
SOMMAIRE

1. LES OUTILS SOURIS TEXTE DE L'APPLE II

2. LES REGLES DE L'INTERFACE SOURIS

3. UTILITAIRES DE PROGRAMMATION

*ROUTINES DE SAISIE ET D'AFFICHAGE ECRAN

*DRIVER D'ECRAN APPLE II

*UNITE PASCAL DE L'ENVIRONNEMENT
MULTI·DOSSIERS

4. NOTES TECHNIQUES ProDOS

5. NOTES TECHNIQUES PASCAL

6. NOTES TECHNIQUES APPLE Ile

7. NOTES TECHNIQUES APPLE Ile

8. NOTES TECHNIQUES SOURIS

DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES

neveloper's Handbook for t.he Apple II HouseText Tool Kit.

DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES

030-0891-2

NOTICE

Apple Computer, Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER, INC. SOFTWARE IS SOLD
OR LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND
PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE
FOLLOWING THEIR PURCHASE, THE BUYER (AND NOT APPLE COMPUTER, INC.,
ITS DISTRIBUTOR OR ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY INCIDENTAL OR
CONSEQUENTIAL DAMAGES. IN NO EVENT WILL APPLE COMPUTER, INC. BE
LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER,
INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES
OR LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Apple Computer, Inc.

® 1985 APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, California 95014
(4()8) 996-1010

The word APPLE and the Apple logo are registered trademarks of
APPLE COMPUTER, INC.

Contents

Table of Contents

6 List of Figures and Tables

7 Foreword

9 Chapter 1. Introduction: The MouseText Tool Kit

10 Features Supported by the Tool'Kit
10 The Cursor
10 Events
11 Menus
14 Windows
14 Parts of a Window
17 Window Coordinates
19 Document Information
21 Control Regions: the Scroll Bar
22 Interrupts and the Tool Kit
22 Lists of Tool Kit Commands
28 }~use Emulation
28 Keyboard Mouse Mode
30 Safety-Net Mode

31 Chapter 2. Specifications of the Commands

32 Startup Commands
33 StartDeskTop
35 StopDeskTop
36 PascIntAdr
37 SetUserHook
39 Version
4~ KeyBoardMouse

Page 1

Page 2

41 Cursor Commands
41 SetCursor
42 ShowCursor
43 HideCursor
44 ObscureCursor
45 Event-Handling Commands
45 CheckEvents
47 GetEvent
49 PostEvent
50 FlushEvents
51 SetKeyEvent
52 PeekEvent
53 Menu Commands
53 Keys in Menus
55 InitMenu
56 SetHenu
60 MenuSelect
62 MenuKey
64 HiLiteMenu
65 DisableMenu
66 Disableltem
67 Checkltem
68 SetMark
69 Window Commands
70 InitWindowMgr
72 OpenWindow
77 CloseWindow
78 CloseAll
79 GetWinPtr
80 FindWindow
81 FrontWindow
82 SelectWindow
83 TrackGoAway
84 DragWindow
86 GrowWindow
88 WindowToScreen
89 ScreenToWindow
90 WinChar
91 \HnString
92 WinText
93 WinBlock
94 WinOp
95 Control Region Commands
95 FindControl
97 SetCt IMax
98 TrRckThumb
100 UpDateThumb
101 ActivateCtl

Contents: Table of Contents

Contents: Table of Contents

1~3 Chapter 3. The Machine Language Interface

103 Installing the Machine Language Tool Kit
1~4 Syntax of Machine Language Calls
105 The Machine Language Commands
105 Startup Commands
106 Cursor Commands
107 Event-Handling Commands
108 Menu Commands
110 Window Commands
114 Control Region Commands

117 Chapter 4. The Pascal Interface

117 Installing the Pascal Interface
117 Data Structures
117 Constants and Type Definitions
126 Command Functions and Procedures
126 Startup Commands
127 Cursor Commands
128 Event-Handling Commands
129 Menu Commands
131 Window Commands
134 Control Region Commands
135 Utility Functions

137 Chapter 5. The Applesoft Interface

137 Installing the Applesoft Interface
138 Using the Ampersand Commands
139 The Ampersand Commands
139 Startup Commands
140 Cursor Commands
141 Event-Handling Commands
142 Menu Commands
145 Window Commands
151 Control Region Commands
153 Utility Commands

155 Appendix A. The AppleMouse II Interface Card

155 Passive Versus Active Operation
156 Mouse Interrupts
156 The TimeData Firmware Call

Page 3

Page 4 Contents: Table of Contents

157 Appendix B. The Mouse Firmware Interface

157 Finding the Mouse Carn
156 Reading Mouse Data
160 Operating Modes
161 Passive Mode
162 Interrupt Mode
162 Unclaimed Interrupts
163 Making Calls to Mouse Firmware
164 Parameter Passing
165 The Firmware Routines
165 SetMouse
165 ServeMouse
166 ReadMouse
166 ClearMouse
166 PosMouse
166 ClampMouse
167 HomeMouse
167 InitMouse

169 Appendix C. The Mouse Pascal Attach Driver

169 Installing the Mouse Pascal Attach Driver
170 About Pascal Attach Drivers
171 The Pascal Interface
173 Interrupts

175 Appendix D. Sample Program

175 Pseudocode Listing

179 Appendix E. MouseText Characters

181 Appendix F. Tool Kit Error Codes

List of Figures and Tables

List of Figures and Tables

Page 5

13
15
16
17
20
23
24
25
25
25
26
27
27

54
56
57
58
59
73
74

75

75

76

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Table l-la.
Table I-lb.
Table 1-2a.
Table 1-2b.
Table 1-2c.
TRble 1-2d.
Table 1-2e.
Table 1-2f.

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.

Table 2-8.

Table 2-9.

Table 2-10.

Menu Components
Typical Display With Windows
Parts of a Window
Window With Inactive Scroll Bars
Location Parameters in a Document
Alphabetical List of Tool Kit Commands
Alphabetical List of Tool Kit Commands, Continued
Startup Commands
Cursor Commancis
Event-Handling Commands
Menu Commands
Winciow Commancis
Control Region Commands

Control Keys for Menu Items
Data Structure for a Menu Bar
Contents of Option Byte in Each Menu Block
Data Structure for a Menu
Contents of Option Byte in Menu Data Structure
Information Structure for a Window
Contents of Window Option Byte in Window
Information Structure
Contents of Horizontal or Vertical Control
Option Byte in Window Information Structure
Contents of Window Status Byte for Window
Information Structure
Information Structure for a Documents

Hl5 Table 3-1. Processor Status After Return From Tool Kit

159 Table B-l. Screen Locations for Mouse Data
160 Table B-2. Button and Interrupt Status Byte
161 Table B-3. Bits in the Mode Byte
164 Table B-4. Entry Point Address Bytes

170 Table C-l. Attach Files
171 Table C-2. Pascal I/O Calls

180 Figure E-1. The MouseText Icon Characters

182 Table F-l. MouseText Tool Kit Error Codes

Page 6

Page 7

Foreword

This is the developer's handbook for Version 2.1 of the MouseText
Tool Kit for the Apple II. The main purpose of the handbook is to tell
you how to use the Tool Kit routines in your application programs. In
addition, the handbook includes appendixes that contain information
about the mouse itself and about the hardware and software that make it
work.

Version 2.1 of the Apple II MouseText Tool Kit provides support for
mouse-operated menus and windows using the text display. It uses the
Mouse Text icon characters available on the Apple lIe. The icon
characters are available on the Apple lIe only with an updated character
ROM. Another tool kit, The Mouse Graphics Tool Kit, will support the
double high-resolution graphics displays on the Apple lIe and the
Apple lIe.

Note ~o Users: This is not the owner's manual for
AppleMouse II. That manual, The AppleMouse II User's
Manual, tells how to install the mouse on the Apple II and
describes the demonstration program that comes with the
mouse. This handbook tells you how to use the MouseText
Tool Kit routines in programs that you write yourself.

Chapter 1 outlines the features of the MouseText Tool Kit and tells you
what the Tool Kit routines will do for your application programs.

Chapter 2 gives complete specifications for the MouseText Tool Kit
commands.

Chapters 3, 4, and 5 describe how to use the MouseText Tool Kit
with application programs written in each of three different languages:
Chapter 3 describes the command calls in machine language, Chapter 4
describes the command procedures in Pascal, and Chapter 5 describes the

Page 8

ampersand commands used in Applesoft.

Foreword:

The appendixes provide additional information about using the
AppleMouse II. Appendix A describes the interface card that supports the
operation of the mouse hardware. Appendix B describes the interface to
the mouse firmware (the level of communication and control between the
hardware and the Tool Kit routines). Appendix C tells you how to install
the Pascal Attach Driver that adds mouse communications to the Pascal
BIOS. Appendix D contains programming examples using the MouseText
Tool Kit. Appendix E describes the special Mouse Text characters.
Appendix F is a combined list of the error codes returned by the Tool Kit
commands.

Page 9

Chapter 1

Introduction: The MouseText Tool Kit

The Apple II MouseText Tool Kit is a set of software routines that you
can use to implement mouse-controlled menus and text windows for your
application programs. This v'ersion of the Tool Kit provides commands
for displaying and controlling pull-down menus, including

- cursor selection and display

- menu bar displays

- menu item selection.

This version of the MouseText Tool Kit also has window-handling commands
used in desk-top displays for handling folders and the like. These
commands perform functions such as

- window selection and display

- window dragging and size changing

- writing text in windows.

The ~ool Kit also provides support for programs to perform functions
like scrolling windows through documents.

Special Characters: The character generator in the Apple IIc
includes special characters called MouseText that can be
used for cursor displays. A new character-generator ROM
will be available to. provide the MouseText characters on the
Apple lIe. The MouseText characters are described in
Appendix E.

The Tool Kit supports 80-column displays on the Apple IIc and, via the
Apple 8~-column text card or equivalent cards, on the Apple lIe.

Page 10 Chapter 1: Introduction: The MouseText Tool Kit

Features Supported by the Tool Kit

The commands in the MouseText Tool Kit enable your program to support
several kinds of features:

- The Cursor

- Events

- Menus

- Windows

- Control Regions consisting of Scroll Bars with Thumbs

The sections that follow outline these features and mention some of
the individual commands your program calls. Tables 1-1 and 1-2 list
all of the commands; they are described individually in Chapter 2.

The Cursor

The cursor is the character that moves on the display as the user
moves the mouse. Cursor commands enable the program to select the
character displayed as the cursor and to turn the cursor on and off.
The Tool Kit uses the mouse to control the position of the cursor.
There is also a means of controling the cursor and the Tool Kit
functions by pressing keys: see the section "Mouse ErilUlation" later in
this chapter.

Events

The Tool Kit deals with four kinds of events: mouse events. keyboard
events. update events. and application events (optional with the
application program). Mouse events are button pressed (down). button
released (up). and moving the mouse with the button held down (drag).
Mouse motion with the button up is not an event. but the program can
obtain the most recent mouse position even if no event has occurred.
Keyboard events are keypresses and are optional; that is. the program
specifies that it handles keypresses itself or that the Tool Kit deals
with them.

Update events are a special case. provided for those applications with
windows that can't be refreshed automatically. Please see the
description in Chapter 2 at the Get Event command.

Features Supported by the Tool Kit

Precedence of Events: If the mouse button is down, the
Tool Kit ignores keypresses.

Page 11

The Tool Kit's event-handling commands maintain a queue of events.

The program detects mouse events by calling GetEvent. With the Tool
Kit running in Passive Mode, GetEvent automatically issues an internal
call to CheckEvents. The CheckEvents command posts mouse events and
keypress events in the queue and updates the mouse position. If the
event queue is empty, the GetEvent command simply returns the most
recent mouse position.

In Interrupt Mode, the Tool Kit's interrrupt handler calls CheckEvents
60 times per second, synchronized with the display vertical blanking
(VBL). In Passive Mode, the application program must call CheckEvents
or GetEvent often enough to obtain smooth cursor motion. Also, the
application program can put its own events into the queue by calling the
PostEvent command.

CheckEvents is the only command that reads the mouse; if it is never
'. called, either directly, indirectly by GetEvent, or (in Interrupt

Mode) by the Tool Kit itself,the cursor will never move.

If the event queue fills up, the Tool Kit ignores new events until
there is room for them in the queue. To empty the queue, the program
calls the FlushEvents command.

Note: Frequent calls to CheckEvents also provide a
type-ahead feature by posting keyboard events in the queue
until the program can process them.

Menus

The Tool Kit's menu management commands enable programs to provide
pull-down menus. The visible components of a menu are

- a menu bar at the top of the display, showing the menu titles

- the menu items that appear, one to a line, when a menu pops down.

When the user moves the cursor onto a title in the menu bar and
presses the button on the Mouse, the application program calls the

Page 12 Chapter 1: Introduction: The MouseText Tool Kit

MenuSelect command, which displays a menu and tracks the mouse as long
as the mouse button stays down. The user doesn't literally pull it
down: instead, it pops down as soon as the application program
determines that the cursor has moved onto the title. As the user
keeps the button pressed and moves the cursor down the menu, the
Tool Kit highlights the item the cursor is pointing to by displaying
it in inverse video.

When the user releases the button, the item that the cursor was pointing
to is selected and the menu disappears. To tell the user that something
is happening, the Tool Kit leaves the menu title in the menu bar
highlighted. The application program turns off the highlighting of the
title as soon as it finishes performing the selected operation.

The data structures the Tool Kit uses to manage the menu information
also contain information that is not displayed, but is returned to the
program when a menu item is selected:

- a menu ID number for each menu

- a menu item number for each item

The program can set individual items or an entire menu to the disabled
state. Disabled items or menus are not highlighted when the cursor
moves onto them, and they cannot be selected.

Features Supported by the Tool Kit

Figure 1-1 Menu Components. Note:
Numbers in parentheses are menu ID
and menu item numbers and do not
appear in the display. The menu
item numbers are always sequential
starting with 1, but the menu ID
numbers can be in any order, as long
as they're between 1 and 255.

Page 13

Menu ID
Numbers----) (1) (2) (3)

Menu Bar---) IFile/Print Edit View
(1) Undo L_____
(2)
(3) Cut
(4) Copy <-----------
(5) Paste

~---------------------

-Menu Title

-Menu Item

-Menu Item
Numbers

The application program calls the SetMenu command with data structures
containing the menu information the Tool Kit needs, and the Tool Kit
displays the menus. The program can call SetMenu during the course of
operation to change the contents of menus. The menu data structures
are described in the "Menu Commands" section in Chapter 2.

When the FindWindow command detects the mouse button pressed in row ~

(the menu bar), the program calls the MenuSelect command. MenuSelect
takes care of the entire selection process: it displays the menus and
tracks the mouse position with the cursor for as long as the user holds
down the mouse button. If the user selects a menu item, the MenuSelect
command highlights the menu's title in the menu bar and returns the menu
item number and the menu ID number. If the user doesn't select a menu
item, the MenuSelect command returns a menu ID value of ~.

Keeping the selected menu title highlighted while the operation is
being performed gives useful feedback to the user. After the program
has carried out the selected operation, it should call HiLiteMenu
with menu ID set to ~ to un-highlight the menu title.

For menu items that are used often, the program can provide fast item
selection; it does this by allowing the user to press keys instead of
moving the mouse. To do this, the program specifies the keys the user
can press to select the items in the menus. When the GetEvent command

Page 14 Chapter 1: Introduction: The MouseText Tool Kit

returns a keypress, the program calls the MenuKey command. MenuKey gets
the menu ID and the item number by searching the menu data structure for
a matching key, and then highlights the selected menu title the same way
MenuSelect does. 4fter the operation has been performed, the program
must use the HiLiteMenu command to turn off the highlighting of the
selected title.

Windows

The Tool Kit's window commands make it
the mouse to control multiple windows.
appear on the display screen.

Parts of a Window

possible for programs to use
Figure 1-2 shows how windows

Each window has several parts, as shown in Figure 1-3. The two main
parts of a window are the drag bar at the top, including the title of
the window, and the content region, where the application displays
information. The drag bar is used for moving the window around on the
display. To move the window, the user positions the cursor on the drag
bar and holds down the mouse button while moving the cursor to the
desired position. The drag bar also contains the Close Box, or Go-Away Box.
To close the window, the user clicks and releases the mouse while in the
Go-Away Box.

The lower-right corner of the window contains the Grow Box, which
is used to change the size of a window. To do this, the user presses
the mouse button when the cursor is in the Grow Box, then holds the
button down while moving the mouse. The display shows the new size of
the window as an outline that moves around as the mouse moves. When the
user releases the mouse button, the Tool Kit redisplays the window
with its new size but without contents. The program puts appropriate
text into the re-sized window by calling window commands or its own
window subroutines.

Features Supported by the Tool Kit

FigaDre 1-2
Typical Display With Windows

Page 15

--

Desktop~--.
WTi ueZz

MenuBar

GOAWirIj Sox

............................
• • 0· •••.•••••••••••••••••••••

.
. , .

OesKioc

DragReglon

~~=======:!--~r--Con'ten'tReg.on

--

Page 16 Chapter 1: Introduction: The MouseText Tool Kit

Figure 1-3 Parts of a Window

--
Go Away Box

I
I
I

:r~on

Thunb

Grow Box

"Page Uc"
~-----

r ...------ Up a:rI'C'W

kiI~....----- Down arrow

~N"'-----"Page Down"
Z'egJ.0T'l

\
Rignt arrow

i
.p lSge F1 igtrt"

region

Thumb
i

"Page Lett"
region

I
I

Le-ft arrow

EJ

Features Supported by the Tool Kit

Figure 1-4
Window With Inactive Scroll Bars

Page 17

--

Go AWay 80x

j
I

~----- Up u:ow

\
Left arro..... Fl ight arrow Grow Box

Window Coordinates

Three different coordinate systems are used with the window commands:

- mouse coordinates, with X from '/J to 79 and y from '/J to 23

- screen coordinates, with X from -8'/J to 159 and y from -24 to 47

- window coordinates, with X from -R~ to 159 and y from -24 to 47

Page 18 Chapter 1: Introduction: The MouseText Tool Kit

The mouse coordinates correspond to the absolute range of the display
screen and are expressed as unsigned byte quantities. The window and
screen coordinates are represented as two-byte signed quantities.

It is important to be aware of the ranges of the signed two-byte
quantities because the Tool Kit routines make certain assumptions about
the high byte. The only time the high byte is not simply the sign
extension of the low byte's sign bit is when the value is in the range
128 to 159 for the X axis. The Y-axis quantities are.. als.o two-byte
quantities for the sake of consistency. The only legal values of the
high byte are $00 and $FF.

To be visible, characters must be in the top window, and their screen
coordinates must be in the range from ~ to 79 in the X axis and ~ to
23 in the Y axis. What's more, if the width of the window is Wand
the length of the window is L, characters are visible only if their
window coordinates are in the range from 0 to W - 1 in the X axis
and 0 to L - 1 in the Y axis. The scroll bars are considered to be in
the content area, so the useful content area range is from 0 to W - 3
if the vertical scroll bar space is used. Similarly, if there is a
horizontal scroll bar, the useful content area range is from 0 to
L - 2 in the Y axis.

Note: If a Grow Box is present, the vertical scroll bar
space is used even if the scroll bar is not present. This
ensures that the useful content area is always rectangular.

There must be at least one character in the window's content area
for a Window Information Data Structure to be displayed correctly.
The window length must be·at least I, or 2 if there is a horizontal
scroll bar. Window width must be at least one, or three if there is a
vertical scroll bar or a Grow Box. The maximum window width is 80.
The maximum length is 22 for normal windows, 23 for dialog windows.

Note: It is a good idea to keep window width greater than 3,
else you can have a window whose title does not show, or
even a window that cannot be dragged, but only closed,
because there is only space enough for the Close Box.

A window can be placed in any position on the screen, including
positions that make part of the window invisible. This is the reason
for the ranges of the screen and window coordinates. Even though the
ranges normally used are positive, you can get meaningful negative

Features Supported by the Tool Kit Page 19

values when you convert from one coordinate system to another. For
example, a window's drag bar is always in the negative range of the
window's Y axis.

Note: Windows are output-only devices; the Tool Kit will not
copy their contents into user memory•. The application
program must ensure that the information in the content
memory area and the contents of the window agree.

Document Information

The only document display feature built into the Tool Kit is a screen
image of the text. Each line is padded with spaces on the right, and
there are no special line delimiters; the number of characters per
line is fixed.

To support the document display, the window management part of the Tool
Kit needs certain information about the document. This information is
in the Document Information Data Structure (Dinfo), described in
Chapter 2. The location of the window in the document is specified by
Dinfo quantities Dx and Dy (see Figure 1-5). The window can be placed
anywhere within the document. In this sense, the document dimensions
can be considered as a fourth coordinate system in which the window
coordinates are embedded.

Other kinds of document displays are possible, but the routines to
create them must be provided by the application program. For
information about adding display routines, see the "SetUserHook" section
in Chapter 2.

Page 20 Chapter 1: Introduction: The MouseText Tool Kit

Figure 1-5
Location Parameters in a Document

iII--------DoclfIent IIi dtll --------1~~1

I
$t~rt'i

$t~rtx ,..;.------~h
R B C 0 E •••

Document ptr --'lloi-------~t~------------;

Docl.ment Y

DODunent X .!

vindOW Content Are~

Whenever a window is dragged, the Tool Kit must redisplay the content
areas of the windows. The application program can override the Tool
Kit's document display feature by having a routine that is called by
the Tool Kit whenever the window is to be redisplayed. The program
passes the address of this assembly language routine to the Tool Kit
as part of the Window Information Data Structure, described in
Chapter 2. Because of the way the Tool Kit saves zero-page locations,
the program's routine cannot rely on the contents of those zero-page
locations. Furthermore, the routine can only call the Tool Kit's
window update commands to update the content region. These commands
are WinChar, WinString, WinText, WinBlock, and WinOp. (Note:
WinBlock uses a Document Information Data Structure.)

Features Supported by the Tool Kit Page 21

In the case where the window should not be refreshed automatically,
the Tool Kit uses a type of event called an update event to signal the
application that the window needs to be refreshed. The application
specifies that a window is of this type by making the two-byte DInfo
pointer (in the Window Data Structure) equal to zero. Please see the
description in Chapter 2, under the GetEvent command.

Control Regions: The Scroll Bar

The only window control regions supported by the Tool Kit are the scroll
bars displayed in the content region of the front (active) window (see
Figure 1-3). Either horizontal or vertical scroll bars or both may be
present.

An active scroll bar has several components, as shown in Figure 1-3.
There are arrows at either end, an open box called the Thumb, and gray
regions in between called Page-Up and Page-Down Regions in a vertical
scroll bar, and Page-Left and Page-Right Regions in a horizontal
scroll bar. (Sometimes the gray regions are called Page-Up and
Page-Down Regions even in a horizontal scroll bar.)

An application program should support three different ways of
scrolling the window contents using the scroll bars:

- Pressing the mouse button with the mouse in the arrows to scroll
continuously as long as the button is down. The thumb moves to
indicate the relative position of the window in the document.

- Pressing the mouse button in the Thumb itself, and dragging the
Thumb to cause the corresponding scrolling of the document.

- Pressing the mouse button in a Page-Up or Page-Down Region to scroll
the window up or down a page--that is, a window full--at a time.

The Thumb should appear right next to one of the arrows only when the
first or last character of the document appears in the window. This
ensures that the user can always page and that the Thumb can he used
to get to the first and last characters of a document.

If the full width or length of a document appears in the window, the
program should make the scroll bars reflect this by putting them into
the inactive state, which shows the arrows, but no page regions or
Thumb (see Figure 1-4).

If the window is so narrow that fewer than three character cells are
available for the page regions and the Thumb, the Tool Kit will not
display the Thumb. If fewer than three cells are available for the
entire scroll bar, not even the arrows will show, and the user will be
unable to scroll. Instead, the Tool Kit will display a gray region if
the scroll bar is active, or a hollow region if it is inactive.

Page 22 Chapter 1: Introduction: The MouseText Tool Kit

Interrupts and the Tool Kit

Tollow this sequence of steps to start the mouse:

(1) (For Pascal only) Call PascIntAdr to get the address of the Tool
Kit's interrupt handler.

(2) (For Pascal only) Pass the interrupt address to the mouse firmware
by calling SetMouse as described in Appendix Bt "The Mouse Firmware
Interface." Mouse Mode should be set to passive.

(3) Call StartDesktop with the UseInterrupts parameter set the way you
want it for your program.

(4) (optional) Call SetUserHook to pass the addresses of your
program's interrupt handlers t if anYt to the Tool Kit.

The Tool Kit saves the interrupt state of the machine when your
program calls the StartDeskTop command. When the program calls the
StopDeskTop command t the Tool Kit sets the state of the machine to the
state saved by StartDeskTop.

When you use the Tool Kit in Interrupt Mode t the. Tnol Kit provides the
interrupt handler. In addition t the Tool Kit allows the application
program to have interrupt handler subroutines that. are called by the
Tool Kit. The program passes each subroutine's address to .theTool
Kit as a parameter by calling the SetUserHook command. This feature
makes it possible for the application program to perform tasks at
interrupt time.

A user hook routine that is called at interrupt time cannot call most
Tool Kit commands. Doing so could put the Tool Kit into an unknown
state. If a program needs to generate calls to the Tool Kit because
of an interruptt the interrupt routine should set a flag that the
program checks during its main polling loop.

Lists of Tool Kit Com-auds

Tables 1-1
function.
Chapter 2.
please see

and 1-2 list all of the Tool Kit commands by name and
For complete descriptions of the commands t please see

For the commands as called in the different languages t
the chapter devoted to the appropriate language interface.

Lists of Tool Kit Commands

Table l-la.
Alphabetical List of Tool Kit Commands

Page 23

Name Number Type

ActivateCtl ••••• 43 •••• Control Region Commands
CheckEvents •••••• S•••• Event-Handling Commands
Checkltem••••••• 16 •••• Menu Commands
CloseAll •••••••• 2S •••• Window Commands
CloseWindow••••• 24 •••• Window Commands
Disableltem••••• lS •••• Menu Commands
DisableMenu••••• 14 •••• Menu Commands
DragWindow •••••• 30 •••• Window Commands
FindControl ••••• 39 •••• Control Region Commands
FindWindow •••••• 26 •••• Window Commands
FlushEvents ••••• 07 •••• Event-Handling Commands
FrontWindow ••••• 27 •••• Window Commands
GetEvent ••••••••• 6•••• Event-Handling Commands
GetWinPtr ••••••• 4S •••• Window Commands
GroWWindow•••••• 31 •••• Window Commands
HideCursor ••••••• 4•••• Cursor Commands
HiLiteMenu •••••• 13 •••• Menu Commands
InitMenu••••••••• 9•••• Menu Commands
InitWindowMgr ••• 22 •••• Window Commands
KeyboardMouse ••• 48 •••• Startup Commands
MenuKey ••••••••• 12 •••• Menu Commands
MenuSelect •••••• ll •••• Menu Commands
ObscureCursor ••• 44 •••• Cursor Commands
OpenWindow •••••• 23 •••• Window Commands
PasclntAdr •••••• 17 •••• Startup Commands

Page 24 Chapter 1: Introduction: The MouseText Tool Kit

Table I-lb.
Alphabetical List of Tool Kit Commands,
continued

Name Type

PeekEvent ••••••• 21 •••• Event-Handling Commands
PostEvent ••••••• 46 •••• Event-Handling Commands
ScreenToWindow•• 33 •••• Window Commands
SelectWindow•••• 28 •••• Window Commands
SetCtlMax••••••• 40 •••• Control Region Commands
SetCursor •••••••• 2•••• Cursor Commands
SetKeyEvent •••••• 8•••• Event-Handling Commands
SetMark••••••••• 2~ •••• Menu Commands
SetMenu ••••••••• 10•••• Menu Commands
SetUserHook••••• 47 •••• Startup Commands
ShowCursor ••••••• 3•••• Cursor Commands
StartDeskTop••••• 0•••• Startup Commands
StopDeskTop •••••• 1•••• Startup Commands
TrackGoAway ••••• 29 •••• Window Commands
TrackThumb •••••• 41 •••• Control Region Commands
UpDateThumb••••• 42 •••• Control Region Commands
Version ••••••••• 19 •••• Startup Commands
WinBlock•••••••• 36 •••• Window Commands
WinChar ••••••••• 34 •••• Window Commands
WinOp ••••••••••• 37 •••• Window Commands
WindowToScreen •• 32 •••• Window Commands
WinStrin~ ••••••• 3S •••• Window Commands
WinText ••••••••• 38 •••• Window Commands

Lists of Tool Kit Commands

Table 1-2a. Startup Commands

Page 25

--

Number Name

~ StartDeskTop
1 StopDeskTop

17 PasclntAdr

47 SetUserHook
19 Version

48 KeyboardMouse

Description

Activates the mouse and the Tool Kit routines
Inactivates the mouse and the Tool Kit routines
Gets the interrupt handler address for Pascal (not
applicable to BASIC)
Sets the address of the user's interrupt handler
Returns the version and revision numbers of the
Tool Kit
Conditions Tool Kit to perform next operation
in emulation mode

Table 1-2b. Cursor Commands

Number Name Description

2
3
4

44

SetCursor
ShowCursor
HideCursor
ObscureCursor

Sets the character used for displaying the cursor
Makes the cursor visible
Makes the cursor invisible
Makes the cursor invisible until the mouse moves

Table 1-2c. Event-Handling Commands

Number Name Description

5

6
46

7
8

21

CheckEvents

GetEvent
PostEvent
FlushEvents
SetKeyEvent
PeekEvent

Reads the mouse, moves the cursor to the new
position, and posts event, if any
Gets next event; if none, gets mouse position
Posts an event in the event queue
Empties the event queue
Specifies whether Tool Kit handles keyboard events
Returns event data without removing it from the queue

--

Page 26 Chapter 1: Introduction: The MouseText Tool Kit

Table 1-2d. Menu Commands

Number Name

9 InitMenu
10 SetMenu

11 MenuSelect

12 MenuKey
13 HiLiteMenu
14 DisableMenu
15 DisableItem
16 CheckItem
20 SetMark

Description

Allocates memory for temporary screen save
Initializes a menu bar data structure and displays the
menu bar
Interacts with mouse to display menu and return
selection, if any
Selects a menu item to match a keypress
Turns highlighting of menu title on or off
Inhibits highlighting and selection over a whole menu
Inhibits highlighting and selection of a menu item
Turns checkmark next to item on or off
Sets the character to use as checkmark

Lists of Tool Kit Commands

Table I-Ze. Window Commands

Page 27

--

Number Name Description

22
23

24
25
45

26
27
28
29

3~

31

32
33
34
35
38
36
37

InitWindowMgr
OpenWindow

CloseWindow
CloseAll
GetWinPtr

FindWindow
FrontWindow
SelectWindow
TrackGoAway

DragWindow

GrowWindow

WindowToScreen
ScreenToWindow
WinChar
WinString
WinText
WinBlock
WinOp

Initializes the open window list and buffer area
Passes the Tool Kit a pointer to a Window
Information Data Structure
Deletes a window
Deletes all windows
Gets the pointer to the Window Information Data
Structure (not applicable to Pascal)
Finds the window region that contains a given point
Returns the ID number of the front window
Makes a window the front (active) window
Returns whether the mouse button was released in a
Go-Away Box
Displays window outline during drag, then redisplays
windows
Displays window outline during grow, then red is plays
windows
Converts window coordinates to screen coordinates
Converts screen coordinates to window coordinates
Writes a character in a window
Writes a string in a window
Writes text in a window
Writes a block of text in a window
Clears all or part of a window

Table 1-2£. Control Region Commands

Number Name Description

39
4~

41
42
43

FindControl
SetCtlMax
TrackThumb
UpdateThumb
ActivateCtl

Returns whether the mouse is in a control region
Sets the range of a scroll bar
Tracks the Thumb until the mouse button is released
Displays the Thumb in a given position
Changes the state of a scroll bar (active or inactive)

Page 28 Chapter 1: Introduction: The MouseText Tool Kit

Mouse Emulation

Although the menu and window capabilities of the Apple II MouseText
Tool Kit are normally used with the App1eMouse II, it is possible to
run a program using the Tool Kit on a computer that doesn't have a
mouse. It is also possible to use the keyboard to control the menus
and windows, even on a computer that has a mouse. Even when mouse
emulation is going on, the Tool Kit still responds to mouse movement
and button operation.

The first method of mouse emulation is called Keyboard Mouse Mode.
It enables the application to support menu selection and window
manipulation by means of keyboard commands. Note that the
application must include the appropriate calls to provide this
feature, in contrast to the Safety-Net Mode, which is transparent to
the application.

The second method of mouse emulation, Safety-Net Mode, is provided for
use with a computer that doesn't have a mouse. This might happen, for
example, when a dealer needs to demonstrate an application and a
mouse-equipped computer .is inoperative or is not available.

Keyboard Mouse Mode

The Keyboard Mouse Mode of mouse emulation makes it possible for
applications to provide keyboard commands for operations that
normally require the mouse: selecting menus, and dragging and
changing the size of windows. The choice of commands for selecting
these mouseless operations is up to the application program. The
recommended key sequences for use in English-speaking countries are:

ESC to get the menu display.
OPEN-APPLE-D or SOLID-APPLE-D to drag the window.
OPEN-APPLE-G or SOLID-APPLE-G to grow the window.

When the Tool Kit is in Keyboard Mouse Mode, it is performing one of
those three operations and remains in Keyboard Mouse Mode until
the operation is completed. Unlike Safety-Net Mode, the user doesn't
have to hold a key down.

When the user initiates Keyboard Mouse Mode, the Tool Kit makes the
cursor visible, even if it was previously hidden or obscured. When
the keyboard operation is completed, the Tool Kit returns the cursor
to its previous state of visibility.

In Keyboard Mouse Mode, the cursor keys move the cursor around on the
display. If the user is doing a drag or grow, the OPEN-APPLE key acts
as an accelerator for the cursor keys. With the OPEN-APPLE key down,
pressing left or right arrow keys moves the cursor sideways by 10 spaces
at a time. Likewise, the up and down arrow keys move the cursor up and
down 5 rows at a time.

Mouse Emulation

The user can terminate a Keyboard Mouse Mode operation in four
different ways:

by pressing the ESC key.
by pressing the RETURN key.
by pressing a valid command key.
by pressing and releasing the mouse button.

Page 29

When the user presses the ESC key, the Tool Kit cancels the operation
and returns the cursor to its former position.

When the user presses the RETURN key, the Tool Kit completes the
operation.

When the user presses a valid command key, the Tool Kit terminates the
operation and then posts an event for the command key. If the operation
was a menu selection, the Tool Kit cancels the operation. If the
operation was a drag window or a grow window, the Tool Kit completes the
operation. In any case, the Tool Kit returns the cursor to its original
position.

When the user presses and releases the mouse button, the mouse button
up event signals completion of the operation and initiates execution
of the selected command, just as if the mouse had been used
throughout.

After menu selection, the Tool Kit records the position of the cursor
(that is, the item that is highlighted) and returns to that position (and
item) when the user selects the menu again.

The three operations that can be performed in Keyboard Mouse Mode are
selecting from the menu, dragging a window, and growing window. To
perform these operations normally, the application calls the appropriate
command: MenuSelect, DragWindow, or GrowWindow, respectively. To
perform one of them in Keyboard Mouse Mode, the application must first
call the KeyboardMouse command, then call the MenuSelect, DragWindow, or
GrowWindow command. This causes the Tool Kit to perform the command in
Keyboard Mouse Mode, functioning in the manner described above. The
KeyboardMouse command has no parameters.

There is an alternative way for the application to get into Keyboard
Mouse Mode, and that is calling the MenuKey command with ESC as the
keystroke. That has the same effect as calling KeyboardMouse followed
by MenuSelect: it initiates a menu select operation in Keyboard Mouse
Mode.

Page 30

Safety-Net Mode

Chapter 1: Introduction: The MouseText Tool Kit

Safety-Net Mode uses inputs from the keyboard to provide the usual
mouse operations of moving the cursor around on the desktop and
selecting menus. When the Tool Kit is in Safety-Net Mode, the
application program works normally: all command calls are the same,
and the program need not even take into account the fact that there is
no mouse.

The user puts the Tool Kit
OPEN-APPLE key and holding
SOLID-APPLE key. The Tool
it is in Safety-Net Mode.
long as the user continues

into Safety-Net Mode by pressing the
it down, then pressing and releasing the
Kit generates a click to acknowledge that
The Tool Kit remains in Safety-Net Mode as
to hold down the OPEN-APPLE key.

In Safety-Net Mode, the cursor keys take the place of the mouse for
moving the cursor around. Each time you press a cursor key, the
cursor moves one space in the direction indicated on the key. The
cursor keys do not have wrap-around: when you have moved the cursor
all the way to a screen edge, pressing the same cursor key again has
no effect.

In Safety-Net Mode, the SOLID-APPLE key takes the place of the mouse
button. Pressing the SOLID-APPLE key is like pressing the mouse
button.

Note: All during Safety-Net Mode, the Tool Kit reads the
cursor keys and the SOLID-APPLE key even. if the application
program has specified that the keyboard is to be ignored.

Page 31

Chapter 2

Specifications of the Commands

This chapter gives the command number and the contents of the command
list for each of the Tool Kit commands. Each command occupies a
separate page and has the format shown here:

Function:

A brief statement of the command's function

Command Number:

The number, in decimal and hex, that specifies the command

Parameter List:

A description of the parameters being passed

Description:

A full description of the command

Error Codes:

A list of error codes for the command

In addition to the error codes listed with the commands, there are
three generic error codes that can be returned by any command. These
error codes are

Page 32

1 ($~l)

2 ($02)

3 ($~3)

Chapter 2: Specifications of the Commands

Illegal command number

Wrong number of parameters

StartDeskTop hasn't been called

All of the error codes are listed together in Appendix F.

Startup Comaands

A program will normally call these commands once to set up the
operating environment for the program. For example, calling the
Version command tells the program which version of the Tool Kit it is
using.

Your program calls the StartDeskTop command to activate the mouse and
set the Operating Mode for the Tool Kit, and the StopDeskTop command
to deactivate the mouse and the Tool Kit.

Pascal programs must also call the PascIntAdr command to get the
address of the Tool Kit's interrupt handler so the Pascal interface
can install the interrupt handler. (See Chapter 4, "The Pascal
Interface.")

Startup Commands

StartDeskTop

Function:

StartDeskTop initializes the mouse and the Tool Kit routines.

Command Number: 0 ($00)

Parameter List:

6 (input, byte) the number of parameters

id (input, byte) machine ID byte: $06 = Apple lIe or IIc

sid (input, byte) subsidiary ID byte:
$EA = Apple lIe
$E0 Apple lIe with revised ROM
$00 Apple IIc

op (input, byte) operating system byte:
o = ProDOS
1 = Pascal

s# (input or output, byte) slot number of the mouse card

int (input or output, byte) interrupt usage:
o Passive Mode only
1 = use interrupts

col (input, byte) number of text columns:
o 40 columns
1 = 80 columns

Description:

Page 33

StartDeskTop saves the current state of the computer, initializes the
Tool Kit routines, and activates the mouse card. If the calling
program specifies a slot number of 0, StartDeskTop will check the
slots for a mouse card and use the first one it finds, returning its
slot number in s#. If no mouse card is found, StartDeskTop will set
Passive Mode and return the int parameter as 0.

If the program requires that the mouse card be present, it should set
the high bit of the s# parameter on before calling StartDeskTop. When
that bit is set, StartDeskTop will return an error condition if it
doesn't find a mouse card.

If the program uses interrupts, it must set the int parameter to 1.

Page 34 Chapter 2: Specifications of the Commands

The ID bytes are the values found at locations $FBB3 and $FBC0 in the
Apple lIe and Apple lIe. Version 2 of the MouseText Tool Kit requires
the machine ID byte to be $06.

The Tool Kit doesn't do anything about the 80-co1umn firmware. The
program has to activate the firmware if it is needed.

StartDeskTop sets the cursor to the arrowhead character (ASCII
value $02) and sets it hidden; after calling StartDeskToPt an
application program can call ShowCursor immediately.

Error Codes:

4 ($04)

5 ($05)

6 ($~6)

11 ($0B)

Machine or operating system not supported

Invalid slot number (less than 0 or greater than 7)

Card not found

Could not install interrupt handler

Startup Commands

StopDeskTop

Function:

StopDeskTop deactivates the mouse and the Tool Kit routines.

Command Number: 1 ($~l)

Parameter List:

o (input, byte) the number of parameters

Description:

Page 35

StopDeskTop hides the cursor, removes the link to the interrupt
handler, and sets the mouse to an inactive state. StopDeskTop then
restores the computer to the initial state that was saved by
StartDeskTop.

Error Codes:

(none)

Page 36

Pasclnt.Aall.r

Function:

Chapter 2: Specifications of the Commands

PascIntAdr returns the address of the Tool Kit's interrupt handler.

Command Number: 17 ($11)

Parameter List:

1 (input. byte) the number of parameters

Adr (output. word) the address of the interrupt handler

Description:

PascIntAdr returns the address of the Tool Kit's interrupt handler in
the Adr parameter. Your Pascal program can pass that address on to
the Mouse Attach Driver when it calls SetMouse. The SetMouse call
should always specify Passive Mode along with the interrupt address.
The program should do this before calling StartDesktop. which will
enable interrupts if its Int parameter is set to 1.

See also Chapter 4. "The Pascal Interface."

Note: This command is used only in Pascal programs.

Error Codes:

(none)

Startup Commands

SetUserHook

Function:

SetUserHook sets the address of the user's interrupt handler.

Command Number: 47 ($2F)

Parameter List:

2 (input, byte) the number of parameters

Id (input, byte) the ID number of the interrupt routine

Adr (input, word) the address of the interrupt routine

Description:

Page 37

The SetUserHook command sets the starting address of the application
program's interrupt handler routine so that the Tool Kit can pass
control to it whenever CheckEvent is called. In Interrupt Mode, the
Tool Kit calls CheckEvent internally during interrupt servicing, so
routines installed by SetUserHook become interrrupt service routines
for the application.

CheckEvent can pass control to the program's interrupt routine either
before or after it checks events. The Id parameter determines at whIch
point CheckEvent will call the interrupt routine. If Id = 0, CheckEvent
will call the interrupt routine before checking events, and if Id = 1,
CheckEvent will call it after checking events. In this way there can be
an interrupt routine either before or after event checking, or there can
be two user routines, one before and one after event checking.

If the interrupt routine that is called before event checking (Id = 0)
returns to the Tool Kit with the carry flag clear, CheckEvent will not
check events. This allows the application program to handle event
checking itself and bypass event checking by the Tool Kit.

If the Adr parameter is set to 0, SetUserHook removes any routine
previously installed.

Page 38 Chapter 2: Specifications of the Commands

WARNING
The user interrupt routine can call only Tool Kit commands
PostEvent, ShowCursor, HideCursor, and SetCursor. Calling
any other commands from the user interrupt routine could put
the Tool Kit into an unknown and bizarre state.

Error Codes:

21 ($15) Illegal Id parameter (must be ~ or 1)

Startup Commands

Version

Function:

Version returns the Tool Kit's version and revision numbers.

Command Number: 19 ($13)

Parameter List:

2 (input, byte) the number of parameters

Ver (output, byte) the version number of the Tool Kit

Rev (output, byte) the revision number of the Tool Kit

Description:

Page 39

The Version command returns the version and revision numbers of the
Tool Kit. The program can use these numbers to determine
compa ti bi! ity.

Error Codes:

(none)

Page 40

KeyboardM01IIISe

Function:

Chapter 2: Specifications of the Commands

KeyboardMouse makes the next command work in mouse emulation mode t

if the command is one of the three that work in that mode.

Command Number: 48 ($30)

Parameter List:

o (input t byte) the number of parameters

Description:

The KeyboardMouse command is a function call; it has no parameters.

The KeyboardMouse command is used in conjunction with the three
commands that can operate in mOuse emulation mode: MenuSelect t

DragWindow t and GrowWindow. To make one of these three commands
operate in emulation mode t all you have to do is call the
KeyboardMouse command just before calling one of them.

An application can also get this form of mouse emulation on the
MenuKey command by calling the command with the ESC key as the
keystroke. That has the same effect as calling KeyboardMouse and then
calling MenuSelect.

Error Codes:

(none)

Cursor Commands

Cursor Comaands

Page 41

Your program calls these commands to select the character to display
as the cursor and to turn the cursor on and off.

SetCursor

Function:

SetCursor sets the character used for displaying the cursor.

Command Number: 2 ($~2)

Parameter List:

1 (input, byte) the number of parameters

cc (input, byte) character to use as cursor

Description:

SetCursor sets the character displayed as the cursor. Characters
normally used as the cursor include the following Mouse Text characters:

Arrowhead (ASCII value 02 $02)
Hourglass (ASCII value 03 $03)
Checkmark (ASCII value 04 $04)
Text Cursor (ASCII value 20 $14)
Cell Cursor (ASCII value 29 $1D)

If the cursor is visible, it changes to the new character as soon as
SetCursor is called. Each time the cursor is moved, if it is visible,
the Tool Kit saves the character at the new cursor position and
replaces it with the character specified by SetCursor.

Error Codes:

(none)

Page 42

SBImwCursor

Function:

Chapter 2: Specifications of the Commands

ShowCursor makes the cursor visible.

Command Number: 3 ($~3)

Parameter List:

o (input, byte) the number of parameters

Description:

ShowCursor makes the cursor visible. If the cursor is obscured,
ShowCursor has no effect.

Error Codes:

(none)

Cursor Commands

HideCursor

Function:

HideCursor makes the cursor invisible.

Command Number: 4 ($~4)

Parameter List:

~ (input, byte) the number of parameters

Description:

Page 43

HideCursor makes the cursor invisible. If the cursor is obscured,
ShowCursor has no effect.

Error Codes:

(none)

Page 44

ObscureCursor

Function:

Chapter 2: Specifications of the Commands

ObscureCursor makes the cursor temporarily invisible.

Command Number: 44 ($2C)

Parameter List:

o (input, byte) the number of parameters

Description:

ObscureCursor makes the cursor invisible until the mouse moves; then
the cursor reappears. An appropriate time to use OscureCursor is
when text is being entered, to keep the cursor from obstructing the
view of the text. As soon as the user moves the mouse to perform
another task, the cursor reappears.

Error Codes:

(none)

Event-Handler Commands

Event-Handler Commands

Page 45

The Tool Kit's event-handler commands maintain an event queue for mouse
and keyboard events. The CheckEvents command posts events in the queue
and updates the mouse position. The GetEvents command gets the next
event in the queue.

CheckEvents

Function:

CheckEvents reads the mouse, moves the cursor to the new mouse position,
and posts an event, if any.

Command Number: 5 ($05)

Parameter List:

o (input, byte) number of parameters

Description:

CheckEvents reads the mouse and posts a mouse event if the button
state changed. If a key on the keyboard is down and keypress events
are to be checked, CheckEvents posts a keypress event and clears the
keyboard strobe. (If a previous call to SetKeyEvent has disabled
keypress events, CheckEvents ignores the keypress.) CheckEvents also
updates the cursor position to the X and Y values from the mouse.

If the program is using Interrupt Mode, the interrupt handler calls
CheckEvents. If the program calls CheckEvents in Interrupt Mode, the
Tool Kit returns an error.

In Passive Mode, the GetEvent command calls CheckEvents internally.
If the program is using Passive Mode, it should call CheckEvents or
Get Event often to ensure smooth cursor motion.

Page 46 Chapter 2: Specifications of the Commands

Remember: CheckEvents is the only command that reads the
mouse and updates the cursor position.

An application program can have an interrupt-service routine of its
own that augments or even replaces the functions of CheckEvents.
CheckEvents can pass control to the routine either before or after
event checking. The program can even have two interrupt routines, one
called before event checking and one after. See the SetUserHook
command in the "Startup Commands" section to see how to do this.

Error Codes:

7 ($£\7) Interrupt Mode in use. (Program specified Interrupt
Mode in StartDeskTop, so it can't call CheckEvents.)

Event-Handler Commands

GetEvent

Function:

Page 47

GetEvent fetches the next event from the event queue. If there is none,
GetEvent returns the mouse position. In Passive Mode, GetEvent calls
CheckEvents.

Command Number: 6 ($06)

Parameter List:

3 (input, byte) number of parameters

et (output, byte) event type:
o no event
1 = button down
2 = button up
3 key pressed
4 = drag event
5 = Apple key down
6 = update event

ebl (output, byte) event byte 1: X coordinate or key value

eb2 (output, byte) event byte 2: Y coordinate or key modifier

Description:

GetEvent fetches the next event from the event queue so the program
can respond to the pressing of a key or the mouse button. In Passive
Mode, GetEvent calls CheckEvent internally to make sure the lastest
event gets processed.

The event-type variable is a byte that indicates what happened to
cause the event. If the event type is 0, 1, 2, 4, or 5, the event
bytes are the X and Y coordinates of the mouse position from the last
call to CheckEvents. If the event type is 3, the event bytes are the
key and the key modifier. The high bit of the key value is 0. The
key modifier values are:

o = no modifier
1 OPEN-APPLE pressed
2 = SOLID-APPLE pressed
3 both Apple keys pressed

The drag event (et parameter = 4) is similar to a no e~ent except that
the mouse button is still down. After getting a button-down event,

Page 48 Chapter 2: Specifications of the Commands

the program should get drag events or a button-up event. If the
program gets a no event while waiting for a button-up event~ that
indicates that a mouse-up event was missed and that you don't know what
the mouse position was at that time (you only know its present
position). If this happens~ the program must cancel any operation that
is in progress.

The Apple-key down event indicates that one of the Apple keys was down
when the mouse button was pressed.

By the Way: This is similar to the shift click event on a
Lisa or a Macintosh. We can't read the shift keys on the
Apple II~ but we can read the Apple keys.

An event type of 6 indicates an update event. This indicates that a
window that cannot be automatically refreshed needs updating. The
window ID is returned in ebl~ the key value parameter. This event only
occurs when the application has set the DInfo pointer in the Window Data
Structure to zero~ indicating that the window cannot be automatically
refreshed.

Error Codes:

(none)

Event-Handler Commands

PostEvent

Function:

PostEvent posts an event into the event queue.

Command Number: 46 ($2E)

Parameter List:

3 (input, byte) number of parameters

et (input, byte) event type:
o no event
1 = button down
2 button up
3 key pressed
4 = drag event
5 = Apple key down
6 = update event

ebl (input, byte) event byte 1: X coordinate or key value

eb2 (input, byte) event byte 2: Y coordinate or key modifier

Description:

Page 49

PostEvent posts an event into the event queue. The parameter list
is the same as for GetEvent except that all of the parameters are
inputs.

PostEvent can have an event type like the ones returned by GetEvent
(et = 0, 1, ••• 5) or it can have a type defined by the application
program (et = 128, 129, ••• 255). Any other value for the et parameter
is illegal. The Tool Kit ignores events of type 128-255.

Error Codes:

19 ($13) The event queue is full; the event was not posted.

20 ($14) Illegal event type; the event was not posted.

Page 50

FlusbEvents

Chapter 2: Specifications of the Commands

Function:

FlushEvents empties the event queue.

Command Number: 7 ($07)

Parameter List:

o (input, byte) number of parameters

Description:

FlushEvents empties the event queue.

Error Codes:

(none)

Event-Handler Commands

SetKeyEvent

Function:

Page 51

SetKeyEvent specifies whether Tool Kit treats keypresses as events.

Command Number: 8 ($08)

Parameter List:

1 (input, byte) number of parameters

sk (input, byte) set keyevent:
o = don't check keyboard,
1 = check the keyboard

Description:

SetKeyEvent specifies whether Tool Kit posts keypresses as events. If
the value of sk is 1, the Tool Kit reads the keyboard. If a~key is
pressed, the Tool Kit posts a key event and clears the key strobe. If
the value of sk is ~J the Tool Kit doesn't handlekeypresses. At
start up, the Tool Kit is set to post keyboard events.

The Tool Kit handles
form of type-ahead.
Keypress function in
Tool Kit.

Error Codes:

(none)

keypresses as events in the queue, providing a
This means that Pascal programs don't need the
the Applestuff Unit as long as they're using the

Page 52

PeekEvent

Function:

Chapter 2: Specifications of the Commands

PeekEvent reports on the next event without removing it from the
queue.

Command Number: 21 ($15)

Parameter List:

3 (input, byte) number of parameters

et (output, byte) event type:
o = no event
1 but ton down
2 button up
3 = key pressed
4 drag event
5 = Apple key down
6 update event

ebl (output, byte) event byte 1: X coordinate or key value

eb2 (output, byte) event byte 2: Y coordinate or key modifier

Description:

PeekEvent returns information from the next event in the event queue,
but does not remove the event from the queue. The parameters are the
same as for the GetEvent command, described earlier.

Error Codes:

(none)

Menu Commands

Menu ee-ands

Page 53

The Tool Kit's menu commands provide menu display and selection
functions. Once you have set up the menu data structures with SetMenu,
the MenuSelect command will display a menu, track the mouse and move the
cursor, highlight menu items as the cursor moves onto them, return with
the menu ID and item numbers selected, and leave the menu title
highlighted. Other menu commands inhibit menus or menu items and
display a checkmark beside specified menu items.

It is the responsibility of the application program to ensure that
menu titles do not extend past the right edge of the screen. The
program must make sure that a menu's width is always less than the
screen width minus two (38 or 78) and that a menu's length is always
less than screen length minus two (22). Otherwise, the menu routines
can write into main memory when they should be writing to the display,
thereby clobbering screen holes or program memory.

Keys in Menus

The MenuKey command gives your program the ability to use keypresses
to select menu items. Typically, you use a combination keypress
consisting of a letter key plus one of the Apple keys. Menu items
that can be selected in this way are indicated by the OPEN-APPLE or
SOLID-APPLE icon and the specified letter or other key displayed to
the right of the menu item. If an item can be selected using either
type of apple icon, the OPEN-APPLE icon appears with the letter in the
menu.

You can also specify a control character as the keypress that selects
a menu item. You do this by setting either Character 1 or Character 2
in the Menu Item Block to a value from 1 to 31, corresponding to
a contr~l character. (Menu Item Blocks are defined in Table 2-4.)
You need not set the modifier bits in the Item Option Byte.

When you specify a control key to select an item, the Tool Kit
displays a diamond icon and the key to the right of the menu item.
Only the character in Character 1 will be used, even if you made
Character 2 a control character.

Keypresses with the CONTROL key are easier to touch-type than those
with the Apple keys, but you should still use the Apple-key
combinations for most items and reserve the use of control keys for
high-speed or repetitive functions where the ability to touch-type the
command is important.

The user will expect control keys to be used for the same functions
across different products. Apple has defined the menu functions of
most of the control keys, as shown in Table 2-1.

I

Page 54 Chapter 2: Specifications of the Commands

If the user presses a key other than one of those specified in the
menu, the Tool Kit generates a beep.

TaMe 2-1.
Control Keys for Menu Items

Control Key

CTRL-B

CTRL-C

CTRL-D

CTRL-E

CTRL-F

CTRL-H

CTRL-I

CTRL-J

CTRL-K

CTRL-L

CTRL-M

CTRL-P

CTRL-U

CTRL-V

CTRL-X

CTRL-Z

CTRL- [

Function

Boldface

Copy

Delete

Editing type, insert or overstrike cursor

Forward delete

Left arrow

Tab

Down arrow

Up arrow

Begin or end underline

Return

Print

Right arrow

Paste

Cut

Zoom

Escape

~1enu Commands

lnit:Menu

Function:

Page 55

InitMenu establishes an area of memory that will be used to save the
part of the display obscured by menus.

Command Number: 9 ($09)

Parameter List:

2 (input, byte) number of parameters

sa (input, word) save area: pointer to reserved memory area

sas (input, word) save area size: number of bytes reserved

Description:

During calls to Menl.lSelect, the part of the display obscured by a menu
must be saved so that it can be replaced when the menu goes away. The
application program must provide memory space and reserve it for use by
the Tool Kit.

You can determine the amount of memory space to reserve for menu
displays by calculating the screen area of the largest menu in
the program. The largest menu could have a large screen area hecause
it has many items, or it could have only a few items, each of which
is very long.

You calculate the screen area of a menu by taking the product of the
number of items in the menu, plus 1, times five bytes more than the
length of the longest item string in that menu. If you are using keys
to select items, each item string must include three bytes to display
a space, an Apple icon, and the key that selects the item.

When the program calls the SetMenu command to initialize a menu bar,
SetMenu checks whether the amount of memory reserved by InitMenu is
enough for a particular menu and returns an error if it is not.

Error Codes:

(none)

Page 56

SetMenu

Function:

Chapter 2: Specifications of the Commands

SetMenu initializes the menu bar data structure and displays the menu
bar.

Command Number: 10 ($0A)

Parameter List:

1 (input, byte) number of parameters

mbs (input, word) pointer to menu bar structure

Description:

SetMenu initializes a menu bar data structure and displays the menu
bar. Given a pointer to a menu bar structure (see Tables 2-2
and 2-4), SetMenu fills in the data required by the menu commands and
saves the pointer for their use. Once SetMenu has been called, the
program must not move the data structure.

SetMenu checks to make sure that the memory area reserved by InitMenu is
enough to handle the display area that will be obscured by the menu bar
specified by the data structure. If it is not, SetMenu returns an
error, but it still displays the menu bar.

Error Codes:

10 ($0A) Save area (from InitMenu) is too small.

Menu Commands

Table 2-2. Data Structure for a Menu
Bar

Page 57

Parameter
Function

Parameter
Size Note

1 byte
1 byte

1 byte
1 byte
2 bytes
2 bytes
1 byte
1 byte
1 byte
1 byte

Number of Menus
Reserved for Future Use
First Menu Block:

Menu ID (can't be 0)
Menu Option Byte
Pointer to Title String
Pointer to Menu Data Structure
X Position for Title Display
Left for HiLite and Select
Right for HiLite and Select
Reserved for Future Use

Second Menu Block:
(same structure as First Menu Block)

Last Menu Block
(same structure as First Menu Block)

*Indicates items filled in by Tool Kit.

Table 2-3. Contents of Option Byte
in Each Menu Block (see Table 2-2)

*
*
*
*

--~-------------

Bit Bit
Number Function Note

7 Disable Flag *
6 Reserved for Future Use
5 Reserved for Future Use
4 Reserved for Tool Kit
3 Reserved for Tool Kit
2 Reserved for Future Use
1 Reserved for Future Use
0 Reserved for Future Use

*Disable Flag is updated by DisableMenu command. By setting the flag

Page 58 Chapter 2: Specifications of the Commands

off before calling SetMenu, the program can make the menu start out
disabled.

Table 2-4. Data Structure for a Menu

Parameter Parameter
Function Size Note

Number of Items 1 byte
Left Column of Save Box 1 byte 1
Right Column of Save Box 1 byte 1
Reserved for Future Use 1 byte 1
First Menu Item Block:

Item Option Byte 1 byte
Mark Character 1 byte 2
Character 1 (high bit off) 1 byte 3
Character 2 (hi gh bit off) 1 byte 3
Pointer to Item String 2 bytes

Second Menu Item Block:
(Same structure as First Menu Item Block)

Last Menu Item Block:
(Same structure as First Menu Item Block)

1 Indicates items filled in by Tool Kit.
2 Updated by the SetMark command. The program can set the initial
mark character in the data structure, but after that it should
change the mark character only by calling SetMark.
3 The program should set this byte to 0 if not using characters.

Menu Commands

Table 2-5. Contents of Option Byte
in Menu Data Structure

Bit Bit
Number Function Notes

7 Disable Flag 1 t 5
6 Item Is Filler 2
5 Item Is Checked 3 t 5
4 Reserved for Tool Kit
3 Reserved for Tool Kit
2 Item Has Mark 3 t 5
1 Modifier Is SOLID-APPLE Key
tJ Modifier Is OPEN-APPLE Key

1 Updated by the Disableltem Command.

Page 59

2 If the "Item Is Filler" bit in the Option Byte is on t then
Character 1 of the Menu Item Block (see Table 2..4) is the character to
use for filler; otherwise t Character 1 and Character 2 are the
uppercase and lowercase values of the key that identifies the item
when MenuKey is called.

3 Updated by the Checkltem command.

4 Used only with Applesott BASIC; set to ~ otherwise. See AppendixY t _

"Applesoft String Options."

5 The program can set the initial states of these flags in the data
structure before calling the SetMenu command. After that t the program
should update the flags only by calling the appropriate commands.

Page 60

MenuSe1ect

Function:

Chapter 2: Specifications of the Commands

MenuSelect interacts with the mouse to display a menu and return the
selection, if any.

Command Number: 11 ($0B)

Parameter List:

2 (input, byte) number of parameters

id (output, byte) menu ID, 0 = no menu item chosen

in (output, byte) menu item number, undefined if id

Description:

MenuSelect performs the interactive display of menus while the user
keeps the mbuse button depressed. MenuSelect does not return until
the user releases the button and a·button-up event occurs.

The application program calls MenuSelect whenever the user presses the
mouse button on line 0 of the display. As the user moves the mouse up
and down the menu display, MenuSelect tracks the mouse and updates the
cursor. When the cursor moves onto a menu item, MenuSelect highlights
the name of the item.

When the user releases the mouse button while the cursor is on a menu
item, MenuSelect removes the menu from the display, highlights the
menu title, and returns the menu ID number and the item number.
After the program finishes performing the selected operation, it must
call HiLiteMenu to turn off the highlighting of the menu title.

An application can also use the MenuSelect command in keyboard mouse
emulation mode by calling it immediately after calling the
KeyboardMouse command. In that mode, the Tool Kit tracks the cursor
while the user presses cursor keys to move the cursor. The user
indicates a menu selection by pressing the RETURN key or by pressing
and releasing the mouse button. The user can also press an
appropriate command key. Pressing the ESC key terminates the command.

Menu Commands

Error Codes:

(none)

Page 61

Page 62

MenuKey

Function:

Chapter 2: Specifications of the Commands

MenuKey finds the menu item that matches a key.

Command Number: 12 ($~C)

Parameter List:

4 (input, byte) number of parameters

id (output, byte) menu ID, 0 if no item selected

in (output, byte) item number, undefined if id = 0

k (input, byte) key: the character typed

km (input, byte) key modifier, as returned by GetEvent:
o = no modifier,
1 = OPEN-APPLE key
2 = SOLID-APPLE key
3 = either Apple key

Description:

After the user presses a key, MenuKey searches the menu data to find a
menu item that has a matching key. If it finds a match, it highlights
the menu title and returns the menu ID number and item number the
same way MenuSelect does.

Also like MenuSelect, MenuKey leaves the selected menu highlighted;
the progam must call HiLiteMenu to turn off the highlighting.

If you set the key modifier parameter to 3, either Apple key
will serve to modify a matching keypress.

If an item is disabled, its menu key or keys will not select it.

As a special case, the MenuKey command can operate like MenuSelect
does in keyboard mouse emulation mode. Calling MenuKey with ESC as
the key initiates that mode of operation. The Tool Kit tracks the
cursor while the user presses cursor keys to move the cursor. The
user indicates his selection by pressing the RETURN key or pressing
and releasing the mouse button. The user can also press an
appropriate command key. Pressing the ESC key terminates the command.

Menu Commands

Error Codes:

(none)

Page 63

Page 64

HiLiteMetm

Function:

Chapter 2: Specifications of the Commands

HiLiteMenu turns highlighting of a menu title on or off.

Command Number: 13 ($0D)

Parameter List:

1 (input, byte) number of parameters

id (input, byte) menu ID: 0 = turn highlighting off

Description:

HiLiteMenu turns highlighting of a specified menu title in the Menu
Bar on. Call HiLiteMenu with id = 0 to turn off highlighting after a
call to MenuSelect or MenuKey.

Error Codes:

8 ($08) Menu ID was not found.

Menu Commands

DisableMenu

Function:

Page 65

DisableMenu disables or enables selection and highlighting over a
whole menu.

Command Number: 14 ($~E)

Parameter List:

2 (input t byte) number of parameters

id (input t byte) menu ID

dis (input t byte) disable:
1 disable
~ = enable

Description:

DisableMenu disables or enables selection and highlighting over a
whole menu. If the menu has been disabled t none of the items can be
selected t either by MenuSelect or by MenuKey. The menu will still
appear when the user moves the mouse onto the menu title t but the
title will not be highlighted t and none of the items in the menu will
be highlighted when the mouse moves onto them.

When a call to DisableMenu enables a menu t any items that were
individually disabled remain disabled. (See the DisableItem command.)

By setting the Disable Flag in the Menu Block's Option Byte when you
set up the Menu Bar data structure, your program can make the menu
start out disabled. ~fter that t the program should use the
DisableMenu command to disable and enable menus.

Error Codes:

8 ($~8) Menu ID was not found

Page 66

Disahleltem

Function:

Chapter 2: Specifications of the Commands

DisableItem disables or enables selection and highlighting of a menu
item.

Command Number: 15 ($~F)

Parameter List:

3 (input, byte) number of parameters

id (input, byte) menu In

in (input, byte) item number

dis (input, byte) disable:
1 disable item
0 = enable item

Description:

DisableItem disables or enables selection and highlighting of a menu
item. If an item is disabled, it cannot be selected, either by
MenuSelect or by MenuKey, and it will not be highlighted when the
mouse moves onto it.

To enable an item, call DisableItem with the disable parameter set to ~.

By setting the Disable Flag in the Menu Item Block's Item Option Byte
when you set up the menu data structure, your program can make the
menu item start out disabled. After that, the program should use the
DisableItem command to disable and enable menu items.

Calling DisableItem with item number set to zero generates error 9,
Item Number Not Valid.

Error Codes:

8 ($~8)

9 ($09)

Menu ID was not found

Item Number not valid

Menu Commands

Cbeck.Item

Function:

CheckItem turns the checkmark displayed next to item on or off.

Command Number: 16 ($1~)

Parameter List:

3 (input, byte) number of parameters

id (input, byte) menu ID

in (input, byte) item number

ck (input, byte) checkmark:
~ = turn checkmark off
1 = turn checkmark on

Description:

Page 67

CheckItem turns the checkmark displayed next to item on or off. The
checkmark appears in the blank column in the left edge of the menu.

Your program can call the SetMark command to change the checkmark to
any ASCII character.

Calling CheckItem with item number set to zero generates error 9,
Item Number Not Valid.

Error Codes:

8 ($~8)

9 ($09)

Menu ID was not found

Item Number not valid

Page 68

SetMark

Function:

Chapter 2: Specifications of the Commands

SetMark enables a program to select the character to display for items
that are checked in a ~enu.

Command Number: 20 ($14)

Parameter List:

4 (input, byte) number of parameters

id (input, byte) menu ID

in (input, byte) item number

mk (input, byte) checkmark:
~ use checkmark character
1 = install new character

char (input, byte) character to display for this item

Description:

SetMark sets the character that is displayed when a program calls
CheckItem. The default character is the checkmark.

Error Codes:

8 ($~8)

9 ($09)

Menu ID was not found

Item Number not valid

Window Commands

Window CoIImands

.Page fi9

The Tool Kit's window management commands provide the functions your
application program needs to set up and display windows. Once you have
set up the window information structure with OpenWindow, you can use
these commands to select a window, bring it to the front of the display,
put text into it, drag it, change its size, or close it.

Each open window must have a unique ID number in the range from 1
through 255. An attempt to open a second window with the same ID number
as one already open will return an error.

A window ID number of 0 is not valid because FrontWindow returns ID = 0
when no window is open. An attempt to open a window with ID number of 0
will return an error.

With some of the Tool Kit commands, you can use an ID number of 0 to
indicate the front window. If there is no front window when you do
this, these commands return an error. The commands that interpret
ID = 0 to mean the front window are

CloseWindow
- GetWinPtr
- SelectWindow
- DragWindow
- GrowWindow
- WindowToScreen
- ScreenToWindow
- WinChar
- WinString
- WinText
- WinBlock
- WinOp

Note: The use of ID = 0 to select the front window is only a
convenience. You can always use the actual ID number of the
front window instead.

Page 70

lnit:W:irubwMgr

Function:

Chapter 2: Specifications of the Commands

InitWindowMgr initializes the internal list of open windows and
establishes an area o~ memory that will be used to save parts of the
display while a window is being dragged or grown.

Command Number: 22 ($16)

Parameter List:

2 (input, byte) number of parameters

ptr (input, word) pointer to reserved memory area

size (input, word) size of reserved memory area, in bytes

Description:

InitWindowMgr resets the pointers to the first and last entries ih the
internal linked list of open windows and establishes an area of memory
that will be used to save parts of the display while a window is being
dragged or grown.

During calls to DragWindow and GrowWindow t the Tool Kit must save the
part of the display obscured by the outline of the window so that it
can be replaced when the window operation is finished. The
application program must provide the necessary memory space ann
reserve it for use by the Tool Kit.

The amount of memory space required is determined by the perimeter of
the largest window (the sum of twice the window's width plus twice its
length) •

Note: This memory area can be the same as the area reserved
by InitMenu.

Window Commands

Error Codes:

(none)

Page 71

Page 72

OpenWfundow

Function:

Chapter 2: Specifications of the Commands

OpenWindow opens a window by supplying a pointer to the window's
Information Data Structure.

Command Number: 23 ($17)

Parameter List:

1 (input, byte) number of parameters

ptr (input, word) pointer to Window Information Data Structure

Description:

OpenWindow passes window information to the Tool Kit via a pointer to
a Window Information Data Structure, or Winfo Data Structure (see
Table 2-6). The Winfo Data Structure must reside at a fixed location
in memory while the window is open.

The Window Information Data Structure includes a pointer to a Document
Information Data Structure (Dinfo Data Structure) that the Tool Kit
uses to obtain the text to display in the window (see Table 2-10).
Each call to OpenWindow makes that window the front, or active, window.

OpenWindow forces X and Y position coordinates to valid values. It
also forces the Thumb positions to be no greater than the maximums.
However, OpenWindow does not check to make sure that window minimums
are less than maximums or that current window size is between the
maximum and the minimum.

The application program can substitute its own routine for OpenWindow.
The program passes the address of its open routine in the Winfo Data
Structure in place of the pointer to the Dinfo Data Structure and set
bit 7 of the Window Option Byte. The Tool Kit will pass control to
the program's routine whenever the contents of the window need to be
changed.

Because the user routine is called from within the Tool Kit, it cannot
rely on the zero-page locations the Tool Kit uses (currently $0~ to
$18). When the Tool Kit calls the user routine, the register contents
are

- accumulator: window ID number
- X register: low byte of Winfo address
- Y register: high byte of Winfo address

Window Commands Page 73

The routine can only call the Tool Kit commands whose names start with
Win- to update the content region of the window it was requested to
update. Any other calls can put the Tool Kit into an unknown state.

Error Codes:

12 ($0c) A window with the same ID is already open

13 ($0D) InitWindowMgr buffer too small for this window

14 ($0E) Bad Winfo--tried to open with ID=0 t or conflicting
maximum and minimum width or length

17 ($11) Error returned by user hook

Table 2-6. Information Structure for
a Window

Parameter
Function

Parameter
Size Note

Window ID Number (not 0) 1 byte
Window Option Byte 1 byte
Title String Pointer 2 bytes
Window Position X Coordinate 2 bytes 1 t 2
Window Position Y Coordinate 2 bytes 1 t 2
Current Content Width 1 byte I t 3
Current Content Length 1 byte I t 3
Minimum Content Width 1 byte
Maximum Content Width 1 byte 4
Minimum Content Length 1 byte
Maximum Content Length 1 byte 4
Document Information Structure Pointer 2 bytes
Horizontal Control Option Byte 1 byte
Vertical Control Option Byte 1 byte
Horizontal Scroll Maximum 1 byte
Current Horizontal Thumb Position 1 byte ItS
Vertical Scroll Maximum 1 byte
Current Vertical Thumb Position 1 byte ItS
Window Status Byte 1 byte 1
Reserved for Future Use 1 byte 6
Pointer to Next Winfo Structure 2 bytes 6
Reserved for Tool Kit 2 bytes 6
Screen Area Covered 4 bytes 6

Page 74 Chapter 2: Specifications of the Commands

1 Program sets initial values t Tool Kit updates these.
2 Initial values determine initial position of window.
3 Initial values determine initial window size.
4 Document width and length determine maximum content width and length.
S Initial values determine initial position of thumb.
6 Items filled in by Tool Kit.

Table 2-7. Contents of Window Option
Byte in Window Information Structure

Bit
Number

7
6
5
4
3
2
1
~

Bit
Function

Document Pointer Function
Reserved for Future Use
Reserved for Future Use
Reserved for Tool Kit
Reserved for Tool Kit
Grow Box is present
Close Box is present
Window is Dialog or Alert Box

Notes

1

2
2
3
3
3

1 This bit indicates the function of the Document Pointer.
o = Pointer to Document Information Structure
1 = Pointer to User Window Routine

2 The program must set these bytes to ~.

3 These items set the initial appearance of the window. They cannot
be changed when the window is open; instead t you must close the window,
change the values t then open the window again.

Window Commands

Table 2-8. Contents of Horizontal or
Vertical Control Option Byte in
Window Information Structure

Page 75

Bit
Number

7
6
5
4
3
2
1
o

Bit
Function

Scrollbar is present
Thumb is present
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Scrollbar is active

Notes

1
1

2

1 These items set the initial appearance of the window. They cannot
be changed when the window is open; instead, you must close the window,
change the values, then open the window again.
2 Initial value set by program; after that, use ActicateCtl to change it.

Table 2-9. Contents of Window Status
Byte in Window Information Structure

Bit
Number

7
6
5
4
3
2
1
o

Bit
Function

Window is open
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Used by Tool Kit
Used by Tool Kit
Used by Tool Kit
Used by Tool Kit

Note

*

* Program can read to determine state of window.

Page 76 Chapter 2: Specifications of the Commands

Table 2-1e. Information Structure
for a Document

Parameter Parameter
Function Size Note

Document Pointer 2 bytes 1
Reserved (set to ~) 1 byte
Document Width 1 byte
Document X Coordinate 2 bytes 2
Document Y Coordinate 2 bytes 2
Reserved for Tool Kit 4 bytes 3

1 See bit 7 of the Window Option Byte
2 Set to ~ or set initial position in the document.
3 The program must set these bytes to ~.

Window Commands

CloseW:iindow

Function:

Page 77

CloseWindow removes the window with given ID number and redisplays the
screen.

Command Number: 24 ($18)

Parameter List:

1 (input, byte) number of parameters

id (input, byte) ID number of window to close

Description:

CloseWindow removes the window with the given ID number from the list
of open windows and redisplays the screen with the window removed.
Setting ID = 0 selects the top window as the window to be closed.

Error Codes:

15 ($0F) Window ID not found

17 ($11) Error returned by user hook

Page 78

CloseAll

Function:

Chapter 2: Specifications of the Commands

CloseAl1 closes all open windows and redisplays the screen.

Command Number: 25 ($19)

Parameter List:

o (input, byte) number of parameters

Description:

CloseAll removes all windows from the list of open windows and
red is plays the screen.

Error Codes:

(none)

Window Commands

Gett:WinPl:r

Function:

GetWinPtr returns the pointer to the Winfo structure of the open
window that has the specified ID number.

Command Number: 45 ($2D)

Parameter List:

2 (input, byte) number of parameters

id (input, byte) ID number of window

ptr (output, word) pointer to Winfo Data Structure

Description:

Page 79

GetWinPtr returns the pointer to the Window Information Data Structure
(Winfo) of the open window that has the specified ID number. Setting
ID = 0 selects the top window.

Error Codes:

15 ($0F) Window ID not found

Page 80

F:indWindow

Function:

Chapter 2: Specifications of the Commands

FindWindow returns the ID number of the window that contains the given
point.

Command Number: 26 ($lA)

Parameter Lis t:

4 (input, byte) number of parameters

px (input, byte) X mouse-coordinate of point

py (input, byte) Y mouse-coordinate of point

type (output, byte) type of area point is in:
{; Desktop
1 Menu Bar
2 = content region
3 drag region
4 = Grow Box
5 = Close Box

id (output, byte) ID number of window the point is in (0 if
point is in desktop or menu bar).

Description:

FindWindow returns the ID number of the window that contains the given
point and returns the type of region the point is in: Menu Bar, content
region, drag region, Grow Box, or Close Box. The point is specified in
mouse coordinates. If the point is not in a window, FindWindow returns
an ID number of 0 and a region type of desktop.

If the point is in the content region, the application program should
call the FindControl command with window coordinates of the point to
determine whether the point is in a scroll bar.

Error Codes:

(none)

Window Commands

Fron~W:iindow

Function:

FrontWindow returns the ID number of the front window.

Command Number: 27 (SlB)

Parameter List:

1 (input, byte) number of parameters

id (output, byte) ID number of front window

Description:

Page 81

FrontWindow returns the ID number of the front, or active, window. It
returns 0 if no windows are open.

Error Codes:

(none)

Page 82

SelectWindaw

Function:

Chapter 2: Specifications of the Commands

SelectWindow activates the window with the given ID number.

Command Number: 28 (SIC)

Parameter List:

1 (input, byte) number of parameters

id (input, byte) ID number of window

Description:

SelectWindow makes the window with the given ID number the front, or
active, window and redisplays the screen. The window that was active
becomes the second window in the list. Setting ID = 0 selects the
front window. If the window selected is already the front window, the
Tool Kit does not redisplay the screen.

Error Codes:

15 (S0F) Window ID not found

17 (SII) Error returned by user hook

Window Commands

TrackGoAway

Function:

Page 83

TrackGoAway tracksthe mouse and indicates whether the mouse button was
released in the Go-Away Box.

Command Number: 29 ($ID)

Parameter List:

1 (input, byte) number of parameters

go (output, byte) Go-Away status:
~ = not in Go-Away Box
1 = mouse was in Go-Away Box

Description:

TrackGoAway tracks the mouse until the mouse button is released. If
the mouse is in the Go-Away Box when the button is released, the
return status is 1; if not,. it is ~.

The application program should call TrackGoAway when it detects that
the mouse button is down with the mouse in the Go-Away Box of the
front window. If the return status indicates that the button was
released in the Go-Away Box, the application program should then call
the CloseWindow command.

Error Codes:

16 ($1~) There are no windows

Page 84

DragWindlDW

Function:

Chapter 2: Specifications of the Commands

DragWindow displays the outline of the window being dragged t then
redisplays it in its new position.

Command Number: 3~ ($lE)

Parameter List:

3 (input t byte) number of parameters

id (input t byte) ID number of window being dragged

mx (input t byte) X mouse coordinate of starting position

my (input t byte) y mouse coordinate of starting position

Description:

DragWindow displays the outline of the window being dragged until
the user releases the mouse button t whereupon DragWindow clears the
display area preViously occupied by the window and redisplays the
windows from back to front.

The application program should call the DragWindow command when it
detects tha.t the mouse button is down in the drag region of a window.
In addition to the ID number of the window t the DragWindow command
also needs the mouse coordinates of the position returned as px and py
by the FindWindow command. In this it differs from the TrackGoAway
and GrowWindow commands; while the Go-Away Box and the Grow Box
consist of only one character each t the drag bar consists of
several characters t and the mouse could be in any of them when the
user starts dragging the window.

Setting ID = ~ selects the front window.

An application can also use the DragWindow command in keyboard mouse
emulation mode by calling it immediately after calling the
KeyboardMouse command. In that mode, the Tool Kit tracks the cursor
and moves the window outline while the user presses cursor keys. The
user indicates the completion of the move by pressing the RETURN key
or by pressing and releasing the mouse button. Pressing the ESC key
terminates the command and redisplays the window in its original
position.

Window Commands

Error Codes:

15 ($0F) Window ID not found

17 ($11) Error returned by user hook

22 ($16) Operation cannot be performed

Page 85

Page 86

GrowWindow

Function:

Chapter 2: Specifications of the Commands

GrowWindow displays the outline of the window being grown. then
redisplays an empty window with the new size.

Command Number: 31 ($1F)

Parameter List:

1 (input. byte) number of parameters

stat (output, byte) return status:
o window did not change size
1 = window did change size

Description:

GrowWindow displays the outline of the window being grown until
the user releases the mouse button, whereupon GrowWindow clears the
display area previously occupied by the window and redisplays the
windows from back to front.

The application program should call the GrowWindow command when it
detects that the mouse button is down in the Grow Box of the front
window.

GrowWindow leaves the content area of the front window blank because
it can't determine whether the bottom of the document has been passed
and whether the content area should be shifted. If the return status
indicates that GrowWindow changed the size of the window, the
application must redisplay the content area and update the scroll
bars.

An application can also use the GrowWindow command in keyboard mouse
emulation mode by calling it immediately after calling the
KeyboardMouse command. In that mode, the Tool Kit tracks the cursor
and draws the window outline in diffferent sizes while the user
presses cursor keys. The user indicates the completion of the
resizing by pressing the RETURN key or by pressing and releasing the
mouse button. Pressing the ESC key terminates the command and
redisplays the window in its original size.

Window Commands

Error Codes:

16 ($10) There are no windows

17 ($11) Error returned by user hook

22 ($16) Operation cannot be performed

Page 87

Page 88

WindowToScreen

Function:

Chapter 2: Specifications of the Commands

WindowToScreen converts window coordinate values to screen coordinates.

Command Number: 32 ($20)

Parameter List:

5 (input, byte) number of parameters

id (input, byte) ID number of window to use

wx (input, word) X coordinate in the window

wy (input, word) y coordinate in the window

sx (output, word) X coordinate for the screen

sy (output, word) y coordinate for the screen

Description:

WindowToScreen converts passed coordinate values from window coordinates
to screen coordinates.

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Window Commands

ScreenToWindow

Function:

Page 89

ScreenToWindow converts screen coordinate values to window coordinates.

Command Number: 33 ($21)

Parameter List:

5 (input t byte) number of parameters

id (input t byte) ID number of window to use

sx (input t word) X coordinate for the screen

sy (input t word) y coordinate for the screen

wx (output t word) X coordinate in the window

wy (output t word) y coordinate in the window

Description:

ScreenToWindow converts passed coordinate values from screen coordinates
to window coordinates.

Setting ID = 0 selects the front window.

Error Codes:

15 ($~F) Window ID not found

Page 90

WfulChar

Function:

Chapter 2: Specifications of the Commands

WinChar writes a character in a window.

Command Number: 34 ($22)

Parameter List:

4 (input, byte) number of parameters

id (input, byte) ID number of window

wx (input, word) X coordinate in window

wy (input, word) y coordinate in window

char (input, byte) character to display

Description:

WinChar writes a character at a given position in a window. If the
position given is not inside the window, WinChar does not write the
character.

WinChar does not update the document.

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Window Commands

WinStr:ing

Function:

WinString writes a string in a window.

Command Number: 35 ($23)

Parameter List:

5 (input, byte) number of parameters

id (input, byte) ID number of window

wx (input, word) X coordinate in window

wy (input, word) y coordinate in window

ptr (input, word) pointer to the string

res (input, byte) must be 0.

Description:

Page 91

WinString writes a string at ~given position in a window. WinString
does not wrap around; if the string extends past the right edge of the
window, WinString just truncates it. WinString does not display any
characters in the string that fall outside the edges of the window.

WinString does not update the document.

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Page 92

WinTex1:

Function:

Chapter 2: Specifications of the Commands

WinText writes ASCII characters in a window.

Command Number: 38 ($26)

Parameter List:

5 (input, byte) number of parameters

id (input, byte) ID number of window

wx (input, word) X coordinate in window

wy (input, word) y coordinate in window

ptr (input, word) pointer to the first character of text

len (input, byte) number of characters to display

Description:

WinText writes ASCII characters at a given position in a window.
WinText does not wrap around; if the characters extend past the right
edge of the window, WinText just truncates them. WinText does not
display any characters that fall outside the edges of the window.

WinText does not update the document.

Setting ID = 0 selects the front window.

Error Codes:

15 (S0F) Window ID not found

Window Commands

WinBlock

Function:

WinBlock writes a block of text in a window.

Command Number: 36 ($24)

Parameter List:

6 (input, byte) number of parameters

id (input, byte) ID number of window

Page 93

ptr (input, word) pointer to Document Information Data Structure
for the text to be displayed. If ptr = 0, WinBlock uses
the Dinfo pointer from the Winfo specified by the window ID.
(Document Information Data Structure definition is Table 2-9.)

startx (input, word) X coordinate of upper-left corner of display
window position within the document window (see Fig. 1-4)

starty (input, word) Y coordinate of upper-left corner of display
window position within the document window (see Fig. 1-4)

stopx (input, word) X coordinate of lower-right corner of display
window position within the document window (see Fig. 1-4)

stopy (input, word) Y coordinate of lower-right corner of display
window position within the document window (see Fig. 1-4)

Description:

WinBlock writes a block of text in a window. Startx, starty, stopx, and
stopy define a rectangle in the window where the characters are
displayed; WinBlock does not alter anything outside this rectangle.

WinBlock does not update the document.

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Page 94

'WhOp

Function:

Chapter 2: Specifications of the Commands

WinOp performs an operation on a window.

Command Number: 37 ($25)

Parameter List:

4 (input~ byte) number of parameters

id (input~ byte) ID number of the window

wx (input~ word) X window coordinate

wy (input ~ word) Y window coordinate

op (input~ byte) operation to perform:

26 ($IA) = clear to start of window*
27 ($IB) = clear to start of line*
28 ($IC) clear window
29 ($ID) clear to end of window
30 ($IE) clear line
31 ($IF) clear to end of line

* Operations do not clear the character at position X~Y.

Description:

WinOp clears all or a portion of a window~ depending on the operation
code. Except for operation code 28~ clear window~ WinOp clears the
characters from position X~Y to the end of the area indicated by the
operation. Notice that the forward clears include the character at
position X~Y~ but the backward clears--that is~ clear to start of
window and clear to start of line--do not. You can think of the latter
operations as "clear from start of area up to~ but not through~ position
X~Y."

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Control Region Commands

Control Region Comaands

Page 95

These commands deal with the control regions in the front window:
the horizontal and vertical scroll bars t including the Thumbs.

FindControl

Function:

FindControl indicates which control region of a window a given point is
in.

Command Number: 39 ($27)

Parameter List:

4 (input t byte) number of parameters

wx (inpu t t word) X window coordinate of point

wy (input t word) y window coordinate of point

ctl (output t byte) control region the point is in:
0 content region
1 = vertical scroll bar
2 horizontal scroll bar
3 none of the above (dead zone)

part (output t byte) part of control region the point is in:
1 = Up-Arrow of vertical scroll bart

Left-Arrow of horizontal scroll bar
2 Down-Arrow of vertical scroll bart

Right-Arrow of horizontal scroll bar
3 page-up region of vertical scroll bart

page-left region of horizontal scroll bar
4 page-down region of vertical scroll bart

page-right region of horizontal scroll bar
5 Thumb of scroll bar

Description:

FindControl indicates which control region of a window a given point
is in. The application program should call FindControl when it
determines t by means of a call to FindWindow t that the mouse is in the
content region of the front window. Depending on the control and part
codes returned by FindControl, the application should then take

Page 96 Chapter 2: Specifications of the Commands

appropriate action--for example, if the mouse is in a page-up or
page-down region or in an Up-Arrow or Down-Arrow, the application
scrolls the contents of the window, then calls UpdateThumb to make the
Thumb reflect the new position in the file.

The application program must make sure that the wx and wy values are
converted to window coordinates before calling FindControl.

Note: This is different from FindWindow, which takes mouse
coordinates.

Error Codes:

16 ($10) There are no windows

Control Region Commands

Set:CtlMax

Function:

Page 97

SetCtlMax changes the range of the scroll bar of the front window.

Command Number: 40 ($28)

Parameter List:

2 (input, byte) number of parameters

ctl (input, byte) control region to update max value for:
1 vertical scroll bar
2 = horizontal scroll bar

max (input, byte) new maximum value (must be greater than 1)

Description:

SetCtlMax changes the range of the scroll bar of the front window. If
the current Thumb position is greater than the new maximum, SetCtlMax
sets the Thumb to the new maximum and calls UpdateThumb to display it at
the proper position. SetCtlMax changes the control max value and (if
necessary) Thumb position in the Winfo Data Structur~~

The program normally calls SetCtlMax whenever the size of a window
changes (for example, by GrowWindow).

Maximum values depend on the application; a typical maximum value for
the horizontal scroll bar would be calculated as the document width,
minus the content width, plus twice the width of the vertical scroll
bar or grow box. Likewise,a typical maximum value for the vertical
scroll bar would be calculated as the document length, minus the
content length, plus the height of the horizontal scroll bar.

Error Codes:

16 ($10) There are no windows

18 ($12) Bad control ID (not 1 or 2)

Page 98

TrackThumb

Function:

Chapter 2: Specifications of the Commands

TrackThumb tracks the thumb until the mouse button is released, then
it updates the data in the Winfo.

Command Number: 41 ($29)

Parameter List:

3 (input, byte) number of parameters

ctl (input, byte) the control region whose Thumb is moving:
1 vertical scroll bar
2 = horizontal scroll bar

pos (output, byte) position the Thumb moved to

stat (output, byte) return status:
~ Thumb didn't move, pos is not valid
1 = Thumb did move

Description:

TrackThumb tracks the Thumb until the mouse button is released. The
application program should call TrackThumb when, FindControl indicates
that the mouse button is down in the Thumb. When the mouse button is
released, TrackThumb updates the position information in the Winfo
Data Structure and returns the new position of the Thumb. If the
value of the return status is ~, the Thumb is in the same position
it started in, and the value of pos is not valid.

The Thumb position is a number in the range from ~ to the maximum
position on the horizontal or vertical scrolling bar. A position of
~ means the first character of the document should be made visible;
a position equal to the maximum means the last character of the
document should be made visible.

If the Thumb position is the same as it was when TrackThumb is called,
it is treated as if it had not moved. If the Thumb does move,
TrackThumb updates the Thumb position in the Winfo Data Structure.

TrackThumb operates only on the front window.

Control Region Commands

Error Codes:

16 ($10) There are no windows

18 ($12) Bad control ID (not 1 or 2)

Page 99

Page 100

UpdateThumb

Function:

Chapter 2: Specifications of the Commands

UpdateThumb redisplays the Thumb in the designated position.

Command Number: 42 ($2A)

Parameter List:

2 (input. byte) number of parameters

ctl (input. byte) control region whose Thumb is being moved

pos (input; byte) new position of Thumb

Description:

UpdateThumb redisplays the Thumb in the designated position and updates
the position value in the Winfo Data Structure. UpdateThumb operates
only on the front window.

The program should call UpdateThumb after scrolling or paging.

Error Codes:

16 ($10) There are no windows

18 ($12) Bad control ID (not 1 or 2)

Control Region Commands

ActivateCtl

Function:

ActivateCtl changes the state of a scroll bar.

Command Number: 43 ($2B)

Parameter List:

2 (input t byte) number of parameters

ctl (input t byte) which control region to change

state (input t byte) state to make control region:
(/) = inactive
1 = active

Description:

Page 101

ActivateCtl changes the state of a scroll bar and updates the Control
Option Byte in the Winfo Data Structure. An active scroll bar shows the
Thumb and page regions; an inactive bar shows a hollow page region.

ActivateCtl operates only on the front window.

Error Codes:

16 ($10) There are no windows

18 ($12) Bad control ID (not 1 or 2)

Page 102

Page 103

Chapter 3

The Machine Language Interface

This chapter tells you what you need to know to use the MouseText
Tool Kit with your machine language programs. For descriptions of the
individual Tool Kit commands, see Chapter 2.

Installing the Machine Language Tool Kit

The MouseText Tool Kit is a relocatable package of machine language
subroutines. To use the Tool Kit in a Pascal environment, you'll need
to load the routines as a library unit, as described in Chapter 4. To
use the Tool·· Kit in a ProDDS environment, you'll need to load the
routines with the relocating loader that COmes with the ProDOS
Assembly Tools.

By The Way: Make sure you get up-to-date documentation and
code for R10ad; the early versions don't work.

Version 2.1 of the MouseText Tool Kit is designed to run only on the
Apple lIe and only in the primary 64K memory space; later versions may
be able to take advantage of auxiliary memory.

Important: Version 2.1 of the MouseText Tool Kit must reside
in the main 64K memory bank, and all calls must be made from
main memory.

All calls to the MouseText Tool Kit go through a single entry point
named ToolKit. In addition to necessary housekeeping functions, the

Page 104 Chapter 3: The Machine Language Interface

main entry point of the MouseText Tool Kit saves the X and Y index
registers and saves the locations in zero page that it uses for
temporary storage.

The exit routine for the Tool Kit also performs housekeeping
functions, as well as restoring the contents of the zero-page
locations, restoring the previous contents of the X and Y index
registers, and setting the carry flag to reflect the error status.
The exit routine also loads the error status into the accumulator,
thereby setting the 65~2's Nand Z flags.

Syntax of Machine Language Calls

A machine language call to the MouseText Tool Kit looks like this:

JSR
DB

DW
B~

TOOLKIT
CMDNUM

CMDLIST
ERROR

;main Tool Kit entry point
;command number of
;routine being called
;pointer to parameter list
;optional error handling

For programming examples showing calls to the MouseText Tool Kit,
refer to Appendix D.

By The Way: Calls to the MouseText Tool Kit have the same
syntax as calls to the ProDOS Machine Language Interface,
which is described in the ProDOS Technical Reference Manual.

After a return from a call to the Tool Kit, the value of the program
counter is six bytes beyond the location of the calling JSR, and the
accumulator contains the error code. The index registers and the
stack pointer are unchanged. If the called routine generated an
error, the carry bit is on and the zero bit is off; if it did not
generate an error, the zero bit is on and the carry bit is off.
Table 3-1 gives a summary of the return status for Tool Kit calls.

Installing the Machine Language Tool Kit

Table 3-1. Processor Status After
Return from Tool Kit. A bit value
of x means the bit is undefined.

Page 105

Processor Accumulator Program
Status Bits Contents Counter
N Z C D V

Successful Call rtJ 1 0 0 x rtJ Calling JSR + 6

Unsuccessful Call 0 rtJ 1 rtJ x Error Code Calling JSR + 6

The Maehine language Cl!PWands

Here are the command numbers and parameter lists for each of the Tool Kit
commands.

Startup Commands

A program normally calls
operating environment.

StartDeskTop

StartDesktop equ rtJ

start.parms db 6
start.mid db rtJ
start.msid db ~

start.opsys db $00
start.slotn db S00
start.int db SM
start.col db $01

StopDesktop

StopDesktop equ 1

stop.parms db 0

appropriate startup commands once to set up its

command number

parameter list for StartDeskTop
machine id byte
machine subid byte
using ProDOS
slot no. for mouse (0 check all slots)
using Interrupt Mode
using 80 columns

command number

parameter list for StopDeskTop

Page 106

PascIntAdr

PascIntAdr equ 17

pasc.parms db 1
pasc.addr dw '/J

SetBasAdr

SetBasAdr equ 18

setb.parms db 1
setb.addr dw '/J

Version

Version equ 19

ver.parms db 2
ver.ver db '/J
ver.rev db '/J

SetUserHook

SetUserHoo k equ 47

shook.parms db 2
shook.id db '/J
shook.addr db '/J

KeyboardMouse

KeyboardMouse equ 48

kdbms.parms db '/J

Chapter 3: The Machine Language Interface

command number

parameter list for PascIntAdr
address of int handler

command number

parameter list for SetBasAdr
base address of string area

command number

parameter list for Version
version number
revision number

command numbe r

parameter list for SetUserHook
user's routine ID
starting address of user's routine

command number

parameter list for KeyboardMouse

Cursor Commands

These commands control the appearance of the cursor.

SetCursor

SetCursor

setc.parms
setc.char

equ

db
db

2

1
$£)'/J

command number

parameter list for SetCursor
character to use for cursor

The Machine language Commands Page 107

ShowCursor

ShowCursor equ 3 command number

showc.parrns db f/J parameter list for ShowCursor

HideCursor

HideCursor equ 4 command number

hidec.parrns db f/J parameter list for HideCursor

ObscureCursor

ObscureCursor equ 44 command number

obscc.parms db f/J parameter list for ObscureCursor

Event-Handling COBaands

These commands deal with events in the event queue.

CheckEvents

CheckEvents

chke.parms

GetEvent

GetEvent

evt.parms
evt. type
evt.eb1
evt.eb2

evt.x
evt. y
evt.key
evt. keyrnod

equ

db

equ

db
db
db
db

equ
equ
equ
equ

5

6

evt.eb1
evt.eb2
evt. eb 1
evt.eb2

command number

parameter list for CheckEvents

command number

parameter list for GetEvent
the event type
event byte 1 (x or key)
event byte 2 (y or modifier)

x pos of mouse
y pos of mouse
key input by user
modifier to key input by user

Page 108

FlushEvents

Chapter 3: The Machine Language Interface

FlushEvents

flshe.parms

SetKeyEvent

equ

db

7 command number

parameter list for FlushEvents

SetKeyEvent equ

setkey.parms db
setkey.sk db

PeekEvent

8

1
'/J

command number

parameter list for SetKeyEvent
set key event

PeekEvent

pke.parms
pke.type
pke.eb1
pke.eb2

pke.x
pke.y
pke.key
pke.keymod

equ

db
db
db
db

equ
equ
equ
equ

21

pke.eb1
pke.eb2
pke.eb1
pke.eb2

command number

parameter list for PeekEvent
the event type
event byte 1 (x or key)
event byte 2 (y or modifier)

x pos of mouse
y pos of mouse
key input by user
modifier to key input by user

PostEvent

PostEvent equ 46 command number

post.parms db 3 parameter list for PostEvent
post. type db '/J the event type
post.eb1 db '/J event byte 1 (x or key)
post.eb2 db '/J event byte 2 (y or modifier)

post.x equ post.eb1 x pos of mouse
post.y equ post.eb2 y pos of mouse
post. key equ post.eb1 key input by user
post. keymod equ post.eb2 modifier to key input by user

Menu eo-anllis

These commands deal with menu selection and display.

The Machine language Commands Page 109

InitMenu

InitMenu equ 9 command number

im. parms db 2 parameter list for InitMenu
im. sarea dw savearea area to use for saving screen under menu
im.ssize dw savesize size of save area

SetMenu

SetMenu equ 10 command number

sm.parms db 1 parameter list for SetMenu
sm.mbar dw mymenu pointer to Menu Data Structure

MenuSelect

MenuSelect equ 11 command number

ms. parms db 2 parameter list for MenuSelect
ms.mid db 0 menu ID returned
ms.item db 0 item number returned

MenuKey

MenuKey equ 12 command number

mkey.parms db 4 parameter 1ist for MenuKev
mkey.mid db 0 menu ID returned
mkey.item db 0 item number returned
mkey. key db 0 key user typed
mkey.mod db 0 modifier of key

HiliteMenu

HiliteMenu equ 13 command number

hili. parms db 1 parameter list for HiliteMenu
hili-mid db 0 menu ID (0 for all)

DisableMenu

DisableMenu equ 14 command number

dism. parms db 2 parameter list for DisableMenu
dism. id db 0 menu ID
dism.dis db 0 disable code

Page 110

DisableItem

DisableItem equ 15

ditm.parms db 3
ditm. id db 0
ditm. item db 0
ditm. dis db 0

CheckItem

CheckItem equ 16

chki. parms db 3
chki.id db 0
chki. item db 0
chki. chk db 0

SetMark

SetMark equ 20

setm.parms db 4
setm.id db 0
setm.item db 0
setm. chk db 0
setm.char db 0

Chapter 3: The Machine Language Interface

command number

parameter list for DisableItem
menu ID
item number
disable code

command number

parameter list for CheckItem
menu ID
item number
checkmark code

command number

parameter list for SetMark
menu ID
item number
checkmark code
character to use as checkmark

Window Commands

These commands deal with window selection and display.

InitWindowMgr

InitWindowMgr equ 22 command number

iwm.parms
iwm.sarea
iwm.ssize

db
dw
dw

2
savearea
savesize

parameter list for InitWindowMgr
area to use when saving window screen
size of save area

OpenWindow

OpenWindow equ 23

open.parm db 1
open.wind dw {)

command number

parameter list for OpenWindow
pointer to Winfo Data Structure

The Machine language Commands

CloseWindow

Page 111

CloseWindow

cwo parms
cwo id

CloseAll

CloseAll

cla.parms

GetWinPtr

GetWinPtr

gwip.parms
gwip.id
gwip.winfo

FindWindow

FindWindow

fdw.parms
fdw.x
fdw.y
fdw. type
fdw.window

FrontWindow

FrontWindow

frtw. parms
frtw.id

SelectWindow

equ

db
db

equ

db

equ

db
db
dw

equ

db
db
db
db
db

equ

db
db

24

1
o

25

45

2
o
o

26

4
o
o
o
o

27

1
o

command number

parameter list for CloseWindow
ID number of window to close

command number

parameter list for CloseAll

command number

parameter list for GetWinPtr
window ID number
pointer to Winfo Data Structure

command number

parameter list for FindWindow
X coordinate of mouse
Y coordinate of mouse
type of region mouse is in
window ID number (0 = desktop)

command number

parameter list for FrontWindow
ID number of front window

SelectWindow equ

selw.parms db
selw. id db

28

1
o

command number

parameter list for SelectWindow
ID number of window

Page 112

TrackGoAway

Chapter 3: The Machine Language Interface

TrackGoAway

tga.parms
tga.closeit

DragWindow

DragWindow

dg.parms
dg.id
dg.x
dg.y

GrowWindow

GrowWindow

grow. parms
grow. result

equ

db
db

equ

db
db
db
db

equ

db
db

29

1
o

30

31

1
'/)

command number

parameter list for TrackGoAway
Go-Away status

command number

parameter list for DragWindow
window ID number
x mouse coord of cursor start
y mouse coord of cursor start

command number

parameter list for GrowWindow
return status

WindowToScreen

WindowToScreen equ 32 command number

w2s.parms
w2s. id
w2s .wx
w2s.wy
w2s.sx
w2s.sy

db
db
dw
dw
dw
dw

parameter list for WindowToScreen
window ID number
X coordinate in window
Y coordinate in window
X screen coordinate
Y screen coordinate

ScreenToWindow

ScreenToWindow equ 33 command number

s2w.parms
s2w.id
s2w.sx
s2w. sy
s2w.wx
s2w.wy

db
db
dw
dw
dw
dw

parameter list for ScreenToWindow
window ID number
X screen coordinate
Y screen coordinate
X coordinate in window
Y coordinate in window

The Machine language Commands

WinChar

Page 113

WinChar

wch.parms
wch. id
wch.wx
wch.wy
wch. char

WinString

WinString

wstr.parms
wstr.id
wstr.wx
wstr.wy
wstr.ptr
wstr.res

WinText

WinText

wtxt.parms
wtxt.id
wtxt.wx
wtxt.wy
wtxt.ptr
wtxt.len

WinBlock

WinBlock

wblk.parms
wblk. id
wblk.ptr
wblk.xl
wblk.yl
wblk.x2
wblk.y2

equ

db
db
dw
dw
db

equ

db
db
dw
dw
dw
db

equ

db
db
dw
dw
dw
db

equ

db
db
dw
dw
dw
dw
dw

34

35

38

36

command number

parameter list for WinChar
window ID number
X coordinate in window
Y coordinate in window
ASCII character to display

command number

parameter list for WinString
window ID number
X coordinate in window
Y coordinate in window
pointer to string
reserved (for BASIC only)

command number

parameter list for WinString
window ID number
X coordinate in window
Y coordinate in window
pointer to first character
number of characters

command number

parameter list for WinBlock
window ID number
pointer to Dinfo Data Structure
X upper-left window coordinate
Y upper-left window coordinate
X lower-right window coordinate
Y lower-right window coordinate

Page 114

WinOp

WinOp equ 37

wop.parms db 4
wop.id db tJ
wop.wx dw tJ
wop.wy dw 0
wop.op db tJ

Chapter 3: The Machine Language Interface

command number

parameter list for WinBlock
window ID number
X window coordinate
Y window coordinate
window operation

Control Region COBaands

These commands deal with the control regions in the front window: the
horizontal and vertical scrolls bars t including the Thumbs.

FindControl

FindControl equ 39

findc.parms db 4
findc.wx dw 0
findc.wy dw tJ
findc. ctl db tJ
findc.part db 0

SetCtlHax

SetCtlMax equ 40

setct.parms db 2
setct.ctl db tJ
setct.newmax db 0

TrackThumb

TrackThumb equ 41

tkthmb.parms db 3
tkthmb.ctl db 0
tkthmb. pos db tJ
tkthmb.moved db tJ

UpdateThumb

UpdateThumb equ 42

upt.parms db 2

command number

parameter list for FindControl
X window coordinate of point
Y window coordinate of point
control region point is in
part of region point is in

command number

parameter list for SetCtlMax
control region affected
new maximum va~ue

command number

parameter list for TrackThumb
control region affected
position Thumb moved to
Thumb moved code

command number

parameter list for UpdateThumb

The Machine language Commands Page 115

upt.ctl
upt.newpos

ActivateCtl

ActivateCtl

actl.parms
actl. ctl
actl. inact

db
db

equ

db
db
db

43

control region affected
new position of Thumb

command number

parameter list for ActivateCtl
ctl region to change
inactivate code

Page 116

Page 11 7

Chapter 4

The Pascal Interface

The Pascal Interface for the MouseText Tool Kit is a Pascal intrinsic
unit that provides the interface to the MouseText Tool Kit, Version 2.1.
Each of the Tool Kit commands described in Chapter 2 is supported by one
of the Pascal Interface procedures described in this chapter. In
addition to the command procedures, there is a utility procedure for
obtaining the address of a Pascal variable.

Installing the Pascal Interface

The Pascal Interface and the Tool Kit routines are supplied together
in a linked object file named ~ITXKIT.CODE. To use the Tool Kit, you
must install MTXKIT.CODE as a Unit in your System.library file. With
the Tool Kit code in the system library, the application program can
use the Tool Kit commands by including the statement "Uses MTXKIT;"
after the hea~ing.

Data Structures

This chapter presents the specifications of the data types and data
structures used in the Pascal Tool Kit, including the Menu Data
Structure, the Window Information Data Structure, and the Document
Information Data Structure, as defined in Chapter 2.

Constants and Type Definitions

The following constants and data types are used in the Pascal
Interface.

Page 118

Constants

Chapter 4: The Pascal Interface

max menus= 10 (A maximum of 10 menus is supported).
max-title str= 20 (A maximum of 20 characters per menu title is

- supported).
max item str= 30 (A maximum of 30 characters per menu item name is

- supported).
max_num_items= 10 (A maximum of 10 menu items is supported).

The following event type values are provided as constants rather than
as an enumerated type so that the user can define and handle his own
events.

no event = 0
button down = 1
button=up = 2
key down = 3
drag = 4
apple_key = 5

A single byte value is defined as:

byte = 0 •• 255;

Event

An event is defined as:

type event = packed record
- evt_kind : byte;

charI : byte;
char2 : byte;
reservel byte;
end;

where:

evt kind is the event type value (see above under Constants).
charI is event byte 1, X coordinate or key value.
char2 is event byte 2, Y coordinate or key modifier.
reservel is reserved for use by the Tool Kit.

Menu titles are defined as:

title str string[max title_str];

Data Structures

Menu Item Names

Menu item names are defined as:

item str = string[max_item_str];

Menu Item Blocks

A Menu item block is defined as:

menu item = packed record

open apple : boolean;
solid_apple : boolean;
item_has~ark : boolean;
reserve2 : boolean;
reserve3 : boolean;
item is checked : boolean;
item-is-filler : boolean;
disable-flag : boolean;

mark_char : byte;

{bit ~}

{bit 7}

Page 119

charI
char2

byte;
byte;

end;

where:

The first 8 fields in the record are the bits in the Item Option Byte:

open apple is on when the modifier is OPEN-APPLE key;
solid_apple is on when the modifier is SOLID-APPLE key;
item has mark is on when the item has mark;
reserve2~ reserve3 are reserved for use by the Tool Kit;
item is checked is on when the Item Is Checked;
item=is=filler is on when the Item Is Filler;
disable_flag is the Disable Flag;

mark char is the mark character;

charI is Character 1;
char2 is Character 2;

item str_ptr is Pointer to Item String;

Page 120

Menu Data Structures

Chapter 4: The Pascal Interface

The Data Structure for a Menu is defined as:

menu data = packed record
- num items : byte;

reserve 1 byte;
reserve2 : byte;
reserve3 : byte;
items: packed array [1 •• max_num_items] of menu_item;
end;

where:

num items is the Number of Items;
reserve1, reserve2, reserve3 are reserved for use by the Tool Kit;
items is the array of Menu Item Blocks;

Menu Title Blocks

A Menu Title Block is defined as:

menu title = packed record
menu_id : byte;
disabled : byte;
tit1e_ptr : A t it1e_str;
m data ptr : A menu data;
r;serv;d : packed ~rray [1 •• 4] of byte;
end;

where:

menu id is the Menu ID;
disabled is the Disable Flag (only bit 7 can be used);
tit1e_ptr is the Pointer to Title String;
m data ptr is the Pointer to Menu Data Structure;
reserv;d is reserved by the Tool Kit;

Menu Bars

The menu bar is defined as:

menu bar = packed record
num_menus : byte;
reserved : byte;
menus: array [l •• max_menus] of menu_title;
end;

Data Structures

where:

num menus is the Number of Menus;
reserved is reserved for use by the Tool Kit;
menus is the array of Menu Blocks;

Window Information Data Structures

A Window Information Data Structure (Winfo) is defined as:

winfo = packed record
window_id: byte;

Page 121

dialog: boolean;
goawaybox: boolean;
growbox: boolean;
reserve1: boolean;
reserve2: boolean;
reserve3: boolean;
reserve4: boolean;
dinfo_or_user: boolean;

windowx: integer;
windowy: integer;

contwidth: byte;
contlength: byte;

mincontwidth: byte;
maxcontwidth: byte;
mincontlength: byte;
maxcontlength: byte;

hactive: boolean;
reserve6: boolean;
reserve7: boolean;
reserve8: boolean;
reserve9: boolean;
reserv10: boolean;
hthumb: boolean;
hscrollbar: boolean;

vactive: boolean;
reserv11: boolean;
reserv12: boolean;
reserv13: boolean;

{bit ~}

{bit 7}

{bit ~}

{bit 7}

{bit 0}

Page 122

reserv14: boolean;
reserv15: boolean;
vthumb: boolean;
vscrDllbar: boolean;

hthumbmax: byte;
hthumbpos: byte;
vthumbmax: byte;
vthumbpos: byte;

reserv16: boolean;
reserv17: boolean;
reserv18: boolean;
reserv19: boolean;
reserv20: boolean;
reserv21: bDolean;
reserv22: boolean;
win_open: boolean;

reserv23: byte;

nextwinfo = Awinfo

reserv24: byte;
reserv25: byte;
reserv26: byte;
reserv27: byte;
reserv28: byte;
reserv29: byte;

end;

where:

window id is the Window ID#

Chapter 4: The Pascal Interface

{bit 7}

dialog is dialog/alert window flag
goawaybox is on when Go-Away Box present
growDox is on when Grow Box present
reserve1, reserve2, reserve3, reserve4

are all reserved by the Tool Kit

dinfo or user is user routine adr/dinfo ptr

title_ptr is Title Str ptr

windowx is Window Location X
windowy is Window Location Y

contwidth is Current Content Width
contlength is Current Content Length

Data Structures

mincontwidth is Min Content Width
maxcontwidth is Max Content Width
mincontlength is Min Content Length
maxcontlength is Max Content Length

dinfo_ptr is Dinfo Ptr

hactive is on when horizontal scroll bar active
reserve6, reserve7, reserve8, reserve9, reserv10

are all reserved by the Tool Kit
hthumb is on when horizontal Thumb present
hscrollbar is on when horizontal scroll bar present

vactive is on when vertical scroll bar active
reservll, reservl2, reservl3, reservl4, reserv15

are all reserved by the Tool Kit
vthumb is on when vertical Thumb present
vscrollbar is on when vertical scroll bar present

hthumbmax is horizontal scroll maximum
hthumbpos is current horizontal Thumb position
vthumbmax is vertical scroll maximum
vthumbpos is current vertical Thumb position

reservl6, reservl7, reservl8, reservl9, reserv2~,

reserv21, and reserv22
are all reserved by the Tool Kit

win_open is window open

reserv23 is reserved by the Tool Kit

nextwinfo is the pointer to the next winfo structure

reserv24, reserv25, reserv26, reserv27
reserv28, and reserv29

are all reserved by the Tool Kit

Document Information Data Structures

A Document Information Data Structure (Dinfo) is defined as:

dinfo = packed record

doc_ptr: integer;

reserved: byte;
docwidth: byte;

docx: integer;
docy: integer;

Page 123

Page 124

doc1ength: integer;
reserve2: byte;
reserve3: byte;

end;

where:

doc_ptr is Document ptr

reserved is reserved by the Tool Kit
docwidth is Document Width

docx is Document X
docy is Document Y

Chapter 4: The Pascal Interface

doc1ength is Document Length
reserve2, reserve3 are reserved by the Tool Kit

Screen Region Types

The type of screen region is defined as:

type area = (inDeskTop,
- inMenubar,

inContent,
inDrag,
inGrow,
inGoAway) ;

where each value is as returned by FindWindow:

inDeskTop is in desktop
inMenubar is in menu bar
inContent is in contentregion
inDrag is in drag region
inGrow is in Grow Box
inGoAway is in Go-Away Box

Control Region Types

The type of control region is defined as:

ct1area = (notct1,
ver scroll,
hor-scro11,
deadzone);

Data Structures

where each value is as returned by FindControl:

notctl is in content region
ver scroll is in vertical scroll bar
hor_scroll is in horizontal scroll bar
dead zone is none of the above

Control Region Part Types

The type of a part of a control region is defined as:

ctlpart = (ctlinactive,
scrollupleft,
scrolldownright,
pageupleft,
pagedownright,
thumb) ;

where each value is as returned by FindControl:

ctlinactive is never returned
scrollupleft is up arrow of vertical scroll bar

or Left-Arrow of horizontal scroll bar
scrolldownright is Down-Arrow of vertical scroll bar

or Right-Arrow of horizontal scroll bar
pageupleft is "page up" region of vertical scroll bar

or "page left" region of horizontal scroll bar
pagedownright is "page down" region of vertical scroll bar

or "page right" region of horizontal scroll bar·
thumb is Thumb of scroll bar

Pointers

A general purpose pointer is provided and defined as:

pointer: integer;

Error Codes

The Mouse Tool Kit error code is defined as:

TKError : integer;

Page 125

Page 126 Chapter 4: The Pascal Interface

eom.and F1llIllctions and Procedures

Here are the specifications of the procedure calls in the Pascal Tool
Kit Interface.

Startup COIIDU.nds

A program will normally call the appropriate startup commands once to
set up the operating environment. The proper sequence of steps to
start the mouse is:

(1) Call PascIntAdr to get the address of the Tool Kit's interrupt
handler.

(2) Pass the interrupt address to the mouse firmware by calling
SetMouse as described in Appendix B, "The Mouse Firmware Interface."
Mouse Mode should be set to passive.

(3) Call StartDesktop with the UseInterrupts parameter set the way you
want it for your program.

(4) (optional) Call SetUserHook to pass the addresses of your
program's interrupt handlers, if any, to the Tool Kit.

StartDeskTop

Procedure StartDeskTop (mach_id: integer; sub id: integer;
var slot num integer; use_interrupts -boolean;
column 80: boolean);

mach id is the machine ID number.
sUb_id is the subsidiary ID number.
slot num is the slot number of the mouse card.
use_interrupts is the interrupt usage parameter:

false= Passive Mode only
true= use interrupts

column 80 is the col (number of text columns) parameter:
false= 40 columns
true= 80 columns

StopDeskTop

Procedure StopDeskTop;

Command Functions and Procedures

PascIntAdr

Procedure PascIntAdr (var IntAdr: integer);

IntAdr is the address of the interrupt routine

SetUserHook

Procedure SetUserHook (hook_id, hook_adr: integer);

Page 127

hook_id is the ID number (~ or 1) for the program's interrupt routine.
hook adr is the address of the program's interrupt routine.

Version

Procedure Version (var ver_num, rev num: integer);

ver num is the version number.
rev num is the revision number.

KeyboardMouse

This function is us.ed with the MenuSelect, DragWindow, and. GrowWindow
commands only. Calling one of those commands immediately after calling
KeyboardMouse causes the command to operate in keyboard mouse emulation
mode, where the user can control the cursor motion by means of the
keyboard. The KeyboardMouse function has no parameters.

Function KeyboardMouse;

Cursor Commands

These commands control the appearance of the cursor.

SetCursor

Procedure SetCursor (new_ch: integer);

new ch is the character to use as cursor.

ShowCursor

Procedure ShowCursor;

Page 128

HideCursor

Procedure HideCursor;

ObscureCursor

Procedure ObscureCursor;

Event Hand1:ii.ng eo..ands

Chapter 4: The Pascal Interface

These commands deal with the event queue.

CheckEvents

Procedure CheckEvents;

GetEvent

Procedure GetEvent (var event

event is returned with:

evt kind set to the event type.
charI set to event byte 1: X coordinate or key value.
char2 set to event byte 2: Y coordinate or key modifier.

PostEvent

Procedure PostEvent (var event

event should be supplied with:

evt kind set to the event type.
charI set to event byte 1: X coordinate or key value.
char2 set to event byte 2: Y coordinate or key modifier.

FlushEvents

Procedure FlushEvents;

SetKeyEvent

Procedure SetKeyEvent (chk_keyboard: boolean);

ch~keyboard is the sk (set keyevent) parameter:

Command Functions and Procedures

false= don't check keyboard
true= check the keyboard

PeekEvent

Page 129

Procedure PeekEvent (var event

event is returned with:

evt kind set to the event type.
charI set to the event byte 1: X coordinate or key value.
char2 set to the event byte 2: Y coordinate or .key modifier.

Menu Cm-anlllls

These commands handle menu selection and display.

InitMenu

Procedure InitMenu (save_buffer, buf_size

save buffer is a pointer to the save area.
buf size is the save area size.

SetMenu

integer);

Procedure SetMenu (var my_menu_bar: menu_bar);

my menu bar is the menu bar structure. The procedure obtains
the poi;ter to the structure for you.

MenuSelect

Procedure MenuSelect (var menu_id, menu choice

menu id is the menu ID number.
menu choice is the menu item number.

MenuKey

Procedure MenuKey (var menu id, menu choice
var key_event: type_event);

menu id is the menu ID number.
menu choice is the item number.
key_event is returned with:

integer);

integer;

Page 130

charl as the key value
char2 as the key modifier

HiliteMenu

Procedure HiliteMenu (menu id

menu id is the menu ID number.

DisableMenu

Chapter 4: The Pascal Interface

integer);

Procedure DisableMenu (menu_id integer; disable boolean);

menu id is the menu ID number.
disable is the dis (disable) parameter:

false= enable
true= disa ble

DisableItem

Procedure DisableItem (menu id, item num
disable: boolean);-

menu id is the menu ID number.
item num is the item number.
disable is the dis (disable) parameter:

false= enable
true= disable

CheckItem

Procedure CheckItem (menu id, item num
check: boolean);-

menu id is the menu ID number.
item-num is the item number.
check is the ck (check) parameter:

false= turn checkmark off
true= turn checkmark on

SetMark

integer;

integer;

Procedure SetMark (menu id, item num: integer; mark on: boolean;
mark char: char);-

menu id is the menu ID number.
item-num is the menu item number.

Command Functions and Procedures

mar~on is the mark on parameter.
mark char is the mark char parameter.

Window eo-ands

These commands deal with window selection and display.

InitWindowMgr

Page 131

Procedure InitWindowMgr (drag_buffer, buf_size

drag_buffer is the pointer to the buffer.
buf size is the buffer size.

OpenWindow

Procedure OpenWindow (var my_Winfo: winfo);

my_Winfo is the Winfo data structure.

CloseWindow

Procedure CloseWindow (window id: integer);

window id is the window ID number.

CloseAll

Procedure CloseAll;

GetWinPtr

integer);

Procedure GetWinPtr (window_id: integer; var winfo_ptr: integer);

window id is the ID number of the window.
winfo_ptr is a pointer to the Winfo data structure.

FindWindow

Procedure FindWindow (pointx, pointy: integer; var area: type_area;
var window id: integer);

pointx is the X coordinate of the point.
pointy is the Y coordinate of the point.

Page 132 Chapter 4: The Pascal Interface

area is the type_area (region type) parameter.
window id is the window ID number.

FrontWindow

Procedure FrontWindow (var window id: integer);

window id is the window ID number.

SelectWindow

Procedure SelectWindow (window_id: integer);

window id is the window ID number.

TrackGoAway

Procedure TrackGoAway (var makeitgoaway: boolean);

makeitgoaway is the go away status:
~ not in Go-Away Box
1 = mouse was in Go-Away Box

DragWindow

Procedure DragWindow (window_id. mousex. mousey: integer);

window id is the window ID number.
mousex is the mouse X coordinate.
mousey is the mouse Y coordinate.

GrowWindow

Procedure GrowWindow(var makeitgrow: boolean);

makeitgrow is the return status:
o = window did not grow
1 = window did grow

WindowToScreen

Procedure WindowToScreen (window id. windowx. windowy: integer;
var screenx. screeny: integer);

window id is the window ID number.
windowx is the window X coordinate.

Command Functions and Procedures

windowy is the window Y coordinate.
screenx is the screen X coordinate.
screeny is the screen Y coordinate.

ScreenToWindow

Page 133

Procedure ScreenToWindow (window id, screenx, screeny: integer; var
windowx, windowy: integer);

window id is the window ID number.
screenx is the screen X coordinate.
screeny is the screen Y coordinate.
windowx is the window X coordinate.
windowy is the window Y coordinate.

WinChar

Procedure WinChar (window id, windowx, windowy: integer;
my_char: char)j -

window id is the window ID number.
windowx is the window X coordinate.
windowy is the window Y coordinate.
my_char is the character to display.

WinString

Procedure WinString (window id, windowx, windowy: integerj
my_string: string);-

window id is the window ID number.
windowx is the window X coordinate.
windowy is the window Y coordinate.
my_string is the string to write.

WinText

Procedure WinText (window id, windowx, windowy, text_buffer,
textlength: integer-)j

window id is the window ID number.
windowx is the X coordinate in the window.
windowy is the Y coordinate in the window.
text buffer is the pointer to the first character of text.
textlength is the number of characters to display.

Page 134

WinBlock

Chapter 4: The Pascal Interface

Procedure WinBlock (window_id: integer; var my dinfo: dinfo;
startx, starty, stopx, stopy: integer);

window id is the window ID number.
my_dinio is the document information structure.
startx is the X coordinate of the upper-left corner.
starty is the Y coordinate of the upper-left corner.
stopx is the X coordinate of the lower-right corner.
stopy is the Y coordinate of the lower-right corner.

WinOp

Procedure WinOp (window id, windowx, windowy: integer;
opcode: byte); -

window id is the window ID number.
windowx is the window X coordinate.
windowy is the window X coordinate.
opcode is the code for the operation to perform.

Control Region CODDBnds

These commands deal with the control regions in the front window:
the horizontal and vertical scroll bars, including the Thumbs.

FindControl

Procedure FindControl (windowx, windowy: integer;
var whichctl: ctlarea; var whichpart: ctlpart);

windowx is the window X coordinate.
windowy is the window Y coordinatei.
whichctl is the control region.
whichpart is the part of the control region.

SetCtlMax

Procedure SetCtlMax (whichctl: ctlarea; newmax: integer);

whichctl is the control region.
newmax is the new maximum value.

Command Functions and Procedures

TrackThumb

Page 135

Procedure TrackThumb (whichct1: ct1area; var thumbpos: integer;
var thumbmoved: boolean);

whichct1 is the control region.
thumbpos is the Thumb position.
thumbmoved is the return status:

o = Thumb didn't move, thumbpos not valid
1 = Thumb did move

UpdateThumb

Procedure UpdateThumb (whichct1: ct1area; thumbpos: integer);

whichct1 is the control region.
thumbpos is the new Thumb position.

ActivateCt1

Procedure ActivateCt1 (whichct1: ct1area; makeactive: boolean');

whichct1 is the control region.
makeactive is the state to make the control region:

o inactive
1 active

Utility Functions

In addition to a call for each of the Tool Kit commands, there is a
utility function for obtaining the address of a Pascal variable.

PointerTo

This function obtains the address of the specified variable and
returns it as the function value.

Function PointerTo(var Variable): integer;

Page 136

Page 137

Chapter 5

The Applesoft Interface

The Applesoft Interface for the MouseText Tool Kit is a set of
commands that are added to the standard Applesoft commands by means of
the ampersand hook. So that you can use it with other ampersand
packages t the Applesoft Interface saves the existing ampersand hook
address and passes any unrecognized ampersand commands on. If there
is another ampersand package t that package then gets control and can
test the commands. If there is no other ampersand package t then
Applesoft gets control arid issues a SYNTAX ERROR message.

InStalling the AppleSoft IlI.t:effaer:e

You'll need the relocating loader from the ProDOS Assembler Tools to
load both the MouseText Tool Kit routines and the Applesoft Interface
that contains the ampersand commands. The procedure for loading the
Mouse Tool Kit is as follows:

(1) Load the MouseText Tool Kit from file MTXKIT.OBJ using RBOOT.

(2) Load the Applesoft Interface from file MTXAMP.OBJ using RBOOT.

(3) Write the starting address of the Tool Kit in the first
two bytes of the Applesoft Interface (--not the other way
around t now!).

(4) Start the Applesoft Interface by a CALL to its address plus two.

One way to do this in Applesoft looks like this:

Page 138 Chapter 5: The Applesoft Interface

10 PRINT CHR$ (4);"BRUN RELEASE"
20 Al = ~:A2 = ~

30 PRINT CHR$ (4); "BRUN RBDOT"
40 Al = USR (~)~"MTXKIT.OBJ"

50 A2 = USR un, "MTXAMP .OBJ"
60 IF Al < 0 THEN Al = Al + 65536
70 IF A2 < 0 THEN A2 = A2 + 65536
80 I = INT (AI / 256)
90 J = Al - I * 256
100 POKE A2,J
110 POKE A2 + 1,1
120 CALL A2 + 2
130 "END

The MouseText Tool Kit routines are in the file named MTXKIT.OBJ; the
Applesoft Tool Kit ampersand routines are in the file named MTXAMP.OBJ.

Using the Ampersand Commands

The Applesoft Tool Kit interface does not treat string variables
the same as numeric variables. The interface routines copy numeric
variables into internal buffers, so altering the values of those
variables after an ampersand command will not change anything that the
Tool Kit is doing. String.'V<3.riabl~s,.on the other hand , are not copied
into buffers, so changing a BASIC string variable will cause changes in
the display the next time the Tool Kit redisplays the menu or window
with the changed string.

Note: All input parameters can be either variables or
expressions, but output parameters must, of course, be
variables.

The Ampersand Commands

The Ampersand eo-.ands

Page 139

The Applesoft Interface includes an ampersand call for each of the
Tool Kit commands except for a few, such as PascIntAdr, which is used
only with Pascal. There are also two utility commands, &STCNTNT
(Set Content), and &DSKTPERR (Desktop Error).

The names of the ampersand commands are not the same as the command
names listed in the other chapters. This is to avoid having Applesoft
tokenize certain letter combinations, thereby altering a program and
its listing. You must spell the command names exactly as shown or the
Applesoft Interface won't recognize them and Applesoft will give you a
SYNTAX ERROR message.

WARNING
A misspelled ampersand command can
if it occurs after a RUN command.
recognize the misspelled ampersand
the RUN statement, thereby gettin~

condition.

cause Applesoft to han~

When Applesoft fails to
command, it jumps back to
itself into a loop

By The Way: The variable names shown here are only
suggestionsj you may use any variable names you choose.

St.artup em-ands

A program normally calls these commands once to set up its operating
environment.

StartDesktop

&STRTDSKTP(ID%,SID%,SN%,IU%,COL%)
ID% = machine ID
SID% = subsidiary ID
SN% slot number (input and output). If SN% = ~, StartDeskTop

searches for a mouse card and returns the slot number in SN%.
IU% interrupt usage:

o = Passive Mode
1 = Interrupt Mode

Page 140

COL% = number of text columns:
o 40 columns
1 = 80 columns

StopDeskTop

Chapter 5: The Applesoft Interface

In addition to making the appropriate call to the Tool Kit, the
Applesoft version of the StopDeskTop command disconnects the Applesoft
Interface from the ampersand hook and restores the previous address.

Tool Kit ampersand commands will not work after a call to &STPDSKTP
unless you reconnect the Tool Kit by means of the Applesoft command
CALL A2+2, where A2 is the starting address of the Tool Kit Applesoft
Interface. If you do stop and reconnect, you don't get back any used
memory pages; for that, you have to run RELEASE and reload the Tool
Kit and the Applesoft Interface.

To make sure that the ampersand hooks get properly restored when the
program ends, there must be a call to StopDeskTop. Your program
should include an ONERR call to &DSKTPERR, then a call to &STPDSKTP.

&STPDSKTP
(no parameters)

Version

&VRSN(V%,R%,AV%,AR%)
V% = version number
R% = revision number
AV% Applesoft Interface version number
AR% = Applesoft Interface revision number

KeyboardHouse

The application calls this command immediately before MenuSelect,
DragWindow, or GrowWindow to make those commands run in keyboard
mouse emulation mode. Note that the KeyboardMouse command has
no parameters.

&KY'BRDMSE

Cursor Co1IIIIIIands

These commands control the appearance of the cursor.

The Ampersand Commands

SetCursor

&STCRSR(CC%)
CC% = cursor character (ASCII code)

ShowCursor

&SHWCRSR
(no parameters)

HideCursor

&HDCRSR
(no parameters)

ObscureCursor

&OBCRSR
(no parameters)

Event-Handl.:ii.ng CoD!!!8ClD4!ls

These commands deal with the event queue.

CheckEvents

&CHCKEVNTS
(no parameters)

PostEvent

&PSTEVNT(ET%,E1%,E2%)
ET% = event type (input):

9) = no event
1 = button down
2 = button up
3 key pressed
4 = drag event
5 Apple key down

E1% = X coordinate or key value (input)
E2% Y coordinate or key modifier (input)

Page 141

Page 142

GetEvent

>EVNT(ET%,E1%,E2%)
ET% = event type:

0 = no event
1 button down
2 = button up
3 = key pressed
4 = drag event
5 Apple key down

E1% = X coordinate or key value
E2% = Y coordinate or key modifier

FlushEvents

&FLSHEVNTS
(no parameters)

SetKeyEvent

&STKYEVNT(SK%)
SK% = Setkey flag:

o = don't check keyboard
1 = check keyboard

PeekEvent

&PKEVNT(ET%,E1%,E2%)
ET% = event type:

o no event
1 = button down
2 button up
3 = key pressed
4 drag event
5 = Apple key down

E1% = x coordinate or key
E2% y coordinate or key modifier

Menu COIIImands

Chapter 5: The Applesoft Interface

These commands handle menu selection and display.

InitMenu

The InitMenu command sets aside memory space needed for the Menu
Data Structure and for saving the part of the display obscured by
menus.

The Ampersand Commands Page 143

You can determine the amount of memory space to reserve for menu
displays by calculating the screen area of the largest menu in
the program. The largest menu could have a large screen area because
it has many items, or it could have only a few items, each of which
is very long.

You calculate the screen area of a menu by taking the product of the
number of items in the menu, plus one, times five bytes more than the
length of the longest item string in that menu. If you are using keys
to select items, each item string must include three bytes to display
a space, an Apple key, and the key that selects the item. A page is
256 bytes, so to find the number of pages required, divide the size of
the largest menu by 256 and round to the next highest integer.

To calculate the amount of memory to set aside for the Menu Data
Structures, in bytes, add fourteen bytes for each menu plus six bytes
for each item, plus two. Divide the result by 256 and round to the
next highest integer to find the number of pages required. If you
don't make this parameter large enough, you'll get garbage in the
display when you open the menu.

&INITMNU(P1%,P2%)
P1% number of pages to set aside for menu area buffer
P2% = number of pages to set aside for menu data structure

SetMenu

&STMNU(N%,M%,MI%,NA$,OR%,KC%)
N% = number of menus
M% = maximum number of items in any menu
MI% = menu information array, DIM MI%(1,N%),

where:
MI%(~,n) = menu ID of nth menu
MI%(1,n) = number of items in nth menu

NA$ = name array, DIM NA$(M%,N%),
where:

NA$(~,n) = title of nth menu
NA$(m,n) = name of mth item in nth menu

OB% = option byte array, DIM OB%(M%,N%),
where:

OB%(~,n) = option byte of nth menu (see Table 2-2)
OB%(m,n) = option byte of mth item in nth menu (see Table 2-4)

KC% = key character array, DIM KC%(H%,N%),
where:

KC%(m,n) = both key characters for the mth item
in the nth menu. Both key characters are stored in a single
integer element of the form 256*(char1)+(char2).

Page 144 Chapter 5: The Applesoft Interface

Note: The key character array must be dimensioned even if
you don't use it.

MenuSelect

&MNUSLCT(ID%,IN%)
ID% = menu ID number
IN% = item number

MenuKey

&MNUKY(K%,KM%,ID%,IN%)
K% = character typed (ASCII)
KM% = key modifier
ID% menu ID number
IN% = item number

By the way: The parameters are not in the same order as in
the machine-language call.

HiLiteMenu

&HILTMNU(ID%)
ID% = menu ID number: 0 = turn off highlighting

DisableMenu

&DSABLMNU(ID%,DIS%)
ID% = menu ID number
DIS% = disable flag:

1 disable
o = enable

The Ampersand Commands

DisableItem

&DSABLITM(ID%,IN%,DIS%)
ID% = menu ID number
IN% = item number
DIS% = disable flag:

1 = disable
o = enable

CheckItem

&CHCKITM(ID%,IN%,CK%)
ID% = menu ID number
IN% = item number
CK% = check status:

o = turn item off
1 = turn item on

SetMark

&STMRK(ID%,IN%,MF%,MC%)
ID% = menu ID number
IN% item number
MF% mark flag:

o = don't use mark
1 = use mark

MC% mark character (ASCII)

These commands deal with window selection and display.

InitWindowMgr

Page 145

The InitWindowMgr command sets aside memory space needed for the
Window Information Data Structure and for saving the part of the
display obscured by the outline of the window.

You can determine the amount of memory space to reserve for the
outline of the window by by calculating the perimeter of the largest
possible window. The perimeter is the sum of twice the height plus
twice the width. A page is 256 bytes, so to find the number of pages
required, divide the perimeter of the largest window by 256 and round
to the next highest integer.

To calculate the amount of memory to set aside for the Window
Information Data Structures, in bytes, allow 42 bytes times the
maximum number of windows that can be open at the same time. Divide

Page 146 Chapter 5: The Applesoft Interface

the result by 256 and round to the next highest integer to find the
number of pages required.

&INITWM(P1%,P2%)
P1% = number of pages to set aside for window area buffer
P2% = number of pages to set aside for Winfo data structure

OpenWindow

Note: The dimensioned variable called WI% here can only be
one dimensional.

&OPNWNDW(WI%,TSS,CS$)
WI% = window information array, DIM WI%(18),
where:

WI%(~) is reserved
WI%(l) = window ID number
WI%(2) = window option byte (see Table 2-6)
WI%(3) = window X coordinate
WI%(4) = window Y coordinate
WI%(5) = current content width
WI%(6) = current content length
WI%(7) = minimum content width
WI%(8) maximum content width (>~)

WI%(9) = minimum content length
WI%(l~) = maximum content length (>~)

WI%(ll) = horizontal ctl option (see Table 2-7)
WI%(12) = vertical ctl option (see Table 2-7)
WI%(13) = horizontal scroll maximum
WI%(14) = horizontal Thumb pos
WI%(15) = vertical scroll maximum
WI%(16) = vertical Thumb pos
WI%(17) = contents X offset
WI%(18) = contents Y offset

TS$ = title string
CS$ = content string array: a one-dimensional string array, where
each element is one row of the contents of the window

CloseWindow

&CLSWNDW(ID%)
ID% = ID of window to be closed

The Ampersand Commands

CloseAll

&CLSALL
(no parameters)

FindWindow

&FDWNDW(X%,Y%,T%,ID%)
X% = X coordinate (in mouse coordinates)
Y% = Y coordinate (in mouse coordinates)
T% type of area point is in:

£) desktop
1 = menu bar
2 = content region
3 = drag bar
4 = Grow Box
5 = Go-Away Box

ID% window ID if in window: £) = not in a window

FrontWindow

&FRNTWNDW (ID %)
ID% = ID number of front window

SelectWindow

&SLCTWNDW(ID%)
ID = window ID number

TrackGoAway

&TRCKGA(GF%)
GF% GoAway function:

o window should not close
1 = window should close

DragWindow

&DRGWNDW(ID%,X%,Y%)
ID% = window In
X% X coordinate
Y% = Y coordinate

Page 147

Page 148

GrowWindow

Chapter 5: The Applesoft Interface

Note: After you change the size of a window, you'll need to
call &STCNTNT to redisplay its contents.

&GWNDW (ST %)
ST% = Status:

o = size didn't change
1 = size changed

WindowToScreen

&WN2SCR(ID%,WX%,WY%,SX%,SY%)
ID% = window ID
WX% window X coordinate
WY% = window Y coordinate
SX% = screen X coordinate
SY% = screen Y coordinate

ScreenToWindow

&SCR2WN(ID%,SX%,SY%,WX%,WY%)
ID% window ID
SX% = screen X coordinate
SY% = screen Y coordinate
WX% window X coordinate
WY% window Y coordinate

SetContent

This ampersand command changes the contents and content offsets in a
window definition. It is typically used to redisplay the contents of
a window after a call to GrowWindow. It can also be used for
scrolling the contents of a window by making the content string the
same as before and changing the X and Y offset.

The Ampersand Commands Page 149

You should not expect the window position with coordinates
X%,Y% to contain the X%th character in the Y%th element of
the content string array. Remember that there are offsets
OX% and OY%, and that the window Y coordinate of the first
column in a window has the value ~, not 1. You will
normally have to perform some arithmetic to figure out which
character in the content string array corresponds to a given
window position.

Note: The SetContent command subsumes the functions of
WinString, WinChar, WinText, and WinBlock. Of those
commands, the Applesoft Interface includes as separate
commands only WinString and WinChar.

&STCNTNT(ID%,RE%,CS$,OX%,OY%)
ID% = window ID number
RE% = a reserved variable (should be set = ~)

CS$ new content string (see &OPNWNDW command)
OX% = new X offset into content (replaces value set by WI%(17»
OY% new Y offset into content (replaces value set by WI%(18»

WinChar

Please refer to the notes under the WinOp command.
&WNCHR(ID%,X%,Y%,CH%)
ID% = window ID
X% X coordinate of position in window
Y% Y coordinate of position in window
CH% = ASCII code for character

WinString

Please refer to the notes under the WinOp command.
&WNSTR(ID%,X%,Y%,S$)
ID% = window ID
X% = X coordinate of position in window
Y% Y coordinate of position in window
S$ character string

Page 150 Chapter 5: The Applesoft Interface

--

Parameter Note: While all the WinString parameters are
inputs, S$ cannot be an expression, although it can be
either a simple variable or an array element.

WinOp

&WNOP(ID%,X%,Y%,OC%)
ID% = window ID
X% = X coordinate of position in window
Y% = Y coordinate of position in window
OC% operation code:

26 = clear from start of window to (but not including)
position X,Y.

27 = clear from start of line to (but not including)
position X,Y

28 = clear entire window
29 = clear from position X,Y to end of window
3~ = clear line
31 clear from position X,Y to end of line

Important Note: The window commands &WNCHR, &WNSTR, and
&WNOP change the contents of the window in the display, but
they do not change the content string array (called CS$ in
this manual) that is used to update the window after it has
been moved, resized, re-exposed, or the like. It is up to
the application to update the content string array to match
the new content of the window. (It is not necessary to call
&STCNTNT under these circumstances.)

You should not expect the window position with coordinates
X%,Y% to contain the X%th character in the Y%th element of
the content string array. Remember that there are offsets
OX% and OY%, and that the window Y coordinate of the first
column in a window has the value ~, not 1. You will
normally have to perform some arithmetic to fi~ure out which
character in the content string array corresponds to a given
window position.

The Ampersand Commands

Cont.rol Region em-ands

Page 151

These commands deal with the control regions in the front window:
the horizontal and vertical scroll bars, including the thumbs.

ActivateControl

&ACTVTCTL(CTL%,DIS%)
CTL% = which control region

1 = vertical scroll bar
2 = horizontal scroll bar

DIS% = disable flag
o = disable
1 = enable

FindControl

&FDCTL(WX%,WY%,CTL%,PC%)
WX% = window X coordinate
WY% = window Y coordinate
CTL% = control region point is in:

o = content
1 vertical scroll bar
2 = horizontal scroll bar
3 = none of the above

PC% = part of the control point is in:
o = inactive control
1 Up/Left-Arrow
2 = Down/Right-Arrow
3 = page up/left region
4 = page down/right region
5 Thumb

SetCtlMax

&STCTLMX(CTL%,NM%)
CTL% = control to set new maximum for:

1 = vertical scroll bar
2 = horizontal scroll bar

NM% new maximum for control range (must be > 1)

TrackThumb

&TRCKTHMB(CTL%,TP%,MF%)
CTL% = which control to update Thumb for:

1 = vertical scroll bar
2 = horizontal scroll bar

TP% new Thumb position

Page 152

MF% = move flag:
~ Thumb didn't move
1 = Thumb did move

UpdateThumb

Chapter 5: The Applesoft Interface

&UPDTTHMB(CTL%,TP%)
CTL% = which control to update Thumb for:

1 = vertical scroll bar
2 = horizontal scroll bar

TP% = new Thumb position

Utility Commands

These commands provide utility functions not included in the standard
Tool Kit commands.

Get Window Info

This ampersand command fills the WI% array with the current values of
the array originally set in &OPNWNDW. An application program can use
it to obtain values changed by the Tool Kit by user actions--for
example, current width and length after a call to &GWNDW (GrowWindow).
The WI% array need not be the same as the one in the original call to
&OPNWNDW.

Important: The dimensioned variable called WI% here must be
dimensioned to at least eighteen; otherwise, the call will
return an error.

>WNFO(ID%,WI%)
ID% = window ID number
WI% = window information array, as dimensioned in &OPNWNDW.

