND?

 BNE DONE ; NO

 DEC MEM+1 ; YES: DEC MEM+1

DONE RTS

A!er theDEC operation, the N- and/or Z-lags o!en are checked to see if the
result was negative or a zero/nonzero value, respectively.
he technique shown for the two-byteDEC operation is not necessarily the

most eicient. See the SBC entry for an alternative method.

DEX: DEcrement the X-Register

Description: he X-Register is decremented by one. When the original value is
$00, the result will wrap around to give a result of $FF. See also DEC.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only DEX CA

Uses:DEX o!en is used in reading a data block via indexed addressing, i.e. Abso-
lute,X. Here is a simple example:

ENTRY LDX #$05

LOOP LDA DATA-1,X

 JSR PRINT

 DEX

 BNE LOOP

DONE RTS

DATA ASC "!TSET"

Note: here are several points of interest in this example. Besides the general use
of the X-Register in the indexed addressing mode, notice that the loop runs
backwards from$05 to$01. he loop is terminated when the X-Register reaches
0. Because the loop runs from high memory down, the ASCII string is put in

Appendix B: Assembly Commands 365

memory in reverse order, as evidenced in the listing. Also note that the base
address of the loop isDATA-1. his allows the use of the$05 to$01 values of the
X-Register.

DEY: DEcrement the Y-Register

Description: he Y-Register is decremented by one. When the original value is
$00, the result will wrap around to give a result of $FF. See also DEC.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only DEY 88

Uses:DEY usually is used when decrementing a reverse scan of a data block,
using a zero-page pointer via indirect indexed addressing (such asLDA
($FF),Y). Reverse scans o!en are used because it’s so easy to use aBEQ instruc-
tion to detect when you’re done.DEY is also used when making a counter for a
small number of cycles. Here’s a routine which outputs a variable number of car-
riage returns, as indicated by the contents of MEM.

ENTRY LDY MEM

LOOP LDA #$8D ; <RETURN>

 JSR COUT ; $FDED

 DEY

 BNE LOOP ; UNTIL Y=0

DONE RTS

EOR: Exclusive OR with Accumulator

Description: he value in the Accumulator is exclusive OR’d with the speciied
data. he N-lag (sign lag) and Z-lag (zero lag) are also conditioned depending
on the result. he result is put back in the Accumulator. he memory location (if
speciied) is unafected.

EOR means that if either bit, butnot both, is 1 then the result will be 1, other-
wise the result will be 0.

]

366 Assembly Lines

Truth Table 0 1

0 0 1

1 1 0

Example

Accumulator: 0 0 1 1 0 0 1 1

Memory: 0 1 0 1 0 1 0 1

Result: 0 1 1 0 0 1 1 0

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate EOR #$12 49 12

Zero Page EOR $12 45 12

Zero Page,X EOR $12,X 55 12

Absolute EOR $1234 4D 34 12

Absolute,X EOR $1234,X 5D 34 12

Absolute,Y EOR $1234,Y 59 34 12

(Indirect,X) EOR ($12,X) 41 12

(Indirect),Y EOR ($12),Y 51 12

(Indirect) [65C02] EOR ($12) 52 12

Uses: EOR has a wide variety of uses:
(1) he most common is to encode data by doing anEOR with an arbitrary one-
bytekey. he data may then be decoded later by again doing anEOR of each data
byte with the same key.

CODE LDX #$05

LOOP LDA DATA1,X

 EOR #$7D ; ARBITRARY "KEY"

 STA $300,X ; REWRITE TABLE

 DEX

 BNE LOOP ; UNTIL X=0

DONE RTS

DATA ASC "TEST!"

DECODE LDX #$05

LOOP LDA $300,X ; RETRIEVE CODED DATA

 EOR #$7D

 STA $380,X ; PUT IN NEW LOC

 DEX

 BNE LOOP

DONE RTS

(2) Another application is to reverse any given bit or bits of a data byte. he
mask is created by putting a one in the positions which you wish to have
reversed. A 0 is put in all remaining positions. When theEOR with themask is

Appendix B: Assembly Commands 367

done, bits in the speciied positions willreverse, i.e. ones will become zeros, and
vice versa. See the irst example in this entry to verify this efect.
(3) he N-lag (sign lag) can be used to detect if both memory and the Accumu-
lator have bit 7 set:

ENTRY LDA MEM

 EOR MEM2

 BMI MATCH ; BOTH SET

 BPL NOMATCH ; BOTH NOT SET

(4) he Z-lag (zero lag) lag will be set if either the Accumulator or memory, or
both, equal 0:

ENTRY LDA MEM

 EOR MEM2

 BEQ ZERO ; MEM=0 AND/OR MEM2=0

 BNE NOTZ ; NEITHER MEM NOR MEM2 = 0

(5)EOR is also useful in producing thetwo’s complement of a number for use in
signed binary arithmetic.

ENTRY LDA #$34 ; %00110100 = +52

 ; TO BE CONVERTED TO -52

 EOR #$FF ; %11111111 = $FF

 ; RESULT = %11001011

 CLC

 ADC #$01 ; RESULT = RESULT + 1

 ; = %11001100 = $CC

 STA MEM ; STORE RESULT

DONE RTS

(5a) And to convert signed negative numbers back:

ENTRY LDA #$CC ; %11001100 = $CC = -52

 ; TO BE CONVERTED BACK

 SEC

 SBC #$01 ; ACC = ACC - 1

 ; = %11001011 = $CB

 EOR #$FF ; REVERSE ALL BITS

 ; RESULT = %00110100 = $34 = +52

 STA MEM ; STORE RESULT

DONE RTS

INC: INCrement memory

Description: he contents of a speciied memory location are incremented by
one. If the original value is$FF, then incrementing will result in awrap around
giving a result of$00. he N-lag (sign lag) and Z-lag (zero lag) are condi-
tioned depending on the result.

]

368 Assembly Lines

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Zero Page INC $12 E6 12

Zero Page,X INC $12,X F6 12

Absolute INC $1234 EE 34 12

Absolute,X INC $1234,X FE 34 12

Accumulator [65C02] INC A 1A

Uses:INC is used most o!en for incrementing a one-byte value (such as an of-
set) or a two-byte pointer. Here are the most common forms:

One-Byte Value:

ENTRY INC MEM

DONE RTS

Two-Byte Pointer:

ENTRY INC MEM

 BNE DONE

 INC MEM+1

DONE RTS

A!er theINC operation, the N- and/or Z-lags o!en are checked to see
whether the result was negative or a zero/nonzero value, respectively.

INX: INcrement the X-Register

Description: he contents of the X-Register are incremented by one. If the origi-
nal value is$FF, then incrementing will result in awrap around giving a result of
$00. he N-lag (sign lag) and Z-lag (zero lag) are conditioned depending on
the result.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only INX E8

Appendix B: Assembly Commands 369

Uses: INX is used in forward-scanning loops which digest a data stream as shown
here:

ENTRY LDX #$00

LOOP LDA DATA,X

 BEQ DONE ; DELIMITER?

 JSR COUT ; $FDED

 INX

 JMP LOOP ; NEXT CHAR

DONE RTS

DATA ASC "TEST!"

 HEX 00 ; END OF DATA

Note that in forward-scanning loops, the base address can beDATA itself (see
DEX for another situation).

INX also can be used as a general-purpose counter for miscellaneous rou-
tines:

ENTRY LDX #$00

 LDA #$8D ; <RETURN>

LOOP JSR COUT ; $FDED

 INX

 CPX #$05

 BCC LOOP ; UNTIL X = 5

DONE RTS ; PRINTS 5 <CR>S

INY: INcrement the Y-Register

Description: he contents of the Y-Register are incremented by one. If the origi-
nal value is$FF, then incrementing will result in awrap around giving a result of
$00. he N-lag (sign lag) and Z-lag (zero lag) are conditioned depending on
the result.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only INY CB

Uses:INY is used in forward-scanning loops which use the indirect indexed
addressing mode, for exampleLDA ($FF),Y. his is quite common in routines
which process strings for certain characters, search routines, etc. Here is a rou-
tine which scans the input bufer for the irst carriage return:

]

370 Assembly Lines

ENTRY LDY #$00

 STA PTR

 LDA #$02

 STA PTR ; PTR,PTR+1 = $200

 LDY #$00

LOOP LDA (PTR),Y

 CMP #$8D ; CHR = <CR>?

 BEQ FOUND

 INY

 BNE LOOP ; UNTIL Y = $00

DONE RTS

FOUND STY MEM

 BEQ DONE ; (ALWAYS)

JMP: JuMP to address

Description: Causes program execution to jump to the address speciied.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Absolute JMP $1234 4C 34 12

Indirect JMP ($1234) 6C 34 12

(Absolute Indirect,X) [65C02] JMP ($1234,X) 7C 34 12

Note: he6502 has a well-documentedbug regarding the indirect jump.5 If the
jump speciied uses pointers which do not cross a page boundary (for example,
$3C0,$3C1), then all will go as predicted. If, however, the pointers cross a
boundary (such as$3FF,$400), then the assumed byteswill not be used. Instead,
the address data will be retrieved (in our example) from locations $3FF and $300.
hat is to say that the high-order byte is not properly incremented and both
bytes are retrieved from the same page of memory. his should be taken into
account if such a situation can possibly arise in your routine.

Uses: Besides the obvious application of the usual absolute addressedJMP
instruction, the indirectJMP is used when creating vectored jumps. he Apple
uses many such indirect jumps, the most notable of which are:

Function Routine Jumps to Address at Vector Location

Interrupt Vector IRQ ($FA40) IRQLOC ($3FE,$3FF)

Break Vector BREAK ($FA4C) BRKV ($3F0,$3F1)

Input Vector RDKEY ($FD0C) KSWL ($38,$39)

Output Vector COUT ($FDED) CSWL ($36,$37)

5[CT] his bug is ixed in the 65C02.

Appendix B: Assembly Commands 371

An indirectJMP also can be used when writingrelocatable code. If the cur-
rent location of the code can be determined, then an ofset can be calculated and
the vectors set up so that theJMP will be relative to the current location of the
code. See chapter 15 for more information about these techniques.

JSR: Jump to SubRoutine

Description: he address of the instruction following theJSR is pushed onto the
stack. he address following theJSR is then jumped to. When anRTS in the
called subroutine is encountered, a return to the location on the stack (the one
a!er the JSR) is done. his is analogous to a GOSUB in BASIC.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Absolute only JSR $1234 20 34 12

Uses:JSR is one of the most commonly used instructions, being used to call
o!en-needed subroutines. he disadvantage of the instruction is that if theJSR
references an address within the code (as opposed to routines external to the
program, such as in the Monitor ROM), the code can be executed only at the
location for which the code was originally assembled.
Because the calling address is saved on the stack, aJSR to a knownRTS can

be done, and the data can be retrieved to determine where in memory the rou-
tine is currently being executed.
See chapter 15 for more details about both of these topics.

LDA: LoaD Accumulator

Description: Loads the Accumulator with either the speciied value or the con-
tents of the designated memory location. he N-lag (sign lag) and Z-lag (zero
lag) are conditioned when a value with the high bit set is loaded, or when a 0
value is loaded.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

]

372 Assembly Lines

Addressing Modes Common Syntax Hex Coding

Immediate LDA #$12 A9 12

Zero Page LDA $12 A5 12

Zero Page,X LDA $12,X B5 12

Absolute LDA $1234 AD 34 12

Absolute,X LDA $1234,X BD 34 12

Absolute,Y LDA $1234,Y B9 34 12

(Indirect,X) LDA ($12,X) A1 12

(Indirect),Y LDA ($12),Y B1 12

(Indirect) [65C02] LDA ($12) B2 12

Uses:LDA is probablythe most used instruction. he vast majority of operations
center around the Accumulator, and this instruction is used to get data into this
important register.

LDX: LoaD the X-Register

Description: Loads the X-Register with either the speciied value or the contents
of the designated memory location. he N-lag (sign lag) and Z-lag (zero lag)
are conditioned when a value is loaded that has the high bit set, or when a 0
value is loaded.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate LDX #$12 A2 12

Zero Page LDX $12 A6 12

Zero Page,Y LDX $12,Y B6 12

Absolute LDX $1234 AE 34 12

Absolute,Y LDX $1234,Y BE 34 12

Uses: his is the primary way in which data is placed into the X-Register. What
more can I say?

Appendix B: Assembly Commands 373

LDY: LoaD the Y-Register

Description: Loads the Y-Register with either the speciied value or the contents
of the designated memory location. he N-lag (sign lag) and Z-lag (zero lag)
are conditioned when a value with the high bit set is loaded, or when a 0 value is
loaded.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate LDY #$12 A0 12

Zero Page LDY $12 A4 12

Zero Page,X LDY $12,X B4 12

Absolute LDY $1234 AC 34 12

Absolute,X LDY $1234,X BC 34 12

Uses: his is the primary way in which data is placed into the Y-Register. See LDX
for additional comments.

LSR: Logical Shit Right

Description: his instruction moves each bit of the Accumulator or speciied
memory location one position to the right. A 0 is forced at the bit 7 position (the
high-order bit), and bit 0 falls into the carry. he result is le! in the Accumulator
or memory location. (See also ASL, ROL, and ROR.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

0 ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Accumulator LSR 4A

Zero Page LSR $12 46 12

]

374 Assembly Lines

Addressing Modes Common Syntax Hex Coding

Zero Page,X LSR $12,X 56 12

Absolute LSR $1234 4E 34 12

Absolute,X LSR $1234,X 5E 34 12

Uses:LSR provides an easy way of dividing by two. he corresponding efect in
decimal arithmetic is well known: 123/10 = 12.3 (shi! right). As an example:

ENTRY LDA MEM

 LSR ; DIV BY 2

 LSR ; DIV BY 2 AGAIN

 STA MEM ; MEM = MEM / 4

LSR also provides a fast way of detecting whether a number is odd or even:

ENTRY LDA MEM

 LSR

 BCS ODD

 BCC EVEN

Because bit 0 determines the odd/even nature of a number, this is easily trans-
ferred to the carry via the LSR and then checked via the BCS/BCC instructions.

NOP: No OPeration

Description: Does nothing for one instruction (two cycles). May remind you of
some people you know.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only NOP EA

Uses: NOP is used primarily to disable portions of code written by other program-
mers that you have decided you can live without. A classic example of this is the
placing of threeNOPs at bytes$D3,$D4, and$D5 on Track 0, Sector 9, of a stan-
dard DOS 3.3 diskette. By the strategic placement of theseNOPs, a boot will not
force a clear of the language card, thus avoiding the rather monotonousLOADING
LANGUAGE CARD message on every boot.6

Additionally,NOPs may be used duringdebugging to disable certain steps or
to create certain timing periods.

6[CT] You can accomplish the same task by adding three NOPs at $BFD3:

POKE -16427,234: POKE -16428,234: POKE -16429,234

and then initializing a disk. When the disk is booted it will not erase the language card.

Appendix B: Assembly Commands 375

ORA: Inclusive OR with the Accumulator

Description: his instruction takes each bit of the Accumulator and performs a
logical inclusive OR with each corresponding bit of the speciied memory loca-
tion or immediate value. he result is put back in the Accumulator. he memory
location, if speciied, is unafected. Conditions the N-lag (sign lag) and Z-lag
(zero lag) depending on the result. (See alsoAND and EOR.) ORA means if either or
both bits are 1 then the result is 1. Only when both bits are 0 is the result 0.

Truth Table 0 1

0 0 1

1 1 1

Example

Accumulator: 0 0 1 1 0 0 1 1

Memory: 0 1 0 1 0 1 0 1

Result: 0 1 1 1 0 1 1 1

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate ORA #$12 09 12

Zero Page ORA $12 05 12

Zero Page,X ORA $12,X 15 12

Absolute ORA $1234 0D 34 12

Absolute,X ORA $1234,X 1D 34 12

Absolute,Y ORA $1234,Y 19 34 12

(Indirect,X) ORA ($12,X) 01 12

(Indirect),Y ORA ($12),Y 11 12

(Indirect) [65C02] ORA ($12) 12 12

Uses:ORA is used primarily as amask to force 1s in speciied bit positions. (See
AND to force 0s.) To create the mask, a 1 is put in each bit position which is to be
forced. All other positions are set to 0. For example, here is a routine which will
set the high bit on any ASCII data going out through COUT:

ENTRY LDA DEVICE

 ORA #$80 ; %10000000, SET HIGH BIT

 JSR COUT ; $FDED

ORA also can be used to convert uppercase characters to lowercase:

ENTRY LDA CHAR ; GET CHARACTER

 CMP #$C1 ; (A) IS IT ALPHABETIC?

 BCC DONE ; NO, DON’T CONVERT

 CMP #$E0 ; IS IT ALREADY LOWERCASE?

 BCS DONE ; YES, DON’T CONVERT

 ORA #$20 ; UPPERCASE TO LOWERCASE

 STA CHAR ; PUT CHARACTER BACK

]

376 Assembly Lines

PHA: PusH Accumulator

Description: his pushes the contents of the Accumulator onto the stack. he
Accumulator and Status Register are unafected. (See also PLA.)

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only PHA 48

Uses: his is one of the most common ways of temporarily storing a byte or two.
It is combined withPLA to retrieve the data. Generally speaking, eachPHA must
be matched by aPLA later in the routine. Otherwise the inalRTS of your routine
will deliver you, not back to the calling BASIC program or immediate mode, but
rather of into the weeds, as the saying goes.
Here is an example of a simple store/retrieve operation:

ENTRY LDA #$80 ; TEST VALUE

 PHA ; STORE IT

 LDA #$FF ; DESTROY ACC.

 PLA ; RETRIEVE VALUE

 STA MEM ; SAVE IT TO LOOK AT

DONE RTS

Another more obscure use ofPHA is to set up an artiicialJMP by executing
anRTS for which aJSR was never done. Providing that two PHAs have been
done prior to the RTS, the pseudo-jump will be executed. See chapter 15 for more
details about this.

PHP: PusH Processor status

Description: his pushes the Status Register onto the stack for later retrieval.
he Status Register itself is unchanged and none of the registers are afected.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only PHP 08

Uses:PHP is done to preserve the Status Register for later testing for a speciic
condition. his is handy if you don’t want to test a lag right then, but the next
instruction would ruin what you want to test for. By putting the Status Register

Appendix B: Assembly Commands 377

on the stack and then later retrieving it, you can test things like the sign lag or
carry when it’s most convenient.

ENTRY CLC ; CLR CARRY

 PHP ; SAVE REG

 SEC ; SET CARRY

 PLP ; RETRIEVE REG

 BCC DONE ; (ALWAYS!)

 BRK ; (NEVER)

DONE RTS

ENTRY LDA #$00 ; SET Z-FLAG

 PHP ; SAVE REG

 LDA #$FF ; DESTROY

 PLP ; RETRIEVE

 BEQ DONE ; (ALWAYS!)

 BRK ; (NEVER)

DONE RTS

As with thePHA instruction,PHP always should be accompanied by an equal
number ofPLP instructions to keep the Apple happy. Remember: It’s not nice to
fool the stack!

PHX: PusH X-Register [65C02]

Description: his pushes the contents of the X-Register onto the stack (65C02
only). he X-Register and Status Register are unafected. (See also PLX.)

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only [65C02] PHX DA

Uses:PHX is useful for temporarily storing the X-Register without having to
transfer it to the Accumulator irst. It is combined withPLX to retrieve the data.
Just likePHA/PLA, eachPHX should normally be matched by aPLX (or another
pull instruction) later in the routine.

Example: With the 65C02, you can easily save and restore all of the registers
using code similar to the following:

ENTRY PHX ; SAVE X

 PHY ; SAVE Y

 PHA ; SAVE A

WORK NOP ; YOUR PROGRAM HERE

DONE PLA ; GET A

 PLY ; GET Y

 PLX ; GET X

]

378 Assembly Lines

PHY: PusH Y-Register [65C02]

Description: his pushes the contents of the Y-Register onto the stack (65C02
only). he Y-Register and Status Register are unafected. (See also PLY.)

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only [65C02] PHY 5A

Uses: Just likePHX,PHY is useful for temporarily storing the Y-Register without
having to transfer it to the Accumulator irst. It is combined withPLY (or
another pull instruction) to retrieve the data. See PHX for a usage example.

PLA: PulL Accumulator

Description: his is the converse of thePHA instruction.PLA retrieves one byte
from the stack and places it in the Accumulator. his accordingly conditions the
N-lag (sign lag) and Z-lag (zero lag), just as though anLDA instruction had
been done.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only PLA 68

Uses: his is combined withPHA to retrieve data from the stack. SeePHA for an
example of this.
Additionally,PLA can be used to cancel a currentRTS, much like aPOP in

Appleso! BASIC. To cancel the most recent RTS, two PLAs are required:

ENTRY JSR LEVEL1

 RTS ; WOULD EXIT HERE NORMALLY

LEVEL1 LDA #$00 ; ARBITRARY OPERATION

 PLA

 PLA ; 'POP' RTS

EXIT RTS ; WILL EXIT ENTIRELY HERE

Appendix B: Assembly Commands 379

PLP: PulL Processor Status

Description: his is used a!er aPHP to retrieve the Status Register data from the
stack. he byte is put in the Status Register and all of the lags are conditioned
corresponding to the status of each bit in the byte placed there. he Accumulator
and other registers are unafected. (See PHP.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only PLP 28

Uses: PLP is used to retrieve the Status Registera"er aPHP has stored the lags on
the stack. See PHP for an example.
As with thePHA/PLA set,PLPs always should be matched with a correspond-

ing number ofPHP instructions in a one-to-one relationship. Failure to observe
this requirement can result in some very strange results!

PLX: PulL X-Register [65C02]

Description: PLX retrieves one byte from the stack and places it in the X-Register
(65C02 only). his conditions the N-lag (sign lag) and Z-lag (zero lag), just as
though a LDX instruction had been done.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only [65C02] PLX FA

Uses: his is combined withPHX to retrieve data from the stack. SeePHX for a
usage example.

]

380 Assembly Lines

PLY: PulL Y-Register [65C02]

Description: PLY retrieves one byte from the stack and places it in the Y-Register
(65C02 only). his conditions the N-lag (sign lag) and Z-lag (zero lag), just as
though a LDY instruction had been done.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only [65C02] PLY 7A

Uses: his is combined withPHY to retrieve data from the stack. SeePHY for
details.

ROL: ROtate Let

Description: his instruction moves each bit of the Accumulator or the speciied
memory location one position to the le!. he carry bit is pushed into position 0
and is replaced by bit 7 (the high-order bit). he N-lag (sign lag) and Z-lag
(zero lag) are conditioned depending on the result of the shi!. (See also ASL, LSR,
and ROR.)

ROL − Rotate One Bit Let ROR − Rotate One Bit Right

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Accumulator ROL 2A

Zero Page ROL $12 26 12

Zero Page,X ROL $12,X 36 12

Absolute ROL $1234 2E 34 12

Absolute,X ROL $1234,X 3E 34 12

Appendix B: Assembly Commands 381

Uses: ROL can be used as one of the various methods to test for a set high bit. he
disadvantage to testing for the high bit in this way is that the contents must then
be restored with a corresponding ROR instruction.

ROL is used more o!en in combination withASL inmultiply and divide rou-
tines.

ROR: ROtate Right

Description: his instruction moves each bit of the Accumulator or the speciied
memory location one position to the right. he carry bit is pushed into position
7 (the high-order bit), and is replaced by bit 0. he N-lag (sign lag) and Z-lag
(zero lag) are also conditioned depending on the result of the shi!. (See also
ASL, LSR, and ROL.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Accumulator ROR 6A

Zero Page ROR $12 66 12

Zero Page,X ROR $12,X 76 12

Absolute ROR $1234 6E 34 12

Absolute,X ROR $1234,X 7E 34 12

Uses: ROR provides an alternate way of testing for the odd/even nature of a num-
ber. he carry is tested a!er the shi! to detect whether the number was odd or
even.

ROR inds greater use when combined with the shi! operations in creating
multiply and divide routines.

RTI: ReTurn from Interrupt

Description: his restores both theProgram Counter and the Status Register in
preparation to resuming the routine being executed at the time of theinterrupt.
All lags of the Status Register are reset to their original values.

]

382 Assembly Lines

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only RTI 40

Uses:RTI is used in much the same way that anRTS would be used in returning
from aJSR. A!er an interrupt has been handled and the background operation
performed, the return is done via theRTI command. Usually the user will want
to restore the Accumulator, the X-Register, and the Y-Register prior to return-
ing.

RTI also is equivalent to aPLP RTS in that the Status Register is restored
from the stack and a return is done to the address on the stack.

RTS: ReTurn from Subroutine

Description: his restores theProgram Counter to the address stored on the
stack, usually the address of the next instruction a!er theJSR that called the rou-
tine. Analogous to a RETURN to a GOSUB in BASIC. (See also JSR.)

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only RTS 60

Uses:RTS is, surprisingly enough, most o!en used to return from subroutines.
On occasion it can be used tosimulate aJMP instruction by using twoPHA
instructions to put a false return address on the stack and then executing the RTS.
See the section on PHA, and also chapter 15 for more details.
An RTS can be POP’d one level by the execution of two PLA instructions.

SBC: SuBtract with Carry

Description: Subtracts the contents of the memory location or the speciied
value from the Accumulator. he opposite of the carry is also subtracted, and in
this instance the carry is called a borrow. he N-lag (sign lag), V-lag (overlow
lag), Z-lag (zero lag), and C-lag (carry lag) are all conditioned by this opera-
tion, and they o!en are used to detect the nature of the result of the subtraction.
he result of the subtraction is put back in the Accumulator. he memory loca-

Appendix B: Assembly Commands 383

tion, if speciied, is unchanged.SBC works for both the binary and theBCD arith-
metic modes.

Important: AnSEC should always be done before the irstSBC operation. his is
equivalent to clearing the borrow and is analogous to theCLC done before anADC
instruction.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Immediate SBC #$12 E9 12

Zero Page SBC $12 E5 12

Zero Page,X SBC $12,X F5 12

Absolute SBC $1234 ED 34 12

Absolute,X SBC $1234,X FD 34 12

Absolute,Y SBC $1234,Y F9 34 12

(Indirect,X) SBC ($12,X) E1 12

(Indirect),Y SBC ($12),Y F1 12

(Indirect) [65C02] SBC ($12) F2 12

Uses:SBC is used most o!en for subtracting a constant or memory value from
either a one-byte memory location or a two-byte memory location.

One-byte subtraction:

ENTRY SEC

 LDA MEM

 SBC #$80

 STA MEM ; MEM = MEM - #$80

DONE RTS

Two-byte subtraction:

ENTRY SEC

 LDA MEM

 SBC #$80

 STA MEM

 LDA MEM+1

 SBC #$00

 STA MEM+1 ; MEM,MEM+1 = MEM,MEM+1 - #$80

DONE RTS

]

384 Assembly Lines

SEC: SEt Carry

Description: his sets the carry lag of the Status Register.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Implied only SEC 38

Uses:SEC usually is used just prior to aSBC operation. he carry is occasionally
used though to indicate error (or other) conditions, as is done byRWTS
(Read/Write Track Sector) in DOS. In these instancesSEC is used to set the carry
to indicate an error. his would be detected sometime later in program execu-
tion, a!er a return from RWTS has already been made.

SEC is also sometimes used to force a branch. For example:

 SEC

 BCS ADDRESS ; (ALWAYS)

SED: SEt Decimal mode

Description:SED sets the 6502 to theBinary Coded Decimal (BCD) mode, in
preparation for an ADC or SBC operation.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Implied only SED F8

Uses:BCD math is used when a greater degree of precision is required. In this
mode each four bits of a byte represent one digit of a base-ten number. Here is a
brief example of a BCD addition operation:

ENTRY SED ; SET DEC MODE

 CLC

 LDA #$25 ; %00101001 = DECIMAL 25

 ADC #$18 ; %00011000 = DECIMAL 18

Appendix B: Assembly Commands 385

 STA MEM ; RSLT = %01000011 = DECIMAL 43

 CLD ; CLR DEC MODE

DONE RTS

SEI: SEt Interrupt disable

Description:SEI is used to disable theinterrupt response to anIRQ (a maskable
interrupt). his does not disable the response to anNMI (Non-Maskable Inter-
rupt = RESET).

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Implied only SEI 78

Uses:SEI is automatically set whenever an interrupt occurs so that no further
interrupts can disturb the system while it is going through the vector path from
$FFFE,$FFFF to$3FE,$3FF. he user is expected to useCLI to re-enable inter-
rupts upon entry to his or her own interrupt routine. DOS typically does a
SEI/CLI operation upon entrance to and exit fromRWTS so that interrupts do not
interfere with the highly timing-dependent disk read/write routines.

STA: STore Accumulator

Description: Stores the contents of the Accumulator in the speciied memory
location. he contents of the Accumulator are not changed, nor are any of the
Status Register lags.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

]

386 Assembly Lines

Addressing Modes Common Syntax Hex Coding

Zero Page STA $12 85 12

Zero Page,X STA $12,X 95 12

Absolute STA $1234 8D 34 12

Absolute,X STA $1234,X 9D 34 12

Absolute,Y STA $1234,Y 99 34 12

(Indirect,X) STA ($12,X) 81 12

(Indirect),Y STA ($12),Y 91 12

(Indirect) [65C02] STA ($12) 92 12

Uses:STA is another frequently used instruction, being employed at the end of
many operations to put the inal result into a speciied memory location.

In general, theLDA/STA combination is used to transfer bytes from one location
to another.

STX: STore the X-Register

Description:STX stores the contents of the X-Register in the speciied memory
location. he X-Register is unchanged and none of the Status Register lags are
afected.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Zero Page STX $12 86 12

Zero Page,Y STX $12,Y 96 12

Absolute STX $1234 8E 34 12

Uses: It is occasionally useful to be able to store the contents of the X-Register
for later reference. Another fairly common use ofSTX is in Appleso!’s determi-
nation of string lengths. A!er getting data from the input bufer ($200 to$2FF)
the length of the input string is held in the X-Register and is saved to astring
descriptor for later use. See chapter 13 for a listing of a simple input routine.

Appendix B: Assembly Commands 387

STY: STore the Y-Register

Description:STY stores the contents of the Y-Register in the speciied memory
location. he Y-Register is unchanged and none of the Status Register lags are
afected.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

Addressing Modes Common Syntax Hex Coding

Zero Page STY $12 84 12

Zero Page,X STY $12,X 94 12

Absolute STY $1234 8C 34 12

Uses:STY is used to store the value of the Y-Register, usually from within string
or data-scanning loops. For example, here is a routine which returns the position
of the irst control character in a block of data:

ENTRY LDY #$00 ; ZERO COUNTER

LOOP LDA DATA,Y ; GET CHARACTER

 BEQ NOTF ; CHR = 0 = END

 CMP #$20 ; 'SPC'

 BCS NXT ; CHR > CTRL’S

FOUND STY POS ; SAVE Y-REG

DONE RTS

NXT INY ; Y = Y + 1

 BNE LOOP ; UNTIL Y = 0 AGAIN

 BEQ DONE

NOTF LDY #$FF ; FLAG NOT FOUND

 BNE FOUND

STZ: STore Zero in memory [65C02]

Description:STZ stores a 0 in a zero-page memory location (65C02 only). None
of the Status Register lags are afected.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓

]

388 Assembly Lines

Addressing Modes Common Syntax Hex Coding

Zero Page [65C02] STZ $12 64 12

Zero Page,X [65C02] STZ $12,X 74 12

Absolute [65C02] STZ $1234 9C 34 12

Absolute,X [65C02] STZ $1234,X 9E 34 12

Uses:STZ is used to store a 0 in a memory location. UsingSTZ avoids having to
load a 0 in the Accumulator just to set a memory location.

TAX: Transfer Accumulator to X-Register

Description: Puts the contents of the Accumulator into the X-Register.TAX does
not afect the Accumulator.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only TAX AA

Uses: Most simply, TAX is used for transferring data from the Accumulator to the
X-Register. Equally important, however, is its combination withTYA to transfer
data from the Y-Register to the X-Register:

ENTRY LDY #$00 ; LOAD Y

 TYA ; PUT IN A

 TAX ; PUT IN X

TAY: Transfer Accumulator to Y-Register

Description: Puts the contents of the Accumulator into the Y-Register.TAY does
not afect the Accumulator.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Appendix B: Assembly Commands 389

Addressing Modes Common Syntax Hex Coding

Implied only TAY A8

Uses: Most simply, TAY is used for transferring data from the Accumulator to the
Y-Register. Equally important, however, is its combination withTXA to transfer
data from the X-Register to the Y-Register:

ENTRY LDX #$00 ; LOAD X

 TXA ; PUT IN A

 TAY ; PUT IN Y

TRB: Test and Reset Bits [65C02]

Description:TRB uses the Accumulator as a mask to clear bits in a speciied
memory location (65C02 only). he Accumulator is unchanged, but the Z-lag
(zero lag) lag is conditioned based on the value of those memory bits prior to
the operation.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓

Addressing Modes Common Syntax Hex Coding

Zero Page [65C02] TRB $12 14 12

Absolute [65C02] TRB $1234 1C 34 12

Uses:TRB is like a combination ofBIT andAND, with the added bonus that the
new value is stored back in the memory location.
For example, to set both bits 0 and 7 of a memory location, we could use the

following set of instructions:

LDA #$81 ; %1000 0001 = MASK PATTERN

TSB MEM1 ; SET BITS 0,7 OF MEMORY

BNE PRSET ; ONE OF THESE WAS 'ON' ALREADY

BEQ PRCLR ; NEITHER OF THESE WAS 'ON' ALREADY

his would clear the bits:

LDA #$81 ; %1000 0001 = MASK PATTERN

TRB MEM2 ; CLR BIT 0,7 OF MEMORY

BNE PRSET ; ONE OF THESE WAS 'ON' ALREADY

BEQ PRCLR ; NEITHER OF THESE WAS 'ON' ALREADY

]

390 Assembly Lines

TSB: Test and Set Bits [65C02]

Description:TSB uses the Accumulator as a mask to set bits in a speciied mem-
ory location (65C02 only). he Accumulator is unchanged, but the Z-lag (zero
lag) lag is conditioned based on the value of those memory bits prior to the
operation.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓

Addressing Modes Common Syntax Hex Coding

Zero Page [65C02] TSB $12 04 12

Absolute [65C02] TSB $1234 0C 34 12

Uses:TSB is like a combination ofBIT andORA, with the added bonus that the
new value is stored back in the memory location. See TRB for an example.