DesktopError

Errors that are generated by the Tool Kit return an Applesoft error
number 53, ILLEGAL QUANTITY; when this happens, a call to &DSKTPERR will
return the Tool Kit command and error number. The Applesoft Interface
itself can also generate other Applesoft errors such as SYNTAX ERROR and
OUT OF MEMORY.

The Ampersand Commands

&DSKTPERR(CN%,EN%)
CN% = command number of the last call made to the Tool Kit
EN% = error code returned by that command: 0 = no errors

NextWindow

Page 153

Starting with &FRNTWNDOW and using this call repeatedly until 12% = ~,

the program can select each window on the screen, in order of depth,
testing or changing them as it goes.

&NXTWNDW(Il%,I2%)
11% = input window ID number. 11% = ~ selects front window.
125 = output ID of the next window. If none, 12% = ~.

Set Interrupt Mask

This command sets the interrupt mask bit in the 6502's status
byte. If IB% = 1, the bit is set--that is, interrrupts are
disabled. If IB% = ~, the bit is cleared and interrupts are
enabled.

WARNING
This is a
anything,
Tool Kit.
the final

dangerous command. It does not save or restore
nor does it update any status information in the
It is included for debugging, and may not be in

version of the Tool Kit.

&STIMB(IB%)
IB% = value to set interrupt mask bit (0 or 1)

Page 154

Page 155

Appendix A

The AppleMollse II Interface Card

To use the Apple mouse with an Apple II, Apple II Plus, or
Apple lIe, you need the AppleMouse II Interface Card installed in one
of the expansion slots (Apple recommends using slot 4). Like most
Apple peripheral cards, it contains I/O firmware that is
executed by the 65~2 central processor whenever you access the slot.
The mouse interface card also contains its own microprocessor with
firmware and a timer. The microprocessor on the card keeps track of
the position of the mouse and the state of the button on the mouse.
The microprocessor handles the transfer of mouse information and other
communications between the card and the central processor.

Passive Versus Active Operation

Most positioning devices used with the Apple II, such as the joystick
and the graphics tablet, are passive devices: they don't require any
processing until an application program requests information from them.
The mouse, on the other hand, is an active device, at least at the
hardware leyel: movement of the mouse requires. immediate attention to
keep the system from losing track of its position and direction.

A computer normally handles this need for immediate response by means
of interrupts. When the mouse is moved rapidly, it generates
interrupts often enough to have a significant impact on the computer's
operation. If the computer is engaged in other tasks that are
dependent on precise timing, as the Apple II often is, the added burden
of processing the interrupts from the mouse can be intolerable.

To reduce the interrupt burden on the Apple II's processor, the
AppleMouse II uses an intelligent interface card. The card has an
MC68~5 microprocessor that is dedicated to keeping track of the mouse,
thus making it possible for the AppleMouse II to operate as either an
active device or a passive device. In the Passive Mode, the MC68~5

determines the instantaneous movement and direction of the mouse and
stores the information on the card until the processor in the Apple II
requests the information. Thus, the AppleMouse II can act like a

Page 156 Appendix A: The AppleMouse II Interface Card

passive device in applications that cannot tolerate interrupts, or,
for applications where interrupts are appropriate, it can operate as
an active device.

Mouse Interrupts

One reason to use the mouse in Interrupt Mode is to be able to move a
cursor on the display screen without the flicker produced by updating
the cursor during the wrong part of the display refresh cycle. In
Interrupt Mode, the AppleMouse II generates interrupts that are
synchronized with the vertical blanking interval.

The Apple lIe has a signal named VBL, but it isn't available as an
interrupt. The VBL signal is not available at all on an Apple II or
Apple II Plus, so the mouse card has a hardware timer that it uses to
generate interrupts synchronized with the vertical blanking interval.

Because the AppleMouse II transmits an interrupt request only at the
beginning of a vertical blanking interval, it cannot generate
interrupts faster than 60 times per second. This limits the number of
mouse interrupts and keeps the mouse from monopolizing the central
processor.

The TimeData Firmware Call

There is a little-used call in the firmware on the AppleMouse II card.
That call sets the interrupt rate to either 50 or 60 Hz. The default is
6~ Hz., which keeps the VBL interrupts the card generates in step with
the true VBL on a North American Apple II. For European machines, the
VBL rate is 50 Hz.

The low byte of the TimeData entry-point address is $CnIC. Input data
is in the accumulator. With the accumulator set to ~, TimeData sets
the VBL rate to 60 Hz. With the accumulator set to 1, the call sets
the VBL rate to 5~ Hz. The only valid accumulator contents for this
call are 0 and 1. On output, the carry bit is clear and the screen
holes are unchanged.

You should call TimeData just before calling InitMouse. If you do not
call TimeData first, the VBL rate will be set to 60 Hz when you call
InitMouse.

Page 157

Appendix B

The Mouse Firmware Interface

On the Apple IIc t the interface hardware and firmware for the
AppleMouse II is built in. On the Apple IIe t the user must install a
mouse interface card in order to use the AppleMouse II. The interface
card for the AppleMouse II contains the firmware that communicates
with and controls the mouse hardware.

The Apple II MouseText Tool Kit uses the mouse firmware in the
Apple lIc orin the card in the Apple lIe to operate the mouse. This
appendix describes the interface to the .. firmware.

Note: If you do all your mouse operations via Tool Kit
commands t you do not need to communicate directly with the
mouse firmware and so do not need to learn the material in
this appendix.

Finding the Mouse Card

The AppleMouse II interface card can be installed in any peripheral
slot except slot 0; use of slot 4 is recommended but not required.
The firmware on the card stores signature bytes in five of the memory
locations assigned to the slot it is in. The addresses and values of
the signature bytes are as follows:

Page 158

Address Value

$Cn{l5 $38

$Cn07 $18

$Cn{lB $~1

$Cn~C $20

$CnFB $D6

Appendix B: The Mouse Firmware Interface

The letter n in the addresses stands for the slot number. Your program
can determine which slot the mouse card is in by reading the memory
locations for each value of n from 1 to 7 and comparing the values with
the values shown above.

Reading Mouse Data

The mouse firmware stores position and status information in the
display buffer locations reserved for the slot the mouse card is in
(the screen holes, also called mouse holes). When you call the
ReadMouse routine or the ServeMouse routine (described later in this
appendix), the firmware updates the information in the mouse holes.
Your program can address these locations by using the slot number as
an index, as indicated by the letter n in Table B-1.

By the way: Chapter 6 of the Apple lIe Reference Manual
describes the way you address the reserved screen locations.

WARNING
If your program ever uses the auxiliary memory in the
Apple lIe, be sure that you get all the switches set hack to
main memory before you use the Tool Kit. If you write data
into the reserved screen locations in the auxiliary memory,
not only will the mouse firmware not read them, but you may
cause other firmware to malfunction (spelled c-r-a-s-h).

Reading Mouse Data

Table B-1. Screen Locations for
Mouse Data

Address Contents

$478 + n Low byte of X position

$4F8 + n Low byte of y position

$578 + n High byte of X position

$5F8 + n High byte of y position

$678 + n (used by the firmware)

$6F8 + n (used by the firmware)

$778 + n Button and interrupt status

$7F8 + n Current Operating Mode

Page 159

In its normal operatin~ position (oriented with its cable directed
away from the user). the value of the X position coordinate increases
as the mouse is moved to the right and the value of the Y position
coordinate increases as the mouse is moved toward the user. The maximum
values of X and Yare -32768 to +32767. but the firmware normally clamps
them to the range 0 to +1023 ($0 to $3FF). You can change the clamping
range by calling the ClampMouse routine. which is described later in
this appendix.

The smallest mouse movement ·that the mouse hardware can detect is one
count in either the X or Y direction; that is equivalent to about ~.~1

inch (0.3 rom) .~The largest movement that the hardware can handle is
16 bits in either axis. A change of position from -32768 to +32767
corresponds to about 60 feet of mouse movement.

The bits in the button and interrupt status byte are assigned as
shown in Table B-2. where a value of 1 means the function is true.

Page 160 Appendix B: The Mouse Firmware Interface

Table B-2. Button and Interrupt
Status Byte

Bit #

7

6

5

4

3

2

1

Function

Button is down

Button was down at last reading

Mouse moved since last reading

(used by the firmware)

Video blanking interrupt

Button press interrupt

Mouse movement interrupt

(used by the firmware)

Operating Modes

When you turn on the power,the firmware comes up in the off condition
with its X and Yposition registers set to 0. You activate the
firmware by loading the accumulator with a mode byte and calling the
SetMouse routine. The settin~s of the bits in the mode byte determine
the mode of operation, as shown in Table B-3.

Operating Modes

Table B-3. Bits in the Mode Byte

Bit # Function

7-4 (used by the firmware)

3 Enable interrupt on video blanking (VBL)

2 Enable interrupt on next VBL after button pressed

1 Enable interrupt on next VBL after mouse movement

~ Turn on the mouse

Page 161

You can enable any combination of interrupts by setting the appropriate
bits in the mode byte. You can set mode combinations that don't make
sense, such as $~2: Mouse Off plus Enable Interrupt On Mouse Movement,
which acts just like $~~: Mouse Off.

Setting the low bit in the mode byte to ~ turns off certain functions
of the mouse: the mouse position is not tracked, calls to ReadMouse
don't update the status byte or the screen holes, and button and
movement interrupts are not generated. Other mouse functions will work
as usual: PosMouse and ClearMouse will change the mouse position data,
ClampMouse will set new values, and so on. Turning the mouse on and off
by changing the mode byte does not reset any mouse values •

.WARNING
You must not set the high bits of the mode byte. Mode byte
values greater than $~F will cause the SetMode routine to
return an illegal-mode error.

Passive Mode

Calling the SetMouse routine with a mode byte of $~1 puts the firmware
into Passive Mode (no interrupts occur). Passive mode is the simplest
way to use the mouse, and it is the only way to use it in systems with
peripherals that cannot tolerate interrupts.

Page 162 Appendix B: The Mouse Firmware Interface

In Passive Mode. the interface card stores mouse information without
affecting the operation of the CPU. When your program calls the
ReadHouse routine. the firmware updates the mouse information in the
screen locations. where your program can read it.

Interrupt Mode

If your program uses interrupts. it must include an interrupt handling
routine that calls the ServeMouse routine. The ServeMouse routine
determines whether the interrupt was caused by the mouse. If it was,
the ServeMouse routine calls ReadMouse.

Depending on the setting of the mode byte. the firmware can interrupt
the CPU on one or more of the following events:

Mouse motion

- Mouse button pressed

- Display video blanking

You can set the mode byte to $~8--mouse off. VBL interrupt on--
to generate interrupts on display video blanking (VBL) only.
Regardless of the kind of event that causes the interrupt. the mouse
hardware will interrupt the CPU only at the beginning of the video
blanking interval. which occurs every 60th of a second. This enables
your program to update the display between screen refresh cycles and
avoid making the display flicker.

Unclaimed Interrupts

There is a bug in the AppleMouse II firmware that can effect the way
ServeMouse works. If the application program takes more than one
video blanking cycle (normally about 16 milliseconds) to respond to
a mouse-generated interrupt. there is a chance that ServeMouse will
not claim the interrupt. In a ProDOS or Pascal environment. this can
be fatal. Tnere are several possible ways to avoid this problem.

One approach. if you are not working under a system like ProDOS or Pascal,
is to make sure that unclaimed interrupts aren't fatal to your system and
just ignore them. Another solution is to make sure that you always
service interrupts within one VBL cycle (one sixtieth of a second). If
you have to turn off interrupts for that long or longer. you should first
use SetMouse to set the mode to '/J and call ServeMouse to clear any
existing interrupt.

If you are working under an established operating system. like ProDOS or
Pascal. for which unclaimed interrupts are fatal. you can use one of the
following suggestions to make sure that all interrupts are claimed.

Operating Modes Page 163

If the mouse is the only interrupting device, write your interrupt handler
so that it claims all interrupts.

If the mouse is not the only interrupting device, there are three ways of
handling the problem. One is to write the mouse interrupt handler to claim
all unclaimed interrupts and make sure that it is installed last. Another
method is to write a spurious interrupt handler (sometimes called a
demon), not associated with any device, that claims all unclaimed
interrupts. This interrupt handler must be installed last. The third
method is to include code in every interrupt handler to determine
whether that interrupt handler is last. If it is, then that interrupt
handler claims any unclaimed interrupts, even if not generated by its
device.

Making Calls to Mouse Firmware

Your programs make calls to the mouse firmware by means of a table that
conforms to Apple Firmware Protocol 1.1, described in the Apple lIe
Design Guidelines as Pascal 1.1 Protocol. Table B-4 contains the low
byte of the entry address of each of the firmware routines. (The high
byte of each address is $Cn, where n is the number of the slot the
mouse interface card is in.) The address bytes are stored in
locations $Cn12 through $Cn19, arranged as shown in Table B-4.

Page 164 Appendix B: The Mouse Firmware Interface

Table B-4. Entry Point Address Bytes

Location Contents

$Cn12 Low byte of SetMouse entry~point address

$Cn13 Low byte of ServeMouse entry-point address

$Cn14 Low byte of ReadMouse entry-point address

$Cn15 Low byte of ClearMouse entry-point address

$Cn16 Low byte of PosMouse entry-point address

$Cnl? Low byte of ClampMouse entry-point address

$Cn18 Low byte of HomeMouse entry-point address

$Cn19 Low byte of InitMouse entry-point address

Thus, for a mouse card installed in slot 4, you can calculate the
entry address for the SetMouse routine by adding $C4~0 to the contents
of location $C412. Your program can use the values in the table to
construct a jump table to use for calling the routines.

By the Way: You must disable interrupts before calling the
mouse firmware.

Parameter Passing

Before calling any of the firmware routines, your program must load the
X and Y index registers with the number of the slot the mouse card is
in, as follows:

X index register: $Cn

Y index register: $n~

Making Calls to Mouse Firmware Page 165

Your program passes information to certain firmware routines via the
accumulator and the screen locations, as noted in the descriptions of
the routines.

When your program regains control, the contents of the accumulator
and the index registers will be undefined, except as noted in the
descriptions of the routines. The carry bit indicates the error
status of the routine just ended:

Successful execution: C 0

Unsuccessful execution: C = 1

The Firmware Routines

This section describes the functions of the firmware routines whose
entry-point addresses are given in the previous section.

SetMouse

SetMouse starts the mouSe operating in the mode indicated by the
contents of the accumulator, as defined in the "Operating Modes"
section earlier in this appendix. If the mode byte is greater
than $0F, the routine will return with the carry bit set to one,
indicating an error. This routine does not clear the screen locations
used for storing mouse data.

ServeMouse

If the pending interrupt was caused by the mouse, ServeMouse sets the
status byte at location $77R + n to show what event caused the
interrupt. Upon return from this routine, the carry bit is set to 0
if the interrupt was caused by the mouse; otherwise, the carry
bit is set to 1. This routine does not update the other mouse screen
locations.

Note: This routine is an interrupt service routine; it does
not require particular values in the accumulator or the
index registers.

--

Page 166

ReadMouse

Appendix B: The Mouse Firmware Interface

Readmouse transfers the current values of the mouse X and Y position
and button data into the appropriate screen locations and sets
bits 1, 2, and 3 of the status byte at location $778 + n to 0. On
return, the carry bit is 0.

ClearMouse

ClearMouse sets the mouse's X and Y position values to
on the interface card and in the screen locations. It
the contents of the interrupt and button status byte.
carry bit is tfJ.

PosMouse

zero, both
does not change
On return, the

PosMouse sets the mouse X and Y position to the values in the screen
locations. On return, the carry bit is 0.

WARNING
Do not change the contents of any screen locations other
than the X and Y position locations.

ClampMouse

ClampMouse sets the clamping bounds for either the X or Y position
value. To clamp the X direction, load the accumulator with a 0; to
clamp the Y direction, load the accumulator with a 1. Store the new
bounds in the slot 0 screen locations, as follows:

$478
$4F8
$578
$5F8

low byte of. lower clamping bound
low byte of upper clamping bound
high byte of lower clamping bound
high byte of upper clamping bound

On return, the carry bit is 0 and the X and Y position screen
locations are undefined. To get valid position data, you have to call
the ReadMouse routine.

The Firmware Routines

HomeMouse

Page 167

HomeMouse sets the internal position values to the upper-left corner
of the clamping window. On return, the carry bit is ~ and the X
and Y screen locations are changed.

lnitMouse

InitMouse sets internal mouse data to default values and synchronizes
the interrupt timer on the card with the display vertical blanking.
On return, the carry bit is zero and the screen locations are
unchanged. To get valid position data, you have to call the ReadMouse
routine.

VADlING
On the Apple II plus, the InitMouse routine clears the
Hi-Res screen in order to synchronize its timer with the
vertical blanking, so you should display Hi-Res graphics
only after you have called InitMouse.

Page 168

Page 169

Appendix C

The Mouse Pascal Attach Driver

What's-It-All-About Department: The material in this
appendix is not part of the MouseText Tool Kit. It is
included here because it is new and is not described in any
existing manuals.

Installing the Monse Pascal Attam Driver

The Pascal disk that came with the Tool Kit contains two versions of
the Pascal mouse I/O attach driver. It also contains the file
SYSTEM. ATTACH , which performs the attach operation each time the user
starts with it on the system disk. If the mouse driver is the only
one you need to attach, all you have to do is copy the appropriate
files onto your system disk. Table C-l contains a list of the files
on the Pascal disk that came with the Tool Kit.

Page 170

Table C-l. Attach Files

Appendix C: The Mouse Pascal Attach Driver

File Name

SYSTEM. ATTACH

ATTACH. DRIVERS

ATTACH. DATA

M. ATTACH. DRIVER

M.ATTACH.DATA

Contents of File

The system code file that performs the
attach operation each time the system is
initialized.

Driver with its own interrupt manager.

Data for driver with own interrupt manager.

Add to existing drivers with interrupts.

Data to add to drivers with interrupts.

There are two versions of the ATTACH.DATA and ATTACH.DRIVERS files,
one with interrupts and one without. If the mouse is the only source
of interrupts in your system, use the files named ATTACH. DRIVERS and
ATTACH. DATA • If you already have other attach drivers that include
an interrupt handler, you can add just the mouse driver by using the
files named M.ATTACH.DRlVER and M.ATTACH.DATA. To do this, you'll
have to use the Library Program to make a new ATTACH. DRIVERS file with
the mouse driver added to your other attach drivers. You'll also have
to execute the ATTACHUD.CODE utility program to make a new ATTAr.H.DATA
file. For a complete description of Pascal attach drivers and the
procedures to follow in installing them, see Pascal Tech Note #11.

About Pascal Atta~ Drivers

Pascal 1.1 and Pascal 1.2 for the Apple II include a method for adding
custom I/O drivers to the system. To add a driver using this method,
you have to use the programs ATTACHUD.CODE and SYSTEM. ATTACH provided by
Apple.

When the system is initialized, part of the program SYSTEM. PASCAL looks
for the program SYSTEM. ATTACH on the main system disk. If program
SYSTEM.ATTACH is present, the system executes it before executing
SYSTEM. STARTUP. SYSTEM.ATTACH, in turn, uses files named ATTACH.DATA
and ATTACH.DRIVERS, which must also be on the main system disk.
ATTACH. DATA is the file you created using the ATTACHUD program, and
ATTACH. DRIVERS is a library file that contains all of the drivers being
attached.

SYSTEM. ATTACH installs the attach drivers in the Pascal heap space below

Installing the Mouse Pascal Attach Driver Page 171

the point where ordinary programs access it. This reduces the stack and
heap space available to the program by an amount equal to the size of
the drivers.

The Pascal Interface

Table C-2 shows the Pascal I/O calls for each of the mouse firmware
entry points. An outline of the functions of the direct I/O
calls follows.

Table C-2. Pascal I/O Calls

Firmware entry point

PINIT
PREAD
PWRITE
PSTATUS
SETMOUSE
SERVEMOUSE
READMOUSE
CLEARMOUSE
POSMOUSE
CLAMPMOUSE
HOMEMOUSE
INITMOUSE

Direct I/O call

none
none
none
none
UNITSTATUS control code ~

interrupt handler
UNIT READ
UNITCLEAR
UNITSTATUS control code 1
UNITSTATUS control code 2
UNITSTATUS control code 3
UNITCLEAR (first time only)

UNIT CLEAR
reset mouse position to ~, ~.

reset user interrupt address to No-op.
reset clamping to default values [(~, 1~23), (~, 1~23)1.

UNITREAD
read x, y button status
The read buffer should be defined as follows:

ReadBuffer: record
X: integer;
Y: integer;
Button: integer;

end;

Page 172

UNITWRITE
No-op.

Appendix C: The Mouse Pascal Attach Driver

UNITSTATUS
CONTROL CODE 0: set Mouse Mode and user interrupt address
The control data buffer should be defined as follows:

Buffer: record
MouseMode: integer;
IntAddr: integer;

end;

IntAddr should be obtained by a call to the user's interrupt handler.
(See the GetIntAddr procedure in MouseInt.Text). If IntAddr is zero,
the user interrupt address will be set to a No-op (RTS instruction).

CONTROL CODE 1: set mouse position
The control data buffer should be defined as follows:

Buffer: record
X: integer;
Y: integer;

end;

CONTROL CODE 2: clamping
The control data buffer should be defined as follows:

Buffer: record
MouseLeft: integer;
MouseRight: integer;
MouseTop: integer;
MouseBottom: integer;

end;

CONTROL CODE 3: Home mouse.

STATUS CODE 0: return Mouse Mode and interrupt address
The status data buffer should be defined as follows:

Buffer: record
MouseMode: integer;
IntAddr: integer;

end;

STATUS CODE 1: No-op

STATUS CODE 2: return clamping values
The status data buffer should be defined as follows:

The Pascal Interface

Buffer: record
MouseLeft: integer;
MouseRight: integer;
MouseTop: integer;
MouseBottom: integer;

end;

STATUS CODE 3: No-op.

Interrupts

Page 173

Call SERVEMOUSE.
Call user interrupt handler. If no user interrupt, the call defaults
to a No-op (RTS instruction).

Page 174

Page 175

Appendix D

Sample Progr3JII

This appendix contains a sample program showing how to use the mouse and
the Tool Kit. The disks that contain the Tool Kit routines also contain
three versions of a sample program, in Pascal, Applesoft, and assembly
language. All three sample programs are functonally the same. The
pseudocode listing that follows is similar to those sample programs, but
it is not identical. To find out exactly what the sample programs look
like, you should list them from the disk.

The pseudocode program is an example of the way the Tool Kit is intended
to be used. The program includes the following functions.

- start the desktop
- set up menus
- set up a cursor
- track the mouse
- display a pull-down menu

enable and disable an item in a menu
- open a window
- select a window
- drag a window
- grow a window
- scroll the contents of a window
- close a window

The user stops this program by selecting the "Quit" item in the menu.

Pseudocode Listing

Here is the pseudocode listing of the program.

call StartDeskTop
call I nitMenu
call SetMenu(DemoMenu)
call ShowCursor

start up the Tool Kit
allocate screen save space
set up our menus
turn on cursor

Page 176

call InitWindowMgr
quitflag := false

while not quit flag do
call CheckEvents
call GetEvent
case eventtype of

button up, no event, drag_event,
do nothing -

keypress : call HandleKeys
button down : call HandleButton

end case
end while
do any clean up
end program

HandleKeys :
if open_apple_key down do

call MenuKey
call MenuCase

end if
return

HandleButton
call FindWindow
case event location of

in desktop : do nothing
in-menu : call HandleMenu
in-content : call DoContent
in-drag bar : call DragIt
in-grow-: call DoGrow
in close : call CloseIt

end case
return

HandleMenu
call HenuSelect
call MenuCase
return

MenuCase
if menu id = 0

then do nothing
else do

case menu id & menu item
do corresponding operation

end case
call HiliMenu(~)

return

DoContent
call FrontWindow

Appendix D: Sample Program

allocate screen save space for window
used to terminate program

, main loop
* no longer needed in version 2 *

get the next event in event queue
base action on type of event returned

open_apple_drag_event :
we are ignoring these
handle keyboard input from user
handle button down on mouse

end of main loop

end of program

character input is enter here
check for commands
translate into menu command
and execute it

where did button go down ?
base action on where it occurs

menu bar, menu operation
content region, find out more
drag bar, drag the window
growth region, grow the window
close the top window

have toolkit perform selection
execute selection

execute the menu selection

nothing selected

task is done, turn off highlight

button down inside a window
find front window id

Pseudocode Listing Page 177

use local coordinate
find if it occur in control

if button down does not occurs in front window
then call SelectWindow bring that window to front
else do

call ScreenToWindow
call FindControl
case point is in

in_content: depend on application, nothing here
in vertical scroll bar, in horz scroll bar:

call ScrollBar - -; perform-scrolling
in dead zone : do nohing

end case
return

ScrollBar
case where in scroll bar

arrow, page :
scroll 1 or n lines
call UpdateThumb

thumb:
call TrackThumb
if thumb moved then

end case
return

Draglt
call SelectWindow
call DragWindow
return

DoGrow
call GrowWindow
if size_changed do

call SetCtlMax
call ActivateCtl
call WinBlock

return

udpate thumb position

let toolkit track thumb movement
scroll accordingly

bring window to front if it is in back
let toolkit follow the drag

let toolkit follow the growth
if size of windwo changed extra work
thumb position etc may he changed
scroll bar may become active/inactive
window is blank afterwards, update it

Page 178

Page 179

Appendix E

MouseText Characters

The character generator ROM in the Apple lIe includes a set of text
icons in the alternate character set. Apple is planning to make these
icon characters available on the Apple lIe as well. The primary
purpose of the new icon characters is for producing interactive
displays using the Apple Mouse or other pointing devices.

The new icon chara~tersreplace one of the sets of inverse uppercase
letters (and a few special c.haracters) in the alternate character set
(selected by the>AtTCHARSET soft switch). To print the icon cha.racters .
with the MouseText Tool Kit installed, use the ASCII character values
from 128 through 159. ($8~ through $9F) , as shown in Figure E-l.

ASCII Note: The Tool Kit interprets ASCII codes as follows:
~-31: control characters or mouse.text

32-127: normal video
128-159: MouseText characters
16~255: inverse video

In the fut:llre,the range from ~"31 may be used as control
codes only. Therefore, you should use the range from
128-159 for MouseText.

Page 180

Figure E-l The Mouse Text Icon
Characters

Appendix E: MouseText Characters

c <~) 1 {A} ~ (13) :J <c> 4 (Ij> ~ <E) e <F> 7 <G)

• I .. l.tII•••• ••••••• . 111.1

•• •• •• •• • •••••• •• •••••••• ••. 11111. I I. I. I. II••••. I ••••• 111ft

••••••• • • I •. I . II.. •• ••• •• •• ••••••••• • I . •••• •• •• •• •. II .••• •• •••• G••

•••••• •• •• ••tII•. •• •• •• ••••••• In II

•••••• •. I . • ••• •• •• •• •• II_... ••• ••• ••• ••• •• • II•••••• ••••••• •• •••
e <H> ~ {I} 10 <.J> 11 <10 1:2 <I..} 1::3 <M> 14 <N) 1~ (0)

III. I. •• • •••••• •• •
1iI. •• ••••• • ••••••• ••

•• •• •• •• •• •••••••••• •• •• • • ... • a..... ••••••
1iI •• •• • •• ••• III ••••• III.•.•. •• ••••••• ••••••• ••.. • ••••• •••• •• •• · •••••••
1e <p> 17 <Qj 1S<R> . 1'" <$> :zo <1'>- :21<U> ::z. <v> ::l <\oJ>
•• •• • • II. •. Ii.•. • .•. D. I.. •• • •••• •• •• ••••••• • • I.... •• ••••,. •• •••••• I • • •....... ••••••• ••• ••• • • •..... .11•••. ••••••• •• •• •• •• ••• • II... •••• · .. I. . . I . I .•.•.• II.•.•

•• •• • · I. I .. . •• I .•.•. • • •. I.. •••• • . • 1iI I .•.•.• • • •
;:4- {X> == {V} ~b <~'1. 27 (I; > :ze {\> :29. <J> ::30 {"" > .." , :.. .- '-• •• ••••••• •• •• •••••• • •••• • •

•• • • •••••• ••••••• • •• • • ••••••• ••• • I

• I I ••••• '11 . • III.. • I I ••. •••• • •II•••••• ••••••• • I. I. III • •I ••••••• ••

Page 181

Append.i..x F

Tool Kit Error Codes

Table F-1 is a cumulative list of the error codes returned in the
6502's accumulator when a MouseText Tool Kit command encounters an
error condition. The error codes returned by each command are listed
with the commands in Chapter 2.

In addition to the error codes returned by individual commands,
the first three listed here are generic error codes that can be
returned by any command.

Page 182

Table F-l. MouseText Tool Kit Error
Codes

Appendix F: Tool Kit Error Codes

--

1 ($~1)

2 ($~2)

3 ($~3)

4 ($~4)

5 ($~5)

6 ($~6)

7 (S~7)

8 ($~8)

9 ($~9)

Illegal command number

Wrong number of parameters

StartDeskTop hasn't been called

Machine or operating system not supported

Invalid slot number (less than ~ or greater than 7)

Mouse Interface Card not found

Interrupt mode in use (Program specified interrupt
mode in StartDeskTop, so it can't call CheckEvents.)

Menu ID was not found

Item Number is not valid

1~ ($~A) Save area (from InitMenu) is too small

11 ($~B) Tool Kit could not install interrupt handler

12 ($0C) Window with same ID already open

13 ($0D) InitWindowMgr buffer too small for this window

14 ($0E) Bad Winfo -- tried to open window with ID = 0, or
conflicting max and min width or length

15 ($0F) Window ID number not found

16 ($10) There are no windows

17 (SII) Error returned by user hook routine

18 ($12) Bad control ID (not 1 or 2)

19 ($13) Event queue full, event not posted

20 ($14) Illegal event, event not posted

21 (SIS) Illegal UserHook ID numher (not 0 or 1)

22 ($16) Operation cannot be performed

APPLE II HUMAN INTERFACE TOOLS

A good human interface is vital to your software product's success.
Top-selling applications packages are those that are simple to learn,
easy to remember, consistent, and efficient, as well as reliable and
accurate.

Apple Computer has developed guidelines and a number of human
interfac~ tools for applications software development, reflecting years
of collective human/computer research. We offer the Apple II human
interface tool kits summarized here for inclusion in your new or updated
Apple II software products. Potential benefits include "friendly" user
interaction, reduced development time/costs, improved product
reliability, and easier Apple II/Macintosh software portability.

Apple II Human Interface Models

Because no single style of interface is appropriate for every
application, we support two approaches to human interface design for the
Apple II. These are the "Filecard" and "Desktop" paradigms.

Filecard Interface

The Filecard interface was first used by Apple II's Appleworks (see
accompanying example). Overlaying filecards on the screen visually
represent the different menu levels with the paths available to the
user. Options or activities are arranged in a hierarchy. Functions are
performed in a specific order. We recommend the Filecard interface for
applications where. the program must exercise restraint and guidance over
the user's ac tivities. It is also a good choice for upgrading your
existing, menu-driven software: It offers the visibility of modern
software design without requiring.major restructuring.

Desktop Interface

The more flexible,
design principles and
represents a desktop,
different "documents" on
close box, grow box, and

relational Desktop interface follows Macintosh
calling conventions. The Apple II screen
with multiple screen windows .representing

the desktop. Graphic components--the drag bar,
scrollbar--control window operations.

Software using this human interface is driven by events from the
mouse, keyboard, and the application. Using the mouse or cursor keys
wi th pull-down menus from the desktop menu bar, the user has a broad
range of activities available at once. Graphic images can be used with
text output.

"''',Ii'!',
;-j .~,-l,

- 1 -

AErIe l! Human Interface Software

Three sets of human interface software tools are now available for
Apple II software developers: a Filecard Toolkit, a MouseText Toolkit,
and a MouseGraphics Toolki t. Mos t toolkit modules are available for
Pascal, Applesoft, and assembler, except as noted.

Text-Mode "Filecard"-Style Toolkit

Four software modules are provided in this set of tools: a User
Input Routine, a Console Driver, a Pascal "ConsoleStuff" Unit, and a
Pas cal Filecard Menu Support Unit. The modules may be used
independently, except that the Pascal units require the console driver.

User Input Routine. This software module implements the standard
Apple keyboard input, specified in the Apple II Human Interface
Gui~elines. Editing commands are supported, as are interrupt and
termination characters. An insert cursor, replace cursor, default
string, and fill characters can be customized to suit your application.
An "immediate" mode is available, should your application need special
control during the input process--e.g., for "live" syntax checking. The
User Input Routine can be used with assembler, Applesoft, and Pascal
programs. (The Pascal version requires ~he Console Driver.)

Console Driver. The 80-column Console Driver offers fast,
efficient text output and screen control. The utility processes a
buffer of combined text characters and screen control commands in one
call. Commands include viewport and cursor controls, initialization and
clears, and character normal/inverse and normal/alternate controls. The
driver also returns data describing the current screen environment. It
can be called from assembler and Applesoft, and is available as an
"Attach" driver for Pascal.

ConsoleStuff Unit. This Pascal unit offers text formatting aids,
as well as utilities for overlaying message boxes and Help Screens. It
provides a lK buffer for the Console Driver and console buffer setup
aids. (This unit is not required for' Applesoft or assembly-language
programs.)

Filecard Menu Support Unit. This Pascal unit provides utilities
for implement~the Filecard interface. There are utilities for
setting up the screen areas, displaying and removing "filecards",
getting the user's menu selection, and generating error boxes. Other
routines work with the Console Driver to display formatted text. The
uni t includes a facili ty for building your application's hierarchicJll
menu structure. This module is available for Pascal only; however, the
toolkit's documentation provides in-depth design details useful to
Applesoft and assembly-language developers.

- 2 -

The Desktop-Style MouseText Toolkit

With the MouseText Toolkit and the MouseText characters available
now for both the IIe and the IIc, you can implement the Desktop
interface -- all within text mode. The package offers complete support
for mouse- or keyboard- controlled multiple windows, pull-down menus,
and event handling ~ The utilities, designed to parallel Macintosh's
interface tools, provide for menu bars, 40- or 80-col window writing and
dragging, scroll bar control regions, and cursor selection and control.
Error-handling is included as well. The 12K MouseText Toolkit
machine-code package can be used with assembler, Applesoft, and
Pascal-based applications.

Graphics-Mode Desktop Tools

This new package contains two machine-code
independent set of Graphics Primitives and an
Toolkit", which uses the Graphics Primitives.

modules: an 8K
8K "MouseGraphics

Graphics Primitives. This software module supports 40/80-column
text and Double HiRes (560x192) MousePaint-like graphics on the Apple
lIe and lIe. Its utilities can be used to paint lines and polygons of
different widths. Drawings, defined relative to the application's
~oordinate system, can be directed to either the screen or a nonscreen
bitmap. Polygons can be filled with patterns or colors. The changeable
drawing environment includes current pattern, pen location, pen size,
pen mode (eight options), and font. The Graphics Primitives, callable
from assembly language, Applesoft, and Pascal, are based on Macintosh's
QuickDraw graphics package to facilitate applications software
portability.

MouseGraphics Toolkit. This toolkit is similar in function and
structure to the MouseText Toolkit described above. Procedures in this
package support pull-down menus, windows, cursors, and event-handling.
The difference is that it calls on the Graphics Primitives, allowing
your application to present its information in graphic form.

Matching Apple l! Human Interface Tools With Application

The Apple II human interface toolkit best suited for your software
product depends on factors such as application, user, Apple II system,
space, speed, and language. The MouseGraphics Toolki t , for example,
provides for a more flexible, icon-oriented desktop, but it uses more
memory and is slower than the MouseText Toolkit. If you are upgrading
an existing application, you might prefer the hierarchical
filecard-style toolkit over either of the event-driven desktop- style
toolkits. Data in the accompanying chart can help you with your human
interface tool selection.

- 3 -

Apple l! Human Interface Tools - Comparison Chart

Filecard: Desktop:
Input CDrvr CStff FilCd Text Primitive Graphic

lIc yes yes yes yes yes yes yes
128K enhncd lIe yes yes yes yes yes yes yes
128K lIe yes yes no no no yes yes
64K enhnced lIe yes yes yes yes yes no no
64K 80col lIe yes yes no no no no no
64K II+ yes yes no no no no no
Display Mode Text Text Text Text Text Graphic Graphic
I/O Buffer 1K 1K 2K 16K
Module Size 1.5K 3.5K 3K 3.5K 12K 8K 8K
Mouse Support no no no no yes n/a yes
Mouse Req'd no no no no no no no
Pascal Intfc yes yes yes yes yes yes yes
ProDOS/BASIC yes yes n/a no yes yes no
ProDOS/Assy yes yes n/a no yes yes yes

Apple II Human Interface Tools Availability

Apple lIe owners can obtain the Enhanced lIe Upgrade Kit from
dealers. The enhancement is now being integrated into Apple lIe's in
production. The kit is available to certified third-party Apple
developers via Apple's Developer Relations Group (408-996-1010).

Revised Apple II Human Interface Guidelines have been published,
replacing Apple product number A2F2116 11/82.

You can obtain preliminary versions of the Filecard Toolkit,
MouseText Toolkit, and MouseGraphics Toolkit from the Apple II Developer
Support Group. The final software should be available directly from
Apple's Licensing Group by the end of ApriL Licensing fees will be
nominal: $50-$100 per year.

4/17/85--rjr

- 4 -

Path: .profile/tezp

Main Menu

Apple 1l FileCard Sample Screen

DATA BASE Escape: Add Files

•__A_d_d-=-F_i_l_e-::s -.=----------------I-I__
Data Base

Make a new file:

1. From scratch

2. From a text (ASCII) file

3. From a Quick File (TM) file

4. From a DIF (TM) file

Type number, or use arrows, then press Return

- 5 -

157K Avail.

Apple l! MouseText Toolkit and MouseGraphics Toolkit Screens

Close box

Close box

} Title bar
~----.,.~

Scroll errow

Scroll box

Scroll belr

SCroll bar

tlouseGraghi cs

Title belr
Scroll arrow

Scroll box

Scroll bar

SCroll bar

MouseText

- 6 -

4000 .

Apple l! DeskToE Sample Screen

- 7 -

Fil" Edit Aids

fiQp I e .lL Human Int er face

Modification Histort:'

Gu i de lines

1st Draft
2nd Draft
3rd Draft
4th Draft
1st Draft, Macintosh
2nd Draft, Macintosh
1st Release, II
Addendum
1st Draft, II Mouse
3rd Draft, Macintosh
4th Draft, Macintosh
2nd Draft, II Mouse
2nd Release, II, Alpha

Abstflfct:

Bruce Tognazzini
Bruce Tognazzlnl
Bruce Tognazzini
Steve Smith
Joanna Hoffman
Chris Espinosa
Bruce Tognazzini
Bruce Tognazzini
Bruce Tognazzini
Andy Averill
Andy Averi 11
Bruce Tognazzlni
Bruce Tognazzini

9/15/78
3/12/79
6/18/80
2/15/81
3/17/82
10/11/82
1/19/83
8/5/83
11/10/83
7/31/84
11/30/84
1/15/85
3/21/85

This is a rough-cut of the Apple II Human Interface Guidelines that will be
officially released later this year. Because of the time importance of this
information and because the standards themselves are now quite stable,
we have made this pre-release available to you.

These guidelines describe the most basic common features of an Apple II
application. InclUded are two different metaphors: the Macintosh-inspired
desktop, conforming to the Macintosh guidelines and including support for
the user with no mouse, and the Filecard metaphor, popularized in the first
AppleWorks, offering an easy upgrade path for existing, menu-based
app I icat ions.

2 Human Interface Guidelines

TABLE OF CONTENTS

6 Introduction

7 Part I: Introduction to Human Interface Design
7 Goals
7 The Underlying Concepts
7 Familiarity
7 Intuition
9 Gathering Information
10 Incubation
11 Judgement
12 Intuition and the Programmer
12 Intuition and the User
13 Aiding Memorability
14 Increasing Receptivity
15 Putting the Concepts to Work
15 The Metaphor
17 The smooth, sleek model
18 Ease-of-learning and Ease-of-use
19" Leveraged Learning
19 Staged Learning
19 Novice/Expert modes
20 Simplicity
21 Consistency
22 Speed
24 A Planning and Testing Methodology
24 Planning and the User Profile
25 Professional Tax Planner User Profile Study
26 Personal Tax Planner User Profile Study
27 Specifying the Human Interface
27 Exploring the marketplace
27 Ferreting out standards and guidelines
27 Selecting or designing a metaphor
27 Writing the External Requirements Specification
29 Estimating the schedule
29 Testing
30 Apple Presents ••• Apple: a testing test case
32 High-budget testing

32a Part II: The Apple II Generic Human Interface
33 The Hardware
34 The Keyboard
34 Character Keys
35 Modifier Keys
36 Typeahead and Auto-Repeat
36 Versions of the Keyboard
37 Reserved Key Combinations
38 Keys to Ease Foreign Translation
39 The Mouse

TABLE OF CONTENTS 3

39 Generic Software Standards
39 Input
40 Standard Keys
40 The Overstrike (Alternate) Cursor
41 Using the Standard Input
42 Additional Input Specifications
44a Alerts (Error Messages)
44b Error-Trapping

44d Part III: The Filecard Menu Int~rface

44d Introduction
45 Menus
49 The Filecard Metaphor Without Filecards
50 Using the Menu Help Facility
51 Menus: Numbers vs. Letters
52 How to Write a Menu Entry
52 Choosing an Option
53 How to Ask Confirmation Questions Safely
54 Marking Groups of Selections
54 "Press Return to Continue"
55 Arrays and the Filecard Metaphor
56 Alerts
57 Help
58 Vocabulary

58 Part IV: The Desktop Interface
58 About These Guidelines
59 Introduction
60 Avoiding Modes
61 Types of Applications
63 Using Graphics
65 Icons
65 Palettes
65 Components of the Desktop System
66 The Keyboard Mouse
67 The Mouse
68 Mouse Actions
69 Multiple-Clicking
69 Changing Pointer Shapes
70 Selecting
71 Selection by Clicking
71 Range Selection
72 Extending a Selection
72 Making a Discontinuous Selection
74 Selecting With the Cursor Keys
74 Selecting Text
75 Insertion Point
75 Selecting Words
76 Selecting a Range of Text
77 Graphics Selections
77 Selections in Arrays
79 Windows
79 Multiple Windows
80 Opening and Closing Windows

4 Human Interface Guidelines

81 The Active Window
81 Moving a Window--Mouse and Cursor Keys
82 Changing the Size of a Window--Mouse and Cursor Keys
82 Scroll Bars
84 Cursor-Key Scrolling
84 Automatic Scrolling
85 Splitting a Window
86 Panels
88 Commands
88 The Menu Bar
88 Choosing Menu Commands
88 ••• With A Mouse
89 ••• With the Cursor Keys
91 Reserved Key Combinations
92 Appearance of Menu Commands
92 Command Groups
93 Toggles
93 Special Visual Features
94 Standard Menus
94 The ? or Apple Menu
95 The File Menu
95 New
95 Open
96 Close
96 Save
97 Save As
97 Revert to Saved
97 Page Setup
97 Print
97 Quit
97 Other Commands
98 The Edit Menu
98 The Clipboard
99 Undo
99 Cut
100 Copy
100 Paste
100 Clear
100 Show Clipboard
100 Select All
100 Font-Related Menus
101 Font Menu
101 FontSize Menu
102 Style Menu
102 MouseText
102 Text Editing
103 Inserting Text
103 Delete
103 Forward Delete
103 Replacing Text
104 Intelligent Cut and Paste
105 Editing Fields
106 Dialogs, Alerts, and View Boxes
106 Controls

TABLE OF CONTENTS 5

107 Buttons
107 Check Boxes and Radio Buttons
108 Dials
108 Dialogs
109 Modal Dialog Boxes
110 Modeless Dialog Boxes
III Alerts
112 View Boxes
113 Do's and Don'ts of a Friendly User Interface

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution
of this draft in limited quantities does not constitute publication.

Part I:

Introduction To

Human Interface Design

6 Human Interface Guidelines

Introduction
Good Human Interfaces: So Often Elusive

The human interface of a program is as vital to its success in he
marketplace as is its accuracy in performing its task. An
well designed, powerful piece of software or hardware is
if it is poorly human engineered. As Dr. Frank Gilbreth, the
time and motion study said: "It is cheaper and more
design machines to fit men rather than to force men to fit

Human interface design should come into play from the very
A good design is no mean task: expect to expend a great
and programming effort toward a smooth interface. most
with a goodhuman .• interface.,.the. t?tal.human
more design time, is more prone to bugs, and
other part. By offering you this book, along with the
interface tools available from Apple Computer, Inc., we
reduce your share of the human interface effort, leaving
to devote to the power areas of your program.

There are two primary functions of a good human
the product easy to learn, and make it easy to
seriously compromising power and performance.
toward making the kind of hard decisions that
successful, marketable product.

When the Apple II computer first came on the
developers experimented with a wide variety of
were good; some were bad. All were somewhat hard
were unique. As time went on, though, the natural
keyboards, displays, and the computer itself led to
similarity of approach to certain basic problems of

These guidelines represent a careful blending
of the develoment community and the knowledge
research and development project that resulted
computer.

Our systems and peripherals now come with training
that prepare your customers to use programs
guidelines: Use this book and our tools, and your cus
comfortable the first time they see your program at their
they are still making their buying decision.

7

Elements of Style: Designing an Interface that Works!

Goals

There are five goals to a program design:

1. Ease-of-Learning. 2. Ease-of-Use. 3. Satisfaction of human needs
4. Saleability 5. Power and expandability

Most of the science of human interface deals with increasing
ease-of-Iearning and ease-of-use without seriously affecting power and
expandability. Most of the art aims toward satisfying humans' need to
feel warm, comfortable, and protected. All these, plus spark and
flair, add up to products that sell and can be sold. We. assume your
competence as a designer or programmer in creating power and
expandability in your program; the rest of this book will address how
to fulfill the first four goals.

The Underlying Concepts

It is one thing to have the above goals in mind; it is another to be
able to actively and effectively address them. The following basic
concepts form an structure on which you can base both large-scale and
day-to-day design decisions.

1. Familiarity

Familiarity is the single greatest factor in reducing the learning
burden without affecting power and expandability. People feel
comfortable with things they already know. You promote familiarity by
using guidelines such as this, by conforming the flow of your product
as closely as practical to the way your users did things before they
"computerized," and by choosing familiar metaphors, such as desktops
and file-folders, around which to build your programs.

2. Intuition

A few years ago, an engineer at Apple described the ideal interface as
being "familiar and intuitive". During the preparation of this book,
we asked the same engineer again, and he stated that while it was
important for an interface to be familiar, it was no longer necessary
for it to be intuitive. It turned out there was a good reason for
this: computer scientists don't know what "intuitive" means, so we
don't know how to deal with it.

Intuition is real, it has been researched, it has been defined. It is
a powerful mental capability of both the designer and the user, and as
such deserves practical understanding.

The Nature of Intuition

Stated perhaps over-simply, intuition is the ability to discern

8 Human Interface Guidelines

patterns among often seemingly unrelated information. Jung classified
intuition as a perception skill, alongside the taking in of external
sensory information. He classified logical thinking as a judgement
skill, alongside feeling. (He used feeling more in the sense of
ethical consideration than emotional response.)

PerceR1 ion

Sensing

JUdgment

Thinking

Intuition

Feeling

SimRlified Jungian Personality Classification

In the Jungian world, logic and intuition operate at right-angles to
each other. In practice (as described below), they operate
sequentially: intuition, then logic. Seemingly, there should be
little conflict between them, but there is evidence of unending
conflict. .

A prevelent theory states that logic resides primarily in the left lobe
of the brain, the unquestioned location of the speech center, and that
intuition resides primarily in the right lobe. It is also known that
the lobes of the brain are connected in a criss-cross fashion to the
body: the left lobe controls the right side, the right lobe controls
the left side. Therefore, the right-hand side of the body is connected
to the seat of logic, the left hand, to the seat of intuition.

Western society has a traditional culteral bias against the body's left
side, left hand, and therefore right lobe of the brain. French for
left is gauche, defined as lacking social grace, awkward. Latin for
left is sinister. Right is held as truth, justice, morality. For
centuries, left-handed people--who often test higher in intuition than
right-handed people--have been discriminated against.

People with life-threatening epilepsy sometimes undergo an operation to
cut the connecting links (called the corpus calloseum) between the
right and left lobes of the brain. After the first such operations,
scientists were puzzled by the apparent lack of side-effects. However,
further examination began to reveal fascinating new insights into the
relationship of the sides of the brain.

The first, simple test consisted in effect of blindfolding a subject.
They then placed a three-dimentional number 5 in his right hand and
asked that he hold up the number of fingers equal to it. He held ~p 5
fingers. When asked to verbalize the number, he spoke the word,
"five". But when the test was repeated with the number 3 in the left
hand, although he quickly held up three fingers, he was unable to speak
the word, 'Ithree ". This was due to the speach center being located on
the opposite side of the brain. With the connecting links severed,
that lobe had no way of knowing what the left hand held.

The psychologists next tried to find the seats of logic and intuition,
by offering puzzles to each hand, puzzles that were oriented toward
either logical or intuitive solutions. The right hand showed great
skill with logic puzzles, less with intuitive. But the most
interesting thing happened during the left hand's effort to assemble a
logic puzzle. The left hand, although taking several times as long as

9

the right hand, was nevertheless growing close to a solution when the
right hand unexpectedly came over and, rather than helping out,
scattered the pieces of the puzzle allover the table. This agressive
act was witnessed repeatedly with other split-brain patients.

There was a war for supremacy going on in these people's heads, a war
that seemed to reach a truce several months after the operation, with
the left, logic-oriented lobe achieving dominance. When one couples
this strange phenomenon with the empiricle evidence of Western
society's bias against left-handedness, one begins to understand why we
know so little about this profoundly powerful skill--our logical,
concious mind doesn't want to know.

So what is intuition, what is it good for, and how do we use it?
Intuition deals with patterns: pictures, chains of events, clustering
of seemingly irrelevant information. Intuition is a non-verbal skill,
and words cannot effectively describe it. We have to get to it through
metaphor, example, and shared experience.

Intuition operates in leaps: it churns away with no concious thought
and little concious control and then suddenly springs forth with what
is often described as an "Aha!" experience. An example of this takes
place when you learn a new board game: you keep hearing and attempting
to memorize the rules of the game and suggested strategies, but it is
all very compartmentalized and difficult to keep ahold of. Then, all
at once, you "get it": the.entire underlying strategy and purpose of
the game is instantly and permanently obvious.

Those of you who are programmers have undoubtedly experienced working
until 2: 00 in the morning em a seemingly insoluable bug problem,
finally giving up, and going home to sleep.' Then, at 6:30 AM, you wake
up knowing exactly what is wrong and kick yourself for not realizing it
earlier--after all, it is perfectly obvious. .

Reaching a useful conclusion through intuition is a three-stage
process:

1. Gathering information 2. Allowing time for "incubation" 3.
Judging the results

We recognize two kinds of intuition. The first is "women's intuition,"
a remarkable ability to understand human relationships and
interactions. Men also use intuition, but they call it "hunches".
While these two kinds of intuition are different, they arn't as
gender-specific as our culture has declared them; in Eastern culture
both men and women develop powerful abilities to "look through" people.

1. Gathering information. This data may be new sensory information,
coupled with old memories. Because intuition works on drawing together
what is often logically unrelatable data, you should make a concious
effort to be non-judgemental during this stage. Take in everything.

Intuition is an ancient skill, both in evolution and personal
development. Dogs are no intellectual giants when compared to man, but

10 Human Interface Guidelines

they are supremely adept at detecting and reflecting the mood of their
masters from very subtle hints, often more so than the many
psychiatrists and psychologists who have abandoned intuition in favor
of pure intellect. Children are also highly intuitive, often
reflecting the state of their parents' relationship that the parents
are unaware of. As we grow older, we develop logic and slowly push'
intuition away as an· inferior, "childish" skill.

Most of the great scientists and inventors either failed to grow up
"properly" and loose this childhood skill or re-Iearned how to be a kid
again. Intuition works best when you gather information with
child-like wonder and rapt attention. Archimedes had given up on his
logical pursuit of how to measure the purity of the gold in the king's
crown without melting it down. Then, one day, he stepped into his
over-filled bathtub, absorbed the fact that he was splashing.water out,
and realised he was displacing exactly as much water as his own volume.
Coupled with prior knowledge of the relationship between volume and
weight, he had his solution.

As soon as you begin to pre-judge the data streaming in, things begin
to get lost. Eric Berne, the noted psychiatrist, carried out an
experimentation in intuition on 40,000 soldiers being separated from
the Army. He attempted to guess their pre-army careers based on gazing
at them with rapt attention for approximately 10 seconds. His success
rate was quite high--in the.case of soldiers who had previously been
farmers, he was able to guess their prior occupation 74% of the time.
He then analyzed logically what he was doing to come up with these
conclusions, studying facial muscle configuration, body position, eye
movement. When he could analyze no more,heapplied these rules to
additional soldiers, while blocking the child-like attention that he
had used before. His success rate immediately fell by half.

The conclusion? For intuition to have the kind and quantity of
disparate information it needs to function properly, you must turn off
your concious, logical mind's attempt to filter and pre-judge
everything coming in. Relearn the art of being a child, of offering
childlike, rapt attention to people and to problems.

2. Incubation--t~at time between 2 and 6:30AM when you thought you
were just sleeping, but you were also casting about for a pattern that
would solve your bug problem. Incubation can take anywhere from
seconds to days. It stubbornly resists rushing, very much the way
memory will perversly hold back someone's name if you really need it.
Incubation time can be shortened through relaxation,practice, and
encouragement.

It is likely you could have worked on your bug until noon the next day
with no results. The intuitive leap came after you finally relaxed
your concious mind enough for intuition to be able to function. For
most of us, intuition is a rusty, repressed skill. As you begin to
listen to your intuition, the number of intuitive leaps will increase
and the time for incubation will decrease.

The discouraging thing about intuitive leaps is their resulting

11

obviousness. It is childishly obvious, for example, that what goes up
must come down (unless it happens to be exceeding 18,000 MPH at the
time). But when Newton intuited the law of gravity, it was a real
breakthrough. When you do finally find that software bug, the tendency
is to berate yourself for not seeing it earlier. Intuition will be
strengthened and incubation time reduced if you instead congratulate
yourself for being clever enough to find it at all.

3. Judgement

Intuition usually delivers its results to the concious mind in a
convoluted, metaphoric fashion. It is very easy to ignore or misread
the results. Several years ago, a data-base program was under
developement for a computer with large mass-storage. No effort was
spared in making every section of the program as "friendly" as
possible. When a particular task proved somewhat difficult to learn or
use, the task was reduced by picking up bits and pieces of it within
other tasks. The program slowly drifted toward being consistently
somewhat difficult to learn and use.

A consultant was brought in to "simplify the interface, 11 a task he
found difficult: the original designers had done a really good job in
making each section as simple as possible. It seemed simply to be a
super-powerful program that had to be difficult to use because of its
expanded capabilities and features. He struggled with the program for
several days to no avail.

During the last four of those days, he kept remembering an
administrative assistant he had once worked with. The administrative
assistant used to tell all who would listen that he, the. administrative
as sistant, had toclo' all the work around there, that he held the office.
together. The consultant kept pushing this memory away, but it kept
coming back. One evening, he decided to listen to it, and he began to
realize that he had seen such a person in almost every office he had
ever spent time in.

Then he remembered the tiny detail that had been trying to push its way
into his conciousness for days, the detail that led to the re-design
and ultimate success of the product: whenever the administrative
assistant complained about his. terrible.responsibility and crushing
work-load, he always wore a smile. In fact, this administrative
assistant, like so many others, are quite proud of the difficult job
they do; they tend to brag a.bout it in a negative way because they
receive so little appreciation from those around them, and, of course,
it is not polite to brag.

No one had never considered who their audience was beyond their being
"office workers," so the consultant sat down and did a user-profile
study (see: Planning) of what kinds of people would be users of the
system. He discovered three groups of people, the last one being that
administrative assistant his intuition was trying to remind him of:

1. The data-entry persons. These folk would be proficient typists who
initially would be expected to enter a great deal of pre-existing

12 Human Interface Guidelines

information. They might be temporary helpt or they might be people
who normally performed a different job. Their needs were for an
quick to learnt easy to use interface. .

2. The decision-makers. These people would be expected to draw
information from the system t both ~y calling up data on the display
and generating reports. They could be expected to be habitual
users of the system: they could handle a long but gentle
learning-curve that would give them progressively more power.

3. The Key Operator. These people are the ones who t in real life t
read the manuals. They can be expected to spend some time with the
system initially and can be expected to learn how to perform the
more technical operation and maintenance tasks of the system.

Once the users of the system were identified t once their individual needs
were identified t the designers were able to "unbalance" their equally
difficult interface t so that each user had a level of difficulty consistent
with their abilities and the amount of time they could spend learning the
system.

A smiling t complaining administrative assistant is a rather obscure hint
to a program design problem t but it is typical of the way the intuitive
mind communicates its results. Keep in mind that the poor t "primitive"
intuition is quite incapable of speech and logic. On the other hand t it
knew the answer to the problem four days before the logical mind. The
finest intuitive leaps are utterly useless if you fail to listen: learn
to relax when things look the darkest; you may already know the answer.

The Jungian judgement skills are Logic and. Feeling. Of the eight Jungian
classifiers (of which four have been presented here), only one has shown
any gender bias: approximately 60% of men depend primarily on logical
conclusions t while 60% of women depend primarily on ethical
considerations. (This explains a lot of insoluable domestic arguments.)
So-called "women's intuition" is intuition with Feeling judgement, while
traditional men's hunches are intuition with Logic judgement.

Intuition and the Programmer

Programmers and designers can make use of intuition on design and debugging
problems (linked with Logic) and during user-testing (linked with Feeling).
Programmers in a recent test were found to depend on Intuition as the
primary perception skill twice as much as the general population. By
following the above stepst you can increase the power and effectiveness of
your own skill.

In the section on Testing, we will discuss how intuition can be used to
detect problem areas of programs during user-testing, with a method far less
expensive and more effective than computer-analysis of elaborate
questionaires.

Intuition and the User

13

Now that we've laid the foundation for an understanding of intuition, we can
explore the "intuitive interface". 75% of your users depend primarily on
sensory perception. They are the ones who are most helped out by
familiarity and a what-you-see-is-what-you-get approach. The 25% of the
population that depends on intuition are looking for simple, distinct
patterns.

The intuitive interface is restrained, consistent, simple, and
predictable. Techniques that work in one place work in all places. The
intuitive user attemts to internalize a rational model of the program.
Once this is done, he or she will use that model to predict the behavior
of areas of the program not yet explored. Any inconsistencies discovered
require the user to either expand the model or abandon it altogether.
People who depend almost entirely on intuition (a small but significant
proportion of the population), when faced with an erratic program, either
must memorize each area or abandon the program. .

How do you write for these people? Spend time on your conceptual model (see
below) and stick to it: if you must redesign a section of your interface, go
back and reconsider the impact of that change on every other part of the
program. Build designs that will allow future expansion without turning the
original, simple model upside down. We have all been exposed to language
and operating systems that started out simple and have now ended up with
such a topsy-turvy mapping that they seem more like an Adventure game than a
serious environment.

Use conceptual .models that heighten intuitive grasp. Such a model is the
Macintosh windowing illusion, now available for the Apple II family.
Beyond the leverage of familiarity this interface offers you, it is highly
consistent and therefore intuitive. Modes (where necessary)a.re distinct, .
and the resulting behavior changes are predictab.le. It is also expandable
in such a way that the original fabric is not torn apart: an entirely new
power, such as a spelling-checker, can be added to a word-processor simply
by adding an item on a pull-down menu. While you, as a progratnmer,. ma), go
completely nuts attempting to integrate it into the old code (some things
haven't changed), your user will have no problem adding the new power.to his
or her old model.

Aiding Memorability

Our market research has consistently shown that people taper off their
software buying. One of the chief reasons for this is that people tire of
having to learn new software; often their last piece of software was so
difficult for them to learn and memorize that they lost interest.

Programmers often have a superior ability to remember abstractions, such as
numbers, and disconnected details, such as lists of keywords. If you have a
superior memory, you should be particularly sensitive to the needs of more
average people.

The greatest aid to memorization is familiarity: if the person already knows
how something functions, they don't have to memorize anything. By using a
standard human interface, you save your·userfrom having to remember

14 Human Interface Guidelines

anything about your interface--he or 'she learned
second greatest help is a good conceptual model.
easier it is to grasp and remember.

to use it already. The
The simpler the model, the

Current theory of memorization holds that people remember not the event but
a simplified set of r~les which allow the event to be reconstructed. One of
the aids to this process is tying elements to people or events that have
already been learned. This phenomenon can be seen with crime witnesses, all
of whom have different recollections of the same crime. One witness will
remember that the criminal had a bald head, "just like my Uncle Harry".
A teenager may not have remembered anything about the criminal, except he
was old, but will be prepared to discuss in detail the carburator on the
criminal's 1957 Ford.

While details of such reconstructions will be selective and sometimes
conflicting, the primary event will usually be uniform: the man came into
the bank, he robbed it, he left. By making building your program on one
simple conceptual model, generatable by a few powerful rules and
concepts, your user can form his or her own internal model and memorize
the few details necessary to reconstruct it.

Increasing Receptivity

The most easy-to-learn program in the world will not be learned if your user
resists it. You want your program to be sellable and useable, so your
program and documentation must be able to overcome fear and anxiety,
boredom, and frustration. It must be capable of creating trust and
confidence in the user.

You must remember that you are dealing with a human being and tailor your
interface to deal gently with the kind of fears and anxieties that the
very existence of your program may provoke. If you are designing a
data-base program for small businesses, for. example, you must consider and
plaI'ffor the fact that the employees may fear that the computer is there
toelimiriate their Job. With any program you ever expect to sell in a
retail store, you must be sensitive to the salesman's fear you will
embarrass him or her, and the customer's preconception that this program
is going to be far too difficult to learn. You overcome these kinds of
fears by making programs familiar, intuitive, and memorable, and by being
sensitive to the psychological needs of people.

In addition to fear and anxiety, people who use your program constantly can
begin to suffer from boredom, .. thereby lowering productivity. There are a
number of ways to reduce boredom, segmenting tasks, rewarding achievement
with positive feedback. We will not go into any exhaustive list here
(least you become bored); just keep boredom in mind when doing testing. If
you notice production drop with time instead of rise, you probably need to
explore ways to brighten people up.

Frustration means something has seriously failed in the human interface.
It usually occurs because of a lack of user-testing (see: Testing). When
you get alerts (error messages) that tell you what is wrong, but offer no
hint of what you should do to correct it, that's frustration. When you

15

get to a part of a tutorial that tells you to just press Open-Apple-P to
print out your document t but fails to mention that you should have already
spent two hours configuring the ports t that's frustration. It happens
because the designer t programmer t and documentor have become so familiar
with the programmer that they have forgotten their own learning problems.
It is always overcomable with user-testing.

Trust is a most fragile commodity. For a user to trust your program t you
must be consistent and absolutely honest. The program with the right answer
99 times out of 100 is useless. The program which uses Open-Apple-E for
Edit under all circumstances except that one undocumented one where it
stands for Eradicate All Files will never be trusted again. If you say a
document has been loaded, then the document should have been loaded. Your
user will find you less than honest if he or she then removes the disk t only
to be told that your program can't seem to find the document. You should
try to make your program as safe an environment as possible (without
frustrating the constant user)t and you should partition off and clearly
mark those operations that are of danger.

Next to a competent design t the most important attribute a program can
display is a caring t polite t respectful attitude. The Apple II computer
has a definite personalitYt as embodied in the tutorial disks and manuals
supplied with the computer. Use these materials until you have grasped
(intuitively) their flavor t and follow their lead. It is what your user
feels comfortable with.

If you t in your personal and professional life t do not have. to skills to
be caring t polite t and respectful with people around you--and many great
programmers do not""-youprQbably should not be designing human interfaces.
Team up with someone who is a good communicator and spend your time with
the nuts-and-bolts issues. on which you excel.

Putting the Concepts to Work

The last section covered theoretical aspects of some important underlying
concepts. This section applies those concepts to cover practical design
issues t such as selection of a metaphor (conceptual model), lowering the
learning curvet and increasing productivity and salability.

The Metaphor

The human interface is an illusion: the pattern of light and darkness that
your user perceives as "real" on the display is a careful contrivance of you t
its creator. The quality of the human interface can often be measured by
nothing more than the effectiveness of the chosen illusion.

Visicalc (TM) was the first serious microcomputer program that depended on
a metaphorical illusion. The user was operating on a giant t classical
business spreadsheet t seen through the limiting viewport of the monitor. The
user could move the viewport around to see parts of the spreadsheet that were
currently hidden. This illusion was particularly effective: it was familiar

16 Human Interface Guidelines

to business users who had learned the paper version, it was perceivable by
those who were sensory-oriented, and it was a simple model for the intuitive
to grasp.

These guidelines are presenting specifications for two metaphors: the
Macintosh windowing "desktop", and the AppleWorks hierchical "filecard"
system.

Windowing software makes use of a more powerful, business-oriented
metaphor: the desktop. The Apple II desktop metaphor offers the
familiarity and perceptability of Visicalc (TM), but goes one step
further in reducing the memory burden with pull-down menus instead of
keywords. As more and more developers begin to publish software based
on it, it will become the metaphor of choice for productivity tools.

The AppleWorks filecard system is a visually-perceptible version of a
standard heirarchical menu structure. Tree-structured programs have
historically depended on the user-'s forming an internal "map" of the
program. Because of programmers' disproportionate ability to intuit such
maps, we had no problem mapping things out, and considered those who
did to be just a little slow. The fact is that three-quarters of the
general population puts little faith in their intuitive abilities; they
require direct, visual evidence of their location in a program. The
visual presence of the filecards and the feeling of movement among them
provide the external sense of program structure these people need.

Adults feel more comfortable with metaphors that do not require the
user to travel around the program. The windowing metaphor, which
brings program elements to the user, provides a much more secure,
comfortable The windowing metaphor, which brings program elements to
the user, provides a much more secure, comfortable environment than the
filecard system. Our reason for supporting the filecard system is a
purely practical one: many developers have existing software either on
the Apple II or a competing system. It is an easy task to convert
existing hierarchical software to the filecard system. The windowing
metaphor generally requires an entirely fresh approach to problems and is
better reserved for new projects.

Software for entertainment,education, home control, and other
non-personal-productivity types of applications will often be more
effective with another type of metaphor. Your creative skill in
choosing appropriate metaphors will often dictate the success or
failure of the entire project. Look for metaphors with real-life
counterparts that are already familiar to your target audience. Once
selected, carryover not only its static form, but its dynamic
behavior.

Consider a home-control system. The obvious metaphor is the home. The
user locates various lights and appliances on a top-view diagram of a
home, then assigns on and off times to them, as desired. Now consider
the most successful selling feature of a home control system: security.
By turning lights on and off in some sort of sequence, you are supposed
to create a "lived-in" look when you are away.

17

Typically, people try to program such a lived-in look by having the
system turn lights on and off at random intervals. Anyone can spend
$50 to $100 on timers and duplicate random o~/off timing; the real
advantage to central control is the ability to simulate an awake,
active person traveling from room to room. To effectively program this
kind of static system, the user must first visualize a person moving
from room to room, turning lights on and off as they go. Then, to make
the computer actually simulate the result, they must painstakingly
program in each and every on and off time.

Consider a more dynamic metaphor which has a little person living in
the house, one who comes out when you leave home. You instruct the
computer not what lights and appliances to turn on, but which ones you
want left unaffected. You would also explain the general properties of
each device: radios you play for hours, but never when the TV is on,
and so forth. Then, when you leave home, the little person might
wander from the kitchen where he ran the blender for a few seconds,
turning out the lights as he went, into the living room, where he dims
the lights and watches TV for five or ten minutes. Tiring of that, he
might wander down the hall and into the master bedroom, dousing the
lights after a few minutes and listening to some quiet music on the
stereo. Every so often, of course, he would rise and go into the
bathroom. Suffering from compulsive eating, he would also retrace his
steps periodically and drop by the kitchen.

This dynamic home metaphor, then, provides a way that the average user
can easily simulate an actively lived-in look that cannot be achieved by
simple timers. The results will appear more "real" to the potential
intruder than any amount of programming done with the static metaphor,
because you will have far more dynamic randomness, and yet it will be
t~mpered by the laws of nature and rules of human behavior patterns.

Metaphors are a product of perception, not judgement. We cannot set
down a series of logic rules that will enable you to generate sound,
creative ones. A good metaphor is a product of awareness and
imagination. When you are beginning a project, spend time not only
with the particular hardware, but with the people who will use it, in
the environment where it will be located. Only then can you begin to
coalesce all you see around you into a intuited pattern that will form
an effective conceptual model.

The smooth, sleek model

Whatever metaphor you end up with, remember that it must be recognized,
understood, and remembered. Programs that are evolved rather than
designed with broad strokes at the beginning tend to end up with a myriad
of cul-de-sacs and alleys, all places where the user can get lost. Spend
the time in front in selecting or creating a model that can grow later
on. Again, we urge that you use one of out two models specified in these
guidelines unless there are compelling reasons not to: they have been
designed to allow free expansion without major overhauls.

Whatever model you adopt, should you need to add features along the

18 Human Interface Guidelines

way, you should step back and review the kind of impact it will have on
the rest of the program. Will the user suddenly .be confronted with an
entirely different way to do a similar thing? Will every part of the
program be menu-driven except this feature, where documentation wants
you to use an undocumented command word because then they don't have to
re-do the manual? Does someone else want to put a new feature in an
inappropriate part of the program because they don't have to do as much
re-coding that way?

It is a difficult but creative task to come up with a good, sleek,
effective metaphor; it is a difficult and thankless task to try to defend
it against creeping disarray. Spend the time in front making a structure
that can be added to. Educate your writers in the political art of
never giving a straight answer: a lead-in to a picture of the main menu
should read, "it will look something like this ••• ". Then, be prepared to
be honest about the difficulty of changing a design for one of
marketing's last-minute whims. And when something must be changed,
review itG effects on everything else.

Ease-Of-Learning and Ease-Of-Use

Often there is a trade-off between ease-of-Iearning and ease-of-use.
Carefully balance your decisions: if the program is too difficult to
learn, salesmen will not learn it and, thus, not sell it. If endless
instructions and voluminous menus make it slow and cumbersome to use,
people will get frustrated.and tell their friends not to buy it.

There are several techniques and attributes that help keep the learning
curve low and ease-of-usehigh, without seriously affecting power and
performance:

Leveraged Learning

Make use of that which is already familiar to the user: when you design
a program for an Apple computer, use the computer, tun through the supplied
tutorials, tryout the most popular software. Then build an interface that
is consistent with the personality of the machine. The single largest advantage
of using either our filecard or windowing metaphor is that our users are
already familiar with them: you can carry the user to a much higher level
of sophistication with the subject matter of your program .because your training
material does not have to assume that the user doesn't know what the
Open-Apple key does. Attempt to impose some foreign kind of implementation,
such as function keys (Escape 1-9 or some other aberrant scheme) and you will
spend most of your tutorial time trying to get people to learn everything they
ever knew about their friendly little computer.

Make the flow of the subject matter follow the flow of the same operation
when it was done manually. The spreadsheet was such an instantly
successful metaphor because it simulated a system familiar to its target
audience. It went beyond the manual system, in exhibiting continuously
updated results, and so forth, but it made no effort to clash with the old
knowledge of those who were expected to use it. In fact, it made every

19

effort to be as comfortable as possible. (Armed with hindsight, one can
argue that the target audience went far beyond the halls of the business
schools, and that spreadsheets are not familiar to the typical user of
these programs. But this unexpected success should not detract from the
fact that the program conformed to the old knowledge and expectations of
its original target audience.)

Staged Learning

People can and do master some remarkably complex computer programs, such as
AppleWorks (TM) and Apple Writer (TM). Other, far less powerful programs leave
people so bewildered they often abandon even trying to learn them. With
AppleWorks and Apple Writer, you learn a little bit and can then begin to do
useful work; with these other programs, you must first learn virtually
everything before you can do anything at all.

Design your programs and manuals so that a person can learn to do
something useful within 30 minutes or less. Stage your learning out so
that one can pick up tricks and shortcuts along the way, but needn't
stumble over them at the beginning. Remember that you want a salesperson
in a computer store to learn enough to be able to demo your program: with
the thousands of programs on the market, he or she doesn't have more than
half an hour to pick it up. And people won't demo something that is going
to make them look like a fool.

It is all right to be redundant: in a word-processor, have a menu
selection whtch turns on bold-facing, but also allow the experienced
touch-typist to press CONTROL-B and get the same effect. In our
blinking-bar input routine, the user quickly sees he can forward-delete by
moving forward and then pressing Delete, but we have Control-F there for
when he or she is ready to learn the "magic" forwa.rd-delete shortcut.

By sticking to your own and Apple's guidelines, by letting beginners do
the most important things in the simplest, if not most efficient, way at
the beginning,.by considering the plight of the salesman who will promote
this product for you, you are going to significantly increase the
learnability and sUCcess of your product.

Novice/Expert modes

The first time you use a program you have quite different needs from the
tenth time you use it: In the beginning, you need as much information
presented as possible so that you can use the program wi th a minimum of
learning. Later on, with a program you use habitually, you want speed and
simplicity. You want only information pertinent to the specific task you
are carrying out, not a lot of instructions on how to delete an incorrect
response.

Most large programs now have some sort of utility/configuration section.
The configuration sections often enable the user to select date and time
formats, color vs. B&W, and select whether or not to have sound. In that
section, you can also enable ,the user to select a skill level. The rest
of the program can then use the resulting flag, when set to expert, to
simplify verbiage and perhaps enable more flexible branching within the

20 Human Interface Guidelines

program -- branching that would serve to get the novice into trouble but
gives the expert the added flexibility she needs.

The skill level selection could be more sophisticated, perhaps with more
than two levels, perhaps based on the type of ~ser. For example, the same
tax planner program might better bridge the gap between accountant and
Apple owner if the accountant could select, "Expert at taxes, Novice at
Apple" and the Apple owner could select "Novice at taxes, Expert at
Apple". The possible combinations and permutations are truly boggling.

Simplicity

The contemporary microcomputer user still may have no previous experience
with a program. Therefore, you must dedicate a significant fraction of
the programming effort to the creation of an intuitively nat~ral human
interface. The program must, in the simplest way possible, anticipate the
user's questions and needs and be prepared to answer and fill them the
moment they arise. Once the user has become basically familiar with the
human interface, if she guesses at an unknown response, she should be
correct 95% of the time.

* Keep the external appearance of the program is as simple as possible.
The user should not get lost within a maze of branches. (You may safely
assume that the first-time user has not read the manual.)

* Keep the number of screens and menus to a m~n~mum. One of each is best,
a·s in the Apple II windowing software. The user cannot "get lost" because
there is only one place.

* If you choose to make the user move, make that movement easy and fluid.
Mairttairt a structure simple enough to allow the user to move from place to
place without becoming confused.

* Keep displays clean and simple. People need redundancy and
reinforcement, so don't creat.e d.isplays so starkly bare that people
question their own understanding of what is going on. But do strive to
make everything count: layout and graphic design should be tied into and
supportive of the task being accomplished. Pose questions that are clear
and free of ambiguity.

* Provide the user with the tools necessary to work with the program. For
example, irt a persortal finance program, an input requesting annual rent
should allow an answer such as 435.00 * 12 or 435.00 X 12, and not expect
the user to work out the answer in his or her head. (Alternatively, you can
provide a "desk accessory" calculator.) If a file name must be selected
from the disk, display the valid names.

* Match the program to the skill level of the user. If you are doing a
pricing program for a shopkeeper, do not ask her what her historic
elasticity of demand has been without letting her know what it is and
giving her the tools to estimate it. (Also, the question may be
unnecessary: the fact that you asked it in a similar program you wrote
for a Fortune 500 company is no reason to ask it of a shopkeeper.)

21

* Lower memorization: Programs that are not used literally every single
day will be forgotten: users will not rememqer command words, the names
of their files, nor the fact that you are accepting data not with RETURN,
but with CTRL-V (Violet was the name of your very first computer science
teacher.) Computers are notoriously good at remembering the above type of
information. Share it with your users: make sure the information needed
is available where and when needed.

The flaw in the original Visicalc design was its dependence on the user
recalling all the command mnemonics. Occasional users essentially had to
re-Iearn the program every time they used it. While they had achieved
high productivity and excellent ease-of-use, they were not careful to
maintain ease-of-Iearning. Be aware that the average programmer and
designer have above-average memories. Also, people engaged in the
developement of a program spend an inordinate amount of time with it.
You should continually find novice user for your program so you can track
any increase in memorization burden, and you should have "occasional" users,
so you can see if your structure and flow is visible enough that such
users need not relearn.

* Honesty: Do not lie to your users. Do not say, "File loaded" when the
file is not loaded, the name of the file has simply been selected.

Consistency

All programs written for a given computer should have as great a.
commonality as is practical. The purpose of these guidelines and
standards is to achieve a level of consistency across all products
designed to run on the Apple, a level that will make learning your product
easy, while not stifling your ability to create the specific human
interface best suited to your particular application.

All programs produced by a given software house should perform the same
function in the same way. The same key sequence must not do the opposite
thing in different products (Open-Apple-E = edit, Open-Apple-E
= eradicate). Many software houses have their own guidelines, guidelines
from which we drew in preparing this document. These individual
guidelines tend to outline in far greater detail the program. "personality"
that the software house wants to project. If you have not yet put
together such a document,. may we suggest you do so. It·is avery
effective way to eliminate those interface battles that tend to occur
about three days before release to production -- or threeday~ after.

All software should be self-consistent: menu formats should be identical.
If Control-F is enabled to forward-delete characters in one part of the
program, it should forward-delete characters in all parts of the program.
If you are working on a large project, be sure to spend enough time in
team meetings being sure that everyone is on the same track -- all too
often the three or four sections of a program end up with an entirely
different "feel". At the same time, avoid rigidity: human interfaces
must be tested on real people. The agreed-upon interface at the beginning
will undoubtedly need changing, once you try it out on real people.

22 Human Interface Guidelines

Speed

The user should be able to perform the desired task in as little
time as possible, with the minimum complexity. Even such an obvious maxim
as this becomes compliaated: there are two very different kinds of time.

Objective time is the actual time it takes to accomplish an activity.
Subjective time is the user's internal sense of that time. Basically, the
more intellectual involvement, the less bored the user and the faster time
seems to pass.

Several years ago, a skyscraper in Manhattan was built with too few
elevators for all the people who worked in it. People complained bitterly
about the long lines and long waits, but there seemed no solution.
Consuting engineers found that the elevators could not be sped up, there
was no way to push through a new shaft, there was no way to increase
capacity. Finally, a designer was brought in, who looked over the
problem, measured the wall spaces around the elevators, and showed up a
few days later with huge floor-to-ceiling mirrors. The problem was
solved! Instead of reducing objective time, the designer reduced
subjective time. People still had to wait around, but now they had
something to do--look at themselves and covertly look at each other.

Another example of this difference arose in tests with the mouse.
Subjects were given a test where they repeatedly moved the mouse pointer
to randomly chosen areas of the display. They consistently found that
they could move..the pointer faster with the cursor keys than with the
mouse. H0w'ever, when the videotape with its accompanying time-track was
played back,it showed that the mouse was actually significantly
faster. The difference lay in the far higher level of intellectual
involvement the user had with the cursor keys.

One could conclude that cursor keys are better than mice because the user
feels they are faster, even if they are not. But tests with a "real"
word-processor and a real writing task revealed a countervaling rule: the
higher the level of intellectual involvement the more the user is
distracted from his or her intellectual task. Finding the mouse and moving
it requires the use of only very primitive nervotIs centers. Making
decisions on which of four keys to press and carefully watching for
over-shoot ties down a much more sophisticated areadf the brain that is
thereby distracted from the task at hand. The flow of creativity becomes
punctuated, and this constant distraction can seriously affect the quality
and quantity of the task.

This degradation becomes even more serious as higher and higher levels of
concious thought are required. Editors that allow more rapid movement
through the user estimating the distances and typing in numerical
"repeat-factors" are encouraging users to completely halt their train of
thought while they carry out abstract computations. Systems that use voice,
which requires one of the highest level of intellectual involvement, can
distract people to the extent that they forget the task entirely.

So, in designing software, try to reduce subjectfve time to a minimum, but
be careful that you are not doing it to the detriment of the user's ability

23

to perform the task. To reduce subjective time:

*

*

*

*

*

*

*

*

*

Reduce objective time. Once a program is up and running, identify those
parts that are perceivably slow and then do a design and code review.
Before carrying out any of the following subjective time hints, look
at what you can actually speed up through recoding or simplification.

Speed up those parts of the program that are most obviou~ to the user.
In particular, screen displays should be fast. If you have one letter to
change, don't erase the whole display and write it over again. If you cannot
work out a way to avoid updating the whole display, don't erase the old
one: pad the new one out with blanks. At least the user won't be faced
with the constant flashing.

Break long operations into sections. During a long boot operation,
put up a title page as soon as possible, so the user has something to
do during the remainder of the boot.

React to users' input immediately. A user will interpret any delay of
more than a few tenths of a second after pressing Return or otherwise
accepting to mean that either the program or the user has made an error.
If you need to make a computation, first acknowledge that you have
accepted the input.

In training or educational software, it is doubly important to react
immediately to test. questions. The greatest. retention of knowledge
occurs when response occurs either within one second or not until the
end of the entire test. Apparently, waiting five to ten seconds for
a correct/not correct judgement is so frustrating that people lose
involvement with what is going on.

Carry out housekeeping functions during "dead" time, e.g., between
keystrokes

Tell the user how long you will be away if you are going for a while,
so he or she can spend the waiting time doing something else

Get all information needed before you go away, so the
user needn't sit around to enter information during the process.

Animate the display during long disk or printer operations. The simplest
way is to display a growing line of periods. A better way is to display
information that is more intellectually engaging, such as track and sector
counts. The user needn't understand it or even look at it, but if he or
she is bored, it provides something to do. A countdown clock is also a
nice touch.

Provide a beep when you come back, so the user needn't stare at the display
to avoid loosing time in returning to the task.

We work in an industry where .programmers often spend a significant portion
of their days reading commie books during interminable compilations.
Because we get so used to this kind of enforced bordom, we often visit it

24 Human Interface Guidelines

upon our users. Increase your sensitivity to this important factor.

A Planning and Testing Methodology

Planning and the User Profile

In order to properly address the needs of the users, you must first know who
they are and what their needs are. Software design should begin with a
user-profile study. This study should cover the following three phases:

1. Select the target audience. Begin your human interface design by
identifying your target audience. Are you writing for
businesspeople or children? Will your audience consist of
people relaxing at home· or accountants under severe
time-constraints? Are there several different types of people
who will use your program? If so, you need to identify each.

2. Ascertain the level and limitations of their pre-existing
knowledge. You should have an understanding of how much the
target users know about:

A. using the Apple II computer
B. the general subject matter your program deals with.

3. Identify their needs. Once you have an understanding of the
knowledge and limitations of the users, you can then figure out
what types of information and level of support the the program
will have to supply.

25

The following are mythical examples of two possible user-profiles for a
program which fills the exact same function: a tax planner. Even though the
task performed, the formulas used, the raw data required are identical, the
programs that would result from the two user-profiles might bear little
external resemblance:

Professional Tax Planner User Profile Study

User: CPA or Public Accountant

Anticipated knowledge of Apple computers: none. (The accountant may well
have purchased the system just because of your program.)

Assumed knowledge of subject matter: Expert

Needs:

1. Staged learning curve. Must feel comfortable in a minimum
time. Extended features can be picked up later.

2. Facility. Must be able to create and edit scenarios quickly.
The windowing system should be considered first, as it enables
the most freedom of movement (and looks the flashiest to the
client) •

3. Clear instructions and error messages. User may have never
touched a computer before. Help should be aimed toward
problems in the use of the system, rather than explanations of
the difference between Short- and Long-term capital gains.

4. Professional appearance. Accountants will be using this
package not only to help their clients, but to impress them.
The vocabulary used on the display and in printed reports
should be serious and professional. It may contain accounting
jargon in areas that will not cause confusion to clients. The
accountant must be protected against embarrassing errors (and
alert messages); he may have a client sitting beside him.

5. Supplementary Features: accountants surveyed currently add or
subtract amounts from the "accurate" figures produced by tax
planners. Such items as a rough guesstimate of state tax
liability may need to be figured into reports. Provide this
facility.

6. Accountants are habitual users of adding machines: they may
be expected to do all intermediate calculations on their own
adder. No calculator need be provided.

26 Human Interface Guidelines

Personal Tax Planner User Profile Study

User: John Q. Middle- to Upper-income Public

Anticipated knowledge of Apple computers: owner with some experience.
(Research indicates that tax planning programs do not stimulate
an initial computer purchase: people who already own the computer
are buying the packages.)

Assumed knowledge of subject matter: None

Needs:

1. The prompting and documentation needs to be tutorial: the user
-must be guided into finding the necessary information to enter
into the program, carrying out the kind of expiorations with
the program that will be most beneficial, and then suggest
where the user should go from here.

2. Clear content verification and alert messages. "Unlikely" data
should be confirmed by user. Help should be aimed toward
problems in understanding the subject of taxes.

3. Appearance and use of accounting jargon. Non-professionals
will be using this package. The vocabulary used on the display
and in printed reports should be non-intimidating and not
filled with accounting jargon.

4. User will probably only use the program a few times per year.
There must be a minimum learning curve, even at the expense of
reduced power and facility. A menu-driven format should
be considered.

5. The user has to be asked for a lot of pre-computed figures:
. uSe an expression-evaluator input to allow them to add,
subtract, multiply, and divide during input.

The "research" quoted in the above examples is ficticious -- do not
start writing a tax-planner based on it. (The rest of the examples in
this book are real.)

Carrying out an early investigation such as the ones above requires a
minimum of time and can save you man-months of work later on. The
reports need not be works of art; it is only important that every
member of the design team has a clear picture of who the audience for
this product will be. The user profile should be included in your
Market Requirments Document, along with more prosiac information on
market-shares, product penetration, competitive analysis.

If you have a marketing department, these reports should be their
responsibility. They should carry out surveys, conduct focus groups,
and otherwise collect good, solid information to answer the above
questions. Then and only then will you be in a position to create a
design responsive to the needs of the market.

27

Once the abstract report is done, you can develop a good mental image
of the target audience by creating characters with names, occupations,
family-lives, and dreams who collectively embody the breadth and depth
of the audience. You may "make up" people who don't exist, or you can
build composites out of people you know. This exercise gives people
who have trouble holding on to abstract mental images a concrete,
"living" representation of the users. It ensures that everyone on the
design team is clear about who the users are, what they need, and what
their expectations will be. In short, it gives everyone a stable,
consistent focus. Even if you are a sole designer/programmer, you will
find this to be a useful dicipline in forcing you to think all the way
through the abilities and needs of the user. As the project goes
along, you will replace your imaginary users with real ones, the
subjects of your testing program.

Specifying the Human Interface

Once the target market is defined, you should design an appropriate
human interface. The kind and sequence of steps to be followed are:

1. Identify and explore companion packages and competing packages. If
80% of the target audience owns and uses a given piece of software, one
your proposed package is complementary to, it only makes sense to
conform your package to the user interface of the other,
already-familiar package. Competing packages give you a good grasp of
what users already expect: unless your strength lies in marketing, your
package should go beyond those already out. After all, they are
probably preparing their own next generation.

2. Ferret out standards and guidelines. Get to know the computer on
which you are developing. Read books like this. Look at the most
popular packages. Make your design follow the philosophy you discover.

3. Select or design a metaphor. Make it familiar and make it
intuitive. If you are doing personal-productivity softwa.re, we urge
you to use the windowing interface. Not only have we spent millions of
dollars researching, building, and testing it, but your users are
familiar with it. If you are doing a different type of program, such
as educational, select a metaphor these users will feel comfortable
with and that is supportive of the task at hand.

Always keep in mind that this "illusion" need not be connected fn any
way with the hardware or operating-system requirements of the computer:
the fact that loading and saving are companion calls to ProDOS does not
mean they should appear together within a program. In terms of
work-flow, they are usually at opposite ends. Avoid copying the
interface of your favorite language or utility: there are a great many
primitive interfaces that we become so used to we think they are good.
They are not.

4. Writing the External Requirements Specification

This specification should represent everything the user will see. The

28 Human Interface Guidelines

programmer's job will then be to translate this static report into the
final, dynamic program. Cover every display, eve~y help message, every
alert. Eliminate, consolidate: when you find that two displays are
almost identical, make them identical. At the beginning, ignore the
difficulty of implementing wild new features. If you try to save
coding time and space at first, you will lose sight of the illusion you
are trying to create and get bogged down in the illusion your operating
system is presenting. Later on, you can go back and be practical.

Even though you are writing a static document, you are designing
something dynamic: maintain a mental model of the whole, and "run" the
program, exploring the dynamic pathways. Essentially, a lot of this
stage of design is done with intuition (see: Intuition). It explains
why programmers depend on intuition so much more than the general
population. What you are seeing in your mind's eye will only come to
fruition perhaps months from now.

Once specified, build effective prototypes of new design features and
test them for efficiency and acceptance. Do not wait until you have
invested several man-years of development to discover that what seemed
like such a hot idea just doesn't work in real life.

Do not overprotect: developers are, in some cases, making their
software too friendly. Apple II users have to learn to work with some
less-than-friendly concepts and constructs, such as ProDOS file names,
Control keys, and technical words such as disk and memory. While you
can, within your single program, shield your users from our
less-friendly constructs and concepts, they are. going to have to deal
with them eventually. Such attempts merely result in their having even
more learning to do: now they not only have to learn our methodology
and jargon, but yours, too. We are committed to raising the general
friendliness of our system, and the Apple II will become progressively
easier to use, but we have to do everything in concert. If you are
finding some part of our underlying interface to be particularly
troublesome to your users, please let us know. Then we can work
together to do something about it. .

Have only one area of the screen active at a time: avoid prompting the
user at the top of the display, echoing input characters in the middle,
and displayingal~rt and help messages at the. bottom, all at the same
time. The user is going to be confused. An exception to this rule is
in a point-and-choose scheme where options are being pointed to--for
example, a cell in a spreadsheet--and actual entry occurs at separate,
standard point on the display, such as line 24. 6.76.7 Keep Them
Informed When You Are Away

When the computer will be either carrying out computations or accessing
the disk for an extended period of time , a message should be left on
the screen, instructing the user that the computer will return shortly
(this is not the suggested message). Some periodic change in the
screen, as a lengthening line of periods (hence periodic) should occur
so the user knows the computer has not simply gone into an endless loop
somewhere. When the computation period is over, clearly signal it:
simply showing up with a blinking cursor over in the corner won't do

29

after a brief, 20-minute pause.

Part of the specification process is to estimate document requirements.
Not only does this enable you to plan early for writing needs, but it
keeps you conciously aware of the documentation costs of new features.
If you figure it will take twenty pages to document some neat little
shortcut, you are more likely to drop it early.

A final part is estimating scheduling. It is not within the scope of
this book to cover scheduling, except to comment that invariably
marketing, sales, and management want the project completed yesterday.
A good rule of thumb for the real time that a project will take is to
figure out how long it should take, double it, and go to the next
higher time unit. In other words, if you can program this thing in
three weeks (by programming 18 hours a day), then figure six months.
This covers the five weeks your mother-in-law will visit, the total
redesign after the coding is done, the publisher loosing the
manuscript, and sales arguing they can't possibly sell it in that silly
green package.

Always keep in mind that the last 10% of the program will require 50%
of the time. Then walk the tightrope between the true time (above) and
the time that everyone else will let you get away with. And best of
luck.

The final function of a good External Reference Specification is to
sell the design. Do not be afraid to explain why you have designed
something the way you have. Remember that everyone everywhere is a
self-proclaimed user-interface expert. The best way to keep from
having to defend yourself and your design is to have dazzled everyone
with your brilliant insights within the ERS.

Testing

Once the users have been profiled and a prototype built, it is time to
begin testing.

Human interfaces are not made; they are evolved. Software designers
are simply too close to their product, their computer, and have put up
with the most abysmal interfaces themselves to be able to outguess the
naive user. Products must be repeatedly tested on "real people".
("Real people" means the target audience: as soon as you find yourself
sitting in a meeting with other computerists, all announcing what users
will or will not feel/think/do, you are in trouble -- build the
prototype and find out.)

The job of the designer is to do his or her best to predict the
response of the user; the job of the user is to do just the opposite.

Human interface testing is quite different from the kind of exhaustive
"boundary condition" testing used to uncover bugs. You should begin
testing as early as possible '. using drafted friends, relatives, and new
employees, to uncover the really big holes in your design. As you get
closer to a finished product, try it out on larger groups drawn from

30 Human Interface Guidelines

the target population.

It is imperitive that the designers actually watch people use the
program. Do not just send off copies of the program and expect written
responses. Get the users and the designers in a quiet room together.

Our testing method is as follows: We set up a room with five to six
computer systems. We invite groups of five to six users at a time to
tryout the systems (often without their knowing that it is the
software rather than the system tha~ we are testing). We have two of
the designers in the room. Any less, and they miss a lot of what is
going on. Any more and the users feel as though there is always
someone breathing down their necks.

The initial ground rules are that no questions will be answered, as by
the time the formal testing begins, we can supply a draft of the
manual. (Usually by the second group, some glaring defects in the
interface have shown up, and we have to give them help getting past the
stumbling blocks.)

95% of the stumbling blocks found are found by watching the body
language of the users. Watch for squinting eyes, hunched shoulders,
shaking heads, and deep, heart-felt sighs. When a user hits a snag, he
will assume it is his fault: he will not report it; he will hide it.
Make notes of each problem and where it occured. Question the users at
t~e end of the secession to explore why the problems occured. (You
will often be surprised at what the user thought the program was dOing
at the time he got lost.)

We have found that prepared questionaireshanded out at the end of a
secession are of little value: you will seldom predict the problem
areas before testing, and users will lie to spare everyone's feelings.
(If you had figured out the problem areas, you wouid have already fixed
them.)

Generally, two or three groups on one occasion is more than sufficient:
patterns will emerge almost immediately. You should have at least one
more bank of testing after any major revision; as the next example
shows, one often jumps out of the. frying pan, into the fire.

Herein follows a true anecdote which illustrates how difficult the most
simple human interface issue can be, and why thorough testing on real
people is so important.

As we tune in, the authors of the software, both of whom pride
themselves on clever interface design, have anguished for hours over
difficult passages in their program. It was to turn out their guesses
were quite accurate in said difficult passages. It was the simplest
question of all that caused all the problems •••

Problem: in Apple Presents ••• The Apple~ , the training program for
teaching fundamentals of using the new Apple lIe computer, find out if
the user is working with a color monitor.

31

User profile: new owner, customer in a computer store, or member of a
class learning to use Apple computers.

Test user profile: customers in a computer store, non-computerists in a
classroom environment, friends, and relatives.

First design: A color graphic would be displayed.
Prompt: "Are you using a color TV on the Apple?"
Anticipated problem: Those who were using a monochrome monitor in a
classroom or computer store situation wouldn't know whether the monitor
was black-and-white or was color with the color turned off.

First attempt:
Prompt:
Failure rate:

A color graphic was displayed.
"Is the picture above in color?"
25%

Reason: As anticipated, but incorrectly overcome, those seeing black
and white thought their color might be turned down. They didn't answer the
question wrong; they turned around and asked one of the authors whether the
monitor in question was color or not. A decision was made that the authors
could not be suppied with the disk:

Second attempt:

Prompt:
Failure rate:

A smaller graphic with large-letter words in their own vivid
colors was substituted: GREEN BLUE ORANGE MAGENTA
"Are the words above in color?"
color TV users: none
black and white monitor users: none
green-screen monitor users: 100%

Third attempt:
Prompt:
Failure rate:

the graphic remained the same.
"Are the words above in more than one color?"
color TV users: none
black and white monitor users: 16%
green-scree.n moni tor users: 50%

Reasons: the black and white monitor users who answered incorrectly
admitted that they did so on purpose. (Our methods for wringing their
confessions shall remain proprietary.) 50% of the green-screen folk
considered that they were looking at both black and green -- two colors
-- and answered the question accordingly.

Fourth attempt:
Prompt:
Failure rate:

32 Human Interface Guidelines

Same display of graphic and colored text
"Are the words above in several different colors?"
color TV users: none
black and white monitor users: 20%
green-screen monitor users: 23%

Reasons: By this time, the authors were prepared to supply everyone
who bought an Apple with a free color monitor, just so we would not
have to ask the question. It turns out that around 20% of the people
were not really reading the question. They were responding to:

"Are the words above, several different colors?"

Fifth attempt:
Prompt:
Failure rate:

Same display of graphic and colored text
"Do the words above appear in several different colors?"
none.

In case it appears the authors were simply dull fellows, be it known
that this was a fully-interactive training program in excess of 100K,
and this was the only interface issue that required more than one
correction. It clearly exemplifies how even the most careful designers
can totally miss when guessing at how users are going to respond.

Had the designers not tested the program, it is probable that dealers
. would not have used the program in their showrooms, as they would have
wearied of telling potential customers that they were/were not using a
color TV and that the Apple Presents ••• Apple program was being very
stupid to ask the question like that. (Potential customers, of course,
wouldn't fall for such an explanation: they know it was the computer
that asked the question and that one should always buy the computer
that asks good questions.)

It is vital that programs be tested early and often with users from the
target audience; this testing should be an integral part of any testing
plan. This testing seems like a lot of extra effort. In practice, it
really isn't, beyond the mechanical difficulties of getting your
equipment and test group together. (Computer stores, colleges, and
shoppping centers are often good random-testing locations.) The above
testing cycles took only four days: the first two days were on-site,
using new Apple employees. Only two days of testing required any
set-up work at all, and the over-all improvement to the product was
clearly worth the effort.

Even if the interface had not changed at all, it would have been worth
it just to be able to ward off all the self-proclaimed experts with
their (day-after-going-to-production) comments of "Boy, I sure wouldn't
have done that this way. A lot of people out there are gonna have
trouble." What joy to turn to such people and announce with a clear
conscience, "Well, we tried it out on 109 people, and they all sailed
through with flying colors."

High-budget Testing

You can hire market research firms to gather test subjects and conduct

33

focus groups for your program. Such efforts are usually beneficial.
always fun. and invariably expensive. If you are going to use outside
services. pick the most beneficial times: at the beginning and end of
a project. At the beginning. focus groups can help you'plan for the
needs of the user. At the end. you can judge the results and
"fine-tune" a design appropriately. Where you should not use expensive
research techniques is in the middle of the project:

The first time you test a program on real people. it is almost certain
to be an immediate disaster. Trying to gather feedback on how a user
feels about the fine points of your design is a little difficult when
he or she has just accidentally destroyed the contents of the disk. It
is like asking test subjects driving your new car at freeway speeds to
comment on ambient noise conditions when they have already noticed that
you forgot to build in a braking system: somehow they always seem
distracted. You can test a program for basic "survivability" with
almost anyone; save expensive in-depth research for the point when
people can use your product effectively.

Part II:

The Apple II

Generic Human Interface

Apple II Human Interface Guigelines

There are two primary hardware environments on the Apple II: the
original Apple II and Apple II +. and the newer Apple lIe. IIc. and so
forth. The new computers have user interface support in the form of a
more complete keyboard and a special character set referred to as
MouseText. (This character set was introduced after the first Apple
lIe's; at the time of this writing. it was expected that the vast
majority of lIe owners would avail themselves of the enhancement kit
that includes it.)

We offer two primary software environments: the windowing
(Macintosh-like) and the filecard heirarchical menu system. Unlike the
Macintosh system. Apple II windowing software need not require a mouse.

These guidelines are based on the minimum configuration available on
all Apple II computers beginning with the Apple IIe. Descriptions of
keyboards. standard key definitions. and special display characters
refer to these later computers. If you are working in a specialised
market segment that needs to cater to the older machines. you will have
to pick and choose those guidelines that are appropriate to the older
equipment. In general. you can adapt the overall philosophy of these
guidelines. and then directly use such standards as the standard input
routine.

The hardware

The following sections introduce the Apple II keyboard. mouse. and
display.

34 Human Interface Guidelines

THE KEYBOARD

The Apple II keyboard t unlike the Macintosh keyboard t is used for
entering both text and commands.

The keys on the keyboard are arranged in familiar typewriter fashion.
The U.S. keyboard is shown in Figure 3.

Figure 3. The Apple.II U.S. Keyboard

There are two kinds of keys: character keys and modifier keys. A
character key sends characters to the computer; a modifier key alters
the meaning of a character key if it's held down while the character
key is pressed.

Character Keys

Character keys include keys for letters t numbers t and symbols t as well
as the Space bar. If the user presses one of these keys while entering
text t the corresponding character is added to the text. Other keyst
such as the Tab t Return t Delete t and Escape keyst are also considered
character keys. However t the result of pressing one of these keys
depends on the application and the context.

The Tab key is a signal to proceed: It signals movement to the next
item in a sequence. Tab often implies an Enter operation before the
Tab motion is performed.

The Return key tells the application that the user is through entering
information in a particular area of the document t such as a field in an
array. Most applications add information to a document as soon as the
user types or draws it. However t the application may need to wait
until a whole collection of information is available before processing
it. In this case t the user presses the Return key to signal that the
information is complete. Return must do the job of both Enter and
Return in the Apple II world. On the Macintosh t Enter accepts the
information but'causes no movement t whereas Return accepts the
information t then moves down and to the left. On the Apple lIt you

THE KEYBOARD 35

must consider what your users will expect. In two-dimentional arrays,
have Return enter the information and move directly down one row. This
gives the user the Tab key to enter and move right and the Return key
to enter and move down. In text processing, have Return accept the
information and move down and to the left in the traditional way.

Return and Space dismiss dialog and alert boxes (see "Dialogs and
Alerts").

Delete is used to delete text or graphics. The exact use of Delete in
text is described in the section on text editing.

Modifier Keys: Shift, Caps Lock, Control, Open-Apple, and Solid-Apple

There are five keys on the keyboard that change the interpretation of
keystrokes: two labeled Shift, one labeled Control, one labeled
Caps Lock, one labeled with the "Open-Apple" symbol, and one labeled
with the "Solid-Apple" symbol. These keys change the interpretation of
keystrokes and sometimes mouse actions. When one of these keys is held
down, the effect of the other keys (or the mouse button) may change.

The Shift key chooses among the characters on each character key.
Shift gives the upper character on two-character keys, or the uppercase
letter on alphabetic keys.

Caps Lock latches in the down position when pressed, and releases when
pressed again. When down it gives the uppercase letter on alphabetic
keys. The operation of Caps Lock on alphabetic keys is parallel to
that of the Shift key, but the Caps Lock key has no effect whatsoever
on any of the other keys.

Pressing a character key while holding down the Control or either Apple
key usually tells the application to interpret the key as a command,
not as a character (see "Commands"). .

Control keys are reserved for functions that the user must do
repeatedly with little or no concious thought. You will find standard
definitions for most of them in the "Commands" section. Because these
definitions remain standard throughout applications, the user has only
an initial learning burden, and, since all these definitions are either
short-cuts or very advanced features, the user can pick them up at
their leasure.

The Open-Apple key has only a few reserved functions (see "commands").
As a general rule, it is available for your special mnemonic commands
for your specific application. It is also used in conjunction with the
mouse for extending a selection (as the Shift key is on a Macintosh);
see "Selecting".

The Solid-Apple key generally m1m1CS the action of the Open-Apple key.
Users have been found able to learn one mnemonic per letter, for
example, E for Edit. Defining Open-Apple-E to mean Edit and

36 Human Interface Guidelines

Solid-Apple-E to mean something else, such as E for "Eradicate This
Document" invariably leads to problems. The user must have some
powerful rule which logically separates all Open-Apple combinations
from all Solid-Apple combinations, if you are to use them separately.

If you'want to enable your user to define keyboard macros, tie them to
the Solid-Apple key: the powerful rule here is that the program owns
the Open-Apple key and the user owns the Solid-Apple key.

Typeahead and Auto-Repeat

If the user types when a windowing application is unable to process the
keystrokes immediately, or types more quickly than a toolkit can
handle, the extra keystrokes are queued, to be processed later. This
queuing is called typeahead. There's a limit in each toolkit to the
number of keystrokes that can be queued, but the limit is usually not a
problem unless the user types while the application is performing a
lengthy operation.

Tqe toolkits can be operated in two modes: with interupts or passive.
When interrupts are on, queuing is done "automatically"; in
passive-mode, queuing is done periodically, as described in the toolkit
manuals. Remember in testing that the toolkits will shift to
passive-mode automatically on an Apple lIe with no mouse card installed
(as the interrupts are generated by the mouse card). So be sure to
test your software for mouseless operation on a lIe without a card
plugged in!

When the user holds down a character key for a certain amount of time,
it starts repeating automatically. An application cannot tell whether
a series of n keystrokes was generated by auto-repeat or by pressing
the same key n times. Therefore, be sensitive to the discovery of a
vast number of identical keystrokes--your user may have erred in
holding the key down too long.

Holding down a modifier key has the same effect as pressing it once.
However, if the user holds down a modifier key and a character key at
the same time, the effect is the same as if the user held down the
modifier key while pressing the character key repeatedly•.

Versions of the Keyboard

There is only one current physical versions of the Apple lIe and Apple
IIc keyboard. The standard layout on the European version is designed
to conform to the ISO (Internation Standards Organization) standard;
the U.S. key layout mimics that of common American office typewriters.
European keyboards have different labels on the keys in different
countries, but the overall layout is the same.

THE KEYBOARD 37

Reserved Key Combinations

Some characters are reserved for special purposes.

One Open-Apple keyboard command is reserved:

Character

?

Command

Help

Other Open-Apple keyboard equivalents are conditionally reserved. If
an application enables these commands, it shouldn't use these
characters for any other purpose, but if it doesn't, it can use them
however it likes:

Open-Apple combinations:

Character

P
Q
S

Command

Print
Quit
Save

Windowing applications reserve these additional commands (see:
Commands)
Character Command

z
X
C
V

Undo
Cut
Copy
Paste

(Note that these keys are the first four on the bottom row on the
standard U.S. keyboard. If you translate a program to a keyboard
with a different layout, you should change the actual characters typed
so that they remain the first four keys on the bottom row.)

D
G
M

Drag or move the currently active window
Grow or shrink (size) the currently active window
Mark a selection

38 Human Interface Guidelines

Control combinations--all environments:

Character Command

B Bold
C Copy
D Delete
E Edit (toggle insert/overstrike)
F Forward Delete

* H Left Arrow
* I Tab
* J Down Arrow
* K Up Arrow

L Begin or End Underline
* M Carriage Return

P Print the contents of the screen

S Save

* U Right Arrow
V Paste

X Cut

Z Undo

* [Escape

* These are the control equivalents of the various Apple special keys.
Current unmodified Apple II keyboards cannot differentiate between a
Control-character sequence and its equivalent special key, for example,
Control~M and Return.

Keys ~ Ease Foreign Translation

If you are designing your software for ease of translation into
foreign language, please keep in mind that the following key
characters are different iri the "local" text character sets and
keyboard layouts of international versions of Apples:

Different now: # @ [,] '{ }

(Could change in the future: $ A)

To allow foreign-language entries, you need to provide a number of
"dead-keys" so users can properly punctuate. We have defined a
standard set of keys:

OPEN-APPLE-'"'
OPEN-APPLE- ,
OPEN-APPLE-'
OPEN-APPLE-

Typing any of these combinations will
backspace character, in your file, so
will be accented. Display the accent
solid-dash MouseText character ("S").
dash, there is no ambiguity.

THE KEYBOARD 39

place the accent, followed by a
that the next character typed
and the character linked by the
As the user cannot type a solid

Your program should accept only valid accented characters, throwing
away the dead-key character if, for example, a person types
OPEN-APPLE-A followed by an X.

THE MOUSE

The mouse is a small device the size of a deck of playing cards,
connected to the computer by a long, flexible cable. There's a button
on the top of the mouse. The user holds the mouse and rolls it on a
flat, smooth surface. A pointer on the screen follows the motion of
the mouse.

The mouse is reserved for windowing and entertainment applications
only.
It should not be installed into a menu program for purposes of

advertising "mouseability".

A complete description of the actions and activities of the mouse may
be found the description of the mouse within the Mouse Guidelines
section.
Software Standards

Input

The standard Apple II input routine is common across all Apple II series
.computers. There are added capabilities with the mouse within the windowing
metaphor, but keyboard consistency is still maintained. All professional
programs should be using this input. It is available as a tool to all
registered developers, with a BASIC, Pascal, and Assembly Language front end.

The user should be able to tell the rules of the input from the kind of cursor
being displayed. Users are confused when the computer speaks to them in a
different way in each program, but they are confounded when the computer
"understands" them differently in each program.

Of all the standards and guidelines presented in this book, this is the most
important: use the standard input in exactly the standard way. If you need
.to use an entirely different kind of input scheme, select a different cursor
character, and train your users to recognize it as yet another entity. If you
wish to add to its capabilities, do so, but never twist the pre-existing
definition. We have trained all new users with the tutorial material shipped
with each computer. They know what the input looks like and expect it to
always work the same.

40 Human Interface Guidelines

Input Routine Standard Keys:

Keystroke

Necessary:
Left-Arrow
Right-Arrow
Control-D
Delete
Control-E
Control-F
Return
Control-X

Control-Y
Control-Z

Notes:

Editing Operation

moves cursor left within input
moves cursor right within input line.
deletes character to the left of the cursor position
deletes character to the left of the cursor position
toggle between insert and replace (discussed below)
deletes character forward (to the right) of the cursor position
accepts entire response, regardless of current cursor position.
deletes all characters on the input line (or all characters
marked with mouse).
deletes all chars from present cursor position to end-of-line.
recalls display of default response. If no default, then
it acts the same as Control-X.

Typing any printing character will automatically insert that
character into the input line at the current cursor position.

Pressing Return with the cursor anywhere within the input line will accept
the entire input.

Default responses are displayed with the cursor at the beginning or end of the
response. Pressing Delete (or Control-D) as the first character will delete
the entire response. Once any other key has been pressed, Delete and
Control-D revert to their standard definitions.

The blinking-bar cursor is, theoretically, a vertical bar that lies between
two characters, representing an insertion-point. Because of hardware
limitations in the text mode of the Apple II, text-based applications use a
blinking underscore that alternates with the character that is to the right of
the theoretical position. Thus, what in graphics environments looks like
this:

A turnbuckle
A turnbuckle

in text-mode looks like this:

A t rnbuckle
A turnbuckle

The Overstrike Cursor

You may also provide an overstrike capability, through Control-E. When
pressed, it changes the appearance of the cursor from a blinking bar to an
inverse-color square over the character to the right of the insertion point.
As characters are entered, the inverse box moves to the right, replacing the
original character with the new character, neither shrinking nor expanding the

THE HOUSE 41

size of the line. With this single exception t all keys and features work the
same.

Using the standard input:

More specific guidelines for the windowing interface will be found in that
section. While the windowing guidelines do not clash with the following
information t they do go beyond it in power and performance. If you are working
with the windowing software t refer to the appropriate sections for more
specific information.

The program input statement asks the user for information by displaying a
verbal prompt. Prompts should terminate in a colon (:) or greater-than sign
(» if a statement t a question-mark (?) if a question. The prompt is
followed by 2 spaces on an 80-column displaYt 1 space on a 40-column display.

A default answer may be displayed t with the cursor following t in which no
field length is denoted. If there is no default response offered t or the
default is rejected by the user t the program can display a finite input field
with a series of "ghost" underlines (MouseText character "I"). This character
is a shortened underline with every other dot turned off. Since the user
cannot type itt there can be no abiguity.

Leading and trailing spaces should be routinely stripped from input lines t
unless they are specifically needed.

Keystroke errors are best trapped immediately: if you are accepting a
number t do not accept a letter such as "A" or "B".

An example of the input:

What is a "drift"?

> A whole lot of cattle

(Consider the underline to be blinking -- the printer was not able to quite
capture the effect.) The user wants to change the answer to read:

> A herd of cattle

To edit the response t the user first moves back to the end of the word "lott"
using the Left-Arrow. It looks like this:

> A whole lot of cattle

The user now moves the cursor to the left by pressing the Left-Arrow.

> A whole lot of cattle
> A whole lot of cattl

Because the cursor alternates with the character to the right of the
theoretical insertion point t that character is invisible half the time. In
the rest of the sequence t we shall assume that we are looking during the
time that the character is invisible and the cursor is visible.

42 Human Interface Guidelines

> A whole lot of catt e

> A whole lot of cat Ie

> A whole lot of ca tIe

> A whole lot of c ttle

> A whole lot of attle

> A whole lot of cattle

> A whole lot 0 cattle

> A whole lot f cattle

> A whole lot of cattle

The user then presses the Delete key several times, until the
words "whole lot" have been deleted:

> A of cattle

Next, the user types the word "herd":

> A h of cattle

> A he of cattle

> A her of cattle

> A herd of cattle

Finally, the user presses Return to accept the entire response:

> A herd of cattle

Additional detailed specs for the blinking-bar cursor:

Blink-rate: 80 cycles per minute
During 1 blink:

Time showing bar: 1/3
Time showing normal character: 2/3

For the overstrike cursor:

Blink-rate: 80 cycles per minute
During 1 blink:

Time showing normal character: 1/3
Time showing inverse character: 2/3

Whenever the cursor is moved, start the blink cycle over again, first showing
the bar.

43

The input buffer: You should maintain an input buffer larger than the field
length of the input, with a pointer showing how much of it you should allow
to be visible. Let's say you have a field length of 25 and the user
has typed in:

What do you use if you want to turn left? A right-hand turn signal_
A right-hand turn signal.

(In order to show the two phases of the blinking cursor, each example
shows the user-response, both while the bar is 'showing and the character
"under it" is showing.)

The user suddenly realizes the error of his answer and backtracks:

What do you use if you want to turn left? A ight-hand turn signal.
A right-hand turn signal.

So far, the contents of the input buffer have not been changed. Now the user
types in the correct answer:

What do you use if you want to turn left? A left_ight-hand turn sig
A leftright-hand turn sig

Instead of either not allowing the user to enter any more characters, or
shoving the "nal" part of "signal" bff into oblivion, move all the characters
ahead in your 250+ character input buffer. So, internally, you are now
carrying the answer:

A leftright-hand turn signal

with a pointer that tells you only to display to the "g" in "signal". Now, when
the user uses the right-delete key (CONTROL-F) to delete the word, "right", you
can again show the characters that had been hidden:

What do you use if you want to turn left? A eft-hand turn signal ••
A left-hand turn signal ••

When the user presses RETURN, accept only those characters that are
visible: this buffer is just there to make changes easier. You need not
maintain a full 250+ character buffer if you only have short input fields. Try
to have an input buffer at least twice as long as the longest field, and dump
characters off the right end if the user keeps backing up and inserting: don't
ever have the input simply lock up. A CONTROL-Y or CONTROL-X should clear to
the end of the actual input buffer, not just the visible portion.

44 Human Interface Guidelines

Cursor Movement with no action taken

Sometimes programs such as word processors require pure cursor movement with
no action taken. The standard keys in such cases are as follows:

K~ys for up, right, down, and left motion:,
Apple lIe and newer computers: the four arrow keys

Apple II and Apple 11+:

I-up
J=left K=right

M=down

These keys are often prefixed with an ESCape.

Keys for vertical, horizointal, and diagonal motion:

All Apple II computers:

U=up,left I=up O=up,right
J=left K=right

N=down,left M=down ,=down,right

These keys"are often prefixed with an ESCape.

'-i'\,-~ ~

yy~

Alerts

Every user of every application is liable to do something that the
application won't understand. From simple typographical errors to
slips of the mouse to trying to write on a protected disk, users will
do things an application can't cope with in a normal manner. Alerts
give applications a way to respond to errors not only in a consistent
manner, but in stages according to the severity of the error, the
user's level of expertise, and the particular history of the error.
The two kinds of alerts are beeps and alert boxes.

Beeps are used for errors that are both minor and immediately obvious.
For example, if the user tries to DELETE past the left boundary of a
text field, the application could choose to beep instead of putting up
an alert box. The beep should not be a standard, Apple II bell, but a
more gentle tone, as found in ProDOS and AppleWorks--the whole room
doesn't need to know the user has yet again made a fool of him or
herself. A beep can also be part of a staged alert, as described
below.

An alert box looks like a modal dialog box, except that it's somewhat
narrower and appears lower on the screen. An alert box is primarily a
one-way communication from the system to the user; the only way the
user can respond is by clicking buttons. Therefore alert boxes might
contain dials and buttons, but usually not text fields, radio buttons,
or check boxes. Figure 27 shows a typical alert box.

escl(Ccncel

(OKCAUTION

Are you sure
you want to erase all
changes to your document?

Figure 27. An Alert Box

There are three types of alert boxes:

- Note: A minor mistake that wouldn't have any disastrous
consequences if left as is.

- Caution: An operation that mayor may not have undesirable
results if it is allowed to continue. The user is given the
choice whether or not to continue.

- Stop: A situation that·requires remedial action by the user. The
situation could be either a serious problem, or something as
simple as a request by the application to the user to change
diskettes.

An applicatidn can define several stages for an alert, so that if the
user persists in the same mistake, the application can issue
increasingly more helpful (or sterner) messages. A typical sequence is
for the first two occurrences of the mistake to result in a beep, and
for subsequent occurrences to result in an alert box. This type of
sequence is especially appropriate when the mistake ·is one that has a
high probability of being accidental. An example is when the user
chooses Cut when the selection is an insertion point.

Under no circumstances should an alert message refer the user to
external documentation for further clarification. It should provide an
adequate description of the information needed by the user to take
appropriate action. Avoid at all costs such messages as:

Application error #1463

Error messages should not only provide information (in the user's
native tongue -- not computerese) as to what the error was, but should
offer solutions as to what the user can do to correct the situation. A
better message might be:

The program here requires the name of the file you
want to work from. You have not yet selected a file.
Please type the name of one of the above files first.

So, generally, it's better to be polite than abrupt, even if it means
lengthening the message. The role of the alert box is to be helpful,
make constructive suggestions, and to help the user solve the problem,
not to give an interesting but academic description of the problem
itself.

Error-trapping

In most situations, user inputs must be checked for validity. Account
numbers, employee numbers, and dates are just a few examples of items
that should be checked to see if the data requested is on file or
plausible. Numeric inputs should be screened for values too small or
too large, if extreme values are invalid or potentially damaging to the
program.

Many types of errors can be circumvented through software design: If,
in testing, you find users repeatedly· making the same kind of errors,
change the software.

Be careful of the details, both during design and boundary-testing:
for example, make your program insensitive to upper/lower case when no
distinction is necessary, and test your program to make sure it is
making no such distinction anywhere. This is a good example of design

"smoothing": if the user finds any input anywhere that is
case-sensitive and you have not taken pains to make sure they know that
this is an exception, they must assume that any input may fail at any
time if they are not careful about case. If you have two or three
"tail-ends" like this going on at once, the user will become very
frustrated.

Enable only those keys you have informed the user you are enabling. Do
not prompt: "Press Escape for Main Menu, Return to continue:" and
fail to announce that Space bar will eliminate this afternoon's files.
The classic counter-example of this was in an early Apple text editor
with a verified-replace option. According to the manual (no
instructions were displayed), R meant replace this occurrence, Space
bar signified do not replace this occurrence. The actual code was such
that any character with an ASCII value of 82 (R) or above caused a
replacement, and any character with an ASCII value less than 82 caused
a skip. Therefore, "[" would replace, "8" would not, " " would
replace, "," would not.

The best way to make an alert message understandable is to think
carefully through the error condition itself. Can the application
handle this without an error?

When you find errors occurring during user-testing, think through the
problem: is there some way you can either lower the incidence of the
error or eliminate it altogether? Many programs seem to suffer from
the it's-easier-to-flag-an-error-than-correct-it error:

Syntax error: no comma after Aardvark

Is the error so specific that the program can handle it transparently?
If not, is the error specific enough so that the user can fix the
situation? What are the recommended solutions? Can the exact item
causing the error be displayed in the alert message?

Many error problems can be eliminated quite readily by fairly simple
design-changes, and you will usually end up saving memory by
eliminating all the text necessary for the alert message. If you can't
eliminate an error, then think through what can be done to lower the
incidence: every new user should not be experiencing the same error.
If they are doing so, you need to reconsider the design.

Specific graphic designs of filecard alert boxes and Windowing alert
boxes can be found within those two sections.

Part III:

The Filecard Menu Interface

The Filecard Menu Interface

Introduction

The pritl\Bry interface for future software development on the Apple.II
series is the windowing (mouse) interface, as adapted from Macintosh.
Because not all software lends itself to this metaphor, we also support
a hierachica1 menu structure, using a fi1ecard metaphor. Adapt menu
interface if:

1. you are transporting an existing menu-based application onto the
Apple II.

2. you have an application in an area such as educat:lpn that does not
lend

itself to the desktop metaphor.

d

Do not reject the windowing system because you
people to buy a mouse: the Apple II windowing
mouse. Our design goal was a windowing system
would be as functional as the fi1ecard system.
in the Spring of 1985 with the introduction of
the toolkits to support it.

do
system
that, without
This goal

this

45

[Illustration of filecard metaphor]

People have often become lost in menu systems because of the lack of
visual feedback. The filecard system enables the user to see very
clearly exactly where she or he is at any point. It allows a depth of
four menu levels, a depth consistent with Apple II owners' navigational
abilities, and discourages disconnected series of sub-menus, a practice
that thoroughly confuses users.

The actual filecards are most easily created on Apple lIe and later
computers. If you are writing for the Apple II/II Plus market, use the
structure and program flow, but not the visual design. If you are
writing for 40-column, you may find you are lacking width for your menu
items because of the space taken up by the filecards themselves. If
so, either shorten the item names or abandon the filecards, again
maintaining all but this visual element.

Menus

The filecard menu scheme uses the general Macintosh paradigm of
point-and-choose, rather than typing. It still allows the standard
method of responding to a menu, by having the user type in the number
(or letter) of choice. But it also allows the user to use the arrow
keys to move from choice to choice. Selecting an up or down arrow key
and leaning on it until the right selection appears requires a lower
level of intellectual involvement on the part of the user. The result
is that the user need not disengage as much from the task at hand to
use the menu tree.

The following illustration shows a typical menu tree with the user at
the second level. Note the use of MouseText icons: the file card
indicates that selecting this option will take the user to another
filecard one level deeper. The running man indicates an immediate
activity.

46 Human Interface .Guidelines

Retail Store Manager

Main Menu

Escape: Main Menu

/

--I-n-v-e-n-t-o-r-y-c-o-n-t-r-o-l----- \

I

1. "'- Enter new product category

I 2. D <UPDATE INVENTORY FOR AN EXISTING PRODUCT)
I

3.~ Work up explanation of last month's shrinkage

4.~ Calculate current value

Type number or use arrows, then press Return

[end of display]

Upon the user's moving to a lower level, the display would look as follows.
Note that item or document names are indicated by a lack of icons. Ddisabled
menu items are bracketed with the delete checkerboard character (#127) so the
user knows what is currently valid. Jump over such items when the user moves
up and down with the arrow keys.

Retail Store Manager

Main Menu

Escape: Inventory Control

I_n_v-:-e_n-:t:-o_r_y_C_o_n_t_r_o__l-----~--------------I-1 __
Update Inventory [_

1.
2.

I HE 3.

I 4.
1-- 5.

6.
7.

Leisure Suits
Nehru Jackets
Daggers and Automatic Weapons •
Quail Eggs
The little paper poofs you put on chicken feet

(MISCELLANEOUS OIL TANKERS>
Cocktail Glass Parasols

Type number or use arrows, then press Return

[end of display]

This scheme allows a menu structure four levels deep, with no ambiguity as to
where one is, how one got there, and how one gets· back.

The current selection (starting with a default) is highlighted, but its number
appears in the input field only if typed by the user. When highlighting such
a menu, highlight only the option itself, not the number, letter, or any icons
preceding it.

In 3D-column mode, where a properly-working monitor is expected, the
highlighting is done by displaying the selection in inverse-mode. Print the

48 Human Interface Guidelines

Print the actual selection (not the associated number or letter) with a
leading and trailing inverse space. These spaces make for easier
readability of the first and last characters.

In the case of a 40-column display, if you as~ume a TV may be in use,
surround the current selection with < > and convert all lowercase
characters to uppercase. (We did considerable experimentation with
various schemes to highlight without inversing, including
double-brackets, a slow, software flash, changing the indentation of
the current selection, pointing arrows, etc. This scheme, in testing,
proved to be the most readable and intuitive of the lot, so we have
chosen it as a standard for all this type of 40-column
point-and-choosing.)

Either typing a new number or pressing the Up- or Down-Arrow changes
the highlighted selection immediately. Moving by arrow causes the
input field to be cleared of any number that may currently appear. If
a number is currently in the input prompt and the user wants to type in
a new number, she need not press the Delete key (or Control-D) before
typing a different response. The new number will replace the old.
Delete will, however, delete the number in the input field in the
normal fashion, leaving the current selection still highlighted, and it
can still be selected. (We foundyou<mustleave it highlighted so that
the user knows what the "anchor" selection is when pressing the Up- or
Down-Arrow key, and since it is highlighted, it must be selectable.)

All sub-menus enable the user to move to the next higher menu by
pressing the Escape key. The main menu has no Escape-key option, so
that the user can feel confident about leaning on the Escape key to get
all the way back to the top level, without worrying about then being
bounced completely out of the program. The Main Menu's last option
enables the user to "quit": end the program.

Programs should always have an definite, clearly-labeled way out.
Those of you who have dealt with new users of micro-computers who are
running endless programs have probably seen their extreme discomfort at
not being able to find their way out. Survivors of time-share days
will often panic as they search in vain for a way to "log off" while
their mental clocks tick away the dollars.

Even if your program is on a copy-protected disk and there really is no
way out, give the user an End option and then tell him that he may now
insert another disk and press RETURN, or whatever. Users feel
positively trapped by programs with seemingly no end; they forget that
the power switch solves all.

The Filecard Metaphor Hithout Filecards

49

The following example was taken from the original Apple lIe Utilities
program. It was designed to work in either 40- or 80-column mode and
is shown here in 40-column operation.

[Substitute with actual screen-shot for final]

System Utilities

Work on Individual Files:

1. Copy Files
2. Delete Files
3. <RENAME FILES)
4. Lock/unlock Files

Work on an Entire Disk:

Main Menu

5. Duplicate a Disk
6•. Format a Disk
7. Identify and Catalog a Disk
8. Advanced operations

9. Quit: Exit System Utilities

Type a number or press I or I to select an option. Then press Return.
Help: Press Open-Apple-?---------------------

[end of display]

50 Human Guidelines

Using the help facility

In the following example, the user points to item 6 on the above menu
and then presses Open-Apple-? Sihe is then presented with the
following help:

[Screen-shot of IIc utilities with item 6, Format a Disk help
displayed.]

When you put the help in a dialog box, make sure that you show only one
set of prompts: the current one. Do not have some random, "Press
Return to Format all your disks" left over in one part of the display,
while exhorting the user to press Return to go back to the menu in your
inset box. You will end up with a frightened user.

If you want to mark menu items previously selected by the user, do so
with an asterisk. We use this system in our in-box tutorial materials,
so your users will have been exposed to it before.

For more information about help dialog boxes, see: Help below.

51

Menus: numbers vs. letters

We have shown the menu items sequentially numbered. Numbering has the
advantage of not requiring the user to be typewriter-literate, an
important consideration when writing for young children. You may want
to work out a mnemonic lettering scheme, but if you do so, use first
letters only and do not repeat any letter more than once anywhere in
the program. You should also consider future growth: most of the
truly horrifying mnemonic systems started out small, but as the
software evolved, they got out of hand.

Sequentially numbered menus should display the number followed by a
period and two spaces. If you are using icons, follow the icon by two
spaces:

1. Eat
2. Drink
3. <BE MERRY>

The highlighting scheme does not work well on numbered menus with more
than 9 items: as it turns out, neither do people. If you have this
many -items, you should separate them into two or more categories and
create more menus.

Sequentially lettered menus are usually quite difficult for
non-touch-typists to handle, but should -you use them, use the same
format as for numbered menus:

A. Do this
B. <DO THAT>
C. Do the other

Mnemonically lettered menus display hyphens instead of periods and look
like this:

C - Create layout
P - <PRINT-OUT LAYOUT>
B - Bill the customer

Note that there is an extra space before the hyphen, but there are
still two spaces after it, to allow room for the < or inverse space.
Again, only the option itself is highlighted.

Menu entries should be written so a novice can understand them, but an
expert need read only a few keywords at the beginning. The examples
below are a bit wordy, but illustrate the point: (the underlining
shows the keywords an expert will use--it would not actually appear on
the screen.)

1. Load a file from disk into memory.
2. Edit the file currently in memory.

52 Human Interface Guidelines

3.
4.

document.
5.

Print the current document on the current printer.
Change printers: select a different printer to print your

Save the current file on disk.

The most fundamental design element for the filecard metaphor is the
three regions defined by the two solid-horizontal lines. These three
regions should appear on every display in the program, on any Apple II
computer in any mode. As simple as such an element is, it gives the
user a visual anchor-point.

The exact number of lines devoted to the three regions is not cast in
stone: the real standard being striven for is that there be three
regions with solid lines separating them, that these be devoted to
titles, choices presented, and instructions. (The Apple II and Apple
11+ can not produce a solid line in text mode; use either their hyphens
or their short-underline characters.

The title region can have up to three titles (usually two in
forty-column mode). The middle title (or left title, if only 2) should
be the name of the display, and if it is a menu, it should contain the
word, "menu". The other displays you will use, such as data-entry and
information, will have a similar format, so make sure your user is
clearly aware of what he is being asked to do: use a properly
descriptive title and do not use the word menu. Similarly, on such
information screens, do not number itemized lists; bullet them:
otherwise, about 25% of your users will try to type in a "selection".
All displays except the main menu should have the words:

Escape: [name of display]

in the top, left-hand corner, so the user knows where she or he will go
by pressing it.

You may use or not use other titles as you see fit, but they should
have a consistent meaning throughout a given application.

Choosing ~ Option

Use for confirmation questions and choosing among three alternatives or
fewer. This is the horizontal version of the scheme used on menus.

Is the above information correct? <YES> no
Do you want to delete the old file? <NO> yes
Select fill-pattern for printed graph: Cross-hatch <DOTS>

Solid

In forty column mode (shown), the standard (default) selection is
bracketed and uppercased. In 80-column mode, it is displayed in
inverse.

53

Pressing either Y or N on a confirmation question moves the pointer
(highlighting) to that word, Yes or No. Pressing Return then accepts
the selection. In any selection set where each word starts with a
unique letter, allow the user to type that letter. Do not allow
wrapping: if the user is on the left-most answer, require her to use
the Right-Arrow key to get to the right-most answer. The reason for
this seemingly unfriendly rule will be made clear below.

How ~ Ask Confirmation Questions Safely

One of the problems with confirmation questions is that the user's
response eventually becomes entirely automatic. The danger in this is
that when you really need confirmation of a dangerous situation, the
user idly selects Y Return, just as always. The following guidelines
will help overcome that problem:

.1. Do not ask for confirmation when it is not needed--most important.
2. If destruction is involved, default to the least-destrutive option.
3. Do not ring the bell for confirmation questions asked every time:

save the bell for unusual cirmstances. 4. Place the default
answer first in the list, unless an error in the

user's choice can result in catastrophic damage.

The user's pattern of use will thus be that accepting the default means
a simple Return, and rejecting the default means Right-Arrow Return.
This automatic pattern will always make the computer work, except in
one case:

This disk has active files. Reformatting will destroy them.
Do you want to re-format and destroy all files? Destroy <CANCEL>

In this case, the user must break normal pattern and can only destroy
what may be one month's work by pressing Left-Arrow Return, or typing a
letter other than Y or N. (This is the reason for not allowing
wrap-around, which would let the user press the Right-Arrow key--the
"habit key".

There is one cardinal rule that must be followed to make this sheme
work: Do not harrass the user. If there is an activity which must be
habitually handled, you must allow the user to fail. Excessive
prompting leads people to totally ignore the meaning of every prompt in
their efforts to escape from your clutches. Then, when something
really important arises, they will bang their way through it without
even looking at the words, destroying exactly what you were trying to
keep them from destroying.

These kinds of difficulties arise out of the most altruistic of
motives; they will show up when you begin to do long-term testing with
people from your target audience. Get you~ program into test sites as
early as possible, and listen to user-feedback on just these sorts of
issues.

54 Human Interface Guidelines

Marking Groups of Selections:

Quite often, particularly in file-related functions and options, such
as printer option screens, you have a group of names or options which
the user needs to select or deselect, turn on or turn off.

. ,
[show w~th MouseText check-marks in place of -->'s]

Fred's Utilities
Main Menu

Copy a File Escape: Exit to

•d2/ FRED Name: TYPE: SIZE: DATE
MODIFIED:

ZILLA. TEXT TEXT 1 BLOCK 3-AUG-85
SHAWN. TEXT TEXT 2 BLOCKS 4-AUG-85
HOUSE. FOTO BINARY 5 BLOCKS 29-JUL-82
LAZARUS SYS 1 BLOCK 17-APR-85
SHERI. FORMS TEXT 2 BLOCKS 6-AUG-85

--> RUPERTS. LIST TEXT 4 BLOCKS 3-JUL-85
RODS. NOTES TEXT 1 BLOCK 12-JUN-85
JDS.MISC. TEXT 14 BLOCKS 6-AUG-85
AMY.MEMO TEXT 4 BLOCKS 14-JUL-86
THAD. MEMO TEXT 23 BLOCKS 18-JUL-85

-> PETER. MEMO TEXT 2 BLOCKS 3-AUG-85
LEE.MEMO.3 TEXT 2 BLOCKS 3-AUG-85
LEE. MEMO. 4 TEXT 1 BLOCK 4-AUG-85

To Move: Press arrow keys To Mark/Unmark Documents: Press Solid-Apple
To Accept Marked Documents: Press RETURN.

Help: OPEN-APPLE-?

[end of display]

If there is not enough room on the display for all names, scroll the
display when the pointer (highlighting) reaches the bottom. When there
are hidden file names, display a note at the bottom (or top, when files
are hidden above) that says:

(Additional file names)

Because of the lack of special keys on the Apple II and Apple II Plus,
there has never been a standard way of doing selections such as these.
Use your imagination, and make the design you come up with conform to
the rest of your program.

"Press Return to continue"---
The user controls the movement from one display to the next by pressing

55

the Return key (or, optionally but consistently, Space bar). He is
informed by a message such as, "Press the Return key to go on to the
menu." on the bottom line of the screen. (Delay loops are difficult to
judge as to the proper duration, and become somewhat insulting to the
intelligence of the user.) The actual prompt message should give some
indication as to what will happen next, rather than simply saying
"Press Return to continue."

The educational software community has pretty much selected Space bar
instead of Return to control movement: children were found to
occasionally press Reset by accident on the older Apple II's and. Apple
II+'s. Please be consistent in your choice of Return key or Space bar,
not only within a given program, but across your complete product line.

Do not tell the user to, "Press any key". On the Apple II series
computers, you cannot currently read every key by itself: Reset,
Shift, Control. We have also found in testing that new users panic
when asked to press any key. Over 80% of them will. turn around and
say, "but what key should I press?" In questioning them about· this
response, we discovered that they are quite convinced that even though
the prompt implied all keys were O.K. to press, some could be
dangerous. Of course, they were usually quite right.

While you should not tell them to press any key, yoll·may, in this
specific case, accept more than the key. specified. Both Return and
Space bar can be accepted, even though only one is prompted for: users
grow used to using one or the other. The exception to this.lies in
alert messages: use Space bar for dangerous, unusual.alerts rather
than Return. The habitual user will attempt to clear most alerts with
scarcely a glance, but when Return fails to clear it, she or he will be
forced to look further.

Never accept Escape instead of Return or Space bar, unless the latter
two keys will result in the same thing the user would expect of Escape:
moving up one level.

Arrays and the Filecard Metaphor

Displays with several input statements:

* Movement from input to input is sequential: the user may move back
and forth but not randomly skip around. (The exception is the
spreadsheet sort of array, where the user can use the four arrow keys.)

* Pressing the Tab key automatically positions the user at the next
input statement.

* Pressing Open-Apple-Tab
previous input statement.
will be displayed as that

automatically positions the user at the
The prior response to the previous input

input's default.

* The last input on the display will normally ask if the user has
completed all responses to her or his satisfaction.

56 Human Interface Guidelines

* No input will be accepted without the user explicitly terminating it,
usually with Return, Tab or Open-Apple-Tab. The fact that the user has
used up all the spaces available in the field should not automatically
move the user to the next question.

Alerts

An alert box is a narrow rectangle that appears low on the screen. An
alert box is primarily a one-way communication from the system to the
user; the only way the user can respond is with Return,Space, Escape,
or perhaps Y or N. Figure 27 shows a typical alert box.

~ I
esclICancel

10KCAUTION

Are you sure
you want to erase all
changes to your document?

Figure 27. An Alert Box

The prompt in an alert box depends on the nature of the box. If the
box presents the user with a situation in which no alternative actions
are available, the box has a single prompt that says either "Press
Return" or "Press Space bar". In this context, pressing the proper key
means "I have read the alert."

Space bar is more apt to cause the user to read the contents of the
alert; users press Return so automatically, they sometimes forget to
look at what they are acknowledging. If your program has numerous
displays that use Return to continue, you may want to use Space for
each and every alert. Otherwise, reserve Space only for those "Stop"
occasions (see: Alert Messages in the Generic Interface section) when
the user is in danger of doing something large, permanent, and probably
unexpected. If the user is given alternatives, then typically the
alert is phrased as a question that can be answered "yes" or "no",
although some variation such as Save and Don't Save is also acceptable.

For further information on beeps, the types of alert messages, how and
when to write one, read Alert Messages in the Generic Interface
section.

57

Help

The user should not be faced with page after page of instructions:
experience has proven that people simply will not read them. Rather,
supply help as it is needed. One way of doing that is described above
in the section on menus.

When you try your program out on new users, be sensitive to the times
they need fundamental help in using the features of the programs. For
example, while you may have a program portion with detailed
explanations on why ellipsoid analysis is so effective in figuring hog
belly futures, your user may never get there: you may not have
provided necessary help in how to enter preliminary data.

The standard help key on the Apple lIe and later model Apple II
computers is OPEN-APPLE-? and, optionally, SOLID-APPLE-? (The SHIFT
should not be required: therefore, also accept OPEN-APPLE-/ and
SOLID-APPLE-/.)

The standard help key on the Apple II and Apple 11+ is a question mark
or slash, with no modifier key.

A help dialog box. is a rectangle that appears higher on the screen than
an alert box. A help box is also primarily a one-way communication
from the system to the user; the only way the user can respond is with
Return or Escape. Figure 27 shows a typical help box~

Figure 27. A Help Box

The prompt in a help box will normally either say "Press Return for
more information" or "Press Return to continue," depending on whether
there are more pages of information. You m~y also enable
Open-Apple-Return to back up through the pages, and you should enable
Escape in all cases to cancel the help function. In an education
program in which you are consistently using Space bar instead of Return
for "page-turning," you can use "Press Space bar".

58 Human Interface Guidelines

Vocabulary

Jargon

Avoid computer jargon. A great deal of it has an unrelated emotional
charge. (Abort. for example.) The appendix to How!£ Write a Manual
has a comprehensive list of standard terms.

Abbreviations

Use abbreviations only where absolutely necessary or where an
abbreviation is better understood than what it stands for. e.g •• 8 PM.

Defaults

Please do not ever use the word default in a program designed for
humans. Default is something the morgage went into right before the
evil banker stole the Widow Parson's house. There is an exhaustive
list of substitutes (previous. automatic. standard. etc.) in the
Appendix to How ~ Write a Manual.

Defaults should be declared. not assumed. Undeclared (not displayed)
defaults such as pressing RETURN for Yes (or for No?) will cause
confusion and anger. You need not declare ESCAPE every time you enable
it: ESCAPE always gets you out of where you are, to where you came
from, without causing damage or confusion. As long as that benign
definition is adhered to. you may feel free to slip in ESCAPE anywhere.--

.........................
'- ... \, .
'- \. .., ..:;.~\ ..

Interfaoe

The Desktop

..:..:<..:..:..:..: ":":":":":<..:..:..:..:..:..:..: ..:..: -':'" ":":":":\...:..: ',,":":":":":":":": ..: ..: ..:..:..: •.. ..:..:..:..:..: ..:..:..:..:..:..:.~..: ..:..: ..:..:..:..: ..:..:.~. \ '- \ ..:-->>> :-. >'.. :-.> :-.:-.:--:--:-- :-. :-. :-. :-.:-. :-.:-.>:-.>:-. ':-.:-. :-.>:-.:--:-.:-. :-.:-.> :-- :-.:-.:-.
... \ ..

>:-.......... »»>:-.:-.:-.>

ABOUT THIS MANUAL

This section describes the Apple II windowing user interface.

The windowing user interface consists of those features that are
generally applicable to a variety of applications. Not all of the
features are found in every application. In fact, some features are
hypothetical and may not be found in any current applications.

The best time to familiarize yourself with the windowing user interface
is before beginning to design an application. Good application design
happens when 'a developer has absorbed the spirit as well as the details
of the user interface.

Before launching into your own design, you should have read this manual
and have some experience using one or more applications, preferably one
each--or-a word processor, spreadsheet or database, and graphics
application. If you are beginning early eIlbugh·thatsuch applications
are not redily available on the Apple II, then use such applications on
the MacIntosh.

1/15/85 Tognazzini

INTRODUCTION 59

INTRODUCTION

Apple II windowing software is designed to appeal to an audience of
nonprogrammers, including people who have previously feared and
distrusted computers. To achieve this goal, Apple II windowing
applications should be easy to learn and to use. To help people feel
more comfortable with the applications, the applications should build
on skills that people already have, not force them to learn new ones.
The user should feel in control of the computer, not the other way
around. This is achieved in applications that embody three qualities:
responsiveness, permissiveness, and consistency, leading to the user's
having a sense of autonomy.

Responsiveness means that the user's actions tend to have direct
results. The user should be able to accomplish what needs to be done
spontaneously and intuitively, rather than having to think: "Let's
see; to do C, first I have to do A and B and then••• ". For example,
with pull-down menus, the user can choose the desired command directly
and instantaneously. This is a typical operation: The user moves the
pointer to a location on the screen and presses the mouse button.

Permissiveness means that the application tends to allow the user to do
anything reasonable. The user, not the system, decides what to do
next. Also, error messages tend to come up infrequently. If the user
is constantly subjected to a barrage of error messages, something is
wrong somewhere.

The most important way in which an application is permissive is in
avoiding modes. This idea is so important that it's dealt with in a
separate section, "Avoiding Modes", below.

The third and most important principle is consistency. Since users
usually divide their time among several applications, they have
historically felt confusion and irritation as they faced learning a
completely new interface. for each application. The main purpose of
this manual is to describe the shared interface ideas of windowing
applications, so that developers of new applications can gain leverage
from the time spent developing.and testing existing applications bbth
for Macintosh/Lisa and the Apple II.

With the MouseText and MouseGraphics windowing toolkits available from
Apple, consistency has become an achievable goal. However, you should
be aware that implementing the user interface guidelines in their full
glory often requires writing additional code that isn't supplied.

Of course, you shouldn't feel that you're restricted to using existing
features. The Macintosh/Apple II world is a growing system, and new
ideas are essential. But the bread-and-butter features, the kind that
every application has, should certainly work the same way so that the
user can move easily back and forth between applications. The best
rule to follow is that if your application has a feature that's
described in these guidelines, you should implement the feature exactly
as the guidelines describe it. It's better to do something completely

1/15/85 Tognazzini IINTF/INTRO

60 Human Interface Guidelines

different than to half~agree with the guidelines.

Illustrations of most of the features described in this manual can be
found in various already-released Macintosh and Apple II applications.
However, there is probably no one application that illustrates these
guidelines in every particular. Although it's useful and important for
you to get the feeling of the user interface by looking at existing
Macintosh and Apple II applications, the guidelines in this manual are
the ultimate authority. Wherever an existing application disagrees
with the guidelines, follow the guidelines.

Avoiding Modes

"But, gentlemen, you overdo the mode."
-- John Dryden, The
Assignation, or Love in i
Nunnery, 1672

A mode is a part of an application that the user has to formally enter
and leave, and that restricts the operations that can be performed
while it's in effect. Since people don't usually operate modally in
real life, having to deal with modes in computer software reinforces
the idea that computers are unnatural and unfriendly.

Modes are most confusing when you're in the wrong one. Unfortunately,
this is the most common case. Being in a mode is confusing because it
makes future actions contingent upon past ones; it changes the behavior
of familiar objects and commands; and it makes habitual actions cause
unexpected results.

It's tempting to use modes in a windowing
existing software leans on them heavily.
temptation too frequently, however, users
with your application a chore rather than

application, since most
If·· you· yield to the
will consider spending time
a satisfying experience.

This is not to say that modes are never used in windowing applications.
Sometimes a mode is the best way out of a particular problem. Most of
these modes fall into one of the following categories:

- Long-term modes with a procedural basis, such as doing word
processing as opposed to graphics editing. Each application
program is a mode in this sense.

- Short-term "spring-loaded" modes, in which the user is constantly
doing something to perpetuate the mode. Holding down the mouse
button or a key is the most common example of this kind of mode.

- Alert modes, where the user must rectify an unusual situation
before proceeding. These modes should be kept to a minimum.

Other modes are acceptable if they meet one of the following
requirements:

1/15/85 Tognazzini /INTF/INTRO

INTRODUCTION 61

- They emulate a familiar real-life model that is itself modal, like
picking up different-sized paintbrushes in a graphics editor.
MousePaint and other palette-based applications are examples of
this use of modes.

- They change only the attributes of something, ;md not its
behavior, like the boldface and underline modes of text entry.

- They block most other normal operations of the system to emphasize
the modality, as in error conditions incurable through software
("There's no disk in the disk drive", for example).

If an application uses modes, there must be a clear visual indication
of the current mode, and the indication should be near the object being
most affected by the mode. It should also be very easy to get into or
out of the mode (such as by clicking on a palette symbol).

Several features of the keyboard (mouseless) interface.are modaL For
example, the cursor keys are usually redefined, along with Escape and
Return being used as mode-terminators. However, every effort has been
made to limit both the extent of this modality to only these keys, and
to be consistent in the kind of behavior changes that the user can
expect.

TYPES OF APPLICATIONS

It's useful to make a distinction among three types of objects that an
application deals with: text, graphics, and arrays. Examples of each
of these are shown in Figure 1.

1/15/85 Tognazzini /INTF /APPS

62 Human Interface Guidelines

The rest to ,ome f8i nt meeni"9 rrnske pretenco
But SMd'Well never deviates into S8Me.
Some beam, of 'Wit on other sou), fMt,J fell,
Strike throU9h and make 0 lucid intervel;
But Shoo'Wel1'3 l}enul ne night edmits no rOil,
Hi5 rising fogs prevail upon the day.

Text

Graphics

Advertisirl9 132.9

MenUfectur109 121.3

R&D 18.7

Interest 12.2

Totsl 285.1

Array

Figure 1. Ways of Structuring Information

Text can be arranged in a variety of ways on the screen. Some
applications, such as word processors, might consist of nothing but
text, while others, such as graphics-oriented applications, use text
almost incidentally. It's useful to consider all the text appearing
together in a particular context as a block of text. The size of the
block can range from a single field, as in a dialog box, to the whole
document, as in a word processor. Regardless of its size or
arrangement, the application sees each block as a one-dimensional
string of characters. Text is edited the same way regardless of where

1/15/85 Tognazzini /INTF/APPS

TYPES OF APPLICATIONS 63

it appears.

Graphics are pictures, drawn either by the user or by the application.
Graphics in a document tend to consist of discrete objects, which can
be selected individually. Graphics are discussed further below, under
"Using Graphics".

Arrays are one- or two-dimensional arrangements of fields. If the
array is one-dimensional, it's called a form; if it's two-dimensional
it's called a table. Each field, in turn, contains a collection of
information, usually text, but conceivably graphics. A table can be
readily identified on the screen, since it consists of rows and columns
of fields (often called cells), separated in. graphics environments by
horizontal and vertical lines. A form is something you fill out, like
a credit-card application.' A form may not be as obvious to the user as
a table, since the fields can be arranged in any appropriate way.
Nevertheless, the application regards the fields as in a definite
linear order.

Each of these three ways of presenting information retains its
integrity, regardless .of the context in which it appears. For example,
a field in an array can contain text. When the user is manipulating
the field as a whole, the field is treated as part of the array. When
the user wants to change the contents of the field, the contents are
edited in the same way as any other text.

Another case is text that appears. in a graphics application. Depending
on the circumstances, the text can be> treated as text or as graphics.
In MousePaint, for example, .the. way text is treated depends on which
palette symbol is in effect. If the text symbol is in effect, text can
be edited in the usual way, but cannot be moved around on the screen.
If the selecting arrow is in effect, a block of text can be moved
around, but it cannot be edited.

USING GRAPHICS

The MouseGraphics toolkit gives full access to the Apple II
high-resolution graphics scre.en. To use this screen to its best
advantage, MouseGraphics applications use graphics copiously, even in
places where other applications use text. As much as possible, all
commands, features, arid parameters of an application, and all the
user's>data, appear a.s gra.phic objects on the screen. Figure 2 shows
some of the ways in which applications can use graphics to communicate
with the user.

1/15/85 Tognazzini /INTF/GRAPHICS

64 Human Interface Guidelines

P
,.-.,
I IL_"

Palettel with
~~-paintbru$l

~ymbol selected,g
Dial
o.
00
c:?tA?
alZ.Icons

CJ ~ D
[Q[d~mm

Figure 2. Objects on the Screen

Objects, whenever applicable, resemble the familiar material objects of
which they are symbolic.

Objects are designed to look good on the screen. Predefined graphics
patterns can give objects a. shape and texture beyond simple line
graphics. Placing a drop-shadow slightly below and to the right of an
object can give it a three-dimensional appearance.

Generally, when the user clicks on an obj ect, it's highlighted to
distinguish it from its peers. The most common way to show this
highlighting is by inverting the object: reversing its black and white
pixels. In some situations, other forms of highlighting, such as the
knobs used in MacDraw, may be more appropriate. The important thing is
that there should always be some sort of feedback, so that the user
knows that the click had an effect •

.One special aspect of the appearance of a document on the screen is
visual fidelity. This principle is also known as "what you see is what
you get". It primarily refers to printing: The version of a document
shown on the screen should be as close as possible to its printed
version, taking into account inevitable differences due to .different
media. The ability to achieve visual fidelity in the Apple II world is
not as great as that in the Macintosh world: we have more varied
printer technologies to support, we cannot depend on as much available
memory, and we have a slower processor. Still, the primary reason for
choosing to use the MouseGraphics toolkit over the Mousetext toolkit is
increased visual fidelity. We should therefor be as thorough and
clever as possible in maximizing that fidelity.

1/15/85 Tognazzini /INTF/GRAPHICS

USING GRAPHICS 65

Icons

A fundamental object in windowing software is the icon, a small graphic
object that is usually symbolic of an operation or of a larger entity
suc9 as a document.

Icons should be sprinkled liberally over the screen. Wherever an
explanation or label is needed, first consider using an icon instead of
using text as the label or explanation. Icons not only contribute to
the clarity and attractiveness of the system, they don't need to be
translated into foreign languages.

Palettes

Some applications use palettes as a quick way for the user to change
from one operation to another. A palette is a collection of small
squares, each containing a symbol. A symbol can be an icon, a pattern,
a character, or just a drawing, that stands for an operation. When the
user clicks on one of the symbols, it's distinguished from the other
symbols, such as by highlighting, and the previous symbol goes back to
its normal state.

Typically, the symbol that's selected determines what operations the
user can perform. Selecting a palette symbol puts the user into a
mode. This use of modes can be justified because changing from one
mode to another is almost instantaneous , and the us~ can always see at
a glance which mode is in effect. Like all modal features, palettes
should be used only when they're the most natural way to structure an
application.

A palette can either be part of a window (as in MacDraw), or a separate
window (as in MousePaint). Each system has its disadvantages. If the
palette is part of the window, then parts of the palette might be
concealed if the user makes the window smaller. On the other hand, if
it's not part of the window, then it takes up extra space on the
desktop. If an application supports multiple documents open at the
same time, it might be better to put a separate palette in each window,
so that a different palette symbol can be in effect in each document.

COMPONENTS OF THE WINDOWING SYSTEMS

This section explains the relationship among the principal large-scale
components of the windowing systems (from an external point of view).

The main vehicle for the interaction of the user and the system is the
application. Only one application is active at a time. When an
application is active, it's in control of all communications between
the user and the system. The application's menus are in the menu bar,
and the application is in charge of all windows as well as the desktop.

1/15/85 Tognazzini /INTF/STRUC

66 Human Interface Guidelines

To the user, the main unit of information is the document. Each
document is a unified collection of information--a single business
letter or spreadsheet or chart. A complex application, such as a data
base, might require several related documents. Some documents can be
processed by more than one application, but each document has a
principal application, which is usually the one that created it. The
other applications that process the document are called secondary
applications.

The only way the user can actually see the document (except by printing
it) is through a window. The application puts one or more windows on
the screen; each window shows a view of a document or of auxiliary
information used in processing the document. The part of the screen
underlying all the windows is called the desktop.

At the time of this writing, we have not created tools for making a
Macintosh-like Finder to change applications. With such a Finder
active, if the user double-clicks on either the application's icon or
the icon of a document belonging to that application (or opens the
document or application by choosing Open from the File menu), the
application becomes active and displays the document window. If you
are using the MouseGraphics environment for a integrated software
package, you still might want to emulate the Macintosh Finder. If you
are writing a text-based integrated application or hard-disk filing
system, please contact Apple II technical support to find out what kind
of metaphor we are using/recommending.

Internally, applications and documents are both kept in files.
However, the user never sees files as such, so they don't really enter
into the windowing user interface.

THE KEYBOARD MOUSE

At the time of this writing, the majority of Apple II owners did not
have a mOuse. While this situation was expected to change with the
arrival of more. and more. mouseware, developers feltarieed for an
interface for text applications that would be fully functional without
a mouse. The Apple II windowing interface has been developed to be a
powerful, practical tool with or without a mouse.

Figure 3A. The Twin Speres

Conceptually, the Keyboard and Mouse interfaces exist as overlapping
spheres, with many operations, such as typing text, in common. They
differ in how the non-mouse user performs the various
pointing-and-choosing operations:

- Choosing from a menu: pressing Escape takes the user to the menu,
the cursor keys moves around the menu, Return accepts the current
item, and Escape cancels. See: "The menu bar".

1/15/85 Tognazzini /INTF/STRUC

THE KEYBOARD MOUSE 67

- Moving and sizing a window: Open-Apple-n for drag redefines the
cursor keys to move the window; Open-Apple-G for grow redefines
the cursor keys to grow or shrink the window. See: "Moving a
Window" and "Changing the size of a Window".

- Selecting text: Open-Apple-M for mark begins a text-selection
mode. Moving the cursor keys marks the text, Return accepts,
Escape cancels. See: "Selecting Text".

- Clicking on controls: Solid-Apple, by itself, acts as a mouse
button to click on buttons, check boxes, and radio buttons. See:
"Controls"

- Moving the insertion point: Pressing the cursor keys moves the
insertion point. See: "Selecting".

As much keyboard support as is practical has been installed within the
various mouse toolkits; where you must provide your own, follow the
direction and philosophy of these guidelines and the toolkits
themselves. When using a toolkit-based application, the keyboard user
can directly emulate a mouse by holding down the Open-Apple key and
pressing, then releasing Solid-Apple. The cursor keys then affect the
mouse cursor so the user can move around the display, using Solid-Apple
as the mouse button to click, press, or drag. When the Open-Apple key
is released, mouse emulation is terminated.

The mouseless mouse is intluded as asafety net. should a developer fail
to discover in testing that there is a necessary feature that the
keyboar-d user cannot get to without a mouse •. ltls also allows for
rather. flashy live demonstrations of your software' sindependence of
the mouse. It is not intended as a substitute for the proper design of
a keyboard-only interface: it was designed for ease of learning rather
than ease of use, and to lower memory and documentation requirements.

THE MOUSE

The mouse is a small device the size of a deck of playing cards,
connected to the computer by a long, flexible cable. There's a button
on the top of the mouse. The user holds the mouse and rolls it on a
flat, smooth surface. A pointer on the screen follows the motion of
the mouse.

Simply moving the mouse results only in a corresponding movement of the
pointer and no other action. Most actions take place when the user
positions the "hot spot" of the pointer over an object on the screen
and presses and releases the mouse button. The hot spot should be
intuitive, like the point of an arrow or the center of a crossbar.

1/15/85 Tognazzini /INTF/MOUSE

68 Human Interface Guidelines

Mouse Actions

The three basic mouse actions are:

- clicking: positioning the pointer with the mouse, then briefly
pressing and releasing the mouse button without moving the mouse

- pressing: positioning the pointer with the mouse, then holding
down the mouse button without moving the mouse

- dragging: positioning the pointer with the mouse, holding down
the mouse button, moving the mouse to a new position, and
releasing the button

The Mouse Toolkits can provide "mouse-ahead"; that is, any mouse
actions the user performs when the application isn't ready to process
them are saved in a buffer and can be processed at the application's
convenience. The application can then choose to ignore saved-up mouse
actions, but should do so only to protect the user from possibly
damaging consequences.

Clicking something with the mouse performs an instantaneous action,
such as selecting a location within the user's document or activating
an obj ect.

For certain kinds of objects, pressing on the object has the same
effect as clicking it repeatedly. For example, clicking a scroll arrow
causes a document to scroll one line; pressing on a scroll arrow causes
the document to scroll repeatedly until the mouse. button is released or
the end of the document is reached.

Dragging can have different effects, depending on what's under the
pointer when the mouse button is pressed. The uses of dragging include
choosing a menu item, selecting a range of objects, moving an object
from one place to another, and shrinking or expanding an object.

Some objects, especially graphic objects, can be moved by dragging. In
. this case, the application attaches a dotted outline of the object to
the pointer and redraws the outline continually as the user moves the
pointer. When the user releases th~ mouse. button, the application
redraws the complete object at the new location.

An object being moved can be restricted to certain boundaries, such as
the edges of a window frame. If the user moves the pointer outside of
the boundaries, the application stops drawing the dotted outline of the
object. If the user releases the mouse button while the pointer is
outside of the boundaries, the object isn't moved. If, on the other
hand, the user moves the pointer back within the boundaries again
before releasing the mouse button, the outline is drawn again.

In general, moving the mouse changes nothing except the location, and
possibly the shape, of the pointer. Pressing the mouse button
indicates the intention to do something, and releasing the button

1/15/85 Tognazzini /INTF/MOUSE

THE MOUSE 69

completes the action. Pressing by itself should have no effect except
in well-defined areas, such as scroll arrows, where it has the same
effect as repeated clicking.

Multiple-Clicking

A variant of clicking involves performing a second click shortly after
the end of an initial click. If the downstroke of the second click
follows the upstroke of the first by a short amount of time, and if the
locations of the two clicks are reasonably close together, the two
clicks constitute a double-click.

Because of the difficulty of detecting time-between-clicks on the Apple
II, it is permissible to define double-clicking simply as two clicks
geographically close together and with no intervening events. Its most
common use is as a faster or easier way to perform an action that can
also be performed in another way. F6rexample, clicking twice on an
icon is a faster way to open it than choosing Open; clicking twice on a
word to select it is faster than dragging through it.

An operation invoked by double-clicking an object must be an
enhancement, superset, or extension of the feature invoked by
single-clicking that object.

Triple-clicking is also possible; it should similarly represent an
extension of a double-click.

Changing Pointer Shapes

The pointer may change shape to give feedback on the range of
activities that make sense in a particular area of the screen, in a
current mode,or both.

- The result of any mouse action depends on the item under the
pointer when the mouse button is pressed. To emphasize the
differences among mouse actions, the pointer may assume different
appearances in different areas to indicate the actions possible in
each area.

- Where an application uses modes for different functions, the
pointer can be a different shape in each mode. For example, in
MousePaint, the pointer shape always reflects the active palette
symbol.

Figure 5 shows some examples of pointers and their effect. An
application can design additional pointers for other contexts.

1/15/85 Tognazzini /INTF/MOUSE

70 Human Interface Guidelines

bcr, desktop, 8I'ld so on

Mo vxGrep..h1£l t1meTex1
f2.ll1W: f2inkr ~

~ ~
SCroll ber end other control:!, alze box
flUe ber, menu baf, de3ktop, end ~ on

I L Selecting text

+ HIll Dr8'Nlng, shrinking, 01' atretchlng
grephlc object'

c8:a .IL. Selecting field, In en llfTay,,.

J: :x Showing that a lengthy operatlon I,
In Pl'0VC"

Figure 5. Pointers

SELECTING

The user selects an object to distinguish it from other objects just
before performing an operation on it. Selecting the object of an
operation before identifying the operation is a fundarnental
characteristic of windowing software.

Selecting an object has no effect on the contents of a document.
Making a selection shouldn't commit the user to anything; the user is
never penalized for making an incorrect selection. The user fixes an
incorrect selection by making the correct selection.

Although there is a variety of ways to select objects, they fall into
easily recognizable groups. Users get used to doing specific things to
select objects, and applications that use these methods are therefore
easier to learn. Some of these methods apply to every type of
application, and some only to particular types of applications.

This section discusses first the genera.l lIiE!thods, and then the specific
methods that apply to text applications, graphics applications, and
arrays. Figure 6 shows a comparison of some of the general methods.

1/15/84 Tognazzini /INTF/SELECT

Clicking on B
selech B

B c

~

SELECTING' 71

r;----········-·-···--··....·........·····..·....-l

i I~I I ':'';'
I I -.-
I f
L _.._._ _ J

Figure 6. Selection Methods

Selection by Clicking

The most straightforward method of selecting an object is by clicking
on it once. Most things that can be selected in windowing applications
can be selected this way.

Some applications support selection by double-clicking and triple
clicking. As always with multiple clicks, the second click extends the
effect of the first click) and the third click extends the effect of
the second click. In the case of selection, this means that the second
click selects the same sort of thing as the first click, only more of
them. The same holds true for the third click.

For example) in text) the first click selects an insertion point)
whereas the second click selects a whole word. The third click might
select a whole block or paragraph of text. In graphics, the first
click selects a single object, and double- and triple-clicks might
select increasingly larger groups of objects.

Range Selection

The user selects a range of objects by dragging through them. Although
the exact meaning of the selection depends on the type of application)
the procedure is always the same:

1. The user positions the pointer at one corner of the range and
presses the mouse button. This position is called the anchor
point of the range.

2. The user moves the pointer in any direction. As the pointer is
moved) visual feedback keeps the user informed of the objects that

1/15/84 Tognazzini /INTF/SELECT

72 Human Interface Guidelines

would be selected if the mouse button were released. For text and
arrays, the selected area is continually highlighted. For
graphics, a dotted rectangle expands or contracts to show the
range that will be selected.

3. When the feedback shows the desired range, the user releases the
mouse button. The point at which the button is released is called
the endpoint of the range.

Extending a Selection

A user can change the extent ofanexisttl1g selection by holding down
the Open-Apple key and c1ickingt~e mouse. button•• (This is an
unfortunate but unayoidable difference with MacIntosh, where
Shift-click is used instead. Should Apple II hardware ever permit
reading the shift key by itself, windowing software should accept
either a Shift-click or an Open-Apple-click.) Exactly what happens
next depends on the context.

In text or an array, the result of an Open-Apple-click is always a
range. The position where the button is clicked becomes the new
endpoint or anchor point. of the range; the selection can be extended in
any direction. If the user clicks within the current range, the new
range will be smaller than the old range.

In graphics, a selection is extended by adding objects to it; the added
objects do not have to be adjacent to the objects already selected.
The user can add either an individual object or a range of objects to
the selection by holding down the Open-Apple key before making the
additional selection. If the user holds down the Open-Apple key and
selects one or more objects that are already highlighted, the objects
are deselected.

Extended selections can be made across the panes of a split window.
(See "Splitting Windows".)

Making a Discontinuous Selection

In graphics applications, objects aren't usually considered to be in
any particular sequence. Therefore, the user can use Open-Apple-click
to extend a selection by a single object, even if that object is
nowhere near the current selection. When this happens, the objects
between the current selection and the new object are not automatically
included in the selection. This kind of selection is called a
discontinuous selection. In the case of graphics, all selections are
discontinuous selections.

This is not the case with arrays and text, however. In these two kinds
of applications, an extended selection made by an Open-Apple-click
always includes everything between the old selection and the new
endpoint. To provide the possibility of a discontinuous selection in

1/15/84 Tognazzini /INTF/SELECT

SELECTING' 73

these applications, the user interface includes Solid-Apple-click.

To make a discontinuous selection in a text or array application, the
user selects the first piece in the normal way, then holds down the
Solid-Apple key before selecting the remaining pieces. (It is useful
but not absolutely necessary that the user have two right hands.) Each
piece is selected in the same way as if it were the whole selection,
but because the Solid-Apple key is held down, the new pieces are added
to the existing selection instead of supplanting it.

If one of the pieces selected is already within an existing part of the
selection, then instead of being added to the selection it's removed
from the selection. Figure 7 shows a sequence in which several pieces
are selected and deselected.

A 8 c o
CeIIs 82/ 83/ C2/ and C3
ere selected

1
2
1-----

3
~~---

5

A 8 c o
The U3er holds down the 1
Solid-Apple ~ev.end clicks in 2~
D5 3

1~---

5 "- -'- ---1"- _

oc8A,
23 ...--_.....

'1
5 t==t==t==:l-.",.~~,...dif&t·,';"

The U3er holds down the
Solid-Apple ~ey end clicks in
C3

Figure 7. Discontinuous Selection

Not all applications support discontinuous selections, and those that
do might restrict the operations that a user can perform on them. For
example, a word processor might allow the user to choose a font after
making a discontinuous selection, but not to choose Cut or Paste.

1/15/84 Tognazzini /INTF/SELECT

74 Human Interface Guidelines

Selecting with the Cursor Keys

The user can alternatively mark a selection using the cursor keys. To
signal the system that a selection is about to be marked t the user
presses Open-App1e-M. The current insertion-point then becomes the
anchor of the se1ection t and the selection can be extended in any
direction using the four cursor keys.

Pressing Open-App1e-M twice before using the cursor keys is equivalent
to a mouse double-click; pressing Open-App1e-M three times is
equivalent to a mouse triple-click. In the case of text t the
anchor-point is always at the top-left point of the expanded
insertion-point and the current cursor position is always at the
bottom-right.

a se1ection t the user presses Solid-App1e-M as an equivalent of
Open-App1e-c1ick. There is no equivalent of Solid~App1e-c1ick. Only
provide Solid..Apple-M.if .itts really needed: One of the primary
reasons for being able to extend a text selection in the mouse world is
that the usernEH~ds togo to the scroll-bar to move any significant
distance. The cursor-key user does not need to use the scroll bar.
Reaching a window end will scroll the window's contents; pressing
Open-Apple at the same time as a cursor key will move the cursor by an
appropriately large chunk t such as one word horizontally or one page
vertically.

Other than the.meth0d.«)tfig:n.a.lling the beginning and end ofa
selection t selecti.n~iu~ill~/tliecursor keys follows the same general
guidelines as selecting with a mouse. (Differences are noted.)

Selecting Text

Text is used in most applications; it's selected and edited in a
consistent waYt regardless of where it appears.

A block of text :I.sastringofi>characters. A text selection is a
substring of this string''0:l1fshcan have any length from zero
characters to the whole block. Each of the text selection methods
selects a different kind of substring. Figure 8 shows different kinds
of te*tselections.

1/15/84 Tognazzini /INTF/SELECT

SELECTING· 75

Intertlon point - MeIlNGnll'hlct Andl sprlngth the wude nu

IMeTtion point - HunText AntLspri ngth the wude nu

blinking ----1

neoge of chefetC lura

Word

Range of words

Discontinuoull
Selection

Ancisprlngth the ",,:ude nu

AIDm:lEngth the wUde nu.

EI!mJ sprlngth the wude nu

cucrltsMMtrriW the wude nu.

~ngth the~ nu.

Figure 8. Text Selections

Insertion Point

The insertion point is a zero-length text selection. The user
establishes the location of the insertion point by clicking between two
characters. The insertion point then appears at the nearest character
boundary. If the user clicks to the right of the last character on a
line, the insertion point appears immediately after the last character.
The converse is true if the user clicks to the left of the first
character in the line.

The insertion point shows where text will be inserted when the user
begins typing, or where the contents of the Clipboard will be pasted.
After each character is typed, the insertion point is relocated to the
right of the insertion.

If, between the mouse-down and the mouse-up, the user moves the pointer
more than about half the width of a character, the selection is a range
selection rather than an insertion point. The cursor-key user begins
the same process with Open-Apple-M.

Selecting Words

The user selects a whole word by double-clicking somewhere within that
word. If the user begins a double-click sequence, but then drags the
mouse between the mouse-down and the mouse-up of the second click, the
selection becomes a range of words rather than a single word. As the
pointer moves, the application highlights or unhighlights a whole word
at a time. The cursor-key user cannot select a range of words,
although she can select the whole first word or paragraph by pressing
Open-Apple-M repeatedly.

A word, or range of words, can also be selected in the same way as any
other range; whether this type of selection is treated as a range of

1/15/84 Tognazzini /INTF/SELECT

76 Human Interface Guidelines

\
characters or as a range of words depends on the operation. For
example, in MacWrite, a range of individual characters that happens to
coincide with a range of words is treated like characters for purposes
of extending a selection, but is treated like words for purposes of
intelligent cut and paste.

A word is defined as any continuous substring that contains only the
following characters:

- a letter (including letters with diacritical marks)

- a digit

- a nonbreaking space (Open-Apple-Space)

- a dollar sign, cent sign, English pound symbol, or yen symbol

- a percent sign

- a comma between digits

- a period before a digit

- an apostrophe between letters or digits

- a hyphen, but not a minus sign (Open-Apple-hyphen)

This is the definition in the United States and Canada; in other
countries, it would have to be changed to reflect local formats for
numbers, dates, and currency.

If the user double-clicks over any character not on the list above,
only that character is selected.

Examples of words:

$123,456.78
shouldn't
3 1/2 [with a nonbreaking space]
.5%

Examples of nonwords:

7/1(/)/6
blue cheese [with a breaking space]
"Yoicks!" [the quotation

marks and exclamation point aren't part of the word]

Selecting a Range of Text

The user selects a range of text by dragging through the range. A
range is either a range of words or a range of indivi~ual characters,
as described under "Selecting Words", above.

1/15/84 Tognazzini /INTF/SELECT

SELECTING. 77

If the user extends the range, the way the range is extended depends on
what kind of range it is. If it's a range of individual characters, it
can be extended one character at a time. If it's a range of words
(including a single word), it's extended only by whole words.

Graphics Selections

There are several different ways to select graphic objects and to show
selection feedback in existing Macintosh and Apple II applications.
MacDraw, MousePaint, and the Macintosh Finder all illustrate different
possibilities. This section describes the MacDraw paradigm, which is
the most extensible to other kinds of applications.

A MacDraw document is a collection of individual graphic objects. To
select one of these objects, the user clicks once on the object, which
is then shown with knobs. (The knobs are used to stretch or shrink the
object, and won't be discussed in this manual.) Figure 9 shows some
examples of selection in MacDraw.

• •
• •

Figure 9. Graphics Selections in MacDraw

To select more than orie object, the user S~n select either a
multiple selection. A range selection includes every object
contained within. the .• dotted rectangl~.Sh~pel1Cf~9sestherange,
extended selection includes only thoseobjects~xp].icitly be.Lel;LeU

Selections in Arrays

As described above, under "Types of Applications", an array is a one
or two-dimensional arrangement of fields. If the array is
one-dimensional, it's called a form; if it's two-dimensional, it's
called a table. The user can select one or more fields, or part of the
contents of a field.

To select a single field, the user clicks in the field. The user can
also implicitly select a field by moving into it with the Tab or Return
key.

1/15/84 Tognazzini /INTF/SELECT

78 Human Interface Guidelines

The Tab key cycles through the fields in an order determined by the
application. From each field, the Tab key selects the "next" field.
Typically, the sequence of fields is first from left to right, and then
from top to bottom. When the last field in a form is selected,
pressing the Tab key selects the first field in the form. In a form,
an application might prefer to select the fields in logical, rather
than physical, order.

The Return key selects the first field in the next row. If the idea of
rows doesn't make sense in a particular context, then the Return.key
should have the same effect as the Tab key.

Tables are more likely than forms to support range selections and
extended selections. A table can also support selection of rows and
columns. The most convenient way for the mouse user to select a column
is to click in the column header. To select more than one column, the
user drags through several column headers. The same applies to rows.
The keyboard user will need an Open-Apple "short-cut".

To select part of the contents of a field, the user must first select
the field. The user then clicks again to select the desired part of
the field. Since the contents of a field are either text or graphics,
this type of selection follows the rules outlined above. Figure 10
shows some selections in an array.

Column Field

~.~'-"- -+_ 01 scon1 inuou$
Selection

====t===lJt~~_·~~ Ifl~~~~part of a
field

Figure 10. Array Selections

1/15/84 Tognazzini /INTF/SELECT

WINDOWS 79

WINDOWS

Windows are the rectangles on the desktop that display information.
The most commmon types of windows are document windows, desk
accessories, dialog boxes, and alert boxes. (Dialog and alert boxes
are discussed under "Dialogs and Alerts".) Some of the features
described in this section are applicable only to document windows.
Figure 11 shows a typical active window and some of its components.

Clo~ box Title bflf

Scroll errow

Scroll box

Clooc box g==J!ml~==::J1 TItle ber
Scroll 1lfTO'V

Scroll box

Scroll bar

- Size box

Scroll bel'

MQuseGra~

Figure 11. An

Multiple Windows

Scroll bar

Scroll bet

MQuseText

Window

Some applications may be able to keep several windows on the desktop at
the same time. Each window is in a different plane. Windows can be
moved around on the desktop much like pieces of paper can be moved
around on a real desktop. Each window can overlap those behind it, and
can be overlapped by those in front of it. Even when windows don't
overlap, they retain their front-to-back ordering.

Different windows can represent:

- different parts of the same document, such as the beginning and
end of a long report

- different interpretations of the same document, such as the
tabular and chart forms of a set of numerical data

- related parts of a logical whole, like the listing, execution, and
debugging of a program

- separate documents being viewed or edited simultaneously

1/15/85 Tognazzini /INTF/WINDOW

80 Human Interface Guidelines

Each application may deal with the meaning and creation of multiple
windows in its own way.

The advantage of multiple windows is that the user can isolate
unrelated chunks of information from each other. The disadvantage. is
that the desktop can become cluttered, especially if some of the
windows can't be moved. Figure 12 shows multiple windows.

-
o

ttnlFJIt.

#.

i

Inactive
windows

The
active
window

Figure 12. Multipl~ Windows

Opening and Closing Windows

Windows come up onto the screen in different ways as appropriate"to the
purpose of the window. The application controls at least the initial
size and placement of its windows.

Most windows have a close box that, when clicked, makes the window go
away. The application in control of the window determines what's done
with the window visually and logically when the close box is clicked.
Visually, the window can either shrink to a smaller object such as an
icon, or leave no trace behind when it closes. Logically, the
information in the window is either retained and then restored when the
window is reopened (which is the usual case), or else the window is
reinitialized each time it's opened. When a document is closed, the
user is given the choice whether to save any changes made to the
document since the last time it was saved.

If an application doesn't support closing a window with a close box, it
should not include a close box on the window.

1/15/85 Tognazzini / INTF!WINDOW

WINDOWS 81

The Active Window

Of all the windows that are open on the desktop, the user can work in
only one window at a time. This window is called the active window.
All other open windows are inactive. To make a window active, the user
clicks in it (or uses an Open-Apple short-cut). Making a window active
has two immediate consequences:

- The window changes appearance: Its title bar is highlighted, the
scrolling apparatus is shown in the scroll bars, and a size or
grow box is shown. If the window is being reactivated, the
selection that was in effect when it was deactivated is
rehighlighted.

- The window is moved to the frontmost plane, so that it's shown in
front of any windows that it overlaps.

Clicking in a window does nothing except activate it. To make a
selection in the window, the user must click again. When the user
clicks in a window that has been deactivated, the window should be
reinstated just the way it was when it was deactivated, with the same
position of the scroll box, and the same selection highlighted.

When a window becomes inactive, all the visual changes that took place
when it was activated are reversed. The title bar becomes
unhighlighted, the scrolling apparatus isn't shown in the scroll bars,
the size box isn't shoWn, and no selection is. shown in the window.

Moving (Dragging)_.-=a~..;;W-=i:;;;n:..=d:.:o:..:.w:....... -,- _

Each application initially places windows on the screen wherever it
wants them. The user can move a window--to make more room on the
desktop or to uncover a window it's overlapping~-by dragging it by its
title bar. As soon as the user presses in the title bar, that window
becomes the active window. A dotted outline of the window follows the
pointer until the user releases the mouse button. At the release of
the button the full window is drawn in its new location. Moving a
window doesn't affect the app~arance of the document within the window.

If the user holds down the Open-Apple key while dragging the window
outline, the window isn't made active; it moves in the same plane. (At
the time of this writing, this feature had not been implemented in the
Apple II mouse toolkits.)

The standard keyboard shortcut for dragging a window is Open-Apple-D •
The user can then use the cursor keys to drag the window outline. The
user exits by pressing ESC to cancel, RETURN to accept the new
location, or any other valid Open-Apple combination to accept and begin
the next operation.

The application should ensure that a window can never be moved
completely off the screen.

1/15/85 Tognazzini /INTF/WINDOW

82 Human Interface Guidelines

Changing the Size of a Window

If a window has a size or grow box in its bottom right corner, where
the scroll bars come together, the user can change (grow) the size of
the window--enlarging or reducing it to the desired size.

Dragging the size box attaches a dotted outline of the window to the
pointer. The outline's top left corner stays fixed, while the bottom
right corner follows the pointer. When the mouse button is released,
the entire window is redrawn in the shape of the dotted outline. The
standard keyboard shortcut for growing a window is Open-Apple-G. The
user can then use the cursor keys for growing or shrinking the window.
The user exits by pressing ESC to cancel, RETURN to accept the new
size, or any other valid Open-Apple combination to accept and move on.

Moving windows and growing them go hand in hand. If a window can be
moved, but not shrunk or grown, then the user ends up constantly
dragging windows on and off the screen. The reason for this is that if
the user drags the window off the right or bottom edge of the screen,
the scroll bars are the first thing to disappear. To scroll the
window, the user must move the window back onto the screen again. If,
on the other hand, the window can be resized, then the user can change
its size instead of dragging it off the screen, and will still be able
to scroll.

Growing a window doesn't change the position of the top left corner of
the window over the document or· the appearance of the part of the view
that's still showing; it changes only how much of the view is visible
inside the window. One exception to this rule is a command such as
Reduce to Fit in.MacDraw, which changes the scaling of the view to fit
the size of the window. If, after choosing this command, the user
resizes the window, the application changes the scaling of the view.

The application can define a minimum window size. Any attempt to
shrink the window below this size is ignored.

Scroll Bars

Scroll bars are used to change which part of a document view is shown
in a window. Only the active window can be scrolled.

A scroll bar (see Figure 11 above) is a light gray-shaft, capped on
each end with square boxes labeled with arrows; inside the shaft is a
white rectangle. The shaft represents one dimension of the entire
document; the white rectangle (called the scroll box) represents the
location of the portion of the document currently visible inside the
window. As the user moves the document under the window, the position
of the rectangle in the scroll bar moves correspondingly. If the
document is no larger than the window, the scroll bars are inactive;
they appear the same as they would in an inactive document.

1/15/85 Tognazzini /INTF/WINDOW

WINDOWS 83

There are three ways to use the mouse to move the document under the
window: by sequential scrolling, by II paging ll windowful by windowful
through the document, and by directly positioning the scroll box.

Clicking a scroll arrow moves the document in the opposite direction
from the scroll arrow. For example, when the user clicks the top
scroll arrow, the document moves down, bringing the view closer to the
top of the document. The scroll box moves towards the arrow being
clicked.

Each click in a scroll arrow causes movement a distance of one unit in
the chosen direction, with the unit of distance being appropriate to
the application: one line for a word processor, one row or column for
a spreadsheet, and so on. Within a document, units should always be
the same size, for smooth scrolling. Pressing the scroll arrow causes
continuous movement in its direction.

Clicking the mouse anywhere in the gray area of the scroll bar advances
the document by windowfuls. The scroll box, and the document view,
move toward the place where the user clicked. Clicking below the
scroll box, for example, brings the user the next windowful towards the
bottom of the document. Pressing in the gray area keeps windowfuls
flipping by until the user releases the button, or until the location
of the scroll box catches up to the location of the pointer. Each
windowful is the height or width of the window, minus one unit overlap
(where a unit is the distance the view scrolls when the scroll arrow is
clicked once).

In both the above schemes the user moves the document incrementally
until it's in the proper position under the window; as the document
moves, the scroll box moves accordingly. The user can also move the
document directly to any position simply by moving the scroll box to
the corresponding position in the scroll bar. To move the scroll box,
the user drags it along the scroll bar; an outline of the scroll box
follows the pointer. When the mouse. button is released, the scroll box
jumps to the position last held by the outline, and the document jumps
to the position corresponding to the new position of the scroll box.

If the user starts dragging the scroll box, then moves the pointer a
certain distance outside the scroll bar, the scroll box detaches itself
from the pointer and stops following it; if the user releases the mouse
button, the scroll box returns to its original position and the
document remains unmoved. But if the user still holds the mouse button
and drags the pointer back into the scroll bar, the scroll box
reattaches itself to the pointer and can be dragged as usual.

In graphics-based applications, if a document has a fixed size, and the
user scrolls to the right or bottom edge of the document, the
application displays a small amount of gray background (the same
pattern as the desktop) between the edge of the document and the window
frame.

1/15/85 Tognazzini /INTF/WINDOW

84 Human Interface Guidelines

Cursor-Key Scrolling

The Apple II interface also includes the ability to move and scroll
using the cursor keys. Each press of a cursor key moves the insertion
point one unit in the chosen direction, with the unit of distance being
appropriate to the application. When the insertion point has been
moved to a window edge, the insertion point locks, and the contents of
the window begin to be shifted one unit in the opposite direction. At
that point, that cursor key acts like the equivalent scroll arrow.

The user can increase the extent of the movement by holding down
Open-Apple while pressing the cursor key. The insertion point will
then move by the next larger contextual unit. For example, in a
word-processor, Open-Apple-Left-Arrow moves one word at a time,
Open-Apple-Up-Arrow moves one windowful at a time.

You may also provide a method to substitute for the large leaps the
mouse user can make by dragging the scroll box. Text programs, for
example, have historically used Open-Apple with the numbers 1 through 9
to move to an absolute position, with 1 being the first character in a
file and 9 being.the last. Array windows, such as spreadsheets, will
probably want to allow the user to enter a column or row designation to
move directly there.

Automatic Scrolling

There are several instances when the application, rather than the user,
scrolls the document. These instances involve some potentially sticky
problems about how to position the documenfwithin the window after
scrolling.

The first case is when the user moves the pointer out of the window
while selecting by dragging. The window keeps up with the selection by
scrolling automatically in the direction the pointer has been moved.
The rate of scrolling is the same as if the user were pressing on the
corresponding scroll arrow or arrows.

The second case is when the selection isn't currently showing in the
window, and the user performs an operation on it. When this happens,
it's usually because the user has scrolled the document after making a
selection. In this case, the application scrolls the window so that
the selection is showing before performing the operation.

The third case is when the application performs an operation whose
side-effect is to make a new selection. An example is a search
operation, after which the object of the search is selected. If this
object isn't showing in the window, the application must scroll the
window so as to show it.

The second and third cases present the same problem: Where should the
selection be positioned within the window after scrolling? The primary
rule is that the application should avoid unnecessary scrolling; users

1/15/85 Tognazzini /INTF/WINDOW

WINDOWS - 85

prefer to retain control over the positioning of a document. The
following guidelines should be helpful:

- If part of the new selection is already showing in the window,
don't scroll at all. An exception to this rule is when the part
of the selection that isn't showing is more important than the
part that's showing.

- If scrolling in one orientation (horizontal or vertical) is
sufficient to reveal the selection, don't scroll in both
orientations.

If the selection is smaller than the window, position the
selection so that some of its context is showing on each side.
It's better to put the selection somewhere near the middle of the
window than right up against the corner.

,- Even if the selection is too large to show in the window, it might
be preferable to show some context rather th~n to try to fit as
much as possible of the selection in the window.

Splitting a Window

Sometimes it's deslrabl~to be aqlE!< to see disjoint parts cfa document
simultaneously. Applications that a. c.c0rnmodate such a.capability allow
the window to be split into independently scrollable panes.

Applications that support splitting a window into panes place
split bars at the top of the vertical scroll bar and to the left of the
horizontal one. Pressing a split bar attaches it to the pointer.
Dragging the split bar positions it anywhere along the scroll bar;
releasing the mouse button moves the split bar to a new position,
splits the window at that location, and divides the appropriate scroll
bar (horizontal or vertical) into separate scroll bars for each pa.ne.
Figure 13 shows the ways a window can be split.

Horizontal Spl it Vertical Spilt Both Splits

Figure 13. Types of Split Windows

1/15/85 Tognazzini /INTF/WINDOW

86 Human Interface Guidelines

After a split, the document appears the same, except for the split line
lying across it. But there are now separate scroll bars for each pane.
The panes are still scrolled together in the orientation of the split,
but can be scrolled independently in the other orientation. For
example, if the split is horizontal, then horizontal scrolling (using
the scroll bar along the bottom of the window), is still synchronous.
Vertical scrolling is controlled separately for each pane, using the
two scroll bars along the right of the window. This is shown in Figure
14.

The pef)e3 3croll
together In
the vertlcesl
orientation

:\1111
I:":

,11111

C-Nf-)
-~-

C-N2-)---
C-N3-)---
C-N4-)---

C-M'-:>---
C-Mi)---
(-Mf)---
C-M4-)---

(-81-:>---
C-02-)---
C-03-)----
C-04-:>---

The p~ne3 ~crollindepe~ntly
in the horizontal orientation

(-Af-)

(-R2-)

(-A3-)

(-A4-)

o

Figure 14.
...

Scrolling a Split Window

To remove a split, the user drags the split bar to the bottom or the
right of the window.

The number of views in a document doesn't alter the number of
selections per document: that is, one. The active selection appears
highlighted in all views that show it. If the application has to
scroll automatically to show the selection, the pane that should be
scrolled is the last one that the user· clicked in. If the selection is
already showing·in one of the panes, no automatic scrolling takes
place.

Panels

If a document window is more or less permanently divided into different
regions, each of which has different content, these regions are called
panels. Unlike panes, which show different parts of the same document
but are functionally identical, panels are functionally different from
each other but might show different interpretations of the same part of
the document. For example, one panel might show a graphic version of
the document while another panel shows a textual version.

1/15/85 Tognazzini /INTF/WINDOW

WINDOWS 87

Panels can behave much like subwindows; they can have scroll bars, and
can even be split into more than one pane. An example of a panel with
scroll bars is the list of files in the Open dialog box.

Whether to use panels instead of separate windows is up to the
application. Multiple panels in the same window are more compact than
separate windows, but they have to be moved, opened, and closed as a
unit.

1/15/85 Tognazzini /INTF/WINDOW

COMMANDS

Once the information to be operated on has been selected, a command to
operate on that information can be chosen from lists of commands called
menus.

The Apple II's pull-down menus have the advantage that they're not
visible until the user wants to see them; at the same time they're easy
for the user to see and choose items from.

Most commands either do something, in which case they're verbs or verb
phrases, or else they specify an attribute of an object, in which case
they're adjectives. They usually apply to the current selection,
although some commands apply to the whole document or window.

When you're designing your application, don't assume that everything
has to be done through menu commands. Sometimes it's more appropriate
for an operation to take place as a result of direct user manipulation
of a graphic object on the screen, such as a control or icon.
Alternatively, a single command can execute complicated instructions if
it brings up a dialog box for the user to fill in.

The Menu Bar

The menu bar is displayed at the top of the screen. It contains a
number of words and phrases: These are the titles of the menus
associated with the current application. Each application has its own
menu bar. The names of the menus do not change, except when the user
calls for a desk accessory that uses different menus.

Only menu titles appear in the menu bar. If all of the commands in a
menu are currently disabled (that is, the user can't choose them), the
menu title should be dimmed (in gray type or flanked by the ASCII 127
checkerboard). The user can pull down the menu to see the commands,
but can't choose any of them.

Choosing Menu Commands

••• With A Mouse

To choose a command, the user positions the pointer over the menu title
and presses the mouse button. The application highlights the title and
displays the menu, as shown in Figure 15.

1/15/85 Tognazzini /INTF/COMMANDS

COMMANDS 89

Show Rulers
Custom Aulers... --+- Ellips/a

* -"Dj mmed" commend

----+- Checked commend
6R Keyboard equivalent

v' Normal Size
Reduce To Fit
Reduce

3$: Enlarge

COIT1l1l8nd crOup {
Turn Grid Off
Hide Grid Lines

Show Size
Hide Page Breaks
Drawln Size...

Figure 15. Menu

While holding down the mouse button, the. user moves the pointerd6wn
the menu. As the pointer moves to each command, the command is
highlighted. The command that's highlighted when the user releases the
mouse button is chosen. As soon as the mouse button is released, the
command blinks briefly, the menu disappears, and the command is
executed. The menu title in the menu bar remains highlighted until the
command has completed execution.

Nothing actually happens until the user chooses the command; the user
can look at any of the menus.without making a connnitment to do
anything.

The most frequently used commands should be at the top of a menu;
research shows that the easiest item for the mouse user to choose is
the second item from the top. The most dangerous commands should be at
the bottom of the menu, preferably isolated from the frequently used
commands •

••• With the Cursor Keys

Pressing Escape within the application moves the user to the last item
chosen on the menu. When the application begins, the initial cursor
location should be the title of the first menu. Once at the menu, the
user can move up and down the current menu with the Up and Down cursor
keys, and move to the top of the adjacent menus using the Left or Right
cursor keys. Once the user has reached the desired item, it is

1/15/85 Tognazzini /INTF/COHHANDS

qo

selected by pressing Return. If the user is on the title of a menu or
on a disabled item when Return is pressed, no. action will be taken.

The user may also select an item when in the menu pressing it's
keyboard equivalent key (see: Keyboard Equivalents, below). The
keyboard equivalent command will be carried out and the menu operation
will be cancelled. The user can choose simply to cancel the menu
operation by pressing Escape to return .to the application.

Escape is normally defined on the Apple II as, "move me one level up in
the program". This definition is retained in windowing software, as
Escape will cancel dialog boxes, current inputs, and so forth. The
only addition is that when the user is already at the top level (the
application), it will toggle between application and menu.

If a command can be chosen directly from the keyboard, it's followed by
the Open-Apple, Solid-Apple, or Control key (diamond) symbol and the
character used to choose it. To choose a command this way, the user
holds down the appropriate modifier key and then presses the character
key.

Whenever practical, make all keyboard equivalents be Open-Apple
combinations. If you want to provide a keyboard macro capability, let
the user program macros to the Solid-Apple key. Otherwise, accept
Solid-Apple keystrokes for Open-Apple commands. Avoid assigning two
different commands to the same. key, with only the use of Open- or
Solid-Apple to differentiate. Generally, users do not recognize the
difference between the two modifier keys.

While the toolkits enable you to use control characters for keyboard
equivalents, we generally recommend against it for the following
reasons:

- Most control keys are either tied to the hardware of the computer
or are otherwise reserved. (See: Control combinations.)

- The diamond symbol for control is not generally recognized by
users.

- Control keys are generally reserved for basic, simple, repetitive
functions, such as moving by or deleting individual characters.

The advantage to control keys is their typeability: the current
location of the Open- and Solid-Apple keys is such that they are
difficult to touch-type with any speed or accuracy. We therefore
recommend that you reserve control keys for only those things that must
be done repetitively and unconciously. We suggest that even in these
cases, you also enable the same key used with Open-Apple, as we have
done with cut, copy, and paste. This tends to make documenting and
learning easier, with the experienced user picking up the control
shortcut at an appropriate time.

1/15/85 Tognazzini /INTF/COMMANDS

COMMANDS' 91

Reserved Key Combinations

Some characters are reserved for special purposes, but there are
different degrees of stringency. Since almost every application has a
File menu and an Edit menu, the keyboard equivalents in those menus are
strongly reserved, and should never be used for any other purpose. All
these equivalents may be selected while pressing the Open-Apple key.
(All but Quit are also selectable while pressing the Control key, to
enable touch-typists to manipulate the mouse while using these editing
keys simultaneously):

Character

z
X
C
V

Q

Command

Undo (Edit menu)
Cut (Edit menu)
Copy (Edit menu)
Paste (Edit menu)

Quit (File menu)

The following Open-Apple combinations are reserved for the keyboard
equivalents of mouse operations:

Character

D
G
M

Command

Drag or move the currently active window
Grow or shrink (size) the currently active window
Mark a selection

One Open-Apple keyboard command doesn't have a menu equivalent:

Character Command

Stop current operation

Other Open-Apple keyboard equivalents are conditionally reserved. If
an application enables these commands, it shouldn't use these
characters for any other purpose, but if it doesn't, it can use them
however it likes:

Open-Apple combinations:

Character Command

P Print
S Save

1/15/85 Tognazzini /INTF/COMMANDS

Control combinations:

Character

R
C
D
E
F

* H
* I
* J
* K

L

* M

P

S

* U
V

x

z

* [

Command

Bold
Copy
Delete
Edit
Forward Delete

Left Arrow
Tab
Down Arrow
Up Arrow
Begin or End Underline
Carriage Return

Print the contents of the screen

Save

Right Arrow
Paste

Cut

Undo

Escape

* These are the control equivalents of the various Apple special keys.
Current unmodified Apple II keyboards cannot differentiate between a
Control-character sequence and its equivalent special key, for example,
Control-M and Return.

Appearance of Menu Commands

The commands in a particular menu should be logically related to the
title of the menu. In addition to command names, three features of
menus help the user understand what each command does: command groups,
toggles, and special visual features.

Command Groups

As mentioned above, menu commands can be divided into two kinds: verbs
for actions and adjectives for attributes. An important difference
between the two kinds of commands is that an attribute stays in effect
until it's cancelled, while an action ceases to be relevant after it
has been performed. Each of these two kinds can be grouped within a
menu. Groups are separated by lines, which are implemented as disabled
commands.

1/15/85 Tognazzini /INTF/COMMANDS

COMMANDS 93

The most basic reason to group commands is to break up a menu so it's
easier to read. Commands grouped for this reason are logically
related, but independent. Commands that are actions are usually
grouped this way, such as Cut, Copy, Paste, and Clear in the Edit menu.

Attribute commands that are interdependent are grouped to show this
interdependence. Two kinds of attribute command groups are mutually
exclusive groups and accumulating groups.

In a mutually exclusive attribute group, only one command in the group
is in effect at the same time. The command that's in effect is
preceded by a check mark. If the user chooses a different command in
the group, the check mark is moved to the new command. An example is
the Font menu in MacWrite; no more than one font can be in effect at a
time.

In an accumulating attribute group, any number of attributes can be in
effect at the same time. One special command in the group cancels all
the other commands. An example is the Style menu in MacWrite: the
user can choose any combination of Bold, Italic, Underline, Outline, or
Shadow, but Plain Text cancels all the other commands.

Toggles

Another way to show the presence. or absence of an attribute is by a
toggled command. In this case, the attribute has two states, and a
single command 'allows the user to toggle between the states. For
example, when rulers are showing in MacWrite, a command in the Format
menu reads "Hide Rulers". If the user chooses this command, the rulers
are hidden, and the command is changed to read "Show Rulers". This
kind of group should be used only when the wording .of the commands
makes it obvious that they're opposites.

Special Visual Features

In addition to the command names and how they're grouped, several other
features of commands communicate information to the user:

- A check mark indicates whether an attribute command is currently
in effect.

- An ellipsis (•••) after a command name means that choosing that
command brings up a dialog box. The command isn't actually
executed until the user has finished filling in the dialog box and
has clicked the OK button or its equivalent.

- The application dims a command (or flanks it with the ASCII 127
checkerboard) when the user can't choose it. If the user moves
the pointer over a dimmed item, it isn't highlighted.

- If a command can be chosen from the keyboard, it's followed by the
specific modifier key symbol (Open-Apple, Solid-Apple, or diamond

1/15/85 Tognazzini /INTF/COMMANDS

symbol for Control) and the character used to choose it.

The application can draw its own type of menu. An example of this is
the Fill menu in MacDraw.

STANDARD MENUS

One of the strongest ways in which applications can take advantage of
the consistency of the windowing user interface is by using standard
menus. The operations controlled by these menus occur so frequently
that it saves considerable time for users if they always match exactly.
Three of these menus, the? or Solid-Apple, File, and Edit menus,
appear in almost every application.

The~ Solid-Apple Menu
.-,. fill'. I otJ. nou.s.eT.tZ.n"" C-H,4f'<./lc.TeJ2s" ::rex
(4 in a MouseText-based application, Solid-K'pple in a graphics-based
application)

Desk accessories are mini-applications that you may make available to
your user while using your application. You can enable a user to issue
a command at any time to call up one of several desk accessories. More
than one accessory can be on the desktop at a time. An example of a
menu of accessories is shown in Figure 16.

Rbout MousePalnt ...
....- - _-_ ..

Scrapbook
Alarm Clock
NotePad
Calculator
Puzzle

Figure 16. Apple Menu

The? menu also contains the "About xxx" menu item, where "xxx" is the
name of the application. Choosing this item brings up a dialog box
with the name and copyright information for the application, as well as
any other information the application wants to display.

1/15/85 Tognazzini /INTF /SMENUS

OH
oS

STANDARD MENUS 95

The File Menu

The File menu allows the user to perform certain simple filing
operations. It also contains the commands for printing and for leaving
the application. The standard File menu includes the commands shown in
Figure 17.

New
Open•••

._-.._ _- ..

Close
Hide
Soue
Saue As•••
Reuert to Saued

...............__ - _ .

Poge Setup •••
Print... oP

Ouit OQ

Figure 17. File Menu

Other frequently used commands are Print Draft, Print Final, and Print
One. All of these commands are described below.

New

New opens a new, untitled document. The user names the document the
first time it's saved. This command is disabled when the maximum
number of documents allowed by.the application is already open.

Open opens an existing document. To select the document, the user is
presented with a dialog box (Figure 18). This dialog box shows a list
of all the documents on the disk whose name is displayed that can be
handled by the current application. The user can scroll this list
forward and backward. The dialog box also gives the user the chance to
look at the documents on other disks in other disk drives that belong
to the current application.

1/15/85 Tognazzini /INTF/SMENUS

Inective bu1ton 1nective bu1ton

letter
Mflrch Figures
Marketing
Memo
Messages
New Totols
Old Totals

rQ
~ lopo.

ICflncel esC) INewPath ON)
{) "---------' I

letter
March Figures
Marketing
Memo
Meuoges
New Totnls
Old Totnls

I~Open oo~1

..

IConcel escl (N"ew Poth aNI

MouseGroRlJill MouseTex1

Figure 18. Open Dialog Box

Using the Open command, the user can only open a document that can be
processed by the current application. Opening a document that can only
be processed by a different application requires leaving the
application.

This command is disabled when the maximum number of documents allowed
by the application is already open.

Close

Close closes the active document or desk acceSsory. If the user has
changed the document since the last time it was saved, the command
presents an alert box giving the user the choice of whether or not to
save the changes.

Clicking in the close box of a window is the same as choosing Close.

Save

Save makes permanent any changes to the active document since the last
time it was saved. It leaves the document open.

If the user chooses Save for a new document that hasn't been named yet,
the application presents the Save As dialog (see below) to name the
document, and then continues with the save. The active document
remains active.

If there's not enough room on the disk to save the document, the
application asks if the user wants to save the document on another
disk. If the answer is yes, the application goes through the Save As
dialog to find out which disk.

1/15/85 Tognazzini /INTF/SMENUS

STANDARD MENUS' 97

Save As

Save As saves a copy of the active document under a file name provided
by the user.
\
If the document already has a name, Save As closes the old version of
the document, creates a copy, and displays the copy in the window.

If the document is untitled, Save As saves the original document under
the specified name. The active document remains active.

Revert to Saved

Revert to Saved returns the document to the state it was in the last
time it was saved. Before doing so, it puts up an alert box to confirm
that this is what the user wants.

Page Setup

Page Setup lets the user specify printing parameters such as what the
document's paper size and printing orientation are. These parameters
remain with the document.

Print

Print lets the user specify various parameters such as print quality
and number of copies, then prints the document. The parameters apply
only to the current printing operation.

Quit

Quit leaves the application. If any open documents have been changed
since the last time they were saved, the application presents the same
alert box as for Close, once for each document.

Other Commands

Other commands that are in the File menu in some applications include:

- Print Draft. This command prints one copy of a rough version of a
document more quickly than Print. It's useful in applications and
with printers where ordinary printing is slow. If an application
has this command, it should change the name of the Print command
to Print Final.

- Print One. This command saves time by printing one copy using
default parameters without bringing up the Print dialog box. If
an application has this command, Open-Apple-P should be its

1/15/85 Tognazzini /INTF/SMENUS

keyboard equivalent.

The Edit Menu

The Edit menu contains the commands that delete, move, and copy
objects, as well as commands such as Undo, Show Clipboard, and Select
All. This section also discusses the Clipboard, which is controlled by
the Edit menu commands. Text editing methods that don't use menu
commands are discussed under "Text Editing".

The standard order of commands in the Edit menu is shown in Figure 19.

Undo (183t) Z

cut
Copy
Paste
Clear

OH
OC
au

Show Clipboard
Select All

Figure 19. Edit Menu

The Clipboard

The Clipboard is a special kind of window with a well-defined function:
it holds whatever is cut or copied from a document. Its contents stay
intact when the user changes documents, opens a desk accessory, or
leaves the application. An application can choose whether to have the
Clipboard open or closed when the application starts up.

The Clipboard looks like a document window, with a close box but with
no scroll bars. Its contents cannot be edited.

Every time the user performs a Cut or Copy on the current selection, a
copy of the selection replaces the previous contents of the Clipboard.
The previous contents are kept around in case the user chooses Undo.

The user can see the contents of the Clipboard but can't edit them. In
most other ways the Clipboard behaves just like any other window.

There is only one Clipboard, which is present for all applications that
support Cut, Copy, and Paste. The user can see the Clipboard window by
choosing Show Clipboard from the Edit menu. If the window is already

1/15/85 Tognazzini IINTF/SMENUS

STANDARD MENUS 99

showing, it's hidden by choosing Hide Clipboard. (Show Clipboard and
Hide Clipboard are a single, toggled command.)

Undo

Undo reverses the effect of the previous operation. Not all operations
can be undone; the definition of an undoable operation is somewhat
application-dependent. The general rule is that operations that change
the contents of the document are undoable, and operations that don't
are not. Most menu items are undoable, and so are typing sequences.

A typing sequence is any sequence of characters typed from the keyboard
or numeric keypad, including Delete, Return, and Tab, but not including
keyboard equivalents of commands.

Operations that aren't undoable include selecting, scrolling, and
splitting the window or changing its size or location. None of these
operations interrupts a typing sequence. That is, if the user types a
few characters and then scrolls the document, the Undo command still
undoes the typing. Whenever the location affected by the Undo
operation isn't currently showing on the screen, the application should
scroll the document so the user can see the effect of the Undo.

An application should also allow the user to undo any operations that
are initiated directly on the screen, without a menu command. This
includes operations controlled by setting dials, clicking check boxes,
and so on, as well as drawing graphic objects with the mouse.

The actual wording of the Undo command as it appears in the Edit menu
is "Undo xxx", where xxx is the name of the last operation. If the
last operation isn't a menu command, use Sbme suitable term after the
word .Undo. If the last operatibn can't be undone, the command reads
"Undo", but is disabled.

If the last operation was Undo, the menu command says "Redo xxx", where
xxx is the operation that was undone. If this command is chosen, the
Undo is undone.

Cut

The user chooses Cut either to delete the current selection or to move
it. If it's a move, it's eventually completed by choosing Paste.

When the user chooses Cut, the application removes the current
selection from the document and puts it in the Clipboard, replacing the
Clipboard's previous contents. The place where the selection used to
be becomes the new selection; the visual implications of this vary
among applications. For example, in text, the new selection is an
insertion point, while in an array, it's an empty but highlighted cell.
If the user chooses Paste immediately after choosing Cut, the document
should be just as it was before the cut; the Clipboard is unchanged.

1/15/85 Tognazzini /INTF/SMENUS

ioo

When the user chooses Cut t the application doesn't know if it's a
deletion or the first step of a move. Therefore t it must be prepared
for either possibility.

Copy is the first stage of a copy operation. Copy puts a copy of the
selection in the Clipboard t but the selection also remains in the
document.

Paste

Paste is the last stage of a copy or move operation. It pastes the
contents of the Clipboard to the document t replacing the current
selection. The user can choose Paste several times in a row to paste
multiple copies~ After a paste t the new selection is the object that
was pasted t except in text t where it's an insertion point immediately
after the pasted text. The Clipboard remains unchanged.

Clear

When the user chooses Clear t the application removes the selection t but
doesn't put it on the Clipboard. The new selection is the same as it
would be after a Cut.

Show Clipboard

Show Clipboard is a toggled command. Initiallytthe Clipboard isn't
displayed t and the command is "Show Clipboard". If the user chooses
the command t the Clipboard is displayed and the command changes to
"Hide Clipboard".

Select All

Select All selects every object in the document.

Font-Related Menus

Three standard Macintosh menus affect the appearance of text: Font t
which determines the font of a text selection; FontSize t which
determines the size of the characters; and Stylet which determines
aspects of its appearance such as boldface t italics t and so on.

Because of the proliferation of printers on the Apple II familYt you
may find it too expensive to implement the kind of power and range of
font options available on the Macintosh. We have still including the
full specification; use that portion necessary for y~ur particular
application.

1/15/85 Tognazzini /INTF/SMENUS

STANDARD MENUS' 101

Font Menu

A font is a set of typographical characters created with a consistent
design. Things that relate characters in a font. include the thickness
of vertical and horizontal lines, the degree and position of curves and
swirls, and the use of serifs. A font has the same general appearance,
regardless of the size of the characters. The Font menu always lists
the fonts that are currently available. Figure 20 shows a Font menu
with some of the most common fonts.

Chicago
GenelJa

v"New York
Monaco
Uentce
lontlon
Rthens

Figure 20.

FontSize Menu

Font sizes are measured in points; a point is about 1/72 of an inch.
Each font is available in predefined sizes. The numbers of these sizes
for each font are shown outlined in the FontSize menu. The font can
also be scaled to other sizes, but it may not look as good. Figure 21
shows a FontSize menu with the standard Macintosh font sizes.

9 potnt
10

v'U?2
14
18
24
36
48
12

Figure 21. FontSize Menu

1/15/85 Tognazzini /INTFjSMENUS

1°2.

If there's insufficient room in the menu bar for the word FontSize. it
can be abbreviated to Size. If there's insufficient room for both a
Font menu and a Size menu. the sizes can be put at the end of the Font
or Style menu.

Style Menu

The commands in the Style menu are Plain Text. Bold, Underline, Italic,
Outline. and Shadow. The first three are reasonably implemented on
most printers and should be considered standard on Apple. All the
commands except Plain Text are accumulating attributes; the user can
choose any combination. They are also toggled commands; a command
that's in effect for the current selectiori is preceded by a check mark.
Plain Text cancels all the other choices. Figure 22 shows these
styles. II software.

MouseText

.......Ploili TeHt
Bold
I folic
Underline
IDmnDOmm
"[llQjCOQJ[,W

Figure 22.

P
tB
01
tl
00
OS

Style Menu

If you are working in a MouseText-based toolkit, mark the beginning and
end of a font-related change with.the s?lid"'diamond character. As the
user passes over this character. open a view box to let the user see
what the particular change is. (See: View Boxes under Dialogs and
Alerts)

Figure 22A. MouseText Example

TEXT EDITING

In addition to the operations described under "The Edit Menu" above,
there are other ways to edit text that don't use menu items.

1/15/85 Tognazzini /INTF/EDIT

TEXT EDITING 103

Inserting Text

To insert text, the user selects an insertion point by clicking where
the text is to go, then starts typing it. Alternatively, the user can
move the current insertion point location, using the cursor key~, and
then resume typing. As the user types, the application continually
moves the insertion point to the right of each new character.

Applications with multiline text blocks should support word wraparound,
according to the definition of a word detailed above under "Selecting a
Word". The intent is that no word be broken between lines.

Delete

When the user presses the Delete key (or Control-D), one of two things
happens:

- If the current selection is one or more characters, it's deleted.

If the current selection is an insertion point, the previous
character is deleted.

In both cases, the deleted characters don't go into the Clipboard, and
the insertion point replaces the deleted characters in the document.

Forward Delete

When the user presses Control-F, one of two things happens:

- If the current selection is one or more characters, it's deleted
(exactly as with Delete).

- If the current selection is an insertion point, the character to
the right of the insertion point is deleted. (The cursor in a
MouseText-based program is a blinking underscore. Since the
underscore itself is to the right of the insertion-point, the
effect is that the character immediately above the underscore is
deleted.)

In both cases, the deleted characters don't go into the Clipboard.

Replacing Text

If the user starts typing when the selection is one or more characters,
the characters that are typed replace the selection. The deleted
characters don't go into the Clipboard, but the replacement can be
undone by immediately choosing Undo.

1/15/85 Tognazzini /INTF/EDIT

lOY

Intelligent Cut and Paste

An application that lets the user select a word by double-clicking
should also see to it that the user doesn't regret using this feature.
The only way to do this is by providing "intelligent" cut and paste.

To understand why this feature is necessary, consider the following
sequence of events in an application that doesn't provide it:

1. A sentence in the user's document reads: "Returns are only
accepted if the merchandise is damaged." The user wants to change
this to: "Returns are accepted only if the merchandise is·
damaged."

2. The user selects the word "only" by double-clicking. The letters
are highlighted, but not either of the adjacent spaces.

3. The user chooses Cut, clicks just before the word "if", and
chooses Paste.

4. The sentence now reads: "Returns are accepted onlyif the
merchandise is damaged." To correct the sentence, the user has to
remove a space between "are" and "accepted", and add one between
"only" and "if". At this point he or she may be wondering why
Apple computers are supposed to be easier to use than other
computers.

If an application supports intelligent cut and paste, the rules to
follow are:

- If the user selects a word or a range of words, highlight the
selection, but not any adjacent spaces.

- When the user chooses Cut, if the character to the left of the
selection is a space, discard it.

- When the user chooses Paste, if the character to the left of the
current selection isn't a space, .add a space. If the charac ter to
the right of the current selection isn't a punctuation mark or a
space, add a space. Punctuation marks include the period, comma,
exclamation point, question mark, apostrophe, colon, semicolon,
and quotation mark.

This feature makes more sense if the application supports the full
definition of a word (as detailed above under "Selecting a Word"),
rather than the definition of a word as anything between two spaces.

These rules apply to any selection that's one or more whole words,
whether it was chosen with a double-click or as a range selection.

Figure 23 shows some examples of intelligent cut and paste.

1/15/85 Tognazzini /INTF/EDIT

TEXT EDITING 105
Exernple 1:

1. Select e word, Drink to me with thine eyes.

2, Choose Cut. Drink to mel with thine eyes.

3, .Select an in~tion point. Drink to me with ~hine eyes.

-4. Ch003e Pe3te. Drink to me with only Ithine eyes.

Example 2:

1. Select e word How, brown cow

2. Choo3e Cut. How,l brown cow

3. Select an in5ertion point How~ brown cow

-4. Choose Peste. How now~ brown cow

Figure 23. Intelligent Cut and Paste

Editing Fields

If an application isn't primarily a text application, but does use text
in fields (such as in a dialog box), it may not be able to provide the
full text editing capabilities described so far.

It's important, however, that whatever editing capabilities the
application provides under these circumstances be upward-compatible
with the full text editing capability. The following list shows the
capabilities that can be provided, going from the minimal to the most
sophisticated:

The user can move around using the cursor keys or mouse.

- The user can select the whole field and type in a new value.

- The user can backspace delete.

The user can forward delete.

- The user can select a substring of the field and replace it.

- The user can select a word by double-clicking.

- The user can choose Undo, Cut, Copy, Paste, and Clear, as
described above under "The Edit Menu". In the most sophisticated
version, the application implements intelligent cut and paste.

1/15/85 Tognazzini /INTF/EDIT

lab

An application should also perform appropriate edit checks. For
example t if the only legitimate value for a field is a string of
digits t the application might issue an alert if the user typed any
nondigits. AlternativelYt the application could wait until the user is
through typing before checking the validity of the contents of the
field. In this case t the appropriate time to check the field is when
the user clicks anywhere other than within the field.

DIALOGS ALERTS

The "select-then-choose" paradigm is sufficient whenever operations are
simple and act on only one object. But occasionally a command will
require more than one object t or will need additional parameters before
it can be executed. And sometimes a command won't be able to carry out
its normal function t or will be unsure of the user's real intent. For
:these special circumstances the windowing user interface includes three
additional features:

- dialogs t to allow the user to provide additional information
before a command is executed

- alerts t to notify the user whenever an unusual situation occurs

- view t to enable the user of a text-based program to "look inside"
the diamond icon

Since all of these features lean heavily on controlstcontrols are
described in this section t even though controls are also used in other
places.

Controls

Friendly systems act by direct cause-and-effect; they do what they're
told. Performing actions on a system in an indirect fashion reduces
the sense of direct manipulation. To give users the feeling that
they're in control of their machines t many of a windowing application's
features are implemented'with controls: graphic objects that, when
directly manipulated by the mouse, cause instant action with visible
results.

There are four main types of controls: buttons, check boxes t radio
buttons, and dials. These four kinds are shown in Figure 24.

1/15/85 Tognazzini /INTF/BOX

DIALOGS 107

IYI Check Box 1 em mmm-£lI:il Check Box 2 DialDllIls Check Box 3

o RrJdio Button 1
IButton 1 ~I

~ RrJdio Button 2
IButton 2 escl

IButtonl Jj
IButton 2 eit j

~ Check BOH 1

~ Check BOH 2

~ Check BOH 3

o Radio Button 1

[!J Radio Button 2

o Radio Button :3

MouseGraphics .t1ouseText

Figure 24. Controls

Buttons

Buttons are small objects, usually inside a window, labeled with text.
Clicking or pressing a button performs .the action described by the
button IS label.

Buttons perform instantaneous actions, such as completing operations
defined by a dialog box or acknowledging error messages. Conceivably
they could perform continuous. actions, in which case the effect of
pressing on the button would be the same as the effect of clicking it
repeatedly.

Two particular buttons, OK and Cancel, are especially important in
dialogs and alerts; they're discussed under those headings below.

Check Boxes and Radio Buttons

Whereas buttons perform instantaneous or continuous actions, check
boxes and radio buttons let the user choose among alternative values
for a parameter.

Check boxes act like toggle switches; they're used to indicate the
state of a parameter that must be either off or on. The parameter is
on if the box is checked, otherwise it's off. The check boxes
appearing together in a given context are independent of each other;
any number of them can be off or on.

Radio buttons typically occur in groups; they're round and are filled
in with a black circle when on. (In a MouseText-based program, they

1/15/85 Tognazzini /INTF/BOX

(O<?

are rectangular and are filled in with a white rectangle when on.)
They're called radio buttons because they act like the buttons on a car
radio. At any given time, exactly one button in the group is on.
Clicking one button in a group turns off the current button.

Both check boxes and radio buttons are accompanied by text that
identifies what each button does.

Dials

Dials display the value, magnitude, or position of something in the
application or system, and optionally allow the user to alter that
value. Dials are predominantly analog devices, displaying their values
graphically and allowing the user to change the value by dragging an
indicator; dials may also have a digital display.

The most common example of a dial is the scroll bar. The indicator of
the scroll bar is the scroll box; it represents the position of the
window over the length of the document. The user can drag the scroll
box to change that position.

Dialogs

Commands in menus normally act on only one object. If a command needs
more information before it can be performed, it presents a dialog box
to gather the additional information from the user. The user can tell
which commands bring up dialog boxes because they're followed by an
ellipsis (•••) in the menu.

A dialog box is a rectangle that may contain text, controls, and icons.
There should be some text in the box that indicates which command
brought up the dialog box.

Other than explanatory text, the contents of a dialog box are all
objects that the user sets to provide the needed information. These
objects include controls and text fields. When the application puts up
the dialog box, it should set the controls to some default setting and
fill in the text fields with default values, if possible. One of the
text fields (the "first" field) should be highlighted, so that the user
can change its value just by typing in the new value. If all the text
fields are blank, there should be an insertion point in the first
field.

Editing text fields in a dialog box should conform to the guidelines
detailed above, under "Text Editing".

When the user is through editing an item:

- Pressing Tab accepts the changes made to the item, and selects the
next item in sequence.

1/15/85 Tognazzini /INTF/BOX

DIALOGS 109

- Clicking in another item accepts the changes made to the previous
item and selects the newly clicked item.

Dialog boxes are either modal or modeless, as described below.

Modal Dialog Boxes

A modal dialog box is one that the user must explicitly dismiss before
doing anything else, such as making a selection outside the dialog box
or choosing a command. Figure 25 shows a modal dialog box.

esclICancel

Print the document OP l'-O_oK_" -+J_1

G 8 1/2" xii" pllper

o 8 1/2" x 11" paper

[Xl stop printing llfter ellch page

Title: Annual ReporL _

Pri nt the document: OP (OK ~)

008 1/2" x II" paper ~---~

08 1/2" x 14" paper [Cancel esc]

t8J stop printing llfter each pllge

Title: IAnnual Reportl

MQUseGraRbics MouseText

Figure 25. A Modal Dialog Box

Because it restriet:s the user' s fR~~d()tlti9r.~ction, this type of dialog
box should be used sparingly. In particular, the user can't choose a
menu item while a moda.l dialog box is up, and therefore can only do the
simplest kinds of text editing. .

For these reasoIls~ the main use of a modal dialog box is when it's
important for the user to complete an operation before doing anything
else.

A modal dialog box usually has at least two buttons: OK and Cancel.
clicking on OK or pressing Return dismisses the dialog box and performs
the ot.iginal commandac:cordirig to the information provided; it can be
given a more descriptive name than "OK". Clicking on Cancel or
pressing Escape dismisses the dialog box and cancels the original
command; it must always be called "Cancel".

A dialog box can have other kinds of buttons as well; these mayor may
not dismiss the dialog box.

[Note to reviewers: Because of the needs of keyboard users, I have
tentitively decided to make OK always be selectable with Return and
Cancel always be selectable with Escape. This is in conflict with the
MacIntosh guideline that follows:

"One of the buttons in the dialog box may be outlined boldly. The
outlined button is the default button; if no button is outlined, then

1/15/85 Tognazzini /INTF/BOX

liO

the OK button is the default button. The default button should be the
safest button in the current situation. Pressing the Return or Enter
key has the same effect as clicking the default button. If there is no
default button, then Return and Enter have no effect."

If you have any ideas on how we could retain the MacIntosh guideline
and still make the boxes reasonable for the keyboard user, please let
me know.]

A special type of modal dialog box is one with no buttons. This type
of box is just to inform the user of a situation without eliciting any
response. Usually, it would describe the progress of an ongoing
operation. Since it has no buttons, the user has no way to dismiss it.
Therefore, the application must leave it up long enough for the user to
read it before taking it down again.

Modeless Dialog Boxes

A modeless dialog box allows the user to perform other operations
without dismissing the dialog box. Figure 26 shows a modeless dialog
box.

o
Find text:

Change to:

Guide lines

guidelines

[Change all

(Change next

(Cancel esc]

Figure 26. A Modeless Dialog Box

A modeless dialog box is dismissed by clicking in the close box or by
choosing Close when the dialog is active. The dialog box is also
dismissed implicitly when the user chooses Quit. It's usually a good
idea for the application to remember the contents of the dialog box
after it's dismissed, so that when it's opened again, it can be
restored exactly as it was.

Controls work the same way in modeless dialog boxes a~ in modal dialog
boxes, except that buttons never dismiss the dialog box. In this

1/15/85 Tognazzini /INTF/BOX

DIALOGS III

context, the OK button means "go ahead and perform the operation, but
leave the dialog box up", while Cancel usually terminates an ongoing
operation.

A mode1ess dialog box can also have text fields; since the user can
choose menu commands, the full range of editing capabilities can be
made available.

Alerts

An alert box looks like a modal dialog box, except that it's somewhat
narrower and appears lower on the screen. An alert box is primarily a
one-way communication from the system to the user; the only way the
user can respond is by clicking buttons. Therefore alert boxes might
contain dials and buttons, but usually not text fields, radio buttons,
or check boxes. Figure 27 shows a typical alert box.

escl

101<
IConcel

CRUTION

Rre you sure
you want to erase all
changes to. your document?

Figure 27. An Alert Box

How the buttons in an alert box are labeled depends on the nature of
the box. If the box presents the user with a situation in which no
alternative actions are available, the box has a single button that
says OK. Clicking this. button means "I have read the alert." If the
user is given alternatives, then typically the alert is phrased as a
question that can be answered "yes" or "no". In this case, buttons
labeled Yes and No are appropriate~ although some variation such as
Save and Don't Save is also acceptable. OK and Cancel can be used, as
long as their meaning isn't ambiguous.

[As noted above, the following paragraph needs to be excised if we go
with the "OK equals Return" scheme.]

The preferred (safest) button to use in the current situation is boldly
outlined. This is the alert's default button; its effect occurs if the
user presses Return or Enter.

For further information on beeps, the types of alert messages, and how
and when to write one, read Alert Messages in the Generic Interface

1/15/85 Tognazzini /INTF/BOX

section•

.-
View Boxes

MouseText-based programs have a restricted ability to deliver
what-you-see-is-what-you-get: standard printer features such as bold,
underline, and super- and subscript are impossible to produce on the
text screen. To enable the user to see where such changes begin and
end, flank the changed area with a pair of solid-diamond icons. These
icons let the user know that there is some control information at those
locations, but not what the information is.

The user can
a view box.
buttons. It
icon:

"look through the keyhole" of the diamond icon by opening
A view box looks like an alert box, except it has no
displays the information hidden within the solid-diamond

"Begin Underline" "End Bold Text" "Begin Plain Text"

The view box is normally located beginning two lines below the icon's
position, so that the user need look no further than necessary to see
it. (The single unaffected line below the diamond enables the user to
continue seeing the diamond in context.) Horizontally, approximately
one-third of the view box should lie to the left of the diamond;
two-thirds, to the right. This position relative to the icon should be
as consistent as possible throughout your application: move(it abov.e
or slide it toward one side only when you lack room on the display for
its normal position.

The contents of a view box cannot be edited. The diamond icon itself
(along with its contents) can be deleted in the same manner as any
other text character, and a new icon can be created with the
appropriate menu command.

The user can open a view box in one of two ways:

- By moving the insertion point to the left of the diamond icon. In
this position, the blinking underscore is directly beneath the
diamond icon. (Recall that the insertion point itself lies
between characters; the blinking underscore is a necessary
compromise with the text hardware and appears under the character
to the right of the insertion point.) The view box remains open
until the insertion point is moved away from the icon, the mouse
cursor is moved, or any valid short-cut key is pressed. In all of
these cases, the view box remains closed until the user formally
reopens it: it is not suddenly reopened when the mouse stops
moving.

- By covering the diamond with the mouse cursor. It is irrelevant
whether the mouse button is pressed or not: if the mouse cursor is
over the diamond, the view box is opened. This enables the user
to quickly view all diamonds on the display without having to
relocate the insertion point, and lets the user see the

1/15/85 Tognazzini /INTF/BOX

DIALOGS 113

information in the same way whether simply moving the cursor
around or actively marking a selection. The view box remains open
until either the mouse cursor or the insertion point moves, or
until any valid shortcut key is pressed.

DO'S AND DON'TS OF A FRIENDLY USER INTERFACE

Do:

- Let the user have as much control as possible over the appearance
of objects on the screen--their arrangement, size, and visibility.

- Use verbs as menu commands.

- Make alert messages self-explanatory.

- Use controls and other graphics instead of just menu commands.

- Take the time to use good graphic design; it really helps.

Don't:

- Overuse modes, including modal dialog boxes.

Require using the keyboard for an operation that would be easier
with the mouse, or require using the mouse for an operation that
would be easier with the keyboard.

- Change the way the screen looks unexpectedly, especially by
scrolling automatically more than necessary.

- Make up your own menus and then give them the same names as
standard menus.

- Take an old-fashioned prompt-based application and pass it off as
a mouse-based application.

1/15/85 Tognazzini /INTF/THOUS

April 10, 1985

User Input Routine
External Reference Specification

Lou Infeld

04/10/85

Copyright 1985 Apple Computer, Inc. Page 1

User Input Routine

TABLE OF CONTENTS

1. IntroductIon
2. General DescrIption
3. Customization and Advanced Uses
4. Information Block

4.1 Format
4.2 Description

4.2.1 General Information section
4.2.1.1 "width"
4.2.1.2 "fill char"
4.2.1.3 "mous-; fill"
4• 2. 1. 4 "cursor"
4.2.1.5 "control"
4.2.1.6 "beep"
4.2.1.7 "immediate"
4.2.1.8 "entry_type"
4.2.1.9 "bord ch"

4.2.2 Termination Information section
4.2.2.1 "exit type"
4.2.2.2 "last-event"
4.2.2.3 "last-ch"
4.2.2.4 "last-mod"
4.2.2.5 "n chars"
4.2.2.6 "char list"
4.2.2.7 "mod list"
4.2.2.8 "tern list"

4.2.3 Internal Information section
4.2.3.1 "origin_x" and "origin_i'
4.2.3.2 "cursory" and "cursor-y"
4.2.3.3 "cursor pos"
4.2.3.4 "input length"
4.2.3.5 "slow blink" and "fast blink"

4.3 Default values
5. Interface Description

5.1 Pascal
5.1.1 General Description
5.1.2 Format of Information Block
5.1.3 Initializing Input Information
5.1.4 Retrieving Input Information
5.1.5 Setting Input Information
5.1.6 Calling the User Input Routine
5.1.7 Examples

5.2 Basic
5.2.1 &INITINPUT
5.2.2 &GETINFO(IB%)
5.2.3 &SETINFO(IB%)
5.2.4 &INPUT(IS$,mlX)
5.2.5 &EXITINPUT
5.2.6 Examples

5.3 Assembler
5.3.1 Format of Calls
5.3.2 Format of Information Block
5.3.3 Initializing Input Information
5.3.4 Retrieving Input Information

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 2

April 10, 1985

User Input Routine

5.3.5 Setting Input Information
5.3.6 Calling the User Input Routine
5.3.7 Examples

Copyright 1985 Apple Computer, Inc. Page 3

User Input Routine

1. Introduction

Most Applications at one point or another require that the user key in some textual
information. In the past there has been little standardization in the way that an "Input
Routine" interfaces with the user. Pascal and Basic each have different user input
conventions. In fact they completely contradict each other; a user has to completely
relearn how to interact with either language after using the other. Many applications use
the "Input Routine" built into the language environment being used. Other applications
use independently developed "Input Routines" which are more sophisticated and user
friendly. However, the poor user of several applications has different interfaces to
contend with, each with its own standards and idiosyncrasies.

To try to solve these problems, Apple Computer has published several documents encouraging
"standard" design guidelines including how an "Input Routine" should look and behave. Now
this "User Input Routine" is being made available to"Apple II developers. It encorporates
all the standards proposed by Apple Computer and is available for the following
environments:

Apple II Assembler
Apple II AppleSoft
Apple I I Pascal

(with or without Console Driver)
(with or without Console Driver)
(with Console Driver)

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 4

Uler Input Routine

2. General Description

The "User Input Routine" attempts to fulfill the standards published in the "Apple I Ie
Design Guidelines" manual (pp 24-37), Bruce Tognazzini's memo "UPDATE: Human Interface
Design Guidelines" dated August 9, 1983, as well 8S de facto standards used in the popular
AppleWorks program.

The "User Input Routine" is called by the application with a string variable containing 8

default (can be null) as well as the maximum number of characters that will fit in the
string variable. A "string variable" is basically a buffer in which the first byte
contains the "length" of the string. The following bytes are the actual characters in the
string.

The "User Input Routine" will display a field on the screen consisting of the default
string followed by a series of "fill" characters. A cursor will be visible to the right
of the default string. The cursor is the "Insert Cursor" as described in the Guidelines.
When this cursor is present, typing any printing character will place that character in
the field at the current cursor position. All characters in the field to the right of the
cursor are shifted one position. If the user presses the CONTROL key and "E" together,
the "Replace Cursor" appears. When this cursor is present, typing any printing character
will place that character in the field replacing the current character under the cursor.
Pressing the CONTROL key and "E" again will return the "Insert Cursor".

The user can edit the field by adding or replacing characters or by using editing
commands. When the user is satisfied with the string in the field, he presses the RETURN
key. This will terminate the "User Input Routine" and return control back to the
application. The user's response will be in the string variable specified when the "User
Input Routine" was called.

If the application specifies a string variable that can contain more characters than the
width of the field, the "User Input Routine" will retain characters that "falloff" the
right edge of the field. These characters will "reappear" if characters in the field are
deleted.

The following editing commands are supported:

LEFT-ARROW
RIGHT-ARROW
CONTROL-D
DELETE
CONTROL-F

CONTROL-E
CONTROL-X
CONTROL-Y

CONTROL-Z

Moves cursor left within field
Moves cursor right within field
Deletes character to the left of the cursor
Deletes character to the left of the cursor
Deletes character under the cursor (Forward

Delete)
Toggle between insert and delete cursors
Deletes all characters in the field
Deletes all characters from present cursor

position to end of field (including
characters saved by insert)

Restores default string

April 10. 1985 Copyright 1985 Apple Computer. Inc. Pa~e 5

User Input Routine

3. CustORizatlon and Advanced-Uses

In general, the "User Input Routine" will behave as described in section 2. However, the
"User Input Routine" can be customized to the particular needs of the application. A
structure called the Information Block is used as a conduit between the application and
the "User Input Routine". The application tells the "User Input Routine" how to react to
the user's keystrokes and conversely the "User Input Routine" tells the application all
about its current status.

If a viewport (window) has been defined, the "User Input Routine" will respect it with the
one restriction: the last two positions in the window can not be included in the input
field. This restriction is necessary to eliminate scrolling and wrapping problems. A
field as large as 254 characters can be specified.

Normally, when the RETURN key or the ESCAPE key is pressed, the "User Input Routine" will
terminate with the Input String set to the characters currently in the field on the screen
(without the fill characters). However, other terminating characters can be configured to
cause termination instead or in addition to RETURN and ESCAPE. Also the "User Input
Routine" can be interrupted rather than terminated. In this case, when the "User Input
Routine" is called again, it continues in the state it was in when it was interrupted
(assuming the application program has not changed any parameters in the Information
Block). This feature is useful for a help facility. A help character (e.g. Open App1e-?)
can be configured to interrupt the "User Input Routine" for a help message in the middle
of editing.

Up to 20 characters can be specified as termination characters. For each termination
character, the application can specify whether the Open Apple or Solid Apple key must be
pressed with the character. Additionally, for each termination character, the application
can specify whether to completely terminate the "User Input Routine" or just "interrupt"
it temporarily.

An "immediate" mode is optionally available that allows the application to constantly gain
control during the input process. This feature can be used by the application, for
instance, to update a clock display, check for mouse movements or run in demonstration
mode.

Anril 10. 1985 Copyri~ht 1985 Apple Computer. Inc. Page 6

User Input Routine

4. lnforaation Block

4.1 Jl'onaat

The InformatIon Block is divided into three logical sections: General Information,
TermInatIon Information, and Internal Information.

max terms

,
width
fill char
mouse fill

cursor

control

beep

immediate

bord ch

last event
last ch
last mod
n chars

equ

equ

db
db
db

db

db

db

db

db

db

db

db
db
db
db

20

*

o
" "
o

o

o

o

o

o

o

o

o
o
o
o

;Maximum number of terminators

General Information

;Width of the field on the screen
;Fill character
; O-use "fill_char" as fill character
j1-use MouseText ghost underline
jcurrent cursor being used

jO-insert cursor
jl-replacement cursor

jO-Control chars will be ignored
jl-Control chars allowed as input
;O-errors will not be beeped
;l-errors will be beeped
jO-calling routine gets control after the
j complete input is keyed in by user
jl-calling routine gets control after each
; keypress check
jlndicates type of entry into routine
;O-initial entry
jl-interrupt re-entry
j2-immediate re-entry
;char to blink outside of field

Termination Information

jlndicates which termination condition
; occurred
jO-not terminated yet
;not O-index into terminating char list
jlast event type (not used)
;character user keyed in
jkeypress modifier
jNumber of terminator chars currently

defined

jThe next 3 items define what keystrokes
will terminate or interrupt the routine.

char list
mod list

term list

ds
ds

ds

max terms jChars which will terminate input
max terms jModifiers for each char in"char list"

jO-none
j l-open Apple
j2-Solid Apple
j3-Either Open or Solid Apple

max terms ;Termination types for each char in

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 7

origln_x
originJ
cursor x
cursor_y
cursor_pos
input_length
slow blink
fast blink

db
db
db
db
db
db
dw
dw

o
o
o
o
o
o
o
o

User Input Routine

"char list"
to-terminate input
;l-interrupt input

Internal Information

;x coordinate of start of field
;y coordinate of start of field
;x coordinate of cursor in field
;y coordinate of cursor in field
;position of cursor in field (I •• width)
;length of Input String (incl invisib part)
;slow blink rate
;fast blink rate

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 8

User Input Routine

4.2 Description

4.2.1 General Inforaation section

4.2.1.1 "width"

This parameter tells the "User Input Routine" how wide to make the field on the screen.
When the "User Input Routine" is called, it displays the default value in the Input String
on the screen at the current cursor position. If there is any room left in the field on
the screen, fill characters are displayed. The parameter "fill char" is used as the fill
character. The number of fill characters displayed is "width" ;inus -"length of Input
String". "Width" is initially 254 characters.

If the value of "width" is greater than the number of character positions from the start
of the field to the end of the window -2, the "User Input Routine" will reduce "width"
accordingly.

4.2.1.2 "fill char"

This is the fill character that is used in the field. "Fill char" is initially the blank
character.

4.2.1.3 "mouse fill lt

If this parameter is I, the MouseText ghost underline is used as the fill character. If
"mouse fill" is 0 the character in "fill char" will be used as described above.
ItMouse=fill" is initially O.

It is the application's responsibility to determine whether MouseText is available in ROM
before using this option. The following algorithm can be used to determine whether
MouseText is available:

If memory location $FBB3 contains $06
AND

memory location $FBCO does not contain $EA

then MouseText is available

4.2.1.4 Itcursorlt

This parameter represents the current cursor type being used. If it is 0, the "Insert
Cursor" is in effect. If it is I, the "Replace Cursor" is in effect. If the user presses
CONTROL and "E", this parameter changes value. The application can force the "User Input
Routine" to start with either of the cursor types by setting "cursor" accordingly before
calling the routine. "Cursor" is initially O.

4.2.1.5 Itcontrollt

If this parameter is I, control characters (ASCII values less than 32) are allowed as
input from the keyboard. To insert a control character, the user must press the CONTROL
key, the Open Apple key and the corresponding alphabetic key. The alphabetic character is
obtained by added 64 to the ASCII value of the control that is desired. The actual value
inserted in the string is the ASCII value + 128 which will appear on the screen as the
inverse of the corresponding character. For example, to insert the Carriage Return
character (ASCII 13), the user presses CONTROL, Open Apple and "M" (ASCII 77). The screen

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 9

User Input Routine

will show an inverse "M" and .the string will contain the value 205 (77+128). If "control"
is 0, control characters will not be allowed and will result in a beep. Note that editing
characters and termination characters are not affected by the setting of "control".
"Control" is initially 0.

4.2. 1. 6 "beep"

If this parameter is 1, any illegal keypresses will cause the "User Input Routine" to
beep. If this parameter is 0, there will be no beeps. "Beep" is initially 1.

4.2.1.7 "i.-ediate"

If this parameter is 1, the "User Input Routine" will return to the application program
after each keypress check. When the application next calls the "User Input Routine", it
will be considered an "immediate" re-entry. If this parameter is 0, the "User Input
Routine" will return to the application program only after a termination character is
pressed.

During "immediate" processing, the application can tell whether a key has been pressed by
checking the parameter "last key". If it is not 0, a key has been pressed and its ASCII
value is in that parameter (its corresponding keypress modifier is in "last mod"). When
the "User Input Routine" is re-entered, it will check "last key" and "last ;od". If there
is a keystroke, it will "process" it, otherwise it will look for the next keystroke. The
application can therefore "process" the keystroke before the "User Input Routine". At
this point, the application can leave the keystroke intact and re-enter the "User Input
Routine" which will also "process" the keystroke. Alternatively, the application can set
"last key" and "last mod" to 0 which will cause the keystroke to be ignored by the "User
Input-Routine". -

Applications using "immediate" mode have the additional responsibility to keep the cursor
blinking at the correct rate. See the description of "slow blink" and "fast blink" for
the necessary considerations.

"Immediate" is initially 0.

4.2.1.8 "entry type"

This parameter tells the "User Input Routine" what type of entry is being made. If the
value of "entry_type" is 0, this is an initial entry and a new field is established. If
the value is 1, the routine assumes it is being re-entered after an interrupt termination.
If the value is 2, the routine assumes it is being re-entered after "immediate" processing
by the application. This parameter is managed by the "User Input Routine" and normally
does not need to be changed by the application.

4.2.1.9 "bard ch"

This character will be used by the "User Input Routine" as the blink character when the
cursor is outside of the field. This condition occurs when the field is completely filled
in. "Bord chIt is initially blank.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 10

User Input Routine

4.2.2 Terulnation Inforaati~ section

4.2.2.1 "exit type"

When the "User Input Routine" terminates, this parameter contains the "type" of
termination that occurred. Termination characters are numbered from 1 to 20. "Exit type"
will contain the ,number of the termination character that caused the termination. If
"exit type" is 0, this indicates that the "User Input Routine" has not terminated yet
(i.e. i1immediate" mode is in effect).

4.2.2.2 "last event"

This parameter is not currently used.

4.2.2.3 "last ch"

This parameter contains an ASCII value if the last keypress check sensed a keystroke or O.
It is useful for applications using the "immediate" mode of the "User Input Routine".

4.2.2.4 "last mod"

This parameter contains the keystroke modifier if a keystroke was sensed by the last
keypress check. Otherwise it is O. The possible values of "last mod" are:

o - no modifier pressed
1 Open Apple key pressed together with key
2 Solid Apple key pressed together with key
3 Either Apple keys pressed together with key

4.2.2.5 "n chars"

This parameter is the number of termination characters that have been configured.
"N_chars" is initially 2 (for RETURN and ESCAPE).

4.2.2.6 "char list"

"Char list" is a 20 byte table containing the ASCII values of the configured termination
chara~ters. For the alphabetic characters "A" to "Z", only the upper case ASCII values
need be in the table.

Only the first "n_chars" bytes are looked at by the "User Input Routine". The first 2
bytes in this list are initially 13 and 27 respectively (these values are the ASCII codes
for RETURN and ESCAPE).

4.2.2.7 "mod list"

"Mod list" is a 20 byte table which specifies what keystroke modifiers are needed for each
termination character to be recognized. A value of 0 indicates that no modifiers can be
pressed. A value of 1 indicates that the Open Apple key must be pressed together with the
termination character. A value of 2 indicates that the Solid Apple key must be pressed.
A value of 3 indicates that either the Open Apple or Solid Apple keys must be pressed
together with the termination character.

4.2.2.8 "terM. list"

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 11

User Input Routine

"Term list" is a 20 byte table which specifies the termination type of each termination
character. A value of ° indicates that a normal termination will occur when the
termination character (along with any keystroke modifiers) is pressed. A value of 1
indicates that an "interrupt" termination will occur.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 12

Uaer Input Routine

4.2.3 Internal Inforaation Dection

4.2.3.1 "origin x" and "origin I"

These parameters contain the relative coordinates of the start of the field within the
current window. When the "User Input Routine" is entered initially (not reentered after
an "interrupt" termination or "immediate" termination), "origin_x" and "originy" are set
to the current relative cursor position.

4.2.3.2 "cursor x" and "cursor I"

These parameters contain the relative coordinates of the cursor within the current window.
When the "User Input Routine" is entered initially, the cursor is positioned after the
default Input String in the field and "cursor_x" and "cursory" are set to that coordinate
location.

4.2.3.3 "cursor pos"

This parameter contains the relative position of the cursor in the field (not in the
window). The value of "cursor_pos" is in the range 1•• "width".

4.2.3.4 "input length"

This parameter contains the current length of the Input String. If the maximum size of
the Input String is larger than the width of the field on the screen, the "User Input
Routine" uses the "invisible" part of the Input String to save characters that were
"pushed" out of the field by insertions. Therefore, "input length" may have a value
greater than "width". However, in this case, the length of-the Input String actually
returned to the user is still in the range 1.. "width". The returned length of the Input
String is contained in the first byte of the Input String.

4.2.3.5 "slow blink" and "fast blink"

These parameters are the count-down timers used to get the correct blinking frequency for
the cursor. The cursor should blink at 80 cycles per minute with one phase taking twice
as long as the other. Assuming that the cursor is "under" a character in the field and
the "insert" cursor is on, the character should be visible twice as long as the underline.
If the "replace" cursor is on, the inverse character should be visible twice as long as
the normal character. The initial values of "slow blink" and "fast blink" will cause the
correct cursor blink rate. However, if "immediate" mode is turned on, the cursor will no
longer blink at the correct rate because the application program will get control in the
middle of the blink loop. It is up to the application program to change "slow blink" and
"fast blink" so that the cursor will again blink at the correct rate.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 13

User Input Routine

4.3 Default values

The default values of the Input Information Block are:

Current relative cursor coordinate in window
defined by Console Driver

width-254;
fill char- I I;

mouse fill-O;
curSOr-Oj
control-Oj
beep-1 ;
immediate-Oj
entry_type-O;
exit type=O;
bord-ch-l I.- ,
last_event-O;
last_ch-O;
last_mod-O;
n chars=2;
char list[1]-chr(13);
char-list[2]-chr(27);
mod list[I]-O;
mod-Ust[2]"0;
exit list [l],,0;
exit=list[2]"0;
origi~x=

origin.J=
cursor x=

{RETURN}
{ESCAPE}

cursor.J=
cursor_pos=O;
input length=O;
slow_blink= I
fast blink=

April 10, 1985

Values necessary to blink cursor
80 times per minute

Copyright 1985 Apple Computer, Inc. Page 14

User Input Routine

5. Interface Description

5.1 Apple II Pascal

5.1.1 General Description

The Apple II Pascal version of the "User Input Routine" is part of the Console Driver and
therefore requires that the Pascal environment be loaded with the correct Attach files.
The Console Driver is configured as unit number 130.

To access the "User Input Routine"t a Pascal program must make calls to the Console
Driver. Three "unitstatus" calls are provided to initialize t set and get the Information
Block. The actual call to the "User Input Routine" is in the form of a "unitread".

Sections 5.1.3 to 5.1.6 will describe each of the Console Driver calls in detail.

April 10 t 1985 Copyright 1985 Apple Computer t Inc. Page 15

User Input Routine

5.1.2 Foraat of the Inforaatlon Block

The following is the Pascal equivalent of the Information Block:

const max terms-20; {Maximum number of terminators}
type byt~-0•• 255;
var Input_Info:packed record

{General Information}
{-------------------}

width:byte;
fill_char: char;
mouse_fill:byte;

cursor:byte

control:byte;

beep:byte;

immediate: byte;

entry_type: byte;

bord_ch: char;

exit_type:byte;

last_event: byte;
last_ch:char;
last_mod:byte;
n_chars:byte;

char_list: packed

mod list :packed

{Width of the field on the screen}
{Fill character}
to-use "fill char" as fill character
I-use Mous~ext ghost underline}

{current cursor being used
a-insert cursor
I-replacement cursor}

{a-Control chars will be ignored
I-Control chars allowed as input}

to-errors will not be beeped
I-errors will be beeped}

to-calling routine gets control after the
complete input is keyed in by user

I-calling routine gets control after each
printable character is input}

{Indicates type of entry into routine
O-ini tial entry
I-interrupt re-entry
2-immediate re-entry}

{char to blink outside of field}

{Termination Information}
{-----------------------}
{Indicates which termination condition occurred

O-not terminated yet
not a-index into terminating char list}

{last event type (not used)}
{character user keyed in}
{keypress modifier}
{Number of termination chars defined}

{The next 3 items define what keystrokes will
terminate or interrupt the routine. The case
of each character is ignored}

array [l •• max terms] of char;
{Chars which will terminate input}

array [l •• max terms] of byte;
{Modifiers for each char in "char list"

a-none
1-0pen Apple
2-Solid Apple

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 16

term_lis t: packed

User Input Routine

3-Either Open or Solid Apple}
array [1 •• max terms) of byte;

{Termination types for each char in "char list"
O-terminate input
I-interrupt input}

{Internal Information}
{--------------------}

origin_x: byte;
origin_y: byte;
cursor x: byte;
cursor-y: byte;
cursor pos: byte;
input~ength:byte;
slow_blink: integer;
fast_blink: integer;

end {Input_Info};

{x coordinate of start of field}
{y coordinate of start of field}
{x coordinate of cursor in field}
{y coordinate of cursor in field}
{position of cursor in field (1 •• width)}
{length of Input String (incl invisible part)}
{slow blink rate}
{fast blink rate}

The text of this data structure is in the file II INPUT. INFO. TEXT" on the release disk.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 17

User Input Routine

5.1.3 Initializing Input Information

To set the User Input Information Block to its default values, call the procedure:

init mode:-24577; {Console Driver command $6001}
unit~tatus(130,Input_Info,init_mode);

OR if the console driver is also to be initialized use:

unitclear(l30) ;

Note: the variable "Input Info" in the unitstatus call above is not actually used by the
"User Input Routine". It is needed in the "unitstatus" call because of its parameter
structure.

An automatic "unitclear" is performed by the Pascal system when it is booted.

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 18

User Input Routine

5.1.4 Retrieving Input Information

To get the current settings of all the Input Information parameters, call the procedure:

get info:-16385; {Console Driver command $4001}
unitstatus(130,Input_Info,get_info);

where "Input_Info" is a record with the format specified in 5.1.2.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 19

User Input Routine

5.1.5 Setting Input Information

To change the data in the User Input Information Block, call the procedure:

set info:-8193j {Console Driver command $2001}
unitstatus(130,Input_Info,set_info)j

where "Input Info" is a record with the format specified in 5.1.2. If this call is never
made, the "D;er Input Routine" uses the default values.

Note that changing any parameters in the record will not have any effect until the
"unitstatus" call is made.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 20

User Input Routine

5.1.6 Calling the User Input Routine

To call the "User Input Routine", call the procedure:

unitread(130,Input_Str,max_Iength);

where "Input_Str" is a string supplied by the calling routine where the "User Input
Routine" will store the user's keystrokes. "Max length" specifies the maximum number of
characters which will fit in the string (usually-80 unless "Input Str" is defined as an
extended string).

If the Input String has an initial value, the "User Input Routine" will assume that it is
a default value and display it.

Upon return from "unitread", IORESULT will contain the "exit_type" value which is the
index into the "char list" of terminating characters.

5.1.7 Exa:aples

The program "Demo" is a good example of the "User Input Routine" in action. It can be
used to tryout many of the features.

In the simplest use of the "User Input Routine", the application displays a question on
the screen using the Console Driver and then calls the "User Input Routine" for the
answer. The following program segment illustrates the above:

VAR
question,answer:string;

question:='What is your name? ';
answer:=" ;
unitwrite(130,question[1),length(question));
unitread(130,answer,80);

If the application wants to provide a default name:

VAR
question,answer:string;

question:='What is your name? ';
answer:='Fred';
unitwrite(130,question[1) ,length(question));
unitread(130,answer,80);

If the application wants to provide the user with a small visible field:

{Console Driver command $4001}
{Console Driver command $2001}

CaNST
get info"16385;
set=infox 8193;

VAR
question,answer:string;
Input Info:packed record

- {use record structure in 5.L2}

April la, 1985 Copyright 1985 Apple Computer, Inc. Page 21

User Input Routine

e~;......
{Get the current Information Block}

unitstatus(130,Input_Info,get_info);

{Change the desired parameters}

Input Info.width:-12;
Input=Info.fill_char:-'.';

{Set the updated Information Block}

unitstatus(130,Input_Info,set_info);

{The rest of the logic is the same}

question:-'What is your name? ';
answer:-'Fred';
unitwrite(130,question[1],length(question»;
unitread(130,answer,80);

Anril 10. 1985 Copyri~ht 1985 Apple Computer, Inc. Page 22

User Input Routine

5.2 Basic

The Basic version of the "User Input Routine" is in the form of several AMPERSAND ('I.')
calls. The AMPERSAND facility allows a machine-language program to be loaded from a Basic
program and its functions called in the form of Basic commands. The following commands
are available:

&INITINPUT
&GETINFO(IB:t)
&SETINFO(IB%)
&INPUT (IS$)
&EXITINPUT

Initialize Information Block
Get Information Block
Set Information Block
Call "User Input Routine"
Removes package from Ampersand hooks

The release disk contains the "User Input Routine" in a "relocatable" file "INPUT.REL".
The EdAsm RLOAD facility must be used to load "INPUT~REL" from within the application
program.

5. 2. 1 &INITTIiPlIT

This call will initialize the Information Block to its default values. See 4.3 for the
default values associated with each parameter.

5.2.2 &GETINFO(IB%)

This call retrieves the current Information Block and stores it into the integer array
IB%. The array IBi. should be dimensioned for at least 22+3*max terms integers where
"max terms" is currently 20. The contents of each integer in rEi. is as follows:

IB%(l) .. width IBi.(2) .. fill char IB7.(3) .. mouse fill
IB%(4) cursor IB%(5) .. control IBi.(6) .. beep
IB%(7) immediate IBi.(8) .. entry_type IB%(9) '" bord ch
IB%(lO) = exit_type IB%(ll) '" last event IB%(l2) .. last ch
IB%(l3) .. last mod IBi.(l4) .. n chars IBi.(l5) '" charlist
IB%(35) mod list IB%(55) .. term lis IBi.(75) .. origin_x
IB%(76) originJ IBi.(77) .. cursor x IB%(78) '" cursorJ
IB%(79) cursor_pas IB%(80) '" input_length IBi.(8l) .. slow blink
IB%(82) '" fast blink

5.2.3 &SETINFO(IB%)

This call moves the contents of the integer array IBi. into the Input Information Block.
The format of IBi. is assumed to be the same as described above.

5.2.4 &INPlIT(IS$)

This is the actual call to the "User Input Routine". The variable "IS$" is a string which
contains the default Input String and will contain the result of the user's input.

5. 2. 5 &KXITTIiPlIT

This call will terminate the "User Input Routine" and disconnect the ampersand package.

5.2.6 Exaples

AnTil 10. 1985 Copyright 1985 Apple Computer, Inc. Page 23

User Input Routine

The program "Demo" is a good -example of the "User Input Routine" in action. It can be
used to tryout many of the features.

In the simplest use of the "User Input Routine", the application displays a question on
the screen and then calls the "User Input Routine" for the answer. The following program
segment illustrates the above:

PRINT CHR$ (4) ; "BLOAD INPUT. OBJ".
PRINT "What is your name? ";
&INPUT(IS$)

If the application wants to provide a default name:

PRINT CHR$(4);"BLOAD INPUT.OBJ"
PRINT "What is your name? ";
IS$-"Fred"
&INPUT(IS$)

If the application wants to provide the user with a small visible field:

DIM IB%(82)
PRINT CRR$ (4) ; "BLOAD INPUT. OBJ"
&GETINFO(IB%)
IB%(1)-20:REM width
IB%(2) ..".":REM fill char
&SETINFO(IB%) -
PRINT "What is your name? ";
IS$="Fred"
&INPUT(IS$)

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 24

Uoer Input Routine

5.3 A8IIe1IIIbier

The Assembler version of the "User Input Routine" provides a set of calls similar to
ProDOS MLI calls which provide the following functions:.

Initializing Input Information
Retrieving Input Information
Setting Input Information
Calling the User Input Routine

The release disk contains an "absolute" binary file "INPUT.OBJ" and a "relocatable" file
"INPUT.REL". "INPUT.OBJ" was generated from "INPUT.REL" with the starting address $4000.
If this starting address is not satisfactory for the application, the program "RELOCATOR"
must be used to generate a new "absolute" file which starts at the desired location.

5.3.1 Poraat of the' Inforaation Block

The following is the Assembler equivalent of the Information Block:

maxterms equ 20

Inputlnfo equ *
.
t

width db 0
fill char db " "
mousefill db 0

cursor db 0

control db 0

beep db 0

immediate db 0

entrytype

bordch

;
exit type

lastevent
lastch
lastmod

db

db

db

db
db
db

o

o

o

o
o
o

;Maximum number of terminators

General Information

;Width of the field on the screen
;Fill character
;O-use "fillchar" as fill character
;1-use MouseText ghost underline
;current cursor being used

;O-insert cursor
;1-replacement cursor

;O-Control chars will be ignored
;1-Control chars allowed as input
;O-errors will not be beeped
;1-errors will be beeped
;O-calling routine gets control after the
; complete input is keyed in by user
;1-calling routine gets control after each
; printable character is input
;Indicates type of entry into routine
;O-initial entry
;1-interrupt re-entry
;2-immediate re-entry
;char to blink outside of field

Termination Information

;Indicates which termination condition
; occurred
;O-not terminated yet
;not Q-index into terminating char list
;last event type (not used)
;character user keyed in
;keypress modifier

April 10, 1985 Copyright 1985 Apple Computer, Inc. Pap;e 25

nchars db o

User Input Routine

;Number of terminator chars currently
defined

;The next 3 items define what keystrokes
will terminate or interrupt the routine.

charllst
mod list

termlist

ds
ds

ds

maxterms ;Chars which will terminate input
max terms ;Modifiers for each char in"char1ist"

;O-none
;1-0pen Apple
;2-Solid Apple
;3-Either Open or Solid Apple

maxterms ;Termination types for each char in
"char1ist"

;O-terminate input
;l-interrupt input

Internal Information

originx db 0 ;x coordinate of start of field
originy db 0 iY coordinate of start of field
cursorx db 0 ;x coordinate of cursor in field
cursory db 0 ;Y coordinate of cursor in field
cursorpos db 0 iposition of cursor in field (l •• width)
input1ength db 0 ;length of Input String (inc1 invisib part)
slowblink dw 0 ;slow blink rate
fastblink dw 0 ifast blink rate

5.3.2 Foraat of Calls

The "User Input Routine" has only one entry for all the functions. It is located at the
beginning of the code. A call is made as follows:

JSR INPUT
DB COMMAND
DW PARAMPTR
BNE ERROR

The label "INPUT" is the starting address of the "User Input Routine".
will determine this location when he relocates the routine in memory.
there should be a statement of the form:

The programmer
In the application.

INPUT EQU nnnn

where "nnnn" is the starting address of the "User Input Routine".

"COMMAND" is a number which specifies which function is requested. "PARAMPTR" is a two
byte pointer to a parameter list.

When the "User Input Routine" returns to the calling program. the carry flag will be set
if an error has been detected. The only possible error that is detected by the "User
Input Routine" is an illegal command error (3). This occurs if "COMMAND" is not one of
the available function numbers.

April 10. 1985 Copyright 1985 Apple Computer. Inc. Page 26

User Input Routine

The calling program should check the carry flag (as in the BNE instruction above) and
report the appropriate error. The actual error type is passed to the calling program in
the A-register.

5.3.3 Initializing Input Information

This call will initialize the Information Block to its default values. See 4.3 for the
default values associated with each parameter. This call has the following format:

JSR
DB
DW

INPUT
10
o

;command number for Initialize

5.3.4 Retrieving Input Information

This call will retrieve the current contents of the Input Information Block. The format
of the call is:

JSR
DB
DW

INPUT
11
INPUT INFO

;command number for Get Input Information

where "INPUTINFO" is the address of a buffer where the contents of the Information Block
is to be moved. This buffer will have the format as described in 4.1.

5.3.5 Setting Input Information

This call will set the Input Information Block to values in the specified buffer. The
format of the call is:

JSR
DB
DW

INPUT
12
INPUTINFO

;command number for Set Input Information

where "INPUTINFO" is the address of the buffer. This buffer must have the format as
described in 4.1.

5.3.6 Calling the User Input Routine

This call will perform the actual input. The format of the call is:

JSR
DB
DW

INPUT
13
PARAH

;command number for Input

where the format of "PARAH" is:

PARAH

STRING

DW STRING
DB maxlength
STR "This is the default"

Upon return from this call, the A register will contain the "exittype".

April 10 t 1985 Copyright 1985 Apple Computer, Inc. Page 27

User Input Routine

5.3.7 !x.uples

The program "Demo" is a good example of the "User Input Routine" in action. It can be
used to tryout many of the features.

In the simplest use of the "User Input Routine", the application displays a question on
the screen and then calls the "User Input Routine" for the answer. The following program
segment illustrates the above:

QUESTION STR "What is your name ? "
ANSWER STR ""

DS 81-*+ANSWER
MAXLEN EQU *-ANSWER-l
PARAM DW ANSWER

DB MAXLEN

display question

LOOP
LDY Ho
LDA QUESTION+1,Y
JSR $FDED
INY
CPY QUESTION
BCC LOOP

get answer

JSR INPUT
DB 13
DW PARAM

;display the char

If the application wants to provide a default name:

QUESTION STR "What is your name ? "
ANSWER STR "Fred"

DS 81-*+ANSWER
MAXLEN EQU *-ANSWER-l
PARAM DW ANSWER

DB MAXLEN

display question

LOOP
LDY #0
LDA QUESTION+l,Y
JSR $FDED
INY
CPY QUESTION
BCC LOOP

get answer

;display the char

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 28

User Input Routine

JSR INPUT
DB 13
DW PARAM

If the application wants to provide the user with a small visible field:

QUESTION STR "What is your name? "
ANSWER STR "Fred"

DS 81-*+ANSWER
MAXLEN EQU *-ANSWER-l
PARAM DW ANSWER

DB MAXLEN
INPUT INFO DS 84

get current Information Block

JSR INPUT
DS 11
DW INPUT INFO

change values in Information Block

LDA 1180
STA INPUTINFO
LDA 11"."
STA INPUTINFO+l

jwidth

jfillchar

set Information Block

JSR INPUT
DS 12
DW INPUT INFO

display question

LOOP
LDY flo
LDA QUESTION+l,Y
JSR $FDED
INY
cpy QUESTION
Bce LOOP

get answer

JSR INPUT
DB 13
DW PARAH

jdisplay the char

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 29

ConsoleS tuff Library
External Reference Specification

11/02/84
Lou Infeld

BETA Release Version

page 1

11/02/84

TABLE OF CONTENTS

ConsoleStuff Library ERS Lou Infeld

1. Introduction
2. Description

2.1 Interface Constants and Data Structures
2.1.1 Console Driver commands
2.1.2 MouseText characters
2.1.3 Console Buffer data structure
2.1.4 Box Comment data structure

2.2 Console Buffer procedures
2.2.1 CWrite
2.2.2 CWriteCh
2.2.3 CWriteStr
2.2.4 CWriteIStr
2.2.5 CWriteln
2.2.6 CWriteNum
2.2.7 CGotoxy
2.2.8 CPlace
2.2.9 Window
2.2.10 Line
2.2.11 Box

2.3 Box Comment procedure
2.4 Help procedures
2.5 GetXY procedure

page 2

11 102/84

1. Introduction

ConsoleStuff Library ERS Lou Infeld

The Console Driver provides a quick method for an application to display text on the
screen. It provides many commands to quickly move around the screen, blank portions
of the screen, divide the screen into windows and other useful facilities. To use
these, a buffer containing text as well as console commands has to be sent to the
Console Driver.

The ConsoleStuff Library is a Pascal unit that an application can use to build the
necessary console buffer which can then be sent to the Apple II Console Driver.
Many text formatting routines are in this library as well as other utility routines
to write on the screen including Boxes, Message Areas and Help Screens.

Since this unit requires the Apple II Console Driver to be in the application's
environment, the Console Driver must be loaded when the Pascal system is booted.

The ConsoleStuff Library contains a large (1024 bytes) Console Buffer which is used
to send console data and commands to the Console Driver. Most of the routines in
the library build up this buffer until it is full or until the calling routine
explicitly requests that the buffer be sent to the Console Driver. Only when the
Console Driver gets the buffer does anything happen on the screen. Since the
Console Driver writes onto the screen very rapidly, a Pascal application gets
machine language speed from its console output. This is in dramatic contrast to the
built-in Pascal console interface.

In addition to formatting routines, this library also contains routines which
display Boxes for Comments or Help Screens. These Boxes appear lion top" of the
screen overwriting whatever was beneath. When the application is finished with these
Boxes, they disappear and the text that was underneath reappears.

page 3

11/02/84

2. Description

ConsoleStuff Library ERS Lou Infeld

2.1 Interface Constants and Data Structures

Constants and variables defined in the Interface section of the ConsoleStuff unit
define mnemonics for the Console Driver commands and the Console Buffer and the
Box Comment procedures.

2.1.1 Console Driver con-ands

Instead of using the numerical values of the Console Driver commands, the
ConsoleStuff unit defines a character constant for each command which the
application can use. The following character constants are defined as Console
Driver commands:

c Reset View- -cyeg_Line
c On Cursor
c-Bell
c D Cursor
c Cl View
c-Normal
c-DLE
c Vert Pos- -c Horiz Pos
c-D Scroll
c Off Mouse- -c Cl Line
c_Escape
c Cl End Line- - -c U Cursor

{chr(Ol)} ,
{chr(03)},
{chr(OS)},
{chr(07)} ,
{chr(lO)},
{chr(l2)} ,
{chr(l4)} ,
{chr(l6)} ,
{chr(l8)} ,
{chr(20)},
{chr(22)},
{chr(24)},
{chr(26)},
{chr(27)},
{chr(29)},
{chr(31)}

c_Set_View {chr(02)},
c_Restore_View {chr(04)},
c_Off_Cursor {chr(06)},
c L Cursor {chr(08)},
c Cl To End {chr(ll)},
~Retu~ Cursor{chr(13)},
~Inverse {chr(lS)},
c-Horiz Shift {chr(17)},
c-Cl Beg View {chr(19)},
c-C~sor-Move {chr(21)},
~U Scroll {chr(23)},
c-H~me Cursor {chr(2S)},
C-On Mouse {chr(27)},
c-R Cursor {chr(28)},
c-Abs Pos {chr(30)},

Note that the commands "c On Cursor" and "c Off Cursor" are ignored by the
Apple II Console Driver since they affect -the- Pascal cursor. If these
characters are sent to the Pascal console using a "write" command, they will
have the desired effect.

2.1.2 MouseText characters

Additional character constants are defined for some useful MouseText
characters. To use any of these characters, the "c_On_Mouse" command must
first be sent to the Apple II Console Driver. These are the defined variables:

{Line drawing characters}

f R Side {chr(9S)}, f L Side {chr(90)}, f U Side {chr(9S)},
f D Side {chr(76)}, f Horiz {chr(83)}, f Vert {chr(l24)} ,

{Arrows}

f U Arrow {chr(75)}, f DArrow {chr(74)}, f R Arrow {chr(85)},
f-L-Arrow {chr(72)} ,

{Specials}

page 4

11/02/84 ConsoleS tuff Library ERS Lou Infeld

2.1.3 Console Buffer data structure

The Console Buffer itself is available as an interface variable.
a set of variables are available which indicate the current
buffer:

Additionally,
status of the

CBuff: CBuffType; {Console Buffer}

{CBuff data structure}

CBuff Globals: record
size: integer;
lines:integer;
width:integerj

end;

2.1.4 Box eo..ent data structure

{# of characters in Console Buffer}
{# of lines in Console Buffer}
{Max width of lines in Console Buffer}

The "BoxComment" procedure displays a one line message on the screen. See 2.3
for a detailed discussion of the procedure. The configuration data structure
associated with this procedure are:

{Box Comment data structure}

Box Globals: record
Y: integer;
Stat: integer;

Ch: char;
Clear: boolean;

Beep: boolean;

Time: integer;

end;

2.2 Console Buffer procedures

{Y coordinate of Box}
{Status to be inserted instead of "&" in
comment}

{Character read if comment ended in "?"}
{If true, comment will be cleared from
screen. If false, comment remains on
screen until next BoxComment call}

{if true, a beep will be sounded with
comment}

{# of secs comment stays on screen if no
keypress}

These procedures allow the application to
subsequent transmission to the Console Driver.
similar to the Pascal "write" function. Some
abilities.

prepare the Console Buffer for
Some provide formatting utilities
provide Window and Line drawing

Each procedure will add to the Console Buffer the necessary text and console
commands to perform the requested function. When the "CWrite" procedure is
called, the Console Buffer is sent to the Console Driver. The Console Driver
will interpret each character in the Console Buffer and will either display the
character or perform one of its console functions. The Console Buffer is emptied
and can be again "filled" by the ConsoleStuff procedures.

page 5

11/02/84 ConsoleStuff Library ERS Lou Infeld

Since the Console Driver supports the concept of a "window", all coordinate
parameters should be specified relative to the window in effect. The one
exception is the "Window" procedure which requires absolute coordinates since it
establishes a new window relative to a screen coordinate systeem in which (0,0)
indicates the upper left and (79,23) the lower right corners.

2.2.1 CWrite

This procedure sends the Console Buffer to the Console Driver and initializes
the Console Buffer data structure to zeroes.

Example: CWrite;

2.2.2 CWriteCb

This procedure adds the specified character to the Console Buffer.

Examples: CWriteCh('a');
CWriteCh(c_Cl_View);

2.2.3 CWriteStr

This procedure adds the specified string to the Console Buffer.
string up to 255 characters is allowed.

Examples: CWriteStr('This will be displayed');
CWriteStr(strvar);

2.2.4 CWriteIStr

Any size

This procedure adds the specified string to the Console Buffer.
string will display in Inverse Mode.

Examples: CWriteIStr('This will be in inverse');
CWriteIStr(strvar);

2.2.5 CWriteln

However, the

This procedure is similar to "CWriteStr" except a Carriage Return is added to
the Console Buffer after the string.

Examples: CWriteln('This is a title');
CWriteln('---------------');

2.2.6 CVriteNmi

The specified integer is converted to an ascii string and added to the Console
Buffer. The size of the field and the fill character can be specified. The
integer will be right justified in the field unless the field size is O.

"09"}
"100"}

Examples: CWriteNum(IO,5,' ');
i:-9;
CWriteNum(i,2,'0');
CWriteNum(lOO,O,' ');

{resulting field

{resulting field
{resulting field

page 6

" 10"}

11/02/84

~.2.7 CGotoxy

ConsoleSLuff Library ERS Lou Infeld

Calling this routine adds the Console Driver commands necessary to change the
character position to the specified relative coordinates.

Example: CGotoxy(lO,lO)j

2.2.8 CPlace

{char position changed to (lO,lO)}

This routine combines the "CGotoxy" and "CWriteCh" procedures.
puts the specified character into the specified position.

It effectively

Example: CPlace(lO,lO,'X')j

2.2.9 Window

{char "X" displayed at (lO,lO)}

This procedure changes the Console Driver window to that specified by the given
coordinates. The "absolute" coordinates of the upper left corner and the lower
right corner must be specified. These coordinates are not checked for validity
and illogical values will have strange effects.

{changes window so that upper left
corner is at (10,15) and lower right
corner is at (60,20)}

Note that this procedure is the only Console Buffer routine which uses absolute
coordinates. All others use coordinates relative to the current window in
effect.

2.2.10 Line

This procedure causes a line
the two sets of coordinates.
(others will be ignored).
validity (other than defining
effects.

Examples: Line(5,10,5,20)

2.2.11 Box

to be drawn with the specified character between
Only vertical or horizontal lines.can be drawn

The coordinates specified are not checked for
a line) and illogical values will have strange

{result: vertical line between
coordinates (5,10) and (5,20)}

{result: horizontal line between
coordinates (10,5) and (60,5)}

(using MouseText fonts) at the
are not checked for validity and

This procedure draws a box
coordinates. These coordinates
values will have strange effects.

Example: Box(10,ls,60,20)j

2.3 Box eo-ent procedure

specified
illogical

{result: box with upper left corner at
(10,15) and lower right corner at
(60 ,20)}

This procedure places the specified comment on the screen inside of a narrow box.

page 7

11/02/84 ConsoleStuff Library ERS Lou Infeld

If the message is not a question (ends with a question mark), the box stays on
the screen for a period of time or until any readable key is pressed.

If the message is a question, the box stays on the screen until a key
This key is assumed to be the answer to the question and is stored
Comment data structure field "Box Globals.Ch".

is pressed.
in the Box

If an "Es" is embedded in the comment, it is replaced with the ASCII equivalent of
the integer in the "Stat" field of "Box Globals".

Other fields of the Box Comment data structure can be set to configure the
"BoxComment" procedure:

Y
Clear

Beep
Time

Y coordinate of the Box (default is 21)
If TRUE (default), comment will be cleared from screen
If FALSE, comment stays on screen until next call
If TRUE (default), a beep will be sounded with comment
Number of secs comment stays on screen if no key pressed
(default is 15)

Examples: BoxComment('This is a comment');
Box Globals.Stat: m l0;
BoxComment('The status is "Es"');
BoxComment('Do you want to continue (Y/N) 1');

2.4 Help procedures

Two procedures are available to aid in displaying Help Screens. The first opens
up the Help Screen and the second closes it down and redisplays the original
screen contents.

The calling routine first sets up the Console Buffer using the Console Buffer
routines without calling the "CWrite" procedure. Next the "OpenRelp" routine is
called. It puts a Box on the screen just large enough to contain the Relp lines.
When the "CloseRelp" procedure is called, the Relp Box disappears and the screen
environment is restored.

Examples: CWriteln('This is the first line of the Relp Screen');
CWriteln('This is the second line of the Relp Screen');
CWriteln('This is the last line of the Help Screen');
OpenRelp;
read(keyboard,ch);
CloseHelp;

2.5 GetXY procedure

This routine returns the current relative coordinates of the character position
within the current window as well as the window coordinates themselves. Note
that this procedure is not a Console Buffer formatting procedure. Coordinates
returned are those currently in effect.

Example: GetXY(x,y,ulx,uly,lrx,lry); {char position is (x,y) and
upper left corner of window is
(ulx,uly) and lower right

page 8

11/02/84 Con801eSluff Library ERS Lou lnfeld

corner of window i8 (lrx.lry)}

page 9

Conliole Driver/Unr Input Routine
Reluili 1.0Bi Notes

Lou Infeld

04/16/85

Version 1.0Bi is the first Eeta relnse for the Console Driver and User Input Routine.
Previous versions are cosidered Alpha releases. The following changes were ma.de in the
Con50le Driver and User Input Routines since the b.st release:

Console Driver

o Documentation corrected -- Several of the control codes were incorrectly specified in the
documentation.

o Eug fixed -- Calling the Horizonhl, Vertical or Absolute Position commands with values
outside of the current window sometimes resulted in positioning the cursor to the top or
left side of the window rather than the bottom or right side.

o Eug fixed -- Clearing viewports that are two lines high caused Console Driver to hang.

User Input Routine

o Eug fixed -- Sometimes cursor remnants remained on screen.
o Eug fixed -- Control F didn't work in Pascal version. The fix was to disa.ble all specia.l

Pascal control characters including Control 'Al, Control S, Control Z, etc. as well as Control
F.

o Standard change -- Control R (restore) changed to Control Z (undo).
o Enha.ncement -- Eorder character a.dded to Information BlocK. This chara.cter will be blir.l<ed

(ra.thel' tha.n a Blanl<) whenever the field is filled and the cursor is forced outside.
o Bnhancement -- Upon initial entry in immediate mode, the application will get control

before the cursor starts blinKing. This will allow initial cursor repositioning without
cursor remnants.

o Enhancement -- Last event type parameter added to Information Elock. This parameter is
not currently used.

April 16, 1985 Copyright 1985 Apple Compu'ttr, Inc. Page 1

Apple II Con8ole Driver

EXTERNAL REFERENCE SPECIFICATION

APPLE II CONSOLE DRIVER

Neal Johnson

April 10, 1985

BETA RELEASE VERSION

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 1

Apple II Console Driver

TABLE OF CONTENTS

1. Introduction
2. Functional Description

2.1 Screen Map
2.2 Console Driver Environment Controls

2.2.1 Cursor Position
2.2.2 Viewport Specification
2.2.3 Cursor Movement Controls
2.2.4 Fill Character
2.2.5 Default Settings and Environment

2.2.5.1 The Default Viewport
2.2.5.2 The Default Cursor Movement Controls
2.2.5.3 The Default Screen Environment
2.2.5.4 Mousetext
2.2.5.5 Normal and Inverse Text

2.3 Screen Control Codes
2.3.1 No Operation
2.3.2 Save and Reset Viewport
2.3.3 Set Viewport
2.3.4 Clear from Beginning of Line
2.3.5 Restore Viewport
2.3.6 Undefined
2.3.7 Undefined
2.3.8 Sound the Bell
2.3.9 Move Cursor Left
2.3.10 Undefined
2.3.11 Move Cursor Down
2.3.12 Clear to End of Viewport
2.3.13 Clear Viewport
2.3.14 Return Cursor
2.3.15 Set Normal Text
2.3.16 Set Inverse Text
2.3.17 Space Expansion
2.3.18 Horizontal Shift
2.3.19 Vertical Position
2.3.20 Clear from Beginning of Viewport
2.3.21 Horizontal Position
2.3.22 Cursor Movement Controls
2.3.23 Scroll Down
2.3.24 Scroll Up
2.3.25 Turn Mousetext Off
2.3.26 Home Cursor
2.3.27 Clear Line
2.3.28 Turn Mousetext On
2.3.29 Move Cursor Right
2.3.30 Clear to End of Line
2.3.31 Absolute Position
2.3.32 Move Cursor Up

2.4 Displayable Characters
2.4.1 Displayable Text Characters
2.4.2 Mousetext Characters
2.4.3 Control Characters

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 2

Apple II Console Driver

3. Interface Description
3.1 Pascal

3.1.1 Data Interface
3.1.2 Calling the Console Driver
3.1.3 Status Calls
3.1.4 Control Calls

3.1.4.1 Getting the Current Cursor Position
3.1.4.2 Getting the Current Text Screen Character
3.1.4.3 Saving and Restoring the Viewport

3.2 BASIC
3.2.1 Console Driver Functions

3.2.1.1 Calling the Console Driver
3.2.1.2 Output Data to the Console
3.2.1.3 Save the Current Viewport Contents
3.2.1.4 Restore the Current Viewport Contents
3.2.1.5 Get the Status of the Console Driver
3.2.1.6 Get the Current Cursor Position
3.2.1.7 Get the Current Text Screen Character
3.2.1.8 Initialize the Console Driver
3.2.1.9 Release the Console Driver
3.2.1.10 Console Driver Version and Copyright
3.2.1.11 Setting the Console Driver Address

3.2.2 Using the Console Driver with Your Program
3.2.2.1 Console Driver Zero Page Usage
3.2.2.2 Console Driver Softswitch Usage
3.2.2.3 Relocating the Console Driver

3.3 Assembler
3.3.1 Console Driver Functions

3.2.1.1 Calling the Console Driver
3.2.1.2 Output Data to the Console
3.2.1.3 Save the Current Viewport Contents
3.2.1.4 Restore the Current Viewport Contents
3.2.1.5 Get the Status of the Console Driver
3.2.1.6 Get the Current Cursor Position
3.2.1.7 Get the Current Text Screen Character
3.2.1.8 Initialize the Console Driver

3.3.2 Using the Console Driver with Your Program
3.3.2.1 Console Driver Zero Page Usage
3.3.2.2 Console Driver Softswitch Usage
3.3.2.3 Relocating the Console Driver

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 3

Apple II Console Driver

1. Introduction

The Console Driver (henceforth known as lithe driver") is an implementation
of the Apple III Console Driver, with special modifications, for the Apple II
series of computers (11+, lie, and lIe). The driver supplies a simple and
consistent interface to a nearly complete set of display format and control
procedures contained in a relatively small and fast package. Both display
and control commands are sent to the driver in the same manner. This allows
a programmer to build up a set of data structures that contain both display
and control information. Presentation of the information to the driver can
be made with one call. This simplifies the programming of the human interface
for a program, in that the programmer does not have to make a sequence of
calls to set up for text to be displayed. Instead, the format information
can be imbedded in the text itself.

The driver supports a form of "window" known as a "viewport". The
viewport is a rectangular portion of the screen where all console functions
take place. This feature allows the programmer to define a portion of the
screen where slhe wants text to be displayed. All text outside the viewport
is protected. Any display of the text will occur within the bounds of the
viewport.

The console driver can serve as a low level tool for the implementation
of different styles of human interface. Much of the implementation for the
various styles of human interface would be in the design of the data
structures describing the format and text to be displayed.

NOTE: This release (1.0) of the Console Driver only supports an 80-column
screen. Sections describing the 40-column screen should be ignored at
this time.

2. Functional Description

2.1 Screen Map

2.1.1 40-Column Screen

The 40-Column screen consists of 40 columns of text in
24 lines. The upper left corner is column 0, line ° (or
simply 0,0.) Columns are number left to right, ° to 39.
Lines are numbered top to bottom, ° to 23.

2.2.2 80-Column Screen

The 80-Column screen consists of 80 columns of text in
24 lines. The upper left corner is column 0, line ° (or
simply 0,0.) Columns are number left to right, ° to 79.
Lines are numbered top to bottom, ° to 23.

2.2.3 The Viewport

The Viewport is a rectangular portion of the screen

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 4

Apple II Console Driver

where all current text is dinplnyed. Portions of the Bcreen
outside the viewport are not affected by either format or
display commands.

The driver maintains a "cursor", which is not visible
on the screen, that represents the current location that
a displayable character will be placed. This cursor is
specified by the value of the two variables CH and CV.
(See Section 2.2.1 below)

When the console driver is first used, the viewport
defaults to the whole screen (either 40 or 80 column
display). The programmer can set the viewport by a special
control and four parameter bytes which specify the upper
left and the lower right corners of the viewport. From that
point on, all console functions will take place within the
bounds of the viewport.

The current viewport specifications can be saved and
the viewport can then be set to the specifications of the
previously saved viewport. The programmer can then return
to the original viewport settings with another command.

2.2 Console Driver Environment Controls

2.2.1 Cursor Position

The current cursor position is maintained in two
variables:

CH - current horizontal position

CV - current vertical postion

When the driver is first used, these values are set to
zero signifying the upper-left corner of the screen.

The values of CH and CV always represent the absolute
screen coordinates (actual column and line number) and are
not relative to the current viewport.

2.2.2 Viewport Specification

The viewport is specified by six variables that specify
the top, bottom, left, and right edge of the viewport and
also its width (in COlumns) and its length (in lines).

WNDTOP - top line of viewport

WNDBOT - bottom line of viewport

WNDLFT - left column of viewport

WNDRGT - right column of viewport

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 5

Apple II Console Driver

WNDWTH - width of viewport in columns

WNDLEN - lenKth of viewport in lines

2.2.3 Cursor Movement Controls

The cursor movement controls specify the rules for
moving the cursor within a viewport. These controls are
flags directing the driver how to move the cursor. If
set to zero, they are false and if set to one, they are
true. The four cursor movement controls are:

CONLFD (Line Feed) - If true, the console driver
will automatically perform a line feed after every
carriage return (control code 13 decimal or SOD hex.)
When false, no automatic line feed is performed.
The programmer can perform a line feed by explicitly
sending a line feed character (10 decimal or $OA hex.)
Scrolling is controlled by the other cursor movement
control settings.

CONADV (Advance) - If true, the cursor will advance
one space to the right after each display character
is placed on the screen. When false, the cursor will
not advance (it will remain in the same position)
after each character. In this case the programmer
would have to explicitly move the cursor by sending
a Move Cursor Right control (09 decimal or $09 hex.)
Wrapping andlor scrolling is controlled by the other
cursor movement control settings.

CONWRAP (Wrap) - If true, an attempt to move the
cursor beyond the right or left edge of the viewport
will cause the cursor to be placed at the opposite
edge of the next or previous line, respectively, of
the viewport. If false, the cursor remains at the
edge of the viewport on the current line. To move
to either the next or previous line requires the
programmer to send a Move Cursor Up (11 decimal or
SOB hex) or a Move Cursor Down (10 decimal or $OA
hex) character, followed by either a Return Cursor
(13 decimal or SOD hex) to move the cursor to the
beginning of the previous line or a Horizontal
Position (24 decimal or $18 hex) with the appropriate
parameter value to send the cursor to the end of line.
Scrolling is controlled by the other cursor movement
control.

CONSCRL (Scroll) - If true. an attempt to move the
cursor beyond the top or bottom line of the viewport,
will cause the contents of the viewport to be scrolled
either down or up. The cursor will then be placed
at the beginning of the new top or bottom line. If

April 10, 1985 Copyright 1985 Apple Computer. Inc. Page 6

Apple II ConDole Driver

false, the cursor will remain at the top or bottom
of the viewport.

DLEFLAG (Space Expansion) - If true, the DLE's
($10 hex or 16 decimal) will be interpreted 8S

space expansion controls with a following
parameter byte. (See section 2.3.17) If false,
then they are ignored.

2.2.4 Fill Character

The fill character is the character used to clear the
contents of the viewport. This value is a Space (32 decimal
or $20 hex). Its value is in the variable CONFILL. Due to
the Apple II character mapping the actual binary value
of the fill character is $OAO hex or 160 decimal for a
normal Space character or $20 hex or 32 decimal for an
inverse Space character.

2.2.5 Default Settings and Environment

2.2.5.1 The Default Viewport

The default viewport is the entire screen
(either 40 or 80 columns).

Viewport Parameter 40-Col Value 80-Co1 Value
------------------ ----------- ------------

WNDTOP 0 0

WNDBOT 23 23

WNDLFT 0 0

WNDRGT 39 79

WNDWTH 40 80

WNDLEN 24 24

2.2.5.2 The Default Cursor Movement Controls

The default settings for the Cursor Movement
Controls are:

CONLFD (Line Feed) - TRUE

CONADV (Advance)

COWRAP (Wrap)

- TRUE

- TRUE

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 7

Apple // Console Driver

CONSCRL (Scroll) -TR~

DLEFLAG (Space Expansion) - TRUE

2.2.5.3 The Default Screen Environment

The default screen environment is the
default viewport (See section 2.2.5.1), the
text display mode is normal. the cursor is
off. the fill character is space. and the
initial position of the cursor is in the
upper-left hand corner (0.0).

2.2.5.4 Mousetext

The flag MOUSE. specifies whether or not the
driver will display mousetext charactera. If MOUSE
is true then character is the range $40 to 5F hex
or 64 to 95 decimal will be mapped into the
mousetext character set. If false, the mapping will
not take place. Control codes will always be
processed as is. The default is MOUSE false.

2.2.5.5 Normal and Inverse Text

The flag CONVID controls the display of text in
either normal or inverse modes. If CONVID is $80 hex
or 128 decimal. text is displayed in normal mode.
If CONVID is O. then text is displayed in inverse.
The setting of CONVID is handled via two control codes
described below (Set Normal Text or Set Inverse Text.)

2.3 Screen Control Codes

2.3.1 No Operation

CONTROL CODE: $00 (hex) or 00 (decimal)

OPERATION: No Operation

DESCRIPTION: This control code has no effect and
is ignored.