TSX: Transfer Stack to X-Register

Description: his puts the contents of the Stack Pointer into the X-Register. he
N-lag (sign lag) and Z-lag (zero lag) are conditioned. he Stack Pointer is
unchanged.

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only TSX BA

Uses: he most obvious use ofTSX is in preserving the value of the stack at a cer-
tain point. Similar to the use ofPLAs withRTS, this could be used to duplicate
BASIC’sPOP command–that is to say, a direct return to a diferent level than
the one which had actually called a subroutine. For example:

ENTRY LDA #$00 ; DUMMY OPERATION

 TSX ; SAVE CURRENT RETURN PTR

 JSR LEVEL1

 RTS ; NORMAL EXIT, BUT IT WILL NEVER BE CALLED

LEVEL1 TXS ; PUT PTR TO 1ST RETURN BACK

DONE RTS ; EXIT TO MAIN CALLING PROGR

Appendix B: Assembly Commands 391

Note that this is somewhat dangerous in that you must be very certain as to
the actual contents of the stack, and in the knowledge that the data has not been
changed by intermediatePHAs andPLAs for instance. Remember that the Stack
Pointer is only apointer to the stack and does not preserve the return address as
such, but only its position in the stack.
Another use for TSX is in retrieving data from the stack without having to do

a PLA instruction. Although aPLA/PHA/TAX sequence would be transparent to the
stack, and accomplish the same results,TSX can be used to retrieve information
that isoicially lost at that point. What I am alluding to is retrieving data that is
lower in memory than the current Stack Pointer, and that would be overwritten
by the nextPHA instruction. One of the prime examples of this is in using aJSR
to a knownRTS in the Monitor for no other purpose than to be able to immedi-
ately retrieve the otherwise transparent return address. his is done so that relo-
catable code has a way of inding out where it’s currently located. See chapter 15
for a thorough explanation of the technique. For quick reference, here’s the basic
routine:

ENTRY JSR RETURN ; $FF58

 TSX

 LDA STACK,X ; $100,X

 STA PTR+1

 DEX

 LDA STACK,X ; $100,X+1

 STA PTR ; PTR,PTR+1 = ENTRY+2

DONE RTS

Caution: Most Step and Trace utilities will not properly trace code like this
because of the somewhatillegal use of the stack. Strictly speaking, good pro-
gramming principles dictate that once data is oicially of the stack, it is counted
as being efectively lost. his is especially true in the case of interrupts, where an
interrupt in the middle of the dummyJSR,RTS and retrieval process could pro-
duce a completely invalid result in PTR, PTR+1. Caveat emptor!

TXA: Transfer X to Accumulator

Description: his puts the contents of the X-Register into the Accumulator, and
thus conditions the Status Register just as if anLDA had been executed. he X-
Register is unafected by the operation. (See also TAX.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

]

392 Assembly Lines

Addressing Modes Common Syntax Hex Coding

Implied only TXA 8A

Uses: TXA provides a way of retrieving the value in the X-Register for appropriate
processing by the program. In the case of string-related routines, this is o!en the
length of the string just entered or scanned. he Accumulator can then go about
the things it does so well in terms of putting the value into the most useful part
of memory. Notice that there are more addressing modes available to theSTA
command, not to mention the overall powers granted the Accumulator in terms
of logical operators.
As discussed underTAY,TXA can be combined withTAY to form aTXY-like

(transfer X to Y) function like so:

ENTRY LDX MEM ; GET DATA

 TXA ; PUT IN A

 TAY ; MOVE TO Y

TXS: Transfer X to Stack

Description: his puts the contents of the X-Register into the Stack Pointer.
None of the Status Register lags are afected, nor is the X-Register itself changed.

Flags & Registers Afected: None

Addressing Modes Common Syntax Hex Coding

Implied only TXS 9A

Uses:TXS is used to put data directly into the Stack Pointer. Because there is no
TAS (Accumulator to Stack) or evenTYS (Y-Register to Stack), this is the only
way to get a speciic byte into the Stack Pointer. his usually is used in conjunc-
tion withTSX to restore previously saved data. In the case of the Appleso! stack-
ix program, it is used to avoid problems that otherwise would occur if aRESUME
were not used a!er an error had occurred within a FOR-NEXT loop or a GOSUB:

ENTRY PLA ; GET LOW BYTE OF CURRENT RETURN ADDR.

 TAY ; SAVE INTO Y

 PLA ; GET HIGH BYTE OF RETURN ADDR.

 LDX ERRSTK ; $DF = S PTR BEFORE ERROR

 TXS ; PUT BEFORE-ERR PTR BACK

 PHA ; PUT HIGH BYTE BACK

 TYA ; GET LOW BYTE IN ACC.

 PHA ; PUT LOW BYTE BACK.

DONE RTS ; RETURN TO APPLESOFT WITH STACK FIXED

See also TSX for other applications of TXS.

Appendix B: Assembly Commands 393

TYA: Transfer Y to Accumulator

Description: his puts the contents of the Y-Register into the Accumulator, and
thus conditions the Status Register just as if anLDA had been executed. he Y-
Register is unafected by the operation. (See also TAY.)

Flags & Registers Afected:

N V – B D I Z C Acc X Y Mem

✓ ✓ ✓

Addressing Modes Common Syntax Hex Coding

Implied only TYA 98

Uses: TYA provides a way of retrieving the value in the Y-Register for appropriate
processing by the program. his comes in handy in scanning a data block when
information regarding certain locations is to be processed. As mentioned under
TXA, the Accumulator has far greater lexibility than the Y-Register in terms of
addressing modes and logical operators available.

TYA also is combined withTAX to form the equivalent of aTYX (Transfer Y to
X). he operation has the form of:

ENTRY LDY MEM ; GET DATA

 TYA ; PUT IN A

 TAX ; MOVE TO X

]

Appendix C: 6502 Instruction Set

Portions of Appendices C, D, and E are reprinted from theApple II Reference
Manual, courtesy Apple Computer, Inc.

6502 Microprocessor Instructions

ADC Add memory to Accumulator with

carry

AND AND memory with Accumulator

ASL Shi! le! one bit (memory or Accu-
mulator)

BCC Branch on carry clear

BCS Branch on carry set

BEQ Branch on result = zero

BIT Test bits in memory with Accumu-

lator

BMI Branch on result = minus

BNE Branch on result = not zero

BPL Branch on result = plus

BRA Branch always1

BRK Force break

BVC Branch on overlow clear
BVS Branch on overlow set
CLC Clear carry lag
CLD Clear decimal mode

CLI Clear interrupt disable bit

CLV Clear overlow lag
CMP Compare memory and Accumula-

tor

CPX Compare memory and X-Register

CPY Compare memory and Y-Register

DEC Decrement memory by one

DEX Decrement X-Register by one

DEY Decrement Y-Register by one

EOR Exclusive OR Accumulator with

memory

INC Increment memory by one

INX Increment X-Register by one

INY Increment Y-Register by one

JMP Jump to new location

JSR Jump to new location saving return

address on Stack

LDA Load Accumulator with memory

1[CT] Opcodes in gray are for the 65C02.

LDX Load X-Register with memory

LDY Load Y-Register with memory

LSR Shi! right one bit (memory or
Accumulator)

NOP No operation

ORA OR Accumulator with memory

PHA Push Accumulator onto stack

PHP Push processor status onto stack

PHX Push X-Register onto stack

PHY Push Y-Register onto stack

PLA Pull Accumulator from stack

PLP Pull processor status from stack

PLX Pull X-Register from stack

PLY Pull Y-Register from stack

ROL Rotate le! one bit (memory or
Accumulator)

ROR Rotate right one bit (memory or

Accumulator)

RTI Return from interrupt

RTS Return from subroutine

SBC Subtract memory from Accumula-

tor with borrow

SEC Set carry lag
SED Set decimal mode

SEI Set interrupt disable status

STA Store Accumulator in memory

STX Store X-Register in memory

STY Store Y-Register in memory

STZ Store zero in memory

TAX Transfer Accumulator to X

TAY Transfer Accumulator to Y

TRB Test and reset bits

TSB Test and set bits

TSX Transfer Stack Pointer to X

TXA Transfer X to Accumulator

TXS Transfer X to Stack Pointer

TYA Transfer Y to Accumulator

Appendix C: 6502 Instruction Set 395

Usage Chart of 6502 Instructions

]

396 Assembly Lines

Programming Model

Processor Status Register

Appendix C: 6502 Instruction Set 397

Notation

he following notation applies to the 6502 Instruction Codes table:

 A
 X, Y
 M
 C
 C
 P
 S
 ∧
∨

 v

Accumulator
Index Register
Memory
Carry
Borrow
Processor Status Register
Stack Pointer
Logical AND
Logical inclusive OR
Logical exclusive OR

 ↑
 ↓
→

←

PC
PCH
PCL
#$FF

$FF

$FFff

Transfer from Stack
Transfer to Stack
Transfer to
Transfer to
Program Counter
Program Counter High
Program Counter Low
Immediate Addressing Mode
Two-byte (zero page) operand
Four-byte (absolute) operand

Figure C-1: ASL (shit one bit let) and LSR (shit one bit right)

Figure C-2: ROL − Rotate one bit let

(memory or Accumulator)

Figure C-3: ROR − Rotate one bit

right (memory or Accumulator)

]

398 Assembly Lines

6502 Instruction Codes

he Time is given in clock cycles (1μs at 1 MHz). For times with a “+”, add 1 if a page
boundary is crossed. For branch instructions with a “*”, add 1 if the branch is taken, and
add 1 more if the branch crosses a page boundary. For times with a “d”, add 1 if in deci-
mal mode on the 65C02 (but not on the 6502).

Name

Description Operation

Addressing

Mode

Assembly

Language

Op-

codeBytesTime

P status

NZCIDV

ADC

Add Accumulator to

memory with carry

A+M+C→
A, C

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

ADC #$FF

ADC $FF

ADC $FF,X

ADC $FFff

ADC $FFff,X

ADC $FFff,Y

ADC ($FF,X)

ADC ($FF),Y

69

65

75

6D

7D

79

61

71

2

2

2

3

3

3

2

2

2d

3d

4d

4d

4d+

4d+

6d

5d+

NZC---

AND

AND Accumulator with

memory

A∧M → A Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

AND #$FF

AND $FF

AND $FF,X

AND $FFff

AND $FFff,X

AND $FFff,Y

AND ($FF,X)

AND ($FF),Y

29

25

35

2D

3D

39

21

31

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZ----

ASL

Shi! le! one bit (memory or
Accumulator)

see Fig C-1 Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

ASL

ASL $FF

ASL $FF,X

ASL $FFff

ASL $FFff,X

0A

06

16

0E

1E

1

2

2

3

3

2

5

6

6

72

NZC---

BCC Branch on carry clear Branch C=0 Relative BCC $FF 90 2 2* ------

BCS Branch on carry set Branch C=1 Relative BCS $FF B0 2 2* ------

BEQ Branch on result zero Branch Z=1 Relative BEQ $FF F0 2 2* ------

BIT

Test with Accumulator3 with

bits in memory

A∧M
M7 → N
M6 → V

Zero Page

Absolute

BIT $FF

BIT $FFff

24

2C

2

3

3

4

NZ---V

BMI Branch on result minusBranch N=1 Relative BMI $FF 30 2 2* ------

BNE Branch on result not

zero

Branch Z=0 Relative BNE $FF D0 2 2* ------

BPL Branch on result plus Branch N=0 Relative BPL $FF 10 2 2* ------

BRK Force break interrupt4 PC+2↓ P↓ Implied BRK 00 1 7 ---I--

2[CT] On the 65C02, ASL Abs,X takes 6 cycles if a page boundary is not crossed.
3Bits 6 and 7 are transferred to the Status Register. If the result ofA∧M is 0, then Z = 1;
otherwise Z = 0.

4A BRK command cannot be masked by setting interrupt disable I.
[CT] On the 6502, BRK does not clear the decimal lag; on the 65C02, it does.

Appendix C: 6502 Instruction Set 399

Name

Description Operation

Addressing

Mode

Assembly

Language

Op-

codeBytesTime

P status

NZCIDV

BVC Branch on overlow
clear

Branch V=0 Relative BVC $FF 50 2 2* ------

BVS Branch on overlow setBranch V=1 Relative BVS $FF 70 2 2* ------

CLC Clear carry lag5 0 → C Implied CLC 18 1 2 --C---

CLD Clear decimal mode 0 → D Implied CLD D8 1 2 ----D-

CLI Clear interrupt disable 0 → I Implied CLI 58 1 2 ---I--

CLV Clear overlow lag 0 → V Implied CLV B8 1 2 -----V

CMP

Compare memory and

Accumulator

A←→M Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

CMP #$FF

CMP $FF

CMP $FF,X

CMP $FFff

CMP $FFff,X

CMP $FFff,Y

CMP ($FF,X)

CMP ($FF),Y

C9

C5

D5

CD

DD

D9

C1

D1

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZC---

CPX

Compare memory and X-

Register

X←→M Immediate

Zero Page

Absolute

CPX #$FF

CPX $FF

CPX $FFff

E0

E4

EC

2

2

3

2

3

4

NZC---

CPY

Compare memory and Y-

Register

Y←→M Immediate

Zero Page

Absolute

CPY #$FF

CPY $FF

CPY $FFff

C0

C4

CC

2

2

3

2

3

4

NZC---

DEC

Decrement memory by one

M−1 → M Zero Page

Zero Page,X

Absolute

Absolute,X

DEC $FF

DEC $FF,X

DEC $FFff

DEC $FFff,X

C6

D6

CE

DE

2

2

3

3

5

6

6

7

NZ----

DEX Decrement X by 1 X−1 → X Implied DEX CA 1 2 NZ----

DEY Decrement Y by 1 Y−1 → Y Implied DEY 88 1 2 NZ----

EOR

Exclusive OR Accumulator

with memory

AvM → A Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

EOR #$FF

EOR $FF

EOR $FF,X

EOR $FFff

EOR $FFff,X

EOR $FFff,Y

EOR ($FF,X)

EOR ($FF),Y

49

45

55

4D

5D

59

41

51

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZ----

INC

Increment memory by one

M+1 → M Zero Page

Zero Page,X

Absolute

Absolute,X

INC $FF

INC $FF,X

INC $FFff

INC $FFff,X

E6

F6

EE

FE

2

2

3

3

5

6

6

7

NZ----

INX Increment X by 1 X+1 → X Implied INX E8 1 2 NZ----

INY Increment Y by 1 Y+1 → Y Implied INY C8 1 2 NZ----

JMP

Jump to new location

PC+1 → PCL
PC+2 → PCH

Absolute

(Indirect)

JMP $FFff

JMP ($FFff)

4C

6C

3

3

3

5/66

5[CT] CLC, CLD, and CLV had the wrong Status Register lags.
6[CT] Indirect JMP takes 5 cycles on the 6502 and 6 cycles on the 65C02.

]

400 Assembly Lines

Name

Description Operation

Addressing

Mode

Assembly

Language

Op-

codeBytesTime

P status

NZCIDV

JSR

Jump to new location saving

return address

PC+2↓

PC+1 → PCL
PC+2 → PCH

Absolute JSR $FFff 20 3 6 ------

LDA

Load memory into

Accumulator

M → A Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

LDA #$FF

LDA $FF

LDA $FF,X

LDA $FFff

LDA $FFff,X

LDA $FFff,Y

LDA ($FF,X)

LDA ($FF),Y

A9

A5

B5

AD

BD

B9

A1

B1

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZ----

LDX

Load memory into

X-Register

M → X Immediate

Zero Page

Zero Page,Y

Absolute

Absolute,Y

LDX #$FF

LDX $FF

LDX $FF,Y

LDX $FFff

LDX $FFff,Y

A2

A6

B6

AE

BE

2

2

2

3

3

2

3

4

4

4+

NZ----

LDY

Load memory into

Y-Register

M → Y Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

LDY #$FF

LDY $FF

LDY $FF,X

LDY $FFff

LDY $FFff,X

A0

A4

B4

AC

BC

2

2

2

3

3

2

3

4

4

4+

NZ----

LSR

Shi! right one bit (memory
or Accumulator)

see Fig C-1 Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

LSR

LSR $FF

LSR $FF,X

LSR $FFff

LSR $FFff,X

4A

46

56

4E

5E

1

2

2

3

3

2

5

6

6

77

NZC---

NOP No operation Implied NOP EA 1 2 ------

ORA

Logical OR Accumulator

with memory

A∨M → A Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

ORA #$FF

ORA $FF

ORA $FF,X

ORA $FFff

ORA $FFff,X

ORA $FFff,Y

ORA ($FF,X)

ORA ($FF),Y

09

05

15

0D

1D

19

01

11

2

2

2

3

3

3

2

2

2

3

4

4

4+

4+

6

5+

NZ----

PHA Push Accumulator

onto stack

A↓ Implied PHA 48 1 3 ------

PHP Push processor status

onto stack

P↓ Implied PHP 08 1 3 ------

PLA Pull Accumulator from

stack

A↑ Implied PLA 68 1 4 NZ----

PLP Pull processor status

from stack

P↑ Implied PLP 28 1 4 from Stack

7[CT] On the 65C02, LSR Abs,X takes 6 cycles if a page boundary is not crossed.