2.3.2 Save and Reset Viewport

CONTROL CODE: $01 (hex) or 01 (decimal)

OPERATION: Save and Reset Viewport

DESCRIPTION: This control code saves the current settings
of the viewport: its coordinates. cursor position, cursor
motion controls, mousetext. and normal/inverse setting. The
viewport will then be set to the default values of the full

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 8

Apple II Console Driver

screen. (See section 2.3.5 Restore Viewport)

2.3.3 Set Viewport

CONTROL CODE: $02 (hex) or 02 (decimal)

OPERATION: Set Viewport

DESCRIPTION: This control code will set the viewport.
It requires four parameter bytes which specify the
absolute coordinates for the upper-left and lower-right
corners of the viewport. The order of the parameters
is:

upper-left corner X (or column) value

upper-left corner Y (or line) value

lower-right corner X (or column) value

lower-right corner Y (or line) value

If less than four parameters are passed, this control
code will be ignored. This control simply sets the
boundaries for the viewport. It does not affect the
cursor motion controls, normal/inverse, or mousetext
setting. It will not save the current viewport.
The cursor will be placed in the upper-left corner
of the new viewport.

The parameters are checked for validity prior to setting
the viewport values. The rules for validity are as
follows:

If any paramter byte is > 127, i.e. minus value
because bit 7 is set, this command will be
ignored.

For any X coordinate (UL corner or LR corner), if
it is > 39 or 79 (depending on the screen size)
then it will be set to 39 or 79.

For any Y coordinate (UL corner or LR corner), if
it is > 23 then it will be set to 23.

UL corner X will be used for WNDLFT.

UL corner Y will be used for WNDTOP.

LR corner X, if greater than WNDLFT, will be used
for WNDRGT, else this command will be ignored.

LR corner Y, if greater than WNDTOP, will be used
for WNDBOT, else this command will be ignored.

April la, 1985 Copyright 1985 Apple Computer, Inc. Page 9

Apple II ConDole Driver

If for any reaoon the command is ignored, it will
not change the current viewport settings.

2.3.4 Clear from Beginning of Line

CONTROL CODE: $03 (hex) or 03 (decimal)

OPERATION: Clear from Beginning of Line

DESCRIPTION: This control code will clear the current line
from the beginning of the line to and including the current
cursor position in that line.

2.3.5 Restore Viewport

CONTROL CODE: $04 (hex) or 04 (decimal)

OPERATION: Restore Viewport

DESCRIPTION: This control code will restore the viewport
to the values of the last previously saved viewport. If
no viewport has been saved, then the values will be set
to the default values for the whole screen. (See section
2.3.2 Save and Reset Viewport)

2.3.6 Undefined

CONTROL CODE: $05 (hex) or 05 (decimal)

OPERATION: Undefined

DESCRIPTION: This control code is undefined and is
ignored.

2.3.7 Undefined

CONTROL CODE: $06 (hex) or 06 (decimal)

OPERATION: Undefined

DESCRIPTION: This control code is undefined and is
ignored.

2.3.8 Sound the Bell

CONTROL CODE: $07 (hex) or 07 (decimal)

OPERATION: Sound the Bell

DESCRIPTION: This control code will cause the ProDOS
recommended "beep" to be sounded. It has no effect
on the screen. Sequencial control codes will have the
effect of producing a longer sound.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 10

Apple II Connole Driver

2.3.9 Move Cursor Left

CONTROL CODE: $08 (hex) or 08 (decimal)

OPERATION: Move Cursor Left

DESCRIPTION:
one position.
in accordance
(See sections

This control code will move the cursor left
Wrapping around and scrolling are performed

with the settin~s of the cursor motion controls.
2.2.3 and 2.3.22 Cursor Movement Controls)

2.3.10 2.3.11 Move Cursor Down

CONTROL CODE: $OA (hex) or 10 (decimal)

OPERATION: Move Cursor Down (Line Feed)

DESCRIPTION: This control code moves the cursor down one
line. Scrolling is performed in accordance with the
cursor motion controls. (See sections 2.2.3 and 2.3.22
Cursor Movement Controls)

2.3.12 Clear to End of Viewport

CONTROL CODE: SOB (hex) or 11 (decimal)

OPERATION: Clear to End of Viewport

DESCRIPTION: This control code will clear the contents of
the viewport, starting from and including the current cursor
position to the end of the line and all the lines below the
cursor. The cursor is not moved.

2.3.13 Clear Viewport

CONTROL CODE: SOC (hex) or 12 (decimal)

OPERATION: Clear Viewport

DESCRIPTION: This control character will move the cursor
to the upper-left corner of the viewport and then clear
the viewport by setting the contents to space characters.
The space characters will be either normal or inverse
depending on the setting of this mode. (See sections
2.3.15 and 2.3.16)

2.3.14 Return Cursor

CONTROL CODE: SOD (hex) or 13 (decimal)

OPERATION: Return Cursor (Carriage Return)

DESCRIPTION: This control code moves the cursor to the

April la, 1985 Copyright 1985 Apple Computer, Inc. Page 11

Apple II Conso1@ Driv@r

beginning of the current line (the left edge of the
viewport.) A line feed may also be issued automatically
after the return depending on the setting of the cursor
motion controls. Scrolling may also take place. (See
sections 2.2.3 and 2.3.22 Cursor Movement Controls)

2.3.15 Set Normal Text

CONTROL CODE: $OE (hex) or 14 (decimal)

OPERATION: Set Normal Text

DESCRIPTION: This control code specifies that all subsequent
characters will be displayed as white characters on a black
background. It does not affect any characters already on
the screen. This control code will set the flag CONVID to
$80 hex or 128 decimal. (See section 2.3.16 Set Inverse Text)

2.3.16 Set Inverse Text

CONTROL CODE: $OF (hex) or 15 (decimal)

OPERATION: Set Inverse Text

DESCRIPTION: This control code specifies that all subsequent
characters will be displayed as black characters on a white
background. It does not affect any characters already on the
screen. This control code will set the flag CONVID to O.
(See section 2.3.15 Set Normal Text)

2.3.17 Space Expansion

CONTROL CODE: $10 (hex) or 16 (decimal)

OPERATION: Space Expansion

DESCRIPTION: This control code supports the DLE space
expansion that exists in Pascal text files. It takes
one parameter which represents the number of spaces to
output plus 32. The driver subtracts 32 from the parameter
to determine the number of spaces to output to the screen.
If the parameter does not exist, then the driver will
ignore this control. DLE expansion can be turned off
using the mode value of 4 or 12 in the UNITWRITE call
to the driver. (See section 3.1.2 below.) It can also
be turned on or off with the Cursor Movement Control.
(See Section 2.3.22 below) The default is on.

2.3.18 Horizontal Shift

CONTROL CODE: $11 (hex) or 17 (decimal)

OPERATION: Horizontal Shift

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 12

Apple II Conoole Driver

DESCRIPTION: This control code will cause the contents of
the viewport to be shifted right or left the number of
columns specified by the single byte parameter following
the control code. If the parameter does not exist or is
set to 0, the control will have no effect. The parameter
is interpreted as an eight-bit two's complement number.
If it is positive (less than 128 decimal or $7F hex) the
contents will be shifted right the number of columns equal
to the value of the number. If it is negative (greater
than or equal to 128 decimal or $7F hex), the contents
will be shifted left the number of columns equal to the
negative value of the number. In both cases, if the value
is greater than or equal to the width of the viewport, it
will cause the viewport to be cleared.

The shifted characters are moved directly to their
destination location. The space vacated by the shifted
characters is set to blanks. Characters shifted out of
the viewport are removed from the screen and are not
recoverable.

2.3.19 Vertical Position

CONTROL CODE: $12 (hex) or 18 (decimal)

OPERATION: Vertical Position

DESCRIPTION: This control code will move the cursor
vertically to the relative line number passed in
a single byte parameter (0 to 23 for both 40-columns or
80-columns). A parameter whose value is
10 means to move to the tenth line in the viewport,
not to line 10 of the whole screen. A parameter of
o will move the cursor to the topmost line. To
determine the correct relative line, the parameter
is added to the value of WNDTOP (See Section 2.2.2
Viewport Specifications). This is an eight-bit add.
If the resulting value is greater than the value of
WNDBOT (the bottommost line of the viewport) but
less than 127 then the cursor will be placed in the
bottommost line of the viewport. If the sum is
greater than 127 (negative) then the cursor will be
placed in the topmost line. If the parameter is
missing, this control will be ignored. This control has
no effect on the horizontal position of the cursor.

2.3.20 Clear from Beginning of Viewport

CONTROL CODE: $13 (hex) or 19 (decimal)

OPERATION:Clear from Beginning of Viewport

DESCRIPTION: This control code will clear the viewport
from its beginning (0, 0 or home position) to and

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 13

Apple II Console Driver

including the curmor. The cursor is not Qoved.

2.3.21 Horizontal Position

CONTROL CODE: $14 (hex) or 20 (decimal)

OPERATION: Horizontal Position

DESCRIPTION: This control code will move the cursor
horizontally to the relative column number passed in
a single byte parameter (0 to 39 for 40-columns or
o to 79 for aO-columns). A parameter whose value is
10 means to move to the tenth column in the viewport,
not to column 10 of the whole screen. A parameter of°will move the cursor to the left-most column. To
determine the correct relative column, the parameter
is added to the value of WNDLFT (See Section 2.2.2
Viewport Specifications). This is an eight-bit add.
If the resulting value is greater than the value of
WNDRGT (the rightmost column of the viewport) but
less than 127 then the cursor will be placed in the
rightmost column of the viewport. If the sum is
greater than 127 (negative) then the cursor will be
placed in the leftmost column. If the parameter is
missing, this control will be ignored. This control
has no effect on the vertical position of the cursor.

2.3.22 Cursor Movement Controls

CONTROL CODE: $15 (hex) or 21 (decimal)

OPERATION: Cursor Movement Controls

DESCRIPTION: This control code and its parameter will
set the cursor movement controls as specified by the
parameter. The parameter is a single byte value, with
only the lower five bits as significant. The upper four
bits are to be set to zero. A zero will reset the control
and a one will set it. If the parameter does not
exist or the upper three bits are non-zero, the command is
ignored. (See section 2.2.3 Cursor Movement Controls)

Bit Control

Bit 0 Advance

Bit 1 Line Feed

Bit 2 Wrap

Bit 3 Scroll

Bit 4 DLE Space Expansion

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 14

Apple II Console Driver

2.3.23 Scroll Down

CONTROL CODE: $16 (hex) or 22 (decimal)

OPERATION: Scroll Down

DESCRIPTION: This control code will cause the contents of
the viewport to scrolled down, leavin~ a blank line at
the top of the viewport. The cursor position will remain
the same after the scroll.

2.3.24 Scroll Up

CONTROL CODE: $17 (hex) or 23 (decimal)

OPERATION: Scroll Up

DESCRIPTION: This control code
of the viewport to be scrolled
at the bottom of the viewport.
will remain the same after the

2.3.25 Turn Mousetext Off

will cause the contents
up, leaving a blank line

The cursor position
scroll.

CONTROL CODE: $18 (hex) or 24 (decimal)

OPERATION: Turn Mousetext Off

DESCRIPTION: This control code turns off the display
of mousetext (See Section 2.3.28).

2.3.26 Home Cursor

CONTROL CODE: $19 (hex) or 25 (decimal)

OPERATION: Home Cursor

DESCRIPTION: This control code moves the cursor to the
upper-left corner of the current viewport. It does not
clear any portion of the viewport, nor does it change any
of the viewport settings.

2.3.27 Clear Line

CONTROL CODE: $lA (hex) or 26 (decimal)

OPERATION: Clear Line

DESCRIPTION: This control code moves the cursor to the
beginning of the current line and then clears the entire
line.

2.3.28 Turn Mousetext On

April la, 1985 Copyright 1985 Apple Computer, Inc. Page 15

Apple II Console Driver

CONTROL CODE: $IB (hex) or 27 (decimal)

OPERATION: Turn Mousetext On

DESCRIPTION: This control code turns on the display
of mouse text characters. All displayable characters
(See Section 2.4 Displayable Characters) in the range
$40 - $5F hex or 64 - 95 decimal will be mapped into
the mousetext characters for display. (See Section
2.3.25)

2.3.29 Move Cursor Right

CONTROL CODE: $IC (hex) or 28 (decimal)

OPERATION: Move Cursor Right

DESCRIPTION: This control code will move the cursor right
one position. Wrapping around and scrolling are performed
in accordance with the settings of the cursor motion controls.
(See sections 2.2.3 and 2.3.22 Cursor Movement Controls)

2.3.30 Clear to End Of Line

CONTROL CODE: $ID (hex) or 29 (decimal)

OPERATION: Clear to End of Line

DESCRIPTION: This control code clears the current line
starting from and including the current cursor position
in the line. The cursor is not moved.

2.3.31 Absolute Position

CONTROL CODE: $lE (hex) or 30 (decimal)

OPERATION: Absolute Position

DESCRIPTION: This control code combines the actions of
the Horizontal Position and Vertical Position control
codes. (See sections 2.3.25 and 2.3.26). It requires
two single byte parameters. The first specifies the
horizontal position and the second specifies the vertical
position of the cursor. Placement of the cursor follows
the rules given under both Horizontal and Vertical Position
control codes. If both parameter bytes are miBsing t the
command is ignored.

2.3.32 Move Cursor Up

CONTROL CODE: $IF (hex) or 31 (decimal)

OPERATION: Move Cusor Up (Vertical Tab)

April lOt 1985 Copyright 1985 Apple Computer, Inc. Page 16

Apple II Console Driver

DESCRIPTION: This control code moves the cursor up one
line. Scrolling is performed in accordance with the
cursor motion controls. (See sections 2.2.3 and 2.3.22
Cursor Movement Controls)

2.4 Displayable Characters

The Console Driver uses the Alternate Character set of the
Apple II for the display of characters. It assumes however, that
all characters passed to it are in the standard ASCII character
set (range $00 to $7F hex or 0 to 127 decimal). These characters
will be mapped into the appropriate character set for display
purposes, e.g. normal or inverse or mousetext.

A special case is made for characters passed to the driver in
the range $80 to $FF hex or 128 to 255 decimal. The characters
are displayed after reseting the 7th bit. This results in the
mapping shown in the chart below:

$80 - $9F

$AO - $BF

$CO - $DF

$EO - $FF

mapped to

mapped to

mapped to

mapped to

Inverse upper case letters

Inverse special characters

Mousetext characters

Inverse lower case letters

This is independent of the settings for normallinverse and
mousetext in the driver. Refer to the Apple II Reference Manuals
for more details on the character sets.

All characters in the range $00 to $lF hex or 0 to 31 decimal
are defined as control codes which invoke the operations listed
above in Section 2.3.

All characters in the range $20 to $7F hex or 32 to 127 decimal
are defined as displayable characters and will be displayed given
the various settings of the console driver on the screen.

The use of mouse text requires that the mousetext-on control
code be sent to the console driver. Then any characters in the
range $40 to $5F hex or 64 to 95 decimal will be mapped into
the appropriate mousetext character. For example, to get the
"running man" characters would require:

27 - mouse text-on control code
"F" - first part of "running man"
"c" - second part of "running man"

At the end of a sequence of mousetext characters, it is important
to turn off mousetext with the mousetext-off control code. Any'
characters not in the mouse text range will be displayed as is

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 17

Apple II Console Driver

given the lettings of the console driver.

3. Interface Description

3.1 Pascal

3.1.1 Data Interface

Both control codes and text to be displayed are passed
to the driver as a contiguous array of data. For example.
if the programmer wished to print "Hello" on line 10.
column 15. in inverse. and then home the cursor and return
back to normal text. s/he would create the following array
of data (all numbers are decimal):

30 - absolute position
15 - parameter (column 15)
10 - parameter (line 10)
15 - inverse text
72 - "H"
101 - "e"
108 - "1"
108 - "1"
111 - "0"
25 - home cursor
14 - normal text

This array is not a string in the Pascal sense of the word,
in that the first byte is data and not the length of the
array (as in a string.) The console driver can accept an
array up to 32767 bytes long (Pascal limit on integers).

The second required bit of data is an integer that
denotes the length of the array' to be processed by the
driver. In the above example. the integer could either
be a variable with the value 11 or the constant "11 ".

3.1.2 Calling the Console Driver

The driver is an "Attach" driver for Pascal. For
information on Pascal Attach drivers. please refer to
APPLE I I PASCAL 1.2 DEVICE AND INTERRUPT SUPPORT TOOLS
MANUAL. The unit number for the driver is #130.

To transfer data to the driver to be displayed on the
screen. requires a UNITWRITE call from a Pascal program.
The format for the call is shown below:

UNITWRlTE(130. ARRAY_ADDR, LENGTH_ARRAY, MODE)

where 130 is the unit number for the driver

ARRAY ADDR is a VAR parameter denoting the
address of the array of data

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 18

Apple II Console Driver

LENGTH_ARRAY is the length of the array passed

MODE is the mode expression which is an integer.
This can have four values:

value DLE-expansion Auto linefeed
------------ ------------

0 TRUE TRUE
2 FALSE TRUE
8 TRUE FALSE
12 FALSE FALSE

When passing a string to the driver, it is important
to always reference the string as:

so as not to pass the length byte found in STRING_VAR[O].

3.1.3 Status Calls

The driver only accepts one status call that returns
a data structure that describes the current state of the
driver. (See section 2 for a description of these variables.)
The form of the UNITSTATUS call is shown below:

where 130 is the unit number of the driver

CON STAT BLK is a record with the format:

TYPE BYTE - 0 •• 255

VAR CON STAT BLK: PACKED RECORD OF
CV:BYTE ;
CH:BYTE;
WNDTOP:BYTE;
WNDBOT: BYTE;
WNDLFT: BYTE;
WNDRGT: BYTE;
WNDWTH: BYTE;
WNDLEN: BYTE;
CONWRAP: BYTE;
CONADV:BYTE;
CONLFD: BYTE;
CONSCRL:BYTE;
CONVID: BYTE;
DLEFLAG: BYTE;
CONFILL: BYTE;
MOUSE:BYTE;

END;

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 19

Apple II Console Driver

This call will instruct the driver to copy its values
into this record so the programmer may inspect the current
state of the driver.

3.1.4 Control Calls

The driver accepts four control calls. These calls
allow the programmer to get the current location of the
cursor, the text character at the current cursor location,
or save and restore either the contents of the current
viewport. The buffer in which this data is stored must be
supplied by the programmer, it is not in the driver itself.
For programs that do not require this function, this saves
them space. It is recommended that the programmer allocate
some space on the heap for this storage. This allows this
space to be reclaimed as needed. To calculate the amount
of space required for a viewport, multiply its width (WNDWTH)
by its length (WNDLEN).

3.1.4.1 Getting the Current Cursor Position

To get the current location of the cursor on
the text screen, the programmer can make a
UNITSTATUS call of the form:

UNITSTATUS(130, LOCATION, 2);

where LOCATION is a record of the form:

LOCATION c RECORD
HORIZONTAL: INTEGER;
VERTICAL: INTEGER;

E®;

The driver will set these values equal to the screen
coordinates, CH and CV. These are integer values.
These values are not relative to the viewport but
represent the actual column and line number.

3.1.4.2 Getting the Current Text Screen Character

By making a UNITSTATUS call of the form:

UNITSTATUS(130, CHARACTER, 8194);

where CHARACTER is a byte (0 •• 255) variable,

the driver will return the current binary value of the
character found at the current cursor location.

3.1.4.3 Saving and Restoring the Viewport

To save the contents of the viewport, requires

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 20

Apple II Console Driver

8 UNITSTATUS call of the form:

UNITSTATUS(130. VWPORT~UF. 16386);

where 130 is the unit number for the driver

VWPORT BUF is 8 buffer to hold the contents
of the-viewport.

To restore the contents of the viewport. requires
8 UNITSTATUS call of the form:

UNITSTATUS(130. SCREEN_BUF. 24578);

where 130 is the unit number for the driver

VWPORT BUF is a buffer to hold the contents
of the screen.

It is up to the programmer to keep track of which
viewport has been saved in which buffer. When
restoring a viewport. the programmer must have already
set the required viewport prior to the restore call.

3.2 BASIC

The version of the console driver that is used with BASIC
programs supports the following functions:

Output Data to the Console

Save the Current Viewport

Restore the Current Viewport

Get the Status of the Console Driver

Get the Current Cursor Position

Get the Current Text Screen Character

Initialize the Console Driver

Get A Segment of Memory

Get a Console Driver Error

Get the Console Driver Version

Get the Console Driver Copyright Notice

Release the Console Driver

The console driver functions are AMPERSAND ('&') routines.

April 10, 1985 Copyright 1985 Apple Computer. Inc. Page 21

Apple II Console Driver

3.2.1 Console Driver Functions

3.2.1.1 Calling the Console Driver

Calls the the Console Driver are done using
the "Ampersand Hook". BASIC statements of the
form:

&name(parameter list)

are used to call the Console Driver. Specific
formats for the calls are described below.

3.2.1.2 Output Data to the Console

There are two calls to the driver to output data
to the display. The first is of the form:

&WRTSTR(S$)

where S$ is a string

This call will output the contents of S$ to the
display. S$ can include both control codes and
ASCII characters.

The second form is:

&WRITE(I1%, 12%, SA%)

where SA$ is a one-dimensional string
array and 11% is a starting index and
12% is an ending index

This call will output a sequence of strings
contained in the string array SA$. The
sequence begins with the string selected by
the index 11% and will end with the string
indexed by 12%. These strings can contain
both control codes and ASCII characters.

3.2.1.3 Save the Current Viewport Contents

In order to save the contents of the viewport,
a buffer must be allocated to store the contents.
This is done through a call to the special function
"Get memory" whose form is:

>MEM(P%, A%)

where P% is an integer specifies the number of
pages (256 bytes) of memory to allocate and
A% will be the address of that memory

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 22

Apple II Console Driver

This call allocates the number of pa~es required to
store the viewport contents. The number of pages
required can be calculated by

(WNDWTH * WNDLEN) I 256

rounding up to the nearest integer

For example to store the whole screen contents
requires 8 pages to be allocated. The memory
address of the memory allocated is returned in the
variable Ah. If the required number of pages is
not available, then a BASIC "OUT OF MEMORY" error
will occur.

Once a call to >MEM has been made, then a
call to save the contents of the viewport can be
made. The call is of the form:

&SVVP(A%)

where A% is the address returned from a call
to >MEM

3.2.1.4 Restore the Current Viewport Contents

To restore the viewport contents, a call of
the form:

&RSTRVP(A7.)

where Ah is the address used in the call to
&SVVP

This will restore the previously saved contents to
the viewport. The programmer must be careful to
restore contents that are of the same size as the
current viewport.

3.2.1.5 Get the Status of the Console Driver

To get the status of the console driver, a call
of the form:

&CDINFO(CU)

where CI% is a 16 element array, i.e.

DIM CU(I6)

This will return the contents of the status block
to the array CI%. To inspect the contents, the
following is a mapping of the array elements to

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 23

Apple II Console Driver

the status block elements:

CUO) .. CV
CU(2) .. CH
CUO) .. WNDTOP
CI% (4) .. WNDBOT
CU(5) .. WNDLFT
Cn: (6) .. WNDRGT
CU(7) .. WNDWTH
CU(8) .. WNDLEN
CU(9) .. CONWRAP
CI%(10) .. CONADV
CI%(ll) .. CONLFD
CI%(l2) .. CONSCRL
CU(l3) CONVID
CI%(l4) .. DLEFLAG
CI%(l5) .. CONFILL
CI%(l6) MOUSE

3.2.1.6 Get the Current Cursor Position

To get the current position of the cursor,
a call of the form:

>CP(H%, VA:)

where H% is the value of CH (x-position) and
V% is the value of CV (y-position)

This call returns the absolute coordinates of the
cursor.

3.2.1.7 Get the Current Text Screen Character

To get the value of the text character at the
current cursor position, a call of the form:

>CHR(CA:)

where C% is the character returned

This call returns the binary value of the text
character at the current cursor position.

3.2.1.8 Initialize the Console Driver

To initialize the Console Driver to its
default environment, a call of the form:

&INITCD

This call sets the driver environment to its
default state described above.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 24

Apple II Console Driver

3.2.1.9 Release Console Driver

To release the Console Driver Ampersand
package and to restore the screen to a normal
BASIC environment, a call of the form:

&STPCD(C%)

where C% is 40 to set up a normal 40-column
display or 80 to set up a normal 80-column
display

3.2.1.10 Console Driver Version and Copyright

To access the version number of the driver,
a call of the form:

&CDVRSN(V%, R%)

where V% is the version number returned and
R% is the revision number returned

To access the copyright notice of the driver,
a call of the form:

&CDCPYRT (CHi.)

where CHi. is the copyright notice returned

3.2.1.11 Setting the Console Driver Address

Before the Ampersand package can use the
Console Driver, it must have the location of
the driver passed to it with the call:

&STCDADR(Ah)

where A% is the starting address (which is
also of the entry-point) of the console
driver

This call must be made before any other calls to
the Ampersand package.

3.2.2 Using the Console Driver with Your Program

A BASIC program using the console driver should do
no console display through BASIC. All display should
be done with the driver.

A sample use of the driver to place the string
"Hello there" at position 10, 15 would be:

10 DIM ABS$(3)

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 25

Apple II ConDole Driver

20 DIM STR$ (11)
30 ABS$(l) • CHR$(30): REM ABSOLUTE POSITION
40 ABS$(2) • CHR$(10): REM X COORDINATE
50 ABS$(3) • CHR$(15): REM Y COORDINATE
60 STR$ • "Hello there"
70 &WRTSTR(ABS$)
80 &WRTSTR(STR$)

3.2.3 Locating the Console Driver in Memory

The Console Driver is an EDASM produced REL
file. This requires that it be relocated in memory
before it can be used. Following the instructions
in either the ProDOS or DOS Assembler Tools Manual,
use REOOT and RLOAD to perform the relocation.

3.3 Assembler

The version of the console driver that is used with assembly
language programs supports the following functions:

Output Data to the Console

Save the Current Viewport

Restore the Current Viewport

Get the Status of the Console Driver

Get the Current Cursor Position

Get the Current Text Screen Character

Initialize the Console Driver

The console driver has a single entry point. Calling the driver
is done in much the same way as ProDOS MLI calls.

3.3.1 Console Driver Functions

3.3.1.1 Calling the Console Driver

Calls to the console driver are done in much
the same way as calls to the ProDOS MLI. The
driver has only one entry point located at the
beginning. Once the driver has been relocated
in memory, its starting address is the entry point
of the driver. A call is made as shown below:

JSR PCONSOLE
DFB COMMAND
DW PARAMPTR
BNE ERROR HANDLER

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 26

Apple II Console Driver

The label PCONSOLE is the Itarting address of the
driver. The programmer will determine this through
deciding where to relocate the driver in memory.
In the calling program there should be a ststement
of the form:

PCONSOLE EQU nnnn

where nnnn is the starting address of the driver.

The JSR is followed by a byte that holds the
command value which is a number that selects the
appropriate console driver function. For specific
values. see below.

Following the command value byte is a two byte
pointer to a parameter list. The format for the
parameter list verifies per console driver function.
The specific formats are described below.

The driver will return to the caller with the
carry flag clear if no error occured. or with the
carry flag set if an error did occur. The calling
program should check the carry flag (the BNE
instruction shown above) and report an appropriate
error. The actual error type is passed back to the
caller in the A-register. The error handler can
check this value to determine the specific error
that occured.

3.3.1.2 Output Data to the Console

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
o
OUTPUTDATA

;output to screen

PARAMETER LIST FORMAT:

OUTPUTDATA DW
DW

DATAl
LENGTH1

This call will output data (both text and
control codes) to the console driver. The parameter
list is a pointer to a data string followed
by a length value. For example. DATAl would
point to

DATAl DFB
DFB
DFB
ASC

30
10
15
"Hello

;absolute position
;x position
;y position

there I I"

April la, 1985 Copyright 1985 Apple Computer. Inc. Page 27

Apple II Console Driver

LENGTH1 EQU 16 jlength of DATAl

This call returns no errors. The A-register
value will be 0 and the carry flag will be clear.

3.3.1.3 Save the Current Viewport Contents

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
1
SAVEBUFFER

jsave viewport

PARAMETER LIST FORMAT:

BUFFERSIZE EQU 1920 ;full screen

SAVEBUFFER DS BUFFERSIZE

This call will save the contents of the current
viewport in the buffer pointed to in the call, in
this case SAVEBUFFER. This buffer must be large
enough to hold the entire contents of the viewport.
The number of bytes required is equal to the width
of the viewport (WNDWTH) times the length (WNDLEN).
In the example shown above, the buffer is large enough
to hold the contents of the entire screen (80 columns
by 24 lines).

This call returns no errors. The A-register
value will be 0 and the carry flag will be clear.

3.3.1.4 Restore the Current Viewport Contents

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
2
SAVEBUFFER

jrestore viewport

PARAMETER LIST FORMAT:

SAVEBUFFER DS BUFFERSIZE

This call will restore the contents of the current
viewport from the buffer pointed to in the call. in
this case SAVEBUFFER. The programmer should be
careful that the viewport contents to be restored
matches the size of the current viewport. A viewport
can be defined. its contents saved. and then the
viewport can be redefined as the same size but at a
different location on the screen. Then the contents
can be restored back to it. This gives the programmer

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 28

Apple II Console Driver

the ability to move a viewport and its contents around
the screen.

This call returns no errors, the A-register is 0
and the carry flag is cleared.

3.3.1.5 Get the Status of the Console Driver

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
3
STATUSBLK

;get status

PARAMETER LIST FORMAT:

STATUSBLK EQU *
CV DFB 0
CH DFB 0
WNDTOP DFB 0
WNDBOT DFB 0
WNDLFT DFB 0
WNDRGT DFB 0
WNDWTH DFB 0
WNDLEN DFB 0
CONWRAP DFB 0
CONADV DFB 0
CONLFD DFB 0
CONSCRL DFB 0
CONVID DFB 0
DLEFLAG DFB 0
CONFILL DFB 0
MOUSE DFB 0

This call will return the current status of the
console driver in the status block pointed to in the
call, in this case STATUSBLK. The programmer must
insure that the status block used matches this
description exactly or data may be destroyed if the
status block is smaller than the one described.

This call returns no errors, the A-register will
be 0 and the carry flag will be clear.

3.3.1.6 Get the Current Cursor Position

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
4
CURSORPOS

;get cursor position

PARAMETER LIST FORMAT:

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 29

Apple II Connole Driver

CURSORPOS EQU

XPOS
YPOS

DFB
DFB

o
o

This call will return the absolute screen
coordinates of the current cursor position.
XPOS is the column and YPOS is the line. These
values correspond the values of CH and CV described
above.

This call returns no errors, the A-register will
be 0 and the carry flag will be clear.

3.3.1.7 Get the Current Text Screen Character

CALLING FORMAT:

JSR PCONSOLE
DFB 5 ;get text character
DW TEXT CHAR

PARAMETER LIST FORMAT:

TEXT CHAR DFB 0

This call will return the binary value of the
text character located at the current cursor
position. This value will reflect whether or
not the character is inverse, normal, or
mousetext. It is up to the calling program to
decipher the value.

This call returns no errors, the A-register will
be 0 and the carry flag will be clear.

3.3.1.8 Initialize the Console Driver

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
6
o

;initialize

PARAMETER LIST FORMAT:

No parameter list required.

This call will set the console driver back
to its default state. No parameter list is
required.

This call returns no errors. The A-register

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 30

Apple II Console Driver

will be 0 and the carry flag will be clear.

3.3.2 Using the Console Driver with Your Program

3.3.2.1 Console Driver Zero Page Usage

The console driver uses zero page locations
$20 to $40. The contents of these locations are
saved when the driver is called and restored upon
exit.

3.3.2.2 Console Driver Softswitch Usage

The console driver uses certain softswitches
to control its use of the display memory. They
are:

80COL ($COOD) - turn on 80-column card

80STORE ($C001) - use auxilary memory for display

PAGE2 ($C055, $C054) - to switch between even and
odd locations on the 80-column card

ALTCHARSET ($COOF) - to use alternate character
set

When the console driver is called these switches are
set to their appropriate value. Since the console
driver is intended to be the SOLE means by which
console display is managed, these switches are NOT
reset when the driver returns to the calling program.
It is up to the program to reset back to the
normal environment.

3.3.2.3 Relocating the Console Driver

The Console Driver is an EDASM produced REL
file. This requires that it be relocated in memory
before it can be used. Following the instructions
in either the ProDOS or DOS Assembler Tools Manual,
use RBOOT and RLOAD to perform the relocation.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 31

"Fileca rd" Menu Support Uni t

EXTERNAL RFFFRENCE SPECIFICATION

APPLE II PASCAL "FILECARD" MENU SUPPORT UNIT

Neal Johnson

Novemeber 10, 1984

Final Release Version

Novembe r 10, 1984 Copyright 1984 Apple Compllter, Inc. Page 1

"Fileca rd" Menu Support Uni t

TABLE OF CONTENTS

1. Introduct ion
2. "Filecard" Menu Description

2.1 The Screen Layout
2.2 The Top Portion
2.3 The Bottom Portion
2.4 The "Filecard" Area
2.5 Error Boxes

3. "Filecards"
3.1 Introduction
3.2 How to Design a Hierarchical Menu Structure
3.3 Card Numbers
3.4 Card Levels
3.5 Card Titles
3.6 The "Filecard" Data Structure

4. "Filecard" Menus
4.1 Introduction
4.2 Menu Description

4.2.1 Menu Items that Select other Menus
4.2.2 Menu Items that Select Operations

4.3 The Menu Item Data Structure
4.4 The Menu Data Structure

5. The "Fileca rd" Menu Support Uni t
5.1 Introduction
5.2 Unit Interface Data Structures

5.2.1 Console Driver Control Codes
5.2.2 Constant Declarations
5.2.3 Type Declarations

5.2.3.1 CON STAT BLK
5.2.3.2 POSITION
5.2.3.3 MENU ITEM
5.2.3.4 A MENU
5.2.3.5 A CARD
5.2.3.6 SCREEN BUFFER
5.2.3.7 OUTPUT-BUFFER
5.2.3.8 ERROR BUFFER
5.2.3.9 STR22-and STR60

5.2.4 Variable Declarations
5.2.4.1 SAVE BUFFER
5.2.4.2 BUFFER
5.2.4.3 BUFF P
5.2.4.4 STATUS BLK
5.2.4.5 MODE

5.2.5 Functions Available
5.2.5.1 PUT CONTROL
5.2.5.2 PUT-STRING
5.2.5.3 RESET BUFFP
5.2.5.4 WRITE-BUFFER
5.2.5.5 GET CON STATUS- -5.2.5.6 VP SAVE
5.2.5.7 VP RESTORE
5.2.5.8 GET POSITION

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 2

"Filecard" Menu Support Uni t

5.2.5.9 SET MODE
5.2.5.10 MIDDLF UPDATF
5.2.5.11 RIGHT UPDATE
5.2.5.12 MAKE CARD
5.2.5.13 RFMOVE CARD
5.2.5.14 MAKE TOP
5.2.5.15 MAKE-BOTTOM
5.2.5.16 CLEAR SCREEN
5.2.5.17 INIT A MENU
5.2.5.18 GET SFLECTION
5.2.5.19 ERROR BOX
5.2.5.20 GO AWAY ERROR
5.2.5.21 RESET CARD VP

5.2.6 Using the Unit With Your Program
5.3 A Sample Application that Uses the Unit

5.3.1 Setting up the "Filecards"
5.3.2 Setting up the Menus
5.3.3 The Main Body of the Program

5.3.3.1 The Selection Process
5.3.3.2 Going through the Menu Tree
5.3.3.3 Branching Off to an Operation
5.3.3.4 Coming Back from an Operation
5.3.3.5 Performing an Activity
5.3.3.6 Reporting an Error

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 3

"Filecard" Menu Support Unit

1. Introduct ion

The Apple I I Pascal "Filecard" Menu Support Unit (herein known as the
unit) is an implementation of a simple "filecard" style human interface
similar to that used.in the products Appleworks and Access II. This unit
allows a Pascal-based application to use a "filecard" style human interface
without the programmer having to implement the details of such an interface.

The unit requires the Apple II Console Driver to be present in order to
function (see the APPLE II CONSOLE DRIVER E.R.S.).

The unit is an intrinsic unit that can be either in SYSTEM.LIBRARY or
in a program library (Pascal 1.2 128K system).

The unit supplies data structures to define and manage a "filecard"
style, hierarchical menu structure as well as the routines necessary to perform
the required functions of such a human interface.

This document describes the interface in detail, and explains how to
go about designing an application that will use this style of interface.
It then descibes the unit used to implement the interface in an application
and a sample program that uses that uses the interface.

2. "Filecard" Menu Description

2.1 The Screen Layout

The screen layout for the "filecard" style interface is divided
into three portions:

The Top

The "Filecard" Area

The Bottom

Each of these areas serves a primarily different function within
the scope of the whole human interface. See Figure 2.1 for a picture
of the layout.

There are routines in the unit to manage each of these portions,
either as a whole or in parts.

2.2 The Top Portion

The top portion occupies lines 0 - 2 (three lines) on the screen.
The top line (0) is divided into three portions known as the Left,
the Middle, and the Right. Line 1 is left blank. Line 2 is a
line of " " dividing this portion of the screen from the center

portion. See Figure 2.1 for an illustration.

The top portion is used in conjunction with the "filecard" area
to display information about where the user is in the hierarchy of

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 4

"Filecard" Menu Support Unit

menus.

The Left hand side is primarily used for application specific
information, such as the name of the application, the current disk
drive selected, the file name of a selected file, etc. The contents
for this side are up to the application.

The Middle section is used to display the title of the currently
selected filecard. This section changes as other filecards are
selected. The unit manages this area for you during the menu
selection process (see below).

The Right hand side is used to display the "escape route" for
the user. During the menu selection process, if a selection calls
up a filecard (lower in the hierarchy), this section will display
the name of the previous filecard. See Figures 2.4.1 to 2.4.4. When
a filecard is displayed, typing an ESCAPE will revert back to the
previous (or higher level) filecard. This section is also managed
for you during the selection process.

2.3 The Bottom Portion

The Bottom portion occupies lines 21 - 23 (three lines). Line
21 is a line of " " to divide this portion from the center section.
Line 22 is used to display text. For the sample program described
below, lin~23 is left blank. See Figure 2.1 for illustration.

The Bottom portion is divided into two sections, the Right and
the Left. This portion of the screen is used primarily to give the
user instructions, such as what things to type during the selection
process, or as an area for input. The Right section is used for
these types of activities. The Left section is used for application
specific information; its content being left up to the programmer.
The unit supplies routines to manage this portion of the screen.

2.4 The "Filecard" Area

The "Filecard" area of the screen occupies the center portion,
from line 3 to line 20 (18 lines). It is used for the display
of filecards during the selection process. The unit allows up to
four levels of filecards to be displayed at one time (each card
overlays the previous card.) See Figures 2.4.1-4 for illustrations
of the different levels and the interaction with the top portion
of the screen.

The unit supplies the necessary routines to manage this area
of the screen.

2.5 Error Boxes

The unit supplies a simple mechanism to put error messages
on the screen, overlaying the current screen contents. An error
box is placed on lines 12 - 16 and between columns 10 and 71 •

. A viewport is defined within the error box that allows for up to

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 5

"Filecard" Menu Support Unit

three lines of text, up to 59 characters long. When an error box
is displayed, the console will beep. There are two routines to
support error boxes, one to display them and one to remove them from
the display restoring the previous screen contents. See Figure
2.5 for an illustration.

3. "Fileca rds"

3.1 Introduction

The primary "pictorial" framework for a menu in this style of
human interface is called a "filecard". This is not to sugges t that
a menu is like a filecard. The name is a result of the shape of the
menu and not its function! A "filecard" is a rectangular box with
a tab on the left top edge which holds the name of the menu displayed.
The actual menu items are listed within the box.

It is sugges ted that the name of the "filecard" represent the
generic relationship of the menu items. For example, a set of menu
items dealing with files could have the name "File Activities".

Each menu item can be selected by the user of the program. The
action taken may select another menu which causes another "filecard"
to be displayed or it may result in performing some function which
does not use the "filecard" interface. A menu item which selects
another menu is called a "menu selector". A menu item that selects
a function to be performed is called an "action selector". See Figure
3.1 for an illustration.

3.2 How to Design a Hierarchical Menu Structure

When designing an application, one of the most difficult problems
is the design of the human interface. Using this unit makes designing
the "look" of the interface quite simple. As an application developer,
however, you are still faced with designing how you want to split
the different activities that can be performed in your application
into a series of menus and actions.

One approach that makes this type of designing manageable, is
to conceptualize the actions in a "hierarchical" manner. For example,
if your application supports a set of 4 major activities:

File Management

Pri nting

Configuration

Doing the Real Work

these become the menu items on the top most "filecard". Selecting
anyone of these would then display another "filecard" wi th items
appropriate for that activity.

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 6

"Fileca rd" Menu Support Uni t

Selecting "File Management" would then display a "filecard"
one level down with the following menu:

Create a File

Dele te a File

Catalog a Disk

Rename a File

Selecting any of these items could either display another "filecard"
or branch off to do the activity selected.

For every activity supported by your application, you would
define a "path" to that activity moving from a general description
such as "File Management" to a specific description such as "Create
a File." This path moves through a hierarchy of "filecards" and
menus. The idea behind this style of interface is that it helps
lead the user to the activity they wish to perform. In some cases
s/he may not know the actual "name" for the activity, but s/he
knows the general type of activity it is. Using this style of
human interface allows the application to present the range
of activities in such a way that the user can find his/her way
to the the desired goal.

As you sp~cify the types of activities and the menus used to
select them, it helps to draw a picture of the emerging "menu tree".
Figure 3.2.3 shows such a drawing. It is from this drawing that
you then design the initialization procedures for the actual
"filecards" and menus in your program and the main body of your
program where the selection process takes place.

3.3 Card Numbers

Each "filecard" is assigned a numbe r that is used for
identification. The number has no other meaning. When the "menu
tree" is des igned, a numbe r can be assigned. See Figure 3.3 fo r
an example. These numbers are used to refer to individual cards
in a program. The numbers assigned are arbitrary, but they must
be sequential starting from 0 to the highest numbered card. Card
#0 is a special card that exists only as a placeholder for the
"escape path" for card Ill. For details see below.

3.4 Card Levels

The "menu tree" defines a set of levels where each card resides.
More than one card can be at a particular level. The topmost card
is level 1. There is only one card at this level. "Filecards" that
are displayed as a result of selecting a menu item from the topmost
card (level 1) are level 2 cards. "Filecards" displayed as a result
of selecting an item at level 2 are level 3 cards, and so on. The
unit only supports up to four levels of "filecards", Le. only four
"filecards" can be displayed at one time on the screen. See Figure

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 7

"Filecard" Menu Support Unit

2.4.4 for an illustration.
items this allows for up to
applica tionl

3.5 Card Titles

Since each "filecard" can have up to 9 menu
6551 dif ferent "filecards" for one

Each "filecard" has a title which is displayed in the tab on
the upper left corner of the card. This title can be up to 22
characters in length. The title should reflect the nature of the
menu displayed in the card. The title is also displayed in the
middle of the top portion of the screen. This represents
"where" the user is in the "menu tree". See Figure 3.1 for an
example.

3.6 The "File card" Data Structure

The unit supplies a da ta structure to represent each "filecard"
used by your application. The format for the data structure is:

A CARD = PACKED RECORD
~NU NUMBER: INTEGER;
MENU:LEVEL: 0 •• 4;
P CARD: INTEGER;
MENU TITLE: STR22j

END;

The MENU NUMBER is simply the number you have assigned to the card.
The MENU-LEVEL is the level in the "menu tree" of the ca rd. This can
have a value be tween 1 and 4. The value of 0 is a special case. It
represents the "top most" card which is not displayed. It is used
to specify the right hand side of the top display to show what
happens when the user types ESCAPE at the level 1 card. The integer
P CARD is the ca rd numbe r of the previous ca rd in the "menu tree".
This value is used to update the top display Escape path. The
MENU TITLE is a string whose length is limited to 22 characters.
This-is the name of the "filecard" displayed in the tab on the left
hand side.

In your application you should define an array of A CARD's, one
for each "filecard" in your "menu tree". Using your "menu tree"
diagram, define a procedure in your program to initialize this
data structure. The SAMPLE program provided as an appendix shows
such a procedure (set_cards).

4. "Filecard" Menus

4.1 Introduction

Each "filecard" presents the user with a menu of items. The
user then selects one of the items to perform. The user uses the
UP or DOWN ARROW keys to move through the items, or they can type
the item number displayed in the menu to choose an item. Once
an item is chosen, they then type RETURN to select that item.

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 8

"Filecard" Menu Support Unit

4.2 Menu Description

4.2.1 Menu Items that Select other Menus - "Menu Selectors"

Certain menu items will select another menu to be
displayed on another "filecard". This new "filecard" will
be one level lower than the "filecard" displaying the item
selected. These menu items are called "menu selectors".
They do not perform any other action than to specify the
next "filecard" to be displayed.

4.2.2 Menu Items that Select Operations - "Action Selectors"

Other menu items select an action to be performed. These
items are called "action selectors". In this case, the
application branches off to perform some action that has been
selected. Here the application may prompt the user for input,
display new information for the user, or other such things.
In most cases, this implies that the screen display of
"filecards" will go away for the duration of that activity.
When the activity is done, the application should return
to the original "filecard" display shown prior to branching
into the activity. Though the unit does not supply the
means of performing the activities for your application,
it does supply the means of selecting these activities and
for coming back to the original "filecard" display. The
SAMPLE program described below shows how this is done.

4.3 The Menu Item Data Structure

The unit supplies a data structure to define a single item in
the menu. This is the MENU ITEM data structure, whose format is:

MENU ITEM PACKED RECORD
DO POSITION: BYTE;
XPOS: BYTE;
YPOS: BYTE i
STATE: BYTE j
DSPLY TEXT: STR60j

END;

The first three bytes of the record contain control codes used by
the Apple II Console Driver to do an Absolute Position. DO POSITION
holds the control code for absolute position, XPOS has the x-position
value and YPOS has the y-position value. These are used to position
the menu item in the "filecard" for display. The STATE value
specifies whether or not the item is displayed in normal text or
inverse text. This is used during the selection process. The
DSPLY TEXT is a string of up to 60 characters which is the actual
text of the menu item that is displayed. The unit supplies an
initialization routine to set up the values of DO POSITION, XPOS,
YPOS, and STATE (INIT_A_MENU). -

This record holds all the information necessary to print it

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 9

"Filecard" Menu Support Unit

at a given location (XPOS, YPOS) in the current viewport, which is
the inside of the current "filecard" displayed on the screen.
The text of the item (DSPLY TEXT) is printed either in normal or
inverse depending on the control code in the variable STATE. For
details on the control codes used (DO POSITION and STATE) see the
Apple II Console Driver ERS. -

4.4 The Menu Data Structure

A se t of menu items belonging in one menu are 11 nked togther;
via another unit-supplied data structure, A MENU. The format is
shown below:

A MENU .. PACKED RECORD
NUM ITEMS: 1•• 9;
CURRENT ITEM: INTEGER;
LIST: ARRAY[I ••9] OF MENU_ITEM;

END;

NUM_ITEMS specifies the number of menu items in this menu. This can
be between 1 and 9. LIST is simply the list of menu items for this
menu. The field CURRENT ITEM is used to maintian the number of
the most recently selected item in the menu. This is done so that
when a user "escapes" back to a menu, the unit can display the item
last selected as highlighted.

In your application you should define an array from 1 to the
number of "filecards". For example,

MENU: ARRAY[I •• 9] OF A_MENU;

Each element of this array corresponds to one of the "filecards 11 you
have defined. The index into this array is to match the number of
the card. Thus MENU[3] specifies the menu to be displayed with the
card whose number is 3.

Each element in MENU (MENU[I], MENU[2], •••) requires
initialization. In your program you should set up a procedure to
set up this array. If you used the INiT A MENU procedure, the
only elements that require your input are:-

MENU[n].NUM ITEMS - gets the number of items for this menu
MENU[n].LIST[nn].OSPLY_TEXT - gets the text for the menu item

The SAMPLE program found in the appendix illustrates this procedure
(PI_SET MENU TEXT and P2 SET MENU TEXT.)

5. The "Filecard" Menu Support Unit

5.1 Int roduct ion

The "Filecard" Menu Support Unit supplies the necessary
routines to support a simple "filecard" style human interface.
In includes data structure definitions to help in setting up

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 10

"Filecard" Menu Support Uni t

the necessary information about the "menu tree" and procedures
to help initialize these data structures.

There are 10 low level routines that allow access to the
console driver to support the display of text in conjuction
with the unit.

The rest of the routines are designed to help set up the
interface, display and remove "filecards" from the display,
and get the user's selection from the menu.

Many of the details described below are based on the Apple II
Console Driver E.R.S. You should be familiar with its contents
before reading this section.

5.2 Unit Interface Data Structures

5.2.1 Console Driver Control Codes

The unit supplies as constants the set of
console driver control codes. These can be used by
the program to perform other console display activities.
The list is:

NOOP 0
SAVEVP = 1
SETVP 2
CLRBOL 3
RESTVP 4
BELL 7
CURLFT 8
CURDWN 10
CLREOV 11
CLRVP 12
CURRET 13
NORMAL = 14
INVERSE 15
DLE = 16
HORSFIFT 17
VPOS = 18
CLRBOV = 19
HPOS = 20
CHCONT '" 21
SCRDWN 22
SCRUP 23
HOFF 24
HOME 25
CLRLINE 26
MON = 27
CURRGT = 28
CLREOL 29
APOS = 30
CURUP 31

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 11

"Filecard" Menu Support Uni t

See the Apple II Console Driver for details on these
control codes.

5.2.2 Constant Declarations

The following constants are defined in the unit,
though in most cases they are not needed in a program
using the uni t:

The is the console driver unit number:

CONSOLE = 130

The following are the required control mode values
for UNITSTATUS calls to the console driver:

GET STATUS = a
GET CURSOR = 2
SAVE VP CONTENTS
REST-VP-CONTENTS =

16386
24578

See the Apple II Console Driver ERS for details
on these control mode values.

5.2.3 Type Declarations

5.2.3.1 CON STAT BLK

The console driver has a status call which
returns the current status of the driver. This
record defines this status information:

CON STAT BLK PACKED RECORD
CV: BYTE;
CH: BYTE;
WNDTOP: BYTE;
WNDBOT: BYTE;
WNDLFT: BYTE;
WNDRGT: BYTE;
WNDWTH: BYTE;
WNDLEN: BYTE;
CONWRAP: BYTE;
CONADV: BYTE;
CONLFD: BYTE;
CONSCRL: BYTE;
CONVID: BYTE;
DLEFLAG: BYTE;
CONFILL: BYTE;
MOUSE: BYTE;

END;

November 10, 1984

See the Apple II Console Driver E.R.S. for a
complete description of these fields.

Copyright 1984 Apple Computer, Inc. Page 12

"Filecard" Menu Support Uni t

The unit has a procedure (GET_CON_STATUS) whicr
will perform the status call.

5.2.3.2 POSITION

This record defines the data structure by
which the current cursor position can be read
via a status call to the console driver:

POSITION = RECORD
XPOS: INTEGER;
YPOS: INTEGER;

END;

where

XPOS is the absolute x-position of the cursor

YPOS is the absolute y-position of the cursor

5.2.3.3 MENU ITEM

The record MENU ITEM defines a single item
in one menu:

MENU ITEM

where

PACKED RECORD
DO POSITION: BYTE;
XPOS: BYTE;
YPOS: BYTE;
STATE: BYTE;.
DSPLY TEXT: STR60;

END;

DO POSITION is the control code for absolute
position

XPOS is the x-position

YPOS is the y-position

STATE denotes whether the menu item is normal
or inve rse text (14 = normal, 15 = inve rse)

DSPLY TEXT is a string up to 60 characters in
length that is the text for the menu item

5.2.3.4 A MENU

This record defines a complete menu for a
single "filecard". Its format is:

A MFNU = PACKED RECORD

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 13

"Filecard" Menu Support Uni t

NUM ITfMS: 1•• 9;
CURRENT ITEM: INTEGER;
LIST: ARRAY[I ••9] OF MENU_ITEM;

END;

where

NUM ITEMS is the number of menu items to be
displayed (from 1 to 9)

CURRENT ITEM is the number of the most recently
selected item

LIST is the list of menu items (from 1 to 9)
for this particular menu

5.2.3.5 A CARD

This record defines a "filecard". Its format
is:

A CARD ~ PACKED RECORD
MENU NUMBER: INTEGERj
MFNU:LFVEL: 0 •• 4;
P CARD: INTEGER;
MENU TITLE: STR22j

ENDj

where

MENU NUMBER is the number assigned to this
"fiiecard" and its menu

MENU LEVEL is the level assigned to this
card-(see above for a description of levels)

P CARD is the menu number of the previous card
in the "menu tree"-

MENU TITLE is the title for this card, a string
no greater than 22 characters in length

5.2.3.6 SCREEN BUFFER

This type defines a buffer that can store
one screen's worth of data. It is used to
temporarily store the contents of the screen or a
viewport when using a Save Viewport or Restore
Viewport control call to the console driver.

SCREEN BUFFER = PACKED ARRAY[I •• 1920] OF BYTE;

5.2.3.7 OUTPUT BUFFER

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 14

"Filecard" Menu Support Unit

This type defines an output buffer where data
is placed prior to writing it out to the console
driver.

OUTPUT BUFFER z PACKED ARRAY[O •• 1023] OF BYTEj

5.2.3.8 ERROR BUFFER

This type defines a smaller buffer where the
screen contents behind an error box are stored so
that the screen can be "re-painted" af ter an error
box is removed from the screen.

ERROR BUFFER = PACKED ARRAY[I •• 310] OF BYTEj

5.2.3.9 STR22 and STR60

For the strings used in some of the data
strucutures defined in the unit, the following
special string definitions are used:

STR22 STRING[22]

STR60 = STRING[60]

5.2.4 Variable Declarations

5.2.4.1 SAVE BUFFER

This is the buffer that is used by all saves
and restores of the viewport. It is large enough
to store a full screen (80 columns by 24 lines)
of da tao

SAVE BUFFER: SCREEN_BUFFERj

5.2.4.2 ERR BUFF

This is the buffer used by the errorbox routines
to store the information overwritten by the errorbox
on the screen so that it can be restored.

5.2.4.3 BUFFER

This is the buffer used to collect data prior
to writing it out to the console driver. All the
routines in the unit that write to the console
use this buf fe r.

BUFFER: OUTPUT_BUFFEPj

5.2.4.4 BUFF P

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 15

"Filecard" Menu Support Unit

This is the global pointer into the output
buffer, BUFFER. It is used as an index into the
array. When data is placed into the array directly,
this pointer must be incremented the appropriate
number of times to reflect the number of bytes
entered. There is a procedure, RESET_BUFFP, that
will set it to 0, to reset the buffer for new
input.

BUFF P: INTEGE R;

5.2.4.5 STATUS BLK

This is a record to hold the status information
for the console driver. Its format is described
above and in the Apple II Console Driver E.R.S.

5.2.4.6 MODE

All data output to the console driver is done
via a UNITWRITE statement. This call requires a
"mode expression" to control automatic DLE-expansion
andlor automatic linefeeds. Normally, this value
is a but it can be set for the procedure WRITF BUFFER
(described below) by setting this integer value, MODE.
The values are their meanings are:

value DLE-expansion Auto 11 nefeed
------------- -------------

a TRUE TRUE
2 FALSE TRUE
8 TRUE FALSE
12 FALSE FALSE

Any other values will result in undefined states.
Changing this value while using the unit's functions
can result in poor performance by the unit! If you
change it for your own purposes, set it back to
zero before calling the unit.

The unit supplies a procedure SET MODE (5.2.5.9)
that will properly set this value~ The default
setting used by the unit is DLE true and Auto-linefeed
true.

5.2.5 Functions Available

5.2.5.1 PUT CONTROL

CALL FORMAT:

November la, 1984 Copyright 1984 Apple Computer, Inc. Page 16

"File card" Menu Support Uni t

PUT_CONTROL(CONTROL);

where CONTROL is an integer value that represents
a control code for the console driver.

This procedure will place a console driver
control code in the output buffer, BUFFER, and
will increment BUFF P. For example, to set up
an absolute position control sequence, a program
would have the following calls:

PUT CONTROL(APOS);
Pur-CONTROL(NEW X);
PUT=CONTROL(NEW=Y);

where NEW X and NFW Yare integer values
corresponding to the x and ycoordinates
that the program wishes to move the cursor

5.2.5.2 PUT STRING

CALL FORMAT:

PUT STRING(A_STRING);

where A STRING is a string (0 to 80 characters in
length.

This procedure places a string in the output
buffer, BUFFER, and increments the pointer BUFF P
the length of the string. For example,

PUT_STRING('This is a string to display!');

5.2.5.3 RESET BUFFP

CALL FORMAT:

This procedure resets the value of BUFF P to
o which effectively clears the output buffer: BUFFER,
of data. Before setting up a new buffer-full of
da ta, this procedure should be called.

5.2.5.4 WRITE BUFFER

CALL FORMAT:

This procedure will write the current contents
of the output buffer, BUFFER, to the console driver.
The number of bytes written is equal to the current

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 17

"Filecard" Menu Support Unit

value of the pointer BUFF_P. After the buffer is
written, BUFF P is set to O.

5.2.5.5 GET CON STATUS

CALL FORMAT:

This procedure will make a status call to the
console driver and return the current status
information in the data structure, STATUS BLK,
where the calling program can inspect it.-

5.2.5.6 VP SAVE

CALL FORMAT:

where SCR BUF is a byte array large enough to
hold the number of characters contained in the
current viewport.

This procedure will save off the contents of
the current viewport into a buffer. It is critical
that the butter be large enough to hold the number
of characters in the viewport. This number can be
calculated via a GET CON STATUS call and then
multiplying the values of WNDLEN and WNDWTH.

5.2.5.7 VP RESTORE

CALL FORMAT:

VP RESTORE(SCR_BUF)j

where SCR BUF is a byte array large enough to
hold the number of characters contained in the
current viewport.

This procedure will restore the contents of
the current viewport from the buffer where they
were previously saved via a VP SAVE call. It is
critical that the buffer have the same number
of bytes of data as the size of the current
viewport. It is not important that the viewport
occupy the same absolute position on the screen.

5.2.5.8 GET POSITION

CALL FORMAT:

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 18

"File card" Menu Support Uni t

where CUR_POS is a record of the type POSITION

This procedure will return the current absolute
position of the cursor in the console driver.

5.2.5.9 SET MODE

CALL FORMAT:

where DLE and LFD are Boolean values

This procedure will set the MODE variable
to the appropriate value given the settings of
the DLE and LFD parameters. If DLE is TRUE then
DLE-expansion will be set, otherwise it will be
reset. If LFD is TRUF than Auto-linefeed will be
set, otherwise it will be reset.

5.2.5.10 MIDDLE UPDATE

CALL FORMAT:

MIDDLF_UPDATE(STR);

where STR is a string

This procedure will update the middle portion
of the top display. It is used in conjuction with
RIGHT_UPDATE (see below) to update the top portion
of the screen during the selection process as
"filecards" are displayed. This procedure is
used to place the title of the current "filecard"
on the screen. This procedure will clear out the
right portion of the top, requiring it to be updatec1
also.

This procedure makes a save-viewport control
call tb the console driver. The calling program
should not assume that any viewports it has
saved prior to this call will remain "res torable".
Before exiting, this procedure will restore the
previous viewport setting. The console driver
only supports one level of save for viewports.
Internal to the unit, this does not matter. Any
program using the unit and is also making its
own calls to the console driver (Save and Reset
Viewport, Restore Viewport) should be aware of this.

5.2.5.11 RIGHT UPDATE

CALL FORMAT:

November 10,1984 Copyright 1984 Apple Computer, Inc. Page 19

"Filecard" Menu Support Unit

RIGHT_UPDATE(STR);

where STR is a string

This procedure will update the right hand
portion of the top display. It has no effect on the
remaining part of the top display.

This procedure makes a save-viewport control
call to the console driver. The calling program
should not assume that any viewports it has
saved prior to this call will remain "restorable".
Before exiting. this procedure will restore the
previous viewport setting. The console driver
only supports one level of save for viewports.
Internal to the unit. this does not matter. Any
program using the unit and is also making its
own calls to the console driver (Save and Reset
Viewport, Restore Viewport) should be aware of this.

5.2.5.12 MAKE CARD

CALL FORMAT:

MAKE_CARD(CURRENT_CARD, PREVIOUS CARD);

where CURRENT CARD and PREVIOUS CARD are A CARD's

This procedure will display a "filecard" on
the screen. The card displayed will be CURRENT CARD.
The level of this card will determine its placement
on the screen. As well as displaying the "filecard"
(only the outline and title. the menu is not
displayed at this time) this procedure will update
middle pot ion of the top wi th the title of the
current card. Using the PREVIOUS CARD record it
will also update the right hand sIde of the top
with the "escape path".

Upon exiting this procedure, the viewport will
be set to the inside of the "filecard" on the screen.

5.2.5.13 REMOVE CARD

CALL FORMAT:

REMOVE_CARD(LEVEL. PREVIOU~CARD. PRE_ESCAPF~CARD);

where LEVEL is a value between 1•• 4. PREVIOUS CARD
and PRE ESCAPE CARD are A CARD's

This procedure will remove the current card
from the display. and then display the previous

Novembe r 10. 1984 Copyright 1984 Apple Computer. Inc. Page 20

"Filecard" Menu Support Uni t

card (to the current card in the "menu tree") on
the screen. LEVEL is the level of the current card.
PREVIOUS CARD is the card record of the ca rd previous
to the current card. PRE ESCAPE CARD is the card
previous to the previous card! The description below
of the sample program will make clear the use of
this procedure. This procedure is used when the
user types an escape during the selection process
to go back to the previous "fileca rd".

Upon exiting this procedure, the viewport will
be set to the inside of the new "filecard" on the
sc reen.

5.2.5.14 MAKE TOP

CALL FORMAT:

MAKE_TOP(LEFT, MIDDLE, RIGHT);

where LEFT, ~IDDLEJ RIGHT are strings

This procedure will put the top display on the
screen, placing the LEFT s trfng lef t-jus tified on
the first line, centering the MIDDLE string, and
right-justifying the RIGHT string. The second line
is left blank, and a line of " " is then drawn.

This procedure makes a save-viewport control
call to the console driver. The calling program
should not assume that any viewports it has
saved prior to this call will remain "res torable".
Before exiting, this procedure will restore the
previous viewport setting. The console driver
only supports one level of save for viewports.
Internal to the unit, this does not matter. Any
program using the unit and is also making its
own calls to the console driver (Save and Reset
Viewport, Restore Viewport) should be aware of this.

5.2.5.15 MAKE BOTTOM

CALL FORMAT:

MAKE_BOTTOM(LEFT, RIGHT);

where LEFT and RIGHT are strings

This procedure contructs the bottom portion
of the display. The LEFT string is left-justified
and the RIGHT string is right-jusitified on line 22.
Line 21 is a line of " " and line 23 is left blank.

This procedure makes a save-viewport control

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 21

"Filecard" Menu Support Unit

call to the console driver. The calling program
should not assume that any viewports it has
saved prior to this call will remain "restorable".
Before exiting, this procedure will restore the
previous viewport setting. The console driver
only supports one level of save for viewports.
Internal to the unit, this does not matter. Any
program using the unit and is also making its
own calls to the console driver (Save and Reset
Viewport, Restore Viewport) should be aware of this.

5.2.5.16 CLEAR SCREEN

CALL FORMAT:

CLEAR_SCREEN;

This is a general procedure to clear the entire
screen. The viewport is left set to the entire screen.
This is used primarily to clear the screen at the
beginning of a program and at the end.

5.2.5.17 INIT A MENU

CALL FORMAT:

where MENU LIST is A MENU

This procedure will set up the initial values
of the following fields in a menu record. Those
fields are:

DO POSITION - set to control code for
absolute position

XPOS - set to 1 (second column in viewport)

YPOS - set from 1 to 9 depending on the
number of menu items in the list

STATE - for item 1 se t to INVERSE, fo r the
other items set to NORMAL

The unit actually uses these data structures to
paint the menu items in the "filecard". The
absolute position control code and the XPOS and
YPOS values determine where the text is placed.
The STATE value determines whether or not the
text is in INVERSE or normal text. This procedure
defaults to displaying the menu as a single-spaced
list in the "filecard". For example,

November 10,1984 Copyright 1984 Apple Computer, Inc. Page 22

"Filecard" Menu Support Uni t

1. First menu item
2. Second menu item
3. Third menu item

9. Last menu item

A program can modify the values of XPOS and
YPOS to control the positioning of the menu items
in the "filecard".

The procedure also sets the field CURRENT ITEM
to 1.

5.2.5.18 GET SELECTION

CALL FORMAT:

SELECTED := GET_SELECTION(MENU_LIST t SELECT_NUM,
SHOW_MENU) ;

where MENU LIST is A MENU t SELECT NUM is a VAR
parameter to return the number of-the item
selected t and SELECTED is a program supplied
BOOLEAN variable; SHOW MENU is a BOOLEAN that
specifies whether or ~t the menu display needs
to be updated t if TRUE update the displaYt FALSE
don't update the display

This is the main procedure to handle the
complete selection process for a menu displayed
in a "filecard". Once a card has been displayed
via a MAKE CARD call t GET SELECTION is then called
with the MENU LIST for the current card. This
call will pai~t the menu list in the "filecard"
on the screen t with the first menu item in inverse.
If the variable SHOW MENU is FALSE t the menu will
not be displayed. This assumes that the menu is
already present on the screen.

At this point t the user can type one of the
following things:

UP-ARROW - will move to the next item above
in the lis t

DOWN-ARROW - will move to the next item below
in the lis t

a numbe r - typing a numbe r will move to the
item with that number in the list

RETURN - will return the number of the item

Novembe r 10 t 1984 Copyright 1984 Apple Computer t Inc. Page 23

"Fileca rd" Menu Support Uni t

currently in INVERSE (selected) in
the variable SELECT NOM and
GET SELECTION will return true

ESCAPE - will return 0 in SELECT NUM and
GET SELECTION will return false

typing anything else (or a number not included
in the list) will cause a beep

A menu item displayed in inverse is considered
to be the "chosen" item. To select that item requires
the user to type RETURN. Moving to an item either
with the arrow-keys or typing a number constitutes
choosing an item.

After GET SELECTION returns it is up to the
calling program to act on the choice. ~he description
of the SAMPLE program below will illustrate how this
is done.

5.2.5.19 ERROR BOX

CALL FORMAT:

This procedure will place an error box on
the screen. saving the screen contents behind
the box. See section 2.5 for a description
of an error box.

This procedure will do a save viewport
control code. Any previously saved viewport
specifiction will be lost. Internal to the unit
this does not matter. Any viewport set by the
calling program will have to be managed by that
program.

It is up to the calling program to place any
text in an error box. This has to be done with
calls to the console driver (Pascal has no knowledge
of the current screen state!) The current viewport
is set to the inside of the error box. so all display
will "automatically" take place there.

5.2.5.20 C~ AWAY FRROR

CALL FORMAT:

This procedure must be used in conjunction
with ERROR BOX. Once an error box has been

Novembe r 10. 1984 Copyright 1984 Apple Computer. Inc. Page 24

"Filecard" Menu Support Unit

displayed, along with an error message (supplied
by the calling program), the box can be removed
from the screen by calling this procedure. It
will restore the original screen contents and will
reset the viewport to the values saved at the time
of the call to ERROR BOX.

Any text in an error box is removed by this
call. The calling program does not need to ~emove

it itself.

5.2.5.21 RESET CARD VP

CALL FORMAT:

RESET CARD VP(CARD_REC);

where CARD REC is A CARD

This procedure is used to set the viewport
back to the inside of a "filecard" (CARD RFC)
on the screen. It is used to update the-screen
during the selection process as cards are removed
and replaced on the screen. See below for details
on its use.

5.2.6 Using the Unit with Your Program

To use the unit requires a USES statement in your
program of the form:

USES {$U library} FILECARD;

where library is the name of the library file where the
unit is located.

5.3 A Sample Application that Uses the Unit

As an appendix, there is a listing of a sample program that
utilizes the unit as the primary human interface code. This
program has 9 different ·"filecards" arranged in the "menu tree"
in Figure 3.3. Each menu has between two to five items, some
of which point to other menus and others which branch of f to
"pseudo" activities. This program illustrates the type of data
structures that are used to create the "menu tree", how to
ini tialize the da ta, and how to organize the "main loop" in the
program which controls the selection process.

5.3.1 Setting up the "Filecards"

The program defines an array of A CARD which
designates the "filecards" used by the-program.

CARD: ARRAY[O •• 9] OF A_CARD;

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 25

"Filecard" Menu Support Uni t

The zeroth element of the array is used only to store
a string (the menu title) that is displayed for the
topmost card's escape path. Elements 1 through 9 are
the actual "filecards" that are displayed. For any
program there should be an array, like that above,
with O•• number of filecards.

The following fields in each A CARD n,eed to be
initialized as follows:

MENU NUMBER - the number assigned by the programmer

MENU LEVEL - the level 1•• 4 in the "menu tree"

P CARD - the menu number of the previous card in the
menu tree

MENU TITLE - the title displayed in the upper left
corner of the "fileca rd"

The procedure SET CARDS shows such an initialization process.
Most of the details used should have already been worked out
in the ini tial design of the "menu tree".

5.3.2 Setting up the Menus

The program defines another array to hold the information
about each of the menus associated wi th the "filecards".

MENU: ARRAY[l •• 9] OF A_MENU;

Each element 1 to 9 corresponds directly with each element
1 to 9 of the array CARD.

The first step is to initialize the fields that control
the display of the menu items (DO POSITION, XPOS, YPOS,
and STATE). This is done throug~a call to the procedure
INIT A MENU in the unit. Since there are nine menus to
set up: a simple FOR-LOOP does the trick:

FOR I := 1 TO 9 DO INIT_A_MENU(MENU[I]);

This is found in the procedure INIT THE MENUS in the sample
program.

The next step is to specify the number of items for
each menu and the text to be displayed for each item in
the menu. The procedures PI SET MENU ITFMS and
P2_SET_MENU_ITFMS show this process. -(There are two
procedures because of the size limitiations for the amount
of code generated in a procedure!)

The standard set up used here will result in a single

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 26

"Fileca rd" Menu Support Uni t

spaced list displayed left-justified in each "filecard".
You can modify this by changing the values of XPOS and
YPOS in each MENU ITEM. When changing these values,
remember that the-x and y values are treated relative to
the viewport coordinates.

5.3.3 The Main Body of the Program

Other than the calls to the initialization procedures,
the main body of the program consists of a large REPEAT'
statement that contains a large CASE statement. This CASE
statement controls the flow of action during the selection
process.

5.3.3.1 The Selection Process

There are three types of action that occur
during the selection process:

Display the next menu in the "menu tree"
selected by a menu item.

Return to the previous "file card" in the
"menu tree".

Branch off to an activity that requires
a different di.splay than the "filecard"
di splay.

The first occurs when a user selects a menu item
using either the arrow keys or a number key and then
types RETURN. If this menu item selects another menu,
then the new "filecard" and its menu must be displayed.

The second happens when the user types ESCAPE
while a "filecard" is displayed. For a "filecard"
with a level greater than 1, this will result in
"moving back" to the previous "filecard" in the
"menu tree" (the card directly underneath the current
"filecard" on the display.) For the topmos t "filecard"
(level 1) the result of typing escape is up to the
program to determine. For the sample program, it
terminates the execution of the program. .

The third happens when a user selects an item
as in the first case, but here the item selects an
activity and not another menu. In this case, the
"filecard" display will more than likely be removed
from the screen and a different display will replacp
it. When the activity is completed, the display
should return to where it was left (the "filecard"
where the user selected the activity.)

The display of the menu (not the "fileca rd")

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 27

"Filecard" l'ienu Support Unit

and the handling of the selection process is done
via a call to the function GET SELECTION. The
function will return FALSE if the user typed
ESCAPE. It will return TRUE if the user selected
an item and typed RETURN and it will return the
number of the item selected.

5.3.3.2 Going through the Menu Tree

When the program begins, it needs to put up
the first display. This consists of the top and
bottom portions of the screen and the first
"filecard". In the program, the procedure
FIRS~SCREEN does this. At all times, there is
a variable CURRENT CARD which has the number of the
currently selected-"filecard". FIRST SCREEN se ts
this to 1, the numbe r of the topmos t (level 1) ca rd.
This variable controls the flow of the display
during the selection process. Another variable,
OLD CARD is used to store the number of the last
selected "file card" • This value is used to de termine
whether or not the menu requires updating when the
"filecard" is redisplayed. This occurs either
because of an error box or when the program branches
off to an activity.

Once the initial screen has been displayed,
the selection process begins. This is found in
the REPEAT loop in the main body of the sample
program. The general structure of the REPEAT
loop is:

REPEAT
IF OLD CARD <> CURRENT CARD THEN

{redisplay menu in 'lfilecard"}
SELECTED := GET SELECTION(MENU[CURRENT CARD],

SEL=NUM, TRUE) -
ELSE

{don't redisplay menu}
SELECTED := GET SELECTION(MENU[CURRENT CARD] ,

SEL-NUM, FALSE); -
CASE CURRENT CARn-OF

1: {case for each "filecard"}
2: {case for each "filecard"}
•

9: {case for each "fileca rd"}
FoND;

UNTIL FALSE;

As CURRENT CARD has been set to 1 as the program
enters this loop, GET SELECTION will display the
menu for the "filecard" on the screen and wait

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 28

"Filecard" Menu Support Unit

for the user's input. Each case in the CASE
statement corresponds to the menu number of the
CURRENT CARD. Thus once something has been selected,
the CASE statement will process the selection
given the CURRENT CARD. .

Each case (of CURRENT CARD) reacts to the
type of selection the user-has made. The basic
f~rmat for each case is:

BEGIN
IF NOT(SELECTED) THEN BACK UP
ELSE

BEGIN
CASE SEL NUM OF

1: {case for each menu item}
2: {case for each menu item}

9: {case for each menu item}
END;
GO_FORWARD;

END;
END;

The case statement here corresponds to the menu
nemsin the menu displayed • For menu items that
select another menu ("menu selectors") the entry
in the case siJllplysets CURRENT CARD to the value
of the menu now selected. For example, if menu
item 3 selects "filecard" 4 then in the case
statement the entry for 3 would be:

3: CURRENT CARD := 4;

When a "menu selector" has been selected, a
new "filecard" must be displayed. The CASE statement
will set CURRENT CARD to the value of the new
"filecard" number. At the bot tom of the CASE
statement there is a call to a procedure called
GO FORWARD. This procedure will display the new
"fTlecard" selected. The sample program includes
this procedure. Its content is shown below:

PROCEDURE GO_FORWARD;

VAR PREVIOUS_CARD, OLD ITFM: INTEGER;

BEGIN
IF OLD CARD <> CURRENT CARD THEN

BEGIN
PREVIOUS CARD := CARD[CURRENT CARD].P CARD;
MAKE_CARD(CARD[CURRENT_CARD] ,-

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 29

"Filecard" Menu Support Unit

CARD[PREVIOUS CARD]);
OLD ITEM :~ MENU[CURRENT CARD].CURRENT ITEM;
MENU[CURRENT_CARD].LIST[OLD_ITEM] •STATE :=

NORMAL;
MENU[CURRENT CARD].LIST[l].STATE :~ INVERSE;
MENU[CURREN~CARD].CURRENT_ITFM := 1;

END;
END;

The procedure determines the previous card to th~

new current card and then calls MAKE CARD to display
the new "filecard". It also se ts the new menu values
for CURRENT ITEM.

This procedure only works when the program is
moving to a new "filecard". When an activity is
selected, the program will return to the original
screen, which does not require that a new "filecard"
be displayed. However, the case will fall through
this procedure call. The test at the beginning
handles this event.

If the user types ESCAPE, it is necessary to
go back to the previous card in the display. This
requires that the current card be removed from
the display. The sample program has a procedure,
BACK UP which handLes this. For each case in the
case-of CURRENT CARD (except the. firs t level 1
card) there is. a test for SELECTED. If it is FALSE,
the user has typed ESCAPE, so BACK UP. The content
of this procedure is shown below:

PROCEDURE BA~UP;

VAR PREVIOUS CARD,
ESCAPE CARD: INTFGER;

BEGIN
PREVIOUS CARD := CARD[CURRENT CARD].P CARD;
ESCAPE CARD := CARD[PREVIOUS CARD].P CARD;
REMOVE-CARD(CARD(CURRENT CARe].MENU LEVEL,

- CARD[PREVIOUS CARD], -
CARD[ESCAPE CARD]);

CURRENT CARD := PREVIOUS~CARD;

END;

The procedure determines the previous card (to back
up to •••) and the escape ca rd to upda te the top of the
display. It then calls RFMOVE CARD to clean up
the display. Finally it sets CURRENT CARD to
PREVIOUS CARD, thus the current card to be displayed
is the ''Previous'' ca rd in the display.

5.3.3.3 Branching Off to an Operation

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 30

"Fileca rd" Menu Support Uni t

When the user selects a menu item that is an
"action selector". the program must now branch off
to perform that action. This requires in mos t cases
a new display on the screen. removing either the
top. bottom. or "filecard" area. or all three from
the screen. Removing an area requires:

1. Setting the viewport to that area of the
screen that is to be cleared.

2. Saving the contents of that portion of the
screen so that it can be restored.

3. Clearing that area with a Clear Viewport
command.

This will now set up that area to be used for
activity-specific display.

The sample program has a procedure called
SET UP ACTIVITY. which sets the viewport to the
entire-screen. saves the screen contents. and then
clears the screen.

5.3.3.4 Coming Back from an Operation

When an activity is complete the user is to
return to the "filecard" display at the point at
which it was left. This means that the screen
should be restored back to its original contents
prior to branching off to the activity.

When returning. firs t se t the viewport back
to that area which was removed. Then restore
the contents back to the screen. This will put
the display back to its original form. Since.
CURRENT CARD has not changed. GO FORWARD will
restorethe original "filecard" and not a new
one. Falling through the end of the CASE
statement will then bring us back to GET SELECTION
which will display the original menu. Thus the
selection process begins anew at the place left
when the user selected a "action selector".

The sample program has a procedure called
RETURN_FROM_ACTIVITY which sets the viewport to
the entire sc reen and then res to res the sc reen
contents. thus returning back to the "fileca rd"
display at the point it was left.

5.3.3.5 Performing an Activity

In the case (of CURRENT_CARD). for each

Novembe r 10. 1984 Copyright 1984 Apple Computer. Inc. Page 31

"Filecard" Menu Support Unit

card, there is a CASE statement corresponding
to each item in the menu. For those items that
are "activity selectors", the case has the form:

CASE SEL NUM OF

n: BEGIN {branch off to an activity}
SET_UP_ACTIVITY;
DO ACTIVITY; .
RE'TuRN FROM ACTIVITY;

END; - -

END;

If SET UP ACTIVITY and RETURN FROM ACTIVITY are
properly done (see above) the-code-for the
activity itself does not have to worry about
ma intaining the integri ty of the "fileca rd·!
display itself.

5.3.3.6 Reporting an Error

If there is an error to report, the error
box procedures supplied by the unit facilitate
the reporting process. The sample program has
a procedure which presents a simple error,
DO AN ERROR.

BEGIN
ERROR BOX;
PUT_ERROR_MSG;
PAUSE;
GO AWAY ERROR;

END;- -

The basic format is to display an error box and
then to display a message in the error box. PAUSE
waits for the user to read the message and then to
type something to exit. GO AWAY ERROR then cleans
the error box from the screen.

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 32

ProOOS Technical Notes

Rev 1sed May 08, 1984

For further information contact:

PCS Developer Technical Support

HIS 22-W. Phone (408) 996-1010

Disclaimer Of All Warranties and Liabilities

,Apple computer, INC. Makes NO warranties, either express or implied, with
respect to these teChnical notes or dth respect to the softUJare described in
these tect'lnical notes, their quality,. performance, lMrct1antaoility, or fitness
for any particular purpose. Apple COlJl)Uter Software 1s licensed "as is". The
entire risK as to its quality and performance 1s \111th the developer. Should the
program prove defective following its use, the user (and not Apple COmputer,
INC., their distributors, or their retailers) assumes the entire cost Of all
necessary servicing, repair or correction and any incidental or consequential
damages. In no event will Apple Corrputer, INC. be liable for. dlrect, indirect,
incidental or consequential damages resulting from any defect in tile software,
even 1f they have been adViSed Of the posslbil1ty of SUCl'1 damages. Sorre states dO
not allow the exculsion or limitation of implied ~t1es or liability for
incidental or consequential damages, so the above 11mitation or exclusion may
not apply to you.

This software and dOCUlref1tatlon 1s copyrighted. All rights are reserved. These
technical notes may not, in wnole or part, be copied, photocopied, reprodUCed,
translated or reauced to any electronic rreaium or machine readable form wi thout
prior tatritten consent from Apple COlllluter, INC.

Copyright 1984 by Apple Computer, .Inc.
2OS2S Mariani Avenue

Cupertino, CA 95014

(408) 996-1010

ncrDlI]CO~ ID'llceIlTIIlcrJ)Q -TID
Main Me"mary Auxiliary Memory

(lie or 12eK lie only)

ROM

\ $C11l1

\ This Ron area
)n lIe and lIe only!

Language Card Area

!:!!!... :i!!.:!!ii! mr

11::II~i:lij!1
.•..:...:.:....:...:...:..:....:•..:•..•..:.....::...:...•:.:..:.:..:.::..~:.:.:.:-:-:.:.:.:.:-:.:.:.:.
::::::::::::::::::::::::::::

··.8uic·· .
I'A_-.l·

. InterJ).: "

.......

$nil

~
SUrF1

$D1l1l1
$Ullll8

SIfff
$1m

USed by PrOOOS

I I
~by

BASIC. SYSWt

::;:::::::::::<::::::;:::::.... , .
:::;:;:;:::;:;:;:::;::::::::

~«y>«? S2QU

~ used or
r~rved areas

Fr~ Space"

28 June 1984

ProDOS TECHNICAL NOTE #1

The GETLN Input Buffer and the ThunderClock

(14 July 1983)

The ThunderClock is automatically supported by ProDOS when ever it is
identified as installed in the system. When programming under ProDOS,
always consider the ThunderClock's impact on the GETLN input buffer
($200 - $2FF). ProDOS can support other clocks which may also use
this space.

When ever the ThunderClock receives a call from ProDOS, it deposits
an ASCII string in the GETLN input buffer of the form:

07,04,14,22,46,57

which translates as:

07 = The month, JULY (01=JAN, ••• ,12=DEC)
04 = The day-of-the-week, THURSDAY (00=SUN, ••• ,06=SAT)
14 = The date, 14th (00 to 31)
22 = The hour, 10PM (00 to 23)
46 = The minute (00 to 59)
57 = The second (00 to 59)

ProDOS calls the ThunderClock as part of many of its routines.
Anything in the first 17 bytes of the GETLN input buffer is subject to
loss if a ThunderClock is installed and gets called.

It has been the practice of programmers, in general, to use the GETLN
input buffer for every conceivable purpose. Therefore, an application
should never store anything there. If your application has future
need to know about the contents of the $200-$2FF space, it should be
transferred to some other location to guarantee it will remain intact,
particularly under ProDOS where a ThunderClock may regularly be
overwriting the first 17 bytes.

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #2

Notes on Transporting DOS Assembly Language Programs to ProDOS
(Passing Disk Commands Under BASIC. SYSTEM to ProDOS from Machine Code.)

(Revised August 7, 1984)

Under DOS, commands were executed by a direct call to the proper
address in DOS or by sending a str~ng to COUT ($FDED) consisting of
[CTRL-D] <command> [RETURN].

The practice that became very common under DOS of making direct calls
to the desired routines within DOS cannot be carried over to ProDOS.
Apple Computer will not support any entries into the BASIC Command
Interpreter or the ProDOS kernel that ar~ not published by Apple. If
you use any undocumented entries, your application will almost
certainly not operate under future releases of PRODOS and
BASIC. SYSTEM.

Passing disk commands as ASCII strings to COUT is not supported under
ProDOS.

If you wish to issue a ProDOS command from a machine language module
operating with Applesoft or if your application can permit the. ProDOS
BASIGCommand Interpreter (BASIC.SYSTEM) to be cC>'-resident in memory,
,you can still use an ASGII string.' All that is necessary is to move
the'string, ending.with a RETURN ($8D) toEhe GETLN9yff~r ($200) and
execute a.JSR DOSGMD ($BE03) to execute the instruction at $200.

It is necessary that the JSR OOSGMD' be performed. in deferred mode
(inside a program) and not in immediate mode. This also applies to
the monitor program; while in the monitor you cannot do a $xxxxG to
execute the code that contains the JSR DOSGMD. The reason for this
is that BASIC"SYSTEM checks certain state flags. These flags are
set correctly for the DOSGMD routine only while in deferred mode.
DOSGMD was intended only to be used via a CALL inside a BASIC
program.

There are certain commands that will NOT work correctly or as
expected when initiated via DOSCMD. The following table lists
those commands which work properly and those that do not.

PLEASE NOTE that some of the commands listed as not working properly
may work well enough to suit you~ individual purposes. Also some
commands will function (albeit precariously) in immediate mode.
IF YOU DECIDE TO USE THE COMMANDS IN THIS MANNER YOU ARE ON YOUR OWN.

Attached is an example BASIC program that will BLOAD an assembly
routine that 'will exercise the DOSCMD routine. The BASIC program
is first LISTed and then RUN. A listing of the assembly routine
follows. Please review it before writing your own routine.

DOSCMD is merely a means of performing some BASIC.SYSTFM commands
from assembly language and is not a substitute for performing the
commands in BASIC. Keep in mind all the conseqences of the command
you are executing; EG. When doing a BRUN or BLOAD make sure the
code is loaded at suitable addresses.

Error Handling

Right after you cal~ DOSCMD the carr,y bit will tell you whether
or not an error had occurred. The carr,y will be set if an error
had occurred. The accumulator will always have the error number.

DOSCMD error handling can be handled in one of three ways:

1. Do a JSR ERROUT ($BE09). This will return control to your
BASIC ONERR routine where Y0l.l can .then handle the error.

2. Do a~SJ.t P~INTERR ($BEOC) •. This will print- out the .error
and will .~et~~ control to the poipt after'the JSR (as l.lsual).

3. You can hapdle the error yOl.lrself completely. If .• choose to
go this route make sure you clear the carry (CLC) before you
retl.lrn control back to BASIC.SYSTEM. Ifyol.l don't it will
be assumed some error has occurred and will do awful and
~ppredictable things to you.

Chain

- (Dash)
Run
Load

Works Incorrectly
and/or does not Return Control

to Calling Routine

/pn

Save

Catalog; Cat
Prefix, Prefix
Create
Rename
Delete
Lock
Unlock

Works Correctly
and Returns Control
to Calling Routine

Filing Commands:

Programming Commands:

Program Commands:

I
I
I

I
I
I

I
I

I
I

I
I

I

I

I
Store
Restore
Prtl
IntI
Fre

Text File Commands:

Open
Close

Read
Write
Append

Flush
Position

EXEC Command:

Exec

Binary Commands:

Brun
Bload
Bsave

19 REM YOU MUST CALL THE ROUTINE FROM INSIDE A BASIC PROGRAM! !
REM

1:2 REM
28 PRINT CHRS (4)UBLOAD/P/PROGRAMs/CHD.8"
38 CALL 4996
49 PRINT MBACK TO THE WONDERFUL WORLD OF BASIC!"
59 END

JRUN

ENTER BAS I C•SYSTEM Ct:Mo1AND -'":" > PREF IX

/P/

ENTER BASIC. SYSTEM COMMAND --> PREFIx/P/BUGS

ENTER BASI C. SYSTEM COMMAND --> PREFIX

/P/BUGs/

ENTER BASI C. SYSTEM Cctfo1AND --> CATALOG

BUGS

NAME TYPE BLOCKS MODIFIED CREATED ENDFILE SUBTYPE

*SEGTEST DIR 1 23-APR-84 16: 12 23-APR-84 16: 12
WRITEFIELDS BAS 1 27-MAR-84 1:5:ge 23-APR-84 16:13
R BAS 1 27-t1AR-84 1:5:29 23-APR-84 16: 13
READFIELDS BAs . 1 27-MAR-84 1:5:17 23-APR...84 16:13
DUMPFILE BAS 1 27-MAR-84 11 : e1 23-APR-84 16: 13
POSTEST BAS 1 27-HAR-84 16: :59 23-APR-84 16: 13
HAKEJLNK BAS 1 29-MAR-84 14: 1e 23-APR-84 16: 14
'P1 BAS 1 3-AUG-84 17:53 23-APR-84 16: 15

BLOCKS FREE: 621:5 BLOCKS USED: 3513 TOTAL BLOCKS: 9728

ENTER BAS I C. SYSTEM CCM'o1AND --> DO DA, DO DA

SYNTAX ERROR
BACK TO THE WONDERFUL WORLD OF BASIC!

512
182
193
18:5
191
174
82

416

I
I~ TO BASIC

j PRINT 'ERR'

.,
j LOOP LNTIL NlU TmiINATOR IS HIT •••

j toW ACCE'T US£R~ FRa1 KB
j ANO EXECUTE THE~
j ct..f.AA STROBE SO KEY WtN'T ~ AROtN> ••
j~ IF ERROR DEJECIED
j ~ISE RESTART ••••

j DIS?tAY PRfJ1PT •••
j

j BRANCH IF END OF STRING

j HCNITORS I~ ROUTINE
j !!ASIC.SYSTEMS GlBL PS DOS 01D ENTRY
j ~ITORS ~ our ROUTINE
j PRINT THE ERROR

I OUTPUT A~ FI RST
BASI C. SYST81 rot1ANO -) ,

CN

~

'ENTER
8

L1

DB
ASC
DB

JSR
ClC
RTS

LOX
LM
BEQ
JSR
INX
ENE

JSR
JSR
BIT
BCS
sec

1998 1 ORO $1898
FOcSf' 2 ~1 EOU $fI)6F
BEDS 3 OOS01O EQU $BED3
FOED 4 COOT EGO $FDED
BEDC ~ PRERR EOU $8E8C

o f

7 I

8 I

9 START
18L1
11
12
13,

1882 14
15 *
16 rorr
17
18
19
28
21 *
22*
23 • NOTE: AFTER ~N6 YOUR ERROR YOU HUSt ClEAR THE CARRY
24 * BEFORE RETUfiHNG TO eASIC OR B.S£ BASIC WIll. DO
2:l * 5'l'RtH3E THIt-liS TO YOU.

'20.
27 ERROR
2S
29
38 *
31
32*
33 PRa1PT
34
35

iOUkl..t: FILE !tel::)/?IPROGiWiSlO1O
- NEXT OBJECT FILE~ IS IP/PROOR#tSI01O.8
~999:

1998:
1988 :
1888:
l888:
1888 :
l888:
18'88 :
[8U:A2 88
1882:BI> 1F 10
lB85:F8 86 1980
t887:2! ED FO
l8BAlE8
1888:08 ~
.880:
:980:28 6F FO
.818:28 8~ BE
813:2C 18 CJ
810:S1 82 lSlA
818:98 E6 18S1
91A:

~
81A:
81A:
91A:
81A:28 8e BE
910:18
91E:68
91F:
81F:
91F:
91F:BO
829:C5 CE D4 C5
83F:88

1B80 Ct:Nf FDED COOT BE93 DOSQ11)

FD6F 6ETlNt 1882 L1 SEBC PRfRR
1 START

H ::sUCCESSfUL ASS81BlY :- NO ERRORS
lit Assemt..ER CREATED CN 1:5-JA'r84 21 :28
H TOTAL LlNES ASS81SlED ~

lit FREE SPACE PAGE cotNf 89

utA ERROR
181F PRCtlPT

ProDOS TECHNICAL NOTE #3

ProDOS Device Search and Identification Procedure
Disk Driver Conventions

(Revised 20 December 1983)

During boot-up, ProDOS does a device search looking for block storage
devices. As described in the ProDOS Technical Reference Manual, all
disk drives must "look and act just like one of our drives".

ProDOS looks for the following:

$CnOl = $20 $Cn03=$00 $Cn05=$03

where n = the slot number. Having found these three bytes in the ROM
of a particular slot, ProDOS assumes it has found a disk drive.

If $CnFF=$OO ProDOS assumes it has found a Disk J[with 16-sector ROMs
and marks the device driver table in the ProDOS global page with the
address of the Disk J[driver routines. The Disk J[driver routines
will support any drive that "looks and acts like a Disk 1[" (280
blocks, single volume, etc.).

If $CnFF=$FF, ProDOS assumes it has found a Disk 1[with 13-sector
ROMs and makes no attempt to support the device 13-sector ROMs since
it may not operate properly under ProDOS.

If ProDOS finds a value other than $00 or $FF at $CnFF, it assumes it
has found an "intelligent" disk controller. If the STATUS BYTE at
$CnFE indicates that the device supports READ and STATUS requests,
ProDDS marks the global page with a device driver address whose
high-byte is equal to $Cn and whose low-byte is equal to the value
found at $CnFF. Intelligent controller cards CANNOT be auto-bootable
due to a conflict with Pascal which believes all auto-boot devices are
Disk 1[floppy drives. (Therefore, the byte at $Cn07 must not' be
$3C.)

The only calls to the disk driver are STA,TUS, READ, WRITE, and FORMAT.
The STATUS call should perform a check to verify that the device is
ready for a READ or WRITE. If it is not, the carry should be set and
the appropriate error code returned in the accumulator. If the device
is ready for a READ or WRITE, then the driver should clear the carry,
place a zero in the accumulator, and return the number of blocks on
the device in the X-register (lo-byte) and Y-register (hi-byte).

If you wish to interface a disk controller card with more than two
drives (or a device with more than two volumes), additional device
driver vectors for disk controllers plugged into slot 5 or 6 may be
installed in slot 1 or 2 locations. There will be no conflict with
character devices physically present in these slots. Device numbers
for four drives in slot five or slot six are listed below.

Physical
Slot
Five

S5,Dl $50
S5,D2 = $DO
Sl,Dl = $10
Sl,D2 = $90

Physical
Slot
Six

S6,Dl =
S6,D2 =
S2,Dl =
S2 ,D2. =

$60
$EO
$20
SAO

The special locations in the ROM code are:

$CnFC-$CnFD = The total number of blocks on the device. Used for
writing the disk's bit-map and directory header after
formatting. (If this location is $0000, it indicates
that the number of blocks must be obtained by making a
STATUS request.)

$CnFE = The status byte (bit 0 and 1 must be set for ProDOS to
install the driver vector!)

Bit 7 - Medium is removable
Bit 6 - Device is interruptable
Bit 5-4 - Number of volumes on the device (0-3)
Bit 3 - The device supports formatting
Bit 2 - The device can be written to
Bit 1 - The device can be read from (Must be on)
Bit 0 - The device's status can be read (Must be on)

SCnFF = The lo-byte of entry to the driver routines ••• ProDOS
will place $Cn + this byte in the global page.

The locations where the call parameters are passed to the driver are:

$42 - COMMAND: o = STATUS request
2 = WRITF request

1 = READ reques t
3 = FORMAT request

NOTE: The FORMAT code in the driver need only lay down
address marks if required ••• the calling routine
should write the "virgin directory and bit-map".

$43 - UNIT NUMBER: 7 654 3 2 1 0
+---+---+---+---+---+-~-+---+---+

I ,DR I ,SLOT I not used I
+---+---+---+---+---+---+---+--~

$44-$45

NOTE: The UNIT NUMBER that appears in the device list
(DEVLST)-in the system globals will include the
hi-nybble of the status byte ($CnFE) as an I.D.
in it's lo-nybble.

- BUFFER POINTER: Indicates the start of a 512-byte
memory buffer for data transfer.

$46-$47 - BLOCK NUMBER: Indicates the block on the disk for
data transfer.

The device driver should report errors by setting the carry flag and
loading the error code into the accumulator. The error codes that
should be implemented are:

$27 - I/O error $28 - No device connected $2B - Write Protected

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #4

Notes on Transporting DOS Assembly Language Programs to ProDOS
(Redirecting I/O and converting "JSR S3EA")

(26 July 1983)

When programming under DOS 3.3, if you wished to change the I/O hooks,
all that was necessary was to install your I/O routine addresses in
the character-out vector ($36-$37) and/or key-in vector ($38-$39) and
notify DOS (JSR $3EA) to take your addresses and swap it's intercept
routine addresses in.

Under ProDOS, there is no instruction installed at $3EA at all. So
wha t do you do?

Just leave the ProDOS Basic Command Interpreter's intercept addresses
installed in $36-$39 and install your I/O addresses in the global page
at $BE30-$BE33. $BE30-$BE31 should contain the output address
(normally $FDFO, the monitor COUT1 routine), and $BE32-$BE33 should
contain the input address (normally $FD1B, the monitor KRYIN routine).

By keeping these vectors in a global page, a special routine for
moving the vectors is no longer needed, thus, no $3EA instruction.
Just install the addresses at their destination yourself.

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani.Avenue, M/S 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE U5

ProDOS Disk Formatting Routines

(11 January 1984)

The ProDOS Disk] [FORMATTER and ProDOS BUILDDISK Routines are supplied as
text files of source code. They can be assembled with the ProDOS version
of EDASM, Apple's editor/assembler.

The source code for the FORMATTER was prepared with no labels so that you
can "INCLUDE" it with your applica tion at assembly time. Since disk I/O
core routines MUST include cri tical, time. dependent code, the FORMATTER
source file MUST be assembled with the "ORC" on a page boundary. (Many
instruction times change when page boundaries are crossed.)

The formatter routine uses zero page locations $DO thru $DD. If your
application also uses these locations, you must save the contents prior to
calling the formatter and restore them upon return.

When the routine is called, the ProDOS device number (DEVNUM) must be in
the accumulator. DEVNUM in this case is defined as containing zeros in
the low nibble, the slot number in bits 4, 5, 6, and the hi-bit set to
zero for drive 1 or set to 1 for drive 2. Upon exit, if the carry flag is
clear, no error has been detected and the accumulator will be zeroed.

If an error has been detected, the routine will exit with the carry flag
set and the accumulator will hold the error code. Error codes that may be
returned are: $27-unable to format, $28-write protected, $33-drive too
slow, $34-drive too fast.

The FORMATTER routine ONLY writes zeros to each sector on a Disk] [
floppy. To install boot code, a directory and bit map, on any previously
formatted stora~e device, you need the BUILDDISK routine.

Upon entry to the BUILDDISK routines the accumulator must contain the
DEVNUM, X and Y must have the address of a 512 byte buffer (X-lo, Y-hi),
and DUMMYNAM and DUMSIZE must be filled in with the desired volume name
and name length if a name other than nFFAULT.NA~ is desired.

BUILDDISK treats all devices the same, with two exceptions. These
excepti6ns are identified by examining the low nibble of the DEVNUM.
(Remember, the low· nibble of the DEVWJM is derived from the high nibble of
the device status byte at $CnFE in the ROM code.)

If all four bits of the i.d. nibble are set, BUILDDISK will assume that
the device has unusual characteristics and that the driver has taken care
of the bit map, directory and boot code during the format request. If all
four bits are clear, BUILDDISK will recognize the device as a Disk][or
Disk][emulator and assume the device has 280 blocks.

BUILDDISK leaves zero-page intact, with the exception of the bytes from
$42 thru $47 which are defined for use when making requests to device
drivers and standard ProDOS error codes will be returned.

APPLF COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (40R) 996-1010

ProDOS TECHNICAL NOTE #6

Attaching External Commands to BASIC.SYSTEM

(Revised 19 September 19R3)

Whenever BASIC.SYSTEM receives a command, it first checks it's command
list, then sends it out to any external command handler and finally
passes it on to Applesoft. If you find regular need for an additional
command, you can write your own command handler and attach it to
BASIC. SYSTEM through the EXTRNCMD jump vector. Just install the
address of your routine in EXTRNCMDtl and +2 (lo-byte first) and
you're linked in. There are essentially three functions that your
routine must perform. .

(1) It must check for the presence of your command(s).

(2) If it is your command, it must let BASIC.SYSTEM know.

(3) It must execute the desired instructions expected of the command.

The first step (1) is quite straight forward, just inspect the GETLN
input buffer. If it is not your command, a simple SF.C and a RTS will
return control to BASIC. SYSTEM to continue the search.

The second step (2) is more involved. It is your command, so you must
zero XCNUM ($BES3) to indicate an external command and set XLEN
($BES2) equal to the length of your command string minus one.

If there are no associated parameters (such as slot, drive,A$, etc.)
to parse, you must set all 16 parameter bits in PBlTS ($BES4,$BES5) to
zero. And, if. you're going to handle everything yourself before
returning control to BASIC. SYSTEM you must point XTRNADDR ($BE50,
$BES1) at an RTS instruction••• XRETURN ($BE9E) is a good location.
Now just "fall through" to your execution routines (3).

If there are parameters to parse, it is easiest to let BASIC. SYSTEM
parse them for you (unless you want to use some undefined parameters).
By setting up the bits in PBITS ($BE54,$BE55), and setting XTRNADDR
($BE50,$BE51) equal to the location where execut·ion of your command
begins, you can return control to BASIC. SYSTEM, with an RTS, and let
it parse and verify the parameters and return them to you in the
global page.

The final step (3) is up to you and should RTS with the carry cleared.

Attached are two example routines, BEEP and BEEPSLOT. BEEP handles
everything itself and BEEPSLOT will let you pass a slot & drive
parameter (,S#,D#), where the drive is ignored.

APPLF COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

BRUN BEEP.O to install the routine's address in EXTRNCMD. Then type BEEP as
immediate command or use PRINT CHR$(4)j"BEEP" in a program.

0336

030D

02
03

0343

0300
0200
FCA8
FF3A
BE06
BE50
BE52
BE53
BE54
BE9E

jlnstall the address of our
command handler in the
external command JMP
vector

jOur cmd! Put cmd length
j -1 in CI global XLEN
jPoint XTRNADDR to a known

RTS since we'll handle
at the time we inter

j cept our command
jMark the cmd numbe r as
j zero (external)
jAnd indica te no pa rame t

to be parsed

jCheck for our command
jGet first char
jDoes it match?
jNope, back to CI
jNext character
JAIl characters yet?
jNo, read next one

jNotify BASIC.SYSTFM it
it wasn't our command

jOur command
jOur Command length

jGETLN input buffer
jMonitor wait routine
jMonitor bell routine
jExternal cmd JMP vector
jEx cmd implementation addr
jLength of command string-l
j CI cmd no. (ex cmd = 0)
jCommand parameter bits
jKnown RTS instruction
jSet hi-bit on ASCII

; Numbe r of des ired beeps
jElse, beep once
jSet-up the delay
; and wait
jDecrement index and
j repeat til X = 0
JAIl done successfully

II) BEEP
EXTRNCMD+l
II<BEEP
EXTRNCMD+2

NXTBEEP

IICMDLEN
NXTCHR

$300
$200
$FCA8
$FF3A
$BE06
$BE50
$BE52
$BE53
$BE54
$BE9E
ON

"BEEP"
*-CMD

IICMDLEN-l
XLEN
II)XRETURN
XTRNADDR
II<XRETURN
XTRNADDR+l
110
XCNUM
PBITS
PBITS+l

110
INBUF,X
CMD,X
RETURN

115
BELL
11$80
WAIT

LDX
LDA
CMP
BNE
INX
CPX
BNE

ASC
EQU

LDA
STA
LDA
STA
RTS

ORG
EQU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
MSB

SEC
RTS

LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
STA

LDX
JSR
LDA
JSR
DEX
BNE
CLC
RTS

BEEP
NXTCHR

NXTBEEP

INBUF
WAIT
BELL
EXTRNCMD
XTRNADDR
XLEN
XCNOM
PBITS
XRETURN

RETURN

,
CMD
CMDLEN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:A9 OB
0302:8D 07 BE
0305 :A9 03
0307:8D 08 BE
030A:60
030B:
030B:A2 00
030D:BD 00
0310:DD 43
0313: DO 2E
0315:E8
0316 :EO 04
0318:DO F3
031A:
031A:A9 03
031C:8D 52 BE
031F:A9 9E
0321:8D 50 BE
0324:A9 BE
0326:8D 51 BE
0329:A9 00
032B:8D 53 BE
032E:8D 54 BE
0331 :8D 55 BE
0334 :
0334:A2 05
0336 :20 3A FF
0339:A980
033B:20 A8 FC
033E:CA
033F: DO F5
0341: 18
0342:60
0343:
0343:38
0344:60
0345:
0345:C2 C5 C5 DO
0349: 0004

BRUN BEEPSLOT.O to install the routine's address in EXTRNCMD. Then enter
BEEPSLOT,S(n),D(n). Only a legal slot and drive numbers are acceptable. If no
slot number, it will use the default slot number. Any drive number is simply
ignored. The command may also be used in a program PRINT CHR$(4) statement.

033F

030D

0300
0200
FCA8
FF3A
BE06
BE50
BE52
BE53
BE54
BE61

0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:A9 OB
0302:8D 07 BE
0305:A9 03
0307:8D 08 BE
030A:60
030B:
030B:A2 00
030D:BD 00 02
0310:DD 4B 03
0313:DO 36 034B
0315:E8
0316 :EO 08
0318:00 F3
031A:
031A:A9 07
031C:8D 52 BE
031F: A9 38
0321:8D 50 BE
0324:A9 03
0326:8D 51 BE
0329:A9 00
032B:8D 53 BE
032E:8D 54 BE
0331 :A9 04
0333:8D 54 BE
0336:18
0337:60
0338 :
0338:AD 61 BE
033B:29 OF
033D:AA
033E:20 3A FF
0341: A9 80
0343:20 A8 FC
0346:CA
0347:DO F5
0349:18
034A:60
034B:
034B:38
034A:60
034B:
034B:C2 C5 C5 DO
0353: 0008

1 ORC
2 INBUF EOU
3 WAIT EQU
4 BELL EQU
5 EXTRNCMD EQU
6 XTRNADDR EQU
7 XLEN EQU
8 XCNUM EQU
9 PBITS EQU

10 VSLOT EQU
11 MSB
12
13 LDA
14 STA
15 LDA
16 STA
17 RTS
18
19 BEEPSLOT LDX
20 NXTCHR LDA
21 CMP
22 BNE
23 INX
24 CPX
25 BNE
26
27 LDA
28 STA
29 LDA
30 STA
31 LDA
32 STA
33 LDA
34 STA
35 STA
36 LDA
37 STA
38 CLC
39 RTS
40
41 EXECUTE LDA
42 AND
43 TAX
44 NXTBEEP JSR
45 LDA
46 JSR
47 DEX
48 BNE
49 CLC
50 RTS
51
52 RETURN SEC
53 RTS
54
55 CMD ASC
56 CMDLEN EOD

$300
$200
$FCA8
$FF3A
$BE06
$BE50
$BE52
$BE53
$BE54
$BE61
ON

II)BEEPSLOT
EXTRNCMD+l
II<BEEPSLOT
EXTRNCMD+2

110
INBUF,X
CMD,X
RETURN

IICMDLEN
NXTCHR

IICMDLEN-l
XLEN
II) EXECUTF
XTRNADDR
II<EXECUTE
XTRNADDR+1
110
XCNUM
PBITS
11%00000100
PBITS

VSLOT
11%00001111

BELL
11$80
WAIT

NXTBEEP

"BE EP SLOT"
*-CMD

jGETLN input buffer
jMonitor wait routine
;Monitor bell routine
;External cmd JMP vector
;Ex cmd implementation addr
;Length of command string-l
; CI cmd no. (ex cmd = 0)
;Command parameter bits
;Verified slot parameter
;Set hi-bit on ASCII

;Install the address of our
command handler in the
external command JMP
vector

jCheck for our command
jGet firs t char
jDoes it match?
jNope, back to CI
jNext character
JAIl characters yet?
jNo, read next one

jOur cmd' Put cmd length
j -1 in CI global XLEN
jPoint XTRNADDR to our

command exe~ution

routine

jMark the crod number as
j zero (external)
jAnd indicate that slot and

drive parameter may be
j accepted
jEverything if OK
jReturn to BASIC. SYSTEM

jGet slot parameter
jZero the hi-bits
jTransfer to index reg.
jElse, beep once
jSet-up the delay
j and wait
jDecrement index and
j repeat til X = 0
JAIl done successfully

jNotify BASIC. SYSTEM, it
wasn't our command

jOur comma nd
jOur Command length

ProDOS TECHNICAL NOTE #7

Starting and Quitting
Interpreter Conventions

(revised 09 March 1984)

It is absolutely essential that all interpreters (system
programs) use a standard way of starting and quitting.

In order to provide a uniform method for starting and
quitting, the following procedures are established and
SUPERCEDE section 5.1.5 of the ProDDS Technical Reference
Manual:

Starting:

System Programs are started by one of two ways:

1. The disk containing the ProDOS operating system
and the system program is booted; ProDDS loads
and runs the firs~ xxx. SYSTEM file of type
SYS($FF). The order of search is determined by
the file entries in the boot volume directory.

2. The program is loaded by another program (like the
ProDOS filer or the Basic Comma ..d Interpreter), or
a program dispatcher (like the one that is part of
ProDOS or a more sophisticated program selector).

The system program is loaded and jumped to at $2000. The
complete or partial pathname of the system program is stored
at $280 starting with a length byte. The string is a full
pathname if it starts with a slash (/); it is a partial
pathname if it starts with a letter.

The purpose of this pathname is to allow a system program
to determine the directory where other needed files may
reside. The program should NEVER assume that the files
are in a specific directory or subdirectory.

Additionally, we establish a mechanism to pass a second
pathname to interpreters which like to run STARTUP programs.
An example of this is a language interpreter. The ProDOS
dispatcher does not support this mechanism but other more
sophisticated program selectors may.

The mechanism requires that the interpreter start a certain
. way:

o $2000 is a jump instruction.
o $2003 and $2004 are $EE.

If the interpreter starts this way, byte $2005 is assumed to
be an indicator of the length of a buffer which starts at
$2006 and holds the pathname (starting with a length byte)
of the startup file.

Interpreters which support this mechanism should supply
their own default string which should be a standard choice
for a startup program or a flag not to run a startup
program.

Once gaining control, the system program sets the reset
vector and fixes the power-up byte. Never assume the state
of the machine to be anything that is not clearly documented.

Note: If your interpreter makes use of the dispatcher/
selector area (addresses $DI00-$D3FF in the second
4K-byte bank of RAM), be sure that this area is initially
saved and then restored on exit.

Quitting:

1. Do normal housekeeping ••• close files, reinstall/RAM if
you have had it disconnected, etc.

2. Trash the power-up byte at $3F4. The simplest way to do
this is either to increment or decrement it, which will
always make it an invalid check of tile $3F2 vector.

3. Execute a ProDOS system call number $65 as follows:

EXIT JSR PRODOS Call the MLI ($BFOO)
DFB $65 CALL TIPE = QUIT
DW PARMTABLE Pointer to parameter table

PARMTABLE DFB 4 Number of parameters is 4
DFB a o is the only quit type
DW 0000 Pointer reserved for

future use
DFB 0 Byte reserved for future

use
DW 0000 Pointer reserved for

future use.

It is most important to note that even though most of the
parameter table is reserved for future use, it must all be
present! It must consist of seven bytes ••• a $04 followed
by six nulls (SaO).

For more information on Dispatcher/Selector Conventions
please see ProDDS Technical Note #14.

APPLE COMPUTER INC., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W

Cupertino, CA 95014
Phone: (408) 990-1010

ProDOS Technical Note #8

August 13, 1984

This technical note explains:
1. How to protect auxiliary bank graphics pages from /RAM,
2. How to disconnect and reinstall/RAM (or some other device)

For further information contact:
PCS Developer Technical Support
M/S 22-W. Phone (408) 996-1010

Disclaimer of All Warranties and Liabilities
\ .

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
this documentation, its qualitY$ performance, merchantability, or fitness for
any· particular purpose. Apple Computer, Inc. software is sold or licensed
"as is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even 1£ Apple Computer., Inc. has
been advised of the 'possibility of such damages. Some states do not allow th~

exclusion or limitation of implied warrant ies or Habili ty for incidental or
consequential damages, so the above limitation may not apply to you.

This documenta tion is copyrighted. All rights are reserved.
may not, in whole or part, be copied, photocopied, reproduced,
reduced to any electronic medium or machine readable form
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

This document
transla ted or

wi thout prior

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

ProDOS TECHNICAL NOTE #8

- Protecting Auxiliary Bank Hi-Res Graphics Pages -
- Disconnecting and Re-installing IRAM -

- Convention on How to Treat Ram Disk's with >64K -

(Revised August 13, 1984)

When ProDOS is booted a check is made of the environment. If a 128K
Apple II system is found, the auxiliary 64K bank of memory is
configured as a ram disk named IRAM that will appear as slot 3 drive 2
(since it is memory On the 80 column card which appears in slot 3).
IRAM's unit number as entered in the ProDOS global page's device list
will be $BF.

If you are going to use the auxiliary memory for any other purpose,
you must protect yourself from IRAM.

If your use involves hi-res graphics, you may protect those areas of
auxilia;ry memory. If you will save a "dummy" 8K file as the first
entry in/RAM it will always be saved at $2000 to $3FFF. If you then
immediately save a second "dummy" 8K file to IRAM it will be saved at
$4000 to $5FFF. This technique provides a mechanism for protecting
the hi-res pages in auxiliary memory while still maintaining IRAM as
an online storage device.

There is no formula for determining where the blocks of IRAM
physically reside in memory. Further, the logical blocks are not
physically contiguous. There is no guaranteed ·way to protect any
other fixed portions of auxiliary memory by the "dummy" file method.

If you wish to protect all of the auxiliary memory that has not "been
reserved for use by Apple, you must disconnect IRAM. To do this there
are three areas of the system global page of interest:

$BFI0-$BF2F contains the disk device driver addresses.

$BF31 contains ·the number of devices minus one.

$BF32-$BF3F contains the list of disk device numbers.

Here are the steps to be followed to disconnect IRAM:

0.) Suggested - Read block two on IRAM and take a peek at
the file count field in the directory. If
there are any files on IRAM, prompt the user
to continue with the disconnect or abort the
process.

1.) Check the MACHID byte at $BF96 to see if you are operating in a
128K environment. If not, there will be no IRAM to disconnect.

2.) The slot 0, drive 1 disk driver vector ($BFIO) will point to
the "No Device Connected" routine. The slot zero vectors $BFIO
and $BF20 ARE RESERVED FOR OUR OWN ,USE. YOU CANNOT THEREFORE
USE THESE VECTORS IF THIS CONVENTION IS TO WORK! If the slot 3
drive 2 vector also points to the same address, then IRAM is
already disconnected.

3.) If we have determined that IRAM is on line, we are ready to
remove it.

NOTE: If ProDOS has just been booted, IRAM is the last "disk"
device installed. However, if the user has "manually" installed
another device(s) the device number for IRAM will not be the las t
entry in the device list (DEVLST).

Also note that the following steps can be generically
followed if you wish to disconnect ANY device.

a.) Retrieve the slot 3, drive 2 device number you find in
DEVLST and save it.

b.) Move any remaining device numbers forward in the DEVLST.

c.) Retrieve the slot 3 drive 2 driver vector and save it for
later re-installation.

d.) Replicate the "No Device Connected" vector in slot 0 drive 1
into slot 3 ~rive 2.

e.) Decrement the device count (DEVCNT).

IRAM is now disconnected and you are free to use the unreserved areas
of auxiliary memory.

A convention has now been established for those ram disks with
a capacity greater than 64K and wish not to be disconnected by
programs that would not realize excess memory could still be utilized
by the ram disk driver.

Here is what the routine might look like:

~ E FILE ~91 =)/P/INSTALLRAH
----- NEXT OBJECT FILE NAME IS IP/INSTALLRAH.9
1ge9: 1999 1 ORG $1999
1999: BF31 2 DEVCNT EQU $BF31 j GLOBAL PAGE DEVICE COLNT
1999: BF32 3 DEVLST EQU $BF32 ; GLOBAL PAGE DEV ICE LI ST
19BB: BF9B 4 I'4ACHID EQU $BF9B ; GLOBAL PAGEI'4ACHINE 10 BYTE
IB99: BF26 5 !W'1SLOT EQU $BF26 ; SLOT 3, DRIVE 2 IS lRAH'S DRIVER VECTOR
1988: 6 If

1989: 7 * NODEV IS THE GLOBAL PAGE SLOT ZERO, DRIVE 1 DISK DRIVE VECTOR.
10eo: B* IT IS RESERVED FOR USE AS THE "NO DEVICE CONNECTED" VECTOR.
190B: 9 *
10e9: BF19 19 NODEV EQU $BFI9
1909: 11 *
1989: 12 * FIRST THING TO DO IS TO SEE IF THERE IS A1!W'1 TO DISCONNECT!
10e9: 13 *
IBOB:AD 98 BF 14 LOA I'4ACHID ; L~D THE I'4ACHINE IDBYTE
1003:29 3B 15 ~D 1t$39 ; TO CHECK FOR A 12BK SYST81
1995:C9 39 16 O1P "30 ; IS IT 128K?
1997:D9 4D 1056 17 ~E D(}lE ; IF NOT, THEN BRANCH SINCE NO 1!W'1!
1999: IB *
1B89:AD 26,..BF 19 LOA !W'1SLOT ; IT IS 12BK; IS A DEVICE THERE?
199C:CD IB BF 29 O1P NODEV ; CCtlPARE WITH LllJ BYTE OF NODEV
198F:DB B8 1919 21 ~E CeNT ; BRANCH IF NOT EQUAL, DEVICE IS CONNECTED
1011 :AD 27 SF 22 LOA !W'1SLOT+ 1 ; CHECK HI BYTE FOR ~TCH

IP, A I CD 11 BF 23 O1P NODEVtl ; ARE WE CONNECTED?
1 ,:9 3D 1956 24 BEQ D(}lE ; BRANCH, NO WORK TO DO; DEVICE NOT THERE!
1919 : 25 *
1919 : 26 * AT THI S POINT 1!W'1 (OR SCtlE OTHER DEVI CE) IS C~CTED IN
1919: 27 * THE SLOT 3, DRIVE 2 VECTOR. NllJ WE MUST GO THRU THE DEVICE
IB19: 2B * LIST ~D FIND THE SLOT 3, DRIVE 2 UNIT NUMBER OF 1!W'1 (~BF).

1919: 29 * THE ACTUAL UNIT NUMBERS, (THAT IS TO SAY 'DEVICES') THAT WILL
1919 : 39 * BE R810VED WILL BE ~BF, ~BB, $B7, $B3. lRAH'S DEVICE NUMBER
1919: 31 * IS $BF. THUS THIS C!NJENTI(}l WILL ALLllJ OTHER DEVICES THAT
1919 : 32 If DO NOT NECESSARILY RESEMBLE (OR IN FACT, ARE CCtlPLETELY DIFFERENT
1919: 33 * FRCtI) 1!W'1 TO R8'V\IN INTACT IN THE SYST81.
1819: 34 *.
1919: 35 *
1919:AC 31 BF 36 CeNT LOY DEVCNT ; GET THE NUMBER OF DEVICES (}lLINE
191C:B9 32 SF 37 LOOP LOA DEVLST,Y ; START LOOKING FOR lRAH OR FACSIMILE
191F:29 F3 38 /lNO "F3 ; LOOKING FOR ~8F, $8B, $87, $B3
1921:C9 B3 39 O1P "B3 ; IS DEVICE NUMBER IN ($BF,$BB,$B7,$B3)?
1923:FB 95 192A 49 BEQ FOUND ; BRANCH IF FOUND •.
1925:BB 41 DEY ; OTHERWI SE CHECK OUT THE NEXT UNIT ~.

1926:18 F4 191C 42 BPL LOOP ; BRANCH UNLESS YOU'VE RUN OUT OF UNITS.
192B:39 2C 1956 43 !J'1I D(}lE ; SINCE YOU HAVE RUN OUT OF UNITS TO
192A:B9 32 BF 44 FOlNO LOA OEVLST ,Y j GET THE ORI GINClL UNIT NUMBER BACK
1920:8D 59 19 45 STA !W'1UNITID ; ~O SAVE IT OFF FOR UtTER RESTORATI CN.
1839 : 46 *
1939 : 47 If NllJ WE MUST R810VE THE UNIT FRIl1 THE DEVI CE LI ST BY BUBBLING
19"~ . 48 * UP THE TRAILING UNITS.
1l 49 *
1939:89 33 BF S9 GETLOOP LOA DEVLSTt I,Y ; GET THE NEXT LNIT NUMBER
1933:99 32 BF 51 STA DEVLST ,Y ; ~D HOVE IT UP.

IB36:FB 93 1938 52 BEQ EXIT ; BfW.ICH WHEN DCNE(ZEROS TRAIL THE DEVLST)
1938:CB 53 INY ; CCNTINUE TO THE NEXT LNIT NLt18ER ..•
1939:09 F5 1939 54 ENE BETLOOP ; BfW.ICH AL~YS.

193B: 55 *
193B:AD 26 8F 56 EXIT LOA RPtlSLOT ; SAVE SLOT 3, DRIVE 2 DEVICE ADDRESS.
193E:8D 57 19 57 STA ADDRESS ; SAVE OFF LOW BYTE OF IRPtl DRIVER ADDRESS
1941 :AD 27 SF 58 LOA RPtlSLOT+ 1 ; SAVE OFF HI 8YTE
1944:8D 58 19 59 STA ADDRESS+l
1947: 68 *
1947:AD 18 8F 61 LOA NODEV ; FINALLY COpy THE 'NO DEVICE CONNEC1ED'
194A:8D 26 8F 62 STA RPtlSLOT ; INTO THE SLOT 3, DRIVE 2 VECTOR AND
194D:AD 11 BF 63 LOA NODEV+l
1958:8D 27 SF 64 STA RPtlSLOT+l ;
1953:CE 31 SF 65 DEC DEVOO ; DECREMENT THE DEVICE COLNT.
1956:69 66 DCNE RTS ; AND RETURN

.1957: 67 *
1957:99 99 68 ADDRESS IXrJ $9899 ; STORE THE DEVICE DRIVER ADDRESS HERE
1959:99 69 IW1LNITI DDFB $99 ; STORE THE DEVICE'S UNIT NLt18ER HERE
19~: 79 *

Part of your exit procedure should include code to re-install /RAM so
that it is available to the next application. Don't blindly reinstall
/RAM ••• be sure it is off-line first. Applications should not begin by
re-installing /RAM since this would preclude passing files from one
applica tion to the next in /RAM.

Here is the way to r~install /RAM (or any general device):

a.) Re-install the device driver address you retrieved and saved
as the slot 3 drive 2 vector.

b.) Increment the device count (DEVCNT).

c.) Re-install the device number in the device list (DEVLST).

NOTE: It may be best tore-install the device number as the first
entry in the list. If the user has "manually" installed a disk
driver, he may assume that. since .. it was the li'ist thing installed
that it is still the last one in the list. Therefore, we
recommend that you move all the entries in the list down one and
re-install the /RAM deviGe number as the first entry.

d.) Finally, set up the parameters for ~ format request and JSR
to the device driver addres s you have..xe-ins taIled. The
/RM!1driver will se fup a "virg:f,n" directory and bit map.

Here is what the reinstallation code might look like:

la~: 72 *
18~: 73 * THIS IS THE EXAMPLE /RAH INSTALL ROUTINE
195A: 74 *
19~A:AC 31 SF 75 LDY DEVCNT ; GET THE NUMBER OF DEVICES - I.
195D:B9 32 BF 76 LOOPI LOA DEVLST,Y ; LMD THE LNIT NUMBER
1960:29 BO 7? AND It$B9 i CHECK FOR SLOT 3, DRIVE 2 LNIT.
1962:C9 BO 78 O'1P 1t$88 i IS IT THE SLOT 3, DRIVE 2 LNIT?
1064:FO 49 18A6 79 8EQ DCNEI ; IF SO B~CH.

1966:88 80 DEY ; OTHERWISE SEARCH CN ••.
1867:18 F4 185D 81 BPL LooPI ; LOOP 001 L DEVLST SEARCH IS C01PLETED
1869:AD 57 18 82 LOA ADDRESS j RESTORE THE DEVICE DRIVER ADDRESS
186C:BD 26 BF 83 STA RA'1SLOT ; LCY BYTE ••
186F:AD 58 18 84 LOA ADDRESS+l r NCY THE
1872:BD 27 8F 85 STA fWfSLOT+I ; HI BYTE.
1875:EE 31 BF 86 INC DEVCNT ; AFTER INSTALliNG DEVI CE, INC DEVI CE COOO
187B:AC 31 BF 87 LOY DEVCNT i USE YFOR LOOP CoOOER ••
197B:B9 31 BF 8B LoOP2 LOA DEVLST-l,Y ; BUBBLE DOWN THE ENTRIES IN DEVICE LIST
187E:99 32 BF 89 STA DEVLSi ,Y j
18Bl:8B 98 DEY ; NEXT
1082:09 F7 1879 91 ENE LOOP2 ; LOOP OOIL ALL ENTRIES MOVED DOWN.
1884: 92 *
1884: 93 * NCY SET UP A/RAH FOfiW\T REQUEST
1884: 94 *
1884:A9 83 95 LOA H3 ; LMD Ace WITH FORMAT REQUEST NUMBER.
18B6:B5 42 96 STA $42 ; STORE REQUEST NUMBER IN PROPER PLACE.
1888: 97 *
1888:AD 59 19 98 LOA RA'1LNITID ; RESTORE'THE DEVICE
19BB:8D 32 BF 99 STA DEVLST ; .. LNITNl.t1BER IN THE DEVICE LIST
188E:29 F8 188 AND "F8 ; STRIP THE DEVICE 10 (ZERO LCY NIBBLE)
1890:85 43 181 STA $43 ; pt.ID STORE THE LNIT Nl.t1BER IN $43.
1892: 182 *
1892:A998 183 LOA "88 ; LMD LCY BYTE OF "BUFFER POINTER
1894:85 44 194 STA $44 ; ~D STORE IT.
1896:A9 29 185 LOA "2B ; LOAD HI BYTE OF BUFFER POINTER
1898:85 45 186 STA $45 ; AND STORE IT.
IB9A: 187 *
189A:AD BB C8 188 LOA $C88B ; READ &WRITE ENABLE
199D:AD BB C8 199 LOA $C888 ; THE lANGUAGE CARD WITH BANK I CN.
19A8 : 118 *
19M: 111 * NOTE HCY THE DRIVER IS CALLED. YOU JSR TO AN INDIRECT JHP SO
19A8: 112 * CONTROL IS RETURNED ~ THE DRIVER TO THE INSTRUCTICN AFTER THE JSR.
18A8 : 113 *
18A8:28 A,7 18 114 JSR DRIVER ; NCY LET DRIVER CARRY OUT CALL.
19A3 :AD 82 C9 lIS LOA $C8B2 ; NCY PUT R01 BACK CN LINE.
19A6 :69 116 DCNEI RTS ; n~T/S ALL.
18A7: 117 *
18A7:6C 26 BF 118 DRIVER JHP (IW1SLOT) ; CALL THE 1RA'1 DRIVER

The above routines address the specific case of fRAM. However, with a
little massaging, they can easily be adapted to install or remove any
disk driver routines.

The routines described in this document are examples only. No
guarantee is made regarding their performance or suitability for any
particular use.

ProDOS TECHNICAL NOTE #9

Buffer Management using BASIC. SYSTEM

(31 August 1983)

BASIC. SYSTEM provides buffer management for file I/O. Those
facilities can also be utilized from machine language modules
operating in the ProDOS/AppleSoft environment to provide protected
areas for code, data, etc.

BASIC. SYSTEM resides from $9AOO upward with a general purpose buffer
from $9600 (himem) to $99FF. When a file is opened, BASIC.SYSTEM does
garbage collection, if needed, moves the general purpose buffer down
to $9200 and installs a file I/O buffer at $9600. When a second file
is opened, the general purpose buffer is moved down to $8EOO and a
second file I/O buffer is installed at $9200. If an EXEC file is
opened, it is always installed as the highest file I/O buffer at
$9600, and all the other buffers are moved down. Additional regular
file I/O buffers are installed by moving the general purpose buffer
down and installing it below the lowest file I/O buffer. All file I/O
buffers, including the general purpose buffer, are 1K (1024 bytes) and
begin on a page boundary.

BASIC. SYSTEM may be called from machine language to allocate any
number of pages (256 bytes) as a buffer, locat~d above himem and
protected from AppleSoft Basic programs. The ProDOS bit-map is not
altered so that files may be BLOADed into the area without an error
from the ProDOS kernel. If you subsequently ~ter the bit-map to
protect the area, it is your responsibility to mark the area as free
when you are finished ••• BASIC.SYSTEM will not do it for you.

To allocate a buffer, simply place the number of desired pages in the
accumulator and JSR GETBUFR ($BEF5). If the carry flag returns cl~ar,

the allocation was successful and the accumulator will return the high
byte of the buffer address. If the carry flag returns set, an error
has occurred and the accumulator will return the error code. Note
that the X and Y registers are not preserved.

The first buffer is installed as the highest buffer, just below
BASIC.SYSTEM, from $99FF downward, regardless of the number and type
of file I/O buffers that are open. If a second allocation is
requested, it will be installed immediately below the first. Thus, it
is possible to assemble code to run at known addresses ••• relocatable
modules are not needed.

To deallocate the buffers created by the above call, it is only
necessary to JSR FREEBUFR ($BEF8) and all of the buffers will be
deallocated and the file buffers will be moved back up. It is
important to note that although more than one buffer may be allocated
by this call, they may not be selectively deallocated.

APPLE COMPUTER~ Inc~ PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #10

Installing Clock Driver Routines in ProDOS

(Revised 8 November 1983)

In you wish ·to support clock cards other than the ThunderClock, there
are a number of possible places to locate your code. The "cleanes til
place is to replace the ThunderClock routines located in ProDOS with
you~ routines, if your code will fit.

When the PRODOS system file is executed, it installs the address of
the ThunderClock routines at $BF07,$BF08 whether a card is present or
not. The address is preceeded with a $4C (JM?) if a ThunderClock card
is found or a $60 (RTS) if it was not.

The ThunderClock card is identified by looking at the $CnOO ROM for:

$CnOO = $08 $Cn02 = $28 $Cn04 = $58 $Cn06 = $70

If you look at $BF07,$BF08 you will find the location to put your
code. There is room for 125 bytes.

To install your code, simply write enable the "language card" area,
and move your code. Don't forget that your relocation code must
justify the absolute addresses as part of the relocation procedure.
Finally. restore any soft-switches you have changed. (There is no
guarantee as to the absolute location of the clock driver code on
future revisions of ProDOS, only that it's location may be found by
examining the global page, as mentioned above.)

All that your code need do is get the time from the clock card,
convert it to the ProDOS format and store it in the date and time
locations in the global page.

Your installation routine can be called from an application or as
part of the STARTUP program.

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #11

The ProDOS Machine Identification Byte

* THIS NOTE SUPERCEDES THE INFORMATION *
* FOUND IN SECTIONS 5.2.3 & 5.3.1 OF THF. *
* ProDOS TECHNICAL REFERFNCE MANUAL *

(revised 08 May 1984)

The Machine Identification byte (MACHID) in the ProDOS system global
page has been redefined to permit identification of future products
from Apple Computer, Inc. that may use the ProDOS operating system.
The change does not impact any checking for existing systems that your
application may now be doing.

The definition of MACHIn at $BF98 is:

Bits 7-6 If bit 3 = 0 then If bi t 3 = 1 then
00 =][00 = reserved
01 = J[+ 01 = reserved
10 =' I I e 10 = lie
11 = III emulation 11 = reserved

Bits 5-4

Bit 3

Bit 2

Bit 1

Bit 0

00 = reserved, 01 = 48K, 10 = 64K, 11 = 128K

The value of bit 3 determines how bits 7-6 will
be interpreted. See Bits 7-6 definition.

Reserved for future definition

o = No 80-column card
1 = 80-column card installed

o = No ThunderClock or equivalent
1 = ThunderClock or equivalent installed

APPLE COMPUTER. Inc., pes Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
phone (408) 996-1010

ProDOS TECHNICAL NOTE #12

Interrupt Handling

(1 December 1983)

This technical note expands upon the information found in the ProDOS
Technical Reference Manual. It is assumed that the reader has already
read and understands the sections regarding interrupts.

This tech note includes a superior example of an interrupt handler for
use with ProDOS. The example in the book works properly, however, it
will always claim every interrupt whether it came from the clock or
not. Additionally, it does not conform to one protocol which will be
required in future revisions of ProDOS, nor does it incorporate some
common examples of good programming practice.

Vectors for interrupt handlers must be installed and removed with
ALLOC INTERRUPT and DEALLOC INTERRUPT calls to ProDOS. Even though
the vectors appear in the system global page, you must always use only
the systems calls ••• never change the global page entries yourself.

All interrupt routines must commence with a CLD instruction. Although
not checked in the initial release of ProDOS, this first byte will be
checked in future revisions to verify the validity of the interrupt
handler.

Good programming practice dictates that an interrupt handler should
preserve the status register (PHP) and mask interrupts (SEI). The
code should restore the status register (PLP) before exit, and before
setting or clearing the carry flag as required by ProDOS.

If your application includes an interrupt handler, before you exit:

(1) Turn off the interrupts ••• remember, an unclaimed interrupt will
cause system death.

(2) Make a DEALLOC INTERRUPT call before exiting from your application.
Don't leave a vector installed that will point to a routine that
is gone.

Within your interrupt handler routines, you MUST leave ALL memory
banks in the same configuration you found them. DON'T FORGET
ANYTHING •••main language card, main alternate SDOOO, main motherboard
ROM ••• and, on an Apple Ile •••auxiliary language card, auxiliary
alternate SDOOO, alternate zero page and stack, etc., etc ••• This is
important! The ProDOS interrupt receiver assumes the environment is
absolutely unaltered when your handler relinguishes control.

If your handler recognizes the interrupt and services it, the carry
should be cleared (CLC) immediately before returning (RTS). If it was
not your interrupt, the carry should be set (SFC) immediately before
returning (RTS). Do not use a return from interrupt (RTI) to
exit ••• the ProDOS interrupt receiver still has some housekeeping to
perform before it issues the RTI instruction.

Here is a sample routine which will turn on interrupts on a
ThunderClock card and print the date and time to the upper right
corner of the screen.

0330

031D

0304

0200

Install interrupt routIne
That's all forks

Restore the input buffer

Set up counter for next time

Save the input buffer
Since the clock writes over it
When it is called

Print time to screen
Chars 0-22 of input buffer

Entry point to the ProDOS MLI

Clock write entry point (Slot 2)
Clock read entry point (Slot 2)
Interrupt cont. register (Slot 2)
Mystery register (Slot 2)

Where the clock leaves the time

Disable Interrupts
For slot 2
Get Int~rrupt Control Reg value
Bit 5 indicates INT is clock

.; If bit 5 is off, not from clock
Clear mystery register
Clear interrupt on hardware
Only print time every second
Not time to print yet

The upper right of the screen
~ Leave interrupts on (Slot 2)

Leave interrupts on (Slot 2)

Set Applesoft-string input mode
and send it to the card

.; Read time into input buffer

GETNEXT

DOIN

$300
$C20B
$C208
$C080
$COB8

1139
IN,X
INBUF,X

1139
INBUF,X
IN,X

1121
I1\l.f-l ,X
UPRIGHT ,X

ORG
EOU
EQU
EOU
EQU

EOU $BFOO

EQU $200

EQU $412
EQU $47A
EQU $7FA

LDA 1164
STA COUNTER

EQU *
CLD
PHP
SEI
LDY 11$20
LDA TCICR.Y
AND 11$20
BEQ NOTCLl<
LDA TCMR.Y
LDA TCICR,Y
DEC COUNTER
BNE EXITCLK

LDX
LDA
STA
DEX
BPL

JSR ALLOC.INT
RTS

LDX
LDA
STA
DEX
BPL

LDX
LDA
STA
DFX

LDA II $A5
JSR wrTCP
JSR RDTCP

1
2 WTTCP
3 RDTCP
4 TCICR
5 TCMR
6 *
7 IN
8 *
9 UPRIGHT

10 INTON1
11 INTON2
12 *
13 ML1
14 *
15 * CALLING INTERRUPTS. CALLING INTERRUPTS
16 *
17
18
19 *
20 *
21 SHOWTIME
22
23
24
25
26
27
28
29
30
31
32
33 *
34
35 DOIN
36
37
38
39 *
40
41
42
43 *
44
45 GETNEXT
40
47
48
49 *
50 SETCNTR
51
52 *
53
54 DOIN2
55
56

BFOO

0300
C20B
C208
COBO
C088

0412
047A
07FA

27
00 02
56 03

15
01 02
12 04

27
56 03
00 02

20
80 CO
20
3C 034C
88 CO
80 CO
4F 03
2E 0349

0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300 :
030.0 :
0300:
0300:
0300:
0300:
0300: 20 7E 03
0303:60
0304:
0304:
0304:
0304:D8
0305:08
0306:78
0307:AO
0309:B9
030C:29
030E:FO
0310 :B9
0313:B9
0316: CE
0319:DO
031B:
031B:A2
031D:BD
0320:9D
0323:CA
0324: 10 F7
0326 :
0326:A9·A5
0328:20 OB C2
032B: 20 08 C2
032E:
032E:A2
0330:BD
0333:9D
0336: CA
0337: 10 F7
0339 :
0339:A9 40
033B:8D 4F 03
033E:
03JE:A2
0340:BD
0343:9D
0346:CA
(\ 1 J. i • 1 (\ Ti'i nDT nnT}.T'J

0349:
0349:28
034A:18
034B:60
034C: 28
034D:38
034E:60
034F:
034F: 0001
0350 :
0350:02 00
0352:04 03
0354:
0354:01 00
0356:
0356: 0028
037E:
037E:

037E:20 00 BF
0381:40
0382:50 03
0384:DO 19 039F
0386:
0386 :AO 20
0388:A9 AC
038A:20 OB C2
038D:A9 40
038F:8D 7A 04
0392:8D FA 07
0395:99 80 CO
0398 :A9 01
039A:8D 4F 03
039D:58
039E:60
039F: .
039F:00

58 *
59 EXITCLK PLP
60 CLC
61 RTS
62 NOTCLK PLP
63 SEC
64 RTS
65 *
66 COUNTER DS 1,0
67 *
68 AlP ARMS DFB 2,0
69 DW SHOWTlME
70 *
71 DIPARMS DFB 1,0
72 *
73 INBUF DS 40,0
74 *
75 * - - - - - - - -
76 ALLOC.INT JSR MLI
77 DFB $40
78 DW AlP ARMS
79 BNE OOPS
80 *
81 LDY It$20
82 LDA "'t$AC
83 JSR WTTCP
84 LDA It $40
85 STA INTON1
86 STA INTON2
87 STA TCICR,Y
88 LDA It 1
89 STA COUNTER
90 CLI
91 RTS
92*
93 OOPS BRK

Tell MLI we processed the INT

Tell MLI it iim' tours

Put allocate and deallocate
Interrupt parameters here

so both routines can use them

Save 40 bytes of IN here
for input buffer save/restore

Call the MLI
to allocate the interrupt

Break on error

Set 64hz interrupt rate
by writing a ',' to clock
Now enable the software
and tell it not to disable
interrupts after reads

Print time immediately
Once per second later
Allow the 6502 to see the
interrupts

Break on error
- - - - - - - - -
03AO:A9 00 94 DEALLOC.INT LDA #0
o3A2 : 8D 7A 04 95 STA INTON1
03A5 :8D FA 07 96 STA INTON2
03A8 :AO 20 97 LDY It$20
03AA:99 80 CO 98 STA TCICR, Y
03AD: 99 *
03AD:AD 51 03 100 LDA AIPARMS+l
03BO:8D 55 03 101 STA DIPARMS+1
03B3:20 00 BF 102 JSR MLI
03B6:41 103 DFB $41
03B7:54 03 104 DW DIPARMS
03B9:DO 01 03BC 105 BNE 00PS2
03BB:60 106 RTS
03BC: 107 *
03BC:00 108 00PS2 BRK

Disable interrupts
in the thunder clock

GET INT NUM
FOR DEALLOCATION
CALL THE MLI
TO DEALLOCATF. THE INTERRUPT
POINTER TO PARAMETF.R LIST
BREAK ON ERROR
DONE

BREAK ON ERROR

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #13

Double High Resolution Graphics Files

(6 January 1984)

The 128K Apple lIe supports a graphics mode known as Double Hi-Res
Graphics in which both main and auxiliary memory hi-res graphics pages
are used to produce pictures with twice as many dot positions
horizontally.

Apple III graphics has a similar mode and a FOTOFILE file type ($08)
has been defined under SOS to contain the screen image. All 16K
double hi-res files under ProDOS should be of this file type.

The format of the file is as shown at
the right. The "graphics mode" is
stored in the 121st byte of the file
(Location $78 in the file). The
modes for both 1st and 2nd page of
double hi-res are:

280 X 192
560 X 192
140 X 192

Pg 1
Limited Color = 1
Black and White = 2
Full Color = 3

. Pg 2
5
6
7

End-of-file
$3FFFI-------------------1

I Main Memory I
I portion of file I

$20001 I
$IFFFI I

I Auxiliary Memory I
I portion of file I

$00001-------------------1
Beginning of file

The normal Apple] [hi-res 280 X 192 screen may be BSAVEd as usual.
If you desire, for Apple III SOS compatibility, you may also save
these screens as an 8K type $08 FOTOFILE and mark the graphics mode as
zero (page 1) or four (page 2), (Apple III 280 X 192 Black and White
mode) •

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #14

Selector/Dispatcher Conventions

(revised 09 March 1984)

ProDOS MLI call $65, the QUIT call moves addresses $DI00 - $D3FF
from the second 4K-byte bank of RAM of the language card to $1000
and executes a JMP to $1000. What initially resides in that area
is OUR dispatcher code.

The dispatcher once executed does the following:

1. Interactively allows you to enter a prefix and file name of
the system program (interpreter) that you wish to execute.

2. Stores the system program name at $280 starting with a
length byte. This is done so once the system program
executes, it can find from where is was started and locate
any files it could need for processing.

3. Closes any open files.

4. Clears the bit map and protects the zero, stack, text and
ProDOS Global pages.

5. Reads in the system file at $2000 and executes a JMP to $2000.

If you wish, you can install your own QUIT code which may load in
your own full blown selector program. If you choose to do this,
you must at some point:

1. Follow steps 2 - 4 above.

2. THE $DI00 BYTE MUST BE A CLD ($D8) INSTRUCTION. This
convention is established so programs will be able to
tell whether it is selector code or the ProDOS dispatcher
code that is resident.

In addition to just leaving the pathname at $280 for the
interpreters own use, a method to enable a selector program to
specify an accomanying 'STARTUP' program has been defined.
Once active, an interpreter can immediately run that program.

The procedure will be to reserve an area in the system file which
will be overwritten by a selector program with the 'STARTUP'
programs name. The interpreter would then load and execute that
specified program.

The actual nuts and bolts of this procedure are as follows:

The selector program will look at the first
byte of the interpreter at $2000. If it is
a JMP ($4C) instruction, and bytes $2003 and
$2004 are both $EE's, then byte $2005 will
be interpreted as a buffer size indicator
with the buffer starting at $2006. The
string at $2006 would be the normal ProDOS
pathname or partial pathname starting with
a leng th byte.

I JMP CONT I
I $EE I $EE I
I $41 (eg.) I
1 $07 I

·1 STARTUP I
I I
ICONT: (eg.) I
1 1

$2000-$2002
$2003-$2004
$2005
$2006
$2007-$200D

$2047

The two $EE's serve as a marker to the selector program to let
it know that this particular interpreter can run a startup
program. The interpreters that will support this feature will
of course supply their own default string which may be a startup
program or a flag of your own choice.

For more information on Interpreter Conventions please see
ProDDS Technical Note #7.

APPLE COMPUTER INC., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
phone: (408) 996-1010

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAl.. TECRNICAL NOTE fIla

Confi~ration and Use of The
ApPle !l Pascal 1. 2 Runti~Sv;tems

(December 1983)

For further information contact:
pes Developer Technical Support
M./ S 22-W, Phone (408)" 996,::,,1010

Disclaimer .2! ill Warranties .!.!!.!! Liabilities

Apple Computer, Inc. lIiakes no warranties. either eJt?ress or iml)lied, with
res?ect to this documentation or with res?ect to the soft:ware described in
this documentation. its quality, performance, merchantability, or fitness for
any particular pur-pose. Apple Comlluter, Inc. software is sold or licensed
"as is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apllle Co~uter, Inc., its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direc t, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Co~uter, Inc.' has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the. above limitation may ~ot apply to you.

This documentation is copyrighted. All rights are reserved.
may not, in whole or part, be co?ied, photocopied, reproduced,
reduced to any electronic medium or machine reada~le form
consent, in writing, from Apple Computer. Inc. -

Copyright 1983 by Apple Com?uter, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

This document
translated or

wi thout prior

Apple Computer. Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECRN!CAL NOTE lilO

Configuration~ Use E.i~
Annle 11 Pascal .!..:.l. Runtime Systems

(December 1983)

For further information contact:
PCS Developer Technical Support
Mis 22-W, Phone (408) 996-1010

I. IN'!RODUC'tION

The Apple II Pascal 1.2 Runtime Systems permit the "turnkey" execution of
application. softwa.re that has. been developed using Apple Pascal. This Technical
Note is intended to aid .Vendors and applications developers who are familiar
with the Apple II Pascal 1.2 Development System. Those who are not should read
carefully the following documents:

* AnnIe Pascal Operating System Reference Manual (with addendum)
* Annle Pascal Language Reference Manual (with addendum)
* Apnle.ll PascalI •• 2. Update Manual

II.. SYSTEM dvERV!EW·

The Runtime Systems support only the execution of a.n application package.
Unlike the Pascal Development System, the Runtime Systems do not contain the
Assembler. Cdurpiler,. Ed.! t.or, .Filer or Linker, nor even·. an eftor reporting
mechanism at the systl!1.U lev.el. System operations such as ttansfen.-ing files.
disk. compacting ("Krunching"). and the reporting of and recovery from errors,
.are all left to .. theapplica.tion program.' Clearly, it is the software
developer's responsibility to design and implement "friendly," entirely
self-contained pack.ages.for use with the Runtime Systems. The safest assutlTption
to make when developing such packages is that the end-user is not only
unfamiliar with the facilities of the Pascal Development System, but may also be
ignorant of computer operation and use in general.

The three· runtime systems currently a.vailable are :

* The 48K Runtime System (standard and stripped versions)
* The 64K Runtime System (standard version only)
* The 128K Runtime System (standard version only)

The name of each runtime system indicates the minimum amount of RAM
necessary for proper operation. Any additional RAM available above the minimum
will not be used by the Runtime Systems.

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 3

There are two versions of the 48K'Runtime System available. one of whicl
provides more free memory for the application package's programs and data than
does the other. Except as noted later. the "standard" configuration of the
Runtime System supports all features of the Pascal Development System that are
relevant to turnkey execution of appliC'ations software. The "strip-ped"
configuration lacks set operations and floating-point arithmetic.

III. CONTENTS OF APPLE n PASCAL 1.2 RUNTIME DISKE'l"l"ES

The follOWing files are contained on "'R.T48:". the Apple II Pascal 1.2
48K Runtime System diskette~

* RTSTND.APPLE (29 blocks) -- 48K Runtime "standard" P-machine.
* RTST'RP.APP'LE (24 blocks) - 48K Runtime "stripped" P-machine.
* SYSTEM. PASCAL (28 blocks) -- 48K Runtime operating system.
* SYSTEM.LIBRARY (39 blocks) -- Contains the same Intrinsic Units as

described in the Apple Pascal Language Reference Manual. However.
these Units are for. use only with the Ruhtime System. and will not
p.xecute properly in the development environment. Conversely. only,
Units in this librat"y, NOT those on the 1.2 Development System
diskettes, should be used when executing programs in the Runtime
environment. Note that the developer ls. however, free to add his own
Intrinsic Units to the Runtime SYSTEM. LIBRARY.

* SYSTEM.AT'l'ACR. (9 blocks) - A runtimeve.rsion of the dynamiC driver
atE~c:hment programdf!scribed in the App.1.e II. Pascal Attach Tools
lII.anual. This version lII.ay only be used with the Runtime Systems.

* RTSETMODE.CODE (4 blocks) -- Utility pro~ram that permits Vendor to arm
or disarm any or all of four configuration~Ptions: ."'Filehandler
Overlay". "Single Drive System". "Ignore External Terminal" and
"Get/Put and Filehandler Overlay".

* RTBOO.'l'L0AD .CODE (4 blocks) - Utility program to load 48K Runtime
boC)tstra'P.code onto blocks ° and 1 ofVeTIdor Product Diskette.

* R'l135TN1L BOOT (4 blocks} Contains bootstr~p code. for RTSTND .APPLE.
* RTBSTRP.BOOT (4 blocks) -- Contains bootstrap code for RTSTRP.APPLE.
* II40.MISCIN'Fg. (l block) -- Miscinfo file. op.~omi.zed for a 40-column

Apple II or AppLe<II Plus. Identical to that supplied Iori th the
Development System.

* !I80 .MISCINFO(1< block) -- M,1sclnfo fileoptOl1lfzed for an RO-column Aoo,
n or. I\pple II Plus. Ider.:.ical to that supp tied wi th the Op.ve lC'-pment
Syst.am•

* IIE40.MISCINFO (1 block) -- M,1scil'1foHleol'tomized fot" a 40-column Apple
lip.. Identical to that supplied with the~p~v~~opment System.

* SYSTEM.MISCIN'FO (1 block) -- Miscinfo file optomized for an 80-column
Apple lie. Identical'to that supplied with the Qevelopment Svstem.

* SYSTEM.CHARSET (2 blocks) -- Identical to that supplied with the
Development System. it is included here Onlv fot" redundancy's sake.
SYSTEM.CHARSET is needed on the Vend6t Product Diskette only if
TURTLEGRAPHICS is used.

.l.ecn Noce VJ.U Appla II Pascal 1.2 Runtime Systems Page 4

The following files are contained on "RT64: ", the Apple II Pascal 1.2
64K Runtime System diskette:

'It SYSTEM.APPLE (32 blocks) -- 64K Runtime "standard" P-machine.
* SYSTEM.PASCAL (29 blocks) -- 64K Runtime operating system.

* SYSTEM. LIBRARY
'It SYSTEM.ATTACH
'It RTSETMODE.CODE
* II40.MISCINFO
'It II80.MISCIN1l'O
'It IIE40.MISCINFO
'It SYSTEM.MISCINFO
'It SYSTEM.CRAR.SET I

----> same files as 48K Runtime System

The following files are contained on "RT128:", the Apple II Pascal 1.2
128K Runtime System diskette:

'It SYsn:M.A.PPLE (32 blocks) -- 128K Runtime "standard" P-machine.
'It SYSTEM. PASCAL (29 blocks) -- 128K Runtime operating system.

'It SYSTEM. LIBRARY
'II SYSTEM. ATTACH
'It RTSETMODE.CODE
'II SYSTEM.M!SCINFO
'It SYsn:M.CRAR.SET I

----> same files as 48K Runtime System

Of thes~f.iles, .the final Vendor· Prodtil:t Diskette should contain only
the Runtime P-machine (RTSnID.A.PP1.E, RTS~.A.PP!.E, .0J:' SYSTEM'APPLE),
SYSTEM.PAS~, SYSTEM. LIBRARY ,theappropriate adsciI1fo fil.e.renamed to
SYSTE~'MISCINFO, and, optionally, SYS.TEM. CHARS~T.. Informa.tion on the
different ad~cinfo files i. is contained in the Apple II Pascal L 2 Uodate Hanual.
SYSTEM. ATTACH , with its <a.ttendant data files as described. in the Apple II Pascal
Atta~h Tools manual, should be included on the Vendor Product Diskette if and
only if special device drivers, W1:'itten..in ma~hine-code, must be bound into the
systens f05iuse. by the. Applications •.. Pack.age. All other files on the Runtime
System diskettes are used in creating and configuring the Vendor Product
Diskette.

IV. OPERATION

The term "Vendor Product Diskette," as used throughout this Technical Note,
refers to the primary (boot) diskette in a turnkey application package, which is
assumed to contain the fo11oring softvare: the Runtime P-machine , the Runtime
Operating system. a SYSTEM.LIBRARY file, a SYSTEM.MISCINFO file, and the files
co~rising the applications package's programs (and any necessary data). In
most instances, the Vendor Product Diskette will be the only softvare diskette
in the package. Larger systems, however, may also include other diskettes that
contain additional sofeware and data which will not fit on the bootstrap
diskette.

Tech Note /110' Apple II Pascal 1.2 Runtime Systems Page 5

Note that the main application program must be named SYSTEM. STARTUP , so
that the Runtime System can find it at bootstrap-~oad time.

A ewo-stage boot process can be us~d with the 64K and l28K Runtime Systems
if the necessary boot files listed above cannot fit on a single diskette. In
this case, the primary boot diskette would contain only the Runtime P~chine.

A second-stage boot diskette would contain the remainder of the files. A
two-stage boot process cannot be used with the 48K Runtime System.

A. !h! Bootstrapping Process

In a machine equipped with an auto-start ROM, the bootstrap loading
process occurs automatically, as soon as the Apple's main power switch is
turned "ON." As a result, the end-user is greeted by the applications
package. In.a machine that lacks an auto-start ROM, theend-user first
encounters the Apple MONITOR, or BASIC, and must initiate the bootst~apping

process by issuing a 6-cTRL-P command (in the case of the MONITOR) or a
PRU6 command (for BASIC).

The bootstrap loader checks for the P-machine file and loads it into
RAM. The P-machine, in turn, brings in and initializes the Runtime
operating system. (In the case of a two-stage boot, the messag'e "Insert
boot diskette with SYSTEM. PASCAL on it, then press RETURN." appears after
the P-machine has been loaded. The end-user should then insert the
second-stage boot diskette and pre58 RETURN whichr~sults in the Runtime
operating system being loaded and initialized.) The first noteworthy
action taken by the operating system is to execute SYS~..• ATTACH, if that
utility program is available on the Vendor. Produc.t:Diskette.Re~mber that
SYSTEM.ATTACH ~st not be present: on the V:t1dorProduct pi.skette unless
special, 10w-1f!'!Te1 yo d~vers .. must. be boundint~ ...the.. systetll~ •.. ~<erplained
more fully in. •.the Apple .. II Pascal Att:achTools. ~n\1al' .SYSn.:M.ATTACH uses
two special data files., ~d will fail. if these files are.not prf!sent on the
bootstrap diskette". ~. vendor who puts SYSTEM.ATTACII on his Yendorp~oduct

Diskette without also providing the data files required by that program
insures consistent fail\Jre of the system bootstrap process. The vendor may
include the SYSTEM.ATl'ACR soft:w'a.re>on the Vendor Product Diskette, while:
defeating the automatic execution of that utility at bootstrap load t:ime,
by changing its name in the diskette directory.

the bootstrap
SYSTEM. STARTUP , is
process is fatal.
lDessage

process culminates when the main applications program.
loaded and executed. Any failure during the boot:strap
Whenever possible, a failure will leave displayed the

SYSTEM FAILURE NUMEER nn. PLEASE REFER 1'0 PRODUC'l' MANUAL.

Here, "nn" refer! to the actual number reported when the failure
occurs. This number will correspond to one of the following failures:

Tech Note 910 Apple II Pascal 1;2 Runtime Systems Page 6

01 Unable to load specified p~ogram

02 Specified p~ogram file not available
03 Specified p~ogram file is not code file
04 Unable to ~ead block zero of specified file
05 Specified code file is un-linked
06 Conflict be~een user and intrinsic segments
07 UNASSIGNED EllOR CODE
08 Required intrinsics not available
09 System internal inconsistency
10 Can't load required intrinsics/Can't open library file
11 Specified code file must be run under the 128K system
12 Original disk not in boot drive

Clearly, these messages are useful as debugging tools as well as in
mechanisms for field failure-reporting. The "PRODUCT MANUAL" mentioned in
the bootstrap failure message is, of course, the vendor's own product
manual. It is the responsibility of the vendor to ennumerate and explain
for the end-user the situations in which bootstrap failures may occur, as
well as suggest remedies for these failures.

B. Gene~al Considerations

Once the program is loaded and running, operation proceeds normally,
and may even include removal of the system disk. (It is, however, the
responsibility of the application package to protect itself against the
possibility that the system disk will not b£ on-line when a segment must be
overlaid, or a specific subprogram must be chained to. At such times, the
application software should first determiIle.whether or not the required
disk is on-line, and, if not, suspend operation, after giving a suitable
prompt, until the user has inserted the disk. in the appropriate drive.)
Any en-ors that occur during executioLl .of t~e applications package cause
the system to transfer program.coLltrol tel a specific procedure in the
cun-ently-executing application program, where code. intended to respond to
errors is assumed to exist. If any program in the applications system
terminates without chaining to another one, the Runtime system re-boots
into SYSTEM.STARTUP.

VI. SPECIFICATIONS

A. Available Confi~rat10ns

The memory requirements of different applications impose the need for
different Runtime System3. The applications developer should choose one of
the systems as thetargetenviron'll1l!~t, a.I1d ke.f!P .its limitations and
capabilities. in mind during design and implementation of the applications
package. Apple currently supports the follOwing Runtime Systems:

• 48K Runtime System (standard and stripped versions)
* 64K Runtime System (standard version only)
* 128K Runtime System (standard version only)

The difference be~een the standard and stripped versions of the ~8K

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 7

Runtime System is that the stripped version does not support set operatior~

or floating point arithmetic thereby making more memory available for thl
appli cation.

The chart below summarizes the amount of free memory that is available
under the different Runtime Systems for use by the application package.
Note that when swapping is set to level 1 the amount of memory available to
the application package is increased by 3668 bytes.

FREE MEMORY IN APPLE II PASCAL 1.2 RUNTIME SYSn::MS

I
NO SWAPPING SWAPPING ON

LEVEL 1

48K S'l'ANDARD 23372 bytes 27040 bytes

48K S'l'RIPnD 25676 bytes 29344 bytes
I

64K I 40322 bytes 43990 bytes

128K (CODE) 41227 bytes 44879 bytes

128K (DATA) 44502 bytes \ . 44526 bytes
I I I

NOTE - theal'l1ount of free memory available with the 64K Runtime System
is reduced by 1024 bytes if it is operating 1n 40-column mode.

There 1s another level of swapping (level 2) which provides an
additional 822 bytes of usable memory, however, application writers should
not depend on the extra memory being available 1n the future. Certain
planned enhancements to the. Pascal system will reduce .the· tIletnOry available
to applications by approximately 1000 bytes. Swapping level 2 will help.
programs currently running at the limit of available memory to run under
the enhanced system.

NOTE - using GET or PU'l' to disk will be slow~if swapping level 2 is
selected since these routines will have to be loaded repeatedly. READ and
WRITE to disk will also be slow since they use GE'l' and PUT. BLOCKREAD,
BLOCKWRITE, lJN1TRE.AD, and IJNITWRIT'E will be unaffected.

Swapping can be set to the desired level by using R'l'SETI10DE (described
later) or by calling a.procedure in CRAINS'!UFFbefore chaining to another
subprogram. See the Apple 11 Pascal ~ Update Manual for further
information on swapping.

B. Use Environment

The hardware environment must include the follOWing:

Tech Nota #10 Apple II Pascal 1.2 Runtime Systems Page 8

48K Runtime System

64K Runtime System

128K Runtime System

All Runtime Systems

All Runtime Systelll.8

- An Apple II or II Plus with 48~ of RAM
(minimum), or an Apple //e

- An Apple II or II Plus with 48K of RAM and an
Apple Language Card, or an Apple I/e

- An Apple /Ie with an Extended aO-column Text
Card

- At least one disk drive, set up for 16-sector
operation.

- Video screen or external terminal (video screen
preferred) •

Note that the Runtime Systems support all Apple peripheral cards.
Other'cards may not operate properly, especially if they include fi~are

that depends upon specific internal. characteristics of the P-machine
interpreter or operating system. SYSTEM.ATTACH must be used by those
Vendors who wish to reconfigUre the BIOS (Basic I/O Subsystem) to support
rion-standard peripheral devices. Through the ATtACH facility, It is
possible to assign new physical devices to any of the existing logical IIO
units in the Pascal syste~, as well as retain the standard device
assignments while adding new devices to the system. Drivers prepared for
use with SYSTEM.ATTACH are bound into the system dynamically, at each and
every boostrap load •. Note that the addition of special I/O drivers to the
system will further restrict the amount of free memory available for use by
the applications code, since drivers are loaded on the Pascal system heap.
For more. information" see the Apple II Pascal Attach .Tools ll1Ilnual.

C. Restrictions and Considerations

1. SYS'I'EM.ATTACH and theCIiA.INS'I:Ul''F,LONGDmO. and PASCALIO units
in SYS'l'EM.LIBRARY.ll1ilk.e.. as sUIlrptions about. the. internal structure of
the Pascaloperati l1g system. .Because the internals of the Runtime
operating systems are different from. those in the Development.
System, only the versions. of CHAINSTUFE.LONGINTIO, PASCALIO and
SYSTEM.ATTACH that are supplied on the. Runtime System diskettes
should be used io.· the Runtime e.xecution environmente/ .
(Furthermore, these special versions should never be us'ed in the
Development environment!)

2. the units TRANSCEND and 'l'UR'l'LEGRAPHICS eU11>loy floating-point
operations, so software intertdedto be executed under the 48K
Stripped Runtime System should not use theme For software that
employs the TURTLEGRAPHICS procedure TURNTO, note that turns
through right-angles and null-angles are treated as special cases,
and the 'l'URTLEGRAPHICS unit uses only integer arithmetic in
calculating the trigonometrfc< values needed toexecuee them. So,
TURTLEGRAPHICS may be used under the 48K.Str1pped Runtime System
if and only if the turtle is allowed to make only right-angle
turns (as in the HILBERT demonstration program On APPLE3:, for
exam?le). Attempts to draw arbitrary curves, as demonstrated in
the GRAFDEMO program on APPLE3:, will produce execution errors in
the 48K Stripped Runtime environment.

Tech Note 1110 .Apple II Pascal 1.2 Runtime Systems Page 9

3. Pascal's special function keys retain their meanings in the
Runtime Systems. The following keys have special meaning:

* Freeze (Stop) screen display - CTRL-S
* Flush screen display - CTRL-F
* Switch to alternate half of screen - CTRL-A
* Toggle display to switch screen halves to follow cursor - CTRL-Z
* Laft square bracket - CTRL-K
.• Right square. bracket - SlIIFT-M
* Break - CTRL- @
.Opper/lower case activation toggles - CTRL-W, CTRL-g

NOT! - Some of these special function' keys are ignored by Pascal
if it is running on a lIe. See the Apple Jl Pascal~ Update
Manual for more information. It is possible to disable some of
these special key functions. See the Apple 11 Pascal Attach
Tools mattual for complete details.

4. The Runtime System will operate correctly only with programs that
have been prepared, using Apple's Pascal compiler andlor
Pascal-sylltem assembler on either an Apple II or an Apple I I I, fo;
execution in the Apple II Pascal environment.

5. The Runtime System is optimized for operation with the Apple's
built-in Video output screen. There is no easy way for a turnkey
package to reconfigure its host Runtime Sys.tem to use the
random-cursor facilities of any arbitrary external terminal.
Therefore, it. is expected that users of the syst~~ will be
operating with the standard Apple video screen, and not an
extern~l .termina.l. .•• An..!. program .. that makes USe of screen con tro1,
such·· at! cleat'~c.reen t.rand0tll cursor addressing, or backspacing, is
not likely •• to work properly on. an extl!rnal terminal. To avoid
this problem,the Runtime System contains a switch which can be
set through the RTSETMODE program (explained below). When set,
this switch causes the system to ignore an external eerminal, if
one is connected. Simple programs that do not make use of any
screen control may leave the external terminal switched in wHhout
any adverse consequenc:es.

D. Runtime System Configuration Utilities
.

1. RTSETMODE (provided With.all Runtime Systems)

Flags 'IIhich tlotl! the state.of four system options are contained
within aspec:ial part of the directory oiany R~I1time System bootstrap
diskette. (These flags will not not"ll1ally be present on diskettes
prepared for or used with the Pascal Development System.) When a flag
is set (TRUE), the corresponding system option is enabled. The option
is disabled when the corresponding flag is reset (FALSE). At
bootstrap time, the option-flags are retrieved and are used during a
dynamic configuration process which occurs before ehe applications
sofeware is executed.

Tech Note 110 Apple II Pascal 1.2 Runtime Systems Page 10

~e RTSETMODE utility is used by the applications developer to
set or reset the option-flags, according to the requirements of the
applications package. In operating RTSETMODE, the developer first
selects the Pascal volume to be affected, then answers four yes-or-no
questions by pressing the "Y" or "N" keys, respectively. Responding
to any prompt for input by pressing only the RETURN key causes
immediate termination of the program.

Answering "Y" to any of the following questions ARMS the
indicated option (setting the corresponding flag), while answering "~"

DISARMS the option (and resets the corresponding flag).

• ~ Filehandler Overlay Option? - Arming this option sets
swapping to Levell. System primitives related to disk file
opening ~d closing are overlaid as needed by the
application software, thus freeing 3668 bytes of RAM for
use by the application.

* ARM Sin~le-Drive Svstem Ontion? - With this option armed, once
-the initial bootstrap process is finished at the beginning

of any turnkey software run, the system itself will not
assume the availability of any disk drives other than the
bootstrap device. Specifically, "volume searches" will be
lim! ted to the single drive. 'The application may still use
Apple Pascal's UN1TREAD and UN!TWRITE procedures to access
any other drives which may be connected to the system.

• ~ I~ore External Terminal Option? - Arming this option
insures that the system CONSOLE: device will always be the
Apple's built-tn video screen, whether or not an external
terminal interface or 80-columncard is available in slot 3.

* ARM ~t/Put ~nd Filehandler OverlavOption? - Arming this
-optio1'1. sets. swapping to level 2. System primitives related

to disk. file opening and closing, as well as GET and PUT to
dislc. are. ov:rlaid as needed. (See section A for more
information on swapping level 2.)

After the four-811estion sequence, RTSETMODE asks the user to
confirm that all information input to that point is correct and should
be used toupd~tetheVendorProduct Diskette. If so, an attem?t is
made to update the diskette's directory with the new set of option
flags, and RTSETMODE finishes by reporting the success or failure of
the update 6pirati6n.

Developers should note that only exact copies of a Runtime
bootstrap diskette will retain its option-flags. Transferring the
Runtime System and applications software from diskette to diskette on
a file-by-file basis will not also transfer the option-flags between
the diskettes. For this reason, it is recommended that RTSETXODE be
applied to the product master of any Runtime-based package immediately
prior to releasing that master to production, in order to insure the
correct status of the option-flags.

Tach Note #10 Apple II Pascal 1.2 Runtilllll! Systems Page 11

If a two-stage boot ~ll be used for a runtime application,
R!SETMODE must be run on both boot diskettes since some of the flags
are checked by the P-machine while others are checked by the operating

~) system.

2. R.'!EOOnOAD (48K Runtime System only)

'l'his program is used to transfer to the Vendor Product Diskette
the proper bootstrap code for the ehosen 48K Runtime con1iguration
(STND or STRP). Responding to· any prompt for input by pressing only
the RETURN key results in immediate termination of the program.
RTBOOTLOAD first as~s for the name of the file which contains the
appropriate bootstrap code (either RTBSTND.BOOT or RTBSTRP.BOOT). The
file name must be entered exactly as it appears in the directory
(including a volume prefix if the file is not on the default volume),
or the program ~ll nOt be able to find the file" and ~ll repeat its
request for a file name. Once it has fetched the bootstrap code,
RTBOOnOAD asks tor the volume name of the· Vendor Product Diskette,
then waits for the user to press the SPACE-BAR. (thus providing the
user with an opportunity to mount the selected volume, if necessary)
before attempting to transfer the bootstrap information. The success
or failure of the transfer is reported before RnOOTLOAD terminates.
This program is only supplied on the 48K Runtime System diskette and
should never be used to transfer bootstrap information to a diskette
which contains the 64K or 128K Runtime Systems, as doing so will
prevent the systems from booting correctly.

E. Error aandling

If an error in executio~,0t' ,VO o.ccurs during program operation, the
Runtime Systell1 attempts to> let the, application package itself acknowledge,
and it possible, recover from the error condi.tion. Just as he may in the
Pascal Development envirOnment, ,the. application developer is free to use
the $1-. and$R- compiler o'Ptio~stoassume localized, programmatic control
of the correspondingerTor situations.

When the Runtime System detects an error, it stores the error number
in IORESULT and calls "PR.bctb-mte NtTMnSltnmu of ,the cUrTently-executing
program. This is the procedure .tnsegm.ent number 1 that has been given the
pro'cedure number 2 by ,the compiler. ,In o.ther words, it is the first one
declared after the program headln~ that isn()titself a unit or segment
procedure, or within a unit or segment procedure. In a compiler listing,
"PROCZDtnU:: NUMl3ER TWO" may be identified as those lines whose "s" (segment)
number is 1, and whose "P" (procedure) number is 2.

"PROCEDURE NUMBER TWO" may be declared as a forward procedure since
the procedure number 1s assigned at the forward declaration.

From now on, "PROCEDURE NUMBER NO" will usually be called the "'Error
Randler," since it must always be reserved by the applications programmer
for the sole purpose of handling errors. The Error Handler may not have
any parameters, and must always be declared as a PROCEDURE, never as a

Tech Note #10

FUNC'rION.

Apple II Pascal 1.2 Runtime Systems Page 12

100 Unknown Runtime error
101 Value range e~or

102 No procedure in segment table (*)
103 Exit from uncalled procedure (*)
104 Stack overflow (*)
105 Integer overflow
106 Divide by zero
107 Nil pointl!r reference
108 program interrupted by user
109 SystemIIO error
110 User I/O error
111 Unimplemented instruction
112 Floating point error
113 String overflow
114 Programmed BALT
115 Programmed breakpoint
116 Codespace overflow

The Error Handler can determine what kind of error has occurred by
checking the value of the IORESULT function. In the Development System,
this function is restricted to containing the codes for any I/O errors that
might occur during execution. In the Runtime Systems, IORESULT has been
extended to report all system errors, as wel1'as the usual I/O errors.

Here are all the values IORESULT can assume during Runtime execution:

00 No error
01 Bad block, parity error
02 Bad I/O unit number
03 Illegal I/O request
04 Data-com timeout
as Volume went off-line
06 File 10Bt in directory
07 Bad file nama
08 No room on volume
09 Volume not found
10 File not found
11 Duplicate directory entry
12 File already open
13 File not open
14 Bad input format
16 Disk is write-protected
17 Illegal block number
18 Illegal buffer address
19 Must read a multiple of 512 bytes
20 UnknoWn ProFile error
64 Device error (bad disk format)

", • fatal error

It is recommended that a program's Error Handler should simply report
"system error" for all cases except those which are relevant to the
program. Global state variables in the program may be used to help
determine the nature of the problem and report it to the user. Note that a
system re-boot occurs if an attempt is made to exit the program (Without
chaining to another).

After the Error Handler finishes its operation, control returns to the
caller of the procedure where the error occurred (unless the error was
fatal). In this way, program operation may be continued. cleanly and
simply. after an error is handled. The caller of a failure~prone procedure
can set and test status flags to determine whether or not the called
procedure completed its operation, and either repeat the procedure call, or
perform an alternative action.

In developing particularly large systems where program chaining is
used. the applications programmer should remember that each chained program
must reserve "PROCZDURE NUMBER 'NO" as an Error RandIer.

Following are tyO programming examples. The first shows a typical

Tech Note 110 Apple II Pascal 1.2 Runtime Systems Page 13

E~or Handler routine, and the second is a.program fragment that
demonstrates an e~or recovery technique.

(* EXAMPLE til - ERROR HANDLER *)

(* TIIE FOLLOWlNG PROCEDURE IS ONLY *)
(* CALLED BY 'l'BE OPERATING SYSTEM *)

PROCEDURE ErrorRandler;

PROCEDURE Message(Space: Boolean; S: String);
VAB. en : Char;
BEGIN (* Message *)

WriteLn;
WriteLn('*** ',5);
IF Space 'l'HEN

BEGIN
Write('*** Press SPACE-BAR to continue');
REPEAT

Read (Keyboard , Ch)
1JN'l'!1. « Ch • ' ') AND (NOT EoLn»;

END;
END (* Message *);

BEGIN (* E~orHandler *)
U' (IOResult • 14) 't'HEN

Message(True,'That is not a legal integer!')
ElSE IF (IOResult • 106) 'l'HEN

Message(True,'Division by zero is im?ossible! ')
ELSE BEGIN

Message(False, 'System error. Please reboot.'):
WRI1.E True DO (* Hang *);

END;
END (* E~orHandler *);

(* END OF EXAM:PLE III *)

(* EXAMP'LE #2 - ERROR RECOVERY USING ERROR HANDLER OF EXAMPLE III *)

PROCEDURE Calculator;
(*. Features recovery from input or arithmetic error. *)
TYPE Order • (First, Second);
VAR A,B : Integer;

Flag : Boolean:

PROCEDURE GetNumber(Which: Order; VAR Number: Integer):
BEGIN

Write('Input the');
IF (Which • First) THEN

Write(' first')
ELSE Write(' second');
Write(' number: '):

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 14

Read(Number); ReadLn:
Flag :- True:

END (* GetNumber ill);

PROCEDURE Answer:
VA!!.. R : Real;
BEGIN

R :- A / B; (ill Bomba if B-D *)
WtiteLn;
WriteLn(A,' divided by ~,3,' is ',R);

END (* Answer *);

BEGIN (ill Cal~lator *)
REnA'!

Flag :- False;
WriteLn;
WriteLn;
REPEAT

~tNumber(First,A)

UN'1'IL Flag;
Flag :- False;
W't'iteLn;
REPEAT

GetNumber(Second,B)
UN'!'n Flag;
Answer;

UN'l'IL Eo f ;
END (* Calculator *);

To illustrate the effect of the Runtime System's error handling
mechanism, here is the interaction between user and machine during a
tyPical run of the above "Calculator" program. User-input is terminated by
a. press of the ..<R:E'!'U'RN). key in all cases except the first and last. In the
first case, the Er!'or Handler is invoked during the erroneous numeric
input. In the last case, the system accepts and acts upon a <CONTROL-C>
signal before the user has a chance to press any other keys.

Input the first number: N

*"'''' That is not a legal integer!

Input the first number: 16

Input the second number: 0

*** Division by zero is illl?08siblel

Input the first number: 16

Input the second number: 2

Tech Note 110 Apple II Pascal 1.2 Runtime Srstems Page 15

16 divided by 2 is 8

Input·the first number: <CONTROL-C>

As soon as the user presses <CONTROL-e>, the- Runtime system detects
the end of the standard input file (EOF), and re-boots (right back into
"Calculator") •

V. DIFYERENCZS BET'WE.EN THE PASCAL DEVELOPMENT SYSTEM AND THE RDm'lME SYSTEMS

Although the Runtime Systems will run ~t Pascal code files exactly as
does the Pascal Development Srstem, the applications system developer must be
aware of important differences between the two environments. As mentioned

- above, there is no "system-level" handling of any type of error that may occur,
including stack overflow, arithmeti~ errors, or bad diSK reads. It is left to
the application pacKage to respond to all error conditions. The typical user
will not have access to (nor knowledge of).the Pascal FO~tter or Filer. -

Many programs which fit comfortably in the 64K Development Srstem
environment may fail to execute at all under the 48K Runt:i~ Srstem due to the
difference in available user memory. Similarly, programs developed with the
128K Development System may fail to execute under the 64K Runtime Srstem for the
same reason. While large systems can be made to fit within the confines of a
particular Runtime environment, this is possible only through use of Apple
Pascal's program segmentation (overlay) and chaining facilities. It is
suggested, however, that much thought and care be taken when using chaining and
segmentation in software design, since these facilities, by their very nature,
involve time-consuming disk accesses. Application soft~ar~ that abuses chaining
and/or segmentation, or employs them in a careless fashion, may easily waste a
large amount of time in "disk thrashing," especially if swapping is being used.
Fin.aJ.ly, an applications p.ackage runs the risk of lII4ssivefa.i1ure >unless calls
to program overlays and chaining are preceded by checks that the eX'p.ected
diskette is in the appropriate drive. This is espectally important when the
target machine includes only one disk drive (as is frequently the case).

The following items are never present in the Runtime Systems:

* System HOMECURSOR, CLEARSCREEN, and CLEARLINE functions
* Srstem prompt function
* Compiler, Assembler, Linker, Editor, Filer
* IDSEARCB and TREESEARCB procedures (which exist in the Development System

only to benefit the Compiler).

Programs that maKe use of information stored in specific memory locations
within the 1.2 Development Srstem P-machine, or that make assumptions about
static or dynamic memory allocation at the operating system level (e.g., for the
purpose of accessing system data structures) are likely to function incorrectly
when executed in the Runtime environment. This is due to the code
reorganization, compaction, and optimization that was necessary to produce t~e

Runtime Systems.

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 16

VII. CREATION OF VENDOR PRODUCT DISKETTE

The following steps can be used as a guid~ for creating a Vendor Product
Diskette:

1 - Format a diskette using the Pascal Development System formatter.

2 - Transfer the files SYSTEM.APPLE (or RTSTND.APPLE or RTSTRP.APPLZ),
SYSTEM. PASCAL , SYSTEM.LIBRARY. SYS'l'EM.MISCINFO, and SYSTEM.CRARSET
needed) from the Runtime System diskette to the Vendor Product
disketta.

3 - Transfer the code file(s) for the application to the Vendor Product
diskette. The main code file for the application must be named
SYSTEM. STARTUP.

4 - Run the Pascal Develop~nt System library program to add any needed
library units to SYSTEM.LIBRARY on the Vendor Product diskette.

5 - Run RTBOOTLOAD to load the appropriate bootstrap code from RT48: onto
the Vendor Product diskette. (48K RUNTIME SYSTEMS ONLY)

6 - Run RTSETMODE if you wish to ARM the "Fllehandler Overlay" option, the
"Single-Drive System" option, the "Ignore External Terminal" option
and/or the "Get/Put and Fllehandler Overlay" option.

Vendor Product Diskettes, or other diskettes which contain 48K Runtime
System software should be copied using ouly "whole volume" transfer mechanisms,
such as that provided by the Pascal system Filer. A succession of "individual
file" transfers, or a ''Wildcard'' transfer (such as transferring "#5 :-" to
"#5:$"). will only copy files from one disk to another. They will not copy the
crucial 48K Runtime boostrap code' between disks. Only "whole volume" transfers
(such as "#4:" to "115:", or "SOUP:" to "NUTS:") will result in complete
copies, containing the proper bootstrap information.

Vendor Product Diskettes. or other diskettes which contain 64K or 128K
Runtime System software can be copied using either whole volume or individual
file transfers since they do not contain special boots~rap information.

VIII. APPLE FORTRAN AND '!'HE RUNTIME SYSTEMS

Apple FORTRAN programs will execute correctly under the Apple II Pascal 1.2
Runtime Systems (48K and 64K ouly) , so long as no execution errors or untrapped
I/O errors occur. Using only FORTRAN, it is impossible to produce object code
that contains the specially-placed error-handling procedure to which control is
transferred in the event of an untrapped error during Runtime execution.
Furthermore, the FORTRAN Run Time Support Library includes system-level code for
handling FORTRAN I/O errors independently of the Apple Pascal system's own
error-handling facilities. Execution of this special code will always lead to a
system re-boot in the Runtime environment.

Tech Nota #10 Apple II Pascal 1.2 Runtime Systems Page 17

Users who wish to provide turnkey packages based on FORTRAN object-code ar~

advised to link the FORTRAN object-code to a Pascal host, as e~lained in the
Apple FOR.1'RAN Language Reference Manual. The only "live code" which the Pascal
host must contain is the error-handling procedure that the Runtime Systems
require for robust execution of turnkey sofeware.

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECHNICAL NOTE #11

Apple Pascal ~
BIOS Reconfi~ration Using ATTACH

(02 April 1981)

For further information contact:
PCS Developer Technical Support
MiS 22-W, Phone (408) 996-1010

Disclaimer of All Warranties and Liabilities---
Apple Computer, Inc. makes no warranties, either express or implied, wi th
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, mer~hantability, or fitness for
any particular purpose. Appl-e Computer, Inc. software is sold or licensed
"as is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct, indirect. incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
~onsequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved.
may not, in whole or pgrt, be copied, photocopied, reproduced,
reduced to any electronic medium or machine readable form
consent, in writing, from Apple Computer, Inc.

Copyright 1981 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino. CA 95014

(408) 996-1010

Notice

This document
translated or

without priur

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

ATTACH-BIOS document for Apple II Pascal 1.1

By Ba rry Haynes

Jan 12 J 1980

This document is intended for Apple II Pascal internal applications
writers, Vendors and Users who need to attach their own drivers to the
system or who need more detailed information about the 1.1 BIOS. It is
divided into two sections, one explaining how to use the ATTACH utility
available tnrough technical support and the other giving general
information about the BIOS. It is a good idea to read this whole
document before assuming something is missing or hasn't been completely
explained. This document is intended for more advanced users who
already know a fair amount about I/O devices and how to write device
drivers. It is not intended to be a simple step by step description of
how to write your first device driver, nor does it claim to. be a
cc:mplete description of all there is to know about the Pascal BIOS.

The Appl e Pascal UCSDsystem has vari.ous level s of I/O that are each
responsible for different types of actions. It ..was divided at UCSD
into these levels to make it easy to bring up the system on various
processors and also various configurations of ~he same processor and
yet have things look the same to the P~scal level regardless of what
was below that level. The level s are:

LEVEL TYP ES OF 10 ACT! ONS
-----------_._-----

Pascal READ & loI'RITE
BLOCKREAO·& BLOCKWRITE
UNITREAO& UNITWRITE
UNITCLEAR
UNITSTATUS

RSP (Runtime Support Package) This is<part Of the interpreter and
is the middle man between the above
types of I/O and thebeTbw types of
I/O. All the above types are
trans1 atedbythecompiler and
operating system .into UNITREAD.
UNlTWRITE. UNITCLEAR and UNITSTATUS if
they are not already in that form in
the Pascal program. The RSPchecks
the.1ega1ity Of the parameters passed
and reformats these ca 11 s into ca 11 s to
the BIOS routines below. The RSP also
expands OLE (blank suppression)
characters, adds line feeds to
carriage returns, checks for end of
file (CTRL C fran CONSOLE:). monitors
UNITRW control word commands, makes

Paop 1

BIOS (Basic I/O Subsystem)

calls to attached devices if present,
echoes to the CONSOLE:.

This is the lowest level device
driver routines. This is the level
at which you can attach new drivers
to replace or work with the regular
system drivers and also attach drivers
for devices that will be completely
defi ned by you.

I.RECONFIGURING THE BIOS TO ADD YOUR OWN DRIVERS USING THE ATTACH UTILITY.

INTRODUCTION

With the Apple Pascal 1.1 System (both regular and runtime 1.1).
there is an automatic method for you.to configuer your own drivers
into the system. This method requires you to write thedri vers
following certain rules and to use the programs ATTACHUD.CODE and
SYSTEM.ATTACH provided through Appl e Techni cal Support. At boot
time, the initialization part of SYSTEM.PASCAL looks for the program
SYSTEM.ATTACH on the boot drive. If it finds SYSTEM.ATTACH, it
Xecutes it before Xecuting SYSTEM.STARTUP. SYSTEM.ATTACH will use
the files ATTACH.DATA and ATTACH.DRIVERS which must also be on the
boot disk. ATTACH.DATA is a file thedevelc~er will make using the
program ATTACHUD. It tells SYSTEM.ATTACH the needed information
about the drivers it will be attaching. ATTACH.DRIVERS is a file
containing all the drivers to be attached and is constructed by the
developer using the standard ·LIBRARY program. The drivers are put on
the Pascal Heap below the point that a regular program can access it.
They do take away Stack..Heap (. to the si ze of the dri vers attac hed)
space from th.i!t available to' Pascal code files but this should not be
a problem unless. the dri.vers are very large or the code files very
hungry in their use of memory. Since these drivers are configured
into the system after the operating system starts to run, this method
will not work for configuring drivers for devices that the system
mu.st co1d boot. frcm. Some of Suppo rt i ng code in the RSP. boot and
Bios. may make the task of bringing up boot drivers easier though.
The advantages to this kind. of setup are: "-

1. Software Vendors can use the ATTACHUD program to put
their own drivers into the systen at boot time. This will
be invisible to the user.

Z. There can be no problems losing drivers due to improper heap
management since the drivers are put on the heap by the
operating system and before any user program can allocate heap
space.

3. This method does not freeze parts of the system to special
memory locations since it enforces the clean methodology of
using relocatable drivers.

Page 2

USING AnACHUD

AnACHUD.CODE will ask you questions about the drivers you want to
attach to the system. It makes a file called ATTACH.DATA which tells
SYSTEM.AnACH which drivers to attach to the system, what unit
numbers to attach them to and other i-nfonnat ion. The opt ions cove red
by ATTACHUD are:

1. A driver can be attached to one of the system devices, then
all I/O to this device -(PRINTER: for example) will go to
this new driver. In the case of a new driver for a disk
device the user will have to specify which of the 6 standard
disk units will go to this new driver. This will allow
replacement of standard drivers with custom ones without
having to restrict the I/O interface to UNITREAD and
UNITWRITE as is the case with option 2.

2. A driver can be attached to one of 16 userdevices. I/O to
these will be done with UNITREAO and UNITWRITE to device
numbers 128-143.

3. A method will be included to allow the attached driver to
start on an N byte boundry. The driver writer will be
responsible for aligning his code from that point.

4. More than one unit can be attached to the same dri ver. Thi s
way only One copy of the driver reside~ in memory and I/O to
all the attached units goes to this one driver. It is up to
the driver to decide which unit's I/O it is doing. How this
is done is explained below.

5. The initialize routine for any attached driver can be called by
SYSTEM.ATTACH after it has attached the driver and before any
programs can brXecuted.

6• In case any of your programs use the Hires pages, you can spec ify
in AnACHUD that drivers must not be put on the heap over these
areas. Your drivers would have to be quite large before they could
possibly overlap the Hires pages.

Foll ow through thi s exampl e of a sessi on wi th ATTACHUD where the
options available are completely described. First XecuteATTACHUD:

You will. begi ven the prompt:

Apple Pascal Attachud [1.1]

Enter name of attach data file:

This is asking for what you want the output file from this session
with ATTACHUD to be call ed. You could call it ATTACH.-DATA or some other
name and then rename it to ATTACH.DATA when you put it on the boot disk
with SYSTEM.ATTACH.

If you ever get a message of the fonn:

ERROR -> some error
Try again (RETURN to exit program):

then just retype what was requested on the previous prompt after
deciding wnat mistake you made while typing it the first time.

The next prompt is:

These next questions will detennine if
attached drivers can reside in the hires
pages. It wi 11 be assumed they can for the
page in question if you answer no to the
prcmpt for that page.
Will you ever use the (2000.3FFF hex)
hires page?

Followed by:

Will you ever use the (4000.SFFF hex)
hires page?

You should answer yes to the question for a particular Hires page if
you will ever be running a program that uses that Hires page while the
drivers are Attached. You don't want the possibility of your driver
residing in the Hires page if that page will be clobbered by one of
your programs. After answering the Hlres questions you wi 11 be asked
the following questions once for each driver you will be attaching:

What is the name of this driver? This
must be the .PROC name in its assembly
source (RETURN to exit program):

This must be the name of one of the drivers n the ATTACH.DRIVERS that
will be used with this ATTACH.DATA. The length of this name must not be
more than 8 characters. After entering the name you will be asked:

Whieh unit numbers should refer to this
device driver?

Unit number (RETURN to abort program):

You must enter a unitl'1tJT1ber in the range 1.2.4 •• 12.128 •• 143 or will
be given an error message. You cannot .attach a character uni t (CONSOLE:.
PRINTER: or REMOTE:) to the same driver as a block structured unit and if
you try you will be given the message:

You can' 't attach ~ character unit and
a block unit to the same driver. I
will remove the last unit~ you entered.
Type RETURN to continue:

If you don't get the above error. you, will be asked:

Do you want this unit to be
initialized at boot time?

A yes response will put the unit number just entered on a list of
units that SYSTEM.ATTACH will call UNITCLEAR on after attaching all

n", __ A

the drivers. This gives you a way to have the system make an initialize
call on your attached unit at boot time. A no response will mean
that no boot time init call will be made on this unit to the driver
you just attached.

You wi 11 be eventua lly asked:

Do you want another unit number to refer
to this device driver?:

A yes response wil 1 get you to the Unit number prompt again and a no
response will get you to the prompt:

Do you want this driver to start on a
certain byte boundary?

A yes here wi 11 gi ve you more prompts:

The boundry can be between 0 and 256.
O=>oriver can start anywhere.(default)

. 8=>Driver starts on 8 byte boundary.
N=>Driver starts on N byte boundary.

2.56=>D.river starts on 256 byte PAGE boundary.
Enter boundary (RETURN to exi t program):

And the lastlinepf the prompt will repeat until you enter a
boundary in the correct range. The boundary refers to the memory
location where the first byte of the driver is loaded. If your
driver needs to be aligned on some N byte boundary you can assure it
will be using this mechanism.• if you know how the driver's origin is
aligned. You can align internal parts of your driver however you
want. Finally you will get to the prompt:

Do you want to attach another driver?

And if you answer Yes to thi syou .wi.ll return to the 'What is the name
of thi s dri verI prompt. and answeri ng No wi 11 end the program. savi.ng
the data file you have made.

THE DRIVER

Drivers must be written in assembly using the Pascoal Assembler.
They must not use the .ABSOLUTE option. so the drivers can be
relocated as they are brought in by the system. Each driver must be
assembled separat~lyw.ith no externalr.eferences. When all drivers
are assembled. use the LIBRARY program (in the same way you \It()uld use
it to put units into a library) to put all the drivers in one file.
Name this file SYSTEM.DRIVERS. See further explanation of making
SYSTEM.DRIVERS below.

Considerations for all drivers:

1. Study the examples below as certain information is only
documented there.

2. Refer to the Apple II Pascal memory map below and you will see

that parts of the interpreter and BIOS reside in the same address
range and are bank-switched. The system automatically folds in
the BIOS·for drivers added using ATTACH. Most of these drivers
will have to make calls to CONCK if they want type ahead to
continue to work properly. CONCK is the BIOS routine that
monitors the keyboard. See the example drivers below to be sure
you are doing this correctly. You cannot call CONCK through the
CONCK vector at BFOA (see BIOS part of this document) because
this call~uld go through the same mechanism used to get to your
driver and the return address to Pascal would be lost.

3. All attached drivers must be written with one common entry point
for read, write, init and status. The driver will use the Xreg
contents to decide which type of I/O call this is and jump to the
appropriate place within it's code. The Xreg is decoded as
foll ows:

o -->read (no bits set)
1 -->write (bit a set)
2 -->init (bit 1 set) § The Pascal statement

UNITCLEAR(UNITNUMBER); makes an init call for
unit UNITNUMBER t

4 -->status (bit 2 set)

4. The dri vers must a1so pop a ret urn address off the stack, save
it and later push.;t to do aRTS l'lt1en the driver is finished. All
other parameters must be removed from the stack by the driver.
For all calls, the return address will be the top word on the
stacl<.

5. SYSTEM.ATIACH will make a copy of the normal system jump vector
(the vector after the fold) and put this on the heap. There will
be a poi nter toth.is vector at OE.2. Your drivers can use thi s .
vector to get to the normal system drivers for device numbers 1•• 12.
See example below.

6. All drivers must pass back a completion code. in the X register
corresponding to the table on page 28.D.of the 1.1 "Apple !I Apple
Pascal Operating System Reference Manual".

7. In references below to parameters passed on the staCk, all
parameters are one word parameters so they require two bytes to
be popped from the stack by the driver.

8. Control \'lOrd format for Unitl"'ead & Urlitwrite

bits 15 •• 13
user
defined
functions

12 ••5
reserved
for future
expansion

543
type B type A nocrl f nospec
chars chars

1. .0
reserved
for future
expansion

type B -a ··>System will check for CTRL S &F from CONSOLE:
during the time of this Unitio call.

-1 ··>System will not check for CTRL S &F during t~is

Un it i o.
type A -0 -->If using Apple Keyboard, system will check for

CTRL A.Z.K.W &E from CONSOLE: during the period
of th; s Un it i 0 •

Page 6

-I -->System wi 11 not check for the chars duri ng
this Unitio.

nocrlf .0 .->line feeds are added to carriage returns by the
Interpreter.

"'I "'>no 1ine feeds are added •••
nospec ·0 "'->DLE's (blank suppression code) are expanded on

output and the EOF character is detected on input
-I u>nothing special is done to DLE's on output and

EOF on input.

default setting for all control word bits = O.

9. Control word format for UNITSTATUS

bits 15 •• 13 12 •• 2 1 0
user reserved for direction
defined for future purpose

direction =0 u>Status of output channel is requested
"'I ·.>Status of input ...

purpose ·0 :s=>Call is for un i t status
-I ::s>Call is for unit control

10. These are the new vectors and routines added to the BIOS to make
attach work. The RSP, bootstrap, and readseg were also modified
to allow for attaches.

jUni t 128
jUni t 129

UDJMPVEC jJump vector for user devices, offset=O => unattached device.
iThe correct addresses are initialized by SYSTEM.ATTACH
iSee locations section of BIOS part below for pointers to
ithis vector.
JMP 0
JMP 0

.
JMP o ,Unit 143

(ATTACH would modify the words
for units 4,5,9 .. 12 if a
different disk driver were
attached to any of them)

;Unit it
jUnit #2
iUnit n
;Uni t ~4

jUnit #5
jUnit 116

iIf hi gh byte=FF then
i device is not a disk drive
ielse

if high byte=O then
device is a regular disk drive and low byte=drive #

else
dri ver for thi s di sk drive has beenattached by SYSTEM.ATTACH
and the driver address is stored in this word.
(Driver address has to be theaddr.es.s-l for RTS in PSUBOR
to work correctly , remember thi s for ATTACH. PSUBDR is
listed below.)

,See locations section of BIOS part below for poi nters to
jthi s vector.
.WORD OFFFF
.WORD OFFFF
.WORD OFFFF
.WORD a
.WORD 1
.WORD OFFFF

DISKNUM

""--- .,

.WORD OFFFF ;Unit 17

.WORD OFFFF ;Unit IS

.WORD 4 ;Uni t 19

.WORD 5 ;Uni t 110

.WORD 2 ;Unit III

.WORD 3 ;Unit 112

;JVECTRS is a word pointing to the base
;of UDJMPVEC.

;Now we have (Areg*3).
;Add in low byte of base of table having
;no carry problem with only 16 UD's.

;Clear top bit of unit#
;Make address in UOJMPVEC table
;Addressa Areg*3 + base of table

TIZ
IJVECTRS
TI2
#0
JVECTRS+1

;Routine to get to an attached driver through UOJMPVEC
;Assume unitl in Areg &operation to be performed in Xreg.
;See the jump vector in the BIOS sections to see how you
;get to this routine.
STA TIl
AND /17F
STA TIZ
ASL A
CLC
ADC
ADC
STA
LOA
ADC

UDRWIS

STA TI2+1
LOA TIl
JMP @TT2

assumes

to work

;Restore unit# to Areg.
;JlJTlP to substituted driver. This
;the driver address in DISKNUM '"
;(ADDRESS OF DRIVER)-l for the RTS

TIl

DISKNUM-2.Y ;Store LSB of driver address.

;Routine to get to an attached driver through OISKNUM
;We assume on entry, Areg=unit#, Yreg"'OISKNUM
;offset &Xregsthe command to be performed by the substituted
;dis~ driver.
;See the jump vector in the BIOS sections to see how you
;get to this routine.
STA TIl ,Save unitH.
LOA OISKNUM-1,Y ;Store MSB of driver address.
PHA
LOA
PHA
LOA
RTS

PSUBDR

Special considerations when attaching .drivers for the system
devices, unitnumbers 1•• 12.

A. Character Oriented Oevice.s (I'ass the charact~r to be read-written
1n the A-reg;ster and make Bios calls one character at a time
fT"t)1l1RSP 1.ev~L. On.entry, the unit.nUlTlber'l'till be in the Y
register in case you wanted to attach all character oriented
devices to the same driver). If you attach REMOTE: &or PRINTER:
to the same driver as CONSOLE:, all will have their jump vectors
pointing to the. start of the driver+3 bytes. See further
discussion on this below.

Units 1 &2 (CONSOLE: and SYSTERM:)
1. These must both go to the same driver.

l'\ • _ '"' f\

2. The system COt..CK routine will be patched to jump to the start of
the driver. The CONCK routine gets characters entered at the
keyboard and fills the type ahead buffer. See the example CONSOL~:
driver below.

3. Because of item 2, the entry point for normal calls (not CONCK
calls) to the attached driver will be 3 bytes beyond the start
of the driver.

4. The interpreter takes care of expanding blank suppression codes
(OLE's), echo to the screen, EOF (the end of file character), and
adding line feeds to every carriage return. Your driver doesn't
need to do this.

5. CONSOLE: read and write have only the return address on the stack.
The stack for CONSOLE: init looks like: .

POINTER TO BREAK VECTOR (This should be stored at
location BF16 •• BF17 by CONSOLE:
init.)

POINTER TO SYSCOM (This should be stored at
location F8 •• F9 by CONSOLE:
init.)

(AlSo at init time, the Flush
and Start/stop conditions
shoul d be set to normal and
the type-ahead queue should
be emptied.)

RETURN ADDRESS <--TOS (top of stack)
The stack for CONSOLE: status looks 1ike:

POINTER TO STATUS RECORD
CONTROL WORD
RETURN ADDRESS <--TOS .

6. A status request should return, in the first word of the status
record. the number of characters currently queued in the direction
asked for.Thi s is the number of characters in the type-ahead
buffer. If no type-ahead is being used then output status should
always return aOandinputstatus al if a char is waiting to be
read, otherwise aO.

7. Since we are using 7 bit ASCII codes,theCONSOLE: read routine
should zero the high order bit of all characters it reads from
the keyboard and passes back to Pascal (to the RSP). The
CONSOLE: write routine should transfer all 8 bits as received
from the RSP si nce many devices use 8 bit contro 1 codes.

8. The RSP will send both upper and lower ca se c:hars to the CONSOLE:
wri te rout i ne. The write rout i ne shoul d map the lower to upper
if the device cannot handle lowercase.

9. CONSOLE : Output Requirements:. '"
A. CR (00 hex) A carriage return shoul d move the cursor to the

beg inn ing of i the<current 1i ne.
B. LF (OA hex) A line feed should move the cursor to the next line

but not change the column position. If the cursor is on the
last line on the screen when a line feed is sent, the rest of
the. screen shoul d scro 11 up one li ne and the bottom 1i ne be
c.leared.

C. BELL (07 hex) A sound should be made if possible when the
CONSOLE: gets 07. If making a sound is not possible then
ignore the 07.

D. SP (20 hex) Place a space at the current cursor position
overwriting whatever is there. Move the cursor to the next
column. If the cursor is on the last column of a line, it is
best if the cursor stays where it is after the space fills that

Page 9

position. If the cursor is on the last column of the last line
on the screen, it is also best if the curSOr remains in that
position and the screen does not scroll. These are the
prefered actions of the cursor at end of line &end of screen;
in the strict sense, the actions of the cursor in these
circumstances are undefined.

E. NUL (00 hex) When a Null is sent to the CONSOLE: from the
RS?, the CONSOLE: should delay for the ~ount of time
required to write one character but the state of the screen
should not change.

F. All printable characters should be written to the screen and
the cursor should move in the same way it does for SP.

G. See the discussion on pages 199-215 in the 1.1 Operating
System Reference Manual for further requirements and
information.

10. CONSOLE: Input Requirements:
A. The RSP takes care of echoing characters to the screen typed

from the CONSOLE: keyboard.
(below items optional The Start/Stop, Flush &Break chars are

redefinable; see 9G above for more info.)
B. The start/Stop character is detected by CONCK and is used

to stop all processin9 until the character is received a
second time. When the character is received (see 9G above
for more info) one should loop in CONCK continuing to process
other characters until:

1. the SIS char is received .again
2. the Break char is received

In case 1, the suspended processing should continue as it
was. before the first SIS was typed. Action needed for the
Break char is described below. The SIS char is never returned
to the RSP and CONSOLE: type-ahead, if impl emented, shoul d
continue during the suspended state. Offset frcm SYSCOM to this
char is 85 decimal. (This and the next 2 chars are redefinable
by the Setup program and SYSCOM is the system area that keeps
track of this info. The pointer to the start of SYSCCM is
passed to the CONSOLE: init routine and is stored at
F8 •• F9 hex.)

C. The Flush character will stop all output and echoing to the
CONSOLE: until it's second occurEnce (see 9G above). CONCi<
detects this and must set a flag to tell the CONSOLE:
output rout.ine to ignore characters while the flag is set. If
the CONSOLE: is re-initialized ora Break-char is received, the
f1 ush state <shoul d be. turned off • Flush is never returned to
the RSP. Fl ushonl y sto psCONSOLE : out put, other proc ess; ng
continues. Offset fromSYSC()1 to this char is83 decimal.

O. The Break char should cause CONCK to jump to the location
stored at BFl6. This location is also passed to the CONSOLE:
init routine which stores it at BFl6. The break char is never
returned to the RSP and it should remove the system from
Stop or Flush mode if it is in either mode. Offset from
SYSCOM to this char is 84 decimal.

E. Type-ahead should be implemented in CONCK by storing
characters typed at the keyboard in a queue until they
are requested by a CONSOLE: read from Pascal. When the
queue fills, further characters should be ignored and
a bell sounded when they are typed. The length of the
queue should be at least 20 characters.

11. For more information on CONSOLE: requirements, see pages 199-

216 of the 1.1 Operating System Reference Manual.

Unit 6 (the PRINTER:)
1. The interpreter takes care of expanding blank suppression codes

(OLE's), EOF (the end of file character), and adding line feeds
to every carriage return.

2. PRINTER: read ,write and init have only the return address on the
stack. PRINTER: status has the same items on the'stack as CONSOLE:
status. PRINTER: init should cause the PRINTER: to do a carriage
return and a line feed and throwaway any characters buffered to
be printed. No form feed should be done.

3. For status, return in the first \IIOrd of the status record the
number of bytes buffered in the direction asked for; if this
cannot be determined by your PRINTER~, return a O.

4. The PRINTER: write routine must buffer a line and send it all at
once.. if your PRINTER: can only receive data that way.

s. Li ne Oelimi ter characters:
A. CR (hex 00) A carriage return should cause the PRINTER: to print

the current line and return the carriage to the first column.
An automatic line feed should not be done by the PRINTER:
driver when it reads a CR.

B. LF (hex OA) The RSP will send line feeds to the PRINTER: driver
after each carri age return. Thi s should cause the PR INTER: to
advance to the next 1ine. If the PRINTER: must a1 so do a
carriage return when it is given a line feed, then this is
O.K.

C. FF (hex OC) This should cause the PRINTER: to move the paper to
top of form and do a carri age return. I f top of form is not
possible on your PRINTER:, do a carriage return followed by a
line fe~d.

6. It is assumed that i.nput cannot be received from the PRINTER:.
See.the BIOSisectionfor a discussion of how to get input from
the PRINTER:. Nonnally, trying to get input from the PRINTER:
should return completion error code #3.

Units 7 (REMOTE: in) &.8 (REMOTE: out)
L These. must both go.to.the same driver~

2. The ihterpretertakes care. of expanding blank suppression codes
(DLE's),EOF and~8ding line feeds to every carriage return.

3. Same. stack set.upa~ the PRINTER:. =-
4. Status should return in first word of status vector the number of

bytes buffered for the direction specified in the control word,
o if you have no way to check.

5. This unit is supposed to be an RS-232 serial line for many
different appl ications so it is necessary that it transfer the
data without modifying it in any way. The transfer rate default
is9600. baud.

6. It would be ni.ce if the input to REMOTE: could be buffered in the
same way input to the CONSOLE: is but this is not an absolute
requirement.

7. REMOTE: init should set up the REMOTE: device so it is ready to
read and write.

B. Block Structured Devices

Units 4 (the boot unit).5.9.10.11,12.
1. These units are assumed to be blocx structured devices. the

drivers for these units must do their own Pascal Blocx to
Tracx-Sector conversions.
The UCSD system assumes the disx device is a O-based consecutive
array of 512 byte logical bloCKs. All UCSD Pascal disxs must
have this logical structure no matter what their actual physical
structure or size are. The physical allocation schemes for
information on different types of disks are arranged with sectors
that are of various sizes that depend on the hardware of the
particular disk device used. The drtver must convert the Pascal
block' to the appropriate tracx §or' of where that block
;sstored on it's disk device. This could be a floppy or hard
disk or some other type of device. It doesn't really matter, so
long as your driver maps the Pascal Block to the cOrrect place and
continues to do so for the length (byte count) required for the
UnitIO operation.
The Pascal system uses logical blocks a &1 for it's bootstrap
code. These logical blocks should not be used for anything
else and should therefore only be available to Pascal through
direct UNITREAD &UNITWRITE operations and not accessable by
the system throu9h any other means. This document will not
attempt to descrlbe the boot sequence &does not attempt to
give you enough information to attach another driver or device
to unit #4: so you can cold boot from that unit.
When a UNITWRITE is done to disk where the byte count MOO 512
is not equal to. a (this means the last block included in the
write would be partially written to according to the byte count),
it is undefined whether garbage is wr~tten into the remaining
part of this last block. So you may write a whole block anyhow
if that is more efficient and the Pascal system will not suffer
any bad consequences.
When a UNITREAD is done from a disk yquare not allowed to
overwri tei ntothe .. unused part. of the. last block (if there is
an unused part due to bytec~untMOO 512(>0). You must only
send the number of bytes asked .for because youcoul d clobber
memory hav ingsome other val id use if you wrote extra bytes.
You will have to buffer the last sector inside your disk
read routine then transfe.r exactly the number of bytes from
thi s· 1ast sector needed to add up to the tota1. bytes requested.

2. The unit number will always be in the A register.
3. The stack setup for read andwri te is:

CONTROL WORD (The MOpE parameter mentioned in the
1.1 Language Ref Manual on page 41)

DRIVE NUMBER
BUFFER ADDRESS
BYTE COUNT
BLOCK .•. NUMBER
RETURN ADDRESS <--TOS

For init there is only the return address on the stack and
for status the setup is the same as for th.e CONSOLE:.

4. Status requests should return the followtng in the status
record:

word1:Number of bytes buffered in the direction asked
for in the control word. Return 0 if you have no
way of checking.

word2:Number of bytes per sector.

P;lap 1?

word3:Number of sectors per track.
word4:Number of tracks per disk.

C. Other
Unit 3
1. This unit has no meaning for the Apple II system except that

UNITCLEAR on this unit sets text mode.

Considerations when attaching drivers for user defined devices
numbers 128-143.

These unit numbers are provided for you to do whatever you want
with them. you can define what they do except for the following
protocols.

1. Follow the considerations for all drivers listed above.
2. The unit number will always be in the A register.
3. The stack setup for read and write is:

CONTROL WORD
DRIVE NUMBER
BUFFER ADDRESS
BYTE COUNT
BLOCK NUMBER
RETURN ADDRESS <--TOS

FOr init there is only the return address on the stack and
for status the setup is the same as for the CONSOLE:.

This is a sample driver for a user defined device.

;Locations O••3Shexma'ybeuseda~pure temps. One should
;never assume these locations .WJn't be clobbered if you leave
;the environment of the driver itself. ("leaving" inclUdes
;calls to CONCK).

CONCKADR .EQU 02

;Only one .PROCmay occur in a driver. each driver to be
;AnACHEDl11ust be assembled separately-using the Past;al
; assemb 1er and can have no external references. .

.PROC U128DR

STA TEMPl ;Save Areg contents (unitN)
PLA
STA RETURN
PLA
STA RETURN+l
TXA ;Use the X reg to tell you what kind of

;call this is.
eMP HZ
BEQ INIT

READ

CMP 14
BEQ STATUS
CMP #0
BEQ PMS
CMP 11
BEQ PMS

;Could have error code here
JMP RET

PMS PLA ;Get the parameters
STA BLKNUM
PLA
STA BLKNUM+I
PLA
STA BYTECNT
PLA
STA BYTECNT+I
PLA
STA BUFADR
PLA
STA BUFADR+I
PLA
STA UNITNUM ;Also in TEMPI
PLA
STA UNITNUM+I ;Shoul d al ways be 0
PLA
STA COr-mOL
PLA
STA CONTROL+I
TXA
BNE WRITE

JSR GOTOCK
;Yourdri vel" I s cod.e for a read
(If more. than one .unit we.reattached to this
code could jump to various. places depending
of the Areg stor~ in TEMPI)

JMP RET

WRITE JSR GOTOCK
;Your driver's code for a write
JMP RET

driver, this
on the contents

; I f you wanted to ca11 CONCK. whenever your devi ce di daread
tor-write, you would use th.is routine:

CKR .WORD CONCKRTN-I
GOTOCK LOY 155. ;Offset to address of CONCK

LOA OOE2 t Y
STA CONCKAOR
IHY
LOA @OE2,Y
STA CONCKAOR+l
LOA CKR+I ;Set it up so you return to CONCKRTN after
PHA ;the CONCK call.
LOA CKR
PHA
JMP @CONCKADR ,Jump to CONCK

0,."", 1 <1

CONCKRTN RTS ;Return to caller.

INIT ;Your driver's code for in it
JMP RET

STATUS PLA
STA CONTROL
PLA
STA CONTROL+I
PLA
STA BUF AOR ;Address of status record.
PLA
STA aUF ADR+I
;Your driver's code for status

RET LOA RETURN+I
PHA
LOA RETURN
PHA
LOA TEMPI
RTS

RETURN .WORD 0 ;Can't use 0 page for these since we leave
TEMPI •WORD a tour environment when going to CONCK •
CONTROL .WORD 0
UNITNUM .WORD 0
BUFADR .WORD 0
BYTECNT .WORD 0
BLKNUM .WORD a

.END

This is a sample driver for a CONSOLE: driver replacement.

ROUT1NE .EQU 02
TEMPI .EQU 04

.PROC CXATCH

JMP CONCKHDL ;SYSTEM.ATTACH will patch the start of CONCK
ito jump here when you attach a driver to the
;CONSOLE:.

STA TEMP 1

STY TEMP1+l
TXA

;We are not popping the<return address from
;the stack cause.. we'll .return from the system
; rout i ne we ca 11 from th is dri ver.
;All the read,write,init and stat calls will
;jump here (the starting address of your
;CONSOLE: driver+3).

Paae 15

;This examRle shows you how to have your
town code for the CONSOLE: as well as using
;the system CONSOLE: routines. If you want
ito replace the system routines completely.
iYOU need to pull the return address here.

BEQ READ
eMP II
BEQ WRITE
CMP 12
BEQ INIT
eMP 14
BEQ STATUS

;Error code here

READ ,Your driver's code for a read

LOY 11

BNE GET

;offset to address of CONSOLE: read in
;the copy of the jmp vector made by
,SYSTEM.ATTACH. See the jump vectors in the
;BIOS section below to see how we get the
;offsets.

,You would have a JMP RET here (see example for user defined
,device) if you were not using the system CONSOLE: routines
;as well.

WRITE ,Your driver ' s code for a write
LOY #4
BNE GET

INIT ,Your driver's code for init
LOY #7
BNE GET

STATUS ,Your driver's code for status
LOY 143.

GET LOA @OE2,Y ,At E2 is a pointer to the copy of the
,jump vector made by SYSTEM.ATTACH before
,it was modified to att~ch your drivers.

STA ROUTINE
INY
LOA ~OE2.Y

STA ROUTINE+l
LOY TEMPl+l ,Restore registers
LOA TEMPI
JMP @ROUTINE ,Go to the original CONSOLE: driver for this

;1/0 ccmnand. You will return from there, the
,BIOS is already folde<j in due to the way your
,driver was attache<j by SYSTEM.ATTACH.

CONCKHDL PHP ;Duplicate the 1st three instruc~;ons of CONCK
PHA ;as they were patched by SYSTEM.ATTACH to jump

Page 16

•TXA below .to the 1st instruction of this driver •

.Here you can put the code for your own part of CONCK (you
,may want to check some additional device like a keypad or
.something or you may want to replace the system CONCK
;routine alltogether. If you do this, you must save the rest
;of the machine state and return it when you are finished .
•See example below.

TYA
PHA

.Save Yreg contents for a second.

;Add 3 so you enter right after the three
.instructions you duplicated at CONCKHDL.

.This code gets us to the system CONCK routine.
CLC
LOY #55. ;Offset to the address of system CONCK in the

;copy of the original jmp vector.

LOA @OE2, Y
ADC 13

STA ROUTINE
INY
LOA @OE2,Y
ADC #0
STA ROUTINE+l
PLA ;Restore Yreg.
TAY
TXA ;Last of CONCK instructions SYSTEM.ATTACH

;overwrote with the jmp to the start of this
;driver.

JMP @ROUTINE jGoto system CONCK and return from there •

•END

Here is another alternative for the CONCKHDL part of the above
program.

CKRTN
CONCKHDL

.WORD CONCKRTN-l
I.If you don't care about type-ahead, this could be

simply the following code (assuming your CONSOLE:
read gets a character directly fro~ your CONSOLE:
device whenever it is called) :

PHP
INC RANDL .RANDL is a permanent word at BF13 used in

.the built in random function.
BNE $1
INC RANDH ;RANOH

$1 PLP
RTS

; 2.If you want type-ahead, this code should check to see
.if there is a character available and stuff it into a type
;ahead buffer.

o "no ,"7

; 3.lf you are using this with the regular CONCK (extra keypad
ito check or statistics for example), then you can do it thlS
;way.

PHP ;Save state of machine
PHA
TXA
PHA
TYA
PHA

;Put your driver's part of CONCK here (gives your driver
;priority)

LOA CXRTN+1
PHA
LOA CKRTN
PHA
PHA
PHA

CLC
LOY ISS.

;Set up' things to return from reg CONCK

;Push garbage to account for other pushes done
;in first three bytes of CONCK

;Setup to call CONCK
;Offset to the address of system CONCK in the
;copy of the original jmp vector.

;Add 3 so you enter right after the three
;instructions you duplicated at CONCKHDL.

LOA OOE2,Y
AOC 13

STA ROUTINE
INY
LOA @OE2,Y
AOC #0
STA ROUTINE+l

;In this example we don't have to worry about
;the machine state here as we are restoring
tit after we call CONCK

JMP @ROUTINE ;Goto system CONCK and return to CONCKRTN

CONCXRTN PLA ;Restore state of machi ne
TAY
PLA
TAX
PLA
PL?
RTS ;Return to the guy who called CONCK.

MAKING ATTACH. DRIVERS

1. Xecute the standard 1.1 LIBRARY program.
2. The output code file should be ATTACH.DRIVERS or could be named

somethine else and renamed ATTACH.DRIVERS when you put it on the
boot disk.

3. For the Link code file use the code file of your first driver.

Pace 18

4. Copy its slot #1 into slot #0 of ATTACH.DRIVERS.
5. As long as you have more drivers to add. useN(EW to get another

Link code file and copy it's slot HI into slots #2.3 •••• 15 of
ATTACH.DRIVERS.

6. When done. type 'Q' then 'N' followed by a RETURN for the notice.
See the 1.1 Operating System Reference Manual for further info on
the LIBRARY program.

THE WORKINGS OF SYSTEM.ATTACH

If it is on the boot disk. SYSTEM.ATTACH is Xecuted by the operating
system (both regular 1.1 and runtime 1.1) before SYSTEM.STAP.TUP. The
1.1 runtime system will use a runtime version of SYSTEM.ATTACH.

The error messages that can be generated by SYSTEM.ATTACH are:

1. ERROR a>No records in ATTACH.DATA
2. ERROR a>Readfng segment dictionary of ATTACH.DRIVERS
3. ERROR a>reading driver
4. ERROR a>A needed driver is not in ATTACH.DRIVERS
5. ERROR a>ATTACH.DATA needed by SYSTEM.ATTACH
6. ERROR_a>ATTACH.DRIVERS- needed by SYSTEM.ATTACH

If all goes well attaching drivers. SYSTEM.ATTACH will display
nothing unusual in the regular boot sequence except for extra disk
accesses and anything done in the in it calls to any of the attached
devices.

II.BIOS

This section explains things in the BIOS area that are extensions
and modifications that were added to Apple Pascal ve.rsion 1.1 th.at were
different or not there at all in Apple Pascal version 1.0 (UCSD version
11.1).

1. The disk routines have been modified to handle interrupts (So
interrupt driven devices could be.af~ach.ed to .. Ll pascal)Jf they are
being used. To use interrupts. one~uld have to attach an
interrupt dri ver. then patch the IRQ vector (FFFE hex)to poi nt to
this driver. The Pascal system is defined to .cane up with interrupts
turned off so. once the driver is brought in and the IRQ patched.
interrupts must be turned on. The driver's init call could patch the
IRQ and turn on. interrupts. The disk routines save the cuh'ent state
of the system and turn interrupts off only during crucial time
periods. the state of the system is returned during non crucial time
periods so interrupts can be handled. This has not been tested at
this time. so there is no data concerning the maximum interrupt response
time delay.

2. The control ~rd parameter in UNITREAD.and UNITWRITE was not passed
on to the BIOS level routines from theRSP level. This has been done

f'\ .. "

in 1.1 to allow the changes to the control word listed below under
special character checking and also so user defined units or attached
Pascal units can use the user defined bits 'of the control word.

3. IORESULTS 128-255 are available for user definition on user defined
devices.

4. UNITSTATUS has been implemented in the Apple II Pascal 1.1 system.
This works for the Pascal system units as described in the ATTACH
part of this document. For user defined units, Unitstatus can be
used for whatever necessary.

Unitstatus is a procedure that can be called from the Pascal level in
the same way Unitread can. It has three parameters:

1. uniU.
2. pointer to a buffer.

(any size buffer you want of type Packed
Array of Char)

3. control word.

When you make a Unitstatus call from Pascal, the call should look
1ike:

UNITSTATUS(UNITNUM,PAC,CONTROL);

Where UNITNUM &CONTROL are integers and PAC is a Packed Array of
CHAR or a STRING and may be subscripted to indicate a starting
position to transfer data to or from. See further information on
what Unitstatus is defined to do for the various devices in the
ATTACH part of this document.

The control word wi 11 tell the status proc.edure for a particul ar unit
what information about the unit you want. Bit 0 of this word should
equal 1 for input status and 0 for output status. Unitstatus is
implemented .with bit 1 of. the control word "'1 meaning the call is for
unit control. When this bit -.0 the callis for unitstatus. In all
cases bits 2-12 are reserved for system use and bits 13-15 are
available for user defined funtions.

An entry in the jump vector has been made for each of the system
Unitstatus cal1s, i.e.. CONSOLESTAT ,PRINTERSTAT ,REMOTESTAT,etc ••
Unitstatus calls to.a.user defined device (128-143) wi n all go
through the same jump .vector location •.

5. The handling of CTRL-Cby the Apple bios was non standard in l.0. The
UCSO BIOS definition specifies that a C.TRL-C coming from REMOTE: or the
PRINTER: should be placed in the input buffer and then no.more characters
shouldb.e received. Our bios did fill the buffer with nulls
including the place where the CTRL-C was to go. Apple Pascal's BIOS now
confonns to the standard definition,where the null filling of the buffer
is done only when CTRL-C comes from the CONSOLE: (11:).

6. The unitio routines can be accessed from assembly procedures by
pushing the correct parameters on the stack and using the jump vector

. to get to the BIOS routine. A seperate document needs to be
written describing how this is done and pointing out the problems
doing it in the case of the CONSOLE:,SYSTERM: ,PRINTER: &REMOTE: units.

"" .. _- ,.,,,

These problems are concerned with the special character handling done
in the RSP for these units. The assembly procedures calling the
pascal drivers for these units would either have to repeat portions
of the RSP code themselves or not get the special character handling
provided by the RSP. Calling the CONSOLE: init routine requires
pointers to syscom and the break routine to be passed on the stack.
These pointers are now stored in a fixed location so assembly
routines wanting to call coninit can get at them. See the locations
section.

7. Suppression of Special Character Checking.

Special characters in the Pascal system are of three types:

A. Chars used to control the 40 character screen. These are
ctrl-A.Z.W.E &K.

B. Pascal system control chars for general CONSOLE: use. These are
ctrl-S & F.

C. Types A &8 are checked for by the CONCK funtion in the bios.
There are other special chars checked for .in the RSP. These are
ctrl-C. OLE. and CR (line feeds are automatically appended to
CR). With UNITREAD and UNITWRITE the automatic handling done,by
the Pascal system of these characters can be turned off. To turn
off DLE expansion and EOf checking give bit 2,of the control word a
value of 1. The automatic adding of line feeds to carriage returns
can be suppressed by setting bit 3 of the control word to 1.

A way was needed to suppress speci a.l handl.ing> for types 'A '& '8'. Th is
can now be done in two ways. First, the corytrol \<lOrd of UNITR/W will
turn off checking for type 'A' control chars if bit 4 is set and will
turnoff checking for type 'S' chars .ifbit 5 is set. In this mode,
the special char handling wi.l1only beturn.ed off during that
particular unitio. This will be be done for you in the RSP by
setting bits in a b~te 'SPCHAR'at location8QC•. The CONCK routine
will look at bit 0 ofSPCHAR and if .set .willnot look for the type
IA'chars; if bit 1 is set, it will not lo.ok for. the type '8' chars.
If you set these bits in the.SPCHAR yourself instead of letting the
RSP do it through the unitiocontrol\ltOrd, then the associated
speci al character check i n9 wi1.l be turned Off until you reboot or
reset the bits again. When special char checUng is turned off, the
chars are passed back to the Pascal level lik~ all other chars would
be. You can use these added features to redefine the system special
chars in a particular application program or to just disable th~m.

8. The EOF char (etrl-C) causes a lot Of problems .in the Pascal system.
The cause of the problems is that the editor looks for. this character
to end many of it's editing modes. The editor has itls own getchar
routine which reads each character the user enters from SYSTERM:.
When reading from SYSTERM: instead of the CONSOLE:. the EOF char is
passed back as any other character but it still ends the current call
to unitread. The editor echoes each char to the CONSOLE: itself until
it comes to ctrl-C. The operating system and the filer both use the
getchar routine in the operating system. This routine is defined to
re-init the system if it gets a ctrl-C from the CONSOLE: and it reads
from the CONSOLE:, not SYSTERM:. You must be sure not to end responses
with control-C except for the cases (in the editor only) that are

o ~H'U:=- ."

supposed to end with control-C. See the 1.1 Operating System
Reference Manual.

9. The bios card recognizing section has been enhanced to recognize a
new 'FIRMWARE' type card. This card will allow OEM's to have their
drivers in their own firmware on the card. Routines have been added
to allow for init,read.write &status calls to this new type card.
This protocol has been documented and is attached as an appendix
to this document.

10. As you can see. the Pascal system memory usage is scattered
allover the 64k space. The Apple II was not designed with a
stack machine. like the Pascal P-machine. in mind. We don't
need any more constraints fixing certain pieces of the system
to certain EXACT places. To make the best use of the space we
have, we must have the ability to move things around. To
achieve this goal. we intend the following:

A. To stop people from writing things that peek here and poke there
and expect things to stay exactly where they were for future
versions.

B. Various people need space for patch areas and other purposes.
All programs have to be written so thi sspace does not have to
be in a pennanent fixed location if this is at all possible.
The areas reserved for system use are filling up fast. we need
to avoid using them. You can get space dynamically using NEW
but you mus.t be ca.reful that this space.stays around for the
whole. time you need. it. If you are attaching a driver. you
can get .bufferspacein thedriyer by using.WORD or .BLOCK
in the Assembler•.<This space can be accessed from outside the
driver i.f you k.nowtheoffset to the start of. this space from
the start of the dri ver. .Thi s met hod cou 1d even be used to get
space ..bel ow ..the heap by attaching a driver to one of the user
defined devices that is a large .BLOCK>and is only used as a
buffer •... You can get the address of this buffer (of a driver)
from the. jump vector that has a pointer to the driver. Pointers
to all the jump vectors are in zero page, see the 1ocat ions
secti on be.l ow.

C. The jump vectOr wi 11 .have a fi xed order for versi on 1.1 and
future vers; ons. The order is the same as in the 01 d versi on
LO with the new entrys added to the bottom. The setu.p for the
j\J'l1P vector and getting into the BIOS is different than the old
LO system. Here is how the new system is set up with the
fixed order for the jump vector:

;-----_._---
MAIN BIOS JUMP TABLE CALLED FROM INTERPREiER
(FOLLOWED BY REAL JUMP TABLE AT FIXED OFFSET)
RSP CALLS COME TO THIS JUMP VECTOR

j---

0:0(1" ??

BIOS

KCONCK

JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET

JSR SAVERET
JSR SAVERET

iCONSOLE READ iJlJTlP vector before fold.
.CONSOLE WR ITE
;CONSOLE INIT
,PR INTER WR IrE
;PRINTER INIT
.DISK WRITE
iDISK READ
;0 ISK INIT
.REMOTE READ
;REMOTE WRITE
;REMOTE INIT
;GRAF IC WR ITE
;GRAFIC INIT
.PRINTER READ
.CONSOLE STAT
iPRINTER STAT
;DISK STAT
.REMOTE STAT
;To get to CONCK fran CONCKVEC
;USER READ For UDRWIS
;USER WR IrE
;USER IN IT
;USER STAT
;For PSUBDR
;IDSEARCH

j--------------------------------------
THIS JUMP TABLE MUST BE OFFSET
FROM BIOSTBL BY EXACTLY SSC.
SYSTEM.ATTACH MODIFYS THIS JUMP
VECTOR TO POINT TO ATTACHED DRIVERS
FOR THE STANDARD SYSTEM UNITS.

i--------------------------------------
BIOSAF JMP CREAD

JMP CWRITE
JMP CINIT
JMP PWRITE
JMP PINIT
JMP DWR ITE
JMP DREAD
JMP DINIT
JMP RREAD
JMP RWRITE
JMP RINIT
JMP IORTS
JMP GRAFINIT
JMp· IORTS
JMP CSTAT
JMP ZEROSTAT

JMP DSTATT
JMP ZEROSTAT

;Jump vector after fold.

;00 nothing for GRAFWRITE.

;00 nothing for PRINTER: read.

;For PRINTER: stat, pop params &store 0
tin 1st buffer word.

;For REMOTE: stat, pop params &store 0

JMP CONCK
JMP UORWIS

JMP PSUBOR

JMP IDS

tin 1st buffer word.

,Routine to get to user defined devices, see
;ATTACH part of document for description of
;this routine. .
;Routine to get to drivers that are substituted
;for the standard Pascal disk units 4,5,9 .. 12.
;See ATTACH part of document for description of
;thi s rout ine.

;--.
t

STR I? LOCAL RETURN AODR,
STRIP PASCAL ADOR AND SAVE IN RETL,RETH
PLACE 'GOBACK' ON RETURN STACK
THEN RESTORE LOCAL RET AODR &RETURN
MEANWHILE UNFOLD BIOS INTO DXXX

j--
SAVERET STA TTl

PLA
CLC
AOe ROSA
STA TT2
PLA
ADC 10
STA m
PLA
STA RETL
PLA
STA RETH
•IF RUNTIME=O
LOA OC083
.ENDC
LOA TTl'
JSR SAVRET2

;SAVE A REG

;ADD OFFSET TO JUMP TABLE (BIOSAF)
;LOCAL RET AGDR

;PRESERVE PASCAL RETURN

;UNFOLD BIOS INTO DXXX

;RESTORE A-REG
;PUTS I GOSACK, ON STACK

j--
; FOLD INTERP INTO OXXX

'; THEN RETURN TO PASCAL VIA
; RETURN ADOR SAVED IN RETL,RETH

;--
GOSACK STA m ;SAVE A-REG

LOA RETH
PHA
LOA RETL
PHA
•IF RUNTIME=O
LOA OC08S ;FOLD INTERP INTO OXXX
.ENDC
LOA TTl
RTS JAND BACK TO PASCAL

SAVRET2 JMP @TT2 ;JUMP INTO JUMP TABLE (BIOSAF)

o. In zero page are two words pointing to the base of the two
jump vectors (before and after the fold). These are stored in
PERMANENT locations that had a value of 0 in the old 1.0
release and were not used by the system (see locations
section). Applications needing to patch the jump vectors can
store the offset from the vector base in the Y reg and use
indirect indexed addressing to do the patch. The application
will need to have the vector base locations for the old release
hardcoded in as the base pointer for the old 1.0 release wi 11
be O. If you want to write an application that works with 1.0
and 1.1 and future versions, you know if the zero page vector
pointers are 0 it's the 1.0 system otherwise it's 1.1 or a future
version which will use the same protocols as 1.1 as described in
this document.

It is important that any application patching the jump vector
temporaril y. then return i ng it to its ori gina1 va 1ue get the
original value from the vector itself before the patch and put
it in a storage 1ocat ion. When the vector needs to be restored
to it's original state, use this storage location for it's
original value. The patches should be done in this manner so
the applications doing the patches will always return the
system to it's ori gi na1 state no matter what past, present or
future Pascal version it is patching.

E. For CONSOLE:init to be used from assembly routines the
locations of SYSCCt1and the BREAK .routine have to be available.
The CONINIT routi.oe requires these on the stack. Pointers to
SYSCOM and.8REAK will be stored. by the interpreter boot in a
PERMANENT location in the BFOO page (see Jocations section).

F. Since the old 1.0 release, the code to jump to the CONCK
routine has been set up at location BFOA. Anyone wishing to
get to the CONCK routine should do a JSR BFOA as this will
always get them there no matter where the CONCK routine really
is. The keypress function has been changed to conform to this
new conveptionbut it. will use .the old convention if it is
working from within .an.o1d system. Do not try to get to CONCK
in this way from within .an ATTACHED drive.r a.s you will loose
your return address to Pasca.l •.. Se.e ATTACH part .of this
document for how to get t.o CONCKfr.om an. att'-ached driver.

G. There is now aversion byteso.onecan tell which version (1.0,
1.1, etc.) of Apple Pascal he is ~rking with. There is also a
flavor byte to tell one which flavor of this version he has
(regular, runtime, runtime without sets, etc.). (see locations
section)

11. Whenever SYSTEM.ATTACH is used, it will make a copy of the
original BIOS jump vector (the after fold vector that has the
actual driver addresses in it) and put this below the heap with
the drivers that are attached. It will leave a pointer to this
copy of the vector at location 00E2. You can use this vector in
you drivers to get to the standard Apple drivers for any device.
This way you can define a driver that does something aqove and

Paoe 25

beyond the standard Apple driver yet this new driver can still
make use of the standard Apple driver. See the ATTACH part of
this document for more information.

12. In the RSP are two vectors that tell the RSP what is legal
(input &-or output) for a particular character orientated device
(CONSOLE:, REMOTE: &PRINTER:). For example it tells the RSP that
it is illE!9al to ~ad from the PRINTER:. If you wanted to ATTACH
a PRINTER: driver so you could read from the PRINTER:, you would
have to change this vector. 00E4 points to the READTBL vector
and 00E6 to the WRITTBL vector. Let's take the REAOTBL for an
example:

i6 is PRINTER:
iunit 7
i8 is rem write which has
jan address in the wKITTBL

disk units

j unit 1
iuni t 2
junit 3
i4 &5 are

jtable of routine addresses to be called when
jwriting to that unit (disk I/O does not use
jthis table).
jan entryaO means that the operation is illegal
jfor that unit •
•WORD BIOS+CONREAD
.WORD BIOS+CONREAD
.WORD a
.WORD a
.WORD a
.WORD a
.WORD BIOS+REMREAD
.WORD a

REAOTBL

Here BIOS refers to the base of the jump vector before the fold and
COr-mEAD is the offset off the base .of that vector· to get to the
jump to the CONSOLE: read rout tne (for CONSOLE:. read the offset is
O,forCONSOLE::write it's. 3 t etc). Th;yaluefor BIOS is the
pointer stored in location OOEC mentioned in the locations
section below.

LOCATIONS.

These are the locations of new system permanents mentioned in
thi sdocum.ent,. all pointers are set upby the syste!T1 and are
stored low byte first. 00 n.ot modify ...mat is stored. in these
pointers (except for SPSHAR.ifyouwant to suppress special
character checl<ing) since the system uses this information too.
These locations .are defined to have .the same function & remain
in the same place fo.r future versions. of Apple II Pascal.

BF1C

BFlD
BFlF

BF21

BF22

SPCHAR

IBREAK
ISYSCOM

VERSION

FLAVOR

(To control special chars)

(Set by boot in interp for assembly calls to CONINIT)
(II)

(1 byte Version I of system, =2 for the new release, 0
for the old 1.0 release)

(This byte tells which flavor [runtime,regular,
etc.] of this VERSION you are dealing with)
The encoding is:

1 -->regular system

P~ap ?Ii

This flavor

runtime versions:
2 -->LC-ALL (LC- means no

language card)
3 -->LC-no sets
4 -->LC-no floating point
5 -->LC-no sets or floating point
6 -->LC+ALL
7 -->LC+no sets
8 -->LC+no fl oat ing poi nt
9 -->LC+no sets or floating point

byte is a in the old 1.0 release.