Appendix C: 6502 Instruction Set 401

Name

Description Operation

Addressing

Mode

Assembly

Language

Op-

codeBytesTime

P status

NZCIDV

ROL

Rotate one bit le! (memory
or Accumulator)

see Fig C-2 Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

ROL

ROL $FF

ROL $FF,X

ROL $FFff

ROL $FFff,X

2A

26

36

2E

3E

1

2

2

3

3

2

5

6

6

78

NZC---

ROR

Rotate one bit right (memory

or Accumulator)

see Fig C-3 Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

ROR

ROR $FF

ROR $FF,X

ROR $FFff

ROR $FFff,X

6A

66

76

6E

7E

1

2

2

3

3

2

5

6

6

78

NZC---

RTI

Return from interrupt
P↑ PC↑ Implied RTI 40 1 6 from Stack

RTS

Return from subroutine

PC↑

PC+1 → PC
Implied RTS 60 1 6 ------

SBC

Subtract memory from

Accumulator with borrow

A−M−C → A Immediate
Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

SBC #$FF

SBC $FF

SBC $FF,X

SBC $FFff

SBC $FFff,X

SBC $FFff,Y

SBC ($FF,X)

SBC ($FF),Y

E9

E5

F5

ED

FD

F9

E1

F1

2

2

2

3

3

3

2

2

2d

3d

4d

4d

4d+

4d+

6d

5d+

NZC--V

SEC Set carry lag 1 → C Implied SEC 38 1 2 --C---

SED Set decimal mode 1 → D Implied SED F8 1 2 ----D-

SEI Set interrupt disable 1 → I Implied SEI 78 1 2 ---I--

STA

Store Accumulator in

memory

A → M Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

(Indirect,X)

(Indirect),Y

STA $FF

STA $FF,X

STA $FFff

STA $FFff,X

STA $FFff,Y

STA ($FF,X)

STA ($FF),Y

85

95

8D

9D

99

81

91

2

2

3

3

3

2

2

3

4

4

5

5

6

6

STX

Store X-Register in memory

X → M Zero Page

Zero Page,Y

Absolute

STX $FF

STX $FF,Y

STX $FFff

86

96

8E

2

2

3

3

4

4

STY

Store Y-Register in memory

Y → M Zero Page

Zero Page,X

Absolute

STY $FF

STY $FF,X

STY $FFff

84

94

8C

2

2

3

3

4

4

TAX Transfer A to X A → X Implied TAX AA 1 2 NZ----

TAY Transfer A to Y A → Y Implied TAY A8 1 2 NZ----

TSX Transfer stack to X S → X Implied TSX BA 1 2 NZ----

TXA Transfer X to A X → A Implied TXA 8A 1 2 NZ----

TXS Transfer X to stack X → S Implied TXS 9A 1 2 ------

TYA Transfer Y to A Y → A Implied TYA 98 1 2 NZ----

8[CT] On the 65C02, ROL/ROR Abs,X take 6 cycles if a page boundary is not crossed.

]

402 Assembly Lines

65C02 Instruction Codes

he Time is given in clock cycles (1μs at 1 MHz). For times with a “+”, add 1 if a page
boundary is crossed. For times with a “d”, add 1 if in decimal mode. his table does not
include the bit-manipulation instructionsBBR,BBS,RMB, andSMB, which are only avail-
able on the Rockwell and WDC chips.

Name

Description Operation

Addressing

Mode

Assembly

Language

Op-

codeBytesTime

“P” status

NZCIDV

ADC Add Accumulator to

memory with carry

A+M+C→A,C(Indirect) ADC ($FF) 72 2 5d NZC---

AND AND Accumulator

with memory
A∧M → A (Indirect) AND ($FF) 32 2 5 NZ----

BIT Test Accumulator with

bits in memory
A∧M
M7 → N
M6 → V

Immediate

Zero Page,X

Absolute,X

BIT #$FF

BIT $FF,X

BIT $FFff,X

89

34

3C

2

2

3

2

4

4+

-Z----

NZ---V

NZ---V

BRA Branch always Branch Relative BRA $FF 80 2 3+ ------

CMP Compare memory

and Accumulator

A←→M (Indirect) CMP ($FF) D2 2 5 NZC---

DEC Decrement A M−1 → M Accumulator DEC 3A 1 2 NZ----

EOR Exclusive OR

Accumulator with memory
AvM → A (Indirect) EOR ($FF) 52 2 5 NZ----

INC Increment A M+1 → M Accumulator INC 1A 1 2 NZ----

JMP Jump to new location PC+1 → PCL
PC+2 → PCH

(Absolute

Indirect,X)

JMP ($FFff,X) 7C 3 6 ------

LDA Load Accumulator

with memory

M → A (Indirect) LDA ($FF) B2 2 5 NZ----

ORA Logical OR

Accumulator with memory
A∨M → A (Indirect) ORA ($FF) 12 2 5 NZ----

PHX Push X onto stack X↓ Implied PHX DA 1 3 ------

PHY Push Y onto stack Y↓ Implied PHY 5A 1 3 ------

PLX Pull X from stack X↑ Implied PLX FA 1 4 NZ----

PLY Pull Y from stack Y↑ Implied PLY 7A 1 4 NZ----

SBC Subtract memory

from A with borrow
A−M−C → A (Indirect) SBC ($FF) F2 2 5d NZC--V

STA Store Accumulator in

memory

A → M (Indirect) STA ($FF) 92 2 5 ------

STZ Store zero in memory 0 → M Zero Page

Zero Page,X

Absolute

Absolute,X

STZ $FF

STZ $FF,X

STZ $FFff

STZ $FFff,X

64

74

9C

9E

2

2

3

3

3

4

4

5

TRB Test and reset bits Ā∧M → M Zero Page

Absolute

TRB $FF

TRB $FFff

14

1C

2

3

5

6

-Z----

TSB Test and set bits A∨M → M Zero Page

Absolute

TSB $FF

TSB $FFff

04

0C

2

3

5

6

-Z----

Appendix C: 6502 Instruction Set 403

Hex Operation Codes

Note: Table entries in gray are opcodes for the 65C02.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x BRK
ORA
(zp,x)

TSB
zp

ORA
zp

ASL
zp

PHP
ORA
#

ASL
A

TSB
abs

ORA
abs

ASL
abs

1x
BPL
rel

ORA
(zp),y

ORA
(zp)

TRB
zp

ORA
zp,x

ASL
zp,x

CLC
ORA
abs,y

INC
A

TRB
abs

ORA
abs,x

ASL
abs,x

2x
JSR
abs

AND
(zp,x)

BIT
zp

AND
zp

ROL
zp

PLP
AND
#

ROL
A

BIT
abs

AND
abs

ROL
abs

3x
BMI
rel

AND
(zp),y

AND
(zp)

BIT
zp,x

AND
zp,x

ROL
zp,x

SEC
AND
abs,y

DEC
A

BIT
abs,x

AND
abs,x

ROL
abs,x

4x RTI
EOR
(zp,x)

EOR
zp

LSR
zp

PHA
EOR
#

LSR
A

JMP
abs

EOR
abs

LSR
abs

5x
BVC
rel

EOR
(zp),y

EOR
(zp)

EOR
zp,x

LSR
zp,x

CLI
EOR
abs,y

PHY
EOR
abs,x

LSR
abs,x

6x RTS
ADC
(zp,x)

STZ
zp

ADC
zp

ROR
zp

PLA
ADC
#

ROR
A

JMP
(ind)

ADC
abs

ROR
abs

7x
BVS
rel

ADC
(zp),y

ADC
(zp)

STZ
zp,x

ADC
zp,x

ROR
zp,x

SEI
ADC
abs,y

PLY
JMP
(abs,x)

ADC
abs,x

ROR
abs,x

8x
BRA
rel

STA
(zp,x)

STY
zp

STA
zp

STX
zp

DEY
BIT
#

TXA
STY
abs

STA
abs

STX
abs

9x
BCC
rel

STA
(zp),y

STA
(zp)

STY
zp,x

STA
zp,x

STX
zp,y

TYA
STA
abs,y

TXS
STZ
abs

STA
abs,x

STZ
abs,x

Ax
LDY
#

LDA
(zp,x)

LDX
#

LDY
zp

LDA
zp

LDX
zp

TAY
LDA
#

TAX
LDY
abs

LDA
abs

LDX
abs

Bx
BCS
rel

LDA
(zp),y

LDA
(zp)

LDY
zp,x

LDA
zp,x

LDX
zp,y

CLV
LDA
abs,y

TSX
LDY
abs,x

LDA
abs,x

LDX
abs,y

Cx
CPY
#

CMP
(zp,x)

CPY
zp

CMP
zp

DEC
zp

INY
CMP
#

DEX
CPY
abs

CMP
abs

DEC
abs

Dx
BNE
rel

CMP
(zp),y

CMP
(zp)

CMP
zp,x

DEC
zp,x

CLD
CMP
abs,y

PHX
CMP
abs,x

DEC
abs,x

Ex
CPX
#

SBC
(zp,x)

CPX
zp

SBC
zp

INC
zp

INX
SBC
#

NOP
CPX
abs

SBC
abs

INC
abs

Fx
BEQ
rel

SBC
(zp),y

SBC
(zp)

SBC
zp,x

INC
zp,x

SED
SBC
abs,y

PLX
SBC
abs,x

INC
abs,x

Abbreviations Addressing Modes
= immediate

A = Accumulator

abs = absolute

rel = relative

zp = zero page

x = X-Register

y = Y-Register

abs,x = indexed by X

abs,y = indexed by Y

(abs) = indirect

(abs,x) = indexed absolute indirect

zp,x = indexed by X

zp,y = indexed by Y

(zp) = indirect

(zp,x) = indexed indirect (pre-indexed)

(zp),y = indirect indexed (post-indexed)

]

Appendix D: Monitor Subroutines

Here is a list of some useful subroutines in the Apple’s Monitor and
Autostart ROMs. To use these subroutines from assembly-language programs,
load the proper memory locations or 6502 registers as required by the subrou-
tine and execute aJSR to the subroutine’s starting address. It will perform the
function and return with the 6502’s registers set as described.

Output Subroutines

$FDED COUT Output a character

COUT is the standard character output subroutine. he character to be output
should be in the Accumulator.COUT calls the current character output subrou-
tine whose address is stored inCSW (locations$36 and$37), usuallyCOUT1 (see
below).

$FDF0 COUT1 Output to screen

COUT1 displays the character in the Accumulator on the Apple’s screen at the
current output cursor position and advances the output cursor. It handles the
control characters,<RETURN>, linefeed, and bell. It returns with all registers
intact. Characters in the range of$00 to$3F come out inverse; characters from
$40 to $7F are lashing; characters from $80 to $FF are normal.

$FE80 SETINV Set Inverse mode

Sets Inverse video mode forCOUT1. All output characters will be displayed as
black dots on a white background. he Y-Register is set to$3F; all others are
unchanged.

$FE84 SETNORM Set Normal Mode

Sets Normal video mode forCOUT1. All output characters will be displayed as
white dots on a black background. he Y-Register is set to$FF; all others are
unchanged.

$FD8E CROUT Generate a <RETURN>

CROUT sends a <RETURN> character to the current output device.

$FD8B CROUT1 <RETURN> with clear

CROUT1 clears the screen from the current cursor position to the edge of the text
window, then calls CROUT.

$FDDA PRBYTE Print a hexadecimal byte

his subroutine outputs the contents of the Accumulator in hexadecimal on the
current output device. he contents of the Accumulator are scrambled.

Appendix D: Monitor Subroutines 405

$FDE3 PRHEX Print a hexadecimal digit

his subroutine outputs the lower nibble of the Accumulator as a single hexa-
decimal digit. he contents of the Accumulator are scrambled.

$F941 PRNTAX Print A and X in hexadecimal

his outputs the contents of the Accumulator and X-Register as a four-digit
hexadecimal value. he Accumulator contains the irst byte output; the X-Regis-
ter contains the second. he contents of the Accumulator are usually scrambled.

$F948 PRBLNK Print 3 spaces

Outputs three space characters to the standard output device. Upon exit, the
Accumulator usually contains $A0, the X-Register contains 0.

$F94A PRBL2 Print many spaces

Outputs from 1 to 256 space characters to the standard output device. Upon
entry, the X-Register should contain the number of spaces to be output. If the X-
Register is $00, then PRBL2 will output 256 blanks.

$FF3A BELL Output a “bell” character

Sends a bell (<CTRL>G) character to the current output device. It leaves the Accu-
mulator holding $87.

$FBDD BELL1 Beep the Apple’s speaker

Beeps the Apple’s speaker for 0.1 second at 1KHz. It scrambles the Accumulator
and Y-Register.

Input Subroutines

$FD0C RDKEY Get an input character

his is the standard character input subroutine. It places a lashing input cursor
on the screen at the current cursor position and jumps to the input subroutine
whose address is stored in KSW ($38, $39), usually KEYIN (see below).

$FD35 RDCHAR Get an input character or escape code

RDCHAR is an alternate input subroutine which gets characters from the standard
input but also is capable of interpreting the eleven escape codes.

$FD1B KEYIN Read the Apple’s keyboard

his is the keyboard input subroutine. It reads the Apple’s keyboard, waits for a
keypress, and randomizes the random-number seed. When it gets a keypress, it
removes the lashing cursor and returns with the key code in the Accumulator.

$FD6A GETLN Get an input line with prompt

GETLN is the subroutine which gathers input lines. Your programs can callGETLN
with the proper prompt character in location$33;GETLN will return with the

]

406 Assembly Lines

input line in the input bufer (beginning at location$200) and the X-Register
holding the length of the input line.

$FD67 GETLNZ Get an input line

GETLNZ is an alternate entry point forGETLN which issues a<RETURN> to the stan-
dard output before falling into GETLN (see above).

$FD6F GETLN1 Get an input line, no prompt

GETLN1 is an alternate entry point forGETLN which does not issue a prompt
before it gathers the input line. If, however, the user cancels the input line (either
with too many backspaces or with a<CTRL>X), thenGETLN1 will issue the con-
tents of location $33 as a prompt when it gets another line.

Low-Res Graphics Subroutines

$F864 SETCOL Set low-res graphics color

his subroutine sets the color used for plotting on the low-res screen to the color
passed in the Accumulator.

$F85F NEXTCOL Increment color by 3

his adds 3 to the current color used for low-res graphics.

$F800 PLOT Plot a block on the Low-Res Screen

his subroutine plots a single block on the low-res screen of the pre-speciied
color. he block’s vertical position is passed in the Accumulator and its horizon-
tal position in the Y-Register.PLOT returns with the Accumulator scrambled, but
the X-Register and Y-Register are unmolested.

$F819 HLINE Draw a horizontal line of blocks

his subroutine draws a horizontal line of blocks of the pre-speciied color on
the low-res screen. You should callHLINE with the vertical coordinate of the line
in the Accumulator, the le!most horizontal coordinate in the Y-Register, and
the rightmost horizontal coordinate in location$2C.HLINE returns with the
Accumulator and Y-Register scrambled, but with the X-Register intact.

$F828 VLINE Draw a vertical line of blocks

his subroutine draws a vertical line of blocks of the pre-speciied color on the
low-res screen. You should callVLINE with the horizontal coordinate of the line
in the Y-Register, the top vertical coordinate in the Accumulator, and the bot-
tom vertical coordinate in location$2D.VLINE returns with the Accumulator
scrambled.

Appendix D: Monitor Subroutines 407

$F832 CLRSCR Clear the entire low-res screen

CLRSCR clears the entire low-res graphics screen. If you callCLRSCR while the
video display is in Text mode, it will ill the screen with inverse-mode “@” char-
acters. CLRSCR destroys the contents of the Accumulator and Y-Register.

$F836 CLRTOP Clear the top of the low-res Screen

CLRTOP is the same asCLRSCR (above), except that it clears only the top 40 rows
of the screen.

$F871 SCRN Read the low-res screen

his subroutine returns the color of a single block on the low-res screen. Call it
as you would callPLOT (above). he block’s color value will be returned in the
Accumulator. No other registers are changed.

Hi-Res Graphics Subroutines

$F3E2 HGR Hi-res page 1

his is the entry point for theHGR command. It initializes hi-res page 1, then
clears and displays the screen.

$F3D8 HGR2 Hi-res page 2

his is the entry point for theHGR2 command. It initializes hi-res page 2, then
clears and displays the screen.

$F3F2 HCLR Clear to black

Clears the current screen to black1.

$F3F6 BKGND Clear to color

Clears the current screen to the last plotted HCOLOR.

$F6F0 HCOLOR Set color

Sets the current HCOLOR to the contents of the X-Register (0−7).

$F411 HPOSN Position the cursor

Positions the hi-res “cursor” without plotting. Enter with X, Y (low, high) equal
to the horizontal position, and the Accumulator equal to the vertical position.