BFCO-BFFF BOEVBUF
00E2 ACJVAFLD

00E4 RTPTR
00E6 WTPTR
00E8 UOJVP
OOEA DISKNUMP
OOEC JVBFOLO
OOEE JVAFOLD

FFF6

FH8
FFFA
FFFC
FFFE

(Area for non Apple boot devices, like the CORVUS)
(Pointer to ATTACH copy of the original Jump Vector
after the. fold)

~~~1rif~~ i~ ~~r+~t~
(pointer to userdevic~ jump vector)
(Pointer to disknlJilvector)
(Pointer to jump vector before fold)
(Pointer tb jump vector after fold)

(Version word which = 1 for version 1.0 and
= a for version 1.1

Thi s version word shaul d not be used at runtime
to tell Which version you have. For that use the
version byte mentioned above. This word should only
be used by software that ~ants to see which
SYSTEM.APP.LE it is dealing with by looking at the
contents .of thi s h()rd in theSYSTEM.APPL& fi 1e
when it is not loaded in memory)
(Start vector)
(NMI non maskable interrupt vector)
(RESET vector)
(IRQ ; nterrupt request vector)

The locations and code in the 1.0 IPRELIMINARY APPLE PASCAL GUIDE TO
INTERFACING FOREIGN HARDWARE I .s lOS dOCunent .are not the samei\.for
Apple Pascal 1.1 and that document clearly stated we would not
COOl1lit ourselves to keeping them the same.

Pascal 1.1 Firmware Card Protocol------_... ,... _--- ._...-....-

One maj·or problem with Apple Pascal 1.0 is the way it deals with
peripheral cards. It was set up to WOrk with the four peripheral cards that
Apple supported at the time of its release (the diSk,cOOl1lunciations,serial
and parallel cards) and had no mechanism for interfacing any other devices.
Since Apple as well as many Other vendors continue to produce new peripherals
for the Apple Je, a new protocol was designed and implemented in the Pascal
1.1 BIOS which allows new peripheral cards to be introduced to the system in
a consistent and transparent fashion. The new protocol is called the
"firmware card" protocol since the SIOS deals with these cards by making
calls to their firmware at entry points defined by a branch table on the card



itself. The new protocol fully supports the Pascal typeahead function and
KEYPRESS will worx with firmware cards used as CONSOLE devices. The
following paragraphs describe the finnware card protocol in full detail.

A firmware card may be uniquely identified by a four byte sequence in
the card's $CNOO ROM space. Location SCNOS must contain the value S38 and
location SeN07 must contain S18. Note that these are identical to the Apple
Serial Card. A finnware card is distinguished from a serial card by the
further requirement that location SCNDB must contain the value SOl. This
value is called the "generic signature" since it is cormon to all finnware
cards. The value at the next sequential location, SCNOC, is called the
-device signature" since it uniquely identifies the device.

The device signature byte is encoded in"a meaningful way. The high
order 4 bits specify the cl ass of the device wh11 e the low order four bits
contain a unique number to distinguish between specific devices. of the same
class. The appendix to this document defines. some device class nllTlbers; in
any case vendors should contac:tApple Technical Support to make sure they use
a unique number for their device signature •. Although the device signature is
ignored by the 1.1 BIOS, it may be used by appl ications programs to identify
specific devices. '

Following the 2 signature bytes is a list of four entry point offsets
starting at address SCNOD. These four entry points must be supported by all
firmware cards. They are the initial ization, read, write and status call s.
The BIOS takes care of disabling the·SC800 ROM space of all other cards
before ca11i ng the fi nnware routines.

The offset to the initialization routine is at location SC~OD. Thus. if
SCNOD contains XX, th~BIOS willcal1SCNXX to initialize the card. On
entry. the X registercontains$CN (where N is the slot nlll1ber) and the Y
register contains SNO •. On. exit, the X register should contain an error code,
whi ch shoul d be a if there was no error. This error code is passed on to the
higher levels of the system in the global variable "IORESULT". Registers do
not have to be preserved.

The offset to the read routine is at location SCNOE. On entry. the X
register will contain $CNandthe Y register will conta.in SNO. On exit, the
A register should contain the character that was read I'!tlile the X register
contains the IORESULT error code. The.A and Y registers do no~ have to be
preserved.

The offset to the write routine is at location SCNOF. On entry, the A
register contains the character to be written while the X register contains
SeN and the Y register contains SNO. On exit the X register should contain
the IORESULT error code (which should be 0 for no error). The A and Y
registers do not have to be preserved.

The offset to the status routine is at location scrno. On entry, the
rf!9ister contains SeN and .the Y register contains SNO while the A register
contains a request code. If the A register containsO. the request is "are
you ready to accept output?". If the A register contains I, the request is
"do you have input ready for me?". On exit, the driver returns the IORESULT
error code in the X regi ster and the results of the status request in the
carry bit. The carry clear rreans "false" (i.e., no, 1 donlt have any input
for you), while the carry set means true. Note that the status call must
preserve the Y register but does not have to preserve the A register.



Thus, sample code for the first few bytes of a firmware card's SCNOO
space should look something like:

BAS IC INIT BIT SFF5B ;set the v-flag
BVS BASICENTRY ja lways taken

IENTRY SEC jBASIC input entry poi nt
DFB $90 jopcode for BCC

OENTRY ClC jBASIC output entry point
ClV
BVC BASICENTRY ;Always taken

Here is the Pascal 1.1 Firmware Card Protocol Table

DFB $01 jGeneric signature byte
DFB $41 jDevice signature bye

;
PASCALINIT DF8 >PINIT ; > means low order byte
PASCALREAD DF8 >PREAO joffset to read
PASCALWR ITE OFB >PWRITE ;offset to write
PASCALSTATUS DF8 >PSTATUS joffset to status routine

The above code fulfils all the requirements for both the BASIC and
Pascal 1.1 I/O protocols. The routines PINIT. PREAD. etc. are probably jumps
into the card's SC800 space which is already properly enabled by the BIOS.
The reason the $CNOO space was chosen for the protocol (as opposed to the
SC800 space) is ·that the BASIC protocol requires that all cards have SCNOO
ROM space while some smaller cards may not need any SCBOO ROM space.

The firware card protocol includes 2 optional calls that do not have to
be impl emented but waul d be ki nd of ni ceo The BIOS checks .1 ocati on SCNll :0
determine if the optional calls are present; if that .location contains a sao
then the BIOS thinks the call s are implemented. Thus if your card does not
implement the optional calls. you should ensure that SCN11 contains a
no.n-zer.o .yalue•. The tl'lQ optional calls are a cont.rol .call pointed to by
SCN12 and. an interrupt handler call pointed toby $CN13.

The control call entry point is specified by the offset at SeN12. On
entry. the X register contains SCN. the Y register contains SNO and the A
register contains the control request code. Control requests are defined by
the device. On exit the X register should contain the IORESULT error code.

The interrupt poll entry point is specified by the offset at SCNI3. On
entry. the X register contains SCN and the Y r.egister contains SNO. The
interrupt poll routine should poll the card's hardware to determine.if it has
a pending interrupt; if .it does not it should return with the carry clear.
If it does. it should handle the interrupt (including disabling it) and
return with the carry set. Also. the X register should contain the IORE:SULT
error code which should be 0 if there was no error. An interrupt polling
routine must be careful not to clobber any zero page or screen space
temporari es.

The control and interrupt requests are not implemented in the Pascal 1.1
8IOS but it would be nice to support them if possible as they may be
impl emented in 1ater versi ons of the Pascal BIOS as well as other forthcom; ng
operating system environments for the Apple ][.

Paoe 29



/fate that the fi rmware card signature is a superset of. the Appl e. ser; a1
card signature as recognized by the Pascal 1.0 8IOS. This allows a firmware
card to function with both Pascal 1.0 and Pascal 1.1. If a card wishes to
worK with Pascal La as .a Ilfake" seral card, it must provide an input entry
point at $C84D and an output entry point at SC9AA. Note that since Pascal
1.0 will think the card is a serial card, typeahead and KEYPRESS capabilities
will be lost.

Additional Notes

1. The Pascal RSP expects the high order bit of every ASCII character
it receives from the Console read routine to be clear. The RSP will not do
this for you; you must ensure the high bit of all text your card passes to
the RSP from the console read routine is clear.

2. Zero page locations sao to S35 may be used as temporaries by your
finnware, as are the slot 0 screen space locations ($478,S4F8,etc.).
In general, peripheral card firmware should be as conservative as
possible in their memory usage, preserving zero page contents whenever
possible. An interrupt polling routine must not destroy these or any
other memory locations.

3. Location $7F8 must be set. up to contain the value SCN, where N is the
slot number, if your card utilizes the SC800 expansion ROM space. The BIOS
does not do this for you; his must be done if you want your card to
function in an interrupting environment.

4. The firmware card status routine should be as quick as possible, as it
may be called from within the I/O poning loops of many other peripheral s
if your card is being used as the console device. In no case should the
status routi he take longer than 100 mill i seconds.

5. A finnwarecard in sl.ot 1 is> automatically recognized as the.vot.L6lle"PRINTER:". A Hrmware card in slot 2 is automatically recognized as
the volumes "R£MIN: H and "REMOUT:". A firmware card in slot 3
is automactically recognized as the volLanes "CONSOLE:" and "SYSTERM:".

APPENDIX

The. following numbers correspond to device classes used in the d vice
signature code. Make sure you contact Apple Technical Support t
ensure that you have a unique device signature code.

o reserved
1 printer
2 joystiCK or other X-Y input device
3 I/O serial 01" parallel card
4 modem
5 sound or speech device
6 clod
7 mass storage device



8 80 column card
9 Network or bus interface
10 Special purpose (none of the above)

11 through 15 are reserved for future expansion

Additional Infonnation

1. The type ahead buffer is located at $03B1 hex and is S4E hex in length.
It is impl emented with a read poi nter (RPTR at BF18 hex) and a wri te
pointer (WPTR at $BF19 hex). At CONSOLE: init time, these should both
be set to O. When a character is detected by CONCK, the WPTR is
incremented then compared with $4E. If it is equal to $4E, it is set
to $0 (this is a circular buffer). Then the WPTR is compared with RPTR
and if they are equal the buffer is full. If the buffer is not full,
the character is stored at $03B1+the value in WPTR.

When removing a character from the type ahead buffer, use the following
sequence. Compare the RPTR with WPTR and if they are equal, the buffer
is empty and you must wait until a character is available from the
keyboard. If they are not equal, increment the RPTR and compair it
to $4E. If it equal s $4E, set it to SO. Now get the character from
location S03B1+the value in RPTR.

If you are implementing your own type ahead, you can do it however
you wish. This information is made available in case you want to check
for input from another device as well as the standard system CONSOLE:
and have characters from that device be put in the system type ahead
buffer.

2. The example drivers in this document did not show the setting of the
IORESULT in the X register. This would be done in the code specific
to your driver and should allways be set to something (0 if there are
no errors). If there are errors, set it as described elsewhere in this
document and the Pascal Manuals.

3. For further infonnation,see the newest edition of the Apple II Reference
Manual.

4. These listings from the BIOS are included to show. you hO.w ~ implemented
certain system drivers. You cannot rely on the locations of these
to stay in the same place in the BIOS in future releases of Apple II
Pascal nor can you rely on the. routines themselves staying the same.
They are only included as examples and to give you information that
may not be documented elsewhere. This is not a complete BIOS listing so
you ~y find references to routines or locations that are not included in
this listing. The only locations that will be sure to remain the same
for future releases are those mentioned in the LOCATIONS section above.
We are against you poking the BIOS yourself to change or overwrite any
of these routines. We did not include this information so you could poke
the BIOS. If you do modify the BIOS, it is completely at your own risk!
We have provided the ATTACH utility so you can add your own drivers
the system without poking the BIOS and this is the way it should b.e done!
If you have special requirements that are not solved by ATiACH, please

r'\. _ _ ..,.,



contact Apple Technical Support.

,---------------------------------------·,
; ZERO PAGE PERMANENTS

i----------------------------------- _
FIRST .EQU OFO ;START ZERO PAGE USE
BASIL .EQU FIRST ;SCREEN 1 PTR
BASIH .EQU FIRST+1
BAS2L .EQU FIRST+2 ;SCREEN 2 PTR
BAS2H .EQU FIRST+3
CH .EQU FIRST+4 ;HORIZ CURSOR, 0•• 79
CV .EQU FIRST+5 ;VERT CURSOR, 0•• 23
TEMP1 .EQU FIRST+6
TEMP2 .EQU FIRST+7
SYSCOM .EQU FIRST+8 ;2 BYTES PTR TO SYSCOM AREA

;-------------------~-------------------·,
; BFOO PAGE PERMANENTS
·,
;---------------------------------------

;2 BYTES
; 1 BYTE
;1 BYTE

;4 BYTES.EQU OBFOA
.EQU OBFOE
.EQU OBFOF
.EQU OBFll
.EQU OBFl2
.EQU OBFl3
.EQU OBFl4
.EQU OBns
.EQU OBF16
.EQU OBn8
.EQU OBn9
.EQU OBFlA
.EQU DBFlB
.EQU OBnc ;00 MEANS 00 ALL SPECIAL CHARACTER CHECK!NG

;01 MEANS DON1T CHECK FOR APPLE SCREEN STUFF
;02 MEANS DON1T CHECK FOR OTHER SCREEN STUFF

.EQU OBF1D ;INTER? STORES BREAK &SYSCOM ADR HERE FOR

.EQU OBF1F ;USER ROUTINES TO GET AT

.EQU OBF21 .VERSION OF SYSTEM SET TO 2 FOR APPLE 1.1

.EQU OBF22 ;SEE TABLE IN INTERP arrOT

.EQU OBF27 .BF27 •• 0BF2£

.EQU OBF2F .INTERP INITS THIS TO LOCATION OF XIT

.FORTRAN PROTECJION USES BF56 •• BF7F

.VENDOR BOOT DEVICES CAN USE BFCO •• BFFF

CONCKVECTOR
SCRMODE
LFFLAG
NLEFT
ESCNT
RANDL
RANDH
CONFLGS
BREAK
R?TR
WPTR
RETL
RETH
SPCHAR

IBREAK
ISYSCO~'

VERSION
FLAVOR
SLTIVPS
XITLOC

;---------------------------------------
;
; MISCELANEOUS PROGRAM EQUATES
·,
;---------------------------------------
BUfFER .EQU 0200 iTEMP HSHIFT BUFFER (OVERLAPS DISK BUF)
CONBUF .EQU 03B1 i78 CHAR TYPE-AHEAD BUF
CBUFLEN .EQU 04E ;78 DECIMAL
NCTRLS .EQU 14. iN CTRL CHARS IN TABLE
SIGVALU~ .EQU 1

n ...... A ..,,,



BHEPSEC
SECPTRAK
TRAKPDSK
UOJVP
DISKNUMP
JVBFOLD
JVAFOLD
HCMODE
HSMODE

JVECTRS

.EQU 256.

.EQU 16.

.EQU 35.

.EQU OE8

.EQU OEA

.EQU OEC

.EQU OEE

.EQU OEl

.EQU OEO

.WORD

.WORD

.WORD

.WORD

UDJMPVEC
DISKNUM
BIOS
BIOSAF

;DISK INFO FOR DISKSTAT

;0 PAGE JUMP VECTOR POINTER LOCATIONS

iTHESE TWO BYTES USED FOR HIRES STUFF

j---------------------------------------
,
; HARD RESET INITIALIZATION

t---------------------------------------
START ClD ;SET HEX MODE

SEI ;MAKE SURE INTERRUPTS ARE OFF.
-t---------------------------------------

,
; CLEAR ALL MEMORY 0 TO BFFF
; (RUN-TIME SYSTEM:O TO TOPMEM + BF PAGE);.
t

;---------------------------------------

ZERLP

$1 :

lOA HO
STA ZEROL
STA ZEROH
TAY
TAX
STA (ZEROl), Y
INY
BNE ZERLP
INC ZEROH
INX
•IF RUNTIME:1
CPX ITOPMEM
BNE $1
LOX 10SF
STX ZEROH
CPX lOCO
BNE ZERlP
.ELSE
CPX lOCO
BNE ZERLP
.ENnC

;WRITE A BYTE OF a
;BUMP PO INTER
ilOOP TIll NEXT PAGE
;BUMP MSB POINTER

;DONE CLEARING MEM?

;ClEAR SF PAGE

DONE CLEARING BFXX?

.-----------------------.
t

; CHECKSUM PROMS ON EACH SLOT
; TO FIND OUT WHO'S OUT THERE
•; SUM TWICE TO TELL IF CARD THERE



; IF SUMS OONT MATCH THEN NO PROM IS THERE
; IF MS BYTE OF SUM-O THEN NO PROM IS PRESENT

.----------------_._._--
LOY lOC7

NXTCRD STY CKPTRH
JSR CKPAGE
STA CHECKL
STX CHECKH
JSR CXPAGE
CPX #0
BEQ NOPROM
CMP CHECKL
BNE NOPROM
C?X CHECKH
BNE NOPROM
BEQ SKI?IORTS

;----------------------------

iPOINT TO SLOT 7 PROM
;(CKPTRL~O FROM HEM CLEAR)
;16 BIT SUM IN X,A

iSAVE FOR MATCH
iSUM AGAIN
iWAS MSB ZERO?
iYES NO PROM ON CARD
iLSB MATCH?
iNO, NO PROM ON CARD

;MS8 OIDNT MATCH
;ALWAYS TAKEN

·,
; TABLE OF CNOS AND CN07 BYTES OF EACH CARD
·,
;----------------------------CNOS8YTS
CN07BYTS

.BYTE 003,018.038,048

.BYTE 03C,038,018,048

;----------------------------·
; NOW THAT WE KNOW A CARD IS THERE.
i EXAMINE bNOS AND eN07 BYTE TO
i DETERMINE WHICH CARD IT IS
·•
; SET CARDTYPE AS FOLLOWS:
i o-eKSUM NOT REPEATABLE OR MSB~O .
i l-CXSUM REPEATABLE,CARD NOT RECOGNIZED
i 2-DISK CARD (BYTE 07~ 03C)
i 3~COM CARD (BYTE 07~ 038)
i 4-SERIAL (BYTE 07a 018)
is-PRINTER (BYTE 07 2 048)
; 6-FIRMWARE (BYTE 07- 048)
;-----------------------------
SKIPIORTS LOX'5
NXTYP LOY #S

LOA (CKPTRL). Y
CMP CN05BYTS-2.X
BNE TRYNXT
LOY 17
LOA (CKPTRL), Y
CMP CN07BYTS-2,X
BEQ STOR

TRYNXT DEX
CPX 12
BCS NXTYP

STaR CPX #4
BNE STORl
LOY lOB
LOA (CKPTRL),Y
CMP IS IGVALUE

i4 TYPES OF CARDS
;CHECK BYTE CNOS OF CARD

iMATCH TABLE?
;NO, TRY NEXT IN LIST

;TEST eN07 BYTE
;MATCH TABLE?
iBOTH MATCHED. CARD RECOGNIZED
iBUMP TO NEXT IN LIST
'TRY ALL TYPES IN LIST
!IF NOT IN LIST,FALL THRU WITH X=l
;IS IT A SERIAL CARD?·



STORl

NOPROM

SNE STORl
LOX #6
LOY CKPTRH
TXA
STA SLTTYPS-OCO,Y
LOY CKPTRH
DEY
CPY lOCO
SNE NXTCRD

.BUMP TO NEXT LOWER SLOT
;SLOTS 7 OOWNTO 1 DONE?
.LOOP TILL 7 SLOTS DONE
.LEAVE WITH Areg::O

;---------------------------------------.
t

i SET UP CONCK VECTOR FOR KEYPRESS FUNCTION

;---------------------------------------
$1

52
$21

$3

BEQ S2 iALWAYS BRANCHES
JSR KCONCK .HERE ARE THE 2 INSTRUCTIONS TO BE TRANSFERRED
RTS
LOY #3 .TRANSFER 4 BYTES TO BFOA
LOA $l,Y
STA CONCKVECTOR,Y
DEY
BPL 521··

.SET UP JUMP VECTOR POINTERS IN 0 PAGE
LOY 117
LOA JVECTRS,Y
STA UDJVP,Y
DEY
BPL $3

;---------------------------------------
t

i SET SCREEN MODE ETC

j---------------------------------------

STARTUP

LOA 180
STA HCMODE
LOA OC051
LOA OC052
LOA OC054
LOA OC057
LOA OC010
JSR FORM
JSR INVERT
JSR ORESET
LOA SLnYPS+3
LOY 1030
JSR GENIT
CPX 10
BNE STARTUP
LOA 14
STA SCRMODE
JMP JPASCAL

;SET TEXT MODE
;SET BOTTOM 4 GRAFIX
.SELECT PRIMARY PAGE
.SELECTHIRES GRAFIX
;CLEAR KEYBOARD STROBE
;ERASE SCREEN
.PUT CURSOR ON SCREEN
;00 ONCE ONLY DISK INIT
.WHAT CARD IN SLOT 37
.SLOT 3
.sn BAUp IF COM OR SER THERE
;WASAN EXTERNAL CONSOLE THERE?
.NO,USE APPLE SCREEN

.SET BIT 2 FOR EXT CON
;FOLO IN INTERP AND START PASCAL

;-------------------------.,
• SUB TO CHECKSUM ONE PAGE

... ~ _. .... ...



.,
C~PAGE

C~NX

HOCRY

LOA 10
TAX
TAY
CLC
AOC (CKPTRL), Y
BCC NOCRY
INX
INY
BNE CKNX
RTS

.CLEAR SUM
;CLEAR INDEX

.ADD BYTE

iINC HI BYTE IF CARRY
iBUMP INDEX
iSlU'f 256 BYTES
.RETURN SUM IN X,A AND Y=O

;-------------------------------------------------------------
,
; BIOS HANDLERS FOR LOGICAL AND PHYSICAL DEVICES.
·•;-------------------------------------------------------------

;---------------------------------------
,
j CONSOLE CHECK FOR CHAR AVAIL
• STATUS AND ALL REGS PRESERVED
• IF CHAR AVAIL.PUT IN CONBUF AND INC WPTR.
•i WARNING ••• THIS ROUTINE ALSO CALLED FROM OISK ROUTINES
·•;---------------------------------------
CONCK

RNDINC

RNDOK

TSTKBo

PHP
PHA
TXA
PHA
TYA
PHA
INC RANDL.
BNE RNDOK
INC RANDH
LOA SLTIYPS+3
CMP 13
BEQ COMCK
CMP #4
BEQ JDONCK
CMP #6
BEQ FIRMCK
LOA OCOOO
BPL JOONCK
STA OCOIO
AND I07F
TAX
LOA speHAR
ROR A
BCS NOTFOLP2
TXA
CMP ,11.

.BUMP 16 BIT RANDOM SEED

iWHAT CARo IS 'IN SLOT 3?
; IS IT A COM CARD? -
iYES,GOCHECK IT
.ISIT A SERIAL CARD?
;YES, IT CANT BE TESTED

.TEST APPLE KEYBOARD
iNO CHAR AVAIL
iCLEAR KEYBD STROBE
iMASK OFF TOP BIT
;See if checking for apple special chars is
;turned off.

iJLmP if SO

;CTRL-K?

Oana 1h



BNE NOrK
LOA 105B iYES,REPLACE WITH LEFT SQR BRACKETT

NOTK CMP 11 ,CTRL-A?
BNE NTIAB
JSR HTAB iVES.TAB NEXT MULT 40
LOA CONFLGS
AND 10FE
STA CONFLGS ;CLEAR AUTO-FOLLOW BIT
JMP DONECK

NTIAB CMP 126. ;CTRL-Z?
BNE NOTFOL ;NO.PUT CHAR IN BUFFER
LOA CONFLGS
ORA 11
STA CONFLGS ,SET AUTO-FOLLOW BIT
BNE DONECK ;BR ALWAVS

COMCK LOA OCOBE ;CHAR AVAIL?
LSR A
BCC DONECK ' iNO CHAR AVAIL
LOA OCOBF ;GET CHAR FROM UART

GOTCHAR AND H07F ;MASK OFF BIT 7
NOTFOL TAX

LOA SPCHAR ;See if console special char checking is
,turned off.

ROR A
NOTFOLP2 ROR A

BCS NFMIl iJumP if'so
TXA
LDV 1055
CMP (SYSCOM). V iSTOP CHAR?
BNE NOTSTOP
LOA CONFLGS
EOR H080
STA CONFLGS ;VES.TOGGLE STOP BIT (BIT 7)

JDONCK JMP DONECK

FIRMCK LOA #1
LDV 1030
JSR FIRMSTATUS
BCC DONECK
JSR FREADI

, JMP GOTCHAR

NOTSTOP DEY
CMP (SYSCOM).V
BNE NOTBRK
LOA CONFLGS
AND 103F
STA CONFLGS iCLEAR FLUSH&STOP BITS
• IF RUNTIME:rO
JMP TOBREAK

.ELSE
JMP @BREAK iBREAK OUT

.ENDC
NOTBRK DEY

CMP (SYSCOM}.V iFLUSH?
BNE NOTFlUS



LOA CONFLGS
EOR 1040
STA CONFLGS ~TOGGLE FLUSH BIT (BIT 6)
JMP DONECK

NFMIl TXA
NOTFLUS LOX WPTR

JSR BUMP
C?X RPTR ~BUFFER FULL?
BNE BUFOK
JSR BELL
JMP DONECK ~BEEP&IGNORE CHAR

BUFQK STX WPTR
STA CONBUFtX ~PUT CHAR IN BUFFER

DONECK BIT CONFLGS ;IS STOP FLAG SET?
BPL CKEXIT
JMP RNDINC ;LOOP IF IN STOP MODE

CKEXIT PLA
TAY
PLA
TAX
PLA
PLP
RTS ;ELSE RESTORE STAT AND ALL REG AND RETURNBUMP INX ~BUMP BUFFER POINTER WI111 WRAP-AROUND
CPX ICBUFLEN
BNE BMPRTS
LOX #0

8MPRTS RTS

;----------------------------------.
I

; INITIALIZE CONSOLE:

;----------------------------------
CINIT PLA

STA TEMPI
PLA
STA TEMP2
PLA
STA SYSCOM
PLA
STA SYSCOM+l
PLA
STA BREAK
PLA
STA BREAK+I
LOA TEMP2
PHA
LOA TEMPI
PHA
LOA RPTR
STA WPTR
LOA CONFLGS
AND ,03E

;SAVE RETURN ADOR

;SAVE PTR TO SYSCOM AREA

~SAVE BREAK ADDRESS

~RESTORE RETURN AOOR

~FLUSH TYPE-AHEAD BUFFER

0"'''0 "HI



CINIT2

STA CONFLGS
JSR TAB3 .
LOX 10
RTS

jCLEAR STOP,FLUSH,AUTO-FOLLOW BITS
jNO,HORIZ SHIFT FULL LEFT
jCLEAR IORESULT
JANo RETURN

j----------------------------------
j
j READ FROM CONSOLE:
j KEYBOARD ,COM OR SERIAL CARD IN SLOT 3

;----------------------------------
CREAo

CREAD2

JSR ADJUST
lOY 1030
lOA SLTTYPS+3
CMP 14
BNE CREAD2
JSR RSER
AND fl7F
RTS
JSR CONCK
lOX RPTR
CPX WPTR
BEQ CREAo
JSR BUMP
STX RPTR
lOA CONBUF,X
LOX 10
RTS

iHORIZ SCROll IF NECESSARY
jSlOT 3
;WHAT TYPE OF CARD?
;IS IT A SERIAL CARD?
;NO,CONTINUE
JYES, READ IT
iMASK OFF TOP BIT

_TEST CHAR

jlOOP TILL SOMETHING IN BUFFER

jBUMP READ POINTER
jGET CHAR FROM BUFFER
jCLEAR IORESUL T
JANo RETURN TO PASCAL

;----------------------------------
,
j INITIALIZE PRINTER:
; PRINTER IS ALWAYS IN SLOT 1
j IT MAY BE A PRINTER,COM,OR SERIAL CARD

j----------------------------------
PINIT LOY #010 _SLOT 1 j 010

LOA SLTTYPS+1 jWHAT CARD IN SLOT 1?
CMP #5 jPRINTER CARD?
BEQ CLRI01 jVES ,NO INIT NEEDED

GENIT CMP #4 j5ERIAL CARD?
SEQ ISER JYES, INIT SER CARD
CMP #3 JCOM CARD?
SEQ ICOM _YES,INIT COM CARD
CMP #6
SEQ FIRMIN IT
LOX 19 JNONE OF.ASOVE,OFFLINE
RTS

FIRMINIT PHA
JSR SER1
lOY 100

FVEC1 LOA (TEMP1),Y
STA TEMPl
LOY 6F8
PLA
JMP @TEMPl



.----------------------------------·,
; INITIALIZE REMOTE:
; REMOTE IS ALWAYS IN SLOT 2
; IT MAY BE A COM OR SERIAL CARD
t

;----------------------------------RINIT LOA SLTTYPS+2 ;WHAT CARD IN SLOT 21
LOY 1020
BNE GENIT ;BR ALWAYS TAKEN

· .,----------------------------------·,
; IN IT COM CARD, Y-ONO

;SET BAUD ETC
;CLEAA IORESULT
;AND RETURN

CLRIOI

t-------------------------------~--ICOM LOA #3 ;MASTER IN IT
STA OC08E,Y ;TO STATUS
LOA 121.
STA OC08E,Y
LOX 10
RTS

j----------------------------------
,
; INIT SERIAL CARD, yzONO

iSER--------jSR-SERi------------~ASSORTED GARBAGE
JSROC800 ;SET UP SLOT DEPENDENTS

CLRI03 LOX #0 ;CLEAR IORESULT
RTS iAND RETURN

;----------------------------------,
; ASSORTED SERIAL CARD SET-UP.,
;----------------------------------
SERI STY 06FS

TYA
LSR A
LSR A
LSR A
LSR A
ORA lOCO
TAX
LOA #0
STA TEMPI
STX TEMP2
LOA OCFFF
LOA (TEMPl),Y
RTS

iSTORE NO

;MAKE OCN IN X

iSET UP INDIRECT ADDRESS
iTURN OFF ALL C8 ROMS
;SELECT C8 BANK

;----------------------------------
•; WRITE TO CONSOLE:
i VIDEO SCREEN,COM OR SER CARD IN SLOT 3

PilOP 40



iOO THE BUSINESS
.RESTORE THE CURSOR
;CLR IORESULT
;RETURN FROM VIDOUT

.ELSE RESTORE CHAR &SEND TO SCREEN
;SAVE CHAR FOR LATER
iREMOVE CURSOR

VIDOUT

CLRIO

;----------------------------------
CWRITE JSR CONCK ,CONSOLE CHAR AVAIL?

BIT CONFLGS ;IS FLUSH FLAG SET?
BVS CLRIO ;YES,DISCARD CHAR &RETURN
TAX ;SAVE CHAR IN X
LOY 1030 iSLOT 3;010
LOA SLTTYPS+3 ;WHAT KIND OF CARD?
CM? #3 ,COM CARD?
BEQ WCOM ,YES WRITE TO COM CARD SLOT 3
CMP 14 ,SERIAL CARD?
BEQ WSER ,YES,WRITE TO SER CARD SLOT 3
CMP 116
BEQ WFIRM
TXA
STA TEMPI
JSR INVERT
LOY CH
JSR VOUT2
JSR INVERT
LOX #0
RTS

WFIRM TXA
PHA
LDA #0
JSR IOWAIT
JSR SERl
LOY IIOF
JMP FVECl

;----------------------------------,
; WRITE TO SERIAL CARD, Y-ONO,CHAR IN X

i---------------------------------~WSER JSR CONCK
TXA
PHA
J SR SERl
PLA
STA 0588,X
J SR OC9AA
LOX 10
RTS

;CONSOLE .CHAR?

iSAVECHAR ON STACK
;ASSORTED GARBAGE

,SET UP DATA BYTE
,SEND IT (SHOUT)

i----------------------------------.,
; WRITE TO REMOTE:, CHAR IN A

;----------------------------------
RWRITE TAX iSAVE CHAR

LOA SLTTYPS+2 iWHAT CARD IN SLOT 2?
LOY 1020
BNE GEN'..I2 ,BR ALWAYS TAKEN

,----------------------------------
,
, WRITE TO PRINTER CARD SLOT1, CHAR IN X



;----------------------------------
WPRN JSR CONCK ,CONSOLE CHAR AVAIL?

LOA OClCl ;TEST PRINTER REAOY
BMI WPRN ;LOOP TILL READY
SIX OC090 ,SEND CHAR

CLRI02 LOX 10
RTS

;----------------------------------.,
; WRITE TO COM CARD, Y=ONO, CHAR IN X.,
j----------------------------------
WCOM JSR CONCK ,CONSOLE CHAR?

LOA OC08E,Y ;TEST UART STATUS
AND N2 ;READY?
BEQ WCOM ;NO,WAIT TILL READY
TXA
STA OC08F,Y ,SEND CHAR
LOX 10
RTS

i----------------------------------.,
; WRITE TO PRINTER:, CHAR IN A

;----------------------------------PWRITE TAX ;SAVE CHAR IN X
LOA LFFLAG ,TEST LINE-FEED FLAG
BPL LFPASS ,PASS IF BIT7=0
CPX #10. ;15 IT A LINE-FEED?
BEQ CLRIO ;YES,IGNORE

LFPASS LOY 1010 ;SLOT 1
LOA SLTIYPS+l ,WHAT KIND OF CARD?

GENW CMP #5 ,PRINTER CARD?
SEQ WPRN ,YES WRITE TO PRINTER CARD

GENW2 CMPLI4 ,SER IAL CARD?
BEQ WSER ;YES WRITE TO SER CARD
CM? 13 ,COM CARD?
SEQ WCOM ,YES WRITE TO COM CARD
CMP 16
BEQ WFIRM

OFFLINE LOX #9
RTS

.----------------------------------
;
• READ FROM REMOTE:.,

;SERIAL CARD?
;GET FROM SER CARD
,COM CARD?
,GET FROM COM CARD

GENR

;----------------------------------
RREAO LOA SLTIYPS+2 ;WHAT CARD

LOY 1020
CMP ,4
BEQ RSER
CMP 13
BEQ ReaM
CMP 16

IN SLOT 2?



BEQ RFIRM
BNE OFFLINE iCARD NOT RECOG

;---------------------------------~.,
; READ FROM COM CARD, Y-NO

j----------------------------------
RCOM

RFIRM

FREADI

JSR CONCK
LOA OC08E,Y
LSR A .
BCC RCOM
LOA OC08F,Y
LOX #0
RTS

LOA 'I
JSR IOWAIT
JSR SERI
PHA
LOY 10E
JMP FVECI

iCHECK FOR CONSOLE CHAR
iTEST UART STATUS
iTEST BIT 0
; WAIT FOR CHAR
iGET CHAR

IOWAIT

;----------------------------~-----,
; READ FROM SERIAL CARD, Y-ONO

;----------------------------------
RSER JSR CONeK iCONSOLE CHAR AVA~L?

JSR SERI ;ASSORTED GARBAGE
JSR OC84D ;GET A BYTE (SHIFTIN)
LOA OSB8,X ;GET BYTE 0678+SLOT
LOX NO
RTS

FIRMSTATUS PHA
JSR SERI
LOY 110
JMP FVECI

JSR CONCK
PHA
JSR FIRMSTATUS
PLA
Bce IOWAIT
RTS

Page 43





APPLE COMPUTER. INC.
20S2S-Mariani Avenue
Cupertino, CA 95014

APPLE II PASCAL 1.2
ADDENDUM TO PASCAL TECHNICAL NOTE 1# 11 B

(December 1983)

For further information contact:
PCS Developer Technical Support
MiS 22-W, Phone (408) 996-1010

Disclaimer ~~ Warranties ~,Liabilities

Apple Computer, Inc. makes no warranties,. either express or implied, with
respect to this documentation or with respect to the softw"lre described in
this documentation, its quali ty, performance, .merchantabili ty, or fitness :.for
any particular purpose~ Apple Computer. Inc. s-,ftware is sold or licensed
'las is". The' entire risk as to its quality and performanc'e is' lo1ith the

, vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer , Inc. • its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair. or correction and
any incidental or consequential damages. In no event will App le Computer.
Inc. be liable for direct. indirect. incidental. or consequential damages
resulting from any defect in the software, even if Apple Computer. Inc. has
been advised of the possibili ty at' such damages. Some states do not (\110101 the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages. so the above limitation may not apply to you.

This documentation is copyrig~ted. All rights are reserved.
may not. in whole or part. be copied. photocopied, reproduced.
reduced to any electronic medium or machine readable form
consent. in writin~. from Apple Computer. Inc.

Copyright 1983 by Apple Computer. Inc.
20525 Mariani Avenue
Cupertino. CA 95014

(408) 996-1010

Notice

This document
translated or

w.i thout prior

Apple Comouter. Inc. reserves the ri~ht to make imorovements in the
product described in this document at any time and'without notice.





APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

APPLE II PASCAL 1.2
ADDENDUM TO PASCAL TECHNICAL NOTE #11

(December 1983)

For further information contact:
PCS Developer Technical Support
MiS 22-W, Phone (408) 996-1010

Contents:

ATTACH Software
SYSTEM. ATTACH
ATTACHUD.CODE
ADMERG.CODE
CONVAD.CODE
SHOWAD.CODE
IM.CODE

Changes to ATTACHUD

Changes to the ATTACH Mechanism
Transient Initialization

Interrupt Handling
Handling Interrupts in Version 1.2
Drivers for Devices with Interrupts
Changes from Version 1.1.
Example of an Interrupt-Based Device Driver



.• ""-Addendum to'Pascal'~echnic:al' Note #11 "Page 3

This document is meant to accompany Pascal Technical Note #11 - Apple Pascal
~~ Reconfiguration Using Attach. It describes change;-and additions to
the Apple II Pascal 1.1 ATTACH facilities.

To use the software described in this addendum. you must have version 1.2 of
Apple II Pascal.

ATTACH Software

This section describes the files on the ATTACH TOOLS disk which contains the
ATTACH facilities provided for the Apple II Pasc~l system, version 1.2.

SYSTEM.ATTACH -- attaches device drivers at startup time. usin~ the
information in ATTACH. DATA. and the driver code in the
ATTACH. DRIVERS library. This version of SYSTEM.ATTACH is
for use with the 64K and 128K Development Systems only.
There is a special version for use with the Runtime
Systems which is available on the Runtime System.
diskettes.

The following programs are provided for the creation and handling of the
ATTACH. DATA file.

ATTACHUD.CODE

ADMERG. CODE

CONVAD.CODE

SHOWAD.CODE

creates a version 1.2 ATTACH.DATA filefrbmlnformation
supplied by the user
merges multiple version 1.2 ATTACH. DATA files .into. a
single ATTACH. DATA file
converts an ATTACH.DATA file from version 1.1 to version
1.2
shows the contents ofa version 1.2 ATTACH.DATA file

The interfaces to the utilities ADMERG. CONVAD, and SHOWAD are self'"
explanatory, and we don't describe them in this addendl1m~

1M. CODE contains the interrupt managef(IM) f6rthe 64K Pascal
system

Changes to ATTACHUD

If you are familiar with the 1.1 version of ATTACHUD, you will find that the'
1.2 version contains some additional prompts. After the question

Do you want this driver aligned on
a particular byte boundary? (YIN)

ATTACHUD asks the new question



'~'''''l\ddendum to 'Pascal"Technical 'Note # 11

Do you want this driver to have a
transient initialization section? (YIN)

Page 4

If you respond with "Y", ATTACHUD will go on to ask you for the .PROe name of
the transient initialization code, and its alignment requirements.

ATTACHUD also asks the new question

Will this driver use interrupts? (YIN)

If you answer "y" to this question, ATTACHUD will ensure that a record for the
interrupt manager (IM) is present at the end of the ATTACH.DATA file.

Finally, note that unit numbers 13-20 are now available to user-defined
devices. These numbers correspond to block-structured devices, and they must
be controlled by user-written attach drivers.

Changes ~ the ATTACH Mechanism

Transient Initialization

As described in Pascal Technical Note #11, a device driver is attached at boot
time. If the driver's data record (created by ATTACHUD) specifies that th~

driver should be initialized at startup time, then its initialization code is
executed.

Und~rversion 1.2, there is an additional step. The driver may be accompanied
by a "transient initializationl' mod.ule that is executed only at startup time.

After all the drivers are loaded onto the heap and initialized, each of the
transients will be loaded and executed in the same order as their associated
driver was loaded. They will overlay each other, going away after completion.

Each of the transients will. have passed to it, on the stack. the address<ofthe
associated driver. This way communication can be setup between the two. Note
that this ',is the address of the start of the driver, not start - 1.

In order to help data stucturing, the transient code may be loaded art a 0 to 256
byte boundary •.. TransiE!nts must be written in assembler, 'not use .ABSOLUTE (must
be relocatable), and have a single .PROe at the beginning. The transient
initialization code must be assembled as a separate module from the device
driver itself. Like a device driver, it must be placed in the ATTACH.DRIVERS
file using 'the LIBRARY utility.

Note that the transient initialization code is executed after the device
driver's o~ (callable) initialization code is executed.

This facility was provided for the use of the Pascal ProFile Driver, but it is
available to any user-defined device driver.



· Addendum to Pascal ,Technical Note 1111

Interrupt Handling

.. Page 5

Version 1.2 of Apple II Pascal supports interrupts from multiple devices.

The first part of this section describes interrupt handling on the Apple II.
The second part discusses how to write a device driver that supports
interrupts. A sample scheme for such a driver appears at the end of this
section.

Important: The interrupt manager (IM) is shipped in the file IM.CODE. For the
64K Pascal systems, the rM driver must be placed in ATTACH.DRIVERS if any
devices are to use interrupts. For the 128K Pascal systems, interrupt handling
is built in, and the system will ignore the IMdriver if it is present in
ATTACH. DRIVERS.

The 48K runtime systems cannot use interrupts.

Handlin!t_Interrupts .!!!. Version 1..:1.

The main problem in handling interrupts is to save the context of the current
program, and then restore that context once the interrupt has been processed.
This includes saving the contents of various systc~ registers, and restoring
them once the driver returns.

When an interrupt can come from one of several devices, it is also necessary to
identify which device, so that the appropriate driver can handle the interrupt.

A.driver for a user device that supports interrupts lI1Ust con.tain a section of
code called the "interrupt service routine." This code will be called by the
interrupt manager, as describedbelo~.

The interrupt manager (1M) itself is responsible for saving the current context
and restoring it later. The interrupt service routines themselves are
responsible for determining whether they should han~l~ •. a· given interrupt ( ust
how th~y do this depends on the particular device;· see below).

Interrupt service routines are set up in a linked chain (see it~.m 3 in the
following section). If an interrupt service routine recognizes an interrupt, it
processes it and then returns to the 1M. If the serv:ice routine doesn't
recognize an interrupt, it transfers control to the n.ext Illterruptservice
routine in the chain. If none of the service routines clailllsan interrupt, then
an. error has occurred, and the· sys tem is res tar ted •

Thus, under this scheme, interrupts are handled in the following sequence.

- A device interrupt occurs. This disables interrupts and causes the
processor to execute the code that starts at the address stored in the IRQ
vector (located at SFFFE-FFFF).

- The IRQ points to the 1M. which looks at the processor status on ~he stack
and checks the break bit. If the break bit is s~t. the IM tranfers control



Addendum to "'Pascal >Technical Note /I 11

to the Pascal reset code which restarts the system.

.:..page 6

- If the break bit is not set, the 1M saves the current context and then
transfers control to the first interrupt service routine in the chain.

- If the service routine doesn't recognize the interrupt, it transfers
control to the next service routine in the ~hain. Otherwise, it processes
the interrupt and then returns to the IM •

... If the last interrupt service routine in the chain doesn't recognize the
interrupt, it transfers control to the reset code for the Pascal system.

- When the 1M regains control, it restores the interrupted program's context
which re-enables interrupts. Execution proceeds from the point at which it
was interrupted.

A spurious interrupt can be generated as the result of a hardware malfunction,
or of a BRK instruction in currently executing code. In the case of a hardware
malfunction, the interrupt falls through the chain of routines, and control is
ultimately passed to the Pascal system reset code. In the case of a BRK
instruction, the break bit is set causing the IM to restart the system as
decribed above.

To determine whether ··it '.should process an interrupt,.· an interrupt service;.,p,,;'
routine can (in general) check the interrupt flag register for the appropriate
card slot.

The location of the interrupt flag register, unfortunately, may vary according
to the hardware; it is best if the peripheral card follows the conventions
described in the Apple lli Design Guidelines manual, in the section on
"Peripheral Card Firmware."

For 64K Pascal systems, the code fo~ the 1M is in the form of an ATTACH driver.
However, the 1M cannot be called from a user program. (For 128K Pascal systems,
interrupt handling is built in, and the !Meade is ignored if it is present in
ATTACH. DRIVERS ).

';'-.:'

User-written device drivers that support in.terrupts must also be ATTACH drivers.
The following section discusses how td write such a driver.

Drivers ~ Devices~ Interrupts

The following considerations must be taken into account when you write a driver
for a device that generates interrupts.

1. Any volume number appropriate for a user-defined device (128-143) can be
used, except for number 128 (decimal), which has been defined as the
standard number for the large disk driver. The IM itself is assigned the
highest available number. It is recommended that you use numbers in the
130-140 range.

Note: If you use ADMERG, there is a chance of cancelling another driver
that had already been installed with the same number, so it is important to



"Addendum to l'ascal Technical Note #11

use SHOWAD to look a~ the ATTACH. DATA files before you run ADMERG.

.. Page 7

In addition, if you wish to execute
should not be done with just an SEl
sequence of PEP, SEl •• code •• PLP.
correctly restored when you exit the

2. SYSTEM.ATTACH enables interrupts after ·the full chain of interrupt service
routines has been built and all transient initialization modules have been
executed. Device driver code should never enable interrupts.

some code with interrupts disabled, this
instruction. Instead you should use the
This ensures that the system state is
critical section (after the PLP).

3. Any driver that uses interrupts must initialize itself before the system
starts up in order to link its interrupt service code into the chain of
service routines. The initialization code should do the following (before
exi ting) in order to ini tialize the links:

LDA OFF'FE
STA STORElT
LDA OFFFF
STA STORElT+l

LDA I ADDRESS
STA OF'ITE
LDA I ADDRESS+l
STA . OFFFF

I ADDRESS •WORD I HANDLER
STOREIT •WORD 0

; move IRQ vector into next
driver pointer

move interrupt service routine
address into the IRQ vector

next driver pointer

where: I HANDLER is the entry point of the driver's interrupt service
routine;

STOREIT will contain the address of the next interrupt service
routine to~be called if the current one finds that its device did
not generate the interrupt.

Note: This code must be executed only~ and must ~ be in a transient
initialization module. The driver ltself may also contain "regular"
initialization code to reset the device or its buffer, and so forth.

4. At the start of its interrupt service routine(s), a device driver must first
determine whether the driver's device hardware generated the interrupt.

The details are device-dependent, but in general involve checkin~ a register
on the device's controller card (for example, an interrupt fla~ register on
a 6522).

If the interrupt was generated by the driver's device, the driver should
pro~ess the interrupt and then return to the 1M by an RTI instruction.

If the interrupt was not generated by the driver's device, the driver should
do an indirect jump to the next device driver (the address of the next
driver is saved as STOREIT in the sample initialization code under item J,
above). If this device driver is the last in the chain. the ;ump will be to



A.ddendum· to 'PascalTechnical Note /I 11

the Pascal system reset code.

Page 8

Note: The jump to Pascal system reset code. is accomplished automatically,
since the system initializes the IRQ vector to point to the reset code. If
the initialization for all interrupt-based device drivers is correct (as
shown in item 3). this pointer will be moved to the end of the interrupt
service routine chain.

Important: If your device card has no way of signalling that it generated
an interrupt, then its service routine must be the last service routine in
the chain. It will have to assume that~it is called. it will handle an
interrupt. This is not a good approach, since the routine won't be able to
detect BRK or hardware failure interrupts.

To ensure that a driver is the last one in the interrupt drivers chain,
assign it a unit number lower than all other interrupt driver unit numbers.

S. An interrupt service routine must be an integral part of the driver's code.
This ensures' that it will be loaded by SYSTEM.ATTACH. If you don't do this.
your code is in danger of being released by the system - a subsequent
interrupt may cause unpredictable effects.

6. If you use the 64K Pascal system. the 1M driver sttould be included on the
boot diskette inside the ATTACH.D.RIVERS file •. You may use' the.standarl
library program (LIBRARY.CODE) to look into t~e file and/or transfer the
code segment to another file. The code size of 1M will be shown as
approximately 280 bytes, but much of this size corresponds to relocation
code that will not be resident at run time. At run time, the !M occupies
approximately 200 bytes.

7. The program ATTACHUD.COD~ is used to.save information. about a driver in
ATTACH. DATA. For each driver, ATTACHUD will ask you if. the driver uses
interrupts. If you answer yes, A'l"1'ACHtJI).ensures that a data record for the
1M driver is automatically included in the. ATTACH.DATA file. Note that this
data record is automatically included in ATTACH.DATA as long as at least one
of your drivers uses interrupts.

On the 64K Pascal system, the IMdri'v"er ls automatically attacheditf the 1M
data record is present in ATTACH.DAT~. If the re.cord is not present, the 1M
driver is 'not attached. On the 128K Pascal system, theIM data record is
ignored if it is present.

8. It is not, repeat not, necessary to save re.~isters in an interrupt service
routine. The 1M sms them before jumping to the drivers chain. and
restores them before resuming no~al execution of the interrupted code. You
should use the standard 'RTI' instruction at the end of the interrupt
service routine: not an 'RTS'. The 'RTI' instruction transfers control
back to the 1M. (iT! is used because the 1M saves additional status
information in the processor status byte and then pushes this byte onto the
stack. )

9. A change has been made to the 1.2 Pascal syste~ to eliminate a problem
associated with abnormal termination of the system with certain interruptin~

devices. This can occur when a program gets a system error or when a user



Addendum to ·,Pascal 'Technical 'Note Hll

interrupts the program from the keyboard (CTRL-@).

Page 9

When the system terminates abnormally, it executes a UN!TCLEAR on all
devices (l-20and 128-143). This is done even when the driver's data record
(in ATTACH.DATA) specifies that no initialization is to be done at boot
time.

This presents a problem when the UN!TCLEAR portion of a driver contains code
to initialize the service routine chain (as described above in item 3).
Drivers under version 1.2 must have some code to distinguish between the
first initialization (which sets up the driver chain) and any subsequent
initialization (i.e., a call to UN!TCLEAR).

In the driver, these two kinds of initialization may be distinguished" by a
simple check of a byte of memory to see which type of initialization code
needs to be run (if any)., This is the scheme used in the example below.

The 1.2 system reinitializes all devices because some drivers may have
pointers into the stack/heap spa.ce. If this space were released without
reinitializing the device drivers, the pointers would now point to invalid
code or data. The problem can't be solved by simply disabling further
intenupts, since some external devices (e.g., a remote network printer
server) may have to be notified,of the reset : if interrupts were disabled,
information coming back from the remote device could not be handled
correctly.

10. Location $7F8 must contain the'value $Cn, where n is the slot number of the
card, if your card uses the$C800 expansion space. The reason for this is
that when ydl1 are exi!cutil'lg in your $C800 space and an internptoccurs,
the interrupt routine may decide to use its own $C800 space•. When the, .
internpt has completed, the system l11ust kt10,~ if it needs, to reselect the
$C800 space for your ,~ard., 'l11pIM will take the contents, of location $7F8
(which,can, be i~iti~lize~.a~Y'tilIlebefore your driver 'enter~ the$C800
space), and use it to reselect your card. If you ,do not do this, it is
very possible that your routines may not work correctly since your $C800
space will not be reselec:ted. The only otl'ler way to avoid this is to
disable all interrupts while you are in your $C800 space.

Note: Interrupt service routines must,never alter the contents of location
$7F8, as this mayeause the wt'ong $C800 space to be reselectedafter ttle
interrupt has been serV'iced. "

11. Interrupts are disabled when an interrupt occurs, and are re-enabled by the
IM after the interrupt ha.s been serviced. Only one interrupt may be
handled at a time.

Devices or driV'ers m\Jst neverre"enable interrupts if they have been
disabled by the IM~

12. There are additional restrictions on interrupts for applications that
execute under the 64K Pascal syst,em and that also use the auxiliary 64K
memory on a IIe. Since the IM and all interrupt service routines are
resident in the main RAM, if an interrupt occurs while the application is
using the auxiliary RAM, the interrupt will not be serviced properly. and



Addendum to ~ascal'Technical Note #11

may cause the system to crash.

Page 10

For this reason. an application should disable interrupts while the
auxiliary 64K is in use, or should be able to handle the interrupt
management itself.

13. On the Apple lIe, the IM will save the state of the 80STORE and PAGE2 soft
switches, and will deselect PAGE2 if 80STOR! is selected. The original
state of the PAGE2 switch is restored after the interrupt is serviced.

14. In the 128K Pascal system, the IM will save the state of the RAMRD and
RAMWRT soft switches and will then ~elect read main RAM and write main RAM.
The original state is restored after the interrupt is serviced.

15. If an interrupt .s~rvice routine uses any zero-page user temporaries
($0-$35), then it·diust save their corttents, and restore them after the
interrupt has been serviced.

16. If an application switches in the Monitor ROM, it must disable interrupts
prior to doing so.

The following is a brief scenario for installing an interrupt-based device
driver in your Pascal system.

1. Write the device driver and assemble it, accordi~g to the requirements given
above.

2. Execute ATTACHuD to create an attach data file for your driver.

If you have already defined other device drivers, call the new attach
data file INTERRUPT. DATA, for example. Then execute ADMERG to append
your driver data file INTERRUPT.DATA to the existing ATTACH.DATA file.

If you do not have any other device drivers in your system, call the new
attach data file ATTACH. DATA.

Be sure to tell ATTACHUD that your driver uses interrupts.

Next, execute LIBRARY.CODE to place your driver code in the ATTACH.~RIVERS

file. (On the 64K Pascal system, you must include IM.CODE in
ATTACH. DRIvERS , if it is not already present.)

Note: If you change ~our device driver and reassemble it, you don't always
need to run ATTACHUD a second time. Changes to driver code don't affect the
data record in ATTACH. DATA unless you have changed something which affects
the answer to one of the questions which ATTACHUD asks you. You will still
have to use LIBRARY to place the new code in the ATTACH.DRIVERS file.

3. Along with the standard files for a bootable Pascal disk, the following
files must be on your new boot diskette: SYSTEM. ATTACH , ATTACH. DRIVERS , and
ATTACH. DATA. When you boot from the new diskette, the driver will be
loaded, and you can test it and use it.



Addendum to Pascal Technical Note #11 Page 11

Remember that you can use SHOWAD to view the contents of ATTACH. DATA, and
LIBRARY to view the contents of ATTACH.DRIVERS.

Changes~ Version~

Under version 1.1, intert"Upts were theoretically allowed, since the system
disabled interrupts during time-critical operations such,as disk accesses.
Unfortunately, ~hen a disk access was completed interrupts were never
re-enabled, so that interrupts functioned correctly only until a program's first
disk access!

Version 1.1 could support only one interrupting device per system.

This is the scheme described in Pascal Technical Note tIll.

Version 1.2 of the Apple II Pascal system can support multiple interrupting
devices. For 128K systems, this capability is. built in. For 64K systems, the
interrupt manager (IM) is shipped in the file IM.CODE.



Addendum to Pascal Technical Note #11 Page 12

Example of ~ Interrupt-Based Device Driver

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• I •

• " ""., .. 'I "" .. " .. "" .. " ". ".,,, " ,,". ""." .. " ", ., , .,,, , •••• , " " , ,

Apple II Pascal 1.2 Sample Interrupt Driver

........................................................................., " • , . " , • " .. t·" , , , .. " .. " ,. , ... , " .. , , " .... , .. , , , " , •• , .. , • , .. " " .. , , .. , .. " , .. , ... " , .... , , , , , " . " ,

Copyright 1983 - Apple Computer Inc •

.. ...... . .. . ... .. .. .. .. .... ... ..
, " , , , .. , •• , , , • , , , .. , .. , , , , t t , , , , , " .. ., , , t ,. , , , , , , , ...... , .. , .. , , "., , , • , , , ,

This sample driver is a user-defined device driver. It shows both
the overall skeleton of a user driver and more importantly it shows
how to write an interrupt-based device driver that uses the
interrupt manager (1M).

Macro Subroutines

Save/restore
•MACRO
PLA
STA
PLA
STA
.ENDM

word off the stack (used to save return addresses)
POP

%1

7.1+1

"7.4" <> "*"

7.3,Y

i.3+ 1,Y

A

%1

"%2" <> '"'
{/%2+1
$010

•MACRO PUSH
LDA %1+1
PHA
LOA
PHA
.ENDM

01' switch macro. (see SOS Reference Manual for description)
•MACRO SWITCH..
•IF "7.1" <> ,'"
LOA %1
.ENDC·
• IF
CMP
BCS
.ENDC
ASL
TAY
LDA
PHA
LOA
PHA
.IF
RTS
.ENDC
.ENDM

first word into the second

The

$010
: Move



•MACRO
LDA
STA
LDA
STA
.ENDM

MOVE
7.1
7.2
7.1+1
7.2+1

Addendum to Pascal TeehnicalNote lIl1 Page 13

••••• t " " •••• " •••••••••••••••••••••••••••••••••••••••
t • , ... , , t , • , , , • , , •• , , , , " , .... ~ .. , , , , , , ... " • , , , , • , •• , •• , .. " , , , • , , , , , , ,. , , , • 'I ,

Equates

Zero page (0-$35 is available) is used for return addresses,
and global temps.

Zero page temporary locations

CSLIST .EQU
CTRLWORD .EQU

IRQ .EQU
FLAG6522 .EQU

o
2

OF'FFE
OC2ED

Buffer address
storage for ctrl word

IRQ vect~r location
Interrupt Flag Register

for a hypothetical card in Slot 2

Error code equates

Upon completion of the driver, the X register will hold an appropriate
error code that will be converted into the Pascal reserved variable
IORESULT. The Pascal program should check IORESULT after all UNITSTATUS
calls made to. the driver. Error code numbers 128-255 are to be used by
your driver.

XNOERRS .EQU
XBADCMD •EQU
ERRCODE .EQU

.PROC

o
3
128.

SAMPLE

no errors encountered
bad command to driver
user defined error message

............... " , .
" .... " '" • " ,,, •• ,,,, • , .. " •• "., "., ,,,, " , , .. , .,.", ••• , 11 ,., •• , ••

This is the main entry point for the ATTACH driver. This driver
is defined as a 'user device' and therefore will only be used from
Pascal using direct I/O (i.e, UNITSTATUS, UNITREAD!WRITE).

Upon entrance, the X register will contain the type of call r~quested'

(UNITREAD ,WRITE ,CLEAR, etc). See ATTACH documentation for more
details on the stack setup.

START
POP
TXA

RETURN save return address
get type of call



Addendum to Pascal Technical Note #11

SWITCH ,4 , IDTABLE

Page 14

BADREQ LDX
BNE

GOBACKOK LDX
GOBACK PUSH

RTS

IDTABLE .EQU
•WORD
•WORD
•WORD
•WORD
•WORD

IIXBADCMD
GOBACK
IIXNOERRS
RETURN

'*
READ-1
WRITE-1
INIT-l
BADREQ-l
U STATUS-l

if you got here, the call is in error!
always taken
go here if you want to return with no errs
or return with X register holding error code
main exit point

............ " .
""-'ttt", •• "t,."" •• """"".",."""., •• ,."""".",t",."""

INIT does two things: 1) moves the IRQ vectors to the appropriate
locations the first time called and 2) every additional call will be
meant to issue an appropriate initialization request to the driver
(if requi red) •

INIT
PHP
SEI
LDA
BEQ

TYPE
$001

Disable Interrupts

if zero then do init stuff

Any UNITCLEAR call after the initial one by the system will ;ump
to this area

SOOl
JMP
INC

$090
TYPE

always taken
bump type field so next time we dont do it

This next section moves the IRQ vector into a temporary
location. The MOVE macro is a 16-bit move instruction -- see above
macros for an explanation.

MOVE
MOVE

IRQ,JUMPTO
INTADR, IRQ patch IRQ location and jump vector

more code for initial initialization call

S090

INTADR
JUMPTO

Pl.P
lMP
•WORD
.WORD

GOBACKOK
INTHNDLR
a

Interrupt handler address
save area for next interrupt svc routine



Addendum to Pascal Technical Note #11 Page 15

TYPE
RETURN

.B';{TE
•WORD

o
o

if 0 then init call else cleanup call
return address for Pascal

.........................................................................
,,' '" If" , , "" t , ,. '"'' , "t", , ,,' , """"',,' "" """" , "."" ,.,,,,,,,,, """""" .... ". "",. "" ,,, ,

READ is called when the program generates a UNITREAD

READ

code for the UNITREAD call

LDX
JMP

#ERRCODE
GOBACK

error completion code

............................. " .". , 'I"'''''''''''''''''''''''' 11 , , , , , , , .. , , " , • " , , • , , , , " , , , , , , , , , , , , , , , , , , , , , , , t , , , ,

WRITE is called when the program generates a UNITWRITE

WRITE

code for the UNITWRITE call

LDX
JMP

IIERRCODE
GO BACK

error completion code

•••••••••••••••••••••••••••••• " •••••••••••••••••••••••••••.•••• " ••••••••• I
, , • , t , .. , " , , , , " •• , , , , • , , , .. , • , " , " , , .. , , , , , , , , , , , , , • t " , , , , , , , , , , , , , , " , • , , , , , •

U STATUS is called when the program executes a UNITSTATUS call to
this particular device.

The order of the stack (4 bytes) is:

TOS:a) POINTER TO STATUS RECORD

CONTROL WORD bits 15 •• 13
user

defined

12 •• 2
reserved

for future

1
status/
control

o
direction

direction - 0 D status 6f output channel
1 :a status of input channel

status/ctrl - 0 ~ status call
1 :a control call

Bits 13-15 should have the number of the
control/status request.



Addendum .toP.ascaL .Technical Note #.11

From Pascal, the call should be:

UNITSTATUS(130,BUFFER,OPTION)

Page 1-6

where:
130 3 Device driver number (currently 130 is used by this driver)
BUFFER • PACKED ARRAY (a •. ??] OF 0•• 255:

This array is as big as needed by the code called.
OPTION • PACKED RECORD

DIRECTION: 0 •• 1;
STAT_C'l'RL : 0 •• 1;
RESERVED: 0 •• 2047;
CODE: 0 •• 7;

END;
U STATUS

POP
POP
LDA
BIT
BNE
JMP

CSL!ST
CTRLWORD
1/02
CTRLWORD
CONTROL
STATUS

see above
ditto
mask for status/control bit
if bit 2 is set, zero flag will be cleared
go d~ a control call
status request

CTRLWORD+1 get control word
I/OEO is it I/O 0000 0000
CODE ZERO yes
#20 is it 111 0010 0000
CODE ONE yes
1/40 is it #2 0100 0000
CODE TWO
1/60 is it 1/3 0110 0000
CODE THREE
I/XBADCODE completion code error
GO BACK

This is the unitstatus call -' control request section

CONTROL
LDA
AND
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ
LOX
JMP

CODE ZERO

code for control code zero

LDX #ERRCODE completion code error
JMP GO BACK and report it

CODE ONE

code for control code one

LDX IIERRCODE completion code error
JMP GOBACK and report it



Addendum to Pascal Technical Note #11

; repeat for codes 2 and 3

CODE TWO

Page 17

LDX
JMP

CODE THREE

LDX
JMP

IIERRCODE
GOBACK

IJERRCODE
GO BACK

completion code error
and report it

completion code error
and report it

This is' the unitstatus call - status request section

STATUS
LDA
AND
BEQ
CMP
BEQ
LDX
JMP

SCODE ONE

CTRLWORD+l
110EO
SCODE ONE
1120
SCODE TWO
IIXBADCODE
GO BACK

get <control word
is it #0 0000 0000
yes
is it #1 0010 0000
yes

status code one

LDX IIERRCODE
JMP GOBACK

SCODE TWO

status code two

LDX IIERRCODE
JMP GOBACK

completion code error
and report it

completion code error
and report it

••••••••••••••••••••••••••••••••••••••• , •••••• " •••••••••••••••••• 1.1 •••••
• • , •• , , •• , 11 , 11 , , , • , , , , • , , ••• 11 , 11 , , , , , , , , , , , , , • , • , • , , •••• 11

This is the interrupt handler. Remember that we don't have to save
the context of the system. The code used to check for an interrupt
will have to be changed depending on your hardware.

INTHNDLR

first we check to see if we generated the interrupt



Addendum to ,Pascal ,Technical Note #11 Page 18

LDA
AND
BPL
JMp

FLAG6522
//80
GOAHEAD
NEXT

check for 6522 interrupt flag
mask out bit
if bit was set, we generated it
otherwise goto the next interrupt handler

Since we generated the interrupt, we service it and then return to
the interrupt manager with an 'RTI'

GOAHEAD

interrupt handler code for our card

RTI Go back to the Interrupt Manager

If we got to NEXT, we must have decided that the interrupt was not
generated by us.

NEXT
JMP @JUM.PTO
•END





Apple Pascal Object Module Forcat

Pacal Technical Note # 16

15 October 1981

urrRODOCIION

This document describes the object module format of codefiles currently
produced in the Apple ] ( and II/Pascal systems. The only d1.ffe.t'eI1ce between
the format of the 1( and /1/ codefnes is the informar:ion contained in block 0
as nor:ed below. The P·code for both systems is identical.

A CODEr!lE ON DISKETTE

Codefiles may be unlinked files crear:ed by the compiler or assembler, library
files with units which may be used by programs in other codefiles, . or. linked
files composed of segments ready for execur:ion. All codefiles (linked and
unlinked) consist of a segment dictionary in block 0 of the file followed by a
sequence of one or more code segments up to a total of sixteen segments.

Segments may be linked or unlinked code segments, or data segments for an
intrinsic unit. Code segments may have interface text, code blocks, and li nker
information in that order In blo'cks dn. che diskette, though some of these pa::'ts
may be present only for particularcypes of code segments. For exatlple,
interface text: is only preseat i1'1 code segmenr:s ofunics. Data· segmerics only
have an entry ,in the segment dictionary: they do not' occuPyap.y blos~<on che
diskette since they hav4!nocode, interfa,ce,or linker inf.ormacionassodated
W'ir:h them. The only d.:l.fference ber:ween the . .formatof H and III codefiles is
Che in.f ormation in bldc:.k O.

Each code segment begiti.s on a boundary between diskette blocks (the 512-byte
disk allocation quantUlJ1 used by th7 Apple Pascal operating system) •. Each
segmenr: may occupy many blocks (up to a maximum of 32Kbytes). A typical
codefile is showt1 in rigureO •

.!The following' sections >descri be the parts of" a codefile 'in greater deta.il.
First the segment dictionary is described. Then the part:s of .a codesegmeIlt
are "presented in the order in which they ~ould occur in a file: the interface
part:, the code part:, and finally linker information. The code part description
is broken up into sections describing r:he similarities and differences between
code parts for P-codeand assembly language modules.

SEGKENT DICIIONARY: BLOCK ZERO OF A CODErItE

The segment dictionary in block 0 of a codefile contains info~tion regarding,
name, kin~, relative address and length of each code se~ent. It is

Page 1



i:'e"'!'t'esented 'by a ,,:.recor.4·,presentedbelowc.d.n-,'a pseudo-code presenta'tion and
illustrated in Figure 1.

The segment dictionary contains an ~try for each code or data segment in che
file. (The userprogram main segment is assigned segment number li che sys~em
main segment is assigned segment number O. Both are placed in slot a of cheir
respective codefiles by the compiler. ,This differs from the statement in the
"Pascal Operating System Manual", page 250, ..mich incorrectly states that "the
main program is assigned segment tIO".)

Each segment dictionary entry includes the segment's size (in bytes). This
size 1s set to zero 1f there is no segment in the slot. !he entry also
contains the segment's disk 10cati9n, which is set to a for a data segment of
an intrinsic unit. Blocks in a coderile are numbered sequentially from 0, °
being the segment dictionary. The disk location for non-data segments is givec
as the block number of the first block containing code for the segment.

RECORD {This record is composed of parallel 16 element arrays, one element for
each possi ble segment ,slot in the segment dictionary of a codef ile.}

DISKINFO: ARRAY(0 ••15] OF
R.!CORD

CODELENG, CODEADDR: INTEGER
END;

{The first array is co~osed oe two-.Jord records made up of two
integers representing 'the length of the cocie part of a segment 1n
bytes and the block number of the s~art of the code part of the
segm7nt. On the diskette, the CODE.ADDR field appears before the
CODELENG in each pa1 r • }

SEGNAME:~'ttO~.lS1 OFPAc:o:D ARRAY[9.~tl OF. <:eAR;
{'!his !sa sixteen element array of eight character arrays ..mich
describe the segments by name. These eight characters are those
which identify tae main program and its segment procedures at compile
time. Unused segment sloes have name fiel.ds filled with ught
ASCII space characters; if the oatl1e is less. than e.i ght charact ers it
is padded on the right by spaces; 1£ ehe name 1s. longer than eight
characters, it is truncated. Note that a blank field is allowed for
au existing code segment. CODELENG-O should be used to dete~ne an
empty slot:.j

S'EGUND: j;U,AY [0 •.• 15] OF

{The ne~ array describes the kind of segment
particular entry locat:ion of the dictionary.
values are described below.}

in the
!he possible

(LINKED, {-e. !his represents a fully executable segment.
Either all external references (regular UNITS or ~TE~~ALS

or .REFs) have been resolved, or none were present.}

aOSTSEG, {-l. This represents the outer block of a Pascal

Page 2



..program if·.···th-e· program' -has "unresolved ''eX'te-rnal
references.}

SEGPROC, {-2. A Pascal segment procedure. !his type is not
currently used.}

UNI'ISEG, {-3 •
unit. }

SEl'R'l'SEG, {-4 •
functions.
type. }

A compiled regular (as opposed to intrinsic)

A separately compiled (set of) procedures or
Assembly language codefiles are always of this

UNL!NKED-!N'IRL~S, {-So An intrinsic unit containing
unresolved calls to assembly language procedures or
functioUs • }

LINKED-INTRINS, {-6. An intrinsic unit in its final,
ready-eo-run state.}

DAXASEG)j {-7. A specification of the data segment associated
~1th an intrinsic' uni t telling how .many bytes 1:0 allocate
and which segment to use.}

n::t'IADDR: ARRAY [o•• 151 OF I.NTI:GERj {'!his array of integers g1 ves the
block number of the start of the int.erface part of each regular or
intrinsic unit. The last block of ,theintedace secUon is infer-red
f-r~m CODEADDR-l. Array elements cor-responl1ing to non-uni I: segments
have the value zero. Seg-cents .are stored with th~ir interface blocks
(if any) first, followed bythet.r code part blocks and finally their
linker information. blocks (containing. ~ymbol •• table elements for items
Wledbut. netdt!.fined in the . segment or for items de..fined in the
segment and externally .accessible. ) Linker informations records are
described in detail belo~.}

SEGINFO: PACKED ARRAY [0 ••15] OF
{This array has one word per segment entry.J

PACK!D . RE CORD

SEGNUM: O•• 255

{Bi ts 0 through 7 (t~.elo~orde.rbi ts of each word
specify the> segtnent number for that code. This is
the.~?sition the code segment will occupy in the
system's SEGIABLE at execution time. This table is 32
elem~l:l.ts long in the Apple .l[ and 64 ele::lents long in I:he
Apple III. Thus valid numbers for the first field are
0 ••31 on the ]( and 0 •• 63 on the III.

The run time segment table contains an entry for each
segment thae is used in executing the program. There are
eneries for 6 segmenes thae the system uses when
execueing a user program on ehe J [; on the III, 8

Page 3



segments ,au ..wied ,by....the ..Pascai ,~rating 'system. There
is an entry for each segment in the se~ent dictionary of
the program's code file. Finally, there ~s an ent=; :or
each code and data segment of each intrinsic ~nit.

At run time no tyO segments in the segment table can have
the same number since the numbers are used to indeY- the
table. A number is, assigned to' a program segment when an
entry is created for it in the code file's segment
dictionary. The main program has segment number 1. 7ne
segments used by the system are 0 and 2 •• 6 on the ][ and
III and, additionally, 62 and 63 on the III. Also,
segments 59 through 61 are reserved for use by the
system. !he segment number of an intrinsic ur~t is
determined by the unit's head:ia~-when the unit is
cOt$iled. (!hese numbers&'n-;f;eo.:rotmd by examining the
segment dictionary of the SYSI!~LIaRARY file ~ith the
LIBMAP or LIBRARY utility programs.) The segment numbers
of regular unit se~ents and of segment pocedures and
~unctions are automatically assigned by the system; they
begin at 7 and ascend. Note that after a regular unit is
linked into a program, it may not have the same se~ent

number shown for it in the library's segment dictionary
~hen the library is examined w1th LI~~~.

Since the Pascal system itself uses 6 slots on the 1[ and
8 slots on, the 1/1 in the runtime SEG'IABLE, this means
that a program can have 26 use:' defined or intrinsic
segments (6+26-32) on the ] [. A code: ile is, as >:e have
seen, limited to 16 segments by the number of spaces in
the segm~~t. dicti0l1.at'7; this is trueJor both user
codefiles;m~ the StS'!EM.~I~P..AR.'IC94l!file...Thus on the
] (,16 of the 26~atl~1t1. thl'!)USer's codefile\wmle the
excess over 16 could be intri,nsics. On the I /I ,there
are 64 possible segments. Ho~ever, the maximum ~hich can
be used is 56: 8 for the system, a maxi~ of .16 for the
user program, up to 16 user. program library code or data
segments, and up to 16 system library code or data
segments. &+16+1&+16-56.

Thus, segment numbers of the program itself., the segments
used by the Pascal system, and of any intrinsic units
used. by the pt'ogr~lJ1 are fi.xed before. the program is
coarp1led'; .the. segments ...0# regular units and of segment
procedures. and functions •. are .. not.f1x~d and are aSsigned
as the program is compiled and litl.~ed in ascending
sequence beginning ~ith 7. Normally, users oeed to
specifysegmerttrt'Umbers only when 'Iort'lting an intrinsic
unit. !he choice cust avoid the fixed nucbers 0 •• 6 (and
59 through 63 on 'the /1 /) or any other intrins'ic unit
whi~h may be used in the sa~e progra~ as :he unit being
wt'i tten. In particular, the "magic uni ts" l?A.SCALIO and
LONGINTIO occupy segments numbers 30 and 31.

Page 4



'~Intrinsic' unit segment numbers must also avoid contlic:
~ith numbers which may be assigned automatically to
regular units and segment procedures. However, when

. unavoidable conflicts arise,· the "Next Segmen~" compiler
option described in the "Apple Pascal Language ~nual

.{ Addendum" may be used to set the segment number to another
value. }

MTn'E: O•• 1.5 ;

{The second byte in che SEGINFO ~ord has in bits 8
through 11 the "machine type" ~hich tells what kind of
code is present in the code segment. The ~chine types
are:

o Unidentified code. P.erhaps from a previous
compiler.

1 P-code, most significant byte first.

2 P-code, least significant byte first. A
stream of packed ASCII characters fills the low
byte of a word first, then the high byte. !his is
the kind of P-code used by Apple.

3 through 9 Assembled machine code, produced f~om

assembly-language text.. Machine type 7 identifies
machine eodefor Apple's 6502.}

UNUSED: 0 •• 1;

VDtSION: 0 •• 7

{The version number. of the system.. On the· Apple ] ( the
current version number is 2; on the Apple III the cuneot
version number is 3.}

END;

!N!RINS~SEGS: {ON !BE ](} StTOF 0••31;
{ON 'IRE II/} SET OF O•• 63;

{Ihese"~ords (two on the ](, four on the /11) tell the system ..mieh
intr1.nsi~1lUits art! ·needed in order to execute the .codefile. Each
int.rinsic 1lUit in SYsn:M.LIBRARY (and in. the program libFary on the
Apple ///).is identified by a segmeot number (or two segment numbers
1f the intrillSic unit has. a data segment.). Each of the bi ts in these
words cor-respond to one. of the thirt,.-t;Jo or sixt'Y... four possible
intrinsic segment ~umbers. If the n-th bit is set to 1, this
Indicates. tne program needs the intrinsic uni t whose seg::ent number
in SYS'ttM.LIBR.A.RY (or in the program librar).. on the Apple III) is n.}

IN"l'-NAM-CH:ECXSUM: {Only on the II/}
. PACKED ARRAY[0 •• 63J OF 0 •• 255;

Page 5



{These fields contain eighc-bic checksums of che names of intrinsic
units needed to run the codefile. Each entry corresponds to one of
the sixty-four possible intrinsic segment numbers on the {I/o

The checksum is calculated by shifting the characters of che UNI:
name to upper case and adding up che resulting ASCII values of t~e

chara.cters of the tJN!T name ~OD 256. The name is· padded with spaces
on the right if it is shorter than eight characters; it is truncated
to eight characters if it is longer than eight characters. Padding
spaces are included in che checksums. Elements corresponding to
unused segment numbers are set to zero.

These words are nQt used on the ](i they must be zeroed.}

{UNU SED JUNK (FII..UO WIIR ZEROES) FOLLOWED BY}

COMMENT: PACKED ARRAY [0 •• 79] OF caAR
{the text follOWing a Comment compiler option, starting in byte 432 of
the header}

END;

Code segments for units may hav~ an I~~RFACE part ~fore their associated code
blocks. This concains the ASCII' teAt of the INTERFACE declaration in the
source code of the UNIT. The construction or an INTERrACE part of a code
segment from its source code is shown in Figure 2.

!he Pascal compiler emits two block pages (1024 bytes) of text which are
identical to the. sp\lrce text blocks except for the ·firsteutd last pages. The
in.for:na.tion in the Ur~t page is moved up so the.first character in the page is
che character follOWing "IN'l'DU'ACE" in the original source. This may leave a
considerable amount of unused characters in the first page. Useful information
is terminated by a CR and followed by at least one ASCII NULL character (byte
value 0). The last page is truncated after che. token ".IMFLEMENTATION"; i.t is
possi ble that only one block of this page may bf! puc out if "I}!PLEMENTA!ION"
occurs in the first block of the page.

There is some special encoding af.ter the tok.en "IMPLEMEN'I'.A1'ION." The
immediately foll0r.w:(ng t.en chara.cters are cOllI9osed .0£ ASCIIspacesexcepc for an
"E" iIi the nint~. positio~. . '!h:is is required <by the Pascal compiler ~d
librarian program. to .terminate the .interface section. .A "p" m..ay occur instead
of a space in the second of the ten character positions to signify to the
Pascal compiler that che unit requires che PASCA.LIO unit. The fourt~position

may be occupied by a.ll '''Lit 1£ the unit requites the LONGINTIO unic. Failure to
include these can cause the system units not to be loaded when needed ~using a
system crash. Note chat these items--!XFtEXE~~ATIO~, E, P, and L--are all
taken to be tokens by che compiler; thus, the order is significant, che spacing
and case is not.

The INTERFACE cext is not stripped of ~~cess non-printing characters or

Page 6



'comments and 'is accessed 'by the compiler when the UNI! is USEd by, ~other
program. Leaving the comments in the INTERFACE part could lead to more
complete internal program documentation but may increase size 0: codefile.

,ThiS text is not necessary for execution.

!he address of the INTERFACE part is given as a block number relative :0 :he
start of the code file in the !EX!ADDR field described below. Tnis field is
zero for segme~s which are not UNIT code segments or do not have an inte=:ace. .
text.

CODE PAltTS

As has been mentioned, all non-data segments appear on the diskette as the text
of an interface part (if the segment is a regular or intrinsic unit) followed

"by code blocks followed by link.er information (if the segment has undefined
element's or has elements 'which may be linked to other modules.) Data segments
for intrinsic units do. not. occupy any disk blocks.

All code parts have the same general format illustrated in Figure 3. Each code
part contains code for that segment's outer block, as well as the code for each
of the (non~segment) procedures'within that segment. Following code for
various procedures associated with the segment is the procedure dictionary a.t'
the high address indicated by the CODELtNG field of the associated entry in the
segment dictionary in block· 0 of~ the codefile. This procedure dictionarygtows
down; the code starts at the firSt byte of the block flpedfied in the CODEADDR ,
:ield of the segment dictionary and grows up.'

Each procedure in a code part is assigned a procedure number starting at 1 f~r

the outer block (the Ill&inprog't'aID; o.r segII1ent procedure) and ranging as high as
160. All references<to aproc~dur~ are madev1a HStlU1l1ber. !ranslationfrom'
a procedure's number to the loc:.ation of that procedure's code in the code
segment is accomplished via the procedure dictionary at the end of the seg=ent.
This dictionary is an array indexed by the. pr9cedure number. Each array entry
is a self-relatiVI! pointer to the code for the corresponding procedure.J Since
the procedure dictionary starts at .. the high end' of a code segment and works
down toward lower addresses, the term "self relative pointer" could be
ambiguous: it could be positive or negative depending on interpretation!. In
all that follows, a self relative pointer is taken to be .the absolute distance
(in bytes, a positive integer riumber)be.tween the. low order byte of the pointer
and. the low order byte of the wo.rd to wtU..chit poincs.] In other words, you
subtract the pointer from its 'location to find the word pointed to.

Since zero 1s not a valid procedure cumber, .the :;ero-ch entry of the dic:ionaty
is used to 'seore the segIll:nt l1t1lJ1bel:' of the cqde segment in the low order
(even) byte and the ~berof procedures in that code segment in the high order
(odd) byte. The segment aumber corresponds to the value in the SEGNUH field of
the segment dictionary entry.

!here are currently two fo~ of code contained in procedures: P-code and
assembly language (or 'I1.A for "The Last Assembler", the familiar name of the
assembler. currently in use in the Apple Pascal sys tem). Each procedure's code

Page 7



:section.consises of ...cwo·'.parts: ,-the ..procedure code its-elf (in ~he"l~wer -p-or-:ion
of the section growing up toward higher addresses) and a cable of ~ttributes of
the procedure pointed to by the entry in the procedure dictionary. This table
of attributes is loosely known as the Jump Table (jIAE) , a term cor~ properly
used to refer only to a portion of the table in P-code procedures. The for=at
of the attribUte table for a !LA procedure is very different from that for a
P-code procedure. These formats are described in the following two sections •

.
While the compiler and the assembler produce "pure" P-code or nA code
sections, it is possible to produce segments with mixed procedure code type
using the Linker. In this case the MrYPE field in the segment dictionary is
set to 'the value for assembly language code, because the code for that segment
is now machine specitic. The interpreter is. able to detercine the type of code
of a particular procedure via information contained in the procedure's
attribute table as is discussed below.

P-CODE PROCEDURE AITRIBUTE !ABLES

The format of a P-code attribute table is illustrated in Figure 4. The
contents of the P-code attribute table are:

PROCEDURE ~ER: Low order, even byte of the word pointed to by the
segment dictionary entry. Refers to the number given this procedure in the
procedure dictionary of the parent code segment.

u:t LEVEL: High order, odd byte of the same word·. Specifies' the absolute
lexical nesting level for the procedure.

EN1U. Ie: A self-re.lati"1epoi'nter (again, a positive number, pointing back)
to the first p-c:ode inst1:"Uet:ion to be executed for the procedure.

EXI! IC: A self-relative pointert:o the beginning of the block of p-code
instructions which lIIUst be executed to terminate. the procedure properly.

PARAME'I'ER SIZE: The number of words of paramet ers passed to a procedure
from its caller.

DATA SIZE: The size of the proc:edure'sactivacion record in bytes,
excluding the Markstac:k and PAR.AME'I'ER SIZE. The activation record ineludes
yariables and temporary space used by the procedure.

Between these attributes and the' procedure code there may be an optional
section called the "jump cable". Its entries . are addresseS'lJ'ithin the
procedure code (as self-relative pointers). During execution, the J7AE system
register points to the attributes and jul:tp table sectio.n of the currently
executing procedure (points to the byte containing the procedure nuober).

In executing jumps in P-code, a juop opcode has a single byte ope~and. This is
a signed offset: the high order byte is taken to be the sign extension of bit,
7. If the offset is non-negative (a short forward juop) , it is added to the

Page 8



interpreter program 'counter, !PC. (A value of zero for. ch..e jump. of.!set ..makes
any jump a ~o-byte NOP.) If it is negative (a backward or long forward jUQ?) ,
chen the operand D!V 2 is used as a word offset into JTAB to find a .
self-relative pointer', and che instruction program counter is chen set Co che by~e

address (JTA]-[operand DIV 2]) - contents of (JTAE(operand D!V 2J).'

ASSEMBLY LANGUAGE (!LA) PROCEDURE .~I3UTE ~~LES

The format of' a JTAB for an assembly procedure is very different from that for
a P-code procedure. It is illustrated in Figure 5.

:he highest word in the JTAB in an assembly procedure always has a zero in its
PROaDURE NUMBER field. In what was theLEXtEVn field of a ?-code procedure
JTAB (the high order byte) is ei ther a zero (indicating that. BASE R:E1.A!IVt:
relocation is Co be relative to ehe>host program activation record) or a
non-zero number (indicating the number of the segment relative to which BASE
RELAXIVE relocation s~ould take place.) In ehe c:ase of INn.INSIC units wiehout
explicitly specified data segments, ehe number placed in this field is 1. When
the interpreter encounters a zero in the procedure number field as it loads che

I segment, it realizes it must fix up references in the '!'LA code according co
information contained in the rest of the attribute table.

The second highest word of the attribute table is, as before, the ENTER
IC: the self-relative pointer to the first instruction to be. executed for this
procedure. Following this arefbur relocation tablec- used by the interpreter
at fiX-Up time.

Working down from the high addres.! start of the. J'IA.B....e.~counte1;' in order the
BASE RELAIIVE, SEGMENT RELA:rIVE)'; SEI..r RE.I.A!IVE' •••• and ••. INttRl'RE'!ER... RELATIVE
relocation tables. The fOt"mat of all .of these tables is the same: the highest
address word of each table specifies ..the numger of entri.es (possibly zero)
which follow (at lower diskette addresses) in the table. Then. follows that
many single-word entries, Which are self rela.cive pointers to locations in ehe
code 1Jh1c.h must be "fixed up" by the addition of the appropriate relative
relocation constantknotom to' the i.nterpreter at load time.

In the c:ase of the BASE REl..A!IVE relocal::ion .table,th.e .value contained in the
,interpreter'sB.A.SE pseudo-register is added 1£ the u:x LEVEL (high order) byte
lot the procedure's attribute ta.ble is zero; if the byte is non-zero, the
relocations W'ill be relative. t~ .the segt11ent whose segment number is contained
in the field. The BAS!r:gister is .a p~in5er. to theactivat10n record of the
most recently invoked base procedure (lexical level 0) ~ Global (lex level 0)
variables are accessed by indexing off BASE. !he '!LA .?UBUC and .PRIVAIE
constructs define those entities whose use results in entries into . this table.

In the case of the SEGMENT RELAIIVE table, the value of the address of the
lowest byte in the segment is added. The !LA .REF and .DEF are che relevant
cons tructs •

SELF RELAIIVE items have the procedure address (i.e., the address of che lowes:
byte in tpe procedure) added.

Page 9



!h'1'ERPRE'l'Dt REU!IVE· i"tems "access ~he Pascal interpreter ?rocedures or
variables. !hey should never be used.

LINKER L~FORMA!ION

Following the code part of a segment there may be Linker information. The
starting location of linker information is not included in the segment
dictionary as was the caSe with the starting location of the interface and code
parts. It ~st be inferred. Linker information items may be present for
unlinked code segments (i.e., a segment containing unresolved external
references) as well as for segments containing items ~~ich ~y be referenced
from other segments (e.g., ,PReC and ,ruNC elements in asse~bly language
programs which may be accessed as EXl'tRNAL PROCEDURES and FUNCTIONS.) 'The
Linker information begins at the first block boundary following the last block
of code for a segment. It 1s desc:.ribed in detail below. The linker
information is a series of records, one for each unit, routine or variable
whi ch is ref erenced bU,t not defined in the source as well as. records for it el!1s
defined to be accessible from other modules. There are records for the
following types of items:

Htypes •

{OJ (EOFMARK, {end-of link-information marker}

{External reference types~ designates fields to be updated by the
linker}

{1} U'NInEF, {references to invisibly used units- i.e." a reference ill
one unit ...t0a.n9ther.uni~ •.. ased itl.thecase.of one non-intrinsic
un:!. t using another non-intrinsic uui. t.}

{2} GLOBREF,{referencesto exterful1 global.addt'esses: tesults from a
.REF construct in an assembly language. program. }

{3} PUBLREF, {refereIlcesto a V'ari.ible in the global data segcent of the host
program: results from a. .!'trBLIC in assembly language code or use
of vadables declared .in the. I~ltFACEipat'1;<of regular units. (They
are stored in anoth"er segment in intrinsic un.its ...... the data segtlent
of the unit .. ) "

{4} PR.IV1tE:E', {references to V'aria.bles:.of an asselnbly langu.a.ge routine or
regular<uni.t to be··stored inthe.host.program's··global data segment
and yet bEtit1.a.ccessible to the host program. Space is allocated by
the Linker. Generated by'PRIYA'!.E in assembly language. Also, .
generated by use of global variables declared in the !~LE~iArION

part of regular units. (In intrinsic units, these are also scored
in the data segment of the unit.)"

{S} CONSTREF, {references to a globally declared constant in the hose
prograQ. Generated by .CO~S! in assecbly language,

Page 10



'{defining r:ypes :-gi,ves linker values r:o fix references}

{6} GLOBDEF) {Global address locar:ion. Generated by .DEF (and .PROe and
.FUNC) in'assembly language}

{7} PUBLDEF) {A variable location in r:he host program. Generated by VA:;..
declaration in Pascal}

(8} CONS!DEF, {A host program constanr: definicion. Generated by CONST~~
in Pascal.}

{procedure/function information:
Assembler r:o Pascal and Pascal co Pascal interfaces}

m ..EXTPROC) { Referen~es to procedure declared co be external in
Pascal: generated by PROCEDtJRE ••• O::rZRNAL}

-{IO} EX!ruNC, { References Co function declared to be external in
Pascal: generated by ~CTION •••~TERNAL}

{ll} $EPPROC, {Separate Procedure definition co be linked into Pascal:
generated by .PROC in assembly language.}

'{ 12} SEPFUNC, {Separate Function definition to be linked inr:o Pascal:
'generated by .FUNC in assembly language.}

{13} SEPPREF, {Not currently used. Was once used for references r:o
procedures in a "separate unit", a concept: yhich has been removed
from the current implementation.}·

{14} S-~FREF) {Not currently used. Was once used for references to
functions in a "separate tmi til) a concept yhich has been removed
from che current implementation.}

The exact format of data in the linker information block is dependent on the
type of entir:y. They are described by the folloYing record.

OPFORMAT • (WORD,BYTE,BIG);
LI~Y • RECORD

NAME: PACKI:D AR.RAY[ 0 •• 7) OF CRAR.; { !he name of the syc.boL }

CASE LInPE: LI'I'n'ES OF

GLOBREF,
PtTBLREF,
PlUVREF,
CONS1"R.EF,
UNI'IREF,

SEPPREF, {Not currently used}
SEPFREF: {Not currently used}

(FOR.'1A!; OPFOR.."'LA..T; (The fot'1!1at of the operand :epresented by

Page 11



the named (and cunently undefined). symbol. ,~y.be BIG, BY-:=:
or WORD. (See page 229 of the '~ascal Operating System
Manual".)}

NREFS: INTEGER; {The number of references to this s~bol in :~e
compiled code segment. There will be this number of pointers
after this record into the code segment. !hese specify :he
addresses of references to the symbol.}

NWORDS: LCRANGE; {where L~GE is 1..~L;XLC, currently ~.AXI~~T.

This field is meaningful only in the case of a PRIVREF type
in which case it is the size of the privates in words.}

GLOBDEF:

(HOMEPROC: PROCRANGE; {which procedure the global definition
appears in.}

ICOITSEI: ICRANGE)j {The byte offset of the occurence in
ass~mbly language. IC stands for instruction count.}

PO'Bt.DEF:

(BASEOFFSEI: LCRANG!); {compiler assigned word offset into host
program data segment.}

CONSIDEF:

(CONSTVAL: I17EGER); {User's defined value}

EXTPROC, EXIroNC, SEPPROC, SEPFUNC~

(SRCPROC~ PROCltANGE; {PROCltANGE· 1••M.AXPROC. MAXPROC is
currently 160. !his field is the procedure number of this
procedure definition in its source segment.}

N13ARAMS: IN'I"EGER); {Number of parameters expected (really
number of words of parameters e~ected).}

EOFMA.RK:

(NEXnASELC: LCRANGE; {Pr'ivate variable· allocation
information-- amount of space the host used in its data area.
Meaningful only for bost segments.}

PRIVDA!ASEG~ SEGNUMBER); {Data segment number associated with
intrinsic uni t code segment. Otherwise oot used.}

If the LITYPE is one of the first case variants, then folloWing this portion of
the record is a list of pointers into the code segment. Each of these pointers
is the absolute byte address within the code segment of the reference to the
variable, tTh'"IT or routine named in the LIE~7RY. !his pointer list is contained
in eight-word records, but only the first «~F-l) ~OD 8)+1' iJords of the las:
record ar~ valid.

Page 12



APPENDIX: SUMMARY OF L"1POR.TAN1' RECORD DEFINITIONS

I _ SEGMENT DICTIONARY: BLOCK ZERO OF A CODEFIU

RECORD

nISKL~F6: ARRAY(0 •• 15] OF
RECORD

CODELENG, COD~~DR.: INTEGER
END;

SEGN~~: ARRAY(0 •• 15] OF PACKED .~Y(0 •• 7] OF caARj

SEGKIND: ARRAY (0 •• 15] OF
(LINKED,
HOSTstG,
SEGPROC,
ON1TS~G,

SEPR.TSEG,
tJ'NLINKED-INTRINS ,
LI1"Ia:D- IN'l'1UNS ,
DAIASEG); .

TIXTADDR.: ARRAY(0 •• 15] OF IN'rEGERj

SEGINFO: PACKED ARRAY(0.~15] OF
PACKED RECORD .

SEGNUM:
M'!n'E:
O'NUSED:
VERSION:

O•• 255
O••15;

O••1;
0 ...7

END-,

Im'RINS-SEGS: {ON IRE] [} SET OFO •• 31 ;
{ON !HE III} SET OF 0•• 63;

INT-NAM-O:IECKStJM: {Only on the I/I}
PACKED ARRAY(0 •• 63] OF 0•• 255;

{These yords are llOt used on the ] (; they lI1USt be zeroeet.}

{TJNO'SED JUNK (FII.U:D W'rm ZEROES) FOLLOWED BY}

COMMENT: PACKED ARRAY [0 •• 79J OF aaAR
{the text folloYing a Comment compiler option, star:ing in byte 432 of
the header}

END;

Page 13



II. LINKER INFORMATION

The linker information is a series of records, one for each unit,
routine or variable which is referenced but not defined in the source as
as records for items defined to be accessible from other modules. !here
records ·for the following types of items:

li types •

well
are

(EOFMARK, {end-of link-information marker}
Uh~!REF, {references to invisibly used units.}
GLOBREF, {references to external global addresses.}
PUBLREF, {references to a variable in the global data segment of the

host ,program.}
PRlVREF, {references to variables of an assembly language routine :0

be stored in the host program's global data segment and yet be
inaccessible to the host program.}

CONSTREF, {references to a globally declared constant in the host
program.} .

GLOBDEF, {Glpbal address location.}
PUBLDEF, {A variable location in tile host progra:m.}
CONS'rDEF, {A host program constant definition.}
EXTPROC, { References to procedure declared to be external in

Pascal. }
EXIFUNC, { References to function declared to be external in

Pascal. }
SEPPROC, {Separate Procedure definition to be linked into Pascal.}
SEPFUNC, {Separate Function definition to ~ linked into Pascal.}
SEPPREF, {Not cunently used:}
SEPFREF); {Not currently used.}

The exact formac: of data 'in the li:c.k.er information block .. is deperident on the
type of entity. They are described by the following record.

LmrrRY • RECORD

NAME: PACKED ARRAY(O •• 7j OF CB.AR; { The nameo£ the sy:J.bol.

CASE LIIYPE: LI~ES OF

GLOBREF,
PtrnI.UF,
PRIVRE.F ,
CONS!"REF,
ONITREF,

SEPPREF, {Noe cunenely used}
SEPFRtF: {Not currently used}

(FORMAT: OPFO~~~I; {The fo~t of the operand represented by
the named (and currently l.lndefined) s;"t:lbol. ~.ay be arc, BY:::
or WORD.)}

,
~!'REFS: :mn:CER; {The number of references :'0 :.his s)"":lbol in :he

Page 14



· compiled code segment. .There will be this number of pointers
after this record into the code segment. These specify the
addresses of references to the s~bol.}

NWORDS: LCRANGE;
This field is
in which case

GLOBDEF:

{where LCRANGE is 1 •• MAX.LC, current:ly ~ L"IT •
meaningful only in t:he case of a PRIVREF t:ype

it is the size of the privates in words.}

(HOMEPROC: PROCRANGE; {which procedure the global definition
appears in.}

!COFFSEI: I~~GE)i {The byte offset of the occurence in
.assembly language. IC stands for ins truction count.}

PUBLDEF:

(BASEOr.rSEI: LCRANGE)j {compiler assigned word offset into host
pro~ram data segment.}

CONS'IDEF:

(CONSTVAL: INTZGER)i {User's defined value}

EATPROC, !XIFUNC, SEPPROC {not used}, SEPFUNC {not used}:

(SRCPROC: PROCRANGE; {PROCRANGE. 1•• ~_A,.~PROC. MA.'<PROC is
currently 160 •• This field is the procedure n~~ber of this
procedure definit:ion in its source segment.}

NPARAMS: INIEGER)j {Number of p4rameters expected (really
number of words of par~eters expected).}

EOFMARK:

(N!XIBASELC: LCRANGE; {Private variable allocation
information-- amount of space the host used in its data area.
~eaningful only for host segments.}

PRIVDA!ASEG: SEGNUMBER).j {Data segment number associated with
intrinsic unit code segment. Otherwise not used.}

Page 1.5



FI~O'RE 0: !HE CODEFILE ON DISKE~~£:

A mICAL CODEnLE

n + 1 n

(see Figure 1) byte 0

Block a Segment
(256 words) Dicxionary

'---__..---_..J byte 510

Only Unit code segments have the
Interface Part.

Interface, Code, and Linker
~arts start on block boundaries.

n + 1 n
-/

k 1 Interface
Part.-~--_ ....-----

k 2

---~

k 3

.

k 4 Code Part

en

k 5 -

k 6

ck 7

k 8 Linker
Inf0 rni.a.t: ion

ck 9

Bloc

Bloc

Bloc

Bloc

Blo

Bloc

Bloc

Blo

.noc

First Code Segm

7

Code Part

Block 10

Second Code Se~~~----

Linker
InformationI

---1..-l-------_-I
I

Block 11

-------_._-_ ..



DISK INFO

CO'DEADDR
CODELENG

(0)

OS)
(15)

" 1

30
31

2

3

4

5

SE~A-~i

~ame is truncat~d

if greater than 8
characters; padded
with spaces if less
than 8 characters

" ·CHAR (1) · CHAR (0) 3·1-- ·· 3· -· 3·
CHAR (7) · 3··-< •· 9

9. . . 9.
9

2

3
4 -.::.- .~=~~E~~AME ( 1.5)

5

SEGKrnD

193

SEG Itnrn ,{,I
1::::::==::========_ S"EGJmm

225

'I'EX'I'ADDR:
Block Address of
interface part
text for units.

{:,....-:-X"1'-;..n-:'p-:-:-------...,

SEGINFO

ON' ~! ON /11 .
IS I

I , I i j I I I I I I j 1
0 144 IS I I I j I I I I I I I I I 10

;

31
,

16 145 31 16

~VlII?ZZZIZTJZ//OZZl/jj 146

47 32

A1 , 48·

145

146

147

144

CHAR (0) 1216

CHAR (78) 1253

I
. I

. ClIKSlJM (1) =suM (0) I}14~'"I"_l-cr....s,
.I CB:KSTJM (63) CHKSUM (62) I 179 I

i
Vlllllllllllllll I I I IJ}180 i

; mros~

VOllllZ7Z2777ZZ11171 215

·•···••····•··········VIlZlmzzzZiz//7 IIZllld 215

{
f CHAR (1)

I CHAR (79)

COMMEm':
80 characters from
comment compiler

;option



Page n
(2 blocks)

IIlterface---------const

Block 2

Standard textfile page
format (stored in TEXTADDR

. 1 ~~ ~~~~ n'c:ionary)
Interface ?a=
of Codef::':e

A: . Block m

garbage

Block :n + 1

Page n +1

procedure B; pt:ocedure Bj

· ·· Block 2(n + 1) ·
· ·

~ -· 2(n 't 1)+1 ·· Block ·· ·
copied intact

Page n + 2

··

SaURO: 'I'Dcr

Block 2 (n + 2)

Block 2(n + 2)+ 1

Implementation
(unit info)

···
Standard textfile form~t

except unused block may be
omitted.
(unit info P,t, and E
characters referred to in
the text.)
!N'!'D..FAC:E: .S:E:c:nON
OF COtlU'IU:

'Valid data iIl· each. block of a text file end with an ASCII aASCII null
character sequence.



LOW AD
- ~-

D~______

I " -I
I I
I I
I OPTIONAl I
I J!JMP TABU I

I
DATA SIZE ill BYTES l
PARA.~lER SIZE Dr BYTES I

I
'En! IC I

I
E:N'In. IC I

u:K u:vEI.1 FROe II Itf

Self relati"Je
pointers :0 co~~

HIGH ADDRESSES
tl -+- 1 n

nGURE 5:' n.A ASS:E:HBLY UNGOAGE PROCz:ntrRE AT!RI:3!J"I'E !A.BL!

nrrnu'P..En:R
JU:I.;A'l'IVE
R.l;.,.OCATION TABU

SZU'- RD:.A'I'IVE
RELOenON
l'.A.BU

SEQ!EN1'
REt..A.n:VE
!ELOCA.nON '!ABU

BASE RD:.A'I'IVE
'?!LOCATION
'l'..o\l3LE

~t"~~'l:'~

· }· Q WORDS··- · Stu'- Rt!.A1'IVE··· POnT!RS·, · -·
I! ENTRIES • (0)

·· }p W9~S·· - -· Sztr-~t"'T· ,Vi:.·· POIN'I'ERS···
!J EN'l'lUtS • (P)

O}: M.WORDS
:' stLi-~rrn
: .... nRS.
··

It ~s • (~)

· }· N WORDS··· Sn.7- R..'C1..ATIVE··· P1"?.S.···
(,f EnRIES "" (N)

~l~R Ie
I

R....'C'toe. SEC. NO. I ?R~Cn ~"UM. ,
ill? (')

To sta.rt: of
procedure code

R!C? ADDRESSES
n .,. 1 n



O'I'HDt
PROCEDURES

OJ ... \,,) \';'l'.. ~ l.,u," c;. ~ \",on l:a~"'lec ::.:-.
Codeadd:- -::'e.lc.
.of Segment
Dictionary)

+----------..,-----*.
CODE

, .,.,

O'l'IiER PROc::DURES

.Because of nesting, procedu=e~

need not be in any obvious
order on the diskecce .

-r----

CODE

-+-----
~~

ATl1U:strtt· t.Al3U:
PROCEDURE () 1 +-t-i-+-----............-----...l--:-1"1-~-4----
PTR TO PROe tIN t I--J._...;..;;.;;.;....:..::....::..:.::.::..::.....::..:.:.................--.....J .._,- .....;.· ~-I Procedure

PTRTO PROe 111 _..... Dictionary

Number of I Segment -- I
'0_",,,, A"''''''''''' \1, ....1-...... •......_""':'O'............::.;:l"....J,....;.;:~:.::.::.=__ __..l_. _.:.. _

0+1 B~e n Need not end on block
boundary

-i-------..,..-----+ .-
eOMUNG
BYT".:.S

.;."be several

..Jcks long)

Jdeleng stored
~ segment dictiona

---- - -l

RIGH ADDRESSES Follo~ed bv li:'.ke~ inior--a:ion
or by na~t' se~ent, i: any.



APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECHNICAL NOTE H20
APPLE II PASCAL 1.2

VOLUME MANAGER UNIT TECHNICAL SPECIFICATION
(January 1984)

For further information contact:
PCS Developer Technical Support
MIS 22-W, Phone (408) 996-1010

Disclaimer~!bhWarranties ~ Liabilities

Apple Computer, Inc.-maKesno-warranties, either express or implied, with
respect to this documentation or with respect to the software "described in
this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc. software is sold or licensed
"as is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved.
may not, in whole or part, be copied, photocopied, reproduced,
reduced to any electronic medium or machine readable form
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

This document
translated or

without prior

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.





VOLUME MANAGER TECHNICAL SPECIFICATION

INTRODUCTION

Apple II Pascal release 1.2 only supports the UCSD file format. With the
introduction of the Profile for use with the Apple II, the ProDOS operating
system has been chosen as the operating system for the support of large mass
storage devices. Clearly, the UCSD file format and thus the use of Pascal
with a Profile is severely limited (i.e. non-existent) unless there is some
means for Pascal to share the resources of the Profile with ProDOS.

The Pascal Profile Manager is a collective term for a set of programs
that allow Pascal to share the Profile with ProDOS. These programs supply
both user and programatic means to allocate and deallocate Pascal space on the
Profile and to assign UCSD file format volumes (known as pseudo-volumes) to
the Pascal area of the disk. These pseudo-volumes act analogously to the
standard UCSD volumes that currently are found on floppies.

The Volume Manager Unit is a programatic means by which an application
program can take advantage of the Profile for the storing of both data and
code files. Use of the Volume Manager Unit assumes that the end-user has the
PPM program and has already created a Pascal Area on hislher Profile. This
unit allows a program to create and manage pseudo-volumes on a Profile. Its
functions are:

a. Create a Pascal pseudo-volume.
b. Delete a Pascal pseudo-volume.
c. Assign a pseudo-volume for use.
d. Release a psedo-volume from use.
e. Set or clear write-protection for a pseudo-volume.
f. '''!Crunch'' the Pascal region of the Profile to give

space back to ProDOS.
g. Modify the name andlor description field of a pseudo

volume
h. Select the Profile drive to act upon
i. Get the current contents of the Pascal area volume

directory
j. Get the current contents of the Profile driver

status record
k. Volume Display and Error Reporting

PASCAL USAGE OF THE PROFILE

1. The Pascal Area

The Pascal area of the disk is a contiguous set of blocks that occupies
the highest end of the disk, i.e. highest block number down to that block
whose number is equal to highest block number minus the total number of blocks
that that the Pascal region occupies. This area is not static but expands and
contracts as pseudo-volumes are created or deleted and the region is krunched.
To insure that Pascal can freely expand, it is a "requirement" that the blocks
just below the Pascal region be available and that they be contiguous.
Currently a problem may arise if ProDOS has fragmented the disk ~uch that

COPYRIGHT 1984 APPLE COMPUTER, INC Page 2





· . ··VOLUME MANAGER TECHNICAL SPECIFICATION

there may be enough logical space for Pascal but not enough contiguous
physical space.

The Pascal area is divided into two areas. The first is the Pascal
volume directory that specifies the currently allocated Pascal pseudo-volumes
in the Pascal area. The second is the pseudo-volumes themselves, each of
which haVing its own volume directory (UCSD format) and its accompanying
files.

2. Modifications to the Prodos Directory

The PPM accesses the ProDOS volume directory when. it initializes the
Profile for use by Pascal. It makes two changes to the directory contents.

The first change is a file entry that specifies the Pascal area on the
disk. This file entry is placed in the first available entry slot in the
ProDOS volume directory. An error will occur if there is no available slot to
put this entry.

Once this slot has been made available, PPM will initialize it with a
file entry with the following contents:

Stype • 4 this is a ProDOS foreign file structure
name_length • 10
file name • 'PASCAL.AREA'
file type • OEFH this is a special type tu denote the Pascal area
key-pointer • first block used (in this case the second to the

last block on the disk)
blocks used • 2
header-pointer • 2
access • 0 (backup bit is not· set)

All other fields are set to O.PPM will look for this entry (primarily
the name 'PASCAL.AREA') in the ProDOS directory to determine if the disk has
been initialized for Pascal use.

The file entry for the Pascal area increments the number of files in the
ProCOS directory and the keYJointer for thi.s file now pO.ints .. to. TOTAL_BLOCKS
- 2. Thus the Pascal area occupies the last two blocks available on the
Profile. Blocks used Lnthe file entry is s.et to 2. When the .Pascal.~'['ea

expands or contracts, the key-pointerand bloc~~~used V'alues.are~'PdaFed .
accordingly. With any access to this fileentl:'Y(i.e. if Fhe Pascal area is
expanded or contracted by adding or deletingpseudo-volumes) the b~ckl.\'P bit
will not be set. However, a ProCOS based Backup program can explicitly backup
the Pascal area as a whole. At any time that it cannot expand due.to hoOOS
usin~ the.requireci blocks, an error is reported. Because ProCOS can fragment
its area on the Profile, it is quite possible fat' Pascal to be unable to
expand, though there is logically enough rOom on the disk to do so.
Currently, the only means to correct this is to have the user do the
follOWing:

a. backup the Pascal region
b. backup the ProCOS region
c. reformat the disk

COPYRIGHT 1984 APPLE COMPUTER, INC Page J



VOLUME MANAGER TECHNICAL SPECIFICATION

d. restore the ProDOS region
e. restore the Pascal region
f. get back to real work

3. Volume Directory Format

The Pascal volume directory contains two separate but contiguous data
structures that specify the contents of the Pascal area on the Profile.
The vol~ directory occupies 2 blocks to support 31 pseudo-volumes. It is
found.at the physical block specified in the ProDOS volume directory as the
value of KEY POINTER, i.e. it occupies the first block in the area pointed to
by this value. To access the Pascal area volume directory requires reading
the ProDOS volume header. via a UNITREAD of block 2, getting the value of .
KEY POINTER and using this in a UNITREAD of block number KEY POINTER. The
vol~ manager maintains a 1K buffer to read in this directory. It is
important to define the directory data structures in the volume manager as
contiguous to insure that the· data read in is interpreted correctly.

The first portion of the volume directory is the actual directory for the
pseudo-volumes. It is an array with the following declaration:

TYPE RTYPE· (HEADER, REGULAR)

VAR VOIR: ARRAY [0 •• 31] OF
PACKED RECORD

CASE RTYPE OF
READER: (PSEUDO_DEVICE_LENGTH:INTEGER;

CUR NOM VOLS:INTEGER;
PPM-NAME: STRING(3]);

REGULAR: (START: INTEGER;
LENGTH: INTEGER;
DEFAULT UNIT:0.255;
FILLeR:O •• 127;
WP: BOOLEAN;
OLDDRIVERADDR:INTEGER

END;

the READER speCifies inf.ormation about. the Pascal area. It specifies the
size in blo.cks in PSEUDO_DEVICE_LENG'I'H,. the number of currently allocated
p!lel.1do-volume!l. in. CUlt NOM VOLS, and. a speCial validi ty check value in
PPM NAME.' which is a thrl!e character string< containing the value 'PPM'. The
he~der.inforTl1ation.is a,ccessl!d via a reference to VDIR[OI. The REGULAR entry
specifies information .for each pseudo-volume. START is the starting block
address. forShf:! .•• p!leudo- volume and LENGTH is the length of the pseudo-volume
+n blo:ks •.. DEFAULT_UNIT specifies the default Pascal unit number that this
pseudo-volume should be assigned to upon booting the system. This value is
set by the volume manager elther by the user or an application program and
remains valid if it is not released. If· the system is shut down, the pseudo
volume will remain assigned and will be active once the system is rebooted.
WP is a Boolean that specifies if the pseudo-volume is write- protected.
OLDDRIVERADDR holds the address of this unit's (if assigned) previous driver
address. It is used when normal floppy unit numbers are assigned to pseudo
volumes so that when released the floppies can be activated again. Each

COPYRIGHT 1984 APPLE COMPUTER, INC Page :.



-...WJLUME .MANAGER. .. TECHNICAL SPECIFICATION

REGULAR entry is accessed ~ia an index (from 1 to 31). This index ~alue is
thus associated with a pseudo-~olume. All references to pseudo- ~olumes in
the ~olume manager are made with these indexes.

Immediately following the VOIR array is an array of description
fields for each pseudo-volume:

VDESC: ARRAY [0 •• 31] OF STRING[15]

The description field is used to differentiate pseudo-volumes with the
same name. It is set when the pseudo-volume is created. This array is
accessed with the same index as VOIR.

The ~olume directory does not maintain the names of the pseudo- ~olumes.

These are found in the directories in each pseudo-volume. When the ~olume

manager is activated, it reads each pseudo-~olume directory to construct an
array of the pseudo-volume names:

VNAMES: ARRAY [0 •• 31] OF STRING[7]

Each pseudo-volume name is stored here so that the volume manager can use
it in its display of pseudo-volumes. The name is set when the pseudo-~olume

is created and can be changed by the Pascal filer. The names in this array are
accessed via the same index as VDIR. This array is set up when the ~olume

manager is initialized and after there is a delete of a pseudo-volume.
Creating a pseudo-volume will add to the array ~~ the end.

4. Pascal Pseudo-Volume Format

Each Pascal Pseudo-volume is astande;trdUCSD f()rma.t.<volume •..Block 0 and
of the pseudo-:,olulI1t! .aret'~served for.bootstrap.load~Fs(whic.h in this case
are irrele~ent!). The directory for the volume is in bl.ocks2 through 5 of
the pseudo-volume. When a pseudo-volume is created the directory for that
pseudo- ~olume is initialized with the following ~alues:

dfirstblock a 0

dlastblock ··6

first logical block of the volume

first available block after· the directory

dvid a name of the ~olume used in create

deovblk a size of ~olulDe specified in. create

dnumfiles a 0 no files yet

dloadtime .. set to current system date

dlastboot .. 0

The Pascal Tech Note #4 describes the format for the UCSD directory.

Files within this subdirectory are allocated ~ia the standard Pascal I/O
routines in a contiguous manner.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 5



VOLUME MANAGER TECHNICAL SPECIFICATION

5. Volume Name Format

A valid Pascal UCSD format volume name may be up to seven characters in
length and can include any printable ASCII character except' " '.', '$',
'?', and' ,'. When ever a user is prompted to enter a volume name, they may
enter it in either upper or lower case, however, all lower case letters will
be forced to upper case before this volume name is used. For example, if the
user enters 'death' as a volume name, it will be uppercased to 'DEATH'.

6. System Limitations

1. Number of Profiles Supported

The Profile driver will currently support only three
Profiles, because a Profile interface card can only be
plugged into slots 4, 5, or 7 in an Apple / / .'

The unit numbers used by the Pascal syst"em to refer to
the Profiles must be in the range 128 to 143. If they are
not, the volume manager will not be able to find them and
an error (No Profiles on the system) will result.

2. Number of Pseudo-volumes per Profile Supported

The number of Pascal Pseudo~volumes supported per
Profile is limited to 31. ThiS is due to the lind tation
as to the size of the Pascal area Volume di.j,'ectory. The
volume directory is accessed by the Profile driver at
boot time in order to assign the default pseudo-volumes.
Extending the numb~r .. of pseudo-volumes supported will
requirethatt~e driver. be changed in. o.rderto~aI1dle

a larger volume directory. Currently the volume directory
is 256 bytes.

3. Number of Pseudo-volumes Selected

The Ptofile driver will allow up to 30 pseudo-volumes
to be mounted at" any one time. This limit is imposed by
the Pascal system as to its number of allowed units. It is
reflected in the driver in the data structure STATUS RECORD.
To increase this number requires '"a change to the Pascal system
and to both the Profile Driver and SYSTEM. ATTACH.

4. Pascal Blocked Device Volumes versus" User Devices

The Pascal supports the following device numbers
as "blocked devices". This implies that they may be
accessed like floppies via RESET, REWRITE, READLN,
etc.

Blocked Device Unit Numbers

4, 5, 9 - 20

The following unit numbers are for "User devices". They

COPYRIGHT 1984 APPLE COMPUTER, INC Page 6



VOLUME MANAGER TECHNICAL SPECIFICATION

can only be accessed via UNITREAD and UNITWRITE, which implies
that Pascal files are not supported for these devices.

User Device Unit Numbers

128 - 143

Thus this system will only support 14 blocked devices on-line
at any time. The other '16 volumes are only useful for programs
that do their own physical I/O to these volumes. Any floppies
attached to the system will use some of the blocked devive
unit numbers which leaves fewer of these for·pseudo-volumes on
the Profile. A user may assign the normal floppie deV'ice number
to pseudo-volumes, but this will effectively make these floppie-s
inaccessible for use until the pseudo-volumes are released.

5. Volume Name Conflicts

This design allows a user to designate pseudo-volumes
with the same name on a single Profile. Many applications
may require pseudo-volumes that have the same name, i.e.
DATA. In order to support this re~uirement, we must allow
multiple.pseudo-volumes with the samen~, howeV'er, there
must be a. way to differentiate them both for the user using
the Volume Manager Program and for an application program
assigning and.. releasing pseudo-volumes proe!'ammatically.
To cio this, each. pseudo-volume entry in thl:: volume directory
has an associated description field which is 15 characters
in length. This is much the same as extending the volume
name by 15~charlcters.

In order to have pseudo-volumes with the same n~ on
a single Profile, they must have different description
fields. For example,

name

DATA
DATA
DATA

description

QUICKFILE
PFSREPORT
MY LIFE STORY

When. a pseudo-volume is cteated this field is specified.
When ever a specific pseudo-volume is to be referenced
by name, the description field contents are used to
differentiate between those with the same name. A user
will simply poitlt to the pseudo-volume via cursor
motion. using the description field contents displayed
as a mnemonic device helping he/she to know which volume
is which. A program must pass the expected description
contents to the volume manager so it can decide which
1s which. The rules for finding pseudo-volumes are:

1. If there is only one pseudo-volume with the
the name requested then act on that pseudo-volume.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 7



·VOLUME MANAGER TECHNICAL SPECIFICATION

2. If there are more than one pseudo-volume with the
name requested, then match description fields,
return the one matched. If no description content
is supplied, return an error.

The volume manager will not allow a user or a program to
create pseudo-volumes which cannot be differentiated.

For new applications, it will be important to document
how to create and copy their floppy volumes into pseudo-volumes.
In this case, the. d~scription field will be used by users when
hand-assigning Pascal unit numbers prior to execution of the
application. Applications that.use the volume manager
unit can specify this description itself and when assigning
unit numbers it can use it to find its own pseudo-volumes.

6. Unit number Conflicts - #4 and #12

Pascal normally allocates its blocked device unit numbers
(4, 5, 9 - 12; 13- 20 are .new with Pascal 1.2) to floppies.
Unit 114 is n0 t1ll8lly Fhe floppy drive used to boot the system.
It is also by definition, the Pascal system disk which ~an

be referenced via '*'. It is possible to assign this (and any
other unit number) to a pseudo-volume. If a user assigns what
is normally a .. floppy drive. unit number to .. >pseudo-volulDe, they
have effectively made that floppy unusable until such tinie as
they release the unit number.

If uni t #4 is assigned to a pseudo-voll.1ll!e,·· the volume
manager will then assign unit #12 to the device that was
assigned to unit .#4. In the usual case, this will be the
original boot floppy drive. By doing so ,this floppy drive
will remain accessible. If unit 114 is assigned anduni t
fl12 is currently not assigned, then unit #12 will be assigned
automatically to the device that is normally assigned to be
unit #4. Conversely, when unit #4 is released, unit #12 which
has been re-assigned will be put back to its original (default)
device. If unit #12 is currently assigned (to a pseudo-volume)
it will be released and assigned< to the normal unit 114 floppy
drive. It this .case when unit #4 is released, unit 1112 will
be released from the floppy driveuni t, BUT it will NOT be
reassigned to its previously assigned pseudo-voll.1tne.

This scheme has been adopted because unit 1112 is tlorll1ally
assigned to the sixth floppy drivedevi7e,which tl()rmally does
not exist. It will be common practice to assign unit #4 to
a pseudo-volume in order to use it as the system "disk" on
the Profile. Re-assignment of unit #12 when it has been
released from the normal unit #4 floppy drive will only
take place if unit #12 was preViously assigned to a device,
which implies that it has its own driver. Assignment of
unit 1112 to a pseudo-volume can not be restored.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 8



VOLUME MANAGER TECHNICAL SPECIFICATION

NOTE: If a user assigns unit #4 to a pseudo-volume (which
causes unit #12 to be assigned to the boot floppy device) and
then assigns unic Q12 CO a pseudo-volume, chis action will make
the boot floppy device- inaccessible until unit #4 is released.

IMPORTANT NOTE: Assigning a pseudo-volume to unit #4 will
immediately release the current unit #4, making it unavailable
for use. This may have serious effects. If a program is running
that has been invoked from unit #4 (for example, the PPM/volume
manager program) and a pseudo-volume is assigned to unit #4,
the Pascal operating system will request that the user put in
the disk that is in the normal unit 14 device when they exit
the program. This is because the system requires the program
to be on-line to exit and because the program has been put
off-line by the assignment of unit #4. The only recourse is
for the user to re-boot the system. Assignment of uni.t #4
should be done with some thought. Also, if the user intends
to place his/her system vol~e (Pascal development system)
in a pseudo-volume and assign this pseudo-volume to unit #4,
they must insure that the files for the Pascal operating
system occupy the same logical blocks in the pseudo-volume as
they occupy on the boot diskette.

If the user assigns a unit number that corresponds Co a device
that has been configured into the system via ATTACH, that
device will become unavailable. Any produc: that assumes
a unit number for a device should warn the user not to assign
that unit number to a pseudo-volume when that device must be used.

7. Default Assigning of Pseudo-volumes

the volume directory maintains a mapping of pseudo-volumes to cheir
~urrently assigned Pa-scal unit numbers. This as~umes that a Pascal area has
been in.itialized, pseudo-volumes have been created in it, and some number of
them have. bee.n assignedito<\1nit numbers and have .not been officially released,
i.e•.the systeJIlhas been shutdown without ever releasing these pseudo
volumes. Whene.ver the system is booted, the Profile driver when activated
will tead thev61.uJIledirectory.from the Profile to determine if and what
pseudo-volumes are cur!'ently assignl!d. It will prompt the user

Assign volumes to their default unit number? (Y/N)

and if the user types '1' che driver will update its status record to
effectively assign these pseudo-volumes to their unit numbers. If the user
types 'N' they will not be assigned and will not be accessible.

8. P!'ofile Driver Status Record

The P!'ofile driver maintains a status record that maps Pascal pseudo
volumes to Pascal unit numbers. When a pseudo-volume is assigned, the status
record is updated to reflect the assignment. The status record is an array
that is mapped into the standard Pascal unit numbers via the mapping

COPYRIGHT 1984 APPLE COMPUTER, [NC Page 9



VOLUME MANAGER TECHNICAL SPECIFICATION

PASCAL UNIT NUMBER INDEX

4 1
5 2
9 3

•
20 14
128 15

143 30

The format of the status record is shown below:

STATUS RECORD • ARRAY [1 •• 30] OF
PACKED RECORD

DRIVE: : 0 •• 7 ;
DFMT_DRIVE: 0 •• 7;
FILL1: 0•• 255;
WRITE_PROTECT: BOOLEAN.;
PRESENT: BOOLEAN;
START: INTEGER;
LGTH: INTEGER;

END;

When a pseudo-volume is assigned/released, write-protected, and at boot
time this status record is updated. Each entry in the status. record
corresponds to a Pascal Unit number. The field PRESENT, if a 1, connotes that
this unit number is assigned. The field DRIVE specifies the Prof~le drive on
which the pseudo-volume resid~s.START gives the physic:alblock rtUmb.er of the
starting blo.ck of the pseudo-volume, and LGTR is the length of the pseudo
volume in blocks.. WRITE PROTECT, if a 1,impllesthat thlspse\1do-volume is
write-protected. DFMT DilVE is used to assign the last used drive when the
volume manager. prog.ram7unit is restarted. When the. sY9te~fs booted the
default mount drive (DFMT DRIVE) is s.et .to O. If the~ex~ drive<.coramand or
SELECT DRIVE procedure is-called, thi.s value is ch~nge~to.Feflectthe.new
drive and stored in the Profile driver. When the volume manager is exited and
then at some point re-invoked, it will read this value from the driver and use
it as the current drive. lithe system is shu.tdown, this value will revert to
O. This data structure is not intended to be accessed by any program other
than the volume manager and the Profile driver itself.

9. Use of the Profile Driver

Both the PPM and the volume manager assume that there is a Profile driver
attached and that the name of this driver is 'PROFILE'. At initialization
time for both these programs, 1f no Profile driver 1s found (identified by its
name 'PROFILE') then an error message is issued:

ERROR: There is no Profile driver available for this Pascal system

and the program will. terminate.

COPYRIGHT 1984 APPLE COMPUTER, INC Page to



...VOLUME.MANAGER. ..TECB:N!CAL .SPECIFICATION

The P~ofile Driver is supplied as the file ATTACH.bRIVERS and its
associated data. file is ATTACH. DATA. This driver is configured to be
unit 11128.

THE VOLUME DISPLAY

The volume display occupies the major por~ion of the screen and is used
to display the pseudo-volumes available for use on the cur~ently selected
Profile drive. This display has two uses:

1. Display the pseudo-volumes available

2. Serve as the means to select a pseudo-volume upon
which to apply one of the actions in the volume
manager command line.

The format for the the volume display is shown below with
example pseucio-volum.es: .

P'rofile drive: 0
WP Name Description Unit WP Name Description Unit.. DATA QUICKFILE 119 .. ACCOUNT PFSREPORT #134

DATA DBMSTUFF .. DATA PFSFILE
LETTERS #13 FUN SOME GAMES
PASSY.S PASCALSYS 114 MOREFUN NOT A GAME
PASDEVO SOME TOOLS #5
BOB OUR SAVIOR
YHVR1 STARK FIST
AP APPLEACCOUNT
GL APPLEACCOUNT
AR APPLEACCOUNT
<none> PFSDATAVOL
TOOLS MORE TOOLS 1115
TEXT DOCUMENTS tJ16
YETI
PICTURE TURTLEG'RAPHICS #19.. RESlJME FUTURES

COPYRIGHT 1984 APPLE COMPUTER, INC Page It



VOLUME MANAGER TECHNICAL SPECIFICATION

This format will allow up to 31 pseudo-volumes to be displayed at one
time. If there is less than 17 pseudo-volumes to be displayed, the right hand
column header is suppressed.

The first line shows which Profile drive is active by giving the drive
number (in this case 0). As other drives are selected, this number will
change.

The fields in the display are described below:

WP - this is the write-protect attribute for the pseudo
volume. If it is write-protected, a '*' will be
displayed in this column.

NAME - this is the name of the pseudo-volume. It can be
up to 7 characters in length. Multiple pseudo
volumes can have the same name if and only if
their description fields are different. It is
possible for a pseudo-volume to not have a name,
i.e. some applications use the entire volume for
data wiping out the directory. If no name is
found the string "<none>" is displayed.

DESCRIPTION - this is the description field for the pseudo
volume that helps to both differetttiateit
from others with the same n~ and also
serve as a reminder to the user what the
contents of that pseudo-volume are.

UNIT - if the pseudo-volume is currently mounted thert its
Pascal unit number will be displayed,else this
field will be blank.

SELECTING A VOLUME

When an action that affects an individual pseudo-volume is selected from
the prompt line, the characters '->' willappearriext tcf the f:f.rstpseudo
volume displayed. By using the up or down arrow keys (as defined by the
Pascal system and machine in use) the user can move the pointer from one
pseudo-volume to another. UP will move the cursor up on the screen and DOWN
to1ill move it down. The pseudo-volumes ·are 'numbered' from top to bot tom to1i th
the first column 'numbered' from 1 to 16 and the second column 'numbered' from
17 to 32. UP moves down the 'numbers' and DOWN moves up the numbers!! If more
than 32 pseudo-volumes are allowed in the display then multiple screen pages
are used to display the pseudo- volumes. Movement between screen pages is
done using the UP and DOWN arrow keys and a to be determined modifier key.

For a standard Apple II system, CTRL-o is defined be UP and CTRL-L is
defined to be DOWN. This is the convention followed by Pascal on the Apple
II. For the lIe the up-arrow and down-arrow keys are respectively UP and
DOWN.

COPYRIGHT 1984 APPLE COMPUTER, LNC Page 12



VOLUME MANAGER TECHNICAL SPECIFICATION

Once the pointer has been moved to the desired pseudo- volume, typing a
RIGHT ARROW will select that pseUdo-volume for 'the action specified in
responce to the prompt line. When a pseudo- volume is selected, it will be
highlighted. The volume manager may ask for further promptinglinformation
once RIGHT ARROW has been typed. When prompted, typing ESCAPE will cancel
both pseudo-volume selection and the action selected from the prompt line.

The right-arrow key on both the Apple II and the lie corresponds to
RIGHT ARROW.

THE VOLUME MANAGER UNIT SPECIFICATION

1. Introduction

The Volume Manager Unit (VOLUME MANAGER) is a programatic interface, to
allow developers to write programs that can manage Pascal pseudo-volumes on a
Profile. It supplies the following generic capabilities through lower level
procedure calls:

a. Create a Pascal pseudo-volume

b. Delete a Pascal pseudo-volume (this is not a
recommended practice for application programa
to do.)

c. Assign a Pascal Unit number to a pseudo-volume
to make it available for use

d. Release a Pascal Unit number from a pseudo-volume

e. Set the write-protection attribute for a pseudo-volume

f. Krunch the Pascal region to give space on the Profile
back to ProDOS (this.is also oota recommended practice
for applications to perform. This ability will be built
in to the Delete call as well as being a stand alone
procedure. )

g. Modify the name andlor description field of a pseudo
volume.

h. Select the Current Profile drive on which to perform
the above actions (an application program would not
normally have· to do this except to search for a pseudo
volume that it needs to assign.) .

i. Get the contents of the Pascal area volume directory. This
is for information purposes only. A program cannot change
its contents.

j. Get the contents of the status record in the Profile
driver. Again this is for information purposes only.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 13



VOLUME MANAGER TECHNICAL SPECIFICATION

k. Utilize the volume display (section 4.4.2 and 4.4.3)
to display and select pseudo-volumes.

1. Er~o~ repo~ting.

The use~ has the option to do their own screen management for input
and/o~ er~o~ reporting.

An application program cannot initialize a Pascal region on a Profile.
This must be done via the Pascal P~ofile Manager by the end-user.
Applications that require this action will need to document this requirement
so that the user of the application can correctly set up the Profile for u~e.

The volume manager unit is a REGULAR unit and must be linked to a host
program.

2. Volume Manager Unit Interface

1. Constants

MAX VOLS

This is the maximum number of pseudo-volumes that
can be allocated in the Pascal area on a. P~ofile. This
number is 31.

MAX DRIVE

This is the highest drive number for use in
referencing thep~ofiledrives. This number is
currently 7, but only drives 0, 1, 2 are supported.

VOIR SIlt

This is the size of the volume directory in
blocks. For 31 pseudo-volumes its value is 2.

MAXDUNIT

This constant represents the highest unit number
for blocked devices which is 20.

2. Types

UNIT RANGE

This is the range of unit numbers supported by
the Pascal system. The range is 0 to 255.

RTYPE

This 1s used to differentiate the two types of
record fields 1n the volume directory. The two
types are HEADER which refers to the header information

COPYRIGHT 1984 APPLE COMPUTER, INC Page 14



VOLUME MANAGER TECHNICAL. SPECIFICATION

in the volume directory and REGULAR ~hich refers to the
entry used for each pseudo-volume in the directory.

DRIVE RANGE

This is the range of values for drive numbers used
to reference Profile drives. The range is 0 to MAX DRIVE.

STAT REC

This is the declaration for the data structure
STATUS_RECORD that is found in the Profile driver. It
maintains information about the currently assigned
Pascal unit numbers. Its format is:

STAT REC • ARRAY [1 •• 30] OF
PACKED RECORD

DRIVE: 0 •• 7;
DFMT DRIVE: 0 •• 7;
FILLl: 0 •• 255;
WRITE_PROTECT: BOOLEAN;
PRESENT: BOOLEAN;
START: .. INTEGER;
LGTE: INTEGER;

END;

This structure is described above.

VOIR STRUCT

This is the format for the V'olumediredory. Its
structure is:

VOIR STRUCT • ARRAY [0 •• MAX_VOLS] OF
PACKED RECORD

CASE RTYPE OF
HEADER: (PSEUDO_DEVICE LENGTH:INTEGER;

CUR NUM VOLS:INTEGER;
PPt£'NAME': STRING (J] ) ;

REGULAR: (START: INTEGER;
LENGTH: INTEGER;
DEFAULT UNIT:UNIT_RANGEj
FILLER:O •• 127;
WP:BOOU;AN;
OLDDRlVERADDR:INTEGER)

END;

This data structure is fully described above.

DESC ARRAY

This array holdi the description fields for each
pseudo-volume. It is important that any program that
gets the volume directory contents must also declare

COPYRIGHT 1984 APPLE COMPUTER, INC Page 15



VOLUME MANAGER TECHNICAL SPECIFICATION

this data structure contiguous to the volume directory
data structure. Its format is:

DESC ARRAY: ARRAY [0 •• MAX_VOLS] OF STRING(15]

N ARRAY

This array will hold the names of the pseudo-volumes.
It also must be declared if the application program intends
to get the volume directory contents. It does not have
to be declared in any special place however. Its format
is:

N ARRAY: ARRAY [0 •• MAX_VOLS] OF STRING(7]

STRING7

This is a string of length 7. It should be used
to declare any variable that is to hold a pseudo
volume name.

STRING15

This is a string of length 15. It should be used
to declare any variable that us to hold a description
field.

BLOCK TYPE

This is a 512 element array of bytes that is used
to hold blocks of data read in from a disk. It is
primarily used for low-level routines and is not necessary
for application programs.

3. Variables

VALID DRIVE

This is a set that holds the valid drive numbers
for .1.11 the available Profile drives. Its format is

VALID DRIVE: SET OF DRIVE RANGE

This variable is initialized when the volume tUanager is
activated. If a drive number is in VALID DRIVES it does
not imply that: this drive has a Pascal ar;a. It only
implies that this drive is active and that it has a
ProDOS directory. An application program should use
PASCAL_DRIVES to determine if this drive has a valid
Pascal area.

This is the set that specifies all the available

COPYRIGHT 1984 APPLE COMPUTER, INC Page l6



VOLUME MANAGER TECHNICAL SPECIFICATION

P~ofiles that have Pascal areas. All of the volume
manager unit functions can only be applied to P~ofiles

that are specified in this set. Any application must
check the drive number against this set prior to
making any calls to the volume manager unit. Since
SELECT DRIVE must be called prior to making any other
calls,-it will check the drive number against this
set and return an error if it is not in the set. A
call to INIT VM will put together both VALID DRIVE
and PASCAL_DRIVES. The format for this set Is

PASCAL DRIVES: SET OF DRIVE_RANGE

MY UNIT

This is the unit number by which the Pascal system
refers to the Profile driver. It is an integer.

ERR LINE

This variable holds the line number on which errors
are reported. Its value defaults to 3. An application
program can change this value. It is only used when
E~FMT (see below) is TRUE.

DISPLAY ERR

Thi~bool~~n variable is used to control whether
or not the volume manager willl report errors to. the
screen. If TRUE, then errors will be reported, else
they will not be reported.

ERR FMT

If this boolean variable is TRUE then errors will
be reported on ERR LINE, else they will be reported on
the current line or the display.

VM ERROR.

This integer variable will contain an error code
if an er~or has occurred on a call to the volume
manager. If it is 0, then no error has occurred.

VM 10 ERROR

This integer variable will contain the value of
IORESULT after any call to the volume manager. If it
is 0 then no error has occurred.

CUR DRIVE

This is the current drive number for the currently

COPYRIGHT 1984 APPLE COMPUTER, INC Page 17



VOLUME MANAGER TECHNICAL SPECIFICATION

accessible P~ofile unto which volume manage~ actions
can oce:ur.

CUR INDEX

This is the index of the currently selected pseudo
volume on the cur~ent d~ive. It is only set via the
volume selection routine SEL VOLUME.

VDIR BYTES

This is the size of the volume directory plus the
description array in bytes. It is used in reading
and ~iting the contents from and to the Profile. It
is initialized by the volume manager unit.

VDIR

This is the cur~ent copy of the volume directory
of the currently selected drive. It is initialized
by SELECT DRIVE.

VDESC

This is the cur~ent copy of the array of descriptions
that corresponds to the pseudo-volume~ of the currently
selected drive. It is initialized by SELECT_DRIVE.

VNAMES

This is the current ar~ay of volume names for the
pseudo-volumes of the currently selected drive. It is
initialized by SELECT DRIVE.

STATUS REC

This is the cur~ent copy of the status record from
the Profile driver. It is initialized by INIT_VM.

4. Procedures and Functions

CREATE VOLUME

Call format:

INDEX :- CREATE_VOLUME(NAME, DESC, SIZE)

where NAME is a 7 byte string that will be
the name of the volume, nESC is a 15 byte
string that denotes the description field
(this may be null), and SIZE which is an
integer that denotes the number of blocks

COPYRIGHT 1984 APPLE COMPUTER, INC Page 18



VOLUME MANAGER TECHNICAL SPECIFICATION

this pseudo-volume is to occupy. INDEX
is a user-supplied integer to hold the index
value that is returned.

CREATE VOLUME will create a pseudo-volume
on the currently selected Ptofile drive.
It will be assigned a name, its description
field will be specified, and it ~ll be SIZE
blocks in length. This function will then
return an index value that must be used
in any other call to act on this pseudo-volume.
It is up to the calling program to save this
index value. ~It can be found however through
a VOLUME INDEX call described below.) If an
error occurs, INDEX will be set to O. Use of
this function will change the index ·values that
correspond to the pseudo-volumes on the Profile.

Errors reported:

a. Not enough room - there is not enough room
in the Pascal region to allocate a pseudo
volume of this size or the Pascal region
cannot expand into the ProDOS area. A
Krun~h may alleviate this problem.

b. Directory full - there is no more room in
the volume directory to allocate this
pseudo-volume.

c. Name conflict-- a pseudo"'volwoewith this
name alreadye:dsts and the description
field does not diffefentiate them. This
can be solved either byspecifyirtg the
description field or changing it.

d. Illegal volume name

e. Volume size must be greater than 6 blocks.

DELETE VOLUME

Call format:

DEUTE...yOLUME (INDEX. KRUNCH_FLAG)

where INDEX is an index into the volume
directory that specifies which volume
to act upon and KRUNCR_FLAG is a Boolean.

DELETE_VOLUME will delete the pseudo-volume
specified by INDEX, which corresponds to
a pseudo-volume (either through a create or
VOLUME INDEX call) only If it contains to

COPYRIGHT 1984 APPLE COMPUTER, INC Page 19



VOLUME MANAGER TECHN1CAL SPECIFICATION

files (if so an error occurs). If KRUNCH FLAG
is set to TRUE, the volume manager will
then krunch the Pascal region, else it will
not. This procedure follows the name matching
convention specified above. Use of this procedure
will cause a change in the indexes used to specify
pseudo-volumes. If this procedure 1s used, an
application program should update its own copy of
the indexes prior to making any calls that use
an index.

Errors reported:

a. No such volume - a vqlume with the INDEX
passed was not found.

b. Write-protect error - if the pseudo-volume
is write-protected it cannot be deleted

c. Volume has files cannot delete.

ASSIGN VOLUME

Call format:

where. INDEX is. an integer and .. UNIT NUMBER is an integer
in the range 4, 5, 9 - 20, 128 - 143.

This procedure will assign the Pascal unit number
(UNIT._NUMBER) .to. the pseudo-volume specified by
INDEX. The. unit number must be in the
correct range. This. action will mak.e the pseudo-volume
accessible through the normal Pascal I/O routines.
If this u~it number is already assigned, the current
devive (or volume) will be released from this
unit number and the new one will be assigned.

Errors reported:

a. No such volume', - a volume wi th the irtdex
passed was not found.

b. Illegal Unit Number - the unit number
passed to this procedure was out of
range.

c. Cannot assign Profile driver unit number.

RELEASE VOLUME

Call format:

COPYRIGHT 1984 APPLE COMPUTER, INC Page 20



VOLUME MANAGER TECHNICAL SPECIFICATION

where UNIT NUMBER is an integer in the range
4, 5, 9 - 20, 128 - 143.

This procedure will release the pseudo-volume
assigned to the Pascal unit number (UNIT NUMBER).
Doing so will make this pseudo-volume in-;ccessible
to Pascal I/O calls.

Errors reported:

a. Not assigned - this unit is currently not
assigned.

b. Illegal Unit Number - the unit number passed
is not in the legal range.

WP VOLUME

Cal-l format:

WP_VOLUME (INDEX, WP_FLAG)

where INDEX is an integer and WP FLAG is a
Boolean.

W? voLuME will set or unset the write-protect
attI'.ibu~.e of .the.volume specified by INDEX.
If ..WP:"LA.Gis.'rRUE then it will be write-protected
else Tt .will..... b~. unwri te-pro tected.

Errors reported:

a. No such volume - there is no volume specified
by this index

KRUNCR AREA

Call format:·

KRUNCH AREA

This procedure will krunch the Pascal region of
the currently active Profile.

SELECT DRIVE

Call format:

SELECT DRIVE(DRIVE_NUMBER)

where DRIVE NUMBER is an integer in the range
o to 7.

COPYRIGHT 1984 APPLE COMPUTER, LNC Page 21



VOLUME MANAGER TECHNICAL SPECIFICATION

SELECT DRIVE will select a Profile for the
Volume-Manager to act upon. The available
set of Profile drives is given in the set
PASCAL DRIVES found in the global variables.
All volume manager calls are specific to a
sibgle.Profile. To sWittti Profiles requires
this call.

Errors reported:

a. Drive not active - this drive is not
available for use.

b. Illegal drive number - the drive number
passed is out of range.

c. No Pascal area on drive.

MODIFY VOLUME

Call format:

MODIFY_VOLUME(INDEX, NAME, DESCRIPTION)

where NAME is a 7 character string and DESCRIPTION
is a 15 character string, INDEX is an integer

This procedurenlllllod:f..fy the nJl.~~ and I or the
description fieldofapse~~o-volumespecified
by INDEX. Either string passed may be null. This
nIL reave the current contents unchanged. Errors that
can occur are:

a. No such volume - there is no such volume
specified by this index

b. Illegal volume name

c. Write protect error

d. Name .conflict

VOLUME INDEX

Call forraat:

INDEX :~ VOLUME_INDEX(NAME, DESCRIPTION)

where NAME is 7 byte string, DESCRIPTION
is a 15 byte string, and INDEX is an integer.

VOLUME_INDEX will look up a volume in the
volume directory and return its index, which

COPYRIGHT 1984 APPLE COMPUTER, INC Page 22



VOLUME MANAGER TECHNICAL SPECIFICATION

is then used to perform any volume manager
action on that volume. This routine will
follow the volume name matching conventions
specified above. This call will usually
proceed. any other volume manager call.
Use of these indexes can be made easier if the
calling program maintains a mapping between pseudo
volume names and their indicies once this call has
been made. After the deletion of pseudo-volume,
however, the application cannot assume that the
indexes will remain the same.

Errors reported:

a. No such volume - a volume with this name
cannot be found.

GET VIDR

Call format:

where VOL DIRECTORY is of type VDIR STRUCT (defined
in Volume-manager interface section) and
NAME_ARRAY is of type N_ARRAY (a:ao defined in the
interface section. DRIVE NUMBER is an integer in
the .range 0 to 7. -

This procedure will return the contentSaf the volume
directory>on the Pt'ofiledrive designated by
DRIVE NUMBER. The contents areteturned in the user
supplied data structure VOL DIRECTORY which is
declared to be of <type VDIR::SnUCT. The names of the
pseudo-volumes are returned in NAME_ARRAY.

It is important to declare in the application program
the following data structures in this order and
contiguous:

VOL DIRECTORY: VDIR.<STRUCT;
DESCRIPTIONS: DESC~AkRAY;

because this call will fill both these data structures.

Errors reported:

a. Illegal drive number - must be in the range
o to 7

b. Invalid drive - this drive is not available

c. No Pascal area on this drive - this Profile
does not contain a Pascal area

COPYRIGHT 1984 APPLE COMPUTER, INC Page :23



VOLUME MANAGER TECHNICAL. SPECIFICATION

Call format:

where STATUS RECORD is of type STAT REC (defined
in the interface section of the unit.)

This procedure will return the contents of the
status record foound in the Profile driver. This
contains information about the currently assigned
Pascal unit numbers.

Errors reported:

a. No Profile driver - ~here is no Profile
driver attached

INrT VM

Call format:

INrT VM'

This procedure will initialize the volume manager
uni~. It sets various global variables. identifies
the Profile driver. and. its unit number, and sets
the value for CUR. DR.lVE. It DOES NOT iltitialize
the volume.directory orstatusrec:orddata structures.
The callerraust illDDediately call SELECT.DRIVE with
an appropriate drive number to initialize these
data. structures prior to making any other calls
to the volume manager unit. If the volume manager
unit is configured such that it is swapped in and
out of memory (NOLOAD option) then thiS procedure
must be called whenever the volume manager unit
is swapped back in followed by a call to
SELECT_DRIVE. ThiS procedure sets up the sets
VALID DRIVE and PASCAL DRIVES.

Errors reported:

a. No profile driver attached - this is essentially
a fatal error since no actions can occur without
a profile.

WP DISPLAY

Call format:

WP_DISPLAY(INDEX, WP)

COPYRIGHT 1984 APPLE COMPUTER, INC Page 24



VOLUME MANAGER TECHNICAL SPECIFICATION

where INDEX is an integer and WP is a Boolean.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update the write-
protect field in the display that corresponds
to the pseudo-volume specified by INDEX~ If
WP is true a '*' will be placed in the column
or if it is false a ' , will be placed there.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-volume.

NAME DISPLAY

Call format:

where INDEX is an integer and NAME is a seven
character string.

An application may have the volume manager unit
display the volume selection scrbdO (shown above)
This procedure will update the name
field for the pseudo-volume specified by INDEX
with the name passed in NAME.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-volume.

Call format:

DESC_DISPLAY(!NDEX, DESC)

where INDEX is an integer and DESC is a 15 character
string.

An application may have the volume. manager uni t
display the volume selection screen (shown above)
This procedure will update the description
field for the pseudo-volume specified by INDEX
with the string passed in DESC.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-volume.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 2S



VOLUME MANAGER TECHNICAL SPECIFICATION

UNIT DISPLAY

Call format:

where INDEX and UNIT_NOM are integers.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update the unit
number display for the pseudo-volume specified
by INDEX. If UNIT_HUM isa valid UCSD unit number
it will update the display to show the number,
else it will set the unit number display to
blanks (meaning that this pseudo-volume is
not assigned.) When a pseudo-volume is
released, the display can be updated by calling
this procedure with UNIT_NOM equal to O.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-voltime.

VOL DISPLAY

Call format:

VOL_DISPLAY(INDEX)

where INDEX is an integer.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update all the
information (write-protect, name, description,
and unit number) for the pseudo-volume specified
by INDEX.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-volume.

TITLE DISPLAY

Call format:

TITLE DISPLAY

An application may have the volume manager unit
display the volume selection screen (shown above)

COPYRIGHT 1984 APPLE COMPUTER, LNC Page 26



VOLUME MANAGER tECHNICAL SPECIFICATION

This procedure displays the column headings for the
volume display.

SCREEN DISPLAY

Call format:

SCREEN DISPLAY

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will put the complete
volume display on the screen for the currently
selected Profile. It requires that SELECT_DRIVE
has been called. After any create or delete of
a pseudo-volume, this procedure should be
called to update the complete volume display.

Call format:

INDEX :,. SEL VOLUME

where INDEX is an integer.

An application may have the volume manager unit
display the volume selection screen (shown above)
t.f the volume disl'lay is used, th,is
routine can bl! c.a11ed to have Cl. user select.
apseudo-volume.f'r.om the displayCls .described
in the section above. The pseudo-volume selected
is specified by the. value returned in INDEX.
t.f INDEX is 0 this. specifies .. that the user has
aborted the sele;Sion process and that NO
pseudo-volume has been selected.

REPORT ERROR

Call· format:

REPORT ERROR

An application tll.a.y choose to have the volume manager
unit report any errors that may have occurred to
the screen. If DISPLAY_ERR is true, this procedure
will report an error message to the screen. If
ERR FMT is true, the error messages will be
displayed on line 3 else they will be displayed
at the current position of the cursor. The error
displayed will be based on the value of VM ERROR
or VM 10 ERROR with VM ERROR having the highest
preceden~e. If both these values are 0 (no error)
then no error message will be displayed. After

COPYRIGHT 1984 APPLE COMPUTER, INC Page 27



VOLUME MANAGER TECHNICAL .SP,ECIFICATION

a volume manager routine has been called, an
application program can then call REPORT_ERROR
to report any errors that may have occurred.

S CLEARSCREEN

Call format:

S CUARSCREEN

This procedure will clear the screen. It is supplied
as a low-level screen management procedure.

S CL&ARLlNE

Call format:

S C1.EARLlNE

This procedure will clear the current line (i.e.
the line in which the cursor currently lies.)
It assumes that the cursor is in column O.

USING THE VOLUME MANAGER UNIT

1. Introduction

This section reviews indetailth~.way. an application wri ter will use the
Volume Manager Unit. Detail.s.for:.the. procedure and function calls are given
above. The· actions that can be performJ!d with tllis. unit are shown below:,

a. Creating A Pascal Pseudo-volume
b. Deleting A Pascal pseudo-volume
c. Assigning A Pascal Ps.eud0-v0lum.e
d. 'Releasing A Pascal Pseudo-volume
e. Setting the Write-protection of a Pascal Pseudo-volume
f. Krunching the Pascal region of the Profile
g. Modify the name/description field of a pseudo-volume
h. Selecting the Profile Drive to Use
i. Getting the Index for a Pseudo-volume
j. Getting the Pascal area Volume Directory
k. Getting the Profile Driver Status Record
1. Screen> management routines
m. Error reporting

Each of these actions is performed on the current drive selected, thus it
is important for the user to know which drive they are performing these
actions.

All existing pseudo-volumes are referenced via their volume directory
index. This value tan be obtained either when a program calls the volume
manager to create a pseudo-volume or through a function call to the volume

COPYRIGHT 1984 APPLE COMPUTER, INC Page 23



,VOLUME MANAGER ..TECHNICAL. SPECIFICATION

manager given a pseudo- volume's name and description field. Also, a function
is supplied that will allow an application program to use the human interface
found in the volume manager program.

2. Data Structures

The data structures supplied in the interface section can be divided into
3 areas:

a. Profile information

b. Pseudo-volume directory information

c. Concrol of display and error reporting

2.1 Profile Information

The volume manager unit maintains a certain data
structures that describe the state of the Profile
driver. The~e are:

VALID DRIVES - the set of all available Profile
drive-numbers (does not imply that these drives
have Pascal areas)

PASCAL DRIVES - the set of all Profilcd with Pascal
areas

CUR DRIVE - the currently selected Profile drive
number

STATUS REC - the Profile driver status record
whis~maps pseudo-volumes to Pascal unit numbers
making them" available for use

2.2 Pseudo-volume Directory Information

Once a Profile, drive has been selected by a call to
SELECT DRIVE, the volume, manager unit will maintain
directory information for the pseudo-volumes on that
Profile. This information is kept in the following
data structures:

VOIR - this is the actual volume directory for the
Pascal area on this Profile

VDESC - this is the array which holds the description
fields for the pseudo-volumes

VNAMES - this is the array which holds the volume names
for the pseudo-volumes

The volume manager unit will update both these data structures
and their counterparts on the drive itself aft~r any change

COPYRIGHT 1984 APPLE COMPUTER, INC Page 29



·.VOLUME MANAGER .TECHNICAL . SPECIFICATION

is made by a call to the volume manager.

2.3 Control of Display and Error Reporting

Use of the volume manager unit's display routines
is based on the setting of some control flags:

DISPLAY_ERR - if TRUE the volume manager unit will
report errors to the screen on the line specified
by ERR_LINE (normally set to 3)

ERR_LINE - the line on which errors are reported

ERR FMT - if TRUE report errors on ERR LINE else
report them at the current location of-the cursor

When errors occur in the volume manager unit, two
variables are set to reflect the error condition:

VM ERROR - this holds an integer that denotes the
error that has occurred

VM IO ERROR - if an I/O error occurs then this
variable will have the value of IORESULT.

3. Creating A Pascal Pseudo-volume

To create a Pascal pseudo-volume requires a call of the
form:

INDEX :- CREATE VOLUME(NAME, DESC, SIZE)
. -

This will create a pseudo-volumeon the currently selected Profile with
the name NAME, its description field will be set to the stting passed in DESC,
and it will be SIZE blocks in length. The index returned should be stored in
the calling program, for it must be used for all other calls that will assign,
delete, etc. this pseudo-volume. The index can also be obtained by a call to
VOLUME INDEX using the same name and deseription fi.eld •...This call can return
3 possible errors, either to the calling program or by reporting them to the
screen (if so desired.)

4. Deleting· A Pascal Pseudo-volume

This is not a recommended practice for application programs to do. The
end-user should only delete pseudo- volumes via the volume manager program
(from the PPM). If an application needs to delete a pseudo-volume, it is done
through the call