$F457 HPLOT Plot at cursor

Identical to HPOSN, but plots current HCOLOR at coordinates given.

$F5CB HFIND Return the cursor position

Returns the current “cursor” position. his is useful a!er aDRAW to ind where
you’ve been le!. he coordinates are returned in:$E0,$E1 = horizontal (low,
high), $E2 = vertical.

]

408 Assembly Lines

$F53A HLIN Draw a line

his subroutine draws a line from the previous plot to the point given. On input,
set A, X (low, high) to the horizontal position, and Y equal to the vertical posi-
tion.

$F730 SHNUM Load shape number

his routine puts the address of the shape number indicated by X-Register into
$1A,$1B.SHNUM returns with X, Y (low, high) also set to address of that shape
table entry.

$F601 DRAW Draw a shape

Draw the shape pointed to by X, Y (low, high) in the currentHCOLOR. Note: X, Y
point to the speciic entry, not the beginning of the table. Be sure to callSHNUM
irst.

$F65D XDRAW Erase a shape (draw XOR)

Erases a shape that was just drawn (if there) by doing anexclusive OR with the
screen data. On input, load X, Y (low, high) with the address of the shape to
XDRAW or call SHNUM irst with the X-Register equal to the shape number.

Floating Point Accumulator

$EBAF ABS Absolute value

his subroutine takes the absolute value of the Floating Point Accumulator (FAC
= $9D−$A2).

$EC23 INT INT function

heINT function usesQINT ($EBF2) to convert theFAC to integer form and then
back to a loating-point number in FAC.

$EFAE RND Random number

his is the same as theRND command. Produces a (poor quality) pseudo-random
number in the FAC.

$EB82 SIGN Sign of FAC (in Accumulator)

Sets the Accumulator to $01, $00, or $FF if the FAC is positive, zero, or negative.

$EB90 SGN Sign of FAC (in FAC)

Calls SIGN irst, then sets FAC based upon the Accumulator value.

$EE8D SQR Square root

his is theSQR command. It computes the square root ofFAC using a slow expo-
nentiation method: X0.5.

$EF09 EXP Exponentiation

his routine raises e to the FAC power and leaves the result in FAC.

Appendix D: Monitor Subroutines 409

$E941 LOG Logarithm base e

his computes the logarithm (base e) of FAC.

$EE97 FPWRT Raise ARG to the FAC power (base e)

his computesARG to theFAC power using the formulaEXP(LOG(ARG)*FAC).
Before calling, you should load the Accumulator with FACEXP ($9D).

$EBB2 FCOMP Compare FAC to memory

Before calling, load the memory location in the Y-Register and Accumulator. On
exit, A =$01 if the value at the memory location is less thanFAC; A =$00 if the
memory equals FAC; A = $FF if the memory is greater than FAC.

$EED0 NEGOP Multiply by −1

his routine toggles the sign of FAC.

$E7A0 FADDH Add 0.5

his routine adds 0.5 to FAC.

$EA55 DIV10 Divide by 10

his routine divides FAC by 10. It returns positive values only.

$EA39 MUL10 Multiply by 10

his routine multipliesFAC by 10. It works on both positive and negative num-
bers.

$EFEA COS Cosine

he cosine function of FAC.

$EFFA SIN Sine

he sine function of FAC.

$EFF1 TAN Tangent

he tangent function of FAC.

$F09E ATN Arctangent

he arctangent of FAC.

$ED34 FOUT Create a string

Create a string at the start of the stack ($100−$110) equivalent to theFAC value.
On exit the Y-Register and Accumulator point to the string. he string is termi-
nated by a $00.

]

410 Assembly Lines

Other Subroutines

$FCA8 WAIT Delay

his subroutine delays for a speciic amount of time, then returns to the program
which called it. he amount of delay is speciied by the contents of the Accumu-
lator A. he delay is given by 0.5102×(26 + 27A + 5A2) microseconds.WAIT
returns with the Accumulator zeroed and the X- and Y-Registers undisturbed.

$FB1E PREAD Read a game controller

PREAD returns a number representing the position of a game controller. You
should irst pass the number of the game controller (0 to 3) in the X-Register. If
this number is not valid, strange things may happen.PREAD returns with a num-
ber from $00 to $FF in the Y-Register. he Accumulator is scrambled.

$FF2D PRERR Print “ERR”

Sends the word “ERR”, followed by a bell character, to the standard output
device. he Accumulator is scrambled.

$FF4A IOSAVE Save all registers

he contents of the 6502’s internal registers are saved in locations$45 through
$49 in the order A-X-Y-P-S. he contents of the Accumulator and the X-Regis-
ter are changed; the decimal mode is cleared.

$FF3F IOREST Restore all registers

he contents of the 6502’s internal registers are loaded from locations$45
through $49.

Appendix E: ASCII and Screen Charts

You Get What You ASCII For...

his chart shows many of the possible interpretations of a byte value in
memory. he irst three columns show the hex value and its decimal and binary
equivalents. his can be handy when conversions are needed. he next column
shows what key on an Apple II keyboard generates that character, if any.
Although the standard Apple II does not have a lowercase keyboard, lower-

case keys are shown to allow for machines with special adapters, external key-
boards, etc.
he screen column shows what character is to be expected if that value is

stored in the screen memory area, $400−$7FF. Inverse characters are surrounded
by square brackets[A], while lashing characters are surrounded by angle brack-
ets >A<.
he Appleso! column indicates how Appleso! BASIC interprets that byte

when tokenizing programs.
Note that for control characters, the “̂” symbol is used. hus a Control-A

would be indicated ̂A.

Hex Dec Binary Key Screen Applesot
$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D

$0E

$0F

$10

$11

$12

$13

$14

$15

$16

$17

$18

$19

$1A

$1B

$1C

$1D

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

0000 0000

0000 0001

0000 0010

0000 0011

0000 0100

0000 0101

0000 0110

0000 0111

0000 1000

0000 1001

0000 1010

0000 1011

0000 1100

0000 1101

0000 1110

0000 1111

0001 0000

0001 0001

0001 0010

0001 0011

0001 0100

0001 0101

0001 0110

0001 0111

0001 1000

0001 1001

0001 1010

0001 1011

0001 1100

0001 1101

[@]

[A]

[B]

[C]

[D]

[E]

[F]

[G]

[H]

[I]

[J]

[K]

[L]

[M]

[N]

[O]

[P]

[Q]

[R]

[S]

[T]

[U]

[V]

[W]

[X]

[Y]

[Z]

[[]

[\]

[]]

@̂

Â

B̂

Ĉ

D̂

Ê

F̂

Ĝ

Ĥ

Î

Ĵ

K̂

L̂

M̂

N̂

Ô

P̂

Q̂

R̂

Ŝ

T̂

Û

V̂

Ŵ

X̂

Ŷ

Ẑ

[̂

\̂

]̂

]

412 Assembly Lines

Hex Dec Binary Key Screen Applesot
$1E

$1F

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$2A

$2B

$2C

$2D

$2E

$2F

$30

$31

$32

$33

$34

$35

$36

$37

$38

$39

$3A

$3B

$3C

$3D

$3E

$3F

$40

$41

$42

$43

$44

$45

$46

$47

$48

$49

$4A

$4B

$4C

$4D

$4E

$4F

$50

$51

$52

$53

$54

$55

$56

$57

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

0001 1110

0001 1111

0010 0000

0010 0001

0010 0010

0010 0011

0010 0100

0010 0101

0010 0110

0010 0111

0010 1000

0010 1001

0010 1010

0010 1011

0010 1100

0010 1101

0010 1110

0010 1111

0011 0000

0011 0001

0011 0010

0011 0011

0011 0100

0011 0101

0011 0110

0011 0111

0011 1000

0011 1001

0011 1010

0011 1011

0011 1100

0011 1101

0011 1110

0011 1111

0100 0000

0100 0001

0100 0010

0100 0011

0100 0100

0100 0101

0100 0110

0100 0111

0100 1000

0100 1001

0100 1010

0100 1011

0100 1100

0100 1101

0100 1110

0100 1111

0101 0000

0101 0001

0101 0010

0101 0011

0101 0100

0101 0101

0101 0110

0101 0111

[̂]

[_]

[]

[!]

["]

[#]

[$]

[%]

[&]

[']

[(]

[)]

[*]

[+]

[,]

[-]

[.]

[/]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[:]

[;]

[<]

[=]

[>]

[?]

> @ <

> A <

> B <

> C <

> D <

> E <

> F <

> G <

> H <

> I <

> J <

> K <

> L <

> M <

> N <

> O <

> P <

> Q <

> R <

> S <

> T <

> U <

> V <

> W <

^̂

_̂

Space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

Appendix E: ASCII and Screen Charts 413

Hex Dec Binary Key Screen Applesot
$58

$59

$5A

$5B

$5C

$5D

$5E

$5F

$60

$61

$62

$63

$64

$65

$66

$67

$68

$69

$6A

$6B

$6C

$6D

$6E

$6F

$70

$71

$72

$73

$74

$75

$76

$77

$78

$79

$7A

$7B

$7C

$7D

$7E

$7F

$80

$81

$82

$83

$84

$85

$86

$87

$88

$89

$8A

$8B

$8C

$8D

$8E

$8F

$90

$91

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

0101 1000

0101 1001

0101 1010

0101 1011

0101 1100

0101 1101

0101 1110

0101 1111

0110 0000

0110 0001

0110 0010

0110 0011

0110 0100

0110 0101

0110 0110

0110 0111

0110 1000

0110 1001

0110 1010

0110 1011

0110 1100

0110 1101

0110 1110

0110 1111

0111 0000

0111 0001

0111 0010

0111 0011

0111 0100

0111 0101

0111 0110

0111 0111

0111 1000

0111 1001

0111 1010

0111 1011

0111 1100

0111 1101

0111 1110

0111 1111

1000 0000

1000 0001

1000 0010

1000 0011

1000 0100

1000 0101

1000 0110

1000 0111

1000 1000

1000 1001

1000 1010

1000 1011

1000 1100

1000 1101

1000 1110

1000 1111

1001 0000

1001 0001

@̂

Â

B̂

Ĉ

D̂

Ê

F̂

Ĝ

Ĥ

Î

Ĵ

K̂

L̂

M̂

N̂

Ô

P̂

Q̂

> X <

> Y <

> Z <

> [<

> \ <

>] <

> ̂ <

> _ <

> <

> ! <

> " <

> # <

> $ <

> % <

> & <

> ' <

> (<

>) <

> * <

> + <

> , <

> - <

> . <

> / <

> 0 <

> 1 <

> 2 <

> 3 <

> 4 <

> 5 <

> 6 <

> 7 <

> 8 <

> 9 <

> : <

> ; <

> < <

> = <

> > <

> ? <

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Rubout

END

FOR

NEXT

DATA

INPUT

DEL

DIM

READ

GR

TEXT

PR #

IN #

CALL

PLOT

HLIN

VLIN

HGR2

HGR

]

414 Assembly Lines

Hex Dec Binary Key Screen Applesot
$92

$93

$94

$95

$96

$97

$98

$99

$9A

$9B

$9C

$9D

$9E

$9F

$A0

$A1

$A2

$A3

$A4

$A5

$A6

$A7

$A8

$A9

$AA

$AB

$AC

$AD

$AE

$AF

$B0

$B1

$B2

$B3

$B4

$B5

$B6

$B7

$B8

$B9

$BA

$BB

$BC

$BD

$BE

$BF

$C0

$C1

$C2

$C3

$C4

$C5

$C6

$C7

$C8

$C9

$CA

$CB

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

1001 0010

1001 0011

1001 0100

1001 0101

1001 0110

1001 0111

1001 1000

1001 1001

1001 1010

1001 1011

1001 1100

1001 1101

1001 1110

1001 1111

1010 0000

1010 0001

1010 0010

1010 0011

1010 0100

1010 0101

1010 0110

1010 0111

1010 1000

1010 1001

1010 1010

1010 1011

1010 1100

1010 1101

1010 1110

1010 1111

1011 0000

1011 0001

1011 0010

1011 0011

1011 0100

1011 0101

1011 0110

1011 0111

1011 1000

1011 1001

1011 1010

1011 1011

1011 1100

1011 1101

1011 1110

1011 1111

1100 0000

1100 0001

1100 0010

1100 0011

1100 0100

1100 0101

1100 0110

1100 0111

1100 1000

1100 1001

1100 1010

1100 1011

R̂

Ŝ

T̂

Û

V̂

Ŵ

X̂

Ŷ

Ẑ

[̂

\̂

]̂

^̂

_̂

Space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

Space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

HCOLOR=

HPLOT

DRAW

XDRAW

HTAB

HOME

ROT=

SCALE=

SHLOAD

TRACE

NOTRACE

NORMAL

INVERSE

FLASH

COLOR=

POP

VTAB

HIMEM:

LOMEM:

ONERR

RESUME

RECALL

STORE

SPEED=

LET

GOTO

RUN

IF

RESTORE

&

GOSUB

RETURN

REM

STOP

ON

WAIT

LOAD

SAVE

DEF FN

POKE

PRINT

CONT

LIST

CLEAR

GET

NEW

TAB

TO

FN

SPC(

THEN

AT

NOT

STEP

+

-

*

/

Appendix E: ASCII and Screen Charts 415

Hex Dec Binary Key Screen Applesot
$CC

$CD

$CE

$CF

$D0

$D1

$D2

$D3

$D4

$D5

$D6

$D7

$D8

$D9

$DA

$DB

$DC

$DD

$DE

$DF

$E0

$E1

$E2

$E3

$E4

$E5

$E6

$E7

$E8

$E9

$EA

$EB

$EC

$ED

$EE

$EF

$F0

$F1

$F2

$F3

$F4

$F5

$F6

$F7

$F8

$F9

$FA

$FB

$FC

$FD

$FE

$FF

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

1100 1100

1100 1101

1100 1110

1100 1111

1101 0000

1101 0001

1101 0010

1101 0011

1101 0100

1101 0101

1101 0110

1101 0111

1101 1000

1101 1001

1101 1010

1101 1011

1101 1100

1101 1101

1101 1110

1101 1111

1110 0000

1110 0001

1110 0010

1110 0011

1110 0100

1110 0101

1110 0110

1110 0111

1110 1000

1110 1001

1110 1010

1110 1011

1110 1100

1110 1101

1110 1110

1110 1111

1111 0000

1111 0001

1111 0010

1111 0011

1111 0100

1111 0101

1111 0110

1111 0111

1111 1000

1111 1001

1111 1010

1111 1011

1111 1100

1111 1101

1111 1110

1111 1111

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Rubout

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Rubout

;

AND

OR

>

=

<

SGN

INT

ABS

USR

FRE

SCRN(

PDL

POS

SQR

RND

LOG

EXP

COS

SIN

TAN

ATN

PEEK

LEN

STR$

VAL

ASC

CHR$

LEFT$

RIGHT$

MID$

]

416 Assembly Lines

Text Screen Memory Map

Appendix E: ASCII and Screen Charts 417

Hi-Res Memory Map

]

Appendix F: Zero-Page Memory Usage

Special Locations

his table was adapted from Jon Bettencourt’sApple II Info Archives, the
Appleso! II BASIC Programming Reference Manual, andBeneath Apple DOS
(Worth and Lechner).

$0A−$0C JMP to USR routine
$18 First data track

$19 First data sector

$1A,$1B Shape pointer for DRAW

$1C Last COLOR used

$20 Le! edge (0−39/79, default 0)
$21 Width (1−40 or 80, default 40,

0 crashes Appleso!)
$22 Top margin (0−23, default 0, or

20 for graphics)

$23 Bottom edge (0−24, default 24)
$24 Horizontal cursor position (0−39/79)
$25 Vertical cursor position (0−23)
$26,$27 Address of byte containing X,Y

$28,$29 Base address of cursor position

$2B BOOT slot × 16
$2C Lo-res HLIN/VLIN endpoint

$30 COLOR × 17

$32 Text mask ($FF = Normal, $3F =

Inverse, $7F = Flashing)

$33 Prompt character

$36,$37 Address of output routine

$38,$39 Address of input routine

$48,$49 IOB address

$50,$51 Result of the conversion of the

FAC to a 16-bit integer

$67,$68 Address of beginning of BASIC

program (default is $0801)

$69,$6A Address of beginning of BASIC

variables

$6B,$6C Address of beginning of BASIC

arrays

$6D,$6E Address of end of BASIC vari-

ables

$6F,$70 Address of start of string data

$73,$74 Address of highest BASIC

memory + 1

$75,$76 Current execution line number

$77,$78 Line number where END or STOP

or BREAK occurred

$79,$7A Address of line number being

executed

$7B,$7C Current line # of DATA

$7D,$7E Next address of DATA

$7F,$80 Address of INPUT or DATA

$81,$82 Name of last used variable

$83,$84 Address of last used variable

$9B,$9C Pointer for FNDLIN ($D61A)

and GETARYPT ($F7D9)

$9D−$A3 Floating-point accumulator FAC
$A5−$AB Floating-point argument ARG
$AF,$B0 BASIC program end address

$B1−$B6 Subroutine to increase the
string data pointer

$B7−$BE Subroutine to return the string
data pointer’s character

$C9−$CD Random number
$D4 Error-code lag
$D8−$DE ONERR pointers/scratch
$DF ERRSTK stack pointer

$E0,$E1 Horizontal HPLOT coordinate

$E2 Vertical HPLOT coordinate

$E4 HCOLOR (0=0, 1=42, 2=85, 3=127,

4=128, 5=170, 6=213, 7=255)

$E6 HGR page: HGR=$20, HGR2=$40

$E7 SCALE value (0 = 256)

$E8,$E9 Address of start of shape table

$EA DRAW/XDRAW collision counter

$F1 SPEED value (subtracted from 256)

$F3 Text OR mask for lashing text
$F4−$F8 ONERR pointers
$F9 ROT value

$FF Used by STR$ function

Appendix F: Zero-Page Memory Usage 419

Memory Usage Table

his table comes from thecomp.sys.apple2 FAQ. he information is drawn
from the Apple II technical manuals,Beneath Apple DOS (Don Worth and
Pieter Lechner), and Exploring Apple GS/OS and ProDOS 8 (Gary B. Little).

Low Nibble of Address
Hi| 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 | AP AP A A A A − − − − A A A A A A
1 | A A A A A A A A A − − − − − − *
2 | M M M M M M MA3 MA3 M M M3 M3 MA3 MA3 M3 MA3
3 | M M M M M M3 M3B M3B M3B M3B MP MP MP MP M3P M3P
4 | M3P M3P M3P M3P M3P M3P M3P M3P M3P MP I3P I3P I3P I3P MP M
5 | MA MA MA MA MA MAI AI AI AI AI AI AI AI AI AI AI
6 | AI AI AI AI AI AI AI AI3 AI3 AI3 AI3 AI AI AI AI AI3
7 | AI3 AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI
8 | AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI
9 | AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI
A | AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI3
B | AI3 AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI
C | AI AI AI AI AI AI AI AI AI AI AI3 AI3 AI3 AI3 I I
D | AI AI AI AI AI AI I I AI3 AI AI AI AI AI AI AI
E | A A A − A A A A A A A − − − − −
F | A A A A A A A A A A − − − − − −

M Monitor;
* used in early Apple //e ROMs, now free
A Appleso! BASIC
I Integer BASIC
3 DOS 3.3
P ProDOS ($40−$4E is saved before and restored a!er use)
B ProDOS BASIC.SYSTEM (also uses all Appleso! locations)
− Free; not used

]

Appendix G: Beginner’s Guide to Merlin

his section is adapted from T. Petersen’s “Beginner’s Guide to UsingMer-
lin,” in theMerlin Pro User’s Manual, Roger Wagner Publishing, 1984. he
instructions should work on both the originalMerlin Macro Assembler and the
Merlin Pro Macro Assembler.
he purpose of an assembler is to translate human-readable code into

machine instructions which then can be executed by the computer. For 6502
assembly language the code consists of a series of three-letter commands (the
“opcodes”) along with their associated data (the “operands”). With an assembler
such asMerlin you can also use optional labels and macros to make your code
easier to read and debug.

Control Modes

Merlin has two main modes of operation: Executive Control Mode and Edi-
tor Control Mode.
he Executive Control Mode is the main menu which appears when you

start the program (see the image below). he prompt is indicated by the “%”
character. he Executive Control Mode lets you perform disk actions such as
loading and saving source code or object code, quitting to BASIC, or switching
to the Editor/Assembler.
he Editor Control Mode consists of the Editor, the Assembler, and the

Linker. he prompt is indicated by the “:” character. he Editor Control Mode
lets you enter and modify code, deine macros, assemble your code, and link in
external iles.

 MERLIN-PRO 2.43

 By Glen Bredon

 C :Catalog
 L :Load source
 S :Save source
 A :Append file
 R :Read text file
 W :Write text file
 D :Drive change
 E :Enter ED/ASM
 O :Save object code
 Q :Quit

 Source: A$0901,L$0000
 Drive: 2

 %

Appendix G: Beginner’s Guide to Merlin 421

Getting Started

As discussed in chapter three, assembly code typically has the following
form:

 7 START JSR BELL ; RING THE BELL

Each line consists of several ields: the line number, an optionallabel
(START), thecommand (JSR), theoperand (using a label such asBELL or a num-
ber such as$FBDD), and an optionalcomment. InMerlin, the line numbers are
added automatically and cannot be edited. When listing or assembling the pro-
gram, all of those ields are separated by tab characters to produce nicely format-
ted output. When inputting code, you need type only a single<SPACE> to
advance from one ield to the next–you do not need to insert tabs yourself.
To get started, try creating a short program that will make your Apple beep

once:

1. Boot your Merlin or Merlin Pro disk.

2. A!er the main Executive Control Mode menu appears, type “E” at the “%”
prompt to enter the Editor Control Mode.

3. To enter a new program, at the “:” prompt type “A” (for Add) and press
<RETURN>. You should see a “1” appear and the cursor should be placed one
space to the right of that line number. As you enter code the line numbers will
advance automatically. hese line numbers are used only while editing code in
the Editor and are not part of your actual program.

4. On line 1, hit<CTRL>P. A line ofasterisks should appear. An asterisk as the
irst character indicates a comment line. Anything a!er the irst asterisk will be
ignored by the assembler. Hit <RETURN> to accept the line and advance to line 2.

5. On line 2, type a single<SPACE> and then hit<CTRL>P. You should now see
an asterisk at either end of the line. Space over a few characters and then type
“DEMO PROGRAM 1”. Hit<RETURN> to accept the line. You do not need to have the
cursor at the end of the line when you hit<RETURN>–the entire line will be
accepted, regardless of where the cursor is located.

6. On line 3, again hit<CTRL>P and then<RETURN> to inish making a nicely
formatted box of asterisks containing your program name.

7. On line 4, type a single asterisk and hit<RETURN>. From this point on, it will
be assumed that you hit <RETURN> to complete each line.

8. On line 5, hit the<SPACE> bar once to advance to the command ield, type
ORG, hit<SPACE> again to advance to the operand ield, then type$8000. So far
your program should look like this:

]

422 Assembly Lines

 1 ********************************

 2 * DEMO PROGRAM 1 *

 3 ********************************

 4 *

 5 ORG $8000

heORG deines the origin, the memory location from which the program is
designed to run.

Quick tip: If you make a mistake, don’t panic. Hit<RETURN> on a blank line to
exit from Add mode. Type “L” to list your program. Type “Dn” to delete linen.
Type “A” to re-enter Editor Control Mode and add to your current program.

9. Now we will use our irst label. Type:

BELL<SPACE>EQU<SPACE>$FBDD

his deines the labelBELL to be equal to the hex valueFBDD. Wherever you use
the labelBELL in an expression, the assembler will automatically replace it with
$FBDD. Why not simply use the address$FBDD everywhere? Well, using a label
makes the code easier to read and also makes it easier to change the location in
the future.

10.Now we need to ring our bell. On line 7, type:

START<SPACE>JSR<SPACE>BELL<SPACE>; RING THE BELL

Notice that we started our comment with a semicolon. Any characters within the
comment ield will be ignored; using the semicolon just makes it clear that this is
a comment.

11.We’re almost done! On line 8, type:

DONE<SPACE>RTS

12.On line 9 press<RETURN> to exit from Add mode. Because line 9 was empty,
it will not be added to your program.

Type “L” to get a listing of your program. It should look like this:

 1 ********************************

 2 * DEMO PROGRAM 1 *

 3 ********************************

 4 *

 5 ORG $8000

 6 BELL EQU $FBDD

 7 START JSR BELL ; RING THE BELL

 8 DONE RTS

Appendix G: Beginner’s Guide to Merlin 423

Note that each string of characters has been moved to the correct ield:
labels, commands, operands, and comments. In summary, when adding code,
space once to advance to the next ield.

Deleting Lines

If you make a mistake or no longer need certain lines, you can delete lines
while in the Editor Control Mode. For example:

1. While you are at the “:” prompt, typeD6<RETURN>. Nothing changes on the
screen.

2. Type “L” to list your program. Notice that the original line 6 (with theBELL)
is now gone and the remaining lines have moved up.

3. Type D5,6<RETURN> to delete the range of lines from 5−6.

4. Typing “L” reveals that our poor program now has only one line of code le!,
just the RTS.

Caution: Notice that the automatic renumbering caused the line numbers to
shi! upward. If you intend to delete several lines in succession, be sure to start
by deleting the highest desired line number and working backwards to the low-
est.

Inserting Lines

We now need to restore our deleted lines.

1. At the “:” prompt, typeI5<RETURN> to insert new lines starting just before
line 5.

2. Type our missing three lines, making sure to use spaces to separate the
ields:

 ORG $8000

BELL EQU $FBDD

START JSR BELL ; RING THE BELL

3. Again, hit<RETURN> on the next empty line to return to Editor Control
Mode.

4. Type “L” to conirm that the code has been restored.

]

424 Assembly Lines

Editing Lines

While editing a line you can use certain keyboard shortcuts to insert or
delete characters. Try this:

1. At the “:” prompt, type “E8” to edit line 8. Line 8 should appear with the
cursor over the D in DONE.

2. Press<CTRL>D to delete the character under the cursor. Press<CTRL>D three
more times.

3. Hit<RETURN> to accept the changes and inish editing the line. Type “L” to
list your program and conirm that the last line now has just theRTS command
but no label.

4. Type “E8” to re-edit line 8. Now, press <CTRL>I to go into insert mode. Type
the wordDONE and press<RETURN>. What do you think happens if you forget to
press <CTRL>I? If you’d like, go back and repeat steps 1−4 but skip the <CTRL>I.

Notice that when we did “E8” and inished editing our line, we returned to Edi-
tor Control Mode. You can also type a range of lines, such as “E3,6”. his will
call up each line from 3−6 in succession. Pressing<RETURN> will take you to the
next line to edit, until you’ve reached the end of your range.

Tip: If you have completely botched your line, you can press<CTRL>C to cancel
the changes for the current line and return to Editor Control Mode.

Assembling the Code

he next step is to assemble and run our code. At the “:” prompt, type
ASM<RETURN>. On your screen should appear the following:

UPDATE SOURCE (Y/N)?

Type “N” and you should then see:

 1 ********************************

 2 * DEMO PROGRAM 1 *

 3 ********************************

 4 *

 5 ORG $8000

 6 BELL EQU $FBDD

8000: 20 DD FB 7 START JSR BELL

8003: 60 8 DONE RTS

--End assembly, 4 bytes, Errors: 0

Symbol table - alphabetical order:

 BELL =$FBDD ? DONE =$8003 ? START =$8000

Symbol table - numerical order:

? START =$8000 ? DONE =$8003 BELL =$FBDD

Appendix G: Beginner’s Guide to Merlin 425

If the system beeps and displays an error message, remember the line num-
ber that was referenced and press<RETURN> until the assembly completes. hen
go back through your program and compare it with the listing above. Use your
new-found editing skills to correct the line, then re-assemble by typing ASM.
To the le! of the line numbers we now see the assembled machine code. For

example, theJSR BELL has been converted to20 DD FB, where the20 is the hexa-
decimal code forJSR andDD FB is theBELL address in reverse byte order. he
next line contains a single opcode, the60 for theRTS, to return from our subrou-
tine. Notice that none of the labels or comments are within the machine-lan-
guage code on the le!-hand side. Finally, we see that the code has been
assembled at address $8000, as we instructed with the ORG command.

Saving and Running Your Program

Assuming that your code assembled with no errors, you can now save and
run your program.

1. At the “:” prompt, type “Q” to return to the Executive Control Mode. Your
source code and object code are safe in memory. If you wish, you could return to
the Editor and continue editing your code.

2. At the “%” prompt, hit “S” to save your source code. Type a ilename such as
DEMO1. he ile will be saved with “.S” appended to indicate that it is a source ile.

3. Now hit “O” to save your object code.Merlin will display the same ilename
with a “?” at the end. Hit “Y” to acceptDEMO1 as the object ile name. Because the
source code ile had the “.S” appended to it, the two iles will not conlict.

4. Now hit “Q” to quitMerlin. TypeCATALOG to verify that your program was
saved. hen type BRUN DEMO1 to run your program. You should hear a BEEP!

Congratulations! You’ve just written your irst 6502 assembly-language pro-
gram!

]

List of Programs

AL03-SAMPLE PROGRAM...15

AL03-TEST PROGRAM 1...19

AL04-LOOP PROGRAM 1...25

AL05-LOOP PROGRAM 2...27

AL05-LOOP PROGRAM 2A..28

AL05-LOOP PROGRAM 2B...30

AL05-LOOP PROGRAM 3...31

AL05-PADDLE PROGRAM 1......................................32

AL05-PADDLE PROGRAM 1A...................................34

AL06-PADDLE PROGRAM 2A...................................39

AL06-KEYBOARD PROGRAM 1A............................42

AL06-KEYBOARD PROGRAM 1B.............................43

AL07-SAMPLE DATA PROGRAM............................48

AL07-SCREEN CLEAR PROGRAM 1A.....................50

AL07-SCREEN CLEAR PROGRAM 1B......................51

AL08-SOUND ROUTINE 2..56

AL08-SOUND ROUTINE 3..56

AL08-SOUND ROUTINE 4..58

AL08-SOUND ROUTINE 5..59

AL09-BYTE DISPLAY PROGRAM 1..........................61

AL09-BYTE DISPLAY PROGRAM 2..........................63

AL10-ADC SAMPLE PROGRAM 1............................67

AL10-ADC SAMPLE PROGRAM 2............................67

AL10-ADC SAMPLE PROGRAM 3............................68

AL10-ADC SAMPLE PROGRAM 4............................68

AL10-ADC SAMPLE PROGRAM 5A.........................69

AL10-ADC SAMPLE PROGRAM 5B..........................70

AL10-ADC SAMPLE PROGRAM 5C.........................71

AL10-ADC SAMPLE PROGRAM 5D.........................71

AL10-SBC SAMPLE PROGRAM 6..............................72

AL10-BPL KEYTEST PROGRAM 1............................75

AL10-BPL KEYTEST PROGRAM 2............................75

AL10-BPL BUTTON TEST...76

AL11-GENERAL PURPOSE RWTS............................83

AL12-BINARY FUNCTION DISPLAY......................99

AL13-DATA-TYPE PRINT 1.....................................105

AL13-SPECIAL PRINT 2..107

AL13-INPUT ROUTINE FOR BINARY..................108

AL13-INPUT ROUTINE FP BASIC..........................110

AL14-NAME FILE DEMO PROGRAM...................113

AL14-NAME FILE DEMO PROGRAM 2................120

AL15-NON-RELOCATABLE PRINT DEMO.........127

AL15-NON-RELOCATABLE JMP DEMO..............129

AL15-RELOCATABLE JMP 1....................................129

AL15-RELOCATABLE JMP 2....................................130

AL15-LOCATOR 1..131

AL15-LOCATOR 2..132

AL15-RELOCATABLE PRINT 1...............................133

AL15-NON-RELOCATABLE JSR DEMO...............134

AL15-RELOCATABLE JSR SIMULATION.............135

AL15-RELOCATABLE PRINT 2...............................136

AL15-RELOCATABLE PRINT 3...............................138

AL15-RELOCATABLE JMP 3....................................139

AL16-SOUND ROUTINE 3A....................................144

AL16-SOUND ROUTINE 3B.....................................148

AL16-POINTER SETUP ROUTINE.........................149

AL17-INTEGER VARIABLE READER....................156

AL17-REAL VARIABLE READER............................158

AL17-STRING VARIABLE READER.......................159

AL17-INTEGER VARIABLE SENDER....................162

AL17-REAL VARIABLE SENDER............................163

AL17-STR$ VARIABLE SENDER.............................164

AL18-HIRES DEMO 1...169

AL18-BALL...175

AL19-HIRES DOT...177

AL19-HIRES ONE DOT PROGRAM.......................179

AL19-HIRES LOTS DOTS..184

AL20-HIRES BASE ADDRESS...................................190

AL21-HIRES PLOT.140..201

AL21-HIRES PLOT.560..204

AL21-PLOTLINES...206

AL22-HIRES PLOT.140+..210

AL22-HIRES PLOT.560+..212

AL22-HIRES PLOT.560W..214

AL22-PLOTLINES...217

AL23-HI-RES SCRN FNCTN.....................................219

AL24-SCANNER-XDRAW,XDRAW.......................229

AL24-SCANNER-DRAW,XDRAW..........................232

AL25-SIMPLE NOISE ROUTINE.............................235

AL25-SIMPLE NOISE ROUTINE 2..........................237

AL25-SIMPLE RAMP NOISE ROUTINE................240

AL25-SIMPLE EXPLOSION ROUTINE..................241

AL25-SHOOTER PROGRAM....................................245

AL26-BASIC TO FAC...256

AL26-FAC TO MEMORY..257

AL26-MEMORY TO FAC..258

AL26-FAC TO BASIC...259

AL26-BASIC.FAC.MEM.FAC.BAS...........................260

AL26-BASIC.FAC.MEM.FAC.BAS USR..................261

AL27-M.L. ADDITION SUBR 1................................266

AL27-M.L. ADDITION SUBR 2................................268

AL27-M.L. ADDITION SUBR 3................................269

AL28-BCD DEMO ROUTINE 1................................272

AL28-BCD DEMO ROUTINE 2................................273

AL28-BCD DEMO 'INC' ROUTINE.........................274

AL28-BCD DEMO 'DEC' ROUTINE........................274

AL28-BCD ADDITION ROUTINE..........................275

AL28-BCD SUBTRACT ROUTINE..........................275

AL28-BCD PRINT ROUTINE 1................................276

AL28-BCD PRINT ROUTINE 2................................276

AL28-BCD PRINT ROUTINE 3................................278

AL29-CONTROL CHARACTER DISPLAY............286

AL29-SPECIAL DISPLAY ROUTINE......................287

AL30-SIMPLE CASE CONVERTER.........................295

AL30-LOWERCASE INPUT ROUTINE..................297

AL31-CHARACTER GENERATOR.........................305

AL31-ASCII CHARACTER SET................................310

AL32-CHARACTER EDITOR...................................314

ASSEMBLY LINES CONTEST WINNER................340

Directory Listing for Program Disks
he programs are contained on two loppy disks. For ProDOS the iles are contained in a
folder namedCODE. he.S suix indicates a Merlin source ile. he.A suix indicates an
Applescript ile. Names without a suix are compiled object iles.