The index corresponds to a pseudo-volume that is obtained either through
a CREATE VOLUME or VOLUME INDEX call. After a pseudo-volume has been deleted,
the Pascal region can be krunched if the KRUNCH_PLAC is set to TRUE. This
call will return an error if there is no volume that corresponds to that index

COPYRIGHT 1984 APPLE COMPUTER, INC Page 30



VOLUME MANAGER TECHNICAL. SPECIFICATION

or if the volume is write-p~otected.

5. Assigning A Pascal Pseudo-volume

For a program to use a pseudo-volume as a Pascal volume. the pseudo
volume must be assigned to a Pascal unit number. To do so requires a call of
the fot'1ll

The index value spe~ifies the pseudo-volume to assign with the Pascal
unit number passed via UNIT NUMBER. An error will occur if there is no
corresponding pseudo-volume-or if the UNIT NUMBER value is not in the correct
range of Pascal unit numbers (4, 5. 9 - 207 128 - 143).

6. Releasing A Pascal Pseudo-volume

To release a pseudo-volume from its assigned Pascal unit number. requires
a call of the fot'1ll:

where UNIT_NUMBER corresponds to the Pascal unit number that has been
assigned. It is recommepded tha~ an)'.~pplication that assigns unit numbers
will also release them before completion of execution. This will free the
user from having to hand-release these pseudo-vclumes before executing another
program. This call can return two errors, one 01' which if. the unit is not
currently assigned or if the unit number is not in the corr~ct range.

7. Setting the Write-protection of a Pascal Pseudo-volume

To set or clear the write-protectattrib\1te of pseud6- volume. make the
call

INDEX selects the volume and if W'Pr'LAG is true it will be write
protected, else the write-protecta5trib\1te ""ill be cleared. An error will
occur if the is no volume that corresponds to the index passed.

8. Krunching the Pascal Region of the Profile

This is not a recommended practice for application programs. The only
time it may be necessary is if when a create of volume. is. attempted and there
is not enough room for the volume a call to KRUNeR AREA may free up enough
space for the volume. The call is simply

KRUNCH AREA

9. Modify the name/description field of a Pseudo-volume

An application can change the name and/or the description field of a
pseudo-volume. This is not a recommended practice. Calling
MOOIFY_VOLUME(INOEX. NAME. DESCRIPTION) will change the specified values.

COPYRIGHT 1984 APPLE COMPUTER. INC Page 31



VOLUME MANAGER TECHNICAL SPECIFICATION

Either the NAME or DESCRIPTION parameter may be null, to not change the field~

10. Selecting the Profile Drive to Use

All volume manager actions are performed on the currently selected
Profile drive. Each Profile drive is assigned a drive number (in the range 0
to 7). ~e default Profile is drive O. To select a Profile, the application
program should check the set PASCAL_DRIVES in the volume manager interface to
determine which drives are active. PASCAL DRIVES is set up when the volume
manager is initialized. Any currently active Profile drives will be placed in
it. If a user turns off a Profile after PASCAL DRIVES is set, then any action
to that Profile will result in art I/O error. For example,

SELECT DRIVE will return an error if the drive is not active, Le.if it
is not-in PASCAL_DRIVES or if an illegal drive number (out of range) is
passed.

11. Getting the Index of a Pseudo-volume

In order to act upon a pseudo-volume, you require the index that
corresponds to that pseudo-volume. To get the index requires a call

INDEX :- VOLUME_INDEX(NAME, DESCRIPTION)'

This function will return the .index that corresponds to the pseudo-volume
whose name and descI'iption field match the values passed. If an error occurs
it will return a value of 0 to INDEX. The rules for matching are:

a. if there is only one pseudo-volume with the name NAME
then return its index

b. if there are more than one pseudo-volume with the same
name, then match description fields. If there is no
match then return an error. If there is a clear
match then return the index.

c. if no name is matched then return an error.

12. Getting the Pascal Area Volume Directory

Normally, an application program will not have to know about the contents
of the Pascal area volume directory. In such cases as it may, this procedure
is supplied to allow a program to inspect .'the contents (but it may not change
them.) The program needs to declarE!. the following data structures in its
global data.section in the following order and format:

VAR

VOLUME_DIRECTORY: VDIR_STRUCT;
DESCRIPTIONS: DESC ARRAY;
NAME ARRAY: N_ARRAY;

COPYRIGHT 1984 APPLE COMPUTER, INC Page 32



VOLUME MANAGER TECHNICAL SPECIFICATION

Calling GET_VDIR will transfer the information into these data
structures. Care must be made that the programmmer does not put any other
data structures amidst these Eor they will be wiped out! Use of this
procedure will not set CUR DRIVE to this drive number.

13. Getting the Profile Driver Status Record

Using GET_STATREC is also not intended for the usual use of the volume
manager unit. Again, this only supplies information and the user cannot
change the contents. The program must declare the data structure
STATUS_RECORD sho~ below in its global data area:

STATUS RECORD: STAT_REC;

14. Error Handling

After any call to the volume manager unit, there is a possibility that an
error occurred. This is registered in the VMERROR variable found in the
volume manager interface. After any call, this variable should be checked to
see if an error has occurred. Any I/O errors are noted in the variable
VM 10 ERROR. It should also be checked. The error values are shown below for
VMERROR:

o - No error

1 - No such pseudo-volume

2 - Not enough rool'll to allocate pseudo-volume

3 - Volume directory full

4 - Name conflict

5 - Illegal unit number

6 - Pseudo-volume not assigned

7 - Profile Drive not active

8 - Illegal drive number

9 - Illegal volume name

10 - Write Protect error

11 - No Pascal Area on this Profile

12 - No Profile driver attached

13 - Volume size must be greater than 6 blocks

COPYRIGHT 1984 APPLE COMPUTER, INC Page 33



VOLUME MANAGER TECHNICAL SPECIFICATION

14 - Pro DOS directory is full

15 - Pseudo-volume contains files cannot delete

16 - Cannot assign unit number used for Profile driver

17 - The ProDOS directory haa a ProDOS file called
PASCAL. AREA

VM 10 ERROR will contain the standard IORESULT value for any I/O errors
that may have occurred. Use of these ~o variables parallels the use of
IORESULT in Pascal programs. After a call has ,been made to the volume
manager, the application should 'check VM ERROR and VM_IO_ERROR, to determine
the success of the call.

The application program has the choice whether or not it wishes to
report any errors that may occur while using the volume manager unit. Also.
it can allow the volume manager unit to report the errors. Two variables
found in the interface control error reporting. They are:

DISPLAY ERROR - if TRUE then the volume manager will
report errors to the console, else no error messages
will be displayed

ERR FHl' - if TRUE and if DISPLAY ERROR is TRUE then all
error messages will be displayed-on li~a ERR LINE which
is set to 3, by default, of the. console, else if 'ERR_FM'l'
is FALSE and DISPLAY ERROR is TRUE then error messages will
be displayed on the current line of the. console, i.e. at
the current cursor position

ERR LINE - this variable specifies on which line to report
errors. It is set to line 3 by default. An application
program can change this value to suit its needs. It is
only used if ERR_FMT is set TRUE.

The volume manager supplies an error reporting procedure
REPORT ERROR. that will print an error message based on the
current values of VMERROR or VM 10 ERROR. An a.pplication
program can call this procedure-to-report any errors. This
procedure will report errors given thesettings~ofthe above
flags.

15. Managing the Screen Display

For the most part, the application program is expected to manage its own
screen display a propos to its purposes. The volumE! tl1anager unit supplies the
routines necessary to use the volume display shown in the section above.
After an an application has performed a SELECT DRIVE it can display the
available pseudo-volumes on that drive by calling SCREEN DISPLAY. Various
fields within that display can be updated after any volu;e manager unit call
following the protocols given below:

After the creation of a pseudo-volume:

COPYRIGHT 1984 APPLE COMPUTER, INC Page 34



VOLUME MANAGER TECHNICAL SPECIFICATION

call SCREEN DISPLAY

After the deletion of a pseudo-volume:

call SCREEN DISPLAY

After assigning a pseudo-volume:

call SCREEN DISPLAY

After releasing a pseudo-volume:

call UNIT DISPLAY with the index of the
pseudo-volume that has been released with
a unit number of a

After clearing or setting of write-yrotection:

call WP_DISPLAY with the index of the
pseudo-volume and a boolean where TRUE
means write-protection has been set and
FALSE means write-protection has been
cleared

~fter krunching:

no update to the screen is necessary

After modifying the name or description field:

call either/both ~AME_DISPLAY and/or
DESC_DISPLAY with the index of the pseudo-volume
and the new value for that field

After selecting a Profile drive:

To have the user select a pseudo-volume:

once SCREEN_DISPLAY has been called, call
SEL_VOLUME to have the user select a pseudo
volume, this call will return its index

An application can use the volume manager unit's error
reporting mechanism if it so chooses. If it chooses to do it
itself, the variables VM ERROR and VM 10 ERROR are available to
the application program to use to determine what if any error
has occured and to report it in its own manner.

16. Swapping the Volume Manager Unit In and Out of Memory

When an application program that uses the volume manager unit ls loaded,

COPYRIGHT 1984 APPLE COMPUTER, INC Page 35



VOLUME MANAGER TECHNICAL SPECIFICATION

the initialization code for the unit is executed. This code will set up
VALID DRIVES and some internal variables used by the volume manager unit. To
conserve space in an application, this unit can be NOLOADed so that it is
resident only when required. If this is done a call to INIT_VM must be made
prior to using any other functions in the volume manager unit. This call
will set up these variables again.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 36



APPLE//e TECHNOTE #1

Revision of notes on the Apple//e Dec 82*
5-July 84

This technote explains the difference between the Apple//e and Apple] [+.
It also provides a quick reference for the softswitches and makes some
programming suggestions.

For further information contact:
PCS Developer Technical Support
M/S 22w. Phone (408) 996-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc. software is licensed "as is".
The entire risk as to its quality and performance is with the vendor. Should
the programs prove defective folowing their purchase, the vendor (and not
Apple Computer, Inc.~ its distributor, or its retailer) assumes the entire
cost of all necessary servicing, repair, or correction and any incidental or
consequential damages. In no event will Apple Computer, Inc. be liable for
direct, indirect, incidental, or consequential damages resulting from any
defect in the software, even if Apple Computer, Inc. has been advised of the
possibility of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or consequential
damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenu~

Cupertino, CA 95014
Notice

Apple Computer, Inc. reserves the right to make improvements in the product
described in this document at any time and without notice.





TECHNICAL OVERVIEW OF THE APPLE lIe

This document is designed for software developers who have some
familiarity with the Apple II. Its function is to provide a quick overview of
technical information that may affect software design and to a lesser extent
hardware design. It is by no means a complete description of the Apple lIe as
the manuals provided with the product serve this purpose. An effort has been
made to extract from the manuals information that is not obvious. An effort
has also been made to point out potential problems resulting from the new
design and, where appropriate, to give suggestions on how to avoid the problems.

GENERAL:

1. Full ASCII keyboard with auto-repeat feature, alpha lock and Apple
keys.

2. Custom-ICs are used for memory management and I/O control thereby
reducing chip count.

3. The language card and slot a have been replaced by built in (look alike)
RAM called bank-switched memory.

4. An additional slot has been added. It is called the auxiliary slot.
This slot has several functions:
a. It is tlsedfor testing and diagnos ti.cs.
b. It serves as the slot for the ao column card (logically it is mapped

as being in slot 3 - $C300).
c. It serves as the slot for the ao column / 64K ram card.

5. The back panel is designed for .odirect mounting of DB-9, DB--19 and DB-25
connecto.rs •.. This feature allows peripherals to.be attached to the back
of the Apple lIe rather than to the. peripheral cards.

6. It 109ks like an Apple II.

7 • In addition to an introductory booklE!.t ,t;he APPLE. lIe OWNER' S manual,
there is an. APPr.E lIE! ap..COLUMN..TEXT GoARD manual, an EXTENDED ao
CbL1JMN TEXTc.AIID SUPJ?I".EME~T ,an.ci an A1:'rLElIe RE.FERENGE manual. Also new
revisioIUiof.the APPL.ESOFT TU'l'0R:rAI.' DOS. anc.iAPPLESOFT REFERENCE manuals
have been written..Additi.0nal .documentation such as A GUIDE TO THE NEW
FEATURES OF THE APPLE lIe COMPUTER and Technical Support handouts
have been developed.

a. Apples.oft luisnot been changed at all. Integer BASIC can still be used;
it must be loaded into the bank-switched memory (language card).

9. The Autostart ROM has been replaced by a new ROM capable of supporting
80 columns. 'l11e autos tart entry points have been maintained.

10. The Apple lIe with °its auxiliary card functions like an Apple II plus
with a language card, upper and lowercase. capability and an 80 column
card. This means that software and hardware which would operate



TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 3

improperly in 'an Apple II plus equipped with these features will
probably operate improperly in an Apple lIe. NOTE: the Apple lIe will
shift to upper case only if the Alpha Lock key is pressed down.

KEYBOARD:

1. All ASCII code-generating key,s. will start repeating if held down for
more than half a second.
a. If another key is momentarily pressed while a key is repeating, the

new key will begin to repeat.
b. Since the escape key repeats, care must be taken when using it. In a

series of escapes every other escape cancels the effect of the
previous escape.

2. ASCII codes
a. The delete key issues the ASCII code 127 (DEL). In immediate mode a

checkerboard is displayed to signify that this key has been pressed.
b. Up arrow key code is 11, down arrow key code is 10, tab key code is

9.

c. Pascal 1.1 was designed to funcion with the Apple II ~eyboard.

therefore has some keyboard related differences when run on the
lIe. For example, if the up arrow key is pressed while running
Pascal 1.1 without the 80 column firmware active a [ will be
displayed. Another such difference results in the user needing
press shift-2 in order to generate the @sign. On the Apple II
@key was obtained by pressing shift-p.

It
Apple

to
the

NOTE: BASIC still adds 128 to its ASCII codes to signify a keypress.

3. Open & Closed Apple keys
a. They do ..not modify·· or. geI1erateASCII .codes.
b. They cannot be detected by looking at.$COOOthe ri6tmal keypress method.
c. They are connected directly to the game push buttons. Their key press

can be detected by looking for a game push buttonbei~g pr~~>sed.

Their presence means there are always game push buttons. This will
cause problems for games. that determine thattherearegam.e
paddles by the presence of push ful.ttons.. If..ajQy>stickisconnected
to the Apple I IE! and it has .away~flocl(ing down .one o~ thE!. fult tons
or tift. is. of thE! Atarittpe, .. whtch ... hasreverse .g~.larity, then when
the computer i.s turned on o.r.c.ontrol-resetis prE!ssed the. 9ompu~er
detects what appears .to .be an Apple key beIng pressed and so goes
through diagnostics each tfme reset is pressed.

d. In combination with control-reset
1. Open Apple does a cold start after scrambling sev~ral bytes of

RAM. This combination of key presse.s replaces the ' give up and
start allover again' key (power switch). It can also substitute
for PRil6 with the added advantage that. if 80 column firmware
is active it will be properly dlsconnected. PRtl6 disconnects
the 80 column firmware but leaves the 80 column hardware enabled
resulting in improper functioning of the text screen.

2. Closed Apple sends the computer through an onboard diagnostics
test used during production testing. ,This is only a partial



TECHNICAL OVERVIEW OF THE APPLE !Ie PAGE 4

diagnos tic.
3. Pressing both Apple keys results in the diagnostic test being

run with output to the speaker.

NOTE: After the diagnostics test has successfully been completed
the rather non-informative message "kernel OK" is given. This
message means that the diagnostics are completed and that no problems
were found. Press reset to reboot the system.

4. The Caps lock key must be down to create the upper case letters
needed for BASIC and DOS commands. BASIC permits lower case letters
within quotes. When 80 column firmware is active a restrict mode may
be selected that will automatically shift anything outsid~ double
quotation marks to upper case. Restrict mode is entered by typing PR#3
then escape~ollowed by R.

5. The ~RROW keys in combination with ESCAPE function in the same way as I,J,
K & M. NOTE:, If you want to use an ARROW key to copy something frolI1 the
screen after' escaping' to that line press. some other key to deactivate
the escape mode prior to using the arrow key otherwise you will just
continue escaping and will not do any copying.

6. The shift key mod may be duplicated by soldering a 500 ohm resister
across the logic board connector at X6 ••
NOTE: the warranty is voided by doing this.

7. Integer BASIC was not designed to recognize the full set of ASCII
characters so some. of the keys on the Appl~ lIe that are not onth~

Apple II plus may do •st:["ange things. Irtt~ger BASIC will reco~niz~ ·rtormal
lower case characters Qut treat them as upper e.ttSe. Integer and
Applesoft BASIC running in bank-switched memory can be made to recognize
lower case as explained below.

8. Pressing reset on an Apple lIe does a full 64K reset where the Apple II
resets only the lower 48K. This is most noticable by Pascal us~rs who
have only one disk drive since they must press reset ~rt of the wa)T..,
through boot-up'which then starts the booting process over again.. In
general a program which runs in the bank-switched or auxiliary m~mory

should set up reset jump vectors which bank in the appropriate memory
before jumping back into the program. These jump vectors need to be in
the lower 48K of main memory.

9. Pressing reset sets the monitor routines to display video in NORMAL
mode. A reset does not inform Applesoft that it should be displaying in
NORMAL mode and so it continues to fiddle with the output characters'
ASCII code. On the ,Apple II plus this situa.tion wa.snot:detect:able.
On an Apple lIe the effects of this can be detected. From immediate
mode type FLASH then press reset. If you then try to print something
to the screen or make a listing some characters are not displayed
correctly - (numbers become lower'case letters). Giving any of the
following commands corrects the situation: NORMAL, INVERSE, FLASH.

VIDEO OUTPUT:



TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 5

1. When you boot the Apple lIe via PR#n, DOS 3.3 does not initialize the 80
column firmware nor turn the card on or off. If the 80 column firmware
was active when the disk was booted then after booting, the 80 column
hardware is still on but the firmware is not. This makes for garbage on
the screen. Using control-Open Apple-Reset rather than PR#6 prevents
this. Programs that use 80 columns should turn 80 columns off (PRINT
CHR$(21» at the end of the program. To ensure that your program will
not be clobbered by this half -in and half out situation your program
needs to completely turn all of the 80 column card on or off. This is
how. First determine the configuration of the computer by using the
identification routines. If the computer is an Apple lIe with an 80
c.olumn card then do a PR#3 to turn the card on and then if you don't
want 80 columns issue the command PRINT CHR$(21) to turn it off.

EQ1!: other .§.Q column cards ~~ Apple 1! or Apple He using ~ will
~ similar problems.

2. To turn the card on from BASIC the command PRtl3 must be typed in or the
program must. issue PRINT CHR$(4);"PR#3". Pascal programs will
automatically turn the card on. Runtime Pascal programs may be designed
to prevent this from,happening. From the monitor type C300G to turn the
card on. Assembly language requires a JMP to $C300. Issuing these
commands when there is no card in slot 3 or the auxiliary slot will
do undetermined things. The Apple lIe will usually reboot the disk drive
rather than hang like in the Apple II plus but anything may happen.
Reminder issuing a PR#3 to turn on the 80 column card is like issuing a
PR#1 to turn on a printer. These commands only set software pointers and
the periperal is not actually initialized until the first character is
sent to the. peripheral. For this reason any screen setting such as
VTAB issued after PR#3. but. before a PRINT command will be ineffective
since it will be changed when the peripheral is initialized

3. Presence of the 80-column card in the videoexpsnsion slot tan be
determined by writing to a screen location on the card and then checking
to see that the value found at that location is the value written. i.e.
RAM exists at that location.

4. The ApplE! lIe can be identified bya six at $FBB3(64435). Licensed
develgpers can. 9btainfull identification routines from Apple's PCS
Technical Support Group.

5. 80 column features are contI:-olled from programs by printing control
characters. For example, PRINT CHR$(21) deactivates the 80 column
card if one exists. It does nothing if there is no card.

6. 80 column features are controlled from immediate mode by using escape
sequences. For example, typing the escape key (don't hold it down)
followed by control-Q deactivates the 80 column card.

7. If 80 column firmware is active it can display either 40 or 80 column
text.

8. The cursor may be used to identify the status of the computer.



TECHNICAL OVERVIEW OF THE APPLE IIe PAGE 6

a. BLINKING CURSOR means autostart ROM is active. This will happen if
an image of autostart ROM has been placed in the bank-switched memory
(language card) and control has been turned over to it.

b. FLASHING CHECKER BOARD CURSOR means the new monitor firmware is
active and that the 80 column features are inactive.

c. SOLID INVERSE SPACE CURSOR (40 or 80 column width) means the 80
column features and the new monitor ROM are both active.

d. INVERSE PLUS SIGN CURSOR (40 or 80 column width) means the 80
column features and the new monitor ROM are both active and the
escape key has been pressed.

9. The 'other half' of the 80 column screen is located in 1K of RAM on
the 80 column or extended 80 column card'. 111e address range of this RAM
is from $400 to ·$7FF (text page one). Data being displayed from this
, other half' is shuffled in with data from text page one on the main
board and shrunk by the I/O control chip to produce the 80 column screen.
Data from the main board is displayed as the odd columns while data
from the 'other half' -the 80 column card- is displayed as the even
columns. Display columns are numbered starting from one.

10. A vertical blanking signal is available at $C019 to help graphics
animators. Vertical blanking takes approximately 4 milliseconds.
Updating of screen characters or switching of pages during vertical
blanking prevents the displaying·of graphics while the graphics is being
updated.

11. The auxiliary slot for the 80 col1.1mn card has the same memory mapping
as slot 3. Therefore, the 80 column card is treated like a peripheral.

12. If the 80 coltIIIlIl firmware is ins.ctive.andresetls.pressed wh:f.l~. running
in autos tart ROM o.n the la.ngua.ge ca.J:'d (eitherIntegeJ:' 8r Applesoft BASIC),
the computer returns control to that language (i.e., the language card)
without change--DOS does it.

13. Reset deactivates the 80 column card firmware and hardware.

14. Using commas to tabwhlle in Applesoft do~s not work with 80 c9lumns.
You can tab with 80 columns by poki118 .36 ,n wilere. n is the column.you want
to tab to. Poking 36 ,n will also.~ork for 40 column display as long as
n is < 40. Poking 36 with a number >39 probably will cause the program
to crash if displaying in 40 columns.

15. If Integer or Applesoft BASICb t'tlnIl.ingiIl. the ba..nk-switched memory
(language card) with the autos tart ROM then th7y will not accept lower
case characters. If you want to be .ableto accept lower case ch.aracters
then type pR#3 to activate the 80 column f1rm~ar.e. .111is ..will replace
the autostart ROM by the new ROM. The card may then be deactivated
with an escape control-Q and the new monitor ROM will continue to accept
lower case.

16. The 80 column display running under the new ROM is markedly slower then
40 columns'under autostart ROM.

17. Scrolling windows can be set up anywhere on the 80 column screen. The



TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 7

width o~ a scrolling window is limited to an even number. If an
attempt is made to set up a odd-numbered window width the width is reduced
by one. Therefore, if an attempt is made to set a window width equal
31 by placing the number 31 in the location $33 the actual window width
will be 30.

18. There are two built in character sets.
a. The standard character set displays uppercase characters in NORMAL,

INVERSE, and FLASH as is the case with the Apple II plus. It will
also display lOwer case NORMAL characters. NOTE: do not use lowercase
normal characters in programs you want to run on an Apple II plus
since it'cannot display lower case characters.

b. The alternate set provides for upper ,and lower case in both normal
and inverse.

c. Atempting to display lower case inverse characters without having
the 80 column firmware switched in will not work. Even if the
alternate character set is banKed in these characters will be
displayed asspecia.l characters.

d.

e.

When the 80 column firmware is activated the alternate character
set is used. This means that software designed to be used with 80
columI1s must be designed for the alternate character set. Attempting
to switch to the standard character set while 80 column firmware is
active will result in some of the ,characters being misinterpreted
by Applesoft. '

Since both character sets~re"designed to display the underline
character and the, descenders of lower ~,se letters" all, the
characters have been moved up one row of dots. This may cause
some visually unpl~~sant Ie tteri~, on, the top row of a text display
wh~ch uses iIl'V'~rse vj,cieo", This ~,11ibe corrected by placing one
row of inverse blanks above tl1e first line, of print.

19. Unlike the Apple II plus the Apple lIe's GETLINE routine is affected by the
INVERSE FLAG (location $32) setting. On,the Apple II plus all BASIC input
or Assembly language input using GETLlNE is displayed in normal mode.
On the ApP.le lIe inp\1t, will be di~played in accordance with, the value
in location $32"'(invers~, normal", flash),. This is most noticable while
in immediate ,>mode •. Typing the BA.SIC command INVERSE, rl!sults in future
keypressesbeing displayed in inverse. HOME and clear--to-the-end-of-line
gives, inverse blanks.

20. When displaying i 11 ,80 columnS, ify'()u look at CH (36) you will find it
- 0 even if the cursor "is not at the left edge of the screen. This
is done to fool BASIC which knows only about 40 columns and to provide
windows. Some other 80, ,column, boards set this location to 40. Placing a
value into 1403 ($57B) performs a.,I1 HTABto that ,value.

21. Some of the I/O ScratchpadRMf Addresses located in the text screen
buffer are used by the 80 column firmware. These are used in accord with
the protocol for their use but some programs may have used these areas
incorrectly and will have problems. The most common abuse of these
protocols is when a lo-res picture is BLOADED into $40o-$7FF. When this
1s done the values 1n the scratchpad area are changed to match what they



TECHNICAL OVERVIEW OF THE APPLE IIe PAGE a

were when the 'picture was saved. In the past the most common result
is that the disk drive 'grinds' since the read head gets lost. A similar
'loss of control' will happen to any peripheral including the 80 column
card. Since slot 3 in the Apple IIe is dedicated to the 80 column
firmware it uses one scratchpad area dedicated to slot 3 even if there
is no 80 column card. Therefore, any BLOADing into the area $400 to
$7FF will affect the operation of the output routines, possibly crashing
the program. The solution is to BLOAD the picture into a buffer and then
move all but the scratchpad area into the screen buffer. A simpler
solution, but one that may crash the program if an interrupt occurs
during loading, is to save the scratchpad data then restore it after
loading the picture. From machine language you could disable interrupts
during this operation.

VIDEO SOFT SWITCHES:

1. ALT. CHAR SET - This switch sets up the alternate character set. This
switch should be used with care by BASIC programmers as preViously
pointed out.

Z. 80 STORE - If 80 store is active then the PAGEZ/NOt PAGEZ switch serves as
a bank switching switch rather then video display switch. This is true
of the hi res pages also if the extended 8D-column card is present. This
switch should be used only by experienced programmers.

3. 80 COLUMNS - This switch is designed to assist assembly language
programmers who are using their own screen writing routines. This switch
turns only the disply hardware on and not the firmware. Programs which
use the monitor I/Ototiti~escotrT.... & ~1{EY cann()t use thiEJ~itchalone
but must use it in cOIl1bination with PR#3. 'This is true for both BASIC
and the Monitor.

4. TEXT/GRAPHICS, MIXED/NOT.M!X~,PAGE2/NOT PAGE2 and H:r~ES/NOT HIRES
s.erve the same function as in ~.h7 ApJ?.le II. plus. The. PAGE2/NOT PAGEZ
switch serves the additional function of bank switcher. as mentioned above.
The state of these switches may be found by reading status bytes.

5. VERTICAL BLANKING can be read to determine correct display timing for
animated graphics.

6. Two soft switches affect the input/output memory space ($CI00 to $C7FF).
a. The SLOTC3ROM switch is us7dt()se.lec:t between th~ space alocated to

slot 3 and built in ROM alocated to controling Apple's 80-column
cards.
1. When the computer is reset or turned on it checks for a card in

the atixiliarysldt. If it finds one the SLOte3ROM switch is
turned off. This banks in the built in C3xx ROM. NOTE: this
does not turn on the aO-colUmn card. It simply provides the
card with the ROM it will need if a PR#3 or equivalent command is
given.

2. This switch may be turned off -built in ROM banked in- and the
aD-column ROM used even if there is no 80-column card. To get
into this mode tUrn off the switch (POKE 4916Z,O) and give the



TECHNICAL OVERVIEW OF THE APPLE IIe PAGE 9

PRINT 'chr$( 4); "PRD3" command. Without a card, ao columns cannot
be displayed but features such as upercase restrict are
available.

b., The SLOTCXROM switch is used to select between the space alocated to
slots 1 through 7 and built in ROM alocated to controling Apple's
ao-column card and the built in diagnostics.
1. If the SLOTCXROM switch is on then the ao column firmware is

mapped in even if the SLOTCHROM switch is off.
2. The SLOTCXROM is tUrned on when one or both of the Apple keys is

pressed during reset.

7. The state of the soft switches may be found by reading the appropriate,
memory locations. With the exception of the SLOTCXROM switch if the value
read is >127 then the switch is on.

a. When Pascal 1.1 is initialized it turns on the following softswi tches:
HIRES, TEXT, NOT-MIXED & NOT-PAGE2. If the ao-column firmware is turned
on then 80 STORE is turned on. Since it is not intuitive that the
HIRES swi tch is on even when the program does not use hires and •that
ao STORE is on even when not storing things in memory some unexpected
things may happen. The unexpected events have most impact on programs
directly writing to the text screen and programs using the auxiliary
memory. Note that if your program turns off the ao STORE switch it must
turn it back on before it' tries to use the aO-columnfirmware to display
SO-column text.

MEMORY MAPPING & ADDRESSING:

1. The mE!morymappin~oftheApplE!}Ie matches theApple II plus with a
language card•.. Soft Sliitches and the new monitor firmware. may<be used to
bank in addi tiona! ROM and RAM.

2. Like the 6502 in the Apple II plus, the 6502A used.in the Apple IIe
activates the addreSs bUs twice }ur:f.n~ successiv-e clock cycles during an
indexed s to re. operation. This may call.se a device. that toggles each time
it is addressed to end up back where it started. In these cases read
operations should be used rather tha.n stores.

3. The $DOOO to $FFFF memory space functions in a method identical to the
language card on the Apple II plus but since it is built in it is
referred to as bank-switched memory.

4. Pressing reset switche.soutba.nk"'swftched memory. If 0pE!rating under
DOS 3.3, DOS will switch back to bank-switched memory.

5. While in SO colWl1t1sthe. lK()fauxiliary....RAM peing us.ed is from $400 to
$7FF. The ao column text card Wi.th lK of RAM uses sparsE! memory mapping.
this means that writing to the location $CaO or $aOO on the. card is the
same as writing to the. location $400.

AUXILIARY RAM:

1. 1K of additional RAM exists on the standard SO-column card in address



TECHNICAL OVERVIEW OF THE APPLE rIe PAGE 10

2.

3.

4.

5.

6.

space $40o-$7FF. 64K of additional RAM exists on the extended
ao-column card in address space $0000 - $FFFF. This additional RAM is
banked in by addressing (writing to) soft switches. To determine if
main memory or auxiliary memory is banked in look at the appropriate
status bytes.

The following softswitch pairs switch between main RAM and auxiliary RAM
in the specified ways:
a. RAMRD - The setting of this switch affects which bank of memory is

being read if the read operation is between memory locations $200
and $BFFF.

b. RAMWRT - The setting of this switch affects which bank of memory is
being written to if the write operation is between $200 and $BFFF.

c. ALTZP - The setting of this switch pair affects which bank of memory
is being written to and read from if the read or write operation is
to a memory location between $0 and $lFF or between $0000 and $FFFF.

d. aOSTORE - This switch pair in combination with the PAGE2, HIRES and
TEXT switch pairs determine in a complex way what display memory is
being written to and read from. In general it changes the other
switch pairs' functions from screen switching to bank selection.
The memory being affected is the same as would be affected by the
screen switching.

Switching auxiliary memory does not affect the bank-switched memory
(language card)$DOOO - $F1"FF settings. If main board ROM is banked in
and then auxiliary memory is switched in, the main board ROM is still
active. If bank-switched memory is active and aux mem is switched in
then the bank-switched memory in the auxiliary memory will be active.

The auxiliary ml:!mory provides storage and. program expansion
c~pabi~.~ties for. BASIC.,. PASCAL and Machine language programs. Machine
lang\1agl:! prograJIls can. very ~fe5tivIY' use the extra memqrysince the
prog;a.mitself can. run fn the extra. memory if need be. BASICcanuse
the. extra meme>ry.to store machine. language routines and pictures. Pascal
can use the extra memory to store machine. language procedures. Both
BASIC and Pascal programs are limited to using the standard memory areas
since they are unaware of the extra memory. With care BASIC programs
could be CHAINED usillg t~e.extra memory rather than a disk. AlSO,i'

several programs could be.in~he computer at once with the posibility of
one being in BASIC and the other in Pascal.

Programs using DOS would need to do all their input and output from
either the main memory or the auxiliary memory but not from both unless
a copy of. DOS were placed ill both banks and then both were kept informed
of such events as switching the. output device. If programs· in auxiliary
Dlemory need to produce. input or output which is not a DOS command theY'
may use the routines COUTI and KEYINwhich do not go through DOS. Great
care should be used since aOSTORE may need to be used to affect where
the oUtput goes.

If you write data into the $400 to $7FF space in auxiliary memory and the
computer is displaying ao columns then your data will appear on the
screen.



TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 11

7. The routine AUXMOVE moves a block of data from anywhere in the memory
area $200 to $BFFF. nata may be moved from auxiliary memory to main
memory or from main memory to aUXiliary memory. .

8. The routine XFER transfers program control from a machine language
program in main memory to one in auxiliary memory or the other way around.

INPUT /OUTPUT:

1. Sending control to a slot which does not have any device connected to it
constitutes a NO-NO. In the Apple II plus this NO-NO usually resulted in
the computer stopping dead. In the Apple lIe this NO-NO usually results
in the disk booting.

2. The SLOTC3ROM soft switch pair selects between internal ROM at $C300
(the 80 column firmware) and slot three.

3. The SLOTCXROM soft switch pair selects between internal ROM from $C100
to $C7FF used by the built in diagnostics and 80 column firmware, and
slots one through seven.

4. Very large peripheral cards which stick out the back of the computer
will not be able to do so because of the new back panel.

5. Gards which depend on 'piggy backing' to IC sockets to obtain additional
signals will probably no longer function properly since the main board
is re-designed.

6. The Apple lIe's 80 column card is a peripheral. As is the cas.e with
the Apple II plus , two peripherals cannot receive input or send 0lltput
at the same t:f.ine. Thismeattit. that the 80 coltunrl firm'iJar.e must be made
inactive before using an output device such as a printer or MODEM and
will need to be reactivated when returning to 80 columns. Some software
such as the Pascal BIOS does· this automatically.

7. There are two locations on the Apple lIe designed for. plugging in game
paddles. One is a DB-9 connector on the . back panel! and the other is
the same as on the Apple II plus. A game paddle or joy stic~may be
connected to one or the other location but not to both at the same time.

PASCAL 1.1

As explained earlier the Pascal system and the 80 colt1lIlIl.firm'iJare when running
under Pascal set several soft switches which may create unexpected
situations. because their settings are not intuitive.. Namely, pa.scal turns
on .the HIRES switch during initialization.>andthe80collJIl1I1.fit"lI1l>7at'e turns
on the 80STORE soft switch. As a result of these settings the following
unexpected situations may occur.

1. If an Assembly language Pascal procedure is designed to store and
retrieve data and it tries to do so from locations $2000 to $4000 in
the auxiliary memory it will not do so properly. This is because the
HIRES switch is on along with 80STORE and it overrides the RAMRD and



TECHNICAL OVERVIEW OF THE APPLE !Ie PAGE 12

RAMWRT switches. If HIRES is switched off then this area may be used.

2. If a program turns on the PAGE2 soft ~itch the program may self
destruct. If HIRES and 80STORE are still on when PAGE2 is
turned on, any data being sent to or retrieved from the $2000 to
$4000 memory space will be sending and retrieving from the auxiliary
memory space rather than the expected main RAM. If the 80 column
card does not have auxiliary memory then the data is coming from and
going to thin air. Since the Pascal. heap in larger programs will
grow into this space the program self destructs. If you must have the
PAGE2 switch on then turn off one of the other two switches. NOTE:
Pascal does not use the PAGE2 switch to display text or graphics but
through trickery it can be turned on.

BACX PANEL:

1. The back panel is designed to support the mounting of DB9, DB19 and
DB25 connectors. Cables from peripheral cards run to these connectors.
External cables then run from these connectors to the peripheral.

2. The four DB19 mounting holes are reserved for disk drive connections.

3. The Apple lIe's accessory kit contains materials for attaching cabl~s

designed for the Apple II plus.

4. Peripherals which use more than 25 lines will need to use two or more
of the DB connectors to route their wires through the back panel.

HARDWARE:

1. The Apple IIe uses the 6502A but· it still runs at one MHz.

2. There is a 470 ohm resistor on both the open apple and closed apple key.
These resistors are on the keyboard.

3. The Apple IIe's data bus is now buffered and may cause tlmming differences
in connection with using the DMA line.

4. The shift-key mod- used in the Apple II+ to simulate upper case can be
simulated in the Apple//e by soldering the solder blob found on the
main board at location X-6.

INTERRUPTS:

When an interrupt occurs the Apple IIe saves the status of the text page
(pagel or 2) and SLOTCXROM switches, then sets the page to page 1 and
SLOTCXROM to Slot ROM. After the interrupt has been handled these two
switch settings are restored.

DOCUMENTATION ERRATA:



TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 13

1. To connect the game input switches (push buttons) to other hardware use
aprox. sao ohm pull-down resistor connected to ground and a momentary
contact switch to +5V.

2. The MOVE routine in the Apple lIe is the same as in the Apple II plus
and therefor the 'y' register should be set to a before calling it.

3. The SLOTCXROM switches are reversed. _ The slot ROM is selected by
writing to 49158 ($CO06). The internal ROM is selected by writing to
49159 ($CO07).

ADDENDUM TO TECHNICAL OVERVIEW OF THE APPLE//e

1. An unusual condition appears on the text screen using an Apple//e when a
text display is switched from inverse to normal or normal to inverse.
This only takes place if the change is being made while printing to the
bottom line of. a scrolling window. If going from normal to inverse the
text appears in in.verse but the right end •of the line- is black 'Nhich is
just like on the AppleJ[+. If going from inverse to normal the text
appears in normal but the right end of the line is white. This condition
happens because when the screen is scrolled after the printing of the
las t line, the n~w bot tom line. is filled with blanks in the current mode
(inverse or normal). This cleans off the old text on that line in
preperation for printing text on the line. The screen display is then
switched to the new mode and the last line is printed. This condition
can be corrected if you must change text modes on a scrolling window.
To do this end the last print statement with a semicolon to suppress the
scrolling. Follow this by the change of mode and a print statement
without any text.

2. If the HOME command is given on an Apple//e while the text mode is in
inverse the whole screen becomes white. On the AppleJ[+ the screen
would clear to black••



TECHNICAL OVERVIEW OF THE APPLE IIe PAGE 14

3. The following is a list of all the special use locations in memory locations
SCOOO through SCOFF. Note that in some cases different switches are
activated depending upon if they are read from (PEEK, LDA) or written to
(POKE, STA). If reading a value can indicate the state of a soft switch,
the state having the symbol (*) is the state which will return a value
greater than 128 (S7F).

LOCATION EFFECT OF. READING EFFECT OF WRITTING

49152 (SCOOO)
49153 (SCOO!)
49154 (SC002)
49155 (SC003)
49156 (SC004)
49157 (SC005)
49158 (SCO06)
49159 (SCOO?)
49160 (SC008)
49161 (SC009)
49162 (SCOOA)
49163 (SCOOB)
49164 (SCOOC)
49165 (SCOOD)
49166 (SCOOE)
49167 (SCOOF)
49168 (SCOI0)
49169 (SCOll)
49170 (SC012)
49171 (SC013)
49172 (SC014)
49173 (SC015)
49174 (SC016)
49175 (SC017)
49176 (SC018)
49177 (SC019)
49178 (SCOlA)
49179 (SC01B)
49180 (SCOIC)
49181 (SCOlD)
49182 (SC01E)

. 49183 (SC01F)
49184 (SC020)

•
•..

49200 (SC030)
•

49216 (SC040)

get keyboard input pgl&2 sw show diff txt & gr buff
pg1&2 aw bank swich Ott & gr buff
read from main memory .
read from auxiliary memory
wri te to main memo ry
write to auxiliary memory
select card ROM all slots
select internal ROM SC10o-SCFFF
read & write main stack,z-pg. ,LC
read & write alt. stack,z-pg.,LC
select internal ROM SC30o-SC3FF
select card ROM slot three
turn 80-column display off
turn 80-column display 011
select Apple ] [ char. set
select new full upper & lower char. set

clear the keyboard strobe clear the keyboard strobe
indicates if LC first 4K bank one or (*)banktrWo is in
indicates if Autostart ROM or (*)LC is banked in
indicates if main or (*)auxRAM is being read from (S20o-SBFFF)
indicates if main or (*)aux RAM is being written to (S20o-SBFFF)
indicates if card. or (*)internal ROM being read (SClO<FSCFFF)
indicates if main stack, z-pg. ,LC or (*)aux stack, z-pg.,LC
indicates if internal or (*)card ROM being read (SC30()-oo$C3FF)
indicates if stot'ing. to main or (*)auxtext & graphics buffers
indicates if vertical blanking or (*)not vertical blanking
indicates if displaying graphics or (*)te:xt
indicates if displaying full page graphics or (*)mixed txt & gr
indicates if displaying page 1 or (*)page 2
indicates if displaying in la-res or (*)hi-res
indicates if using Apple] [ char set or (*)alterpate char set
indicates if displaying in 40 columns or (*)80-columns
toggle cassette output awi tch

toggle speaker

utili ty strobe single pulse



TECHNICAL OVERVIEW OF THE APPLE Ire PAGE 15

•
49232 (SCOSO)
49233 (SCOS!)
49234 ($COS2)
49235 (SCOS3)
49236 ($COS4)
49237 (SCOSS)
49238 (SCOS6)
49239 (SCOS7)
49240 (SCOS8)
49241 (SCOS9)
49242 (SC05A)
49243 (SCOSB)
49244 (SCOSC)
49245 (SCOSD)
49246 (SCOSE)
49247 (SCOSF)
49248 (SC060)
49249 (SC06J)
49250 ($C062)
49251 (SC063)
49252 (SC064)
49253 ($C065)
49254 (SC066)
49255 ($C067)

•

turns graphics mode on turns graphics mode on
turns text mode on turns text mode on
turns mixed mode off turns mixed mode off
turns mixed mode on turns mixed mode on
display from page 1 buffer display from page 1 buffer
display from page 2 buffer display from page 2 buffer
display graphics ~s .. le-res . display graphics a.s Ie-res
display graphics as hi-res display graphics as hi-res
turn annunciator 0 off turn annuncia.tor 0 off
turn annunciator 0 on turn annunciator 0 on
turn annunciator 1 off turn annunciator 1 off
turn annunciator 1 on turn annunciator 1 on
turn annunciator 2 off turn annunciator 2 off
turn annunciator 2 on turn annunciator 2 on
turn annunciator 3 off turn annunciator 3 off
turn annunciator 3 on turn annunciator 3 on
indicates if cassette input toggle has no bit or (*)has a bit
indilcates if game push button 0 (open apple) is up or {*)down
indicates if game push button 1 (closed apple) is up or (*)down
indicates if game push button 2 is up or (*)down
indicates if game controller 0 has timed out or (*)not
indicates if game controller 1 has timed out or (*)not
indicates if game controller 2 has timed out or (*)not
indicates if game controller 3 has timed out or (*)not

•
49264 (SC070)

•
•

game controller strobe game controller strobe

•
49280 (SCOSO)
49281 (SC08l)
49282 ($C082)
49283 (SC083)
49284 (SC084)
49285 (SC085)
49286 (SC086)
49287 (SC087)
49288 ($C088)
49289 (SC089)
49290 (SCOBA)
49291 (SC08B)
49292 (SC08C)
49293 (SC08D)
49294 (SC08E)
49295 (SC08F)
49296 (SC090)
49312 ($COAO)
49328 ($COBO)
49344 ($COCO)
49360 ($CODO)
49376 ($COEO)

select RAM. read bank 2. Wri te-protect RAM.
select ROM read. Two or more successi"'1ereads write-enables RAM. bank 2
select ROM read. Write protect RAM
select RAM read bank 2. Two or mo re succes sive reads wri te-enables RAM ba
select RAM read bank 2. Wri te-protect RAM.
select ROM read. Two. or more successive reads write-enables RAM. bank 2
select ROM read. Write protect RAM
select RAM read bank 2. Two or more successive reads write-enables p. ba

Iselect RAM read bank 1. Write-protect' RAM.
select ROM read. Two o·r more successive reads write-enables RMf. bank 1
select ROM read. Write protect RAM
select RAM read bank 1. Two· or more successive· reads wri te-enables RAM ba
select RAM read bank 1. Write-protect RAM.
select ROM read. Two or more successive reads write-enables RAM. bank 1
select ROM read. Write protect RAM
select RAM read bank 1. Two or more successive reads write-enables RAM ba

- 49311 ($C09F) slot 1 device select
- 49327 (SCOAF) slot 2 device select
- 49343 ($COBF) slot 3 device select
- 49359 (SCOeF) slot 4·device select
- 49376 ($CODF) slot 5 device select
- 49391 ($COEF) slot 6 device select



TECHNICAL OVERVIEW OF THE APPLE !Ie

49392 (SCOFO) - 49407 (SCOFF) slot 7 device select

APPLE//e HARDWARE AND SOFTWARE GUIDE LINES

The following are some suggestions for writing programs for the Apple lIe.

ffiRAL :

PAGE 16

l. Apple has developed interface routines which are designed to help
profesional and amateur programmers write 'friendly' interfaces for their
programs. These routines also help the programmer avoid some pitfalls
associated with using aO-columns. These routines are part of the Applesoft
Extens.ion Package. It can be found on the disk supplied with the Apple//e
Applesoft Tutorial and Reference Manual. Appendix E of the new Applesoft
Tutorial explains how to use this and other supplied routines. A 6502
Machine Language version of these routines will be available soon.

~. Apple has made every effort to maintain the subroutine entry points in
the Autostart ROM when the Apple//e ROM was written and will continue to
do so in future revisions. This implies that if you use only the entry
points supported in the Apple II or Apple//e Reference Manuals your
programs should not need to be modified for future revisions. It also
implies that if you enter ~t other locations or if you do such activities
as check-summing the ROM, your product may need to be reved when the ROM
is reved.

'ogrammers be forwarned
•.pple gives no assurance that any locations wi thin the aO-column firmware
(SC10Q--SCFFF) will be maintained. Therefore, programmers should not
attempt to 'patch into' any of these routines. The aQ--Columtlfirmware also
uses several 'scratch pad' locations. At this time the only such
location which will be maintained between revisions is. location 1403
(S57B) which gives the current horizontal cursor location for ao columns.

3. Use the procedures outlined in the. IDENTIFICATION R0T!TINES document to
recognise the hardware that is available. These r.outinesare available
to licensed software developers from PCS Marketing Technical Support.

i'TWARE SPECIFIC:

l. Bef()r'e. using a peripheral for output be sure the ao. column firmware is
inactive.

~. Do not require the use of the reset. key during program operation unless
you are not concerned that the bank-switched' RAM will be switched out.

3. If your software turned on the ao column firmware be sure it turns it
off before ending.



PAGE 17

~. Do not check for the absence of game control paddles by having your
program 'look' to see if both game buttona have been pressed. An
alternate method is to timeout the paddles for, say, twice as long as
the normal count of 256; if the 558 timer chip still doesn't timeout,
there must not be any paddles.

). Make sure that an 80 column card exists prior to trying to turn it on
since not doing this will lead to unpredictable results.

). If your program requires DOS or BASIC commands to be typed be sure to
instruct the end user to use upper case letters or better still use
your program to shift input to upper case.

7. Applesoft BASIC was designed to produce flashing characters. Because of
this, incorrect characters appear when lowercase iI1V'erse or flashing
characters are displayed by an Applesoft program using the standard 40
column display. If an Applesoft program first determines that the 80
column card is there it may correctly display the lowercase inverse
characters by turning on the card. A full set of lowercase flashing
characters is not available.

8. If your program expects certain string input design it to accept both
upper and lower case ..

9. Never have your program issue the PR#O or INdO commands while the 80
column card is active.

Lo. A program running t.lllde r DOS should turn the 80 column ca rd on by the
command PRINT OIR$ (4); "pR/i3" ..

L1. If your program is generating animated graphics you might want to use
the vertical blanking signal to prevent 'blinking'.

L2. The 80 COL soft switch$COOD (49165) should not be used if monitor input
I output routines are used.

L3. If your BASIC I Assembly Language software boots to run, include in your
documentation the need to boot by pressing control - open apple - re~et
rather than by entering a PR#. This 'is to ensure that the hardware ~rid

firmware are in sync. An alternative if you are willing to put up with
a momentaryflashaccross the screen is to have your greeting progtatn's
first actions be the following. First, it should determine if an 80
column card is in the system. If ,one is, then turn the firmware on
using the pR# 3 command • Finally, if you do not want the card on you
may turn it off with aPrirttCFIR$(2l) cbmmand.

L4. If your program is a BASIC program and it uses 80 columns then do not
use commas to do tabbing. Ins tead use POKES ~o 1403. For· example
POKE 1403,10 TABS to the 10th. column.

15. If your program has 80 column firmware active (either 80 or 40 columns'
displayed) and you want to send output to a printer or'other output
device you must turn off the 80 column firmware before you turn on



TECHNICAL OVERVIEW OF THE APPLE !Ie PAGE 18

the other device. The following is an example: Use Home to clear the
screen. Turn off the 80 column firmware by issuing a control character
to the screen(PRINT CHR$'(21) -eontrol-U). Turn on the printer. When'
orinting is completed or you want an intermediate message on the screen
urn the printer off with a PRINT CHR$(4)"PRII0" & PRINT CHR$(4)"INII0".

Then turn the 80 column firmwar.e. back.on with a PRINT CHR$(4)j"PRtI3".
If you must have a message on the screen durning printing then place the
message on the screen (40 columns) after the 80 column firmware is turned
off but before turning on the printer. NOTE: the PR#O and INdO is not
required by Apple's card but may be by other cards.

l6. If the 80 column firmware is active the BASIC GET command and the monitor
KEYIN routine will immediatly execute the escape keypress and so escape
codes are not available. Therefore t do not use these 'GET' commands when
escape sequences are required and the 80 column firmware is active.An
Assembly Language or BASIC routine which properly get input by looking at
49152 ($COOO) can be used to detect an escape key being pressed.

l7. If your program uses a reset trap or in some way is designed to recover
from a reset and it uses the bank-switched memory (language card) it must
turn the bank-switched memory back on. This would be done, by having your
reset jump vector point to a reset routine placed somewhere in the the
lower 48K of memory. This routine would need to turn the bank-switched
memory back on before jumping back into the program•

.mWARE:

t. Don't use any of the four DB19 slots in .theback panel since these a.re
\eserved for disk drives.

2. cables should connect to the card at the keyboard end of the card since
this gives the user more freedom in selecting the slot into which the card
is to be installed. It also prevents cable cramping.

3. cables should use DB9 or DB25 connectors.

~. cards which require 'piggy backing' into IC sockets may become obsoleted
by this and future revisions of the main board.

5. Do not require cards to be placed in slot three if they are intended to
be used in systems having the 80 column card.

). cables using DB-25 connectors for parallel I/O devices should block
pin seven. This convention should be followed to- prevent damage
should the connector be accidently pluged into a serial device. Serial
devices use this pin for ground.

7. cards should be identifiable according to the protocol outlined in Pascal's
ATTACH document which is excerpt here.

Pascal 1.1 uses four firmware bytes to identify the peripheral card.
Both the identifying bytes and the branch table are near the
beginning of the $CsOO ROM space. The identifiers are listed in



TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 19

Table 1.
Address
$Ca05
$Cs07
$CsOB
$CsOC

Table 1.

Value
$38
$18
$01 (the Generic Signature of new FW cards)
$ci (the Device Signature; see below)

Bytes Used for Device Identification

The first digit, c, of the Device Signature byte identifies the device
class as listed in Table 2.

Digit
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B-F

Class
reserved
printer
joystick or other X-Y input device
serial or parallel I/O <:ard
modem
sound or speech device
clock
mass storage device
80-column card
network or bus interface
special purpose (none of the above)
reserved for future expansion

Table 2. DeVice Class Digit

The second digit, i, of the Device Signature byte is a unique
identifier for the card, assigned by Apple Technical Support.

NOTE: Our 80 column card identifier is $88



APPLE //. TECHNOTE ~3

Original V.rsion
Publ isn.d by SoftalK Magazine

S.p t. 1983

This article d.scrib.s tn. double hi-rtsolution display mod. which is
available in the Apple Ilc and th. Apple lie (with the Extend.d
SO-column card). Doubl. Hi-r.s graphics provid.s twice the horizontal
r.solution and more colors than th. standard high-r.solution modI. an a
monochrom. monitor doubl. hi-res displays 560 horizontal by 192 vertical
pixels, while on a color monitor, 16 colors aI" available.

For furth.r information contact:
PCS Dev.'op.r Technical Support
HIS 22-W. Phone (40S) 996-1010

Disclaim.r oT all Warranties and Liabil ities

Apple Compuhr, Inc. malUs no warranti.s, .ithtr upress or implied,
with r.sp.ct to this docW'IItntation or with respect to th. soHwart
d.scribed in this docum.ntation, its qual i ty, performance,
merchantabil ity, or fitnts5 for any particular purpose. Apple Computer,
Inc. soTtware is lictns.d ·as is·. Th., entire risk as to its quality
and performanct is with the v.ndor. Should the programs prove defective
folowing th.ir purcnan, th. v.ndor (and not Apple Computer, Inc., its
distributor, or its r,tailtr) assumts th. entir, cost of all necessary
urvicing, repair, or corrtction and any incid.nhl or cons.,quential
damag.s. In no ,v.nt will Appl. Computer, Inc. b. liable for direct,
indirect, incid.ntal, or cons.qutntial damag.s resulting from any defect
in th. software, even if Apple Compuhr, Inc. has bten advised of the
possibil ity of such damag.s. Scm. stat.s do not allow th. exclusion or
I imi tition aT impl ied warranties or 1 jabi I i ty for incidental or
consequ.ntial damag~s, s~ the abov•. ' imitation may not apply to you.

This documentation is copyrignhd. All rights are reserved. This
docunu.nt may not, in whol. or part, b. copied, photocopied, reproduced,
translated or rtduced to any electronic m.dium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 19S4 by Apple Computer, Inc.
20525 Hariani Avenue
Cup.rtino, CA 95014

Not j c l"

Apple Computer, Inc. reserves the right to make improvements in the
product d'5cribed in this document at any time and wi thout notice.

PB





DOUBLE HI-RES ON THE APPLE //e

, Wh at is It?

The double high-resolution display mode that is avai lable
~or the Apple //e provides twice the horizontal resolution
of the standard high-resolution mode. On a standard
bl ack-and-.wh i te video mon i tor, standard hi -r.s d.i sp lays 280
columns and 192 rows of picture elements (pixels); the
double hi-r.s mod. displays ~60x192 pixels. On a color
monitor, th. standard hi-res. mode displays up to 140 columns
o~ colors, each color being selected ~rom the group o~ six
colors avai lable, wi th certain 1 imi tations. Double hi-res
displays 140 columns of color, ~or which all 16 of the
low-resolution colors are available.

--------------~---------------------------------~----------

Table 1. Comparison of Standard and Double Hi-Res Graphics

Blat:k/White Color

Standard 280 x 192 pixels 140 columns
Hi-Res' 6 colors

Double 560 x 192 pixels 140 col umns
Hi-Reos 16 colors

------~---~-~~--~-~~-~--~~~~-~-~-~--------~------------~---

How po I Insfall I1:'?

Installation of th. double hi-... eos mode. on your Apple //e
depends on the ~ollowing threoe conditions, discussed in
d. t a i I be I OCN :

2. Installation of an exttnded 80"'cc:110mn text car.d
wi thjumper

3. A video monitor wi th a bandwidth of at least 14 MHz

First, your Apple //e must have a Revision S ("Rev-S")
motherboard. To find outwh.ther your //e~s motherboard is
a Rev-S board, check the part numbe~ on the edge o~ the
board nearest the backpanel, above the slots. If the board
is a Rev-S' board, the part number wi I I be 820-0064-8.
(Double hi-res does not worl< on systems containinCl a Rev-A
motherboard.) If your //e~s motherboard is not a -Rev~8
board, and if yOU want to obtain one, contact your local
Apple dealer.



The second condition for installing double hi-res on your
//e is that your //e must have an extended eO-column text
card instal led. This card must be instal led wi th a jumper
connecting the two Molex-type pins on the board.
------------------------------------------------------------
WARNING: If your //e is a ·Rev-A machine, do NOT insert into
it an extended eO-col umncard wi th th. jumper connection
mentioned above. Th.sY5tem will not worK at all if yOU do.

------------------------------------------------------------
The last requ iremen tfo.r operation in double hi-res mod. is
that your video monitor must have a bandwid.th of at least 14
MHz. This·bandwidth is neClPssary because. a tlPlevision set
that requires a modulator will not rlPproduce scmlP characters
or graphic lPlements clearlY, due to the high speed at which
the computer sends out dots in this mode. Because most of
the video monitors having a bandwidth of up to 14 MHz are
black-and-white, the worKing lPxamples in this article do not
apply to color monitors. If you have a video monitor,
please use it -- instead o~ a television set -- to display
the following examples.

Your Turn to be Creative -- or. Volunteers. Anyone?

At this wri ting, no programs exist that support double
hi-res graphics. Moreover, none o~ the standard hi-res
commands (5uch as HPLOT) worK properly in double hi-res
mode. Until such routin~s are available, users must wri te
the i I'" own. I f you" ve got han th is far, and wan t to con t i nue,
YOU" 1 I probably already have used the .system mon i tor, and
you"l I probably need v.ry~f~wexplanations. If not, please
re~er to the- iApple_//e..J~eference_Manuali and then return to
double hi-res o~erations.

Before going into the subtleties of double hi-res, you
shou 1d be acqua in ted with sta.ndard hi-res funct ions. I f you
aren"t, obtain the Apple //e Reference Manual (Part Number
A21.2005) or the Apple Jr Reference Manual (whicn, however,
is out ofprint>,andplltaie read the sections on
high-resolution graphics before proceeding wi th the hands-on
practice explained below.

You can find another good explanation of these features in
the ADDIE!' JC Graphics column by Ken .. Wi II iams, in Softl ine
magaz i ne. We sU9ges t tha t yOU star t with Vo 1ume 1, Number
(Septemb.r 1981), ava; lable from SoftalK Publ ishing, Inc.
The early columns are .special ly useful.

The tutorial that occupies the rest of this article assumes
yoU are worKing at your Apple //e as yOU read. The second
part of the lesson 'demonst,..ates the double hi-res mode;
therefore, before embarKing on the second part, you should



in~tal I a jumpered ext~nded aO-column card in your Rev-B
·App Ie //e.

Hands-On Practic~ with Standard Hi-Res

The Apple //e hi-res graphics display is bi t-mapped. In
other words, each dot on the screen corresponds to a bi t in
the Apple //e~s memory. For a real-l ife example of
bi t-mapping, perform the fol lowing procedure, according to
the in~tructions given below. (The symbol "<cr>" indicates
a carriage return.)

1. Boot the sy~tem, using the DOS system master disKette.

2. When the prompt (II J") appears, press the RESET Key.

3. Engage the CAPS LOCK key, and type HGR<cr). (This

in~truction should clear the top of the screen.)

4. Type CALL -151 <cr>. (The system is now in the monitor
mode, and the promp t shou I d appear as an as ter i sK (*).)

5. Type 2100:1 <cr>. One single dot should appear in the
upper left-hand corner of the screen.

Congratulations! You have just plotted your fi~~t hi-res
pixel. (Not an astonishing feat, but yoU have to start
somewhere .•• )

With a blacK-and-tAJhit~ monitor, the bits in memory have a
simple correspondence with the dots (pixels) on the screen.
A dot of 1 ight appears if the corre~ponding bit is set (has
a value of 1), but remains invisible if the b~t soff (has
a value of zero). (The dot appears whi te 00 a
bl acK-and-wh i te. .mcm.i t.or, .and green on a green-screen
mon j tor ,such . a~ Apple ~ s.Monj tor ///. For simp I ici ty, we
shall refer to an i.nvi.sible. dot as a "blacKlldot or pixel.)
Two visible dots located next to each other appear as a
single wide dot, and many adjacent dots appear ~s aline.
To obtain a display of another dot and a line, follow Hie
step~ 1 isted below:

1. Type 20aO:40 <cr>. A dot should appear above and to the
right of the dot YOU produc~d in the last exercise.

2. Typ. 2180 :7F <cr>. A sma 1 I hor i zon ta I line shou I d
appear b~IOW th. first dot YOU produced.

From Bits and Bytes to Pixels
The seven low~o~der bi ts in each display byte control seven
adjacpnt dots in a rOW. A group of 40 consecutive bytes in



mttmory controls a roW of 280 dots (7 dots per byte,
multiplied by 40 bytes). In the screen display, the
least-significant bit of each byte appears as the leftmost
pixel in a group of 7 pixels. The second-least-significant
bi t corresponds to the pixel di~ectly to the ~ight of the
pixel previously displayed, and so on. To watch this
p~ocedure in action, fol low the steps 1 isted below. The
dots wi 1 I appear in the middle of your sc~een.

1. Type 2028:1 <c~>.

2. Type 2828:2 <cr>.

3. Type 3028:4 <cr>.

Th~ thr.e bits you specified in this exercise cor~espond to
thr~. pixels that are displayed one afte~ anothe~, from left
to right.

The most-significant bi t in each byte does not cor~espond to
a pixel. Instead, th is bi tis used to sh i ft the posit, ons
of the other seven bits in the byte. Fora demonst~atjon of
this feature, fol low the steps 1 isted below:

1. Type 2050:8 <cr>.

2. Type 2830:8 <cr>.

3. Type 3030:8 <cr> •

. You'll notice that the dots al ign them<!elves vertically.
Now:

4. Type 2450,88 <cr>.

The new do t etha tis, the one tha t.cor~es.ponds to he bit
YOU just spec i.fied) does not lineup wi th tht-.. dots yOU
displayed earUer. Instead, it appears' to be shifted one
'"balf-dot .. to .theright.

5. To demonstrate that this dot~eally is a Iinewn dot, and
not just the Kold M dot shifted by one dot posi tion, type
2050:18 <cr>, 2830:18 <cr>.

You'll notice that the dot mttntioned under Step 4 above (the
dot that was not al ignttd with the other seven dots) is
straddJ ed bY the dots above and be low it. (The use of
magnifying lenses is permitted.)

Shifting the pixel one Mhalf-dot M, by setting the high.
most-significant bit is most often used for e61~t displays.
When the high bit of a byte is set, to gene~ate this shifted



dot (which ;$ al~o call@d the uhalf-dot shift"), then al I
th~ dot$ for that byte wil I be shifted one half dot. The
half-dot shift does not exist in the double hi-~es mode for
the Apple //e.

The following figure shows the memory map for the standard
h i -~es graph i cs mod.:

"-
"- HORIZONTAL OFFSET

BASE'\

"- SOO I SOl S02 S03 I ·.. $24 I S25 $26 $27
$20001 , I I
$20801 I I I
$21001 I I ·.. I
$21801 I , I
$22001 , I ·.. I
$22801 1 I ·.. I
$23001 1 1 ·.. ,
$23801 , I I
$20281 I 1 ·.. ,
S20A81 I I I
$21281 I I ·.. I
$21A81 I I I
$22281 I I I
S22A8 1 I I I
$23281 , I ,
$23A8 I I I I
$20501 I I I
$20001 I I I
$21501 I I ·... ,
$21001 1 I ... I
$22501 I I I
$22001 I I I
$23501 I I I
$23001 I , ·... I

Standard Hi-res M@mory Map

The following f.igure shows the box subdi 'J isions fol" the
memory map shown in the figur. attove:



(OFFSET I
(FROM I 6
(SASE I
(+CSOOOO I
(+~0400 I
(+$0800 I
(+$OCOO I
(+$1000 I
(+$1400 I
(+$1800 I
(+$lCOO I
(

5
SIT

432

I

)

o )
LSS )

I )
I )
I )
I )
I )
I )
I )
I )

)

For example, th. first m.mory address oot each screen I in~
for the first f~w I ines is as shown below:

$2000
$2400
$2800
$2COO
$3000
$3400
$3800
$3COO
$2080
$2480, etc.

Each o~ the 24 'box*ls' co.,tai ns 8 screen Ii ne.s. for
of 192 ver tic al I i n~s per screen. Each o~, the 40' box

. line contains 7 pixels for a total o~ 280 pixels
horizontally across .ach 1 ine.

The Intricacies o~ Doubt. Hi-Rfl*s

Because the doubl. hi-resolu.tion graphics mode provides
twice the horizontal dot density as standard hi-res graphics
does, double h -res re'qui.res twice ~s much memory as
st<1nda.rd hi-res does. I f you spent many hoursmemor i z i n'9
the standard hi-res memory map, don't despair. Double
hi-res sti I I uses the hi-res graphics page (but only to
represe.n t ha I f the pic ture, so to speaK). I n the doub J e
hi-res mode, the hi-res graphics page is compressed to fi t
into half of the display. The other half of the display is
stored in memory (called the "auxiliary" or "aux" memory) on
the Extended 80-Column card. (This article refers to the
standard hi-res graphics page, which resides in main memory,
as the "motherboard" or "HS" memory.)

The auxil iary memory uses the same addresses used by the
standard hi-res g~aphics page (Page 1, $20QO through $3~FF).

The hi -r.s graph i cs page stored in aux j I i ary memory j s known
as "hi-res page lX." The graphics pages in auxi I iary memory



are bank-switch.d m.mory, which YOU can swi tch in bY
ac t i va t i ng scm. o-f the so-f t sw itches. (Adven turous readers
may want to skip ah.ad to ·Using the Auxi I iary Memory,"
which appears later in this article.)

The m.mory mapping for the hi-res graphics display is
analogous to the technique USQd for the eO-column display.
The double hi-res display interleaves bytes from the two
dif-ferent m.mory pages (auxi I iary and motherboard). Seven
bi ts from a byte in the auxil iary memory bank are displayed
first, follow.d by s.ven bits -from the corresponding byte on
the moth.rboard. The bits are' sh i f ted out the same way as
in standard hi-res (least-significant bi t first). In double
hi-res, the most significant bit of each byte is ignored;
thus, no half-dot shift can occur. (This feature is
important, as you/ll see when w. examine double hi-res in
co lor. )

I $0

IAUXI
$20001
$20801
$21001
$21801
$22001
$22BOI
$23001
$23801
$20281
$20A81
$21281
$21A81
$22281
$22A8 1
$232BI
$23A8 1
$20501
$20001
$21501
$21001
$22501
$22001
$23501
$23001

I $1

MBIAUXI

I $2 I
I I

MSI AUXI MBI
I I I
I I I
I I I
I I I
1 I I
I 1 I
I I I
I I I
I I I
I , I
I I I
I I ,
I 1 I
I , I
I I I
I I I
I I I
I 1 I
I I I
I I I
/ I I
I I I
I I ,
, I I

$3 I

AUXI MBI
I I
I I
I I
I I
I I
I 1
I 1
, I
I I
I I
I I
I 1
I I
I ,

I I
I 1
I ,
I. I
I I
I I
I I
, I
I I
1 I

.••••• I
•••••• I

AUXI MBI
• •• ,. I
• • • •• I
• • • •...• I
• • • •• I
.. , ••• I
• •••• I
••• •• I
• • • •• f
• •• •• I
•...• ,.,. I
••••• f·.... ,
• • • •• I
••••• I

II • •• I

·.... ,
· •••• I

• •• II t

• • • •• f

AUXI MBI
I I
I I
I I
I I
I I
I I
I 1
I ,
I I
I I
I I
I I
I I
I i
, I
I I
I I
I I
I I
I I
I I
I I
I I
I I

$26 I

AUXI MBI
I I
I I
I I
I I
, I

I I
I I
I I
I I
I I
I I
I I
II
I I
I I
1 I
I I
I I
I I
I I
I I
I I
I I
I I

$27 I

AUXI MBI
I I
I I
, I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
1 I
I I
I I
I I
I I
I I
I I

Where each box is subdivided exactly the same way it is In
the standard hi-res mode.



Obtaining a Doubl@-Hi-R'$ DisplaY
To display the doubl. hl-r-es mode, S9 t the following so-f t
swi tC:hes:

In Mon i tor- In Appleso-ft
Read PEEK

HI-RES $C057 49239

GR $C050 49232

AN3 $C05E 49246

HIXED $C053 49235

In Hon i tor- In Apple-soft
Wr-ii:e POKE

80COL $COOD 49165,0

Annunc:lator- 3 (AN3) must be tur-ned off to get i.nto d.ouble
hi -r-es mode. You .tur-n i t off br r-.ad I ng I oc: a ti on 49246
($C05E h.x). Not. that wh.nev.r- rou pr-ess CTRL-RESET, AN3
is tur-ned on;". ther-efor-., .ach time you pr-\?SS CTRL-RESET, YOU
must tur-n AN3 off again.

I f you are us I ngHIX§l?"'0c.1-, then th. bot tom four- lines on
the '3cr- ••n wi 1.1 d i ~j)1 ay t.• x to .1 f you have not tur-ned on<the
80-c 0 1umn car-d, th.~ .•.lJ;r-r s.c onc:l.char ac t er- in th.bo t teen.
four lines of' text wi 11. b! a r-a."c:lClll\ .. cha,...act.r-. (The r-eas6"
is that al though t~ •..har-dwar-. dlspl ays 80 columns of
character-s, the fir-""&I<1.l"'e. 9nlyupda.t.s the 40-column scr-eel"l,
wh i ch cons i sts of th •. 5ha.rac t.r-~ in the odd...number-ed
co I umns. Th. cha,..~cter-~ in even-n..umber-ed co I umns then
consist of·r-andom char-act.r-s taKen from text page IX In the
aux i 1 i ar-y mtlmor-y.)

To. r-emove the II even" ·C::ha.l"'ac t.r-s fr-om the bot tom four- I i ne.s
on the scr- ••n, •• type PR*3<CR> fr-om bas I c (type 3 4 P fr-om the
mon I tor). Th i s procedure c I .ars the' memory Io~ ions on
page IX.

Us i ng the AOX i Ii a.rt Hemory
Th. auxiliary rn~mC)ry.con..~Is,ts ofse",er-al different sections,
which YOU can s.lect bY using the soft swltchlfs listed
b.low. A pair of memory locations Is dedicated to each
swi tch. (One I ocat I on turn'3 the sw i tc:h on; the other turns
it off.) You activate a switch by writing to the
appropriate memory location. The WRITE instr-uction itself
is what ac:tivates th. swi tch; therefore, it doesn.! t matter
what data YOU write to the memory loca.tion. The soft
swi tehes are:



From Mon i tor
WI' i t~

80STORE o-f -f : "COOO
on: $COOl

RAMRD of-f: $COO2
on: $COO3

RAMWRT o-ff: $C004
on: $C005

PAGE2 o-f-f: $C054
on: $COS5

HIRES o-ff: $C056
on: $C057

From Appl~so-ft

POKE

49152,0
49153,0

49154,0
49155,0

49156,0
49157,0

49236,0
49237,0

49238,0
49239,0

A routin. caJJ~d AUXMOVE, located in th~ moni tor ROM of the
App 1e //@, is also v~ry handy, as w~,/ 11 s~@ b@ Jow. AUXMOVE
rs located at addr~ss C311.

Accessi ng memory on the aux iIi ary card wi th th~ soft
switches has the following characteristics. Memory maps,
which heJp clarify the descriptions, ar@ on the next page.

1). To activat@ the PAGE2 and HIRES switches, you need only
read (PEEK) from the corresponding memory locations
(instead of writing to them, as you do for the other
three SIN itches) •

"2). Th. PAG.E2 switch norm... Jly sl!tlec.ts th~<displa>, page, in
@i ther.graph i csor. tex t mode, from .i ther Page 1 01'" Page
2 of the mothlPrboar-d memory. ... HoweVttr i t does so on I y
when the 80STORE SWitch is OFF.

3). If the 80STORE switch is ON, then the function of the
PAGE2 5W i·"tch cha.nges. ·"When 80STO"RE is ON, then PAGE2
swi tches in the .textpage, locations $400-7FF, from
aux i 1 j ary memory (text page 1X), j nstead of swi tchlhg
the display scre.n to theal ternate video page <Page 2
on the moth~rboard)••. When.~OST9~E: is<ON,. the<pAGE2
sw i t9~ 9. term i ne S;i.wh reM. memor)'i b<1n k. (auxiI ia... >'. 01'"

moth.I"'.9C)~ ... d) ••..• i.s.usedc:luriin9anyaccessto .. addresses $400
through.7FF ..W~.nthe 80~ORE swi te is ON, it has
pI'" i 01'" i ty over aJ I other sw itches.

4). 1fth e 80 STORE sw i t chi sON, thenth e PAGE2 sw i t chon I y
swi tch@s in thegr-aphi cs page 1X.from the aux iii ary
memor y i f the HI RES sw i t chis a 1so ON. (No t e t hat t his
circumstance is sligh"tly different from that described
in Item 3 above.) 'When 80STORE "is dN, and if the HIRES
swi tch is also ON, then the PAGE2 swi tch sel~cts the



L

I
I
I
I
I

I All BTACKI
I • i

AUX I U ARY ~. ,JRY

t .
I
I
I

I,

TEXT ,
fAGE I I

TEXT ,
PAGE 2 ,

HI-RES I
GRAPHICS I

PAGE I I

t-V\ IN tiEHORY

IFF

IFF

BFFF

5FFF I HI~REI I
• GRAPHICS •
I PAGE 2 I

FFFF

I
I

•I
I
I

•,
I-I: ,

• TOO II PAR 2)( I

• TEXT, I
I MOl IX •

I
I

, HI-REI ,
, GRAPHICS I
I MSI 2)( •

• HI-REI I
I IMPHICI •
I PAR IX •

AUXILIAR't' HaiOR¥~l"" t1aiOR't'

FFFF

1111081 ,Off, 0,) I I
eell a ,X: I 0 f f I I
IUBII , x, l,>c' ,
fWfBQ/RmfflI '0 (- F 'Q ff I _ I

I A c. T\J (.

Mt=.yhOrt

InIOBE "Off I au I ,
mil I' I -( I or.' I I
lUBES ,x., X, I
RANBPlRftl.IRJ ,(}rJ 'PrJ I I



AUXILIARY lORY

HI-RES I
BRAPHICS I

PADE 2 I

~IN HEMORY

SFF I TEXT ,
1 PADE 2 1

SFFF ,
I,
I

SFFF

I
I
I-
I I
I ,

AUXILIARY HENORY

I
1

I
I

•I

I HI-REI 1
I eMPHlci I
1 MOl! I I

n·B J'i n t:f1utn
('
t

i

IFF 1 TEXT 1
I. Me! I 1

SFFF I HI-REI 1
I 9RAPHICI 1
, PAGE! 1

SFFF I
I
I
I

IVUWE I QN I
0011 z. I 0(( I I I
BIBII I off, I I I
1Vt1801MMJI I y tl I I I mA c.i,,,(

W\~lho~y

IUIOBE , o,..) I· I I
filii I ,OFf I I I
HI BEl I QrJ' I I
RAHRD/~RI I o~, I I



miN HEMORY AUXILIARY HEMORY
WtlN MEMORY AUXIliARY HEHORY

I {

HI-RES
GMPHICS f
fAOE2X I

I' TEXT I
I PAGE 2X I

I
f

I
I

I
I

HI-REI I
I eRAPHICS I
I PAn IX I

I TOO I
I Mn 2)( I

I HI-RES I
I eRAPHICS I
I Me! 2)( I

I,,,

7FF

.IIIOB! IQtl I I I
rail Z· l~tJ I I I
UI811 I off I I I
fYttRD/fW1fRJ'· Of F' '_-1

b ACTt\l\::

llq t\1 t 1\10 t,'j

IIIlOHE, I 0,1 ,. I I
r.a~E 2 I QrJ" I I
DIRED 'V#J' , ,
Bltnu)/D~RI , Pf f' , ,



m.mory bank (auxi I iary or mothe~boa~d) fo~ ac~~sses to a
memory location within the ~ange $2000 th~ough 3FFF. If
the HIRES ~it~h is OFF, then any ac~ess to an memo~y

location within the range $2000 th~ough 3FFF uses the
motherboa~d memo~y, ~ega~dless of the state of the PAGE2
swit~h.

5. If the 80STORE swi t~h is OFF, and if the ~RD and
RAMWRT switches are ON, then any ~eading o~ w~i ting to
add~ess space $200-$8FFF gai ns ac~.ss to the aux i.li at"Y
memo~y. If only one of the switches, fo~ example RAMRD,
is set the!" only the app~op~iate ope~ation, in this ~ase

a ~~ad, wi 11 be pe~fo~m.d on the auxil iary m.mo~y, while
a writ. ope~ation wi II access only the mQthe~board

m.mory. If only RAMWRT is set then al I write ope~ations

atcess the auxil iary memo~y. When The SOSTORE swi t~h is
ON i t has higher p~ i o~ i ty than the RAMRO and RAMWRT
switches.

Sho~tcuts: W~itin9 to Auxil ia~y Memo~y f~om the Keyboard
Fi~st, p~ess CTRL-RESET. Next, typ. <CALL-1St> (to get
into the monitor). Then type the fol lowing hexadecimal
addresses to turn on the double hi-~es mode:

COS7 (for Hi-res)

COSO (for Graph i cs)

~ (for Mixed mode)

~ Turns off AN3 for double hi-~es

COOO:O Tu~ns on the 80COL· sw itch

This p~ocedut"e usdally causes the
patt.~n at. the top of the screen,
lines on HI. screen con ta in tex t.
fol low the ~teps I ist.d b.low:

1). Type 3DOG to return to BASIC.

display of a t"andom-do
while the bottom fou"'"

To clea~ the screen,

2). Type HGR to clear half of the sc~een. (The ~haracte,...s

yOU type will prObably appear in al ternating columns.
This is n-ot a ~ause for alarm; as noted above, the
fi~mware simply thinks yOU are wo~King wi th a 40-column
di$play.) R.membe~ that hi-~es graphics commands don~t

know a.bout the half of the screen sto~ed on page IX in
the au~i I iary m.mory. The~efore, only page 1 (that is,
the first half) of the graphics page on the motherboard
is clea~ed. As a I"'esult, in the the screen display,
only alternate 7-bi t columns appear cleared.



On the othe~ nand, if all of the sc~••n columns w.~e clea~~d

aftQ~ the HGR command, then chances a~e good that you;~e not
in double hi-~es mode. If yoU~ sc~e.n was clea~ed tnen to
dete~mine' which mode you;~e in, type the folloWing
ins t ~ uc t i on s :

CALL -151

2000:FF

2001 <2000. 2027M

bacK into moni to~

I-f a sol id 1 ine appea~s ac~oss the top of the scre>en, you;~e

not in double hi-~es mode. (The I ine that appears should be>
a dashed ,or int.~mitt.nt 1 ine: - - - - - - - - across the
scre.n.) If yoU~~. not in double hi~~es mode, then make
sure> that you' do have a Rev. B mothC!'rboard, and that the two
Mol ex-type pins on. the ExtC!'ndlld SO-Col umncard a~e sho~ted

togethe~ with the jumpe~ block. Then ~e>-type the
instructions I iste>d above.

If YOO''''e 'staring at. a half-cleared sc~een,you c.a.n clear
the non-blanK columns by writing zeros to add~eS5es $2000
through 3FFF on graphics page IX of auxil iarY memo~y. To do
so, simply turn on the SO STORE swi tch, turn on the PAGE2
switch, and then w~i t. to locations $2000, $2001, $2002, and
so on up th~ough 3FFF. HoweYe~: this p~ocedure wi II not
work if you try it from the monitor! The ~eason is that
each time you invoKe a monitor ~outin., th~routine sets the
PAGE2 switch bacK to page 1 so that it ca.n dispJa.Y the most
~ecen t command tha t yOU en te~ed. Whet'r yOU try to w~ i te to
$2000, !pte. on the aux iIi a~y card, instead it wi II w~ i te.to
the motherboard memo~y.

Another way to obtain the desi~ed ~esul t is to use the
moni to~~s USER command, which fo~ces a jump to memC)ry
location $3F8. You ean place a JHP instruction. starting at
th is memory I oca t ion, so tha. t the p~ogram IN ill jump to a
~ou tine tha t WI'" i tes in to h i -~ .. s .pag. IX. Fo~ tuna te 1y, the
moni to~ al~eady contains such a ~outine: AUXMOVE.

Us i n9 AUXMOVE
You use the AUXMOVE routine to move data blocKs between main
and auxi 1 iary memory. But the tasK sti II~ema.ins of setting
up the rou t i nC!' so that i t Knows ..tlJh i eh ..da ta to WI'" Lfe, and
whe~e to wri te it. To use this ~outine, some byte pai~s in
the z.~o pageo must b. set up wi th the data b1.ock .ad.dresses,
and th. ca~~y bit must b. -fixed to indi~ate the di~ection of
the mov.. You may not be surpr i sed to 1earn that the byte
pairs in the z.ro page used by AUXMOVE are also the
scratch-pad ~e9iste~s used by the moni tor during inst~uction

execution. The ~esult is that whi Ie YOU type the addresses
for the mon; tor;s move command, those add~esses are being
stored in the byte pairs used by AUXMOVE. Thereafter. YOU



can call the AUXMOVE command directly, using the USER
(CTRL-Y) command.

In practice, then, ~ntel" the fol lowing instructions:

COOA:O

COOO:o

3F8: 4C 11 C3

2000<2000.3FFF Ay

(turns on the 80-Column ROM,
which contains the AUXMOVE
rou tine)

(reason explained below)

(the jump to AUXMOVE)

(where NAy" indicates that yOU
should type CTRL-Y.)

The syntax for this USER (CTRL-Y) command is:

Copies the values in the
I"'ange M8star t to MBend in the
motherboard memory into the
aux i I .i ary memory beg inn i ng at
AUXdest. Th i s command is
an ell ogous to the MOVE
command.

You can use this prOcEPdure to transfer any blocl< of data
from the motherboardmfmorY to h i-~espage lX. > Work i ng
d i rec t 1y from the keyboard, you.can<lJ.sCP a data .bl ocl<
transferred this way to f i 1 i.nanypar t <C)-t .a~oubl e h i"'l"es
screen. image. The imagllf to be stored in hi -res page 1X
(that is, the image that wi I I be displayed in the
even-numbllfred columns of the double hi-res picture) must
first be stored in the motherboard memory. You .can then use
the CTRL-Y command to trans-terthe image to hi-res page1X.

The AUXMO'v'E I"OU tine uses .the RAM~D and RAMWRT sw itches
transfer the data blocks. Because the 80STORE swi tch
overr i des the RAMRD and RAMWRT sw itches, the 80STORE. sw i tc:h
must be turned off -- otherWi sei t woOl d keep .the transfer
from occurring properly (hence the wri te to $COOO above).

If the 80STORE and HIRES swi tche.'S are·ON and PAGE2 is off,
when yoU execute AUXMOVE, then any acce~s to an address
located within the l"angefrorTl$2000 to·$3FFF inclusive would
use the motherboard memory, regardless of how RAMRD and
RAMWRT are set. Entering the command COOO:O turn'S off
80STORE, thus letting ·the RAMRD and RAMWRT swi tches control
the memory banking.

The CTRL-Y trick described above only works for transferring
data blocks from the main (motherboard) memory to auxi I iary
memory (because the moni tor always enters the AUXMOVE
routine with the carry bi t set). To move data blocKs from



the auxil ia~y memo~y to the main memo~y, YOU must enter
'AUXMOVE with th~ c:a~~y .bit cl~a~. You can USQ the routine
I isted below to t~an5fer data blocKs in either direction:

301 :AD 0 3

304: 2A

305:40 11 C3

3F8:4C 1 3

(loads the contents of add~ess $300into
the accumulator)

(rota tlf'.5 -the m05t--s i gn i of i can t bit into the
ca~rY flag)

(jump to $C311 (AUXMOVE»

(sets the CNTRL-Y command to jump to
add~ess $301)

Befo~e using this routine, you mU5t modify memo~y location
$300, depending on the di~ection in which YO'u want to
t~ansfer the data blocKs; If the t~ansfe~ is from the
aux;l ia~y memo~y to the motherboa~d, YOU must c)ea~ location
$300 to %.~o. I f the t~ansfcpr~ i s f~om the mothe~boa~d to
the auxil ia~y m_moI'Y, YOU must set location $300 to $FF.

Two Double Hi~Res Pages
So fa~, w_~ve only discussed using g~aphics pages 1 and 1X
to display double hi-l'es pictu~es. But -- analogous to the
standa~d hi-~e5 pages 1 and 2 -- two double hi-~es pages
ex is t: page5 1 and lX, at. 1oca t ions. $2000 th~ough 3FFF, and
page<s 2 .. and 2X, at>locations S4000thl'ough 5FFF.Theo onlY
tr i cl< i nd i~p lay ing the Sctc.ond doub.le. h i -~.s page i s that
yOU must tu~.n oft. th~. 80 STORE sw itch. I f the 80STORE $Wi fch
is ON, then only the f i~s.tpag .. (1 and .1X) is displayed. Go
ahe ad and· try· it:

COOOrO to tu~n off the SOSTORE SIAIi tch

to tu~n on the PAGE2 swi tch

The screen will f.ill up with anothe~ display of random bits.
Clea~the sCl'e~1"l using th•..inst~uctions listed above (in the
section entitled ·Using AUXMOVE II

). However, this time, use
addresses $4000th~ou9h SFFF instead. (Don~t be alarmed by
the fact that the figu~es you~re typing aren~t displa.Yed on
the scraa.n. TheY~r. be i ng • d i. sp I ayed" on tex t Page 1.)

4000:0

4001 <4000. SFFFH

4000<4000.5FFF 'Y



You'l I be del ighted to learn tha~ YOU can also use this
trick to display two eO-column text screens. The only
problem here is that the SO-column firmware continually
turns on the SOSTORE swi tch, which prevents the display of
the second SO-column screen. However, if yoU wri te your own
eO-column display driver, then you can use both of the
SO-column screens.

Color Madness
It should come as no surprise that color-display techniques
in double hi-res are different from color-display techniques
in standard hi-res. This is because the -half-dot shift u

doesn't exist in double hi-res mode.

Instead of going into a disquisition on how a TV set decodes
and displays a color signal, I'll simply explain how to
generate color in dOUble hi-res mode. In the fol lowing
examples, the term -color monitor- refers to either an NTSC
monitor or a color television set. Both work; however, the
displays will be much harder to see on the color TV.The
generation of color in double hj-res~demands sacrifices. A
560x192-dot displaY is not possible in colo~. Instead, the
horizontal reSOlution decr-eases by a factor of four (to 140
dots across the. screen) • Just as wi th a black-and-wh i te
monitor, a simple correspondttnce exists b.tween memory and
the pixels on thescreE'n. The difference isttlat four bits
are requireod to det.rmine.each color pixel. These four bi ts
represen t 16. d.i fferen t comb ina t ions: one for eoach ... of the
colors availableo in double hi-res. (These are the same
colors that are available in the low-reosolution mode.)

LePs start bY exploring the pattern that mustbestor-~d in
memory to dr~ a single colored 1 ine across the screen.
Start bY pressing RESET; then load the program-COLOR/TEST"
from theo DOS 3.3 sample programs disk (with theoldiAppH~

)(+ DOS syst.m master use the program ·COLOR DEMOSOFT-
Use thjs program to adjust the colors displayeod by yoU
monitor. After you've adjusteod the colors, exi t from the
color-deomo program.

The instructions that appear below are divided into groups
separateod by blank "I ines. Beocause it's very difficul t (and,
on a TV set, almost impossible) to read theo characters
you're typing in as they appear on the screen, face it: you
will make typing err-ors. If the instructions appeoar not to
work, then start again from the bE'ginning of a gr-oup of
instructions.

CALL -151
QL§Q
C057
C05E
COOD:O

(to geot into theo Moni tor routine/program)
(This set of instructions puts the
computer into double hi-res mode.)



2000:0
ZOOI<ZOOO.3FFFM
3F8: 4C 11 C3
2000<2000.3FFF"Y

2100:11 4
2102<2100.2126M

2150:8 22
2152(2150.2175M

2100<2150.2177"Y

(This set 0+ inst~uctions clea~s fi~st

one half 0+ the sc~een, and then the
othe~ half of the sc~een.)

(2 ~ed dots appea~ on top left of sc~een)

(A dashed ~ed I ine appea~s ac~oss sc~een)

(Two g~een dots app.a~ nea~ bottom left)
(Dashed g~een I ine appea~s ac~oss sc~een)

(Fi I Is in the ~ed line)

In cont~ast to conditions in standa~d hi-res, no hal~-dot

shift occu~s, and the most-significant bi t of each byte is
not used •.

As noted above, fou~ bits dete~mine a coIO~. You can
·paint· a sin91e-colo~ I ine ac~oss the sc~een simply by
~epeatin9 a fou~-blt patt.~n ac~oss the sc~een. Buti t is
much e&5.ie~ to w~ite a whole bytlP ~ather than just change
fou.r bi ts at a tim.. 5i nce only 7 bi ts of each byte are
displayed (as noted'ea~l ier in our discussion of
bl acl<-and-wh i te. double hi -1".5) and the pat te~n is four bits
wide, it repeats itself ttVtt~Y 28 bits o~ fou~ bytes. Use
the inst~uctions I Lsted below to d~aw a I Lne of any color
ac~oss the sc~e.n by~ep.atin9a fou~ byte pattern fo"" the
coloI"' as shown in Table III below.

2200: mbl mb2
2202<Z200.2226M

2250: ayx 1 aux2
2250<2250.2276M

2200<2250.2276"Y

(Colo~ed dots appear at the left edge)
(A dashed, colored 1i ne appears)

. (Fi lis in I ine, using the sele<:ted color)

[see Table IlIon next pagel



TABLE I I 1. The Sixteen Colors

REPEATED BINARY

COLOR auxl mbl aux2 mb2 PATTERN
-----------------------------------------------------------
BLACK 00 00 00 00 0000
MAGENTA as 11 22 44 0001
BROWN 44 as 11 22 0010
ORANGE 4C 19 33 66 00 11
DARK GREEN 22 44 as 11 0100
GREYl 2A 53 2A 53 0101
GREEN 66 4C 19 33 0110
YELLOW 6E 50 ~8 77 0111
DARK' BLUE 1 1 22 44 as 10.00
VIOLET 19 33 66 '4C 1001
GREY2 53 2A 55 2A 1010
PINK 50 38 77 6E 1011
MEDIUM BLUE 33 66 4C 19 1100
LIGHT BLUE 3B 77 6E 50 1101
AQUA 77 6E 50 38 11 10
WHITE 7F 7F 7F 7F 1 1 1 1

---------------~---~-----~---------------------------------

In this table, "auxP indi.c:ate~.. the fir~t, fifth, ninth,
thirtt'enth, etc. 'bytt' of each I int'( i.e., everyfour-thbyte,
star-ting with the fir-st byte). The heading "mb1· indicates
the second, sixth, tenth, four-t ••nth, etc. byte of. each line
( i • e ., 8' V t' I" Y f ou r- t h by t e, •star- tin 9 wit h t.h t' se c on d by t e) •
The "aux2" and ·mb2". head i ng.sind i co. t. 8'')eI''Y four- th byte,
star-ting with tht' thir-d andfour-th bytes of each line,
rt'spectivt'ly. ·AuxP and"aux2"a.l"e always stor-ed in
auxiliary mftmor-y, whil. ·mb1· and It mb2. are always stol"ed in
the mother-boar-d mftmor-y.

A~ you;ll infer from Table III, the absolute'position of a
byte a 150 dfttfr-min~ the color- d i sp I ayed. 1f you wr- ite an
·8" into the fir-st byte at the far- left side .of the screen
(i.e., in the "aux1" column), then a red dot< is displayed.
But if yOU wr-i teo an "S"into the third byte at the left side
of the screen (the .. aux2" co I umn >, th en a dar-k gr-een do tis
displaYt'd. Rememb.r- -- thecolor-<moni tor- decides which
color to display based on the rt'latiue position of the bits
on each I in. (i .e., on how far- the bits ar-e from the left
edge of the screen).

So far, so good. But suppose yOU want to display mor-e than
one color- on a single line. It;s easy: Just change the
f ou I" -b i t pat tel"nthat iss t or- edin memor- y . For e x amp 1e, i of
yoU want the left half of the line to be red. and the riaht
half to be pur-pIe, then store the "red" pattern (8,11.22.
44) in the first 40 bytes of the lIne, and then stor-e the



·purple M pattern (l9,33,66,4C) in the second 40 bytes of the
1 i ne. Table I I lis a u54Pfu I /""eference tool for sw itch i ng
f/""om one color to another, p/""ovided YOU maKe the change on a
byte bounda/""y. In othe/"" words, YOU must start a new colo/""
at the same point in the pattern at which the old colo/""
ended. For example, if the old color stops afte/"" yOU w/""i te
a byte f/""om the Mmbl" column, then yOU should start the new
colo/"" by storing the next byte in memory wi th a byte f/""om
the "aux2 1t column. This procedure is i 1 lust/""ated below:

2028:11 44'11 44 11 44 11 77 SD 77 50 77 5D
( creates a dashed 1 i ne that. is /""ed, then yellow)

2128: 8 22 8 22 8 22 8 22 6E3B 6E 3B 6E

( f ill sin the /"" est of the color'" s)

Sw; tehing Colors in Mid-Byte
If youwa.nt aline to change color in the middle of a byte,
you"l I have to /""e-calculatethe column, based on the
information in Table III. Suppose yOU want to divide the
screen into three vertical sections, each a different color.
The left-hand thi/""d of the sc/""een ends in the middle of the
27th chal"'ac te/"" from the I ef t . edge -- tha tis, in an "aux2"
column of the color table. (Dividing 27 by 4 gives a
/""emainder of 3, which indicates the thi/""d column, O/""

lt aux 2 1t .) You/"" patte/""n should change f/""om the fi/""st colo/"" to
the second color after the 5th bit of the 27th byte. You
can change the color .... in the middl.e of a byte by s.lecting
th. appropriatE!' bytes from the It<i.yx21t cglumn of Table III,
and concatenating two bits for the second color wi~h five
bits for the first color.

However, because the bits fr-Orn ~ach byte ar.e sh i f tE!'d ou tin
o/""de/"" f/""om I east sign if i cant to mos.. t s Lgn i of i can t, the two
mos t sign i of jean t bit s (i nth i s case 1 me an bit s 5 an d 6,
because bi t 7 is unused) for ..the second cljlo/"" a/""e
concatenated~wi th the ftve "least signiftcant bits fo/"" the
fi/""st color. For instance, if yOU want the colo/"" to change
f/""om orange <the fi/""st color) to green (the second colo/"") ,
then you must append the two most si gni of ic.ant. bits (5 and 6)
of Itgreen· to the five ·least. si.Clnifi.cant bi ts (0-4) of
"o/""ange." In Table III, the "aux2" column byte fo/"" g/""een is
19, and the two most significant b.its are both clear. The
"aux2 1t column by.t.e for. 0,..ange.is33, and the five lea.st
significant bi tsare equal to 1001.1. The new byte
calculated fr-om appendinggr.en (00) to orang. (10011)
yields 13 (00·10011>. The/""t'fo/""e, the fi/""st 26 byte of the
line com. f/""om the tabl e val ues for orange; the 27th byte is
13, and th. next 26 bytes come f/""om the table values fo/""
green.

2300: 19 66
2302<2300.2310M

(pu ts o/""ange 1 i neo on screen)



The double hi~~~ sc~een h~s 140 columns, numb~~~d 0 th~ou9h

139, and 192 ~ows, numbe~l)d 0 to 191. Just I ike the standa~d

hi-~~s 5c~~en, the o~i9jn is in the uppe~ le~t co~n.~, whi Ie
the point 139,191 is in the bottom ~i9ht co~ne~.

O:blacK
1 :m~genta
2:da~k blue
3:violet
4:da~k g~een

S:g~ey1

6:m.dium blue
7 : I i gh t b I ue
S:b~own

9:0~ange

10:g~ey2

11:pinl<
12:gr.en
13: ye I low
14:aqua
15 :wh i te

Some.exe~cises yoU may want to t~y include painting the le~t

half of the screen with grey1 and the ~ight half wi th grey2
to see if they ar. diffe~~nt or moving a colored baIt on
diff~~ent color~d bacl<g~ound. For the advente~ous type, you
may want to ~ewrj te b~ickout <supe~ bricKout).

Th~ following p~og~am shows off double hi-~~s. It starts
with the colo~ bar demo, except in this case the colo~ ba~s

can be much nar~owe~ than was possible in low ~esolution

graphics. The next sc~e.n shows a simple pictu~e of an
orange I ine drawn diagonally on a g~een bacKg~ound. These
two colo~s a~e also available in standa~d hi-~es, but a~

you'll se.· in the next pictu~e the~e a~e ce~tain

lim ita t i on s •

r r RUN DEMOJ J

In double hj-~es the most significant bi t is not used, and
any colo~ can appea~ next to any othe~ colo~, anywhe~e on
the sc~een <though Mf~ingin9" can occu~ whe~e the colors
join). In standard hi-~es the most significant bi t of each
byte I imits that byte to fou~ o~ the six colo~s. If the MSB
is set than than the only colo~s displayed by that byte a~e

white, blacK, blue, and o~ange. The~efo~e since g~e~n and
orange can't be displayed in the same byte, the whole byte
becomes o~ange, and the stair step I ine appea~s.

8y the way, if Annunc i a to~ 3 <AN3) i s tu~ned off when a
jumpe~ed extended SO-column ca~d is p~esent, then the most
significant bi t of standa~d hi-~es isn't used ei ther. ThIS



means that any standard hi-r~s pictu~~ will display only
black, whit~, viol~t or gr~.n. If the pictur~ contains blue
or orange, then thos. colors wi I I be convert~d to vi"olet or
green. Go ahead and try it: "pu II ou t a game tha t uses all
four colors, turn the AN3 off wi th PEEK (49246), and then,
wi thout pressing RESET <since that sets AN3 on), run the
program (RUN HELLO sometimes worKs).

Now you~ve got the tools and the rules to the doubl~ hi-res
mode. As you can see double hi-res has more color wi th
higher resolution than standard hi-res. You can ~ven develop
games that do fancy animation or scrol I orange objects
across green backgrounds. In black and whi te, word
processing programs that use different fonts or proportional
character sets can be developed. Have fun playing wi th the
this new mode and I hope I~11 see some of your programs
soon.

((I~ve got two more demo programs if there is room:JJ
RUN DOUBLENET <Remember Brians~s theme)
BRUN QIX



APPLE //. TECHNOTE ~4

Revision of ROY TECHNOTE l-Ap~il 83*
i-July 84

This al'ticle describes an input signal into the 6502 micropl'ocessol'
call.d the ROY 1 ine. The ROY 1 ine allows a pel'iphel'al card to hal t the
mi cropl'ocessor with the ou tpu t address 1i nes ref 1ec t i ng the curren t
address bting fetched. IT a pel'ipheral device can not get data on the
bus fast enough to meet the set up time of the 6502 then the pel'iphel'al
card can pull the ROY line'low and tell the 6502 to wait. This allows
the pel'ipheral device enough time to get the pl'oper data on the bus.
This al'ticle describes the timing for as event such as this.

Fol' further infol'mation contact:
PCS Developer Technical Support
HIS 22-W. Phone (408) 996-1010

Disclaimer of all Warranties and Liabilities

App 1e Compu tel', Inc. makes no wal'ran ties, e i thel' express or imp 1 jed,
with I'espect to th i s docum.n ta t i on 01' with I'espec t to the soHwal'e
descl'ibed in this documentation, its quality, pel'fol'mance,
mel'chantabil ity, 01' fitness fol' any particulal' pUl'pose. Apple Computel',
Inc. soHware is 1icensed las is·, The entil'e I'isk as to its qual ity
and pel'Tormance is with the vendol'. Should the pl'ogl'&ms pl'ove defective
folOolling their purchase, the vendor (and not Apple Compuhr, Inc., its
distributor, or its retailer) aS5Umts the entire cost of all necessary
servicing, repair, or cOl'rection and any incidental or consequential
damages, In no ev.nt will Appl. Computer, Inc. be liable for direct,
indirect, incidental, or conuquential darnages resulting from any deTect
in tht sOT twar., even if App 1e Compu tel', Inc. has been adv i sed of the
possibil ity of such damages. Some states do not allow the .xclusion or
limitation. of implied warranties or liability for incidental or
consequential damag.s, so the above 1 imitation may not apply to you,

This documentation is copYl'ighted. All I'ights al'e I'eserved. This
document may not, in whole 01' pal't, be copied, photocopied, repl'oduced,
translated or reduced to any .lectronic medium or machine readable form
without pl'ior consent, in wl'iting, from Apple ComputeI', Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mal'iani Avenue
Cupertino, CA 95014

Not i ce

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB





Peter Baum
20525 Mariani Ave
Cupertino, Ca. 95014

Apple Computer
M.S. 22-W

Ju 1y 1, 1984
Copyr i gh t 1982

Using the ROY Line on the Apple //e and Apple )(+

Though the 6502 was one of the first commercial ly successful
microprocessors sold, the designers had forsight to include
some very u$eful functions. Because many early peripherals
products were very slow devices a microprocessor could not
read from the device directly. To connect these slow devices
onto the Apple peripheral bus, so that the 6502 can read
data from them, requires ei ther buffering the device or
slowing down the processor. Though most people would try to
buffer the device, sometimes it is not feasible. For
example, the ~ ms. access time 'of a l-megabit CMOS ROM maKes
buffering a nightmare, since both the address and data bus
have to be bUffered. When buffering isn~t possible then a
peripheral device can pull the ROY 1 ine to slow down the
processor 16ng enough to read a byte. This technique can be
used by slew devices to communicate with the 6502.

The ROY line allOWs a peripheral ca,..d to halt the
microproces50rwi ..th the output address I ines reflecting the
current address being fetched. If a peripheral device can
not ge t da ta on the bus f.as.t enough to mee.t the se t up time
of the 6502 then the peripheoralca,..d can pull the ROY line
low and ttll ...the 6502 to 1,a,!/a.iL This cann.ot be done during a
6502 write cycle because the 6502 will not hold up.

In order for the 6~02 t.o re.ada. vaJ i d<data byte from a
pel"" i pheralcard,. th.ecard has about 800 ns. fromthe time
the addresses. ar.e val idto put t/'le.data on the bus. The data
must be set up on the bus within approximately 400 ns. from
the time that the I/O STROBE, I/O SELECT, 01"" DEVICE SELECT
signal on the peripheral slot goes true. If a device pulls
the ROY 1 ine low for one cycle then the device will have 1.4
usee., instead of the 400 ns., to put out, val id data. The
ROY 1 ine can be pulled low for more than one cycle; in fact,
there is no 1 imit. A device that taKes 100 us. to send data
can just hold the ROY 1 ine low for 100 cycles. Hence, this
technique will allow any slower device to get on the bus and
send data to the 6502.

The ROY line is typically pulled low du'ring 01, but the
specification sheets for the 6502 show that it can be pulled
anytime before the last 200 ns. of 02. The 02 line is not
used by the Apple, but is an unused output from the 6502. It
is basically the same as the 00 line with a little delay.
Before I explain when to use (01"" not use in some cases) the
ROY I ine, let us first look at some timing diagrams of the
Apple system.



The timing diagram on the next page shows the relationship
b~tween the 6502 and Apple //e and Apple J(+. The timing
specifications have been adjusted to reflect the signals as
they are seen from the peripheral slots. For example the
6502 (1 MHZ.) specification guarantees that the address bus
wi 11 be val id wi thin 225 ns. from 02 out. But the peripheral
slots do not see these address lines d i rec t I y j I nstead the
address lines go thru a' buffer' and then ou t to the
peripheral slots. This adds a maximum delay of 13 ns. in the
Apple Hand 18 ns. in the Apple //e. The timing diagrams
wi II show, in the case of an Apple J[, that the address bus
wi) 1 be val id to the peripheral slots within 238 ns.
(225+ 13) of 02 f a I lin g edge.

The major differences in timing between the Apple J[+ and
the Apple //e are due to the processor. The Apple J( uses a
1 MHZ. 6502, while the Apple //e uses a 6502A, which is a 2
MHZ. part. This does not mean that the System clock in the
Apple//e runs any faster, only that the 6502Ais capable of
running faster. This results in better timingrnargins. For
example, the address and data busses are setup faster in
the Apple //e bY the 6502A than the 6502 sets them up in the
App Ie H. <Th i s was done because the custC).rn ch ips in the
Apple //~ are slower than the discret.e logic .in.. the Apple H
and the 6502A was needed to compensate for this).

A per i phl!'ra 1 card which uses the ROY 1 ine can.6nly be used
under certain cil"'cumstanc:l!'s. Because pUl.Jin<;;j. the. ROY linE!'
low halts the processor, any pro~rarn~it.h a.softl.l.lare.timing
loop wi 11. not work proper lYe These programs assume that each
instruction will taKe a. fixed amount o.f\t..imeLw~ich s not
true when the processor stops in the mi.ddleof .an
instruction. An Apple HdisK is an eXamPle of .a peripheral
which requires timing loops and won"t run properlY i.f the
ROY line is used.



TIHING SIGNALS AS SEEN FROM PERIPHERAL SLOTS

ITrwhl

IT02-1

cpu phase

val id Addrt'slOes

IT02+1

,,/
----------------------_./,,-

Apple 00

Apple- 01 video ph.se

03

IT02-1

02 ou t
of 6502 *

Ta.ds

R/W & ADDR V
.s seen from slots A

ITd"vsi'I-1 ITdevsel+1

DEVICE SELECT
as seen from slots

ITiost'I-1 ITio~t"I+1

I/O SELECT
as s •• n ~rom slots

ITiostb-1 ITiostb+1

I/O STROBE
as set'n from slots

TdsUIThrl

DATA
from slots

/ val i d ,,_------------------_......_------,,_..............................._/

Trs

RDY V don't changt" stateV
________------------,A A __

* - 02 iS,An outputsign&l from th. 6502 which is not ust'd by the
Appl •• It is, a delay.d 00.



FIGURE 1

TIMING SPECIFICATIONS FOR FIGURE 1
( a I I time sin ns . )

Srmbo I

T02- ..
T02+ ..

Tads
Tl"wh

Tdevsel
Tiosel
Tiostb-

Tdevsel+
Tiosel+
Tiostb+

Tdsu
Thl"

Tl"s *

Apple H Apple //e
1 MHZ. 6502 2 MHZ. 6502A

min. max. mi n. max.

15 50+20 (LS08) 15 50+5 ( 802)
30 80+15 (LS08) 30 80+5 ( S02)

225+13 (8T97) 140+18 (L8244)
30 30

96 (3 x LS138) 65 (LS154+LSI38)
64 (2 x LS138) 38 (LS138)
32 (LSI38) 15 (LS10)

18 (LS138) 30 <LSI54)
36 (2 x LS138) 18 (LS138)
18 (LS138) 15 (LSI0)

100+17 ( 8T28) A 50+12 (LS245)
10 10

200 200

* - The ROY I ine must nevel" change states within Tl"s to end of 02 .

.. - load = 100 pf.

The RFI vel"sions of the Apple )[+, I"evisions A thl"ough D
mothel"boal"ds, use an 8304 instead an 8T28.

Th~l"~ al"e thl"ee diffel"ent typ~S of numbel"s I isted above. If a numbel"
is standing bY itself then It is just the cOl"l"esponding 6502 01" 650~

specification. If anumbel" is follow.d by pal"enthesis then it
I"epl"esents .the delay, pl"oduced by TTL gates, between the 6502 and ~he

pel"iphel"al slots. The chal"actel"s in the pal"enthesis denote the pal"t
numbel"(s) of the pal"t(s) which genel"ated the delay. These pal"ts al"e
typically 74" s.l"ies TTL except fol" the 8T28 and 8T97. Ifthel"e al"e
two numbel"s in a column with a 11+" then the fil"st numbel" signifies the
6502 specification and the second the TTL delay, wi th the
cOl"l"esponding pal"t numbel". Most of the TTL delay times al"e fl"om the
Texas Instl"ument data books. The 6502 specifications al"e fl"om the
Synel"tek 6502 data sheet and fl"om Synel"teK appl ication note AN2 
SY6500.

WHEN THE RDY LINE CAN BE CHANGED AND WHEN IT CAN"T



As can be seen from these diagrams, the RDY I ine should not be gated
with the 00 trailing edge since this happens around the same time as
the fall ing edge of 02. This would violate the Trs specification and
probably force the 6502 to perform erratically. Gating the RDY 1 ine
wi th the trai I ing edge of Q3 during 00 might worK, but this could
leave as Ii ttlfP as 25 ns. for thfP signal to be val id. In other words
Q3 must enablt' the RDY I infP low wi thin 25 ns. of Q3 cha.nging states.
If th i s ou tpu t cannot be guaran teed stabl e, then the RDY line mi gh t
violate the Trs specification.

The saffPst time to pull the RDY line is using the 00 rising edge, but
this edge occurs before I/O SELECT, I/O STROBE, or DEVICE SELECT is
enabled. Therefore this scheme will not worK if any of these three
enables is used by the peripheral card. For example, many peripheral
cards use· memory mapped I/O to transfer data, with the cards registers
designed to reside in the DEVICE SELECT memory space. Location COnO
(where n = e + slot number of peripheral card) might hold the status
of the card, and location COn! might be used to read a device such as
a disK or an A/D converter. The ca.rd uses the DEVICE SELECT signal,
pin 41 on the slot, a.nd the 4 low order a.ddress 1 ines to determine if
the 6502 wants to read the status register or read from the A/D
converter. Typically, the status register can put its da.ta on the bus
wi thin 200 ns., easily meeting the set-up requirements ~f the 6502.
But the A/D converter might taKe at lea.st 100 us. before it ca.n
respond with data. The RDY I ine must be pulled low to allow time for
the A/D converter to set up the data bus. Notice that the peripheral
card doesn't Know that it should pull the RDY line low until after the
)EVICE SELECT s·igna.1 ha.s gone low. This signal doesn't go 104,.l,l until
after 00 goes high, 50 the 00 rising edge can't be used to enable the
RDY I ine for this periphera.l card.

There a ... e a 'hw ways Around th is prob !em. One so I uti on wou I d be to
decode the COnO address on the peripheral card a.ndnot use DEVICE
SELECT. This al~o reoquireseoither putting user selectable switches on
thecal"'d fol' seo t ti ngthe sl~t numbel", or maKing th(O cal"d slot
dependent. Another solution is t6puTl th(O RDY I ine lOW using one of
the fil"'st three (Odges, tl'ailing ~r leading, ~f the7MclocK. These
edgeosoccur at 70, 140, and 210 ns. into 00 and are trai I lng, leading,
then trailing edges, respectively. The best solution is to use the
DEVICE SELECT signal to enable the RDY line. The following timing
diagram should he~p.



7M

00

Q3

DEVICE
SELECT

ADDRESS write cycle / \I val id 6502 halts wladdresses & \
RIW* don't pull ROY /\_/\. RlW~:!,.;*:.._!I...!.i.!ln~e_v:!.;a!Ll!...!i~d!_!.!h.£.~.!..r.Le I

ROY XXXXXXXXIIIIIIIII 111111111

I I
DON'T CHANGE ROY LINE AT THESE TIMES

DON'T PULL RDY DURING WRITE CYCLES

8ecau~ there is. no acknowl edge response from the 6502, the per i pher a I
card must do some .. of its own housekeep i ng and check if a wr i te eye Ie
is taking placft. On wrih cycles thft 6502 will not halt, but continue
running until the next read cycle. After a slow peripheral pulls the
ROY line and before it tr i es to. ge t on the bus, j.t must make sure the
6502 is not in the middle o.f a write cycle. Otherwisethere.will bea
bus. crash, as botb the< per i phera I card and 6502 try> to dri veth, bus.
One simp I e way to. prevent tbis bus c:ra.sh from occur i ng. j s to maKe .'. sure
the per.ipheral card doesn't pull the RDY I ine low during a wri te
eye Ie. Th i 'I can beguaran teed by checK i ng th. R/W* Ii ne when 00 goes
high or DEVICE SELECT goes low. The R/W* 1 ine will be stable by this
time.

'RELEASING'THE RDY LINE

When the ROY I ine is released the 6502 wil I continue the cycle that
was originally halted and allow the 6502 to read the data bus. Oata
will be read on the next trail ing edge of 02 by the 6502, as long as
ROY doesn't change within Trs of the end of 02. When the peripheral
device has set the data bus up with the correct data it can release
the ROY 1 i ne to comp Ie te the read cYC Ie. Re leas i ng the ROY line has
exactly the same constraints as pull jng the 1 ine; 00 not change ROY
within 200 ns. of the end of 02.

The ROY 1 i ne can be re I eased before da ta has been se t up, if the da t a
will be val id within specification. This means that ROY can be
relea.sed in the middle of 01 if the data bus will be valid 117 ns.
before 02 trail ing edge, for the Apple ]( (62 ns. for the Apple //e).



SLOW WRITES

3ince the 6502 can't be halted during write cycles, if a devic~

requires longer than one cycle to receive data then the data must be
buffered. He-re is an example of how to accompl ish this:

DATA BUS ---">
/

7

"L
S
3
7
4

---------"> To slow peripheral
/

DEVICE SELECT or

I/O SELECT or _

I/O STROBE

o
I
' INXFER (read when ready by slow device)

NOTE: It is very easy to overrun the slow peripheral using this
~cheme, since it only buffers one byte at a time. Don't send data
cwice to the buffe-r within the- maximum al lowed time between slow
peripheral reads.





APPLE //e TECHNOTE "5

5-J~ 84

One of tht nfW features of the Apple lie is the ability to add more
me~ory or oVfride existing memory from a peripheral card. This ffature,
which usn the INH (inhibit> linE.> on the periphHal slots, hH been
expanded from its original purpose on the Apple J[+ of disabling the
onbo&l'd RCt1 and allowing the language card (RAM) to reside in the same
address space. The ApplE.> lie allows any part of memory to be replaced by
memory on a peripheral card. This article explains how a peripheral card
should use the INH line.

For further information contact:
PCS Developer Technical Support
HIS 22-W. Phone (408) 996-1010

Disciaimer of ali Warranties and Liabilities

Apple Computer, Inc. maKes no warranties, either express. or implied,
with respect to this documentation or with respect to the software
described in this documentation, its qual ity, performance,
merchantability, or fitness for any particular purpose. Apple Computer,
Inc. software is licensed "as is". Th€' entire risK as to its quality
and performance is ~ith the vendor. Should the programs prove defective
folowing their purchase, tne vendor (and not Apple Computer, Inc., its
distributor, or its retailer) assumes the entire cost of ail necessary
servicing, repair, or. correctior: and any incidental or c.onsequentia~

damages. In no event will Apple Computer, Inc. b.e I iab~e for direct,
indirrct, incidental, or consequential damages resulting from any defect
in the. software, even. if Appie Computer, Inc. has beer, advised of the
possibility of such damages. Some- statE's do nct allow the exclusicrl cr
limitation of implied warranties or liabiiity for incidentai or
consequenti~l qamages, so the above I imitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole. or part, be copied, Pl'lotocopied, reproduced,
translated or rtduced to any electronic medium or machine readab:e form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Hariani Avenue
Cupertino,CA 95014

Not ice

Apple Compuhr, Inc. reserves the right to maKe improvements in the
product described in this docum?nt at any tim~ and without notice.

PB



Peter 8aum
Developer Technical Support
M.S. 22-W

Apple Computer
20525 Mariani
Cupertino. Ca. 95014

Jan. 5, 1984
Copyright1983

Using the INH :ine on trHc' Apple //e

One of the- new features of the ApDl!e //e is the abi 1 i ty to add more
memory or ove-ride existing memory from a peripheral card. This
feature, which uses the INH (inhibit) linE' on the peripheral slots,
has been expanded from its original' purpose on the Apple ](+ of
disa b 1 i n g the 0 n boar d RDM and all O~'J i n 9 the 1an gu age car d (RAM ) t 0

reside in the same address space. The Apple //e allows any par-t of
memory to be replaced by memory O~ a peripheral card.

USES

Pr'esent~y, only a felAl periphe r a.l deJ.,'ices use the INH 1 ine in the //e
for memory expansion. One type of card uses INH for RAM expanSion by
sw i t chi ngin ext r a 1an 9 u agE' car d:, wh i 1e an 0 the r c 1ass 0 f car' d = USE'S
it to extend the built-in 80-column ROM code by replacing it with
the- i r own ROM code. Other car'd: use INH so that they can have more
than one stacK and zero page. Future peripheral cards can take
advantage of the INH 1 ine to do even fancier memory expansion, such as
Keeping mul tiple p~ograms running in memory at the same timE'.

M0 rem em0 r y, e i the r ROM 0 r RAM, c arl be adde d by map p i h 9 the memer' 7'

into the same address space as existIng memory. The processor can then
select which memory, the onboard or the additional, it wants to use C)"

set tingar e g i s te r (0r so f t sw i t c h). This tee h n I que 0 f sw; t chi n g
d iffere n t b 1 0 c Ks of mem0 r yin tothe:·am e addresssp ace i s c ,:1.1 1e d ban k
switching. An example of this technique for extending memory is four'ld
in the Apple ][+ language car·d and in the banKswi tched memo"':>' c,rl t:ie
//e.

HOW IT WORKS

When the I NH 1 i n e, pin 32 in:. lot s 1- 7, i s P u 1 1e d 1ow, all me m0 i' Y NI

the motherboard· and in theauxi 1 iary slot is disabled ( in<::luding
memory on the 80-<::01 umn and ex tended SO-col umncards.). Th I S all OJAIS a
per i ph era 1 car d , i n slot s. 1-7, toe n ab 1 Eo i t / S memor Y on tot. h e bu s •

When the 6502 reads a byte from memOry ..the data typ i ca.l1 y comE'S from
one of three pl aces: motherboard ROM,' motherboard RAM, or RAM on one
of the 80-col umn cards j n the'· aux i 1 i ar::<" slot. When the INH 1 i I"}e i 'E.

pul led lOW, all of the above mentioned ROM anD RAM is disabled and
will not drive the data bus. This allow: the peripheral slots to drive
the bus bye nab 1 i n 9 d a. taon t 0 it. The 650 2 w i i 1 the n rea d d a t a from
the per i ph e- r a. 1 cardin 'E. te adof a 10 cat ion 0 nth e mot her' boar d 0 r
auxilia.ry slot.

During a 6~02 wri te cycle, if the INH 1 ine is pulled low, then
moth.rboard and a.uxil iary card RAM are both disabled. A peripheral
card can th.n r.a.d a byte off the data bus and store it away.



IMPLEMENTAT I Clt'J

Because pull i ng the INH line low di sabl es all of memol"Y, the
periphel"al cal"d must be vel"Y cal"eful when it does this. If only a
small piece of memol"Y is to be banked into a specific address space,
then the INH line should only be pulled on memory I"efel"ences to that
addl"ess space. Otherwise the motherboard memory wi 1 1 be disabled and
the proces~or wi I 1 read/write to the wrong memol"Y and the program
won't wOl"k propel"lyn For example, if a pel"iphel"al cal"d wants to
rep i ace the zel"o page w: th memory on the cal"d, then the INH line
should be pul led low only on I"efel"ences to the addl"ess space between
$0 and $FF. I f the INH line is pu I led dul" i ng a pl"ocessol" i nstl"uc t j on
fetch from the moni tOI" ROM at $F800, the 6502 wi II read the wl"ong
instl"uction (01" a floating bus) and probably cl"ash the pl"ogram.

Pulling the INH line at s.pecific addl"esses is called select decoding.
The hardware on the pel"iphel"al cal"d does this by checking the addl"ess
bus of the 6502, and if the addl"ess fa 1 1s j n the cOl"l"ec t I"ange the
cal"d pulls the INH I ine low. In the eal"i iel" example of a new zel"o
page, if the addres·s. bus was in the I"ange $O-$FF the cal"d would pull
INH low.

DIFFERENCES: //e vs. J[+

On the Apple J[+, select decoding was not necessal"i ly needed because
the I NH i i neon i y a f f e c ted the ROM and not the RA'1. 1fthe ApP ; e J [ +
pel"ipheral card wanted to bank in extl"a language cal"ds at 4he
addl"ess€'s $DOOO-$FFFF then it coul d pui 1 the INH Li ne and k€'ep : t i Ot.'J

dUl"ing an>, memory access. This wouid just disable the onboal"d ROM and
not any othermemor>, acc€'sses such as zel"o page or stack. This same
card would not work in the //e, since the next instl"uction fetch to
RA1Y: aft er pu I 1 i ngINH 1OiAl W 0 u 1d rea d a flo a tin g bus be c au sea I I the
memory would be disabled.

ANOTHER FEATURE

For those of YOU who love to muck around in the guts of the Apple //€'
one mol" e feature has bee n added to the I NH fun c t ion • The I NHi j new i i 1
also ovel"ide DMA accesses to memory on the mothel"boal"d. This means
that if a pel"iphel"ai card uses DMA to I"ead or write to memol")', another
per i phel"a I cal"d cou I d pu II the INH line and pl"ocess the DMA acee ss. An
example of this would be a co-processol" card using the memol")' on a RAM
card in another slot. Rather than have the co-pl"ocessol" write to the
memol")' on the mothel"boal"d and then have the 6502 Wl"ite to the RAM
card, the co-pl"ocessol" can write to an address that the RAM cal"d
I"ecognizes. The RAM card could then pull the INH I ine and it would be
fl"ee to I"ead 01" wl"ite the data bus. This technique could also be used
b)' a co-processol" to wri te dil"eetly to a pl"intel" cal"d in anothel" slot.



TIMING

The peripheral card must wai t for the address bus to settle, which
occurs a maximum of 190 ns. after the fall ing edge of 00, before
pu 11 i ng th. INH 1 i ne. (The 6502A max i mum addre.ss se tup time is 140 ns.
from 02, with a worst case 6502A sKew of 50 ns. from 00 to 02.) To
9 u aran te ~ t hat the RAM i s disa b led and a wr i ted0 e s n .' t ace ide n t a I I >'
take place to the mother·bc1.3fd;· ·the INH 1 ine must be pulled IOVJ wi thin
330 ns. of 00.

01

00

1.)1 DEO

CPU

Q3 28(, n s. 210 ns I

addr
'\./

-----------_./'\._--------------------
I (-190ns-> I

->1 140 1(-

'\, --:/ '\j val i d '\.. _
/ '\. /, /------ ---' -----------------'

( 1 ) The I NH 1 n e can be p u 1 i e d h j 9 r; a t t his tim e •
(2) The INH I ne can be pulled low (or high) after the addr'es:E's arE'

val id at 190ns, but before 330 ns. (from 00).



CIRCUITS

A simple example of a c:rcui t that can be used to Implement the IN~

function is shown below.

i
Q! INH* J[1-7J32

I
I

7
4
L
S
3
7
9

PUl...;..INH*

select
decode
109 i c

f

I '\ I
Q3---------------j >0-----------------1 >

1/ I
Oo------------------------------------IG

,-------

I
A15 ----------1
A14 ----------1

I
1 ID

AO ----------1 _

AN APPLI CATION

The following circui t can be used to replace the code in the
mon; tor ROM, from location $FCOO to $FFFF, wi th custom code. Any time
the address space be tween $FCOO-$FFFF is accessed the INH line is
pul led iow, the motherbo~rd memory is disabied, and the circui t's !K
RAM i Sen a b led ins tead j. Par t 0 f t his of eat ur e can bed i sab : e d e.. nd the
motherboard memory can be read by Keeping the swj tch connected to +5
vol ts (READDIS). Whenever the system writes to any location in the
address space $FCOO-$FFFF, the circui t wi 11 disable any RAM C~ the
motherboard and instead wri te into the lK RAM.

Here is a ser i es of commands tha t can be used with the c I rcu j t tc
replace the reset vector at $FFFC and $FFFD. A new reset routine can
be wri tten that wi 11 print the screen or save the status of all tile
registers whenever the reset key is pressed.

S tar t the s ys t em wit h the c ire u it;' s sw i t c h con nee ted t 0 +5
(READDIS). This will enable the system to read the mOr"Jitor ROM
du r i ng powe r up, be f or e the 1K RAM has be e n i nit i ali zed.

Get into the moni tor by typing CALL -151. The system prompt
should now be a '*'.
Copy the moni tor ROM into the lK RAM wi th the command
FCOO<FCOO.FFFFM <CR>

Change the reset vector so that it ,jumps to location $300 ("lith
this command, FFFC:O <CR>. COpy your new reset routine into
m.mory starting at location $300.

s.t th. swi tch to ground (READEN) so that all future read
access.s to $FCOO-$FFFF will read the lK RAM.



For exampl. if these instructions are stored in memory starting at
location $300, thtn whtn reset is pressed the system will cltar the
screen and theon continue execution in the monitor (prompt=/*/).

$300120 58 FC
$303a4C 65 FF

JSR HOME (clean: screen)
JHP to MON (resume execution in monitor)

One of the problems with this circuit is that it also overrides a.ny
a c c e sse s tot h e 1an g u age car d .' The ref 0 rean y program t hat use s the
language card will not ""Iork with this circuit. The circuit doesn/t
keep tra.cK of which memory' is enabled, ROM or ianguage card RAM, in
the $FCOO-$FFFF space.



APPLE //. TECHNOTE ~6

6-Hay 84

This article describes the paddle circuit used in the Apple II family of
compuhrs. The article starts with a simplt' description of tht' circuit
used and then takes the reader through a thorough example of a typical
paddl e read rou tine. F ina 11 y, a few of the anoma.l i es of the paddl e
circuit are discussed.

For further information contact:
PCS Developer Technical Support
MIS 22-W. Phone (408) 996-1010

Disclaimt'r of all Warranties and Liabilitit's

Applt' Compuhr, Inc. makes no warranties, either express or impl ied,
with respect to this documentation or with respect to the software
described in this docu~entation, its qual i ty, performance,
merchantabi1 ity, or fitness for any particular purpose. Apple Computer,
Inc. software is licensed las is-. The entire risk as to its quality
and performance is with the v.ndor. Should the programs prove defective
folowing their purchase, the vendor <and not Apph Computer, Inc., its
distributor, or its retailer) assumes the entire cost of all necessary
sl'rvicing, repair, or correction and any incidttnta1 or consequential
damages. In no .vent will Apple Compuhr, Inc. be liable for direct,
indirect, incid.ntal, or consttquential damages resulting from any_defect
in the software, even if Apple Computer, Inc. has been advised of the
possibility of such danlages. Some stahs do not allow the exclusion or
limitation of implied warranties or liability for incidental or
consequential damages, so the above 1imitation may not apply to yOU.

This documentation is copyrighhd. All rights are reserved. This
document may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Not i ce

Apple Computer, Inc. reserves the right to make improvements in the
product d.scribed in this document at any time and without notice.

P8





Pet~r Saum
20525 Mariani Ave.
Cupertino, Ca. 95014

Apple Computer
MS 22-W

May 6, 1984
Copyr i gh t 1984

A Treatise on the Apple Paddles/Joysticks

This article describes the paddle circuit used in the Apple //
fami ly of computers. The article starts with a simple
description of the circuit used and then taKes the reader
through a thorough example of a typical paddle read routine.
Finally, a f~w of the anomalies of the paddle circuit are
discussed.

Circui t Description

The value of the Apple paddles (or joystick) is ~etermined by a
software timing loop reading a change of state in a timing
circui t. The paddles consist of a variable resistor (from 0-150k
ohms) which makes up part of the timing circuit. There is a
routine in the Monitor ROM, cal led PREAD, which counts the time
untl 1 a state change occurs in the paddJe circuit. This ~ime is
translated into a value between 0 and 255.

The blocK diagram below shOC,lo,ls the paddle circuit for the Apple
Je+, Apple //cand the Apple //e. The large block on the left
illustrates part of the circuitry inside the 558 timer chip. The
558 ch i p CEonsi s.ts ..of four of these blocks, wi th all fo.ur paddle
triggers 1 ines shorted together on the motherboard and activated
by the soft sw.itc~at$C070. The. outputs of the 558 chip run
into a multiplexC)r, which places. the appropriate signal onto the
high bitof theidaita bus when a paddlesoftswitch <l.ddressin the
range $C06't--7 •. is read •. The Apple / /c uses a. 556tim:r rather
than the 558 chip and only supports two paddles, 0 and 1.

The 100 ohml""esistor and .022 microfarad.capacitor are on the
motherboard,.withthe variable resistor. in the paddle. Ea<;:h of
the four paddle inputs have their. 'OWn capacit(jl"" and resistor.
Since these componen ts can vary by as much a~i 5"6 from App 1e to
Apple, this circuit is not a very exact ana.log tcldigital
converter. If a paddle is moved from one Apple to another
wi thoutchangi ng the re.si 45t.ance (turn ing the knob).,. the.pa.dd1e
read routin~ wilt probably calculate a different value. for' each
machine.Abou~the only feature of the paddle read routine that
a programmer can depend on is that the value returned wi 11 rise
if the paddle resistance increases (or fall if the resistance

. decreases) •

The paddle timing circuit on the Apple Jr+ and Apple //c is
sl ightly different than the one on the Apple //e. On the Apple
//e the 100 ohm fixed resistor is between the transistor and the
capacitor, while the variable resistor in the paddle is
connected directly to the capacitor. On the Apple )r+ and //c
the capacitor is connected directly to the transistor and the
fixed resistor is in series wi th paddle resistor.



..•.................................................................................,
l.Jcc 558 ti mer PADDLE

••••••••••• Ii ••••••••••••• I

l)cc .

($C06x)
OllTPUT

.,............ . .
lee OHMS

."..--...A..-...-....-....t ..........e J[+ ;
~ON·LY ./;......=

JiP-o +~····......r·· ":';~,;'"'! ":"'~\'.' '/tv'"""':
•• ,,' ....• . I ....•
• • • Ii . •: , ~ .....•..........·••
~. 022LIf"·

--•

-Q..........

RESET

5k:

\
5K c:omp

/

51< FLIP
FLOP

- TRIGGER',
':' ($C070) ~.....•....•.••..•...................•....••...•..•....••..•...•......•.•...•.........~

Paddle Circuit for Apple )[+, //c and //e Showing 558 Timer



An Example of Typical Paddle Read Routine

The timing circuit works by discharging a capacitor through a
transistor, then shutting the transistor off and letting the
paddle charge the capaci tor by supplying current through the
variable resistor. The rate at which the capaci tor charges is a
function of the variable resistance; the lower the paddle
resistance the greater the current and the faster the capacitor
charges. When the capaci tor reaches a predetermined value it
changes the sta te of a f 1 i p-f lop. The paddl e read rou tine cown ts
the time it takes for the capacitor to rise and change the
fl ip-flop.

Let~s step through an example of a typical paddle read
operation. For now we~l I assume the capaci tor has already been
discharged and in a few pages 1'1 I explain when this assumption
can be made and when it can~t.

The software starts by reading the softswitch at location $C070,
which strobes the trigger I ines on the 558 timer. This causes
two events to occur, the output si gnal (wh i ch is read at
$C064-$C067 for paddle 0-3, respectively) goes high and the
transistor turns off. .

The software, after initially strobing the trigger 1 ine,
exe.cutes a timing loop .which rea.ds the state of the output
si gnal •. When the output si gnal changes from high to low. the the
software jumps out of the timing .loop. and returns a value
indicating the time. The moriitor PREAD routine consists of a .11
usee. loop and wi 11 return a value between 0 and 255. (NOTE: The
firmware 1 isting is wrong and says the loop is 12 Usee.). The
timing loop returns 255 if the circui t takes long~r than 2.82
msec. for the state change to occur.

* PADDLE READ ROUTINE
* ENTER WITH PADDLE NlJ1SER (0-3) IN X-REG

FBIE:AD 70 CO PREAD "4 LOA PTRIG ;TRIGGER PADDLES
FB21 :AO 00 2 LDY '*0 ; INIT COUNTER
FB23:EA 2 NOP ; COMPENSATE < FOR 1ST COUNT
FB24:EA 2 NOP
FB25:BD 64 CO PREAD2 4 LOA PADDLO,X ; COUNT EVERY 11 USEC.
FB28:10 04 2 BPL RTS2D jB.RANCH WHEN TIMED OUT
FB2A:C8 2 INY ; INCREMENT COUNTER
FB2B:DO F8 3 BNE PREAD2 jCONTINUE COUNTING
FB2D:88 DEY ; COUNTER OV.ERFLOWED
FB2E:60 RTS jRETURN W/VALUE 0-255

Inside the 558 timer chip, when the trigger is strobed low, the
comparator that feeds the set input of the flip-flop is
triggered, which in turn sets the output of the 558 timer. At
the same time the transistor, which has held the capacitor near
ground by sinking current from it, is shut off. The capacitor



can nOYJ charge up us; ng the current suppl i ed by the paddl e. The
smaller the paddle"s resistance the more current the paddle will
supply and the faster the capacitor charges. After some time,
the capaci tor wi 1 I charge to the threshold value of 3.3 vol ts,
which is set by the voltage divider network in the 558 timer,
and the comparator that feeds the reset input on the fl ip-flop
wi 11 tr i gger. Th i s sets the output signal ($C06x) of the 558
timer low, which indicates to the software that the circui t has
time d ou t •

TRIGGER $C070

f

,-----
FEEDBACK TO
RESET COHP

OUTPUT

-"
-'

..... . --------1 <==THRESHOLD

I <--TIMING VALUE--)t

0-2.82 MILLISECONDS

Resetting the fl ip-flop turns the tran~tstor on,which
discharges th~ capacitor Very qUickly (normally lerss than 250
ns). That paddle can thtln btread again.

A Closer Lookiat the Hal"dWar'e

The First Anomaly

Notice that the last sentence states that the paddle can be read
again and not the paddles. If another pacidler Lsrerad immeciiately
after the first, it may yield the wrong value. Tcfshow this I"II
step through an example of reading a second paddle immediately
after finishing the first.

In this example I'lTassume that the first paddle has been set:
with a very low resistance, while th~ second paddle has a high
resistance. T~e fir~t paddle will time out very quicKly and
return wi th a small value, whi Ie the second paddle wi II take
longer and yielda larger value.

We start reading the paddles by testing the paddle outputs to
see if they"re IOYJ, which indicates that the capaci tor has been
discharged. Assuming that the outputs are low, the next step is
to trigger the 558 timer ($C070), which turns off the transistor
and allows the capacitors to charge. Since all of the trigger
input 1 ines are shorted together all four of the capac; tors wi II
charge up, but at different rates since the paddle resistances
have been set to different values. The voltage on the capacitor



for the first paddle wi 1 I reach the threshold vol tage very
quicKly since the" paddle resistance has been set low, and
the I" e f or e the tim i ng loop wi lIt ime ou t qui c K1y.

At this point the capacitor for the second paddle is still
charging and has not reached the threshold value yet, since the
paddl~ resistance was set to a high value. The transistor for
the second paddl e is st ill turned off due to the in j t i al tr i gger
used for reading paddle one. This means that the capaci tor for
the second paddle has not been discharged.

Any attempts at reading the second paddle now wi 11 only yield
false results. The capacitor is partly charged and therefore
wi 11 reach the threshold value much faster than if the capacitor
had been completely discharged. If the timing loop is used it
will return with a smaller value than it would if the capacitor
had been completely discharged. Notice that retriggering
(reading location $C070) the 558 timer wi 11 not help, since that
only Keeps the transistor turned off and doesn~t help discharge
the capacitor. The only way for the capacitor to discharge is to
let the circuit timeout completely by letting the capacitor
charge until it resets the flip-flop.

To read the second paddle the capacitor must first be
discharged, which is only done when the threshold value is
reached and the 558 timer fl ip-flop is reset. The only way to
guarantee that the capacitor is discharged is if the transistor
is on. This condition is met when the paddle output is low.
Therefore start every paddle read either by waiting for at least
3 ms. before strobing the trigger input or testing to maKe sure
that the paddle output is low.

If after 4 ms. the paddle output is not low then there is a good
chance that there is no paddle connected. It may also indicate
that a peripheral wi th a larger maximum value resistor than the
150K ohms used by the Apple paddles is attached. Some peripheral
devices use this technique of a larger variable resistor so that
more than 256 points of resolution can be determined. Of course
this requires a custom software driver and the Monitor PREAD
routine can~t be used.

The Apple //e Anomaly

The problem with Apple //e paddle input is that the capaci tor
may not be discharged by the transistor. Typically, the
transistor will discharge the capacitor in less than 250 ns. on
the Apple ][+. But on the Apple //e if the paddle resistance is
very low then the paddle may supply enough current to always
Keep the capaci tor charged.

Becau~e the fixed resistor (100 ohms) on the Apple //e
motherboard is between the capaci tor and the transistor, there
wi 11 be a voltage drop across the resistor if the capaci tor
stays charged. When the transistor is shut off by the trigger



strobe, this vol tage drop wi 11 disappear and the capaci tor,
wh i ch may be near the threshol d vol tage, wi 11 tr i gger the reset
comparator earlier than it would if the capacitor had been
discharged completely. The net affect of this rs that the
paddles will read zero on the Apple //e when they would read a
sma I I value on the Apple )[+ or //c.

Other circuits which expect the capacitor to discharge
completely may not work properly. A circuit which attempts to
s i mu 1ate a padd leth I'" ou gh ac t i vee omp on. n t s su chas a dig ita Ito
analog converter may be able to source enough current that the
capacitor never discharges and the paddle always reads zero.

Hopefully, this article has given the reader a good feel for the
paddle circuitry and the routines Which determine the paddle
values. To reinforce the material covered yOU shoul.d try wri ting
your own paddl e read rou tint. For examp Ie, yOU cou I d WI'" i te a
read routine that would read two paddles at once. The software
loop will not have the 11 usee. resolution of the PREAD routine,
but you~ll find it stills works just fine. Happy programming!



APPLE //e TECHNOTE #7

3-Ap .... i 1 84

This articll? describes thrl?e diffl?rent types of intHfacl?s, sl?rial,
parallel, and IEEE-488, that are currently used to connect a printing
devicl? to an Appll? II. Thl? interfacl? cards availabll? from Appll? and the
protoco I to connec t to an App I e pI' inter are br i ef I y descr i bed. Pin ou t
configuration and switch settings for these interfacl?s cards and
printers is also included.

For further information contact:
PCS Developer Technical Support
MIS 22-W. Phone (408) 996-1010

Disclaimer of all Warranties and Liabilitil?s

Apple Computer, Inc. makes no warranties, l?ither express or impl ied,
with respec t to th i s documen tat i on or with respec t to the sof tware
described in this documentation, its qual i ty, performance,
merchantabil ity, or fitness for any particular purpose. Apple Computer,
Inc. software is licensed ·as is·. The entire risk as to its quality
and performance is with the vendor. Should the programs prove defective
folowing their purchase, the vendor <and not Apple Computer, Inc., its
distributor, or its retailer) assumes the entire cost of all necessary
servicing, repair, or correction and any incidental or consequential
damages. In no eVl'nt will Apple Computer, Inc. be liable for direct,
indirect, incidental, or consequentic. 1 damages resulting from any defect
in the software, even if Apple Computer, Inc. has been advised of the
possibil ity of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or
consequential damages, so the above I imitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or. part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB





Peter 8aum
Apple Computer
20525 Mariani Ave.
Cupertino, Ca. 95014

Apr. -3, 1984
Copyr i gh t 1984

Connecting a Printer to an Apple //

This article describes three different types of interfaces,
serial, parallel, and IEEE-488, that are currently used to
connect a printing device to an Apple //. The interface
cards ava i 1abl e from App 1e and the protocol to connec t to an
Apple printer are briefly described. Pin out configurat'ion
and swi tch settings for these interfaces cards and printers
is also included.

Ser i a 1

Currently, Apple sells a card, cal led the Super Serial Card
(SSC), that can be used to connect an Apple printer to an
Apple // (Apple sells a dot-matrix printer, cal led the
Imagewri ter, a daisy-wheel printer, and a plotter, which all
use a serial interface). The SSC replaces both the
Communications card and the Hi-speed Serial card. The SSC
supports the firmware (Pascal 1.1> protocol except for the
optional control and interrupt handl ing routines. For more
information on the firmware protocols see Appendix A of the
Super Serial Card manual (Part # A2L0044).

If the SSC is to be connected to an Imagewriter printer then
the swi tch·es shoul d be set as follows:

SSC Imagewriter

I 1234567 1234567 modem I 87654321
ION / / / / / / v ID8-25 DB-2510N / .'

IOFF , , , , , , , , term ina, 1 1===============1 OFF , , , , , ,
I SW1 SW2 I (590-0037) I SW1
I I I
I I I 4321

I I ON / /

I OFF , ,
= sw itch is in up (crosed/on) position I SW2

, = sw itch is in down (open/off) posi tion I
v = The jumper block should point toward term ina 1

Note: Switch 1-5 on the printer must be in the on (up)
position for the printer to work wi th the Apple //e.

These switch settings set the serial interface to use 9600
baud printer mode wi th 8 data bits, one stop bit, no delay
af ter carr i age re turn (CR), 80 col umn 1 i ne width, no echo to
screen, and au toma tic 1 i ne feed sen t af ter CR.



The Apple pa~t numbe~ fo~ a cable that connects the SSC to an
Imagew~ite~ is 590-0037. This cable consists of two male
DB-25 connecto~s with pins 1-8,12,13,19,20, 23 wi~ed pin
to pin and shielded.

The SSC has a 10-pin heade~ on it, but comes wi th a cable
which connects the heade~ .to a female DB-25 connecto~. The
DB-25 can be configu~ed as eithe~ a modem (DCE) o~ as a
te~minal (DTE) using a jumpe~ blocK (in the latte~ case the
jumpe~ blocK acts as a modem el iminato~). Though the pin out
configu~atjon of the DB-25 connecto~ is well defined, the~e

is no standa~d use of the hands~aKe signalS. Diffe~ent

p~inte~s wi I I use the handshaKe I ines fo~ diffe~ent

functions. The fol lowing table shows the pinout fo~ the DB-25
on th~ SSC. Consul t the p~inte~ manual fo~ mo~e specific
info~mation on which signals a~e used.

10-pin
Heade~ Signal Name

Female DB-25 pinout
Te~m ina I Modem notes

1 F~ame G~ound ( FRMGND) 1 1
2 T~ansm it Data (TxD) 3 2
3 Receive Data ( RxD) 2 3
"4 Request To Send ( RTS) 8 4
5 Cl ea~ To Send ( CTS) 8 5
6 Data Set Ready ( DSR) 20 6
8 Signa 1 G~ound (SGLGND) 7 7

10 Data Ca~~ie~ Detect (DCD) 4,5 8 *1
7 Seconda~y Clea~ to Send ( SCTS) 19 19 *2
9 Data Te~minal Ready ( DTR) 6 20

notes: I", ) 14
*1 - only if SWl-7 is closed (on) wi th SSC I I

*2 only if SW2-7 is closed (on) wi th SSC I I DB-25
I ,.
I ) 25

13 f/

To illust~ate an example of a se~ial inte~face, 1 / 11 use the
Imagew~ite~ p~inte~. He~e is the pinou~ and inte~face

specification:

Pin no. Symbol Desc~ipi tion D i ~ec t i on
---------------------------------------------------------

1 FG F~ame G~ound

2 TxD Send Data Output
3 RxD Receive Data Input
4 RTS Request to Send Ou tpu t
7 SG Signal G~ound

14 FAULT Fault Output
20 DTR Data Te~minal Ready Output



Functional Description:

FG =
TxD =
RxD =
RTS =
Faul t =
DTR =

Grounding line for circuit protection
Serial transmission I ine from printer to computer
Ser i a I t I" an sm iss i on lin e from c ompu tel" top I" i n te I"

True when printer is turned on
False when printer deselected; true when selected
True if printer on and ready to receive

The printer uses a hardware handshaKing scheme, cal led the
Data Transfer Ready protocol, to receive data. Whenever the
capac i ty of the i npu t buffer is less than 30 charac ters, the
printer sends a busy signal by setting the DTR line false.
The computer must stop transmission wi thin the next 27
characters or the printer will ignore the excess data. The
DTR lin e i s a I so se t f a I se wh e nth e pr i n tel" i s de se I e c ted,
and when it rece i ves a DC3 charac tel". The DTR line is true
whenever there is room for at least 100 characters in the
input buffer, when the printer is turned on, selected, and
has received a DCl character.

Parallel

Apple currently ships a paral leI card, cal led appropriately
the Paral I el Interface Card (PIC), wh i ch can be used to
connect a paral lelprin~er to.an Apple // (Apple used to sel I
a dot-matrix printer called the DMP, but has discontinued
shipping any printers wi.th a parallel interface). The PIC
replaces the Parallel. Printer Interface Card and the
Centronics Interface Card. The PIC doesn't support the
firmware pr'otocol, so Pascal identifies the card as a printer
card (described in Pascal protocols).

Most commonly used printers wi I I operate properly if the
swi tches on the PIC are set as fol lows:

1234567
ON

OFF

, ,
, , , , ,

This sets the parallel interface to transfer data using a 1
microsecond strobe pulse of negative polarity when sending
data, whi Ie receiving a negative acKnowledge signal, with
interrupts disabled. .

The PIC has a 26-pin header, but comes wi th a cable which
connects the header to a female D8-25. The Paral leI Printer
Card and the Centronics Card used a 20-pin header. Most
paral leI printers (90%) use a 'microribbon 36' as the
connector. The pinout varies from printer to printer, but the
fol lowing table covers most printers (Apple DMP, Epson). For
other printers refer to page 7 of the Parallel Interface Card
manua I (Par t .. A2L0045).



PIC
Function

Printer
·Func t i on

26-pin
header

D8-25
conn.

36-pin
microribbon

20-pin
header

Ground Ground 3 2 19 1
Ground Ground 22 24 16 20
Ground Ground 7 4
Ground Ground 14 20
ACK AcKnowl edge 6 16 10 2
Strobe Strobe 4 15 1 8
DO 0 Data 1 9 5 2 10
DO 1 Data 2 11 6 3 11
DO 2 Data 3 15 8 4 12
DO 3 Data 4 18 22 5 13
DO 4 Data 5 20 23 6 14
DO 5 Data 6 21 11 7 15
DO 6 Data 7 23 12 8 16
DO 7 Data 8 (#2) 25 13 9 17
DI 3 Fault 24 25 32 6
DI 4 8usy 2 14 11 7
DI 5 Paper out 12 19 12' 9
DI 6 Select 16 21 13 18
DI 7 Enable 10 18 35 19

( #1) 7

Apple internal part #
for cabl e ••••••.•••••

, I I I
590-00498 590-00428

(#1) - Pin 7 is blocKed on the female D8-25.connector and
om i tted on th~ rna 1e D8-25 connec tor to. preve.n t the
insertion of serial connectors into parallel ports.

(#2) - This may be assigried a 'hard' value for some printers
to distinguish between graphics and normal character
sets.

Functional Description of Signal for Typical Printer
Strobe = Printer clocKs data in on fall ing edge
ACK = Set low by printer to indicate it has processed

last character and is readY for another
Fault = Set low if printer detects fault condition
8usy = Set high by printer to indicate not ready
Paper out= Used by printer to indicate out o~ paper
Se 1e c t = 0ut put from prj n t e r, set h i gh i f prj n t e r s e I e c ted
Enable = Set high by printer to indicate printer active

Since the PIC can also be used to input paral leI data and
doesn't act as only a pl"'intel"' card, it is no longel"' l"'efel"'l"'ed
to as a pl"'intel"' card, but instead as a genel"'al pUl"'pose
pal"' all e 1 cal"' d .



IEEE-488

Though most printing instruments on the marKet today use
either a ser i al or parall el interface, another standard
interface, IEEE-488, is also avai lable. These devicE?-:· can be>
connected to the Apple // through the Apple IEEE-488
Interface Card. Curre>ntly Apple doesn/t se>11 any printe>r
devices that use the IEEE-488 interface, but other companies
supply them. One of the advantages of the IEEE-488 bus oVe>r
either the para 11 e I or ser i a I <RS-232) busses is tha t more
than one type of printer can be attached to the bus at the
same time. This means that both a fast dot-matrix and a daisy
wheel printer can be hooKed to the Apple with only one>
peripheral card.

The IEEE-488 bus standard is a weI I defined 8-bi t paral leI,
byte ser i aI, asynchronous data transfer interface. The
standard has been thoroughly documented wi th the most
complete description available from the Institute of
Electrical and Electronic Engineers <IEEE) in New YorK.
Standard cables are manufactured by many companies, and
usually advertised as either I EEE-488 , General Purpose
Interface Bus <GPIB), or Hewlett-PacKard Interface Bus (HPIB)
cables.

The IEEE-488 card doesn/t support the firmware protocols, so
an assembly language driver must be used to access the card
from Pascal <See AppendiX F of the IEEE-488 Interface User/s
Guide, part number A2L0037).

Appendix A

Product

Super Serial Card
SSC to Imagewri ter Accessory Ki t *
SSC to Imagewriter external Cable
Imagewri ter
Apple Daisy Wheel Printer <DWP)
SSC to Apple DWP Accessory Ki t *
Apple Color Plotter
SSC to Color Plotter Accessory Kit *
Paral leI Card
IEEE-488 Interface Card

SSC manual
Para 11 e I Interface Card manua I
ProDOS Technical Reference Manual
Apple //e Reference Manual
Apple //e Design Guidel ines

A2B0044
A2C0352
590-0037
A9M0303
A3M0025
A2C0351
A9M0302
A2C0302
A2B0021
A2B0015

A2L0044
A2L0045
A2W0010
A2L2005
A2F2116

* The accessory Kit includes a cable and manuals





· Apple J [ Monitor Entry Points

2 August 1984

This document lists all supported entry points in the Apple] [
family $F800 Monitor ROM. This is NOT a programming guide. Since
each member of the Apple J[ family has variations in the
implementation of the Monitor, it is the individual programmer's
responsibility to identify the machine type and take appropriate
action when calling these routines. The only purpose of this
document is to reassure software developers that the entry points
for these routines will remain intact and that there is no
committment to keep any other Monitor code in the same locations.

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpos:. Apple
Computer, Inc. software is licensed "as is". The entire risk as to
its quality and performance is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc., its distributor, or retailer) assumes the entire cost
of all necessary damages. In no event will Apple Computer, Inc. be
liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer,
Inc. has been advi sed of the pos s i bili ty of such damages. Some
states do not allow the exclusion or limitation of implied
warranties or liability for incidental of consequential damages, so
the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, California 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

CJS





Apple J [ Monitor Entry Points

$F800 PLOT Plot on the
PLOT puts a single block

low-resolution display screen.
the accumulator, its horizontal
with the accumulator scrambled,