/ALDISK1/CODE /ALDISK2/CODE

AL03.SAMPLE.S

AL03.TEST1

AL03.TEST1.S

AL04.LOOP1.S

AL05.LOOP2.S

AL05.LOOP2A.S

AL05.LOOP2B.S

AL05.LOOP3.S

AL05.PADDLE1.S

AL05.PADDLE1A.S

AL06.KBRD1A

AL06.KBRD1A.S

AL06.KBRD1B

AL06.KBRD1B.S

AL06.PADDLE2A

AL06.PADDLE2A.S

AL07.HGR

AL07.HGR.S

AL07.SAMPLE

AL07.SAMPLE.S

AL07.SCREEN1A

AL07.SCREEN1A.S

AL07.SCREEN1B

AL07.SCREEN1B.S

AL08.SOUND2

AL08.SOUND2.S

AL08.SOUND3

AL08.SOUND3.A

AL08.SOUND3.S

AL08.SOUND4

AL08.SOUND4.S

AL08.SOUND5

AL08.SOUND5.S

AL09.BYTE1

AL09.BYTE1.S

AL09.BYTE2

AL09.BYTE2.S

AL10.ADC1.S

AL10.ADC2.S

AL10.ADC3.S

AL10.ADC4.S

AL10.ADC5A.S

AL10.ADC5B.S

AL10.ADC5C.S

AL10.ADC5D.S

AL10.BPLKEY1.S

AL10.BPLKEY2.S

AL10.BPLPB.S

AL10.SBC6.S

AL11.RWTS

AL11.RWTS.S

AL12.OPERATOR

AL12.OPERATOR.A

AL12.OPERATOR.S

AL13.INPUTBIN.S

AL13.INPUTFP

AL13.INPUTFP.A

AL13.INPUTFP.S

AL13.PRINT1.S

AL13.PRINT2.S

AL14.FILE1

AL14.FILE1.S

AL14.FILE2

AL14.FILE2.S

AL15.LOCATE1.S

AL15.LOCATE2.S

AL15.NRJMP.S

AL15.NRJSR.S

AL15.NRPRINT.S

AL15.PRINT1

AL15.PRINT1.S

AL15.PRINT2

AL15.PRINT2.S

AL15.PRINT3

AL15.PRINT3.S

AL15.RELJMP1.S

AL15.RELJMP2.S

AL15.RELJMP3.S

AL15.RELJSR.S

AL16.POINTER

AL16.POINTER.S

AL16.SOUND3A.S

AL16.SOUND3B

AL16.SOUND3B.A

AL16.SOUND3B.S

AL17.READINT

AL17.READINT.A

AL17.READINT.S

AL17.READREAL

AL17.READREAL.S

AL17.READSTR

AL17.READSTR.S

AL17.SENDINT

AL17.SENDINT.A

AL17.SENDINT.S

AL17.SENDREAL

AL17.SENDREAL.S

AL17.SENDSTR

AL17.SENDSTR.S

AL18.BALL.A

AL18.HIRES1

AL18.HIRES1.S

AL19.HIRESDOT

AL19.HIRESDOT.A

AL19.HIRESDOT.S

AL19.LOTSDOTS

AL19.LOTSDOTS.S

AL20.HGRADDR

AL20.HGRADDR.S

AL21.PLOT140

AL21.PLOT140.S

AL21.PLOT560

AL21.PLOT560.S

AL21.PLOTLINE.A

AL22.PLOT140

AL22.PLOT140.S

AL22.PLOT560

AL22.PLOT560.S

AL22.PLOT560W

AL22.PLOT560W.S

AL22.PLOTLINE.A

AL23.HGRSCRN

AL23.HGRSCRN.A

AL23.HGRSCRN.S

AL24.SCAN1

AL24.SCAN1.S

AL24.SCAN2

AL24.SCAN2.S

AL25.EXPLODE

AL25.EXPLODE.S

AL25.NOISE

AL25.NOISE.A

AL25.NOISE.S

AL25.NOISE2

AL25.NOISE2.A

AL25.NOISE2.S

AL25.RAMP

AL25.RAMP.A

AL25.RAMP.S

AL25.SHOOTER

AL25.SHOOTER.S

AL26.BASICFAC.S

AL26.BFMFB

AL26.BFMFB.S

AL26.BFMFBUSR

AL26.BFMFBUSR.S

AL26.FACBASIC.S

AL26.FACMEM.S

AL26.MEMFAC.S

AL27.MLADD.A

AL27.MLADD1.S

AL27.MLADD2.S

AL27.MLADD3

AL27.MLADD3.S

AL28.BCDADD.S

AL28.BCDDEC.S

AL28.BCDDEMO1.S

AL28.BCDDEMO2.S

AL28.BCDINC.S

AL28.BCDPRNT1.S

AL28.BCDPRNT2.S

AL28.BCDPRNT3.S

AL28.BCDSUB.S

AL29.CTRLCHAR

AL29.CTRLCHAR.S

AL29.DISPLAY

AL29.DISPLAY.S

AL30.CASECVRT

AL30.CASECVRT.A

AL30.CASECVRT.S

AL30.LCINPUT

AL30.LCINPUT.A

AL30.LCINPUT.S

AL31.ASCII

AL31.ASCII.S

AL31.CHARGEN

AL31.CHARGEN.A

AL31.CHARGEN.S

AL32.CHAREDIT

AL32.CHAREDIT.A

AL32.CHAREDIT.S

AL32.PIGFONT

ALAPP.CONTEST

ALAPP.CONTEST.S

]

Index

6
6502 bug...140, 335, 370

65C02..........13, 140, 327-336, 345, 356, 370, 377-380,

387-390, 394, 398-403

A
ABS subroutine..408

absolute addressing...............................18, 45, 128, 328

Accumulator...6, 18

ADC..66, 274, 344

addition in assembly...65, 265

addition, two-byte..69

address...3, 4

addressing modes..18, 45, 328

ampersand vector...264

AND..92, 278, 322, 345

Apple ///..336, 337

Apple //e.........................13, 94, 291, 296, 320, 335-337

Apple II....................................13, 53, 94, 296, 336, 411

Apple II Plus..............................5, 13, 94, 291, 296, 336

Appleso! array variables..154
Appleso! BASIC...............................5, 10, 11, 110, 128
Appleso! variables...151
ARG register...265

ASC directive..106

ASCII...............................19, 40, 94, 106, 305, 313, 411

ASL..89, 186, 348

ASM command..16

assembler..2, 9, 13, 15

assembly language..2, 9

asterisks for comments.......................................17, 421

ATN subroutine...409

B
base 16 numbers...4, 22

base 2 numbers...21, 65

base address..17

BASL location..292, 302

BBR..331

BBS...331

BCC...38, 70, 349

BCS..38, 350

BELL subroutine.........................17, 135, 321, 405, 422

BELL1 subroutine..405

BEQ...27, 40, 280, 351

Binary Coded Decimal....264, 271, 344, 359, 383, 384

binary numbers..22, 65

BIT.......................96, 130, 211, 216, 293, 299, 330, 351

bits...22, 65

BKGND subroutine..169, 407

BLOAD command..35, 113

BMI..75, 353

BNE...24, 25, 40, 280, 354

borrow, for subtraction...72

BPL..75, 355

BRA..331

branch commands...38

branch instruction...25, 27

branch ofsets..28
branch tests for ranges..38

branch, reverse...28

break message...3, 5, 356

BREAK subroutine..370

BRK...256, 356

BRK vector location..356, 370

BRUN command...35

BSAVE command..113

bufer, memory...118
BVC...96, 357

BVS..96, 358

C
CALL command..6, 15, 143

carry lag...38, 66, 90, 273
CATALOG command...106

CH location..305

CHK directive...xiii, 16

CHKCOM subroutine.....150, 157, 160, 219, 257, 267

CHKNUM subroutine..............................158, 163, 219

CHKSTR subroutine...159, 165

CHRGET subroutine...147

CLC..67, 358

CLD...272, 359

CLI...359

CLRSCR subroutine..407

CLRTOP subroutine...407

CLV..360

CMP..38, 360

code location, determining.......................................131

COLBYTE location...................................198, 211, 213

COMBYTE subroutine.............................148, 219, 236

command ield in assembly................................17, 421
comment ield in assembly.................................17, 421
compare commands..38

complements, number..73

CONUPK subroutine..269

COS subroutine..409

counters...21

COUT subroutine......29, 120, 277, 281, 323, 370, 404

COUT1 subroutine...................................281, 304, 404

CPX..40, 362

CPY..40, 362

CROUT subroutine...404

CROUT1 subroutine...404

CSW location.....................................281, 291, 322, 370

CURLIN location...126

CV location...302

D
debugging...357, 374

DEC...23, 330, 363

decimal number formula..22

decrementing..23

delays in execution...54

delimiters..16

DEX...23, 364

Index 429

DEY...23, 365

DFB directive..48

directives, assembler..17

disassembly...10

diskette hard-sectoring..80

diskette organization...78

diskette sector interleaving...79

diskette so!-sectoring...80
DIV10 subroutine..409

DOS....................................16, 35, 77, 79, 281, 290, 294

DOS bell modiication...88
DOS bufer pointer..85
DOS catalog key modiication....................................87
DOS disk-volume modiication.................................86
DOS input/output vector.........................284, 294, 322

DOS IOB table...81, 83, 84

DRAW command..225

DRAW subroutine............................169, 172, 229, 408

dummy return address..131

E
EOR...97, 365

EQU directive...17, 422

exclusive OR...97

EXP subroutine..408

exponent, real number..254

F
FAC register...254, 265

FACEXP location...267

FADD subroutine..270

FADDH subroutine...409

FADDT subroutine...267, 269

FCOMP subroutine...409

FDIV subroutine..270

lags, Status Register..22
FLASH command..285

loating-point accumulator (FAC)..........150, 236, 254
low of control, machine language............................94
FMULT subroutine...270

forced branch statement...................................129, 134

FOUT subroutine..409

FPWRT subroutine...409

FRMEVL subroutine...160, 268

FRMNUM subroutine.....150, 159, 219, 256, 257, 267

FSUB subroutine..270

G
GBAS location..197, 211

GETADR subroutine........................150, 159, 219, 256

GETLN subroutine...........................109, 118, 296, 405

GETLN1 subroutine..406

GETLNZ subroutine...406

GIVAYF subroutine..163, 219

GOSUB command........................11, 17, 136, 371, 382

graphics, table driven..183

H
HCLR subroutine..169, 407

HCOLOR subroutine..169, 407

HCOLOR1 location...198

HEX directive...48

hexadecimal...4, 22, 65, 271

HFIND subroutine..169, 407

HGR subroutine..169, 407

HGR2 subroutine..169, 407

hi-res 140-point mode......................................201, 207

hi-res 560-point mode......................................203, 207

hi-res collision counter...225

hi-res color mask...198, 211

hi-res color shi!...192, 203, 208
hi-res color table..168, 193

hi-res entry points..168

hi-res ill efect..189
hi-res memory map...................................189, 303, 417

hi-res object velocity..173

hi-res screen coordinates..168

hi-res screen locations...173

hi-res screen motion..173

hi-res white color problem...............................195, 201

high bit..29

high-order byte...11

HIMEM command.....................................85, 128, 153

HLIN subroutine.......................................169, 322, 408

HLINE subroutine...406

HMASK location.......................................199, 211, 213

HNDX location..197

HOME subroutine...19

HPAG location...197

HPLOT subroutine...........................169, 182, 221, 407

HPOSN subroutine..................169, 172, 197, 219, 407

HTAB subroutine..119

I
immediate addressing...................................18, 45, 328

implicit addressing...45

implied addressing...45

INC..23, 330, 367

inclusive OR..97

incrementing..23

indexed absolute indirect addressing......................329

indexed addressing..46, 328

indexed indirect addressing...............................47, 329

indirect addressing..328

indirect indexed addressing...............................46, 328

indirect jump..139, 281

input routines...108

input vector..291, 370

INT subroutine..408

Integer BASIC..5, 13

integer variables...156, 161

interrupt vector..370

interrupts...................................356, 359, 370, 381, 385

INVERSE command...285

INVFLG location...95, 285

INX..23, 368

INY..23, 369

IOREST subroutine...410

IOSAVE subroutine..410

IRQ maskable interrupt....................................359, 385

IRQ subroutine..370

430 Assembly Lines

IRQ vector location...370

J
JMP...28, 139, 281, 370

JMP simulation..376, 382

JSR...11, 13, 63, 371

JSR simulation..134

JSR to JMP trick...164

K
keyboard bufer..42
keyboard input...42

keyboard input switch...291

keyboard strobe..42, 293

KEYIN subroutine...293, 405

KSW location...291, 370, 405

L
label ield in assembly...17, 421
LANG location...126

LDA...18, 371

LDX...18, 372

LDY...18, 373

LIFO (Last-In First-Out)....................................61, 131

LINNUM location.....................................219, 222, 256

LOG subroutine...409

logarithmic form..153

logical operators...92

LOMEM command...153

low-order byte..11

lowercase text...291

LSR...89, 373

M
machine language..9

MAKSTR subroutine..165

mantissa, real number...254

mask, AND...93, 96, 292, 346

mask, EOR..366

mask, inverse lag...285
mask, ORA...277, 292, 375

math subroutines...263

MAXFILES command...78

memory map..3, 152

memory page..4

Merlin Assembler..................................13, 16, 337, 420

Mini-Assembler...13, 19

mnemonics...2, 13

Monitor...5, 9, 13

Monitor subroutines...41

MOVAF subroutine..267

move command...54

MOVFM subroutine...157, 258

MOVMF subroutine.........................163, 219, 258, 267

MUL10 subroutine..409

multiplication and division........................90, 265, 381

Munch-A-Bug..13, 357

N
negative numbers...72, 178

NEGOP subroutine...409

NEXTCOL subroutine..406

NMI (non-maskable interrupt)...............................385

non-relocatable code...128

NOP...54, 374

numeric registers, temporary...................................267

O
OBJ directive...xiii, 17

object code..15

one’s complement..73

opcodes...2, 10, 17

OPEN command..125

operand ield in assembly...................................17, 421
operands..10, 421

operational mode, machine language.......................93

ORA..97, 277, 375

ORG directive..17, 422

output routines...105

output vector..94, 281, 370

overlow lag...96, 130

P
paddle input.....32, 39, 59, 62, 103, 171, 182, 230, 249,

342

paddle interactions....................................103, 172, 249

paddle pushbutton..............................76, 171, 249, 342

parity, number..91

PHA...62, 136, 376

PHP..376

PHX...331, 377

PHY...331, 378

PLA..62, 136, 378

PLOT subroutine...406

PLP...379

PLX..331, 379

PLY..331, 380

pointers (vectors)...47

POKE command..144

POP command...136, 378

POSN location..323

post-indexed addressing.............................47, 329, 344

PRBL2 subroutine..405

PRBLNK subroutine..405

PRBYTE subroutine..276, 404

pre-indexed addressing..............................48, 329, 344

PREAD subroutine.....................................32, 171, 410

PRERR subroutine...410

PRHEX subroutine..405

PRNTAX subroutine...276, 405

processing mode, machine language.........................93

ProDOS..............................100, 284, 286, 294, 312, 325

Program Counter..............................356, 381, 382, 396

pseudo opcodes..17

pseudo-jump..376, 382

PTRGET subroutine........157, 161, 163, 219, 260, 267

R
RAM (random access memory)...................................4

random number generator.......................................293

RDCHAR subroutine..405

RDKEY subroutine...................118, 291, 324, 370, 405

Index 431

READ command..125

reading/writing data iles..113
reading/writing text iles...120
real variables..158, 162, 252