Page 2

low-resolution screen
of the color value set by SETCOL on the
The block's vertical position is passed in
position in the Y register. PLOT returns
but X and Y intact.

$F819 HLINE Draw a horizontal line of blocks
HLINE draws a horizontal line of blocks of the color set by SETCOL

on the low-resolution graphics display. Call HLINE wi th the vertical
coordinate of the line in the accumulator, the leftmost horizontal
coordinate in the Y register, and the rightmost horizontal coordinate in
location $2C. HLINE returns with A and Y scrambled, X intact.

$F828 VLINF Draw a vertical line of blocks
VLI~ffi draws a verticle line of blocks of the color set by SETCOL

on the low-resolution display. You should call VLINF with the horizontal
coordinate of the line in the Y register, the top vertical coordinate in the
accumulator, and the bottom vertical coordinate in location $2~. VLINE will
return with the accumulator scrambled.

$F832 CLRSCR Clear the low-resolution screen
CLRSCR clears the low-resolution graphics display to black. If

CLRSCR is called while the video display is in text mode, it fills the
screen with inverse at-sign (@) characters. CLRSCR destroys the contents of
A and Y.

$F836 CLRTOP Clear the low-resolution screen
CLRTOP is the same as CLRSCR, except that it clears 'only the top

40 rows of the low-resolution display. (Mixed~mode)

$F847 GBASCALC Calculate base address for low resolution graphics
GBASCALC calculates the base address of the line on which a

particular pixel is to be plotted. The accumulator is scrambled.

$F85F NXTCOL Increment color by 3
NXTCOL adds 3 to the current color (set by SETCOL) used for low

resolution graphics. The accumulator is scrambled.

$F864 SETCOL Set low-resolution graphics color
SETCOL sets the color used for plotting in low-resolution graphics to

the value passed in the low nybble of accumula tor. The colors and their
values are listed in the technical reference manual. The accumulator is
scrambled.

$F871 SCRN Read the low-resolution graphics screen
SCRN returns the color value of a single block on the low

resolution graphics display. Call it with the vertical position of the
block in the accumulator and horizontal position in the Y register. Call it
as you would call PLOT (above). The color of the block will be returned in
accumulator. No other registers are changed.



Apple ) [ Monitor Entry Points

$F88E INSDS2 Set-up indexes for opcode in A register
INSDS2 expects to find the opcode in the accumulator.

sets up formats, modes, and indexes into the mnemonic table.
the X register must be zero. Upon exit the accumulator and X
scrambled.

Page 3

It then
Upon entry,
register are

$F8DO INSTDSP Display disassembled instruction
INSTDSP disassembles and displays one instruction pointed to by

the program counter (PCL-PCH). None of the registers are preserved.

$F940 PRNTYX Print contents of Y and X registers as hex
PRNTYX prints the contents of the Y and X registers as a four

digit hexadecimal value. The Y register contains the first byte output,
the X register contains the second. On return, the contents of the
accumulator are scrambled.

$F941 PRNTAX Print A and X in hexadecimal
PRNTAX prints the contents of the A and X registers as a four

digit hexadecimal value. The accumulator contains the first byte output,
the X register contains the second. On return, the contents of the
accumulator are scrambled.

$F944 PRNTX
PRNTX prints

hexadecimal value.
scrambled.

Print contents of X register as hex
the contents of the X register as a two digit
On return, the contents of the accumulator. are

$F948 PRBLNK Print 3 spaces
PRBLNK outputs three blank spaces to the standard output device.

On return, the accumulator usually cc~tains $AO, the X register contains 0.

$F94A PRBL2 Print many blank ~paces

PRBL2 outputs from 1 to 256 blanks to the standard output device.
Upon entry, the X register should contain the number of blanks to be output.
If X=$OO, then PRBL2 will output 256 blanks. On return, the accumulator
usually contains $AO, the X. register contains 0.

$F953 PCADJ Adjust program counter
PCADJ increments the program counter by 1~ 2, or 3 depend~ng on

the LENGTH byte stored at $2F,O = 1 byte, 1 = 2 bytes, 2 = 3 bytes. All
registers are scrambled.

$FA40 r~Q IRO handler
IRQ first determines if the interrupt request was from a BRK

instruction. If not, control is sent to IRQLOC ($3FE). The accumula tor is
stored (at $45 with the )[, )[+, and original lie monitors and pushed on the
stack with the "ICON" lie, and lie monitors). When the $03FE interrupt
handler terminates with an RTI, all registers are restored. (Generally
called by operating system, not user.)



Apple] [ Monitor Entry Points Page 4

$FA4C BREAK
BREAK saves

BRK handler
the registers and 1MPs to BRKV ($3FO).

SFA62 RESET Hardware reset handler
RESET sets normal video out and keyboard in, re-initialize system,

set and clear various annunciators (depending on system type), clear
keyboard, and falls through to NEWMON.

$FAA6 PWRUP System cold start
PWRUP prints system type at t~p of screen, sets page 3 vectors

equal to cold start of current BASIC. It then falls through to SLOOP.

$FABA SLOOP Disk controller slot search loop
SLOOP is the disk controller search loop. It searches for a disk

controller beginning at the peripheral ROM space pointed to by $00-$01. If
a disk controller is found, it JMPs to the ROM code. Otherwise, it cold
starts BASIC. (Required to support the ProFile card boot code.)

$FAD7 REGDSP Display contents of registers
REGDSP sets location A3 ($40-S41) equal to $0045, then displays

the contents of the registers (from locations $45 thru $49) with labels.
(Setting A3 prepares the user for modifying memory beginning at $45.) The
accumulator and X register are not preserved.

$FBI9 RTBL Register names table
RTBL contains the ASCII codes for "AXYPS" (hi-bit set), the names

of the regis te rs.

$FBIE PREAD Read a hand controller
PREAD returns a number that represents the position of a hand

control. You pass the number of the hand control in the X register. If
this number is not valid (not equal to 0, 1, 2, or 3), stange things may
happen. PREAD returns with a number from $00 to SFF in the Y register.
The accumulator is scrambled.

$FB2F INIT Initialize system
Clears $48, the 6502 status register save locations, and sets

softswitches to Lo-RES, PAGE 1, TEXT, then falls through to SETTXT.

$FB39 SETTXT Set text mode
SETTXT se ts text mode and LDA ItO to set window top then JMPs to

SETWND.

$FB40 SETGR Set graphics mode
SETGR sets mixed graphics mode and clears the graphics portion of

the screen then LDA 1t20 to set window top and falls through to SETWND.

$FB4B SETWND Set text window
SETWND sets a full width text window with the window top set to

the value in the accumulator and bottom set to the bottom of the screen.
It then VTABs to line 23.



Apple ] [ Monitor Entry Points

$FBSB TABV Vertical tab
TABV merely stores the value in the accumulator in location CV

($25) and calls VTAB ($FC22).

_.
Page 5

$FB60 APPLEII Print machine.. type
APPLEII clears the screen and prints the machine type centered at

the top of the screen. A and Yare scrambled.

$FB6F SETPWRC Create power-up byte
SETPWRC calculates the "funny" complement of the high byte of the

RESET vector and stores it at PWREDUP ($3FS).

$FB78 VIDWAIT Check for a pause (CONTROL-S)
VIDWAIT checks the keyboard for a CONTROL-S if it is called with

an $8D in the accumulator. If a CONTROL-S is found, it falls through to
KBDWAIT. If not, control is sent on to VIDOUT where the character is
printed and the cursor advanced.

$FB88 KBDWAIT Wait for keypress
KBDWAIT waits for a keypress. The keyboard is cleared unless the

keypress is a control-C then control is sent on to VInoUT where the
character is printer and the cursor advan~ed.

$FBB3 VERSION Monitor ROM identification byte
VERSION is a byte used to aid in identifying which monitor ROM is

installed.

$FBCO

ROM.

ZIDBYTE Monitor ROM sub-identification byte
This byte provides more detailed identification of the monitor

$FBCl BASCALC Text base address calculator
BASCALC calculates the base address of the line for the next text

character on the forty column screen. The value is stored at BASH and BASL
($28-$29).

$FBDD BELLI Beep the speaker
BELLI toggles the speaker on and off at 1000 hz rate for 0.1 sec.

$FBFO STORADV Place a printable character on the screen
STORADV stores the value in the accumulator at the next position

in the text buffer and falls through to ADVANCE.

$FBF4 ADVANCE Increment the cursor position
ADVANCE advances the cursor by one position. If the cursor is

a t' the window limit it branches to CR.

$FBFD VlnoUT place a character on the screen
VInoUT sends printable characters to STORADV. Return, linefeed,

forward and reverse space, etc., are vectored to appropriate special
routines. (NOTE: This routine does not work in 80-columns on ] [, }[+, and
original I Ie.)



Apple] [ Monitor Entry Points Page 6
-------------------------------------------------------------------------------
SFCIO BS Back-space

BS decrements the cursor one position. If the cursor is at the
beginning of the window, the horizontal cursor position is set to the right
edge of the window and the routine falls through to UP. (NOTE: 40-columns
only. )

SFCIA UP Move up a line
UP decrements the cursor vertical location by one line unless the

cursor is currently on the first line. (NOTE: 40-columns only.)

$FC22 VTAB Vertical tab
VTAB loads the value at CV ($25) into the accumulator and falls

through to VTABZ. (NOTE: This routine does not update OURCV in 80-columns.)

$FC24 VTABZ Vertical tab (alternate entry)
VTABZ uses the value in the accumulator to update the base address

used for storing values in the text screen buffer.

$FC42 CLREOP Clear to end of page
CLREOP clears the text window from the curSOT position to the

bottom of the window. CLREOP destroys the contents of A and Y.

$FC58 HOME Home cursor and clear
HOME clears the current window and places the cursor in the home

position: the upper left corner of the screen.

$FC62 CR
CR. sets

the window and
through to LF.

Begin a new line
the cursor horizontal position back to the left edge of
increments the cursor "lie rtical position. It then falls

(NOTE: 4o-columns onl!.)

$FC66 LF Line-feed
If the cursor vertical position is not past the bottom line, the

base address is updated, otherwise the routine falls through to SCROLL.
(NOTE: 40-columns only.)

$FC70 SCROLL Scroll the screen
SCROLL moves all characters up one position within the current

text window.

$FC9C CLRROL Clear to end of line
CLREOL clears a text line from the cursor position to the right

edge of the window. CLREOL destroys the contents of A and Y.

$FC9E CLEOLZ Clear to end of line
CLEOLZ clears a text line to the right of the window, starting at

the location given by base address BASL indexed by the contents of the Y
register. CLFOLZ destroys the contents of A and Y.



Apple ] [ Monitor Entry Points
-

Page 7

$FCA8 WAIT Delay
WAIT delays for a specific amount of time, then returns to the

program that called it. The amount of delay is specified by the contents of
the accumulator. With A the contents of the accumulator, the delay is
1/2(26+27A+5A A 2) microseconds •. WAIT returns with the accumulator zeroed and
the X and Y registers undisturbed.

$FCB4 NXTA4 Increment pointer A4
NXTA4 increments the 16 bit pointer, A4 ($42-$43) and then falls

through to NXTAI.

$FCBA NXTAI Compare Al with A2 and increment Al
NXTAI does a 16 bit compare of Al ($3C-$3D) with A2 ($3E-S3F) and

then increments pointer AI.

$FCC9 HEADR Write a header to cassette tape (] [, ][+, lie only)
HEADR writes a header to cassette tape.

$FDOC RDKEY Get an input character
RDKEY is the character input subroutine. It places an appropriate

cursor on the display at the cursor position and jumps to the subroutine
whose address is stored in KSW (locations $38-$39), usually the standard
input subroutine KEYIN, which returns with a character in the accumulator.

$FDIB KEYIN Read the keyboard
KEYIN is the keyboard input subroutine. It reads the Apple/s

keyboard, waits for a keypress, and randomizes the random number seed at
$4E-$4F. When a key is pressed, KEYIN removed the cursor. from the display
and returns with the keycode in the accumulator. (NOTE: On lie with 80
columns, it interprets escape codes s::ld forward arrows.)

$FD35 RDCHAR Get an input character or ESC code
RDCHAR is an alternate input subroutine that gets characters from

the standard input subroutine, and also intreprets the escape codes listed
in the technical reference manual.

$FD67 GETLNZ Get an input line
GETLNZ is an alternate entry point for GETLN that sends a carriage

return to the standard output, then continues into GETLN.

$FD6A GETLN Get an input line with prompt
GETLN is the standard input subroutine for entire lines of

characters, as described in the various· technical reference manuals.
program calls GETLN with the prompt character in location $33; GETLN
falls through to GETLNO.

Your
then

$FD6C GETLNO Get an input line with prompt (alternate entry)
GETLNO outputs the contents of the accumulator as the prompt. The

routine will return with the input line in the input buffer ($20o-S2FF) and
the X register holding the length of the input line. If the user cancel~

the input line, either with too many backspaces or a CONTROL-X, then the
contents of PROMPT ($33) will be issued as the prompt when it gets another
line.



Apple ] [ Monitor Entry ~oints Page 8

$FD6F GETLNI Get an input line, no prompt
GETLNI is an alternate entry point for GETLN that does not issue a

prompt before it accepts the input line. If, however, the input line is
cancelled, with too long a line, with too many backspaces or with a CONTROL-X,
then GETLNI will issue the contents of PROMPT ($33) as a prompt when it gets
another line.

$FD8B CROUTI RETURN with clear to end-of-line
CROUTI clears the screen from the current cursor position to the

edge of the text window, then falls through to CROUT.

$FD8E CROUT Carriage return output
CROUT sends a RETURN character to the current output device.

$FD92 PRAI Print RETURN and Al in HEX
PRAI sends out a RETURN character followed by the contents of the

16 bit pointer, Al ($3C-$3D) in hex follwed by a hyphen.

$FDDA PRBYTE Print a hexadecimal byte
PRBYTE outputs the contents of the accumulator in hexadecimal on

the current output device. The contents of the accumulator are scrambled.

$FDE3 PRHEX Print a hexadecimal digit
PRHEX prints the lower nybble of the accumulator as a single

hexadecimal value. On return, the contents of the accumulator are scrambled.

$FDED COUT Output a character
COUT calls the current output subroutine. The.character to be

output should be in the accumulator. COUT calls the subroutine whose
address is stored in CSW (locations $36 and $37), which is usually the
standard character output COUTI.

$FDFO COUTI Output- to screen
COUTI displays the character in the accumula tor on the Apple I s-.

screen at the current output cursor position and advances the output cursor.
It places the character using the setting of the Normal/Inverse location.
It handles the control charcters [RETURN], linefeed, backspace, and bell.
It returns with all registers intact.

$FE2C MOVE Move a block of memory
MOVE copies the contents of memory from one range of locations to

another. This subroutine is the same as the MOVE commands in the Monitor,
except it takes its arguments from pairs of locations in memory, low-byte
first. The destination address must be in A4 ($42-$43), the starting source
address in Al ($3C-$3D), and the ending source address in A2 ($3E-$3F) when
your program calls MOVE.



Apple ] [ Monitor Entry Points Page 9

$FE93

$FE5E LIST Disassemble and list 20 instructions
LIST will disassemble and list to the current output device, 20

assembly language instructions beginning at the location pointed to by Al
($3C-$3D) •

$FE80 SETINV Set inverse text mode
SETI~V sets INVFLG so that subsequent text output to the screen

will appear in inverse mode.

$FE84 SETNORM Set normal text mode
SETNORM sets INVFLG such that subsequent text output to the screen

will appear in normal mode.

$FE89 SETKBD Re-set input to keyboard
SETKBD re-sets the the input hooks ($38-$39) to point to the

Keyboard.

$FE8B INFORT Re-set input to a slot
INFORT re-sets the input hooks ($38-$39) to point to the ROM space

reserved for a perphireal card (or port) in the slot (or port) designated
by the value in the accumulator. (NOTE: In new lie and Ilc monitor, does a
quit if the video firmware was on.)

SETVID Re-set output to screen
SETVID re-sets the output hooks ($36-$37) to the screen display

routines.

$FE95 OUTPORT Re-set output to a slot
OUTPORT re-sets the output hooks ($36-$37) to· point to the ROM

space reserved for a peripheral card (or port) in the slot (or port)
designated by the value in the accumulator.

$FEB6 GO Begin code execution
GO begins execution· of the code pointed to by Al ($3C"$3D).

$FECD WRITF. Write a record on a·cassette tape (][, ][+, and /Ie only)
WRITE converts the data in a range of memory to a series of tones

at the cassette output port. Before calling WRItE, the address of the first
da ta byte must be in Al ($3C-$3D) and the address of the last byte in A2
($3E-$3F). The subroutine writes a ten-second· continuous tone as a header,
then writes the data followed by a one byte checksum.

$FEFD READ Read data from a cassette tape (][, ][+, and lie onfy)
READ reads a series of tones at the cassette input port, converts

them to bytes, and stores the data in a specified range of memory locations.
Before calling READ, the address of the first byte must be in Al ($3C-$3D)
and the address of the last byte in A2 ($3E-$3F).

$FF2D PRERR Print ERR
PRERR sends the word ERR, and falls through to BELL. On return,

the accumulator contains $87.



Apple ] [ Monitor Entry Points

$FF3A BELL Output a bell character
BFLL writes a bell [CONTROL]-G character to the current output

device. It leaves the accumulator holding $A7.

Page 10

$FF3F RESTORE Restore all registers
RESTORE loads the 6502's internal registers with the contents of

memory locations $45 through $48, as saved by BREAK.

$FF4A SAVE
SAVE

$45 through
changed and

Save all registers
stores the contents of the 6502's internal registers in locations
$49 in the order A, X, Y, P, S. The contents of A and X are
the decimal mode is cleared.

$FF58

$FF65

$FF69

= $60 Known RTS instruction (IORTS)
This byte must always contain $60.

MON Standard Monitor entry with beep
MON beeps the speaker and falls through to MONZ.

MONZ Standard Monitor entry point (CALL -151)
MONZ displays the "*" prompt and sends control to GETLNZ.

$FF8A DIG Shift hex digit into A2
DIG shifts an ASCII representation of a hex digit in the

accumulatpr into A2 ($3E-$3F).

$FFA7 GETNUM Transfer hex input into A2
GETNUM scans input buffer starting at position Y. Shifts hex

digits into A2 ($3E-$3F). Stops when non~hex digit encountered.

$FFAD ~~TCHR Translate next character
NXTCHR is the loop used by GETNUM to parse each character in the

input buffer and convert it to a value in A2 ($3E-$3F).

$FFFA

$FFFC

$FFFE

NMI Non-maskable interrupt vector
NMI is a two byte pointer to the non-maskable interrupt handler.

RESET Reset vector
RESET is a two byte pointer to the RESET handler routine.

IRQVECT IRQ vector
IRQVECT is a two byte pointer to the interrupt request handler.





23~O: 4C 33
23~2<23~O.2360M

2300<23~O.2360·Y

230D: 33 4C 33 4C 33 4C 33 4C
235D: 13 66 19 66 19 66 19 66
230D<23~D.23634Y

(puts green line next to it)
(note first byte)

Ther. YOU have it: a basic explanation o~ how double hi-res
worKs -- except for one or two anomal ies. The first anomaly
is that NTSC moni.tors have a 1 imited display range. The
second anomaly shows one o~ the features o~ double hi-res
versus a 1 imitation of standard hi-res.

An NTSC color moni tor decides what color to display based on
its ·view· of foul'" bit ·windows· in each 1 ine, starting from
the left edge of the screen. The monitor looks at the first
foul'" bits, determines which color is called for, and then
shifts one bit to the right and determines the color for
this new four-bit window. But remember the color depends not
only on the pattern, but also the p0!Siton of the pattern. To
compensate for relative position -from the left edge o-f the
screen, the monitor Keeps track of where on each 1 ine each
of these window starts. <For'those o-f YOU of the technical
persuasion, this is done through the use of the color burst
sign aI, wh i chi s a 3. 58 MHz. c 1oc K) •

Try this example:

2000:0
2001 <2000.3FFFM
2000<2000.3FFF·Y

2001 : 66
2401 : 66
2801 : 66
2CO L: 66
3001 : 66

20~0:33

3402<20~0.2050·Y

3802<2050.2050·Y
3C02<2050.2050 A Y

Clears screen

Draws orange box in uppper left

Draws blue box be low and
to the I'" i gMt of the orange

Notice that i-f the blue box was drawn at the top of the
screen, next to the orange box ,theY would overlap. Yet, the
boxE!'s were drawn on two different columns, orange on mb2 and
blue on auxl. This can be explained by the previous
paragraph, ,and the 51 iding windows. The moni tor wi 11 deotl~ct

thE!' pattern for orangE!' 51 ightly after the mb2 column, whi Ie
the patteorn for bl ue shows up before col umn auxl.



00000001011001110000000
aux2 I mb2 I aux 1

look at four-bit windows and you'll see
an orange pattern overlaps on both sides

If a pattel"'n i~ I"'ep.ated0l"_a 1 in., this ovel"'lap doesn't
cause a pl"'oblem, since the same colol'" just ovel"'laps itself.
But watch what happens when a new pattel"'n is stal"'ted next to
a diffel"'ent pattel"'n:

3002<2050.2050·Y
2C02<2050.2050 A Y
280?<2050.2050·Y

Puts blue pattel"'n next to 0l"'ange

Wh.l"'e the blue ovel"'laps the ol"'ange, you"ll see a white dot.
This is b.cause one of the foul"'-bit. windows the monitol'" sees
i s a I I 1" s • I f two color- s. ar- e p I ac ed I'" i gh t next toe ac h
othel'" , the monitor- wil I sometimes display a thil"'d color, 01'"

fl"'inge, I"'ight at the bounda.r-y. -Fr"inging- is especially
noticeable when ther-e are a lot of nar-I"'ow columns of
diffel"'ent color-s next to each othel"'. <Next time you I"'un
COLOR TEST take a look at the boundal"'ies between the
co I ors) •

orang. blue

000000010110011111001100
aux2 J mb2 I auxl

THE DOUBLE HI-RES ROUTINES

not. th. four 1"~ in a row
at th. boundary b.tween
orang, and bl Uf

.The second anomaly presents a good lead in to the last par.t
of this ser-ies, the double hi-res I"'outines, which plot
I ines. These I"'outines work I ike the standard hi-res
App I E!'sof t comma.nds, .HGR, HeOlOR , at"!~ HPLOT, excep t they use
the Applesoft ampersand functJon.

CCAt this point BRUN COLOR Del HIRES))

&H
&Cn
&PX,y
&lx,y

TEXT
POKE 49164,0
POKE 49247,0

Clear-s double hi-res sCl"'een
Sets the double hires color to n
Plots a point~at x,y
Draws a line fl"'om the last point to x,y

Returns to 40-column text mode



Apple lie Technical Note #1

Revision of Apple Ilc Technical Note #1. 8 February 1984*
25 February 1984

There are differences between how the mouse works on the Apple lie and
how it works on the Apple lie. This technical note explains what is
causing these differences and how to write programs that work the same
on both machines.

For further information contact:
PCS Developer Technical Support
Mis 22-W. Phone (408) 996-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpose. Apple
Computer, Inc. software is licensed lias is". The entire risk as to
its quality and performance is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc •• its distributor, or retailer) assumes the entire
cost of all necessary damages. In no event will Apple Computer. Inc.
be liable for direct, indirect, incidental. o~ consequential damages
resulting from any defect in the software, even if Apple Computer,
Inc. has been advised of the possibility of such damages. Some
states do not allow the exclusion or limitation of implied
warranties or liability for incidental of consequential damages, so
the above limitationf my not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied.,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer. Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, California 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

* A clarification of the effects disabling interrupts has on mouse
data has been added

BG





Apple Ilc Technical Note #1

INTRODUCTION

Page II 2

As advertised, if you use the mouse firmware routines such as
SETMOUSE to control the mouse then these routines will perform the
same function in the Apple Ilc as they do in the Apple lie. This does
not mean that a ,program which uses the mouse will behave the same in
both computers. There are two reasons for this. One is that if a
program has not properly set the environment prior to calling these
routines it is possible for the program to work in one machine and not
in the other. The second reason is that there are differences in the
machines and although the ROM rouines perform the same functions there
may be noticable differences in the 'behaviour' of the mouse. This
technical note will explain the fundamental differences between the
way the mice in the two machines work. It will then point out
precautions that need to be taken to make sure that your machine
language program will work on both machines. With the exception of
mouse movement scaling described below BASIC and Pascal programs do
not need to be concerned about setting the proper environment.

The Apple lie mouse card has a microprocessor on it which
constantly polls the mouse to get status and position information.
This data is then kept on the card and is available whenever the
program requests it through the READMOUSE routine. If the mouse is in
passive mode this information will be 'picked up' by the main program
whenever it gets around to it. The SETMOUSE routine can set the mouse
card to issue interrupts under certain conditions. When the mouse
card determines that such conditions exist it issues an interrupt.
This stops the main computer and goes to what ever interrupt handling
routine has been set up. This routines will then read the information
from where the card processor saved it and puts it in the screen
holes. When using a mouse on an Apple with a mOuse card your program
is only interrupted if your program has requested it. And the data in
the screen holes is. being changed only when the program's interrupt'
handler or polling routine has called READMOUSE. Also enabling and
inhibiting interrupts does not affect the updating of mouse
information by the card's microprocessor.

The Apple Ilc mouse does not have a card microprocessor and so
mouse information is collected by interrupting the Apple Ilc's
microprocessor. When the interrupt happens the firmware captures it
and processes it which includes. upda ting the screen holes. The
interrupt is passed on only if SETMOUSF set up the condi tions to do
so. However, having the mouse interrupt the computer's microprocessor
means that your program is being constantly interrupted. This will
affect program timming. It also means that the screen holes are
constantly being updated with X and Y information eve.n in passive mode
since this information must be kept somewhere and there is no card to
keep it on. Also, if you have disabled interrupts then the mouse can
never interrupt the processor and so the X adn Y values are never
updated and calling READ~jOUSE will indicate that there has been no
mouse movement.



Apple lIe Technical Note #1 Page II 3

Since the Apple lIe is constantly being interrupted while the
mouse is on, the program's performance may be affected. To minimize
this affect the Apple lIe responds one-half as frequently to mouse
movements as does the mouse card. The noticable result of this is
that the mouse must be moved twice as far to create the same effect.
If you want the same behaviour on both machines then multiply the
Apple lIe X and Y values by two and clamping to 1/2 the lIe value
before using them.

With the exception of having to double the Apple lIe mouse movement
your program can ignore which machine it is running on by following
the precautions listed below. If you are working from BASIC or Pascal
these conditions are taken care of for you.

THE FOLLOWING CONDITIONS MUST BE TAKEN INTO ACCOUNT BY MACHINE
LANGUAGE PROGRAMMERS IF THE PROGRAM IS TOP RUN SIMILARLY IN ALL THF
APPLE I I FAMILY OF COHPUTERS:

* Do not disable interrupts unless you must. Then be sure to
re-enable them.

*
*

*

*

*

Disable interrupts when calling any mouse routine (SEI).

Do not re-enable interrupts (CLI) or (PLP if previously had done
a PHP) after READMOUSE until X & Y data have been removed from
the screen holes.

Be sure to disable interrupts (SEI) before placing position
infonnation in the screen holes (POSMOtTSE or CLAMPMOUSE).

Enter all mouse routines (not required for SERVEMOUSF) with th~ X
register set to $Cn and Y register set to $nO where n = slot
number.

Some programs may need to turn off interrupts for purposes other
then reading the mouse. This is sometimes done on the Apple lie
to keep from having to handle interrupts while in auxiliary
memory. If interrupts are turned off and then back on, the first
call to READMOUSE may give incorrect values. Subsequent calls to
READMOUSE will return correct values until interrupts are turned
off and on again. Turning off interrupts for mouse calls' does
not create this problem. If you are watching numbers coming fonn
the mouse while moving it in a direction that would increase
values you might see the following: 6, 7, 8, 9, 8, 9, 10. In
practice this momentary 'glitch' in the stream of mouse data has
little importance and would probably only be noticed by a
programmer testing his/her program - no one's hand is that
steady. If you must keep this 'glitch' from happening then do
not keep interrupts off for more then 40 microseconds or be sure
that at least one mouse interrupts has taken place since
interupts were turned back on.



Apple Ilc Technical Note #2

Using 40 Column text with Double High Resolution Graphics
22 March 1984

This technical note describes how to properly handle the 40 column
screen while using double high-resolution graphics on the Apple Ilc.

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
descri bed in this documentation, its quali ty, pe rformance,
merchantability, or fitness for any particular purpose. Apple
Computer, Inc. software is licensed lias is". The entire risk as to
its quality and performance is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc., its distributor, or retailer) assumes the entire
cost of all necessary damages. In no event will Apple Computer, Inc.
be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer,
Inc. has been advised of the possibility of such damages. Some
states do not allow the exclusion or limitation of implied
warranties or liability for incidental of consequential damages, so
the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, California 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

CJS





Apple lie Technical Note U 2 Page 2

Many developers using double high resolution (dbl-hi-res) graphics
may wish to use 40 column text displays so that the text can be read
on a television set. There are a couple of possibilities:

1.) You can define your own dbl-hi-res character set with any size
characters you desire and then plot them on the dbl-hi-res screen.

2.) You can print text to the Apple lie text screen and toggle the
screen on to display it.

To use the second method, however, does require some special
considerations.

The firmware in the Apple lie implements the scroll routine
differently that the Apple lie 80 column firmware. The Apple lie
scroll routine continues to use the window parameters when scrolling,
but uses the 80COL softswitch to determine if it should scroll the 80
or 40 column screen. Since the firmware has initialized a 40-column
window, the scroll routines will move only the first 40 columns. But,
the 80COL flag has been turned on for dbl-hi-resl Therefore, the
scrolling routine takes every even column from auxiliary memory and
every odd column from main memory. As a result, only the first 40
columns get scrolled, 20 columns from auxiliary memory and 20 columns
from main memory.

One possible solution to the problem is to write your own scroll
routines. Another might be to write to the screen so that scrolling
will not occur. But these is yet another solution. Turn on the full
80 column mode with a "PRI}3" or the equivalent. Now print your text
to COUT in the normal manner being careful not to exceed 40 characters
per line. The 80 column firmware will scroll everything properly.Y~en

you are ready to display text, send a CONTROL-Q through carT to switch
to 40 columns. When you are ready to return to dbl-hi-res mode, send
a CONTROL-R to COUTo

When making this switch, a momentary "glitch" may occur. If you
send the CONTROL-Q to COUT while still in graphics mode the screen
will go to regular "single" hi-res mode before finally going to text
mode. If you switch to text mode first, the text will be in 80 column
mode (with 40 columns displayed on the left half of the screen) before
ultimately going to 40 column mode. The same potential glitch may
occur goint back to dbl-hi-res. The "glitch" will be only momentary
and may not present any problem for you. If it does, you may wish to
make your change-over coincide with the video's verticle blanking
interval. (See the Apple Ilc Reference Manual.)

NOTE: There is no way to display 4 lines of 40 column text at
the bottom of the dbl-hi-res screen in mixed mode since the 80 column
hardware must be active while dbl-hi-res is being displayed.





Apple Ilc Technical Note 113

Foreign Language Keyboard Layouts
1 }larch 1984

There are differences between the keyboard layout on the North
American Apple lIe and Apple lIe's in other coutries. This technical
note documents the layouts, along with the ASCII codes for each key,
for the French, Italian, German, and United Kingdom systems.

For further information contact:
PCS Developer Technical Support
MIs 22-W Phone (408) 996-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpose. Apple
Computer, Inc. software is licensed "as is". The entire risk as to
its quality and performance is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc", its distributor, or retailer) assumes the entire cost
of all necessary damages. In no event will Apple Computer, Inc. be
liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer,
Inc. has been advised of the possibility of such damages. Some
states do not allow the exclusion or limitation of implied
warranties or liability for incidental of consequential damages, so
the above limita.tion may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer, Inc.

Copyright 1984 by Apple ColllPuter, Inc.
20525 Mariani Avenue

Cupertino, California 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB



Apple lIe

Standard France Keyboard Layout

OCtober 24, 1983

- - "

1 2 3 4 5 6 7 8 9 0 0

-
esc & e - • ( § e ! Q a ) - delete )

I

~
..

I..
A Z E R T Y U 1 0 P

..
$ 14-

;

% t'. I
j , .

control Q S 0 F G H K L M u i
I

+ > ? . I +

~
I,

< w X c y B N . . •, , .

o
Notes: 1) USes '"Shift lOCk" instead of "Caps lock- -- All keys are shifted.

2) When "Sh1ft Lod<" is depressed, ""Shift" keys tmhtft all Keys.



File: FRENCHUC Page 1

Report: ROMCODE FEB 3,198:,
Row KeyU Rom Ad Char C-S Code C-S Char C Code C Char S Code SChar Code
- -- --- ----- -- -- ---- --- -- --------
1 01 000 ESC IB ESC IB ESC 1B ESC IB
1 02 004 & 26 1 31 & 26 1 31
1 03 008 ~ 7B 2 32 / 7B 2 32e
1 04 OOC II 22 3 33 II 22 3 33
1 05 010 27 4 34 27 4 34
1 06 018 ( 28 5 35 ( 28 5 35
1 07 014 G5 10 GS 10 §, 5D 6 36
1 08 01C

,
7D 7 37 70 7 37e e

1 09 020 I 21 8 38 21 8 38
1 10 024 FS lC FS 1C

~
5C 9 39

1 11 OCO NUL 00 NUL 00 40 0 30
1 12 OC4 ESC IB ESC 1B ) 29 0 5B
1 13 OBC US IF US IF 20 SF
1 14 130 DEL 7F DEL 7F DEL 7F DEL 7F
2 16 028 HT 09 HT 09 HT 09 HT 09
2 17 02C SOH 01 SOH 01 a 61 A 41
2 18 030 SUB 1A SUB lA z 7A Z SA
2 19 034 ENQ 05 ENQ 05 e 65 E 45
2 20 038 DC2 12 DC2 12 r 72 R 52
2 21 040 DC4 14 DC4 14 t 74 T 54
2 22 03C EM 19 EM 19 y 79 Y 59
2 23 044 NAK 15 NAK 15 u 75 U '55
2 24 048 HT 09 HT 09 i 69 I 49
2 25 04C SI OF 51 OF 0 6F 0 4F
2 26 OE4 OLE 10 OLE 10 p 70 P 50
2 27 OE8 R5 IE R5 IE ... 5E .. 7E
2 28 OEC $ 24 * 2A $ 24 * 2A
3 31 050 DC1 11 DC1 11 q 71 Q 51
3 32 058 DC3 13 DC3 13 8 73 S 53
3 33 054 EOT 04 EOT 04 d 64 0 ·44
3 34 060 ACK 06 ACK 06 f 66 F 46
3 35 064 BEL 07 BEL 07 g 67 G 4}
3 36 05C BS 08 BS 08 h 68 H 48
3 37 068 LF OA LF OA j 6A J 4A
3 38 06C VT OB VT OB k 6B K 4B
3 39 074 FF OC FF OC 1 6C L 4C
3 40 070 CR 00 CR 00 m 60 M 40
3 41 114 \ 7c % 25

,
7C % 25u u

3 41A OB8 60 J. 23 60 J. 23
3 42 108 CR 00 CR 00 CR 00 CR 00
4 43A OEO DEL 7E DEL 7E < 3C > 3E
4 44 078 ETB 17 ETB 17 w 77 W 57
4 45 07C CAN 18 CAN 18 x 78 X 58
4 46 080 ETX 03 ETX 03 c 63 C 43
4 47 084 SYN 16 SYN 16 v 76 V 56
4 48 088 STX 02 STX 02 b 62 B 42
4 49 08C SO OE SO OE n 6E N 4E
4 ·50 090 2C ? 3F 2C ? 3F
4 51 094 3B 2E 3B 2E
4 52 098 3A / 2F 3A / 2F
4 53 09C • 3D + 2B ::II 3D + 2B
5 58 110 SP 20 SP 20 SP 20 SP 20
5 60 138 BS 08 BS 08 BS 08 BS 08
5 61 l3C NAK 15 NAK 15 NAK 15 NAK 15



File: FRENCHUC Page 2
Report: ROMCODE FEB 3, 1984
Row Key# Rom Ad Char C-S Code C-S Char C Code C Char S Code S Char Code

------ .--- -- ---- ....._- -- ---- --
5 62 134 LF OA LF OA LF OA LF OA
5 63 lOC VT OB VT OB VT OB VT OB



File: FRENCHLC Page
Report: ROMCODE FEB 3 I 198:..
Row KeyU Rom Ad Char C-S Code C-S Char C Code C Char S Code SChar Code
-- -- --- ----- ----- --- --- --- -- --
I 01 200 ESC IB ESC IB ESC' IB ESC IB
1 02 204 1 31 & 26 1 31 & 26

03 208 2
/

7B 32
I 7B1 32 e 2 e

1 04 20C 3 33 " 22 3 33 " 22
1 05 210 4 34 27 4 34 27
1 06 218 5 35 ( 28 5 35 ( 28
1 07 214 GS ID GS ID 6 36 ~ 5D
1 08 21C 7 37 \

7D 7 37
,

7De e
1 09 220 8 38 21 8 38 21
1 10 224 FS lC FS lC 9 39 S 5C
1 11 2CO NUL 00 NUL 00 0 30 S 40
1 12 2C4 ESC IB ESC IB II 5B ) 29
1 13 2BC US IF US IF 5F 2D
I' 14 330 DEL 7F DEL 7F DEL 7F DEL 7F
2 16 228 HT 09 HT 09 HT 09 HT 09
2 17 22C SOH 01 SOH 01 A 41 a 61
2 18 230 SUB lA SUB lA Z 5A z 7A
2 19 234 ENQ 05 ENQ 05 E 45 e 65
2 20 238 DC2 12 DC2 12 R 52 r 72
2 21 240 DC4 14 DC4 14 T 54 t 74
2 22 23c EM 19 EM 19 Y 59 y 79
2 23 244 NAK 15 NAK 15 U 55 u 75
2 24 248 HT 09 HT 09 1 49 i 69
2 25 24C S1 OF S1 OF 0 4F 0 6F
2 26 2E4 OLE 10 OLE 10 P 50 p 70
2 27 2E8 RS IE RS IE ..,. Of 7E ... 5E
2 28 2EC * 2A $ 24 * 2A $ 24
3 31 250 DCl 11 DCl 11 Q 51 q 71
3 32 258 DC3 13 DC3 13 S 53 s 73
3 33 254 EDT 04 EOT 04 0 44 d 64
3 34 260 ACK 06 ACK 06 F 46 f .66
3 35 264 BEL 07 BEL 07 G 47 g 67
3 36 25C BS 08 BS 08 H 48 h 68
3 37 268 LF OA LF OA J 4A j 6A
3 38 26C VT OB VT OB K 4B k 6B
3 39 274 FF OC FF OC L 4C 1 6C
3 40 270 CR 00 CR 00 M 40 m 6D
3 41 314 % 25 \ 7C % 25

,
7Cu u

3 41A 2B8 i 23 60 .) 23 60.I-
3 42 308 CR OD CR 00 CR 00 CR, 00
4 43A 2EO > 3E < 3C > 3E < 3C
4 44 278 ETB 17 ETB 17 W 57 w 77
4 45 27C CAN 18 CAN 18 X 58 x 78
4 46 280 ~TX 03 ETX 03 C 43 c 63
4 47 284 SYN 16 SYN 16 V 56 v 76
4 48 288 STX 02 STX 02 B 42 b 62
4 49 28C SO OE SO DE N 4E n 6E
4 50 290 ? 3F 2C ? 3F 2C
4 51 294 2E 3B 2E 3B
4 52 298 / 2F 3A / 2F 3A
4 53 29C + 2B .. 3D + 2B 3D
5 58 310 SP 20 SP 20 SP 20 SP 20
5 60 338 BS 08 BS 08 BS 08 BS 08
5 61 33C NAK 15 NAK 15 NAK 15 NAK 15



File: FRENCHLC Page
Report: ROMCOOE FEB 3, 198-
Row Keytl Rom Ad Char c-s Code C-S Char C Code C Char S Code S Char Code-- --- ---- --- --- --- -- --
5 62 334 LF OA LF OA LF OA LF OA
5 63 30C VT OB VT OB VT OB VT OB



Apple lie

Standard German Keyboard Layout

october 24, 1983

-------------
!esc

! .. § $ % & / ( ) • ? ,

1 2 3 4 5 6 7 8 9 0 ~.
.

delete

I~
..

Q W E R T Z U I 0 P CJ + .-J
I

I .
I control A S 0 F G H J K L 0 A i~

) ; : .,- .a'l;;. y X C V B N M~ < - <- .- - - - - - - -- --
o GJ ~



Super ][ German Keyboard ROM Map -- Alpha Lock

Key Matrix ROM Cntl/Shft Control Shift Normal
Num. cap Number Addr. Char. Code Char Code Char Code Char Code

01 ESC 00 000: ESC 1B ESC 1B ESC 1B ESC 1B
02 11 01 004: ! 21 1 31 ! 21 1 31
03 2" 02 008: " 22 2 32 " 22 2 32
04 3§ 03 OOC: NUL 00 NUL 00 § 40 3 33
OS 4$ 04 010: $ 24 4 34 $ 24 4 34
07 6& OS 014: & 26 6 36 & 26 6 36
06 5% 06 018: % 25 S 3S % 25 5 35
08 7/ 07 01C: / 2F 7 37 / 2F 7 37
09 8( 08 020 : ( 28 8 38 ( 28 8 38
10 9) 09 024: ) 29 9 ·39 ) 29 9 39
16 TAB 10 028: lIT 09 lIT 09 lIT 09 lIT 09
17 Q 11 02C: DC1 11 DC1 11 Q 51 Q 51
18 w 12 030 : ETB 17 ETB 17 W S7 W 57
19 E 13 034: ENQ OS ENQ 05 E 45 E 45
20 R 14 038: DC2 12 DC2 12 R 52 R 52
22 Z 15 03C: SUB 1A SUB 1A Z SA Z SA
21 T 16 040: DC4 14 DC4 14 T 54 T S4
23. U 17 044: NAK. 15 NAK. 15 U 55 U 55
24 I 18 048: HT 09 lIT 09 I 49 I 49
25 0 19 04C: S1 OF SI OF 0 4F 0 4F
31 A 20 050: SOH 01 SOH 01 A 41 A 41
33 D 21 054: EOT 04 EOT 04 D 44 D 44
32 S 22 058: DC3 13 DC3 13 S 53 S 53
36 H 23 05C: BS 08 BS 08 H 48 H 48
34 F 24 060: ACK 06 ACK 06 F 46 F 46
35 G 25 064: BEL 07 BEL 07 G 47 G 47
37 J 26 068: LF· OA LF OA J 4A J 4A
38 K 27 06C: VT OB VT OB K 4B K 4B•• ,.

'0'40 0 28 070: FS 1C FS 1C 0 SC SC
39 L 29 074: IT OC IT OC L 4C L ~C

44 y 30 078: EM 19 EM 19 y 59 y 59
45 X 31 07C: CAN 1R CAN 1R X 58 X 58
46 C 32 080: ETX 03 ETX 03 C 43 C 43
47 V 33 084: SYN 16 SYN 16 V 56 V 56
48 B 34 088: STX 02 STX 02 B 42 B 42
49 N 35 08C: SO OE SO OE N 4E N 4E
50 M .36 090: CR OD CR OD M 4D M 4D
51 . 37 094: 1B 2C 3B 2C,.
52 . 38 098: 3A 2E 3A ?k'.. -,.
53 - 39 09C: US 1F US 1F SF 2D
El 40 OAO: / 2F / 2F 7 2F / 2F
E2 41 0A4: as 08 BS 08 BS 08 as 08
E3 42 OA8: 0 30 0 30 0 30 0 30
E4 43 OAC: 1 31 1 31 1 31 1 31
E5 44 OBO: 2 32 2 32 2 32 2 32
E6 45 OB4: 3 33 3 33 3 33 3 33
29 II A 46 OB8: RS 1E RS 1E 5E II 23
13 ' , 47 OBC: 60 27 60 27
11 0= 48 OCO: = 3D 0 30 = 3D 0 30
12 (3 ? 49 OC4: ? 3F (3 7E ? 3F r.. 7£1~

E7 50 ocs: ) 29 ) 29 ) 29 ) 29
E8 51 acc: ESC 1B ESC IB ESC 18 sse 1~

Page 2



E9 52 ODO: 4 34 4 34 4 34 4 34
EI0 53 OD4: 5 35 5 35 5 35 5 35
Ell 54 OD8: 6 36 6 36 6 36 6 36
E12 55 ODC: 7 37 7 37 7 37 7 37
56 <> 56 OEO: > 3E < 3C > 3E < 3C
26 P •• 57 OE4: DLE 10 OLE 10 P" 50 p 50••27 U 58 OE8: GS ID GS 1D U 5D U 5D
28 +* 59 OEC: * 2A + 2B * 2A + 2B
E13 60 OFO: * 2A * 2A * 2A * 2A
E14 61 OF4: NAK 15 NAK 15 NAK . 15 NAK 15
E15 62 OF8: 8 38 8 38 8 38 8 38
E16 63 OFC: 9 39 9 39 9 39 9 39
E17 64 100 : 2E 2E 2E 2E
E18 65 104 : + 2B + 2B + 2B + 2B
42 RETURN 66 108 : CR OD CR 00 CR OD CR' 00
63 up 67 10C: VT OB VT OB VT OB VT OB
58 space 68 110 : SP 20 SP 20 SP 20 SP 20, . •• , .
41 A 69 114 : ESC 1B ESC 1B A 5B A 5B
E19 70 118 : ? 3F ? 3F ? 3F ? 3F
E20 71 llC: SP 20 sp 20 SP 20 sp 20
E21 72 120 : ( 28 ( 28 ( 28 ( 28
E22 73 124 : 2D 2D 2D 2D
E23 74 128 : CR OD CR 00 CR 00 CR 00
E24 75 12C: , 2C , 2C , 2C , 2C
14 delete 76 130 : DEL 7F DEL 7F DEL 7F DEL 7F
62 down 77 134: LF OA LF OA LF OA LF OA
60 left 78 138 : as 08 as 08 as 08 as 08
61 right 79 13C: NAK 15 NAK 15 NAK 15 NAK 15

Fill all unused locations with AO.

Page 3



Super }[ German Keyboard ROH Hap - Upper/Lower Case

Key Matrix ROM Cntl/Shft Control Shift Normal
~um. Cap Number Addr. Char Code Char Code Char Code Char Code

01 ESC 00 200 : ESC IB ESC IB ESC 1B ESC IB
02 l! 01 204 : ! 21 1 '31 ! 21 1 31
03 2" 02 208: " 22 2 32 " 22 2 32
04 3§- 03 20C: NUL 00 NUL 00 § 40 3 33
05 4$ 04, 210 : $ 24 4 34 $ 24 4 34
07 6& 05 214: & 26 6 36 & 26 6 36
06 5% 06 218: i. 25 5 35 % 25 5 35
08 7/ 07 21C: / 2F 7 37 / 2F 7 37
09 ,8( 08 220 : ( 28 8 38 ( 28 8 38
10 9) 09 224: ) 29 9 39 ) 29 9 39
16 TAB 10 228 : HT 09 HT 09 HT 09 HT 09
17 Q 11 22C: bCI 11 OC1 11 Q 51 .." 71'1:::';
18 w 12 230 : ~TB 17 ETB 17 W 57 w -... 77
19 E 13 234 : ENQ 05 ENQ 05 E 45 e 65
20 R 14 238: OC2 12 OC2 12 R 52 r 72
22 z 15 23C: SUB lA SUB lA Z 5A z 7A
21 T 16 240 : OC4 14 DC4 14 T 54 t 74
23 U 17 244: NAK 15 NAK 15 U 55 u 75
24 I 18 248: HT 09 HT 09 I 49 i 69
25 0 19 24C: S1 OF S1 OF 0 4F 0 6F
31 A 20 250 : SOH 01 SOH 01 A 41 a 61
33 0 21 254: EOT 04 EOT 04 0 44 d 64
32 S 22 258: OC3 13 OC3 13 S 53 s 73
36 H 23 25C: BS 08 BS 08 H 48 h 68
34 F 24 260: ACK 06 ACK 06 F 46 f 66
35 G 25 264: BEL 07 BEL 07 G 47 g 67
37 J 26 268: LF OA LF OA J 4A j 6A
38 K 27 26C: VT OB VT OB K 4B k 6B•• 4_ .. o.40 00 28 270 : FS lC FS lC '0 5C 0 7C
39 L 29 274: FF OC FF OC L 4C 1 6C
44 y 30 278: EM 19 EM 19 y 59 y 79
45 X 31 27C: CAN 18 CAN 18 X 58 x 78
46 C 32 280: ETX 03 ETX 03 C 43 c 63
47 V 33 284: SYN 16 SYN 16 V 56 v 76
48 B 34 288: STX 02 STX 02 B 42 b 62
49 N 35 28C: SO OE SO OE N 4E n 6E
50 M 36 290 : CR 00 CR 00 M 40 m 60
51 . 37 294 : 3B 2C 3B 2C,,
52 . 38 298: 3A 2E 3A 2E..
53 - 39 29C: US IF US IF SF 20
El 40 2AO: / 2F' / 2F 7 2F / 2F
E2 41 2A4: BS 08 BS 08 BS 08 BS 08
E3 42 2A8: 0 30 0 30 0 30 0 30
E4 43 2AC: 1 31 1 31 1 31 1 31
E5 44 2BO: 2 32 2 32 2 32 2 32
E6 45 2B4: 3 33 3 33 3 33 3 '33
29 II~ 46 2B8: RS IE RS IE 5E II 23
13 I \ 47 2BC: 60 27 60 27
11 0= 48 2CO: = 3D 0 30 .. 3D 0 30
12 f?; ? 49 2C4: ? 1F (3 7E ? 3F (3 7E
E7 SO 2C8: ) 29 ) 29 ) 29 ) ~9

E8 51 2CC: ESC IB ESC IB ESC IB ESC 113

Page 4



E9 52 2DO: 4 34 4 34 4 34 4 34
ElO 53 2D4: 5 35 5 35 5 35 5 35
Ell 54 2D8: 6 36 6 36 6 36 6 36
E12 55 2DC: 7 37 7 37 7 37 7 37
56 <> 56 2EO: > 3E < 3C > 3E < 3C
26 P 57 2E4: DLE 10 OLE 10 P 50 p 70

fie ••

ID •• 0' 7D27 u U 58 2E8 : GS 10 GS U 50 u
28 +* 59 2EC: oJ! 2A + 2B * 2A + 2B
E13 60 2FO: * 2A oJ! 2A oJ! 2A oJ! 2A
E14 61 2F4: NAK 15 NAK 15 NAK -15 NAK 15
E15 62 2F8: 8 38 8 38 8 38 8 38
E16 63 2FC: 9 39 9 39 9 39 9 39
E17 64 300 : 2E 2E 2E 2E
E18 65 304 : + 2B + 2B + 2B + 2B
42 RETURN 66 308: CR OD CR 00 CR 00 CR 00
63 up 67 30C: VT OB VT OB VT OB VT OB
58 space 68 310: - SF 20 SF 20 SF 20 SF 20" .. 69 314:

..
5B

o •

7B41 a A ESC IB ESC IB A a
E19 70 318: ? 3F ? 3F ? 3F ? 3F
E20 71 31C: SF 20 SF 20 SF 20 SF 20
E21 72 320: ( 28 ( 28 ( 28 ( 28
E22 73 324: 2D 2D 2D 2D
E23 74 328: CR OD CR 00 CR OD CR OD
E24 75 32C: , 2C , 2C t 2C t 2C
14 delete 76 330 : DEL 7F DEL 7F DEL 7F DEL 7F
62 down 77 334: LF OA LF OA LF OA LF OA
60 left 78 338: BS 08 BS 08 BS 08 BS 08
61 right 79 33C: NAK 15 NAK 15 NAK 15 NAK 15

Fill all unused locations with AO.

Page 5



Apple lIe

Standard .UK Keyboard Layout

OCtOOer ?4, 1983

-- - - -- - -- - -
{ ! Ii £, $ % . & It ( ) +

I-
esc 1 2 3 4 5 6 7 8

Q '\. 9 a - - delete

I tao
( I

Q W E R T y U I 0 P [ ) retUrn

[ control
"

N.
A S 0 F G H J K L I

.
;

( snlft
I ( > ?

\ Z X C V B N M , / shift-- ---
r;;;I
li~ GJ ~

Notes: Per Neil Davison (OCtober 18, 1983)

Use no SymbOls on keycaps; Instead use:

"snlft"

'"return"

"caps lock"



Super ][ British Keyboard ROM Map -- Alpha Lock

Key Matrix ROM Cntl/Shft Control Shift Normal
Num. Cap Number Addr. Char Code Char Code Char Code Char Code

01 ESC 00 000 : ESC 1B ESC 1B ESC 1B ESC 1B
02 11 01 004: ! 21 1 31 ! 21 1 31
03 2@ 02 008 : NUl. 00 NUL 00 @ 40 2 32
04 31 03 OOC: t. 23 3 33 t. 23 3 33
05 4$ 04 010: $ 24 4 34 $ 24 4 34
07 6& 05 014: RS IE RS IE .... 5E 6 36
06 5% 06 018: i. 25 5 35 % 25 5 35
08 7& 07 01C: & 26 7 37 & 26 7 37
09 8* 08 020 : * 2A 8 38 * 2A 8 38
10 9( 09 024: ( 28 9' 39 ( 28 9 39
16 TAB 10 028: lIT 09 lIT 09 lIT 09 lIT 09
17 Q 11 02C: DCl 11 DC1 11 Q 51 Q 51
18 W 12 030: ETB 17 ETB 17 W 57 ,~ 57
19 ~ 13 034: ENQ 05 ENQ 05 E 45 E 45
20 R 14 038: DC2 12 DC2 12 R 52 R 52
22 y 15 03C: EM 19 EM 19 y 59 y 59
21 T 16 040: DC4 14 DC4 14 T 54 T 54
23 U 17 044: NAK 15 NAK 15 U 55 U 55
24 I 18 048: lIT 09 lIT 09 1 49 1 49
25 a 19 04C: S1 OF S1 OF a 4F a 4F
31 A 20 050: SOH 01 SOH 01 A 41 A 41
33 D 21 054: EaT 04 EaT 04 D 44 D 44
32 S 22 058: DC3 13 DC3 13 S 53 S 53
36 H 23 OSC: BS 08 BS 08 H 48 H 48
34 F 24 060: ACK 06 ACK 06 F 46 F 46
35 G 25 064: BEL 07 BEL 07 G 47 G 47
37 J 26 068: LF OA LF OA J 4A J 4A
38 K 27 06C: VT OB VI 013 K 4B K 4B
40 .. 28 070: 3A . 3B 3A . 3B, . , ,
39 L 29 074: IT OC FF OC L 4C L 4C
44 Z 30 078: SUB lA SUB lA Z SA Z SA
45 X 31 07C: CAN 18 CAN 18 X 58 X 58
t+6 C 32 080: ETX 03 ETX 03 C 43 C 43
47 V 33 084: SYN 16 SYN 16 V 56 V 56
48 B 34 088: STX 02 STX 02 B 42 B 42
49 N 35 08C: so OE so OE N 4E N 4E
50 M 36 090: CR 00 CR 00 M 40 M 4D
51 ,< 37 094: < 3C 2C < 3C 2C
52 .> 38 098: > 3E • 2E > 3E . 2E
53 /? 39 09C: ? 3F / 2F ? 3F / 2F
E1 40 OAO: / 2F / 2F / 2F / 2F
E2 41 OA4: BS 08 BS 08 BS 08 BS 08
E3 42 OA8: 0 30 0 30 0 30 0 30
E4 43 OAC: 1 '31 1 31 1 31 1 31
E5 44 OBO: 2 32 2 32 2 32 2 32
E6 45 OB4 : 3 33 3 33 3 33 3 33
29 ,- 46 OB8: 7E 60 7E 00
13 -+ 47 aBC: + 2B = 3D + 28 = 3D
11 0) 48 OCO: ) 29 a 30 ) 29 0 30
12 - 49 OC4: US IF US IF SF 2D
E7 50 OC8: ) 29 ) 29 ") 29 ) 29
E8 51 OCC: ESC IB ESC IB ESC 1B ESC 18

Page ')..



E9 52 000: 4 34 4 34 4 34 4 34
EI0 53 004: 5 35 5 35 5 35 S 3S
Ell 54 008: 6 36 6 36 6 36 6 36
E12 55 ODC: 7 37 7 37 7 37 7 37
56 \1 56 OEO: FS 1C FS 1C I 7C \ SC
26 P 57 OE4: OLE 10 OLE 10 P 50 P SO
27 [ { 58 OE8: ESC 1B ESC 1B { 7B [ 5B
28 ] } 59 OEC: GS 1n GS 10 } 7D ] SO
E13 60 OFO: 'It 2A * 2A * 2A * 2A
E14 61 OF4: NAK 15 NAK 15 NAK 15 NAK 15
E15 62 OF8: 8 38 8 38 8 38 8 38
E16 63 OFC: 9 39 9 39 9 39 9 39
E17 64 100 : 2E 2E 2E 2E
E18 65 104 : + 2B + 2B + 2B + 2B
42 RETURN 66 108 : CR OD CR 00 CR OD CR . 00
63 up 67 10C: VT OB VT OB VT OB VT OB
58 space 68 110 : SP 20 SP 20 SP 20 SP 20
41

,,,
69 114 : " 22 27 " 22 27

£19 70 118 : ? 3F ? 3F ? 3F ? 3F
E20 71 11C: SP 20 SP 20 SP 20 SP 20
£21 72 120: ( 28 ( 28 ( 28 ( 28
E22 73 124: 20 20 20 20
E23 74 128: CR 00 CR OD CR 019 CR OD
E24 75 12C: , 2C , 2C , 2C , 2C
14 delet'e 76 130 : DEL 7F DEL 7F DEL 7F DEL 7F
62 down 77 134 : LF OA LF OA LF OA LF OA
60 left 78 138: BS 08 BS 08 BS 08 BS 08
61 right 79 13C: NAK 15 NAK 15 NAK 15 NAK 15

Fill all unused locations with AO.

Page J



Super ][ British Keyboard ROH Hap - Upper/Lower Case

Key Matrix ROH Cntl/Shft Control Shift Normal
Num. Cap Number Addr. Char Code Char Code Char Code Char Code

01 ESC 00 200: ESC 1B ESC 113 ESC 1B gSC 1B
02 11 01 004: ! 21 1 31 ! 21 1 31
03 2@ 02 008: NUL 00 NUL 00 @ 40 2 32
04 3t 03 OOC: 1- 23 3 33 ~ 23 3 33
05 4$ 04 010: $ 24 4 34 $ 24 4 34
07 6& 05 014: RS 1E RS 1E 5E 6 36
06 5% 06 018: % 25 5 35 % 25 5 35
08 7& 07 01C: & 26 7 37 & ?6 7 37
09 8* 08 020: * 2A 8 38 * 2A 8 38
10 9( 09 024: ( 28 9 39 ( 28 9 39
16 TAB 10 228: fIT 09 fIT 09 fIT 09 fIT 09
17 Q 11 22C: DC1 11 DC1 11 Q 51 q 71
18 W 12 230: ETB 17 ETB 17 W 57 w 77
19 E 13 234 : ENQ 05 ENQ OS E 45 e 65
20 R 14 238 : DC2 12 DC2 12 R 52 r 72
22 y IS 03C: EM 19 EM 19 y 59 y 79
21 T 16 240: OG~ 14 OC4 14 T 54 t 74
23 U 17 244: NAK 15 NAK 15 U 55 u 75
24 I 18 248: fIT 09 fIT 09 I 49 i 69
25 0 19 24C: S1 OF S1 OF 0 4F 0 6F
31 A 20 250: SOH 01 SOH 01 A 41 a 61
33 D 21 254: EOT 04 EOT 04 D 44 d 64
32 S 22 258: DC) 13 DC) 13 S 53 s 73
36 H 23 25C: 13S 08 BS 08 H 48 h 68
34 F 24 260: ACK 06 ACK 06 F 46 f 66
35 G 25 264: BEL 07 BEL 07 G 47 g 67
37 J 26 268: LF OA LF OA J 4A j 6A
38 K 27 26C: VT OB VT OB K 4B k 68
40 .. 28 070: 3A 3B 3A 3B, .
39 L 29 274: FF OC FF OC L 4C 1 6C
44 Z 30 278: SUB 1A SUB 1A Z SA z ~7A
45 X 31 27C: CAN 18 CAN 18 X 58 x 78
46 C 32 280: ETX 03 ETX 03 C 43 c 63
47 V 33 284: SYN 16 SYN 16 V 56 v 76
48 B 34 288: STX 02 STX 02 B 42 b 62
49 N 35 28C: SO OE SO OE N 4E n 6E
50 H 36 290: CR 00 CR 00 H 40 m 60
51 ,< 37 094: < 3C 2C < 3C 2C
52 .> 38 098: > 3E . 2E > 3E 2E
53 /7 39 09C: 7 3F / 2F 7 3F / 2F
El 40 2AO: / 2F / 2F / 2F / 2F
E2 41 2A4: as 08 BS 08 BS 08 BS 08
E3 42 2A8: a 30 a 30 0 30 a 30
E4 43 2AC: 1 31 1 31 1 31 1 31
E5 44 2BO: 2 32 2 32 2 32 2 32
E6 45 2B4: .3 33 3 33 3 33 3 JJ
29 \- 46 OB8: 7E 60 7E 60
13 ""+ 47 OBC: + 2B = 3D + 2B "" 30
11 0) 48 OCO: ) 29 a 30 ) 29 () 30
12 - 49 OC4: US IF US IF SF 2D
E7 50 2C8: ) 29 ) 29 )' 29 ) 29
E8 51 2CC: ESC IB ESC IB ESC 113 ESC 113

Page 4



E9 52 2DO: 4 34 4 34 4 34 4 34
ElO 53 2D4: 5 3S S 35 5 35 5 35
Ell 54 2D8: 6 36 6 36 6 36 6 36
E12 55 2DC: 7 37 7 37 7 37 7 37
56 \1 56 OEO: FS lC FS lC I 7C \ 5C
26 P 57 OE4: OLE 10 OLE 10 P 50 p 70
27 [ { 58 OE8: ESC IB ESC IB { 7B [ 5B
28 ]} 59 OEC: GS 10 GS 10 } 7D ] 5D
E13 60 2FO: * 2A * 2A * 2A * 2A
E14 61 2F4: NAK 15 NAK 15 NAK 15 NAK 15
E15 62 2F8: 8 38 8 38 8 38 8 38
E16 63 2FC: 9 39 9 39 9 39 9 39
E17 64 300: 2E 2E 2E 2E
E18 65 304 : + 2B + 2B + 2B + 2B
42 RETURN 66 308 : CR 00 CR 00 CR 00 CR OD
63 up 67 30C: VT OB VT OB VT OB VT OB
58 space 68 310: SP 20 SP 20 SP 20 SP 20
41 '" 69 314: " 22 27 " 22 27
E19 70 318: ? 3F ? 3F ? 3F ? 3F
E20 71 31C: SP 20 SP 20 SP 20 SP 20
E21 72 320: ( 28 ( 28 ( 28 ( 28
E22 73 324: 2D 2D 2D 2D
E23 74 328: CR 00 CR OD CR 00 CR 00
E24 75 32C: , 2C , 2C , 2C , 2C
14 delete 76 330 : DEL 7F DEL 7F DEL 7F DEL 7F
62 down 77 334 : LF OA LF OA LF OA LF OA
60 left 78 338 : BS 08 BS 08 BS 08 BS 08
61 right 79 33C: NAK 15 NAK 15 NAK 15 NAK 15

Fill all unused locations with AO.

Page 5



Apple lIe

Standard Italy Keyboard Layout

OCteber 24, 1983

--------- ---
lese

1 2 3 4 5 6 7 8 9 0 ..-
~

.. I ( 9 e ) £. a e - - delete

I~
. ..

Q Z E R T Y U I 0 p 1 $ .~

I % •

control A S 0 F G H J K L M U §

I ) ? . / ! J.• Jfl < IN X C V B N . . 0, , .--- - - ---- - -

EI__~
Notes: 1) uses '"Shift locx" not '"Caps LOCl<" -- All Keys are stlifted.

2) Alternate character set is U.s. but kbd layoot is identical to the

ItaHan -- 'only cna.racters \tIhlet1 are not common to bOtn

character sets ~.

3) The fOllowing et1al'aCters et'Iange to their US equivalents:

Hex Italian US Hex Italian US

23 £ # 60 U

40 § lP 76 a {

58 0 ( 7C 6 I
5C 9 \ 70 e }

50 e ] 7E



F i 1e: 1TALIANUC Pa~ .
Report: ROMCODE DEC 1.
Row Key# Rom Ad Char C-S Code C-S Char C Code C Char S Code S Char Code

------ -------- -------- ------ ------ ------ ------ ------ ------
1 01 000 ESC 1I3 ESC 1I3 ESC 1I3 ESC 1I3
1 02 004 1 31 1 31 1 31 1 31
1 03 008 2 32 2 32 2 32 2 32
1 04 OOC 3 33 3 33 3 33 3 33
1 0:5 010 4 34 4 34 4 34 4 34
1 07 014 6 36 6 36 6 36 6 36
1 06 018 FS lC FS 1C :5 35 :5 35
1 08 OlC 7 37 7 37 7 37 7 37
1 09 020 8 38 8 38 8 38 8 38
1 10 024 9, 39 9 39 9 39 9 39
2 16 028 HT 09 HT 09 HT 09 HT 09.., 17 02C DCl 11 DC 1 11 G 51 G 51c:..., 18 030 SUB 1A SUB 1A Z 5A Z 5ACo

2 19 034 ENG 05 ENG 05 E 45 E 45
2 20 038 DC2 12 DC2 12 R 52 R 52
2 22 03C EM 19 EM 19 Y :59 Y :59
2 21 040 DC4 14 DC4 14 T 54 T 54.., 23 044 NAK 1:5 NAK 15 U 55 U 55c:.

2 24 048 HT 09 HT 09 I 49 I 49
2 25 04C SI OF SI OF a 4F 0 4F
~ 31 050 SOH 01 SOH 01 A 41 A 41-.J

~ 33 054 EaT 04 EaT 04 D 44 D 44-.J

3 32 058 DC3 13 DC3 13 S 53 S 53
3 36 05C I3S 08 BS 08 H 48 H 48
3 34 060 ACK 06 ACK 06 F 46 F 46
3 35 064 BEL 07 BEL 07 Q 47 Q 47
3 37 068 LF OA LF OA J 4A J 4A
~ 38 06C VT OB VT 08 K 48 K 413 .-.J

3 40 070 CR' OD CR OD M 4D M 4D
0 39 074 FF OC FF OC L 4C L 4C
4 44 078 ETI3 17 ET13 17 W 57 W 57
4 45 07C CAN 18 CAN 18 X 58 X 58
4 46 080 ETX 03 ETX 03 C 43 C 43
4 47 084 SYN 16 SYN 16 V 56 V 56
4 48 088 STX 02 STX 02 I3 42 I3 42
4 4.9 08C so OE SO· OE N 4E N 4E
4 50 090 ? 3F ? 3F ? 3F ? 3F
4 51 094 21:; 2E 2E 2E
4 52 098 I 2F I 2F I 2F f 2F
4 53 09C 21 21 21 21
3 41A 0138 NUL 00 ESC 1I3 0 58 0 513
1 13 OBC + 2B + 213 + 2I3 + 2I3
1 11 OCO QS 1D QS 1D 0 30 0 30
1 12 OC4 us 1F us 1F - 5F SF
4 43A OEO ) 3E ). 3E ) 3E :> 3E
2 26 OE4 DLE 10 DLE 10 P SO P .50
2 27 OE8 RS 1E RS 1E .... 5E .~. 5E.., 28 OEC *' 2A -!to 2A *' 2A *' 2Ac:.
~ 42 108 CR OD CR OD CR OD CR OD-.J

5 63 lOC VT 0I3 VT 08 VT 0I3 VT 013



Fil .. : ITALIANUC P.ag'?
Report: ROMCODE DEC 1, -
Row K.. y# Rom Ad Char C-S Code C-S Char C Cod. C Char S Code S Char Code

----- -------- ------ ---- ---- ----- ------ ----
5 ~8 110 SP 20 SP 20 SP 20 SP 20

41 114 % 25 % 25 % 25 i. 25
14 130 DEL 7F DEL 7F DEL 7F DEL 7F

5 62 134 LF OA LF OA LF OA LF OA
5 60 138 as 08 as 08 as 08 as 08
5 61 13C NAK 15 NAK 1~ NAK 15 NAK 15



FUet: ITALIANLC Page
Report: ROMCOOE DEC L 1
RaUl K.y# Rom Ad Char C-S Code C-S Char C Code C Char 5 Cod. 5 Char Code

------ ----- ------- ----- ---- ------ ---- ----- ------
1 01 :200 ESC 113 ESC 113 ESC 113 ESC 113
1 02 204 1 31 ~ :26 1 31 ~ 26
1 03 208 2 32 It 22 2 32 II 22
1 04 20C 3 33 27 3 33 27
1 O~ 210 4 34 28 4 34 :28
1 07 214 6 36

,
70 6 36

...
70It It

1 06 218 FS 1C FS 1C ~ 3~
)~

~C

1 08 21C 1 37 ) 29 1 37 29
1 09 220 8 38 i 23 8 38 1:. 23
1 10 224 9 39

,
7B 9 39

,
113.. a

2 16 ~8 HT 09 HT 09 HT 09 HT 09
2 11 ~C OCl 11 OCl 11 G ~1 q, 71
2 18 230 SUB 1A SUB 1A Z SA z 7A
2 19 :234 ENG O~ ENG O~ E 4~ e 65
2 20 238 OC2 12 OC2 1~ R ~2 r 72
2 ~ 23c EM 19 EM 19 Y ~9 Y 79
:2 21 240 OC4 14 OC4 14 T ~4 t 74
2 23 244 NAK 1~ NAK 1~ U ~~ u 75
2 24 :248 HT 09 HT 09 I 49 i 69
2 :2~ 24C SI OF SI OF 0 4F a 6F
3 31 250. SOH 01 SOH 01 A 41 a 61
3 33 :254 EaT 04 EDT 04 0 44 d 64
3 32 :2~8 OC3 13 OC3 13 S :53 s 73
3 36 2~C 85 08 8S 08 ,·H 48 h 68
3 34 260 ACK 06 ACK 06 F 46 f 66
3 35 :264 BEL 07 8EL 07 Q 47 g 67
3 37 :268 LF OA LF OA ..J 4A J 6A
3 38 26C VT 08 VT 013 K 413 k 613
3 40 270 ' CR 00 CR 00 M 40 m 60
3 39 274 FF OC FF OC L 4C 1 6C
4 44 :218 ETl3 17 ETl3 17 W ~7 .Ul 77
4 45 27C CAN 18 CAN 18 X 58 x 78
4 46 280 ETX 03 ETX 03 C 43 c 63
4 47 284 SYN 16 SYN 16 V 56 v 76
4 48 288 STX 02 STX 02 13 42 b 62
4 49 28C SO OE SO OE N 4E n 6E
4 50 290 7 3F :2C 7 3F 2C
4 51 :294 2E 38 2E 38
4 5:2 :298 I 2F 3A I 2F 3A
4 ~3 29C 21

,
7C 21

,
7C0 a

3 41A 2138 ESC 18 NUL 00 0 513 3 40
1 13 :28C + :213 "" 3D + 213 os 3D
t 11 :2CO QS 10 QS 10 ~

,
30 e 50

1 12 2C4 US IF US 1F SF 2D
4 43A 2EO :> 3E <. 3C :> 3E / 3C'.
2 :26 :2E4 OLE 10 OLE 10 P 50 p\ 70
2 :27 :2E8 RS 1E RS 1E ,,- 5E 1 7E
2 28 2EC * 2A $ 24 * .2A S 24
3 42 308 CR 00 CR 00 CR 00 CR 00
5 63 30C VT 08 VT 013 VT 013 VT 08



'.

Fi~... : ITALIANLC P" 9 '.
R"poT't: ROMCODE DEC 1,

·RoUl Key" Rom Ad ChaT' C-S Cadit C-S ChaT' C Code C ChaT' 5 Code 5 ChaT' Code
---- ------ ------- ---- ----- ----- ----- ----- 1----- o·

5 ~8 310 SF' 20 SF' 20 , SF' 20 SF' 20
41 314 i. 25

,
60 i. 25

,
60u u

14 330 DEL 7F DEL 7F DEL 7F DEL 7F
5 62 334 LF OA LF OA LF OA LF OA
5 60 338 135 08 85 08 135 08 86 08
:s 61 33C NAK 13 NAK 13 NAK 15 NAK 15





Apple lie Technical Note #4

Corrected DVORAK Keyboard Layout





I I I i I H 1 $ 1 % I A I & I * I ( I ) 1 ( 1 ) 1
e~·c 1 1 1 2 1 3 1 4 I 5 1 6 I 7 I B I 9 I 0 I [ I ] I delete

• 1 I I I 1 I 1 I 1 I I 1 1
I ? I < 1 > 1 P I Y I F I G I C I R 1 L 1 z I ... 1 1

tab I " 1 I I p I y 1 f I 9 1 c I r I ,) 1 J I :::: 1 "-/ , .
1 I 1 I 1 I 1 1 I I 1 I 1

I A I 0 I E 1 U I I 1 D I H 1 T 1 N 1 S 1 1 return-
con tr'o I I a 1 0 1 e I u I I I d I h I t 1 n I s I - I

1 I I I I I I 1 1 I I I
I • I G I J I K 1 X I B I M I W I V I Z I I

shift 1 .- I q I j I k I x I b I m I w I v 1 z : I shift I
1 I I 1 1 I I I I I I 1

capsl - 1 I 1 I I I I I A..
lockl ... 1 '6 1 I. 1 (-- 1 --) I

"'"
1 1

I 1 1 1 I 1 I I 1

This is the Dvorak keyboard layout as Implemented on the Apple //c comput~r when
the keyboard switch Is depressed. There has only been one version of the keyboard
layout Rrn1. All Apple //c"s, pre-release and final production machine~, have the
above layout and no other. The pre-release documentation was In error as Is the
final Apple //c Reference Manual.









Apple lie Delta Guide





Table of Contents





fI Introduction
2 Categories
3 Equations
4 External Physical
4 Keyboard
5 Back Panel
6 Internal Physicat
6 SlotsINo Slots
6 Game I/O and Other Connectors
7 Pow.etSupply
7 Disk Drive
7 Speaker
7 Input and Output
7 KeyboardCharacterSets
8 Display Character Sets
8 Display Modes
8 cassette va
8 Disk va
8 Game va
9 Mouse. Input
9 Hardware in General
9 Type of CPU
9 Amount and •• Address Ranges of RAM

10 Amount and Address Ranges of ROM
11 Power Supplies
11 Firmware in General
11 Monitor
11 VIdeo Flrmware
11 Diagnostic Flrmwar~

Table of Contents

1



II

II

II

12 Slot/Port Firmware
12 Software in General
12 Languages
13 Operating Systems
13 Hardware Specifics
13 Use 011Cs
14 Hardware Locations

Monitor Entry Point Labels

Machine Identification

Apple IIc Applesoft Firmware
Differences

23

33

37

II Interrupt Handling on the 41
AppJellc

41 What Is an Interrupt?
41 Interrupts on the Apple lie COmputer
42 Interrupt-Handlh1g>onthe 65C02
42 The Interrupt VectorafSFF1=E
43 The Built-in Interrupt Handler
44 Saving the Memory COnfiguration
45 Managing the Memory· Configuration
45 Userls Interrupt Handler atS3FE
46 Sources 01 Interrupts
47 Firmware-Handling of Intel'l'tipfs
47 Firmware for Mouse and Vertical Blanking
47 Firmware for Keyboard Interrupts
48 Using External Interrupts Through Firmware
48 Firmware for Serial Interrupts
49 A Loophole in the Firmware

Table of Contents



II AppJe lie Firmware 51
51 Vldeo Firmware
51 40 Columns Versus 80 Columns
51 Diagnostics
52 65CtJ2 Microprocessor
52 Window Wldths
52 Mouse Firmware
52 Mouse Character Set
53 Using the Mouse as Paddles
54 Using the Mouse From BASIC
54 The Bullt...Jn Printer Firmware
55 Printer Firmware Commands
56 The Built...Jn Communications Firmware
57 Communications Firmware Commands

Table of Contents





Introduction





This do!=ument compares the Apple IIc to the Apple lie. but it also
reiterates most of differences between the Apple lie and the
Apple II Plus that were originally noted in the Guide to the New
Features of the Apple lie (Apple Product Number A2F2114). In
addition. it points out differences between the Apple II and II Plus.

This draft does not include a list of the keyboard and video
character sets and other large tables of information: Unless
otherwise noted.- this information can be found in, the Apple lie
Reference,ManuaL

The keyboard and Ch8@etersefdifferences between different
countries' models of th,e Apple HC.?Te the same as for the lie. The
Intemational-Svpplerrien(to the-Apple'lle Owner's Manual (Part
'number 030-0525) contains tables and illustrations describing
these differences. Note. however. that the Apple'llc has NTSC
video circuitry insidethe'casefor'all countries;extemaJ PAL (and
presumably SECAM) Video adapters will get their signals from the
video expansion connector.

Introduction



II Categories

The characteristics that vary from one machine to another fall
under a handful of categories, starting with concrete physicaJ
elements and ending with more abstract and technicaJ items:

• Equations

each machine equals its predecessor plus or minus certain
overaJl characteristics-merely an overview

• ExtemaJ physical

keyboard layout and front of machine
sides (yes. sides)
top (removable or no)
back panel

• Internal physical

slotslno slots
game 1/0, aux video pins, LEOs, etc.
power supply .
disk drive
speaker

• Input anod output

keyboard character sets
display. character sets
display modes
cassette I/O
disk 110
game 1/0
mouse input

• Hardware in general

type of central processing unit
amount and address ranges of RAM
amount and address ranges or ROM
power supplies

Introduction



II Equations

.. Firmware in general

monitor
video firmware
diagnostic firmware
slot'port firmware

.. Software in general

languages
operating systems

.. Hardware specifics

important RAM locations
hardware locations
important ROM locations
use of ICs (customs. hybrids, sockets)
signals available to the outside world

These equations are merely an overview of what each model of
Apple II is with respect to, its predecessor. The remainder of this
guide spells out these differences in d,etail.

··:~?fh$S&.::'~b~~::~;~:~·lg:::b!;~,;:'Ot:fuOctional:.·~tenC:e •.
not:strict equaiity.".Forrexample:;. ::,'

Apple·lle .: Apple II Plus + Language-Card

does.:-not-mea,n"there: ,IS"an:aCtual language- card-or slot-just
-that: the: one rnachine-:functions- as-' jf· it wer9' the .other' with- such
a:card'in::a:slot.

There is a related docurnent (a Configuration Guide) that
d~scribes how to configure an Apple lie to make it (almost)
equivalent to an Apple lie•.

Apple " Plus •

Equations

Apple II ... Autostart ROM ... Applesott firmware
... 48K RAM standard

Apple II • Integer BASIC firmware • Old Monitor
ROM

13



II External Physical

Apple lie

Apple lie

..

•

Apple II Plus + language card + additional 16K
RAM + 80-eolumn finnware + built· in diagnosncs
+ full ASCII keyboard + Internal pow9I'oOn light
+ FCC EMC approval + improved baCk panel +
9·pin back panel game connector + auxliiary Slot
(with posslbility 01 80-eolumn card + extra 64K
RAM)

Apple II Plus • slot 0

Apple lie + extended 80-eolumn text card +
40/80 COlumn swrtch + language switch + disk
light + disk contrellSf' port + disk drive + mouse
port + senaI pnnt8f' port + sanal communication
port + built-in port firmware + VIdeo expansIOn
connector

Apple lie - removable cover • slots 1 to 7 •
auxiliary slot • internal poweroOn light· cassette 110
connectors· internal game 1/0 connector (hence
no game output) • RF modulator connector·
auxiliary video pin· diagnostic firmware •
miniassembler· monitor cassette support

The Apple II and IIPlus were identical in external appearance. The
Apple lie .and Apple lie differ from the earlier machines in their
keyboard layouts and baek panels.

Keyboard

The Apple II and II Plus hCiye identical 52-key keyboards. The
Appl~ lie and Apple. ne. keyboards have the same 63-key, full
ASCII keyboard layouts, with new and repositioned keys and
characters compared to the Apple II and II Plus. While the Apple II
and II Plus have a REPT key, the Apple lie and IIc have an
auto·rep~at feature built into each character key.

The Apple IIc has additional switches near its keyboard: one for
changing between 4O-column and aO-column displays, the other
for selecting keyboard layouts (Sholes versus Dvorak on USA
models) or keyboard layout and character set (on" international
models).

The power-on light positid'n differs for the Apple l!ill Plus, Apple lie
and Apple Ilc. The RESET key also appears In different positions.

Introduction



Some Apple II and II Plusses have a slide switch inside the case.
near the edge of the cover, for selecting whether or not RESET
has to be accompanied by CONTROL to work. On the Appfe lie
and Apple IIc. there is no choice: CONTROL-RESET works, and
RESET alone does not. .

Some notable differences in key captions:

ESCAPE TAB CONTROL. SHIFT CAPS DELETE RETURN RESET Other
L.OCK

Apple II ESC nla -=-~-.;.;,:...:- -SHIFT nla nla RETURN RESET REPT

Apple II + ESC nla CTRL SHIFT nla nla RETURN RESET REPT

Early lIet ESC TAB CONTROL SHIFT CAPS DELETE RETURN RESET Apple keys
LOCK

Later lIet Esc Tab Control Shift Caps Lock Delete Return Reset Apple keys

Europe lie Esc -I Control I Delete Reset Apple keys

tEarly Apple lie's had "two-shot" injection-molded keys (until
about June. 1983). After that. manufacturing switched over to a
"subl.imation". process for applying captions to keys, and changed
th~ ca.ptions.

Back Panel

The Apple II and.1' Plus have three deep notches and two shallow
ones on their back panels. The Apple lie has a metal back panel
with 12 numbered rectangular openings with pop-out inserts.

The Apple II, II Plus, and lie have a lJideo-output phono jaCk and
mini-phono jacks for cassette input and cassette output. The
.'\pple Ue has a 08-9 game input connector that the Apple II and II
Plus do not have.

The Apple IIc has the following back-panel connectors. moving
from left to right as· viewed from the back:

• a game input 08-9 (like the lie) that is also for the mouse

.. a S-pin DIN connector for serial input and output (Port 2)

• a video expansion output 08-15 for RG8 monitor adapter, etc.

.. a video output phono jack (same as on all other Apple II's)

• a 08-19 connector. for connecting a second disk drive (like lie)

External Physical



II Internal Physical

• a .S-pin DIN connector for serial input and output (Port 1)

• a special recessed male 7-pin DIN connector for 12-volt DC
power input (unlike any of the other Apple II's)

The power switch is in the same position (left rear comer) and
same orientation (push in top to tum on) for all Apple II's.

The internal layout of the Apple lie is irrelevant to this discussion:
the user is not to open the Apple lie case.

The Apple lie internal layout differs from that of the Apple II
and II Plus in several general ways. There are. of course, far fewer
components:

• Component layout is different.

• There is no place for plug-in ROMs (like the Programmer's Aid
ROM).

• CardS that hadacormectioh On the main logic board on the II
and II Plus wilklot work on the lie.

. • There is a power-on light near the back panel.

• Slot a is gone.

• The auxiliary slot is set away from the back panel.

S/otslNo Slots

The Apple Hand ·.11 Plus have 8 identical slots; the lie has 7
identical slots plus a 50-pin auxiliary slot for video. add-on
memory, and test cards. The Apple lie has no slots; instead. it has
built-in hardWare and firmware equivalents to slots with cards in
them. These are called ports on the Apple lie.

Game //0 and Other Connectors
The Apple II. II Plus. and lie have a 16-pin game I/O connector
inside the case that supports 3 switch inputs. 4 analog (paddle)
inputs. and 4 annunciator outputs. The Apple lie and lie have a
08-9 back-panel connector that supports the 3 switch inputs
and 4 paddle inputs (2 on' the Apple lie). The Apple lie does not
support the 4 annunciator outputs.

IntroductIOn



II/rrputahd Output

Power Supply

The power supplies for the Apple II, II Plus, and lie are basically
identical; the one for the Apple lie is quite different from the rest.
For further comparisons. see the section under wHardware in
General. "

Disk Drive

All of the Apple II series computers are designed to operate with a
Disk II drive or its equivalent: 16 sectors. 35 tracks. and so on.

Speaker

The. Apple lie has the .same size speaker as the II and II Plus.
although it is face down and baffled better. The Apple IIc has a .
smaller speaker, and, in addition, has a 2-channel (but monaural)
mini-phone jack for headphones (which disconnects the internal
speaker when sometning is plugged into it) and a volume control.

This section describes the variations in character sets and other
va among the Apple II models.

Keyboard Character Sets

The Apple II. .and II Plus- keyboard character sets are the same.
They are described in the Apple II Reference Manual.

The Apple Ue and IIc keyboard character sets are the same: full
ASCII. The standard (Sholes) layout and key assignments are
described in the Apple lie Reference Manual. The Dvorak layout
and key assignments will be described in the Apple IIc Reference
Manual.

Input and Output



Display Character Sets
The Apple II and II Plus display character sets are the same: 64
characters ot uppercase ASClI (see the Apple " Reference
Manual). 80th the Apple lie and IIc make available this character
set with the addition of lowercase (called the primary set) and an
alternate· character set (which has inverse lowercase at the
expense ot flashing characters). 80th these sets are described in
the Apple lie Reference Manual.

Display Modes

All models have 4O-column text mode, low-resolution graphics
mode, mixed low-res and 40-column text mode, and
high-resolution graphics mode. The Apple lie (Rev 8 motherboard)
with 80-column text card, and the Apple IIc also have
double-high-resolution graphics mode.

Cassette I/O

The Apple II, 11 Plus and lie all have cassette input and output
jacks, memory locations, and monitor support. The Apple IIc does
not.

Disk I/O

The Apple II, 11 Plus, and lie can support up to 6 (4 is
recommended maximum) disk drives attached to controller cards
plugged into slots 6, 5 and 4. Th.e Apple IIc supports its built-in
drive (treated as slot 6 drive 1) and one extemal disk drive (treated
as· slot 6 drive 2, or as slot 7 drive 1 for extemal-drive startup
purposes.

Game I/O

The Apple II, II Plus, and lie support game input and output via a
16-pin Dual Intine Pin (DIP) connector inside the case. The
Apple lie and lie both support game 'ihput via a 08-9 connector on
their back panels.

Introduction



Mouse Input
The Apple IIc provides built-in firmware support for a mouse
connected to the OB-9 game/mouse connector. The Apple lie will
provide interface card firmware support for a mouse connected to
a OB-9 connector that the user installs with the card.

II Hardware in General

Type o} CPU
The Apple II and II Plus. CPU is the 6502. The Apple lie uses
a 6502A, which is capable of a faster clock speed than 1
megahertz (because it is hand-selected from 6502 production). but
in fact is not cfockedfaster than that in the Apple lie.

The Apple IIc..uses the 65C02as its CPU: this is a redesigned
CMOS CPU that has 27 new instructions, new addressing modes,
and.fC)'rsorne instruqtj.ons a differing execution scheme. Programs

-writte.n<for.the ApJ3'lellc will run on the, earlier machines only if they
do not contain instructions unique to the 65C02.

Amount and Address Ranges of RAM

Apphf lI'sha#a~rlittje as 4KofRAM at. the time of purchase. but
coul~be.upgrad9d to CLS lTluch as 48K ot RAM by replacing one or
more rows Of.4 ki.lp~it9hips with the (then) newer and noticeably
costl.ier 16 kHobit chips. Changing a lTlatched set of jumper blocks
completed the address mapping portion of the conversion. This
process. is described in the Apple II Reference Manual.

The Apple II .Plushas48K of RAM(SOOOO through SBFFF) as a
standard feature. Addresses SCOOO through SFFFF are occupied
by ROM only.

Installing an Apple Language Card. in an Apple II or II Plus adds
the 16K of RAM from SCOOO through SFFFF.

The.Apple lie has a full 64K of RAM. The top 12K addresses
overlap with the ROM addresses SOOOO through SFFFF. There is
an additional area of 4K from SOOOO through SOFFF. This
arrangement is equivalent to an Apple II Plus with an Apple
Language Card installed. A program selects between the RAM and

Hardware in General



ROM address spaces and between the' SOxxx banks by changing
soft switches located in memory. (This process is often called
"bank switching.")

With an Apple 80-column Text Card installed in its auxiliary slot. an
Apple lie has an additional 1K of RAM available, for displaying the
other 40 columns of 80-column text.

With an Apple Extended 80-Column Text Card installed in its
auxiliary slot, an Apple lie has an additional El4K of RAM available.
although no more than half of the 128K of RAM space is available
at any given time. Soft switches located in memory control these
address space selections.

The RAM in the Apple IIc is equivalent to the RAM in an Apple lie
with an Extended 80-column Card (in other words,
with 64K ... 64K).

Amount and Address Ranges of ROM

The Apple II and II Plus have from 2K to 12K of firmware in ROM.
The· uppermost addresses· (SF600 through SFFFF) are always
used, while other address ranges are optional. Users can plug
their own ROMs IntclthesOckets provided. The ROM address
range is from SDOOOthroughSFFFF.

The Apple lie has 16K of ROM (addresses SC100 through SFFFF;
page SCO addresses are for 1/0 hardware). ROM addresses
SC300tnrough S93FF (n9l'TTlaJ1y as~igned' to the ROM in a card in
slot 3) and scaoo thro~9h' SpAT. contain 80-column video
firmware; ROM addr~s~es SC100 thrglJgh SC2FF and SC4QO
through$C7FF(normallya~signedto the ROM on cards in
slots 1, 2, 4, 5, 6 and 7) contain built-in self-test routines.

Asoft switch controls whether the video firmware or slot 3 card
R9¥ is active. Invoking the self-te~s. with .-CONTROL-RESET
causes the self-test firmware to take over the slot ROM address
spaces.

The Apple lie ROM also uses the 16K from SC100 through SFFFF,
and its 80-colurnn video firmware occupies the same addresses as
on the lie. However, there are no built-,n self-tests. Instead.
addresses SC100 through SC2FF and SC400 through SC7FF
contain the firmware supporting the four built-in 1/0 ports (printer.
communication. mouse. and disk).

Introduction



Power Supplies

The p~wer supplies for the Apple II, II Plus, and lie are essentiaJly
the same: they convert 110 VAG (220 VAG on most internationaJ
models) to the voltages required by the circuitry. The Apple lie, on
the other hand, has an externaJ floor transformer that converts 110
VAG (or 220 VAG) to 12 vaG (nominaJ); the intemal power supply
then derives the required voltages.

II Firmware in General

This section discusses overall blocks of firmware. not about
individuaJ routines and their entry points. A full description of those
will appear. in the Apple lie Reference Manual.

Monitor

The Apple II comes with the so-called Old Monitor ROM, which
would put the user into the monitor (W prompt) at startup. The
resident interpreter is for Integer BASIC, with ROM space left over
for other firmwarra. (such. as programmer's aids).

The Apple II Plus, lie, and lie come with the Autostart ROM, which
tries to load software from the highest slot containing a Disk II
controller card or its. equivaJent. If this attempt fails, the autostart
monitor puts the user in the resident Applesoft interpreter
(] prompt).

Video Firmware

The video firmware for the Apple lie is identical to that for the lie.
Because. the Apple lie has no slots. the aO-column video firmware
is always present (switched in); there is no possibility of conflict
with firmware on a card in slot 3. Also note that there is only one
$C800-$CFFF address space: this, too. belongs to aO-column
video firmware.

Diagnostic Firmware

Apple II and II Plus do not have built·in diagnostics. The lie does: it
is invoked by pressing IIi-CONTROl·RESET. The Apple lie has a
• key, too, but no built-in diagnostics.

Firmware in General



(

.....-

Slot/Port Firmware

The Apple lie is the only Apple II of the four that has built-in
firmware for slots other than "slot 3" (SO-column video). In fact.
the Apple lie has hardware, firmware and back-panel connectors
that provide· the equivalent of:

• a subset of Super Serial Card hardware and firmware,
preconfigured for a 1200-baud (maybe 9600-baud) printer in
slot 1, with a 5-pin DIN back-panel connector;

• a subset of Super Serial Card hardware and firmware,
preconfigured for a 300-baud modem in slot 2, with a 5-pin DIN
back-panel connector;

• mouse-interface hardware, firmware in "slot 4" addresses, and
a D8-9 back-panel connector shared with game input;

• an enhanced set of disk controller card hardware and firmware.
designed to run the built-in drive as Slot 6 Drive 1 (and its
~uivalents in other operating systems), and the external drive
as. Slot 6 Drive 2, or even as Slot 7 Drive 1 (PR # 7) for system
startup from the external drive.

These equivalents. of sldt-card-firrnware-connector are called
ports 1, 2, 4, 6 and 7, respectively. 8y extension, the aO-column
video firmware can be called port 3, but only with caution. The
Apple .lie and lie Reference Manuals discuss how to tum the
SO-column firmware on and off correctly.

II Software in General

This section points out differences to watch out for with respect to
programming languages and operating systems that can (or can't)
run on the four machines.

Languages
The Apple lie does not support Pascal 1.0 firmware (110) protocols.
because its required fixed entry points are impossible to match
with the new firmware. Pascal 1.1 is more flexible. and so the
Apple lie can and does support it. Here the entry points are
addressed indirectly via a jump table.

Introduction



The Apple lie as shipped will not support Integer BASIC because
that interpreter does not work under ProDOS. To use Integer
BASIC. start the system using the DOS 3.3 System Master disk,
and invoke Integer BASIC from the keyboard or program.

Former cassette I/O locations now belong to the 4O/80-column
switch (SCOSO; was cassette input) and firmware functions (SC02x;
was cassette output).

Operating Systems
. The Apple IIc will be a ProDOS. rather than a DOS. machine. That
does not mean that DOS will not run on it. Rather, we will describe
ProDOS as the operating system, ship it and not DOS unless
otherwise requested.

CPIM will not currently run on the Apple IIc because it requires
plugging a Z80 card into a slot. (Slot? What slot?) Some day there
may be another way to make CPIM available, but there isn't right
now.

Operating system cassette 110 commands will cause error
messages or unpredictable weirdness. depending on how fail-safe
the OS is..

II Hardware Specifics

The specifics of firmware and I/O storage assignments will be
presented in the Apple lie Reference Manual. The sections fiere
discuss the use of integrated and hybrid circuits, and the
hard-wired I/O locations in the SCOxx address range.

Use of ICs

The lie custom chips (Memory Management Unit and Input/Output
Unit) replaced more than 50 chips, and added the functionality of
dozens more. The lie PAL replaced several logic chips. The
Apple lie has custom MMU and IOU chips, too, but they have
diHerenct "bonding options"; that is, some of the pins are attached
to diHerent parts of the logic inside for the lie and Apple lie
versions.

In addition, the Apple lie has a custom General Logic Unit (GLU),
Timing Generator (TMG), and Disk Controller Unit (IWM.
Integrated Woz (or Wendell) Machine). The Apple IIc has two

Hardware Specifics



hybrid units (AUD and VID) for audio and video amplification;
these save space on the PC board and consume less power that
the seperate components ("discretesn

) that they replace.

The trend as one moves from Apple II and II Plus to Apple lie
and lie is toward fewer and fewer chip sockets. Directly soldering
ICs to the circuit board saves money and increases reliability.
However, certain key parts (like character generator ROMs) still
have sockets. The Apple lie, in fact, is not intended to be opened
by the user-only by Apple manufacturing and service-so for
most people, sockets/no sockets is not important.

Hardware Locations

The following table compares the functions that have been
hard-wired into the' Apple lie and lie. Those hard-wired into the
Apple II and II Plus are explained in the Apple /I Reference
Manual.

Introduction



Apple lie

Same as on lie
Same as on lie
Same as on lie
Same as on lie
Sarne as on lie
Same as on lie
Same as on lie
Reserved (wnte)
Reserved (wrrta)
Same as on lie
Same as on lie
Reserved (wnte)
Reserved (wrrta)
Same as on lie
Same as on lie
Same as on lie
Sama as on lie
Sarne as on lie
Sarna as on lie
Same as on lie
Same as on lie
Same as on lie
Sarne as on lie
Reset XINT (read)
Sarne as on lie
Reset YINT (read)
Same as on lie
Reset VBUNT (read);
Same as on lie
Sarne as on lie
Same as on lie
Same as on lie
Same as on lie
Same as on lie

Apple lie

Keyboard data (0-6) & strobe (read)
Store in main memory (wnte)
Store in aux memory (wnte)
Read maul memocy (write)
Read aux memory (wnte)
Wnte main memory (write)
Wnte aux memory (write)
Slot ROMs at CXOO (wnte)
Internal ROM at CXOO (wnte)t
Main stael< & zero P8ge (write)
Aux stael< & zero page (write)
Internal ROM at caoo (write)
Slot ROM at C300 (wnte)
aO-eolumn display off (wnte)
aO-column display on (wnte)
Aft. char. set off (Write)
Aft. char. seton (write)
Clear keyt:loarcl strobe (wnte)
Any key doWm(bit 7)
Read baI"I1<1.2 (bit 7. 1 • bank 2)
Read RAM protectIenable (COax)
Read RAMRDSWitch (C002, C003)
Read RAMWRTsWllCh (C004, COOS)
Read SLOTCXROM SYI1tCt1 (COOS, C007)
RMdALTZP$witeh(900a, c009)
RM(jSLOTC3R.OMS'wfteh (COOA. COOB)
ReadSWltCtl (COOO. ca01 )
Read vet'tIC3J blanklnc;j (VBL)
Read.TEXT· SW1teh(C050, COS 1)
Read·MIXED SWiteh·(C052, C053)
Re.j(fPAGE.2 SW1teh(C054, C055)
Read HIRES swrtetf(C057, COSS)
Read ALTCHARSe'T swrteh (COOE, COOF)
Read aOCOI.. SWlteh (COOC, COOD)

_____ { Same ~ on lie
-------..................- Toggle cassette Output (read only)

Reserved (write)

COOO KBD
COOO SOSTORE
C001
C002 RAMRD
Coo3
C004 RAMWRT
caos
COO6 SLOTCXROM
COO7·
coos ALTZP
Coos
caOA SLOTC3ROM
COOB
COOC SOCOL
caoD
COOE ALTCHARSET
COOF
C01x KBDSTRB
C010 RDAKD
can RDBANK
C012 RDRAM
C013 RDRAMRD
C014 RDRAMWRT
C01S RDSLOTCXROM
C01S RDALTZP
C017 RDSLOTC3ROM
C01S .RDSOSTORE
C019 RDV8L
CQ1A RDTEXT
C01B RDMIXED
C01C RDPAGE.2
C01D RDHIRES
C01E RDALTCHARSET
C01F RDSOCOL
C020
C021
C022
C023
C024
C025
C026
C027
C028
C029
C02A
C02B
C<)2C
C020
C02E
C02F

t This would be more appropriately called INTCXROM*Use SC07x to reset VBlINT and also trigger paddle timers

Hardware Specifics



________ { Same as on lie
- Toggle speaker (read only)

Reserved (write)

C030
CCJ31
C032
C033
C034
C035
C036
C037
C038
C039
C03A
C038
C03C
C03D
C03E
C03F
C040
C041
C042
C043
C044
C04S
C046
C047
C048
C049
C04A
C048
C04C
C04D
C04E
C04F
coso
COS1
C052
COS3
C054
C05S
COS6
COS7
COSS
COS9
C05A
COS8
COSC
coso
COSE

COsF

Apple lie

Read annuncl3tOr 0 (bit 7)
Read annunCIatOr 1 (bit 7)
Head annunCIator 2 (bit 7)
Read annunCIator 3 (bit 7)

Text mode off
Text mode on
Mixed mode off (if text mOde off)
Mixed mOde on (if text mode off)
Page 2 off (dependS on 80STORE)
Page 2 on (dependS on aOSTORE)
Hi-res clear. usa RAMRD and RAMWRT
Hi-res set access hi-res page
Annunciator 0 off
Annunciator 0 on
Annunciator 1 off
AnnUnCIator 1 on
AnnunCiator 2 off
Annunctator 2 on
Annunciator 3 off: set dbt-hi-res

Annunciator 3 on; clear dol·hi-res

Apple lie

Read XOIYO mask status (bit 7)
Read Val mask status (bit 7)
Read XO edge (1 • falling)
Read YO edge (1 • falling)
Reserved
Reserved
Reserved
Reserved
R8aciOt' wrrteresetsX1NT & YINT
Fleadi9" wnte~XINT & YINT
Read or Write resets XINT & YINT
RetlidOl' wrrte~)(INT & YINT
Read 01' Write resets. XINT & YINT
Re8I.j or write resets XINT & YINT
Read or wnte .resets XINT & YINT
Read or write resets XINT & YINT
S8I11Efas on lie
Same as on lie
Same as on lie
Same as on lie
Same as on lie
Same as on lie
Same as on lie
Same as on lie
Disable mouse XO & YO interruptst
Enab.te mouse. XO. & YO intem.JPtSt
Disable Val interrupts"
Enable Val interrupts"
Interrupt on nSlOg edge 01 XOt
Imerrupt on falling edge of XOt
If IOUDIS off: Interrupt on nsing edge at YO
If IOUDIS on: set db/-hl-res
If IOUDIS off: Interrupt on falling edge of YO
If IOUDIS on: clear dbl-hl-res

t lOUDIS must be off for all these to work; all are RJW reserved if
IOUDIS on.

Introduction



C06x
C060

COS1
COS2
C063
C064
C06S
COS6
COS7
C06S
C069
C06A
C06B
COSC

. C06D
C06E
C06F
C07x
C070
C071
C072
con
C074
C075
C076
con
C078
C079
C07A
C07B
C07C
C07D
C07E

C07F

Apple lie

Cassette in (read)

Switch input 0 & 0 key
Switch input 1 & CLOSED·APPLE key
Switch input 2 (read)t
Read analog input 0 (bit 7)
Read analog input 1 (bit 7)
Read analog input 2 (bit 7)
Read analog input:3 (bit 7)

Analog input reset (paddle tngger)

Apple lie

Reserved (wnte)
Read 80/40 colume switch (bit 7) (1 .. 40 Col {SWitch
down}) .
Same as on lie (bit 7 .. 1 .. pressed)
Same as on lie (bit 7 .. 1 .. pressed)
Read mouse swrteh (bit 7)
Same as on lie
Same as on lie
Read mouse X1 (direction) on bit 7
Read mouse Y1 (direction) on bit 7
Reserved (read)
Reserved (read)
Reserved (read)
Reserved (read)
Reserved (read)
Reserved (read)
Reserved (read)
Reserved (read)

Read or write: trigger paddle timer; reset VBUNT
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Read: bit 7 .. GR (1 .. current line is graphics; 0 .. it
is text)
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
React bit 7 .. IOUDIS; logger paddle tlmer; reset
VBUNT
Write: set IOUDIS (that is, disable COS8·F IOU access
& enable DHIRES SWItch); tngger paddle timer; reset
VBUNT
Read: bit 7 .. DHIRES; tngger paddle orner; reset
VBUNT
Wme: clear IOUDIS (that IS, enable COS8·F IOU
access & disable DHIRES SWltCh); logger paddle timer;
reset VBUNT

t Commonly used as shift-key mod on II/II Plus

Hardware Specifics r;-;"1-, I



Apple lie Apple lie

COSO Protect RAM Read RAM 2nd 0000 Bank Same as on lie
COS, Wnte RAM Read ROM 2nd 0000 Banki Same as on lie
C082 Protect RAM Read ROM 2nd 0000 Bank Same as on lie
COS3 Write RAM Read RAM 2nd 0000 Banki' Same as on lie
C084 Protect RAM Read RAM 2nd 0000 Bank Reserved
COSS Write RAM Read ROM 2nd 0000 Sanki' Reserved
COS6 Protect RAM Read ROM 2nd 0000 Bank Reserved
COS7 Write RAM Read RAM 2nd 0000 sanki' Reserved
COSS Protect RAM Read RAM ,st 0000 Bank Same as on lie
COS9 Write RAM Read ROM 1st 0000 Banki'- .Same as on lie
COSA Protect RAM Read ROM 1st 0000 Bank Same as on lie
COSB Wnte RAM Read RAM 1st 0000 Sanki Same as on lie
COSC· Protect RAM Read RAM 1st 0000 Bank Reserved
COSO Wnte Ram Read ROM' st 0000 Batlkt Reserved
COSE Protect RAM Read ROM , st 0000 Bank Reserved
COSF Write RAM Read RAM' st 0000 Banki' Reserved
C090 Reserved (Serial pOrt ')

C09' Reserved
C092 Reserved
C093 Reserved
C094 Reserved
C09S Reserved
C096 Reserved
C097 Reserved
C09S Slot , perphteral card 110 T","""itIA""""'" Reg )
C099 Status Register ACIA
C09A Command Register
C09B Control Register
C09C Reserved
C09D Reserved
C09E Reserved
C09F R688l'V9d
COAO Reserved (Serial pOrt 2)
COA' Reserved
COA2 Reserved
COA3 Reserved
COA4 Reserved
COA5 Reserved
COA6 Reserved
COA7 Reserved
COA8 Slot 2 perphleral card I/O T"""",itlAecsMl Reg }
COA9 Status Register ACIA
COAA COmmand RegIster
COAB Control RegJStSf
COAC Reserved
COAD Reserved
COAE Reserved
COAF Reserved

t Write RAM reqtJires 2 consecutive read accesses: protect RAM
does not.

..-,
181 Introduction



Apple lie Apple lie

C080 Reserved
C081 Reserved
C082 Reserved
C083 Reserved
C084 Reserved
C085 Reserved
C086 Reserved
C087 Reserved
C088 Slot 3 perptlieraJ card 1/0 Reserved
C089 Reserved
C08A Reserved
C088 Reserved
C08C Reserved
C080 Reserved
COBE Reserved
COBF Reserved
COCO Reserved
COC1 Reserved
COC2 Reserved
COC3 Reserved
COC4 Reserved
COCS Reserved
COC6 Reserved
coca Slot 4 perphl9l'aJ card 1/0 Reserved
COC9 Reserved
COCA Reserved
COCB Reserved
coce Reserved
COCo Reserved
COCE Reserved
COCF Reserved
COoo Reserved
C001 Reserved
C002 Reserved
C003 Reserved
C004 Reserved
COOS Reserved
C006 Reserved
C007 Reserved
CODa Slot 5 perphteraJ card 110 Reserved
COD9 Reserved
CODA Reserved
C008 Reserved
COoC Reserved
CODo Reserved
CODE Reserved
COoF Reserved

Hardware Specifics



COEO
COE1
COE2
COE3
COE4
COES
COE6
COE7
COEa
COE9
COEA
COE8
COEC
COED
COEE
COEF
COFO
COF1
COF2
COF3
COF4
COF5
COF6
COF7
COFe
COF9
COFA
COFe
COFC
CaFD
CaFE
COFF

Apple lie

Slot 6 perphieral card 110

Slot 7 perphieral card I/O

IntroductIon

Apple lie

Phase 0 .. a (Disk Controller)
Phase 0 • 1
Phase 1 • a
Phase 1 • 1
Phase 2 • 0
Phase 2 • 1
Phase 3 • 0
Phase 3 • 1
Motor off
Motor on
Drive 1
Drive 2

L6 • 0
L6 • 1
L7 .. a
L7 • 1
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved



Monitor Entry Point Labels





This section presents a complete compilation of all $F800 Monitor
ROM label occurrences in the various source file listings and the
various lists of built·in subroutines. An wX" indicates 'that the label
appears in the source code listing and a wsupported" indicates it
was found in the list of built·in subroutines.

Sources for this information were:

• Apple II Reference Manual

page 61 ,'Some Useful'Monitor Subroutines
Page '1S5~· Monitor ROM"Usting"

. Page 136 : Autos~art ROM Usting

• Apple lie Reference Manual

Appendix C . Directory of Built-in Subroutines

• Apple II Reference Manual Addendum:Monitor ROM Ustings

Page 3 • Monitor Firmware Usting

• Apple IIc Reference Manual

Appendix C • Important Firmware Locations
C.S Monitor Addresses

• Apple IIc Firmware Assembly Ust

Monitor Entry Point Labels



Address Label Apple II Apple II Plus Apple lie Apple lie

$F800 PLOT X supported X supported X X supported
$F80C ATMASK X X X X
$F80E PLOT1 X X X X
$F819 HUNE X supported X supported X supported X supported
$F81C HUNE1 X X X X
$F82S VUNEZ X X X X
SF828 VUNE X supported X supported X supported X supported
SF831 ATS1 X X X X
$F832 CLASCA X suPPOrted X supported X supported X supported
$F83S CLATOP X supported X supported X supporter X supported
SF838 CLASC2 X X X X
SFS3C CLASC3 X X X X
$F847 G8ASCAL.C X X X X
SF85S G8CALC X X X
$F85F NEXTCOL supported supported supported
$FS5F NXTCOL X X X
SFS64 SETCOL X supported X supportEld X supported X supported
SFS71 SCAN X supported X supported X supported X supported
SF879 SCAN2 X X X X
SFS7F ATMSKZ X X X X
SFS82 INSDS1 'X X X X
SF88C INSDS2 X
SFSSE INSDS2 X X X
SFS97 IEVEN X
$FS9B IEVEN X X X
$FSA1 ERA X
SFSA5 ERA X X X
SF8A5 GETFMT X
SFSA9 GETFMT X X X
SF88E MNNDX1 X X X X
SFSC2 MNNDX2 X X X X
SF8C9 MNNDX3 X X X X
SFSCD GOTONE X
SFSDO INSTOSP X X X X
SFSD4 PANTOP X X X X
$FSD8 PRNTeL X X X X
$FSF5 NXTCOL X
SFSF5 PRMN1 X X X
$FSF9 PRMN2 X X X X
SF910 PRADR1 X· X X X
$F914 PRADR2 X X X X
$F92S PRADA3 X X X X

·$F92A PRADR4 X X X X
SF930 PRADR~ X X X X
SF938 AELJ>.DA X X X X
$F940 PRNrn< X X X X
$F941 PRNTAX X sUPPOrted X supported X supported X suPPOrted
SF944 PRNTX X X X X
SF948 PR8LNK X supported X supported X supported X
$F94A PR8L2 X supported X supported X supported X supported

"X" =Label appears in .s()urce listing
"supported" =Documented as a supported built-in subroutine

Monitor Entry Point Labels



Address Label Apple II Apple II Plus Apple lie Apple lie

SF94C PRBL3 X X X X
SF953 PCADJ X X X X
SF954 PCADJ2 X X X X
SF956 PCADJ3 X X X ·X
SF95C PCADJ4 X X X X
SF961 RTS2 X X X X
SF962 FMT1 X X X X
SF9A6 FMT2 X X X X
SF984 CHAR2 X
SF984 CHAR1 X X X
SF9BA CHAR1 X
SF98A CHAR2 X X X
SF9CO MNEML X X X X
SFAOO MNEMR X X X X
SFA40 IRQ X X X
SFA47 NewBREAK X
SFA43 STEP X
SFMC BREAK X X X
SFA4E XQINIT X
SFA59 OLDBRK X X X
SFA62 RESET X X X
SFA6F INITAN X X
SFA78 XQ1 X
SFA7A XQ2 X
SFAa1 NewMON X X X
SFA8S IRQ X
SFA92 BREAK X
SFA98 F1Xsev X X X
SFA9C XBRK X
SFAA3 BeePF1X X
SFAA3 NOFIX X X X
SFAA5 XRn X
SFAA6 PWRUP X X X
SFAA6 SETPG3 X X X
SFAA9 XRTS X
SFAAB SETPLP X X X
SFAAD PCINC2 X
SFAAF PCINC3 X
SFAB9 XJSR X
SFABA SLOOP X X
SFABD RESET.X
SFAC4 XJMP X
SFAC5 XJMPAT X
SFAC7 NXTSYT X X
SFACD NewPCL X
SFACF NOFIX X
SFAD1 RTNJMP X
SFAD2 RTBL X
SFAD7 REGDSP X X X X
SFADA RGDSP1 X X X X

"X" =Label appears in source listing
"supported" =Documented as a supported built-in subroutine

Monitor Entry Point Labels



Address Label Apple II Apple II Plus Apple lie Apple lie

$FAE4 RDSP, X X X X
$FAFD PWRCON X X X
$FAFO 8RANCH X
$F802 RGDSP2 X
$F805 DISKID X X
$F809 TITLE X X X
$F808 N8RNCH X
$F8" XLTBL X X
$F811 INIT8L X
$F812 PWRUP2 X
SF819 RTBL X X X
$F81E PREAD X supported X supported X supported X supported
SF825 PREAD2 X X X X
SF82E RTS2D X X X X
$F82F INIT X X X X
$F839 SEiTXT X X X X
$F840 SETGR X X X X
SFB48 SETWND X X X X
SF859 VTA823 X
SF858 TA8V X X X X
SF860 APPLEII X X X
SFB60 MULPM X
SF863 MUL X
SF865 STITLE X X X
SFB65 MUL2 X
SFB6D MUL3 X
$F86F SETPWRC X X X Sl.Jpported
SF876 MUL4 X
$F878 VIDWAIT X X X
SFB78 MULS X
SF881 DIVPM X
SF884 DIV X
SF886 DIV2 X
$FB88 K8DWAIT X X X
SF894 NOWAIT X X X
$FB97 ESCOLD X X
SFB98 ESCNOW X X
SF8AO NEWADV X
SF8AO DIV3 X
SF8A4 MD1 X
SF8A5 ESCNEW X X
SF8AF MD2 X
SFBBO NEWADV1 X
SFB83 F8VERSION X
$FB83 VERSION X
SF884 GOTOCX X
SF884 DOCOUT1 X
SFB84 MD3 X
SF88C DCX X
SF8CO MDRTS X

wX" =Label appears in so.urce listing
wsupported" =Documented as a supported built-in subroutine

Monitor Entry Point Labels



Addreaa Labe4 Apple II Apple II Plus Apple lie Apple lie

SF8C1 BASCALC X X X X
SF8DO BSClC2 X X X X
SF8D9 CHKBEll
SF8D9 BELl.1 X X X
SF8DD BELl.1 supported supported supported X supported
SF8E4 BEW X X X X
SF8EF RTS2B X X X X
SF8FO STORADV X X X
SF8FO STOADV X
SF8F4 ADVANCE X X X X
SF8F8 ADV2 X
SF8FC RTS3 X X X X
SF8FD VIDOUT X X X X
SFC04 VIDOUT1 X
$FC10 BS X X X X

. SFC1A UP X X X X
SFC22 VTAB X X X X
SFC24 VTABZ X X X X
SFC2B RTS4 X X X X
SFC2C ESC1 X X X
SFC3~ NEWOPS X
SFC38 NEWOP, X
SFC42 CLREOP X X X SUPPOrted X supported
SFC44 CLREOP2 X
SFC46 CLEOP, X X X X
SFCS8 HOME X ~ X supported X supported
SFCSD CLREOP1 X
SFCS2 CR X X X X
SFCSS LF X X X X
$FC70 SCROll X X X X
SFC72 XGOTOCX X
SFC73 NEWCR
SFC76 SCRl1 X X
SFC80 GETlNDX X
SFC84 RDCX X
SFC85 CRRTS X
SFC86 NEWVTAB X
SFC8C SCRL.2 X X
SFC8D NEWCLREOl X
SFC90 NEWCLEOLZ X
SFC91 ISSlOTS X
SFC95 SCRL3 X X
$FC99 'NEWC1 X
SFC99 ISPAGE1 X
SFC9C CLREOl X X X supported X sUPPOrted
SFC9E CLEOLZ X X X supported 'X SUpported
SFCAO CLRllN X
SFCAO CLEOL.2 X X
SFCA4 CTLDO X
SFCA8 WAIT X supported X supported X supported X suPPOrted

"X" = Label appears in source listing
"supported" = Documented as a supported built-in subroutine

Monitor Entry Point Labels



Address

SFCA9
SFCAA
SFC84
SFCBA
SFCCS
SFCC9
$FCCA
SFCDO
SFCD6
$FCDB
SFCE2
$FCES

. SFCE7
SFCEC
SFCEE
$FCF6
SFCFA
SFCFC
SFCFD
SFO03
SFDOC
SFD1a
SF018
SFD20
SFD21
SFD21
SFD25
SFD2F
SFD35
SFD38
SF03D
$FD44
SFD45
$FD4A
SFD5F
$FD62
$FD67
$F06A
$FD6F
SFD71
$FD75
$FD7E
SFD84
SF088
$FD8E
$FD92
SF096
$FDA3
SFDAD
$FDB3

WAIT2
WAIT3
NXTA4
NXTA1
RTS4B
HEADR
COLOSTART
BLAST
WRBIT
ZERDLY
ONEDLY
WRTAPE
COM1
RDBYTE
RDBYT2
COM2
RD2BIT
COM3
ADBIT
APPLE.2C
ADKEY
KEYINO
KEYIN
DONXTCUR
ROESC
KEYIN2
GOTKEY
ESC
ADCHAA
LOOKPICK
NOTCR
NOESCAPE
NOESC1
NOESC2
NOTCR1
CANCEL
GETLNZ
GETLN
GETLN1
BCKSPC
NXTCHAR
CAPTST
ADDINP
CROUT1
CROUT
PRA1
PRYX2
XAM8
MOD8CHK
XAM

Apple II

X
X
X
X
X
X

X
X
X
X

X
X

X

X

X supported

X supported

X

X
X supported

X

X
X
X supported
X supported
supported

X
X
X
X
supported

X supported
X
X
X
X
X

Apple II Plus

X
X
X
X
X
X

X
X
X
X

X
X

X

X

X supported

X supported

""*
X
X supported

X

X
X
X supported
X supported
supported

X
X
X
X
supported

X supported
X
X
X
X
X

Apple lie

X
X
X
X
X
X

X
X
X
X

X
X

X

X

X supported

X supported

X

X
X supported

X

X
X
X supported
X supported
supported

X
X
X
X
supported

X supported
X
X
X
X
X

Apple lie

X
X
X
X
X

X
X

X

X

X

X
X supported
X
X supported
X

X supported
X

X
X
X
X
X
X supported
X supported
X supPOrted

X supported
X suPPOrted
X
X
X
X
X

281

"X" =Label appears in source listing
"supported" =Documented 'as a supported built-in subroutine

Monitor Entry Point Labels



Addreaa Label Apple II Apple II Plus Apple lie Apple lie

$FDBS DATAOUT X X X X
$FDC5 RTS4C X X X X
$FDCS XAMPM X X X X
$FDD1 ADD X X X X
$FODA PRBYTE X supported X supported X supported X supported
$FDE3 PRHEX X supported X supported X supported X supported
$FDE5 PRHEXZ X X X X
$FDED COUT X supported X supported X supported X supported
$FOFO COUT1 X supproted X supported X supported X supported
$FOFS COUTZ X X X X
$FEOO BL1 X X X X
$FE04 BLANK X X X X
$FEOB STOR X X X X
$FE17 RTS5 X X X X
$FE18 SETMODE X X X X
$FE10 SETMDZ X X X X
$FE20 LT X X X X
$FE22 LT2 X X X X
$FE2C MOVE X X X supported X supported
$FE36 VERIFY supported X supported
$FE36 VFY X X X
$FE58 VFYOK X X X X
$FE5E UST X X X X
$FE63 UST2 X X X X
$FE7!5 A1PC X X X X
$FE78 A1PCLP X ~ X X
$FE7F A1PCRTS X X X
$FEBO SETlNV X supported X supported X supported
$FE84 SETNORM X supported X supported X supported X
$FEB6 SETlFLG X X X X
$FE89 SETKBD X X X X
SFEBB INPORT X ~ X X
$FESD INPRT X X X X
$FE93 SETVID X X X X
$FE95 OUTPORT X X X X
$FE97 OUTPRT X X X X
$FE9B IOPRT X X X X
$FEA7 NOTPRTO X
$FEA7 IOPRTl X X X
$FEA9 IOPRT2 X X X
$FEAB IOPRT2 X
$FEAF CKSUMFIX X
$FEBO XBASIC X X X X
$FEB3 BASCONT X X X X
$FEB6 GO X X X X
$FEBF REaZ X X X X
$FEC.2 OPRT2 j(

$FEC.2 TRACE X X X
$FEC4 STEPZ X X X
$FECA USR X X X X

UX" = Label appears in source listing
Usupported" = Documented as a supported built·in subroutine

Monitor Entry Point Labels



Addreu Label Apple II Apple II Plus Apple lie Apple lie

$FECD WRITE X X Xsupported X
$FECE DOPRO X
$FED4 WR1 X X X
$FEDE IOPRT1 X
$FEE2 DECCH X
$FEEg CLRCH X
$FEE8 WDTHCH X
$FEEC SErCUR X
$FEED WR8YTE X X X
$FEEE SErCUR1 X
$FEEF WR8YT2 X X X
$FEF6 CRMON X X X X
$FEFD READ X X Xsupported X
$FEFE OPTBL X
$FFOA RD2 X X X
$FF15 INDX X
$FF16 RD3 X X X
$FF2D PRERR Xsupported Xsupported Xsupported X supported
$FF3A 8ELl. Xsupported Xsupported X supported X supported
$FF3F IOREST supported supported supported supporteo
$FF3F RESTORE X X X X
$FF44 RESTR1 X X X X
$FF4A IOSAVE supported supporteo supported supported
$FF4A SAVE X X X X
$FF4C SAV1 X X X X
$FF58 IORTS ,-

supported
$FF59 OLDRTS X X X
$FF59 RESET X
$FF65 MON X X X X
$FF69 MONZ X X X X supported
$FF73 NXTlTM X X X X
$FF7A CHRSRCH X X X X
$FF8A DIG X X X X
$FF90 NXTB/T X X X X
$FF98 NXTBAS X X X X
$FFA2 NXTBS2 X X X X
$FFA7 GETNUM X X X X
$FFAD NXTCHR X X X X
$FF8E TOSUe X X X X
$FFC7 ZMODE X X X X
$FFCC CHRTeL X X X
$FFCD CHRTeL X
$FFEO SU8TeL X
$FFE3 SU8T8L X X X
$FFF7 GETHEX X
$FFFE IRQVECT X

"X" = Label appears in source listing
"supported" = Documented as a supported built-in subroutine

Monitor Entry Point Labels



Machine Identification





By looking at the identification bytes in the Monitor ROM, it is
possible to identify which machine your software is running on so
that it can take advantage of the special features of that particular
machine.

The original Apple II and Apple II. Plus used two different monitor
ROMs: the "original" monitor and the "auto-start" monitor. They
are interchangeable between the two machines. In almost every
case, it makes no difference whether your software is running on
an Apple II or a.n..Appte II Plus, 'since the hardware was identical,
only the Monitor and BA.SIC ROM sets were changed. This
section explains how to determine which Monitor ROM is present,
and, if you need to test the BASIC ROMs, you may look at SEOOO
for a $4C (JMP instruction) to identify an Applesoft ROM set, or a
$20 (JSR instruction) to identify -an Integer BASIC ROM set.

All other revisions of the Apple II have Applesoft BASIC built in.
Note, however, that the Apple III has an Apple II emulation mode.
which' permits it to emulate a 48K Apple II Plus with either
Applesoft or Integer BASIC.

To identify the various Monitor ROMs, look for the following:

Machine SFBB3 (64435) SFB1E (64286) $FBCO (64435)

Apple II (anginal $38 (56)
monltOt')
Apple II Plus SEA (234) SAD (173)
(autostart monrtor)
Apple III emulation $EA (234) S8A (138)
mode
Apple lie S06 (6) SEA (234)
Apple lie Wlth S06 (6) SEO (224)
ICON suppon
Apple lie $06 (6) SOO (0)

Machine Identification



Apple's Developer Technical Support group has routines that
identify the various versions of the Apple II family. To obtain a
copy, write to:

Apple Computer, Inc.
Developer TechnicaJ Support
20525 Mariani Ave., MS 22·W
Cupertino, CA 95014

or phone:

(408) 554-5213

Machine Identification



Apple /lc Applesoft Firmware Differences





The vectors for the following Applesoft key words:

• SHLOAD

• RESTORE

• STORE

• LOAD

• SAVE

have been chang1kl since they are associated with cassette tape,
which is no longer supported. The vectors now point to the
ampersand vector so tbat you can write routines to intercept
control'when any of these key words appear. If you simply leave
the ampersand vector as. it IS at boot-up, the commands are not
reJected, with a SYNTAX·ERROR, but become "do-nothingn

commands.

Under DOS 3.3. hook your routine directly into the ampersand
hook at $3F5.

Under PreDOS. S3F5 points to the external command vector in the
BASIC.SYSTEM global page. You can hook your routine into the
ampersand vector. or into the external command vector in the
global page.

In either case. the pointing to the ampersand and/or external
command vectors is automatic. No ampersand prefix or "PRINT
CONTROL·D" prefix is needed.

Since the Apple lie has a true uppercase/lowercase keyboard.
Applesoft on the Apple lie will accept and upshift lowercase
characters when input in immediate mode. No upshifting will occur

Apple lie Applesoft Firmware Differences



inside of quotes. REMs. DATA statements. or while a BASIC
program is executing. All keywords and variable names will be
uppercase only when the program is listed.

The Apple lie firmware supports MouseText. The video firmware.
when property enabled, is able to display a set of graphic
characters that were designed to be used with the mouse. To use
the mouse characters:

• Tum on the video firmware (PR#3)

• Enable mouse characters (PRINT CHR$(27) {Hex $1B})

• Set inverse mode (INVERSE or PRINT CHR$(15) {Hex $OF})

• Print capital letters or PRINT CHR$(64 to 95)

• Disable mouse characters (PRINT CHR$(24) {Hex $18})

• Set normal mode (PRINT CHR$(14) {Hex $0E})

When actually in screen memory I the 32 mouse characters have
ASCII codes 64 • 95 ($40 • $SF). Inverse characters that
previously occupied that range are remapped to ASCII codes
0·31 ($00 = $1F).

Apple lie Applesoft Firmware Differences



Interrupt Handling on the Apple lie





This document contains excerpts from the Apple lie Reference
Manual and describes the handling of IRQ interrupts. It is intended
as an overview of the interrupt capabilities of the Apple lie. It is not
intended as a programmer's guide. The full details are in the
Apple lie Reference Manual.

II What Is an Interrupt?

On a computer, an interrupt.is a signa) that tells the computer to
,stC'-p what it'is'cUrrentiydeing and,devote its attention to a more
important task.: For exampl~, the:, Apple lie mouse sends an
intemipt to' the computer every time it moves. This is necessary
because, unless the' mou~Et: is.read shortly after. it moves, the
signal indicating its dirBction· is·:Iost.

II Interrupts on the Apple lie Computer

The Apple IIc built-ininte.rrupt handler, unlike earlier systems in the
Apple II family, now saves the accumulator on the stack instead of
in location $45. Thus, :both DOS and the Monitor work with
interrupts on the Apple IIc.

Interrupts are effective only if they are. enabled most of the time.
Interrupts that occur while interrupts are disabled cannot be
detected. Due to the critical timing nature of disk reads and writes.
Pascal. DOS. and ProDOS turn off interrupts while performing disk
operations. Thus. it is impOrtant to remember that while a disk
drive is being accessed, all sources of IRQ interrupts are. in
effect. turned off:

Interrupt Handling on the Apple lie
r--

141



II Interrupt Handling on the 65C02

From the point of view of the 65C02 in the Apple lie, there are two
possible causes of interrupts:

1. If interrupts to the 65C02 are not masked (that is. the CLl
instruction has been used), the IRQ line on the microprocessor
could be pulled low.

2. The processor executed a break instruction
(BRK =opcode SOO)

(NOTE: The NMI line in the Apple IIc is not used. thus an NMI
interrupt can never happen.)

These two options cause the 65C02 to save the current program
counter and statOs byte on the stack and then jump to the routine
whose address is stored in SFFFE and SFFFF. The sequence
performed by the 65C02 is:

.. If IRQ. finish executing the current instruction.

• Push high byte of program counter onto stack.

• Push low byt~of program counter onto stack.

• Push statOs byte onto stack.

-Jump to address stored in SFFi=E. SFFFF [JMP ($FFFE)].

II The Interrupt Vector at$FFFE

In the Apple IIc computer, there are three separate regions of
memory that contain address SFFFE:the built-in ROM,the
bank-switched memory in main RAM, and the bank-switched
m~mory in~uxiliary.RAM. The vector at SFFFE in the ROM points
to the~pple 1.10's .built-in interrupt-handling routine. Because the
interrupts in the Apple lie are complex. we recommend that you
use it rather than write your own interrupt-handling routi~e.

When you initialize the mouse firmware or the communications
firmware. copies of the ROM's interrupt vector are placed in the
interrupt vector's addresses in both main and auxiliary
bank-switched memory. If you plan to use interrupts and the
bank-switched memory without the mouse or communications
firmware, you must copy the ROM's interrupt vector yourself.

Interrupt Handling on the Apple lie



II The Built-in Interrupt Handler

The built-in interrupt handler is responsible for determining
whether a break or an interrupt occurred. If an interrupt occurred.
the built-in handler decides whether the interrupt should be
handled internally, handled by the user, or simply ignored.

The built-in interrupt-handling routine records the state of the
computer's current memory configuration. It then sets the
computer's memory configuration to a standard state. This allows
a user's interrupt handler to know the precise memory
configuration when it is called.

Next. the built-in interrupt handler checks to see if the interrupt
was caused by a break instruction and handles it accordingly. If it
was not a break. it looks for interrupts that it knows how to handle
(for example. if the interrupt was caused by the mouse. and the
mouse has been properly initialized) and handles them. Depending
on the state of the system, it either ignores other interrupts or
passes them to a user's interrupt-handling routine whose address
is stored at $3FE and $3FF of main memory. After the user's
handler returns ('Nith an RTI), the built-in interrupt handler restores
the memory configuration. then does an RTJ to restore processing
to whElre it .....,as wh~n the interrupt occurred. Each of the steps is
explained in. detail.. below.

The Built-in Interrupt Handler



Interrupted Built~n User's
Program Processor Handler Handler

Program Dr Push Address
Push Status
JMP ($FFFE) )11II Save old and set new

memory configuration.

If BRK then JMP
($3FO) )11II

Our interrupt?

NO:
Push address
Push Status
JMP ($3FE) ... Handle interrupt

YES:
Handle it

Rest?ra memdry' • RT!
configuration

Pull Status ... RTt
Program :II Pull Address

II Saving the Memory Configuration

The built-in interrupt handler saves the state at the system and
sets it to a known state according to these rules:

• If 80STORE and PAGE2 are on, then text page 1 is switched
in so that main screen holes are accessible (PAGE2 off) .

• 0 Main memory is switched in for reading (RAMRD off).

• Main memory is switched in for writing (RAMWRT off).

• $DOOO·$FFF ROM is switched in tor reading (RDLCRAM off).

Interrupt Handling on the Apple lie



• Main stack and zero page are switched in (ALTZP off) .

• Auxiliary stack pointer is preserved, and the main stack is
restored.

Since main memory is switched in, all memory addresses used
later in this section are in main memory unless otherwise
specified.

II Managing the Memory Configuration

Because the Apple lie has two stack pages, we have adopted· a
convention that allows the system to be run with two separate
stack pointers. Two bytes in the auxiliary stack page are to be
used as storagefor inactive stack pointers: $100 for the main
stack pointer when the auxiliary stack is active, and $101 for the
auxiliary stack pointer when the main stack is active.

When a program uses interrupt switches in the auxiliary stack for
the first time, it should place the value of the main stack pointer at
$100 in the auxiliary stac:k and initialize the auxiliary stack pointer
to$FF (the.toP9fthestaek).When it subsequently switches from
oneistack tq the Otl'lElr, it. should save the current stack pointer
before·'oading the pointer for the other stack.

II Userls Interrupt Handler at $3FE

The screen hole locations can be set up to indicate that the user' s
interrupt handler should be called when certain interrupts occur.
To use such a routine, place the address of the routine at $3FE
and $3FF in main memory (low byte first).

The user's in~errupt handler should

• verify that the interrupt came from the expected source;

• handle the interrupt as desired;

• cc:ear the interrupt, if necessary;

• return with an RTI.

In general, there is no guaranteed response time for interrupts
because the system may be doing a disk operation that could last
for several seconds.

User's Interrupt Handler at $3FE



Once the built-in interrupt handler has been called. it takes
about 250 to 300 microseconds for it to call your interrupt handling
routine. After you routine returns, it takes 40 to 140 microseconds
to restore memory and return to the interrupted program.

II Sources of Interrupts

The Apple lie can receive interrupts trom many different sources.
.EacM-source- is enabled and used slightly differently than the

----others;··Theraare two basic classes of interrupt sources: those
associated with use of the mouse, and those associated with the
two 6551 ACIA circuits.

The interrupts associated with the mouse are

• an interrupt generated when the mouse is moved in the
horizontal (X) direction

• an interrupt generated when the mouse is moved in the verticle
(Y) direction

• an interrupt·generated every.1/60 second, synchronized with
the video vertiG3J blanking signal

.. using the firmware, an interrupt generated when the mouse
button is pressed.

The interrupts associated with the ACIA's are

• an interrupt generated when a key. is pressed

• an interrupt generated by a device attached to the extema.l disk
drive port

• an interrupt generated when either ACIA has received a byte of
data from its port

• an interrupt generated when pin 5 of either serial port changed
state

• an interrupt generated when either ACIA is ready to accept
another character to be transmitted

• an interrupt generated when the keyboard strobe is cleared.

Interrupt Handling on the Apple IIc



III Firmware-Handling of Interrupts

The following sections present an overview of how the built-in
firmware handles interrupts.

Firmware for Mouse and Vertical Blanking

When the mouse is initialized, the interrupt vector is copied to
main and auxiliary bank-switched RAM. When the mouse is active.
possible sources of interrupts are

• mouse movement in the X direction

• mouse movement in the Y direction

• change of state of the button

• leading edge of the vertical blanking signal.

When an intel11.Jpt occurs, the built-in interrupt handler determines
whether that particular interrupt source was enabled by the
SETMOUSE call. If so, -the user's interrupt handler, whose
address is stored at $3FE, is called.

Thei"terrupt harttner.shouldfirstcaJlSERVEMOUSE to determine
the source of the .interrupt. If th.e interrupt was due to mouse
movement or button, the iQterrupt hand'ier should then do a call to
READMOUSE. The interrupt should then be serviced and
terminated with an RTI.

"... . ' , .. ,.. ' ..•., .

,Remember:-An intslTupt:rrtay' bQ,' rmsSed: during:disk aceasse~_,

If you tum on mouse interrupts without initializing the mouse, the
built-in. intel'T1,Jpt handler. will absorb the interrupts. If you wish to
handle .mous~. interrupts yourself, you must write your own
interrupt handler and place vectors to it in bank-switched RAM.
Interrupts will be ignored whenever the SDOOO-$FFFF ROM is
switched in.

Firmware for Keyboard Interrupts

The Apple lie is able to generate an interrupt when a key is
pressed. Keyboard interrupts are received through the ACIA for
port 2. When the user's interrupt handler is called, it can identify
the interrupt source as the, keyboard rather than the serial port.

Firmware-Handling of Interrupts



The firmware is able to buffer up to 128 keystrokes. After the
buffer is full, any additional keystrokes are ignored. Because
interrupts are generated only when a key is pressed;'
auto-repeated characters are not buffered.

Once keyboard buffering has been tumed on, the next key should
be read by calling RDKEY ($FDOC). Pressing ti·CONTROL-X
clears the buffer.

Keyboard buffering, is automatically tumed on when the serial
firmware is placed in Terminal mode. Otherwise, you must tum it
qn yourself. A PR # 2 or IN # 2 or the equivalent will shut off
keyboard buffering.

Using External Interrupts Through Firmware

Pin 9 of the extemal disk drive connector (EXT1NT) can be used to
generate interrupts through the ACIA for port 1. It can be used as
a source of interrupts (on a high-to-low transition) if enabled.

When the user's interrupt handler is called, it can identify the
source of the interrupt•

..
Firmware ·for Serial InterruptS

TlleApple lIciS. able to generate interrupts both when the ACIA
receivfld data arld when it is ready to send data. The built-in
interrupt handler responds to incoming' data only. The firmware is
able to buffer up to 128 incoming bytes of serial data from either
s~rial port. After the bufflar is full. data are ignored. Only one port
can be buffered at a time.

Serial buffering is automatiCally tumed on when serial firmware is
placed in Terminal mode. Otherwise. you must tum it on yourself.
When enabled, normal reads from the serial port firmware fetch
data from the buffer rather than directly from the ACIA.

It is also possible to use the firmware.to call the user interrupt
handler whenever a byte of data is read by the ACtA. In this mode,
buffering is not performed by the firmware. When thuS enabled,
the user's interrupt handler is called each time the port receives a
byte of data The handler can identify the source of the interrupt.

The serial firmware does not implement buffering for serial output.
Instead, it waits for two conditions to be true before transmitting a
character:

Interrupt Handling on the Apple lie



.. The AClA's transmit register must be ready to accept a
character.

.. The device must signal that it is ready to accept data.

A Loophole in the Firmware
So that programs can make use of interrupts on the ACtAs without
affecting mouse interrupt handling, we left a time loophole in the
built-in handler. If transmit interrupts are enabled on the AClA,
then control is passed to the user's interrupt handler if the
interrupt is not intended for the mouse (movement, button, or
V8l).

This means that you can write more sophisticated serial
interrupt-handling routines than we could provide (such as printer
spooling). The firmware will still set memory to its standard state.
handle mouse interrupts, and restore memory after your routine is
finished.

When you receive the interrupt, neither ACtA's status register has
been read. It is your responsibility to check for interrupts on both
ACtAs. You must determine which of the four interrupt sources on
each ACIA causoo the interrupt and how to handle them. The
built-in firmware itself is an excellent example of how. interrupts on .
the ACIA can be handled.

Firmware-Handling of Interrupts





Apple lie Firmware





II Video Firmware

This section is a brief user's guide to the firmware of the Apple lie.
It assumes that you are familiar with the use and operation of the
Apple lie, and it places emphasis on the differences between
the lie and lie.

40 Columns Versus 80 Columns
The Apple lie has two distinct video modes: Apple II mode
(cheCkerboard cursor) and Apple lie mode (s'olid cursor). The
system boots up in Apple II mode; Y9u switch to Apple lie mode
with the PR # 3 commmand and return to Apple II mode using
ESC CONTROL-a. On the Apple lie, the commands ESC 4 and
ESC 8 will also s.....,itch into Appl13l1emode.

Diagnostics
The Apple lie does not have a diagnostic program as we know it in
the Apple lie. Instead, ithas a memory exerciser that exercises all
the RAM and I/O switches. To activate it. press

.·CONTROl·RESET

To reboot the system, press

CONTROL·RESET

Apple lie Firmware



II Mouse Firmware

65C02 Microprocessor

The Apple lie uses the 65C02 microprocessor, an extended
version of the 6502 chip used in the lie. If you use the Monitor
program in the Apple lie, you will find that the L command (Ust)
disassembles the extended instruction set provided by the 65C02.
(The ProDOS version of EDASM supports this extended
instruction set if you use the X6S02 directive.)

Window Widths
The Apple lie video firmware allows only even window widths and
window lett edges when you are using 80-column mode. The
Apple lie video firmware allows you to use both odd and even
window widths. in all situations.

Mouse Character Set

The. Apple lie is endowed with the world-famous mouse character
set. The Apple lie character ROM, when properly enabled, is able
to display a set of graphics characters that were designed to be
used with the mouse. To use the mouse characters

• TUm on the video firmware (use the PR#3 command).

• Enable mouse characters (PRINT CHR$(27) (hex $1 B)).

• Set inverse mode.

• Print capital letters.

• Disable mouse characters (PRINT CHR$(24) (hex $18)).

• Set normal mode.

Apple lie Firmware



The mouse character set itself is included at the end of this
document. Here is a BASIC program tt:1at prints all the mouse
characters:

10 DS-CHR$(4)
20 PRINT DS;"PR#3"
30 INVERSE
40 PRINT
CHRS(27):"~ABCOEFGHIJKLMNOPORSTUVWXYZ(JA·;CHR$(24);

50 NORMAL

The 32 mouse characters have ASCII codes 64-95 ($40-$5F).

Using the Mouse as Paddles

With the Apple lie. the mouse can either be used instead of the
paddles (not true of the lie), or as an X-V pointing device in slot 4.
If the mouse is tumed on, the monitor ROM paddle routines will
take input from the mouse instead of from the paddles. This is
acceptable because the mouse and the paddles (and the joystick)
are all plugged into the same port in the back of the Apple IIc. For
example, a Bj1.§JGproqramthatusesthe POL function to read
from the paddles-works just as well reading from the mouse. Try
this: .

1. Boot O·OS 3.3 (the old one with UTILE BRICK OUT on it).

2. Type PRN4 and press RETURN to tum on the mouse.

3. Press CONTROL-A and then press RETURN to initialize the
mouse.

4. Type PRIIIO and press RETURN to restOre oUtpUt to the screen.

5. Type RUN LITTLE BRICK OUT and press RETURN to run the
program.

Play LITTLE BRICK OUT using the mouse instead of the paddles.
Ignore the. clicking noise when you move the mouse. This is a
diagnostic aid that tells us thatthe mouse is alive and squeaking.

Mouse Firmware



Using the Mouse From BASIC

If you would rather use the mouse in a more conventional manner,
you can treat it as a device in slot 4. The general method is like
this: '

1. Initialize the mouse by printing a 1 to it.

2. Set input to come from slot 4.

3. INPUT X, Y, and button status from the mouse.

4. When done, set input to come from slot 0 (or 3).

Here is a BASIC program that demonstrates the use of the mouse.
It reads from the mouse and prints the current values to the
screen. When you press and then release the mouse button, the X
and Y settings are reinitialized to O. When a (readable) key is
pressed. the program ends.

The Xand Y coordinates are initialized to 0 when you print a 1 to
the mouse firmware. They have a range from 0 to 1023. The
mouse button retums values are as follows:

+/. 2
+). 1
+/- 3
+/. 4

= just pressed
= "still1"'essed
= just released
= still up

The value of the button status is normally positive. It becomes
negative if a key is pressed.

II The Built-in Printer Firmware

The Apple lie printer firmware is intact and works from BASIC.
However, its 10 bytes do not identify it as any existing peripheral
card. Thus, anyone (i.e. Pascal) that looks at 10 bytes will not be
able to use it. To use the serial Dot Matrix Printer (Imagewriter)
from BASIC:

1. Set printer DIP switches like this:

ON ON ON UP ON ON ON ON

ON ON UP UP

2. Type PRN 1 to direct output to the printer.

3. Subsequent output goes to the printer.

4. Type PRNO (or PRIt3) to redirect output to the screen.

Apple lie Firmware



c

Sy default. the printer firmware has the follow'ing settings:

• 9600 baud

• 8 data bits, 1 stop bit

• no parity

• 80-column line width with no video echo

• Une feed generated after RETURN

• Delay after line feed of 250 ms (1/4 second)

• Default command character is set to CONTROL-I.

These settings can be changed as described below.

Printer Firmware Commands

Once the printer fim1ware has been activated (by a PR # 1). it
operates very much like the Apple II Super Serial Card when it is
in printer mode. Refer to the Super Serial Card Manual for more
details on using the following commands. "I means CONTROL·I.

"InnS Set baud.@te to nn

Baud Rate nn

50 1
75 2

110 3
135 4
150 5
300 6
600 7

1200 8
1800 9
2400 10
3600 11
4800 12
7200 13
9600 14

19200 15

The Built-in Printer Firmware



" Inno Set data format bits to nn

Data Format nn .

8 data. 1 stop 0
7 data. 1 stop 1
6 data, 1 stop 2
5 data, 1 stop 3
8 data, 2 stop 4
7 data, 2 stop 5
6 data, 2 stop 6
5 data, 2 stop 7

"II Enable video echo

"IK Disable linefeed atter CR

" IL Enable linefead atter CR

" InnN Disable video echo and set printer width to nn. nn is printer
width in decimal.

" InnP Set parity bits to nn

Panty nn

none 0,2,4,6
odd 1
even 3
MARK 5
SPACE 7

" 12 Zap control commands

" IX Set command char to "X (default, "I)

"lnnCR Set printer width (CR =carriage return). Video echo must
be disabled.

II The Built-in Communcations Firmware

The Apple IIc communications firmware is intact and works from
BASIC. Its 10 bytes identify it as an Apple II communications card
to most programs, and as a Super Serial Card to Access II.

Refer to the Apple II Super Serial Card manual for a description of
the use of the communications firmware (Chapter 3,
Communications Mode).

Apple IIc Firmware



II Communications Firmware Commands

Refer to the Super Serial Card manual for more details an the usa
of the following commands. "A means CONTROL·A.

"AnnB Set baud rate to nn

Baud Rate nn

50 1
75 2

110 3
135 4
150 5
300 6
600 7

1200 8
1800 9
2400 10
3600 11
4800 12
7200 13
9600 14

19200 15

CommUnications Firmware Commands



"AnnO Set data formmat bits to nn

Data Format nn

8 data, 1 stop 0
7 data, 1 stop 1
6 data, 1 step 2
5 data, 1 stop 3
8 data, 2 stop 4
7 data, 2 step 5
6 data, 2 stop 6
5 data, 2 step 7

"AI Enable video eche

'" AK Disable linetead after CR

'" AL Enable !inetead atter CR

'" AnnN Disable video echo and set printer width to nn. nn is
printer width. in decimal.

"'AnnP Set parity bits to nn

Parity nn

none 0.2.4,6
odd 1
even 3
MARK 5
SPACE 7

'" AQ Quit terminal mode

'" AR Reset the ACIA, IN:# O. PR # 0

'" AS Send a 233 ms break character

'" AT Enter Terminal mede
. .

'" AZ Zap control commands

'" AX Set command ehar to "X (default. "A)

'" AnnCR Set printer width (CR =carriage retum). Video echo
must be disabled.

Apple lie Firmware



Mouse Tectln1cal Note #1
15-Mar-84

This tedl1ical note explains wtlat you need to be concerned aoout rega..""Oing ttle
~ I S interru;rt env1rontrent wittl ttle rrouse, regardless of wt'letne1' you are using
1nterl'Upts or not.

For ftJI"tt:J!r information contact:
PCS Developer TedY1ica:l SUpport
MIS 22-W. Phone (408) 996-1010

Disclaimer Of All ~tles and Li~llities

Apple~, I~. Makes NO warrant1es, eitter e>:pI'eSS or ~lied, wittl respect to
tn1s teem1cal nota or w1tn respect to tne SOft~ oescr1bed in tn1s teern1cal note,
1ts qual1ty, pel' ~ornB ICe, 1rI!I'etlar1tal:)111ty, or f1tness fOr any part1cular purpose.
Apple~ SOftware 1s 11ca1sed Mas 1s·. 1'l"\e entire r1sK as to 1ts qual1ty and
perflOIUBlCe is ",1tn ttIe deVeloper. ShaJld tne program prove defective following its
use, tne user (and not Apple~, ~., tneir distr1butors, or tneir retailers)
asst.Il1eS ttIe entire cost Of all necessary servicing, repair or correction CI10 any
incidental or consequential damages. In no event wl11 Apple~, I~. be liaDle
for direct, 1nd1reCt, incldental or cor1~1al damages resulting from any defect
in tne SOftware, even 1f tney have t:leen advised Of tne possibU1ty Of Sl.Id1 carnages. some
~ dO not allow ttIe exculsia1 or l1m1tat1on Of ~lled IJ8I'Iai Ities or liacility for
1nc1aental or conseQlSltial aarages, so tne acove limitation or exclusion may not
apply to you.

'This SOft~ and oocunentation 1s copyrignted. All r1gtlts are reserved. 'This
teemical note may not, 1n °mle or part, be copied, ~toeoPiea, reproouceo,
translated or redl.aced to any electronic med1um or rnacn1ne readable fOrm wittlOUt prior
°\fl'1tten consent from Apple ~ter, I~.

COpyrignt 1984 by Apple ~ter, Inc.
20525 Mariani AVenue
QJpertino, CA 95014

(408) 996-1010



SoftW&r. d.v.lop.rs \lIho ~rf ....ritting l1tous. band programs in m~chine

languag. nted to b. conc,rntd about the comput.r~s intlrrupt .nvironm.nt
.y.n if thcpy ~rt using th. mouse in passiv. 11l0dl. Lishd below ar.
s,vtr~l conditions \lIhich ~ machint languagt progr~tr should take into
account if th.ir progriIU ~r. to run on th. Appl. II family of
cCRpuhr4J.

* Do not dl~blt Int.rrupts unless you must. Thin b. sur.
to r.-.nabl. th.m.

* Disabl. int.rrupts ~.n call ing any mous. ~u~,n~SEI)._ .._-_ .. ~.":";. ......

* Do not r.-.nabl. int.rrupts (CLl) or (PLP if pr.viously
h~d don. ~ PHP) ~ft.r READMOUSE until X &Y data havi
bt.n r~ovcpd from the scr••n hol.s.

* 8, surt to dlsablt int.rrupts (SEl) b.for. placing position
inTo~ation in th. scr,.n hol.s (POSMOUSE or CLAMPMOUSE)./

* Ent,r all fICUS. rout in,s (not rtquir.d for SERVEHOUSE)
with th. X r.gist.r s.t to tCn ~nd Y r.gister SIt to
~O "'""1" n • slot nw.o.r.

* S~ progr~s may n••d to turn off int.rrupts for purposes
oth.r thtn r.ading th. flCUSI. This is sam.tim.s don. on

"-
tn. Appl. II. to ke.p fram having to handl. int.rrupts
art turn.d oTf and th.n back on, tn. first call to READMOUSE
may givI incorr.ct valu.s. SUbsequ.nt calls to READMOUSE
~ill r.turn corr.ct v.lu.s until int.rrupts ~t turn.d off
and on again. Turning oTT int.rrupts for mous, calls do.s
not cr•• t, this probl.,.. If you art \lI4tcning numbtrs
c~ing from th. mous. \lIhil. moving it in a dir.ction that
~uld incr.as. valu.s yOU might s•• th. following: 6, 7,
8, 9, 8, 9, 10. In practicI, ·this I1lCD.ntary "gl itch~ in
th. strt~ of flCUSI data has 1ittl. importanct and \lIould
probably only b. notic.d by progr~.r t.sting hislh.r
progr~ - no on.'s hand is that st,.dy. If you must kt.p
th is' 91 itch" frcn h~ptn ing th.n do ,not kt.p °i nhrrup ts
oTf for 11101" th.n 40 l1liero~conds or b. sur. that at least
on. mous. intlrrupt has takln place since intlrrupts .....1'.
turntd back on.



Mouse Technical Note #2
15-Mar-84

This technical note explains haw to vary the "V8l I. interrupts oetlJJ8€n SO HZ (Eurooean
rate) or 60 Hz (Norttl American rate) .

For further information contact:
.PCS Developer Tectlnical SUpport

HIS 22-1». Phone (408) 9%-1010

Disclaimer of All Warranties and Liabilities

Apple COO'4JUter, INC. Hakes NO IJJaI'I'al1ties,eitner express or i~lied, w1ttl respect to
this tectlnical note or witt! respect to ttle SOftware described in ttlis tectmical note,
its quality, performance, merctiarltaOil1ty, or fitness for any particular purpose.
Apple computer Soft~ 1s licensed "as 1s". The entire risK as to its quality and
performance is "ten ttle deVeloper. snould ttle program prove defective follolliing its
use, ttle user (and not Apple~, INC., their distribUtors, or their retailers)
assumes tne entire cost Of all necessary servicing, repair GI' correction and any
incidental or consequential damages. In no event "'ill Apple ~ter, INC. be liable
for direct, indirect, incidental or consequential damageS resulting from any defect
in the SOftl&laI'e, even 1f they have been aavised of tne possil:Jilit y of SUCt1 damageS. SCIre
states dO not allotll ttle exculs10n or 11m1tatioo of ~lied l#alTanties or l1aci11ty for
inciderrtal or consequential damages, so ttle aoove lim1tation or exclusion may not
apply to you.

This softlllaI'e and OOCUITa'ltation 1s copyrigntea. All rignts are reserved. This
tectlnical note may not, in woole or part, be copied, phOtocopied, .reprOdUCed,
translated or reaucea to any electronic medium or mact'line readable form without prior
IIIf1tten consent from Apple Corrt;)Uter, INC.

Copyrignt 1984 oy Apple Computer, Inc.
20525 Hariani Avenue
CUpertino, CA 95014

(408) 9%-1010



'I'.h1s teclm1cal note doc::uJnents a previously Uldocumented: call to tile
AppleMouse II firmwa.re which allows the user to set the interrupt ra.ta to 50 Hz,
or 60 Hz. (60 Hz is the default, a.nd keeps the mouseca,rd-generated "'VEL"
interrupts sync.hronized. with the a.ctuaJ. VBL ra.te on a. S't.a.lida.rd. Nor-th American
Apple. SO Hz is necessary for European machines. "60 Hz" a.rd "50 Hz", as used
here, are actually short.ha.nd. for the Apple video cycle ra.tes .u:sed in NorT..h
America and. Europe, respectively).

Call: 1'!MEDATA

Offset Location: SeNe

Input: Accumulator bit a =a for 60 Hz

= 1 for SO Hz

Note: All O"'ther a..e:ctmnlator bits are~. a.n1 MOST be set to O.

OUtput: carry bit clear.
sc:l""I\holM ~ed..

'l'1Ws call llilW!rt be ade be£ore mI'IMOUSX.. ani then followed. by an
INnM:IDS! call in order to be effective. I£ you lAn"t to change the interrupt
rau in the lI1d.dle at an a.pplication, you mwrt eaJ.l 'l'IM!DATA, wit.h the
appropriate value in the a.cClmUlator, ani then INrlMJtJSE (until the IN'I'l'MOUSI is
called, no interrupts will be generated.). INI'IMJOSE will, of coune, reset the
lIIlOWM position, lICCie,· cJ.a.ape, etc., back to their default values.

U TDmDATA is never eaJ.led., then the 11'rterrupt rate will defa.ul t to 60
Hz when INnM:IDS! is called.

NOT'%: nws call ex:i..:rt.3 enly on the Mouaecard. for the / /e or 1(+ ani:
should. only be used when you know 100 are t,«)rk.ing wi.th a / / e or ] (+ .



MOUse Teenn1cal Note #3
15-Mar-84

This tect'1nical note explains what happens when you turn tlie roouse on and off tnrougn t.
mde byte of ttle SETliOUSE routine,

for furtt1er information contact:
PCS Developer Technical support
MIS 22-W, PhOne (408) 996-1010

Disclaimer of All ~ranties and Liabilities

Apple COmputer, INC. Nakes NO IlIaI'ldnt1es, eitrler express or ifTl)lied, IJJ1 trl respect to
trlis tecnnical note or wi ttl respect to the software described in this teennical nota,
1ts quality... performance, mercnantaoUity, or f1~ness for any partiCUlar purpose.
Apple ~tar SOft~ 1s l1censea "as 1s". me entire riSk as to its qualityart'
performance 1s llIittl the oeveloper. S10Uld trle'program prove defective following it
use, the user (and not Apple~, INC., their disttibutors, or their retailers)
assumes the entire cost of all necessary servicing, repair or correction and any
incidental or consequential daOOges. In no event "ill Apple COl'fl)Uter, INC, be liaole
for direct, indirect, incidental or consequential damages resultir:lg from any defect
in the SOft\lilaI'e, even if tney haVe been adVised Of the possibility of sucn damages, some
states dO not allolll tne exculsion or limitation of 1rrpl1ed~ties or 1180ility for
incidental or consequential damages, so the atJove limitation or exclusion may not
apply to you •

This SOftt;&e ana ClOCUmentaticn is copyrigntea. All rignts are reserved. This
tectlnical note may not, in 'itlOle or part, be copied, pnotocopied, reproClUCad,
translated or reoucea to any electronic medium or maen1ne reaoaole form \111 tnout prior
lIIrittep consent from Apple computer, INC,

COpyrignt 1984 by Apple computer, Inc,
2OS2S Mariani Avenue
CUpertino, CA 95014

(408) 996-1010



A) '1ihat turning the mouse "off" does:

In the description ofS~ and. the mouse mode (see AppleMouse II
Users Manual pg. 44) J the low-order hit of the mouse mode is said to control
"mouse off/l'llouse on". This is somewhat misleading terminology. When this bit
is set to 0 J the mouse is off only in the following respecUl:

(1) the mouse pcdition is not tracked. Any JBO'U.t.Ie motion is ignored.

(Z) lU'.AIMJUSE ca.lls do not update the S'ta.tus byte or the serem\ helMS (the 6502
fi~ makes the R.F.AI:MOtJS] cOJlllal'd a. NaP. and d.oes not even issue the
RF.AIl1OUSE CQm!8.rd to the 6805)

(3) button ard. 1ftOvement interrupts are not generated. J regardless of the other
mouse 1IOde bitao "Pure" VBL interrttpts <:an still be generated, ~ver. if
bit 3 is set.

B) W'ha.t turni.ng the mouse "off" doe:m I t do:

Other :EI!Il::l'W!e £"unctions 'rill c:o.rrt:.irnJ.e to work a.a wrua.l when the 1'IlOWSE!I i:s
"off". POSMOUS! and. ctr.ARMX1SE will change the mouse pOGiti~ ct.AMPMOUS'E ~ll

set new c la.Mp va.lues J etc. HCMPMJllSE is an odd .:a..se; 1t !!l:1 clw\ge the lllOUSe
position as recQrded in the 6805, but this eha.nge will n2l appear in the screen
holes until a. R1:AIMJ'OS'E is d.cne W1th the ll!IICWM ,.a\" • In pu1:.1cu.la.r:

(1) turni.ng the mouse "off" and. " on" with the lICde byte does not reset art:'!
IIOUSe values, including position, to their defa.ulta. !he mouse position
reta..iNI the· last va..l.ues it had ~fore the lIllOU.fS8 W&SI tu1"ned offJ until it is
turned "on" a.ga.in.

(Z) a. mo:ie byte of S08 - mouse "off". but VBL interrupt on - will still
generate vm. interrup'tS.



Mouse Tecmical Note #4
lS-nar-84

111is technical note explains a bug in tl1e Mouse Firmware having to dO witl1 tl1e way thaI..
SERVEMOUSE IJJOrks.

For further information contact:
PCS Developer Tecm1cal SUpport
HIS 22-~. Phone (408) 996-1010

Disclaimer of All ~ties and Liabilities

Apple canputer, INC. HaKes NO ~ties, eitner express or ~liea, lIIitn respect to
trlis tedinical note or \fI1trl respect to the soft~ aescribeO in trlis tectJnical note,
1ts quality, pertornance, mercnanta011ity, or fitness for "any part1cular purpose.
Apple computer SOft~ 1s licensee "as 1s". 'The entire riSk as to its quality and
performance is ~itn tne aeve1oper. stlOU10 tne program prove defect1ve fOl1o~1ng its
use, the user (and not Apple computer, INC., their distributors, or their retailers ~

assumes tne entire cost Of all necessary servic1ng, repair or correction and any
incidental or consequential damages. In no event li1l1 Apple computer, INC. oe liaOle
for direct, 1na1rect, inc1dental or consequential damageS reSUlting from any defect
in trle SOftliaI'e, even 1f they nave been adVised Of the poss1billt Yof suctl damages. Some
states dO not allow the excu1sion or l1m1tation Of ~liea ~ties or l1aoility for
incidental or consequential carnages, so tne abOVe l1m1tation or exclusion may not
apply to you.

111is software and C2OCtImef'ltation 1s copyrigtTted. All rigtrts are reserved. This
teennical note may not, in IUI10le or part, be copied, pnotocopied, reprodUCea,
translated or redUCed to any electronic medium or maen1ne readat3le form 1.111thOUt prior
_ritten consent from Apple ~tar, INC.

eopyrigtlt 1984 by Apple COOpJter, Inc.
2OS2S Mariani Avenue
CUpertino, CA 95014-

(408) 996-1010



·
There is a bug in the AppleMouse II 6805 firmware which may affect the

way SERVEMOUSE ',l1Orks in an application program. If the application program.
takes more than 1 video cycle (normally, about 16 milliseconds) to respond to ~

mouse-generated. interrupt, then there is a chance that SERVEMOUSE will not claiJr
the interrupt: "that is, the 6805 will r-eturn an interrupt status byte of SOO
(i. e. no Mouse interr"Jpt perdi:n.g) t and the 6502 f1rnrware will set the carry bit
(aJ. th:nlgh t.ha intarrupt will ..a.lso be clu.red. by t.h.s~ call). T.hi..s can
be confusing, ard. unier ProDOS or Pascal it can be letilal. 'rIe nave identified.
the following solutions, a.ny one of which should work:

eI) If you are not working under an established system (like ProDOS or Pascal):

(A) d.on't allow uncla.i..med interrupts to be fatal to your application.
Ignore them.

(B) Always service mouse interrupts within 1/60 of a. second. If you are
forced to tum off interrupts for about tila.t length of time or more,
first:

use SE'lMOUSE to ::set the mouae lIOCie to O.

call~ to ciea.r azr:J ex.isting mouse interrupt.

After interrupts are turned ba.c:.k on, restore the mouse mode.

(II) I£ you ~ workirl.a urder a.n established operating system, like ProDOS or
Puc:al t for which u:ne] a:iJlled. inte%'1"'Upts are fatal:

(A) If the JDiOUS.G 1s tM only interrupting device: write your interrupt
handler so tna.t 1t cJ.a.:1Jls all 1n1:errupts. That is, rega.rd.less of
whet.hor the mouse adJlits to genera.ting the interrupt, clear tbe carry
bit before exi ti..ng the interrupt handler. to let ProOOS or Pascal
know the in1:errup't 'AS ":serviced".

(B) If the mouse is n91 the only interrupting device:

(1) 'rfr1te tbe !lOUSe in1:errupt handler to cla1lll all uncla..1med.
in'terrupu, as deseribed in (II)-(A) abovQ, and lI'lake sure the
lYl:OlUSe interrupt handler is installed. las1: - otherwise the
interrup1: will never get through to arry interrupt ha.nd.lers .,.,roc..'



follow the meuse's.

Note~ 'l'h:1.s solution may eawse curser nicker by dela.ying the
applica.tion I s response to VB1 interrupts.

01"

(2) 'trite a spurious inteM"'U1't handler (a.lso known as a. "demon"),
nat.~ted. wi t.h arty device, which cl.a...iJn:s all uncIa i med.
interrupts (t.ha.t is. clears the carry bit and then exits). For
the reason just mentioned, this interrupt ha.rdler lItWrt be
irls'taJ.led 1.aBt.

Note: Under ProDOS, t..h.:UI emu down the rtWlber of interrupting device:!
t.ha.t can be used. to 3.

(3) Inc:1ud.e c:o:ie in every interrupt haniler to c.heck if t.ha.t
1nt.errupt hardler i.s last. If it Us, then tha.t imerrupt
handlel" should. cla.iJll azr::1 previOW!lly unela.iJM!d interrupts, even
if its device was not genera.ting 1t.

t1rder ProDOS, this would permit 4 inteM"U1>~ devices; but it
-.y be tricky to iJrpleJIlent, a.n::i it requires identical cede in
each interrupt hardler which JmS"t be executed. every tiM the
ha.ndler is called..

Note: !his bug will be fixed in future versions of the lIOUBe card. (but
t..l'Iat 's not 1i'UCh help, is it?).



Mouse Technical Note #5
4-May-84

This technical note explains how you can go about checking to see if the
mouse firmware card you have identified through software is able to support
interrupts.

For further information contact,:
PCS Developer Technical Support
Mis 22-W. Phone (408) 996-1010

Disclaimer of All Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc. software is sold or licensed
"as is". 'l11e entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its dist: tbutor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or. correction and
any incidental or consequential dimages. In no event· will Apple Computer,
Inc. be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by'Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

Apple Computer, Inc. reserves the right to make imp~ovements in the
product described in this document at any time and without notice.

/gs



Checking To See Whether A Mouse~ Device Supports Interrupts.

After identifying a card as a mouse type device it is important to check if
the card supports interrupts. There is a convention defined in the mouse
firmware protocol that does just that. It defines location $CNll as a flag to
indicate whether or not interrupts can be supported. The value at location
$CNll will be a 0 if interrupts are supported. It is important to check this
byte if your program uses interrupts. The reason that you must check this is
that the device may not be a mouse at all, rather some other type of device that
is emulating a mouse, without interrupt generating capability. (This could be a
track ball, graphics tablet, etc.) If the byte at $CNll is a non zero value
then that device does not support interrupts and must be used passively.

If you are a hardware developer and would like your device to emulate a
mouse you must follow the mouse protocol as described in the AppleMouse II users
guide. (pg 43-49) Your device .must also have the same signature· bytes as the
mouse card. These are $CNOCm$20 and CNFB-$D6. (The N in the above addresses
represents the slot number that the card happens to be in at the time. So for
slot 4, $CNFB you would have $C4FB.)

Note: The use of location $CNll is not described in the AppleMouse II users
guide. Having your program check this byte is highly recommended since it is
quite likely that devices which emulate the mouse will be developed, and some of
them may not support interrupts. Through this byte you have a simple "way to
check if the device supports interrupts.



MOUSE TFCHNOTE 116

Revision of general handout on the Applelle Dec 83*
5-July 84

This technote explains changes that will be made to the Applelle ROM
so that it will support text icons. These icons will be used by the new
'mouse' -interface tool r..i.t.

For further information contact:
PCS Developer Technical Support
Mis 22w. Phone (408~ 996-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc. software is licensed "as is".
The entire risk as to its quality and performance is with the vendor. Should
the programs prove defective folowing their purchase, the vendor (and not
Apple Computer, Inc., its distributor, or its retailer) assumes the entire
cost of all necessary servicing, repair, or correction and any incidental or
consequential damages. In no event will Apple Computer, -Inc. be liable for
direct, indirect, incidental, or consequential damages resulting from any
defect in the software, even if Apple Computer, Inc. has been advised of the
possibility of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or consequential
damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in .wri ting, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the product
described 1n thi~ document at any time and without notice.



Dear Developers:

THIS IS TO NOTIFY YOU THAT APPLE COMPUTER WILL BE MAKING A CHANGE TO THE
CHARACTER SET IT USES IN ITS APPLE//e. THIS MAY AFFECT YOUR SOFTWARE.

This new character set will be available to the public in 1984.

WE ARE NOTIFYING YOU OF THIS CRANGE AT THIS TIME BECAUSE SOME CURRENT SOFTWARE
MAY NO LONGER FUNCTION CORRECTLY WITH THE NEW CHARACTER SET. UNDER THE RIGHT
CONDITIONS AN INVERSE UPPERCASE LETTER WILL NOW BE A GRAPHIC ICON.

The following will help you identify if the changes we are making will
affect you or not.

1. If your program is written entirely in BASIC or Pascal or your Assembly
Language program calls the COUT routine to put characters on the screen
you will not be affected. The only 'exception would be if you are using
BASIC pokes to Poke inverse upper case characters directly to the text
screen.

2. If your program is using the standard character set (checkerboard
cursor) you will not be affected.

3. If your program is using the alternate character set (solid cursor)
and is directly POKING (storing) values to the text display area you will
have problems if your character values are from 64 ($40) to 95 ($5F).
These values now display inverse uppercase characters plus some special"
characters. In the future these values will display graphic icons. To
recreate the origional displays (which include inverse uppercase plus
some special characters) use values in the range from 0 ($0) to 31 (SIF)
rather then the values from 64 ($40) to 95 ($5F). Note that using these
lower values will work properly on the current character set.

We at Apple are excited about this new extension to the Apple//e's
alternate character set. The new icons are similar·to those used in LISA and
will enhance the use of pointing devices such as a mouse on the Apple//e. If
used effectively, the icons, in connection with pointing devices, can
significantly simplify the human interface 9f your programs.

What we foresee as the ways to access these ICONS from various programming
languages are described below. We have also included a sample of the current
ICON set. More detailed and accurate information will be provided prior to
making the ICONS available.

The following method will probably be used for showing ICONS from BASIC:

1) Set up the alternate character set by POKING 49162 (SCOOA) with any value
then doing a PR#3. If an 80 column card is present you may remain'in 80
columns. If there is no card or you want to be in 40 columns PRINT CHR$(ll).
2) PRINT CHR$(27) to enable the mouse characters.
3) Use the INVERSE command to set inverse mode.
4) PRINT the appropriate capital letter for the desired ICON. See .attached



ICON chart.
Disable the ICONS by PRINTing CHRS(24).

Machine Language programs are expected to follow the same procedure as
BASIC. Use calls to COUT to perform the print operations. The following is a
sample Machine Language program which will 'print' two ICONS followed by the
two inverse uppercase letters that have the same ASCII values.

$lB,$46,$47,$18,$46,$47 jICONS ON, SHOW, ICONS OFF, SHOW
*-STR ; LENGTH OF STR

START

LOOP

STR
STRLEN

STA
LOA
JSR
LOY
LOA
JSR
INY
CPY
BNE
RTS
DFB
EQU

$COOA
II$AO
$C300
110
STR,Y
$FDED

STRLEN
LOOP

j FLIP IN 80 COLUMN FIRMWARE
jUSE A BLANK TO
jTORN ON VIDEO FIRMWARE
; INIT COUNTER
;GET VALUE"
; SEND IT THROUGH COUT ROUTINE

j->NOT DONE YET

NOTE: 'printing' ICONS on the text screen by directly poking or storing ICON
values into the text buffer is not supported.

The probabable method for using the ICONS from Pascal 1.1 will be as follows:

1) Output a chr(27), an escape character, to enable ICONS.
2) Output a chr (15) to turn on inverse video.
3) Output the appropriate capital letter for the desired ICON. See attached
ICON chart.
Disable the ICONS by outputting chr(24).

Pascal sample program:

program Output mouse icon;
var cmd packed array [ 0 •• 11 of 0 ••255;
begin

cmd [ a ] :,. 27; cmd [ 1 ] :- 15;
Uni twri te (1, cmd, 2 ); {turn on ICON mode }
{code to display icons •••

•
•

}
cmd ( a J :- 24;
Unitwrite ( 1, cmd, 1 )j {turn off ICON mode}

end.


	apple_forumdesdeveloppeurs_01_mousetext.pdf
	apple_forumdesdeveloppeurs_01_mousetext_01
	apple_forumdesdeveloppeurs_01_mousetext_02
	apple_forumdesdeveloppeurs_01_mousetext_03
	apple_forumdesdeveloppeurs_01_mousetext_04
	apple_forumdesdeveloppeurs_01_mousetext_05
	apple_forumdesdeveloppeurs_01_mousetext_06
	apple_forumdesdeveloppeurs_01_mousetext_07
	apple_forumdesdeveloppeurs_01_mousetext_08
	apple_forumdesdeveloppeurs_01_mousetext_09
	apple_forumdesdeveloppeurs_01_mousetext_10
	apple_forumdesdeveloppeurs_01_mousetext_11
	apple_forumdesdeveloppeurs_01_mousetext_12

	apple_forumdesdeveloppeurs_02_interface.pdf
	apple_forumdesdeveloppeurs_02_interface_01
	apple_forumdesdeveloppeurs_02_interface_02
	apple_forumdesdeveloppeurs_02_interface_03
	apple_forumdesdeveloppeurs_02_interface_04
	apple_forumdesdeveloppeurs_02_interface_05
	apple_forumdesdeveloppeurs_02_interface_06
	apple_forumdesdeveloppeurs_02_interface_07
	apple_forumdesdeveloppeurs_02_interface_08
	apple_forumdesdeveloppeurs_02_interface_09
	apple_forumdesdeveloppeurs_02_interface_10

	apple_forumdesdeveloppeurs_03_userinput.pdf
	apple_forumdesdeveloppeurs_03_userinput_01
	apple_forumdesdeveloppeurs_03_userinput_02
	apple_forumdesdeveloppeurs_03_userinput_03
	apple_forumdesdeveloppeurs_03_userinput_04
	apple_forumdesdeveloppeurs_03_userinput_05
	apple_forumdesdeveloppeurs_03_userinput_06

	apple_forumdesdeveloppeurs_04_tn_prodos.pdf
	partie04_01
	partie04_02
	partie04_03
	partie04_04
	partie04_05
	partie04_06
	partie04_07
	partie04_08
	partie04_09

	apple_forumdesdeveloppeurs_05_tn_pascal.pdf
	partie05_01
	partie05_02
	partie05_03
	partie05_04
	partie05_05
	partie05_06
	partie05_07
	partie05_08
	partie05_09

	apple_forumdesdeveloppeurs_06_tn_appleiie.pdf
	partie06_01
	partie06_02
	partie06_03
	partie06_04
	partie06_05
	partie06_06

	apple_forumdesdeveloppeurs_07_tn_appleiic.pdf
	partie07_01
	partie07_02
	partie07_03
	partie07_04
	partie07_05
	partie07_06
	partie07_07