registers, 6502...6, 396

relative addressing...46, 328

relocatable code...127, 371

REM command..17

RESET...385

RMB...331

RND subroutine...408

ROL...91, 380

ROM (read-only memory)...4

ROR...91, 381

rotate commands...91

RTI...381

RTS..11, 13, 382

RWTS error codes..85

RWTS subroutines.................78, 81, 83, 359, 384, 385

S
S-C Assembler..xviii, 337

SAVD subroutine..165

SBC..72, 274, 382

screen output..30

SCRN subroutine...219, 407

SEC..72, 384

SED..272, 384

SEI..385

self-modifying code...137

SEND subroutine...223

SETCOL subroutine..406

SETINV subroutine...404

SETNORM subroutine...404

SGN subroutine...408

shape tables...171, 225

shi! operators...89
SHNUM subroutine.................................169, 172, 408

sign bit...73

sign lag...75, 90
SIGN subroutine..408

SIN subroutine...409

SMB...331

sneaker, wet...4

so!-switch hardware location...................41, 343, 353
sound duration...56

sound from paddle input..59

sound generation...53

sound pitch...56

sound routines...53, 235

source code...15

Sourceror..29, 337

speaker so!-switch..53
SQR subroutine..408

STA..18, 385

stack...61, 62, 131

Stack Pointer..61, 131, 396

Status Register.................................21, 22, 37, 130, 396

string variables...159, 164, 386

STX..18, 386

STY..18, 387

STZ..331, 387

subtraction in assembly......................................65, 265

super hi-res graphics...195

T
TAN subroutine...409

TAX...34, 388

TAY...34, 388

text screen memory map............................19, 302, 416

transfer commands..34

TRB...331, 335, 389

TSB..331, 335, 390

TSX..131, 132, 390

two’s complement.......................................74, 178, 367

TXA...34, 391

TXS..392

TXTPTR location..147, 257

TYA...34, 393

U
UCMD location..85

USLOT location...84, 90

USR command...255

V
vector..35, 82, 94, 281, 291, 370

VLINE subroutine...406

VTAB subroutine..119, 302

VTOC (Volume Table of Contents)..........................80

W
WAIT subroutine......................................172, 183, 410

warm-reentry vector..35

wrap around of numbers............24, 363-365, 367-369

WRITE command...125

X
X-Register...6, 18, 396

XDRAW command...225

XDRAW subroutine.................................169, 229, 408

Y
Y-Register...6, 18, 396

Z
zero lag...22-24, 90
zero page addressing...45, 328

Quick Reference

Merlin Assembler

Editor Control Mode

A − Add mode, <RETURN> to exit
E − Edit all lines
E m or E m,n − Edit line or line range
E “string” − Edit lines containing string
I m − Insert lines starting at m
D m or D m,n − Delete line or line range
R m or R m,n − Replace line or line range
L − List source
L m or L m,n − List speciic line or range
. (period) − List from previous range
P, P n, P m,n − List without line numbers
F “string” − Find the given string
C “str1” “str2” − Change str1 to str2
FW “word” − Find the given word
CW “str1” “str2” − Change str1 to str2
EW “word” − Edit lines containing word
COPY m TO n − Copy line
COPY l,m TO n − Copy lines
MOVE m TO n − Move line
MOVE l,m TO n − Move lines
123 or $123 − Hex/Decimal conversion

ASM − Assemble the source code
LEN − Source length and bytes remaining
MON − Exit to the Monitor
NEW − Clear the current source code
PR#1 − Send output to printer in slot 1
VAL “expression” − Compute expression
VID 3 or VID 0 − Turn 80-columns on/of
Q − Quit Editor, return to Executive

Expressions

2*LABEL1-LABEL2+$231

1234+%10111

“K”-“A”+1

“0”!LABEL (“0” EOR LABEL)

LABEL&$7F (LABEL AND $7F)

LABEL.$FFFF (LABEL OR $FFFF)

*-2 (current address minus 2)

Editing Commands

<CTRL>B − Beginning of line
<CTRL>C or X − Abort Edit mode
<CTRL>D − Delete character
<CTRL>F c − Find character
<CTRL>I − Insert; <RETURN> to exit
<CTRL>L − Toggle lowercase/uppercase
<CTRL>N − End of line
<CTRL>O − Insert special characters
<CTRL>P − Fill line with *****
<SPACE><CTRL>P − Border with * *
<CTRL>Q − Delete rest of the line
<CTRL>R − Restore line to original
<RETURN> − Next line or exit

Merlin Pro Full Screen Editor

N − Go to beginning/end of source
R − Delete or replace the current line

E − Exchange (ind and replace)
F − Find text
I − Insert a blank line
L − Locate label, marker, or line number
Q − Return to Editor Control Mode
V − Clipboard cut and paste

Y − Select all text to the end
8 − Create a line of asterisks
9 − Create a box of asterisks

Pseudo Opcodes

label EQU expression

label KBD − Deine label during assembly
ASC “string” − Deine ASCII text
CHK − Add a checksum byte
ERR expression − Force error if nonzero
HEX data − Deine hex data
LST ON or OFF − Enable/disable listing
LUP ... --̂ − Loop and repeat opcodes
OBJ expression − Assembly address
ORG expression − Run address
PUT ilename − Insert T.ilename
SAV ilename − Save current code
DUM/DEND − Dummy section of code
DO expression ... ELSE ... FIN

IF char,]var ... ELSE ... FIN

Monitor Commands1

Command Syntax Description

Enter CALL -151 Enter the Monitor from BASIC.

Display 300

300.320
Display the byte at $300.
Display the bytes from $300 to $320.

Store 300:00 01 02...

:03 04 05
Store byte values starting at $300.
Type “:” to continue adding values.

Move 2001<2000.2FFFM Copy memory from $2000 to $2FFF into
location starting at $2001.

Verify 800<400.7FFV Display diferences in memory from $400
to $7FF with bytes starting at $800.

Examine <CTRL>E

:01 02 03 04 05
Display the 6502 registers.
Type “:” and the new values to modify.

Go 300G Run the program at $300.

List 300L

L
Disassemble 20 lines, starting at $300.
Type L to continue the list.

Add bytes 2F+3B Add two bytes, display the result.

Subtract 3B-2F Subtract two bytes, display the result.

Normal N Set normal video mode.

Inverse I Set inverse video mode.

User <CTRL>Y Jump to the user routine at $3F8-3FA.

Keyboard 2<CTRL>K Cause slot 2 to become the input source.

Printer 1<CTRL>P Cause slot 1 to become the output device.

Exit <CTRL>C Exit Monitor and enter BASIC.

Addressing Modes

Mode Example Bytes Time (μs)

Implied RTS 1 2−7
Immediate LDA #$FF 2 2
Zero Page LDA $06 2 3−5
Zero Page Indexed, X LDA $06,X 2 4−6
Absolute LDA $C000 3 3−6
Absolute Indexed, X LDA $2000,X 3 4−7
Absolute Indexed, Y LDA $2000,Y 3 4−5
Indirect Indexed (post-indexed) LDA ($06),Y 2 5−6
Indexed Indirect (pre-indexed) LDA ($06,X) 2 6
Relative BCC $300 2 2−4
Indirect Jump JMP ($0036) 3 5−6
Zero Page Indirect [65C02] LDA ($06) 2 5
Indexed Absolute Indirect [65C02] JMP ($1234,X) 3 6

1[CT] Adapted from Table 3-1 in Inside the Apple //e, by Gary B. Little.

About the Author

Roger Wagner bought one of the early Apple][(not even Plus!) computers
in 1978 and over the next few years wrote a monthly programming tutorial for
So!alk magazine.Assembly Lines: "e Book, published in 1982, was the irst
book speciically about creating assembly-language programs on the Apple][.
Roger also wroteApple IIGS Machine Language for Beginners and numerous

programs includingRoger's Easel,"e Programmer’s Utility Pack,"e Write
Choice, as well as major contributions to theRoutine Machine Appleso! Library.
He was the designer and creator ofHyperStudio for the Apple IIGS, a multimedia
package that soon became the most-used so!ware in K-12 classrooms.
Roger is a patent-holding inventor, has owned a rare-book auction house,

and is a private pilot with licenses in the United States, Canada, and Mexico.
Technology & Learning magazine named Roger one of the top 5 “Most

Important Educational Technology Gurus of the Past Two Decades” along with
Seymour Papert, Bill Gates, Steve Wozniak, and Steve Jobs.
Roger coined the phrase “Copyright Friendly,” a predecessor to the Creative

Commons license, and he worked with the Creative Commons organization to
develop automatic attribution systems.
Today, Roger serves on the Board of Directors of California Computer-

Using Educators (CUE) Inc., and is an energetic advocate for enabling students
to efectively use technology, as well as for issues relating to digital citizenship
and student privacy.
For more information, visit “http://rogerwagner.com.”

	Table of Contents
	Preface
	Introduction
	1. Apple’s Architecture
	6502 Operation
	Memory Locations
	Hexadecimal Notation
	It’s Culture That Counts

	2. The Monitor
	Exploring the Monitor
	Disassembly

	3. Assemblers
	The Mini-Assembler
	Assemblers
	Load/Store Opcodes
	Putting it All Together
	Conclusion

	4. Loops and Counters
	Binary Numbers
	The Status Register
	Incrementing and Decrementing
	Looping with BNE

	5. Loops, Branches, COUT, and Paddles
	Looping with BEQ
	Branch Offsets and Reverse Branches
	Screen Output Using COUT
	Reading a Game Paddle
	Paddle Program Problems
	Transfer Commands
	A Note about BRUN and COUT

	6. I/O Using Monitor and Keyboards
	Comparisons; Reading the Keyboard
	Compare Commands and Carry Flag
	Using Monitor Programs for I/O Routines
	Reading Data from the Keyboard

	7. Addressing Modes
	Indexed Addressing
	Sometimes X and Y Aren’t Interchangeable
	Storing Pure Data

	8. Sound Generation
	Delays
	Delay Value in Memory
	Delay from the Keyboard or Paddles

	9. The Stack
	Stack Limit

	10. Addition and Subtraction
	Binary Numbers
	Addition with ADC
	Subtraction
	Positive and Negative Numbers
	The Sign Bit
	The Sign Flag

	11. DOS and Disk Access
	The Overview: DOS
	Diskette Organization
	DOS Modifications
	Disk-Volume Modification
	Catalog Keypress Modification
	Bell Modification and Drive Access

	12. Shift Operators and Logical Operators
	Shift Operators
	Logical Operators
	BIT
	ORA and EOR

	13. I/O Routines
	Print Routines
	Input Routines

	14. Reading and Writing Files on Disk
	Reading and Writing Data Files
	Reading and Writing Text Files

	15. Special Programming Techniques
	Relocatable versus Non-relocatable Code
	JMP Commands
	Determining Code Location
	JSR Simulations
	Self-Modifying Code
	Indirect Jumps

	16. Passing Data from Applesoft BASIC
	Simple Interfacing
	The Internal Structure of Applesoft
	Passing Variables

	17. More Applesoft Data Passing
	Applesoft Variables
	Memory Maps
	Passing Variables to Assembly Language
	Passing Data from Assembly Language
	Programming Tip
	Conclusion

	18. Applesoft Hi-Res Graphics
	Ground School
	Landmarks and Entry Points
	A Test Flight: Hi-Res Demo
	A Minor Diversion
	Location
	Motion

	19. Calling Hi-Res Graphics Routines
	Taking the Opposite of a Signed Number
	The Real Thing: Hi-Res in Assembly
	Table-Driven Graphics
	Conclusion

	20. Structure of the Hi-Res Display Screen
	Loading a Hi-Res Screen: the “Fill” Effect
	Another Problem: Shifting Colors
	Other Problems: When Is White Not White?
	Super Hi-Res Graphics

	21. Hi-Res Plotting in Assembly
	Normal Point Plotting
	Alternate Plotting Modes
	140-Point Resolution Mode
	560-Point Resolution Mode
	A Demonstration Program

	22. Even Better Hi-Res Plotting
	Interactions between Adjacent Bytes
	Some “New and Improved” Routines
	PLOT.140+
	PLOT.560+
	PLOT.560-White
	A Final Demo Program
	Conclusion

	23. Hi-Res Graphics SCRN Function
	An Overview
	Sample Program
	Conclusion

	24. The Collision Counter, DRAW, XDRAW
	Some Experiments
	DRAW versus XDRAW
	Principles of Animation and Collision
	The Scanner
	The Possibilities

	25. Explosions and Special Effects
	Explosions, Rays, and Other Things That Go Bump in the Night
	A Little More Sophistication
	Putting it All Together
	The Shooter Program

	26. Passing Floating-Point Data
	Internalization of Data: Integer versus Real Variables
	The Floating-Point Accumulator (FAC)
	Passing Data from Applesoft to the FAC
	Moving the FAC to a Memory Location
	Moving Memory into the FAC
	Passing FAC Data Back to Applesoft
	Putting it All Together
	Conclusion

	27. Floating-Point Math Routines
	More Applesoft Internals
	An Example That Doesn’t Work
	Why it Doesn’t Work
	A Little More Finesse
	Other Operations: Subtraction, Multiplication, and So On
	Conclusion

	28. The BCD, or Binary Coded Decimal
	Limitations
	The Carry Flag
	Common Operations
	Printing BCD Values
	Conclusion
	Special Note: Counting Down

	29. Intercepting Output
	Output
	Intercepting Output
	Other Output Devices
	Conclusion

	30. Intercepting Input
	The Input Vector: KSW
	Other Input Sources
	Interception Routines
	Something More Useful: Lowercase Input
	Conclusion

	31. Hi-Res Character Generator
	Text and Hi-Res Screen Mapping
	The Character Generator
	A Hi-Res Character Set
	Conclusion

	32. Hi-Res Character Editor
	How it Works
	And Now with the Magnifying Glass
	Running the Editor
	Miscellaneous Notes
	Conclusion

	33. The 65C02
	New Addressing Modes
	Indirect Addressing
	Indexed Absolute Indirect
	New “Standard” Addressing Modes
	At Last, the Real Scoop! New Instructions
	Other Differences

	Appendix A: Contest
	Appendix B: Assembly Commands
	ADC: ADd with Carry
	AND: Logical AND
	ASL: Arithmetic Shift Left
	BCC: Branch Carry Clear
	BCS: Branch Carry Set
	BEQ: Branch if EQual
	BIT: compare Accumulator BITs with memory
	BMI: Branch on MInus
	BNE: Branch Not Equal
	BPL: Branch on PLus
	BRA: BRanch Always [65C02]
	BRK: BReaK (software interrupt)
	BVC: Branch on oVerflow Clear
	BVS: Branch oVerflow Set
	CLC: CLear Carry
	CLD: CLear Decimal mode
	CLI: CLear Interrupt mask
	CLV: CLear oVerflow flag
	CMP: CoMPare to Accumulator
	CPX: ComPare data to the X-Register
	CPY: ComPare data to the Y-Register
	DEC: DECrement a memory location
	DEX: DEcrement the X-Register
	DEY: DEcrement the Y-Register
	EOR: Exclusive OR with Accumulator
	INC: INCrement memory
	INX: INcrement the X-Register
	INY: INcrement the Y-Register
	JMP: JuMP to address
	JSR: Jump to SubRoutine
	LDA: LoaD Accumulator
	LDX: LoaD the X-Register
	LDY: LoaD the Y-Register
	LSR: Logical Shift Right
	NOP: No OPeration
	ORA: Inclusive OR with the Accumulator
	PHA: PusH Accumulator
	PHP: PusH Processor status
	PHX: PusH X-Register [65C02]
	PHY: PusH Y-Register [65C02]
	PLA: PulL Accumulator
	PLP: PulL Processor Status
	PLX: PulL X-Register [65C02]
	PLY: PulL Y-Register [65C02]
	ROL: ROtate Left
	ROR: ROtate Right
	RTI: ReTurn from Interrupt
	RTS: ReTurn from Subroutine
	SBC: SuBtract with Carry
	SEC: SEt Carry
	SED: SEt Decimal mode
	SEI: SEt Interrupt disable
	STA: STore Accumulator
	STX: STore the X-Register
	STY: STore the Y-Register
	STZ: STore Zero in memory [65C02]
	TAX: Transfer Accumulator to X-Register
	TAY: Transfer Accumulator to Y-Register
	TRB: Test and Reset Bits [65C02]
	TSB: Test and Set Bits [65C02]
	TSX: Transfer Stack to X-Register
	TXA: Transfer X to Accumulator
	TXS: Transfer X to Stack
	TYA: Transfer Y to Accumulator

	Appendix C: 6502 Instruction Set
	6502 Microprocessor Instructions
	Usage Chart of 6502 Instructions
	6502 Instruction Codes
	65C02 Instruction Codes
	Hex Operation Codes

	Appendix D: Monitor Subroutines
	Output Subroutines
	Input Subroutines
	Low-Res Graphics Subroutines
	Hi-Res Graphics Subroutines
	Floating Point Accumulator
	Other Subroutines

	Appendix E: ASCII and Screen Charts
	You Get What You ASCII For...
	Text Screen Memory Map
	Hi-Res Memory Map

	Appendix F: Zero-Page Memory Usage
	Special Locations
	Memory Usage Table

	Appendix G: Beginner’s Guide to Merlin
	Control Modes
	Getting Started
	Deleting Lines
	Inserting Lines
	Editing Lines
	Assembling the Code
	Saving and Running Your Program

	List of Programs
	Directory Listing for Program Disks
	Index
	Quick Reference

